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Introduction

All animals are equal, but some animals are more equal than others.
George Orwell
Animal Farm

Equal... The search for new materials has been a quest present in every age since the start
of our recorded history. Nowadays, we seek materials for various reasons. Here are a few
examples: In terms of energy production, the search for renewable, efficient, and sustainable
sources of energy led to the development of photovoltaics. Yet, in 2018, fewer than 4% of
the total world energy consumption come from this source. Several factors contribute to
this low percentage, however from a technical point of view, the efficiency of photovoltaic
cells can still be increased with the improvement of the design of the devices and with the
application of materials that possess optimal properties for the construction of these cells.
An example of the latter is a semiconductor material with a direct band gap that absorbs in
the visible range of the spectra and possesses high conductivity.

In terms of everyday gadgets, integrated circuits, and other electronic devices, the indus-
try, and even consumers, expect developments at the pace of Moore’s Law. This means that
every year we expect a decrease in the size of transistors. Additionally, for many years, it was
possible to increase the off and on switch rate of the transistors, which can be translated into
higher computer (or processor) performance at every new generation of devices. However,
this is no longer a possibility since some integrated circuits already reached fundamental
thermal limits due to the ever increasing power consumption of these circuits. This pro-
moted the research of new transistor designs with different materials and new architectures
over the past 10 years.

Finally, we live in a digital universe characterized by an insatiable demand for information
and by the creation of 2.5 quintillion bytes of data each day. Moreover, the pace at which
this information is created has been increasing every year due the improved availability of
electronic devices, i.e. more people are getting access to the internet and there is also an
increase of the number of devices per person. Furthermore, the pace is also increasing with
the development of new technologies, such as the internet of things, virtual reality, 5G, video
surveillance, among others... This led to the creation of huge data centers for the purpose of
storing and processing this information. They require complex cooling systems and when the
volume of information increases, so does the power consumption. This motivated researchers
to look for more efficient devices, which in many cases, involve the application of different
materials.

One can see that the demand is high for materials exhibiting properties desired for the
construction of several electronic devices. Although several materials already display some
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of these properties, in many cases their performance, relative abundance, price, and toxicity
limit their large scale application. Remember that some materials are more equal than
others. In other cases, the search for new materials just comes from the desire to generate
more efficient devices.

Here we are going to provide a humble contribution towards the solution of this problem.
In the past, the discovery of new materials came only from their experimental synthesis
and characterization. This type of research was slow since experiments required expensive
resources and were time consuming. Recently, the cost and time of materials design was
greatly diminished due to the combination of experiments with computer simulations, in
particular computational structural prediction methods [1–4]. This revolution was possi-
ble due to the increase of computer resources, and the development of electronic structure
methods and their efficient implementation in computer packages. All of these allowed for
innumerous high-throughput studies and for the creation of several databases containing in-
formation on known crystal structures and chemical substances. To give some examples, the
Inorganic Crystal Structure Database contains information on 210,229 crystal structures [5],
the Cambridge Structural Database on 1 million small-molecule organic and metal-organic
crystal structures [6], and the Chemical Abstract Service registry on 157 million unique or-
ganic and inorganic chemical substances [7]. If we remove duplicates and alloys from the
Inorganic Crystal Structure Database, we realize that, nowadays, we have information on
50 000 different inorganic materials. This number probably includes the most possible ele-
mental substances and binary compounds, however it lacks many complex compounds, such
as quaternary compounds.

The creation of all of these data is paving the way to yet another revolution in the field
of material science: that of machine learning (ML). ML techniques take advantage of large
amounts of data to find hidden patterns and a relation between input data and a certain
target property. The application of these techniques to material science problems is recent
and lacks the complexity exhibited in other fields. However, it has been shown already that
ML methods further decrease the time necessary to find new stable phases and allow for a
more efficient exploration of all estimated possible materials, which number around 10100 [8].

Often, structural prediction simulations require the evaluation of the total energies (forces
and stresses) of millions of phases in order to search through the potential energy surface
of a system. Among these, only a few points are indeed interesting: those corresponding to
the minima of the energy surface, which might correspond to the ground-state structures.
Many methods were developed to study the intricacies of the potential energy surface of
a certain system, such as the minima hopping method [9, 10], random sampling [11, 12],
and evolutionary algorithms [13, 14], to name just a few. Usually these methods use density
functional theory [15–17] for the energy evaluations. However, studies with such methods are
limited in the number of atoms included in the unit cell (usually no more than 10) since the
number of minima, and therefore, the number of calculations required, grows exponentially
with the number of atoms.

Similarly, molecular dynamics [18] simulations, used to calculate different properties of
these materials, also require millions of evaluations of total energies of a system. Not only
because they entail systems with more than millions of atoms, but also because they require
long simulation times in order for the systems to reach equilibrium and to behave according
to the ensembles of statistical mechanics. For these reasons, normally they employ classical
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force-fields for the energy evaluations (which come with a loss in accuracy), although we can
find some smaller examples using density functional theory.

The aim of this thesis is to develop strategies to counter these obstacles using machine
learning techniques. In particular, we resort to neural networks, genetic algorithms, and
cluster expansions to speed-up first principles studies and to construct efficient, yet accu-
rate, methods for energy evaluation. Although technically not part of the machine learning
repertoire of tools, genetic algorithms and cluster expansions share some of their character-
istics. Actually, a good introductory book on machine learning, Ref. [19], includes genetic
algorithms as a type of machine learning since biological evolution can be seen as a learning
process. Additionally, cluster expansions consist of a least-square fit of the total energies of a
system based on a correlation matrix, which looks similar to several algorithms of supervised
learning, which is the most common type of machine learning. Neural networks are, without
a doubt, the most famous and the most successful of the machine learning algorithms.

This thesis is organized as follows. In chapter 1 we start our discussion from its founda-
tion: the many body problem [20] and one of its most successful solutions: density functional
theory. An efficient, accurate theory, that relies on an hypothesis and on an approximation.
Afterwards, in chapter 2, we discuss the problems we intend to solve with density functional
theory, namely structural prediction and molecular dynamics. These are the basis for the
calculation of many interesting and important properties of materials. The obstacles that
arise from these concern both simulation time and size, as well as the time required for a sin-
gle calculation. An attempt to surpass them, by finding methods that are both accurate and
efficient, revolves around machine learning [19, 21, 22], that we promptly discuss in chapter
3. In particular, we discuss applications of machine learning in material science [23]. This
leads to the core of this work: neural networks force-fields [24]. We discuss them from their
inception to the most recent research and then, in chapter 4, we present our methodology to
construct neural network force-fields capable of describing the potential energy surface (PES)
of solids using relatively small, unbiased training sets. To apply these force-fields in molec-
ular dynamics and structural prediction simulations they have to provide accurate forces
and stresses. Unfortunately, the high accuracy of the energy is not a sufficient condition to
assure an appropriate accuracy for these derivatives of the energy. This led us to develop and
implement methodologies to optimize the neural networks with respect to energies, forces,
and stresses. Additionally, we use our results to show the challenges, limitations, and po-
tential of such force-fields, and we discuss their interpretability. Moreover, our methodology
permitted the study of large complex systems, such as the formation of defects in Si and
the melting of metals with an accuracy comparable to density functional theory. We take
on a different route in chapter 5, where we discuss and use cluster expansions to tackle the
structural prediction of copper based materials. In particular, we use genetic algorithms to
identify secondary phases of Cu2ZnSn(S,Se)4 (CZTS), which usually hinder the efficiency
of solar cells made out of this photovoltaic material. Moreover we study the transition
between the kesterite and the stannite phases in Cu2Zn1−xSnFexSe4 compounds. Our last
study involved the formation of complexes of defects in CuI [25], a transparent conducting
semiconductor (TCS). Although the role played by Cu vacancies in the p-type transparent
conductivity of CuI has been properly acknowledged, the way they arrange themselves, as
well as their optimal and maximum concentrations remained unclear. Our objective was to
provide an answer to these unresolved questions. We note that usually these three studies
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are too taxing to treat only with density functional theory.
Finally, at the end of this thesis we present our relevant conclusions.



Chapter 1

Many body problem and density
functional theory

Who in the world am I? Ah, that’s the great puzzle.
Lewis Carroll

Alice in Wonderland

Puzzle... The many-body problem [20, 26] represents perfectly how both complicated and
unrewarding physics can be. For simplicity, think of an atom, or even a molecule, placed in
any region of space and time, subject to whichever field, or fields, and basically try to name
all the interactions that maintain its structure and keep the electrons bound to the nuclei,
or not, if the field is strong enough... Now, neglect most of them. Keep only the interactions
between electrons and nuclei, and their self-interactions. Oh, and consider that electrons and
nuclei can move, but not very fast. One should try to avoid all those relativistic shenanigans
as much as possible. In fact, for most of it, think of the movement of the electrons as slow, but
instantaneous when compared to the movement of the nuclei. Moreover, remove most of the
intricacies related to spin, specially its complicated interactions with orbitals or colinearity.
At most consider that electrons can have spin up or down. Ah, what remains is the puzzle
usually refereed to as the many-body problem. Now, try to solve it! The peculiarity of this
problem is that, even after so many simplifications, it remains rather unsolvable... Strangely
this is what motivates physicists the most. The joy of the challenge that dwell within every
phenomena exhibited by matter. Not only that, but the elegance of nature, hidden behind
the mysteries of the universe, and unveiled by that undoubtedly extraordinary approach. It
is quite remarkable. 1

In this chapter we introduce the many body problem and the Born-Oppenheimer approx-
imation. Furthermore we explain how to obtain the most important properties in electronic
structure theory. Afterwards, we present the most reasonable theory to solve the many body
problem: density functional theory (DFT). We start with its foundation, the Hohenberg-
Kohn theorem, and the hypothesis that lead to its most commonly used form: Kohn-Sham
DFT. We finish the chapter with the Jacob’s ladder and the description of the most used
approximation to the exchange and correlation energy functional in material science.

1Adaptaded from Ref. [27]
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1.1 Many body problem

The description of matter and its properties using theoretical methods starts with the inter-
action between N electrons and M nuclei, which can be cast as the Hamiltonian

Ĥ =− ~2

2me

∑
i

∇2
i +

∑
i,I

ZIe
2

|ri −RI |
+

1

2

∑
i 6=j

e2

|ri − rj|

−
∑
I

~2

2MI

∇2
I +

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
,

(1.1)

where the lowercase subscripts denote electrons with mass me and charge e at position ri,
and the uppercase subscripts denote nuclei with mass MI and charge ZI at position RI .
Throughout this thesis we will adopt Hartree atomic units (e = me = ~ = 4πε0 = 1)
to simplify equations. Under these units we can describe the terms of the aforementioned
Hamiltonian as follows. The first term represents the kinetic energy operator for electrons

T̂ = −1

2

N∑
i=1

∇2
i , (1.2)

while the second term, the potential operator, represents the interaction between electrons
and nuclei,

V̂ =

N,M∑
i,I=1

v(ri,RI),= −
N,M∑
i,I=1

ZI
|ri −RI |

, (1.3)

and the third, is the electron-electron interaction operator,

Ŵ =
1

2

N∑
i 6=j

w(ri, rj) =
1

2

N∑
i 6=j

1

|ri − rj|
. (1.4)

The last two terms are the nuclei kinetic operator and the nuclei-nuclei interaction operator

T̂N = − 1

2mI

M∑
I=1

∇2
I , ŴN =

1

2

M∑
I 6=J

1

|RI −RJ |
. (1.5)

As the Hamiltonian in eq. (1.1) is time-independent, the eigenstates of the fundamental
equation governing a non-relativistic quantum system, i.e., the time dependent Schrödinger
equation, consist on a phase modulation factor (e−iEt) times the solution of the time-
independent Schrödinger equation

Ĥ({r}, {R})Ψ({r}, {R}) = EΨ({r}, {R}), (1.6)

where the abbreviation {r} = (r1, ..., rN) was used. The many-body wavefunction is a
function of 3(N + M) spacial coordinates and N + M spin coordinates. Unfortunately, the
solution of this equation is usually an impossible task. However, close inspection of the many-
body Hamiltonian provides a clue towards the simplification of the many-body problem. The
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nuclei kinetic term in the eq. (1.1) provides a small contribution to the energy, as the inverse
mass of the nuclei 1

mI
stands as rather ”small”. As the electrons’ mass is much smaller than

the mass of the nuclei, when the nuclei move, the electrons appear to adjust their positions
instantaneously. Therefore, the electrons move adiabatically with the nuclei. This is the
reasoning behind the adiabatic or Born-Oppenheimer approximation [20].

The full solutions for the coupled system of electrons and nuclei Ψ({r}, {R}) can be
written in terms of functions of the nuclear coordinates ξi({R}) and electron wavefunctions
Ψi({r} : {R}, which depend upon the nuclear positions as parameters:

Ψ({r}, {R}) =
∑
i

ξi({R})Ψi({r} : {R}). (1.7)

In this manner, the time-independent Schrödinger equation 1.6 can be decoupled into an
equation for the electrons

[T̂ ({r}) + Ŵ ({r}) + V̂ ({r}, {R})]Ψi({r} : {R}) = Ei Ψi({r} : {R}) (1.8)

and into a purely nuclear equation for each electronic state i:

[T̂N({R}) + Ûi({R})] ξi({R}) = E ξi({R}) (1.9)

In the previous equations Ei({R}) stands for the eigenvalues of the electron equation and
Ûi({R}) represents a modified potential function for the nuclear motion that includes the
interactions between nuclei and Ei({R}), among other terms (see Ref [20]).

In spite of the simplifications that arose from the adiabatic approximation, these equa-
tions are far too difficult to solve for a reasonable number of electrons and nuclei. Normally,
in electronic structure, the equation for the nuclei is neglected in favour of a classical one
while the equation for the electrons is further simplified. Before even attempting to solve
eq. (1.8), it is necessary to understand how to extract the most important properties in
electronic structure theory. These are the ground state total energy, the electron density,
and excitations. Additionally, one can include two energy derivatives: the forces and the
stress tensor.

The total energy of a system is given by the expectation value of the Hamiltonian

E[Ψ] =
〈Ψ| Ĥ |Ψ〉
〈Ψ|Ψ〉 . (1.10)

By definition, the ground state Ψ0 is associated with the lowest energy. Consequently,
the variation of the energy functional (E[Ψ]) with respect to the wavefunction has to be
stationary for the ground state. In fact, this variation leads to the Schrödinger equation:

δE[Ψ0]

δΨ∗0
=

ĤΨ0

〈Ψ0|Ψ0〉
− 〈Ψ0| Ĥ |Ψ0〉Ψ0

〈Ψ0|Ψ0〉2
= 0 hence ĤΨ0 = E0Ψ0. (1.11)

This can also be found by varying the energy subject to the constrain of orthonormality
using the method of Lagrange multipliers

δ[〈Ψ| Ĥ |Ψ〉 − E(〈Ψ|Ψ〉 − 1)] = 0, (1.12)
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which is equivalent to the variational (Rayleigh-Ritz) principle. Additionally, a small devi-
ation from the ground state wave function wields

E [Ψ0 + δΨ] =
〈Ψ0 + δΨ| Ĥ |Ψ0 + δΨ〉
〈Ψ0 + δΨ|Ψ0 + δΨ〉 =

E0 〈Ψ0|Ψ0〉+ 〈δΨ|Ĥ|δΨ〉
〈Ψ0|Ψ0〉+ 〈δΨ|δΨ〉 = E0 +O

(
δΨ2

)
.

(1.13)
Thus, the variational principle provides a strategy to discover approximations to the ground
state wavefunction through energy minimization. Furthermore, the error for such approxi-
mation for the ground state converges with second order of the deviation.

In a similar fashion, the expectation value of the density operator

n̂(r) =
∑
i=1,N

δ (r− ri) (1.14)

provides the electron density

n(r) =
〈Ψ|n̂(r)|Ψ〉
〈Ψ|Ψ〉 = N

∫
d3r2 · · · d3rN

∑
σ1
|Ψ (r, r2, r3, . . . , rN)|2∫

d3r1d3r2 · · · d3rN |Ψ (r1, r2, r3, . . . rN)|2
. (1.15)

As we will see later in this chapter, the electron density can be used to express all quantum
mechanical observables as a functional of this real, scalar function of three variables. For
example the expectation value of the interaction between electrons and nuclei (from eq. (1.3))
can be written as:

〈Ψ|V̂ (r)|Ψ〉 =

∫
d3r Vext(r) n(r). (1.16)

In condensed matter, excitations are nothing more than small perturbations of a system.
Examples of excitations are variations of the ground state (e.g. small displacements of the
ions in phonon modes) or true electronic excitations (e.g. optical electronic excitations).
Therefore, after finding the ground state, perturbation theory techniques provide the appro-
priate tools to calculate excitations, such as excitation spectra and the real and imaginary
parts of response functions.

Forces, on the other hand, can be calculated as in classical mechanics, as was noted by
Ehrenfest [28] already in 1927, and by many that followed [20, 29–32]. The force (Hellman-
Feynmann) theorem [33] was derived by Feynman in 1939 however, who explicitly demon-
strated that the force on a nucleus depends strictly on the charge density and not on the
electron kinetic energy, exchange, and correlation. The force conjugate to any parameter
describing a system (e.g. the position of a nucleus RI) can always be expressed as

FI = − ∂E

∂RI

(1.17)

Performing the differentiation, assuming 〈Ψ|Ψ〉 = 1 in eq. (1.10) for convenience, leads to

∂E

∂RI

= 〈Ψ| ∂Ĥ
∂RI

|Ψ〉 + 〈 ∂Ψ

∂RI

|Ĥ|Ψ〉 + 〈Ψ|Ĥ| ∂Ψ

∂RI

〉 = 〈Ψ| ∂Ĥ
∂RI

|Ψ〉 (1.18)
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where we used the fact that the Hamiltonian is Hermitian. Furthermore, we can explicitly
write the Hamiltonian terms to reach

FI =
∂E

∂RI

= −〈Ψ| ∂V̂
∂RI

|Ψ〉 = −
∫

d3rn(r)
∂V (r)

∂RI

. (1.19)

Similarly, the stress (generalized virial) theorem [34–36] provides us a different type
of variation. For a system in equilibrium, the stress tensor σαβ derivation requires the
application of an infinitesimal homogeneous scaling to the ground state, and the derivative
of the energy with respect to the symmetric strain εαβ

σαβ = − 1

Ω

∂E

∂εαβ
. (1.20)

Here Ω is the volume, and α and β Cartesian indices that come from the scaling of the space

rα → (δαβ + εαβ) rβ, (1.21)

where r represents particle positions and translation vectors. Under this scaling the wave-
function changes [37] to

Ψε ({ri}) = det (δαβ + εαβ)−1/2 Ψ
({

(δαβ + εαβ)−1 riβ
})
. (1.22)

Actually, the wavefunctions and the nuclear positions subjected to an expansion or a com-
pression can change in different ways, however these other ways do not contribute to the
energy (to first order) since the wavefunction and the nuclear positions are at their varia-
tional minima. The combination of the previous equations with eq. (1.10) and performing
the integrations by changing variables results in

σαβ = −〈Ψ|
∑
k

~2

2mk

∇kα∇kβ −
1

2

∑
k,k′

k 6=k′

(rkk′)α (rkk′)β
rkk′

(
d

drkk′
V̂

)
|Ψ〉 , (1.23)

where k and k′ represent particles, and rkk′ is the distance between them. The trace of
the previous equation P = −∑α σαα amounts to the well known virial theorem for the
pressure [38, 39]. This derivation in terms of the stretching of the ground-state was first
derived by Fock in 1930 [40]. If only Coulomb interactions are present and if we include all
the contributions from the nuclei and electrons in the potential energy, we can obtain the
relation

3PΩ = 2Ekinetic + Epotential . (1.24)

1.2 Density functional theory

We must now explain why solving eq. (1.8) is unfeasible. Firstly, the computational methods
required to solve this equation scale exponentially with the number of electrons. And that is
just for finding the ground-state. Secondly the many-body wavefunction contains much more
information than necessary. This can be further understood if we consider the example of
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Ref. [41]. Consider the solution of an oxygen atom. Even neglecting spin, the wavefunction
depends on 24 coordinates: 3 spatial coordinates for each of the 8 electrons. The solution of
this problem usually requires a basis set or the discretization of space. So let us consider a
small grid of 10 points per coordinate. This means that to store the wavefunction we need
1024 numbers. In scientific calculations, these numbers are usually stored as double precision
floating points, with each requiring 64 bits. This means that to store the wavefunction of the
oxygen atom we need roughly 8×1012 TB... From here we can speculate how tremendous the
task of calculating additional properties would be, such as phonons or critical temperatures,
or even solving the time dependent equation.

Luckily, there is a way to bypass these problems by considering the density as a basic
variable and re-writing the energy of a quantum system as a functional of the density. This
idea was first proposed by Thomas [42] and Fermi [43] in 1927. In their method, the system
of electrons is described as a classical liquid and the kinetic energy is approximated as an
explicit functional of the density. The Thomas-Fermi method was further developed in the
following years. For example in 1930 Dirac [44] formulated the local approximation for the
exchange, which was neglected in the original method. However, the formulation of density
functional theory as we know today, i.e., as an exact theory of many-body systems only
appeared in 1964 with the work of Hohenberg and Kohn [45].

Finally, we would like to note that DFT is not the only (approximate) solution to the
many-body problem, although it is the most efficient for solids. Other theories worth men-
tion are many-body perturbation theory [46–49] (in particular the GW approximation [50]
and the Bethe-Salpeter equation [51]), coupled cluster [26], Hartree-Fock [20, 26], and full
configuration interaction [26].

1.2.1 Hohenberg-Kohn theorems

At the heart of DFT lies the Hohenberg-Kohn theorems [15, 20, 52, 53], first proved by
Hohenberg and Kohn by reductio ad absurdum and using the variational principle. The first
of these theorems states that the external potential V̂ (r) of a system of interacting particles
is a unique functional of the ground state density, apart from a trivial additive constant.
This means that the mappings A and B between ground state density, wavefunction, and
the external potential are bijective (fully invertible)

{V̂ } A←−−→ {Ψ0} B←−−→ {n0}. (1.25)

In other words, that there is a one to one correspondence between the ground state electron
density and the external potential. Proofs of this theorem can be found in the aforemen-
tioned references or in any other DFT textbook [15–17]. Since the Hamiltonian and the
wavefunctions are fully determined given the knowledge of the ground state density (up to
a constant shift in the energy), all properties of the system are completely determined. This
means that the nondegenerate ground-state wave function and the expectation value of any
observable Ô are functionals of the ground-state density

O0 = O[n0] = 〈Ψ0[n0]| Ô |Ψ0[n0]〉 . (1.26)

This is true in particular for the energy functional. The second of the Hohenberg-Kohn
theorems reveals that an universal functional of the density F [n(r)] can be defined for any
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number of particles or external potential. Then, for a certain external potential V (r), an
energy functional of the density E[n(r)] can also be defined. Moreover, the ground-state
density is the density that minimizes this functional, for which the functional provides the
ground-state energy. Once again, proof of this theorem can be found in any other DFT
textbook [15–17]. Here we will just show the definitions of these functionals:

E[n(r)] =

∫
d3r v(r)n(r) + F [n(r)] =

∫
d3r v(r)n(r) + 〈Ψ| T̂ + Ŵ |Ψ〉 (1.27)

Clearly, for the ground-state density, the functional equals the ground-state energy. We note
that the original proof of Hohenberg and Kohn is restricted to V-representable densities, i.e.,
densities that are the ground-state densities of the electron Hamiltonian with a particular
potential. However, many reasonable densities have been shown to be non-V-representable.
So, it is noteworthy to mention the constrained-search independent formulations of Levy [54–
56] and Lieb [56–58] for the Hohenberg-Kohn functional. Their approach consists in defining
a two-step minimization procedure, where the first step consists in minimizing the energy
over the class of wavefunctions with the same density n(r):

ELL[n(r)] =

∫
d3r v(r)n(r) + min

Ψ→n(r)
〈Ψ| T̂ + Ŵ |Ψ〉 . (1.28)

This leads to an unique lowest energy for that density, and the ground-state density is found
by minimizing this functional of the density

E0 = min
{n}

ELL[n]. (1.29)

Formally, this can be achieved by varying the energy subject to the particle number constrain
using the Lagrange multiplier (µ):

δE = δ
{
F [n] +

∫
d3r v(r)n(r)− µ

( ∫
d3r n(r) − N

)}
= 0. (1.30)

On top of that, carrying out the functional derivatives results in a Euler equation

δF [n]

δn(r)
+ v(r)− µ = 0. (1.31)

In this formulation the energy functional is defined for any density obtained from a wave-
function ΨN for N-electrons, or in other words, for any N-representable density, which is
fantastic since any reasonable density satisfy the N-representability condition [20, 59].

The Hohenberg-Kohn theorems reveal how to reformulate the many-body problem for N
electrons resorting to the density instead of the wavefunction, and ensure that that density
is sufficient to determine all properties of a system. However this relation is rather subtle
and it still remains unclear how one can extract a set of properties directly from the density.
This could have been an huge setback for density functional theory, if not for the brilliant
Kohn-Sham approach [60].
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1.2.2 Kohn-Sham scheme

The success of DFT and the reason why it is one of the most widely used methods for
electronic structure calculations originates from the work of Kohn and Sham. Their approach
consists in replacing the original many-body problem by an auxiliary independent particle
problem [20]. To do so, however, we are forced to consider a hypothesis: the existence of
an auxiliary non-interacting system whose ground-state density represents the ground-state
density of an interacting system.

Now the ground-state wavefunction of such a system of N non-interacting electrons can
be written as a Slater determinant of single-particle orbitals like

ψ(x1,x2...,xN) =
1√
N


ϕ1(x1) ϕ2(x1) . . . ϕN(x1)
ϕ1(x2) ϕ2(x2) . . . ϕN(x2)

...
...

. . .
...

ϕ1(xN) ϕ2(xN) . . . ϕN(xN)

 ,
where the orbitals that form the antisymmetric wavefunction satisfy the equation[

− ∇
2

2
+ vs[n](r)

]
ϕi(r) = εiϕi(r). (1.32)

Then, it is trivial to obtain the energy functional of such auxiliary system

Es[n] = Ts[n] +

∫
d3r vs(r)n(r). (1.33)

The constrained variation of this functional with respect to the density results in the Euler
equation

δTs[n]

δn(r)
+ vs(r)− µs = 0, (1.34)

where Ts the non-interacting kinetic energy operator and ms a Lagrange multiplier. The gist
of the Kohn-Sham approach is to rearrange the terms of the energy functional in eq. (1.27)
in a away that resembles the one above:

E[n] = T [n] +W [n] +

∫
d3r v(r)n(r)

= Ts[n] + (T [n]− Ts[n]) + EH[n] + (W [n]− EH[n]) +

∫
d3r v(r)n(r)

= Ts[n] + EH[n] + Exc[n] +

∫
d3r v(r)n(r).

(1.35)

In this equation we used the definition of the self-interaction energy, that takes into account
the classical Coulomb interaction between the electrons,

EH[n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′| . (1.36)

also known as the Hartree energy, and that of the exchange and correlation energy functional

Exc[n] = T [n]− Ts[n] +W [n]− EH[n]. (1.37)



1.2. DENSITY FUNCTIONAL THEORY 17

Again, we note that the rearrangement in equation (1.35) is only possible under the assump-
tion that the ground state density of the interacting system can be represented as the ground
state density of the non-interacting system. With this rearrangement, the Euler equation
for the interacting system (eq. (1.27)) becomes

δTs[n]

δn(r)
+ v(r) + vH + vxc − µ = 0. (1.38)

Turns out that the Euler equations for both systems (eqs. (1.34) and (1.38)) are equivalent
if

vs = v(r) + vH + vxc − (µ− µs) = v(r) + vH + vxc. (1.39)

where the difference between Lagrange multipliers was absorbed by the exchange and cor-
relation term. In this manner, one can calculate the variation of the energy functional in
eq. (1.35) with respect to the wavefunctions of the auxiliary system and obtain the well
known equations of Kohn and Sham[

−∇2

2
+ v(r) + vHartree[n](r) + vxc [n] (r)

]
ψi(r) = εiψi(r) . (1.40)

The exchange and correlation potential and the Hartree potential are defined as the func-
tional derivative of their energy counterparts, for example

vxc [n] (r) =
δExc [n]

δn(r)
. (1.41)

Finally, the electronic density can be calculated as

n(r) =
occ.∑
i

|ψi(r)|2 , (1.42)

where the sum runs over all the occupied states.

The beauty of the Kohn-Sham equations is that the solution of the many-body problem
no longer involves complicated wave-functions of many-body interacting electrons. The
ground-state density is now obtained from several single-particle wave-functions that obey
a Schrödinger like equation with an extremely complex potential. And if this potential were
known, the self-consistent-cycle solution of the Kohn-Sham equations would yield the exact
ground state density and energy for the interacting system.

1.2.3 Jacob’s ladder

The elusive exchange and correlation energy functional of Kohn-Sham DFT is often split in
two terms: the exchange functional (Ex) and the correlation functional (Ec):

Exc[n] = Ex[n] + Ec[n] =

∫
d3r n(r)[εx(n(r)) + εc(n(r))], (1.43)
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where εi represents energy per electron of the system. We use this notation throughout this
section. Moreover, these functionals can be defined as [61]

Ex[n] = 〈Φs[n]| Ŵ | |Φs[n]〉 − 1

2

∫
d3rd3r′n(r)n (r′)w (|r− r′|)

Ec[n] = 〈Ψ[n]| T̂ + V̂ + Ŵ |Ψ[n]〉 − 〈Φs[n]| T̂ + V̂ + Ŵ |Φs[n]〉
(1.44)

where |Φs[n]〉 is the Kohn-Sham wavefunction and |Ψ[n]〉 the true ground state wavefunction
of the interacting system with density n. Nonetheless, the exact mathematical expression for
these functionals of the density, that should describe many-body interactions, is not known.
One could, in principle, construct an explicit form for the functional after solving all possible
electronic systems. Yet this approach remains rather unfeasible. So, as it usually happens,
approximations are required and, over the last decades, hundreds of approximations for the
exchange and correlation functionals were proposed [62–65]. The major difficulty, however,
concerns the impossibility of systematically improving these functionals of the density. Noth-
ing guarantees that the addition of further ingredients, that satisfy more exact constrains
or that make the functional more flexible, leads to an improvement in the description of
all types of interactions across distinct chemical environments. Still, an hierarchy has been
in development since the work of Kohn and Sham [60], an hierarchy coined by Perdew as
”Jacob’s ladder” [66]. The metaphor starts with the Hartree world at the bottom, where
exchange and correlation energies are zero and classical electrostatics perfectly describes
the interaction between electrons. Then every rung represents the inclusion of a different
ingredient in the functional and the belief is that the ladder culminates in the Heaven of
chemical accuracy. This concept of chemical accuracy was further discussed by Pople in
his Nobel prize lecture [67], where he argues that a global accuracy of 1 kcal/mol (roughly
43 meV/atom) for energies with respect to experimental values would be appropriate.

The first rung consists on the local spin density approximation (LDA), where the func-
tional depends on the density as in

ELDA
xc =

∫
d3r n(r) εLDA

xc (|n(r)|) . (1.45)

The second rung sees the inclusion of the gradient of the density in the approximation

EGGA
xc =

∫
d3r n(r) εGGA

xc (|n(r)| , |∇n(r)|) (1.46)

This is the form of the generalized-gradient approximation (GGA), and functionals of this
family are often regarded as semi-local due to the infinitesimal region around r spanned by
the gradient. Following the trend, the ingredient required for the third rung is the Laplacian
of the density ∇2n(r) and/or similar quantities, such as kinetic energy density

τ(r) =
1

2

occ∑
i

|∇ψi(r)|2 . (1.47)

With these quantities the functional form changes to that of a meta-GGA (mGGA):

EmGGA
xc =

∫
d3r n(r) εmGGA

xc

(
|n(r)| , |∇n(r)| , |τ(r)| ,

∣∣∇2n(r)
∣∣) (1.48)



1.2. DENSITY FUNCTIONAL THEORY 19

The fourth rung takes on a different approach: the inclusion of terms involving the depen-
dence on the occupied Kohn-Sham orbitals, which can be achieved in different manners. For
example, by including exact exchange and a compatible correlation, i.e. mixing a fraction
αx of exact (Hartree-Fock) exchange with another functional (either GGA or mGGA) as in

Ehyb
xc = −αx

2

∫
d3r

∫
d3r′

ψi(r)ψ∗i (r′)ψj (r′)ψ∗j (r)

|r− r′| + EDFT
xc [n]. (1.49)

This is the form of a hybrid functional and it can truly be regarded as truly non-local due to
the exact exchange term. The last known rung, for which we do not show the functional form,
incorporates the dependence on all orbitals (both occupied and unoccupied). Functionals of
this kind contain exact exchange and exact partial correlation. Examples include the inclu-
sion of post-Hartree-Fock correlation in the approximation denoted as double-hybrids [68]
and the random phase approximation plus corrections [66].

Among all these families of functionals, the GGA proposed by Perdew, Burk and Ernzer-
hof (PBE [69]) stands out, as it is the most used functional in material science. Many reasons
contributed to this, for example while the most accurate approximation for the exchange and
correlation energy, the hybrid functionals, require the computation of exact exchange, which
is a rather demanding operation in plane wave codes, the PBE does not. It is in fact very
computational efficient. Furthermore it provides a fairly accurate reproduction of crystal
structures energies and lattice constants (among other properties). Furthermore, the PBE
was presented at the correct time and witnessed the boom of electronic structure packages.
It was used for many calculations and re-used for comparison reasons. Not only that, but it
was the approximation of choice for many databases, such as the Materials Project [70].

The exchange part of this approximation is given by [16, 71]

εPBE
x = εLDA

x FPBE
x

FPBE
x = 1 + k − k

1 + (µs2/k)
,

(1.50)

where k = 0.804 and µ = 0.21951. The dimensionless gradient s is defined it terms of the
gradient of the density, the density, and the local Fermi wave vector as in

s =
|∇n|
2kFn

. (1.51)

While the correlation part is chosen as [16, 71]

εGGA
xc = εLDA

c +H(rs, ζ, t), (1.52)

where ζ = (n↑−n↓)/n is the spin polarization, t = |∇n|/(2φksn) is a dimensionless gradient,
and rs is the local Seitz radius. In the definition of t, ks is the Thomas-Fermi screening wave
vector and φ = [(1 + ζ)2/3 + (1− ζ)2/3]/2 is just a spin scaling factor. Using these definitions,
we can write H as

H =
e2γφ3

a0

log
(
1 +

βt2

γ

1 + At2

1 + At2 + A2t4
)
. (1.53)

Here, γ and β are constants and the function A represents

A =
β

γ

[
e
−a0ε

LDA
c

e2γφ3 − 1

]−1

. (1.54)
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Chapter 2

Structural prediction and molecular
dynamics

You start a question, and it’s like starting a stone. You sit quietly on the top of a hill; and
away the stone goes, starting others...

Robert L. Stevenson
The Strange Case of Dr. Jekyll and Mr. Hyde

Starting... In the last chapter we explained Kohn-Sham DFT. In the words of Richard
Martin [20]: ”So long as the true many-body solution is sufficiently close to the independent-
particle formulation, e.g. the states must have the same symmetry, then the Kohn-Sham
approach provides insightful guidance and powerful methods for electronic structure theory.”
Kohn-Sham DFT is indeed a remarkable theory that allows for the determination of the
ground-state of a system. Actually, how can we be sure that we reached the ground state
of a system? Surely performing a self-consistent calculation for a random configuration of
8 copper atoms followed by a geometry relaxation should result in a supercell of its ground
state fcc lattice. Unfortunately, this is not always the case: the minimization procedure
might encounter a local minima of the potential energy surface (PES), or even a saddle
point. This simple example reveals a particular difficult problem when considering solids,
which pertains the determination of a ground-state crystal structure of a system from only
its chemical composition.

From a different point of view, often the study of a system involves the determination of
dynamical properties and the simulation of the system under a specific statistical ensemble.
For example, the latter requires an accurate evaluation of forces of large supercells in order
to properly simulate the evolution of a system, while keeping certain properties of the system
constant, such as the total pressure or temperature.

The solution to these problems took many years to be found and as often occurs in
science, such development came from many brilliant contributions that still continue to start
others. In this chapter we describe two types of simulations particularly relevant in the field
of materials science: structural prediction and molecular dynamics (MD). We focus more
prominently it the flavours that we used for our applications, mainly the minima hopping
method (MHM), genetic algorithms, and the Berendsen thermostat and barostat.

21
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2.1 Structure prediction

In 1988 John Maddox draw attention to a considerable problem in material science in a
Nature editorial. He wrote: ”One of the continuing scandals of physical science is that it
remains in general impossible to predict the structure of even the simplest crystalline solids
from a knowledge of their chemical composition.”[72] In fact, at the time, crystal structures
were considered as unpredictable as the behaviour of the stock exchange. However, the
situation change dramatically in 2003-2006 with the proposal of several approaches that
aimed at the solution of this problem, only possible due to the explosive development of
electronic structures methods. The idea behind structure prediction can be extract from
Maddox text: find the stable crystal structure of a certain material knowing only its chemical
compositions (for specific thermodynamic conditions).

Here stability pertains to both thermodynamic and dynamical stability. Thermodynamic
stability means the minimum of the Gibbs free energy. So a structure will not decompose
into another, if the free energy of the decomposition channel is positive. Frequently, many
calculations resort to conditions of zero pressure and temperature. In these conditions, the
relevant thermodynamic quantity is the total energy, and a structure is stable if its energy
is lower than that of its individual constituents. For example, consider the formation energy
of a binary compound AiBj:

EF = EAiBj/N − (xiEA + xjEB), (2.1)

where E denotes energy, x concentrations, and N the total number of atoms in the structure.
The formation energy is then an energy per atom. If the formation energy is negative, then
AiBj is more stable than its constituents. Then, to evaluate thermodynamic stability we
just have to compare energies with respect to all possible decomposition channels. On
the other hand, dynamical stability concerns the second derivatives of the energy and the
identification of minima among stationary points of the PES (points whose first derivatives
are zero). For example, local optimizers search for points that minimize the forces that a
structure is subjected to. However these points might correspond to saddle points of the
energy surface instead of minima. Their proper identification requires the second derivative
test or the calculation of related properties, such as phonon frequencies. For instance, a
structure incorrectly deemed as thermodynamic stable, due to the lack of information on
all possible decomposition channels, might be proper identified as unstable if it displays
imaginary phonon frequencies, which indicate dynamical instability.

But why is this problem of structure prediction so complex? Well, each chemical com-
position is associated with an infinite number of atomic arrangements, and from these no
one knows how many correspond to a local minima of the free energy surface. Furthermore,
among these, it is also unknown which ones are the most stable and most probable to be
synthesised in a laboratory. Fortunately, several approaches were developed to tackle this
problem, namely topological approaches [2], approaches based on empirical correlations us-
ing either structural diagrams [73–75] or data mining approaches [76, 77], and approaches
based on computational optimization [2]. Topological approaches rely on known information
of the chemistry and symmetry of the system. For example, knowledge of sp3-hybridization
of carbon atoms leads to the diamond structure. Approaches based on empirical correla-
tions require large databases of know stable crystal structures, and employ machine learning



2.1. STRUCTURE PREDICTION 23

techniques or structural diagrams of basic properties (such as ionic radius and Mendeleev
number), to uncover patterns among the data of similar structures. On the other hand,
computational optimization consists in explicitly performing calculations to explore the free
energy surface with the objective of finding its minima. Contrary to the other approaches
that are biased, this approach can lead to completely unforeseen results and novel structures.

Still this is not an easy task. First of all, exhaustive search optimization techniques
have to be discarded since crystal structure prediction is an high-dimensional problem, in
an extremely complex landscape, and admits an enormous number of feasible solutions. To
make matters worse, this problem scales exponentially with the system size, as the number
of points in the energy landscape can be obtained from

C =

(
V/δ3

N

)∏
i

(
N
ni

)
, (2.2)

where V is the volume of the unit cell that contains N atoms, δ is a discretization parameter,
and ni represents the number of atoms in the unit cell with type i. Moreover, the number of
local minima depends exponentially on the dimentionality d of the energy landscape, which
can be calculated as

d∗ = 3N + 3− κ, (2.3)

where 3N − 3 degrees of freedom come from the atomic positions, 6 from the lattice pa-
rameters, and the non-integer κ represents the number of correlated dimensions. Luckily,
performing structure relaxations provides a simplification to the problem. In fact, for some
cases structure relaxation greatly reduces the dimensionality of the problem. For example,
during relaxations the interatomic distances adjust to sensible, physical values.

This implies that the best methods for structure prediction contain both a local and a
global optimization procedure. Over the years, several methods were developed to tackle
this exceptionally difficult problem, such as random sampling [11, 12, 78, 79], simulated
annealing [80–82], metadynamics [83], minima hopping [9], and evolutionary algorithms [3,
13, 14, 84–88]. In the next sections we proceed with the discussion of both the minima
hopping method (MHM) and genetic algorithms due to their importance in the scope of this
thesis. However, before proceeding we are going to discuss extensions to the problem just
described.

Often, the interest is not in the knowledge of a stable crystal structure, but on the stable
crystal structure that exhibits a certain property. This can be achieved with an hybrid
optimization procedure that combines a local optimization for the energy with a global
optimization for the property of interest [3, 86].

Another extension to the problem consists in the addition of the other chemical compo-
sitions, and subsequent prediction of the entire set of stable chemical compositions. In this
manner, the complexity of the problem increases, as the energy landscape depends now on
both compositional and structural coordinates. Moreover, the end result will now include
the minima for all compositions and the set of ground-states located on the convex hull of
thermodynamic stability. This convex hull is the hyper-surface in composition space that
contains all the thermodynamic stable materials, i.e., materials that lack any decomposition
channel and that, therefore, will not decompose into other (more stable) phases. The distance
to the convex hull represents the energy (or free energy) released in the decomposition.
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2.1.1 Minima hopping method

The MHM [9, 10] is a global prediction method or global optimization procedure. This
algorithm can be placed with genetic algorithms and particle swarm, as methods that do
not rely on thermodynamic principles and Markov-based Monte Carlo methods, such as as
simulated annealing, basin hopping, and multicanonical methods.

The efficiency of a global optimization procedure can be understood as how fast it can
climb out of wrong basins (local minima) and consequently find the global minima of a
complex function, such as a potential energy surface.

Figure 2.1 shows three distinct steps in a usual MHM run. The MHM consists in 2 parts:
an inner part that performs jumps into the local minimum of different basins and an outer
part that will accept or reject this local minimum.

Minima are accepted or rejected based on thresholding: if the difference in energies
between the new and the current minimum is smaller than a certain variable tolerance, the
minimum is accepted. In this manner, there is a preference for steps that lower the energy,
yet steps that increase it can also be accepted.
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Figure 2.1: Scheme of a MHM run. A) Initial random structure that can be anywhere in the PES.
B) Geometry optimization leads to a minimum of the PES. C) After several geometry optimizations
and short molecular dynamics the method finds the global minimum of the PES.

On the other hand, the inner part relies on short molecular dynamics to escape from
the current local minimum, followed by geometry relaxation to the closest local minimum.
The geometry optimization can be done by standard steepest descent and conjugate gra-
dient methods, or any other local optimization method. Usually we use the optimization
procedure of the code we are using, in this case the geometry optimization of vasp. Now,
the molecular dynamics simulations are not physical. The initial velocities of the atoms
are chosen according to a Boltzmann distribution, in such a manner that the total kinetic
energy is equal to a certain parameter γkin. In this manner, the system has sufficient energy
to cross over any barrier of height up to the value of this parameter. Also in play here is the
Bell-Evans-Polanyi principle. The principle states that highly exothermic chemical reactions
have a low activation energy. In the context of global optimization this means that is more
probable to find low energy minima if the jump between basins overcomes a low barrier
rather than a high barrier. In practise, large γkin leads to a larger search space, while smaller
values require extra MD simulations to find an escape path. It turns out that dynamically
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varying γkin during the simulation, such that half of the MD simulations find a new basin is
almost optimal.

2.1.2 Genetic algorithms

Genetic algorithms (GA) are random-based classical evolutionary algorithms [89, 90]. As the
name suggests, these algorithms draw inspiration from natural evolution processes, where
a population competes for limited resources within an environment, which leads to natural
selection (or survival of the fittest). Although initialy proposed by Holland [91] to study
adaptive behaviour, genetic algorithms are widely known as optimization methods ever since
their earlier successes reported in the works of Goldberg [92], De Jong [93], among others.
Particularly in material science, genetic algorithms are renown global structure optimizers.

Traditional, genetic algorithms follow a rather fixed workflow. They start with the gen-
eration of a population of µ individuals. Though duplicate individuals might be present, the
diversity of the initial population improves the efficiency of the algorithm. Each individual is
characterized by a genotype and a fitness value. Actually, a more rigorous description would
also include phenotype, the observable characteristics of the collection of genes (genotype).

For structural prediction each individual might represent a structure for a certain chemical
composition, the phenotype can then be the list of different atoms in the structure (Si or
Ge for example), while its encoding is the genotype (this could be an array with zeros for Si
and ones for Ge).

After the generation comes the evaluation: the individual fitness value comes from the
evaluation of the population using a fitness function, which represents the requirements the
population should adapt to meet. Following our example, this can be the calculation of the
formation energy of each structure from the collection of genes, and it can even include a
local optimization, such as a geometry relaxation.

The next step involves the parent selection: pairs of individuals are selected to become
the parents of the next generation. Normally, this selection depends on the fitness function,
so that the best individuals (those with higher fitness value) have a higher chance of being
selected. Several algorithms exist to perform this selection: fitness proportional selection,
ranking selection, tournament selection, uniform parent selection, and over-selection for large
populations. Their description can be found in any genetic algorithms book, such as Ref [89].

Afterwords, it is time to apply (with a certain probability) the variation operators, namely
the mutation and the recombination (or crossover) operators. These operators can be im-
plemented in a plethora of ways and the efficiency of the genetic algorithms is once again
tied with their quality. As the name implies, the crossover operator merges the informa-
tion from the genotypes of the parents in one or several offspring genotypes. For example,
an one-point crossover divides the genotype of both parents at the same point and creates
one or two offsprings by merging the portions from different parents (and keeping the same
length). So, a parent with only Si atoms can recombine with another with just Ge atoms to
form a structure with 3 Si and 1 Ge. On the other hand, the mutation operator involves a
stochastic slight variation of a genotype and usually occurs with a low probability. When
it occurs though, it increases the diversity of a population and it might stear the optimiza-
tion procedure from persistent local minima. Figure 2.2 displays examples of well known
mutation operators.
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Figure 2.2: Swap (A), insert (B), scramble (C), and inversion (D) mutation examples.

Finally, a new population arises from survivor selection and the algorithm repeats itself
until a certain number of populations have been created or until a certain fitness value is
achieved. The new population of µ individuals is selected from the previous µ individuals
and from the λ offprings. A handful of methods exist to perform this replacement based
on age or on fitness: replace worst, elitism, round-robin tournament, (µ + λ) selection, and
(µ, λ) selection. Again their description can be found in Ref. [89].

2.2 Molecular dynamics

Another kind of simulations that remain particularly relevant in the field of material science
and quantum chemistry are molecular dynamics (MD) simulations, as they allow to obtain
dynamic properties of many particle systems.

2.2.1 Overview of molecular dynamics simulations

MD simulations have been thoroughly used to model statistical ensembles and to study
innumerous properties such as thermal conductivity [94, 95], critical temperatures [96–98],
the folding of proteins [99–101], dynamical stability [102], among others. The term MD
designates the solution of the classical equations of motion (usually Newton’s equations)
for a set of molecules [18] and was first associated with the simulation of a system of hard
spheres by Alder and Wainwright [103, 104]. Usually the equations of motion are integrated
using the Störmer-Verlet algorithm [105, 106] (in particular velocity Verlet), as this method
to solve differential equations possess 3 important properties: reversibility, symmetry, and
symplecticity. When solving equations of motion, reversibility broadly means that inverting
the initial velocities only changes the direction of the movement, symmetry that if we reverse
time at any step, we can return to the initial position, and symplecticity that the energy is
nearly conserved provided that a sufficiently small time-step is used. It also implies that the
volume in phase-space is conserved in the flow (one-step map).

The Störmer-Verlet integration of the equations of motion leads to simulations that pre-
serve the volume, the total energy, and the number of atoms of a system, i.e. simulations
that reproduce a microcanonical ensemble. In a similar fashion, other statistical ensembles
can by reproduced by adding additional terms to the equations of motion, to allow for the
preservation of other quantities, such as temperature and pressure. Physically this entails the
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coupling of a system to an external heat bath or its placement in a pressure bath. In practise
these constrains are achieved with thermostats and barostats. To simulate a canonical en-
semble, where the temperature, the volume and the number of particles remain constant, we
can resort to the Langevin [18, 107], the Nosé-Hoover [108], the Andersen [109] or the Berend-
sen thermostats. On the other hand, the pressure can be preserved by resorting to barostats
such as the Nosé-Hoover [18], the Berendsen [110], and the Parrinello-Rahman [111, 112]
barostats. Furthermore, by coupling both a thermostat and a barostat, simulations can
preserved the number of atoms, the pressure, and the temperature of a system, i.e., they
can reproduce an isothermal-isobaric (or NPT) ensemble. The next section describes the
thermostat and barostat used in the MD simulations described in section 4.5.2.

2.2.2 Berendsen thermostat and barostat

Coupling a system to a heat bath can be accomplished by inserting stochastic and friction
terms in the equations of motion. Starting from the Newton’s equation of motion, this results
in the Langevin equation

miv̇i = Fi −miγivi +Ri(t), (2.4)

where γi represents damping constants and Ri a Gaussian stochastic variable with zero mean
and with intensity

〈Ri(t)Rj(t+ τ)〉 = 2miγikT0δ(τ)δij. (2.5)

The idea behind the Berendsen thermostat is to consider how such coupling affects the
temperature T of the system. According to the equipartition theorem, this can be obtained
by calculating the time derivative of the kinetic energy. After some integrations this results
in

dEk
dt

=
3N∑
i=1

viFi + 2γ

(
3N

2
kT0 − Ek

)
, (2.6)

which contains the derivative of the potential energy and an additional term describing the
coupling to the heat bath. In terms of temperature, this extra term can be written as(

dT

dt

)
bath

= 2γ (T0 − T ) . (2.7)

However, a similar variation can be obtain by just changing the equations of motion to

miv̇i = Fi +miγ

(
T0

T
− 1

)
vi. (2.8)

where 2γ can be see as the inverse of a coupling constant (τT = 1/2γ). Finally, this corre-
sponds to a proportional scaling of the velocities at every time step (v → λv) with

λ =

[
1 +

∆t

τT

(
T0

T
− 1

)]1/2

. (2.9)

Similarly, the coupling to an constant pressure bath can be achieved by adding to the
equations of motion a term that alters the pressure according to(

dP

dt

)
bath

=
P0 − P
τP

. (2.10)
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This term is nothing more than a simple proportional coordinate scaling that changes the
equations of motion to

ẋ = v + αx, (2.11)

where α is obtained from the time derivative of the pressure

dP

dt
= − 1

βV

dV

dt
= −3α

β
, (2.12)

where β is the is the isothermal compressibility. We note that the pressure is calculated
using the virial theorem [38, 39]

P =
1

V

(
NkBT +

1

3

∑
i

〈ri · fi〉
)
. (2.13)

Thus α = −β (P0 − P ) /3τP . Finally, this change in the equation of motion is equivalent to
a proportional scaling of the coordinates and box length at every time step (x → µx) with
(up to first order)

µ = 1− β∆t

3τP
(P0 − P ) . (2.14)

Here we showed the equations for the barostat and the thermostat of Berendsen, but not
the algorithm to incorporate them successfully. This can be found in Ref. [110].

The coupling constants of these thermostat and barostat represent double-edged-swords
and the choice of their values is quite critical for the success of the simulation. Low values
can be used for thermalization purposes. However they can lead to instabilities or wrong
fluctuations. On the other hand, large values can lead to wrong oscillations. In particular, the
Berendsen thermostat suppresses fluctuations of the kinetic energy and the corresponding
error scales with the inverse of the number of atoms. So, most of the ensemble averages
will remain unaffected for very large systems. However, this is not the case for fluctuation
properties, such as the heat capacity [113]. Meanwhile, the Berendsen barostat provides
correct average pressures (even with only a rough estimate for the isothermal compressibility)
but may not reproduce the correct NPT ensemble. Therefore, the values for the coupling
constants have to be chosen with care in order to obtain realistic fluctuations [18, 110, 113].



Chapter 3

Machine learning in material science

The fact that the price must be paid is proof it is worth paying.
Robert Jordan

The Eye of the World

Price... In the previous chapter we discussed two problems, or types of simulations, that
require the accurate and efficient calculation of energies and its derivatives. Furthermore, we
mentioned that the amount of calculations required to solve these problems might become
too cumbersome even for a method as efficient as DFT. Materials science researchers have
faced these problems before and found several satisfying solutions, which usually involve
a price. Often an increase of efficiency can be gained from the application of methods
constructed with more lenient conditions and that are less accurate than DFT. For example
classical force-fields are the standard tool to calculate energies and forces in MD simulations.
However, the quest for more accurate and efficient methods led researchers to the field of
machine learning. Furthermore, machine learning provides tools to extract information from
huge chunks of data in ways that far surpasses the capabilities of the human mind.

In this chapter we discuss machine learning. We start with an overview where we present
the basics, the most successful applications, and the different categories of machine learning.
We follow it by the applications in the field of material science. We describe its basic tenants:
data, features, and algorithms (in particular neural networks). Finally we present the most
recent or successful applications in the field of material science. The research presented here
was published in Ref. [23].

3.1 Overview of machine learning

Machine learning [19, 21] consists of a collection of statistical models that search for pat-
terns in order to extract the necessary information to perform a specific task, without re-
sorting to explicit instructions. Currently, machine learning algorithms are highly sought
and well regarded due to their accomplishments while performing regression, classification,
clustering, dimensionality reduction, optimal experimental design, or decision making. In
fact, machine learning algorithms proved extremely successful at extracting information and
relations from big chunks of high dimensional data. Furthermore, these algorithms man-
age to surpass human capabilities and obtain outstanding results in several fields, such as

29
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face recognition [114–117], image classification [118], driving cars [119], and playing games:
Atari [120], Go [121], chess [122], and others [123, 124]. These algorithms even spread to
many of our daily life activities, for example to image and speech recognition [125, 126],
credit scores [127], fraud detection [128], web-searches [129], email/spam filtering [130], and
many, many others.

Meanwhile, the application of these algorithms also extended to the fields of biology and
chemistry, where they obtained fantastic results [131, 132]. However in solid-state material
science, this integration has been slower. Machine learning algorithms also boast several
accomplishments in this field [133–138], in particular in chemical sciences [139], in materials
design of thermoelectrics and photovoltaics [140], in the development of lithium-ion batter-
ies [141], and in atomistic simulations [142]. Nonetheless, many of the published applications
remain very basic and lack complexity. Often applications involve small training sets or sim-
ple fitting procedures that do not require this kind of techniques. This means that these
applications do not take full advantage of the power of machine learning, and consequently,
are unable to replicate their accomplishments in other fields. Fortunately, this is changing
quite rapidly, on par with the growing interest in these kind of techniques. In section 3.5 we
mention more applications of machine learning in the field of material science.

Different types of machine learning algorithms deviate from each other based on their
approach to solve a certain problem or task, the task itself, and their input and output.
This offers a way to organize the machine learning algorithms under three main categories:
supervised learning, unsupervised learning, and reinforcement learning.

The most widespread type of learning is certainly supervised learning, which comes as
no surprised, due to its similarity to a simple fitting procedure. In supervised learning,
models take advantage of a collection of data, containing both the input and the target
property or response, to find hidden patterns among the data and construct a function that
can extrapolate an unknown target property based on a given input. On the other hand,
unsupervised learning includes algorithms whose objective consists in the categorization
of data based on the similarities found among the inputs. This type of learning is not
conditioned, in the sense that the outputs (or categories) are not known a priori. Finally,
reinforcement learning encompasses goal-oriented algorithms [143, 144]. In these algorithms
an agent in a certain state interacts with its environment by performing an action. From this
interaction results a reward, which the agent intends to maximize. With successive actions,
the agent improves its policy, i.e., the strategy to determine the next action based on the
current state and the maximum reward.

Worth mentioning is the possibility of overlap between techniques of different categories.
For example semi-supervised learning exists between supervised and unsupervised learning.
These are algorithms that take advantage of some data containing the target properties to
improve its performance on the identification of unlabelled data (as in unsupervised learning).
Usually this is particularly useful to learn representations [145].

Here, we will focus on the explanation of the workflow of supervised learning algorithms
(see fig. 3.1). As mentioned above, this is the most common type of learning, specially in
the field of material science. Furthermore, it represents the type of algorithms used for the
work described in this thesis.

The first step in any machine learning algorithm consists in the generation of data. This
can occur in a plethora of ways, such as performing calculations or just from observations.
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Figure 3.1: Supervised learning workflow.

Usually this step involves a lot of work, as the data has to be collected and cleaned, before one
can generate varied, consistent, and accurate data sets. In section 3.2 we further discuss this
topic in association with material science. As mentioned, for supervised learning, this data
is labelled, this means that it contains both the target property as well as the information
required (by an algorithm) to compute said property. Often, as the data is generated,
the machine learning algorithm that will fit it is also chosen. We mention some of these
algorithms in section 3.4 and in particular we describe neural networks. After this selection,
follows the extraction of the relevant information from the data and its processing, in order
to provide the chosen algorithm with suitable inputs, called features or descriptors, for the
task at hand. A more detailed discussion of these features follows in section 3.3. For now
it is enough to understand that the raw information requires processing so that it can be
understood by the machine (learning model).

Once all of these tasks are accomplished, the model is trained to learn, i.e. identify
and reproduce, the intricacies of the data. Normally this entails the minimization of a cost
function that evaluates the performance of the model in a subset of the data, the training set.
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Another subset of the data, the validation set, is chosen to adjust certain hyper-parameters
involved in the training process or parameters of the model itself, such as learning rates of
an optimization method or the number of layers of a neural network. Finally, the predictive
power of the trained model is ascertained using yet another unseen subset of the data, the
test set.

Actually, several techniques from statistics exist to assess the extrapolation ability of a
model to an independent data set, the so called cross-validation techniques, such as holdout,
over k-fold cross-validation, leave-one-out cross-validation, Monte Carlo cross-validation [146],
up to leave-one-cluster-out cross-validation [147], among others. The technique described
above consists on the holdout, where the data is separated once into the different subsets.
For example, in k-fold cross-validation, the data is divided into k sets. Then, each of the
sets are hold out independently for the training of the model, i.e., the sets are selected, one
by one, as the test set while the other k − 1 sets are used for the training of independent
models.

When discussing the error of predicative models, the trade-off between bias, variance and
the irreducible error usually follows [148, 149]. Bias errors concerns incorrect assumptions
in the training of an algorithm, while variance errors normally relate to the capture of small
fluctuations or noise. Irreducible errors, as the name implies, represent errors from the
problem itself that can not be minimized. The combination of high variance and low bias
means that the model identifies noise along with the underlying patterns of the training set,
which leads to over-fitting. Usually, reducing this error requires the increase of the training
set or the simplification of the model. Meanwhile, low variance and a high bias indicate the
incapability of the model to find the underlying patterns of the training set. This is the
definition of under-fitting and it means that the model is too simple. The most common
solution to this problem involves the increase of the complexity of the model.

3.2 Data

The success of machine learning methods highly depends on the quantity and quality of the
data at its disposal.

As such, researches that wish to employ machine learning techniques to study a certain
target property, start by gathering relevant data. This process may include several experi-
ments in a high-quality lab, a plethora of computer simulations/calculations, or it can be as
simple as accessing a database and downloading its contents. Obviously, the latter consti-
tutes the least time consuming approach, provided a FAIR treatment of the data [150, 151],
and that the database contains such data. FAIR treatment means: findability, accessibility,
interoperability, and repurposability. This conveys the necessity to store data in effortless
ways to find and access, in a format understood by different software, so that it can be
applied to new purposes. Furthermore, the storage of data suggests that calculations do
not have to be repeated. This means that the resources that would be wastefully used to
generate some data, can be devoted to some other application. This reveals the importance
of constructing, maintaining, and improving databases in material science and informatics,
such as those in Ref. [5, 6, 70, 152–166].

Additionally, the machine learning approach intends to change even more the material
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science community. Usually, negative, unsuccessful, or even intermediate results are deemed
unsuitable for publication. However, this results contribute as much as positive ones for the
optimization of the machine learning algorithms [167, 168]. So, it is imperative to save these
results in databases.

3.3 Features

After gathering the data set, machine learning methods require the extraction or engineering
of features (or descriptors). This means that the relevant information among the data has to
be found and represented in a way that is suitable and understood by the desired algorithm.

Naturally, the quality of the features depends on their capability to distinguish between
two different elements of the data set, for example, two crystal environments. Furthermore,
the accuracy and efficiency of the machine learning model highly depends on several prop-
erties of the features. In this regard, ideal features should be uncorrelated and have the
lowest dimension possible. Moreover, the cost of feature extraction should not surpass that
of the evaluation of the target property [169]. When too many features are correlated, fea-
ture selection can improve the efficiency and interpretability of the model, and avoid the
curse of dimensionality [170]. For example, a machine learning model can resort to several
elemental properties to determine the energy of a structure (or its distance to the convex
hull of stability). Yet, only two, the group and the period in the periodic table, are necessary
to obtain a reasonable accuracy [171]. Some algorithms even perform this feature selection
automatically (see section 3.4).

In fact, feature extraction might just entail the selection of elemental properties, such as
the atomic number, ionization potential, covalent radius, or others. This is the case for prob-
lems that are restricted to only one possible crystal structure and stoichiometry [171–175].
Similarly, for other constrained problems, feature extraction might consist in the identifica-
tion of building blocks, for example the number of certain molecules in polymers [176] or
molecular crystals. On the other hand, if the constrains are lifted, and a machine learning
model is intended to describe a complete potential energy surfaced based solely on atomic
positions and element types, feature selection may involve more complex transformations,
such as an expansion of angular distribution functions in a certain basis [177] or the construc-
tion of crystal graphs [178]. Another approach for feature construction involves aggregations
based on statistics. Usually, more features can be obtained from the calculation of averages
or minimum values. Finally, a complement to these approaches are the crude estimations
of properties [179]. These consist in using a target property calculated within a certain
methodology (for example PBE band gap) to compute the same property under a different
methodology (experimental band gap). In this manner, the model predicts a difference or
error rather than a target property. These examples imply that the amount of processing
required for the construction of the descriptors depends on the problem considered. Further-
more, the selected algorithm may play a role, as several algorithms already contain a feature
extraction phase [180], e.g. deep learning neural networks.

Over the years, several features were specially designed and proposed for material science
problems [169, 171–178, 181–204]. We note that most of them concern the reconstruction
of potential energy surfaces and, therefore, the creation of machine learning force-fields (see
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section 3.5.2). A thorough study of most of these descriptors and the properties they must
satisfy can be found in the review of Bartók et al.[181]. Essentially, the quality of these fea-
tures improves if they form a complete representation with fixed dimension, if they remain
invariant under symmetry operations (such as translation, rotation, reflection, and permuta-
tion of equivalent atoms), and they are differentiable with respect to atomic positions. While
the latter guarantees the calculation of energy derivatives, such as forces, completeness en-
sures that the representation includes the necessary features, no more, no less. To clarify,
it is possible to neglect these conditions, however this hinders the efficiency of the machine
learning model. For example, nuclear charges and atomic positions should in principle con-
stitute sufficient features, as they fully define the Hamiltonian of a system. Yet permutation
of atomic positions may result in different outcomes of the model. Moreover, most machine
learning algorithms demand a fixed number of inputs, so two structures with different num-
ber of atoms would have to be treated differently. Another possibility involves the padding
of the input vector of the model with zeros. Other well known descriptions that neglect some
of the above mention properties are transformations of pairwise distances [205–207], Weyl
matrices [208], Z-matrices [209], and Coulomb matrices [182].

Before proceeding, we would like to describe some of the most used or insightful de-
scriptors in material science, namely the Behler and Parrinelo [185] symmetry functions, the
smooth overlap of atomic positions (SOAP) kernel of Bartók et al. [181], and the Chebyshev
polynomials based descriptor of Artrith et al. [177]. Another successful descriptor that will
only be mentioned are the crystal graphs of Xie et al. [178], which require convolutional
neural networks and can be understood as a message passing neural network [210].

Behler and Parrinelo created representations of the chemical environment based on radial
and angular symmetry functions. Usually, both of these types of functions are centered
around atom i and provide information on its interaction with all the neighbouring atoms,
within a certain radius Rc. However they can also be pair centered [211]. While the radial
functions [212] map the distributions of distances Rij = |Rj −Ri|,

Gr
i({Ri}) =

neighbors∑
j 6=i

gr(Rij) , (3.1)

the angular functions complement them with information on the distribution of bond angles
θijk = ∠ (Rj −Ri,Rk −Ri):

Ga
i ({Ri}) =

neighbors∑
j 6=i

ga(θijk). (3.2)

Several forms of these functions were proposed [213], for example, the radial symmetry
function

Gr
i =

neighbors∑
j 6=i

fc(Rij) e−η(Rij−Rs)2 (3.3)

where fc represents the cutoff function that neglects the pair-wise contributions above Rc,
η a parameter that controls the width of the Gaussians, and Rs another parameter that
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introduces a shift to the Gaussians. Similarly, an example of an angular function is

Ga
i = 21−ζ

neighbors∑
jk

i 6=j 6=k

(1 + λ cos θijk)
ζ e−η(R2

ij+R
2
ik+R2

jk)× fc(Rij)fc(Rik)fc(Rjk) . (3.4)

where the parameters λ and ζ, determine the positions of the extrema of the cosine and
control the angular resolution, respectively. The features thus consist of 20 to 100 of these
symmetry functions, obtained for different values of the parameters mentioned.

The SOAP descriptor of Bartók et al. calculates the similarity measurement between two
sets of atomic configurations based on

K(ρ, ρ′) =

[
k(ρ, ρ′)√

k(ρ, ρ)k(ρ′, ρ′)

]ζ
. (3.5)

Here, the parameter ζ enhances the sensitivity of the kernel to slight variations of the atomic
positions, the denominator is just a normalization factor that ensures the comparison between
the same structure is one, and ρ represents the Gaussian-smeared atomic neighbor densities

ρ(r) =
∑
i

e−α|r−ri|
2

, (3.6)

which is usually expanded in terms of spherical harmonics. Finally, k(ρ, ρ′) amounts to a
rotationally invariant kernel, constructed from the overlap of an atomic environment and all
the other rotated environments

k(ρ, ρ′) =

∫
dR̂

∫
dr ρ(r)ρ′(R̂r). (3.7)

This descriptor can be understood as a three dimensional generalization of the radial atom-
centered symmetry functions [181].

In an attempt to devise a descriptor whose dimension remains constant with the increas-
ing number of elemental species, Artrith et al. proposed a descriptor that consists on the
union of two sets of invariant coordinates: one to map the structure and another for the
compositions. Each then consist on the expansion of radial distribution functions (RDF)

RDFi(r) =
∑
α

cRDF
α φα(r) for 0 ≤ r ≤ Rc (3.8)

and angular distribution functions (ADF)

ADFi(θ) =
∑
α

cADF
α φα(θ) for 0 ≤ r ≤ Rc. (3.9)

in a complete basis set φα, such as the Chebyshev polynomials. The expansion coefficients
can then be obtained from

cRDF
α =

∑
Rj

φα(Rij)fc(Rij)wtj (3.10)
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and
cADF
α =

∑
Rj ,Rk

φα(θijk)fc(Rij)fc(Rij)wtjwtk, . (3.11)

where fc is a cut-off function. Furthermore, the values of the weights wtj and wtk depend
on the map. For the structure maps these are just 1, while for the composition maps these
depend on the chemical species of the atom they are describing, following the pseudo-spin
convention of the Ising model. Clearly, this descriptor was influenced by both the Behler
symmetry functions and the SOAP method, and one of its great advantages consists on its
systematic refinement, which only requires more terms in the polynomial expansion.

After mentioning so many descriptors and explaining these three, we should comment on
the selection of the features. In the end, the selection of the best features can turn into a
rather difficult task, and it surely depends on the desired target quantity and the space of
the problem. A careful methodology to solve this problem of finding the best representation
surely involves the creation of libraries with the implementation of all possible features [214–
218], and the calculation of rigorous benchmarks. Unfortunately, only a few studies actually
compare quantitatively different descriptors. However, the importance of these studies have
been acknowledged and their number is increasing [169, 181, 219, 220].

3.4 Algorithms

From the numerous algorithms supplied by machine learning, only a few have been suc-
cessfully applied to material science. Several of these applications concern linear regression
and classification methods such as ridge regression [221], support vector machines [222],
and Gaussian process regression [223–225]. Typically these algorithms resort to the kernel
trick [226] to tackle more complex problems that require non-linear models. This trick con-
sists in applying a kernel that maps the feature space into an higher dimensional one and
then solving the linear problem in this higher dimensional space.

The most prominent applications regarding variable selection and extraction algorithms
consist of the least absolute shrinkage and selection operator [227–229] (LASSO), the sure
independence screening and sparsifying operator [230] (SISSO), the bootstrapped projected
gradient descent, and the principal component analysis [231, 232] algorithm.

Finally, only two completely non-linear machine learning models have been used in mate-
rial science problems, namely neural networks and decision tree based methods, like random
forests and extremely randomized trees.

Information on these algorithms can be found in the provided references and in Refs. [19,
233–237]. We now proceed with the explanation of neural networks, in particular, fully
connected feed-forward neural networks, due to their application in the research discussed
in chapter 4.

3.4.1 Neural networks

Neural networks are machine learning algorithms inspired by biological neurons. As such
they can be described as a collection of neurons, grouped into layers, and that interact
with each other in some way. Ultimately, these connections map a set of inputs into a
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set of outputs. Now, the configuration of the neurons and layers and the type of operation
performed between each layer varies and gives rise to several neural networks structures [238].
Examples are perceptrons [239], Boltzmann (restricted) machines [240, 241], recurrent neural
networks [242], (variational) auto enconders [243–245], generative adversarial networks [246],
deep convolutional neural networks [180, 247, 248], among others.

For example, the perceptron, which amounts to a collection of McCulloch and Pitts
neurons together [19, 249], represents a neural network with just two layers, the input layer
and the output layer. A weight represents the connection between each input and output
node, and the determination of the output nodes requires the application of an activation
function over the weighted sum of the input neurons. The term activation function comes
from the use of the Heaviside step function that returns 1 when the sum reaches a certain
threshold, signalling that the neuron fired or got activated with that input. We note that
the value of the threshold should be adjustable, in order to provide more control of the firing
of a node, without providing an additional parameter to the model. This is achieved with
a trick that consists in the introduction of an additional constant neuron (with value ±1),
usually denoted bias neuron. In this manner, the weight of the bias neuron will shift the
sum and provide an additional degree of freedom in the determination of a target property.
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Figure 3.2: Example of a multilayer perceptron feedforward neural network as used in this work.
The bias nodes are shown with a dashed contour. Their standard value is 1.

A simple extension of the perceptron consists in adding more layers, which gives rise to
a multilayer perceptron feedforward neural network, schematically represented in fig. 3.2.
These new layers are denoted as hidden layers, which perfectly describes their function to
connect inputs to outputs with hidden, and fairly often not interpretable operations. In this
neural network structure, the nodes are connected in only one way: forward. This means
that the calculation of the value of the nodes oνζ of a certain layer require the values of the
nodes of the previous layer and the weight matrix (wν) that connects them:

oνζ = ϕ(hνζ ) = ϕ

(∑
j

wνjζ o
ν−1
j

)
, (3.12)
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where ϕ represents an activation function, wνζj the weight between the node j in layer ν − 1
and the node ζ in layer ν, and hνζ the argument of the activation function. For clarification,
we define oν as the vector containing all the nodes of layer ν, therefore the input layer can
be represented as o0.

We note that all the magic behind the fitting capabilities on neural networks and their
successive application to many problems stems from the hidden layers and the non-linearity
of the activation functions. The combination of these two factors, ultimately change the
neural network function from a simple linear combination to a highly complex non-linear
function. Traditionally, sigmoid functions were used as activation functions for this type of
neural networks, such as the logistic function

ϕlogistic(x) =
1

1 + e−x
(3.13)

However, the vanishing gradient problem [250] and the search for more efficient implemen-
tations lead to the development of modern activation functions, such as the rectified linear
units [251, 252] (ReLU), their smooth approximation: softplus, and the exponential linear
units [253] (ELU)

ϕReLU(x) = max (0, x) (3.14)

ϕleaky ReLU(x) = max (0.01x, x) (3.15)

ϕsoftplus(x) = log (1 + ex) (3.16)

ϕELU(x) =

{
x if x > 0

α(ex − 1) otherwise
. (3.17)

Other activation functions fairly used in material science are the linear function and the
hyperbolic tangent:

ϕlinear(x) = x (3.18)

ϕtanh(x) = tanh(x) =
1− e−2x

1 + e−2x
. (3.19)

Going back to the structure of neural networks, with the increase of the number of hidden
layers, it becomes tempting to call the networks ”deep” neural networks. Although lacking
a precise definition, this terminology should refer to neural networks with 5 or more hidden
layers [248], that can not only learn representations with different abstraction levels without
human intervention, but also reuse them [180, 254].

First introduced in the field of image recognition [247, 248], and perhaps the most suc-
cessful structure for neural networks nowadays, deep convolutional neural networks contain
several hidden layers, some of which not fully connected. Further inspiration from biological
processes, in particular from the organization of an animal visual cortex, lead to the creation
of convolutional and pooling layers. Convolutional layers allow for the extraction of high-
level features due to the application of filters that act on a certain receptive field, i.e. a small
segment of the input nodes. The filters are applied across the entire input nodes, performing
convolution operations to the nodes inside the receptive fields that can overlap. Usually the
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convolutional layer reduces the dimensionality of the features. However, the introduction of
padding (or additional filters) results in features with the same or increased dimensionality.
Meanwhile pooling layers downsample feature maps in certain receptive fields. This means
that the neurons present in a certain region are combined by an operation, such as the
maximum or the average, into a single neuron. This not only reduces the dimentionality of
the features but makes them more robust. To summarize, convolutional and pooling layers
allow for a reduction of the dimensionality of the features without losing critical information,
which allows for a more efficient training while keeping, at least, the same level of accuracy
in the predictions.

Concerning the accuracy of the predictions of neural networks, we would like to point
out the universal approximation theorem [19, 255, 256]. This theorem states that a neural
network with just one hidden layer and a finite number of nodes, can reproduce any function,
provided a suitable activation function. However, the theorem does not mention how many
nodes are required or details on how to train the neural network. And training a neural
network is not an easy task! The weights constitute the only parameters that have to be
optimized during the training process. Nevertheless, the performance of a neural network
can be further improved with the optimization of its hyper-parameters, such as the topology
and the architecture, i.e., the number of layers, and the ways the neurons are connected and
distributed in those layers. Similarly to other machine learning methods, the training of a
neural network involves the optimization of a high-dimensional cost function that measures
its performance in the training set. Typically, this cost function contains a L2 norm and a
L2 (or L1) regularization term:

ε =
1

2α

[
α∑
σ

(
E(W, o0)− Eref

)2

σ
+ λ

k∑
i

|wi|2
]
. (3.20)

Here, α represents the number of elements σ in the training set, k the number of weights wi
in the set of all weight matrices W = {wν}, Eref the value of the target property for element
σ, obtained with a reference method, and E(W, o0) the neural network function.

In principle, the optimum values for the weights, those that minimize the cost function,
can be found with any optimization method, for example genetic algorithms [257]. At the
present time, the standard algorithm to perform this task is the back-propagation algo-
rithm [19, 258]. This iterative, gradient-based optimization algorithm consists in deriving
the cost function with respect to the weights, while exploiting the chain rule to obtain the
derivatives of the nodes of each layer, starting from the output layer and going back until
the input layer. By defining ϕ̇n as a diagonal matrix that stores the derivatives of the nodes
of the n layer, the derivative of the output of the neural network can be expressed as

∂

∂wn
E(W, o0) =

( [
Nh+1∏
m>n

ϕ̇mwm

]
ϕ̇n ⊗ on−1

)
i

(3.21)

where Nh is the number of hidden layers, and the product inside square brackets is ordered
in decreasing order of layers [

3∏
m>1

ϕ̇mwm

]
= ϕ̇3w3ϕ̇2w2.
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Having computed the Jacobian, the update for the weights can be calculated using any
gradient based optimization method, such as gradient descent.

3.5 Recent applications

Machine learning algorithms tackle the problem of material discovery and structural pre-
diction from different distinct directions. A conceptually simple approach consists in the
replacement of first-principles methods by a machine learning model, in order to avoid costly
energy evaluations and increase the speed of the computations. We will focus on these ma-
chine learning force-fields in section 3.5.2. Meanwhile, in section 3.5.1 we mention other
approaches.

3.5.1 Applications to solids

The history of the development of DFT functionals with machine learning techniques started
with the work of Tozer et al. [326] in 1996, with their mapping of the electronic density of
some molecules to its exchange and correlation potential. Since then a few applications have
been proposed, mainly regarding the Hohenberg-Kohn map between the potential and the
density [327] in order to easily perform orbital-free DFT calculations, the approximation of
the kinetic energy functional of the density for noninteracting spinless fermions [328] in 1D,
or for diatomic molecules subjected to a soft Coulomb interaction [329], the determination
of range-separation parameter in exchange and correlation functionals[330], and the projec-
tion from the charge density onto the Hartree-exchange-correlation potential [331]. More
recently, a methodology was proposed to reproduce concurrently the exchange and corre-
lation energy and potential functionals [332] of one-dimensional systems with two strongly
correlated electrons.

Yet, one of the most prominent approaches involves the exploration of the composition
space with the intent to find the most stable materials that crystallize into a certain struc-
ture. This is usually designated as component prediction [137] and essentially involves the
determination of the thermodynamic stability of a huge number of crystal structures. Now,
the gist is that machine learning techniques can infer the relations between the crystal struc-
ture and the different elements from a training set, that contains a small fraction of all
possible combinations of elements, and predict the stability of all the other combinations.
Therefore, machine learning techniques can be used to decrease the number of first princi-
ples calculations required, or to avoid altogether the attempt to experimentally synthesise
many of these materials. This approach has been used with different algorithms to predict
many stable materials, such as elpasolites [172], perovskites [171, 173–175, 333–335], ternary
prototypes with stoichiometry AB2C2 [336], and Heusler compounds [337–339].

Moreover, if the machine learning algorithm is powerful enough and if the features are
sufficiently processed, the constrain of the same structure can be removed and additional
properties can be calculated. Examples of these more general approach comprise the random
forests with Voronoi tessellations features of Ward et al. [340], the crystal graph convolutional
neural networks by Xie et al. [178], the MatErials Graph Networks by Chen et al. [195], and
the message passing neural networks by Jorgensen et al. [193].



3.5. RECENT APPLICATIONS 41

Property References

Curie temperature [259–264]
Vibrational free energy and entropy [265]
Band gap [178, 191, 195, 228, 264, 266–277]
Dielectric breakdown strength [278–280]
Lattice parameter [277]
Debye temperature and heat capacity [191, 281, 282]
Glass transition temperature [283, 284]
Thermal expansion coefficient [191]
Thermal boundary resistance [285]
Thermal conductivity [286–294]
Local magnetic moments [192, 295]
Melting temperature [291, 296, 297]
Magnetocaloric effects [264]
Grain boundaries [298]
Grain boundary energy [299–302]
Grain boundary mobility [302]
Interface energy [277]
Seebeck coefficient [289, 303, 304]
Thermoelectric figure of merit [305]
Bulk and shear moduli [178, 191, 195, 281, 306–308]
Electrical resistivity [289]
Density of states [184, 309, 310]
Fermi energy and Poisson ratio [178]
Dopant solution energy [311]
Metal-insulator classification [230]
Topological invariants [312–318]
Superconducting critical temperature [147, 319–323]
Li-ion conductivity and [141, 324, 325]
battery state-of-charge

Table 3.1: Summary of material properties predicted with machine learning methods and corre-
sponding references.
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A contrasting approach is the differentiation between multiple crystal structures and their
subsequent classification, usually denoted as just structure prediction. The name might be
confusing, but it serves to categorized techniques similar to Pettifor structural maps [75, 341–
343] that use properties of the elements to divide binary and ternary structures in a two-
dimensional plot. This map can then be used to predict stable structures with two or three
elements. Machine learning examples of this approach are the the prediction of binary
structures using the cumulant expansion method [194, 344], the cluster resolution feature
selection [345], SISSO structural maps [230], the classification of perovskites [261], and the
classification of different crystal structures using random forests [346], variational autoen-
coders [168], or generative adversarial networks [347–349]. While the previous works rely on
elemental properties for the classification, others rely on X-ray diffraction patterns [350] or
a simulated two dimensional diffraction fingerprint [351], or even on machine learning based
image processing [352–357].

Similarly, machine learning algorithms were successfully employed to predict a good deal
of material properties, as shown in table 3.1 and its references.

Finally, the last approach we wish to mention intertwines surrogate-based optimiza-
tion [358, 359] and active learning, and is commonly denoted as adaptive design process.
This process consists on the development of a surrogate model at the same time that its pre-
dictions are used to search for the best possible points, in the space of the target properties.
After that, these points are included in the training of the model. This cycle is repeated until
the optimum value is found. The challenge of this process pertains then the balance between
two tasks: the exploration of the space in order to improve the model and the determination
of the material that exhibits the best value for a certain property, or set of properties [360].

The first question that arises from such process is related to the strategy to choose the
best points at each iteration of the cycle. Contrary to popular belief, pure exploitation, i.e.
always choosing the point that results in the minimum value for the target property in a
minimization, is not the best approach [361–364]. Indeed, a much better strategy involves the
calculation of the maximum expected improvement. However this requires machine learning
models that provide both the predictions and the uncertainty in those predictions, such
as Gaussian processes [223, 365–369], decision tree methods or SVM regressors combined
with bootstrapping methods [360, 369, 370], random forests [323, 371], and Monte Carlo
tree searches [372–375] combined with neural networks. Moreover similar techniques were
proposed involving genetic algorithms [85, 376] or even other techniques [377–379].

3.5.2 Force-fields

Even with the development of several electronic structure methods [20], the improvement of
their implementations in computer codes, and the availability of faster supercomputers every
year, a plethora of problems and systems remains out-of-reach, due to the high computational
price required to simulate them. Here, we are referring to molecular dynamics, Monte Carlo,
global structural prediction, or any other simulations that require either a numerous number
of atoms, long simulation times, or frequent evaluations of energies and its gradients: forces
and stresses.

Even DFT, perhaps the most successful of the electronic structure methods, due to its
unrivaled combination of accuracy and computational efficiency, a theory used to describe
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millions of compounds and the current backbone of high-throughput and accelerated material
design efforts [156, 380–386] lacks efficiency and suffers from a number of limitations. Cur-
rently, DFT records include around 2 000 000 atoms in a single total energy evaluation [387–
389], a few picoseconds long molecular dynamic simulations with fewer than ten thousand
atoms [389], and a few tens of atoms in global structure prediction searches [390, 391].

These problems make researchers look elsewhere for answers. In fact, MD simulations
usually resort to classical force-fields [392–398] to solve complex problems, such as protein
folding [99–101]. Similarly, several structure prediction studies that encountered these lim-
itations frequently end with a density-functional-based tight binding [399–401] description.
Both these approaches offer faster energy evaluations, and also larger and longer simulations
than DFT, and for this, researchers normally overlook the loss in accuracy. A comparison
of these three methods places tight-binding in the middle, with classical force-fields on the
side of least accuracy and best efficiency while DFT takes the opposite side.

Meanwhile, the past fantastic accomplishments of machine learning, and the future
promise of more, led researches to believe that its algorithms could combine the best qualities
of the approaches mentioned above. By this we mean a linear scaling with the number of
atoms (or electrons), such as the scaling classical force-fields, and the same accuracy as the
reference method employed in the training of the machine learning force-fields, such as the
accuracy of DFT.

The first combination of machine learning with the construction of potential energy
surfaces occurred in 1992, with the neural networks of Sumper et al. [402], which mapped
the energy with the vibration spectra of polyethylene molecules. However, technical problems
judged the approach as too difficult and inefficient to apply to other systems. The proof that
neural networks could be used to accurately and efficiently predict potential energy surfaces
only come a few years later, in 1995, with the influential study of the surface diffusion of
CO/Ni(111) by Blank et al. [403].

Since then, a myriad of machine learning potentials have been proposed and discussed in
the literature [211, 213, 404, 405]. For this reason, we will center this discussion around the
most influential methodologies applied in the field of materials science, mainly the Behler
and Parrinelo approach [406], the Gaussian approximation potentials by Bartók et al. [187],
and the spectral neighbor analysis potential from Thompson et al. [407].

The Behler and Parrinelo approach uses multilayer perceptron feedforward neural net-
works to describe potential energy surfaces. In this approach, a set of radial and angular
symmetry functions represent each atom, in a certain chemical environment. Then, each
set serves as input to a neural network that returns the atom’s contribution to the energy
Ei. Different elements require different atomic neural networks. Subsequently, the sum of
all atomic contributions corresponds to the total energy of the system. This is now the
standard for all machine learning force-fields since it allows for their application to very
large systems. Furthermore, the calculation of forces and (static) stresses requires only the
analytical differentiation of the neural network function with respect to the atomic positions
and the infinitesimal strains, respectively.

Since its first application to bulk silicon, this approach was applied to study many ma-
terials, for example carbon [408], sodium [409], zinc oxide [410], titanium dioxide [212],
germanium telluride [411], copper [412], gold [413], lithium–silicon [414], and Al-Mg-Si
alloys [415].
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Moreover, several contributions improved upon this approach. Initially, the cost function
only included energy terms. However starting in 2011, force terms were also included. This
followed from the works of Witkoskie et al. [416] and Pukrittayakamee et al. [417, 418], that
reported an increase in the accuracy of the force-fields with the inclusion of the gradients
of the neural network function in the training. Basically, this is equivalent to the increase
of the size of the training set, and to training under more restrictions. Artrith et al. [414]
replaced the symmetry functions by descriptors based on Chebyshev polynomials [177], that
can be systematically improved and that allow for the creation of potentials with constant
complexity in the number of chemical species. Ghasemi et al. proposed a charge equilibration
technique via neural networks [419, 420], where neural networks return the electronegativity
and a charge equilibration method provides the total energy. Finally, Hajinazar et al. [421]
proposed a strategy to train hierarchically multicomponent systems.

When first introduced in 2010, the Gaussian approximation potentials mapped the atomic
energy with the bispectrum descriptor using Gaussian process regression, and described quite
accurately the potential energy surface of iron and some semiconductors. However, studies
conducted with this descriptor found it lacking for some systems, such as Si clusters with
more than 13 atoms. This was solved with its substitution by the SOAP descriptor [181].
Further advances of the methodology include the improvement of the training process [422],
the addition of two- and three-body descriptors to improve the description of solids [423],
and the comparison of structures with multiple chemical species [424]. These improvements
allow for the Gaussian approximation potentials to describe the potential energy surface and
to study properties like bulk point defects, phonons, and Γ surfaces [425] of many materi-
als or molecules. Noteworthy to mention are the studies of tungsten, carbon and silicon,
iron [426], graphene [427], and formaldehyde [428]. Moreover, the Gaussian approximation
potentials were used to accelerate the geometry optimization for some molecules [429], and
to simultaneously explore and fit a complex potential energy surface [430, 431].

The spectral neighbor analysis potential consists on the description of a potential energy
surface using the 4D bispectrum components and a simple linear fit. Its first application
showed that a linear fit was sufficient to correctly reproduce the relative energy of different
phases of tantalum. Nonetheless, improvements of this methodology include the extension
of the model with the inclusion of quadratic terms in the bispectrum components [432].
Additionally, a two-step model fitting work-flow for multi-component systems [433] was
introduced to study the binary alloy Ni–Mo, and PCA was used to examine the distribution
of the features, which increases the efficiency of the fitting.

Before finishing this section, we would like to at least mention other methodologies to
construct potential energy surfaces and their applications. For example the structure op-
timization technique based on evolutionary algorithms and kernel ridge regression poten-
tials [434], the molecular dynamics scheme using either quantum mechanical calculations or
gaussian process regression potentials [435, 436], the Gaussian process [437, 438] force-fields,
the potentials based on kernel ridge regression and LASSO [186] and elastic net regres-
sion [439, 440], the (unconventional) deep neural network potentials [441, 442], and the
moment tensor potentials [443].

Finally, we would like to draw attention to two of the most revolutionary approaches,
developed in recent years, concerning the construction of potential energy surfaces: the
accurate neural networK engine for molecular energies of et al. [444–447] and the deep
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learning architecture SchNet of Schütt et al. [204, 218, 448].
While influenced by the Behler and Parrinelo approach, the ANI approach introduces

heavy modifications to it and takes advantage of deep neural network architecture to pro-
duce a truly transferable neural network potential. Noteworthy to mention is the GPU
implementation that facilitates the training of a neural network with a pyramidal architec-
ture containing 124033 weights, the construction of an atomic environment vector for each
atom (using modified symmetry functions), which is then fed to a single neural network, and
the application of active learning techniques in the pursuit of an automatic generation of
datasets [447]. Unfortunately, it has only been applied to molecules.

Meanwhile, in the SchNet architecture, continuous-filter convolution layers and filter-
generating networks model the interaction between atoms described as a tuple containing
atomic numbers and atom positions. Convolution layers are even used to include periodic
boundary conditions in order to describe solids.
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Chapter 4

Neural Networks force fields

It is no easy thing to slay a dragon, but it can be done.
George R.R. Martin
A Storm of Swords

Dragon... Our main objective for this work can be metaphorically described as slaying
dragons. These dragons represent simulations with numerous atoms, simulations that require
several energy calculations, and simulations that last a long period of time.

In this chapter we present our work in the construction of machine learning force-fields.
We start with a description of the Behler and Parrinelo neural networks as implemented
in the ænet package. Then we describe how to obtain accurate forces and stresses and
we discuss the interpretability of the neural network force-fields. Afterwards, we present
some example of force-fields and several applications: phonon dispersions, MD and melting
temperatures, structure prediction and defects. We finish the chapter with an overview and
outlook for the future. Part of the research presented here was published in Ref. [24].

4.1 Behler and Parrinelo neural networks in the ænet

package

As mention before, one of our main interests pertains to global structure prediction and the
study of materials. We hope to contribute to the search of materials that might satiate the
electronics demands of this technological era or to the solution of the energetic problems we
face.

However, as discussed in the previous chapters, this might require an uncountable number
of calculations and the study of more than billions of materials. So, any hope to achieve this
in our life-times, lies with the development of accurate, yet efficient methods to calculate
energies, forces, and stresses, such as machine learning force-fields. And so it was, that our
search for ways to speed up our global structure prediction calculations and other simulations
with a huge number of atoms lead us to the recently published (at the time) work of Artrith
et al. [212] describing an open-source implementation of the Behler and Parrinello approach
(see section 3.5.2), the so called ænet package. This told us what we already knew about
this rather successful approach: that it can yield fantastic accuracies in the reproduction
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of the PES of a system, with errors in the energy as low as a few meV/atom, that it can
scale linearly with the number of atoms N in the unit cell, like classical force-fields, and
that the analytical differentiation of the neural network function provides forces, needed for
so many simulations and that was missing from some other approaches we found, such as
cluster expansions. Furthermore, the ænet package allows for the usage of all symmetry
functions proposed by Behler as features (see section 3.3), and trains its neural networks
using the back-propagation algorithm.

Unfortunately, this particular implementation only optimized the neural networks with
respect to the energy, and not forces or stresses. In fact, it even lacked a way to compute the
stress tensor, which we so sorely need to optimize crystal structures. Meanwhile, forces are,
sometimes, found wanting with this approach [212, 406, 449], with their errors remaining
stubbornly high (above 100 meV/Å) and with directions that can differ from the reference
ones by 100◦. These problems in the forces occur whenever the training sets are not suf-
ficiently rich (in size and variety) to capture the intricacies of the PES, when the features
fail to capture both the similarities and dissimilarities between the structures in the training
sets, or when the neural networks fail to retain all the information provided by the features.
Then, subduing these errors requires considerable larger training sets, different descriptors,
a new neural network structure and architecture, and/or the inclusion of force terms in the
cost function.

4.2 Stress tensor

So, the first problem that we decided to solve concerns the calculation of the stress tensor.
As seen already in section 1.1, the stress tensor is defined as the derivative of the total
energy with respect to the infinitesimal strain (εαβ) after the scaling of the space described
in eq. (1.21). This includes the kinetic energy of the atoms. In this manner, the stress tensor
can be divided into two parts: (i) A kinetic part issued from the derivative of the kinetic
energy:

σkin
αβ =

1

Ω

N∑
k=1

mkvkαvkβ, (4.1)

where N is the number of atoms in the system, mk the mass of atom k, and vkα its velocity
in the direction α. (ii) A static part obtained from the analytical differentiation of the neural
network function

σstatic
αβ = − 1

Ω

∂E

∂εαβ
= − 1

Ω

N∑
i

Mi∑
λ

N∑
γ

∂Ei
∂o0

iλ

∂o0
iλ

∂Rγα

∂Rγα

∂εαβ
, (4.2)

where we used the same definitions as in section 3.4.1 and Mi represents the number of
symmetry functions for atom i. Usually, we neglect the kinetic term, as we consider that
the atoms are at rest (obviously, this is not the case for MD simulations). For simplicity, we
will remove the static label from the rest of the discussion.

Similarly, the calculation of forces requires the differentiation of the neural network func-
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tion with respect to the atomic positions

Fγα = − ∂E

∂Rγα

= −
N∑
i

Mi∑
λ

∂Ei
∂o0

iλ

∂o0
iλ

∂Rγα

. (4.3)

Here, Fγα indicates the force acting on atom γ in the direction α. This shows that to obtain
forces we just have to differentiate the neural network function with respect to the inputs
o0
iλ, and then differentiate them (the symmetry functions) with respect to the positions of

the atom. While the computation of the stress tensor requires the same derivatives and
the additional differentiation of the positions of the atoms with respect to the infinitesimal
strains, which due to the scaling of the space eq. (1.21) is just

∂Rγα

∂εαβ
= Rγβ. (4.4)

However, in order to compute the stress independently of the forces and for reasons that
will become apparent in the next section (more precisely in section 4.3.2), we derived and
implemented the derivatives of the symmetry functions with respect to the strains. For
example, for the radial symmetry function we showed in section 3.3, we have

∂gr
ij

∂Rij

= e−η(Rij−Rs)2
(∂fc(Rij)

∂Rij

− 2η(Rij −Rs)fc(Rij)
)
. (4.5)

Then, the derivative with respect to the strains can be written as

∂gr
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Rijα

Rij

Rijβ, (4.6)

where Rijα = Rj − Ri. For completion, we note that the derivatives with respect to the
positions consist of

∂gr
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=
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ij

∂Rij

∂Rij

∂Riα
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and
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=
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∂Rij
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. (4.8)

For the angular symmetry function showed in section 3.3, it is convenient to rearrange
the terms as

Ga
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i 6=j 6=k
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(1 + λ cos θijk
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2AijkBijBikBjk,

(4.9)
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were cos θijk =
∑

α
Rijα
Rij
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. Then for the derivatives with respect with the positions we get
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for the derivative with respect to the positions of the central atoms Riα. For the derivatives
with respect to the adjacent atoms we can write
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and
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Using these expressions, the derivatives with respect to the infinitesimal strains can be
expressed as
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and
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)
Rikβ

]
=

∂Aijk
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∂Aijk
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(4.14)

Finally we just have to combine all these terms to obtain the derivative of this angular
symmetry function with respect to the strains

∂ga
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= 2

[∂Aijk
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]
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)
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)
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Rjkα

Rjk

Rjkβ

)]
(4.15)

Additionally, when the descriptors based on Chebyshev polynomials [177] were added to
the ænet package, we also implemented their derivatives with respect to the strains.

To test our implementation, we strained a random structure of the TiO2 example that
comes with the ænet package, and then calculated the stress tensor using both our im-
plementation of eq. (4.2) and a central 2-point rule. Figure 4.1 shows that, initially, the
structure was not at a minimum of the energy, and that the stresses calculated with these
two methods agree with each other. This was the case for all six independent components
of the stress tensor. Therefore, we are confident in our implementation.
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Figure 4.1: Energy and stress as a function of the strain applied to a random structure from the
ænet package TiO2 example. We multiplied the stress by the volume of the deformed structure
and subtracted the energies by their minimum value. The strain was applied in the xx−direction
in the left panels and in the xy−direction in the right panels. The stress was calculated analytically
using eq. (4.2) and numerically with a central 2-point rule.

4.3 Training neural networks for forces and stresses

Whenever we perform a DFT calculation for a crystal structure, we obtain, among other
properties, an energy, a set of 3N forces, and 6 independent components of the stress tensor.
So, why not use all these values to reconstruct a potential energy surface? As mentioned
already in section 3.5.2, this is equivalent to an increase of the training set size and to the
addition of constrains to the learning of the PES: the minimization looks for the surface
that contains a set of points, but no longer accepts any shape, only those that follow from a
specific set of gradients. We should mention that other implementations of the Behler and
Parrinello approach include this feature [204, 213, 417, 449], at least for forces, and that this
is also quite common for other machine learning force-fields [187, 407, 427, 450].

The training of neural networks with information on the forces and stress requires a
generalization of the cost function of the form

ε =
∑
σ

[
α
( N∑

i

Ei − Eref
)2

+
β

3N

N∑
γ

3∑
α

(
Fjα − F ref

jα

)2

+
γ

6

6∑
k

(
Sk − Sref

k

)2
]
σ

.

(4.16)

Here, α, β and γ represent parameters, that scale units and can be changed to increase
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the relative importance of different terms. Additionally, Sk stands for the k component of
the 6 independent components of the stress tensor in the Voigt notation. We remind that
the label ”ref”, for example in Sref

k , identifies the value of the property calculated with the
reference method. Then, the best values for the weights of the neural network come from
the minimization of this cost function.

Our first approach to solve this problem involved a double optimization (of energy and
forces) using a non-dominated sorting genetic algorithm (NSGA-II) [257, 451, 452]. At the
time we did not consider the optimization of the stress tensor. While our second approach
involved an extension of the back-propagation algorithm [417].

4.3.1 Genetic algorithms

The application of genetic algorithms to optimize the weights of a neural networks has
been plentifully discussed in the past [453–465]. Recently, they have been revisited to train
convolutional neural networks [466, 467] and to optimize their hyper-parameters [468, 469].

Here, we took advantage of the NSGA-II to optimize the RMSE of both energies and
forces. Basically, this algorithm looks for candidate solutions in the Pareto front constrained
by the objective function of each quantity. In this manner the fit can be greatly improved.
While the forces improvements came only from the genetic algorithms, the optimization of
the energies also involved the back-propagation algorithm.

The population was created from neural networks trained for energies using the TiO2

example of the ænet package. Each of the 200 individuals consisted on a vector containing
the weights of the neural networks. The neural networks of each element (Ti and O) contained
68 nodes on the input layer and two hidden layers with 10 nodes each. Without forgetting
the bias and the output neuron, this corresponds to 1522 values to optimize. We ensured the
variety of the initial population with the training (for energies) of 300 different potentials.
Furthermore, we modified the weights of neural network potentials that provided similar
predictions using uniformly distributed random numbers.

For the genetic algorithms, we used the implementation of the NSGA-II found in Ref. [470].
The mutation operator consisted on the increment of a random weight by a random factor,
while for the recombination operator we used a simple two-point crossover. By this we mean
that we cut the two parent’s genotype vectors in two points and combined them as usual (see
section 2.1.2) in order to form a different offspring. We did not construct a recombination
operator that took into account the connections of each weight as discussed in Ref [454]. We
tried different selection methods, but in the end we used the tournament selection.

Figure 4.2 shows the evolution of the Pareto fronts during the optimization. After 10
generations the neural networks still exhibit the behaviour of those trained only for energies:
incredible small errors for the energies (below ≈ 3 meV) and undesirable high errors for the
forces (above ≈ 300 meV/Å). After 60 generations the error in the forces improves, with a
decrease of around 30 meV/Å for the minimum error. Meanwhile, the energy errors reduce
to 0.5 meV. Finally, after 1000 generations, the energies become completely over-fitted, as
can be expected by their errors below 2 meV. However the errors of the force predictions do
not overcome the desired threshold of ≈ 100 meV/Å. They still linger above 120 meV/Å. In
fact, the desired threshold was only reached after tens of thousands of generations, which
took a month in 200 cores of a supercomputer.
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Figure 4.2: Pareto fronts for the optimization of the weights of the neural networks with respect
to both energies and forces, after 10 generations in the GA, for the first 60 generations (left panel,
only the best 30 individuals) and after 1000 iterations (right panel, only the 100 best individuals.

Our results agree with those present in the literature. While perfect for global opti-
mizations, genetic algorithms suffer from a weakness in fine-tuned local search [456]. This
reduces significantly their efficiency and its improvement requires more aggressive selection
and mutation operators [455], more complex recombination operators [453–455], or their
combination with a powerful local optimizer, such as the back-propagation algorithm [456].

Thus, we decided to follow another road to train the neural networks.

4.3.2 Back-propagation algorithm

In principle, the optimization of the cost function shown in eq. (4.16) through back-propagation
can be achieved in two distinct ways: either by the extension of the neural network output
(to also include forces and stresses) or by the generalization of the back-propagation algo-
rithm. However, the former option will most probably lead to inconsistencies, as the relation
between energy and its gradients is not imposed. Therefore, we chose the second option,
which is much more robust, though it requires the derivatives of all three terms in the cost
function with respect to the weights. The derivative of the first term (the energy term) has
been shown already in section 3.4.1. For the others, consider the same definitions and that
ϕ̈n represents the diagonal matrix that stores the second derivatives of the nodes of the n
layer. Then, for the non trivial part of the derivative of the term containing the forces, we
obtain

∂Fjα
∂wn

=
N∑
i

( [
Nh+1∏
m>n

ϕ̇mwm

]
ϕ̇n ⊗ ξn−1

+
N+1∑
p=n

[
Nh+1∏
m>n

ϕ̇mwm

]
λp

[
p∏
q>1

wqϕ̇q−1

]
⊗ on−1

)
i

, (4.17)



54 CHAPTER 4. NEURAL NETWORKS FORCE FIELDS

where the products inside square brackets are ordered in decreasing order of layers, λp

represents the diagonal matrix

λκij = (ϕ̈κ wκ ξκ)i δij, (4.18)

and ξκ is defined through the recursion relation

ξκ = ϕ̇κ wκ ξκ−1, (4.19)

ξ0 =
∂o0

∂Rjα

. (4.20)

We note that eq. (4.20) corresponds to the derivatives of the input of the neural network
(or of the features) with respect to the position of the atom j which suffers the effect of the
force Fjα.

As an example, consider a neural network with two hidden layers such as the one shown
in fig. 3.2. If the output of such a neural network is the contribution to the energy of a single
atom, and the sum of all these contributions corresponds to the total energy of a structure,
then the force can be calculated as

Fγα = −
N∑
i

∑
κ

∑
ζ

∑
λ

∑
τ

ϕ′(h3
κ)w

3
ζκϕ

′(h2
ζ)w

2
λζϕ

′(h1
λ)w

1
τλ

∂oiτ
∂Rγα

. (4.21)

Here we used ϕ′(h2
ζ) to indicate the first derivative of the activation function at the point

h2
ζ . Then using the expressions above, we can calculate the derivatives of these forces with

respect to the weights. For the weight matrix W 3, which contains the weights that connect
the last hidden layer with the output layer we obtain

∂Fγα
∂w3
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=−
N∑
i

[
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φ)ϕ′(h2
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∑
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ζ)w

2
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τλ

∂oiτ
∂Rγα

]]
,

(4.22)

where ϕ′′ represents the second derivative of the activation function. For the weights W 2

that connect both hidden layers we get
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i

∑
κ

[
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κ)w
3
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(4.23)
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Finally, for the weights W 1 that connect the input layer with the first hidden layer we can
write
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(4.24)

Finally, the derivative of the components of the stress tensor with respect to the weights
of the neural network are acquired in a similar fashion. It just requires the replacement of
∂o
∂Rjα

by

1

Ω

N∑
j

∂o0

∂Rjα

∂Rjα

∂εαβ
(4.25)

in eqs. (4.17), (4.19) and (4.20), according to the definitions of forces and of the stress tensor
(eqs. (4.2) and (4.3)).

We coded these expressions in the ænet package in a way that allows for the separate
optimization of energy, forces, or stresses, or any of their combinations. We also imple-
mented several activation functions and the derivatives necessary to satisfy eqs. (4.17), (4.19)
and (4.20). Moreover, after testing the agreement between numerical and analytical deriva-
tives for both the forces and stress derivatives, we used our implementation to construct
several neural network force-fields, shown in the next section (section 4.4).

Yet, before proceeding, we would like to make some remarks concerning eqs. (4.17),
(4.19) and (4.20). Activation functions with vanishing second derivatives, such as the ReLU,
greatly simplify eq. (4.17), as only the first term remains. As a consequence, the equations
above do not always provide an update for all weights of the neural network: the weight of
the bias neuron will remain constant. Only training for the energy will update that neuron.
Consequently, a double loop optimization procedure or a joint optimization is advised for
these cases.

4.4 Example force-fields

We used the extension of the back-propagation algorithm to create force-fields for some
selected semiconductors: elemental Si and Ge, the SiGe binary, and for some simple metals:
Cu and Au. We chose these elements due to their comprehensive literature, which includes
examples regarding classical force-fields [392, 393], tight-binding parameterizations [471, 472],
and even machine learning force-fields [412, 473–475].
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Minima Distorted MD 2D Total
Si 92 4999 13323 37 18451
Ge 94 3967 6435 37 10533

SiGe 671 15540 13561 0 29772
Cu 20 485 13191 0 13696
Au 27 1082 12259 0 13368

Table 4.1: Number of each kind of structures in our training sets. We note that the binary training
dataset also included all the elemental minima structures.

As discussed in section 3.1, supervised learning, such as the regression we intend to
perform using the neural networks to describe PES, requires five steps: the creation of a data
set, that in this case contains information on crystal structures and the target properties,
feature extraction, the selection of an algorithm, the training of the model, and the validation
of the model to determine its predictability capabilities. We will proceed with the detailed
discussion of each of these steps.

4.4.1 Data

The production of the data sets used in the training of the neural networks followed the
strategies of Huran et al. [476] and Artrith et al. [212]. We start by the exploration of
the chemical environment, and the selection of allowed crystal structures for each chemical
composition using the MHM (see section 2.1.1). All the calculations were performed at the
level of DFT with the PBE approximation for the exchange and correlation functional, as
implemented in vasp code [477, 478]. More information on the calculations can be found
in the appendix A. The output of this undertaking provided two sets of structures: one
corresponding to the local minima of the PES, and the other to different steps of short MD
simulations. Furthermore, we applied a series of geometrical distortions to the local-minima
structure, namely volume-conserving orthorhombic and monoclinic strains (see fig. 4.3), and
scaling of the lattice constants by up to ±10%. Lastly, we complemented the data sets of Si
and Ge with two-dimensional minima structures obtained following the strategy of Borlido
et al. [479, 480].

Figure 4.3: Cubic Si structure (middle panel) deformed by a volume-conserving monoclinic (left
panel) and orthorhombic (right panel) strain.
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Note that, contrary to parameterizations that include physical constrains, such as those
for DFTB, and that for this reason might require a small number of training structures [476],
machine learning algorithms are expected to identify the underlying patterns and physical
relations only from the data. As such they normally require large training sets and, in fact,
the accuracy of the model usually increases with increasing sizes of the training sets. To
give an idea of the size of the data sets we will use Si as an example. Our data set for Si
includes 26360 structures, out of which 131 correspond to minima, 54 to 2D minima, 7142
to distorted, and 19033 to MD structures. These structures were then divided into two sets:
70% for the training set and 30% for the test set. Table 4.1 displays the number corresponding
to each type of structures in the training set for Si and for the other materials, that were
divided in the same fashion. A quick glance at the table reveals that our data sets contain
a rather low number of minima (both 3D and 2D), precisely the type of structures we are
more interested in describing. For this reason, we increased the weight of these structures.
Moreover, to insure a better description of the regions close to dynamical minima, we included
a dimensionless weight factor uσ in the objectives:

uσ =
0.2

0.2 + F̄ 2
σ

. (4.26)

where, F̄σ corresponds to the average norm of forces acting on the atoms in the σth structure.
The maximum of this function occurs for F̄σ = 0 and decreases monotonically with the
increase of the forces.

On the other hand, we are mostly interested in energy differences and not in the absolute
value of the total energy (which is meaningless for solids). An example of such difference
is the formation energy. This quantity is defined as the difference between the energy of a
structure and that of the ground-state of its elementary substances. Hence, we also found
useful to increase the weight of the ground-state structures in the training set in order to
improve the accuracy of their description with the neural network force-fields.

Table 4.2 exhibits the ranges of the energies, forces, and stresses in our data sets. These
values will be important to understand the meaning of the errors calculated during the
validation. The column for the norm of the forces reveals that no force in our training set
exceeds a magnitude of 2.0 eV/Å. This is the case due to the filter we applied to clean the
data when constructing the data sets. We removed duplicates and neglected structures with
very high forces.

The distribution of the target properties in our data sets can be visualized, for example,
in figs. 4.4 and 4.5 (for Cu and Si, respectively). It is evident that both data sets were
constructed in a similar fashion. In fact, the differences between the distributions for Si and
for Cu, come solely from the number of minima structures found for each of them. We note
again that the structures identified as distorted come from distortions of these minima.

A comparison between the energy distributions reveals that the few lowest energy minima
found for Cu are closer in energy than those found for Si. This is the reason why the energy
distribution for Cu looks cut in fig. 4.4. Obviously, formation energies and energies follow
the same distribution.

The forces distribution shows that our construction of the data sets focused on structures
around the minima of the PES. Nevertheless, they also provide a rather complete description
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Formation Energy Forces Forces Stress Stress
Energy Component Norm

eV/atom eV/atom eV/Å eV/Å kBar eV/Å3

Si [0.0,7.8] [-5.4,2.3] [-5.2,4.9] [0.0,2.0] [-1218,6827] [-0.8,4.2]
Ge [0.0,6.0] [-4.6,1.4] [-3.9,4.4] [0.0,2.0] [ -549,3372] [-0.3,2.1]

SiGe [0.0,7.0] [-5.4,1.7] [-4.8,4.1] [0.0,2.0] [-1167,4633] [-0.7,2.9]
Cu [0.0,3.0] [-4.1,-1.1] [-3.3,3.3] [0.0,2.0] [ -925,3098] [-0.6,1.9]
Au [0.0,3.3] [-3.3,0.0] [-4.2,4.2] [0.0,2.0] [ -754,2726] [-0.5,1.7]

Table 4.2: Range for the formation energy, energy, forces (norm and component) and stresses in
our data sets (training and test).

of the forces space between 0 and 2 eV/Å. Both distributions look almost symmetrical around
the maximum of 0.75 eV/Å (after neglecting the 0 eV/Å bar).

Lastly, the distribution of the stresses, for both Si and Cu, is the combination of 2 almost
symmetric distributions, one around a maximum at 0 kBar and another around a maximum
at −200 kBar. Most of the structures belong to the former, and the latter occurs since we
performed some MHM runs at a pressure of 20 GPa. We included in the sets a few examples
of high pressure structures (above 50 GPa) to increase the performance of the fit when the
atoms are close together, during MD simulations or when the structures are compressed.

Furthermore, in fig. 4.6 we present the distributions for Cu separated by type of structure.
As most of our structures come from MD simulations it is not surprising that the distributions
for MD structures (panels g, h, and i) and the total distributions in our data sets look very
similar. It is obvious that we mainly rely on this type of structures to obtain a fairly extensive
description of all regions of the PES.

Regarding the minima structures (panels a, b, and c), we note that we do not have much
control over their selection, they correspond to the structures found by the MHM. We can
only increase the temperature to try to find higher energy structures or the pressure of the
system to find structures subjected to some strain.

While the MD structures provide a rather broad set of forces, the distorted structures
improve the description of the stresses in a broader region of the space (as observed in the
panel f) corresponding to the stresses of the distorted structures). Meanwhile, the forces
provided by the distorted set concern mainly the region in the proximity of the minima of
the PES (see panel e).

Finally, we would like to mention that the distributions for the sets of the other materials
resemble those depicted above for Cu and Si.

We anticipate that the force-fields, constructed from data sets generated in this manner,
will provide an accurate description of structures close to dynamical equilibrium. Meanwhile,
the inclusion of the MD and distorted structures assures the correct description of structures
under different conditions of temperature and pressure, and with relatively large forces. Due
to the Behler and Parrinelo approach and the extrapolation capabilities of neural networks,
we do not expect force-fields created from these data sets to properly describe single atoms,
molecules, or clusters. However, we believe them able to describe supercells that resemble
locally the structures contained in the data sets, since the cut-off radius centered around
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Figure 4.4: Distribution of the energies (top left panel), formation energies (top right panel), forces
(bottom left panel), and stresses (bottom right panel) in our data set for Cu.

each atom encompasses the larger contributions to the energy.

4.4.2 Details on the features, algorithm and training

As features, we used a set of 8 radial symmetry functions and 18 angular symmetry functions
for each elemental interaction. We present their definitions in eq. (3.3) and eq. (3.4), respec-
tively (they correspond to types G2 and G4 in Ref. [213]). For the binary, these numbers
increase to 16 radial and 54 angular functions. The values for these parameters can be found
in Ref. [212] for titanium oxide. In principle, they should differ from element to element. For
example, the value for η should be taken between the covalent radius and the cut-off radius.
We resorted to pattern search techniques [481] in an attempt to optimize the values of the
parameters of the symmetry functions, however this proved unsuccessful and we achieved no
accuracy improvement.

Concerning the structure of the neural networks, we only used multilayer perceptron feed-
forward neural networks. Nevertheless, we tried different architectures and, in section 4.4.3,
we present results for the case of neural networks with three hidden layers and different
number of nodes (5 and 50), trained using the Levenberg-Marquardt [482, 483] and the
Broyden-Fletcher-Goldfarb-Shanno methods [484]. For the activation functions we chose the
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Figure 4.5: Distribution of the energies (top left panel), formation energies (top right panel), forces
(bottom left panel), and stresses (bottom right panel) in our data set for Si.

softplus, except for the last layer, which is always linear in the ænet package.

Initially, we opted for the leaky ReLU, a popular activation function in many applications
and that allows for a more efficient training: it remains the fastest activation function to
evaluate, with the exception of the linear function, and permits a faster evaluation of the
derivatives required for the back-propagation for forces and stresses, due to the vanishing
terms. Nonetheless, usage of this activation function might result in an odd behaviour of
several physical quantities, as shown in fig. 4.7. This results from the discontinuity of the
first derivative of the (leaky) ReLU and, as such, this activation function should not be use
in applications that require gradients of the energy, such as MD simulations.

4.4.3 Validation

The validation of our force-fields involved a series of tests, the visualization of both the
reference target properties and their neural network counterparts, and the calculation of
the (weighted) mean absolute error (wMAE) and root-mean square error (wRMSE) for the
target properties: formation energies, forces and stresses.

Figure 4.8 shows the comparison between the formation energies computed by our po-
tential and the DFT reference for Ge. The straight line y = x represents the perfect fit.



4.4. EXAMPLE FORCE-FIELDS 61

N
u
m

b
er

of
st

ru
ct

u
re

s
a b c

−4.10 −4.05 −4.00 −3.95 −3.90
0

1

2

3

4

0.00 0.01 0.02 0.03
0.0

0.5

1.0

1.5

2.0

−200 −150 −100 −50 0
0

5

10

d e f

−4 −3 −2 −1
0

20

40

60

0.0 0.5 1.0 1.5 2.0
0

100

200

300

−1000 −500 0
0

20

40

60

j h i

−4.0 −3.5 −3.0 −2.5
0

200

400

600

800

0.0 0.5 1.0 1.5 2.0
0

100

200

300

−400 −200 0 200
0

250

500

750

1000

Energy Average norm of forces Pressure

eV/atom eV/Å kBar

Figure 4.6: Distribution of the energies (left column), forces (middle column), and stresses (right
column) in our data set for Cu separated by type of structures: minima (top row), distorted (middle
row), and MD (bottom row).

The inset shows the region containing most of our structures: between 0 and 1 eV/atom.
Evidently, the neural network predicts fairly accurately and consistently the energies across
the whole range: the largest errors (around 100 meV) correspond to very unstable structures
with high forces, to which we anyway attributed a small weight during training, while most
structures exhibit errors below 25 meV. Meanwhile, fig. 4.9 displays a similar comparison
for the forces (also for Ge). The left panel concerns a neural network trained only for the
energy while the right panel is associated with a neural network trained for energies, forces,
and stresses. The improvement of the results due to the joint training is astonishing. This
indicates not only a decrease of the prediction errors, but also a correction over systematic
errors. Furthermore, fig. 4.9 demonstrates plainly the importance of the addiction of the
extra terms (in this case forces) in the cost function.

Additionally, we compared the error in the predictions made by our force-fields with other
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Figure 4.7: Change in pressure with the volume for the cubic silicon structure. The neural networks
used to make this figure were only trained for energies and forces. The inset plot the leaky ReLu
and the softplus activation function.

well known methods, namely classical force-fields and DFTB, and with a neural network
force-field trained only for energies. In particular, we used Stillinger-Weber [393, 485] and
the Tersoff potentials [486, 487] to compare with the Si and Ge results, and the Slater-Koster
files from the (DFTB) parameters set pbc [472] and matsci [471] to compare with the results
of Si and Cu. For the calculations, we used the lammps code [488] for the classical force-
fields and dftb+ [489] for the DFTB calculations. Table 4.3 displays the results of these
calculations. In general, our force-fields, trained with a joint optimization of energy, forces,
and stresses, achieve errors in the formation energy below 50 meV/atom, forces smaller than
100 meV/Å, and stresses under 15 meV/Å3.

The neural networks clearly outperform the other methods for all cases studied. We recall
that neural networks exhibit a linear scaling with the number of atoms, such as classical force-
fields, although classical force-fields provide more efficient calculations due to the smaller
prefactor. Yet they scale considerably better and provide more efficient calculations than
DFTB.

Noteworthy to mention are the small errors obtained for the simple metals, which are
close to the expected errors of standard machine learning force-fields (around 5 meV/atom
for the energy errors, depending on the material). Actually, the magnitude of these errors
reveals that the joint training is not required to obtain accurate results, provided that the
training sets are large enough and sufficiently complex.

On the other hand, the best energy RMSE error for Si that we show in table 4.3 is
38 meV/atom, which was obtained when the neural network was trained only for energies.
In fact, training for energies, forces, and stresses constitutes a multi-objective optimization.
Therefore its solution falls onto a Pareto curve, i.e., the optimization of one of the objectives
can degrade the quality of others, and the degradation is larger, the further away the Pareto
curve is from the origin. This is what we observe in table 4.3. In general, the multiple
optimization improves the values of the forces and stresses, yet it also degrades the values
for the energies. This degradation is more visible for the semiconductors because their errors
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Figure 4.8: Comparison between formation energies calculated with DFT and with our force-field
for Ge. The neural network used to model the PES had 3 hidden layers with 50 nodes each.

are higher. The reason for such values however remains a mystery. We used the same
optimization algorithm for all the materials presented, so our optimization procedure should
not be the reason for these high errors. It is possible that our optimization for silicon and for
germanium is stopping in a local minimum though. In an attempt to resolve this problem,
we tried to increase the number of symmetry functions, to optimize their parameters, to
change the descriptor [177], to increase the number of layers of the neural network, and the
training set size by addition of more MD structures. All of these proved unsuccessful. It
is our conviction that this is due to the diversity of our data sets. And to subdue these
errors would require more complex neural network structures, better input features, and
significantly larger training sets. Maybe even training sets selectively increased using active
or reinforcement learning.

We would like to direct attention to one of the main problems of machine learning methods
nowadays: the lack of libraries and databases containing the different features, training
sets, and methodologies proposed by different researchers, so that all of these could be
benchmarked. This would provide a better comparison between different force-fields, than
just a comparison between errors found with completely different data sets. As a small step
to resolve this issue, we made available both our force-fields, our implementation, and our
data sets.

Finally, we mentioned several tests at the beginning of this section. These consisted of
small MHM runs, phonon calculations, and small simulations under different conditions to
test the evolution of the target properties, such as the movement of two atoms in a box, the
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Figure 4.9: Comparison between forces calculated with DFT and with our force-field for Ge. The
neural networks used to model the PES contained 3 hidden layers with 50 nodes each, and were
optimized for energies (top panel) and with a joint training (bottom panel) of energies and its
gradients. The probability density function (PDF), shown with the color gradient, displays the
number of structures that can be found at each point (based on a smooth kernel density estimate).

movement of an atom inside a crystal structure, the gradual change of lattice parameters, and
the gradual application of volume-conserving orthorhombic and monoclinic strains. These
tests contributed to several improvements of our methodology. For example, the test with
the lattice parameters revealed the problem with the ReLU in fig. 4.7. Furthermore, these
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Table 4.3: Weighted mean absolute errors (MAE) and root mean square errors (RMSE) for forma-
tion energy (FE), forces and stresses calculated with different methods. All networks had 3 hidden
layers with 5 neurons each. Results should be compared with the ranges in table 4.2.

FE Forces Stress
meV/atom meV/Å meV/Å3

MAE RMSE MAE RMSE MAE RMSE

Si

this work 54 65 76 119 8 13
e-training 29 38 162 298 11 16
S.-Weber 784 1331 925 1594 231 490
Tersoff 194 228 362 568 29 48
pbc 299 386 190 282 57 106
matsci 504 577 504 754 123 172

Ge
this work 34 40 46 75 5 9
e-training 14 22 77 155 5 8
S.-Weber 276 388 321 558 84 127
Tersoff 434 559 448 759 81 122

SiGe this work 78 89 87 127 6 10
e-training 64 84 186 279 12 18

Cu this work 4 6 13 18 5 8
e-training 3 4 17 26 7 10
matsci 228 343 656 937 133 228

Au this work 8 11 25 37 2 3
e-training 9 11 36 55 2 3

tests helped us to realize a problem with the description of the repulsion between atoms: if
the training set lacks structures containing small inter-atomic distances, the neural network
does not learn what to do for these instances. This can lead to unexpected behaviours
during simulations, such as two atoms in the same position. Two easy solutions to this
problem consist on the addition of such structures to the training set, or the inclusion of a
repulsive term in the energy provided by the neural networks. We tried both. For the latter
solution, we implemented a repulsion term similar to the repulsion part in the Lenard-Jones
potential [490].

The neural network force-fields constructed here revealed an accuracy appropriate for
the energies with respect to the training data. By appropriate accuracy we mean a similar
definition as provided by Pople in his Nobel prize lecture [67]. Essentially, this corresponds
to a global accuracy of 1 kcal/mol (roughly 43 meV/atom) for energies with respect to ex-
perimental values. Moreover, our force-fields provide an acceptable accuracy for forces and
stresses, even when trained with rather humble data set sizes.
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4.5 Applications

To further assess the predictability capabilities of our neural network force-fields and to
demonstrate their usefulness, we calculated some properties which are not directly associ-
ated with the target properties we trained for. To be more precise, we calculated phonon
dispersion curves for cubic Si and Cu, and the melting temperature of Cu and Au using our
force-fields. Additionally, we combine them with the MHM, to investigate the formation of
defects in large supercells of cubic silicon.

4.5.1 Phonon dispersion

We calculated the phonon dispersion for cubic silicon and copper, under the frozen-phonon
technique using the phonopy package [491].
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Figure 4.10: Phonon dispersion of cubic silicon calculated with the PBE functional and with a
force-field only trained for energies (top panel) and another where we perform a joint training of
energies, forces, and stresses (bottom panel).

Figure 4.10 displays the comparison between the phonon frequencies obtained with the
our neural network force-fields for Si and the PBE functional. While the neural network used
to calculate the phonons on the panel on the left was trained only for energies, the neural
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network used for the panel on the right was trained for energies, forces and stresses. When
trained only for energies, the neural networks reproduce the PBE speed of sound, however
they overestimate the optical phonons. Additionally, the acoustic branches deteriorate away
from the Γ point. However, when optimized with a joint training, the neural networks
reproduce remarkably the phonons across the entire Brillouin zone.

Moreover, we should note that the construction of our data sets is not focused on a
particular kind of structure. In fact, we did not train a network with a training set based
on cubic silicon structures and then calculated the phonons for it. Instead, we tried to
represent a large region of the PES in an unbiased way. Therefore, we expect similar results
for different kinds of structures. Then, this result is also quite general: for any structure, a
better phonon dispersion curve can be obtained if the forces are improved.
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Figure 4.11: Phonon dispersion of cubic copper calculated with the PBE functional and with a
force-field trained for energies, forces, and stresses.

On the other hand, the errors in the forces obtained by the neural networks in the
description of Cu were rather low, independently of the target properties trained. So, we
expect a good description of the phonons by the neural networks for both training methods.
Figure 4.11 depicts the phonon dispersion of copper, and indeed the phonons frequencies
are almost perfectly replicated over the whole Brilloin zone. Similar results can be found in
the literature, for example for sodium in Ref. [409], for calcium fluoride in Ref. [492] or for
copper, gold, and palladium in Ref. [421].

4.5.2 Molecular dynamics and melting temperature

We performed molecular dynamics simulations using the Berendsen thermostat and baro-
stat [110] as implemented in the ase package [493], to determine the melting temperature
of face-centered cubic Cu and Au.

For the simulations of Cu, we chose a time step of 10 fs, and values of 500 fs and 1000 fs for
the coupling constants of the thermostat and barostat, respectively. For Au, we took 400 fs
for the thermostat and 500 fs for the barostat. We also used the isothermal compressibility
of each element.
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The methodology consisted on the thermalization of the system at 100 K and 1 bar, fol-
lowed by a linear increase of the temperature of the thermostat using different constant heat-
ing rates. The melting temperature was then predicted from two distinct criteria: (i) From
the maximum of the heat capacity, following the method of Qi, et. al [96]. (ii) From the
maximum of the second derivative of fL =

√
< u2 >/d, where the numerator is the mean

square atomic displacement and d is the inter-atomic distance. This corresponds to the
Lindemann criterion [494]. However, instead of using the Lindemann constant, we analyzed
the behaviour of the Lindemann function (fL).

The change of the potential energy of Cu during the simulation can be seen in fig. 4.12 for
different heating rates. The potential energy rises linearly with the increase of the temper-
ature and leaps at the phase transition, after which it continues to rise linearly. For higher
heating rates, the phase transition occurs so quickly, that there is no step, but instead a
gradual increase of the potential energy. Moreover, the temperature of the melting point
decreases with the decrease of the heating rate. Lastly, the increase of the number of atoms
decreases the oscillations of the potential energy, as expected.
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Figure 4.12: Variation of the potential energy of face-centered cubic Cu with the heathbath tem-
perature for different heating rates, for a system with 500 (top panel) and 5000 (bottom panel)
atoms. The vertical lines correspond to the transition temperature.

Similarly, fig. 4.13 shows the variation of Lindemann function for Cu atoms and different
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heating rates. We can clearly visualize that the melting temperature decreases with the
decrease of the heating rate. Furthermore, the Lindemann function increases linearly in
time, until a certain point and then the slope increases rapidly. The phase transition occurs
at the point of maximum curvature of the Lindemann function, i.e., the maximum of its
second derivative.
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Figure 4.13: Variation of the Lindemann function face-centered cubic Cu with the simulation time
for different heating rates, for a system with 500 (top panel) and 5000 (bottom panel) atoms. The
vertical lines correspond to the transition temperature.

We condensed the results for Cu in fig. 4.14. Both methods provide similar results,
and, as expected, the melting temperature converges with the decrease of the heating rate.
Unexpectedly, the melting temperature seems to be converged with respect to the supercell
size already for the simulation with just 500 atoms. In order to determine the melting
temperature for an infinitesimal heating rate, we fitted a straight line to the points concerning
heating rates smaller than 0.2 K/step. This resulted in a melting temperature of 1510 K,
which slightly overestimates the experimental value of 1358 K [495].

In principle, we should compare this value with the melting temperature obtained by the
PBE functional. This was the reference method to which we trained our neural networks, and
shortcomings of the PBE functional might result in a different melting temperature. How-
ever, we found no DFT simulations related to this problem, probably due to the overwhelming
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Figure 4.14: Variation of the melting temperature of Cu with the heating rate for a system with 500
atoms (top panel) and 5234 atoms (bottom panel). The straight lines are linear fits (a+ bx) to the
points with heating rate below 0.4 K/step. Coefficients are a = 1511.1± 5.14 and b = 481.0± 34.8
(500 atoms) and a = 1508.7± 7.2 and b = 505.3± 48.4 (5324 atoms). The errors only concern the
fit.

computational resources necessary. The literature contains some studies using embedded-
atom method (EAM) potentials fitted to DFT energies, whose results are then corrected with
DFT quantities. These studies delivered melting temperatures of 1176 ± 100 K [496] with
the PW91 functional [497, 498], and 1251 ± 15 K [97] with the PBE functional. Moreover,
another study with EAM potentials resulted in melting temperatures [98] of 1780 K and
1360 K. The former value came from the heat capacity method for a heating rate of 4 K/ps
and a supercell with 500 atoms, while the latter was calculated from the extrapolation of
melting temperatures of Cu clusters, to a cluster of infinite size.

We also used the same methodology to investigate the melting temperature of the face-
centered cubic structure of gold, whose experimental value is 1338 K. Figure 4.15 shows
our results for a supercell containing 500 atoms. We obtained a melting temperature of
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1048±12 K. A value which agrees perfectly with the melting temperature obtained by EAM
potentials (1090 K) [499], and disagrees with the overestimated value of the ReaxFF [500]
force-field (2125± 25 K).
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Figure 4.15: Variation of the melting temperature of Au with the heating rate for a system with
500 atoms. The straight line (a + bx with a = 1047.8 ± 12.3 and b = 557.1 ± 89.4) was fitted for
heating rates below 0.4 K/step. The errors only concern the fit.

The melting temperatures found resorting to our force-fields agree quite well with the
experimental ones. We think that difference between them comes from limitations of the
PBE approximation and not from the fit itself, which was rather good (see table 4.3.)

4.5.3 Structural prediction and defects

We studied the formation of defects in a supercell of cubic Si. In order to confirm our results
with DFT we perform the calculation with cells containing only 216 atoms. Our methodology
consisted in the exploration of the energy surface of Si using the MHM, coupled with our
force-field for Si, while constraining three layers of silicon in every direction of the supercell.
This ensures that the structures found by this global structure prediction method differ
from the cubic silicon structure only by point defects (and deformations caused by them)
inside the enclosing constrained volume. For example, the first local minima found by the
MHM corresponds to the pristine structure. However, the second contained a vacancy and a
interstitial. Furthermore, we repeated this methodology with supercells containing additional
and fewer atoms, specifically 216± 3 atoms. We let the MHM run until around 400 minima
were found for each supercell. We should note that performing these calculations with DFT
would require months in a supercomputer, while with the neural network force-field this
took about a week in a single core of a standard desktop computer. This is remarkable and
shows the potential of our force-fields: indeed they allow to study complex large systems in
an efficient, more systematic way.

After finding all these minima, we removed the constrains and relaxed all these structures
with our force-field. Moreover we also relaxed them with DFTB, using the implementation
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Defect Energy (eV) N Spg
Split (X) interstitial 3.581 217 35
Tetrahedral (T) interstitial 3.647 217 215
Hexagonal (H) interstitial 3.625 217 160
Extended split (EX) interstitial 4.263 217 35/8
Vacancy 3.765 215 215
Vacancy (deformed) 3.664 215 111

Table 4.4: PBE formation energy of the most common point defects in Si that we found. N
indicates the number of atoms and Spg the space group number.

of dftb+ [489] and the parameterization of Ref. [476], and with DFT using the PBE ap-
proximation as explained in the appendix A.

We note that the neural network force-fields found fictitious minima that disappeared
with the PBE relaxations. Furthermore, some of the defect formation energies were incor-
rectly estimated by our force-field. The DFTB parameterization also led to some of these
problems, yet at a smaller scale. Regardless, we found most of the well-known low-energy
point defects of silicon [501, 502] and listed them in table 4.4.

In particular, we found a slightly distorted version of the split (X) dumbbell interstitial
that we depict in fig. 4.16 alongside the tetrahedral and the hexagonal interstitials. The
DFT energies found agree with the values found in the literature, for example in Refs. [501,
502]. In fig. 4.17 we show the vacancies listed in table 4.4. While both correspond to the

Figure 4.16: Example defects in Si: split (X) dumbbell (left), the tetrahedral (middle), and the
hexagonal (right) interstitial. In blue we show Si atoms that are in the same positions as the atoms
in the pristine structure, in red vacancies, in green the interstitial atoms, and in grey atoms that
were displaced due to the defect.

pristine diamond structure of silicon with a missing atom, in the latter the lattice is also
slightly deformed. This leads to fewer symmetries and to a lower formation energy for the
defect (akin to a Jahn-Teller deformation [503]). Additionally, the left panel of fig. 4.17
shows the extended split (EX) interstitial. Missing in table 4.4 is the fourfold coordinated
defect [502] (FFCD) which has the lowest formation energy among all defects of diamond
structured silicon. This defect is formed by a bond rotation followed by reconnecting all
broken bonds [475]. Similarly to other force-fields [504], and even other machine learning
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Defect Energy (eV) N Spg
Frenkel 4.732 216 35
Special FFCD pair 4.193 216 1
FFCD+vacancy 4.981 215 1
X+T 5.392 217 160
X+FFCD 4.362 217 1
Di-vacancy 5.441 214 12
W 5.214 218 1
complex 5.739 218 8

Table 4.5: PBE formation energy of the other low formation energy defects. N indicates the number
of atoms and Spg the space group number.

force-fields [475], our neural network force-field could not stabilize this defect. In fact,
relaxation of a structure containing this defect leads to the Si diamond structure. This
happens because our data sets do not contain elements resembling this bond rotation process.
So, we believe that the solution to this problem involves the extension of the training set with
such structures and, maybe, the development of features (in this case symmetry functions)
dependent on the torsion (or dihedral) angles present in the structures.

Figure 4.17: Extended split (EX) interstitial (left panel) and vacancy defects in Si without defor-
mation (middle panel) and with deformation (right panel) of the neighbouring atoms. In blue we
show Si atoms that are in the same positions as the atoms in the pristine structure, in red the
vacancy, and in grey atoms that were displaced due to the defect.

Table 4.5 lists other interesting low energy defects found with our methodology. The first
two defects in the table were found with a supercell of 216 atoms and can be visualized in
fig. 4.18. The first of these corresponds to a Frenkel defect: one atom leaves its position in the
lattice and becomes an interstitial. The second one is much more interesting, consisting of a
special case of two pairs of FFCDs in which the pairs are rather close together. The distance
between the closest atoms from each pair is just 2.33 Å, for comparison the distance between
the interstitials in the FFCD is 2.25 Å. This is a remarkable finding, since our force-field
does not stabilize the single FFCD but manages to stabilize the special case when two pairs
of FFCD interact with each other. Since the pairs interact with each other, the formation
energy of this defect (4.193 eV) is smaller than the combination of two FFCD (2.42 eV).

The following three defects from table 4.5 are depicted in fig. 4.19. The first of these was
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Figure 4.18: Frenkel defect (left panel) and special pair of two FFCDs (right panel). In blue we
show Si atoms that are in the same positions as the atoms in the pristine structure, in red vacancies,
in green the interstitial atoms, and in grey atoms that were displaced due to the defect.

discovered with a supercell containing 215 atoms and consists of a FFCD and a vacancy.
The last two appeared from a supercell containing 217 atoms. The former consists of a
combination of the X and the T interstitials. The latter involves a X interstitial and a
FFCD. Once again, our force-field managed to find a composite of point defects involving
the FFCD.

Figure 4.19: Composite defects: combination of a vacancy with the FFCD (left panel), XT di-
interstitial (middle panel), and a combination of a X interstitial with the FFCD (right panel). In
blue we show Si atoms that are in the same positions as the atoms in the pristine structure, in red
vacancies, in green the interstitial atoms, and in grey atoms that were displaced due to the defect.

Finally, the last 3 defects of table 4.5 can be visualized in fig. 4.20. The first of these
was found from a supercell containing 214 atoms and consists of a di-vacancy. In this defect
two neighbouring atoms are missing from the lattice. Its formation energy agrees with other
results present in the literature, for example in Ref. [501].

The last two defects appeared in the search involving a supercell containing 218 atoms.
One is a W di-interstitial with a slight deformation of the lattice, while the other is a
rather complex defect. It appears to be a FFCD combined with two X interstitials, with
all interstitials so close together that they all interact and form a defect with a formation
energy of 5.739 eV.

We found no low formation energy defects (below 6 eV) for supercells containg 213 and
219, i.e. supercells of diamond Si missing 3 atoms or containing 3 additional atoms. More-
over, here we discussed only the low-formation-energy defects that we found. Our force-fields
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Figure 4.20: Three defects of diamond Si: Di-vacancy (left panel), W di-interstitial (middle panel),
and a complex defect. In blue we show Si atoms that are in the same positions as the atoms in
the pristine structure, in red vacancies, in green the interstitial atoms, and in grey atoms that were
displaced due to the defect.

found other, such as di-insterstitials composed of 2 tetrahedral insterstitials and a combina-
tion of a tetrahedral and a hexagonal interstitial. The formation energy of these composite
defects was close to the sum of the energies of the point defects.

To our knowledge, this was the first application of machine learning force-fields for the
systematic exploration (with structure prediction methods) of defects in diamond structured
silicon. Other machine learning studies involve only the relaxation of the defect structures
with the force-fields.

Moreover, these results lead us to devise a methodology for future global structure pre-
dicting endeavours. Fast-to-evaluate neural network force-fields can be used to sample the
energy surface and to find a set of local-minima structures. Afterwards, this set should be
filtered with DFTB and finally refined using DFT calculations. A methodology such as this
one can, in principle, reduce the amount of computer resources necessary to study large and
complex systems and make the structure prediction search much more efficient.

4.6 Interpretability of the neural networks

Now, we would like to discuss the interpretability of neural networks. According to Lipton et
al. [505] the abstract idea of interpretability of machine learning algorithms can be divided
into 4 different concepts: simulatability, decomposability, algorithmic transparency and post
hoc interpretability.

Simulatability concerns the ability of a human beings to follow the calculations that
occur in the model. This is not the case for neural networks, as it is not the case for DFT
calculations that we try to reproduce.

Decomposability pertains to the intuitive interpretation of the different parts of the
model. The Behler symmetry functions that serve as our inputs can be seen as decay-
ing pair wise or angular distribution functions and their parameters have been thoroughly
described. The weights of the neural network, can be seen as fitting parameters. However,
giving meaning to all of them stands as a seemingly impossible task, with the exception of
bias neurons that shift the activation functions. It is difficult to give meaning to each calcu-
lation that occurs in the neural network and impossible to identify the contributions of each
part to the energy, e.g., the part of the network that calculates the kinetic energy contribu-
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tion to the energy. The calculation can however, be seen as an highly complex non-linear
fit.

Algorithmic transparency on the other hand is related to the grasp of the error surface
and the ability to predict the output of the model based on the inputs. In this regard, neural
networks are frowned upon due to their non convexity. In fact, the same activation functions
that are responsible for the success of neural networks due to their non linearity, are also
responsible for the multiple local minima for which the neural network optimization tend
to converge. This topic has been thoroughly discussed, for example in [506]. Nevertheless,
even a local minima can provide more useful and accurate results than other methods.
Furthermore, we believe that the training for forces and stresses is very helpful, as we are
restricting the optimization of the neural network to a Pareto curve. We would also like
to point out that these quantities are calculated in a consistent and physical manner in
the neural networks force-fields that we presented: through analytical differentiation of the
energy.

Finally, post hoc interpretability concerns the knowledge that can be gained from the
model itself. One can for example study the importance of pair wise or three body inter-
actions to the energy using the symmetry functions. Neural networks are often regarded
as black box algorithms. However the picture that has been painted over the years might
not be so grim. With every study, the understanding of neural networks increases and, at
least, they can be seen as powerful mathematical tools that are capable of efficiently and
accurately approximating functions.

So, what can we expect from neural network, or other machine learning, force-fields? We
do not believe DFT will ever be replaced by machine learning force-fields. Yet, they will
provide descriptions for regions of the PES that are not quite accessible within DFT, and by
extent, other electronic structure methods. Moreover, these force-fields will allow for more
accurate simulations (such as MD runs) than those provided by simpler fitting methods
(such as classical force-fields), and will permit considerable faster samplings of the PES,
which translates into a considerable speed-up for global structure prediction methods [414,
431, 434].



Chapter 5

Copper based materials and cluster
expansions

The world to me was a secret, which I desired to discover; to her it was a vacancy, which
she sought to people with imaginations of her own.

Mary W. Shelley
Frankenstein

Discover... Our objective is to discover new materials and often that requires the develop-
ment of different techniques and methodologies to study them. Usually a certain compound
admits many crystal phases, however only a fraction of them are indeed stable, i.e., the com-
pounds only crystallize in some of these phases. Moreover, some of these phases can even
interact with each other and change the properties of the compound. For example, among
copper based materials, a rather common occurrence is the stabilization of a compound due
to copper vacancies.

In this chapter we present studies of copper based materials using cluster expansions.
We start by explaining cluster expansions and then we discuss photovoltaics materials and
transparent conducting semiconductors (TCSs), in particular CZTS and cuprous iodide,
respectively. Our work with CZTS focus on a stability study using genetic algorithms, and
on the transition between the kesterite and stannite structures under the incorporation of
iron. Our application of cuprous iodine involves the formation of stable phases with copper
vacancy complexes.

5.1 Cluster expansions

In the previous chapters, we discussed the construction of approximations for the potential
energy surface using machine learning. A similar approach consists on the expansion of
the energy of a system in terms of effective cluster interaction (ECI), which embody the
energetic information of the underlying crystal structure. This approach is usually denoted
as cluster expansion [507–509] and can be understood as a generalization of the Ising model
Hamiltonian.

The definition of the cluster expansion starts with mapping of each site i in a parent
lattice with a occupation variable σi. For the case of a binary allow, these variables mimic
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the spin and can take values of ±1 according to the type of atom that occupies the site.
A specific arrangement of these occupation variables denotes a configuration and can be
represented by a vector σ containing all the individual occupation variables. We note that
the cluster expansion can be formally defined for arbitrary multi-component alloys [509].
However here we focus on cluster expansion for binary alloys as implemented in the MAPS
code of the alloy theoretic automated toolkit [510] (ATAT), which we used to construct the
cluster expansions presented in this chapter.

Continuing with the definition, the energy of an alloy can then be parameterized as the
following polynomial of the occupation vector:

E(σ) =
∑
α

Jαmα

〈∏
i∈α′

σi

〉
, (5.1)

where the sum is taken over all the non-equivalent clusters α and the averaged product over
all the equivalent clusters α′. By cluster we mean a set of sites i, and equivalent clusters
means that they can not be transformed into another by a symmetry operation of the space
group of the parent lattice. Furthermore, mα denote the number of equivalent clusters, and
Jα represent the coefficients of the expansion. In this formalism, they are usually designated
as multiplicities and ECIs, respectively. The product between the multiplicities and the
spin-products averaged over the entire lattice define the correlation matrix, which can be
understood as the probability to find the cluster α in a configuration σ. This quantity can
be written more explicitly as

Πk,n(σ) = mα

〈∏
i∈α′

σi

〉
=

1

k
· 1

λ
· 1

mα

λ∑
I=1

mα∑
I=1

σI1σI2 · · ·σIk (5.2)

where λ is the number of atomic sites i in the unit cell, and k the number of vertices in
the cluster. If all the clusters α are included in the sum, then the cluster expansion can
represent any function of the configuration (such as the energy E(σ)), provided we have
appropriate ECIs. However, the expansion converges quickly in practise. So, usually only
compact clusters are considered, such as small pairs and triplets.

The Jα remain as the only unknown variables and their determination follows from the
Structure Inversion Method or the Collony-Williams method [511]. Basically, this method
requires the calculation of the energy of a small number of configurations using first principles
methods (in our case DFT as described in appendix A), and the calculation of the correlation
matrix. Then, the Jα correspond to the least square solution of eq. (5.1), i.e., the solution
of its normal equation [512].

To measure the predicative power of the cluster expansion, the MAPS code uses the
cross-validation score defined as

CV =
1

n

n∑
i=1

(
Eref
i − E(i)

)2
, (5.3)

where n represents the total number of structures, Eref
i the energy of structure i obtained

with the reference method, and E(i) the prediction of the cluster expansion obtained from
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the least-squares fit to the n − 1 other structural energies. So, this quantity estimates the
error made in the prediction of energies for structures not included in the fit [510].

Similarly to the neural networks force-fields from last chapter, the cluster expansion
allows for a concise and computational efficient mapping of the configuration of an alloy and
its energy. This allows the study of several thermodynamic properties and phase diagrams
using statistical mechanical techniques, such as cluster variation method [513, 514], Monte
Carlo simulations [515], and low and high temperature expansions [514, 516]. Often a well
converged cluster expansion suited for this techniques requires fewer than 20 ECI and the
calculation of the energy of 30 to 50 ordered structures. Contrary to the neural networks
force-fields, the variation of the energy with respect to the positions (or the infinitesimal
strains), can not be performed. Furthermore, this formalism does not allow for the calculation
of displacements, as the lattice sites of each structure are fixed to those of the parent lattice.
This means that forces and stresses can not be calculated using this formalism.

5.2 CZTS

Nowadays, one of the most promising and sustainable energy sources originates from pho-
tovoltaics, which converts solar energy into electricity. The market and the industry are
centered around waver-based silicon solar cells due to silicon’s optimal band gap, abundance
in the earth’s crust, non-toxicity, and also because chemical and semiconductor industries
mastered its technology [517]. Here optimal band gap refers to the range [1.1,1.4] eV cal-
culated according to the Shockley–Queisser detailed-balance efficiency limit [518, 519] for
single-junction solar cells. Nevertheless, researchers undertook the challenge of developing
more efficient solar cells. This can be achieved by improving the design of the devices or by
employing different materials, in an attempt to optimize the properties that influence the
efficiency of the cells. For example, the silicon band gap is close to optimal, yet it is indirect.
As a result, the absorption coefficient is low and varies slowly around the gap, therefore a
thicker wafer or film is required to absorb photons with energies above the gap. However,
this leads to higher Auger recombination, which decreases the open circuit voltage of the
cell [520]. Obviously, optimizing all of these influences the cost of the cell, which is another
important factor in the development of the solar cells. Chemical and semiconductor indus-
tries are interested in mass production of these photovoltaic cells, and this requires cheap,
easy to manufacture, non-toxic, efficient cells built from fairly available materials.

Presently, the most efficient device is a multi-junction solar cell [521–524], which con-
sists, as the name implies, in combining several p-n junctions. Furthermore, using different
materials, allows for a broader range of frequencies to be absorbed. An example of this type
of device is the GaSb-based solar cell [525] that achieved a combined module efficiency of
41.2%. This would not, however, be possible without single p-n junctions, so in table 5.1, we
show the world-record single junction solar cell efficiencies for different materials [520, 526].
When compared to the 25% efficiency of silicon solar cells from 1999 [527, 528], we see the
advances in the field of photovoltaics. The maximum for silicon cells rose to 26.7%. From
the table, we clearly see that some materials can be use as an alternative to silicon, basically
those with efficiencies above 20%, such us CuInGa(Se,S) (CIGS) or GaAs (the most efficient
material). Nonetheless, we note that these record efficiencies are constantly being surpassed.
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Material Efficiency (%)

Crystalline Si 26.7
Multicrystalline Si 22.3

Amorphous Si 10.2
Nanocrystalline Si 11.9

GaAs 29.1
GaInP 21.4

InP 24.2
CuInGa(Se,S) 22.9

CdTe 21.5
perovskite 23.7

CuZnSn(Se,S) 12.6
dye/TiO2 11.9
organic 15.6

quantum dots 13.4

Table 5.1: Record efficiency for single-junction solar cells. More information can be found in
Ref. [520, 531, 532]. Record efficiencies were taken from the references listed.

Although very promising, solar cells made out of some of these materials raised several
concerns. For example arsenic is highly sought after, due to GaAs [529] applications (it
is particular important in the most recent smartphones), yet it can be poisonous and has
contaminated groundwater. Another example is indium, which is relatively rare (low abun-
dance), toxic, and highly demanded, due to its use in screen displays. This caused problems
for CIGS solar cells and the growing consensus was to replace CIGS by a cheaper, indium-free
material with identical properties, such as the possibility to tune the band gap continuously
in the range [1.04,1.65] eV, by varying the In/Ga ratio [530].

Examples of these indium free-materials are Cu2ZnSn(S,Se)4 [533–536] (which is usully
designated as CZTS) and Cu2ZnGe(S,Se)4 [537, 538]. Although explored, the latter is not
really an alternative, according to the above mentioned desires, as Ge is as expensive as
Ga or In. On the other hand, the kesterite structured Cu2ZnSn(S,Se)4 has high absorption
coefficients, direct energy band gap tuned in the range [1,1.5] eV by varying the S/Se ratio,
and abundant, non-toxic, low-cost constituents [539]. Unfortunately, this material is more
promising than efficient as we can see in table 5.1. The efficiency of 12.6%, which is below
half of the theoretical S-Q detailed-balance efficiency limit, stems from the difficulty in
preparing CTZS without the formation of secondary phases [540]. While benign secondary
phases may exist, usually they are detrimental to cell efficiency, as they normally increase
carrier recombination rates, leading to an increase of resistance and loss of open-circuit
voltage. Furthermore, not only CZTS compounds exist in a rather narrow region of the
phase space [541–543] but they can also decompose due to Mo back-contacts [544] and the
evaporation of volatile S/Se and SnS/Se [545–547].

Additionally, CZTS can also crystallize in a stannite structure. Both the stannite and
kesterite structures can be outlined as the same 1 × 1 × 2 zincblende supercell with the
difference between them lying with the atom (Cu, Zn, or Sn) positioned at certain fcc lattice
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sites (see fig. 5.1). Even though the kesterite structure is the ground state structure, a mere
3 meV/atom difference separates both phases. This indicates that disorder in the cation
sub-lattice can occur under standard growth condition, and this disorder can alter the band
gap of the material by 0.15 eV [534]. Similarly, the incorporation of extrinsic impurities can
also change the energy band gap and improve the performance of the material. The most
discussed and already mention is the ratio between S/Se, nevertheless other replacements
are certainly possible. For example the substitution of Zn by Fe can increase the band gap
and allow for the application of the resulting material in Si-based tandem solar cells, as the
lattice constant lies between those of CZTS and the stannite structured Cu2FeSnS4 (CFTS).

Figure 5.1: Kesterite (left panel) and stannite conventional tetragonal unit cells. Cu atoms are in
blue, Se in yellow, Sn in gray, and Zn and Fe in red.

Also worth mentioning are the possible lattice defects that can change the properties of
a material, such as conductivity, colour (i.e. absorbing or emitting light), and recombination
processes. CTZS (a quaternary compound) allows for a plethora of possible lattice defects
such as vacancies, antisites, and interstitials. The study of the formation energy [548, 549]
of these defects reveal that the p−type conductivity and the difficulty in achieving n−type
doping in CZTS comes from the lower formation energy of acceptor defects (with respect
to donor defects). Moreover, the lowest energy defect is the CuZn antisite and not the Cu
vacancy like in other compounds (for example Cu−based chalcopyrites [550, 551]). However,
this defect is detrimental to cell efficiency, so that Cu−poor and Zn−rich growth conditions
are beneficial to improve the efficiency as shown experimentally [552].

This shows the importance of the description of secondary phases of CZTS, as well as
the study of its defects, and of the incorporation of extrinsic impurities.

5.2.1 Genetic algorithms and stability

As mentioned above, one of the reasons for the low efficiency of CZTS, comes from the
incapability to synthesise it without the formation of additional secondary phases. Thus,
it becomes apparent how important it is to study the stable phases of this compound [540,
542, 543, 553, 554].
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For example in Ref. [540], Schwartz et al. perform this study with atom probe tomography
and DFT, and report the existence of two metastable phases with a distorted zincblende
structure that might even be benign to the cell performance: Cu2Zn5SnSe8 and Cu2Zn6SnSe9.
Their phases come from MHM runs and from a procedure that resembles its outer loop,
which was employed for supercells containing 48 to 54 atoms. Furthermore, ZnSe pairs
were added consecutively to Cu2ZnSn(S,Se)4 with the intent to find other iso-electronic
compounds. This revealed that Cu2Zn5SnSe8 and Cu2Zn6SnSe9 are both stable with respect
to the decomposition into binary and ternary compounds. Additionally, this showed that
the most favorable decomposition is always the one that follows Cu2ZnSnSe4+ xZnSe, where
x is a positive integer.

Here, we intended to validate these findings by performing structure prediction for su-
percells of Cu2SnSe3 + xZnSe compounds using genetic algorithms. However and due to
the computational cost of such endeavour, we decided to first construct a cluster expansion
for these compounds in the zincblende structure, and then use it for the global structure
prediction search. This methodology had already been used in for example Ref. [555, 556].
Nevertheless, we had one additional objective, i.e., to evaluate the predictability power of
the cluster expansion method.

We fitted a cluster expansion with atat [508] for these particular compounds and ob-
tained a cross-validation error of 17 meV/atom. All the calculations required were performed
at the level of DFT with the PBE approximation for the exchange and correlation functional,
as implemented in vasp code [477, 478]. More information on the DFT calculations can be
found in the appendix A.

For the genetic algorithms, we just considered the positions of the atoms in the zincblende
structure and allowed for the exchange between Cu, Sn, and Zn atoms. Then, each individual
of the population consisted on a vector containing the type of atom present at each position.
We perform calculations for different number of atoms, from cells containing from 2 (for
ZnSe) to 32 lattice sites. Most of the calculations took into account a population with 30
individuals but we also perform calculations with higher populations, up to 400 individuals.

The fitness function consisted on the evaluation of the energy of the structures using the
cluster expansion. The recombination operator was just a 2-point crossover. Yet, special
care was taken to keep the composition constant over the simulations. This means that a
population that starts with 2 Cu atoms ends with 2 Cu atoms. The mutation consisted on
the exchange of the positions of two atoms.

From the GA runs, we found that it was sufficient to perform simulations with 100 genera-
tions. The lowest energy minima found were then recomputed with the PBE approximation,
and in these calculations the structures were allowed to relax. In this manner, only a small
subset of the structures found were refined with DFT. Figure 5.2 depicts our results and
those of Ref. [540].

Our methodology was able to find the lowest energy phase of Cu2ZnSnSe4 (found in the
hull) and several phases for other concentrations. In particular, we found phases with similar
energy to those found in Ref. [540] for Cu2Zn5SnSe8 and Cu2Zn6SnSe9. We should note that
we found structures with 2 meV (for the former) and 4 meV (for the latter) lower formation
energy. Additionally, we also used different references for the calculation of the formation
energy, which explains the differences in this quantity in both studies. Regardless, most of
the phases found possess a positive formation energy and are not placed in the convex hull of
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Figure 5.2: Phase diagram of Cu2ZnxSnSex+3 compounds. The formation energies presented are
per atom. In green we show the convex hull of thermodynamic stability, with blue circles our
results, and with orange triangles the results from Ref. [540].

stability, i.e. most of the structures found can decompose into ZnSe and other structures in
the Cu2ZnxSnSex+3 compound. So, we conclude that these structures are thermodinamically
unstable.

However, we found a lower energy structure for Cu4ZnSn2Se7 (see fig. 5.3 for its depiction).
This structure also appears to be a distortion of the zincblende structure, such as those found
for Cu2Zn5SnSe8 and Cu2Zn6SnSe9. From fig. 5.2 we observe that this structure is almost at
the convex hull of stability and the structure with highest probability to be stable, among
those we found. This is an incredible result for this methodology that combines GA and
cluster expansions.

Figure 5.3: Crystal structure of Cu4ZnSn2Se7. We use the same colour scheme as in fig. 5.1.
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In this simple example, a cluster expansion proved to be a reliable method to predict
DFT formation energies and construct phase diagrams. Instead of continuing with this
study focused on the prediction of secondary phases of Cu2ZnSnSe4, which would involve
the introduction of Cu vacancies and larger supercells, we decided to tackle the problem of
the substitution of Zn by Fe, and investigate the stability of Cu2Zn1−xSnFexSe4 compounds
using this methodology.

5.2.2 Kesterite or stannite

We studied the stability of Cu2Zn1−xSnFexSe4 compounds with a similar methodology to
the one presented in the last section. Our objective was to find stable structures with lattice
parameters close to those of Si. Thus, we constructed two cluster expansions, one for the
kesterite structure and the other for the stannite structure, where the lattice sites corre-
sponding to the Zn or Fe atoms (respectively) can be occupied by either of these elements.
We obtained extremely accurate cluster expansions with cross-validation errors of 3.7 meV
for the kesterite and 4.4 meV for the stannite structured compounds.

All the calculations required were performed at the level of DFT with the PBE approxi-
mation for the exchange and correlation functional, as implemented in vasp code [477, 478].
More information on these calculations can be found in the appendix A.

In fig. 5.2 we present some preliminary results, corresponding to the structures investi-
gated while constructing the cluster expansion (with the blue circles and the orange squares).
The next step would involve the prediction of the formation energy of supercells found with
the genetic algorithms. However, before starting such study we found Ref. [557], where
Shibuya et al. investigated the transition between the kesterite and stannite structures using
the PBE approximation and supercells containing 64 atoms (5 concentrations of Fe for each
type of crystal structure). Additionally the authors also calculated the band gaps of such
phases. In fig. 5.2 we show the formation energies calculated for their structures with the
green and the yellow symbols. Unfortunately, we did not manage to reproduce exactly their
formation energies, as we limited the density of k-points to a maximum of 1000 per atom
k-points, which usually yields a precision around 2 meV/atom in the total energy. This is
a good approximation since, usually, entropic or Van der Waals effects (which we neglect)
have a larger contribution to the formation energy. Yet, the differences in the formation en-
ergies for these structures is rather small, for example our phase diagram shows a maximum
difference of around 10 meV.

Nevertheless, we observe the same behaviour as in Ref. [557]. The kesterite structure is
more stable for concentrations of Fe in the range [0,0.5[ while the stannite structure becomes
more stable for concentrations of Fe above or equal to 0.5.

5.3 Cuprous iodide

Previously we discussed the importance of transparent conducting semiconductors (TCSs) in
the development of solar cell devices. Additionally their high conductivity and transparency
makes them suitable materials for many other applications, such as infrared reflective coat-
ings and electrochromic displays, among other examples [558, 559].
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Figure 5.4: Phase Diagram of the Cu2Zn1−xSnFexSe4 compounds. The formation energies pre-
sented are per atom. The blue circles and the orange squares represent our kesterite and stannite
structures, respectively. The green triangles and the red triangles correspond to our attempt at
reproducing the kesterite and stannite structures from Ref. [557]. We subtracted the formation
energies of the kesterite structured Cu2ZnSnS4 and the stannite structured Cu2FeSnS4 from the
corresponding phases.

As usual, these semiconductors can be divided based on their doping or percentage of
major charge carriers. And while several n-type TCSs have been proposed in the recent
decades and applied in industry, for example In2O3, SnO2, ZnO, and GaN, not so many
p-type TCS have been found [559]. The list of the known p-type TCS contains: NiO [560]
which was the first to be found, the entire family of Cu oxides with the delafossite structure
(such as CuAlO2 [561]), CuMO2compounds [562] where M is a trivalent cation and Mg-
doped CuCrO2, Mg-doped CuCrO2 with a perovskite structure [563], and cuprous iodide
(CuI) [564, 565]. Although discovered in 1907 [564], only recently did CuI appeared as the
most promising p-type TCS [565].

Previously, the record for the highest conductivity among p-type TCS belonged to Mg-
doped CuCrO2 with 220 S/cm, yet it also displayed a low transmittance (around 30% for
films with a thickness 250 nm) [562]. The LaCrO3 perovskite doped with Sr exhibited better
transmittance (42.3%), however it lacked conductivity (only 54 S/cm). Recently the record
was taken by CuI thin films [566], which achieved a room-temperature hole conductivity of
σ > 280 S/cm, while maintaining a transmittance over 70%. The growth of these thin films
occurred in iodine-rich growth condition, which favors the generation of Cu vacancies. These
vacancies manifest the lowest formation and ionization energies among all native defects (for
both Cu-rich or I-rich equilibrium growth conditions [567, 568]) and constitute the dominant
acceptors [569] in CuI. Consequently they are responsible for the p-type conduction of CuI
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thin films. This agrees with the findings of Maurer [570] and Bädeker [564].
An interesting observation, concerns the comparison between γ-CuI and other Cu com-

pound, such as the already mentioned Cu(In,Ga)(S,Se)2 (CIGS) and Cu2ZnSn(S,Se)4 (CZTS).
In both of these direct band gap materials, the Cu vacancies occur in large quantities [571]
and boast low formation energies. Moreover, the literature contains examples of neutral de-
fect complexes that are energetically favorable in CIGS, such as the complex formed by two
Cu vacancies and a Cu-{In,Ga} anti-site [572], which leads to the formation of ordered-defect
phases that stabilized the stoichiometries CuIn5Se8, CuIn3Se5, Cu2In4Se7 [573–576].

Furthermore, other studies of CuI revealed that this material can achieve a high optical
transparency (90%) [577], hole concentrations in the range of 4.0×1016–8.6×1019 cm−3, with
mobilities of 2–43.9 cm2V−1s−1 [565, 577], and effective masses of 0.30(1) me for the elec-
trons, 2.4(3) me for heavy holes [578], and 0.2–0.25 me [579] for light holes. Concerning its
(direct) band gap, measurements at T = 80 K resulted in a value of 3.1 eV [580], while room
temperatures measurements provided values in the range 2.93–3.03 eV [581–584].

Structurally, CuI is a very interesting material, that can exist in several polymorphs.
At standard temperature and pressure, CuI crystallizes in the zincblende structure (usu-
ally designated as γ−CuI). Then, with the increase of temperature CuI takes a wurtzite
structure between 643 and 673 K (β−CuI), and a rock salt structure above 673 K (α−CuI).
Meanwhile, with the increase of pressure the zincblende phase changes into a rhombohedral,
a tetragonal, or a cubic phase [565, 585]. Additionally, CuI can also form some trigonal
layered phases [586–589].

From a more technological point of view, these properties allowed for the creation of var-
ious opto-electronic devices, such as a hole transport layer in solid-state dye-sensitized [590],
perovskite solar cells [591–593], hole-selective contacts in organic solar cells [594], light emit-
ting diodes [595], and a transparent flexible thermoelectric material [596]. The application
of CuI for the construction of these devices offers several advantages. First, this is an
environment-friendly material: non-toxic and quite abundant. Moreover, the zincblende
structure is ideal to match with those of the conventional semiconductors, while its direct
band gap of ∼ 3 eV provides further benefits in the construction of p–n junctions [597].
Even from a chemistry point of view, this is an interesting compound since it exhibits a CuI

oxidation state rather than CuII such in other halide salts of copper. This occurs due to the
difference in ionic radii between Cu and I, and due to the powerful reducing capabilities of
I−, which can reduce spontaneously CuII to CuI.

5.3.1 Copper vacancy complexes and stability

As mentioned above, the Cu vacancies exhibit the lowest formation energy among CuI defects
and provide the greatest contribution to the p−type conductivity of CuI. However, the
literature lacks information on how these Cu vacancies organize themselves in this material,
do they form complexes like in CIGS semiconducting absorbers or do they spread all over the
material as single point defects? Likewise, no exhaustive study answers questions related to
their maximum and optimal concentrations. Here, we intend to provide an answer to these
questions. This research was published in Ref. [25].

Our objective consisted in the study of stable phases of the Cu-I binary compound, with
special focus on Cu vacancies in γ-CuI and their interaction with themselves. Furthermore,
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we tried to understand if the interaction between vacancies can lead to stable ordered-defect
compounds. To accomplish this objective we explored exhaustively the phase diagram at
zero temperature and pressure of the Cu–I system. We used the MHM to solve this global
structural prediction problem. Moreover, we resorted to DFT with the PBE approximation
for the exchange and correlation functional, as implemented in vasp code [477, 478] to
perform the necessary calculations. More information on the calculations can be found
in appendix A. The standard procedure to compare energies of multiple compounds is to
use the highest k-point density and energy cutoff of all compounds to eliminate systematic
errors [598]. The convergence tests for the zincblende CuI revealed that for a 1000/atom
k-point mesh (which corresponds to a 8x8x8 mesh) the energy is converged to better than 1
meV/atom. Further tests on other structures (as we found them) revealed that a 1000/atom
k-point mesh always ensured convergence to better than 2 meV/atom.

For efficiency reasons, we restricted the search to up to 6 atoms in the unit cell and we
stopped each run after finding around 30–80 minima. Nevertheless, the result of the MHM
was a rather complete view of the phase diagram of Cu1−xIx, with 0< x <1. These results
revealed that the Cu poor region of the phase diagram (between CuI and Cu2I3, which corre-
sponds to 33% of Cu vacancies) contained the most stable structures. Furthermore, most of
them corresponded to defected zincblende CuI. So, the next step involved the calculation of
all possible crystal structures of γ-Cu, including a variable number of Cu vacancies. We took
advantage of the software included in atat [508] to construct all possible supercells of γ-Cu,
containing up to 14 sites (or 7 I atoms) and up to 50% of Cu vacancies (i.e. 1/2 < x < 2/3).
Note that this is already a very large number of vacancies, as we expect that a large con-
centration of vacancies will surely lead to a breakdown of the zincblende structure. Turns
out that this results in 118 unique configurations, which we optimize with the PBE func-
tional and added to the phase diagram. Finally, we constructed a cluster expansion using
the atat [508] to predict the energy of all possible supercells containing up to 32 sites (16
I atoms). This was necessary since all possible combinations resulted in 30 849 geometries,
which is a rather large number of structures with a substantial number of atoms to treat with
DFT. The cluster expansion was fitted to the results of the small unit cells and achieved a
cross-validation score of 33 meV/atom. The structures that the cluster expansion predicted
to be closer to the convex hull of stability were then optimized with the PBE functional and
added to the phase diagram. We should point out that it is useless to go beyond 30% of Cu
vacancies (x > 2/3), since the breakdown of the zincblende structure will render the cluster
expansion invalid.

In this manner, we obtained a rather complete phase diagram with the PBE approxi-
mation, an approximation known to incorrectly describe formation energies by more than
200 meV/atom [599–601] on average. So, in order to improve our results, we re-optimized all
structures with the strongly constrained and appropriately normed [602] (SCAN) functional.
This meta-GGA, that obeys 17 exact constrains of the exchange-correlation functional, is
computational less efficient than the PBE but halves the average error of the formation
energies for main group compounds [603, 604].

In the end, the phase diagram that we show in fig. 5.5 contains the SCAN formation
energies of 623 unique Cu1−xIx phases. The structures with lowest formation energy are, in
descending order, Cu3I4 and Cu4I5. Both of these structures correspond to zincblende CuI
with ordered lines of Cu vacancies. With the decrease of the Cu vacancies, comes a smooth
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Figure 5.5: Binary phase diagram of Cu1−xIx obtained with the SCAN functional [602]. We
only show the relevant phases for p-type transparent conduction (x ∈ [0.45, 0.65]). Points that
are strictly on the convex hull of thermodynamic stability (specifically, the lowest energy crystal
structures Cu4I5 and Cu3I4) are represented by circles, while other phases are indicated by crosses.
The chemical potentials of the elementary phases are set to zero, so the energy values indicated
are in fact formation energies. The space groups identify some structures found in the materials
project [70], and γ and β indicates the zincblende and wurzite structures, respectively.

increase of the formation energies until it reaches the energy per atom of γ-CuI. Moreover,
the configurations with a high concentration of Cu vacancies would be further stabilized with
the inclusion of the configurational entropy in the calculation.

In the insets of fig. 5.9 we display the geometry of the structures with the lowest energy, for
which we also compute the density of electronic states (DOS). All of them exhibit lines of Cu
vacancies in the [100] crystallographic direction (see fig. 5.6), though their distribution with
respect to each other changes for each composition. This is remarkable since it indicates that
the physics of p-type CuI might not come from isolated vacancies, but from ordered complexes
of defects. Nevertheless, we should remark that although the lowest-energy structures exhibit
these lines of Cu vacancies, we also found complexes with different patterns located just
a few meV/atom higher in energy. This means that we should expect disorder vacancy
configurations in real samples, due to entropic effects, and that the interaction between
vacancies can indeed stabilize Cu-I binary systems.

Concerning the possibility to experimentally synthesize these ordered-defect structures
(as it happens with CIGS [573–576]), we believe that it might be possible for compositions
such as Cu4I5 or Cu3I4, due to the distance (in energy) between the ground state structure
and the other polymorphs. For the other compositions the distance is too small (just a
few meV/atom). Moreover, we note that there might be some disorder in the experimental
samples, as the main difference between this structures is the distribution of the Cu lines of
vacancies.

Similarly to other theoretical works [605], we confirm that the lowest formation energy
structure of all polymorphs of stoichiometric CuI corresponds to the layered structure, which
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Figure 5.6: Zincblende CuI. Copper atoms are in blue, while iodine atoms are in red. Additionally,
we show the [100] direction in red. The yellow crosses label two non-adjacent Cu atoms.

appears 18 meV/atom below the zincblende phase with the SCAN functional. Within this
approximation, this structure is not thermodynamically stable (11 meV/atom above the
convex hull), yet we believe that this results from the lack of van der Waals interactions in
the SCAN approximation.

5.3.2 Phonon dispersion

To further ascertain the stability of the lowest formation energy structures found, namely
Cu3I4, and Cu4I5, we performed phonon calculations with PHONOPY [491] and VASP [477,
478], using the frozen-phonon technique. We approximated the exchange-correlation func-
tional with the PBE functional [69] and used a cutoff energy of 720 eV, and a 10x10x12
and 10x10x8 k-point mesh for Cu3I4 and Cu4I5, respectively. The results and the additional
phonon dispersion curve of γ-CuI can be found in fig. 5.7. No imaginary modes are present
in any of the curves, which means that the structures are dynamically stable.

After gaining more confidence in the stability of these structures, we now proceed with
the study of their electronic properties.

5.3.3 Density of states

Firstly, we switched here the exchange and correlation approximation to the PBE0 [607, 608]
hybrid functional in order to describe acurately the band gap and the positioning of the d-
states of these materials, which are incorrectly estimated by semi-local functionals, such as
the PBE and the SCAN. After all, the PBE0 provides an excellent value for the gap of
zincblende CuI [609].

In fig. 5.9 we compare the DOS of the pristine zincblende CuI structure with the most
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Figure 5.7: Calculated phonon band structures for CuI, Cu3I4, and Cu4I5.

relevant defect structures we found. For an easier comparison, the energy of each structure
was subtracted by its Fermi energy, so that the curves are aligned. The DOS for all defect
structures display similarities between themselves, and differ from the pristine DOS mainly
due to some additional states that appear between the characteristic peaks of -3.7 and -3 eV
and past the Fermi energy. The former states form a peak that emerges from the hybridiza-
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Cu4I5 Cu5I7 Cu4I5

Figure 5.8: Partial charge density (yellow) integrated for the states around -3 eV for Cu4I5 (left)
and Cu5I7 (middle) and for the conduction states of Cu4I5 (right) above the Fermi energy. This
image was produced with vesta [606].

tion of Cu d-states and I p-states, and we believe that it might serve as an experimental
spectroscopy signature for these complexes of Cu vacancies. Figure 5.8 contains the depic-
tion of these new states for Cu4I5 (left panel) and Cu5I7 (middle panel). Clearly, the p-states
of I that contribute to the DOS are localized inside the lines of Cu vacancies.

Meanwhile, the additional states past the Fermi level, come primarily from the I p-states,
and extend up to 0.7–0.9 eV, which is still below the visible range. This agrees with the
experimental evidence that p-type CuI is transparent in this range. Furthermore, we show
an example of these hole states in the right panel of fig. 5.8 (for Cu4I5). The partial charge
densities of these states are very similar for the other compositions, and they all show that
these states are rather delocalized as expected, due to the small hole mass of the CuI p-type
conduction states.
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Figure 5.9: Density of electronic states for the lowest energy configuration of Cu1I1, Cu3I4, Cu4I5,
Cu5I6, and Cu5I7, which are shown in the inset. Cu atoms are in blue, while I atoms are in
purple. The lines of Cu vacancies run along the crystallographic [100] axis of the original zincblende
structure. The insets were produced with vesta [606]. The curves were calculated with the PBE0
hybrid exchange-correlation functional [607, 608], and were normalized to the number of I atoms
in each structure.



Conclusions and outlook

This lucid explanation of the phenomena we had witnessed appeared to me quite
satisfactory. However great and mighty the marvels of nature may seem to us, they are

always to be explained by physical reasons. Everything is subordinate to some great law of
nature.

Jules Verne
Journey to the Center of the Earth

Explanation... In this thesis, we explained the problems of structure prediction and of
complex and relatively large molecular dynamics simulations. Starting from the conception of
electronic structure methods, we discussed some of the most recent developments in material
science involving machine learning, and finished with our own humble contributions.

Concerning the neural network force-fields, we developed a methodology to construct
accurate representations of the potential energy surface of solids using compact training
sets. Firstly, we trained the neural networks with respect to the energy of each structure in
the training set, the forces acting on each atom, and the stresses on the lattice. Furthermore,
we implemented the extension of the back-propagation algorithm in the open-source ænet
package [212]. Secondly, we constructed unbiased and varied data sets from minima of
the potential energy surface, their distortions, structures visited during molecular dynamics
simulations, and even from 2D minima (in some cases). In this manner, we represent many
bonding configurations and we ensure an accurate description of the potential energy surface
for many phases, such as supercells, structures under pressure or with varying temperatures.
To determine the usefulness of our methodology, we trained several force-fields: namely
for Si, Ge, SiGe, Cu and Au. The quality of the reproduction of all target quantities was
satisfactory and enabled us to study relevant properties of these materials. In particular, we
calculated phonon band-structures for Si and Cu with a fantastic agreement with density
functional theory, melting temperatures for Cu and Au not that far from the experimental
values, and we studied the defects of diamond structured Si. In the latter application, we
found most of the known defects in silicon and devised a methodology to study large complex
systems involving our neural network force-fields, density functional based tight binding, and
density functional theory. To summarize, this methodology paves the way for high quality
force-fields trained with rather small training sets. In the future, we intent to further improve
this methodology with the optimization of the structure and the architecture of the neural
networks, for example: with the addition of convolutional and pooling layers.

Regarding the cluster expansions and the copper based materials, we studied successfully
supercells of CuI, Cu2ZnSnSe4, and Cu2(Zn,Fe)SnSe4 using cluster expansions. Using genetic
algorithms, we found several stable phases of Cu2ZnxSnSex+3, in particular Cu2Zn4SnSe7.
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This is an important result, as the identification of all possible metastable secondary phases
of of Cu2ZnxSnSex+3, may provide clues to optimize the efficiency of Cu2ZnSn(S,Se)4 solar
cells. Moreover, we investigated the transition between kesterite and stannite structure in
the Cu2Zn1−xSnFexSe4 compound. According to our calculations, a concentration of Fe of 0.5
or above, makes the stannite structure more favorable. Moreover, we observed the expected
increase of the lattice volume with the increase of the concentration of Fe, which might
allow for the combination of these compounds with Si to form solar cells. We find that Cu
vacancies in zincblende CuI can form complexes along the [100] crystallographic direction
and that their interactions can further stabilize this binary compound. Furthermore, CuI
admits a rather large concentration of these vacancies. From our calculations, compounds
with 10–30% of Cu vacancies appear either in the convex hull of stability or in its proximity,
which indicates that some compounds, such as Cu4I5 and Cu3I4, may be stable and able
to form ordered defect compounds. As we neglect entropic effects in our calculations, this
stabilization is only due to energetic effects. Actually, we expect even lower free energies for
these compounds if the entropy is taken into account in the calculations. Furthermore, these
results indicate that to proper understand the p-type conduction in CuI, researches should
study not only isolated Cu vacancies but also complexes of Cu vacancies. Finally, these
complexes of defects prompt the appearance of p-type conduction states, up to 0.7–0.9 eV
above the Fermi energy, and are also responsible for the appearance of deeper lying electronic
states, which may provide an experimental signature for these ordered defect compounds..

In this thesis we studied properties of six different materials and we developed efficient, yet
accurate, methodologies capable of studying many other materials. Concerning its relevance
to the field of materials science, our strategies allow to tackle problems usually left unsolved
due to the high computational price required to simulate them.



Appendix A

DFT calculations with VASP

It wasn’t even a good note. ’If you are reading this I am probably dead.’ What sort of a
note is that?

Patrick Rothfuss
The Name of the Wind

Note... We use DFT with the PBE [69] approximation to the exchange-correlation func-
tional as implemented in the Vienna Ab Initio Simulation Package (VASP) software [477, 478]
to compute the total energies, forces, and stresses of the compounds that we study. The
VASP code employs a plane-wave basis set. This basis set is orthonormal and the convergence
of the calculations increases systematically with the number of plane-waves [16]. Moreover,
the standard procedure to compare energies of multiple compounds is to use the highest
k-point density and energy cutoff of all compounds to eliminate systematic errors [598]. For
these reasons, we perform convergence tests of total energy with respect to k-point density
and with respect to the number of plane-waves.

Often we rely on the projector augmented wave (PAW) method to model the core elec-
trons with an energy cutoff of 520 eV, which normally assures an energy convergence below
1 meV/atom, and corresponds to 1.3 times the highest cutoff recommended among all the
pseudopotentials we employ. This energy cutoff controls the number of plane-waves at a
given k-point. We note that a convergence test in the total energy does not assure that all
other properties are converged. So, when necessary we increase this value. For example, for
some of the CuI phonon calculations (which involves second derivatives of the energy) in
section 5.3.2, we increased it to 720 eV.

Concerning k-points, we usually start our convergence tests using only the Γ point and
we keep increasing the k-point mesh up to 1000 per atom k-points. Usually this is sufficient
to assure a precision of around 2 meV/atom in the total energy. In table A.1 we show
an example of such a convergence. We should note that these are some of the structures
discussed in section 5.3.1. Additionally, in Ref. [598] Jain et al. performed a convergence
test of total energy with respect to k-point density and convergence energy difference for a
subset of chemically diverse compounds and found that for a 500/atom k-point mesh, the
numerical convergence for most compounds tested was within 5 meV/atom. Furthermore,
96% of compounds tested were converged to within 15 meV/atom.

Finally, most of our calculations are performed at 0 K and 0 kBar.
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k-points energy per atom (eV)
mesh number CuI Cu3I4

1x1x1 1 -2.66669404286
2x2x2 8 -2.511989175 -2.80401045857
3x3x3 27 -2.87548646 -2.79831699429
4x4x4 64 -2.935506285 -2.80029404571
5x5x5 125 -2.94796096 -2.79950188428
6x6x6 216 -2.951144695
7x7x7 343 -2.952851745
8x8x8 512 -2.95228803 -2.80003013857
9x9x9 729 -2.952937085

10x10x10 1000 -2.799941054
12x12x12 1728 -2.95276668

Table A.1: Convergence test of total energy with respect to k-point density for CuI and Cu3I4. A
1000/atom k-point mesh corresponds to 8x8x8 for CuI and 5x5x5 for Cu3I4 (in bold).
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Grey, S. R. Elliott, and G. Csányi, “Realistic atomistic structure of amorphous silicon from
machine-learning-driven molecular dynamics,” J. Phys. Chem. Lett. 9, 2879–2885 (2018).

[451] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic
algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation 6, 182–197 (2002).

[452] “esa/pagmo2: pagmo 2.11.4,” http://doi.org/10.5281/zenodo.3464510 (accessed in
2019).

[453] D. J. Montana and L. Davis, “Training feedforward neural networks using genetic algorithms,”
in Proceedings of the 11th International Joint Conference on Artificial Intelligence - Volume
1 , IJCAI’89 (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1989) pp. 762–767.

[454] J. Branke, “Evolutionary algorithms for neural network design and training,” in In Pro-
ceedings of the first Nordic workshop on genetic algorithms and its applications (1995) pp.
145–163.

[455] D. Thierens, J. Suykens, J. Vandewalle, and B. De Moor, “Genetic weight optimization of
a feedforward neural network controller,” in Artificial Neural Nets and Genetic Algorithms,
edited by R. F. Albrecht, C. R. Reeves, and N. C. Steele (Springer Vienna, Vienna, 1993)
pp. 658–663.

[456] H. Kitano, “Empirical studies on the speed of convergence of neural network training using
genetic algorithms,” in AAAI-90 Proccedings (1990) pp. 789–795.

[457] B. Yoon, D. J. Holmes, G. Langholz, and A. Kandel, “Efficient genetic algorithms for training
layered feedforward neural networks,” Information Sciences 76, 67 – 85 (1994).

[458] H. Kitano, “Designing neural networks using genetic algorithms with graph generation sys-
tem,” Complex Syst. 4, 461–476 (1990).

[459] B.-T. Zhang and H. Muhlenbein, “Evolving optimal neural networks using genetic algorithms
with occam’s razor,” Complex Syst. 7, 199–220 (1993).

[460] H. Kitano, “Neurogenetic learning: an integrated method of designing and training neural
networks using genetic algorithms,” Physica D 75, 225 – 238 (1994).

[461] J. D. Schaffer, D. Whitley, and L. J. Eshelman, “Combinations of genetic algorithms and
neural networks: a survey of the state of the art,” in [Proceedings] COGANN-92: Interna-
tional Workshop on Combinations of Genetic Algorithms and Neural Networks (1992) pp.
1–37.

http://dx.doi.org/10.1137/15M1054183
http://dx.doi.org/10.1039/C6SC05720A
http://dx.doi.org/10.1038/sdata.2017.193
http://dx.doi.org/10.1063/1.5023802
http://dx.doi.org/10.1038/ncomms13890
http://dx.doi.org/10.1038/ncomms13890
http://dx.doi.org/10.1016/j.cpc.2016.05.010
http://dx.doi.org/ 10.1021/acs.jpclett.8b00902
http://dx.doi.org/ 10.1109/4235.996017
http://dx.doi.org/http://doi.org/10.5281/zenodo.3464510
http://doi.org/10.5281/zenodo.3464510
http://dl.acm.org/citation.cfm?id=1623755.1623876
http://dl.acm.org/citation.cfm?id=1623755.1623876
https://pdfs.semanticscholar.org/af96/12b51f0bcab7013b239c333d17cf398d20b8.pdf
https://pdfs.semanticscholar.org/af96/12b51f0bcab7013b239c333d17cf398d20b8.pdf
http://new.aaai.org/Papers/AAAI/1990/AAAI90-118.pdf
http://dx.doi.org/ https://doi.org/10.1016/0020-0255(94)90068-X
https://pdfs.semanticscholar.org/2118/55f1de279c452858177331860cbc326351ab.pdf
https://pdfs.semanticscholar.org/81c0/5db7ac5d6c8c1ecbf9683fe8eff0cda4aca2.pdf
http://dx.doi.org/ https://doi.org/10.1016/0167-2789(94)90285-2
http://dx.doi.org/10.1109/COGANN.1992.273950
http://dx.doi.org/10.1109/COGANN.1992.273950


BIBLIOGRAPHY 121

[462] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learning,” Machine
Learning 3, 95–99 (1988).

[463] J. N. Gupta and R. S. Sexton, “Comparing backpropagation with a genetic algorithm for
neural network training,” Omega 27, 679 – 684 (1999).

[464] M. N. H. Siddique and M. O. Tokhi, “Training neural networks: backpropagation vs. genetic
algorithms,” in IJCNN’01. International Joint Conference on Neural Networks. Proceedings
(Cat. No.01CH37222), Vol. 4 (2001) pp. 2673–2678 vol.4.

[465] G. F. Miller, P. M. Todd, and S. U. Hegde, “Designing neural networks using genetic algo-
rithms,” in Proceedings of the Third International Conference on Genetic Algorithms (Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1989) pp. 379–384.

[466] O. E. David and I. Greental, “Genetic algorithms for evolving deep neural networks,” Proceed-
ings of the 2014 conference companion on Genetic and evolutionary computation companion
- GECCO Comp ’14 (2014), 10.1145/2598394.2602287.

[467] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune, “Deep neuroevo-
lution: Genetic algorithms are a competitive alternative for training deep neural networks
for reinforcement learning,” arXiv:1712.06567 (2017).

[468] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Automatically designing CNN architectures
using genetic algorithm for image classification,” arXiv:1808.03818 (2018).

[469] H. Chung and K.-S. Shin, “Genetic algorithm-optimized multi-channel convolutional neural
network for stock market prediction,” Neural Comput. and Applic. (2019), 10.1007/s00521-
019-04236-3.

[470] “NSGA-II-python,” https://code.google.com/archive/p/nsga-ii-python/ (accessed in
2019).
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interatomic potential for silicon,” Phys. Rev. X 8, 041048 (2018).

[476] A. W. Huran, C. Steigemann, T. Frauenheim, B. Aradi, and M. A. L. Marques, “Efficient
automatized density-functional tight-binding parametrizations: Application to group IV ele-
ments,” J. Chem. Theory Comput. 14, 2947–2954 (2018).

[477] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calcula-
tions using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).

[478] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and
semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15 – 50 (1996).

[479] P. Borlido, C. Steigemann, N. N. Lathiotakis, M. A. L. Marques, and S. Botti, “Structural
prediction of two-dimensional materials under strain,” 2D Mater. 4, 045009 (2017).
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