
New Visualization Techniques
for Engineering Simulations

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke Universität Magdeburg

von Timo Reinhold Oster, M.Sc.
geb. am 13.06.1987 in Wittlich

Gutachter:
Prof. Dr. Holger Theisel

Prof. Dr. Dominique Thévenin
Prof. Dr. Filip Sadlo

Eingereicht: Magdeburg, den 26. April 2019
Verteidigt: Magdeburg, den 17. Oktober 2019

Abstract

This thesis presents new visualization techniques for engineering simulations
in two different disciplines: Turbulent combustion and solid mechanics.

Direct numerical simulations of turbulent combustion are used as a basis
to develop and validate higher-level combustion models. A focus of interest
in the analysis of such simulations is the flame surface, where most of the
chemical reactions take place. The computational power of supercomputers is
increasing much faster than the performance of storage infrastructures. This
has caused the output and storage of simulation data to become the bottleneck
in large-scale simulation runs. We introduce two new techniques for the
visualization and analysis of the flame surface in large-scale simulations of
turbulent combustion before the background of this storage bottleneck. The
first is a space-saving sparse representation for certain types of flames. It
allows for the analysis of a larger number of simulation time steps and is the
basis for a new flame visualization technique. The second is an algorithm
for tracking the flame surface in-situ during the simulation. The storage
bottleneck is circumvented by only writing to disk the much smaller results.
Both contribute to the continued ability of combustion researchers to analyze
the data produced by their increasingly large simulations.

Due to their many degrees of freedom, tensor fields are some of the most
challenging types of data to visualize. One possibility to break down their
complexity is feature-based visualization, which reduces the data to a set of
geometric primitives that represent the occurrence of some kind of interesting
behavior. The parallel vectors operator, which yields locations where two
vector fields are parallel, is the basis of a number of line-type features in scalar
and vector fields. We translate this operator to tensor fields by introducing the
parallel eigenvectors operator, which yields locations where two tensor fields
have parallel real eigenvectors. We then use this idea to introduce tensor core
lines, which mark the centers of “swirling” behavior of the eigenvectors, and
are based on vortex core lines in vector fields. Using this new feature, we can
detect twist in stress tensor fields from solid mechanics simulations.

iii

Zusammenfassung

Diese Arbeit präsentiert neue Visualisierungsmethoden für Simulationen
aus zwei verschiedenen Ingenieurdisziplinen: Turbulente Verbrennung und
Festkörpermechanik.

Direkte numerische Simulationen turbulenter Verbrennung sind eine Ba-
sis für die Entwicklung und Validierung höherer Verbrennungsmodelle. Ein
besonderes Augenmerk bei der Analyse solcher Simulationen liegt auf der
Flammenoberfläche, wo der Großteil aller chemischen Reaktionen stattfin-
det. Die Rechenleistung von Supercomputern wächst inzwischen wesentlich
schneller als die Leistung ihrer Speicherinfrastruktur. Infolgedessen ist heute
das Speichern der Ausgabedaten der Flaschenhals in großen Simulationen.
Wir präsentieren zwei neue Techniken für die Visualisierung und Analyse
der Flammenobefläche in großen Simulationen turbulenter Verbrennungsvor-
gänge vor dem Hintergrund dieses Flaschenhalses. Die erste ist eine platz-
sparende, ausgedünnte Darstellung für einen bestimmten Typ von Flammen.
Diese ermöglicht die Analyse einer größeren Anzahl von Zeitschritten der
Simulation und ist die Basis für eine neue Art von Flammenvisualisierung.
Die zweite ist ein Algorithmus zur Verfolgung der Flammenoberfläche in-situ
während der Simulation selbst. Der Flaschenhals des Speichervorganges wird
umgangen indem nur die wesentlich kleineren Ergebnisse geschrieben werden.
Beide Verfahren tragen dazu bei, dass Verbrennungswissenschaftler auch in
Zukunft die Daten analysieren können, die ihre immer größer werdenden
Simulationen produzieren.

Tensorfelder gehören wegen ihrer vielen Freiheitsgrade zu den herausfor-
derndsten Daten für die Visualisierung. Eine Möglichkeit, diese Komplexität
zu reduzieren ist die Extraktion von Features. Diese reduziert die Daten auf
geometrische Primitive, die interessantes Verhalten markieren. Der parallel
vectors operator, der alle Orte bestimmt an denen zwei Vektorfelder paral-
lel sind, ist die Basis für eine Menge von Linien-Features für Skalar- und
Vektorfelder. Wir übertragen diesen Operator auf Tensorfelder und definie-
ren dort den parallel eigenvectors operator, der alle Orte bestimmt, an denen
zwei Tensorfelder parallele reelle Eigenvektoren haben. Diese Idee nutzen wir
anschließend zur Definition von tensor core lines, die die Zentren von “wirbeln-
dem” Verhalten der Eigenvektoren markieren und auf Wirbelkernlinien in
Vektorfeldern basieren. Mit diesem neuen Feature können wir Verwindungen
in Stresstensorfeldern aus Strukturmechaniksimulationen erkennen.

v

Contents

1 Introduction 1
1.1 Contributions . 2

1.1.1 Analysis and Visualization of the Flame Surface in Tur-
bulent Combustion Simulations 2

1.1.2 Line Features in 3d Second-Order Tensor Fields 3
1.2 Thesis Structure . 4
1.3 List of Publications . 5
1.4 Notation . 6

I Background 7

2 An Overview of Scientific Visualization 9
2.1 Scalar Field Visualization . 10

2.1.1 Image-Based Methods 10
2.1.2 Geometry-Based Methods 11

2.2 Vector Field Visualization . 13
2.2.1 Basic Methods . 14
2.2.2 Image-Based Methods 15
2.2.3 Integral Curves and -Surfaces 16
2.2.4 Vector Field Topology . 19
2.2.5 Vortex Extraction . 20
2.2.6 Lagrangian Coherent Structures 24

2.3 Second-Order Tensor Field Visualization 26
2.3.1 Direct Methods . 26
2.3.2 Image-Based Methods 27
2.3.3 Glyph-Based Methods 28
2.3.4 Line-/Surface-Based Methods 30
2.3.5 Topological Methods . 32

3 Introduction to Turbulent Combustion 35
3.1 Combustion . 36

3.1.1 Laminar Flames . 37
3.1.2 Turbulent Flames . 43

3.2 Modeling and Simulation of Turbulent Combustion 45
3.2.1 Chemical Schemes . 46

vii

Contents

3.2.2 The Flamelet Assumption 47
3.2.3 High-Level Models: RANS and LES 48
3.2.4 Direct Numerical Simulations 50

3.3 Visualization for Turbulent Combustion Simulations 53
3.3.1 Post-Processing . 54
3.3.2 In-Situ Processing . 56

II Analysis and Visualization of the Flame Surface in Turbu-
lent Combustion Simulations 63

4 Sparse Representation for Turbulent Premixed Flames 65
4.1 A Sparse Representation for Premixed Flames 66

4.1.1 Strategy for Seeding Profile Lines 67
4.1.2 Extracting Profile Lines 68
4.1.3 Model-Based Data Approximation 68

4.2 Construction and Visualization of Feature Surfaces 72
4.2.1 Feature Point Construction 72
4.2.2 Feature Surface Construction 73
4.2.3 Feature Surface Visualization 74
4.2.4 Evaluation of Diffusion Quality 76

4.3 Reconstructing Full Scalar Fields 78
4.4 Discussion . 83

5 In-Situ Tracking of the Flame Surface 85
5.1 Related Work . 86
5.2 Mathematical Basis . 87

5.2.1 Tracking the Flame Surface 87
5.2.2 Tangential Deformation of an Implicit Surface in a Flow 88

5.3 Discretization . 89
5.3.1 Micro-Patches for Surface Tracking 90
5.3.2 Splitting and Merging Surface Patches 91
5.3.3 Reconstructing Tangential Surface Deformation 94
5.3.4 Initialization . 95

5.4 Implementation . 95
5.5 Results . 97

5.5.1 Analytical Test Function 97
5.5.2 Premixed Flame in a Box 102
5.5.3 Temporal Diffusion Jet Flame 103
5.5.4 Performance . 104

5.6 Discussion . 106

viii

Contents

6 Conclusion 109

III Line Features in 3D Second-Order Tensor Fields 111

7 The Parallel Eigenvectors Operator 113
7.1 Related Work . 115
7.2 Theoretical Considerations . 116
7.3 Extracting PEV Lines from Piecewise Linear Data 117

7.3.1 Mathematical Basis . 118
7.3.2 Subdivision in Direction Space 119
7.3.3 Final Numerical Algorithm 120

7.4 Results . 123
7.4.1 Point Loads . 124
7.4.2 Clamped Beam . 125
7.4.3 Flange . 126

7.5 Discussion . 126
7.6 Limitations and Future Research 129

8 Core Lines in 3D Second-Order Tensor Fields 131
8.1 Tensor Core Lines . 133

8.1.1 Definition . 133
8.1.2 Mathematical Properties 135

8.2 Extracting Tensor Core Lines from Piecewise Linear Data . . . 135
8.2.1 General Algorithm . 136
8.2.2 Polynomial System in Bernstein-Bézier Form 136
8.2.3 Parameterization of the Search Space 137
8.2.4 Root Finding by Subdivision 138
8.2.5 Clustering and Line Connection 140
8.2.6 Filtering . 141

8.3 Results . 141
8.3.1 Cylinder . 142
8.3.2 Handle . 142
8.3.3 Truck Bumper . 142
8.3.4 Crane . 144
8.3.5 Spring . 144
8.3.6 Performance and Parameter Study 144
8.3.7 Comparison with Degenerate Lines 148

8.4 Computing PEV and Degenerate Lines 148
8.5 Discussion . 151

9 Conclusion 153

ix

Contents

Appendix 155

A Interpolating the Transformation for New Surface Patches 157

B Proof that PEV Yields Structurally Stable Curves 161

Bibliography 165

x

1
Introduction

Simulations are an integral part of modern engineering. They use a set of
models to make predictions about the behavior of a system under given
boundary conditions. Compared to experiments, simulations are cheaper

and quicker to set up, run, and evaluate, and they often provide access to
variables that are hard or impossible to measure in an experiment.

Simulation data – just like data from experiments – is often very large
and complex. It is evaluated to validate the simulation and/or to derive new
insight. Visualization plays an important role in these tasks. It translates
the wealth of data into visual representations that are more easily parsed by
humans.

Visualization, and in particular scientific visualization, is a large field of
research that has produced numerous techniques to display and analyze the
data from engineering simulations and other sources. For many applications,
existing simple visualization techniques are sufficient to derive the desired
information from the data. However, for more complex problems or technical
requirements, more advanced solutions are necessary.

Two active areas of research in visualization are concerned with large data
and data of some kind of higher order. Large amounts of data mostly originate

1

1 Introduction

from large or very high-resolution experiments or simulations. Examples
for higher-order data are tensor fields, time-dependent vector fields, and
ensemble or uncertain data. The contributions of this thesis belong to these
two areas of research. We present visualization and analysis techniques for
the flame surface in large-scale turbulent combustion simulations, and we
introduce novel features that help to understand the complexities of second-
order tensor fields using examples from solid mechanics simulations.

1.1 Contributions

The contributions of this thesis are separated into two main parts that at first
glance seem to be quite different. The first is concerned with time-dependent
scalar and vector fields, the second with static tensor fields. The first deals
with very large data sizes while the second mostly handles small- to medium-
sized datasets. The first focuses on a concrete application area while the
second proposes more general ideas. However, both parts have in common
that they propose techniques for the extraction of interesting features from
data produced by engineering simulations. In the following, we will give a
short summary of our contributions and their motivation.

1.1.1 Analysis and Visualization of the Flame Surface in Turbulent
Combustion Simulations

Direct numerical simulations (dns) are the most accurate tool for the simula-
tion of turbulent combustion. They are used as “numerical experiments” to
gain data for development or validation of new combustion models. Because
of their high spatial and temporal resolution, dns are run on large, massively
parallel supercomputers and produce huge amounts of data. In recent years,
the computing power of supercomputers has increased at a much faster pace
than the performance of their storage infrastructure. As a result, the raw
data produced by a simulation can not be stored completely in a reasonable
amount of time any more. The output of results, rather than their production,
has become the bottleneck in large simulations.

A major focus of interest in the modeling of combustion processes is the
flame surface. It is the area of the flame where most chemical reactions
take place and most heat is produced. We present two approaches for the
visualization and analysis of different aspects of the flame surface in large-
scale dns of turbulent combustion, where raw data storage has become the
bottleneck.

The first is a space-saving sparse representation for premixed flames. Due
to its smaller size, it allows storing and therefore analyzing a larger number of

2

1.1 Contributions

simulation time steps. This representation can directly be used for a statistical
analysis of the flame structure, and it is the basis for a new visualization
technique that highlights local differences of the flame structure in relation to
the global shape of the flame. If required, the full data can be reconstructed
on the original grid with some loss of accuracy for the full flexibility of
conventional post-processing.

The second approach we present is an algorithm for tracking the flame
surface in-situ during the simulation. This circumvents the storage bottleneck
by processing the data while it is still in memory and only writing to disk
the much smaller results. We propose a massively parallel algorithm using
independent micro-patches that refine and coarsen independently. This allows
tracking the surface over long time intervals and provides data about the
history of individual points attached to the surface as well as their relative
movement. Using this data, which is impossible to obtain via traditional
post-processing for large simulation runs, combustion researchers can derive
new combustion models, especially incorporating unsteady phenomena.

1.1.2 Line Features in 3d Second-Order Tensor Fields

Tensor fields occur in different scientific disciplines. One important exam-
ple are stress tensor fields, which are often the result of solid mechanics
simulations. They describe the state and distribution of stresses in a solid
object.

Tensor fields have more degrees of freedom than vector fields and are there-
fore more challenging to visualize. Almost all techniques for tensor field
visualization have in common that they represent tensors using their eigenvec-
tors and eigenvalues. Visualization techniques for vector fields can sometimes
be applied to the eigenvectors of a tensor field with some modifications. Just
as they help make sense of the structure of vector fields, they can make sense
of the structure of eigenvectors in tensor fields.

We take first steps towards translating a class of features from vector- to
tensor fields that has not been considered to date: line features obtained by
the parallel vectors (pv) operator. This operator yields all locations where two
vector fields are parallel. It can be used to compute ridge- and valley lines in
scalar fields as well as separation-, attachment-, and vortex core lines in vector
fields. We establish the parallel eigenvectors (pev) operator as the equivalent
of the pv operator for vector fields. We then use it to translate the concept
of vortex core lines to tensor fields by defining tensor core lines that mark the
centers of “swirling” behavior of the eigenvectors. Using these new features,
we demonstrate how to find locations of aligned principal stress directions in
objects under two different loads, and how to find areas of twist in an object
under stress.

3

1 Introduction

1.2 Thesis Structure

This thesis is separated into three main parts. Part I provides background
information that is relevant to understand the context of this work.

• Chapter 2 gives an overview of the field of scientific visualization.

• Chapter 3 introduces the field of turbulent combustion and its visual-
ization, which is relevant to the second part of this thesis.

Part II presents the contributions in visualization of the flame surface in dns
of turbulent combustion.

• Chapter 4 presents a sparse representation for premixed flames that
saves storage space and is the basis for a new flame visualization tech-
nique.

• Chapter 5 introduces an in-situ algorithm for tracking the flame surface
during a massively parallel simulation run.

• Chapter 6 concludes this part of the thesis.

Part III presents new line features for second-order tensor fields.

• Chapter 7 introduces the pev operator, which yields all locations where
two tensor fields have parallel real eigenvectors.

• Chapter 8 applies the pev operator – with some modifications – to
translate the concept of vortex core lines to the eigenvectors of a tensor
field.

• Chapter 9 concludes the last part of the thesis.

4

1.3 List of Publications

1.3 List of Publications

The following articles have been published in peer-reviewed journals and
conferences as results of this thesis:

T. Oster, D. J. Lehmann, G. Fru, H. Theisel, and D. Thévenin
Sparse Representation and Visualization for Direct Numerical Simulation
Of Premixed Combustion
Computer Graphics Forum 33.3, pp. 321–330, 2014

A. Abdelsamie, G. Fru, T. Oster, F. Dietzsch, G. Janiga, and D. Thévenin
Towards Direct Numerical Simulations of Low-Mach Number Turbulent
Reacting and Two-Phase Flows Using Immersed Boundaries
Computers & Fluids 131, pp. 123–141, 2016

C. Chi, A. Abdelsamie, T. Oster, and D. Thévenin
Probability of Hotspot Ignition and Ignition Spot Tracking in Turbulent
Hydrogen-Air Mixtures Using Direct Numerical Simulations
8th European Combustion Meeting, pp. 925–930, 2017

T. Oster, A. Abdelsamie, M. Motejat, T. Gerrits, C. Rössl, D. Thévenin, and
H. Theisel
On-The-Fly Tracking of Flame Surfaces for the Visual Analysis of Combus-
tion Processes
Computer Graphics Forum 37.6, pp. 358–369, 2018

T. Oster, C. Rössl, and H. Theisel
Core Lines in 3d Second-Order Tensor Fields
Computer Graphics Forum 37.3, pp. 327–337, 2018

T. Oster, C. Rössl, and H. Theisel
The Parallel Eigenvectors Operator
Vision, Modeling and Visualization, 2018

5

1 Introduction

1.4 Notation

We will use the following mathematical notation throughout the thesis. Addi-
tional notation is introduced whenever it is needed.

s, a, λ Scalars
v, r, x Column vectors
vi , ri , xi Components of the respective vectors
0 The vector of all zeros
A, S, Σ Matrices
I The identity matrix
AT, vT Transpose of a matrix/vector(
a b c

)
Block matrix composed of several matrices/vectors

v ·w Inner (dot-) product of two vectors
v×w Cross product of two vectors

∇ Nabla-Operator
(
∂
∂x1
, . . . , ∂

∂xn

)T

6

I
Background

2
An Overview of Scientific Visualization

Scientific visualization is the visualization of data from the natural sci-
ences. Although such data can come in a variety of forms, the term is
most often used to describe the techniques used for displaying spatial,

possibly time-varying data from physics, chemistry, engineering, or biomed-
ical applications. Examples for such data are volumetric scans of patients
from medicine, wind speed and pressure measurements from meteorology,
and simulations of the air flow around a car.

This thesis presents several new scientific visualization techniques. The
techniques are applied to simulation data from two different engineering
domains: turbulent combustion and solid mechanics. To set the scene for
these contributions, we will therefore use this chapter to give an overview of
the most important methods for visualizing scientific data. Such data usually
comes in the form of scalar-, vector-, or (second-order) tensor fields. We will
take a look at the definition and basic visualization techniques for each of
these types of fields in the following sections.

This chapter is necessarily sparse on details and omits a lot of basic knowl-
edge on computer graphics, data representation, numerical algorithms, and
visualization in general. A more thorough introduction to the field is given in

9

2 An Overview of Scientific Visualization

Alexandru Telea’s book “Data Visualization” [1]. Material for further reading
can be found in the references cited throughout the text.

2.1 Scalar Field Visualization

A scalar field is a map s(x, t) : D × T 7→ R that assigns a scalar value to each
position x and time t in spatial and temporal domains D and T . The spatial
domain D is a subset of the (two- or three-dimensional) Euclidean space En.
The temporal domain T is usually an interval of R. Examples of scalar fields
are the temperature in a solid object, the population density on a map, and
the attenuation coefficient in a computed tomography (ct) scan. If the scalar
field does not change with time, or we are only interested in a single instant,
we often just write s(x) and omit the time parameter.

Methods for visualizing scalar fields can be roughly separated into two
groups: image-based and geometry-based. We will briefly cover the most impor-
tant methods in the following.

2.1.1 Image-Based Methods

Image-based methods map the scalar at each position in space to a property
and display it directly. Among such methods are color-mapping and height-
mapping for 2d scalar fields as well as direct volume rendering for 3d scalar
fields.

Color-Mapping

Color-mapping means assigning each scalar value a color from a predefined
color map and displaying the result as an image or texture. Due to its simplic-
ity, it is probably the most widespread method presented here. This technique
is only directly applicable to 2d scalar fields, but is commonly used on 3d
data by selecting slices or surfaces in a volume, or by displaying the scalar
value on the outside surface of the volume.

Height-Mapping

Height-mapping only works on 2d data. It essentially means interpreting
the scalar value at each point as a height value and displaying the resulting
three-dimensional surface. Because it transforms 2d information into 3d
information, it is best suited for interactive settings, where the resulting
surface can be rotated and viewed from all directions.

10

2.1 Scalar Field Visualization

Figure 2.1: Direct volume ren-
dering of a ct scan of a human
skull using volumetric raycast-
ing with gradient-based shad-
ing. Image source: Wikimedia
Commons.

Direct Volume Rendering

Direct volume rendering [2, 3] is the extension of color-mapping to 3d scalar
fields. It involves two steps: Applying a transfer function, and accumulating
the resulting colors and opacities along viewing rays to produce an image.
The transfer function has to be chosen carefully to reveal the structures in the
data that are interesting, and make the uninteresting parts transparent. Color
and opacity values are then accumulated along viewing rays to simulate the
transport of light through a semitransparent medium.

The shading of a solid surface can be approximated by using the gradient
of the scalar field as the surface normal (see Figure 2.1). More advanced
techniques use a two-dimensional transfer function that also takes the gra-
dient magnitude into account when deciding the color, opacity and shading
parameters of a point along the viewing ray [4].

2.1.2 Geometry-Based Methods

Geometry-based methods extract some geometrical structures from the data
and display these structures. Isocontours and -surfaces belong to this category
together with topological features such as extremal- and saddle points, as well
as ridge- and valley lines and -surfaces.

11

2 An Overview of Scientific Visualization

Isocontours and -surfaces

Isocontours and -surfaces are manifolds in the scalar field where the scalar is
equal to a constant (iso-) value. In the literature these are also often referred
to as level sets. They form lines or surfaces that are always closed or end at the
domain boundary, and that never intersect each other. For 2d scalar fields, it
is common to plot contours for several isovalues at once, which resemble the
height lines we know from maps. In 3d, it is rare to display more than two or
three different isosurfaces at the same time due to occlusion problems.

Critical Points

Critical points are points in a scalar field where the gradient becomes zero.
As such, they are features of the scalar field’s topology. Critical points can
be classified by the eigenvalues of the Hessian matrix at the critical point: If
all eigenvalues are positive the point is a minimum, if all are negative it is a
maximum, and if the Hessian has both positive and negative eigenvalues, the
point is a saddle.

Ridge- and Valley Lines and -Surfaces

Ridge- and valley lines and -surfaces also belong to the category of topological
features. There is no universal agreed-upon definition for these types of
features. The two most common, competing definitions are watersheds and
height ridges [5, 6]. Watersheds are global features that separate the scalar
field into “areas of influence” of the different minima (or maxima). Imagine a
scalar field as a height field. Starting a gradient descent from two points on
the same side of a watershed will end up in the same minimum. Starting from
two points on opposite sides of the watershed will end up in two different
minima.

Height ridges are defined by a local differential analysis of the scalar field.
As such, their computation is less costly, but they do not provide a space-
filling segmentation of the data. Often, computation of raw ridges and valleys
produces a lot of small and insignificant features due to noise. An additional
filtering step [5] can be applied to only keep the most significant lines (see
Figure 2.2).

Morse-Smale Decomposition

The Morse-Smale decomposition forms the topological skeleton of a scalar
field. It is based on the idea of integral lines of the scalar field. These are
maximal paths that are everywhere tangent to the gradient of the scalar field

12

2.2 Vector Field Visualization

Figure 2.2: Filtered ridge and
valley lines of a scalar field.
Ridges are shown in red, val-
leys in blue. The scalar field
is visualized using a combina-
tion of height mapping (to ob-
tain the shading) and isocon-
tours. Image source: Peikert
and Sadlo [5].

(see also integral curves in vector fields, Section 2.2.3). Integral lines always
connect two critical points or end at the domain boundary.

The Morse-Smale decomposition separates the scalar field into a disjoint set
of cells whose union is the whole domain. Each cell is defined as the set of all
integral lines that connect the same minimum and maximum. In this sense,
the Morse-Smale decomposition is closely related to the idea of watersheds:
The boundaries of the cells are precisely the watersheds of the scalar field and
its negative.

2.2 Vector Field Visualization

A vector field v(x, t) :D ×T 7→Rn is a map from spatial and temporal domains
D ⊂ En and T ⊂ R to the n-dimensional vector space Rn. Just like a scalar
field, it assigns a value to each position and time in the domains, but here the
value is a vector. Examples for vector fields are the velocity of a fluid flow, the
displacement field of a deformed object, and the magnetic field around an
electromagnet. If the vector field does not change with time, or we are only
interested in the field at a single instant, we say that we have a steady vector
field v(x, tc), where tc is constant. If the vector field changes with time, we call
it an unsteady vector field. If we are talking about the velocity of a fluid flow,
we sometimes call it a (steady or unsteady) flow field.

Vector field visualization methods can be sorted into roughly six different
classes: Basic methods, image-based methods, integral curves and -surfaces, topo-

13

2 An Overview of Scientific Visualization

Figure 2.3: line integral con-
volution (lic) of a 2d vector
field with overlaid vector field
topology consisting of critical
points, boundary switch points,
and separatrices. Image source:
Tino Weinkauf [7].

logical features, vortex extraction and Lagrangian coherent structures. We will
visit the most important methods in the following sections.

2.2.1 Basic Methods

Basic methods display the vector data using simple techniques, much like
image-based methods for scalar fields. They encompass techniques such
as arrow plots, or color-mapping the velocity magnitude, vorticity and other
derived quantities directly.

Arrow Plots

Arrow plots are the simplest way to visualize a vector field. In such a plot,
arrow glyphs are placed at multiple locations throughout the domain. The
arrows are aligned with the direction of the local vector, and their length
is typically scaled based on its magnitude. Such plots can very accurately
show the vectors at a limited number of locations, but they quickly become
cluttered once too many arrows are plotted, or the arrows become too long
and occlude each other. If the magnitudes in a vector field range over many
different scales, finding an appropriate scaling factor for arrow length can be
challenging. In such cases, it is often better to plot normalized arrows and
represent the magnitude only via color.

14

2.2 Vector Field Visualization

Color-Mapping

Color-mapping can be applied to vector fields in different ways. The most
common one is simply displaying the magnitude of the vector field as a scalar.
Other scalars derived from the vector field, such as the vorticity magnitude
and divergence, can be visualized in the same way. All of this obviously goes
along with a loss of information. Since color has three degrees of freedom,
a vector field can also be visualized without information loss by directly
mapping the vector values to colors. The most naive way is to simply interpret
the three components of a 3d vector as RGB values. Such images theoretically
contain the full information of the original vector field. However, they are
very hard to interpret, as there is no inherent meaningful connection between
the direction of the vector and the color it is mapped to. This can be slightly
improved for 2d vector fields by mapping the angle and magnitude of the
vector to hue and value of the HSV color space.

2.2.2 Image-Based Methods

Image-based methods visualize the vector data by generating a space-filling
texture. Among such methods are line integral convolution, spot noise, and
texture advection.

Line Integral Convolution

Line integral convolution (lic)[8] is the most popular image-based vector field
visualization technique. It is based on “smearing” a random noise texture
along stream lines of a 2d vector field. More specifically, the color at a certain
position is determined as a weighted integral of the color values encountered
along a stream line passing through that position. The result is a space-
filling image where the direction of the vector field is visible at each location
(see Figure 2.3). The basic lic technique is only applicable to 2d steady
vector fields, but extensions have been developed for 3d [9] and unsteady [10]
datasets.

Spot Noise

Spot noise is also a technique designed for 2d data and produces results
similar to lic [11, 12]. It works by blending noise sprites that have been
stretched and rotated according to the local vector magnitude and direction.
In contrast to lic, spot noise better represents the local vector magnitude, but
in regions with low magnitude, the vector direction is not well visible.

15

2 An Overview of Scientific Visualization

Texture Advection

Texture advection works on 2d steady and unsteady vector fields. It is best
suited for flow fields, as it simulates the transport (advection) of a texture.
The texture is initialized at some point in time, and each point of the texture
then moves with the flow. As time progresses, the texture is warped, and the
viewer can follow where each part of the texture is transported. This method
has a lot in common with the integration-based methods presented in the
next section. In fact, texture advection simply displays a time surface with a
mapped texture in a 2d vector field.

2.2.3 Integral Curves and -Surfaces

Integral curves and -surfaces are generated by integrating the vector field
starting from different kinds of seed structures. Depending on the seeding
strategy and the kind of vector field, we can obtain streamlines, pathlines,
streaklines, timelines, and the accompanying surfaces. Since integral structures
play an important role in several parts of this thesis, we will cover them here
in more detail.

Streamlines

Streamlines are the simplest form of integral curve in a vector field. They are
defined for steady vector fields. Depending on the application area, they are
also sometimes called field lines. A streamline is a curve that is tangent to the
vector field everywhere along its path. Given a streamline c(s) of the steady
vector field v(x, tc), this means that ċ(s)× v(c(s), tc) is 0 for all s. This criterion
is valid for any parameterization of the curve, but we can only use it to check
if a given curve is a streamline. To compute streamlines, we typically solve
the ordinary differential equation

∂c(s)
∂s

= v(c(s), tc), with c(0) = x0 .

This yields a streamline with a particular parameterization: an integral curve
of the vector field. Due to their definition, two stream lines never intersect at
single points. They are either completely disjoint, or they coincide.

Visualizing a steady vector field with stream lines shows the direction of the
flow much like a lic image does, but not in a space-filling manner. This allows
for use of streamlines also in 3d data (see Figure 2.4). Streamline visualization
can be deceiving when used on single time slices of an unsteady flow field.
The connected lines mistakenly suggest paths of fluid elements. However, if
the flow field changes with time, the actual paths of fluid elements can deviate
significantly from the streamlines of a single time slice. In this case, the more

16

2.2 Vector Field Visualization

Figure 2.4: Streamlines in a simulated flow through a cranial aneurysm. Image
courtesy of Tim Gerrits [13].

appropriate visualization tools are pathlines, streaklines, and timelines, which
incorporate the temporal information of the flow.

Pathlines

Pathlines describe the paths of massless particles moving with a flow. They
are defined as the solution to the ordinary differential equation

∂c(t)
∂t

= v(c(t), t), with c(t0) = x0 ,

where c(t) is the curve of the pathline, t is time, and v(x, t) is an unsteady
vector field. Looking at this definition, it becomes apparent that for a steady
vector field, which does not change with time, streamlines and pathlines are
identical.

The set of all pathlines for all possible combinations of start position x, start
time t0 and end time te forms the flow map. This function, which we write
as Φ(x, t0, te), determines where a massless particle starting at position x and
time t0 ends up after advecting with the flow until time te.

Pathlines allow the visualization of the dynamic behavior of an unsteady
flow in a static image. To show the temporal information, the time is often
color-mapped on the curve. Unlike streamlines, pathlines can and do intersect

17

2 An Overview of Scientific Visualization

each other. For very complex flows, showing a lot of pathlines can therefore
quickly become confusing. In such cases it can be better to show animated
streaklines instead.

Streaklines

Streaklines are the connected locations of a continuously injected stream of
massless particles into a flow. They approximate the behavior of a thin stream
of dye injected at a certain position that is often applied in experimental
settings to visualize the flow. Formally, a streakline is formed by the connected
endpoints of a set of pathlines with the same start position and end time,
but continuously increasing start time. Using the flow map Φ , which we
introduced earlier, we can formally define a streakline as

c(s) = Φ(x, s, t) ,

where t is the current time, x is the injection point, and s is the continuously
increasing start time that runs along the curve. Like pathlines, streaklines
also become identical to streamlines if the flow is steady.

While a pathline shows the behavior of the flow over a period of time, a
streakline only ever shows the position of the injected particles at a single time
instant. Streaklines are therefore often animated by continuously increasing
the end time t and injecting more particles. This again mirrors the behavior
of injected dye observed in an experiment.

Timelines

Timelines are different from all the previous integral lines in that their seeding
structure is not a single point, but a whole line. A timeline is formed by placing
a line somewhere in the flow, treating it as a set of massless particles, and
letting the whole line advect with the flow at once. Formally, a timeline is
formed by the connected endpoints of a set of pathlines with the same start
and end time, but continuously changing start position. Given a seed curve
s(s), start time t0 and current time t, we can formally define a timeline in
terms of the flow map as

c(s) = Φ(s(s), t0, t) .

Much like streaklines, timelines are often animated to show the progressive
effect of the flow. As the time t advances, the line is transported and warped
by the flow and visualizes the way the flow mixes and perturbs a region of the
fluid.

18

2.2 Vector Field Visualization

Integral Surfaces

Integral surfaces can be formed from any of the integral lines by using a
higher-dimensional seeding structure. For stream-, path-, and streaklines
this means using a line as the seeding structure. Timesurfaces are formed by
using a surface as the seed. Integral surfaces can be helpful for visualization
because they have a better visual coherency than a number of single lines. The
curvature, wrinkling and folding of structures induced by the flow become
easier to grasp when using integral surfaces. On the flip side, integral surfaces
have more of a problem with occlusion compared to lines, as they are more
massive.

2.2.4 Vector Field Topology

The topology of a vector field is defined by critical points, separation- and at-
tachment points and the accompanying separatrices connecting them. Together,
they form a sort of skeleton of the vector field, from which the behavior of the
full field can be inferred.

Critical Points

Critical points of a vector field are locations where the magnitude of the
vector becomes zero. They are interesting because they are at the centers of
interesting structures in the vector field. Critical points in vector fields can
be sorted into different categories. Which category a critical point belongs to
depends on the behavior of the vector field in its vicinity, which is encoded in
its derivative. The Jacobian matrix J(v) = ∇v (or, more correctly, v∇T) gathers
the partial derivatives of all components of the vector field. The signs of the
real parts of its eigenvalues indicate if the vector field is attracting or repelling
in the vicinity of the critical point. Depending on these signs, the critical
point can be categorized as a sink (negative), source (positive), or saddle (mixed
signs). The presence of an imaginary part of the eigenvalues/eigenvectors
indicates swirling behavior. A more in-depth discussion of critical points in
vector fields is provided by Helman and Hesselink [14].

Separation- and Attachment Lines/Surfaces

Separation- and attachment lines/surfaces occur on no-slip boundaries. They
are locations where the flow separates from/attaches to a surface. In a 2d
flow, these are isolated points. In 3d, they can be point or line structures.
Separation- and attachment structures are similar to critical points of the
vector field, specifically to saddles, in that they are end points of streamlines

19

2 An Overview of Scientific Visualization

of the vector field. However, they are not exactly critical points, as the veloc-
ity is zero everywhere on a no-slip boundary. Instead, they are topological
features of the skin friction field, which describes the shear of the flow near
the boundary [15].

Separatrices

Separatrices connect critical points with each other. They are lines in 2d vector
fields and can be lines or surfaces in 3d vector fields [14, 16]. Separatrices start
at saddle points or separation-/attachment points. They are streamlines with
a special property: Streamlines passing through two points on opposite sides
of the separatrix will diverge from each other near a saddle or separation-
/attachment point in forward or backward flow direction. As such, they
separate the flow into distinct regions that streamlines starting in these regions
will never leave. Because streamlines and separatrices are an instantaneous
observation (they exist in steady vector fields or at single points in time in an
unsteady vector field), this does not imply that pathlines will never leave these
regions in unsteady flow. For unsteady flows, the equivalent of separatrices
are Lagrangian coherent structures, which we will cover in Section 2.2.6.

2.2.5 Vortex Extraction

Vortices are structures in a flow that show a swirling motion around a common
center. They will usually stay intact for long periods of time. Vortices are
the defining characteristic of turbulent flow. The study of their behavior is a
central topic of current fluid dynamics research. Even though the concept of
a vortex seems rather simple, hundreds of years of fluid dynamics research
still has not resulted in a universally accepted formal definition. This is
why there is a plethora of methods for detecting and quantifying vortices
in the literature. Most methods can be sorted into two categories: region-
based and line-based. They can be further classified by their invariance to
transformations of the reference frame through which the flow is observed.
Non-invariant methods are sensitive to all reference frame transformations.
Galilean invariant methods are insensitive to any motion of the reference
frame with constant speed and direction. Objective methods are insensitive
to any smooth translation and rotation of the reference frame. We will cover
some significant vortex extraction methods here. An extensive survey on the
subject has been done by Günther and Theisel [17].

Region-based methods measure the “vortex-ness” of the flow at a point by a
scalar quantity. Applying a threshold to this quantity shows the vortex regions.
Notable representatives of this category are the vorticity magnitude, λ2-criterion
and Q-criterion, which are all Galilean invariant methods that work on steady

20

2.2 Vector Field Visualization

Figure 2.5: Vortex core lines (yellow) and streamlines (blue/green) in the steady flow
around a delta wing.

vector fields. Recently, the instantaneous vorticity deviation (ivd) has been
proposed as an objective criterion for steady vector fields. Its extension,
the Lagrangian-averaged vorticity deviation (lavd) also accounts for unsteady
behavior of the flow. Region-based approaches are generally simple and
efficient to implement, but the results are dependent on the choice of the
threshold, and they do not produce explicit representations of the vortices.

Line-based methods explicitly extract the vortex core line that is the center
of the swirling behavior. The reduced velocity approach for extracting vortex
core lines in steady flows was proposed by Sujudi and Haimes [18] and later
identified as an application of the pv operator by Peikert and Roth [19]. This
approach is only Galilean invariant when applying it to 2d vector fields. A
Galilean invariant approach for finding the cores of swirling particle motion
in unsteady flows was proposed by Weinkauf et al. [20]. Recently, Günther
et al. [21] provided a framework for objective vortex core detection. This is
realized by determining a locally near-steady frame for observing the flow.

Vorticity Magnitude

The vorticity is commonly used in fluid dynamics literature to characterize
the rotational behavior of the flow. It is defined as the curl of the flow field
∇× v. The result is a vector field that points in the direction of the local axis
of rotation and whose magnitude indicates the rotation strength. Vorticity
magnitude is sometimes used to detect vortices. However, a constant threshold
over the whole domain is often not sufficient to detect and distinguish all
vortices, and it might yield false-positives in shear flow. This is why other
methods often perform better.

21

2 An Overview of Scientific Visualization

Q-Criterion

The Jacobian J of a flow field can be decomposed into a symmetric part S
(often called strain rate tensor) and an asymmetric part Ω (often called vorticity
tensor) where

S =
J + JT

2
, Ω =

J− JT

2
.

For divergence-free (i.e., incompressible) flows, the Q-criterion states that a
region belongs to a vortex if the vorticity tensor is stronger than the strain rate
tensor, i.e.,

Q = (‖Ω‖2 − ‖S‖2) > 0.

The resulting regions are not as sensitive to the scaling of the data as the
vorticity magnitude.

λ2-Criterion

The λ2-criterion [22] uses invariants of the Jacobian to detect pressure valleys
in incompressible flows. It identifies vortex core regions by investigating the
eigenvalues of the tensor S2 +Ω2. If the local tensor has at least two negative
eigenvalues (i.e., if the middle eigenvalue λ2 is smaller than zero), a point is
considered to belong to a vortex core region. In most cases, λ2-criterion and
Q-criterion yield similar results.

ivd/lavd

Recently, the instantaneous vorticity deviation (ivd) was proposed by Haller
et al. [23] as an objective vortex measure for steady flow fields. It is based on
the observation that while the vorticity itself is not objective, the difference
between two vorticity vectors is. Based on this, they define the ivd as the
difference of the local vorticity to the average vorticity in a local neighborhood.
The Lagrangian-averaged vorticity deviation (lavd) extends this to unsteady
flows by integrating the ivd along a pathline over a certain time interval.

Reduced Velocity/Parallel Vectors

The first line-based method we present here was proposed by Sujudi and
Haimes [18] and works on steady flow fields. It is based on the observation
that vortex centers look like critical points when looking at a slice of the
vector field that is orthogonal to the vortex core line. In regions with swirling
flow, the Jacobian has two complex conjugate and one real eigenvector, which
points along the local axis of rotation. The reduced velocity or Sujudi/Haimes
criterion therefore states that a vortex core line is located where the projection

22

2.2 Vector Field Visualization

Figure 2.6: Streamlines and pathlines swirl around different cores. The red tube
shows the core of pathlines of a 2d vector field (rendered in 3d spacetime). The
blue tube shows the path of the vortex core extracted from the individual time slices.
Source: Weinkauf et al. [20].

of the local velocity onto a plane orthogonal to the single real eigenvector is
zero. Peikert and Roth [19] later showed that this is equivalent to locations
where the velocity vector v is parallel to its acceleration Jv, and so is an
application of the pv operator, which does not require the explicit computation
of eigenvectors. Defining the criterion in this way, it is equivalent to finding
locations where stream lines have locally vanishing curvature.

Cores of Swirling Particle Motion

The method of Sujudi/Haimes only considers steady flow fields, or instanta-
neous snapshots of unsteady flows. This means that this method finds the
centers of swirling streamlines. In unsteady flows, streamlines and pathlines
appear to swirl around different cores if the vortex moves over time (see
Figure 2.6). Weinkauf et al. [20] therefore developed an approach to find
the cores of swirling pathlines in unsteady flows. They express pathlines as
streamlines in a flow field with one more dimension where time has been
included as an additional explicit state variable. For 3d unsteady flows, the
pathlines are streamlines in 4d space-time. They derive a criterion similar to
Sujudi/Haimes for 4d vector fields that can be reduced to a parallel vectors
operation on two derived 3d vector fields.

Near-Steady Frame

The optimal reference frame for observing a vortex is a frame that follows the
vortex center over time [24]. In such a frame, the observed vector field around
the vortex becomes almost steady as ambient effects of larger flow structures
are eliminated. This is the basis of the approach proposed by Günther et
al. [21]. For each point in the flow, a locally optimal reference frame is
computed in which the flow becomes almost steady. The reference frame is
determined for a finite-sized neighborhood via a simple linear optimization.

23

2 An Overview of Scientific Visualization

Once the vector field (and its derivatives) have been “objectified”, any region-
or line-based vortex extractor that is designed for steady vector fields can be
used to extract objective unsteady vortices.

2.2.6 Lagrangian Coherent Structures

Lagrangian coherent structures (lcs) are structures that show a locally max-
imal attracting or repelling behavior of massless particles. As the name
suggests, these structures also tend to stay coherent over longer time periods.
They can be thought of as a counterpart to vortices. Whereas vortices repre-
sent the centers of swirling behavior, lcs tend to be located at the boundaries
between vortices. They act as transport barriers that have a minimal trans-
verse flux of material and are therefore very important for the investigation of
mixing and transport processes. There are a number of very different meth-
ods for the investigation of lcs. A survey and comparison of some notable
methods can be found in [25].

One popular approach for detecting lcs is the investigation of the local
Lyapunov exponent [26]. The Lyapunov exponent describes the rate of separa-
tion of infinitesimally close trajectories over an infinite time interval. Since
real-world data is usually finite in time and space, two approximations of
the Lyapunov exponent are commonly used in practice: the finite-time Lya-
punov exponent (ftle) [27] and the finite-size Lyapunov exponent (fsle) [28]. It
has been shown that ridges of the ftle or fsle field correspond well to the
locations of lcs [27, 29].

The basis for the computation of both ftle and fsle is the right Cauchy-
Green deformation tensor

C(x, t0, te) = F(x, t0, te)T F(x, t0, te) ,

where F is the deformation gradient obtained from the derivative of the flow
map

F(x, t0, te) = ∇Φ(x, t0, te).

The Cauchy-Green tensor describes the deformation the infinitesimal neigh-
borhood of a point x at time t0 experiences when advecting with the flow
until time te. The maximum eigenvalue λmax of this tensor is a measure
for the maximum separation of two particles starting in this infinitesimal
neighborhood.

24

2.2 Vector Field Visualization

Figure 2.7: Comparison of fsle (left) and ftle (right) of the flow field of a meander-
ing jet. Image source: Peikert et al. [31].

Finite-Time Lyapunov Exponent

The finite-time Lyapunov exponent measures the maximum separation of
neighboring particles after advecting with the flow for a finite time:

FTLE(x, t0, τ) =
1
|τ | ln

√
λmax [C(x, t0, t0 + τ)] .

A straightforward way of approximating the ftle of a flow is to compute
the flow map Φ on a discrete grid and estimate the deformation gradient
F via central differences. Since the ridges of an ftle field can become very
sharp with increasing integration time τ , this is usually not very accurate.
Additionally, we are usually not interested in an accurate estimation of regions
without ridges. For this reason, there are multiple numerical schemes for
more precise or efficient ftle computations. A good overview of the existing
methods is provided in Alexander Kuhn’s PhD thesis [30].

Finite-Size Lyapunov Exponent

The finite-size Lyapunov exponent measures the time a pair of infinitesimally
close particles need to separate by a constant amount in space:

FSLE(x, t0, r) =
1
|τr |

lnr ,

where τr is the minimum time interval for which√
λmax [C(x, t0, t0 + τr)] = r .

fsle is popular in the oceanography community, but has not been adopted
much in the general visualization community. As a result, fsle computation

25

2 An Overview of Scientific Visualization

schemes in the literature are mostly straightforward. Either the maximum
separation λmax is estimated by a discrete sampling of the flow map in different
directions [32, 33], or the Cauchy-Green tensor is estimated based on central
differences [31].
ftle and fsle yield similar results, given the right parameters (see Fig-

ure 2.7). However, one or the other might be more appropriate depending
on the application. While ftle operates on a finite integration time τ , which
must be estimated a-priori, it shows the behavior of the flow for all scales
of spatial separation. In contrast, fsle needs the choice of a separation size,
which might be more intuitive. It yields information about separation at
different spatial scales, but it does not show separation that is smaller than
the given threshold r.

2.3 Second-Order Tensor Field Visualization

Although tensors are a very general concept in mathematics, when we talk
about tensor fields in scientific visualization, we generally mean a map
T(x, t) : D × T 7→ Rm×m from spatial domain D ∈ En and temporal domain
T ∈ R to the space of second-order tensors, which can be represented by
matrices from Rm×m. While a vector describes an effect acting on a point, a
second-order tensor describes an effect on a vector. Often, this means that the
tensor describes some sort of differential effect that acts on the infinitesimal
neighborhood of a point. Second-order tensor fields occur in a variety of dif-
ferent scientific contexts. Some examples are stress and strain tensors in solid
mechanics, and diffusion tensors occurring in diffusion tensor imaging (dti),
a special magnetic resonance imaging (mri) modality used to visualize fiber
tracts, e.g., in the human brain. In reality, these tensor fields vary in time.
However, in practice datasets with temporally varying tensor fields are rela-
tively rare, and visualization methods are mostly designed for instantaneous
tensor fields T(x).

The most important tensor field visualization methods can be roughly
classified into five different categories: direct, image-based, glyph-based, line-
/surface-based and topology-based.

2.3.1 Direct Methods

Direct methods display some properties of the tensor directly. Usually, one or
more scalar quantities are derived from the vector field and displayed using
methods from scalar field visualization. Notable examples for direct methods
are color-mapping and direct volume rendering.

26

2.3 Second-Order Tensor Field Visualization

Color-Mapping

Just like scalar and vector fields, 2d tensor fields or slices of 3d datasets can
be displayed by color-mapping some scalar properties of the tensor. When
investigating mechanical stress tensors, some norm of the tensor is often
displayed. When visualizing diffusion tensors from dti data, the 3d direction
of the major eigenvector is often encoded using a radial or spherical color
map [34]. Such a visualization is not very intuitive and requires the viewer to
be familiar with the interpretation of the resulting images.

Direct Volume Rendering

For 3d data, the equivalent of color-mapping is direct volume rendering.
The additional degrees of freedom of a tensor compared to scalar or vector
data means that some information invariably gets lost when using normal
direct volume rendering techniques. This means an intelligent mapping of the
tensor to color, opacity and shading needs to be performed to retain the most
important aspects of the data. For diffusion tensors, different possibilities for
such mappings have been explored by Kindlmann et al. [35]. They base their
mappings on the different kinds of anisotropies indicated by the ratio of the
tensor’s eigenvalues that can be found in diffusion tensor data (namely linear
anisotropy, planar anisotropy, and isotropy). This produces visualizations that
represent the important features in dti data, but is not necessarily applicable
to other application domains.

2.3.2 Image-Based Methods

Like the equivalent techniques for vector fields, image-based visualization of
second-order tensor fields works by generating space-filling images that are
derived from the underlying tensor data. Techniques in this category have yet
to be adopted into mainstream visualization tools, so we will only discuss two
notable examples: HyperLIC by Zheng and Pang [36] and LIC with variable
input textures by Hotz et al. [37]. Both techniques are modified versions of lic
based on the eigenvectors of the tensor fields.

HyperLIC

HyperLIC was introduced by Zheng and Pang [36] as a visualization technique
for diffusion tensor data. In this data, a central characteristic is the diffusion
anisotropy represented by the ratio of the eigenvalues. While lic accumulates
the values of an input texture along streamlines of a vector field, HyperLIC
conceptually accumulates values in a strip- or tube-like volume that follows
the local eigenvector direction and whose cross section is scaled according

27

2 An Overview of Scientific Visualization

Figure 2.8: LIC with variable
input textures. Image source:
Hotz et al. [37].

to the local eigenvalue ratio. This produces lic-like results in areas with a
strongly dominating eigenvalue, and blurry areas with no sense of direction
in isotropic areas where all eigenvalues are similar. As this technique is
designed for diffusion tensors, which are positive definite, it lacks a way of
indicating eigenvalue sign and therefore is not well suited for the visualization
of indefinite tensors.

lic with Variable Input Textures

A technique which is better suited for symmetric indefinite tensors, which
can have negative eigenvalues, was presented by Hotz et al. [37]. As opposed
to HyperLIC, which accumulates the values of the input texture in a volume
instead of along a curve, this method uses a standard lic on the “eigenvector
fields” of the tensor field. The remaining information in the tensor is visu-
alized by carefully varying the spot size, spot density and color of the input
noise texture as well as the convolution length based on the local eigenvalues.
Images from major and minor eigenvectors are overlaid to visualize both at
the same time. Figure 2.8 shows an example of this technique applied to a
slice of the stress tensor field from a two point load dataset with a pushing
and pulling force.

2.3.3 Glyph-Based Methods

Glyph-based methods for tensor field visualization place small geometric
objects in space to represent certain characteristics of the local tensor. They

28

2.3 Second-Order Tensor Field Visualization

have the advantage of being able to display all features of a tensor at once, but
their visual complexity can make them hard to read. Glyph-based methods
generally differ by the restrictions they place on the tensor. There are various
glyph designs for symmetric positive definite, symmetric (indefinite), and general
tensors in both 2d and 3d. Some research has also focused on how to place
and distribute glyphs to better emphasize global structures in the data, as
opposed to the simple regular grid-based approach [38, 39].

Symmetric Positive Definite Tensors

Symmetric positive definite tensors are tensors that always have positive
real eigenvalues, and whose eigenvectors are orthogonal. The domain most
explored in scientific visualization for these tensors is dti data, where they
represent the diffusion of Hydrogen atoms in organic tissue (specifically in
neural fibers of the brain). The simplest glyphs for visualizing such tensors
are ellipses [40], cylinders [41] or boxes [42]. These glyphs are formed by
placing some prototypical base shape (a unit sphere or cube) centered at the
origin and then transforming it according to the tensor. The resulting glyph is
then placed at the sampling position the tensor originated from. Most often,
the glyphs are also scaled to achieve a size fitting with the glyph density. Such
simple glyphs accurately represent how the tensor transforms input vectors to
output vectors. The disadvantage is that they have various visual ambiguities
that make their interpretability less than ideal [43].

Kindlmann [43] solved this problem by carefully designing glyphs based
on superquadrics. These superquadrics change their base shape depending on
the relationship of the three eigenvalues of the tensor. In this way, ambiguities
intrinsic to the usage of constant base shapes are eliminated.

Symmetric Tensors

General symmetric tensors always have real orthogonal eigenvectors, but their
eigenvalues can be negative. This poses a challenge for glyph design. Simply
transforming a symmetric base shape with the tensor will produce the same
image for eigenvalues with equal magnitude but opposite sign. Different
glyphs for symmetric tensors in different application domains have been pro-
posed in the literature [34, 44, 45]. Often, color is used to indicate the sign
of the eigenvalue. Alternatively, the glyph base shape is modified to repre-
sent the difference between positive and negative eigenvalues. Schultz and
Kindlmann [46] built on top of all of this work to develop a set of superquadric-
based tensor glyphs that clearly indicates eigenvalue sign by a combination of
color and concave shape (see Figure 2.9).

29

2 An Overview of Scientific Visualization

Figure 2.9: Superquadric glyphs for symmetric
tensors. Includes glyphs for positive definite
tensors as a subset (top triangle). Image source:
Schultz et al. [46].

General Tensors

Apart from different eigenvalue signs, the eigenvectors of general (asymmetric)
second-order tensors need not be orthogonal, and they can be complex. Gerrits
et al. [47] built on top of the work of Kindlmann, Schultz et al. to design
a set of glyphs for general tensors in 2d and 3d that can represent non-
orthogonal eigenvectors and additionally incorporates information about
complex eigenvalues via color.

2.3.4 Line-/Surface-Based Methods

Line- and surface-based methods for the visualization of second-order tensor
fields are very similar to integral lines and surfaces for vector fields. They
consider the eigenvectors of the tensor field as the equivalent of a vector field
and base the visualization on the resulting field lines. Of course these methods
can only visualize real eigenvectors and are therefore generally applied to
symmetric tensor fields only. Because of the differences between real vector
fields and eigenvector fields, modified integration methods are necessary to
form these field lines. The most important methods based on this principle
are tensor field lines, hyperstreamlines, tensorlines and hyperstreamsurfaces.

30

2.3 Second-Order Tensor Field Visualization

Figure 2.10: Major principal stress trajectories in a plate with a loaded hole. Image
source: Kelly and Tosh [52].

Tensor Field Lines

Tensor field lines are lines that are everywhere tangent to an eigenvector
of the tensor field. They are the basis for all the methods in this category.
Tensor field lines have been known as stress trajectories (see Figure 2.10) in
the context of solid mechanics since the 1800s. Early stress visualizations
using this technique were drawn by hand based on photoelastic measurement
techniques [48, 49]. In a computer, these lines are obtained by integrating a
vector field generated from the eigenvector field by choosing an orientation
and magnitude at each location [50, 51]. Since this choice is not always unique
in the vicinity of degenerate points where two or more eigenvalues are equal,
special care has to be taken to avoid a sudden flip of direction. The resulting
lines show the continuous change of direction of eigenvectors in the tensor
field, but they are not well suited to judge the magnitude of the eigenvalues.

Hyperstreamlines

To enhance the information content of tensor field line visualizations, Delmar-
celle and Hesselink introduced hyperstreamlines [53]. These hyperstreamlines
follow the field lines of one of the eigenvectors of the tensor field, while their
cross-section is a cross shape or ellipse aligned with the other two eigenvectors
and scaled by the corresponding eigenvalues. The eigenvalue corresponding
to the eigenvector parallel to the hyperstreamline is color-coded on the surface.
In this way, the full information of the tensors along the hyperstreamlines
is visualized. It is important to note here that the term hyperstreamline is
sometimes used in the literature to mean what we introduced as tensor field
lines. In this work, we use it exclusively for lines with a variable cross-section.

31

2 An Overview of Scientific Visualization

Tensorlines

In the analysis of diffusion tensor fields obtained from dti scans of the human
brain, tensor field lines are tracked to obtain the paths of neural fibers. Be-
cause this data suffers from noise and partial voluming effects due to limited
resolution, near-isotropic areas can occur where fibers with different direc-
tions cross. In these areas, the eigenvector direction is not clearly defined
and often dominated by noise. Just following the vector field obtained from
a single eigenvector will result in random paths that do not represent the
paths of actual brain fibers. To counteract this problem, Weinstein et al. [54]
introduced tensorlines. The core of the algorithm is a modified streamline
integration that not only takes into account the direction of the major eigen-
vector but is also guided by the direction of the previous step in near-isotropic
regions.

Hyperstreamsurfaces

The concept of hyperstreamlines was extended to hyperstreamsurfaces by
Jeremić et al. [45]. They are formed analogous to streamsurfaces by using a
curve instead of a point as a seed structure for integration. In this case, the
other eigenvectors and eigenvalues can not be sensibly displayed by varying a
cross section like with hyperstreamlines. Instead, only the eigenvalue of the
integrated eigenvector is color-coded on the surface.

2.3.5 Topological Methods

Similar to scalar- and vector fields, topological structures in tensor fields
are defined by some mathematical degeneracy. In contrast to the topology
of vector fields, it is not the magnitude of the tensor that is important, but
the relationship between the eigenvalues and eigenvectors. For symmetric
tensor fields, the topology is formed by degenerate points and lines and their
separatrices, as well as neutral and traceless tensors. For general (asymmetric)
tensor fields, the topology is formed by degenerate structures and circular
points.

Degenerate Points and Lines

The core of topological analysis of symmetric tensor fields are degenerate
structures. These are structures where two eigenvalues are equal, and the
eigenvector directions are not uniquely defined. They are the locations where
tensor field lines intersect. In 2d tensor fields, such structures can be classified
into trisector and wedge points, depending on the behavior of the tensor field
lines in their vicinity. In 3d, degenerate features form lines. Zheng et al. [55]

32

2.3 Second-Order Tensor Field Visualization

Figure 2.11: Topology of the
stress tensor in a double point
load dataset. Image source:
Zheng and Pang [58].

showed that the type of degenerate point can switch at isolated points along
these lines. These are the points where the degenerate line is parallel to
the plane spanned by the eigenvectors corresponding to the dual eigenvalue.
Degenerate lines in symmetric tensor fields were first studied by Delmarcelle,
Hesselink et al. [56, 57]. Numerical algorithms for their robust extraction
were developed by Zheng et al. [58, 59] and later adapted for noisy dti data
by Tricoche et al. [60]. Figure 2.11 shows the topology of a common test case
in structural mechanics where two point loads are applied to the surface of a
solid block.

Separatrices

The tensor field lines that pass through a degenerate point form separatrices
that separate the neighborhood of the point into sectors [56]. These structures
are akin to the separatrices of vector fields that separate the area around a
saddle point. In 2d, these separatrices are lines, in 3d, they form surfaces. An
algorithm for extracting such surfaces from 3d tensor fields was proposed by
Zheng et al. [55]

Neutral and Traceless Tensors

A different kind of topological feature are neutral and traceless tensors, which
were first investigated by Palacios et al. [61]. A neutral tensor is a tensor
where the middle eigenvalue is the average of the major and minor eigenvalue.
Neutral tensors in 3d tensor fields form surfaces. These surfaces mark the
transition between areas of linear tensors (one dominating eigenvalue) and
planar tensors (two dominating eigenvalues). In stress tensors, these can
be interpreted as the transition between predominantly tensile stress and
predominantly compressive stress. In diffusion tensors from dti, they indicate

33

2 An Overview of Scientific Visualization

the separation between regions with clear fiber direction and regions where
fiber tracts cross.

Traceless tensors are tensors whose sum of eigenvalues is zero. Traceless
tensors also form surfaces in 3d tensor fields. They mark the transition
between areas of positive and negative trace. In stress and strain tensors, these
are equivalent to regions of expansion and compression. Recently, Roy et
al. [62] proposed a more robust extraction method for these surfaces as well
as degenerate lines.

Topology of General (Asymmetric) Tensor Fields

The topology of general tensor fields has been studied to a lesser extent.
Zheng and Pang [63] first introduced circular points as the main topological
structure in 2d general tensor fields. These are points where the tensor
is a perfect rotation matrix. Analogous to degenerate points in symmetric
tensor fields, these are also points where all vectors are valid eigenvectors.
Degenerate structures where two eigenvalues are equal also exist in general
tensor fields, but here they mark the transition between regions of real and
complex eigenvectors. This means that they form lines instead of points in 2d,
and their meaning is very different. Zhang et al. [64] later extended the study
of 2d general tensor fields by defining eigenvector and eigenvalue manifolds
to classify general tensors and distinguish different types of circular points.

34

3
Introduction to Turbulent Combustion

Combustion is one of the cornerstones of our civilization. Its applications
range from providing light to carrying objects into space. The majority
of high-tech combustion processes occur under turbulent conditions.

The nature of turbulent flow, and therefore also turbulent combustion, is still
being actively studied by the scientific community. Reducing the pollutant
emissions and increasing the efficiency of combustion processes is essential in
todays world where we are confronted more and more often with the realiza-
tion that our resources are finite and the damage we do to our environment
can not easily be undone.

Simulations are an invaluable tool in the design of improved combustion
processes. They allow to test different setups quickly and for a relatively
low cost. Efficient simulations need models of the relevant physical and
chemical processes. As the demands on the accuracy of such models rises,
more detailed insight into the low-level phenomena of turbulent combustion
is needed. Obtaining this insight via experiments is challenging. Often only a
small number of variables can be observed at the same time and observations
are frequently limited to a 2d slice.

Another approach is direct numerical simulation (dns), which is sometimes

35

3 Introduction to Turbulent Combustion

referred to as a “numerical experiment”. In dns, the Navier-Stokes equations
are directly solved on a very fine grid, without using a higher-level turbulence
model. This is computationally very expensive, which is why dns is typically
performed on supercomputers using hundreds or thousands of cores. In the
simulation, all variables are available in full spatial and temporal resolution.

Analyzing the data from such simulations poses a different challenge. Due
to the high spatial and temporal resolution, the raw data produced by a single
dns run can range from terabytes to petabytes. Data of this size can not be
written to disk or transferred over a network in a reasonable amount of time,
even if the enormous storage space that is required was available. This limits
the post-analysis of the data to spatially or temporally downsampled versions
which lose a lot of important information. In recent years, the subject of
in-situ analysis and visualization has therefore gained popularity. The idea is
to process the data while it is still in memory during the simulation. The raw
data is then discarded and only the results, which are typically much smaller
in size, are stored on disk.

This thesis contains two new in-situ focused approaches for analysis and vi-
sualization of turbulent combustion dns. To provide some important context,
this chapter provides a short introduction into the field of turbulent combus-
tion research, the basics of turbulent combustion modeling and simulation,
and an overview of relevant research concerning in-situ and post-processing
of turbulent combustion data in particular and large-scale simulations in
general.

3.1 Combustion

Combustion is the exothermic chemical reaction of a fuel and an oxidizer into
oxidized products and heat. We will only concern ourselves with the combus-
tion of gases, which is the most common case used in industrial applications.
The oxidizer is usually oxygen, while fuels can range from simple ones such
as hydrogen or methane to complex organic fuels.

A combustion process is a complex system of elementary chemical reactions
transforming various chemical species into each other while absorbing or
releasing heat. It involves reactants and products but also various intermediate
species. These intermediates can be more or less stable and are often radicals
with unpaired electrons. The reaction rate of each elementary reaction in an
infinitesimal volume is dependent on the amounts (i.e., mass) of the different
chemical species as well as the current temperature. The composition of
chemical species is typically represented via their mass fractions, i.e., the
fractions of the total mass of the mixture that are occupied by each species.
This introduces density as an additional variable representing the total mass

36

3.1 Combustion

per unit volume. Inert gases, which do not participate in the reactions directly
can still influence them by their diluting presence.

The chemical reactions in a flame are intrinsically linked to the fluid motion
of the gas. As the gas is deformed and transported by the flow, the local
concentration and temperature gradients change, which in turn control the
diffusion of chemical species and heat. Through diffusion, the local mixture
and temperature changes, which in turn influences the reaction rates. As the
chemical reactions produce or consume heat, the gas expands or contracts,
which in turn influences the fluid’s velocity (the expanded gas has to go
somewhere) and viscosity (molecules that are farther away from each other
interact less). This again influences the mixing and transport of the gas, and
so the cycle goes on.

Gaseous combustion can be classified by the type of flow and the mixing of
reactants. Is the flow laminar or turbulent, and are fuel and oxidizer premixed
or non-premixed? We will discuss the characteristics of flames in each of these
regimes in the following sections. This discussion is largely based on the book
“Theoretical and Numerical Combustion” by Poinsot and Veynante [65].

3.1.1 Laminar Flames

If the reacting gases in a flame move at low velocities, the flow is often laminar.
Laminar flow is characterized by its predictability and lack of chaotic motion.
Layers of the fluid slide past each other without significant mixing. In many
cases, the flow is steady in this regime.

Even though laminar flames are the exception in industrial applications,
their simplicity and deterministic behavior makes them an ideal basis for the
theoretical study of combustion processes. They are the reference case that
turbulent combustion is compared against and that turbulent combustion
models are derived from.

Laminar Premixed Flames

In a premixed flame, fuel and oxidizer are brought into a uniform mixture
before ignition. The defining feature of premixed combustion is the flame
front that propagates into the fresh gases and leaves behind hot combustion
products. In the simplest case, the flame front is planar and travels along its
normal direction. In this case, the phenomenon is essentially one-dimensional
(see Figure 3.1). The profiles of the combustion variables along the normal
direction show high concentrations of fuel and oxidizer on the fresh gas side
and high combustion product concentrations and temperature on the burnt
gas side. In between the two extrema is the flame front that shows the gradual
transition between fresh and burnt gases. The concentration of intermediate

37

3 Introduction to Turbulent Combustion

Figure 3.1: Basic configuration of a one-dimensional laminar premixed flame. Image
source: Poinsot and Veynante [65]

species is highest in the flame front. Intermediates generally do not occur
in the fresh gases, but some radicals may exist on the burnt gas side due to
dissociation of combustion products at high temperatures.

The characteristic properties of a premixed flame front are flame speed, flame
stretch, and flame thickness. These three quantities depend on each other and
the underlying flow field.

The flame speed is the speed at which the flame front travels. It can be
expressed relative to a laboratory frame of reference, or relative to the flow.
Sometimes, it is also expressed as the speed at which fresh gases are turned
into combustion products. The flame speed can vary considerably along the
surface of a flame, and depending on conditions, the flame front can travel
against the flow at considerable speeds.

The flame thickness describes the width of the reaction zone normal to
the flame front. Depending on the application, it is determined in different
ways. One common definition uses the slope at the point of highest tempera-
ture gradient. Another one is based on the distance between the isosurfaces
of minimum and maximum temperature. Different alternative definitions
exist as well, some of them based on radical species. The flame thickness
is inversely proportional to the flame speed in canonical configurations. A
thinner flame travels more quickly and slow-moving flames tend to be thicker.
Flame thickness is an essential measurement for combustion simulations, as
it determines the grid resolution necessary to resolve the flame front.

38

3.1 Combustion

Figure 3.2: Profiles of species (Y), temperature and heat release of a laminar premixed
H2-O2 flame. Image source: Poinsot and Veynante [65]

39

3 Introduction to Turbulent Combustion

Both flame speed and flame thickness are dependent on the chemical re-
action taking place and the stretch of the flame front. Flame stretch is the
change in surface area an infinitesimal element of the (idealized) flame surface
experiences over an infinitesimal time interval. It can be induced by a non-
uniform flow, but also by the expansion or contraction a curved flame front
experiences due to its propagation in normal direction. Figure 3.3 shows some
examples of stretched laminar premixed flames. If the flame experiences posi-
tive stretch, it is tangentially expanded and compressed in normal direction.
This decreases the flame thickness and feeds new fresh gases to the reaction,
which increases the flame speed. However, it also increases heat dissipation. If
the flame is stretched too quickly, this can lead to quenching. Negative stretch
(compression) leads to less fresh gas being transported near the reaction zone,
which increases the flame thickness and reduces flame speed.

Due to their defining characteristic for the behavior of the flame, flame
speed, thickness and stretch are the basis for a lot of combustion models, and
a focus of study in many combustion experiments and simulations.

Laminar Non-Premixed (Diffusion) Flames

In non-premixed combustion, fuel and oxidizer are supplied separately. Com-
bustion can only occur where both mix in a sufficient ratio via diffusion. This
is why non-premixed flames are also called diffusion flames. Figure 3.4 shows
a 1d cross-section of a typical laminar diffusion flame.

The prototypical example of a diffusion flame is a jet flame where fuel gas
is injected into ambient air and ignited. An example of this type we are all
familiar with is the flame of a candle. Wax is evaporated from the wick via the
heat of the flame. This fuel gas burns as it comes into contact with ambient
air and creates a laminar diffusion flame. The heat generated from the flame
is sufficient to ignite the fresh fuel being supplied from the wick and sustain
the reaction. Figure 3.5 shows a simplified example of such a flame.

Diffusion flames are easier to set up than premixed flames from a practical
perspective, as no perfect mixing of fuel and oxidizer is required before-
hand. They are also safer because they prevent flashbacks into the gas supply.
However, it is harder to ensure a clean and complete consumption of fuel in
non-premixed combustion. This is why diffusion flames are generally less
efficient and produce more soot and pollutants that result from suboptimal
burning conditions.

Because the conditions for combustion are not satisfied initially, transport
and mixing become the main issues in a non-premixed flame. Fuel and
oxidizer need to mix sufficiently to create a combustible mixture. Temperature
produced by nearby combustion needs to be high enough to ignite the mixture.
Combustion products need to be transported away from the combustion zone

40

3.1 Combustion

Figure 3.3: Examples of stretched laminar premixed flames. Image source: Poinsot
and Veynante [65]

41

3 Introduction to Turbulent Combustion

Figure 3.4: Basic configuration of a one-dimensional laminar diffusion flame. Image
source: Poinsot and Veynante [65]

Figure 3.5: Simple 2d laminar diffusion jet flame. Image source: Poinsot and Vey-
nante [65]

fast enough to prevent the flame from suffocating, but not too fast to dissipate
the heat required for continued combustion.

Diffusion flames do not propagate like premixed flames. Their position is
fixed at the interface between fuel and oxidizer. For this reason, the speed
of the flame is not a relevant quantity for analyzing the behavior of diffusion
flames. Instead, the defining variable is the mixture fraction between fuel
and oxidizer. The flame is generally strongest where the mixture fraction is
near stoichiometry, i.e., where fuel and oxidizer are mixed in such a ratio
that both are consumed completely by the reaction. Mixture fraction and
temperature are the dominating variables controlling a diffusion flame, which
is why simple combustion models are based on these two quantities.

Unlike for premixed flames, where it mainly influences the speed of the
reaction and can only quench the flame in extreme cases, diffusion flames
are very sensitive to flame stretch. A certain stretch is necessary to supply
fresh gases to the reaction zone and transport away combustion products that
would otherwise suffocate the flame. However, for high flame stretch heat
might be dissipated too quickly to sustain the reaction, leading to extinction.

42

3.1 Combustion

Because diffusion flames are much more sensitive to the flow conditions,
and combustion occurs over a wider range of fuel/oxidizer mixture fractions,
modeling and simulating diffusion flames is more challenging than premixed
flames.

3.1.2 Turbulent Flames

Although laminar flames are the basis for the study of combustion, most indus-
trial combustion applications are turbulent in nature. This makes turbulent
combustion an important area of research. Unfortunately, it is also a partic-
ularly challenging one. Turbulent flow itself is still not well understood by
the scientific community, and understanding and modeling complex chemical
reactions still poses a significant challenge. In turbulent combustion, both of
these phenomena are combined and interact with each other, which makes
understanding even more difficult.

Turbulent flow is a chaotic and essentially statistical process. It occurs
when the inertial force of the flow is dominant over the damping effect caused
by the fluid’s viscosity. This happens at higher fluid velocities, where small
imperfections lead to disturbances that are not immediately absorbed by
viscous effects.

Turbulent flow is characterized by a mixture of eddies of different sizes and
energies. The sizes of eddies in a flow range from the integral length scale,
that is roughly equivalent to the size of the domain the flow resides in, to
the Kolmogorov length scale, that describes the smallest eddies in the system.
The energy in a turbulent flow passes along the turbulent spectrum from the
largest length scales to the smallest ones. Large eddies spin off smaller eddies,
which spin off even smaller eddies and so on until the energy is dissipated as
heat at the Kolmogorov scale. This is why turbulent flow will decay over time
if it is not continuously supplied with energy.

The interaction between flow and chemistry in a turbulent flame is a two-
way street. The reaction transforms and heats the gas, changing its density
and viscosity and thereby influencing the flow. On the other hand turbulent
flow transports and mixes the gases, thereby influencing the conditions for
combustion.

The effect of turbulence on the flame depends on the size and strength of
the eddies comprising the flow. Large eddies move slowly and only wrinkle
the surface in large scales. This only has an indirect effect on the structure of
the flame and the chemical reactions, but influences the global flame shape.
Smaller eddies are faster and might disturb the structure of the flame locally.
This might have the effect of destroying a clean flame front and causing local
extinction, or it might enhance local mixing and improve the conditions for
combustion. If the eddies are too small, they might be dissipated before they

43

3 Introduction to Turbulent Combustion

Figure 3.6: Example of a turbulent non-premixed flame: The burner of a hot air
balloon.

are able to influence the reaction significantly. Which scales interact with the
flame in which way is also dependent on the speed at which the chemical
reaction happens, the flame thickness, and in the case of premixed combustion,
the flame speed. Building accurate models for turbulent combustion requires
investigating the interplay of all these variables and more.

Turbulent Premixed Flames

In premixed flames, turbulence has the primary effect of enhancing combus-
tion. The turbulent flow wrinkles the flame surface and increases its surface
area. A higher surface area means that reaction happens at more places at
once. The global flame speed increases and fresh gases are consumed more
rapidly. However, at high turbulence intensities, the heat produced by the
reaction will be dissipated too quickly and the flame might be extinguished.

Due to the massive change in viscosity on the burnt gas side, the turbulence
intensity in premixed flames is typically much stronger in the cold fresh gases.
This difference is so significant that the flow on the burnt gas side may become
laminarized, depending on the initial turbulence intensity.

In practice, premixed combustion occurs for example in spark-ignited in-
ternal combustion engines. Here, air-fuel mixture is sucked into the cylinder,

44

3.2 Modeling and Simulation of Turbulent Combustion

compressed and then ignited. Starting from the ignition point, the flame front
travels through the cylinder, being wrinkled by the turbulent flow of the gas
and transforming fresh gases into hot combustion products.

Turbulent Diffusion Flames

The typical diffusion flame setup is the jet flame. A stream of fuel gas, often
turbulent, is injected into ambient air. Mixing between fuel and air is pro-
vided by the turbulent shear layer that arises from the difference in velocities
between the two gases. This leads to a reaction zone that is typically very thin
at the outlet and becomes thicker as more mixing occurs downstream, where a
substantial volume is occupied by combustion products. A practical example
for a diffusion jet flame is shown in Figure 3.6.

A central problem of turbulent diffusion flames is flame stabilization. Typi-
cally, combustion does not start directly after the fuel gas leaves the inlet, but
only after some mixing has occurred. This mixed gas then needs to be ignited
by the already-burning mixture further downstream. This lateral propagation
of the flame needs to happen at least at the same velocity as the flow, otherwise
the flame will be blown off. To make this process more stable, some setups use
small premixed pilot flames between fuel and air stream to provide a steady
source of heat.

If mixing occurs faster than combustion, or if the flame is locally extin-
guished due to high flame stretch, pockets of premixed gas can form that
are later ignited when coming into contact with high-temperature regions.
This means that parts of a diffusion flame might actually be in the premixed
regime. This highlights the complexity of diffusion flames compared to pre-
mixed flames. Due to the additional problem of mixing, diffusion flames are
much more sensitive to turbulence. Depending on their setup, many different
conditions and mechanisms can be in effect at the same time. This makes
non-premixed flames very challenging to model and simulate.

3.2 Modeling and Simulation of Turbulent Combustion

Simulations are used to make predictions about the behavior of a system.
In turbulent combustion and other engineering application they provide a
quick and relatively cheap way of testing setups compared to performing
experiments. A simulation is only useful if it is sufficiently accurate. This is
why good models of the underlying processes are so important. On the other
hand, simulations also need to be efficient. If running the simulation is more
expensive and time-consuming than setting up a comparable experiment, the
simulation loses its value.

45

3 Introduction to Turbulent Combustion

For turbulent combustion, finding a good trade-off between accuracy and
efficiency is very much an open problem. Both turbulent flow and chemical
reactions are complex to model and expensive to simulate on their own.
Solving both at once in a turbulent combustion simulation predictably leads
to a vast increase in the required computing time and resources. Frequently
simplifying assumptions are made to gain efficiency. Which assumptions
are valid under which circumstances is the central question when building
turbulent combustion models.

This section provides an overview of modeling strategies used in turbulent
combustion simulations. It places a particular focus on dns, as it is most
relevant for the content of this thesis.

3.2.1 Chemical Schemes

Modeling a chemical reaction can be a complex task. Most reactions do not
consist of a single step but rather a complex system of intermediate reactions.
Many of these reactions can be reversible and their reaction rates depend on
the current composition and pressure or temperature of the gas. The more
complex the fuel, the more intermediate steps are possible and need to be
considered when modeling the reaction. A system of intermediate steps that
models a whole reaction is called a chemical scheme (see, e.g., Table 3.1). Each
individual reaction step has a number of parameters controlling the reaction
rate in dependence on the current conditions.

Reaction modeling is the task of breaking down the wealth of possible
intermediate reactions into a subset that describes the whole reaction with suf-
ficient accuracy for a given application, and determining the right parameters
for each one. For complex hydrocarbon fuels the number of different species
considered can easily go into the hundreds, while thousands of intermediate
steps contribute to the reaction. Even for seemingly simple reactions, such
as hydrogen and oxygen to water, the reaction schemes can be surprisingly
complex. The scheme by Miller et al. [66] displayed in Table 3.1 has 9 species
and 19 different reversible reactions. Adding this to an already computa-
tionally intensive fluid dynamics simulation that only involves five different
variables (density, temperature and three velocity components) increases the
computational load immensely. This is amplified even more by the fact that
chemical reactions, especially the intermediate ones in a reaction scheme,
typically happen at much smaller time scales than the flow. This means that
compared to non-reacting flows, not only do the number of equations and
variables increase immensely, but the simulation time steps also become much
smaller.

There are some strategies to increase efficiency. The simplest one is to
use single-step chemistry. Here, the reaction is assumed to be infinitely fast

46

3.2 Modeling and Simulation of Turbulent Combustion

Table 3.1: Example scheme for a seemingly simple chemical reaction: hydrogen and
oxygen react to produce water [66]. M is a placeholder for any third molecule that is
needed to absorb and dissipate excess energy to stabilize the product.

Elements: H, O, N

Species: H2, O2, OH, O, H, H2O, HO2, H2O2, N2

Reactions:

H2 + O2 −−−⇀↽−−− 2OH 2OH −−−⇀↽−−−O + H2O

H2 + OH −−−⇀↽−−−H2O + H H2 + M −−−⇀↽−−− 2H + M

H + O2 −−−⇀↽−−−OH + O O2 + M −−−⇀↽−−− 2O + M

O + H2 −−−⇀↽−−−OH + H H + OH + M −−−⇀↽−−−H2O + M

H + O2 + M −−−⇀↽−−−HO2 + M HO2 + H −−−⇀↽−−−H2 + O2

H + 2O2 −−−⇀↽−−−HO2 + O2 2HO2 −−−⇀↽−−−H2O2 + O2

H + O2 + N2 −−−⇀↽−−−HO2 + N2 H2O2 + M −−−⇀↽−−− 2OH + M

OH + HO2 −−−⇀↽−−−H2O + O2 H2O2 + H −−−⇀↽−−−H2 + HO2

H + HO2 −−−⇀↽−−− 2OH H2O2 + OH −−−⇀↽−−−H2O + HO2

O + HO2 −−−⇀↽−−−O2 + OH

and the flame front to be infinitely thin. Fuel and oxidizer are immediately
transformed into products and heat once the conditions for combustion are
met. In this case, no intermediate reactions are considered, which greatly
decreases the number of variables and equations to solve and allows larger
time steps. Due to the strong assumptions made when using this method, the
results can be very inaccurate, but it can be useful to get a qualitative result.
More accurate but also more expensive methods precompute a lookup table
covering the relevant portion of the parameter space or reduce the parameter
space to lower-dimensional manifolds. Explaining these methods in detail is
out of the scope of this work.

Modeling chemical reactions is a complex field in its own right. Turbulent
combustion researchers mostly use existing chemical libraries and schemes in
their codes. Often, the trade-off between accuracy and efficiency has to lean
heavily towards efficiency to keep simulation times and memory usage in a
reasonable range.

3.2.2 The Flamelet Assumption

Moving from the modeling of reactions in an idealized uniform mixture to
turbulent flames, we need a model for the structure of the flame. The most
common assumption is that the flame front is thin compared to the scales of
the turbulent eddies. This means that the flame front can be approximated

47

3 Introduction to Turbulent Combustion

by an isosurface. In the case of premixed flames, it is an isosurface of the
combustion progress variable, which describes the progress of the reaction
from reactants to products as a number between 0 and 1. This variable is
commonly defined as (T − Tu)/(Tb − Tu), where Tu and Tb are the temperature
of the burnt and unburnt gases. In the case of diffusion flames, the flame front
is approximated by an isosurface of the fuel-oxidizer mixture fraction.

Assuming a thin flame front allows to treat the turbulent flame like a set of
locally laminar flames, so-called flamelets, that are wrinkled but not disturbed
by the flow. Orthogonal to the surface, the flame is assumed to behave like the
1d laminar equivalent. Models for laminar combustion can then be directly
used to determine the behavior of the flame at each location on the idealized
flame surface. This includes models for the relationship between flame speed,
flame stretch, flame thickness, reaction rates, heat release and so on.

The flamelet assumption is frequent in combustion modeling, as it greatly
simplifies the flame structure and limits the effects of turbulence on the
behavior of the flame that need to be considered. Of course, the conditions for
this assumption are not always fulfilled:

• Parts of the flame might be locally quenched. In the case of premixed
flames, this allows fresh gases to penetrate into the burnt gas side and
vice-versa, something that does not happen for laminar flames. In the
case of diffusion flames, this allows the formation of pockets of premixed
gas that are later ignited and do not confirm to the ideal diffusion flame
any more.

• The ideal flame front might be disturbed by small-scale mixing. In
this case, the flame structure can be very different than that of laminar
flames. The distinction between burnt/unburnt or fuel/oxidizer side
becomes less clear and the flame structure can no longer be adequately
described by a simple isosurface.

Due to the simpler flame structure and the smaller sensitivity to turbulence,
the flamelet assumption is more often valid for premixed than for diffusion
flames. More complex models that allow some interaction of turbulence with
the small-scale flame structure are subject of ongoing research.

3.2.3 High-Level Models: rans and les

Computational fluid dynamics (cfd) knows three main categories of models
for simulating turbulent flow. They are, in decreasing order of abstraction,
Reynolds-averaged Navier-Stokes (rans), large eddy simulation (les) and
direct numerical simulation (dns). For simulating turbulent combustion,
these are extended by combustion models according to their character. Part II
of this thesis focuses heavily on dns, which is discussed in detail in the next

48

3.2 Modeling and Simulation of Turbulent Combustion

Figure 3.7: Comparison of instantaneous temperature isosurfaces in a swirled com-
bustor when using rans and les. Image source: Poinsot and Veynante [65]

section. Since dns is one of the main tools for validating and building rans
and lesmodels, we will briefly discuss the ideas behind both here.

Reynolds-Averaged Navier-Stokes

Reynolds-averaged Navier-Stokes equations describe the time-averaged be-
havior of the system. It is based on the decomposition of a turbulent flow
into mean and fluctuating parts. The result are average values for all sim-
ulation variables at each location. Images of rans simulations show very
smooth fields that have almost no small-scale features (see e.g., Figure 3.7).
The typical rans equations assume a steady-state system, but the unsteady
rans (urans) variant can account for some unsteady behavior if it is slow
compared to the turbulent timescales.

Combustion models for rans can be based on quantities such as the mean
flame surface area per unit volume, turbulent mixing rates, or probability
density functions based on one-point statistics.

Since rans simulations only resolve time-averaged values, their results
have to be interpreted with care. Mean values reported by rans at a certain
location say nothing about the possibly large fluctuations that occur there.
However, rans is the most popular and widespread method for simulating
turbulent combustion because of its low computational cost.

Large Eddy Simulations

A step up from rans in terms of accuracy and computational cost are les.
They reproduce unsteady, but low-pass filtered effects of the system. The

49

3 Introduction to Turbulent Combustion

simulation runs on a lower-resolution grid and only resolves the larger scales
explicitly. Small-scale sub-grid effects are modeled. les produce an unsteady,
but "blurry" representation of reality (see Figure 3.7).

Combustion models for les face the challenge that the flame front is gen-
erally much thinner than the grid resolution. Combustion phenomena that
control the evolution of the flame front happen almost exclusively at sub-grid
scales. les approaches deal with this by describing the flame front in terms of
some filtered variable that can be resolved on the grid. Some approaches arti-
ficially thicken the flame front, others assume the flame front as an isosurface
of some smooth variable. In any case, small-scale wrinkling of the flame front
cannot be resolved in les and needs to be expressed via models.

With the increase in computing performance in recent years, les has gained
popularity and is seeing more widespread use. However, les of turbulent
combustion is still maturing, and accurate sub-grid models for combustion
are the subject of ongoing research.

3.2.4 Direct Numerical Simulations

The most accurate and detailed numerical results in cfd are produced by dns.
In these simulations, all time and length scales are resolved on a regular grid.
On this grid, the Navier-Stokes equations are solved directly without using
a model for turbulence. This produces an accurate representation of reality,
which is why dns is also often referred to as a “numerical experiment”.

Its brute-force approach means that dns is conceptually relatively simple
compared to rans and les, but it is the most demanding of the three in terms
of computational resources and time. As a consequence, dns are typically
used only for small domains of a few centimeters at most. Although methods
for more complex setups and geometries are under active development, the
typical case is a rectangular box with simple boundary conditions. This is why
non-reacting dns has typically been used to study turbulent flows near walls,
between parallel plates or behind simple rectangular geometries.

Like for rans and les, the choice of a chemistry model for dns is largely
dependent on the available computing resources and performance demands.
If we apply the ideal of solving everything without high-level models, then the
logical choice would be using complex chemistry with full chemical schemes.
Unfortunately, this is rarely feasible. Even adding single-step chemistry to
a non-reacting dns can result in a hundred-fold increase in computing time
due to the smaller time steps and grid sizes required. Using complex chemical
schemes only amplifies this problem. For complex fuels, the only choice for
getting results in a reasonable time frame is therefore to make a massive trade
of accuracy in favor of performance. Even then, turbulent combustion dns of
non-trivial cases can only be run on large supercomputers using thousands of

50

3.2 Modeling and Simulation of Turbulent Combustion

Figure 3.8: Direct volume rendering of the mixture fraction in a dns of a turbulent
non-premixed flame.

parallel cores. See S3D [67, 68] and DINO [69] for two modern dns codes.
Despite the large computational cost and restriction to simple case setups,
dns is an important tool for combustion modeling. It provides high-resolution
3d unsteady data for all variables, which is still impossible to obtain via
experiments. This data allows an in-depth analysis of the behavior of turbulent
flames that can be leveraged to build, validate and improve higher-level
models.
dns is used mainly for two purposes: Gaining data to validate and fine-

tune rans and les models, and gaining a deeper understanding of turbu-
lence/chemistry interactions to derive new models. A wide variety of analysis
approaches are applied to these effects. These range from very simple valida-
tion by looking at aggregated quantities to the investigation of complex effects
such as the different mechanisms for re-ignition of locally extinguished parts
of the flame. Providing an exhaustive discussion would go beyond the scope
of this chapter, but we will take a look at some examples to get an idea of the
kind of properties that are investigated.

The simplest forms of analysis are applied for the validation of rans and
lesmodels. Here, the same case is simulated once using rans or les, and once
using dns. Validation can happen at a high level by comparing aggregated
quantities such as the average or maximum temperatures, or on a lower level
by comparing point-wise quantities or statistics. In this case it is important
to take into account the differences in representation between dns and the
higher-level models. In the case of rans, dns results have to be temporally
averaged in order to be meaningfully comparable. For les, the dns data needs
to be low-pass filtered before comparison.

More complex analysis is needed when checking the validity of basic as-
sumptions underlying the high-level models, such as the flamelet assumption.
In the case of rans, this can be done by computing different kinds of statistics,
depending on the combustion model used. Simple point statistics can be
computed without regard for the flame structure. If the flame front is thin,

51

3 Introduction to Turbulent Combustion

flamelets may be extracted as profiles orthogonal to an isosurface representing
the flame surface, or along trajectories of the temperature or mixture fraction
gradient. Statistics may also be derived from ensembles of iso-levels of char-
acteristic variables such as temperature or mixture fraction. The result are
distributions as a function of this variable. Finally, space-averaged statistics
might be used to determine quantities such as the average amount of flame
surface area per unit volume.

Other quantities that are often investigated due to their significance in
combustion modeling are the flame speed (if applicable), thickness, surface
stretch and curvature. The relationship of all of these quantities with the
structure of the flame is still not completely understood. This is why dns
results are frequently compared to laminar flames as a baseline. For example,
Sankaran et al. [70] analyzed the flame thickness and curvature in a premixed
jet flame statistically and compared the results to a laminar flame. Hawkes
and Chen [71] investigated the statistical similarity of methane-air flames in
the “thin reaction zones” regime, which uses slightly weaker assumptions than
the flamelet regime, to strained laminar flames. The approach presented in
Chapter 4 facilitates such studies by providing a representation of a premixed
flame from which such statistics can readily be computed, as well as enhancing
it by an additional possibility of visual analysis.

A promising area of current research is concerned with the mechanisms of
local extinction and re-ignition and the effect of unsteady, non-instantaneous
effects on the flame. These are especially interesting for diffusion flames,
as they are more sensitive to turbulence and local extinction has a major
significance for the applicability of flamelet models. Many works in this area
use Lagrangian approaches to study the temporal behavior of flame elements.

Yeung et al. [72] tracked ensembles of points attached to material- and
flame surfaces in premixed and diffusion flames. They recorded the histo-
ries of strain rates acting on these surface points to determine under what
circumstances a flame surface remains close to an initially coincident mate-
rial surface. Statistics extracted from the ensemble of surface points allowed
them to determine in what way the flame surface grows or shrinks over time
and how the strain experienced by a flame surface element affects the flame
dynamics.

Sripakagorn et al. [73] tracked points attached to an isosurface of the mix-
ture fraction over time to detect and classify local extinction and re-ignition
events. They showed that extinction happens primarily if the flame surface is
subject to large amounts of strain over a certain time period. They also iden-
tified three different mechanisms for re-ignition of previously extinguished
parts of the flame.

Scholtissek et al. [74] tracked complete flamelets represented as trajectories
of the mixture fraction gradient emanating from points on the mixture fraction

52

3.3 Visualization for Turbulent Combustion Simulations

isosurface. They analyzed the histories of these flamelets and derived a
new flamelet model that accounts for curvature-induced tangential transport
between adjacent flamelets.

Such Lagrangian approaches are becoming more prevalent in the combus-
tion community. They provide an important tool for the derivation of new
combustion models that incorporate unsteady effects. Chapter 5 of this thesis
presents an approach for tracking the complete flame surface that is intended
to support such investigations in large-scale dns.

3.3 Visualization for Turbulent Combustion Simulations

Apart from the mostly statistical forms of analysis that have been traditionally
employed by turbulent combustion researchers, visualization has become
an important tool for gaining understanding from simulation data. Simple
visualization techniques such as slicing, isosurface rendering and scatter
plots are routinely used by combustion researchers to gain an overview of
the data. Special techniques for visualization-supported analysis have been
developed to answer more complex research questions. They are essential
for understanding the increasingly complex phenomena incorporated into
modern rans and lesmodels.

As the computing power of supercomputers is steadily increasing, so is the
size and complexity of problems simulated with dns. Storage and network
infrastructure are developing at a much slower pace. This has brought us to a
situation where the bottleneck in the simulation pipeline has shifted from the
cpu to the hard disk. A single snapshot of a 3d turbulent combustion dns
run occupies tens to hundreds of gigabytes. With thousands of time steps per
simulation the raw data produced by a single simulation can easily reach into
the tera- or even petabytes.

The problem with this is twofold. First, most supercomputers today simply
do not have the hard disk space to store more than a couple of simulation
runs completely. Second, writing the raw data to disk after each iteration
slows down the simulation by an order of magnitude or more. As a result,
researchers often store only a few snapshots with large temporal gaps in
between. This approach limits the analysis of the data to instantaneous
quantities. Unsteady effects become almost impossible to observe and rare
events such as local flame extinction are frequently missed.

In recent years, in-situ approaches have been established as a way to over-
come this problem. The idea is to process the data in parallel to the simulation
while it is still in memory. Only the results of the visualization/analysis,
which are typically orders of magnitude smaller than the raw data, are then
stored to disk. Performing such in-situ processing is challenging because it

53

3 Introduction to Turbulent Combustion

requires a higher degree of technical sophistication and often comes with the
drawback of reduced interactivity. However, it can take advantage of all the
raw data available during the simulation and therefore enables a much more
detailed analysis.

This section gives an overview of the state of the art in visualization for
turbulent combustion simulations. We will start with simple and advanced
post-processing techniques and then go on to general purpose frameworks for
in-situ applications and in-situ approaches specialized to turbulent combus-
tion.

3.3.1 Post-Processing

The classic approach for gaining insight from simulation data is to store it
on a hard disk, possibly transfer it to a dedicated analysis workstation, and
then apply any visualization and analysis methods as a post-process. Often
basic visualization techniques are sufficient for most analysis tasks. However,
several methods that support specific questions in turbulent combustion
research have been developed.

Basic Visualization

Combustion researchers have always used simple visualization methods to
analyze their data. Plots of aggregated or point-wise variables over time, space,
or other variables give an idea about the state and behavior of the system.
Scatterplots reveal correlations and probability density functions that are the
basis for modeling turbulent combustion phenomena.

Every commercial and open source software package for scientific visual-
ization offers basic facilities to explore the three-dimensional structure of the
data. Color-mapping on cutting planes (slicing) and isosurface rendering are
among the most commonly used techniques for visualizing scalar and velocity
data. For example, the shape of the flame is represented by an isosurface of
the temperature or mixture fraction (see Figure 3.9). Isosurfaces or slices of
the velocity magnitude and vorticity are often used to get a rough idea about
the shape and turbulence level of the flow. Scientists sometimes use direct
volume rendering to show the full 3d data. This is particularly attractive as
it allows visualizing several variables at the same time by carefully choosing
transfer functions. If the detailed structure of the flow field is important, it is
often visualized with streamlines, although this is less useful for high levels
of turbulence.

Multiple simple techniques can be combined to build more powerful vi-
sualization pipelines. As an example, a combustion researcher might first
extract the isosurface of the stoichiometric mixture fraction as a representative

54

3.3 Visualization for Turbulent Combustion Simulations

Figure 3.9: Temperature isosurfaces of a premixed jet flame. Simulated with
DINO [69] and visualized using VisIt [75].

of the flame front. She then applies a temperature threshold to extract all
regions of the flame surface that are currently considered extinguished. In
these regions, she plots a histogram of the instantaneous strain rate of the
surface and compares it with a histogram of the same variable for the burning
regions of the flame, to investigate the statistical significance of the strain rate
for local extinction.

As the size of the raw data increases, visualization often has to be performed
on a supercomputer as well. Many supercomputing centers have clusters with
dedicated visualization nodes or entirely separate clusters for visualization.
Visualization software such as ParaView [76] and VisIt [75] have the capability
to run on supercomputing clusters and split the work of processing and
rendering datasets over many processes.

Special Methods for Turbulent Combustion

Basic visualization techniques can go a long way towards assisting researchers
in analyzing their simulation data. However, specialized methods are some-

55

3 Introduction to Turbulent Combustion

times needed if the research question is very complex or the computational
demands are high. Here we discuss some visualization and analysis tools that
were developed specifically for turbulent combustion applications.

Zistl et al. [77] developed a toolbox focused on the analysis of dns data. It
combines steps such as geometrical analysis of the flame surface and flame
structure, quantification of turbulent flow properties and turbulence/flame
interaction, and statistical analysis. This allows for a more streamlined process
when performing common research tasks on the data.

Another group of visualization tools focus on the identification and tracking
of volumetric features. Bremer et al. precompute a merge-tree representation
and an accompanying segmentation of volumetric [78, 79] and surface features
[80] defined by thresholding. This allows an interactive post-hoc exploration
of the threshold parameter space and resulting tracking graph representing
the evolution of features over time. Wang et al. [81] focuses on an efficient
parallel algorithm to identify and track volumetric features in a distributed
memory environment where features may span several processors. Schnorr et
al. [82] track cells in a space-filling topological segmentation defined by the
Morse-Smale decomposition of a scalar variable (see Section 2.1.2) by solving
two graph optimization problems. These cells, which are called dissipation
elements in combustion literature, carry significance in flamelet modeling.

As a first step towards analyzing unsteady features, some dns codes have
begun saving large amounts of Lagrangian particles (pathlines) and the ac-
companying time series of simulation variables in addition to snapshots of the
(Eulerian) state of the simulation. These pathlines allow the tracking of volu-
metric features even in snapshots with large temporal gaps, as shown by Sauer
et al. [83]. They can also be visualized by themselves, to get an idea about the
dynamic behavior of the system. Wei et al. [84] developed a technique that
combines a visualization of particles in physical space with a visualization in
the temperature – mixture fraction phase space. Trajectories are clustered in
phase space to identify different chemical behaviors, and the classes are then
displayed in physical space for a visual analysis (see Figure 3.10).

3.3.2 In-Situ Processing

With disk space and I/O speed being the bottleneck in today’s large-scale
simulations, in-situ approaches to visualization and analysis have gained
popularity through the last 15 years. Here, the visualization and analysis of the
data is performed in parallel or interleaved with the simulation, without first
writing it to a hard disk. This allows for the analysis of the complete simulation
output, rather than the infrequent snapshots that are used in post-processing
approaches. Ma gave an overview of the problems and opportunities inherent
in in-situ visualization [85].

56

3.3 Visualization for Turbulent Combustion Simulations

Figure 3.10: Hybrid visualization of particle trajectories in phase space (left) and
physical space (right) of an ethylene/air jet flame. Image source: Wei et al. [84].

A central complication of in-situ approaches is the loss of flexibility and
interactivity. Large simulations typically need to be submitted to a job queue
before they are started on a supercomputing cluster. This means that there
might be a significant waiting time before any results can be viewed. It is often
unreasonable to expect that an analyst is present to look at the data while
some interesting feature or behavior can be observed during the simulation.
Additionally, simulations can take several days or even weeks to complete.
This makes an exploratory analysis of the data very challenging. Many in-situ
approaches therefore have a batch processing character, where visualization
and analysis tasks are defined beforehand and are then carried out during the
simulation with little to no user input. The user then explores the significantly
smaller results, which ideally still contain all relevant information.

Another problem is performance. Since large simulations can already take
a very long time, researchers are reluctant to accept a significant increase in
computing time in return for visualization. The simulation data is distributed
across the nodes of the supercomputer to optimize the simulation time. This
is not necessarily an optimal distribution for visualization tasks. The result
can be a significant communication overhead, which is a major bottleneck in
supercomputing clusters. In-situ algorithms need to be carefully crafted to
find a good balance between communication overhead and efficiency gained
by data reorganization.

A lot of groundwork is being done to create the foundations for successful in-
situ processing. We will first give an overview of these technical contributions
and then present some examples for specific in-situ visualization techniques.

57

3 Introduction to Turbulent Combustion

Technical Foundations

In-situ processing is a complex task not only from a conceptual, but also from
a software engineering perspective. In-situ algorithms need to run on large
supercomputers in parallel or even on the same nodes as the simulations.
They need to somehow get the relevant data from the simulation and they
need to be efficient enough to not slow it down by an unreasonable amount.
Communication between computing nodes flows over relatively slow network
connections, requiring different parallel algorithms than for shared-memory
multi-core architectures. Additionally, computing nodes often do not have
dedicated graphics hardware, which makes software rendering a necessity.
All this requires a solid technical foundation of systems and algorithms that
facilitate the visualization and analysis tasks that eventually derive insight
from simulations.

The two most popular open source software packages for scientific visualiza-
tion, ParaView and VisIt, both include an extension for in-situ visualization.
In the case of ParaView, it is called Catalyst [86]. VisIt’s in-situ library is
LibSim [87]. Both require a certain amount of instrumentation of the sim-
ulation code to function. If a simulation code has been interfaced with the
visualization software, it communicates its data to parallel visualization server
processes that are launched together with the simulation and eventually to a
client that allows a similar interaction as if the data was loaded from a file. In
addition, the user can define non-interactive batch visualization tasks that are
executed regularly and produce images or data files.

Larsen et al. presented a simpler and more flexible system that only sup-
ports batch visualization with Strawman [88]. It is based on EAVL [89], a visu-
alization library that is designed fundamentally to run on massively parallel
architectures. Libraries with similar goals exist in DAX [90] and PISTON [91].
All three have merged their efforts into a single project: VTK-m [92]. The
goal is to develop a native visualization library for supercomputers and other
highly parallel architectures that can be a basis for scientific visualization
in a future with steadily growing data sizes and a growing need for in-situ
capabilities.

Many existing tools for in-situ processing require changes to the simulation
code in order to receive data from it. This can be an additional obstacle for the
adaption of these tools by simulation scientists. One possibility to reduce this
invasiveness is to link the visualization and analysis tasks to the I/O library
the simulation code uses to write out its data [93–95]. This unifies the tasks
of writing snapshots to disk, analyzing and visualizing them into the same
framework and effectively decouples them from the simulation itself. The
Freeprocessing system [96] takes an even less invasive approach. It places
itself between the I/O calls and the simulation code at library load time,

58

3.3 Visualization for Turbulent Combustion Simulations

requiring no changes to the simulation code at all.

Another focus of research has been dedicated to improving performance.
Researchers have tried sophisticated load-balancing algorithms to take ad-
vantage of unused resources during a simulation run for visualization and
analysis tasks [97]. A popular alternative to processing the data on the same
computing nodes as the simulation is to offload it onto a separately allocated
number of staging or processing nodes [98–103]. Using this approach, which
is often called in-transit processing, the simulation is only slowed down by
the time it takes to copy the data to the staging nodes, where processing can
happen in parallel to the next simulation step. Some work has also been done
to optimize existing parallel rendering algorithms for use on supercomputing
clusters [104–109].

In all of the works presented above, efficiency and convenience of in-situ
processing was the focus. The second major problem, namely the lack on
interactivity, has been addressed to a lesser extent. Maybe that is because it is
much harder to solve. The challenge is to enable an exploratory analysis of the
simulation data, i.e., with little to no prior knowledge of what one is looking
for. This stands in direct conflict with the goal of in-situ approaches to reduce
the amount of data that has to be stored to disk. In order to reduce the data,
one must know what is or is not important. A small number of works has
tried to address this issue.

One obvious possibility is to compress the data using some generic concept
of “importance” that is not dependent on a particular application. Lakshmi-
narasimhan et al. [110] developed such an algorithm whose core idea is to sort
the data before compression to take advantage of the special characteristics of
scientific data. With a compression ratio of about 1:7, this approach allows to
store a much larger amount of data while still retaining complete freedom for
an exploratory analysis of the data.

Another approach has been proposed by Kageyama and Yamada [111] and
Ahrens et al. [112]: Produce a database of visualizations that the user can
explore later. During the simulation, rendered images are produced for a range
of parameters of the same visualization. For example, isosurfaces of different
variables with different iso-levels are rendered from different camera angles
and stored into the database. The user can then select a set of parameters after
the fact, retrieve the best fitting image from the database, and even compose
multiple images into a combined visualization.

All these contributions address different issues that need to be solved for
in-situ processing to become successful. Since the field is still in its infancy,
no clear favorites have emerged yet and a definitive in-situ framework has yet
to be developed.

59

3 Introduction to Turbulent Combustion

Figure 3.11: Retroactive adjust-
ment of the transfer function in
direct volume renderings of a
turbulent jet flame. Left: orig-
inal transfer function. Mid-
dle: Opacity modulation. Right:
Opacity modulation and re-
colorization. Image source:
Tikhonova et al. [114].

Special Visualization and Analysis Methods

Although most work in the field of in-situ visualization has been done to
lay the groundwork for efficient basic visualization, there have been some
developments of more specialized in-situ methods. We will discuss some
examples here that are applicable to the field of turbulent combustion.

The first in-situ visualization methods focused on rendering images for
monitoring the simulation. Yu et al. [113] used their parallel direct volume
rendering and image compositing algorithm [104] to display scalar variables
in combustion simulations together with particles advected with the flow.
This gives an idea about the evolution of the simulation but does not allow
for quantitative analysis of the data. Tikhonova et al. [114] developed a more
flexible approach by rendering the data into an intermediate representation
that stores an attenuation function instead of color values. The transfer
function can then be changed after the fact, allowing for a certain degree
of interactivity (see Figure 3.11). This approach fits well with the image
databases discussed in the previous section [111, 112].

Moving on to more analytic approaches, several works have addressed the
extraction and tracking of volumetric features. Chen et al. [115] presented
an in-situ system for tracking volumetric features defined by thresholding.
Zhang et al. [116] used the distributed online clustering (doc) algorithm
[117] to identify and track features defined by clusters in state space during a
simulation run. This can for example be used to identify and track burning

60

3.3 Visualization for Turbulent Combustion Simulations

regions in combustion simulations. The IFDT framework [118] takes a more
flexible approach by letting a user interactively pick individual structures
to track. The system includes a machine learning component that learns to
identify the features picked by the user based on their visual properties. This
is intended to be more robust than detection based on thresholds which might
not be applicable over long time periods. Ye et al. [119] combined image-
based visualization with feature tracking by storing rendered depth maps
of multiple isosurfaces. These are later used to create visualizations and to
track features in image space based on their depth information. Chapter 5 of
this thesis presents an in-situ tracking algorithm for surfaces which explicitly
captures temporal correspondence and tangential movement of surface points.

The idea of precomputing an intermediate representation of the data in-situ
and then exploring it post-hoc has also been applied in some more special-
ized visualization systems. Landge et al. [120] adapted the computation of
segmented merge trees [78, 79] for in-situ applications. This allows for an in-
teractive exploration of the space of possible thresholds or iso-levels for scalar
variables. Ye et al. [121] proposed a system for exploring joint field/particle
datasets as are for example produced by some combustion dns codes. They
compute probability density functions (pdfs) to represent the field data, and
reorganize the particle data into a more efficient scheme. Researchers can
then explore the pdfs in a post-hoc tool and define queries to select matching
particle data. A space-saving representation for post-hoc analysis of premixed
combustion data is presented in Chapter 4 of this thesis, although not as an
in-situ algorithm.

61

II
Analysis and Visualization

of the Flame Surface
in Turbulent Combustion Simulations

4
Sparse Representation and Visualization for
Turbulent Premixed Flames

This chapter is based on the publication:
T. Oster, D. J. Lehmann, G. Fru, H. Theisel,
and D. Thévenin. “Sparse Representa-
tion and Visualization for Direct Numeri-
cal Simulation of Premixed Combustion”.
In: Computer Graphics Forum 33.3 (2014),
pp. 321–330

The development and validation of flamelet models is one of the central
applications of dns. As already mentioned in Section 3.2.2, the flamelet
assumption is one of the most important simplifications applied for

modeling turbulent combustion. It states that a turbulent flame behaves like a
collection of strained laminar flames (“flamelets”) located side-by-side on the
flame surface. This assumption is most often applicable to premixed flames
and essentially allows to treat the flame as a 2dmanifold.

The analysis of dns data in the context of flamelet modeling can have two
purposes: validation of existing flamelet models, or development of new
models. In both cases, it is necessary to extract flamelet data from the dns.
This is often done by sampling the simulation variables along lines orthogonal
to the flame surface (see, e.g., [77]). The single flamelets obtained from this
are then used for statistical analysis, for example to check model assumptions
or discover correlations that can be incorporated into new models.

In this chapter we propose a sparse representation for premixed flames that
explicitly encodes flamelets and readily supports flamelet-related analysis

65

4 Sparse Representation for Turbulent Premixed Flames

tasks. This representation is significantly smaller than storing the full DNS
data, which enables the analysis of a larger number of time steps per sim-
ulation run. We also propose a novel visualization based on this data that
augments traditional statistical analysis with a visual component. If necessary,
full scalar fields on the original grid can be reconstructed from the sparse
representation to retain full flexibility for post-processing.

In spirit, the approach we present is similar to existing works that propose
computing a smaller representation of the data that can later be used for
analysis. Lakshminarasimhan et al. presented the ISABELA compression
algorithm [110] and a tool for querying the compressed data [123]. Bremer
and Landge [78–80, 120] presented multiple works based on the computation
of segmented merge trees that facilitate a post-hoc exploration of thresholds
on scalar fields. Ye et al. [121] condensed high-resolution grid data into
block-wise probability density functions that can later be explored efficiently.

The rest of this chapter is organized as follows: We first introduce our ap-
proach for constructing a sparse representation of the flame in Section 4.1. We
then introduce our novel visualization techniques based on this representation
in Section 4.2. Section 4.3 describes the reconstruction of full scalar fields
and evaluates the compression ratio and reconstruction quality we achieve.
Finally, we provide a discussion and conclusion in Section 4.4.

4.1 A Sparse Representation for Premixed Flames

As mentioned before, a flamelet lives on 1d lines orthogonal to the flame sur-
face. If we extract the flame surface and store all flamelets as 1d profiles of the
simulation variables orthogonal to this surface, we have a full representation
of the flame front. Since the variation of the simulation variables is typically
small tangential to the surface, we can store a sparse selection of flamelets
and still represent the flame with adequate accuracy. This is the idea behind
our sparse representation for premixed flames.

The transformation of raw dns data into our sparse representation consists
of three steps:

1. Seed points on the flame surface.

2. Sample the simulation variables along lines orthogonal to the surface,
emanating from the seed points.

3. Approximate the resulting profiles by models, reducing each profile to a
set of model parameters.

We extract the flame surface as an isosurface and distribute seed points
on it using random sampling adaptive to the surface curvature. 1d profiles
are then extracted orthogonal to the flame surface. The profiles are centered

66

4.1 A Sparse Representation for Premixed Flames

on the surface points and have a limited length to include the maximum
flame thickness. In this way, only the data of the flame front is captured,
and the large, almost constant areas containing fresh gases and hot products
are discarded. We only store the profiles of variables related to chemistry,
namely the temperature, heat release and species mass fractions. We ignore
the velocity and pressure fields, as they do not exhibit the same structure as
the chemical variables and can not be accurately represented by 1d profiles in
the flame front only.

Variables are grouped into three classes: Reactants have high values outside
of the burnt region and low values inside, products are the opposite, and
intermediates occur near the flame surface between unburnt and burnt regions
but have low values on either side. This behavior can be modeled with
few degrees of freedom, reducing the amount of data even further. The
information that has to be stored in the sparse representation consists of the
locations and directions of the profile lines, the model parameters for each
variable and profile line, and the full flame surface mesh for visualization. We
now describe how the lines are seeded, how the profiles are extracted from
those lines, and how these profiles are then approximated by simple models.

4.1.1 Strategy for Seeding Profile Lines

Commonly, the flame surface in premixed combustion is defined as the 0.5-
isosurface of a combustion progress variable [65]. This variable varies between 0
and 1 and is defined as (T − Tu)/(Tb − Tu), where Tu and Tb are the temperature
of the burnt and unburnt gases. The choice of the iso-value is very robust
for premixed combustion in the flamelet regime. Our experiments show that
variations of ±0.1 lead to isosurfaces with Hausdorff distances less than 2 %
of the domain size.

We extract the isosurface using the Computational Geometry Algorithms
Library (cgal) [124]. This yields a mesh with approximately uniformly-
spaced vertices and edges of approximately the same length as the voxel
size in the original data. Anchor points pi for profile extraction are then
distributed on this surface. Since the mesh typically has a large number of
vertices, we select only some of them as seed points, using a rejection sampling
based on local surface curvature. We estimate the principal curvatures κ1 and
κ2 at each vertex (see, e.g., [125]). The curvatures are then transformed into a
seeding density by a logarithmic function:

ρ(κ1,κ2) =
1
q

ln
(
1 +

√
κ2

1 +κ2
2

)
. (4.1)

Here, q > 1 steers the seeding density. For each initial vertex, a uniformly
distributed random number r ∈ [0,1] is now generated, and the point is

67

4 Sparse Representation for Turbulent Premixed Flames

tp1

CO2

tp2

CO2

tp3

CO2

min

max

CO2

p1

p2

p3

Figure 4.1: Cross section scheme of the flame surface with seeded points p. Profiles
are sampled from profile lines p(t) (arrows) at different locations on the flame surface.
The minimum (), inflection () , and maximum () of the sigmoid shape are indicated
on the profiles.

selected if ρ < r. This results in few seed points in areas without curvature,
and all vertices being selected in areas where ρ > 1. Areas of higher curvature
get more seeds than less curved ones (see blue circles in Figure 4.1). Hence,
the storage size of the sparse representation depends on the surface shape
more than on the resolution of the data. Adjusting q changes the total number
of seed points and balances size vs. quality.

4.1.2 Extracting Profile Lines

Once the points pi are seeded, profiles of all variables are sampled at regular
intervals along lines pi(t) = pi + t ·ni , with ni being the unit surface normals
determined from the gradient of the scalar field (Figure 4.1). Due to the high
resolution and accuracy of dns data, trilinear interpolation is sufficient. The
length of the line is chosen empirically to cover the maximum flame thickness
occurring in the dataset. The resulting profiles are approximated by simple
models to further reduce the required storage space.

4.1.3 Model-Based Data Approximation

Although the main advantage of dns is its high precision due to the lack of
modeling assumptions, we use models to describe its outcome in a lower-

68

4.1 A Sparse Representation for Premixed Flames

dimensional form. These models are sufficient to facilitate the analysis of the
scalar fields we intend. Additionally, they reduce the space needed to store
the sparse representation.

Reactants, intermediates, and products each have very similar profiles that
can be locally approximated by simple models. Reactants and products tend to
exhibit profiles with a sigmoid shape, transitioning from a constant high/low
value in the unburnt region to a constant low/high value in the burnt region,
passing an inflection point in between. This behavior can be expressed by a
model based on a sigmoid function. Intermediate species have a maximum
near the flame surface, decreasing on both sides. They are approximated by a
model based on a Gaussian bell curve.

Small fluctuations that deviate from these models may occur but are not
relevant for the general shape. Greater deviations appear if a sample line
crosses the flame surface multiple times, which happens if multiple parts
of the flame front come close to each other. In such cases, the characteristic
behavior occurs multiple times across the profile. To handle this, the instance
closest to the anchor point is identified and isolated from the others.

Model for Reactants and Products

Sigmoid shapes are commonly expressed using the logistic function 1/(1+e−t),
which we extend with parameters γ , adjusting the slope at the inflection and
a, determining the limits of the function at positive/negative infinity:

s(t,a,γ) =
2a

1 + e(−2 γt
a)
− a . (4.2)

While this function can roughly approximate the profiles of reactants and
products, it has too few degrees of freedom to reproduce the different cur-
vatures of the profiles at both sides of the inflection point. For this reason,
we use two pieces of this function, joining smoothly at the inflection point
(Figure 4.2, top).

S(t,al , ar ,γ,xm, ym) =

s(t,al ,γ) + ym, if t ≤ xm
s(t,ar ,γ) + ym, if t > xm ,

(4.3)

where (xm, ym) is the location of the inflection point, γ is the slope at the
inflection and ym − al and ym + ar are the limits of the function approaching
negative and positive infinity.

Model for Intermediate Species

The profiles of intermediates resemble Gaussian bell curves. Since minimum
and maximum of these profiles can vary, it is necessary to extend the standard

69

4 Sparse Representation for Turbulent Premixed Flames

bell curve with additional parameters ym, the value at the maximum, and y,
the limit at infinity.

g(t,xm, ym,σ ,y) = (ym − y)e−
1
2 (t−xmσ)2

+ y . (4.4)

Since the profiles tend to have a steeper slope on the unburnt side and
some of them do not reach zero on the burnt side, a two-sided model is once
again needed to accurately capture this behavior. We join the two bell curves
smoothly at their maximum point, resulting in a model with six parameters:

G(t,xm, ym,σl , yl ,σr , yr) =

g(t,xm, ym,σl , yl), if t ≤ xm
g(t,xm, ym,σr , yr), if t > xm ,

(4.5)

where (xm, ym) is the location of the maximum, σl and σr determine the slope
of the left and right part of the function and yl and yr are the limits of the
function approaching negative and positive infinity (Figure 4.2, bottom).

Fitting the Models to the Profiles

We now approximate the profiles by fitting the models. For the sigmoid model,
we need the position, value and first derivative at the inflection point as well
as the minimum and maximum values of the profile on both sides of the flame
front. For the Gaussian model, the location and value of the maximum near
the flame front have to be known, as well as the minimum values yl and yr .
To robustly determine these feature points, we have to account for the two
types of deviations that may occur in the profiles as described above: small
fluctuations, and the profile entering and leaving the reaction zone multiple
times.

To eliminate small fluctuations, we filter the profiles with a Gaussian kernel
[126]. The kernel size depends on the size of the fluctuations but can be
chosen quite small. For the test data (see Section 4.3) we used a size of 6
voxels, which translates to σ = 1.

Extrema are found at zero-crossings of the first derivative of the filtered
profile. Because of the Gaussian filtering, the extrema might shift from
their original positions. We correct this by mapping extrema back to their
corresponding positions in the unfiltered profile. Each maximum of the
filtered profile is mapped back to the largest maximum of the unfiltered
profile within a radius of at most one filter kernel width. Minima of the
filtered profiles are mapped to their corresponding positions in the unfiltered
profiles using the same approach. During this mapping, we must ensure that
the order of extrema along the profile stays the same, and extrema to not
switch positions. For finding inflection points, we use the same approach but
on the second derivative.

70

4.1 A Sparse Representation for Premixed Flames

0
0

γ = S′(x = xm)

xm

ym

xl xr

ar

al

t

Model S(t)
Data V (t)

0
0

ym

xm

yl
xl

yr

xr

σl

σr

t

Model G(t)
Data V (t)

Figure 4.2: Sigmoid model (top) and Gaussian model (bottom) with examples of
models fitted to a profile.

Due to the possibility of crossing the flame surface multiple times (see p3
in Figure 4.1), we can find more feature points on the profile than we need for
our models. We have to identify the ones closest to the anchor point. For the
sigmoid model, this is the inflection nearest to the center of the profile. The
position and value of this point determine xm and ym of the sigmoid model,
while γ is determined by the first derivative at the inflection. The values of
the first minimum and maximum left and right of the inflection (depending
on the sign of γ) determine al and ar . The positions of these extrema, xl and
xr , are the boundaries of the portion of the profile that the model is fitted
to. The rest of the profile, possibly containing other crossings of the flame
surface, is not considered, as those other crossings are already captured by
other profile lines seeded there.

For the Gaussian model, the maximum nearest to the center determines xm
and ym, while the values of the closest minima to both sides determine xl and
xr , as well as yl and yr . Further extrema are ignored. For both models, if there
are no extrema on either side of xm, the values at the ends of the profiles are
chosen instead.

While the feature points on the profile already determine all parameters for
the sigmoid model, the values for σl and σr of the Gaussian model still have
to be found. We obtain an initial guess for σl/r by transforming the intervals
of the profile between xl and xm and between xm and xr into the interval
[0,1] and regarding them as halves of two symmetric pdfs. The variance of a
discrete random variable X with the pdf p(x) and expected value µ is given by:
Var(X) =

∫
p(x) · (x −µ)2 dx. Since for a normal distribution, the variance is σ2,

71

4 Sparse Representation for Turbulent Premixed Flames

we can directly use this equation on our transformed profiles. We then refine
this estimate with a simple optimization scheme such as Newton’s method to
find the optimal fit.

With this, the original data is now described by the flame surface mesh, the
pi and ni of the profile lines, and the model parameters for each profile line
and variable. For the sigmoid model, this is (ali , ari , γi , xmi , ymi , xli , xri) for
each profile line. For the Gaussian model, the parameters are (xmi , ymi , σli , yli ,
σri , yri , xli , xri). This comprises our sparse representation of the flame, with
the flame surface represented by the surface mesh and flamelets represented
by the profile lines orthogonal to the surface.

4.2 Construction and Visualization of Feature Surfaces

The flamelets extracted as profiles in the previous step can directly be used by
combustion researchers for statistical analysis of the whole flame front. We
will not go into detail about this here, as it is outside the scope of this work.
In this section, we present a novel visualization based on the feature points
extracted on the profiles that augments the statistical approach with a visual
analysis component.

The model parameters xl , xm and xr (see Figure 4.2) describe three classes
of feature points on the profiles: minimum (min), maximum (max) and inflec-
tion point (infl). These feature points span feature surfaces of the respective
variables that can have physical or chemical significance. For example, the
surfaces of maximum heat release or maximum concentration of a radical are
sometimes used as alternative definitions of the flame surface. The feature
surfaces of maximum and minimum temperature bound the flame front and
indicate the flame thickness. Investigating the shapes and local distances of
these surfaces gives insight into the local combustion process and how it is
affected by turbulent flow. We now describe the construction of those feature
surfaces and their visualization.

4.2.1 Feature Point Construction

The positions of the feature points on the profiles represent intersections with
corresponding feature surfaces in the original data. By shifting the anchor
points pi onto the intersections with a specific feature surface, we transform
them to a feature point set representing this surface (see Figure 4.3, left).
Considering a profile line pi(t) anchored on the flame surface S, the position
of a feature point pi(tf) with f ∈ {min,max, infl} is given by

pi(tf) = pi + tf ·ni .

72

4.2 Construction and Visualization of Feature Surfaces

S
Sf

ni

pi pi(tf i)
mj

M
Mf

n′j

pi

mj

m′j

Figure 4.3: Construction of feature points and feature mesh (simplified 2d represen-
tation). Left: Construction of feature points () by shifting anchor points () along
their normals. Right: Positions for the other mesh vertices on the feature mesh () are
obtained via diffusion of the known normals and shift values.

Here, tf is the shift value for the respective feature surface given by xl , xm or xr
of the corresponding profile. For example, the shift values tmax for the surface
of maximum heat release are obtained by the xm values of the heat release
profiles. Constructing these feature points is the first step in constructing a
feature surface, which we detail in the following section.

4.2.2 Feature Surface Construction

Remember that during the transformation to the sparse representation, an
isosurface meshM representing the flame surface S was extracted. The profile
lines were seeded at vertices of this mesh. For each vertex pi on the flame
surface mesh we therefore know the position of a point on the feature surface
Sf by the corresponding shift value tf i and the direction of the profile line
ni (Figure 4.3, left). The idea is to transform the flame surface mesh M into
a feature surface mesh Mf representing the feature surface. The simplest
way to implement this transformation would be to move the vertices mj

of M along the corresponding normal vectors nj to a related feature point,
given by the shift value tf j . Unfortunately, the values for tf and n are not
known everywhere on the mesh, but only at vertices where profile lines have
been seeded (see Section 4.1.1 and Figure 4.3). Thus, the first step of the
transformation is to approximate this information for the other vertices.

73

4 Sparse Representation for Turbulent Premixed Flames

We use a diffusion-driven approach to obtain directions n′j and shift values
t′f j for each mesh vertex from the original ni and tf i . For this, we fix the
original values at the vertices corresponding to points pi and diffuse them
over the rest of the mesh until convergence. Different diffusion methods can
be used to obtain results of varying smoothness. For simplicity, we use an
explicit weighted averaging scheme, iteratively replacing the values at each
vertex with the sum of its immediate neighbors, weighted with the neighbor’s
inverse distance. After this process has finished, we have directions and shift
values for each vertex mj to obtain approximated feature mesh vertices m′j
(gray dots in Figure 4.3, right). This process is a preprocessing step that has
to be performed only once before visualization and does not further impede
performance.

4.2.3 Feature Surface Visualization

With a method to construct feature surfaces from the sparse representation,
we can now visualize these surfaces in different ways. Domain experts want to
visually examine the feature surfaces, and investigate the differences between
feature surfaces of different variables or feature point classes. In the following,
we introduce our approach for enabling such an analysis task.

Pairwise Distance Visualization

Given two different feature surfaces, a comparative visualization must high-
light differences and similarities. In the context of flamelet analysis, the
differences between surfaces along the normal direction is most interesting.
We therefore propose a visualization to explore pairwise distances between
feature surfaces.

A visualization of distances between feature surfaces of two different vari-
ables V and W must allow for quickly identifying regions of small or large
distance, as well as the distances’ orientation. We achieve this by displaying
the local distance between two feature surfaces color-coded on the flame sur-
face mesh. This mesh serves as a neutral and common base for comparison,
which is related to both feature surfaces.

As mentioned, corresponding vertices mV
f and mW

f of two different feature
meshes can be obtained from the vertex m by shifting it by two different values
tVf and tWf along the local normal direction n′. Thus, the distance between the
vertices is simply the difference between the two shift values. This distance is
computed for each vertex and linearly mapped onto a color map.

We use a color map adapted to our application (see Figure 4.4, bottom right):
black for values near zero (the meshes intersect), red to yellow for growing

74

4.2 Construction and Visualization of Feature Surfaces

u1 = 1 u1 = 2.5 u1 = 4

color scale
tT

E
M

P
in

fl
vs

.t
H

E
A

T
R

m
ax

u2 = 0 u2 = 1 u2 = 2

morphing

tH
E

A
T

R
m

ax
vs

.t
H

2
O

2
m

ax

time step 1 time step 4 time step 8

time steps

tH
E

A
T

R
m

ax
vs

.t
H

2
O

2
m

ax
tT

E
M

P
in

fl
vs

.t
H

E
A

T
R

m
ax

tT
E

M
P

in
fl

vs
.t

O m
ax

−

0

+
distance

Figure 4.4: Parameters for the visual exploration of feature surfaces. We show dataset
Hydrogen. White circles highlight interesting features changing over time.

75

4 Sparse Representation for Turbulent Premixed Flames

positive distances (one mesh is outside of the other locally), and blue to cyan
for negative distances (the opposite applies).

We introduce parameter u1 as a scaling factor for adjusting the color contrast
and controlling how much of the data is mapped inside the displayed color
range and how much is clamped to the maximum/minimum color. This
enables a quick visual search for both extreme difference values (by choosing
a low value for u1), or an overview of areas with positive or negative difference
values (by choosing a high value for u1). The effect of varying parameter u1 is
shown in Figure 4.4 (top).

Feature Mesh Visualization

We use standard computer graphics techniques to render the feature surfaces.
The distance values are mapped to the mesh as vertex colors, and Phong
shading [127] is used to enhance the perception of surface curvature. Larger
specular highlights improve the curvature perception but obstruct the view
on the mesh color. We therefore let the user control the specular reflectance
factor to suit their needs.

To allow for the investigation of the feature meshes’ shapes, we provide a
user-controlled linear morphing between the flame surface mesh M and the
two chosen feature meshes MV

f and MW
f . A parameter u2 ∈ [0,2] steers the

morphing, showing the original flame surface M for u2 = 0, the first feature
surface MV

f for u2 = 1 and MW
f for u2 = 2 (see Figure 4.4, middle). The

morphing itself is trivial. Since the corresponding vertices between all the
meshes are known and their topology is identical, they just have to be linearly
translated as the value of u2 changes.

Finally, we enable the user to quickly slide through the different time
steps and investigate the temporal behavior of the feature surfaces and their
relations (see Figure 4.4, bottom). This allows for a quick interactive visual
analysis that would have been impossible to achieve on the original raw
simulation data, due to the large number and storage size of time steps.

4.2.4 Evaluation of Diffusion Quality

By computing the shift values tf only for some of the vertices of M, and
obtaining them at the other vertices by diffusion we introduce an error. We
quantify this error as the normalized absolute difference between a ground
truth and the values at each vertex after the diffusion process. The ground
truth is obtained by computing the model parameters tf for each vertex of

M as described in Section 4.1.3. The diffusion error eV ,fdiff for variable V and

76

4.2 Construction and Visualization of Feature Surfaces

100 101 102

0

0.05

0.1

0.15

6.7 36 240

q

eV
,f

d
iff

T
H2O2
OH
O

Figure 4.5: Diffusion error (median, max and min) for selected variables of data set
Hydrogen. Qualitative results for the values indicated by vertical lines are shown in
Figure 4.6.

q = 1 q = 6.7 q = 36 q = 240

Figure 4.6: Visual comparison of diffusion results for different seeding densities q.

feature f is defined as

e
V ,f
diff =

1

max(tVf)−min(tVf)

∑
mi∈M

∣∣∣∣tVf i − t′Vf i ∣∣∣∣ , (4.6)

where tVf i is the true shift value for variable V and feature f at vertex mi , t
′V
f i

is the corresponding value obtained by diffusion, and max(tVf) −min(tVf) is
the range of true shift values over all vertices. We computed this error metric
for all variables and time steps of data set Hydrogen, using different seeding
densities q. We show the results in Figures 4.5 and 4.6.

77

4 Sparse Representation for Turbulent Premixed Flames

4.3 Reconstructing Full Scalar Fields

If desired, the scalar fields on the original grid can be reconstructed from the
sparse representation by interpolation. We sample the fitted models in regular
intervals between the respective xl and xr of each line and variable. We then
apply standard interpolation methods to this set of points to reconstruct the
data on the original grid.

We compared two local interpolation methods for scattered data. The first
method is a k approximate nearest neighbors (kann) [128] interpolation
scheme that weighs the values of the k approximate nearest neighbors using
Shepard’s inverse distance weights [129]. The second interpolation method
first generates a tetrahedral mesh from the data points using a Delaunay
triangulation. The values inside the mesh cells are then linearly interpolated.
This always produces a continuous solution if there are no degenerate mesh
cells.

Interpolation methods providing higher smoothness exist. However, these
are more computationally expensive and it is not guaranteed that they produce
results closer to the original data than the simpler methods.

We evaluated the accuracy of the sparse representation on single time steps
of three data sets. Each time step of data sets Syngas I and Syngas II has 2003

voxels and 13 variables each. Syngas III has 1003 voxels and 3 variables. All
data sets are from dns computations of turbulent premixed spherical syngas
flames. Syngas I contains a flame with strong wrinkles. Syngas II has a flame
with smaller wrinkles. Syngas III contains a flame that has been torn into
smaller parts by turbulence.

First, we investigate the error from approximating the original data by our
models. We computed the average root mean square (rms) error between the
original data of the profiles and the fitted models. The data values in the
range xli and xri on each profile line are considered. We used normalized rms
errors eVfit in order to make the variables V comparable:

eVfit =
1

n · (max(V)−min(V))

n∑
i=1

√√
1

xri − xli
∑

{j |xli≤xji≤xri }

(
P Vij −uVij

)2
. (4.7)

Here, uVij is the value of the fitted model corresponding to the original profile

value P Vij , while {j |xli ≤ xji ≤ xri} are the indices of all points on the profile
between xli and xri . We computed this error for all possible profile lines in all
data sets. As Figure 4.7 shows, the errors are quite low, ranging from 0.1 % to
6.3 % of the respective variable’s range.

For investigating the overall error after reconstruction, we computed the
reduction ratio c for different q and compared it to the deviation from the

78

4.3 Reconstructing Full Scalar Fields

O
H O
2 O

H
O

2

H
C

O

H
2

O
2

H
2

O H
2 H

C
O

2

C
O

C
H

2
O T

0

0.02

0.04

0.06

0.08

eV fi
t

Syngas I
Syngas II
Syngas III

Figure 4.7: Mean rms fitting error for all variables. Note that not all data sets contain
the same variables.

original data after reconstruction. The reduction ratio is defined as the stor-
age space needed for the original data divided by the space needed by the
sparse representation. We used a normalized error metric to compute the
reconstruction quality:

eVreconst =
1

|H | · (max(V)−min(V))

∫
x∈H
|R(x)−V (x)| dx , (4.8)

where V is the original scalar field, R is the reconstructed data,H is the convex
hull of all points used to reconstruct the data, and |H | is the volume of H. The
range of values of variable V is described by max(V)−min(V).

We compared the results of linear and kann interpolation for reconstruc-
tion. Our experiments show that for the kann interpolation a combination of
five nearest neighbors weighted with a Shepard weighting function using an
exponent of 20 gave the lowest errors. Therefore, we illustrate the results for
these parameters only. We also compared our results to the error introduced
by naively downsampling the data to the same storage size needed by the
sparse representation. This is currently still the most common way of reducing
the size of dns data. For comparison with a dedicated compression algorithm,
we used the well-established 3d set partitioning in hierarchical trees (spiht)
algorithm [130] implemented in the QccPack library [131] on our data.

Figure 4.8 shows the reduction ratio c vs. the reconstruction error eVreconst for
all tested methods for selected variables. Please note that for Syngas II, higher
reduction ratios are achieved than for Syngas I, due to the flame in the former
being relatively smaller. We also show qualitative results of the reconstruction
in Figure 4.9. For small reduction ratios, the downsampling approach per-
forms better, because it does not introduce errors due to model assumptions.

79

4 Sparse Representation for Turbulent Premixed Flames

101 102 103
CO2

H

O

eV re
co
ns

t
Syngas Ilinear interp.

kann interp.
downsampling
3d-spiht

0

0.015

0.03

0.045

0.06

0.075

102 103
CO2

H

OeV re
co
ns

t

Syngas II

0

0.015

0.03

0.045

0.06

0.075

102 103
HCO

H2O2

CO2

c

eV re
co
ns

t

Syngas III

0

0.015

0.03

0.045

0.06

0.075

Figure 4.8: Error vs. reduction ratio for selected variables. The plots corresponding
to each variable are shifted by a constant increment. The horizontal lines signify the
zero-levels of the respective plots.

80

4.3 Reconstructing Full Scalar Fields

original max

min

Syngas II: H

linear interpolation kann interpolation downsampling

eHreconst eHreconst eHreconst

original

Syngas I: O2

q = 1, c = 7.6 q = 11.5, c = 49

q = 23.3, c = 101 q = 58, c = 253 q = 240, c = 1037

Figure 4.9: Top: Comparison of reconstruction results for H of Syngas II with q = 36
(ca. 2500 profile lines, c = 321). Bottom: Reconstruction results for O2 of Syngas I
using linear interpolation with different sample densities (detail view).

81

4 Sparse Representation for Turbulent Premixed Flames

100 101 102
100

101

102

q

t[
m
in
]

101

102

103

c

Figure 4.10: Reduction ratio c and computation time t for different seeding densities
q. Plot shows mean () and standard deviation () over eight time steps of data set
Hydrogen and values for the synthetic data set () .

For higher reduction ratios, which are needed in practice, our sparse repre-
sentation always performs significantly better. It is also apparent that linear
interpolation performs better than kann in almost all cases. As a dedicated
compression algorithm, 3d-spiht naturally achieves better reconstruction
quality than our approach. It is however necessary to decompress the data
back to its full size before any analysis can be carried out, while our sparse
representation can directly be used for flamelet analysis and visualization of
feature surfaces without prior reconstruction.

To further illustrate the data reduction performance of our approach, we
tested it on eight time steps of the data set Hydrogen. This data set is from
a turbulent premixed spherical hydrogen flame and has a resolution of 4003

voxels and 11 variables. This is a typical size for our cooperation partner. One
time step amounts to about 5 GB of data. The whole simulation has tens of
thousands of time steps. Even storing a fraction of them quickly results in
terabytes of data. We selected eight time steps from a late (most complex)
stage of the simulation. Choosing q = 5, which retains good accuracy for
reconstruction, we reduced them to about 30 MB each. This means only 0.6 %
of the original storage space is required.

For a scalability test, we generated a synthetic data set with 9003 voxels
and 11 variables. This is a typical size for a modern large-scale dns run. We
created noise based on an isotropic turbulence frequency spectrum [132]. This
noise was added to a low frequency component to emulate larger flame struc-
tures with smaller surface perturbations. Thresholding produces a surface on
which average profiles of the different variables were superimposed. Domain
experts confirmed the similarity of the result to real simulations, making it
suitable for scalability tests.

82

4.4 Discussion

Since each profile line has to be processed separately, the run time of the
algorithm is approximately linear in the number of seed points, and thus
depends indirectly on the flame surface area and structure. Figure 4.10 shows
run times and compression ratios for the synthetic data set and Hydrogen.
Data set size and flame surface area of the synthetic data set are one order of
magnitude higher than that of Hydrogen. This results in a run time which is
also one order of magnitude higher, confirming the scalability of our approach.

4.4 Discussion

We introduced a sparse representation for dns data of premixed combustion
that is tailored to flamelet-related analysis tasks. The sparse representation
enables storing the simulation results with far smaller space requirements.
The space requirement is mainly dependent on the complexity of the flame
shape, not on the size or resolution of the data, i.e., the less complex the flame
shape, the less profile lines need to be seeded for an accurate representation.
Via fitting of models using feature points, the sparse representation directly
captures important characteristics of the scalar fields that can be analyzed
in different ways without the need for data reconstruction. Feature surfaces
derived from these models can directly be visualized and facilitate the visual
analysis of the data.

Apart from the feature surfaces, further characteristics might be extracted
from the sparse representation, such as gradient fields and their topology.
Note that our approach is specifically tailored to dns data, but can be used for
other kinds of multi-field data where changes are only located in narrow-band
regions.

Despite its many advantages, our approach has some limitations. Because
we assume combustion in the flamelet regime, our approach has limited ap-
plicability in scenarios where the flamelet assumption is not or only partially
fulfilled. However, there is still a large number of practical scenarios for
premixed combustion where the flamelet assumption is valid.

Our sparse representation does not capture pressure or velocity information,
as these do not only vary in narrow-band regions and they do not necessarily
conform to the models we use to approximate variable profiles. Many flamelet-
related analysis tasks can do without this data. If it is needed for flamelet
analysis, one could store the raw unmodeled data for these variables along
the profile lines. It would however not be possible to reconstruct this data on
the original grid with sufficient accuracy. As an alternative, these variables
could be stored in the original resolution. Since pressure and velocity only
represent a small fraction of the data in combustion simulations, this will still
result in a significant reduction in storage size.

83

4 Sparse Representation for Turbulent Premixed Flames

Our approach also has some technical limitations. Seldom outliers lead to
locally large distances between feature surface and flame surface, which is
visible as spots in the visualization. These are however rare and indicate areas
of unusual behavior on the flame surface, which also provides meaningful
information. Finally, relying on a random process to seed the profile lines
might produce insufficient numbers of samples in some regions. This might
be avoided by using a deterministic seeding approach and is left for future
work.

Four experts in combustion dns examined our approach, two of which were
also partly involved in its development. They stated that the extraction of
feature surfaces especially for variables that have a maximum near the flame
surface is a welcome addition to their set of analysis tools. Such surfaces
are of particular interest in the comparison of combustion processes between
laminar and turbulent flows. Established practice is to approximate them by
isosurfaces of other variables, which were assumed to be close to the desired
feature surface based on the conditions in laminar flow. The possibility of
directly comparing feature surfaces with our approach opens new possibilities
in the investigation of the effects of turbulence on combustion.

Another application proposed by the experts is the comparison of experi-
mental and simulation research. In experiments, the flame surface is often
determined by easily measurable quantities, while more precise definitions
are used in simulation research. Our feature surfaces enable comparison of
these definitions and deriving models to make experiments and simulations
more comparable.

This comparison of different flame surface definitions is also important
when comparing different simulations. Since there is no universally agreed-
upon definition of the flame surface, different researchers often use different
definitions, which could be quantitatively compared with our method.

The sparse data representation, apart from much-needed space savings,
opens possibilities of statistical analysis of the relations of feature surfaces,
which could be used to improve combustion models for rans or lesmethods.

Our approach is currently implemented as a post-processing step. By
transforming the original data into the sparse representation, disk space usage
is reduced considerably. At the same time, the data is also brought into
a form better suited for flamelet analysis and feature surface visualization.
The implementation of the approach as an in-situ process brings additional
technical problems to be solved. One of these problems is tracking the flame
surface over time, such that the correspondence between flamelets at different
time steps can be maintained. An approach to this surface tracking problem
is presented in the next chapter.

84

5
In-Situ Tracking of the Flame Surface

This chapter is based on the publication:
T. Oster, A. Abdelsamie, M. Motejat, T. Ger-
rits, C. Rössl, D. Thévenin, and H. Theisel.
“On-The-Fly Tracking of Flame Surfaces
for the Visual Analysis of Combustion Pro-
cesses”. In: Computer Graphics Forum 37.6
(2018), pp. 358–369

Unsteady effects and their incorporation into turbulent combustion
models are still an area of active research in the combustion community.
In order to observe and analyze such effects, researchers need access to

data with high temporal resolution. Storing raw dns data in this resolution is
only practical for very short time intervals. To observe behavior that stretches
over longer time spans, or whose occurrence cannot be easily predicted, in-situ
processing becomes an absolute necessity.

The flame surface is central to many combustion models and -studies.
Quantities such as surface speed, -stretch, -curvature, -area and their relation
to the structure and behavior of the flame are frequently discussed in the
literature. In order to observe the detailed unsteady behavior of the flame
surface, we need an algorithm to track it during the simulation. This chapter
presents an approach for such an in-situ surface tracking. Our goal is to
capture the shape of the surface, the history of individual surface points, and
the local tangential deformation of the surface over extended periods of time.
This also allows studies of the history of single surface points over extended
time periods, such as described by Yeung et al. [72] and Sripakagorn et al. [73],
to be extended to the complete flame surface. Additionally, we extend the

85

5 In-Situ Tracking of the Flame Surface

notion of instantaneous surface stretch (such as described by Poinsot and
Veynante [65]) to the tangential deformation of the surface over arbitrary time
intervals.

Our algorithm must overcome the following challenges:

1. The massively parallel simulation, distributes its domain across a large
number of processes. The surface tracking must be similarly paralleliz-
able.

2. Performing analysis in-situ during a simulation means that at any point
in time only data for the current time step is available in memory and
there is no way of going back in time to retrieve previous information.

3. The surface is expected to undergo significant deformation over time,
making an adaptive refinement and coarsening necessary.

4. The tangential deformation must be reconstructed for areas of the sur-
face that have been refined and/or coarsened multiple times over an
arbitrary time interval.

Item 1 precludes the use of a mesh or space partition data structure with
neighborhood information, as the global nature of operations in such a struc-
ture is not well suited for a massively parallel algorithm. Instead, we represent
the surface as a number of independent micro-patches consisting of a central
point and four ghost particles measuring the local surface deformation. This
is described in Section 5.3.1. Items 2 and 3 mean that we need to refine the
micro-patches adaptively before they are significantly distorted. We therefore
introduce a way of monitoring the distortion of a patch and split it before the
distortion becomes too large in Section 5.3.2. This method of tracking and
refining a surface without explicit neighbor information is a major contribu-
tion of this work. Based on the behavior of the micro-patches over time, we
introduce the computation of the tangential deformation gradient (Item 4) for
arbitrary time intervals in Section 5.3.3.

5.1 Related Work

The evolution of simulation variables on the path of single points on the flame
surface has been used in multiple works in combustion literature [72–74].
In these works only a relatively small number of points on the surface are
tracked and they do not consider the relative tangential movement of points.
Stretching of a flow restricted to a surface has been investigated similarly to
our approach by Garth et al. [134].

Tracking different kinds of features has been the subject of numerous works
in the field of flow visualization. A lot of research deals with tracking volumet-
ric features over time [83, 118, 135–138], while some methods focus on point-

86

5.2 Mathematical Basis

[139, 140] or line-type features [80]. Most of these methods are designed
for datasets that fit into the main memory of a consumer-grade computer,
although some are explicitly designed to work in distributed-memory settings
[81].

Surface extraction and tracking is another large field of research. In the
context of this work, particle-based isosurface extraction methods, like the
one proposed by Crossno et al. [141], as well as methods for tracking evolving
surfaces over time [142–144] are relevant. Of particular interest for our
application is the work by Camp et al. [145], which deals with stream surface
integration in a distributed-memory environment.

To the best of our knowledge, there is no existing approach that solves the
problem of tracking a time surface in a large distributed-memory simulation
while maintaining temporal correspondence between surface points.

5.2 Mathematical Basis

In this section, we give a brief introduction into the mathematical basis of the
problems we want to solve. First, we derive the equation for the movement of
the flame surface over time. Then, we introduce the tangential deformation
gradient, which describes the distortion an infinitesimally small section of the
surface experiences in a certain time interval.

5.2.1 Tracking the Flame Surface

We view the flame surface as an implicit surface s(x, t) = Γ . This scalar function
is transported by the fluid velocity v(x, t) and influenced by diffusion and
chemical reaction processes. A point x with velocity u tracking the surface has
a zero Lagrangian derivative, i.e., the value of s at the point does not change
over time. Therefore

Ds
Dt

=
∂s
∂t

+∇s ·u = 0.

This constrains the component of u that is normal to the surface. The tangen-
tial component of u is constrained by the fluid velocity through

‖u− v‖2→min.

Combining both constraints using Lagrange multipliers, the solution for the
velocity of a point on the implicit surface is given by

u = v−
∂s
∂t +∇s · v
‖∇s‖2 ∇s . (5.1)

87

5 In-Situ Tracking of the Flame Surface

In combustion literature, this equation is expressed as

u = v + sd n ,

with sd =
∂s
∂t

1
‖∇s‖ +

∇s
‖∇s‖v and n = − ∇s‖∇s‖ .

(5.2)

Here, sd is the speed of flame propagation normal to the surface and relative
to the fluid velocity and n is the unit surface normal.

5.2.2 Tangential Deformation of an Implicit Surface in a Flow

In the previous section, we showed how a point on the surface moves over
time. We now derive the tangential deformation gradient, which encodes the
relative linear movement of surface points in an infinitesimal neighborhood.

We consider the starting position of a point on the surface at some time t0.
W.l.o.g. we assume that this point is at the origin 0. Let χ(x, t) be the mapping
function that maps a point x at t0 to its position at time t > t0 after moving
with the surface. W.l.o.g. we assume that χ(0, t) = 0. The spatial deformation
gradient F = ∇χ, which encodes the behavior of a point x in an infinitesimally
small neighborhood around 0, can then be expressed as

Fx = χ(x, t) for x→ 0 .

We are only interested in the tangential part of this deformation, i.e., the
behavior in a tangential coordinate system that moves and rotates with the
surface. In order to isolate the tangential component, we first need to eliminate
this rotation. A (right) polar decomposition F = UP separates the rotational
part U from the rest of the deformation. The tangential component is now
obtained by projecting P = UT F into the local tangent space at time t0. Let B
be a matrix with orthonormal basis vectors of this tangent space as its columns.
Then the tangential deformation gradient F̂ is

F̂ = BT UT FB . (5.3)

Note that B ∈R3×2; and thus F̂ ∈R2×2. See Figure 5.1 for a visual interpretation
of this transformation. F̂ now encodes the linear behavior of a point x̂ in an
infinitesimally small neighborhood around 0̂ in tangent space:

F̂ · x̂ = BTχ(Bx̂, t) for x̂→ 0̂ .

88

5.3 Discretization

n

F

U ·n

UT

n

BT©B

Figure 5.1: Extracting the tangential component of the deformation gradient. A local
neighborhood is transformed by the deformation gradient F. In the process, the
local coordinate system is rotated by U, which must be reverted before isolating the
tangential component of F by multiplying with the tangential basis B from both sides.

5.3 Discretization

Our objective is an algorithm for tracking the flame surface in-situ during
a simulation run. It must produce the paths of single points on the surface
over time, as well as the tangential deformation of the surface for arbitrary
time intervals. Additionally, the algorithm needs to be highly parallelizable
in order to work well in the environment of a massively parallel simulation.

A naive approach might be performing an isosurface extraction in each
time step of the simulation. However, subsequent isosurfaces do not contain
information about surface point correspondence between time steps. This
correspondence is necessary if we want to provide point paths and compute
the surface deformation.

Alternatively, one could advect the vertices of an explicit surface mesh,
adaptively remeshing it as the surface deforms over time. Due to the global
nature of such remeshing operations, this is infeasible in a massively parallel
environment, where irregular communication between neighboring processors
is known to be a major source of bottlenecks.

We therefore choose to represent the surface as a cloud of micro-patches
consisting of a central point and four ghost particles (see Figure 5.2, left). The
ghost particles sample the shape and deformation of the micro-patch in the
local neighborhood around the central point. Each group of points is tracked
completely independently. We monitor the deviation of the ghost particles
from the tangent plane at the central point and the deviation of their relative
movement from linear behavior. Once this deviation exceeds a user-defined
threshold, we split the patch into three independent new patches to ensure

89

5 In-Situ Tracking of the Flame Surface

n

x x1

x2

x3

x4

time

x1

x2

x3

x4

n

x

Figure 5.2: Ghost particles () are initialized in an orthogonal configuration around
the central point () in the tangent plane. While integrating the points over time, they
deviate from a planar, linear behavior. The difference between the real positions and
the nearest linear configuration () in the tangent plane is measured by the normal
error e⊥ () and the tangential error eq ().

sufficient sampling. To avoid oversampling, we merge patches when they
become too small, e.g., because the surface flattens over time or tangential
movement bunches up many patches in a small area. The tangential surface
deformation is then reconstructed from the relative behavior of the points in
a group between split/merge events.

5.3.1 Micro-Patches for Surface Tracking

A micro-patch is represented by a group of five points: A center and four
ghost particles. On initialization, the points are arranged in an orthogonal
cross shape in the tangent plane defined by the surface normal n at the central
point x (see Figure 5.2). In this way, they sample the shape and deformation
in all directions as they follow the surface over time.

We describe the configuration (e.g., the state excluding the absolute position)
of a micro-patch at time t as a matrix C(t) ∈ R3×5 consisting of the surface
normal n(t) at the central point as well as the relative positions of the ghost
particles xi(t), i ∈ {1, ...,4}.

C(t) =
(
n(t) x1(t)− x(t) · · · x4(t)− x(t)

)
. (5.4)

In the following, we omit the dependence of C, n, and xi on the time t and we
assume that x = 0 wherever the meaning is clear from context.

For the initial configuration at some time t0, C can be exactly represented
by a unit base configuration C0 being transformed by a linear transformation
T, i.e.,

C(t0) = TC0 , with C0 =
(
e3 e1 −e1 e2 −e2

)
,

where ei are the unit vectors in the i-th coordinate direction. As the points
track the surface over time, their relative position will change. Their relation

90

5.3 Discretization

to C0 might no longer be linear. Now, T is the linear transformation that best
approximates the mapping between C0 and C, i.e., the solution to the least
squares problem

e2 =
∥∥∥CT

0 TT −CT
∥∥∥2

F
→min.

Here, ‖·‖F denotes the Frobenius norm.
The residual error e measures the deviation of the real mapping between C0

and C from linear behavior. However, its scale is dependent on the size of the
micro-patch, i.e., the magnitude of the last four columns of C, and it weights
those columns differently from the normal in the first column. To get a more
meaningful error, we normalize these columns by their average magnitude
and obtain a modified transformation Tn and error en by

e2
n =

∥∥∥CT
0 TT

n −CT
n

∥∥∥2
F
→min,

with Cn =
(
n x1/c · · · x4/c

)
and c =

1
4

4∑
i

‖xi‖ .
(5.5)

We separate this error into normal and tangential components

e⊥ =
∥∥∥nnT(Tn C0 −Cn)

∥∥∥
F

(5.6)

eq =
∥∥∥(I−nnT)(Tn C0 −Cn)

∥∥∥
F

. (5.7)

e⊥ is a measure for the deviation of the ghost particles xi from the tangent
plane. As such, it measures the local surface curvature in relation to the patch
size. eq measures how much the tangential deformation of the ghost particles
deviates from linear behavior. As the micro-patch changes over time, we
use these errors to decide when to split or merge patches to ensure sufficient
sampling of the surface geometry and tangential deformation.

5.3.2 Splitting and Merging Surface Patches

We split a micro-patch into three new patches when one of the following
occurs:

• The error e⊥ exceeds a threshold r⊥
• The error eq exceeds a threshold rq

• The major axis exceeds a threshold rsize

The first two are to ensure a sufficient sampling, the third is to ensure a max-
imum patch size even on flat parts of the surface. In a parallel distributed
simulation, the size of a patch is limited by the size of the block of the simula-
tion domain it is contained in.

91

5 In-Situ Tracking of the Flame Surface

When splitting a micro-patch, we need to decide the positions of the points
forming the new patches. In this context, it helps to think of the micro-patch
as an ellipse being defined by the positions of the ghost particles around the
central point. On initialization, the ghost particles are always placed along
the principal axes of the ellipse. When the patch is transformed over time, the
principal axes will generally not stay aligned with the ghost particles. The
major and minor axes of the current configuration can be reconstructed from
the tangential component T̂ of T, which is obtained similar to (5.3):

T̂ = (e1 e2)T UT T (e1 e2) , (5.8)

where UT is the rotation obtained from the polar decomposition T = UP. The
directions and extents of the principal axes of the micro-patch are encoded in
the singular value decomposition

T̂ = V̂ Σ̂ŴT .

The singular values σ1,2 on the diagonal of Σ̂ are the extents of the ellipse,
while the rows of V̂ are the directions of the major and minor axis in tangent
space. The directions in 3d space are the columns of U (e1 e2)V̂T.

When splitting the micro-patch, we want the new patches to cover the
whole area captured by the old patch without overlapping, to prevent over-
or undersampling as patches are split multiple times. We also want to leave
the central point in place, so we can track its path for as long as possible.
Consequently, we split the patch along its major axis into three identical new
ones (see Figure 5.3). The points of the new patches are again arranged in an
orthogonal cross shape with the axes parallel to the axes of the old patch. The
length of the new first axis is exactly 1/3 of the length of the old major axis.
The new second axis is as long as the old minor axis. The new points are then
projected onto the surface along the normal at the central point. From this
point on, they are treated independently again.

The new central patch continues tracking the behavior of the neighborhood
around the same point as the old patch. We therefore consider it to be the
same entity, but with its ghost particles reset to a more numerically stable
configuration. In contrast, we consider the new outer patches to be entirely
new entities. Consequently, if we say that a patch has been split or merged
multiple times, we mean that it has been the central patch in a number of
these operations.

We consider a micro-patch for merging when

• both errors e⊥ and eq decrease below lower thresholds l⊥ and lq, respec-
tively.

• the minor axis decreases below a threshold lsize.

92

5.3 Discretization

split merge

Figure 5.3: Splitting and merging micro-patches. Left: An old micro-patch () is
split up along its major axis () into three new identical patches (). Right: An
old micro-patch () is extended to three times its size along its minor axis ().
Neighboring patches () that were split off from the central one at some earlier
time are deleted instead.

Because the micro-patches are completely independent, we cannot explicitly
merge multiple patches. We therefore give every patch a counter, which is
set to 0 when it is first initialized. When a patch is split, the counter of the
central patch is incremented while the new outer patches get a counter of 0.
When the conditions for a merge are met, the behavior of a patch depends
on its counter. If the counter is 0, the patch is simply deleted. Otherwise,
the counter is decremented and the patch is extended by a factor of 3 along
its minor axis. Assuming the behavior of neighboring patches is similar, this
effectively means that the new extended patch now covers the area of the
neighboring patches, which were deleted. This assumption does not generally
hold for all parts of the surface. We therefore typically choose l⊥, lq, and lsize
to be very small. In this case, points will only be deleted in areas of extreme
tangential compression, where removing very small patches will only result in
small errors, and in areas of very simple deformation, where the assumption
is unlikely to be violated.

The central point of the extended patch stays in place, while the ghost
particles are again placed along the principal axes of the old patch, but with
the minor axis extended. In this way, we ensure that the surface is not over-
sampled where it is not necessary and that no infeasibly small patches are
tracked, e.g., in areas of compressive tangential behavior. Patches that were
originally initialized at the start of the simulation are never deleted, in order
to prevent holes from forming. Since the surface at the start of a simulation is
generally very simple and can be represented by a relatively small number of
patches, this is not an issue in practice.

93

5 In-Situ Tracking of the Flame Surface

5.3.3 Reconstructing Tangential Surface Deformation

Let F̂ tets be the tangential deformation gradient for a time interval [ts, te] at the
central point x(te). To reconstruct it we need the corresponding deformation
gradient F tets , which describes the relative change in position of points in a
small neighborhood between times ts and te. The behavior of the ghost parti-
cles of a micro-patch over time contains exactly this information. However,
because all ghost particles are located on the surface, they do not contain
information about the behavior of F in normal direction. Fortunately, we only
need the change in orientation of the surface normal to reconstruct F̂, as any
other information is discarded when projecting into the tangent plane. It is
therefore sufficient to determine a proxy transformation E tets , which maps the
micro-patch configuration C(ts) to C(te), and reconstruct F̂ via

F̂ tets = BT UT E tets B , (5.9)

with B the basis vectors of the tangent plane at ts and U the rotation matrix
from the polar decomposition of E.

Let us first assume the micro-patch was not split or merged in the time
interval, i.e., its ghost particles were not reset. Because the real mapping
between C(ts) and C(te) will generally not be linear, E tets is the solution to a
least squares problem very similar to (5.5). To make the solution independent
of the scale of the micro-patch, we scale the last four columns of both C(ts)
and C(te) by the average norm of these columns in C(te). The system for
reconstructing E tets is then∥∥∥∥CT

n(ts)E tets
T −CT

n(te)
∥∥∥∥2

F
→min, (5.10)

with Cn(ts) and Cn(te) being the configurations with their last columns scaled.
If the ghost particles were reset one or more times during the time interval,

E tets is the concatenation of multiple transformations:

E tets = E tetn E tntn−1
· · · E t2t1 E t1ts , (5.11)

where ti are the discrete times between ts and te when the ghost particles
were reset in the course of a split or merge operation. Each sub-interval
transformation is reconstructed from the new configuration of the micro-
patch just after a split/merge and the old configuration just before the next
one (see Figure 5.4).

If we want to compute the tangential deformation a micro-patch at time te
has experienced since the start time ts, it is possible that this patch has not
existed for the complete time interval, i.e., it was created at some time tk > ts

94

5.4 Implementation

E t1
ts

E te
tn

E te
ts
= E te

tn
· · · · ·E t1

ts

Figure 5.4: Reconstructing the deformation for an arbitrary time interval by concate-
nating the deformations between split and merge events of the patch.

during a split operation. In this case, we estimate the transformation between
ts and tk from its parent patch by weighting the contributions of each ghost
particle differently depending on their distance from the center of the new
patch. The details of this algorithm are presented in Appendix A. With this,
we can reconstruct the tangential deformation gradient of any micro-patch
for an arbitrary time interval.

5.3.4 Initialization

At the start of the simulation, the initial surface has to be seeded with patches.
Most simulations start with a very simple surface, such as a plane or sphere,
for which this operation is trivial. If the starting surface is more complex, any
existing isosurface meshing algorithm that produces near-equilateral triangles
can be used, with patches initialized to cover the area of the 1-ring of each
vertex. When initializing the micro-patches, care has to be taken not to leave
any holes, which might grow larger over time if the surface expands. We
ensure this by overlapping the initial patches, which will increase the number
of necessary patches by a constant factor, but is easy to implement. More
elaborate approaches which avoid covering the surface with more than one
layer of patches are conceivable.

5.4 Implementation

Our algorithm is implemented as an extension to the DINO direct numerical
simulation code [69]. The simulation domain is a rectangular box which is
distributed to multiple processors by a block decomposition along two of its
three axes (pencil decomposition). This unusual decomposition is required
because of the pressure solver, which operates in Fourier space and needs the

95

5 In-Situ Tracking of the Flame Surface

complete domain in memory in one dimension. The communication between
the processors uses MPI [146].

Each tracked point gets a unique ID at its creation. In each process, all
points located in its domain block, as well as all points in a halo region around
the block, are kept in memory. This halo region is large enough to contain
all ghost particles of any patch whose central point is inside the processor’s
block.

After each simulation step, the fluid velocity v and derivatives of the scalar
variable s defining the flame surface are interpolated from the simulation grid
at all surface points to compute their velocity u. Because each simulation
block only holds data for the grid cells inside its boundaries, the values for
the points in the halo region have to be obtained by communicating with
all neighbor processes. The points are then advanced by one simulation
time step. For additional stability, we then perform a few steps of a Newton
scheme to move them back onto the isosurface we are tracking. As the surface
points move during the simulation, they will often migrate across processor
boundaries. This is automatically handled by our implementation as part of
the information exchange with neighboring processors when updating the
points in the halo region.

Since our algorithm is running in lockstep with the simulation, only data
for the current time step is available in memory at any time and the time
step is controlled by the simulation. This means that without generating
additional memory overhead, only first order schemes can be used to integrate
the surface velocity u. In our implementation, we therefore use an Euler
scheme to advance the positions of the points between simulation steps.

The simulation time step in dns is generally dominated by the chemistry
time scale, which is much smaller than the fluid velocity time scale. Since
the surface velocity typically follows the fluid velocity closely, and an Euler
scheme is adequate to track the flame surface almost everywhere, as points
move only a fraction of the size of a grid cell in each time step. Exceptions
to this rule only occur at very sharp creases in the surface, which can occur
when two parts of the surface fold into each other, possibly leading to changes
in topology. The high surface velocities occurring here can lead to points
migrating far away from the surface in a single time step. Since the surface
at these locations is contracting rapidly anyway, we simply delete any micro-
patches that end up further away from the surface than one half of their
previous advection step, provided the distance is at least 1/5 the size of a grid
cell. In our tests, this strategy did not impact the accuracy of the surface
tracking in any significant way.

Depending on the values of the errors e⊥ and eq, the micro-patches are now
split or merged and any patches that partially crossed a non-periodic outflow
boundary of the simulation domain are removed. At this point, control is

96

5.5 Results

given back to the simulation, which performs the next iteration.
The deformation gradients can either be computed in-situ or as a post-

processing step. In the first case, the time intervals for the deformation need
to be specified before the simulation starts. Each patch then remembers its
configuration C at the time it was last reset and the transformations E from
the start of each time interval up until this last reset time. In the second case,
the point positions and normals of all micro-patches are stored to disk for each
time step. The deformation gradients can then be reconstructed for arbitrary
time intervals, but at the cost of increased hard disk storage demand.

5.5 Results

We tested our algorithm on an analytic test function that is designed to re-
semble the behavior of a vortex, and on two real-world simulations. The
simulations were carried out on Phase 1 of the SuperMUC Petascale System
of the Leibnitz Supercomputing Centre in Garching, Germany. Each node of
the system has two 8-core Intel Xeon E5 processors with a clock frequency of
2.7 GHz and 32 GB of shared memory. The nodes are connected via Infiniband
FDR10.

In the following sections, we evaluate the accuracy of our method on the
analytic test function, and show our results for the two simulation cases.

5.5.1 Analytical Test Function

To evaluate the accuracy of the tangential deformation gradient obtained by
our method, we designed an analytic test function. It imitates the behavior
of a vortex in the shear layer between two gas streams. The test function s is
defined as

s(x,y,z, t) =

zcosA− (x − 1
2)sinA for

√
(x − 1

2)
2

+ z2 <
1
2

,

z else ,
(5.12)

with

A(x,y,z, t) = 2πt sin
(π

2

(
1 +
√

4x2 − 4x+ 4z2 + 1
))2

sin(πy)2 . (5.13)

The isosurface s = 0 coincides with the xy plane at t = 0. As t increases, the
surface is curled up around the center at (x,y,z) = (1/2,1/2,0). The underlying
velocity field of a vortex can not be easily expressed as an analytic function.
We therefore assume a fluid velocity of v = 0 for our tests.

We observe the function in the domain x ∈ [0,1], y ∈ [0,1], z ∈ [−1/2,1/2],
t ∈ [0,2] resolved on a 72×72×72 regular grid and a time step of ∆t = 5× 10−3.

97

5 In-Situ Tracking of the Flame Surface

rq = 0.01

N = 143.5k

rq = 0.02

N = 58.1k

rq = 0.05

N = 15.4k

rq = 0.1

N = 5k

100 101 102

c

Figure 5.5: The number of patches N and the stretch coefficient c of the tangential
deformation gradient F̂2

0 for the analytic test function, using r⊥ = 0.5 and varying
values for rq. Each micro-patch is represented by an ellipse scaled and aligned
according to its principal axes and orthogonal to its surface normal. The left half of
each image shows the ground truth. Note that c is displayed on a logarithmic color
scale.

98

5.5 Results

0.01 0.02 0.05 0.1

−40
−20

0

20

40

60

80

100

0

rq

E
rr
or

Figure 5.6: Box plot of error distributions for the analytical test function. We show the
minimum, lower quartile, median, upper quartile and maximum errors for different
values of rq. See Figure 5.5 for a visual comparison of the results. Please note that
this plot was erroneous in the original publication [133] and has been corrected here.

This means that in the investigated time span the vortex makes exactly two
full turns, resolved in 4000 time steps. This closely resembles the lifetime of a
vortex and temporal resolution observed in a real simulation setting.

The velocity u of the surface s = 0 can be expressed as an analytic function.
This enables us to obtain highly accurate ground truth data for the tangential
deformation gradient F̂. The largest singular value of F̂ signifies the largest
stretching in any tangential direction experienced by the local neighborhood
of a point on the surface, which we call the stretching coefficient c with

c = σmax(F̂) =
√
λmax(F̂T F̂) . (5.14)

This is similar to the measure used when computing the ftle for measuring
separation in flow fields [147]. The tangential deformation gradient also
contains the relative change in surface area a = det(F̂), which is equivalent to
the instantaneous surface stretch that is used in many combustion models,
integrated over time.

In all tests, we use a normal error threshold of r⊥ = 0.5, which is rather
coarse. By doing this, we limit its influence on the accuracy of the results for
the tangential deformation. We show the distribution of differences to the
ground truth solution for different tangential error thresholds rq in Figure 5.6.
For the sake of brevity, we only show the results for the complete interval
t ∈ [0,2], which will naturally show the largest errors.

As shown in Figures 5.5 and 5.6, the accuracy of our method is strongly
dependent on rq. For large values of rq, the resulting deformation does not

99

5 In-Situ Tracking of the Flame Surface

t = 1× 10−4 s
N = 50k

t = 1.7× 10−4 s
N = 140k

t = 2.4× 10−4 s
N = 400k

t = 3.1× 10−4 s
N = 870k

10−1 100 101

c

10−2 10−1 100 101 102

d

Figure 5.7: Results of our algorithm for the Premixed Flame case. We show the stretch
coefficient c and density factor d on logarithmic scales. We computed c for an interval
of ∆t = 1.7× 10−4 s and εq = 0.02. We also show the number of patches N in each time
step.

100

5.5 Results

t = 3× 10−5 s N = 160k

t = 4× 10−5 s N = 670k

t = 5× 10−5 s N = 3000k

10−2 10−1 100 101 102

c

10−3 10−2 10−1 100 101 102 103

d

Figure 5.8: Results of our algorithm for the Temporal Diffusion Jet case. We show
the stretch coefficient c and density factor d on logarithmic scales. We computed the
stretch coefficient since the start of the simulation using εq = 0.04. The number of
patches N is also shown for each time step.

101

5 In-Situ Tracking of the Flame Surface

only contain unreasonably large errors, but the surface also exhibits some
holes. Splitting too late means that there is potentially a lot of non-uniform
stretching across the patch that is not accounted for by the resulting child
patches. This shows that observing only the normal error e⊥ is not sufficient
to guarantee a good sampling of the surface, even if one is not interested in an
accurate result for the tangential deformation gradient. As the error threshold
decreases, the holes close and the stretching value approaches the ground
truth solution. For the lowest error threshold value rq = 0.01, the number of
patches at the end is still an order of magnitude smaller than the number of
grid cells the function is resolved in.

5.5.2 Premixed Flame in a Box

We applied our algorithm to the combustion of a premixed hydrogen-air
mixture in a periodic box resolved on a 512 × 512 × 512 regular grid. A
high-temperature hot spot is placed in the middle of the domain, which is
initialized with a flow field exhibiting isotropic turbulence. After the gas
mixture is ignited, a flame front travels through the domain, consuming
the fresh gas mixture and leaving burned products behind. As the flame
expands, it is deformed by the turbulent flow, which is in turn influenced
by the temperature and pressure changes induced by the chemical reaction.
The flame surface of a premixed flame is often defined as an isosurface of
the temperature between the unburnt and burnt gases, which is what we
track here. Simulations of this type are relevant in safety research, where the
influence of the turbulence intensity on the ignition probability of the flame
is studied.

The simulation ran for about 90 h using 1024 parallel processors and per-
forming about 21000 iterations. We chose r⊥ = 0.1 and rq = 0.02 as well as
l⊥ = lq = 10−4. The thresholds rsize and lsize were chosen such that a surface
patch is always smaller than the smallest extent of a block of the simulation
domain, and larger than 1/16 of the size of a grid cell.

Figure 5.7 shows the results of our algorithm for four snapshots of the sim-
ulation. The simulation starts with a spherical configuration represented by
about 9000 micro-patches. In the first shown time step, the surface has started
to expand and wrinkle from its initial configuration. At this point, the surface
is represented by about 50000 micro-patches. Up until the last time step at
t = 3.0× 10−4 s, the number of patches increases to about 870000. Despite
the change in surface area and complexity, we are able to accurately track
the surface without any neighbor information between micro-patches. We
obtain smooth results that show which regions of the surface have expanded
or contracted significantly.

We also show the density factor d. This number is a local approximation of

102

5.5 Results

the ratio of number of patches per surface area at a given time to the initial
seeding density. A high concentration of patches occurs in areas with high
surface curvature, as well as in areas where the surface deformation has a
large nonlinear component.

The ratio of the total surface area of all micro-patches to the true area of
the flame surface remains stable around 3.3 for the whole simulation. This
shows that our strategy for splitting and merging micro-patches is successful
in maintaining a consistent and stable coverage of the surface. The number of
splits performed per iteration fluctuates around 0.015 % of the total number
of micro-patches at all times. The number of merge events per iteration is
almost zero up until the time between the second and third snapshot shown in
Figure 5.7, at iteration 15000, where it starts to increase, stabilizing at around
half the number of splits.

5.5.3 Temporal Diffusion Jet Flame

The second simulation is a temporal diffusion syngas jet flame resolved on
a 1024× 1025× 512 regular grid. The domain is initialized with a turbulent
fuel layer in the center, surrounded by a quiescent air co-flow. The fuel layer
and co-flow move in opposite directions, resulting in strong shear forces that
form vortices where the two gases meet. The flame surface we track here is the
isosurface of the stoichiometric mixture fraction, which is the ratio between
fuel and oxidizer that theoretically results in perfect consumption of the fuel
with no excess of the oxidizer.

The simulation ran for about 23 h using 4096 parallel processors. In this
time, the simulation performed about 3600 iterations. For this case, we
chose r⊥ = 0.2 and rq = 0.04 as well as l⊥ = lq = 10−4. The thresholds are
chosen higher than in the premixed case, because here we are interested in
the deformation of the surface over a smaller time interval of 4× 10−5 s. The
thresholds rsize and lsize were chosen with the same method employed for the
premixed case.

We show our results for three different snapshots in Figure 5.8. The case
starts with a planar surface on both sides of the fuel jet, which is moving
from left to right in the images. It is initially seeded with about 50000 micro-
patches. This number stays almost constant for the first 2000 iterations, as
the surface wrinkles only a very small amount. After this, the surface starts
deforming rapidly. As a result, the number of micro-patches increases rapidly
up to about 3 million at the end of the simulation.

The surface deformation is characterized by lots of small fuel pockets
intruding into the opposing air flow. These pockets are round and smooth
towards the outside, while they form a lot of sharp angles towards the inside.
Both the significant expansion of surface area at the tip of these pockets as well

103

5 In-Situ Tracking of the Flame Surface

as the sharp angles towards the fuel side are handled well by our algorithm.
The density factor d seen on the right side shows that a high patch density
mainly occurs in the sharp creases between the pockets where the surface
contracts, while the expanding tips are represented with a lower number of
patches.

The ratio of the total area of all micro-patches to the true surface area
remains constant here as well, but on a slightly lower level of 3.15. The
number of splits is almost zero until the surface starts to deform significantly
around iteration 2000. At this point, it starts to increase from 0.002 % to about
0.003 % of the total number of micro-patches until the end of the simulation.
This number is much smaller than for the premixed case, because here, the
surface area does not change so dramatically over time. The number of merges
is initially much smaller than the number of splits, but increases steadily
throughout the simulation until it is at about 75 % towards the end. This is
due to the contracting behavior near the sharp angles in between fuel pockets,
which causes lots of small patches to accumulate in a small area.

5.5.4 Performance

Figure 5.9 shows the performance over the course of the simulation, as well
as the number of micro-patches existing at each time step. We conducted
multiple experiments with different choices for the subdivision threshold εq.
For the sake of brevity, we only discuss the results for the lowest choice of εq,
which causes the highest overhead in computing time and shows the most
accurate results.

At the start of the Premixed Flame case, our implementation causes an
overhead in computing time of about 300 ms per iteration, or about 3 % of the
base computing time. As the flame surface expands, the overhead gradually
increases, until it is at about 12.5 s or 130 % at the end of the simulation. For
the Temporal Diffusion Jet, the overhead starts out at about 1200 ms per
iteration, or about 10 % of the base computing time. It remains fairly constant
for the first 1500 iterations, as the surface does not change much during that
time. The surface then starts to wrinkle significantly, resulting in a sharp rise
of computing time, reaching up to 42 s, or about 350 % of the base time.

The overhead in computing time is proportional to the number of surface
patches. This means that it is also strongly dependent on the shape, area and
deformation of the flame surface, which will be different for each simulation
case. For the Premixed Flame case, our implementation generates an overhead
of about 30 h or 50 % for the whole simulation. The memory consumption
behaves very similarly, as it is also directly dependent on the number of
micro-patches. At the start of the simulation, we consume about 90 GB of
additional memory, which is an overhead of about 30 % for this simulation

104

5.5 Results

0 5 10 15 20 ×103

0

2

4

6

8

×105

Iterations

N

Premixed Flame

0

5

10

15

20

25

co
m
p
u
ti
ng

ti
m
e/
it
er
at
io
n
[s
] εq = 0.02

εq = 0.05
εq = 0.1
Base

0 1 2 3 ×103
0

1

2

3

×106

Iterations

N

Temporal Diffusion Jet

0

25

50

co
m
p
u
ti
ng

ti
m
e/
it
er
at
io
n
[s
] εq = 0.04

εq = 0.08
εq = 0.12
Base

Figure 5.9: Computing times per iteration for different subdivision thresholds εq. We
show the base computing time of the simulation without surface tracking () as well
as the total times with our method enabled (). The number N of micro-patches
over time is shown as context information (). The vertical lines mark the snapshots
shown in Figures 5.7 and 5.8.

105

5 In-Situ Tracking of the Flame Surface

case. This rises to about 400 GB at the end of the simulation, which represents
an overhead of about 130 %. The total overhead in computing time in the
Temporal Diffusion Jet case is 8.4 h or about 67 %. The additional memory
consumption here reaches from 800 GB to 1800 GB, or 44 % to 150 %.

If we were to implement our approach as a post-processing step, we would
need to store the raw simulation data to disk, possibly transfer it over a
network, and read it again for each time step. If we only store the simulation
variables that are directly needed for tracking the flame surface (flow velocity
and one scalar variable), we would already need 100 TB of storage space
for the whole Premixed Flame case, and 60 TB for the Temporal Diffusion
Jet case. This is more than is typically available for a user or project on a
current high performance computing cluster. Additionally, writing this data
to disk for every simulation time step alone would incur about 21 h of run
time on our computing cluster for the Premixed Flame case and about 13 h
for the Temporal Diffusion Jet case. If we write all simulation variables,
this increases to 420 TB (90 h) and 320 TB (70 h), respectively. Considering
that this is just part of the overhead inherent to a post-processing approach
makes it clear that an in-situ solution is the only way of obtaining results with
reasonable cost.

5.6 Discussion

Due to its nature as an algorithm designed for in-situ execution in a highly
parallel environment, our method has some inherent limitations. The most
significant problem arises from the exponential nature of stretch in a flow
field. If a constant flow field stretches a time surface by a factor of two in a
certain time interval, the surface will quadruple its area in double the time
and so on. As a consequence, errors in estimating this stretch will accumulate
exponentially over time.

Because we are operating in-situ and can not go back in time to fix errors
after the fact, we must split micro-patches early enough to limit the amount
of error accumulation we get. This is especially critical for keeping the surface
sufficiently covered in patches. Even a tiny hole left at some point in time
may eventually grow very large. Splitting micro-patches early to limit error
accumulation leads to very large numbers of patches over time. Therefore,
the error thresholds r⊥ and rq have to be carefully chosen, taking into account
the acceptable error for the maximum investigated time interval, and the
overhead in terms of memory consumption and computing time added to
the simulation. This is not a trivial task and requires some experience of the
user, and it is not clear how it could be simplified. However, the tangential
deformation will generally be investigated in statistics with other simulated

106

5.6 Discussion

quantities, where the error can be analyzed and taken into account. In future
work, we want to investigate a strategy for better controlling the number of
micro-patches over time. This could be handled by periodically merging or
redistributing patches on the surface. This is a global process that would pose
challenges for parallelization.

Because we track independent micro-patches, we do not produce a closed,
manifold mesh of the flame surface. This is due to our strict parallelization
requirements, which are not met by the global nature of subdivision and join
operations in meshes. Direct rendering of the data produced by our method
can be done via splatting of the micro-patches. If a closed mesh surface is
required, it can be reconstructed using any available meshing algorithm for
point clouds.

Because our algorithm only tracks micro-patches initialized on the start-
ing surface, it does not handle the case of new disconnected surface parts
appearing during the course of the simulation. This can be easily addressed
by periodically checking for new parts of the surface that are not yet covered,
and initializing new patches. For new surface parts streaming in from a non-
periodic boundary, a more sophisticated approach might be necessary, which
is a subject for future work.

If we wanted to measure the tangential deformation of the surface only at
single points, we could simply compute the product integral of the instanta-
neous Jacobian J(u) along the path of each point. This would not require the
tracking of ghost particles and would be cheaper in terms of communication
and memory overhead. However, our goal is to track the whole surface. By
measuring deformation based on the relative movement of multiple points,
we get the average of a finite part of the surface. This introduces a filtering
effect and better represents the behavior of the surface as a whole. More
importantly, we need the information gained from tracking a group of points
to compute the error measures eq and e⊥, which are based on the deviation
from linear behavior. Without this information, which is not included in J(u),
we could only use more inaccurate criteria for splitting and merging patches.
This would lead to larger errors in the measurement of deformation and larger
holes in the surface.

Our algorithm is the first to provide a viable way of tracking the whole
flame surface in-situ over the complete simulation time. This opens new
pathways to the investigation of flame behavior. Single snapshots, which are
still often the basis for the analysis of a simulation, do not show detailed
changes in surface shape over time, and the correspondence between points
on the surface in two different snapshots can not be reconstructed. Because we
explicitly track single points on the surface over extended periods of time, the
evolution of simulation variables at the point positions over time also becomes
easily observable. Obtaining this data for the complete flame surface enables

107

5 In-Situ Tracking of the Flame Surface

visual and statistical evaluation of direct numerical combustion simulations
on a new scale. Our novel method of measuring tangential deformation
provides combustion researchers with a new quantity to study the effects of
flame-turbulence interactions. This integration-based quantity is only made
possible by the in-situ nature of the algorithm. Accurate path line integration
is simply not possible as a post process, if the simulation data can only be
stored to disk in a massively reduced temporal or spatial resolution.

The overhead in memory and computing time caused by our method is
fairly large compared to existing in-situ visualization approaches, which are
generally designed to require only a small fraction of the computing time of
the simulation [85]. In this context, it is important to note that our approach
is not meant to be a visualization method only, and it is not meant to be a
general-purpose tool that is activated for every simulation. It is a specialized
analysis tool that can be used in situations where combustion researchers are
specifically interested in the detailed behavior of the flame surface over long
time periods.

Such tools are necessary when a detailed analysis of the low-level behavior
of the flame is required. For example, Scholtissek et al. [74] report a four-
fold increase in computing time for their gradient trajectory tracking, which
enabled them to develop a more accurate flamelet model. In this case, the anal-
ysis was employed in the context of a research project that required accurate
low-level information which can only be achieved with high computational
overhead. We expect our algorithm to be used in a similar context. It is of
particular interest for the building of combustion models and the investiga-
tion of local flame extinction and re-ignition mechanics. Existing combustion
literature, such as works by Sripakagorn et al. [73], observe the history of
temperature and heat release at single points on the surface that are tracked
over time. By providing such histories for a great number of points covering
the whole flame surface, we enable a statistical evaluation that could be the
basis for new models of unsteady flame behavior.

108

6
Conclusion

We have presented two approaches for the visualization and analysis
of different aspects of the flame front in turbulent combustion dns.
Both approaches are designed to deal with the huge amount of raw

data that has become the bottleneck of large-scale simulations.
The sparse representation for premixed flames presented in Chapter 4

focuses on the analysis of flamelets, i.e., the behavior orthogonal to the surface.
We sample the profiles of simulation variables at many locations distributed
over the surface and approximate them with simple models to get a space-
saving representation of the flame. This representation can directly be used
for flamelet-related analysis and visualization, or the full scalar fields can be
reconstructed for regular post-processing.

The flame surface tracking algorithm presented in Chapter 5 focuses on
the tangential behavior of the flame. We track the surface using independent
micro-patches that refine and coarsen without using any neighbor information.
This gives us a complete picture of the behavior of the surface over time,
particularly about the history and relative movement of points attached to
the surface. This information is crucial for understanding and modeling the
unsteady behavior of the flame.

109

6 Conclusion

Both approaches are contributions towards a visualization/analysis toolbox
for in-depth quantitative analysis of dns for the purpose of combustion
modeling. In contrast to the many important contributions towards fast
and effective general-purpose visualization for large-scale visualizations that
have been developed in recent years, these approaches represent a more
targeted class of visualization tools that may be afforded more computational
resources and time in order to answer specific research questions. More work
is necessary to continue bridging the gap between the two and develop a
range of tools from general to specific that support the full analysis process
of combustion researchers. An important area of research in this regard are
visualization techniques that support the analysis of unsteady behavior, such
as transport and mixing. The flame surface tracking algorithm we propose
belongs to this category. Compared to the numerous methods for visualizing
single snapshots of the data, these techniques are more challenging technically
and conceptually. As the frameworks for in-situ processing are improving
and taking care of some of the technical challenges, we will hopefully see
increased activity in this area.

110

III
Line Features in 3D Second-Order

Tensor Fields

7
The Parallel Eigenvectors Operator

This chapter is based on the publication:
T. Oster, C. Rössl, and H. Theisel. “The
Parallel Eigenvectors Operator”. In: In-
ternational Symposium on Vision, Modeling
and Visualization (VMV). The Eurograph-
ics Association, 2018

Feature extraction is one of the most successful types of techniques
for scientific visualization. When we talk about features, we mean
geometric structures where the data fulfills certain interesting criteria.

Chapter 2 introduced several generic features, such as ridges in scalar fields,
critical points and vortex core lines in vector fields, and degenerate structures
in tensor fields. Extracting and representing such features is an effective
approach to understanding even complex scientific datasets.

A number of line-type features for scalar- and vector fields can be expressed
in terms of a common operation: the pv operator [19]. This operator yields
all locations where two vector fields defined on the same domain are parallel.
It delivers structurally stable lines, i.e., stable under the influence of noise,
which we call pv lines. Depending on the concrete vector fields it is applied
to, the pv operator can be used to extract ridge and valley lines, extremum
lines, vortex core lines and separation- and attachment lines from scalar or
vector data.

Some of these features are originally defined as the locations where a vector
is parallel to an eigenvector of a tensor field. Such cases can be broken down
to an application of the regular pv operator. However, this is not possible

113

7 The Parallel Eigenvectors Operator

if a feature is defined by the locations where two tensor fields have parallel
eigenvectors.

In this chapter, we extend the concept of the pv operator to tensor fields.
We define the parallel eigenvectors (pev) operator on two (not necessarily
symmetric) 3d second-order tensor fields. Let S(x) and T(x) be two such
tensor fields. Then the pev operator yields all locations x where S and T have
parallel real eigenvectors. This can be concisely expressed as

PEV(S,T) = {x | ∃ e ∈R3, e ‖ S(x)e ‖ T(x)e∧ e , 0} . (7.1)

In this chapter, we establish this operator by . . .

• . . . studying its properties. In particular, we show that the pev operator
produces structurally stable line structures.

• . . . presenting a numerical algorithm to extract pev lines in piecewise
linear tensor fields. The main idea is to do a recursive search not only in
3d space but simultaneously in 3d space and the space of all possible
eigenvectors.

• . . . applying it to compare pairs of stress tensor fields defined on the
same domain.

At first glance, the extension of the pv operator to eigenvectors seems trivial:
given a tensor field, consider all eigenvector fields as vector fields and apply
the pv operator to them. However, this naive approach cannot give well-
defined and stable results for the following reasons:

• Undefined length and orientation of eigenvectors:
Eigenvectors of a matrix are not unique but span linear subspaces. To
express the field of eigenvectors as a vector field, heuristic choices about
the length and orientation of the vectors are necessary. Applying such
choices globally can not always give results that are free of discontinu-
ities

• Existence of multiple eigenvectors:
Regions with three real eigenvectors require a decision on which of them
to use for the pv operator – a decision that is particularly non-unique
in near-isotropic regions (i.e., where the difference between two real
eigenvalues is small).

• Discontinuities in eigenvectors:
A small change of a tensor does not necessarily result in a small change
of the eigenvectors. In fact, in near-isotropic regions, a small change of
the tensor may result in a large change of the eigenvector. Moreover, in
regions of transition between real and imaginary eigenvalues (i.e., in
neighborhoods containing both tensors with all real eigenvalues and

114

7.1 Related Work

ge
ne

ra
lt
en

so
rs

sy
m
m
et
ri
c
te
ns

or
s

Figure 7.1: pev lines in pairs of random linear tensor fields.

tensors with complex eigenvalues), a small change of the tensor can
result in a sudden appearance or disappearance of real eigenvectors.

All of these problems show that eigenvector fields are fundamentally different
from vector fields, for which the pv operator is designed. Extracting pev lines
requires new algorithms that are explicitly designed for tensor fields.

In the following, we first give an overview of related work. We then ex-
plore the theoretical properties of the pev operator in Section 7.2, before
detailing our algorithm for finding pev lines in piecewise linear tensor fields
in Section 7.3. In Section 7.4, we apply our algorithm to mechanical stress
tensor data. We close with a discussion and future work in Section 7.5 and
Section 7.6.

7.1 Related Work

The pev operator is related to the pv operator as well as tensor field visualiza-
tion in general. We have already given an overview of tensor field visualization
in Section 2.3, so we will focus on literature regarding the pv operator here.

115

7 The Parallel Eigenvectors Operator

The pv operator was introduced by Peikert and Roth [19] as a generalization
of a concept that had been used with slight variations in a lot of different
contexts. Among these are ridge detection in scalar fields [149], extraction of
attachment/separation lines in flows [150], and the identification of vortex
core lines [18, 151].

In his PhD thesis, Martin Roth [152] gives an overview of several numer-
ical algorithms for the pv operator. Most of them are based on first finding
intersections of pv lines with the surface of cells of a dataset. The result-
ing intersection points are then connected to lines using different kinds of
heuristics.

An alternative approach is to trace pv lines starting from a seed point.
Algorithms using this general approach have been proposed by Banks and
Singer [151], Miura and Kida [153], Sukharev et al. [154] and Theisel et
al. [140]. Methods for avoiding the accumulation of errors when tracing pv
lines were introduced by van Gelder and Pang [155], as well as Weinkauf et
al. [156].

While most pv algorithms operate on piecewise linear data that is not
time-dependent, there are some publications that deal with higher-order data
or use higher-order methods. This includes approaches for finding curved
vortex core lines [157], scale-space techniques [158], and computing the pv
operator on time-dependent [159, 160] or piecewise analytic vector fields [161].
Recently, Gerrits et al. [13] proposed an approximate parallel vectors operator
for ensembles of more than two vector fields. The pev operator we introduce
here deals with higher-order data of a different kind: It operates on tensor
instead of vector data.

7.2 Theoretical Considerations

Having defined the pev operator in Equation (7.1), we use this section to
study its properties. We show that like the pv operator, the pev operator
yields structurally stable lines, i.e., they do not disappear when adding noise.
However, unlike the pv operator, multiple pev lines may stably intersect in a
single point if the two tensor fields are symmetric.

Given the similarity to the pv operator, one would already expect curves
as pev solutions. The case, however, is slightly more complicated because
eigenvectors can transition from real to imaginary, and they are not uniquely
defined in isotropic regions. Even considering these cases we can formulate
the main theorem

Theorem 1. The pev operator yields structurally stable curves that are either
closed or end at the boundaries of the domain.

116

7.3 Extracting PEV Lines from Piecewise Linear Data

The proof for this theorem, which was provided by Holger Theisel, can be
found in Appendix B.

We now study the possibility of pev lines intersecting in a single point.
We call such points, where more than one pair of eigenvectors is parallel,
bifurcation points.

Theorem 2. For general (asymmetric) tensor fields, bifurcation points are struc-
turally unstable, i.e., they disappear under small perturbations of the tensor fields.

To show this, we consider a pev line l and observe the other eigenvectors
(the ones that do not define l) along its path. Since they are not constrained
by each other, more than one condition must be fulfilled along l for the other
eigenvectors to become parallel. This can be interpreted as having at least two
independent scalar values that must vanish at the same point along l. If this
happens, adding noise will split up the points on l of common zero crossings
and the bifurcation point will disappear.

This situation is different if the tensor fields are symmetric.

Theorem 3. For symmetric tensor fields, structurally stable bifurcation points
exist where both fields have three pairs of parallel eigenvectors.

This can be shown as follows: If two symmetric tensor fields S, T have two
pairs of parallel eigenvectors, the third pair must be parallel as well, due to
the orthogonality of the eigenvectors. Further, we consider again a pev line
l that is defined by the vector e along l that is eigenvector of both S and T.
All other eigenvectors of S and T are perpendicular to e and can therefore
be expressed by one number: the rotation angle around e. The conditions of
further pairs of common eigenvectors can then be described as the roots of one
scalar function: the difference in rotation angles. Adding noise will slightly
change the location of l and slightly change the location of zero crossings on
l, but does not make them disappear. Consequently, bifurcation points in
symmetric tensor fields are structurally stable.

Figure 7.1 shows some examples of pev lines in random linear tensor fields.
The examples for symmetric tensor fields at the bottom show clear examples
of bifurcation points.

7.3 Extracting pev Lines from Piecewise Linear Data

We will now detail our algorithm for finding pev lines in piecewise linear ten-
sor fields. We assume that both tensor fields are defined on the vertices of the
same tetrahedral mesh. The general approach is to first find all intersections
of pev lines with the faces of the mesh, and then to connect those points to
lines.

117

7 The Parallel Eigenvectors Operator

We showed that pev structures are lines in the structurally stable case. It
follows that their intersections with the triangular faces of a tetrahedral mesh
are isolated points. Finding an analytic solution to the parallel eigenvectors
problem is impossible, as it involves the intersection of cubic polynomials.
Instead, we opt for a numerical approach that is based on recursive subdivision
both on the triangle and in the space of possible eigenvector directions.

Our algorithm can be summarized as follows: We first find a direction r
which becomes an eigenvector of both S and T at some (possibly different)
points inside the triangle. If such a direction is found, we subdivide the
triangle and check the parts for possible eigenvector directions again. We
do this until we converge on a single point where both S and T have parallel
eigenvectors. In order to find a valid direction r, we perform another recursive
search in the space of possible eigenvector directions, which we represent as
some triangulation of a hemisphere centered at the origin. In the following,
we describe the details of this algorithm.

7.3.1 Mathematical Basis

A linear tensor field on a triangle is defined by the tensors at its three corners.
We denote the set of corner points as ∆x = {x1,x2,x3}, and the set of corner
tensors as ∆S = {S1,S2,S3} and ∆T = {T1,T2,T3}. We express the tensor fields
in barycentric coordinates w = (w1,w2,w3)T:

S(w) =
∑
i

wiSi , T(w) =
∑
i

wiTi , with
∑
i

wi = 1.

The position (in barycentric coordinates w) at which an arbitrary direction r
becomes an eigenvector in S is given by the solution to

S(w)r =
∑
i

wiSir = λr .

Rather than needing the exact position, we want to know if the position is
inside the triangle, i.e., if r is a valid eigenvector direction for S. In barycentric
coordinates, a point is inside the triangle if all wi > 0. Since the scaling factor
λ is arbitrary, we eliminate it:∑

i

w̃iSir = A(r)w̃ = r ,

with A(r) =
(
S1r S2r S3r

)
, w̃ = w/λ ,

and only require that all w̃i have the same sign. Using Cramer’s rule, the
components of w̃ are

w̃i =
detAi(r)
detA(r)

.

118

7.3 Extracting PEV Lines from Piecewise Linear Data

Here, Ai denotes the matrix A with its i-th column replaced by r. Note that
all w̃i are divided by the same factor detA(r). Since this influences all signs of
w̃i equally it can be ignored, leading to

ŵi(r) = detAi(r) . (7.2)

The equations for T are analogous. In the following, we show all equations for
S only. The equivalent equations for T can be obtained trivially by substituting
T for S. We denote the solutions for S and T by ŵS and ŵT respectively,
whenever it is necessary to discriminate them.

7.3.2 Subdivision in Direction Space

The core of the algorithm is to find a direction r for which all components of
ŵS(r) have a common sign, and all components of ŵT(r) also have a common
sign (that possibly differs from ŵS). If this is fulfilled, r becomes an eigenvector
somewhere inside the triangle for both S and T.

Note that the ŵi(r) are cubic in r. Finding an analytic solution for r means
analytically finding the intersections of the roots of ŵi(r), which is impossible.
Instead, we solve the problem numerically by applying another recursive
search in the space of all possible eigenvector directions. Since we are looking
for eigenvectors, the magnitude and orientation of r are not significant. We
can therefore represent this space by some triangulation of a hemisphere
centered at the origin (Figure 7.2, right). We again express a direction in a
triangle ∆r = {r1,r2,r3} on this hemisphere in barycentric coordinates uj of its
corner vectors:

r(u) =
∑
j

ujrj .

Substituting this in Equation (7.2), the barycentric coordinate functions now
become

ŵi(u) = det

∑
j

ujAi(rj)

 . (7.3)

We can now express the polynomials ŵi in Bernstein-Bézier basis as

ŵi(u) =
∑

j,k, l>0,
j+k+l=3

3!
j!k! l!

u
j
1u

k
2 u

l
3 · bjkl . (7.4)

Here, bjkl are the 10 coefficients needed to express a trivariate polynomial of
degree 3. Note that because the barycentric coordinates u are restricted to the
triangle ∆r, they really have only two degrees of freedom.

119

7 The Parallel Eigenvectors Operator

∆x

∆r

Figure 7.2: Two-level recursion scheme for finding intersections of pev lines with the
faces of piecewise linear tensor fields. For each sub-triangle ∆x, a recursive search
in the space of possible eigenvector directions is performed to find a direction r that
becomes an eigenvector of both S and T within ∆x.

We use the property that a polynomial in Bernstein-Bézier form is bounded
in its domain by the convex hull of its coefficients [162]. This means that
ŵi is positive over the whole triangle if all bjkl > 0, and negative over the
whole triangle if all bjkl < 0. If the bjkl have different signs, ŵi might become
0 somewhere inside the triangle.

We use this when recursively subdividing the triangle ∆r. If any ŵi might
have roots within the triangle according to the Bernstein-Bézier coefficients,
then we can not make a decision. We need to subdivide the triangle and
check the different parts again. If no ŵi can have roots within the triangle as
indicated by the coefficients, then there are two possibilities:

1. All ŵi have the same sign everywhere on the triangle

2. The ŵi have different signs everywhere on the triangle

In case 1, all directions within the triangle become eigenvector directions
somewhere in ∆x for both S and T. If this happens, we can accept any direction
within the current triangle as a possible solution. In case 2, no direction within
the triangle can become an eigenvector of both S and T, and the triangle
is discarded. When the triangle becomes smaller than some subdivision
threshold εr, and we still can not say for sure that there are no possible
eigenvector directions inside, we accept the central direction as a candidate.

7.3.3 Final Numerical Algorithm

The complete algorithm for finding intersections of pev lines with a triangle of
the dataset now works as follows: Start with the complete triangle as ∆x. Then,
search for a direction that becomes an eigenvector of both S and T somewhere
inside the triangle by using the algorithm described in Section 7.3.2. If such a

120

7.3 Extracting PEV Lines from Piecewise Linear Data

Algorithm 1: Find intersections of pev lines with a triangle

Function FindPEV(∆S, ∆T, ∆x)
r← FindEigenDir(∆S, ∆T);
if r is null then

return {} ; // Discard triangle
else if size of ∆x < εs then

return {(1/3
∑

xi , r)} ; // Accept solution
end
l = {};
foreach (∆′S,∆

′
T,∆

′
x) ∈ (Split(∆S), Split(∆T), Split(∆x)) do

l← l ∪ FindPEV(∆′S, ∆′T, ∆′x) ; // Recursive subdivision
end
return l;

end
Function FindEigenDir(∆S, ∆T)

R← set of triangles covering a hemisphere;
foreach ∆r ∈ R do

r← FindEigenDirRecursive(∆S, ∆T, ∆r);
if r is not null then

return r;
end

end
return null;

end
Function FindEigenDirRecursive(∆S, ∆T, ∆r)

Compute Bernstein-Bézier coefficients for ŵi ;
if any ŵi might have roots within ∆r then

foreach ∆′r ∈ Split(∆r) do
r← FindEigenDirRecursive(∆S, ∆T, ∆′r);
if r is not null then

return r;
end

end
else if all ŵi have the same sign or size of ∆r < εr then

return 1/3
∑

ri ; // Accept solution
end
return null ; // Discard triangle

end

121

7 The Parallel Eigenvectors Operator

direction is found, subdivide the triangle and process the parts recursively.
If no direction is found, discard the triangle. When a spatial sub-triangle
becomes smaller than a subdivision threshold εs, we accept the center of the
triangle and the accompanying direction r as a solution candidate. Algorithm 1
shows the procedure in pseudo code.

The result of the algorithm is a list of points on ∆x with corresponding
eigenvector directions r. This list of points has to be post-processed for two
reasons:

1. For each intersection of the pev line with the triangle, multiple adjacent
candidate points may be found. This happens if eigenvectors of S and T
are closer than εr in a region larger than εs, e.g., because the gradient
of the tensor fields is very small, or because the pev line intersects the
face at a very steep angle. Choosing εr very small helps with this, but it
can not be avoided in the presence of limited numerical precision on a
computer.

2. A candidate point might not be a pev point at all. These false positives
occur if there are directions r that become eigenvectors of one of the
tensor fields inside ∆x, while A(r) has rank 1 for the other tensor field.
For this case, ŵ = 0, which means that a consistent sign of all components
can never be determined, and subdivision can not be terminated early,
even if the tensor field does not have any valid eigenvector directions
inside ∆x.

We deal with Item 1 by clustering nearby solution candidates. We employ
a simple single-linkage hierarchical clustering algorithm [163]. Given two
candidate position-direction pairs (x,r), we define the distance as the maxi-
mum of their distances in position- and in direction space. We start with each
parameter region as a single cluster. Two clusters are merged if the distance
between any two elements from both clusters is smaller than a clustering
threshold εc. We repeat this process until the number of clusters no longer
changes.

We then select the point in each cluster where the corresponding eigenvec-
tors are most parallel as the representative and discard the others. Since we
already have eigenvector directions for each point, we do not need to explicitly
compute them again. Instead, we use the parallelism error

ep =
∥∥∥∥∥ S(w)r
‖S(w)r‖ ×

r
‖r‖

∥∥∥∥∥+
∥∥∥∥∥ T(w)r
‖T(w)r‖ ×

r
‖r‖

∥∥∥∥∥ , (7.5)

which measures the deviation of r from the true eigenvectors of both S(w) and
T(w).

This algorithm has a complexity of O(n3) in the number of solution can-
didates. Typically n is small: less than 200 candidates are found in the vast

122

7.4 Results

majority of cases. At this scale, the performance impact of the clustering
algorithm is negligible.

In order to address Item 2, we discard all candidate points for which ep
is greater than some parallelism threshold εp. This threshold can be chosen
quite coarse (e.g. 0.01), as ep is typically quite large for false positive candidate
points.

In certain cases, the pev line might not intersect the triangle at a single
point. This happens in the structurally unstable cases where eigenvectors
are parallel on a structure with a dimension larger than 1, or where the pev
line is completely in the plane of the triangle. In these cases, the recursive
subdivision will not converge on isolated points and slow down the algorithm
considerably. To mitigate this, we terminate the recursion if the number of
triangle subdivision operations exceeds a reasonable threshold.

Once we have clustered the candidate solutions and removed false positives,
we have a number of final pev points for each face of the mesh. These pev
points are now connected to lines on a cell-by-cell basis. This problem is
also faced when computing the pv operator, where it has been solved in a
variety of ways using different heuristics, which can be employed here as
well. In our implementation, we simply connect two points if they are the
only two intersections of a pev line with a grid cell. In case of more than one
intersection, we greedily connect pairs of points that have the most similar
parallel eigenvector directions, assuming that pev lines are generally smooth
relative to the grid resolution.

7.4 Results

We applied our method to different stress tensor fields from solid mechanics
simulations. The Cauchy stress tensor (often referred to as σ in mechanics
literature) is a symmetric tensor that describes the local stress state of an
object experiencing small elastic deformations. Its eigenvectors are real and
orthogonal and point in the directions of the principal stresses. The sign of the
eigenvalues indicate if the stress is compressive or tensile in the corresponding
direction. When comparing two different stress tensor fields, pev lines occur
where two principal stress directions align. We show pev lines for three
different stress tensor datasets: Two different point loads applied to a uniform
material, two different traction forces applied to the end of a clamped beam,
and two different load scenarios applied to a flange.

We used the same parameters for all datasets: εs = 10−3, εc = 5×εs, εd = 10−9,
εp = 10−3. Our results were computed on a 4-core Intel Core i7 cpu at 3.4 GHz.

123

7 The Parallel Eigenvectors Operator

Figure 7.3: pev lines for the Point Loads dataset. Lines are colored by absolute
eigenvalue ratio.

7.4.1 Point Loads

In this example, we compare two different point loads applied to a uniform
material with infinite extents. We show our results in Figure 7.3. The first
load (red arrow) is a compressive force, the second load (blue arrow) is a
tensile force of equal magnitude. We compute the pev operator for the two
resulting stress tensor fields. The Point Loads case has a closed analytic solu-
tion [164], which we sampled on a regular grid with 100×50×50 points using
the vtkPointLoad source from the Visualization Toolkit [42]. We then tetra-
hedralized the data, resulting in 1.1 million cells and 4.8 million faces. The
computing time for this dataset was 4.2 h, which means that pev intersections
on each face were found in 3.2 ms on average.

Since the point loads were applied in the same plane, this synthetic dataset
shows the rare case where eigenvectors are parallel on a plane instead of
a line. This degenerate case also accounts for the long computing time, as
for each face intersected by the pev plane, the recursive subdivision can not
be terminated early. Even though this structurally unstable case produces
visual artifacts when using our method, interesting pev line structures are
still visible. There is a bifurcation point exactly at both load points, extending

124

7.4 Results

Figure 7.4: pev lines for the Clamped Beam dataset. Lines are colored by the eigen-
value of the stress tensor corresponding to the red arrow (red is positive, blue is
negative). Interesting structures mentioned in the text are highlighted.

into a curved ring slightly below the surface. At the second intersection of
this ring with the central plane, another closed pev structure embedded into
the plane becomes visible. Within a pev plane, structures where all three
eigenvectors are parallel become lines, instead of points. A similar structure
can be observed starting at the load points and leading outwards. In the
center of the dataset, there is another pev line, orthogonal to the plane and
slightly curved downwards, separating the two load points. For this dataset,
we colored the pev lines by the absolute eigenvalue ratio of the parallel
eigenvectors. Since both tensor fields result from forces of equal magnitude,
this ratio makes visible the directions in which forces propagate outwards
from the load points.

7.4.2 Clamped Beam

Next, we extracted pev lines for a beam that is fixed on one side. We applied
two different traction forces on the free end of the beam, whose directions

125

7 The Parallel Eigenvectors Operator

are indicated by the blue and red arrows in Figure 7.4. The Clamped Beam
dataset consists of 150k cells and 600k faces. The computing time was 26 min,
which means 2.6 ms per face on average.

There are two regions of particular interest in the Clamped Beam. The first
is near the middle of the beam, where a curved structure has high eigenvalues
in both tensor fields (visible in red and blue in Figure 7.4, bottom left). This
is where the beam experiences a lot of stress, and therefore the tensor fields
have a high magnitude. The second is somewhat further towards the wall.
Here, all three eigenvector directions are parallel along a line structure near
the center with considerable length (bottom right). This area seems to be the
most similar between the two scenarios in terms of stress directions.

7.4.3 Flange

Our final stress tensor dataset is a flange from an OpenFoam [165] tutorial.
We subjected the flange to two different loads, applied on the back wall and
the flange ring (see red and blue arrows in Figure 7.5). The original mesh
uses polygonal cells, which is why we resampled the data on a regular grid,
resulting in 1.2 million cells and 5 million faces. The computing time was
36 min, i.e., 0.5 ms per face.

The Flange dataset exhibits a lot of pev lines, which can be seen in Fig-
ure 7.5 (top). Most of the pev lines correspond to eigenvectors with small
eigenvalues in both tensor fields. We therefore filtered out all pev lines where
both eigenvalues are very small in the bottom images in Figure 7.5. Especially
prominent are two bifurcation points with high eigenvalues between the two
outer screw holes and the central tube (bottom left). There are also pev lines
leading outwards both above and below the screw holes (bottom right). In
general, the most similar directions of significant stress are near the screw
holes and in the area where the large flange ring meets the central block.

7.5 Discussion

The pev operator was introduced as a generic operator, its interpretation is
dependent on the application scenario.

For stress tensors in mechanical engineering, the pev operator gives insight
into the alignment of the tensors under different acting forces. Areas with
pev lines can be wanted or unwanted. In areas with present pev lines, the
stress tensor is similarly oriented for different external forces. This could be
used e.g., for deciding the placement of structural reinforcements or to guide
the selection of materials. In regions without pev lines, there is no stress in a
preferred direction when applying different outer forces and material with a
more isotropic behavior could be used.

126

7.5 Discussion

Figure 7.5: pev lines for the Flange dataset. Lines are colored by the eigenvalue
corresponding to the red arrows. The top image shows all lines while the bottom
shows only lines where the magnitudes of both eigenvalues are above a threshold.
Interesting structures mentioned in the text are highlighted.

127

7 The Parallel Eigenvectors Operator

Besides this particular interpretation, there are general interpretations that
are common to all applications of the pev operator. The pev operator is
agnostic to isotropic scaling of the tensors. It gives information about the
orientation of the tensors only. In this way, the pev operator can be seen as an
addition to many standard measures for comparing tensors like norm, trace,
or eigenvalues.

The presented algorithm for piecewise linear tensor fields does not use
any derivatives of the data. It depends on a number of thresholds to guide
subdivision levels and filtering. The spatial subdivision threshold εd influ-
ences the accuracy of the resulting pev lines. A small threshold means more
subdivisions and is one of the main factors influencing performance. Since
subdivision converges to single points, the computing time increases logarith-
mically when decreasing εd.

The directional subdivision threshold εr guides the accuracy of the obtained
eigenvector direction. Typically, the smaller the current spatial triangle ∆x
becomes, the smaller the region of valid eigenvector directions. For increasing
subdivision level in space, the valid eigenvector directions will converge on a
point. This means that for small εd, the recursion in the space of directions
will generally proceed to the highest subdivision level. The influence of
εr on computation time is about the same as for εd. However, an accurate
determination of eigenvector direction is essential to decrease the number of
candidate pev solutions that have to be clustered. This means that εr should be
chosen very small. We find εr = 10−9 to be a choice that provides consistently
good results.

Because our algorithm can produce multiple candidate points for an inter-
section of a pev line with a tetrahedral face, we need to cluster the results.
Theoretically, all candidate points should be in adjacent triangles, as (unori-
ented) eigenvector directions in linear tensor fields do not oscillate on small
scales. However, due to numerical noise and rounding errors on a computer,
some candidate triangles might not be exactly adjacent to each other. To
bridge this gap, the clustering threshold εc defines the radius in which two
candidate solutions are considered to belong to the same cluster. Because the
numerical noise influencing the size of gaps between candidate solutions is
random, we do not expect candidates to be more than two or three lengths of
εd from each other. We recommend to set εc to some fixed multiple of εd. In
our experiments, εc = 5εd proved sufficient for all datasets.

The parallelism threshold εp is used to weed out false positive candidates
that are a byproduct of our algorithm. It must be chosen carefully to separate
false positive solutions from numerical errors. Because of this threshold, the
spatial subdivision threshold εd can not be chosen arbitrarily large. The larger
εd, the larger the possible difference in eigenvector direction between the real
pev point and the tensor at the center of the triangle, which is chosen as a

128

7.6 Limitations and Future Research

representative. In general, the choice of εp is dependent on εd. More spatial
subdivision levels enable a smaller choice of the parallelism threshold. In our
experiments, a choice of εp = 10−2 for εd = 10−3, and εp = 10−3 for εd = 10−6

worked very well.

7.6 Limitations and Future Research

Limitations can be discussed from two points of view: the operator itself
and the presented numerical extraction algorithm. A limitation of the pev
operator is that it can only be applied to problems where the norm of the
tensors does not matter. This limits the applicability but on the other hand
focuses on features of the tensor fields that are less covered by other methods.

The presented extractor works for piecewise linear tensor fields only. An
extension to hexahedral grids as well as higher order interpolations is subject
of future research. The performance of the algorithm can be improved by
parallelization. In principle, the algorithm is parallelizable (each cell can
be treated independently). However, even if this is carefully carried out,
interactive frame rates (for instance for comparing time-dependent tensor
fields) are hardly achievable because we still have to do a search in a 5d space.
Due to the possibility of many candidate solutions for each intersection of a
pev line with a face, we can not give an upper limit on the error of the pev line
position. This might limit its applicability in cases where a highly accurate
pev line is required.

We stated in Theorem 1 that pev lines are generally closed. However, the
results obtained from our algorithm sometimes exhibit gaps. Because the
extractor is a numerical algorithm, and not a combinatorial one, we will
sometimes not find solutions on faces where the presence of an intersection
point is numerically unstable. This happens for example if the pev line is
parallel and very close to a face, or when the tensor field is almost zero.

In this chapter, we only show examples of the pev operator for (symmetric)
stress tensor fields. Further possible scenarios that are left to future research
are the comparative visualization of dti data or a comparative visualization of
Jacobian fields for flow visualization, which are not necessarily symmetric.

129

8
Core Lines in 3D Second-Order Tensor Fields

This chapter is based on the publication:
T. Oster, C. Rössl, and H. Theisel. “Core
Lines in 3d Second-Order Tensor Fields”.
In: Computer Graphics Forum 37.3 (2018),
pp. 327–337

Vortex core lines describe the centers of swirling behavior in vector
fields. They are a useful tool in vector field visualization because
they provide an explicit geometrical representation of an important

flow feature. Different definitions and strategies for extracting vortex core
lines have been presented in Section 2.2.5. One of the simplest and most
popular methods is the one proposed by Sujudi and Haimes [18], which can
be computed using the pv operator [19].

Tensor field lines, i.e., lines that are everywhere tangential to an eigenvector
of a tensor field (see Section 2.3.4), can also exhibit “swirling” behavior similar
to vortices in vector fields. For example, stress tensor fields show stress
trajectories winding around a common core in regions of twist. Various
visualization methods for tensor fields exist, but to date no approach has been
proposed to extract core lines of such vortex-like structures.

As we have already explained in Chapter 7, simply using the Sujudi/Haimes
criterion and applying the pv operator to the “eigenvector fields” of the data
cannot give consistent results. We therefore introduce tensor core lines as an
equivalent to vortex core lines in vector fields. Their definition is a direct
extension of the Sujudi/Haimes criterion to tensor fields and their extraction is

131

8 Core Lines in 3D Second-Order Tensor Fields

Figure 8.1: Tensor field lines in a stress tensor field induced by applying a torque to a
cylindrical shaft. Field lines of both major (blue) and minor (red) eigenvectors show a
swirling behavior around a common core line (yellow).

based on the pev operator. In particular, we make the following contributions:

• We give a rigorous definition of tensor core lines and show that indeed
the definition gives structurally stable line structures.

• We provide a numerical algorithm for the extraction of tensor core lines
from piecewise linear tensor fields.

• We introduce a filter criterion based on numerical stability to separate
significant and insignificant tensor core lines.

• We show tensor core lines in mechanical stress tensor fields, interpret
them and compare them with degenerate lines where two eigenvalues
are equal.

We introduce tensor core lines in Section 8.1 and study their properties. We
then present our algorithm for extracting tensor core lines in Section 8.2. We
show our results on several stress tensor fields in Section 8.3 and study the
performance, robustness and relation to degenerate lines. As it turns out, our
algorithm is sufficiently generic to be applied to the extraction of pev lines
and degenerate lines as well. We show how this can be done in Section 8.4
and close with a discussion in Section 8.5.

132

8.1 Tensor Core Lines

8.1 Tensor Core Lines

The Sujudi/Haimes criterion defines a vortex core line as a structure on which
streamlines have a locally vanishing curvature. The intuition is that in a region
where streamlines show a swirling behavior, there must be a center of rotation
where the swirl vanishes. This is fulfilled where the acceleration vector Jv is
parallel to the velocity v, i.e., the flow is accelerated on a straight line. Using
this formulation, the criterion can be expressed in terms of the pv operator.
To only extract vortex core lines, the Sujudi/Haimes criterion requires an
additional filter criterion. Vortices only occur in regions with swirling flow
behavior, which is indicated by the presence of complex eigenvalues of the
Jacobian. Zero-curvature lines also occur in regions where the Jacobian has
three real eigenvalues. These hyperbolic trajectories are the centers of simulta-
neous converging and diverging behavior of the vector field and can be used
to extract Lagrangian coherent structures [167, 168]

We apply the idea of Sujudi/Haimes to tensor fields by looking for locations
where the curvature of tensor field lines locally vanishes. We define tensor
core lines as the locations where tensor field lines have a locally vanishing
curvature. Note that like vortex core lines, tensor core lines are not generally
field lines of the tensor field. In this section, we provide a formal definition of
tensor core lines and examine their mathematical properties.

8.1.1 Definition

Let T(x) be a 3d second-order tensor field that may or may not be symmetric.
We want to find locations where the direction of a real eigenvector of T does
not change when moving along the eigenvector direction, i.e., where the
curvature of a tensor field line vanishes. A vector r , 0 is a real eigenvector
of T if Tr = λr for eigenvalue λ ∈ R. To observe the change of eigenvector
direction when moving along r, we need to consider the derivative of T in this
direction. The directional derivative of T along r, which we write as ∇rT, is
the linear combination of three component-wise derivatives

∇rT(x) = ∇T(x)r =
∂T(x)
∂x1

r1 +
∂T(x)
∂x2

r2 +
∂T(x)
∂x3

r3 ,

for x = (x1,x2,x3)T and r = (r1, r2, r3)T.
Given ∇rT we can approximate the behavior of T along r as

T(x + hr) = T(x) + h∇rT(x) , with h ∈R . (8.1)

For our zero-curvature requirement to be fulfilled, the eigenvector direction
must not change when moving along r, i.e.,

T(x + hr)r = T(x)r + h∇rT(x)r = µr , with µ ∈R . (8.2)

133

8 Core Lines in 3D Second-Order Tensor Fields

Figure 8.2: Example of seven distinct
core lines in a random linear tensor field.

This means that r is still an eigenvector of T (with eigenvalue µ) at the slightly
offset position x + hr. If we substitute T(x)r = λr, we get

λr + h∇rT(x)r = µr

∇rT(x)r =
µ−λ
h

r ,

i.e., r is also an eigenvector of ∇rT(x). With this, a tensor core line is an isolated
line of positions x where

λT(x)r = µ∇rT(x)r = r,

for r , 0 and λ, µ ∈R. In terms of the pv operator, tensor core lines can then
be expressed as

TCL(T) = {x | ∃ r ∈R, r ‖ T(x)r ‖ ∇rT(x)r∧ r , 0} . (8.3)

In words: a tensor core line is located where an eigenvector r of T is parallel to
an eigenvector of the directional derivative of T along r. Note the similarity of
this criterion to Sujudi/Haimes, which states that a vortex core lines is located
where a vector v of the vector field is parallel to the directional derivative of the
field along v, which is defined by the acceleration J(v)v. In fact, the criterion
is almost a straightforward application of the pev operator we presented in
Chapter 7. However, the second tensor field ∇rT is dependent on the unknown
r, which requires a slightly different solution strategy.

134

8.2 Extracting Tensor Core Lines from Piecewise Linear Data

8.1.2 Mathematical Properties

We now examine the mathematical properties of tensor core lines. We show
that they are indeed structurally stable lines, and that in linear tensor fields,
these lines are always straight.

Theorem 4. In a C1-continuous tensor field, tensor core lines are structurally
stable line structures that are either closed or end at the domain boundary.

To show Theorem 4, we consider a local representation of a real eigenvector
field in the neighborhood of a point as a normalized vector field. Then the fact
that the pv operator gives such line structures [19] shows the theorem. Note
that although such a representation of an eigenvector field as a normalized
vector field is locally possible, it does not apply globally in a consistent way,
and therefore does not provide a strategy to extract tensor core lines. We
also mention that in real datasets, tensor cores may build surfaces or even
volumetric structures. This is due to shape symmetries often observed in
artificial data produced by humans. Even though these structures are unstable
(adding noise destroys the surfaces to many lines), our extraction algorithm
has to deal with them.

Theorem 5. In linear tensor fields, tensor core lines are straight lines.

This follows from the fact that for linear tensor fields, the linear approxima-
tion in (8.1) describes the whole data set exactly: if (8.2) holds for a small h,
it holds for all h (i.e., on a whole straight line) as well. Figure 8.2 shows an
example of a random linear tensor field containing seven isolated tensor core
lines.

8.2 Extracting Tensor Core Lines from Piecewise Linear
Data

As we have mentioned in Section 8.1.1, the definition of tensor core lines
is almost a straightforward application of the pev operator, except for the
unknown r in the second tensor field. We can therefore not directly use the
algorithm for extracting pev lines we presented in Section 7.3. Instead we
derive a different, more generic, algorithm that is based on the same principles.
In fact, this algorithm can be used to extract pev lines and degenerate lines as
well, as we point out in Section 8.4.

Analogous to our pev extractor, we assume tetrahedral partition of the
three-dimensional domain and restrict our search to the boundaries between
tetrahedral cells. The intersections of tensor core lines with these triangles
are again isolated points, which we extract using a root finding algorithm.

135

8 Core Lines in 3D Second-Order Tensor Fields

8.2.1 General Algorithm

A tensor core line consists of all locations x where T(x)r ‖ r and ∇rT(x)r ‖ r, see
(8.3). If two vectors are parallel, their cross product is zero. We can therefore
express the criterion as solutions to the system of equations

(T(x)r)× r = 0

(∇rT(x)r)× r = 0 .
(8.4)

This system consists of six polynomial equations in the unknown variables x
and r , 0.

The polynomials are of maximum degree 1 in x and 3 in r. Note that for
a linear tensor field, ∇rT(x) = ∇rT is constant and thus independent of x.
Like for the pev algorithm, we parameterize the space of possible eigenvector
directions r such that they are defined w.r.t. triangles covering a hemisphere.
With the restriction of the local search space to triangles that bound tetrahedra,
the solution of the polynomial system is equivalent to finding isolated (real)
roots, i.e., points where all six polynomials simultaneously become zero.

We again construct a recursive subdivision algorithm that uses the Bernstein-
Bézier form (Section 8.2.2) of the polynomials to exclude the presence of roots
within sub-triangles. Within the search space (Section 8.2.3) a recursive sub-
division (Section 8.2.4) approximates the locations of roots in x-r-space with
an arbitrary user-defined precision. The local feature extraction is followed
by a stage that clusters solutions and then connects feature points to lines
within cells (Section 8.2.5) Finally, we use a filtering criterion for removing
numerically unstable solutions (Section 8.2.6).

8.2.2 Polynomial System in Bernstein-Bézier Form

We consider bivariate polynomials p : R2→ R of degree n, which are evalu-
ated in a triangular domain ∆ ⊂ R2. Let indices i, j,k ≥ 0. We write p(u) in
Bernstein-Bézier form as

p(u) =
∑

i+j+k=n

Bnijk(u)bijk , Bnijk(u) =
n!
i!j!k!

ai1 a
j
2 a

k
3 (8.5)

with the bivariate Bernstein polynomials Bnijk as basis and coefficients (or
Bézier control points) bijk. The basis is defined w.r.t. the barycentric coordi-
nates a` := a`(u), the linear polynomials that satisfy

a1u1 + a2u2 + a3u3 = u and a1 + a2 + a3 = 1

w.r.t. triangle ∆ spanned by vertices u1,u2,u3 [169].

136

8.2 Extracting Tensor Core Lines from Piecewise Linear Data

∆x

∆r

Figure 8.3: The search space is parameterized on triangles ∆x in position space and
∆r on the hemisphere of possible eigenvector directions. The figure shows a pair of
triangles after several subdivision steps.

We again use the convex hull property of Bernstein-Bézier polynomials: For
any u ∈ ∆ – or equivalently all barycentric coordinates are nonnegative – the
value p(u) is bounded by the convex hull of the control points bijk . For scalar
coefficients bijk ∈ R this means that if either all bijk > 0 or all bijk < 0 for
i + j + k = n then p cannot have a zero crossing (or real root) on ∆. Similar
to our pev algorithm, we use this criterion for an iterative subdivision of a
triangle ∆ into smaller and smaller triangles that either may contain or cannot
contain a root.

8.2.3 Parameterization of the Search Space

The equations in the system (8.4) are polynomials in x and r. This means the
search space consists of two independent domains: position and direction.

As pointed out before, positions x are restricted to points on triangles bound-
ing tetrahedral cells. For each triangle of a tetrahedron we represent positions
x in barycentric coordinates w.r.t. this triangle. Barycentric coordinates are
defined in local coordinates of the triangle and therefore have two degrees
of freedom. After switching to barycentric coordinates the further steps,
polynomial evaluation and subdivision, are independent of the supporting
triangle.

We again represent the space of possible eigenvector directions r as a trian-
gulation of a hemisphere. Just like for the pev algorithm, the orientation and
magnitude of r is irrelevant for the solution and can be approximated by any
triangulation that covers all relevant directions. We simply use a four-sided
open pyramid (see Figure 8.3). This way, we use the same parameterization
and the same representation for x and r.

For a given triangle, we have to consider a tensor field T that is linear

137

8 Core Lines in 3D Second-Order Tensor Fields

in x and a direction vector r that is linearly interpolated on a triangle of
the “hemisphere”. Then the left-hand-sides of the system (8.4) give three
polynomials that are linear in x and quadratic in r and three polynomials that
are cubic in r as they don’t depend on x because ∇rT is constant.

Each of these six polynomials can be written in the form

p(x,r) =
∑

i+j+k=1
α+β+γ=3

B1
ijk(x)B3

αβγ (r)bijk αβγ .
(8.6)

This is the tensor product of the interpolation in x and r. It gives 3 × 10 =
30 coefficients bijk αβγ . (All indices are nonnegative. Latin indices indicate
position space, Greek indices denote direction space.) This form has degree
4 and can represent all polynomials in system (8.4). We use this unified
representation for didactic purposes. Using the real number of degrees in
x and r for each polynomial gives a smaller number of coefficients (18 or
10). It is advisable to use these real degrees in an implementation to avoid
superfluous computations. Note that position and direction are expressed in
local coordinates (or barycentric coordinates) of the triangles, such that p has
only four degrees of freedom in total. For the sake of a concise notation we
write p(x,r), B1

ijk(x) and B3
αβγ (r).

8.2.4 Root Finding by Subdivision

Algorithms for finding roots of Bézier curves and surfaces are typically based
on the convex hull property and use a recursive bisection [169, 170]. We adopt
this technique. The main differences in our setting are the fact that all six
equations in (8.4) must be satisfied simultaneously and that this is checked in
two different two-dimensional domains: position and space.

Roots of One Single Polynomial

The system (8.4) defines six polynomials. For the initialization of the algo-
rithm, we need to determine the Bernstein-Bézier form, i.e., the coefficients
bijk αβγ in (8.6), for each of these polynomials. This can be done easily by
sampling and interpolation: There are 3× 10 coefficients and two triangular
parameter domains. As (8.6) lives in a tensor-product space, interpolation
of position and direction can be separated. Chose 3 or 10 distinct sampling
positions in ∆x or ∆r, respectively, and evaluate the values for the given poly-
nomial. Then interpolate these values using the Bernstein-Bézier basis. The
interpolation conditions define a linear system that has a unique solution. We
remark that the choice of sampling positions can be arbitrary as long as they
are distinct. For polynomial degree n, we use the domain points 1

3 (i, j,k) with

138

8.2 Extracting Tensor Core Lines from Piecewise Linear Data

i+ j +k = n in barycentric coordinates. This ensures a well-conditioned system
matrix. As the sampling positions are fixed, the system matrix is constant,
i.e., interpolation requires only inversion or factoring. So after sampling, the
conversion to Bernstein-Bézier form reduces to a linear transform than can be
expressed as a matrix-multiplication.

The outline of the subdivision algorithm is as follows. We are given a
pair (∆x,∆r) of position-direction parameter triangles and a polynomial in
Bernstein-Bézier form. The coefficients bijk αβγ indicate the absence of zero
crossing if they are either all positive or all negative. In this case, no root is
found and processing of (∆x,∆r) stops. If there is any sign change or zeros in
the coefficients, there may exist roots within the parameter space (∆x,∆r). In
this case we subdivide one of the parameter triangles. We alternate between
subdividing ∆x in position-space and ∆r in direction-space. For both, we
use a regular 1:4-split (see Figure 8.3). Each of the four new sub-triangles is
processed recursively in the same way.

Similar to the initial interpolation, the Bernstein-Bézier form of the sub-
divided polynomial can be obtained by a linear transformation: Evaluate
the polynomial at domain points in the new, smaller triangle and apply in-
terpolation. Evaluation and interpolation can be combined to one linear
transformation of the Bernstein-Bézier coefficients for each of the four new
triangles.

System of Polynomials

We explained the basic algorithm for a single polynomial. Solving system (8.4)
means finding solutions x,r where all six polynomials become zero simultane-
ously. We test each polynomial individually. Only if there is a sign change in
the coefficients for all polynomials, a simultaneous root can exist.

Every level of subdivision restricts the parameter domain and thus puts
tighter bounds on the region that (potentially) contains a root. The subdivision
stops either if there cannot be any root in (∆x,∆r) or when the magnitude of
all polynomials drops below a threshold (see below). In the latter case, we
have found a root, and the barycenters of the triangles define its location in
parameter space.

Solution and Stopping Criterion

All computations involving Bernstein-Bézier polynomials are done in barycen-
tric coordinates, which yields a concise implementation of the algorithm.
However, the barycentric coordinates are relative to the current triangle, and
we still need to keep track of the absolute positions of its vertices in parameter
space for bounding the regions of roots. This can be done with a small amount

139

8 Core Lines in 3D Second-Order Tensor Fields

of bookkeeping by tracking the subdivision steps such that any “child” tri-
angle can be reconstructed from its “parent” and ultimately from the initial
parameter triangle.

We stop the subdivision when we are close enough to a root. We require the
magnitude of all polynomials to drop below a threshold simultaneously. For
each polynomial its magnitude is bounded in (∆x,∆r), and we test

|p| < εt · ||T||∞ , (8.7)

where |p| := max{ |bijk αβγ | } is an upper bound for the magnitude of p in (∆x,∆r).
The magnitude of the tensor field in ∆x is given as

||T||∞ = sup
x∈∆x

{ ||T(x)|| } = max
i
{ ||Ti || } , (8.8)

where Ti denote the constant tensors at the triangle vertices i = 1,2,3, and
||Ti || denotes their spectral norm.

The parameter εt defines a relative threshold, which is independent of the
local magnitude ||T||∞ of the tensor field within ∆x.

Breadth-First Search Modification

As we hinted at in Section 8.1, the symmetries and regular shapes inherent
to data for man-made objects such as stress simulations of mechanical parts
often lead to (8.3) being fulfilled or almost fulfilled on surface- or volume-type
structures. Also there may be tensor core lines which do not intersect but
which are part of the domain triangle. In these cases the roots are no longer
isolated points but algebraic structures. As a consequence, the presented
algorithm would not be efficient, as it would do an exhaustive search for
all “points” on the structure. In cases where the higher-order structures are
disturbed by noise and break down to lines, the algorithm still has to do a
large number of subdivisions before reaching a termination criterion.

A simple modification of the algorithm enables detecting such cases: we
apply a breadth-first search when looking for roots. In the implementation, we
use a queue of pairs (∆x,∆r) of parameter regions with potential roots. If the
number of elements in the queue exceeds a threshold M, we assume that the
solution to (8.4) forms an algebraic structure and terminate the local search.
If the search is terminated for one of the initial triangles ∆r that tessellate the
hemisphere, we still need to consider the other triangles, because they may
still contain isolated solutions.

8.2.5 Clustering and Line Connection

The root finding returns a list of small parameter regions (∆x,∆r), which are
assumed to contain a solution to (8.4). The size of these triangles is steered

140

8.3 Results

by the threshold εt. Like for the pev algorithm described in Section 7.3.3, the
algorithm typically returns multiple regions that all refer to the same solution
due to numerical noise. We apply the same post-process here for clustering
such regions and selecting a unique representative (x,r) for each solution. For
each cluster, we select the triangle pair as a representative where max{|pi |} is
smallest for all polynomials i = 1, . . . ,6. We select the center points of both
triangles in this pair as the solution represented by this cluster.

For each tetrahedral cell of the dataset, we now connect the root points
found on its faces by a line segment. Since in piecewise linear fields, tensor
lines are always straight within a cell (see Section 8.1), we greedily connect
the two points with the smallest difference in eigenvector direction until no
more pairs are left. Similar to the vortex core lines by Sujudi and Haimes [18],
this gives a set of discontinuous line segments.

8.2.6 Filtering

If the dataset contains not only lines, but also surface- or volume-type struc-
tures where tensor field lines are locally straight, our algorithm might still
find isolated solutions on these structures. These occur if the unstable struc-
tures are disturbed by noise. To filter these spurious points, we measure the
numeric stability of a solution given its representative (x,r) with

s(x,r) =
∣∣∣∣∣det

(∇r2 T(x)r
‖T(x)‖∞

∇r1 T(x)r
‖T(x)‖∞ r

)∣∣∣∣∣ , (8.9)

where r,r1,r2 are orthonormal.
The stability s(x,r) measures the directional change that the eigenvector r

of the tensor T(x) experiences when moving orthogonal to the tensor core line.
If this change is small, the magnitude of the determinant in s will be small.
This is an indicator that the line is numerically unstable. The normalization
by ‖T(x)‖∞ ensures the independence from the scale of the tensor field.

Filtering out lines with small numeric stability s is a post-process that must
be done manually by a user. In practice, the distribution of s over all found
solutions shows an exponential behavior. In order to facilitate choosing a
threshold, we visualize s on a logarithmic scale.

8.3 Results

We applied our algorithm to stress tensor fields obtained from structural
mechanics simulations of varying complexity. Swirling structures in stress
tensor fields can result from torque induced in part of a structure. As we will
show, it is not always intuitive where this will happen in a complex structure

141

8 Core Lines in 3D Second-Order Tensor Fields

subject to a load or deformation. Computing tensor core lines allows an easy
identification of these phenomena. In this section, we present the results of
our algorithm on several datasets, we analyze its performance and parameter
sensitivity, and we compare our results to the topological skeleton formed by
degenerate lines.

8.3.1 Cylinder

In Figure 8.1 we show the stress trajectories resulting from applying a torque
around the long axis of a cylinder. The yellow line visible in the center is
the result of our algorithm applied to this case after filtering out numerically
unstable solutions. These solutions occur because the third eigenvector, which
is orthogonal to the other two, points outwards from the center line every-
where in the domain. This means that the trajectories of this eigenvector are
straight lines everywhere inside the cylinder. Situations like this are common
in stress tensor fields, and are handled in our algorithm by the threshold M.
Nevertheless, single line segments with low numeric stability s may occur due
to noise (see Figure 8.9). After filtering them out, the clear central line visible
in Figure 8.1 remains.

8.3.2 Handle

This case shows a handle-like structure with a right angle being deformed in
two different ways. One end is fixed, while the other end experiences different
displacements. The first is a rotation around the shaft, which applies a torque
to it. The second includes an additional downward shift. Figure 8.4 shows a
tensor core line in the center of the shaft for both cases. Interestingly, a line
is also visible in the “handle”-part of the structure, even though no direct
torque was applied here. The line in the handle shifts away from the plane of
symmetry in the second deformation case. A look at the tensor field around
the core lines confirms that they are indeed the center of a swirling behavior
of the tensor field.

8.3.3 Truck Bumper

This case shows a load applied to the extreme end of the bumper of a cargo
truck. Applying our algorithm to the dataset results in a large number of lines
being found all over the domain. This may in part be explained by the low
resolution of the simulation. After applying a filter on the numeric stability s,
two lines with high stability stand out. Somewhat counterintuitively, these
are found on the side opposite to the end experiencing the load. In Figure 8.5,
we can clearly see the radial behavior of the tensor field around both lines.

142

8.3 Results

−5

11

log(s)

0

8 · 109
σvM

Figure 8.4: Tensor core lines for two different deformations in the Handle dataset.
On the top, we show the resulting deformations. The von Mises stress σvM is color-
coded on the surface. We represent the tensor core line as tubes in the undeformed
coordinate system. Their color indicates the numerical stability s. The tensor field is
shown for context using elliptical glyphs.

143

8 Core Lines in 3D Second-Order Tensor Fields

Finding these locations by manually inspecting the tensor field in detail would
be a tedious task. Using the tensor core line extractor, they can be identified
at a glance.

8.3.4 Crane

In this dataset, the arm of a crane is exposed to a downward pull applied
to the lower side of a cube at the end (see Figure 8.6). Similar to the truck
bumper, it is not intuitively clear in which parts of the structure a swirling
behavior of the tensors will occur, just from looking at the setup of the case.
Almost all stable solutions we find are located in the diagonal rods on the
lower side. Again, looking closely at the tensors around the core lines, we can
see the radial behavior.

8.3.5 Spring

A simulation of a coil spring being compressed and slightly bent between
two plates is shown in Figure 8.7. Apart from numerical noise in the poorly
resolved plates, we find significant tensor core lines at the center of the coil’s
cross-section. A look at the tensor field visualized by glyphs reveals that in
this case, we do not have a simple swirling behavior of the tensors. Instead,
the tensor field shows something similar to a hyperbolic behavior in vector
fields. In the rightmost picture in Figure 8.7, we can see that eigenvector
trajectories start at the wall on both sides and curve into the same direction.
This direction is reversed on the top and bottom side of the spring. In the
middle, there is a surface where these curves become straight lines along the
diameter of the cross-section. This is exactly where we find a tensor core line.

8.3.6 Performance and Parameter Study

We tested our algorithm using a consumer PC with a 4-core Intel Core i7 cpu
at 3.4 GHz. Our implementation is parallelized over the faces of the dataset
using OpenMP [171]. Performance numbers for the different datasets shown
in this paper are presented in Table 8.1.

The performance of our algorithm is dependent on the dataset. If we
find a large number of tensor core lines in the dataset, computation will be
slower as fewer cells can be discarded early. To examine the dependence
of the performance and results of our algorithm on the parameters M, εt
and εc, we conducted a parameter study. We selected baseline parameters
M = 103, εt = 10−6 and εc = 10−3. We then varied each parameter separately
and applied our algorithm to the cylinder dataset. The results can be seen in
Figure 8.8. We can see that the performance is controlled by the threshold

144

8.3 Results

1

2

1 2
1.5

15

log(s)

0

9 · 106
σvM

Figure 8.5: Tensor core lines in the truck bumper dataset. The deformation shown on
the top left is scaled by a factor of 500 for illustrative purposes. The bottom shows
detail views of two interesting lines with tensor glyphs for context.

0 1.5 · 106

σvM

−7.5 11

log(s)

Figure 8.6: Tensor core lines in the Crane dataset. The resulting deformation on the
left is scaled by a factor of 1500.

145

8 Core Lines in 3D Second-Order Tensor Fields

3

17

log(s)

0

1 · 109
σvM

Figure 8.7: Tensor core lines in the Spring dataset. We visualize the tensors near
the core line with box glyphs in this case. They make it easier to see the hyperbolic
behavior of the eigenvectors that occurs in the coil’s cross-section.

Table 8.1: Performance of the algorithm for the datasets presented in this paper.

Dataset # of cells/103 time/s avg. time per face/ms

Cylinder 65 8 0.034
Handle 235 36 0.038
Truck Bumper 97 32 0.081
Crane 108 63 0.146
Spring 181 82 0.114

146

8.3 Results

0

5

10

15

ru
n

ti
m

e
[s

]

10
1

10
2

10
3

10
4

10
−2

10
−3

10
−6

10
−9

10
−2

10
−3

10
−6

10
−9

0

500

1,000

#
li

ne
s

10
1

10
2

10
3

10
4

M
10
−2

10
−3

10
−6

10
−9

9000

εt

10
−2

10
−3

10
−6

10
−9

17000

εc

Figure 8.8: Run times () and number of found lines in the Cylinder dataset for
various different parameters. We show the total number of lines found () and the
number of lines remaining after filtering out numerically unstable lines ().

M, which controls at which point we assume we are not converging onto an
isolated solution. Increasing M also increases the number of solutions we
find. However, if we look at the number of solutions that remain after filtering
based on numeric stability, it becomes clear that these solutions are only
caused by noise. Increasing M did not result in any additional numerically
stable lines. The parameters εt and εc have almost no noticeable impact on
runtime or solutions, unless we choose unreasonable numbers. In case of εt,
choosing a value that is larger than 10−3 causes an explosion of the number of
found solutions, as the tolerance is not tight enough. Choosing εc smaller than
εt means that candidate solutions belonging to the same cluster often can not
be clustered, because the search radius is smaller than the distance between
the triangle centers. Otherwise, εc is very stable. This is because for solutions
which are isolated points and belong to different eigenvectors, the separation
between clusters in direction space is rather large. This means the choice of
εc is not critical as long as it is not chosen extremely small, or so large that
solutions which belong to different eigenvectors are clustered together.

Stability tests on our other datasets all produced very similar results. We
recommend choosing M = 102, εt = 10−3 and εc = 10−2 if performance is
important. If accuracy is important, we found that choosing stricter tolerances
than M = 103, εt = 10−6 and εc = 10−3 does not produce noticeably better
results.

147

8 Core Lines in 3D Second-Order Tensor Fields

8.3.7 Comparison with Degenerate Lines

Tensor core lines are mathematically distinct from degenerate lines where
two or more eigenvalues are equal. The criterion for finding tensor core lines
is completely independent of the eigenvalues of the tensor field. However,
when looking at our results in stress tensor fields, one might wonder if tensor
core lines coincide with degenerate lines in practice. To investigate this, we
extracted degenerate lines from our datasets using the method presented by
Zheng and Pang [58]. In stress tensor fields, degenerate lines mark locations
where no unique principal directions of stress can be established. We found
that tensor core lines and degenerate lines sometimes coincide, but neither
is a subset of the other. In the Crane dataset, degenerate lines are found
near the center of the lower diagonal rods, where we also find tensor core
lines. However, a lot of degenerate lines are also found in regions where no
tensor core lines are located. In the Truck Bumper dataset, a degenerate line
coincides with one of the two most significant tensor core lines we find, but
not the other one. Closeups of both datasets are shown in Figure 8.10. In
several datasets, such as the Cylinder and Handle, Zheng and Pang’s method
fails to locate any distinct degenerate lines at all.

8.4 Computing pev and Degenerate Lines

The algorithm we have presented for extracting tensor core lines is a generic
root finding algorithm adapted to find simultaneous roots of multiple poly-
nomials. Because of its genericity, we can also use it to extract pev lines and
degenerate lines, which can be expressed as root finding problems of the same
type. This makes it possible to extract several different feature lines from
tensor fields using the same algorithmic framework.

We remember the criterion for pev lines of two tensor fields S and T. A pev
line passes through every point x that satisfies

r ‖ S(x)r ‖ T(x)r .

Again using the fact that the cross product of two parallel vectors is zero, we
translate this to the system of polynomials

(S(x)r)× r = 0

(T(x)r)× r = 0 .
(8.10)

This system has six polynomials that are quadratic in r and linear in x, which
need to become zero at the same time. We can use the same recursive subdivi-
sion algorithm based on the Bernstein-Bézier forms of these polynomials to
find solutions.

148

8.4 Computing PEV and Degenerate Lines

M = 100 M = 1000

M = 10000 filtered

1

20

log(s)

Figure 8.9: Results of our algorithm on the Cylinder dataset for different choices of
M. Increasing M results in more numerically unstable lines being found. If we filter
them out, the result is virtually identical.

Truck Bumper

Crane

Figure 8.10: Com-
parison of unfiltered
tensor core lines
(red/yellow) and
degenerate tensor
lines (blue) for the
Truck Bumper and
Crane dataset. The
red highlights mark
the coincidence of
numerically stable
tensor core lines with
degenerate tensor
lines.

149

8 Core Lines in 3D Second-Order Tensor Fields

Computing pev lines using this scheme has several advantages. The algo-
rithm is somewhat simpler than the one we presented in Section 7.3, as no
two separate nested recursive processes are required. This means that is is
simpler to explain and implement. More importantly, using this algorithm
does not result in false-positive solution candidates that need to be filtered
out. Computing times using this algorithm are however somewhat longer.
This is because the separate recursion in r-space that is used in the original
pev algorithm can frequently be terminated early while the subdivision level
in x-space is still low. This is not possible in the root finding algorithm we
presented here, as it considers both spaces simultaneously.

The extraction of degenerate lines in tensor fields can be expressed as a root
finding problem as well. A degenerate line is located where two eigenvalues
of a tensor field are equal. Zheng et al. [58] showed that these locations can
be expressed as the simultaneous roots of the seven discriminant constraint
functions

fx(T) = T00(T 2
11 − T 2

22) + T00(T 2
01 − T 2

02) + T11(T 2
22 − T 2

00) + T11(T 2
12 − T 2

01)

+ T22(T 2
00 − T 2

11) + T22(T 2
02 − T 2

12)

fy1(T) = T12

(
2(T 2

12 − T 2
00)− (T 2

02 + T 2
01) + 2(T11T00 + T22T00 − T11T22)

)
+ T01T02(2T00 − T22 − T11)

fy2(T) = T02

(
2(T 2

02 − T 2
11)− (T 2

01 + T 2
12) + 2(T22T11 + T00T11 − T22T00)

)
+ T12T01(2T11 − T00 − T22)

fy3(T) = T01

(
2(T 2

01 − T 2
22)− (T 2

12 + T 2
02) + 2(T00T22 + T11T22 − T00T11)

)
+ T02T12(2T22 − T11 − T00)

fz1(T) = T12(T 2
02 − T 2

01) + T01T02(T11 − T22)

fz2(T) = T02(T 2
01 − T 2

12) + T12T01(T22 − T00)

fz3(T) = T01(T 2
12 − T 2

02) + T02T12(T00 − T11) ,

(8.11)

where T = T(x) is the tensor field and Tij are the components of the (symmetric)
tensor. The advantage of using these functions is that it does not require the
explicit computation of eigenvalues. We can find the simultaneous roots of
these seven polynomials that are maximum cubic in x using the same scheme
we used to extract tensor core lines. Since these equations do not depend on a
direction r, we only need to subdivide in x-space. The degenerate lines shown
in Figure 8.10 were computed in this way.

150

8.5 Discussion

8.5 Discussion

We introduced tensor core lines as a new feature of second-order tensor
fields. It enables the quick detection of swirling behavior in tensor field lines.
Such behavior might not have a distinct physical meaning in all applications.
However, finding core lines helps to understand the structure of the tensor
field by breaking down a complex feature into a simple line structure that
can be easily visualized. In this regard, our method fits in well with other
feature-based visualization methods.

Our method is a direct extension of the Sujudi/Haimes method for the
extraction of vortex core lines in vector fields. As such, it shares many of its
advantages and drawbacks. The criterion is completely local and does not
require integration. As such, it is well parallelizable and not vulnerable to
accumulating numerical errors. Still, we are hardly able to reach interactive
run times, as we need to perform an exhaustive search in a 5d space. Like
Sujudi/Haimes, we perform a search on piecewise linear data, which results
in straight lines within cells and discontinuities of the tensor core lines at cell
boundaries. Using higher-order interpolation of the tensor field would help
finding continuous lines.

We have chosen to focus on piecewise linear tensor fields where each tensor
component is interpolated independently. While alternative interpolation
schemes have been proposed [172], component-wise interpolation is still
widely used as a standard approach for both tensor- and vector fields.

Unlike Sujudi/Haimes, we have no way of explicitly ensuring our solu-
tions show only swirling behavior by restricting them to regions where the
derivative has complex eigenvalues. The derivative of the tensor field ∇T is a
third-order tensor, for which the definition of eigenvalues and eigenvectors is
non-trivial [173]. This means that we also find structures similar to hyperbolic
trajectories in vector fields [167, 168]. Further research is necessary in order
to distinguish these different types of features.

We introduced a measure for the numeric stability of tensor core lines.
Unfortunately, filtering out numerically unstable solutions must be done as an
interactive post-processing step, as the threshold is different for each dataset.
It is worth investigating if this process can be automated. Nevertheless, the
measure enables us to distinguish significant and insignificant solutions,
which is a very useful tool for assessing the result of our algorithm.

Our algorithm is numerically very stable. We have three free parameters,
two of which can be chosen in a wide range without significant influence on
the results, as we show in Section 8.3.6. The parameter M, which influences
run time the most, can be chosen the same for most datasets and as such does
not require fine-tuning either.

Our algorithm is only designed for extracting structurally stable line fea-

151

8 Core Lines in 3D Second-Order Tensor Fields

tures, but surfaces or regions where the zero curvature criterion is almost
fulfilled seem to be common in real-world stress tensor data. This might be
due to the common occurrence of symmetries and regular shapes in human-
made objects, which are most frequently the focus of structural analysis. It
would therefore be interesting to investigate if these structures can explicitly
be extracted, possibly by restricting the search space to the edges of tetrahedral
cells.

Finally, it is worth noting that neither the formal definition of tensor core
lines nor the extraction algorithm poses any restrictions on the tensor field,
except that it be differentiable. As such, it might also be used on indefinite
tensor data, such as the Jacobian of a vector field. Finding applications outside
of stress tensor analysis is a subject for further research.

152

9
Conclusion

In the previous two chapters, we extend the idea of a class of feature-based
visualization techniques for vector- and scalar fields to the realm of tensor
fields. In Chapter 7, we establish the pev operator as a direct extension

of the generic pv operator. It finds all locations where two tensor fields have
parallel real eigenvectors. Using this, we translate the concept of vortex core
lines to their counterpart in tensor fields in Chapter 8. These tensor core lines
mark the centers of “swirling” behavior of tensor field lines. Feature lines of
this type can be extracted from piecewise linear data by determining their
intersections with the boundaries of tetrahedral cells. The search for such
intersections is a search for roots of higher-order polynomials, which we solve
using a recursive subdivision algorithm based on their Bernstein-Bézier form.
The intersections are then connected to lines afterwards.

The work presented in this part of the thesis is basic research into higher-
order features in tensor fields. As an application area, we focus on the visu-
alization of stress tensor fields from solid mechanics simulations. In-detail
analysis of the topology and structure of stress tensor fields still is not well es-
tablished within the solid mechanics community. One reason for this might be
that tensor fields are even more complex than vector fields, which are already

153

9 Conclusion

challenging to visualize and understand. The pev operator and tensor core
lines are additions to the visualization toolbox that help to better understand
the complex ways in which forces act in solid materials. Such feature-based
techniques break down complex behavior into simple geometric primitives
that are more easily parsed and understood. Maybe the development of more
such techniques can help to better establish tensor field visualization with
solid mechanics researchers.

154

Appendix

A
Interpolating the Transformation for New
Surface Patches

In Section 5.3.3, we explain how to reconstruct the tangential deformation
experienced by a micro-patch over a finite time interval [ts, te], if that
patch has existed for this whole interval. If instead the patch was created

at time tk > ts as one of the outer patches during a split operation, we have to
estimate the deformation it has experienced until that time from its parent
patch. If the deformation across the parent patch was completely uniform, we
could just pass this deformation on to the child patches after a split. However,
in general there will be slight differences in the transformations which the
neighborhoods of each of the four ghost particles have experienced. At the
time of the split, we still have this information for the time interval since the
last split or merge operation the parent patch was a part of.

Let xi(tk−1) be the positions of the ghost particles (relative to the central
point) at the last reset of the parent patch, or at the start time ts if the patch
was not reset since that time. Let xi(tk) be the ghost particle positions at
the time of the split. Then Etktk−1

obtained via (5.10) can be thought of as the

157

A Interpolating the Transformation for New Surface Patches

x

x1

x2

x3

x4

b1

b2

a
b

x′

x

x1

x2

x3

x4

b1

b2

a b x′

E

E′

tk−1 tk

Figure A.1: Interpolating the transformation at an offset position x′. The ghost
particles in the direction of x′ have been stretched more than their counterparts
during the time interval. Therefore the interpolated E′ has a stronger stretching effect
on the local neighborhood of x′ () than E stretches the local neighborhood of x ().

solution of the system
b1(tk−1)T

b2(tk−1)T

n(tk−1)T

(E tktk−1

)T
=

b1(tk)

T

b2(tk)
T

n(tk)
T

b1(t) = (x1(t)− x2(t))/2

b2(t) = (x3(t)− x4(t))/2.

(A.1)

In other words, E tktk−1
is the average of the transformations that map the corre-

sponding ghost particles to each other exactly.
For the central point, it makes sense to weight those transformations equally,

but if we want to initialize a new patch whose center is slightly offset, we get
a more accurate result if we adjust the weights depending on where the new
center is located. For this purpose, we parameterize the tangent space of the
micro-patch by expressing it as a linear combination of the two basis vectors
b1(t) and b2(t). We can now express the location of the new center x′ in this
new basis:

x′ = λ1b1(tk) +λ2b2(tk) .

These coordinates correspond directly to the coordinates of (E tktk−1
)−1x′ at time

tk−1:
(E tktk−1

)−1 x′ = λ1b1(tk−1) +λ2b2(tk−1) .

If λ1 is positive, i.e., if x′ is located more towards x1(tk) than towards x2(tk),
we want x1(tk) to have a stronger influence on the result. The same applies

158

to the direction of b2. We therefore compute new interpolated basis vectors
b′1,2(t) by weighting the ghost particle positions with λ1 and λ2:

b′1(t) =(1 + 2λ1)x1(t)− (1− 2λ1)x2(t)

b′2(t) =(1 + 2λ2)x3(t)− (1− 2λ2)x4(t) .
(A.2)

The adjusted transformation E tktk−1

′
is then the solution to the system

b′1(tk−1)T

b′2(tk−1)T

n(tk−1)T

(E tktk−1

′)T
=

b′1(tk)

T

b′2(tk)
T

n(tk)
T

 . (A.3)

The complete transformation of a micro-patch that has been split off from a
parent at some intermediate time tk is then obtained by

E tets = E tetn ·E
tn
tn−1
· · · · ·E tk+1

tk
·E tktk−1

′ ·E tk−1
ts

. (A.4)

Here, E tk−1
ts

is the transformation of the parent patch from the start of the
interval up to the time when its ghost particles were last reset before the split
operation at tk . If ts > tk−1, it is omitted. E tktk−1

′
is the estimated transformation

at a point with a slight offset from the center of the parent patch in the interval
before the split. Earlier transformations are inherited as-is from the parent
patch.

159

B
Proof that the Parallel Eigenvectors
Operator Yields Structurally Stable Curves

In Section 7.2, we formulated Theorem 1, which states that the pev oper-
ator yields structurally stable curves that are either closed or end at the
domain boundary. We give the proof for this theorem here. This proof was

derived and written by Holger Theisel.
The main idea to prove Theorem 1 is to search for pev lines not in 3d

(x,y,z) space but in a 6d (x,y,z,u,v,w) space: at every point x = (x,y,z)T, all
vector directions r = (u,v,w)T are checked for being an eigenvector of S and T.
This means that we search for all 6d points (x,r)T fulfilling S(x)r× r = 0 and
T(x)r× r = 0. We formulate this as a search for all 6d points (x,r)T where a 6d
vector field h vanishes:

h(x,r) =
(
S(x)r× r
T(x)r× r

)
= 0 , (B.1)

where 0 is the zero vector in 6d.
Suppose a point (x0,r0)T is on a pev structure, i.e., fulfills Equation (B.1).

In order to study the pev structures in a linear neighborhood of (x0,r0)T, we

161

B Proof that PEV Yields Structurally Stable Curves

search for all directions (dx,dr)T in which h remains zero: ∇h · (dx,dr)T = 0.
In other words: we have to explore the null space of ∇h. Applying elementary
differentiation rules gives

∇h =
(
G1 G3
G2 G4

)
, (B.2)

with

G1 =
(
Sx r× r Sy r× r Sz r× r

)
,

G2 =
(
Tx r× r Ty r× r Tz r× r

)
,

G3 =
(
Se1 × r + Sr× e1 Se2 × r + Sr× e2 Se3 × r + Sr× e3

)
,

G4 =
(
Te1 × r + Tr× e1 Te2 × r + Tr× e2 Te3 × r + Tr× e3

)
,

(B.3)

where Sx,y,z and Tx,y,z are the partial derivatives of the tensor fields and ei are
unit vectors along the coordinates. Then

G1
T r = G2

T r = 0, (B.4)

and from Equation (B.1) follows

G3
T r = G4

T r = 0, (B.5)

and
G3 r = G4 r = 0. (B.6)

Equations (B.4) and (B.5) give that

rank
(
∇h

)
= 4 (B.7)

in the structurally stable case. This means that for rank
(
∇h

)
< 4, adding noise

to S,T brings rank
(
∇h

)
to 4. Equation (B.7) means that the pev structure

around (x0,r0)T is a 2-manifold in 6d. To see Equation (B.7), we consider
a rotation of the underlying coordinate system such that r = (0,0, rz). Then
Equations (B.4) and (B.5) give that the rotated tensors G1,G2,G3,G4 have
vanishing third columns. This and Equation (B.1) gives that ∇h has two
columns, which proves Equation (B.7).

One vector in the null space of ∇h is trivial and denotes a simple scaling of
r: Equations (B.4) to (B.6) give ∇h · (0,r)T = 0. This means that the projection
of the null space of ∇h into the spatial subspace x gives a one-manifold in
3d. This shows that pev gives line structures in 3d. To show that they are
closed, we consider the 6 components of ∇h as scalar fields and interpret the

162

pev structure as intersection of their 5d iso-hypersurfaces. Iso-hypersurfaces
are always closed, which means their intersections are also closed.

Note that the proof did not make any assumptions on the behavior of S,T
around (x0,r0)T. This means that it holds also in case of a transition from real
to imaginary eigenvectors of S or T as well as in regions of isotropic tensors.

163

Bibliography

[1] A. C. Telea. Data Visualization. 2nd ed. A K Peters/CRC Press, 2014
(cit. on p. 10).

[2] M. Levoy. “Display of Surfaces from Volume Data”. In: Computer
Graphics and Applications 8.3 (1988), pp. 29–37 (cit. on p. 11).

[3] R. A. Drebin, L. Carpenter, and P. Hanrahan. “Volume Rendering”. In:
ACM SIGGRAPH Computer Graphics 22.4 (1988), pp. 65–74 (cit. on
p. 11).

[4] G. Kindlmann and J. W. Durkin. “Semi-Automatic Generation of Trans-
fer Functions for Direct Volume Rendering”. In: IEEE Symposium on
Volume Visualization. IEEE Computer Society, 1998, pp. 79–86 (cit. on
p. 11).

[5] R. Peikert and F. Sadlo. “Height Ridge Computation and Filtering for
Visualization”. In: IEEE Pacific Visualization Symposium (PacificVis).
IEEE Computer Society, 2008, pp. 119–126 (cit. on pp. 12, 13).

[6] D. Eberly. Ridges in Image and Data Analysis. Vol. 7. Springer Science
& Business Media, 2012 (cit. on p. 12).

[7] T. Weinkauf. “Extraction of Topological Structures in 2d and 3d Vector
Fields”. PhD thesis. Otto-von-Guericke Universität Magdeburg, 2008
(cit. on p. 14).

[8] B. Cabral and L. C. Leedom. “Imaging Vector Fields Using Line Integral
Convolution”. In: Proc. of SIGGRAPH. ACM, 1993, pp. 263–270 (cit. on
p. 15).

[9] C. Rezk-Salama, P. Hastreiter, C. Teitzel, and T. Ertl. “Interactive Ex-
ploration of Volume Line Integral Convolution Based on 3d-Texture
Mapping”. In: IEEE Conference on Visualization (VIS). IEEE Computer
Society, 1999, pp. 233–528 (cit. on p. 15).

[10] H.-W. Shen and D. L. Kao. “UFLIC: A Line Integral Convolution Al-
gorithm for Visualizing Unsteady Flows”. In: IEEE Conference on Vi-
sualization (VIS). IEEE Computer Society, 1997, pp. 317–322 (cit. on
p. 15).

165

Bibliography

[11] J. J. van Wijk. “Spot Noise Texture Synthesis for Data Visualization”.
In: ACM SIGGRAPH Computer Graphics 25.4 (1991), pp. 309–318 (cit.
on p. 15).

[12] W. C. de Leeuw and J. J. van Wijk. “Enhanced Spot Noise for Vector
Field Visualization”. In: IEEE Conference on Visualization (VIS). IEEE
Computer Society, 1995, pp. 233–239 (cit. on p. 15).

[13] T. Gerrits, C. Rössl, and H. Theisel. “An Approximate Parallel Vectors
Operator for Multiple Vector Fields”. In: Computer Graphics Forum
37.3 (2018), pp. 315–326 (cit. on pp. 17, 116).

[14] J. L. Helman and L. Hesselink. “Visualizing Vector Field Topology
in Fluid Flows”. In: Computer Graphics and Applications 11.3 (1991),
pp. 36–46 (cit. on pp. 19, 20).

[15] A. Surana, O. Grunberg, and G. Haller. “Exact theory of three-dimensional
flow separation. Part 1. Steady separation”. In: Journal of Fluid Mechan-
ics 564 (2006), pp. 57–103 (cit. on p. 20).

[16] J. Helman and L. Hesselink. “Representation and Display of Vector
Field Topology in Fluid Flow Data Sets”. In: Computer 22.8 (1989),
pp. 27–36 (cit. on p. 20).

[17] T. Günther and H. Theisel. “The State of the Art in Vortex Extraction”.
In: Computer Graphics Forum 37.6 (2018), pp. 149–173 (cit. on p. 20).

[18] D. Sujudi and R. Haimes. “Identification of Swirling Flow in 3-D Vector
Fields”. In: 12th Computational Fluid Dynamics Conference. AIAA, 1995,
p. 1715 (cit. on pp. 21, 22, 116, 131, 141).

[19] R. Peikert and M. Roth. “The “Parallel Vectors” Operator – A Vector
Field Visualization Primitive”. In: IEEE Conference on Visualization
(VIS). IEEE Computer Society, 1999, pp. 263–270 (cit. on pp. 21, 23,
113, 116, 131, 135).

[20] T. Weinkauf, J. Sahner, H. Theisel, and H.-C. Hege. “Cores of Swirling
Particle Motion in Unsteady Flows”. In: IEEE Transactions on Visualiza-
tion and Computer Graphics 13.6 (2007), pp. 1759–1766 (cit. on pp. 21,
23).

[21] T. Günther, M. Gross, and H. Theisel. “Generic Objective Vortices for
Flow Visualization”. In: ACM Transactions on Graphics 36.4 (2017),
141:1–141:11 (cit. on pp. 21, 23).

[22] J. Jeong and F. Hussain. “On the Identification of a Vortex”. In: Journal
of Fluid Mechanics 285 (1995), pp. 69–94 (cit. on p. 22).

166

[23] G. Haller, A. Hadjighasem, M. Farazmand, and F. Huhn. “Defining
Coherent Vortices Objectively from the Vorticity”. In: Journal of Fluid
Mechanics 795 (2016), pp. 136–173 (cit. on p. 22).

[24] S. K. Robinson. “Coherent Motions in the Turbulent Boundary Layer”.
In: Annual Review of Fluid Mechanics 23.1 (1991), pp. 601–639 (cit. on
p. 23).

[25] A. Hadjighasem, M. Farazmand, D. Blazevski, G. Froyland, and G.
Haller. “A Critical Comparison of Lagrangian Methods for Coherent
Structure Detection”. In: Chaos 27.5 (2017), p. 053104 (cit. on p. 24).

[26] E. Ott. Chaos in Dynamical Systems. Cambridge University Press, 2002
(cit. on p. 24).

[27] G. Haller. “Distinguished Material Surfaces and Coherent Structures in
Three-Dimensional Fluid Flows”. In: Physica D: Nonlinear Phenomena
149.4 (2001), pp. 248–277 (cit. on p. 24).

[28] E. Aurell, G. Boffetta, A. Crisanti, G. Paladin, and A. Vulpiani. “Pre-
dictability in the Large: An Extension of the Concept of Lyapunov
Exponent”. In: Journal of Physics A: Mathematical and General 30.1
(1997), pp. 1–26 (cit. on p. 24).

[29] S. C. Shadden, F. Lekien, and J. E. Marsden. “Definition and Properties
of Lagrangian Coherent Structures from Finite-Time Lyapunov Expo-
nents in Two-Dimensional Aperiodic Flows”. In: Physica D: Nonlinear
Phenomena 212.3 (2005), pp. 271–304 (cit. on p. 24).

[30] A. Kuhn. “Lagrangian Methods for Visualization and Analysis of Time-
Dependent Vector Fields”. PhD thesis. Otto-von-Guericke Universität
Magdeburg, 2013 (cit. on p. 25).

[31] R. Peikert, A. Pobitzer, F. Sadlo, and B. Schindler. “A Comparison
of Finite-Time and Finite-Size Lyapunov Exponents”. In: Topological
Methods in Data Analysis and Visualization III. Springer, 2014, pp. 187–
200 (cit. on pp. 25, 26).

[32] F. d’Ovidio, V. Fernández, E. Hernández-García, and C. López. “Mix-
ing Structures in the Mediterranean Sea from Finite-Size Lyapunov
Exponents”. In: Geophysical Research Letters 31.17 (2004) (cit. on p. 26).

[33] I. Hernández-Carrasco, C. López, E. Hernández-García, and A. Turiel.
“How Reliable are Finite-Size Lyapunov Exponents for the Assessment
of Ocean Dynamics?” In: Ocean Modelling 36.3 (2011), pp. 208–218
(cit. on p. 26).

167

Bibliography

[34] S. Pajevic and C. Pierpaoli. “Color Schemes to Represent the Orienta-
tion of Anisotropic Tissues from Diffusion Tensor Data: Application to
White Matter Fiber Tract Mapping in the Human Brain”. In: Magnetic
Resonance in Medicine 42.3 (1999), pp. 526–540 (cit. on pp. 27, 29).

[35] G. Kindlmann, D. Weinstein, and D. Hart. “Strategies for Direct Vol-
ume Rendering of Diffusion Tensor Fields”. In: IEEE Transactions on
Visualization and Computer Graphics 6.2 (2000), pp. 124–138 (cit. on
p. 27).

[36] X. Zheng and A. Pang. “HyperLIC”. In: IEEE Conference on Visualiza-
tion (VIS). IEEE Computer Society, 2003, pp. 249–256 (cit. on p. 27).

[37] I. Hotz, L. Feng, H. Hagen, B. Hamann, B. Jeremić, and K. Joy. “Physi-
cally Based Methods for Tensor Field Visualization”. In: IEEE Confer-
ence on Visualization (VIS). IEEE Computer Society, 2004, pp. 123–130
(cit. on pp. 27, 28).

[38] G. Kindlmann and C.-F. Westin. “Diffusion Tensor Visualization With
Glyph Packing”. In: IEEE Transactions on Visualization and Computer
Graphics 12.5 (2006) (cit. on p. 29).

[39] L. Feng, I. Hotz, B. Hamann, and K. I. Joy. “Anisotropic Noise Sam-
ples”. In: IEEE Transactions on Visualization and Computer Graphics
14.2 (2008), pp. 342–354 (cit. on p. 29).

[40] P. J. Basser and C. Pierpaoli. “Microstructural and Physiological Fea-
tures of Tissues Elucidated by Quantitative-Diffusion-Tensor mri”.
In: Journal of Magnetic Resonance, Series B 111.3 (1996), pp. 209–219
(cit. on p. 29).

[41] M. R. Wiegell, H. B. W. Larsson, and V. J. Wedeen. “Fiber Crossing
in Human Brain Depicted with Diffusion Tensor MR Imaging”. In:
Radiology 217.3 (2000), pp. 897–903 (cit. on p. 29).

[42] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit.
4th ed. Kitware, 2006 (cit. on pp. 29, 124).

[43] G. Kindlmann. “Superquadric Tensor Glyphs”. In: Eurographics / IEEE
VGTC Symposium on Visualization (VisSym). The Eurographics Associ-
ation, 2004, pp. 147–154 (cit. on p. 29).

[44] Y. Hashash, J. I. Yao, D. C. Wotring, et al. “Glyph and Hyperstreamline
Representation of Stress and Strain Tensors and Material Constitu-
tive Response”. In: International Journal for Numerical and Analytical
Methods in Geomechanics 27.7 (2003), pp. 603–626 (cit. on p. 29).

168

[45] B. Jeremić, G. Scheuermann, J. Frey, Z. Yang, B. Hamann, K. I. Joy,
and H. Hagen. “Tensor Visualizations in Computational Geomechan-
ics”. In: International Journal for Numerical and Analytical Methods in
Geomechanics 26.10 (2002), pp. 925–944 (cit. on pp. 29, 32).

[46] T. Schultz and G. L. Kindlmann. “Superquadric Glyphs for Symmetric
Second-Order Tensors”. In: IEEE Transactions on Visualization and
Computer Graphics 16.6 (2010), pp. 1595–1604 (cit. on pp. 29, 30).

[47] T. Gerrits, C. Rössl, and H. Theisel. “Glyphs for General Second-Order
2d and 3d Tensors”. In: IEEE Transactions on Visualization and Com-
puter Graphics 23.1 (2017), pp. 980–989 (cit. on p. 30).

[48] M. M. Focht. Photoelasticity. Vol. 1. John Wiley & Sons, 1962 (cit. on
p. 31).

[49] S. P. Timoshenko. History of Strength of Materials. Dover Civil and
Mechanical Engineering. Dover Publications, 1983 (cit. on p. 31).

[50] R. R. Dickinson. “A Unified Approach To The Design Of Visualiza-
tion Software For The Analysis Of Field Problems”. In: Proc. SPIE
1083, Three-Dimensional Visualization and Display Technologies. 1989,
p. 10838 (cit. on p. 31).

[51] X. Tricoche, X. Zhang, and A. Pang. “Visualizing the Topology of Sym-
metric, Second-Order, Time-Varying Two-Dimensional Tensor Fields”.
In: Visualization and Processing of Tensor Fields. Ed. by J. Weickert and
H. Hagen. Springer, 2006, pp. 225–240 (cit. on p. 31).

[52] D. Kelly and M. Tosh. “Interpreting Load Paths and Stress Trajectories
in Elasticity”. In: Engineering Computations 17.2 (2000), pp. 117–135
(cit. on p. 31).

[53] T. Delmarcelle and L. Hesselink. “Visualizing Second-Order Tensor
Fields With Hyperstreamlines”. In: Computer Graphics and Applications
13.4 (1993), pp. 25–33 (cit. on p. 31).

[54] D. Weinstein, G. Kindlmann, and E. Lundberg. “Tensorlines: Advection-
Diffusion Based Propagation Through Diffusion Tensor Fields”. In:
IEEE Conference on Visualization (VIS). IEEE Computer Society, 1999,
pp. 249–253 (cit. on p. 32).

[55] X. Zheng, B. Parlett, and A. Pang. “Topological Structures of 3d Tensor
Fields”. In: IEEE Conference on Visualization (VIS). IEEE Computer
Society, 2005, pp. 551–558 (cit. on pp. 32, 33).

[56] T. Delmarcelle and L. Hesselink. “The Topology of Symmetric, Second-
Order Tensor Fields”. In: IEEE Conference on Visualization (VIS). IEEE
Computer Society, 1994, pp. 140–147 (cit. on p. 33).

169

Bibliography

[57] L. Hesselink, Y. Levy, and Y. Lavin. “The Topology of Symmetric,
Second-Order 3d Tensor Fields”. In: IEEE Transactions on Visualization
and Computer Graphics 3.1 (1997), pp. 1–11 (cit. on p. 33).

[58] X. Zheng and A. Pang. “Topological Lines in 3d Tensor Fields”. In:
IEEE Conference on Visualization (VIS). IEEE Computer Society, 2004,
pp. 313–320 (cit. on pp. 33, 148, 150).

[59] X. Zheng, B. Parlett, and A. Pang. “Topological Lines in 3d Tensor
Fields and Discriminant Hessian Factorization”. In: IEEE Transactions
on Visualization and Computer Graphics 11.4 (2005), pp. 395–407 (cit.
on p. 33).

[60] X. Tricoche, G. Kindlmann, and C.-F. Westin. “Invariant Crease Lines
for Topological and Structural Analysis of Tensor Fields”. In: IEEE
Transactions on Visualization and Computer Graphics 14.6 (2008), pp. 1627–
1634 (cit. on p. 33).

[61] J. Palacios, H. Yeh, W. Wang, Y. Zhang, R. S. Laramee, R. Sharma, T.
Schultz, and E. Zhang. “Feature Surfaces in Symmetric Tensor Fields
Based on Eigenvalue Manifold”. In: IEEE Transactions on Visualization
and Computer Graphics 22.3 (2016), pp. 1248–1260 (cit. on p. 33).

[62] L. Roy, P. Kumar, Y. Zhang, and E. Zhang. “Robust and Fast Extraction
of 3d Symmetric Tensor Field Topology”. In: IEEE Transactions on
Visualization and Computer Graphics 25.1 (2019), pp. 1102–1111 (cit.
on p. 34).

[63] X. Zheng and A. Pang. “2d Asymmetric Tensor Analysis”. In: IEEE
Conference on Visualization (VIS). IEEE Computer Society, 2005, pp. 3–
10 (cit. on p. 34).

[64] E. Zhang, H. Yeh, Z. Lin, and R. S. Laramee. “Asymmetric Tensor
Analysis for Flow Visualization”. In: IEEE Transactions on Visualization
and Computer Graphics 15.1 (2009), pp. 106–122 (cit. on p. 34).

[65] T. Poinsot and D. Veynante. Theoretical and Numerical Combustion.
2012 (cit. on pp. 37–39, 41, 42, 49, 67, 86).

[66] J. A. Miller, R. E. Mitchell, M. D. Smooke, and R. J. Kee. “Toward a
Comprehensive Chemical Kinetic Mechanism for the Oxidation of
Acetylene: Comparison of Model Predictions with Results from Flame
and Shock Tube Experiments”. In: Symposium (International) on Com-
bustion 19.1 (1982), pp. 181–196 (cit. on pp. 46, 47).

170

[67] J. H. Chen, A. Choudhary, B. de Supinski, M. deVries, E. R. Hawkes, S.
Klasky, W.-K. Liao, K.-L. Ma, J. Mellor-Crummey, N. Podhorszki, et al.
“Terascale Direct Numerical Simulations of Turbulent Combustion Us-
ing S3D”. In: Computational Science & Discovery 2.1 (2009), p. 015001
(cit. on p. 51).

[68] S. Treichler, M. Bauer, A. Bhagatwala, G. Borghesi, R. Sankaran, H.
Kolla, P. S. McCormick, E. Slaughter, W. Lee, A. Aiken, and J. Chen.
“S3D-Legion: An Exascale Software for Direct Numerical Simulation
of Turbulent Combustion with Complex Multicomponent Chemistry”.
In: ed. by T. P. Straatsma, K. B. Antypas, and T. J. Williams. 1st ed.
Chapman and Hall/CRC, 2017. Chap. 12, pp. 257–278 (cit. on p. 51).

[69] A. Abdelsamie, G. Fru, T. Oster, F. Dietzsch, G. Janiga, and D. Thévenin.
“Towards Direct Numerical Simulations of Low-Mach Number Turbu-
lent Reacting and Two-Phase Flows Using Immersed Boundaries”. In:
Computers & Fluids 131 (2016), pp. 123–141 (cit. on pp. 51, 55, 95).

[70] R. Sankaran, E. R. Hawkes, J. H. Chen, T. Lu, and C. K. Law. “Structure
of a Spatially Developing Turbulent Lean Methane-Air Bunsen Flame”.
In: Proceedings of the Combustion Institute 31.1 (2007), pp. 1291–1298
(cit. on p. 52).

[71] E. R. Hawkes and J. H. Chen. “Comparison of Direct Numerical Simu-
lation of Lean Premixed Methane-Air Flames with Strained Laminar
Flame Calculations”. In: Combustion and Flame 144.1 (2006), pp. 112–
125 (cit. on p. 52).

[72] P. Yeung, S. Girimaji, and S. Pope. “Straining and Scalar Dissipation
on Material Surfaces in Turbulence: Implications for Flamelets”. In:
Combustion and Flame 79.3 (1990), pp. 340–365 (cit. on pp. 52, 85, 86).

[73] P. Sripakagorn, S. Mitarai, G. Kosály, and H. Pitsch. “Extinction and
Reignition in a Diffusion Flame: A Direct Numerical Simulation Study”.
In: Journal of Fluid Mechanics 518 (2004), pp. 231–259 (cit. on pp. 52,
85, 86, 108).

[74] A. Scholtissek, F. Dietzsch, M. Gauding, and C. Hasse. “In-Situ Track-
ing of Mixture Fraction Gradient Trajectories and Unsteady Flamelet
Analysis in Turbulent Non-Premixed Combustion”. In: Combustion
and Flame 175 (2017), pp. 243–258 (cit. on pp. 52, 86, 108).

[75] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pug-
mire, K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan,
T. Fogal, A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Rübel,
M. Durant, J. M. Favre, and P. Navrátil. “VisIt: An End-User Tool For
Visualizing and Analyzing Very Large Data”. In: High Performance

171

Bibliography

Visualization–Enabling Extreme-Scale Scientific Insight. Chapman and
Hall/CRC, 2012, pp. 357–372 (cit. on p. 55).

[76] J. Ahrens, B. Geveci, C. Law, C. Hansen, and C. Johnson. “ParaView:
An End-User Tool for Large-Data Visualization”. In: The Visualization
Handbook. Elsevier, 2005 (cit. on p. 55).

[77] C. Zistl, R. Hilbert, G. Janiga, and D. Thévenin. “Increasing the Effi-
ciency of Postprocessing for Turbulent Reacting Flows”. In: Computing
and Visualization in Science 12.8 (2009), pp. 383–395 (cit. on pp. 56,
65).

[78] P.-T. Bremer, G. H. Weber, J. Tierny, V. Pascucci, M. S. Day, and J. B.
Bell. “A Topological Framework for the Interactive Exploration of
Large Scale Turbulent Combustion”. In: IEEE International Conference
on e-Science. IEEE Computer Society, 2009, pp. 247–254 (cit. on pp. 56,
61, 66).

[79] P. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell. “In-
teractive Exploration and Analysis of Large-Scale Simulations Using
Topology-Based Data Segmentation”. In: IEEE Transactions on Visu-
alization and Computer Graphics 17.9 (2011), pp. 1307–1324 (cit. on
pp. 56, 61, 66).

[80] P.-T. Bremer, G. H. Weber, V. Pascucci, M. Day, and J. B. Bell. “Ana-
lyzing and Tracking Burning Structures in Lean Premixed Hydrogen
Flames”. In: IEEE Transactions on Visualization and Computer Graphics
16.2 (2010), pp. 248–260 (cit. on pp. 56, 66, 87).

[81] Y. Wang, H. Yu, and K.-L. Ma. “Scalable Parallel Feature Extraction
and Tracking for Large Time-Varying 3d Volume Data.” In: Eurograph-
ics Symposium on Parallel Graphics and Visualization (EGPGV). The
Eurographics Association, 2013, pp. 17–24 (cit. on pp. 56, 87).

[82] A. Schnorr, D. N. Helmrich, D. Denker, T. Kuhlen, and B. Hentschel.
“Feature Tracking by Two-Step Optimization”. In: IEEE Transactions
on Visualization and Computer Graphics (2018). Advance online publi-
cation. doi: 10.1109/TVCG.2018.2883630 (cit. on p. 56).

[83] F. Sauer, H. Yu, and K.-L. Ma. “Trajectory-Based Flow Feature Tracking
in Joint Particle/Volume Datasets”. In: IEEE Transactions on Visualiza-
tion and Computer Graphics 20.12 (2014), pp. 2565–2574 (cit. on pp. 56,
86).

[84] J. Wei, H. Yu, R. W. Grout, J. H. Chen, and K. Ma. “Dual Space Analysis
of Turbulent Combustion Particle Data”. In: IEEE Pacific Visualization
Symposium (PacificVis). IEEE Computer Society, 2011, pp. 91–98 (cit.
on pp. 56, 57).

172

http://doi.org/10.1109/TVCG.2018.2883630

[85] K.-L. Ma. “In Situ Visualization at Extreme Scale: Challenges and
Opportunities”. In: Computer Graphics and Applications 29.6 (2009),
pp. 14–19 (cit. on pp. 56, 108).

[86] U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian,
and J. Mauldin. “ParaView Catalyst: Enabling In Situ Data Analysis
and Visualization”. In: Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization. ACM, 2015, pp. 25–29 (cit. on
p. 58).

[87] B. Whitlock, J. M. Favre, and J. S. Meredith. “Parallel In Situ Coupling
of Simulation with a Fully Featured Visualization System”. In: Euro-
graphics Symposium on Parallel Graphics and Visualization (EGPGV).
The Eurographics Association, 2011, pp. 101–109 (cit. on p. 58).

[88] M. Larsen, E. Brugger, H. Childs, J. Eliot, K. Griffin, and C. Harrison.
“Strawman: A Batch In Situ Visualization and Analysis Infrastructure
for Multi-Physics Simulation Codes”. In: Workshop on In Situ Infras-
tructures for Enabling Extreme-Scale Analysis and Visualization. ACM,
2015, pp. 30–35 (cit. on p. 58).

[89] J. S. Meredith, S. Ahern, D. Pugmire, and R. Sisneros. “EAVL: The
Extreme-scale Analysis and Visualization Library”. In: Eurographics
Symposium on Parallel Graphics and Visualization (EGPGV). The Euro-
graphics Association, 2012, pp. 21–30 (cit. on p. 58).

[90] K. Moreland, U. Ayachit, B. Geveci, and K.-L. Ma. “DAX Toolkit: A
Proposed Framework for Data Analysis and Visualization at Extreme
Scale”. In: IEEE Symposium on Large Data Analysis and Visualization
(LDAV). IEEE Computer Society, 2011, pp. 97–104 (cit. on p. 58).

[91] L.-T. Lo, C. Sewell, and J. Ahrens. “PISTON: A Portable Cross-Platform
Framework for Data-Parallel Visualization Operators”. In: Eurograph-
ics Symposium on Parallel Graphics and Visualization (EGPGV). The
Eurographics Association, 2012, pp. 11–20 (cit. on p. 58).

[92] K. Moreland, C. Sewell, W. Usher, L. Lo, J. Meredith, D. Pugmire, J.
Kress, H. Schroots, K.-L. Ma, H. Childs, M. Larsen, C. Chen, R. May-
nard, and B. Geveci. “VTK-m: Accelerating the Visualization Toolkit
for Massively Threaded Architectures”. In: Computer Graphics and
Applications 36.3 (2016), pp. 48–58 (cit. on p. 58).

[93] V. Vishwanath, M. Hereld, and M. E. Papka. “Toward Simulation-Time
Data Analysis and I/O Acceleration on Leadership-Class Systems”. In:
IEEE Symposium on Large Data Analysis and Visualization (LDAV). IEEE
Computer Society, 2011, pp. 9–14 (cit. on p. 58).

173

Bibliography

[94] J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert, and J.-G. Piccinali.
“Parallel Computational Steering and Analysis for HPC Applications
using a ParaView Interface and the HDF5 DSM Virtual File Driver”. In:
Eurographics Symposium on Parallel Graphics and Visualization (EGPGV).
The Eurographics Association, 2011, pp. 91–100 (cit. on p. 58).

[95] M. Dorier, R. Sisneros, T. Peterka, G. Antoniu, and D. Semeraro. “Damaris/Viz:
A Nonintrusive, Adaptable and User-Friendly In Situ Visualization
Framework”. In: IEEE Symposium on Large-Scale Data Analysis and
Visualization (LDAV). IEEE Computer Society, 2013, pp. 67–75 (cit. on
p. 58).

[96] T. Fogal, F. Proch, A. Schiewe, O. Hasemann, A. Kempf, and J. Krüger.
“Freeprocessing: Transparent in Situ Visualization via Data Intercep-
tion”. In: Eurographics Symposium on Parallel Graphics and Visualiza-
tion (EGPGV). The Eurographics Association, 2014, pp. 49–56 (cit. on
p. 58).

[97] F. Zheng, H. Yu, C. Hantas, M. Wolf, G. Eisenhauer, K. Schwan, H.
Abbasi, and S. Klasky. “GoldRush: Resource Efficient in Situ Scientific
Data Analytics Using Fine-grained Interference Aware Execution”. In:
Proceedings of the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis. ACM, 2013, 78:1–78:12 (cit. on
p. 59).

[98] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky, M.
Parashar, N. Podhorszki, K. Schwan, and M. Wolf. “PreDatA – Prepara-
tory Data Analytics on Peta-scale Machines”. In: IEEE International
Symposium on Parallel Distributed Processing (IPDPS). IEEE Computer
Society, 2010, pp. 1–12 (cit. on p. 59).

[99] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng.
“DataStager: Scalable Data Staging Services for Petascale Applications”.
In: Cluster Computing 13.3 (2010), pp. 277–290 (cit. on p. 59).

[100] H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and S. Klasky. “Just
in Time: Adding Value to the IO Pipelines of High Performance Ap-
plications with JITStaging”. In: Proceedings of the 20th International
Symposium on High Performance Distributed Computing. ACM, 2011,
pp. 27–36 (cit. on p. 59).

[101] C. Docan, M. Parashar, J. Cummings, and S. Klasky. “Moving the
Code to the Data - Dynamic Code Deployment Using ActiveSpaces”.
In: IEEE International Parallel Distributed Processing Symposium. IEEE
Computer Society, 2011, pp. 758–769 (cit. on p. 59).

174

[102] C. Docan, M. Parashar, and S. Klasky. “DataSpaces: An Interaction
and Coordination Framework for Coupled Simulation Workflows”. In:
Cluster Computing 15.2 (2012), pp. 163–181 (cit. on p. 59).

[103] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay, D. Thompson, H.
Yu, F. Zhang, and J. Chen. “Combining In-situ and In-transit Process-
ing to Enable Extreme-scale Scientific Analysis”. In: Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society, 2012, 49:1–49:9 (cit. on
p. 59).

[104] H. Yu, C. Wang, and K.-L. Ma. “Massively Parallel Volume Render-
ing Using 2-3 Swap Image Compositing”. In: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing. IEEE Computer Society,
2008, 48:1–48:11 (cit. on pp. 59, 60).

[105] W. Kendall, T. Peterka, J. Huang, H.-W. Shen, and R. Ross. “Accelerat-
ing and Benchmarking Radix-k Image Compositing at Large Scale”. In:
Eurographics Symposium on Parallel Graphics and Visualization (EGPGV).
The Eurographics Association, 2010, pp. 101–110 (cit. on p. 59).

[106] K. Moreland, W. Kendall, T. Peterka, and J. Huang. “An Image Com-
positing Solution at Scale”. In: Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage and Analysis.
ACM, 2011, 25:1–25:10 (cit. on p. 59).

[107] X. Cavin and O. Demengeon. “Shift-Based Parallel Image Composit-
ing on InfiniBand Fat-Trees”. In: Eurographics Symposium on Parallel
Graphics and Visualization (EGPGV). The Eurographics Association,
2012, pp. 129–138 (cit. on p. 59).

[108] J. Nonaka, K. Ono, and M. Fujita. “Multi-step Image Compositing for
Massively Parallel Rendering”. In: 2014 International Conference on
High Performance Computing Simulation (HPCS). 2014, pp. 627–634
(cit. on p. 59).

[109] A. V. P. Grosset, A. Knoll, and C. Hansen. “Dynamically Scheduled
Region-based Image Compositing”. In: Eurographics Symposium on
Parallel Graphics and Visualization (EGPGV). The Eurographics Associ-
ation, 2016, pp. 79–88 (cit. on p. 59).

[110] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham, R.
Ross, and N. F. Samatova. “Compressing the Incompressible with
ISABELA: In-situ Reduction of Spatio-temporal Data”. In: European
Conference on Parallel Processing (Euro-Par). Springer, 2011, pp. 366–
379 (cit. on pp. 59, 66).

175

Bibliography

[111] A. Kageyama and T. Yamada. “An Approach to Exascale Visualization:
Interactive Viewing of In-Situ Visualization”. In: Computer Physics
Communications 185.1 (2014), pp. 79–85 (cit. on pp. 59, 60).

[112] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and M.
Petersen. “An Image-based Approach to Extreme Scale in Situ Visual-
ization and Analysis”. In: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis. IEEE
Computer Society, 2014, pp. 424–434 (cit. on pp. 59, 60).

[113] H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K.-L. Ma. “In Situ Vi-
sualization for Large-Scale Combustion Simulations”. In: Computer
Graphics and Applications 30.3 (2010), pp. 45–57 (cit. on p. 60).

[114] A. Tikhonova, H. Yu, C. D. Correa, J. H. Chen, and K.-L. Ma. “A Preview
and Exploratory Technique for Large-Scale Scientific Simulations”. In:
Eurographics Symposium on Parallel Graphics and Visualization (EGPGV).
The Eurographics Association, 2011, pp. 111–120 (cit. on p. 60).

[115] J. Chen, D. Silver, and M. Parashar. “Real-time Feature Extraction and
Tracking in a Computational Steering Environment”. In: Proceedings of
the Advanced Simulations Technologies Confenrence. 2003 (cit. on p. 60).

[116] F. Zhang, S. Lasluisa, T. Jin, I. Rodero, H. Bui, and M. Parashar. “In-situ
Feature-Based Objects Tracking for Large-Scale Scientific Simulations”.
In: 2012 SC Companion: High Performance Computing, Networking Stor-
age and Analysis. 2012, pp. 736–740 (cit. on p. 60).

[117] A. Quiroz, N. Gnanasambandam, M. Parashar, and N. Sharma. “Ro-
bust Clustering Analysis for the Management of Self-monitoring Dis-
tributed Systems”. In: Cluster Computing 12.1 (2008), p. 73 (cit. on
p. 60).

[118] E. P. N. Duque, D. Hiepler, C. P. Stone, S. M. Legensky, K.-L. Ma, C.
Muelder, and J. Wei. “IFDT – Intelligent In-Situ Feature Detection, Ex-
traction, Tracking and Visualization for Turbulent Flow Simulations”.
In: 7th International Conference on Computational Fluid Dynamics. 2012
(cit. on pp. 61, 86).

[119] Y. C. Ye, Y. Wang, R. Miller, K.-L. Ma, and K. Ono. “In Situ Depth Maps
Based Feature Extraction and Tracking”. In: IEEE Symposium on Large
Data Analysis and Visualization (LDAV). 2015, pp. 1–8 (cit. on p. 61).

[120] A. G. Landge, V. Pascucci, A. Gyulassy, J. C. Bennett, H. Kolla, J. Chen,
and P.-T. Bremer. “In-Situ Feature Extraction of Large Scale Combus-
tion Simulations Using Segmented Merge Trees”. In: Proceedings of the
International Conference on High Performance Computing, Networking,

176

Storage and Analysis. IEEE Computer Society, 2014, pp. 1020–1031
(cit. on pp. 61, 66).

[121] Y. C. Ye, T. Neuroth, F. Sauer, K.-L. Ma, G. Borghesi, A. Konduri,
H. Kolla, and J. Chen. “In Situ Generated Probability Distribution
Functions for Interactive Post Hoc Visualization and Analysis”. In:
IEEE Symposium on Large Data Analysis and Visualization (LDAV). IEEE
Computer Society, 2016, pp. 65–74 (cit. on pp. 61, 66).

[122] T. Oster, D. J. Lehmann, G. Fru, H. Theisel, and D. Thévenin. “Sparse
Representation and Visualization for Direct Numerical Simulation
of Premixed Combustion”. In: Computer Graphics Forum 33.3 (2014),
pp. 321–330 (cit. on p. 65).

[123] S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, H. Kolla, S.-H.
Ku, S. Ethier, J. Chen, C. S. Chang, S. Klasky, R. Latham, R. Ross, and
N. F. Samatova. “ISABELA-QA: Query-driven Analytics with ISABELA-
compressed Extreme-scale Scientific Data”. In: Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage
and Analysis. ACM, 2011, 31:1–31:11 (cit. on p. 66).

[124] J.-D. Boissonnat and S. Oudot. “Provably Good Sampling and Meshing
of Surfaces”. In: Graphical Models 67.5 (2005), pp. 405–451 (cit. on
p. 67).

[125] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Möller. “Curvature-
Based Transfer Functions for Direct Volume Rendering: Methods and
Applications”. In: IEEE Conference on Visualization (VIS). IEEE Com-
puter Society, 2003, pp. 513–520 (cit. on p. 67).

[126] B. Jähne. Digital Image Processing. Springer, 2005 (cit. on p. 70).

[127] B. T. Phong. “Illumination for Computer Generated Pictures”. In:
Communications of the ACM 18.6 (1975), pp. 311–317 (cit. on p. 76).

[128] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu.
“An Optimal Algorithm for Approximate Nearest Neighbor Searching
in Fixed Dimensions”. In: Journal of the ACM 45.6 (1998), pp. 891–923
(cit. on p. 78).

[129] D. Shepard. “A Two-dimensional Interpolation Function for Irregularly-
spaced Data”. In: Proceedings of the 1968 23rd ACM National Conference.
ACM, 1968, pp. 517–524 (cit. on p. 78).

[130] B.-J. Kim, Z. Xiong, and W. A. Pearlman. “Low Bit-Rate Scalable Video
Coding With 3-D Set Partitioning in Hierarchical Trees (3-D SPIHT)”.
In: IEEE Transactions on Circuits and Systems for Video Technology 10.8
(2000), pp. 1374–1387 (cit. on p. 79).

177

Bibliography

[131] J. E. Fowler. “QccPack: An Open-Source Software Library for Quan-
tization, Compression, and Coding”. In: International Symposium on
Optical Science and Technology. International Society for Optics and
Photonics. 2000, pp. 294–301 (cit. on p. 79).

[132] A. Ferrante and S. Elghobashi. “On the Physical Mechanisms of Two-
Way Coupling in Particle-Laden Isotropic Turbulence”. In: Physics of
Fluids 15.2 (2003), pp. 315–329 (cit. on p. 82).

[133] T. Oster, A. Abdelsamie, M. Motejat, T. Gerrits, C. Rössl, D. Thévenin,
and H. Theisel. “On-The-Fly Tracking of Flame Surfaces for the Visual
Analysis of Combustion Processes”. In: Computer Graphics Forum 37.6
(2018), pp. 358–369 (cit. on pp. 85, 99).

[134] C. Garth, A. Wiebel, X. Tricoche, K. Joy, and G. Scheuermann. “La-
grangian Visualization of Flow-Embedded Surface Structures”. In:
Computer Graphics Forum 27.3 (2008), pp. 1007–1014 (cit. on p. 86).

[135] D. Silver and X.Wang. “Tracking and Visualizing Turbulent 3d Fea-
tures”. In: IEEE Transactions on Visualization and Computer Graphics
3.2 (1997), pp. 129–141 (cit. on p. 86).

[136] J. Clyne, P. Mininni, and A. Norton. “Physically-Based Feature Tracking
for CFD Data”. In: IEEE Transactions on Visualization and Computer
Graphics 19.6 (2013), pp. 1020–1033 (cit. on p. 86).

[137] A. Mascarenhas, R. W. Grout, C. S. Yoo, and J. H. Chen. “Tracking
Flame Base Movement and Interaction With Ignition Kernels Using
Topological Methods”. In: Journal of Physics: Conference Series 180.1
(2009), p. 012086 (cit. on p. 86).

[138] C. Muelder and K.-L. Ma. “Interactive Feature Extraction and Tracking
by Utilizing Region Coherency”. In: IEEE Pacific Visualization Sym-
posium (PacificVis). IEEE Computer Society, 2009, pp. 17–24 (cit. on
p. 86).

[139] C. Garth, X. Tricoche, and G. Scheuermann. “Tracking of Vector Field
Singularities in Unstructured 3d Time-Dependent Datasets”. In: IEEE
Conference on Visualization (VIS). IEEE Computer Society, 2004, pp. 329–
336 (cit. on p. 87).

[140] H. Theisel and H.-P. Seidel. “Feature Flow Fields”. In: Eurographics /
IEEE VGTC Symposium on Visualization (VisSym). The Eurographics
Association, 2003, pp. 141–148 (cit. on pp. 87, 116).

[141] P. Crossno and E. Angel. “Isosurface Extraction Using Particle Sys-
tems”. In: IEEE Conference on Visualization (VIS). IEEE Computer
Society, 1997, pp. 495–498 (cit. on p. 87).

178

[142] H. Krishnan, C. Garth, and K. I. Joy. “Time and Streak Surfaces for Flow
Visualization in Large Time-Varying Data Sets”. In: IEEE Transactions
on Visualization and Computer Graphics 15.6 (2009), pp. 1267–1274
(cit. on p. 87).

[143] K. Bürger, F. Ferstl, H. Theisel, and R. Westermann. “Interactive Streak
Surface Visualization on the GPU”. In: IEEE Transactions on Visual-
ization and Computer Graphics 15.6 (2009), pp. 1259–1266 (cit. on
p. 87).

[144] A. Berres, H. Obermaier, K. Joy, and H. Hagen. “Adaptive Particle
Relaxation for Time Surfaces”. In: IEEE Pacific Visualization Symposium
(PacificVis). IEEE Computer Society, 2015, pp. 147–151 (cit. on p. 87).

[145] D. Camp, H. Childs, C. Garth, D. Pugmire, and K. I. Joy. “Parallel
Stream Surface Computation for Large Data Sets”. In: IEEE Sympo-
sium on Large Data Analysis and Visualization (LDAV). IEEE Computer
Society, 2012, pp. 39–47 (cit. on p. 87).

[146] MPI Forum. MPI: A Message-Passing Interface Standard, Version 3.1.
High Performance Computing Center Stuttgart (HLRS), 2015 (cit. on
p. 96).

[147] G. Haller. “Lagrangian Coherent Structures From Approximate Ve-
locity Data”. In: Physics of Fluids 14.6 (2002), pp. 1851–1861 (cit. on
p. 99).

[148] T. Oster, C. Rössl, and H. Theisel. “The Parallel Eigenvectors Opera-
tor”. In: International Symposium on Vision, Modeling and Visualization
(VMV). The Eurographics Association, 2018 (cit. on p. 113).

[149] R. Haralick. “Ridges and Valleys on Digital Images”. In: Computer
Vision, Graphics, and Image Processing 22 (1983), pp. 28–38 (cit. on
p. 116).

[150] D. Kenwright, C. Henze, and C. Levit. “Feature Extraction of Separa-
tion and Attachment Lines”. In: IEEE Transactions on Visualization and
Computer Graphics 5.2 (1999), pp. 135–144 (cit. on p. 116).

[151] D. C. Banks and B. A. Singer. “A Predictor-Corrector Technique for
Visualizing Unsteady Flow”. In: IEEE Transactions on Visualization and
Computer Graphics 1.2 (1995), pp. 151–163 (cit. on p. 116).

[152] M. Roth. “Automatic Extraction of Vortex Core Lines and Other Line
Type Features for Scientific Visualization”. PhD thesis. ETH Zürich,
2000 (cit. on p. 116).

[153] H. Miura and S. Kida. “Identification of Tubular Vortices in Turbu-
lence”. In: Journal of the Physical Society of Japan 66.5 (1997), pp. 1331–
1334 (cit. on p. 116).

179

Bibliography

[154] J. Sukharev, X. Zheng, and A. Pang. “Tracing Parallel Vectors”. In: Proc.
SPIE 6060, Visualization and Data Analysis. International Society for
Optics and Photonics. 2006, p. 606011 (cit. on p. 116).

[155] A. van Gelder and A. Pang. “Using PVsolve to Analyze and Locate
Positions of Parallel Vectors”. In: IEEE Transactions on Visualization
and Computer Graphics 15.4 (2009), pp. 682–695 (cit. on p. 116).

[156] T. Weinkauf, H. Theisel, A. V. Gelder, and A. Pang. “Stable Feature Flow
Fields”. In: IEEE Transactions on Visualization and Computer Graphics
17.6 (2011), pp. 770–780 (cit. on p. 116).

[157] M. Roth and R. Peikert. “A Higher-Order Method for Finding Vortex
Core Lines”. In: IEEE Conference on Visualization (VIS). IEEE Computer
Society, 1998, pp. 143–150 (cit. on p. 116).

[158] D. Bauer and R. Peikert. “Vortex Tracking in Scale-Space”. In: Eu-
rographics / IEEE VGTC Symposium on Visualization (VisSym). The
Eurographics Association, 2002, pp. 233–240 (cit. on p. 116).

[159] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. “Topological
Methods for 2d Time-Dependent Vector Fields Based on Stream Lines
and Path Lines”. In: IEEE Transactions on Visualization and Computer
Graphics 4 (2005), pp. 383–394 (cit. on p. 116).

[160] R. Fuchs, R. Peikert, H. Hauser, F. Sadlo, and P. Muigg. “Parallel Vec-
tors Criteria for Unsteady Flow Vortices”. In: IEEE Transactions on
Visualization and Computer Graphics 14 (2007), pp. 615–626 (cit. on
p. 116).

[161] C. Pagot, D. Osmari, F. Sadlo, D. Weiskopf, T. Ertl, and J. Comba.
“Efficient Parallel Vectors Feature Extraction From Higher-Order Data”.
In: Computer Graphics Forum 30.3 (2011), pp. 751–760 (cit. on p. 116).

[162] G. Farin. Curves and Surfaces for Computer Aided Geometric Design.
4th ed. Boston: Academic Press, 1997 (cit. on p. 120).

[163] B. S. Everitt, S. Landau, M. Leese, and D. Stahl. “Hierarchical Cluster-
ing”. In: Cluster Analysis. Wiley-Blackwell, 2011. Chap. 4, pp. 71–110
(cit. on p. 122).

[164] A. S. Saada. Elasticity: Theory and Applications. Vol. 16. Elsevier, 2013
(cit. on p. 124).

[165] OpenFOAM: The Open Source CFD Toolbox. http://www.openfoam.
org (cit. on p. 126).

[166] T. Oster, C. Rössl, and H. Theisel. “Core Lines in 3d Second-Order
Tensor Fields”. In: Computer Graphics Forum 37.3 (2018), pp. 327–337
(cit. on p. 131).

180

http://www.openfoam.org
http://www.openfoam.org

[167] G. M. Machado, F. Sadlo, and T. Ertl. “Local Extraction of Bifurcation
Lines”. In: International Symposium on Vision, Modeling and Visualiza-
tion (VMV). The Eurographics Association, 2013, pp. 17–24 (cit. on
pp. 133, 151).

[168] G. M. Machado, S. Boblest, T. Ertl, and F. Sadlo. “Space-Time Bifur-
cation Lines for Extraction of 2d Lagrangian Coherent Structures”.
In: Computer Graphics Forum 35.3 (2016), pp. 91–100 (cit. on pp. 133,
151).

[169] J. Hoschek and D. Lasser. Fundamentals of Computer Aided Geometric
Design. A K Peters, 1993 (cit. on pp. 136, 138).

[170] A. Rockwood, K. Heaton, and T. Davis. “Real-Time Rendering of
Trimmed Surfaces”. In: ACM SIGGRAPH Computer Graphics 23.3 (1989),
pp. 107–116 (cit. on p. 138).

[171] OpenMP Architecture Review Board. OpenMP Application Program
Interface Version 4.0. 2013 (cit. on p. 144).

[172] G. Kindlmann, X. Tricoche, and C.-F. Westin. “Delineating White
Matter Structure in Diffusion Tensor mriWith Anisotropy Creases”.
In: Medical Image Analysis 11.5 (2007), pp. 492–502 (cit. on p. 151).

[173] X. Zheng and P. Palffy-Muhoray. “Eigenvalue Decomposition for Ten-
sors of Arbitrary Rank”. In: electronic-Liquid Crystal Communications
(2007) (cit. on p. 151).

181

	Abstract
	Contents
	1 Introduction
	1.1 Contributions
	1.1.1 Analysis and Visualization of the Flame Surface in Turbulent Combustion Simulations
	1.1.2 Line Features in 3D Second-Order Tensor Fields

	1.2 Thesis Structure
	1.3 List of Publications
	1.4 Notation

	I Background
	2 An Overview of Scientific Visualization
	2.1 Scalar Field Visualization
	2.1.1 Image-Based Methods
	2.1.2 Geometry-Based Methods

	2.2 Vector Field Visualization
	2.2.1 Basic Methods
	2.2.2 Image-Based Methods
	2.2.3 Integral Curves and -Surfaces
	2.2.4 Vector Field Topology
	2.2.5 Vortex Extraction
	2.2.6 Lagrangian Coherent Structures

	2.3 Second-Order Tensor Field Visualization
	2.3.1 Direct Methods
	2.3.2 Image-Based Methods
	2.3.3 Glyph-Based Methods
	2.3.4 Line-/Surface-Based Methods
	2.3.5 Topological Methods

	3 Introduction to Turbulent Combustion
	3.1 Combustion
	3.1.1 Laminar Flames
	3.1.2 Turbulent Flames

	3.2 Modeling and Simulation of Turbulent Combustion
	3.2.1 Chemical Schemes
	3.2.2 The Flamelet Assumption
	3.2.3 High-Level Models: RANS and LES
	3.2.4 Direct Numerical Simulations

	3.3 Visualization for Turbulent Combustion Simulations
	3.3.1 Post-Processing
	3.3.2 In-Situ Processing

	II Analysis and Visualization of the Flame Surface in Turbulent Combustion Simulations
	4 Sparse Representation for Turbulent Premixed Flames
	4.1 A Sparse Representation for Premixed Flames
	4.1.1 Strategy for Seeding Profile Lines
	4.1.2 Extracting Profile Lines
	4.1.3 Model-Based Data Approximation

	4.2 Construction and Visualization of Feature Surfaces
	4.2.1 Feature Point Construction
	4.2.2 Feature Surface Construction
	4.2.3 Feature Surface Visualization
	4.2.4 Evaluation of Diffusion Quality

	4.3 Reconstructing Full Scalar Fields
	4.4 Discussion

	5 In-Situ Tracking of the Flame Surface
	5.1 Related Work
	5.2 Mathematical Basis
	5.2.1 Tracking the Flame Surface
	5.2.2 Tangential Deformation of an Implicit Surface in a Flow

	5.3 Discretization
	5.3.1 Micro-Patches for Surface Tracking
	5.3.2 Splitting and Merging Surface Patches
	5.3.3 Reconstructing Tangential Surface Deformation
	5.3.4 Initialization

	5.4 Implementation
	5.5 Results
	5.5.1 Analytical Test Function
	5.5.2 Premixed Flame in a Box
	5.5.3 Temporal Diffusion Jet Flame
	5.5.4 Performance

	5.6 Discussion

	6 Conclusion

	III Line Features in 3D Second-Order Tensor Fields
	7 The Parallel Eigenvectors Operator
	7.1 Related Work
	7.2 Theoretical Considerations
	7.3 Extracting PEV Lines from Piecewise Linear Data
	7.3.1 Mathematical Basis
	7.3.2 Subdivision in Direction Space
	7.3.3 Final Numerical Algorithm

	7.4 Results
	7.4.1 Point Loads
	7.4.2 Clamped Beam
	7.4.3 Flange

	7.5 Discussion
	7.6 Limitations and Future Research

	8 Core Lines in 3D Second-Order Tensor Fields
	8.1 Tensor Core Lines
	8.1.1 Definition
	8.1.2 Mathematical Properties

	8.2 Extracting Tensor Core Lines from Piecewise Linear Data
	8.2.1 General Algorithm
	8.2.2 Polynomial System in Bernstein-Bézier Form
	8.2.3 Parameterization of the Search Space
	8.2.4 Root Finding by Subdivision
	8.2.5 Clustering and Line Connection
	8.2.6 Filtering

	8.3 Results
	8.3.1 Cylinder
	8.3.2 Handle
	8.3.3 Truck Bumper
	8.3.4 Crane
	8.3.5 Spring
	8.3.6 Performance and Parameter Study
	8.3.7 Comparison with Degenerate Lines

	8.4 Computing PEV and Degenerate Lines
	8.5 Discussion

	9 Conclusion

	Appendix
	A Interpolating the Transformation for New Surface Patches
	B Proof that PEV Yields Structurally Stable Curves
	Bibliography

