
 

 

 

EXPLORING THE RELATIONSHIP BETWEEN SOIL STRUCTURE AND SOIL FUNCTIONS VIA 
PORE-SCALE IMAGING 

 

 

A habilitation thesis for the purpose of obtaining the academic degree 

Dr. agr. habil 

 

submitted to the 

Faculty of Natural Sciences III – Agronomy and Nutrition Science, Geoscience and Computer Science 

of the 

Martin Luther University Halle-Wittenberg 

 

by 

Dr. rer. nat. Steffen Schlüter 

 

Born on March 23rd 1983 in Schlema 

 

Reviewers: 

1. Prof. Dr. Hans-Jörg Vogel 

2. Prof. Dr. Nicolas Jarvis 

3. Prof. Dr. Iain Young 

Halle (Saale), 17.12.2019 

  



ii 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To Ina and Johannes 

  



iii 
 
 

Summary 
Soil structure is shaped by various biotic and abiotic processes in soil and in turn governs many important 
soil functions. The advent of non-invasive image techniques has enabled a shift in soil structure 
assessment from the aggregate perspective towards the pore perspective. The direct characterization of the 
undisturbed pore structure is beneficial for a better understanding of the functional behavior of soil, as it 
is the complex pore system at various scales that provides the pathways for matter fluxes, the habitats for 
soil biota and the space for chemical reactions. 

The research presented here aims on the one hand at method improvement to advance the characterization 
of soil structure and soil structure dynamics through novel imaging processing protocols (four papers) and 
on the other at unraveling the relationship between soil structure and soil functions with field and 
laboratory experiments (three papers). Method developments are focused on three-dimensional image 
processing of X-ray microtomography images and its combination with biochemical microscopy. This 
includes (i) the optimization of image segmentation for multi-class soil images, (ii) the quantification of 
three-dimensional soil deformations, (iii) the analysis of soil structure turnover through a new structure 
labeling approach and (iv) the development of a correlative imaging protocol to merge three-dimensional 
soil structure data with two-dimensional microscopy data. The experimental studies comprise (i) the 
investigation of soil structure changes due to different tillage practices in a long-term field trial and its 
implications on important soil functions like water storage, plant growth and habitat maintenance. The 
two remaining incubation studies investigate the role of physical constraints to matter cycling, in 
particular respiration and denitrification in microbial hotspots, through (ii) changes in aggregate size and 
oxygen concentration or (iii) water saturation and hotspots distribution in space.   

The thesis concludes with some general observations that were common to all studies. The range of 
spatial scales at which soil structure is representatively captured with a specific imaging technique is quite 
small. The most appropriate scale depends on the soil function of interest, e.g. large for water transport, 
but small for microbial habitats. Approaches to extend the range of spatial scales through hierarchical 
sampling and correlative imaging have been introduced and applied in this thesis. The second general 
observations that resonated through all studies is the non-linearity in the relationship between pore space 
attributes and the non-linear response of soil functions to change in pore space attributes. The non-
linearity is in fact one of the reasons why soil structure is such a suitable indicator for the soil ecological 
status and the detoriation of soil functions. The thesis ends with an outlook at potential extensions or 
applications of the methods that have been introduced here, most of which are already ongoing. 
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1. Introduction 

1.1. Two Perspectives on Soil Structure1 
Soil is a precious resource with crucial ecosystem functions such as water and nutrient cycling, food 
production and maintaining habitat biodiversity. These functions result from complex interactions of 
physical, chemical and biological processes. Soil structure is a manifestation of these interactions under 
given environmental conditions and can be interpreted as an integral indicator of the soil ecological status, 
i.e., the capacity to host organisms, to sustain the production of biomass, and to recover from external 
perturbation (Kibblewhite et al., 2008; Rabot et al., 2018; Young and Crawford, 2004). Soil structure is 
defined here as three-dimensional arrangement of solid soil constituents and voids across different scales 
(Rabot et al., 2018), resulting from interactions of biotic and abiotic factors, including climate, mineral 
composition, organic matter (OM), roots, fungal hyphae, soil fauna, and tillage. This definition already 
highlights the dichotomy in soil structure assessment through the aggregate perspective or pore space 
perspective (Figure 1).  
The traditional approach has always been to characterize soil structure through the size, shape, grade and 
stability of soil aggregates (Ad-hoc-AG Boden, 2005; Jahn et al., 2006). This is standard procedure in soil 
surveys worldwide and common practice for farmers to evaluate the soil ecological status from quick 
field observations. The fastest and cheapest soil structure assessment is achieved with drop-shatter tests, 
for which a spade-full of topsoil is dropped from a certain height, e.g 1m, and a score is derived from the 
size distribution, and shape of aggregates as well as earthworm and root abundance (Ball et al., 2007; 
McKenzie, 2001; Shepherd et al., 2008). The scoring results have been shown to correlate with soil 
compaction and the associated decrease in gas exchange, infiltration and agricultural production 
(Guimarães et al., 2013; Mueller et al., 2009; Pulido Moncada et al., 2014; Shepherd, 2003). However, 
scoring methods are rarely used in basic research because the assessment is somewhat subjective and the 
results depend on texture as well as time-variant soil moisture and biological activity (Guimarães et al., 
2011; Mueller et al., 2009; Newell-Price et al., 2013).  
Soil structure can be measured more objectively with laboratory methods. The most common method is to 
measure bulk density and derive porosity from the dry weight of undisturbed soil cores with a given 
volume. The soil core extraction in the field, might not capture the field variability representatively, is 
known to induce some disturbance along the wall and can become impossible for high rock content and in 
the presence of woody roots (Page-Dumroese et al., 1999; Schlüter et al., 2011; Vincent and Chadwick, 
1994). Another common approach to characterize soil structure through aggregate size distribution and 
stability according to various protocols grouped into wet-sieving and dry-sieving (Dı́az-Zorita et al., 
2002). The results are highly sensitive to specific details of each protocol (energy, duration, repetition) 
and antecedent soil moisture (Almajmaie et al., 2017; Beare and Bruce, 1993). Despite these drawbacks 
aggregative sieving and stability tests remain as they can inform about the susceptibility to slaking (wet-
sieving) and resistance to mechanical disturbance (dry-sieving) and are relatively easy to perform. 
Moreover the fragmentation of soil into different aggregate size classes supports the concept of an 
aggregate hierarchy which assumes that macroaggregates (>250µm) form around particulate organic 
matter and microaggregates (<250µm) are released upon breakdown of macroaggregates (Angers et al., 
1997; Tisdall and Oades, 1982). The macroaggregates are supposed to be relatively short-lived as their 
binding agents are less persistent than those within microaggregates.  
This aggregate perspective on soil structure has frequently been criticized as the associated methods 
rather aim at measuring the stability of soil structure than soil structure itself and the outcome of these 
measurements highly depend on the applied energy (Baveye, 2006; Letey, 1991; Pagliai and Vignozzi, 

                                                      
1 This paragraph is loosely based on the paper: Rabot et al.(2018): Geoderma 314, 122-137. 
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2002; Young et al., 2001). Moreover, it is the pore space and not the solid space that constitute the spatial 
domain for water flow, matter fluxes and gas exchange, the habitat for soil biota and the reactor of a 
multitude of reactions. Therefore, the characterization of pore space attributes in undisturbed soil seems 
more promising to relate it to soil functions. Methods for pore space characterization can be roughly 
grouped into indirect methods and direct methods. Indirect methods (e.g. mercury porosimetry, pressure 
chamber) derive pore attributes like the pore size distribution from functional behavior like water 
retention curves. Direct observations of pore structure are based on imaging (e.g. thin section microscopy, 
X-ray tomography). They allow for a qualitative assessment of pore structure according to its formation 
(packing voids, microcracks, root channels, earthworm burrows) as shown in Figure 1 and for a 
quantitative assessment through image analysis resulting in properties like pore size distribution, pore 
connectivity or pore distances. Both direct and indirect methods for pore structure assessment tend to be 
more time-consuming and labor-sensitive than aggregate structure assessment. Imaging methods, in 
particular, suffer from limited access and some degree of subjectivity in the image processing protocols 
(Baveye et al., 2010).  

 

Figure 1: Summary of two competing views: the aggregate perspective and the pore space perspective.  (a) Kühnfeld, 
Halle, Germany (continuous maize, conventional tillage, 63% sand, 25% silt, 12% clay), (b) Hadera, Israel (orchard, 65% 
sand, 16% silt, 19% clay), (c) Bad Lauchstädt, Germany (grassland, 12% sand, 68% silt, 20% clay), (d) Garzweiler, 
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Germany (crop rotation, below plow layer, 5% sand, 81% silt, 14% clay); modified from Rabot et al. 
(2018)Relevance of soil structure for soil functioning 
Soil structure exerts a major control on many important soil functions like storage and filtering of water, 
carbon and nutrient cycling, as well as habitat for biological activity. A comprehensive review of soil 
structure effects on these soil functions is beyond the scope of this introduction, but can be found 
elsewhere (Kravchenko and Guber, 2017; Rabot et al., 2018). Instead we use an illustrative example to 
demonstrate the role of soil structure for a few fundamental soil processes and their implications for the 
abovementioned soil functions. 

 
Figure 2: X-ray CT scans of a 1cm thick aggregate from a topsoil in Bad Lauchstädt scanned at a resolution of 8µm: (a) 
the pore size distribution is depicted from small (green) to large (red) diameters; (b) the 3D distribution of air and water 
at -30hPa modeled with the maximum inscribed sphere method; (c-d) 2D sections of the modeling results at different 
matric potentials; (f-h) air distances within the aggregate at the same potentials. The values represent average distances 
and the green frames delineate hypothetic perimeters of anoxic centers. 

 
Figure 2(a) shows the pore architecture of a 1cm large soil aggregate from Bad Lauchstädt scanned with 
X-ray CT at a voxel resolution of 8µm. The pore size distribution is obtained with the maximum inscribed 
sphere method and depicted from small (green) to large (red) diameters. This pore size information can be 
used to model water retention and the distribution of water and air at a certain matric potential by 
employing Young-Laplace law and the capillary rise equation that is derived from it: 

ℎ =
2 𝛾𝛾 𝑐𝑐𝑐𝑐𝑐𝑐 (𝛼𝛼)
𝜚𝜚𝑤𝑤  𝑔𝑔 𝑟𝑟

 
(1) 

where ℎ is the rise above a free water table in a cylindrical capillary with radius 𝑟𝑟, 𝛾𝛾 is interfacial tension 
between water and air, 𝛼𝛼 contact angle, 𝜚𝜚𝑤𝑤 is the density of water and 𝑔𝑔 is gravitational acceleration. In 
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hydraulic equilibrium this height above the free water table can be directly interpreted as pressure head 
ℎ𝑚𝑚 (or capillary pressure 𝑃𝑃𝑐𝑐 or matric potential 𝜓𝜓𝑚𝑚) in that soil depth. Assuming a capillary bundle model 
Eq. (1) can be recast to directly infer whether a pore with a certain radius will be water or air-filled at a 
certain matric potential. This pore morphology based simulation of water retention is done in Figure 2(b) 
for a matric potential of -30hPa assuming pure water and perfect wettability. Note that the capillary 
bundle assumption is a severe oversimplification, because in order to drain a pore it is not only important 
whether its radius is large enough, but also whether there exists a continuous path towards the atmosphere 
through which air can invade (Hazlett, 1995; Hilpert and Miller, 2001). However, for the following 
example this difference is not important. Repeating this analysis for decreasing matric potentials 
resembles a drainage process (Figure 2c-e). The soil moisture characteristic (or water retention curve or 
moisture release curve or pF curve) could be directly estimated from the water content at each drainage 
step. Larger packing pores and root channels are drained first, whereas air invades microcracks and 
smaller intra-aggregate pores at a more negative matric potential. At a matric potential of -300cm ≈ pF 
2.5 all macropores (>50µm) and narrow macropores (>10µm) are drained and the soil has reached field 
capacity (Figure 2e). The unresolved mesopores (>0.2µm) act as a reservoir for root water uptake as they 
hold the water against gravity by capillary forces. The visible macropores, in turn, are essential for soil 
aeration at field capacity or for preferential flow and solute transport when the soil is fully saturated 
(Rabot et al., 2018). Note that a large part of the unresolved mesopores are textural pores between 
primary particles, whereas all visible pores are structural pores. 
In summary, water retention and soil aeration patterns are a direct imprint of the underlying pore 
architecture. But this also has important ramifications into matter cycles as they govern diffusion 
pathways, microhabitats and reaction patterns. This is demonstrated with contact distances to the closest 
air-filled pore at different matric potentials (Figure 2f-h). At full saturation, air is only present outside the 
aggregate so that on average dissolved oxygen has to diffuse 620µm from the aggregate boundary to 
reach any location within the soil matrix. For sake of simplicity this contact distance is estimated by direct 
Euclidean distances, whereas pores are tortuos and real diffusion trajectories along a concentration 
gradient are not straight but chaotic due to Brownian motion. When the aggregate is drained this average 
air distance decreases substantially. At field capacity it already decreased by one order of magnitude 
(70µm), which entails a much better supply with dissolved oxygen in the water-filled soil matrix. This 
dissolved oxygen will be consumed through aerobic respiration in the soil matrix. If this oxygen 
consumption exceeds the oxygen supply through diffusion along the oxygen gradient, then anoxic zones 
may form in the aggregate center (Figure 2f-g). Their extent depends on local respiration rates and contact 
distances. 
The implications of these micro-environmental conditions for carbon and nitrogen turnover are manifold. 
Carbon mineralization rate through anaerobic respiration are about one order of magnitude smaller than 
through aerobic respiration (Keiluweit et al., 2017). This leads to the well-known saturation dependence 
of bulk soil respiration with an optimal respiration rate at intermediate soil moisture and a decline towards 
full saturation and complete dryness(Moyano et al., 2013; Skopp et al., 1990). Under very dry conditions 
a substrate diffusion limit arises, because the continuity in the water phase is lost and microbes become 
separated from resources and may fall into metabolic arrest (Manzoni and Katul, 2014; Tecon and Or, 
2017). Under very wet conditions an oxygen diffusion limit may arise, when oxygen consumption 
exceeds the diffusive flux towards the location of oxygen consumption, so that anaerobic respiration with 
alternative electron acceptors sets in (Linn and Doran, 1984b). The susceptibility of organic matter to 
mineralization therefore does not only depend on the chemical structure of the organic compounds, which 
defines the electron donator-dependent energy gain, but also on the moisture regime and resulting redox 
conditions which controls the electron acceptor-dependent energy gain of the reaction (Keiluweit et al., 
2016).  Soil structure does not only have an indirect effect carbon turnover through the regulation of water 
retention and soil aeration, but also exerts a direct control on carbon stabilization in soil through physical 
protection against mineralization, when organic compounds are located in pores that are not accessible to 
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microorganisms. In fact, this physical protection seems to be the main mechanism for long-term carbon 
storage next to protection in organo-mineral associations, whereas the important of chemical recalcitrance 
might have been overstated in the past (Lehmann and Kleber, 2015; Schmidt et al., 2011). This physical 
protection might occur in pores that are smaller than a microorganism itself, or when they are separated 
by discontinuous water films, though this limitation is more relevant for bacteria than for fungi as they 
can overcome these barriers via hyphae (Ritz and Young, 2004). There are indications that this physical 
carbon protection is most relevant in fine-textured, structured soils, but less relevant in sandy soils 
(Christensen, 2001). There is an important feedback loop because soil structure does not only affect 
carbon turnover. Organic carbon is also a key driver in the formation of soil structure by acting directly as 
binding agent for mineral particles and indirectly by stimulating soil biota that modify soil structure 
(Rillig and Mummey, 2006; Six et al., 2004; Tisdall and Oades, 1982).  
Soil structure is not only important for carbon turnover, but also for nutrient cycling, in particular 
nitrogen. Reactive nitrogen exists in many soluble and gaseous forms in soil. Transformations between 
them are regulated by environmental conditions (pH, temperature, moisture) and different transformations 
may occur simultaneously in different niches and microsites in structured soil. This is again demonstrated 
with the aggregate example in Figure 2. Denitrification, i.e. the reduction of nitrate through anaerobic 
respiration, will occur in anoxic aggregate centers. Nitrification, i.e. the biological oxidation of 
ammonium to nitrite and nitrate, in turn, is an aerobic process as it requires oxygen and will therefore 
occur in direct vicinity to air-filled pores. The relative importance of both processes depends in soil 
moisture. Nitrification rates increase with soil moisture in line with overall microbial activity until it 
drops when aeration becomes a limiting factor. Denitrification emerges at saturations around 60-70% and 
peaks around 90% (Linn and Doran, 1984a). It does not only depend on the moisture-dependent diffusion 
distances in soil, but also on the distribution of organic carbon in soil. In a seminal study Parkin (1987) 
demonstrated that 25-85% of denitrification activity was associated with particulate organic matter that 
comprised less than 1% of the soil volume. The concentration of microbial activity in microbial hotspots 
is therefore not only immanent to carbon cycling but also to nitrogen cycling (Kuzyakov and 
Blagodatskaya, 2015) and their distribution in space is controlled by soil structure. 

1.3. Brief thesis outline 
This cumulative thesis summarizes the findings from seven peer-reviewed papers (one still in revision) 
published between 2014 and 2019. The common scope of all papers is the quantification of soil structure 
and soil structure dynamics and its impact on the functional behavior of soils. The papers are structured 
according to their main focus, which is either method development to advance soil structure 
characterization (chapter 2 Methods) or experimental studies on the role of soil structure for various soil 
functions (chapter 3 Results and Discussion). Both chapters are briefly outlined in the following. 

1.3.1. Method development 
All four papers in this chapter describe methods to analyze soil structure and its dynamics via imaging 
and image processing. The main imaging method used in all papers is X-ray computed microtomography 
(X-ray CT or µCT). The principles of X-ray CT are not explained in detail here, but have been reviewed 
elsewhere (Wildenschild and Sheppard, 2013). In brief, the physical principle of X-ray imaging is the 
attenuation of X-rays as the function of electron density according to Beer-Lambert’s law, which is a 
function of local bulk density and the blend of atomic numbers based on the local element composition. 
The X-ray attenuation along the path through a 3D object is projected onto a 2D radiogram. The internal 
structure of the 3D object is then recovered by reconstruction of a 3D tomogram based on a multitude of 
radiograms acquired at different rotation angles of the 3D objects via mathematic reconstruction 
algorithms. X-ray CT has developed into a standard method for analyzing porous media like soils and 
rocks in three dimensions (Cnudde and Boone, 2013; Wildenschild and Sheppard, 2013). The raw data 
rarely serves as a basis for retrieving quantitative information of soil structure, but has to undergo several 
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image processing steps before it can be analyzed towards different ends. The main image processing 
methods applied in this thesis are summarized in a workflow in Figure 3. The content of each paper is 
briefly described in the following.  

 
Figure 3: Image processing workflow applied in all papers. The workflow contains methods (cursive) and their outcomes 
(gray boxes). The papers are listed according to the methods used using their chapter numbers. 

The first paper (chapter 2.1) is a comprehensive review of image processing methods for X-ray CT 
images with an emphasis on multi-phase images. Special segmentation algorithms are required, if the 
sample contains more than two material classes, i.e. not only pores and soil matrix, but in addition 
particulate organic matter or water and air within pores. The review paper surveys combinations of image 
enhancement and image segmentation methods and evaluates their suitability for multi-phase 
segmentation by visual assessment and by comparing structural properties derived from the segmented 
images. The image processing protocols developed in that paper are used in all subsequent papers. 

The second paper (chapter 2.2) introduces a protocol for digital volume correlation to study internal soil 
deformation during centrifugation. Centrifugation is a method for measuring soil water retention curves. 
However, the bias induced by structural damage at high pressures is typically ignored. By looking at 
deformation patterns and changes in pore structure properties we show that soil structure is modified by 
the interplay between desiccation and compaction. Considerable damage is only induced when a critical 
pressure is reached. Digital volume correlation is also applied in another paper (chapter 2.3) to determine 
the internal deformation during compaction. 

The third paper (chapter 2.3) introduces a new conceptual approach for estimating soil structure turnover 
and explains the required experimental setup as well as image processing protocol. The basic idea is to 
label soil structure by coating aggregate surfaces with small particles and to measure how fast the position 
of particles is randomized with respect to pore distances. That is, these distances are minimal initially as 
there are located directly at the aggregate surfaces. However, as old pores are destroyed and new pores 
are formed through biotic or abiotic agents the particle-pore distance may gradually evolve towards a 
dynamic equilibrium. The methodology is tested for compaction, as a typical example of an abiotic 
structure changing process. Implications for biotic structure modification and the coupling of organic 
matter turnover and soil structure turnover are discussed. 

The fourth paper (chapter 2.4) demonstrates correlative imaging as a tool for studying microenvironments 
in soil. Image registration is introduces as a method to combine 3D structural information of an intact soil 
core obtained with X-ray CT with 2D biochemical information measured on exposed surfaces with 
various microscopy methods (light microscopy, fluorescence microscopy, electron microscopy, secondary 
ion microscopy). The spatial distribution of bacteria is registered to the 3D soil structure to demonstrate 
that bacteria are mostly located in mesopores and have a tendency to forage near macropore surfaces and 
near particulate organic matter. The spatial distribution of minerals and organic matter within the 3D pore 
space is also discussed. 



7 
 
 

1.3.2. Experimental studies on soil structure and soil functions 
The relationship between soil structure and soil functions like water storage or maintenance of microbial 
diversity is already analyzed on a few occasions in the papers on method development in chapter 2. The 
remaining three papers in chapter 3 are based on these image-processing methods and combine them with 
other laboratory methods to investigate the role of soil structure for other important soil functions. 

The fifth paper (chapter 3.1) analyzes a long-term tillage trial with respect to soil structure changes in two 
soil depths induced by 25 years of different management (conventional tillage vs. reduced tillage). The 
functional behavior of these differently tilled soils is investigated in terms of aeration (air capacity), water 
filtration (hydraulic conductivity), habitat for soil biota (earthworm abundance) and plant growth (grain 
yield). It is shown that 25 years of reduced tillage has led to a compaction of the topsoil underneath the 
cultivator but did not loosen the old plow pan, despite the higher earthworm abundance. Grain yields are 
not affected, since the observed compaction has not reached a critical threshold that would affect plant 
growth.  

The sixth paper (chapter 3.2) investigates the role of aggregate size and oxygen concentration at the 
aggregate boundary for microbial growth and denitrification in anoxic centers of fully saturated porous 
glass beads that serve as analogues for soil aggregate. This is the only paper in this thesis that does not 
involve X-ray CT, except for visualization, as the structural properties of the artificial aggregates are 
known a priori. With gas chromatography it is shown that bacteria grow faster in small aggregates 
through better oxygen supply due to a favorable surface-to-volume ratio, thus inducing denitrification 
earlier. However, the total N-gas production through denitrification is higher in large aggregates due to a 
higher anaerobic soil volume fraction evolving in the course of incubation. The protocol for preparing 
artificial aggregates as well as the experimental setup for gas kinetics measurement is adopted in the 
subsequent paper. 

The seventh and final paper (chapter 3.3) explores physical limitations to microbial respiration and 
denitrification imposed by oxygen diffusion and substrate diffusion. The porous glass beads serve as 
artificial microbial hotspots that are placed in different spatial configurations into a sterile sand matrix 
with different water saturations. Microbial growth in these hotspots depends on the distribution of 
hotspots as it governs the local competition for oxygen. These different growth rates also cause different 
N gas kinetics especially at low and intermediate saturation. At high water saturation the supply of 
hotspots with oxygen is impaired irrespective of hotspot distribution. The total magnitude of 
denitrification mainly depends on water saturation. 3D image analysis indicates that the steep increase in 
denitrification is not caused by a loss in connectivity of air-filled pores but rather by an increase in 
diffusion length towards and within air-filled pores.  
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2. Methods 

2.1. Image processing of multiphase images obtained via X-ray 
microtomography: A review (Schlüter et al. 2014, Water Resources 
Research, 50(4), 3615-3639, doi: 10.1002/2014WR015256) 

Abstract 

Easier access to x-ray microtomography (µCT) facilities has provided much new insight from high-
resolution imaging for various problems in porous media research. Pore space analysis with respect to 
functional properties usually requires segmentation of the intensity data into different classes. Image 
segmentation is a non-trivial problem that may have a profound impact on all subsequent image analyses.  
This review deals with two issues that are neglected in most of the recent studies on image segmentation: 
(i) focus on multi-class segmentation and (ii) detailed descriptions as to why a specific method may fail 
together with strategies for preventing the failure by applying suitable image enhancement prior to 
segmentation. In this way, the presented algorithms become very robust and are less prone to operator 
bias. Three different test images are examined: a synthetic image with ground-truth information, a 
synchrotron image of precision beads with three different fluids residing in the pore space, and a µCT 
image of a soil sample containing macropores, rocks, organic matter, and the soil matrix. Image blur is 
identified as the major cause for poor segmentation results. Other impairments of the raw data like noise, 
ring artifacts, and intensity variation can be removed with current image enhancement methods. Bayesian 
Markov random field segmentation, watershed segmentation, and converging active contours are well 
suited for multi-class segmentation, yet with different success to correct for partial volume effects and 
conserve small image features simultaneously. 

Introduction 

The last decade has seen a tremendous progress in x-ray tomography and imaging techniques providing 
new means to analyze a multitude of research problems in porous media research. In the scope of water 
resources research, applications range from soil-water-root interactions,  mechanical and hydraulic 
properties of rocks, to pore-scale modelling of multi-phase flow and continue to appear in related fields of 
research (Anderson and Hopmans, 2013; Blunt et al., 2013; Wildenschild and Sheppard, 2013). Progress 
in image progressing has kept a comparable pace in terms of new developments in image enhancement, 
image analysis, and hardware architectures (Kaestner et al., 2008; Ketcham and Carlson, 2001; Porter and 
Wildenschild, 2010; Sheppard et al., 2004; Tuller et al., 2013). Since x-ray tomography is becoming a 
standard technique available to an increasing number of research groups in water resources research, 
more and more scientists have a need for information on how to process their data. Not everyone new to 
the field has the resources to develop their own image processing toolbox, tailored for the research 
question at hand, nor the budget to take advantage of powerful image processing software that often has a 
rather comprehensive scope. A relief in this regard are software toolboxes which are freely available to 
the scientific community like ImageJ (Ferreira and Rasband, 2012), ITK (Ibanez et al., 2005), QuantIm  
(Vogel et al., 2010), Blob3d (Ketcham, 2005), OpenCV2  or scikit-image3, just to name a few. Their 
multi-phase segmentation capabilities are somewhat limited and may require substantial operator input. 
The software used in this study is described in the appendix. 

However, comparing the performance of different image processing methods on the same set of test 
images often leads to very different results. A notorious example is image segmentation of a gray value 
image into objects and background (Baveye et al., 2010; Iassonov et al., 2009; Sezgin and Sankur, 2004). 
                                                      
2 http://opencv.org/ 
3 http://scikit-image.org/ 
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Yet, these comparative studies often merely list the performance of several segmentation methods with 
respect to a certain quality measure or highlight the user-dependency of the segmentation result, but lack 
in useful information as to why a specific method fails under certain circumstances and how this may be 
avoided by suitable preprocessing. Another shortcoming is that many recent review papers on image 
segmentation with a focus on soil images deal with binary segmentation only (Baveye et al., 2010; 
Houston et al., 2013b; Wang et al., 2011) and do not provide solutions to multi-class segmentation 
problems. 

This review paper has two main objectives. First, we survey various segmentation methods with respect 
to multi-class segmentation. We focus on methods that operate on a single image, i.e. coupled images 
scanned at different x-ray energy levels (Armstrong et al., 2012; Costanza-Robinson et al., 2008; Rogasik 
et al., 1999) or in a wet and dry state (Culligan et al., 2004; Wildenschild et al., 2005) are not discussed 
here. We refer the reader to Brown et al. (2014) where we demonstrate that a single-energy method 
outperforms a three-energy method and discuss the potential shortcomings of either approach. All of the 
surveyed methods are locally-adaptive, i.e. in addition to global histogram information they consider 
some neighborhood statistic for class assignment. In particular, we will examine  hysteresis segmentation 
(Vogel and Kretzschmar, 1996), indicator kriging (Oh and Lindquist, 1999), converging active contours 
(Sheppard et al., 2004), watershed segmentation (Vincent and Soille, 1991) and Bayesian Markov random 
field segmentation (Kulkarni et al., 2012). As quality measures we will use misclassification error, 
volume fraction, specific interfacial area, and a connectivity measure. Second, we point out that the 
performance of image segmentation cannot be examined independently of image enhancement prior to 
classification. To do so, we compare the impact of different denoising methods on the segmentation 
results. We have chosen standard noise removal methods that were reviewed for application in µCT data 
of porous media before (Kaestner et al., 2008; Tuller et al., 2013). Moreover, we apply efficient 
algorithms for image artifact removal, such as intensity bias (Iassonov and Tuller, 2010) and ring artifacts 
(Sijbers and Postnov, 2004). Finally, we illustrate the impairment of proper threshold detection  that is 
due to low contrast and imbalanced histograms, and present methods to correct it.  

The performance of different segmentation methods is evaluated by means of three test images. We start 
with a synthetic test image of a partially saturated packing of spheres, where the volume fractions and 
interfacial areas of the wetting, non-wetting and solid phase are known exactly. The true image is 
superimposed with ring artifacts, blur, and noise, and the success of different combinations of denoising 
and segmentation in recovering the morphological properties of the true image is compared. 
Subsequently, the most suitable combinations are applied to two real images of quite different scopes. 
The first is a synchrotron image of a three-fluid medium impaired by intensity variation and noise (Brown 
et al., 2014), the second is a µCT image of a soil with macropores, organic matter and rocks impaired by 
noise and blur (Houston et al., 2013a). 

The paper is organized as follows: In Section Material & Methods we provide the details for each image 
processing method, while image enhancement and segmentation results are compared in terms of visual 
appearance and morphology measures in Section Results. In Section Discussion we discuss the results and 
provide recommendations for best practices, and our findings are summarized in Section Conclusions. 

Methods 

Artifact Removal 

Due to shortcomings in the image acquisition process, the base signal of an x-ray scan is often 
superimposed by different kinds of image artifacts  (Ketcham and Carlson, 2001; Wildenschild et al., 
2002). The most frequent impairments are image noise due to a low count of incoming radiation at the 
detector, and image blur due to movement, hardware constraints, or suboptimal image reconstruction. As 



10 
 
 

discussed below, there are powerful denoising methods that efficiently remove noise in homogeneous 
locations and at the same time conserve edges between objects. Other image artifacts which are less 
trivial to remove a posteriori are ring artifacts, due to defective diodes in the detector panel, or beam 
hardening of polychromatic beams, which manifests itself in the reconstructed image as streakings around 
high attenuation objects and intensity variation with distance to the sample center. Note that there are 
means to avoid some of these artifacts already during image acquisition or image reconstruction like a 
slightly altering detector panel position during scanning and wedge calibration (Ketcham and Carlson, 
2001). Here we focus on methods that can be directly applied to the reconstructed volume.  

 

Ring artifacts can be removed separately for each image slice $z$ after transforming the image from 
Cartesian coordinates 𝐱𝐱 = (𝑥𝑥, 𝑦𝑦) into polar coordinates 𝐱𝐱 = (𝑟𝑟,𝜑𝜑), where 𝐱𝐱 is the location vector, (𝑥𝑥,𝑦𝑦) 
is the horizontal and vertical coordinate and (𝑟𝑟,𝜑𝜑) are radius and angle. In this way, the rings appear as 
vertical lines that can be removed with a moving window 𝑊𝑊 of width 𝑤𝑤 ≪ 𝑅𝑅, where 𝑅𝑅 is the radius of the 
sample. The window detects average variations in gray value median 𝐼𝐼(𝑟𝑟) along 𝑟𝑟 and normalizes them 
subsequently (Sijbers and Postnov, 2004). Only homogeneous rows within 𝑊𝑊 contribute to the median 
𝐼𝐼(𝑟𝑟) at column 𝑟𝑟, where the homogeneity threshold 𝐻𝐻 has to be set by the user. This method has some 
shortcomings since objects aligned to a certain radius may also be removed.  

To our knowledge, the removal of streaking artifacts due to beam hardening is an unresolved problem. 
Intensity bias, on the other hand, can be removed rather easily given that it is not superimposed by 
changing attenuation coefficients due to variable fluid saturation or matrix porosity. To do so, requires an 
iterative procedure (Iassonov and Tuller, 2010): (i) the image is segmented into the class with the highest 
attenuation and background by simple, histogram-based thresholding. (ii) The mean gray value within the 
highest-density class is stored as a function of radius. (iii) A smooth function is fitted to the data: 

𝐼𝐼(𝑟𝑟) = 𝑎𝑎 + 𝑏𝑏 cos(2𝜋𝜋𝜋𝜋 𝑅𝑅⁄ ) + 𝑐𝑐 exp (𝑟𝑟 𝑅𝑅⁄ ) (2) 

where 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 are fitting parameters. (iv) The smooth function is used to normalize the data. Steps (i-
iv) are repeated until convergence is achieved after 2-4 iterations. 

Denoising 

Median Filter 

A good noise removal algorithm should exert significant smoothing in homogeneous regions  (i.e. zones 
with low intensity gradient ∇𝐼𝐼(𝐱𝐱)  and minimal modification of edges (i.e. high ∇𝐼𝐼(𝐱𝐱) zones), where ∇ is 
the differential operator with respect to three dimensions (∇= 𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕

𝜕𝜕𝜕𝜕
). The simplest method for 

non-linear denoising is a median filter (MD) with a cubic kernel of diameter 𝑑𝑑: 

𝐼𝐼MD(𝐱𝐱) = 𝐼𝐼′(𝐱𝐱) ∗ 𝑀𝑀𝑑𝑑(𝐱𝐱)  (3) 

where ∗ denotes convolution, 𝐼𝐼′ is the raw image and 𝐼𝐼 is the denoised result. The gray value that divides 
the set of 𝑑𝑑3 sorted gray values within 𝑀𝑀𝑑𝑑 into equal halves is assigned to the current voxel at location 𝐱𝐱 
(Gonzalez and Woods, 2002). Note that this routine is usually applied in one loop and is rather slow for 
large kernel sizes, mainly due to sorting. However, a tremendous increase in speed is achieved by 
applying lookup tables and a moving median, i.e. for a kernel shift of one position only a small amount of 
𝑑𝑑2  gray values has to be replaced in a table (Huang et al., 1979).  

Anisotropic Diffusion Filter 
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Another popular, nonlinear denoising method is the anisotropic diffusion (AD) filter (Catté et al., 1992; 
Perona and Malik, 1990). The rationale of this method is that the Gaussian distribution is the solution to 
the diffusion equation with a constant diffusion coefficient 𝐷𝐷. In the same way, applying the diffusion 
equation with a non-linear diffusion coefficient amounts to smoothing with a Gaussian kernel of strongly 
varying standard deviation. Obviously, 𝐷𝐷 should depend on the local intensity gradient ∇𝐼𝐼(𝐱𝐱). Hence, 
anisotropic diffusion calls for a numerical solution of the following  partial differential equation (PDE): 

𝐼𝐼0 = 𝐼𝐼′
∂𝐼𝐼AD
∂𝑡𝑡

= ∇[𝐷𝐷(|∇(𝐺𝐺𝜎𝜎 ∗ 𝐼𝐼AD)|)∇𝐼𝐼AD] (4) 

where 𝑡𝑡 is numerical time, 𝐼𝐼AD is short for 𝐼𝐼AD(𝐱𝐱, 𝑡𝑡) and the gradient of smoothed intensity values, 
convolved by a Gaussian 𝐺𝐺𝜎𝜎 of standard deviation 𝜎𝜎, serve as an edge detector. The simplest  
implementation is:  

𝐷𝐷(|∇(𝐺𝐺𝜎𝜎 ∗ 𝐼𝐼)|) = �1, |∇(𝐺𝐺𝜎𝜎 ∗ 𝐼𝐼)| ≤ 𝜅𝜅
0, |∇(𝐺𝐺𝜎𝜎 ∗ 𝐼𝐼)| > 𝜅𝜅

 (5) 

where 𝜅𝜅 is a diffusion stop criterion. The number of iterations is another important parameter that has to 
be set manually, because the solution would eventually converge to uniform intensity. 

Total Variation Filter 

Another PDE-based approach is total variation (TV) denoising (Rudin et al., 1992). The rationale behind 
this method is to minimize the intensity variation in the image by means of the following cost function: 

𝐼𝐼TV = argmin
𝐼𝐼

�∫ |∇𝐼𝐼(𝐱𝐱)|𝑑𝑑𝐱𝐱�������
regularization

+ 𝜆𝜆 ∫ |𝐼𝐼′(𝐱𝐱) − 𝐼𝐼(𝐱𝐱)|2𝑑𝑑𝐱𝐱�������������
fidelity

� (6) 

where 𝜆𝜆 is a scale parameter that controls the trade-off between regularization, i.e. smoothing,  and 
fidelity to the raw data 𝐼𝐼′. The solution is achieved with the following set of coupled PDE's: 

𝐼𝐼0 = 𝐼𝐼′
∂𝐼𝐼TV
∂𝑡𝑡

= ∇( ∇𝐼𝐼TV
|∇𝐼𝐼TV|

) + 𝜆𝜆(𝐼𝐼′ − 𝐼𝐼TV + 𝐾𝐾)
∂𝐾𝐾
∂𝑡𝑡

= 𝛼𝛼(𝐼𝐼′ − 𝐼𝐼TV)

 (7) 

where 𝐼𝐼TV is short for 𝐼𝐼TV(𝐱𝐱, 𝑡𝑡). The time step control 𝛼𝛼 can be made adaptive to ∂𝐾𝐾 ∂𝑡𝑡⁄ . The number of 
iterations, used as a stopping criterion, is less crucial as compared to 𝐼𝐼AD, because the solution does not 
converge to uniform intensity due to the fidelity term.  

Non-Local Means Filter 

Unlike the previous methods, the non-local means filter (NL) is a linear filter, i.e. the gray value at the 
current location is the average of gray values at other locations, assigned with some suitable weighting 
factors 𝑤𝑤. However, in contrast to standard linear filters (Gaussian filter, mean filter, etc.) it does not use 
a small-sized kernel, but potentially the entire image as a search window. The rationale is to compare the 
neighborhoods of all voxels 𝐲𝐲 ∈ 𝐼𝐼 with the neighbors of the current voxel at location 𝐱𝐱 (Buades et al., 
2005): 
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𝐼𝐼NL(x) = � 𝑤𝑤(x,y)𝐼𝐼′(y)𝐲𝐲∈𝐼𝐼  (8) 

Thus, the similarity of a whole neighborhood with fixed size determines the weight 𝑤𝑤(x,y) with which a 
distant voxel will influence the new value of the current voxel. More specifically, the weights are 
significant only if a Gaussian kernel 𝐺𝐺𝜎𝜎 with standard deviation 𝜎𝜎 around y looks like the corresponding 
Gaussian kernel around x:   

𝑤𝑤(x,y) = 1
𝑍𝑍(x)

exp �− ∫𝐺𝐺𝜎𝜎(𝐧𝐧)∗|𝐼𝐼′(x+𝐧𝐧)−𝐼𝐼′(y+𝐧𝐧)|2𝑑𝑑𝐧𝐧
ℎ2

�,  (9) 

where 𝐧𝐧 scans the neighborhood, ℎ acts as a filtering parameter that can be adapted to the level of image 
noise and 𝑍𝑍(x) is the normalizing factor. Note that the computational cost for the neighborhood search in 
the entire image can become excessive, so restricting the search to a certain window size (y ∈ 𝑺𝑺 instead of 
𝐲𝐲 ∈ 𝐼𝐼) is required (Buades et al., 2008). 

Edge Enhancement 

A notorious problem in image processing is partial volume effects due to image blur. That is, image edges 
do not manifest themselves as crisp intensity steps, but rather as gradual intensity changes spanning 
several voxels. A standard method to sharpen the image, i.e. to enhance the intensity gradient locally, is 
unsharp masking (Sheppard et al., 2004): 

𝐼𝐼UM(x) = 𝐼𝐼′(x) − 𝑤𝑤(𝐺𝐺𝜎𝜎∗𝐼𝐼′(x))
1−𝑤𝑤

 (10) 

where 𝜎𝜎 should roughly match the half-width of blurry edges and 𝑤𝑤 defines the degree of edge 
enhancement, where [0.1,0.9] is a suitable range. In the context of the last section, this corresponds to the 
inverse diffusion equation. Evidently, unsharp masking will also enhance noise, so the image should be 
denoised first. Alternative edge enhancement methods like a difference of Gaussians or a Laplacian of 
Gaussian filter (Gonzalez and Woods, 2002; Russ, 2006) have a very similar concept and are not further 
discussed here. 

Image Segmentation 

Histogram bias correction 

The frequency distribution of gray values can have an unfavorable shape for threshold detection. Typical 
examples are low contrast, imbalanced class proportions, class skewnesses or class variances. Here we list 
three methods that can partially remove these histogram traits and thus facilitate more reliable threshold 
estimates: 

1. Gradient Mask: 

Partial volume effects due to blurred phase edges can cause long tailings in the histogram, which lead to 
skewed distributions for the lowest and highest intensity class. Partial volume voxels can be identified 
through high gradient intensities and treated by different strategies (Panda and Rosenfeld, 1978). One is 
to calculate the average gray value of partial volume voxels and use it as an optimal threshold (Schlüter et 
al., 2010), another is to mask them out and only calculate the histogram for low gradient regions. The 
mask is generated by unimodal thresholding (Rosin, 2001) of the histogram of intensity gradients. 

2. Histogram equilization: 
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Image contrast is often enhanced by linear or non-linear intensity rescaling, sometimes also denoted as 
histogram stretching (Gonzalez and Woods, 2002; Russ, 2006). An alternative approach to contrast 
enhancement is contrast-limited adaptive histogram equalization (CLAHE) (Pizer et al., 1987). Image 
contrast can be defined as the slope of the cumulative density function of gray values. Limiting this 
contrast corresponds to clipping the histogram at a certain cutoff. The histogram area thus removed is 
uniformly distributed over the range of gray values that occur in the image. In principle, this algorithm 
operates on the histogram of a certain search window to obtain a locally adaptive contrast enhancement. 
The method can be generalized such that any transition between global and local contrast enhancement is 
achieved (Stark, 2000). In this study, histogram clipping is only applied to the global histogram to 
improve threshold detection and is not mapped to the corresponding image. 

3. ROI dilations 

Some images exhibit unimodal histograms due to very imbalanced class proportions, i.e. a very small 
volume fraction of a certain phase and a very large volume fraction of the background. A balanced 
frequency distribution can be obtained with a new, semi-automatic algorithm: (i)  pick a threshold 
manually that detects the class with lowest volume fraction as the region of interest (ROI) and binarize 
the image. (ii) Dilate the thus obtained mask. (iii) multiply the original image with the mask in order to 
compute the ROI histogram. (iv) if it is not yet clearly bimodal (multimodal) return to step (ii).  

Global Thresholding 

Image segmentation is a crucial step in image processing and affects all subsequent image analyses. In 
this context, it is common to refer to global thresholding as approaches where classes are assigned to 
voxels by histogram evaluation only, without considering how the gray values are spatially arranged in 
the corresponding image. A multitude of different thresholding methods exist today which have been 
reviewed by various authors (Pal and Pal, 1993; Sahoo et al., 1988; Sezgin and Sankur, 2004; Trier and 
Jain, 1995). The general conclusion, if any, is that none of the reviewed methods excel at all segmentation 
problems. A comprehensive survey by Sezgin and Sankur (2004) compared 40 different thresholding 
methods, most of them global, and classified them according to fundamental principles. Five out of those 
methods were chosen for implementation in this study as well as an additional one: 

1. G1 - Maximum Variance: 

This is a classic method based on discriminant analysis (Otsu, 1975). Consider the histogram as an 
estimator of the probability of a certain gray value and 𝑛𝑛 − 1 thresholds to divide the histogram into 𝑛𝑛 
classes (𝐶𝐶0,𝐶𝐶1, … ,𝐶𝐶𝑛𝑛). The total variance 𝜎𝜎𝑇𝑇2 of the population of gray values can be divided into the sum 
of within-class variances  𝜎𝜎𝑊𝑊2  and the between-class variance  𝜎𝜎𝐵𝐵2 of class means. The objective is to find 
the set of 𝑛𝑛 − 1  thresholds (𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛−1) that maximizes this between-class variance. 

2. G2 - Minimum Error:  

Minimum Error Thresholding assumes the histogram to be composed of normal distributions for each 
class (Kittler and Illingworth, 1986). The Gaussian modes that are fitted to the histogram usually overlap 
at certain gray values. As a consequence, assigning those voxels to only one class will deliberately lead to 
a certain misclassification error for the other class. The objective is to set the thresholds (𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛−1) 
such that the misclassification error is minimal. 

3. G3 - Maximum Entropy:  
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This method exists in various modifications. The classic approach, which is implemented here, relies on 
Shannon Entropy as a measure of the information content of a signal (Kapur et al., 1985). Assume a 
threshold to be close to the maximum or minimum gray value. Objects will barely appear in the output 
image and will be almost completely surrounded by background. Hence the information content of the 
resulting image is low. A set of thresholds (𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛−1) can be adjusted such that the image has the 
richest detail, i.e. the information transfer is optimal. This is achieved by maximizing the sum of class 
entropies. 

4. G4 - Fuzzy C-means:  

This method combines the classic k-means algorithm (Ridler and Calvard, 1978) with fuzzy set theory 
(Jawahar et al., 1997). Membership functions 𝑀𝑀0,𝑀𝑀1, … ,𝑀𝑀𝑛𝑛 are assigned to each gray value depending 
on the distance to each class mean 𝜇𝜇0, 𝜇𝜇1, … , 𝜇𝜇𝑛𝑛 and a fuzziness index 𝜏𝜏. The optimal set of thresholds 
(𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛−1) is detected at the intersections of adjacent 𝑀𝑀. 

5. G5 - Shape: 

This method detects the thresholds (𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛−1) at the local minimum between two adjacent histogram 
peaks (Tsai, 1995). If the number of peaks 𝑛𝑛𝑝𝑝 exceeds the predefined number of classes 𝑛𝑛, iterative 
Gaussian smoothing is first applied to the histogram, until  𝑛𝑛𝑝𝑝 = 𝑛𝑛. If 𝑛𝑛𝑝𝑝 < 𝑛𝑛, the missing thresholds are 
set at the location of maximum histogram curvature instead. 

6. G6 - Average:  

It can be shown that some methods are optimal under certain conditions (Kurita et al., 1992), e.g. equal 
class probabilities, equal class variances, etc. However, these conditions are hardly ever met in a real 
image and all methods will be biased to some degree. Assuming that the bias of different methods may 
partly cancel out due to the different criteria that they optimize, an averaged threshold over all methods 
may lie closer to the true, unknown optimum. Since some methods may fail completely, outliers have to 
be removed, i.e. only thresholds within (𝑡𝑡𝑘𝑘 − 𝜎𝜎𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘 + 𝜎𝜎𝑡𝑡𝑘𝑘) contribute to the final value, where 𝑘𝑘 =
0, … ,𝑛𝑛 − 1. 

Note that in the first three methods the computational cost for an exhaustive search over all sets of 
thresholds in a 𝑛𝑛 -dimensional search space increases exponentially with increasing number of classes 𝑛𝑛. 
Therefore, the methods are implemented in an efficient way by using look-up tables to store each term of 
a specific objective function for every possible pair of class boundaries, and employ these tables to 
calculate the objective function for an arbitrary number of classes (Liao et al., 2001). For the fuzzy c-
means the exhaustive search is replaced by an iterative search (Jawahar et al., 1997). The search space for 
the shape method is one-dimensional irrespective of the number of classes. 

Local Segmentation 

In contrast to global, histogram-based thresholding, locally adaptive segmentation methods also account 
for some kind of neighborhood statistic for class assignment in order to smooth object boundaries, avoid 
noise objects, or compensate for local intensity changes. Due to the added flexibility, local segmentation 
methods often result in more satisfying segmentation results (Iassonov et al., 2009; Wang et al., 2011). 
Five different local segmentation methods, which have all been successfully applied to porous media 
images in the past, will be used in this study: 

1. L1 - Hysteresis:  
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Hysteresis segmentation, which is sometimes also denoted as bi-level segmentation or region growing, 
was introduced as a method to improve edge continuity in gradient images (Canny, 1986). In the same 
way it improves the class assignment of partial volume voxels in soil images (Schlüter et al., 2010; Vogel 
and Kretzschmar, 1996). Two thresholds have to be set by the user, a lower threshold that identifies 
voxels which definitely belong to a low intensity class and an upper threshold for which the uncertainty of 
class assignment is highest. A voxel in the intermediate gray value range is only assigned to the low 
intensity class, if a neighbor voxel already belongs to the low intensity class. In other words, low intensity 
voxels serve as seed regions for iterations of conditional dilations. Unassigned voxels which cannot be 
accessed by this region growing process are assigned to the high intensity class. Hysteresis thresholding is 
not a multi-class segmentation method in its strictest sense as the procedure has to be repeated 𝑛𝑛 − 1 
times for 𝑛𝑛 classes.  

2. L2 - Indicator kriging:  

In this geostatistical method, spatial correlation is used as a local assignment criterion (Houston et al., 
2013b; Oh and Lindquist, 1999). Again, two thresholds are specified by the user to define two a priori 
classes. The upper threshold of the unclassified range is extended towards gray values that definitely 
belong to a high-intensity class.  The class assignment at an unclassified location depends on the weighted 
average of indicator values in its neighborhood, where the weights are obtained by kriging. Indicator 
kriging has to be repeated 𝑛𝑛 − 1 times for 𝑛𝑛 classes as well. 

3. L3 - Bayesian Markov Random Field:  

The rationale of this probabilistic segmentation method is to find a spatial arrangement of class labels  𝐶̂𝐶 
with minimum boundary surface that at the same time honors the gray value data in the best possible way 
(Berthod et al., 1996; Kulkarni et al., 2012). This is a combinatorial optimization problem which is solved 
in the framework of Markov random fields (MRF), i.e. by only evaluating the interaction between direct 
neighbors: 

𝐶̂𝐶 = argmin
𝐶̂𝐶
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with 

𝛾𝛾(𝑐𝑐x, 𝑐𝑐y) = �
−1, 𝑐𝑐x = 𝑐𝑐y
+1, 𝑐𝑐x ≠ 𝑐𝑐y

 (12) 

where Ω is the population of all voxels, Π is the population of all pairs of neighboring voxels x and y, 𝑐𝑐𝐱𝐱 
is the class label at x,  𝜇𝜇𝑐𝑐 and 𝜎𝜎𝑐𝑐2 are class mean and variance and 𝛽𝛽 is a homogeneity parameter that 
determines the weight of the penalty term for class boundaries. Class updating is achieved in a 
deterministic order denoted with iterative conditional modes (ICM) (Besag, 1986) where sufficient 
convergence is usually achieved after 3-5 loops. 

4. L4 - Watershed:  

The watershed algorithm uses lines of highest gradient to demarcate class borders locally (Beucher and 
Lantuejoul, 1979; Roerdink and Meijster, 2000; Vincent and Soille, 1991). The image is preclassified 
with simple thresholding to set markers for the immersion process. High gradient zones are subsequently 
set to unclassified again, as they will be assigned by the watershed algorithm. These high gradient zones 
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are either identified by edge detection (Sobel, Canny, etc.) or by a small cubic kernel that detects 
neighborhoods with non-uniform class assignment. The latter method produced the better results for the 
images examined in this study. The unclassified zones are filled from different ends using the intensity 
gradient as a pseudo-height until the watershed line is reached. Finally, the voxels located directly on the 
separation line and on plateaus are filled with the most representative class in their neighborhood. 

  5. L5 - Converging Active Contours:  

This approach is a combination of the watershed method and active contour methods which uses gradient 
and intensity information simultaneously (Sheppard et al., 2004). The method is initialized by identifying 
seed regions for each class; as in the methods above, this means that each voxel is either assigned to one 
of the classes or left unassigned, to be classified during the main segmentation step.  Like the watershed 
method described above, this initial classification is normally done by thresholding in both intensity and 
gradient space; each class has an upper and a lower threshold along with an upper gradient threshold. The 
main classification algorithm proceeds by simultaneously growing the boundaries of these seed regions 
towards each other. The speed at which the boundaries advance varies spatially and temporally, 
depending on the local gradient and optionally on the distance of the local gray value to its class mean. 
The algorithm ends when all boundaries have converged. The final separation line assignment problem 
described above that affects some watershed methods is not an issue because every non-seed voxel is 
traversed by one class boundary before any others.  The advancement of the boundaries is implemented 
efficiently using the fast marching algorithm; despite this, the method is quite computationally intensive 
and requires parallel implementations to operate on large 3D images.  

Postprocessing 

Denoising and boundary refinement can also be applied to the class image 𝐶𝐶 as postprocessing instead of 
smoothing the raw image 𝐼𝐼′. Among the most popular postprocessing methods for binary images are 
morphological operators like erosion and dilation (Serra, 1982). However, in multi-class images they 
would correspond to a minimum and maximum filter, which are not suited for this purpose at all. A 
median filter, on the other hand, removes segmentation noise and rugged class boundaries rather well. It 
does however, have the unwanted feature that the results happen to depend on the order in which the 
classes are numbered. This is avoided by applying a majority filter 𝐶̂𝐶MA, which assigns the most 
representative class among all neighbors in a cubic kernel to the central voxel. It is common to enforce 
two criteria to prevent unwanted features where more than two phases meet: (i) the most representative 
class exceeds a certain volume fraction and (ii) the volume fraction of the most representative class 
exceeds the volume fraction of the old class at the central voxel by a certain percentage.  

An alternative post-processing method is size-dependent object removal. For this method, each object of 
each class has to be labeled. Volumes are then determined by voxel counting and objects smaller than a 
user-dependent threshold are filled with the class that completely surrounds the object.  Consequently, 
rugged surfaces of big objects are conserved. Small deleted objects at the boundary between two materials 
are filled by simultaneous dilation of both materials. 

Structural analysis 

The list of tools with which complex structures like porous media can be analyzed is virtually endless. 
This study is constrained to only four very simple, but meaningful metrics. If ground truth information is 
available from a true image 𝐼𝐼, a misclassification error 𝑀𝑀𝑀𝑀 can be determined: 

𝑀𝑀𝑀𝑀 = 1
𝑁𝑁x
� 𝛿𝛿(𝑐𝑐𝑖𝑖 , 𝑐𝑐𝚤𝚤�)𝑁𝑁x

𝑖𝑖=1 ,  (13) 
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𝛿𝛿(𝑐𝑐𝑖𝑖 , 𝑐𝑐𝚤𝚤�) = �1, 𝑐𝑐𝑖𝑖 = 𝑐𝑐𝚤𝚤�
0, 𝑐𝑐𝑖𝑖 ≠ 𝑐𝑐𝚤𝚤�

    (14) 

where 𝑐𝑐𝑖𝑖 and 𝑐𝑐𝚤𝚤�  are the true and current class at location 𝑖𝑖 and 𝑁𝑁x is the number of all voxels. Bulk 
volumes 𝑉𝑉 and surface areas 𝑎𝑎 are examined for each individual phase. Specific interfacial areas between 
two phases (𝑎𝑎 and 𝑏𝑏) are obtained by the following relation: 

𝑎𝑎𝑎𝑎𝑎𝑎 = 1
2

(𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑏𝑏 − 𝑎𝑎𝑐𝑐)  (15) 

where 𝑐𝑐 is the union of all other classes. Both 𝑉𝑉 and  𝑎𝑎 are determined with Minkowski functionals 
(Vogel et al., 2010). In this way, surface area estimates are directly obtained from the segmented voxel 
image and problems associated with aligning isosurfaces of each indivdual phase are avoided. Finally, a 
dimensionless connectivity indicator for a specific phase is calculated (Renard and Allard, 2013):  

Γ𝑎𝑎 =
1
𝑁𝑁𝑎𝑎2

�𝑛𝑛𝑖𝑖2
𝑁𝑁𝑙𝑙

𝑖𝑖=1

 (16) 

where each cluster of phase 𝑎𝑎 has a label 𝑙𝑙𝑖𝑖 and a size 𝑛𝑛𝑖𝑖, 𝑁𝑁𝑙𝑙 is the number of clusters and 𝑁𝑁𝑎𝑎 is the 
number of all phase 𝑎𝑎 voxels. Cluster labeling is typically achieved with a fast method by Hoshen and 
Kopelman (1976). Γ𝑎𝑎 has the edge over the popular Euler number that it is bounded by (0,1] and less 
sensitive to noise. 

Results 

Synthetic Test Image 

Image Generation 

Synthetic images provide ground truth data against which different image enhancement and segmentation 
methods can be compared. The test image in this study is generated to resemble a partially saturated sand 
packing. To this end, a volume of 512 × 512 × 128 voxels is filled by non-overlapping spheres with a 
radius of 𝑟𝑟 = 50 voxels placed at random locations. If a new sphere does not fit at a given location, the 
radius decreases in steps until the overlap vanishes. The location is completely abandoned when 𝑟𝑟 = 20 is 
reached. The procedure stops after 250 spheres have successfully been placed resulting in a porosity of 
0.412. Subsequently, an opening transform (Serra, 1982) is applied to the pore space with a spherical 
structure element of 𝑟𝑟 = 15. The pore space which has been removed by this opening is considered to be 
filled with the wetting phase (𝑤𝑤) and the remaining, larger pore bodies are assigned to the non-wetting 
phase (𝑛𝑛). This does not necessarily produce a physically realistic fluid distribution, but evokes fluid 
configurations that are similar enough to serve as a test scenario. The resulting volume fractions are 
𝑉𝑉𝑤𝑤 = 0.279 and 𝑉𝑉𝑛𝑛 = 0.133. Gray values of 50, 125 and 205 are assigned to non-wetting, wetting and 
solid phase, respectively, resulting in the true image 𝐼𝐼. An axial image slice of 𝐼𝐼 is depicted in Figure 1(a). 
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Figure 4: Comparison of denoising methods: (a) True image 𝑰𝑰 with spheres and size-dependent distribution of wetting 
and non-wetting phase, (b) raw image 𝑰𝑰′ exhibiting ring artifacts, blur and noise, (c) histograms before and after image 
enhancement. Lower row depicts image enhancement results with different denoising methods in combination with 
unsharp masking: (d) 𝑰𝑰�𝐌𝐌𝐌𝐌+𝐔𝐔𝐔𝐔, (e) 𝑰𝑰�𝐀𝐀𝐀𝐀+𝐔𝐔𝐔𝐔, (f) 𝑰𝑰�𝐓𝐓𝐓𝐓+𝐔𝐔𝐌𝐌, (g) 𝑰𝑰�𝐍𝐍𝐍𝐍+𝐔𝐔𝐔𝐔. 

Subsequently, the image is superimposed with ring artifacts, blur and noise in order to obtain a more 
realistic, raw image 𝐼𝐼′  (Figure 1(b)). The ring artifacts are additive with random height and random 
radius. The rings manifest themselves as a random gray value offset in the range [-100,100], where the 
resulting gray value is limited at [0,255]. Subsequently, blurring is achieved with a cubic mean kernel of 
five voxels on a side. Finally, uncorrelated Gaussian noise is added with a signal-to-noise ratio of 
𝜎𝜎𝑏𝑏 𝜎𝜎𝑛𝑛⁄ = 2, where 𝜎𝜎𝑏𝑏 and 𝜎𝜎𝑛𝑛 are the standard deviations of gray values in the blurred image and the noise 
model, respectively. 

Denoising and Edge enhancement 

Four different denoising methods (Figure 1(d-g)) are applied to the raw image 𝐼𝐼′  in (Figure 1(b)) in order 
to remove noise followed by an edge-enhancement step to mitigate partial volume effects caused by blur. 
The median filter was applied one time with a cubic convolution kernel with a side length of 𝑑𝑑 = 7 
voxels. The anisotropic diffusion filter was applied with 𝜅𝜅 = 15, 𝜎𝜎 = 1.0 and 𝑡𝑡 = 1.5 (9 iterations). The 
total variation filter was applied with 𝜆𝜆 = 2stopping after 𝑡𝑡 = 0.12 (30 iterations). For the non-local 
means filter a cubic kernel of 𝑑𝑑 = 7 was used for neighborhood search with a Gaussian convolution 
kernel of 𝜎𝜎 = 2 in a reduced search window 𝑆𝑆 of 𝑑𝑑 = 23 voxels. The two criteria for the majority filter 
are set to an absolute majority of 0.33 and a higher occurence than the class of the central voxel of 0.05. 

The settings of each denoising method have been carefully chosen to achieve strong denoising, 
deliberately accepting some degree of edge smoothing. Subsequently, an unsharp mask filter for edge 
enhancement with a Gaussian kernel of 𝜎𝜎 = 1.5 and a weighting factor of 𝑤𝑤 = 0.7 was applied to each 
denoising result. Finally, the  results of the unsharp mask after anisotropic diffusion 𝐼𝐼AD+UMand total 
variation denoising  𝐼𝐼TV+UM had to be cleaned by a median filter with a 𝑑𝑑 = 5  kernel to smooth rough 
surfaces that were enhanced during unsharp masking. 
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The histograms in (Figure 1(c)) and visual appearances in (Figure 1(d-g)) indicate different success in 
noise removal and edge-preservation. The edges in the median image  𝐼𝐼ME+UM appear slightly more 
blurry than in the images for the other three denoising methods. Moreover, we observe that the non-local 
means filter 𝐼𝐼NL+UM is superior in removing ring artifacts during the denoising step alone and does not 
require the additional cleanup of rough edges by a median filter mentioned above.  

Ring Artifact Removal 

The ring artifact routine of Sijbers and Postnov (2004) is applied slice-wise with a window size of 
𝑤𝑤 = 27 pixels and a homogeneity threshold 𝐻𝐻 adapted to the noise level in Figure 1 (d-g). The outcome 
is depicted for the enhanced image 𝐼𝐼NL+UM after TV denoising and unsharp mask edge enhancement 
(Figure 2(c)). Obviously, the ring artifact removal works well for some rings, but is incomplete for others 
even after carefully testing different 𝑤𝑤 and 𝐻𝐻. For instance, the white ring within the green window 
exhibits a varying magnitude after denoising (Figure 2(a)). Since the high artifact magnitude in the pore 
space contributes less than half to the window height in Figure 2(b), it remains undetected by the median 
𝐼𝐼(𝑟𝑟). Stretching the window over more than one slice as suggested by Ketcham (2006) does not improve 
the results. In addition, the back transform from polar into Cartesian coordinates introduces additional 
blur for high radii (yellow frame).  

 

Figure 5: Ring artifact removal: (a) Test image after a combination of TV denoising and unsharp masking 𝑰𝑰�𝐍𝐍𝐍𝐍+𝐔𝐔𝐔𝐔 
(corresponds to Figure 1(f)). Yellow frame marks sharp boundaries before ring artifact removal and the green ring 
corresponds to the window in polar coordinates. (b) Same image in polar coordinates after line removal. Green rectangle 
depicts the moving window 𝑾𝑾. (c) Same image after ring artifact removal. The yellow frame highlights blur due to the 
back transform into Cartesian coordinates. 

Global Thresholding 

In Figure 3(a) the well-known Otsu method (G1) is applied as an example to the histogram of 
𝐼𝐼NL+UMafter ring artifact removal. Results for the other denoising methods are similar (not shown). The 
exhaustive search for each pair of thresholds detects the optimum at  𝑡𝑡max = (95; 166). Percentiles of 
this objective criterion can be used to obtain fuzzy threshold ranges (Oh and Lindquist, 1999), i.e. 𝑡𝑡1 is 
held constant and 𝑡𝑡0 decreases (or increases) until in this case 𝜎𝜎𝑏𝑏2/⟨𝜎𝜎𝑏𝑏2⟩𝑚𝑚𝑚𝑚𝑚𝑚 = 0.992 is reached at 𝑡𝑡0𝑙𝑙  (or 
𝑡𝑡0ℎ). The procedure is repeated for  𝑡𝑡1 where  𝑡𝑡0 kept is constant. Applying these thresholds and associated 
ranges to the underlying histogram (Figure 3(b)) reveals a bias of Otsu's method towards the class with 
highest volume fraction. Note that the true optimum, which is estimated by the intersection points of the 
individual gray value frequencies within in each class of the true image, is at  𝑡𝑡true = (91; 162). Some 
other thresholding methods are also afflicted by bias, yet in different directions (Figure 3(c)). Fuzzy c-
means (G3) show the same bias due to imbalanced class probabilities. The shape analysis (G5) performs 
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well since the local histogram minima happen to coincide with the intersection points in Figure 3(b). The 
minimum error method (G2) is biased due to imbalanced skewness, i.e. only the wetting phase exhibits 
two long tailings due to partial volume effects in both directions, which increases the probability of being 
assigned to that class. The maximum entropy method (G4) fails completely in identifying meaningful 
thresholds. Figure 3(c) also depicts the arithmetic mean of thresholds and associated ranges after outlier 
removal (G6). This average set of thresholds at 𝑡𝑡 = (88; 165) is closer to the true optimum. Note that the 
specific percentiles for each thresholding method have to be set individually, as each objective criterion 
exhibits very different ranges, i.e. some are bounded and yet others are logarithmic. A large part of the 
bias in Figure 3(c) can be removed easily. First, the impact of imbalanced skewness is mitigated by 
masking out partial volume voxels at phase edges (Panda and Rosenfeld, 1978).  Second, the impact of 
imbalanced class probabilities is reduced by histogram clipping (Pizer et al., 1987). In this way the 
skewness of the non-wetting and solid phase is also efficiently removed. The combination of both 
methods leads to a well-balanced histogram for which each of the surveyed thresholding methods ends up 
at similar values (Figure 3(d)). The average after outlier removal at 𝑡𝑡 = {90; 162} matches the true 
optimum almost perfectly. 

 

Figure 6: Threshold detection methods: (a) normalized objective function of Otsu's method (G1) with the thresholds 
detected at the maximum between-class variance and the transition regions stopping at the 0.992 percentile. (b) 
Histogram of 𝑰𝑰�𝐍𝐍𝐍𝐍+𝐔𝐔𝐔𝐔 after ring artifact removal with thresholds 𝒕𝒕𝟎𝟎max and 𝒕𝒕𝟏𝟏max and transition ranges (𝒕𝒕𝟎𝟎𝒍𝒍 , 𝒕𝒕𝟎𝟎𝒉𝒉 and 𝒕𝒕𝟏𝟏𝒍𝒍 , 𝒕𝒕𝟏𝟏𝒉𝒉) 
detected with Otsu's method (G1). (c) Threshold pairs for five different methods (G1-G5) and the corresponding averages 
after outlier removal (G6). The transition regions $[𝒕𝒕[𝟎𝟎,𝟏𝟏]

𝒍𝒍 , 𝒕𝒕[𝟎𝟎,𝟏𝟏]
𝒉𝒉 ]$ are obtained accordingly. (d) Same averaging method 

after edge masking and histogram clipping. 

Local Segmentation 

The average set of thresholds (Figure 3(d)) are determined for each denoising method individually and 
then used for global thresholding as an initial step in all local segmentation methods. Note that a priori 
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segmentation with Bayesian Markov random field (L3) and watershed segmentation (L4) requires  single 
thresholds 𝑡𝑡𝑘𝑘max only, hysteresis segmentation (L1) uses the range �𝑡𝑡𝑘𝑘l  , 𝑡𝑡𝑘𝑘max �, and indicator kriging (L2) 
and converging active contours (L5) use �𝑡𝑡𝑘𝑘l  , 𝑡𝑡𝑘𝑘h �, with 𝑘𝑘 = {0; 1}. In addition, converging active 
contours requires a gradient threshold, which is determined automatically by unimodal thresholding of the 
gradient histogram. 

 

Figure 7: Segmentation results for different local segmentation methods applied on the image after non-local means 
denoising and  unsharp masking 𝑰𝑰�𝐍𝐍𝐍𝐍+𝐔𝐔𝐔𝐔: (a) original image, (b) global thresholding, (c) indicator kriging, (d) Bayesian 
MRF, (e) watershed, (f) converging active contours. Differently colored frames highlight failures of various methods. 

The results of each local segmentation method on 𝐼𝐼NL+UM are depicted in Figure 4. The segmentation 
result for hysteresis segmentation (L1) is left out, because it is indistinguishable from the outcome of 
global thresholding (G6). All segmentation results are free of ring artifacts and noise and exhibit smooth 
object boundaries which can be mainly credited to successful preprocessing. However, some 
segmentation results perform better than others in the way they recover image features impaired by blur. 
Incorrectly identified, apparent wetting films that are due to partial volume voxels at class boundaries 
between the non-wetting and solid phases (yellow frame) can be mainly attributed to image blur. Indicator 
kriging (L2) and hysteresis segmentation (L1) cannot cope with this problem, since these are iterative 
methods, i.e. the segmentation between wetting and non-wetting phase is independent of the segmentation 
between wetting and solid phase.  

In principle, Bayesian MRF segmentation (L3) has a mechanism to remove these films. To do so, the 
homogeneity factor 𝛽𝛽 has to be set high, thus also removing true features of similar size. A moderate 
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value of  𝛽𝛽 = 0.5 is used here. Yet, no matter how high 𝛽𝛽 is set only direct neighbors are evaluated in the 
MRF paradigm and since the films are thicker than two voxels they cannot be penalized. Another 
fundamental shortcoming of Bayesian MRF segmentation that has previously gone unnoticed is its 
tendency towards bias in the class statistics (Eq.11). The histogram of the wetting phase exhibits long 
tailing towards both directions in contrast to only one tail for the other classes (Figure 3(c)). 
Consequently, 𝜎𝜎𝑤𝑤 is much higher than 𝜎𝜎𝑛𝑛 and the probability of a voxel in the intermediate intensity 
range to be assigned to the wetting phase increases accordingly, resulting in even thicker apparent wetting 
films. This bias is mitigated here by a quick and rather inelegant fix to use  𝜎𝜎𝑤𝑤/2 for the class statistics 
instead. In this way, the gray values at which the penalty functions for adjacent classes cross each other 
coincide much better with the previously detected thresholds (Figure 8).    

 

Figure 8: First term of the objective function for MRF segmentation (Eq.11) as a function of gray value for each class. In 
the modified class statistics 𝝈𝝈𝒘𝒘 is replaced by 𝝈𝝈𝒘𝒘/𝟐𝟐 for the wetting phase. 

The watershed method (L4) successfully removes apparent wetting films in the yellow frame (Figure 4 
(e)). However, true wetting films are also being removed (white frame). Segmentation with converging 
active contours (L5 - Figure 4(f)) exhibit excessive wetting film removal as well. Finally, no method is 
capable of restoring the small wetting phase bridge (green frame) in Figure 4, because its intensity is 
highly smoothed due to image blur. 

Structural Analysis 

The shortcomings of the different segmentation methods are corroborated by structural properties of the 
non-wetting phase listed in Table 1. The misclassification error 𝑀𝑀𝑀𝑀 is roughly3 − 4% for all methods 
including global thresholding. However, the lowest 𝑀𝑀𝑀𝑀 does not guarantee the best recovery of 
morphological properties. The bulk volume 𝑉𝑉𝑛𝑛 of the non-wetting phase is slightly underestimated by all 
segmentation methods, except for watershed segmentation and converging active contours which show a 
tendency for overestimation, due to the way partial volume voxels are treated. Surprisingly, simple 
thresholding and hysteresis thresholding match the true 𝑎𝑎𝑛𝑛 value best, whereas indicator kriging and 
Bayesian MRF underestimate it and watershed segmentation and converging active contours overestimate 
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it as a consequence of partial volume voxel treatment. More importantly, the specific interface between 
fluids 𝑎𝑎𝑤𝑤𝑤𝑤 only diverges from the total non-wetting surface 𝑎𝑎𝑛𝑛 if false wetting films are successfully 
supressed. Simple thresholding, hysteresis thresholding, indicator kriging, and Bayesian MRF 
segmentation all fail in this respect. The only exception is Bayesian MRF segmentation on the raw data if 
combined with postprocessing 𝐶̂𝐶MA, simply because the majority filter removes partial volume voxels. 
Watershed segmentation and converging active contours underestimate 𝑎𝑎𝑤𝑤𝑤𝑤 because a lot of true wetting 
films are removed as well. The connectivity index of the true image Γ𝑛𝑛 is matched well by most 
segmentation methods, because the bubbles remain rather isolated no matter how wetting films are 
treated. Oversegmentation of the non-wetting phase with watershed segmentation and converging active 
contours may lead to lower Γ𝑛𝑛, however, because (i) the denominator N𝑎𝑎 in Eq. (16) increases and (ii) the 
increase in bubble volume is evenly distributed among all clusters in the numerator. The differences in 
structural properties due to different denoising methods are also listed in Table 1. Obviously, no 
denoising at all produced the worst results in all respects. Moreover, the structural properties do not vary 
much among the different denoising methods. Surprisingly, a simple majority filter 𝐶̂𝐶MA, applied on the 
segmented raw data without any preprocessing results in the best agreement with the true bulk properties. 
This is because any kind of preprocessing, i.e. denoising and edge enhancement, removes structural 
information to some degree. 

Table 1: Structural properties of segmented images for different combinations of denoising and segmentation methods: 
unsharp mask (UM), median (MD), anisotropic diffusion (AD), total variation (TV), non-local means (NL), majority 
(MA). ME is misclassification error, 𝑽𝑽𝒏𝒏 is volume fraction of non-wetting phase, 𝒂𝒂𝒏𝒏 is surface area density of non-wetting 
phase, 𝒂𝒂𝒘𝒘𝒘𝒘 is surface area density between non-wetting and wetting phase and 𝚪𝚪𝒏𝒏 is connectivity index of non-wetting 
phase. 

denoising 𝑀𝑀𝑀𝑀 𝑉𝑉𝑛𝑛 𝑎𝑎𝑛𝑛 𝑎𝑎𝑤𝑤𝑤𝑤 Γ𝑛𝑛 
 [−] [−] [pix−1] [pix−1] [−] 

true image 
 .000 .133 .0169 .0140 .355 

G6 - global thresholding 
𝐼𝐼′ .140 .141 .1005 .0954 .312 
𝐼𝐼𝑀𝑀𝑀𝑀+𝑈𝑈𝑈𝑈 .028 .128 .0168 .0167 .355 
𝐼𝐼𝐴𝐴𝐴𝐴+𝑈𝑈𝑈𝑈 .029 .124 .0165 .0165 .355 
𝐼𝐼𝑇𝑇𝑇𝑇+𝑈𝑈𝑈𝑈 .027 .127 .0169 .0169 .355 
𝐼𝐼𝑁𝑁𝑁𝑁+𝑈𝑈𝑈𝑈 .027 .130 .0172 .0170 .354 
𝐶̂𝐶𝑀𝑀𝑀𝑀 .024 .129 .0169 .0168 .355 

L1 - hysteresis 
𝐼𝐼′ .107 .131 .0722 .0695 .346 

𝐼𝐼𝑀𝑀𝑀𝑀+𝑈𝑈𝑈𝑈 .027 .127 .0167 .0167 .355 
𝐼𝐼𝐴𝐴𝐴𝐴+𝑈𝑈𝑈𝑈 .029 .123 .0164 .0164 .355 
𝐼𝐼𝑇𝑇𝑇𝑇+𝑈𝑈𝑈𝑈 .027 .127 .0169 .0169 .355 
𝐼𝐼𝑁𝑁𝑁𝑁+𝑈𝑈𝑈𝑈 .027 .129 .0171 .0170 .354 
𝐶̂𝐶𝑀𝑀𝑀𝑀 .024 .128 .0167 .0167 .355 

L2 - indicator kriging 
𝐼𝐼′ .037 .131 .0202 .0201 .386 

𝐼𝐼𝑀𝑀𝑀𝑀+𝑈𝑈𝑈𝑈 .033 .128 .0166 .0166 .351 
𝐼𝐼𝐴𝐴𝐴𝐴+𝑈𝑈𝑈𝑈 .037 .122 .0162 .0162 .353 
𝐼𝐼𝑇𝑇𝑇𝑇+𝑈𝑈𝑈𝑈 .032 .125 .0165 .0165 .352 
𝐼𝐼𝑁𝑁𝑁𝑁+𝑈𝑈𝑈𝑈 .033 .127 .0166 .0166 .352 
𝐶̂𝐶𝑀𝑀𝑀𝑀 .029 .131 .0167 .0167 .352 
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L3 - Bayesian MRF (β=0.5) 
𝐼𝐼′ .049 .133 .0282 .0272 .385 
𝐼𝐼𝑀𝑀𝑀𝑀+𝑈𝑈𝑈𝑈 .027 .124 .0163 .0163 .356 
𝐼𝐼𝐴𝐴𝐴𝐴+𝑈𝑈𝑈𝑈 .033 .119 .0160 .0160 .357 
𝐼𝐼𝑇𝑇𝑇𝑇+𝑈𝑈𝑈𝑈 .028 .124 .0165 .0165 .356 
𝐼𝐼𝑁𝑁𝑁𝑁+𝑈𝑈𝑈𝑈 .028 .127 .0166 .0165 .356 
𝐶̂𝐶𝑀𝑀𝑀𝑀 .038 .134 .0170 .0140 .356 

L4 – watershed 
𝐼𝐼′ .041 .136 .0184 .0112 .358 

𝐼𝐼𝑀𝑀𝑀𝑀+𝑈𝑈𝑈𝑈 .029 .135 .0172 .0110 .355 
𝐼𝐼𝐴𝐴𝐴𝐴+𝑈𝑈𝑈𝑈 .025 .134 .0170 .0117 .355 
𝐼𝐼𝑇𝑇𝑇𝑇+𝑈𝑈𝑈𝑈 .029 .135 .0174 .0111 .355 
𝐼𝐼𝑁𝑁𝑁𝑁+𝑈𝑈𝑈𝑈 .032 .137 .0175 .0102 .322 
𝐶̂𝐶𝑀𝑀𝑀𝑀 .037 .136 .0174 .0101 .359 

L5 - converging active contours 
𝐼𝐼′ .046 .136 .0241 .0178 .390 

𝐼𝐼𝑀𝑀𝑀𝑀+𝑈𝑈𝑈𝑈 .042 .136 .0173 .0108 .324 
𝐼𝐼𝐴𝐴𝐴𝐴+𝑈𝑈𝑈𝑈 .042 .137 .0172 .0107 .324 
𝐼𝐼𝑇𝑇𝑇𝑇+𝑈𝑈𝑈𝑈 .042 .136 .0174 .0110 .324 
𝐼𝐼𝑁𝑁𝑁𝑁+𝑈𝑈𝑈𝑈 .043 .138 .0175 .0108 .324 
𝐶̂𝐶𝑀𝑀𝑀𝑀 .043 .136 .0175 .0105 .360 

  
Final Workflow 

At this point, some preliminary conclusions about a suitable image processing protocol can already be 
drawn in order to set the workflow for the remaining images: 

1. The variability in structural properties among the different denoising methods was rather small. 
Qualitatively, all filters reduce noise in homogeneous areas well. In addition, only the non-local means 
filter sufficiently denoises along edges while smoothing across the edges is inhibited. In this way, an 
additional treatment of rugged surfaces after edge enhancement is not necessary. Thus, in the remainder 
of the paper, only the non-local means filter will be used. 

2. A combination of methods for histogram bias correction causes a better agreement between different 
threshold detection methods. The outlier-corrected average of five different threshold detection methods 
reproduced ground truth information well and will be used for global thresholding. 

3. Hysteresis thresholding and indicator kriging are not capable of multi-class segmentation, which leads 
to misclassifaction errors where more than two phases meet locally. Therefore, only converging active 
contours, watershed and Bayesian MRF segmentation will be applied to the remaining images. Simple 
thresholding will also be applied for sake of comparison. 

4. Segmentation of the raw data with a subsequent majority filter performed slightly better in terms of 
structural properties than denoising the intensity data in advance. Both approaches will be compared with 
each other. 
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Figure 9: Workflow diagram for multi-class segmentation of the remaining multi-fluid image and soil image. Headlines 
denote image processing steps and gray boxes the specific methods. 

These findings translate into the workflow diagram shown in Figure 6. Some steps are optional, e.g. the 
need for edge enhancement depends on the sharpness of the raw image, ROI dilations are only necessary, 
if the volume fraction of the phase of interest is very low, etc.  

Synchrotron Image of Three-Fluid Phases in a Porous Medium 

Image Enhancement 

A sample of sintered glass beads with a porosity of roughly 32% has been scanned at a resolution of 
9.24µm. The pore space was partially saturated with air (14%), oil (39%) and water (47%). The 
cylindrical region of interest has a diameter of 665 voxels and height of 210 voxels. The image is free of 
ring artifacts and is sharp, without noticeable blur (Figure 7(a)). The reconstruction method caused a 
slight decrease in mean intensity for large radii which is evident in the denoised image after non-local 
means denoising. (Figure 7(b)). This radial intensity variation can be removed almost completely (Figure 
7(c)) with intensity bias correction (Iassonov and Tuller, 2010). This has a considerable impact on the 
histogram (Figure 7(d)). The frequency distributions for each class turns from broad and multi-peaked 
into a narrow band. For the same reasons as discussed for the synthetic test image, edges are masked out 
and the histogram is clipped into a well-balanced frequency distribution, so that five different global 
threshold detection methods (G1-G5) yield very similar sets of thresholds. Again, the average after outlier 
removal (G6) is used for final segmentation using local methods. Note that edge enhancement with 
unsharp mask filtering has not been applied, as there are hardly any partial volume voxels in this image. 
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Figure 10: Image enhancement of multi-fluid image: (a) raw image 𝑰𝑰′, (b) non-local means filter 𝑰𝑰�NL on 𝑰𝑰′, (c) beam 
hardening removal on 𝑰𝑰�NL. The yellow frame outlines the subset in Figure 8. (d) Histograms of (a), (b) and (c), (e) global 
threshold detection after histogram clipping. 

Image Segmentation 

Simple thresholding (G6), Bayesian MRF segmentation (L3), watershed segmentation (L4) and 
converging active contours (L5) are applied to the multi-fluid image, either on the preprocessed 𝐼𝐼NL or on 
the raw 𝐼𝐼′ followed by a majority filter. A small subset of the segmentation results are depicted in Figure 
8. Since the exact arrangement of interfaces is unknown, it is difficult to judge objectively what 
combination of methods performs best. The edge between beads and air is roughly two voxels thick. In 
the smooth 𝐼𝐼NL image, the edge is assigned to oil films, water films or both (Figure 8(d,f,h,j)), whereas in 
the noisy image edge voxels are equally assigned to all four classes but subsequently assigned to air or 
beads since they constitute the most representative class in the neighborhood of an edge (Figure 
8(c,e,g,i)). It is almost impossible to conclusively determine whether a fluid film thicker than the image 
resolution really covers the beads entirely. However, small isolated water voxels between solid voxels and 
oil film are highly unlikely, and should be suppressed. Global thresholding without postprocessing has no 
mechanism to achieve this. Bayesian MRF segmentation of 𝐼𝐼NL only succeeded in doing so with a 
relatively high homogeneity parameter (𝛽𝛽 = 10). In turn, watershed segmentation fails to detect an oil 
film at the left side of the pendular water ring, either because of a lacking seed voxel for oil or because the 
underlying gradient image is not sharp enough to evoke two distinct edges within such a short distance. 
Converging active contours result in subjectively plausible results for both 𝐼𝐼′ and 𝐼𝐼NL. 
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Figure 11: Segmentation results for multi-fluid image: (a) raw image 𝑰𝑰′, (b) non-local means filter 𝑰𝑰�NL, global thresholding 
on 𝑰𝑰′ with postprocessing (c) or on 𝑰𝑰�NL (d), Bayesian MRF segmentation with 𝜷𝜷 = 𝟎𝟎.𝟏𝟏 on 𝑰𝑰′ with postprocessing (e) or with 
𝜷𝜷 = 𝟏𝟏𝟏𝟏 on 𝑰𝑰�NL (f), watershed segmentation  on 𝑰𝑰′ with postprocessing (g) or on 𝑰𝑰�NL (h), converging active contours  on  𝑰𝑰′ 
with postprocessing (i) or on 𝑰𝑰�NL (j). 

Image Analysis 

The qualitative analysis illustrated in Figure 8 is corroborated by the results with respect to structural 
analysis in Table 2. The bulk volumes of air and oil, 𝑉𝑉𝑎𝑎 and 𝑉𝑉𝑜𝑜, remain largely unaffected by the choice of 
segmentation methods. The surface area densities 𝑎𝑎𝑜𝑜, 𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎𝑎𝑎, however, vary considerably among 
different segmentation methods. This is because small image objects like films, meniscii and ganglia 
exhibit large surface-to-volume ratios and at the same time are associated with the highest uncertainty in 
terms of class assignment. A majority filter 𝐶̂𝐶MA leads to a general reduction in surface areas and to very 
similar results for all segmentation methods. The surface areas increase with a decreasing boundary 
penalty factor 𝛽𝛽 for Bayesian MRF segmentation on 𝐼𝐼NL and are highest for global thresholding on 𝐼𝐼NL, 
where there is no penalty term at all. The 𝑎𝑎𝑜𝑜  and 𝑎𝑎𝑎𝑎 values for 𝛽𝛽 = 10 are very similar to all 
postprocessed class images 𝐶̂𝐶MA, to the outcome of converging active contours on 𝐼𝐼NL, and to the result 
after watershed segmentation on 𝐼𝐼NL. Yet, the specific surface area between air and oil (𝑎𝑎𝑎𝑎𝑎𝑎 = 0.149) is 
as much as ≈ 27% higher than the average of other methods (𝑎𝑎𝑎𝑎𝑎𝑎 = [0.107 − 0.130]). Eventually, a 
decision as to which image is closer to reality needs to be made. But without an analytical solution or 
other ground truth information such a decision will suffer from a certain level of subjectivity. 

Table 2: Volume fractions V and surface area densities a of air (a) and oil (o) for the segmented multi-fluid image. 
Denoising is either applied prior to segmentation with a non-local means filter (𝑰𝑰�NL) or as postprocessing with a majority 
filter (𝑪𝑪�𝐌𝐌𝐌𝐌). 

denoising Va aa Vo ao aao 
 [−] [mm−1] [−] [mm−1] [mm−1] 
G6 - global thresholding 

𝐶̂𝐶MA .047 .400 .125 1.621 .120 
𝐼𝐼NL .046 .545 .125 2.281 .384 

L3 - Bayesian MRF 

( †β=0.1; 1‡β= ; §β=10) 
𝐶̂𝐶MA † .047 .482 .125 1.840 .215 

𝐼𝐼NL † .046 .505 .124 2.214 .369 

𝐼𝐼NL ‡ .046 .459 .125 2.063 .327 

𝐼𝐼NL § .046 .397 .125 1.686 .149 
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L4 - watershed 
𝐶̂𝐶MA .048 .403 .127 1.646 .107 
𝐼𝐼NL .048 .406 .127 1.631 .109 

L5 - converging active contours 
𝐶̂𝐶MA .047 .421 .121 1.642 .130 
𝐼𝐼NL .048 .407 .123 1.650 .119 

 

µCT image of soil 

Image Enhancement 

The soil image corresponds to image 2 in Houston et al. (2013b) with a size of 256 × 256 × 256 voxels 
and a resolution of 32µm. The sample consists of macropores (𝑉𝑉𝑝𝑝 ≈ 12%), organic matter (𝑉𝑉𝑜𝑜 ≈ 13%), 
soil matrix (𝑉𝑉𝑚𝑚 ≈ 72%) and dense particles like rocks (𝑉𝑉𝑟𝑟 ≈ 3%). The raw data 𝐼𝐼′ (Figure 9(a)) is again 
denoised with a non-local means filter 𝐼𝐼NL (Figure 9(b)). Afterwards edges are enhanced by an unsharp 
mask 𝐼𝐼NL+UM with 𝜎𝜎 = 1 and 𝑤𝑤 = 0.5 so that intensity values of partial volume voxels are forced closer 
to their respective class means (Figure 9(c)). The gradient mask in (Figure 9(d)) detects partial volume 
voxels at phase edges which are excluded from subsequent threshold detection. Each of these methods has 
a favorable impact on the intensity histogram (Figure 9(e)) in that valleys between the class peaks are 
much more pronounced. The combination of all methods, i.e., edge masking on 𝐼𝐼NL+UM, together with 
histogram clipping leads to a modified histogram for which all five threshold detection methods (G1-G5) 
lead to similar results (Figure 9(e)). The average after outlier removal (G6) is again used for all locally-
adaptive segmentation methods. 



29 
 
 

 

Figure 12: Image enhancement of a soil image: (a) raw image 𝑰𝑰′ (Houston et al., 2013b), (b) 𝑰𝑰�NL after non-local means 
denoising, (c)  𝑰𝑰�NL+UM after unsharp mask, (d) gradient mask on 𝑰𝑰�NL+UM, (e) histogram of (b), (c), (d)  and histogram 
clipping of (b), (f) histogram after combined postprocessing (b+c+d+clip) together with the corresponding thresholds 
obtained by various global thresholding methods. 

Image Segmentation 

Only some of the segmentation methods introduced in this paper are applied to the soil image. Global 
thresholding of the raw data 𝐼𝐼′ in combination with a majority filter 𝐶̂𝐶MA (Figure 10(a)) shall serve as a 
reference to which the other methods can be compared. Evidently, simple thresholding already leads to 
rather satisfying results if it is accompanied by suitable postprocessing. However, the segmented image 
clearly suffers from false organic coatings around macropores which can be attributed to incorrect 
assignment of partial volume voxels (violet frame). This misclassification of boundary voxels can be 
avoided with watershed segmentation (Figure 10(b)) and converging active contours (Figure 10(c)) both 
applied to denoised and edge-enhanced image 𝐼𝐼NL+UM. In addition, even thin macropores are correctly 
detected (green frame). Bayesian MRF segmentation is applied to 𝐼𝐼NL+UM with 𝛽𝛽 = 0.1, 𝛽𝛽 = 1 and 
𝛽𝛽 = 10, respectively (Figure 10(d-f)). We observe that the segmented images look very different for 
different 𝛽𝛽. If the penalty term for class boundaries (Eq. 11) has a low weight (𝛽𝛽 = 0.1), the image looks 
very similar to (Figure 10(a)), i.e. all image objects are well preserved, yet all macropores exhibit false 
coatings of organic matter. In turn, if the homogeneity parameter is set very high (𝛽𝛽 = 10), partial 
volume effects are suppressed and so are small image objects in general, like the thin macropore in the 
green frame. A moderate value (𝛽𝛽 = 1) leads to an unsatisfactory trade-off between the two problems.  
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Figure 13: Image segmentation of the soil image: (a) global thresholding on $I'$ with postprocessing, (b) watershed 
segmentation on 𝑰𝑰�NL+UM, (c)  converging active contours on 𝑰𝑰�NL+UM, (d-f) Bayesian MRF segmentation on 𝑰𝑰�NL+UM with 
𝜷𝜷 = (𝟎𝟎.𝟏𝟏,𝟏𝟏,𝟏𝟏𝟏𝟏), respectively. 

Image Analysis 

The qualitative interpretation is again corroborated by structural properties of macropores and organic 
matter summarized in Table 3. Bulk volume and surface area vary much more among different 
segmentation methods as compared to the multi-fluid image. For instance, the surface area density 𝑎𝑎𝑜𝑜𝑜𝑜 
between organic matter and macropores decreases by a factor of 2.5 if the homogeneity parameter for 
Bayesian MRF segmentation is increased from 𝛽𝛽 = 0.1 (Figure 13(d))  to 𝛽𝛽 = 10 (Figure 13(f)), and is 
even smaller for watershed segmentation (Figure 13(b)) and converging active contours (Figure 13(c)). In 
addition, the connectivity indicator Γ is also sensitive to the choice of segmentation method, because 
small objects close to the image resolution have a high impact on the continuity of a phase. Therefore, 
macropore connectivity increases from Γ𝑝𝑝 = [0.72 − 0.80] to Γ𝑝𝑝 = [0.83 − 0.84] if thin macropores that 
connect larger pore bodies are correctly identified, e.g. the green frame in Figure 10. At the same time the 
connectivity of organic matter decreases drastically from Γ𝑜𝑜 = [0.94 − 0.96] to Γ𝑜𝑜 = [0.64 − 0.74] if 
false organic coatings of macropores (violet frame) are successfully suppressed. 

Table 3: Volume fractions V, surface area densities a and connectivity indices Γ of pores p and organic residues o for the 
soil image. Denoising is either applied prior to segmentation with a non-local means filter (𝑰𝑰�NL) or as postprocessing with a 
majority filter (𝑪𝑪�𝐌𝐌𝐌𝐌). 
 

denoising Vp Vo ao aop Γp Γo 
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 [−] [−] [mm-1] [mm-1] [−] [−] 
G6 - global thresholding 

𝐶̂𝐶MA .082 .213 2.74 0.91 .721 .953 
𝐼𝐼NL .096 .190 3.30 1.29 .777 .940 

L3 - Bayesian MRF 

( †β=0.1; 1‡β= ; §β=10) 
𝐶̂𝐶MA † .085 .208 2.63 0.91 .734 .953 

𝐼𝐼NL † .093 .197 2.97 1.12 .787 .950 

𝐼𝐼NL ‡ .086 .193 2.13 0.71 .795 .961 

𝐼𝐼NL § .087 .176 1.46 0.44 .822 .963 

L4 - watershed 
ĈMA .110 .137 1.05 0.30 .802 .652 

𝐼𝐼NL .117 .127 0.84 0.25 .834 .644 
L5 - converging active contours 

𝐶̂𝐶MA .088 .135 1.24 0.40 .730 .744 
𝐼𝐼NL .129 .116 0.66 0.24 .825 .681 

   
Discussion  

Image enhancement 

We have demonstrated how essential a suitable combination of image enhancement methods can be for 
subsequent image segmentation. The correction of intensity bias due to beam hardening was adequately 
corrected by the method of Iassonov and Tuller (2010), since the examined sample was cylindrical and 
fairly homogeneous. If the intensity bias had a more complex shape, which cannot be readily described as 
function of radius, the bias model could have been obtained by interpolation instead. For instance, the 
approach of Yanowitz and Bruckstein (1989) to use the Laplace equation to interpolate a threshold 
surface between slowly varying gray values along phase boundaries can be adapted to interpolate a bias 
surface between objects of the highest intensity class. Even better results can be expected by using the 
Poisson equation for this purpose (Pérez et al., 2003). The ring artifact removal routine (Sijbers and 
Postnov, 2004) succeeded in removing most of the rings. However, the ring artifact removal is incomplete 
if the artifact magnitude is not constant along rotation angle 𝜑𝜑.  Moreover, the back-transfrom from polar 
into Cartesian coordinates introduces additional blur that increases with radius 𝑟𝑟. Thus, the performance is 
always somewhat worse as compared to line removal directly applied on the sinograms when this is 
possible (Ketcham, 2006). Also, some methods operate on rings in Cartesian space directly (Freundlich, 
1987). Finally, Fourier and wavelet filters generally lead to improved ring removal  (Münch et al., 2009; 
Raven, 1998). 

The surveyed denoising methods were efficient in removing noise while keeping the blurring of edges at a 
minimum, given that the associated parameters are set adequately. In fact, image noise today has become 
a secondary issue for successful image analysis. Instead, image blur has been identified as more of a 
pitfall for the success of the various segmentation methods in this study. Edge enhancement with unsharp 
masks partly mitigates image blur, but is not capable of removing partial volume effects completely. 
Surely, future advances in x-ray tomography hardware and reconstruction software will lead to steady 
improvements in image quality, so that sharper images can be acquired on a routine basis. 
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One of our significant findings was that even though image enhancement is often indispensable for robust 
threshold detection, it does not necessarily imply that the segmentation itself also has to be applied to the 
enhanced image. Instead, segmenting the raw data with the thus obtained thresholds may lead to fewer 
misclassification errors if suitable postprocessing is applied to the segmentated images. This is because 
any image enhancement inevitably destroys some structural information in the raw data. For the images 
examined in this study, a majority filter on the segmented raw data produced good results, mostly because 
the objects had rather smooth, convex boundaries. In turn, a majority filter can be a less desirable option 
if true objects are thin, concave, have rough surfaces or acute angles. It is up to the user to always 
compare and decide which is the most favorable option. 

Global thresholding 

We have demonstrated that every histogram-based thresholding method relies on certain assumptions 
about the histogram shape. This introduces some bias if the class modes have different variance, 
skewness, or proportion. Many bias correction techniques for the standard methods used here have been 
suggested. For instance, minimum error thresholding can be corrected for imbalanced overlap (Cho et al., 
1989) or can be used with Poisson distributions for each class instead of Gaussian distributions (Pal and 
Bhandari, 1993). Shannon entropy can be replaced by Tsallis entropy for maximum entropy thresholding, 
allowing for an additional degree of freedom that can be used to tune the results (de Albuquerque et al., 
2004). Fuzzy c-means can be corrected for imbalanced class proportions (Jawahar et al., 1997). The list is 
virtually endless. However, we found it more useful to (i) put some effort into suitable image 
enhancement prior to thresholding, (ii) alleviate the impact of bias by histogram clipping, and (iii) use the 
average after outlier removal to determine thresholds for subsequent segmentation. Even with this 
preprocessing methodology there might be soil images that still exhibit unimodal histograms due to a lot 
of unresolved porosity or very imbalanced class proportions (Baveye et al., 2010; Wang et al., 2011). The 
second problem can be avoided with a semi-automatic algorithm based on ROI dilations (Figure 11). For 
instance, small rocks constitute only 3% to volume in the soil image and are hard to distinguish as an 
individual class in the histogram. The threshold for the region of interest (ROI) is set to the class mean 
(𝑡𝑡 = 𝜇𝜇𝑠𝑠 = 203). Consecutive dilations of the ROI mask lead to a clearly bimodal histogram for which a 
threshold between the soil and rock class can be easily identified. Note that the thus obtained local 
histogram minimum at 182 is very close to 𝑡𝑡 = 185 in Figure 9(f), but much easier to identify. An 
alternative to deal with unimodal histograms, which is, however, restricted to two-class segmentation, is 
to estimate a threshold from the mean gray value within edge regions (Panda and Rosenfeld, 1978; 
Schlüter et al., 2010). The problem of too much unresolved porosity or too gradual intensity changes is 
more severe and puts the entire concept of segmentation into question. In this case, some morphology 
analysis can be deployed to the intensity data directly, including distance transforms (Jang and Hong, 
2001), isosurfaces (McClure et al., 2007), skeletonization (Chung and Sapiro, 2000) or tortuosity 
(Gommes et al., 2009). 



33 
 
 

 

Figure 14: Iterative algorithm to identify a truly bimodal histogram at high gray values in the soil image. 

Local segmentation 

We have corroborated the importance of using locally adaptive methods truly capable of multi-class 
segmentation instead of applying iterations of binarizations (Tuller et al., 2013). Methods that fulfill this 
criterion are Bayesian MRF segmentation (Berthod et al., 1996; Kulkarni et al., 2012), watershed 
segmentation (Beucher and Lantuejoul, 1979; Roerdink and Meijster, 2000; Vincent and Soille, 1991) 
and converging active contours (Sheppard et al., 2004). Bayesian MRF segmentation was originally 
developed for image classification in the presence of additive noise and is based on the assumption that 
individual class modes follow a Gaussian distribution. This causes failure of the method for denoised 
images with pronounced partial volume effects due to image blur,  which leads to either one-sided or two-
sided tailings in the histogram. As a consequence, special care has to be taken to correct for this histogram 
bias. In addition, the results depend heavily on the homogeneity parameter 𝛽𝛽. Erroneous assignment of 
partial volume voxels could only be suppressed with a high penalty on class boundaries (𝛽𝛽 =10), which at 
the same time removed true image features of similar size. A promising improvement of the Bayesian 
MRF segmentation, especially if applied to fluid images, would be to replace the unspecified penalty term 
(Eq. 16) with real surface tensions (Knight et al., 1990; Silverstein and Fort, 2000). In fact, any non-
invasive laboratory technique which provides independent measurements about a structural property of 
the same sample can potentially help to condition segmentation parameters. This has been recently 
demonstrated for three-phase segmentation of limestone via hysteresis thresholding, where the region 
growing parameters were conditioned by independent porosity measurements (Mangane et al., 2013). 

For the watershed segmentation in its current implementation, a benefit is that it only requires simple 
thresholding and a gradient image. However, the lack of additional parameters also hampers flexibility. 
Therefore, excessive elimination of wetting films in the synthetic image could not be avoided. In contrast, 
the somewhat similar converging active contours method honors local gradient and intensity information 
at the same time. A reported drawback of this method is its sensitivity to seed region detection and the 
adjustment of parameters for the speed function (Iassonov et al., 2009). In this paper, we demonstrated 
strategies to define the seed regions automatically.  In addition, the parameters for the speed function can 
be obtained directly by a careful evaluation of the gradient histogram (Figure 12). The frequency of local 
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gradients is almost always unimodal and therefore difficult to threshold with standard methods. Yet, every 
unimodal histogram exhibits some characteristic features such as a point of maximum curvature (Tsai, 
1995) or the point of maximum distance from an auxiliary line between the histogram mode and the 
maximum bin (Rosin, 2001) (Figure 12, inset). In addition, some gradient histograms may exhibit 
secondary shoulders if the intensity data comprises fairly constant edge heights. Picking one of these 
points as a gradient threshold would result in a fully objective segmentation method. In this study we 
always used the gradient cutoff detection with Rosin's method. In turn, adjusting this cutoff adds some 
flexibility to the speed function in the same way as 𝛽𝛽 scales the penalty term in the Bayesian MRF 
method. For instance, we achieved a very good reproduction of the true interfacial area between fluids 
𝑎𝑎𝑤𝑤𝑤𝑤 in the synthetic test image by setting the gradient cutoff to a higher value. 

 

Figure 15: Gradient histogram computed on a Sobel image of 𝑰𝑰�NL+UM for the synthetic image. Each unimodal histogram 
has a unique point of maximum curvature and maximum distance from the auxiliary line depicted in the inset. In 
addition, the shoulder in the histogram produces a local minimum, which can be detected as well. 

As expected, objects that are close in size to the image resolution were associated with the highest 
uncertainty in all test images. Five voxels in diameter has been suggested as a rough estimate for an 
object size limit for which image analysis is reliable (Lehmann et al., 2006; Vogel et al., 2010). Features 
like the thin oil films and pendular rings at grain contacts in the synchrotron image clearly do not meet 
this criterion. Brown et al. (2014) compared surface area densities of smooth fluid interfaces for the same 
kind of three-fluid samples when improving the image resolution from 10.6µm to 5.3µm and observed an 
increase in the range of 5-16%, depending on the specific fluid pair. An improvement in resolution 
usually comes at the cost of a smaller field of view as far as industrial scanners are concerned, as well as 
increased noise unless the scan time is increased as well. For heterogeneous media, especially, there is a 
trade-off between a representative image size and sufficient resolution to capture important details. 
However, the scale window can also be extended towards smaller objects by scanning the same sample at 
different resolutions, even with different imaging techniques, and merging the images with image 
registration (Latham et al., 2008), statistical fusion of images (Mohebi et al., 2009) or scale fusion applied 
to structure analysis data only (Schlüter et al., 2011; Vogel et al., 2010). Finally, for this study we have 
merely compared the outcome of different local segmentation methods with each other. Of course, several 
methods can also be combined. For instance, Bayesian MRF segmentation with surface tensions could be 
used for postprocessing the outcome of converging active contours. If necessary, postprocessing with a 
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majority filter could also be applied in addition to denoising prior to segmentation. After all, the choice of 
a suitable protocol always depends on characteristics of the raw data.  

Conclusions 

We have surveyed recent advances in image enhancement and image segmentation of multi-phase x-ray 
microtomography data. Image enhancement methods included ring artifact removal, intensity bias 
correction, edge enhancement, image denoising and contrast enhancement. Image segmentation methods 
comprised six global segmentation and five different locally adaptive segmentation methods. Some 
general conclusions can be drawn from our findings: 

1. Image blur is the major cause of poor segmentation results in this study, since image noise and other 
image artifacts could be removed with current image processing methods.  

2. A lot of uncertainty in threshold detection can be removed by suitable preprocessing and correction of 
histograms for bias in the class statistics prior to thresholding. 

3. Bayesian Markov randomfield segmentation, watershed segmentation and converging active contours 
are suited for multi-class segmentation. The converging active contour method has potentially the highest 
flexibility to correct for partial volume effects and simultaneously conserve small image features. 
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Appendix A 

Most image processing steps presented in this study can be done with freely available software. The only 
exceptions are the nonlocal means filter for denoising and the watershed method for segmentation, which 
were carried out with Avizo® Fire(http://www.vsg3d.com/avizo/fire). Moreover, the converging active 
contours method for segmentation was performed with Mango 
(http://physics.anu.edu.au/appmaths/capabilities/mango.php). 

The conversion between Cartesian and polar coordinates for ring artifact removal was performed with the 
freely available Polar Transformer (http://rsbweb.nih.gov/ij/plugins/polar‐transformer.html) plug‐in for 
ImageJ. All other image processing steps are either built on or directly implemented in the QuantIm 
(http://www.quantim.ufz.de) open‐source image processing library.  
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2.2. X-ray microtomography analysis of soil structure deformation 
caused by centrifugation (Schlüter et al. 2016, Solid Earth, 7(1), 129-
140, doi: 10.5194/se-7-129-2016) 

Abstract 

Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. 
However, deformation of soil structure may occur at high angular velocities in the centrifuge. The 
objective of this study was to capture these changes in soil structure with X-ray microtomography and to 
measure local deformations via digital volume correlation. Two samples were investigated that differ in 
texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due 
to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity 
because of crack formation due to moisture release. At higher angular velocities, corresponding to 
capillary pressure of 𝜓𝜓 < −100 kPa, macroporosity decreases again because of structure deformation due 
to compression. While volume changes due to swelling clay minerals are immanent in any drying process, 
the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital 
volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples 
the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral 
variability explained by the spatial distribution of macropores in the sample. Centrifugation should 
therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other 
analysis that depends on the integrity of soil structure.  

Introduction 

Soils, rocks and sediments are assumed to be rigid bodies in many modeling applications. Yet, the 
internal structure of these porous media is modified through a variety of technical and natural processes. 
The internal changes can either be gradual, e.g., through dissolution, biological activity or 
swelling/shrinking, or abrupt, e.g., landslides or tillage. Conventional laboratory methods can only 
provide a limited set of structural properties, such as bulk density and porosity, or provide indirect 
information through functional properties that are governed by the internal structure, such as gas 
diffusion, permeability or stress–strain relationships. Direct information on the deformation of the internal 
pore architecture is typically missing. X-ray microtomography has turned into a standard technique to fill 
this gap and measure the three-dimensional internal structure of porous media (Cnudde and Boone, 2013; 
Ketcham and Carlson, 2001; Wildenschild and Sheppard, 2013). There is a huge variety of image 
processing and image analysis methods that are all tailored for the ultimate goal to quantify the complex, 
structural heterogeneity based on a few meaningful parameters (Kaestner et al., 2008; Schlüter et al., 
2014; Vogel et al., 2010). The changes in the internal structure can be assessed statistically, e.g., by 
comparing the pore size distribution or pore connectivity averaged over different samples at two points in 
time (Jégou et al., 2002; Schlüter et al., 2011). Evidently, spatially explicit information about the internal 
displacement of particles or aggregates is excluded from analysis in such an approach. However, this 
local deformation information is of particular interest, e.g., in soil mechanics (Terzaghi et al., 1996). So 
far there are only a few approaches to measure the deformation explicitly via imaging and image analysis. 
One method would obviously be to manually identify identical objects in two consecutive images and 
measure their separation distance. Repeating this measurement for many objects would then populate the 
deformation field. However, this is impractical for large, three-dimensional data sets, because of the large 
number of measurements required to reach an appropriate density of displacement information. Therefore, 
automatic methods are needed. 

Automated methods to detect deformation are usually based on digital volume correlation (Bay et al., 
1999; Hall, 2010; Lenoir et al., 2007; Peth et al., 2010; Son et al., 2012). The rationale of this method is to 
recover the displacement field by finding a geometric transformation of a deformed image that optimizes 
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a correlation coefficient with the original, undeformed target image. The method usually comprises three 
steps (Bay et al., 1999): (1) the acquisition of X-ray microtomography image before and after the 
perturbation, (2) image registration of one image onto the other to obtain a discrete deformation vector 
field and (3) calculation of the strain tensor field from the displacement vector field. Another popular 
method for change detection is called particle image velocimetery (PIV)(White, 2003). PIV was 
originally developed to visualize flow paths within a fluid by tracking small, yet visible particles over 
time (Adrian, 1991). In this method the image is divided into a large number of sub-windows, and the 
displacement vector for each window is calculated via cross-correlation between two consecutive images, 
which results in a local velocity for the given time lag. The particles can be substituted by any moving 
feature such as a growing root (Bengough et al., 2010), soil displacement along an earthworm burrow 
(Barnett et al., 2009) or soil creeping along slopes (Baba and Peth, 2012). A serious shortcoming of PIV 
is that so far it can only be applied to two-dimensional sections, in which case any displacement out of 
plane into the third dimension is excluded. 

The objective of this paper is to measure local deformations in a soil core caused by centrifugation with 
digital volume correlation. We put special emphasis on common pitfalls and best practices for image 
registration, which is the critical step for a successful application of this method. Centrifugation has been 
chosen for the deformation analysis in this study because it is suitable to evoke structure deformation 
under controlled conditions. Measuring the water loss through centrifugation of a soil is a rather old 
method for determining the water retention curve of a soil (Gardner, 1937; Oden, 1975; Reatto et al., 
2008; Russell and Richards, 1939). It has obvious advantages over other conventional methods like multi-
step outflow (Van Dam et al., 1994; Vogel et al., 2008) or evaporation (Peters and Durner, 2008; Simunek 
et al., 1998) in that the method is less time consuming, it captures a wide moisture range of the retention 
curve and provides a good reproducibility through defined experimental conditions (angular velocity, 
temperature, pressure). More recently, the steady state centrifugation method was also used to measure 
the unsaturated hydraulic conductivity of soils (McCartney and Zornberg, 2010; Šimůnek and Nimmo, 
2005; Van den Berg et al., 2009). However, a serious drawback is that soil can get compacted through the 
centrifugal force, i.e., the inertia that acts on the sample during rotation (Khanzode et al., 2002; Wedler 
and Boguslawski, 1965). The spatial variability of compaction within a sample will be investigated in this 
study. 

Materials & Methods 

Overview of core concepts 

Since image registration is the backbone of our deformation detection method, we provide a brief 
overview over the core concepts. Optimal spatial alignment of an altered image with a target image is 
usually achieved by minimizing an objective function that quantifies the mismatch in terms of a 
predefined metric. A standard metric would be the correlation coefficient between co-localized voxels 
(Hapca et al., 2011; Latham et al., 2008). More advanced metrics are based on information theory like 
mutual information criteria (Mattes et al., 2001). Composite metrics are also possible, e.g., with an 
additional regularization term in case of elastic registration or an additional term for the mismatch of 
manually defined point pairs, so-called landmarks. The geometrical transform that produces an optimized 
alignment can be grouped according to the degrees of freedom by which the image can move. The 
simplest transform is rigid registration with six degrees of freedom, i.e., rotation around three axes and 
translation in three directions. A similarity transform includes isotropic scaling as one additional 
parameter. Affine transformations possess 12 degrees of freedom through rotation, translation, shearing in 
three directions and anisotropic scaling. All aforementioned transforms are global in that a single 
transformation matrix is uniformly applied to the entire image. Thus they do not allow for non-uniform 
deformation. Elastic registration with a B-spline transform, in turn, requires a regular grid of control 
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points over the image where each performs independent, affine registrations. As a consequence, the 
control points move relative to each other in the course of registration. Image registration is achieved by 
an iterative optimization scheme with standard methods like gradient descent or more involved methods 
like adaptive stochastic gradient descent (Klein et al., 2010) with optimal trade-off between speed and 
robustness. This completes the description of the core methodology of automated image registration. 
However, based on our own experience a straightforward implementation can lead to a failure of the 
method without following some best practices. 

Initialization 

Salient objects in the altered and the target image need to have substantial overlap to identify a 
meaningful correspondence of features. This is facilitated by a manually edited transformation matrix, in 
which the resolution of the altered image is adapted to the resolution of the target image and an offset 
between the images is corrected by some initial translation or rotation of the altered image. This manual 
procedure can be avoided by exhaustive sampling, where all combinations of translations (and rotations if 
required) are tested at a coarse grid representation (Latham et al., 2008). A different kind of user input is 
provided by landmarks placed on the salient features in both images. The cumulative Euclidean distance 
between point pairs is then added as a second term to the objective function. In all cases, the correct 
orientation of the sample has to be ensured a priori, because a flipped orientation cannot be recovered by 
rotation. 

Concatenation 

It is often useful to combine several consecutive image registration steps with each other, especially when 
an elastic registration with thousands of degrees of freedom is involved. Then a rigid registration can 
place the altered image already close to the global minimum and thus anticipate a collective movement of 
all control points in the subsequent B-spline transform. In our example, a two-step procedure will first 
match the position of the cylindrical container in the original sample with that of deformed sample after 
centrifugation, by aligning corresponding landmarks on the core wall. Then, a B-spline transform of the 
centrifuged sample onto the original sample will recover the remaining internal deformations. 

Pyramid schedule 

As mentioned above, a coarse representation of both images at reduced resolution vastly reduces the 
processing time so that it may even allow for exhaustive sampling of all transform parameter 
combinations. At the same time the coarsening reduces the iterations necessary to achieve a certain 
translation in physical space. This can be achieved with a so-called pyramid schedule. That is, the 
registration is started at a coarse representation and when convergence is reached the registration is 
continued at the next pyramid level with higher resolution. Finer details, e.g., small rocks that did not 
appear at a coarse level are then used to refine the registration results. 

Contrast enhancement 

The success of image registration depends on the existence of salient features in the two corresponding 
images. Here, a particular problem for structure deformation in soil may take effect that macropores are 
not rigid and may disappear completely due to compression. Likewise, cracks may form in dry soil that 
were not present at high moisture content. However, a lack of corresponding features may impair the 
success of image registration. To avoid this, the gray values in both images can be rescaled such that pore 
and soil matrix voxels have zero gray value and all rigid rocks are depicted with optimal contrast. In this 
way only the rock matrix is used for registration, i.e., an assemblage of bodies that change their position 
but not their shape. This raises the questions, what the minimum amount of rocks has to be in order to still 
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get good image registration results. Therefore, registration results will be compared for soils with high 
and low rock content and also with and without contrast enhancement. 

Soil sampling 

Undisturbed soil was sampled from two locations using a custom-made drill for undisturbed sampling of 
cylindrical soil cores (UGT GmbH, Germany). One sample was taken from the upper soil layer (in 5 to 
15 cm depth) of a meadow in Köllme near Halle (Saale), Germany. The second sample stems from the 
plow horizon of a fallow plot (in 5 to 15 cm depth) at the experimental station of the Helmholtz-Centre for 
Environmental Research – UFZ in Bad Lauchstädt, Germany. The samples were covered with a lid, 
carefully transported to the laboratory and stored in a refrigerator at 4 °C to prevent the soil from drying 
and to reduce biological activity. The soil samples had a mean height of 7.9 cm, a diameter of 9.4 cm. The 
Köllme soil had an initial bulk density of 1.24 g cm−3 and a rock content of 3 %. The bulk density in the 
Bad Lauchstädt soil was higher (1.32 g cm−3) and the rock content was much lower (0.2 %). The Köllme 
soil has a slightly coarser texture with 24 % sand, 58 % silt and 18 % clay as compared to 5 % sand, 71 % 
silt and 24 % clay for the Bad Lauchstädt soil (disregarding organic matter and rocks > 2 mm in diameter). 

Centrifugation 

A perforated aluminum plate covered with a filter paper (pore size 10 μm) was installed in between the 
lower boundary of the sample and a reservoir that collects the drained water. This setup was placed in a 
centrifuge (Cryofuge 6000i, Heraeus GmbH, Germany) and covered with a plastic film to prevent 
evaporation. The capillary pressure was initially adjusted to full saturation. Afterwards, the sample was 
centrifuged at increasing angular velocities. The equivalent capillary pressure of water 𝜓𝜓 in equilibrium 
with the gravitational field written in differential form is as follows (Gardner, 1937; Russell and Richards, 
1939):  

∂𝜓𝜓
∂𝑟𝑟

= 𝜌𝜌𝜔𝜔2𝑟𝑟 
(17) 

Integrating Eq. (17) between the inner (𝑟𝑟𝑖𝑖 = 0.136m) and outer (𝑟𝑟𝑜𝑜 = 0.22m) boundaries of the soil core 
one obtains 

𝜓𝜓 =
𝜌𝜌𝜔𝜔2

2
(𝑟𝑟𝑜𝑜2 − 𝑟𝑟𝑖𝑖2) (18) 

where normalizing by the density of water 𝜌𝜌 results in work per unit mass of water and hence pressure 
[Pa]. The angular velocity 𝜔𝜔 was calculated by 𝜔𝜔 = 2𝜋𝜋𝜋𝜋, where 𝑁𝑁 is the revolution frequency [rad 𝑠𝑠−1]. 

X-ray microtomography 

The soil cores were scanned with an X-ray microtomograph (X-TEk XCT 225, Nikon Metrology) with 
slightly different energy settings for the Köllme soil (150 keV, 425 μA) and the Bad Lauchstädt soil 
(160 keV, 500 μA). In both cases we used a 1 mm copper filter to reduce beam hardening artifacts and 
prevent overexposure at the lateral margins of the detector panel. An entire scan comprised 2749 
projections with an exposure time of 708 mS (one frame per projection) which resulted in a scan time of 
roughly half an hour. A detector panel (Elmer-Perkin 1620) with 1750 × 2000 pixels (200 μm resolution) 
captures projections with 16-bit precision. The reconstruction of three-dimensional images via filtered 
back projection was done with the CT Pro 3-D software package (version 3.1) at a spatial resolution of 
61 μm and 8 bit grayscale resolution. 

Image processing 
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The deformation of soil structure is analyzed in two ways. First, the changes in the macropore structure 
are analyzed by comparing pore size distributions as well as depth profiles of macroporosity for images 
before and after centrifugation. Second, the displacement of soil constituents is explored with digital 
image correlation, i.e., via image registration of the deformed soil to the original soil prior to 
centrifugation. The entire image processing workflow for pore space analysis (top row) and digital image 
correlation (bottom row) is summarized in Figure 13. 

 
Figure 16: Image processing workflow for this study depicted for a small two-dimensional subset (a). Noise is removed 
with a non-local means filter (b). Shading and cone beam artifacts evoke differences in image intensity which are 
corrected by subtracting the difference between the depth-dependent gray value average of the soil matrix from the mean 
gray value of the entire soil matrix (c). Subsequently, image segmentation is performed with multi-level Otsu 
thresholding (d). For digital image correlation all images are resampled from a voxel size of 61 to 183 μm to reduce 
memory consumption (e). Optionally, the grayscale range is adapted such that rocks are depicted with optimal contrast 
and macropores vanish (f).  

As a first step for the pore space analysis, noise in the raw images is removed with a non-local means 
filter implemented in ITK (image registration tool) (Buades et al., 2005; Tristán-Vega et al., 2012). This 
version of the non-local means filter requires two parameters: (1) the radius of the search window is set to 
four pixels and an estimate of the noise level expressed as a standard deviation of noise is set to 60; (2) 
vertical differences in average image intensity due to shading and cone beam artifacts are removed. To do 
so, the mean gray value of the soil matrix in a specific z-slice is measured and the difference to the mean 
gray value of the soil matrix in the entire image is subtracted from each voxel in that depth (Iassonov and 
Tuller, 2010). The two thresholds that separate the soil matrix from darker pore voxels and brighter rock 
voxels are chosen manually and do not affect the results much as long as they cover the entire grayscale 
range of soil without adding pores and rocks to the average. The main purpose of noise removal and 
intensity drift correction is to improve the robustness of automatic, histogram-based threshold detection 
methods. In this study the multi-level version of the popular Otsu method was used (Liao et al., 2001) to 
obtain the thresholds between four classes (pores, soil matrix, low density rocks and high density rocks), 
of which only the pore class is analyzed subsequently. Segmentation into pores and background was 
carried out with simple thresholding. The resulting pore space was analyzed towards two different 
directions. First, pore size distributions were calculated with the maximum inscribed sphere method using 
the BoneJ plugin (version 1.3.12) in Fiji (Doube et al., 2010). Second, depth profiles of porosity were 
computed in equidistant steps of 10 pixels to monitor the depth dependent changes of macroporosity 
caused by drying and compaction. All image processing steps except noise removal and pore size analysis 
were performed with the QuantIm image processing library (Schlüter et al., 2014; Vogel et al., 2010). 
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Digital image correlation is applied to the raw image with only little preprocessing. The images are 
resampled at a 3-times coarser resolution of 183 μm via simple averaging in order to reduce memory 
consumption. Optionally, the contrast is stretched such that macropores and soil are binned to zero and 
the rocks are displayed with optimal contrast so that only the rock matrix is used for subsequent image 
registration. The lower boundary under which all gray values are set to zero is chosen manually. Image 
registration was carried out with elastix4 (Klein et al., 2010), an open-source image registration tool based 
on ITK (Ibanez et al., 2005) which was tailored for medical imaging applications. The image of the 
original soil structure was registered to the deformed soil in two steps. First, we applied a rigid 
registration that minimizes the sum of Euclidean distances between corresponding landmarks which we 
placed at four notches in the container wall. The mutual information criterion (Mattes et al., 2001) 
between images is added to the objective function as a second term with a low weighting factor because 
the manual selection of landmarks is typically afflicted with an imprecision of a few pixels. This rigid 
registration forces the cylindrical containers of both images to be well aligned. Then we applied elastic 
registration with a B-spline transform that optimizes the mutual information criterion to recover internal 
deformations. A regularization term, called bending energy penalty, was added to the objective function 
which ascertains that local transitions in deformation magnitude and direction are smooth (Klein et al., 
2010). The success of image registration is evaluated via visual comparison of the target image and the 
aligned image. The outcome of an image registration process is a parameter file that stores the global 
transformation matrix (for rigid registration) or the transformation matrix of all grid nodes (for elastic 
registration). This parameter file is then applied to the input image in order to construct a new image that 
is perfectly aligned with the target image. This transformation matrix can also be applied to other images 
that were not used in the image registration process. This is essential since the image registration is 
optimized with auxiliary images which only contain rocks while the resulting transformation matrix is 
applied to the raw images that display the original soil structure. Two sample images and all parameter 
files to reproduce the entire workflow are available from the authors upon request. 

Results 

X-ray microtomography 

The three-dimensional structure of the Köllme soil before centrifugation is depicted in Figure 14a. Rocks 
of different sizes are embedded in a loamy soil matrix and large macropores are present in all depths. 
After centrifugation down to a capillary pressure of 𝜓𝜓 =−100 kPa the structure is markedly deteriorated 
(Figure 14b). The shape and position of macropores have changed, and desiccation cracks have formed in 
the vicinity of macropores. A perforated, rigid plate is visible, which was mounted at the bottom of the 
sample to prevent soil loss during centrifugation and transport. At a capillary pressure of 𝜓𝜓 =−500 kPa the 
soil is severely compacted as can been seen by the larger head space above the soil surface (Figure 14c). 
Macropores are almost absent especially in the lower part of the sample and only a few desiccation cracks 
with vertical orientation remain in the upper part of the profile. 

                                                      
4 http://elastix.isi.uu.nl/ 
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Figure 17: X-ray microtomography images of the soil structure in the Köllme soil (a) at full water saturation (𝝍𝝍=0 kPa) 
and (b) at 𝝍𝝍 =−100 kPa and (c) at 𝝍𝝍 =−500 kPa and in the Bad Lauchstädt soil (d) at full water saturation (𝝍𝝍 =0 kPa) and 
(e) at 𝝍𝝍 =−50 kPa and (f) at 𝝍𝝍 =−300 kPa. 

The low rock content of the Bad Lauchstädt soil is evident in Figure 14d–f. After centrifugation down to a 
capillary pressure of 𝜓𝜓=−50 kPa all macropores are intact and have even slightly increased in size due to 
shrinkage of clay minerals in the course of drying. At a capillary pressure of 𝜓𝜓=−300 kPa the original 
macropore network is still visible but some macropores are partially compressed. 

These visual observations are confirmed by quantitative analysis of the pore space (Figure 15a). The total 
visible macroporosity (>61 μm) in the Köllme soil at full saturation is 6.6 %. At 𝜓𝜓=−100 kPa, 
macroporosity increased to slightly (8.1 %) due to crack formation. These new desiccation cracks due to 
soil drying mainly formed in that size range of 0.1–1 mm. Macropores >1 mm in diameter are less 
abundant in the soil at 𝜓𝜓=−100 kPa because larger macropores were partially compressed. The subsequent 
centrifugation to a capillary pressure of 𝜓𝜓=−500 kPa reduced visible macroporosity to 2.0 % and removed 
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porosity in all size ranges. A similar trend is evident in the Bad Lauchstädt soil (Figure 15b) though with 
lower magnitude. The visible porosity (>61 μm) at full saturation (9.4 %) increases slightly when 
centrifuged to 𝜓𝜓=−50 kPa and decreases to 7.6 % at a capillary pressure of 𝜓𝜓=−300 kPa. The changes in 
the pore size distribution are smaller in the Bad Lauchstädt soil due to less negative capillary pressures 
and a lower abundance of big macropores > 1 mm in diameter which are most easily compressed. 

 

Figure 18: Cumulative pore size distribution (> 61 μm) in the Köllme soil (a) and the Bad Lauchstädt soil (b) at three 
different capillary pressures. Values are derived with the maximum inscribed sphere method and correspond to porosity 
larger than a specific pore diameter. 

 

Figure 19: Depth profile of macroporosity (> 61 μm) at three different capillary pressures in the Köllme soil (a) and Bad 
Lauchstädt soil (b).  All images cover slightly different field of views and are normalized to a reference height at the 
bottom of the sample. 

The change in porosity through centrifugation is not evenly distributed across the sample (Figure 16a). In 
the Köllme soil desiccation cracks at 𝜓𝜓=−100 kPa mainly formed in the top part of the sample, whereas 
the bottom part of the sample exhibits lower porosity than the reference sample due to compaction. The 
sample in its driest state is compacted across the entire profile. The decline in macroporosity increases 
with depth. A specific rock close to the soil surface served as a cut-off height for the profile. Its position 
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changed from 68 to 58 mm and to 55 mm, respectively. In the Bad Lauchstädt soil (Figure 16b) the same 
trends apply though at different magnitude. At 𝜓𝜓=−50 kPa macroporosity increases in the top part of the 
sample due to drying, whereas the bottom exhibits slightly smaller macroporosity due to compression. 
Further drying down to 𝜓𝜓=−300 kPa reduces macroporosity in all depths. The height of the sample as 
measured by the position of a reference rock decreases from 85 to 81 mm for ψ=−50 kPa, followed by 
77 mm for 𝜓𝜓=−300 kPa. 

Deformation 

Rocks are especially suited to track internal deformations as they change in position, but not in shape. The 
poor spatial alignment of rocks between the saturated (green) and the centrifuged soil at a capillary 
pressure of 𝜓𝜓=−500 kPa (red) after the Euler transform is depicted in Figure 17(a) (results for deformation 
at 𝜓𝜓=−100 kPa not shown). Elastic registration with a B-spline transform leads to a very good spatial 
alignment of rocks in all soil depths (Figure 17b). In both images (original and deformed soil) the contrast 
had been optimized for rocks prior to image registration. Figure 17(c) shows the registration results for 
the resampled raw images. That is, the full grayscale range including soil matrix and macropores is used 
for digital volume correlation and the contrast is optimized for rocks only afterwards for visualization. 
This results in a less accurate spatial alignment of the rock matrix especially in the lower part of the 
sample where deformation is strongest and macropores are compressed. Even though the rock content in 
the Bad Lauchstädt soil is very low (0.2 %), it is sufficient to achieve a good spatial alignment when only 
the rock matrix is used for image registration (Figure 17e). Results are shown for the most compacted 
state only (𝜓𝜓=−300 kPa). The spatial alignment of the rock matrix works comparably well, if the entire 
grayscale range including soil and macropores is used for image registration (Figure 17f). Hence, taking 
the spatial alignment of macropores also into account does not impair the spatial alignment of the rock 
matrix, as most of the macropores persist during the centrifugation process. A general advice whether to 
use the whole grayscale range or not will be discussed below. 



45 
 
 

 
Figure 20: The spatial alignment of rocks between the saturated soil (green) and the soil at 𝝍𝝍=−500 kPa (red) before (a) 
and after (b) elastic registration image registration of the rock matrix in the Köllme soil.  Note that the co-occurrence of 
rocks results in a composite, yellowish color. The spatial alignment of rocks is less accurate in the bottom of the sample, 
when the entire grayscale range is used for image registration (c). Same is shown for the Bad Lauchstädt soil (d–f). There, 
both strategies, with and without contrast enhancement for rocks, lead to equally good spatial alignment of the rock 
matrix.  

An important result of the registration procedure is the displacement vector field. There is a clear trend 
towards a downward movement of soil constituents in the Köllme soil as a consequence of compaction 
and its magnitude increases from 𝜓𝜓=−100 kPa to 𝜓𝜓=−500 kPa (Figure 18a–b). However, the direction and 
length of local displacement does not only vary with depth but also laterally. Furthermore, there is a 
substantial horizontal component of displacement in many locations. This lateral movement can have two 
different origins. First, the formation of mainly vertically aligned cracks displaces the soil normally into 
the crack but not along it. Secondly, regions of high macroporosity are preferential failure zones during 
compaction. Filling these macropores during compression with soil material from above evokes a lateral 
displacement component because they are not evenly distributed across the soil. The Bad Lauchstädt soil 
at 𝜓𝜓=−50 kPa exhibits a rather uniform downward displacement of soil constituents of about 3–5 mm 
(Figure 18c) that is in line with the reduction of sample height shown in Figure 16. A pressure of 
𝜓𝜓=−300 kPa evokes lateral differences in downward displacement again (Figure 18d), as already 
discussed for the Köllme soil. 
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Figure 21: Displacement vector field for the Köllme soil for the deformation (a) from 𝝍𝝍=0 kPa to 𝝍𝝍=−100 kPa and (b) 
from 𝝍𝝍=0 kPa to 𝝍𝝍=−500 kPa.  Only a small percentage of all vectors is displayed to improve visibility. The vector length 
corresponds to the physical displacement. The two-dimensional section of the undisturbed soil is for orientation. Same is 
shown for the Bad Lauchstädt soil for the deformation (a) from 𝝍𝝍=0 kPa to 𝝍𝝍=−50 kPa and (b) from 𝝍𝝍=0 kPa to 
𝝍𝝍=−300 kPa. 

Discussion 

Pore scale processes during centrifugation 

The analysis of macroporosity at 61 μm resolution revealed substantial alterations of the pore space 
architecture during centrifugation. Without such a detailed X-ray microtomography analysis the only 
measurable, macroscopic changes in soil structure would have been an increase in bulk density and a 
decrease in sample height. The conventional, quantitative image analysis of the pore space revealed a 
depth-dependent increase or decrease of macroporosity that resulted from the interplay of soil shrinkage 
due to drying and soil compaction due to compression. The reduction of macroporosity due to compaction 
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was most severe in the lower part of the samples. Evidently this is because the inertial force that acts on 
the soil in a given depth, i.e., 𝐹𝐹𝑧𝑧 = 𝑚𝑚𝜔𝜔2𝑟𝑟, increases both with increasing overburden 𝑚𝑚 and increasing 
absolute acceleration (due to 𝑟𝑟𝑜𝑜 > 𝑟𝑟𝑖𝑖) (McCartney, 2007). This was corroborated by displacement vector 
fields obtained from digital volume correlation which showed an increase of vertical displacement with 
sample height. Evidently, this is due to the fact that the local displacement integrates over the distance to 
the lower boundary. 

The deformation of the soil due to shrinkage is immanent in any drying process in presence of swelling 
clay minerals and capillary forces that pull unconsolidated grains closer together (Or and Ghezzehei, 
2002; Stange and Horn, 2005). So it would have also occurred if drying is induced by another process, 
e.g., by evaporation. The compaction of the soil through centrifugal forces, however, is obviously caused 
by the centrifugation process and represents a severe drawback of the method. A significant breakdown of 
structure through centrifugation was previously reported for an equivalent capillary pressure of 
𝜓𝜓=−100 kPa (Wedler and Boguslawski, 1965) using a loess soil with a texture (5 % sand, 77 % silt, 18 % 
clay) comparable to the Bad Lauchstädt soil. The deformation field analysis of the Bad Lauchstädt soil 
confirmed that at a capillary pressure of 𝜓𝜓=−50 kPa, the soil structure is still intact with fairly uniform 
downward displacement of all soil constituents by a few mm, whereas centrifugation at 𝜓𝜓=−300 kPa 
caused stronger lateral heterogeneity in deformation caused by the compression of heterogeneously 
distributed macropores. Though this critical threshold certainly depends on soil texture and bulk density it 
also compares well with the critical value found for the Köllme soil. In the deformation field at 
𝜓𝜓=−100 kPa lateral heterogeneity in local displacement already emerged but is only fully developed at 
𝜓𝜓=−500 kPa. Studies with repacked clay of low plasticity in centrifuge samples of comparable 
dimensions (71 mm diameter, 127 mm height) only showed marginal settlement of the sample (< 1 mm) in 
a suction range down to 𝜓𝜓≈−50 kPa due to the absence of natural macropores (McCartney, 2007; 
McCartney and Zornberg, 2010). It is clear that the susceptibility to compaction during centrifugation, 
just like the stress–strain relationship of any soil heavily depends on the pore size distribution and the 
stress history of the sample (Horn and Baumgartl, 2002; Or and Ghezzehei, 2002). 

The question is, how this structure deformation changes the measured water retention curve. Presumably, 
those macropores with the lowest mechanical stability are also the pores that drain first. That is, they have 
released their water before they got deformed. Comparisons between water retention curves obtained with 
different laboratory methods for various soils with different initial compaction states indicate that 
centrifugation often results in higher water content for a given suction than a pressure chamber or hanging 
water column test (Khanzode et al., 2002; McCartney, 2007; McCartney and Zornberg, 2010; Wedler and 
Boguslawski, 1965). The interpretation whether the offset is still tolerable differs among these authors. 
The offset emerges because soil compaction leads to a general shift of the pore size distribution, during 
which the absolute abundance of smaller pores grows on the expense of bigger pores (Assouline, 2006; 
Leij et al., 2002). However, these pores cannot be captured with X-ray microtomography. An appropriate 
discussion of this effect is therefore beyond the scope of this paper. 
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Figure 22: Comparison between registration results using the entire gray scale range or the rock matrix only: 
Representative slice of the Köllme soil close to saturation (a). The B-spline transformation matrix of the rock matrix in 
the Köllme soil at ψ=−500 kPa is applied to the corresponding grayscale image (b). B-spline transform of the original 
Köllme soil at ψ=−500 kPa (c). Same comparison for the Bad Lauchstädt soil close to saturation (d) and at ψ=−500 kPa (e, 
f). Pink and yellow frame highlight salient features. 

As general advice, centrifugation should not be used to measure water retention curves down to very low 
pressure ranges if the sample is prone to soil compaction. For practical purposes the reduction in sample 
height can be used as a suitable indicator to identify the critical pressure beyond which deformation has to 
be expected. If this method still has to be applied beyond this critical point, it should be performed at the 
end of all envisaged hydraulic or thermal experiments, as it causes irreversible damages to the internal 
soil structure. 

Methodological limitations 

We have developed a workflow for the automatic detection of soil structure deformation by means of free 
image registration software and outlined best practices in order to optimize the registration results. By 
imposing a pyramid schedule the image registration of resampled images with roughly 4003 voxels took 
approximately 1 min for the Euler transform and 150 min for the B-spline transform on a Linux work 
station (32 GB RAM, 12 cores with  1.2 GHz). A maximum number of iterations on each pyramid scale is 
the conventional stopping criterion of the program (in the range of 100–5000), which could have easily 
been reduced to save time, as the improvement in the last iterations is usually small. We resampled the 
images from 61 to 183 μm in order to reduce memory use which can reach up to 10 times the image size, 
depending on data type of both working copies in memory (float vs. short), interpolation type, number of 
pyramid scales and other internal settings of elastix. As a consequence of resampling, registration cannot 
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be more accurate than the resolution of the final pyramid (183 μm in this case), which is still sufficient as 
the local deformations in our samples where in the mm range. 

The benefits of focusing on the rock matrix during image registration was shown in Figure 17. Rocks 
change position and orientation, but in contrast to macropores they do not change their shape. Therefore, 
they are more easily recovered by the B-spline transform. Taking macropores into account during image 
registration impaired the spatial alignment of rocks in the lower part of the Köllme soil, because many 
macropores disappeared completely in that depth which caused wrong feature alignment. This is 
corroborated by comparing the registration results for the full grayscale range in a representative slice 
(Figure 19a–c). Figure 19(b) is the result of applying the transformation matrix that was obtained from a 
B-spline transform of the rock matrix to the original grayscale image, whereas Figure 19(c) was obtained 
by computing a B-spline transform with the original grayscale image directly. The pink frame highlights 
the perfect alignment of a set of rocks if only the rock matrix is considered for image registration, while 
the position of some rocks was not fully recovered without contrast adjustment. The yellow frame 
highlights that the disappearance of a macropore at the boundary produces a distortion of the core wall 
into the soil. This flaw is avoided by focusing on the rock matrix only. A critical question is the 
following: what is the minimum amount of rock content to guarantee a good recovery of the deformation 
field? In spite of a very low rock content (0.2 %) in the Bad Lauchstädt soil, the spatial alignment of the 
rock matrix was satisfactory both with and without contrast adjustment for rocks. This is supported by 
comparing the registration results in a representative slice (Figure 19d–f). The position of rocks, e.g., in 
the pink frame and elsewhere, is correct. In this case taking the full grayscale range into account even 
improves the spatial alignment of salient features like the macropore in the pink frame. Moreover, the 
yellow frame highlights poor spatial alignment of the core wall after contrast adjustment because there are 
no rocks in the vicinity to constrain the registration result. Therefore, focusing on the rock matrix is in 
fact not advisable for this particular soil. 

In summary, a general lack of rocks or other salient, rigid features may render elastic registration useless 
depending on the severity of deformation. Only additional landmarks can help to improve the registration 
result in that case. In turn, if the focus is not on natural soil, but on repacked substrates, then the addition 
of easily trackable features like rocks or metal particles is an easy way to improve the accurate detection 
of internal deformation. 

Conclusions 

Measuring the water release through soil centrifugation is a fast method to obtain soil water retention 
curves. Using X-ray microtomography we have corroborated previous findings that the soil structure 
starts to deteriorate at a capillary pressure of about 𝜓𝜓=−100 kPa. Moreover, quantitative analysis of the 
pore space at 61 μm resolution revealed that the soil deformation is caused by the interplay of shrinkage 
and compaction. Local deformation was detected by a novel workflow for digital volume correlation 
based on elastic image registration. This method enables a detailed look at local soil deformation and its 
spatial variability. We applied this method to the measure changes in soil structure during centrifugation; 
however, this method has the potential to quantify the detailed mechanical deformation of soil and other 
materials exposed to any other type of external forcing. 
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2.3. Analysis of Soil Structure Turnover with Garnet Particles and X-
Ray Microtomography (Schlüter & Vogel 2016. PLoS ONE, 11(7), 
e0159948, doi: 10.1371/journal.pone.0159948) 

Abstract 
Matter turnover in soil is tightly linked to soil structure which governs the heterogeneous distribution of 
habitats, reaction sites and pathways in soil. Thereby, the temporal dynamics of soil structure alteration is 
deemed to be important for essential ecosystem functions of soil but very little is known about it. A major 
reason for this knowledge gap is the lack of methods to study soil structure turnover directly at 
microscopic scales. Here we devise a conceptual approach and an image processing workflow to study 
soil structure turnover by labeling some initial state of soil structure with small garnet particles and 
tracking their fate with X-ray microtomography. The particles adhere to aggregate boundaries at the 
beginning of the experiment but gradually change their position relative to the nearest pore as structure 
formation progresses and pores are destructed or newly formed. A new metric based on the 
contact distances between particles and pores is proposed that allows for a direct quantification of soil 
structure turnover rates. The methodology is tested for a case study about soil compaction of a silty loam 
soil during stepwise increase of bulk density (ρ = [1.1, 1.3, 1.5] g/cm3). We demonstrate that the analysis 
of mean contact distances provides genuinely new insights about changing diffusion pathways that cannot 
be inferred neither from conventional pore space attributes (porosity, mean pore size, pore connectivity) 
nor from deformation analysis with digital image correlation. This structure labeling approach to quantify 
soil structure turnover provides a direct analogy to stable isotope labeling for the analysis of matter 
turnover and can be readily combined with each other. 
 
Introduction 
Soil structure provides the pathways for matter fluxes, entails a high diversity of microhabitats and causes 
a heterogeneous distribution of reaction sites in soil. Through these regulatory traits it acts as a major 
driver for important soil functions like stabilization of soil organic matter, maintenance of biodiversity or 
water and nutrient cycling (Bronick and Lal, 2005; Schmidt et al., 2011). Soil structure is not static, but 
continuously evolving through abiotic (e.g. tillage, moisture changes) and biotic agents (e.g. bioturbation, 
root growth) (Six et al., 2004). These soil structure dynamics are also sometimes referred as aggregate 
turnover, i.e. the continuous formation and destruction of aggregates especially in soils under agricultural 
use (Plante and McGill, 2002; Six et al., 1998).  
 
Aggregate turnover rates are hard to quantify directly. However, the lifetime of organic matter (OM) in 
aggregates is strongly correlated with turnover of aggregates themselves (von Lützow et al., 2006). 
Therefore stable isotope methods are frequently applied to study soil structure dynamics indirectly.  
Labeled organic matter enriched in 13C or 15N (Angers et al., 1997; McMahon et al., 2005; Moran et al., 
2005) or a change in cultivation from C3 to C4 plants with natural differences in C isotope ratios (Puget 
et al., 2000; Six et al., 1998) are used to study the fate of OM in soil (for comprehensive reviews see 
(Amelung et al., 2008; Bernoux et al., 1998; Six et al., 2004)). After a certain incubation time the soil is 
discerned into different aggregate size classes through wet sieving and OM turnover rates are derived 
from the proportion of labeled OM in each aggregate size class. This approach to linking OM turnover to 
structure turnover is often motivated by the aggregate hierarchy concept first proposed by Tisdall and 
Oades (1982). In this conceptual framework, soil structure is organized in different levels ranging from 
organo-mineral complexes, to microaggregates (<250μm) and macroaggregates (> 250μm). The 
predominant binding agents at each level differ in lifetime from very stable to transient. Macroaggregates 
are deemed to be formed and destructed relatively fast, whereas microaggregates are formed slowly 
within macroaggregates and are the main driver for OM stabilization in soil. An indirect inference about 
structure turnover from fractions of labeled OM in different aggregate size pools can be made under the 
assumption that macroaggregate formation and microaggregate formation rates are the ultimate cause for 
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the observed fractionation of labeled OM. However, the validity of this aggregate hierarchy concept and 
therewith the congruency of OM turnover and aggregate turnover seems to be limited to soils rich in clay 
and silt and rather high OM concentrations (Christensen, 2001). Moreover, labeled OM might be 
stabilized by other mechanisms than physical protection in microaggregates, such as inherent 
recalcitrance, association with minerals, or a shortage in readily available organic compounds required as 
an energy source for microbial decomposition of labeled OM (Kuzyakov et al., 2000; Mikutta et al., 
2006). 
A similar approach to estimation of aggregate turnover rates is provided by studying the fate of 
microparticles, e.g. ceramic dysprosium oxide tracer spheres (d: 0.4 mm) that can be detected through 
neutron emission (Plante and McGill, 2002). These spheres were added to a field soil with a rototiller and 
from their recovery in different aggregate size classes after wet sieving a macroaggregation rate was 
derived. This derivation of aggregate turnover rates from aggregate stability during wet sieving has 
obvious flaws. Aggregation or more precisely the disintegration of aggregates strongly depends on the 
energy input and forces that act on them during wet sieving (Beare and Bruce, 1993). Comparability 
among different studies therefore requires highly standardized laboratory protocols. It does, however, not 
imply the existence of clearly separable aggregates within undisturbed soil (Young et al., 2001). Instead, 
soil structure manifests itself through a complex network of pores at all scales and their heterogeneous 
distribution in space evokes preferential failure zones during mechanical disturbance. This complex 
patterns of pores ultimately governs the distribution of water, nutrient supply and oxygen levels and 
should therefore be studied in its original context. In summary, indirect methods to quantify structure 
turnover rates are flawed because measures based on OM turnover and aggregate stability are not 
necessarily correlated with the formation and destruction of pores at microscopic scales.  
Imaging techniques like X-ray microtomography (µCT) provide a detailed view into the physical 
structure of undisturbed soil at a spatial resolution of a few microns. The three-dimensional images do not 
only enable a visual inspection of the internal structure of opaque soil but are also amenable to 
quantitative image analysis. The spatial attributes which can be derived from µCT images are numerous 
and range from pore size distribution and pore connectivity (Vogel et al., 2010), to spatial correlation of 
pores (Nunan et al., 2006) and distances between pores and occluded particulate OM (Kravchenko et al., 
2014; Negassa et al., 2015), just to name a few. Repeated sampling of field soils during a growing season 
facilitates the detection of statistical changes in pore space attributes, e.g. during a growing season (Jégou 
et al., 2002; Schlüter et al., 2011). Incubation experiments in the laboratory allow for a more detailed look 
on soil structure dynamics, since the same samples can be scanned repeatedly under controlled conditions 
(Crawford et al., 2012; Feeney et al., 2006; Helliwell et al., 2014). This allows for a direct analysis of 
changing of pore size distributions or pore connectivities as a function of different C input, microbial 
activity and so on. Yet, this is still a statistical evaluation of pore space changes and therefore only 
provides indirect clues on aggregate turnover. A rather new method to directly study the movement of soil 
constituents during soil structure development is called digital image correlation (or digital volume 
correlation) (Hall, 2010; Peth et al., 2010; Schlüter et al., 2016). The rationale of this method to recover 
the deformation field in soil by image registration. That is, the image of a deformed soil is aligned to an 
image of the original soil and the transformation matrix that resulted in an optimal spatial alignment is 
used to calculate the deformation field. This yields detailed patterns of how much soil has been displaced 
how far in which direction. Digital image correlation and related methods like particle image velocimetry 
have mainly been used to study soil deformation through mechanical stresses and its great potential to 
investigate aggregate turnover is not yet explored. One major hurdle for a direct assessment of aggregate 
turnover is that the displacement of soil constituents need to be studied in its spatial context. For instance, 
organic matter on an aggregate surfaces with direct contact to a macropore may end up in the center of a 
newly formed aggregate, if the macropore is closed due to compression, even though the active 
displacement of this organic matter may have been negligible. Likewise, crack formation due to drying 
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may expose formerly occluded organic matter and create a completely new microenvironment in spite of 
its constant position in space.    
 
In this paper we present a new image processing protocol that allows for a direct quantification of 
aggregate turnover by tracking strategically positioned microparticles. Since these garnet particles contain 
iron oxide with high X-ray attenuation, they can be easily detected in spite of their small diameter of a 
few voxels (d: 0.045 - 0.1mm). Beds of aggregates are prepared from sieved aggregates covered with 
microparticles. In this way, the position of garnet particles marks the delineation of initial 
macroaggregates. In this study, soil structure changes are induced by controlled soil compaction. The 
position of individual particles is evaluated with respect to distances to the nearest pore. These new 
metrics are underpinned with conventional pore space attributes and metrics derived from digital image 
correlation to provide a sound picture of soil structure changes at a spatial scale of a few microns. Finally, 
the findings for structure dynamics during compaction are used to conceptualize an approach to quantify 
soil structure turnover rates. 
 
Materials and Methods 
 
Soil was collected from the upper 5 cm of a Haplic Chernozem (WRB classification) developed from 
loess and managed as bare fallow at the Experimental station (51.3943N, 11.8777E) of the Helmholtz-
Centre for Environmental Research—UFZ in Bad Lauchstädt, Germany. The owner of the land gave 
permission to conduct the study on this site. Soil texture was composed of 11% sand, 68% silt and 21% 
clay (Sedimat 4–12, UGT GmbH, Müncheberg, Germany). The organic carbon and total nitrogen content 
of the soil were 𝐶𝐶org = 2.05% and 𝑁𝑁t = 0.19%, respectively (Elementar Analysator Vario EL cube, 
Elemantar Analysensysteme GmbH, Hanau Germany). The fresh soil was sieved under moist conditions 
close to field capacity. Aggregates in the size range of 0.5–2 mm were collected and stored in the fridge at 
4°C.Weeks later the aggregates were carefully moistened by putting them on a moist paper towel for 30 
min, so that the gravimetric water content in the aggregates adapted to 10.5±1.3%. Subsequently, the 
aggregates were fully covered with garnet fine sand (Garnit #240, Kuhmichel Abrasiv GmbH, 
Ballenstedt, Germany) with a grain size of 45–100 μm. This garnet fine sand, from here on denoted as 
particles, consists of the mineral Almandine, which is composed of 33% FE2O3. This iron content leads to 
a better contrast against the surrounding soil than conventional quartz sand (Ketcham and Carlson, 2001), 
but does not lead to a drastic attenuation of X-ray photons like similar sized particles of metallic iron so 
that shading artifacts are avoided. The aggregates were gently shaken on a 0.2 mm sieve for 1 min to 
remove excess particles. 5 g of these moist aggregates were filled into 5 ml plastic syringes with an inner 
diameter of 12.5 mm (5 replicates). Occasionally some coarse garnet grains (Garnit #12-20, Kuhmichel 
Abrasiv GmbH, Ballenstedt, Germany) with a grain size of 0.5–1.2 mm were added to the aggregate 
packing. These coarse garnet grains, from here on denoted as grains, are easily detected in the CT images 
and serve as additional position markers for subsequent image analysis. The dry weight of this packing of 
moist aggregates was determined from equally prepared samples (3 replicates) after oven drying at 105°C 
for 24 h. Bulk density was then adjusted in steps (1.1 g/cm³, 1.3 g/cm³, 1.5 g/cm³) by compressing the soil 
with the piston of the syringe to a specific volume. This uni-axial, static compression is likely to cause 
qualitatively different compaction than elastic soil displacement through dynamic loading during wheel 
traffic. Nevertheless it fulfills the purpose to evoke some easily reproducible changes to the soil structure 
on which our new conceptual approach can be tested. 
After each compression step the samples were scanned with X-ray microtomography (X-TEk XCT 225, 
Nikon Metrology). The energy settings (80 keV, 120 μA, no filter) resulted in good contrast without 
overexposure at the lateral margins of the detector panel. An entire scan comprised 2300 projections with 
an exposure time of 1 s (one frame per projection). The syringes were scanned in two-heights to cover  
60% of the total height of the uncompressed aggregate packing. The reconstruction of three-dimensional 
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images via filtered back projection was done with the CT Pro 3D software package (version 3.1) at a 
spatial resolution of 8μm and 8-bit gray scale resolution. 

 
Figure 23: Image processing workflow for this study depicted for a small two-dimensional subset (a). Noise is removed 
with a non-local means filter (b). Image segmentation is performed in several steps. First, gray values are tentatively 
segmented into pores (black), aggregates (blue) and garnet (red) via simple thresholding (c). Then particles are detected 
with a Laplacian of Gaussian Filter (LoG) (c) and subsequent hysteresis thresholding of the LoG Image. Note that the 
edges of large grains are masked out during particle detection (not shown). For the final segmentation (e) partial volume 
voxels tentatively assigned to the aggregate class are set to unassigned (white) with a morphological opening of the 
aggregate class by a small structuring element (dSE = 5 voxels). The tentative garnet class is set to unassigned (white) and 
overwritten by the thresholded LoG image (red). Pores are further differentiated with respect to whether they are fully 
enclosed in soil aggregates (yellow) or not (black) (f). These images are subjected to different types of analysis (5.-7.). 

The raw images are subjected to an image processing workflow that was especially tailored for this study 
(Figure 20). The entire workflow is described in detail in the supporting information 6.1 (S1) by means of 
the small subset within the yellow frame in Figure 20(a) and only briefly summarized in the following. 
Noise in the raw images was removed with a non-local means denoising filter (Figure 20b) (Buades et al., 
2005). Thresholds for three classes are detected automatically according to Schlüter et al. (2014). Global 
thresholding leads to a tentative segmentation into pores (black), aggregates (blue) and garnet (red) 
(Figure 20c). Partial volume effects due to limited image resolution cause false aggregate voxels around 
particles. These thin films of aggregate voxels around particles are removed by a combination of erosion, 
removal of small objects and dilation. The identification of particles is improved with a Laplacian of 
Gaussian (LoG) filter (Gonzalez and Woods, 2002) for blob detection (Figure 20d). The garnet particles 
are segmented with hysteresis thresholding of the scale normalized LoG result (Schlüter et al., 2014; 
Schlüter et al., 2010). The combination of blob detection and partial volume voxel treatment leads to an 
improved segmentation result (Figure 20e). The tentative pore class is labeled differently depending on 
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whether pores are fully enclosed by aggregates (yellow) or connected to the interaggregate pore space 
(black). All removed aggregate and garnet voxels are gathered in an unassigned class (white). 
Quantitative analysis of the CT images is directed towards different ends (step 5.-7. in Figure 20): 
• The deformation analysis via digital volume correlation is performed on the raw images. The 
workflow for digital image correlation is described in (Schlüter et al., 2016) and implemented in 
elastix(Klein et al., 2010). As preprocessing steps the image dimensions are rescaled by a factor of four in 
each direction to reduce computational costs and the grayscale is rescaled such that all pores and 
aggregates are black and garnet grains are depicted with optimal contrast. It has been shown previously 
that this improves the image registration of the deformed grain matrix onto the original grain matrix 
(Schlüter et al., 2016). 
• The pore space analysis is done for both the interaggregate pore space and isolated pores together. 
Depth-dependent changes in pore volume are detected with porosity profiles, i.e. the area fraction of pores 
in each xy-plane. Pore size distributions are computed with the maximum inscribed sphere method as 
implemented in the BoneJ plugin for ImageJ (Doube et al., 2010). Pore connectivity Γ is computed from 
the size distribution of individual pore clusters (Renard and Allard, 2013): 

Γ = 1
𝑁𝑁𝑣𝑣2
� 𝑛𝑛𝑖𝑖2

𝑁𝑁𝑐𝑐
𝑖𝑖=1   (19) 

where 𝑁𝑁𝑣𝑣 is the number of pore voxels, 𝑁𝑁𝑐𝑐 is the number of individual pore clusters and 𝑛𝑛𝑖𝑖 is the number 
of voxels in cluster 𝑖𝑖. This second moment of the cluster size distribution equals one if all pores are 
connected in one percolating cluster and converges to zero if porosity is fragmented into many clusters of 
similar size. 
• Distance analysis: A Euclidean distance transform as implemented in the 3D Image suite for ImageJ 
(Ollion et al., 2013) determines the minimum distance of each voxel (including aggregates, garnet and 
occluded pores) to the interaggregate pore space. This is also referred to as the contact distribution (Ohser 
and Mücklich, 2000). The average of this contact distribution is an estimate for the mean diffusion lengths 
of air into the soil matrix assuming that small unresolved pores remain water-filled. On top of that the 
Euclidean distances between garnet particles and air-filled pores can be determined and compared to that 
of any point within the soil matrix. 
 
Results 
 
Porosity changes due to compaction 
 
The changes in soil structure due to compaction are depicted in (Figure 21). The uncompacted soil at a 
bulk density of ρ = 1.1 g/cm³ exhibits a loose aggregate packing. The coverage of aggregates with garnet 
particles is not perfectly homogeneous (Figure 21a, green circles). Some aggregates, probably wetter than 
others during sieving, are covered with a thick layer of particles (green #1), while other aggregates are 
only sparsely covered with particles (green #2). Upon drying and/or unintentional shaking some particles 
detach from the aggregates and gather at pore constrictions (green #3). Bigger garnet grains are randomly 
distributed across the sample. This grain matrix will be the basis for subsequent deformation analysis. The 
different X-ray adsorption of garnet (yellow #1) and grains of iron-free minerals like quartz (yellow #2) is 
clearly visible. The piston of the syringe enters the field of view from above during uni-axial compression 
of the soil to a bulk density of ρ = 1.3 g/cm³ and ρ = 1.5 g/cm³ (Fig 2b and 2c). Soil compaction does not 
occur uniformly. Pores in front of the piston are strongly compressed, whereas the pore space further 
away from the piston is less affected. The position of garnet particles in relation to macropores changes 
drastically through soil compaction (red boxes). In uncompacted soil almost all garnet particles are in 
direct contact with air due to the way the sample was prepared. At an intermediate bulk density a large 
fraction of particles is already occluded between aggregates. At the highest bulk density many pores 
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vanished completely so that the former aggregate boundaries can only be identified through linings of 
garnet particles.  
 

 
Figure 24: 3D rendering of a sample at a bulk density of (a) ρ = 1.1 g/cm³, (b) ρ = 1.3 g/cm³ and (c) ρ = 1.5 g/cm³. The 
green circles highlight aggregates which are strongly (#1) or weakly (#2) covered with particles or pores in which 
detached particles gather (#3). The yellow circles highlight that photon absorption in garnet (#1) is higher than in iron-
free minerals like quartz (#2). The red circles highlight in the incorporation of particles into the soil matrix in the course 
of compaction. 

In the following these visual observations will be confirmed by quantitative image analysis. First, the 
different bulk densities are compared with respect to height profiles of porosity (Figure 22a). Sample 
preparation at the lowest bulk density (ρ = 1.1 g/cm³) lead to a uniform porosity profile around an average 
porosity of ϕ = 0.30. The uni-axial compression to a bulk density of ρ = 1.3 g/cm³ caused a linear 
decrease in porosity from ϕ = 0.24 at the bottom of the field of view to ϕ = 0.12 at the top in close 
proximity to the piston (average ϕ = 0.18). The second compaction to a bulk density of ρ = 1.5 g/cm³ 
reduced average porosity further to an average of ϕ = 0.05, again showing a linear decrease in porosity 
from the bottom of the field of view to a height of about 15 mm. Above that height an irreducible porosity 
of ϕ = 0.03 is reached. Due to the porosity gradient in the sample all subsequent analysis will be presented 
separately for the top and bottom of the sample. The cumulative pore size distribution (Figure 22b) 
clearly shows a shift in the range of pore diameters with changing bulk density. An increase in bulk 
density leads to a shift in the pore size distribution towards smaller pore diameters. At the same time the 
curves become steeper, i.e. the range of prevalent pores diameters gets narrower as big pores get 
compacted more easily. Interestingly, the average pore diameter (Figure 22c) scales linearly with 
porosity. Note that this only refers to porosity above the resolution limit of 8 μm. Connectivity, in turn, 
exhibits a very non-linear relationship with porosity (Figure 22d). Above a critical porosity of 10–12% 
the pore space is well connected and only a small fraction of pores is not connected to the main, 
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percolating pore cluster. Close to the percolation threshold a small reduction in porosity entails a huge 
fragmentation of the pore network. 
 

 
Figure 25: Pore space analysis for soil at three bulk density levels (ρ = 1.1, 1.3, 1.5 g/cm³) with five replicates: (a) porosity 
profiles, (b) cumulative pore size distribution, (c) mean pore size and (d) Γ connectivity as a function of pore diameter. 
Because of the depth gradient in porosity results are shown separately for the top and bottom of the samples. 

Soil deformation 
 
The deformation of soil during compaction is analyzed with digital image correlation. The displacement 
of individual garnet grains during compaction from ρ = 1.1 g/cm³ to ρ = 1.3 g/cm³ for one out of five 
replicates is depicted in Figure 23(a). Evidently the displacement is smaller at the bottom of the field of 
view and strongest close to the piston of the syringe. The exact displacement of garnet grains is computed 
with elastic registration of the deformed image onto the original image using a B-spline transform of a 
regular grid of control points. A successful registration is achieved for all grains and even for larger 
clusters of particles, as indicated with yellow color in Figure 23(b). The resulting deformation field shows 
a gradual increase in compaction with vertical position ranging from 1.5 mm at the bottom to 5.5 mm at 
the top of the field of view (Figure 23c). The compaction to ρ = 1.5 g/cm³ increases the vertical 
displacement to 2.5 mm at the bottom and 8.5 mm at the top (Figure 23(b)). There is only little lateral 
heterogeneity in the downward movement (z-components of the vectors) and hardly any horizontal 
movement of garnet grains (x-y components of the vectors). 
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Figure 26: (a) Spatial distribution of big garnet grains and small garnet particles at a bulk density of 1.1 (green) and 1.3 
g/cm³ (red). (b) Elastic image registration leads to a very good spatial alignment between the deformed and the original 
image. (c) The resulting displacement field shows a gradient in vertical displacement. (d) Compaction to 1.5 g/cm³ 
increases this gradient even further. 

Particle distribution 
 
Pores may disappear completely during soil compaction. As a consequence the minimum distance from 
any location within the soil matrix to the nearest pore undergoes characteristic changes. This is 
summarized in the histogram of contact distances for all non-pore voxels (Figure 24a, inset). The 
aggregate packing at ρ = 1.1 g/cm³ renders a lot of aggregate surfaces in direct vicinity to a well-
connected pore network. The exponential decline in frequency with increasing contact distance is a 
consequence of the compact shape of aggregates, which are all of similar size. When only the garnet 
particles are considered (Figure 24a), the decline is much steeper. Evidently, all garnet particles have only 
small contact distances at the beginning of the experiment, because they adhere to aggregate surfaces. The 
natural fine sand fraction of the soil, which is also detected as particles during image processing, only 
evokes a minor tailing of the histogram for distances above 0.1 mm. When the soil is compacted to ρ = 
1.3 g/cm³ the frequency distribution of contact distances does not change, neither for garnet particles nor 
for all non-pore voxels in general. Only at a bulk density of ρ = 1.5 g/cm³ there is a considerable shift 
towards greater contact distances because a large fraction of garnet particles is not in direct contact with 
the pores anymore. The comparison between average pore distance of soil and garnet particles (Figure 
24b) exhibits the following features: (1) There is a linear relationship between average contact distance 
for particles and average contact distance for soil during soil compaction. (2). All data points are below 
the 1:1 line, i.e. on average the particles remain closer to pores as compared to bulk soil. (3) Differences 
in the pore space attributes of the top and bottom parts do not entail different contact distances. 
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Figure 27: (a) Frequency distribution of contact distances between particles and pores with average and standard 
deviation of five replicates. The inset shows the contact distance distribution between bulk soil and pores with is generally 
much larger. (b) The mean contact distance of particles and bulk soil is shown for each replicate and further separated 
into top and bottom part of the sample. The mean contact distance for particles scales linearly with the mean contact 
distance for bulk soil during compaction. 

Discussion 
 
Relationship between contact distances and porosity 
 
Bulk density changes due to soil compaction affect soil structure in many ways. Some pore space 
attributes like porosity and mean pore diameter scale linearly with bulk density. Pore connectivity, in turn, 
exhibits a very non-linear behavior. At first, compaction only leads to a reduction of pore sizes without a 
disruption of the pore network. Only when a critical porosity threshold of 10–12% is reached, the well-
connected pore network breaks into many evenly sized, isolated pores. The sharp transition in pore 
connectivity in a narrow porosity range is due to the regular packing of similar-sized aggregates. The 
transition is likely to be more gradual in natural soil with a more irregular network to start with. Looking 
at soil structure changes from the perspective of the pore space seems to be the natural choice, since many 
important soil functions like aeration, water storage or solute transport depend on the size distribution and 
continuity of pores. However, soil functions which relate structure-mediated accessibility of soil 
constituents calls for a shift of focus towards soil matrix attributes. For instance, the physical protection 
of particulate organic matter against microbial decomposition within soil aggregates is mainly governed 
by diffusion-limited supply of nutrients, oxygen and exoenzymes through predominantly water-filled 
intra-aggregate pores, which cannot be captured by the image resolution of 8μm. For oxygen, this 
information on accessibility is best described by the diffusion length from the substrate through the soil 
matrix to the next air-filled pore (Ebrahimi and Or, 2015; Negassa et al., 2015). Evidently, this diffusion 
length is a transient property that depends on soil matric potential 𝜓𝜓𝑚𝑚. At the image resolution of 8μm 
used in this study we cover the pore space which is air-filled at a matric potential of 𝜓𝜓𝑚𝑚= −375 cm 
(derived from Young-Laplace law assuming perfect wettability). If 𝜓𝜓𝑚𝑚 was controlled during the 
experiment and air and water was segmented separately in the μCT images or if the distribution of air and 
water was modelled e.g. with maximum inscribed sphere analysis of the pore space (Hazlett, 1995; 
Kumahor et al., 2015), then the contact distances to air-filled pores, could be examined for any matric 
potential higher (i.e. moister) than 𝜓𝜓𝑚𝑚 = −375 hPa. Hence, based on the contact distances, it is possible to 
evaluate diffusion lengths into water-filled regions for a wide moisture range as typical for many soils. 
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This average contact distance undergoes non-linear changes with decreasing porosity caused by 
compaction (Figure 25). At ρ = 1.3 g/cm³, the reduction in porosity does not lead to increased contact 
distances, because most pores shrink in size, but not beyond the resolution limit. Only at a critical 
porosity of 10–12% there is a substantial occlusion of pores within the dense soil matrix or even a 
complete removal of resolved porosity. Note that this porosity threshold coincides with the steep decline 
in pore connectivity (Figure 22d). The black curve fitted to the data in Figure 25 suggests an exponential 
decline in mean contact distance with increasing porosity. In the supporting information 6.1 (S2) we show 
that this exponential trend is in line with contact distances for overlapping spheres of different packing 
geometry and a diameter comparable to the maximum inscribed sphere of the irregular-shaped aggregates 
used in this study. This indicates that the exponential trend is caused by changes in interaggregate 
porosity, i.e. by a change in void space between aggregates. 
 

 
Figure 28: The mean contact distance between bulk soil and pores scales exponentially with decreasing porosity during 
soil compaction.  This exponential trend follows from the non-linear increase of contact distances as pores start to vanish 
completely at higher bulk density. The scatter with subgroups of similar bulk density is caused by different degree of 
intra-aggregate porosity mostly due to crack-formation. This variability in intra-aggregate porosity causes a linear 
scaling relationship between contact distances and porosity. All fitted curve converge to a similar contact distance at 
vanishing porosity which is mainly determined by the average size of aggregates. 

Interestingly, the scatter within the different compaction levels is quite high. However, this scatter is not 
random, but shows a negative linear trend between porosity and mean contact distance for each bulk 
density sub-group. At constant bulk density, an increased porosity is mainly due to additional intra-
aggregate pores, which mainly results from micro-crack formation that reduces the mean contact distance 
to pores. All fitted curves converge towards the same mean contact distance for vanishing porosity, which 
we show in the supporting information 6.1 (S2) File to mainly depend on the average size of aggregates. 
In summary, this assessment of soil structural dynamics via changes in contact distances is a valuable 
information based on the spatial arrangement of the soil, which cannot be inferred from a statistical 
analysis of pore space attributes alone. By analyzing the distribution of water and air in the pore space, 
changing diffusion pathways due to water dynamics or soil structure dynamics could potentially be 
treated separately. 
 
Measuring soil structure turnover 
 
In the following, we will therefore use contact distances to outline a direct approach to measuring soil 
structure turnover. To do so, we make use of a close analogy to stable isotope methods as a standard 
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method to quantify turnover rates of different carbon pools in soil. By labeling of a certain pool or 
substrate its fate in the carbon cycle can be monitored over time and net fluxes can be derived even under 
steady-state conditions. Likewise, soil structure can be distinguished in two pools according to their 
spatial context: (i) regions in direct contact with oxygen, e.g. aggregate surfaces and the soil around 
macropores, and (ii) the interior of aggregates where OM is potentially protected from mineralization. 
Pulse labeling of the soil structure is then achieved by covering aggregate surfaces with inert particles and 
the fate of these particles can be studied over time. 
 

 
Figure 29: Conceptual scheme for the quantification of soil structure turnover rates.  (a) A two-dimensional packing of 
aggregates is covered with garnet particles. (b) The aggregates are first compressed by soil compaction. Subsequently, soil 
structure turnover is initiated through new root channel formation, micro-crack formation and the partial refilling of 
pores with earthworm casts, where (c) and (d) represent two consecutive moments in time. (e) The distribution of contact 
distances between pores and particles or between pores and bulk soil (inset). (f) The mean contact distance of particles is 
initially much smaller than the mean contact distance for bulk soil. Soil compaction does not lead to a trajectory towards 
the 1:1 line (randomized position of particles), whereas structure turnover does. 

This is illustrated in the conceptual scheme in Figure 26. If particles were distributed randomly across 
soil, then the mean contact distance between particles and pores should equal the mean contact distance 
between all soil voxels and pores. Evidently, the distribution of particles at the beginning of the structure 
labeling experiment is far from being random, as all particles adhere to the surface of aggregates (Figure 
26a). That is to say, the pool of small contact distances is strongly enriched with particles. We have 
shown in our experiment, that soil compaction has only a small effect on the ratio between particle 
contact distances and soil contact distances (Figure 24) in spite of large physical displacement of soil 
constituents during compaction (Figure 23). Many particles become occluded within bigger aggregates so 
that their minimum distance to the next pore increases, but so does the pore distance for bulk soil in 
general (Figure 26b). As a consequence, the trajectory in Figure 26(f) proceeds in parallel to the 1:1 line. 
Actual soil structure turnover, i.e. the formation and destruction of pores through rearrangement of soil 
constituents by abiotic and biotic agents, will likely cause a different trajectory. This soil structure 
turnover is illustrated with different degrees of bioturbation (root channels, refilling of pores with 
earthworm casts) and micro-crack formation Fig Figure 26 (c) and Figure 26 (d). As a result, the mean 
contact distance of particles approaches that of bulk soil. The spatial distribution of particles may not be 
random and still demarcate former aggregate boundaries. However, it becomes statistically similar to the 
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distance distribution of bulk soil as the trajectory approaches the 1:1 line in Figure 26(f). Soil structure 
has reached a dynamic equilibrium then, because continued turnover will only randomize the spatial 
distribution of particles even further without diverging from the 1:1 line. The rate at which this dynamic 
equilibrium is reached can be interpreted as the turnover rate of soil structure. Evidently this turnover rate 
will depend on the activity of biotic and abiotic agents, but also on whether old pores are continuously 
reused or newly formed and destructed. This effect of natural processes of structure formation on contact 
distances will be investigated in a future structure labeling study. 
 
Practical considerations 
 
From a practical point of view, a structure labeling experiment will always entail some degree of initial 
disturbance to bring the garnet particles into contact with the soil matrix. We coated the surfaces of sieved 
aggregates with fine sand particles that are indistinguishable from the fine sand fraction of soil. Our study 
represents an extreme case of pulse labeling, since the soil matrix was almost devoid of fine sand and 
many garnet particles were used. Such a structure labeling approach would still be feasible with soils 
naturally containing a considerable fine sand fraction or lower coverage of aggregate surfaces with garnet 
particles, as long as the pool of short contact distances is significantly enriched after structure labeling. 
Moreover, packings of sieved aggregates represent a rather artificial soil structure to begin a structure 
dynamics experiment with. In a more natural setting garnet particles could be added to a field soil during 
plowing or harrowing similar to (Plante and McGill, 2002) under the tacit assumption that particles are 
preferably located at short contact distances due to the way they are added during tillage. Evidently the 
total abundance of garnet particles would be much lower in this case and the imbalances of initial contact 
distances are less strong. In analogy to stable isotope methods this is more similar to a natural abundance 
study than a pulse labeling study and consequently has a different set of requirements in terms of 
measurement precision and level of background noise. For instance, the soil matrix should be free of fine 
sand in this case, or chemical microscopy methods like SEM-EDX (Hapca et al., 2015) are required to 
distinguish garnet particles from the natural fine sand fraction. 
Other limitations are posed by the sample size and image resolution. Macropores in natural soil which are 
induced by desiccation cracks and bioturbation are too big to be captured adequately in 5 ml samples 
(d:12.5 mm). Our focus is on the small scale dynamics of the inter- and intraaggregate pore space which 
we believe is highly relevant especially for the turnover of organic matter. This requires a sample size that 
is small enough to detect the garnet fine sand fraction. A simultaneous investigation of the pore 
architecture at both scales calls for a hierarchical sampling scheme (Vogel et al., 2010) in which bigger 
soil cores are scanned first to analyze the macropore network and smaller subsamples are extracted 
subsequently based on the location in the first scan. The image resolution of 8 μm which was used in this 
study resulted in a good compromise between visible details and a sufficiently big volume to 
representatively capture interaggregate pores and garnet particles. Micropores in which soil organic 
matter is protected against decay are not visible in μCT images. However, we think that micropores are 
present everywhere all the time. What turns them into oxygen depleted regions is the distance to air-filled 
mesopores. This distance between garnet powder and mesopores is in fact what we address with our 
conceptual idea of soil structure turnover.  
Finally, garnet particles can be considered as chemically stable for typical timescales of incubation 
experiments or field experiments. Almandine is a nesosilicate with dissolution rates mainly depending on 
soil pH, grain size and the existence of protective oxide layers. For instance, for a garnet powder of 
slightly smaller grain size (d:30±8.3 μm) the reported almandine dissolution rate (weight loss per mineral 
surface area after 90 days) at pH 3.6 (9.8 mg/m²) was two orders of magnitude higher than at pH 8 (0.16 
mg/m²) (Nickel, 1973). Moreover, the field dissolution of garnet minerals usually amounts to 0.1–10% of 
dissolution of pure powders, because a high percentage of moisture is stagnant, i.e. ions in solution reach 
equilibrium which slows down dissolution (Velbel, 1993). Using these values we may assume a 
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dissolution rate of 5 × 10−7 mg/(mm² a) for an agricultural soil like that in Bad Lauchstädt with pH 7.3 
(Altermann et al., 2005). A rough calculation shows that the dissolution of a spherical garnet grain from a 
diameter of d = 50 μm (lower end of the range used in this study) to d = 25 μm (minimum size of 
detectable objects at 8μm image resolution) takes 10000 years in this case. 
 
Conclusion 
 
Microscopic changes of soil structure during soil compaction were analyzed with μCT. The increase in 
bulk density due to compression of soil leads to consistent changes in porosity and mean pore diameter. 
Pore connectivity in turn remains high initially and breaks down suddenly within a narrow porosity range. 
We demonstrated that these pore space attributes provide limited insights into structural properties 
associated with matter turnover. This knowledge gap is closed by analyzing the contact distances between 
soil and pores and therewith the diffusion lengths for oxygen and nutrients. For the first time we have 
delineated the conceptual framework and the image processing workflow to study the evolution of contact 
distances for small garnet particles. Similar to stable isotope labeling of carbon pools, a structure labeling 
experiment can be devised by bringing garnet particles into contact with aggregate boundaries. In this 
way, the “pool” of small contact distances to inter-aggregate pores is highly enriched and the dilution into 
all distance “pools” can be studied over time. In this framework, soil structure turnover manifests itself as 
an evolution of mean particle contact distances towards the mean contact distance of bulk soil. We have 
shown that soil compaction entails a large physical displacement of particles due to strong deformation of 
soil. However, this movement of particles is embedded in the collective movement of all soil constituents. 
The mean contact distance for particles increases, but not stronger than the contact distance of bulk soil. 
Yet, particles have not randomized their position relative to pores. This randomization does not depend on 
the physical extent of particle movement as analyzed with digital image correlation, but on a changing 
spatial context of particles through formation and destruction of nearby pores. With this conceptual 
approach the effect of soil compaction on soil structure can be clearly separated from other processes 
which are expected to occur during soil structure turnover. Finally, the structure labeling approach to 
quantify soil structure turnover rates can be readily combined with stable isotope labeling of organic 
compounds to quantify matter turnover. 
 
Supporting Information (chapter 6.1) 
SI 1: Image processing workflow (with 1 figure)  
SI 2: Contact distances for regular sphere packings (with 1 figure)  
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2.4. Correlative imaging reveals holistic view of soil 
microenvironments (Schlüter et al. 2019, Environmental Science & 
Technology, 53(2), 829-837, doi: 10.1021/acs.est.8b05245) 

 

Abstract 

The micro-environmental conditions in soil exert a major control on many ecosystem functions of soil. 
Their investigation in intact soil samples is impaired by methodological challenges in the joint 
investigation of structural heterogeneity that defines pathways for matter fluxes and biogeochemical 
heterogeneity that governs reaction patterns and microhabitats. Here we demonstrate how these 
challenges can be overcome with a novel protocol for correlative imaging based on image registration to 
combine three-dimensional microstructure analysis of X-ray tomography data with biogeochemical 
microscopic data of various modalities and scales (light microscopy, fluorescence microscopy, electron 
microscopy, secondary ion mass spectrometry). Correlative imaging of a microcosm study shows that the 
majority (75%) of bacteria are located in mesopores (<10µm). Furthermore they have a preference to 
forage near macropore surfaces and near fresh particulate organic matter. Ignoring the structural 
complexity coming from the third dimension is justified for metrics based on size and distances but leads 
to a substantial bias for metrics based on continuity. This versatile combination of imaging modalities 
with freely available software and protocols may open up completely new avenues for the investigation of 
many important biogeochemical and physical processes in structured soils. 

Introduction 

Small-scale heterogeneity of environmental conditions in soil exerts a major control on carbon and 
nutrient cycling. Physical accessibility at the pore scale plays an important role for long-term carbon 
stabilization (Dungait et al., 2012; Lehmann and Kleber, 2015) and for microbial diversity in soil through 
spatial separation in diverse ecological niches (Schimel and Schaeffer, 2012; Tecon and Or, 2017; Vos et 
al., 2013). Many microbial processes like respiration, nitrification and denitrification are known to occur 
in hotspots of microbial activity which are imprints of the patchy distribution of microhabitats in soil 
(Kuzyakov and Blagodatskaya, 2015). These patterns form as a result of a complex interplay between 
biotic and abiotic agents, so their formation cannot be understood, if individual processes are studied in 
isolation. This calls for a joint characterization of (i) the physical soil structure providing the pathways for 
matter fluxes, (ii) the chemical properties that drive local reactions in soil and (iii) the distribution of soil 
biota that is both resulting from and actively changing the former (Baveye et al., 2018; Young and 
Crawford, 2004). 

While the three-dimensional (3D) characterization of the physical structure of intact soil has advanced 
tremendously with the advent of non-invasive imaging techniques like X-ray micro-tomography (Cnudde 
and Boone, 2013; Helliwell et al., 2013; Wildenschild and Sheppard, 2013) (µCT), 3D imaging of 
biogeochemical heterogeneity in opaque soil is still not achievable. Thus, it is still common practice to cut 
the soil into pieces, with or without prior resin impregnation, in order to apply two-dimensional (2D) 
microscopic and micro-spectroscopic imaging techniques on exposed surfaces. The combination of 
various biogeochemical imaging methods is an emerging field in life sciences called correlative imaging 
or correlative microscopy (Caplan et al., 2011; Handschuh et al., 2013). In contrast to the fast growing 
number of applications of 3D chemical imaging using fluorescence microscopy approaches, such a 
straightforward approach is not at hand for intact natural geological materials including opaque soil and 
plant-soil systems. Consequently applications in soil science are few, in particular the combination of 
two-dimensional biogeochemical imaging modalities with 3D non-invasive imaging. When using soil 
sections for 2D biogeochemical imaging, a major hurdle is to find the exact plane of the exposed surface 
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within a bigger 3D volume. Depending on the scale gap this can turn into a search for a two-dimensional 
needle in the 3D haystack. One pragmatic solution is to cut or grind down the exposed surface strictly 
along a principle axis of the 3D image to reduce the degrees of freedom with which the 2D plane can 
potentially be oriented. In this way, the spatial distribution of P. fluorescens in fluorescence microscopy 
(FM) images of soil microcosms was directly related to pore space attributes measured with X-ray 
microtomography (Juyal et al., 2019). The more flexible approach is to pose this 2D-3D image 
registration as an optimization problem. In a pioneering study by Hapca et al. (2011), stacks of elemental 
maps obtained with scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy 
(SEM-EDX) were registered to a µCT image of resin-embedded soil. This was done by a search 
algorithm with three degrees of freedom (one vertical translation, two rotations) that optimized the 
correlation coefficient between the elemental map and the aligned µCT plane. The search was guided by 
reducing the 3D volume in vertical direction to the most probable region and by reducing the range of 
allowed rotation angles in both directions. 

In this paper we present a new protocol for correlative imaging based on elastix(Klein et al., 2010; 
Shamonin et al., 2014), a free image registration software popular in biomedical imaging. The main 
methodological objective is to outline best practices for successful 2D-3D image registration along the 
lines of Hapca et al. (2011) but extended and improved in different ways. Correlative microscopy is 
demonstrated for various image modalities including µCT, FM, SEM-EDX, light microscopy (LM), and 
nano-scale secondary ion mass spectroscopy (NanoSIMS). They cover a large range of scales from a 
lateral resolution of 0.1 µm in nanoSIMS images to continuity of air-filled pores in a sample 2 cm in size. 
The LM of the entire sample cross section serves as a reference plane to which all other imaging 
modalities including µCT are registered. The main scientific objective of the paper is to link 
microhabitats with the physical structure of soil by exploring the spatial distribution of bacteria and 
relating it to pore architecture and substrate availability in the detritusphere around a decaying leaf. For 
the first time we systematically analyze the bias in habitat metrics that is introduced by ignoring structural 
information from the third dimension. The versatility of the image registration approach is further 
demonstrated by spatial alignment of SEM-EDX and NanoSIMS data. 

Material and methods 

Sample preparation 

The repacked sample was composed of fine textured-soil (silt loam, derived from a subsoil horizon of a 
Stagnosol). Sand grains (coarse sand, 5% v/v) were amended for structural support. A poplar leaf 
fragment was placed in the center while the sample was repacked to a bulk density of 1.3 g cm-3 in a 
PTFE cylinder (10 mm inner diameter, 20 mm height). The soil was incubated at field capacity and room 
temperature for 7 days. The water used for saturation was amended with five bacterial strains (Vitabac, 
Bactivia GmbH, Germany) to enrich the subsoil material with soil bacteria. 

After incubation the sample was chemically fixated with 2% formaldehyde solution to keep the structure 
of the cells and microbial nucleic acids intact. After fixation the intact cores were initially dehydrated 
with acetone (graded series from 70 to 100% (v/v)) and then impregnated with a series of Araldite 
502:acetone mixtures (1:3, 1:1 (vl:vl)) and finally with 100% Araldite 502 (Araldite kit 502, electron 
microscope sciences, Hatfield, USA). The blocks were cured at 60°C for 48 h (Mueller et al., 2017). Prior 
to sectioning of the cylinders the samples were measured using X-ray microtomography. The cylindrical 
sample was cut vertically with a diamond saw (Struers Discoplan TS) to achieve a large cross-sectional 
area. The cut sample was subsequently polished and glued onto a round glass disc of 25.4 mm diameter. 
The remaining sample was cut to a thickness of approx. 0.5 mm using a diamond saw (see above, sample 
fixed on a vacuum holder). Finally the vertical cross section was ground down and polished to obtain a 
thin section with a surface of low topography (Mueller et al., 2013). 
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X-ray microtomography 

After resin impregnation the intact sample was scanned with X-ray microtomography (X-tek XMT 225, 
Nikon Metrology, Herts UK). 2800 Projections (110 kV, 140 µA, no filter, 700ms, 2 frames per 
projection) were acquired and reconstructed into a 3D tomogram with a voxel length of 7µm using the X-
tek Pro software. The image was filtered and segmented into pores and solid with protocols explained in 
Schlüter et al. (2014) using Fiji/ImageJ (Schindelin et al., 2012) and QuantIm (Vogel et al., 2010). The 
leaf was segmented with the region growing tool in VG Studio Max 2.1 (Volume Graphics). Occasional 
over-segmentation due to low contrast between leaf and resin had to be removed manually in VG Studio 
Max 2.1. 

Light microscopy 

The entire cross sectional area was mapped with reflected light microscopy (Zeiss AxioImager 2) using 
polarized light and the extended depth of focus mode. Individual images (z-stacks and mosaic images) 
were stitched together using the Zeiss software (Zeiss AxioVision). The 50x magnification resulted in a 
pixel length of 1.1 µm. Some regions of interest were scanned again at higher magnification (200 x) to 
map the sample surface for easier location of subsequent NanoSIMS measurements. 

Fluorescence microscopy 

A large area of the exposed surface partially covering the leaf was scanned with fluorescence microscopy 
(Zeiss Axiospkop 2 equipped with an HBO 103 W/2 Hg vapour lamp and Plan-Neofluar objectives 20× 
and 40×). The polished thin section was stained using DAPI (Vectashield H-1200), which selectively 
binds to DNA. Fluorescence filter sets were used to visualize DAPI-stained cells (F46-000, AHF) and 
organic soil compounds (double excitation, #24, Zeiss). Imaging was done with a CCD camera 
(Colorview II, Soft Imaging) connected to an imaging software (AnalySIS, Soft Imaging). Several images 
were stitched together automatically with the multiple image alignment module of the AnalySIS software 
and Adobe PhotoShop CS6. 

NanoSIMS microspectroscopy 

A 0.2 mm transect from the leaf into the surrounding soil was mapped using nano-scale secondary ion 
mass spectrometry (NanoSIMS). The NanoSIMS images were recorded with a Cameca NanoSIMS 50 L 
(Gennevilliers, France). Prior to the NanoSIMS measurements, an Au/Pd layer (~30 nm) was sputter 
coated to avoid charging during the measurements. The Cs+ primary ion beam was used with a primary 
ion impact energy of 16 keV. Prior to final analysis, any contaminants and the Au/Pd coating layer were 
sputtered away at 50 by 50 µm using a high primary beam current (pre-sputtering). During this pre-
sputtering, the reactive Cs+ ions were implanted into the sample to enhance the secondary ion yields. The 
primary beam (ca. 1.2 pA) was focused at a lateral resolution ca. 100 nm and was scanned over the 
sample, with 12C-, 12C14N-, 16O-, and 56Fe16O-  secondary ions collected on electron multipliers with 
an electronic dead time fixed at 44 ns. The estimated depth resolution with 16 keV Cs+ ions was 10 nm. 
The electron flood gun was used to compensate for any charging effects due to the non-conductive 
mineral particles (e.g. larger quartz grains). All measurements were done in imaging mode. For ion 
images with a field of view of 30 by 30 µm, 40 planes were acquired using a dwell time of 1 ms/pixel, 
with 256 pixels by 256 pixels. Images were corrected for electron multiplier dead time and the 
measurements stacks were accumulated using the Look@NanoSIMS software (Polerecky et al., 2012). 

SEM-EDX microspectroscopy 
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The larger area around the NanoSIMS transect across the leaf-soil interface was scanned again with SEM-
EDX (JEOL-JSM7200F). The area was scanned using the backscatter electron detector to obtain high 
resolution images of the detritusphere, using the material contrast to differentiate between minerals and 
organic tissues and resin. Additionally a mosaic at the detritus interface was analyzed using EDX at 15 
keV to show the elemental distribution at a larger field of view. The resulting images were stacked using 
the MosaicJ plugin in Fiji/ImageJ (Schindelin et al., 2012).  

Image Analysis 

The 3D physical structure can be analyzed in various ways. In this study we are interested in 
microhabitats which are likely to be modulated by the presence of the leaf and by the distribution of water 
and air in the pore space. The water distribution during incubation is unknown, since the intact sample 
was only scanned after resin impregnation. However, the distribution can be modelled with a 
morphological approach using the maximum inscribed sphere method in combination with a connectivity 
rule (Hazlett, 1995). That is, pores are assigned to air, if they can entirely fit a sphere of a certain radius 
and have a continuous path to the headspace of the sample from where the air invades. All smaller or 
disconnected pores are assigned to water. The radius is directly linked to the curvature of the air-water 
interface and hence related to capillary pressure through Young-Laplace’s law. Thus, a step-wise decrease 
in radius resembles a drainage process. For any drainage step, the Euclidean distance of all non-air voxels 
to the closest air voxel can be computed, which gives a rough estimate of diffusion lengths of dissolved 
oxygen in soil that can be limiting for microbial respiration. In the same vein, Euclidean distances can be 
computed from the leaf into the soil, or from the soil-pore interface into the soil or into the pore space. 
The pore size distribution and Euclidean distance transforms were computed with Fiji/ImageJ (Schindelin 
et al., 2012) and air continuity were evaluated with the MorpholibJ plugin (Legland et al., 2016). The 
algorithm to model drainage based on pore size distribution and air continuity is explained in detail in the 
supporting information (chapter 6.2 S1). 

The exact micro-environmental conditions during incubation cannot be recovered through image analysis. 
However, the spatial distribution of bacteria visualized via epifluorescence microscopy (FM images) may 
indicate favorable microenvironments. Even though there are dedicated protocols for automatic cell 
counting (Schmidt et al., 2018), we resorted to manual cell counting using the ROI manager in Fiji, which 
is still feasible for such a proof-of-concept study. The distribution of bacteria is analyzed with respect to 
site preference, e.g the tendency to proliferate near the leaf surface. To do so, the average Euclidean 
distance from a cell to the closest leaf surface is determined for a fixed number of cells (n=50) randomly 
chosen from the population of all manually detected cells (n=536). A normalized bacteria-leaf distance 
ratio is calculated by dividing the bacteria-leaf distance with the average Euclidean distance of an equal 
amount of randomly chosen soil voxels to the closest leaf surface. This ratio is computed repeatedly for a 
number of realizations (n=50) to get a robust estimate of the ratio that may either indicate preference (<1), 
avoidance (>1) or indifference (=1). Same is done for the distance of bacteria to pore surfaces. In 
addition, the relative bacteria abundance in three different pore size classes (mesopores, narrow 
macropores, macropores) was determined. Cells in voxel locations which were assigned to soil during 
µCT image segmentation are all assigned to unresolved mesopores, i.e. smaller 1-2 voxels (≈ 10µm), 
assuming that cells are too big to fit into unresolved micropores (<0.2µm). Cells within visible pores are 
further differentiated by a pore diameter threshold of 7 voxels (7 x 7µm ≈ 50µm) into narrow macropores 
that drain at a capillary pressure range of 60-300hPa and macropores (>50µm) that are drained at field 
capacity (60hPa).  

Image Registration 

The objective of image registration is to find a transformation matrix that aligns a moving image with a 
target image such that an objective function is optimized. The target image is always the light microscopy 
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(LM) image of the entire polished surface. The moving images to be transformed are either the 3D X-ray 
CT image of the physical structure or various biogeochemical, spectromicroscopic images of smaller sub-
sections. The objective function consists of two terms: a) the sum of Euclidean distances between 
corresponding landmark points set manually at easily identifiable objects in the microscopy plane and b) 
the mutual information criterion (Mattes et al., 2001) that quantifies the entropy in a two-dimensional 
histogram composed of the corresponding gray values at random locations of the aligned image pairs. 
This mutual information criterion is more suitable to verify the alignment of images from different 
modalities than simple correlation coefficients since different material classes may not always have 
proportional intensities in both images. Image registration was carried out with the elastix software (Klein 
et al., 2010; Shamonin et al., 2014) by employing a similarity transform with seven degrees of freedom in 
3D (three rotations, three translations and one scaling parameter) and four degrees of freedom in 2D (one 
rotation, two translations and one scaling parameter). Convergence was accelerated by imposing a 
pyramid schedule, i.e. quick registration was achieved with coarse, rescaled copies and alignments was 
sequentially refined at the next finer scale. Note that image registration with different dimensionality (2D 
vs. 3D) is not implemented in elastix so that the LM image had to be converted into a 3D image with a 
thickness of one slice first. A minimum example including images, landmark and parameter files and 
execution commands are provided as supporting information. 

The transformation matrix can not only be employed on the moving image for which it was optimized, 
but also on any other spatial data resulting from image analysis, such as point patterns of bacteria 
distribution in FM images or pore size maps and distance maps obtained from segmented X-ray CT 
images. This is done with transformix, a sub-routine of elastix, for which an example is also added as 
supporting information (chapter 6.2 S3). 

Results and Discussion 

3D Physical Structure 

The 3D tomogram is cut virtually at three principle planes in Figure 30(a) to reveal to position of the 
embedded leaf (green). The outcome of 2D-3D image registration is a plane through the moving µCT 
image (Figure 30b) that is perfectly aligned with the target LM image (Figure 30c). The exact position of 
the LM plane is somewhat arbitrary and a result of cutting and polishing during sample preparation. 
However, the µCT image could in fact be used to identify points of interest and guide the positioning of 
microscopy planes. The eleven landmarks that helped find the plane are also depicted. The final, average 
distance of corresponding landmarks was 9.5µm, which corresponds to 1.4 voxels in the X-ray CT image 
and 8.6 pixels in the LM image. Note that even though most landmarks are deliberately set in the vicinity 
of the leaf, the spatial alignment of objects further away from the leaf is also excellent. 
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Figure 30: (a) X-ray CT scan with the embedded leaf in green. (b) 2D-3D registration and (c) the reference microscopy 
image that was used as a target for image registration. Eleven landmarks (green circles) were used for image registration. 

After an adequate transformation matrix for the µCT gray scale data had been found, it was  used to 
project the 3D pore size map into the LM plane (Figure 31a). Likewise, the results of a 3D drainage 
model based on local pore size and global air continuity were also co-registered with the LM plane 
(Figure 31b), just like the 3D Euclidean distance from any non-air voxel to the closest air-filled pore at a 
certain capillary pressure (25hPa in Figure 31c). Averaging over all soil voxels in the registered plane 
results in the mean air distance at this capillary pressure (Figure 31d). This decreases from 0.39mm to 
0.12mm when the sample is drained from 18hPa to roughly field capacity (71hPa). The mean air distance 
in the leaf is a bit higher (0.43mm) at 18hPa because it is occluded in the wet soil matrix. The distance 
drops to 0.13mm in a narrow range around 25hPa because the small gap that formed above the leaf is 
invaded by air at that capillary pressure.  

 

Figure 31: Pore size distribution and modeled air distances: (a) 3D pore size distribution depicted in the 2D reference 
plane. (b) Modeled distribution of water (blue) and air (red) at a capillary pressure of 50 hPa. Soil and leaf are shown in 
white and green. (c) 3D Euclidean distance towards air-filled pores at a capillary pressure of 50 hPa. (d) Mean air 
distance as a function of capillary pressure for the entire soil or the leaf only. Air distribution is either modelled in 3D and 
3D distances registered into the LM plane or modelled in 2D on the registered, segmented image.    

Such modelled air distances in the LM plane would be vastly overestimated if 3D structural information is 
not available. The main reasons are that (1) air continuity through the third dimension is lost and that (2) 
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air-filled pores in close vicinity are ignored, when they are outside of the plane. Even if the connectivity 
rule is relaxed from the top boundary to all four boundaries, the mean 2D air distances in soil still range 
from 1.19 mm to 0.52 mm in the investigated capillary pressure range, a three to four fold increase 
(Figure 31d). Also the critical value to overcome the air-entry pressure of the gap in the vicinity of the 
leaf is only reached at 70hPa. The reduction in dimensionality always leads to an overestimation of 
diffusion distances through the water-filled soil matrix. However, the magnitude depends on water 
saturation and bulk density. Expanding the modelled capillary range to higher capillary pressure could 
only be achieved with higher image resolution (<7µm) which comes at the expense of smaller sample 
size. However, it can also be extended by evaluating the pore space in SEM images (Latham et al., 2008) 
(see below).  

Measuring the actual air-water distribution with X-ray CT should always be favored over 3D modelling, 
since it has become a routine operation even without contrast agents (Geistlinger et al., 2014; Kumahor et 
al., 2015). If possible, CT scans could be carried out twice, once at the water content of interest and once 
more after resin impregnation to recover any internal deformation that may occur during fluid 
displacement and resin curing. Methods for deformation analysis are elastic registration or digital volume 
correlation (Peth et al., 2010; Schlüter et al., 2016). Finally, there are also resin impregnation protocols 
that maintain the location of fluid interfaces by sequential application of two differently dyed resins(Seth 
et al., 2007). However this approach has not been adopted in soil science yet. 

Microhabitats 

All 2D biogeochemical microscopy results only need to be registered to the LM plane to project co-
registered 3D structural information onto them. This is shown for the double excitation fluorescence 
microscopy results in the supporting information (chapter 6.2 S2), which map the auto-fluorescence 
intensity as a result of local concentrations in plant tissue and other organic compounds. Furthermore, this 
is shown for blue-excitation fluorescence microscopy (FM) including the cell count results (Figure 32a). 
Cells counted in 2D thin sections (n=536) corresponded to cell numbers of 1×107 cells g-1 soil. This is 
estimated from the area of the FM scene (19.91 mm²), the representative observation depth (1 µm) and 
bulk density (1.3 g/cm³). Individual bacteria are visible in the enlarged region (Figure 32b), that was 
subsequently chosen for chemical microscopy. The spatial analysis reveals that bacteria tend to be located 
near the leaf, which is indicated by a distance ratio of 0.75. That is, a randomly chosen cell has only 75% 
of the 3D Euclidean distance to the nearest leaf surface as compared to the average leaf distance in the 
FM image. For this metric the bias caused by only considering 2D leaf distances vanished completely, 
since the LM plane is oriented roughly normal to the leaf and there is no additional leaf fragment located 
out of plane. Bacteria also have a preference to reside near pore surfaces with a distance ratio of 0.78. 
This supports previous findings(Nunan et al., 2003) showing that pore surface preference was strongly 
developed in subsoil samples of a sandy silt loam, but less evident in the topsoil. One reason for this 
preference is that bacteria are directly attached to surfaces of air-filled macropores (Flemming et al., 
2016; Or et al., 2007), be it in biofilms or open, water-filled capillaries along rough surfaces. 
Furthermore, cells in bigger pores are moved towards the pore surface when fluids are replaced during 
sample preparation (Juyal et al., 2019). Another explanation is that bacteria in the water-filled soil matrix 
are more abundant at oxic sites near air-filled pores than at anoxic sites with longer diffusion distances of 
dissolved oxygen (Horn et al., 1994). Note that the site preference to visible macropores is also evident if 
only cells within invisible mesopores are considered (data not shown) which rules out a simple sample 
preparation artifact. The difference between 3D and 2D distances ratios is again negligible for pore 
surfaces, this time because the plane is densely populated with many pore surfaces of presumably 
isotropic shape, so the 2D plane is representative for its proximal 3D vicinity. The absolute distances are 
larger in 2D than in 3D, but the ratios are comparable.  
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The spatial distribution of bacteria can also be characterized with respect to the size of pores in which 
they are located. Roughly 75% of all detected bacteria were found in unresolved mesopores, which are 
known for their favorable micro-environmental conditions for bacteria (Akbari and Ghoshal, 2015; 
Crawford et al., 2012; Negassa et al., 2015). Switching from co-registered 3D pore sizes in the LM plane 
to maximum inscribed circles computed in the 2D plane has hardly any effect on unresolved mesopores, 
but increases the area fraction of macropores on the expense of narrow macropores. This is a general 
trend, because obstacles within bigger pores, which are outside of the plane, are ignored with the 
maximum inscribed circle method in 2D. 

In summary, the combination of 3D structural information with 2D fluorescence microscopy opens up 
completely new avenues for the characterization of soil microbial habitats. The spatial distribution of 
bacteria are not only analyzed with respect to each other (Raynaud and Nunan, 2014), but with respect to 
their environment (Juyal et al., 2019; Nunan et al., 2003). Note that segmentation into pores and 
background could have also been done on the FM image directly (Nunan et al., 2003), as the difference 
between distance ratios in 3D and 2D were tolerable. However, pore segmentation is much easier with X-
ray CT as it directly reflects the local electron density without out-of-focus and illumination artifacts. 
Comparable results between 3D and 2D pore space attributes like porosity and pore surface area in 
microbial habitats were also reported in Juyal et al. (2019). We have demonstrated that large differences 
between 2D and 3D may arise in pore space attributes that rely on pore continuity like drainage processes. 
In that case a correlative imaging approach with X-ray microtomography is superior to microhabitat 
characterization with FM only. We showed that bacteria were more abundant in the detritusphere hot spot 
of a decaying plant leaf, most abundant in mesopores and had a higher site preference for pore surfaces. 

The selected DAPI stain, which binds to all accessible DNA, was applied directly on the polished surface 
after resin impregnation in order to be readily integrated in our imaging pipeline. Combinations with dyes 
that selectively bind to active or dead cells are feasible (Blagodatskaya and Kuzyakov, 2013; Emerson et 
al., 2017), but those need to be applied during incubation to interact with the cells. Moreover, phyla-
specific cell detection via fluorescence in situ hybridization (FISH) with different probes may reveal 
differences in microhabitats (e.g. bacteria vs. archaea) (Eickhorst and Tippkötter, 2008), which can also 
be combined with information of microbial activity using isotopic tracing (Eichorst et al., 2015; Musat et 
al., 2012; Pett-Ridge and Weber, 2012; Tominski et al., 2018). Finally, microbiological techniques and 
isotope enrichment can be used to track metabolic activity of individual cells in their microenvironments 
via mapping with secondary ion mass spectrometry as described below. 
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Figure 32: Image registration of fluorescence microscopy data: (a) 2D-2D image registration with fluorescence 
microscopy (FM) and light microscopy (LM). Yellow circles indicate the spatial distribution of bacteria. The green frame 
indicates the region enlarged in (b) that was chosen for chemical microscopy in Figure 4. (c) Bacteria distances to the leaf 
surface or pore surfaces are normalized by distances of randomly chosen points to these surfaces. The data represents 30 
samples comprising 30 locations each.  Chemical microscopy 

The backscattered electron microscopy image provides a very good material contrast between mineral 
particles and the resin to differentiate between pores and soil material. Also the leaf is clearly visible due 
to distinct small-scale structures of the tissue (plant cells) within an otherwise homogeneous resin (Figure 
33a). The dark stripes in the center were caused by prior NanoSIMS imaging due to the sputtering process 
which removes the Au/Pd layer and thus slightly changes the material contrast of the sample surface, 
which is a useful effect to relocate NanoSIMS measurements using SEM. Both transects were analyzed 
using NanoSIMS (Figure 33d), whereas the left transect was a test measurement. SEM provides a good 
alternative as a bridging technique for image registration, the more so since direct attempts to register 
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NanoSIMS images into the LM plane failed (data not shown) due to the scale gap between the LM images 
and the small field of view of the NanoSIMS measurements. It was only successful by means of an 
additional light microscopy image with only one depth of focus directly targeted at the surface roughness 
of the resin so that crevices in the resin could be used for corresponding landmarks (Figure 33d). This 
auxiliary LM image can then be used to align the NanoSIMS transect to the LM image of the entire plane 
in a second image registration step. 

 

Figure 33: Image registration of chemical microscopy data: (a) unregistered SEM image in back-scattered mode. (b-c) 
Registered SEM-EDX image showing six elemental distributions in different colors. (d) NanoSIMS transect registered to 
an auxiliary LM image with depth focus on resin surface. (e-f) Overlay of three ion channels for two scenes in the transect 
highlighted with a yellow frame in (d). 

The SEM-EDX elemental maps are easily registered into the LM plane by using the O- or C-channel with 
good contrast between mineral particles and the resin (Figure 33b). The resulting transformation matrix 
can then be employed on other elemental maps that do not contain sufficient structural information like 
the Ca-channel (Figure 33b). The elemental inventory obtained through SEM-EDX shows a 
heterogeneous distribution of element concentrations at a small scale (Figure 33b-c). Two iron-rich 
micro-aggregates contain several smaller, sharply delineated Si-rich minerals, presumably quartz grains 
encrusted in iron oxide concretions, a feature reported before for Quartz grains within macro-aggregates 
(Steffens et al., 2017). The soil matrix is composed of a mix between Si-rich (quartz) and Al-rich particles 
(feldspars, clay minerals). High concentrations of Ca are highly localized, either in the leaf or in 
individual particles. First attempts have been made to use the correlation between µCT attenuation values 
and co-located element intensities to extrapolate elemental maps into 3D space via co-kriging (Hapca et 
al., 2015). This is an elegant approach to fully exploit the potential of correlative imaging. 

It was conjectured that the O:C ratio obtained from SEM-EDX could be used to distinguish particulate 
organic matter from the resin (Hapca et al., 2015). However, our attempts failed (data not shown). 
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NanoSIMS imaging is a viable alternative in this regard due to the high sensitivity for the detection of 
organic matter specific 12C14N and 12C secondary ion species. In contrast to SEM-EDX, this technique can 
visualize nitrogen distributions and thus map organic matter (OM) through the detection of cyanide 
secondary ions (12C14N) (Schweizer et al., 2018), which is at very low concentrations in the used epoxy 
resin. In this transect OM mainly occurs as leaf tissue (Figure 33e) or is occluded in microaggregates 
(Figure 33f). The high 12C14N ion counts at the leaf or particulate organic matter surface and within the 
microaggregate clearly point to a distinct amount of microbial derived OM (Hatton et al., 2012) . Thus the 
leaf detritusphere providing easily available substrates supports microbial activity and fosters 
microaggregate formation by microbial residues as gluing agents (Mueller et al., 2017). This finding 
correlates well with the higher bacterial cell numbers in the vicinity of the particulate organic matter 
(Figure 32). Such NanoSIMS transects along a gradient of microenviromental conditions are a formidable 
tool to detect rhizodeposits through 13C labeling (Clode et al., 2009; Vidal et al., 2018), map zones of 
different redox conditions across the rhizosphere in paddy soils (Kölbl et al., 2017) or identify different 
functional domains with soil aggregates with respect to carbon sequestration and nutrient cycling 
(Steffens et al., 2017). 
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3. Results and Discussion 

3.1. Long-term effects of conventional and reduced tillage on soil 
structure, soil ecological and soil hydraulic properties (Schlüter et al. 
Geoderma 2018, 332, 10-19, doi:10.1016/j.geoderma.2018.07.001) 

Abstract 

There is a long-lasting debate about the effects of tillage practices on soil structure and structure-mediated 
ecosystem properties like hydraulic conductivity and crop productivity. This is investigated in a long-term 
field experiment on tillage practices at the Westerfeld trial in Bernburg, Germany (25 years of different 
management). Here we combine soil structure information obtained by X-ray microtomography with bulk 
properties like bulk density, air capacity and saturated hydraulic conductivity, as well as integrative, 
ecological properties like earthworm abundance and crop yield. This study goes beyond previous studies 
in that the soil microstructure is investigated in two different depths, within (13-23cm) and underneath 
(28-38cm) the plow horizon. Furthermore the microstructure is investigated at two different resolutions 
(60µm and 20µm) by employing a nested sampling design. 

The plowed horizon in the conventional tillage plots differs from the undisturbed soil underneath the 
cultivator depth (13-23cm) in the reduced tillage plot by lower bulk density, higher air capacity, higher 
saturated hydraulic conductivity, higher macroporosity and pore connectivity. After 25 years of reduced 
tillage saturated hydraulic conductivity only marginally recovered in the abandoned plow pan (28-38 cm). 
Macropore density and connectivity did not change significantly as compared to the current plow pan 
under conventional tillage. The topsoil underneath the cultivator depth in the reduced tillage plot 
developed a “no-till pan”, as porosity and pore connectivity where smaller than in greater soil depths. 
Image-based macroporosity and laboratory-based air capacity showed good agreement.  

Overall, the combination of hydraulic measurements and X-ray CT imaging of soil microstructure at 
different resolutions provides a comprehensive view on soil structure modification by tillage practices. 
The change from conventional to reduced tillage led to a compaction of soil that was not compensated by 
higher bioturbation as reported for other sites. This is explained by unfavorable conditions for anecic 
earthworms (frequent dry periods with severely impaired penetrability of the loess substrate) as well as 
the absence of very deep rooting, perennial crops in crop rotation. 

Introduction 

Conservation agriculture has a profound impact on soil structure and consequently on structure-mediated 
ecosystem functions like carbon sequestration, greenhouse gas emissions and soil water storage. The 
benefits of reduced tillage practices as compared to conventional plowing may be lower costs, higher 
carbon storage, higher energy input/output ratio, reduced erosion, more stability against compaction and 
lower herbicide loss (Palm et al., 2014; Tebrügge and Düring, 1999). Drawbacks associated with reduced 
tillage can be a risk of topsoil compaction, reduced aeration and lower soil temperature (Soane et al., 
2012). With reduced tillage the absence of plowing typically leads to a loss in air capacity and an increase 
in bulk density and penetration resistance in the topsoil beneath the tillage depth of disc harrows or other 
cultivators (Abdollahi et al., 2017; Abdollahi and Munkholm, 2017; Deubel et al., 2011; Pagliai et al., 
2004; Rasmussen, 1999; Rücknagel et al., 2017). Saturated hydraulic conductivity (𝐾𝐾𝑠𝑠) and infiltration 
capacity are typically lower under reduced tillage (Abdollahi et al., 2014; Lipiec et al., 2006; Pagliai et 
al., 2004) but can also exceed values for conventional tillage (Kahlon et al., 2013; Vogeler et al., 2009) 
depending on whether intact, elongated macropores resulting from root growth and earthworm burrowing 
activity can compensate for the overall reduction in macroporosity. Rücknagel et al. (2017) compared 𝐾𝐾𝑠𝑠 
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values under conventional and reduced tillage in seven field trials in Germany and found comparable 
(five) or significantly lower (two) 𝐾𝐾𝑠𝑠 values under reduced tillage. A comprehensive literature review 
about tillage effects on hydraulic properties (Strudley et al., 2008) indicated inconsistent results across 
soil textures, climate and specific managements with respect to trends in saturated hydraulic conductivity 
and infiltration capacity. Often temporal and spatial variability mask these long-term treatment effects.  

The inconsistent trends between tillage practices and hydraulic properties can be better understood by 
investigating tillage effects on soil microstructure. In recent years traditional approaches to measuring 
tillage-induced changes in soil physical properties have been increasingly complemented by the 
characterization of undisturbed soil structure via non-invasive imaging techniques like X-ray computed 
tomography (X-ray CT). Attributes of the macropore network measured with X-ray CT and image 
analysis have been used to explain a range of bulk soil properties like water and solute transport (Larsbo 
et al., 2014; Paradelo et al., 2016) , soil friability (Munkholm et al., 2012) and soil structure turnover 
(Schlüter and Vogel, 2016). Studies on management induced changes in pore space attributes mainly 
comprise fertilization effects (Dal Ferro et al., 2013; Naveed et al., 2014; Schlüter et al., 2011) and tillage 
effects (Dal Ferro et al., 2014; Garbout et al., 2013; Kravchenko et al., 2011; Pöhlitz et al., 2018). A 
typical outcome of these studies is that visible porosity above the image resolution is highly correlated 
with bulk density, since unresolved micro- and mesoporosity is less affected by management practices. 
Plow horizons with loose soil structure typically have an isotropic, well connected pore network, whereas 
macropores in unplowed soil tend to be less connected and more vertical and anisotropic, since they 
mainly evolve from bioturbation and are less susceptible to concomitant compaction (Hartge and Bohne, 
1983). 

One major shortcoming of soil structure analysis with X-ray CT is the trade-off between image resolution 
and sample size, with a fixed factor of 1000-2000 depending on the X-ray detector hardware (Rabot et al., 
2018). Information on mesopores (<10µm or <50µm depending on definition) can only be achieved with 
small soil cores or individual aggregates (Crawford et al., 2012; Kravchenko et al., 2011; Schlüter and 
Vogel, 2016), whereas representative samples for preferential flow in large macropores require big 
samples up to 20cm in diameter with image resolutions of 100µm and larger (Luo et al., 2008; Paradelo et 
al., 2016). Nested sampling strategies are a viable strategy to extend the scale window towards mesopores 
(Dal Ferro et al., 2013; Schlüter et al., 2011; Vogel et al., 2010). First a soil column is scanned at coarse 
resolution and then subsamples are extracted and scanned at a higher resolution, so that eventually the 
pore size distribution from both scales can be merged. A second shortcoming of X-ray tomography is the 
time and labor for taking undisturbed soil columns at large soil depths as well as the time-consuming 
image analysis of large datasets. While soil physical properties like penetration resistance, air capacity or 
bulk density are easily measured at high spatial resolution for entire soil profiles (Abdollahi et al., 2017; 
Deubel et al., 2011), X-ray CT studies on tillage practices are often restricted to soil samples from one 
depth within the first 30cm. 

This paper addresses both shortcomings by employing a nested sampling design in two soil depths, the 
plow horizon and the deeper soil partially covering the plow pan. The objective of the paper is (1) study 
changes in pore space attributes after 25years of reduced tillage in a long-term field trial on tillage effects 
and (2) to relate these changes in pore morphology to soil physical properties like bulk density, air 
capacity and saturated hydraulic conductivity as well as ecological properties like earthworm abundance 
and crop yield. 

Materials and Methods 

 Field site 
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The long-term tillage trial at the Westerfeld site in Bernburg, Germany, was established in 1992 (Deubel 
et al., 2011). The Chernozem soil (WRB) is developed on loess over limestone and has a texture of 8% 
sand, 79% silt and 13% clay (0-30cm). The average annual temperature is 9.7°C with a rather low 
average annual precipitation of 511mm (1981-2010). The crop rotation on five experimental blocks 
(1.2ha each) is grain maize (Zea maize), winter wheat (Triticum aestivum), winter barley (Hordeum 
vulgare), winter rape (Brassica napus ssp. napus) and again winter wheat. N-fertilization is site-specific 
and pest management as required. An experimental block consists of four non-randomized plots, each 
split into two subplots with different tillage practices, resulting in a total of 40 subplots. Reduced tillage 
(RT), is carried out as stubble processing and soil loosening with a cultivator (down to 12-15cm), whereas 
conventional tillage (CT) comprises stubble control and soil turning with a moldboard plow (down to 20-
30cm, varying depth to reduce plow pan). All residues remain on the field after harvest.  

Yields [dt ha-1] were measured every year as triplicates per subplot (total of twelve harvest plots per crop 
and tillage treatment, each 18 m², threshed with a parcel harvester). Grain yields are reported here as 
averages for the period 2012-2016 with 14% and 9% moisture for cereals and oilseed rape, respectively. 
Earthworm abundance was determined with hand sampling of the topsoil down to a depth of 30cm in 
combination with  subsoil extraction by 0.2% formaldehyde solution on eight replicated areas (0,125m²), 
i.e. two per sub-plot (DIN ISO 23611-1, 2007). Sampling was carried out in 2016 on the maize block, 
which was also used for undisturbed soil sampling in the following year (see section 2.2. below). Values 
are reported as numbers of individuals [m-2] and biomass [g m-2] and aggregated into anecic and endogeic 
species as well as adults and juveniles, whereas epigeic species where absent. Older time series (2010-
2013/14) for rape and wheat on rotating blocks are also reported here. 

 Sampling 

Soil sampling took place in April 2017 on the winter wheat block (after maize in 2016), six months after 
last tillage. Undisturbed soil cores for X-ray tomography analysis were taken by pushing down 
polycarbonate cylinders (94mm inner diameter, 100m height, 694cm³) with a rotating sampling device 
(sample ring extraction device, UGT GmbH, Germany) (Kuka et al., 2013) in two different depths. The 
first depth (13-23cm) corresponds to the plow horizon in the conventional tillage plots (CT) or the lower 
topsoil beneath the tillage depth of the cultivator in the conservation tillage plots (RT). Previous studies at 
this site demonstrated large differences in penetration resistance (CT: 0.6MPa, RT: 1.4MPa), bulk density 
(CT: 1.25g/cm³, RT:1.52g/cm³) and air capacity (CT: 17%, RT: 6%) in that depth (Deubel et al., 2011). 
The second depth (28-38cm) corresponds to deeper soil within and underneath the compacted plow pan in 
CT plots and the former plow pan in the RT treatment. Reported soil physical properties (Deubel et al., 
2011) in that depth indicate higher compaction in the conventional tillage plots (penetration resistance – 
CT: 1.4MPa, RT: 1MPa, bulk density - CT: 1.42g/cm³, RT:1.35g/cm³, air capacity - CT: 9%, RT: 11%). 
Two samples per tillage sub-plot and depth were taken from each of the four plots in the winter wheat 
block, constituting a total of 32 undisturbed samples. For soil physical laboratory analysis 32 smaller, 
undisturbed soil samples (250cm³) were taken in the same pits. All results will be presented as averages 
out of two samples per sub-plot, i.e. n=4 for each tillage practice and depth. Samples were stored at 4°C 
until X-ray CT scanning and soil physical analysis. 

 Soil physical analysis 

Samples were fully saturated and then the volumetric water loss after drainage to a matric potential of 
hm=-60hPa on a sand box (DIN ISO 11274-1, 2001) was measured to derive air capacity, i.e. the volume 
fraction of air-filled pores at field capacity. Subsequently, samples were fully saturated again and placed 
into a constant-head percolation apparatus (Klute and Dirksen, 1986) for 4h to measure saturated 
hydraulic conductivity. Finally, bulk density was determined after drying the samples at 105°C for 24h. 
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 X-ray tomography analysis 

Samples were scanned with an X-ray CT scanner (X-tek XMT 225, Nikon Metrology) at an energy of 
195kV and a beam current of 280-300µA using a 1.5mm Cu filter for beam hardening reduction. 2800 
projections were acquired with an exposure time of 700mS and two frames per projection. The 
projections were reconstructed into a 3D tomogram with a voxel resolution of 60µm using the filtered 
back projection method implemented in the X-tex CT Pro software. Another 36 smaller subsamples 
(26mm inner diameter, 30mm height, volume 16cm³) were taken from within the bigger cores with a 
smaller sampling device (soil sample minimizer, UGT GmbH, Germany). These were scanned at an 
energy of 130kV and a beam current of 150µA using a 0.1mm Cu filter and reconstructed into 3D 
tomogram with a voxel resolution of 20µm. 

Image Processing and analysis was done with the Fiji software (Schindelin et al., 2012). The raw images 
were filtered with a non-local means filter (Buades et al., 2005) for noise removal and an unsharp mask 
(Schlüter et al., 2014) for edge enhancement. Vertical intensity drifts were corrected by normalizing the 
gray values with the average soil matrix gray value in each horizontal slice (Schlüter et al., 2016). 
Objective image segmentation into pores and soil matrix was carried out by combining gray scale and 
edge information (Schlüter et al., 2010). First, thresholds were automatically determined as the average 
gray value within gradient masks that focus only on the partial volume effects on pore boundaries. Then, 
hysteresis thresholding implemented in the 3D ImageJ Suite (Ollion et al., 2013) is applied with these 
thresholds, which efficiently removes segmentation noise while preserving the intact pore network. The 
segmented images were analyzed with respect to pore size distributions (PSD) by employing the 
maximum inscribed sphere method implemented in BoneJ (Doube et al., 2010). A joint pore size 
distribution was constructed by merging the information from the whole column X-ray CT scans and the 
high-resolution subsample scans (Schlüter et al., 2011). The visible porosity is derived from this joint 
PSD. The pore connectivity is estimated for both scales independently from the 2nd moment of the cluster 
size distribution, the so-called Γ indicator or connection probability (Renard and Allard, 2013; Schlüter et 
al., 2014), where Γ = 1 for a perfectly connected pore network and Γ → 0 for many equal-sized, isolated 
pores. The connection probability corresponds to the volume fraction of the largest pore cluster squared. 
The cluster size distribution is computed by labeling connected components in the MorphoLibJ plugin 
(Legland et al., 2016) in Fiji. The whole image processing workflow is summarized in Figure 1.  
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Figure 34: Demonstration of the image workflow with a2D slice of an X-ray CT scan: (a) raw image, (b) noise removal 
with a non-local means filter, (c) segmentation with hysteresis thresholding, (d) pore size distribution according to 
maximum inscribed sphere method, (e) connected components labelling to derive the connectivity indicator 𝚪𝚪. 

 Statistics 

All statistical analyses were conducted in R (R Core Team, 2017). Saturated hydraulic conductivity was 
log-transformed (log10(𝐾𝐾𝑠𝑠)) prior to statistical analysis. The effect of tillage and depth on various 
response variables is explored with two-way ANOVA tests allowing synergistic effects due to interaction 
between the two factors. Normality in the residuals was confirmed visually and with Shapiro-Wilk tests. 
The multiple pair-wise comparisons between tillage treatments in one depth and between depths for one 
tillage treatment are conducted with Tukey Honest Significant Differences and tested at a probability 
value of p=0.05. Linear models were employed for linear regression between an individual factor and a 
dependent variable. The joint effect of various pore space attributes on hydraulic conductivity was 
explored with partial least squares regression implemented in the pls package (Mevik, 2016). 

Results 

 Soil physical properties 

Results for bulk density (BD), air capacity (AC) and log-transformed saturated hydraulic conductivity 
(log10(𝐾𝐾𝑠𝑠)) for both tillages practices and both depths are depicted in Figure 2. The plow horizon in the 
CT subplot has by far the lowest bulk density. Bulk densities in greater depths (28-38 cm) are similar for 
both tillage practices. The lower topsoil in the RT plot exhibits a minor trend towards higher bulk 
densities than the soil underneath (p=0.21). These differences in bulk density are mainly caused by 
differences in big structural pores, as the differences are reflected in air capacity (Figure 2b). The plow 
horizon in the CT plots has the highest AC, the lower topsoil in the RT plots exhibit and trend towards 
lower AC than the deeper soil (p=0.09), and means do not differ significantly between CT and RT in 
deeper soil. The general trends are similar for saturated hydraulic conductivity, yet differences in are not 
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significant due to high standard deviations, except for the difference between the plow horizon and the 
plow pan in the CT plots. The log10(𝐾𝐾𝑠𝑠) values in the abandoned plow pan (RT - 28-38 cm) are larger 
than in current the plow pan in the conventional tillage plot (CT - 28-38 cm), but this recovery is not 
significant (p=0.25) due to large spatial variability. 

 

Figure 35: Soil physical properties including (a) bulk density, (b) air capacity and (c) saturated hydraulic conductivity at 
two depths in both tillage treatments (CT - conventional tillage, RT - reduced tillage). Different letters represent 
significant differences between treatments (p<0.05). 

Visual assessment 

These quantitative results of soil physical properties are reflected in the morphology of the microstructure 
depicted for selected topsoil samples (13-23cm depth) of the CT and RT plot in Figure 3. Plowing results 
in clearly distinguishable aggregates in the CT plots from the microscale up to clods >1cm embedded in a 
loose soil matrix with high macroporosity. Plant residues of maize grown in the previous growing season 
can be found in a depth of 13-23cm. The lower topsoil of the RT plots has a more compact, coherent 
structure, in which clearly separated aggregates are not visible anymore and the loose matrix around them 
is still faintly visible in patches. Root channels and earthworm burrows, partly refilled, stand out against 
the coherent soil matrix.  
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Figure 36: Typical examples of a plowed topsoil in the CT plot (a) and unplowed topsoil in the RT plot (b) at a depth of 
13-23cm scanned with X-ray CT. Salient features are marked with arrows.  

The microstructure in deeper soil (28-38cm depth) of the CT and RT plot is shown in Figure 4. 
Bioturbation dominates as the main structure forming agent in both plots. The top part (28-30cm) of the 
CT sample (Figure 4a) has the lowest abundance of root channels (marked in yellow) and seems to 
originate from the plow pan. Underneath this plow pan there seems to be a homogeneous macropore 
density, i.e. no further vertical trends in visible porosity. The former plow pan in the RT plot (Figure 4b) 
is pervaded with rounded planar pores, also denoted as planar packing poroids (Hubert et al., 2007) 
probably forming along former earthworm burrows as shown in Figure 3(b).  
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Figure 37: Typical examples of a compacted plow pan in the CT plot (a) and an abandoned plow pan in the RT plot (b) at 
a depth of 28-38cm scanned with X-ray CT. Salient features are marked with arrows. 

Pore structure properties 

The volume fraction of visible pores depends on the image resolution and the total volume of the scanned 
samples. This is demonstrated for the plow horizon of the CT plots (Figure 5a). The frequency 
distribution of pore diameters derived by class width (unit: mm-1) allows for comparison of pore size 
distributions from different sample sizes with different step sizes in pore diameters. Pore diameters 
<0.15mm are ignored for the whole column scans (10cm samples) with an image resolution of 0.06mm. 
Moreover, pore diameters < 0.25mm are also underrepresented as compared to the high-resolution scans, 
because small pores in the same size range like image noise are removed during image processing. Pore 
diameters >0.25mm, in turn, are underrepresented in high-resolution scans (3cm sample, 0.02m image 
resolution) for two reasons: First, the chance to capture big pores in a small soil volume is lower. 
Secondly, individual particles attached to bigger pores are well-resolved, so that pores > 0.25mm fall 
apart into several smaller pores when employing the maximum inscribed sphere method. A joint 
frequency distributions is constructed by taking the maximum of both frequencies values at each pore 
diameter (Schlüter et al., 2011). The individual and joint, cumulative pore size distribution is obtained by 
integrating over all pore diameters (starting at the largest pore) and multiplying with respective porosities 
(Figure 5a, inset). They represent the volume fraction of pores larger than a certain pore diameter, where 
final points indicate total, visible porosity. The pore size distribution for the other tillage treatment and 
soil depth are presented as supplementary information, both as class derivatives (SI 6.3 Figure S 5) and 
cumulative pore size distributions (SI 6.3 Figure S 6). Total visible porosity from individual sample sizes 
and joint curves show a consistent trend towards higher visible porosity in the high-resolution scans 
among all treatments (Figure 5b) as small macropores typical for silt-rich textures is captured better at an 
image resolution of 0.02mm. In line with air capacity results (Figure 2b), the plow horizon (CT, 13-23cm) 
has by far the highest visible porosity. The untilled topsoil (RT, 13-23cm) has a lower visible porosity 
than greater soil depths (CT & RT, 28-38cm) at each scale, but the differences are not significant. The 
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unresolved porosity (micro- and mesopores) is fairly similar with 28-32% for both depths and tillage 
treatments, when the visible porosity in the 3cm samples is subtracted from the total porosity (data not 
shown). 

 

Figure 38:(a) Frequency of pore diameters derived by class width (unit: mm-1) allows for comparison of pore size 
distributions from different sample sizes (different diameter steps). Data is shown for the plow horizon (CT, 13-23cm). A 
joint frequency distribution and a joint, cumulative pore size distribution (inset) is obtained according to Figure S1,S2. 
(b) Visible porosity at individual or joint scales for both depths and tillage treatments (CT - conventional tillage, RT - 
reduced tillage). Different letters represent significant differences in visible porosity at a given scale. 

The pore connectivity represented by the Γ indicator is shown only for the individual sample sizes as it is 
not straightforward to combine information from both scales into a joint connection probability (Figure 
6a). Again, pore connectivity is higher in the small samples, most likely because small pore throats are 
resolved better at higher image resolution. In line with visible porosity (Figure 5b), the pore connectivity 
is highest in the plow horizon (CT, 13-23cm). With Γ > 0.95 almost the entire pore network is comprised 
of one connected pore cluster with only few isolated pores (e.g. Figure 1e).The Γ indicator in the untilled 
topsoil (RT, 13-23cm) has a significantly lower connection probability than greater soil depths, whereas 
the difference in Γ between both tillage treatments in deeper soil is not significant (CT & RT, 28-38cm). 
In general, the connection probabilities are rather high with Γ > 0.6 for all depths, i.e. one connected pore 
cluster always dominates. There is a non-linear relationship between visible porosity and pore 
connectivity for both resolutions (Figure 6b). The general shape is similar to a previous study (Schlüter 
and Vogel, 2016) in which complete connection probability (Γ > 0.95) was also achieved around a 
visible porosity of 20% and Γ quickly diverged from zero beyond the critical value around 3-5%. 
Interestingly, a smaller sample diameter induces a small right-shift in the scatter plot, but only for the 
untilled topsoil (RT, 13-23cm). Apparently, the gain in porosity due to a higher resolution is higher than 
the gain in connection probability, whereas in the other treatments both gains are more balanced. 
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Figure 39: (a) Connectivity indicator 𝚪𝚪 for both depths and tillage treatments (CT - conventional tillage, RT - reduced 
tillage). Data is shown for two different sample diameters. Different letters represent significant differences (p<0.05) at a 
given scale. (b) Non-linear relationship between visible porosity and connectivity indicator 𝚪𝚪 lumped over all data points 
shows slight differences between the two sample sizes. 

Average pore diameters, i.e. the first central moment of the pore size distribution, are shown for 
individual sample diameters and joint data in each depth and tillage treatment (Figure 7a). Obviously, 
they are quite different for different sample sizes, with average pore diameters derived from the joint pore 
size distribution in between the averages for whole-columns scans (10cm sample) and 3cm subsamples. 
More importantly, there are no significant differences between RT and CT in both depths. This indicates 
that the increase in porosity in the plow horizon is equally distributed among all pore diameters (Fig. S2) 
so that the average pore size does not change much. The relationship between porosity and average pore 
diameter is stronger when plotted individually for both tillage treatments and depths, so that characteristic 
differences in pore morphologies are accounted for (Figure 7b). There is a clear linear trend (R²=0.995) 
for the plow horizon with a high proportion of packing pores between soil clods. The drift in porosity and 
pore size may be caused by a spatial gradient in soil structure stability along the four plots, in particular in 
the stability of big, abiotic packing pores, as the trend is absent in the small samples. Presumably this 
trend is caused by a known gradient in lime content due to a spatial gradient in the shallowness of the 
loess layer above limestone. In the other tillage treatment and soil depth there are less packing pores due 
to absent plowing and bioturbation pores dominates, for which soil structure stability seems to be less 
relevant. 
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Figure 40: (a) Average pore size at individual or joint scales for both depths and tillage treatments (CT - conventional 
tillage, RT - reduced tillage). Different letters represent significant differences in visible porosity at a given scale. (b) No 
clear trends between visible porosity and average pore size except for macroporosity in the plow horizon (CT - 13-23 cm). 

 Comparison between soil physical and structural properties 

A direct comparison between air capacity and visible porosity arises from the capillary rise equation 
recast in the simplified form ℎ𝑚𝑚[−ℎ𝑃𝑃𝑃𝑃] ≈ 3

𝑑𝑑
 [𝑚𝑚𝑚𝑚]. In a simplified capillary bundle model of soil all 

pores with a diameter 𝑑𝑑>0.05mm will be air-filled at field capacity (matric potential ℎ𝑚𝑚 = −60 hPa). 
Hence, this air capacity should be in line with visible porosity in the whole-column scans (10cm sample), 
where the image resolution (0.06mm) is similar to this critical pore diameter. In fact, pores<0.15mm are 
underrepresented in the 10cm samples and visible porosity in the 3cm samples should be a better estimate 
for small air-filled pores. However, the support volume in 10cm samples is much bigger so that 
macropores are captured more representatively. Indeed, air capacity can be predicted from visible 
porosity fairly well (R2=0.711) despite being measured at different samples (Figure 8a). The regression 
line is close to the 1:1 line. The slope is slightly smaller as the aforementioned underestimation seems to 
be more important when macroporosity is high. 
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Figure 41: (a) Regression between visible porosity in 10cm samples and air capacity at the subplot level. (b) Relationship 
between image-derived soil structure properties (visible porosity, connectivity indicator 𝚪𝚪, average pore size) and 
saturated hydraulic conductivity 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏(𝑲𝑲𝒔𝒔) at the subplot level. 

The saturated hydraulic conductivity log10(𝐾𝐾𝑠𝑠) is governed by the hydraulic radius of macropores and the 
overall abundance and continuity of macropores. These pore space attributes should be reflected in 
measured average pore diameter, visible porosity and the pore connectivity Γ. Yet, visible porosity only 
explains 18.0% of the observed variability in log10(𝐾𝐾𝑠𝑠) at the subplot level, a value that is only increased 
to 23.7% if all three properties are jointly taken into account by employing partial least square analysis. 
This low predictive power is not surprising as log10(𝐾𝐾𝑠𝑠) and soil structure properties were measured at 
different samples. 𝐾𝐾𝑠𝑠has a notoriously high spatial variability and only two samples were averaged per 
subplot and depth. Pore connectivity is highly correlated with porosity and therefore does not contribute 
additional predictive power (Figure 6b). Average pore size provides complementary information as it 
reflects the presence of large macropores, which again exhibits large spatial variability that might be 
poorly represented by 1.4L of soil per subplot and depth (n=2). 

Soil ecological properties 

Tillage had no consistent effect on grain yield across the crop rotation. Differences in the ‘wheat after 
maize’ block used for soil sampling are negligible (Figure 9a). The earthworm abundance in the sampled 
block one year prior to undisturbed soil sampling showed clear differences between the tillage treatments 
(Figure 9b). The numbers per m² in the conventional tillage plot (54) is less than half the number in the 
reduced tillage plot (133). Endogeic juveniles with small mass contribute the highest fraction of all 
ecophysiological categories. The total earthworm biomass in the CT treatment therefore amounts to a 
smaller gap of only 78% of the RT treatment. Results from additional earthworm abundance sampling 
campaigns in previous years (2010-14) for other crops (oilseed rape, winter wheat after rape) on the same 
long-term trial paint a fairly consistent picture of lower earthworm abundance in the conventional tillage 
plots (SI 6.3 Figure S 5). The numbers and biomass per m² in the CT plots only amount to 68 and 75% of 
values in the RT plots, respectively. In eight out of ten comparisons earthworm abundance was higher in 
RT plots. However, weather-dependent differences between the years and even differences between 
investigated crops were as high as or higher than tillage-induced differences. 
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Figure 42: (a) Crop yields for the period 2012-2016 across all five crops for both tillage treatments (CT – conventional 
tillage, RT – reduced tillage). There are no significant differences (p<0.05) between tillage treatment for any crop. (b) 
Earthworm abundance in terms of numbers and biomass in the two tillage treatments on the grain maize block in 2016. 

Discussion 

 Tillage effect on structural properties after 25 years 

In the RT plots a very compact soil structure has evolved in the lower topsoil (13-23cm) that has not been 
plowed for 25 years. Bulk density (1.50g/cm³) even exceeded and air capacity (7.7%) fell below values 
observed in deeper soil horizons covering the recent (CT, 28-38cm: 1.41 g/cm³, 11.9 %) or former plow 
pan (RT, 28-38cm: 1.41 g/cm³, 13.0 %). This confirms previous results from the RT plots in the same 
long-term trail (Deubel et al., 2011) that indicate a higher bulk density (1.52 g/cm³), lower air capacity (6 
%) and higher penetration resistance (1.4 MPa) in the lower topsoil (15-30cm) as compared to the former 
plow pan below (1.35 g/cm³, 11%, 1.0 MPa). These vertical differences in soil physical properties within 
the soil profile of RT plots are confirmed by a decrease in image-derived macroporosity and macropore 
connectivity in the lower topsoil. Similar results, including the existence of a so-called "no-till pan" after 
many years of deep-reduced conservation tillage have already been reported by Reichert et al. (2009) and 
Rücknagel et al. (2017). This can be explained by the stresses exerted to the soil by agricultural 
machinery. The mechanical load induces a primarily vertical normal stress in the center of the load axis, 
which decreases with increasing distance from the wheel-to-ground contact surface (Rücknagel et al., 
2015; Soehne, 1953). Hence the vertical stresses exerted by the majority of tillage operations are higher in 
13-23cm depth within RT subplots than in 28-38cm depth within RT or CT subplots, which may have 
caused the observed compaction in the upper RT layer. Only in areas where the tractor wheel drives 
directly in the furrow during ploughing, larger vertical stresses are directly exerted to the subsoil 
(Weisskopf et al., 2000). In the investigated Bernburg tillage trial, however, this operation is carried out 
only once a year on the CT subplots with a proportion between the overrun area by the wheels and the 
total furrow area of only about 40 %. This is relatively small in comparison to overrun area fractions of 
more than 80% reported by Kroulik et al. (2012).  

The old and recent plow pan was clearly visible in the top part of X-ray CT scans of soil samples taken at 
a depth of 28-38cm (Figure 4) but in fact stretches across a much larger depth range of 25-55cm as shown 
by penetrometer measurements (Deubel et al., 2011). Despite 25 years without plowing, the functional 
recovery of the old plow pan by conservation tillage as shown visually in Figure 4(b) has not yet resulted 
in quantitative differences in terms of BD, AC, macropore density and connectivity although the 
abundance of earthworms is higher. The log10(𝐾𝐾𝑠𝑠) values only show a small, non-significant recovery. 
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This finding is consistent with the results of other long-term tillage trials in Central Germany (Hofmann 
et al., 1993; Rücknagel et al., 2004). Tests on the persistence of soil compaction in the subsoil have also 
repeatedly shown that it can exist over a long period of time (Alakukku, 1996; Berisso et al., 2012). The 
most important drivers of natural regeneration for compacted soils are swelling and shrinking processes as 
a result of wetting and drying (Dexter, 1988), the activity of earthworms and the cultivation of perennial, 
deep-rooting arable crops. In particular, earth worm and deep roots promote the formation of biogenic 
macropores and the infiltration of water (Kautz et al., 2010; Meek et al., 1989). However, perennial crops 
are not integrated in the crop rotation of this long-term trial, so that microstructural processes are limited 
to swelling and shrinkage as well as earthworm activity. For reasons discussed below the higher 
earthworm abundance in the RT plots has only induced a minor trend towards higher saturated hydraulic 
conductivity (p=0.23), but no recovery in terms of average structural properties. 

Interplay between tillage effects and ecological properties 

The the compacted lower topsoil of the RT subplots (13-23 cm) essentially meets the minimum 
requirements for an intact soil structure of 8 % air capacity and a saturated hydraulic conductivity of 10 
cm/d (Werner and Paul, 1999).The optimum dry density for the given texture of approx. 1.40 g/cm³ is 
only exceeded moderately (Kaufmann et al., 2010). As a consequence, soil structure is not limiting for 
plant growth and has no unfavorable effect on crop yield. 

The earthworm population at the Bernburg site is comparable to similar sites (Koblenz et al., 2015; Ulrich 
et al., 2010; van Capelle et al., 2012) which are also subject to annual fluctuations in earthworm 
abundance. Absolute values in another long-term tillage trial in Seehausen, Central Germany, with similar 
soil texture and climatic conditions differed between 120 m-2 (30 g/m²) for CT and 220/m² (65 g/m²) for 
RT (Ulrich et al., 2010), which is at the higher end of values reported here (Figure 9b, Figure S3). 
Although other studies highlighted the importance of earthworms for the regeneration of compacted soils, 
internal soil relocation by burrowing activity can create additional macropores without reducing the bulk 
density of the entire soil (Capowiez et al., 2012). The increased earthworm abundance in the RT plots did 
not lead to a sufficient gain in macropore density to compensate the reduction in saturated hydraulic 
conductivity caused by the absence of plowing. One reason may be the low number of adult individuals of 
anecic species like Lumbricus terrestris. Deep burrowing earthworms were only slightly more abundant 
in RT plots during all sampling campaigns (Figure 9b, Figure S3). The greatest effect can be seen on 
endogeic species which rapidly proliferate near the soil surface (high percentage of juveniles), where 
residues of preceding crops are enriched in RT plots. In addition, topsoil compaction reduced the positive 
effects of RT, especially in dry periods because it complicates the penetration by earthworms. Ulrich et al. 
(2010) for instance, found no anecic species in no-till treatments. In general, the relatively dry conditions 
on site should reduce earthworm effects compared to other studies. A recent meta-analysis (Briones and 
Schmidt, 2017) reported advantages of reduced tillage treatments on earthworm abundance, but lowest 
effects in loamy soils, soils with >1.2% soil organic carbon and soils with pH >7.2. In addition, frequent 
dry periods and a limited soil depth by lime stone at the study site are less favorable for deep-burrowing 
varieties. 

Conclusions 

The differences in soil structure between conventional tillage and reduced tillage only manifested 
themselves in a shallow depth of 13-23cm. Plowing leads to a periodic loosening of soil which not only 
increases macroporosity and macropore connectivity but also saturated hydraulic conductivity. The 
absence of plowing, in turn, causes compaction and the onset of a no-till pan beneath the tillage depth of 
the cultivator and a reduction in 𝐾𝐾𝑠𝑠 that is not compensated by the observed increase in earthworm 
abundance due to the scarcity of anecic species. Soil structure at greater depths (28-38cm) is 
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indistinguishable despite 25 years of different tillage and 𝐾𝐾𝑠𝑠 is only mildly increased as deep roots or 
burrowing activity hardly exert any soil structure modification beneath the plow horizon. The differences 
in structural, physical and ecological properties between the tillage treatments have no effect on crop 
yield, since it is not limited by structural but by climatic constraints at this site. 

Image-derived macroporosity and directly measured air capacity show good agreement, whereas 
predictability of saturated hydraulic conductivity from image-derived, microstructural properties is 
limited by the vast spatial variability of 𝐾𝐾𝑠𝑠. The nested sampling in combination with X-ray CT analysis 
at different resolutions is a suitable approach to extend the range of scales amenable to microstructural 
analysis from a voxel size of (20µm)³ to a sample size of 700 cm³. 
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3.2. Denitrification in soil aggregate analogues - effect of aggregate 
size and oxygen diffusion (Schlüter et al. Frontiers in Environmental 
Science, 6(17),1-10, doi: 10.3389/fenvs.2018.00017) 

Abstract 

Soil-borne nitrous oxide (N2O) emissions have a high spatial and temporal variability which is commonly 
attributed to the occurrence of hotspots and hot moments for microbial activity in aggregated soil. Yet 
there is only limited information about the biophysical processes that regulate the production and 
consumption of N2O on microscopic scales in undisturbed soil. In this study, we introduce an 
experimental framework relying on simplified porous media that circumvents some of the complexities 
occuring in natural soils while fully accounting for physical constraints believed to control microbial 
activity in general and denitrification in particular.  

We used this framework to explore the impact of aggregate size and external oxygen concentration on the 
kinetics of O2 consumption, as well as CO2 and N2O production. Model aggregates of different sizes (3.5 
vs. 7 mm diameter) composed of porous, sintered glass were saturated with a defined growth medium 
containing roughly 109 cells ml−1 of the facultative anaerobic, nosZ-deficient denitrifier Agrobacterium 
tumefaciens with N2O as final denitrification product and incubated at five different oxygen levels (0-13 
vol-%). We demonstrate that the onset of denitrification depends on the amount of external oxygen and 
the size of aggregates. Smaller aggregates were better supplied with oxygen due to a larger surface-to-
volume ratio, which resulted in faster growth and an earlier onset of denitrification. In larger aggregates, 
the onset of denitrification was more gradual, but with comparably higher N2O production rates once the 
anoxic aggregate centers were fully developed. 

The normalized electron flow from the reduced carbon substrate to N-oxyanions (𝑒𝑒denit
− /𝑒𝑒total

−  ratio) could 
be solely described as a function of initial oxygen concentration in the headspace with a simple, 
hyperbolic model, for which the two empirical parameters changed with aggregate size in a consistent 
way. These findings confirm the important role of soil structure on N2O emissions from denitrification by 
shaping the spatial patterns of microbial activity and anoxia in aggregated soil. Our dataset may serve as a 
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benchmark for constraining or validating spatially explicit, biophysical models of denitrification in 
aggregated soil. 

Introduction 

Emission and uptake of greenhouse gases (CO2, CH4, N2O) by soil are subject to pronounced spatial and 
temporal fluctuations. Emission patterns in space and time appear to be controlled by the spatial and 
temporal distribution of labile organic matter (e.g., roots, crop residues, animal manure, particulate 
organic matter) and the occurrence of physicochemical conditions (e.g., temperature, soil moisture, 
anoxic volumes) favorable for specific microbial processes (e.g., nitrification, denitrification). This has 
led to the notion that the bulk of microbially driven greenhouse gas (GHG) turnover occurs in “hotspots” 
and during “hot moments” (Groffman et al., 2009; Kuzyakov and Blagodatskaya, 2015; Tecon and Or, 
2017; Vos et al., 2013). While the emission of carbon dioxide (CO2) through soil respiration exhibits a 
fairly low spatio-temporal variability, nitrous oxide emissions (N2O) are a notorious example for extreme 
variability. Sampling campaigns with undisturbed soil often exhibit a log-normal distribution of 
denitrification activity in aerated soil with numerous “coldspots“ without emissions and some samples 
with very high emissions (Mathieu et al., 2006; Röver et al., 1999). In a seminal study Parkin (1987) 
demonstrated that 25-85% of denitrification activity was associated with particulate organic matter that 
comprised less than 1% of the soil volume. Thus, a better understanding of denitrification activity on 
microscopic scales is required to improve predictions of N2O emissions at relevant spatial scales.  

Denitrifiers are facultative aerobes that start to denitrify when oxygen becomes limiting. The reduction 
of nitrate (NO3

- ) to dinitrogen (N2) occurs via a series of enzymatic steps and intermediates (NO2
- , NO, 

N2O)(Philippot et al., 2007). The basic requirements for heterotrophic denitrification in soil are (1) the 
presence of decomposable carbon supplying electrons for anaerobic respiration, (2) a shortage of O2 as 
electron acceptor, (3) the availability of NO3

-  as an alternative electron acceptor and (4) a microbial 
community that has the capacity to express the enzymes for some or all reduction steps in denitrification. 
Key soil environmental factors that govern denitrification are well understood and can be roughly 
grouped into biochemical constraints and physical constraints, but it is the interaction of all factors that 
causes the seemingly erratic nature of denitrification activity in soils. Firstly, denitrification is constrained 
biochemically by the availability and quality of carbon substrates in soil such as root exsudates, plant 
litter and soil organic matter. Besides sustaining denitrification, organic substrates fuel aerobic 
respiration, thus enhancing local anoxia in micro-sites. Secondly, the denitrifier community is composed 
of species exhibiting different regulatory phenotypes (Bergaust et al., 2011) that differ in completeness 
and timing of denitrification gene transcription. This causes the onset of denitrification as well as the 
accumulation of intermediates to be different for different denitrifying communities (Dörsch et al., 2012). 
Notably, a significant fraction of the denitrifiers does not have the genetic capacity to reduce N2O (Jones 
and Hallin, 2010) and it is debated whether functional redundancy enabling complete denitrification is 
always warranted in soil microbial consortia at a micro-scale (Philippot et al., 2011; Philippot et al., 
2013). Simplistic estimates of spatially explicit bacterial diversity in soil suggest that moderately active 
soil (109 cells g−1 soil) harbors around 100 bacterial species within interaction distance (<20μm) and this 
number remains below 400 in hotspots (1010 cells g−1 soil) (Raynaud and Nunan, 2014). Thirdly, 
microbial activity as well as post-transcriptional regulation are controlled by environmental factors such 
as the presence of N-oxides (NO2

- , NO, N2O), temperature and pH. It is well known, for instance, that a 
low pH suppresses the N2O reductase enzyme post-transcriptionally so that the molar ratio between N2O 
and N2 is shifted towards N2O (Bakken et al., 2012; Liu et al., 2010; SImek and Cooper, 2002). On the 
other hand, diffusion of reactants and products to and from the sites of microbial denitrification are 
constrained physically in the soil matrix. The diffusion pathways for gaseous fluxes are mainly governed 
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by the water content, because the diffusion coefficients are many orders of magnitudes smaller in water 
than in air. This leads to the well-known phenomenon that N2O emissions exhibit a threshold behavior 
around a water saturation of 70% and peaks around 90% (Linn and Doran, 1984a; Ruser et al., 2006) at 
which the air becomes discontinuous. With lost air continuity the average distance for dissolved oxygen 
to reach a microbial hotspot starts to diverge from the size of the hotspot itself to typical aggregate sizes. 
If aggregation is poorly developed, then the mean diffusion length amounts to the average half distances 
between air-filled macropores. At higher saturation, the N2O/N2 ratio shifts towards N2, because large 
fractions of the soil become anoxic so that dissolved N2O is consumed where it is produced or during its 
extended diffusion path towards the atmosphere. Even the role of wet soils as a sink for atmospheric N2O 
is debated but poorly investigated (Chapuis-Lardy et al., 2007; Kolb and Horn, 2012). Finally, 
denitrification activity in hotspots can also be constrained by nitrate diffusion to sites of active 
denitrification (Smith, 1990). The well-known observation that nitrate amendment leads to increased 
denitrification activity is often interpreted from a biochemical standpoint as the effect of a high half-
saturation constant of dissimilatory NO−

3 reductase(Firestone, 1982). Yet, by employing Fick’s law it can 
be shown that the diffusion flux into a hotspot also scales linearly with the concentration gradient between 
the NO−

3 depleted hotspot and the external NO−
3 concentration regulated by the nitrate amendment 

(Myrold and Tiedje, 1985). Hence, the high half-saturation constant can simply be a consequence of a 
NO−

3 diffusion constraint. 

Microscale denitrification models that combine the aforementioned biochemical and physical controls 
based on a set of reaction-diffusion equations typically employ individual soil aggregates as a model 
domain (Arah and Smith, 1989; Leffelaar and Wessel, 1988). Assuming a steady-state situation and 
uniform initial substrate concentration, the denitrification activity typically scales with the volume 
fraction of the anoxic aggregate center which, in turn, is mainly controlled by the aggregate size. The 
resulting oxygen profiles as a function of distance to the aggregate boundary typically exhibit an 
exponential decline at a rate that scales with microbial activity. This has been confirmed experimentally 
with micro-sensors (Højberg et al., 1994; Sexstone et al., 1985; Zausig et al., 1993). Currently, new 
models are underway that allow for numerical experiments on the role of substrate location for 
denitrification activity through spatial self-organization of aerobic and anaerobic species along oxygen 
gradients (Ebrahimi and Or, 2015). A major outcome is that an internal carbon source such as sequestered 
particulate organic matter is more efficient in invoking denitrification activity in an anoxic micro-site than 
an external carbon source like dissolved organic matter. 

Such new insights into spatially explicit, micro-scale denitrification models call for new, systematic 
laboratory experiments on denitrification in soil aggregates. The objective of this study was to explore the 
impact of aggregate size and external oxygen concentration on aerobic and anaerobic respiration in model 
soil aggregates. For this, we inoculated the aggregates with a single bacterial strain (Agrobacterium 
tumefaciens), which is able to switch from aerobic respiration to denitrification. In this way, the physical 
constraints on denitrification kinetics could be studied without the added complexity of spatial or 
temporal patterns in denitrification activity through interactions within bacterial consortia. Furthermore, 
the delicate balance between N2O and the difficult to quantify N2 production could be neglected as A. 
tumefaciens lacks the nosZ gene encoding N2O reductase and hence has N2O as its final denitrification 
product. This still leaves a wealth of diffusion and reaction processes co-occurring within an aggregate as 
depicted in Figure ?. Denitrification activity was assessed by incubating differently sized aggregates 
loosely placed in closed bottles and monitoring O2 depletion and N2O accumulation in the headspace of 
the bottles at high resolution until the added carbon source (succinate) or the electron acceptor (NO−

3) 
were depleted. We did not measure dissolved oxygen directly, but inferred the spatial extent of the anoxic 
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volume from denitrification kinetics. The data can be used to predict the critical aggregate size for 
denitrification in A. tumefaciens to occur at different external O2 concentrations. 

Materials & Methods 

Bacterial strain and growth medium 

We used a pure culture of the bacterial strain Agrobacterium tumefaciens C58 (ATCC 33970), a 
facultative anaerobic α-proteobacterium, which lacks the genes encoding nitrous oxide reductase (Baek 
and Shapleigh, 2005; Bergaust et al., 2008). Therefore N2O was the final denitrification product. 
Sistrom’s medium (Sistrom, 1960) with an initial pH of 7 was used as growth medium. The medium 
contained (l−1): K2HPO4 3.48 g, NH4Cl 0.195 g, succinic acid 4 g, L-glutamic acid 0.1 g, L-aspartic acid 
0.04 g, NaCl 0.5 g, nitrolotriacetic acid 0.2 g, MgSO4∗7H2O 0.3 g, CaCl2∗7H2O 15 mg and FeSO2∗7H2O 
7 mg. In addition, trace elements and vitamins were added (l−1): EDTA (triplex 3) 1.765 mg, ZnSO4∗7H2O 
10.95 mg, FeSO4∗7H2O 5 mg, MnSO4∗ 7H2O 1.54 mg, CuSO4∗ 5H2O 0.392 mg, Co(NO3) 7∗ 6H2O 
0.248 mg, H3BO3 0.114 mg, nicotinic acid 1 mg, thiamine HCl 0.5 mg, biotin 0.01 mg. pH was brought to 
7.0 with 10 M KOH and the medium was sterilized by autoclaving. KNO3 was added to the medium to a 
concentration of 5mM as a substrate for denitrification. A stirred culture was grown aerobically at 25∘C. 
Cells were harvested during exponential growth by centrifugation (10000 rpm for 7 min). The resulting 
cell pellets were immediately resuspended in fresh growth medium to a density of ≈3×109 cells ml−1 
which is typical for hotspots in real soil (Raynaud and Nunan, 2014). The cultures were kept on ice to 
inhibit growth until the start of the experiment. 

Aggregate inoculation 

Porous borosilicate glass beads (VitraPOR P100, ROBU Glasfilter Geräte GmbH, Hattert Germany) 
served as a simplified analogue for soil aggregates. The sintered glass beads had a porosity of 32 % and an 
internal pore size in the range of 45-100 μm. Two different bead sizes were used with a diameter of 
3.5 mm and 7 mm and an internal pore volume of 8.3±0.2 μl and 64.0±0.6 μl, respectively. In the 
following these will be referred to as small and large aggregates. The shape and internal pore structure as 
obtained via X-ray microtomography are depicted in Figure 40. After submersion of the aggregates in the 
growth cultures, roughly 3% of the pore space was filled with entrapped air (data not shown). These 
bubbles were removed completely from the submersed aggregates through vacuum application in a gas-
tight bottle for 1-2 min. 
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Figure 43: (a) An anoxic aggregate center of variable extent is expected to form during incubation. Here it is depicted 
within a sub-volume of a 3.5 mm aggregate scanned with X-ray micro-tomography, showing the grains in gray while the 
liquid-filled pore space is transparent. Arrows are drawn proportionally to the expected fluxes between the headspace, 
aggregate margin and center. Precursor substances of aerobic respiration and denitrification (substrate, O2, NO3

-) as well 
as final products (CO2, N2O) are drawn as one-sided arrows, whereas intermediate substances may diffuse in any 
direction depending on concentration gradients. (b) Two different aggregate sizes (3.5 mm, and 7 mm diameter) were 
used for incubation. Identical fluid volumes (0.83 ml) were used during incubation by adjusting the number of inoculated 
aggregates per bottle (100 and 13). 

Either 100 small or 13 large aggregates were placed into empty 120 ml glass bottles so that in both cases 
the pore volume inside of the aggregates filled with cell culture was about 830 μl per bottle, with some 
10-20% additional liquid adhering to aggregate surfaces by weak capillary forces. After closing the 
bottles with an air-tight butyl rubber septum, the bottles were purged with helium by applying five cycles 
of vacuum and He filling. The bottles were immediately spiked with oxygen, to adjust final 
concentrations (v/v) of 13%, 7%, 3.5%, 2% and 0% O2 in the head space. Hence, the pre-incubation of 
the cell cultures was aerobic during the entire sample preparation, except for the short intervals of 
degassing and He purging. Two replicates were prepared for each aggregate size and initial oxygen 
concentration, resulting in a total of ten treatments and twenty bottles. Finally, the bottles were moved 
from the ice bath to a water bath kept at 20∘C to initiate microbial activity and the overpressure that built 
up due to spiking with O2 and warming of the bottles was released, before the gas chromatography (GC) 
measurements started.  

Incubation 

The incubations were carried out with a robotized incubation system consisting of an autosampler (GC-
PAL, CTC Analytics, Zwingen, Switzerland) connected to a GC (Agilent Model 7890A, Santa Clara, CA, 
USA) and an NO analyzer (Teledyne T200, San Diego, CA, USA), allowing for repeated headspace 
analysis of oxygen (O2) and carbon dioxide (CO2) as well as the denitrification products nitric oxide 
(NO), nitrous oxide (N2O) and dinitrogen (N2) via a peristaltic pump (Molstad et al., 2007). The gas 
volume (≈1ml) lost with each sampling was automatically replaced by He, so that the pressure in the 
bottles was kept at ≈1 atm. The bottles were sampled every three hours for 45 hours. The nitrate (NO3

- ) 

and nitrite (NO2
- ) concentrations that remained in the aggregates at the end of the experiment were 
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measured with a colorimetric assay. To do so, all bottles were kept on ice after the experiment and 
aggregates from each treatment were thoroughly crushed in a mortar and taken up with 0.9% NaCl 
solution. The turbid fluid containing medium, cells and bead fragments was collected in Eppendorf tubes 
and centrifuged (10000 rpm, 5 min) to obtain a clear solution. The protocols for nitrite and nitrite + nitrate 
quantification were adapted from Keeney and Nelson (1982) and Doane and Horwáth (2003). Nitrate 
concentrations were obtained through subtraction using two technical replicates per assay. The 
spectrophotometric measurement was carried out at 540 nm (Tecan infinite F50, Tecan, Männedorf, 
Switzerland) and converted into concentrations through calibration curves.  

Results 

Aggregate size effects 

Aerobic microbial respiration as determined by decrease in O2 and increase in CO2 over time in Figure 
41(a,b) was clearly limited by the carbon substrate in the aerobic cultures. Depletion of succinate was 
indicated by a slow-down of O2 consumption, which occurred in the small aggregates, depending on 
initial O2 level, between 15 and 30 h into the incubation. O2 consumption after this period was reduced 
substantially. The slow-down in O2 consumption and CO2 accumulation occurred synchronously. The 
added succinate in the fresh growth medium amounted to 68μmol C/bottle, of which 27-35μmol/bottle 
were converted to CO2, which suggests a yield factor between assimilation and total carbon consumption 
of 0.4-0.5 depending on treatment. However, the absolute accumulation of CO2 in the headspace might 
have been reduced by an increase in CO2 solubility due to a pH increase caused by the reduction of NO3

-  

to NO2
- . Respiration kinetics in Figure 41(a,b) show that microbial activity was clearly delayed in the 

large aggregates as compared to the small aggregates. Irrespective of aggregate size, the onset of substrate 
depletion as well as the total amount of produced CO2 at the end of the experiment scaled positively with 
the O2 concentration in the headspace. The higher the amount of external O2, the steeper the gradient 
between dissolved O2 at the aggregate boundary and in the aggregate center, which in turn results in a 
larger diffusive flux, a better supply with O2 and eventually a smaller extent of anoxic centers.  
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Figure 44: Respiration kinetics of A. tumefaciens in small and large aggregates at five initial oxygen concentrations shown 
as average headspace concentrations (n=2) of (a) O2, (b) CO2, (c) NO and (d) the final denitrification product N2O. 
Shaded areas represent standard deviations. 

Note that microbial respiration in the completely anoxic treatments (0% O2) was exceptionally small, 
irrespective of aggregate size. This effect can be explained by unbalanced kinetics of denitrification 
associated enzyme induction in A. tumefaciens. Sudden anoxia in growing cultures resulted in pronounced 
NO release, accumulating NO to more than 1μmol/bottle, which corresponds to more than 0.5μM in the 
liquid medium (Figure 41 (c)). Dissolved NO concentrations >0.3μM have been shown to repress 
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metabolic activity in A. tumefaciens (Bergaust et al., 2008). In all oxic treatments the NO concentrations 
were 1-2 orders of magnitude smaller. In the small aggregates the NO peak coincided with the depletion 
of the primary carbon substrate, after which NO was quickly consumed by the microbes inside the 
aggregates. The oxic treatment with the lowest oxygen concentration (2% O2) showed an interesting 
double peak in NO, one at a very early stage in the logarithmic growth phase and another shortly before 
succinate was depleted. Except for the 2% O2 treatment, large aggregates did not show a clear NO peak 
but higher steady-state NO concentrations than small aggregates towards the end of the incubation, 
suggesting different denitrification kinetics in small and large aggregates. 

N2O accumulation in the headspace followed a characteristic pattern with respect to initial O2 
concentration (Figure 41(d)). The lower the initial O2 concentration in the headspace, and the less oxygen 
was available for aerobic growth, the more N2O accumulated as the final denitrification product. In the 
small aggregates denitrification abruptly stopped after ca. 18 h. At this point all succinate was consumed 
(as judged from the O2 and CO2 kinetics, Figure 41(a,b)). 

Microbial respiration beyond the point of succinate depletion was small and likely fell below the rate of 
O2 diffusion into the aggregate so that the anoxic centers vanished. Larger aggregates released N2O more 
gradually because slower aerobic growth led to less anoxia initially. The point in time when the N2O 
accumulation in the large aggregates exceeded the value from small aggregates decreased with increasing 
oxygen concentration in the headspace from 36 h (2% O2) to 28 h (3.5% O2), 21 h (7% O2) and 16 h (13% 
O2). The total N2O production by large aggregates was either as large (2% O2) or 25% (3.5% O2), 50% 
(7% O2) and 100% (13% O2) larger than in the small aggregates with comparable oxygen concentrations. 
Here as well, N2O accumulation leveled off when O2 consumption decreased due to C-limitation. 
Aggregates incubated without O2 (0 vol-%) exhibited a delayed accumulation of N2O. Only after 
approximately 24 h did NO start to be net consumed and N2O production rates increased. 

The recovery of the initially added NO3
- -N (4.15 μmol per bottle) ranged between 88-102% in the oxic 

treatments with large aggregates (Figure 42). Less N was recovered in the treatments with small 
aggregates (51-100%) and the mismatch increased with increasing oxygen levels. Presumably, with 
higher oxygen availability, cell growth exceeded the supply of ammonia contained in the medium so that 
some nitrate was assimilated. In both anoxic treatments more N was recovered than supplied with the 
added nitrate when estimated from the internal porosity of the aggregates, but was still within a range that 
could be explained with surplus of medium by liquid adhering to aggregate surfaces (118-122%). In 
general, the N-mass balances indicate that negligible amounts of denitrification intermediates (NO2

- , NO) 
accumulated, while the partitioning into N still 
present as nitrate after 45 h incubation and N 
denitrified to N2O followed a similar pattern over O2 
availability for both aggregate sizes.  

  

Figure 45: Nitrogen mass balance in small aggregates (left 
panel) and large aggregates (right panel) after 45 h of 
incubation at different initial O2 concentrations  depicted as 

the sum of NO3
- -N (supplied with the medium), accumulated 

denitrification intermediates (NO2
- -N, NO-N) and the final 

product (N2O-N). The estimated amount of initial NO3
- -N is 

depicted as a horizontal bar. 
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Discussion 

Denitrification kinetics 

Denitrifying bacteria fall into different categories denoted as denitrification regulatory phenotypes 
(Bergaust et al., 2011), depending on how they manage the transition from oxic to anoxic conditions. The 
optimal switch between respiration strategies is important for two reasons: (1) The ATP yield by aerobic 
respiration is higher than by denitrification, thus, electrons should be directed towards oxygen when 
possible. (2) The enzymes for denitrification activity have to be expressed before oxygen is completely 
depleted, so that cells do not get caught in a situation of metabolic arrest. Batch incubation experiments 
with stirred cultures with nitrate amendment and the same growth medium have shown that 
Agrobacterium tumefaciens belongs to a common denitrification regulatory phenotype with a sequential 
production of denitrification intermediates (Bergaust et al., 2011; Bergaust et al., 2008). Nitrate reduction 
is induced while oxygen is still present, whereas nitrite and NO reduction commence after oxygen 
depletion. In cultures where oxygen depletion was too rapid, NO accumulated to toxic concentrations, 
resulting in respiratory arrest (Bergaust et al., 2008). This general pattern was confirmed by our study. 
Indeed, NO production was maximal and growth delayed when the aerobic inoculum was suddenly 
subjected to 0% oxygen conditions. In the oxic treatments NO and N2O accumulation in the headspace 
commenced simultaneously. In larger aggregates, the NO peak was widened into a broad plateau at lower 
levels. Presumably, the oxic aggregate margins were thicker in larger aggregates with more gradual 
growth, so that a quick NO release was buffered by longer diffusion distances between the production 
sites in the anoxic aggregate center and the headspace, causing longer residence times which increased the 
chance for NO reduction along the way.  

5.2  Anoxic aggregate centers 

The purpose of our experiment was to study denitrification kinetics under dynamic growth conditions, in 
contrast to steady-state conditions which are typically invoked as a simplifying assumption in physically-
based denitrification models (Arah and Smith, 1989; Leffelaar and Wessel, 1988). Hence, we needed to 
account for the different growth rates when comparing the denitrification kinetics in both aggregate sizes, 
since the cells grew faster in small aggregates due to a better oxygen supply caused by a larger surface-to-
volume ratio. A correction for growth effects can be achieved by analyzing N2O/CO2 ratios as depicted in 
Figure 43(a), i.e. the amount of N2O as the final product of denitrification is normalized against CO2 as 
the final production of respiration. There was hardly any difference in normalized denitrification between 
the two aggregate sizes at the same initial oxygen level during the first 12h. Only after the anoxic centers 
were fully established in the aggregates two consistent trends evolved. First, denitrification was always 
larger in the large aggregates, irrespective of external O2 concentration, implying that the volume fraction 
of anoxic centers is smaller in small aggregates. Second, denitrification increased with decreasing 
external O2 concentration, as the diffusive flux of O2 was driven by the gradient between the oxygen 
depleted aggregate centers and the dissolved O2 at the aggregate boundary, which is in equilibrium with 
the concentration of gaseous O2 in the headspace of the bottle. Interestingly, doubling of the aggregate 
size had roughly the same effect on the final N2O/CO2 ratio as a reduction of external O2 concentration by 
50%. The absolute values of the N2O/CO2 ratio, however, should not be taken for granted due to the 
expected pH increase caused by nitrate reduction that changes CO2 solubility. 
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Figure 46: (a) Time series of the N2O/CO2 ratio shown as average (lines) and standard deviation (shaded area) for two 
replicates of small aggregates (solid) and large aggregates (dashed) at five different initial O2 concentrations. (b) Ratio of 
electron flow diverted in denitrification and total electron flow both measured and modeled with eq. (20). The inset shows 
the time series of electron flows for two selected treatments (large aggregates at 2% O2, blue, and small aggregates at 7% 
O2, green). 

 

A more direct approach to assess denitrification activity is to compute the fraction of electron flow 
diverted to electron acceptors for anaerobic respiration (𝑒𝑒denit− , including NO3

−, NO2
−,NO) and total 

respiration (𝑒𝑒total− , including NO3
−, NO2

−,NO and O2)(Bergaust et al., 2008). Time series of these electron 
flows are shown for selected treatments in Figure 43(b,inset). The ratio of cumulative electron flows at 
the end of incubation exhibited a systematic trend (Figure 43b) that is described by a hyperbolic 
relationship between the e−denit/e−total ratio [%] and the initial oxygen concentration CO2 [%]: 

𝑒𝑒denit−

𝑒𝑒total− = 100 �1 − �
𝐶𝐶𝑂𝑂2
100

�
𝑎𝑎

�
𝑏𝑏

 (20) 

 

 

where 𝑎𝑎 and 𝑏𝑏 are dimensionless fitting parameters. The values of the fitting parameters are shown in 
Table 4. The fit across all investigated oxygen levels was excellent for both aggregate sizes. Note that a 
similar model of the form [𝑎𝑎/(𝑎𝑎 − 𝐶𝐶𝑂𝑂2)]𝑏𝑏 was also capable to reproduce the sharp decline in the electron 
flow ratio with only slightly larger errors, whereas an exponential model resulted in a too smooth decline 
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(data not shown). The good model fit across a wide oxygen range may allow for extrapolation towards 
higher O2 concentrations. At ambient conditions (21% O2), small aggregates are likely to be devoid of 
anoxia, whereas large aggregates may still have roughly 2% of electron flow diverted to denitrification. 
The outer exponent 𝑏𝑏 was roughly increased by a factor of two, as the aggregate diameter was doubled. 
This consistent scaling of the exponent suggests that predictions for larger aggregates are feasible, but this 
cannot be validated on a set of two different aggregate diameters. Further experiments would be 
necessary.  

Table 4: Fitting parameters (𝒂𝒂,𝒃𝒃) for the hyperbolic relationship between initial oxygen concentration and the ratio of 
electron flows (eq. 20) for large and small aggregates. Fitting is done by minimizing the weighted errors between the 
measurements and model using the standard deviation between two technical replicates as weighting factor. The root 
mean square error (RMSE) is also reported. 

size a b weighted error RMSE 
 large 0.0955 2.4189 0.0016 0.0414 
small 0.0240 1.0935 0.0016 0.0712 
 

Consequences for greenhouse gas emissions from ”hotspots“ in soil 

The delicate balance between growth rates and the transient formation of anoxic centers led to a rich 
variety of denitrification dynamics which resulted from the interplay of a number of diffusive fluxes 
summarized in Figure 40(a). The diffusive flux of oxygen into the aggregates and the diffusive flux of the 
final respiration products (CO2 and N2O) out of the aggregates can be considered as uni-directional 
processes that solely depend on concentration gradients, since the diffusion coefficient does not change at 
constant (complete) saturation. Likewise, the diffusive flux of the dissolved carbon substrate (succinate) 
from the less active, anoxic aggregate center into the more substrate-depleted, oxic aggregate margin as 
well as the diffusive flux of nitrate from the well O2-supplied aggregate margin into the actively 
denitrifying aggregate center are uni-directional, yet without any exchange with the headspace. Finally, 
the diffusion of intermediates (NO2

- , NO) is bi-directional and changing during incubation. Therefore, it 
might look surprising that a rather simple model with two empirical parameters is able to capture the 
denitrification behavior for a large range of oxygen concentrations and different aggregate sizes. 
However, this can be ascribed to the fact that (1) all oxic treatments were equally constrained by electron-
donor and not electron-acceptor limitation and (2) that the model describes cumulative electron fluxes and 
not denitrification kinetics.  

There are several reasons why our findings cannot be directly transferred to natural conditions. Natural 
consortia and a more complex composition of reduced carbon in soil would lead to coexistence and 
spatially separated niches causing spatial and temporal variability of aerobic respiration and 
denitrification activity (Kuzyakov and Blagodatskaya, 2015; Vos et al., 2013) as well as other N2O 
forming processes (e.g., nitrification) to occur simultaneously (Philippot et al., 2007; Stange et al., 2013). 
While the sudden removal of oxygen that was induced in the anoxic treatments could certainly occur 
under natural conditions, e.g., after a heavy rainfall, the toxic NO accumulation would not happen in 
natural consortia with a certain amount of functional redundancy (Schimel and Schaeffer, 2012). 
Moreover, a mobile carbon substrate like dissolved organic matter is likely to evoke a different spatio-
temporal pattern in aerobic respiration and denitrification than a stationary carbon substrate like 
particulate organic matter (Ebrahimi and Or, 2015). An exponentially growing culture foraging on a low-
molecular carbon substrate like in our experiments may also occur under natural conditions, when easily 
decomposable organic matter is added to the soil (e.g., animal manure, plant residues after harvest or 
plowing). But this scenario is rather an exception, whereas a steady-state or gradual change in microbial 
activity typically prevails in soil. Nevertheless, dynamic growth also poses an interesting case for 
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modeling. Even though hotspots of microbial activity are believed to be the dominating sites of 
denitrification in soil, they cannot readily be investigated in isolation from the surrounding soil matrix, as 
the varying water content in the soil matrix acts as a major control on the micro-environmental conditions 
in the hotspots. Changing the external O2 concentration as a substitute for changing water contents is only 
an indirect analogue as it does not account for dilution of nitrate and carbon substrate as well as the 
osmotic effects induced by a rewetting event (Fierer and Schimel, 2003; Groffman et al., 2009). 
Moreover, undisturbed soil structure does typically not manifest itself as isolated, well-sorted aggregates 
but a coherent soil matrix pervaded with a complex pore network (Rabot et al., 2018). Hence, the 
aggregate size should rather be interpreted as the typical distance to the closest air-filled pore (Schlüter 
and Vogel, 2016) and the varying oxygen levels for instance as a depth gradient in the partial pressure of 
O2 within a soil profile. Finally, experiments in closed systems affect the residence time of gaseous 
intermediates which increases the chances of soil to act as a sink for NO and N2O (Chapuis-Lardy et al., 
2007). 

Despite those limitations our simplified incubation experiment may serve as an interesting case for 
studying the dynamics of soil denitrification as an important source of N2O. Thus, the experiments with 
artificial aggregates may provide a useful benchmark data set for physically-based diffusion-reaction 
models of microbial activity in model soil aggregates. The pioneering studies of Leffelaar and Wessel 
(1988) and Arah and Smith (1989), which assumed simplified one-dimensional, radial domains, are 
gradually superseded by spatially explicit, three-dimensional models of the pore space (Ebrahimi and Or, 
2015; Ebrahimi and Or, 2014; Falconer et al., 2015) that can be directly derived from X-ray CT scans like 
shown in Figure 40(a). These models can inherently take into account the fragmentation of microbial 
niches under normal hydraulic conditions due to a discontinuous water phase as well as increased 
microbial dispersal after a rewetting event (Tecon and Or, 2017). They have the potential to explore 
microscopic biochemical processes, which are impossible to measure directly, in order to inform or 
improve macroscopic models of greenhouse gas emission, which operate with emergent properties on 
much larger scales like transient, anoxic soil volumes (Ebrahimi and Or, 2016; Li et al., 2000). The 
development of a new spatially-explicit, physically-based model of denitrification kinetics based on the 
modeling framework of (Hron et al., 2015) is currently underway, but beyond the scope of the study. 

Conclusions 

This incubation experiment clearly demonstrates how denitrification in fully saturated aggregates is 
governed by physical constraints that give rise to a transient formation of anoxic aggregate centers. The 
spatial gradients in dissolved oxygen which drive the diffusive flux are controlled by the aggregate size 
and the external oxygen concentration in very predictable ways. The better supply with oxygen in small 
aggregates leads to faster growth and an earlier onset of N2O emission, whereas larger aggregates have a 
larger N2O accumulation and larger N2O/CO2 production ratio on the long run. The main conclusions for 
physically-based modeling is that under dynamic growth conditions denitrification activity can only be 
predicted if both the aggregate size and the oxygen concentration at the aggregate surface are known.  

The reduction of external oxygen concentration consistently leads to a reduction in aerobic respiration as 
well as to an increase in the denitrification activity and the N2O/CO2 production ratio. The cumulative 
diversion of electrons from reduced carbon to N-oxyanions is perfectly described by a simple, empirical 
model across a large oxygen concentration range, which confirms the dominant role of physical 
constraints on N2O emissions from these simplified model aggregates inoculated with a single bacterial 
strain and a simple growth medium. 

Incubation studies with these simplified soil aggregates can be extended towards more realistic soil 
conditions in several ways. We are currently working with experimental setups, in which aggregates are 
inoculated with different bacterial strains and embedded in explicit geometries in a sandy soil matrix 
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adjusted to different water contents to account for interactions between hotspots and to explore the role of 
spatial distribution of hotspots on greenhouse gas emissions. 
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3.3. Physical constraints for respiration in microbial hotspots in soil 
and their importance for denitrification (Schlüter et al. 
Biogeosciences Discussions, 2019, 1-31, doi:10.5194/bg-2019-2) 

 

Abstract 

Soil denitrification is the most important terrestrial process returning reactive nitrogen to the atmosphere, 
but remains poorly understood. In upland soils, denitrification occurs in hotspots of enhanced microbial 
activity, even under well-aerated conditions, and causes harmful emissions of nitric (NO) and nitrous 
oxide (N2O). Timing and magnitude of such emissions are difficult to predict due to the delicate balance 
of oxygen (O2) consumption and diffusion in soil. To study how spatial distribution of hotspots affects O2 
exchange and denitrification, we embedded porous glass beads inoculated with either Agrobacterium 
tumefaciens (a denitrifier lacking N2O reductase) or Paracoccus denitrificans (a ”complete” denitrifier) in 
different architectures (random vs. layered) in sterile sand adjusted to different water saturations (30%, 
60%, 90%) and  measured gas kinetics (O2, CO2, NO, N2O and N2) at high temporal resolution.  Air 
connectivity, air distance and air tortuosity were determined by X-ray tomography after the experiment. 
The hotspot architecture exerted strong control on microbial growth and timing of denitrification at low 
and intermediate saturations, because the separation distance between the microbial hotspots governed 
local oxygen supply. Electron flow diverted to denitrification in anoxic hotspot centers was low (2-7%) 
but increased markedly (17-27%) at high water saturation. X-ray analysis revealed that the air phase 
around most of the hotspots remained connected to the headspace even at 90% saturation, suggesting that 
the threshold response of denitrification to soil moisture could be ascribed solely to increasing tortuosity 
of air-filled pores. Our findings suggest that denitrification and its gaseous product stoichiometry do not 
only depend on the amount of microbial hotspots in aerated soil, but also on their spatial distribution. We 
demonstrate that combining measurements of microbial activity with quantitative analysis of diffusion 
lengths using X-ray tomography provides unprecedented insights into physical constraints regulating soil 
microbial respiration in general and denitrification in particular. This opens new avenues to use 
observable soil structural attributes to predict denitrification and to parameterize models.  Further 
experiments with natural soil structure, carbon substrates and microbial communities are required to 
demonstrate this under realistic conditions. 

Introduction 

Soil carbon and nitrogen turnover is governed by soil heterogeneity at the microscale. Much of the 
turnover is concentrated in microsites, providing favorable conditions (pO2, temperature, pH) and 
substrates (carbon, nutrients) for soil microbial activity. The partitioning of aerobic and anaerobic 
respiration in microsites is largely controlled by the water content in the soil matrix which defines the 
scale across which O2 diffuses towards microsites of high O2-consuming activity. Aqueous diffusion 
lengths range from distances across thin water films in well-aerated soils, to individual soil aggregates of 
different radii at field capacity, up to the distance to the soil surface when the soil is saturated (Ball, 2013; 
Elberling et al., 2011; Parkin, 1987; Smith et al., 2003). Aerobic respiration is less affected by soil 
moisture than anaerobic respiration and typically peaks around water saturations of 20-60% in forest, 
grass and cropland soils (Moyano et al., 2012; Ruser et al., 2006; Schaufler et al., 2010). Bulk soil 
respiration starts to decline at higher saturations due to the development of anoxic microsites with lower 
redox potential, supporting carbon mineralization at typically only a tenth of the rates observed under oxic 
conditions (Keiluweit et al., 2017). Denitrification, i.e. the dissimilatory respiration of N oxyanions 
instead of oxygen, is commonly observed at water saturations above 60-70% and peaks beyond 90% 
(Linn and Doran, 1984a; Ruser et al., 2006). The occurrence of anaerobic microsites is governed by the 
balance between saturation-dependent diffusion and microbial consumption of O2, which in turn depends 
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on the quantity, quality and distribution of soil organic matter in the soil matrix terms and environmental 
factors like temperature and pH, which control microbial activity (Nunan, 2017; Smith et al., 2003; Tecon 
and Or, 2017). In fact, water films around decaying plant material may suffice to induce anaerobic 
respiration, if microbial respiration exceeds O2 diffusion through that minute barrier (Kravchenko et al., 
2017; Parkin, 1987). 

The interplay between physical constraints and biological activity in soil controls microbial respiration at 
microscopic scales and complicates the prediction of denitrification and N-gas fluxes at larger scales. For 
instance, nitrous oxide (N2O) emissions show notoriously large spatial variability, which has been 
attributed to heterogeneous distribution of anoxic microsites in the soil (Mathieu et al., 2006; Parkin, 
1987; Parry et al., 1999; Röver et al., 1999). Together with the often observed high temporal variability of 
microbial respiration and its fluctuations under transient conditions, this has led to the notion of 
“hotspots” and “hot moments” for microbial activity and emissions (Groffman et al., 2009; Kuzyakov and 
Blagodatskaya, 2015). “Hotspots” of denitrification have traditionally been linked to diffusion constraints 
in soil aggregates. Cell numbers and O2 concentration have been shown to decline exponentially towards 
aggregate centers (Højberg et al., 1994; Horn et al., 1994; Sexstone et al., 1985; Zausig et al., 1993) and 
the critical aggregate radius for the development of anoxic centers and is typically >1 mm (Højberg et al., 
1994; Schlüter et al., 2018b; Sierra and Renault, 1996), However, anoxic microsites have also been 
reported for smaller aggregates (equivalent diameter of 0.03-0.13 mm) in well-aerated, repacked soils 
(Keiluweit et al., 2018).  

An important, but often neglected aspect of physical diffusion constraints on microbial respiration is the 
spatial distribution of microbial hotspots within the soil matrix. Incubation experiments were either 
designed to control the aggregate size in repacked soil (Mangalassery et al., 2013; Miller et al., 2009) or 
the volume fraction of sieved soil mixed evenly into sterile quartz sand (Keiluweit et al., 2018). Some 
incubation studies were carried out with undisturbed soil and investigated diffusion constraints within the 
pore network (Rabot et al., 2015). However, these studies did not address the location of hotspots nor the 
diffusion lengths towards air-filled pores. The vast majority of incubations studies merely reports bulk 
soil properties like carbon and nitrogen content, bulk density and water saturation. Notable exceptions are 
Kravchenko et al. (2017) who controlled the position of microbial hotspots by placing decaying plant leaf 
material into repacked soils with different aggregate sizes and water saturations and Ebrahimi and Or 
(2018), who placed several layers of remolded aggregates as artificial hotspots into a sand matrix and 
controlled the volume fraction of anaerobic and aerobic respiration by adjusting the water table in the 
sand column. Such systematic studies with simplified soil analogues, yet fully accounting for transport 
processes from and towards hotspots, including interactions between hotspots, are needed to improve our 
understanding about how physical constraints on microbial respiration control the anaerobic soil volume 
and transient denitrification activity. 

The objective of the present study was to study the interplay between microbial activity and physical 
diffusion in controlling aerobic and anaerobic respiration for different spatial distributions of hotspots. 
We embedded uniform artificial hotspots inoculated with denitrifying pure cultures (Schlüter et al., 
2018b) in sterile sand, which was adjusted to different water saturations. We hypothesized that the 
competition for oxygen would depend on the separation distance between the hotspots, which in turn 
would control microbial cell growth and O2 consumption and thus affect the timing of the aerobe-
anaerobe transition in respiration, i.e. the onset of denitrification. Further, by placing hotspots inoculated 
with complete (P. denitrificans) and truncated (A. tumefaciens) denitrifiers in distinct horizontal layers, 
we expected to see interactions with respect to overall N2O turnover. To capture the highly dynamic 
respiration kinetics, we monitored O2, CO2, NO, N2O and N2 exchange between the headspace and the 
sand-hotspot matrix at high temporal resolution. The morphology of the air-filled pore space in terms of 
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air connectivity, air tortuosity and air distance was determined by X-ray computed tomography after the 
experiment. 

Material and methods 

Microbial hotspots 

Two facultative anaerobic bacteria were used in this study. Paracoccus denitrificans expresses all 
denitrification enzymes necessary to reduce NO3

− to N2, whereas Agrobacterium tumefaciens lacks the 
gene nosZ encoding nitrous oxide reductase (N2OR), which makes N2O the final denitrification product. 
Moreover, the two strains differ in their regulatory phenotypes with respect to inducing denitrification in 
response to oxygen depletion, which leads to characteristic patterns of product accumulation (Bergaust et 
al., 2011). P. denitrificans induces NO and N2O reductase early during O2 depletion (Bergaust et al., 
2010), thus releasing little N2O. By contrast, A. tumefaciens is known to be less stringent in controlling 
intermediates which may result in the release of large amounts of NO, up to cell-toxic, milli-molar 
concentrations (Bergaust et al., 2008). Both strains were grown in Sistrom’s medium (Sistrom, 1960) as 
described in a previous study (Schlüter et al., 2018b), but at double strength to provide enough substrate 
for depleting O2 during aerobic growth. The medium was amended with 10 mM NH4NO3 and 5 mM 
KNO3 for anaerobic growth. To produce microbial hotspots, porous borosilicate glass beads (VitraPOR 
P100, ROBU Glasfilter Geräte GmbH) with a diameter of 7 mm, a porosity of 32% and a medium pore 
diameter of 60 µm were saturated with freshly inoculated growth medium (≈108 cells ml-1) by submersion 
into one of the two cultures. In the following, the inoculated porous glass beads are referred to as At- (A. 
tumefaciens) and Pd- (P. denitrificans) hotspots. Detailed information about the culture conditions and 
the inoculation procedure can be found in Schlüter et al. (2018b). 

Repacked sand 

Fifty At and Pd hotspots each were placed into 120 ml of washed, sterile quartz sand (0.2-0.5 mm grain 
size) yielding a volume fraction of 14% (20 ml; Fig. S8a). The sand was packed into 240 ml glass jars 
(Ball Corporation, Bloomfield, CA) in portions of 10 ml layers and adjusted to target saturation by adding 
sterile water with a spray can. The packing procedure resulted in some minor changes in porosity between 
layers and some larger gaps around the hotspots (Fig. S10) which affected air distribution in the sand 
(Fig. S9a). Three saturations were used, corresponding to water-filled pore spaces (WFPS) of 30, 60 and 
90%. The fully saturated hotspots were placed into the sand at three different architectures (Fig. 1). For 
the “random” distribution, the hotspots were placed in five equidistant (~9.8 mm, center to center) 
horizontal layers with a random distribution of ten At and ten Pd hotspots per layer. For the “layered 
At/Pd” and “layered Pd/At” distributions, all fifty hotspots of each strain were placed into one of two 
horizontal layers spaced 21 mm from each other (center to center) at an average headspace distance of 
18.2 and 39.2 mm, respectively, where the order represents top/bottom. Care was taken to keep the 
hotspots cool (on crushed ice) during the packing procedure. The pore size distribution of the porous 
hotspots and the sand in the bulk soil and in hotspot vicinity are reported in Fig. S10. 

Incubation 

To establish aerobic and anaerobic growth patterns and denitrification kinetics for both bacterial strains 
when growing inside the glass beads, a pre-experiment was conducted without sand. Fifty Pd or At 
hotspots were placed in empty 120 ml serum bottles (Fig. S6b) and incubated at 15°C under either oxic 
(He/O2 80/20% ) or anoxic (He 100%) conditions in two replicates per treatment. Headspace 
concentrations of O2, CO2, NO, N2O and N2 were measured every 4 h by piercing the septum with a 
hypodermic needle mounted to the robotic arm of an autosampler (GC-PAL, CTC Analytics, 
Switzerland). The autosampler was connected to a gas chromatograph (Agilent Model 7890A, Santa 
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Clara, CA, USA) and a NO analyzer (Teledyne 200. San Diego, CA, USA) via a peristaltic pump. 
Detailed information about the robotized incubation system and the experimental setup can be retrieved 
elsewhere (Molstad et al., 2007; Schlüter et al., 2018b). 

In the main experiment, freshly inoculated glass beads were packed into incubation vessels as described 
above, three replicates for each of the nine combinations of saturation and hotspot distribution. Jars with 
30% and 60% WFPS were flushed with He/O2 for 40 min, using ten cycles of vacuum (3 min) and 
purging (1 min). Jars with 90% WFPS were flushed using 180 cycles of mild vacuum (~ 600 mbar) and 
O2/He purging to avoid structural changes of the packed columns due to bubbling of trapped gas. The jars 
were then placed into a water bath kept at 15°C and after temperature equilibration O2/He overpressure 
was released. Gas concentrations in the headspace were analyzed as described above. Gas production and 
consumption kinetics were used to calculate the fraction of electrons diverted to O2 or N oxyanions and 
thus to estimate the contribution of denitrification to total respiration (𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑− 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−⁄ ) (Bergaust et al., 
2011; Schlüter et al., 2018b). The NO/(NO+ N2O + N2) and N2O/(NO+ N2O + N2) product ratios were 
estimated from the cumulative release of gaseous denitrification products (NO, N2O, N2), after subtracting 
precursors from products (NO from N2O + N2 and NO + N2O from N2). The rationale behind the latter 
was to mimic an open system, in which N-gases released to the atmosphere are not available any longer 
as electron acceptors for denitrification. Details about the calculation of denitrification product ratios can 
be found in the Supporting Information (chapter 6.4, SI 1.2 Methods: Product ratios). 

X-ray tomography and image analysis 

After the incubation experiment, the glass jars were scanned with X-ray micro-tomography (X-tek XCT 
225, Nikon Metrology) with a beam energy of 145 kV, a beam current of 280 µA, an exposure time of 
708 ms per frame, a 0.5 mm copper filter for reducing beam hardening artefacts and a total of 3000 
projection for a full scan. Individual hotspots were also scanned (100 kV, 90µA, 1000ms per frame, no 
filter) to analyze the internal pore morphology. The 2D projections were reconstructed into a 3D image 
with a resolution of 35 µm using a filtered-back projection algorithm in the X-tek CT Pro 3D software. 
Image processing from raw gray-scale data (Fig. 1a) to segmented data including sand grains, air and 
water (Fig. 1b-c) was carried out according to well-established protocols for multi-phase segmentation 
(Schlüter et al., 2014). The porous glass beads were assigned to At or Pd hotspots according to the 
orientation of the flat end in the random architecture or by the vertical position in the layered architecture 
(Fig. 1b-c). The segmented images were analyzed with respect to three different spatial attributes of the 
air-filled pore spaces deemed important for oxygen supply. 1. Air connectivity by distinguishing isolated 
air-filled pores and air-filled pores with a continuous path to the headspace (yellow and red in Fig. 1d). 
Air connectivity is then defined as the ratio of connected air-filled pore space and total air-filled pore 
space 2. Air tortuosity as derived from the geodesic length of connected air-filled pores. The geodesic 
length is the distance of any connected air voxel to the headspace along curved paths around obstacles 
like solid particles and water-blocked pores (Fig. 1e). Air tortuosity is the ratio between geodesic and 
vertical Euclidean distance to the headspace averaged over all connected, air-filled voxels. It is a proxy 
for the diffusive transport of gaseous oxygen in air-filled pores 3. Air distances of water-filled pores as 
defined by the average geodesic distance from any water voxel to the closest air-filled pore with 
headspace connection (white in Fig. 1f). Air distance is a proxy for the slow diffusive transport of 
dissolved oxygen. All image processing steps were carried out with Fiji/ImageJ (Schindelin et al., 2012) 
and associated plugins (Doube et al., 2010; Legland et al., 2016) or with VG Studio Max 2.1 (Volume 
Graphics). Each image processing and analysis step is explained in detail in the supporting information 
(chapter 6.4, SI 1.3 Methods: Image processing and analysis). 
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Figure 47. Spatial distribution of hotspots and spatial attributes of air-filled pore space in incubation jars. Upper panel: 
(a) X-ray CT scan of an incubation jar with random hotspot architecture and medium saturation (60% WFPS). (b) Image 
segmentation of the same jar into air (red), water (blue), sand (transparent), A. tumefaciens hotspots (orange) and P. 
denitrificans hotspots (green). (c) A different jar at medium saturation (60% WFPS) with layered Pd/At hotspot 
architecture. Lower panel: a jar with random distribution at high saturation (90% WFPS). (d) Air connectivity, 
determined as the volume fraction of air connected to the headspace (red, disconnected air shown in yellow). (e) Air 
tortuosity as derived from the geodesic length to the headspace within the connected air cluster. (f) Diffusion lengths 
determined as the geodesic length to the closest connected air cluster (white) within water-filled pores. 

Results 

Aerobic respiration and denitrification without sand 

At grew faster than Pd at 15°C in the experiment with loosely placed porous glass beads as indicated by 
faster O2 consumption and CO2 accumulation in the oxic treatment (Figure 2a,b). Also under fully anoxic 
conditions, At accumulated CO2 faster than Pd (Figure 2b). N-gas kinetics clearly reflected the distinct 
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regulatory phenotypes of the two bacterial denitrifiers. Anoxic At instantly accumulated a large amounts 
of NO (Figure 2c) which persisted until all NO3

- was reduced to N2O (as judged from the stable plateau 
in N2O, Figure 2d). Due to slower growth and O2 consumption, Pd induced denitrification much later 
than At, but accumulated less intermediates (NO, N2O) than At. Oxically incubated Pd accumulated no 
detectable NO, indicating efficient regulation of denitrification when switched slowly to anaerobic 
conditions in hotspots. Also, NO may have been reduced to N2O when diffusing from the anoxic center to 
the boundary of the hotspot. In the initially oxic treatments, denitrification contributed 7% to the total 
electron flow in At hotspots and 13% in Pd hotspots, reflecting the fact that (i) Pd has one more reduction 
step in the denitrification sequence and that (ii) At used less nitrate for anaerobic respiration in anoxic 
hotspots centers and more oxygen for aerobic respiration in oxic hotspots margins than Pd. 
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Figure 48: Gas kinetics of individual sets of hotspots inoculated with two different bacterial strains, under oxic and anoxic 
conditions: (a) O2, (b) CO2, (c) NO, (d) N2O, (e) N2. Note the logarithmic ordinate in (c) and (d). 

Effects of hotspot distribution in sand 

The distribution of microbial hotspots within the sand strongly impacted bulk respiration. This is evident 
for treatments with medium saturation (60% WFPS) for the first 210 h of incubation (Figure 3) and with 
other saturations for the entire incubation period (300 h; Fig. S11-13). The random distribution of 
hotspots allowed for much faster aerobic growth than the layered architectures, leading to complete 
consumption of O2 from the jars after 70 h (Figure 3a). Given the slow growth of Pd (Figure 2a), initial 
O2 consumption was dominated by the activity of At hotspots turning them partly anoxic. Hence, the 
pronounced NO peak in the random treatment, coinciding with complete O2 exhaustion from the 
headspace (Figure 3c), was due to At activity, similar to what was seen in the unconstrained At hotspots 
under anoxic conditions (Figure 2c). N2O production was observed long before O2 was depleted from the 
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headspace (Figure 3d) and is attributed entirely to At denitrification. Pd denitrification did not start 
before all O2 was depleted and manifested itself in a transient increase in N2O production at ~70 h 
together with an exponential increase in N2 production (Figure 3e) which was also observed with 
unconstrained Pd hotspots (Figure 2e). Note that the apparent net consumption of CO2 (Figure 3b) upon 
O2 depletion was due to internal alkalization driven by accelerating denitrification, once all hotspots 
turned anoxic. 

In the layered architectures, O2 consumption was slower and complete anoxia was not reached before 120 
h into the incubation. In contrast to the random architecture, less O2 was available for each individual 
hotspot in the densely packed hotspot layers, allowing for less aerobic growth per unit time. As a 
consequence, there was more time for fully denitrifying At hotspots to interact with Pd hotspots which 
induced denitrification gradually between 80 and 120 h. Indeed, less N2O accumulated in the headspace 
than in the random treatment (Figure 3d, Fig. S13d) and the onset of N2 accumulation appeared long 
before complete O2 depletion from the headspace (Figure 3a,e). In other words, Pd hotspots consumed 
N2O produced in At hotspots. Upon O2 depletion in the headspace, a burst of NO production occurred 
(Figure 3c) as seen previously with At hotspots (Figure 2c). However, since Pd denitrification was now 
fully developed, the NO peak was much more short-lived than with the random distribution, because Pd 
hotspots reduced NO produced by At hotspots all the way to N2.  
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Figure 49: Gas kinetics in all treatments at medium saturation (60% WFPS) for three different hotspot architectures : (a) 
O2, (b) CO2, (c) NO, (d) N2O, (e) N2. Note the logarithmic ordinate in (c) and (d). 

Effects of water saturation in sand 

Differences in water saturation resulted in different absolute amounts of oxygen initially present in the 
jars (Figure 4a) but did not affect the O2 concentration in the sand matrix. Oxygen was depleted slightly 
faster at 60% than at 90% saturation even though there was absolutely more O2 initially present at 60% 
WFPS. This illustrates the paramount role of oxic growth for the oxic-anoxic transition in the hotspots: 
the more O2 available initially, the stronger the aerobic growth and the faster the oxic-anoxic transition.  

Increasing saturation from 60 to 90% in the randomly distributed hotspots had a strong effect on the 
timing and accumulation of denitrification products. The expected NO burst upon O2 depletion was 
damped by two orders of magnitude (Figure 4c), because the oxic-anoxic transition proceeded more 
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smoothly in the 90% treatment and NO was reduced further to N2O before it could escape to the 
headspace. On the other hand, N2O and N2 production commenced earlier in the 90% than in the 60% 
treatment (Figure 4d-e), indicating that O2 availability was a priori smaller irrespective of metabolic 
activity (which was larger in the 60% treatment). The switch from net N2O production to net N2O 
consumption indicates the moment when microbial activity in Pd hotspots caught up with At hotspots. 

 

Figure 50: Gas kinetics of randomly placed hotspots at three different saturations: (a) O2, (b) CO2, (c) NO, (d) N2O, (e) N2. 
Note the logarithmic ordinate in (c) and (d).  

Surprisingly, O2 consumption in the 30% treatments was slow despite having the largest amount of O2 in 
the jar. This was caused by unintended substrate limitation. Due to overlapping pore size distribution 
between porous hotspots and sand (Fig. S10c), medium was sucked by capillary force from the hotspot 
into the surrounding sand, as could be seen in a parallel experiment with brilliant blue dye (Fig. S14). 
This separated cells, which were likely immobilized in the pore space of the hotspots, temporarily from a 
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considerable fraction of the carbon and NO3
− supplied with the medium, before the dissolved substrate 

would diffuse back into the hotspots due to the evolving gradient induced by consumption in the hotspots. 
Decreasing the saturation from 60% to 30% also resulted in different timing and accumulation of 
denitrification products. The slow oxic growth of both At and Pd hotspots due to the substrate diffusion 
limitation at 30% WFPS provided more time for Pd hotspots to interact with At hotspots than in the 60% 
WFPS treatment. Indeed, the NO burst from At hotspots after complete O2 exhaustion in the random 
architecture was 50% higher at 30% WFPS indicating higher At cell numbers due to prolonged oxic 
growth (Figure 4c, Figure 5c), whereas the N2O peak was 50% lower, due to concomitant N2O reduction 
in Pt hotspots (Figure 4d , Figure 5d). 

Mass balances 

By the end of the incubation, oxygen was exhausted in all treatments. Likewise, NO3
− was consumed by 

all treatments, except for the layered hotspots at 30% and 60% WFPS. This means that respiration was 
electron acceptor limited and that the cumulated recovery of denitrification products can be compared 
with the amount of NO3

- initially present (Fig. S15). The balance between aerobic and anaerobic 
respiration, 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑− 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−⁄  (Bergaust et al., 2011), is given by the electron flow to nitrogenous electron 
acceptors relative to the total electron flow, including O2 respiration (Figure 5). When seen over all three 
water saturations, early stage denitrification under oxic headspace conditions (Figure 5a) showed a 
threshold response to increasing moisture with disproportionally higher 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑− 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−⁄  ratios at 90% WFPS 
(17-27%) than at 60% or 30%. The proportions of electrons diverted to denitrification at low and medium 
saturations were small (2-7%) and even smaller than those observed in unconstrained hotspots (7-13%). 
Differences between saturations were less pronounced when the entire incubation period is considered 
(Figure 5b), since fully anoxic conditions during late stage incubation overrode saturation effects. 
Overall, the effect of hotspot architecture on  𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑− 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−⁄  ratios was smaller than the effect of saturation. 

This stands in stark contrast to the pronounced effect of hotspot architecture on denitrification product 
ratios (Figure 5c, d). Hotspot architecture governed growth rates through local competition for O2 and 
therewith the number of active cells involved in net production sites (At hotspots) and net consumption 
sites (Pd hotspots) of NO once O2 was exhausted. In layered hotspot architectures there was hardly any 
net-release of NO to the headspace irrespective of saturation (Figure 5c). With random hotspot 
architecture, there was substantial NO release, the magnitude of which, however, decreased linearly with 
saturation. This pattern in NO stoichiometry clearly reflects the number of At cells at the moment of 
complete O2 depletion, as affected by oxic growth which lasted longer with lower saturation. The N2O 
product ratio (Figure 5d) was influenced by both saturation and hotspot architecture. In layered 
architectures, the N2O ratio increased exponentially with increasing saturation similar to what was 
observed for relative electron flow to denitrification (Figure 5a). In random architectures, the N2O 
product ratio was consistently higher than in layered architectures irrespective of saturation, yet the 
highest ratio was reached at 60% WFPS, due to the most vigorous growth, and hence fastest oxic-anoxic 
transition at intermediate saturation.      
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Figure 51: The proportion of denitrification in total respiration expressed as relative electron flow for all architectures 
and saturations. Values are reported for (a) the initial, oxic to hypoxic stage (O2 present in headspace) and (b) for the full 
incubation period of 300 h. The product ratios for NO (c) and N2O (d) consider the full incubation period and are 
corrected for the release of precursor gases. 

Pore space properties 

At the lowest saturation (30% WFPS), the entire air-filled pore space was connected to the headspace 
(Figure 6a) and tortuosity was close to unity, i.e. the diffusion lengths in air only depended on the 
vertical distance to the headspace (Figure 6b). The diffusion distances in water-filled pores (Figure 6c) 
corresponded to the size of small, evenly distributed water clusters. At medium saturation (60% WFPS), 
the amount of disconnected air was still negligible and tortuosity only slightly increased. The increase in 
air distance was due to a few large water pockets, which were caused by the step-wise addition of water to 
the repacked sand. Only at 90% saturation a considerable air volume of 5-20% became disconnected from 
the headspace. The path along which the remaining air was connected to the headspace became more 
tortuous with increasing saturation and average diffusion distances in water to the connected air cluster 
increased to 1 mm. This is still surprisingly short as compared to the size of the hotspots (7 mm). 
Independent tests showed that the high air connectivity at this low air content was facilitated by vacuum 
application during He/O2-purging prior to the incubation. Directly after packing, the continuous air cluster 
only reached 10-15 mm into the sand (data not shown), whereas bubbling due to vacuum application 
formed continuous air channels that reached deep into the sand matrix connecting even the deepest 
hotspots with the headspace. Moreover, some larger gaps remained around hotspots during packing which 
tended to be air-filled after wetting. This is reflected in the consistently higher air-connectivity, lower air 
tortuosity and lower air distance, when only pores in the direct vicinity of hotspots are analyzed (Figure 
6a-c). More than 90% of hotspot surfaces still had a direct air-filled connection with the headspace at 
90% WFPS (Figure 6a). Depth profiles of these pore space attributes are reported in Fig. S9. 
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Figure 52: Morphological properties of air-filled pores at different saturations averaged over different hotspots 
architectures (n=5). These properties are reported separately for the entire pore space within the region of interest (full 
sample) and for the pore space in direct vicinity to the porous glass beads (hotspot boundary): (a) air connectivity 
represents the volume fraction of air with direct connection to the headspace. (b) Air tortuosity represents the ratio 
between geodesic length to the headspace and Euclidean distance for any voxel within the connected air-cluster. (c) Air 
distance represents the geodesic distance to the connected air cluster within the water-filled pores. 

Discussion 

Physical constraints on denitrification kinetics 

The experimental setup in this incubation study was designed to investigate physical constraints on 
microbial respiration in hotspots as affected by the interplay between gaseous diffusion through a sterile 
matrix and local competition for oxygen. For this, we compared different combinations of water 
saturation in the matrix and spatial distributions of hotspots. The setup is a coarse simplification of soil in 
which metabolic activity in hotspots not only depends on oxygen supply, but also on diffusion of 
substrates from the matrix to the hotspots. As such, our experiment does not allow to draw direct 
conclusions about the functioning of hotspots in real soils with respect to denitrification and its product 
stoichiometry. However, by placing denitrifiers and their substrates into hotspots, we considerably 
reduced the level of complexity and created a system that is amenable to studying the dynamic 
interrelations between denitrifier growth, oxygen consumption and induction of denitrification by gas 
kinetics. Soil N2O emissions are known to be highly variable in time and a unifying concept incorporating 
dynamic changes in denitrification activity and product stoichiometry in response to changing 
environmental conditions is still missing. Our model system provides a first data set for validating 
mathematical process models that are explicit for structural distribution of hotspots and dynamic changes 
in boundary conditions (here mimicked by different hotspot architectures and declining oxygen 
concentrations in the headspace of batch incubations, respectively). The development of such models is a 
core activity of the DASIM project (http://www.dasim.net/). By combining metabolic measurements with 
advanced structural imaging and computation, we also provide a link to parameterizing such models with 
real soil data in future research.   

Inoculating growing denitrifiers into porous glass beads and embedding them in sterile sand resulted in a 
highly dynamic system with respect to oxygen consumption and induction of denitrification. This was 
intended for the sake of experimental depth, but it must be noted that oxic-anoxic transitions are likely 
slower, i.e. less dynamic in real-soil hotspots. In real soils, even highly organic hotspots contain a fair 
amount of recalcitrant organic C that limits microbial growth and oxygen consumption. Also with respect 
to denitrification stoichiometry, real soils may be expected to be less dynamic as multiple denitrifying 
phenotypes contained in the natural soil microbiome (Roco et al., 2017) utilize denitrification 
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intermediates mutually. Notwithstanding, soil NO and N2O emissions are known to be episodic in nature. 
Large, denitrification driven emission pulses occur upon abrupt changes in O2 availability, caused by 
external factors like heavy rainfalls or soil freezing (Flessa et al., 1995), O2 consumption by nitrification 
after ammoniacal fertilization (Huang et al., 2014) or incorporation of easily degradable organic matter 
(Flessa et al., 1995) which cannot be captured satisfactorily by common steady-state models for soil 
respiration and N2O emission (Li et al., 1992; Parton et al., 2001). Even though the concept of hotspots is 
central in the understanding of denitrification dynamics in upland soils, common soil denitrification 
models do not account for the dynamics of spatially explicit hotspots in the soil matrix but rather scale 
bulk denitrification with a generic anoxic volume fraction (Blagodatsky et al., 2011; Li et al., 2000). To 
advance soil denitrification models, it is obvious that microbial respiration dynamics in hotspots have to 
be targeted, both conceptually (Wang et al., 2019) and experimentally (Ebrahimi and Or, 2018; 
Kravchenko et al., 2017). Our study is a first step in this direction.  

One of the main findings of this study is that soil microbial respiration and the propensity to develop 
denitrifying anoxic hotspots does depend on their distribution in space. The onset of denitrification and its 
kinetics was linked to the spatial and temporal extent of anoxia developing in hotspot centers, which was 
governed by the interplay between denitrifier growth and diffusion constraints and hotspot architecture 
had a strong impact on this interplay. When distributed randomly, microbial activity was most disperse 
relative to available oxygen, resulting in more growth, faster O2 draw down and earlier anoxia than when 
packed densely in layers (Figure 3). Rapid oxic-anoxic transition led to higher release rates of 
denitrification intermediates increasing the product ratios of NO and N2O (Figure 5c-d). This effect was 
most pronounced at low and intermediate saturations but was dampened at 90%WPFS because oxygen 
supply was impeded by bulk diffusion irrespective of hotspot placement. Thus, our results highlight the 
significance of hotspot distribution at low soil moistures and exemplifies why N2O emissions are 
notoriously difficult to predict under these conditions.  

Even though we failed to fully synchronize At and Pd growth in time, our experiment demonstrates that 
contrasting denitrification phenotypes may interact in modulating N2O flux to the atmosphere. Pd 
hotspots reduced N2O released from At hotspots irrespective of the layers’ orientation (Figure 3d), which 
can be attributed to the high degree of air connectivity in the sand column (Figure 1d). We had expected 
more N2O reduction with Pd on top (layered Pd/At), but since At grew faster than Pd, partial anoxia and 
NO and N2O formation was induced in At, long before N2O consuming activity was induced in Pd 
hotspots. Future experiments with artificial hotspots should therefore carefully consider potential growth 
rates and air connectivity in packed soil. 

Physical constraints on cumulative denitrification 

The cumulative release of gaseous denitrification products, as described by electron flow ratios, depended 
less on hotspot architecture than on soil moisture. Electron flows to denitrification ranged from <5% of 
total respiratory flow at low to medium saturations (30, 60% WFPS) to almost 23% at 90% WFPS 
(Figure 5a). We attribute this low denitrification electron flow to the small active volume relative to the 
sterile sand matrix (the total volume fraction of hotspots was 14%, less of which was actually anoxic) and 
the large amount of oxygen initially present in the incubation jars. Yet, we found a typical, non-linear 
denitrification response to soil moisture (Figure 5a). This threshold behavior is well known (Weier et al., 
1993) and has been attributed to a disproportional contribution of small pores to the anoxic volume at 
higher saturation (Schurgers et al., 2006). In our system, consisting of coarse sand with a relatively 
homogenous pore size distribution, we attribute the non-linear response to an increase in tortuosity of air-
filled pores that was pronounced enough to impair the supply of hotspots with oxygen. Air connectivity 
and distance to the next continuous, air-filled pore also increased non-linearly, but did not reach a critical 
value (Figure 6), ruling out that differences in NO and N2O release at different saturations were due to 
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gas entrapment but rather due to elongated diffusion pathways in air-filled pore networks, leading to 
longer residence times of denitrification intermediates and stronger reduction of intermediates in hotspots 
along the way to the headspace. Saturation-dependent threshold behavior for denitrification is a well-
studied phenomenon in soils (Linn and Doran, 1984a; Paul et al., 2003; Ruser et al., 2006), but for a lack 
of pore scale measurements often attributed to reduced bulk soil diffusivity. In undisturbed soil, the 
relative importance of air connectivity and distances between air-filled and water-filled pores might be 
more relevant for impairing oxygen supply and inducing denitrification. Air connectivity to the headspace 
was shown to affect N2O emissions in terms of intensity and speed in repeated wetting/drying cycles in an 
intact soil column (Rabot et al., 2015). In agricultural soil with different crop rotations, N2O emissions 
were shown to correlate positively with the volume fraction of soil with macropore distances larger than 
180 µm, used as an ad-hoc definition for poorly aerated soil (Kravchenko et al., 2018). In a mesocosm 
study on microstructural drivers for local redox conditions, none of the investigated soil pore metrics 
derived from X-ray CT data (excluding those examined here) correlated with redox kinetics during a 
wetting/drying cycle (Wanzek et al., 2018). Hence, combining metabolic monitoring by high-resolution 
gas kinetics with direct assessment of diffusion lengths of gaseous and dissolved oxygen and 
denitrification products via X-ray microtomography emerges as a promising tool to study physical 
constraints for aerobic and anaerobic respiration in soil. However, meaningful metrics derived from X-ray 
data relevant for denitrification are yet to be developed and will require additional experiments with both 
artificial and real soils. Improved understanding of factors and mechanisms controlling denitrification and 
N gas emission on a three-dimensional micro-scale may help to design and test soil management 
strategies that mediate the return of excess nitrogen to the atmosphere in a controlled way, i.e. with as 
little as possible NO and N2O release, be it by crop residue (Kravchenko et al., 2017), pH (Russenes et al., 
2016) or irrigation (Bergstermann et al., 2011) management. At the same time, our experiments call for 
the implementation of spatially explicit reaction-diffusion algorithms (Ebrahimi and Or, 2016; Hron et al., 
2015) in soil process models. For instance, diffusion lengths between hotspots and air-filled pores 
connected to the headspace may serve as useful measure to parametrize model concepts like the anaerobic 
soil volume fraction in larger-scale continuum models (Blagodatsky et al., 2011; Li et al., 2000; 
Schurgers et al., 2006). 

Conclusions 

Using a highly simplified model system, we demonstrate that the factorial combination of water 
saturation and hotspot architecture creates a wealth of denitrification kinetics in response to declining 
oxygen concentrations with highly variable NO and N2O release rates. Even though our experiment was 
conducted in a closed system, with growing denitrifier strains and a limited amount of substrate, the 
results are relevant for real soils in that they give a worst-case scenario of population dynamics and 
metabolic activity in hotspots. Hotspot architecture played a more pronounced role for denitrification 
kinetics at lower soil moisture (30 and 60% WFPS). Hence, denitrification and its gaseous product 
stoichiometry do not only depend on the amount of microbial hotspots in aerated soil, but also on their 
spatial distribution. The total amount of denitrification measured as cumulative electron flow, in turn, 
depended more on water saturation which is in line with the well-known saturation-dependent threshold 
behavior in denitrification also found in natural soil. For the case of artificial soil used in our study, we 
found that this threshold behavior was best explained by increased air tortuosity at high saturations. 
Future experiments with artificial and natural soils are needed to fully capture the regulation of 
denitrification at the micro-scale. 
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4. Conclusions and Outlook 
4.1. Appraisal of soil structure as an indicator of soil functions 

This cumulative thesis gathered the findings of seven papers that all dealt with various aspects of soil 
structure characterization, the quantification of its dynamics as well as the impact of soil structure on 
several soil function like water filter and storage, soil aeration and gas exchange with the atmosphere, 
carbon sequestration, maintenance of microbial habitats and plant production.  

In the introduction the dichotomy of soil structure characterization from two different viewpoints was 
stressed - the aggregate perspective vs. the pore perspective. The aggregate perspective was adopted in 
this thesis when aggregates with predefined size and internal structure were used and incubated in 
isolation (chapter 3.1). For all other studies the pore perspective was adopted as it is the pore space that 
provides pathways for water and matter fluxes, the habitat for soil biota and the locations for chemical 
reactions. The main purpose of the four method papers in chapter 2 was to advance and extend our image 
processing methods in order to take full advantage of the change in perspective. Common to all papers 
was the limited range of pore sizes that can be captured with X-ray CT. The ratio between sample 
diameter and image resolution is roughly 1500-2000 for the X-ray CT scanner used in all studies. Hence, 
for the samples with a diameter of 10cm an image resolution of 60µm can be achieved (chapter 2.2, 3.1), 
so that only large macropores are captured. The range of pore sizes can be extended towards smaller pores 
by scanning smaller subsamples and merging the pore size distributions, which was originally proposed in 
(Vogel et al., 2010) and applied in chapter 3.1. The range of pore sizes can even be extended beyond the 
technical limits of X-ray CT by taking electron microscopy or secondary ion mass spectrometry into 
account through correlative imaging (chapter 2.4). Eventually, the adequate scale to study soil structure 
depends on the process or function of interest. The distribution of bacteria within soil is captured 
representatively in less than a cm² (chapter 2.4), whereas 700cm³ of soil was not enough to capture 
saturated hydraulic conductivity of a field soil representatively, indicated by the large variability among  
replicates from the same treatment (chapter 3.1). 

On several occasions it was shown that soil structure is a formidable indicator for the soil ecological 
status sometimes also referred to as soil health (Kibblewhite et al., 2008; Rabot et al., 2018). This is 
because soil structure governs many processes in soils but at the same time is also actively shaped by 
them. For instance, the habitat function of soils was shown to be regulated by soil structure in terms of 
spatial distribution of bacteria (chapter 2.4) and differentiation into aerobic and anaerobic respiration 
(chapter 3.2,3.3). In turn, soil biota, in that case earthworms, actively modified soil structure through 
bioturbation (chapter 3.1). 

A frequent observation in all studies was the non-linear relationship between structural properties as well 
as between structural properties and functional behavior. Two examples for the former were the steep 
change in macropore connectivity in a rather small macroporosity range in repacked soil (chapter 2.3) and 
a somewhat smoother transition in intact soil (chapter 3.1) and the non-linear increase in distances 
towards air-filled pores as well as tortuosity of air-filled pores with increasing water saturation (chapter 
2.4,3.3). Examples for the non-linear relationship between structural properties and functional behavior 
were manifold. Saturated hydraulic conductivity increased by several orders of magnitude within a rather 
small macroporosity range (chapter 3.1). Grain yield was not affected at all by a reduction in 
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macroporosity (air capacity), since root growth is only impaired when a critical threshold in aeration and 
mechanical impedance is reached (chapter 3.1). The magnitude in denitrification and hence the anaerobic 
soil volume fraction depended non-linearly on the external oxygen distribution at aggregate boundaries 
(chapter 3.2) and on the water saturation in the sand samples containing microbial hotspots (chapter 3.3). 

4.2. The way forward 
This thesis has introduced the foundations for characterization of soil structure and soil structure 
dynamics via 3D imaging and applied these tools to a selected number of experimental studies. The 
logical next step is to take advantage of these methods and apply them to additional laboratory 
experiments and field trials of similar or completely different scope. Most of the future work outlined in 
the following is already ongoing: 

• Incubation experiments to study the relationship between soil structure and microbial respiration 
and denitrification need to be extended to real soils. In the next step of structural complexity real 
soils are sieved into different aggregate size fraction and repacked to the original bulk density. 
Tentative results show that CO2 and N2O emissions mainly depend on organic carbon content, 
water saturation, aggregate size and bulk density. Oxygen micro-sensor measurements highlight 
an enormous variability in oxygen supply at mm-cm scales depending on the local distance to the 
closest air-filled pore. The final step in structural complexity is reached when intact soils are 
incubated directly. Soil structure effects can be assessed by comparing the gas emissions with 
those of repacked soils, as organic carbon content, water saturation and bulk density are the same.  

• The new approach of soil structure labeling to estimate soil structure turnover has only been 
tested on soil compaction as an abiotic process of soil structure modification. Meanwhile, another 
experiment with the same setup has been carried out to study soil structure turnover through 
repeated wetting and drying cycles. The magnitude of soil structure changes depended on clay 
mineralogy and organic carbon content. Yet soil structure turnover in terms of randomization of 
particle-pore distances is not induced by wetting/drying cycles, because the original crack pattern 
imprinted by the first drying event is reused in subsequent drying events. It is more likely that 
biotic agents like plant growth and earthworm activity are more capable of inducing soil structure 
turnover, but this remains to be tested. 

• The long-term trial in chapter 3.1 only comprised two tillage treatments (conventional tillage and 
reduced tillage) and the observed trends under reduced tillage (topsoil compaction by traffic 
cannot be compensated by bioturbation) might only by representative for the given soil texture 
and the climatic conditions on site. Meanwhile, the analysis of another long-term tillage trial has 
been finalized in which conventional tillage and no-till are compared on a similar parent material 
like in chapter 3.1 but slightly moister climate (Lüttewitz, Saxony). In that trial no-till let to a 
higher bulk density in the top 15cm as compared to the plowed soil and yet the saturated 
hydraulic conductivity of the no-till soil is significantly higher due to the presence of large, 
vertically oriented earthworm burrows. More field trials need to be analyzed with the presented 
methodology to paint a clearer picture of the tillage-induced changes in soil structure and its 
implications for the soil ecological status. 

• Several issues arise when a large number of X-ray CT data from various field trials around the 
world are to be compared with each other. First, there is no generally accepted protocol for image 
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segmentation and analysis so that the results might be different depending on the protocols 
established in each institute. Secondly, the large file sizes (currently up to 8GB) pose huge 
requirements in terms of computing power, internal memory and disk space. Such infrastructure 
can only be provided by a few institutes. A soil structure library was recently launched at the 
Department of Soil System Science of the UFZ as an effort to provide the computing facility, a 
fixed protocol for uniform image analysis as well as the long-term storage capacity to build up an 
open-access archive for soil structure data. In order to facilitate data mining of a large number of 
datasets, important meta-information is required during the upload of each segmented image. This 
enables a differentiated look on soil structure development under different parent material, 
climate and management. 

• Plant-Soil interactions have not been addressed in this thesis even though it is well known that 
root growth is affected by soil structure and at the same time root growth modifies soil structure 
through radial displacement of particles, release of rhizodeposits and desiccation through root 
water uptake. New image analysis protocols have been developed to study root system 
architecture from the soil perspective instead of the traditional root perspective (Schlüter et al., 
2018a). That is, root system architecture has typically been assessed by root length density and 
root hierarchy. The new perspective is achieved by analyzing the distances of soil locations to the 
nearest root segment which informs about root clustering and the efficiency of soil exploration by 
roots. Hence, the combination of both approaches gathers complementary information on root 
system architecture, which is useful when the effect of soil structure on root growth is to be 
analyzed. A suite of pot experiments is currently underway that determine the role of bulk 
density, soil texture and plant genotypes on root system architecture. In the future, this pot 
experiments will be combined with the structure labeling approach introduced in chapter 2.3 to 
determine the role of root growth for soil structure turnover through the formation of root 
channels, induction of desiccation cracks and radial compaction around roots.  
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6. Supporting Information 

6.1. Supporting Information for “Analysis of Soil Structure Turnover 
with Garnet Particles and X-Ray Microtomography” 

Supporting Information 1: Image processing workflow 

All image processing steps are summarized in Fig 1 for a small subset of Fig 1 of the main paper. Noise 
in the raw images was removed with a non-local means denoising filter (Fig 1b) (Buades et al., 2005) as 
implemented in the ImageJ plugin by Thorsten Wagner. The non-local means filter is applied with an 
estimated noise level of five gray values. Thresholds for three classes are detected automatically 
according to Schlüter et al. (2014). That is, thresholds are detected according to five standard, histogram-
based threshold detection methods, e.g. maximum variance, minimum error, maximum entropy, etc. The 
average after outlier removal is used to compute the final set of thresholds. This threshold detection is 
implemented in the Quantim image processing library (Vogel et al., 2010). Global thresholding leads to a 
tentative segmentation into pores (black), aggregates (blue) and garnet (red) (Fig 1c). Partial volume 
effects due to limited image resolution cause false aggregate voxels around particles (green regions in Fig 
1d). These thin films of aggregate voxels around particles are removed by an ImageJ macro (Ferreira and 
Rasband, 2012) that (i) erodes the aggregate class by a spherical structuring element with a diameter dSE 
of five voxels (=40µm), (ii) removes of all remaining clusters with a volume smaller than 10000 voxels 
(corresponds to volume of equivalent sphere with d=0.21mm) and (iii) dilates of the remaining bigger 
aggregates by a spherical structuring element with dSE = 5 voxels. Subsequently, all holes in the aggregate 
class smaller than 100000 voxels (corresponds to volume of equivalent sphere with d=0.46mm) stemming 
from occluded pores and particles are closed (purple regions in Fig 1d). The identification of particles is 
improved with a Laplacian of Gaussian (LoG) filter (Gonzalez and Woods, 2002) for blob detection (Fig 
1e) as implemented in the FeatureJ plugin for ImageJ by Erik Meijering. That is, spherical objects with a 
radius of 𝜎𝜎, i.e. the standard deviation of the Gaussian kernel, evoke a strong signal in the second 
derivative of the smoothed image, whereas smaller objects have been removed. A scale-normalized LoG 
operator is constructed by taking the maximum of the various LoG operators at different spatial scales t 
each normalized (i.e. multiplied) with t = 𝜎𝜎2 (Lindeberg, 1993). In this study, 𝜎𝜎 = (1,3,5) voxels was 
used, which corresponds to an optimally detected diameter of 𝜎𝜎 = (24,56,88)µm. Note that this range is 
slightly smaller than the true particle diameters (45 - 100 µm). The histogram mode (most frequent soil 
gray value) is subtracted from the image as a preprocessing step in order to remove edges between 
aggregates and pores from blob detection. Edges of larger grains are still enhanced and need to be masked 
out subsequently. This grain mask is achieved by applying a similar scheme of erosion, size-based 
removal and dilation as describe above but this time applied to the tentative garnet class. After these 
preparation steps the LoG image is segmented into particles and background with hysteresis thresholding 
(Schlüter et al., 2014; Schlüter et al., 2010)(Fig 1f) which is implemented in the 3D Image Suite plugin 
for ImageJ by Thomas Boudier (Ollion et al., 2013). An upper threshold 𝑥𝑥� + 𝑎𝑎 defines seed regions for a 
region growing process that detects all connected voxels above a lower threshold 𝑥𝑥� + 𝑏𝑏, where 𝑥𝑥� is the 
average gray value and 𝑎𝑎, 𝑏𝑏 are manually defined parameters tuned for an optimal result (𝑎𝑎 = 40, 𝑏𝑏 =
10). The combination of blob detection and partial volume voxel treatment leads to an improved 
segmentation result (Fig 1g). The tentative pore class is labeled differently depending on whether pores 
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are fully enclosed by aggregates (yellow) or connected to the interaggregate pore space (black). All 
removed aggregate and garnet voxels are gathered in an unassigned class (white). Subsequently, different 
analysis are performed on different material classes, e.g. the pore size map is shown in (Fig 1h) and the 
distance map towards the interaggregate pores is shown in (Fig 1i). ImageJ macros, QuantIm code and 
elastix scripts are available from the authors upon request. 

 

Figure S 1: Image processing workflow for this study depicted for a small two-dimensional subset (a). Noise is removed 
with a non-local means filter (b). Image segmentation is performed in several steps. First, gray values are tentatively 
segmented into pores (black), aggregates (blue) and garnet (red) via simple thresholding (c). The volume voxel are 
removed from the aggregate class and holes in the aggregates are closed (d). Particles are detected with a Laplacian of 
Gaussian Filter (LoG) (e) and subsequent hysteresis thresholding of the LoG Image (f). Note that the edges of large grains 
are masked out during particle detection. For the final segmentation (g) the aggregate class is combined with the tentative 
pore class. The tentative garnet class is set to unassigned (white) and overwritten by the thresholded LoG image (red). 
Pores are further differentiated with respect to whether they are fully enclosed in soil aggregates (yellow) or not (black) 
(f). These images are subjected to different types of analysis (7.-9.) of which the pore size map is shown in (h) and the 
distance map towards the interaggregate pores is shown in (i). 

Supporting Information 2: Contact distances for regular sphere packings 

Mean contact distances are determined for regular packings of equal-sized, solid overlapping spheres. 
Four different geometries are used: primitive cubic, body-centered cubic, face-centered cubic and 
hexagonal close packing. The separation distance between sphere centers is varied in steps for each 
geometry. The resulting porosities and mean contact distances are depicted in Figure S2 for a predefined 
sphere diameter of d=0.8 mm. Note that the sphere diameter only affects contact distances, but not 
porosity. For a fitted diameter of d=0.8mm the end members of each curve, i.e. contact distance at 
vanishing overlap and vanishing porosity, corresponds well to the experimental values (Figure 28 in the 
main paper). This diameter is at the lower end of aggregate sizes after sieving (d:0.5-2mm) and can be 
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thought of as the average diameter of maximum inscribed spheres within irregular-shaped aggregates. It 
can be easily shown analytically that for non-overlapping spheres the contact distance is independent of 
packing geometry and corresponds to d/23=0.125 d. The mean contact distance at vanishing porosity, in 
turn, depends on the packing geometry and may range between 0.2-0.28 d. 

 

Figure S 2: Mean contact distance and porosity for overlapping spheres (d = 0.8mm) of different separation distance 
between sphere centers and arranged in different packing geometries. The exponential fit for all data points agrees well 
with the experimental data in Fig 6 in the main paper.  
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6.2. Supporting Information for “Correlative imaging reveals holistic 
view of soil microenvironments” 

 

Supporting Information 1: Detailed Description of Drainage Model 

The pore-morphology-based approach to modeling drainage is based on two criteria (Hazlett, 1995; 
Hilpert and Miller, 2001). The initial condition is a completely saturated pore space. A pore is drained 
when its air-entry pressure is overcome, i.e. when the capillary diameter 𝐷𝐷 at a certain capillary pressure 
𝑝𝑝𝑐𝑐 derived from the Young-Laplace equation, 

𝑝𝑝𝑐𝑐 = 4𝛾𝛾/𝐷𝐷, 

is smaller than the local pore diameter, where 𝛾𝛾 is interfacial tension between air and water. This equation 
holds for spherical interfaces at vanishing contact angle, which is a strong simplification of drainage 
processes in real soil. Implications and extensions are discussed in (Hilpert and Miller, 2001; Schulz et 
al., 2015). The pore diameter is probed with spherical structure elements, by testing whether they fit into 
the pore space at a certain location. A pore voxel is assign with the diameter of the largest sphere centered 
on this location that does not exceed the local pore boundaries, thus the term ‘maximum inscribed sphere 
method’. The pore size map in Figure S55(a) shows local pore diameters in the segmented µCT image 
derived with the maximum inscribed sphere method, which is called ‘Local thickness’ in Fiji/ImageJ 
(Schindelin et al., 2012). The other criterion for drainage of a pore next to size is that air can invade the 
pore along a continuous pathway connected to the headspace. The headspace is delineated by a rough soil 
surface (Figure S55b) and determined with the region growing tool in VG Studio Max 2.1, which is 
initiated at the top image boundary.  

 

 

Figure S 3: (a) Local pore diameters in the segmented µCT image obtained with the maximum inscribed sphere method. 
(b) Headspace of the sample determined with region growing starting at the top boundary. (c) The drainage model results 
are depicted exemplarily for pore diameters > 119µm that drain at a capillary pressure of 25hPa. Only those pores > 
119µm with connection to the headspace (red) get drained, while the disconnected pores > 119µm (yellow) cannot be 
invaded by air. (d) The modeled distribution of water and air at a capillary pressure of 25 hPa. 

An example of this connectivity rule is shown in Figure S55(c). While all depicted pores are big enough 
(>119µm) to be drained at a capillary pressure of 25 hPa, only the red pores can be invaded by air, 
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whereas the yellow pores are isolated and remain water-filled. The modeled distribution of air (red) and 
water (blue) at this capillary pressure is shown in Figure S55(d). The 3D leaf fragment (green) is shown 
for orientation. A step-wise decrease in capillary pressure decreases the capillary diameter and iteratively 
desaturates the sample.  
Supporting Information 2: Mapping organic compounds with fluorescence microscopy 

Auto-fluorescence of plant tissue and organic compounds of the soil matrix are visualized by double-
excitation (Figure S56). Double excitation fluorescence microscopy is achieved with a special filter set 
combining both blue and green excitation wavelengths. Thus auto-fluorescence of different compounds 
results in greenish and reddish emitted wavelengths respectively (Eickhorst and Tippkötter, 2008a). In 
combination with stains such as fluorescein the application of double excitation allows a discrete 
detection of a specific dye in front of the background fluorescence of the soil matrix (Eickhorst and 
Tippkötter, 2008b). In this example cell structures of the introduced leaf are highlighted and reveal details 
on its orientation and decomposition stage which could not be visualized by basic light microscopy, e.g. 
dark spots in the fluorescent image represent areas of less auto-fluorescing material such as minerals, iron 
oxides (black spots) or larger pores as characteristic features of the soil matrix (Bullock et al., 1985). 

 

Figure S 4: (a) 2D-2D image registration with double-excitation fluorescence microscopy (FM) and light microscopy 
(LM). The green frame demarcates the zoomed are in (b). 

Supporting Information 3: 2D-3D Image Registration example  
All required files to run a 2D-3D image registration example are permanently stored under the following 
file link: 

http://www.ufz.de/record/dmp/archive/6322 

This compressed folder contains a minimum example to demonstrate the registration of a 3D computed 
tomography (CT) file into a 2D light microscopy (LM) image using Elastix (http://elastix.isi.uu.nl/). The 
demo was developed for a Linux OS (Ubuntu 16.04), tested with elastix version 4.700 and requires 3GB 
of RAM. The CT file is cropped and does not cover the full sample to save disk space and memory. 
Images are stored an ITK format which consists of the binary file containing the data (.raw) and a text file 
containing important meta information (.mhd). The registration is executed by running the shell script 
./elastix.sh in a terminal. Open the shell script with a text editor to get more information about the 
required input for registration and to adapt folder locations, if necessary. Please consult the elastix 
homepage on how to download and install the software. 

Contents of the compressed folder 
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Images: 
CT.mhd – 3D X-ray CT image 
LM.mhd – light microscopy image 
CT_psd.mhd – pore size distribution derived from the segmented CT image (to demonstrate transformix) 
 
Scripts: 
elastix.sh – Shell script that executes elastix and transformix commands 
Text files: 
 
elastix_parameters.txt – contains all the parameters tun run the 2D-3D registration 
CT_landmarks.txt – contains all corresponding landmark coordinates located in the CT image 
LM_landmarks.txt – contains all corresponding landmark coordinates located in the LM image 
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6.3. Supporting Information for “Long-term effects of conventional 
and reduced tillage on soil structure, soil ecological and soil 
hydraulic properties” 

 

Figure S 5: Pore size distribution for both depths and tillage treatments (CT – conventional tillage, RT – reduced tillage). 
The frequency distribution of pore diameter is divided by diameter step size [mm-1] to obtain comparable results for 
different sample sizes with different steps in pore diameters. The joint curve represents the maximum of each curve at a 
pore diameters classes. 

 

Figure S 6: Cumulative pore size distribution for both depths and tillage treatments (CT – conventional tillage, RT – 
reduced tillage). The curves are calculated by multiplying with diameter step size and integrating of all diameter classes. 
The curves start at total visible porosity and show volume fractions of pore larger than a certain diameter. 
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Figure S 7: Earthworm abundance in terms of numbers and biomass in several consecutive years for two crops (rape, 
wheat) and two tillage treatments (CT – conventional tillage, RT – reduced tillage) 
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6.4. Supporting Information for “Physical constraints for respiration 
in microbial hotspots in soil and their importance for denitrification” 

Supporting Information 1 Methods 

Supporting Information 1.1 Methods: Incubation 

 

Figure S 8: (a) Half-pint incubation jar (230ml) filled with sand and porous glass beads that serve as microbial hotspots. 
(b) Respiration kinetics of different types of hotspots either inoculated with Agrobacterium tumefaciens or Paracoccus 
denitrificans are measured with 50 hotspots in an otherwise empty glass jar (120ml). Note that hotspots are packed 
densely with minimal distance, which might have affected aeration. 

Supporting Information 1.2 Methods: Product ratios 

Ratios of gaseous denitrification products may vary strongly depending on the incubation period for 
which they are computed. Moreover, in an experimental setup with a permanently close headspace, 
intermediates may temporarily accumulate in the headspace and still be available as an electron acceptor 
and diffuse back into the soil at a later incubation stage. This would not be the case in a continuous flow 
setup with a carrier gas that lack NO and N2O and also to a much lesser extent under natural conditions 
were the NO and N2O concentrations are immediately diluted down to atmospheric concentrations. Still, 
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apparent product ratios can still be computed by adding up the release of intermediates and subtracting 
this amount from subsequent denitrification product prior to computing ratios. To do so, we define 

𝑁𝑁𝑁𝑁∗ : = ∫ Θ�𝑛𝑛𝑛𝑛′(𝑡𝑡)�𝑑𝑑𝑑𝑑𝑇𝑇
0 ,  𝑁𝑁2𝑂𝑂∗ : = ∫ Θ�𝑛𝑛2𝑜𝑜′(𝑡𝑡)�𝑑𝑑𝑑𝑑

𝑇𝑇
0 ,  𝑁𝑁2∗ : = ∫ Θ�𝑛𝑛2′(𝑡𝑡)�𝑑𝑑𝑑𝑑

𝑇𝑇
0    

Where 𝐹𝐹∗is the cumulative release,  𝑇𝑇 is the end of incubation, 𝑓𝑓′ is the first time derivative of 
concentration 𝑓𝑓, and Θ is defined as 

Θ ∶= �𝑥𝑥 if 𝑥𝑥 > 0
0 else.  

We then have  

 𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁∗, 𝑁𝑁2𝑂𝑂 = 𝑁𝑁2𝑂𝑂∗ − 𝑁𝑁𝑁𝑁∗ and 𝑁𝑁2 = 𝑁𝑁2∗ − 𝑁𝑁2𝑂𝑂∗. 

We define the product ratios: 

𝐍𝐍𝐍𝐍 ∶= 𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁+𝑁𝑁2𝑂𝑂+𝑁𝑁2

, 𝐍𝐍𝟐𝟐𝐎𝐎 ∶=
𝑁𝑁2𝑂𝑂

𝑁𝑁𝑁𝑁+𝑁𝑁2𝑂𝑂+𝑁𝑁2
 and 𝐍𝐍𝟐𝟐 ∶=

𝑁𝑁2
𝑁𝑁𝑁𝑁+𝑁𝑁2𝑂𝑂+𝑁𝑁2

. 

Note that these estimated ratios disregard the actual effects that the presence of NO and N2O may have on 
the regulation of enzymes for various denitrification steps. They should therefore only be considered as a 
rough approximation to product ratios in open systems. One benefit of this approach is that 𝑇𝑇 is identical 
for all samples and does not have to be adjusted to individual denitrification kinetics. 

Supporting Information 1.3 Methods: Image processing and analysis 

The inner volume of the glass jars filled with quartz sand, water and air constitutes the region of interest 
(ROI) to be analyzed except for the porous hotspots which are considered as cavities in the ROI. The ROI 
was determined by semi-automatic region growing in VG StudioMax 2.1 (Volume Graphics) based on 
gradient images, i.e. the first derivative of the original gray scale image. The gradient was approximated 
by the Variance 3D filter in Fiji/ImageJ. Region growing was initiated on the homogeneous glass wall of 
the jar and in the homogeneous head space of the jar and stopped directly at the border of the repacked 
sand. The fully enclosed volume of both region growing processes is considered as ROI. Likewise, region 
growing in the relatively homogeneous hotspots stopped directly at the border between hotspots and 
repacked sand. This was used to demarcate the porous glass beads and subtract them from the ROI. The 
assignment to At and Pd hotspots was done according to the vertical position in the layered architecture 
and according to orientation of the flat and rounded end in the random architecture. 

The raw image were filtered with a non-local means filter (Buades et al., 2005) for noise removal at an 
estimated noise level of 𝜎𝜎 = 7 gray values using the non-local denoising plugin for ImageJ. Edge 
enhancement was carried out with an unsharp mask filter (Schlüter et al., 2014; Sheppard et al., 2004). A 
vertical drift in gray values due to uneven illumination was detected and corrected for all voxels by 
subtracting the difference between the average gray values in sand grain voxels per slice with the average 
gray value of all sand grain voxels (Iassonov and Tuller, 2010; Schlüter et al., 2016).  Thresholds were 
chosen manually and adjusted to the predefined water saturation within test regions. Simple thresholding 
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was carried out to segment the ROI voxels into air water and solid followed by a majority filter with a 
cubic 3³ kernel to remove partial volume effects (Schlüter et al., 2014). 

These segmented images were analyzed with respect to different morphological properties of the air-filled 
and water-filled pores space. All properties are reported separately for the complete ROI and the direct 
neighborhood of the hotspot boundaries to assess the local conditions experienced by the hotspots. The 
reduced ROI for the hotspot boundaries was created by dilation and subsequent subtraction of the hotspot 
ROI. 

Dimensionless air connectivity was determined through the volume fraction of air-filled pores with a 
continuous path to the headspace. To do so, a connected components labelling was performed with the 
MorpholibJ plugin in Fiji/ImageJ (Legland et al., 2016) to mask out all air clusters without a connection 
to the headspace. 

Air tortuosity was determined in the connected air cluster using the Geodesic Distance map 3D in the 
MorpholibJ plugin (Legland et al., 2016). This transform writes the shortest path lengths fully within the 
air cluster from the headspace to any location belong to the air cluster. The dimensionless tortuosity 
number is then determined for each voxel as the ratio between geodesic distance and depth-dependent, 
Euclidean distance. 

Air distance is determined as the shortest, geodesic distance within the water-filled pore space from any 
water voxel to the closest air voxel belonging to the connected air cluster. This air distance cannot be 
normalized in a meaningful way and is therefore reported as a length in mm. 
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Figure S 9: Depth profiles (n=5) of (a) air saturation, (b) air connectivity, (c) air tortuosity and (d) air distance. Individual 
profiles are shown in (a) two highlight the differences between layered and random architectures that are caused by 
packing gaps around hotspots. All other profiles (b-d) are shown as averages (lines) with min-max bands (transparent 
areas).  
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Figure S 10: (a) Visible porosity and (b) pore diameter of  individual hotspots (n=4) and the incubated sand samples (n=9) 
reported separately for the full sample or the only the hotspot boundaries affected by packing gaps. (c) The pore size 
distributions have an overlap at a diameter range of 80-150µm, which explains why liquid is sucked out of the hotspots, 
when pores <150µm in the sand are air-filled. (a-b): Data shown as box-whisker plots: Whiskers- min-max, middle lines – 
median,  dots: outliers. (c) Lines represent average and transparent bands the min-max range.  

Supporting Information 2 Results 

Supporting Information 2.1: Incubation at 90% saturation 
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Figure S 11: Gas kinetics in all treatments at high saturation (90% WFPS) for three different hotspot architectures: (a) 
O2, (b) CO2, (c) NO, (d) N2O, (e) N2. Note the logarithmic ordinate in (c) and (d). Different lines styles represent 
replicates. 
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Supporting Information 2.2: Incubation at 60% saturation 

 

Figure S 12: Gas kinetics in all treatments at medium saturation (60% WFPS) for three different hotspot architectures: 
(a) O2, (b) CO2, (c) NO, (d) N2O, (e) N2. Note the logarithmic ordinate in (c) and (d). Different lines styles represent 
replicates. 
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Supporting Information 2.3: Incubation at 30% saturation 

 

Figure S 13: Gas kinetics in all treatments at low saturation (30% WFPS) for three different hotspot architectures: (a) 
O2, (b) CO2, (c) NO, (d) N2O, (e) N2. Note the logarithmic ordinate in (c) and (d). Different lines styles represent 
replicates.  
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Figure S 14: (a) transport of brilliant blue dye from aggregates into sand at different saturations after≈10min. At 30% 
WFPS transport is dominated by convection, whereas at higher saturation only diffusion remains. (b) dye loss after one 
day  

Supporting Information 2.4: Nitrogen balance 

.  

Figure S 15: Sum of denitrification products (N2O, N2) at the end of incubation (300h) for all architectures and 
saturations (n=3). The amount of initially present nitrate estimated from the internal porosity of hotspots was 96 µmol 
NO3-N per jar, with some additional nitrate in growth medium adhering to the hotspot boundaries by week capillary 
forces during packing.  
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Abstract Easier access to X-ray microtomography (lCT) facilities has provided much new insight from
high-resolution imaging for various problems in porous media research. Pore space analysis with respect to
functional properties usually requires segmentation of the intensity data into different classes. Image seg-
mentation is a nontrivial problem that may have a profound impact on all subsequent image analyses. This
review deals with two issues that are neglected in most of the recent studies on image segmentation: (i)
focus on multiclass segmentation and (ii) detailed descriptions as to why a specific method may fail
together with strategies for preventing the failure by applying suitable image enhancement prior to seg-
mentation. In this way, the presented algorithms become very robust and are less prone to operator bias.
Three different test images are examined: a synthetic image with ground-truth information, a synchrotron
image of precision beads with three different fluids residing in the pore space, and a lCT image of a soil
sample containing macropores, rocks, organic matter, and the soil matrix. Image blur is identified as the
major cause for poor segmentation results. Other impairments of the raw data like noise, ring artifacts, and
intensity variation can be removed with current image enhancement methods. Bayesian Markov random
field segmentation, watershed segmentation, and converging active contours are well suited for multiclass
segmentation, yet with different success to correct for partial volume effects and conserve small image fea-
tures simultaneously.

1. Introduction

The last decade has seen a tremendous progress in X-ray tomography and imaging techniques providing
new means to analyze a multitude of research problems in porous media research. In the scope of water
resources research, applications range from soil-water-root interactions and mechanical and hydraulical
properties of rocks to pore-scale modeling of multiphase flow and continue to appear in related fields of
research (see reviews by Blunt et al. [2013], Cnudde and Boone [2013], Wildenschild and Sheppard [2013], and
Anderson and Hopmans [2013]). Progress in image progressing has kept a comparable pace in terms of new
developments in image enhancement, image analysis, and hardware architectures [e.g., Ketcham and Carl-
son, 2001; Sheppard et al., 2004; Kaestner et al., 2008; Porter and Wildenschild, 2010; Tuller et al., 2013]. Since
X-ray tomography is becoming a standard technique available to an increasing number of research groups
in water resources research, more and more scientists have a need for information on how to process their
data. Not everyone new to the field has the resources to develop their own image processing toolbox, tai-
lored for the research question at hand, or the budget to take advantage of powerful image processing soft-
ware that often has a rather comprehensive scope. A relief in this regard are software toolboxes which are
freely available to the scientific community like IMAGEJ [Ferreira and Rasband, 2012], ITK [Ibanez et al., 2005],
QUANTIM [Vogel et al., 2010], BLOB3D [Ketcham, 2005], or SCIKIT-IMAGE [van der Walt et al., 2014], just to name a
few. Their multiphase segmentation capabilities are somewhat limited and may require substantial operator
input. The software used in this study is described in the Appendix A.

However, comparing the performance of different image processing methods on the same set of test
images often leads to very different results. A notorious example is image segmentation of a gray value
image into objects and background [Sezgin and Sankur, 2004; Iassonov et al., 2009; Baveye et al., 2010]. Yet,
these comparative studies often merely list the performance of several segmentation methods with respect

Key Points:
� First survey of image processing
methods for multiphase fluid images

� A novel protocol is suitable for
various types of porous media

� Many routines come with a freely
available open-source library
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Abstract. Centrifugation provides a fast method to measure
soil water retention curves over a wide moisture range. How-
ever, deformation of soil structure may occur at high angu-
lar velocities in the centrifuge. The objective of this study
was to capture these changes in soil structure with X-ray mi-
crotomography and to measure local deformations via digi-
tal volume correlation. Two samples were investigated that
differ in texture and rock content. A detailed analysis of the
pore space reveals an interplay between shrinkage due to dry-
ing and soil compaction due to compression. Macroporos-
ity increases at moderate angular velocity because of crack
formation due to moisture release. At higher angular veloci-
ties, corresponding to capillary pressure of ψ <−100 kPa,
macroporosity decreases again because of structure defor-
mation due to compression. While volume changes due to
swelling clay minerals are immanent in any drying process,
the compaction of soil is a specific drawback of the centrifu-
gation method. A new protocol for digital volume correlation
was developed to analyze the spatial heterogeneity of defor-
mation. In both samples the displacement of soil constituents
is highest in the top part of the sample and exhibits high lat-
eral variability explained by the spatial distribution of macro-
pores in the sample. Centrifugation should therefore only be
applied after the completion of all other hydraulic or ther-
mal experiments, or any other analysis that depends on the
integrity of soil structure.

1 Introduction

Soils, rocks and sediments are assumed to be rigid bodies
in many modeling applications. Yet, the internal structure of
these porous media is modified through a variety of techni-
cal and natural processes. The internal changes can either
be gradual, e.g., through dissolution, biological activity or
swelling/shrinking, or abrupt, e.g., landslides or tillage. Con-
ventional laboratory methods can only provide a limited set
of structural properties, such as bulk density and porosity,
or provide indirect information through functional properties
that are governed by the internal structure, such as gas diffu-
sion, permeability or stress–strain relationships. Direct infor-
mation on the deformation of the internal pore architecture
is typically missing. X-ray microtomography has turned into
a standard technique to fill this gap and measure the three-
dimensional internal structure of porous media (Ketcham and
Carlson, 2001; Cnudde and Boone, 2013; Wildenschild and
Sheppard, 2013). There is a huge variety of image process-
ing and image analysis methods that are all tailored for the
ultimate goal to quantify the complex, structural heterogene-
ity based on a few meaningful parameters (Kaestner et al.,
2008; Vogel et al., 2010; Schlüter et al., 2014). The changes
in the internal structure can be assessed statistically, e.g., by
comparing the pore size distribution or pore connectivity av-
eraged over different samples at two points in time (Jégou
et al., 2002; Schlüter et al., 2011). Evidently, spatially ex-
plicit information about the internal displacement of particles
or aggregates is excluded from analysis in such an approach.
However, this local deformation information is of particular
interest, e.g., in soil mechanics (Terzaghi et al., 1996). So

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Abstract
Matter turnover in soil is tightly linked to soil structure which governs the heterogeneous dis-

tribution of habitats, reaction sites and pathways in soil. Thereby, the temporal dynamics of

soil structure alteration is deemed to be important for essential ecosystem functions of soil

but very little is known about it. A major reason for this knowledge gap is the lack of methods

to study soil structure turnover directly at microscopic scales. Here we devise a conceptual

approach and an image processing workflow to study soil structure turnover by labeling

some initial state of soil structure with small garnet particles and tracking their fate with X-

ray microtomography. The particles adhere to aggregate boundaries at the beginning of the

experiment but gradually change their position relative to the nearest pore as structure for-

mation progresses and pores are destructed or newly formed. A new metric based on the

contact distances between particles and pores is proposed that allows for a direct quantifi-

cation of soil structure turnover rates. The methodology is tested for a case study about soil

compaction of a silty loam soil during stepwise increase of bulk density (ρ = {1.1, 1.3, 1.5} g/

cm3). We demonstrate that the analysis of mean contact distances provides genuinely new

insights about changing diffusion pathways that cannot be inferred neither from conven-

tional pore space attributes (porosity, mean pore size, pore connectivity) nor from deforma-

tion analysis with digital image correlation. This structure labeling approach to quantify soil

structure turnover provides a direct analogy to stable isotope labeling for the analysis of

matter turnover and can be readily combined with each other.

Introduction
Soil structure provides the pathways for matter fluxes, entails a high diversity of microhabitats
and causes a heterogeneous distribution of reaction sites in soil. Through these regulatory traits
it acts as a major driver for important soil functions like stabilization of soil organic matter,
maintenance of biodiversity or water and nutrient cycling [1, 2]. Soil structure is not static, but
continuously altered through abiotic (e.g. tillage, moisture changes) and biotic agents (e.g. bio-
turbation, root growth) [3]. These soil structure dynamics are also sometimes referred to as
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ABSTRACT: The microenvironmental conditions in soil exert a
major control on many ecosystem functions of soil. Their investigation
in intact soil samples is impaired by methodological challenges in the
joint investigation of structural heterogeneity that defines pathways for
matter fluxes and biogeochemical heterogeneity that governs reaction
patterns and microhabitats. Here we demonstrate how these challenges
can be overcome with a novel protocol for correlative imaging based on
image registration to combine three-dimensional microstructure
analysis of X-ray tomography data with biogeochemical microscopic
data of various modalities and scales (light microscopy, fluorescence
microscopy, electron microscopy, secondary ion mass spectrometry).
Correlative imaging of a microcosm study shows that the majority
(75%) of bacteria are located in mesopores (<10 μm). Furthermore,
they have a preference to forage near macropore surfaces and near fresh particulate organic matter. Ignoring the structural
complexity coming from the third dimension is justified for metrics based on size and distances but leads to a substantial bias for
metrics based on continuity. This versatile combination of imaging modalities with freely available software and protocols may
open up completely new avenues for the investigation of many important biogeochemical and physical processes in structured
soils.

1. INTRODUCTION

Small-scale heterogeneity of environmental conditions in soil
exerts a major control on carbon and nutrient cycling. Physical
accessibility at the pore scale plays an important role for long-
term carbon stabilization1,2 and for microbial diversity in soil
through spatial separation in diverse ecological niches.3−5

Many microbial processes like respiration, nitrification and
denitrification are known to occur in hotspots of microbial
activity which are imprints of the patchy distribution of
microhabitats in soil.6 These patterns form as a result of a
complex interplay between biotic and abiotic agents, so their
formation cannot be understood, if individual processes are
studied in isolation. This calls for a joint characterization of (i)
the physical soil structure providing the pathways for matter
fluxes, (ii) the chemical properties that drive local reactions in
soil, and (iii) the distribution of soil biota that is both resulting
from and actively changing the former.7,8

While the three-dimensional (3D) characterization of the
physical structure of intact soil has advanced tremendously
with the advent of noninvasive imaging techniques like X-ray
microtomography9−11 (μCT), 3D imaging of biogeochemical
heterogeneity in opaque soil is still not achievable. Thus, it is
still common practice to cut the soil into pieces, with or
without prior resin impregnation, in order to apply two-
dimensional (2D) microscopic and microspectroscopic imag-
ing techniques on exposed surfaces. The combination of

various biogeochemical imaging methods is an emerging field
in life sciences called correlative imaging or correlative
microscopy.12,13 In contrast to the fast growing number of
applications of 3D chemical imaging using fluorescence
microscopy approaches, such a straightforward approach is
not at hand for intact natural geological materials including
opaque soil and plant−soil systems. Consequently applications
in soil science are few, in particular the combination of two-
dimensional biogeochemical imaging modalities with 3D
noninvasive imaging. When using soil sections for 2D
biogeochemical imaging, a major hurdle is to find the exact
plane of the exposed surface within a bigger 3D volume.
Depending on the scale gap this can turn into a search for a
two-dimensional needle in the 3D haystack. One pragmatic
solution is to cut or grind down the exposed surface strictly
along a principle axis of the 3D image to reduce the degrees of
freedom with which the 2D plane can potentially be oriented.
In this way, the spatial distribution of P. f luorescens in
fluorescence microscopy (FM) images of soil microcosms was
directly related to pore space attributes measured with X-ray
microtomography.14 The more flexible approach is to pose this
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Long-term effects of conventional and reduced tillage on soil structure, soil
ecological and soil hydraulic properties
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A B S T R A C T

There is a long-lasting debate about the effects of tillage practices on soil structure and structure-mediated
ecosystem properties like hydraulic conductivity and crop productivity. This is investigated in a long-term field
experiment on tillage practices at the Westerfeld trial in Bernburg, Germany (25 years of different management).
Here we combine soil structure information obtained by X-ray microtomography with bulk properties like bulk
density, air capacity and saturated hydraulic conductivity, as well as integrative, ecological properties like
earthworm abundance and crop yield. This study goes beyond previous studies in that the soil microstructure is
investigated in two different depths, within (13–23 cm) and underneath (28–38 cm) the plow horizon.
Furthermore the microstructure is investigated at two different resolutions (60 μm and 20 μm) by employing a
nested sampling design.

The plowed horizon in the conventional tillage plots differs from the undisturbed soil underneath the culti-
vator depth (13–23 cm) in the reduced tillage plot by lower bulk density, higher air capacity, higher saturated
hydraulic conductivity, higher macroporosity and pore connectivity. After 25 years of reduced tillage saturated
hydraulic conductivity only marginally recovered in the abandoned plow pan (28–38 cm). Macropore density
and connectivity did not change significantly as compared to the current plow pan under conventional tillage.
The topsoil underneath the cultivator depth in the reduced tillage plot developed a “no-till pan”, as porosity and
pore connectivity where smaller than in greater soil depths. Image-based macroporosity and laboratory-based air
capacity showed good agreement.

Overall, the combination of hydraulic measurements and X-ray CT imaging of soil microstructure at different
resolutions provides a comprehensive view on soil structure modification by tillage practices. The change from
conventional to reduced tillage led to a compaction of soil that was not compensated by higher bioturbation as
reported for other sites. This is explained by unfavorable conditions for anecic earthworms (frequent dry periods
with severely impaired penetrability of the loess substrate) as well as the absence of very deep rooting, perennial
crops in crop rotation.

1. Introduction

Conservation agriculture has a profound impact on soil structure
and consequently on structure-mediated ecosystem functions like
carbon sequestration, greenhouse gas emissions and soil water storage.
The benefits of reduced tillage practices as compared to conventional
plowing may be lower costs, higher carbon storage, higher energy
input/output ratio, reduced erosion, more stability against compaction

and lower herbicide loss (Palm et al., 2014; Tebrügge and Düring,
1999). Drawbacks associated with reduced tillage can be a risk of
topsoil compaction, reduced aeration and lower soil temperature
(Soane et al., 2012). With reduced tillage the absence of plowing ty-
pically leads to a loss in air capacity and an increase in bulk density and
penetration resistance in the topsoil beneath the tillage depth of disc
harrows or other cultivators (Abdollahi et al., 2017; Abdollahi and
Munkholm, 2017; Deubel et al., 2011; Pagliai et al., 2004; Rasmussen,
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Denitrification in Soil Aggregate
Analogues-Effect of Aggregate Size
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Soil-borne nitrous oxide (N2O) emissions have a high spatial and temporal variability

which is commonly attributed to the occurrence of hotspots and hot moments for

microbial activity in aggregated soil. Yet there is only limited information about the

biophysical processes that regulate the production and consumption of N2O on

microscopic scales in undisturbed soil. In this study, we introduce an experimental

framework relying on simplified porous media that circumvents some of the complexities

occuring in natural soils while fully accounting for physical constraints believed to control

microbial activity in general and denitrification in particular. We used this framework to

explore the impact of aggregate size and external oxygen concentration on the kinetics

of O2 consumption, as well as CO2 and N2O production. Model aggregates of different

sizes (3.5 vs. 7mm diameter) composed of porous, sintered glass were saturated with

a defined growth medium containing roughly 109 cells ml−1 of the facultative anaerobic,

nosZ-deficient denitrifier Agrobacterium tumefaciens with N2O as final denitrification

product and incubated at five different oxygen levels (0–13 vol-%). We demonstrate

that the onset of denitrification depends on the amount of external oxygen and the

size of aggregates. Smaller aggregates were better supplied with oxygen due to a

larger surface-to-volume ratio, which resulted in faster growth and an earlier onset of

denitrification. In larger aggregates, the onset of denitrification was more gradual, but

with comparably higher N2O production rates once the anoxic aggregate centers were

fully developed. The normalized electron flow from the reduced carbon substrate to

N-oxyanions (e−
denit

/e−
total

ratio) could be solely described as a function of initial oxygen

concentration in the headspace with a simple, hyperbolic model, for which the two

empirical parameters changed with aggregate size in a consistent way. These findings

confirm the important role of soil structure on N2O emissions from denitrification by

shaping the spatial patterns of microbial activity and anoxia in aggregated soil. Our

dataset may serve as a benchmark for constraining or validating spatially explicit,

biophysical models of denitrification in aggregated soil.

Keywords: greenhouse gas emissions, denitrification kinetics, microbial hotspots, microsites, anoxic aggregate

centers, Agrobacterium tumefaciens, physically-based modeling
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Abstract Soil denitrification is the most important terrestrial process returning reactive nitrogen 10

to the atmosphere, but remains poorly understood. In upland soils, denitrification occurs in 

hotspots of enhanced microbial activity, even under well-aerated conditions, and causes harmful 

emissions of nitric (NO) and nitrous oxide (N2O). Timing and magnitude of such emissions are 

difficult to predict due to the delicate balance of oxygen (O2) consumption and diffusion in soil. 

To study how spatial distribution of hotspots affects O2 exchange and denitrification, we 15

embedded porous glass beads inoculated with either Agrobacterium tumefaciens (a denitrifier 

lacking N2O reductase) or Paracoccus denitrificans (a ”complete” denitrifier) in different 

architectures (random vs. layered) in sterile sand adjusted to different water saturations (30%, 

60%, 90%) and  measured gas kinetics (O2, CO2, NO, N2O and N2) at high temporal resolution.  

Air connectivity, air distance and air tortuosity were determined by X-ray tomography after the 20

experiment. The hotspot architecture exerted strong control on microbial growth and timing of 

denitrification at low and intermediate saturations, because the separation distance between the 

microbial hotspots governed local oxygen supply. Electron flow diverted to denitrification in 
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