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1 Introduction

In the past decades, electronic devices have become cheaper, more widespread and in�uence

increasingly more aspects of people's lives. This has only been made possible due to con-

stant technological progress in the �eld of electronics. Moore's law states that the number of

transistors that can be �t on a piece of silicon grows exponentially [1], although the speed of

growth has recently been slowing down [2]. The ultimate step of miniaturization is the atomic

limit, where single atoms or molecules are used as building blocks for electronic circuits. This

is often referred to as molecular electronics [3]. Many single-molecule or single-atom devices

have already been realized in the laboratory [4;5], like wires [6], switches [7;8], transistors [9;10] and

recti�ers [11;12;13], and the goal is to create complete circuits based on atoms and molecules [14].

The advantages are evident: the smaller size leads to lower material and power consumption

and allows the fabrication of smaller and faster devices. Due to the small size, quantum e�ects

are dominant, and a wealth of quantum phenomena such as quantum interference [15;16;17] and

conductance quantization [18;19] can be observed. The additional spin degree of freedom also

allows the development of exciting spintronic applications [20], like the magnetoresistive random

access memory (MRAM) [21], which combines the speed of the charge-based conventional RAM

and the non-volatility of conventional magnetic storage devices. If these quantum phenomena

can be reliably controlled, they open up a wealth of possibilities for the development of new

molecular devices.

On the other hand, the small scale introduces additional complications. The fabrication of

structures on the nanoscale becomes increasingly more complex and requires more advanced

machinery, leading to more expensive production facilities [22]. While individual components

have already been realized on the molecular scale, their combination is far from trivial. When

contacting molecules, the exact contact geometry can play a very crucial role on the local

electronic structure and the resulting transport properties [23], particularly when connecting

molecules to metallic electrodes [23]. One possible solution for the creation of supramolecular

structures might be self-assembly [24;25]. Furthermore, the theoretical description of molecular

electronics is also considerably more complex than that of classical circuits.

A milestone in the understanding of atomic and molecular systems was the invention of scanning

tunneling microscopy (STM). It was originally invented by Binnig and Rohrer [26], who were

awarded the Nobel prize in physics in 1986 [27]. A metallic tip is placed on top of a surface,

a voltage applied and the tunneling current measured. The latter depends exponentially on

the distance of tip and surface, making it possible to directly probe the topographic structure

of surfaces with atomic resolution. An extension of STM is scanning tunneling spectroscopy

(STS) [28], which will be a central focus of this work. In STS, the STM tip is typically kept

static at a speci�c location of the sample and the applied voltage is varied. The slope of the

acquired current curve is directly proportional to the density of states of the probed material.

The development of STM and STS opened up unprecedented possibilities in the area of surface
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science: they make it possible to study individual atoms and molecules placed on top of a

surface, and directly probe their local electronic structure. This also made it possible for the

�rst time to locally measure the Kondo e�ect, which was achieved by Li et al. [29] and Madhavan

et al. [30] in 1998. Since then, STS has become a standard tool to probe the Kondo e�ect of

magnetic atoms and molecules placed on top of metallic substrates [31;32;33;34;35;36;37;38].

The Kondo e�ect was �rst observed during resistivity measurements of non-magnetic metals

with magnetic impurities [39;40]. At low temperatures, an unexpected increase in resistance was

observed. This was later explained by Jun Kondo [41] to be caused by an an antiferromagnetic

coupling between the impurity spin and the surrounding conduction electrons, leading to the

formation of the Kondo state, which acts as an additional scatterer at low temperatures.

The Kondo e�ect can be seen as an e�ect of so-called strong electronic correlation, which refers

to systems where the Coulomb interaction is strong, and can typically not be theoretically

treated with conventional mean-�eld methods. A typical example are the un�lled d and f shells

of transition metals and lanthanides, respectively. Due to their higher localization, the electrons

in these orbitals are more con�ned and the Coulomb interaction is strong. The phenomenon

of strong electronic correlation is not exclusive to metals, and can for example also occur

in conjugated organic systems [42]. It can lead to many other fascinating phenomena [43], for

instance in Mott-Hubbard insulators [44;45], heavy fermion materials [46] and high-temperature

superconductors [47;48;49].

Recent technologies facilitated the study of the Kondo e�ect in many other nanosystems, for

instance in quantum dots [50;51], in carbon nanotubes [52;53], in break-junction experiments [54],

and, as mentioned before, in the context of STS. Increasingly more complex situations can be

investigated: the Kondo e�ect in multimers on surfaces [55], in organometallic molecules [37;56],

the interplay of Kondo e�ect and magnetic anisotropy [57] and the Kondo e�ect in topological

insulators [58;59;60].

At the same time, there were considerable advances in the theoretical description of correlated

systems, where particularly the combination of density functional theory (DFT) and dynamical

mean �eld theory (DMFT) stands out [61], which made it possible to study strong electronic

correlations in real materials.

This thesis focuses on the theoretical description of electronic transport in an STS situation

when strong electronic correlations are present, and will combine DFT and the one crossing

approximation (OCA) impurity solver. The system of choice is a single magnetic Co atom placed

on a non-magnetic Cu(001) or Cu(111) surface, respectively, probed by a Cu STM tip. This

system was chosen for two reasons: �rstly, it is relatively simple. Strong electronic correlations

are present only in the d shell of the Co atom, while the rest of the system can be well described

on a mean-�eld level. At low temperatures, the Kondo e�ect is the dominant feature, and there

are no competing e�ect on the same energy scale, making it an ideal system to systematically

study. Secondly, the system has been studied extensively in the past [32;38;62;63;64;65;66;67;68;69;70],

and a wealth of experimental and theoretical results are readily available, making it an ideal
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testbed to study novel theoretical and computational methods.

This thesis is organized as follows: �rst, chapter 2 introduces the methods and theoretical con-

cepts used throughout, namely DFT, Green's function based electron transport, the Landauer

formalism, the Kondo e�ect and the Anderson impurity model (AIM). In chapter 3, the relation

between the symmetry of the orbital containing the sharp Kondo resonance and the resulting

line shape will be systematically studied. To this end, individual d orbitals are correlated and

the corresponding transport properties calculated. Chapter 4 focuses on the computation of the

partially screened Coulomb interaction U . To this end, the constrained random phase approx-

imation (cRPA) will be introduced, and the e�ect of di�erent DFT functionals and di�erently

sized polarization regions will be studied. Possible extensions to the RPA in order to increase

the size of the polarization region are presented. In chapter 5, the complete d shell of the

Co adatom will be correlated, and the correlated transmission computed. This will be done

on di�erent levels of self-consistency, starting with a one-shot calculation, and proceeding to

include the charge feedback and lastly the computation of U in the self-consistency cycle. The

�nal chapter 6 concludes this work with a �nal discussion of the results and gives perspectives

and ideas how this work can be extended in the future.
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2 Theoretical background

The quantum-mechanical many-body problem is exceedingly complicated, and its solution re-

quires the use of various strategies and approximations. The starting point is the many-body

Schrödinger equation [71], here in its time-independent formulation:

ĤΨ(~x1, ..., ~xN) = EΨ(~x1, ..., ~xN)

(T̂ + Û + V̂ )Ψ(~x1, ..., ~xN) = EΨ(~x1, ..., ~xN)− h̄2

2m

N∑
i=1

∇2
i +

1

2

N∑
i,j=1
i 6=j

e2

|~r1 − ~r2|
−

N∑
i=1

Nk∑
k=1

Zke
2

|~ri − ~Rk|

Ψ(~x1, ..., ~xN) = EΨ(~x1, ..., ~xN),

(1)

where the many-body wave function Ψ depends on the spatial and spin coordinates ~xi = (~ri, σi)

of all electrons, and E is the total energy. The many-body Hamiltonian Ĥ consists of the kinetic

energy T̂ , electron-electron interaction Û and electron-nuclei interaction V̂ . Equation 1 uses

the Born-Oppenheimer approximation [72], which separates the motion of electrons and the much

heavier nuclei. The nuclear coordinates Rk enter the wave function Ψ, energy E and all other

observables only parametrically. This assumption will be used and be valid for all situations

considered in this work.

Various methods to approximately solve the many-body problem have emerged, and are usually

a compromise between accuracy and computational feasibility, where the choice of method

heavily depends on the size of the system and the type of physical e�ect which is investigated.

In this thesis, the system in question is a typical scanning tunneling microscope (STM) setup:

a magnetic adatom is placed on a non-magnetic surface. A non-magnetic STM tip is placed on

top of the surface (see Fig. 1).

In order to describe this system, a combination of various methods is necessary, which will be

introduced in the following sections. First, the electronic structure of this in�nite, non-periodic

system will be determined on a mean-�eld level, making use of DFT, the Green's function

(GF) formalism and the partitioning of the system into device and lead regions. Afterwards,

the Landauer theory of transport will be introduced. The subsequent section is devoted to the

Anderson impurity model in order to describe strong electronic correlations and Kondo physics,

which cannot be treated by conventional perturbation theory.

2.1 Density functional theory

The many-body wave function Ψ from Eq. 1 is a mathematically complex quantity, depending

on the spatial and spin coordinates ~xi = (~ri, σi) of all electrons. One is typically interested

in quantities of less variables, like the one-body electron density n(~r) and pair correlation

functions g(~r, ~r′), which can be obtained by integration or summation of all other coordinates.

The one-electron spin density nσ(~r) can for example be obtained by integration of the squared

7



C
P

D

L

R

Figure 1: Schematic of the investigated system. An atom is placed on top of a metal surface,

and an STM tip is placed directly above the adatom. The adatom contains correlated levels C,

in this case due to a partially �lled 3d shell. The device region is labeled D. It is connected to

the semi-in�nite leads L and R. The polarization region P will be used to compute the screened

Coulomb interaction.
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many-body wave function Ψ:

nσ(~r) = Nσ

∑
σ2...σN

∫
d3r2...d

3rN |Ψ(~x, ~x2, ...~xN)|2. (2)

The total electron density n(~r) is the sum of the spin densities:

n(~r) =
∑
σ=↑,↓

nσ(~r). (3)

The electron density is much easier to grasp than the many-body wave function, particularly

for big systems with many electrons. An electronic structure theory based on the electron

density n(~r) instead of the wave function Ψ as its central variable is therefore highly desirable.

First attempts were made by Thomas and Fermi in 1927 [73;74] shortly after the initial publication

of the Schrödinger equation. Although their theory manages to describe certain qualitative

trends, for instance for the total energy of atoms, it is incapable of treating valence electrons

and does not lead to a chemical bond [75].

2.1.1 The Hohenberg-Kohn theorems

The Hohenberg-Kohn theorems provide the mathematical foundation of modern density func-

tional theory, and were proposed and proven by Pierre Hohenberg and Walter Kohn in 1964 [76]:

1. The full many-particle non-degenerate ground state is a unique functional of the electron

density n(~r).

2. The exact ground state density n(~r) minimizes the total energy functional.

Additional proves have been put forward, for instance by Levy and Lieb [77;78]. The Hohenberg-

Kohn theorems show that the many-body wave function can be written as a functional of the

electron density,

Ψ = Ψ[n], (4)

and therefore all other observables, especially the total energy, also become functionals of the

electron density:

E[n] = 〈Ψ[n]|Ĥ|Ψ[n]〉 = 〈Ψ[n]|T̂ + Û + V̂ |Ψ[n]〉 = T [n] + U [n] + V [n]. (5)

The Hohenberg-Kohn-theorem has since been extended for many other situations, for example

non-degenerate ground states [79], spin-dependency [80;81] and time-dependent systems [82]. While

the Hohenberg-Kohn theory proves the existence of the one-to-one mapping between electron

density and many-body wave function, it does not make any statement about how this mapping

can be obtained. A direct variation of Eq. 5 with respect to the density is not possible, since

the functional form of T [n] and U [n] is not known. The following section presents a practical

scheme to determine total energy and electron density.
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2.1.2 The Kohn-Sham equations

The Kohn-Sham (KS) equations go back to Walter Kohn and Lu Jeu Sham [83]. The formulation

including spin of Ref. [80] will be used. The basic idea is to map the fully interacting system

onto a system of non-interacting electrons, where the non-interacting system is chosen in a way

to yield the same electron density as the interacting system. To that end, a �ctitious system

of non-interacting electrons with spin σ is de�ned, which move within KS potentials vKS
σ and

obey the one-body Schrödinger equation:(
− h̄2

2m
∇2 + vKS

σ (~r)

)
φiσ = εiσφiσ, (6)

where φiσ are KS orbitals and εiσ the corresponding KS eigenvalues. The KS potentials have

to be chosen such that the electron density of the non-interacting �ctitious system equals the

electron density of the full interacting system. The density is then obtained by summation over

the KS orbitals:

n(~r) =
∑
↑,↓

Nσ∑
i=1

|φiσ(~r)|2. (7)

In the following, a connection between the non-interacting KS system and the fully interacting

system is established. To that end, we re-write the total energy of the full system as:

E = − h̄2

2m

∑
↑,↓

Nσ∑
i=1

〈φiσ|∇2|φiσ〉+
e2

2

∫ ∫
d3r d3r′

n(~r)n(~r′)

|~r − ~r′|
+

∫
d3r n(~r)v(~r)+Exc[n↑, n↓]. (8)

The �rst term is the kinetic energy of a system of non-interacting electrons, the second term the

classic Coulomb interaction of two charge distributions, also known as the Hartree term, and the

third term the interaction between the electrons and the atomic cores. The quantity Exc[n↑, n↓]

is the so-called exchange-correlation potential and contains all missing physical e�ects,

Exc[n↑, n↓] = T [n↑, n↓] +
h̄2

2m

∑
σ=↑,↓

Nσ∑
i=1

〈φiσ|∇2|φiσ〉

+ U [n↑, n↓]−
e2

2

∫ ∫
d3r d3r′

n(~r)n(~r′)

|~r − ~r′|
,

(9)

namely the exchange interaction due to the Pauli exclusion principle and the electron corre-

lation. The Hohenberg-Kohn variational principle can now be applied to Eq. 8, by directly

applying the functional derivative with respect to the electron density n(~r). By comparison

with the �ctitious, non-interacting system of Eq. 6, the KS potentials can be determined:

vKS
σ (~r) = v(~r) + vH(~r) + vxc,σ[n↑, n↓](~r). (10)

The KS potentials vKS
σ (~r) consist of the atomic core potential v(~r), the Hartree potential vH =∫

d3r′ n(~r′)
|~r−~r′| and the exchange-correlation potential vxc,σ. The latter is de�ned as the functional
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derivative of the exchange correlation energy Exc[n↑, n↓] with respect to the respective spin

density nσ(~r):

vxc,σ([n↑, n↓], ~r) =
δExc[n↑, n↓]

δnσ(~r)
. (11)

All many-body e�ects, and the full complexity of the many-body Schrödinger equation, are con-

tained within the local, multiplicative exchange correlation potential vxc,σ[n↑, n↓](~r), whose ex-

act form is unknown. For practical applications, approximate forms of the exchange-correlation

energy Exc[n↑, n↓] have to be found and the corresponding vxc,σ[n↑, n↓](~r) have to be determined.

The next chapter will discuss possible approximations for the exchange-correlation energy.

2.1.3 Exchange-correlation functionals

The local spin density approximation: The simplest approximation of Exc[n↑, n↓] is the

local spin density approximation (LSDA), and its non-spin polarized version, the local density

approximation (LDA). It was �rst proposed by Kohn and Sham in Ref. [83]. The LSDA assumes

that the exchange-correlation energy per particle at point ~r is given by that of a homogeneous

electron gas with the same density as the local density n(~r). Exc is then obtained by integration:

ELSDA
xc [n↑, n↓] =

∫
d3r n(~r)εxc(n↑(~r), n↓(~r)). (12)

The exchange-electron energy per particle εxc(n↑(~r), n↓(~r)) does not have a functional depen-

dence of the spin densities, just from their value at location ~r, which is a considerable simpli�-

cation. The exchange component εx(n↑, n↓) can be computed analytically,

εx(n↑, n↓) = −3e2

4π
(6π2)

1
3

1

n
(n

4
3
↑ + n

4
3
↓ ), (13)

while the correlation component εc(n↑, n↓) can be determined from Monte-Carlo simulations [84].

In this work, the Slater-Vosko-Wilk-Nusair (SVWN) parametrization of the LSDA [85;86] will be

used. Albeit simple, the LSDA has been very successful, remarkably accurate and is still widely

used in solid state physics. Its success can be attributed to the fact that it does obey certain

sum rules and scaling properties [87]. It is exact for a uniform density and almost exact for slowly

varying densities, and therefore yields an accurate description of simple crystalline metals. It

does fail in the description of strongly correlated systems, for instance for strongly localized d

and f electrons, and in the description of non-local phenomena like charge-transfer excitations

and polarizabilities [88], which can be traced back to the self-interaction error and the lack of a

derivative discontinuity.

Generalized gradient approximations: Generalized gradient approximations (GGAs) im-

prove on the LSDA by including gradient corrections to the exchange-correlation energy,

EGGA
xc [n↑, n↓] =

∫
d3r f

(
n↑(~r), n↓(~r), ~∇n↑(~r), ~∇n↓(~r)

)
, (14)
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where f is a function depending on the spin densities and their gradient, therefore incorporating

non-local e�ects into Exc. There are two basic approaches to determine the function f : it can

be constructed in a way to ful�ll as many exact conditions of Exc as possible, as has been done

for the PBE functional [89]. Alternatively, f can be determined empirically, by adjusting �t

parameters such that the resulting functional yields reasonable results for a broad spectrum of

test systems, like the BLYP functional [90;91].

GGA functionals typically outperform the LSDA when calculating binding lengths and dissoci-

ation energies, and also yield a more reliable description of the spin state of transition metals.

GGAs still su�er from the same formal de�ciencies as the LSDA and are therefore incapable of

describing strongly localized and strongly non-local phenomena.

Note that a direct expansion of the LSDA, by adding a systematic correction for slowly-varying

densities, has not been successful, because it is not directly derived from a physical system and

does not ful�ll certain exact properties of Exc that the LSDA does ful�ll [87].

KS DFT beyond LSDA and GGA: It is possible to include increasingly more non-local

e�ects into Exc, at increasingly higher costs. A way to judge the complexity of di�erent approx-

imations of Exc is Jacob's ladder [92], which sorts DFT functionals into rungs. The lowest two

rungs are the LSDA and GGAs, respectively. Meta-GGAs include terms containing occupied

orbitals, hyper-GGAs the exact exchange energy density. The topmost rung are functionals con-

taining e�ects of occupied and unoccupied orbitals. Here, the exact exchange functional, which

fully removes the one-electron self interaction, has to be mentioned [88]. Note that KS DFT

treats exact exchange very di�erently from the Hartree-Fock approximation (HFA), where an

identical term occurs. While the HFA leads to a non-local potential, KS DFT requires the

potential to be local, and it has to be obtained by using the Optimized E�ective Potential

(OEP) method [93;94].

Hybrid functionals and the generalized Kohn-Sham scheme: Higher-level DFT func-

tionals of the previous paragraph usually come at a very high computational cost and are

often not implemented in standard DFT codes. Hybrid functionals can be seen as a pragmatic

approach to improve the description of the electronic structure of materials where local and

semi-local functionals fail. The idea of a hybrid functional was �rst proposed in Ref. [95].

Motivated by the coupling constant integration [87], a functional is de�ned which mixes exact

exchange with (semi-)local exchange, and adding (semi-)local correlation:

Ehyb
xc = bEexact

x + (1− b)Esl
x + Esl

c . (15)

Hybrid functionals can be based on di�erent semi-local functionals and have varying percentages

b of exact exchange. Variations with three parameters have also been proposed [96]. The most

notable ones are the one-parameter PBE0 functional [97;98], based on the PBE DFT functional

with 25% of exact exchange, its range-separated version HSE [99], and the three-parameter
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B3LYP functional [100], based on the BLYP DFT functional, mixed with 20% of exact exchange.

The share of exact exchange b can be estimated from the adiabatic connection theorem, but is

typically determined by �tting test data sets and strongly depends on the underlying semi-local

functional [97;101].

The important di�erence to the orbital functionals mentioned in the previous paragraph is

the treatment within the generalized Kohn-Sham (GKS) scheme [102]. In the GKS scheme, the

exact exchange component is not treated within DFT (what would require the OEP method

mentioned in the previous paragraph), but within Hartree-Fock theory, yielding the non-local

Fock operator. While still covered by the Hohenberg-Kohn theorem, hybrid functionals are

therefore outside of the realm of KS DFT, and assume an auxiliary system of interacting

electrons which can be represented as a Slater determinant. Since both Hartree-Fock theory and

DFT are typically included in electronic structure codes, hybrid functionals can be implemented

with relative ease.

While Hybrid functionals partially remove the self-interaction error inherent in local and semi-

local functionals, their success is mostly due to their treatment within the GKS scheme [88].

Although originally �tted to mostly organic systems, they can yield reasonable structural and

optical properties of solid state systems as well, even for localized 4f electrons in CeO2 and

Ce2O3
[103] and for 3d electrons in strongly correlated materials like NiO [104].

LDA+U: A typical de�ciency of local and semi-local functionals lies in the treatment of

strongly-localized orbitals, often associated with d and f electrons, present in transition metals

and lanthanides. This can be traced back to the self-interaction error present in LSDA and

typical GGAs and becomes particularly apparent in transition metal oxides like NiO, whose

band gaps are severely underestimated [43]. The LDA+U approach [105;106;107;108] tackles this

issue by explicitly adding a Hubbard-like correction term to those states where the pure DFT

functional fails,

HU =
1

2

∑
i,j,k,l
σ,σ′

Uik;jlc
†
iσc
†
jσ′clσ′ckσ (16)

where c†iσ and ciσ are creation and annihilation operators, respectively, and Uik;jl is an e�ective

Coulomb interaction which already takes into account screening due to all non-localized orbitals.

This e�ective interaction will be discussed in more detail in chapter 4. The introduction of the

correction term leads to improved band gaps and the appearance of Hubbard bands [43], which

cannot be captured with local and semi-local DFT functionals.

The originally proposed LDA+U scheme [105;106] uses a strongly simpli�ed Coulomb interaction,

only accounting for the averaged direct U and exchange J interactions:

EU =
U

2

∑
i,j,σ

nσi n
−σ
j +

U − J
2

∑
i,j,σ
i 6=j

nσi n
σ
j . (17)

Di�erent, more sophisticated, formulations of the LDA+U exist, taking into account more
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elements of the Coulomb interaction U , accounting for rotational covariance [107], and including

a double-counting correction EDCC , which subtracts the part of EU already contained in ELDA.

The exact expression for EDCC is not known and various approximations exist. The double-

counting problem will be discussed in more detail in Sec. 2.4.

The total energy functional of the LDA+U then becomes

ELDA+U = ELDA + EU − EDCC . (18)

Similar to the hybrid functionals of the previous paragraph, the LDA+U functional is orbital-

dependent by virtue of the orbital occupations nσi , and is not treated within conventional

KS-DFT (requiring the aforementioned OEP method), but within the HFA. Note that while

the method is often called LDA+U, it is typically based on the spin-dependent LSDA instead

of the LDA. It can also be combined with semi-local GGA functionals and is then denoted

GGA+U, or more general, DFT+U.

2.1.4 Interpreting KS orbitals

The KS eigenvalues εiσ and KS orbitals φiσ in Eq. 6 were introduced as auxiliary quantities in

order to generate the spin densities. They do, however, carry some physical meaning themselves,

although their interpretation is less straightforward than that of density and total energy [88].

The highest occupied molecular orbital (HOMO) can be assigned a rigorous physical meaning:

it is the chemical potential of the system [109]. The other occupied KS orbitals can be assigned

some physical meaning as well [110;111], but they have to be interpreted more carefully.

In practice, KS eigenvalues and KS orbitals are often used as if they were quasi-particle ex-

citations. Although there is no rigorous justi�cation to do so, this approach has been shown

to yield accurate results for the exact exchange-correlation functional not too far away from

the Fermi level [88]. Even local- and semi-local functionals can yield reliable eigenvalue spec-

tra, particularly for systems with non-localized KS orbitals and therefore small one-electron

self interaction. For the description of localized orbitals, functionals free of one-electron self

interaction [112;113] and hybrid functionals treated within the GKS scheme [113] can provide a

reliable eigenvalue spectrum. Although often used interchangeably, the relationship between

localization and self-interaction is not straightforward [114].

The Kondo e�ect is due to localized electrons, and cannot be described by local and semi-local

functionals, partially due to their lack of a derivative discontinuity [43]. Several approaches have

been made to treat the Kondo e�ect within (TD)DFT [115;116;117]. This thesis follows another

route, though: local and semi-local functionals describe the weakly correlated part of the system

and serve as a starting point for more advanced calculations, employing model Hamiltonians.

The e�ects of strong electronic correlation due to the partially �lled d shell will be included

later via a self-energy in the DFT-based transport calculation (see section 2.4).
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2.2 Partitioning and Green's functions

2.2.1 One-body non-interacting Green's functions

In this section, the concept of time-independent one-body Green's functions (GFs), which will

be used frequently in this work, will be introduced [118]. In general, GFs are a mathematical

tool to solve inhomogeneous, di�erential equations. In the context of quantum mechanics, the

one-body GF operator Ĝ(z) is de�ned as(
z − Ĥ

)
Ĝ(z) = 1̂, (19)

where Ĥ is a one-body Hamiltonian and z a complex number. The GF can be either directly

inverted, or expressed in terms of the eigenvectors |φk〉 and eigenvalues εk of the Hamiltonian,

Ĝ0(z) = (z − Ĥ)−1 =
∑
k

|φk〉〈φk|
z − εk

, (20)

where Ĥ|φk〉 = εk|φk〉. The GF has poles at the eigenvalues z = εk of the system along the real

axis, or a branch cut for the continuous part of the eigenvalue spectrum. Due to that, in order

to de�ne a GF along the real axis, a limiting procedure is necessary. The retarded GF (also

called resolvent operator) Ĝ0,R(ω), henceforth called Ĝ0(ω), is de�ned as:

Ĝ0(ω) = lim
η→0

(
ω + iη − Ĥ

)−1

. (21)

The corresponding advanced Green's function can be obtained by Hermitian conjugation, ap-

proaching the real axis from below:

Ĝ0A(ω) ≡ [Ĝ0(ω)]† := lim
η→0

(
ω − iη − Ĥ

)−1

. (22)

The GF contains all information about the one-body system given by the one-body Hamil-

tonian Ĥ, namely the eigenenergies (poles on the real axis) and eigenvectors (residues of the

poles). The density of states can also be extracted directly from the GF:

D(ω) = − 1

π
Im
[
Tr[Ĝ0(ω)]

]
≡
∑
k

δ(ω − εk). (23)

For later use, we also de�ne the spectral function Â(ω):

Â(ω) := i
(
Ĝ0(ω)− Ĝ0†(ω)

)
=
∑
k

δ(ω − εk)|φk〉〈φk|. (24)

In this work Ĝ0(ω) will be computed by direct inversion of Eq. 20, which can be advantageous,

since it does not require the explicit calculation of the eigenstates. This can be done in any

basis set and for a �xed value of z. The starting point is the KS Hamiltonian (see notes on

the use of KS orbitals in section 2.1.4). Note that this work uses Gaussian basis sets, which

are non-orthogonal. This has to be taken into account, and will lead to modi�ed equations

including the overlap matrix S and modi�ed operator representations [119]. Particular care has

to be taken when projecting onto subspaces [70]. For the sake of clarity, the basis will be assumed

to be orthogonal in the main text. The corresponding basic equations for a non-orthogonal basis

sets are presented in Appendix B.
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2.2.2 Many-body Green's functions

For later use, the concept of many-body Green's functions is presented in this section. Details

about this concept can be found in many-body textbooks [120;121]. The single-particle many-body

Green's functions, which are also called single-particle propagators, describe the elementary

response of a many-body system [121]. They can be seen as a generalization of the one-body GF

from the previous sections to the case of interacting electrons:

Gαα′(t, t
′) = −

〈
Tt[cα(t), c†α′(t)]

〉
, (25)

where Tt is the time-ordering operator, cα and c†α′ are annihilation and creation operators in

the Heisenberg picture which obey the fermionic anti-commutation relation {cα, c†α′} = δαα′ .

To study �nite-temperature e�ects like the Kondo e�ect, the above concept can be easily gen-

eralized to �nite temperatures. The quantum-mechanical partition function can be interpreted

as the time-evolution operator in imaginary time [121]:

e−βĤ = Û(−ih̄β), (26)

with the time-evolution operator Û = e
i
h̄
Ĥt, β = 1/kBT and the Boltzmann constant kB. The

single-particle �nite-temperature or Matsubara GF is then de�ned as:

Gαα′(τ, τ
′) = −

〈
Tτ [cα(τ), c†α′(τ

′)]
〉
, (27)

where Tτ is the time-ordering operator in imaginary time τ . A Fourier transformation with

respect to imaginary time τ of the Matsubara GF yields the Matsubara GF for imaginary

frequencies:

Gαα′(iωn) =

∫ β

0

dτ eiωnτGαα′(τ, 0). (28)

Note that the �nite range of integration (from 0 to β) leads to the discrete Matsubara frequencies

νn = 2n πkBT bosons

ωn = (2n+ 1)πkBT fermions,
(29)

and the inverse relation features a sum over the Matsubara frequencies instead of a continuous

integral:

Gαα′(τ) =
1

β

∑
n

Gαα′(iωn)e−iωnτ . (30)

The retarded single-particle GF GR
αα′(ω) can be obtained from the Matsubara GF by analytical

continuation:

GR
αα′(ω) ≡ Gαα′(iωn → ω + iη). (31)

The interacting Green's function reduces to the non-interacting Green's function in the absence

of interactions, and they can be related to each other by the following Dyson equation:

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω). (32)
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Σ(ω) is the irreducible self energy and contains the e�ects of strong electronic correlations which

cannot be captured by standard KS-DFT. In this work, interactions beyond mean-�eld will be

taken into account for the correlated subspace C only. More details on the computation of ΣC

can be found in Sec. 2.4.

2.2.3 Partitioning into leads and device

Since we are interested in the physics close to the nanojunction, here given by the STM tip

and the adatom on the surface, and not the exact electronic structure deep inside the STM

tip or the surface, it is convenient to separate the system into a central device region D, a left

lead L (here: the STM tip) and a right lead R (here: the surface far away from the central

region). Left and right lead are chosen su�ciently far apart so that their interaction can be

assumed to be zero, and that the device contains su�cient portions of both leads. The device

region is coupled to the respective leads by operators V̂LD and V̂RD. From here on, operators

will be replaced by their representation in a local basis H = 〈α|Ĥ|β〉, which is assumed to be

orthogonal in the main text. The Hamiltonian of the combined lead-device-lead system then

is:

H =

HL VLD 0LR

VDL HD VDR

0RL VRD HR

 . (33)

Here, the previously introduced Green's function method serves as a powerful tool. Since

interactions are not yet switched on, the non-interacting Green's function from Sec. 2.2.1 will

be used. We write out Eq. 19 as a matrix equation, using the partitioned Hamiltonian from

Eq. 33:ω −HL −VLD 0LR

−VDL ω −HD −VDR

0RL −VRD ω −HR


 G0

L(ω) G0
LD(ω) G0

LR(ω)

G0
DL(ω) G0

D(ω) G0
DR(ω)

G0
RL(ω) G0

RD(ω) G0
R(ω)

 =

1 0 0

0 1 0

0 0 1

 . (34)

This matrix equation can be solved for all components of the GF, but since most of the relevant

physics happens inside of the device region, we only write out certain GF elements for the

following derivations. The device GF G0
D(ω) is

G0
D(ω) =

(
ω −HD −VDL (ω −HL)−1 VLD −VDR (ω −HR)−1 VRD

)−1

=
(
ω −HD −VDL g0

L(ω) VLD −VDR g0
R(ω) VRD

)−1

= (ω −HD − ΣL(ω) − ΣR(ω) )−1 ,

(35)

where the GFs of the isolated leads g0
α = (ω − Hα)−1 and the lead self energies Σα =

VDα g0
α(ω) VαD (α = L,R) are introduced. G0

D(ω) describes the electronic structure of the

device region in the presence of the leads. The lead self energies Σα(ω) introduce an energy

dependence, which re�ects the fact that electrons do not have an in�nite lifetime within the
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device region anymore, but can hop between device and leads. The matrix element G0
RD(ω)

will also be required later:

G0
RD(ω) = g0

R(ω)VRDG0
D(ω). (36)

Later in this work, the so-called coupling matrices will also be used:

ΓL/R(ω) := i
(
ΣL/R −Σ†L/R(ω)

)
. (37)

So far, we have not speci�ed how to obtain the lead self energies ΣL/R. In the system at

hand, the structure of the macroscopic electrode far away from the central region is typically

not known exactly. While some crystalline order will be present, the bulk electrodes are likely

polycrystalline, and surface defects and impurities might also be present. Therefore a lead model

is desirable which does not depend too strongly on the exact local structure, and provides a

smooth lead density of states (DOS) similar to that of the bulk material.

A very simple lead model are jellium leads with a complex absorbing potential [122;123]. While

computationally very cheap and providing a smooth lead DOS, they do not contain any in-

formation about the chemical composition of the lead and fail to provide important material

properties, so that a distinction between di�erent materials is not possible.

A more complex option are semi-in�nite nanowire electrodes, whose electronic structure is

determined from the supercell approach [124;125], typically within DFT and at the same level of

approximation as the device region. However, perfectly crystalline nanowires with small cross

sections have been shown to exhibit large �uctuations in transport properties, depending on

lead size and orientation [126]. While nanowire electrodes are a powerful tool in the description

of perfectly ordered systems like nanotubes, there are certain drawbacks for the type of system

studied in this work, in addition to a relatively high computational cost [127]. In a similar

spirit, the cluster can be embedded into a nanowire with in�nite thickness [128]. While this does

eliminate �nite-size e�ects due to the �nite thickness of the nanowire, it still assumes a perfectly

ordered system and might still contain re�ections on crystal planes, and is computationally

demanding.

Another electrode model is a Bethe lattice [129], a tight-binding model with appropriately chosen

coordination and parameters [127;130;131], which will be used in this work. It correctly captures

the short-range order of the electrode, but neglects long-range order since it does not contain

any closed loops. It gives a fairly accurate description of the bulk electrode DOS for commonly

used metal leads, and has been studied and proven to work reasonably well in the modeling of

transport situations [127;131]. Bethe lattice parameters are determined from DFT calculations [132]

and have to be calculated once for each basis set. A detailed account of how to determine the

Bethe lattice self energies can be found in Ref. [127]. It is important to include a large enough

portion of the leads in the device, in order to make scattering at the interface between the

Bethe lattice and the device region less important to the physics within the device region, since

the Bethe lattice is treated at a lower level of accuracy than the device.
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Figure 2: Basic illustration of the Landauer theory of transport. An incoming wave from the

left lead Ψi,ki is scattered at the device, and partially relfected and transmitted to �nal states

Ψf,−kf and Ψf,kf with re�ection and transmission coe�cients rif and tif , respectively.

So far, we reviewed on how to determine the electronic structure of the device on a mean-�eld

level using DFT, introduced the Green's function formalism as a powerful mathematical tool,

partitioned the system into a device region and two leads and discussed possible models to

describe the macroscopic leads. However, so far we just described the electronic structure of

the ground state and have not yet considered how to calculate transport properties like currents

and conductances, which is central to the modeling of an STM setup. To that end, in the next

section the Landauer theory of transport will be introduced.

2.3 Quantum transport within the Landauer formalism

The basic idea of the Landauer theory of transport [133;134;135] (later extended by M. Büttiker)

is that electrons undergo an elastic scattering process when passing through the nanocontact.

Landauer then relates the probability of the electron to be transmitted to the conductance of

the system. A basic illustration of the Landauer formalism is shown in Fig. 2. A nanocontact

D is sandwiched between two leads L and R, which are adiabatically connected to re�ectionless

reservoirs in thermal equilibrium, whose chemical potential is set to µL and µR, respectively.

The reservoirs inject electrons into the leads with a local equilibrium distribution fL/R(ω),

which typically is the Fermi-Dirac distribution:

fL/R(ω) =
1

e(ω−µL/R)/kBT + 1
. (38)

The left reservoir injects right-moving and the right reservoir left-moving electrons into the

corresponding leads, and left- and right-moving electrons are completely uncorrelated. Once

injected, the electrons occupy independent channels characterized by a set of quantum numbers.

Furthermore, the scattering process is assumed to be elastic, so the particle energy does not

change, and coherent, such that all scattering is taking place at the nanocontact, and scattering

due to lattice vibrations and other electrons can be neglected. This is a justi�able assumption
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if the dimensions of the nanocontact are smaller than the average coherence length of electrons

in the material. Another assumption is that the system will reach an ideal steady state, and

exactly one steady state solution exists. [136]

Due to their �nite size, the leads limit the movement of electrons in the x-y plane, but they can

propagate freely in the z direction (this condition can easily be extended to a potential periodic

in the z direction, by introducing Bloch states). The corresponding Schrödinger equation deep

inside the leads (here for the left lead) then is[
− h̄2

2m
∇2 + VL(~r⊥)

]
ψn,k = En(k)ψn,k(~r), (39)

where the potential VL(~r⊥) con�nes the electrons in the x-y direction. Eq.39 can be separated

into a longitudinal part, describing a free particle in the z direction, and a transverse equation

in the x-y plane. The general solution can then be written as

ψn,k(~r⊥, z) = un(~r⊥)

√
1

Lz
eikz, (40)

where un(~r⊥) is the solution of the transverse equation, n are all its respective quantum numbers,

and Lz is a normalization length. The corresponding energies are

En(k) = εn +
h̄2k2

2m
. (41)

To each single particle energy ω there is a corresponding number of transport channels, given

by the transverse modes, and this number is �xed for each energy [136]. We now assume that

an electron from the left with an initial wavevector ki and energy ωi(ki) is injected into the

system and scattered at the nanojunction. While the processes close to the contact might be

very complex, we can make statements about the situation deep inside the leads. Far inside

of the right lead, the wave will be a linear combination of eigenstates of the right lead, with

transmission coe�cients tif (ω):

Ψ+
i,ki

(~r)→
NR∑
f=1

tif (ω)Ψf,kf (~r), z → +∞. (42)

The +-sign denotes that the electron has already been scattered. In the left lead, the wave

function consists of the incident wave Ψi,ki and electrons that were backscattered to the left.

The latter are also eigenstates of the left lead, with re�ection coe�cients rif (ω) and the opposite

sign of the wavevector kf :

Ψ+
i,ki

(~r)→ Ψi,ki(~r) +
NL∑
f=1

rif (ω)Ψf,−kf (~r), z → −∞. (43)

We can now proceed to compute the current deep inside the leads, and start with the current

density for a single scattered electron with initial state Ψi,ki ,

ji,ki(~r) =
ih̄

2m

(
Ψ+
i,ki

(~r)
∂[Ψ+

i,ki
(~r)]∗

∂z
− [Ψ+

i,ki
(~r)]∗

∂Ψ+
i,ki

(~r)

∂z

)
, (44)
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where transport only occurs in the z direction. To determine the current I(ωi) due to a given

initial state at energy ωi, the corresponding current density has to be integrated over a surface

perpendicular to the transport direction:

I(ωi) = e

∫ ∞
−∞

dx

∫ ∞
−∞

dy ji,ki(~r). (45)

Since the system is assumed to be in a steady state, any x-y plane can be used, particularly a

plane deep inside the left or deep inside the right lead, and both have to yield the same current.

Carrying out the integration deep inside the left lead yields:

IL(ωi) =
ieh̄

2m

∫ ∞
−∞

dx

∫ ∞
−∞

dy

(
Ψ+
f,kf

(~r)
∂[Ψ+

f,kf
(~r)]∗

∂z
− [Ψ+

f,kf
(~r)]∗

∂Ψ+
f,kf

(~r)

∂z

)

= Ii(ωi)−
NL∑
f=1

|rif |2|If (ωi)|

= Ii(ωi)

(
1−

NL∑
f=1

|rif |2
|If (ωi)|
|Ii(ωi)|

)

= Ii(ωi)

(
1−

NL∑
f=1

Rif (ωi)

)
,

(46)

where we have de�ned the current due to the incident wave Ii(ωi),

Ii(ωi) =
ieh̄

2m

∫ ∞
−∞

dx

∫ ∞
−∞

dy

(
Ψi,ki(~r)

∂[Ψi,ki(~r)]
∗

∂z
− [Ψi,ki(~r)]

∗∂Ψi,ki(~r)

∂z

)
, (47)

and correspondingly the currents re�ected back into the left leads If (ωi). In the simple case

of electrons traveling freely in the z direction, the integration can be carried out and yields

Ii/f (ωi) = e
h̄ki/f
mLz

. The Rif are re�ection probabilities for an incident wave Ψi,ki to be re�ected

into Ψf,kf . Correspondingly, we can carry out the integration in the right lead:

IR(ωi) = Ii(ωi)

NR∑
f=1

Tif (ωi), (48)

with transmission probabilities Tif = |tif |2 |If (ωi)|
|Ii(ωi)| . Since the system has been assumed to reach

a steady state, the currents deep inside the left and the right lead have to be identical, and the

re�ection and transmission probabilities can be related:

NL∑
f=1

Rif +

NR∑
f=1

Tif = 1. (49)

Eq. 49 states that the incident particle in state Ψi,ki has to either be re�ected, or transmitted.

The same arguments hold true for a particle incident from the right, which is then partially

backscattered into the right lead and partially transmitted into the left lead.
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So far, the current due to a single incident electron was calculated. In order to obtain the total

current, the currents have to be weighted by the density of states at the respective energy and

summed up. The density of states in one dimension is given by D(ωi) = Lz
2π

dki
dωi

= mLz
2πh̄2

1
ki
, and

thus the total current becomes:

I totalR =

∫ µL

−∞
dω

NL∑
i=1

D(ω)IR(ωi)

=

∫ µL

−∞
dω

NL∑
i=1

NR∑
f=1

D(ω)Ii(ω)Tif (ωi)

=
e

h

∫ µL

−∞
dω

NL∑
i=1

NR∑
f=1

Tif (ωi)

=
e

h

∫ µL

−∞
dω T (ω),

(50)

where in the last equation, the total transmission function T (ω) is introduced.

The whole procedure can now be repeated for an electron coming from the right electrode

and being scattered at the nanojunction, resulting in a current towards the left lead. The

corresponding total current is

IL =
e

h

∫ µR

−∞
dω T (ω), (51)

with the same transmission function T (ω) due to time-inversion invariance [136]. The total

current is simply a sum of IL and IR, and non-zero only if a �nite bias eV is present such that

µL ≡ µ and µR = µ+ eV :

I(eV ) =
e

h

∫ µ+eV

µ

dω T (ω). (52)

The corresponding conduction is obtained by taking the derivative with respect to the voltage:

G(V ) =
∂I

∂V
=
e2

h
T (eV ) (53)

We have now established a connection between the di�erential conductance of the system and its

transmission properties. Note that e2

h
is half the quantum of conductance G0 = 2e2

h
, because we

are generally working with spin-dependent systems and the spin-degree of freedom is contained

in the channel index n and has not been integrated out yet.

Transmission function: So far, we derived the Landauer formula, relating the system's

conductance to the transmission properties by considering properties deep inside the leads. We

have not yet made any statement about how the transmission properties can be obtained and

expressed in terms of the electronic structure of the nanojunction. To that end, we proceed

as follows: �rst, the total wave function Ψ due to an incoming wave from the left lead ~Ψi

will be expressed in terms of the system's GF. Then, the density matrix P of the system is

computed by summing up all possible incoming waves, giving us access to the total charge of

22



the device region [137]. The total current is then obtained as the time derivative of the system's

total charge.

The system's wave function can be expressed as a sum of the initial wave and the �nal wave

after scattering of the particle:

~Ψ = ~Ψi + ~Ψf =

~Ψ
i
L

0D

0R

+

~Ψ
f
L

~Ψf
D

~Ψf
R

 . (54)

While the initial wave is non-zero only in the left lead, the scattered wave is expanded over the

whole system. The total wave function Ψ obeys H
(
~Ψi + ~Ψf

)
= ω

(
~Ψi + ~Ψf

)
. By reordering

and inserting the de�nition of the GF, one obtains

(H− ω) ~Ψf = (ω −H) ~Ψi

−[G0(ω)]−1~Ψf = (ω −H) ~Ψi

~Ψf = −G0(ω) (ω −H) ~Ψi.

(55)

Writing out the above equation , and taking into account that ~Ψi is, per de�nition, an eigenstate

of the isolated left lead ((ω −HL)~Ψi
L = 0), one arrives at:~Ψ

f
L

~Ψf
D

~Ψf
R

 = −G0(ω)

(ω −HL) ~Ψi
L

−VDL
~Ψi

L

0R

 = −G0(ω)

 0L

−VDL
~Ψi

L

0R

 =

G0
LD(ω)

G0
D(ω)

G0
RD(ω)

VDL
~Ψi

L. (56)

The next step is to express the density matrix P of the system in terms of its wave function ~Ψ:

P =

NL∑
i=1

∑
ki

fL(ωi(ki))~Ψi,ki
~Ψ†i,ki

=

∫
dω fL(ω)

NL∑
i=1

∑
ki

δ(ω − ωi(ki))~Ψi,ki
~Ψ†i,ki ,

(57)

where fL(ωi(ki)) is the Fermi function of the left lead with chemical potential µL de�ned in

Eq. 38, and ~Ψi,ki is the wave function component of the system due to the initial state i with

wave vector ki. The current can then be determined as the derivative of the total charge of the

device region:

I =
∂ND

∂t
= TrD

[
∂P

∂t

]
. (58)

It consists of two components, one between the left lead and the device IL and one between the

right lead and the device IR, and the total current is given by I = IL + IR. In a steady-state

situation (as has been assumed above), the total charge of the device region does not change,

and exactly the same amount of electrons �ows in from the left as �ows out on the right, such

that ∂ND

∂t
= 0, and correspondingly IL = −IR. It therefore su�ces to determine either IL or IR.
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Now the time-derivative is explicitly carried out, making use of the fact that ~Ψi,ki is an eigenstate

of the Hamiltonian H:

I = TrD

[
∂P

∂t

]
=

∫
dω fL(ω)

NL∑
i=1

∑
ki

TrD

∂~Ψi,ki

∂t

[
~Ψi,ki

]†
+ ~Ψi,ki

[
∂~Ψi,ki

∂t

]†
=

∫
dω fL(ω)

NL∑
i=1

∑
ki

TrD

[
1

ih̄
H~Ψi,ki

[
~Ψi,ki

]†
− 1

ih̄
~Ψi,ki

[
H~Ψi,ki

]†]
.

(59)

The trace can then be evaluated:

TrD

[
1

ih̄
H~Ψi,ki

[
~Ψi,ki

]†]
=

1

ih̄
Tr
[
VDL[~Ψi,ki ]L[~Ψi,ki ]

†
D + HD[~Ψi,ki ]D[~Ψi,ki ]

†
D + VDR[~Ψi,ki ]R[~Ψi,ki ]

†
D

]
(60)

TrD

[
~Ψi,ki

[
~Ψi,ki

]† 1

ih̄
H

]
=

1

ih̄
Tr
[
[~Ψi,ki ]D[~Ψi,ki ]

†
LVLD + [~Ψi,ki ]D[~Ψi,ki ]

†
DHD + [~Ψi,ki ]D[~Ψi,ki ]

†
RVRD

]
.

(61)

Since there is no source or sink potential within the device region, the device terms cancel out

when adding up the two contributions. The remaining terms can be separated into currents at

the L-D-interface IL
i,ki

and currents at the D-R-interace IR
i,ki

:

IL
i,ki

=
e

ih̄
Tr
[
VDL[~Ψi,ki ]L[~Ψi,ki ]

†
D − [~Ψi,ki ]D[~Ψi,ki ]

†
LVLD

]
(62)

IR
i,ki

=
e

ih̄
Tr
[
VDR[~Ψi,ki ]R[~Ψi,ki ]

†
D − [~Ψi,ki ]D[~Ψi,ki ]

†
RVRD

]
. (63)

As stated above for the total current, and since channels are independent, either of these

current components can be evaluated. We choose to evaluate IR
i,ki

. To that end, we write the

wave function ~Ψi,ki in terms of the initial wave function ~Ψi
i,ki

according to Eq. 56, insert Eq. 36,

Eq.37 and use the invariance of the trace to cyclic permutations:

IR
i,ki

=
e

ih̄
Tr
[
VDR[~Ψi,ki ]R[~Ψi,ki ]

†
D + [~Ψi,ki ]D[~Ψi,ki ]

†
RVRD

]
=

e

ih̄
Tr
[
[G0

D(ω)]†VDR

(
gR(ω)− g†R(ω)

)
VRDG0

D(ω)VDL
~Ψi
i,ki

[~Ψi
i,ki

]†VLD

]
=

e

ih̄
Tr
[
[G0

D(ω)]† (−iΓR(ω)) G0
D(ω)VDL

~Ψi
i,ki

[~Ψi
i,ki

]†VLD

]
= − e

h̄
Tr
[
[G0

D(ω)]†ΓR(ω)G0
D(ω)VDL

~Ψi
i,ki

[~Ψi
i,ki

]†VLD

]
.

(64)

By inserting this result into Eq. 59 and utilizing the de�nition of the spectral function from

Eq. 24 and the coupling matrix from Eq. 37, the current at the D-R-interface due to injection

of electrons from the left lead can be determined:

I(L) = − e
h̄

∫
dω fL(ω)

NL∑
i=1

∑
ki

TrD

[
[G0

D(ω)]†ΓR(ω)G0
D(ω)VDL

~Ψi
i,ki

[~Ψi
i,ki

]†VLD

]
= − e

h̄

∫
dω fL(ω)Tr

[
[G0

D(ω)]†ΓR(ω)G0
D(ω)ΓL(ω)

]
.

(65)
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The derivation can be repeated for a wave incident from the right lead:

I(R) = − e
h̄

∫
dω fR(ω)Tr

[
[G0

D(ω)]†ΓR(ω)G0
D(ω)ΓL(ω)

]
. (66)

The total current is a sum over all possible incident waves from both leads:

I = I(L) − I(R) =
e

h̄

∫
dω (fL(ω)− fR(ω)) Tr

[
[G0

D(ω)]†ΓR(ω)G0
D(ω)ΓL(ω)

]
. (67)

If both reservoirs have the same chemical potential µL = µR, the current is zero . Eq. 67 has the

same form as the original Landauer formula from Eq. 50. The transmission function expressed

in terms of the non-interacting device's GF G0
D(ω) and the coupling matrices is also known as

Caroli expression [138]:

T 0(ω) = Tr
[
[G0

D(ω)]†ΓR(ω)G0
D(ω)ΓL(ω)

]
. (68)

Discussion: The description of quantum transport is, in principle, a time-dependent, non-

equilibrium statistical problem [136]. Most of these aspects are too complex to be fully taken into

account, and various approximations had to be made to arrive at Eq. 50 and Eq. 67. We are, for

instance, not interested in the exact physical processes within the leads or chemical processes

within the battery which is providing the current. This is typically a good approximation, since

the transport properties are relatively insensitive to the exact details of the leads if the leads

are signi�cantly larger than the nanojunction [130].

Transport is inherently out of equilibrium, even if the system reaches a steady state, so it be-

comes generally necessary to determine the non-equilibrium density matrix in order to compute

the system properties out of equilibrium. This is considerably more complicated and results,

for instance, in a voltage-dependent transmission function T (ω, V ). In this work, however, we

deal with typical STM situations in the tunneling regime, where the applied bias voltage V

will mostly drop between the STM tip and the substrate. We can therefore assume that the

chemical potential of the surface remains at µsur = µ, while that of the STM tip depends on

the bias voltage V according to µtip = µ + eV [127], and no full non-equilibrium calculation is

necessary. This further simpli�es the calculation of the di�erential conductance G(V ) for small

biases and zero temperature

G(V ) =
∂I

∂V
=

2e2

h
T 0(eV ), (69)

which then only depends on the value of the transmission function at the given bias T (eV ).

The Landauer formula was derived for a system of non-interacting electrons. In order to

describe transport of an interacting device coupled to non-interacting leads, the Meir-Wingreen

formula [139] has to be used, which is considerably more complicated. It does, however, reduce

to the Landauer formula under certain conditions: either if interactions beyond mean-�eld are

switched o� [136], or in the limit of zero temperature and zero bias, but using the fully interacting

one-body GF. In this work, the latter will be the case: the (approximate) fully interacting GF

25



will be used, incorporating e�ects of strong electronic correlations, at low temperatures and

small bias voltages.

This work proceeds as follows: it �rst combines KS-DFT with the Landauer ap-

proach [124;125;128;131], using the one-body KS-GF as a starting point to compute the non-

interacting GF G0
D(ω) and the transmission function T 0(ω). As has been discussed in Sec. 2.1.4,

the KS orbitals can be an appropriate approximation, particularly for non-localized orbitals and

close to the Fermi level [88]. To arrive at the fully-interacting GF and in order to describe Kondo

physics, correlation e�ects will be taken into account within the C region, by solving an An-

derson impurity model to obtain the self energy ΣC. This will be discussed in the next section.

2.4 The Kondo e�ect and the Anderson impurity model

If a magnetic impurity is inserted into a non-magnetic host metal, under certain circumstances

a local moment can form, so that double occupation of impurity states is energetically unfavor-

able, and the impurity is singly occupied. First experimental evidence of that fact was found

by J. de Boer [140]: a variety of transition metal oxides predicted to be conductors by band

theory proved to be insulators , and N. Mott explained this anomaly by including the electron-

electron interaction at the impurity [44]. Several impurity models emerged to explain the physics

of local moments, namely the s-d model [141], a phenomenological model by Friedel [142] and the

Anderson impurity model (AIM) [143]. The latter will play a central role in this work. The AIM

Hamiltonian for a single impurity level d is:

HsAIM = εdnd + Und↑nd↓ +
∑
k,σ

εkc
†
kσckσ +

∑
k,σ

Vk

(
d†σckσ + c†kσdσ

)
. (70)

The impurity state d with energy εd is coupled to a set of conduction electrons k with energy

εk by an interaction Vk. d†σ/dσ and c†kσ/ckσ are creation and annihilation operators of impurity

and conduction electron states, respectively, while ndσ = d†σdσ and nd =
∑

σ ndσ are the corre-

sponding number operators. The AIM explicitly includes the Coulomb interaction U between

electrons at the impurity state d. This term favors single-occupancy of the impurity level, since

adding a second electron to the impurity costs an additional energy U , which is typically high

for spatially localized d states. The conduction electrons (also called bath) are assumed to be

non-interacting and only contain electronic interactions on a mean-�eld level. This is justi�ed

because the conduction band is typically formed by more delocalized s electrons. In chapter 5,

we will work with a multi-orbital Anderson model, where the full d shell of the impurity atom

is included. It has the form:

HmAIM =
∑
i

εdindi +
∑
ijkl
σ,σ′

Uik;jld
†
iσd
†
jσ′dlσ′dkσ +

∑
k,σ

εkc
†
kσckσ +

∑
k,i,σ

Vki

(
d†iσckσ + c†kσdiσ

)
. (71)

Once a local moment has formed, it is possible for the Kondo e�ect to occur. When the tem-

perature is reduced, an antiferromagnetic coupling between the impurity and the conduction
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Figure 3: a) Typical spin �ip processes between impurity and conduction electrons. b) At low

temperatures, the spin-�ip processes lead to the formation of the Kondo singlet. An additional

narrow level close to the Fermi level develops and manifests itself as the Kondo resonance in

the density of states.

electrons can develop, quenching the impurity spin and forming a spin singlet S = 0, and a

narrow resonance close to the Fermi level (see Fig. 3). The �rst manifestation of the Kondo

e�ect was observed in 1934 in low-temperature resistance measurements of gold samples which

contained iron impurities [39]. The resistance did not decrease monotonically when the temper-

ature was lowered, but reached a resistance minimum at a �nite temperature. In 1964, Jun

Kondo explained this anomaly [41] by employing the s-d model [141], also called Kondo model,

Hs−d = −
∑
k,k′

Jk,k′(Ψ
†
kSΨk′) · (Ψ†dSΨd) +

∑
kσ

εkσc
†
kσckσ, (72)

where Jk,k′ is a Heisenberg exchange interaction between the conduction electrons and the

magnetic impurity [144]. At su�ciently low temperatures, the localized impurity spin interacts

antiferromagnetically (J < 0) with the conduction electron spins of the conduction electrons.

Using third-order perturbation theory in the coupling J , Kondo derived a lnT dependence of

the resistivity, explaining the resistance minimum of Ref. [39].

The s-d model can be obtained from the AIM by the Schrie�er-Wol� transformation [145], which

perturbatively diagonalizes the system's Hamiltonian and is often used to project out high-

energy states in order to obtain an e�ective low-energy model, and can be seen as the strong-

coupling limit of the AIM. The transformation also shows that the coupling between impurity

and conduction electrons becomes antiferromagnetic at low temperatures.

Since the s-d model cannot describe all aspects of the Kondo e�ect, the AIM will be the central

focus of this section.
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2.4.1 Extracting AIM parameters from DFT-based transport calculations

The AIM is a model Hamiltonian, and conceptually distinct from DFT [43]. While model Hamil-

tonians are typically used to describe a certain physical aspect at low energies and require var-

ious input parameters, DFT is an ab initio method, not requiring any free parameters (knowl-

edge of the exact functional and a complete basis set provided), and yielding the full energy

spectrum of the system. In realistic situations, however, approximations for the exchange-

correlation functional have to be made. Typical local and semi-local functionals fail to describe

more complex physical e�ects, like strong electronic correlations, which are a central focus of

this work.

One possible solution to that problem is to combine both methods: the ab initio method is

used as a starting point, giving a reliable description of the major part of the system where

it is su�cient to treat electronic correlations on a mean-�eld level. The mean-�eld result is

then used to extract the parameters of the model Hamiltonian, which is subsequently solved to

obtain the physics that the ab initio method fails to describe. Even if the ab initio method fails

to reproduce the low-energy physics of the system, it still can give appropriate values for the

parameters of the model Hamiltonian [43]. Also note that the model Hamiltonian parameters

are typically determined by the high-energy part of the spectrum and cannot be determined

from within the model itself. The model Hamiltonian can then be solved in order to give a more

reliable description of the low-energy physics [121]. A detailed account of the possible connections

between DFT and model Hamiltonians can be found in the review by K. Capelle [43].

As a �rst step, the correlated region has to be de�ned. In this work, it is the partially �lled 3d

shell of the Co adatom (see Fig. 1), but can more generally be the open d or f shells of transition

metal and rare earth atoms, quantum dots weakly coupled to leads [146] or the correlated orbitals

of certain organic molecules [147]. The central requirement is that the Coulomb interaction U

within the orbital is strong compared to the coupling Γ to the rest of the system [70].

Many AIM parameters can be extracted directly from the DFT-based transport calculation.

The energy of the correlated level(s) is given by the diagonal elements of the KS-Hamiltonian

in the C subspace εKS
di
. The Coulomb interaction has been taken into account on a mean-�eld

level in the DFT calculation already. In order to not include the Coulomb interaction twice, a

double-counting term has to be added:

εdi = εKS
di
− V DCC

i . (73)

Unfortunately, the double counting correction (DCC) is not known exactly for DFT, and several

di�erent approximations exist [43;148]. This work uses two versions of the fully-localized limit

(FLL) [149] DCC, namely the conventional (isotropic) version

(V DCC
FLL ) = U

(
NC −

1

2

)
− 1

2
JH (NC − 1) , (74)
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and its generalized version for the case of an anisotropic Coulomb repulsion [150],

(V DCC
aFLL)ii =

∑
j

Uii;jj

(
nj −

1

2MC

)
− 1

2
JH(NC − 1), (75)

where U is the orbital-averaged Coulomb repulsion, JH the orbital-averaged Hund's rule cou-

pling, nj is the occupation of orbital j, NC the total occupation of the correlated subspace and

MC its dimension. Note that Uijkl appearing in Eq. 70 is not the bare Coulomb interaction

(which is trivial to compute), but an e�ective Coulomb interaction that already contains all

screening e�ects from outside of the correlated subspace. While it is often �tted to experimen-

tal values or estimated, it is desirable to determine Uijkl ab initio, and di�erent methods to

approximately compute it exist. This will be discussed separately in chapter 4.

The couplings Vk can be determined from the so-called hybridization function ∆(ω), which

describes the coupling of the correlated subspace C to the conduction electrons. The non-

interacting Green's function of the correlated subspace can be obtained by projection of the

non-interacting device GF from Eq. 35 (henceforth labeled G0
D), and can be expressed as:

G0
C(ω) = P̂CG0

DP̂C = (ω + µ−HC −∆C(ω))−1 . (76)

The hybridization function ∆C(ω) is the di�erence between the inverse of the GF of the isolated

correlated region and the GF of the correlated region obtained by projection:

∆C(ω) = ω + µ−HC − [g0
C(ω)]−1. (77)

To obtain the couplings Vk appearing in Eq. 70, the hybridization function can be written as

∆C(ω) =
∑
k

|Vk|2

ω − εk
. (78)

Note that the hybridization function is a self energy in the same spirit as the lead self energies

ΣL/R from Eq. 35, but typically labeled ∆C in the context of AIMs.

After we have established how to obtain AIM parameters from the DFT-based transport cal-

culation, the next section will discuss how to solve the AIM.

2.4.2 Solving the AIM

Conventional many-body perturbation theory typically uses the non-interacting solution as a

starting point and treats the Coulomb interaction as perturbation to the system. This is not

possible for strongly correlated materials, though, since the Coulomb interaction U is strong

compared to the single-particle coupling and cannot be treated perturbatively. Alternative

approaches are therefore necessary, typically using the diagonalized impurity Hamiltonian as a

starting point [70].

Several methods to solve the AIM have been developed. It can be solved exactly by Numerical

Renormalization group calculations [151;152]. Unfortunately, the numerical e�ort increases expo-

nentially with the number of impurities, and currently a maximum of two impurities can be
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treated. It was also shown that the symmetric Anderson model is completely integrable using

a Bethe Ansatz [153;154] (the same technique was successfully applied to the s-d model [155;156]).

The Continuous-Time Quantum Monte Carlo method (CTQMC) [157] is numerically exact, but

only gives results on the Matsubara axis, which then have to be analytically continued to real

energies. This analytical continuation is a considerable problem and may lead to artifacts in

the spectra. CTQMC is also limited to relatively high temperatures and therefore suboptimal

to study low-temperature phenomena like the Kondo e�ect.

Several approximate techniques to solve the AIM exist as well. The basic idea of the Exact Di-

agonalization method is to approximate the continuous bath, represented by the hybridization

function ∆(ω), by a �nite number of discrete bath levels which interact with the impurities [158].

This system is then diagonalized. Since the size of the many-body space grows exponentially

with every bath level included, this method is limited to relatively few bath levels, which poses

a severe limitation [159] and leads to artifacts in the spectrum [70]. One possibility to increase the

number of bath levels which can be treated is the Lanczos diagonalization scheme [160]. Another

option is to randomly generate a set of bath levels representing the continuous bath, perform

an exact diagonalization and afterwards average the obtained self energies for all random con-

�gurations, as it is done in the Distributional Exact Diagonalization method [161;162]. Several

ideas of how to describe Kondo physics within TDDFT exist as well [43;115;116;117].

2.4.3 The non-crossing and the one-crossing approximations

This work uses the one-crossing approximation (OCA) [163], an extension of the non-crossing

approximation (NCA) [164;165], both diagrammatic expansions around the atomic limit, where

only a certain in�nite subset of diagrams is taken into account. The basic idea is to include

the Coulomb interaction exactly and treat the hybridization ∆C(ω) as a perturbation to the

exact solution in the atomic limit. To this end, an exact diagonalization of the isolated corre-

lated subspace is performed, yielding the many-body eigenstates |m〉 of the isolated correlated

subspace,

ĤC =
∑
i

εdindi +
∑
ijkl
σ,σ′

Uik;jld
†
iσd
†
jσ′dlσ′dkσ

diag
=
∑
m

εm|m〉〈m|, (79)

which serve as the starting point.

It is convenient to rewrite the d electron operators in terms of pseudoparticle (PP) creation a†m
and annihilation am operators. Each PP corresponds to an impurity state, and a†m creates the

state |m〉 from the PP vacuum |PPV〉 [166]:

a†m|PPV〉 ≡ |m〉. (80)

The am are either bosonic or fermionic, depending whether the state |m〉 has an even or odd

number of electrons. Note that it is mathematically possible to create several pseudo-particles at

the same time, which would be unphysical. Due to the completeness of the impurity eigenstates,
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the system has to be in either of the physical states, or a mix thereof,

Q =
∑
m

a†mam = 1, (81)

where Q is the PP charge. The physical operators can be expressed in terms of the PP operators

diσ =
∑
m,n

Fmn
iσ a†nam, (82)

with matrix elements Fmn
iσ = 〈m|diσ|n〉. The Hamiltonian of the mAIM from Eq. 71 can then

be rewritten in terms of the PPs, including the constraint from Eq. 81 by means of a Lagrange

multiplier λ which can be interpreted as the chemical potential of the PPs [166]:

ĤAIM =
∑
m

εma
†
mam +

∑
k,σ

εkc
†
kσckσ +

∑
k,i,σ
m,n

Vk,i

(
a†mF

mn
iσ anckσ + c†kσa

†
mF

mn
iσ an

)
. (83)

The PP operators obey commutation (bosons) or anticommutation (fermions) relations, Wick's

theorem is therefore applicable and a perturbation expansion in the hybridization strength,

making use of the PP operators, becomes possible. The corresponding propagators are:

Gm(ωn) =
1

ω − εm − λ− Σm(ω)
. (84)

The self-energies Σf (ω) describe the interaction between di�erent PPs. So far, the mAIM has

only been rewritten, and no approximations have been made. The next step is to expand Σm(ω)

into diagrams, and choose a certain subset of diagrams.

The NCA is the expansion in the hybridization strength to lowest order, and describes processes

where a single electron hops from the impurity to the bath (creating a state with N − 1

particles) or from the bath to the impurity (creating a state with N + 1 particles). It includes

an in�nite resummation of diagrams where conduction electron lines do not cross (see Fig. 4).

The fermionic self-energies depend on the dressed bosonic propagators, while the bosonic self

energies depend on the dressed fermionic propagators, so the NCA equations have to be solved

self-consistently. The OCA is obtained analogously, but by including second-order diagrams

where two conduction electron lines cross (see Fig. 4). After the NCA or the OCA equations

have been solved, the PP self energies are known. To obtain results for real particles on the

real energy axis, the real operators can be expressed in terms of the PP operators. After some

algebra, the GF of the interacting subspace GC(ω) is obtained. The algebraic expressions for

NCA [167] and OCA [163] can be found in the literature.

Once the GF of the interacting subspace is known, the correlated self energy ΣC can be obtained,

making use of the non-interacting GF of the C subspace from Eq. 76:

Σ̂C(ω) = [Ĝ0
C(ω)]−1 − [ĜC(ω)]−1. (85)

An advantage of NCA and OCA is that all physical quantities are computed directly on the

real energy axis, so that no analytical continuation from the Matsubara to the real axis, which
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Figure 4: Self-energy diagrams for pseudoparticles m in the NCA and the OCA. Double-dashed

lines correspond to the full pseudoparticle propagators, while single continuous lines correspond

to conduction electron propagators.

would introduce artifacts in the spectrum, is necessary. It is computationally feasible to treat

the full d or f shell of transition metal and Lanthanide atoms within NCA and OCA, while

taking into account the complete energy dependence of the bath, albeit perturbatively. Being

approximations, NCA and OCA have certain de�ciencies: for too low temperatures (below the

Kondo temperature TK for the NCA and one to two orders below TK for the OCA [70]) both

methods fail to capture Fermi liquid behavior and result in an overestimation of the height of

the Kondo peak and artifacts like an unphysical self-energy with positive imaginary part in the

spectra in the zero-temperature limit [168]. Ref. [169] points out some de�ciencies of the OCA in

the description of the Mott transition in comparison to CTQMC. Ref. [170] showed that NCA

and OCA violate certain sum rules, and that the deviation from the sum rule gives an estimate

of the reliability of the approximation, with larger deviations occurring for multiple orbitals,

away from particle-hole symmetry and for low correlation strengths. It was also shown that

the OCA is considerably more reliable than the NCA.

Overall, the combination of the OCA with DFT-based transport calculations has been success-

fully applied to various systems [70;171], and is a reliable way to study Kondo physics in realistic

materials.

2.4.4 Including AIM results in transport calculation

After solving the AIM, the results can now be fed back to the transport calculation. The self

energy ΣC(ω) is added to the non-interacting GF G0
D(ω), where VDCC is the double-counting
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correction within the C subspace:

GD(ω) =
(
(G0

D(ω))−1 − (ΣC(ω)− VDCC)
)−1

= (ω −HD −ΣL(ω)−ΣR(ω)− (ΣC(ω)− VDCC))−1 .
(86)

The interacting device GF GD(ω) now contains the strong electronic correlations within the C

subspace.

The current through a strongly-interacting device coupled to non-interacting leads is described

by the Meir-Wingreen formula [139], which is considerably more complex than the Landauer for-

mula, and would require the impurity problem to be solved out of equilibrium, which has only be

achieved for non-realistic test systems and model Hamiltonians [172;173;174]. However, even when

strong electronic correlations are present, the Meir-Wingreen formula can be approximated by

the Landauer formula in the limit of low temperatures and low bias (also see the more detailed

discussion in Sec. 2.3). The transmission function, including electronic correlations, is

T (ω) = Tr
[
[GD(ω)]†ΓR(ω)GD(ω)ΓL(ω)

]
. (87)

It resembles Eq. 68, but uses the interacting GF in equilibrium GD(ω).

It is also possible to compute an updated charge density from the interacting device's GF

GD(ω):

PD = − 1

π
Im

∫ 0

−∞
dωGD(ω + iη). (88)

This charge density can then be used to determine a new KS Hamiltonian, new AIM parameters

can be extracted, and the updated AIM can be solved. This charge-density cycle will be used in

chapter 5, where in the last part of the chapter, the Coulomb interaction within the correlated

subspace U will also be computed self-consistently. The computation of U will be discussed in

more detail in chapter 4.
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3 Orbital signatures of Fano-Kondo line shapes in STM

adatom spectroscopy

When studying Kondo physics in the context of STM adatom spectroscopy, a so-called zero-

bias anomaly (ZBA) is observed in the tunnel spectrum. It is caused by the Kondo e�ect and

manifests itself in the local DOS of the probed atom or molecule. The ZBA can range from

peaks, asymmetric line shapes to dips and is typically well-described by a Fano line shape. Some

works explain the occurrence of Fano line shapes in STS as an interference process between

di�erent tunneling paths [68;175;176], one directly into the substrate, the other into the strongly

correlated orbital bearing the Kondo resonance. Other works explain the occurring line shapes

as a result of tunneling into the surface alone [62;63;64;177;178], where the Kondo resonance is not

involved in the tunneling process itself and only indirectly a�ects the conduction electrons which

are probed by the STM tip. This chapter will shed more light on this question, by studying the

in�uence of various parameters on the resulting line shapes, and by providing a simple model

to explain the results. Furthermore, up to now the connection between the symmetry of the

orbital carrying the Kondo e�ect and the resulting Fano line shape has not been systematically

studied. This question will also be answered in this chapter (also see Ref. [179]). To this end,

an individual d orbital will be selected and an ab-initio transport calculation will be performed,

where only the selected d orbital is correlated. There is merit to that: While it is in principle

necessary to correlate the complete 3d shell (as will be done in chapter 5), the Kondo resonance

can often be attributed to an individual orbital. Even if there are multiple orbitals exhibiting

Kondo physics, one d orbital will often be the more dominant in the tunnel spectrum due to

di�erent Kondo scales and higher tunneling matrix elements. The focus of this chapter is not

to provide a complete ab initio description, though. Each of the orbitals will be correlated,

and the resulting line shapes will be compared. This will be done for both Co@Cu(001) and

Co@Cu(111), and only the tunneling regime will be considered.

This chapter is structured as follows: �rst, the concept of Fano line shapes is introduced, fol-

lowed by details about the computational scheme used in this chapter. Results are presented

for Co@Cu(001) and Co@Cu(111), investigating the in�uence of orbital symmetry, Coulomb

interaction U , occupation (controlled by the level position εd) and temperature T on the re-

sulting line shapes. A simple model is introduced in order to predict line shapes controlled by

a few parameters only.

3.1 Fano line shapes

Fano line shapes or Fano resonances were �rst described in the context of autoionization and

elastic electron scattering by helium [180], but can generally arise in scattering processes, due

to quantum interference between a quasi-discrete resonant state and a broad continuum of

states. This interference can be observed in the scattering cross section and can manifest itself
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in various line shapes, including peaks, dips and asymmetric shapes. The possible line shapes

can be described in terms of the Fano function [180],

f(ε) ∝ (q + ε)2

ε2 + 1
, (89)

where the q parameter controls the line shape of the Fano function, ε is the the energy with

respect to the resonance position, and the resonance is assumed to be of Lorentzian shape. A

dip is obtained for q = 0, a peak for q = ±∞, and asymmetric line shapes for q values in

between.

An alternative way of writing Eq. 89 is by using the complex representation of a Lorentzian

and shifting it by a phase factor,

ρFL(ω) = Im

[
eiφq

(
A

ω − ω0 + iΓ

)]
+ ρ0, (90)

where A is the amplitude, Γ the half-width of the Lorentzian, ω0 the position of the resonance,

ρ0 some background, and eiφq a q-dependent phase factor. Using the de�nitions q = tan(φq/2)

and ε = (ω−ω0)/Γ, we can show the equivalence to Eq. 89 (see appendix A for the derivation):

ρFL(ω) =
A

Γ

(
(q + ε)2

ε2 + 1
− 1

)
1

1 + q2
+ ρ0. (91)

A similar situation occurs in STS, where the transmission shows Fano-like features, due to

quantum interference of the Kondo peak with the surrounding conduction electrons. While the

previous formulas are all based on a Lorentzian resonant level, Frota showed that the Kondo

peak is much better described by a so-called Frota line shape [181;182],

ρFrota(ω) = A · Re

[√
iΓF

ω − ω0 + iΓF

]
, (92)

where the Frota parameter ΓF is related to the actual half-width Γ of the resonance by Γ =

2.54 ΓF, A is the amplitude and ω0 the position of the Frota resonance.
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Figure 5: Comparison of Fano-Frota (FF) and Fano-Lorentz (FL) line shapes for di�erent values

of the q parameter but for identical amplitudes and half-widths.
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In the same spirit as Eq. 91, we de�ne a Fano-Frota line shape, as has been proposed by Prüser

et al. [183;184], by shifting the Frota line shape of Eq. 92 by a complex phase factor φq:

TFF(ω) = −A · Re

[
eiφq

√
iΓF

ω − ω0 + iΓF

]
+ T0. (93)

Eq. 93 is de�ned such that the same de�nition of φq as above can be used. A value of φq = 0

leads to a dip, φq = π to a peak and φq = ±π/2 to symmetric Fano line shapes.

In Fig. 5, Fano-Lorentz and Fano-Frota shapes are compared. The Fano-Frota shape is slightly

narrower close to the minimum/maximum, and exhibits a slower decay at the �anks. Line

shapes for a realistic calculation will be presented in Sec. 3.3.

3.2 Computational details

We perform DFT based ab initio quantum transport calculations using the ANT.G package [127],

using the methodology introduced in the previous chapter. The electronic structure of the D

region is calculated on the level of Kohn-Sham (KS) DFT employing the LSDA functional [83]

in the SVWN parametrization [85;86] and a minimal Gaussian basis set including the valence

(4s4p3d) and outer core electrons (3s3p) of the Co and Cu atoms [185;186;187;188;189]. The impor-

tance of including the semi-core states was pointed out in the past [190;191;192;193]. The electrodes

L and R, here the STM tip and the rest of the Cu surface, respectively, are modeled by Bethe

lattices.

In this chapter, we are interested in the Kondo signatures of speci�c d orbitals, and not of the

entire 3d shell. Hence we add a Hubbard-like interaction term ĤU = Un̂d↑n̂d↓ only to a single

d orbital of the Co 3d shell, where U is treated as a parameter. Since the Coulomb interaction

in the correlated d orbital has already been taken into account on a mean-�eld level in the

KS-DFT calculation, a double-counting correction (DCC) term has to be subtracted from the

KS Hamiltonian projected onto the d orbital εKS
d = 〈d|ĤKS

D |d〉:

εd = εKS
d − εDCC. (94)

The DCC is chosen such that a certain occupancy is achieved, i.e. for achieving particle-hole

(ph) symmetry (nd = 1) we choose εDCC such that εd = −U/2. Note that ph symmetry is only

approximately achieved since the coupling of the d orbital to the rest of the system (see below)

is generally not ph symmetric.

The hybridization functions from Fig. 7 together with the energy level εd and the e�ective

Coulomb interaction U de�ne a sAIM (see Eq. 70) which is solved in the OCA [163]. It is a

known issue of the OCA that at too low temperatures (1-2 orders of magnitude below TK) it

gives rise to spurious non-Fermi liquid behavior and related artifacts in the impurity spectral

function, leading to an overestimation of the height of the Kondo peak and an unphysical

self-energy with positive imaginary part [168]. We circumvent this problem by lowering the

temperature only to the point where the imaginary part of the self-energy becomes zero. At
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this point Fermi liquid behavior is obeyed, and the unitary limit of the Kondo peak is exactly

recovered. The computational scheme is depicted in Fig. 6.

3.3 Co adatom on Cu(001) surface

The system under consideration is shown in the left panel of Fig. 7. A Cobalt atom is deposited

at the hollow site of a Cu(001) surface. The Cu(001) surface is modeled by three Cu slabs of

36, 25 and 16 atoms, respectively, which are embedded into a Bethe lattice to describe the

in�nitely extended surface. We model the STM tip by a small pyramid of Cu atoms grown in

Figure 6: Computational scheme to determine the correlated transmission for a single d level.

First, the non-interacting GF G0
D(ω) is determined self-consistently, employing the ANT.G

code. An AIM is de�ned by the energy of the d level and the hybridization function ∆d(ω),

while the Coulomb interaction U and double counting correction VDCC are included as tunable

parameters. The AIM is solved within the NCA and OCA, respectively, and the correlated self

energy Σd(ω) is determined. As a last step, the correlated GF GD and corresponding correlated

transmission T (ω) can be calculated.
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Figure 7: Left: geometry of the Co atom deposited on a Cu(001) surface; dark gray/red: Co,

gray/yellow: Cu, light gray/blue: Bethe lattice. Right: imaginary part of the hybridization

function for the Co 3d shell.

the (001) direction, also embedded into a Bethe lattice. The tip is placed directly above the

Co atom at a distance of 6 Å, so that the system is in the tunneling regime.

As explained in Sec. 2.4, we now compute the hybridization functions of the Co 3d orbitals

(see right panel of Fig. 7). The four-fold symmetry of the Cu(001) surface leads to a splitting

into four groups. The xz and yz orbitals are degenerate (in the following, the results for the

yz orbital are omitted) and exhibit the strongest hybridization at the Fermi level. This can

be explained by the orbital orientation: Two lobes of the xz and yz orbitals point directly

at the two underlying surface atoms along the x and y axis, respectively. The hybridization

functions of z2 and x2-y2 have comparable values around the Fermi level. Although one lobe

of the z2 orbital points directly towards the surface, it does not point directly at any of the

neighboring atoms, but at the hollow space in between them. The x2-y2 orbital is oriented in the

x-y plane, but its lobes point exactly in the horizontal direction of the four neighboring atoms.

The xy orbital has the lowest hybridization in the displayed energy window. It is oriented in

the x-y plane, and its lobes point at the hollow spaces between the four neighboring atoms. All

hybridization functions show a moderate energy dependence. Note that the hopping between

di�erent Co 3d orbitals is zero, i.e. they do not couple to each other on the single-particle level.

While the hybridization function is calculated ab initio, the Coulomb interaction U is used as

a parameter that allows us to tune the Kondo coupling strength and explore the e�ect of the

width of the Kondo peak on the transmission line shape. But in order to have an estimate of the

magnitude, we have also calculated U ab initio for each of the d orbitals by constrained RPA

calculations as described in chapter 4. We �nd values for U ranging from 1.8 eV to 2.6 eV [194].

Accordingly, we choose the U parameters to vary between 2 eV and 3 eV. The hybridization
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Figure 8: Impurity spectral functions for d orbitals of Co@Cu(001) for di�erent Anderson

impurity model parameters U , εd.

functions from Fig. 7 together with the energy level εd and the e�ective Coulomb interaction

U de�ne an sAIM which is solved in the OCA [163].

Fig. 8 shows impurity spectral functions ρd(ω) of di�erent d orbitals for di�erent values of the

AIM parameters εd and U . The z2, xz, yz and x2-y2 orbitals behave similarly. For εd = −U/2
(red solid and blue dotted curves) we have approximate particle-hole symmetry: the Kondo

peak is nearly symmetric and centered close to, but slightly above the Fermi level. Note

that exact particle-hole symmetry is not achieved because of the non-constant hybridization

function. As expected, when U is increased the Kondo temperature and hence the width of the

Kondo peak decrease strongly, according to TK ∝ e−U/−Im(∆) [144]. On the other hand detuning

the system from particle-hole symmetry by shifting εd leads to a strong increase of the Kondo

temperature due to charge �uctuations (green dashed, magenta dashed-dotted curves). Note

the di�erent Kondo scales for each orbital due to di�erent hybridization strengths. Also note

that the peak height is nearly the same for each orbital. In the ideal case of a �at hybridization

Γ = −Im(∆), the height of the Kondo peak is simply given by 1/(πΓ). Slight deviations from

identical height can be explained by the non-constant hybridization functions (see Fig. 7). The

situation is di�erent for the xy orbital, which has the lowest hybridization of the d orbitals,
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Figure 9: Transmission functions for di�erent d orbitals of Co@Cu(001). Coulomb repulsion

U = 2 eV, and energy level εd = −1 eV (approximate particle-hole symmetry). The red

continuous curves show the calculated transmission, the black dashed curves Fano-Frota �ts.

The transmission background has been subtracted [195].

and, correspondingly, the lowest Kondo temperature. It is so low that our calculation, due to

numerical limitations, cannot reach temperatures low enough, and the shown Kondo peaks are

not fully developed yet.

We now calculate the correlated transmission functions for Kondo peaks in di�erent d orbitals.

Fig. 9 shows transmission line shapes for di�erent d orbitals for U = 2 eV and εd = −1.0 eV.

In order to make the features more clearly visible, here and in the following the transmission

background was subtracted [195]. We �nd that the line shapes are indeed di�erent for each

orbital: We observe approximately antisymmetric Fano line shapes (q ≈ 1) for z2 and x2-y2,

and more peak-like feature (q � 1) for xz and xy. In order to quantitatively describe the line

shapes, we perform Frota �ts to determine the q parameter and width of the line shapes, as

explained before in Sec. 3.1. The z2 and x2-y2 orbitals have comparable q values of 1.52 and

1.72, respectively. For xz, q becomes negative (−3.9) and for xy we �nd the most pronounced

peak with q = 4.95. The widths of the Fano features di�er signi�cantly, and in accordance

with their hybridization strength at the Fermi level, again according to TK ∝ e−U/−Im(∆). Note

that a feature with a very small width, as e.g., in the case of xy, might never be observed in

an actual experiment, because of the Kondo temperature being much too low and because of

limited resolution.
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We now vary the Coulomb repulsion U and introduce charge �uctuations by shifting the d level

position εd, as can be seen in Fig. 10. When varying U , but maintaining particle-hole symmetry,

the actual shape of the transmission features is only weakly a�ected, while the widths of the

features change strongly, as has already been seen and discussed for the spectral functions

in Fig. 8. When introducing charge �uctuations, the Kondo peak becomes asymmetric (see

Fig. 8). This asymmetry is also re�ected in the transmission line shapes. We �nd that the q

parameter consistently increases when εd is shifted downwards. For positive q (z2, x2-y2, xy)

lowering εd makes the line shapes more peak-like, while for negative q (xz), lowering εd leads

to more dip-like line shapes.

Hence, while the choice of AIM parameters U and εd does a�ect the transmission line shapes

to some degree, it does not completely change its symmetry. For example, the sign of the q

factor does not change.

While the signal width is determined by the hybridization and choice of AIM parameters

exclusively, the signal amplitude decisively depends on the system geometry. Because we chose

the z axis as our transport direction, a Kondo peak in the z2 orbital results in a much more

dominant feature compared to the remaining d orbitals, as can be seen in Figs. 9 and 10.

Hence, if there is a Kondo peak in the z2 orbital, the corresponding Fano feature will dominate

in the transmission regardless of what happens in the other orbitals. Also Fano features due

to Kondo peaks in orbitals other than the z2 orbital might be di�cult to discern from the

background if the background dispersion is strong compared to the Fano amplitudes. This

statement remains true even if the STM tip is shifted laterally by moderate distances of a

few Å. Although tunneling into orbitals other than z2 becomes more favorable upon a lateral

shift of the tip, the feature due to the Kondo peak in the z2 remains the most dominant one.
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Figure 10: Transmission functions for di�erent d orbitals of Co@Cu(001). The Coulomb repul-

sion is U = 3 eV, the occupation is varied by shifting εd. The red continuous curves show the

calculated transmission functions, the black dashed curves the corresponding Fano-Frota �ts.

The transmission background has been subtracted. [195]
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3.4 Co adatom on Cu(111) surface

The next system we focus on is a Cobalt atom, deposited at the 'hcp' hollow site of a Cu(111)

surface, as can be seen in the left panel of Fig. 11. The surface is modeled by three Cu

slabs of 27, 37 and 27 atoms, respectively, which are connected to a Bethe lattice. The tip

is described by a Cu(111) pyramid, consisting of 10 copper atoms, also connected to a Bethe

lattice. The threefold symmetry splits the �ve orbitals of the Co 3d shell into three groups: the

non-degenerate z2 orbital (m = 0) and two doubly degenerate groups, one with m = ±1 (xz

and yz orbitals) and one with m = ±2 (xy and x2-y2 orbitals). The right panel of Fig. 11 shows

the hybridization functions for each of the three groups. The group with the xz and yz orbitals

exhibits the strongest hybridization at the Fermi level. Two of their lobes point towards the

underlying atoms. The z2 orbital hybridizes slightly less with the rest of the system. Although

one of its lobes points directly at the surface, it points into the hollow space between the three

underlying atoms. The group with the x2-y2 and xy orbitals show the weakest hybridization,

since they are oriented in the x-y plane.

Fig. 12 shows impurity spectral functions ρd(ω) of di�erent d orbitals for di�erent values of

the AIM parameters εd and U . They behave similarly to those of the Co@Cu(001) system:

high hybridization, low U values and introducing charge �uctuations by shifting εd away from

particle-hole-symmetry lead to higher Kondo temperatures. For the x2-y2 and xy orbitals, the

Kondo temperature is relatively low, so that the Kondo peak for U = 3 eV and εd = −1.5 eV is

not fully developed for the minimum calculation temperature that we could reach for numerical

reasons.

We proceed as described in the previous section and calculate transmission functions for the
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Figure 12: Impurity spectral functions for d orbitals of Co@Cu(111) for di�erent Anderson

impurity model parameters U , εd.

d orbitals of Co@Cu(111), assuming a Coulomb repulsion of U = 2 eV and (approximate)

particle-hole-symmetry with εd = −1.0 eV (Fig. 13). Again, we �nd di�erent line shapes for

each orbital. The z2 orbital gives the most peak-like transmission feature with q = 2.77. For

x2-y2 we observe a transmission peak with q = −2.44. The xz orbital results in a Fano-type

feature with q = −1.61. The widths of the transmission features di�er considerably, with the

xz and yz orbitals having the largest width, and the xy and x2-y2 orbitals the lowest. The

z2 orbital again has the highest signal amplitude, as it strongly couples to the tip conduction

electrons.

In Fig. 14, we present calculated line shapes for di�erent AIM parameters U and εd. We observe

a similar behavior as for Co@Cu(001). When staying in the particle-hole symmetric case and

increasing U (middle column of Fig. 14), the line shapes remain similar, with slightly increased

q values. We introduce charge �uctuations by shifting the position of εd (left and right column
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Figure 13: Transmission functions for di�erent d orbitals of Co@Cu(111). Coulomb repulsion

U = 2 eV, εd = −1.0 eV. The red continuous curves show the calculated transmission functions,

the black dashed curves the corresponding Fano-Frota �ts. The transmission background has

been subtracted. [195]
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of Fig. 14). The q parameter increases when moving εd to lower energies. For positive q values,

as for z2, this leads to more peak-like line shapes, while for negative q values, as for xz and

x2-y2, it leads to more Fano- or dip-like line shapes. The only exception to this behavior occurs

for the xz orbital, for U = 3 eV and εd = −0.8 eV . It has a very high Kondo temperature

and an equivalently wide Fano feature, and the Fano-Frota �t fails for negative energies. This

suggests that the Fano line shape overlaps with other transmission features that alter the �nal

line shape.
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Figure 14: Transmission functions for di�erent d orbitals of Co@Cu(111). The Coulomb repul-

sion is U = 3 eV, the occupation is varied by shifting εd. The red continuous curves show the
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 tip

surface

A

Figure 15: Sketch of the simpli�ed model. The e�ective atom A is described by the correlated

d level and one conduction electron level c, in contact with the surface and the tip.

3.5 A simpli�ed model

The interference mechanism leading to di�erent Fano line shapes still is a matter of discus-

sion [62;63;64;68;175;176;177;178;196;196;197]. We expand on this discussion by introducing a simple model

that allows us to determine transmission line shapes from ab initio parameters. Fig. 15 shows a

schematic drawing of our model system. The central assumption is that the quantum interfer-

ence primarily occurs on the magnetic adatom, namely between one s-type and/or p-type level

(in the following, we will simply call it the conduction level c) and the correlated d level. Both

levels are in contact to the tip (electrode L) and the surface (electrode R), and the respective

interactions are taken into account by coupling matrices ΓL/R. As a second central assumption

we neglect the direct tunneling from the tip to the surface.

The starting point of our model is the correlated Green's function of the e�ective atom com-

prising the conduction c level and the correlated d level of the magnetic atom.

GA(ω) =
(
ωP̂A − ĤA − ∆̂(ω)− Σd(ω)P̂d

)−1

=

(
ω − εc −∆c(ω) −Vcd −∆cd(ω)

−Vdc −∆dc(ω) ω − εd −∆d(ω)− Σd(ω)

)−1

(95)

P̂A is a projector onto the e�ective atom A, while P̂d projects onto the d level only. All

parameters can either be extracted from the KS-calculation (εd, εc, Vcd, ∆̂(ω)) or from the

OCA-calculation (Σd(ω)), while the chemical potential has been set to zero µ = 0. The diagonal

elements of the hybridization function ∆̂(ω) lead to a shift (real part) of the level position of

εc and εd, respectively, and yield an e�ective level broadening (imaginary part). Also note

that the hybridization function has o�-diagonal components ∆cd(ω) = ∆dc(ω), which can be
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Figure 16: Transmissions calculated ab initio with the ANT.G package (see Sec. 3.3) and for

the simpli�ed model; Co@Cu(001), U = 2 eV, εd = −1 eV. The transmission functions are

rescaled and o�set for better visibility.

understood as an additional hopping between the c and d level mediated by hoppings via the

substrate, to give a total e�ective coupling of Ṽcd = Vcd + ∆cd. The coupling matrices ΓL/R(ω)

necessary for calculating the transmission function by Eq. 68 can be obtained by decomposing

the hybridization function into a tip (∆L(ω)) and a surface (∆R(ω)) component and taking the

imaginary parts, i.e. ΓL/R(ω) = −2 Im[∆L/R(ω)].

For the conduction level c of the e�ective atom we choose the s or p orbital that couples to

the correlated d orbital. The z2 orbital couples to both the s and the pz orbital for the (001)

and the (111) substrates. In this case we apply a unitary transformation in the subspace of

the s and pz orbitals such that the z2 orbital decouples completely from one of the orbitals

in the new basis. The spz hybridized orbital coupling to the z2 is then found to be the linear

combination |spz〉 ∝ Ṽsz2|s〉 + Ṽpzz2 |pz〉 where Ṽsz2 and Ṽpzz2 are the e�ective hoppings of the

z2 orbital with the s and pz orbitals, respectively. On both surfaces, the xz orbital couples to

px and the yz orbital to py. For the (001) surface both the x2-y2 and the xy orbitals do not

interact with any of the s or p orbitals of the atom, while on the (111) surface, they do interact

with the py and px orbitals, respectively.

In Fig. 16 and 17, we compare line shapes calculated for the simpli�ed model with the full
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the simpli�ed model; Co@Cu(111), U = 2 eV, εd = −1 eV. The transmission functions are

rescaled and o�set for better visibility.

ab initio results from Sec. 3.3 and Sec. 3.4. For the Co@Cu(001) surface (see Fig. 16), the

simpli�ed model consisting of the z2 orbital and the spz hybridized orbital reproduces the line

shape of the z2 orbital quite well. Only the peak character is slightly overestimated. In the case

of the xz orbital the line shape of the simpli�ed model including the px orbital is in excellent

agreement with that of the full ab initio calculation. For the x2-y2 orbital the agreement

between the simpli�ed model and the full calculation is not as good. As stated before this

orbital does not interact with any s or p orbital on the Co atom. Hence the transmission of the

simpli�ed model reproduces simply the Kondo peak in the spectral function since no interference

is taking place. On the other hand the full transmission shows a somewhat asymmetric Fano

feature (q ≈ 1.7) indicating that interference with some substrate state(s) must take place,

which is not included in the model. Finally, for the xy orbital we �nd very good agreement

between the simpli�ed model and the full calculation. The line shape in both calculations

simply reproduces the Kondo peak in the spectral function of the xy orbital indicating the

absence of any interference e�ects between this d level and s and p levels on the atoms as well

as substrate states.

We �nd a somewhat similar picture for Co@Cu(111) (see Fig. 17). For the xz orbital the model

including the interaction with the px orbital gives a line shape in excellent agreement with the

full calculation. Also for the x2-y2 the simpli�ed model including the py orbital on the atom

reproduces the line shape of the full calculation very well. However, in the case of the z2 orbital

the simpli�ed model including the spz hybridized orbital fails quite badly in reproducing the

line shape of the full calculation. Apparently, interference with tunneling paths to substrate

states play an important role here.

49



3.6 Discussion

For Co@Cu(001), we found transmission line shapes ranging from asymmetric Fano features

with positive (z2, x2-y2) and negative (xz) q values to a more peak-like feature (xy). The line

shapes are determined by the interference of di�erent tunneling paths. Our simpli�ed model

calculations indicate that for z2 and xz the interference takes place on the adatom between

the correlated d level and the non-interacting sp levels coupling to the d orbital. For the

xy orbital, no interference occurs between the conduction and impurity tunneling channels.

Hence one directly observes the shape of the Kondo peak in the transmission. On the other

hand, for the x2-y2 orbital, the interference mechanism probably involves the Cu substrate

states which are not captured by the simpli�ed model. Experimentally, asymmetric Fano line

shapes were reported with q ∼ 1.1 − 1.2 in the tunneling regime [32;38]. The measured line

shapes are comparable to the features we found both in the z2 and x2-y2 orbitals (see Figs. 9

and 10), although the z2 orbital yields a slightly better agreement. Better agreement with

experiment can surely be achieved by adjusting the Anderson model parameters and �tting the

calculated spectra with the experimental ones. We would like to stress though that �nding good

agreement with experiment is not the primary goal of this chapter, but rather to demonstrate

how di�erent orbital symmetries give rise to di�erent Fano-Kondo line shapes. A recent study [70]

found an underscreened Kondo e�ect for Co@Cu(001), where the z2 and x2-y2 are nearly half

�lled, but only the z2 orbital is Kondo screened at �nite temperatures due to its higher Kondo

temperature. Ref. [69] comes to similar conclusions, �nding a Kondo peak in the z2 orbital

with q = 1.2 in the tunneling regime and explaining it due to the interference of the z2 with

the s orbital.

For Co@Cu(111), we found asymmetric to peak-like Fano line shapes with positive (z2) and

negative (xz, x2-y2) q values. For the latter two, we can understand the tunneling interference in

terms of the model presented in the previous section. The interference occurs on the magnetic

atom, between the conduction electron channel, modeled by one of the p orbitals, and the

respective d level. For z2, which is interacting with the spz hybridized level, our model fails,

indicating that interference with substrate states plays an important role here.

Experimentally, dips were reported with q values close to zero [31;32;65] which does not seem to

agree with any of the calculated line shapes. The z2 orbital, aligned in the transport direction,

again shows the strongest signal, but is rather peak-like. The closest candidate to a dip-like

line shape is the xz orbital, particularly when increasing the occupancy relative to half-�lling

by moving the d level position downwards in energy (see Fig. 14).

Probably, the surface state of the Cu(111) surface [198] plays an important role for determining

the line shape [31;64;68;199] since its tunneling amplitude may be twice as strong compared to

tunneling into bulk states [200]. However, our embedded cluster calculation probably does not

capture the surface state properly. The importance of the surface state for reproducing the

correct line shape in the Co@Cu(111) system is also stressed in Ref. [69] where the surface

state is not properly captured and the correct q value could not be reproduced either.
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Figure 18: Temperature dependence of two di�erent line shapes for Co@Cu(111), xz, U = 3 eV,

εd = −1.5 eV and εd = −2.2 eV, respectively. Top: Transmission. Bottom: q parameter; the

lines are a guide for the eye.

3.7 Temperature dependence

The results presented so far are for the case of T → 0 (according to the criterion discussed in

Sec. 3.2), and have been explained and discussed in terms of a simple model. We now study

the temperature dependence of two line shapes: One tending towards a peak (q > 1) and one

tending towards a dip (q < 1). We pick the xz orbital of Co@Cu(111), U = 3 eV, εd = −1.5 eV

(q = −1.49) and εd = −2.2 eV (q = −0.87), respectively. The top row of Fig. 18 shows the

evolution of the aforementioned two line shapes. For increasing temperature, the signal ampli-

tude diminishes, while its width grows. The peak does not decay symmetrically. The 'peak'

component of the Fano feature decays faster than the 'dip' component of the feature, so that,

in both cases, the feature as a whole becomes increasingly dip-like with increasing temperature.

In order to quantify that, we perform Fano-Frota �ts and calculate the q parameter. We �nd

that the absolute value of the q parameter decreases considerably when temperature is rising,

irrespective if the feature tends more towards peak or dip in the T → 0 case. This might also

indicate that direct tunneling through the Kondo resonance becomes less important at higher

temperatures, and the interference process involves substrate states at higher temperatures.
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In this section, we studied the temperature dependence on the line shape, and found that

they become increasingly dip-like when increasing the temperature. However, note that in our

calculations for the xz orbitals we �nd q < 0 while in experiment q is always positive.

3.8 Moving the STM tip horizontally

So far, the STM tip was placed exactly on top of the adatom. In an STM setup, however, the

STM tip can be placed at di�erent locations above the surface. In this section, we investigate

the dependence of the Fano line shapes on the horizontal position of the STM tip for the

Co@Cu(001) surface. The z2 and xz orbitals are chosen, since their line shapes could be

explained in accordance to the simple model of Sec. 3.5. To this end, the STM tip is moved in

the positive x direction in steps of 0.5 Å. The electronic structure calculation does not need to

be redone, it su�ces to keep the electronic structure of the tip �xed and move it accordingly

with the tip atoms. This is possible due to the tunneling setup: Tip and surface orbitals do

not overlap, and interactions between tip and surface are weak. The calculated transmission

functions for movement in the positive x direction for the z2 and the xz orbitals are shown in

the top panels of Fig. 19.

For the z2 orbital, the transmission curves have increasingly lower amplitudes when moving

the STM away from the adatom, and the line shape changes considerably. For no or small

tip displacements, the line shape is peak-like, becomes an asymmetric Fano line shape at x =

1.5 Å and increasingly more dip-like when moving the STM tip further away from the adatom,

becoming a perfect dip at x = 3.0 Å. The q values and the amplitudes of the respective

transmission curves were obtained by Frota �ts according to Eq. 93. The results corroborate

the qualitative description: The q value (middle row of Fig. 19) decreases continuously, until

it reaches q = 0 at a displacement of x = 3 Å. The amplitude (bottom row of Fig. 19) also

decreases continuously, but the decrease seems to slow down at high displacements.

For the xz orbital, the transmission curves behave di�erently: At �rst, the amplitude increases

and reaches a maximum at x = 2 Å, then starts to decay when moving the tip further away.

The line shapes also change: Peak-like at �rst, they become increasingly asymmetric Fano line

shapes. This is also supported by the Frota �ts: The q value increases at �rst and changes

sign between x = 0 Å and x = 0.5 Å, then decreases (note that the corresponding φq changes

monotonically), and remains roughly constant between x = 1.5 Å and x = 3 Å. The amplitude

in fact decreases for a displacement of x = 0.5 Å, increases to a maximum at x = 2 Å to

decrease again for further displacements.

These results can be explained in context of Sec. 3.5 and 3.6. A schematic drawing of the

relevant orbitals is shown in Fig. 20.

For the z2 orbital, the relevant tip orbital is the s orbital (and to a lesser extent the pz orbital)

of the tip. For no and low tip displacements, tunneling occurs directly with the z2 orbital of

the Co atom. For higher tip displacements, this interaction becomes increasingly smaller and

almost vanishes for x = 3.0 Å, where the tunneling mostly occurs between the tip and the
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Figure 19: Top: transmission functions for the z2 and xz orbitals, where the STM tip has been

shifted along the x axis by the given distance in Å. The transmission functions are o�set for

better visibility. The transmission background has been subtracted [195] . Middle: q values for

di�erent displacements of the STM tip. Bottom: �tted amplitude for di�erent displacements

of the STM tip.

Cu surface, resulting in a dip (similarly to the dip experimentally observed for Co@Cu(111),

which was explained in terms of tunneling into surface states as well). This also explains the

saturation of the amplitude. When moving the tip in the y direction, the results remain the

same: Due to the symmetry of the z2 orbital within the x-y plane, the results of Fig. 19 are

reproduced exactly. For the xz orbital, the relevant tip orbital is the px orbital when the STM
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Figure 20: Schematic drawing of the orbitals involved in the interference process when the STM

is moved horizontally, for the z2 and xz orbitals of the Co adatom on the Cu(001) surface.

tip is placed directly on top of the adatom. When the tip is moved away, however, the coupling

to the px orbital becomes smaller, explaining the slightly reduced transmission amplitude. For

higher displacements, the s orbital starts to interact with the right lobe of the xz orbital of

the adatom, reaching a maximum at x = 2 Å and decreasing for higher displacements. When

moving the tip in the y direction, the results are di�erent, and a simple decay of amplitude is

observed as in the case of the z2 orbital. The yz orbital moved in the y direction, however,

behaves exactly like xz orbital when moving the tip in the x direction.

We see that the change of line shapes can be explained by the orbitals involved in the tunneling

process. We also see that, depending on the d orbital where the Kondo e�ect occurs, the STS

signal might be stronger if the STM tip is not placed directly on top of the adatom, but a few

Å away from it.

3.9 Conclusions

In summary, we have calculated the orbital signatures of Kondo peaks in the STM spectra

of transition metal adatom systems, namely Co@Cu(001) and Co@Cu(111). Our calculations

show that the measured line shapes allow to draw some conclusions on the d orbital(s) involved

in the Kondo e�ect since the line shape depends to a large extent on the coupling of the d orbital

to the sp orbitals on the adatom, which in turn is determined by the orbital symmetry. However,

also temperature, e�ective interaction U and in particular the occupancy of the d orbital have

a strong in�uence on the actual line shapes. Also, if multi-orbital e�ects are important for the

actual shape of a Fano-Kondo feature, this approach per se is not appropriate. Nevertheless,

even in the case of a multi-orbital Kondo e�ect, often one orbital will be dominant in the

tunnel spectra. In fact if a Kondo resonance forms in the z2 orbital, the corresponding Fano

feature will be dominant in the tunnel spectrum for the typical case of an s-type STM tip, so

that Kondo features coming from other d orbitals are likely not visible. These results are also

54



relevant for STS of transition metal complexes on metallic substrates [150;201;202], maybe even

more so since tunneling into surface states is less important there.

We stress that the developed method can in principle also be applied to the contact regime.

However, unlike in the tunneling case, in the contact regime the voltage can no longer be

assumed to mainly drop between tip and adatom. Rather, the voltage drop will distribute in

some way over the contact according to the actual geometry of the contact region [202], and

needs to be calculated or estimated. Moreover, the actual contact geometry is probably also

relevant for the coupling between d orbitals and conduction electrons and thus also has a strong

in�uence on the line shapes. Therefore possible contact geometries need to be explored and

relaxed with some care.

Based on our results, we propose a poor man's method to obtain information on the orbital(s)

involved in the Kondo e�ect measured in an actual experiment solely on the basis of a density

functional theory calculation of the system: by tailoring an appropriate self-energy for each

orbital such that the width of the resulting Kondo peak in that orbital reproduces the width

of the measured Fano-Kondo line shape, one can calculate the corresponding line shapes and

compare to experiment.
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4 The partially screened Coulomb interaction U

Screening is an essential concept to understand the physics of condensed matter systems, par-

ticularly metals. If a charge is inserted into a material, the surrounding electrons are subject to

a changed potential and rearrange in order to minimize the total energy. This rearrangement

can be relatively small (in the case of an insulator whose charges are bound) or very pronounced

(in the case of a metal whose charge carriers can move relatively freely). In a metal, a screening

cloud will form around the inserted charge. An electron far away from it does not feel the

full Coulomb interaction of the inserted charge, but a reduced Coulomb interaction due to the

screening [203].

Section 2.4.1 discussed how to obtain AIM parameters from the ab-initio transport calculation,

but did not yet discuss how to obtain the interaction Uik;jl (short notation U). It is much smaller

than the bare interaction V , since it already takes into account all screening contributions from

outside of the correlated region, but not the screening within the correlated region itself. U is a

partially screened interaction, where the screening within the correlated region is taken care of

when solving the AIM. It initially appeared in the context of model Hamiltonians, particularly

the Hubbard model [204], and is still commonly used in electronic structure theory.

Various methods have been proposed to compute the interaction U from a DFT calculation,

and whose results may deviate signi�cantly from each other [43]. The �rst connections between

DFT calculations and the U parameter were made by Gunnarsson et. al. [205]. Their approach,

often labelled constrained LDA, keeps the orbital occupation of the localized orbitals �xed, and

determines the interaction U as the second derivative of the total energy with respect to the

occupancy of the localized level. Another constrained DFT-approach was given by Pickett [206]

and extended by Cococcioni [207], which is also called linear-response method [43], and relates the

interaction U to the linear response function. These methods were often used in the context of

(self-consistent) LDA+U, or, more generally, DFT+U [207;208;209].

The random phase approximation [210;211;212;213] (RPA) is another possibility to compute the

partially screened Coulomb interaction U . Its basic idea is to only take into account screening

contributions due to the formation of electron-hole-pairs. The RPA's �rst use in this context

was the computation of the fully screened interaction W [193;214;215]. The constrained RPA

(cRPA) was �rst introduced by Aryasetiawan [216;217] in order to compute the partially screened

interaction U and has since been extended and applied in di�erent contexts and for di�erent

classes of materials [70;218;219;220;221;222;223;224;225;226]. While constrained DFT should yield similar

results as the cRPA, the latter was shown to provide more reliable results due to technical

di�culties in the implementation of the constrained LDA [217].

This thesis therefore combines the cRPA methodology with our �nite-cluster DFT calculation

in order to obtain partially screened Coulomb interactions for our systems, following the method

and notation of Ref. [70]. The focus will lie on the Co@Cu(001) system.

This chapter proceeds as follows: �rst, the cRPA-methodology is presented. The in�uence of
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di�erent DFT functionals and di�erently sized polarization regions will be investigated. Self-

consistent LDA+U and PBE+U calculations are performed and discussed. Two attempts to

approximately include polarization e�ects from outside of the polarization region are proposed,

and the chapter �nishes with a discussion of the results.

4.1 The constrained random phase approximation

In this chapter, the starting point of the cRPA will be the bare Coulomb interaction V and the

non-interacting KS GF G0
D(ω) of a converged DFT calculation (in Sec. 5.3, the starting point

will be the interacting GF), after the ANT.G [127] self consistency presented in the previous

chapter is achieved (see Fig. 6). The RPA assumes that screening occurs exclusively due to the

formation of electron-hole-pairs. Due to computational limitations, it is typically not possible

to take into account the screening from the complete device region D if the device is reasonably

large. Instead, a smaller polarization region P is de�ned (see Fig. 1), consisting of the correlated

subspace C itself and the surrounding atoms. This approximation can be justi�ed by the fact

that the orbitals that span region C are typically strongly localized, and the most relevant

screening contributions are mostly local as well.

For a stationary Hamiltonian, the Dyson equation for the screened interaction can be written

as:

Wα1β1;α2β2(τ) = Vα1β1;α2β2 δ(τ)+
∑

µ1ν1µ2ν2

Vα1β1;µ1ν1

∫ β

0

dτ (ΠP)µ1ν1;µ2ν2(τ−τ ′)Wµ2ν2;α2β2(τ ′), (96)

where τ is an imaginary time and only screening contributions from within the polarization

region P are taken into account. The corresponding Feynman diagram is depicted in Fig. 21.

This work only considers the static limit of the screened interaction W 0 ≡ W (ω = 0) =∫
dτ W (τ). To compute the static polarizability Π0 =

∫ β
0

dτ Π(τ−τ ′), one of the time arguments

of Π(τ − τ ′) can be set to τ ′ = 0 due to the β-periodicity. Putting in the de�nition of the

polarizability as a product of two GFs, given by the bubble diagram in Fig. 21, one obtains

(Π0
P)µ1ν1;µ2ν2 =

∫ β

0

dτ (ΠP)µ1ν1;µ2ν2(τ)

=

∫ β

0

dτ
∑
σ

(GP)σν2µ1
(−τ)(GP)σν1µ2

(τ)

=
1

β

∑
iωn

∑
σ

(GP)σν2µ1
(iωn)(GP)σν1µ2

(iωn)

T → 0
=

1

2π

∫ ∞
−∞

dω
∑
σ

(GP)σν2µ1
(iω)(GP)σν1µ2

(iω),

(97)

where in the third step, the Fourier transform with respect to imaginary time τ was carried out,

and in the last step, the limit of T → 0 was taken, turning the discrete sum over Matsubara

frequencies ωn into a continuous integral over the frequency ω. This gives the Dyson equation
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Figure 21: Feynman diagram of the Dyson equation from Eq. 98. The single and double wiggly

lines correspond to the bare Coulomb interaction V and the screened Coulomb interaction W ,

repsectively. The RPA polarizability is represented by so-called bubble diagrams.

for the static screened interaction:

W 0
α1β1;α2β2

= Vα1β1;α2β2 +
∑

µ1ν1µ2ν2

Vα1β1;µ1ν1(Π0
P)µ1ν1;µ2ν2W

0
µ2ν2;α2β2

. (98)

In order to write the Dyson equation for the screened interaction in a matrix equation, two

indices can be merged into a superindex I := (α1, β1), J := (α2, β2), and the Dyson equation

becomes:

W = V + V Π0
P W. (99)

The partially screened interaction U is calculated in a two-step process. First, the fully screened

interaction W is obtained, by fully screening the bare interaction V, taking into account all

screening contribution from within the P subspace:

W =
(
1−V Π0

P

)−1
V. (100)

As a second step, the screened interaction within the correlated subspace WC is partially

unscreened, taking into account screening contributions from within the C subspace only:

U =
(
1 + WCΠ0

C

)−1
WC. (101)

This yields the desired partially screened interaction U. Note that the latter equation is nu-

merically unstable [70], so particular care has to be taken in the computation of Π0
C, since small

inaccuracies can already lead to large deviations in the interaction U. Also note that U depends

on the DFT basis set, so the same basis set has to be used in subsequent calculations.

Note that the interaction U within the RPA could in principle be obtained in a single step by

screening the bare Coulomb interaction V by all screening contributions within the polarization

region P except for the contributions within the correlated region C [217]:

U = V + V
(
Π0

P −Π0
C

)
U, (102)

which can be solved for the partially screened interaction

U =
(
1−V

(
Π0

P −Π0
C

))−1
V. (103)

For computational reasons, it is more convenient to use the two-step process from above, par-

ticularly due to the use of non-orthogonal basis sets, where the correct choice of projection is
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crucial, and choosing the wrong projection will give unphysical results [70;227;228]. For a non-

orthogonal basis set, Π0
C is not just a submatrix of Π0

P. Details on non-orthogonal basis sets

can be found in Appendix B.

The cRPA methodology calculates all elements of the partially screened Coulomb interaction

Uik;jl, but realistic impurity solver calculations only take into account a subset of elements,

typically the direct Coulomb interaction Uii;jj and exchange interaction Uij;ji. This will also

be the case in chapter 5. Other elements are typically small, the discussion in this chapter will

therefore refer to the direct and exchange elements. More details on the quality of the results

of an cRPA calculation can be found at the end of this chapter in Sec. 4.6.

4.2 U computed for di�erent functionals

First, the in�uence of the DFT functional on the resulting U is investigated. The focus will

be on the Co@Cu(001) system. An improved geometry for Co@Cu(001) has become available

in the meantime [229], where the Co atom and the surrounding 4 Cu atoms were relaxed using

the Vienna Ab initio Simulation Package [230] (VASP) and the PBE functional. Note that the

new geometry is rotated by 45◦ compared to the geometry used in previous chapters. Due to

that, xy and x2-y2 orbitals are interchanged, but all other system properties are una�ected

by the rotation. The polarization region contains 10 atoms, namely the Co atom and the 9

closest Cu atoms (see Fig. 25). Calculations are performed for the LSDA and PBE functionals

as standard KS-DFT functionals, and the range-separated hybrid functional HSE [99], LDA+U

and PBE+U as generalized KS-DFT functionals (also see Sec. 2.1.3). For the latter, ULSDA and

UPBE were used as an input to perform a single (one-shot) LDA+U and PBE+U calculation, on

whose basis ULDA+U and UPBE+U were determined, employing the orbital-dependent version of

the fully localized double counting correction. The diagonal elements Uii;ii for orbital di (short

notation: Udi) obtained from a cRPA calculation are shown in Fig. 22, the corresponding orbital

magnetization is presented in Tab. 1.

For the LSDA, the Udi parameters range from 6.1 eV to 7.8 eV, where Uz2 is the lowest and

Uxy the highest. The spin is not localized, only the x2-y2 orbital is nearly full, all other orbitals

carry signi�cant magnetization, and no apparent connection between magnetization and size

of U is visible. For the PBE functional, the Udi are signi�cantly higher, ranging from 8.0 eV

to 9.8 eV. The spin is localized in the z2 and xy orbitals, while the remaining orbitals are

nearly completely �lled, which also agrees with results from previous calculations with high-

level correlation [69;70], and is henceforth assumed to be the correct spin state. Note that in

the literature, the spin is reported to be localized in the z2 orbital and either in the xy or the

x2-y2 orbital, depending on the spatial orientation of the system, and can be adjusted by a

simple rotation of 45◦ around the z axis. The higher Udi values correspond to the half-�lled

orbitals. The Udi parameters for LDA+U deviate signi�cantly from the LSDA result. They are

much higher and less spread out, ranging from 8.3 eV to 8.7 eV. LDA+U captures the correct

spin state, and the orbitals that carry the spin have higher Udi values, but the e�ect is less
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Figure 22: Elements of the partially screened

Coulomb interaction Uik;jl for the d level of the

Co atom for di�erent DFT functionals. The

lines between data points are a guide for the

eye.

z2 xz/yz x2 − y2 xy

LSDA 0.39 0.31 0.09 0.65

PBE 0.85 0.06 0.03 0.88

HSE 0.97 0.03 0.02 0.97

LDA+U 0.98 0.03 0.01 0.98

PBE+U 0.99 0.01 0.01 0.99

Table 1: Magnetization ndi↑ − ndi↓ for or-

bital di of the Co atom for various DFT

functionals, where ndiσ is is the orbital's oc-

cupation for spin channel σ.

pronounced than in the case of the PBE functional. The PBE+U result is almost completely

identical to the PBE, and the Udi lie only slightly (0.05 eV) below their PBE values. The

HSE is very similar to LDA+U, ranging from 8.4 eV to 9.0 eV, which is about 0.2 eV higher

than the LDA+U values. It captures the correct spin state, and shows the same trends as

the LDA+U result. The direct elements between sites Uii;jj follow similar trends as the direct

on-site elements Uii;ii, and are on average 1 eV below the on-site elements, irrespective of the

employed functional. The exchange elements Uij;ji, often denoted Jij, are insensitive to the

functional and vary between 0.55 eV and 1.05 eV for di�erent combinations of i and j (also see

Tab. 3).

Overall, only the LSDA does not obtain the correct spin state, while all higher-level functionals

do. Udi parameters are also considerably higher for functionals with higher-level correlation.

The geometry also seems to play an important role: Ref. [70] uses the identical methodology

and the LSDA, but a di�erently optimized geometry, and obtains a slightly di�erent spin state

and considerably lower and less spread-out Udi between 5.23 eV and 5.56 eV. There is also a

connection between occupancy and Udi , where higher magnetization leads to higher Udi . This

e�ect is most pronounced for PBE and PBE+U.

4.3 Self-consistent DFT+U

As a next step, the e�ect of self-consistency (sc) on the electronic structure and the resulting

partially screened Coulomb interaction U obtained by cRPA will be investigated for a DFT+U

calculation. The starting point is a DFT calculation, based on which U will be computed within
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the cRPA. The resulting U is used as input for a DFT+U calculation, which will not only lead

to a rearrangement of the d levels, which are a�ected directly by U , but will a�ect the complete

electronic structure. Based on this updated electronic structure, a new U can be obtained,

which can be used for a new DFT+U calculation. This can be repeated until convergence is

reached, where occupation and U approach a constant. In this section, self-consistent LDA+U

and PBE+U calculations will be performed. Self-consistent DFT+U combined with the cRPA

has already been applied to various systems [220;222], and it has been stressed that it is superior

to one-shot DFT+U in certain situations. This section does not intend to give a complete

account of scDFT+U, but is used to get a �rst idea of the in�uence of self-consistency in U on

the electronic structure. While DFT+U and scDFT+U can describe the formation of Hubbard

bands, they cannot account for Kondo physics, which requires more advanced methods. The

e�ect of self-consistency will be investigated in much more detail in chapter 5, where di�erent

types of self-consistent DFT+OCA calculation are performed.

Fig. 23 shows the direct on-site elements Uii;ii for a converged scLDA+U and scPBE+U, com-

paring them to those of one-shot LDA+U, one-shot PBE+U and the range-separated hybrid

HSE from the previous section. The scLDA+U and scPBE+U results are nearly identical and

only o�set by less than 0.2 eV, while the relative size of di�erent Uii;ii is the same. They lie

about 0.8 eV and 1.0 eV above the HSE and one-shot LDA+U results, respectively, and have

similar relative sizes: Uz2 is the highest, Ux2-y2 the lowest, and the elements lie relatively closely

together. While scLDA+U behaves similarly to one-shot LDA+U, PBE+U (whose U is very

close to the PBE result) yields relatively spread-out U values. This spread is signi�cantly re-

duced due the self-consistency, where Uz2 remains almost the same, but the remaining Udi are
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Figure 23: Elements of the partially screened

Coulomb interaction Uik;jl for the d level of the

Co atom for self-consistent DFT+U, compared

to other functionals. The lines between data

points are a guide for the eye.

z2 xz/yz x2 − y2 xy

LDA+U 0.98 0.03 0.01 0.98

scLDA+U 0.98 0.02 0.01 0.98

PBE+U 0.99 0.01 0.01 0.99

scPBE+U 0.99 0.01 0.01 0.99

HSE 0.97 0.03 0.02 0.97

Table 2: Magnetization ndi↑ − ndi↓ for orbital
di of the Co atom for self-consistent LDA+U

and PBE+U, where ndiσ is is the orbital's oc-

cupation for spin channel σ.
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raised signi�cantly.

The d level occupation and magnetization is almost completely una�ected by the self-consistency

process (see Tab. 2), and all presented methods yield nearly identical occupations, where z2

and xy carry the spin, while the remaining orbitals are completely �lled.

The next goal is to better understand the self-consistency process itself. To this end, Fig. 24

shows the direct on-site elements Uii;ii and one selected direct element Uii;jj for several steps of

the self-consistency process for scLDA+U and scPBE+U. The zeroth step corresponds to the

pure LSDA/PBE calculation, the �rst step to the one-shot LDA+U/PBE+U.

For LDA+U, the �rst step leads to a signi�cant increase and a relative change in size between

di�erent Udi . The addition of U changes the d level occupation signi�cantly (see Tab. 1),

which is distributed over several orbitals for the LSDA (a typical de�ciency of the LSDA),

and becomes localized due to the addition of U . For PBE+U, U remains almost constant in

the �rst step, potentially since PBE already �nds the correct orbital occupation. Surprisingly,

a signi�cant drop of U occurs in the second step, for both scLDA+U and scPBE+U and all

Uii;jj. In the third step, a signi�cant jump of U is observed. In the following steps, U increases

monotonically and quickly reaches a plateau. The di�erences between the 6th and 7th step are

negligibly small, so self-consistency is reached after 6 steps for both scLDA+U and scPBE+U.

The occupation of the d levels remains nearly constant in the self-consistency process, also

for the second step of the self-consistency, where the signi�cant drop of U is observed, and is

therefore not shown.

We see that self-consistency has a considerable e�ect on U for a DFT+U calculation. Since

the d level occupation barely changes, it must mostly stem from changes in the surrounding

electronic structure, not necessarily from the d levels themselves. The self-consistent values
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Figure 24: Elements of the partially screened Coulomb interaction U for the d level of the

Co atom for di�erent iterations of scLDA+U and scPBE+U. All direct on-site Uii;ii elements

(red, green, blue, magenta) and one direct Uii;jj element between di�erent sites (light blue) are

presented.
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of U are higher than those obtained from DFT functionals or one-shot DFT+U. A possible

explanation is that the d levels are pushed away from the Fermi level due to adding U , forming

Hubbard bands, and therefore reducing the screening at the Fermi level, leading to higher U

parameters in each consecutive step of self-consistency until a plateau is reached. The formation

of the Kondo peak, which cannot be described by DFT+U or scDFT+U, might remedy this

issue by shu�ing spectral weight back to the Fermi level and contributing to the screening.

This will be explored in chapter 5.

4.4 U for di�erent polarization regions

So far, the size of the polarization region has been kept �xed, containing the Co and the 9

surrounding Cu atoms. This section will explore the in�uence of the size of the polarization

region on the resulting partially screened Coulomb interaction U . To this end, cRPA calcula-

tions will be performed for di�erently sized polarization regions P, which are shown in Fig. 25.

Atoms are added to the polarization region P in accordance to their distance to the Co atom,

where atoms of equal distance have to be added as a group. The smallest cluster consists of

the Co atom and the 4 closest Cu atoms of the topmost layer of the Cu surface. The next

cluster adds one more Cu atom of the second layer which is located directly underneath the

Co atom. The cluster of 10 atoms adds another 4 atoms of the second layer. This cluster was

used so far in this chapter. The next-biggest cluster contains 18 atoms. For a basis set size

of 13 basis functions per atom (3s3p4s4d4p), inclusion of 8 additional atoms would make the

resulting polarizabilities Π0
P and interactions V andW too large to be handled computationally.

A possible workaround is to remove the semi-core states of the Cu atoms for the computation

of the polarizability, reducing the number of basis functions per atom to 9 (4s4d4p), which

makes the polarizability and cRPA calculation feasible. While it has been pointed out that the

inclusion of semi-core states is essential to correctly capture the electronic structure of certain

transition metal compounds (see discussion in Sec. 3.2), they might play a smaller role for an

excited-state-property like the polarizability. This e�ect will also be explored in this section.

Tab. 3 presents di�erent elements Uik;jl, namely all direct on-site elements Uii;ii, two selected

direct elements Uii;jj between orbitals i and j and two exchange elements Uij;ji for di�erent sizes

Figure 25: Di�erent polarization regions for the Co@Cu(001) system. The number indicates

the total number of atoms within the polarization region P.
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of the polarization region and di�erent functionals. The main result is visualized in Fig. 26,

where the average over the direct on-site elements Ū =
∑

i Uii;ii is plotted for the LSDA, the

PBE and the HSE functionals, including and excluding semi-core states. It su�ces to analyze

Ū , since the relative size of di�erent Uii;ii does not change when the size of the polarization

region is changed.

For the LSDA, Ū increases when the polarization region is made bigger, from 5.0 eV to 6.7 eV

when increasing the size from 5 to 10 atoms. This seems counterintuitive, since more orbitals

contributing to the screening process are added, which should lead to lower partially screened

Coulomb interactions. When excluding semi-core states, Ū is about 0.3 eV higher than for

the LSDA with semi-core states included, indicating that they contribute to the screening and

should be included if high accuracy is required. For a polarization region containing 18 atoms

Uii;ii Uii;jj Uij;ji

size Uz2 Uxz/yz Ux2−y2 Uxy Uz2;xz Uz2;xy Jz2 xz Jz2 xy

LSDA

5 4.88 4.90 5.08 5.45 3.78 3.38 0.55 0.85

6 4.89 4.94 5.10 5.48 3.81 3.40 0.55 0.87

10 6.05 6.33 6.91 7.80 5.07 5.00 0.56 0.91

PBE

5 8.42 7.64 7.36 8.18 6.77 6.21 0.59 1.02

6 10.10 8.71 8.21 9.14 8.12 7.48 0.59 1.04

10 9.76 8.23 8.03 9.05 7.71 7.24 0.60 1.05

HSE

5 10.10 9.76 9.49 9.93 8.67 7.97 0.63 1.01

6 10.10 9.75 9.49 9.93 8.67 7.99 0.63 1.01

10 8.97 8.55 8.39 8.80 7.51 6.86 0.63 1.01

LSDA

(w/o core states)

5 5.11 5.14 5.29 5.69 4.01 3.61 0.55 0.85

6 5.12 5.17 5.30 5.69 4.04 3.62 0.55 0.87

10 6.43 6.71 7.28 8.21 5.44 5.39 0.56 0.91

18 25.18 23.62 24.63 30.33 23.19 25.55 0.59 1.03

PBE

(w/o core states)

5 8.39 7.59 7.34 8.17 6.74 6.18 0.60 1.02

6 9.95 8.58 8.12 9.04 7.98 7.36 0.59 1.04

10 9.52 8.03 7.87 8.87 7.49 7.04 0.60 1.04

18 9.14 7.76 7.79 8.78 7.17 6.82 0.61 1.04

HSE

(w/o core states)

5 10.08 9.74 9.48 9.92 8.65 7.97 0.63 1.01

6 10.08 9.73 9.48 9.92 8.65 7.98 0.63 1.01

10 8.93 8.51 8.36 8.77 7.47 6.83 0.63 1.01

18 8.36 7.97 7.96 8.31 6.92 6.33 0.63 1.00

Table 3: U parameter for Co@Cu(001) and di�erent sizes of the polarization region for LSDA,

PBE and HSE, with semi-core states included and excluded. All direct on-site elements Uii;ii,

selected direct elements between sites Uii;jj and exchange elements Uij;ji are presented.
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Figure 26: Average of the direct on-site parameters Ū =
∑

i Uii;ii for di�erently sized polariza-

tion regions for the Co@Cu(001) system (also see Fig. 25).

and no semi-core states, however, an unphysical Ū of 25.5 eV is obtained. This is likely not

a problem related to the semi-core states and might point to a more general problem of using

the LSDA in the context of cRPA, and may also be related to the incorrect spin state which is

found by the LSDA. This issue will also be discussed in more detail in Sec. 4.6.

In case of the PBE, Ū �rst increases when adding the 6th atom to the polarization region, and

decreases when adding the next 4 atoms, not showing a clear trend. The exclusion of semi-core

states also does not show a consistent behavior, and Ū is above the PBE result with semi-core

states included for 5 atoms and below it for 6 and 10 atoms, the di�erence not being greater

than 0.2 eV, though. For 18 atoms and no semi-core states included, Ū decreases and does not

go up to unphysical values as in the case of the LSDA.

For the HSE functional and small polarization regions, Ū is close to 10 eV, considerably higher

than for the other functionals. When the polarization region is enlarged, Ū behaves as one

would intuitively expect: the more atoms contribute to the screening, the lower Ū becomes and

for 18 atoms and no semi-core states, the resulting Ū = 8.1 eV is lower than the corresponding

PBE result, despite the much higher starting value. The semi-core states play a nearly negligible

role.

Overall, Ū decreases when the size of the polarization region is increased, with the exception

of the LSDA, where Ū grows to unphysically large values for the largest cluster. Convergence

seems not to be reached for PBE and HSE, and the inclusion of more atoms to the polarization

region would be desirable. Questions of convergence will be discussed in more detail in Sec. 4.5
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and Sec. 4.6. Semi-core states seem to contribute to the screening, but not very strongly,

and seem to be less relevant for functionals with higher-level correlation. The direct elements

between orbitals Uii;jj behave similarly to the on-site elements upon changing the size of the

polarization region, while the exchange elements Uij;ji are almost completely insensitive, so

they are not discussed separately.

4.4.1 Co@Cu(111)

Although this chapter's focus is on the Co@Cu(001) system, this section will perform cRPA

calculations for Co@Cu(111), in order to see if the trends observed for Co@Cu(001) are also

present in this system. To this end, cRPA calculations are performed, employing the LSDA and

PBE functionals, and using di�erently sized polarization regions, which are shown in Fig. 27.

For Co@Cu(111), it is possible to include a total of 14 atoms in the largest cluster, and it is

not necessary to exclude core electrons to make the calculation numerically feasible.

Tab. 4 shows the direct on-site elements of the partially screened Coulomb interaction U , and

Fig. 28 the average Ū of those elements. The trends are similar to those of the Co@Cu(001)

system. For the LSDA, U increases when the polarization region is enlarged, reaching un-

physically high values for the largest cluster of 14 atoms. The LSDA therefore seems to be

unreliable in combination with cRPA calculations for the present class of systems. While Ū

seems to assume reasonable values for small polarization regions, this is likely by chance, since

its value becomes unphysical for larger polarization regions. For the PBE functional, Ū goes

down when the size of the polarization region is increased, starting with Ū = 8.3 eV for the

smallest cluster of 4 atoms and going down to Ū = 7.2 eV for the biggest cluster of 14 atoms.

Also here, convergence does not seem to be reached, and a further decrease of Ū is probable

if the polarization region were further enlarged. Although the total value of Ū goes down, the

di�erence between individual elements becomes larger. For a polarization region consisting of 4

atoms, Uz2−Uxy = 0.29 eV, while for 14 atoms, a much larger di�erence of Uz2−Uxy = 0.83 eV

is obtained.

Figure 27: Di�erent polarization regions for the Co@Cu(111) system. The number indicates

the total number of atoms within the polarization region P.
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i Uii;ii for di�erently sized po-

larization regions for the Co@Cu(111) system

(also see Fig. 27).

size Uz2 Uxz, Uyz Ux2−y2 , Uxy

LSDA

4 5.84 5.83 5.84

7 8.34 8.95 9.96

8 9.43 9.81 11.33

14 27.91 28.66 35.09

PBE

4 8.13 8.40 8.42

7 7.64 8.13 8.31

8 7.17 7.66 7.81

14 6.64 7.29 7.47

Table 4: U parameter for Co@Cu(001) and di�er-

ent sizes of the polarization region for LSDA and

PBE.

4.5 Approximately including screening e�ects from outside of the po-

larization region

As we could see in the previous section, the partially screened interaction U obtained from a

cRPA calculation does not seem to be fully converged with respect to the size of the polarization

region. It would therefore be desirable to work with larger polarization regions P, which ideally

would comprise the complete device D. This is a complicated task, however: the polarizability

Π0 and the Coulomb matrices V , W and U are 4-index quantities, and doubling the size of the

polarization region would lead to a 16-fold increase in size for these quantities, quickly reaching

computational limits of RAM and �le size. The basis set used in this chapter consists of 13 basis

functions per atom, and for a polarization region comprising 18 atoms and 8 Byte per �le entry,

the resulting �le size is already ≈ 24 GB. This is already too much for the available hardware

if more than two quantities have to be stored simultaneously, and could only be handled if

matrices are only read in partially or results are directly written into �les to reduce the RAM

demand, which would also slow down calculations considerably. Even then, it would still be

impossible to include the complete device region.

Unfortunately, it is also not possible to diagonalize the entirety of the system and work in a

diagonal basis, which is further complicated by the use of non-orthogonal basis sets: at some

point in the cRPA calculation, a non-sparse quantity would occur, which cannot be handled

with the present methodology.
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The goal of this section is therefore to �nd approximate solutions to the aforementioned prob-

lem, by approximately including polarization e�ects from outside of the polarization region.

The necessary modules were not implemented in the ANT.G code, but in a new code, named

NanoRPA, which exclusively takes care of screening and the cRPA. There is merit to that: since

the memory demand can be very high as discussed earlier, a code just for the cRPA step does

not need to store additional quantities from the DFT/ANT.G self-consistency cycle, freeing

up memory and potentially enabling the use of better approximations or larger polarization

regions. It was made sure that the NanoRPA-code exactly reproduces the cRPA results from

the previous sections, and modules were added to approximately account for polarization e�ects

from outside of the polarization region. Two approximations will be proposed in the following,

namely pre-screening by the RPA to �rst order, and pre-screening of direct elements only.

4.5.1 Attempt 1 - Pre-screening by RPA to �rst order

The �rst attempt includes all polarization bubble diagrams of the device region, but approxi-

mates the Dyson equation Eq. 99, with the aspiration that it is su�cient to treat polarization

e�ects from further away to �rst order. Just as the cRPA, this will be done as a two-step

process: �rstly, the complete device region will be screened by a polarization obtained from the

RPA to �rst order, and secondly, the polarization region will be unscreened by a polarization

obtained from the RPA to �rst order, resulting in a pre-screened Upre. This will then be used as

input for a conventional cRPA calculation within the polarization region, where Upre replaces

V in Eq. 99.

Method: As a �rst step, the polarization of the complete device region has to be computed

in a diagonal basis. The starting point is the Hamiltonian of the complete device region HD in

the local Gaussian basis, which can be diagonalized by a unitary matrix u:

HD̃ = u HD u−1. (104)

The diagonal basis is denoted by the tilde D̃. From the diagonalized Hamiltonian, the GF of

the complete device GD̃ in the diagonal basis can be computed:

GD̃ = (ω −HD̃ −ΣL̃ −ΣR̃)−1. (105)

Note that the self-energies ΣL̃/R̃ are not diagonal in the new basis after applying the unitary

transformation u. Since we do require the GF GD̃ to be diagonal for the following considerations

to work, their diagonality has to be enforced, by projecting out all non-diagonal elements after

the unitary transformation to the diagonal subspace:

ΣL̃/R̃ := P̂ diag u ΣL/R u−1 P̂ diag. (106)

This is an approximation, but since the self-energies are only directly a�ecting atoms at the

edge of the cluster, their e�ect on the screening of the central Co atom is expected to be small.
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From the diagonal GF GD̃ it is possible to compute the polarizability of the complete device

region by the RPA:

(Π0
D̃D̃

)µ1µ2;µ2µ1 =
1

2π

∫ ∞
−∞

dω
∑
σ

(GD̃)σµ1µ1
(iω)(GD̃)σµ2µ2

(iω). (107)

Due to the diagonality of GD̃, the polarizability Π0
D̃D̃

is now e�ectively a two-index quantity

with size N2
D, which can easily be stored (for the Co@Cu(001) system, ND = 1268), and the

only approximation made so far was enforcing the self-energies ΣL̃/R̃ to be diagonal in the new

basis. In this section, polarization and interactions will be assigned two labels, to account for

di�erent dimensions or basis sets of left and right superindex.

The second step is to use the polarizability of the device region to pre-screen the bare Coulomb

interaction, by applying the RPA. The starting point for �nding an appropriate approximation

for the pre-screening is the RPA equation for the complete device region, where the bare

interaction V is calculated in the local Gaussian basis and the polarization of the complete

device region in the diagonal basis D̃. Note that we do not need to compute the pre-screened

interaction Wpre for the complete device region. It su�ces to compute Wpre
PP and Upre

PP for the

polarization region, where the latter serves as the starting point for a full cRPA calculation

within the polarization region. The RPA equation for the complete device projected on the

polarization region then becomes:

Wpre
PP = P̂P(1−VDDΠ0

D̃D̃
)−1VDDP̂P. (108)

The bare Coulomb interaction of the device region VDD has dimension N4
D and is too big to

be computationally handled. In order to develop an approximation, the above equation can be

expanded and the projection operator applied:

Wpre
PP = VPP + VPDuDD̃Π0

D̃D̃
uD̃DVDP + VPDuDD̃Π0

D̃D̃
uD̃DVDDuDD̃Π0

D̃D̃
uD̃DVDP + ... (109)

The operators uDD̃ and uD̃D were introduced to make it possible to carry out multiplications

between quantities which are computed in di�erent bases, where uDD̃ is a generalized unitary

matrix to transform one side of a 4-index quantity from D to D̃, e�ectively transforming two

indices (also see Sec. 4.1 and Eq. 99), therefore requiring a generalized version of the unitary

matrix appearing in Eq. 104.

The second and all higher-order terms contain VDD (or, after applying the unitary transforma-

tion, VD̃D̃), so these terms can not be included in the approximation. This leaves the zeroth

and �rst order terms, which will be used for the pre-screening process:

Wpre
PP = VPP + VPDu

∗
DD̃

Π0
D̃D̃
u∗

D̃D
VDP. (110)

In practical calculations, the correct order of the multiplications is important, and has to

either start from the left-hand or the right-hand side, such that no quantity of dimension N4
D

occurs. In this case, the largest quantity has dimension N2
DN

2
P and is the limiting factor in the
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aforementioned procedure. With ND = 1268 for the Co@Cu(001) system, it is possible to treat

a polarization region of 5 atoms (Co and 4 Cu) with NP = 65. In this case, the maximum �le

size is ≈ 46 GB, which is close to the RAM limit of the available hardware. Due to that it is not

possible to have two quantities of this dimension stored in the RAM at one time and requires

matrix multiplication results to be directly written to �les. Note that while the operators u∗
DD̃

and u∗
D̃D

have labels D and D̃, they apply separate unitary transformations for each index, and

each transformation matrix has size N2
D only.

The pre-screened interaction Wpre
PP then has to be unscreened by RPA to �rst order within the

polarization region to obtain Upre
PP:

Upre
PP = Wpre

PP −Wpre
PPΠ0

PPWpre
PP. (111)

This way, polarization e�ects from outside of the polarization region are included to �rst order.

The pre-screened interaction Upre
PP then serves as a starting point for a full cRPA calculation,

replacing V in Eq. 99 and 100.

Results and discussion: The described methodology is now applied to the Co@Cu(001)

system. The ANT.G code is used to compute the bare Coulomb interactions VPP and VDP/PD,

the unitary matrix u and the polarizability Π0
D̃D̃

, which serve as input for the NanoRPA code.

The PBE functional is used throughout this section, and the polarization region contains the Co

atom and the 4 neighboring Cu atoms (see Fig. 25). Tab. 5 contains direct on-site elements and

selected direct and exchange elements for bare, pre-screened and fully screened interactions.

The direct elements of the pre-screened Wpre assume negative values, which appears to be

an unphysical result. It might, however, also be due to the fact that �rst-order RPA is not

su�cient for the polarization region itself, but accurate for the remaining device, and could be

remedied by the unscreening to �rst order within the polarization region.

Unfortunately, this is also not the case. The direct elements of the pre-screened Upre are

positive, but more than one order of magnitude larger than the bare interaction, which would

signify an extremely strong negative screening due to the device outside of the polarization

region, which seems highly unlikely and unphysical.

Upre now acts as the starting point for a cRPA calculation within the polarization region P.

Surprisingly, although the direct elements of Upre are considerably too high, they lead to

physical values for W and U, where the direct on-site elements Uii;ii range from 6.64 eV for

the x2-y2 orbital to 8.87 eV for the xz/xy orbital. This is in contrast to the cRPA results

without any pre-screening (see Fig. 22), where the orbitals carrying the spin had higher on-site

U parameters, while those of �lled orbitals were lower. The average Ū = 8.05 eV is still higher

than that of a 'pure' cRPA calculation, using PBE and the same polarization region of 5 atoms,

which results in Ū = 7.82 eV.

Although the �nal result for U seems to have some merit, the results cannot be trusted, since

they are based on unphysical intermediate results after the pre-screening, and the �nal result
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Xii;ii Xii;jj Xij;ij

X Xz2 Xxz/yz Xx2−y2 Xxy Xz2;xz Xz2;xy Xz2 xz Xz2 xy

PBE

V 24.3 24.3 24.3 24.3 22.2 23.0 0.64 1.05

W pre -937 -936 -922 -928 -937 -933 0.26 0.11

Upre 832 834 744 747 831 786 1.18 2.81

W 0.96 0.78 1.44 1.29 0.16 0.15 0.39 0.35

U 8.25 8.87 6.64 7.63 6.77 6.25 0.94 1.85

Table 5: Selected elements of the interaction V , the pre-screened interactions W pre and Upre

using RPA to �rst order, the fully screened interaction W and the �nal partially screened

interaction U .

could just be due to some type of error cancellation. Even if it was not, no decrease, but a

slight increase of the average direct on-site U was observed. The use of �rst-order RPA for

the screening due to the remaining device region is therefore not su�cient, and the in�nite

resummation of the RPA might be essential for it to function also for screening e�ects from

further away. Screening in metallic systems is simply too strong and too long-range to justify

the use of a �rst-order approximation.

Although the LSDA was shown to be unreliable, the same calculation has been run for the

LSDA as well, and similar results have been found, which are not shown.

4.5.2 Attempt 2 - Pre-screening of direct elements only

For the second attempt, the pre-screening is only done for the direct elements of the Coulomb

interaction, which are most strongly a�ected in the screening process due to the long range

of the Coulomb interaction, using only the corresponding elements of the polarizability. The

basic assumption is that all other elements of the Coulomb interaction are only weakly a�ected

from polarization e�ects from outside of the polarization region: as we already saw in this

chapter, exchange elements are not strongly a�ected by the screening, and other elements

of the Coulomb interaction are typically small and will also be neglected in the DFT+OCA

calculations in the following chapter 5. The pre-screening will be done as a two-step process

analogously to the cRPA: �rstly, the direct elements of the Coulomb interaction are screened

for the complete device region. Secondly, the direct elements will be unscreened within the

polarization region, resulting in a pre-screened Upre. This will then be used as input for a

conventional cRPA calculation within the polarization region, where Upre replaces the direct

elements of V in Eq. 99.

Method: The starting point for the pre-screening are the direct elements of the bare Coulomb

interaction

V dir
α1β1;α2β2

= Vα1α1;α2α2δα1β1δα2β2 , (112)
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where δ is the Kronecker delta. The polarizability diagrams that connect di�erent direct ele-

ments of the Coulomb interactions are of the following type,

(Π0
D)µ1µ1;µ2µ2 =

1

2π

∫ ∞
−∞

dω
∑
σ

(GD)σµ2µ1
(iω)(GD)σµ1µ2

(iω), (113)

and all other elements of the polarizability will be neglected for the pre-screening. Both

Vα1α1;α2α2 and (Π0
D)µ1µ1;µ2µ2 have size N2

D, and can be easily treated computationally. Firstly,

the direct elements of the Coulomb interaction will be screened for the complete device by the

RPA, in order to obtain W pre:

W pre
α1α1;α2α2

=
∑
µ1,µ2

[(
1− Vα1α1;µ1µ1(Π0,dir

D )µ1µ1;µ2µ2

)−1
]
α1α1;µ2µ2

Vµ2µ2;α2α2 . (114)

The direct elements W pre are then partially unscreened by Π0,dir
P within the polarization region,

resulting in Upre:

Upre
α1α1;α2α2

=
∑
µ1,µ2

[(
1 +W pre

α1α1;µ1µ1
(Π0,dir

P )µ1µ1;µ2µ2

)−1
]
α1α1;µ2µ2

W pre
µ2µ2;α2α2

. (115)

Note that Π0,dir
P is not just a submatrix of Π0,dir

D due to the use of non-orthogonal basis sets, and

the use of the correct projection is crucial to obtain correct results [70] (also see appendix B). We

then proceed to apply the cRPA methodology described in Sec. 4.1, where the direct elements

of VP are replaced by those of Upre
P

V pre
α1β1;α2β2

→

U
pre
α1β1;α2β2

∀ α1 = β1 ∧ α2 = β2

Vα1β1;α2β2 otherwise,
(116)

V pre replaces V in Eq. 99, and a conventional cRPA calculation is performed to obtain U .

Results and discussion: The described methodology is applied to the Co@Cu(001) system.

The ANT.G code is used to compute the direct elements of the bare Coulomb interaction

Vα1α1;α2α2 and the corresponding elements of the polarizability (Π0,dir
D )µ1µ1;µ2µ2 , which serve as

input for the NanoRPA code. The PBE functional is used throughout this section, and the

polarization region contains the Co atom and the 9 neighboring Cu atoms (see Fig. 25).

Tab. 6 shows all direct on-site elements and selected other direct and exchange elements of the

bare, pre-screened and completely screened interactions. The elements of W pre have positive

values between 2.2 and 2.7 eV for the on-site and 0.8 and 1.2 eV for other direct elements,

which seems to be a reasonable result in line with screened interaction from RPA calculations

in the previous sections. Note that exchange elements are not included in the pre-screening

and omitted in Tab. 6.

The unscreening of the direct elements within the polarization region yields interactions ranging

from 8.1 to 9.2 eV for the direct on-site elements and 6.6 to 7.0 eV for other direct elements of

Upre. This is a surprising result, since screening from within the polarization region has been
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Xii;ii Xii;jj Xij;ij

X Xz2 Xxz/yz Xx2−y2 Xxy Xz2;xz Xz2;xy Xz2 xz Xz2 xy

PBE

V 24.3 24.3 24.3 24.3 22.2 23.0 0.64 1.05

W pre 2.17 2.26 2.66 2.52 1.17 0.76 - -

Upre 8.39 8.08 9.16 8.98 6.98 6.57 - -

W 2.31 2.38 2.87 2.64 1.34 0.91 0.34 0.75

U 8.93 7.65 7.77 8.57 6.95 6.54 0.59 1.02

Table 6: Bare interaction V , pre-screened interactions W pre and Upre obtained from applying

the RPA for direct elements of the Coulomb interaction only, fully screened interaction W and

�nal partially screened interaction U .

subtracted, and Upre contains screening contributions from outside of the polarization region

only. This screening is already very strong and similar in size to the screening due to the

polarization region itself (see cRPA results for PBE in Sec. 4.2).

As described above, Upre now replaces the direct elements of V as starting point for a cRPA

calculation within the polarization region. The direct elements of the fully screened interaction

W are 0.1 to 0.2 eV higher than W pre. This di�erence can be attributed to the fact that the

computation of W includes all types of polarizability diagrams and also non-direct elements of

the Coulomb interaction.

In the last calculation step, the partially screened U is computed. Direct on-site elements range

from 7.7 to 8.9 eV, which is lower than the corresponding cRPA result without pre-screening

for the PBE functional (8.0 to 9.8 eV). The half-�lled orbitals z2 and xy have higher values of

U than the �lled ones, also in line with previous results presented in this chapter.

The pre-screening of the direct elements leads to the anticipated result: the �nal partially

screened U is lower than the corresponding result without pre-screening, successfully incor-

porating polarization e�ects from outside of the polarization region. The values of Upre are

unexpectedly low, and the same order of magnitude as the �nal U . Particularly for the z2

orbital, Upre is smaller than U , which means that the local screening due to the full polarizabil-

ity within the polarization region leads to an increase in U , which cannot be easily explained.

Further testing would be required to show that the method is applicable to other systems and

functionals, and make sure that the present results are not based on some type of error can-

cellation. If these tests were successful, the proposed methodology could serve as a simple and

computationally cheap possibility to include polarization e�ects from outside of the polarization

region.

4.6 Discussion

This chapter introduced the cRPA methodology to obtain partially screened interactions U ,

and applied the cRPA for the Co@Cu(001) system and various functionals.
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We could also see that the LSDA seems to yield unreliable results for the partially screened

interaction U , which was particularly evident when the size of the polarization region was

increased. This problem only occurred for the 'pure' LSDA, and was not present in one-

shot or self-consistent LDA+U. It can potentially be attributed to the fact that LSDA gives

an incorrect orbital occupation, where the spin is distributed over all d orbitals, which is a

well-known de�ciency of the LSDA. It might also not su�ciently capture polarization e�ects

appropriately, which are non-local in nature.

For all higher-level functionals, namely PBE, HSE, one-shot and self-consistent DFT+U, the

results are more consistent: direct on-site elements lie in the range of 8.0 to 9.8 eV, where the

lowest average value is observed for one-shot LDA+U and the highest average value for self-

consistent LDA+U and PBE+U. The highest direct on-site elements of U can be attributed to

the orbitals carrying the spin. This e�ect is strong for PBE and less strong, albeit present, for

all other functionals studied.

In principle, there are two convergences to be taken into account: �rstly, convergence with

respect to the size of the polarization region. The Coulomb interaction is intrinsically long-

range, and the cRPA method is limited to relatively small sizes of the polarization region. The

convergence with respect to the size of the polarization region has been tested for several clus-

ters for the Co@Cu(001) and the Co@Cu(111) system in Sec. 4.4. It was shown that the size

of the partially screened interaction U goes down when the size of the polarization region is

increased, with the notable exception of the LSDA, where an unphysical increase was observed,

which is not present for one-shot or self-consistent LDA+U. Convergence with respect to the

size of the polarization region does not seem to be reached yet for the largest clusters that

could computationally be tested. Unfortunately, the calculations with the present implemen-

tation are limited to relatively small clusters due to the rapidly growing size of interaction and

polarizability matrices when the size of the polarization region is increased.

Two methods were proposed to include polarization e�ects from outside of the polarization

region approximately: using the RPA to �rst order for the pre-screening yields unphysical

intermediate results for the pre-screened interactions. Although the �nal U is close in size to

the cRPA values without pre-screening, it does not lead to an overall reduction of the average

of the direct on-site elements of U , and does not reproduce the relative size of the di�erent

direct on-site elements, and this attempt will not be further pursued. The pre-screening of only

the direct elements yields more promising results: the interactions W pre and Upre have physical

values, although it is surprising that the pre-screening alone already leads to a considerable

screening of the Coulomb interaction. The �nal U is lower than the pure cRPA result without

pre-screening, and the relative size of the direct on-site elements is maintained when the pre-

screening is included. The pre-screening of the direct elements might serve as a cheap and

easily implemented way to include screening e�ects from outside of the polarization region in

the future, but further testing for di�erent systems and functionals will still be required.

The second convergence is with respect to the number of unoccupied and occupied orbitals
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taken into account in the computation of the polarizability. This can be more easily seen in

the notation of Ref. [217]:

Π(~r, ~r ′;ω) =
occ∑
i

unocc∑
j

Ψi(~r)Ψ
∗
i (~r
′)Ψ∗j(~r)Ψj(~r

′)

(
1

ω − εj + εi + i0+
− 1

ω + εj − εi + i0+

)
,

(117)

where Ψi and εi are one-particle Block eigenfunctions and eigenvalues of the system. The

denominator in the calculation of the polarizability contains di�erences between occupied and

unoccupied orbitals, and only a certain number of unoccupied orbitals, typically up to an energy

cuto�, can be included in realistic calculations. Since the denominator only decays slowly with

increasing energy of unoccupied orbitals, this convergence can be slow, requiring the inclusion

of a high number of unoccupied orbitals. While the energy cuto� is an input parameter in

plane-wave basis sets, it is less obvious in calculations with a local basis, where the convergence

has to be tested by adding additional basis functions describing unoccupied orbitals. This is

problematic, however, since it would lead to a considerable increase of the size of Coulomb

interactions and polarizability, and it could only be tested for very small polarization regions

of 5 atoms, which has been shown to be too small. The energy convergence has therefore not

been tested in the present work.

So far, no statement was made on the expected size of the interaction U . This will be done in

the next chapter, where U serves as an input parameter for an Anderson impurity model, which

will be solved within the OCA. The resulting self energy will be used to calculate the correlated

transmission, which can then be compared to experimental data. The next chapter will also

discuss the in�uence of the Kondo peak on U in a self-consistent DFT+OCA calculation, and

perform self-consistent DFT+OCA+cRPA calculations, where U is updated each cycle.
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5 Transport calculations for the full d shell using DFT+OCA

This chapter will go further towards a full ab-initio description of the Co@Cu(001) system. The

complete d shell of the Co adatom will be correlated, and U will not be treated as a tunable

parameter: it will instead be determined by the cRPA introduced in chapter 4. The �nal

result will be the correlated transmission T (ω), which can then be compared to experimental

conductance curves.

We will proceed in three steps. At �rst, a one-shot DFT+OCA calculation will be performed,

computing the correlated transmission from the non-interacting GF and the correlated self

energy, similar to chapter 3, but correlating the complete d shell. In the second step, the

charge-density will be updated at each cycle to incorporate the e�ects of the correlated self

energy within the d shell: the correlated self-energy will be included in the DFT calculation,

which will, in turn, lead to updated d level positions and an updated hybridization function.

This de�nes a new AIM, which is solved by the OCA. This is repeated until self-consistency is

reached. The U parameter is kept unchanged throughout the calculation. This will be called

the charge self-consistency cycle. The third step will include the computation of U in the

self-consistency cycle. Based on the updated charge density, a new hybridization function is

determined and an updated U is computed by the cRPA. This de�nes a new AIM, which is

solved by the OCA. This is also repeated until self-consistency is reached, and will be called

the charge-U self-consistency cycle.

5.1 One-shot DFT+OCA

As the �rst step, one-shot DFT+OCA calculations are performed. DFT has already been

combined with di�erent impurity solvers in the past, often in the context of one-shot

DFT+DMFT [231;232;233]. It improves many system properties, for instance for transition met-

als [232], transition metal oxides [234] and f electron systems [235;236]. The advantages are clear:

the method is relatively cheap, and once a self-energy describing the correlations within the

d shell is obtained, the interacting GF of the device can be directly computed according to

Eq. 86 and the correlated transmission according to Eq. 87. One-shot DFT+OCA will serve as

a good starting point for more advanced calculations.

The methodology used in this chapter has been tested and extended in the past [70;150;166;171;237;238].

We proceed in the same spirit as chapter 3, but instead of correlating a single d level, the com-

plete d shell is treated by the OCA. The computational scheme is shown in Fig. 29.

5.1.1 Results

At �rst, the ANT.G code is used to perform a DFT calculation of the Co@Cu(001) system

connected to semi-in�nite surface and STM tip, which are described by Bethe lattice self en-

ergies. The LANL2MB minimal basis set [187;189] is employed, which explicitly includes the

valence electrons and the outer core electrons, while the inner core electrons are described by a
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Figure 29: Computational scheme for the one-shot DFT+OCA calculations to determine the

correlated transmission for the complete d shell. U is determined by a cRPA calculation, the

remaining scheme is identical to that of chapter 3 (see Fig. 6).
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z2 xz/yz x2 − y2 xy 3d shell

LDA 1.63 1.53 1.74 1.50 7.93

LSDA 1.55 1.59 1.82 1.29 7.84

LDA+OCA 1.17 1.95 1.96 1.17 8.20

PBE (no spin) 1.64 1.54 1.76 1.48 7.96

PBE 1.12 1.85 1.90 1.10 7.82

PBE+OCA 1.01 1.99 1.99 1.03 8.01

PBE*+OCA 1.06 1.97 1.98 1.09 8.07

Table 7: Occupation of the respective d level and the complete d shell for di�erent levels of

approximation.

pseudopotential. The geometry is the same as in chapter 4. As DFT functionals, LDA/LSDA

and PBE are used. The system is in an approximate spin 1 state (see Tab. 7). For all LDA,

LSDA and spin-independent PBE, the orbital occupation is relatively spread out between the

orbitals. For spin-dependent PBE, the improved description of electronic correlation leads to

a localization of the spin in the z2 and xy orbitals.

The hybridization functions are computed from the DFT calculation as presented in Fig. 30.

They show the same features for LDA and PBE: the xz/yz orbitals hybridize most strongly,

z2 and xy show intermediate hybridization, and x2-y2 the weakest hybridization. The largest

di�erence between LDA and PBE occurs in the xz/yz orbitals, where the hybridization from

PBE is more than 0.01 eV below the LDA result. The hybridization of x2-y2 is slightly lower

for PBE, while z2 and xy are very close for both functionals.

The LDA results are similar to those obtained in chapter 3, where the hybridization function

was computed for a slightly di�erent geometry (see Fig. 7, and note that xy and x2-y2 are

interchanged when comparing the results to chapter 3 because the new geometry is rotated by

45◦, see Sec. 4.2). The updated geometry leads to a small reduction in hybridization strength

(around 0.01 eV), and the e�ect is strongest for the z2 orbital.

In order to de�ne an AIM, we also require the partially screened Coulomb interaction. In

contrast to chapter 3, U is not treated as a parameter, but is computed within the cRPA. The

methodology was discussed in detail in chapter 4. A polarization region of 10 atoms is chosen,

and the values of U can be found in Tab. 3. Note that although the computation of U based on

an LSDA calculation is problematic (see Sec. 4.6), the LSDA is often used in the literature and

will be presented for comparison. For a polarization region of 10 atoms, the U values appear to

be physical, and while the LSDA fails to accurately describe the d levels, they will be treated

by the impurity solver.

An AIM is de�ned by: the hybridization function ∆(ω), the d level positions, the partially

screened Coulomb interaction U , and the corresponding double counting correction. Only

certain elements of the Coulomb interaction are taken into account, namely direct Coulomb
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Figure 30: Imaginary part of the hybridization function for the Co 3d shell for LDA and PBE.

Uii;jj and exchange elements Uij;ji. Other elements are relatively small and will be neglected,

which is a typical assumption in impurity solver calculations [239].

The AIM is now solved using the OCA. The calculation temperature is set to T = 0.001 eV

(11 K), which is a realistic temperature for Kondo-STM experiments. This is di�erent from

chapter 3, where the temperature was chosen for each d level to achieve Fermi liquid behavior.

The temperature cannot be directly set to the desired value, but has to be gradually reduced

in order for the OCA calculation to �nd the relevant pseudoparticles. This is done in 4 steps

with temperatures 1 eV, 0.1 eV, 0.01 eV and 0.001 eV.

The resulting occupations of the LDA+OCA/PBE+OCA calculations can be found in Tab. 7.

For LDA+OCA, the z2 and xy orbitals are now much closer to half-�lling, while the remain-

ing orbitals are nearly completely �lled. The deviation from half-�lling by 0.17 indicates the

presence of strong charge �uctuations. For PBE, the localization is much more pronounced,

yielding virtually half-�lled z2 and xy orbitals. The choice of the double-counting correction is

crucial here: LDA+OCA requires the orbital-dependent FLL DCC (see Eq. 75) to arrive at the

correct spin state. The standard FLL DCC would result in an empty xy orbital, where all other

d orbitals are completely �lled. This can be understood by the strong anisotropy in the direct

elements of U , where the xy orbital exhibits the strongest direct on-site interaction. If not

appropriately corrected by the DCC, the strong Coulomb repulsion then leads to an emptying

of the xy orbital. PBE, on the other hand, requires the standard FLL DCC (see Eq. 74) to

reach the correct spin state. The orbital-dependent version yields a spin state where the xz/yz

orbitals are half �lled, while all remaining d orbitals are full. The reason for this behavior is

not completely clear, and might be an overcorrection of the orbital-dependent FLL DCC. This

highlights the importance of the choice of the DCC, particularly if the correct spin state is pre-

viously unknown. It would be highly desirable to develop a method where the DCC is exactly

known. Fortunately, the choice of DCC will be slightly less important in the self-consistent
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Figure 31: Spectral functions for the orbitals of the Co 3d shell for LSDA and PBE.

calculations conducted later in this chapter.

Fig. 31 shows the spectral functions obtained from the OCA calculation. For LDA+OCA, the

Kondo peak is clearly developed for the z2 and xy orbitals, and both lie in the left �ank of

another spectral feature at around 0.2 eV, which can be associated with the upper Hubbard

band. This is also supported by the charge �uctuations present for z2 and xy. The Kondo peak

associated with xy is slightly smaller, since its direct on-site interaction U is higher and the

hybridization around the Fermi level slightly smaller than for z2. In order to assess the peak

height, we look at the unitary limit (also see Sec. 3.2 and Sec. 3.3). Although only strictly

de�ned for a single impurity, it still gives an indication for the expected size of the Kondo peak

in a multi-orbital situation. For a single impurity and the given hybridization, a peak height

of 1.8 1/eV and 2.0 1/eV would be expected for z2 and xy, and the observed values lie a factor

of 2 and 3 below for z2 and xy, respectively.

For PBE+OCA, the Kondo peak is already visible, but barely developed and still very far

from reaching the unitary limit. The xy orbital is associated with the stronger Kondo peak,

whereas the z2 orbital is associated with the weaker one, potentially because the direct on-site

interaction U is slightly higher for z2 than for xy, and although the hybridization of xy around

the Fermi level is slightly weaker.

The �lled orbitals do not show any spectral features around the Fermi level for LDA+OCA

and PBE+OCA, which is the expected result.

The correlated transmission functions are presented in Fig. 32. The LDA+OCA transmission

shows an asymmetric Fano feature tending towards a peak. A Fano-Frota �t yields q = 1.75,

which is slightly higher than the experimental value (Ref. [32] reports q = 1.13), yet has the

same symmetry. The di�erence might be due to the choice of the DCC, whose in�uence on

the line shape can be considerable (see Sec. 3.3 and Ref. [70]). The Fano-Frota �t yields

ΓF = 1.6 meV, from which the half-width of the Fano feature can be determined according
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Figure 32: Transmission functions for one-shot LDA+OCA and PBE+OCA, where the linear

and quadratic background are subtracted for the latter. Frota �ts (dotted black lines) yield the

q factor and the half-width parameter Γ of the Fano-Frota feature.

to Γ = 2.54ΓF. If no temperature broadening of the Kondo peak were present, this would

correspond to a Kondo temperature of 47 K, in good agreement with the experimental value of

53 K [32]. However, since the Kondo peak is already pronounced, but not yet fully developed, a

small temperature broadening is likely present and the resulting Kondo temperature is slightly

lower.

For PBE+OCA, the transmission feature is several orders of magnitude smaller than for

LDA+OCA, in accordance with the much weaker Kondo peak in the spectral function. In

order to resolve the feature, a Fano-Frota �t (see Sec. 3.1) with additional linear and quadratic

terms was required. The line shape is an asymmetric Fano line shape tending towards a dip,

with q = 0.49, much lower than for LDA+OCA and than observed in experiment. This can be

understood in context of the results of Sec. 3.7: because the Kondo peak is barely developed,

direct tunneling through the Kondo peak is much weaker, and indirect processes via substrate

states are responsible for the observed feature. This leads to more dip-like line shapes than in

the case of a strongly pronounced Kondo peak. The Fano-Frota �t also yields the half width

Γ = 5.8 meV, which is higher than the LDA+OCA value. This can only be explained by a

strong temperature broadening (also see Fig. 18). In order to determine the Kondo temperature,

a further decrease of calculation temperature would be required.

5.1.2 PBE+OCA with lower U

While LDA+OCA yields line shape and Kondo scale in close agreement with experiment, the

computation of U using the LSDA is highly problematic (see chapter 4), and the LSDA is not

capable of capturing the correct spin state. PBE, on the other hand, already captures the spin

state of the d shell correctly, but the Coulomb interaction U is considerably too high, because
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Figure 33: Spectral function and transmission function for PBE*+OCA.

screening contributions from outside of the polarization and from high-energy states could not

be included (see Sec. 4.6), resulting in a very small Kondo scale. This section aims to combine

the best of both worlds: the starting point of the calculation will be the PBE functional, but

another, much smaller U parameter is chosen. The U is chosen as follows: chapter 4 has shown

that the cRPA is not converged with respect to the size of the polarization region, and that a

further increase of the polarization region would likely lead to a further reduction in U . We also

observed that the direct on-site elements of U were less spread-out for methods with higher-

level correlation (like scDFT+U and HSE). We therefore choose U obtained from scPBE+U,

but reduce its direct elements by a factor of two, resulting in Udz2 = 4.86, Udxz/yz = 4.73,

Udx2−y2 = 4.62 and Udxy = 4.77 for the direct on-site elements, while the exchange elements are

kept unchanged. This is closer to U values reported in the literature resulting in the correct

Kondo scale (see Ref. [70] and Ref. [69]). This choice will be further corroborated by the

results later in this chapter (see Sec. 5.2.4), although it is a departure from a complete ab-initio

description. This method will henceforth be labeled PBE*+OCA.

The AIM is now de�ned by the hybridization function and the d level positions taken from a

PBE calculation, while U is obtained as described in the previous paragraph. The occupations

are shown in Tab. 7. The spin is localized in the z2 and xy orbitals, which are closer to

half-�lling than for PBE and LDA+OCA, but not as close as for PBE+OCA. The choice of

DCC plays a slightly smaller role here: since the higher-level correlation of scPBE+U leads to

less spread-out direct elements of U , both standard and orbital-dependent FLL DCC localize

the spin in the z2 and xy orbitals, and there are only small quantitative di�erences in the

occupations. Since it is more commonly used in the literature, the standard FLL DCC has

been chosen here and for the remainder of this work.

The impurity spectral function and transmission functions are presented in Fig. 33. The Kondo

peak is clearly developed for the xy and z2 orbitals, but far from the unitary limit. While
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hybridization and U of both orbitals carrying a Kondo peak are comparable, xy shows stronger

charge �uctuations than z2 (occupation of 1.09 to 1.06, see Tab. 7), and is therefore associated

with the larger Kondo feature, pointing to the importance of charge �uctuations.

The Kondo peaks are less pronounced than those of the LDA+OCA calculation. Although

the U of PBE*+OCA is lower than that of LDA+OCA, charge �uctuations are also consider-

ably smaller, leading to an overall smaller Kondo scale. The transmission function shows an

asymmetric Fano-feature tending towards a dip, with q = 0.64, which is higher than that of

PBE+OCA, and thus indicates that slightly more tunneling occurs through the Kondo peak.

Also note that the transmission feature is likely due to the z2, since it couples signi�cantly

more strongly to the tip than the xy orbital (see Sec. 3.3), although the latter is associated

with the higher Kondo peak. The half-width is Γ = 5.3 meV, but signi�cant temperature

broadening of the feature must be present. Therefore no statement can be made about the

Kondo temperature.

Although PBE*+OCA does not lead to larger Kondo scales as initially anticipated, it produces

sizable Kondo peaks. It will also be used for self-consistent calculations later in this chapter,

where charge �uctuations will play a smaller role, and the reduced U will have a greater

in�uence.

5.1.3 Discussion

One-shot DFT+OCA serves as a good starting point for more advanced calculations. It is

capable of describing the in�uence of strong electronic correlations on the electronic structure

and the transmission properties of the system, and results in Fano line shapes in the transmission

function. LDA+OCA yields a strongly developed Kondo peak, and a transmission feature close

to experimental data, albeit slightly more peak-like. PBE+OCA, on the other hand, results in

a very small Kondo scale and a barely visible transmission feature between asymmetric Fano

line shape and a dip. This is likely due to the high value of the Coulomb interaction U obtained

from cRPA and from barely any charge �uctuations. PBE*+OCA produces an intermediate

result: a clearly discernible Kondo peak which is still far from being fully pronounced, and an

asymmetric Fano feature tending towards a dip, which is already closer to experiment than

PBE+OCA.

There are certain drawbacks, however. The correlated self energy is only added to the d shell,

and the remaining electronic structure is �xed to the non-interacting value. That way, the

surrounding electrons cannot adapt to the new environment posed by the correlated self energy

Σd.

Another problem is related to that: the d level positions and the hybridization functions are

obtained from a spin-independent calculation, and both spin-independent PBE and LDA yield

an occupation spread out over all d orbitals, instead of z2 and xy being nearly half-�lled

and the remaining orbitals nearly �lled (see Tab. 7). It would be highly desirable to extract

AIM parameters from an electronic structure where the orbital occupation is already correctly
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captured. These issues will be addressed in the following sections, by implementing di�erent

levels of self-consistency in the DFT+OCA cycle.

5.2 Charge self-consistency for DFT+OCA

As discussed at the end of the previous section, one-shot DFT+OCA does not include any

feedback of the correlated self energy on the electronic structure of the complete system. This

gap will be closed in this section: the electronic structure of the device region will be relaxed

under the in�uence of the correlated self energy. The relaxed electronic structure in turn de�nes

a new AIM, which can be solved for an updated correlated self energy. This will be repeated

until convergence is reached, and will be called the charge self-consistency cycle.

According to Ref. [240], a calculation can be called charge self-consistent if charge can be ex-

changed between the two subsystems, the electronic structure of the two subsystems a�ects

each other, and the total electronic structure is at a stationary point of the thermodynam-

ics. The importance of achieving charge self-consistency in the context of DFT+DMFT has

been pointed out in the past [61;239;241;242;243;244;245;246;247]. Ref. [239] found that the charge self-

consistency signi�cantly shifts the position of the Hubbard bands of Ce2O3 and the γ phase of

metallic Ce. Ref. [244] observed that the self-consistent inclusion of correlation e�ects signi�-

cantly improves both structural and magnetic properties for the iron-pnictide superconductor

LaFeAsO. Ref. [247] �nds a signi�cant occupation redistribution for a single layer of SrVO3

when charge self-consistency is achieved.

This section will introduce the charge self-consistency cycle in the context of our DFT-based

transport code augmented by local correlations. We will discuss the computational and tech-

nical aspects of implementing charge self-consistency, and present results for Co@Cu(001).

5.2.1 Computational and technical aspects

The computational scheme of the charge self-consistency cycle is shown and described in Fig. 34.

The charge self-consistency cycle is continued until convergence is reached, but no convergence

criterion has been de�ned yet. The convergence of various system properties will be investigated,

in order to verify if there is di�erent convergent behavior for occupation, d level positions,

hybridization functions and transmission functions.

The ANT.G code had to be extended in order to account for e�ects of charge self-consistency.

The module which computes the density matrix by integration along the Matsubara axis has

been modi�ed so that it now can read in the correlated self energy and compute the interacting

GF.

One more technical aspect has to be discussed. The output of the OCA is the correlated self

energy on the real axis Σd(ω). ANT.G, however, computes the density matrix by integration

of the system's Green's functions along the Matsubara axis. In order to include the e�ects

due to the correlated self energy in the ANT.G calculation, Σd(ω) has to be continued to the
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Figure 34: Computational scheme of the charge self-consistency cycle to determine the corre-

lated transmission for the complete d shell. First, the non-interacting GF G0
D(ω) is determined

self-consistently, employing the ANT.G code. The Coulomb interaction within the d shell is

computed by cRPA only once, using the non-interacting GF G0
D. An AIM is de�ned by the

energy of the d level and the hybridization function ∆d(ω), the Coulomb interaction U and

double counting correction VDCC. The AIM is solved within the OCA, and the correlated self

energy Σd(ω) is determined. The correlated GF GD(ω) and an updated density matrix are

determined by the ANT.G self consistency, and new AIM parameters are extracted. When

convergence of the charge self consistency cycle is reached, the correlated transmission T (ω)

can be calculated.
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imaginary axis. We stress that this is a much simpler task than the continuation of a quantity

from the Matsubara to the real axis, as has to be done in CTQMC calculations. A program

was written that determines Σd(iω) on the imaginary axis by solving Cauchy's integral formula:

f(a) =
1

2πi

∮
γ

f(z)

z − a
dz, (118)

where f(z) is a holomorphic function de�ned over the complex plane, γ is a closed curve, and z

and a are complex numbers, where a has to lie within the boundaries of γ. Here, γ is given by

the real axis and a semi-circle that encloses the upper complex half-plane, where the latter does

not contribute to the integral if Σd(ω) decays su�ciently fast for large ω. This is not the case

without a workaround: the real part of Σd(ω) does not decay to zero, but to a constant, the

so-called Hartree shift ΣHartree. In order to guarantee convergence of Cauchy's integral formula,

the Hartree shift has to be obtained by �tting and has then to be subtracted from Σd(ω):

Σinput
d (ω) = Σd(ω)− ΣHartree. (119)

Σinput
d (ω) decays su�ciently quickly for large ω, Eq. 118 can be easily applied by carrying

out the integral along the real axis, and ΣHartree can be added back to Σoutput
d (iω) after the

continuation.

Since Σd(ω) is de�ned on a discrete mesh, its low and high energy tales have to be determined

by a �t. For the real part, both �anks are �t by a single Lorentzian for each d level, also in

order to obtain the respective Hartree shift. The upper and lower �anks of the imaginary part

of Σd(ω) are �t separately by Lorentzian functions. The �tting of the �anks can be relevant

to the overall result: Ref. [239] points out that a careful summation of the high-frequency tail

of Σd(ω) is necessary to achieve reliable results, albeit in the context of computing the total

energy.

In realistic OCA calculations, the �tting of the �anks is not completely straightforward because

unphysical artifacts appear for very low and very high frequencies, likely due to edge e�ects

(see Fig. 45 in appendix C). The appropriate �tting range has to be chosen manually for each

calculation, and this process cannot be easily automatized. Two examples of the continued self

energy on the Matsubara axis are presented in Fig. 46 of appendix C. After the continuation,

the high-energy �ank of Σd(iω) has to be also �t by a Lorentzian, since the integration of the

GF on the Matsubara axis in ANT.G goes up to very high frequencies. This �t is of very

high quality and unproblematic. Overall, the analytical continuation requires a large amount

of manual input and �tting. A further automatization would be highly desirable, but is not

straightforward.

5.2.2 Results

The charge self-consistency cycle described in the previous section is now applied for LDA+OCA,

PBE+OCA, and PBE*+OCA. The choice of DCC remains the same as for one-shot DFT+OCA,

87



since both methods use the same U parameters: LDA+OCA employs the orbital-dependent

FLL DCC, while PBE+OCA and PBE*+OCA utilize the standard FLL DCC. Fig. 35 presents

εd, occupations nd of the OCA and the DFT steps and the imaginary part of the hybridiza-

tion function at the Fermi level −Im∆(εF) for di�erent iterations of the charge self-consistency

cycle. The zeroth iteration refers to the pure DFT calculation for the DFT step, and to the

OCA calculation with AIM parameter obtained from the pure DFT calculation, as discussed

in Sec. 5.1. The zeroth order result is omitted in some of the graphs to increase the visibility

of changes due to the self-consistency process.

For εd, a sharp increase is observed in the second iteration for all three functionals and all d

orbitals, and a subsequent decay for all further iterations. Although convergence is not yet

fully reached after 10 iterations, it is clear that all εd converge to a constant value, which lies

below the pure DFT value (zeroth iteration). The relative order of εd is maintained over all

iterations of PBE+OCA and PBE*+OCA, where εd of the half-�lled orbitals (z2 and xy) lies

above that of the �lled orbitals (xz/yz and x2-y2). For LDA+OCA, the order of di�erent εd
changes in the �rst four iterations of the self-consistency cycle, but becomes stable after the

�fth iteration, and all εd lie within 0.1 eV for the �nal iteration.

The �rst step of the charge self-consistency leads to a considerable drop of the OCA occupation

for the z2 and xy orbitals (see Tab. 7 for comparison), leading to a signi�cant reduction of

charge �uctuations and moving both orbitals closer to half-�lling. This e�ect is particularly

pronounced for LDA+OCA and PBE*+OCA. Further iterations of the charge self-consistency

cycle have a much smaller e�ect. For LDA+OCA and PBE+OCA, only minor changes of

occupation occur after the �fth iteration. For PBE*+OCA, the charge self-consistency leads

to a slight increase of occupation, moving away from half-�lling and increasing the presence

of charge �uctuations, but the occupation always remains below that of the zeroth iteration.

The �lled orbitals xz/yz and x2-y2 behave very similarly for all functionals. The minimum

of occupation is reached for the second iteration, and all further iterations lead to a gradual

increase of occupation, which eventually seems to converge to a constant.

The �rst iteration of the DFT step brings the orbitals much closer to half-�lling than for the pure

DFT calculation (see Tab. 7 for comparison). For the remaining iterations, the occupation of the

DFT step does not follow the same pattern as the OCA occupation for the z2 and xy orbitals.

A local maximum of occupation is reached for z2 and xy after 2 iterations for PBE+OCA and

PBE*+OCA and 3 or 4 iterations for LDA+OCA. In all further iterations, the occupation falls

o� in a step-like fashion, which was not observed for the OCA occupation. For the z2 orbital of

LDA+OCA and the z2 and xy orbitals of PBE*+OCA, the DFT and OCA occupations seem

to converge against each other, as per the expectations. This is not the case for PBE+OCA

and the xy orbital in the LDA+OCA calculation, however, and it remains unclear why the

OCA and the DFT occupations deviate. The DFT occupations of the �lled orbitals xz/yz and

x2-y2 behave similarly to those of the OCA step. After inconsistent behavior in the �rst three

iterations, the occupation slowly increases for all functionals. This increase also occurs in small
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Figure 35: d level positions, OCA occupations, DFT occupations and the imaginary part of the

hybridization function at the Fermi level for di�erent iterations of the charge self-consistency

cycle. Zeroth order occupations are not shown for better visibility and can be found in Tab. 7.
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Figure 36: Imaginary part of the hybridization function for di�erent iterations of the charge

self-consistency cycle for the z2 and the xz orbitals.

steps. The �lling of the orbitals is very similar to that of the OCA steps.

The imaginary part of the hybridization function at the Fermi level initially increases for all

functionals and d levels, reaches its maximum at the second iteration, and then gradually falls

o�. Although convergence is not yet fully reached after 10 iterations, it clearly converges to a

constant value. This value can either lie above (e.g. xz/yz for all functionals), below (e.g. xy

for LDA+OCA and PBE+OCA), or very close (e.g. z2 for LDA+OCA) to the zeroth order

hybridization. In Fig. 35, only the value of the imaginary part of the hybridization function at

the Fermi level is presented. In Fig. 36, the energy dependence of the imaginary part of the

hybridization function is plotted for two selected orbital (z2 and xz/yz) and LDA+OCA. The

charge self-consistency does not lead to large qualitative changes, and di�erent iterations are

mostly o�set by a shift. Therefore it typically su�ces to study the hybridization at the Fermi

level to gain insight on the e�ect of charge self-consistency. Small qualitative di�erences can be

observed when comparing the zeroth order and the tenth order for the z2 orbital: while their

right �ank nearly coincides, the peak around -0.2 eV is less pronounced for the zeroth iteration

than for the tenth.

Fig. 37 shows impurity spectral functions for the z2 and xy orbitals for di�erent iterations of the

charge self-consistency cycle. The xz/yz and x2-y2 orbitals do not carry a Kondo peak and are

therefore not shown. For LDA+OCA, the charge self-consistency leads to an initial decrease of

the Kondo feature in both orbitals, and all iterations beyond the third are associated with very

similar Kondo peaks. For PBE+OCA, the charge self-consistency leads to an initial increase

and subsequent decrease of the height of the Kondo feature, while for PBE*+OCA, an initial

decrease and subsequent increase of the Kondo peak is observed.

In order to compare the Kondo peaks quantitatively, Frota �ts were performed according to

Eq. 92, and the amplitude of the Frota line shape is plotted in the bottom panels of Fig. 37.
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For LDA+OCA and PBE*+OCA, the amplitude of the Kondo peak behaves very similarly to

the OCA occupation of Fig. 35: the higher the orbital occupation in the OCA step, the more

the Kondo peak is pronounced, again pointing to the strong in�uence of charge �uctuations.

For PBE+OCA, however, the OCA occupation only very slightly varies, but the amplitude of

the Kondo peak drastically changes for di�erent iterations. It behaves more similarly to the

hybridization function shown in Fig. 35. This, on the other hand, is not observed for LDA+OCA

and PBE*+OCA. This points to a complex interplay of charge �uctuations, hybridization

strength and U parameter.

The Kondo peak is most pronounced for PBE*+OCA, the method associated with he low-

est U parameter, and least pronounced for PBE+OCA, associated with the highest U pa-

rameter. This was di�erent for the one-shot calculation of Sec. 5.1, where the strong charge

�uctuations for LDA+OCA caused the associated Kondo peak to be more pronounced than

that of PBE*+OCA, although the latter is associated with the lower U . The self-consistency

dampens the charge-�uctuations for all functionals, but more strongly for LDA+OCA than for

PBE*+OCA. For all functionals, the Kondo peaks are distant from the unitary limit, and a

further decrease in temperature should lead to more pronounced Kondo features.

Fig. 38 shows transmission functions for LDA+OCA, PBE+OCA and PBE*+OCA. In order

to compare the transmission functions quantitatively, Fano-Frota �ts according to Eq. 93 were

performed, adding a linear and quadratic term to account for the transmission background in

order to determine the transmission amplitudes, q parameters and half-width parameters Γ.

These are also shown in Fig. 38.

For LDA+OCA and PBE*+OCA, the charge self-consistency initially leads to signi�cantly

smaller transmission features, while for PBE the transmission amplitude increases. The trans-

mission amplitude generally follows the amplitude of the Kondo peak of the z2 orbital (see

Fig. 37, and note that the nth iteration of the transmission is based on the (n-1)th iteration of

the spectral function, so features appearing in the spectral function appear in the subsequent

iteration of the transmission). The z2 orbital dominates the transmission because it has a

strong overlap with the s and pz orbitals of the STM tip, while the xy orbital does not have

any (also see Sec. 3.9).

For all functionals, a drop of q occurs in the �rst few iterations. This e�ect is particularly strong

for LDA+OCA. This can be explained in the context of Sec. 3.7 and the model of Sec. 3.5: the

charge self-consistency leads to much smaller Kondo peaks; therefore to less direct tunneling

through the Kondo peak, so that indirect interactions via substrate states dominate. This leads

to more dip-like line shapes. After the �fth iteration, the value of q barely changes, and the

small di�erences might be due to the quality of the �t since the transmission signal is relatively

weak. The �nal value of q (0.52 for LDA+OCA, 0.48 for PBE+OCA and 0.54 for PBE*+OCA)

lies considerably below the experimental value of q = 1.13 reported in Ref. [32]. The closest

agreement with experiment is found for the �rst iteration of LDA+OCA, which uses the zeroth

order self-energy Σd but already incorporates its e�ect on the electronic structure of the system,
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Figure 37: Impurity spectral functions for z2 and xy (the zeroth order results can be found in

Fig. 31 and Fig. 33) and the amplitude of the Kondo peak �tted according to Eq. 92.
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Figure 38: Transmission functions for a di�erent number of iterations of the charge self-

consistency cycle. Transmission functions have been o�set, and linear and quadratic back-

ground terms have been subtracted for better visibility. Transmission amplitude, q factor and

half-width Γ = 2.54ΓF were obtained by Frota �ts according to Eq. 93.
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yielding a transmission feature with q=1.18.

The half-width Γ behaves inversely to the amplitude of the transmission feature (and, corre-

spondingly, to the amplitude of the spectral function): smaller Kondo peaks are associated

with higher width parameters. The half-width is in�uenced by two major factors: the Kondo

temperature TK, which is given by the half-width of the Kondo peak at T = 0 K; and the tem-

perature broadening if the Kondo peak is not fully developed. These two e�ects are competing:

if, for instance, charge �uctuations become smaller (as is the case going from the �rst to the

second iteration for LDA+OCA), the Kondo temperature also becomes smaller, which would

lead to smaller half-widths of the Kondo peak at T = 0 K. The temperature broadening, on

the other hand, increases: since the calculation temperature is �xed, a lower Kondo temper-

ature means that the Kondo peak is further away from being fully pronounced, as indicated

by the lower amplitude [248], leading to a stronger temperature broadening. It appears that the

temperature broadening is more relevant, although the overall e�ect is not very large, and the

width parameter is similar for all functionals and iterations.

5.2.3 Discussion

Charge self-consistency has a sizable e�ect on the electronic structure of the Co@Cu(001)

system. It leads to: lower d level positions εd for all functionals; occupations closer to half-

�lling in both the OCA and DFT step, particularly for LDA+U and PBE*+OCA; and changes

in the hybridization function. The e�ect of charge self-consistency on the Kondo scale and

the resulting transmission line shapes is large. A strong connection is observed between the

presence of charge �uctuations in the OCA step and the size of the resulting Kondo peak, and

resulting Kondo peaks have low amplitudes and are far away from the unitary limit. This leads

to dip-like transmission features, since direct tunneling through the Kondo peak is improbable,

and interactions of the Kondo peak with substrate states is more relevant. The transmission

feature is associated with the Kondo peak in the z2 orbital because of the symmetry of the

STM setup.

The charge self-consistency cycle seems to be stable and convergent: no considerable oscillations

are observed, and all studied quantities seem to trend to a constant value, although convergence

is not fully reached after 10 iterations. The numerical e�ort is considerably higher than for

one-shot DFT+OCA because an AIM has to be solved for each iteration, and the technical

aspects discussed in Sec. 5.2.1 require a lot of manual input.

5.2.4 U from charge self-consistency calculation

This section performs cRPA calculations to determine the partially screened Coulomb interac-

tion U for di�erent iterations of the charge self-consistency cycle. We stress that the complete

charge self-consistency cycle is done with �xed U obtained as described in Sec. 5.1.1, and U

is not updated in each cycle (this will be done in Sec. 5.3). By doing so, the e�ects of charge
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Figure 39: Interaction U computed for di�erent iterations of the charge self-consistent calcula-

tion. The zeroth order is omitted for better visibility and can be found in Tab. 3.

redistributions due to the charge self-consistency alone on the computation of U can be studied.

Fig. 39 plots the direct on-site elements of U obtained from di�erent iterations of the charge self-

consistency cycle. The �rst iteration leads to an increase of U for all functionals, and reduces

the spread between di�erent elements of U . This was also observed for the HSE functional

and scDFT+U in Sec. 4.2 and Sec. 4.3, indicating that higher-level correlation leads to less

spread-out U parameters. The relative order of the direct on-site elements is una�ected by the

charge self-consistency, and the nearly half-�lled orbitals z2 and xy are associated with higher

U than the nearly �lled orbitals xz/yz and x2-y2 for all iterations, which was also observed in

Sec. 4.2 for higher-level functionals.

For LDA+OCA, the charge self-consistency leads to an overall increase of U . Small oscillations

occur, but U seems to converge to a constant. LDA+OCA behaves similarly to the other

methods, indicating that the addition of the correlated self energy remedies the problems of

pure LDA in a cRPA calculation (see Sec. 4.4). For PBE+OCA, U drops in the second iteration,

and only small changes are observed for all further iterations. For PBE*+OCA, a drop of U in

the second iteration, and a subsequent slow increase of U towards a constant, accompanied by

small oscillations, are also observed.

For the tenth iteration, PBE+OCA is associated with the highest direct on-site U , whose

elements are very similar in size to those obtained from a self-consistent LDA+U and PBE+U

calculation (see Sec.4.3), ranging from 9.36 to 9.62 eV, while those of LDA+OCA range from

8.36 t0 8.68 eV. The lowest U is obtained for PBE*+OCA, ranging from 7.94 to 8.27 eV. The

method with the smallest U input also yields the smallest U in the cRPA calculation. This can

be explained by two e�ects: �rst, the Hubbard bands associated with the respective d level

are pushed away less from the Fermi level when U input is lower. Second, the e�ect of the

Kondo feature itself is now included in the electronic structure, and might therefore directly

a�ect screening processes close to the Fermi level. This e�ect is expected to be small in this

situation, however, due to the small Kondo peaks observed in Fig. 37.

Overall, the U parameters obtained from the charge self-consistent calculations are still consid-
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erably too high. While charge self-consistency has a sizable e�ect on U , the spatial and energy

convergence of the cRPA also has to be improved (see detailed discussion in Sec. 4.6).

5.3 Charge-U self-consistency for DFT+OCA

In the previous section, the charge self-consistency cycle was introduced, by taking into account

the feedback of the correlated self energy on the electronic structure of the full system self-

consistently. The partially screened Coulomb interaction U , however, was only computed once

based on the initial DFT calculation for LDA+OCA and PBE+OCA, and then estimated for

PBE*+OCA as described in Sec. 5.1.2. This section will go one step further to a full ab-initio

description of the system and compute U for each step of the charge-U self-consistency cycle,

employing the cRPA methodology introduced in chapter 4.

The computation of U via cRPA was discussed in detail in chapter 4, and found a strong

dependence on the functional used. It also found that higher level correlation leads to higher

and less spread-out U parameters. The e�ect of pure charge self-consistency on the interaction

U was studied in Sec. 5.2.4.

In order to investigate the in�uence of the inclusion of U in the self-consistency cycle, the

ANT.G module computing the non-interacting polarizability from the non-interacting GF was

extended to read in the correlated self energy and compute the interacting GF. From that, the

interacting polarizability can be computed according to Eq. 97. The full computational scheme

is shown and described in Fig. 40.

5.3.1 Results

The charge-U self-consistency cycle described in Fig. 40 is applied for LDA+OCA, PBE+OCA,

and PBE*+OCA. The starting value of U is the same as for the charge self-consistency cycle

(see Sec. 5.2) but is now updated for each iteration. Note that PBE*+OCA is only included to

study the convergence of the algorithm: PBE+OCA and PBE*+OCA only di�er by the initial

value of U , and should yield identical �nal results if the algorithm were to converge.

Fig. 41 shows the direct on-site elements of the interaction U for di�erent iterations of the

charge-U self-consistency. The �rst two iterations lead to a strong increase of U for LDA+OCA

and PBE*+OCA, while for PBE+OCA, it increases in the �rst and drops in the second itera-

tion. For PBE+OCA, the value of U barely changes after the third iteration, and convergence

seems to nearly reached. This is not the case for LDA+OCA and PBE*+OCA. For the former,

U seems to slightly decrease, shows small oscillations and does not behave consistently over dif-

ferent iterations. For the latter, U seems to oscillate around the converged value of PBE+OCA,

but more iterations would be necessary to make a de�nitive statement. The relative order of

di�erent direct elements of U is maintained for all functionals during all iterations. The charge-

U self-consistency cycle yields U parameters ranging from 8.54 to 8.88 eV for LDA+OCA, 8.95

to 9.28 eV for PBE+OCA and 8.96 to 9.29 eV for PBE*+OCA in the �nal iteration, although
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Figure 40: Computational scheme of the charge self-consistency cycle to determine the corre-

lated transmission for the complete d shell. First, the non-interacting GF G0
D(ω) is determined

self-consistently, employing the ANT.G code. The Coulomb interaction within the d shell is

computed by cRPA, using the non-interacting GFG0
D as starting point, and the fully-interacting

GF GD(ω) in later cycles. An AIM is de�ned by the energy of the d level and the hybridization

function ∆d(ω), the Coulomb interaction U and double counting correction VDCC. The AIM

is solved within the OCA, and the correlated self energy Σd(ω) is determined. The correlated

GF GD(ω) and an updated density matrix are determined by the ANT.G self consistency, and

new AIM parameters are extracted. When convergence of the charge+U self consistency cycle

is reached, the correlated transmission T (ω) can be calculated.
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Figure 41: Direct on-site elements of the interaction U for di�erent number of iterations of the

charge-U self-consistency cycle. The zeroth order is omitted for better visibility and can be

found in Tab. 3.

convergence is not fully reached for LDA+OCA and PBE*+OCA. This is the same order of

magnitude as the U values obtained in Sec. 4.2 for HSE and scDFT+U. Convergence seems

to be generally more problematic than for the charge self-consistency cycle, particularly if the

initial U of the zeroth iteration is very di�erent from the resulting U . The DFT functional

only has a small in�uence on U , where the LDA seems to lead to slightly lower value of U than

the PBE functional. The problems associated with cRPA calculations based on the LDA (see

Sec. 4.4) do not appear here and are corrected by the addition of the correlated self energy.

The choice of double-counting correction is slightly less problematic here: while for one-shot

DFT+OCA the choice of DCC was essential to correctly identify the spin-carrying orbitals (see

Sec. 5.1.1), both the standard FLL DCC (see Eq. 74) and the orbital-dependent FLL DCC (see

Eq. 75) localize the spin in the z2 and xy orbitals. This is probably due to the smaller spread

of di�erent elements of U , so the orbital-dependence plays a smaller role. The standard FLL

DCC will be used throughout this section.The choice of DCC still has a strong in�uence on the

exact occupations and other resulting system properties. This will be discussed in more detail

in Sec. 5.3.2.

Fig. 42 presents εd, occupations nd of the OCA and the DFT steps and the imaginary part of

the hybridization function at the Fermi level −Im∆(εF) for di�erent iterations of the charge-U

self-consistency cycle. An initial drop in εd is observed for the �rst 5 iterations of the charge-U

self-consistency. The peak in εd which was observed in the second iteration of the charge self-

consistency cycle (see Fig. 35) is absent here. While εd seems to converge for PBE+OCA, an

increase can be observed in the sixth iteration of LDA+OCA and PBE*+OCA. For the latter,

the value of εd seems to be oscillating, similarly to the oscillations in U , where an decrease in

U is associated with an increase in εd.

The OCA occupation of z2 and xy initially drops for all functionals and remains nearly constant

at 1.02 for all iterations, and only minor oscillations occur. For xz/yz and x2-y2, it initially

increases for LDA+OCA and PBE*+OCA, and initially decreases for PBE+OCA. The DFT
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Figure 42: d level positions, OCA occupations, DFT occupations and the imaginary part of the

hybridization function at the Fermi level for di�erent iterations of the charge-U self-consistency

cycle.
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Figure 43: Impurity spectral function for z2 and xy for a di�erent number of iterations of the

charge-U self consistency cycle (the zeroth order results can be found in Fig. 31 and Fig. 33),

and the amplitude of the Kondo peak �tted according to Eq. 92.

occupation of z2 and xy is also close to half-�lling, and some oscillations similar to those in εd
occur. It is not yet clear if the OCA and DFT occupations converge to the same value, since

convergence is not fully reached. The DFT occupation of the xz/yz and x2-y2 orbitals show

the same trends as in the OCA step, and have comparable occupations.

The imaginary part of the hybridization function initially increases and subsequently drops

in the �rst iterations for all functionals and orbitals. For LDA+OCA and PBE*+OCA, an

increase in the 6th iteration is observed. The hybridization follows the same trends as εd
for all functionals, although changes in the hybridization seem smoother and are slightly less

pronounced. This was also observed for the charge self-consistency cycle.

Fig. 43 shows impurity spectral functions for the z2 and xy orbitals. Other orbitals do not

carry a Kondo peak and are not shown. Frota �ts according to Eq. 92 were performed in order
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to compare the Kondo peaks quantitatively. The amplitude of the Frota line shape is plotted

in the bottom panels of Fig. 43.

For LDA+OCA and PBE*+OCA, the amplitude of the Kondo peak strongly decreases in

the �rst two iterations, while it increases for PBE+OCA. In further iterations, it does not

behave consistently and oscillations are visible. Changes in the amplitude can be explained

by changes in the hybridization and in U . For LDA+OCA and PBE*+OCA, the amplitude is

inversely proportional to U , and maxima of U can be associated with minima in the amplitude.

This is particularly relevant when going from the zeroth to the �rst order: here, U increases

considerably, whereas the size of the Kondo peak diminishes. For PBE+OCA, however, U is

nearly constant after the third iteration. Here, the slight decay in amplitude is likely due to

the changes in the hybridization. The amplitudes of the Kondo peaks are of the same order

of magnitude for all methods after several iterations. This shows that the underlying DFT

functional only plays a minor role.

Overall, changes in U and in the hybridization are responsible for changes in the size of the

Kondo feature. Note that charge �uctuations seem to play a minor role after the second iteration

for all functionals, since the OCA occupation is nearly constant. Kondo peaks are very small

for all functionals and far away from the unitary limit. This can be attributed to the very high

values of U which result from the charge-U self-consistency.

Fig. 44 presents transmission functions for di�erent iterations of the charge-U self-consistency

cycle. In order to compare the transmission functions quantitatively, Fano-Frota �ts according

to Eq. 93 were performed, by adding a linear and quadratic term to account for the transmission

background, in order to determine the transmission amplitudes, q parameters and half-width

parameters Γ, as shown in Fig. 44.

The amplitude of the transmission features follows exactly the same trend as the amplitude of

the Kondo peak in the z2 and the xy orbital (see Fig. 43, and note that the nth iteration of the

transmission is based on the (n-1)th iteration of the spectral function, so features appearing in

the spectral function appear in the subsequent iteration of the transmission). Due to symmetry,

the transmission feature is still very likely resulting from the Kondo peak in the z2 orbital.

For LDA+OCA and PBE*+OCA, a strong drop of q is observed in the second iteration. This

can be attributed to the signi�cantly smaller Kondo peak due to an increase of U and decrease

of charge �uctuations, so that less direct tunneling through the Kondo peak can occur (see

Sec. 3.5). For PBE+OCA, q remains nearly constant. Changes of q after the second iteration

are small, and the resulting q values lie closely to each other, although convergence is not

reached for LDA+OCA and PBE*+OCA.

The half-width parameter Γ behaves inversely proportional to the amplitude of the Kondo peak.

This was also observed and discussed in the charge self-consistency cycle (see Sec. 5.2.2), and

is due to the temperature broadening of the Kondo peak.
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Figure 44: Transmission functions for a di�erent number of iterations of the charge-U self-

consistency cycle. Transmission functions have been o�set, and linear and quadratic background

terms have been subtracted for better visibility. Transmission amplitude, q factor and half-

width Γ = 2.54ΓF were obtained by Frota �ts according to Eq. 93.
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5.3.2 Discussion

The charge-U self-consistency cycle leads to considerable changes in the interaction U , and to

changes in the electronic structure similar, but not identical, to those observed in the charge

self-consistency cycle of Sec. 5.2. The resulting U parameters are relatively high, and similar

to those obtained in Sec. 4.2 for functionals with higher-level correlation. If the initial U of

the zeroth iteration is very low, the observed increase in U might be a self-enhancing: a higher

value of U pushes the Hubbard band of the respective d levels further away from the Fermi level

and leads to smaller Kondo peaks, which reduces screening in the following iteration leading to

even higher values of U . A constant increase of U is only observed in the �rst 3 iterations for

LDA+OCA and PBE*+OCA, whereas beyond that, other e�ects of self-consistency become

more important.

The resulting U parameters are much less spread out than those obtained based on the LDA and

PBE functionals. This also reduces the di�erences between di�erent double-counting schemes.

While the correct choice of double-counting correction was of crucial importance to �nd the

spin-carrying orbitals for one-shot LDA+OCA and PBE+OCA, both the orbital-dependent and

standard FLL DCCs yield a spin-1 state for all methods studied, where the spin is localized

in the z2 and xy orbitals. The choice of DCC is nevertheless important, since it can strongly

in�uence the orbital occupation and, therefore, a�ect the size and shape of the Kondo peak [70].

To make a conclusive statement about the quantitative di�erences between di�erent DCCs, a

full self-consistent calculation would be necessary for the orbital-dependent FLL DCC, which

would pose a signi�cant computational e�ort. Test OCA calculations employing the orbital-

dependent FLL DCC based on the second and seventh iteration of the charge-U self-consistency

cycle show that the di�erence in occupation between the two DCCs is small, potentially owing

to the large values of U . The di�erence between di�erent DCCs is expected to be larger if

occupations are further away from particle-hole symmetry.

The high values of U in conjunction with the very small charge �uctuations lead to small Kondo

peaks and small transmission features, which are all dip-like, since direct tunneling through the

Kondo peak is not very probable.

Convergence of the charge-U self-consistency seems to be much slower than that of the charge

self-consistency cycle, particularly if the initial U is very di�erent from its �nal value. While

PBE+OCA converges very quickly, several quantities show oscillations for LDA+OCA and

PBE*+OCA, and more iterations would be necessary to see if convergence will eventually be

reached. This is problematic due to the very high computational e�ort, particularly because

an AIM has to be solved in each calculation step. Convergence could be accelerated by the

introduction of mixing (also see Ref. [240] regarding mixing in the context of self-consistent

DFT+DMFT). Its simplest form, linear mixing, usually assures convergence but is typically

slow and would also require many calculation steps. More sophisticated mixing schemes exist

and are already commonly used to accelerate convergence of many types of electronic struc-

ture calculations. The implementation of such a mixing scheme could be a possible way to
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assure convergence of the charge-U self-consistency cycle without considerably increasing the

computational e�ort.
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6 Conclusion and outlook

This thesis studied several aspects of strong electronic correlations in a scanning tunneling

spectroscopy setup. To this end, the Co@Cu(001) and Co@Cu(111) adatom systems probed

by an STM tip were investigated by a combination of DFT, Green's function based electron

transport, the OCA impurity solver and the cRPA.

The �rst focus of this thesis was to establish a connection between the symmetry of the d orbital

carrying a Kondo peak and the resulting Fano-Frota line shape in the transmission feature. For

this purpose, individual d orbitals were correlated and the resulting transmission functions

calculated. It was found that the line shape strongly depends on which orbital bears the Kondo

e�ect. The transmission resulting from a Kondo peak in the z2 orbital best reproduces the

experimental STS results for Co@Cu(001), while for Co@Cu(111), none of the computed line

shapes are in accordance with the experimentally observed dip. This was attributed to the

Co@Cu(111) surface state, which plays a deciding role and is not appropriately captured by

the �nite-cluster calculation used in this thesis. The interference mechanism leading to the

Fano-Frota transmission features was explained by a simpli�ed model, taking into account the

interaction between one conduction electron level and the correlated d level of the Co atom.

The model can correctly describe the calculated line shapes for both systems, with one notable

exception, and might make it possible to approximately predict line shapes based on a DFT

calculation alone. The temperature dependence of the transmission feature was also studied. It

was observed that a smaller Kondo peak due to increasing temperature leads to more dip-like

line shapes for all d orbitals. This can be explained by the aforementioned simpli�ed model.

The smaller spectral weight of the Kondo peak allows for less direct tunneling through the

d level, so that indirect interference e�ects are more relevant, which overall changes the line

shapes towards a dip. It was found that the z2 orbital is most relevant in a transport situation

due to symmetry alone, interacting most strongly with the z2 and pz orbitals of the STM

tip. The xz/yz orbitals might also be relevant for the transport properties, particularly if the

STM tip is not placed exactly on top of the adatom, while the x2-y2 and xy orbitals lie in the

x-y plane and interact only weakly with the STM tip.

The computation of the partially screened Coulomb interaction U was the second central focus

of this work, and the computed U parameters served as input parameters for the AIM de�ned

and solved in the last chapter. The cRPA methodology was introduced and applied for the

Co@Cu(001) and Co@Cu(111) systems for di�erent KS-DFT and GKS-DFT functionals and

di�erent sizes of the polarization region. The choice of functional plays a strong role on the

resulting U . Higher-level correlation like in the HSE functional and in self-consistent DFT+U

leads to overall higher and less spread-out U values. The half-�lled orbitals are associated with

higher direct on-site elements of U than the �lled orbitals. The size of the polarization region

also has a sizable e�ect on the resulting U . For PBE and HSE, a drop of U is observed when the

polarization region is enlarged, while for LSDA, the opposite is the case: U grows to unphysical
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values when the polarization region is enlarged. This might be due to the fact that LSDA

does not capture the correct spin state of the d shell, and the combination of LSDA and cRPA

seems overall problematic for the investigated system. Two simpli�ed models to approximately

incorporate polarization e�ects from outside of the polarization region were proposed. While

pre-screening to �rst order yielded unphysical results, the pre-screening of the direct elements of

the Coulomb interaction might be a promising approach to approximately include polarization

e�ects for large systems.

The third and �nal focus was to achieve an ab-initio description for the Co@Cu(001) system

by performing DFT+OCA calculations with di�erent levels of self-consistency, and obtain the

signature of the Kondo peak in the transmission function. One-shot DFT+OCA is already capa-

ble of producing Kondo peaks and Fano-Frota transmission features, and particularly one-shot

LDA+OCA yields Kondo peaks in good agreement with experimental conductance curves. The

correct choice of DCC proved to be crucial to �nd the spin-carrying orbitals. The introduction

of charge self-consistency has a considerable e�ect on the electronic structure of the system. It

pushes the d levels to lower energies, reduces charge �uctuations and a�ects the hybridization

function. It does, however, not improve the agreement with experimental conductances. The

high value of U and signi�cantly smaller charge �uctuations compared to one-shot DFT+OCA

result in small Kondo peaks and dip-like line shapes in the transmission for all functionals. This

is not an intrinsic problem of the charge self-consistency, however, and should be remedied by

an improved way of determining the interaction U . Lastly, the computation of U was included

in the charge-U self-consistency cycle. It results in an overall increase of U , and less anisotropy

in its direct elements, similar to results obtained for the HSE functional and self-consistent

DFT+U. It also a�ects the electronic structure similarly to the charge self-consistency cycle,

although convergence is more problematic and oscillations occur. The introduction of a mixing

scheme might alleviate the slow convergence. While the correct choice of DCC is crucial for

one-shot DFT+OCA, it becomes less important when the computation of U is included in the

self-consistency cycle due to the smaller anisotropy in U , and both DCCs yield very similar

spin states.

The double-counting problem nevertheless remains one of the biggest issues of DFT+OCA

and, more generally, DFT+DMFT. An exact expression for the DCC cannot be found, because

the most commonly used DFT functionals cannot be represented within standard many-body

diagrams [240]. This could only be overcome if the weakly correlated part of the system were de-

scribed by an (approximate) many-body method like GW or its static approximation COHSEX,

although a method like GW+DMFT comes at a very high computational cost.
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A Complex and real Fano line shapes

Here we derive the real Fano line shape given by Eq. (91) from its complex representation in

Eq. (90):

ρFL(ω) = Im

[
eiφq

(
A

ω − ω0 + iΓ

)]
(120)

Introducing the abbreviation ε = (ω − ω0)/Γ, we have

ρFL =
A

Γ
· Im

[
(cos(φq) + i sin(φq))

ε− i

ε2 + 1

]
=
A

Γ

[
− cos(φq) + ε sin(φq)

ε2 + 1

]
=
A

Γ

[
− cos2(φq

2
) + sin2(φq

2
) + 2ε sin(φq

2
) cos(φq

2
)

ε2 + 1

]

=
A

Γ

[
−1 + tan2(φq

2
) + 2ε tan(φq

2
)

ε2 + 1

]
cos2

(
φq
2

)
.

(121)

De�ning q ≡ tan(φq/2), we arrive at

ρFL =
A

Γ

[
(q + ε)2

ε2 + 1
− 1

]
1

1 + q2
, (122)

which is the same as Eq. (91).

B Non-Orthogonal basis sets

This work makes use of non-orthogonal (Gaussian) basis sets. While the use of a Gaussian basis

makes the solution of certain integrals when solving the KS equations very simple, it comes

at the price of non-orthogonality. Working with a non-orthogonal basis becomes particularly

tricky when projections on subspaces are involved. This is the case in this work: Di�erent parts

of the system are treated on di�erent levels of approximation, and projections on subspaces are

necessary in various situations. It was shown that the correct choice of projection is of crucial

importance, and the wrong choice can lead to unphysical results [70;227;228].

This appendix gives a short introduction to non-orthogonal basis sets, and only �nal results

are presented. More details and derivations can be found in the aforementioned literature.

Following the notation of Ref. [70], let {|α〉} be a set of non-orthogonal orbitals spanning a

Hilbert space H. The overlap matrix is de�ned as

Sαβ = 〈α|β〉. (123)

The projection operator to a subspace P̂M in a non-orthogonal basis is

P̂M =
∑

m,n∈M

|m〉(S−1
M )mn〈n|. (124)
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An operator Â projected onto subspace M becomes:

ÂM =
∑

m,n∈M

|m〉(S−1
M AMS−1

M )mn〈n| =
∑

m,n∈M

|m〉(ÃM)mn〈n|, (125)

where the nuclear matrix ÃM was de�ned as ÃM = S−1
M AMS−1

M . When projecting an operator

ÂM from a subspace M to a smaller subspace M′ ⊂ M, the projection becomes:

ÂM′ =
∑

m′,n′∈M′

|m′〉(S−1
M′SM′MÃMSMM′S

−1
M′ )mn〈n

′| =
∑

m′,n′∈M′

|m′〉(ÃM′)mn〈n′|, (126)

where ÃM′ = S−1
M′SM′MÃMSMM′S

−1
M′ is the nuclear matrix in subspace M′. This is the only

physically reasonable projection [227].

The de�ning equation for the GF in a non-orthogonal basis is:

(ES −H)S−1G(E) = S. (127)

It is convenient to work with the nuclear matrix of the GF G̃(E) := S−1G(E)S−1, which is

de�ned by the simpler equation:

(ES −H) G̃(E) = 1. (128)

The Coulomb interaction in an non-orthogonal basis becomes [119]:

V e−e =
1

2

∑
α,α′,β,β′,σ,σ′

Ṽαβ,α′β′ c
†
ασc
†
α′σ′cβ′σ′cβσ, (129)

where Ṽαβ,α′β′ is the nuclear matrix of Coulomb interaction Vαβ;α′β′ , which is given by:

Vαβ;α′β′ = e2

∫
d3r1

∫
d3r2

φ∗α(~r1φβ(~r1)φ∗α′(~r2)φβ′(~r2)

||~r1 − ~r2||
. (130)

C Analytical continuation of the OCA self energy to the

Matsubara axis

This appendix presents the correlated self energy on the real axis Σd(ω) (Fig. 45), as output by

the OCA, and after the analytical continuation to the Matsubara axis Σd(iω) (Fig. 46), for the

z2 orbital, LDA+OCA and PBE+OCA, respectively, and the tenth iteration of the charge self-

consistency cycle (see Sec. 5.2.1). Unphysical artifacts appear close to the energy boundaries

for both the real and the imaginary part of the self energy on the real axis. This is very likely

an edge e�ect, and more pronounced for LDA+OCA than for PBE+OCA. This complicates

the �t of the �anks of the self energy, which is required for the analytical continuation. The

energy range for the �ank �t has therefore to be chosen by hand.
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Figure 45: Real and imaginary part of the correlated self energy Σd(ω) on the real axis obtained

from an OCA calculation (red continuous line), for the z2 orbital and the tenth iteration of the

charge self-consistency cycle for LDA+OCA and PBE+OCA. The �ank �ts (black dashed line)

for the analytical continuation are also shown.
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Figure 46: Real and imaginary part of the correlated self energy Σd(iω) on the Matsubara axis

obtained by analytical continuation of Σd(ω), for the z2 orbital and the tenth iteration of the

charge self-consistency cycle for LDA+OCA and PBE+OCA.
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