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Abstract

For several decades light-matter interaction has been an important scientific

field and has led to numerous investigations and researches in various fields such

as condensed matter physics, medicine and electrical engineering, and is still

expected to be one of the most active areas of research over the coming years.

However, there are still many open questions that necessitate further investigation.

In this doctoral thesis we investigate the coherence properties of light emitted

by quantum-dot microcavity lasers. To accomplish this task, we consider an

open quantum-mechanical system to formulate equation of motion based on

the theory of microscopic semiconductor. In this way, the cluster expansion

method is employed to solve the infinite hierarchy problem. Within this theory,

we can generate correlations required to calculate the quantities of interest in

microcavities.

Current work is concerned with the effect of the second mode on the lasing

behavior of the quantum-dot microcavity lasers where the quantum dot contains

two shells, a s- and a p-shell in the valence and in the conduction band. In

this regard, this thesis addresses two main parts: Two-mode, and two-state

quantum-dot-microcavity lasers.

In the first half of this thesis, we investigate correlations between two cavity

modes in a quantum-dot-microcavity laser where both modes are coupled to the

quantum-dot s-shell transition. The significant differences in the lasing behavior of

two modes indicate the gain competition between modes which is also confirmed

by autocorrelation and cross-correlation functions. In this part we especially

emphasize on the effects of the direct dissipative coupling on the gain competition.

Numerical results for a semiconductor quantum-dot microcavity laser demonstrate

an enhanced autocorrelation of both modes and also an enhanced anticorrelation

with increasing the direct coupling between two modes. In order to describe

and analyze these issues, we introduce dark and bright modes by applying the

unitary transformation. It is seen that beyond a certain lasing threshold original

modes are composed and as a result a bright mode is generated that is coupled

to the quantum dots. In addition, a dark mode is created that has only indirect

interaction with the quantum dots through the bright mode. It will be also shown

that the population of the dark mode can justify an efficient transfer of photons

between two original cavity modes.

In the second half of the thesis, we investigate two-state lasing in quantum-dot

laser, through ground-state (s-shell) and excited-state (p-shell) transitions. Based

on the microscopic semiconductor theory, we show that the ground-state laser is

qualitatively uninfluenced by the onset of lasing in the excited-state mode due to

the delay time between carrier saturation of two states. It is influenced solely by

the relaxation of the carrier into the ground state which can be affected via the



Q-factor of the excited mode, however it has only quantitative effect on lasing

operation of the ground-state mode.



Zusammenfassung

Einfluss des zweiten Mode auf die optischen Eigenschaften von

Quantenpunkt-Mikrokavitätslasern

Die Wechselwirkung zwischen Licht und Materie ist seit mehreren Jahrzehnten

ein wichtiges Wissenschaftsgebiet und hat zu zahlreichen Untersuchungen und

Forschungen auf verschiedenen Gebieten wie der Physik, der kondensierten

Materie, der Medizin und der Elektrotechnik geführt, und es wird erwartet,

dass sie auch in den kommenden Jahren eines der aktivsten Forschungsgebiete

sein wird. Es gibt jedoch noch viele offene Fragen, die eine weitere Untersuchung

erfordern. In dieser Doktorarbeit untersuchen wir die Kohärenzeigenschaften

von Licht, das von Quantenpunkt-Mikrokavitätslasern emittiert wird. Um diese

Aufgabe zu erfüllen, betrachten wir ein offenes quantenmechanisches System,

um Bewegungsgleichungen basierend auf mikroskopischen Halbleitertheorie zu

formulieren. Auf diese Weise wird die Cluster-Expansionsmethode eingesetzt, um

das Hierarchieproblem zu lösen. Innerhalb dieser Theorie können wir Korrelationen

erzeugen, die zur Berechnung der Interessenquantitäten an Mikrokavitäten

erforderlich sind.

Die aktuelle Arbeit beschäftigt sich mit dem Einfluss des zweiten Mode

auf das Laserverhalten der Quantenpunkt-Mikrokavitätslaser, bei denen der

Quantenpunkt zwei Schalen enthält, eine s- und eine p-Schale im Valenz und

im Leitungsband. In diesem Zusammenhang befasst sich diese Arbeit mit zwei

Hauptteilen: Zwei-Moden- und Zwei-Zustands-Quantenpunkt-Mikrokavitätslaser.

In der ersten Hälfte dieser Arbeit untersuchen wir Korrelationen Moden

in einem Quantenpunkt-Mikrokavitätslaser, bei dem beide Moden mit dem

Quantenpunkt s-Schalenübergang gekoppelt sind. Die signifikanten Unterschiede

im Laserverhalten zweier Moden zeigen den Modenwettbewerb, der auch

durch Autokorrelations- und Kreuzkorrelationsfunktionen bestätigt wird. In

diesem Teil betonen wir besonders die Auswirkungen des direkten dissipativen

Kopplung zwischen den Moden auf den Moden-Wettbewerb. Numerische

Ergebnisse für einen Halbleiter-Quantenpunkt-Mikrokavitätslaser zeigen eine

erhöhte Autokorrelation beider Moden und auch eine erhöhte Antikorrelation

mit zunehmender direkter Kopplung zwischen zwei Moden. Um diese Probleme

zu beschreiben und zu analysieren, führen wir ,Dunkle’ und ,Helle’ Moden ein,

indem wir die einheitliche Transformation anwenden. Es zeigt sich, dass ab

einem bestimmten Laserschwellenwert originale Moden zusammengesetzt sind

und dadurch ein Helle Mode erzeugt wird, der mit den Quantenpunkten gekoppelt

ist. Zusätzlich wird ein Dunkle Mode erzeugt, der nur eine indirekte Interaktion

mit den Quantenpunkten über den Hellen Mode hat. Es wird auch gezeigt, dass

die Population des Dunkelmode einen effizienten Photonentransfer zwischen zwei

ursprünglichen Moden rechtfertigen kann.



In der zweiten Hälfte der Arbeit untersuchen wir den Zwei-Zustände

Laser im Quantenpunkt-Laser, durch Übergänge zwischen Grundzustand

(s-Schale) und angeregtem Zustand (p-Schale). Basierend auf der mikroskopischen

Halbleitertheorie zeigen wir, dass der Grundzustand-Laser aufgrund der

Verzögerungszeit zwischen der Trägersättigung zweier Zustände qualitativ

unbeeinflusst vom Beginn des Lasereinsatzes in der Anregungsmode ist. Sie wird

ausschließlich durch die Relaxation des Trägers in den Grundzustand beeinflusst,

die über den Q-Faktor des angeregten Mode beeinflusst werden kann, hat aber

nur quantitative Auswirkungen auf den Laserbetrieb der Grundzustandsmode.
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Chapter 1

Introduction

Quantum optics is a major field of study in modern physics that deals in particular

with the theory and application of interactions between light and matter. The

main feature of the quantum theory of optics evolves from the nature of light as

an ensemble of quantized photons. One of the first main advancements of the light

theory that assumed the light emission as discrete units of energy was proposed

by Max Planck in 1899 by explaining of the blackbody radiation spectrum. Later

in 1905, Albert Einstein could develop the hypothesis of discrete quanta of light

and the concept of photons in order to describe the photoelectric effect. This

was a milestone in further development of quantum optics that was continued by

Dirac [1927] and Fermi [1932] and progressed in recent decades to our current

knowledge of this concept.

Recent developments in semiconductor nanotechnology enable us to study

quantum optics. The 3-D confinement of light and matter in semiconductor

micro- and nanostructures with the size of the de Broglie wavelength leads to the

quantization of the light. Thereby state-of-the-art semiconductor devices make

it possible to study the quantum optical phenomena. In this doctoral thesis we

explore semiconductor quantum-dot microcavity lasers.

To understand the concept of quantum-dot lasers we need first to shortly

review the laser structure and principle. Lasers are known as sources of light

that usually have high output and are emitted in a narrow bandwidth. A main

feature that makes lasers different from other sources of light is that laser emits

light coherently [Hakan, 1986]. This concept can be traced back to 1917, when

Albert Einstein published the paper “On the Quantum Theory of Radiation”

[Einstein, 1917] where he proposed that light carries its energy in quantized

3



4 Chapter 1. Introduction

states, or the so-called photons. He proposed that, in addition to spontaneous

absorption and emission of light, electrons are able to emit the light with a

particular wavelength as they are stimulated. This is the underlying theory of

Laser and Maser that can be seen in Figure 1.1. This figure shows a sketch of

the three single-photon processes where the spontaneous, the stimulated and the

absorption emissions are illustrated. In spontaneous emission, an electron goes

down from an excited state with energy E2 to a ground state with energy E1 and

consequently emits a photon with the energy corresponding to the difference in

two energy levels. While the phase and also the direction of the emitted photon

are random. Stimulated emission is a procedure in which an incoming photon of

matching energy ~ω = E2 − E1 interacts with the electron in the excited state

before decaying to the ground state to create a new photon which emits in the

same phase and direction with respect to the first one. As a result, the light

intensity is coherently amplified by this process. Finally, absorption is a process

where a photon is consumed to lift an electron to the excited state.

Figure 1.1: Principle of the three main photon interaction mechanisms in a
two-level system: (a) spontaneous emission where an electron decays from E2 to
E1 and then emits a photon with random phase, (b) stimulated emission where
incoming photon can excite the electron and it leads to decay to E1 by emitting
a photon. A new photon emits in the same phase and direction with the first one,
(c) absorption where an electron goes up to E2 by consuming a photon.

The history of lasers goes back to 1960 when Theodore H. Maiman built the

first solid-state pink ruby laser [Maiman, 1960], based on theoretical studies of

Schawlow and Townes [1958]. Only one year later, Basov et al. [1961] published a

paper to introduce the concept of semiconductor lasers. In 1962, Hall et al. [1962]
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and Nathan et al. [1962] produced the first gallium arsenide (GaAs) semiconductor

laser diodes nearly at the same time. There was, however, the drawback of a

working point at moderately low temperature and of a high laser threshold. It

led to next researches on heterostructures by Kroemer [1963], Alferov [1970] in

order to overcome the problems of the first diodes and make laser ready to use

outside the lab. These scientists were awarded the Nobel prize in the year 2000

for their outstanding achievements and for the development of semiconductor

heterostructures that can be utilized in high-speed- and opto-electronics.

In the last decade, micro/nano-lasers have gained significant interest, because

they are faster, more compact and power-efficient than the conventional lasers

[Gourley, 1998, Samuel et al., 2009]. One of the main features that makes micro-

and nano-lasers superior to conventional lasers is the Purcell effect which was

discovered by Purcell [1946]. The Purcell effect is known as the enhancement of

the spontaneous emission into cavity modes by its environment [Kleppner, 1981,

Lodahl et al., 2004a]. This effect can be formulated by the enhancement factor

[Purcell, 1946]

Fp =
3

4π2

(
λfree
n

)3(
Q

V

)
,

where λfree/n is the wavelength in a cavity material with refractive index n.

Here, Q is the quality factor and V is mode volume of the cavity. This equation

indicates that increasing the quality factor by using high-quality modes together

with the reduction of mode volume lead to an enhancement of the Purcell factor

and consequently to higher spontaneous emissions.

There are also other parameters that can characterize the efficiency of a laser

device. One of these factors is the β-factor which is also associated with the

Purcell factor. The β-factor is defined as the ratio of spontaneous emission into

the laser mode to the overall spontaneous emission of the laser-gain medium.

The β-factor and the Purcell factor determine the threshold behavior [Chow

and Jahnke, 2013, Gies et al., 2007, Björk et al., 1994]. Nowadays used lasers

with a β-factor close to unity has been reported in some recent works [Strauf

et al., 2006, Thyrrestrup et al., 2010] (see Fig. 1.2). Significant intensity jump

at the threshold can be used to determine the β-factor in conventional devices.

However, for β-factors close to one, the intensity jump approaches zero in the

input-output curve, indicating the concept of ‘thresholdless’ devices. In such

devices the vanishing intensity jump cannot be used to determine the threshold



6 Chapter 1. Introduction

and a new approach should be adopted. In these thresholdless lasers, the onset

of stimulated emission at threshold is identified by the considering the changes in

the photon characteristics of the emitted light [Rice and Carmichael, 1994, Ulrich

et al., 2007, Wiersig et al., 2009].

Figure 1.2: (a) A conventional resonator with small β-factor. For low β-factor
values the spontaneous emission can take one of the following modes: conversion to
a lasing mode, emission into other cavity modes or being emitted as a continuous
spectrum of radiation waves. (b) A resonator in a laser with β-factor approaching
unity. Picture from Ref. [Hayenga and Khajavikhan, 2017].

One of the crucial parts of a laser is the optical microresonator that is

widely developed and improved. This improvement has led to the production of

ultralow-threshold lasers or even thresholdless lasers [Strauf et al., 2006, Noda,

2006]. In general, various types of microresonators can be identified where their

type of design, optimization, properties, and application depend on the specific

area of study. Among the most used approaches, cavities vary from micro-pillars

[Reitzenstein and Forchel, 2010, Reithmaier et al., 2004] to photonic crystals

[Strauf et al., 2006], and to microdiscs [Michler et al., 2000, Vahala, 2003], as

shown in Figure 1.3. The type of microresonators that are used in this thesis are
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Figure 1.3: Scanning tunneling microscopy images of different types of
microcavities. From left to right: a micropillar cavity [Reithmaier et al., 2004], a
photonic crystal membrane cavity [Strauf et al., 2006], and a microdisc cavity
[Michler et al., 2000].

micropillars.

A gain medium is a material which allows to amplify laser beams as a result

of the stimulated emission. Semiconductors as a gain medium play an important

role in a wide range of industrial and fundamental applications owing to their

important characteristics like low threshold current, high efficiency, small emission

spot size, high temperature application, continuous wave (cw) output and lower

fabrication costs. The development of semiconductor lasers made a leap forward by

realizing that the reduction of dimensionality in a semiconductor has tremendous

effect on the density of states, and in consequence on the lasing properties.

Reducing the spatial expansion to values smaller than the ‘de Broglie wavelength’

in one, two or even three dimensions leads to carrier confinement in structures

which will be classified into three categories as quantum well, quantum wire, and

quantum dots that are shown in Figure 1.4.

After the first experimental proof of two-dimensional quantum well lasers by

Dingle and Henry [1976] the advantages of quantum wells as active materials were

realized for laser applications. Due to the narrow active region of the quantum

well laser, the quantum confinement occurs. The wavelength of the light emitted

by a quantum well laser can be specified by using the width of the active region

instead of the bandgap of the fabricating material. Moreover, this allows to obtain

lasers with lower threshold currents. Also, replacing a two-dimensional quantum

well with a zero dimensional quantum-dot laser leads to beneficial features in

terms of efficiency and temperature stability as illustrated by Arakawa and Sakaki

[1982].
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Figure 1.4: Sketch of the free density of states for a system with zero-, one-, two-,
or three-dimensional extension (from right to left) [Bimberg et al., 1999]. Changes
in the density of states are illustrated from a square root behavior for a three
dimensional bulk material to a delta behavior in zero-dimensional quantum dots.

The specific type of semiconductor lasers that will be studied in this thesis is

quantum dot microlasers. Quantum dots are very small particles or crystals of a

semiconductor material in the range of several nanometers. Due to small size of

quantum dot their optical and electronic properties are different from those of

larger particles so that quantum dots are sometimes described as artificial atoms.

This issue emphasizes that a quantum dot is a single object with bound and

quantized energy levels, like atoms or molecules that naturally occur [Ashoori,

1996, Fafard et al., 1999]. However, in contrast to atoms the confining potential

and the level spacing of the confined carriers can be modified by the geometry,

size and also the material of the quantum dots [Murray et al., 2000].

During the last two decades quantum dots (QDs) have attracted great

attention and interest in both fundamental research and practical applications

[Michler, 2003, Bimberg et al., 1999]. One of the most important properties of

QDs is their high gain and low temperature dependence that make QDs an ideal

choice for low-threshold lasers [Asada et al., 1986, Arakawa and Sakaki, 1982,

Chhantyal et al., 2018]. Nowadays, there exist dozens of different approaches

in nanotechnology to fabricate semiconductor QDs out of various materials. In

this work we focus on techniques that allow for embedding the QDs in a bulk

semiconductor in order to form an electrical device. QDs can be fabricated by
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their self-organized growth that takes place in the Stranski-Krastanow-mode

[Bimberg et al., 1999, Jacobi, 2003, Legrand et al., 1998]. In this approach

coherently strained self-assembled QDs are produced. Semiconductor material

grows epitaxially by using a molecular beam or a metal organic gas on top of a

substrate material that has a greater band gap. At the beginning of the process

the new material layer expands homogeneously and its lattice constant is nearly

the same as that of the substrate. This leads to a tension between these two

materials. At a certain critical thickness this tension decreases as small material

island appears that are the actual QDs. During this mechanism a thin and

homogeneous wetting layer is formed between the QDs and the substance as

shown in Figure 1.5. It took several years of research to find suitable materials

and to produce QDs with optical wavelengths of a good quality so that they

could be used in a cavity to form a QD microlaser. Here we consider typical

self-assembled InGaAs QDs. However, the achievements that will be presented

here can be extended to other material systems.

Figure 1.5: Transmission electron microscope of single QD which is coupled to
the wetting layer on a GaAs substrate. The picture is taken from Ref. [Anders
et al., 2002].

To describe the optical properties of QDs, we need a model that cannot be

dealt with using neither a pure atom model nor a pure semiconductor model.

Since the level spacing of the lowest confined states for QD is much smaller in

comparison to atoms, a two-level model of atoms can not be an appropriate model

to describe all optical properties of QDs. For QDs, many-particle effects have

to be considered due to the other energetically higher states. Additionally, its
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semiconductor nature makes a difference to an atom laser. Not only the QDs are

not isolated semiconductor systems, but also the interaction with the environment

must be taken into account for a practical QD model. The basic model that

shows these key features and is used in this thesis is illustrated in Figure 1.6. The

described QDs have a cylindrical symmetry, and therefore confined carrier states

can be classified according to the angular momentum as an appropriate quantum

number. In this thesis, QDs with two confined states for electrons and holes with

quantum number s, p are considered1. For a fixed spin direction the s-state is

non degenerated, while the p-state is two-fold degenerated. The pump process in

experiments can either be initiated through optical pumping or through electrical

pumping in the wetting layer or in the barrier or resonantly into the p-shell. For

the sake of simplicity we assume that subsequent fast relaxation to the discrete

electronic states of the QDs, so that we can assume that the pump process takes

place directly in the QD p-shell.

Figure 1.6: Sketch of the QD model in the electron-hole picture. In our model
the quantum dot contains two shells, a s- and a p-shell. The pump process can
produce electrons and holes in the quasicontinuum states of the wetting layer.
For the sake of simplicity, we assume that the creation of carriers takes place
directly in the p- shell. Moreover, carriers can scatter into the s- shell, where the
recombination of electron-hole pair occurs.

1In chapter 4, we use the ground state and excited state instead of s- and p-shell, respectively.
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The starting point of this thesis is the microscopic model of Gies et al. [2007]

to describe the light-matter interaction in semiconductor QD microcavity lasers

with some variations. In order to describe the semiconductor model precisely, we

assume an open quantum system where the system interacts with an environment.

Since many-body quantum-mechanical systems are too big to be solved with exact

numerical methods or are too small to be studied with the well known statistical

methods, we use a new generalized formalism of the cluster expansion approach

[Fricke, 1996, Kira and Koch, 2008, Richter et al., 2009, Leymann et al., 2013a,

2014]. Finally, results are obtained based on the theory and provide progress for

novel light sources.

Since most previous studies of microcavity lasers have mainly concentrated

on the lasing characteristics based on the interaction of a single laser mode with

QDs, we will focus our attention on microcavity lasers with two optical modes

that have been less studied so far [Faghihi et al., 2014, Majumdar et al., 2012,

Leymann et al., 2013b, Khanbekyan et al., 2015, Redlich et al., 2016]. This

allows us to realize some essential features of the gain competition in lasers and

to explain the resulting effective mode coupling. In the current work, we will

figure out how the second mode lasing can affect the laser characteristic of QD

microcavity lasers. To this end, we consider two cases: two-mode and two-state

QD microcavity lasers.

In the first part of this thesis we study the competition in the two-mode

microcavity lasers where both modes are coupled to the s-shell transitions. Due

to the openness of the system, we can provide an explanation for competing

behavior that arises from the direct dissipative coupling between optical modes

[Fanaei et al., 2016]. On the other side, the statistical properties of two-state

lasers will be investigated where the second mode is connected to the QD p-shell

(excited-state) transitions, while only the first mode is coupled to the s-shell

(ground-state) transitions. The competition behavior of two-state microcavity

laser is an interesting research topic of many recent publications [Markus et al.,

2003, Gioannini, 2012, Röhm et al., 2015a,b].

Thesis Outline

First, the general and innovative theoretical concepts of this work are presented

in the next chapter followed by the application of the theory to two types of
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semiconductor QD lasers: two-mode and two-state lasers.

This thesis is organized as follows:

Chapter 2 reviews briefly the general aspects of an open quantum many-particle

system and describes the derivation of the Hamiltonian. Next, we will explain the

microscopic semiconductor theory of Gies et al. [2007] to describe the light-matter

interactions in semiconductor QDs nanostructures. Since QDs are embedded in

a dense semiconductor environment, we need to consider the influence of the

environment on the system. This will be described by adding Lindblad terms to

the von-Neumann equation [Lindblad, 1976] in section 2.1. Moreover, we will

review briefly the cluster expansion method to terminate the hierarchy of equation

of motion for a system that was developed by Leymann et al. [2013a, 2014].

In chapter 3 we investigate the statistical properties of two competing modes

in a QD-microcavity laser. We assume that two modes are connected to the

s-shell transition. The two modes display completely different behavior, revealing

the gain competition. The impact of mode coupling in two different cases will be

also considered. In the first case, we will recapitulate the statistical properties of

the emitted light assuming that there is no direct dissipative coupling between two

modes and only the coupling of two optical modes via the common gain medium is

presented [Leymann et al., 2013b]. In the second case, the two modes are directly

coupled to each other and we investigate the additional direct mode coupling

due to the dissipative character of the laser resonator. In order to analyze the

mode-coupling effects, we will apply a unitary transformation from the original

modes to a new set of modes, namely bright and dark modes in section 3.5. The

bright mode is coupled to the QD, while the dark mode interacts only indirectly

with QDs through the bright mode. As a result, the population of dark mode

can be a good signature of a transfer of photons between the two original cavity

modes.

Chapter 4 is concerned with the impact of the excited-state mode on the

ground-state lasing. Two modes behave independently as typical laser but with

different lasing threshold. It indicates that there is no gain competition between

modes which is also confirmed by the constant behavior of cross-correlation

function. The gain competition cannot be observed in laser characteristics

because of a delay time between carrier saturation of two states which will be

predicted based on our microscopic semiconductor model.



13

Chapter 5 provides a summary of the main achievements of this study and

gives an overview of the impact of presented results as well as possible future

studies.





Chapter 2

Theory of light-matter

interactions in semiconductors

To theoretically describe the light-matter interactions in semiconductor

nanostructures a semiconductor model will be formulated and presented in

this chapter. This microscopic semiconductor theory can be used to assess

the required correlations that determine the emission statistics from a system

involving QDs located in a semiconductor environment. In the following, we

provide this theoretical framework of light-matter interactions in QDs in two

main parts:

First, a short overview of the general description of an open quantum-

mechanical many-body system using the density operator and the von

Neumann-Lindblad equation will be given in section 2.1. We use the Lindblad

formalism to describe the openness of the system and in this regard, the Hilbert

space is divided into a system and an environment. Due to difficulty of deriving

master equations for a system and for an environment, a common technique is to

limit the dynamical calculations to the system.

Second, in order to formulate the microscopic QD theory, we need to find a

Hamiltonian that is suitable for the intended situation. Thus, with respect to the

microscopic semiconductor theory the Hamiltonian of semiconductor QD lasers

will be derived and presented in section 2.2. Then we discuss in detail how to

derive the equation of motion (EoM) for time evolution of a system at time t in

section 2.3.

It is worth noting that our microscopic semiconductor theory uses a truncated

system of equations for correlation functions to limit the infinite hierarchy. The

15
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truncation scheme depends strongly on the considered system and here various

methods will be pointed out and discussed [Leymann et al., 2013a, 2014, Fricke,

1996, Hoyer et al., 2004].

2.1 Open quantum-mechanical systems

In reality, a quantum system cannot be modeled as being thoroughly isolated

from its environments. This openness of the system leads to some dissipation.

In order to describe an open quantum system we use the quantum-mechanical

Markovian master equation in Lindblad form to assess the the time evolution of

the density operator (for more details, see Refs. [Breuer and Petruccione, 2002,

Carmichael, 1999]).

Figure 2.1: Schematic of an open quantum system illustrated in an interacting
system-reservoir picture.

The main assumption here is that we can split the whole system into a

subsystem S and a reservoir R as illustrated in Figure 2.1. Under this assumption,

the Hamiltonian of the whole system can be described as a combination of three

items

Ĥ = ĤS + ĤR + ĤSR,
1 (2.1)

where ĤS is the subsystem Hamiltonian that we are mainly interested in, and

1The hat ˆ symbol is only used in this chapter to distinguish quantum-mechanical operators
from classical quantities.
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ĤR describes the reservoir. ĤR is not the main focus of study but it enters the

calculations only by its general properties like temperature and density of states.

A third term ĤSR describes the interaction of these two subsystems,

ĤSR = ~
∑

L̂iΓ̂i. (2.2)

In Eq. (2.2), the Lindblad operators L̂i act on the Hilbert space of the system S

and the operators Γ̂i act on the Hilbert space of the reservoir R. We apply the

von-Neumann equation for the full density operator ρ̂ to outline the dynamics of

the system,
d

dt
ρ̂ =

i

~
[ρ̂, Ĥ]. (2.3)

The density operator of the system ρ̂S can be calculated by taking the partial

trace over the reservoir

ρ̂S = trR{ρ̂(t)} = trR{Û(t)ρ̂(0)Û †(t)}, (2.4)

where Û(t) is the unitary time evolution operator. By applying the Markov

approximation we assume that the relaxation time of the reservoir R is much

smaller than the relaxation time of subsystem S that is generally valid for

wetting layer compared to the QDs. As a result, the reservoir correlations vanish

immediately,

〈Γ̂i(t)Γ̂j(t′)〉R ∝ δ(t− t′). (2.5)

Moreover, to obtain a simple dynamical equation we apply the Born approximation

meaning that the subsystem S has no significant effect on the reservoir R and

the reservoir can affect the system only with its general parameters that are

time-independent like temperature, T . For instance, by using the temperature T

as reservoir parameter the whole density operator can be given by

ρ̂(t) ≈ ρ̂S(t)ρ̂R(T ). (2.6)

These approximations leads to the von Neumann-Lindblad equation (vNL) for a

system with reduced density operator ρ̂S (for more details refer to Ref. [Breuer

and Petruccione, 2002]).

d

dt
ρ̂S =

i

~
[ρ̂S, ĤS] +

∑
ν,ν′

γνν′(2L̂ν′ ρ̂SL̂
†
ν − L̂†νL̂ν′ ρ̂S − ρ̂SL̂†νL̂ν′). (2.7)
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The first term on the right-hand side describes the unitary dynamics of S that is

equal to Eq. (2.3). The interaction with the reservoir via the Lindblad term is

reflected in the second term of the right hand side, where γνν′ implies the rates

that depend on the reservoir parameters.

In addition, the von Neumann-Lindblad equation can be applied to a specific

system operator, 〈Â〉 = trS(Âρ̂S) to obtain the EoM for an expectation value

(EV),

d

dt
〈Â〉 =

i

~
〈[ĤS, Â]〉+

∑
ν,ν′

λνν′〈2L̂†νÂL̂ν′ − L̂†νL̂ν′Â− ÂL̂†νL̂ν′〉

=
i

~
〈[ĤS, Â]〉+

∑
i

〈Ci(Â)〉

= 〈L(Â)〉.

(2.8)

This equation is called the generalized Ehrenfest equation of motion that

is derivable in the Schrödinger picture and is different from the generalized

Heisenberg EoM. The Lindblad processes are labeled by the operator functions

Ci(Â) and here L stands for the Lindblad superoperator2 that is used as short

form for symbolic calculation in next chapters. For the sake of simplicity, we

omit also the index S in the rest of this thesis.

2.2 System and Hamiltonian

Electromagnetic field emission features of a QD microcavity laser can be

investigated via a microscopic semiconductor theory. By considering the

many-body effects of the carriers, the developed microscopic semiconductor

theory can compute correlations required to determine the emission statistics of

QD microcavities. To be more specific, we consider QDs with only two confined

QD shells for both electrons and holes in the valence and in the conduction band

(as can be seen in Fig. 1.6). Moreover, we assume that the carrier generation

process (pumping) takes place in the p-shell that suits well to an experimental

case.

As a first step to formulate a microscopic QD theory we have to acquire a

Hamiltonian that fulfills the temporal evolution of the whole system. For a QD

2Superoperator is an object that acts on an operator and then results in a new operator.
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microcavity laser the Hamiltonian can be given as a summation of four terms

Ĥ = ĤPh + Ĥ0
Carr + ĤCoul + ĤD. (2.9)

The first part ĤPh is the electromagnetic field in the cavity, the second term,

Ĥ0
Carr, describes the carriers that are confined in the QDs, the third term, ĤCoul,

represents the Coulomb interaction of the carriers and the fourth term, ĤD, is

the light-matter interaction. In the following sections, we will derive each of these

Hamiltonians in detail.

2.2.1 Quantization of the electromagnetic field

The basic concept of quantization is to assume that electromagnetic fields are

comprised of discrete energy packets, or the so-called photons. The Hamiltonian

ĤPh expresses the quantized electromagnetic energy. We can apply the formalism

of the second quantization by employing Maxwell equations [Haug and Koch,

2009]. In order to make the vector potential A(r, t) transversal, we use the

Coulomb gauge, ∇.A(r, t) = 0. The wave equation for the vector potential in a

cavity reads

∇2A(r, t) =
n2(r)

c2
∂ttA(r, t). (2.10)

Here, n(r) is the refractive index that is related to the material of the resonator.

The vector potential A(r, t) is expanded into modes uξ(r)

A =
∑
ξ

cξ(t)uξ(r) + c∗ξ(t)u
∗
ξ(r), (2.11)

where cξ(t) = cξ(0)e−iωξt with ξ labeling the modes. It is worth mentioning

that the shape of the cavity and the refractive index n(r) have effects on the

form of uξ(r). We apply the canonical quantization where cξ = Aξ b̂ξ with the

factor Aξ =

√
~

2ε0ωξvolξ
, the mode volume volξ and the permittivity ε0. The

electromagnetic field operator can be expressed in terms of bosonic annihilation

b̂ξ and creation operators b̂†ξ . The operators b̂ξ and b̂†ξ fulfill the standard bosonic

commutation relations:

[b̂ξ, b̂
†
ξ′ ] = δξ,ξ′ ,

[b̂ξ, b̂ξ′ ] = 0 = [b̂†ξ, b̂
†
ξ′ ].

(2.12)
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This leads to the the quantized vector potential being formulated as:

A =
∑
ξ

b̂ξuξ(r) + b̂†ξu
∗
ξ(r), (2.13)

and finally the expression for the quantized field energy can be written as3

ĤPh =
∑
ξ

~ωξ
(
b̂†ξ b̂ξ +

1

2

)
. (2.14)

2.2.2 Single-particle states

The step required prior to formulate the many-body approach is the choice of the

single-particle basis of the non-interacting system. Calculation of single-particle

states depends strongly on the experimental conditions and the material size and

characteristics. Here we focus on III-V compound semiconductors like InGaAs

QDs on a GaAs substrate. For this type of material accurate but sophisticated

approaches like tight-binding models [Schulz and Czycholl, 2005, Singleton, 2001,

Sheng et al., 2005, Baer et al., 2005] can be used. An example of the application of

this model to InN/GaN QDs can be found in the work of Baer et al. [2005]. It has

been also shown that phenomenological theories like the 8-band k.p. wave functions

provide good estimations for InGaAs/GaAs QDs [Schliwa and Winkelnkemper].

In this thesis, we employ the envelope-function approximation [Haug and Koch,

2009, Bimberg et al., 1999] that is simpler and provides an acceptable accuracy

for our purpose.

In the envelope function ansatz, the wave function ψλν (r) is assumed to be

the product of the periodic Bloch function at the band edge uk≈0(r), describing

the volume material, times the envelope function that represents the additional

confinement of the QD φλν(r),

ψλν (r) = uλk≈0(r)φλν(r). (2.15)

Here, λ is the corresponding band index and ν indicates the quantum numbers

specifying the confined state. The effective single-particle Schrödinger equation

3In this work we shift the zero energy so that the +
1

2
does not appear in the Hamiltonian of

quantized field energy.
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can be used to evaluate the envelope function(
− ~2

2mλ
∆ + V (r)

)
φλν(r) = ελνφ

λ
ν(r), (2.16)

where mλ is the effective mass and V (r) denotes an approximate confinement

potential which depends on the shape of the QDs. For typical lens-shaped QDs

(like the one depicted in Figure 1.5), the potential can be approximated by a two

dimensional harmonic potential [Wojs et al., 1996, Bimberg et al., 1999] with the

strong confinement in growth direction z and a harmonic oscillator potential in

the x-y-plane

V (r) =
mλω2

2
(x2 + y2) + V0 (θ(z − L/2) + θ(−z − L/2)) , (2.17)

where V0 and L denote the confinement energy and the extension, respectively.

Now the field operators can be constructed with the single-particle states as

Ψ̂(r, t) =
∑
λ,ν

âλ,ν(t)ψ
λ
ν (r), (2.18)

with the fermionic annihilation (creation) operators âλ,ν(t)(â
†
λ,ν(t)) that fulfill

the standard anti-commutation relations for any indices k and k′ [Schwabl, 2008,

Mahan, 2000]

[âk, â
†
k′ ]+ = δk,k′ ,

[âk, âk′ ]+ = 0 = [â†k, â
†
k′ ]+.

(2.19)

The number of states ν and levels are determined by the depth of the

confinement potential. One simple approach that is widely used is the two-level

description [Del Valle et al., 2009, Richter et al., 2009, Lodahl et al., 2004b].

However, in this work we use a four-level QD model which is much closer to

realistic cases. This QD model has two confined states for electrons and holes

[Gies et al., 2011] and therefore is able to provide a more accurate picture of our

system. The angular momentum is a robust quantum number and in this chapter

the states are called s- and p-shell.
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2.2.3 The many-body Hamiltonian

The many-body Hamiltonian can be now constructed based on the concept of the

single-particle field operators. The many-particle Hamiltonian includes several

terms:

First, Hamiltonian of the free carriers is given by

Ĥ0
Carr =

∫
d3rΨ̂†(r, t)

(
− ~2

2m
∆ + V (r)

)
Ψ(r, t), (2.20)

which is a diagonal sum of creation and annihilation operators n̂ = â†λ,ν âλ,ν with

the single-particle energies ελν

Ĥ0
carr =

∑
ελν â
†
λ,ν âλ,ν . (2.21)

Second, the Coulomb Hamiltonian is constructed in a similar way with the

Coulomb matrix element

V λλ′

ναν′α′ =

∫
d3r

∫
d3r′ψλ∗ν (r)ψλ

′∗
α (r′)V (r− r′)ψλ

′

ν′ (r
′)ψλα′(r), (2.22)

with the Coulomb potential V (r) = e2/(4πε0ε|r|), the electron charge e and the

dielectric function ε0ε. The complete Coulomb Hamiltonian in second quantization

can be also expressed by creation and annihilation operators:

Ĥcoul =
∑

V λλ′

ναν′α′ â
†
λ,ν â

†
λ,αâλ′,ν′ âλ,α′ . (2.23)

Third, the light-matter interaction can be expressed in dipole approximation

[Wiersig, 2007, Garrison and Chiao, 2014]. It is typically valid for a system with

the wavelength of the mode being much bigger than the size of the QD. As a

result, the mode function of the electromagnetic field remains almost constant

over position and therefore uξ(r) ≈ uξ(r0), where r0 is the location of QD. The

dipole Hamiltonian can be written as

ĤD =

∫
d3rΨ̂†(r)(−e ~ET (r0))Ψ̂(r, t). (2.24)

The strength of the light-matter coupling is calculated by dipole matrix elements,
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gλλ
′

ξαν =

√
~ωξ

2εε0volξ

∫
d3rψλ∗α (r)eruξ(r0)ψ

λ′

ν (r). (2.25)

In the above equation the prefactor is called the vacuum amplitude which contains

the normalizing mode volume volξ of mode ξ. Hence, the dipole Hamiltonian can

be given by

ĤD =
∑

ξ,α,ν,ν′,α′,λ,λ′

gλλ
′

ξαν â
†
λ,αâλ′,ν(b̂

†
ξ + b̂ξ) +H.c., (2.26)

in terms of bosonic and fermionic creation and annihilation operators. It describes

the emission and the absorption of a photon in mode ξ due to the transition of

a carrier from band λ′ in state ν to band λ in state α as well as the conjugate

process. For the sake of simplicity, we use the equal envelope approximation for

valence- and conduction-bands [Baer et al., 2006]. The dipole matrix elements

read gλλ
′

ξαν = uξ(r0)dλλ′δαν with the inter-band matrix elements dλλ′ . Furthermore,

the Rotating Wave Approximation is employed to neglect fast oscillating terms in

a dipole for situations of weak coupling near the resonance [Meystre and Sargent,

1999, Wu and Yang, 2007].

By applying these approximations, we can rewrite the many-body Hamiltonian

in terms of the fermionic operators ĉj (ĉ†j) and v̂j (v̂†j). ĉj (ĉ†j) annihilates (creates)

a conduction-band carrier in the state |j〉c. Also, v̂j (v̂†j) annihilates (creates)

a valence-band carrier in the state |j〉v. With this notion, the single-particle

Hamiltonian can be written as

Ĥ0
Carr =

∑
j

εcj ĉ
†
j ĉj +

∑
j

εvj v̂
†
j v̂j, (2.27)

where εc,vj are the energies for conduction and valence band carriers. The

two-particle Coulomb Hamiltonian reads

ĤCoul =
1

2

∑
k′jj′k

(V cc
k′jj′kĉ

†
k′ ĉ
†
j ĉj′ ĉk +V vv

k′jj′kv̂
†
k′ v̂
†
j v̂j′ v̂k) +

∑
k′jj′k

V cv
k′jj′kĉ

†
k′ v̂
†
j v̂j′ ĉk, (2.28)

and the dipole Hamiltonian is given by

ĤD = −i
∑
ξ,j

(gξj ĉ
†
j v̂j b̂ξ − g∗ξj v̂

†
j ĉj b̂

†
ξ). (2.29)

Here all Hamiltonians have been written for the case of two shells with s- and



24 Chapter 2. Theory of light-matter interactions in semiconductors

p-shell, j, j′, k, k′ ∈ s, p, and mode ξ.

2.3 Equation of motion

The dynamics of an open quantum mechanical system can be described by the

von Neumann–Lindblad (vNL) model for the case of reduced density operator

(~ = 1)
d

dt
ρ = −i[H, ρ] + Lρ, (2.30)

where the Hamiltonian H generates the internal coherent dynamics and the

Lindblad superoperator L denotes the dissipative coupling to the environment.

Because of the size of the system, the explicit solution of ρ(t) is not straightforward

and knowledge of some expectation values would be enough. We describe the

system by considering the time evolution of expectation values formulated by a

generalized Ehrenfest EoM in Eq. (2.8) for observable quantities. This approach

however encounters an infinite hierarchy of equations for various expectation values

of photon and carrier operators due to the interaction of the Hamiltonian and the

scattering terms in the Lindblad terms. A common way to solve this problem and

to make the numerical integration feasible is to truncate the hierarchies at a certain

level. The accuracy of the truncation result depends mainly on the used technique

and type of investigated system. In general, we can divide these techniques

into two main types: One scheme is to use correlation functions (CFs) in the

cluster expansion [Fricke, 1996, Hoyer et al., 2004], where the equations of motion

for expectation values are substituted by equations of motion for correlation

functions. Higher-order correlation functions are assumed to have a negligible

contribution and are therefore neglected [Wiersig et al., 2009, Kapetanakis and

Perakis, 2008, Kira et al., 1998, Hoyer et al., 2003]. The second approach is to

apply the expectation values (EVs) in the cluster expansion and to truncate the

hierarchy in the same way [Gartner, 2011, Richter et al., 2009, Witthaut et al.,

2011, Carmele et al., 2010]. The formulation in CFs is algebraically more complex

but is shown to be numerically more efficient for large systems. On the other

hand, EV model reduces considerably the algebraic complexity and generates

a linear and transparent system of EoM, but is mainly appropriate for small

systems. In this doctoral thesis, we use the formulation in CFs to describe the

statistical properties of the photon emission events in QD microcavity lasers. In
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the following section, we give a brief overview of this model; more details can

be found in Refs. [Leymann et al., 2013a, 2014, Leymann, 2016, Foerster, 2017],

where a new formulation, expectation value based cluster expansion (EVCE), has

been also introduced to ease a switch between an EV and CF formulation.

2.3.1 Definition of correlation functions

In this section, we first address the main concept of correlation functions. Basic

definitions of correlation functions and more details in this regards can be found

in Ref. [Fricke, 1996]. Next, we study various approximations that are used to

neglect EVs and CFs.

The starting point is the principle that each EV 〈b1b2...bk〉 of operators bi
4

can be presented by summation over the products of CFs. For mathematical

formulation, we need to define a set of indices I = 1, 2, ..., k as well as a product

of operators bI = b1b2...bk. The factorization operator F is also introduced that

only alters the representation of the EV (similar to a passive transformation of a

vector) without affecting the value of complex number 〈bI〉. Therefore, CFs δ(bJ)

can be defined as

F〈bI〉 = δ(bI) + δ(bJ)F =
∑
P∈PI

∏
J∈P

δ(bJ), (2.31)

where δ(bJ)F represents the sum of products of all probable factorizations of the

operator EV 〈bI〉 into CFs that contains only a smaller number of operators than

the cardinality of I ,#(I). Moreover, P is a partition of the set I implying a set

group of disjoint nonempty subsets J of I with ∪J∈PJ = I. PI is the set of all

partitions of I.

For example, for the first three orders of expectation values we can decompose

an expectation value according to Eq. (2.31):

F〈b1〉 = δ(b1),

F〈b1b2〉 = δ(b1b2) + δ(b1)δ(b2),

F〈b1b2b3〉 = δ(b1b2b3) + δ(b1b2)δ(b3)

+ δ(b1b3)δ(b2) + δ(b2b3)δ(b1) + δ(b1)δ(b2)δ(b3).

(2.32)

4In this part we consider bosonic operators to retain the general ideas more explicit. We
can also introduce an identical explanation of CFs for fermionic operators fi.
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Also the inverse operation F−1F = 1 can be written as

F−1δ(bI) = 〈bI〉 − F−1δ(bI)F =
∑
P∈PI

cP
∏
J∈P

δ〈bJ〉, (2.33)

with cP = (−1)#(P )−1[#(P ) − 1]!. As can be seen in Eq. (2.33), a CF is now

replaced completely by EV. The first three refactorized CFs based on the data of

Eq. (2.33) read

F−1δ(b1) = 〈b1〉,

F−1δ(b1b2) = 〈b1b2〉 − 〈b1〉〈b2〉,

F−1δ(b1b2b3) = 〈b1b2b3〉 − 〈b1b2〉〈b3〉

− 〈b1b3〉〈b2〉 − 〈b2b3〉〈b1〉+ 〈b1〉〈b2〉〈b3〉.

(2.34)

We may conclude that every EV can be substituted in an explicit way by CFs.

The same holds for CFs and each CF can be represented by EVs as well.

2.3.2 Approximations by lower-order quantities

Now, we explain that how the representation of a quantity in terms of a sum of

products of other quantities can be applied for the approximation schemes. We

use the abbreviated notation δ(N), which denotes any function of CFs δ(bI) of

order N or smaller. For example, the third line of Eqs. (2.32) can be presented

in this form as

F〈b1b2b3〉 ≡ δ(3) + 3δ(2)δ(1) + δ(1)3. (2.35)

The basic idea of CE is to neglect all CFs of order larger than N . For this purpose

a truncation operator ∆δ(N) is introduced:

∆δ(N)δ(N + 1) = δ(N). (2.36)

For instance, here ∆δ(2) is applied on the third line of Eq. (2.32):

∆δ(2)(δ(3) + 3δ(2)δ(1) + δ(1)3) = 3δ(2)δ(1) + δ(1)3 ≡ δ(2). (2.37)

To further illustrate this concept, Figure 2.2 shows that only CFs up to the second

order must be neglected.

Moreover 〈N〉 is introduced as a short form of any function of EVs
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Figure 2.2: The result of applying ∆δ(2)F on a third order EV according to
Eq. (2.37).

corresponding N or less operators. The truncation operator ∆〈N〉 can be given

by

∆〈N〉〈N + 1〉 = 〈N〉, (2.38)

here, any function of order N + 1 of EV 〈N + 1〉 is reduced to a function with

only terms of order N .

The truncation method is therefore based on applying the ∆δ(N) to CFs and

∆〈N〉 to EVs thereby neglecting high-order terms. This fact that the representation

of the quantities depends on the truncation method make it complicated. The

factorization operator is helpful to switch between a formulation in EVs or CFs.

The EV 〈bI〉 can be formulated by applying the ∆δ(#I−1)

F−1∆δ(#I−1)F〈bI〉 = −
∑

P∈PI\I

cP
∏
J∈P

〈bJ〉. (2.39)

We give an example to illustrate the approach with transformations between EVs

and CFs:

F−1δδ(1)F〈b1b2〉 = 〈b1〉〈b2〉,

F−1δδ(1)F〈b1b2b3〉 = 〈b1〉〈b2〉〈b3〉,

F−1δδ(2)F〈b1b2b3〉 = 〈b1b2〉〈b3〉+ 〈b1b3〉〈b2〉

+ 〈b2b3〉〈b1〉 − 2〈b1〉〈b2〉〈b3〉.

(2.40)

It is also possible to transfer between CFs and EVs to formulate CFs δ(bI) by

applying the truncation operator ∆〈N〉 and reaching a sum of products of low-order

CFs:

F∆〈N−1〉F
−1δ(bI) = −

∑
P∈PI\I

∏
J∈P

δ(bJ). (2.41)

The selected way of approximation depends completely on the physical system



28 Chapter 2. Theory of light-matter interactions in semiconductors

that we want to study.

2.3.3 The hierarchy problem

To describe our open quantum system, we use the generalized Ehrenfest EoM in

Eq. (2.8). The EoM for expectation values of the quantities of interest lead to

coupling a n-order quantity to a (n+ 1)-order quantity. This hierarchy problem

can be symbolically presented as:

d

dt
〈1〉 = 〈L(1)〉 = 〈2〉

d

dt
〈2〉 = 〈L(2)〉 = 〈3〉

...
...

...

(2.42)

Various formulations and approximation techniques are used to truncate the

hierarchy of differential equations. In the following, we explain in more detail the

formulation of the EoM using EVs or CFs.

The truncation technique for a finite physical system that consists of a small

number of particles n is to vanish EVs with n + 1 particles. This technique is

similar to the application of the truncation operator ∆〈N〉. This operator can be

applied on the Nth line of the hierarchy in Eqs. (2.42):

d

dt
〈1〉 = 〈L(1)〉 = 〈2〉

...
...

...

d

dt
〈N〉 = 〈L(N)〉 ≈ ∆〈N〉〈N + 1〉 = 〈N〉,

(2.43)

This method is also schematically illustrated in Figure 2.3. The resulting linear

equations describe a finite physical system including a small number of particles

that occupy a confined number of states.

On the other hand, for a large system the cluster expansion method is efficient

[Fricke, 1996, Hoyer et al., 2004], where the EoM is formulated in CFs and then

the CFs set zero at a certain order. In order to derive the differential equation

for the CF δbI , we apply the Ehrenfest EoM to the relevant EV and then the

resulting EVs switch to CFs by factorization operator F. Finally, previously

obtained derivatives of lower-order factorizations must be subtracted as shown



Equation of motion 29

Figure 2.3: Schematic representation of an EV hierarchy. The EV of a certain
order connects linearly to the next order that is shown by the black line. The
truncation operator ∆〈N〉 is applied by setting the (N + 1) EV to zero. The figure
is taken from [Leymann et al., 2014]

.

below:
d

dt
δ(bI) = F〈L(bI)〉 − d

dt
δ(bI)F . (2.44)

In this equation, the L term leads to an infinite hierarchy of CFs (like its effect

on the formulation in EVs) as shown below:

d

dt
δ(1) = F〈L(1)〉 − d

dt
δ(1)F = δ(2)

d

dt
δ(2) = F〈L(2)〉 − d

dt
δ(2)F = δ(3)

...
...

...

(2.45)

Now the truncation operator ∆δ(N) is applied to the Nth line of Eqs. (2.45) to

reduce the order of CFs:

d

dt
δ(1) = F〈L(1)〉 − d

dt
δ(1)F = δ(2)

...
...

...

d

dt
δ(N) = F〈L(N)〉 − d

dt
δ(N)F

≈ ∆δ(N)F〈L(N)〉 − d

dt
δ(N)F = δ(N).

(2.46)

A schematic illustration of Eq. (2.46) is presented in Figure 2.4.

Comparing now Figures 2.3 and 2.4 one realizes that the EV-based formulation

originates directly from the linear Ehrenfest EoM and the resulting EVs are also

entirely linear, while the CF-based formulation is nonlinear due to the presence

of time derivatives of the lower-order factorizations. Though the latter technique

has higher numerical effort it can be applied to characterize dynamics of a large
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Figure 2.4: Schematic representation of a CF hierarchy. The black line indicates
the connection between the first-order CF to the second-order CF and the
second-order to the third-order quantity and so on. The blue lines illustrate the
production of lower-order CF. The (N + 1)th CF is set to zero by using the
truncation operator ∆δ(N). In contrast to Fig. 2.3, the structure of CF hierarchy
is nonlinear. The figure is taken from [Leymann et al., 2014].

system. In the current doctoral thesis, in order to investigate the optical properties

of QD microcavity lasers, our microscopic semiconductor model is based on the

cluster expansion where an acceptable accuracy can be provided for our purpose.

In the following we will briefly touch the expectation value cluster expansion

(EVCE) model that combines the both formulations retaining their advantages.

This approach is originally developed by Leymann et al. [2013a, 2014], Leymann

[2016], Foerster [2017]. The main idea of EVCE is to apply the truncation operator

∆δ(N) to the N -th line of Eq. (2.43) to reach a system of EV-based EoM by using

F−1 that is equivalent to a CF-based system:

d

dt
〈1〉 = 〈L(1)〉 = 〈2〉

...
...

...

d

dt
〈N〉 = 〈L(N)〉 ≈ F−1∆δ(N)F〈N + 1〉 = 〈N〉.

(2.47)

Figure 2.5: Schematic representation of an EV hierarchy truncated by applying
∆δ(N). This hierarchy is very similar to the hierarchy illustrated in Fig. 2.4. On
the other hand, its structure is equal to the EV structure that has been shown in
Fig. 2.3. The figure is taken from [Leymann et al., 2014].

Because of the same truncation scheme in Eqs. (2.47) and Eqs. (2.46), their
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results are equivalent. However, as can be seen in Figure 2.5, Eqs. (2.47) are

almost linear and only actual approximations that are used in the EoM are

nonlinear.

2.4 Statistical properties of light

Some unique properties like temporal and spatial coherence make lasers

distinguished from other light sources. Statistical characteristics of light can be

investigated to explore the properties of a light source. An appropriate measure

to characterize the statistical properties of an electromagnetic field emission are

photon-autocorrelation function measurements. Now different types of these

functions will be described.

First-order photon-autocorrelation function g(1)(t, τ) is the normalized

amplitude-amplitude correlation to study the coherence features of light. It can

be written as

g(1)(t, τ) =
G(1)(t, τ)

〈b̂†(t)b̂(t)〉
=
〈b̂†(t+ τ)b̂(t)〉
〈b̂†(t)b̂(t)〉

, (2.48)

where t and τ are time and delay time, respectively. The autocorrelation

function can be experimentally measured by a linear optical interferometer like

the Michelson interferometer, the Mach-Zehnder interferometer or the Sagnac

interferometer [Mandel and Wolf, 1995].

Second-order photon-autocorrelation function g(2)(t, τ) is one of

the most crucial characteristic functions for an emitted light that can be

experimentally measured in a Hanbury Brown–Twiss setup [Hanbury Brown

and Twiss, 1956, Mandel and Wolf, 1995] which can be schematically illustrated

in Figure 2.6. We can write this function as

g(2)(t, τ) =
G(2)(t, τ)

〈b̂†(t)b̂(t)〉〈b̂†(t+ τ)b̂(t+ τ)〉
=
〈b̂†(t)b̂†(t+ τ)b̂(t+ τ)b̂(t)〉
〈b̂†(t)b̂(t)〉〈b̂†(t+ τ)b̂(t+ τ)〉

. (2.49)

In most cases of this thesis we consider this photon autocorrelation function at a

delay time equal zero. Thus, we can rewrite it as

g(2)(0) =
〈b̂†b̂†b̂b̂〉
〈b̂†b̂〉2

. (2.50)
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Figure 2.6: Schematic illustration of a HBT setup.

Figure 2.7 shows different values of the second-order photon-autocorrelation

function at zero delay time. The emitted photons are uncorrelated as in laser light

g(2)(0) = 1, or if the photons are correlated and emitted in bunches g(2)(0) > 1 or

if the photons are anticorrelated and display an antibunching behavior g(2)(0) < 1.

Moreover, we can define the photon-autocorrelation function of order n by

extending the second-order function:

g(n)(0) =
〈b̂†nb̂n〉
〈b̂†b̂〉n

. (2.51)

Here, we can analytically calculate the values for the special cases of thermal

light g(n)(0) = n! and coherent light g(n)(0) = 1.

2.5 Statistical properties of microlaser emission

in the single-mode case

To study the physics of QD microcavity systems, we consider the dipole interaction

between charge carriers confined in QDs with the light field of discrete cavity

modes. Within the well-known Jaynes-Cummings model [Cummings, 1965], the

dipole interaction is described in terms of a coherent exchange of energy between
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Figure 2.7: Illustration of the statical properties of emitted light through the
second-order photon-autocorrelation function at zero delay time. Left: The
intensity auto-correlation functions are characterized for coherent light (blue), for
thermal light (red), for non-classical light (dash-dotted) and for light illustrating
extra-bunching (dotted). Right: Visualization of characterization of light for
various states of photon bunching [Blumenstein, 2017].

the emitters and the electromagnetic field. Comparing light-matter coupling

strength and irreversible losses from both emitter and optical modes, cavity

quantum electrodynamics appears in the weak and strong light-matter coupling

regime [Reithmaier et al., 2004, Badolato et al., 2005, Vahala, 2003, Yoshle et al.,

2004]. The weak-coupling regime plays an important role in modern microcavity

laser physics. In this regime it is possible to control the β factor which expresses

the fraction of spontaneous emission coupled into the lasing mode.

Furthermore, a sudden intensity jump in the input/output curve is an indicator

for the onset of lasing. The threshold and the β-factor can be commonly

determined by the height of the intensity jump at the lasing threshold, whereas

for high β-factor lasers the intensity jump vanishes and it is difficult to determine

the onset of lasing only through the input-output curves. This issue led to several

researches on the second-order photon autocorrelation function to determine the

onset of lasing [Strauf et al., 2006, Ulrich et al., 2007, Gies et al., 2007]. As

can be seen in Figure 2.8, for small β-factors, the intensity jump coincides the

sudden reduction of the second-order autocorrelation function from the Poisson

value g(2)(0) = 2 corresponding to the statistics of a thermal light to g(2)(0) = 1

corresponding to the emission of coherent laser light. With increasing β values,

the sudden decline of the autocorrelation function becomes softer. The fact that

much below threshold the autocorrelation function is slightly smaller than 2 is

due to the finite number of QDs [Gies et al., 2012].
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Figure 2.8: Statistical properties of emitted light in the single-mode microcavity
laser. The curves in the upper panel correspond to the calculated input-output
curve. In the lower panel autocorrelation function g(2)(τ = 0) is shown for various
values of β = 0.001, 0.01, 0.1 and 1. The picture is taken from [Gies et al., 2007].

Based on this theory explained in this chapter, we will discuss the effect of

the second mode on the lasing behavior of the QD microcavity laser in the next

chapters.





Chapter 3

Two-mode microcavity laser

The research on physics of microcavity lasers has been so far mainly focused on

interactions between a single optical mode and the QD gain medium. However,

study of microcavity lasers with two optical modes allows addressing main features

of gain competition in lasers and also the resulting effective mode coupling that

leads to characteristic oscillations in coherence properties [Leymann et al., 2013b,

Ates et al., 2007], deterministic polarization chaos in the presence of optical

feedback [Virte et al., 2013], and increased sensitivity on external perturbations

in the presence of optical self-feedback [Albert et al., 2011]. Figure 3.1 displays

schematically a QD coupled to a single- and two-mode cavities.

Figure 3.1: Schematic illustration of interaction between a QD and a single- or
two-mode cavity. (a) QD coupled to a single mode cavity with a coupling strength
g, (b) a two-mode cavity coupled to a QD with coupling strengths g1 and g2.
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We further investigate here two-mode photon correlations in a QD microcavity

laser that has been studied before by Leymann et al. [2013b], Eremeev et al.

[2011], Majumdar et al. [2012], Khanbekyan et al. [2015], Schlottmann et al.

[2018], Khanbekyan [2018] with a novel emphasis on the effects induced by a

direct coupling of two competing modes. Here we assume that both modes are

connected to the QD s-shell transition. In order to investigate the coupling

of two cavity modes in a regime of recent experiments [Leymann et al., 2013b,

Khanbekyan et al., 2015], we consider the behavior of an open quantum system

described by the extended microscopic semiconductor theory from Ref. [Gies

et al., 2007]. However, the previous works assumed that two modes were not

directly coupled. In the current work, the microscopic QD theory is further

developed to study the additional terms that arise from the direct dissipative

coupling between optical modes. This kind of coupling terms has been introduced

in Ref. [Hackenbroich et al., 2002]. The first study of the consequences of these

additional terms on two interacting modes was performed by Eremeev et al.

[2011] where both modes interact with the common gain medium consisting

of an ensemble of two-level atoms. The atoms were randomly pumped and

interacted with the two modes only one by one; while we theoretically study

bimodal microcavity lasers with QDs as active gain medium where QDs are

pumped continuously and interact simultaneously with the optical modes.

In the following sections, first an overview of the experimental benchmark

and the underlying theory of simulations will be presented. Then, in order to

describe and analyze the behavior of the mode coupling of bimodal microlasers,

we consider two different cases:

In section 3.3, we review the statistical properties of the emitted light with zero

off-diagonal elements of the damping matrix γ in Eq. (2.7) and compare out

results to the study of Ref. [Leymann et al., 2013b]. This model indicates that

two modes are not directly coupled but instead interact indirectly via the QD-gain

medium as schematically shown in Figure 3.2(a). The simulation results will be

presented for two modes with nearly equal Q factors, where only mode 1 is in

exact resonance with the QDs and mode 2 is separated by the spectral detuning

∆12 = ω1 − ω2. The input-output characteristic of the first mode shows typical

statistical behavior of a laser mode, i.e. the intensity presents a characteristic

S-shaped behavior in a double logarithmic plot, whereas the intensity of the

second mode exhibits a threshold behavior and can even decrease with further
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(a) (b)

Figure 3.2: Illustration of the interaction of the modes M1 and M2 (cavity modes)
with QDs that induces unconventional coherent coupling between these modes
(green dashed line) in (a) without direct dissipative coupling, and (b) with direct
dissipative coupling (yellow lines).

enhancement of the pump rates. Measuring the autocorrelation function of mode 1

at zero delay time (τ = 0) g(2)(0) indicates the onset of lasing above the threshold.

In contrast, in mode 2, for pump rates higher than the threshold values, the

autocorrelation function at zero delay time g(2)(0) demonstrates strong photon

bunching associated with superthermal values. The gain competition is reflected

in explicit differences in behaviors of two modes that can be also confirmed by

photon cross-correlation measurements. Cross-correlation magnitude decreases to

values smaller than unity indicating a definite anticorrelation between the cavity

emission modes. The theoretical studies based on a microscopic semiconductor

theory are found to be in qualitative agreement with experimental findings of the

team of Prof. Reitzenstein at TU Berlin [Leymann et al., 2013b].

Later in section 3.4, we study the effects of direct dissipative mode coupling

in a bimodal microcavity laser by considering a system with non-zero off-diagonal

elements of the damping matrix γ in Eq. (2.7). A schematic illustration is shown

in Figure 3.2(b), where direct and indirect coupling of two modes can be seen. In

order to describe and analyze these specific features, the microscopic QD theory

is developed by considering the off-diagonal elements of γ and the results can be

regarded as modification of findings of the first case where there was no direct

coupling between modes. Numerical results reveal an enhanced autocorrelation of
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both modes and an enhanced anticorrelation between the modes with increasing

γ12 and γ21. A detailed analysis is given in terms of dark and bright modes. It

will be shown that above the lasing threshold the original modes build up a bright

mode coupled to the QDs and a dark mode, that interacts only indirectly with the

QDs. We will show that a populated dark mode can enable an efficient transfer of

photons between the two original cavity modes, mediating an effective coupling

between them. Results of this chapter are partly published in Ref. [Fanaei et al.,

2016].

3.1 Experiment

We first provide a brief review of the experimental results obtained from a

two-mode micropillar laser in the group of Prof. S. Reitzenstein which have

been previously presented in Ref. [Leymann et al., 2013b]. The electrically

pumped micropillar lasers are based on a high-quality factor planar AlAs/GaAs

microcavity structure that includes InGaAs QDs in the active layer. To increase the

β-factor, various technological works like plasma-enhanced etching, high-resolution

electron-beam lithography and metal deposition have been performed on

electrically pumped microlasers. The emission has been then studied at low

temperature (20 K) by a high-resolution microelectroluminescence (µEL) setup.

To make polarization-resolved measurements of the laser mode a combination

of a linear polarizer and a λ/4-wave plate is set up in front of the entrance of

the monochromator. The photon autocorrelation function g(2)(τ) which has been

estimated by a fiber-coupled Hanbury Brown and Twiss (HBT) configuration

with a temporal resolution τirf = 40 ps, provides information of the photon

statistics of the emitted light. In order to do this, the emitted light is divided

by a polarization-maintaining 50 : 50 beam splitter and connected to two

monochromators having a linear polarizer at the input slit and a fiber-coupled

single-photon-counting module at the output slit. Thus, polarization-resolved

cross-correlation can be measured with a spectral resolution of 25 µeV.



40 Chapter 3. Two-mode microcavity laser

Figure 3.3: (a) Illustration of the development of two linearly polarized modes
[Reitzenstein and Forchel, 2010]. (b) Slight asymmetry of the cross-section of
the pillar and the ring-shaped contact leads to two distinct linearly polarized
modes in a micropillar [Sebald et al., 2009]. (c) Two orthogonally polarized cavity
modes with a spectral detuning of 103 µeV and nearly equal Q factors, for mode
1 (Q = 13900) and mode 2 (Q = 13100) [Leymann et al., 2013b].

The minor asymmetry of the cross-section of the pillar and the ring-shaped

contact leads to distinguished linearly polarized modes [Reitzenstein et al., Sebald

et al., 2009] as displayed in Figure 3.3. The two modes are separated in energy

by 103 µeV and have nearly equal quality factor with Q = 13900 (mode 1) and

Q = 13100 (mode 2).
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Figure 3.4: Experimental characteristics of a two-mode microcavity laser: (a)
Input-output characteristic, (b) emission-mode linewidth, (c) auto-correlation

functions of two modes, g
(2)
11 (0) as well as g

(2)
22 (0), and (d) cross-correlation function

g
(2)
12 (0). The picture is taken from [Leymann et al., 2013b].



42 Chapter 3. Two-mode microcavity laser

The laser characteristics of the two cavity modes are presented in Figure 3.4.

The first mode demonstrates a typical S-shaped input-output curve at a threshold

current of Ith = 5.1 µA, while the intensity of the second mode saturates at

Iinj/Ith = 2 and even decreases for values of injection currents higher than

Iinj/Ith = 2.5. This indicates the gain competition between mode 1 and 2 which

is also confirmed by the photon autocorrelation function g
(2)
11 (0) and g

(2)
22 (0)

as shown in Figure 3.4(c). Above the laser threshold g
(2)
11 (0) and g

(2)
22 (0) are

quite different; for mode 1, the photon autocorrelation function drops to values

close to one, corresponding to Poissonian statistics. In contrast, the photon

autocorrelation function of the second mode increases and reaches values larger

than 2, indicating super-thermal statistics. Finally, the cross-correlation function

g
(2)
12 (0) in Figure 3.4(d) demonstrates a noticeable dip g

(2)
12,min(0) = 0.62 which

implies an anti-correlation between the two laser modes. It reveals that g
(2)
12 (0)

depends on the injection current and the strongest anti-correlation can be observed

in the regime of certain injection currents above the threshold (2.7 < I/Ith < 3.3).

3.2 Coherence Properties

Microcavity lasers with two optical modes provide the possibility to investigate the

gain competition and the effective mode coupling. A well established approach to

study the statistical properties of emission events of the two modes is to consider

intensity correlations. With the intensity autocorrelation function for a cavity

mode the lasing effects controlled by a single QD [Reitzenstein et al., 2008, Xie

et al., 2007, Ritter et al., 2010] and dynamical antibunching [Wiersig et al., 2009]

in QD-microcavity lasers can be studied. The intensity correlation function in

Eq. (2.49) can be generalized to the case of two modes

g
(2)
ξζ (τ) =

〈b†ξ(t)b
†
ζ(t+ τ)bζ(t+ τ)bξ(t)〉

〈b†ξ(t)bξ(t)〉〈b
†
ζ(t)bζ(t)〉

. (3.1)

Here, b (b†) is the bosonic annihilation (creation) operator of the two modes which

are labeled by ξ, ζ ∈ {1, 2} for time t and delay time τ . The autocorrelation

functions g
(2)
ξξ (τ) and the cross-correlation function g

(2)
12 (τ) at zero delay time τ

have been successfully used to characterize the gain competition between two

modes in QD-microcavity lasers [Eremeev et al., 2011, Leymann et al., 2013b,
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Singh and Mandel, 1979, Khanbekyan et al., 2015, Redlich et al., 2016]. Some

features of two-mode microlasers will be discussed in detail in the section 3.2.1.

3.2.1 Microscopic semiconductor theory

In order to investigate the interaction of the charge carriers confined in QDs

with the light field of discrete cavity modes, we used the developed microscopic

semiconductor theory from Ref. [Leymann et al., 2013b] where two modes are not

directly coupled. To study additional terms that arise from the direct dissipative

coupling between optical modes, this theory is extended in this work by taking

the off-diagonal elements of damping matrix γ in Eq. (2.7) into account [Fanaei

et al., 2016]. This theory allows to calculate correlations required to determine

the emission statistics in the two-mode microcavity laser by considering the

many-body effects. It can also estimate the full photon statistics of the two-mode

laser and is in fact the groundwork for calculation of the coupling of two modes

in terms of the gain competition.

According to the QD model in Figure 1.6 which is used throughout this thesis,

only two confined QD shells for both electrons and holes are assumed. Two cavity

modes are coupled to the QD s-shell transition and the carrier generation by

pumping is into the p-shell transition. We assumed that all QDs are of similar

size, thus all QDs have the same energy levels.

To study the statistical properties of two-mode QD-microcavity lasers the

Hamiltonian which can describe the whole system follows Eq. (2.9) together with

Eqs. (2.14), (2.27), (2.28) and (2.29). Using the assumption of low-temperature

and low-carrier density leads to neglecting the interaction with the wetting layer

carriers [Schwab et al., 2006]. Thus, the carrier Coulomb effects can be implicitly

included by an effective transition energy, a modified oscillator strength for the

coupling to the laser mode, and carrier scattering rates similar to Ref. [Gies et al.,

2007].

The dynamics of the open quantum mechanical system is then given by the

von Neumann-Lindblad equation as in Eq. (2.8). Since the EoM for intended

quantities consists of higher order terms, this approach gives an infinite hierarchy.

In this chapter, the truncation calculations are based on the cluster expansion

approach introduced in chapter 2 in terms of correlation functions. We truncate

the hierarchy on the doublet level which includes two-particle correlations. As
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in most laser theories we ignore correlations corresponding to superradiant

coupling between the QDs [Gies et al., 2007]. For the effects of superradiance on

steady-state properties in (single-mode) QD-microcavity laser systems, we refer

to Refs. [Jahnke et al., 2016, Leymann et al., 2015, Scully and Svidzinsky, 2009,

Temnov and Woggon, 2005, 2009].

In the following dynamical evolution of the emission correlation functions is

presented. The first step is to replace the EoM for operator expectation values

by EoM for correlation functions. For instance, the EoM for expectation values

of average photon number in the cavity modes 〈b†ξbζ〉 can be replaced by the

EoM for corresponding correlation functions δ〈b†ξbζ〉 = 〈b†ξbζ〉− 〈b
†
ξ〉〈bζ〉. Then the

truncation of the equations for correlation functions is applied on the doublet

level.

For a particular system without coherent external excitation the terms 〈b〉,
〈b†〉 and 〈c†jvj′〉 vanish. We can therefore write the amplitude correlation functions

of the mode operators as

d

dt
δ〈b†ξbζ〉 =− (γξξ + γζζ)δ〈b†ξbζ〉+

∑
ξ 6=ξ′,ζ 6=ζ′

(γξξ′δ〈b†ξbζ′〉+ γζ′ζδ〈b†ξ′bζ〉)

+
∑
j,q

(gξjδ〈c†jvjbξ〉+ gξjδ〈v†jcjb
†
ζ〉),

(3.2)

where γ is the damping matrix. The diagonal elements of γ are loss rates of the

cavity modes which are directly related to the Q-factor of modes and nondiagonal

elements indicate a direct dissipative coupling between the two optical modes.

Also, q = 1, 2, ..., N , where N indicates the total number of QDs. The last

terms on the right-hand side of Eq. (3.2) reveals that the intensity of modes

depends on the photon-assisted polarization δ〈c†jvjbξ〉 and δ〈v†jcjb
†
ζ〉. It means

that the creation of a photon in the mode ξ is coupled to the s-shell transition.

It is worth to mention that amplitude correlation functions and the coupled

photon-assisted polarization amplitude correlations are labeled as doublet terms

in the cluster-expansion approach. The EoM for the photon-assisted polarization

is given by



Coherence Properties 45

d

dt
δ〈v†jcjbξ〉 =− i(∆ξj − iγξξ − iΓ)δ〈v†jcjbξ〉+ gξjδ〈c†jcj〉(1− δ〈v

†
jvj〉)

+
∑
ξ 6=ξ′

γξ′ξδ〈v†jcjbξ′〉+
∑
ζ

[gζjδ〈b†ζbξ〉(δ〈c
†
jcj〉 − δ〈v

†
jvj〉)

+ gζjδ〈c†jcjb
†
ζbξ〉 − gζjδ〈v

†
jvjb

†
ζbξ〉].

(3.3)

The ξth cavity mode is detuned from the QD transition by ∆ξj = εcj − εvj − ~ωξ
and Γ denotes the QD dephasing rate. For two-mode microlasers we can assume

that only the cavity modes with indices ξ = 1, 2 are coupled to the QD s-shell

transition and other modes with ξ 6= 1, 2 are not included in the gain spectrum

of the QD ensemble or have low Q-factor.

In this chapter we consider two-mode microcavity lasers assuming both cavity

modes are coupled to the s-shell transition and the carriers are generated in the

p-shell at a constant rate P . Therefore, the EoM of the carrier population of the

electrons in the s-shell is given by

d

dt
δ〈c†scs〉 =−

(∑
ξ

gξqδ〈c†svsbξ〉+H.c.

)
+ δ〈c†pcp〉(1− δ〈c†scs〉)τ−1c

− δ〈c†scs〉(1− δ〈v†svs〉)τ−1nl ,

(3.4)

where τnl describes the spontaneous emission into nonlasing modes which is

related to a β factor by

β =
τ−1l

τ−1sp

=
τ−1l

τ−1l + τ−1nl

. (3.5)

Equation (3.4) can be considered as the sum of three terms corresponding to the

interaction between QDs and the cavity modes in the first term, to the relaxation

of carriers from the p- to the s- shell with a relaxation time scale τc in the second

term and to the loss of excitation into the nonlasing modes in the last term.

Similar to Eq. (3.4), the EoM for the carrier population of the electrons in

the p-shell can be written as

d

dt
δ〈c†pcp〉 =P (δ〈v†pvp〉 − δ〈c†pcp〉)− δ〈c†pcp〉(1− δ〈c†scs〉)τ−1c

− δ〈c†pcp〉(1− δ〈v†pvp〉)τ−1sp ,

(3.6)
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where the spontaneous recombination of p-shell carriers is described by the last

term on the right-hand side. The other corresponding equations for valence band

carriers are given in Appendix A.

In order to determine the statistical properties of the light emission, one

approach is to use the intensity correlation function which requires the quadruplet

order of the cluster expansion. The EoM for cavity-mode intensity correlations is

given by

d

dt
δ〈b†ξb

†
ξ′bζbζ′〉 =− (γξξ + γξ′ξ′ + γζζ + γζ′ζ′)δ〈b†ξb

†
ξ′bζbζ′〉

+
∑

ξ 6=ξ′′,ξ′ 6=ξ′′′

∑
ζ 6=ζ′′,ζ′ 6=ζ′′′

(γξξ′′δ〈b†ξb
†
ξ′′′bζ′′bζ′′′〉+ γξ′ξ′′′δ〈b†ξ′′b

†
ξ′bζ′′bζ′′′〉

+ γζ′′ζδ〈b†ξ′′b
†
ξ′′′bζbζ′′′〉+ γζ′′′ζ′δ〈b†ξ′′b

†
ξ′bζ′′bζ′′′〉) +

∑
j,q

(gξjδ〈c†jvjb
†
ξ′bζbζ′〉

+ gξ′jδ〈c†jvjb
†
ξbζbζ′〉+ gζjδ〈v†jcjb

†
ξbξ′bζ′〉+ gζjδ〈v†jcjb

†
ξbξ′bζ〉).

(3.7)

The EoM that consists of correlations between the photon-assisted polarization

and the photon number is shown in the Appendix A. In what follows, the developed

theory will be used for two cases of with and without direct dissipative coupling.

3.3 Laser characteristics without direct coupling

In this section, we recapitulate the statistical properties of the emitted light

[Leymann et al., 2013b] assuming that there is no direct coupling between two

modes (γ12 = γ21 = 0) and the indirect coupling is induced by the interaction

with the common gain medium. To connect the theory to the experimental

data [Leymann et al., 2013b], we assume N identical QDs with an effective

inhomogeneous line broadening Γ that has an overlap with two modes with the

loss rates γ11 and γ22. The two modes are separated by the spectral detuning

∆12 = ω1 − ω2 where cavity mode 1 is in perfect resonance with the QD s-shell

transition (∆1s = 0) as can be seen in Figure 3.5. Moreover we simulate the

bimodal microcavity laser with a realistic set of parameters β = 0.2, number of

QDs N = 40, γ11 = 0.03 ps−1, γ22 = 0.0318 ps−1, QD dephasing Γ = 2.06 ps−1,

spontaneous emission time τsp = 50 ps and time for relaxation of carriers from p-

to s-shell in conduction and valence band τc = 10 ps and τν = 5 ps, respectively.
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Also the light-matter coupling strengths are expressed as [Gies et al., 2007]

gi =

√
γii + Γ

2~τsp
. (3.8)

Using the empty system as initial condition, the equations of motion are integrated

numerically until a stationary solution is reached.

Figure 3.5: Schematic of the model for the density of states ρ of the QDs and two
modes. The QDs have the inhomogeneous line broadening Γ that has an overlap
with two modes with the loss rates γ11 and γ22 and the detuning of the modes to
the QDs ∆1 and ∆2.

3.3.1 Results

The laser characteristics of two cavity modes are presented in Figure 3.6, which is

analogous to the one discussed experimentally, see Figure 3.4, and theoretically in

Ref. [Leymann et al., 2013b]. The modes are not directly coupled γ12 = 0 = γ21

but interact indirectly via the QD-gain medium.
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Figure 3.6: Laser characteristics calculated with the semiconductor model with
zero off-diagonal elements of damping matrix γ. (a) Intensity of modes 1 and 2
as a function of the pump power in a log-log profile, (b) autocorrelation functions
of the two modes, and (c) cross-correlation between modes. In these simulations,
we assume γ11 = 0.03 ps−1, γ22 = 0.0318 ps−1 and the second mode is detuned
by ∆12 = 0.2 ps−1.
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It can be seen in Figure 3.6(a) that, while the intensity n1 = 〈b†1b1〉 of mode 1

exhibits a typical S-shaped input-output curve, the intensity n2 = 〈a†2a2〉 of the

second mode saturates and even declines with increasing the pump rate. The

autocorrelation function of mode 1 at zero delay time g
(2)
11 (0) [see Figure 3.6(b)]

reflects a laser transition similar to the standard result for the single-mode laser

[Scully and Zubairy, 1997]. It drops from 2, corresponding to thermal light,

to 1 indicating coherent light emission. The fact that for low pump rates the

autocorrelation function is slightly below 2 is due to the finite number of QDs. In

contrast, the autocorrelation function of the second mode g
(2)
22 (0) slightly decreases

at first with increasing pump rate, before increasing again reaching superthermal

values well above 2, indicating a strong bunching of photons in this mode. These

results are in agreement with the experimental results depicted in Figure 3.4,

though the autocorrelation function below the threshold could not be measured

due to the limited temporal resolution of the HBT configuration [Ulrich et al.,

2007]. Further Figure 3.6(c) shows that the cross-correlation function g
(2)
12 (0)

for relatively low pump rates is 1 implying two statistically independent modes.

With increasing the pump rate, the cross-correlation function decreases well below

unity indicating anticorrelated modes which can be seen as a signature of gain

competition [Redlich et al., 2016].

3.4 Laser characteristics with direct coupling

The developed microscopic semiconductor theory allows for inclusion of many-body

effects and for detailed investigation of the emission characteristics in different

interaction regimes. In contrast to previous studies which have only considered

the coupling of two optical modes via the common gain medium, we investigate

here additional direct mode coupling due to dissipative character of the laser

resonator. This coupling is described by off-diagonal elements of the optical

damping matrix γ in the Lindblad superoperator in Eq. (2.8).
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Figure 3.7: Laser characteristics calculated with the semiconductor model for
various off-diagonal Lindblad terms γ12. (a) Autocorrelation functions for modes
1 (solid curve) and 2 (dotted curve) as a function of the pump power. (b)
Cross-correlation between modes 1 and 2 for the same values of parameters as in
Fig. 3.6.

Figure 3.7 compares the behavior of the two modes for different values of

γ12. To this end we assume γ12 = γ21 according to Refs. [Hackenbroich et al.,

2002, Viviescas and Hackenbroich, 2003, 2004] and other parameters correspond

to Figure 3.6. As illustrated in Figure 3.7(a) for large values of the pump rate,

an increase in the off-diagonal Lindblad terms leads to stronger superthermal
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photon bunching of mode 2, i.e., larger g
(2)
22 (0) compared to the case with zero

γ12. Furthermore, the direct coupling changes the behavior of the autocorrelation

function g
(2)
11 (0) compared to the standard single-mode laser [Ulrich et al., 2007,

Scully and Zubairy, 1997]. Above threshold g
(2)
11 (0) is slightly enhanced exhibiting

a small “bulge”. Figure 3.7(b) shows that the cross-correlation function g
(2)
12 (0)

decreases with increasing γ12. The anticorrelation of the two modes is therefore

larger when the two modes are stronger coupled.

Figure 3.8: Autocorrelation function g
(2)
ξξ (0) for mode 1 (solid curves) and mode 2

(dashed curves with crosses) vs pump rate P at zero detuning for various γ12. (a)
γ11 = 0.03 ps−1 and γ22 = 0.0318 ps−1 . (b) γ11 = γ22 = 0.03 ps−1 . The arrows
indicate increasing γ12. In (b) the curves for mode 1 and mode 2 are on top of
each other.
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For the specific case of ω1 = ω2 = ω in which both modes are in resonance

with the QD transition, Figure 3.8(a) depicts the autocorrelation functions for

asymmetric optical damping of the modes, γ11 6= γ22. It reveals that the signatures

of gain competition are obvious only for large values of γ12, whereas for small values

the behavior of the two modes resembles that in a single-mode laser. Figure 3.8(b)

shows the autocorrelation functions for the trivial case of zero detuning and

symmetric optical damping, γ11 = γ22. No signatures of gain competition are

visible in the autocorrelation functions here. Both modes appear to behave as in

a single-mode laser where the laser threshold increases on increasing the damping

coefficient γ12.

3.5 Dark and bright modes

To analyze the gain competition between the two modes, we study composite

modes as in Refs. [Faghihi et al., 2014, Li et al., 2014, Eremeev et al., 2011,

Majumdar et al., 2012]. We apply the unitary transformation [Svozil, 1990](
b1

b2

)
=

(
cos θ sin θ

− sin θ cos θ

)(
d

b

)
(3.9)

with real-valued rotation angle θ. The so-defined operators b and d obey the

commutation relations [b, b†] = [d, d†] = 1 and [b, d†] = [d, d] = 0, and the sum of

the photon numbers is invariant, i.e., 〈b†1b1〉+ 〈b†2b2〉 = 〈b†b〉+ 〈d†d〉. We define

the occupations nb = 〈b†b〉, nd = 〈d†d〉 and the corresponding autocorrelation

functions g
(2)
bb (0) and g

(2)
dd (0) in an analog way as in Eq. (3.1). Applying the

unitary transformation to the whole Hamiltonian leads to

H = H0
carr +Hb +Hd +Hbd, (3.10)

with (we set ~ = 1 in the following)

Hb = (ω1 sin2 θ + ω2 cos2 θ)b†b− iN(g1 sin θ + g2 cos θ)(c†svsb− v†scsb†), (3.11)

Hd = (ω1 cos2 θ + ω2 sin2 θ)d†d− iN(g1 cos θ − g2 sin θ)(c†svsd− v†scsd†), (3.12)
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and

Hbd =
1

2
(ω1 − ω2)(sin 2θ)(b†d+ d†b). (3.13)

The Lindblad superoperator transforms to

L = Lb + Ld + Lbd, (3.14)

with

Lbρ = (γ11 sin2 θ + γ22 cos2 θ + γ12 sin 2θ)(2bρb† − ρb†b− b†bρ), (3.15)

Ldρ = (γ11 cos2 θ + γ22 sin2 θ − γ12 sin 2θ)(2dρd† − ρd†d− d†dρ), (3.16)

and

Lbdρ =(
1

2
(γ11 − γ22) sin 2θ + γ12 cos 2θ)[2(bρd† + dρb†)

− (ρb†d+ ρd†b)− (b†dρ+ d†bρ)].
(3.17)

We choose θ such that the new mode d becomes a dark mode, which is

decoupled from the QDs. To attain this, the gain term of the Hamiltonian Hd in

the second term of Eq. (3.12) is zero for

θ = arctan

(
g1
g2

)
. (3.18)

Based on this choice, the bright mode b couples to the QDs with an effective

coupling strength g̃ =
√
g21 + g22 (see Eq. (3.11)). In the time evolution of the

initially unexcited system, the dark mode cannot receive any photons directly from

the interaction with the QDs. It therefore stays unpopulated unless it receives

photons from the bright mode by the coupling terms Hbd and Lbd that depend on

the detuning ∆12 and the elements of the damping matrix γ, respectively.

3.5.1 Case of zero detuning and equal light-matter

coupling strength

Since we are mainly interested in the effects of Lbd, we focus on the situation of

zero detuning. In this case Hbd = 0, i.e., the dark mode becomes populated only
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via Lbd. Moreover, as for the used parameters we have g1 ≈ g2 (see Eq. (3.8));

now we restrict the following discussion to g1 = g2, which implies cos 2θ = 0,

sin 2θ = 1 and cos θ = sin θ = 1/
√

2. Equation (3.9) can then be written as

b1 =
1√
2
b+

1√
2
d, (3.19)

b2 =
1√
2
b− 1√

2
d. (3.20)

Hence the annihilation operator d and the corresponding creation operator d†

describe the transfer of photons between the original modes. In the following we

use the occupation of the dark mode nd as a signature of the gain competition

between the original modes. To summarize, the operators b and d both have a

clear physical meaning: b describes the coupling of the original modes to the QDs

and d describes the transfer of photons between the original modes.

First, we consider the special case of two modes with symmetric losses,

γ11 = γ22. From Eq. (3.17) with cos 2θ = 0 follows Lbd = 0, i.e., the dark mode

stays unpopulated. Therefore, we expect that there is no transfer of photons

between the two original modes. As a consequence, the two modes recover the

standard single-mode laser behavior. This finding can also be observed for the

numerical results in Figure 3.8(b). Figure 3.9 confirms that the photon number

(except the obvious factor 2) and the autocorrelation function of the original

modes are equal to the bright mode b. This leads to the conclusion that these

two modes build up a bright mode which exhibits all the lasing behavior of

the single-mode laser. The off-diagonal element γ12 has influence on the lasing

behavior because the overall decay rate of the bright mode depends on it as can

be seen from Eq. (3.15). This finding has been previously observed for modes

interacting with an ensemble of two-level atoms [Eremeev et al., 2011]. This is a

special case because the dark mode is unpopulated and hence features that arise

from the gain competition between the two lasing modes have not been discussed.
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Figure 3.9: Comparison of (a) intensity and (b) autocorrelation function of the
original mode 1 and the bright mode as a function of the pump rate calculated
with the semiconductor theory for γ11 = γ22 = 0.03 ps−1,γ12 = 0.03 ps−1 , and
zero detuning. In both panels the two curves are on top of each other. Mode 2
gives the same curves as mode 1 (not shown).

By considering a system with asymmetric optical damping γ11 ≈ γ22 we go

beyond the analysis of Ref. [Eremeev et al., 2011]. For this case the dark mode d

can gain intensity because of a nonzero Lbd (see Eq. (3.17)) and hence there is a

transfer of photons between the two original modes. For similar coupling strength

g1 ≈ g2, a further enhancement of the off-diagonal term γ12 leads to a decrease in

the overall decay rate of the dark mode in Eq. (3.16). Therefore, the intensity of
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the dark mode increases for increasing γ12 as depicted in Figure 3.10(a). Thus,

for small values of γ12, the dark mode has negligible contribution to the photon

statistics of the original lasing mode, and the bright mode leads to a single-mode

behavior for both original modes. On the other hand, at large values of γ12 the

gain competition is enhanced due to significant transfer of photons between the

two original modes. This is in agreement with different behaviors of the two

original modes obtained from numerical results in Figure 3.8(a). Note that the

intensity of the dark mode for zero off-diagonal elements in Figure 3.10(a) is not

zero due to the asymmetric optical damping.

In order to predict which one of the original modes wins the gain competition,

we analyze the contribution of the bright mode to the photon number of the

original modes. As previously mentioned, only the bright mode b is directly

coupled to the QDs. In the numerical results we observe that also for asymmetric

optical damping the bright mode behaves always like a standard single-mode

laser; see, e.g., the inset in Figure 3.10(b). The mode that has more contribution

of mode b wins the gain competition. According to the photon number of the

original modes in terms of the new modes, the contribution of bright and dark

modes can be expressed as

n1 =
1

2
〈b†b〉+

1

2
〈b†d+ d†b〉+

1

2
〈d†d〉, (3.21)

and

n2 =
1

2
〈b†b〉 − 1

2
〈b†d+ d†b〉+

1

2
〈d†d〉. (3.22)

Without loss of generality, we assume 〈b†d+d†b〉 > 0. In the case of a non-positive

value, the role of two original modes in the discussion is exchanged. We can

conclude that destructive or constructive interference, depending on the sign

in front of 〈b†d + d†b〉 in Eqs. (3.21) and (3.22), determines which mode wins

the gain competition. Consequently, there is a destructive interference between

the contributions of bright and dark modes in mode 2. In contrast, as can

be found in Eq. (3.21), mode 1 is composed of the superposition of dark- and

bright-mode contributions that interfere constructively. It therefore wins the gain

competition and exhibits a coherent light emission similar to a single-mode laser.

For low values of the pump rate, the dark mode has a small intensity relative

to the bright mode (see Fig. 3.10(b)). Hence, there is no transfer of photons

between the two original modes that therefore behave the same. Above the laser
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threshold, the effect of the dark mode cannot be ignored and a further increase

of its intensity leads to a saturation and even decrease in the intensity of mode 2

due to destructive interference, whereas the intensity of mode 1 continues to rise

due to constructive interference.

Figure 3.10: (a) Intensity of the dark mode nd (solid curve) and ratio of intensity
of the dark mode over the intensity of bright mode nd/nb (dashed curve) vs.
off-diagonal coupling strength γ12 for asymmetric optical damping at zero detuning
and pump rate P = 0.1 ps−1; (b) nd/nb pump rate for γ12 = 0.03 ps−1. The inset
shows the corresponding intensity autocorrelation functions of the bright and the
dark mode.
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To estimate the behavior of the intensity autocorrelation functions of the

original modes we define

Rξξ = g
(2)
ξξ (0)/g

(2)
bb (0), (3.23)

with g
(2)
bb (0) being the autocorrelation function of the bright mode. The fact that

for not too large pump rates the ratio of the photon number of mode d to the

photon number of mode b is considerably smaller than unity (Fig. 3.10) motivates

the following crude approximation. We assume that correlations with one or more

d operators can be neglected. A straightforward calculation then shows that the

behavior of R11 and R22 is determined by

Rξξ ≈
1

4

(
nb
nξ

)2

. (3.24)

For small values of γ12 the photon number of the dark mode is small as already

discussed earlier in the context of Figure 3.10(a). This implies n1 ≈ n2 ≈ nb/2

and therefore R11 ≈ R22 ≈ 1. This explains why the autocorrelation function of

both original modes behave as for a single-mode laser; see Figure 3.8(a) again.

In contrast, for γ12 = 0.03 the dark mode has considerable intensity.

Correspondingly, transfer of photons from mode 1 and mode 2 leads to a distinct

difference in R11 and R22 above threshold as can be seen in Figure 3.11(a).

R22 approaches values well above unity because the intensity of mode 2 has

values much smaller than the intensity of the bright mode. R11 behaves in the

opposite way and decreases. This is due to the fact that mode 1 obtains a larger

contribution from the bright mode.

Figure 3.11(b) shows the autocorrelation functions of the two original modes

determined from the autocorrelation of the bright mode and the approximate

expressions R11, R22 using Eqs. (3.23) and (3.24). Below the laser threshold

both autocorrelation functions are around 2 that indicates thermal bunching.

When increasing the pump rate, g
(2)
11 (0) decreases and g

(2)
22 (0) first decreases and

then increases again. Both observations are in qualitative agreement with the

numerical results in Figure 3.8(a). However, quantitative differences for larger

pump rates are obvious. Hence, the behavior of the autocorrelation functions of

the original modes for low to medium pump rates can be understood in terms of

the involved intensities and the autocorrelation function of the bright mode g
(2)
bb (0).
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Figure 3.11: (a) R11 and R22 as a function of pump rate for asymmetric optical
damping with γ12 = 0.03 ps−1 and zero detuning. (b) Autocorrelation function of
the two original modes estimated from the autocorrelation function of the bright
mode and Eqs. (3.23) and (3.24).
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3.6 Chapter conclusion

In this chapter, we investigated a bimodal-microcavity laser with semiconductor

quantum dots as gain material. Numerical results of a microscopic theory reveals

that the two competing modes display completely different features. The typical

behavior is that mode 1, which wins the gain competition, demonstrates statistical

behavior of a conventional single-mode laser, whereas the losing mode 2 exhibits

superthermal photon bunching for pump rates above the lasing threshold. The

photon cross-correlation function reveals a strong anti-correlation between the

modes, which has been also considered experimentally and theoretically in Ref.

[Leymann et al., 2013b].

If the difference between the modes is adequately high, features like

mode competition in the input-output characteristics, enhanced autocorrelation

functions of the competition losing mode, and a pronounced anticorrelation

become visible. In order to reproduce and explain the mode competition of

bimodal microcavity lasers, we started from the microscopic semiconductor model

of Gies et al. [2007] and derived the equation of motion that can reproduce

experimental results qualitatively.

In contrast to previous studies which considered only the coupling of two

optical modes via the common gain medium, we investigated here additional

direct mode coupling due to the dissipative character of the laser resonator. This

coupling is described by the off-diagonal elements of the optical damping matrix

γ in the Lindblad superoperator. Our numerical results reveal that an increase

in these off-diagonal elements leads to a stronger photon bunching for mode 2,

whereas the autocorrelation function of mode 1 is only slightly enhanced. The

cross-correlation function exhibits stronger anticorrelated behavior on increasing

off-diagonal elements of γ.

In order to analyze the mode-coupling effects, a unitary transformation from

the original modes to a new set of modes has been implemented. We studied

the transformed system consisting of a bright mode coupled to the QDs and a

decoupled dark mode that obtains photons only through the interaction with the

bright mode. The occupation of the dark mode describes the transfer of photons

between the two original modes. At zero detuning and symmetric optical damping,

the dark mode is not populated. Hence there is no transfer between the two

original modes. As a result, the two modes do not show the conventional signatures
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of gain competition. The bright mode exhibits the features of single-mode lasing

that depends on the off-diagonal elements.

For asymmetric optical damping of the modes, the gain competition behavior

can be traced back to the increasing occupation of the dark mode. The intensity

of the dark mode increases with the off-diagonal elements of γ. As a result, the

off-diagonal elements of the damping matrix enhance the anticorrelated behavior

of the modes in bimodal microcavities. Which one of the original modes becomes

the lasing mode is related to the constructive and destructive interference of

bright and dark mode contributions to the two original modes.





Chapter 4

Two-state lasing

4.1 Introduction

In the last decades the research efforts on QD microcavity lasers have attracted

considerable attention due to their superior properties such as ultralow threshold

currents, high temperature stability, high modulation bandwidth and efficiency

as previously reported by [Grundmann et al., 2000, Park et al., 2000, Huang

et al., 2000, Bhattacharya and Ghosh, 2002]. The three-dimensional confinement

of electrons and holes in a QD leads to discrete levels that are here called ground

(s-shell) or excited state (p-shell). Lasing occurs commonly by the recombination

of electrons and holes in the ground state of the QD. However, the finite intraband

relaxation time of QDs [Benisty et al., 1991], and a limited density of states

have led to the recent demonstration of simultaneous excited-state (ES) and

ground-state (GS) lasing, or the so-called two-state lasing [Kaptan et al., 2014,

Markus et al., 2003, Gioannini, 2012, Röhm et al., 2015b,a, Grillot et al., 2011,

Wang et al., 2014, Viktorov et al., 2005]. In this case, the lasing starts from

the GS but with increasing the current injection, the lasing from the ES can be

observed as well [Maximov et al., 2013, Asryan et al., 2001]. Appearance of the

ES lasing extends the spectral range and can extend the field of application.

The possibility of two-state lasing is theoretically reported by Grundmann and

Bimberg [1997] and Grundmann et al. [2000] in the framework of master-equation

model of QD microstates, and then experimentally observed by Markus et al.

[2003]. Experimental evidence of two wavelengths presence was previously

reported in Refs. [Bhattacharya et al., 1999, Benisty et al., 1991]. However,

due to large spectral overlap between two lasing peaks it was not mentioned
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whether the lasing was related to two different states.

In this chapter we investigate two-state lasing in QD lasers through GS and ES

transitions. In contrast to chapter 3 that is focused on the single-state dynamics

of a QD lasers, we will study here the competing behavior of two-state lasers. The

microscopic semiconductor theory of Leymann et al. [2013b], that was explained

in detail in sec. 3.2 for single-state lasing, will be here developed to the case of

two-state lasing. Numerical results reveal that GS lasing threshold is obtained

and then saturates. While its occupation clamps, the carrier population of ES

increases significantly. Consequently, at higher pump rates the carrier population

of ES reaches its lasing threshold value and two-state lasing can be observable.

The autocorrelation function of two modes illustrate the standard transition from

spontaneous emission to stimulated emission but with different lasing thresholds.

It indicates that there is no gain competition between modes which is also

confirmed by the constant value of cross-correlation function. Moreover we will

demonstrate that the GS laser is qualitatively uninfluenced by the beginning of

lasing in the ES. However, the GS occupation probabilities is closely tied to the

ES by the carrier relaxation into the GS and therefore the Q-factor of the ES

mode leads to a quantitative effect on lasing operation of the GS mode.

4.2 Theoretical model

In this chapter the dynamical and statistical properties of QD lasers are

numerically simulated, with special focus on two-state lasers. This type of

semiconductor lasers can make simultaneous lasing at two well-separated

wavelengths, owing to the discrete energy levels of the QD. The lasing states are

labeled by GS and ES corresponding to the confined QD states. In order to describe

and analyze this two-state lasing, we extend the microscopic semiconductor theory

of section 3.2.1 by considering that the lasing occurs via GS and ES transitions.

The dynamics of the carrier population of the electrons in the GS and ES are

given respectively by (for single-state lasing, see Eqs. (3.4) and (3.6))

d

dt
δ〈c†GcG〉 =−

(∑
ξ

gξGδ〈c†GvGbξ〉+H.c.

)
+ δ〈c†EcE〉(1− δ〈c

†
GcG〉)τ

−1
c

− δ〈c†GcG〉(1− δ〈v
†
GvG〉)τ

−1
nl ,

(4.1)
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and

d

dt
δ〈c†EcE〉 =−

(∑
ξ

gξEδ〈c†EvEbξ〉+H.c.

)
+ Pδ〈v†EvE〉(1− δ〈c

†
EcE〉)

− δ〈c†EcE〉(1− δ〈c
†
GcG〉)τ

−1
c − δ〈c

†
EcE〉(1− δ〈v

†
EvE〉)τ

−1
nl .

(4.2)

Also the EoMs of the carrier population of holes in GS and ES can be written as

d

dt
δ〈v†GvG〉 =

(∑
ξ

gξGδ〈c†GvGbξ〉+H.c.

)
− δ〈v†EvE〉(1− δ〈v

†
GvG〉)τ

−1
v

+ δ〈c†GcG〉(1− δ〈v
†
GvG〉)τ

−1
nl ,

(4.3)

and

d

dt
δ〈v†EvE〉 =

(∑
ξ

gξEδ〈c†EvEbξ〉+H.c.

)
− Pδ〈v†EvE〉(1− δ〈c

†
EcE〉)

+ δ〈v†EvE〉(1− δ〈v
†
GvG〉)τ

−1
v + δ〈c†EcE〉(1− δ〈v

†
EvE〉)τ

−1
nl ,

(4.4)

respectively. Here the subscripts G and E denote the ground- and excited-state

lasing, respectively. Moreover, the EoM for other quantities is similar to what

mentioned in the appendix A.

In the experimental observations of two-state lasing by Markus et al. [2003],

lasing characteristics were strongly influenced by the cavity length that depends

on the total losses of the laser cavity. A stable two-state lasing could be thus

achieved by the proper choice of parameters. In order to obtain two-state lasing,

we use the following parameters: the loss rates γGG = γEE = 0.02 ps−1, β = 0.2,

number of QDs N = 40, QD dephasing Γ = 2.06 ps−1, spontaneous emission

time τsp = 50 ps and time for relaxation of carriers from ES to GS in conduction

and valence band τc = 10 ps and τν = 5 ps, respectively. For the sake of

simplicity of our discussion, we assume that two modes are not directly coupled

γGE = γEG = 0 and are also in exact resonance with the corresponding QD

transitions (∆GG = 0,∆EE = 0).

In the following we will first review the single-state lasing and then present

the theoretical results obtained for a two-state microcavity laser by considering

input-output characteristics, carrier population and correlation functions which

allow one to study the gain competition behavior. Finally, we will analyze the
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effects of ES mode on the operation of the GS lasing.

4.2.1 Standard GS laser

This section provides a short overview of the lasing characteristics of single

ground-sate QD laser based on the microscopic semiconductor theory. To make

only GS lasing occurs we set the coupling strength of ES gE = 0 and the results

are depicted in Figure 4.1.
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Figure 4.1: Intensity (blue line) and carrier occupation of conduction band (red
lines) as a function of pump rate for single ground-state laser. The intensity
starts lasing at about Pthr ' 0.02 ps−1. The carrier occupation of GS (solid line)
saturates above Psat = 0.02 ps−1, while the carrier occupation of ES (dashed line)
increases.

In Figure 4.1 the blue solid line shows the GS intensity, n = 〈a†GaG〉, as

a function of the pump rate. The resulting intensity exhibits a characteristic

S-shaped input-output curve with a lasing threshold at about Pthr ' 0.02 ps−1.

Additionally, the red lines show the occupations of conduction band f c = 〈c†c〉
for GS and ES. First occupation of GS (solid line) is rising with increasing the

pump rate. If enough carriers are injected into GS by relaxation from the ES,

lasing threshold is reached and f cG saturates for values above the lasing threshold.

This indicates that every carrier added to the GS, e.g., by raising the pump

rate, is instantly interacted with a GS mode and is converted into the lasing
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mode. It leads to saturation of carriers in f cG. This behavior is the well-known

gain clamping effect [Markus et al., 2003] that has been known as a fundamental

feature of lasing. On the other hand, f cE (dashed line) in Figure 4.1 shows a

drastic increase of occupation in the excited state with increasing the pump rate,

meaning that no gain clamping occurs for excited state. In the next section the

laser characteristics of two-state lasing will be investigated.

4.3 Laser characteristic of two-state lasing

The most research efforts on microcavity lasers so far have focused on the

single-state QD lasers. Generally, In(Ga)As-QDs can exhibit more than one

confined state that can simultaneously obtain lasing on two separate wavelengths

[Kaptan et al., 2014, Markus et al., 2003, Gioannini, 2012, Röhm et al., 2015b,a,

Grillot et al., 2011, Wang et al., 2014, Viktorov et al., 2005] or even show

three-state lasing [Zhang et al., 2010]. To study the competing mechanism

between GS and ES lasing, we extended the microscopic semiconductor theory to

the case of the lasing occurs via GS and ES transitions.

Figure 4.2 shows the simulation results for the intensity functions of two-state

laser, the carrier occupation of states, and the auto- and cross-correlation as a

function of the pump power with y-axis in logarithmic scale. In Figure 4.2(a),

the photon number of the GS and ES mode demonstrate a standard S-shaped

input-output characteristic but with different lasing thresholds. Above the lasing

threshold of the ES mode, the intensity of the GS mode remains pinned while the

intensity of the ES mode increases dramatically. The calculations further show

the dependency of the carriers occupation for GS and ES on the pump power.

As shown in Figure 4.2(b), the GS occupation is clamped after the onset of GS

lasing. Here adding carriers to the GS leads to the carrier recombination through

stimulated emission of a photon with the GS transition energy. To increase the

stimulated emission rate from the GS, we need more carriers to relax into the

GS from ES. As a result, the number of carriers of the ES starts to increase

until ES reach sufficient levels to facilitate ES lasing. The population of ES

clamps as well, but gain clamping does not occur for the ES once the GS has

obtained threshold. The autocorrelation function of each mode at zero delay

time can be seen in Figure 4.2(c) which shows the standard transition from the

spontaneous emission to the stimulated emission [Ulrich et al., 2007, Scully and
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Figure 4.2: Laser characteristics calculated using the semiconductor theory for
two-state lasing. (a) Intensity (as dimensionless photon number nξ, ξ ∈ {G,E})
for modes GS (solid curve) and ES (dashed curve) as a function of the pump rate
P , (b) the carrier population of GS and ES for conduction band and (c) auto-
and cross-correlation functions of two modes.
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Zubairy, 1997]. They both drop from 2, corresponding to thermal light, to 1

corresponding to coherent light emission but with different threshold pumps of

0.01 ps−1 and 0.2 ps−1 for GS and ES mode, respectively. The cross-correlation

function g
(2)
GE(0) can be interpreted as a signature of gain competition as discussed

in the previous chapter 3. Especially interesting is the competition behavior

between GS and ES modes to catch carriers which can be found in Figure 4.2(c).

It shows that the cross-correlation function is pinned to 1 for all pump rates.

Thus, we may conclude that two modes do not show the conventional signatures

of gain competition. In the following the influence of ES lasing on the GS mode

will be studied numerically and analytically.

4.3.1 Effect of the ES on the GS lasing

The theoretical results of two-state lasing in section 4.3 showed that ES lasing

surpasses the GS mode and for large values of the pump power ES can affect

GS lasing efficiency. The competing behavior between GS and ES lasing for QD

lasers has been the subject of some previous works [Cao et al., 2009, Markus et al.,

2003], however only limited experiments have been done for the gain competition

between two-state modes [Massé et al., 2006, Kaptan et al., 2014].

Since the signatures of gain competition has not been obvious in our numerical

results, we measure the delay time between lasing of the GS and the ES around the

lasing threshold of ES. The delay time can be approximated from the evaluated

time for saturation of carriers in GS and ES, and can be seen in Figure 4.3. For

two modes with equal Q-factors, the saturation state of carriers for ES mode

occurs at about 600 ps, while the carries of the ground state saturates at 300 ps.

The GS occupation reaches sufficient values to lase before the ES mode starts

lasing and thus ES mode cannot qualitatively affect the GS lasing. We may

postulate that two modes have not competed for the same carriers and therefore

GS has a definite portion of carriers that relaxes from the excited state to the

ground state. This portion is related to the relaxation rate of carriers in the

conduction band 1/τc, and the carriers occupation of the excited state 〈c†EcE〉.
This finding remains also valid for higher Q-factor ES-mode with lower cavity

loss rate γEE as depicted in Figure 4.3.

Moreover, the distinct difference in the GS occupations for different values

of γEE can be seen in the inset in Figure 4.3. The cavity loss rate of ES mode
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Figure 4.3: Evaluated time for saturation of carriers f csat =< c†c >sat in GS (solid
line) and ES (dashed line) modes at pump rate P = 10 ps−1. The blue lines
correspond to two modes with the same quality γGG = γEE = 0.02 ps−1. On the
other hand, the green lines are related to two different modes with γGG = 0.02
ps−1and γEE = 0.002 ps−1. After the ground state reaches the saturation value
of carriers, the ES occupation saturates. The inset shows more clearly the effect
of γEE on the carriers occupation f c =< c†c > of GS and ES until the mode GS
starts lasing (t = 300 ps).

γEE has considerable effect on the time-dependence of ES occupations before

GS lasing occurs. Therefore, the loss rate of mode ES can affect the number

of carriers that relax into the ground state, even though ES lasing has not yet

started.

Figure 4.4 illustrates the impact of γEE on the intensity of GS mode and

carriers occupation of states as a function of pump rate. The γEE has effect on

ES and GS populations and it therefore leads to the intensities of GS mode that

exhibit significantly different value for various γEE at large values of the pump

rate. Hence, the GS lasing is influenced solely by the injection carriers and it can

be controlled only quantitatively by the ES mode.
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Figure 4.4: (a) Input-output characteristic of GS mode versus pump rates, and
the carriers occupation of conduction band for (b) ground state and (c) excited
state for various γEE.

4.4 Ground state quenching

With increasing the pump rate, some devices illustrate a decline and even

quenching of the GS lasing intensity as shown in Figure 4.5 based on the numerical

results of Röhm et al. [2015c]. The first observation of two-state lasing and GS

quenching was reported in the experiments of Markus et al. [2003]; they observed

a reduction of the GS emission for pump rates above ES threshold. However, they

did not explain this phenomenon theoretically. GS quenching has been also the

subject of several other researches such as those in Refs. [Korenev et al., 2013,

Gioannini, 2012, Röhm et al., 2015c,b, Maximov et al., 2013] and its reason is
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Figure 4.5: Lasing characteristics for GS (red), ES (dotted blue) and the sum of
both intensities (dashed black). The picture is taken from [Röhm et al., 2015c].

still debated. Quenching of the GS lasing intensity is sometimes attributed to its

temperature dependence [Lüdge and Schöll, 2011, Cao et al., 2009], electron–hole

asymmetry [Viktorov et al., 2005], doping [Maximov et al., 2013], or specific gain

[Röhm et al., 2015c] and cavity lengths [Markus et al., 2003].

Our numerical results, however, did not demonstrate such GS quenching event.

Instead, we observed that the presence of ES mode has only quantitative effects

on the GS lasing and not on its general trend and therefore the gain competition

between two modes does not occur. It can be explained by following statements:

First, GS quenching depends on various factors as mentioned previously. Figure 4.6

illustrates the influence of the length on GS quenching from Markus et al. [2003],

where the need of short cavities have been found and examined. Röhm et al.

[2015c] also found that the GS quenching is commonly occurred in p-doped,

short cavity devices with low gain. Therefore, some of these factors must be

directly included in a theoretical model for a direct comparison of experiment and

simulation. Secondly, while two-state lasing has also been observed for InAs/InP

QDs [Veselinov et al., 2007], GS quenching is to the best of our knowledge only

detected in self-assembled InAs/InGaAs QDs. Also, the number of research

papers published on this topic is limited. Hence, GS quenching might be limited
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to some specific experimental circumstances and may completely disappear by

the change of these conditions.

Figure 4.6: Illustration of GS quenching for different cavity lengths (a) 1650-µm
and (b) 2000-µm. The picture is taken from [Markus et al., 2003]

4.5 Chapter conclusion

In this chapter the dynamical properties of two-state lasing in QD microcavity

lasers were numerically simulated with a special emphasis on the effects induced

by the presence of the ES mode on the GS efficiency. Numerical results of

the microscopic semiconductor theory revealed that when GS lasing threshold

is reached and its occupation clamps, the carrier population of ES tends to

increase. Consequently, at high pump rates the carrier population of ES obtains

sufficient carriers to lase and two-state lasing occurs. The autocorrelation

function of two modes demonstrated the standard transition from spontaneous

emission to stimulated emission but with different lasing thresholds. Moreover

the cross-correlation functions were constant and equal to one implying two

statistically independent modes. Accordingly, we have not considered the signature

of the gain competition behavior between GS and ES modes.

The first experimental measurement of two-state lasing which has been done

by Markus et al. [2003] exhibited that once the threshold of the ES transition is

obtained, the GS mode saturates and then get quenched, whereas the intensity
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of ES mode is significantly enhanced. However, in this work, we found that due

to the delay time between carrier saturation of GS and ES modes, there is no

gain competition between two modes. First, the GS received enough carriers to

saturate and then the carriers increased in ES. Therefore, ES mode lased after

GS mode and they could not compete with each other to catch the carriers. This

implies that the laser operation of GS remained unaffected by the onset of lasing

in the ES; the only effect of the ES mode on GS operation is related to the loss

rate of ES mode. It has an effective role on the number of carriers which relax

into the GS. We can therefore conclude that the presence of ES mode has only

quantitative effects on the GS lasing and not qualitative effects.





Chapter 5

Final conclusions

Summary

In the scope of this work we explored and numerically simulated quantum-dot

microcavity lasers with the focus on the interaction between two modes and the

effect of the second mode on the lasing operation. The described QD contains

two confined shells, a s- (ground state) and a p-shell (excited state) and thus

the tasks of this thesis were divided into two main parts: two-mode microcavity

lasers where both modes are coupled to the same QD transition (s-shell) and

two-state lasing where two modes are coupled to different QD transitions.

To accomplish aforementioned tasks, we considered dynamics of an open

quantum mechanical system based on a microscopic semiconductor QD theory

for two-mode microcavity lasers. This approach allows to drive the equation

of motion for desired quantities, including the average photon number of both

modes and the average carriers population in the conduction and valence bands.

However, this model leads to an infinite hierarchy of equations of motion for

various expectation values for photon and carrier operators. One way to truncate

this hierarchy is the cluster expansion model where the equations of motion for

operator expectation values are substituted by equations of motion for correlation

functions. In this regard, higher-order correlation functions are assumed to have

minor contributions and are therefore neglected.

In the first part of this thesis, we investigated the lasing properties of

two competing modes in a QD microcavity laser, where both modes were

connected to the QD s-shell transition. Numerical results based on the microscopic

semiconductor theory revealed different behaviors of two competing modes. Here,

76



77

mode 1 demonstrates the typical S-shaped behavior of the input-output curve in

a double logarithmic plot, while the output intensity of mode 2 saturates and

then decreases with increasing the pump rate above the threshold. Furthermore,

the photon autocorrelation function g(2)(0) of the light emission reflects the onset

of the lasing in the first mode; it drops from the value 2, corresponding to the

thermal light, to 1 indicating coherent light emission. For the second mode, above

the threshold, the autocorrelation function increases and reaches super-thermal

values well above 2, indicating a strong bunching of photons in this mode. Distinct

behaviors of two modes indicate the gain competition between two modes that is

also confirmed by cross-correlation function. The decrease of cross-correlation

function below unity exhibited stronger anticorrelated behavior of two modes.

These results are in qualitative agreement with the experimental findings and the

numerical results of Leymann et al. [2013b].

In contrast to previous works that considered only the indirect coupling

between the modes induced by the interaction with the common gain medium,

here we focused on the effects induced by additional direct mode coupling due to

the dissipative character of the laser resonator. Here, the off-diagonal elements of

the optical damping matrix γ in the Lindblad superoperator reflect the direct

coupling between modes. Our numerical results based on the microscopic theory

illustrated that photon bunching for the second mode becomes stronger with

increasing the off-diagonal elements, whereas the autocorrelation function of the

first mode is only slightly enhanced. Moreover, the cross-correlation function

exhibited stronger anticorrelated behavior with increasing off-diagonal elements

of γ.

To further analyze the mode-coupling effects, we applied a unitary

transformation to a new set of modes. We studied the transformed system

consisting of a bright mode coupled to the QDs and a decoupled dark mode that

obtains photons only through the interaction with the bright mode. Thus, the

transfer of photons between the two original modes was described by occupation

of the dark mode. For example, at zero detuning and symmetric optical damping

there was no transfer between the two original modes due to the unpopulated

dark mode. As a result, the behavior of two modes did not reflect any signature

of gain competition and the bright mode exhibited the features of single-mode

laser depending on the off-diagonal elements. On the other hand, for asymmetric

optical damping of the modes the gain competition behavior can be traced back
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to the increasing occupation of the dark mode. The intensity of the dark mode

increased with the off-diagonal elements of γ. As a result, the off-diagonal elements

of the damping matrix enhanced the anticorrelated behavior of the modes in

bimodal microcavities. We also showed that the contribution of the bright mode

to the photon number of the original modes can predict the winner lasing mode.

Since the first mode is composed of the superposition of dark- and bright-mode

contributions that interferes constructively, it was found to be the winner mode

in the competition.

The second part of this dissertation was concerned with the theoretical

description of two-state microcavity lasers. The lasing states were labeled as

ground state and excited state, referring to the confined QD energy states. In this

case, the second mode was coupled to the excited-state transition of QD, while

the first mode was coupled to the ground-state transition. Since QD microcavity

lasers can simultaneously obtain lasing on two separate wavelengths, owing to the

discrete energy levels of the QD, the effect of the ES mode on the efficiency of

GS lasing is an interesting phenomenon. After reproducing the known results of

the single-state lasing using the theoretical model, we investigated the dynamical

properties of two-state lasing based on an extended microscopic semiconductor

theory. It revealed that when GS lasing threshold was reached and its occupation

clamped, the carrier population of ES tended to increase. As a result, at sufficiently

high pump rates the ES occupation reached its threshold value and two-state

lasing occurred. The autocorrelation function of two modes showed the standard

transition from the spontaneous emission to the stimulated emission but with

different thresholds pumping. The cross-correlation function reached constant

value of one which indicated that no signature of gain competition was visible

in the behavior of two modes. Both modes tended to behave independently as

typical laser but with different lasing thresholds.

Based on our semiconductor model we showed that, the gain competition did

not occur between GS and ES modes because of the delay time between carrier

saturation of two modes. First, the ground state received enough carriers to

saturate and then the carriers increased in excited state. Therefore, the lasing

threshold of the ES mode occurred after GS lasing and therefore they did not

compete with each other to catch the carriers. However, we found that the only

effect of the ES mode on GS operation was related to the loss rate of ES mode.

The loss rate influenced the number of carriers which relaxed into the GS. We
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therefore concluded that the presence of ES mode affected only quantitatively

the GS lasing and not qualitatively.

It was also found that the trend of GS lasing remained unaffected by the onset

of lasing in the ES, whereas the first experimental measurements of two-state

lasing of Markus et al. [2003] exhibited the GS quenching; namely, after reaching

the threshold of the ES transition, the GS mode saturates and then get suddenly

quenched, while the intensity of the ES mode significantly increases. Since

the GS quenching depends on various factors and may also change by specific

experiment circumstances, this issue needs consideration of specific experiment

conditions and requires further investigation.

Outlook

In this work two-mode and two-state microcavity lasers have been numerically

investigated. The principle theory has, however, the capability to be extended to

a multi-mode theory that is of great practical importance. Multi-mode systems

could be used efficiently in, for example, the multi-photon spectroscopy, that

requires more than one photon at the same time to allow images to be taken

with a higher resolution. The continuation of this work can be regarded as a

fundamental research which can lay the groundwork for new laser devices and

multi-photon spectroscopy.

Our developed microscopic semiconductor theory is applicable to the study

of the emission characteristics in various interaction regimes depending on the

spectral splitting between modes, decay rates or the many-body effects. Although

we assumed the zero detuning situation in both parts of this thesis, detailed

investigation of detuning effects can be the topic of future works.

In order to study the correlations between emission events from the two

modes, the second order autocorrelation function has been investigated. However,

higher-order coherence functions may anticipate interesting observations which

have not been reported yet.

Understanding the GS quenching phenomenon in Ref. [Markus et al., 2003]

can be helpful to get a deeper insight into the dynamical properties of QD lasers

and has been a topic of debate among several researchers so far. Since the impact
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of different parameters, such as cavity length, gain, doping, and electron-hole

asymmetry, was not considered in the microscopic model of this work, it can be

left for future research.
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A. Imamoǧlu. Deterministic coupling of single quantum dots to single nanocavity

modes. Science, 308(5725):1158–1161, 2005.

N. Baer, S. Schulz, S. Schumacher, P. Gartner, G. Czycholl, and F. Jahnke. Optical

properties of self-organized wurtzite InN/GaN quantum dots: A combined

atomistic tight-binding and full configuration interaction calculation. Appl.

Phys. Lett., 87(23):1–3, 2005.

N. Baer, C. Gies, J. Wiersig, and F. Jahnke. Luminescence of a semiconductor

quantum dot system. European Physical Journal B, 50(3):411–418, 2006.

N. G. Basov, 0. N. Krokhin, and Yu. M. Popov. Use of indirect transitions

in semiconductors for the determination of states with negative absorption

coefficients. Exp. Theo. Phys., 13:845–849, 1961.

H. Benisty, C. M. Sotomayor-Torre, and C. Weisbuch. Intrinsic mechanism for

the poor luminescence properties of quantum-box systems. Phys. Rev. B, 44:

10945, 1991.

D. Bhattacharya, E. A. Avrutin, A. C. Bryce, J. H. Marsh, D. Bimberg,

F. Heinrichsdorff, V. M. Ustinov, S. V. Zaitsev, N. N. Ledentsov, P. S. Kop’ev,

Z. I. Alferov, A. I. Onischenko, and E. P. O’Reilly. Spectral and dynamic

properties of InAs-GaAs self-organized quantum-dot lasers. IEEE Journal of

Selected Topics in Quantum Electronics, 5(3):648–657, 1999.

P. Bhattacharya and S. Ghosh. Tunnel injection quantum dot lasers with 15 ghz

modulation bandwidth at room temperature. Appl. Phys. Lett., 80(19):3482,

2002.

D. Bimberg, M. Grundmann, and N. N. Ledentsov. Quantum Dot Heterostructures.

John Wiley & Sons, 1999.

G. Björk, A. Karlsson, and Y. Yamamoto. Definition of a laser threshold. Phys.

Rev. A, 50(2):1675–1680, 1994.

S. A. Blumenstein. Classical ghost imaging with opto-electronic light sources:

novel and highly incoherent concepts. 2017. PhD Thesis.



84 References

H.-P. Breuer and F. Petruccione. The Theory of Open Quantum Systems. Oxford

University Press, 2002.

Q. Cao, S.F. Yoon, C.Z. Tong, C.Y. Ngo, C.Y. Liu, R. Wang, and H.X. Zhao.

Two-state competition in 1.3 µm multilayer InAs/InGaAs quantum dot lasers.

Appl. Phys. Lett., 95(19):191101, 2009.

A. Carmele, M. Richter, W.W. Chow, and A. Knorr. Antibunching of thermal

radiation by a room-temperature phonon bath: A numerically solvable model

for a strongly interacting light-matter-reservoir system. Phys. Rev. Lett., 104

(15):156801, 2010.

P. H. J. Carmichael. Dissipation in Quantum Mechanics: The Master Equation

Approach. Springer Berlin Heidelberg, 1999.

P. Chhantyal, S. Naskar, T. Birr, T. Fischer, F. Lübkemann, B.N. Chichkov,
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K. Lüdge and E. Schöll. Temperature dependent two-state lasing in quantum dot

lasers. In Proc. 5th Rio De La Plata Workshop Laser Dyn. Nonlinear Photon,

pages 1–6, 2011.

B. Legrand, B. Grandidier, J.P. Nys, D. Stiévenard, J.M. Gérard, and
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C. Schneider, S. Höfling, A. Forchel, M. Kamp, J. Wiersig, and S. Reitzenstein.

Intensity fluctuations in bimodal micropillar lasers enhanced by quantum-dot

gain competition. Phys. Rev. A, 87(5):053819, 2013b.

H.A.M. Leymann, A. Foerster, and J. Wiersig. Expectation value based

equation-of-motion approach for open quantum systems: A general formalism.

Phys. Rev. B, 89:1242–1245, 2014.

J. Li, R. Yu, J. Ma, and Y. Wu. Proposal for efficient mode converter based on

cavity quantum electrodynamics dark mode in a semiconductor quantum dot

coupled to a bimodal microcavity. Journal of Applied Physics, 116(16):164306,

2014.

G. Lindblad. On the generators of quantum dynamical semigroups. Commun.

Math. Phys., 48(2):119–130, 1976.

P. Lodahl, A. Floris van Driel, I. S. Nikolaev, Overgaag K. Irman, A.,

D. Vanmaekelbergh, and W. L. Vos. Controlling the dynamics of spontaneous

emission from quantum dots by photonic crystals. Nature, 430:654–657, 2004a.



References 89

P. Lodahl, A.F. Van Driel, I.S. Nikolaev, A. Irman, K. Overgaag,

D. Vanmaekelbergh, and W.L. Vos. Controlling the dynamics of spontaneous

emission from quantum dots by photonic crystals. Nature, 430(7000):654–657,

2004b.

G. D. Mahan. Many-Particle Physics. Springer US, 2000.

T. H. Maiman. Stimulated optical radiation in ruby. Nature, 187:493–494, 1960.

A. Majumdar, M. Bajcsy, A. Rundquist, and J. Vučković. Loss-enabled

sub-poissonian light generation in a bimodal nanocavity. Phys. Rev. Lett.,

108(18):183601, 2012.

L. Mandel and E. Wolf. Optical Coherence and Quantum Optics. Cambridge

University Press, 1995.

A. Markus, J.X. Chen, C. Paranthoen, A. Fiore, C. Platz, and O. Gauthier-Lafaye.

Simultaneous two-state lasing in quantum-dot lasers. Appl. Phys. Lett., 82(12):

1818–1820, 2003.
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A. Röhm, B. Lingnau, and K. Lüdge. Understanding ground-state quenching in

quantum-dot lasers. IEEE, 51(1), 2015c.

P.R. Rice and H.J. Carmichael. Photon statistics of a cavity-qed laser: A comment

on the laser phase-transition analogy. Phys. Rev. A, 50(5):4318–4329, 1994.

M. Richter, A. Carmele, A. Sitek, and A. Knorr. Few-photon model of the optical

emission of semiconductor quantum dots. Phys. Rev. Lett., 103(8):087407,

2009.

S. Ritter, P. Gartner, C. Gies, and F. Jahnke. Emission properties and photon

statistics of a single quantum dot laser. Opt. Express, 18(10):9909–9921, 2010.

I. D. W. Samuel, E. B. Namdas, and G. A. Turnbull. How to recognize lasing.

Nat Photon, 3:546–549, 2009.

A. L. Schawlow and C. H. Townes. Infrared and optical masers. Phys. Rev., 112:

1940–1949, 1958.

A. Schliwa and M. Winkelnkemper. Semiconductor Nanostructures. Springer

Berlin Heidelberg.

E. Schlottmann, M. Von Helversen, H.A.M. Leymann, T. Lettau, F. Krüger,
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Appendix A

Equations of motion for the

microscopic bimodal laser model

In this appendix we provide supplementary material to chapter 3. We introduce

the other equations of motion for one-time correlation functions on the quadruplet

level of the cluster expansion:

d

dt
δ〈c†jvjbξ〉 =i(∆ξj + iγξξ + iΓ)δ〈c†jvjbξ〉+ gξjδ〈c†jcj〉(1− δ〈v

†
jvj〉)

+
∑
ξ 6=ξ′

γξξ′δ〈c†jvjbξ′〉+
∑
ζ

[gζjδ〈b†ζbξ〉(δ〈c
†
jcj〉 − δ〈v

†
jvj〉)

+ gζjδ〈c†jcjb
†
ζbξ〉 − gζjδ〈v

†
jvjb

†
ζbξ〉],

(A.1)

d

dt
δ〈v†svs〉 =

(∑
ξ

gξjδ〈c†svsbξ〉+H.c.

)
− δ〈v†pvp〉(1− δ〈v†svs〉)τ−1v

+ δ〈c†pcp〉(1− δ〈v†pvp〉)τ−1sp ,

(A.2)

d

dt
δ〈v†pvp〉 =− P (δ〈v†pvp〉 − δ〈c†pcp〉) + δ〈v†pvp〉(1− δ〈v†svs〉)τ−1v

+ δ〈c†pcp〉(1− δ〈v†pvp〉)τ−1sp ,

(A.3)
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d

dt
δ〈c†jcjb

†
ξbζ〉 =− (γξξ + γζζ)δ〈c†jcjb

†
ξbζ〉+

∑
ξ 6=ξ′,ζ 6=ζ′

(γξξ′δ〈c†jcjb
†
ξbζ′〉+ γζ′ζδ〈c†jcjb

†
ξ′bζ〉)

− gξjδ〈c†jcj〉δ〈c
†
jvjbζ〉 − gζjδ〈c

†
jcj〉δ〈v

†
jcjbξ〉 −

∑
ξ′

[gξ′jδ〈c†jvjb
†
ξbξ′bζ〉

− gξ′jδ〈c†jvjbζ〉δ〈b
†
ξbξ′〉 − gξ′jδ〈v

†
jcjb

†
ξ′bξbζ〉 − gξ′jδ〈v

†
jcjb

†
ξ〉δ〈b

†
ξ′bζ〉],
(A.4)

d

dt
δ〈v†jvjb

†
ξbζ〉 =− (γξξ + γζζ)δ〈v†jvjb

†
ξbζ〉+

∑
ξ 6=ξ′,ζ 6=ζ′

(γξξ′δ〈c†jcjb
†
ξbζ′〉+ γζ′ζδ〈c†jcjb

†
ξ′bζ〉)

+
∑
ξ′

[gξ′jδ〈c†jvjb
†
ξbξ′bζ〉+ gξ′jδ〈c†jvjbζ〉(1− δ〈v

†
jvj〉+ δ〈b†ξbξ′)

+ gξ′jδ〈v†jcjb
†
ξ′bξbζ〉+ gξ′jδ〈v†jcjbξ〉(1− δ〈v

†
jvj〉+ δ〈b†ξ′bζ)],

(A.5)

d

dt
δ〈c†jvjb

†
ξbζbξ′〉 = i[∆ξ′j + ∆ζj −∆ξj + i(γξξ + γζζγξ′ξ′) + iΓ]δ〈c†jvjb

†
ξbζbξ′〉∑

ξ 6=ξ′′,ζ 6=ζ′,ξ′ 6=ξ′′′
(γξ′′ξδ〈c†jvjb

†
ξ′′bζbξ′〉+ γζζ′δ〈c†jvjb

†
ξbζ′bξ′〉) + γξ′ξ′′′δ〈c†jvjb

†
ξbζbξ′′′〉

− gξ′jδ〈c†jcj〉(δ〈v
†
jvjb

†
ξbζ〉 − δ〈v

†
jvjb

†
ξbξ′〉+ δ〈b†ζ′b

†
ξbζb

†
ξ′〉)

+
∑
ζ′

[gζ′jδ〈c†jcjb
†
ξbζ〉(1− δ〈v

†
jvj〉+ δ〈b†ζ′bξ′〉) + gζ′jδ〈c†jcjb

†
ξbξ′〉(1− δ〈v

†
jvj〉

+ δ〈b†ζ′bζ〉)− 2gζ′jδ〈c†jvjbζ〉δ〈c
†
jvjbξ′〉 − gζ′jδ〈v

†
jvj〉δ〈b

†
ζ′b
†
ξbζbξ′〉

− gζ′jδ〈v†jvjb
†
ξbξ〉δ〈b

†
ζ′bξ′〉 − gζ′jδ〈v

†
jvjb

†
ξbξ′〉δ〈b

†
ζ′bζ〉],

(A.6)
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d

dt
δ〈v†jcjb

†
ξbζbξ′〉 = i[−∆ξj −∆ζj + ∆ξ′j + i(γξξ + γζζ + γξ′ξ′) + iΓ]δ〈v†jcjb

†
ξbζbξ′〉∑

ξ 6=ξ′′,ζ 6=ζ′,ξ′ 6=ξ′′′
(γξξ′′δ〈v†jcjb

†
ξ′′bζbξ′〉+ γζ′ζδ〈v†jcjb

†
ξbζ′bξ′〉+ γξ′′′ξ′δ〈v†jcjb

†
ξbζbξ′′′〉)

− gξ′jδ〈c†jcj〉(δ〈v
†
jvjb

†
ξbζ′〉 − δ〈v

†
jvjb

†
ζbξ′〉+ δ〈b†ξb

†
ζbζ′b

†
ξ′〉)

+
∑
ζ′

[gζ′jδ〈c†jcjb
†
ξbξ′〉(1− δ〈v

†
jvj〉+ δ〈b†ζbζ′〉) + gζ′jδ〈c†jcjb

†
ζbξ′〉(1− δ〈v

†
jvj〉

+ δ〈b†ξbζ′〉)− 2gζ′jδ〈v†jcjbξ〉δ〈v
†
jcjbζ〉 − gζ′jδ〈v

†
jvj〉δ〈b

†
ξb
†
ζbζ′bξ′〉

− gζ′jδ〈v†jvjb
†
ξbξ′〉δ〈b

†
ζbζ′〉 − gζ′jδ〈v

†
jvjb

†
ζbξ′〉δ〈b

†
ξbζ′〉].

(A.7)
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