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Zusammenfassung
Diese Arbeit befasst sich mit verschiedenen gemischten Fragestellungen aus der
Gitterpolytoptheorie. Damit sind Fragestellungen gemeint, die sich auf Tupel von
Gitterpolytopen beziehen und für die somit sowohl die Struktur der einzelnen Polytope
als auch deren Lage zueinander eine Rolle spielen. Eine zentrale Motivation hierfür
ist der berühmte Satz von Bernstein-Khovanskii-Kushnirenko, der die Anzahl an
Lösungen eines polynomiellen Gleichungssystems durch das gemischte Volumen des
Tupels der Newton-Polytope der Polynome beschränkt. Ziel dieser Arbeit ist es,
verschiedene Probleme an der Grenze zwischen algebraischer und diskreter Geometrie
aus dem Blickwinkel einer gemischten Gitterpolytoptheorie zu behandeln und damit
sowohl die Relevanz dieses Gebietes zu illustrieren als auch die Entwicklung der
Grundlagen auf diesem Feld voranzutreiben.
Im ersten Teil der Arbeit führen wir grundlegende Begriffe und Notationen ein.
Im zweiten Teil präsentieren wir Resultate über die Cayley-Summe eines Tupels

von Gitterpolytopen, welche wir an verschiedenen anderen Stellen in dieser Arbeit
benötigen.
Im dritten Teil widmen wir uns der gemischten Diskriminanten eines Tupels von

ganzzahligen Punktkonfigurationen. Diese ist ein Polynom, das enkodiert unter
welchen Bedingungen ein polynomielles Gleichungssystem bestimmte mehrfache
Nullstellen hat. Wir geben eine hinreichende kombinatorische Bedingung für die
Existenz dieser gemischten Diskrimanten und beweisen damit eine Vermutung von
Cattani et. al.
Der vierte Teil ist der Entwicklung eines Algorithmus für die Klassifikation von

Tripeln von Gitterpolytopen im R3 mit gegebenem gemischten Volumen gewidmet.
Nach dem Satz von BKK ist dies äquivalent zu der Klassifikation von generischen
Systemen trivariater Polynome mit gegebener Anzahl von Lösungen. Anhand einer
Implementierung dieses Algorithmus erhalten wir eine vollständige Klassifikation
dieser Tripel mit gemischtem Volumen höchstens vier.
Im fünften Teil dieser Arbeit untersuchen wir Tupel von Gitterpolytopen, deren

gemischter Grad höchstens eins ist. Wir zeigen, dass es in jeder Dimension abgesehen
von einer gut verstandenen Familie von Tupeln nur endlich viele exzeptionelle Tupel
mit gemischtem Grad eins gibt. Des Weiteren klassifizieren wir solche Tupel in
Dimension drei vollständig.
Im sechsten und letzten Teil dieser Arbeit zeigen wir eine obere Schranke an das

Volumen der Minkowski-Summe eines Tupels konvexer Körper, dessen gemischtes
Volumen gegeben ist. Unsere Schranke ist asymptotisch scharf und in den Spezialfällen
von Dimension zwei und drei finden wir darüber hinaus eine scharfe exakte Schranke.
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Abstract
This work treats several mixed questions in the theory of lattice polytopes. By that
we mean questions that are in terms of tuples of lattice polytopes and for which one
has to consider not only the structure of the single lattice polytopes in the tuple,
but also their alignment with respect to each other. Central motivation for treating
such questions comes from the famous Bernstein-Khovanskii-Kushnirenko theorem.
This result bounds the number of solutions of a polynomial system by the mixed
volume of the tuple of Newton polytopes of the polynomials. The scope of this work
is to treat different problems at the intersection of algebraic and discrete geometry
from the point of view of a mixed lattice polytope theory. In the course of this we
illustrate the relevance of this field of research and make progress in the development
of its foundations.
The first chapter is dedicated to the introduction of basic concepts and notation.
In the second chapter we present results about the Cayley sum of a tuple of lattice

polytopes that we make use of in several parts of this work.
The third chapter deals with the mixed discriminant of a tuple of point configura-

tions, which is a polynomial that encodes the conditions for a system of polynomial
equations to have a multiple root. We prove a sufficient combinatorial condition for
the existence of the mixed discriminant and employ this to solve a conjecture by
Cattani et. al.
In the fourth chapter we present an algorithm for the classification of triples of

lattice polytopes in R3 with a given mixed volume. By the BKK-theorem, this is
equivalent to the classification of generic systems of trivariate polynomials with a
given number of solutions. Via this algorithm, we obtain a complete classification of
triples of lattice polytopes with mixed volume at most four.
The fifth chapter treats tuples of lattice polytopes whose mixed degree is at

most one. We show that, in dimension at least four, there exist only finitely many
exceptional tuples of mixed degree one that are not part of a well-understood family.
We furthermore present a complete classification of such tuples in dimension three.

Finally, in chapter six we prove an upper bound on the volume of the Minkowksi
sum of a tuple of convex bodies in terms of its mixed volume. Our bound is
asymptotically sharp. In dimensions two and three we furthermore prove an exact
sharp bound.
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Introduction
The fundamental objects in this thesis are lattice polytopes. These are polytopes
with vertices in the integer lattice Zd ⊂ Rd. A general pattern throughout this thesis
is to consider families or tuples of lattice polytopes instead of single lattice polytopes
and to generalize methods and concepts to a mixed setting. The main motivation
comes from algebraic geometry and is given by the classical Bernstein-Khovanskii-
Kushnirenko (short BKK) theorem that relates the number of solutions of a system
of (Laurent) polynomials to the so-called mixed volume of the Newton polytopes of
the given polynomials. The Newton polytope of a polynomial may hold significantly
more information compared to the total degree if the polynomial does not contain all
monomials up to a certain degree. Such polynomials are called sparse. In particular
lately, there has been progress along this intersection of algebraic and discrete ge-
ometry, adressing, among others, the classification of systems with a single solution
from a polytopal point of view ([EG15]), a generalization of classical Galois theory
to systems of polynomials and their solvability ([Est19]), the introduction and study
of mixed discriminants of systems of polynomials ([DFS07, CCD+13, DEK14]), and
the introduction of the mixed degree of a family of lattice polytopes ([Sop07, Nil20]).
This thesis is dedicated to making progress in several of these research directions. In
the course of this we contribute to the development of the foundations of a general
mixed lattice polytope theory.

In Chapter 1 we fix basic notation and introduce the reader to the general concepts
of the discrete geometry behind sparse polynomial systems. The fundamental notion
is the support of a polynomial f ∈ C[x1, . . . , xd]:

supp(f) =
{

(z1, . . . , zd) ∈ Zd : xz1
1 . . . xzd

d is a monomial of f
}
.

This allows us to interpret a finite set A ⊂ Zd as the space of all polynomials that
have support inside A. We may identify this space with the space CA, as choosing a
polynomial with a given support set is equivalent to associating a coefficient to each
of the monomials corresponding to the points in A. In this thesis we work with an
extended view of this to tuples of polynomials (f1, . . . , fk) for which supp(fi) ⊆ Ai
for all 1 ≤ i ≤ k, for certain fixed configurations A1, . . . , Ak ⊂ Zd. Analogously
to the above, such a set can be identified with the vector space CA1 × · · · × CAk .
After introducing another fundamental notion, the mixed volume of a tuple of lattice
polytopes, in Section 1.2.1, we present and illustrate the classical BKK-theorem in
Section 1.2.2. We furthermore shortly discuss how we treat the algorithmic problem
of checking whether two lattice polytopes are equivalent based on joint work with
Gennadiy Averkov and Ivan Soprunov ([ABS19]).

XI



In Chapter 2, we introduce and study the construction of the Cayley sum (also
known as Cayley polytope) of a tuple of configurations or lattice polytopes. There
are two perspectives on this construction. On the one hand, given a tuple of lattice
polytopes, one can construct its Cayley sum in order to view properties of the tuple
as properties of a single, higher-dimensional polytope. On the other hand, one may
investigate whether a given lattice polytope has a Cayley decomposition, that is,
whether it is equivalent to a Cayley sum of lower-dimensional lattice polytopes. The
fundamental idea is that understanding the geometry, combinatorial structure and
interaction with the lattice of the Cayley sum of a tuple (P1, . . . , Pk) is equivalent to
understanding the corresponding mixed structures of (P1, . . . , Pk). This interaction
is made precise by the well-known combinatorial Cayley trick (see Proposition 2.2.1).
We deduce several basic facts about the structure of Cayley sums that will prove
useful in various parts of this thesis, in particular in Chapter 3. This is largely
based on joint work with Benjamin Nill ([BN20]). Our main original contribution is
Theorem 2.3.1, that provides conditions on the uniqueness of Cayley decompositions
of a lattice polytope and can be used to reduce the question of equivalence of tuples
to the question of equivalence of single lattice polytopes (see Corollary 2.3.4). This
result is generalizing joint work with Gabriele Balletti ([BB20]), and joint work with
Gennadiy Averkov and Ivan Soprunov ([ABS19]).

Chapter 3 is dedicated to the study of so-called mixed discriminants, which
have been introduced in [CCD+13]. The mixed discriminant of a family of point
configurations (A1, . . . , Ak) ⊂ (Zd)k is the defining polynomial ∆(A1,...,Ak) of an
algebraic hypersurface in the space of tuples (f1, . . . , fk) ∈ C[x1, . . . , xn] with fixed
support sets A1, . . . , Ak. The described hypersurface is given by the Zariski closure
of all tuples (f1, . . . , fk) in this space for which the system f1 = · · · = fk = 0 has a
non-degenerate multiple root. Usually it is interpreted as an algebraic hypersurface
in the space of coefficients CA1 × · · · × CAk . The mixed discriminant generalizes the
classical concept of the A-discriminant of a single point configuration introduced in
[GKZ94]. In the case in which one considers only a single polynomial, the probably
most famous example is the A-discriminant for the set A = {0, 1, 2}. It is given as
∆A = b2 − 4ac ∈ C[a, b, c] and vanishes for all choices of coefficients a0, b0, c0 ∈ C for
which the quadratic polynomial a0x

2 + b0x+ c0 has a multiple root. One prominent
question about A-discriminants is regarding their defectivity. For certain choices
of configurations it can happen that the algebraic closure of the set of coefficients
leading to multiple roots cannot be described by a single polynomial. Recently,
two independent characterizations of such defective configurations were given by
Esterov [Est10, Est18a] and Furukawa-Ito [FI20]. One encounters an analogous
phenomenon for mixed discriminants, which leads to the definition of a defective
tuple of configurations. While all definitions make sense in the case of a general
number of polynomials k, the case in which one has d polynomials in d variables
is of particular interest. Our main contribution to this area is the following result,
which settles the question about defectivity in this case under the assuption that all
configurations involved are full-dimensional.
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Theorem (Corollary 3.2.2). A tuple of full-dimensional configurations (A1, . . . , Ad) ⊂
(Zd)d is defective if and only if

(A1, . . . , Ad) ∼= ({0, e1, . . . , ed}, . . . , {0, e1, . . . , ed}).

This result has been conjectured by Cattani et al. in [CCD+13] and is saying
that, up to an appropriate notion of equivalence, there exists only one defective
tuple (A1, . . . , Ad) ⊂ (Zd)d. Furthermore, this tuple describes the support sets of
d linear polynomials. Such a system can never have isolated multiple roots and
therefore defectivity is obvious in this case. We derive this result as a corollary
of a more general result on the discrete geometry of defective tuples of arbitrary
length (see Theorem 3.2.1). Our main tools are a recent characterization of defective
configurations in terms of Cayley sums by Furukawa-Ito [FI20] and combinatorial
insights in the interaction between different Cayley decompositions that we deduce.
The results of this chapter are joint work with Benjamin Nill and have been published
in the article [BN20].

While mixed discriminants are about describing coefficients that lead to exceptional
behavior of a system of polynomials, Chapter 4 is devoted to applying computational
classification techniques in order to exhaustively enumerate systems of polynomials
with a certain generic behavior. We focus on systems that generically have a small
number of solutions. By the BKK-theorem, these are exactly those system whose
support sets (A1, . . . , Ad) lie inside tuples of lattice polytopes (P1, . . . , Pd) with small
mixed volume. A first fundamental result in this direction has been given by Esterov
and Gusev [EG15], who completely settled the case of mixed volume one in general
dimension d. They showed that any generic system of polynomials with only one
solution is build from linear systems. On the polytopal side, they proved a generaliza-
tion to tuples of the well-known fact that a single lattice polytope has volume one if
and only if it is a unimodular simplex. Little has been known about tuples of higher
mixed volumes, even in small dimension, apart from the classification of pairs of
lattice polygons of mixed volume at most 4 in [EG15]. Tuples of lattice polytopes of
mixed volume at most 4 are of particular interest, as Esterov showed in [Est19] that
such tuples correspond to systems of polynomials that are solvable by radicals. While
for the classification of single lattice polytopes important achievements have been
made using computer algorithms (see for example [KS98, AKW17, Bal18, IVS18]),
such a computational approach had so far not been taken towards the classification
of tuples of lattice polytopes. With this being our point of departure, we develop an
algorithm to computationally classify tuples of a given mixed volume in dimensions
2 and 3. We encounter that the complexity of the classification of tuples of a given
mixed volume is tremendously greater than of the classification of single polytopes.
For example, a lattice polytope occuring inside a tuple of mixed volume m can have
volume up to md. In fact, the classification of single lattice polytopes of a given
volume is a true subproblem of the classification of tuples of a given mixed volume.
To tackle this, our algorithm makes use of powerful tools from convex geometry, in
particular from Brunn-Minkowski theory. This yields to a complete classification of
triples of lattice polytopes in dimension 3, whose mixed volume is at most 4 (see
Theorem 4.3.1). The results of this chapter are joint work with Gennadiy Averkov
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and Ivan Soprunov and have been published in form of the preprint [ABS19].

Chapter 5 focuses on studying a generalization of a central concept from single
lattice polytopes to tuples of lattice polytopes. This generalization is given by the
so-called mixed degree, which has recently been introduced by Nill ([Nil20]) and is
generalizing the lattice degree deg(P ) of a single lattice polytope P ⊂ Rd. The lattice
degree is defined as the smallest integer 0 ≤ r ≤ d− 1 such that the dilation (d− r)P
does not contain an interior lattice point. If P itself contains an interior lattice
point, one sets deg(P ) = d. An intuitive interpretation is that the degree of a lattice
polytopes is its complexity or true dimension. Following this intuition, polytopes of
low degree should have a very particular and simple structure and there is a variety
of results making this precise (see e.g. [BN07, HNP08, NZ11]). The mixed degree
md(P1, . . . , Pd) of a d-tuple of d-dimensional lattice polytopes P1, . . . , Pd ⊂ Rd is the
smallest integer 0 ≤ r ≤ d− 1 such that the Minkowski sum of any choice of (d− r)
polytopes from the tuple P1, . . . , Pd does not contain an interior lattice point. If
any of the polytopes in the tuple already contains an integer point in its interior,
we set md(P1, . . . , Pd) = d. This is a true generalization of the lattice degree as
md(P, . . . , P ) = deg(P ). For this to be a reasonable notion one should expect tuples
of lattice polytopes of low degree to have a very simple, similar to the situation in the
unmixed setting. A first result in this direction has already implicitly been given in
[CCD+13] by showing that, up to equivalence, in any dimension there exists a unique
tuple of mixed degree zero, consisting of copies of the same unimodular simplex. Our
contribution focuses on tuples of mixed degree one. These are of particular interest,
as Nill observed in [Nil20] that they are the ones satisfying the following bound with
equality:

| int(P1 + · · ·+ Pd) ∩ Zd| ≥ MV(P1, . . . , Pd)− 1.

This bound was derived by Soprunov in the context of sparse polynomial interpolation
in [Sop07]. Soprunov also observed in [BNR+08] that, whenever one has P1 = · · · =
Pd = P , equality in the above formula holds if and only if the lattice degree of P is
at most one. Motivated by this, he already introduced the notion tuples of mixed
degree at most one for tuples attaining the bound above and posed the question of a
classification of such tuples before the introduction of the general mixed degree. We
partially answer this question by describing a natural class of lattice polytopes of
mixed degree one and showing that, in any dimension d ≥ 4, there exist only finitely
many full-dimensional tuples of mixed degree one that are not of this type.

Theorem (Theorem 5.2.3). Let d ≥ 4 and (P1, . . . , Pd) be a d-tuple of full-dimensional
lattice polytopes in Rd of mixed degree at most one. Then (P1, . . . , Pd) is either equiv-
alent to one of finitely many exceptional tuples in dimension d, or to a tuple

(Cay(I1
1 , . . . , I

1
d), . . . ,Cay(Id1 , . . . , Idd )),

where Iji is a lattice segment for all 1 ≤ i, j ≤ d. This class can be finitely parametrized
as each segment is defined by the choice of two numbers.
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With Theorem 5.2.4 we furthermore completely classify tuples of mixed degree
one in dimension three computationally. Our classification includes the description
of infinite classes of exceptional triples, showing that Theorem 5.2.3 does not hold in
dimension three. The results of this chapter are joint work with Gabriele Balletti
and have been published in the article [BB20].

Finally, Chapter 6 deals with a question that is motivated by its application to
sparse polynomial systems, but which extends naturally to general convex bodies.
The initial question is the following. Given a d-tuple of d-dimensional convex bodies
(K1, . . . , Kd) with mixed volume MV(K1, . . . , Kd) = m, what is the maximal value
for the volume of the Minkowski sum Vol(K1 + · · ·+Kd)? In the special case of lattice
polytopes P1, . . . , Pd a non-sharp upper bound on Vol(P1 + · · ·+ Pd) has been used
by Esterov in order to show the finiteness of irreducible tuples of any given mixed
volume. This is due to the fact that, using a well-known result by Lagarias-Ziegler,
one may assume P1 + · · ·+ Pd, and therefore also Pi for each 1 ≤ i ≤ d, to lie inside
a hypercube with edge-lengths d · d! Vol(P1 + · · ·+ Pd). The main tool in Esterov’s
proof was the Aleksandrov-Fenchel inequality that ensures relations of the following
form between mixed volumes.

MV(K1, K2, K3, . . . , Kd)2 ≥ MV(K1, K1, K3, . . . , Kd) MV(K2, K2, K3, . . . , Kd).

The bound that arises this way is of order O(m2d) as m → ∞. Using additional
inequalities from [BGL18], we are able to prove the following improvement of this
bound in the case of full-dimensional compact convex sets (convex bodies).

Theorem (Theorem 6.5.10). Among all convex bodies K1, . . . , Kd in Rd satisfying

Vol(K1) ≥ 1, . . . ,Vol(Kd) ≥ 1, and MV(K1, . . . , Kd) = m,

the maximum of Vol(K1 + · · ·+Kd) is of order O(md), as m→∞.

We show that this bound is asymptotically sharp. We conjecture the exact sharp
upper bound to be equal to (m+ d− 1)d and provide evidence for this by proving the
bound for d = 2 and d = 3 with Proposition 6.2.4 and Theorem 6.2.5. The results of
this chapter are joint work with Gennadiy Averkov and Ivan Soprunov, and have
been published in form of the article [ABS20].
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1. Setting

1.1. Basics and notation
We fix the notation [k] = {1, . . . , k} and write Z≥k for the set of all integers that are
greater or equal to k ∈ Z. Whenever we write N we mean integers that are greater
or equal to 1. Furthermore, we denote by e1, . . . , ed ∈ Rd the standard basis vectors
of Rd.

(Lattice) polytopes

A polytope

P = conv(x1, . . . , xk)

is the convex hull of a set of finitely many generating points x1, . . . , xk ∈ Rd. A
hyperplane H ⊂ Rd is a (d− 1)-dimensional affine subspace of Rd. Any hyperplane
H ⊂ Rd has a description of the form

H =
{
x ∈ Rd : 〈a, x〉 = b

}
for a vector (a, b) ∈ Rd+1 that is unique up to scaling. Any hyperplane yields two
half-spaces

H+ =
{
x ∈ Rd : 〈a, x〉 ≥ b

}
and H− =

{
x ∈ Rd : 〈a, x〉 ≤ b

}
.

H ⊂ Rd is called a supporting hyperplane of a polytope P ⊂ Rd if either P ⊂ H+ or
P ⊂ H−. The intersection of P with a supporting hyperplane H is called a face of P
and is again a polytope. Additionally we consider the polytope P as a face of itself
and speak of proper faces whenever we specifically want to exclude the polytope
itself. The affine hull aff(P ) is the smallest affine subspace of Rd that contains P
and the dimension dim(P ) is the dimension of this affine subspace. We denote the
set of faces of a polytope P as F(P ). The elements of F(P ) of dimension dim(P )− 1
are called facets, the ones of dimension 1 are called edges and the ones of dimension
0 are called vertices. The set of vertices of P is denoted by vertP . Given X ⊆ Rd,
we denote by P(X) the family of all non-empty polytopes P with vert(P ) ⊆ X.
Throughout this thesis we will mostly be dealing with lattice polytopes, by which we
mean elements of P(Zd). For any subsets S1, . . . , Sk ⊂ Rd, we denote by

S1 + · · ·+ Sk = {s1 + · · ·+ sk : si ∈ Si for all 1 ≤ i ≤ k} ,

the Minkowski sum of S1, . . . , Sk. For polytopes P1, . . . , Pd ⊂ Rd one has

P1 + · · ·+ Pd = conv(vert(P1) + · · ·+ vert(Pd)).

1



1. Setting

In particular, the Minkowski sum of polytopes is again a polytope and the Minkowski
sum of lattice polytopes is a lattice polytope.
We denote by int(X) the interior of a full-dimensional set X ⊆ Rd and call a

full-dimensional lattice polytope P ∈ P(Zd) hollow if the set of its interior lattice
points int(P ) ∩ Zd is empty.

A point configuration A ⊂ Zd is a finite set of points in Zd. In the setting of this
thesis we do not consider repeated points in a configuration. We implicitly view
A ⊂ Zd as a subset of the lattice Zd naturally embedded in Rd. This way it makes
sense to talk about the affine hull aff(A) ⊂ Rd and the dimension dim(A) of A
analogously to the definition for polytopes. A face of A is the intersection of A with
a face of the polytope conv(A) and we denote the set of all faces of A by F(A).
Analogously to above, we may talk about vertices, edges, and facets of A.

To improve readability we sometimes write a configuration A ⊂ Zd as a matrix
whose columns are the elements of A.

Lattice preserving maps and volumes

We denote by GL(Zd) the group of linear unimodular transformations, that is linear
bijections ϕ : Rd → Rd that satisfy ϕ(Zd) = Zd. By choosing a lattice basis of Zd
we can identify GL(Zd) with the group of d × d unimodular matrices, which are
the matrices U ∈ Zd×d with | det(U)| = 1. Furthermore, we denote by Aff(Zd) the
group of (affine) unimodular transformations, that is affine bijections ϕ : Rd → Rd

that satisfy ϕ(Zd) = Zd. Sometimes it is convenient to extend this notion to maps
ϕ : L1 → L2 for rational affine subspaces L1 ⊆ Rd1 and L2 ⊆ Rd2 . A rational affine
subspace of Rd is a rational translate of a linear subspace that can be generated by
rational vectors. In this case we call ϕ an affine unimodular transformation if it is an
affine bijection satisfying ϕ(L1∩Zd1) = L2∩Zd2 . Affine unimodular transformations
yield the standard notion of equivalence of lattice polytopes. We say that two
lattice polytopes P1, P2 ∈ P(Zd) are (unimodularly) equivalent, and write P1 ∼= P2,
if there exists a unimodular affine transformation ϕ ∈ Aff(Zd) satisfying ϕ(P1) = P2.
Sometimes it is practical to extend this notion of equivalence to lattice polytopes
P1 ∈ P(Zd1) and P2 ∈ P(Zd2) that live inside different ambient dimensions d1 6= d2.
We say that P1 and P2 are equivalent if one has dim(P1) = dim(P2) and there exists
an affine unimodular transformation ϕ : aff(P1)→ aff(P2) that satisfies ϕ(P1) = P2.
Analogously, two point configurations A1 ⊂ Zd1 , A2 ⊂ Zd2 are equivalent if the exists
an affine unimodular transformation ϕ : aff(A1)→ aff(A2) mapping A1 onto A2.

An (affine) lattice projection is a surjective affine map ϕ : L1 → L2, where L1 ⊆ Rd1

and L2 ⊆ Rd2 are rational affine subspaces, that satisfies ϕ(L1∩Zd1) = L2∩Zd2 . The
kernel of such a projection is the largest linear space K ⊆ Rd1 satisfying L1 +K = L1
and ϕ(x+ k) = ϕ(x) for all x ∈ L1 and k ∈ K.

For any compact convex body K ⊂ Rd, we define its (normalized) volume as

Vold(K) = d! vold(K),

2



1.1. Basics and notation

where vold(K) is the standard Euclidean volume of K. In particular, Vold(K) =
0 whenever K is contained in a lower-dimensional affine subspace of Rd. The
normalization with the factor d! guarantees that one has Vold(P ) ∈ Z≥0 for any
lattice polytope P ∈ P(Zd). For lattice polytopes we furthermore introduce the
notion of a relative volume. Let P ∈ P(Zd) be a lattice polytope. Then aff(P ) is a
rational affine subspace of Rd and there exists an affine unimodular transformation
ϕ : aff(P )→ Rdim(P ). We define the relative volume of P as

Vol(P ) = Voldim(P )(ϕ(P )).

When talking about lattice polytopes, we often simply say "volume" for "relative
volume".

Special lattice polytopes

We denote by

∆d = conv(0, e1, . . . , ed)

the standard unimodular simplex and call a lattice simplex S ∈ P(Zd) unimodular,
if it is unimodularly equivalent to ∆dim(S). Additionally, we denote by

∆̃d−1 = conv(e1, . . . , ed) ∈ P(Zd)

the homogeneous version of the standard simplex. Note that ∆̃d−1 ∼= ∆d−1. Further-
more, we denote by

�d =
∑
i∈d

[0, ei] ⊂ Rd

the standard cube. Given any lattice polytope P ∈ P(Zd), we denote by

Pyr(P ) = conv(P × {0} ∪ {ed+1}) ∈ P(Zd+1)

the lattice pyramid over P . We write Pyrk(P ) for the polytope obtained by performing
k iterations of the above construction.

1.1.1. Sparse polynomials
One fundamental connection between discrete geometry and algebraic geometry is
given by the construction of the Newton polytope or, more generally, the support
of a polynomial. The basic concept for this construction is identifying d-variate
monomials with points in Zd via the bijection:

p : Zd → Mon[x1, . . . , xd]
a 7→ xa := xa1

1 · · ·x
ad
d .

Let C[x1, . . . , xd] denote the polynomial ring in d variables over C, and let furthermore
C[x±1

1 , . . . , x±1
n ] denote the ring of Laurent polynomials in d variables over C. Using

the bijection above, any Laurent polynomial f ∈ C[x±1
1 , . . . , x±1

d ] can be written as
f = ∑

a∈Zd cax
a for coefficients ca ∈ C such that only finitely many of the coefficients

are non-zero.

3



1. Setting

Definition 1.1.1. Let f = ∑
a∈Zd cax

a ∈ C[x±1
1 , . . . , x±1

d ] be a Laurent polynomial.
We denote by supp(f) = {a ∈ Zd : ca 6= 0} the support of f and by Newt(f) =
conv(supp(f)) the Newton polytope of f .

In particular, both the support and the Newton polytope of a Laurent polynomial
do not contain any information about the concrete values of the coefficients of the
polynomial, apart from whether they are zero or not. This motivates the point of
view that a support set is rather associated to a finite-dimensional vector space inside
C[x±1

1 , . . . , x±1
d ], than to a concrete polynomial. The following makes this precise.

Definition 1.1.2. Let A ⊂ Zd be a point configuration and P ∈ P(Zd) a lat-
tice polytope. We introduce the following finite-dimensional sub-vector spaces of
C[x±1

1 , . . . , x±1
d ]:

C[A] = {f ∈ C[x±1
1 , . . . , x±1

d ] : supp(f) ⊆ A},
C[P ] = {f ∈ C[x±1

1 , . . . , x±1
d ] : supp(f) ⊆ P ∩ Zd}.

Suppose S is one of the vector spaces above. We say that a property holds generically
in S, if it is true for all polynomials living outside an algebraic hypersurface H in S.

As a polynomial in C[A] is uniquely determined by its coefficient for each monomial
xa with a ∈ A, there is a natural isomorphism between C[A] and the space of
coefficient vectors CA ∼= C|A|. Given a coefficient vector c ∈ CA, we denote by fc the
corresponding polynomial in C[A].

The following classical result has been shown in [Kou76] and gives a first impression
of how the Newton polytope contains crucial information about the polynomial
itself. We call a solution (or root) p ∈ (C∗)d of a system of Laurent polynomials
f1 = · · · = fd = 0 isolated, if there exists an ε > 0 such that p is the unique solution
of the system inside an ε-ball around p.

Theorem 1.1.3 (Kushnirenko). Let A ⊂ Zd be a point configuration and f1, . . . , fd ∈
C[A]. Then the number of isolated solutions in (C∗)d of the system f1 = · · · = fd = 0
is at most Vold(conv(A)). Equality is attained generically in C[A]× · · · × C[A].

1.2. The mixed setting: generalizing to tuples of
lattice polytopes

In the setting of the theorem of Kushnirenko (Theorem 1.1.3) one actually already
deals with a tuple of d Laurent polynomials f1, . . . , fd and only the condition that
we consider a common support set for all of them makes the number of solutions
depend on a single lattice polytope. However, it seems very natural to consider the
case in which one specifies distinct support sets for each of the polynomials involved.
Indeed, there exists the famous BKK-theorem generalizing Theorem 1.1.3 to that
case. In order to state this theorem in Section 1.2.2, let us introduce a bit more
notation.
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1.2. The mixed setting: generalizing to tuples of lattice polytopes

Definition 1.2.1. Let (A1, . . . , Ak) ⊂ (Zd)k be a k-tuple of point configurations
and (P1, . . . , Pk) ∈ P(Zd)k a k-tuple of lattice polytopes. We introduce the following
finite-dimensional sub-vector spaces of C[x±1

1 , . . . , x±1
d ]n:

C[A1, . . . , Ak] =
{

(f1, . . . , fk) ∈ C[x±1
1 , . . . , x±1

d ]k : supp(fi) ⊆ Ai for all i ∈ [k]
}
,

C[P1, . . . , Pk] =
{

(f1, . . . , fk) ∈ C[x±1
1 , . . . , x±1

d ]k : supp(fi) ⊆ Pi ∩ Zd for all i ∈ [k]
}

Suppose S is one of the vector spaces above. We say that a property holds generically
in S, if it is true for all polynomials living outside an algebraic hypersurface H in S.

Analogously to Definition 1.1.2, there is a natural isomorphism between the vector
space C[A1, . . . , Ak] and the space of coefficient vectors CA1×· · ·×CAk ∼= C|A1|+···+|Ak|

and we denote by (fc1 , . . . , fck
∈ C[A1, . . . , Ak] the tuple of Laurent polynomials

corresponding to the coefficient vector (c1, . . . , ck).
Definition 1.2.1 is phrased in a more general way than we need for our formulation

of the BKK-theorem, where we only deal with the case of d configurations in Zd.
However, also the geometry of a k-tuple of configurations in Zd for k < d holds
information about the infinite solution sets of polynomial systems f1 = · · · = fk = 0
with corresponding supports. In Chapter 3 we work in this generality.

1.2.1. The mixed volume
In order to generalize Theorem 1.1.3 we need an appropriate generalization of the
volume of a lattice polytope. This is given by the so-called mixed volume of a d-tuple
of polytopes in Rd. This notion extends naturally to general compact convex sets and
plays a central role in what is called Brunn-Minkowski theory, that goes far beyond
lattice polytopes. We refer to [Sch14, Chapter 5] for a very thorough treatment of
the mixed volume from a convex geometric point of view.

There exists a uniquely defined functional

mv : P(Rd)d → R,

with mv(P1, . . . , Pd) being invariant under permutations of P1, . . . , Pd ∈ P(Rd), such
that the equality

vol(λ1P1 + · · ·+ λkPk) =
k∑

i1=1
· · ·

k∑
id=1

λi1 · · ·λid mv(Pi1 , . . . , Pid)

holds for all P1, . . . , Pk ∈ P(Rd), non-negative scalars λ1, . . . , λk ≥ 0, and k ∈ N
(see [Sch14, Theorem and Definition 5.1.7]). The definition of mv extends to the set
of d-tuples of non-empty compact convex sets. The value mv(P1, . . . , Pd) is called
the Euclidean mixed volume of the d-tuple (P1, . . . , Pd). Replacing the Euclidean
volume in the above definition with the normalized volume relative to the lattice
Zd ⊂ Rd we obtain the normalized mixed volume MV(P1, . . . , Pd) relative to Zd.
During this thesis term mixed volume will stand for the normalized mixed volume if

5



1. Setting

not specifically stated otherwise.

The mixed volume satisfies a number of properties. Their proof can be found for
example in [Sch14, Sections 5.1, 7.3] and [Ewa96, p. 120].

Proposition 1.2.2. For all non-empty compact convex sets K1, . . . , Kd, L1, . . . , Ld ⊂
Rd and non-negative λ, µ ∈ R, one has

1. MV(K1, . . . , Kd) ≥ 0.

2. MV(λK1 +µL1, K2, . . . , Kd) = λMV(K1, K2, . . . , Kd)+µMV(L1, K2, . . . , Kd).

3. MV(K1, . . . , Kd) ∈ Z, whenever K1, . . . , Kd are lattice polytopes.

4. Inclusion-exclusion formula

MV(K1, . . . , Kd) = 1
d!

d∑
k=1

(−1)d+k ∑
i1<···<ik

Vold(Ki1 + · · ·+Kik). (1.1)

5. Aleksandrov–Fenchel Inequality

MV(K1, K2, K3 . . . , Kd)2 ≥ MV(K1, K1, K3, . . . , Kd) MV(K2, K2, K3, . . . , Kd).

6. Monotonicity

MV(K1, . . . , Kd) ≤ MV(L1, . . . , Ld), whenever K1 ⊆ L1, . . . , Kd ⊆ Ld.
(1.2)

1.2.2. The BKK-theorem
We have now assembled the tools to state the following central result relating systems
of d equations defined by d-variate polynomials with the geometry of the tuples of
corresponding support sets.

Theorem 1.2.3 (Berstein-Khovanskii-Kushnirenko). Let (A1, . . . , Ad) ⊂ (Zd)d be
a d-tuple of point configurations and (f1, . . . , fd) ∈ C[A1, . . . , Ad]. Then the num-
ber of isolated solutions in (C∗)d for the system f1 = · · · = fd = 0 is at most
MV(conv(A1), . . . , conv(Ad)). Equality is attained generically in C[A1, . . . , Ad].

Theorem 1.2.3 has first been proven by David Bernstein in 1975 [Ber75]. One year
later, Anatoli Kushnirenko presented another proof in [Kus76]. Askold Khovanskii has
published strongly related results in [Kho77] and given a variety of independent proofs
of the theorem over the years. We refer to [CLO05, Chapter 5] for further algebro-
geometric background about the BKK-theorem. Let us illustrate Theorem 1.2.3 with
the following example.
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1.2. The mixed setting: generalizing to tuples of lattice polytopes

Example 1.2.4. Consider equations f1 = 0 and f2 = 0 of vertically and horizontally
aligned parabolas given by polynomials

f1(x, y) = c1,(0,1)y + c1,(2,0)x
2 + c1,(1,0)x+ c1,(0,0)

f2(x, y) = c2,(1,0)x+ c2,(0,2)y
2 + c2,(0,1)y + c2,(0,0).

See also Fig. 1.1. Then the tuple (f1, f2) lives in C[A1, A2] for the configurations

A1 = {(0, 0), (1, 0), (2, 0), (0, 1)}, A2 = {(0, 0), (1, 0), (0, 1), (0, 2)}

Denote P1 = conv(A1) and P2 = conv(A2). By Theorem 1.2.3, if the vector

(c1,(0,1), c1,(2,0), c1,(1,0), c1,(0,0), c2,(1,0), c2,(0,2), c2,(0,1), c2,(0,0)) ∈ C8

of all coefficients of the polynomials f1 and f2 is generic, then the system f1 = f2 = 0
has exactly 4 solutions in (C∗)2, because the normalized mixed volume MV(P1, P2)
of P1 and P2 equals 4. The value MV(P1, P2) can be computed using formula (1.1)
from Proposition 1.2.2 as

MV(P1, P2) = (1/2)(Vol(P1 + P2)− Vol(P1)− Vol(P2))
= (1/2)(12− 2− 2) = 4.

f1 = 0

f2 = 0
P1 = conv(0, 2e1, e2) P2 = conv(0, e1, 2e2)

Figure 1.1.: A system f1 = f2 = 0, with a generic choice of (f1, f2) ∈ C[A1, A2] has 4
solutions in (C∗)2, because the normalized mixed volume of P1 and P2
equals 4.

Remark 1.2.5. Note that, in the setting of Theorem 1.2.3, one may still obtain a
bound on the number of isolated solutions of the system f1 = · · · = fd = 0 by applying
Theorem 1.1.3 to the point configuration A = A1 ∪ · · · ∪ Ad. However, one will in
general obtain a worse bound in this case. Consider for example the case of d = 2
and A1 = {(0, 0), (1, 0), (1, 2), (0, 2)}, A2 = {(0, 0), (2, 0), (2, 1)}. In this case one has
MV(conv(A1), conv(A2)) = 5. So a system f1 = f2 = 0 for (f1, f2) ∈ C[A1, A2] has
at most 5 isolated solutions in (C∗)2. If we denote the union of the configurations
A1 and A2 by A = A1 ∪ A2 = {(0, 0), (1, 0), (2, 0), (2, 1), (1, 2), (0, 2)}, we may view
the pair (f1, f2) as living inside the larger vector space C[A,A]. See also Figure 1.2.
Applying Theorem 1.1.3 yields the worse bound of Vol(conv(A)) = 7. Also recall that
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1. Setting

conv(A1) conv(A2) conv(A1 ∪ A2)

Figure 1.2.: The convex hulls of the configurations A1, A2 from Remark 1.2.5 and
their union.

both Theorem 1.1.3 and Theorem 1.2.3 contain an additional statement about the
bounds being attained generically. What happens here is that a tuple (f1, f2) which
is generic in C[A1, A2] does not need to be generic inside the larger vector space
C[A,A]. Or, more precisely, the whole vector space C[A1, A2] ⊂ C[A,A] is contained
in an algebraic hyperplane in C[A,A] (for example the one given by the condition
c1,(2,1) = 0) and therefore a property that holds generically in C[A,A] might not hold
for any element in C[A1, A2].

1.2.3. Equivalence of tuples
Similarly to the case of single lattice polytopes, also for tuples it often makes sense
to only distinguish them up to an appropriate equivalence relation. Let Gd,k denote
the set of maps ψ : (Rd)k → (Rd)k that are of the form

(x1, . . . , xk) 7→ (ϕ(xσ(1)) + tσ(1), . . . , ϕ(xσ(k)) + tσ(k)),

for a unimodular transformation ϕ ∈ Aff(Zd), a choice of k lattice vectors t1, . . . , tk ∈
Zd and a permutation σ on [k]. We say that two k-tuples (P1, . . . , Pk), (Q1, . . . , Qk) ∈
(P(Zd))d are equivalent, and write (P1, . . . , Pk) ∼= (Q1, . . . , Qk), if ψ(P1, . . . , Pk) =
(Q1, . . . , Qk) holds for some ψ ∈ Gd,k. This notion of equivalence specializes to
the notion of (unimodular) equivalence of single lattice polytopes P,Q ∈ P(Zd)
if one either considers P and Q as 1-tuples, or if one views P and Q as d-tuples
(P, . . . , P ), (Q, . . . , Q) ∈ P(Zd)d. Furthermore, it is straightforward to verify that
one has P1 + · · ·+Pk ∼= Q1 + · · ·+Qk whenever (P1, . . . , Pk) ∼= (Q1, . . . , Qk). By the
inclusion-exclusion formula for the mixed volume (1.1), one also has MV(P1, . . . , Pk) =
MV(Q1, . . . , Qk) in this case. Note, however, that one might have Pi ∼= Qi for all
i ∈ [k] without the tuples (P1, . . . , Pk) and (Q1, . . . , Qk) being equivalent. This is
illustrated in the following example.

Example 1.2.6. Set P = conv(0, e1, e1 + e2) ∈ P(Z2) and consider the pairs of
unimodular triangles (∆2,∆2) and (∆2, P ). While P ∼= ∆2, these pairs are not
equivalent. One way to see this is to observe that

Vol(∆2 + ∆2) = 4 6= 6 = Vol(∆2 + P ),

and therefore ∆2 + ∆2 � ∆2 + P . See also Figure 1.3.
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1.3. Algorithmic aspects of equivalence testing

(∆2,∆2) ∆2 + ∆2 (∆2, P ) ∆2 + P

Figure 1.3.: The pairs of polygons from Example 1.2.6 and their Minkowski sums.

Analogously to above, we call two tuples (A1, . . . , Ak), (B1, . . . , Bk) ⊂ (Zd)k of
point configurations equivalent if there exists a map ψ ∈ Gd,k satisfying ψ(A1, . . . , Ak) =
(B1, . . . , Bk).

Let us also explain the notion of equivalence of tuples of lattice polytopes from
the perspective of systems of Laurent polynomials with fixed Newton polytopes.
Consider a tuple of Laurent polynomials (f1, . . . , fk) ∈ C[P1, . . . , Pk] for a tuple
of lattice polytopes (P1, . . . , Pk) ∈ P(Zd)k. A monomial change of variables for
a Laurent polynomial is given by mapping (x1, . . . , xd) 7→ (xu1 , . . . , xud), where
xui = xu1i

1 · · ·xudi
d for some unimodular matrix U = (uij) ∈ GL(Zd). We call two

systems f1 = · · · = fk = 0 and f ′1 = · · · = f ′k = 0 monomially equivalent if, after
a possible permutation of the fi, there is a monomial change of variables which
transforms fi to xaif ′i for some monomial xai for every 1 ≤ i ≤ k. If two systems of
polynomials are monomially equivalent, there exists a natural bijection between the
solutions of them in the torus (C∗)d. Our notion of equivalence of tuples of lattice
polytopes is the finest one possible ensuring that two monomially equivalent systems
have equivalent tuples of Newton polytopes.

1.3. Algorithmic aspects of equivalence testing
A computational task that we encounter throughout the thesis is to decide algo-
rithmically whether two lattice polytopes are equivalent. We may restrict ourselves
to full-dimensional polytopes, as we may otherwise choose a unimodular transfor-
mation between the affine hulls of the polytopes and some Rd in which they are
full-dimensional. The literature contains several algorithms that test whether two
full-dimensional lattice polytopes P,Q ∈ P(Zd) are equivalent modulo a linear
unimodular transformation ϕ ∈ GL(Zd). See for example [KS98] and [GK13], where
the latter also provides an overview of existing techniques. The algorithm of Kreuzer
and Skarke from [KS98], relying on the so-called normal form of a lattice polytope,
is implemented both in Sagemath [Sag18] and Magma [BCP97]. The normal form of
a lattice polytope P is uniquely determined by P . It encodes a sequence of vertices
(v1, . . . , vt) of a polytope conv(v1, . . . , vt) that coincides with P up to GL(Zd). Two
polytopes P,Q ∈ P(Zd) coincide up to GL(Zd) if and only if their normal forms are
the same. See also Example 3.4 in [GK13]. Using the normal form, each polytope
in P(Zd) can be brought into a normal GL(Zd)-position. In other words, in each
equivalence class modulo GL(Zd) in P(Zd) a unique representative is chosen. Using
such a normal position in enumeration algorithms is convenient because, for avoiding
repetitions modulo GL(Zd), it suffices to bring each newly found polytope into its
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normal position.

Equivalence of polytopes modulo Aff(Zd).

The notion of equivalence that we are interested in is slightly more general, as we want
to identify any two polytopes as equivalent for which there exists an affine unimodular
transformation ϕ ∈ Aff(Zd) sending one onto the other. Testing equivalence of two
polytopes P,Q ∈ P(Zd) modulo Aff(Zd) can be reduced to testing equivalence
modulo GL(Zd+1). Indeed, P,Q ∈ P(Zd) are equivalent modulo Aff(Zd) if and only
if the respective pyramids conv({0} ∪ (P × {1})), conv({0} ∪ (Q× {1})) ∈ P(Zd+1)
are equivalent modulo GL(Zd+1).

This approach has the slight disadvantage that the normal forms that we compare
are not equivalent to the polytopes themselves. Therefore we decided to implement
a normal Aff(Zd)-position of polytopes in P(Zd) by choosing a representative in
each of the equivalence classes modulo Aff(Zd). Our construction is as follows. For
a full-dimensional lattice polytope P ∈ P(Zd), consider

cP := 1
| vert(P )|

∑
v∈vert(P )

v,

which is the barycenter of the set of vertices of P . Furthermore, we can order
points of Rd lexicographically: x = (x1, . . . , xd) is lexicographically smaller than
y = (y1, . . . , yd) if, for the smallest i ∈ [d] with xi 6= yi, one has xi < yi. For a
compact subset X of Rd, let lexmin(X) denote the lexicographic minimum of the set
X. It is not hard to see that for a polytope P ∈ P(Rd) one has lexmin(P ) ∈ vert(P ).
In particular, if P ∈ P(Zd) is a lattice polytope then lexmin(P ) is a lattice point.
Based on this notions we introduce the following normal Aff(Zd)-position.

Proposition 1.3.1. Let P ∈ P(Zd) be a full-dimensional polytope with N vertices
and let P ′ be the normal GL(Zd)-position of the lattice polytope N(P − cP ). Then
the lattice polytope

P ′′ := 1
N

(P ′ − lexmin(P ′))

is (Aff(Zd)-)equivalent to P . For any other lattice polytope Q ∈ P(Zd) with P ∼= Q,
one has P ′′ = Q′′.

Proof. Let φ ∈ GL(Zd) be a linear unimodular transformation sending P ′ to N(P −
cP ). Using the fact that, for any compact set X ⊂ Rd, one has lexmin(X − x) =
lexmin(X) − x and lexmin(kX) = k lexmin(X) for all x ∈ Rd and k ∈ R≥0 one
obtains:

φ(P ′′) = 1
N
φ(P ′)− 1

N
φ (lexmin(P ′))

= P − cP − φ
(
lexmin(φ−1(P − cP ))

)
= P − φ

(
lexmin(φ−1(P ))

)
.

As φ(lexmin(φ−1(P ))) is a lattice point, this proves the first claim.
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Let now Q ∈ P(Zd) be another lattice polytope that is equivalent to P . Then the
number of vertices of Q also equals N and the polytopes N(P − cp) and N(Q− cQ)
are equivalent. Let ϕ ∈ Aff(Zd) be a unimodular transformation satisfying ϕ(N(P −
cp)) = N(Q− cQ). As the barycenter of both polytopes N(P − cp) and N(Q− cQ) is
the origin and as the map ϕ preserves barycenters, we deduce that ϕ is in fact linear.
So N(P − cp) and N(Q − cQ) are equivalent modulo GL(Zd) and therefore their
normal GL(Zd)-positions P ′ and Q′ are equal. This directly implies P ′′ = Q′′.

The polytope P ′′ in Proposition 1.3.1 is uniquely determined by P . We call P ′′
the normal Aff(Zd)-position of P . We employ this way of checking for equivalence
throughout Chapter 4 and an implementation in SageMath can be found at https:
//github.com/christopherborger/mixed_volume_classification.

Remark 1.3.2. Grinis and Kasprzyk [GK13, §3.3] suggest to use a similar affine
normal form. It has the small disadvantage that determining it requires determining
distinct linear normal forms for each vertex of the polytope. However, they have a
way to make this considerably more efficient than simply computing several linear
normal forms from scratch. Their algorithm is implemented in Magma and we use it
during the computational parts of Chapter 5.
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2. Cayley Constructions
This chapter is devoted to the introduction of a construction called the Cayley sum
and the presentation of various of its properties. In Section 2.1 we present the
main definitions and show some immediate basic facts. Section 2.2 is devoted to
showing the combinatorial Cayley trick (Proposition 2.2.1) that relates the Cayley
sum construction and Minkowski sums, and to illustrate some implications of this
relation to the combinatorial structure (Corollary 2.2.3) and the interaction with the
lattice (Corollary 2.2.6) of the Cayley sum. In Section 2.3, we study the question of
the uniqueness of Cayley decompositions. In particular, with Theorem 2.3.1 we give
criteria that ensure the equivalence of tuples (P1, . . . , Pk) and (Q1, . . . , Qk) whose
Cayley sums Cay(P1, . . . , Pk) and Cay(Q1, . . . , Qk) are equivalent.

2.1. Definition and basic properties
The Cayley sum (or Cayley configuration, Cayley polytope) of the elements in a
tuple is a reoccurring object throughout this thesis. We define two versions of this
construction, as both turn out to be useful in certain cases.

Definition 2.1.1. Let A1, . . . , Ak ⊂ Zd be configurations. We define their Cayley
sum as

Cay(A1, . . . , Ak) = (A1 × {e1}) ∪ · · · ∪ (Ak × {ek}) ⊂ Zd+k,

and their affine Cayley sum as

cay(A1, . . . , Ak) = (A1 × {0}) ∪ (A2 × {e1}) ∪ · · · ∪ (Ak × {ek−1}) ⊂ Zd+k−1.

Analogously, for lattice polytopes P1, . . . , Pk ∈ P(Zd), we define their Cayley sum as

Cay(P1, . . . , Pk) = conv((P1 × {e1}) ∪ · · · ∪ (Pk × {ek})) ∈ P(Zd+k−1),

and their affine Cayley sum as

cay(P1, . . . , Pk) = conv((P1 × {0}) ∪ (P2 × {e1}) ∪ · · · ∪ (Pk × {ek−1})) ∈ P(Zd+k).

Let us denote by

Hd+k,k =
{
x ∈ Rd+k : xd+1 + · · ·+ xd+k = 1

}
⊂ Rd+k

the affine hyperplane in Rd+k of all vectors whose last k coordinates sum up to one.

13



2. Cayley Constructions

Figure 2.1.: Examples of cayley sums. From left to right this is the lattice polytope
cay(�2,∆2) ⊂ R3, the lattice polytope cay([0, 1], [0, 1], [0, 1]) ⊂ R3, and
the point configuration cay({0, 2} , {0, 1}) ⊂ Z2.

Remark 2.1.2. The Cayley sum Cay(A1, . . . , Ak) for configurations A1, . . . , Ak ⊂ Zd
(and therefore Cay(P1, . . . , Pk) for lattice polytopes P1, . . . , Pd ∈ P(Zd)) lives inside
the affine hyperplane Hd+k,k. One has dim(Cay(A1, . . . , Ak)) = dim(A1 + · · ·+Ak) +
k − 1 and the analogous statement for lattice polytopes. Furthermore, one has
Cay(A1, . . . , Ak) ∼= cay(A1, . . . , Ak) and Cay(P1, . . . , Pk) ∼= cay(P1, . . . , Pk). This
can be seen by observing that the map

ϕ : Rd+k → Rd+k−1

ϕ(ei) =


ei if i ∈ {1, . . . , d} ,
0 if i = d+ 1,
ei−1 if i ∈ {d+ 2, . . . , d+ k} ,

defines a unimodular transformation when restricted to the affine hyperplane Hd+k,k.

The Cayley construction can be used to view problems regarding tuples of poly-
topes as problems of single polytopes in a higher dimension. For example, with
Theorem 2.3.1 and Corollary 2.3.4. we explain how to use the Cayley polytope to re-
duce the question of equivalence of two tuples to the question of equivalence of a single
lattice polytope. Another application is in determining so-called mixed subdivisions
of Minkowski sums (see e.g. [DLRS10]) and furthermore in Theorem 3.2.1 we make
use of the fact how a mixed discriminant can be viewed as a special A-discriminant,
where the configuration A is constructed as a Cayley sum.

Apart from applications for the Cayley sum as a construction, one also encounters
special classes of polytopes to be Cayley sums of lower-dimensional ones. For example
point configurations that are defective and lattice polytopes of small lattice degree
with respect to their dimension have been shown to be certain special Cayley sums
(see Theorem 3.3.3 and Theorem 5.1.2).

From the point of view of determining whether a given polytope or configuration has
a certain Cayley structure, it is often convenient to talk about Cayley decompositions.

Definition 2.1.3 (Cayley Decomposition). Let A ⊂ Zd and F1, . . . , Fk ∈ F(A)
faces. We say that F1, . . . , Fk form a Cayley decomposition of A if there exists a
lattice projection π : aff(A)→ Hk,k such that Fi = π−1(ei) ∩ A for all i ∈ [k].
Analogously, let P ∈ P(Zd) be a lattice polytope and F1, . . . , Fk ∈ F(P ) faces of
P . We say that F1, . . . , Fk form a Cayley decomposition of P if there exists a lattice
projection π : aff(P )→ Hk,k such that Fi = π−1(ei) ∩ P for all i ∈ [k].

14



2.2. Cayley polytopes and Minkowski sums

Whenever we construct a Cayley sum we obtain a configuration/lattice polytope
with a Cayley decomposition into the summands. The following makes these in-
teractions precise. This has been shown in [BN07] but we include a proof for the
convenience of the reader.

Proposition 2.1.4. Let A ⊂ Zd be a configuration (respectively P ∈ P(Zd) a lattice
polytope). Then the following are equivalent:

1. There exist non-empty configurations A1, . . . , Ak ⊂ Zd−k+1 (resp. lattice
polytopes P1, . . . , Pk ∈ P(Zd−k+1)) such that A ∼= Cay(A1, . . . , Ak) (resp.
P ∼= Cay(P1, . . . , Pk)),

2. there exists a lattice projection π : aff(A)→ Hk,k with π(A) = ∆̃k−1 ∩Zk (resp.
π(P ) = ∆̃k−1),

3. there exists a Cayley decomposition of A (resp. P ) into non-empty faces
F1, . . . , Fk ∈ F(A) (resp. ∈ F(P )).

Proof. We restrict ourselves to presenting the proof for point configurations as the
proof for lattice polytopes is analogous. One has (1) ⇒ (2), as by construction
any point of Cay(A1, . . . , Ak) ⊂ Hd+1,k ⊂ Zd+1 is of the form (a, s) for a ∈ Ai for
some i ∈ [k] and s ∈ ∆̃k−1 ∩ Zk, and we may therefore choose π = π′ ◦ ϕ, where
π′ : Hd+1,k → Hk,k is the lattice projection mapping onto the last k coordinates and
ϕ : aff(A)→ Hd,k is a unimodular transformation mapping A onto Cay(A1, . . . , Ak).
It is also straightforward to see (2) ⇒ (3) by setting Fi = π−1(ei) ∩ A for all
i ∈ [k]. Note that this is using the fact that π−1(F ) ∩ A is a face of A for any
face F ∈ F(π(A)). This is a general fact about lattice projections. Let us finally
show (3) ⇒ (1). Let F1, . . . , Fk ∈ F(A) form a Cayley decomposition of the
configuration A with corresponding lattice projection π : aff(A) → Hk,k. Denote
d′ := dim(aff(A)). One has dim(kerπ) = d′ − dim(Hk,k) = d′ − k + 1. Thus, we
may choose ϕ : aff(A) → Hd′+1,k to be a unimodular transformation such that
π ◦ ϕ−1 : Hd′+1,k → Hk,k equals the projection onto the last k coordinates (as this
also has codimension d′−k+ 1). Then one has ϕ(A) = Cay(π̃(ϕ(F1)), . . . , π̃(ϕ(Fk))),
where π̃ : Hd′+1,k → Rd′−k+1 is the projection onto the first d′−k+1 coordinates.

Remark 2.1.5. Note that condition (2) (and therefore also (1) and (3)) is equivalent
to the existence of a lattice projection π : aff(A)→ Rk−1 with π(A) = ∆k−1 ∩ Zk−1

(resp. π : aff(P )→ Rk−1 with π(P ) = ∆k−1).

2.2. Cayley polytopes and Minkowski sums
There is a fundamental, well-known relation between the Cayley polytope of a tuple
of lattice polytopes Cay(P1, . . . , Pk) and its Minkowski sum P1 + · · · + Pk. The
main observation for this is the fact that parametrized Minkowski sums occur as
intersections of a Cayley polytope with certain linear subspaces. This connection
is actually even deeper and extends to a connection between triangulations of the
Cayley sum and fine mixed subdivisions of the Minkowski sum. For our purposes we
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2. Cayley Constructions

restrict to presenting and proving the connection between the polytopes and refer to
[DLRS10] for more details.

Proposition 2.2.1 (Combinatorial Cayley Trick). Let P1, . . . , Pk ∈ P(Zd) be lattice
polytopes. For λ ∈ Rk denote by Hλ ⊂ Rd+k the linear subspace given as

Hλ = {x ∈ Rd+k : xd+i = λi for all i ∈ [k]}.

Then for any λ ∈ Rk with 0 ≤ λi ≤ 1 and λ1 + · · ·+ λk = 1 one has

Cay(P1, . . . , Pk) ∩Hλ
∼= λ1P1 + · · ·+ λkPk.

Proof. By construction, each point p ∈ Cay(P1, . . . , Pk) is a convex combination

p = µ1(p1, e1) + · · ·+ µk(pk, ek) = (µ1p1 + · · ·+ µkpk, µ),

for points pi ∈ Pi and µ = (µ1, . . . , µk) with 0 ≤ µi ≤ 1 for all i ∈ [k] and
µ1 + · · ·+ µk = 1. One clearly has (µ1p1 + · · ·+ µkpk, µ) ∈ Hλ if and only if µ = λ.
Therefore, for any λ ∈ Rk with 0 ≤ λi ≤ 1 and λ1 + · · ·+ λk = 1, one has

Cay(P1, . . . , Pd) ∩Hλ = {(λ1p1, . . . , λkpk, λ) : pi ∈ Pi for all i ∈ [k]} ,

and therefore Cay(P1, . . . , Pd) ∩Hλ
∼= λ1P1 + · · ·+ λkPk.

Remark 2.2.2. Analogously to Proposition 2.2.1, the intersection of the affine
Cayley sum cay(P1, . . . , Pk) with the hyperplane

hλ =
{
x ∈ Rd+k−1 : xd+i = λi+1 for all i ∈ [k − 1]

}
is equivalent to the Minkowski sum λ1P1 + · · ·+λkPk for any λ ∈ Rk with 0 ≤ λi ≤ 1
and λ1 + · · ·+ λk = 1.

Proposition 2.2.1 yields the following complete characterization of the faces of a
Cayley sum. Recall that we also consider the whole polytope as a face of itself.

Corollary 2.2.3 (Faces of Cayley sums). Let P1, . . . , Pk ∈ P(Zd) be lattice poly-
topes. Consider faces F1, . . . , Fk with Fi ∈ F(Pi) for all i ∈ [k]. Let I ⊆ [k] be
the index set of all i ∈ [k] for which Fi 6= ∅. Then Cay(F1, . . . , Fk) is a face of
Cay(P1, . . . , Pk) if and only if ∑i∈I Fi is a face of the Minkowski sum ∑

i∈I Pi. All
faces of Cay(P1, . . . , Pk) arise in this way.
The analogous statement holds if one considers configurations A1, . . . , Ak ⊂ Zd

instead of lattice polytopes.

Proof. Let F ∈ F(Cay(P1, . . . , Pk)) be a face. Assume that F is a non-empty and
proper face as otherwise the statement is clear. All vertices of Cay(P1, . . . , Pk) are
of the form (vi, ei) for some i ∈ [k] and a vertex vi ∈ vert(Pi). Therefore F is of the
form F = Cay(F1, . . . , Fk) for subsets Fi ⊆ Pi for i ∈ [k]. Let H be a supporting
hyperplane corresponding to the face F . For any i ∈ [k], the projection onto the first
d coordinates of the intersection of H with Hei

(in the notation of Proposition 2.2.1)
is either a supporting hyperplane of Pi or the whole space Rd. Furthermore, the

16



2.2. Cayley polytopes and Minkowski sums

Figure 2.2.: Illustration of Remark 2.2.2 for P1 = conv(0,−e1,−e2), P2 =
conv(0, e1, e2) (in orange). The intersection of cay(P1, P2) with h(1/2,1/2)
is the dilated Minkowski sum (1/2)(P1 + P2) (in red).

intersection of this projection with Pi is Fi and therefore F1, . . . , Fk are faces of
P1, . . . , Pk, respectively.
Let I ⊆ [k] be the index set of all i ∈ [k] for which Fi 6= ∅. Define

λ = 1
|I|

∑
i∈I

ei ∈ Rk.

Let Hλ be defined as in Proposition 2.2.1. Then F ∩Hλ ∈ F(Cay(P1, . . . , Pk) ∩Hλ)
and, by Proposition 2.2.1, one has

Cay(P1, . . . , Pk) ∩Hλ
∼=
∑
i∈I

Pi.

This proves the statement for lattice polytopes. The arguments work analogously for
point configurations A1, . . . , Ak ⊂ Zd as faces of a configuration A are intersections
of A with faces of the lattice polytope conv(A).
Remark 2.2.4. Corollary 2.2.3 implies in particular that Pi × {ei} is a face of
Cay(P1, . . . , Pk). Furthermore, also the complement

P c
i = conv {v ∈ vert (Cay(P1, . . . , Pk)) : v /∈ Pi × {ei}} ,

is a face of Cay(P1, . . . , Pk) as one has P c
i = Cay(P1, . . . , Pi−1, ∅, Pi+1, . . . , Pk).

Remark 2.2.5. Consider the Cayley sum Cay(P1, . . . , Pk), let F1, . . . , Fk be faces of
P1, . . . , Pk, respectively, and denote by P ′i = Pi×{ei} the faces corresponding to the
Cayley summands. As one has Cay(F1, . . . , Fk) = conv(F1 × {e1} ∪ · · · ∪ Fk × {ek}),
Corollary 2.2.3 yields that any face F ∈ F(Cay(P1, . . . , Pk)) is of the the form

F = conv((F ∩ P ′1) ∪ · · · ∪ (F ∩ P ′k)).

In particular, dim(F ) = dim(F ∩ P ′1) + · · · + dim(F ∩ P ′k) + r − 1, where r is the
number of i ∈ [k] for which one has F ∩ P ′i 6= ∅.
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2. Cayley Constructions

The connection of Proposition 2.2.1 does not depend on P1, . . . , Pk being lattice
polytopes. In fact, one could formulate an analogous statement with general convex
bodies (while being careful about using the correct notion of equivalence). Its
application to the special case of lattice polytopes, however, offers an interesting
perspective on some questions regarding (mixed) lattice properties.
Recall that a lattice polytope P ∈ P(Zd) has the integer decomposition property

(or is IDP) if one has kP ∩ Zd = P ∩ Zd + (k − 1)P ∩ Zd for each number k ∈ Z≥2.
We say that a tuple of lattice polytopes (P1, . . . , Pk) ∈ P(Zd)k is mixed IDP, if it
satisfies

(P1 + · · ·+ Pk) ∩ Zd = (P1 ∩ Zd) + · · ·+ (Pk ∩ Zd).

Part (1) of the following statement seems to be folklore but we are not aware of a
published version of this explicit statement. Part (2) has been shown in [Tsu18].

Corollary 2.2.6 (Cayley and Minkowski sums of lattice polytopes). Let P1, . . . , Pk ∈
P(Zd) be lattice polytopes.

1. For every n ∈ Z≥1 one has

| int(n · Cay(P1, . . . , Pk)) ∩ Zd+k| =
∑

λ1,...,λk∈Z≥1
λ1+···+λk=n

| int(λ1P1 + · · ·+ λkPk) ∩ Zd|.

In particular, the dilated Cayley polytope n · Cay(P1, . . . , Pk) is hollow if and
only if for all choices of λ1, . . . , λk ∈ Z≥1 with λ1 + · · ·+λk = n the Minkowski
sum λ1P1 + · · ·+ λkPk is hollow.

2. The Cayley polytope Cay(P1, . . . , Pk) is IDP if and only if for all λ1, . . . , λk ∈
Z≥0 the family (P1, . . . , P1︸ ︷︷ ︸

λ1 times

, . . . , Pk, . . . , Pk︸ ︷︷ ︸
λk times

) is mixed IDP.

Proof. We first prove (1). Denote by π : Hd+k,k → Hk,k the lattice projection
onto the last k coordinates. The projection π maps every interior lattice point of
n · Cay(P1, . . . , Pk) to an interior lattice point of n · ∆̃k−1. It is not hard to verify
that the fibers of π over the interior lattice points of n · ∆̃k−1 are precisely the
affine subspaces of the form Hλ for λ ∈ (Z≥1)k satisfying λ1 + · · · + λk = n. By
Proposition 2.2.1, one has

n · Cay(P1, . . . , Pk) ∩Hλ
∼= λ1P1 + · · ·+ λkPk,

which proves the statement. Let us now proceed to proving (2). Assume that
Cay(P1, . . . , Pk) is IDP, let λ = (λ1, . . . , λk) ∈ (Z≥0)k and p ∈ (λ1P1+· · ·+λkPk)∩Zd
a lattice point. By the equivalence given in Proposition 2.2.1, the lattice point p
corresponds to the lattice point (p, λ) ∈ (n · Cay(P1, . . . , Pk) ∩ Hλ) ∩ Zd+k, where
n = λ1 + · · · + λk. As Cay(P1, . . . , Pk) is IDP, there exist (q1, ei1), . . . , (qn, ein) ∈
Cay(P1, . . . , Pk) ∩ Zd+k satisfying (p, λ) = (q1, ei1) + · · ·+ (qn, ein). In particular, as
λ = ei1 + · · ·+ ein , we may assume the sequence (ei1 , . . . , ein) to be of the form

(e1, . . . , e1︸ ︷︷ ︸
λ1 times

, . . . , ek, . . . , ek︸ ︷︷ ︸
λk times

),
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2.2. Cayley polytopes and Minkowski sums

and therefore

q1, . . . , qλ1 ∈ P1 ∩ Zd

qλ1+1, . . . , qλ1+λ2 ∈ P2 ∩ Zd
...

qλ1+···+λk−1+1, . . . , qλ1+···+λk
∈ Pk ∩ Zd.

This shows that the tuple

(P1, . . . , P1︸ ︷︷ ︸
λ1 times

, . . . , Pk, . . . , Pk︸ ︷︷ ︸
λk times

),

is mixed IDP, finishing the proof of one direction of (2). Let us finally prove the
reverse implication. Let n ∈ Z≥2 and let p ∈ (n · Cay(P1, . . . , Pk)) ∩ Zd+k. Then, by
construction, p is of the form

p = λ1(q1, e1) + · · ·+ λk(qk, ek),

for λ1, . . . , λk ∈ R≥0 with λ1 + · · · + λk = n and qi ∈ Pi for all i ∈ [k]. Since p
is a lattice point, one has λ1, . . . , λk ∈ Z≥0. Furthermore, by Proposition 2.2.1,
λ1q1 + · · · + λkqk is a lattice point of the Minkowski sum λ1P1 + · · · + λkPk. By
assumption, the tuple

(P1, . . . , P1︸ ︷︷ ︸
λ1 times

, . . . , Pk, . . . , Pk︸ ︷︷ ︸
λk times

),

is mixed IDP. Therefore one can choose lattice points ri,1, . . . , ri,λi
∈ Pi ∩ Zd, for

each i ∈ [k], such that one has

r1,1 + · · ·+ r1,λ1 + · · ·+ rk,1 + · · ·+ rk,λk
= λ1q1 + · · ·+ λkqk,

and therefore

p = (r1,1, e1) + · · ·+ (r1,λ1 , e1) + · · ·+ (rk,1, ek) + · · ·+ (rk,λk
, ek),

which proves the claim as (ri,j, ei) ∈ Cay(P1, . . . , Pk) ∩ Zd+k for each i ∈ [k] and
j ∈ {1, . . . , λi}.

Questions regarding the hollowness of certain Minkowski sums will play a great
role in Chapter 5 in the context of the mixed degree of a tuple of lattice polytopes.
We will not be treating the IDP or mixed IDP property in further detail in this
thesis and refer to [Tsu18] for further results on the interplay of these notions for
special classes of polytopes. In general, the question whether a family is mixed IDP
or not seems difficult. Already in dimension 2, the question for a description of all
pairs that are mixed IDP, which has been asked in [Oda08], has not been completely
answered (cf. [HNPS08]).
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2.3. Equivalence of Cayley sums
It is a straightforward observation that two equivalent tuples of lattice polytopes
(P1, . . . , Pk), (Q1, . . . , Qk) ∈ P(Zd)k yield two equivalent Cayley polytopes. Indeed,
if the above tuples are equivalent, then there exists a permutation σ on the index set
[k], a unimodular transformation ϕ ∈ Aff(Zd), and a translation by a tuple of lattice
vectors (t1, . . . , tk) ∈ (Zd)k such that successive application of these operations maps
(P1, . . . , Pk) to (Q1, . . . , Qk). Each of these operations yields a map in Aff(Hd+k,k) (a
permutation of the last k coordinates, the unimodular transformation ϕ× Idk, and a
shearing map, respectively), and the composition of these maps sends Cay(P1, . . . , Pk)
to Cay(Q1, . . . , Qk).

However, it can in general happen that two non-equivalent tuples have equivalent
Cayley sums. In order to avoid this one needs to ensure that the unimodular
transformation between the Cayley polytopes "respects the Cayley structure". The
following provides certain conditions that ensure this situation.

Theorem 2.3.1. Let (P1, . . . , Pk), (Q1, . . . , Qk) ∈ P(Zd)k with dim(P1+· · ·+Pk) = d.
If there exists no lattice projection π : Rd → R satisfying π(Pi) ⊆ ∆1 + zi for some
zi ∈ Z for all i ∈ [k], then one has:

(P1, . . . , Pk) ∼= (Q1, . . . , Qk)⇔ Cay(P1, . . . , Pk) ∼= Cay(Q1, . . . , Qk). (2.1)

If Q1, . . . , Qk are full-dimensional, then (2.1) holds under the weaker assumption
that there exists no lattice projection π : Rd → Rk−1 satisfying π(Pi) ⊆ ∆k−1 + zi for
some zi ∈ Zk−1 for all i ∈ [k].

Proof. The first implication is straightforward, as sketched above. So assume ϕ ∈
Aff(Hd+k,k) is a unimodular transformation sending Cay(P1, . . . , Pk) to Cay(Q1, . . . , Qk).
Denote P ′i = ϕ(Pi × {ei}) and Q̂i = Qi × {ei} for all i ∈ [k]. Then P ′1, . . . , P

′
k

and Q̂1, . . . , Q̂k are both Cayley decompositions of Cay(Q1, . . . , Qk). Denote by
πQ : Hd+k,k → Hk,k the projection corresponding to the Cayley decomposition
Q̂1, . . . , Q̂k (the projection onto the last k coordinates). Let εi : Rd → Hd+k,k be the
embedding given by x 7→ (x, ei) ∈ Hd+k,k and consider the composition

ψi : Rd ↪→ Hd+k,k
∼−→ Hd+k,k � Hk,k

given by ψi = πQ ◦ ϕ ◦ εi. As P ′i ⊆ Cay(Q1, . . . , Qk), one has

ψi(Pi) = πQ(P ′i ) ⊆ ∆̃k−1.

As one has εi = εj + ed+i − ed+j for every i, j ∈ [k], also the affine maps ψi and ψj
only differ by a constant lattice translation. Therefore there exist t1, . . . , tk ∈ Hk,k

such that ψ1(Pi) ⊆ ∆̃k−1 + ti for all i ∈ [k].
We make a case distinction depending on the image ψ1(Rd) of the affine lattice-

preserving map ψ1. If dim(ψ1(Rd)) ≥ 1, one has dim(ψ1(P1 + · · ·+ Pk)) ≥ 1 (as by
assumption dim(P1 + · · · + Pk) = d). In particular, there exists an index i0 ∈ [k]
such that dim(ψ1(Pi0)) ≥ 1. As ψ1(Pi0) is a lattice polytope inside ∆̃k−1 + ti0 , this
implies that it contains an edge I of ∆̃k−1 + ti0 . One may choose a lattice projection
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2.3. Equivalence of Cayley sums

πI : Hk,k → R "onto" the linear subspace spanR(I − ti0) (such that πI(Hk,k) =
πI(spanR(I − ti0)) = R), which satisfies πI(∆̃k−1) = πI(I − ti0) = ∆1. Then the map
π = πI ◦ ψ1 is a lattice projection satisfying

π(Pi) = πI(ψ1(Pi)) ⊆ πI(∆̃k−1 + ti) = ∆1 + πI(ti),

for all i ∈ [k]. In this case the claimed conditions for (2.1) are not satisfied.
So let us assume that dim(ψ1(Rd)) = 0. This is equivalent to the existence of a

lattice vector s ∈ Hd+k,k such that

ϕ(Rd × {e1}) + s ⊆ ker(πQ) = Rd × {0} .

As ϕ is a unimodular transformation, comparing the dimensions yields that the
above containment is in fact an equality and therefore ϕ(Rd × {e1}) + s = Rd × {0}.
Thus, ϕ splits into ϕ = ϕd×ϕk, where ϕd ∈ Aff(Zd) and ϕk ∈ Aff(Zk). Then ϕk is a
symmetry of the simplex ∆̃k−1 and therefore a coordinate permutation. In particular,
there exists a permutation σ on [k] such that ϕ sends Pi × {ei} to Qσ(i) × {eσ(i)} for
any i ∈ [k]. The map ϕd provides a unimodular transformation sending each Pi to a
lattice translate of Qσ(i) and therefore one has (P1, . . . , Pk) ∼= (Q1, . . . , Qk).

We now show that, whenever Q1, . . . , Qk are full-dimensional, it suffices to pose the
claimed weaker conditions on the tuple (P1, . . . , Pk) in order to deduce equivalence
of (P1, . . . , Pk) and (Q1, . . . , Qk). We do so by showing that in this case the mapping
ψ1 is either trivial (and therefore (2.1) holds analogously to above) or it is surjective
and therefore a lattice projection. As ψ1(Pi) ⊆ ∆̃k−1 + ti for all i ∈ [k], the latter
case contradicts the assumptions.
Let us assume that the map ψ1 is non-trivial. As shown above, this implies the

existence of an index i0 ∈ [k] for which dim(πQ(P ′i0)) = dim(ψ1(Pi0)) ≥ 1. This means
in particular that P ′i0 6= Q̂i for all i ∈ [k], as πQ(Q̂i) = {0}. Note that P ′i0 also cannot
strictly contain any Q̂i, as by Corollary 2.2.3 any face F ∈ F(Cay(Q1, . . . , Qk)) that
properly contains Q̂i is of the form

F = Cay(F1, . . . , Fi−1, Qi, Fi+1, . . . , Fd),

for faces Fj ∈ F(Qj), at least one of which is non-empty. So dim(F ) ≥ d + 1 and
therefore F cannot equal the face P ′i0 , which has dimension at most d. Furthermore,
P ′i0 cannot be disjoint to any Q̂i due to the following. If P ′i0 is disjoint to, say, Q̂1, its
complement (P ′i0)c contains Q̂1. As P ′i0 does not fully contain any Q̂i, the complement
(P ′i0)c additionally contains at least one point of Q̂i for each i ∈ [k]. Therefore by
Corollary 2.2.3, there exist points p2, . . . , pk in Q2, . . . , Qk, respectively, such that
Cay(Q1, {p2} , . . . , {pk}) ⊆ (P ′i0)c and therefore

dim((P ′i0)c) ≥ dim(Cay(Q1, {p2} , . . . , {pk})) = d+ k − 1.

This is a contradiction to Remark 2.2.4, as the (d + k − 1)-dimensional Cayley
sum Cay(Q1, . . . , Qk) cannot have a proper face of dimension at least d + k − 1.
We conclude that P ′i0 has non-empty intersection with Q̂i for each i ∈ [k]. Thus
ψ1(Pi0) = ∆̃k−1. This implies that the map ψ is surjective and finishes the proof.
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2. Cayley Constructions

Let us comment on the relation between the two different conditions that ensure
that (2.1) holds. Note first that the assumption dim(P1 + · · · + Pk) = d is only a
technical one as we may otherwise identify aff(P1+· · ·+Pk) with some Rd′ in a lattice-
preserving way. Requiring that there exists no lattice projection commonly mapping
all Pi onto translates of ∆1 is a necessary condition in the sense that there exist
pairs of tuples (P1, . . . , Pk), (Q1, . . . , Qk) ∈ P(Zd)k not meeting this assumption for
which one has Cay(Q1, . . . , Qk) ∼= Cay(P1, . . . , Pk) but (Q1, . . . , Qk) � (P1, . . . , Pk).
However, if one has a tuple of lattice polytopes (P1, . . . , Pk) ∈ P(Zd)k that violates
this condition, it is not always true that there exists a non-equivalent tuple with
equivalent Cayley sum. On the other hand, consider a tuple (P1, . . . , Pk) that also
violates the weaker condition of the non-existence of a lattice projection commonly
mapping all Pi onto translates of ∆k−1. By Proposition 2.1.4, this implies that
each Pi itself is equivalent to a Cayley sum of k polytopes Fi1, . . . , Fik, and that the
unimodular transformations yielding these equivalences are compatible in the sense
that one has

(P1, . . . , Pk) ∼= (Cay(F11, . . . , F1k), . . . ,Cay(Fk1, . . . , Fkk)).

In this situation one has the following general statement, showing that one would in
general expect the existence of a non-equivalent tuple (Q1, . . . , Qk) � (P1, . . . , Pk)
satisfying Cay(Q1, . . . , Qk) ∼= Cay(P1, . . . , Qk).

Proposition 2.3.2. Consider lattice polytopes P11, . . . , P1k, . . . , Pk1, . . . , Pkk ∈ P(Zd).
Then one has the following equivalence of Cayley sums:

Cay(Cay(P11, . . . , P1k), . . . ,Cay(Pk1, . . . , Pkk))
∼=

Cay(Cay(P11, . . . , Pk1), . . . ,Cay(P1k, . . . , Pkk)).

Example 2.3.3. Consider two triples of lattice polytopes (P1, P2, P3), (Q1, Q2, Q3) ∈
P(Z3)3 where P1 = P2 = Q1 = ∆2 × ∆1, the polytope P3 = ∆3, and Q2 =
Q3 = conv(∆2 ∪ {e3, e1 + e3}) (see Figure 2.3). Note that the lattice projection
π1,2 : R3 → R2 onto the first two coordinates satisfies π(Pi) = ∆2 for all i ∈ [3].
Furthermore, the two tuples are not equivalent. This can be seen for example
by observing that none of the Qi has four vertices and therefore none of them is
equivalent to P3. However, by Proposition 2.1.4, the lattice projection π1,2 yields a
Cayley decomposition of each Pi into three faces (colored in red, blue and orange in
Figure 2.3). In particular:

P1 = cay(I11, I12, I13) P2 = cay(I21, I22, I23) P3 = cay(I31, I32, I33),

and therefore

cay(P1, P2, P3) = cay(cay(I11, I12, I13), cay(I21, I22, I23), cay(I31, I32, I33)).

By Proposition 2.3.2 one therefore has

cay(P1, P2, P3) ∼= cay(cay(I11, I21, I31), cay(I12, I22, I32), cay(I13, I23, I33))
= cay(Q1, Q2, Q3).
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2.3. Equivalence of Cayley sums

P1 P2 P3

Q1 Q2 Q3

Figure 2.3.: The triples of polytopes (P1, P2, P3) and (Q1, Q2, Q3) from Exam-
ple 2.3.3.

The following result shows how one may use Theorem 2.3.1 in order to reduce
the question whether two tuples of lattice polytopes are equivalent to the question
whether the Cayley sums of their second dilates are. Passing to the second dilates
when forming the Cayley sums allows us to not have to worry about the original
tuples meeting the conditions of Theorem 2.3.1.

Corollary 2.3.4. Let (P1, . . . , Pk), (Q1, . . . , Qk) ∈ P(Zd)k with dim(P1 + · · ·+Pk) =
d. Then one has:

(P1, . . . , Pk) ∼= (Q1, . . . , Qk)⇔ Cay(2P1, . . . , 2Pk) ∼= Cay(2Q1, . . . , 2Qk).

Proof. It is straightforward to verify that one has (P1, . . . , Pk) ∼= (Q1, . . . , Qk) if and
only if one has (2P1, . . . , 2Pk) ∼= (2Q1, . . . , 2Qk). In order to complete the proof
we show that the tuple (2P1, . . . , 2Pk) satisfies the conditions of Theorem 2.3.1.
Let therefore π : Rd → R be a lattice projection. Then π(2P1 + · · · + 2Pk) =
π(2P1) + · · ·+ π(2Pk) ∈ P(Z1) is a 1-dimensional lattice polytope (as we assumed
dim(P1 + · · · + Pk) = d). This implies dim(π(2Pi0)) = 1 for some i0 ∈ [k] and
therefore π(2Pi0) = 2π(Pi0) cannot be contained in ∆1.
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3. Defectivity of Mixed
Discriminants

The core of this chapter is the presentation of a necessary criterion for a tuple
(A0, . . . , Ak) ⊂ (Zd)k+1 of support sets for a polynomial system to be defective
(Theorem 3.2.1). Defective tuples of point configurations (A0, . . . , Ak) are essentially
tuples for which the condition for a system f0 = · · · = fk = 0 with (f0, . . . , fk) ∈
C[A0, . . . , Ak] to have a multiple root cannot be described by a single polynomial.
In the case of square systems this result solves a conjecture by Cattani et al. saying
that such a polynomial always exists and has positive degree except if the system
is given as the intersection of affine hyperplanes (Corollary 3.2.2). In Section 3.1
we provide some background and introduce the notion of an A-discriminant and a
mixed discriminant. Section 3.2 is devoted to the presentation of the main result
and its implications. In Section 3.3 we state the criterion that is the main tool in
the deduction of our results (Theorem 3.3.3) and illustrate some direct implications.
Section 3.4 is dedicated to presenting the proof of Theorem 3.2.1 and we conclude
the chapter with an outlook of further research directions in Section 3.5.
Note that, in the setting of this chapter, it shows convenient to work with the

affine Cayley sum cay(A0, . . . , Ak) and tuples of configurations indexed by numbers
starting with 0. We use the notation [k]0 = {0, . . . , k}. As cay(A0, . . . , Ak) ∼=
Cay(A0, . . . , Ak), we may still use the results from Chapter 2.

3.1. (Mixed) discriminants and defectivity
The probably most well-known instance of a discriminant is the one for a univariate
quadratic polynomial ax2 + bx+ c ∈ C[x], which is given as b2 − 4ac ∈ C[a, b, c] and
which vanishes for all choices of coefficients a0, b0, c0 ∈ C for which the polynomial
a0x

2 + b0x + c0 has a multiple root. This concept has been generalized by the
introduction of A-discriminants by Gelfand, Kapranov and Zelevinsky in [GKZ94].
Recall that the affine variety V(I) of a finitely generated ideal I ⊆ C[x1, . . . , xd]

with generating polynomials f1, . . . , fk is given by

V(I) = V(f1, . . . , fk) =
{
x ∈ Cd : f1(x) = · · · = fk(x) = 0

}
.

We call V(I) an algebraic hypersurface if I is generated by a single polynomial. Given
an arbitrary set S ⊆ Cd, its Zariski closure is the smallest set V containing S and
satisfying V = V(I) for some ideal I ⊆ C[x1, . . . , xd]. Furthermore, a multiple root
of a Laurent polynomial f ∈ C[x±1 , . . . , x±d ] is a point p ∈ (C∗)d satisfying f(p) = 0
and ∇f(p) = 0.
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3. Defectivity of Mixed Discriminants

Definition 3.1.1 (A-Discriminant). Let A ⊂ Zd be a point configuration. The
discriminantal variety ΣA ⊂ CA is the Zariski closure of all coefficient vectors c ∈ CA
whose corresponding polynomial fc ∈ C[A] has a multiple root in (C∗)d. If ΣA

is an algebraic hypersurface, the A-discriminant ∆A is the (up to sign) unique
irreducible polynomial with V(∆A) = ΣA. Otherwise we set ∆A = 1 and say that
the configuration A is defective.

Let us illustrate this definition with an example.

Example 3.1.2. The polynomial b2−4ac is the A-discriminant of the 1-dimensional
configuration A = {0, 1, 2} ⊂ Z. In particular, the configuration {0, 1, 2} is not
defective. Also note that it is important to keep in mind that we are forming a
Zariski closure in the definition of ΣA. For example the point (a0, b0, c0) = (0, 0, 1)
corresponds to the constant polynomial f = 1 (which does not have any root at all),
although (0, 0, 1) ∈ ΣA.
As another example consider the vector space of polynomials C[A′] where

A′ =
(

0 1 2 0
0 0 0 1

)
⊂ Z2.

Polynomials in C[A′] are of the form f = ax2 + bx+ c+ dy for coefficients a, b, c, d ∈
C[A′]. A multiple root of f is a point (x0, y0) ∈ (C∗)2 that satisfies

f(x0, y0) = ax2
0 + bx0 + c+ dy0 = 0

∇f(x0, y0) = (2ax0 + b, d) = 0.

Clearly, f can only have such a multiple root whenever d = 0. It remains to compute
for which choices of a, b, c the terms x2

0 + bx0 + c and 2ax0 + b can vanish for the
same x0 ∈ C∗. This, however, is exactly given by the condition that b2 − 4ac = 0.
So we conclude that the discriminantal variety of A′ is given by

ΣA′ = V(d) ∩ V(b2 − 4ac) = V(d, b2 − 4ac).

In particular, ΣA′ is not an algebraic hypersurface and therefore the configuration
A′ is defective. In other words, the condition of a polynomial in C[A′] to have a
multiple root is given by the vanishing of two independent polynomials. Therefore
we cannot find an A-discriminant ∆A′ satisfying V(∆A′) = ΣA′ .

There have been intensive studies on connecting the (discrete) geometry of the
point configuration A to invariants of the corresponding discriminant. One direction
of research has been to find a combinatorial characterization of defective configu-
rations (see for example [DR06, CDR08, DDRP09, DN10, DNV12]). Recently two
independent characterizations were given by Esterov [Est10, Est18a] and Furukawa-
Ito [FI20]. We refer to the survey article [Pie15] for additional background on
A-discriminants.

Our main contribution is regarding a modification of the A-discriminant to systems
of polynomials. This has been introduced as the mixed discriminant by Cattani et
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3.1. (Mixed) discriminants and defectivity

al. in [CCD+13]. Instead of describing the choices of coefficients leading to multiple
roots among a vector space of polynomials, it describes tuples of polynomials in
C[A0, . . . , Ak] for which the system f0 = · · · = fk = 0 has so-called non-degenerate
multiple roots. Let us make this definition precise.

Definition 3.1.3. Let f0, . . . , fk ∈ C[x±1
1 , . . . , x±1

d ]. A multiple root of the system
f1 = · · · = fk = 0 is a point p ∈ (C∗)d such that f1(p) = · · · = fk(p) = 0 and such
that the gradient vectors ∇f0(p), . . . ,∇fk(p) are linearly dependent. A multiple root
p is called non-degenerate if any proper subset of {∇f0(p), . . . ,∇fk(p)} is linearly
independent.

The following definition of the mixed discriminant is a slightly generalized version
of the one in [CCD+13] to the case of k polynomials in d variables. This definition
is due to personal communication with Alicia Dickenstein and Sandra Di Rocco
regarding the announced paper [DDRM20] and also appears in [Est19].

Definition 3.1.4 (Mixed Discriminant). Let (A0, . . . , Ak) ⊂ (Zd)k+1 be a tuple
of point configurations. The discriminantal variety ΣA0,...,Ak

⊂ CA0 × · · · × CAk

is the Zariski closure of all coefficient vectors (c1, . . . , ck) for which the system of
corresponding polynomials fc1 = · · · = fck

= 0 has a non-degenerate multiple root. If
ΣA0,...,Ak

is an algebraic hypersurface, the mixed discriminant ∆A0,...,Ak
is the (up to

sign) unique irreducible polynomial that satisfies V(∆A0,...,Ak
) = ΣA0,...,Ak

. Otherwise
we set ∆A0,...,Ak

= 1 and call the tuple (A0, . . . , Ak) defective.

Let us illustrate the above definition with an example.

Example 3.1.5. Consider the pair of configurations (A0, A1) ⊂ (Z2)2 given by:

A0 =
(

0 1 2 0
0 0 0 1

)
and A1 =

(
0 1 0
0 0 1

)
.

A system of polynomials f0 = f1 = 0 with (f0, f1) ∈ C[A0, A1] is the intersection
of a parabola with a line. Therefore the mixed discriminant ∆A0,A1 should provide
the conditions for the line f1 = 0 to be tangent to the parabola f0 = 0. So let us
consider polynomials:

f0 = a00 + a10x+ a20x
2 + a01y,

f1 = b00 + b10x+ b01y,

Already computing ∆A0,A1 in this special case would become very tedious by hand.
We therefore use Macaulay2 [GS] in order to compute

∆A0,A1 = a2
01b

2
10 + 4a20a01b00b01 − 2a10a01b10b01 + a2

10b
2
01 − 4a00a20b

2
01.

The following result is soon to appear in an announced paper by Di Rocco,
Dickenstein and Morrison [DDRM20] (see also [CCD+13] for the special case where
k = d). It shows how to reduce the computation of a mixed discriminant to that of
a certain special A-discriminant using the construction of the Cayley sum.
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3. Defectivity of Mixed Discriminants

Theorem 3.1.6. Let (A0, . . . , Ak) ⊂ (Zd)k+1 be a tuple of configurations. If the Cay-
ley sum cay(A0, . . . , Ak) ⊂ Zd+k is not defective, then ∆A0,...,Ak

= ∆cay(A0,...,Ak). In
particular, if the tuple (A0, . . . , Ak) is defective, then the configuration cay(A0, . . . , Ak)
is defective.

Example 3.1.7. Consider the pair of configurations (A0, A1) ⊂ (Z2)2 from Exam-
ple 3.1.5. The Cayley sum of A0 and A1 is given by

cay(A0, A1) =

0 1 2 0 0 1 0
0 0 0 1 0 0 1
0 0 0 0 1 1 1

 ⊂ Z3.

Let us illustrate the basic intuition behind Theorem 3.1.6. Any polynomial f ∈
C[cay(A0, A1)] is of the form

f = f0 + zf1,

for a pair (f0, f1) ∈ C[A0, A1]. Furthermore, we have

∇f =
(
∇f0 + z∇f1

f1

)
.

Let (x0, y0) ∈ (C∗)3 be a multiple root of the system f0 = f1 = 0. This implies
∇f0(x0, y0) and ∇f1(x0, y0) to be linearly dependent and thus there exists z0 ∈ C∗
satisfying ∇f0(x0, y0)+z0∇f1(x0, y0) = (0, 0). In particular, one has ∇f(x0, y0, z0) =
(0, 0, 0). As (x0, y0, z0) is clearly a root of f we conclude that ΣA0,A1 ⊆ Σcay(A0,A1).
By Theorem 3.1.6, this and also the reversed inclusion hold in general (whenever
cay(A0, A1) is not defective). However, the reversed inclusion is less direct as one
has to be careful about the fact that the mixed discriminant by definition gives
conditions for a system having a multiple root which is non-degenerate.

3.2. A necessary condition
The main contribution of this chapter is the following necessary condition for mixed
defectivity in the case that all configurations of a family are full-dimensional. For A ⊂
Zd, we denote by 〈A− A〉 the subgroup of Zd generated by the set {a1− a2 : a1, a2 ∈
A} and say that A ⊂ Zd is spanning if 〈A− A〉 = Zd. More generally, we say that a
family (A0, . . . , Ak) ⊂ Zd is spanning if 〈A0 − A0〉+ · · ·+ 〈Ak − Ak〉 = Zd.

Theorem 3.2.1. Let k ≤ d and A0, . . . , Ak ⊂ Zd be full-dimensional configurations
that form a spanning family. If (A0, . . . , Ak) is defective, then the convex hull of the
Minkowski sum A0 + · · ·+ Ak does not have any interior lattice points, i.e.,

int(conv(A0 + · · ·+ Ak)) ∩ Zd = ∅.

We refer to Section 3.4 for the proof of Theorem 3.2.1. The following result is a
conjecture in [CCD+13]. It has been proven before in the 2-dimensional case as well
as under additional smoothness assumptions.
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3.2. A necessary condition

Corollary 3.2.2. Let (A0, . . . , Ad−1) ⊂ (Zd)d be a spanning family of full-dimensional
configurations. The tuple (A0, . . . , Ad−1) is defective if and only if one has

(A0, . . . , Ad−1) ∼= (∆d ∩ Zd, . . . ,∆d ∩ Zd).

Proof. For any tuple (f1, . . . , fd) ∈ C[∆d ∩ Zd, . . . ,∆d ∩ Zd], the system f1 =
· · · = fd = 0 is the intersection of d affine hyperplanes and one readily sees that
such a system cannot have an isolated non-degenerate multiple root. Thus the
tuple (∆d ∩ Zd, . . . ,∆d ∩ Zd), and therefore any equivalent tuple, is trivially de-
fective. On the other hand, by Corollary 3.2 of [Nil20], the mixed volume of
(conv(A0), . . . , conv(Ad−1)) can be computed as

1 +
∑

∅6=I⊆[d−1]
(−1)d−|I|| int(conv(

∑
i∈I

Ai)) ∩ Zd|.

If (A0, . . . , Ad−1) is defective, Theorem 3.2.1 implies conv(A0 + · · ·+Ad−1) and there-
fore (as all Ai are full-dimensional) also conv(∑i∈I Ai) to have no interior lattice points
for any I ⊆ [d−1]0. This shows that the mixed volume of (conv(A0), . . . , conv(Ak−1))
is 1. The claimed equivalence follows then from Proposition 2.7 of [CCD+13] (see
also Proposition 5.1.5).

Note that for given (A0, . . . , Ak) ⊂ (Zd)k+1 one may always choose a spanning
family whose mixed discriminantal variety equals Σ(A0,...,Ak) (see [GKZ94, Chapter 5,
Proposition 1.2]). By applying a suitable transformation, this implies the following
slightly more general version of Theorem 3.2.1.

Corollary 3.2.3. Let k ≤ d and (A0, . . . , Ak) ∈ (Zd)k+1 be full-dimensional con-
figurations. Define Λ = 〈A0 − A0〉 + · · · + 〈Ak − Ak〉 the lattice spanned by these
configurations. If (A0, . . . , Ak) is defective then

int((A0 − a0) + · · ·+ (Ak − ak)) ∩ Λ = ∅,

for all choices a0, . . . , ak such that ai ∈ Ai for all i ∈ [k]0.

Remark 3.2.4. The statement of Theorem 3.2.1 is in general not true if we do not
pose sufficient restrictions on the dimensions of the configurations. A counterexample
is provided by choosing (A0, A1) ⊂ (Z2)2 as

A0 =
(

0 1 2
0 0 0

)
and A1 =

(
0 0 0
0 1 2

)
.

It is straightforward to verify that the corresponding system

f0 = c0,00 + c0,10x1 + c0,20x
2
1, f1 = c1,00 + c1,01x2 + c1,02x

2
2,

does not have a non-degenerate multiple root for any choice of coefficients. So
the variety Σ(A0,A1) is empty and therefore (A0, A1) is a defective family, while
conv(A0 + A1) contains (1, 1) as an interior lattice point.
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3. Defectivity of Mixed Discriminants

In general, the criterion for defectivity given in Theorem 3.2.1 is not sufficient.
An easy class of counterexamples is given for k = 0 by A0 = conv(d∆d) ∩ Zd for
d > 1. Clearly, conv(A0) does not have any interior lattice points but cannot be
defective since its lattice width is d > 1 and it therefore does not have any non-trivial
Cayley decomposition (see Theorem 3.3.3). One mixed class of counterexamples is
the following.

Example 3.2.5. Consider a pair (A0, A1) ⊂ (Z3)2, with A0 = cay(I1, I2, I3) and
A1 = cay(J1, J2, J3) for 1-dimensional configurations I1, . . . , I3, J1, . . . , J3 ⊂ Z1. It is
explained in Chapter 5 that one has int(conv(A0 + A1)) = ∅ (see Proposition 5.2.2).
However, as can be seen using Theorem 3.1.6 and the criterion by Esterov (Conjec-
ture 3.20 in [Est10], which is proven in [Est18a]), the tuple (A0, A1) is not mixed
defective.

3.3. A characterization of defective configurations in
terms of special Cayley sums

The crucial tool in proving Theorem 3.2.1 is a characterization of defective configu-
rations by Furukawa-Ito. The central notion in this characterization is the following
special kind of Cayley sum.

Definition 3.3.1 (Cayley sums of join type). Let A0, . . . , Ak ⊂ Zd be configurations.
We say that the Cayley sum cay(A0, . . . , Ak) is of join type if the homomorphism

〈A0 − A0〉 ⊕ · · · ⊕ 〈Ak − Ak〉 → 〈A0 − A0〉+ · · ·+ 〈Ak − Ak〉 ⊂ Zd

(a0, . . . , ak) 7→ a0 + · · ·+ ak,

is injective.

Remark 3.3.2. As one has aff(〈A− A〉) = aff(A), we deduce

dim(〈A0 − A0〉 ⊕ · · · ⊕ 〈Ak − Ak〉) = dim(A0) + · · ·+ dim(Ak),
dim(〈A0 − A0〉+ · · ·+ 〈Ak − Ak〉) = dim(A0 + · · ·+ Ak).

Therefore a spanning Cayley sum cay(A0, . . . , Ak) is of join type if and only if

dim(A0) + · · ·+ dim(Ak) = dim(A0 + · · ·+ Ak).

See Figure 3.1 for two examples of Cayley sums of join type. Let us now present
the characterization by Furukawa-Ito.

Theorem 3.3.3 ([FI20, Theorem 1.3]). Let A ⊂ Zd be a spanning configuration.
Then A is defective if and only if there exist natural numbers c < r and a lattice
projection π : Rd → Rd−c such that π(A) ∼= cay(B0, . . . , Br) where the Cayley sum
cay(B0, . . . , Br) is of join type and Bi 6= ∅ for all i ∈ [r]0.
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3.3. A characterization of defective configurations in terms of special Cayley sums

Figure 3.1.: The Cayley sums of join type given by cay(A0, A1) and cay(B0, B1)
for the configurations A0, A1 from Remark 3.2.4 and B1 =
{(0, 0), (1, 0), (0, 1), (1, 1)}, B0 = {0}.

Remark 3.3.4. Let A ⊂ Zd be a spanning configuration that is defective. If π is
a lattice projection as in Theorem 3.3.3, then π(A) has a lattice projection onto
∆r ∩ Zr by Proposition 2.1.4. Composing π and this lattice projection yields that
A itself has a Cayley decomposition of length r + 1 and therefore is of the form
A ∼= cay(A0, . . . , Ar).

In order to give an intuition for Theorem 3.3.3, let us present some examples
of classes of point configurations that can be shown to be defective using this
characterization.

Example 3.3.5.

1. Consider the spanning configuration ∆d ∩ Zd. It holds that ∆d ∩ Zd ∼=
cay({z0}, . . . , {zd}) for any choice of integers z0, . . . , zd ∈ Z and this Cay-
ley sum is trivially of join type as dim({z0}) + · · · + dim({zd}) = 0 =
dim({z0} + · · · + {zd}). Therefore, the condition of Theorem 3.3.3 is sat-
isfied for π : Rd → Rd being the identity, c = 0, and r = d. Hence, ∆d ∩ Zd is
a defective configuration.

2. More generally, any lattice pyramid cay(A′, {0}) over a spanning configuration
A′ ⊂ Zd is a Cayley sum of join type and therefore defective, and so is the join
B ∗B′ = cay(B × {0}, {0} ×B′) of any two spanning configurations B ⊂ Zd1

and B′ ⊂ Zd2 .

3. Consider a spanning configuration satisfying A ∼= cay(A0, . . . , Ak), where
A0, . . . , Ak ⊂ Zd for some d < k. Then there exists a lattice projection
π : Zd+k → Zk with π(A) = ∆k ∩Zk. As ∆k ∩Zk is a Cayley sum of join type,
the condition of Theorem 3.3.3 is satisfied with c = d and r = k. Therefore A
is defective.

4. Let I0, . . . , Id−1 ⊂ Z1 be 1-dimensional configurations and consider the spanning
configuration A = cay(I0, . . . , Id−1) ⊂ Zd. The lattice projection π : Rd → Rd−1

onto all but the first coordinate satisfies π(A) = ∆d−1 and therefore the
condition of Theorem 3.3.3 is satisfied with c = 1 and r = 2. So A is defective.
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3.4. Proof of Theorem 3.2.1
The overall idea of the proof is the following. On the one hand, we may use
Theorem 3.1.6 to reduce the question of defectivity of a family to the question of
defectivity of the Cayley sum of its elements. On the other hand, the characterization
of Theorem 3.3.3 tells us that a configuration is defective if and only if it has a Cayley
decomposition with certain special properties. So the question boils down to asking
whether a configuration that is constructed as the Cayley sum of full-dimensional
configurations (namely one, where the Minkowski sum of the summands contains
an interior lattice point) can have another special Cayley decomposition as required
by Theorem 3.3.3. As it turns out, the following lemma yields exactly the required
restrictions on configurations with two different Cayley decompositions.

Lemma 3.4.1. Let A0, . . . , Ak ⊂ Zd be full-dimensional configurations and let
B0, . . . , Br ⊂ Zd+k−r be non-empty configurations such that

cay(A0, . . . , Ak) ∼= cay(B0, . . . , Br) ⊂ Zd+k.

(a) One has dim(Bi) ≥ min(k, d) for all i ∈ [r]0.

(b) If furthermore dim(Bi) < d for all i ∈ [r]0, also the following inequality holds:

dim(B0) + · · ·+ dim(Br) ≥ d− r + (r + 1)k.

Proof. For i ∈ [r]0, denote by B̂i = Bi × {ei} (where we set e0 = 0 ∈ Zr) the
faces of cay(B0, . . . , Br) corresponding to the Cayley summands. For k = 0 and
for r = 0, one can directly verify that both statements hold. So we may assume
k, r ≥ 1, in which case B̂i is a proper face. Denote by B′i ∈ F(cay(A0, . . . , Ak))
the corresponding proper face of cay(A0, . . . , Ak) under the equivalence between
cay(A0, . . . , Ak) and cay(B0, . . . , Br). The faces B′0, . . . , B′r form a Cayley decomposi-
tion of cay(A0, . . . , Ak) (since the B̂i form a Cayley decomposition of cay(B0, . . . , Br)).
Furthermore, also the complement (B′i)c = cay(A0, . . . , Ak) \ B′i of each of the B′i
is again a proper face of cay(A0, . . . , Ak) (see Remark 2.2.4). Let now i ∈ [r]0
be arbitrary and assume dim(Bi) < d (otherwise (a) holds trivially). This as-
sumption implies that B′i cannot contain Âj for any j ∈ [k]0 and thus (B′i)c
has non-empty intersection with each of the Âj. As, by Remark 2.2.5, one has
(B′i)c = ((B′i)c∩ Â0)∪ · · · ∪ ((B′i)c∩ Âk), that implies dim(B′i)c ≥ dim((B′i)c∩ Âj) + k

for each j ∈ [k]0. If now (B′i)c contained one of the Âj, this inequality would
imply dim(B′i)c ≥ d+ k in contradiction to (B′i)c being a proper face of the (d+ k)-
dimensional Cayley sum cay(A0, . . . , Ak). Hence, also B′i has non-empty intersection
with each of the Âj and, as we have

B′i = (Â0 ∩B′i) ∪ · · · ∪ (Âk ∩B′i),

this implies

dim(Âj ∩B′i) ≤ dim(B′i)− k, (3.1)
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for all j ∈ [k]0 (see Remark 2.2.5). This in particular implies dim(Bi) = dim(B′i) ≥
k ≥ min(k, d), proving part (a).
Moreover, as also the B′i form a Cayley decomposition of cay(A0, . . . , Ak), Re-

mark 2.2.5 yields

Âj = (Âj ∩B′0) ∪ · · · ∪ (Âj ∩B′r),

for each j ∈ [k]0. Therefore assuming dim(Bi) < d for all i ∈ [r]0 and applying (3.1)
yields

d = dim(Âj) ≤ r + dim(Âj ∩B′0) + · · ·+ dim(Âj ∩B′r)
≤ r + dim(B′0)− k + · · ·+ dim(B′r)− k.

Note that the proof of Lemma 3.4.1 is not actually using the property of having
configurations of lattice points anywhere. Therefore the result above remains true in
the more general setting of point configurations in Rd and the notion of isomorphy
induced by affine bijections.

Proof of Theorem 3.2.1. It is a straightforward computation to show that a tuple
(A0, . . . , Ak) ⊂ (Zd)k+1 is spanning if and only if the Cayley sum cay(A0, . . . , Ak) ⊂
Zd+k is spanning. Combining this with Theorem 3.1.6, we see that cay(A0, . . . , Ak) ⊂
Zd+k is a spanning defective configuration. By Theorem 3.3.3 there exist c < r and
a lattice projection π : Rd+k → Rd+k−c such that π(cay(A0, . . . , Ak)) has a Cayley
decomposition of join type into non-empty faces F0, . . . , Fr ∈ F(π(cay(A0, . . . , Ak)).
Let us assume that conv(A0 + · · · + Ak) has interior lattice points. By Corol-
lary 2.2.6 (1), this is equivalent to (k + 1) · conv(cay(A0, . . . , Ak)) having an interior
point in Zd+k. By Proposition 2.1.4 we have a projection πr : Rd+k−c → Rr that
maps π(cay(A0, . . . , Ak)) surjectively onto ∆r ∩ Zr. As any lattice projection maps
interior lattice points of a polytope to interior lattice points of its image, we obtain
that (k + 1)∆r = πr(π(cay(A0, . . . , Ak))) has interior lattice points. This implies

k ≥ r, (3.2)

as (k + 1)∆r ∩ Zr 6= ∅ if and only if k + 1 ≥ r + 1 (see e.g. Theorem 5.1.2 (2)). We
observe now that the lifts

F̃i := π−1(Fi) ∩ cay(A0, . . . , Ak)

define a Cayley decomposition (in general not of join type) of cay(A0, . . . , Ak). As π
is a projection of codimension c, we see

dim(F̃i) ≤ dim(Fi) + c, (3.3)

for all i ∈ [r]0. Combining this with the fact that the Fi form a Cayley decomposition
of join type and using Remark 3.3.2, one obtains

dim(F̃0) + · · ·+ dim(F̃r) ≤ dim(F0) + · · ·+ dim(Fr) + c(r + 1)
= dim(F0 + · · ·+ Fr) + c(r + 1)
= d+ k − c− r + c(r + 1)
= d+ k + r(c− 1).
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Let us first assume dim(F̃j) ≥ d for some j ∈ [r]0. Then dim(Fj) ≥ d− c. Without
loss of generality let j = 0. As the Fi form a Cayley decomposition of join type of
the (d+ k − c)-dimensional configuration π(cay(A0, . . . , Ak)) we have the following
inequality for the remaining summands:

dim(F1) + · · ·+ dim(Fr) = dim(F0 + · · ·+ Fr)− dim(F0)
= d+ k − c− r − dim(F0)
≤ d+ k − c− r − (n− c)
= k − r.

However, on the other hand, Lemma 3.4.1 (a) implies dim(F̃i) ≥ k for all i ∈ [r]0
(since we assumed k ≤ d). So by (3.3) we have dim(Fi) ≥ k− c which yields another
inequality for the remaining summands:

dim(F1) + · · ·+ dim(Fr) ≥ r(k − c).

These inequalities contradict each other since r(k− c) > k− r, which can be seen by
observing that r is strictly positive and c is strictly smaller than r.

So we only need to deal with the case in which dim(F̃j) < d for all j ∈ [r]0. We may
apply part (b) of Lemma 3.4.1 and obtain d− r+ (r+ 1)k ≤ dim(F̃0) + · · ·+ dim(F̃r).
Hence,

d− r + (r + 1)k ≤ d+ k + r(c− 1),

which is (since r is strictly positive) equivalent to k ≤ c < r; a contradiction.

3.5. Outlook
Let us conclude this chapter by presenting questions and suggestions for further
research.

Theorem 3.2.1 for irreducible tuples
There has lately been given another proof of Corollary 3.2.2 by Esterov, which is
in fact more general. We say that a tuple (A0, . . . , Ad−1) ⊂ (Zd)d is irreducible if it
contains no l distinct configurations that can be shifted to the same l-dimensional
affine space inRd for any l ∈ {1, . . . , d− 1} (see Definition 4.2.2 for another equivalent
definition).

Theorem 3.5.1 ([Est19, Corollary 3.23]). Let (A0, . . . , Ad−1) ⊂ (Zd)d be a spanning
irreducible tuple. Then (A0, . . . , Ad−1) is defective if and only if it is contained in
the tuple (∆d ∩ Zd, . . . ,∆d ∩ Zd), up to equivalence.

However, Theorem 3.5.1 does not generalize Theorem 3.2.1, as it only treats the
case of k = d − 1. It would be interesting to investigate whether the assumption
of full-dimensionality in Theorem 3.2.1 can always be replaced by irreducibility of
the family. Irreducibility for a general tuple (A0, . . . , Ak) ⊂ (Zd)k+1, where k ≤ d is
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defined as follows. We call a tuple (A0, . . . , Ak) ⊂ (Zd)k+1 irreducible if no l distinct
members can be shifted to a common (l + (d− 1− k))-dimensional affine subspace
of Rd for any l ∈ {1, . . . , d− 1}.

Question 3.5.2. Let (A0, . . . , Ak) ⊂ (Zd)k+1 be a spanning irreducible tuple which
is defective. Is it true that this implies

int(conv(A0 + · · ·+ Ak)) ∩ Zd = ∅?

Note that Remark 3.2.4 shows that one cannot expect Theorem 3.2.1 to hold
without any restrictions on the dimensions of the involved configurations.

Different Cayley decompositions
It turns out that the main combinatorial work for deriving Theorem 3.2.1 is to provide
restrictions on different Cayley decompositions of one point configuration. The crucial
result in this regard is Lemma 3.4.1. Given a configuration A that has a Cayley
decomposition into k + 1 faces F0, . . . , Fk satisfying dim(Fi) = dim(F0 + · · · + Fk)
for all i ∈ [k]0, Lemma 3.4.1 provides restrictions on any other Cayley decomposition
that A can have. More concretely, if G0, . . . , Gr is another Cayley decomposition
of A, there exists a lower bound on the dimension of each single face Gi and also
a lower bound on the sum dim(B0) + · · ·+ dim(Br). Theorem 2.3.1 is in the same
spirit, providing conditions for a Cayley decomposition to be the unique one of a
given length. It would be interesting to provide more results along those lines.

Apart from being a combinatorially interesting question in itself, progress in this
direction may lead to a generalization of Theorem 3.2.1 to weaker assumptions on
the configurations then all of them being full-dimensional (in particular, to an answer
for Question 3.5.2).

Another motivation for this direction of research comes from the study of the Fano
scheme Fk(XA) of the projective toric variety associated to a configuration A. In
[IZ17], Ilten and Zotine show that the irreducible components of Fk(XA) correspond
to maximal Cayley structures of length at least k of the configuration A. What they
call a Cayley structure of A is in our notation a Cayley decomposition of a face F
of A into non-empty faces. Maximality of a Cayley structure roughly means that
the face F cannot be extended to another face G in a way that respects the Cayley
decomposition of F , and that the Cayley decomposition of F cannot be refined. As a
first step it would be interesting to investigate the implications of Lemma 3.4.1 and
Theorem 2.3.1 from this point of view. For example, it seems reasonable to expect
sufficient conditions for Fk(XA) to be irreducible from Theorem 2.3.1.
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4. Classification of Tuples of Small
Mixed Volume

In this chapter we present an algorithm to classify triples of lattice polytopes of a
given mixed volume and present the results of an implementation for mixed volume at
most 4. In Section 4.1 we provide some background on the more classical problem of
the classification of certain classes of single lattice polytopes. Section 4.2 introduces
fundamental preliminaries for the classification of tuples of lattice polytopes. In
particular, we illustrate how the classification of tuples of lattice polytopes can be
reduced to the enumeration of so-called irreducible tuples. We furthermore present
the result of Esterov that the number of such tuples is finite up to equivalence
once we fix an upper bound on the mixed volume (Theorem 4.2.7). We then
proceed to introduce two different notions of maximality of tuples of polytopes
(Definition 4.2.8), illustrate their relations and show criteria for maximality in terms
of mixed area measures. Having introduced these foundations, we present the result
of an implementation of our algorithm in Section 4.3 (Theorem 4.3.1), which is a
complete list of maximal irreducible triples of mixed volume at most 4. Furthermore,
we describe the structure of three special classes that cover almost all maximal tuples
of our enumeration that are full-dimensional (Proposition 4.3.4). Sections 4.4 and
4.5 are dedicated to presenting the algorithm for our enumeration in the special case
of full-dimensional triples and its extension to general irreducible triples, respectively.
Detailed descriptions of how we carry out certain steps of the algorithms are given in
Section 4.6. Section 4.7 contains the description of an algorithm for the enumeration
of lattice polytopes of a given volume in fixed dimension. This is due to the fact
that our enumeration relies on having a list of all lattice polytopes in dimensions 2
and 3 of volume at most 4. In Section 4.8 we conclude with an outlook about ideas
for making partial classification tasks tractable also for larger mixed volume and in
higher dimension.

4.1. Background: classification of lattice polytopes
Classification results comprise an important part of algebraic geometry, and in a
number of cases, especially in toric geometry, such results have been established
by accomplishing related classification tasks in the context of the theory of lattice
polytopes (see, for example, [KS98, Kas10, NØ10, BHH+15, IVS18]). Classification
usually means enumeration of a finite number of equivalence classes and at the
foundation of such classifications there usually stands a finiteness result for a certain
set of lattice polytopes. One of the most fundamental ones is that, up to equivalence,
there exist only finitely many lattice polytopes of volume lower than a given constant.

37



4. Classification of Tuples of Small Mixed Volume

Theorem 4.1.1 ([LZ91, Theorem 2]). Let P ∈ P(Zd) be a full-dimensional lattice
polytope with volume Vol(P ) ≤ K for some positive number K. Then there exists a
unimodular transformation ϕ ∈ Aff(Zd), such that ϕ(P ) ⊆ (d · d!K)�d.

So, whenever one can show a bound on the volume of a certain set of lattice
polytopes, Theorem 4.1.1 yields that there are only finitely many equivalence classes
of lattice polytopes to enumerate. Classical examples for such sets are the ones of
full-dimensional lattice polytopes P(Zd) with a fixed positive number of interior
lattice points. Here, the boundedness of the volume among each of these sets has
been shown by Hensley in [Hen83]. Moreover, Theorem 4.1.1 provides a concrete
bounding box in which at least one representative of each equivalence class of a given
volume is contained. So in order to enumerate a certain set of lattice polytopes
for which one knows a volume bound, one could theoretically go through all lattice
polytopes inside a large enough cube. This naive approach is usually computationally
infeasible.
What has been shown to be a more effective approach for the enumeration of

lattice polytopes in a given dimension up to a certain volume are algorithms of the
following structure. One starts with a (easily classifiable) subset of minimal polytopes,
determines a set of candidate points for each such polytope (that is points that
can be added to the polytope without exceeding a certain volume bound) and then
iteratively build up all lattice polytopes up to a certain volume. One such algorithm
has been developed by Gabriele Balletti and has been used to exhaustively classify
lattice polytopes of small volumes in dimension up to 6 ([Bal18]). In Section 4.7, we
present an independent algorithm with a similar structure that we also modify in
order to enumerate lattice polytopes with further restrictions.

Theorem 4.1.1 shows to also play an important role in the classification of tuples of
lattice polytopes of a given mixed volume, which is the central topic of this chapter.
However, there are various aspects in which classification questions for tuples differ
from the setting of single lattice polytopes. The following section is devoted to
providing theoretical foundations for the classification of tuples of lattice polytopes
of a given mixed volume.

4.2. Theoretical foundations
Motivated by the idea of classifying all supports (A1, . . . , Ad) of generic systems
with exactly m solutions, Esterov and Gusev started carrying out classifications for
tuples of lattice polytopes of a given mixed volume [EG15, EG16]. This task is a
true generalization of the classification of single lattice polytopes of a given volume,
as MV(P, . . . , P ) = Vol(P ), given that P ∈ P(Zd) is full-dimensional. The general
classification problem can be stated in the following way.

Classification Problem 4.2.1. Given d,m ∈ Z≥1, describe all d-tuples of lattice
polytopes (P1, . . . , Pd) ∈ P(Zd)d whose normalized mixed volume equals m.

In general, the number of tuples of lattice polytopes of a given mixed volume in
fixed dimension is not finite. Yet, there exists a finite number of so-called irreducible
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tuples and every other tuple can be constructed from a finite number of irreducible
ones. In order to make this precise, let us introduce some definitions.

Definition 4.2.2. We say that a d-tuple (P1, . . . Pd) ∈ P(Zd)d is non-degenerate if
for every I ⊆ [d] with 1 ≤ |I| ≤ d the dimension of ∑i∈I Pi is at least |I|.

We say that a d-tuple (P1, . . . Pd) ∈ P(Zd)d is irreducible if for every I ⊆ [d] with
1 ≤ |I| < d the dimension of ∑i∈I Pi is at least |I|+ 1.

Note that both the notion of being non-degenerate and the one of being irreducible
merely depend on the affine hulls of the polytopes P1, . . . , Pk in a tuple. The reason
that we introduce the notion of being non-degenerate is the following.

Proposition 4.2.3 ([Sch14, Theorem 5.1.8]). Let (P1, . . . , Pd) ∈ P(Zd)d. Then
MV(P1, . . . , Pd) ≥ 1 if and only if (P1, . . . , Pd) is non-degenerate.

Let us make precise in which way irreducible tuples form the building blocks of all
tuples.

Proposition 4.2.4 ([Sch14, Theorem 5.3.1]). Let (P1, . . . , Pd) ∈ P(Zd)d be a tuple
such that, for some k ∈ [d], the polytopes P1, . . . , Pk can be shifted to a k-dimensional
linear subspace L ⊆ Rd and let πL : Rd → Rd−k be a lattice projection with kerπL = L.
Then

MV(P1, . . . , Pk, Pk+1, . . . , Pd) = MV(P1, . . . , Pk) MV(πL(Pk+1), . . . , πL(Pd)). (4.1)

Note that in [Sch14] the above theorem is proven for euclidean mixed volumes and
orthogonal projections. It is straightforward to derive our normalized version from
this (see also [Est19, Theorem 1.10]).

Remark 4.2.5. Note that a tuple (P1, . . . , Pd) ∈ P(Zd)d is non-irreducible if and
only if there exists an index set {i1, . . . , ik} ( [d], such that Pi1 , . . . , Pik can be
shifted to a common k-dimensional linear subspace of Rd. Any non-irreducible
tuple therefore satisfies the conditions of Proposition 4.2.4, up to reordering, and
its mixed volume can be expressed as a product of two lower-dimensional mixed
volumes. Proposition 4.2.4 also makes clear that one cannot expect the number of
tuples of lattice polytopes of a given mixed volume to be finite without excluding
non-irreducible ones. Indeed, if we can decompose a tuple (P1, . . . , Pd) ∈ P(Zd)d
as in (4.1), we can extend any of the polytopes Pk+1, . . . , Pd with arbitrarily many
lattice points along L without changing the image under πL and therefore without
changing the mixed volume of the whole tuple.

Let us illustrate Proposition 4.2.4 and Remark 4.2.5 with the following example.

Example 4.2.6. Consider the triple (P1, P2, P3) ∈ P(Z3)3, where P1, P2 are the
2-dimensional polytopes P1 = conv(0, 2e1, e2), P2 = conv(0, e1, 2e2) in R2×{0} ⊂ R3,
and P3 is a 3-dimensional lattice polytope that is contained in the slab R2 × [0, 1] of
height 1 (see Fig. 4.1). The triple (P1, P2, P3) is not irreducible since the sum P1 +P2
is 2-dimensional. By Proposition 4.2.4, the normalized mixed volume of (P1, P2, P3)
is the product of the normalized mixed volume of the pair (P1, P2), which is equal
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to 4 (see Example 1.2.4), multiplied by the height 1 of the polytope P3. Thus we
obtain a triple of mixed volume 4 independent of the concrete choice of P3.
This calculation can also be interpreted in the light of the BKK-theorem. The

triple (P1, P2, P3) corresponds to systems f1(x, y) = f2(x, y) = f3(x, y, z) = 0 of
polynomials (f1, f2, f3) ∈ C[P1, P2, P3], where f1(x, y) = f2(x, y) = 0 is a sub-system
depending only on x and y. Since the equation f3(x, y, z) = 0 is linear in z, it can
be written as

f3(x, y, z) = a(x, y)z + b(x, y) = 0

for some a, b ∈ C[x, x−1, y, y−1]. If the triple (f1, f2, f3) is generic, the sub-system
f1(x, y) = f2(x, y) = 0 has 4 solutions in (C∗)2 (see Example 1.2.4). Furthermore,
plugging each of these four solutions into f3(x, y, z) = 0 yields univariate linear
equations in z, each generically having 1 solution in C∗. Thus, we arrive at the
system f1(x, y) = f2(x, y) = f3(x, y, z) = 0 having 4 solutions in (C∗)3.

Iterated application of Proposition 4.2.4 shows how the classification of d-tuples of
lattice polytopes in Rd of a given mixed volume m reduces to the classification of
irreducible tuples in dimensions d′ and mixed volume m′ for all d′ ∈ [d] and all m′
being divisors of m.
The following result by Esterov shows that the number of irreducible tuples in

fixed dimension is finite, making Classification Problem 4.2.1 a finite problem.

Theorem 4.2.7 ([Est19, Theorem 1.7]). Given m ∈ N, there exist finitely many
irreducible d-tuples (P1, . . . , Pd) ∈ P(Zd)d with MV(P1, . . . , Pd) = m, up to equiva-
lence.

Sketch of proof. The proof of this result uses inequalities between different mixed
volumes to bound the volume of the Minkowski sum P = P1 + · · ·+ Pd in terms of
the mixed volume MV(P1, . . . , Pd). 1 We refer to Chapter 6 for a detailed treatment
of the question for a sharp bound for this volume in the case in which all polytopes
are full-dimensional. By Theorem 4.1.1, there exists a unimodular transformation
ϕ ∈ Aff(Zd) such that ϕ(P ) is contained in a cube depending only on the volume of
P . This implies ϕ(P1) + t1, . . . , ϕ(Pd) + td to also be contained in this cube, where
t1, . . . , td ∈ Zd are lattice translations. As one has

(ϕ(P1) + t1, . . . , ϕ(Pd) + td) ∼= (P1, . . . , Pd),

this proves the claim.

1In the version of [Est19] available at the moment of the final review of this thesis it is claimed
that Aleksandrov-Fenchel inequalities (see Proposition 1.2.2 (5.)) suffice to bound the volume
of the Minkowski sum. The author, whom we would like to thank for his prompt help and
collaboration, was not able to reconstruct the details of this argument on request and made a
different proof of an upper bound available as an addendum in the arXiv version of the paper
([Est18b]). Note that the new proof additionally uses what we call square inequalities (see
Lemma 6.5.1) and that it remains an interesting open question whether the Minkowski sum can
be bounded in terms of the mixed volume only using Aleksandrov-Fenchel inequalities.
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Figure 4.1.: An example of a non-irreducible triple in dimension three.

4.2.1. Z-maximal and R-maximal tuples
Recall that the mixed volume is monotonic with respect to inclusion, see Proposi-
tion 1.2.2 (1.2). Unlike the volume of a single polytope, however, it is not strictly
monotonic. So, given a tuple of lattice polytopes (P1, . . . , Pd) ∈ P(Zd)d of mixed
volume MV(P1, . . . , Pd) = m there might exist a larger tuple (Q1, . . . , Qd) ∈ P(Zd)d
with P1 ( Q1, P2 ⊆ Q2, . . . , Pd ⊆ Qd of the same mixed volume MV(Q1, . . . , Qd) = m.
One example of this situation in dimension 2 is shown in Figure 4.2. We want to
investigate the structure of tuples that are maximal, in the sense that there does
not exist such a larger tuple of the same mixed volume. As by Theorem 4.2.7 the
number of irreducible d-tuples of lattice polytopes of a given mixed volume is finite,
every irreducible tuple has to be contained in such a maximal irreducible one. This
provides an interesting perspective for the classification problem of tuples of a given
mixed volume. In a certain sense, enumeration of irreducible d-tuples can be reduced
to enumeration of maximal irreducible d-tuples. We will see that maximal d-tuples
tend to have an easier structure than general ones. Furthermore, in Algorithms 4.4.4
and 4.5.3, we make use of the maximality assumption and classify specifically such
tuples. Let us define the exact notion of maximality in some more generality.

P1 = conv(0, 2e1, e2) P2 = conv(0, e1, 2e2) ⊂ 2P1

Figure 4.2.: Embedding the pair (P1, P2) from Example 1.2.4 into a maximal pair by
enlarging P2 to 2P1. Since MV(P1, 2P1) = 2 MV(P1, P1) = 2 Vol(P1) = 4,
the normalized mixed volume remains unchanged.
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4. Classification of Tuples of Small Mixed Volume

Definition 4.2.8. Let i ∈ [d] and R ∈ {R,Z}. A d-tuple (P1, . . . , Pd) ∈ P(Zd)d is
called R-maximal in Pi, if for all Qi ∈ P(Rd) with Pi ⊆ Qi the equality

MV(P1, . . . , Pi−1, Pi, Pi+1, . . . , Pd) = MV(P1, . . . , Pi−1, Qi, Pi+1, . . . , Pd) (4.2)

implies Pi = Qi. We call (P1, . . . , Pd) R-maximal if it is R-maximal in each of the
polytopes P1, . . . , Pd.

In view of the inclusion Z ⊂ R, whenever a d-tuple of lattice polytopes is R-
maximal, then it is also Z-maximal. The converse is not true in general as Figs. 4.3
and 4.4 illustrate.

A = conv(0, 2e1, e2) B = conv(0, 3e1, e1 + e2, e2)

Figure 4.3.: A pair (A,B) of lattice polygons, which is R-maximal in A and Z-
maximal but not R-maximal in B. The dashed lines depict how B can
be enlarged to a non-lattice polygon B′ = conv(0, 3e1,

3
2e2) such that the

pair (A,B′) has the same mixed volume as (A,B).

A = conv(0, 4e1, 3e1 + e2, 3e2) B = conv(0, 4e1, e1 + 2e2, 2e2)

Figure 4.4.: A Z-maximal pair (A,B) of lattice polygons for which both A and B
can be enlarged to non-lattice polygons A′ and B′ such that (A′, B′) has
the same mixed volume as (A,B).

While Z-maximality is the natural notion of maximality among tuples of lattice
polytopes, the reason that we also introduce the stronger notion of R-maximality
is that we have a better understanding of it which is only in terms of the affine
structures of the polytopes in a tuple (see Lemma 4.2.15). Additionally, we know
that every Z-maximal tuple can be written as the integer hulls of the polytopes of a
(in general non-integral) R-maximal tuple.
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In order to provide structural results both on Z- and R-maximal tuples, let us
introduce some additional notions.

Definition 4.2.9. Given a polytope P ∈ P(Rd), its support function hP : Rd → R

is defined by
hP (ξ) = max{〈ξ, x〉 : x ∈ P}.

Given ξ ∈ Rd we use P ξ to denote the face of P corresponding to ξ defined by

P ξ = {x ∈ P : 〈ξ, x〉 = hP (ξ)}.

Clearly, when ξ = 0 we get P ξ = P . For ξ not equal to zero, P ξ depends only on
the direction of ξ. Let Sd−1 ⊂ Rd denote the set of all primitive (non-zero) lattice
vectors. If P ∈ P(Zd) is a lattice polytope, each proper face F ∈ F(P) is of the form
P u for some u ∈ Sd−1. If P is full-dimensional and F is a facet of P , the choice of u is
unique and we say that u is a primitive outer facet normal of the polytope P . For the
purpose of this chapter, we extend this notion to general (possibly lower-dimensional)
lattice polytopes by calling a vector u ∈ Sd−1 a primitive outer facet normal of the
polytope P ∈ P(Zd) if one has dim(P u) = d− 1. In particular if dim(P ) ≤ d− 2,
the polytope P does not have any primitive outer facet normals in this setting.

Proposition 4.2.10. Let P ∈ P(Zd) be a lattice polytope and {u1, . . . , uN} the set
of primitive outer facet normals of P . Then one has

Vold(P ) =
N∑
i=1

hP (ui) Vol(P ui). (4.3)

Proposition 4.2.10 is a normalized version of [Sch14, Lemma 5.1.1] and we refer
to there for a proof. In [Sch14, Section 5.1] it is also explained how (4.3) can be
reformulated as an integral

Vold(P ) =
∫
Sd−1

hP (u)dSP (u), (4.4)

over the support function of P with respect to the (normalized) surface area measure
SP on the set of primitive lattice vectors Sd−1 with support suppSP = {u1, . . . , uN}
and values SP (ui) = Vol(P ui). In particular, the measure SP maps

U 7→
∑
ui∈U

Vol(P ui),

for any subset U ⊆ Sd−1. Note, that in [Sch14, Section 5.1] formula (4.4) is phrased
for general polytopes and unit normal vectors, and generalized to convex bodies
using approximation.
For our purposes, we need the following generalization of Proposition 4.2.10 to a

mixed setting (see [Sch14, Theorem 5.1.7]).

Proposition 4.2.11. Let (P1, . . . , Pd) ∈ P(Zd)d be a tuple of lattice polytopes and
{u1, . . . , uN} the set of primitive outer facet normals of the Minkowski sum P1 + · · ·+
Pd−1. Then one has

MV(P1, . . . , Pd) =
N∑
i=1

hPd
(ui) MV(P ui

1 , . . . , P ui
d−1). (4.5)
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4. Classification of Tuples of Small Mixed Volume

Note that the faces P ui
1 , . . . , P ui

d−1 in (4.5) can be shifted to a common rational
(d− 1)-dimensional subspace of Rd. As the mixed volume is translation-invariant, it
is well-defined to set the mixed volume of P ui

1 , . . . , P ui
d−1 to be the mixed volume of

appropriate translates of the faces relative to the corresponding sublattice.
Analogously to the unmixed case we can we can view (4.5) as an integral

MV(P1, . . . , Pd−1, Pd) =
∫
Sd−1

hPd
(u)dSP1,...,Pd−1(u), (4.6)

over the support function of Pd with respect to the (normalized) mixed area mea-
sure SP1,...,Pd−1 on the set of primitive vectors Sd−1 with support suppSP1,...,Pd−1 =
{u1, . . . , uN} and values SP1,...,Pd−1(u) = MV(P u

1 , . . . , P
u
d−1). Note that, similarly

to the mixed volume, the mixed area measure is Minkowski linear in each of its
arguments.

Let us now come to showing the connection between (mixed) area measures and the
different notions of maximality of tuples. The following result describes Z-maximal
tuples in terms of mixed area measures.

Lemma 4.2.12. Let (P1, . . . , Pd) ∈ P(Zd)d be an irreducible tuple which is Z-
maximal in Pd. Let {u1, . . . , ur} be the support of the mixed area measure SP1,...,Pd−1.
Then

Pd = conv{x ∈ Zd : 〈ui, x〉 ≤ hi, i ∈ [r]} (4.7)

for some h1, . . . , hr ∈ Z≥0 satisfying

r∑
i=1

hiSP1,...,Pd−1(ui) = MV(P1, . . . , Pd). (4.8)

Proof. Let hi = hPd
(ui), the value of the support function of Pd at ui. Then (4.8)

follows directly from (4.6). Consider

Q = {x ∈ Rd : 〈ui, x〉 ≤ hi for all i ∈ [r]}.

This is a rational polytope. (Its boundedness follows from the fact that the volume
of P1 + · · ·+ Pd is bounded by Theorem 4.2.7.) Clearly, Pd ⊆ Q and hPd

coincides
with hQ on the support of SP1,...,Pd−1 . Therefore, by (4.6) and (4.8),

MV(P1, . . . , Pd−1, Q) =
r∑
i=1

hiSP1,...,Pd−1(ui) = MV(P1, . . . , Pd).

Now the Z-maximality in Pd and the monotonicity of the mixed volume imply that
Pd must contain all lattice points of Q, i.e. (4.7) holds.

Lemma 4.2.12 provides an algorithmic way of finding all possible Pd ∈ P(Zd) such
that MV(P1, . . . , Pd) = m and (P1, . . . , Pd) is Z-maximal in Pd, given a value of m
and a tuple (P1, . . . , Pd−1) ∈ P(Zd)d−1 that can be extended to an irreducible one
(see Algorithm 4.6.2).
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Remark 4.2.13. The values for the hi in Lemma 4.2.12 are given by hPd
(ui),

the values of the support function of Pd at the support vector ui of the mixed
area measure SP1,...,Pd−1 . This fact can be used to determine whether a given d-
tuple (P1, . . . , Pd) ∈ (P(Zd))d is Z-maximal in Pd by checking whether the equality
Pd = conv{x ∈ Zd : 〈ui, x〉 ≤ hPd

(ui), i ∈ [r]} holds.
A similar argument provides the corresponding statement for tuples (P1, . . . , Pd) ∈

(P(Zd))d that are R-maximal in Pd.
Lemma 4.2.14. Let (P1, . . . , Pd) ∈ (P(Zd))d be an irreducible tuple which is R-
maximal in Pd. Let {u1, . . . , ur} be the support of the mixed area measure SP1,...,Pd−1.
Then

Pd = {x ∈ Rd : 〈ui, x〉 ≤ hi for all i ∈ [r]} (4.9)
for some h1, . . . , hr ∈ Z≥0 satisfying

r∑
i=1

hiSP1,...,Pd−1(ui) = MV(P1, . . . , Pd). (4.10)

For R-maximality we also have the following simple criterion based on comparing
supports of (mixed) area measures. This criterion ensures specific combinatorial
structures among R-maximal tuples and is the main reason that we introduce this
stronger notion of maximality.
Lemma 4.2.15. Let (P1, . . . , Pd) ∈ P(Zd)d be an irreducible tuple and assume
that Pd is full-dimensional. Then (P1, . . . , Pd) is R-maximal in Pd if and only if
suppSPd

⊆ suppSP1,...,Pd−1. In particular, (P1, . . . , Pd) is R-maximal if and only if

suppSPi
⊆ suppSP1,...,Pi−1,Pi+1,...,Pd

,

for all i ∈ [d].
Proof. To simplify notation, let s1 = suppSPd

and s2 = suppSP1,...,Pd−1 . Suppose
s1 ⊆ s2. Consider a full-dimensional polytope Qd ∈ P(Zd) such that Pd ⊆ Qd and

MV(P1, . . . , Pd−1, Pd) = MV(P1, . . . , Pd−1, Qd).

By Proposition 4.2.11 we have hPd
(u) = hQd

(u) for every u ∈ s2. Then

Qd ⊆
⋂
u∈s2

{x ∈ Rd : 〈u, x〉 ≤ hPd
(u)} ⊆

⋂
u∈s1

{x ∈ Rd : 〈u, x〉 ≤ hPd
(u)} = Pd,

since s1 coincides with the set of outer facet normals of Pd. (Here we use the
assumption that Pd is d-dimensional.) Therefore Qd = Pd.
Conversely, let (P1, . . . , Pd) be R-maximal in Pd. Consider

Qd =
⋂
u∈s2

{x ∈ Rd : 〈u, x〉 ≤ hPd
(u)}.

Clearly, Pd ⊆ Qd and hPd
(u) = hQd

(u) for every u ∈ s2. Therefore, by Proposi-
tion 4.2.11, we have

MV(P1, . . . , Pd−1, Pd) = MV(P1, . . . , Pd−1, Qd).

This implies that Pd = Qd, and, hence, the set s1 of primitive facet normals of Pd is
contained in s2.
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4. Classification of Tuples of Small Mixed Volume

Lemma 4.2.15 provides a more efficient computational test for R-maximality of
d-tuples than using Lemma 4.2.14.

Remark 4.2.16. Applying Lemma 4.2.15 in the 2-dimensional case yields that a
pair of polygons (P1, P2) ∈ P(Z2)2 is R-maximal if and only if P1 and P2 have
the same set of primitive facet normals. It would be interesting to understand the
restrictiveness of the conditions of Lemma 4.2.15 also in higher dimensions, as this
might yield interesting tools for the classification of tuples of lattice polytopes. For
d = 3 we obtain the conditions

suppSP1 ⊆ suppSP2,P3 ,

suppSP2 ⊆ suppSP1,P3 ,

suppSP3 ⊆ suppSP1,P2 .

Our classification results show that all full-dimensional R-maximal triples of lattice
polytopes (P1, P2, P3) with MV(P1, P2, P3) ≤ 4 satisfy (up to reordering) suppSP1 ⊆
suppSP2 = suppSP3 . It would be interesting to know whether this can be derived
for general mixed volumes.

Remark 4.2.17. A better understanding of the conditions in Lemma 4.2.15 may
also shed a new light on the questions that we are tackling in Chapter 6. There
we conjecture certain tuples of convex bodies of mixed volume m for which the
Minkowski sum has maximal volume. If we restrict to polytopes, it is straightforward
that such maximizers have to be R-maximal. Further insights into R-maximal tuples
would allow us to only have to show the maximality of the conjectured tuples among
a more specific class.

4.3. Results
The following is the answer to Classification Problem 4.2.1 for d = 3 and m ∈ [4].
The case of mixed volume at most 4 is of particular interest as it has been shown by
Esterov that these are precisely those tuples of lattice polytopes that correspond to
systems of polynomial equations which are solvable in radicals (see [Est19]). This
essentially means that these are precisely the systems for which one can determine a
formula for the solutions in terms of the coefficients of the polynomials. Parts (1)
and (2) of Theorem 4.3.1 below correspond to triples that are not irreducible, whose
classification reduces to the enumeration of pairs of lattice polygons of mixed volume
at most 4. These pairs have already been enumerated in [EG16]. Part (3) corresponds
to triples that are irreducible and whose enumeration is our main contribution.

Theorem 4.3.1 (Classification of triples with normalized mixed volume at most 4).
Let (P1, P2, P3) be a triple of lattice polytopes in R3 with normalized mixed volume
m ∈ {1, 2, 3, 4}. Let π1,2 : R3 → R2 and π3 : R3 → R1 be the lattice projections
given by π1,2(x1, x2, x3) = (x1, x2) and π3(x1, x2, x3) = x3. Then, up to equivalence
of triples, (P1, P2, P3) has one of the following forms:
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4.3. Results

1. For some m1,m2 ∈ {1, 2, 3, 4} satisfying m = m1m2, P3 is a lattice segment
{0}2 × [0,m1], while π1,2(P1) ⊆ Q1 and π1,2(P2) ⊆ Q2 for some pair (Q1, Q2)
appearing in the list of pairs of lattice polytopes of normalized mixed volume
m2 given in Appendix B.

2. For some m1,m2 ∈ {1, 2, 3, 4} satisfying m = m1m2, π3(P3) = [0,m1], while
P1 ⊆ Q1 × {0}, P2 ⊆ Q2 × {0} for some pair (Q1, Q2) appearing in the list of
pairs of lattice polytopes of normalized mixed volume m2 given in Appendix B.

3. P1 ⊆ Q1, P2 ⊆ Q2, and P3 ⊆ Q3 for some triple (Q1, Q2, Q3) appearing in the
list of irreducible triples of lattice polytopes of normalized mixed volume m given
in Appendix A.

Furthermore, no triple (P1, P2, P3) in R3 with normalized mixed volume larger than
m satisfies any of the above three conditions.

Viewing Theorem 4.3.1 in the light of the BKK-theorem yields the following result
on systems of Laurent polynomials in three variables.

Corollary 4.3.2 (Classification of trivariate Laurent polynomial systems with at
most 4 solutions). Let f1, f2, f3 ∈ C[x±1

1 , x±1
2 , x±1

3 ] be three-variate Laurent poly-
nomials with respective support sets A1, A2, A3 ⊂ Z3. Suppose that the system
f1 = f2 = f3 = 0 has m ∈ {1, 2, 3, 4} solutions in (C∗)3 and that the triple
(f1, f2, f3) is generic in C[A1, A2, A3]. Then, up to equivalence, the tuple of support
sets (A1, A2, A3) ⊂ (Z3)3 has one of the following forms:

1. For some m1,m2 ∈ {1, 2, 3, 4} satisfying m = m1m2, A3 ⊆ {0}2 × {0, . . . ,m1},
while π1,2(A1) ⊆ Q1 and π1,2(A2) ⊆ Q2 for some pair (Q1, Q2) appearing in
the list of pairs of lattice polytopes of normalized mixed volume m2 given in
Appendix B.

2. For some m1,m2 ∈ {1, 2, 3, 4} satisfying m = m1m2, π3(A3) ⊆ {0, . . . ,m1},
while A1 ⊆ Q1 × {0}, A2 ⊆ Q2 × {0} for some pair (Q1, Q2) appearing in
the list of pairs of lattice polytopes of normalized mixed volume m2 given in
Appendix B.

3. A1 ⊆ Q1, A2 ⊆ Q2 and A3 ⊆ Q3 for some triple (Q1, Q2, Q3) appearing in
the list of triples of lattice polytopes of normalized mixed volume m given in
Appendix A.

Furthermore, for no system of Laurent polynomials f1 = f2 = f3 = 0 satisfying the
above conditions for m > 4 any of the above three is satisfied.

Examples 1.2.4 and 4.2.6 provide an illustration to Theorem 4.3.1 and Corol-
lary 4.3.2. The triple (P1, P2, P3) from Example 4.2.6 is classified by Case (1) of
our result with m1 = 1, m2 = 4 and the pair (Q1, Q2) coinciding with the pair
(conv(0, 2e1, e2), 2 conv(0, 2e1, e2)), up to equivalence.
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Theorem 4.3.3. Let N3(m) (resp. N ′3(m)) be the number of equivalence classes of
triples of all (resp. full-dimensional) lattice polytopes in R3 of mixed volume m that
are irreducible and Z-maximal. We have the following table of values for 1 ≤ m ≤ 4:

m N3(m) N ′3(m)
1 1 1
2 7 4
3 21 10
4 92 30

In particular, our classification verifies the list of Z-maximal irreducible triples of
lattice polytopes with mixed volume 2 proposed in [EG15].
In order to make further structural observations regarding our classification re-

sults, let us give some sufficient conditions for R-maximality (and therefore for
Z-maximality). Recall that a polytope P is a combinatorial pyramid if P has a facet
containing all but one vertex of P .

Proposition 4.3.4. A triple (P1, P2, P3) ∈ P(Z3)3 of full-dimensional lattice poly-
topes is R-maximal, whenever:

(0) the polytopes are the same, P1 = P2 = P3 (in this case MV(P1, P2, P3) =
Vol(P1))

or the polytopes are not all the same and one of the following holds:

(1) there exists a lattice polytope P such that P1 = αP , P2 = βP , and P3 = γP
for some α, β, γ ∈ Z≥1 (in this case MV(P1, P2, P3) = αβγ Vol(P )),

(2) there exists a lattice polytope P and a primitive lattice segment I in R3, as
well as α, β ∈ Z≥1 and γ ∈ Z≥0 such that

P1 = P + αI, P2 = P + βI and P3 = P + γI,

(in this case MV(P1, P2, P3) = Vol(P ) + (α + β + γ) Vol(πI(P )), where πI is a
lattice projection parallel to I),

(3) there exists a primitive lattice segment I and a lattice polytope P , which is a
combinatorial pyramid with base having two edges parallel to I, such that

P1 = P2 = P and P3 = P + αI,

for some α ∈ Z≥1 (in this case MV(P1, P2, P3) = Vol(P ) + αVol(πI(P )) where
πI is a lattice projection parallel to I).

Proof. We show that under each of the assumptions (0)–(3) the conditions for
R-maximality from Lemma 4.2.15 are satisfied. For case (0) and (1) this is straight-
forward, since these conditions imply that the polytopes P1, P2, P3 have the same
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sets of facet normal rays. So let us assume that the triple (P1, P2, P3) ∈ P(Z3)3

satisfies the conditions of case (2). One computes

SP1,P2 = SP+αI,P+βI = SP + (α + β)SP,I ,

using the linearity, SP,P = SP , and the fact that the measure SI = SI,I is zero.
Furthermore, one obtains

SP3 = SP3,P3 = SP + 2γSP,I .

This shows suppSP3 ⊆ suppSP1,P2 and therefore (P1, P2, P3) is R-maximal in P3.
The fact that the triple is also R-maximal in P1 and P2 can be computed analogously.
Let us now assume that the triple (P1, P2, P3) ∈ P(Z3)3 satisfies the conditions of
case (3). We are going to show that P and P + I have the same sets of facet normals.
Let P = conv(P ′ ∪ {v}) for some v ∈ Z3 and P ′ ∈ P(Z3) with dim(P ′) = 2, and
assume I = [0, w] for some w ∈ Z3. Let J1 and J2 be two edges of P ′ parallel to I.
Note that each edge of P ′ + I is equal to either an edge of P ′, or the sum of w and
an edge of P ′, or Ji + I for i = 1, 2. Similarly, each facet of P + I is equal to either a
facet of P , or the sum of w and a facet of P , or conv((Ji + I) ∪ (v + I)), for i = 1, 2.
This implies P and P + I have the same facet normals.

The respective values for the mixed volumes follow directly from multilinearity of
the mixed volume and Proposition 4.2.4.

Theorem 4.3.5. Among all the Z-maximal triples (P1, P2, P3) ∈ P(Z3)3 of full-
dimensional lattice polytopes with mixed volume at most 4, only the following three
exceptional triples do not fall into one of the categories from Proposition 4.3.4:

• P1 = P2 = conv(0, 2e1, e2, e3), P3 = P1 + [0, e1] (where MV(P1, P2, P3) = 3),

• P1 = P2 = conv(0, 3e1, e2, e3), P3 = P1 + [0, e1] (where MV(P1, P2, P3) = 4),

• P1 = P2 = conv(0, e1, e2, e1 + e2 + 2e3), P3 = P1 + [0, e1 + e3]
(where MV(P1, P2, P3) = 4).

Furthermore, all three exceptional triples are Z-, but not R-maximal. The number of
triples that are of types (0)–(3) and of mixed volume m is given as follows:

m type (0) type (1) type (2) type (3)
1 1 0 0 0
2 3 1 0 0
3 6 1 1 1
4 17 5 3 3

Examples of triples of polytopes of types (1)–(3) are presented in Fig. 4.5. We
refer to Appendix A for a more detailed presentation and analysis of the results.
Parts of our algorithm also provide a direct way to carry out a classification of

pairs of polygons of given mixed volume. We have carried out this classification for
mixed volume up to 10 and obtained the following result.
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Figure 4.5.: Examples of triples of each of the types (1)–(3) of mixed volume 4.

Theorem 4.3.6. Let N2(m) be the number of equivalence classes of pairs of 2-
dimensional lattice polytopes in R2 of mixed volume m that are irreducible and
Z-maximal. We have the following table of values for 1 ≤ m ≤ 10.

m N2(m)
1 1
2 3
3 6
4 13
5 18
6 38
7 46
8 87
9 118
10 202

Our computations have been carried out using Sagemath [Sag18] and an implemen-
tation of our classification algorithm as well as data files containing the classification
results can be found at https://github.com/christopherborger/mixed_volume_
classification.
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4.4. The algorithm for full-dimensional polytopes in dimension three

4.4. The algorithm for full-dimensional polytopes in
dimension three

In this section we present an algorithm for solving the following enumeration problem.
Throughout this and subsequent sections the word “maximal” will mean “Z-maximal”.

Enumeration Problem 4.4.1. Given m ∈ N, enumerate, up to equivalence, all
maximal triples (P1, P2, P3) ∈ P(Z3)3 of full-dimensional lattice polytopes satisfying
MV(P1, P2, P3) = m.

The main idea for making Enumeration Problem 4.4.1 computationally tractable
is to produce upper bounds for the mixed volumes MV(Pi, Pj, Pk) for all choices
i, j, k ∈ [3] instead of an upper bound for the volume of the Minkowski sum P1+P2+P3.
As an illustration, consider the triple (P1, P2, P3) = (∆3,∆3,m∆3), which has mixed
volume m. While the volume of P3 and the volume of P1 +P2 +P3 are large, one has
MV(P1, P1, P2) = 1, i.e. some of the mixed volumes MV(Pi, Pj, Pk) are small. Such
relations are enforced by the Aleksandrov-Fenchel inequality (Proposition 1.2.2 (5.)).
Proposition 4.4.2 below characterizes this phenomenon in general.

Proposition 4.4.2. Let (P1, P2, P3) ∈ P(Z3)3 be a triple of full-dimensional lattice
polytopes satisfying MV(P1, P2, P3) = m for a given m ∈ N. Then, up to relabeling,
either MV(P1, P1, P2) < m, or MV(Pi, Pi, Pj) = m for all i, j ∈ [3] with i 6= j and
furthermore Vol(Pi) ≤ m for all i ∈ [3].

Proof. Suppose there are i, j ∈ [3] with i 6= j such that MV(Pi, Pi, Pj) 6= m. After
possibly reordering we may assume MV(P1, P1, P2) 6= m. If MV(P1, P1, P2) is strictly
smaller than m, we have proven the claim. So let us assume MV(P1, P1, P2) >
m. In this case, the Aleksandrov-Fenchel inequality given by MV(P1, P2, P3)2 ≥
MV(P1, P1, P2) MV(P3, P3, P2) yields that MV(P2, P3, P3) < m, so that the claim
holds for the ordering (P3, P2, P1).
It is left to prove that, if MV(Pi, Pi, Pj) = m for all i, j ∈ [3] with i 6= j, then

Vol(Pi) ≤ m for all i ∈ [3]. This is a direct consequence of the Aleksandrov-Fenchel
inequality, as MV(Pi, Pi, Pj)2 ≥ MV(Pi, Pj, Pj) Vol(Pi) holds for any i, j ∈ [3] with
i 6= j.

Remark 4.4.3. Note that in the case MV(Pi, Pi, Pj) = m for all i, j ∈ [3] with i 6= j
and Vol(Pi) = m for all i ∈ [3], the Aleksandrov-Fenchel inequalities MV(Pi, Pi, Pj) ≥
MV(Pi, Pj, Pj) Vol(Pi) become equalities, which implies that P1 = P2 = P3. This is
due to the characterization of the equality case in Minkowski’s inequality, see [Sch14,
Theorem 7.2.1].

Let us now present an algorithm to solve Enumeration Problem 4.4.1. Note that
Proposition 4.4.2 justifies the restriction in Step 2 to a case a. relying on an inductive
classification of maximal triples of lower mixed volume (see Step 1) and a very specific
case b.

Algorithm 4.4.4 (Classification of full-dimensional triples).

Input: A number m ∈ N.
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Output: A list of all maximal triples of full-dimensional lattice polytopes
(P1, P2, P3) ∈ P(Z3)3 with MV(P1, P2, P3) = m, up to equivalence.

Step 1: If m = 1, return the triple (∆3,∆3,∆3). Else, iteratively run Al-
gorithm 4.4.4 for all input values m′ < m in order to obtain a list of all
maximal triples of full-dimensional lattice polytopes (P1, P2, P3) ∈ P(Z3)3 with
MV(P1, P2, P3) < m, up to equivalence.

Step 2:
a. Classify, up to equivalence, all full-dimensional pairs (P1, P2) ∈ P(Z3)2

such that MV(P1, P1, P2) < m (see Remark 4.4.5).
b. Classify, up to equivalence, all full-dimensional pairs (P1, P2) ∈ P(Z3)2

such that MV(P1, P1, P2) = MV(P2, P2, P1) = m (see Algorithm 4.4.6).

Step 3: For a given pair (P1, P2) ∈ P(Z3)2 as in Step 2 enumerate, up to
translations, all full-dimensional lattice polytopes P3 ∈ P(Z3) such that
MV(P1, P2, P3) = m and such that the triple (P1, P2, P3) is maximal in P3
(see Algorithm 4.6.2).

Step 4: Given a full-dimensional triple (P1, P2, P3) ∈ P(Z3)3 as in Step 3 check
whether it is maximal in P1 and P2 and, if so, add it modulo equivalence to
the final list of maximal triples of mixed volume m.

Remark 4.4.5. We may obtain the pairs of Step 2.a from the list of all maxi-
mal triples of full-dimensional lattice polytopes (P1, P2, P3) ∈ P(Z3)3 that satisfy
MV(P1, P2, P3) < m, as inductively obtained in Step 1. Note that we need to
consider not only those pairs (P1, P2) ∈ P(Z3)2 for which the triple (P1, P1, P2) is
maximal, but all pairs such that MV(P1, P1, P2) = m′ < m. These can be obtained
by iteratively pealing off vertices of the maximal triples of mixed volume less than m
and searching among them for triples of the form (P1, P1, P2) up to permutations and
translations. The running time of this task is very reasonable for values m′ ∈ {1, 2, 3}
but is growing very fast in m′ and would also be growing extensively if we were to
consider higher dimensions.

Dealing with Step 2.b is more involved and we employ the following algorithm:

Algorithm 4.4.6 (Step 2.b of Algorithm 4.4.4).

Input: A number m ∈ N.

Output: A list of all full-dimensional pairs (P1, P2) ∈ P(Z3)2 that satisfy
MV(P1, P1, P2) = MV(P1, P2, P2) = m, up to equivalence.

Step 1: Classify, up to equivalence, all full-dimensional P1 ∈ P(Z3) with
Vol(P1) ≤ m (Enumeration Problem 4.7.1).

Step 2: Given a full-dimensional lattice polytope P1 ∈ P(Z3) with Vol(P1) ≤ m,
determine, up to translations, all full-dimensional lattice polytopes Q ∈ P(Z3)
such that MV(P1, P1, Q) = m and the triple (P1, P1, Q) is maximal in Q (see
Algorithm 4.6.2).
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Step 3: Given a pair (P1, Q) ∈ P(Z3)2 of full-dimensional lattice polytopes
as in Step 2, determine all subpolytopes P2 ⊆ Q such that Vol(P2) ≤ m and
MV(P1, P1, P2) = MV(P2, P2, P1) = m (see Algorithm 4.7.7).

Step 4: Given a pair (P1, P2) ∈ P(Z3)2 with P2 ⊆ Q as above, add it modulo
equivalence to the final list.

4.5. Extension to the general case in dimension three
In this section we present an extension of Algorithm 4.4.4 allowing us to classify
general maximal irreducible triples (P1, P2, P3) ∈ P (Z3)3 without assuming that all
Pi are full-dimensional, thus solving the following enumeration problem.

Enumeration Problem 4.5.1. Given m ∈ N, enumerate, up to equivalence, all
maximal irreducible triples (P1, P2, P3) ∈ P(Z3)3 satisfying MV(P1, P2, P3) = m.

While we may still formulate a statement analogous to Proposition 4.4.2, the
existence of i, j ∈ [3] with i 6= j such that MV(Pi, Pi, Pj) < m does not necessarily
allow us to build upon the classification for lower mixed volumes as in Remark 4.4.5.
The reason is that, if one has dim(Pi) = 2, the triple (Pi, Pi, Pj) is not irreducible
anymore and therefore may not be contained in one of the maximal irreducible triples
of lower mixed volume. Hence, we carry out a different case distinction for triples
that contain at least one polytope of dimension 2.

Proposition 4.5.2. Let (P1, P2, P3) ∈ P(Z3)3 be an irreducible triple such that
MV(P1, P2, P3) = m and at least one of the Pi is 2-dimensional. Then there exist
distinct indices i, j ∈ [3] such that one of the following holds:

(a.) (Pi, Pi, Pj) is irreducible and satisfies MV(Pi, Pi, Pj) < m,

(b.) dim(Pi) = 2, dim(Pj) = 3, MV(Pi, Pi, Pj) ≤ m, and MV(Pj, Pj, Pi) = m,

(c.) dim(Pi) = dim(Pj) = 2, MV(Pi, Pi, Pj) ≤ m, and MV(Pj, Pj, Pi) ≤ m2.

Proof. Without loss of generality we may assume dim(P1) ≤ dim(P2) ≤ dim(P3). We
distinguish cases based on the dimensions of the polytopes in the tuple. Assume first
dim(P1) = 2 and dim(P2) = dim(P3) = 3. Consider the Aleksandrov-Fenchel inequal-
ity m2 = MV(P1, P2, P3)2 ≥ MV(P2, P2, P1) MV(P3, P3, P1). If MV(P2, P2, P1) < m
or MV(P3, P3, P1) < m, one has (a) for (i, j) = (2, 1) or (i, j) = (3, 1), respectively.
Otherwise, one has MV(P2, P2, P1) = MV(P3, P3, P1) = m. Now, if (a) does not hold
for (i, j) = (2, 3) then MV(P2, P2, P3) ≥ m and the Aleksandrov-Fenchel inequality
m2 ≥ MV(P1, P1, P3) MV(P2, P2, P3) implies MV(P1, P1, P3) ≤ m, i.e. (b) holds for
(i, j) = (1, 3). Similarly, we show that either (a) holds for (i, j) = (3, 2) or (b) holds
for (i, j) = (1, 2).
Assume now that dim(P1) = dim(P2) = 2, and dim(P3) = 3. Consider the

Aleksandrov-Fenchel inequality m2 ≥ MV(P2, P2, P1) MV(P3, P3, P1). If one has
MV(P3, P3, P1) < m, then (a) holds for (i, j) = (3, 1). Otherwise, MV(P2, P2, P1) ≤
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4. Classification of Tuples of Small Mixed Volume

m. As, additionally, MV(P1, P1, P2) MV(P3, P3, P2) ≤ m2, in this case (c) holds for
(i, j) = (2, 1).

Let us finally assume that dim(P1) = dim(P2) = dim(P3) = 2. Then the inequal-
ity m2 ≥ MV(P1, P1, P2) MV(P3, P3, P2) yields that either MV(P1, P1, P2) ≤ m or
MV(P3, P3, P2) ≤ m. Analogously to the above, one also has MV(P2, P2, P1) ≤ m2

and MV(P2, P2, P3) ≤ m2. Therefore, case (c) holds for (i, j) = (1, 2) or (i, j) =
(3, 2).

Let us now present an extension of Algorithm 4.4.4 that allows us to solve Enu-
meration Problem 4.5.1. In particular, Algorithm 4.5.3 is used to classify maximal
irreducible triples of a given mixed volume containing at least one 2-dimensional
lattice polytope. Note that Proposition 4.5.2 justifies the restriction to the three
cases a., b., and c. in Step 2.

Algorithm 4.5.3 (Extension of Algorithm 4.4.4 to general maximal irreducible
triples).

Input: A number m ∈ N.

Output: A list of all maximal irreducible triples (P1, P2, P3) ∈ P(Z3)3 with
MV(P1, P2, P3) = m and dim(Pi) = 2 for at least one i ∈ [3], up to equivalence.

Step 1: If m = 1, return an empty list (as the only maximal irreducible triple of
mixed volume 1 is (∆3,∆3,∆3) and therefore full-dimensional). Else, iteratively
run Algorithm 4.4.4 and Algorithm 4.5.3 for input values m′ < m in order
to obtain a list of all maximal irreducible triples (P1, P2, P3) ∈ P(Z3)3 with
MV(P1, P2, P3) < m, up to equivalence.

Step 2:
a. Classify, up to equivalence, all pairs (P1, P2) ∈ P(Z3)2 such that the triple

(P1, P1, P2) is irreducible with MV(P1, P1, P2) < m (see Remark 4.5.4).
b. Classify, up to equivalence, all pairs (P1, P2) ∈ P(Z3)2 with dim(P1) = 2

and dim(P2) = 3 and where MV(P1, P1, P2) ≤ m and MV(P2, P2, P1) = m
(see Algorithm 4.5.5).

c. Classify, up to equivalence, all pairs (P1, P2) ∈ P(Z3)2 where dim(P1) =
dim(P2) = 2, MV(P1, P1, P2) ≤ m and MV(P1, P2, P2) ≤ m2 (see Algo-
rithm 4.5.5).

Step 3: For a given pair (P1, P2) ∈ P(Z3)2 as in Step 2, enumerate, up to
translations, all P3 ∈ P(Z3) such that MV(P1, P2, P3) = m and the triple
(P1, P2, P3) is irreducible and maximal in P3 (see Algorithm 4.6.2).

Step 4: Given an irreducible triple (P1, P2, P3) ∈ P(Z3)3 as in Step 3, check
whether it is also maximal in P1 and P2 and, if so, add it modulo equivalence
to the final list of maximal triples of mixed volume m.

Remark 4.5.4. The classification in Step 2.a can be obtained from the list of
maximal triples of mixed volume m′ < m of Step 1 analogously to the procedure
described in Remark 4.4.5.
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In order to treat Step 2.b and Step 2.c of Algorithm 4.5.3 we apply the following
algorithm. While we treat both cases in a similar way, the separation in some of the
steps has an important computational advantage. This is because it allows us to
have relatively small bounding boxes in which one has to perform a rather expensive
search for full-dimensional subpolytopes (Step 2.b), while we may restrict the search
inside larger bounding boxes to lower-dimensional subpolytopes (Step 2.c).
Algorithm 4.5.5 (Step 2.b and Step 2.c of Algorithm 4.5.3).

Input: A number m ∈ N.

Output:
for b: A list of all pairs (P1, P2) ∈ P(Z3)2, up to equivalence, with dim(P1) = 2

and dim(P2) = 3, and where MV(P1, P1, P2) ≤ m and MV(P2, P2, P1) =
m.

for c: A list of all pairs (P1, P2) ∈ P(Z3)2, up to equivalence, with dim(P1) =
dim(P2) = 2 and where MV(P1, P1, P2) ≤ m and MV(P2, P2, P1) ≤ m2.

Step 1: Classify all P1 = P ′1 × {0} ∈ P(Z3) for P ′1 ∈ P(Z2) being a full-
dimensional lattice polygon with Vol(P1) ≤ m, up to equivalence (Enumera-
tion Problem 4.7.1).

Step 2:
for b: Given P1 as above, determine bounding boxes Q1, . . . , Qr ∈ P(Z3)

containing, up to shearing along the affine span of P1 and translations,
all P2 which satisfy MV(P1, P1, P2) ≤ m and MV(P1, P2, P2) = m (see
Lemma 4.6.5).

for c: Given P1 as above, determine bounding boxes R1, . . . , Rs ∈ P(Z3)
containing, up to shearing along the affine span of P1 and translations,
all P2 satisfying MV(P1, P1, P2) ≤ m and MV(P1, P2, P2) ≤ m2 (see
Lemma 4.6.5).

Step 3:
for b: Determine all full-dimensional subpolytopes P2 ∈ P(Z3) of the bounding

boxes Q1, . . . , Qr that satisfy MV(P1, P1, P2) ≤ m and MV(P1, P2, P2) =
m (see Remark 4.6.6 and Algorithm 4.7.7).

for c: Determine all 2-dimensional subpolytopes P2 ∈ P(Z3) of the bounding
boxes R1, . . . , Rs that satisfy MV(P1, P1, P2) ≤ m and MV(P1, P2, P2) ≤
m2 (see Remark 4.6.6 and Algorithm 4.7.7).

Step 4: Given P1 and P2 as above, add the pair (P1, P2) ∈ P(Z3)2 modulo
equivalence to the final list.

4.6. Details of the algorithms
In this section we provide further details of the classification algorithms presented in
the previous sections.
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4.6.1. Finding maximal P3

A problem that we have to solve in various steps of the classification algorithm is
the following.

Enumeration Problem 4.6.1. Let (P1, P2) ∈ P(Z3)2 be a pair of lattice polytopes
satisfying dim(P1), dim(P2) ≥ 2, dim(P1 + P2) = 3. Given m ∈ N, enumerate, up
to translations, all lattice polytopes P3 ∈ P(Z3) such that MV(P1, P2, P3) = m and
such that the triple (P1, P2, P3) is irreducible, and Z-maximal in P3.

Note that the conditions dim(P1), dim(P2) ≥ 2 and dim(P1+P2) = 3 are equivalent
to the fact that the pair (P1, P2) can be extended to an irreducible triple (P1, P2, P3).
Indeed, if any of the conditions is not satisfied, a triple (P1, P2, P3) is not irreducible
by definition. On the other hand, if we choose P3 full-dimensional and the above
conditions are satisfied, the triple (P1, P2, P3) is irreducible.
We solve Enumeration Problem 4.6.1 by making use of Lemma 4.2.12 in form of

the following Algorithm.

Algorithm 4.6.2 (Finding maximal P3).

Input: A pair (P1, P2) ∈ P(Z3)2 of lattice polytopes that satisfy dim(P1) ≥ 2,
dim(P2) ≥ 2, and dim(P1 + P2) = 3, and a number m ∈ N.

Output: A list of all lattice polytopes P3 ∈ P(Z3), up to translations, such that
MV(P1, P2, P3) = m and the triple (P1, P2, P3) is irreducible and Z-maximal
in P3.

Step 1: Compute the mixed area measure of P1 and P2. In particular, compute
the normalized mixed areas MV(P u

1 , P
u
2 ) for all u ∈ Z3 that are primitive outer

normal vectors of a facet of the Minkowski sum P1 + P2. Obtain a vector
a = (a1, . . . , ar) ∈ Zr≥1 of the mixed areas of P1, P2 with respect to those
primitive normal vectors u1, . . . , ur ∈ Z3 that yield a positive mixed area.

Step 2: Determine all vectors h = (h1, . . . , hr) ∈ (Z≥0)r satisfying ∑r
i=1 hiai =

m.

Step 3: Given a vector h ∈ (Z≥0)r as above, compute

P3 = conv
{
x ∈ Z3 : 〈ui, x〉 ≤ hi for all i ∈ [r]

}
,

and check whether the triple (P1, P2, P3) is irreducible and MV(P1, P2, P3) = m.
If this is true, append P3 modulo translations to the final list.

Remark 4.6.3. Algorithm 4.6.2 allows us to benefit from the restriction to maximal
triples (or triples that are maximal in at least one polytope) in our classification.
For example, fixing the pair (∆3,∆3) ∈ P3(Z3)2 and mixed volume m = 4, Algo-
rithm 4.6.2 directly determines Q = 4∆3 as the unique maximal lattice polytope
such that MV(∆3,∆3, Q) = 4.
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Remark 4.6.4. A slight modification of Algorithm 4.6.2 can be used in order to
classify maximal pairs of polygons (P1, P2) ∈ P(Z2) of a given mixed volume m. By
the Aleksandrov-Fenchel inequality in the two-dimensional case one may assume
without loss of generality that Vol(P1) ≤ m. For any fixed full-dimensional lattice
polytope P1 ∈ P(Z2) one may compute the area measure and, analogously to Step 2
and Step 3 of Algorithm 4.6.2, determine a list of all full-dimensional P2 ∈ P(Z2)
such that (P1, P2) is Z-maximal in P2 and MV(P1, P2) = m.

4.6.2. Bounding P2 given a lower-dimensional P1

In the lemma below K −K denotes the difference set K + (−K) of a convex set
K ⊂ Rd and K∗ = {y ∈ Rd : 〈x, y〉 ≤ 1 for all x ∈ K} denotes the polar dual convex
set.

Lemma 4.6.5. Let (P1, P2) ∈ P(Z3)2 be a pair of lattice polytopes such that P1 is
2-dimensional of the form P1 = P ′ × {0} ⊂ R2 × {0} and P2 is 2-dimensional with
positive width w in direction e3. Assume MV(P1, P1, P2) = m1 and MV(P2, P2, P1) ≤
m2 for some m1,m2 ∈ N. Then, up to a shearing along R2 × {0} and a lattice
translation, P2 is contained in the bounding polytope

Rq1,q2 := conv



x1
x2
x3

 ∈ Z2 × {0, . . . , w − 1} :
(
x1
x2

)
∈ Q′ + 1

w

(
q1x3
q2x3

)
 ,

where q1, q2 ∈ {0, . . . , w − 1} and

Q′ :=
(

0 m2
w

−m2
w

0

)
(P ′ − P ′)∗.

Proof. We may assume 0 ∈ P2 and hP2(−e3) = 0 and therefore Proposition 4.2.4
yields m1 = MV(P1, P1, P2) = Vol2(P ′)hP2(e3). Then P2 contains a lattice point
(q1, q2, w) at height w and, up to shearing, we may assume that q1, q2 ∈ {0, . . . , w − 1}.
Let x = (x1, x2, x3) ∈ P2∩Z3 be another lattice point of P2 and consider the triangle
Tx := conv((0, 0, 0), (q1, q2, w), (x1, x2, x3)) ⊆ P2. Let (n1, n2, n3) = (q1, q2, w) ×
(x1, x2, x3) be the normal vector to aff(Tx) with lattice length equal to Vol(Tx). Then
(4.5) yields

MV(Tx, Tx, P1) = hP1((n1, n2, n3)) + hP1(−(n1, n2, n3))
= hP ′((n1, n2)) + hP ′(−(n1, n2))
= hP ′−P ′((n1, n2)).

One has (n1, n2) = (−wx2, wx1) + (q2x3,−q1x3) by explicit computation of the
cross product. By the monotonicity of the mixed volume one obtains m2 ≥
MV(P2, P2, P1) ≥ MV(Tx, Tx, P1) and therefore,

(−wx2, wx1) + (q2x3,−q1x3) = (n1, n2) ∈ m2(P ′ − P ′)∗.
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This is equivalent to(
x1
x2

)
∈
(

0 m2
w

−m2
w

0

)
(P ′ − P ′)∗ + 1

w

(
q1x3
q2x3

)
,

which shows the assertion.

Remark 4.6.6. Note that, in the setting of Lemma 4.6.5, the bounding box Rq1,q2

is actually constructed under the assumption that P2 contains the segment Iq1,q2 =
conv((0, 0, 0), (q1, q2, w)). Therefore in order to enumerate the set of all suitable
P2 we may restrict to searching for all q1, q2 ∈ {0, . . . , w − 1} for lattice polytopes
inside Rq1,q2 that contain Iq1,q2 . We use this fact when we apply Algorithm 4.7.7.
Also note that any lattice polytope P ∈ P(Z3) with Iq1,q2 ⊂ P ⊆ Rq1,q2 satisfies
MV(P1, P1, P ) = m1 by construction of Rq1,q2 , while the upper bound of m2 on
MV(P, P, P1) may in general not be satisfied for some subpolytope P ⊆ Rq1,q2 .

4.7. An algorithm for the enumeration of lattice
polytopes

Enumeration Problem 4.7.1. Given m ∈ N and d ∈ N, enumerate all full-
dimensional polytopes P ∈ P(Zd) with 1 ≤ Vol(P ) ≤ m, up to equivalence.

4.7.1. Sandwich-factory based approach
We present a relatively simple algorithm to Enumeration Problem 4.7.1 which we also
found to lead to very reasonable running times. The running time of the SageMath
[Sag18] implementation of our algorithm was just a few minutes for d = 3 and m = 4.
For d = 3, m = 6 our implementation terminates within an hour. For d = 2, much
larger values of m can be handled within an hour. Even more important in the
context of our original enumeration problem about mixed volumes is the fact that we
use our algorithm for solving Enumeration Problem 4.7.1 as a template for solving
further similar enumeration problems by appropriately modifying the basic steps of
the algorithm (see Algorithm 4.7.7).
We also refer to [Bal18] for an alternative approach with a similar structure to

enumeration of lattice polytopes by their volume. Note also that [EG16] provides an
explicit description of lattice polytopes of arbitrary dimension d with the normalized
volume at most 4.

We call a pair (A,B) of full-dimensional polytopes A,B ∈ P(Zd) a sandwich if
A is a subset of B. The basic principle of our algorithm is to capture all possible
polytopes in a set of sandwiches (A,B). If for P ∈ P(Zd) the inclusion A ⊆ P ⊆ B
holds, we say that P occurs in the sandwich (A,B). In our context, A will be
a lattice polytope with Vol(A) ≤ m and B will be a lattice polytope containing
all points p ∈ Zd that one can add to A without exceeding the volume bound m.
Our algorithm maintains a sandwich factory, which is a set of sandwiches with the
property that each P in question occurs in some of the sandwiches from the set.
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We call the difference Vol(B)− Vol(A) the volume gap of a sandwich (A,B). The
algorithm starts with a sandwich factory containing sandwiches with a large volume
gap and iteratively replaces sandwiches with a large volume gap by sandwiches with
a smaller volume gap. Eventually, only sandwiches with volume gap 0 remain; such
sandwiches correspond to polytopes P with Vol(P ) ≤ m. Thus, as soon as there are
no sandwiches with positive volume gap, the enumeration task is completed.

4.7.2. Initialization of the sandwich factory.
It is clear that every full-dimensional lattice polytope P ∈ P(Zd) contains an empty
lattice simplex A, that is a simplex with exactly d + 1 lattice points. Also, if
Vol(P ) ≤ m then, clearly, Vol(A) ≤ m. Thus, we start with a set of sandwiches
(A,B) which involves all possible empty simplices A with 1 ≤ Vol(A) ≤ m. In
dimension d = 2 there is only one empty simplex up to equivalence, namely the
triangle A = ∆2. In dimension d = 3, by White’s classification (see [Whi64] or [Rez06,
Theorem 5]), every empty 3-dimensional simplex is equivalent to either the standard
simplex ∆3 or to conv(0, e1, e3, e3 +ae1 + be2) with a, b ∈ N, a < b, and gcd(a, b) = 1.
Thus, it suffices to determine such simplices A with 1 ≤ Vol(A) ≤ m. To complete
the initialization of the sandwich factory, one needs to choose an appropriate B for
each A so that (A,B) is a sandwich, which contains all lattice polytopes P with
1 ≤ Vol(P ) ≤ m and the property A ⊆ P . It is intuitively clear that if a point x is
far away from A, then the volume conv(A ∪ {x}) must be large. This informal idea
is expressed explicitly in the following lemma.

Lemma 4.7.2. Let A be a d-dimensional simplex and let m ≥ Vol(A). Then
{
x ∈ Rd : Vol(conv(A ∪ {x})) ≤ m

}
⊆ λA+ (1− λ)cA,

where cA is the barycenter of A and λ = (d+ 1)
(

m
Vol(A) − 1

)
+ 1.

Proof. The proof for d = 3 can be found in [AKW17, Lemma 13]. The proof extends
directly to the case of an arbitrary dimension d ∈ N.

In view of Lemma 4.7.2, one can fix B to be the integral hull of λA+ (1− λ)cA,
that is

B = conv((λA+ (1− λ)cA) ∩ Zd).

It may still be the case that B is chosen to be too large in the sense that B may
contain vertices v with the property that Vol(conv(A ∪ {v})) > m. Clearly, if a
polytope P ∈ P(Zd) occurs in (A,B) and has the property Vol(P ) ≤ m then P
cannot contain v as above. This means that one can iteratively make B smaller by
removing vertices v as above, as long as such vertices exist. More precisely, while
v as above exists, one iteratively replaces B by conv((B ∩ Zd) \ {v}). We call this
procedure the reduction of B relative to A. Having carried out the above reduction
of B for each A, we complete the initialization of the sandwich factory.
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4.7.3. Iterative updates of sandwich factory
The purpose of the iterative procedure is to reduce the maximum volume gap
occurring in a sandwich factory. That is, as long as there are sandwiches with
positive volume gap, one considers those sandwiches (A,B) in the sandwich factory,
for which the volume gap Vol(B)− Vol(A) is maximized. For each such sandwich
(A,B) one picks a vertex v of B not belonging to A. Every polytope P ∈ P(Zd)
with Vol(P ) ≤ m occurring in (A,B) may or may not contain v. If P contains v, we
can enclose P into the sandwich (conv(A∪ {v}), B) with a smaller volume gap. If P
does not contain v, we can enclose P into the sandwich (A, conv((B ∩ Zd) \ {v})),
whose volume gap is also smaller. Thus, we can remove the sandwich (A,B) from
the factory and replace it by two other sandwiches (see also Fig. 4.6).

−−−−−→

Figure 4.6.: Replacing a sandwich by two other sandwiches with a smaller volume
gap.

Here it should also be noticed that, when we let A grow, by considering (conv(A∪
{v}, B), we can make B smaller. Indeed, B may contain vertices w with the
property that Vol(conv(A ∪ {v, w})) > m. Then rather than adding the sandwich
(conv(A ∪ {v}, B), we first reduce B relative conv(A ∪ {v}) to a potentially smaller
polytope B′ and then add (conv(A ∪ {v}), B′) to the sandwich factory.

4.7.4. Equivalent sandwiches.
While the above algorithmic steps can already be used for finding all full-dimensional
polytopes P ∈ P(Zd) with Vol(P ) ≤ m, its efficiency would not be very good as one
would generate many polytopes that are equivalent. When for two sandwiches (A,B)
and (A′, B′) there exists an affine unimodular transformation ϕ with ϕ(A) = A′ and
ϕ(B) = B′, then, up to affine unimodular transformations, the lattice polytopes
occurring in (A,B) also occur in (A′, B′) and vice versa. We call such sandwiches
(A,B) and (A′, B′) equivalent. Thus, if a sandwich (A,B) is already present in the
sandwich factory, there is no need to add (A′, B′). Based on this idea, we add a
new sandwich (A,B) to the sandwich factory only if it does not already contain a
sandwich equivalent to (A,B). The test for equivalence of sandwiches can be reduced
to the test for equivalence of lattice polytopes as follows. If (A,B) is a sandwich
then, by embedding 3A into Rd × R at heights 1 and −1 and 3B at height 0, we
obtain the polytope

PA,B = conv
(
(3A)× {1}︸ ︷︷ ︸

height 1

∪ (3B)× {0}︸ ︷︷ ︸
height 0

∪ (3A)× {−1}︸ ︷︷ ︸
height −1

)
∈ P(Zd × Z),

see also Fig. 4.7.
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x

y

z

Figure 4.7.: An example of a sandwich (A,B) in dimension two (left) and the three-
dimensional lattice polytope PA,B assigned to this sandwich (right),
whose affine normal form is used to distinguish sandwiches up to affine
unimodular transformations.

Lemma 4.7.3. Two sandwiches (A,B) and (A′, B′) are equivalent if and only if the
polytopes PA,B and PA′,B′ are equivalent.

Proof. The first implication is direct. If (A,B) and (A′, B′) are equivalent, then
there exists an affine unimodular transformation ϕ ∈ Aff(Zd) such that ϕ(A) = A′

and ϕ(B) = B′. The map ϕ× Id ∈ Aff(Zd×Z) then satisfies (ϕ× Id)(PA,B) = PA′,B′ .
In order to show the reverse implication assume that PA,B and PA′,B′ are equivalent
and let ψ ∈ Aff(Zd×Z) be an affine unimodular transformation such that ψ(PA,B) =
PA′,B′ . Note that for both P = PA,B and P = PA′,B′ the vector v = ed+1 is the unique
direction such that |hP (v)− hP (−v)| = 2. Therefore ψ maps the intersection of PA,B
with any of the hyperplanes Rd × {−1}, Rd × {0} and Rd × {1} to the intersection
of PA′,B′ with the respective hyperplane. Here we use that, as PA,B is symmetric
with respect to the hyperplane Rd × {0}, we may assume that the intersections with
the hyperplanes Rd × {−1} and Rd × {1} are not permuted by ψ. In particular,
ψ(3B×{0}) = 3B′×{0} and, as B is full-dimensional, ψ(Rd×{h}) = Rd×{h} for
any h ∈ R. Furthermore, we may assume that ψ is linear and, hence, with respect
to the standard basis of Rd+1 to be of the form(

U t
0 1

)
∈ GL(Zd+1),

for a unimodular matrix U ∈ GL(Zd) and an integer vector t ∈ Zd. Denote
by ϕ ∈ GL(Zd) the linear unimodular transformation corresponding to U . Then
ψ((3A × {−1})) = (ϕ(3A) − t) × {−1} and ψ((3A × {1})) = (ϕ(3A) + t) × {1}.
In particular ϕ(3A) − t = 3A′ = ϕ(3A) + t and therefore one has t = 0. So ϕ is
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a unimodular transformation such that ϕ(A) = A′ and ϕ(B) = B′ and hence the
sandwiches (A,B) and (A′, B′) are equivalent.

Remark 4.7.4. The construction of PA,B is similar to the construction of the Cayley
sum Cay(2A, 2B) in Corollary 2.3.4. However, the notion of equivalence of two
sandwiches is more restrictive than the one for general pairs of lattice polytopes, as
the position of A inside of B is important and we therefore do not want to allow
independent translation.

4.7.5. Summary of the sandwich-factory algorithm.
We give a complete description of the algorithm we have developed above.

Algorithm 4.7.5 (Sandwich-factory algorithm).

Input: Dimension d ∈ N and volume bound m ∈ N.

Output: A list of all full-dimensional lattice polytopes P ∈ P(Zd) with
Vol(P ) ≤ m, up to equivalence.

Step 1: Enumerate, up to equivalence, all empty lattice simplices A with
Vol(A) ≤ m.
• For each A as above, choose B to be the integral hull

conv((λA+ (1− λ)cA) ∩ Zd),

where cA is the barycenter of A and

λ = (d+ 1)
(

m

Vol(A) − 1
)

+ 1,

and then reduce B relative to A.
• Initialize the sandwich factory F with all pairs (A,B) obtained as above.

Step 2: While F contains sandwiches with a positive volume gap, carry out
the following steps for sandwiches (A,B) whose volume gap is maximized:
• pick a vertex v of B, not contained in A,
• fix A′ = conv(A ∪ {v}),
• compute the reduction B′ of B relative to A′,
• fix B′′ = conv((B ∩ Zd) \ {v}),
• add (A′, B′) to F , unless F already contains a sandwich equivalent to

(A′, B′),
• add (A,B′′) to F , unless F already contains a sandwich equivalent to

(A,B′′),
• remove (A,B) from F .
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Step 3: In this step, all sandwiches (A,B) in F have the form A = B. Return
the set of all A, with (A,B) ∈ F . Up to equivalence, this is the set of all
polytopes P ∈ P(Zd) with 1 ≤ Vol(P ) ≤ m.

Remark 4.7.6. In Section 4.7.2 we described an efficient implementation of Step 1
for dimension two and three (the dimensions we are interested in in the context of
this paper). For higher dimensions we do not specify how to implement Step 1 and
only notice that it can be implemented algorithmically. We also note that rather
than using empty lattice simplices of normalized volume at most m, one can start
with all lattice simplices of normalized volume at most m. This is the approach that
is taken in [Bal18].

4.7.6. Sandwich type search for subpolytopes
In this section we describe our approach towards the task of finding all subpolytopes
fulfilling certain conditions inside a given bounding polytope. For our purposes
we found it computationally efficient to employ an algorithm similar to the one
presented in Section 4.7. Note that we do not restrict ourselves to full-dimensional
lattice polytopes in this modification. In our classification there occur three different
variations of this task that we solve using three different variations a., b., and
c. of Algorithm 4.7.7. In particular, variation a. is employed for the search
for full-dimensional subpolytopes inside of a maximal polytope as obtained using
Algorithm 4.6.2, while variation b. and c. deal with the search for full-dimensional
or 2-dimensional subpolytopes of a bounding polytope as in Lemma 4.6.5. Note that
a sandwich type search seems particularly natural for the search inside bounding
polytopes of the form obtained using Lemma 4.6.5, as by Remark 4.6.6 it suffices
to search for those subpolytopes that contain a given segment I depending on the
bounding polytope.

For a sandwich (A,B) ∈ P(Z3)2 we call the nonnegative number |B∩Z3|−|A∩Z3|
the lattice point gap of (A,B). Generalizing the concept of the reduction of a lattice
polytope B ⊇ A relative to A used in Algorithm 4.7.5, we define the reduction of B
relative to A with respect to the conditions Vol( · ) ≤ m1 and MV( · , · , P1) ≤ m2 to
be the polytope

B′ = conv{x ∈ B ∩ Z3 : Ax = conv(A ∪ {x}) satisfies
Vol(Ax) ≤ m1 and MV(Ax, Ax, P1) ≤ m2}.

Algorithm 4.7.7 (Sandwich approach to subpolytopes).

Input:
for a: A bounding box M ∈ P(Z3), a lattice polytope P1 ∈ P(Z3), and a

bound m ∈ N.
for b/c: A bounding box M ∈ P(Z3), a segment I ⊂ M , a lattice polytope

P1 ∈ P(Z3), and bounds m1,m2 ∈ N.

Output:
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for a: A list of all full-dimensional lattice polytopes P2, up to translations,
with P2 ⊆M such that Vol(P2) ≤ m and MV(P2, P2, P1) ≤ m.

for b: A list of all full-dimensional lattice polytopes P2, up to translations,
with I ⊂ P2 ⊆M such that Vol(P2) ≤ m1 and MV(P2, P2, P1) ≤ m2.

for c: A list of all 2-dimensional lattice polytopes P2, up to translations, with
I ⊂ P2 ⊂M such that Vol(P2) ≤ m1 and MV(P2, P2, P1) ≤ m2.

Step 1:

for a: Initialize the sandwich factory F with pairs (S,M) where S ranges over
all empty simplices in M satisfying the bounding conditions (in particular,
MV(S, S, P1) ≤ m). Set m1 = m2 = m.

for b/c: Initialize the sandwich factory F with the pair (I,M ′), where M ′ is
the reduction of M relative to I with respect to the conditions Volr( · ) ≤
m1 and MV( · , · , P1) ≤ m2.

Step 2: While F contains sandwiches with positive lattice point gap, carry out
the following steps for sandwiches (A,B) having the maximal lattice point gap
among the sandwiches in F :
• pick a vertex v of B, not contained in A,
• fix A′ = conv(A ∪ {v}) (note that, as B is reduced relative to A with

respect to the conditions Vol( · ) ≤ m1 and MV( · , · , P1) ≤ m2, the
polytope A′ is ensured to satisfy the bounding conditions),

• (for c:) if dim(A′) = 2 and dim(B) = 3, set B := B ∩ aff(A′),
• compute the reduction B′ of B relative to A with respect to the conditions

Volr( · ) ≤ m1 and MV( · , · , P ) ≤ m2,
• fix B′′ = conv((B ∩ Zd) \ {v}),
• add (A′, B′) to F , unless F already contains a translate of (A′, B′),
• add (A,B′′) to F , unless F already contains a translate of (A,B′′),
• remove (A,B) from F .

Step 3: In this step all sandwiches (A,B) have lattice point gap 0 and therefore
fulfill A = B. Return a list of A for all sandwiches (A,B) ∈ F .

Remark 4.7.8. While the overall structure of Algorithm 4.7.7 above is very similar
to Algorithm 4.7.5, there are some modifications. In Algorithm 4.7.7 we also work
with sandwiches (A,B) for which dim(A) < dim(B) and therefore the volume gap
is not necessarily strictly decreasing in our iterative steps. We deal with this by
considering the lattice point gap of a sandwich instead. Furthermore, we only identify
two sandwiches (A,B) and (A′, B′) if there is a translation vector t ∈ Z3 such that
(A′, B′) = (A+ t, B + t). Also note that, in addition to a volume bound for P2, we
have a bound for the mixed volume MV(P2, P2, P1) and therefore perform a slightly
different reduction step.
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4.8. Outlook: classification for larger mixed volume
or dimension

Recall that, apart from 3 exceptions, the full-dimensional triples of lattice polytopes
up to mixed volume 4 fall into one of 4 types of R-maximal triples presented in
Proposition 4.3.4. We do not know how the number of exceptional tuples behaves
when we regard higher mixed volumes or higher dimensions. Nevertheless, it seems
to be a reasonable approach towards further enumerations to concentrate on full-
dimensional tuples that are R-maximal. A first step would be the understanding of
R-maximal triples of general mixed volume.

Question 4.8.1. Does every R-maximal triple of full-dimensional lattice polytopes
(P1, P2, P3) ∈ (P(Z3))3 satisfy suppSP1 ⊆ suppSP2 = suppSP3 , up to reordering? Is
every such triple of one of the types of Proposition 4.3.4?

If the answer to these questions is yes, this would significantly reduce the complexity
of the classification of R-maximal triples of higher mixed volume, as one could tailor
a classification algorithm precisely for these types.
For higher dimensions, we have to pose the question in an even more open way.

We suspect a steep increase of the number of different types of R-maximal tuples.
However, in dimension 4, one might be able to make some progress.

Question 4.8.2. Can one deduce a more specific structure for R-maximal 4-tuples
of full dimensional lattice polytopes (P1, P2, P3, P4) ∈ (P(Z4))4 from Lemma 4.2.15?
What is a reasonable generalization of the list of types from Proposition 4.3.4?
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5. Tuples of Lattice Polytopes of
Mixed Degree One

This chapter is devoted to presenting structural classification results regarding d-
tuples of d-dimensional lattice polytopes whose so-called mixed degree is at most
one. In Section 5.1 we give some background on the definition of the mixed degree
of a tuple of lattice polytopes as a generalization of the concept of the lattice degree
of a single lattice polytope. In the course of this we also recall some classification
results on lattice polytopes with a small degree (Theorem 5.1.2), which provide an
outline of what kind of results we would like to generalize to a mixed setting. In
Section 5.2 we present and illustrate our main structural results on tuples of lattice
polytopes of mixed degree one. These are, on the one hand, a finiteness result on
non-trivial classes of such tuples in general dimension at least 4 (Theorem 5.2.3), and
the complete classification of such tuples in dimension 3 (Theorem 5.2.4). Sections 5.3
and 5.4 deal with the proofs of these two results respectively. Finally, in Section 5.5
we present additional insights regarding the non-trivial tuples in dimension 3, which
motivate a more explicit question about what one could expect in higher dimensions.

5.1. The mixed degree of a tuple of lattice polytopes
It has been shown by Ehrhart that, for any lattice polytope P ∈ P(Zd), the function
t 7→ |tP ∩ Zd| is given by a polynomial of degree dim(d). This polynomial is called
the Ehrhart polynomial of P and is denoted by EhrP (t). This has first been shown
in [Ehr62]. By writing the Ehrhart polynomial in a binomial basis as

EhrP (t) = h∗0

(
t+ d

d

)
+ h∗1

(
t+ d− 1

d

)
+ · · ·+ h∗d

(
t

d

)
,

we obtain the h∗-polynomial of P as

h∗P (t) = h∗0 + h∗1t+ · · ·+ h∗dt
d.

We refer to [BR15] for a detailed treatment of the theory behind counting lattice
points in polyhedra. The degree of a lattice polytope P is defined as the degree of its
h∗-polynomial deg(P ) = deg(h∗P ). In order to provide another, more geometric, point
of view towards the degree, let us also introduce the codegree of a lattice polytope P
as codeg(P ) = 1 + dim(P )− deg(P ).

Proposition 5.1.1. Let P ∈ P(Zd). Then codeg(P ) equals the smallest natural
number n ∈ Z≥1 for which nP is not hollow.
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See for example [BR15, Theorem 4.5] for a proof of Proposition 5.1.1. The degree
of a lattice polytope can be seen as describing the complexity of the polytope with
respect to the lattice. Having this view in mind one expects polytopes of low degree to
have a specifically easy structure and indeed one has the following results supporting
that view.

Theorem 5.1.2 (Lattice polytopes of small degree). Let P ∈ P(Zd) be a lattice
polytope with degree deg(P ) = r.

1. The lattice pyramid Pyr(P ) ∈ P(Zd+1) satisfies deg(Pyr(P )) = r.

2. One has r = 0 if and only if P ∼= ∆d.

3. One has r ≤ 1 if and only if one of the following holds:
a) P is a Lawrence prism, that is it is of the form cay(I1, . . . , Id) for lattice

segments I1, . . . , Id ∈ P(Z1), or
b) P is an exceptional simplex, that is P ∼= Pyrn−2(2∆2).

4. P is the (possibly trivial) Cayley sum of lattice polytopes in P(Zq) for some
q ≤ (r2 + 19r − 4)/2.

Parts (1) and (2) are well known facts. Part (3) has been shown in [BN07] and
part (4) has been shown in [HNP08].
Recently the following generalization of the degree to tuples of lattice polytopes

has been introduced by Nill ([Nil20]).

Definition 5.1.3 (Mixed degree). Let (P1, . . . , Pk) ∈ (P(Zd))k be a k-tuple of lattice
polytopes in Rd. The mixed codegree mcd(P1, . . . , Pk) is the smallest natural number
n ∈ Z≥1 such that for any I ⊆ [k] with |I| = n the Minkowski sum ∑

i∈I Pi has
a lattice point in its relative interior. If such a number does not exist (that is if
P1 + · · ·+Pk is hollow) we set mcd(P1, . . . , Pk) := k+ 1. The mixed degree is defined
as md(P1, . . . , Pk) = 1 + dim(P1 + · · ·+ Pk)−mcd(P1, . . . , Pk).

Remark 5.1.4. The mixed degree generalizes the degree of a single lattice polytope.
Consider a lattice polytope P ∈ P(Zd). Then Proposition 5.1.1 implies that one has

deg(P ) = md( P, . . . , P︸ ︷︷ ︸
dim(P ) times

).

A first research direction regarding the mixed degree is to investigate in which
sense the intuition of the mixed degree presenting a measure of the complexity of a
tuple can be made precise. In particular, we are interested in generalizing parts of
Theorem 5.1.2 to the mixed degree.

A first result in this direction is the following generalization of Theorem 5.1.2 (2)
which has been shown in [Nil20]

Proposition 5.1.5 ([Nil20, Theorem 2.2]). Let (P1, . . . , Pd) ∈ P(Zd)d such that
dim(P1 + · · · + Pd) = d and dim(Pi) ≥ 1 for all i ∈ [d]. Then the following are
equivalent:
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1. md(P1, . . . , Pd) = 0,

2. MV(P1, . . . , Pd) = 1.

In particular, if one assumes dim(P1) = · · · = dim(Pd) = d then md(P1, . . . , Pd) = 0
if and only if (P1, . . . , Pd) ∼= (∆d, . . . ,∆d).

The fact that MV(P1, . . . , Pd) = 1 implies (P1, . . . , Pd) ∼= (∆d, . . . ,∆d) if all Pi are
full-dimensional has first been shown by Cattani et al. in [CCD+13]. It can also be
deduced as a special case from the more general classification result of Esterov and
Gusev ([EG15]).

Our contribution focuses on generalizing part (3) of Theorem 5.1.2. We restrict to d-
tuples (P1, . . . , Pd) ∈ P(Zd)d of lattice polytopes in Rd that are full-dimensional. This
subclass of tuples is of particular interest by the following result that Soprunov showed
by combining the BKK-theorem with a generalization of the Euler-Jacobi theorem
due to Khovanskii ([Kho78]) in the context of sparse polynomial interpolation.

Theorem 5.1.6 ([Sop07, Nil20]). Let (P1, . . . , Pd) ∈ P(Zd)d be a d-tuple of full-
dimensional lattice polytopes. Then the following inequality holds:

| int(P1 + · · ·+ Pd) ∩ Zd| ≥ MV(P1, . . . , Pd)− 1.

Furthermore, equality holds if and only if md(P1, . . . , Pd) ≤ 1.

Those tuples for which equality holds in the above theorem have already been called
tuples of mixed degree at most one by Soprunov in [BNR+08], where a characterization
of such tuples has been posed as an open problem ([BNR+08, Section 5, Problem 2]).

5.2. Results
As we are aiming towards a generalization of Theorem 5.1.2 (3), let us define the
following generalization of a Lawrence prism to tuples. As Lawrence prisms present
a generic class of lattice polytopes of degree one, these tuples present a generic class
of mixed degree one.

Definition 5.2.1 (Mixed Lawrence Prism). A mixed Lawrence prism is a tuple
(P1, . . . , Pd) ∈ P(Zd)d that satisfies:

(P1, . . . , Pd) ∼= (cay(I1
1 , . . . , I

1
d), . . . , cay(Id1 , . . . , Idd )),

where Iji ∈ P(Z1) is a lattice segment for all i, j ∈ [d].

Proposition 5.2.2. A tuple (P1, . . . , Pd) ∈ P(Zd)d is a mixed Lawrence prism if
and only if there exists a lattice projection π : Rd → Rd−1 satisfying π(Pi) = ∆d−1 + ti
for some translation vector ti ∈ Zd−1 for all i ∈ [d]. In particular, if (P1, . . . , Pd) is
a mixed Lawrence prism, then md(P1, . . . , Pd) ≤ 1.

Proof. The first statement follows from Proposition 2.1.4. If a lattice projection
π as in the statement exists, then for any I ⊆ [d] one has π(PI) = |I|∆d−1 +∑
i∈I ti. If |I| ≤ d − 1, this implies that π(PI) and therefore also PI is hollow. So

md(P1, . . . , Pd) ≤ 1.
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P1 P2 P3

P1 + P2 P1 + P3 P2 + P3

P1 + P2 + P3

Figure 5.1.: A triple P1, P2, P3 ⊂ R3 having mixed degree one, where P1, P2, P3 all
project onto ∆2 under the projection along the vertical axis.

An example of a mixed Lawrence prism in dimension n = 3 is shown in Figure 5.1.
Clearly, we cannot expect this to be the only class of tuples of mixed degree one,

as already the unmixed setting of Theorem 5.1.2 (3) additionally yields tuples of
copies of the same exceptional simplex as having mixed degree one. Unlike in the
unmixed case, there actually exist many more such non-trivial examples (see our
classification result for n = 3 in Theorem 5.2.4, one example is shown in Figure 5.2).
This raises the question whether there is any chance of obtaining a reasonable

generalization of Theorem 5.1.2 (3) (and an answer to Soprunov’s question) at all.
Our main result is to provide a positive answer to this question by showing that,
for any dimension d at least 4, all but finitely many exceptions of d-tuples of mixed
degree one are actually mixed Lawrence prisms.

Theorem 5.2.3. Fix d ≥ 4 and let (P1, . . . , Pd) ∈ P(Zd)d be a tuple of full-
dimensional lattice polytopes satisfying md(P1, . . . , Pd) = 1. Then, up to equivalence,
the tuple (P1, . . . , Pd) either belongs to a finite list of exceptions or there is a lattice
projection π : Rd → Rd−1 such that π(Pi) = ∆d−1 for all i ∈ [d].

We refer the reader to Section 3 for the proof of Theorem 5.2.3.
Theorem 5.2.3 is not true for dimension d ∈ {2, 3}. This fact is straightforward

to see for d = 2, as a pair of lattice polygons (P1, P2) ∈ P(Z2)2 is of mixed degree
(at most) one if and only if both P1 and P2 are hollow. Fixing P1 to be any hollow
polygon and letting P2 range through all polygons that are equivalent to a fixed
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P1 P2 P3

P1 + P2 P1 + P3 P2 + P3

P1 + P2 + P3

Figure 5.2.: A triple P1, P2, P3 ⊂ R3 having mixed degree one for which no lattice
projection exists commonly mapping P1, P2, P3 onto translates of ∆2
(see (d) of Corollary 5.5.4).

hollow polygon will clearly yield infinitely many non-equivalent pairs of mixed degree
one without there being a projection commonly mapping both polytopes onto the
segment ∆1.
For d = 3, however, we find that only a very specific class of triples of mixed

degree one contains an infinite number of exceptions and we can explicitly describe a
finite number of 1-parameter families covering this class. This is part of the following
classification result, which essentially gives a complete answer to Soprunov’s problem
for dimension d = 3. We say that a k-tuple of d-dimensional lattice polytopes
(P1, . . . , Pk) ∈ P(Zd)k admits a common lattice projection onto translates of an
(d−1)-dimensional lattice polytope Q if there exists a lattice projection π : Rd → Rd−1

satisfying π(Pi) = Q+ ti for all i ∈ [k] and some ti ∈ Zd−1.

Theorem 5.2.4. Let (P1, P2, P3) ∈ P(Z3)3 be a triple of full-dimensional lattice
polytopes that satisfies md(P1, P2, P3) = 1. Then either there is a lattice projection
π : R3 → R2 such that π(Pi) = ∆2 for all i ∈ [3], or one of the following holds.

1. There is no pair in (P1, P2, P3) admitting a common lattice projection onto
translates of ∆2 and (P1, P2, P3) is equivalent to one out of 29 possible triples.

2. There is exactly one pair in (P1, P2, P3) admitting a common lattice projection
onto translates of ∆2 and (P1, P2, P3) is equivalent to one out of 141 possible
triples.

3. There are exactly two pairs in (P1, P2, P3) admitting a common lattice projection
onto translates of ∆2 and (P1, P2, P3) is equivalent to one out of 82 possible
triples.
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4. All pairs in (P1, P2, P3) admit a common lattice projection onto translates of
∆2 and
a) the kernels of the projections cannot be shifted into a common hyperplane,

and the triple (P1, P2, P3) is equivalent to one out of 27 possible triples.
b) the kernels of the projections can be shifted into a common hyperplane,

and (P1, P2, P3) belongs, up to equivalence, to one out of finitely many
infinite 1-parameter families of triples.

We refer the reader to Section 4 for a proof of Theorem 5.2.4.
In the following example we present one of the 1-parameter families from Theo-

rem 5.2.4 (4).

Example 5.2.5. Let (P k
1 , P

k
2 , P3) ∈ P(Z3)3 be the triple given by

P k
1 := conv(e1, e2, e1 + e2, 2e2, ke2 + e3),

P k
2 := conv(e1, e2, e1 + e2, 2e1, ke1 + e3),

P3 := conv(0, e1, e2, e1 + e2, e3),

for some k ∈ Z≥0. Then md(P k
1 , P

k
2 , P3) = 1 and, while all pairs in (P k

1 , P
k
2 , P3)

admit a common lattice projection onto translates of ∆2, there is no lattice projection
commonly mapping the whole triple (P k

1 , P
k
2 , P3) onto translates of ∆2. Note that

P k
1 , P

k
2 and P3 as single lattice polytopes are all equivalent to Pyr(�2) for all k ∈ Z≥0.

(0, k, 1)

(k, 0, 1)

P k
1

P k
2P3(0, 0, 1)

π1,2

Figure 5.3.: Top view of the infinite family from Example 5.2.5. The arrow labeled
π1,2 shows the direction of the common projection of P k

1 and P k
2 onto

translates of ∆2. The common projections of P3 and P k
1 as well as P3 and

P k
2 are given by the projection along the second and the first coordinate

respectively.

All computations have been carried out using Magma [BCP97] and the code can
be found at https://github.com/christopherborger/mixed_degree_one.
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5.3. Proof of Theorem 5.2.3
From Proposition 2.1.4 we can easily deduce the following lemma.

Lemma 5.3.1. Let P ∈ P(Zd) be a full-dimensional lattice polytope and π : Rd →
Rd−1 a linear lattice projection that projects P onto ∆d−1. Then kerπ = Re where e
is a vector parallel to an edge between vertices v1, v2, where v1 ∈ F1 and v2 ∈ F2 for
two different unimodular facets F1 6= F2 of P .

We now study d-dimensional polytopes projecting onto ∆d−1 along multiple direc-
tions. In this section we will several times use the terms of two projections being
"the same" or "different". Note that we only consider two lattice projections to be
different if they do not have the same kernel. In particular, if π : Rd1 → Rd2 is a
lattice projection and ϕ ∈ Aff(Zd2) an affine unimodular transformation, we consider
π and ϕ ◦ π to not be different projections.

Recall that we denote by Pyrd−2(�2) the (d− 2)-fold lattice pyramid formed over
the square �2 = conv(0, e1, e2, e1 + e2) ∈ P(Z2).

Lemma 5.3.2. Let P ∈ P(Zd) be a full-dimensional lattice polytope such that there
are different lattice projections π1, π2 : Rd → Rd−1 that map P onto ∆d−1. Then P
is equivalent either to the unimodular simplex ∆d or to Pyrd−2(�2). If there exists
another projection π3 : Rd → Rd−1 mapping P onto ∆d−1, then P is necessarily
equivalent to ∆d.

Proof. As P has one projection onto ∆d−1, by Proposition 2.1.4 we may assume that
P is of the form P = cay(I1, . . . , Id) for d segments Ii = [0, ai] with ai ∈ Z≥0. Two
facets of P are given by ∆d−1 × {0} and cay({a1} , . . . , {ad}). All other facets of P
are of a form we denote by Fk for k ∈ [d], that is they are the Cayley sum of all Ii
excluding Ik. As there exists another lattice projection π2 mapping P onto ∆d−1,
by Lemma 5.3.1 the facet Fk has to be unimodular for some 1 ≤ k ≤ d. Assume
without loss of generality that F1 is unimodular and a2 = 1 and a3 = · · · = ad = 0.
Furthermore, a1 cannot be greater than one as otherwise P would have an edge
of lattice length at least 2. Therefore any projection which is not along this edge
direction could not be projecting P onto ∆d−1. If a1 = 0, then P is equivalent to
∆d, otherwise a1 = 1 and P is equivalent to Pyrd−2(�2). One easily verifies that
Pyrd−2(�2) does not have more than two different projections onto ∆d−1.

Lemma 5.3.3. Let S1, S2 ∈ P(Zd) be two unimodular full-dimensional simplices,
u1, u2 ∈ Zd be linearly independent edge directions for S1 and S2 respectively, and
C1, C2 ⊂ Rd be the infinite prisms S1 +Ru1 and S2 +Ru2 respectively. Given z ∈ Zd,
denote by Pz the intersection conv(C1 ∩ (C2 + z) ∩ Zd). Let v, w ∈ Zd such that Pv
and Pw are both d-dimensional. Then Pv and Pw are the same lattice polytope up to
translation.

Proof. By Lemma 5.3.2 we know that, if there exists v ∈ Zd such that Pv is d-
dimensional, then Pv is equivalent either to ∆d or to Pyrd−2(�2) having two edges
parallel to the directions u1 and u2. In either of the two cases, we can assume Pv to
be exactly ∆d or Pyrd−2(�2).
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If Pv = Pyrd−2(�2) then, up to reordering and changes of signs, u1 = e1 and u2 = e2.
In particular, C1 = conv(0, e2, . . . , ed)+Re1 and C2+v = conv(0, e1, e3, . . . , ed)+Re2.
One easily verifies that C1∩(C2+w) is full-dimensional if and only if w−v ∈ Ze1+Ze2.
In all these cases C1 ∩ (C2 + w) is a translation of Pv.

On the other hand, if Pv = ∆d, then there is another case distinction. If u1 and u2
are parallel to adjacent edges of Dd, then we can assume u1 = e1 and u2 = e2. But in
this case C1 and C2 + v must intersect in Pyrd−2(�2) instead of in ∆d, hence we have
a contradiction. Therefore u1 and u2 are parallel to non-adjacent edges of ∆d and we
can assume u1 = e1 and u2 = e2 − e3. In particular, C1 = conv(0, e2, . . . , ed) +Re1
and C2 + v = conv(0, e1, e3, . . . , ed) + R(e2 − e3). Again, one easily verifies that
C1 ∩ (C2 +w) is full-dimensional if and only if w− v ∈ Ze1 +Z(e2− e3). In all these
cases C1 ∩ (C2 + w) is a translation of ∆d.

Lemma 5.3.4. Let P ∈ P(Zd) be a unimodular d-simplex and π1, π2 : Rd → Rd−1

be two different lattice projections such that, for each i ∈ [2], the images πi(P ) and
πi(∆d) are translates of ∆d−1. Then, up to translation and coordinate permutation,
P is contained in Pyrd−2(�2). If there exists another projection π3 : Rd → Rd−1

mapping P and ∆d onto translates of ∆d−1, then P is necessarily a translate of ∆d.

Proof. By Lemma 5.3.1, π1 and π2 are projections along the directions u1 and u2
of two edges of ∆d. If u1 and u2 are the directions of two adjacent edges of ∆d,
we can suppose that u1 = e1 and u2 = e2. Then P is contained in the intersection
(C1 + z1)∩ (C2 + z2) where C1 := ∆d +Re1 and C2 := ∆d +Re2, for some z1, z2 ∈ Zd.
By Lemma 5.3.3, P is, up to translation, contained in C1 ∩ C2 = Pyrd−2(�2). If u1
and u2 are the directions of two non-adjacent edges of ∆d then we can suppose that
u1 = e1 and u2 = e2−e3. Then P is contained in the intersection (C1 +z1)∩ (C2 +z2)
where C1 := ∆d + Re1 and C2 := ∆d + R(e2 − e3), for some z1, z2 ∈ Zd. By
Lemma 5.3.3, P is, up to translation, contained in C1 ∩ C2 = ∆d, therefore P is a
translate of ∆d ⊂ Pyrd−2(�2). This proves the first part of the statement.
For the second part of the statement we note that π3 must also be a projection

along the direction u3 of an edge of ∆d. The only case we need to check is when
the edges parallel to u1, u2 and u3 form a triangle in ∆d. Indeed in all the other
cases two of these edges are non-adjacent and P must be a translate of ∆d as above.
Indeed, if this is not the case either two of these edges are non-adjacent and P must
be a translate of ∆n as above, or u1,u2 and u3 share a vertex. In the latter case
we may assume ui = ei for 1 ≤ i ≤ 3. As deduced above from Lemma 5.3.3, this
in particular yields that P is contained in the intersection of a translation of the
square pyramid conv(0, e1, e2, e1 + e2, e3, . . . , en) with the flipped square pyramid
conv(0, e1, e3, e1 +e3, e2, e4, . . . , en). This implies that P is a translate of ∆n. Let us
therefore assume that u1 = e1, u2 = e2 and u3 = e1− e2. In this case P is a translate
of one of the four d-dimensional subpolytopes of Pyrd−2(�2). It is easy to verify that
∆d is the only one of them that is projected by π3 onto a translate of π3(∆d).

Definition 5.3.5. Let P1, . . . , Pd−1 ∈ P(Zd) be d-dimensional polytopes with the
Minkowski sum P1 + · · · + Pd−1 being hollow. We call the tuple (P1, . . . , Pd−1)
exceptional, if there exists no lattice projection π : Rd → Rd−1 such that π(P1 + · · ·+
Pd−1) ⊂ Rd−1 is a hollow polytope.
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Remark 5.3.6. By [NZ11, Theorem 1.2] there exist only finitely many d-dimensional
lattice polytopes not admitting a lattice projection onto a hollow (d− 1)-dimensional
lattice polytope, up to equivalence. So in particular, up to equivalence, there exist
only finitely many exceptional (d− 1)-tuples of d-dimensional lattice polytopes.
Furthermore, by Proposition 5.1.5, for any non-exceptional tuple P1, . . . , Pd−1 ∈
P(Zd−1)d−1 of d-dimensional lattice polytopes there exists a lattice projection
π : Rd → Rd−1 mapping all Pi onto translates of ∆d−1.

Proof of Theorem 5.2.3. Let d ≥ 4. Given k ∈ [d], denote by Ik the set {1, ..., d}\{k},
and by [P ]k ∈ P(Zd)d−1 the (d − 1)-tuple given by all Pi for i ∈ Ik. Denote
furthermore by PIk

the Minkowski sum ∑
i∈Ik

Pi of the polytopes in [P ]k. Since
md(P1, . . . , Pd) = 1, the Minkowski sum PIk

is hollow for any k ∈ [d]. Recall that, if
[P ]k is not exceptional, then by Remark 5.3.6 there exists a projection π : Rd → Rd−1

mapping all polytopes in [P ]k onto translates of ∆d−1. We treat cases separately,
depending on the number of exceptional (d− 1)-subtuples of the tuple (P1, . . . , Pd).

(0) If (P1, . . . , Pd) has no exceptional (d− 1)-subtuples then either there exists a
projection π : Rd → Rd−1 mapping (P1, . . . , Pd) onto translates of ∆d−1 (and
in this case there is nothing to prove), or each of the Pi admits d− 1 pairwise
different projections onto ∆d−1. Indeed if two of these projections were the
same, then we would be in the previous case. Suppose there exist d−1 pairwise
different projections. As d ≥ 4, Lemma 5.3.2 yields that each of the Pi is
a unimodular d-dimensional simplex. Without loss of generality we assume
P1 = ∆d. Given 2 ≤ i ≤ d, there exist d − 2 pairwise different projections
mapping P1 and Pi onto translates of ∆d−1. If d ≥ 5, by Lemma 5.3.4, we can
immediately deduce that, up to translations, P1 = P2 = . . . = Pd = ∆d. If
d = 4, Lemma 5.3.4 only ensures that P2, . . . , Pd are, up to translation and
coordinate permutation, contained in Pyrd−2(�2). This yields finitely many
cases and checking them computationally we find among them only 4-tuples
admitting a common projection onto ∆3.

(1) (P1, . . . , Pd) has exactly one exceptional (d− 1)-subtuple, which we can assume
to be [P ]d. As [P ]d is an exceptional (d − 1)-tuple, the Minkowski sum PId

belongs to a finite list of hollow d-dimensional polytopes. This means that
there are, up to equivalence, finitely many exceptional tuples to choose [P ]d
from. We now show, that given [P ]d there are finitely many possible choices for
Pd that lead to the d-tuple (P1, . . . , Pd) having exactly [P ]d as an exceptional
(d− 1)-subtuple, which shows the finiteness of this case.
Let therefore π1 : Rd → Rd−1 be a lattice projection mapping the lattice
polytopes in [P ]2 to translates of ∆d−1. Similarly, let π2 : Rd → Rd−1 be a
lattice projection mapping the lattice polytopes in [P ]1 to translates of ∆d−1.
The existence of such projections follows from the fact that [P ]2 and [P ]1 are
non-exceptional. We remark that there exist finitely many such projections.
Let Ci be the infinite prism Pi + kerπi, for i ∈ [2]. Then we know that any
possible choice of Pd is contained in (C1 + z1) ∩ (C2 + z2) for some z1, z2 ∈ Zd.
By Lemma 5.3.3, for any choices of lattice points z1, z2, z

′
1, z
′
2 ∈ Zd such that

dim((C1 + z1)∩ (C2 + z2)∩Zn) = dim((C1 + z′1)∩ (C2 + z′2)∩Zd) = d we find
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that (C1 + z′1) ∩ (C2 + z′2) is a translate of (C1 + z1) ∩ (C2 + z2). Therefore, up
to translations, all possible choices for Pd are contained in (C1 + z1)∩ (C2 + z2)
for fixed z1, z2 ∈ Zd. Note that the intersection (C1 + z1) ∩ (C2 + z2) is either
equivalent to ∆d or Pyrd−2(�2) by Lemma 5.3.2, where the choice of the
equivalence class depends entirely on [P ]d. This implies that Pd must be one
element of a finite list of lattice polytopes fully determined by [P ]d.

(2+) If (P1, . . . , Pd) has two or more exceptional (d − 1)-subtuples, then we can
suppose that [P ]d and [P ]d−1 are exceptional. In particular, there exists an
upper bound depending only on d for the volume of the Minkowski sums PId

and PId−1 and therefore (since d > 2) for the volume of P1 +Pi for any 2 ≤ i ≤ d.
Recall that, by Theorem 4.1.1, there are, up to equivalence, only finitely many
lattice polytopes of any fixed volume K ∈ Z≥0. Therefore, as in particular
the volume of P1 is bounded, there exist only finitely many choices for P1 up
to equivalence. Furthermore, fixing P1 determines, up to translation, finitely
many possibilities for each Pi with 2 ≤ i ≤ d due to the volume bound on
P1 + Pi. This yields that there are only finitely many tuples (P1, . . . , Pd) in
this case, up to equivalence.

Note, that the assumption d > 3 is only used in case (0) of the previous proof.
The unmixed result of Theorem 5.1.2 (3) also gives an explicit description of lattice

polytopes of degree one that are not Lawrence prisms, in fact, up to equivalence
and the lattice pyramid construction, there exists only one such exception over all
dimensions. Such an explicit description of the list of exceptions from the statement
of Theorem 5.2.3 is not known in dimension d ≥ 4.

Question 5.3.7. For dimension d ≥ 4, what are the tuples of d-dimensional lat-
tice polytopes (P1, . . . , Pd) ∈ P(Zd)d with md(P1, . . . , Pd) = 1 that are not mixed
Lawrence prisms? Is there a finite description over all dimensions as there is in the
unmixed case?

Our result actually allows for a few straightforward generalisations regarding the
number of lattice polytopes in a tuple. Recall that a k-tuple of lattice polytopes
(P1, . . . , Pk) ∈ P(Zd)k satisfies md(P1, . . . , Pk) ≤ 1 if and only if k ≥ d− 1 and the
Minkowski sum of each (d − 1)-subtuple is hollow. For k = d − 1 we obtain an
analogous result to Theorem 5.2.3 (even for d ∈ {2, 3}) immediately from [NZ11,
Theorem 1.2]. We remark that Theorem 5.2.3 also inductively extends to the case of
k > d as follows.

Remark 5.3.8. Fix d ≥ 4 and let (P1, . . . , Pd+m) ∈ P(Zd)d+m be a tuple full-
dimensional lattice polytopes with md(P1, . . . , Pd+m) = 1. Then, up to equivalence,
the (d+m)-tuple (P1, . . . , Pd+m) either belongs to a finite list of exceptions or there
is a lattice projection π : Rd → Rd−1 such that π(Pi) = ∆d−1 for all i ∈ [d+m].
One can see this with an induction argument on m, where the base case is given

by Theorem 5.2.3. Indeed, let (P1, . . . , Pd+m+1) ∈ P(Zd)d+m+1 be a tuple of d-
dimensional lattice polytopes with md(P1, . . . , Pd+m+1) = 1. One easily verifies that
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this implies that any (d+m)-subtuple of P1, . . . , Pd+m+1 has mixed degree at most 1.
Analogously to the proof of Theorem 5.2.3 one can distinguish three cases depending
on how many (d+m)-subtuples of (P1, . . . , Pd+m+1) do not admit a common lattice
projection onto translates of ∆d−1, and use the induction hypothesis.

5.4. The 3-dimensional case
This section is devoted to the proof of Theorem 5.2.4, giving a classification of triples
of d-dimensional lattice polytopes (P1, P2, P3) ∈ P(Z3)3 of mixed degree one. Note
that from the proof of Theorem 5.2.3 it follows that the number of such triples is
finite, if we assume at least one of the subpairs of (P1, P2, P3) to be exceptional. Here
we first classify, up to equivalence, these finitely many triples. In Proposition 5.4.8
we show that there are non-trivial infinite 1-parameter families of triples.

As an intermediate step towards the classification of triples of lattice polytopes
of mixed degree one with at least one exceptional subpair we calculate all (equiva-
lence classes of) exceptional pairs of 3-dimensional lattice polytopes. In order to do
that we consider the list of maximal hollow 3-dimensional lattice polytopes classi-
fied by Averkov–Wagner–Weismantel [AWW11] and Averkov–Krümpelmann–Weltge
[AKW17], and compute all subpolytopes of the maximal hollow lattice polytopes
that have lattice width greater than one.

Proposition 5.4.1 ([AKW17, Corollary 2]). Let P ∈ P(Z3) be a hollow full-
dimensional lattice polytope of width at least two. Then, up to equivalence, P is
contained either in the unbounded polyhedron 2∆2 × R or in one of 12 maximal
hollow lattice polytopes.

As we are interested in obtaining a list of exceptional pairs (P,Q) ∈ P(Z3)2 we
use an implementation in Magma in order to compute the decompositions of all
subpolytopes of the 12 maximal hollow polytopes into Minkowski sums of two 3-
dimensional lattice polytopes. Afterwards we determine those pairs that actually do
not admit a common projection onto translates of ∆2 and then determine equivalent
pairs using Theorem 2.3.1.

Corollary 5.4.2. There are, up to equivalence, 32 pairs of 3-dimensional lattice
polytopes whose Minkowski sum is hollow and that do not admit a common projection
onto translates of ∆2.

We use this classification in order to compute all triples of lattice polytopes
(P1, P2, P3) ∈ P(Z3)3 of mixed degree one with at least two exceptional subpairs as
follows.

Assume that (P1, P2) and (P1, P3) are exceptional pairs. Then there exist two pairs
(A,B) and (C,D) out of the 32 of Corollary 5.4.2 such that (A,B) is equivalent to
(P1, P2) and (C,D) is equivalent to (P1, P3). We can suppose that P1 is equal to A
and equivalent to C. Thus there exists an affine lattice-preserving transformation
ϕ mapping C to A = P1 such that the triple (P1, P2, P3) is equivalent to the triple
(A,B, ϕ(D)).
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This justifies the following algorithm to construct all the triples (P1, P2, P3) con-
taining at least two exceptional subpairs: we iterate over all the pairs of ordered pairs
(A,B) and (C,D) of Corollary 5.4.2, and, whenever there exists an affine lattice-
preserving transformation ϕ mapping C to A, check if the triple (A,B, ϕ(ψ(D)))
has mixed degree one, where ψ ranges among all the possible affine automorphisms
of C (and therefore ϕ ◦ ψ ranges among all affine lattice-preserving transformations
sending C to A). Equivalent triples can be removed using the criterion following from
Theorem 2.3.1. An implementation in Magma yields the following result proving
parts (i)-(ii) of Theorem 5.2.4.

Proposition 5.4.3. There are, up to equivalence, 170 triples of 3-dimensional lattice
polytopes of mixed degree one having two or three exceptional subpairs. In the first
case there are 29 triples, in the latter there are 141.

We now discuss the case of triples of lattice polytopes of mixed degree one having
exactly one exceptional subpair. Specifically, (P1, P2, P3) ∈ P(Z3)3 is a triple of 3-
dimensional lattice polytopes with md(P1, P2, P3) = 1 and (without loss of generality)
there are two different lattice projections π2 : R3 → R2 and π3 : R3 → R2 where πk
maps Pi and Pj to translates of ∆2 whenever i, j 6= k. In particular P1 is a lattice
polytope with two different lattice projections onto ∆2 (and therefore by Lemma 5.3.2
is equivalent either to ∆3 or to Pyr(�2)) and P2, P3 is an exceptional pair. Note
that P1 must be contained in both the infinite prisms C2 := P3 + kerπ2 + u and
C3 := P2 + kerπ3 + v, for some translation vectors u, v ∈ Z3.
In order to classify all such triples we use the fact that we may choose (P2, P3)

from the list of 32 exceptional pairs of Corollary 5.4.2. Given an exceptional pair
(P2, P3), we iterate over all the possible pairs of lattice projections (π3, π2), such
that π3(P2) and π2(P3) are unimodular triangles. Each such choice determines two
infinite prisms C3 := P2 + kerπ3 and C2 := P3 + kerπ2. We know that any lattice
polytope P1 ∈ P(Z3), such that π3(P1) and π2(P1) are translates of π3(P2) and
π2(P3) respectively, is contained in both the infinite prisms C2 := P3 + kerπ2 + u and
C3 := P2 + kerπ3 + v, for some translation vectors u, v ∈ Z3. Up to translation of P1
we may assume u = 0. By Lemma 5.3.3 it suffices to find one choice of v ∈ Z3 such
that C2 and C3 intersect in a full-dimensional lattice polytope, in order to determine
the inclusion-maximal choice for P1 up to translation. Furthermore, there are only
finitely many choices for v ∈ Z3 to check for the existence of a full-dimensional
intersection of C2 and C3 as we may suppose P2 and P3 to have a common vertex. This
is due to the fact that, if C2 and C3 intersect in a full-dimensional lattice polytope,
then one may translate P2 along kerπ3 and P3 along kerπ2 without changing the
infinite prisms. It therefore suffices to restrict to translation vectors v that map
a vertex of P2 to a vertex of P3. Thus we can determine, up to equivalence, all
inclusion-maximal P1 as above, form triples for all subpolytopes of P1 and remove
equivalent triples using Theorem 2.3.1. An implementation in Magma yields the
following result proving part (iii) of Theorem 5.2.4.

Proposition 5.4.4. There are, up to equivalence, 82 triples of 3-dimensional lattice
polytopes of mixed degree one having exactly one exceptional subpair.
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In the remaining part of this section we are going to deal with non-trivial triples
not having any exceptional subpair in order to prove part (iv) of Theorem 5.2.4.

Lemma 5.4.5. Let P1, P2, P3 ∈ P(Z3) be lattice polytopes, and π1, π2, π3 : R3 → R2

be lattice projections such that, for all i, j, k ∈ [3], the images πk(Pi) and πk(Pj) are
translates of ∆2 if and only if i, j 6= k. Let vi ∈ Z3 be the projection direction of
πi for i ∈ [3]. Then vi and vj are part of a lattice basis of Z3, for all i, j ∈ [3].
Moreover, if v1, v2, v3 linearly span R3, then they form a lattice basis of Z3.

Proof. For k ∈ [3] let Ck be the infinite prism πk(Pi) +Rvk, for some i 6= k. Note
that, up to translation, this does not depend on the choice of i as both Pi and
Pj are contained in different translates of Ck, whenever i, j 6= k. We now fix any
of the infinite prisms, say C1. For simplicity we suppose C1 = ({0} × ∆2) + Re1
and P2, P3 ⊂ C1. In this way we avoid dealing with translations. Note that v2 is
parallel to an edge of P3, and v3 is parallel to an edge of P2. Since both edges
are contained in C1, they project along e1 either to the same side of the triangle
π1(P2) = π1(P3) = ∆2, or to two adjacent sides. In the second case e1, v2 and v3
linearly span R3 and it is easy to verify that they form a lattice basis of Z3. In the
first case e1, v2 and v3 span a plane, and from Lemma 5.3.2 it follows that any two
of them are part of a lattice basis of Z3.

Proposition 5.4.6. There are, up to equivalence, 27 triples of 3-dimensional lattice
polytopes (P1, P2, P3) ∈ P(Z3) satisfying the hypothesis of Lemma 5.4.5 for projection
directions v1, v2, v3 ∈ Z3 that linearly span R3. All of them are, up to equivalence,
contained in one of the following three inclusion-maximal triples of mixed degree one:

• the maximal triple given by the following three reflections of Pyr(�2)
conv(0, e2, e3, e2 + e3, e1),
conv(0, e1, e3, e1 + e3, e2),
conv(0, e1, e2, e1 + e2, e3) = Pyr(�2),

• the maximal triple
conv(0, e1, e3, e1 + e2),
conv(0, e1, e3, e1 + e2, e1 + e3),
conv(0, e1, e2, e1 + e2, e3) = Pyr(�2),

• and the maximal triple
conv(e1, e2, e1 + e2, e2 + e3),
conv(e1, e2, e1 + e2, e1 + e3),
conv(0, e1, e2, e1 + e2, e3) = Pyr(�2).

Proof. By Lemma 5.4.5 we may assume v1, v2, v3 to be e1, e2, e3 respectively, and
that two primitive segments parallel to the directions e2 and e3 are contained in C1.
This restricts C1 to be, up to translation, one of the four infinite prisms of the form
conv(0,±e2,±e3)+Re1. In particular, up to translation, C1 is contained in the infinite
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prism conv(0, e2) + conv(0, e3) +Re1. Similarly, C2 ⊂ conv(0, e1) + conv(0, e3) +Re2
and C3 ⊂ conv(0, e1) + conv(0, e2) + Re3. In particular all the Pi are, up to
translations, subpolytopes of the unit cube�3 = conv(0, e1)+conv(0, e2)+conv(0, e3),
which leaves finitely many cases that we check computationally.

Remark 5.4.7. From the proof of Proposition 5.4.6 it is clear that all the maximal
triples from Proposition 5.4.6 are actually contained inside the triple consisting of
three copies of the unit cube �3. Note however that one has md(�3,�3,�3) > 1, as
the Minkowski sum �3 + �3 has an interior lattice point.

Proposition 5.4.8. There are infinitely many equivalence classes of triples of
3-dimensional lattice polytopes (P1, P2, P3) ∈ P(Z3)3 satisfying the hypothesis of
Lemma 5.4.5 for projection directions v1, v2, v3 ∈ Z3 that linearly span R2×{0}. All
of them, up to equivalence, are contained in one of the following triples of mixed
degree two given by the parallelepipeds Qk, Rk,�3 for some k ∈ Z≥0, where

Qk := conv(0, e1 − e2) + conv(0, e2) + conv(0, ke2 + e3),
Rk := conv(0, e2 − e1) + conv(0, e1) + conv(0, ke1 + e3),
�3 := conv(0, e1) + conv(0, e2) + conv(0, e3).

They can be covered by a finite number of 1-parameter families. In particular,
if we denote by ψk1 the shearing (x, y, z) 7→ (x, y + kz, z) and by ψk2 the shear-
ing (x, y, z) 7→ (x + kz, y, z), one may choose 1-parameter families of the form{
ψk1(P 0

1 ), ψk2(P 0
2 ), P3

}
k∈Z≥0

for all subpolytopes P 0
1 ⊂ Q0, P

0
2 ⊂ R0 and P3 ⊂ �3

satisfying md(P 0
1 , P

0
2 , P3) = 1.

Proof. By Lemma 5.4.5 we may assume v1, v2, v3 to be e1, e2, e1 − e2. Here, the
assumption v3 = e1 − e2 is justified by fact that both the pairs e1, v3 and e2, v3 need
to be part of a lattice basis of Z3, and the projection directions vi may be chosen
with arbitrary sign. By Lemma 5.3.2 the polytope P3, which projects onto ∆2 along
the directions e1 and e2, can be fixed to be in the unit cube �3. Consequently we
can assume C1, C2 to be in the infinite prisms �3 +Re1 and �3 +Re2, respectively.
Finally, we assume P1 and P2 to be in the infinite prisms C2 and C1, respectively.
Now consider the linear functional f defined by (x, y, z) 7→ x+ y. Consider a lattice
point v0 ∈ P1 ∩ (R2 × {0}) minimizing f . Since P1 projects onto ∆2 along the
direction e1 − e2, one verifies that for any other point u0 ∈ P1 ∩ (R2 × {0}) one has
f(v0) ≤ f(u0) ≤ f(v0) + 1. Analogously, if v1 is a lattice point in P1 ∩ (R2 × {1})
minimizing f , then f(v1) ≤ f(u1) ≤ f(v1) + 1 for all u1 ∈ P1 ∩ (R2 × {1}). Since
we are free to translate P1 along e2, we can suppose f(v0) = 0 and we denote
k = f(v1). As a consequence, P1 ∩ (R2 × {0}) is contained in the parallelogram
q0 := conv(0, e1 − e2) + conv(0, e2). Analogously P1 ∩ (R2 × {1}) is contained in the
parallelogram q1 := q0 + ke2 + e3. In particular P1 is contained in the parallelepiped
conv(q0 ∪ q1) = Qk. Therefore C3 is contained in the infinite prism Qk +R(e1 − e2).
This completely determines the parallelepiped Rk = C1 ∩ C3, satisfying Rk ⊃ P2. It
is easy to verify that the triple (Qk, Rk,�3) is equivalent to the triple (Q−k, R−k,�3),
so one can always assume k ∈ Z≥0.
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5.5. Outlook: exceptional tuples in general dimension

In order to see that the set of triples that are subtriples of (Qk, Rk,�3) for some
k ∈ Z≥0 can be covered by 1-parameter families as claimed it suffices to notice that
any subtriple of (Qk, Rk,�3) can be written as (ψk1(P 0

1 ), ψk2(P 0
2 ),�3) for subpolytopes

P 0
1 ⊂ Q0, P

0
2 ⊂ R0 and P3 ⊂ �3. The fact that any family

{
ψk1(P 0

1 ), ψk2(P 0
2 ), P3

}
k∈Z≥0

for subpolytopes P 0
1 ⊂ Q0, P

0
2 ⊂ R0 and P3 ⊂ �3 actually contains infinitely many

non-equivalent triples can be verified by picking edges E1 ⊂ P 0
1 , E2 ⊂ P 0

2 and
E3 ⊂ �3 between vertices on height 0 and 1, and noticing that the volume of the
parallelepiped ψk1(E1) + ψk2(E2) +E3 grows quadratically in k. An example of one of
these infinite 1-parameter families is given in Example 5.2.5.

A computer assisted search for mixed degree one triples in Qk, Rk,�3 for small
values of k shows that there are 51 non-equivalent triples when k = 0, and 36 for
larger values of k, where, for each k, the overlaps that occur for preceding values of
k are excluded.

5.5. Outlook: exceptional tuples in general dimension
Let us make some comments regarding the list of exceptions from Theorem 5.2.3
for d > 3. In these cases we have shown that this list is finite. In particular, there
exist no d-tuples analogous to type (iv) of Theorem 5.2.4. However, our approach
for obtaining the list in dimension 3 heavily relied on the non-trivial classification
of hollow lattice polytopes in dimension 3 by Averkov et al. (see Proposition 5.4.1).
For any d > 3 such a list is not known and it seems far out of reach to obtain
it. In order to make further progress it still seems helpful to have a structural
conjecture regarding Question 5.3.7. For this it is useful to introduce the definition
of md-maximality of a tuples.

Definition 5.5.1. We call a tuple (P1, . . . , Pd) ∈ P(Zd)d of full-dimensional lattice
polytopes md-maximal if for any tuple (Q1, . . . , Qd) ∈ P(Zd)d with (P1, . . . , Pd) 6=
(Q1, . . . , Qd) and Pi ⊆ Qi for all i ∈ [d] one has:

md(P1, . . . , Pd) < md(Q1, . . . , Qd).

Remark 5.5.2. Recall that the mixed degree is monotonous among full-dimensional
tuples and that the number of exceptional tuples of mixed degree one is finite for all
d > 3. This implies that every exceptional tuple of mixed degree one is contained in
an md-maximal tuple of degree one.

Let us give a short example that illustrates how restricting one’s view to md-
maximal tuples reduces the complexity of the classification task.

Example 5.5.3. Consider the tuple (Pyr(2∆2),Pyr(2∆2),Pyr(2∆2)) ∈ P(Z3)3. As
deg(Pyr(2∆2)) = 1 one has md(Pyr(2∆2),Pyr(2∆2),Pyr(2∆2)) = 1 and it is straight-
forward to verify that the tuple is no mixed Lawrence prism and therefore exceptional.
Furthermore, explicit computations show that (Pyr(2∆2),Pyr(2∆2),Pyr(2∆2)) is
md-maximal (see Corollary 5.5.4) and that it contains 249 non-equivalent exceptional
triples of mixed degree one (233 if we exclude the ones coming from the infinite
families of Proposition 5.4.8).
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5. Tuples of Lattice Polytopes of Mixed Degree One

Investigations of the 252 triples classified in Theorem 5.2.4 (i) –(iii) yield that
they can all be found as subtriples of six md-maximal ones. We have verified this
computationally by enumerating all subtriples of these six and finding all 252 triples
among them.

Corollary 5.5.4. All triples (P1, P2, P3) ∈ P(Z3)3 of full-dimensional lattice poly-
topes of mixed degree one that are of types (i) –(iii) from Theorem 5.2.4 are, up to
equivalence, contained in one of the following 6 maximal triples:

(a) the maximal triple Pyr(2∆2),Pyr(2∆2),Pyr(2∆2),

(b) the maximal triple 2∆3,∆3,∆3,

(c) the maximal triple {conv(0, 2ei, ej, ek) : i, j, k ∈ [3] pairwise different},

(d) the maximal triple

conv(e1, e2,−e2, e3, e1 + e3),
conv(0, e1,−e2,−e2 + e3),
conv(0, e1, e2, e2 + e3),

(e) the maximal triple

conv(0, 2e2, e3, e1 + e3),
conv(0,−e1,−e1 − e2,−e1 − 2e2 + e3),
conv(0, e2,−e1, e1 + e3),

(f) the maximal triple

conv(0, 2e2, e3, e1 + e3),
conv(0,−e1,−e1 − e2,−e1 − 2e2 + e3),
conv(0,−e2,−e1, e1 − 2e2 + e3).

The maximal triples (a) and (b) of Corollary 5.5.4 admit direct generalizations to
an arbitrary dimension d that are of mixed degree one. Furthermore, we have verified
that the straightforward generalization of the maximal family (c) to dimension d ≥ 4
does not yield a d-tuple of mixed degree one. This motivates the following more
explicit version of Question 5.3.7.

Question 5.5.5. Is there a natural number N , such that for each d ≥ N , every
md-maximal tuple of full dimensional lattice polytopes (P1, . . . , Pd) ∈ P(Zd)d with
md(P1, . . . , Pd) = 1 is equivalent either to (Pyrd−2(2∆2), . . . ,Pyrd−2(2∆2)) or to
(2∆d,∆d, . . . ,∆d)? Is this true for N = 4?
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6. Inequalities between Mixed
Volumes

In this chapter we treat the question of bounding the volume of the Minkowski
sum of a tuple of lattice polytopes in terms of its mixed volume. As our results
turn out to rely only on more general metric inequalities, the vast majority of this
chapter is phrased for tuples of general convex bodies. In Section 6.1 we illustrate
our initial motivation, and present our main results in Section 6.2. These are an
asymptotically sharp bound on the volume of the Minkowski sum in general dimension
(Theorem 6.2.1) and exact sharp bounds in dimensions 2 and 3 (Proposition 6.2.4
and Theorem 6.2.5). In Section 6.3 we introduce the notion of mixed volume
configurations, which is the fundamental concept for our proofs. Section 6.4 is
devoted to employing the Aleksandrov-Fenchel inequalities to prove an upper bound
for the volume of the Minkowski sum of a tuple of fixed mixed volume in general
dimension (Theorem 6.4.3). Furthermore, we show that the relations providing this
bound are best possible if we consider only the Aleksandrov-Fenchel inequalities
(Proposition 6.4.6). In Section 6.5 we use additional inequalities between mixed
volumes in order to obtain a stronger bound proving Theorem 6.2.1. Section 6.6 is
devoted to computationally proving Theorem 6.2.5 and, finally, in Section 6.7 we
present ideas for further research directions.

6.1. Motivation
The initial motivation for the studies that are presented in this chapter is very much
related to Chapter 4. Recall that Theorem 4.2.7 ensures the finiteness of the number
of irreducible d-tuples of lattice polytopes of a given mixed volume. The proof
of this theorem by Esterov relies on providing an upper bound on the volume of
the Minkowski sum P1 + · · ·+ Pd among all irreducible tuples of lattice polytopes
(P1, . . . , Pd) ∈ P(Zd)d with fixed mixed volume m = MV(P1, . . . , Pd). In particular,
Esterov [Est19] has shown that the volume of the Minkowski sum

Σ(P ) := P1 + · · ·+ Pd

has the asymptotic order at most O(m2d), as m→∞. This bound, however, seems
far from being sharp. Indeed, already in the course of showing this bound, Esterov
[Est19] raised the question of determining a sharper bound for the volume of Σ(P ).
The approach of Esterov was based on the fact that one can write the volume of the
Minkowski sum Vold(P1 + · · ·+ Pd) in terms of different mixed volumes as follows

Vold(Σ(P )) =
∑

i1,...,id∈{1,...,d}
MV(Pi1 , . . . , Pid). (6.1)
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6. Inequalities between Mixed Volumes

This boils the question for an upper bound of Vold(Σ(K)) down to bounding the
different values for MV(Pi1 , . . . , Pid), given that the value MV(P1, . . . , Pd) is fixed.

In this chapter we treat the question for a sharper bound for the case of tuples of
full-dimensional polytopes. While our motivation comes from the theory of Newton
polytopes, we do not exploit any combinatorial properties of lattice polytopes in this
chapter. In fact, our approach works in the more general context of convex bodies,
by which we mean compact convex sets that are full-dimensional. Therefore most of
this chapter is phrased in terms of convex bodies. As it is common in the theory
of Newton polytopes, we prefer to stick with the normalized (mixed) volume as in
the other parts of this thesis. We remark that any other rescaling of the Euclidean
volume would work just as well.

6.2. Results
The following is our main asymptotical result (see Theorem 6.5.10 for an explicit
bound and the proof).

Theorem 6.2.1. Let m ∈ R≥1. Among all convex bodies K1, . . . , Kd in Rd satisfying

Vold(K1) ≥ 1, . . . ,Vold(Kd) ≥ 1, and MV(K1, . . . , Kd) = m,

the maximum of Vold(K1 + · · ·+Kd) is of order O(md), as m→∞.

Remark 6.2.2. Consider a tuple of d copies of the same d-dimensional convex body
K1 = · · · = Kd with Vold(K1) = 1. Then one has MV(mK1, K2, . . . , Kd) = m and

Vold(mK1 +K2 + · · ·+Kd) = Vold((m+ d− 1)K1) = (m+ d− 1)d.

As (m + d − 1)d is of order O(md) one the bound provided in Theorem 6.2.1 is
asymptotically strict. Note that, if one restricts to d-tuples of full-dimensional lattice
polytopes, there exists a unique tuple of this form (up to equivalence), given by
(m∆d,∆d, . . . ,∆d).

Interpreting Theorem 6.2.1 in terms of the BKK-theorem allows to derive the
following corollary for generic system of polynomial equations.

Corollary 6.2.3. Let (f1, . . . , fd) ∈ C[P1, . . . , Pd] be generic Laurent polynomials
for a tuple of full-dimensional lattice polytopes (P1, . . . , Pd) and let m be the number
of solutions of the system f1 = · · · = fd = 0 in (C∗)d. Then the Newton polytope
of the product f1 · · · fd has volume at most O(md), as m → ∞. In particular, the
product f1 . . . fd contains at most O(md) monomials, as m→∞.

As a further contribution we present the exact bounds in dimensions 2 and 3.

Proposition 6.2.4. Let m ∈ R≥1. Consider 2-dimensional convex bodies K1, K2 in
R2 satisfying

Vold(K1) ≥ 1, Vold(K2) ≥ 1, and MV(K1, K2) = m.

Among all such bodies,
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6.3. Mixed volume configurations

1. the maximum of Vold(K1) is m2 and

2. the maximum of Vold(K1 +K2) is (m+ 1)2.

Both maxima are attained when K1 = mK2 and Vold(K2) = 1.

Theorem 6.2.5. Let m ∈ R≥1. Consider 3-dimensional convex bodies K1, K2, K3 ⊂
R3 satisfying

Vold(K1) ≥ 1, Vold(K2) ≥ 1, Vold(K3) ≥ 1, and MV(K1, K2, K3) = m.

Among all such bodies,

1. the maximum of Vold(K1) is m3,

2. the maximum of Vold(K1 +K2) is (m+ 1)3, and

3. the maximum of Vold(K1 +K2 +K3) is (m+ 2)3.

All three maxima are attained when K1 = mK2 = mK3 and Vold(K3) = 1.

Based on the above evidence and the asymptotic behavior of Vold(Σ(P )) presented
in Theorem 6.2.1, we propose the following conjecture.

Conjecture 6.2.6. Let m ∈ R≥1. Among all convex bodies K1, . . . , Kd in Rd

satisfying

Vold(K1) ≥ 1, . . . ,Vold(Kd) ≥ 1, and MV(K1, . . . , Kd) = m,

for any 1 ≤ ` ≤ d, the maximum of Vold(K1 + · · ·+K`) equals (m+ `− 1)d and is
attained when K1 = mK2 = · · · = mKd with Vold(Kd) = 1.

We know that the conjecture is true for ` = 1 (Remark 6.4.2) and for d ≤ 3
(Proposition 6.2.4 and Theorem 6.2.5). All other cases are open. Note that the
bounds in Conjecture 6.2.6 would be sharp as they are all attained for tuples as
presented in Remark 6.2.2.

6.3. Mixed volume configurations
Define the sets

∆n,d =
{

(x1, . . . , xn) ∈ Zn≥0 : x1 + · · ·+ xn = d
}
, (6.2)

for n, d ∈ Z≥1. Let R∆n,d be the set of all functions from ∆n,d to R. In what follows,
we have two points of view for the elements of R∆n,d . On one hand, R∆n,d is a vector
space over R and we can treat its elements as vectors of RN with N = |∆n,d|. On
the other hand, since ∆n,d is a subset of Rd, we can talk about elements of R∆n,d as
functions on ∆n,d which may or may not poses some discrete concavity properties.
Because of this, we will call the elements of R∆n,d functions or vectors depending on
the context.

85



6. Inequalities between Mixed Volumes

Let us denote by Kd the set of all convex bodies in Rd, that is compact convex
subsets of Rd which are full-dimensional, and let Kd,1 ⊂ Kd denote the subset of
those convex bodies, whose normalized volume is at least 1. Fix n > 0 and a family
K of compact convex sets in Rd, and consider an ordered n-tuple K = (K1, . . . , Kn)
of elements in K. It defines a collection of nd mixed volumes(

MV(Ki1 , . . . , Kid) : i1, . . . , id ∈ [n]
)
.

Since the mixed volume MV(Ki1 , . . . , Kid) is invariant under permutation of the
indices, we introduce an alternative notation

VK(p1, . . . , pn) = MV(K1, . . . , K1︸ ︷︷ ︸
p1

, . . . , Kn, . . . , Kn︸ ︷︷ ︸
pn

).

In this notation, the mixed volume configuration of an n-tuple K = (K1, . . . , Kn) is
the vector (

VK(p)
)
p∈∆n,d

∈ R∆n,d

≥0 . (6.3)

So any n-tuple of convex bodies in Rd defines a vector in R∆n,d

≥0 or, equivalently, a
function from ∆n,d to R≥0. For example, in the case d = 3, n = 2, the mixed volume
configuration of a pair K = (K1, K2) of 3-dimensional convex bodies consists of the
following four mixed volumes:

VK(3, 0) = MV(K1, K1, K1) = Vold(K1),
VK(2, 1) = MV(K1, K1, K2),
VK(1, 2) = MV(K1, K2, K2),
VK(0, 3) = MV(K2, K2, K2) = Vold(K2).

Furthermore, given a family of compact convex sets K, we define the mixed volume
configuration space

V(K,∆n,d) :=
{(

VK(p)
)
p∈∆n,d

: K ∈ Kn
}
, (6.4)

which represents all possible sets of values of the different mixed volumes indexed by
p ∈ ∆n,d built for convex sets from K. When all sets from K are full-dimensional, we
also introduce the logarithmic mixed volume configuration space

v(K,∆n,d) :=
{(

vK(p)
)
p∈∆n,d

: K ∈ Kn
}
, where vK(p) = log VK(p). (6.5)

It shows that the concrete base for the logarithm log is not important for our results.
We choose to set log := log2 as this makes some constants more compact to write
down.
The following is formula (6.1) in this new notation.
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6.3. Mixed volume configurations

Proposition 6.3.1. Let K ∈ (Kd)n. Then we have the following formula for the
volume of the Minkowski sum of the elements in K:

Vold(Σ(K)) =
∑

p∈∆n,d

(
d

p

)
VK(p), (6.6)

where
(
d
p

)
= d!

p1!···pn! denotes the multinomial coefficient for p = (p1, . . . , pn).

For our purposes it suffices to work in the special case of d-tuples K of convex
bodies in Rd. In this case, the mixed volume configuration VK is indexed by points
p ∈ ∆d,d. We denote by 1 ∈ ∆d,d the vector (1, . . . , 1).

Remark 6.3.2. Proposition 6.3.1 shows that the volume of the Minkowski sum can
be interpreted as a function on a mixed volume configuration space. In particular,
we can rephrase the problem of bounding the volume of the Minkowski sum among
all d-tuples of d-dimensional convex bodies (K1, . . . , Kd) with MV(K1, . . . , Kd) = m
and Vold(Ki) ≥ 1 for all i ∈ [d] as determining the value

max

 ∑
p∈∆d,d

(
d

p

)
w(p) : w ∈ V(Kd,1,∆d,d) and w(1) = m

 .
Recall the Aleksandrov-Fenchel inequalities from Proposition 1.2.2 (5.)) The

following is a reformulation of them in the notation of mixed volume configurations.

Theorem 6.3.3 (Aleksandrov-Fenchel Inequalities). Let i, j ∈ [d] with i 6= j and
p = (p1, . . . , pd) ∈ ∆d,d a point satisfying pi, pj ≥ 1. Then, for every d-tuple K of
d-dimensional convex bodies in Rd, one has

VK(p)2 ≥ VK(p+ ei − ej) VK(p− ei + ej). (AF)

Equivalently, in the log-notation, one has

2 vK(p) ≥ vK(p+ ei − ej) + vK(p− ei + ej). (log AF)

Recall that a sequence r0, r1 . . . , rn of non-negative real numbers is log-concave
if r2

i ≥ ri−1ri+1 holds for all 0 < i < n. Furthermore, a sequence r0, . . . , rn of
arbitrary real numbers is called concave if 2ri ≥ ri−1 + ri+1 for all 0 < i < n. In this
terminology, (AF) is the discrete log-concavity property of the function VK ∈ R∆d,d

along the direction ei − ej for every i, j ∈ [d] and i 6= j. Equivalently, (log AF)
describes the concavity of vK ∈ R∆d,d in the direction ei − ej. See also Fig. 6.1 for
an illustration in the case d = 3.

Concave and log-concave sequences are well studied in convex analysis and combi-
natorics. In Section 6.5 we will work with relations of the more general type

1
2ri−1 + 1

2ri+1 ≤ ri + C (6.7)

that depend on a constant C ≥ 0. We informally refer to inequalities of the form
(6.7) as weak concavity relations. In the following lemma we include basic properties
of sequences satisfying such weak concavity relations which mimic basic properties
of concave sequences.
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(0, 0, 3)

(0, 1, 2)

(0, 2, 1)

(0, 3, 0)

(1, 0, 2)

(1, 1, 1)

(1, 2, 0)

(2, 0, 1)

(2, 1, 0)

(3, 0, 0)

Figure 6.1.: Illustration of (log AF) for d = 3. Elements of R∆3,3 are real-valued
functions on the ten lattice points of the triangle with the vertices
3e1, 3e2, 3e3. The restriction of vK ∈ R∆3,3 to any of the red and any of
the cyan segments generates a concave sequence.

Lemma 6.3.4. Let r0, r1 . . . , rn be a sequence of non-negative real numbers satisfying
(6.7) for some constant C ≥ 0. Then

(i) 1
2ri−1 + 1

2rj+1 ≤
1
2ri + 1

2rj + (j − i+ 1)C for all 0 < i ≤ j < n,

(ii) n− 1
n

r0 + 1
n
rn ≤ r1 + (n− 1)C,

(iii) n− k
n

r0 + k

n
rn ≤ rk + k(n− k)C for all 1 ≤ k ≤ n.

Proof. (i) This follows by adding (and simplifying) the inequalities 1
2rk−1 + 1

2rk+1 ≤
rk + C for i ≤ k ≤ j.
(ii) For every 0 < i < n we have n−i

2 ri−1 + n−i
2 ri+1 ≤ (n− i)ri + (n− i)C. Adding

these inequalities and simplifying we obtain the required inequality.
(iii) We use induction on k. For k = 1 this is the statement of part (ii). Assume

n− k
n

r0 + k

n
rn ≤ rk + k(n− k)C.

Applying this to the sequence r1, . . . , rn we get
n− k − 1
n− 1 r1 + k

n− 1rn ≤ rk+1 + k(n− 1− k)C. (6.8)

Applying part (ii) to the sequence rk, . . . , rn we get
n− k − 1
n− k

rk + 1
n− k

rn ≤ rk+1 + (n− k − 1)C. (6.9)
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From part (i) we have
r0 + rk+1 ≤ r1 + rk + 2kC. (6.10)

Finally, multiplying (6.8) by n − 1, (6.9) by n − k, and (6.10) by n − k − 1 and
adding the results we obtain

(n− k − 1)r0 + (k + 1)rn ≤ nrk+1 + n(k + 1)(n− k − 1)C,

as required.

Remark 6.3.5. It is convenient to restate (iii) in Lemma 6.3.4 in a more symmetric
form:

k

k + l
rp−l + l

k + l
rp+k ≤ rp + klC, (6.11)

for any 0 ≤ l ≤ p and 0 ≤ k ≤ n− p.

6.4. The asymptotics derived from the
Aleksandrov-Fenchel inequalities

The goal of this section is to investigate the relations among mixed volumes that
follow from the Aleksandrov-Fenchel inequalities and to study the sharpness of such
relations.

6.4.1. Relations and bounds coming from Aleksandrov-Fenchel
inequalities

The following lemma shows how Aleksandrov-Fenchel inequalities yield certain higher-
order log-concavity relations on the function VK ∈ R∆d,d .

Lemma 6.4.1 (Concavity Relations from Aleksandrov-Fenchel). For n, k ∈ [d],
consider a “copy” of ∆n,k in ∆d,d given by

S = {c1ei1 + · · ·+ cnein + t : (c1, . . . , cn) ∈ ∆n,k} ,

where 1 ≤ i1 < · · · < in ≤ d and t ∈ Zd≥0 satisfies t1 + · · ·+ td = d− k. Denote the
vertices of conv(S) by bj = keij + t ∈ ∆d,d for j ∈ [n] . Then, for every K ∈ (Kd)d
and every p ∈ S, the mixed volume configuration VK satisfies the log-concavity
relation

VK(p)k ≥ VK(b1)c1 · · ·VK(bn)cn , (6.12)

where (c1, . . . , cn) ∈ ∆n,k is the unique vector satisfying kp = c1b1 + · · ·+ cnbn.

Proof. For the sake of readability we pass to proving an equivalent logarithmic
version of (6.12), that is, we show the inequality

vK(p) ≥ c1

k
vK(b1) + · · ·+ cn

k
vK(bn).
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We will prove the statement by induction on the number n of vertices of S. For
n = 2 the statement follows directly from Remark 6.3.5 together with Theorem 6.3.3.
Let n now be an arbitrary positive integer and assume without loss of generality
that the vertices of S are of the form bi = kei + t for all i ∈ [n]. We may assume that
p is an interior point of conv(S), as otherwise we can pass to the face of conv(S)
containing p and obtain the statement by induction. It is straightforward to verify
that the line p + R(e1 − e2) intersects the two facets F1 = conv(b2, . . . , bn) and
F2 = conv(b1, b3, . . . , bn) of conv(S) in lattice points a1, a2 in the relative interior of
F1 and F2, respectively. Then vK(p) = vK(a1 + τ(e1 − e2)) for some τ ∈ Z≥1 and,
by Theorem 6.3.3, the logarithmic mixed volumes

vK(a1), vK(a1 + (e1 − e2)), . . . , vK(a1 + τ(e1 − e2)), . . . , vK(a2)

form a concave sequence. By Remark 6.3.5, this implies

vK(p) ≥ σ1 vK(a1) + σ2 vK(a2), (6.13)

for unique rational positive numbers σ1, σ2 ∈ Q>0 with σ1+σ2 = 1 and p = σ1a1+σ2a2.
As a1 and a2 are lattice points in the relative interior of the facets F1 and F2,
respectively, one has

a1 = µ1
2b2 + µ1

3b3 + · · ·+ µ1
nbn, a2 = µ2

1b1 + µ2
3b3 + · · ·+ µ2

nbn,

for some positive rational numbers µ1
2, µ

1
3, . . . , µ

1
n, µ

2
1, µ

2
3, . . . , µ

2
n ∈ Q>0. By the

induction hypothesis this implies

vK(a1) ≥ µ1
2 vK(b2) + µ1

3 vK(b3) + · · ·+ µ1
n vK(bn),

vK(a2) ≥ µ2
1 vK(b1) + µ2

3 vK(b3) + · · ·+ µ2
n vK(bn).

Combining this with (6.13) one obtains

vK(p) ≥
(
σ2µ

2
1

)
vK(b1) +

(
σ1µ

1
2

)
vK(b2)

+
(
σ1µ

1
3 + σ2µ

2
3

)
vK(b3) + · · ·+

(
σ1µ

1
n + σ2µ

2
n

)
vK(bn).

By construction, the coefficients on the right hand-side satisfy

p =
(
σ2µ

2
1

)
b1 +

(
σ1µ

1
2

)
b2 +

(
σ1µ

1
3 + σ2µ

2
3

)
b3 + · · ·+

(
σ1µ

1
n + σ2µ

2
n

)
bn, (6.14)

which proves the claim as the barycentric coordinates of p with respect to the vertices
b1, . . . , bn are unique (in particular, all coefficients in (6.14) are integral multiples of
1
k
by construction of S).

Remark 6.4.2. The particular case of Lemma 6.4.1 when S = ∆d,d and p = 1
provides the following bound for the product of the volumes of the Ki:

VK(1)d ≥ Vold(K1) · · ·Vold(Kd).

This inequality can also be found in [Sch14, (7.64)]. In particular, we see that if all
Ki have volume at least 1 then Vold(Ki) ≤ VK(1)d for every i ∈ [d].
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u1
s

u2

v1 v2

v3

w

vK(w) ≥ 1
4 vK(v1) + 1

4 vK(v2) + 2
4 vK(v3)

vK(s) ≥ 4
5 vK(u1) + 1

5 vK(u2)

Figure 6.2.: Two examples of concavity relations of the type shown in Lemma 6.4.1.

The following is the main statement of this section which provides bounds that
the Aleksandrov-Fenchel relations yield for the mixed volume VK(p) for any p ∈ ∆d,d

when VK(1) is fixed.

Theorem 6.4.3 (Bounds from Aleksandrov-Fenchel inequalities). Let K ∈ (Kd,1)d
be a d-tuple of d-dimensional convex bodies of volume at least 1 and p ∈ ∆d,d. Then
it holds that:

vK(p) ≤ vK(1)
∏

i : pi>0
pi. (6.15)

Furthermore, given that VK(1) = m, one obtains the following bound:

Vold(Σ(K)) ≤ m3q2r

dd, (6.16)

where n = 3q + 2r with q ∈ Z and r ∈ {0, 1, 2}.

Proof. We prove (6.15) by inductively making use of Lemma 6.4.1. The induction is
over the number of zero entries of p which we denote by k. Let us without loss of
generality restrict to the case that p is decreasing, that is p1 ≥ · · · ≥ pd.
As k = 0 implies p = 1 the statement is trivially fulfilled in this case. Now let

k ∈ [d−1] be arbitrary. Assume p = (p1, . . . , pd−k, 0, . . . , 0) has exactly k zero entries
and assume that the statement is true for any vector with at most k − 1 zero entries.
Consider the vector

p′ = (1, p2, . . . , pd−k, 1, . . . , 1︸ ︷︷ ︸
p1−1 times

, 0, . . . , 0).

Clearly p′ has fewer zero entries than p and, therefore,

vK(p′) ≤ vK(1)
∏

i : p′i>0
p′i = vK(1) p2 · · · pd−k.
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6. Inequalities between Mixed Volumes

However, if one writes p′ as the barycenter of a suitable (p1−1)-simplex, Lemma 6.4.1
yields

vK(p′) ≥ 1
p1

vK(p1, p2, . . . , pd−k, 0, . . . , 0)

+ 1
p1

vK(0, p2, . . . , pd−k, p1, 0, . . . , 0)

+ 1
p1

vK(0, p2, . . . , pd−k, 0, p1, 0, . . . , 0)

+ · · ·

+ 1
p1

vK(0, p2, . . . , pd−k, 0, . . . , 0, p1, 0, . . . , 0).

In particular, vK(p) = vK(p1, . . . , pd−k, 0, . . . , 0) ≤ p1 vK(p′), as we assumed the
volumes of the Ki to be at least 1 and therefore all terms on the right hand-side of
the above inequality are non-negative. This proves (6.15).
We now proceed to using (6.15) in order to show the bound (6.16). Let r be the

remainder of the division of d by 3. Write n = 3q + 2r for unique integers q, r with
r ∈ {0, 1, 2}. We first show that the maximal value of ∏i : pi>0 pi =: g(p) is attained
at a point pmax with q entries equal to 3, r entries equal to 2, and the remaining
entries equal to 0.

Note first that 2bk/2c > k for all k ≥ 6. Therefore, for any point p ∈ ∆d,d with one
coordinate being k ≥ 6, we can construct another point p′ by replacing the entry
with value k with bk/2c entries with value 2 and obtain g(p′) > g(p). Similarly, any
entry with value 5 in p can be replaced by two entries with values 2 and 3 respectively
to increase the value of g. As also any entry with value 4 can be replaced by two
entries both with value 2 without changing the value of g, this shows that there
exists a point p maximizing g with pi ≤ 3 for all i ∈ [d]. If p has an entry with value
1, one can construct a point increasing the value of g by replacing 1, 3 with 2, 2, or
2, 1 with 3, or 1, 1 with 2. One of these replacements is always possible and therefore
a point p maximizing g can be chosen such that pi ∈ {0, 2, 3} for all i ∈ [d]. Finally
the observation that 2 · 2 · 2 < 3 · 3 shows that the maximum of g is actually attained
by pmax.
Combining this insight with Proposition 6.3.1 one obtains that, for any tuple

K ∈ (Kd,1)d, one has

Vold(Σ(K)) =
∑

p∈∆d,d

(
d

p

)
2vK(p) ≤

∑
p∈∆d,d

(
d

p

)
2vK(1)g(pmax) = ddmg(pmax),

where m = 2vK(1) = VK(1). This shows (6.16).

6.4.2. On the optimality of Theorem 6.4.3
This subsection is devoted to showing that Theorem 6.4.3 actually provides the
best bounds that one can get by using Aleksandrov-Fenchel inequalities in what we
call black-box style. In order to make this term precise we need to define the set of
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6.4. The asymptotics derived from the Aleksandrov-Fenchel inequalities

all positive-valued functions on ∆d,d that satisfy all linearized Aleksandrov-Fenchel
inequalities (log AF). A statement that is obtained in black-box style from the
Aleksandrov-Fenchel inequalities is a statement that holds for each function in this
set.

Definition 6.4.4. We define the Aleksandrov-Fenchel cone AFCd ⊂ R∆d,d as the
set of all v ∈ R∆d,d satisfying

v(p) ≥ 0 for all p ∈ {de1, . . . , ded}, and
2 v(p) ≥ v(p+ ei − ej) + v(p− ei + ej) for all p, p± (ei − ej) ∈ ∆d,d with i, j ∈ [d].

We also define the Aleksandrov-Fenchel polytope AFPd to be the following hyperplane
section of AFCd:

AFPd := {v ∈ AFCd : v(1) = 1} .

The Aleksandrov-Fenchel inequality implies

v(Kd,1,∆d,d) ⊆ AFCd .

Furthermore, for all d-tuples K ∈ (Kd,1)d with VK(1) = m, we have vK(1) = logm
and, hence, vK ∈ (logm) AFPd.

Remark 6.4.5. It is straightforward to verify that Theorem 6.4.3 and in particular
Lemma 6.4.1 are proven by iterated linear combination of inequalities (log AF). This
means that Theorem 6.4.3 actually proves relations and bounds that follow for a
function from being inside the polytope (logm) AFPd and is therefore obtained by
black-box application of the Aleksandrov-Fenchel inequalities.

The following proposition shows that Theorem 6.4.3 provides the best possible
bounds that can be deduced from Aleksandrov-Fenchel inequalities in a black-box
style.

Proposition 6.4.6. Let p∗ ∈ ∆d,d. Then

max
w∈AFPd

w(p∗) =
∏

i : p∗i>0
p∗i .

Proof. Let p∗ = (p∗1, . . . , p∗d). Without loss of generality, we can assume that the
entries of p are sorted in descending order. Let r ∈ [d] be the largest number
satisfying p∗r > 0.

The fact that ∏i : pi>0 pi = p1 · · · pr is an upper bound is true by Theorem 6.4.3. It
remains to confirm that this value is indeed the maximum. To this end, consider
w ∈ R∆d,d given by

w(p) = p1 · · · pr for p ∈ ∆d,d.

Under this assumption, we see that for the chosen w one has w(p∗) = ∏
i : p∗i>0 p

∗
i .

It remains to verify w ∈ AFPd. We need to show that w ∈ R∆d,d is discretely
concave in the directions ei − ej with i 6= j in the variables p = (p1, . . . , pd). The
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6. Inequalities between Mixed Volumes

function w is a product of some of the variables p1, . . . , pd. If neither pi nor pj occurs
in the product, w(p) is constant therefore concave in direction ei − ej. If exactly
one of the variables pi and pj occurs in the product, then the function is linear in
direction ei − ej. Now consider the case that both pi and pj occur in the product.
For simplicity, let i = 1 and j = 2, so

w(p) = p1p2u,

where u = ∏r
i=3 pi ≥ 0 is independent of p1 and p2 and so is constant when we change

p along the direction e1 − e2. Changing p along the direction e1 − e2 means, fixing
p ∈ ∆d,d, and considering the discrete function φ : {−p1, . . . , p2} → Z given by

φ(s) := w(p+ se1 − se2) = (p1 + s)(p2 − s)u.

If u = 0, φ is identically equal to 0. Otherwise it is immediately clear that φ
is concave, because it is given by an expression that defines a concave quadratic
polynomial.

6.5. An asymptotically sharp bound derived from
square inequalities

One of the main tools in proving the asymptotically sharp bound in Theorem 6.2.1
is the following inequality which expresses a log-concavity property of VK over a
“square” in ∆d,d whose edge directions are the standard directions ei − ej.

Lemma 6.5.1 (Square Inequalities). Let K ∈ (Kd)d be a d-tuple of d-dimensional
convex bodies. Let u1 = ei1 − ej and u2 = ei2 − ej for pairwise different i1, i2, j ∈ [d].
Then

VK(p) VK(p+ u1 + u2) ≤ 2 VK(p+ u1) VK(p+ u2),

for any p ∈ ∆d,d satisfying pj ≥ 2.

Proof. This result appears in [BGL18, Lemma 5.1]. For the sake of completeness
we outline a proof which also appears in the proof of [Sch14, Lemma 7.4.1]. For
simplicity we assume that u1 = e1 − e3, u2 = e2 − e3, and p+ u1 + u2 = 1. Then in
the standard notation the above statement becomes

MV(K1, K2, K
′) MV(K3, K3, K

′) ≤ 2 MV(K1, K3, K
′) MV(K2, K3, K

′), (6.17)

where K ′ denotes the (d − 2)-tuple (K3, . . . , Kd). Consider a family of d-tuples
of convex bodies (K1 + sK3, K2 + tK3, K

′) for positive real s, t. It follows by
the Aleksandrov-Fenchel inequality applied to this tuple that the quadratic form
At2 + 2Bst+ Cs2, where

A = MV(K1, K3, K
′)2 −MV(K1, K1, K

′) MV(K3, K3, K
′)

B = MV(K1, K2, K
′) MV(K3, K3, K

′)−MV(K1, K3, K
′) MV(K2, K3, K

′)
C = MV(K2, K3, K

′)2 −MV(K2, K2, K
′) MV(K3, K3, K

′)
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is non-negative for all positive s, t. Similarly, applying the Aleksandrov-Fenchel
inequality to the tuple (tK1 + sK2, K3, K

′) we see that the quadratic form At2 −
2Bst+Cs2 is non-negative for all positive s, t. This implies that the discriminant of
both forms must be non-positive, i.e. B2 ≤ AC. Ignoring the negative terms in A
and C, this produces:

(MV(K1, K2, K
′) MV(K3, K3, K

′)−MV(K1, K3, K
′) MV(K2, K3, K

′))2

≤ MV(K1, K3, K
′)2 MV(K2, K3, K

′)2.

Finally, taking the square root of both sides and rearranging, we obtain (6.17).

The square inequalities indeed give relations that do not follow as combinations of
Aleksandrov-Fenchel inequalities as the following shows.

Corollary 6.5.2. Let d ∈ Z≥3. There exist functions f : ∆d,d → R≥0 that satisfy all
Aleksandrov-Fenchel relations but that are not of the form VK for any K ∈ (Kd)d.

Proof. We will explicitly construct one such function f . Set f(1) = 3 and f(p) = 1
for all 1 6= p ∈ ∆d,d. It is easy to verify that f satisfies all Aleksandrov-Fenchel
relations. However, one has

3 = f(3, 0, 0, 1 . . . , 1)f(1, 1, 1, 1, . . . , 1) > 2f(2, 1, 0, 1 . . . , 1)f(2, 0, 1, 1, . . . , 1) = 2.

By Lemma 6.5.1, there exists no K ∈ (Kd)d that satisfies VK = f .

Remark 6.5.3. It may seem curious that the square inequalities yield relations
that do not follow from Aleksandrov-Fenchel inequalities in black-box style, while
the main tool in the proof of Lemma 6.5.1 is precisely the Aleksandrov-Fenchel
inequality. Note that when we apply Aleksandrov-Fenchel inequalities in a black-box
style we always derive relations between the values of the function VK ∈ R∆d,d

that hold for any fixed tuple of convex bodies K ∈ Kd. The proof of Lemma 6.5.1,
however, applies the Aleksandrov-Fenchel inequality to a whole family of tuples
(K1 + sK3, K2 + tK3, K

′). Therefore it implicitly uses relations between the values
of functions VK and VL for different convex bodies K,L ∈ Kd.

For our later purposes we need a slight generalization of Lemma 6.5.1 that can be
obtained by combining different square inequalities. It is convenient to introduce the
following notation. Consider a subset I ⊂ [d] and an element j ∈ [d] \ I. Denote

uI,j =
∑
i∈I

(ei − ej).

When I = {i} we write ui,j for u{i},j = ei − ej.

Lemma 6.5.4 (Generalized Square Inequalities). Let K ∈ (Kd)d be a d-tuple of
d-dimensional convex bodies. Let I ⊂ [d] and i, j ∈ [d] \ I. Then

VK(p) VK(p+ uI,j + ui,j) ≤ 2|I|VK(p+ uI,j) VK(p+ ui,j).

for any p ∈ ∆d,d satisfying pj > |I|.
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Proof. We will prove the statement by induction on |I|. Note that for |I| = 1 the
statement is given by Lemma 6.5.1. Assume |I| > 1. Pick k ∈ I and let I ′ = I \ {k}.
By the induction hypothesis

VK(p) VK(p+ uI′,j + ui,j) ≤ 2|I′|VK(p+ uI′,j) VK(p+ ui,j).

Applying Lemma 6.5.1 where we replace p by p+uI′,j and set u1 = ui,j and u2 = uk,j ,
we obtain

VK(p+ uI′,j) VK(p+ uI′,j + ui,j + uk,j) ≤ 2 VK(p+ uI′,j + ui,j) VK(p+ uI′,j + uk,j).

Multiplying the above two inequalities and noting that uI′,j + uk,j = uI,j we obtain
the claim.

The following lemma shows that the functions VK ∈ R∆d,d satisfy certain weak
log-concavity relations in any direction of the form uI,j for I ⊂ [d] and j ∈ [d] \ I.

Lemma 6.5.5. Let K ∈ (Kd)d be a d-tuple of d-dimensional convex bodies. Let
I ⊂ [d] and j ∈ [d] \ I. Then

VK(p+ kuI,j)
l

k+l VK(p− luI,j)
k

k+l ≤ 2kl(
|I|
2 ) VK(p)

for any k, l ∈ N and p ∈ ∆d,d satisfying p+ kuI,j, p− luI,j ∈ ∆d,d.

Proof. We will prove the special case of k = l = 1 and the general case follows from
(6.11) in Remark 6.3.5. The proof of the special case is again via induction on |I|.
For |I| = 1 we recover the Aleksandrov-Fenchel inequality.
Assume |I| > 1. Pick i ∈ I and let I ′ = I \ {i}. Then uI,j = ui,j + uI′,j. By the

induction hypothesis, replacing p by p+ ui,j, we have

VK(p+ ui,j + uI′,j)
1
2 VK(p+ ui,j − uI′,j)

1
2 ≤ 2(|I′|2 ) VK(p+ ui,j).

Furthermore, by the Aleksandrov-Fenchel inequality we have

VK(p+ ui,j − uI′,j)
1
2 VK(p− ui,j − uI′,j)

1
2 ≤ VK(p− uI′,j).

Finally, by Lemma 6.5.4, where we replace I by I ′ and p by p− uI′,j, we have

VK(p− uI′,j) VK(p+ ui,j) ≤ 2|I′|VK(p) VK(p+ ui,j − uI′,j).

It remains to multiply the three inequalities above and note that
(
|I′|
2

)
+|I ′| =

(
|I|
2

)
.

Our next result (Theorem 6.5.7) provides a method for bounding mixed volumes
in directions of the form ∑

i∈I ei −
∑
j∈J ej for some disjoint subsets I, J ⊂ [d] with

|I| = |J |. Similar to above we introduce special notation for such directions:

uI,J =
∑
i∈I

ei −
∑
j∈J

ej.

We will first illustrate the statement and the proof of Theorem 6.5.7 with an example.
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Example 6.5.6. Let K ∈ (K6,1)6 be a 6-tuple of 6-dimensional convex bodies of
volume at least 1. We will show that

vK(2, 2, 2, 0, 0, 0) ≤ 2 vK(1) + 6. (6.18)

First, by Lemma 6.4.1, in logarithmic notation we have
1
3 (vK(1, 1, 1, 3, 0, 0) + vK(1, 1, 1, 0, 3, 0) + vK(1, 1, 1, 0, 0, 3)) ≤ vK(1). (6.19)

The corresponding 2-simplex is depicted in blue in Figure 6.3. Now, for each of
the summands in the left hand side of (6.19), we use the weak log-concavity relations
in the directions (1, 1, 1,−3, 0, 0), (1, 1, 1, 0,−3, 0), and (1, 1, 1, 0, 0,−3) given by
Lemma 6.5.5 and obtain

1
2 vK(2, 2, 2, 0, 0, 0) + 1

2 vK(0, 0, 0, 6, 0, 0) ≤ 3 + vK(1, 1, 1, 3, 0, 0)
1
2 vK(2, 2, 2, 0, 0, 0) + 1

2 vK(0, 0, 0, 0, 6, 0) ≤ 3 + vK(1, 1, 1, 0, 3, 0)
1
2 vK(2, 2, 2, 0, 0, 0) + 1

2 vK(0, 0, 0, 0, 0, 6) ≤ 3 + vK(1, 1, 1, 0, 0, 3).

In Figure 6.3 these directions are shown in green. These inequalities, together
with (6.19), provide the bound (6.18), as vK(0, 0, 0, 6, 0, 0), vK(0, 0, 0, 0, 6, 0), and
vK(0, 0, 0, 0, 0, 6) are non-negative.

Theorem 6.5.7. Let K ∈ (Kd,1)d be a d-tuple of d-dimensional convex bodies of
volume at least 1. Let I, J ⊂ [d] be disjoint subsets with |I| = |J |. Then

vK(p+ uI,J) ≤ µ+ 1
µ

vK(p) + (µ+ 1)
(
bd/2c

2

)
,

for any p ∈ ∆d,d such that p± uI,J ∈ ∆d,d, where µ = min(pi : i ∈ I).

Proof. First we write p as the barycenter of a simplex with vertices bj = p− uJ\{j},j ,
for j ∈ J . Applying Lemma 6.4.1 we get

1
|J |

∑
j∈J

vK(p− uJ\{j},j) ≤ vK(p). (6.20)

In order to establish the required bound for vK(p+ uI,J) we estimate each summand
vK(p− uJ\{j},j) from below using the weak concavity relations along uI,j given by
Lemma 6.5.5. Indeed, applying Lemma 6.5.5 with p replaced by p − uJ\{j},j and
(k, l) = (1, µ), in the logarithmic notation we get

µ

µ+ 1 vK(p−uJ\{j},j+uI,j)+ 1
µ+ 1 vK(p−uJ\{j},j−µuI,j) ≤ µ

(
|I|
2

)
+vK(p−uJ\{j},j).

Note that −uJ\{j},j + uI,j = uI,J . Also, since we assumed that the Ki have volume
at least 1, the second term in the left-hand side is non-negative and, hence, can be
dropped. We thus obtain

µ

µ+ 1 vK(p+ uI,J)− µ
(
|I|
2

)
≤ vK(p− uJ\{j},j).
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Figure 6.3.: Bounding vK(2, 2, 2, 0, 0, 0) in terms of vK(1, 1, 1, 1, 1, 1). We use the
fact that all points that we draw live inside the 3-dimensional slice
{p ∈ ∆6,6 : p1 = p2 = p3} of the 5-dimensional simplex ∆6,6.
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Plugging these estimates into (6.20) yields

vK(p+ uI,J) ≤ µ+ 1
µ

vK(p) + (µ+ 1)
(
|I|
2

)
.

Finally, using |I| ≤ bd/2c we get the claim.

Remark 6.5.8. One may be led to think that functions VK satisfy certain weak
log-concavity relations in any direction uI,J . Indeed, the bound of Theorem 6.5.7 is
exactly what one would get from relations of the form

µ

µ+ 1 vK(p+ uI,J) + 1
µ+ 1 vK(p− uI,J) ≤ vK(p) + C.

for C =
(
|I|
2

)
. In Proposition 6.5.9 below we show that for |I| = |J | = 2 we indeed

almost have such relations but for a slightly larger constant C = 2. However,
according to our computations, for |I| = |J | > 2 our methods cannot show such
weak concavity relations along uI,J anymore no matter the constant C.

Proposition 6.5.9. Let K ∈ (Kd)d be a d-tuple of d-dimensional convex bodies and
I, J disjoint subsets of [d] with |I| = |J | = 2. Then

VK(p+ uI,J) VK(p− uI,J) ≤ 24 VK(p)2,

for any p ∈ ∆d,d satisfying p± uI,J ∈ ∆d,d.

Proof. For simplicity, we assume I = {1, 2}, J = {3, 4}. Applying Lemma 6.5.1 with
p replaced by p− e1 + e3 and u1 = e1 − e3, u2 = e2 − e3 we get

VK(p− e1 + e3) VK(p+ e2 − e3) ≤ 2 VK(p) VK(p− e1 + e2).

Next, applying Lemma 6.5.1 with p replaced by p+ e1 + e2− e3− e4 and u1 = e3− e1,
u2 = e4 − e1 we get

VK(p+ e1 + e2 − e3 − e4) VK(p− e1 + e2) ≤ 2 VK(p+ e2 − e4) VK(p+ e2 − e3).

Multiplying the above inequalities we obtain

VK(p+ e1 + e2 − e3 − e4) VK(p− e1 + e3) ≤ 4 VK(p) VK(p+ e2 − e4).

Similarly, switching the indices 1↔ 4 and 2↔ 3, we obtain

VK(p− e1 − e2 + e3 + e4) VK(p− e4 + e2) ≤ 4 VK(p) VK(p+ e3 − e1).

Finally, the product of the last two inequalities provides the result.

The following is our key result regarding bounds on mixed volumes in general
dimension.
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Theorem 6.5.10. Let K ∈ (Kd,1)d be a d-tuple of d-dimensional convex bodies of
volume at least 1 and p ∈ ∆d,d. Then one has:

vK(p) ≤ max(p)
(

vK(1) + (max(p)− 1)
(
bd/2c

2

))
, (6.21)

Consequently,

vK(p) ≤ max(p) vK(1) + C(d),

where C(d) is a constant only depending on the dimension d.
Furthermore, given that VK(1) = m, one obtains the following bound:

Vold(Σ(K)) ≤ 2d(d−1)(bd/2c
2 )ddmd. (6.22)

In particular, the maximum of Vold(Σ(K)) is of order O(md).

Proof. We will show that there is a sequence of inequalities of the type shown in
Theorem 6.5.7 that yields (6.21). Let us, without loss of generality, assume that p is
a decreasing vector, that is p1 ≥ · · · ≥ pd. Hence max(p) = p1.
Let us define the set of admissible vectors Sp at a point p ∈ ∆d,d to be

Sp :=
{ n∑
i=1

ei −
l+n∑
j=l+1

ej for l ≥ n ≥ 1, l + n ≤ d and n satisfying p1 = · · · = pn

}
.

We claim that there is a sequence of decreasing vectors a1, . . . , ap1 ∈ ∆d,d starting at
a1 = 1 and ending at ap1 = p such that ai+1 − ai ∈ Sai

for 1 ≤ i < p1 and, hence,
max(ai) = i for all 1 ≤ i ≤ p1. We call such a sequence an admissible path from 1
to p. The existence of such a path can be easily seen by induction on p1. If p1 = 1
then p = 1 and there is nothing to show, so let p1 ≥ 2. Let n be the maximal index
satisfying pn = p1 and l be the maximal index satisfying pl > 0. Consider the vector

p′ = (p1 − 1, . . . , pn − 1, pn+1, . . . , pl, 1, . . . , 1︸ ︷︷ ︸
n times

, 0, . . . , 0).

One can check that p′ ∈ ∆d,d exists and is decreasing by construction. By the
induction hypothesis there is an admissible path from 1 to p′ of length p1 − 1.
Moreover, p− p′ ∈ Sp′ , and therefore there exists an admissible path from 1 to p of
length p1.

Let us now show how the existence of such an admissible path implies (6.21). Let
ai+1 and ai be two terms in an admissible path from 1 to p. By Theorem 6.5.7 we
have

vK(ai+1) ≤ µ+ 1
µ

vK(ai) + (µ+ 1)
(
bd/2c

2

)
,

where µ is the minimum of those entries of ai which increase when we pass to ai+1.
But all these entries are equal to i by the construction of the admissible sequence.
Hence, we can write

vK(ai+1) ≤ i+ 1
i

vK(ai) + (i+ 1)
(
bd/2c

2

)
.
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6.5. An asymptotically sharp bound derived from square inequalities

Figure 6.4.: Admissible paths from 1 ∈ ∆6,6 to any decreasing point p ∈ ∆6,6.

Applying this repeatedly we obtain

vK(p) ≤
(2

1

)(3
2

)
· · ·

(
p1

p1 − 1

)
vK(1) + p1(p1 − 1)

(
bd/2c

2

)

= p1 vK(1) + p1(p1 − 1)
(
bd/2c

2

)
,

which concludes the proof of (6.21). The inequality using a constant C(d) only
depending on the dimension d follows directly from (6.21) and the observation that
max(p) is bounded by d.

Assume now VK(1) = m. Combining Proposition 6.3.1 with the observation that
the maximum of the bounds from (6.21) is attained e.g. at p = (d, 0, . . . , 0), one
obtains

Vold(Σ(K)) =
∑

p∈∆d,d

(
d

p

)
2vK(p) ≤

∑
p∈∆d,d

(
d

p

)
2vK(d,0,...,0) = dd2vK(d,0,...,0).

Explicitly plugging in the bound from (6.21) for vK(d, 0, . . . , 0) yields (6.22).

Remark 6.5.11. Note that the bound from Theorem 6.5.10 shows that, for any
p ∈ ∆d,d, the maximum of VK(p) among all d-tuples (Kd,1)d of d-dimensional convex
bodies of volume at least 1 that satisfy VK(1) = m is of order O(mmax(p)) as m→∞.
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6. Inequalities between Mixed Volumes

To see that the order of this bound is sharp, fix p ∈ ∆d,d and let i ∈ [d] be an
index satisfying pi = max(p). Then any tuple K ∈ (Kd,1)d of the form Ki = mA
and Kj = A for every j ∈ [d] \ {i} for a convex body A with Vold(A) = 1 yields
VK(1) = m, while VK(p) = mpi = mmax(p).

6.6. Confirmation of Conjecture 6.2.6 in dimension 3
In this section we use a computer-assisted approach to prove Theorem 6.2.5, which
establishes Conjecture 6.2.6 in dimension 3. The high level description of the approach
is as follows. In the setting of Conjecture 6.2.6, we know that vK ∈ (logm) AFPd. So
we calculate the vertices of the Aleksandrov-Fenchel polytope AFP3 using a computer.
Since Vold(K1 + · · · + K`) is a linear combination of mixed volumes, we conclude
that Vold(K1 + · · ·+K`) = F (vK), where F is an explicitly given convex function.
Since F is convex, the maximum of F on (logm) AFP3 is attained at the vertices
of (logm) AFP3. The values of F at the vertices of (logm) AFP3 are functions of m
given by rather simple algebraic expressions. It turns out that one can bound all
such expressions from above by (m+ `− 1)3 for m ∈ R≥1.
While the Aleksandrov-Fenchel polytope has rather many vertices (there are 24

vertices in total), the amount of algebraic computations that we need to carry out
can be significantly reduced by taking into account the symmetries. On R∆3,3 we
introduce the action of the symmetric group S3 on three elements. We introduce the
action of S3 on R∆3,3 by defining σv as

(σv)(p1, p2, p3) = v(pσ(1), pσ(2), pσ(3))

for σ ∈ S3 and v ∈ R∆3,3 . It is clear that AFP3 is invariant under the action of S3
on R∆3,3 , which means that σv ∈ AFP3 holds for all σ ∈ S3 and all v ∈ AFP3.

In the following proposition, we use ep with p ∈ ∆d,d to denote the standard basis
vectors of R∆d,d . This means, ep(q) ∈ {0, 1} with ep(q) = 1 if and only if p = q.

Proposition 6.6.1 (Vertices of AFP3). The polytope AFP3 has 24 vertices, which
are split into 7 orbits under the action of S3 on AFP3, with the orbits generated by
the following seven vertices

v1 =e(1,1,1),

v2 =2e(2,1,0) + e(1,2,0) + e(1,1,1),

v3 =2e(2,1,0) + 2e(1,2,0) + e(1,1,1),

v4 =2e(2,1,0) + e(1,2,0) + 1
2e(2,0,1) + e(1,0,2) + e(1,1,1),

v5 =2e(2,1,0) + e(1,2,0) + 2e(2,0,1) + e(1,0,2) + e(1,1,1),

v6 =2e(2,1,0) + e(1,2,0) + 2e(2,0,1) + e(1,0,2) + 3e(3,0,0) + e(1,1,1),

v7 =2
3e(2,1,0) + 4

3e(1,2,0) + 4
3e(2,0,1) + 2

3e(1,0,2) + 2
3e(0,2,1) + 4

3e(0,1,2) + e(1,1,1).

Proof. We use SageMath [Sag18] to determine the vertices of AFP3, given by a system
of linear inequalities. SageMath is one of the many possibilities to do computations
with polytopes over the field of rational numbers.
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Figure 6.5.: Illustration to Proposition 6.6.1. The Aleksandrov-Fenchel polytope
AFP3 has 24 vertices that are split into 7 orbits under the action of
S3. The diagrams present the coordinates vi(p) of the seven vertices
v1, . . . , v7.
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Proof of Theorem 6.2.5. For all three assertions, the equality case is verified in a
straightforward way. We prove the respective inequalities.

By Remark 6.4.2, Vold(K1) ≤ m3, so (1) follows. For the verification of assertions
(2) and (3), we use Proposition 6.6.1. We fix the standard component-wise partial
order ≤ on R∆3,3 , that is, v ≤ w if and only if v(p) ≤ w(p) holds for every p ∈ ∆3,3.
It is clear that the vertices v1, . . . , v6 of AFP3 are related by

v1 ≤ v2 ≤ v3 (6.23)
v4 ≤ v5 ≤ v6 (6.24)

For (2) we have

Vold(K1 +K2) =
3∑
i=0

(
3
i

)
VK(i, 3− i, 0) =

3∑
i=0

(
3
i

)
2vK(i,3−i,0),

where vK ∈ (logm) AFP3. Changing the base from 2 to m, we see that Vold(K1 +K2)
is bounded by the maximum of the function gm : R∆3,3 → R

gm(v) := mv(3,0,0) + 3mv(2,1,0) + 3mv(1,2,0) +mv(0,3,0)

over v ∈ AFP3. The function gm(v) is convex so that the maximum is attained at
one of the vertices of AFP3. By Proposition 6.6.1, the vertices of AFP3 have the form
σvi with σ ∈ S3 and i ∈ {1, . . . , 7}. Taking into account (6.23) and (6.24), it follows
that it is enough to check the cases i ∈ {3, 6, 7}. First, we detect the maximum of
gm in the orbits generated by v3, v6 and v7. It is straightforward to check that

φ3(m) := max
σ∈S3

fm(σv3) = 2 + 6m2,

φ6(m) := max
σ∈S3

fm(σv6) = 1 + 3m+ 3m2 +m3 = (m+ 1)3

φ7(m) := max
σ∈S3

fm(σv7) = 2 + 3m2/3 + 3m4/3.

Clearly, φ7(m) ≤ φ3(m) ≤ φ6(m), where φ3(m) ≤ φ6(m) holds since φ6(m)−φ3(m) =
(m− 1)3. Thus, (m+ 1)3 is an upper bound for Vold(K1 +K2).

Similarly, for (3) we have

Vold(K1 +K2 +K3) =
∑

p∈∆3,3

(
3
p

)
VK(p) =

∑
p∈∆3,3

(
3
p

)
2vK(p),

where vK ∈ (logm) AFP3. To obtain the desired upper bound for Vold(K1 +K2 +K3)
we maximize the function fm : R∆3,3 → R

fm(v) :=
∑

p∈∆3,3

(
3
p

)
mv(p)

over v ∈ AFP3. Again, the function fm is convex and so its maximum is necessarily
attained in one of the vertices of AFP3. On the other hand, it is clear that the function
is invariant under the action of S3 on AFP3, as one clearly has fm(σv) = fm(v)
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for every v ∈ AFP3 and σ ∈ S3. It follows that it is enough to compare the
values of fm on the vertices v1, . . . , v7 from Proposition 6.6.1. That means v ≤ w
implies fm(v) ≤ fm(w) for all v,w ∈ R∆3,3 . The latter property follows from the
assumption m ≥ 1 and the non-negativity of multinomial coefficients. In view
of (6.23) and (6.24) it suffices to compare fm(v3), fm(v6) and fm(v7). The non-
negativity of fm(v6) − fm(v3) for m ≥ 1 can be phrased as the non-negativity of
fm+1(v6)−fm+1(v3) for m ≥ 0. It turns out that fm+1(v6)−fm+1(v3) is a polynomial
in m all of whose coefficients are non-negative. Hence fm+1(v6)− fm+1(v3) ≥ 0 holds
for every m ≥ 0, which implies fm(v6)− fm(v3) ≥ 0 for m ≥ 1.

Comparing fm(v7) to fm(v6) can be carried out in a similar fashion, but note that
v7 is a fractional point. We can still reduce the verification to the polynomial setting
by noticing that 3v7 is an integral point. The validity of fm(v6) ≥ fm(v7) for allm ≥ 1
can be rephrased as the inequality f(m+1)3(v6)− f(m+1)3(v7) ≥ 0 for all m ≥ 0. The
latter is true since f(m+1)3(v6)− f(m+1)3(v7) is a polynomial all of whose coefficients
are non-negative. Summarizing, we conclude that fm(v6) = (m+ 2)3 is the maximum
of fm(v) for v ∈ AFP3 and, hence, an upper bound on Vold(K1 +K2 +K3).

6.7. Outlook
Bounds for irreducible tuples of lattice polytopes
While we have concentrated on bounding the volume of the Minkowski sum of a tuple
of convex bodies, which in particular are full-dimensional, the bound that Esterov
has shown in [Est19] is phrased for general irreducible tuples of lattice polytopes.
It would be interesting to derive a stricter upper bound also for irreducible tuples
of lattice polytopes. Note that one would have to modify our approach to do so.
Consider for example an irreducible triple of lattice polytopes (P1, P2, P3) ∈ P(Z3)3,
where dim(P1) = dim(P2) = 2 and dim(P3) = 3. Then Vold(P1) = Vold(P2) = 0 and
the Aleksandrov-Fenchel inequality

MV(P1, P2, P3)2 ≥ Vold(P1) Vold(P2) Vold(P3)

does not yield any bound on Vold(P3). So, while we know that there exists an upper
bound on Vold(P3) in terms of MV(P1, P2, P3), we cannot use the same paths of
inequalities as in our proofs in general.

Tuples maximizing the volume of the Minkowski sum
The following proposition reduces Conjecture 6.2.6 to a more specific situation by
showing that one may assume the maximizers to have a specific structure.

Proposition 6.7.1. Let m ∈ R≥1 and let ` ∈ [d]. Consider a tuple K = (K1, . . . , Kd)
of convex bodies satisfying

Vold(K1) ≥ 1, . . . ,Vold(Kd) ≥ 1, and MV(K1, . . . , Kd) = m

and maximizing Vold(K1 + · · ·+K`). Then
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1. For each such optimal tuple, Vold(Ki) = 1 holds for all except possibly one
choice of i ∈ [`], and for every i > `.

2. For ` ≤ d− 1, there exists an optimal tuple that satisfies K`+1 = · · · = Kd.

Proof. (1) If αi = Vold(Ki)1/d > 1 holds for some i > ` then the tuple is not optimal
since changing K1 to αiK1 and Ki to 1

αi
Ki we obtain a new tuple K ′ = (K ′1, . . . , K ′d)

of mixed volume m with Vold(K ′1 + · · ·+K ′`) > Vold(K1 + · · ·+K`).
Now, assume that ` ≥ 2 and that for at least two choices of i ∈ [`] one has

Vold(Ki) > 1. We can assume Vold(K1) > 1 and Vold(K2) > 1. We consider the tuple
(1
t
K1, tK2, K3, . . . , Kd), depending on t > 0. Clearly, MV(1

t
K1, tK2, K3, . . . , Kd) =

MV(K1, . . . , Kd). Furthermore, the function f : R>0 → R>0 given by f(t) =
Vold(1

t
K1 + tK2 +K3 + · · ·+K`) is a strictly convex function. This can be seen by

writing f(t) as a non-negative linear combination of functions tp, which are strictly
convex for every p ∈ Z\{0, 1}. For ε > 0 small enough and every t ∈ [1−ε, 1+ε], the
volumes of 1

t
K1 and tK2 are at least one. Since f(t) is strictly convex, its maximum

on [1− ε, 1 + ε] is attained at the boundary and is strictly larger than f(1). This
contradicts the optimality of the tuple K and shows that Vold(Ki) = 1 for all except
possible one choice of i ∈ [`].
(2) In view of Lemma 6.4.1,

m = MV(K1, . . . , Kd) ≥
d∏

i=`+1
MV(K1, . . . , K`, Ki, . . . , Ki)

1
d−`

≥ min
i∈{`+1,...,d}

MV(K1, . . . , K`, Ki, . . . , Ki) =: m′.

So, taking the i for which the above minimum is attained and replacing the tuple
(K1, . . . , Kd) by the tuple ( m

m′
K1, K2, . . . , K`, Ki, . . . , Ki), we keep the mixed volume

of the tuple unchanged without decreasing the volume of the Minkowski sum of its
first ` bodies (as m

m′
≥ 1).

The quest for tight inequalities and a complete description.
The work on the problem of bounding Vold(Σ(K)) has taught us that the current
knowledge of the relations between mixed volumes is still rather limited and the
literature might miss some important inequalities beyond the classical ones. Such
new inequalities would probably be of interest to a broader community of experts,
including researchers interested in metric aspects of convex sets, as well as researchers
working on combinatorial aspects of algebraic geometry. The problem of describing
the relationship between mixed volumes goes back to the 1960 work [She60] of
Shephard (see also Problems 6.1 in [Gru07, p. 109] for a similar problem for the
so-called Quermassintegrals). In [She60] Shephard provided a complete description
of mixed volume configurations for two d-dimensional convex bodies.

Theorem 6.7.2 (Shephard [She60, Thm. 4]). The mixed-volume configuration space
V(Kd,∆2,d) is the set of all V ∈ R∆2,d

>0 that satisfy the Aleksandrov-Fenchel inequalities

V(i, d− i)2 ≥ V(i+ 1, d− i− 1) V(i− 1, d− i+ 1) ∀i ∈ [d− 1].
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Equivalently, the logarithmic mixed volume configuration space v(Kd,∆2,d) is a poly-
hedral cone, described by the linearized Aleksandrov-Fenchel inequalities

2 v(i, d− i) ≥ v(i+ 1, d− i− 1) + v(i− 1, d− i+ 1) ∀i ∈ [d− 1].

A refined version of Theorem 6.7.2 can be found in [HHCS12, Lemma 2.1]. This
brings us to the following natural question about mixed volume configuration spaces
in general.

Problem 6.7.3. Let n, d ∈ Z≥2 and let K be the family of all compact convex sets
in Rd. Is V(K,∆n,d) a semialgebraic set? That is, can V(K,∆n,d) be described by a
boolean combination of polynomial inequalities?

Problem 6.7.3 is open for all choices of n and d except for the case n = 2, covered
by Theorem 6.7.2, and the case (n, d) = (3, 2), solved by Heine [Hei38].
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A. Enumeration data for dimension 3
We present the complete list of maximal irreducible triples of lattice polytopes with
mixed volume at most 4. We omit explicitly writing down triples of the form (P, P, P )
for a lattice polytope P ∈ P(Z3), that is, triples of type (0) of Theorem 4.3.5. Instead,
we present lists of full-dimensional lattice polytopes P ∈ P(Z3) of normalized volume
up to 4. The lists of full-dimensional R-maximal triples are further subdivided into
the types (1)–(3) as in Theorem 4.3.5.
The layout of the figures of polytopes is explained in Fig. A.1.

e1

e2

e3

x

y

z

(0, 0, 0) (2, 0, 0)

(2, 0, 1)

(2, 1, 0)

Figure A.1.: An example explaining how polytopes in R3 are visualized in our figures.
The x-axis is directed to the right, the y-axis is directed upwards and the
z-axis is directed towards the observer. Each figure depicts appropriately
chosen planes orthogonal to the coordinate axes and the orthogonal
projections of the polytope onto these planes. In this figure, the planes
are given by equations x = −1, y = −1 and z = −1.

We present each polytope as the Minkowski sum of indecomposable lattice poly-
topes. These representations have been obtained using Magma [BCP97].
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A. Enumeration data for dimension 3

Volume 1

1. x

y

z
conv(0, e1, e2, e3)

Volume 2

1. x

y

z
conv(0, 2e1, e1 + e2, e1 + e3)

2. x

y

z
conv(0, e1, 2e1 − e3, e1 − e3, e1 +

e2 − e3)

3.
x

y

z
conv(0, e1, e3, e1 + 2e2 + e3)

Volume 3

1. x

y

z
conv(0, 2e1, 3e1 − e3, 2e1 − e3, 2e1 +

e2 − e3)

2. x

y

z
conv(0, 2e1 − e3, 2e1 − e2, 3e1 −

e2 − e3, 2e1 − e2 − e3)
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3.
x

y

z
conv(0, 2e1+e2, e1+2e2, e1+e2+e3)

4.
x

y

z
conv(0, e1, e3, e1 + 3e2 + e3)

5. x

y

z
conv(0, e1−e3, e2−e3)+conv(0, e1)

6. x

y

z
conv(0, 3e1, 2e1 + e2, 2e1 + e3)

Volume 4

1. x

y

z
conv(0, 3e1, 4e1 − e3, 3e1 − e3, 3e1 +

e2 − e3)

2. x

y

z
conv(0, e1 − e3, 2e1 + e2 − e3, e1 +

e2 − e3) + conv(0, e1)

3.

x

y

z
conv(0, e1, e3, e1 + 4e2 + e3)

4. x

y

z
conv(0, 2e1, 3e1 +e2, e1 +e2, e1 +e3)
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A. Enumeration data for dimension 3

5. x

y

z
conv(0, 3e1 − e3, 3e1 − e2, 4e1 −

e2 − e3, 3e1 − e2 − e3)

6.
x

y

z
conv(0, 2e1, e1 + e2, e1 + e3, e1− e2)

7.
x

y

z
conv(0, 4e1 − 2e3, 3e1 − e3, 3e1 −

2e3, 3e1 + e2 − 2e3)

8. x

y

z
conv(0, 2e1 + e2 + e3, e1 + 2e2 +

e3, e1 + e2 + 2e3)

9. x

y

z
conv(0, 3e1 + e2, 2e1 + 2e2, 2e1 +

e2 + e3)

10. x

y

z
conv(0, 3e1 + e2 − 2e3, 2e1 + 2e2 −
2e3, 2e1 + e2 − e3, 2e1 + e2 − 2e3)

11.
x

y

z
conv(0, e3, e1 − e3, e1 − e2, 2e1 −

e2 − e3, e1 − e2 − e3)

12.
x

y

z
conv(0, 2e1, 2e1 + 2e2, e1 + e3)
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13.
x

y

z
conv(0, 2e1 + 4e2 + 2e3, 2e1 + 2e2 +

e3, e1 + 2e2 + 2e3)

14. x

y

z
conv(0, 2e1 − 2e2, e1 − 2e2 +

e3, e1 − 2e2 − e3)

15. x

y

z
conv(0, e1, 2e1 − e3, e1 − e3, e1 −

e2, e1 + e2 − e3)

16. x

y

z
conv(0, 4e1, 3e1 + e2, 3e1 + e3)

17.
x

y

z
conv(0, 2e1 + 2e2, e1 + 2e2, 2e1 +

4e2 + e3, e1 + 2e2 + e3)
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A. Enumeration data for dimension 3

Mixed Volume 2, full-dimensional, R-maximal

Type (1)

1.
x

y

z

x

y

z

x

y

z
conv(0, e1, e2, e3) conv(0, e1, e2, e3) 2 conv(0, e1, e2, e3)

Mixed Volume 2, lower-dimensional, R-maximal

1. conv(0, e1, e2) conv(0, e1, e2) +
conv(0, e3)

conv(0, e1, e2) +
conv(0, e3)

2. conv(0, e2) +
conv(0, e1 − e2) conv(0, e3)+conv(0, e2) conv(0, e3) +

conv(0, e1 − e2)

Mixed Volume 2, lower-dimensional, Z-maximal but not R-maximal

1. conv(0, e1, e2) conv(0, 2e1, 2e2, e1−e3) conv(0, 2e1, 2e2, e1−e3)

Mixed Volume 3, full-dimensional, R-maximal

Type (1)

1.
x

y

z

x

y

z

x

y

z
conv(0, e1, e2, e3) conv(0, e1, e2, e3) 3 conv(0, e1, e2, e3)
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Type (2)

2.
x

y

z

x

y

z

x

y

z
conv(0, e1, e2, e3) +

conv(0, e1 − e2) conv(0, e1, e2, e3) conv(0, e1, e2, e3) +
conv(0, e1 − e2)

Type (3)

3.
x

y

z

x

y

z

x

y

z

conv(0, e1, 2e1 −
e3, e1− e3, e1 + e2− e3)

conv(0, e1, 2e1 −
e3, e1− e3, e1 + e2− e3)

conv(0, e1, 2e1 −
e3, e1 − e3, e1 + e2 −
e3) + conv(0, e1 − e3)

Mixed Volume 3, full-dimensional, Z-maximal but not R-maximal

1.
x

y

z

x

y

z

x

y

z
conv(0, 2e1, e1 +
e2, e1 + e3)

conv(0, 2e1, e1 +
e2, e1 + e3)

conv(0, 2e1, e1 + e2, e1 +
e3) + conv(0, e1)
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A. Enumeration data for dimension 3

Mixed Volume 3, lower-dimensional, R-maximal

1. conv(0, e1, e2) conv(0, e1, e2) +
conv(0, e1, e2, e1 + e3)

conv(0, e1, e2) +
conv(0, e1, e2, e1 + e3)

2. conv(0, e1, e2) +
conv(0, e3) conv(0, e1, e2) conv(0, e1, e2) +

2 conv(0, e3)

3. conv(0, e1, e2) +
conv(0, e3) conv(0, e1, e2) 2 conv(0, e1, e2) +

conv(0, e3)

4. conv(0, e2) +
conv(0, e1 − e2)

conv(0, 2e1 − 2e2 +
e3, e1 − e2 + e3) +
conv(0, e1 − e2)

conv(0, 2e1 − 2e2 +
e3, e1 − e2 + e3) +

conv(0, e2)

5. conv(0, e2) +
conv(0, e1 − e2)

2 conv(0, e1 − e2) +
conv(0, 2e1 − 2e2 − e3)

conv(0, e2) +
conv(0, 2e1 − 2e2 − e3)

6. conv(0, e2) +
conv(0, e1 − e2)

conv(0, e2 − e3) +
conv(0, e2)

conv(0, e2) +
conv(0, e2 − e3) +
conv(0, e1 − e2)

Mixed Volume 3, lower-dimensional, Z-maximal but not R-maximal

1. conv(0, e1, e2) conv(0, 3e1, 3e2, 3e2 −
e3)

conv(0, 3e1, 3e2, 3e2 −
e3)

2. conv(0, e2) +
conv(0, e1 − e2)

conv(0, e2, 2e1 −
e2, 2e1−2e2, e1−e2+e3)

conv(0, e2, 2e1 −
e2, 2e1−2e2, e1−e2+e3)

3. conv(0, e1, 2e2) conv(0, e1, 3e2, e1 +
e2, e1 − e3)

conv(0, e1, 3e2, e1 +
e2, e1 − e3)

4. conv(0, 2e1, 2e2, e1−e3) conv(0, e1, e2) conv(0, e1, e2) +
conv(0, 2e1, 2e2, e1−e3)

5. conv(0, e2) +
conv(0, e1 − e2) conv(0, e3, 2e2 + e3) conv(0, e3, 2e2 + e3) +

conv(0, e1 − e2)
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Mixed Volume 4, full-dimensional, R-maximal

Type (1)

1.
x

y

z

x

y

z

x

y

z
conv(0, e1, e2, e3) conv(0, e1, e2, e3) 4 conv(0, e1, e2, e3)

2.
x

y

z

x

y

z

x

y

z
conv(0, e1, e3, e1 +

2e2 + e3)
conv(0, e1, e3, e1 +

2e2 + e3)
2 conv(0, e1, e3, e1 +

2e2 + e3)

3.
x

y

z

x

y

z

x

y

z
conv(0, 2e1, e1 +
e2, e1 + e3)

conv(0, 2e1, e1 +
e2, e1 + e3)

2 conv(0, 2e1, e1 +
e2, e1 + e3)
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A. Enumeration data for dimension 3

4.
x

y

z

x

y

z

x

y

z
conv(0, e1, 2e1 −

e3, e1− e3, e1 + e2− e3)
conv(0, e1, 2e1 −

e3, e1− e3, e1 + e2− e3)
2 conv(0, e1, 2e1 −

e3, e1− e3, e1 + e2− e3)

5.
x

y

z

x

y

z

x

y

z
conv(0, e1, e2, e3) 2 conv(0, e1, e2, e3) 2 conv(0, e1, e2, e3)

Type (2)

6.
x

y

z

x

y

z

x

y

z
conv(0, e1, e2, e3) +

conv(0, e1 − e2) conv(0, e1, e2, e3) conv(0, e1, e2, e3) +
2 conv(0, e1 − e2)
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7.
x

y

z

x

y

z

x

y

z
conv(0, 2e1, e1 +
e2, e1 + e3)

conv(0, 2e1, e1 + e2, e1 +
e3) + conv(0, e1)

conv(0, 2e1, e1 + e2, e1 +
e3) + conv(0, e1)

8.
x

y

z

x

y

z

x

y

z

conv(0, e1, 2e1 −
e3, e1− e3, e1 + e2− e3)

conv(0, e1, 2e1 −
e3, e1 − e3, e1 + e2 −
e3) + conv(0, e1 − e3)

conv(0, e1, 2e1 −
e3, e1 − e3, e1 + e2 −
e3) + conv(0, e1 − e3)

Type (3)

9.
x

y

z

x

y

z

x

y

z

conv(0, e1, 2e1 −
e3, e1− e3, e1 + e2− e3)

conv(0, e1, 2e1 −
e3, e1− e3, e1 + e2− e3)

conv(0, e1, 2e1 −
e3, e1 − e3, e1 + e2 −
e3) + 2 conv(0, e1)
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A. Enumeration data for dimension 3

10.
x

y

z

x

y

z

x

y

z

conv(0, 2e1, 3e1 −
e3, 2e1−e3, 2e1+e2−e3)

conv(0, 2e1, 3e1 −
e3, 2e1−e3, 2e1+e2−e3)

conv(0, 2e1, 3e1 −
e3, 2e1 − e3, 2e1 + e2 −

e3) + conv(0, e1)

11.
x

y

z

x

y

z

x

y

z
conv(0, e1 − e3, e2 −
e3) + conv(0, e1)

conv(0, e1 − e3, e2 −
e3) + conv(0, e1)

conv(0, e1 − e3, e2 −
e3) + 2 conv(0, e1)

Mixed Volume 4, full-dimensional, Z-maximal but not R-maximal

1.
x

y

z

x

y

z

x

y

z
conv(0, e1, e3, e1 +

2e2 + e3)
conv(0, e1, e3, e1 +

2e2 + e3)
conv(0, e1, e3, e1 + 2e2 +
e3) + conv(0, e1 + e2)
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2.
x

y

z

x

y

z

x

y

z

conv(0, 3e1, 2e1 +
e2, 2e1 + e3)

conv(0, 3e1, 2e1 +
e2, 2e1 + e3)

conv(0, 3e1, 2e1 +
e2, 2e1 + e3) +

conv(0, e1)

Mixed Volume 4, lower-dimensional, R-maximal

1. conv(0, e1, e2) 2 conv(0, e1, e2) +
conv(0, e1 − e2 − e3)

2 conv(0, e1, e2) +
conv(0, e1 − e2 − e3)

2. conv(0, e1, e2)
conv(0, e1, e2) +

conv(0, 2e1, 2e2, e1 −
e2 − e3)

conv(0, e1, e2) +
conv(0, 2e1, 2e2, e1 −

e2 − e3)

3. conv(0, e1, e2) conv(0, e1, e2) +
conv(0, e1 + 2e3)

conv(0, e1, e2) +
conv(0, e1 + 2e3)

4. conv(0, e1, e2) conv(0, e1, e2) +
2 conv(0, e3)

conv(0, e1, e2) +
2 conv(0, e3)

5. conv(0, e2) +
conv(0, e1 − e2)

conv(0, e2, 2e1 − 2e2 −
e3, e1 − e2 − e3) +
conv(0, e1 − e2)

conv(0, e2, 2e1 − 2e2 −
e3, e1 − e2 − e3) +

conv(0, e2)

6. conv(0, e2) +
conv(0, e1 − e2)

conv(0, e1, e2, e1 −
e2, e2 − e3) +

conv(0, e1 − e2)

conv(0, e1, e2, e1 −
e2, e2−e3)+conv(0, e2)

7. conv(0, e2) +
conv(0, e1 − e2)

conv(0, e1 − 2e2 − e3) +
conv(0, e2) +

conv(0, e1 − e2)

conv(0, e1 − 2e2 − e3) +
conv(0, e2) +

conv(0, e1 − e2)

8. conv(0, e1, 2e2) conv(0, e1, 2e2) +
conv(0, e3)

conv(0, e1, 2e2) +
conv(0, e3)

9. 2 conv(0, e2, e1 + e2) +
conv(−e2)

conv(0, e2, e1 + e2) +
conv(0, e3)

conv(0, e2, e1 + e2) +
conv(0, e3)

10. conv(0, e1, e2, e3) conv(0, e3) +
conv(0, e1 − e2)

conv(0, e1, e2, e3) +
conv(0, e3) +

conv(0, e1 − e2)

11. conv(0, e1, e2) +
conv(0, e3) conv(0, e1, e2) 3 conv(0, e1, e2) +

conv(0, e3)

12. conv(0, e1, e2) +
conv(0, e3) conv(0, e1, e2) conv(0, e1, e2) +

3 conv(0, e3)
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A. Enumeration data for dimension 3

13. conv(0, e1, e2) +
conv(0, e3) conv(0, e1, e2) 2 conv(0, e1, e2) +

2 conv(0, e3)

14. conv(0, e1 − e3, e2 −
e3) + conv(0, e1)

conv(0, e1 − e2) +
conv(0, e1)

conv(0, e1 − e3, e2 −
e3) + conv(0, e1) +

conv(0, e1 − e2)

15. conv(0, e1, e2) +
conv(0, e1, e2, e1 + e3) conv(0, e1, e2) 2 conv(0, e1, e2) +

conv(0, e1, e2, e1 + e3)

16. conv(0, e2) +
conv(0, e1 − e2)

conv(0, 2e2, 2e2 + e3) +
conv(0, e2)

conv(0, 2e2, 2e2 + e3) +
conv(0, e1 − e2)

17. conv(0, e2) +
conv(0, e1 − e2)

2 conv(0, e1 − e2) +
conv(0, 2e1 − 2e2 − e3)

2 conv(0, e2) +
conv(0, 2e1 − 2e2 − e3)

18. conv(0, e2) +
conv(0, e1 − e2)

2 conv(0, e1 − e2) +
conv(0, 2e1 − 2e2 − e3)

conv(0, e1 − e2) +
conv(0, e2) +

conv(0, 2e1 − 2e2 − e3)

19. conv(0, e2) +
conv(0, e1 − e2)

conv(0, e2 − 2e3) +
conv(0, e2)

conv(0, e2 − 2e3) +
conv(0, e1 − e2)

20. conv(0, e2) +
conv(0, e1 − e2)

2 conv(0, e3) +
conv(0, e1 − e2)

2 conv(0, e3) +
conv(0, e2)

21. conv(0, e2) +
conv(0, e1 − e2)

conv(−e1 + 2e3) +
conv(0, e2) +

conv(0, e1 − 2e3)

conv(−e1 + 2e3) +
conv(0, e1 − e2) +
conv(0, e1 − 2e3)

22.
conv(0, e1, 2e1 − e2) +

conv(−2e1 + e2) +
conv(0, e1)

conv(0, e1 − e3) +
2 conv(0, e1)

conv(0, e1, 2e1 − e2) +
conv(0, e1 − e3)

23. conv(0, e2) +
conv(0, e1 − e2)

conv(0, 2e2 − e3, e2 −
e3) + 2 conv(0, e2)

conv(0, 2e2 − e3, e2 −
e3) + conv(0, e1 − e2)

24. conv(0, e2) +
conv(0, e1 − e2)

conv(0, e1−e2, e1−e2 +
e3) + conv(0, e1 − e2)

conv(0, e1 − e2, e1 −
e2 + e3) + conv(0, e2) +

conv(0, e1 − e2)

25. conv(0, e2) +
conv(0, e1 − e2)

conv(0, e1−e2, e1−e2 +
e3) + conv(0, e1 − e2)

conv(0, e1 − e2, e1 −
e2 + e3) + 2 conv(0, e2)

26. conv(0, e2) +
conv(0, e1 − e2)

conv(0, e2) +
conv(0, e2 + e3)

conv(0, e2 + e3) +
conv(0, e2) +

2 conv(0, e1 − e2)

27. conv(0, e2) +
conv(0, e1 − e2)

conv(0, e2) +
conv(0, e2 + e3)

2 conv(0, e2) +
conv(0, e2 + e3) +
conv(0, e1 − e2)

28. conv(0, e2) +
conv(0, e1 − e2)

conv(0, e2) +
conv(0, e2 + e3)

conv(0, e2 + e3) +
3 conv(0, e1 − e2)

29. conv(0, e2) +
conv(0, e1 − e2)

conv(0, e2) +
conv(0, e2 + e3)

2 conv(0, e2 + e3) +
2 conv(0, e1 − e2)

30.
conv(0, e1, 2e1 − e2) +

conv(−2e1 + e2) +
conv(0, e1)

conv(0, e1, e1 + e3) +
conv(0, e1)

conv(0, e1, e1 + e3) +
conv(0, e1, 2e1 − e2)
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Mixed Volume 4, lower-dimensional, Z-maximal but not R-maximal

1. conv(0, e1, e2) conv(0, 4e1, 4e2, 2e1 −
e3)

conv(0, 4e1, 4e2, 2e1 −
e3)

2. conv(0, e1, e2) conv(0, 2e1, 2e2, e2 −
2e3)

conv(0, 2e1, 2e2, e2 −
2e3)

3. conv(0, e1, e2)
conv(0, e1, e2, e1 −

2e3, 2e1 − e2 − e3, e1 −
e2 − e3)

conv(0, e1, e2, e1 −
2e3, 2e1 − e2 − e3, e1 −

e2 − e3)

4. conv(0, e1, e2) conv(0, 2e3, 2e1 +
e3, 2e2 + e3)

conv(0, 2e3, 2e1 +
e3, 2e2 + e3)

5. conv(0, e1, e2) conv(0, 2e1, 2e2, e2 +
e3, e2 − e3)

conv(0, 2e1, 2e2, e2 +
e3, e2 − e3)

6. conv(0, e1, e2) conv(0, e1, e2, e3, e1 +
e3, e2 +e3, e1 +e2 +2e3)

conv(0, e1, e2, e3, e1 +
e3, e2 +e3, e1 +e2 +2e3)

7. conv(0, e1, e2) conv(0, 2e1, 2e2, e2 −
e3, e1 + e2 + e3)

conv(0, 2e1, 2e2, e2 −
e3, e1 + e2 + e3)

8. conv(0, e1, e2) conv(0, 2e1, 2e2, 2e1 +
e3, e1 − e3)

conv(0, 2e1, 2e2, 2e1 +
e3, e1 − e3)

9. conv(0, e2) +
conv(0, e1 − e2)

conv(0, 2e1− 2e2, 2e1−
e2 + e3) + conv(0, e2)

conv(0, 2e1− 2e2, 2e1−
e2 + e3) + conv(0, e2)

10. conv(0, e2) +
conv(0, e1 − e2)

conv(0, 2e1, 2e2, 2e1 −
2e2, e1 + e2 − e3)

conv(0, 2e1, 2e2, 2e1 −
2e2, e1 + e2 − e3)

11. conv(0, e2) +
conv(0, e1 − e2)

conv(0, 2e1 − 2e2, e1 +
e2 + e3, e1 − e2 + e3)

conv(0, 2e1 − 2e2, e1 +
e2 + e3, e1 − e2 + e3)

12. conv(0, e2) +
conv(0, e1 − e2)

conv(0, e2, 3e1 −
2e2, 3e1 − 3e2, e1 − e3)

conv(0, e2, 3e1 −
2e2, 3e1 − 3e2, e1 − e3)

13. conv(0, e1, 2e2) conv(0, 2e1, 4e2, 4e2 −
e3)

conv(0, 2e1, 4e2, 4e2 −
e3)

14.
conv(0, e1, 2e1 − e2) +

conv(−2e1 + e2) +
conv(0, e1)

conv(0, 3e1, 4e1 −
e2, 2e1 − e2, e1 − e3)

conv(0, 3e1, 4e1 −
e2, 2e1 − e2, e1 − e3)

15. conv(0, 3e1, 2e1 + e2) +
conv(−2e1)

conv(0, 4e1, 3e1 +
e2, 2e1 + e2, e1 + e3)

conv(0, 4e1, 3e1 +
e2, 2e1 + e2, e1 + e3)

16.
conv(−e1) +

conv(0, e1 − e2) +
conv(0, e1 + e2)

conv(0, e1, e1 + e3, e2 +
e3)

conv(0, e1 + e2, e2 +
e3, e1 + e2 + e3)

17.
conv(−e1) +

conv(0, e1 − e2) +
conv(0, e1 + e2)

conv(0, e1, e3, e2 + e3) conv(0, e1, e1 − e3, e1 −
e2 − e3)

18. conv(0, 2e1, e1 + 2e2) +
conv(−e1) conv(0, e1, e3, e2 + e3) conv(0, e1, e1 − e3, e1 +

e2 − e3)

19.
conv(−e1) +

conv(0, 2e1, 2e1 −
e2, e1 + e2)

conv(0, e1 − e2, 2e1 −
e2 − e3, e1 − e2 − e3)

conv(0, e1, 2e1 −
e3, 2e1 − e2 − e3)
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A. Enumeration data for dimension 3

20. conv(0, 2e1, e1 +
e2, e1 + e3)

conv(0, e2 − e3) +
conv(0, e1)

conv(0, 2e1, e1 + e2, e1 +
e3) + conv(0, e2 − e3)

21. conv(0, 2e1, 3e1 −
e3, 2e1−e3, 2e1+e2−e3)

conv(0, 2e1, 2e1 + e2 −
e3)

conv(0, e1, 2e1 − e3) +
conv(0, 2e1, 2e1 + e2 −

e3)

22. conv(0, 2e1, 2e2, e1−e3) conv(0, e1, e2) 2 conv(0, 2e1, 2e2, e1 −
e3)

23. conv(0, e2, 2e1 −
e2, 2e1−2e2, e1−e2+e3)

conv(0, e2) +
conv(0, e1 − e2)

conv(0, e2, 2e1 −
e2, 2e1 − 2e2, e1 − e2 +
e3) + conv(0, e1 − e2)

24. conv(0, e2, 2e1 −
e2, 2e1−2e2, e1−e2+e3)

conv(0, e2) +
conv(0, e1 − e2)

conv(0, e2, 2e1 −
e2, 2e1 − 2e2, e1 − e2 +
e3) + conv(0, e2)

25. conv(0, e1, 3e2, e1 +
e2, e1 − e3) conv(0, e1, 2e2) conv(0, 2e1, 4e2, e1 −

e3, e1 + e2 − e3)

26. conv(0, 3e1, 3e2, 3e2 −
e3) conv(0, e1, e2) conv(0, 3e1, 3e2, 3e2 −

e3) + conv(0, e1, e2)

27. conv(0, e1, e2) conv(0, e1 + e3, e1 −
e2 − e3)

conv(0, 2e2, 2e1 + e2 +
2e3, 2e1 − e2 − 2e3)

28. conv(0, e1, e2) conv(0, e1 + e3, e1 −
e2 − e3)

conv(0, e1, e2, e1 −
e3, 2e2 + e3, e2 + e3, e1 +
e2 + 2e3, e1 + e2 + e3)

29. conv(0, e1, e2) conv(0, e1 + e3, e1 −
e2 − e3)

conv(0, e1, e2) +
conv(0, e1 + e3, e1 −

e2 − e3)

30. conv(0, e2) +
conv(0, e1 − e2) conv(0, 2e2, 2e2 + e3) conv(0, 2e2, 2e2 + e3) +

2 conv(0, e1 − e2)

31. conv(0, e2) +
conv(0, e1 − e2) conv(0, 2e2, 2e2 + e3)

conv(0, 2e2, 2e2 + e3) +
conv(0, e1 − e2) +

conv(0, e2)

32. conv(0, e2) +
conv(0, e1 − e2) conv(0, 3e2, e2 − e3) conv(0, 3e2, e2 − e3) +

conv(0, e1 − e2)
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B. Enumeration data for dimension 2
For the reader’s convenience we present a complete list of maximal pairs of lattice
polygons of mixed volume up to 4. Note that these have already been classified in
[EG16].

Mixed Volume 1

1.

conv(0, e1, e2) conv(0, e1, e2)

Mixed Volume 2

1.

conv(0, e1, 2e2) conv(0, e1, 2e2)

2.

conv(0, e1 − e2) + conv(0, e2) conv(0, e1 − e2) + conv(0, e2)
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B. Enumeration data for dimension 2

3.

conv(0, e1, e2) 2 conv(0, e1, e2)

Mixed Volume 3

1.

conv(0, e1, 2e1 − e2) + conv(0, e1) conv(0, e1, 2e1 − e2) + conv(0, e1)

2.

conv(0, 3e1, 2e1 + e2) conv(0, 3e1, 2e1 + e2)

3.

conv(0, 2e1 + e2, e1 + 2e2) conv(0, 2e1 + e2, e1 + 2e2)

4.

conv(0, e1, e2) 3 conv(0, e1, e2)
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5.

conv(0, e1 − e2) + conv(0, e2) conv(0, e1 − e2) + 2 conv(0, e2)

6.

conv(0, e1, 2e2) conv(0, e1, 2e2) + conv(0, e2)

Mixed Volume 4

1.

conv(0, 2e1, e1 + 2e2) conv(0, 2e1, e1 + 2e2)

2.

2 conv(0, e2, e1 + e2) 2 conv(0, e2, e1 + e2)

133



B. Enumeration data for dimension 2

3.

conv(0, 2e1, 2e1 − e2, e1 + e2) conv(0, 2e1, 2e1 − e2, e1 + e2)

4.

2 conv(0, e1−e2)+conv(0, e1−2e2) 2 conv(0, e1−e2)+conv(0, e1−2e2)

5.

conv(0, e1, 4e2) conv(0, e1, 4e2)

6.

conv(0, 2e2, e1 − e2) + conv(0, e2) conv(0, 2e2, e1 − e2) + conv(0, e2)

134



7.

conv(0, e1 + e2) + conv(0, e1 − e2) conv(0, e1 + e2) + conv(0, e1 − e2)

8.

conv(0, e1, e2) 4 conv(0, e1, e2)

9.

conv(0, e1 − e2) + conv(0, e2) 2 conv(0, e1 − e2) + 2 conv(0, e2)

10.

conv(0, e1, 2e2) 2 conv(0, e1, 2e2)
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B. Enumeration data for dimension 2

11.

conv(0, e1, 2e1 − e2) + conv(0, e1) conv(0, e1, 2e1 − e2) + 2 conv(0, e1)

12.

conv(0, 3e1, 2e1 + e2) conv(0, 3e1, 2e1 + e2) + conv(0, e1)

13.

conv(0, e1 − e2) + conv(0, e2) conv(0, e1 − e2) + 3 conv(0, e2)
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