
Development of a Parametric Membrane Design Software

M A S T E R -T H E S I S

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master Membrane Structures

submitted to

Anhalt University of Applied Sciences

Faculty of Architecture,
Facility Management and Geo Information

by

Dipl.-Ing. HTL Thomas Stephan Dirk Dührsen
24.08.1971, Bern, Switzerland

Matrikel number
4065604

Submission date: 21.03.2019

First tutor: Prof. Dr. Robert Off

Second Tutor: Ing. M.Eng. Peter Novýsedlák, PhD., Archineer M.St





S TAT E M E N T

I hereby declare that the work presented in this Master Thesis, entitled

Development of a Parametric Membrane Design Software

is entirely my own and that I did not use any sources or auxiliary
means other than those referenced.

Thun, March 2019

Thomas Stephan Dirk
Dührsen





We should continually be striving to transform every art into a science:
in the process, we advance the art.

— Donald E. Knuth

A B S T R A C T

With this Master Thesis I am showing how the power and benefits
of reusable and interchangeable logic and algorithms can be applied
to the workflow of designing membrane structures especially for the
steps of sketching, form finding, structural analysis, three dimensional
visualizations and patterning. The focus is on membranes made of
fabrics, but cable nets and structures covered with ETFE1 cushions
could also be dealt with.

The main work this document is based on was the development
of a software library which seamlessly integrates into the parametric
design plugin Grasshopper R©[19] of the Rhino3D CAD2 system. But
since the focus of the study program is on Tensile Architecture, aspects
of software engineering are treated and documented only on a very
high level. The focus is rather on the use cases for membrane design
and visualization of the results from form finding and structural
analysis.

The test results and examples listed in the document show that it
was possible to finish all relevant assignments from the study program
with this software. In addition, and even more important, the software
is now being used successfully in real live customer projects to build
beautiful membranes.

The reader should have a general understanding of tensile archi-
tecture and tasks commonly executed when designing membranes.
Experience with working in 3D CAD software is assumed as well.

1 Ethylene tetrafluoroethylene
2 Computer Aided Design

v





An algorithm must be seen to be believed.

— Donald E. Knuth

A C K N O W L E D G M E N T S

Many thanks to Peter Novýsedlák with his passion for Membranes
and the Finite Element Method. His Master Thesis presentation Tensile
Structures – Numerical Design Techniques [15] at the IMS Institute in
March 2017 inspired me to pick up this topic and implement a software
package for parametric design and analysis of membrane structures.
Peter provided me with well documented Matlab scripts defining the
core algorithms for form finding and analysis of membrane structures.
These algorithms form the basis of my work and they were also used
for testing purposes. Peter supported me with his extensive knowledge
whenever I had a question or needed a second opinion.

vii





C O N T E N T S

1 introduction 1

2 membrane software 3

2.1 Background and Personal Needs 3

2.2 Market Overview 4

2.2.1 Software Evaluation Criteria 6

2.3 Requirements for a Parametric Membrane Software 6

2.3.1 Integrated System 7

2.3.2 Form Finding 7

2.3.3 Structural Analysis 7

2.3.4 Patterning 8

2.3.5 Detailing / Shop Drawings 8

2.3.6 Visualization 8

2.3.7 Bill of Material / Cost Estimation 8

3 concepts and implementation 9

3.1 Introduction 9

3.2 The Grasshopper R© Plugin 9

3.3 Runtime Environment 10

3.4 Module Architecture 11

3.5 Tools and Development Environment 12

3.6 Behavioral Key Concepts 13

3.6.1 Smart Component Groups 13

3.6.2 Message Bubbles 15

3.6.3 Appearance of Smart Components 15

3.6.4 Component State 16

3.6.5 Unified Icons 17

3.7 Main Workflows 17

3.7.1 Workflow for Sketching 18

3.7.2 Workflow for Engineering 18

3.8 Model Definition 19

3.8.1 High Level Abstraction 19

3.8.2 Conceptual Elements 20

3.9 Mesh Definition and Handling 21

3.9.1 Mesh Creation 22

3.9.2 Adoption of Mesh Size 22

3.9.3 Mesh Granularity – Impact on Accuracy of Re-
sults 23

3.10 Form Finding 23

3.10.1 Warp Orientation 25

3.10.2 Limitations of Projecting Warp Direction 25

3.10.3 Considering Corner Connection Details for Form
Finding 26

3.11 Load Cases 27

ix



x contents

3.11.1 Wind Pressure Coefficients 27

3.11.2 Snow Roof Shape Coefficients 28

3.12 Structural Analysis 29

3.12.1 Finite Element Method (FEM) 29

3.12.2 Wrinkling Check 30

3.12.3 Enveloped Results 31

3.12.4 Cascading Solvers 32

3.13 Results Visualization 32

3.13.1 Geometry Preview 33

3.13.2 Colormaps to Visualize Numerical Values 34

3.13.3 Additional Visualizations for Values or Results 34

3.14 Patterning 35

3.14.1 Panel Boundaries 36

3.14.2 Flattening 37

3.14.3 Compensation 38

3.14.4 Seam Allowance 39

3.14.5 Checking Fabric Width 40

3.15 Detailing and 3D Visualization 41

3.15.1 Membranedetails 42

4 user interface 43

4.1 Appearance in Grasshopper 43

4.1.1 Panels and their Order 43

4.1.2 Order within Panels 44

4.1.3 Information provided 45

4.2 Panel: Controls 46

4.2.1 Component: Direction (Pamela) 46

4.2.2 Component: List Multi Selector (Pamela) 48

4.2.3 Component: Vector Data (Pamela) 49

4.2.4 Component: XYZ Slider (Pamela) 51

4.3 Panel: Design 52

4.3.1 Component: Create Links (Pamela) 54

4.3.2 Component: Brep Mesher (Pamela) 55

4.3.3 Component: Edge Mesher (Pamela) 57

4.3.4 Component: Mesh Edges (Pamela) 59

4.3.5 Component: Ridge/Valley Cable (Pamela) 61

4.3.6 Component: Vertices on Curve (Pamela) 62

4.3.7 Component: Mesh Conditioner (Pamela) 63

4.3.8 Component: Pull Mesh to Curve (Pamela) 64

4.3.9 Component: Pull mesh to points (Pamela) 66

4.3.10 Component: Geodesic Curve (Pamela) 67

4.3.11 Component: Mesh Path (Pamela) 68

4.4 Panel: Material 69

4.4.1 Component: Cross Sections Database (Pamela) 69

4.4.2 Component: Material Database (Pamela) 70

4.4.3 Component: Cross Section Picker (Pamela) 71

4.4.4 Component: Material Picker (Pamela) 72



contents xi

4.4.5 Component: Fabric Picker (Pamela) 74

4.4.6 Component: Material (Pamela) 75

4.4.7 Component: Membrane Material (Pamela) 77

4.4.8 Component: Cross Section Parameter (Pamela) 78

4.4.9 Component: Material Parameter (Pamela) 78

4.4.10 Component: Membrane Material Parameter (Pamela) 79

4.5 Panel: Model Definition 79

4.5.1 Component: 1D Element (Pamela) 80

4.5.2 Component: Membrane 2D Element (Pamela) 81

4.5.3 Component: Support (Pamela) 83

4.5.4 Component: Model Builder (Pamela) 85

4.5.5 Component: Copy Final Model (Pamela) 86

4.5.6 Component: 1D Element Parameter (Pamela) 87

4.5.7 Component: 2D Element Parameter (Pamela) 88

4.5.8 Component: Model Parameter (Pamela) 88

4.5.9 Component: Node Parameter (Pamela) 88

4.5.10 Component: Support Parameter (Pamela) 88

4.6 Panel: Model Loads 89

4.6.1 Component: Load Coefficients SUI (Pamela) 89

4.6.2 Component: Load Case GER (Pamela) 91

4.6.3 Component: Load Case SUI (Pamela) 92

4.6.4 Component: Load Calculations GER (Pamela) 94

4.6.5 Component: Load Calculations SUI (Pamela) 95

4.6.6 Component: Load Case (Pamela) 97

4.6.7 Component: Membrane Snow Shape Coefficients
(Pamela) 98

4.6.8 Component: Membrane Pressure Coefficients
(Pamela) 100

4.6.9 Component: Snowload (Pamela) 101

4.6.10 Component: Windpressure (Pamela) 102

4.6.11 Component: Load Case Parameter (Pamela) 103

4.7 Panel: Solver 103

4.7.1 Component: Force Density Solver (Pamela) 104

4.7.2 Component: Finite Element Method Solver (Pamela) 105

4.7.3 Component: Execute Matlab (Pamela) 107

4.8 Panel: Views 108

4.8.1 Component: Mesh Details (Pamela) 109

4.8.2 Component: Model Explorer (Pamela) 110

4.8.3 Component: Model Viewer (Pamela) 112

4.8.4 Component: Contour Lines (Pamela) 113

4.8.5 Component: 1D Axial Forces (Pamela) 115

4.8.6 Component: Mesh Slope (Pamela) 116

4.8.7 Component: 1D Results View (Pamela) 117

4.8.8 Component: 2D Results View (Pamela) 119

4.8.9 Component: Snow Roof Shape Evaluation (Pamela) 120

4.8.10 Component: Wind cp Evaluation (Pamela) 121



xii contents

4.8.11 Component: 1D Element Handle (Pamela) 122

4.8.12 Component: 2D Element Handle (Pamela) 124

4.8.13 Component: Model Handle (Pamela) 126

4.8.14 Component: Node Handle (Pamela) 127

4.8.15 Component: Support Handle (Pamela) 128

4.8.16 Component: Colormap (Pamela) 130

4.8.17 Component: Mesh Values (Pamela) 131

4.9 Panel: Detailing 133

4.9.1 Component: Connectorplate (Pamela) 133

4.9.2 Component: Pfeifer 860 (Pamela) 135

4.9.3 Component: Rectangular anchor plate (Pamela) 136

4.9.4 Component: Round anchor plate (Pamela) 137

4.10 Panel: Membrane 139

4.10.1 Component: Membrane Pimper (Pamela) 139

4.11 Panel: Patterning 140

4.11.1 Component: Flattener (Pamela) 141

4.11.2 Component: Create Splitline (Pamela) 142

4.11.3 Component: Split Mesh (Pamela) 143

4.12 Panel: Utility 144

4.12.1 Component: Log Configuration (Pamela) 144

4.12.2 Component: LaTeX Doc (Pamela) 145

4.12.3 Component: Import Results (Pamela) 146

4.12.4 Component: Write To File (Pamela) 148

4.12.5 Component: Input Collector (Pamela) 149

4.12.6 Component: Run Executable (Pamela) 150

5 testing and proof of concept 153

5.1 Introduction 153

5.1.1 Unit Testing 153

5.1.2 System Testing 154

5.2 Testing against Reference implementation 154

5.2.1 Test Scenarios 155

5.2.2 Test Cases 155

5.2.3 Results Verification 155

5.2.4 Verification of Convergence Behavior 156

5.2.5 Verification of Numerical Values 158

5.3 Example Hypar with Ridge Cable 159

5.3.1 Task 159

5.3.2 Preliminary Remarks 159

5.3.3 Design 160

5.3.4 Model Definition 160

5.3.5 Form Finding 166

5.3.6 Loads 167

5.3.7 Serviceability / Deflection 168

5.3.8 Stress Anaysis 169

5.3.9 Conclusion 171

5.4 The Real-life Proof of Concept 172



contents xiii

6 summary 173

6.1 Limitations 174

6.2 Outlook 175

6.2.1 Business Model 176

6.2.2 Integration with other Software 176

6.3 Personal Findings 177

bibliography 179



L I S T O F F I G U R E S

Figure 3.1 Grasshopper R© main window (source: www.wikipwdia.org) 10

Figure 3.2 Rhino technology overview (source: developer.rhino3d.com) 11

Figure 3.3 internal structure 12

Figure 3.4 Trello project management tool 12

Figure 3.5 software usability(source: blog.rocketsoftware.com) 13

Figure 3.6 Ridge/Valley cable component as example for
smart component group 14

Figure 3.7 Model Builder component with message bub-
ble 16

Figure 3.8 appearance of smart component groups 16

Figure 3.9 colors indicating the components state 17

Figure 3.10 examples of icons 17

Figure 3.11 generic behavior of computer programs 17

Figure 3.12 Sketching workflow 18

Figure 3.13 Engineering workflow 19

Figure 3.14 model definition 20

Figure 3.15 elements of a geometry 21

Figure 3.16 Model Builder Component in use 21

Figure 3.17 warp on twisted membrane 25

Figure 3.18 generic corner plate 26

Figure 3.19 context of structural analysis 29

Figure 3.20 FEM algorithm 29

Figure 3.21 Classdiagram for FEM datamodel 30

Figure 3.22 Enveloped Results 31

Figure 3.23 FEM Solver 32

Figure 3.24 result types in context 33

Figure 3.25 preview of model 33

Figure 3.26 colormap applied to mesh values 34

Figure 3.27 Contourlines on mesh surface 35

Figure 3.28 Patterning process 36

Figure 3.29 Grasshopper definition for patterning 37

Figure 3.30 panel layout using geodesic lines 37

Figure 3.31 flattened and oriented 2D panels 38

Figure 3.32 detail of compensated panel 39

Figure 3.33 measurements for cable pockets 40

Figure 3.34 measurements for ridge or valley cable pock-
ets 40

Figure 3.35 dimensions of flattened and compensated panel 41

Figure 3.36 Dimensions of connector plate[16] 41

Figure 3.37 Visualizations of connector and anchor plates 42

Figure 4.1 all panels in the tab Pamela 43



list of figures xv

Figure 4.2 order of the components in the panel Design 45

Figure 4.3 overview of panel Controls 46

Figure 4.4 Screenshot of Direction (Pamela) 47

Figure 4.5 Screenshot of List Multi Selector (Pamela) 49

Figure 4.6 Screenshot of Vector Data (Pamela) 50

Figure 4.7 Screenshot of XYZ Slider (Pamela) 52

Figure 4.8 overview of panel Design 53

Figure 4.9 Screenshot of Create Links (Pamela) 55

Figure 4.10 Screenshot of Brep Mesher (Pamela) 57

Figure 4.11 Screenshot of Edge Mesher (Pamela) 59

Figure 4.12 Screenshot of Mesh Edges (Pamela) 60

Figure 4.13 Screenshot of Ridge/Valley Cable (Pamela) 62

Figure 4.14 Screenshot of Vertices on Curve (Pamela) 63

Figure 4.15 Screenshot of Mesh Conditioner (Pamela) 64

Figure 4.16 Screenshot of Pull Mesh to Curve (Pamela) 65

Figure 4.17 Screenshot of Pull mesh to points (Pamela) 66

Figure 4.18 Screenshot of Geodesic Curve (Pamela) 67

Figure 4.19 Screenshot of Mesh Path (Pamela) 68

Figure 4.20 overview of panel Material 69

Figure 4.21 Screenshot of Cross Sections Database (Pamela) 70

Figure 4.22 Screenshot of Material Database (Pamela) 71

Figure 4.23 Screenshot of Cross Section Picker (Pamela) 72

Figure 4.24 Screenshot of Material Picker (Pamela) 73

Figure 4.25 Screenshot of Fabric Picker (Pamela) 75

Figure 4.26 Screenshot of Material (Pamela) 76

Figure 4.27 Screenshot of Membrane Material (Pamela) 78

Figure 4.28 overview of panel Model Definition 79

Figure 4.29 Screenshot of 1D Element (Pamela) 81

Figure 4.30 Screenshot of Membrane 2D Element (Pamela) 83

Figure 4.31 Screenshot of Support (Pamela) 84

Figure 4.32 Screenshot of Model Builder (Pamela) 86

Figure 4.33 Screenshot of Copy Final Model (Pamela) 87

Figure 4.34 overview of panel Model Loads 89

Figure 4.35 Screenshot of Load Coefficients SUI (Pamela) 90

Figure 4.36 Screenshot of Load Case GER (Pamela) 92

Figure 4.37 Screenshot of Load Case SUI (Pamela) 94

Figure 4.38 Screenshot of Load Calculations GER (Pamela) 95

Figure 4.39 Screenshot of Load Calculations SUI (Pamela) 96

Figure 4.40 Screenshot of Load Case (Pamela) 98

Figure 4.41 Screenshot of Membrane Snow Shape Coefficients
(Pamela) 99

Figure 4.42 Screenshot of Membrane Pressure Coefficients (Pamela) 100

Figure 4.43 Screenshot of Snowload (Pamela) 101

Figure 4.44 Screenshot of Windpressure (Pamela) 102

Figure 4.45 overview of panel Solver 103

Figure 4.46 Screenshot of Force Density Solver (Pamela) 105



xvi list of figures

Figure 4.47 Screenshot of Finite Element Method Solver (Pamela) 107

Figure 4.48 Screenshot of Execute Matlab (Pamela) 108

Figure 4.49 overview of panel Views 108

Figure 4.50 Screenshot of Mesh Details (Pamela) 110

Figure 4.51 Screenshot of Model Explorer (Pamela) 111

Figure 4.52 Screenshot of Model Viewer (Pamela) 113

Figure 4.53 Screenshot of Contour Lines (Pamela) 114

Figure 4.54 Screenshot of 1D Axial Forces (Pamela) 116

Figure 4.55 Screenshot of Mesh Slope (Pamela) 117

Figure 4.56 Screenshot of 1D Results View (Pamela) 118

Figure 4.57 Screenshot of 2D Results View (Pamela) 120

Figure 4.58 Screenshot of Snow Roof Shape Evaluation (Pamela) 121

Figure 4.59 Screenshot of Wind cp Evaluation (Pamela) 122

Figure 4.60 Screenshot of 1D Element Handle (Pamela) 124

Figure 4.61 Screenshot of 2D Element Handle (Pamela) 125

Figure 4.62 Screenshot of Model Handle (Pamela) 127

Figure 4.63 Screenshot of Node Handle (Pamela) 128

Figure 4.64 Screenshot of Support Handle (Pamela) 129

Figure 4.65 Screenshot of Colormap (Pamela) 131

Figure 4.66 Screenshot of Mesh Values (Pamela) 133

Figure 4.67 overview of panel Detailing 133

Figure 4.68 Screenshot of Connectorplate (Pamela) 135

Figure 4.69 Screenshot of Pfeifer 860 (Pamela) 136

Figure 4.70 Screenshot of Rectangular anchor plate (Pamela) 137

Figure 4.71 Screenshot of Round anchor plate (Pamela) 139

Figure 4.72 overview of panel Membrane 139

Figure 4.73 Screenshot of Membrane Pimper (Pamela) 140

Figure 4.74 overview of panel Patterning 141

Figure 4.75 Screenshot of Flattener (Pamela) 142

Figure 4.76 Screenshot of Create Splitline (Pamela) 143

Figure 4.77 Screenshot of Split Mesh (Pamela) 144

Figure 4.78 overview of panel Utility 144

Figure 4.79 Screenshot of Log Configuration (Pamela) 145

Figure 4.80 Screenshot of LaTeX Doc (Pamela) 146

Figure 4.81 Screenshot of Import Results (Pamela) 147

Figure 4.82 Screenshot of Write To File (Pamela) 149

Figure 4.83 Screenshot of Input Collector (Pamela) 150

Figure 4.84 Screenshot of Run Executable (Pamela) 151

Figure 5.1 Screenshot of Execute Matlab (Pamela) 155

Figure 5.2 parallel solver setup 158

Figure 5.3 distance of nodal coordinates 159

Figure 5.4 Dimensions for Hypar with ridge cable 160

Figure 5.5 Complete model definition for task 1 161

Figure 5.6 Mesh creation and refinement 162

Figure 5.7 Assembling the data model 164

Figure 5.8 Load case definitions 165



Figure 5.9 Daisy-chain of solvers 165

Figure 5.10 Solver results summary 166

Figure 5.11 Displacements due to snow 169

L I S T O F TA B L E S

Table 3.1 Results comparison for different mesh sizes 24

Table 3.2 default cp values 28

Table 3.3 default roof shape coefficients 28

Table 5.1 Inital and refined mesh 162

Table 5.2 Mesh after form finding 166

Table 5.3 Wind load on Hypar 167

Table 5.4 Snow load and enveloped results 168

Table 5.5 Snow load and enveloped results 168

Table 5.6 Membrane Prestress 169

Table 5.7 Membrane stress due to snow load 170

Table 5.8 Maximum membrane stress 170

Table 5.9 Axial forces 171

L I S T I N G S

Listing 5.1 Convergence of PAMELA Implementation 156

Listing 5.2 Convergence of Matlab Implementation 157

A C R O N Y M S

API Application Programming Interface

BREP Boundary Representation

CAD Computer Aided Design

CPU Central Processing Unit

DOF Degree of Freedom

xvii



xviii acronyms

DPI Dots Per Inch

ETFE Ethylene tetrafluoroethylene

FEM Finite Element Method

GUI Graphical User Interface

PAMELA Parametric Membrane Load Analysis

UML Unified Modeling Language



1 I N T R O D U C T I O N

Science is what we understand well enough to explain to a computer. Art is
everything else we do.

— Donald E. Knuth

While sketching with paper and pencil and creating stocking models
are practicable techniques for the form finding process of membrane
structures if no software shall be used, highly specialized software is
required for structural analysis and cutting pattern generation since
the complex calculations cannot be done by hand within a reasonable
time. If a software shall be used for form finding as well, in my
opinion it is important that this software is easy to use and must be
very responsive to changes. When a design idea comes up, it must be
possible to visualize it in a flash before the idea flies away again.

The process step of form finding traditionally belongs to the field
of work of architects, while structural analysis requires the expertise
of an engineer specialized in membranes. Best results are achieved
when form finding and structural analysis are combined in an iterative
process to discover the ideal solution. This requires close collabora-
tion between architects and engineers, and it is important that both
use a common foundation for their work, which in turn rises the
requirement to share data and drawings.

The well-known agile development method Scrum thrives on the Scrum is a simple
yet incredibly
powerful set of
principles and
practices that helps
teams deliver
products in short
cycles, enabling fast
feedback, continual
improvement, and
rapid adaptation to
change.[21]

principles that outstanding performance is achieved when teams are
small and self-organizing units of people and when such teams are
fed with objectives, not with executable tasks. [27]

How can a membrane software enable teams to work based on
objectives?

The solution implemented by myself and presented in this Master
Thesis is to apply the power and benefits of reusable and interchange-
able logic and algorithms to the design and analysis of membrane
structures - all fully integrated into one of the leading 3D CAD systems
available. The different logic components can be arranged, connected
and activated based on the current needs and ideas to best support the
workflow of choice. Ideas in this context can be of technical or design
related nature. And to further enhance collaboration and reduce errors
and divergences introduced by file conversions, the full process of
sketching, form finding, analysis, patterning, creating shop drawings

1



2 introduction

as well as 3D visualizations - all these steps can be done in the same
environment and based on the same drawing files.

Back to Scrum: Which members are needed to form a small team
which develops membrane projects based on objectives? The team
needs an Architect and an Engineer - or even better, both in one
person as an Archineer R©[9] - and a Grasshopper. Not Grasshopper
the insect, but the algorithmic modeling environment for Rhino3D
CAD system[19]. In addition, the team is assisted by Pamela. Ok, not
Pamela as a person but rather PAMELA1 as a software library.

PAMELA stands for Parametric Membrane Load Analysis and is the
working name for the software library I have developed, the why and
the how of this development and especially how PAMELA can be used
to support the process of building beautiful membranes is the content
of this document. The focus is mainly on membranes made of fabrics,
but cable nets and structures covered with ETFE cushions could also
be dealt with.The reader should

have a general
understanding of

Tensile Architecture
and tasks commonly

executed when
designing membrane

structures.
Experience in

working with 3D
CAD software is
assumed as well.

chapter 2 reflects my motivation to tackle the software devel-
opment project and outlines the workflows that are intended to be
supported. It also includes an overview of systems available on the
market and the advantages expected from the implemented solution.

chapter 3 is focused on the use cases covered and key concepts
and algorithms implemented. The system’s design is outlined on an
appropriate level.

chapter 4 explains the elements provided on the graphical user
interface of Grasshopper R© to support in a flexible way all process
steps from form finding to cutting pattern generation.

chapter 5 proofs that the system is working and can be used for
design and analysis of membrane structures.

chapter 6 assesses the results and identifies possibilities for further
development.

1 Parametric Membrane Load Analysis



2 M E M B R A N E S O F T W A R E

We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

A programmer who subconsciously views himself as an artist
will enjoy what he does and will do it better.

— Donald E. Knuth [11]

2.1 background and personal needs

From my first study I have a degree in computer science and after
a few years in the profession, I later trained to become a sail maker.
Currently I am self employed and am mainly building shade sails and
smaller, temporary membranes.

From my work with membranes grew the need for a software which
supports me in this field. Frequently I used a free version of Formfinder
V3.5.1[7] for form finding and shade analysis. By modeling the mem-
brane corners as Tennect[2], it was even possible to get appropriate
force vectors. For larger projects I am working with specialized engi-
neers as subcontractors to do structural analysis and patterning by
using their own software.

One of my reasons to join the studies was to learn how membrane
software work, gain experience using such software and to get a
good understanding of the common functional requirements for such
software to do a proper evaluation. After all membrane software are
not low-priced and if one decides to invest in such a product and
accompanying training, the decision should be well-founded.

In March 2017 I started the master studies in Membrane Structures
at Anhalt University of Applied Sciences. IMS[9] students are eligi-
ble to use a student version of the membrane software ixCube[30]
for their studies. Unfortunately this software does not run error free
on my computer (Microsoft Windows 10 on Apple Mac Book Pro
using Parallels Desktop V14 for virtualization) and fellow students
have reported similar issues while using ixCube on computers run-
ning Microsoft Windows as primary operating system. Unpredictable
crashes are frequent and attempting to load an existing project results
in errors. Furthermore the elements of the user interface do not adopt

3



4 membrane software

well to displays with high DPI1, at least I am not able to recognize /
distinguish the different icons unless I reduce the screen resolution.
Reducing the screen resolution to use a (not especially cheap) CAD
software is a contradiction in terms. I have decided not to invest in
different computer hardware just to run this program.

Some lecturers of the study programme, especially

• Prof. Dr. Günther Filz for CM1 Architecture

• Prof. Dr. Kai-Uwe Bletzinger for CM2 Membrane Programs /
Numerical Theorie

• Dr. Gregor Grunwald for CM3 Structural Design and Detail

• Prof. Dr. Lars Schiemann for CM5 Structural Design Concepts
(Dimensioning)

• Dr. Switbert Greiner and Dipl.-Ing. Alfred Rein for OM4 Foldable
and Umbrellas

encouraged us to use generative algorithms to explore new shapes for
our assignments. They in particular mentioned Grasshopper R©[19], a
graphical algorithm editor tightly integrated with Rhino’s 3-D model-
ing tools.

Peter Novýsedlák held his Master Thesis presentation Tensile Struc-
tures – Numerical Design Techniques [15] at the IMS Institute[9] in March
2017. Afterwards we got into conversation and the idea arose that I
could take Peter’s work as a foundation stone to develop a software
for parametric design of membranes based on Grasshopper R©. First
just to do some simple form finding, but later extendable also to do
structural analysis and patterning. Both of the latter are now included
as well, to a certain extent.

This project was started out of personal interests and needs. I saw
it as a challenge to implement it and last but not least it is about the
learning experience. Commercial aspects were not in the foreground.
A lot of time was invested and more than 12’000 lines of source code
came together.

2.2 market overview

Over the past years I have come across several commercially or even
free membrane software. I usually had a look at them, tried to get
a demo license and did some evaluation testing. Since this mostly
happened before I was even thinking of ever writing a master thesis
on this topic, the trials and examinations were not done in a very
scientific way but rather driven by the projects I was working on at
this time.

1 Dots Per Inch



2.2 market overview 5

In this sense, the following summary should be understood as a non-
exhaustive overview of membrane software currently on the market
accompanied with some thoughts and insights dated to the time when
I used the software. These findings can be 5 years old and facts may
have changed in the meantime. The list is in alphabetical order.

• Carat++ [23]: A finite element program for simulation, structural
optimization and form finding developed at TU Munich. Carat++
is used as the backend for Kiwi3d (see below).

• COMPAS[26]: Just very recently discovered open-source, Python-
based computational framework for collaboration and research
in architecture, engineering and digital fabrication.

• Dlubal [5]: Dlubal Software is well established on the market
for structural engineering software. Recent addition to support
membranes.

• Easy [25]: Has been on the market for ages. Software is divided
into several moduels which interact based on input and output
files. This allows for some flexibility to customize the workflows.

• ExactFlat [6]: 3D to 2D digital patterning and nesting.

• Formfinder [7]: Well knows software for form finding. Underly-
ing algorithms are based on EASY (see above).

• ixCube [30]: See comments in 2.1

• K3 Tent [10]: Just recently discovered, company based in Russia.

• Kangaroo [17]: Kangaroo is an interactive physics/constraint
solver and Grasshopper plugin for designers.

• Karamba [18]: Karamba3D is a parametric structural engineering
tool which provides accurate analysis of spatial trusses, frames
and shells.

• Kiwi3D [24]: A recent development based on Rhino / Grasshop-
per. Meshfree isogeometric FE analysis. Uses Carat++ as solver.

• membranes24 [14]: Once seemed as an interesting project to me,
but website is no longer available, latest activity on Twitter dates
back to 2013.

• Membranedetail [13]: Grasshopper scripts for detailing of mem-
branes. Good option to integrate with PAMELA.

• MPanel [12]: Based on Rhino, set of products targeting different
customer segments (I like the approach).



6 membrane software

• NDN Membrane [1]: Full FEM solver targeted on membrnae
structures. Includes patterning etc. Looked very promising, but
when I wanted to trial, the supported operating systems were
already outdated. Now website seems to be hacked or offline.

• RhinoMembrane [4]: Grasshopper plugin to interface with ix-
Cube (see above).

• WinTess [29]: Just recently discovered, company based in Turkey,
documentation found on web used as inspiration to implement
wind cp values.

In addition to commercially or freely available software some com-
panies have developed their own solutions.

2.2.1 Software Evaluation Criteria

As mentioned in 2.1, no detailed evaluation of a software was done.
In order to evaluate a software, various criteria would have to be
considered. The most important ones are:

• Functionality required / offered and how the current / envi-
sioned workflows are supported

• Interfaces / compatibility with other software in use

• Pricing / total cost of ownership (especially initial investment
for hardware and software, recurring license fees, training of
employees, support and maintenance)

• Quality / references

• Hardware and software requirements

• Support and documentation (availability, languages, costs)

• Options and costs for trial. At the end, the users must be com-
fortable using the software.

2.3 requirements for a parametric membrane
software

As described in 2.1 the development was started as a personal chal-
lenge and because I think it’s an excellent topic for a master thesis in
the field of membrane structures. There has been no written require-
ments specification prior to starting the development. This section
summarizes the requirements for a membrane software based on my
own requirements and activities in connection with the implemen-
tation of membrane projects as a self employed owner of a small



2.3 requirements for a parametric membrane software 7

company. Other, especially larger companies may have different re-
quirements.

My current membrane projects are all based on fabrics, therefore
ETFE is not in the focus. But future use of ETFE should not be prevented.

2.3.1 Integrated System

Interfaces between different computer programs are always a possible
source for errors and incompatibilities. In addition, manual steps are
often necessary to export the data from one program and import them
into the next program with the danger of using the wrong version of
the file. Personally, I prefer a system in which all necessary tasks can
be solved rather than a combination of several specialized applications.

Based on this I expect from a membrane software at least to support
the steps of the whole design process as described in the following sec-
tions. No switching between different applications shall be required.

2.3.2 Form Finding

Form Finding must support two modes, sketching and accurate form
finding:

• For sketching a quick and easy way to define a membrane outline
which is instantly form found / relaxed is needed. Sketching is
an iterative process, it must be possible to take advantage of the
parametric environment and show how the form varies when
parameters are changed (live preview).

• Accurate form finding is needed for subsequent structural anal-
ysis and patterning.

From my daily work, the most important evaluations after form
finding are:

• Shade analysis

• Water drainage and ponding analysis

2.3.3 Structural Analysis

Common functionality of software used for structural analysis is also
relevant for membrane structures. Among others this includes:

• comfortable definition of load cases (especially wind and snow)

• evaluation of stresses

• evaluation of displacements for the membrane under load con-
ditions



8 membrane software

2.3.4 Patterning

Cutting pattern generation should be based on geodesic lines which
will lead to most economic material use. An adequate 3D to 2D
flattening mechanism must deliver better results than standard Rhino
command Squash.

Assessment criteria for the accuracy of the flattening process in-
clude:

• change of surface area (ideally 0.0)

• change of edge length for each edge (ideally 0.0)

2.3.5 Detailing / Shop Drawings

For the detailed design it should be possible to automatically gen-
erate some standard elements like ear plates, clamping etc. based
on the current model data (dimensions, force vectors) and specific
parameters.

2.3.6 Visualization

The FEM model used for analysis is based on work point and center-
line geometry. When cross section and material information is applied
to the different members it should be possible to automatically gener-
ate basic 3D visualizations.

The visualizations can not only be used to check the model against
colliding members but also as a sales instrument. Therefore it’s neces-
sary that visualizations can be generated at each stage in the workflow,
already starting with sketching.

2.3.7 Bill of Material / Cost Estimation

From the FEM model that was used for analysis it should be possible
to derive an initial bill of material which can be used for rough cost
estimations.



3 C O N C E P T S A N D
I M P L E M E N TAT I O N

The psychological profiling [of a programmer] is mostly the ability to shift
levels of abstraction, from low level to high level. To see something in the

small and to see something in the large.

— Donald E. Knuth

3.1 introduction

My motivation to write the PAMELA software library and a broad
overview of commercially available membrane software are presented
in chapter 2. The focus of this chapter is on the development of my
own software library, the architecture of the system, the methodologies
and key concepts applied and the algorithms implemented.

The focus is on the use cases for membrane design and visualization
of the results from structural analysis, aspects of software engineering
are treated and documented only on a very high level.

3.2 the grasshopper R© plugin

Grasshopper R© is a visual programming language and environment
that runs within the Rhinoceros 3D CAD application. Programs are
created by dragging components onto a canvas. The outputs of these
components are then connected to the inputs of subsequent components.
[28].

Figure 3.1 shows the Grasshopper R© main window. Standard com-
ponents are usually dedicated to a very specific functionality which
makes the application very versatile but on the other hand quickly
leads to large number of components on the canvas. A large number of
components results in many connecting wires and it’s easy to lose the
overview. Grasshopper R© documents are often referred to as Spaghetti.
The key concepts developed and implemented to avoid "Spaghetti" as
good as possible are described in section 3.6.

From within a Grasshopper R© definition it’s possible to reference
items of an existing Rhino drawing (lines, points etc.) as well as
previewing resulting geometries from Grasshopper R©directly in the
Rhino drawing. As long as geometries are in preview mode, they can
be changed without affecting the real drawing. With the bake command
it’s finally possible to create the previewed geometries in the drawing.

9



10 concepts and implementation

Figure 3.1: Grasshopper R© main window (source: www.wikipwdia.org)

3.3 runtime environment

Figure 3.2 shows the different layers and technologies Rhino is built
of. All .NET plugins that ship with Rhino for Windows and Rhino
for Mac, including the Python interpreter, reference RhinoCommon.
The layer RhinoCommon represents the API1 that can be accessed by
3rd party plugins to use native Rhino functionality. 3rd party plugins
reside in the layer .NET Plugins.

As programming languages, especially C# and Python are sup-
ported. I have chosen to use C# and not Python as programming
language for several reasons:

• Python is an interpreted language, from a precompiled language
like C# better performance can be expected.

• C# is closely related to the programming languages C++ and
also Java, which I both know from past projects.

• For Python different distributions (flavors) exist. 3rd party li-
braries sometimes support only certain flavors and might not be
guaranteed to be compatible with Grasshopper. As an example,
Matlab offers a Python API, but this API is not compatible with
the Python supported by Rhino Grasshopper.

1 Application Programming Interface



3.4 module architecture 11

Figure 3.2: Rhino technology overview (source: developer.rhino3d.com)

When using RhinoCommon as the API to interface Rhino and Grasshopper R©,
chances are good that the custom plugin developed is compatible with
Rhino on Windows as well as Rhino on OS X (Apple Macintosh),
although executables for each operating system need to be compiled
individually. Unfortunately the development and release schedule for
Rhino for Windows and Rhino for Macintosh are not synchronized.
On Windows, the most current release is Rhino 6. On OS X, the current
version is 5.

Special care needs to be taken when implementing GUI2 extensions.
It’s recommended to use the Eto framework for this kind of extensions.
On OS X, Eto has been supported from the beginning and therefor is
included in the current release (5). On Windows, Eto support starts
with Rhino release 6.

Current development is based on and compiled against Rhino 5 for
Windows and uses GUI extensions as little as possible, mainly only
for popup menus.

3.4 module architecture

One of the goals of the development is to keep things as simple and
universal as possible. For the deployment of PAMELA currently only
one file called Pamela.gha needs to be copied into the libraries folder
of Grasshopper R© and the functionality can be used.

Internally, a layered approach has been applied. Figure 3.3 shows
the internal structure of the library. All the core algorithms were
implemented without any dependencies to the representation layer to
make them as universal as possible. The core algorithms only relay on
RhinoCommon and other standard libraries. All components which
depend on the Grasshopper user interface are placed in the layer

2 Graphical User Interface



12 concepts and implementation

Grasshopper Components. This layer depends on the core algorithm,
RhinoCommon and 3rd party libraries as well.

Figure 3.3: internal structure

3.5 tools and development environment

For the development of the PAMELA software library the following
tools are used:

• Visual Studio 2017 - development environment for C#. Program-
ming, compiling, debugging, buliding the library.

• GIT - revision control system for source code as well as LaTex
documentation

• Visual Studio Code on OS X - LaTex Workshop extension as text
processor for documentation (especially this Thesis)

• Trello - web based project management tool used to track issues
(errors) as well as ideas / wish list for future development.

Figure 3.4: Trello project management tool



3.6 behavioral key concepts 13

Figure 3.4 shows a screenshot of the project management tool Trello.
For the project a separate board was created with lists to group the
issues. Within the lists separate cards are created for each Grasshopper
components or topic.

3.6 behavioral key concepts

The usability of a software is the controlled aspect of user experience
design that ensures the end-user doesn’t strain or encounter problems
with the use of a product or website’s user interface. The first goal of
usability is efficiency and effectiveness while aesthetic value comes
after a product has proven to be usable. [3]

Figure 3.5 shows the properties affecting software usability.

Figure 3.5: software usability(source: blog.rocketsoftware.com)

If a Grasshopper R© document is perceived as Spaghetti (see section
3.2), this obviously indicates that usability has to be classified as
inadequate.

Great care has been taken to increase the usability of PAMELA com-
ponents mainly by introducing Smart Component Groups and extensive
use of Message Bubbles. The two concepts are described in more detail
below.

3.6.1 Smart Component Groups

Figure 3.6 shows the Ridge/Valley Cable component as an example of
a Smart Component Group. Please note, that all items visible in the
picture have been instantiated and placed by the user with a single
click.

The main aspects of smart component groups are:

• In addition to the component incorporating the main function-
ality (algorithm), a set of input parameters and additional com-
ponents is instantiated automatically as well. This significantly
reduces the number of required clicks to build a solution.



14 concepts and implementation

Figure 3.6: Ridge/Valley cable component as example for smart component
group

• A tidy look is achieved by automatically placing and aligning
all related components.

• Geometry preview is turned on or off for each component or
parameter based on the context it is used.

• The components are automatically grouped and the group is
labelled according to the main component of the group using
increased font size. This allows to keep a better overview in
a large definition. The labels stay recognizable even when the
document zoom is reduced.

• When placement of the group is changed on the document
canvas (drag and drop of blue area), all components are moved
with the group.

• The input parameters are automatically configured to contain
meaningful default values and settings.

• Common functionality is reused. As shown by this example, a
ridge or valley cable will always require settings common to any
cables in a valid model, the components of a 1D Element (see
4.5.1) are automatically included.

3.6.1.1

Example default values: The Grasshopper R© default settings for a
number slider are a range from 0.0 to 1.0 with 3 decimal places and
an initial value of 0.250. For the Ridge/Valley Cable component the
number sliders to select start and endpoint have been configured to
represent integer values > 0 and the maximum value is set according
to the length of the list of supplied points. As default, the first point
in the list is selected. RhinoCommon uses 0 based indexing, therefore
the first position corresponds with index 0.



3.6 behavioral key concepts 15

3.6.1.2 Advantages

By using Smart Component Groups as opposed to implementing cus-
tom GUI extensions the full flexibility and modularity of the Grasshop-
per definition remains preserved. The user can individually replace
or modify any component or parameter according to his / her needs.
Finally, it is this modularity that makes Grasshopper so powerful and
universally applicable.

3.6.2 Message Bubbles

Grasshopper R© components allow to display a custom message in a
message bubble located at the bottom end of the component. This
functionalty is hardly used by any standard component. The message
bubbles only appear at a certain zoom level. When zooming out to
get a better overview of the whole definition, the message bubbles
disappear automatically.

Message bubbles are used extensively within PAMELA software pack-
age to give further indications regarding the current state of the object
by means of:

• the current number of objects contained

• is the object valid or not

• progress information, especially for Solvers (see 4.7)

• tolerance required / achieved

• values of selected properties

• etc.

Figure 3.7 shows the Model Builder component (see 4.5.4) and its
message bubble after placement. Since no inputs have been provided,
the assembled model does not contain any elements (all counts are
0) and as a consequence the model is neither ready for Force Density
Method nor for Finite Element Method processing.

3.6.3 Appearance of Smart Components

Figure 3.8 shows an overview of a detail of a Grasshopper definition
with reduced zoom factor. When zooming out, the message bubbles
automatically disappear. The text fields used to label the groups on
the other hand remain clearly visible. This behavior greatly increases
readability of a PAMELA definition.



16 concepts and implementation

Figure 3.7: Model Builder component with message bubble

Figure 3.8: appearance of smart component groups

3.6.4 Component State

Figure 3.9 shows how components are colored according to their state:

• Components which have all necessary data to calculate a correct
result are shown grey.

• Components are drawn orange when at least one required input
parameter failed to collect data or incorrect or contradictory data
is provided and execution is prevented.

• If the input data leads to an incorrect result, the component is
colored red.



3.7 main workflows 17

This concept is common and supported by Grasshopper, but it is
by no means enforced by default. Therefore I have taken great care to
ensure all components are always displayed according to their state.

Figure 3.9: colors indicating the components state

3.6.5 Unified Icons

A picture is worth more than a thousand words - a well-known saying
that is implemented in computer programs by using Icons to increase
the usability. A good icon must be easily recognizable ant therefor I
paid attention to unify the appearance of the different icons as good
as possible. This was not always easy since the typical icon is based
on a bitmap with the size 24x24 dots and vector graphics are currently
not supported.

Figure 3.10 shows some of the icons developed. In chapter 4 all
icons are shown as part of the components description.

Figure 3.10: examples of icons

3.7 main workflows

The generic behavior of a computer program can be reduced to a pro-
cessing step which takes some input and creates some kind of output.
For this to work, either the processing needs to be adopted to the
input or the input must be structured according to the requirements
from processing. Figure 3.11 shows the generic behavior of a software.

Figure 3.11: generic behavior of computer programs

In the case of PAMELA one of the main processing steps is Form
Finding of the membrane or cable net. Form finding is executed as



18 concepts and implementation

part of the Sketching workflow as well as of the Engineering workflow.
Both workflows are described in more detail in the next sections.

3.7.1 Workflow for Sketching

Sketching is the Artist’s (or Architect’s) tool to define the overall visual
appearance of the membrane structure, especially the membrane itself.
A quick and easy way to define a membrane outline which is instantly
form found / relaxed is needed. Formfinder [7] works well for this
and I used the behavior for inspiration. The form found shape must
not be 100% accurate, specific material properties can be ignored but
prestress ratio must be considered. Sketching is an iterative process.
It’s important to get a result quickly and to be able to judge the
appearance and easily adjust it. Figure 3.12 shows the main steps of
the sketching workflow.

Figure 3.12: Sketching workflow

Several methods have been implemented to accomplish the task
of form finding, they are described in 3.10 in more detail. The Force
Density Method Solver (see 4.46) is ideally suited for sketching.

3.7.2 Workflow for Engineering

The Engineering workflow is based on the output of the sketching
workflow. It actually incorporates the steps of the sketching workflow
into the Model Definition step. The visual appearance of the resulting
shape is the main assessment criteria in the sketching workflow. In the
engineering workflow, this review must cover additional aspects and
criteria, including:

• water drainage and ponding

• curvature analysis

• aerodynamic bahaviour

• air ventilation

• shade analysis

• deflection / displacement when loads are applied

More details are added to the model to complete the specification
which then can be used to do proper form finding, structural analysis



3.8 model definition 19

and to use the output for patterning and other production related
steps. Figure 3.13 shows the main steps of the engineering workflow.

Figure 3.13: Engineering workflow

The workflow starts with the definition of the model to assemble the
input data. Once Form Finding is executed the next step is Structural
Analysis considering the different Load Case definitions. The Results
Visualization is mainly about visualizing stresses and forces, displace-
ments, deflections and resulting shapes. As input for Patterning, again
the result of Form Finding is used.

adaptability As already mentioned in chapter 1, the different logic
components implemented can be arranged, connected and activated
based on the current needs and ideas to best support the workflow of
choice. For a cable net structure for example patterning is not required
and there is no need to analyze ponding behavior since this is usually
not an issue.

3.8 model definition

In the case of PAMELA the key algorithm used for form finding as
well as structural analysis is the implementation of the Finite Element
Method (FEM3) as described in detail by Peter Novýsedlák in his
Master Thesis [15]. The data assembled in the model definition must
suit the needs of this algorithm.

3.8.1 High Level Abstraction

On a very high level of abstraction the input data required for FEM

can be split into

• nodes (work points)

• system lines (centerline geometry)

• triangular polylines (mesh faces)

• boundary conditions (behavioral restrictions)

3 Finite Element Method



20 concepts and implementation

• internal forces (prestress)

• external forces (loads)

3.8.2 Conceptual Elements

This section lists the main conceptual elements used to define a model.
A complete overview and further explanations regarding all compo-
nents implemented is presented in chapter 4, and some use cases and
scenarios are presented in chapter 5.

The main elements required to model a membrane structure:

• The membrane itself is treated as so called 2D Element since the
fabric is usually very thin compared to length and width and
the thickness is given by the fabric. Membranes are drawn by
means of meshes, triangular meshes in particular. A detailed
description can be found in 4.5.2.

• Cables, trusses and beams are modeled as 1D Elements having a
start and an endpoint corresponding with the centerline geome-
try. 1D Elements are drawn by lines, polylines are automatically
split into segments. A detailed description can be found in 4.5.1.

• Fixation points are modeled as Constraints, called Supports. If
as an example a membrane is fixed by a Keder profile, a polyline
can be used to define all mesh vertices used as fixation points. A
detailed description can be found in 4.5.3.

Figure 3.14 shows the main elements required as listed above.

Figure 3.14: model definition

As an example figure 3.15 shows a geometry where all the main
elements are labelled according to their type.



3.9 mesh definition and handling 21

Figure 3.15: elements of a geometry

assembling the model The ModelBuilder Component (see 4.5.4)
is used to correctly assemble and validate the model. For instance
duplicate definitions of supports or other elements are ignored /
unified.

Figure 3.16 shows the Model Builder Component in use.

Figure 3.16: Model Builder Component in use

3.9 mesh definition and handling

The mesh used to model the membrane element plays a very central
role in the implementation. Mesh creation must be easy, intuitive and
fast to support sketching (see 3.7.1), on the other hand is the geometry
of the mesh directly used for form finding, structural analysis and



22 concepts and implementation

patterning. Opposed to some other membrane software which create
intermediate surfaces based on the mesh to do patterning, in PAMELA

the original mesh is directly used for patterning and flattening as well.

3.9.1 Mesh Creation

The algorithms of PAMELA are based on triangular meshes. Quadran-
gular meshes are currently not supported, but every quadrangular
mesh can easily be transformed into a triangular mesh by spitting
the quadrangular mesh faces along one of the diagonals. Splitting a
face along the shorter diagonal usually leads to triangular mesh faces
with better aspect ratios than if the long diagonal is used for splitting.
Therefore, splitting along the short diagonal is preferred. The triangu-
lar meshes do not necessarily need to consist of faces of regular size
or aspect ratio but (almost) equilateral mesh faces are advantageous.
The process of creating a mesh for three dimensional membranes can
become a challenge itself and Grasshopper offers only very limited
support. The built in functions work best on flat surfaces. Not really
the case for three dimensional membranes. Therefore distinguished
meshing components have been developed:

• Edge Mesher: This component can be used to create a mesh for
a membrane characterized by a single closed edge line, like
traditional hypars etc. The membrane may not contain any holes.
This mesher works directly based on the supplied edge curve,
no intermediate surface is required for the meshing process. For
more details on this component see section 4.3.3

• Brep Mesher: When a membrane contains one or more holes (like
typical cone structures) an intermediate surface needs to be
created first. This surface then can be used as input for the so
called Brep Mesher. BREP stands for Boundary Representation
and is a term commonly used in CAD programs. For more details
on this component see section 4.3.2

3.9.2 Adoption of Mesh Size

Modern desktop and laptop computers have CPU’s with multiple cores
which allow parallel execution of multiple sub-tasks. This is called
multi-threading and thus, the computers are very powerful. But multi-
threading must be supported by the software used. The Grasshopper
plugin of Rhino 5 does not support or allow for any multi-threading
from within any code directly executed by a plugin. Rudimentary
support for multi-threading has been implemented in Grasshopper
shipping with Rhino version 6. The current development of PAMELA

is based on Rhino version 5 and therefore no multi-threading is sup-



3.10 form finding 23

ported and performance can become an issue for more complex struc-
tures when many iterations are needed to approximate a solution.

The performance requirements of FEM based computations increase
exponentially with the size of the FEM model: Each node is represented
by 6 DOF4. The stiffness matrix which is one of the core elements of the
FEM algorithm in turn consists of one row and one column for each
DOF. A problem statement with 10 nodes leads to a stiffness matrix of
the size 60 x 60 and therefore consists of 3’600 values. For a problem
statement with 100 nodes the stiffness matrix already contains 360’000

values.
Finer meshes definitely lead to more detailed and more accurate

results. But the main characteristics and behavior of a solution like
stress distribution and maximum stresses remain the same. My tests
based on various geometries like hypars have shown that the relevant
maximum values for stresses for example differ only minimal between
solutions with coarser or finer mesh for the same geometrical shape.

For sketching (see 3.7.1) a coarse mesh delivers the needed respon-
siveness with sufficient results accuracy.

3.9.3 Mesh Granularity – Impact on Accuracy of Results

The results shown in table 3.1 are based on the same geometry and
load cases but with different meshing parameters applied to the mem-
brane.

This example shows that a coarser mesh can be used to do prelimi-
nary dimensioning of a structure while the main characteristics remain
preserved. But the computation time is reduced massively. Breaking
down the computation time to the number of faces:

• coarser mesh: 4.5s / 143 faces = 0.03 s/face

• finer mesh: 339s / 684 faces = 0.5 s/face

Especially in a parametric environment like Rhino Grasshopper
where solutions are changed frequently to iteratively determine the
best solution, performance and responsiveness are key factors.

3.10 form finding

Form finding is a process to find the equilibrium state of a cable-
membrane structure at a given stress level and with specified boundary
conditions[15]. Form finding is used in the sketching workflow as well
as in the engineering workflow. Two methods have been implemented
to accomplish the task of form finding, the algorithms are based on
the work of Peter Novýsedlák[15]:

4 Degree of Freedom



24 concepts and implementation

finer mesh coarser mesh

379 vertices / 684 faces 88 vertices / 143 faces

339 seconds total computation
time for all load cases

4.5 seconds total computation
time for all load case

Table 3.1: Results comparison for different mesh sizes

• The Force Density Method Solver (see 4.46) is is a good choice
if only a membrane and its edge, ridge or valley cables and
their prestress ratio are considered. This solver needs only one
iteration to find a valid solution and is therefore very quick and
ideally suited for sketching.

• The Finite Element Method Solver (see 4.47) allows to select the
desired level of accuracy and therefore usually needs multiple
iterations to determine the solution. Furthermore it requires ma-
terial properties to be specified and therefore it is more common
to use it in the engineering workflow and not in the sketching
workflow.



3.10 form finding 25

For best accuracy, form finding must consider self-weight and pre-
stress and therefore also material properties and warp orientation of
the fabric.

3.10.1 Warp Orientation

For membrane materials with an anisotoropic behavior, which implies
having different mechanical or physical properties when measured
in the different axes, the warp orientation must be considered in the
engineering workflow and as a result also in the whole production
process.

In the Finite Element Method the orientation of each mesh face
(triangle) regarding warp direction must be known to properly deter-
mine it’s behavior. The implemented and for membrane software very
common approach do determine warp direction for each mesh face is
to define warp by means of a single orientation vector for the whole
membrane. This vector is then used to create a plane to project the
membrane onto and from this projection, the warp orientation is deter-
mined for all areas of the membrane. For cone type structures, usually
the Z-axis is used as warp orientation to emulate warp running from
bottom boundary to top boundary of the membrane.

3.10.2 Limitations of Projecting Warp Direction

The approach described regarding warp orientation works especially
for rather flat membranes. How about twisted structures as shown
in figure 3.17? The red line denotes the warp direction and when
projected to a plane, the projected direction changes considerably,
a uniform direction cannot be determined. If this structure is form
found with unequal prestress for warp and weft and a traditional
approach of projecting a uniform warp direction is used, the result
can not be accurate.

Figure 3.17: warp on twisted membrane

Another aspect most membrane software I trialed seem to ignore
at the stage of form finding is the seam layout. To avoid wrinkles
along the seams, the seams need to be aligned in a way that the



26 concepts and implementation

angle between the cutting line and warp are (almost) the same on
both adjacent panels. To optimize this, it must be possible to define
warp orientation on a per panel basis, especially if the prestress ratio
between warp and weft shall be different than 1.0. Therefore, not
considering the panels and seam layout at this step leads to less
accurate results.

The two aspects mentioned in this section require further research
and investigations. Most likely this topic could be used as subject for
a Masters-Thesis by itself.

3.10.3 Considering Corner Connection Details for Form Finding

Often corner plates are ignored during form finding and added later.
As a result, the membrane is modelled with pointy corners and cut-
backs for corner plates are defined later. This implies, that each corner
plate is specified and manufactured individually according to the angle
of the membrane. Especially for small or medium sized membranes,
it can be more economic to create a set of standard corner plates and
reuse them in multiple projects.

Figure 3.18: generic corner plate

Figure 3.18 shows the generic cornerplate for smaller membranes
I developed in cooperation with the danish company BlueWave, a
manufacturer of sailboat hardware. Working with standardized corner
plates requires that their dimensions and mechanical behavior are
already included in the overall model definition used for form finding
since the corners of the mesh are not pointy any more. This compli-
cates the mesh generation and especially referencing of cornerpoints
(now there are two points for each physical corner). The basic func-
tionality to add such a corner plate is implemented by the Membrane
Pimper Component (see 4.10.1). Since it’s functionality is rather on a
prototyping level it has been excluded from the examples shown in
this document.



3.11 load cases 27

3.11 load cases

For structural analysis (3.12) the same FEM algorithm is used as for
form finding, but executed with different parameters and especially
applying external loads.

The following loads are supported:

• Self-weight (automatically calculated based on material proper-
ties and cross section specified)

• Prestress (warp / weft)

• Wind (external) pressure, direction, for cp values see 3.11.1

• Snow load, for roof shape coefficients see 3.11.2

• Internal pressure (important for ETFE cushions)

• Point loads, closes point of the model will be selected

An additional factor can be specified for each load. Several compo-
nents have been developed to make it easier to select wind and snow
loads in general or based on Swiss or German codes. Section 4.6 gives
an overview of components that can be used to define load cases.

3.11.1 Wind Pressure Coefficients

Correct determination of wind pressure coefficients (cp values) for
membrane structures is very delicate. In the national codes exist no
detailed guidelines which are applicable to membrane structures of
any shape. The most reliable way to determine aerodynamic behavior
of a membrane structure is by means of wind tunnel testing. But
usually this is not applicable and too expensive. A common approach
is to let the user assign different cp values to selected areas of the
membrane.

In PAMELA a more versatile and comfortable approach has been im-
plemented as standard: For each mesh face the orientation is evaluated
based on the angle between the surface normal and the defined wind
direction. Cp values are assigned according to the angles in steps of 10

degrees. Positive values are used for wind pressure, negative values
for wind suction.

The wind cp determination is implemented as Strategy Pattern[8]
and therefore is exchangeable by definition. The default values can
also be changed manually if other values shall be used.

Table 3.2 lists the cp values used by default.



28 concepts and implementation

angle cp angle cp angle cp

0 -0.4 70 -1.0 130 0.6

10 -0.4 80 -0.9 140 0.8

20 -0.6 90 -0.8 150 0.8

30 -0.8 100 -0.2 160 0.8

40 -0.8 110 0.2 170 0.8

50 -0.8 120 0.4 180 0.8

60 -0.9

Table 3.2: default cp values

Working with different cp values results in different external loads
on the membrane which in turn affects the resulting membrane
stresses and shape. This needs to be considered when comparing
the results of different membrane software.

3.11.2 Snow Roof Shape Coefficients

For snow loads an algorithm similar to determining wind pressure
coefficients has been implemented to determine the roof shape coeffi-
cients based on the pitch (0 degrees means horizontal). Table 3.3 lists
the roof shape coefficients used by default.

pitch coefficient

0 to 30 degrees 1.0 (no snow drift)

30 to 60 degrees 0.8 to 0.0, interpolated

60 to 90 degrees 0.0 (total snow drift)

Table 3.3: default roof shape coefficients

The value of 1.0. for the range from 0 to 30 degrees is according to
the Swiss code SIA 261[20] which foresees a value in the range from
0.8 to 1.0. The German code foresees a value of 0.8. I prefer to use 1.0
since in the flat areas not only snow drift but also snow deposition
from steeper sections can appear.

The determination of roof shape coefficients is implemented as
Strategy Pattern[8] and therefore is exchangeable by definition. The
default values can also be changed manually if other values shall be
used (see 4.6.7).



3.12 structural analysis 29

3.12 structural analysis

For structural analysis the material properties are taken into account
as well as load cases. Each load case (reflecting a combination of
different loads) is treated individually, a dedicated copy of the model
is created to assign the results of the FEM computations.

Figure 3.19 shows the structural analysis in its context.

Figure 3.19: context of structural analysis

3.12.1 Finite Element Method (FEM)

The Finite Element Method is described in detail by [15]. Figure 3.20

gives a braod overview of the algorithm implemented in PAMELA. The
loop is executed until either one of the following, user defined criteria
is met:

• the precision is < than the required precision

• the maximum number of iterations is reached

Figure 3.20: FEM algorithm



30 concepts and implementation

object oriented programming Since the used programming
language C# is an object oriented programming language the corre-
sponding concepts can be used and implemented. Figure 3.21 shows
the UML5 diagram for the FEM datamodel implemented. The FEM
Datamodel contains a list of FEM Elements. FEM Element is imple-
mented as an abstract class and derived classes are forced to imple-
ment the ComputeStiffness() method. This allows each type of fem
object to transparently supply an individual implementations of the
ComputeStiffness() method use in the FEM algorithm.

Figure 3.21: Classdiagram for FEM datamodel

3.12.2 Wrinkling Check

Membranes and cables can only take tensile forces and no compression.
Therefore a wrinkling check has been implemented for these members.
The checks are executed in each iteration of the solving algorithm.
If wrinkling occurs, most likely the solution will not converge. To

5 Unified Modeling Language



3.12 structural analysis 31

avoid wrinkling of a given geometry, the prestress must be increased.
In combination with the load definitions a prestress factor can be
set manually which is applied to all membrane and cable elements
consistently. Higher prestress requires a more rigid structure which is
usually more expensive and less manageable. Therefore the minimal
prestress factor working for all load cases needs to be elaborated
manually using several iterations.

One of the findings from working on the assignments from CM6
Studio Detailing is that the implemented wrinkling check is very sensi-
tive. Especially models with different prestress for warp and weft are
sometimes difficult to find a converging solution. Further investiga-
tions in this area are work in progress.

To turn the wrinkling check off, the modeFactor can be set to a value
<1.0 as for example 0.99999

3.12.3 Enveloped Results
Enveloped results are
only computed when
multiple load cases
are applied an
calculated one after
the other.

To correctly dimension a structure, the worst case scenario of all appli-
cable load cases must be considered. This is achieved by calculating
enveloped results. Therefore, the following algorithm is implemented
in the solver components:

1. Two additional result set are created, one for the minimum
values, one for the maximum values.

2. For each result value (displacement, stress) the corresponding
min and max value of all result sets is determined and stored.

Figure 3.22 visualizes the algorithm applied to create the enveloped
results.

Figure 3.22: Enveloped Results

3.12.3.1 Definition of Minimum

For positive values, the minimum value is the one closest to 0. For
negative values, the most negative value is taken as the minimum. To
analyze forces the following logic must be considered:



32 concepts and implementation

• the biggest tensile force is stored in the result set representing
the max values

• the biggest compressive force (most negative) is stored in the
result set representing the min values

Figure 3.23 shows and instance of the PamSolver Component when
two load cases are applied. For each result set (including enveloped
results), an individual output parameter is created on the right hand
side of the component.

Figure 3.23: FEM Solver

3.12.4 Cascading Solvers

The modular approach of PAMELA allows to use several solvers in
parallel or in a row. Running solvers in parallel was very useful when
testing the implementation against the original Matlab codebase (see
5.2.5). But the usual case is to have solvers not in parallel but rather in
a series:

• the first Solver for form finding

• next one for Structural Analysis with self-weight and prestress.
The result will also be used for patterning.

• third solver for structural analysis applying all load cases

3.13 results visualization

Several dedicated components have been developed for results visual-
ization. As shown in figure 3.24, results can be of different nature:

• (changed) geometry



3.13 results visualization 33

• numerical values

• reactions like shade

Figure 3.24: result types in context

Different approaches to visualize the reults have been implemented
based on the nature of the data. These are outlined in the next sections.

3.13.1 Geometry Preview

Some components have a custom preview method implemented to
visualize the resulting geometries, usually based on the type of the
output parameter(s). Figure 3.25 (and 3.15 as well) show the preview
of the model after form finding:

• the mesh is shown in its final shape

• initial / original positions of 1D Elements are shown as dotted
lines.

• 1D Elements are drawn in different colors based on type

• Supports are drawn

Figure 3.25: preview of model



34 concepts and implementation

3.13.2 Colormaps to Visualize Numerical Values

A common approach to visualize numerical values is to use so called
colormaps. First the range of the values needs to be determined and
then each value a color from the colormap is assigned according to the
values position in the range. Colormaps are implemented for different
usages:

• coloring text labels used to represent the values. Therefore, each
value is drawn in the corresponding color. This is used when
axial forces of 1D Elements are visualized (see 4.8.5)

• coloring geometry objects, for example lines or cylinders drawn
in different colors

• drawing a mesh surface in so called false colors. Each vertex of
the mesh is colored according to the mapped value. To determine
the color of the surface area between the vertices, the values of
the veritces are interpolated. Figure 3.26 shows an example of
visualizing stresses for a mesh. The component 2D Results (see
4.8.8) offers a selection of different stresses or displacements to
be visualized either by means of a colored mesh surface or by
printing the numbers directly.

Figure 3.26: colormap applied to mesh values

3.13.3 Additional Visualizations for Values or Results

Most components dealing with the visualization of results are placed
in the Panel Views. Please refer to section (see 4.8) for a full overview.



3.14 patterning 35

3.13.3.1 Contour Lines

The Contour Lines Component (4.8.4) as shown in figure 3.27 draws a
variable number of contour lines on meshes or surfaces. This works
great to analyze the flow of water or areas where ponding could
become an issue.

Figure 3.27: Contourlines on mesh surface

3.13.3.2 Slope Analysis

The Mesh Slope Component (4.8.6) allows to analyze the slope of the
individual mesh faces. This can be convenient to estimate water flow,
exposure to certain loads etc.

3.13.3.3 Shade Analysis

For shade analysis no specific components have been developed yet
since some standard components provided by Grasshopper can be
used.

By developing some custom components for shade analysis of mem-
branes the usability of this analysis could be further improved.

3.14 patterning

Usually, the form finding of a tensile structure results in non-developable
surfaces. Therefore the surface can not be projected onto a plane ex-
plicitely, but has to be cut into several pieces, flattened and compen-
sated [15]. The mesh used to model the membrane takes a central
position also for the process of Patterning. The output mesh from anal-
ysis with self weight and applied prestress is used as starting point
for patterning, no new mesh is created.

Figure 3.28 shows the process which can be summarized as follows
(references to the corresponding components are given in brackets):

1. Determination of panel boundaries by geodesic lines (4.3.10)

2. Refinement of mesh along geodesic lines to create cutting lines
along internal mesh edges (4.11.2)



36 concepts and implementation

Figure 3.28: Patterning process

3. Split (cut) the mesh along the geodesic lines (4.11.3), label / mark
the resulting panels for later reference

4. Rotate the resulting panels (meshes sections) to make sure aver-
age of face normals is pointing in direction of Z-axis (prevents
panel from flipping upside down)

5. Flatten the panels from 3D to 2D surface, placed on XY plane
(4.11.1)

6. Spread / distribute panels in a meaningful order to avoid over-
lapping

7. Apply compensation to the individual panels

8. Add seam allowances

9. Check panel width against fabric width. If needed, adjust layout
defined in step 1 and repeat subsequent steps.

10. add markers, reference lines etc needed for production

3.14.1 Panel Boundaries

Only determination of panel boundaries is currently a mainly manual
process. For all the other steps mentioned, components have been
developed to assist and automate the process. References are listed
in brackets and figure 3.29 shows the corresponding Grasshopper
definition to create the geodesic lines and refine and split the mesh.

Figure 3.30 shows the result of the first task in the patterning process,
the determination of the panel boundaries. To achieve this result, the
following steps were executed:



3.14 patterning 37

Figure 3.29: Grasshopper definition for patterning

Figure 3.30: panel layout using geodesic lines

1. A geodesic line has been laid between corners 1 and 3 to create
the central seam.

2. A geodesic line (green) has been laid between corner 0 and its
closest point on the resulting geodesic line from the first step

3. The green geodesic has been split into segments with a length
of approximately 90% of fabric width (depends on panel length,
curvature etc.).

4. Temporary planes have been defined based on warp orientation
and tangents of the green line for each segment boundary

5. Geodesic lines have been laid between corresponding intersec-
tion points of the membrane edges with the temporary planes

These steps need to be adopted based on membrane shape and size,
fabric width and desired appearance of the overall seam layout.

3.14.2 Flattening

The algorithm implemented to flatten the panels is adopted to the
force density method used for form finding and is working directly
with the already existing meshes. This guarantees highest possible
accuracy. Not all surfaces are developable. Therefore the results of
the flattening process must be checked afterwards for accuracy. The
assessment criteria for the accuracy of the flattening process include:



38 concepts and implementation

• change of surface area (ideally 0.0)

• change of edge length for each edge (ideally 0.0)

Figure 3.31 shows the top view of 7 flattened panels of one half of a
membrane. After initial flattening, the panels have been oriented to
have warp direction aligned with the X-axis and to be nicely spaced
from each other. F£urthermore, the refinement of the mesh along the
cutting lines becomes clearly visible.

Figure 3.31: flattened and oriented 2D panels

3.14.3 Compensation

To activate prestress in the fabric of the installed membrane it is
necessary to change size of the panels according to material specific
compensation values. The key concept is to define compensation
values for each panel by area. With this approach an area can be
excluded from compensation in one or both directions, what in turn
makes decompensation needless.

1. A reference point is chosen. The reference point must be included
in the area of reduced / ignored compensation if such area is
defined.

2. For each mesh vertex on a naked edge of the panel the vector
specifing the vertices position relative to the reference point is
calculated.

3. The x and y components of the vector are multiplied with (1 -
compensationfactor) for the respective direction

4. The final positions for each vertice is calculated based on refer-
ence point + compensated vector



3.14 patterning 39

5. A closed polyline is drawn connecting all final positions.

Figure 3.32 shows the result of applying compensation values to
one of the panels.

Figure 3.32: detail of compensated panel

The functionality for compensation has only been protoyped so far
and is not yet included in the PAMELA library.

3.14.4 Seam Allowance

Cutting lines usually denote some kind of connection border. This can
be a seam between two lines (for example overlap) or connection to
Keder or cable pocket etc. Depending on connection type, material,
processing method (welding, sewing etc.) different seam allowance is
needed which needs to be respected and patterns adopted accordingly.
This part is work in progress and will be added to PAMELA once more
experience is gained. Nevertheless, some information regarding the
applicable algorithms is given in the following subsections.

3.14.4.1 Connection Seams

For connection seams, the panels can be modified according to the
following rules:

• 0.5 * seam width is added to all edges which are connection
seams. For a seam width of 50mm, a parallel curve with distance
25mm is drawn on the outside of the panel. This becomes the
cutting line.

• Based on the cutting line, a parallel curve with distance 50mm
is drawn on the inside of the panel. This is the marker line for
the seam overlap.

• The system line is divided into (a random number of) equal
length segments. For each segment a short marker perpendicular
to the system line is drawn as guiding line for the welding
process.



40 concepts and implementation

3.14.4.2 Edge Cable Pockets

Edge cables pockets are made out of 2 pieces, the membrane panel
with a certain allowance and an additional flap which is a mirrored
copy of the edge. The dimensions depend on the cable diameter. Figure
3.33 shows the principle. The reference is always the system line which
is located at the center of the cable.

Figure 3.33: measurements for cable pockets

According to Stranghoner [22], the angle alfa must not be larger
than 24 degrees, otherwise peeling may occur. A Microsoft Excel
spreadsheet has been created to calculate all necessary values based
on cable diameter and angle alfa. All numbers are rounded, seam
widths in steps of 10mm. The numbers from the table can be applied
to all edge cable pockets according to the cable size.

3.14.4.3 Ridge or Valley Cable Pockets

In the areas of ridge or valley cables, seam width is doubled. An
additional pocket is used to keep the cable(s) in place. Depending on
the curvature of the membrane, these pockets are optional. Figure 3.34

shows the principle to apply for ridge or valley cable pockets.

Figure 3.34: measurements for ridge or valley cable pockets

3.14.5 Checking Fabric Width

The oriented panels allow for a first check of the dimensions based on
system lines. Seam allowance needs to be added first to check total
width against fabric width. Figure 3.35 shows the dimensions of one
of the panels.



3.15 detailing and 3d visualization 41

Figure 3.35: dimensions of flattened and compensated panel

3.15 detailing and 3d visualization

For most structures, cables, shackles, turnbuckles etc need to be con-
nected to masts, beams or anchor plates. To accomodate this in a
standardized way, three main components have been developed:

• The Connector Plate is a fin or earplate to be welded on a
supporting structure like a mast or an anchot plate. The shape
is automatically optimized based on the force vector and base
plane. The dimensions as shown in figure3.36 are based on the
recommondations from Pfeifer for their system 860[16], although
different dimensions can be used without any problem.

• The rectangular and round anchorplates can be used in con-
junction with the connector plate or for other purposes. The
size, number of holes, diameters etc. are all variable and can be
specified by parameters.

Figure 3.36: Dimensions of connector plate[16]

The components listed above are described in more detail in section
4.9. Figure 3.37 shows the resulting visualizations based on these
components from their use for CM3 Structural Design. It’s worth to
note that these componets make available specific output parameters
for 3D drawings as well as for 2D drawings. This greatly simplifies
the task of creating shop drawings as well as 3D visualizations.



42 concepts and implementation

Figure 3.37: Visualizations of connector and anchor plates

3.15.1 Membranedetails

For corner details of a membrane, currently only the generic corner-
plate as mentioned in 3.10.3 has been developed. To model corner
details, clampings, mast structures, anchorages etc. Grasshopper tem-
plates are available from www.membranedetail.com[13]. Since these
definitions are all based on Grasshopper, they can be easily integrated.



4 U S E R I N T E R FA C E

Science is knowledge which we understand so well that we can teach it to a
computer; and if we don’t fully understand something, it is an art to deal

with it.

— Donald E. Knuth

Section 3.4 has shown that the Grasshopper plugin to Rhino3D CAD

system is used as the main runtime environment for all user inter-
actions. The User Interface of the PAMELA software library adds a set
of (currently) 80 components to the already existing Grasshopper
components and parameters.

This chapter serves as an overview and reference for the compre-
hensive set of Grasshopper Components developed for this project.
The corresponding Workflows and use cases from which the need to
develop the different components was derived are described in chapter
3. Usage examples can be found in chapter 5 where the system is "put
into action". Section 5.3 describes in detail the process of form-finding,
analysis and patterning for a hypar with ridge cable.

4.1 appearance in grasshopper

When a Grasshopper component is implemented, one needs to specify
a category and subcategory to determine the appearance in Grasshop-
per user interface. The category becomes the Tab and the subcategory
the Panel. Each tab can contain a collection of multiple panels. Pamela
is being used as the category (and therefore name of the tab) for all
components to make sure they are grouped together and can eas-
ily be identified. It would also be possible to insert the components
into other, already existing panels. Figure 4.1 shows the tab and all
associated panels in Grasshopper.

Figure 4.1: all panels in the tab Pamela

4.1.1 Panels and their Order

The order of the panels (subcategories) within a Grasshopper tab is
alphabetical and cannot be changed. When selecting the names for

43



44 user interface

the subcategories, care was taken to ensure that an alphabetical order
was created from left to right according to the workflow steps. To
support this an additional trick was used: for some groups the name
was prefixed with a space. In this way it is for example possible that
the group Solver appears before the group Detailing.Note: The order of

the subsequent
sections of this

chapter corresponds
with the

subcategories
(panels) in

Grasshopper and
therefore with the
appearance of the

components in
Grasshopper.

The following structure was implemented:

• Controls -> see section 4.2 for all components

• Design -> see section 4.3 for all components

• Material -> see section 4.4 for all components

• Model Definition -> see section 4.5 for all components

• Model Loads -> see section 4.6 for all components

• Solver -> see section 4.7 for all components

• Views -> see section 4.8 for all components

• Detailing -> see section 4.9 for all components

• Membrane -> see section 4.10 for all components

• Patterning -> see section 4.11 for all components

• Utility -> see section 4.12 for all components

4.1.2 Order within Panels

With an additional property called Exposure it’s possible to create
an additional hierarchical grouping within a panel. Every exposure
value ends up in a different panel section. However, within a section
(exposure) the order is alphabetical and there’s nothing one can do
about that. When selecting the values for the exposure properties, care
was taken to ensure that commonly used components appear first and
common workflow is supported in a top-down order. As an example
figure 4.2 shows the panel Design which is structured as follows:

• Create Links Component (-> see section 4.3.1) appears first, because
it can be used to model the connection points of a membrane
with the supporting structure (link cables, shackles, turnbuckles
etc) by means of line elements with usually fixed length.

• The next group contains the two components Brep Mesher (->
see section 4.3.2) and Edge Mssher (-> see section 4.3.3) which
can be used to create the mesh required to do form-finding for
membranes.



4.1 appearance in grasshopper 45

• Mesh Edges (-> see section 4.3.4), Ridge / Valley Cable (-> see sec-
tion 4.3.5) and Vertices on Curve (-> see section 4.3.6) components
are contained in the third group because they require a mesh
as input parameter and can be used to specify how the mem-
brane is held in place and tensioned by means of defining model
elements based on mesh vertices and mesh edges.

• The remaining two groups contain components to further modify
a mesh or find a path or geodesic line on the mesh surface.

Figure 4.2: order of the components in the panel Design

The same logic - top-down order based on workflow and frequency
of use - has been applied to all panels but is not further explained for
each panel.

4.1.3 Information provided

For each component in addition to a short overview and the listing
of all input and output parameters a screenshot is included which
shows how the component appears directly after its placement on the
Grasshopper document without any further modification / connection
to other components. Whenever it makes sense, default values are
assigned to the input parameters. As an example, the plane World.XY
is commonly used when a reference plane needs to be specified.

In section 3.6.4 the coloring of components according to their state
is described. It becomes obvious that not all components are in a valid
state right after placement and therefore some are shown orange and
some are shown grey. But initial state should never be error (red).



46 user interface

4.2 panel: controls

Figure 4.3 shows all icons of the components grouped under the panel
Controls

Figure 4.3: overview of panel Controls

4.2.1 Component: Direction (Pamela)

4.2.1.1 Synopsis

Icon

Purpose Definition of a vector to specify direction of wind,
warp etc. The output vector is unitized by default.
When enabled, a preview arrow is drawn in the view-
port with correct length and orientation and a text
label is placed along the arrow to indicate the pur-
pose of use.
Use the dropdown menus to change length, color etc.

Nickname Direction

Type Name Pamela.GH.Controls.Direction_Component

Location Controls

4.2.1.2 Input Parameters

ID Type Description

Reference Plane Reference plane for start point of vector
and rotation.

Direction Point Optional point for directional reference. If
not provided, the X-axis of the reference
plane is used.

Rotation Number Rotation around Z-axis in degrees.

Inclination Number Inclination from Z-axis in degrees.



4.2 panel: controls 47

4.2.1.3 Output Parameters

ID Type Description

Vector Vector Resulting vector considering all input parameters.
By default, output is unitized.

4.2.1.4 Menu items

The following component menu items exist in addition to the standard
drop down menu items:

• Label Text and Position

• Preview Color

• Length

• Thickness

4.2.1.5 Appearance

Figure 4.4 shows the component Direction (Pamela) and all embedded
components and parameters after placement on the Grasshopper
document. The components are automatically grouped and the group
is labelled accordingly.

Figure 4.4: Screenshot of Direction (Pamela)



48 user interface

4.2.2 Component: List Multi Selector (Pamela)

4.2.2.1 Synopsis

Icon

Purpose Easily select one or more items from a list through
the attached slider(s). Zoom-in to modify the number
of number sliders to select items.

Nickname Items

Type Name Pamela.GH.Controls.ItemMultiSelector_Component

Location Controls

4.2.2.2 Input Parameters

ID Type Description

List Generic Data List to select items from.

all Boolean On first output parameter ALL items of the
list are returned instead of only the selected
ones, therefore ignoring all other inputs and
bridging input list to output list.

index Integer Index of first element to select.

4.2.2.3 Output Parameters

ID Type Description

List Generic Data List of all elements selected by any of the
inputs.

4.2.2.4 Additional Information

The selectable range of numbers of the Sliders (maximum value) is
automatically set according to the list length and adjusted when the
size of the input list changes.

4.2.2.5 Appearance

Figure 4.5 shows the component List Multi Selector (Pamela) and all em-
bedded components and parameters after placement on the Grasshop-
per document. The components are automatically grouped and the
group is labelled accordingly. .Note: This

component has a
variable number of

parameters. In
Grasshopper, zoom
in to discover them
(+ and - signs will

become visible)



4.2 panel: controls 49

Figure 4.5: Screenshot of List Multi Selector (Pamela)

4.2.3 Component: Vector Data (Pamela)

4.2.3.1 Synopsis

Icon

Purpose Modify a vector by splitting it into it’s components
and allowing to combine / select a subset (e.g. only
X and Z) of the components as output.

Nickname Vector Data

Type Name Pamela.GH.Controls.VectorData_Component

Location Controls

4.2.3.2 Input Parameters

ID Type Description

Vec Vector Vector(s) to decompose

X Boolean X component of Vector (true / false)

Y Boolean Y component of Vector(true / false)

Z Boolean Z component of Vector(true / false)

abs Boolean Outputs are based on absolute (non-negative) val-
ues.

unit Boolean Unitize output vector.

mag Number Factor to multiply vector components with.



50 user interface

4.2.3.3 Output Parameters

ID Type Description

Vector Vector Resulting vectors considering all input param-
eters.

X Number X component of resulting vectors.

Y Number Y component of resulting vectors.

Z Number Z component of resulting vectors.

Length Number Length of resulting vectors.

Text Text Textual description of selected input parame-
ters.

4.2.3.4 Appearance

Figure 4.6 shows the component Vector Data (Pamela) and all embed-
ded components and parameters after placement on the Grasshopper
document. The components are automatically grouped and the group
is labelled accordingly.

Figure 4.6: Screenshot of Vector Data (Pamela)



4.2 panel: controls 51

4.2.4 Component: XYZ Slider (Pamela)

4.2.4.1 Synopsis

Icon

Purpose Three sliders combined. Double-click on the slider
knobs to modify min / max and also precision.

Nickname XYZ

Type Name Pamela.GH.Controls.XYZSliderComponent

Location Controls

4.2.4.2 Input Parameters

ID Type Description

Plane Plane Optional reference plane for transformation
relative to World.XY

X Domain Domain Optional range (Domain) for X

Y Domain Domain Optional range (Domain) for Y

Z Domain Domain Optional range (Domain) for Z

4.2.4.3 Output Parameters

ID Type Description

X Number X value

Y Number Y value

Z Number Z value

Pt Point Point object constructed from X, Y and Z values in
combination with reference plane.

V Vector Vector constructed from X, Y and Z values in com-
bination with reference plane.

4.2.4.4 Appearance

Figure 4.7 shows the component XYZ Slider (Pamela) after placement
on the Grasshopper document.



52 user interface

Figure 4.7: Screenshot of XYZ Slider (Pamela)

4.3 panel: design

Figure 4.8 shows all icons of the components grouped under the panel
Design



4.3 panel: design 53

Figure 4.8: overview of panel Design



54 user interface

4.3.1 Component: Create Links (Pamela)

4.3.1.1 Synopsis

Icon

Purpose Create a set of fixed length Links for a membrane.
They can be used to model the connection points of
a membrane with the supporting structure (link ca-
bles, shakles, turnbuckeles etc). A link may also have
length 0. The last length supplied is repeated / used
for all remaining links. Zoom-in to add more digit
scrollers to select individual numbers. The Endpoints
of the output lines are to be used as cornerpoints of
the membrane.

Nickname CreateLinks

Type Name Pamela.GH.Design.CreateLinks_Component

Location Design

4.3.1.2 Input Parameters

ID Type Description

Pts Generic Data List of points (polyline) to use as fixed / sup-
ported endpoints.

rev Boolean Reverse order of output points.

Len Number List of lengths to use for this link.

4.3.1.3 Output Parameters

ID Type Description

Perimeter Curve Closed polyline connecting the inner points.
Use it as edge for meshing.

Corner Pts Point List of points to use as cornerpoints of the
membrane.

Links (1D) Line List of lines according to selected link
lengths > 0. Can be used to create fixed
length 1D Elements.

Fixation Pts Point List of points to use as outer endpoints (
most likely fixed / supported endpoints).

4.3.1.4 Appearance

Figure 4.9 shows the component Create Links (Pamela) and all embed-
ded components and parameters after placement on the Grasshopper



4.3 panel: design 55

document. The components are automatically grouped and the group
is labelled accordingly. . Note: This

component has a
variable number of
parameters. In
Grasshopper, zoom
in to discover them
(+ and - signs will
become visible)

Figure 4.9: Screenshot of Create Links (Pamela)

4.3.2 Component: Brep Mesher (Pamela)

4.3.2.1 Synopsis

Icon

Purpose Create meshes from curves or surfaces.

Nickname Brep Mesher

Type Name Pamela.GH.Design.BrepMesher_Component

Location Design



56 user interface

4.3.2.2 Input Parameters

ID Type Description

Breps Brep List of polysurfaces.

Tolerance Number Intersection tolerance to be used during ge-
ometry splitting.

Length Number Target average edge length for the resulting
meshes. Small values can increase calcula-
tion time significantly!

Scaling Number Scaling of the mesh in conjunction with
mesh size. Values around 1 are good.

Iterations Integer Number of iterations applied to smoothen
differences in triangle sizes.

Flip Boolean Change direction of mesh normals for the
joined mesh. By default face normals are
oriented to minimize the angle between the
Z-axis and the arithmetic average of all face
normals (angle < 90 degrees).

Pause Boolean Pause Mesher while changing values of pre-
ceding components to avoid unnecessary
heavy computations.

4.3.2.3 Output Parameters

ID Type Description

Joined Mesh Mesh Joined Mesh.

Meshes Mesh List of Meshes. Consider joining them to
one larger Mesh.

Curves Curve List of polylines corresponding to the input
curves

4.3.2.4 Appearance

Figure 4.10 shows the component Brep Mesher (Pamela) and all embed-
ded components and parameters after placement on the Grasshopper
document. The components are automatically grouped and the group
is labelled accordingly.



4.3 panel: design 57

Figure 4.10: Screenshot of Brep Mesher (Pamela)

4.3.3 Component: Edge Mesher (Pamela)

4.3.3.1 Synopsis

Icon

Purpose Create mesh from edge curves

Nickname Edge Mesher

Type Name Pamela.GH.Design.EdgeMesher_Component

Location Design



58 user interface

4.3.3.2 Input Parameters

ID Type Description

Edges Curve Input curves. Best results are achieved for
closed curves or when individually sup-
plied segments can be joined to a closed
curve.

Resolution Integer Mesh Resolution. Number of segments per
edge.

Relax Number Relaxation step

Iterations Integer Number of iterations

Flip Boolean Change direction of mesh normals. By de-
fault face normals are oriented to minimize
the angle between the Z-axis and the arith-
metic average of all face normals (angle <
90 degrees).

Pause Boolean Pause Mesher while changing values of pre-
ceding components to avoid unnecessary
heavy computations.

4.3.3.3 Output Parameters

ID Type Description

Mesh Mesh Output Mesh

Corners Point Points contained in supplied input curves. At
least some of these points are most likely to be
used as corners of the membrane or for supports.

4.3.3.4 Appearance

Figure 4.11 shows the component Edge Mesher (Pamela) and all embed-
ded components and parameters after placement on the Grasshopper
document. The components are automatically grouped and the group
is labelled accordingly.



4.3 panel: design 59

Figure 4.11: Screenshot of Edge Mesher (Pamela)

4.3.4 Component: Mesh Edges (Pamela)

4.3.4.1 Synopsis

Icon

Purpose Polylines of path along naked edges between corner-
points. Can be used to define 1D Elements for edge
cables of membranes.

Nickname Mesh Edges

Type Name Pamela.GH.Design.MeshEdges_Component

Location Design

4.3.4.2 Input Parameters

ID Type Description

Mesh Mesh The input mesh to analyze.

Corners Generic Data Points or Polyline connecting corner
points of interest. Make sure the order
of the points is adequate.



60 user interface

4.3.4.3 Output Parameters

ID Type Description

All Edges Curve List of polylines connecting all vertices on
the naked edges between the supplied corner
points.

0 Curve First Edge Polyline

1 Curve 2nd Edge Polyline

2 Curve 3rd Edge Polyline

3 Curve 4th Edge Polyline

4.3.4.4 Appearance

Figure 4.12 shows the component Mesh Edges (Pamela) and all embed-
ded components and parameters after placement on the Grasshopper
document. The components are automatically grouped and the group
is labelled accordingly. .Note: This

component has a
variable number of

parameters. In
Grasshopper, zoom
in to discover them
(+ and - signs will

become visible)

Figure 4.12: Screenshot of Mesh Edges (Pamela)



4.3 panel: design 61

4.3.5 Component: Ridge/Valley Cable (Pamela)

4.3.5.1 Synopsis

Icon

Purpose Design ridge or valley cables on a mesh. The mesh
is refined to provide a path along (internal) edges
following a geodesic line from start to end. IMPOR-
TANT: Use the output mesh to further specify the
model.

Nickname R/V Cable

Type Name Pamela.GH.Design.RidgeValleyCable_Component

Location Design

4.3.5.2 Input Parameters

ID Type Description

Mesh Mesh The input mesh to analyze.

Points Generic Data List of points to select start and end-
points from, usually you can assign the
cornerpoints of the membrane.

Start Integer Index of start point(s)

End Integer Index of end point(s)

Tolerance Number Maximum distance an intersection
point is moved (pulled) towards an ex-
isting vertex. Values > 0 can be used
to avoid very tiny mesh triangles, the
mesh path is straightened anyway by
applying tension on the designed cable.

4.3.5.3 Output Parameters

ID Type Description

Mesh Mesh Modified output Mesh. Use this mesh to further
specify the model.

Curves Curve Polylines connecting all vertices on the geodesic
line from start to end, denoting the ridge or valley
cable.

4.3.5.4 Appearance

Figure 4.13 shows the component Ridge/Valley Cable (Pamela) and
all embedded components and parameters after placement on the



62 user interface

Grasshopper document. The components are automatically grouped
and the group is labelled accordingly.

Figure 4.13: Screenshot of Ridge/Valley Cable (Pamela)

4.3.6 Component: Vertices on Curve (Pamela)

4.3.6.1 Synopsis

Icon

Purpose Find all vertices of a mesh which are located directly
on a curve. This can be used to select naked edges
based on boundary curves like arches, rings, beams
etc which were used to create the mesh. As an ex-
ample, these points can be used as input for support
definitions.

Nickname Vert on Crv

Type Name Pamela.GH.Design.VerticesOnCurve_Component

Location Design

4.3.6.2 Input Parameters

ID Type Description

Mesh Mesh The input mesh to analyze.

Crv Curve Curve to search intersecting vertices.

Tolerance Number Maximum allowable distance of vertices to
the curve to be included in result set.

4.3.6.3 Output Parameters

ID Type Description

Pts Point Positions of vertices on curve.



4.3 panel: design 63

4.3.6.4 Appearance

Figure 4.14 shows the component Vertices on Curve (Pamela) and all em-
bedded components and parameters after placement on the Grasshop-
per document. The components are automatically grouped and the
group is labelled accordingly.

Figure 4.14: Screenshot of Vertices on Curve (Pamela)

4.3.7 Component: Mesh Conditioner (Pamela)

4.3.7.1 Synopsis

Icon

Purpose Mesh conditioner to join and weld multiple meshes,
remove duplicate vertices, unify face winding etc. Es-
pecially useful when meshes are created or modified
with 3rd-party tools or directly in Rhino.

Nickname Join & Weld

Type Name Pamela.GH.Design.MeshConditioner_Component

Location Design

4.3.7.2 Input Parameters

ID Type Description

Mesh Mesh Mesh(es) to join, weld and remove any other
inconsistencies.

Flip Boolean Change direction of mesh normals. By default
face normals are oriented to minimize the angle
between the Z-axis and the arithmetic average of
all face normals (angle < 90 degrees).



64 user interface

4.3.7.3 Output Parameters

ID Type Description

Mesh Mesh Output Mesh

4.3.7.4 Appearance

Figure 4.15 shows the component Mesh Conditioner (Pamela) after place-
ment on the Grasshopper document.

Figure 4.15: Screenshot of Mesh Conditioner (Pamela)

4.3.8 Component: Pull Mesh to Curve (Pamela)

4.3.8.1 Synopsis

Icon

Purpose Each vertex on the mesh path is moved to the clos-
est point of the supplied curve. If no start and end
vertices are supplied, the vertices closest to the end-
points of the curve are used.

Nickname PullMeshToCurve

Type Name Pamela.GH.Design.PullMeshToCurve_Component

Location Design



4.3 panel: design 65

4.3.8.2 Input Parameters

ID Type Description

mesh Mesh The input mesh to modify.

crv Curve Curve to pull vertices to.

start Point Vertex of mesh to use as starting point for mesh
path. If not provided, vertex closest to start of
curve is used.

end Point Vertex of mesh to use as end point for mesh path.
If not provided, vertex closest to end of curve is
used.

ne Boolean If set to true, only vertices of naked edges are
considered.

4.3.8.3 Output Parameters

ID Type Description

Mesh Mesh Output Mesh

Pts Point Positions of vertices on curve.

4.3.8.4 Appearance

Figure 4.16 shows the component Pull Mesh to Curve (Pamela) after
placement on the Grasshopper document.

Figure 4.16: Screenshot of Pull Mesh to Curve (Pamela)



66 user interface

4.3.9 Component: Pull mesh to points (Pamela)

4.3.9.1 Synopsis

Icon

Purpose For each point supplied, the coordinates of the closest
vertex of the mesh are changed to the location of the
point.

Nickname PullMeshToPoints

Type Name Pamela.GH.Design.PullMeshToPoints_Component

Location Design

4.3.9.2 Input Parameters

ID Type Description

mesh Mesh The input mesh to modify.

pos Generic Data Target positions

ne Boolean If set to true, only vertices of naked edges
are considered.

4.3.9.3 Output Parameters

ID Type Description

Mesh Mesh Output Mesh

4.3.9.4 Appearance

Figure 4.17 shows the component Pull mesh to points (Pamela) after
placement on the Grasshopper document.

Figure 4.17: Screenshot of Pull mesh to points (Pamela)



4.3 panel: design 67

4.3.10 Component: Geodesic Curve (Pamela)

4.3.10.1 Synopsis

Icon

Purpose Shortest route between two points on mesh surface.
Polylines are created based on intersection points
with mesh edges and vertices.

Nickname Geodesic

Type Name Pamela.GH.Design.GeodesicLine_Component

Location Design

4.3.10.2 Input Parameters

ID Type Description

Mesh Mesh Input mesh to analyze.

Start Point Start point(s)

End Point End point(s)

4.3.10.3 Output Parameters

ID Type Description

Path Curve Polyline(s) representing the shortest path connect-
ing start and end points.

4.3.10.4 Appearance

Figure 4.18 shows the component Geodesic Curve (Pamela) after place-
ment on the Grasshopper document.

Figure 4.18: Screenshot of Geodesic Curve (Pamela)



68 user interface

4.3.11 Component: Mesh Path (Pamela)

4.3.11.1 Synopsis

Icon

Purpose Shortest path on a mesh along edges (going through
vertices) connecting source and destination points.

Nickname Mesh Path

Type Name Pamela.GH.Design.MeshPath_Component

Location Design

4.3.11.2 Input Parameters

ID Type Description

Mesh Mesh Input mesh to analyze.

Start Point Start point(s)

End Point End point(s)

4.3.11.3 Output Parameters

ID Type Description

Path Curve Polyline(s) representing the shortest path connect-
ing start and end points.

4.3.11.4 Appearance

Figure 4.19 shows the component Mesh Path (Pamela) after placement
on the Grasshopper document.

Figure 4.19: Screenshot of Mesh Path (Pamela)



4.4 panel: material 69

4.4 panel: material

Figure 4.20 shows all icons of the components grouped under the
panel Material

Figure 4.20: overview of panel Material

4.4.1 Component: Cross Sections Database (Pamela)

4.4.1.1 Synopsis

Icon

Purpose Load cross section properties from file.

Nickname Cro-Sec DB

Type Name Pamela.GH.Material.CrossSectionLoader_Component

Location Material

4.4.1.2 Input Parameters

ID Type Description

File Text Uri of file to read



70 user interface

4.4.1.3 Output Parameters

ID Type Description

Cro-Secs CrossSection List of Cross Section objects

4.4.1.4 Appearance

Figure 4.21 shows the component Cross Sections Database (Pamela) after
placement on the Grasshopper document.

Figure 4.21: Screenshot of Cross Sections Database (Pamela)

4.4.2 Component: Material Database (Pamela)

4.4.2.1 Synopsis

Icon

Purpose Load properties of all Material types from file

Nickname Material DB

Type Name Pamela.GH.Material.MaterialLoader_Component

Location Material

4.4.2.2 Input Parameters

ID Type Description

File Text Uri of file to read

4.4.2.3 Output Parameters

ID Type Description

Membranes Membrane Material List of Membrnae Material ob-
jects

Materials Material List of Material objects



4.4 panel: material 71

4.4.2.4 Appearance

Figure 4.22 shows the component Material Database (Pamela) after
placement on the Grasshopper document.

Figure 4.22: Screenshot of Material Database (Pamela)

4.4.3 Component: Cross Section Picker (Pamela)

4.4.3.1 Synopsis

Icon

Purpose Select a cross section based on hierarchical grouping
criterias

Nickname Cross Section

Type Name Pamela.GH.Material.CrossSectionPicker_Component

Location Material

4.4.3.2 Input Parameters

ID Type Description

Cross Sections CrossSection List of Cross Section objects

Group Text Group identifier to select specific
set of Cross Section

Family Text Family identifier to selct specific
set of Cross Section. The families
are unique within a group.

Name Text Unique name of Cross Section
within set specific to Group and
Family.



72 user interface

4.4.3.3 Output Parameters

ID Type Description

Cross Section CrossSection Cross Section selected.

4.4.3.4 Appearance

Figure 4.23 shows the component Cross Section Picker (Pamela) after
placement on the Grasshopper document.

Figure 4.23: Screenshot of Cross Section Picker (Pamela)

4.4.4 Component: Material Picker (Pamela)

4.4.4.1 Synopsis

Icon

Purpose Select a material based on hierarchical grouping cri-
terias

Nickname Material

Type Name Pamela.GH.Material.MaterialPicker_Component

Location Material



4.4 panel: material 73

4.4.4.2 Input Parameters

ID Type Description

Materials Material List of Material objects

Group Text Group identifier to select specific set of Ma-
terial

Family Text Family identifier to selct specific set of Mate-
rial. The families are unique within a group.

Name Text Unique name of Material within set specific
to Group and Family.

4.4.4.3 Output Parameters

ID Type Description

Material Material Material selected.

4.4.4.4 Appearance

Figure 4.24 shows the component Material Picker (Pamela) after place-
ment on the Grasshopper document.

Figure 4.24: Screenshot of Material Picker (Pamela)



74 user interface

4.4.5 Component: Fabric Picker (Pamela)

4.4.5.1 Synopsis

Icon

Purpose Select a Membrane material (fabric) based on hierar-
chical grouping criterias.

Nickname Membrane

Type Name Pamela.GH.Material.MembraneMaterialPicker_Component

Location Material

4.4.5.2 Input Parameters

ID Type Description

Membrane Materials Membrane Material List of Membrane
Material objects

Group Text Group identifier to
select specific set of
Membrane Material

Family Text Family identifier to
selct specific set of
Membrane Material.
The families are
unique within a
group.

Name Text Unique name of
Membrane Material
within set specific to
Group and Family.

4.4.5.3 Output Parameters

ID Type Description

Membrane Material Membrane Material Membrane Material
selected.

Thickness Number Thickness per layer of
the membrane mate-
rial.

4.4.5.4 Additional Information

In contrast to standard materials, the thickness of membrane materials
usually depends on the chosen material and cannot be changed.Therefore



4.4 panel: material 75

the thickness is also stored in the material database and not in the
database of the cross sections.

4.4.5.5 Appearance

Figure 4.25 shows the component Fabric Picker (Pamela) after placement
on the Grasshopper document.

Figure 4.25: Screenshot of Fabric Picker (Pamela)

4.4.6 Component: Material (Pamela)

4.4.6.1 Synopsis

Icon

Purpose Material Properties.

Nickname Material

Type Name Pamela.GH.Material.Material_Component

Location Material



76 user interface

4.4.6.2 Input Parameters

ID Type Description

Group Text Toplevel grouping criteria for materials.

Family Text Second level grouping criteria for materials.
The families must be unique within a group.

Name Text Specific name of Material

E Number Young’s Modulus [kPa]

G Number Shear modulus G [kPa]

nu Number Poisson Constant []

gamma Number Specific weight [kg/m3]

fy Number Yield strength [kPa]

alphaT Number Coefficient of thermal expansion [1/K]

4.4.6.3 Output Parameters

ID Type Description

Material Material Material properties

4.4.6.4 Appearance

Figure 4.26 shows the component Material (Pamela) after placement on
the Grasshopper document.

Figure 4.26: Screenshot of Material (Pamela)



4.4 panel: material 77

4.4.7 Component: Membrane Material (Pamela)

4.4.7.1 Synopsis

Icon

Purpose Material properties for membranes.

Nickname Membrane Material

Type Name Pamela.GH.Material.MembraneMaterial_Component

Location Material

4.4.7.2 Input Parameters

ID Type Description

Group Text Toplevel grouping criteria for materials.

Family Text Second level grouping criteria for materials.
The families must be unique within a group.

Name Text Specific name of Material

E warp Number Young’s Modulus E in warp direction [kPa]

E weft Number Young’s Modulus E in weft direction [kPa]

G warp Number Shear modulus G in warp direction [kPa]

G weft Number Shear modulus G in weft direction [kPa]

nu warp Number Poisson Constant nu in warp direction []

nu weft Number Poisson Constant nu in weft direction []

gamma Number Specific weight [kg/m3]

Thickness Number Thickness in [m]

alphaT Number Coefficient of thermal expansion [1/K]

4.4.7.3 Output Parameters

ID Type Description

Material Membrane Material Material properties

4.4.7.4 Appearance

Figure 4.27 shows the component Membrane Material (Pamela) after
placement on the Grasshopper document.



78 user interface

Figure 4.27: Screenshot of Membrane Material (Pamela)

4.4.8 Component: Cross Section Parameter (Pamela)

4.4.8.1 Synopsis

Icon

Purpose Parameter object for cross sectios

Nickname Cross Section

Type Name Pamela.GH.Material.Param_CrossSection

Location Material

4.4.9 Component: Material Parameter (Pamela)

4.4.9.1 Synopsis

Icon

Purpose Parameter object for isotropic material.

Nickname Material

Type Name Pamela.GH.Material.Param_Material

Location Material



4.5 panel: model definition 79

4.4.10 Component: Membrane Material Parameter (Pamela)

4.4.10.1 Synopsis

Icon

Purpose Parameter object for orthotropic materials like mem-
brane fabrics

Nickname Membrane Material

Type Name Pamela.GH.Material.Param_MembraneMaterial

Location Material

4.5 panel: model definition

Figure 4.28 shows all icons of the components grouped under the
panel Model Definition

Figure 4.28: overview of panel Model Definition



80 user interface

4.5.1 Component: 1D Element (Pamela)

4.5.1.1 Synopsis

Icon

Purpose Create 1D Elements from lines and polylines.

Nickname 1D Element

Type Name Pamela.GH.ModelDef.Element1D_Component

Location Model Definition

4.5.1.2 Input Parameters

ID Type Description

Polyline Curve Polyline or line.

pret Number Pretension to apply on the 1D ele-
ment(s).

Behaviour Integer 0 = unrestrained, 1 = fixed length, 2 =
completely fixed. Used for FDM, irrele-
vant for FEM.

Type Integer 1 = cable stiff, 2 = cable flexible, 3 =
truss, 4 = beam. Required for FEM, ir-
relevant for FDM.

Material Material Material specification. Only used for
FEM, ignored for FDM.

Cro-Sec CrossSection Cross Section specification. Only used
for FEM, ignored for FDM.

Label Text Label for identification

4.5.1.3 Output Parameters

ID Type Description

1D Elements 1D-Element 1D Elements according to specified
input values / polyline segments.

Pts Point List of distinct points of all 1D Ele-
ments.

4.5.1.4 Appearance

Figure 4.29 shows the component 1D Element (Pamela) and all embed-
ded components and parameters after placement on the Grasshopper
document. The components are automatically grouped and the group
is labelled accordingly.



4.5 panel: model definition 81

Figure 4.29: Screenshot of 1D Element (Pamela)

4.5.2 Component: Membrane 2D Element (Pamela)

4.5.2.1 Synopsis

Icon

Purpose Create 2D Elements from Mesh representing a Mem-
brane.

Nickname Membrane Element

Type Name Pamela.GH.ModelDef.Element2DMembrane_Component

Location Model Definition



82 user interface

4.5.2.2 Input Parameters

ID Type Description

Mesh Mesh Mesh

Warp Number Membrane prestress in warp
direction.

Weft Number Membrane prestress in weft di-
rection.

Orientation Generic Data Assign a vector (or text) for
warp direction. Use vector
based on X and Y like "1.0, 0.0,
0.0" for sail-type structures and
"0.0, 0.0, 1.0" (warp in Z) for
conical-type structures.

Material Membrane Material Material specification. Only
used for FEM, ignored for
FDM.

Thickness Number Membrane Thickness in [m].
Required for FDM, ignored
for FEM (taken from Material
properties instead.)

Label Text Optional label for identifica-
tion.

4.5.2.3 Output Parameters

ID Type Description

2D Elements 2D-Element 2D Elements according to specified
input values

4.5.2.4 Appearance

Figure 4.30 shows the component Membrane 2D Element (Pamela) and
all embedded components and parameters after placement on the
Grasshopper document. The components are automatically grouped
and the group is labelled accordingly.



4.5 panel: model definition 83

Figure 4.30: Screenshot of Membrane 2D Element (Pamela)

4.5.3 Component: Support (Pamela)

4.5.3.1 Synopsis

Icon

Purpose Creates supports / constraints at nodes (point coordi-
nates). Drop-down menu lets you select translation-
s/rotations which should be zero.

Nickname Support

Type Name Pamela.GH.ModelDef.Support_Component

Location Model Definition

4.5.3.2 Input Parameters

ID Type Description

Position Generic Data Input coordinates, accepts points as well
as polylines.

Label Text Name / descriptive text

Orient Plane Initial support displacements and rota-
tion. By default the global coordiante sys-
tem is used.



84 user interface

4.5.3.3 Output Parameters

ID Type Description

Support Support Resultiung constraints.

4.5.3.4 Menu items

The following component menu items exist in addition to the standard
drop down menu items:

• Tx fixed

• Ty fixed

• Tz fixed

• Rx fixed

• Ry fixed

• Rz fixed

• Fix all

• Free all

4.5.3.5 Appearance

Figure 4.31 shows the component Support (Pamela) after placement on
the Grasshopper document.

Figure 4.31: Screenshot of Support (Pamela)



4.5 panel: model definition 85

4.5.4 Component: Model Builder (Pamela)

4.5.4.1 Synopsis

Icon

Purpose Assembles all inputs into a generic datamodel which
can be used for formfinding or analyis.

Nickname Model Builder

Type Name Pamela.GH.ModelDef.ModelBuilder_Component

Location Model Definition

4.5.4.2 Input Parameters

ID Type Description

2D Elements 2D-Element Collection of all 2D Element defini-
tions to include.

1D Elements 1D-Element Collection of all 1D Elements defini-
tions to include.

Supports Support Collection of all Supports definitions
to include.

4.5.4.3 Output Parameters

ID Type Description

Model Model The complete Model ready to be used as input to
FDM or FEM solver.

4.5.4.4 Appearance

Figure 4.32 shows the component Model Builder (Pamela) and all em-
bedded components and parameters after placement on the Grasshop-
per document. The components are automatically grouped and the
group is labelled accordingly.



86 user interface

Figure 4.32: Screenshot of Model Builder (Pamela)

4.5.5 Component: Copy Final Model (Pamela)

4.5.5.1 Synopsis

Icon

Purpose Create a new model with input values copied from
final values / displaced positions. Drop down menu
options exist to select data to copy.

Nickname Copy Final

Type Name Pamela.GH.ModelDef.ModelCopy_Component

Location Model Definition

4.5.5.2 Input Parameters

ID Type Description

Model Model Existing Model to copy final state.

4.5.5.3 Output Parameters

ID Type Description

Model Model The new Model ready to be used as input to Pam
solver for analysis.



4.5 panel: model definition 87

4.5.5.4 Menu items

The following component menu items exist in addition to the standard
drop down menu items:

• Copy Prestress Values

4.5.5.5 Appearance

Figure 4.33 shows the component Copy Final Model (Pamela) and all em-
bedded components and parameters after placement on the Grasshop-
per document. The components are automatically grouped and the
group is labelled accordingly.

Figure 4.33: Screenshot of Copy Final Model (Pamela)

4.5.6 Component: 1D Element Parameter (Pamela)

4.5.6.1 Synopsis

Icon

Purpose Parameter object for 1D modeling elements based on
lines.

Nickname 1D Element

Type Name Pamela.GH.ModelDef.Param_Element1D

Location Model Definition



88 user interface

4.5.7 Component: 2D Element Parameter (Pamela)

4.5.7.1 Synopsis

Icon

Purpose Parameter object for 2D modeling elements based on
meshes.

Nickname 2D Element

Type Name Pamela.GH.ModelDef.Param_Element2D

Location Model Definition

4.5.8 Component: Model Parameter (Pamela)

4.5.8.1 Synopsis

Icon

Purpose Parameter object for assembled data models.

Nickname Model

Type Name Pamela.GH.ModelDef.Param_Model

Location Model Definition

4.5.9 Component: Node Parameter (Pamela)

4.5.9.1 Synopsis

Icon

Purpose Parameter object for Node / point locations

Nickname Node

Type Name Pamela.GH.ModelDef.Param_Node

Location Model Definition

4.5.10 Component: Support Parameter (Pamela)

4.5.10.1 Synopsis

Icon

Purpose Parameter object for Support definitions.

Nickname Support

Type Name Pamela.GH.ModelDef.Param_Support

Location Model Definition



4.6 panel: model loads 89

4.6 panel: model loads

Figure 4.34 shows all icons of the components grouped under the
panel Model Loads

Figure 4.34: overview of panel Model Loads

4.6.1 Component: Load Coefficients SUI (Pamela)

4.6.1.1 Synopsis

Icon

Purpose Coefficients for country specific load calculations for
Switzerland according to SIA 261.

Nickname Coeff

Type Name Pamela.GH.ModelLoads.LoadCoeffSUI_Component

Location Model Loads



90 user interface

4.6.1.2 Input Parameters

ID Type Description

Zone Integer Referenzzone für Staudruck gemäss SIA-261,
Anhang E

Gelände Integer Geländekategorie gemäss SIA-261 6.2.1.2
Tabelle 4

4.6.1.3 Output Parameters

ID Type Description

qp0 Number Staudruck qp0[kN/m2]

zg Number Gradientenhöhe zg

alfa r Number Bodenrauigkeit alfa r

4.6.1.4 Appearance

Figure 4.35 shows the component Load Coefficients SUI (Pamela) and
all embedded components and parameters after placement on the
Grasshopper document. The components are automatically grouped
and the group is labelled accordingly.

Figure 4.35: Screenshot of Load Coefficients SUI (Pamela)



4.6 panel: model loads 91

4.6.2 Component: Load Case GER (Pamela)

4.6.2.1 Synopsis

Icon

Purpose Load case based on country specific coefficients and
calculations for Germany (simplified approach).

Nickname Load Case GER

Type Name Pamela.GH.ModelLoads.LoadCaseGER_Component

Location Model Loads

4.6.2.2 Input Parameters

ID Type Description

Name Text Specific name of Load Case

g factor Number Factor to multiply dead load (self
weight).

v factor Number Factor to multiply prestress.

Wind dir Generic Data Wind direction as Vector (or text).

Wind cp Generic Data Wind pressure coefficient (Strategy).

Wind Number Load from wind pressure in [kN/m2]

w factor Number Factor to multiply wind load.

Snow Number Snow Load in [kN/m2]

Snow mui Generic Data Roof shape coefficient (Strategy).

s factor Number Factor to multiply snow laod.

Pressure Number Load from (internal) pressure in
[kN/m2]

p factor Number Factor to multiply pressure load.

Point Point Coordinates of point to apply load.
Load is applied to node closest to spec-
ified point.

Point Load Generic Data Point load(s) as Vector (or text) in [kN]

pl factor Number Factor to multiply point load.

4.6.2.3 Output Parameters

ID Type Description

LoadCase LoadCase LoadCase properties



92 user interface

4.6.2.4 Appearance

Figure 4.36 shows the component Load Case GER (Pamela) and all em-
bedded components and parameters after placement on the Grasshop-
per document. The components are automatically grouped and the
group is labelled accordingly.

Figure 4.36: Screenshot of Load Case GER (Pamela)

4.6.3 Component: Load Case SUI (Pamela)

4.6.3.1 Synopsis

Icon

Purpose Load case based on country specific coefficients and
calculations for Switzerland.

Nickname Load Case SUI

Type Name Pamela.GH.ModelLoads.LoadCaseSUI_Component

Location Model Loads



4.6 panel: model loads 93

4.6.3.2 Input Parameters

ID Type Description

Name Text Specific name of Load Case

g factor Number Factor to multiply dead load (self
weight).

v factor Number Factor to multiply prestress.

Wind dir Generic Data Wind direction as Vector (or text).

Wind cp Generic Data Wind pressure coefficient (Strategy).

Wind Number Load from wind pressure in [kN/m2]

w factor Number Factor to multiply wind load.

Snow Number Snow Load in [kN/m2]

Snow mui Generic Data Roof shape coefficient (Strategy).

s factor Number Factor to multiply snow laod.

Pressure Number Load from (internal) pressure in
[kN/m2]

p factor Number Factor to multiply pressure load.

Point Point Coordinates of point to apply load.
Load is applied to node closest to spec-
ified point.

Point Load Generic Data Point load(s) as Vector (or text) in [kN]

pl factor Number Factor to multiply point load.

4.6.3.3 Output Parameters

ID Type Description

LoadCase LoadCase LoadCase properties

4.6.3.4 Appearance

Figure 4.37 shows the component Load Case SUI (Pamela) and all em-
bedded components and parameters after placement on the Grasshop-
per document. The components are automatically grouped and the
group is labelled accordingly.



94 user interface

Figure 4.37: Screenshot of Load Case SUI (Pamela)

4.6.4 Component: Load Calculations GER (Pamela)

4.6.4.1 Synopsis

Icon

Purpose Country specific load calculations for Germany

Nickname Load Calc GER

Type Name Pamela.GH.ModelLoads.LoadCalcGER_Component

Location Model Loads

4.6.4.2 Input Parameters

ID Type Description

Height Number Height of the building [m], <= 25m. Consider
highest point (required for wind load)

Zone Number Reference zone for wind, simplified approach.

Zone Integer Reference zone for snow, simplified approach.

Altitude Number Altitude above sea level [m] (required for
snow load)

4.6.4.3 Output Parameters

ID Type Description

Wind q Number Wind Pressure [kN/m2]

Snow sk Number Snow Weight [kN/m2]



4.6 panel: model loads 95

4.6.4.4 Appearance

Figure 4.38 shows the component Load Calculations GER (Pamela) and
all embedded components and parameters after placement on the
Grasshopper document. The components are automatically grouped
and the group is labelled accordingly.

Figure 4.38: Screenshot of Load Calculations GER (Pamela)

4.6.5 Component: Load Calculations SUI (Pamela)

4.6.5.1 Synopsis

Icon

Purpose Country specific load calculations for Switzerland
according to SIA 261.

Nickname Load Calc SUI

Type Name Pamela.GH.ModelLoads.LoadCalcSUI_Component

Location Model Loads



96 user interface

4.6.5.2 Input Parameters

ID Type Description

Höhe Number Gebäudehöhe [m]. Consider highest point
(required for wind load)

qp0 Number Staudruck qp0 (required for wind
load)[kN/m2]

zg Number Gradientenhöhe zg (required for wind
load)

alfa r Number Bodenrauigkeit alfa r (required for wind
load)

Meereshöhe Number Höhe über Meer [m] (required for snow
load)

h0 Number Bezugshöhe [m] (required for snow load)

Ce Number Expositionsbeiwert (used for snow load)

CT Number Thermischer Beiwert (used for snow load)

4.6.5.3 Output Parameters

ID Type Description

Wind Number Wind Pressure [kN/m2]

Snow Number Snow Weight [kN/m2]

4.6.5.4 Appearance

Figure 4.39 shows the component Load Calculations SUI (Pamela) and
all embedded components and parameters after placement on the
Grasshopper document. The components are automatically grouped
and the group is labelled accordingly.

Figure 4.39: Screenshot of Load Calculations SUI (Pamela)



4.6 panel: model loads 97

4.6.6 Component: Load Case (Pamela)

4.6.6.1 Synopsis

Icon

Purpose Load Case Properties.

Nickname Load Case

Type Name Pamela.GH.ModelLoads.LoadCase_Component

Location Model Loads

4.6.6.2 Input Parameters

ID Type Description

Name Text Specific name of Load Case

g factor Number Factor to multiply dead load (self
weight).

v factor Number Factor to multiply prestress.

Wind dir Generic Data Wind direction as Vector (or text).

Wind cp Generic Data Wind pressure coefficient (Strategy).

Wind Number Load from wind pressure in [kN/m2]

w factor Number Factor to multiply wind load.

Snow Number Snow Load in [kN/m2]

Snow mui Generic Data Roof shape coefficient (Strategy).

s factor Number Factor to multiply snow laod.

Pressure Number Load from (internal) pressure in
[kN/m2]

p factor Number Factor to multiply pressure load.

Point Point Coordinates of point to apply load.
Load is applied to node closest to spec-
ified point.

Point Load Generic Data Point load(s) as Vector (or text) in [kN]

pl factor Number Factor to multiply point load.

4.6.6.3 Output Parameters

ID Type Description

LoadCase LoadCase LoadCase properties



98 user interface

4.6.6.4 Appearance

Figure 4.40 shows the component Load Case (Pamela) after placement
on the Grasshopper document.

Figure 4.40: Screenshot of Load Case (Pamela)

4.6.7 Component: Membrane Snow Shape Coefficients (Pamela)

4.6.7.1 Synopsis

Icon

Purpose Generic evaluation of roof shape coefficients for snow
loads on membranes based on angle between surface
normal and Z-axis of horizontal plane.

Nickname Snow Coeff

Type Name Pamela.GH.ModelLoads.SnowRSgenereic_Component

Location Model Loads



4.6 panel: model loads 99

4.6.7.2 Input Parameters

ID Type Description

start Number Angle (degrees) between surface normal and Z-
axis of horizontal plane when snow drift starts.
For angles smaller than start no snow drift is
considered.

c1 Number Roof shape coefficient for start angle.

full Number Angle (degrees) for full snow drift. For angles
larger than this full (c2) snow drift is considered.

c2 Number Roof shape coefficient for full / complete snow
drift.

4.6.7.3 Output Parameters

ID Type Description

mui Generic Data Roof shape coefficient (Strategy).

4.6.7.4 Appearance

Figure 4.41 shows the component Membrane Snow Shape Coefficients
(Pamela) after placement on the Grasshopper document.

Figure 4.41: Screenshot of Membrane Snow Shape Coefficients (Pamela)



100 user interface

4.6.8 Component: Membrane Pressure Coefficients (Pamela)

4.6.8.1 Synopsis

Icon

Purpose Generic evaluation of wind pressure coefficients for
membranes based on angle between surface normal
and wind direction.

Nickname cp

Type Name Pamela.GH.ModelLoads.WindCPgeneric_Component

Location Model Loads

4.6.8.2 Input Parameters

ID Type Description

cp Text Key/Value pairs structured as angle=cp for the angles
from 0 to 180 degrees in steps of 10 degrees. Positive
cp values for pressure, negative values for suction. For
membranes negative values are usually in the direc-
tion of the surface normal, positive values in opposite
direction.

4.6.8.3 Output Parameters

ID Type Description

Wind cp Generic Data Wind pressure coefficient (Strategy).

4.6.8.4 Appearance

Figure 4.42 shows the component Membrane Pressure Coefficients (Pamela)
and all embedded components and parameters after placement on the
Grasshopper document. The components are automatically grouped
and the group is labelled accordingly.

Figure 4.42: Screenshot of Membrane Pressure Coefficients (Pamela)



4.6 panel: model loads 101

4.6.9 Component: Snowload (Pamela)

4.6.9.1 Synopsis

Icon

Purpose Calculation of snow laod based on snow type and
thickness.

Nickname Snow

Type Name Pamela.GH.ModelLoads.Snowload_Component

Location Model Loads

4.6.9.2 Input Parameters

ID Type Description

Density Number Density according to type of snow. Wet snow
is heavier. [kN/m3]

Depth Number Depth or height of snow in [m].

4.6.9.3 Output Parameters

ID Type Description

Snow Number Snow Weight [kN/m2]

4.6.9.4 Appearance

Figure 4.43 shows the component Snowload (Pamela) and all embedded
components and parameters after placement on the Grasshopper
document. The components are automatically grouped and the group
is labelled accordingly.

Figure 4.43: Screenshot of Snowload (Pamela)



102 user interface

4.6.10 Component: Windpressure (Pamela)

4.6.10.1 Synopsis

Icon

Purpose Windspeed to pressure conversion.

Nickname Wind

Type Name Pamela.GH.ModelLoads.Windpressure_Component

Location Model Loads

4.6.10.2 Input Parameters

ID Type Description

Bf Integer Wind speed in Beaufort (max value)

m/s Number Wind speed in m/s

km/h Number Wind speed in km/h

4.6.10.3 Output Parameters

ID Type Description

Wind Number Maximal wind pressure from input values.
[kN/m2]

4.6.10.4 Appearance

Figure 4.44 shows the component Windpressure (Pamela) and all embed-
ded components and parameters after placement on the Grasshopper
document. The components are automatically grouped and the group
is labelled accordingly.

Figure 4.44: Screenshot of Windpressure (Pamela)



4.7 panel: solver 103

4.6.11 Component: Load Case Parameter (Pamela)

4.6.11.1 Synopsis

Icon

Purpose Load Case data for analysis.

Nickname Load Case

Type Name Pamela.GH.ModelLoads.Param_LoadCase

Location Model Loads

4.7 panel: solver

Figure 4.45 shows all icons of the components grouped under the
panel Solver

Figure 4.45: overview of panel Solver



104 user interface

4.7.1 Component: Force Density Solver (Pamela)

4.7.1.1 Synopsis

Icon

Purpose linear (one-step) form finding of tensile structures
using generalized Force Density method(FDM). The
generalization is based on rewriting the original equa-
tions of FDM to Finite Element(FE) enviroment and
implementing also the surface finite elements.The
final geometry is obtained by solving the system of
linear equations of the form u = inv(K) * F. Where u
is the final position of nodes, K is the system stiffness
matrix and F is the external loading and influence of
the supports.

Nickname FDM Solver

Type Name Pamela.GH.Solver.FDMSolver_Component

Location Solver

4.7.1.2 Input Parameters

ID Type Description

Model Model The completely assembled model to use for com-
puting.

Pause Boolean Pause Solver while changing values of preced-
ing components to avoid unnecessary heavy
computations.

4.7.1.3 Output Parameters

ID Type Description

Model Model Model with results.

4.7.1.4 Menu items

The following component menu items exist in addition to the standard
drop down menu items:

• Tolerance

• Iterations



4.7 panel: solver 105

4.7.1.5 Appearance

Figure 4.46 shows the component Force Density Solver (Pamela) and
all embedded components and parameters after placement on the
Grasshopper document. The components are automatically grouped
and the group is labelled accordingly.

Figure 4.46: Screenshot of Force Density Solver (Pamela)

4.7.2 Component: Finite Element Method Solver (Pamela)

4.7.2.1 Synopsis

Icon

Purpose Form finding and analysis of tensile structures using
Finite Element Method (FEM) or alternatively the
Force Density Method (FDM).

Nickname Pam Solver

Type Name Pamela.GH.Solver.PamSolver_Component

Location Solver



106 user interface

4.7.2.2 Input Parameters

ID Type Description

Model Model The completely assembled model to use
for computing.

Load Cases LoadCase Load Case definitions.

Mode Number Factor to apply to the material property
(Young’s modulus)

Pause Boolean Pause Solver while changing values of
preceding components to avoid unneces-
sary heavy computations.

LC Combo Integer Select the load cases to apply.

4.7.2.3 Output Parameters

ID Type Description

Model(s) Model All Model(s) with results. If load cases were
selected, additional output parameters are cre-
ated, one per active load case.

4.7.2.4 Menu items

The following component menu items exist in addition to the standard
drop down menu items:

• Tolerance

• Iterations

4.7.2.5 Appearance

Figure 4.47 shows the component Finite Element Method Solver (Pamela)
and all embedded components and parameters after placement on the
Grasshopper document. The components are automatically grouped
and the group is labelled accordingly.



4.7 panel: solver 107

Figure 4.47: Screenshot of Finite Element Method Solver (Pamela)

4.7.3 Component: Execute Matlab (Pamela)

4.7.3.1 Synopsis

Icon

Purpose Execute Matlab

Nickname Matlab

Type Name Pamela.GH.Solver.ExecuteMatlab_Component

Location Solver

4.7.3.2 Input Parameters

ID Type Description

Matlab Text Full path to the Matlab executable

Workdir Text Path to the directory of the matlab script file

Script Text Name of the script to execute. Must be placed
in working directory

Arg Text Arguments to pass to the executable

Exit Boolean Set to true to automatically close Matlab exe-
cution window when script terminates.

now! Boolean Set to true to trigger write data to the file.

4.7.3.3 Output Parameters

ID Type Description

Trigger Boolean Is set to true once Matlab has finished. False
when input trigger is false.



108 user interface

4.7.3.4 Appearance

Figure 4.48 shows the component Execute Matlab (Pamela) and all em-
bedded components and parameters after placement on the Grasshop-
per document. The components are automatically grouped and the
group is labelled accordingly.

Figure 4.48: Screenshot of Execute Matlab (Pamela)

4.8 panel: views

Figure 4.49 shows all icons of the components grouped under the
panel Views

Figure 4.49: overview of panel Views



4.8 panel: views 109

4.8.1 Component: Mesh Details (Pamela)

4.8.1.1 Synopsis

Icon

Purpose Break up Mesh into its components

Nickname Mesh Details

Type Name Pamela.GH.ResultViews.MeshDetails_Component

Location Views

4.8.1.2 Input Parameters

ID Type Description

Mesh Mesh Input mesh

4.8.1.3 Output Parameters

ID Type Description

Naked Edges Line Edges with valence 1 (a single adjacent
face)

Other Edges Line Edges with valence 2 or higher (multi-
ple adjacent faces)

Vertices Point All mesh vertices

NE Vertices Point Mesh vertices on naked edges

Faces Mesh face Faces - indices of vertices

Boundaries Curve Boundary polyline for each mesh face

Centers Point Center-points of all faces

Normals Vector Normal vectors for all faces

4.8.1.4 Appearance

Figure 4.50 shows the component Mesh Details (Pamela) and all embed-
ded components and parameters after placement on the Grasshopper
document. The components are automatically grouped and the group
is labelled accordingly.



110 user interface

Figure 4.50: Screenshot of Mesh Details (Pamela)

4.8.2 Component: Model Explorer (Pamela)

4.8.2.1 Synopsis

Icon

Purpose Decomposes the model into smaller element defini-
tions.

Nickname Model Explorer

Type Name Pamela.GH.ResultViews.ModelExplorer_Component

Location Views

4.8.2.2 Input Parameters

ID Type Description

Model Model Existing Model to extend with additional defini-
tions.



4.8 panel: views 111

4.8.2.3 Output Parameters

ID Type Description

2D Elements 2D-Element All 2D Elements matching filter crite-
rias.

1D Elements 1D-Element All 1D Elements matching filter crite-
rias.

Nodes Node All Nodes matching filter criterias.

Supports Support All Supports matching filter criterias.

Copy Model A new Model with input values
copied from final values / displaced
positions.

4.8.2.4 Appearance

Figure 4.51 shows the component Model Explorer (Pamela) and all em-
bedded components and parameters after placement on the Grasshop-
per document. The components are automatically grouped and the
group is labelled accordingly.

Figure 4.51: Screenshot of Model Explorer (Pamela)



112 user interface

4.8.3 Component: Model Viewer (Pamela)

4.8.3.1 Synopsis

Icon

Purpose Provides easy access to the geometrical elements of a
Model for results visualization.

Nickname Model Viewer

Type Name Pamela.GH.ResultViews.ModelViewer_Component

Location Views

4.8.3.2 Input Parameters

ID Type Description

Model Model Existing Model to analyze / visualize.

4.8.3.3 Output Parameters

ID Type Description

Meshes Mesh Initial input meshes.

Meshes Final Mesh Meshes after formfinding / analysis.

Edges Line Edges from initial meshes.

Edges Final Line Edges from mesh after formfinding /
analysis.

Lines Line Linesegment with initial properties

Lines Final Line Linesegment with displaced position and
final properties

Points Point Coordinates of ALL initial positions
(Point3d)

Points Final Point Coordinates of ALL displaced / final po-
sition (Point3d)

Displacements Vector Vector3d of displacement for ALL nodes.

4.8.3.4 Appearance

Figure 4.52 shows the component Model Viewer (Pamela) and all embed-
ded components and parameters after placement on the Grasshopper
document. The components are automatically grouped and the group
is labelled accordingly.



4.8 panel: views 113

Figure 4.52: Screenshot of Model Viewer (Pamela)

4.8.4 Component: Contour Lines (Pamela)

4.8.4.1 Synopsis

Icon

Purpose Draw a variable number of contour lines on a Mesh,
Brep or Surface

Nickname Contour Lines

Type Name Pamela.GH.ResultViews.ContourLines_Component

Location Views

4.8.4.2 Input Parameters

ID Type Description

Meshes Generic Data Meshes, Surfaces or Breps to draw con-
tour lines on.

Count Integer Number of Lines to draw on each input
Mesh, Surface or Brep.

Lowest Integer Lowest / last line to draw.

Highest Integer Highest / first line to draw.



114 user interface

4.8.4.3 Output Parameters

ID Type Description

all Curve All contour lines.

closed Curve Closed contour lines. Check for ponding.

4.8.4.4 Menu items

The following component menu items exist in addition to the standard
drop down menu items:

• Preview Color

• Thickness

4.8.4.5 Appearance

Figure 4.53 shows the component Contour Lines (Pamela) and all em-
bedded components and parameters after placement on the Grasshop-
per document. The components are automatically grouped and the
group is labelled accordingly.

Figure 4.53: Screenshot of Contour Lines (Pamela)



4.8 panel: views 115

4.8.5 Component: 1D Axial Forces (Pamela)

4.8.5.1 Synopsis

Icon

Purpose Visualization of resulting axial forces for 1D Ele-
ments.

Nickname 1D Axial

Type Name Pamela.GH.ResultViews.Element1DAxialForces_Component

Location Views

4.8.5.2 Input Parameters

ID Type Description

Model Model Existing model(s) to choose data to analyze.

Index Integer Model to analyze, in case multiple models are
present. 0 based Index.

4.8.5.3 Output Parameters

ID Type Description

Lines Line Line elements at displaced positions

Plane Plane Reference plane of the results vector.

Values Number Axial forces according to selected data.

Units Text Units according to selected data, can be used
for labels.

Text Text Text according to selected mode, can be used
to label legends.

4.8.5.4 Appearance

Figure 4.54 shows the component 1D Axial Forces (Pamela) and all em-
bedded components and parameters after placement on the Grasshop-
per document. The components are automatically grouped and the
group is labelled accordingly.



116 user interface

Figure 4.54: Screenshot of 1D Axial Forces (Pamela)

4.8.6 Component: Mesh Slope (Pamela)

4.8.6.1 Synopsis

Icon

Purpose Slope or pitch analysis for a mesh. Can be used to
detect possible ponding issues.

Nickname Mesh Slope

Type Name Pamela.GH.ResultViews.MeshSlope_Component

Location Views

4.8.6.2 Input Parameters

ID Type Description

Mesh Generic Data Mesh to analyze slope or inclination

Mode Integer 0 = pitch in degrees, 1 = slope in %

4.8.6.3 Output Parameters

ID Type Description

Mesh Generic Data Analyzed mesh, unmodified.

Values Number Slope or pitch values for each face of the
mesh.

Units Text Units according to selected mode, can be
used for labels.

Text Text Text according to selected mode, can be
used to label legends.



4.8 panel: views 117

4.8.6.4 Appearance

Figure 4.55 shows the component Mesh Slope (Pamela) and all embed-
ded components and parameters after placement on the Grasshopper
document. The components are automatically grouped and the group
is labelled accordingly.

Figure 4.55: Screenshot of Mesh Slope (Pamela)

4.8.7 Component: 1D Results View (Pamela)

4.8.7.1 Synopsis

Icon

Purpose Visualization of resulting forces and moments for 1D
Elements.

Nickname 1D Results

Type Name Pamela.GH.ResultViews.Model1DResults_Component

Location Views

4.8.7.2 Input Parameters

ID Type Description

Model Model Existing model(s) to choose data to analyze.

Index Integer Model to analyze, in case multiple models are
present. 0 based Index.

Scale Number Factor to scale displacements. Impacts the lines
output.

Data Integer Type of values to analyze and visualize. 0 based
Index.



118 user interface

4.8.7.3 Output Parameters

ID Type Description

Lines Line Line elements at displaced positions

Plane Plane Reference plane of the results vector.

Type Integer Structure of result values. 0 = single value, 1 =
vector with 3 components.

Values Vector Values according to selected data, in local coor-
dinates of the element

Units Text Units according to selected data, can be used for
labels.

Text Text Text according to selected mode, can be used to
label legends.

4.8.7.4 Appearance

Figure 4.56 shows the component 1D Results View (Pamela) and all em-
bedded components and parameters after placement on the Grasshop-
per document. The components are automatically grouped and the
group is labelled accordingly.

Figure 4.56: Screenshot of 1D Results View (Pamela)



4.8 panel: views 119

4.8.8 Component: 2D Results View (Pamela)

4.8.8.1 Synopsis

Icon

Purpose Visualization of resulting stresses and other values
for 2D Elements.

Nickname 2D Results

Type Name Pamela.GH.ResultViews.Model2DResults_Component

Location Views

4.8.8.2 Input Parameters

ID Type Description

Model Model Existing model(s) to choose mesh to analyze.

Index Integer Mesh to analyze, in case multiple models are
present. 0 based Index.

Mesh Integer Mesh to analyze, in case multiple meshes are
present. 0 based Index.

Data Integer Type of values to analyze and visualize. 0 based
Index.

4.8.8.3 Output Parameters

ID Type Description

Mesh Generic Data Analyzed mesh, unmodified.

Values Number Numeric data value for each face or vertex
of the mesh.

Units Text Units according to selected mode, can be
used for labels.

Text Text Text according to selected data, can be
used to label legends.

4.8.8.4 Appearance

Figure 4.57 shows the component 2D Results View (Pamela) and all em-
bedded components and parameters after placement on the Grasshop-
per document. The components are automatically grouped and the
group is labelled accordingly.



120 user interface

Figure 4.57: Screenshot of 2D Results View (Pamela)

4.8.9 Component: Snow Roof Shape Evaluation (Pamela)

4.8.9.1 Synopsis

Icon

Purpose Evaluates the snow roof shape coefficients based on
the provided strategy (algorithm).

Nickname Roof Shape

Type Name Pamela.GH.ResultViews.SnowRSEvaluation_Component

Location Views

4.8.9.2 Input Parameters

ID Type Description

Mesh Mesh Input mesh to evalueate values.

Snow mui Generic Data Roof shape coefficient (Strategy).

4.8.9.3 Output Parameters

ID Type Description

Mesh Mesh Analyzed mesh, unmodified.

mui Values Number Snow roof shape coefficients per Mesh Face

4.8.9.4 Appearance

Figure 4.58 shows the component Snow Roof Shape Evaluation (Pamela)
and all embedded components and parameters after placement on the
Grasshopper document. The components are automatically grouped
and the group is labelled accordingly.



4.8 panel: views 121

Figure 4.58: Screenshot of Snow Roof Shape Evaluation (Pamela)

4.8.10 Component: Wind cp Evaluation (Pamela)

4.8.10.1 Synopsis

Icon

Purpose Evaluates the wind cp values based on the provided
strategy (algorithm).

Nickname Wind cp

Type Name Pamela.GH.ResultViews.WindCPEvaluation_Component

Location Views

4.8.10.2 Input Parameters

ID Type Description

Mesh Mesh Input mesh to evalueate values.

Wind dir Generic Data Wind direction as Vector (or text).

Wind cp Generic Data Wind pressure coefficient (Strategy).

4.8.10.3 Output Parameters

ID Type Description

Mesh Mesh Analyzed mesh, unmodified.

cp Values Number Wind pressure coefficients per Mesh Face

4.8.10.4 Appearance

Figure 4.59 shows the component Wind cp Evaluation (Pamela) and
all embedded components and parameters after placement on the
Grasshopper document. The components are automatically grouped
and the group is labelled accordingly.



122 user interface

Figure 4.59: Screenshot of Wind cp Evaluation (Pamela)

4.8.11 Component: 1D Element Handle (Pamela)

4.8.11.1 Synopsis

Icon

Purpose Decompose 1D Elements into common Rhino data
types for further use.

Nickname 1D Element Handle

Type Name Pamela.GH.ResultViews.Element1DHandle_Component

Location Views

4.8.11.2 Input Parameters

ID Type Description

1D Element 1D-Element Existing 1D Element definition.



4.8 panel: views 123

4.8.11.3 Output Parameters

ID Type Description

Node A Node Node denoting start of line.

Node B Node Node denoting end of line.

Line Line Linesegment with initial properties

Line disp Line Linesegment with displaced position
and final properties

Pretension Number Originally assigned stress.

Behaviour Number 0 = unrestrained, 1 = fixed length, 2 =
completely fixed

Type Integer 1 = cable, 2 = truss, 3 = beam, 4 =
geodesicLine

Material Material Material properties

Cro-Sec CrossSection Cross Section properties

Label Text Label previously assigned to this ele-
ment.

Copy 1D-Element A new Element with input values
copied from final values / displaced
positions.

4.8.11.4 Appearance

Figure 4.60 shows the component 1D Element Handle (Pamela) and
all embedded components and parameters after placement on the
Grasshopper document. The components are automatically grouped
and the group is labelled accordingly.



124 user interface

Figure 4.60: Screenshot of 1D Element Handle (Pamela)

4.8.12 Component: 2D Element Handle (Pamela)

4.8.12.1 Synopsis

Icon

Purpose Decompose 1D Elements into common Rhino data
types for further use.

Nickname 2D Element Handle

Type Name Pamela.GH.ResultViews.Element2DHandle_Component

Location Views

4.8.12.2 Input Parameters

ID Type Description

2D Element 2D-Element Existing 2D Element definition.



4.8 panel: views 125

4.8.12.3 Output Parameters

ID Type Description

Mesh Mesh Initial input mesh.

Mesh Final Mesh Mesh after formfinding /
analysis.

Displacements Vector Vector3d of displacement
for ALL nodes.

Warp Number Membrane prestress (ratio)
assigned in warp direction.

Weft Number Membrane prestress (ratio)
assigned in weft direction.

Orientation Vector Warp direction assigned.

Type Integer 1 = membrane, 2 = shell

Material Membrane Material Material properties

Thickness Number Membrane thickness in [m]

Label Text Label previously assigned
to this element.

Copy 2D-Element A new element with input
values copied from final val-
ues / displaced positions.

4.8.12.4 Appearance

Figure 4.61 shows the component 2D Element Handle (Pamela) and
all embedded components and parameters after placement on the
Grasshopper document. The components are automatically grouped
and the group is labelled accordingly.

Figure 4.61: Screenshot of 2D Element Handle (Pamela)



126 user interface

4.8.13 Component: Model Handle (Pamela)

4.8.13.1 Synopsis

Icon

Purpose Decomposes the model into smaller element defini-
tions.

Nickname Model Handle

Type Name Pamela.GH.ResultViews.ModelHandle_Component

Location Views

4.8.13.2 Input Parameters

ID Type Description

Model Model Existing Model to extend with additional defini-
tions.

4.8.13.3 Output Parameters

ID Type Description

2D Elements 2D-Element All 2D Elements matching filter crite-
rias.

1D Elements 1D-Element All 1D Elements matching filter crite-
rias.

Nodes Node All Nodes matching filter criterias.

Supports Support All Supports matching filter criterias.

Copy Model A new Model with input values
copied from final values / displaced
positions.

4.8.13.4 Appearance

Figure 4.62 shows the component Model Handle (Pamela) after place-
ment on the Grasshopper document.



4.8 panel: views 127

Figure 4.62: Screenshot of Model Handle (Pamela)

4.8.14 Component: Node Handle (Pamela)

4.8.14.1 Synopsis

Icon

Purpose Decompose Node into common Rhino data types for
further use.

Nickname Node Handle

Type Name Pamela.GH.ResultViews.NodeHandle_Component

Location Views

4.8.14.2 Input Parameters

ID Type Description

Node Node Existing Node definition.

4.8.14.3 Output Parameters

ID Type Description

Pos Point Coordinates of initial position (Point3d)

Pos Final Point Coordinates of displaced / final position
(Point3d)

Displacement Vector Vector3d of Displacement

Support Support Support condition assigned to this Node

Labels Text Labels previously assigned to other ob-
jects containing this node

Copy Node A new Node with input values copied
from final values / displaced position.



128 user interface

4.8.14.4 Appearance

Figure 4.63 shows the component Node Handle (Pamela) after placement
on the Grasshopper document.

Figure 4.63: Screenshot of Node Handle (Pamela)

4.8.15 Component: Support Handle (Pamela)

4.8.15.1 Synopsis

Icon

Purpose Decompose Support into common Rhino data types
for further use.

Nickname Support Handle

Type Name Pamela.GH.ResultViews.SupportHandle_Component

Location Views

4.8.15.2 Input Parameters

ID Type Description

Support Support Existing support definition.



4.8 panel: views 129

4.8.15.3 Output Parameters

ID Type Description

Pos Point Coordinates of location (Point3d)

Tx Boolean Indication if displacement in X direction is
prevented.

Ty Boolean Indication if displacement in Y direction is
prevented.

Tz Boolean Indication if displacement in Z direction is
prevented.

Rx Boolean Indication if rotation around X-axis is pre-
vented.

Ry Boolean Indication if rotation around Y-axis is pre-
vented.

Rz Boolean Indication if rotation around Z-axis is pre-
vented.

Orientation Plane Plane of orientation.

Labels Text Label previously assigned to the node

4.8.15.4 Appearance

Figure 4.64 shows the component Support Handle (Pamela) after place-
ment on the Grasshopper document.

Figure 4.64: Screenshot of Support Handle (Pamela)



130 user interface

4.8.16 Component: Colormap (Pamela)

4.8.16.1 Synopsis

Icon

Purpose Create a list of colours according to the list of input
values. In addition, colors and tags for a legend are
provided.

Nickname Colormap

Type Name Pamela.GH.ResultViews.Colourmap_Component

Location Views

4.8.16.2 Input Parameters

ID Type Description

Values Number Values to generate colors for.

Count Integer Number of items to generate for the legend. If
necessary, the number is adjusted to be <= the
number of data values provided.

4.8.16.3 Output Parameters

ID Type Description

Colors Colour Colors representing the data items

Max Number Maximum value of the input data.

Min Number Minimum value of the input data.

L_Col Colour Colors for the legend items.

L_Val Number Values for the legend items.

4.8.16.4 Menu items

The following component menu items exist in addition to the standard
drop down menu items:

• Blue-Magenta-Yellow

• Blue-Green-Yellow-White

• Blue-Green-Yellow-Magenta-Red

4.8.16.5 Appearance

Figure 4.65 shows the component Colormap (Pamela) and all embedded
components and parameters after placement on the Grasshopper



4.8 panel: views 131

document. The components are automatically grouped and the group
is labelled accordingly.

Figure 4.65: Screenshot of Colormap (Pamela)

4.8.17 Component: Mesh Values (Pamela)

4.8.17.1 Synopsis

Icon

Purpose Display a mesh colored according to the list of input
values per Mesh Face or Vertex (one or the other). In
addition, colors and tags for a legend are provided.

Nickname Mesh Values

Type Name Pamela.GH.ResultViews.MeshValues_Component

Location Views

4.8.17.2 Input Parameters

ID Type Description

Mesh Mesh Input mesh to display values.

Values Number Values to display.

Postfix Text Text (best only single character) to append to
each value when displayed.

Count Integer Number of items to generate for the legend. If
necessary, the number is adjusted to be <= the
number of data values provided.



132 user interface

4.8.17.3 Output Parameters

ID Type Description

Max Number Maximum value of the input data.

Min Number Minimum value of the input data.

L_Col Colour Colors for the legend items.

L_Item Text Text (values) for the legend items.

L_Rect Rectangle Default rectangle to show legend dirctly be-
side mesh in the viewport. Delete the connec-
tion if not convenient.

4.8.17.4 Menu items

The following component menu items exist in addition to the standard
drop down menu items:

• Draw mesh edges

•

• Blue-Green-Yellow-Magenta-Red

• Blue-Green-Yellow-White

• Blue-Magenta-Yellow

•

• Show texts insetead of colored mesh surface

• Text Size

• Values as text

• Vertex ID’s as text

• Face ID’s as text

4.8.17.5 Appearance

Figure 4.66 shows the component Mesh Values (Pamela) and all embed-
ded components and parameters after placement on the Grasshopper
document. The components are automatically grouped and the group
is labelled accordingly.



4.9 panel: detailing 133

Figure 4.66: Screenshot of Mesh Values (Pamela)

4.9 panel: detailing

Figure 4.67 shows all icons of the components grouped under the
panel Detailing

Figure 4.67: overview of panel Detailing

4.9.1 Component: Connectorplate (Pamela)

4.9.1.1 Synopsis

Icon

Purpose Creates a connectorplate on the reference base plane
aligned with the force vector.

Nickname Connectorplate

Type Name Pamela.GH.Detailing.ConnectorplateComponent

Location Detailing



134 user interface

4.9.1.2 Input Parameters

ID Type Description

baseP Plane Reference plane to connect the plate.

forceV Vector Force vector.

pinPt Point Pinpoint of force vector to connected structure.
Required if no pivotpoint is defined.

pivPt Point Pivotpoint of force vector (centerpoint of hole).
Required if no pinpoint is defined.

d Number Diameter of hole.

r Number Outer radius

dist Number Distance between hole centerpoint and con-
necting structure .

thick Number Thickness of the extrusion.

minLen Number Minimal length of resulting brep on connect-
ing structure.

maxLen Number Maximal length of resulting brep on connect-
ing structure.

4.9.1.3 Output Parameters

ID Type Description

connP Plane Reference plane rotated around its Z-Axis to
align X-Axis with projection of force vector.

forceV Vector Force vector.

pinPt Point Pinpoint of force vector to connected structure.

pivPt Point Pivotpoint of force vector (centerpoint of hole).

centerLn Line Centerline of base surface on connecting struc-
ture.

brep Brep Resulting 3D brep (border representation).

proj Brep 2D projection of the resulting outline.

drawP Plane Plane of 2D projection drawing. Can be used as
reference when 2D projection shall be drawn in
different location.

Info Text Processing and statistical information.

4.9.1.4 Appearance

Figure 4.68 shows the component Connectorplate (Pamela) after place-
ment on the Grasshopper document.



4.9 panel: detailing 135

Figure 4.68: Screenshot of Connectorplate (Pamela)

4.9.2 Component: Pfeifer 860 (Pamela)

4.9.2.1 Synopsis

Icon

Purpose Parameterset for connectorplate Type 860 from
Pfeifer.

Nickname PF860

Type Name Pamela.GH.Detailing.Pfeifer860ParamaeterComponent

Location Detailing

4.9.2.2 Input Parameters

ID Type Description

d Number Diameter of hole in [m].

4.9.2.3 Output Parameters

ID Type Description

d Number Diameter of hole in. Corresponds to input value.

rOut Number Outer radius.

dist Number Distance from hole centerpoint to connecting
structure .

thick Number Thickness of the extrusion.



136 user interface

4.9.2.4 Appearance

Figure 4.69 shows the component Pfeifer 860 (Pamela) after placement
on the Grasshopper document.

Figure 4.69: Screenshot of Pfeifer 860 (Pamela)

4.9.3 Component: Rectangular anchor plate (Pamela)

4.9.3.1 Synopsis

Icon

Purpose Creates a rectangular or square anchor plate on the
reference base plane aligned with the force vector.

Nickname Rect Anchor Plate

Type Name Pamela.GH.Detailing.RectAnchorPlateComponent

Location Detailing

4.9.3.2 Input Parameters

ID Type Description

base plane Plane Reference plane to connect the plate.

center line Line Centerline of connected plate.

size x Number Size in x direction parallel.

size x Number Outer radius

thickness Number Thickness of plate.

holes x Integer Number of holes in X-directon per side.

holes y Integer Number of holes in Y-directon per side.

diameter Number Diameter of holes.

edge Number Distance of holes from edge of plate.

fillet Number Fillet radius for the 4 corners of the plate.
Use 0.0 for none, otherwise hole radius is
applied for default.



4.9 panel: detailing 137

4.9.3.3 Output Parameters

ID Type Description

brep Brep Resulting 3D brep (border representation).

proj Brep 2D projection of the resulting outline.

drawP Plane Plane of 2D projection drawing. Can be used as
reference when 2D projection shall be drawn in
different location.

centerPts Point Centerpoints of all holes, on top surface of the
plate.

Info Text Processing and statistical information.

4.9.3.4 Appearance

Figure 4.70 shows the component Rectangular anchor plate (Pamela)
after placement on the Grasshopper document.

Figure 4.70: Screenshot of Rectangular anchor plate (Pamela)

4.9.4 Component: Round anchor plate (Pamela)

4.9.4.1 Synopsis

Icon

Purpose Creates a round anchor plate on the reference base
plane aligned with the force vector.

Nickname Round Anchor Plate

Type Name Pamela.GH.Detailing.RoundAnchorPlateComponent

Location Detailing



138 user interface

4.9.4.2 Input Parameters

ID Type Description

base plane Plane Reference plane to connect the plate.

reference line Line Reference centerline of connected plate.

plate radius Number Radius of plate.

count Integer Total number of holes.

size Number Size in angular degrees

offset Number Rotational offset in angular degrees.

centerRadius Number Radius of circular centerline

diameter Number Diameter / width of holes.

thickness Number Thickness of plate.

4.9.4.3 Output Parameters

ID Type Description

brep Brep Resulting 3D brep (border representation).

proj Brep 2D projection of the resulting outline.

drawP Plane Plane of 2D projection drawing. Can be used as
reference when 2D projection shall be drawn in
different location.

centerPts Point Centerpoints of all holes, on top surface of the
plate.

Info Text Processing and statistical information.

4.9.4.4 Appearance

Figure 4.71 shows the component Round anchor plate (Pamela) after
placement on the Grasshopper document.



4.10 panel: membrane 139

Figure 4.71: Screenshot of Round anchor plate (Pamela)

4.10 panel: membrane

Figure 4.72 shows all icons of the components grouped under the
panel Membrane

Figure 4.72: overview of panel Membrane

4.10.1 Component: Membrane Pimper (Pamela)

4.10.1.1 Synopsis

Icon

Purpose Utility component to add corner plates to mesh.

Nickname Membrane Pimper

Type Name Pamela.GH.Membrane.MembranePimperComponent

Location Membrane



140 user interface

4.10.1.2 Input Parameters

ID Type Description

mesh Mesh The input mesh to analyze.

corner Point Corner point of the membrane.

left Point left cable connection point of the membrane.

right Point right cable connection point of the membrane.

4.10.1.3 Output Parameters

ID Type Description

mesh Mesh Resulting Mesh with new Geometry.

cornerInd Integer Indices of cable endpoints.

info Text Statistical information gathered during input
processing.

4.10.1.4 Appearance

Figure 4.73 shows the component Membrane Pimper (Pamela) after
placement on the Grasshopper document.

Figure 4.73: Screenshot of Membrane Pimper (Pamela)

4.11 panel: patterning

Figure 4.74 shows all icons of the components grouped under the
panel Patterning



4.11 panel: patterning 141

Figure 4.74: overview of panel Patterning

4.11.1 Component: Flattener (Pamela)

4.11.1.1 Synopsis

Icon

Purpose Flattens a non-developable (curved in two directions)
3-D mesh into a flat 2-D pattern.

Nickname Flattener

Type Name Pamela.GH.Patterning.FlattenerComponent

Location Patterning

4.11.1.2 Input Parameters

ID Type Description

mesh Mesh The input mesh to flatten.

refPts Point Optional list of reference points.

iter Integer Number of iterations to execute. Maximum is
limited to 100.

4.11.1.3 Output Parameters

ID Type Description

Mesh Mesh Resulting Mesh with new Geometry.

refPts Point Final positions of reference points on flattened out-
put mesh.

4.11.1.4 Appearance

Figure 4.75 shows the component Flattener (Pamela) after placement
on the Grasshopper document.



142 user interface

Figure 4.75: Screenshot of Flattener (Pamela)

4.11.2 Component: Create Splitline (Pamela)

4.11.2.1 Synopsis

Icon

Purpose Prepare (refine) mesh to be split along polylines
(Geodesic lines are a good choice) on the mesh.

Nickname Splitline

Type Name Pamela.GH.Patterning.SplitLineComponent

Location Patterning

4.11.2.2 Input Parameters

ID Type Description

mesh Mesh The input mesh to modify.

Paths Curve The polylines (intersection points with mesh) to
refine the mesh along.

pull Number Maximum distance an intersection point is
moved (pulled) towards an existing vertex.

4.11.2.3 Output Parameters

ID Type Description

Mesh Mesh Refined mesh with new geometry.

Paths Curve The refined mesh paths (polylines) which can be
used to split the mesh along.

4.11.2.4 Appearance

Figure 4.76 shows the component Create Splitline (Pamela) after place-
ment on the Grasshopper document.



4.11 panel: patterning 143

Figure 4.76: Screenshot of Create Splitline (Pamela)

4.11.3 Component: Split Mesh (Pamela)

4.11.3.1 Synopsis

Icon

Purpose Split a Mesh along polyline(s). Best results when
using polylines representing mesh paths (e.g. output
of geodesic line combined with splitline component).

Nickname Split

Type Name Pamela.GH.Patterning.SplitMeshComponent

Location Patterning

4.11.3.2 Input Parameters

ID Type Description

Mesh Mesh The input mesh to split.

Paths Curve The mesh paths (polylines) to split the mesh along.

4.11.3.3 Output Parameters

ID Type Description

Mesh Mesh Resulting Meshes with new geometry.

4.11.3.4 Appearance

Figure 4.77 shows the component Split Mesh (Pamela) after placement
on the Grasshopper document.



144 user interface

Figure 4.77: Screenshot of Split Mesh (Pamela)

4.12 panel: utility

Figure 4.78 shows all icons of the components grouped under the
panel Utility

Figure 4.78: overview of panel Utility

4.12.1 Component: Log Configuration (Pamela)

4.12.1.1 Synopsis

Icon

Purpose Initializes the logging framework.

Nickname Logger

Type Name Pamela.GH.Utility.Logger_Component

Location Utility



4.12 panel: utility 145

4.12.1.2 Input Parameters

ID Type Description

Level Integer Level: 0=DEBUG, 1=INFO, 2=WARNING,
3=ERROR

Log File Text Path (including filename) to store logfile.

4.12.1.3 Appearance

Figure 4.79 shows the component Log Configuration (Pamela) and all
embedded components and parameters after placement on the Grasshop-
per document. The components are automatically grouped and the
group is labelled accordingly.

Figure 4.79: Screenshot of Log Configuration (Pamela)

4.12.2 Component: LaTeX Doc (Pamela)

4.12.2.1 Synopsis

Icon

Purpose Create LaTeX documentation for all Grasshopper
components of this assembly. The following entities
are created: 1.) a document with all type descriptions
2.) a list of all subcategories 3.) a .png file for each
icon. REMARK: make sure you use the DocImages
component first to generate the screenshots of the
componnets placed on the canvas for them to be
included and scaled according to text widtĥ.

Nickname Docu Text

Type Name Pamela.GH.Utility.Documentation_Component

Location Utility



146 user interface

4.12.2.2 Input Parameters

ID Type Description

Path Text Path (including dummy filename) to store gener-
ated files. Icons will be placed in subfolder.

now! Boolean Set to true to create documentation and write
data to the filesystem.

4.12.2.3 Appearance

Figure 4.80 shows the component LaTeX Doc (Pamela) and all embed-
ded components and parameters after placement on the Grasshopper
document. The components are automatically grouped and the group
is labelled accordingly.

Figure 4.80: Screenshot of LaTeX Doc (Pamela)

4.12.3 Component: Import Results (Pamela)

4.12.3.1 Synopsis

Icon

Purpose Import final X, Y, Z coordinates from file generated
by Matlab scripts and assign them to a model as final
/ displaced positions. This component is mainly used
by the Execute Matlab Solver Component.

Nickname Import

Type Name Pamela.GH.Utility.ImportResults_Component

Location Utility



4.12 panel: utility 147

4.12.3.2 Input Parameters

ID Type Description

Model Model Model representing initial state.

Workdir Text Working directory of Matlab. Results file must
be located in a subdirectory called Export.

File Text Name of the file containing the results data

now! Boolean Set to true to trigger read data from file.

4.12.3.3 Output Parameters

ID Type Description

Model Model Model with results.

4.12.3.4 Appearance

Figure 4.81 shows the component Import Results (Pamela) and all em-
bedded components and parameters after placement on the Grasshop-
per document. The components are automatically grouped and the
group is labelled accordingly.

Figure 4.81: Screenshot of Import Results (Pamela)



148 user interface

4.12.4 Component: Write To File (Pamela)

4.12.4.1 Synopsis

Icon

Purpose Write the Pamela Datamodel to a file. This file can
be used in Matlab scripts for further processing or
results verification. This component is mainly used
by the Execute Matlab Solver Component.

Nickname Filewriter

Type Name Pamela.GH.Utility.WriteModelToFile_Component

Location Utility

4.12.4.2 Input Parameters

ID Type Description

Model Model The assembled Pamela Model to write to file.

Filepath Text Full path including filename for output file.

now! Boolean Set to true to trigger write data to the file.

4.12.4.3 Output Parameters

ID Type Description

Workdir Text Path to working directory for Matlab and
script file.

Trigger Boolean Is set to true once the file is written. False
when input trigger is false.

4.12.4.4 Appearance

Figure 4.82 shows the component Write To File (Pamela) and all embed-
ded components and parameters after placement on the Grasshopper
document. The components are automatically grouped and the group
is labelled accordingly.



4.12 panel: utility 149

Figure 4.82: Screenshot of Write To File (Pamela)

4.12.5 Component: Input Collector (Pamela)

4.12.5.1 Synopsis

Icon

Purpose Collects input definitions from active Rhino docu-
ment.

Nickname IC

Type Name Pamela.GH.Utility.InputCollectorComponent

Location Utility

4.12.5.2 Input Parameters

ID Type Description

mesh Mesh Meshes to create 2D elements.

crv Curve Curves to create 1D elements.

pt Point Point objects for supports.

4.12.5.3 Output Parameters

ID Type Description

info Text Key / value pairs of the user texts assigned to the
object.

4.12.5.4 Appearance

Figure 4.83 shows the component Input Collector (Pamela) after place-
ment on the Grasshopper document.



150 user interface

Figure 4.83: Screenshot of Input Collector (Pamela)

4.12.6 Component: Run Executable (Pamela)

4.12.6.1 Synopsis

Icon

Purpose Run an executable with attributes

Nickname RunExec

Type Name Pamela.GH.Utility.RunExecComponent

Location Utility

4.12.6.2 Input Parameters

ID Type Description

T Text Full path to the executable

T Text Arguments to pass to the executable

B Boolean Boolean parameter

B Boolean Wait for exit code

4.12.6.3 Output Parameters

ID Type Description

S Text Exit code from the program

4.12.6.4 Appearance

Figure 4.84 shows the component Run Executable (Pamela) after place-
ment on the Grasshopper document.



4.12 panel: utility 151

Figure 4.84: Screenshot of Run Executable (Pamela)





5 T E S T I N G A N D P R O O F O F
C O N C E P T

If you find that you’re spending almost all your time on theory, start
turning some attention to practical things; it will improve your theories. If

you find that you’re spending almost all your time on practice, start
turning some attention to theoretical things; it will improve your practice.

— Donald E. Knuth

5.1 introduction

This chapter shows how the accuracy of the implementation was
verified and proofs that the system is working and can be used to
design and analyze membrane structures.

Software testing is a field of expertise by itself. Different comple-
mentary approaches exists and the effort to test a software can often
be compared to the effort needed to write the program. A basic dis-
tinction of the test methodology is based on how the system is viewed:

• In black box testing, the artifact to test is treated as a black box,
the functionality is tested based on an outside view. Does the
result correspond with the expected result for the given input? This
methodology is mainly used to validate the final results of a
workflow.

• In contrast, white box testing is focusing on the internals of the
implementation. These can be things like is all memory released
when no longer used? etc. This methodology is mainly used when
the program is executed in debugging mode and the source code
can be executed step by step.

5.1.1 Unit Testing

To test functionality of a specific component or algorithm individually,
I mainly followed the concept of unit testing. Therefore, testing is split
up in several modules, each of them testing a specific algorithm or
logic. I created individual Grasshopper definitions for each function-
ality and algorithm to be covered by unit tests. An important rule of
unit testing is to always execute all unit tests. This allows to discover
unexpected side effects (changes for module A effecting module B due
to changes made in shared code C).

153



154 testing and proof of concept

5.1.2 System Testing

Testing of workflows and overall results has been done in several
steps:

• Verification of the algorithms against the Matlab reference im-
plementation

• Over the past 2 years I used PAMELA to complete all relevant
assignments from the study program at IMS

• Real live testing using PAMELA for customer projects

Numerical testing against 3rd party membrane software was done
only very limited since I currently don’t have access to any such soft-
ware running on my computer. But since the Matlab implementation
was previously tested by Peter Novýsedlák, it is assumed that the
results of this reference implementation are correct and can be used
to substitute testing against another membrane software.

The steps listed above are discussed in more detail in this chapter.

5.2 testing against reference implementa-
tion

For results verification against Matlab implementation it was impor-
tant to use exactly the same values and properties in both systems.
Same values means for example exactly the same point coordinates
and indexing for each vertice of the mesh etc. To ease and automate
this process, I have implemented dedicated components which are
described in detail in section 4.7.3.

Figure 5.1 shows the component Execute Matlab (Pamela) and all
embedded components and parameters. It’s actually a group of three
components, each of them dedicated to a specific task:

1. The first one reads the data model, converts the data structure
and writes the Matlab specific file to disk. once the file is written,
the second component is triggered.

2. The second one calls Matlab as a native process on the operating
system and waits until Matlab returns. Soon as this signal is
received, the third component is triggered.

3. The last component called Importer reads the result data created
by Matlab from disk, converts the data and appends the data to
the original data model.

Having the functionality split into three components further allows to
use them individually as well. A common use case was to disable the
middle component and start Matlab in debug mode individually.



5.2 testing against reference implementation 155

Figure 5.1: Screenshot of Execute Matlab (Pamela)

5.2.1 Test Scenarios

Results comparison against Matlab implementation was done on a
very detailed level:

1. A cable net only, therefore with a model containing only 1D
elements and supports but no membrane / 2D elements

2. A model just based on a membrane and supports, no edge cables
or other 1D elements

3. several models combining 1D and 2D elements and supports

5.2.2 Test Cases

Based on the models mentioned above, several test cases with different
prestress ratios and warp directions were executed for the different
analysis modes:

• Form finding with modeFactor property set to 0.0, therefore
ignoring material properties

• Damped form finding with modeFactor set to 0.001. This config-
uration is mainly used to form find cable nets.

• Analysis (modeFactor = 1.0) without any loads

• Analysis (modeFactor = 1.0) with prestress and self-weigth only

• Analysis (modeFactor = 1.0) with prestress, self-weigth and point
loads.

5.2.3 Results Verification

With the detailed testing several errors in my implementation were
detected. Some of them were introduced by myself, others originated



156 testing and proof of concept

in 3rd party libraries. The most unexpected misbehavior was the
fact that the implementation of the square root function provided by
Microsoft for the data type double delivered different results than the
one incorporated in Matlab. The differences were very small, usually
in the of range 0.00000001. But the difference resulted in wrong values
in the element stiffness matrix which summed up with the iterations
and led to a different convergence behavior or even worse, prevented
convergence at all. Double checking the results with Excel and also a
pocket calculator proofed that Microsoft implementation was wrong.
Things like this you usually don’t expect and they can lead to very
time-consuming testing and debugging. The solution to fix this error
was to implement my own square root function.

Verification of the results was done in two steps:

1. Verification of convergence behavior (see 5.2.4)

2. Verification of numerical values (see 5.2.5)

5.2.4 Verification of Convergence Behavior

Verification of convergence behavior is done based on logfile output.
PAMELA has a logging functionality integrated which can be activated
using the Log Configuration component (see 4.12.1). If the level is set
to Info, tolerance and displacement increment is output at the end of
each iteration.

Matlab scripts are configured to output the same information to
the console which allows to easily compare the behavior of both
implementations. For illustration, one set of logfile data is included.

Listing 5.1: Convergence of PAMELA Implementation

Membrane with edge cables

Supports on all membrane corners

FEA Form finding damped (0.001)

Model: Frey

Iter: 1/51 Tol: 0.0001 Max. diff: 1 Displ incr: 2.59119003100387

Iter: 2/51 Tol: 0.0001 Max. diff: 0.231166154872148 Displ incr:

0.545067279532629

Iter: 3/51 Tol: 0.0001 Max. diff: 0.0766645231833856 Displ incr:

0.183244426748704

Iter: 4/51 Tol: 0.0001 Max. diff: 0.0340303698988302 Displ incr:

0.0808544021734926

Iter: 5/51 Tol: 0.0001 Max. diff: 0.0180408974908638 Displ incr:

0.042933669172953

Iter: 6/51 Tol: 0.0001 Max. diff: 0.0104649959645834 Displ incr:

0.0248891116506604

Iter: 7/51 Tol: 0.0001 Max. diff: 0.00639799030766625 Displ incr

: 0.0152188511910136



5.2 testing against reference implementation 157

Iter: 8/51 Tol: 0.0001 Max. diff: 0.00403631101140875 Displ incr

: 0.00960072451757556

Iter: 9/51 Tol: 0.0001 Max. diff: 0.00260659091574162 Displ incr

: 0.00619996334631589

Iter: 10/51 Tol: 0.0001 Max. diff: 0.00171644022098323 Displ

incr: 0.00408273606185146

Iter: 11/51 Tol: 0.0001 Max. diff: 0.00114903733008164 Displ

incr: 0.00273306309433529

Iter: 12/51 Tol: 0.0001 Max. diff: 0.000780763138978998 Displ

incr: 0.00185712207159313

Iter: 13/51 Tol: 0.0001 Max. diff: 0.000537291358615094 Displ

incr: 0.00127798743883579

Iter: 14/51 Tol: 0.0001 Max. diff: 0.000374038524018902 Displ

incr: 0.00088968500247322

Iter: 15/51 Tol: 0.0001 Max. diff: 0.000262958159833781 Displ

incr: 0.000625466786210727

Iter: 16/51 Tol: 0.0001 Max. diff: 0.00018643571030735 Displ

incr: 0.000443453756811303

Iter: 17/51 Tol: 0.0001 Max. diff: 0.00013319964476075 Displ

incr: 0.000316826259364233

Iter: 18/51 Tol: 0.0001 Max. diff: 9.57938115659238E-05 Displ

incr: 0.000227853838167884

Nonlinear FEA was used for Form Finding !

FEM finished: Iteration: 18/51 Tolerance: 0.0001 Max. diff:

9.57938115659238E-05

Listing 5.2: Convergence of Matlab Implementation

Iteration: 1 crit: 1 Displacement increment: 2.5912

Iteration: 2 crit: 0.23117 Displacement increment: 0.54507

Iteration: 3 crit: 0.076665 Displacement increment: 0.18324

Iteration: 4 crit: 0.03403 Displacement increment: 0.080854

Iteration: 5 crit: 0.018041 Displacement increment: 0.042934

Iteration: 6 crit: 0.010465 Displacement increment: 0.024889

Iteration: 7 crit: 0.0063981 Displacement increment: 0.015219

Iteration: 8 crit: 0.0040364 Displacement increment: 0.0096009

Iteration: 9 crit: 0.0026067 Displacement increment: 0.0062001

Iteration: 10 crit: 0.0017165 Displacement increment: 0.004083

Iteration: 11 crit: 0.0011492 Displacement increment: 0.0027334

Iteration: 12 crit: 0.00078083 Displacement increment: 0.0018573

Iteration: 13 crit: 0.00053734 Displacement increment: 0.0012781

Iteration: 14 crit: 0.00037403 Displacement increment: 0.00088966

Iteration: 15 crit: 0.00026291 Displacement increment: 0.00062536

Iteration: 16 crit: 0.00018643 Displacement increment: 0.00044344

Iteration: 17 crit: 0.0001332 Displacement increment: 0.00031683

Iteration: 18 crit: 9.5819e-05 Displacement increment: 0.00022791

Nonlinear FEA was used for Form Finding !

Converged successfully at 18 iterations

Convergence criteria 9.5819e-05 is smaller than prescribed

tolerance 0.0001

Final norm of residual forces 0.0026465

Last displacement increment 0.00022791



158 testing and proof of concept

5.2.5 Verification of Numerical Values

Once the same convergence behavior was achieved all numerical
values were compared in detail. Numerical values are:

• displacements / point coordinates

• stresses / forces

To verify the accuracy of the displacements / point coordinates a
model was created where the two solvers run in parallel. Since the
same point order was used, it was possible to compare the coordinates
of the two result sets easily. Figure 5.2 shows the relevant part of the
model used for numerical comparison. Vectors are computed based
on the points with the same index in both result sets. The length of
the resulting vectors is used to color the mesh for visualization.

Figure 5.2: parallel solver setup

Figure 5.3 shows the visualization of the results, the absolute dis-
tance of the point coordinates for identical point indices. The largest
difference is 0.000735 which is well acceptable.



5.3 example hypar with ridge cable 159

Figure 5.3: distance of nodal coordinates

5.3 example hypar with ridge cable

In this section the results for one of the tasks of the assignment in
CM6 Studio Detailing are reproduced to demonstrate how the process
of form finding and structural analysis can be implemented for a
simple Hypar with ridge cable. Patterning is not described at this point
because this example is already used for the explanations in section
3.14.

5.3.1 Task

Figure 5.4 shows the geometry used for this task. It must be noted
that a size of 20m x 20m seems rather big for a traditional Hypar
structure. As a consequence, the required prestress in the membrane
and especially the resulting axial forces in the cables are remarkable
high.

As prestress ratio for warp/weft/cables 1:1:10 is specified. The given
value for snow load is 0.65kN/m2 and for wind load 1kN/m2.

5.3.2 Preliminary Remarks

For structural analysis of a membrane, usually different load cases are
defined and combinations of these individual load cases with specific
load factors are considered to evaluate maximum and minimum values
of stresses and forces, also known as enveloped results. The task only
defines individual loads like snow, wind 45 or wind -45 degrees, no



160 testing and proof of concept

Figure 5.4: Dimensions for Hypar with ridge cable

combinations and respective factors are given. Therefore the results
are processed accordingly:

• Besides the external load specified, each load case considers also
prestress and self-weight.

• For each load, a separate load case is defined and evaluated
individually, no load combinations like snow and wind are
evaluated.

• For dimensioning of the membrane and cables, envelope results
of all load cases are considered.

5.3.3 Design

Since warp direction is not specified by the task, I chose warp to run
in the direction from highpoint to highpoint. The main reason for this
is to align it with the direction of the ridge cable and its pocket.

The Dimensions of 20m x 20m seem to be fairly big for a Hypar
shaped membrane and high forces in the cables and structure are
expected.

5.3.4 Model Definition

Figure 5.5 shows the complete model used for form finding and
analysis including meshing, material specifications, load definitions
and results visualization. It consists of 20 main component groups
which are later described in more detail.



5.3 example hypar with ridge cable 161

Figure 5.5: Complete model definition for task 1



162 testing and proof of concept

The meshing is split in 2 parts, shown by figure 5.6:

• The preliminary mesh created based on the 3-dimensional out-
line of the membrane. 10 was chosen for the resolution parameter
which lead to 19 nodes along each edge.

• Local mesh refinements along the path of the ridge cable which
runs from corner 1 to corner 3. This group also contains the
specification for the cable like pretension, behavior, material and
cross-section. With this refinement along the diagonal it will
later when the cutting patterns are created be possible to place a
seam and cut the mesh exactly along the ridge cable.

Figure 5.6: Mesh creation and refinement

Initial mesh Mesh refined along the diagonal

361 vertices, 648 faces 379 vertices, 684 faces

Table 5.1: Inital and refined mesh

It is important to understand that all subsequent definitions in the
model must be based on the refined mesh and not the initial mesh.

The core part of the model definition is rather simple.

membrane element

• The single mesh is used as input for a so called 2D Element (or
Membrane Element)



5.3 example hypar with ridge cable 163

• Prestress for warp and weft is set according to the tasks definition
to 1 for warp and weft identical.

• Material and corresponding thickness is taken from the material
database. As a starting value a PES/PVC fabric of Type II was
assigned.

edge cables

• The Mesh Edges component is used to automatically identify the
4 cables running along the edges of the membrane. The corner
points are used as differentiating factor.

• Since all cables have the same prestress a single 1D Element
(or Line Element) specification is used and shared among the 4

cables

• Pretension value is set to 10

• Open spiral strand cables with 20mm in diameter are selected
for material and cross section

ridge cable

• The definition of the ridge cable was included in the mesh
refinement process shown by figure 5.6

• The same material specifications as for the edge cables are used

supports

• Since there are no additional structural elements involved in the
analysis, the 4 corners of the membrane are used as location
input for the supports.

• The supports are fixed against movement in x, y and z direction,
but they are free to rotate.

All model elements mentioned above are used as input for the
model builder which assembles a consistent and validated data model
based on these inputs. Since material specifications have been provided
for all elements, the model is ready to be used by a Finite Element
Method solver. Without the material specification, only the Force
Density Solver could be used.

Figure 5.7 shows the components involved to define and assemble
the data model.

The 4 load cases are defined individually according to the definitions
in the task:

• 0.65 kN/m2 for snow load

• 1.0 kN/m2 for wind



164 testing and proof of concept

Figure 5.7: Assembling the data model

• Wind direction is set to 45 degrees from high point to high point
and - 45 degrees from low point to low point respectively

• For the snow load roof shape coefficients are assigned to each
triangle of the mesh automatically. As we will see later, only
the area of the highest corner of the membrane will be affected
by some snow drifting. The remaining part of the membrane is
rather flat and therefore no snow drift is taken into account.

• For the wind loads pressure coefficients (also called cp values)
are automatically assigned to each triangle of the mesh based on
it’s orientation compared to the wind direction.

• The prestress factor was elaborated iteratively. The load case
wind from direction – 45 degrees was the one requiring the high-
est prestress to avoid wrinkling in all regions of the membrane.

Figure 5.8 shows the load case definitions used.
For form finding and analysis a chain of 3 solvers is being used.

• The first solver is just used for form finding. Loads are not taken
into account and material properties are multiplied with 0.001.

• The second solver uses the geometry output of the first solver,
prestress and self-weight are applied and material properties
considered full. This intermediate step could be omitted, but
the output geometry is a perfect basis to analyze the resulting



5.3 example hypar with ridge cable 165

Figure 5.8: Load case definitions

displacements of the subsequent steps where load cases are
applied.

• The third solver process applies all selected load cases one after
the other and stores the resulting stresses and displacements
individually. If multiple load cases are applied, the envelope
minimal and envelop maximal values are calculated in addition
and results stored individually as well. Applying 4 load cases
(or load scenarios) therefore results in 6 output models.

Figure 5.9 shows the daisy chain of multiple solvers.

Figure 5.9: Daisy-chain of solvers



166 testing and proof of concept

Figure 5.10 shows how each solver documents the progress and
results summary of the execution in the black message bubble. If
the convergence criteria for at least one load case is not met, the
component turns orange and a warning message is displayed.

Figure 5.10: Solver results summary

5.3.5 Form Finding

Table 5.2 shows the membrane after initial form finding and after
formfinding with prestress and selfweight applied. The mesh on the
right represents the final geometry.

Result of form-finding without
loads

Prestress and self weight applied
to the initial result.

Table 5.2: Mesh after form finding



5.3 example hypar with ridge cable 167

5.3.6 Loads

As mentioned before, specific algorithms are applied to automatically
calculate adequate values for wind pressure coefficients and roof shape
coefficients for snow loads. Therefore the values applied differ from
the definitions in the assignment but I regard these values to be more
accurate mainly because a wider range of values are applied and the
steps between adjacent mesh triangles are smoother.

Table 5.3 shows the impact of the wind direction when wind load is
applied.

Wind from direction of top right
corner which is the highest point
of the geometry results in up-
lift in this area. Some downward
pressure occurs at the high point
in the bottom left corner.

Wind in direction from low
point to low point results in
some downward pressure on the
windward side of the membrane.
Wind suction (uplift) is experi-
enced on the leeward side.

Table 5.3: Wind load on Hypar

Table 5.4 shows the impact of snow load and the enveloped maxi-
mum for external forces.



168 testing and proof of concept

Snow load is acting uniform for
the largest part of the membrane.
Only in the area of the highest
corner some snow drift is ex-
pected.

Snow and wind loads are acting
in different directions. The en-
velope maximum of all external
forces in any direction is given
by the length of the correspond-
ing resulting forces vector.

Table 5.4: Snow load and enveloped results

5.3.7 Serviceability / Deflection

The deflection of a membrane under loads is a common criteria to
assess the serviceability. Although displacements can occur in any
direction, for this structure the focus is on displacements up- or down-
wards and therefore in Z-direction.

Table 5.5 shows the resulting displacements depending on the direc-
tion of the applied wind loads.

Displacement in Z-direction due
to wind 45 degrees is mainly up-
wards due to wind suction. The
cable is reducing the movement
only minimally along the ridge
since this movement does not ap-
ply additional tension on the ca-
ble.

The resulting displacements in
Z direction due to wind from -
45 degrees correspond well with
the findings from analyzing the
reacting forces based on the cp
values.

Table 5.5: Snow load and enveloped results



5.3 example hypar with ridge cable 169

When the membrane is loaded with snow the ridge cable comes into
play and significantly reduces deformation along the diagonal from
highpoint to highpoint. Figure 5.11 shows that the largest deformations
occur in the areas with the largest distance from edge and/or ridge
cables.

Figure 5.11: Displacements due to snow

5.3.8 Stress Anaysis

5.3.8.1 Membrane Prestress

Table 5.6 shows the resulting prestress in warp (x) and weft (y) direc-
tion.

The X-direction corresponds
with the warp direction and
therefore runs parallel to the
ridge cable.

The resulting prestress in Y di-
rection is slightly higher than in
X-direction, most likely because
of the missing cable in this direc-
tion.

Table 5.6: Membrane Prestress

5.3.8.2 Membrane Stress for Loadcas Snow

Table 5.7 shows the resulting membrane stresses in warp (x) and weft
(y) direction due to snow load.



170 testing and proof of concept

Looking at the maximum stress
in X-direction the impact of the
ridge cable becomes clearly visi-
ble.

In Y-direction, the highest
stresses from snow load appear
in the corners of the low points.

Table 5.7: Membrane stress due to snow load

5.3.8.3 Maximum Membrane Stresses (Enveloped Result)

Table 5.8 shows the maximum membrane stresses in warp (x) and weft
(y) direction. These maximum values will be used to select the fabric
based on tensile strength (reduction factores need to be applied).

The enveloped result for stress
in X-direction look very similar
as the result for snow load only.
This load case seems to be the
most relevant for stress in warp
direction.

The maximum stresses in Y-
direction are higher than in X-
direction because there is no sup-
porting cable running in this di-
rection.

Table 5.8: Maximum membrane stress

5.3.8.4 Axial Forces in the Cables

Table 5.9 shows the resulting axial forces in the cables.



5.3 example hypar with ridge cable 171

As expected, prestress leads to
fairly harmonic axial forces in
the edge cables.

The maximum forces (envelope
results) in any of the edge cables
is 252kN. For the ridge cable up
to 115kN is expected.

Table 5.9: Axial forces

5.3.9 Conclusion

This example proofs that the full engineering workflow for the design
of a membrane structure as described in 3.7.2 can be executed with
the developed software library PAMELA.

The results of the analysis show that the maximum stresses in the
membrane are in Y-direction and imposed by the wind loads and
not by the snow load. Maximum stress in Y-direction is 17.5 and
in X-direction “only” 12.5. Since most membrane materials have a
(slightly) higher tensile strength in warp (X) direction, one could
come to the conclusion that the orientation of the fabric should be
changed by 90 degrees. But the warp direction was chosen based on
the direction of the ridge cable. Now the question arises if the cable,
which was introduced to stabilize the membrane for snow loads, runs
in the right direction? Defined maximum for snow load is 0.65kN/m2,
defined maximum for wind load is 1.0kN/m2. I was curious to see
how the membrane behaves without the ridge cable and if the same
material specifications would be sufficient. Thanks to the parametric
design, this was easy to do: disable the ridge cable component and the
solver starts recomputing since the change in the model is discovered
automatically. All result views are automatically updated afterwards.

5.3.9.1 Membrane without Ridge Cable

To get the solution converge without the ridge cable, prestress factor
had to be increased from 9.0 to 9.5. The results of the analysis are not
presented in detail but just summarized:

• Slightly higher prestress is required, but the membrane could
still be build using a fabric of Type II.



172 testing and proof of concept

• The maximum stress in X-direction is still lower than the stress
in Y-direction, therefore the orientation of warp direction could
be changed by 90 degrees.

• Omitting the ridge cable from high-point to high-point will lead
to lower overall costs.

• An option to further investigate would be to have a cable running
from low-point to low-point to stabilize the membrane against
wind suction. It’s well possible that by this cable the forces in the
edge cables could be reduced and cables of type PG40 become
sufficient for all edge cables (currently 2x PG40 and 2x PG55).

• These findings are all based on the given load cases and espe-
cially wind directions and the associated cp values. If any of
these factors is changed, the results change as well.

5.4 the real-life proof of concept

It’s good and important to crack numbers, and as the section 5.2
shows, it sometimes can be very important to start digging for the 6th
decimal place. The real proof of whether something is working or not,
however, is still provided by the fact that it is implemented, built. Last
but not least, the difference between theory and practice is that there
is no difference in theory.

Following this principle and the slogan "use what you sell", I have
used PAMELA as often as possible in customer projects. First only
for form finding and visualization, then for patterning and finally
for structural analysis as well. So I could continuously test, improve
and extend the implementation. A true iterative, agile development
process.



6 S U M M A R Y

This work shows that it’s possible to develop a fully parmetric software
for form finding, structural analysis, patterning and 3D visualizations
of membrane structures as an easy deployable and installable plugin
to Rhino Grasshopper. The interface components provided allow the
software to be used by anybody with understanding of membranes
and CAD, especially no programming skills are required. By introduc-
ing the concept of smart component groups (3.6.1) the usability was
improved significantly, the minimal number of clicks required to build
a solution speeds up the process noticeable and also reduces the risk
of errors and inconsistent configurations. Some of the implemented
concepts are regarded as unique selling propositions.

documentation To be able to take full advantage of the benefits,
however, the provided components must be known, which is associ-
ated with learning effort at the beginning. If the software is to be made
available to a wider circle of users in the future, appropriate examples
must be provided. The analysis of a hypar described in section 5.3 can
be regarded as such an example. In order to keep documentation up
to date, special functions were implemented which generate LaTex-
compliant descriptions of the components targeted at end users and
not programmers directly from source code (see 4.12.2). To capture the
dynamic parameters of the components, this tool actually instantiates
each component, parses the parameters, adds the component to the
Grasshopper canvas and automatically creates a screenshot which in
turn is included in the documentation. With this tool it is possible to
generate up-to-date documentation at any time. It is easy to convert
LaTex based documentation to PDF or other formats.

proof The proof for the correct functioning is provided by compar-
ing the results with the reference implementation based on Matlab
scripts. The Matlab reference implementation was previously tested
by its author and is therefore assumed to deliver correct results. The
test results and examples listed in the document show that it was
possible to finish all relevant assignments from the study program
with the PAMELA software library, including form finding, structural
analysis, patterning, detailing and 3D visualizations. In addition, and
even more important, the software is now being used successfully in
real live customer projects to build beautiful membranes.

173



174 summary

fulfillment of requirements In chapter 2 I have summarized
my own requirements for a parametric membrane software. The next
section contains a list of limitations and topics with room for improve-
ments. My overall summary is that I am very happy with the overall
result and I am frequently using the PAMELA package which supports
my workflows and perfectly suits my needs.

6.1 limitations

Although I am very satisfied with what I have achieved, the current
implementation has certain limitations. They are listed in the following
in random order.

progress info Structures with a larger number of DOF’s require
a certain amount of processing time. The Grasshopper user interface
currently does not support any kind of reporting progress information.
This can lead to a "frozen" apperance of Grasshopper and Rhino while
computations are executed. The current workaround is to open the
logfile to follow the progress reported to the log (loglevel Info is ideally
suited for this).

performance The performance of a software has a great impact
on the usability. As described in 3.9.2 support for multithreading is
added in Grasshopper only starting with Rhino for Windows, Version
6.0. A goal for the future development is to migrate the whole software
library to Rhino 6.0 and take full advantage of the additional concepts
available.

platform support It is a goal to natively support the two oper-
ating systems Microsoft Windows as well as Mac OS X. Section 3.3
points out that this will be possible once the library is migrated to
Rhino version 6 and the Eto framework is supported. This is regarded
as requiring minor effort only.

licensing Currently no licensing module is implemented which I
take as a reason not to make the software available to other people at
the moment until it’s clear if a commercialization will be considered
or not.

use cases The current implementation has been continuously im-
proved and adapted and proofed to be very useful. But there are still
many more use cases that could be envisioned as helpful and good to
implement.



6.2 outlook 175

meshing / remeshing Meshing is key functionality of the whole
program and process. The currently implemented meshers work well,
but it is not out of the question that the function could be further
optimized. As pointed out in 3.9 3rd party meshes can already be used
today if required by a special case.

warp orientation In section 3.10.2 it was pointed out that the
current approach of projecting warp direction has some limitations.
This will be an interesting field for further research and solutions
could become additional unique selling propositions.

etfe Currently internal pressure can be specified as part of the load
cases and therefore structures based on ETFE cushions could be dealt
with as well. But this has not been tested or used so far.

national codes For structural analysis the model already contains
material properties and cross section data for all elements. Together
with the resulting stresses and forces, checking of the model against
national codes would be possible. Time constraints so far did not allow
to implement such functionality.

patterning The most important components for the patterning
process have been developed and are included in the library: Geodesic
lines based on mesh surface, refinement of a mesh to have a path
following the geodesic (or any other) line, splitting (dividing) a mesh
along a mesh path and flattening meshes (panels) from 3D to 2D. On
the other hand functionality in order to find the optimal locations for
the geodesic lines or to orient and lay out the panels as well as for
adding compensation values have only been prototyped so far and
usability of them could be further improved. But first more experience
with this process must be gained.

6.2 outlook

Now that my studies are coming to an end, the time pressure is also
easing a bit and my focus has to shift back to customer projects to earn
a living. I personally want to continue this project and it would also
be great to see other professionals using it to build their membranes.
Since it incorporates a fully parametric approach, it would also be
well suited to be used at Universities to teach parametric design and
membranes. A lot of time has been invested up to now and great
care was taken not to include any third party libraries which would
prevent a commercialization.



176 summary

6.2.1 Business Model

A major decision that needs to be taken is how this software is made
available to others. An open source approach where the software is
given away for free has the potential to quickly build a community
which in turn generates valuable feedback and ideas for future de-
velopment. On the other hand the main focus is membranes and it is
not obvious that skilled software engineers would join the community
and actively contribute to the further development.

If commercialization is considered, a business case including an in
depth market analysis needs to be written. Additional manpower to
continue the development and to provide a reliable support infrastruc-
ture for the world wide community of membrnae professionals would
be needed.

Implementing a licensing module allowing to grant other people ac-
cess to the software for a trialling period would allow to get some first
feedback and to further investigate the market potential. Therefore,
such a module should be implemented as soon as possible.

6.2.2 Integration with other Software

Due to the flexible architecture chosen, it would also be possible to
intergrate PAMELA with other software. Some options are:

• Karamba [18] is a fantastic structural analysis package for Grasshop-
per but with no or only very limited support for membranes.
Karamba could be used for the general structural analysis tasks
and PAMELA for the membrane specific workflows and evalua-
tions.

• The Carat++[23] solver used by Kiwi3D[24] works based on
input files. Integrating this solver into PAMELA can be envisioned
the same way Matlab is currently integrated (see 5.2).

• Just very recently I discovered the software library COMPAS[26]
developed at the Block Research Group at ETH Zurich. This
Python based library is also available for Rhino and Grasshop-
per and incorporates interesting functionality regarding mesh
creation and modification as well as different algorithms for
form finding. Combining the power of COMPAS and PAMELA

could lead to a very powerful toolset and a community of highly
skilled researchers.

• Kangaroo[17] as an interactive physics/constraint solver and
Grasshopper plugin seems to have a broad community of users
but does not especially support membrane specific workflows
and requirements.



6.3 personal findings 177

6.3 personal findings

By implementing this sofware library I gained insight knowledge of
the the Finite Element Method and algorithms applyed in the process
of designing and dimensioning membrane structures. In order to
gain the ability to write this software program I had to learn a new
programming language (C#) and in particular I had to explore the
3rd party library RhinoCommon, which has a very large feature set
but is only very sparsely documented. I got to know Grasshopper as
a very powerful tool and am fascinated by the possibilities offerd by
parametric design. Last but not least I discovered the power of LaTex
as a document preparation system to write this Master Thesis.

I am happy and proud to now have a software library which I can
use for my daily work with membranes.

Don’t let membranes drive you crazy...
... get crazy about membranes!
PAMELA will happily assist :-)





B I B L I O G R A P H Y

[1] Martin Brown. NDN Membrane Software. url: https://dokumen.
tips/documents/ndn- membrane- software.html (visited on
03/10/2019).

[2] Carl Stahl ARC GmbH. TENNECT formfinder | Carl Stahl ARC
GmbH - YouTube. url: https://www.youtube.com/watch?v=
scuvs5fx8yc (visited on 03/10/2019).

[3] Bill Cole. What is software usability? url: https://blog.rocketsoftware.
com/2014/11/software-usability/#.XIX61i1oRYg (visited on
03/11/2019).

[4] Gerry D’Anza. RhinoMembrane v 3.0 For Rhino 6.0 | Food4Rhino.
url: https://www.food4rhino.com/app/rhinomembrane-v-30-
rhino-60 (visited on 03/10/2019).

[5] Dlubal Software. Dlubal Structural Analysis and Design Software.
url: https://www.dlubal.com/en-US/solutions/application-
areas/software-for-form-finding-and-cutting-pattern-

membrane-structures (visited on 03/10/2019).

[6] ExactFlat. ExactFlat. url: https://www.exactflat.com/ (visited
on 03/10/2019).

[7] Formfinder Software GmbH. Formfinder. url: https://www.
formfinder.at/ (visited on 03/10/2019).

[8] E Gamma, R Helm, R Johnson, and J Vlissides. “Design Patterns
– Elements of Reusable Object-Oriented Software.” In: A New
Perspective on Object-Oriented Design (1995). issn: 02016361. doi:
10.1093/carcin/bgs084. arXiv: dd.

[9] IMS e. V. Archineer R©. url: https://www.ims-institute.org/
membrane-structure-program/master-archineerr/archineerr.

html (visited on 03/07/2019).

[10] K3Tent. K3-Tent. url: http://k3-tent.com/ (visited on 03/10/2019).

[11] Donald E. Knuth. Knuth: Computer Programming as an Art. 1974.
url: http://www.paulgraham.com/knuth.html (visited on
03/07/2019).

[12] MPanel Software Solutions LLC. MPanel Software. url: https:
//mpanel.com/ (visited on 03/10/2019).

[13] Membranedetail. Membranedetail. url: https://www.membranedetail.
com/ (visited on 03/10/2019).

[14] Membranes24. Membranes24. url: https://www.youtube.com/
watch?v=ANGvZNspfAQ (visited on 03/10/2019).

179

https://dokumen.tips/documents/ndn-membrane-software.html
https://dokumen.tips/documents/ndn-membrane-software.html
https://www.youtube.com/watch?v=scuvs5fx8yc
https://www.youtube.com/watch?v=scuvs5fx8yc
https://blog.rocketsoftware.com/2014/11/software-usability/#.XIX61i1oRYg
https://blog.rocketsoftware.com/2014/11/software-usability/#.XIX61i1oRYg
https://www.food4rhino.com/app/rhinomembrane-v-30-rhino-60
https://www.food4rhino.com/app/rhinomembrane-v-30-rhino-60
https://www.dlubal.com/en-US/solutions/application-areas/software-for-form-finding-and-cutting-pattern-membrane-structures
https://www.dlubal.com/en-US/solutions/application-areas/software-for-form-finding-and-cutting-pattern-membrane-structures
https://www.dlubal.com/en-US/solutions/application-areas/software-for-form-finding-and-cutting-pattern-membrane-structures
https://www.exactflat.com/
https://www.formfinder.at/
https://www.formfinder.at/
https://doi.org/10.1093/carcin/bgs084
https://arxiv.org/abs/dd
https://www.ims-institute.org/membrane-structure-program/master-archineerr/archineerr.html
https://www.ims-institute.org/membrane-structure-program/master-archineerr/archineerr.html
https://www.ims-institute.org/membrane-structure-program/master-archineerr/archineerr.html
http://k3-tent.com/
http://www.paulgraham.com/knuth.html
https://mpanel.com/
https://mpanel.com/
https://www.membranedetail.com/
https://www.membranedetail.com/
https://www.youtube.com/watch?v=ANGvZNspfAQ
https://www.youtube.com/watch?v=ANGvZNspfAQ


180 bibliography

[15] Peter Novýsedlák. Tensile Structures – Numerical Design Tech-
niques. 2017.

[16] PFEIFER SEIL- UND HEBETECHNIK GMBH. PFEIFER-Zugstabsystem
Typ 860. url: www.pfeifer.de (visited on 03/17/2019).

[17] Daniel Piker. Kangaroo3d. url: http://kangaroo3d.com/ (visited
on 03/10/2019).

[18] Clemens Preisinger. Karamba3D – parametric engineering. url:
https://www.karamba3d.com/ (visited on 03/10/2019).

[19] Robert McNeel & Associates. Grasshopper - algorithmic modeling
for Rhino. url: https://www.grasshopper3d.com/ (visited on
03/08/2019).

[20] Schweizerischer Ingenieur- und Architektenverein (SIA). “Norm
SIA 261(2003) Einwirkungen auf Tragwerke.” In: SIA 261:2003
und SIA 261/1:2003 (2003).

[21] Scrum Alliance. What is Scrum? url: https://www.scrumalliance.
org/ (visited on 03/07/2019).

[22] Natalie Stranghöner et al. “Prospect for European Guidance
for the Structural Design of Tensile Membrane Structures.” In:
Science and Policy Report (2016). doi: 10.2788/967746.

[23] TUM. Carat ++. url: https://www.st.bgu.tum.de/software/
forschung/carat/ (visited on 03/10/2019).

[24] TUM and str.ucture. Kiwi!3D. url: https://www.kiwi3d.com/
(visited on 03/10/2019).

[25] Technet GmbH. EASY. url: https://www.technet-gmbh.com/
loesungen/leichte-flaechentragwerke/ (visited on 03/10/2019).

[26] Tom Van Mele, Andrew Liew, Tomas Mendéz, and Matthias
Rippmann. compas: A framework for computational research in ar-
chitecture and structures. 2017. url: https://compas-dev.github.
io/main/overview.html.

[27] Gunther Verheyen. Scrum is not an acronym | Ullizee. url: https:
/ / guntherverheyen . com / 2014 / 01 / 09 / scrum - is - not - an -

acronym/ (visited on 03/07/2019).

[28] Wikipedia. Wikipedia: Grasshopper 3D. url: https://en.wikipedia.
org/wiki/Grasshopper_3D.

[29] WinTess. WinTess. url: http://www.wintess.com/ (visited on
03/10/2019).

[30] IxRay ltd. ixCube. url: http://www.ixray-ltd.com/ (visited on
03/10/2019).

www.pfeifer.de
http://kangaroo3d.com/
https://www.karamba3d.com/
https://www.grasshopper3d.com/
https://www.scrumalliance.org/
https://www.scrumalliance.org/
https://doi.org/10.2788/967746
https://www.st.bgu.tum.de/software/forschung/carat/
https://www.st.bgu.tum.de/software/forschung/carat/
https://www.kiwi3d.com/
https://www.technet-gmbh.com/loesungen/leichte-flaechentragwerke/
https://www.technet-gmbh.com/loesungen/leichte-flaechentragwerke/
https://compas-dev.github.io/main/overview.html
https://compas-dev.github.io/main/overview.html
https://guntherverheyen.com/2014/01/09/scrum-is-not-an-acronym/
https://guntherverheyen.com/2014/01/09/scrum-is-not-an-acronym/
https://guntherverheyen.com/2014/01/09/scrum-is-not-an-acronym/
https://en.wikipedia.org/wiki/Grasshopper_3D
https://en.wikipedia.org/wiki/Grasshopper_3D
http://www.wintess.com/
http://www.ixray-ltd.com/

	Declaration
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	2 Membrane Software
	2.1 Background and Personal Needs
	2.2 Market Overview
	2.2.1 Software Evaluation Criteria

	2.3 Requirements for a Parametric Membrane Software
	2.3.1 Integrated System
	2.3.2 Form Finding
	2.3.3 Structural Analysis
	2.3.4 Patterning
	2.3.5 Detailing / Shop Drawings
	2.3.6 Visualization
	2.3.7 Bill of Material / Cost Estimation


	3 Concepts and Implementation
	3.1 Introduction
	3.2 The Grasshopper® Plugin
	3.3 Runtime Environment
	3.4 Module Architecture
	3.5 Tools and Development Environment
	3.6 Behavioral Key Concepts
	3.6.1 Smart Component Groups
	3.6.2 Message Bubbles
	3.6.3 Appearance of Smart Components
	3.6.4 Component State
	3.6.5 Unified Icons

	3.7 Main Workflows
	3.7.1 Workflow for Sketching
	3.7.2 Workflow for Engineering

	3.8 Model Definition
	3.8.1 High Level Abstraction
	3.8.2 Conceptual Elements

	3.9 Mesh Definition and Handling
	3.9.1 Mesh Creation
	3.9.2 Adoption of Mesh Size
	3.9.3 Mesh Granularity – Impact on Accuracy of Results

	3.10 Form Finding
	3.10.1 Warp Orientation
	3.10.2 Limitations of Projecting Warp Direction
	3.10.3 Considering Corner Connection Details for Form Finding

	3.11 Load Cases
	3.11.1 Wind Pressure Coefficients
	3.11.2 Snow Roof Shape Coefficients

	3.12 Structural Analysis
	3.12.1 Finite Element Method (FEM)
	3.12.2 Wrinkling Check
	3.12.3 Enveloped Results
	3.12.4 Cascading Solvers

	3.13 Results Visualization
	3.13.1 Geometry Preview
	3.13.2 Colormaps to Visualize Numerical Values
	3.13.3 Additional Visualizations for Values or Results

	3.14 Patterning
	3.14.1 Panel Boundaries
	3.14.2 Flattening
	3.14.3 Compensation
	3.14.4 Seam Allowance
	3.14.5 Checking Fabric Width

	3.15 Detailing and 3D Visualization
	3.15.1 Membranedetails


	4 User Interface
	4.1 Appearance in Grasshopper
	4.1.1 Panels and their Order
	4.1.2 Order within Panels
	4.1.3 Information provided

	4.2 Panel: Controls
	4.2.1 Component: Direction (Pamela)
	4.2.2 Component: List Multi Selector (Pamela)
	4.2.3 Component: Vector Data (Pamela)
	4.2.4 Component: XYZ Slider (Pamela)

	4.3 Panel: Design
	4.3.1 Component: Create Links (Pamela)
	4.3.2 Component: Brep Mesher (Pamela)
	4.3.3 Component: Edge Mesher (Pamela)
	4.3.4 Component: Mesh Edges (Pamela)
	4.3.5 Component: Ridge/Valley Cable (Pamela)
	4.3.6 Component: Vertices on Curve (Pamela)
	4.3.7 Component: Mesh Conditioner (Pamela)
	4.3.8 Component: Pull Mesh to Curve (Pamela)
	4.3.9 Component: Pull mesh to points (Pamela)
	4.3.10 Component: Geodesic Curve (Pamela)
	4.3.11 Component: Mesh Path (Pamela)

	4.4 Panel: Material
	4.4.1 Component: Cross Sections Database (Pamela)
	4.4.2 Component: Material Database (Pamela)
	4.4.3 Component: Cross Section Picker (Pamela)
	4.4.4 Component: Material Picker (Pamela)
	4.4.5 Component: Fabric Picker (Pamela)
	4.4.6 Component: Material (Pamela)
	4.4.7 Component: Membrane Material (Pamela)
	4.4.8 Component: Cross Section Parameter (Pamela)
	4.4.9 Component: Material Parameter (Pamela)
	4.4.10 Component: Membrane Material Parameter (Pamela)

	4.5 Panel: Model Definition
	4.5.1 Component: 1D Element (Pamela)
	4.5.2 Component: Membrane 2D Element (Pamela)
	4.5.3 Component: Support (Pamela)
	4.5.4 Component: Model Builder (Pamela)
	4.5.5 Component: Copy Final Model (Pamela)
	4.5.6 Component: 1D Element Parameter (Pamela)
	4.5.7 Component: 2D Element Parameter (Pamela)
	4.5.8 Component: Model Parameter (Pamela)
	4.5.9 Component: Node Parameter (Pamela)
	4.5.10 Component: Support Parameter (Pamela)

	4.6 Panel: Model Loads
	4.6.1 Component: Load Coefficients SUI (Pamela)
	4.6.2 Component: Load Case GER (Pamela)
	4.6.3 Component: Load Case SUI (Pamela)
	4.6.4 Component: Load Calculations GER (Pamela)
	4.6.5 Component: Load Calculations SUI (Pamela)
	4.6.6 Component: Load Case (Pamela)
	4.6.7 Component: Membrane Snow Shape Coefficients (Pamela)
	4.6.8 Component: Membrane Pressure Coefficients (Pamela)
	4.6.9 Component: Snowload (Pamela)
	4.6.10 Component: Windpressure (Pamela)
	4.6.11 Component: Load Case Parameter (Pamela)

	4.7 Panel: Solver
	4.7.1 Component: Force Density Solver (Pamela)
	4.7.2 Component: Finite Element Method Solver (Pamela)
	4.7.3 Component: Execute Matlab (Pamela)

	4.8 Panel: Views
	4.8.1 Component: Mesh Details (Pamela)
	4.8.2 Component: Model Explorer (Pamela)
	4.8.3 Component: Model Viewer (Pamela)
	4.8.4 Component: Contour Lines (Pamela)
	4.8.5 Component: 1D Axial Forces (Pamela)
	4.8.6 Component: Mesh Slope (Pamela)
	4.8.7 Component: 1D Results View (Pamela)
	4.8.8 Component: 2D Results View (Pamela)
	4.8.9 Component: Snow Roof Shape Evaluation (Pamela)
	4.8.10 Component: Wind cp Evaluation (Pamela)
	4.8.11 Component: 1D Element Handle (Pamela)
	4.8.12 Component: 2D Element Handle (Pamela)
	4.8.13 Component: Model Handle (Pamela)
	4.8.14 Component: Node Handle (Pamela)
	4.8.15 Component: Support Handle (Pamela)
	4.8.16 Component: Colormap (Pamela)
	4.8.17 Component: Mesh Values (Pamela)

	4.9 Panel: Detailing
	4.9.1 Component: Connectorplate (Pamela)
	4.9.2 Component: Pfeifer 860 (Pamela)
	4.9.3 Component: Rectangular anchor plate (Pamela)
	4.9.4 Component: Round anchor plate (Pamela)

	4.10 Panel: Membrane
	4.10.1 Component: Membrane Pimper (Pamela)

	4.11 Panel: Patterning
	4.11.1 Component: Flattener (Pamela)
	4.11.2 Component: Create Splitline (Pamela)
	4.11.3 Component: Split Mesh (Pamela)

	4.12 Panel: Utility
	4.12.1 Component: Log Configuration (Pamela)
	4.12.2 Component: LaTeX Doc (Pamela)
	4.12.3 Component: Import Results (Pamela)
	4.12.4 Component: Write To File (Pamela)
	4.12.5 Component: Input Collector (Pamela)
	4.12.6 Component: Run Executable (Pamela)


	5 Testing and Proof of Concept
	5.1 Introduction
	5.1.1 Unit Testing
	5.1.2 System Testing

	5.2 Testing against Reference implementation
	5.2.1 Test Scenarios
	5.2.2 Test Cases
	5.2.3 Results Verification
	5.2.4 Verification of Convergence Behavior
	5.2.5 Verification of Numerical Values

	5.3 Example Hypar with Ridge Cable
	5.3.1 Task
	5.3.2 Preliminary Remarks
	5.3.3 Design
	5.3.4 Model Definition
	5.3.5 Form Finding
	5.3.6 Loads
	5.3.7 Serviceability / Deflection
	5.3.8 Stress Anaysis
	5.3.9 Conclusion

	5.4 The Real-life Proof of Concept

	6 Summary
	6.1 Limitations
	6.2 Outlook
	6.2.1 Business Model
	6.2.2 Integration with other Software

	6.3 Personal Findings

	 Bibliography

