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Abstract

Reliable and secure operation of power systems becomes increasingly challenging as
the share of volatile generation rises, leading to largely changing dynamics of the sys-
tem. Typically, the architecture and structure of controllers in power systems, such as
voltage controllers of power generators, are fixed during the design and buildup of the
network. Replacing existing controllers is often undesired, challenging, or not possible
at all. Setpoint adjustments, as well as tuning of the controller parameters, are possi-
bilities to counteract large disturbances and changing dynamics which do not require
changing the existing controllers. We consider approaches for fast, computationally
efficient, and privacy conserving adaptation of parameters of structured controllers for
large scale power systems based on H∞ optimization, also referred to as structured
H∞ controller synthesis. The approach allows the dependency of the system model on
the controller parameters to be nonlinear.
Two methods for structured H∞ controller synthesis are proposed, and conditions

are established that guarantee that the approaches leads to stability of the closed loop
system. The results are verified experimentally in a field test microgrid consisting of
six inverters and a load bank, as well as multiple simulation studies. The proposed
methods improve the system robustness, as well as the time-response to step distur-
bances and allow structured controller tuning even for large power networks. The
results are compared to other methods for structured H∞ synthesis, focusing on com-
putation time and the obtained H∞ norm, underlining the efficiency of the introduced
methods. In addition, comparisons with approaches which introduce wide-area con-
trollers to the system are made. It is shown that the proposed approach achieves an
improved time-domain response, compared to existing wide-area control approaches.
Finally, we introduce a hierarchical approach for the controller tuning, which exploits

model reduction. The approach increases data privacy and scalability of the tuning,
compared to centralized methods. Thereby, we derive conditions for the success of the
approach and introduce a tailored approach for distributed model reduction of power
systems. We apply the proposed hierarchical tuning method on the IEEE 68 bus
system to show its effectiveness. We show that a similar system performance can be
obtained as with a centralized method. The scalability of the approach is underlined
considering a large scale power system with more than 2500 states and 1500 controller
parameters.
The approaches set the base for a series of future developments and can be expanded

to other classes of systems, such as transport systems, water systems etc.
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Deutsche Kurzfassung (German Abstract)

Einführung
Zuverlässige und sichere Stromversorgung ist unerlässlich für das moderne Leben.
Stromsysteme müssen ohne Unterbrechungen, trotz unbekannten Störungen, Ausfäl-
len, unbekannten Lastdynamiken, und Änderungen in der Stromerzeugung, operieren.
Stromsysteme bestehen aus zahlreichen Komponenten, von Erzeugern und Lasten, wie
Kraftwerke, Windturbinen und Verbrauchern, bis hin zu Energiewandlern und Spei-
chern, die durch das Stromnetz verbunden sind, c.f. Abb. 1.
Der sichere Betrieb heutiger Stromnetze wird durch ein komplettes Automatisie-

rungssystem, bestehend aus, z.B., PID Reglern und Bandstoppfiltern, “garantiert”,
dass das Gesamtsystem regelt und koordiniert. Diese Automatisierungssysteme ent-
standen durch Jahrzehnte lange praktische Erfahrung, Beobachtung und Betrieb.
Die Parametrierung der involvierten Regler ist für den zuverlässigen Betrieb unab-

dingbar. Heutzutage wird die Parametrierung der Regler während der Inbetriebnahme
größerer Komponenten in einem zeitaufwändigen, mehrstufigen Prozess durchgefürt.
Die resultierenden Regler werden typischerweise über Jahrzehnte nicht mehr umpara-
metriert, außer es treten große Problem im System auf. Diese manuelle Parametrierung
zeigte sich als ausreichend solange die Stromnetz- und Kraftwerksparameter sich nicht
signifikant ändern. Obwohl Variationen im Stromsystem wegen Lastvariationen oder
Generatorausfälle stetig vorhanden sind, sind diese Variationen oft vorhersehbar und
können im Rahmen einer manuellen Parametrierung berücksichtigt werden.
Der steigende Anteil erneuerbarer Erzeugung führt zu großen strukturellen Ände-

rungen bei dem Betrieb von Stromnetzen und beeinflusst die resultierende Dynamik.
Abhängig von Wetterbedingungen ändert sich die erneuerbare Erzeugung ständig und
wird zusätzlich über große geographische Gebiete im Stromnetz verschoben. Erschwe-
rend kommt hinzu, dass unter bestimmten Wetterbedingungen erneuerbare Energieer-
zeuger vollständig ausfallen können, was zu einer nahezu vollständigen konventionellen
Erzeugung führt. Diese Einflüsse spielen im Augenblick insbesondere beim Inselnetz-
betrieb eine große Rolle, da diese vielfach den größten Anteil erneuerbarer Erzeugung
aufweisen. So gibt es Systeme, bei denen der Anteil erneuerbarer Erzeugung zwischen
0% und 100% variieren kann. Das verursacht einen intermittierenden Betrieb konven-
tioneller Erzeugung, wie Dieselgeneratoren, was oft unerwünscht, aber vielfach unver-
meidbar, ist.
Der stetig steigende Anteil erneuerbarer Erzeugung erschwert den sicheren und zu-

verlässigen Betrieb großer Stromnetze, wie zum Beispiel des Europäischen Energienet-
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Abbildung 1: Zukünftiges Stromversorgungsnetz. Die Stromerzeugung erfolgt durch
eine große Menge verteilter, volatiler Erzeuger. Dies führt zu einer sich ständig
ändernden Systemdynamik, welche das Risiko eines Blackouts erhöht und zu einem
suboptimalen Betrieb führen kann.

zes, stetig und führt zu bisher ungelösten Herausforderungen. So führt zum Beispiel,
der ständig variierende Beitrag erneuerbarer und konventioneller Erzeugung zu starken,
variablen Oszillationsmoden. Wird dies nicht berücksichtigt, steigt das Blackout-Risiko
erheblich. Folglich, werden neue Regelungs- und Optimierungsmethoden benötigt, um
die Robustheit und Flexibilität zukünftiger Stromnetze zu erhöhen. Dies führt zu zahl-
reichen Herausforderungen:

• Aufgrund der Komplexität des Gesamtsystems und der hohen Investitionskosten
ist es praktisch nicht möglich, das existierende Automatisierungssystem vollstän-
dig durch neue Systeme zu ersetzen. Neue Konzepte müssen sich reibungslos in
existierende Systeme integrieren lassen.

• Existierende Automatisierungssysteme haben das Vertrauen der Stromnetzbe-
treiber über Jahrzehnte langen Betrieb gewonnen. Bei einer Umstellung auf neue
Automatisierungssysteme ist mit einem großen Widerstand zu rechnen, insbeson-
dere aufgrund katastrophaler Folgen, wenn es zu Ausfällen und Fehlern kommen
würde.

• Fast alle existierende Stromnetzregler operieren lokal: sie verwenden alleinig Mes-
sungen lokaler Größen, die sie auch regeln. Aufgrund der Sensibilität der Strom-
versorgung als zentrales Rückgrat der modernen Gesellschaft, sollte die Stabilität
des Systems möglichst unabhängig von Kommunikationsnetzen sein.

Zur teilweisen Lösung dieser Herausforderungen, schlagen wir vor, “nur” die Parame-
ter existierender, lokaler, strukturierter Reglern den sich ändernden Bedingungen im
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Stromsystem anzupassen. Im vorgeschlagenen Konzept, überwacht und prognostiziert
der Systembetreiber die variierende Dynamik. Stellt er fest, dass die Stabilität oder
Performance des Systems gefährdet ist, löst er eine Parameteranpassung aus, und sen-
det die neuen Parameter an die Komponenten. Diese Herangehensweise berücksichtigt
alle genannten Herausforderungen und führt zum nachfolgenden methodischen Pro-
blem, welches im Rahmen dieser Arbeit gelöst wird.

Problem 1 Gegeben ein Stromsystem mit einstellbaren Reglerparametern, zum Bei-
spiel der PID Regler und Filter, die sich innerhalb spezifizierter Grenzen einstellen las-
sen. Wie können diese Parameter schnell, auch für sehr große Stromsysteme, angepasst
werden, um die Robustheit des Gesamtsystems zu erhöhen? Wie kann des weiteren der
Parametrierungsprozess so durchgeführt werden, dass kein zentrales Gesamtmodell des
Stromsystems benötigt wird und das nur ein beschränkter Austausch von Informationen
zwischen den Teilsystemen benötigt wird?

Gliederung und Forschungsbeiträge dieser Dissertation

Zur Lösung des genannten Problems werden in dieser Arbeit Methoden für die schnelle
und effiziente Parametrierung strukturierter Regler basierend aufH∞ Optimierung, oft
auch als strukturierte H∞ Reglersynthese bezeichnet, entwickelt.
Insbesondere werden zwei Methoden für die strukturierte H∞ Reglersynthese vor-

geschlagen, und es werden Bedingungen, die die Systemstabilitä für den geschlosse-
nen Kreis für beide Ansätze garantieren, hergeleitet. Der erste Ansatz basiert auf dem
Bounded-real Lemma, während der zweite Ansatz auf einer Frequenzabtastung basiert.
Neben Simulationsstudien werden die Ansätze experimentell in einem Test-Inselnetz
validiert, welches aus Wechselrichtern und einer Lastbank besteht. Hierbei wird nach-
gewiesen, dass die Ansätze sowohl die Robustheit, als auch das Verhalten auf eine
Sprungstörung, des Systems verbessern, und sich auf große Systeme anwenden lassen.
Die Ansätze werden mit anderen Verfahren für strukturierte H∞ Reglersynthese be-
züglich Rechenzeit und Skalierbarkeit verglichen, um die Effizienz der vorgeschlagenen
Ansätze nachzuweisen.
Im letzten Kapitel wird ein hierarchischer Ansatz für die Reglerparametrierung ein-

geführt, welches auf einer Modularisierung und Modellreduktion basiert. Dieser weist
eine hohe Datensicherheit und Skalierbarkeit, verglichen mit zentralisierter Parame-
teranpassung, auf. Hierfür werden Bedingungen, die eine Gesamtkonvergenz des Ansat-
zes garantieren, aufgestellt und ein spezieller Ansatz für die verteilte Modellreduktion
von Stromsystemen wird eingeführt. Die Methode wird am Beispiel des sogenannten
IEEE 68-Knotensystem erprobt, und es wird nachgewiesen, dass sich gleiche Ergebnisse
wie bei dem zentralisierten Ansatz errechnen lassen. Abschließend wird die Skalierbar-
keit der Methode an einem großen Testsystem mit mehr als 2500 Zuständen und 1500
Reglerparametern nachgewiesen. Die einzelnen Forschungsbeiträge lassen sich wie folgt
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zusammenfassen:
Formulierung des Syntheseproblems aus Regelungssicht (Kapitel 2). Eine

mathematische Problemformulierung für die Reglerparametrierung in Stromnetzen
wird hergeleitet. Für diesen Zweck wrid ein Modellierungsansatz für Stromnetze mit
expliziter Berücksichtigung von Parameterabhängigkeiten eingeführt. Basierend auf
diesen Modellen werden geeignete Ausgänge-Gutefunktionen für die Beurteilung der
Systemstabilität und Performance formuliert.
Neue H∞ Reglersynthesemethoden für die strukturierte Reglerparame-

trierung (Kapitel 3). Es werden schnelle und skalierbare Methoden für die Reglerpa-
rametrierung entwickelt. Hierfür werden zwei Ansätze für die H∞ Synthese eingeführt,
welche auf dem Bounded Real Lemma und einer Frequenzabtastung basieren. Es wird
nachgewiesen, dass beide Methoden eine stabilisierende Parametrisierung der Regler
erlauben. Für die Frequenzabtastung wird ein Ansatz für die Frequenz-Gewichtung
aufgezeigt, der die rechnerische Komplexität nicht erhöht und die einfacher zu spezifi-
zieren ist im Vergleicht zu Gewichtungsfunktionen.
Numerische Evaluierung der vorgeschlagenen Ansätze (Kapitel 4). Die

vorgeschlagene Ansätze werden anhand dreier numerischen Beispielen erprobt. Die
Erprobung erfolgt dabei mittels nichtlinearer Simulation unter Verwendung kommer-
zieller Stromnetzsimulationssoftware.
Experimentelle Validierung (Kapitel 5). Es wird die Effizienz der Ansätze

an einem Test-Inselnetz experimentell aufgezeigt. Das Netz beinhaltet Wechselrichter-
basierter Energieerzeugung, ohne Synchrongeneratoren. Es besteht aus sechs parallel-
geschalteten Wechselrichtern, die auch isoliert vom globalen Verteilnetz betrieben wer-
den können. Die Effizienz der Ansätze wird in Simulation und Messungen unter Be-
rücksichtigung zwei und sechs Wechselrichtern validiert. Die Ansätze sind in der Lage,
die Systemzuverlässigkeit in allen Fällen, im Vergleich zur manueller Einstellung, zu
verbessern, und hierbei benötigen die Ansätze weniger Zeit und Aufwand.
Vergleich mit anderen Ansätzen (Kapitel 6). Es werden Vergleiche der vor-

geschlagenen Ansätze mit anderen Methoden aus der Literatur durchgeführt. Da die
meisten Ansätze aus der Literatur eine zusätzliche großflächige Kommunikation der
Regler benötigen, ist ein direkter Vergleich nicht möglich. Deshalb erfolgt der Vergleich
anhand von Zeit- und Frequenzbereichssimulationen. Die Methoden werden zusätzlich
bezüglich der Rechenzeit, erzielten Ergebnissen und Skalierbarkeit verglichen. Dabei
zeigt der vorgeschlagene Ansatz, basierend auf einer Frequenzabtastung, eine signifi-
kante Verbesserung der Rechenzeit und Skalierbarkeit.
Multi-Szenario strukturierte H∞ Reglersynthese für Stromnetze (Kapi-

tel 7). Die vorgeschlagene Ansätze werden für den Fall mehrerer zu parametrierenden
Systemrealisierungen/Szenarien erweitert. Um diese Methoden auf Stromnetze anwen-
den zu können, wird zuerst ein Ansatz für die Modellierung von Fehlern in Stromsys-
temen eingeführt. Die Methoden werden mittels Simulationsbeispielen erprobt, welche
nachweisen, dass die dynamische Sicherheit des Systems erhöht wird.
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Skalierbare Reglerparametrierung für große Stromsysteme (Kapitel 8). Es
wird ein hierarchischer Ansatz für die Reglerparametrierung eingeführt. Der Ansatz
basiert auf einer Modularisierung und Modellreduktion. Dies erhöht die Datensicher-
heit und Skalierbarkeit. Es werden Konvergenzbedingungen für die Parametrierung
vorgestellt, und es wird ein Ansatz für die verteilte strukturierte Modellreduktion in
Stromnetzen eingeführt. Um die Effizienz des Ansatzes nachzuweisen, wird er auf das
sogenannte IEEE 68 Bus System angewendet. Es wird gezeigt, dass eine ähnliche Gute
wie für einen zentralen Ansatz errechnet werden kann. Die Skalierbarkeit des Ansatzes
für ein großes Sytem mit mehr als 2500 Zuständen und 1500 Reglerparametern wird
beispielhaft nachgewiesen.

Zusammenfassung
Diese Dissertation umfasst mehrere, auf Stromnetze zugeschnittene, Ansätze zur Er-
höhung der Robustheit linearer Systemen durch eine optimale Parametrierung von
strukturierten Reglern. Die Methoden basieren auf linearen Matrixungleichungen und
intelligenter Frequenzabtastungen. Sie werden mittels zahlreichen Simulationsstudien,
wie auch experimentell an einem Inseltestsystem, validiert. Die vorgeschlagenen Me-
thoden skalieren auf Systeme mit tausenden von Zuständen und Reglerparametern und
lachen sich signifikant einfacher als ähnliche Methoden aus der Literatur berechnen.

Amer Mešanović Magdeburg, den 14. Dezember 2020
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1 Introduction and motivation

Reliable and secure electric power supply is vital for modern life. Power systems must
operate without interruptions, despite constant outage of components, unknown load
dynamics, changes in power generation, any many other disturbances. The reliable
and safe operation of power systems is “guaranteed” today by a complex automation
system, consisting of, e.g., PID controllers, notch filters, and lead-lag filters. It con-
trols power system components spanning from power plants to inverters, flexible AC
transmission system elements and loads [51, 80, 92]. This automation system is a
result of years of practical experience and operation.
Tuning of the corresponding parameters of the used controllers is very important for

reliable operation. Currently, this tuning is done during installation of the component
in a time-consuming process. The controllers are typically not re-parameterized or
changed until a large problem in the system occurs. Manual tuning has proven to be
sufficient as long as the power system topology and power plant structure do not change
significantly. Until recently, large traditional power plants were the main producers
of electric energy. They operate permanently, leading to dynamic behavior of the
system which remains mostly unchanged and known. While variations in the grid are
unavoidably present due to load fluctuations or generator outages, these variations
are foreseeable and can be taken into account during the manual tuning procedure.
For example, the oscillatory modes of the European power system have known and
quasi-constant frequencies and damping [36]. Figure 1.1 illustrates the situation in
today’s European power system. The controllers of the power plants, representing the
automation system, are marked red.
This “status-quo” is being challenged by the steadily rising amount of renewable

generation [91]. The increased volatility of renewables leads to large changes in power
system operation and the resulting dynamic behavior of power systems. Depending
on the weather conditions, the power of renewable generation changes and can shift
geographically across different areas of the power system. To counteract these effects,
storage solutions or conventional generation are necessary to compensate for times
when there is not enough renewable generation in the system. The resulting system
structure is illustrated in Fig. 1.2. While there is hope, conventional fossil-fuel based
generation will not be completely phased out of power systems. The expansion of stor-
age solutions, such as batteries or hydrogen storage, which would allow to counteract
for the volatility of renewables, is currently limited due to their price, geographical
requirements, environmental impact, low efficiency etc. As long as the massive inte-
gration of storage solutions does not begin; conventional generation is will be required
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Figure 1.1: Today’s European power system: Power generation is dominated by large
conventional generation. Controllers in the system, marked red, are manually
tuned during installation.
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Figure 1.2: Future of power systems: Power generation is distributed among a large
amount of distributed, volatile, generation. This causes changing eigenmodes in
the system, increasing the risk of a blackout due to sub-optimally tuned controllers.

to compensate for periods when there is not enough renewable generation. Moreover,
even if there is enough renewable generation in the European system to cover the load
at any given moment, this power would need to be transported across large geograph-
ical distances, which is limited by the currently available transmission capacity of the
power grid. Furthermore, reliance on remote generation (possibly coming from other
countries) brings into question the security of supply in case of a, intentional or un-
intentional, failure in the transmission system. In conclusion, conventional generation
will not be easily phased out of power systems.
The current impact of renewable generation is best visible for islanded microgrids
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(off-grid systems), as they have a very large share of renewable generation [2, 102, 106].
For these systems, the percentage of instantaneous renewable generation varies from
0% to 100%. This causes intermittent and varying operation of conventional power
generators, such as diesel generators, which is often undesired and largely impacts the
dynamic behavior of the system.
As the share of renewable generation in large power systems, such as the European

power grid or the Western interconnection in the USA, continues to increase, the
operation of these systems also becomes increasingly challenging. For example, the
constantly shifting mix of renewable and conventional generation can lead to time-
varying oscillatory modes [4, 85]. If not handled, the controllers for large power systems
become less effective, increasing the risk of blackouts.
New control and optimization methods, which are able to account for such chang-

ing dynamics, are necessary in order to improve robustness of future power systems.
Designing such methods, however, is challenged, by several factors:
• It is practically impossible to completely replace the existing automation sys-
tem with new solutions. New solutions need to be able to cope with existing
equipment.

• The behavior of current automation systems has earned the trust of operators
during decades of operation. A complete shift to a new automation system would
meet large resistance, especially due to the possible catastrophic consequences if
there are unforeseen design flaws.

• Almost all current controllers, which stabilize the system, are pure local con-
trollers, i.e. they only require measurements from the component they are con-
trolling. Due to its vital role and vulnerability, power system stability cannot
depend on communication between components. Otherwise, communication out-
ages and malicious attacks could compromise the power system. Power system
and power plant operators are cautious to allow the power plant control to depend
on external factors.

Following these requirements, we propose to adapt parameters of existing, local,
structured controllers to the changing conditions, as illustrated in Fig. 1.3. For the
proposed concept, the system operator monitors and forecasts the fluctuating power
system dynamics. If the operator thereby notices that stability or performance of the
system will be endangered, the operator tunes the parameters of local controllers and
sends them to the various power system components via (slow) communication links,
as illustrated with red dashed lines in Fig. 1.3.
The proposed approach addresses the previous challenges as follows:
• It is applicable even in the case that only a subset of running components can
be reparameterized while old components remain intact, c.f. Fig. 1.3 by not
connecting all controllers to the system operator via communication links.
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Figure 1.3: Proposed solution for the identified problem: the system operator tunes
existing controllers in order to adapt them to the current system state. Dashed
lines denote (slow) communication links for the parameter tuning.

• The current automation system will remain almost unchanged, it will only be
reparameterized when necessary. New components can be added to the system
as well, without restricting the applicability of the approach.

• With the proposed approach, controllers in the system still retain their local
structure. Slow communication links need to be added, which periodically send
parameters to the components. As long as the percentage of renewables is still
below a critical threshold, and before the approach gains trust from power plant
operators, the process of switching controller parameters to new values can even
be done manually according to pre-calculated parameter tables. Even if the con-
troller reparameterization is performed on-line, this can be done very slowly, e.g.
by phone or e-mail. If a component cannot be reparameterized due to a commu-
nication outage or due to other failures, this can be taken into account during
the parameter tuning procedure by switching to a “default” parameterization of
the controller.

This basic concept, however, is challenged for large power systems that can have
thousands of states and often consist of multiple coupled (sub)systems, belonging to
different (sub)system operators, c.f. Fig. 1.4. The system operators are often not
willing to fully exchange the parameters of their respective systems, as this would,
e.g., expose vulnerabilities of their systems to others. Consequently, there is not a
single entity which has access to all parameters of the power system. To address this
issue, we introduce a hierarchical parameter tuning procedure, which does not require
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Figure 1.4: Structure of a power system coordinated by multiple (sub)system op-
erators. Red dashed lines represent (slow) communication links, whereas solid
lines represent physical connections. Each system operator tunes parameters of
controllers in its respective system, as shown in Fig. 1.1.

that system operators exchange detailed parameters of their respective systems. The
proposed approach is illustrated in Fig. 1.4. For this purpose, we introduce the concept
of a system coordinator and the system operators exchange only the reduced models of
their respective systems. Detailed models and parameters of the (sub)system models
are hidden for the global decision, leading to increased data security and scalability of
the approach.
Summarized, the proposed approach is adaptable to many practical requirements.

However, the following research problem remains, which forms the main topic of this
thesis:

Problem 1 Given a power system with tunable parameters, such as parameters of
PID controllers and filters, whose parameters can be adapted within pre-specified limits.
How can one adapt parameters of these controllers fast, even for large power systems,
to increase the optimality and robustness of the power system? Furthermore, how can
the parameterization be performed such that a centralized detailed model of the large
power system is not necessary?

To clarify the main contributions and propositions, we briefly review possible con-
trol architectures for power systems. Power systems consist of elements which either
produce or consume electric power, denoted as prosumers Pi, which are interconnected
through the power grid. Several approaches for distributed control of power systems
have been proposed in the literature. They can be separated by their levels of de-
centralization, illustrated in Fig. 1.5 [115] for a system with three prosumers P1, P2
and P3. Almost all existing prosumers are controlled by local controllers, which use
only measurements from the controlled prosumer, shown in Fig. 1.5(a). We denote the
tunable parameters with Ki, marked red.
Most works for controller synthesis introduce an additional control layer, the com-

munication between the prosumers. In power systems, this is typically called wide-
area control, due to the possibly large geographical distances between prosumers. We
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Figure 1.5: Control architectures with different levels of decentralization for three
dynamic prosumers Pi. Solid lines between the systems refer to physical links.
Dashed lines are communication links. Red boldface Ks denote the vector of
parameters of the local structured controllers, whereas a calligraphic K denotes
additional controllers with varying levels of decentralization.

explore different the levels of decentralization for static state-feedback controller syn-
thesis. To do so, an additional wide-area control input ui is added for each prosumer.
Note that state-feedback controllers do not have internal dynamic states. The con-
trollers take as input the state vector x, whereas the output of the controllers is the
wide-area control input vector u to the system, given by

u =
(
uT1 ... uTNP

)T = K ·
(
xT1 ... xTNP

)T = K · x. (1.1)

Here NP is the number of prosumers, ui is the wide-area control input of Pi, xi is the
vector of states of Pi, K ∈ Rnu×nx is the distributed controller gain matrix, nu is the
number of controller inputs and nx is the total number of system states. We use the
calligraphic K to denote the gain matrix for additional controllers, and the boldface
Ki to denote the vector of tunable parameters of existing local controllers of Pi. The
term “static” originates from the fact that K is a real-valued matrix, and not, e.g., a
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transfer matrix with internal states.
A special case is a centralized controller, shown in Fig. 1.5(b). It requires the

states of all prosumers xi to calculate the control input for all prosumers ui, i.e.
ui = ∑NP

i=1Kijxj, where Kij is the appropriate sub-matrix of K, corresponding to the
control input of Pi calculated from the states of Pj. The drawback of this controller is
that it requires fast communication from geographically remote prosumers, making it
inherently vulnerable to communication failures. Furthermore, data security becomes
an issue, as information from all prosumers is gathered in one place.
In order to reduce the number of necessary communication links between the sub-

systems, it is desirable to set some of the matrices Kij to zero. This way, the technical
requirements for the realization of such a control law, in terms of required commu-
nication links, are lowered, c.f. Fig. 1.5(c). Such sparse and communication-based
controllers are often referred to as distributed controllers. In the limit, all off-diagonal
elements Kij, with i 6= j, become zero, and one obtains a fully decentralized control
law, as illustrated in Fig. 1.5(d), parameterized through Ki and Kii.
To summarize, a distributed system can have decentralization levels ranging from

fully distributed control, as depicted in Figs. 1.5(a) and 1.5(d), various levels of par-
tially distributed control, as shown in Fig. 1.5(c), to a fully centralized control solution,
depicted in Fig. 1.5(b). We avoid introducing additional communication layers, and
focus on directly tuning the parameter vectors Ki.

1.1 Contributions

This thesis focuses on fast parameter tuning of fixed-structure controllers for large
linear systems, often referred to as structured controller synthesis [6, 97]. The H∞
norm is thereby chosen as the optimization criterion, because it is, as it will be shown,
a direct measure of the robustness towards unknown disturbances, as well as for the
energy amplification of disturbances.
The main contributions of this thesis are:

1. A modeling framework for structured H∞ controller synthesis for power systems
is developed and verified in simulation using commercial power system simulation
software.

2. Two methods for structured H∞ controller synthesis are introduced. They are
tailored towards power systems, however they are applicable to general linear
systems. They allow for nonlinear parameter dependencies, making them appli-
cable to almost all practically relevant linear systems. The first method is based
on the Bouded-Real Lemma, whereas the second method is based on frequency
sampling. Additionally, stability certificates are provided for both methods.
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1 Introduction and motivation

3. The proposed methods are evaluated on a range of numerical examples. The
results of the controller tuning are verified in simulation using commercial power
system simulation software, showing the practical applicability of the proposed
approach.

4. An experimental validation of the approach is performed on a test microgrid
consisting of six inverters. Automatic tuning practically eliminates all oscilla-
tions between the inverters. This demonstrates that the approach can be readily
applied to existing control structures.

5. The proposed approach is compared to other approaches for the synthesis of
distributed controllers, achieving a significantly better time-response and com-
putation times in comparison to the other methods.

6. The modeling and parameter tuning framework is extended to multi-scenario
tuning, which is applicable in cases when the exact state of the system is not
known, or when multiple fault-scenarios need to be considered.

7. An approach for hierarchical controller synthesis is introduced, which can be ap-
plied to larger systems than centralized methods. Thereby, only reduced system
models are exchanged, leading to increased data security. To do so, a method for
distributed structured model reduction for power systems is developed and suit-
able conditions for the success of the optimization are derived. The hierarchical
controller synthesis is successfully evaluated in two numerical examples.

In summary, this thesis presents methods for fast, data-privacy conserving, central-
ized and hierarchical structured H∞ controller synthesis in power systems. Thereby,
we show the effectiveness of the proposed methods in simulations and experiments and
show their advantages compared to other methods from the literature.

1.2 Related works
Controller synthesis for power systems typically exploits H∞ optimization, H2
optimization, and pole placement, c.f. [7, 64, 82, 86, 89, 100, 115, 120]. Other
control design and analysis approaches are sensitivity analysis [10, 20, 66, 93], µ-
synthesis [18], sliding mode controller design [58], the use of reference models [116],
coordinated switching controllers [60], genetic algorithms and particle swarm based
tuning [17, 34, 110, 117], model predictive control [31, 45], and time-discretization [54].
An overview of different methods for power oscillation damping can, for example, be
found in [79]. However, most of the works either: consider simplified power system
models [9, 10, 58, 64]; or add and design new controllers on top of the existing power
systems [31, 45, 60, 82, 85, 86, 89, 100, 115, 120], see Figs. 1.5(b)-Fig. 1.5(d). The latter
solutions require significant modification of existing control structures, which makes
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practical application complex and expensive. Very few publications consider the opti-
mization of existing controller parameters [7, 46, 65], as presented in Fig. 1.5(a). The
approaches in these works employ heuristics [65], or assume a specific dependency on
the parameters [7, 46].
Controller synthesis based on H∞ optimization has received significant attention.

First approaches in the 1980s used algebraic Riccati equations for H∞ controller syn-
thesis [26]. In the 90s, approaches based on linear matrix inequalities became pop-
ular, leading to convex solutions for unstructured state-feedback controller synthe-
sis based on the Bounded-Real Lemma [32]. If the controller structure is fixed and
only the parameters are tuned according to H∞ optimization, one refers to struc-
tured H∞ controller tuning [6, 97]. Structured controller synthesis, exploiting the
bounded real lemma and additional improvements and refinements are, e.g., used
in [8, 24, 38, 40, 43, 49, 99, 100]. Alternative tuning approaches exist, such as non-
smooth optimization [5, 37], and bisection [48].
In recent years, the focus in structured H∞ optimization shifted towards more effi-

cient methods to find local minima for large systems. These methods are often based
on frequency sampling, leading to fast synthesis [6, 14, 46]. This, however, removes the
guarantee that a stable controller is obtained after tuning. To solve this issue, [6, 46]
introduce stability constraints based on the Nyquist criterion. In [14], the assumption
is made that the controlled plant (without controllers) is asymptotically stable. In this
case, the boundedness of the H∞ norm of the system sensitivity matrix is a necessary
and sufficient condition for stability.
To the authors’ knowledge, only previous work of the authors [73] considers dis-

tributed or hierarchical structuredH∞ synthesis of controllers. Note that, even though
many works consider the synthesis of distributed controllers, e.g. [53, 99], the synthesis
procedure itself is centralized. Works which consider distributed controller synthesis
usually assume a specific system structure and design unstructured controllers, see
e.g. [23] and references therein. Recently, hierarchical approaches for steady-state
optimization of power systems emerged [101].

1.3 Outline

The work is structured in the following chapters:
Chapter 2: The controller synthesis problem. In this chapter, a mathematical

formulation for the proposed controller tuning for power system is introduced. For this
purpose, a model of the power system with explicit parameter dependencies is first
shown. Then, appropriate outputs to measure the system resiliency and performance
are introduced. Finally, the overall mathematical problem is formulated.
Chapter 3: Structured controller tuning with stability guarantees. In

this chapter, we focus on finding a fast and scalable centralized method to solve the
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1 Introduction and motivation

parameter tuning problem. For this purpose, two methods for H∞ synthesis are in-
troduced, based on the bounded real lemma and frequency sampling. It is shown that
both methods will produce a stabilizing parameterization, thereby minimizing the sys-
tem H∞ norm. We show a frequency-weighting approach for the frequency sampling
method, which does not increase computational complexity and can be used in case
of weighting functions.
Chapter 4: Numerical evaluation. The efficiency of the proposed methods

are outlined for three numerical examples. The results are validated using nonlinear
simulations in commercial simulation software to do a practically relevant evaluation.
Chapter 5: Experimental validation. We demonstrate the applicability of the

proposed approach by tuning controller parameters of a real islanded microgrid run-
ning without synchronous generation. The grid consists of six parallel grid-forming
inverters, which provide islanding capability to the system, even without synchronous
generation. We first show an unstable response to a load step of two parallel grid-
forming inverters. To stabilize the system, manual tuning methods and iterative sim-
ulation are first employed. The results of the manual tuning, as well as the accuracy
of the mathematical model, are verified against measurements. To decrease the engi-
neering time and further improve the system performance, the proposed H∞ tuning
method is applied to the system. The effectiveness of the method is validated in sim-
ulation and measurements in the grid with two, as well as with six inverters, and a
load. Optimal controller tuning is able to improve the system reliability in all cases,
compared to manual tuning, while requiring less time and engineering effort.
Chapter 6: Performance comparison. In this chapter, we compare the proposed

methods for structured H∞ controller synthesis from Chapter 3 with other methods
from the literature. The comparison is made first with regard to the considered ap-
plication, i.e. controller synthesis in power systems. As most approaches introduce an
additional wide-area control layer, c.f. Figs. 1.5(b)- 1.5(d), a direct comparison with
the proposed approach is not possible, Thus, the focus of this comparison is on the
achieved results in the time- and frequency domain, observed on a numerical exam-
ple. In the second comparison, we focus on computational efficiency of methods which
consider structured H∞ controller synthesis. For this purpose, we adapt four methods
from literature to the considered application, and compare them on several numerical
examples with respect to the computation time, achieved result, and scalability.
Chapter 7: Multi-scenario structured controller synthesis. We extend in

this chapter the proposed methods to cases when one controller parameterization is
needed for several system realizations/scenarios. To this end, we present a framework
for modeling failures in power systems, such that they can be considered with the
multi-scenario controller tuning. Finally, the approach is applied to increase dynamic
security in a numerical example.
Chapter 8: Scalable and Data Privacy Conserving Controller Tuning

for Large-Scale Networks. We introduce in this chapter a hierarchical approach
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1.3 Outline

for the controller tuning, based on model reduction, which increases data security
and scalability of the tuning, compared to centralized tuning. Thereby, we examine
conditions for the success of the approach and introduce an approach for distributed
model reduction of power systems. We apply the proposed hierarchical tuning method
to the IEEE 68 bus system to show its effectiveness. Furthermore, we show that a
similar system performance is obtained for this system as with a centralized method.
Finally, we show the scalability of the approach on a large power system with more
than 2500 states and about 1500 controller parameters.
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2 The controller synthesis problem

To tackle the parameter tuning problem, we will first derive an appropriate control ori-
ented modeling framework for power systems. This should be applicable to a wide class
of power systems and should capture the parameter dependencies of the controllers.
It should be sufficiently detailed such that it is trusted by experts, and should in the
ideal case be usable in commercial power system simulation software. On the other
side, it should be simple enough to enable fast parameter tuning. For this purpose,
a tailored modeling framework is proposed in Section 2.1. Furthermore, appropriate
performance outputs are defined in Section 2.2, which are used to assess the robustness
and performance of the closed loop system. Finally, an appropriate cost function, i.e.
tuning goal, is defined in Section 2.3. The overall mathematical problem formulation
is presented in Section 2.4.

2.1 Control oriented power system modeling
Power systems consist of many components, c.f. 2.1, such as power plants, renewable
power generation, storage systems and households. These components are referred to
as prosumers, as they can either produce or consume electric power. We distinguish
between dynamic and static prosumers.
Dynamic prosumers, e.g. power plants, are systems with internal dynamic states,

denoted with Pi, i = 1...ND. They might posses structured controllers, whose param-
eters Ki can be tuned, marked with red in Fig. 2.1. We consider dynamic prosumers
Pi which control their voltage magnitude Vi and phase θi at the point of connection to
the power grid, whereas their power infeed into the grid, Ppi and Qpi, are the external
inputs for the controllers. Examples are conventional power plants with synchronous
generators [51], as depicted in Fig. 2.1, where Vi and θi are outputs of Pi, and Ppi, Qpi

are the inputs. Note that dynamic prosumers which have Ppi and Qpi as output can
also be considered.
Static prosumers, such as loads and some renewable generation, have no internal

states and are characterized through their active and reactive power infeed, denoted
with Psi and Qsi, respectively. The example power system shown in Fig. 2.1 depicts
four static prosumers, marked with blue. We collect infeeds of static prosumers into
vectors Ps and Qs, which are considered as external inputs. Renewable generation
and loads are often modeled as static prosumers [83, 87]. The power infeed of these
elements cannot be fully controlled, and we consider these infeeds as the disturbance
inputs for the controller tuning. Static prosumers also model components with a slow
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Figure 2.1: Exemplary power system consisting of four dynamic prosumers Pi and
four static prosumers Psi, Qsi connected through a power grid. The tunable con-
troller parameters Ki of dynamic prosumers are marked red. The static prosumers,
marked with blue, are considered as disturbance inputs into the system. The fre-
quencies ωi of each Pi are performance outputs, marked in green.

dynamic behavior, such as aggregated powers of small prosumers. For this reason, a
subset of Ps and Qs is chosen as the disturbance input ws. The voltage phasors of
buses with static prosumers have a magnitude Vs and angle θs. Static and dynamic
prosumers are coupled through the power grid.
Depending on the infeed of renewable generation and load, the system dynamic be-

havior changes. The basic idea is that if the system operator notices that the resiliency
of the system decreases, the controller parameters Ki of the dynamic prosumers are
retuned to increase the system resiliency. The reparameterization process is depicted
with red dashed lines in Fig. 2.1.
In the following subsections, we outline the structure and dynamics of the power

grid and prosumers and present possible models.

2.1.1 Power grid

The power grid consists of power lines, cables, transformers etc. which interconnect
dynamic and static prosumers. In principle, power lines and cables are dynamic. How-
ever, their time constants are orders of magnitude smaller than the dynamics relevant
for stability of the system, which are often slower than 10 Hz [51]. For this reason,
the dynamics of the interconnection elements are neglected [51, 98]. Consequently,
the grid, i.e. the power flow, is typically described by the algebraic power flow equa-
tions. Without loss of generality, we assume that all buses with no power infeed are
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Figure 2.2: Simplified model of a dynamic prosumer Pi, a power plant. It consists of
a synchronous generator (SGi), automatic voltage regulator and exciter (AVRi),
power system stabilizer (PSSi), and of a turbine and governor model (TGOVi).

eliminated beforehand by the so-called Kron reduction [25], which results in

Pi =
∑NB

j=1 VBiVBj
(
Gcij cos ∆θBij +Bsij sin ∆θBij

)
(2.1a)

Qi =
∑NB

j=1 VBiVBj
(
Gcij sin ∆θBij −Bsij cos ∆θBij

)
, (2.1b)

where NB is the number of buses (nodes) in the power system and is equal to the
total number of dynamic and static prosumers in the grid, Pi and Qi, are the in-
jected active and reactive powers into the i-th bus (node) in the grid by a dy-
namic prosumer (Ppi, Qpi) or a static prosumer (Psi, Qsi), where P = veci(Pi) =
(
veci(Ppi)T veci(Psi)T

)T , and Q = veci(Qi) =
(
veci(Qpi)T veci(Qsi)T

)T , VBi and
θBi are the magnitude and angle of the voltage phasor at the i-th bus, where
VB = veci(VBi) =

(
veci(Vi)T veci(Vsi)T

)T , θB = veci(θBi) =
(
veci(θi)T veci(θsi)T

)T ,
∆θBij = θBi− θBj, and Gcij and Bsij are the elements of the conductance and suscep-
tance matrix of the grid [51]. Note that Ppi, Qpi, Vi, and θi are used here in the same
context as in Fig. 2.1.

2.1.2 Dynamic prosumers and tunable parameters

The proposed modeling framework allows for arbitrary dynamic prosumers to be in-
cluded in the power system model. We outline two exemplary prosumers and their
models. which cover many practical applications.

Power plants. Typical power plants consist of a synchronous generator with con-
trollers and actuators, as shown in Fig. 2.2. We use a 6-th order model for the syn-
chronous generator (SGi). For details, we refer the interested readers to [51].
The governor and turbine (TGOVi) control the generator frequency by adapting

the mechanical power Pm,i transfered to the synchronous generator. An exemplary
TGOVi is shown in Fig. 2.3, modeling the tandem-compound steam prime mover,
including a speed governing system, a four-stage steam turbine, and a shaft with one
mass [69]. The TGOVi proportional gain Rp,i, marked red in Fig. 2.3, can be tuned.
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Figure 2.3: Dynamic model of the turbine and governor from [69]. The frequency
droop gain of the governor Rp,i is an optimization variable.
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Figure 2.4: Dynamic model of AVRi [67], where Tr,i is the transducer time constant,
TC,i and TB,i are lead-lag filter time constants, KA,i is the AVR gain, TA,i is the
AVR lag time constant, Ke,i and Te,i are the exciter parameters, and Kfd,i and
Tfd,i additional damping coefficients of the AVR. We assume that KA,i, Kfd,i, and
Tfd,i, marked red, are tunable.

All other parameters are determined by the real physical characteristics of the system
and cannot be tuned.
The generator automatic voltage regulator (AVRi) controls the terminal voltage of

the generator via the field winding voltage Efd,i from the exciter. An exemplary AVRi

model is shown in Fig. 2.4, based on the IEEE ST1 model [67]. The inputs to the
exciter are the reference voltage Vref ,i, the power plant terminal voltage Vi, and the
input from the power system stabilizer VPSS,i. The output of the exciter is the field
winding voltage Efd,i. We assume that the exciter gain KA,i, as well as the damping
coefficients Kfd,i and Tfd,i, marked red in Fig. 2.4, can be tuned.
The objective of AVRi is a constant terminal voltage of the generator. It can reduce

the damping properties of a synchronous generator [39, 51]. For this reason, power
plants are sometimes equipped with a power system stabilizer (PSSi), which couples
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2 The controller synthesis problem

VPSS,i
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Figure 2.5: Dynamic model of the simple power system stabilizer (taken from [51,
77]), where KS,i is the PSS gain, Tw,i is the washout time constant, T1,i-T4,i are
the lead-lag filters time constants, and Ts,i is the sensor time constant. All of the
PSS parameters are tunable, except the sensor time constant.
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Figure 2.6: Simplified model of a dynamic prosumer Pi, an inverter with so-called
droop controls.

frequency and voltage control for power plants. PSSs are analogue or digital controllers,
with the task to improve the system stability and increase the damping of oscillations
in power systems. We consider that the PSSi takes as input the deviation of the
generator frequency ωi from the nominal system frequency ωs, while its output VPSS,i is
an additional input of the AVRi. An exemplary PSS model is shown in Fig. 2.5 [51, 89].
All of its parameters are assumed to be tunable, marked red in Fig. 2.5, except the
sensor time constant.
In addition to exemplary controller models shown here, many different controllers

are used in practice, see e.g. [44].

Inverters. We consider inverters which control the voltage and frequency at their
terminals, called voltage-source inverters (VSI), or inverters in grid-forming mode.
For dynamics below 10 Hz, modeling the high-frequency switching of power electronic
elements in the inverters is often not necessary. Instead, the switching components
in the inverters are approximated as ideal voltage sources with droop controllers for
voltage amplitude and frequency, c.f. Fig. 2.6. The DC link capacitors of the inverters
are not considered, as we assume that the internal control of the inverters is fast
enough to compensate for the changes on the DC side. Such simplifications comply
with measurements shown in [88], and with the experiments considered in Chapter 5.
The outlined structure represents the behavior of a SINAMICS inverter [3].
In grid-forming mode, the i-th inverter controls the magnitude Vi and phase θi of the
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2.1 Control oriented power system modeling

voltage on its terminals, whereas the active and reactive power infeed of the inverter
result from the power flow. The frequency setpoint of the inverter ωseti is determined
by the so-called droop equation

ωseti = ωci −KPiPpi. (2.2)

Here ωci is the frequency setpoint for zero load, Ppi is the measured active power infeed
of the i-th inverter, and KPi is the frequency droop gain. The setpoint ωseti is filtered
with a first-order low-pass filter with the time constant Tfi and integrated to obtain
the internal voltage phase θinti. Analogously, the voltage setpoint Vseti is determined
with the droop equation

Vseti = Vci −KQiQpi. (2.3)

Here Vci is the voltage setpoint with no reactive power generation, Qpi is the measured
reactive power infeed of the i-th inverter, and KQi and is the frequency droop gain.
The setpoint Vseti is filtered with a time constant Tvi, and serves as the setpoint for
the integral voltage controller. The output of the integral controller is the internal
voltage Vinti.
The resulting θinti and Vinti are used as references to the internal control loops which

run at a much higher frequency. As the internal control loops are not modeled due to
their fast dynamics, we assume ωi = ωinti, θi = θinti and Vi = Vinti.

The tunable inverter parameters are marked red in Fig. 2.6, they are: Ki =
(KPi,KQi,Tfi,Tvi)T . For simplicity, we do not modify the voltage I-controller time
constant, as it serves for slow steady-state error elimination, and we observe the tran-
sient response of the inverters in the time interval of several seconds.

2.1.3 Overall model

Combining the power grid equations (2.1) with the prosumer models leads to a set of
differential-algebraic nonlinear equations of the form

ẋ =f(x, w, K) (2.4a)
0 =h(x, w, K). (2.4b)

Here x ∈ R·Nx combines all dynamic prosumer states, w ∈ Rnw is the vector of
disturbance inputs, represented by a subset of Ps and Qs, K ∈ RNt is the vector of
tunable controller parameters of all dynamic prosumers, where Nt denotes the total
number of tunable parameters in the system, f describes the prosumer dynamics, and
h represents the power flow equation (2.1).
As the problem is challenging, we linearize (2.4) around a known steady-state x0

with the known input w0. While this is an approximation, it allows us to use linear
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2 The controller synthesis problem

systems methods. It has furthermore been shown to be sufficient even for some large-
scale disturbances, see Chapter 4, as well as [83].

Remark 1 (steady-states) The steady state of the power grid depends on the volt-
ages and power infeeds, which can be determined using commercial tools [35, 103].
This allows to calculate the steady-states of dynamic prosumers x0.

The linearized algebraic equation (2.4b) has full rank, and a linear-time invariant
system is obtained after linearization of (2.4)

∆̇x = Ã(K)∆x + B̃(K)∆w. (2.5)

Here ∆x = x − x0, and ∆w = w − w0. Subsequently, we skip ∆ for notational
convenience, i.e. we focus on deviations from the linearization point in the remainder
of this work. Note that the system matrix Ã(K) has an eigenvalue at zero, as the
coupling power flow equation (2.1) is invariant under offsets θ̃i = θi+δθ, where δθ ∈ R
is identical for all i. Reducing this zero eigenmode [115], leads to

ẋ = A(K)x +B(K)w. (2.6)

We note that (2.6) is exponentially stable for a suitable choice of K, as all practical
power systems have controllers which stabilize the system.

2.2 Performance outputs

In power systems, the frequencies of the dynamic prosumers, defined with ωi = θ̇i,
where θi is the angle of the voltage phasor of Pi are of key interest to asses the system
performance [51]. Thus, we choose the vector of frequencies as the performance output

y =
(
ω1 ... ωND

)T , (2.7)

where ND denotes the number of dynamic prosumers. The performance outputs are
marked green in Fig. 2.1. These performance outputs also ensure detectability of the
system states [51]. Note that ωi is a dynamic state in (2.6). Hence, we can write
y = Cx, where the C matrix is not a function of the controller parameters and it
contains ones to select the appropriate states from x.
With this performance output, the full power system model is given by a linear

time-invariant multi-input multi-output system

ẋ = A(K)x +B(K)w (2.8a)
y = Cx. (2.8b)
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2.3 H∞ parameter optimization

The corresponding frequency domain formulation becomes

G(K, s) = C (sI − A(K))−1
B(K). (2.9)

Note that the presented simple model formulation can be used for many other appli-
cations, such as optimization of AC/DC systems. Modeling extensions are presented
in Appendix B, and numerical examples are considered in Chapter 4.

2.3 H∞ parameter optimization

Given the power system model (2.8) and (2.9), the focus of the parameter tuning
procedures is to determine the parameters minimizing a cost function. The overall
goal is to adapt the controller parameters of G to improve its robustness and stability
margin with respect to disturbances. For this reason we choose the H∞ norm of
G(K, s) for optimizations, denoted with ‖G(K, s)‖∞, and defined by [13]

‖G(K, s)‖∞ := sups∈C>0 σ (G(K, s)) (2.10)
= supω∈R σ (G(K, jω)), (2.11)

where σ(·) denotes the largest singular value of a matrix. Note that (2.11) only holds
for stable systems, i.e. when G(K, s) ∈ RH∞.

We chose the H∞ norm as the minimization of ‖G(K, s)‖∞ improves the system ro-
bustness to unknown disturbances (small-gain theorem) [119]. Secondly, the H∞ norm
represents the maximal amplification of amplitude of any harmonic input signal in any
output direction. Thus, minimizing the H∞ norm minimizes the worst-case amplifica-
tion of oscillation frequencies after a disturbance. Finally, minimization of ‖G(K, s)‖∞
improves oscillation damping in the system as well, as outlined in Appendix A.

2.4 Overall problem setup

With a small abuse of notation, we subsequently generalize (2.9) to allow for param-
eter dependent C(K) and D(K) matrices. We do so as they may become parameter-
dependent if we choose other performance outputs, such as the active powers of dy-
namic prosumers, or if other dynamic prosumer types are considered. Doing so, we
ensure generality of the proposed approaches. Summarized, the following optimization
problem is obtained

min
K

‖G(K, s)‖∞ =
∥∥∥C(K)(sI − A(K))−1B(K) +D(K)

∥∥∥∞ (2.12a)

s.t. K ≤ K ≤ K. (2.12b)
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2 The controller synthesis problem

Here (2.12b) represents box constraints on the controller parameters, e.g. due to
physical limitations, and K/K may be ±∞. Such constraints may result, e.g., from
physical constraints [52], or from practical experience.

Note that G(K, s), with the matrices A(K), B(K), C(K), and D(K), nonlinearly
depends on the pre-given controller parameter vector K. One says that the controllers
in G are structured, and only their parameters K need to be tuned. Doing so is
called structured H∞ controller synthesis [6, 97]. Additional constraints can also be
added, such as steady-state constraints, equality constraints for parameters, stability
constraints for subsystems etc.

2.5 Problem complexity

Problem (2.12) is a general structured H∞ controller synthesis problem for linear
systems. A special case of structured controller synthesis is the so-called static output
feedbackH∞ controller synthesis problem, which considers controller parameter tuning
of the following system

ẋ =A′x +B′w +Buu (2.13a)
z =Czx +Dzw (2.13b)
y =C ′x +D′w +Duu (2.13c)
u =Kz. (2.13d)

Here K represents a matrix of controller parameters. Note that the dependency of
the system matrices on the controller parameters is linear. Still, the static output
feedback synthesis problem is in general NP-hard [94], c.f. [94], for various algorithms
for static output feedback synthesis and references therein. Compared to static output
feedback H∞ synthesis, we consider nonlinear parameter dependencies of the system
matrices, as well as box-constraints on the controller parameters. Consequently, (2.12)
is in general NP-hard.

As the global optimum of NP-hard problems cannot be found in polynomial time,
we focus on finding local minima of (2.12) efficiently, which is, as shown, practically
feasible [14], but challenging for large scale systems. Considering the broad problem
class, i.e. avoiding simplifications, we retain the generality of the proposed approaches.
Furthermore, avoiding possible transformations of controller parameters, additional
constraints can be easily specified, without having to make any changes to the solution
procedure.
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2.6 Summary

2.6 Summary
In this chapter, we presented an mathematical formulation of Problem 1, which is a
structured H∞ controller synthesis problem. We first outlined a modeling framework
for the considered power systems which includes nonlinear algebraic power flow mod-
els and dynamic prosumer models. We linearized the model, eliminating algebraic
equations, while retaining the nonlinear dependency of the controller matrices on the
vector of tunable parameters K. The frequencies of dynamic prosumers are impor-
tant for operation and are thus selected as performance outputs, which quantify the
dynamic performance of the system. Finally, the overall problem is formulated as a
structured H∞ tuning problem before the chapter is concluded with a discussion about
the complexity of the obtained synthesis problem.
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3 Structured controller tuning with stability
guarantees

This chapter introduces fast and scalable methods to find a (sub)optimal solution of
the parameter tuning Problem 1. As this problem is in general NP-hard, we focus on
methods which find local minima.
Two methods for H∞ synthesis are presented in Sections 3.1 and 3.2. Suitable

weighting schemes for both methods are proposed in Section 3.3, before the chapter is
summarized.

3.1 Structured controller synthesis based on the Bounded
real Lemma

The first method is based on the so-called Bounded Real Lemma. It allows us to
reformulate the H∞ tuning problem, defined in the frequency domain, with the time-
domain description of the problem by introducing an additional optimization variable:
the Lyapunov matrix. The method uses the iterative coordinate descent, also known as
P-K iteration, to find a (sub)optimal controller parameterization, where the parameter
dependency is iteratively linearized such that a linear matrix inequality problem is
obtained in each iteration.
The Bounded-real Lemma states the following:

Lemma 1 (Bounded-Real Lemma) [32] Consider the continuous-time transfer
function G(s) with the realization G(s) = D+C(sI−A)−1B. The following statements
are equivalent

• The system G(s) is asymptotically stable and ‖G(s)‖∞ < γ.

• There exits a symmetric positive definite solution P � 0 (Lyapunov matrix) to
the matrix inequality




ATP + PA PB CT

BTP −γI DT

C D −γI


 ≺ 0. (3.1)

The Bounded-real lemma is widely used for H∞ optimization [8, 24, 38, 40, 43, 49, 99,
100] and forms the basis of our tuning approach.
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3.1 Structured controller synthesis based on the Bounded real Lemma

Theorem 1 Given the power system model (2.8) with the transfer function (2.9).
Then, the following statements are equivalent:

• A(K) is asymptotically stable and ‖G(K, s)‖∞ < γ, γ ∈ R

• the following problem has a solution

min
P ,K,γ

γ (3.2a)

s.t. M(γ, K,P ) :=




A(K)TP + PA(K) PB(K) C(K)T
B(K)TP −γI D(K)T
C(K) D(K) −γI


 ≺ 0 (3.2b)

K ≤ K ≤ K (3.2c)
P = P T � 0, (3.2d)

where P ∈ RNx×Nx, and K ∈ RNt.

Proof. Using Lemma 1, we see that (3.2b) and (3.2d) are equivalent to ‖G(K, s)‖∞ < γ

and the asymptotic stability of A(K).
Note that weighting functions can be added to the performance output or input to
focus on a specific frequency range.
Problem (3.2) is in general non-convex due to the nonlinear parameter dependency in

the system matrices, and bilinear matrix products, e.g. between P and A(K) in (3.2b)
and NP-hard. We focus in the following on finding local minima of the problem.
In order to solve (3.2) with linear matrix inequality (LMI) solvers, which are more

mature than bilinear matrix inequality solvers, we adapt the so called iterative coordi-
nate descent approach, often called P-K iteration [94]. In each iteration, the Lyapunov
matrix P (µ) is obtained solving (3.2) with the constant controller parameter vector from
the previous iteration K(µ−1). This leads to the following LMI optimization problem

min
P (µ),γ

γ (3.3a)

s.t. M(γ, K(µ−1),P (µ)) ≺ 0 (3.3b)
P (µ) = (P (µ))T � 0. (3.3c)

Here M(γ, K(µ−1),P (µ)) is an abbreviation for the left side of (3.2b). One obtains the
Lyapunov matrix P (µ) solving (3.3). Furthermore, solving (3.2) while keeping P (µ)

constant, one obtains K(µ). This problem remains non-convex due to the nonlinear
parameter dependency of the matrices A, B, C and D from K, implying that LMI
solvers cannot be used. To do so, the system matrices are linearized in each iteration
around the parameter vector from the previous iteration K(µ−1)

A
(µ)
L (K) = A(K(µ−1)) + ∂A(K)

∂K

∣∣∣∣
Kµ−1

(K−K(µ−1)), (3.4)
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3 Structured controller tuning with stability guarantees

Input: A(K),B(K),C(K),D(K), K(0)

1 µ = 1;
2 while stopping criteria not satisfied do
3 Obtain (P (µ), γ) as solution of (3.3);
4 Obtain A(µ)

L (K),B(µ)
L (K),C(µ)

L (K),D(µ)
L (K) by linearizing A(K), B(K),

C(K), D(K) around K(µ−1);
5 (K(µ), γ) = Solution of (3.5);
6 µ← µ+ 1;
7 end
8 return K(µ);

Algorithm 1: Iterative descent method for solving (3.2).

and similarly for B(K) to obtain B(µ)
L (K), as well as C(K) and D(K). Based on this

linearization, we solve the following convex optimization problem in each iteration

min
K(µ),γ

γ (3.5a)

s.t. M
(µ)
L (γ, K(µ),P (µ)) ≺ 0 (3.5b)

K ≤ K(µ) ≤ K (3.5c)
∣∣∣K(µ) −K(µ−1)

∣∣∣ ≤∆K, (3.5d)

where ML is defined as

ML(γ, K(µ),P (µ)) := (3.6)



A
(µ)
L (K(µ))TP (µ) + P (µ)A

(µ)
L (K(µ)) P (µ)B

(µ)
L (K(µ)) C

(µ)
L (K(µ))T

B
(µ)
L (K(µ))TP (µ) −γI D

(µ)
L (K(µ))T

C
(µ)
L (K(µ)) D

(µ)
L (K(µ)) −γI


 .

Constraint (3.5d) is added to (3.5) to preserve the linearization accuracy by limiting
how much one can move away from the linearization point in one iteration.
Algorithm 1 presents the resulting iterative algorithm denoted as the iterative coor-

dinate descent method (ICDM). Starting variables are the linearized system matrices
A(K),B(K),C(K),D(K), and the initial parameter vector K0. The algorithm first
solves (3.3). Then, it linearizes A, B, C and D around the parameter vector from the
previous iteration K(µ−1), and solves (3.5). The iteration is repeated until a stopping
criterion is satisfied, e.g. the number of iterations reaches the specified limit, or the
improvement of the H∞ norm is smaller than the specified limit.
The outlined algorithm extends the classic P-K iteration algorithms as it considers

nonlinear parameter dependency of the system matrices on the parameter vector K,
i.e. the A, B, C, and D matrices are nonlinear functions of the parameter vector K.
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3.2 Controller tuning with frequency sampling

The proposed method achieves good results in the considered numerical examples,
as shown subsequently in Chapter 4. However, it has several drawbacks. The positive
definite Lyapunov matrix P is an optimization variable, thus the problem size scales
quadratically with the system size. It leads to significant additional computational
complexity and worsens the scaling of the optimization problem, without being used
later. Basically, Problem (3.3) is solved in each iteration, without bringing any im-
provement of ‖G(K, s)‖∞. Regarding convergence, the iterative coordinate descent
method, as many coordinate descent methods, does not necessarily converge to a (lo-
cal) minimum, even without the linearization step.

The iterative coordinate descent method requires a stabilizing initial parameter-
ization K0. This can be avoided by introducing a “stabilization” step, which first
determines a stabilizing parameterization Kstab before the optimization. This can be
obtained by [96]

Kstab = arg min
X,K,γ,ζ

ζ (3.7a)

s.t. A(K)TX +XA(K) ≺ ζI (3.7b)
P = P T � 0. (3.7c)

This problem can be solved using an analogous procedure as in Algorithm 1. The
obtain parameterization Kstab is stabilizing if and only if ζ ≤ 0 after optimization.
Then, Kstab can be used as the initial value for the iterative coordinate descent method.
This approach is used in Chapter 7 for power system stabilization.

3.2 Controller tuning with frequency sampling

In the following we propose a tuning approach based on sampling the frequency range.
The basis for the proposed method is the following theorem, see e.g. [15, 46] and
references therein.

Theorem 2 (Semi-infinite H∞ constraint) Given a detectable and asymptotically
stable system G(K, s). The H∞ norm of G(K, s), i.e. ‖G(K, s)‖∞, is smaller than
γ ∈ R>0 if and only if


 γI G(K, jω)
G(K, jω)∗ γI


 � 0, ∀ω ∈ R≥0. (3.8)
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3 Structured controller tuning with stability guarantees

Proof. Since σ (G(K, jω))2 = λ(G(K, jω)∗G(K, jω)), where λ(·) denotes the largest
singular value of a matrix, it follows

‖G(K, jω)‖∞ < γ (3.9)
⇔ σ(G(K, jω)) < γ, ∀ω ∈ R≥0 (3.10)
⇔ λ(G(K, jω)∗G(K, jω)) < γ2, ∀ω ∈ R≥0 (3.11)
⇔ G(K, jω)∗G(K, jω)− γ2I ≺ 0, ∀ω ∈ R≥0. (3.12)

Using the Schur complement on the last expression, one obtains (3.8).
For notational convenience, we drop writing the dependency on the tunable parameter
vector K explicitly for the rest of this section, and write only G(s).
The basic idea for the second method is to use Theorem 2 for the controller tuning.

However, it has two challenging properties. First, it is defined over a semi-infinite set of
frequencies R≥0, which cannot be in general numerically handled. Second, Theorem 2
is only applicable to stable systems. It is not clear if a controller parameterization
stabilizes a system only when (3.8) is satisfied. In the next sections, we propose a
tuning method which considers both of these properties.

3.2.1 Semi-infinite H∞ controller tuning problem

Theorem 2 allows to formulate an alternative optimization problem for the H∞ mini-
mization of G(K, jω)

min
γ,K

γ (3.13a)

s.t.

 γI G(K, jω)
G(K, jω)∗ γI


 � 0, ∀ω ∈ R≥0 (3.13b)

K ≤ K ≤ K. (3.13c)

As (3.13b) needs to be satisfied for every ω ∈ R≥0, Problem (3.13) is semi-infinite.
Although boundedness of the systemH∞ norm is a necessary and sufficient condition

for system stability, a controller parameterization obtained as a solution of (3.13)
does not necessarily stabilize the system. This is because Theorem 2 can be used
if and only if G(K, s) is exponentially stable [13]. As stability of G depends on K,
it is possible that G becomes unstable during the optimization. To overcome this
problem, one can introduce constraints which guarantee the closed-loop stability of G
as a function of K. Such constraints, based on frequency sampling and the Nyquist
criterion, are, for example, proposed in [6, 46]. On the other hand, if the open-loop
system is stable, then the boundedness of the H∞ norm of the system sensitivity
matrix ensures the stability of the closed-loop system [12, 14]. Furthermore, an LMI
constraint based on the Lyapunov matrix, i.e. (3.7), can also be introduced. This,
however increases the number of optimization variables significantly, as the Lyapunov

26



3.2 Controller tuning with frequency sampling

matrix scales quadratically with the system size.
Thus, such approaches are not suitable for the considered purpose. Additional

constraints make the optimization slower, and power systems are often not open-loop
stable. Ideally, a stability certificate is needed which does not significantly increase
the computational complexity of (3.13). Before introducing the stability certificate
for Problem (3.13), we first review the definition of poles of MIMO functions and
formulate several lemmas, as we use them subsequently.
Definition 1 (elementary poles) [63] A complex number si is a pole of the transfer
matrix function G(s) : C → Cny×nw , when at least one element Gij(s) of G(s) has a
pole at si, where Gij(s) denotes the single-input-single-output (SISO) transfer function
in the i-th row and j-th column of G(s).

Lemma 2 Given a detectable system G(s) with the finite set of poles SH . The largest
singular value of G(s), denoted with σ(G(s)), approaches +∞ as s approaches any
pole spij ∈ SH , where spij denotes the p-th pole of the transfer function in the i-th row
and j-th column of G(s).

Proof. Per definition of the singular value, we have [119]

σ(G(s)) = max
‖z‖2=1

‖G(s)z‖2. (3.14)

Thus, for all spij ∈ SH

lim
s→spij

σ(G(s)) = lim
s→spij

max
‖z‖2=1

‖G(s)z‖2 ≥ lim
s→spij

‖G(s)ej‖2, (3.15)

where ej denotes a column vector where the j-th row is equal to one and all other
elements are zero. The last expression can be reformulated to

lim
s→spij

‖G(s)ej‖2 = lim
s→spij

∥∥∥∥∥

(
G1j(s) ...Gij(s) ...GNj(s)

)T ∥∥∥∥∥
2

= lim
s→spij

√
G2

1j(s) + ... +G2
ij(s) + ... +G2

Nj(s), (3.16)

Since spij is a pole of Gij(s), it follows that lims→spij Gij(s)2 = +∞ and that
lims→spij ‖G(s)ej‖2 = +∞. From (3.15), it directly follows that lims→spij σ(G(s)) =
+∞.

Assumption 1 The coefficients of denominator polynomials in G(K, s) are contin-
uous functions of the controller parameters K.

This assumption is satisfied for almost all practically relevant control elements, such
as PID controllers, notch filters, lead-lag filters, washout filters etc. Thus, it does
not introduce a significant restriction for the applicability of the subsequent theorems.
This allows to state the following
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3 Structured controller tuning with stability guarantees

Lemma 3 Given the linear system G(K, s) that satisfies Assumption 1. The location
of poles of G(K, s) are continuous functions of the controller parameters K.

Proof. According to Definition 1, the poles of G(K, s) are obtained as the roots of de-
nominator polynomials of all elements Gij(K, s) of G(K, s). The roots of a polynomial
are continuous functions of the polynomial coefficients [111], whereas the denominator
polynomial coefficients are continuous functions of the controller parameters (Assump-
tion 1). It follows that poles of G(K, s) are continuous functions of K.
The following assumption is necessary for the formulation of the stability certificate
to Problem (3.19).

Assumption 2 During variation of K in (3.19), cancellations of poles and zeros,
which depend on K, of the SISO transfer functions Gij(K, s) in G(K, s) do not occur
on the imaginary axis.

This assumption is mostly technical and seldom occurs for practically relevant systems.
We can now formulate a stability certificate to validate that the closed-loop is stable.

Theorem 3 (Stability certificate) Given an exponentially stabilizing parameteri-
zation K0 for a detectable system with the closed loop transfer function G(K, s). Un-
der Assumption 1 and 2, with a sufficiently small step size during optimization, the
solution of Problem (3.13), denoted with K∗, leads to a stabilizing controller.

Proof. We assume the opposite, i.e. that the parameterization K∗ results in an unsta-
ble system. This means that at least one pole spij of G(K, s) moved from the stable
region, i.e. where Re(spij) < 0,∀spij to the unstable region, where ∃spij,Re(spij) > 0.
Since spij is a continuous function of the controller parameters K, see Lemma 3, this
implies that, with a sufficiently small step size, during optimization we obtain at least
one pole spij with Re(spij)→ 0−. From Lemma 2, we obtain

lim
s→spij

lim
Re(spij)→0−

max
ω∈R

σ(G(K, jω)) = +∞. (3.17)

Consequently, when spij approaches the imaginary axis, the system H∞ norm, which
is equal to maxω∈R σ(G(K, jω)), approaches +∞. Thus, during optimization, the
solver allowed the rise of the H∞ norm to very large values, depending on the step
size and numerical accuracy. As the solver minimizes the system H∞ norm in each
optimization step and does not allow the rise of the system norm, this leads to a
contradiction. Consequently, spij will never get close enough to the imaginary axis
and thus, due to the continuous dependence of spij on the controller parameters, will
never cross into the unstable region.
Note that spij does not have to approach the imaginary axis infinitely close for the
H∞ norm to increase to large values. When the poles are close enough, such that
the maximum of σ(G(jω)) is achieved in the frequency range around spij, the H∞
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3.2 Controller tuning with frequency sampling

߱

x
ݏ

Figure 3.1: Modification of the imaginary axis, shown in blue, to prevent a pole zero
cancellation on the imaginary axis.

norm minimization will lead to K parameters that prevent spij to approach further
the imaginary axis.
It is possible that a change of controller parameters causes a pole-zero cancellation

(in one transfer function Gij) in the region around the imaginary axis. We first consider
the case when this happens in a point σ1 +jω1, σ1 < 0. Then, given a sufficiently small
step size, due to the continuity of system poles, there exists σ2 < 0, σ2 6= σ1, such
that the system pole shifts to σ2 + jω2. If the system zero does not shift to the same
point, causing another pole-zero cancellation, the largest singular value of G(K, s) will
approach +∞ in the environment of σ2 +jω2, and will not cross the imaginary axis. In
the second case, we consider that the pole-zero cancellation occurs on the imaginary
axis, on the point jω3, contrary to Assumption 2. Consequently, the H∞ norm of
the system in jω3, and in its vicinity, will remain bounded. Thus, in this case it is
possible that the system becomes unstable during the optimization, depending on the
value of σ(G(K, jω)) in other frequencies, which is excluded by Assumption 2. This
assumption can be avoided by introducing an additional step in the optimization. If a
pole zero cancellation occurs on the imaginary axis, the optimization is repeated, but
σ(G(s)) is evaluated on a modified imaginary axis line, as shown in blue Fig. 3.1. In
this way, the rise of σ(G(s)) is captured before the cancellation occurs and thus the
pole is kept away from the imaginary axis.
A direct consequence of the theorem is that Problem (3.13) cannot stabilize an

unstable system, given Assumption 2; if the initial parameterization K0 is unstable,
Problem (3.13) will not allow unstable system poles to cross the imaginary axis to
the stable region. Note that the requirement for an initially stabilizing controller is
in accordance to the results presented in [6, 46]. In comparison to [14], the stability
guarantee in Theorem 3 is applicable to systems which are open-loop unstable.
To clarify the claim of Theorem 3, we consider the small example system

G′(s) =



s+2
(s+1)(s+3)

s−3
s2+3s+3

s2+4s+10
(s+3)(s2+s+1)

s+4
(s+1)(s+2)


 . (3.18)

This system has the pole set S̃ = {−1,−2,−3,−1.5 ± j0.87,−0.5 ± j0.87}, where
the poles s = −1, and s = −2 have a multiplicity of 2. Figure 3.2 shows the largest
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3 Structured controller tuning with stability guarantees

Figure 3.2: Graphical representation of σ(G′(s)); σ(G′(s)) approaches infinity in the
surrounding of any spij ∈ S̃. Red lines mark the imaginary axis, along which the
system H∞ norm is minimized.

singular value of G̃(s). It confirms that the system singular values approach infinity
as s approaches one of the system poles, see Lemma 2. We minimize the H∞ norm
of the system by minimizing the largest singular value of G′ on the imaginary axis,
i.e. σ(G′(jω)). The plane with Re(s) = 0, along which σ(G′(jω)) is minimized,
is represented with red lines in Fig. 3.2. If the poles approach the imaginary axis,
maxω∈R ‖σ(G′(jω))‖∞ rises to large values. Since the H∞ norm is minimized in every
optimization step, the minimization of the H∞ norm will never lead to the system
poles reaching, and crossing, the imaginary axis.

3.2.2 Finite H∞ controller tuning problem

Since (3.13) is semi-infinite, we use a finite-dimensional approximation to numerically
solve it. One way to find an approximation is to use a finite, but large enough, number
of frequency samples at which constraint (3.13b) is evaluated, i.e. to solve the following
problem

min
γ,K

γ (3.19a)

s.t. Φ(G(K, jωk), γ) :=

 γI G(K, jωk)
G(K, jωk)∗ γI


 � 0, ∀ωk ∈ Ω (3.19b)

K ≤ K ≤ K. (3.19c)

Here Ω is the discrete set of sampled frequencies with Nω elements. Since the problem
scales linearly with Nω, a reasonably large number of elements in Ω can be chosen such
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Figure 3.3: Illustration of the proof of Theorem 4. As spij approaches the imaginary
axis, minjω∈ΥM

σ(G(K, jω)) increases. If there exists ωk ∈ Ω, such that jωk ∈ ΥM ,
this rise is visible for the sampled frequencies as well.

that it covers the required frequency range with satisfactory density [14]. Note that the
choice for Ω is problem specific and needs to be adapted to the considered frequency
range. With a sufficiently large number of samples in Ω, the local optimum of (3.19)
can be arbitrarily close to the optimum of (3.13). Additionally, only frequencies in
the relevant frequency range need to be in in Ω. In power systems, e.g., this range is
normally up to 10 Hz.
With the following theorem, we extend the stability certificate from Theorem 3 to

discrete sampling.

Theorem 4 (Stability-certificate for discrete sampling) Given an exponen-
tially stabilizing parameterization K0 for the detectable system with the transfer
function G(K, s). Under Assumption 1 and 2, with a sufficiently small step size dur-
ing optimization and sufficiently dense sampling in Ω, the solution of Problem (3.19),
denoted with K′, leads to a stabilizing controller.

Proof. The proof is similar as for Theorem 3. We outline the proof for the case when
one pole (pair) approaches the imaginary axis. The proof with multiple pole pairs
approaching the imaginary axis can be obtained analogously. We show that there
exists a sufficiently dense discrete sampling, such that ‖G(K, s)‖∞ reaches arbitrarily
large values when a pole approaches the imaginary axis. For the proof, we assume
the opposite, i.e. that the parameterization K′ results in an unstable system. This
means that at least one pole spij of G(K′, s) moved from the stable region, i.e. where
Re(spij) < 0,∀spij to the unstable region, where ∃spij,Re(spij) > 0. As shown in
Lemma 2, σ(G(K, s∗)) approaches +∞ as spij approaches s∗. Since σ(G(K, s)) is
a continuous function of s [22], it follows that for arbitrary M ∈ R, there exists a
non-empty environment of spij where σ(G(K, jω)) is greater than M , i.e.

∀M ∈ R, ∃ϕ ∈ R, s.t. |s− spij| ≤ ϕ⇒ σ(G(K, s)) ≥M . (3.20)
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3 Structured controller tuning with stability guarantees

As spij approaches the imaginary axis, the intersection of the set ΥM =
{s : |s− spij| ≤ ϕ, σ(G(K, s)) ≥M} with the imaginary axis becomes non-empty, as
illustrated in Fig. 3.3. Thereby minjω∈ΥM

σ(G(K, jω)) increases, as spij approaches
the imaginary axis. Since spij is a continuous function of K, c.f. Lemma 3, under the
assumption of sufficiently small step size, it follows that there must exist a parameter-
ization K(µ) in the µ-th step, for which there exists an M∗(K(µ)) and ΥM∗ such that
σ(G(K(µ), jω)) for any element of ΥM∗ is greater than σ(G(K(µ), jω)) for any other
jω outside ΥM∗. Additionally, with this parameterization,

∥∥∥G(K(µ))
∥∥∥∞ increased com-

pared to
∥∥∥G(K(µ−1))

∥∥∥∞, i.e.

min
jω∈ΥM∗

σ(G(K(µ), jω)) > max
jω∈jR≥0\ΥM∗

σ(G(K(µ), jω)) (3.21)

min
jω∈ΥM∗

σ(G(K(µ), jω)) > max
ω∈R≥0

σ(G(K(µ−1), jω)). (3.22)

Under the assumption of sufficient sampling, there exists ωk ∈ Ω, such that ωk belongs
to ΥM∗. Consequently, we have

∃ωk ∈ Ω, s.t σ(G(K(µ), jωk)) > max
jω∈jR≥0\ΥM∗

σ(G(K(µ), jω)) (3.23)

∃ωk ∈ Ω, s.t σ(G(K(µ), jωk)) > max
ω∈R≥0

σ(G(K(µ−1), jω)). (3.24)

Thus, during optimization, the solver allowed the rise of theH∞ norm from the (µ− 1)-
th step to the (µ)-th step. As the solver minimizes the system H∞ norm in each
optimization step and does not allow the rise of the system norm, this leads to a con-
tradiction. Consequently, spij will never get close enough to the imaginary axis and
thus, due to the continuous dependence of spij on the controller parameters, will never
cross into the unstable region.
Note that sufficiently fine sampling for stability does not require infinitely small sam-
pling. Instead, there needs to be at least one frequency sample in the set ΥM∗ for all
poles that eventually cross the imaginary axis, i.e. the density of the frequency grid
in the crossover range needs to be satisfy

ωk − ωk−1 < max
jω∈ΥM∗

ω − min
jω∈ΥM∗

ω (3.25)

to always guarantee stability of G. This ensures that the rise of ‖G(K, s)‖∞ is captured
with the discretization, and does not allow a pole to cross the imaginary axis. When
solving (3.19), if an unstable parameterization is obtained, the density of the frequency
grid can be increased around the crossover frequency and the optimization can be
repeated.

Remark 2 Constraint (3.19b) can also be used in other optimization problems to
guarantee system stability. By setting γ in (3.19b) to a relatively large, but finite,
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3.2 Controller tuning with frequency sampling

value, this constraint will not allow ‖G(K, s)‖∞ to rise above γ, thus preventing system
poles to cross to the unstable region.

3.2.3 Solution algorithm

Problem (3.19) is non-convex due to the nonlinear dependency on the controller pa-
rameters in G(K, s). In order to solve it with convex solvers, we transform the problem
into a series of convex optimization problems by linearizing the parameter dependency
of G(K, s). To obtain the linearized transfer matrix in the k-th iteration G(k)

L (K, s), we
linearize the parametric dependency of G(K, s) around the parameter vector obtained
in the previous iteration K(k−1). The following optimization problem is then solved in
each iteration

K(k) = arg min
γ,K

γ (3.26a)

s.t. Φ(G(k)
L (K, jωk), γ) � 0,∀ωk ∈ Ω (3.26b)

K ≤ K ≤ K (3.26c)
|K−K(k−1)| ≤∆K, (3.26d)

where Φ is defined in (3.19), and we define the absolute value element-wise for vectors.
Compared to (3.19), this problem has an additional constraint, (3.26d), which has two
purposes in the optimization algorithm. First, it defines a trust region in which the
linearization accuracy of G(k)

L is preserved. Second, by reducing ∆K, it can be used
to reduce the step size if we obtain an unstable system during optimization, so that
the system poles cannot “jump” over the imaginary axis between the iterations.
The resulting iterative convex optimization algorithm is outlined in Algorithm 2.

The algorithm takes as input a stabilizing initial parameterization K0. In each iteration
G(K, s) is first linearized around the parameter vector from the previous iteration, i.e.
K(k−1), and G(k)

L (K, s) is obtained. Then, G(k)
L (K, s) is used to solve (3.26) and obtain

K(k). However, if the linearization accuracy is not sufficient, or if the step size is too
big,

∥∥∥G(K(k), s)
∥∥∥∞ might increase, or G(K(k), s) might even be unstable. If this occurs,

in Step 6, ∆K is multiplied with α < 1, e.g. α = 0.9 to increase the linearization
accuracy. If this measure does not help, then the density of the frequency grid needs
to be increased and the algorithm should be started again. By choosing ∆K small
enough and with sufficient sampling, Theorem 4 guarantees that a stabilizing controller
is obtained. Convergence to a local optimum of the finite optimization problem is
guaranteed if the initial value is close enough to the (locally) optimal value [78].
The advantages of (3.19), compared to the approach based on the Bounded-Real

Lemma from Section 3.1, with respect to scalability, are severalfold. Problem (3.2)
introduces a positive-definite (Lyapunov) matrix P as an optimization variable, which
has the same size as the number of states of the closed loop system, causing the number
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3 Structured controller tuning with stability guarantees

Input: G, K0, ∆K, kmax
1 k = 1, choose 0 < α < 1;
2 while k ≤ kmax or not converged do
3 G

(k)
L (K, s) = linearization of the parametric dependency of G(K, s) around

K(k−1);
4 K(k) = solution of (3.26);
5 if ‖G(K(k), s)‖∞ ≥ ‖G(K(k−1), s)‖∞ or G(K(k), s) is unstable then
6 ∆K = ∆K × α;
7 K(k) = K(k−1);
8 end
9 k = k + 1

10 end
11 return K(k)

Algorithm 2: Proposed iterative frequency-sampling optimization algorithm.

of optimization variables to increase quadratically with the number of states in the
closed-loop system. Additionally, the size of the matrix in (3.2b) increases in size with
the number of states, as well as inputs and outputs of the system. On the other hand,
Problem (3.19) does not have the Lyapunov matrix P as an optimization variable,
and the size of the problem only depends on the number of inputs and outputs of the
system, and on the size of the chosen frequency grid, making the controller synthesis
generally faster.
Example. We consider a system with 20 states, 2 controller parameters, 2 dis-

turbance inputs and 2 performance outputs as a small example to demonstrate the
computational complexity. For this example, Problem (3.2) has, in addition to the 2
controller parameters, a total of 210 optimization variables for the Lyapunov matrix,
and two definiteness constraints on matrices with the sizes 20×20 and 24×24. On the
other hand, (3.19), has only 2 optimization variables, and LMI constraints for a matrix
with the size 4×4, repeated for a frequency grid. Hence, if appropriate frequency grids
are chosen, (3.19) achieves a much better computation time than (3.2).

3.3 Frequency weighting in the optimization problem

Before the H∞ optimization, the transfer function G(s) often needs to be weighted in
relevant frequency areas to achieve satisfying performance. This is usually done by
multiplying the output with weighting functions representing low-pass, high-pass, or
band-pass filters. This type of weighting can be done for both presented approaches
as well. However, it increases the number of states in the system, thus increasing the
computational complexity, and often worsens the conditioning of the system.
Problem (3.19) allows for a simpler weighting scheme. If, for example, optimization
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in a frequency band is desired, it would usually require the introduction of a band-
bass filter. However, with (3.19), a bandpass filter can be avoided by simply defining
the frequency grid only on the desired interval. Other weighting schemes can also be
easily considered in the problem formulation, without increasing the computational
complexity of the optimization. To do this, we introduce the scalar scaling factor
βs(ω) such that

Gs(K, jω) := G(K, jω)× 1
βs(ω), (3.27)

which can be used for arbitrary scaling schemes of σ(G(K, jω)), as σ(G(K, jω))) =
βs(ω)σ(Gs(K, jω)). After analogous reformulations as in Theorem 2, the following
weighted optimization problem is obtained

min
γ,K

γ (3.28a)

s.t.

γβs(ωk)× I G(K, jωk)
G(K, jωk)∗ γβs(ωk)× I


 � 0, ∀ωk ∈ Ω (3.28b)

K ≤ K ≤ K. (3.28c)

Here, βs(ωk) can take arbitrary nonzero values. This weighting scheme has several
advantages compared to introducing weighting functions. First, it does not increase
the computational burden of (3.28). Second, βs(ω) can be easily specified, without
special considerations about the properties of different filter types. Lastly, the specified
weighting does not have to be a causal transfer function; a function with derivative
behavior in the frequency-domain can easily be specified. A different way to interpret
the proposed weighting scheme is that γ, and thus the cost function, is made frequency
dependent.

3.4 Summary
We introduced two methods for structured H∞ controller synthesis in linear systems
which consider nonlinear parameter dependencies. The first method, derived from
the Bounded Real Lemma, adapts the so-called P-K iteration to nonlinear parameter
dependencies in the system matrices. The second method uses frequency sampling
to solve the synthesis problem by directly applying the definition of the H∞ norm.
Thereby, guarantees are provided for both algorithms that the obtained controller
parameterization stabilizes the system as well, in addition to minimizing the system
H∞ norm. Finally, a weighting scheme for the second method is introduced, which
is easier to implement than conventional methods using weighting functions, does not
increase the computation time, and which does not need to represent a causal transfer
function.
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4 Numerical evaluation

In this chapter, we evaluate the proposed methods for structured H∞ controller tun-
ing considering several simulation examples. The time-domain response, as well as
the singular value plot of the considered systems before and after the optimization are
compared. For the optimization, we use the Matlab toolbox YALMIP [61], together
with the LMI solver SeDuMi [109]. The results are validated using nonlinear simu-
lations with Simscape Power Systems and PSSrNetomac, to estimate the practical
impact.

4.1 IEEE 39 bus system

The first example is a dynamic model of the IEEE 39 bus, and 10 power plant system,
which is adopted from [77]. The topology of the power system is shown in Fig. 4.1.
It consists of 10 power plants, for details see Appendix C.1. Static prosumers in
the system are denoted with arrows, c.f. Fig. 4.1. We consider the active powers of
constant-power elements in buses 2, 4, 9, 21, 23, 26, 29 as disturbance inputs, marked
with blue. All prosumer and grid parameters are taken from [77]. We increased the
exciter gains from 200 to 600 to obtain a stable system. The overall linear system
consists of 190 states and 100 tunable controller parameters.
Figure 4.2 shows the time-response of the system to a step-wise 100 MW load in-

crease in bus 21. The response of the linearized system is shown with dashed lines,
whereas the nonlinear simulation of the generator frequencies is shown with solid lines.
The nonlinear simulation is performed in Simscape Power Systems [68] with nonlinear
models of the power plants and the nonlinear power flow equations. The difference
between the linear and nonlinear responses in Fig. 4.2 is small, meaning that the linear
model can be accurately used for the parameter tuning. In the model, P10 emulates
a connected power system, which consists of multiple other power plants. For this
reason, P10 has a much larger inertia than the other power plants in the considered
system. As the inertia of a power plant has a large impact on the power system dy-
namics, especially on the frequency dynamics, the behavior of P10 in the time response
in Fig. 4.2 is different than the response of the other power plants. The resulting os-
cillations with the initial parameterization are poorly damped and do not settle after
10 seconds. Additionally, an approximately 70% overshoot is present in the system.
We define the overshoot of a signal as the relation between the maximal deviation of
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Figure 4.1: The IEEE 39 bus system with 10 power plant prosumers. Blue arrows
denote the disturbances wi.

the signal from the steady-state value and the steady-state value itself, i.e.

%OS = |ymax| − |yss||yss|
× 100%, (4.1)

where ymax is the maximal absolute value of the signal, and yss is the steady-state value
after the step disturbance. The oscillations are also visible in the frequency domain
in the singular value plot in Fig. 4.4 for the initial parameterization, which shows the
resonant peaks causing the oscillations.

To improve the system step response, we apply the proposed approaches on this
system. Thereby, both approaches achieve the same result, c.f. Fig. 4.3. The overshoot
is reduced to approximately 30%, and the oscillations settle within approximately 4
seconds. Simulation with the optimized parameters of the linear model (dashed lines)
again shows good correspondence to the detailed nonlinear simulation (solid lines).
The singular value plot of the system, presented in Fig. 4.4, shows that the resonant
peaks were practically eliminated after the parameter optimization. The structured
controller synthesis reduced the H∞ norm by a factor of 10. Thus, the optimally tuned
parameters reject disturbances significantly better than in the untuned case.
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Figure 4.2: Time-domain response of power plant frequencies in the IEEE 39 bus
system after a 100 MW load step in bus 21 with initial parameters. Solid lines
represent simulations with the nonlinear model, whereas dashed lines represent
simulations with the linear model.

0 2 4 6 8 10

-30

-20

-10

0

time (s)

fre
qu

en
cy

de
vi

at
io

n
(m

H
z)

P1 P2 P3P4 P5 P6P7 P8 P9P10

Figure 4.3: Time-domain response of power plant frequencies in the IEEE 39 bus
system after a 100 MW load step in bus 21 with tuned parameters. Solid lines
represent simulations with the nonlinear model, whereas dashed lines represent
simulations with the linear model.

4.2 AC/DC integration

New components in power systems, such as flexible AC transmission system elements
(FACTs) and high voltage direct current (HVDC) lines with AC/DC converters, allow
for new degrees of freedom in power system control. We focus in this section on power
oscillation damping with HVDC lines, which has been an interesting research topic
in recent years [81, 84, 85, 113]. We improve the power oscillation damping in an
exemplary AC-DC system by tuning parameters of local controllers. Additionally, we
show the possibility for oscillation damping using only local control of HVDC systems.
For this purpose, we modify the IEEE 39 bus system, considered in Section 4.1 by

adding a HVDC line between randomly selected buses 16 and 27, as depicted in Fig. 4.5.
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Figure 4.4: Largest singular value of the linearized IEEE 39 bus power system as a
function of the input frequency ω. After optimization, most of the resonant peaks
in the system are eliminated.

Thereby, converter C1 controls its DC-voltage and is connected to bus 27, whereas
converter C2 is connected to bus 16 and controls its active power. Both converters also
control their reactive power infeeds. For further details see Appendix C.2. For the
optimization, we consider as performance inputs the active power of loads in the same
buses as in Section 4.1, marked blue in Fig. 4.5. The modeling of coupled AC/DC
systems is shown in Appendix B, whereas the parameters of the considered system are
shown in Appendix C.2.
With this setup, nonlinear simulation in Simscape Power Systems [68] of the fre-

quency response of the 10 power plants Pi after a 100 MW load step in bus 26 is shown
in Fig. 4.6(a). Strong oscillations are present in the system, which do not settle after
30 s, and the response has an overshoot of approximately 50%.
To eliminate these oscillations, we first tune all power plant and HVDC converter

controller parameters. Figure 4.6(b) shows the frequency response with optimized
parameters. By tuning the power plant controller parameters, power oscillations can
practically be eliminated. The oscillations settle in approx. 3 seconds and the over-
shoot is reduced to 17%. For the next evaluation, we consider that only the HVDC
controller parameters can be tuned. All power plant parameters are set to their initial
values. As shown in Fig. 4.6(c), oscillations in the system are better damped with the
optimized parameters, compared to Fig. 4.6(a). Nonetheless, much better damping
is achieved when all power plant controllers are tuned as well. For the same setup,
Fig. 4.7 shows the system frequency response with initial and optimized parameters
after a load step in bus 29, showing similar improvement as for the previous load step.
This numerical evaluation demonstrates that HVDC lines can improve oscillation

damping in the system even though they do not store any energy, and only use local
measurements. This can be intuitively explained by the fact that P5 oscillates the
most for any load step, and the HVDC control is tuned to damp the oscillations of P5.
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Figure 4.5: Modified IEEE 10 generator 39 bus system. An HVDC power line is
added between buses 16 and 27.

Additionally, even though the HVDC line covers a small part of the grid, it can still
make a visible contribution to oscillation damping in the system.

4.3 European 53 power plant system

We apply the parameter tuning methods on a model with 53 power plants. It rep-
resents a reduced version of the European power system, developed as a part of the
research project DynaGridCenter [27]. An overview of the power system structure
is shown in Fig. 4.8. The grid consists of 35 buses (nodes), connected by long power
transmission lines. Two power plants are attached to most buses (nodes) in the system,
and each node has static prosumers which emulate loads and renewable generation.
The controllers used for this model are presented in Appendix C.3. A more detailed
description of the considered system is avoided as it is not necessary for the under-
standing of the presented results. Nineteen power plants in the system have tunable
controllers, whereas all other power plants have a constant exciter voltage Efd,i and
turbine mechanical power Pm,i. Thus, this system represents a good example for
a brown-field application, where only some prosumers (power plants) have tunable
controllers. The described power system has a total of 469 states and 116 tunable
controller parameters. We consider the active power of static prosumers in 15 buses
as disturbance inputs, marked with blue in Fig. 4.8.
Figure 4.9(a) shows the frequency response at ten nodes in the system with initial
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(b) Power plant and HVDC controllers optimized.
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(c) Only HVDC controller parameters optimized.

Figure 4.6: Nonlinear simulation of the generator frequency response after a 100 MW
load step in bus 26 in Fig. 4.5 with (a) initial parameters, (b) optimized power
plant and HVDC converter parameters, and (c) only optimized HVDC converter
parameters.

system parameters after a 1.5 GW generation dropout in bus 1. The simulation is
done with nonlinear power plant and power grid models in the commercial power
system simulation software PSSrNetomac. As shown in Fig. 4.9(a), poorly damped
oscillations are present in the system. They do not settle within 200 seconds, and the
initial overshoot is approx. 210% compared to the steady-state deviation. The initial
parameters were obtained manually with iterative simulation in a time-consuming
process. Due to the system complexity and time limitations, we did not find a better
parameterization manually. The proposed tuning algorithm provides a systematic way
to tune the parameters of such complex systems.
Figure 4.9(b) shows the frequency response after the application of the frequency-
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(b) Power plant and HVDC controller parameters
optimized.
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(c) Only HVDC controller parameters optimized.

Figure 4.7: Nonlinear simulation of the generator frequency response after a 100 MW
load step in bus 29 in Fig. 4.5 with (a) initial parameters, (b) optimized power
plant and HVDC converter parameters, and (c) only optimized HVDC converter
parameters.

sampling based tuning algorithm. An additional constraint was added in the opti-
mization in order to achieve the same steady-state deviation as with the initial param-
eterization. It shows a reduction in the overshoot to approx 160% compared to the
steady state deviation. Further reduction of overshoot is not possible, as the generation
outage happens in proximity to G1, and the controllers of G1 are not fast enough to
compensate for this disturbance. The oscillations settle in the first 50 seconds, show-
ing significantly improved oscillation damping. This is also confirmed by the singular
value plot in Fig. 4.10, in which many resonant peaks are eliminated with the opti-
mized parameterization. The system H∞ norm was reduced by a factor of 5.4, even
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Figure 4.8: The 53 power plant power system developed in the DynaGridCenter
project [27]. Buses with uncertain infeeds, denoting disturbances wi, are marked
blue.

though the parameters of only 19 power plants, from a total of 53, were optimized.

4.4 Summary

The applicability of the proposed approach is shown in three power systems. Thereby,
the flexibility of the proposed methods is demonstrated as well, as the second sys-
tem was an AC/DC system, and the third system emulated a brown-field application
with additional steady-state constraints. The proposed tuning methods successfully
reduced the H∞ norm of all considered systems, thereby significantly reducing the
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(b) H∞ tuned parameters.

Figure 4.9: Nonlinear simulations of the frequency response in several buses of the
reduced European power system model from Fig. 4.8 after a 1.5 GW generator
outage in bus 1.
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Figure 4.10: Largest singular value of the linearized reduced European power system
model from Fig 4.8 as a function of frequency ω. After optimization, most of the
resonant peaks in the system are significantly reduced.

time-domain settling time and overshoot of those systems. The presented approaches
provide a systematic solution and show very good results for parameter tuning in
these complex systems. The outcomes of the optimization are validated in commercial
power system simulation software with detailed nonlinear component models, showing
the applicability of the approach to practically relevant systems.
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5 Experimental validation

In the previous chapter, numerical studies are performed on transmission systems,
which consist of power plants with large power infeeds. Online controller reparam-
eterization cannot be easily tested in such systems due to the vital role they play.
Furthermore, renewable penetration in the largest systems today is still relatively low,
and the need for controller reparameterization is not evident. However, this is starting
to change for large island grids [28, 42]. In this chapter, we experimentally validate
our approaches. We start with a smaller system, a testbed microgrid in Wildpoldsried,
Germany, which was installed in the frame of a research project [1], shown in Fig. 5.1.
The benefits of microgrids are well recognized and accepted [41]. One of the most

interesting capabilities of microgrids is islanding, i.e. the ability to operate separately
from a supply grid, which can under certain circumstances improve the power qual-
ity and reliability of costumer supply. In remote and disaster-endangered areas or
on ships, islanded microgrids are often the only possibility for power supply. Re-
newable generation is now a standard component in microgrids due to their low-cost,
environmental-friendliness, low maintenance, and non-reliance on fossil fuels, which
often need to be brought from far away. Renewables add, however, additional com-
plexity to microgrid control, in comparison to grids running mainly with synchronous
generation, such as diesel generators. Renewable power generation varies over time
and does not provide spinning reserve in the system. Renewables are thus often com-
bined with a battery storage system to balance the uncertain renewable generation
and provide grid forming, i.e. voltage control. Such systems are, however, not N-1
secure in relation to resilience: when the battery or inverter fails, the system can
suffer from a blackout. For redundancy, thus, at least two grid-forming inverters are
needed. For increased reliability, resilience, and voltage quality, even more inverters
are recommended.
The considered system consists of six 55 kVA SINAMICS inverters [3], connected to

three Lithium-Ion batteries, and a controllable 150 kW load bank, c.f. Fig. 5.2. The
microgrid can operate attached to the supply grid, as well as in islanded operation.
Further details can be found in [1, 88]. We consider the case when the microgrid is
running independently of the supply grid and all inverters are running in grid-forming
mode, i.e. they control their voltage magnitude and frequency based on their active
and reactive power infeed, as shown in Fig. 2.6. This leads to increased reliability and
power quality in the system, as the failure of one inverter will not cause a blackout when
properly configured. In order to enable parallel operation of the inverters, droop control
of active and reactive power is used, as described in Subsection 2.1.2. Droop control
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5 Experimental validation

Figure 5.1: Photo of the testbed Microgrid in Wildpoldsried, Germany.

is the current state-of-the-art method for control of distributed generations as: (1) it
requires only local measurements and no real-time communication or accurate time
synchronization, (2) it enables power sharing and parallel operation of grid-forming
inverters, (3) it can be implemented on simple control hardware. In order to evaluate
the system performance, we perform load steps and evaluate the step response of the
system.
The presented microgrid system is of interest for several reasons:

• To avoid circulating currents, two isolating transformers are a part of the system,
as shown in Fig. 5.2, which are sources of asymmetry in the load-step response of
the inverters. Such asymmetry will also occur if the inverters are geographically
distributed within a microgrid. Therefore this configuration is a good test case
for a real life setup.

• Results obtained from the setup can directly be transfered to systems with 100%
power-electronic based generation. As wind generation and photovoltaics are
connected to the power grid via inverters, a similar inverter model as in Fig. 2.6
can be used to model renewable generation for stability studies.

5.1 Initial parameterization

With the initial parameterization of the inverters, shown in Table 5.1, the system
is unstable when inverters 1 and 6 are running in parallel. Thereby, the instability
is dependent on the system load level. As shown in Fig. 5.3, the system is initially
running stable with an approx. 30 kW load. However, when the load changes to 45
kW, the system becomes unstable. Thereby, the inverter oscillations cancel out, and
the power PL at the load is approximately constant. The oscillations are thus not
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Figure 5.2: Structure of the considered part of the microgrid, consisting of six parallel
connected inverters. Details can be found in [88]. The active power of the load
bank, denoted with PL, is the disturbance input wi into the system.

Table 5.1: Initial unstable parameterization of inverters 1 and 6.
Inv KP (%) KQ (%) Tf (ms) Tv (ms)
1 10 3.1 50 50
6 10 3.1 50 50

observable at the load connection point, meaning that measurements on the load do
not show any problems.
This system is unstable even though it consists only of two inverters with the same

dynamic behavior and parameterization. The instability arises due to imbalances in
the interconnection of the inverters. Counter-intuitively, even though grids with high
renewable penetration will have many components with similar dynamics, it does not
mean that guaranteeing the stability of such systems is simpler than today. On the
contrary, the power grid parameters will play an even more important role, as shown in
the following. When only inverters 3 and 4 produce power, the system remains stable
with the initial parameterization, as inverters 3 and 4 are connected symmetrically to
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Figure 5.3: Measurements from the testbed grid showing an unstable load step re-
sponse of inverters 1 and 6 due to a load change from 30 kW to 45 kW; PL is
calculated as the sum of Pp1 and Pp6.

Table 5.2: Stable manual parameterization of inverters 1 and 6.
Inv KP (%) KQ (%) Tf (ms) Tv (ms)
1 2 3.1 100 100
6 2 3.1 100 100

the load. Hence, even in this simple system, the parameters of the power grid between
the inverters play an important role.

5.2 Manual tuning

Manual tuning of the system was performed with iterative simulation methods based
on the inverter model described in Subsection 2.1.2, see Fig. 2.6. The step response
in Fig. 5.4 is obtained with the parameters given in Table 5.2. It shows good corre-
spondence between measurements (solid lines) and simulations (dashed lines), demon-
strating the validity of the used model. The difference between measurement and
simulation originates from unmodeled loads and/or additional inverter controllers,
phase-asymmetries etc. We show active power measurements, because the oscillations
are better visible in the active power than in the frequencies for this system.
The same parameters from Table 5.2 are also used for the operation of all six invert-

ers, resulting in the 150 kW load step response shown in Fig. 5.5. A discrepancy in
the oscillations is present between measurement and simulation of inverter 3. A better
match can be obtained by an iterative adaptation of grid parameters, i.e. impedances
in the grid. We avoid this because mismatches between measurements and simulation
are expected in real systems, and as it allows to test the sensitivity of the proposed
method to model discrepancies. This parameterization of the six inverters was also
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Figure 5.4: Response to a 60 kW load step with inverters 1 and 6 achieved by manual
tuning; PL is calculated as the sum of Pp1 and Pp6. Solid lines represent measure-
ments, whereas dashed lines represent simulations with the nonlinear model.
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Figure 5.5: Response to a 150 kW load step with all inverters achieved by manual
tuning; PL is calculated as the sum of all inverter powers. Solid lines repre-
sent measurements, whereas dashed lines represent simulations with the nonlinear
model.

used for successful operation with household consumers in islanded mode.

5.3 Automatic tuning

The results obtained by manual tuning in Figs. 5.4 and 5.5 show prevailing oscilla-
tions in the system after a load step. Arguably, they are still satisfactory for many
applications. However, manual tuning requires expert know-how and is associated
with a significant time-effort. Automatic tuning methods enable the fast design of
robust microgrids, without expert knowledge. We apply and experimentally validate
the proposed H∞ tuning method on the testbed system.
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Figure 5.6: Response to a 60 kW load step with inverters 1 and 6 achieved by optimal
tuning of all parameters; PL is calculated as the sum of Pp1 and Pp6. The optimized
parameters are shown in Table 5.3. Solid lines represent measurements, whereas
dashed lines represent simulations with the nonlinear model.

Table 5.3: Optimal parameterization of inverters 1 and 6 when all parameters are
optimized.

Inv KP (%) KQ (%) Tf (ms) Tv (ms)
1 3.13 3.56 108 104
6 2 3.62 115 104

5.3.1 Parameter tuning for inverters 1 and 6

We first apply the H∞ parameter tuning algorithm to the system when only inverters
1 and 6 are running. The response for a 60 kW load step with optimized parameters,
c.f. Table 5.3, is shown in Fig. 5.6. The settling time of the step response is practically
reduced to zero. However, due to different droop values of KP ,1 and KP ,6, the steady
state power of the inverters is not identical. Such parameterization may cause inverter
6 to overload after a large load step. Still, if the inverters have sufficient power reserves,
and no large sudden load changes are expected, this parameterization provides the best
step response with regard to oscillation suppression. The generation of the inverters
can be balanced out with slower control schemes, so called secondary controllers, which
are standard for power system control. As they operate at a slower time scale, they
are beyond the scope of this work.
In order to eliminate the generation imbalance even without secondary control, we

introduce additional constraints which enforce the equality of the droop gains, i.e.
KP1 = KP6 and KQ1 = KQ6. With these constraints, we obtain optimized parameters
shown in Table 5.4, which achieve the step response shown in Fig. 5.7. We see that,
even with the equality constraint, improvement in the step response of the system is
still possible compared to manual tuning results.
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Figure 5.7: Response to a 60 kW load step with inverters 1 and 6 achieved by optimal
tuning together with the droop gain equality constraints; PL is calculated as the
sum of Pp1 and Pp6. The optimized parameters are shown in Table 5.4. Solid
lines represent measurements, whereas dashed lines represent simulations with
the nonlinear model.

Table 5.4: Optimal parameterization of inverters 1 and 6 with droop equality con-
straints.

Inv KP (%) KQ (%) Tf (ms) Tv (ms)
1 2 3.13 89 100
6 2 3.13 130 100

5.3.2 Parameter tuning for all inverters

For the next experiment, all 6 inverters operate in parallel in grid-forming mode. The
150 kW load step response when all tunable inverter parameters are optimized, is
shown in Fig. 5.8. The optimized parameters are shown in Table 5.5. In this case,
the oscillations could not be completely eliminated because of insufficient freedom in
the controller parameterization. Still, a noticeable improvement is still observable
compared to manual tuning, c.f. Fig. 5.5.
To avoid unequal power sharing, equality constraints for the droop gains are in-

troduced, i.e. KP ,1 = KP ,2 = ... = KP ,6 and KQ,1 = KQ,2 = ... = KQ,6. The step
response for this case is shown in Fig. 5.9, and the obtained parameters in Table 5.6.
The overshoot in this case cannot be avoided. However, the power oscillations after the
initial overshoot are reduced when compared to the manual tuning results in Fig. 5.5.

5.4 Summary

We experimentally validated the H∞ controller tuning approach on a testbed micro-
grid. The results show a good match between measurements and the inverter models.
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Figure 5.8: Response to a 150 kW load step with all inverters with optimal tuning of
all parameters; PL is calculated as the sum of all inverter powers. The optimized
parameters are shown in Table 5.5. Solid lines represent measurements, whereas
dashed lines represent simulations with the nonlinear model.

Table 5.5: Optimal parameterization of all inverters 1-6 with no droop equality
constraints.

Inv KP (%) KQ (%) Tf (ms) Tv (ms)
1-2 3.1 3.3 107 105
2 3.1 3.6 109 105
3 2 3.5 124 104
4-6 2.1 3.6 102 104

Even though the manual tuning results, as shown in Figs. 5.4 and 5.5, may be sat-
isfactory for many applications, the results obtained with the proposed parameter
tuning algorithm, shown in Figs. 5.4 – 5.9, are better with respect to oscillation damp-
ing. Thereby, additional droop-equality constraints were added to the optimization
problem, demonstrating the flexibility of the proposed optimization methods. Addi-
tionally, no expert knowledge is necessary for the automatic parameterization, and the
parameterization process can be done faster than with manual tuning.
This chapter also showed that stable operation of relatively complex and asymmetric

systems with no synchronous generation is possible. However, the power grid play

Table 5.6: Optimal parameterization of all inverters 1 - 6 with droop equality con-
straints.

Inv KP (%) KQ (%) Tf (ms) Tv (ms)
1-2 2 3.1 86 96
3 2 3.1 154 101
4-6 2 3.1 123 100
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Figure 5.9: Response to a 150 kW load step with all inverters, achieved by optimal
tuning and droop equality constraints; PL is calculated as the sum of all inverter
powers. The optimized parameters are shown in Table 5.6. Solid lines repre-
sent measurements, whereas dashed lines represent simulations with the nonlinear
model.

thereby a more significant role for the stability and needs to be taken into account for
the parameter tuning of controllers.
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In this chapter, we compare the proposed methods for structuredH∞ controller synthe-
sis with existing methods. We first evaluate the applications, i.e. controller synthesis
in power systems, without boring at the detailed mathematical formulation of the ap-
proach. As outlined in Chapter 1, most approaches do not consider the sole parameter
tuning, they rather introduce new controllers. To evaluate the benefits and disadvan-
tages of such approaches, we compare in Section 6.1 the proposed approach with two
approaches for the synthesis of distributed controllers, focused towards power systems.
The focus of the comparison is on the deliverable results in the time- and frequency
domain, observed on an exemplary numerical example.
In the second part, we focus on computational efficiency of methods which consider

structured H∞ controller synthesis. For this purpose, we adapt four methods from
literature to the considered application, and compare them in Section 6.2. Thereby,
we observe the computation time of these methods on several numerical examples.

6.1 Synthesis methods for distributed controllers
We review and compare in this section the proposed controller tuning approach, i.e.
tuning of existing local controllers, with two (sub)optimal controller design methods,
tailored towards power systems. Both methods introduce an additional control layer
in the system, c.f. Fig. 1.5, however they are ”sparsity-promoting”. The two meth-
ods exploits H2 [115] and H∞ [100] optimization to create distributed controllers,
focusing on the reduction of communication links, while achieving satisfying system
performance. We compare all approaches with respect to the transients after a load
step, achieved system norms, as well as the necessary communication structures for
the control schemes.
The methods proposed in [100, 115] introduce an additional higher-level control

layer. They use H2 and H∞ controller synthesis methods to design optimal static and
distributed state-feedback controllers. The additional control layer requires fast com-
munication of all system states to the controller, see Fig. 1.5. This can be challenging
in large systems, such as power systems, because fast, reliable and time-synchronized
communication across large distances is needed. In order to minimize the dependency
on fast communication, these methods aim to minimize the number of communication
links necessary. Depending on the desired performance, they achieve a control archi-
tecture similar to the one in Fig. 1.5(c), or a fully decentralized architecture depicted
in Fig. 1.5(d). We call these methods subsequently “sparsity-promoting H2 controller
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6.1 Synthesis methods for distributed controllers

synthesis” (SPH2), see Subsection 6.1.1, and “sparsity-promoting H∞ controller syn-
thesis” (SPHinf), see Subsection 6.1.2.
In the rest of the subsection, we avoid explicitly writing the parameter dependency

of the system matrices when it is not necessary, as the considered approaches do
not change these parameters. It is assumed, however, that the matrices are always
functions of the controller parameters.

6.1.1 Sparsity-promoting H2 controller synthesis (SPH2)

This section summarizes the sparsity-promotingH2 optimal control design method pre-
sented in [59, 114, 115]. This method aims to minimize the H2 norm of system (2.8) by
introducing and designing the static state-feedback controller K2, where the subindex
2 denotes that the H2 norm is used for its synthesis, using the sparsity-promoting
optimal control approach. The H2 norm of a linear system represents the total output
energy of the system response after an impulse of the input. It can also be interpreted
as the amplification of white stochastic disturbances from the input to the output.
Thus, the H2 norm can also be considered as an appropriate tuning goal, as the dis-
turbances from renewable generation and loads represent stochastic disturbances. A
more detailed discussion about the use of the H2 norm in power systems can be found
in [96, 115].
The trade-off between sparsity and H2 performance is achieved by tuning of a spar-

sity emphasis parameter. When the sparsity emphasis parameter is set to zero, the
algorithm recovers the optimal centralized controller. By appropriate selection of the
sparsity emphasis parameter, control structures as shown in Figs. 1.5(c) and 1.5(d)
can be obtained. For this method, we expand the considered system equations (2.8)
with the static state-feedback controller u = K2x, and we obtain

ẋ = Ax +Bw +Buu (6.1a)
y = Cx +Duu (6.1b)
u = K2x. (6.1c)

Since this approach considers the H2 norm, the feed through matrix of the disturbance
input w to the performance output y needs to be zero. Otherwise, the H2 norm of
the system would not be finite [96]. The feedthrough matrix, however, is zero when
the prosumer frequencies are considered as performance outputs, and H2 optimization
can be applied. We denote this system as

H2(s) = (C +DuK2) (sI − A−BuK2)−1
B.

The H2 norm of H2 is given by [59]

J(K2) := ‖H2(s)‖2 = trace
(
X(CTC +KT2 DT

uDuK2)
)

. (6.2)
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Here X is the solution to the equation

(A+BK2)X +X(A+BK2)T = −BBT . (6.3)

A desired tradeoff between the H2 performance and the sparsity of K2 is achieved
by solving the optimal control problem [59]

min
K2

J(K2) + α‖vec(K2)‖0, (6.4)

where the notation vec(K2) creates a vector from the elements of K2 by stacking all the
columns of K2, and ‖ · ‖0 denotes the 0-norm of a vector, i.e. the number of non-zero
elements in the vector. The first term of the objective function (6.4) is smooth and we
can use gradient-based methods to solve it. The second term of the objective function
is non-smooth and non-convex, making it challenging to solve efficiently. To obtain a
smooth cost function, the problem is reformulated into

min
K2

J(K2) + αg(K2). (6.5)

The regularization term g(K2) is given by the weighted `1-norm of K2,

g(K2) :=
∑

i, j
Wij |K2ij|, (6.6)

which is an effective relaxation for inducing elementwise sparsity [16]. This problem
can for example be solved iteratively with the so called alternating direction method
of multipliers (ADMM) [11]. In each iteration, the weights Wij’s are updated with
the values of K2 from the previous iteration, see Algorithm 3 and [16] for details.
Problem (6.5) allows the synthesis of sparse state-feedback controllers. The sparsity
level of the matrix K2 depends on the value of the sparsity parameter α. By varying α
in (6.5), we can control the sparsity-level which we want to achieve in the system. A
larger value for α results in more elements of K2 being set to zero, however at the cost of
a worse H2 performance. With this method, we obtain a family of different distributed
controllers with varying sparsity levels and performance. The control designer can then
select one with an appropriate sparsity-performance trade-off.
The details of the sparsity-promoting optimal control algorithm can be found

in [115]. We perform the numerical evaluation of the SPH2 method in Subsection 6.1.3.

6.1.2 Sparsity-promoting H∞ controller synthesis (SPHinf)

We reviews the sparsity promoting H∞ controller synthesis presented in [100]. The
objective of this method is to design a linear static feedback matrix K∞ with as many
zero entries as possible. This is similar to the SPH2 method, however it optimizes the
H∞ system performance instead of the H2 system performance.
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1 µ = 1;
2 K2,0 = dense feedback matrix;
3 Wij = 1,∀i, j;
4 while stopping criteria not satisfied do
5 K2,µ = solution of (6.5) via ADMM with K2,µ−1 as initial value;
6 Wij ← 1/|K2,µ,ij|, ∀i, j;
7 µ = µ+ 1;
8 end
9 return (K2,µ)
Algorithm 3: Optimization algorithm of the SPH2 method for solving (6.5).

We consider again system (2.8), which is extended by a static state-feedback con-
troller K∞

ẋ = Ax +Bww +Buu (6.7a)
y = Cx +Duu (6.7b)
u = K∞x. (6.7c)

We denote this system as

H∞(s) = (C +DuK∞) (sI − A−BuK∞)−1
B.

The centralized controller, i.e. the K∞ matrix with all entries non zero, shown in
Fig 1.5(b), uses all possible degrees of freedom and can be designed via convex opti-
mization [32]. In order to increase the sparsity of K∞, the following theorem is used
in [100], which is derived from the Bounded-Real Lemma (Lemma 1)

Theorem 5 [100] The following statements are equivalent

• There exists a controller K∞ which asymptotically stabilizes the system (6.7),
such that the H∞ norm of (6.7) is smaller than β.

• There exist matrices P1 � 0, diagonal P2 � 0 and matrices L∞ and U∞, such
that

Π(P1,P2,L∞,U∞, β) :=




∆ P1Bu +DT
uL

T
∞ P1Bw CT

BT
u P1 +DuL∞ −P2 0 DT

u

BT
wP1 0 −βI 0
C Du 0 −βI



≺ 0,

(6.8)

with
∆ = ATP1 + P1A− UT

∞L∞ − LT∞U∞ + UT
∞P2U∞.
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In this case, the controller is given by

K∞ = P−1
2 L∞. (6.9)

We refer to [100] for a proof of the given theorem. The theorem provides the conditions
when a static state feedback controller K∞ achieves a definedH∞ performance β. Since
P2 is diagonal and positive definite, i.e. all its diagonal elements are greater than zero,
it follows from (6.9) that the sparsity pattern of K∞ is the same as the sparsity pattern
of L∞. Consequently, the theorem leads to the following optimization problem for the
sparsity improvement of K∞ under a constant performance bound β

min
P1,P2,L∞,U∞

‖vec(L∞)‖0 (6.10)

subject to Π(P1,P2,L∞,U∞, β) ≺ 0, (6.11)

where the notation vec(L∞) creates a vector from the elements of L∞ by stacking
the columns of L∞, and ‖ · ‖0 denotes the 0-norm of a vector, i.e. the number of
non-zero elements in the vector. The previous problem allows the synthesis of sparse
state-feedback controllers with a guaranteed performance bound, however due to the
presence of the 0-norm in the cost function, it can be very challenging to solve. In
order to improve the computation time, analogously as in SPH2, the 0-norm is relaxed
into a weighted 1-norm, and we obtain the optimization problem

min
P1,P2,L∞,U∞

‖vec(M∞ ◦ L∞)‖1 (6.12)

subject to Π(P1,P2,L∞,U∞, β) ≺ 0, (6.13)

where ◦ denotes the Hadamard (element-wise) product of two matrices, and M∞ =
[mij] is a weighting matrix. Note thats M∞ is chosen to be the element-wise inverse
of L∞ = [lij], i.e. mij = ∞ if lij = 0, and mij = 1/|lij| otherwise, then the weighted
1-norm and the 0-norm coincide. The same relaxation is proposed in the SPH2 method
as well. Since the weights depend on the solution of the optimization problem, this
cost function cannot be used to obtain a convex optimization problem. Thus, an
iterative solution, similar to the one presented for the SPH2 method, is proposed.
However, even if the weights are set to a constant value in one iteration, the term Π
in (6.13) is still non-convex, because U∞ is multiplied with other optimization variables
in Π(P1,P2,L∞,U∞, β).
To solve this problem, Algorithm 4 is proposed in [100], which gives the SPHinf

method its final form. The small positive number ν is introduced in the algorithm
to avoid bad conditioning of the problem when lijk = 0. Step 9 is introduced because
the 1-norm penalizes large values in the cost term MkL∞,k, resulting in a controller
with small gain values. In Step 9, there is no term which minimizes these values, and
the controller obtained through the iterative procedure can be further polished. With
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1 k = 1;
2 K∞,cent ← fully centralized controller, obtained with convex optimization;
3 U∞,1 = K∞,cent;
4 Choose mij

0 and a sufficiently small number ν > 0. Choose β > 0;
5 while stopping criteria not satisfied do
6 For fixed U∞,k solve the following convex optimization problem

{P ∗1k,P ∗2k,L∗∞,k} = arg min
P1k�0, diagonal P2k�0,L∞,k

‖MkL∞,k‖1 (6.14a)

s.t. Π(U∞,k, P1k, P2k, L∞,k) ≺ 0. (6.14b)

Update U∞,k+1 = (P ∗2k)
−1
L∗∞,k and mij

k+1 = (|lijk |+ ν)−1. ;
7 k ← k + 1;
8 end
9 Solve the feasibility problem for the fixed controller structure obtained in

Step 6

{P ∗1k,P ∗2k,L∗∞,k} = arg min
P1k�0, diagonal P2k�0,L∞,k

0 (6.15a)

s.t. Π(U∞,k, P1k, P2k, L∞,k) ≺ 0 (6.15b)
L∞,k has fixed controller structure from Step 6. (6.15c)

;
10 K∞ = (P ∗2k)−1L∗∞,k.;
11 return K∞

Algorithm 4: Optimization algorithm the SPHinf method [100].

this algorithm, the problem is reduced to a series of convex linear matrix inequality
problems. The convergence of weighted optimization with the 1-norm to a local min-
imum is proven [30]. However, in Algorithm 4, the constraints are also changed in
each iteration of the algorithm. For this reason, convergence of the SPHinf method,
as well as of the SPH2 method, to a local minimum cannot be guaranteed. However,
fast convergence for many numerical examples is reported in [100]. We perform the
numerical evaluation of the presented method in the subsequent Section 6.1.3.

6.1.3 Simulation comparison

We compare the approach considered in this work with the methods for sparsity-
promoting synthesis. We refer subsequently the LMI approach from Section 3.1 as
“structured H∞ controller synthesis of local controllers” (SHinf). Since SPH2 uses the
H2 norm as the performance metric, whereas SHinf and SPHinf use the H∞ norm, a
direct comparison between all three methods is not straightforward. For this reason,
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Figure 6.1: A two-area system from [51, p. 813, Example 12.6].
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Figure 6.2: (left) Generator frequency response after a 100 MW load step in bus 9.
Strong oscillations are present in the system. (right) Zoomed fast oscillations after
the load step.

we compare the methods in several aspects on a numerical example:

• The achieved H∞ and H2 norms and how they correlate in the power system
example.

• The sparsity patterns in the K2 and K∞ matrices achieved by SPH2 and SPHinf,
respectively.

• Impact on the maximal singular value of the transfer function for all methods.

• Time-domain simulations achieved by a disturbance (load) step.

For the comparison, we consider the four power plant grid from [51, Example 12.6, page
813], see Appendix C.5 and Fig 6.1. The system consists of 48 states and 28 tunable
parameters. Thereby, a virtual input is added to the AVR model, which is used as the
control input for the SPHinf and SPH2 methods, c.f. Appendix C.5. In order to make
the comparison fair, the gain of the TGOV is fixed, i.e. the SHinf method cannot tune
it. Consequently, all approaches only influence the voltage control of the power plants,
which also includes the power system stabilizer.

Analysis of the system for the initial parameters. Figure 6.2 shows the simulation
of the generator frequencies with the initial parameters after a load step in bus 7.
In the first 20s after a load step, poorly dampened oscillations with a frequency of
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Table 6.1: Poorly dampened modes of the considered system.
mode frequency (rad/s) damping ratio (%)
1 9.74 1.7
2 9.42 2.5
3 7.85 0.9
4 0.13 2.8
5 0.13 3.1
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Figure 6.3: Largest singular value of G(K, s).

approx. 3 Hz are present. Afterwards, slow oscillations are noticeable, which are not
completely dampened even after 100 seconds. Table 6.1 presents the weakly-dampened
oscillatory modes of the system, with damping below 5%, which confirm the analysis
of the step response plot.
The singular value plot of the system is shown in Fig. 6.3. The frequencies at which

the peaks occur in Fig. 6.3 correspond to the oscillatory modes in Table 6.1. The
initial system H∞ norm is 7.3, and the H2 norm is 1. Thus, the considered test system
is complex with slow and fast badly-dampened oscillatory modes on which we can test
the approaches.

Comparison of optimization results of SPHinf, SPH2, and SPHinf .
We now compare the results of the optimization for the defined test system. The

numerical results are obtained as follows:

• When the SHinf method is applied, we obtain an optimized parameter vector
Kopt. With this vector, an H∞ norm of 0.81, and H2 norm of 0.82 is achieved.
The optimization problem was implemented in Matlab, using SeDuMi [109] and
Yalmip [61].

• For the SPH2 method, we first calculate the centralized controller K2,cent by
setting the parameter α in (6.5) to zero. Then, we varied the weighting parameter
α from 0.001 to approx. 1000 in 40 logarithmically spaced steps and obtain the
matrices K2,a, a = 1...40 with increasing sparsity-degrees. With the completely
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Figure 6.4: Nonzero elements in K2 and the system norms as functions of the weight-
ing γ with the SPH2 method.

centralized controller, we obtain an H∞ norm of 0.6824, and an H2 norm of
0.4685. The numerical problems where solved using a custom ADMM solver [115].

• For the SPHinf method, we also first calculate a centralized controller K∞,cent
which achieves an H∞ norm βcent. We then varied the performance bound β

from 1% degradation to approx 32% degradation in 30 steps, and from 32% to
1000% compared to βcent in 10 steps.We obtained the matrices K∞,b, b = 1...40
matrices with increasing sparsity-degrees. For the calculation of K∞,b, we use
K∞,b−1 as an initial value for the “hot-start”. For each controller, the iteration
limit for the 1-norm weight update was set to 4 (i.e. kmax = 4 in the algorithm in
Algorithm 4). The resulting optimization problem was implemented in Matlab,
using SeDuMi [109] and Yalmip [61]. With the completely centralized controller,
we obtain an H∞ norm of 0.6653, and an H2 norm of 0.5018.

Results obtained with the SPH2 method are shown in Fig. 6.4. The number of
nonzero elements as a function of α is shown in Fig.6.4(a), and the achieved H2 and
H∞ norms are shown in 6.4(b). Even though SPH2 does not explicitly optimize the
H∞ norm, it is interesting to see how they correlate for the given system. By increasing
α to approx 0.003, we can decrease the number of non-zero elements in K2 from 192
in the centralized controller K2,cent to 89 with only a 3% performance degradation in
the H2 norm compared to the initial controller K2,cent. We denote this controller with
K̃2. Afterwards, the performance degradation is relatively steep, and by setting the
α to 1.3, we obtain a 60% performance degradation of the H2 norm with 32 nonzero
elements.
Results obtained with the SPHinf method are shown in Fig. 6.5. The number of
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Table 6.2: Comparison of norms of the methods SPHinf, SPH2, and SPHinf.
Norm Initial Kopt K2,cent K̃2 K∞,cent K̃∞
H∞ 7.3 0.81 0.6824 0.6905 0.6653 0.7137
H2 1 0.82 0.4685 0.4825 0.5018 2.3513
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Figure 6.5: Nonzero elements in K∞ and the system norms as functions of perfor-
mance limit with the SPHinf method.

nonzero elements as a function of β compared to βcent is shown in Fig. 6.5(a), and the
achievedH2 andH∞ norms are shown in 6.5(b). SPHinf reduces the number of nonzero
elements to 26 with a 7% performance degradation in the H∞ norm compared to the
192 elements from the centralized controllers, however, the H2 norm is increased by
470%. We denote this controller as K̃∞. The method does not use the full performance
degradation available through the constraints, e.g. if a 1000% degradation of the H∞
norm is allowed, the optimization achieves a degradation of 300%. This suggests that
it does not converge to a global optimum, as already noted in [100].
The optimized norms for the different controller parameters are shown in Table 6.2.

Not surprisingly, the best H∞ norm is achieved with K∞,cent, and the best H2 norm
with K2,cent. Interestingly, the degradation of the H2 norm from K2,cent to K̃2, and of
the H∞ norm from K∞,cent to K̃∞ is very small, and K̃2 achieves a better H∞ norm
than K̃∞.
In summary, the two methods achieve very different results with regard to the

achieved system norms. The SPHinf optimization causes a large increase in the system
H2 norm, which the SPH2 method avoids, causing large differences in the optimization
results regarding the sparsity-performance trade-off. In the following, we compare the
methods with regard to the following aspects.

• Sparsity of the obtained controllers: We first show the structure of the K̃2 and

63



6 Performance comparison

5 10 15 20 25 30 35 40 45

1

2

3

4

column number

ro
w

nu
m

be
r

Figure 6.6: Comparison non-zero entries of the K̃2 (blue) and K̃∞ (red) matrices.
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Figure 6.7: Comparison non-zero entries of the K2,23 (blue) and K∞,8 (red) matrices
which have 32 and 33 non-zero elements, respectively.

K̃∞ matrices in Fig. 6.6. Further investigations show that SPH2 mostly uses the
states of the AVR and PSS of all generators, as well as the generator angles and
frequencies for the state-feedback. On the other hand, SPHinf mostly uses the
states of the same power plant (P) for the controller: e.g., the controller of P1
uses mostly the states of P1, with two additional states from P2 and P4.

We also analyze the structures of K2 and K∞ when they both have a similar
number of elements. We have chosen the case where SPH2 achieves 32 nonzero
elements in the K2 matrix, a performance degradation of the H2 norm of 60%,
and of the H∞ norm of 85%. The SPHinf method achieves 33 nonzero elements
in the K∞ matrix, a performance degradation of the H2 norm of 446%, and of
the H∞ norm of 0.2%. The results are presented in Fig. 6.7. SPH2 focuses in this
case only on the states of the PSSs of all power plants, whereas for SPHinf, the
choice of the necessary states varies with the power plant controller. Interestingly,
SPH2 needs all-to-all communication in both cases, whereas the communication
structure for SPHinf is more localized.

• Singular value plot: We now analyze the impact of the methods on the singular
value plot of the system, which is shown for the initial system in Fig. 6.3. We
show the results obtained with the initial system, Kopt, K2,cent, K∞,cent, K̃∞, K̃2
in Fig. 6.8. We see that all methods were able to eliminate the largest peak in
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Figure 6.8: Comparison of the singular value plots obtained with the initial system,
Kt,opt, K2,cent, K∞,cent, K̃∞, and K̃2.

Table 6.3: Overshoot and settling time to within ±0.004 mHz, which corresponds to
a ±2% bound of the initial steady-state deviation.

Initial SHinf SPH2 SPHinf
Overshoot (mHz) 0.2762 0.336 0.2535 0.19
Settling time (s) 138 13 93 85

the low frequency range. However, only SHinf is able to eliminate the peak in
the 3 Hz area as well. This may be due to the fact that SHinf only tunes the
parameters of controllers which were already designed for that specific purpose.
All other methods focused on reducing the maximal singular value in the very
low frequency area, i.e. below 0.1 Hz, which can only be achieved with signifi-
cant control effort. However, for better oscillation damping, it is more important
to eliminate resonant peaks from the singular value plot than to minimize the
maximal singular values in all frequency ranges, see Appendix A.2. Another in-
teresting observation is that the curve obtained with K̃∞, which has the worst H2
degradation of 446%, has also the largest area below the curve. This corresponds
to the SISO interpretation of the H2 norm.

• Time domain comparison: Finally, we compare the time-domain step responses
after a load step of 100 MW in bus 7 for the parameterizations Kopt, K2,cent,
K∞,cent; shown in Fig. 6.9 with the linear system model. Other time-domain
results are visually similar and are thus not included. The SHinf method achieved
the best oscillation damping for the tested system, confirming the analysis of
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the singular value plot. A possible cause for this is that external controllers K
cannot provide enough compensation if the internal controllers are badly tuned.
However, SHinf also shows the largest overshoot after a load step. Better results
with the SPH2 and SPHinf methods could possibly be obtained by introducing
shaping functions, however this is beyond the scope of this chapter. The overshoot
and the settling time are shown in Table 6.3. Even though SHinf has the smallest
settling time to within a 2% bound of the steady-state deviation, it achieves the
largest overshoot. On the other hand, SPHinf achieves the smallest overshoot.

Discussion: Overall, all three methods are able to improve the closed loop system
behavior. As visible from the singular value plot in Fig. 6.8, all methods eliminated
the resonant peak at approx. 1 Hz, whereas only SHinf also eliminated the second
peak at approx. 3 Hz. These results indicate that, in the considered system, external
controllers may not be able to compensate all internal resonances in a system, and that
tuning of existing controllers in the system may be necessary. When comparing SPH2
and SPHinf, they achieved very different results regarding the sparsity-performance
trade-off. The cause of the difference is that the SPHinf method, while minimizing
the system H∞ norm, significantly increases the H2 norm of the considered system.
On the other hand, the SPH2 method, while minimizing the H2 norm, also achieved
a good H∞ norm. In the time domain, SHinf achieved the best settling time, however
at the cost of an increased overshoot. SPH2 and SPHinf decreased both the settling
time and overshoot, however the 3 Hz oscillation is still present.
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(a) Kopt parameterization.
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(b) K2,cent parameterization.
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(c) K∞,cent parameterization.

Figure 6.9: Time-domain simulation after a load step in bus 7 with the parameteri-
zations Kopt, K2,cent, K∞,cent.
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6.2 Computational complexity of structured H∞ synthesis
methods

We compare in the following section the computational complexity of the proposed
methods for H∞ synthesis with several methods from the literature. We consider
methods which solve Problem (2.12), i.e.:

min
K

‖G(K, s)‖∞ =
∥∥∥C(K)(sI − A(K))−1B(K) +D(K)

∥∥∥∞ (6.16a)

s.t. K ≤ K ≤ K. (6.16b)

The comparison is done with respect to the computation times, achieved H∞ norm,
as well as scalability. For this purpose we consider the path-following method [40],
linearized convex-concave decomposition [24], non-smooth optimization from the sys-
tune toolbox in MATLAB [70], and the projection approach from [48]. Thereby,
we expand these methods to be applicable to nonlinear parameter dependencies.
Other methods, which assume a static output feedback formulation of the problem,
such as cone complementarity linearization and sequential linear programming ma-
trix method [8, 29, 32, 56, 99] are not included in the comparison, as they introduce
transformations only applicable to specific linear parameter dependencies. Before the
comparison, we first briefly summarize the considered methods and present their ex-
tensions to a nonlinear parameter dependency.

6.2.1 Path-following (homotopy) method

The basis for this method is Lemma 1 (Bounded-real lemma). It is similar to the
method proposed in Section 3.1, as it considers Problem (3.2). However, instead of
alternately optimizing P and K, this approach proposes to linearize all bilinear matrix
products in (3.2b). For example, the term PA(K) is linearized around the values P̂
and Â with

PA(K) = (P̂ + ∆P )(Â+ ∆A(K)) =P̂ Â+ P̂∆A(K) + ∆PÂ+ ∆P∆A(K) (6.17)
≈P̂ Â+ P̂∆A(K) + ∆PÂ, (6.18)

where ∆P and ∆A(K) contain the new optimization variables and represent (small)
deviations from the linearization points. All other bilinear terms in (3.2b) are linearized
analogously. In [40], an iterative LMI optimization approach is proposed, where the
values from the previous iteration are used as linearization points. We extend this
method for nonlinear parameter dependency analogously as in Section 3.1, i.e. by
iteratively linearizing the parametric dependency as well. In [40], the authors propose
adding a proximal-regularization term for the Lyapunov matrix in the cost function,
i.e. a quadratic cost term 0.5 · ∆P × ∆P in addition to minimizing the H∞ norm,
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which is also subsequently evaluated.

6.2.2 Linearized convex-concave decomposition

This method is only applicable to systems whose B matrix is not a function of K.
Thus, in general, it is not applicable to all power system models. However, this
assumption holds for the subsequently considered numerical examples. This method
also considers Problem (3.2), based on the Bounded-real Lemma. A convexification is
proposed in [24], where the bilinear term A(K)TP + PA(K) is first decomposed into
a convex and a concave part, e.g. with

A(K)TP + PA(K) =J(K,P )−H(K,P ) (6.19)

J(K,P ) =1
2(A(K) + P )T (A(K) + P ) (6.20)

H(K,P ) =1
2(A(K)− P )T (A(K)− P ), (6.21)

where J is convex and H is a concave function of A. Thus, (3.2b) becomes



J(K,P )−H(K,P ) PB C(K)T
BTP −γI D(K)T
C(K) D(K) −γI


 ≺ 0, (6.22)

where we assume that B is not a function of K. By using the Schur lemma, the
previous matrix inequality can be transformed to




H(K,P ) −PB −C(K)T (A(K) + P )T
−BTP γI −D(K)T 0
−C(K) −D(K) γI 0

(A(K) + P ) 0 0 2I



� 0. (6.23)

In the last expression, all terms are linear functions of K and P, except H(K,P ).
However, since H is concave, a linearization of H, denoted with HL is always greater
than H, i.e. HL(K,P ) � H(K,P ),∀K,P . This fact is used in [24] to construct
an iterative LMI optimization algorithm to solve (3.2). Thereby, H is linearized in
each iteration around the values from the previous iteration. For a linear parametric
dependency, it can be shown that the algorithm converges to a (local) optimum. We
extend this algorithm to nonlinear parameter dependencies by iteratively linearizing
the parameter dependency as well.
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6.2.3 Non-smooth optimization

Non-smooth optimization methods focus on directly solving

min
K≤K≤K

T (K), (6.24)

where T (K) = maxω∈R≥0 σ(G(K, jω)), by explicitly calculating the gradient of the
cost function. However, since T is not differentiable, non-smooth optimization tech-
niques, such as sub-gradient methods, need to be used to solve (6.24). Such methods
are implemented, e.g. in the open source MATLAB toolbox HIFOO [37], or in the
commercial toolbox from MATLAB called systune [70]. We use systune subsequently
in the comparison. It can directly handle nonlinear parameter dependencies, so no
adjustments are necessary.

6.2.4 Projection onto the cone of positive definite matrices

The last method we consider uses the projection of a BMI onto the cone of positive
definite matrices [48] for the tuning. This projection is defined with

[A]+ = arg min
S�0

‖A− S‖F , (6.25)

where ‖·‖F denotes the Frobenius norm of a matrix. Given the eigenvalue composition
of A, i.e. A = UΛUT , where U is an orthogonal matrix containing the eigenvectors of A,
and Λ is a diagonal matrix containing the eigenvalues of A, i.e. Λ = diag{λ1, ...,λn}.
Then [A]+ is calculated with [A]+ = Udiag{λ+

1 , ...,λ+
n }UT , where λ+

i = max(0,λi).
The basic idea of this method is that a matrix A is negative definite if and only if
‖[A]+‖F = 0. Thus, we have

M(γ, K,P ) ≺ 0 ⇔
∥∥∥[M(γ, K,P )]+

∥∥∥
F

= 0, (6.26)

where M is defined in (3.2b). Note that ‖[M(γ, K,P )]+‖F is a differentiable function
whose gradient can be analytically calculated [48]. In [48], the following optimization
problem is proposed for a constant γ

min
K,P

∥∥∥[M(γ, K,P )]+
∥∥∥
F

(6.27a)

s.t. K ≤ K ≤ K. (6.27b)

The system H∞ norm is smaller than γ if and only if the solution of (6.27) is zero. A
line search can then be made on γ to obtain the minimal H∞ norm. For the considered
problem, better results were obtained by setting ‖[M(γ, K,P )]+‖F = 0 as a constraint,
thus transforming (6.27) into a feasibility problem. By using a nonlinear solver, this
method can directly incorporate nonlinear parameter dependencies. For this purpose,
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Figure 6.10: Singular value plot of the small 2 generator system.

the fmincon solver from MATLAB is used.

6.2.5 Comparison of computation times

We use for the comparison a Windows computer with an Intelr i7-4810MQ CPU
running at 2.8 GHz and with 8 GB of RAM. Note that the presented times should
only give a hint about the computational complexity, as more tailored methods would
allow to further decrease the computation time.
We start the comparison with a small system with two power plants, 28 states and

16 optimization parameters. The system is obtained by taking the four power plant
grid (see Appendix C.5), disconnecting power plants 2 and 4 with their connecting
branches, and by dividing the load in half. The initial H∞ norm of the system is
23. Figure 6.10 shows the singular value plot of the system. Based on this plot, the
grid Ω =

{
ωk

∣∣∣∣ωk = 4 + 0.1 · (k − 1), k = 1...31
}
is chosen for the frequency sampling

method. Table 6.4 summarizes the comparison results for this system. All methods im-
proved the system H∞ norm. Thereby, the systune toolbox, deploying non-smooth op-
timization, achieves the smallest H∞ norm. The frequency sampling method achieves
a similar norm, but in 20% of time systune required. They are followed by the PK
iteration, which achieves a similar system norm as the convex-concave decomposition,
but in 75% of the time. The path-following method achieves a worse system norm,
but with the second-fastest time. Path following with proximal regularization also
achieves a similar norm. However, with significantly increased computation times.
With the projection method, the obtained system norm is the largest, and, even on
the small system, the optimization time is over 20 minutes. This is due to the ne-
cessity for an eigenvalue decomposition in every step in the inner optimization in one
iteration. Since our goal is to find scalable optimization methods, we do not consider
path-following with proximal regularization and the projection method subsequently
in larger examples.
The second example we consider is the four power plant system (see Appendix C.5).
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Table 6.4: Comparison of structured H∞ synthesis methods on a system with two
power plants, 28 states and 16 optimization parameters. The initial H∞ norm of
the system is 23.

method H∞ norm computation time outer iterations
PK iteration 0.72 83 s 50

Frequency sampling 0.48 6 s 3
Path-following (PF) 1.1 29 s 16

PF with proximal-regularization 1.1 343 s 16
Convex-concave decomposition 0.83 112 s 50

systune 0.42 31 s NA
Projection method 4.8 1300 s 7

Table 6.5: Comparison of structured H∞ synthesis methods on a system with four
power plants, 56 states and 32 optimization parameters. The initial H∞ norm of
the system is 11.5.

method H∞ norm computation time outer iterations
PK iteration 0.65 670 s 50

Frequency sampling 0.56 27 s 5
Path-following 1.9 640 s 50

Convex-concave decomposition 1.18 1264 s 50
systune 0.27 687 s NA

This system has 56 states, 32 optimization parameters, and an initial H∞ norm of
11.5. Table 6.5 summarizes the results with the considered methods. Again, systune
achieved the smallest H∞ norm of the system, reducing the norm to approx. 2.3% of
the initial value. The frequency sampling method, using the same frequency grid as in
the previous example, achieved similar results by reducing the system norm to 4.9%
of the initial value, but with a 25 times faster computation time. The PK iteration
achieves the third-best H∞ norm, with a computation time similar to systune.
The third considered example is the ten power plant system from Appendix C.1. For

this system, most of the methods reach the limit for practically tolerable computation
times. The tuning with systune could not be done due to an ”out of memory“ error.
The optimization results are shown in Table 6.6. The PK iteration, path-finding, and
convex-concave decomposition have large computation times due to the presence of the
Lyapunov matrix, whose size scales quadratically with the number of constraints. For
this system, the total computation time for these methods is in the range of one to sev-
eral days. Only the frequency sampling method was able to find a solution in reasonable
time by using the grid Ω = {0.01, 3, 4, 5, 6}⋃

{
ωk

∣∣∣∣ωk = 7 + 0.1 · (k − 1), k = 1...81
}
.

Thereby, the density of the grid was increased in the frequency interval with resonant
peaks, shown in the singular value plot in Fig. 4.4.
A summary of the computation times for the different methods is shown in
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Table 6.6: Comparison of structured H∞ synthesis methods on the IEEE 39 bus
system with ten power plants, 190 states and 100 optimization parameters. The
initial H∞ norm of the system is 27.7.

method H∞ norm computation time outer iterations
PK iteration 3800 s per iteration

Frequency sampling 2.33 266 s 4
Path-following 8257 s per iteration

Convex-concave decomposition 13700 s per iteration
systune out of memory error
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Figure 6.11: Comparison of computation times and achieved H∞ norms for the
different methods.

Fig. 6.11(a). It shows that the frequency sampling method achieves much smaller
computation times, while being only behind systune with respect to the achieved H∞
norm. However, the performance of the frequency sampling is strongly dependent on
the size of the frequency grid. It is important to choose the smallest grid that covers
the necessary frequency area with sufficient density. However, this was not a problem
for the considered systems.

6.3 Summary

In this chapter, we compared the proposed approaches with existing methods from the
literature in two aspects. In the first part, we made the comparison only with respect
to the achieved results in the frequency and time domain. For this comparison, we
used the SPH2 method from [115] and the SPHinf method from [100], which synthesize
additional static state-feedback controllers using H2 and H∞ optimization methods,
respectively, with varying degrees of decentralization. We applied these methods for
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power oscillation damping in power systems on a test system with four power plants.
The first part is concluded with the comparison of the numerical results in the time and
frequency domain with the three presented methods, as well as the obtained sparsity
results.
In the second part, we made a computational complexity comparison The compar-

ison is made on three systems, with 28, 56, and 190 states, respectively. The results,
summarized in Fig. 6.11, show that the proposed frequency sampling method outper-
forms by far other approaches regarding computation time, while only being marginally
outperformed by systune with regard to the achieved H∞ norm. Furthermore, the fre-
quency sampling method was the only one which could tune the parameters of the
largest system in a reasonable time, whereas other methods would require more than
a day for such computation. However, the performance of the frequency sampling
method depends on the chosen frequency grid.
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7 Multi-scenario structured controller synthesis

So far, we always optimized one parameter vector K for one system realization G(K, s).
However, often one is interested in a parameter vector K which can be used for several
system realizations/scenarios ns, with Gκ(K, s),κ = 1...ns, c.f. Fig. 7.1. Such param-
eterizations are desirable to avoid unnecessary switching of parameters if satisfactory
performance for a set of scenarios can be achieved with one parameter vector. Simi-
larly, if the current realization of the system is not exactly known, but only the set of
possible system realizations, one parameterization is required which stabilizes and/or
improves the performance for possible scenarios.
An example can be fault-tolerant control: failures in power system components, such

as power plants or a power lines, can happen instantaneously. This causes a change in
the system dynamics, i.e. the system is switched to a different scenario. This switch
can occur very fast. There might not be enough time to tune the controllers or to
switch to another parameter set, e.g. to ensure stability, after the fault occurred. In
such cases, the pre-fault parameterization needs to be able to stabilize the system to
give the operator or fault management unit enough time to find a new parameterization
or to switch to a pre-calculated one, which is optimized for the new system realization.
We focus on parameter tuning for improved post-failure behavior of the system, often
referred to as dynamic security of power systems [47]. However, the same approach is
not limited to this. It is applicable to any case when one parameter set is needed for
multiple possible scenarios.
Handling the dynamic security, i.e. the stability of a power system after a con-

tingency, is typically a challenging issue for power system operators in their routine
operation [47]. With the term contingency, we denote the failure of components in a
power system. Dynamic security in power systems is often considered in the system
analysis after the design, i.e. by simulation studies, c.f. [47, 50, 76], or in combination
with redispatch measures which are proposed based on a large number of simula-
tions [21, 118]. To the knowledge of the authors, none of the existing works consider
parameter tuning to improve dynamic security of power systems. The tuning for im-
proved dynamic security is typically done a priori, before any contingency occurs.
Often one parameter set is obtained for the prosumer controllers which stabilizes the
system and increases resiliency after the failure of critical prosumers and power lines.
For this purpose, we first introduce an appropriate modeling framework in Section 7.1.
We then extend the proposed controller tuning methods to multiple scenarios in Sec-
tion 7.2. Finally, the developed approach is applied to improve dynamic security of the
IEEE 39 bus system in Section 7.3 before the chapter is summarized in Section 7.4.

75



7 Multi-scenario structured controller synthesis
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(b) The current system realization G(K, s) can switch at an un-
known time to a set of possible realizations Gi(K, s), i = 1...ns at
an unknown time.

Figure 7.1: Examples when multi-scenario tuning is necessary. One parameter vector
is needed which stabilizes and/or improves the performance for all systems.

7.1 Modeling of contingencies

Contingency in a power system denotes the failure of a dynamic prosumer or a branch
element, e.g. a power line, transformer, a flexible AC transmission system (FACTS)
device etc. We outline how contingencies can be modeled, such that they can be
considered in the parameter tuning, relying on the system input-output behavior.

7.1.1 Modeling dynamic prosumer dropouts

We outline the modeling of dynamic prosumer dropouts on the example of a power
plant. The dropout of other dynamic prosumers can be handled analogously. When a
fault occurs in a power plant, a breaker almost instantly disconnects the power plant
from the grid for security. Thus, the dynamics of the power plant does not influence
other components, and the power plant dynamics can be ignored after the dropout.
Consequently, we replace the power plant that shall drop out in the optimization model
by a static prosumer whose infeed drops from Ppi, Qpi to zero, see Fig. 7.2. Since Ppi
and Qpi change simultaneously to zero when the power plant drops out, we model them
as a single disturbance input w into the system. As Ppi and Qpi can have significantly
different magnitudes, we introduce weighting factors αPpi an αQpi:

σpi = |Ppi|+ |Qpi|, αPpi = Ppi/σpi, αQpi = Qpi/σpi. (7.1)

The disturbance input for the dropout of a generator is defined as

wp =

Ppi
Qpi


 =


αPpi
αQpi


σpiwp. (7.2)
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Pi

Ppi + jQpi Ppi + jQpiVi ejθpi

0 t

Figure 7.2: A graphical representation of the proposed modeling for failing power
plants. The power plant is replaced by a constant power infeed with the same
power as the generator.

Without the normalization, i.e. using αPpi = 1 and αQpi = 1, the optimizer would
focus on suppressing oscillations resulting from equal step sizes in both inputs Ppi and
Qpi. The normalization ensures that the values are proportionately considered in the
optimization depending on their steady-state value. With this method, the dropout
of any other component coupled in parallel to the system, such as parallel FACTS
devices, capacitors, etc., can be described as well.

7.1.2 Modeling branch dropouts

The dropout of a branch presents a structural change in the system. In the state-space
representation of the system, this would mean that the system matrices change, while
the system inputs remain the same, which is challenging to consider in optimization.
For this reason, we reformulate the power line dropout as a change in the system input.
We explain the modeling of a branch dropout on the example of a power line. We

consider the failure of a power line between buses m and n, and propose to replace
the power line with two constant power infeeds. These infeeds have the powers Pplm,
Qplm, and Ppln, Qpln. They correspond to the power infeed at t = t0 in buses m and
n, respectively, of the power line which they replace, see Fig. 7.3 for an illustration.
Doing so, the steady state of the system does not change. Thus it allows to keep
the state-matrices of the system unchanged before and after the power line dropout.
Basically, the dropout of a power line is converted to an equivalent load step in the
system, and in the optimization we work with a system which does not contain the
power line. The dropout of any component connected in series to the power system,
such as a transformer or series capacitor etc., can be considered similarly. Thus, active
and reactive power infeeds of the power line at t = t0 are defined as disturbance inputs:
Pplm, Qplm, Ppln, Qpln.

Remark 3 Note that the magnitudes of Pplm and Ppln, as well as of Qplm and Qpln,
are not the same due to power line losses. The system frequency in steady-state after
the dropout also changes by a small amount due to different electric losses in the rest
of the system. This is handled on a slower time scale by the secondary controller in
the system.

Since the inputs are not independent, i.e. after a power line dropout they change
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Figure 7.3: A graphical representation of the proposed modeling of power line which
drop out from the system. The power line, whose dropout is considered, is replaced
with two constant power infeeds with the same power as the power line.

simultaneously to zero, we model them as a single input/disturbance. The values of
the active and reactive power which flow through the power line can have significantly
different values. Consequently, we introduce weighting factors for the different inputs:
αPplm, αPpln, αQplm, and αQpln, which are defined as

σpl = |Pplm|+ |Ppln|+ |Qplm|+ |Qpln| (7.3)
αPplm = Ppln/σpl αPpln = PQplnσpl (7.4)
αQplm = Qpln/σpl αQpln = Qpln/σpl. (7.5)

The resulting disturbance input for the dropout of a power line is defined as

wpl =




Pplm
Qplm

Ppln
Qpln




=




αPplm
αQplm
αPpln
αQpln



σwpl. (7.6)

Analogously as for the power plant dropout, the normalization ensures that the values
are proportionately considered in the optimization, depending on their steady-state
value.

7.1.3 Modeling of dropouts of several components

The modeling of dropouts of one dynamic prosumer or branch element requires struc-
tural changes in the system matrices, compared to the initial system. Consequently,
when several dropouts are considered, as is usual in the case for power system analy-
sis, separate models are needed for each dropout. If ns contingencies are considered,
corresponding to different scenarios, then ns models Gκ are needed, which describe
one dropout

Gκ(K, s) = Cκ(K)(sI − Aκ(K))−1Bκ(K) +Dκ(K), κ = 1...ns. (7.7)
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These models are used for the subsequently described multi-scenario controller syn-
thesis procedure.

7.2 Multi-scenario structured H∞ synthesis

We expand our tuning methods to the case of multiple scenarios. To do so, we propose
to consider the following synthesis problem

min
Γ∈R,K∈NRt×Rt

Γ (7.8a)

s.t. ‖Gκ(K, s)‖∞ ≤ Γ,κ = 1, ...,ns (7.8b)
K ≤ K ≤ K. (7.8c)

Basically Γ represents the worst-case H∞ norm for all considered scenarios. Our goal
is to obtain one controller parameterization which minimizes the worst-case H∞ norm
for all Gκ, κ = 1...ns. To do so, we extend both proposed methods towards multi-
scenario optimization. Furthermore, an exemplary multi-scenario controller synthesis
is shown in Section 7.3.

7.2.1 Extension of the Bounded real lemma method

For multi-scenario optimization, we propose extend (3.2) to

min
Pκ,K,Γ

Γ (7.9a)

s.t. Mκ(Γ, K,Pκ) :=




Aκ(K)TPκ + PκAκ(K) PκBκ(K) Cκ(K)T
Bκ(K)TPκ −ΓI Dκ(K)T
Cκ(K) Dκ(K) −ΓI


 ≺ 0 (7.9b)

Pκ = P T
κ � 0, κ = 1...ns (7.9c)

K ≤ K ≤ K, (7.9d)

where Pκ ∈ RNx,κ×Nx,κ is the Lyapunov matrix for scenario κ, Nx,κ is the number of
states in scenario κ, K ∈ RNt is the vector of tunable parameters for all scenarios,
with the length Nt, and Γ ∈ R represents the worst-case H∞ norm of all scenarios.
The solution of (7.9) is a controller parameterization which guarantees the stability of
every scenario Gκ, thereby minimizing the worst-case H∞ norm of all scenarios. It can
be solved analogously as Problem (3.2) with an iterative coordinate descent approach,
c.f. Algorithm 1. Thereby, in the P-step of the µ-th iteration, when K is set to K(µ−1),
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the following optimization problem is solved

min
P

(µ)
κ ,Γ

Γ (7.10a)

s.t. Mκ(Γ, K(µ−1),P (µ)
κ ) ≺ 0 (7.10b)

P (µ)
κ = (P (µ)

κ )T � 0, (7.10c)
κ = 1...ns, (7.10d)

Problem (7.10) can be separated into ns optimization problems

min
P

(µ)
κ ,γκ

γκ (7.11a)

s.t. Mκ(γκ, K(µ−1),P (µ)
κ ) ≺ 0 (7.11b)

P (µ)
κ = (P (µ)

κ )T � 0, (7.11c)

which can be solved in parallel to speed-up the computations. Other steps of the
solution procedure are analogous as in Algorithm 1. An analogous extension can be
made for multi-scenario stabilization via LMIs by considering the LMI problem (3.7)

min
Pκ,K,Γ

Γ (7.12a)

s.t. Aκ(K)TPκ + PκAκ(K) ≺ 0 (7.12b)
Pκ = P T

κ � 0, κ = 1...ns (7.12c)
K ≤ K ≤ K. (7.12d)

This method is used for the multi-scenario stabilization considered in Section 7.3. As
one can see, the extensions are easy, however might result in significantly increased
computation.

7.2.2 Extension of the frequency-sampling method

The frequency sampling method (3.19) can also be readily extended for the multi-
scenario case as

min
Γ,K

Γ (7.13a)

s.t.

 ΓI Gκ(K, jωk,κ)
Gκ(K, jωk,κ)∗ ΓI


 � 0, ∀ωk,κ ∈ Ωκ (7.13b)

K ≤ K ≤ K. (7.13c)

Here Ωκ is defined for every scenario in order to adapt the frequency grid to the
scenarios. Problem (7.13) can be solved with an analogous algorithm as the previously
presented Algorithm 2. If the initial parameterization is stabilizing, the optimized
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Figure 7.4: The considered IEEE 39 bus power system, c.f. Appendix. C.1. Power
lines, considered for the dynamic security optimization, are marked in red. Ad-
ditionally, the failure of every dynamic prosumer is considered for the dynamic
security optimization.

parameterization will minimize the worst-case H∞ norm of all systems, while keeping
all other systems stable.

7.3 Improvement of the dynamic security for the IEEE 39
bus power system

To demonstrate the effectiveness of the proposed controller tuning towards dynamic
security, we consider the IEEE 39 bus system, shown in Fig 7.4, c.f. Appendix C.1.
We consider the (separate) failure of each of the 10 dynamic prosumers (power plants),
as well as the failure of six power lines. We have chosen power lines with the greatest
power flow, such that they do not create asynchronous islands after the failure and
that they are geographically distributed across the grid. Consequently, we consider
failures of the power lines between buses 2 and 3, 5 and 6, 6 and 11, 21 and 22,
23 and 24, as well as 28 and 29, marked red in Fig. 7.4. The system response to
the failure of the dynamic prosumer P4 with the initial parameterization is shown in
Fig. 7.5(a), whereas the system response to the failure of the power line between buses
2 and 3 is shown in Fig. 7.5(b). In both cases, the resulting oscillations are poorly
damped, and in the case of the P4 failure, the system even becomes unstable. All
simulations are performed in Simscape Power Systems [68] using the full nonlinear
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3.

Figure 7.5: Response of the IEEE 39 bus system for the initial parameters Kinit for
two contingencies.

power system model. Using the outlined modeling approach, we obtain 16 models for
the 16 considered contingencies. For the parameter tuning, we use the approach for
multi-scenario tuning presented in Subsection 7.2.1. Since the system may be unstable
after a contingency with the initial controller parameterization, the tuning is done in
two stages: first the controller parameters are tuned to obtain a stable system after
the failure of critical prosumers and/or power lines. Then, the parameters are tuned
in order to better dampen oscillation occurring after the failure of these components.
The multi-scenario stabilization is performed with the matrix-inequality ap-

proach (7.12), where the proposed iterative coordinate descent method from Section 3.1
is used to solve it. With this procedure, the stabilizing parameter set Kstab is obtained.
Figure 7.6 shows the time-response of the system to two selected contingencies with
Kstab. The system is successfully stabilized for the failure of each considered compo-
nent. However, badly damped oscillations are still present in the system.
To further improve oscillation damping in the post-contingency systems, we perform

the multi-scenario H∞ controller tuning described in Section 3.1, resulting in the pa-
rameter set Kopt. Figure 7.7 shows the time-response of the system to the two selected
contingencies with Kopt. Compared to Figs. 7.5 and 7.6, the oscillation damping is
significantly improved, and the settling time is reduced to approximately 7 seconds for
both contingencies.
This section showed the applicability of parameter tuning to increase dynamic secu-

rity of power systems. To decrease the total computation time, it is e.g. also possible
to perform theH∞ tuning only for the nominal system, i.e. with no contingencies, with
the stability requirements for each system with a contingency. Then, if a contingency
occurs, there is sufficient time to reparameterize the prosumers again.
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Figure 7.6: Response of the IEEE 39 bus system with the stabilizing parameters
Kstab for two contingencies.
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Figure 7.7: Response of the IEEE 39 bus system with the optimal parameters Kopt

for two contingencies.

7.4 Summary
In this chapter, we extended the proposed controller tuning methods towards multiple
scenarios and applied them to increase the dynamic security of an exemplary power
system. For this purpose, we first modeled contingencies in power systems, such that
they can be used within the H∞ controller synthesis framework. Then, we presented
the extensions of the controller synthesis methods and applied them to a numerical
example. The proposed approach successfully stabilized the system, and significantly
improved its performance after every contingency.
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Controller Tuning for Large-Scale Networks

Interconnecting electric power transmission systems has many widely recognized ad-
vantages, compared to isolated operation of smaller power systems. These include
increased system resiliency, i.e. the ability of the system to withstand larger dis-
turbances, cheaper operation, and reduced frequency variations [51]. Over the last
decades, smaller power systems have been intensively coupled. This has lead to large
systems such as the European grid or the Western Interconnection in the USA. Such
systems often consist of hundreds of interconnected subsystems, managed by different
subsystem operators. Each subsystem can consist of many different components, such
as power plants, wind turbines, households and charging stations, which are intercon-
nected by a power grid, c.f. Fig. 8.1.
The controller tuning approaches presented so far show good results in the con-

sidered simulation studies and the testbed system, while requiring reasonable com-
putation times. However, the tuning requires the knowledge of the complete system
model and state, rendering their application for large power systems impossible due
to several reasons. First, large power systems can have thousands of prosumers and
controller parameters, which cannot be handled by the proposed centralized tuning
approaches. Second, large power systems belong to multiple (sub)system operators,
which cannot share detailed parameters and models of their (sub)systems, as this could
expose user information as well as critical vulnerabilities to others. Due to these con-
cerns, a decentralized approach is introduced in this chapter, which does not rely on

System coordinator (SC)

Subsystem S1(K1)
operated by SO1

Subsystem S2(K2)
operated by SO2

Subsystem S3(K3)
operated by SO3

Figure 8.1: Simple power system example consisting of three interconnected subsys-
tems belonging to different subsystem operators (SOs). Physical connections, i.e.
power lines, are denoted with solid lines, whereas (slow) communication links are
denoted with dashed lines.
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a detailed model of the entire power system. This approach scales to larger systems
than the centralized tuning, making it better suitable for optimization of large power
systems. Furthermore, a centralized detailed model of the power system is not needed,
leading to increased data privacy. The proposed method is based on the exchange of
structured reduced models of subsystems, which conserves data privacy and reduces
computational complexity. For this purpose, suitable methods for model reduction
and model matching are introduced. A general description of the proposed approach,
together with the adaptation of the power system model for hierarchical tuning, is
presented in Section 8.1. Then, details of the approach are described in Section 8.2.
Finally, the chapter is concluded with the evaluation of the hierarchical tuning on two
numerical examples in Sections 8.3 and 8.4.

8.1 Controller tuning problem for large power systems

Figure 8.1 shows an exemplary power system, consisting of three subsystems S1 - S3.
The subsystems are owned by the subsystems operators (SOs). Each subsystem Si
contains controllers with tunable parameters, which are collected in parameter vectors
Ki, marked red in Fig. 8.1. The SOs communicate with the system coordinator (SC).
For example, in Europe, the European Network of Transmission System Operators for
Electricity (ENTSOE) could be the system coordinator.
Depending on the infeed of renewable generation and load, the system dynamic

behavior changes. In the proposed approach, if the SC or SOs notice that the resiliency
of the system decreases, they start the tuning procedure for the controller parameters
in the subsystems Ki. In the proposed hierarchical parameter tuning concept, the SOs
only exchange information with the SC, which does not reveal detailed information
about each subsystem. The reparameterization process is depicted with red dashed
lines in Fig. 8.1. Thereby, only slow communication is needed and limited information
exchange. Before explaining the hierarchical tuning procedure in depth in Section 8.2,
we outline the solution approach, as well as the used dynamic models.

8.1.1 Outline of the proposed hierarchical controller tuning approach

In order to improve the readability of subsequent sections, we outline the main idea
of the proposed approach, without mathematical details. The complete approach is
presented in Section 8.2.
We consider systems consisting of a number of subsystems Si, c.f. Fig. 8.1. Each
Si is operated by an SOi, who might not be willing to exchange detailed information
about its subsystem with others. The subsystems are coordinated through a system
coordinator (SC). Figure 8.2 outlines the proposed iterative controller tuning approach,
consisting of three steps. In the first step, each SO reduces its subsystem model, hiding
thereby the detailed dynamics and parameters inside the reduced model, leading to

85



8 Scalable and Data Privacy Conserving Controller Tuning for Large-Scale Networks

System coordinator (SC)Subsystem
operators (SOi)

1. Reduction of the
subsystem model

3. Model matching

2.H∞ parameter tuning of
the reduced coupled system

Optimized reduced
subsystem parameters

state

Reduced subsystem models

۹෩ 

Update of Si

Figure 8.2: Outline of the proposed hierarchical optimization approach.

increased information security. The reduced model typically has a reduced number
of controller parameters for tuning. The reduced subsystem models are sent to the
SC. The SC combines the reduced subsystem models and tunes the parameters of the
resulting reduced overall system. This allows to reduce the computational complexity
of the parameter tuning process. The SC sends the optimized reduced parameters
of the subsystems back to the SCs. They optimize the parameters of the detailed
subsystems to match the reduced models as good as possible, concluding one iteration
of the approach. The process is repeated until a satisfactory performance is achieved.
In summary, the increase of data security and reduction of computational complexity

is achieved by model reduction in the proposed approach. This, however, leads to a
series of challenges which are addressed in more detail in Section 8.2.

8.1.2 Modeling of the subsystems

Figure 8.3 shows an exemplary subsystem Si. Each subsystem consists of heteroge-
neous components, such as power plants, renewable generation, storage systems and
households, interconnected by a power grid, detailed in Section 2.1. We introduce
in this chapter a notation with two subindices, where the first subindex denotes the
i-th subsystem Si, and the second subindex denotes the j-th component in Si, e.g.
Pij. However, compared to the previously defined models in Section 2.1, the model
of Si has additional coupling inputs wci and outputs yci. The coupling between the
subsystems is represented through the inputs Pcpi and Qcpi. They denote the active
and reactive powers, respectively, due to the coupling between the Si’s. The coupling
outputs are the magnitudes Vcpi and angles θcpi of the voltage phasors on the border
buses (nodes), which are connected through power lines to the other subsystems. We
refer to Pcpi and Qcpi as the coupling input wci of Si, whereas Vcpi and θcpi are the
coupling output yci. Both are marked orange in Fig. 8.3. Each subsystem can be
coupled to other subsystems, i.e. they can have multiple coupling inputs and multiple
coupling outputs.
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Power grid

Ppi1, Qpi1

Vi1, θi1

Ppi3, Qpi3

Vi3, θi3

Psi1, Qsi1

Pi1(Ki1)

Pi3 (Ki3)

Psi2, Qsi2

Psi3, Qsi3

Ppi2, Qpi2

Vi2, θi2
Pi2(Ki2)

Ppi4, Qpi4

Vi4, θi4
Pi4 (Ki4)

Psi4, Qsi4

Ki1

Ki3

Ki4

Ki2

Vcpi, θcpi Pcpi, Qcpi

Operator of Si (Ki)

Coupling with other subsystems

ωi1

ωi2
ωi3

ωi4

Si

Figure 8.3: Example subsystem Si, operated by the operator SOi. It consists of
four dynamic prosumers Pij and four static prosumers with power infeeds Psij
and Qsij. The system operator periodically tunes the controller parameters Ki =
vecj(Kij) of the dynamic prosumers, marked red, in order to increase resiliency in
the system. The static prosumers, whose infeed is marked with blue, are considered
as a disturbance input into the system. The frequencies ωij of Pij, marked green,
are used as a part of the performance output of the subsystem. The coupling with
other subsystems is realized through the input Pcpi, Qcpi and output Vcpi, θcpi,
marked orange.

Performance outputs for the controller tuning. Performance outputs are used in
the controller tuning procedure to define an objectively quantifiable tuning goal. In
power systems, the frequencies of dynamic prosumers ωij are typically used to asses
the system performance [51]. They are defined by ωij = θ̇ij, where θij is the angle of
the voltage phasor of Pij, marked green in Fig. 8.3. Consequently, we choose the vector
of all frequencies (or a subset) as a performance output, analogously as in Chapter 2

ωi =
(
ωi1 ... ωiNDi

)T , (8.1)

where NDi is the number of dynamic prosumers in Si. When oscillations between
subsystems are considered, prosumers in one subsystem oscillate against prosumers of
other subsystems. Thus, choosing the so-called center-of-inertia frequency [112] as the
performance output for one subsystem is a standard choice when oscillations between
subsystems should be suppressed

ωCOIi =
NDi∑

j=1
Jijωij

/NDi∑

j=1
Jij. (8.2)
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Here Jij is the inertia of the j-th dynamic prosumer. The center-of-inertia frequency
represents the weighted arithmetical mean of all generator frequencies.

Model of subsystem Si. Analogously as in Section 2.1, the dynamical model of Si
is given by a differential-algebraic nonlinear model

ẋi =fi(xi, wsi, wci, Ki) (8.3a)
0 =hi(xi, wsi, wci, Ki), (8.3b)

Here xi ∈ R·Nxi combines all dynamic prosumer states of Si, wsi is the vector of inputs
from static prosumers in Si, represented by a subset of Psi and Qsi, wci ∈ Rnci is
the vector of coupling inputs, represented by Pcpi and Qcpi, Ki ∈ RNki is the vector of
tunable controller parameters of all dynamic prosumers in Si, fi describes the prosumer
dynamics in Si, and hi represents the power flow equations in Si. All considered
outputs of (8.3) are linear combinations of the elements in xi.
Analogously as in Section 2.1, (8.3) is linearized and the zero-eigenvalue is elimi-

nated, leading to

ẋi = Ai(Ki)xi +Bci(Ki)wci +Bsi(Ki)wsi. (8.4)

The proposed approach is based on different transfer functions, for which we need to
define the outputs of interest, c.f. Fig. 8.2. First, a transfer function is needed for each
subsystem which couples the disturbance and coupling inputs wci, wsi and outputs
yci =

(
VT
cpi θ

T
cpi

)T , ypi = ωCOIi, defined as

yci

ypi


 = Gi(Ki, s)


wci

wsi


 =


Gcci(Ki, s) Gcsi(Ki, s)
Gpci(Ki, s) Gpsi(Ki, s)




wci

wsi


 . (8.5)

The transfer function Gcsi(Ki, s) represents algebraic power flow equations which cou-
ple the power of static prosumers wsi with the coupling output yci. Thus, Gcsi(Ki, s)
is not a function of controller parameters and is written as a constant matrix, i.e.
Gcsi(Ki, s) = Msi.
The second transfer function, G∗i (Ki, s), is used for the H∞ controller tuning, see

Fig. 8.2. For this purpose, the vector of all dynamic prosumer frequencies is defined as
the performance output, described with (8.1). We consider wci and wsi as disturbance
inputs, because disturbances can come from other subsystems through the coupling
input, as well as from internal static prosumers. Thereby, if Si is not coupled with
other systems, i.e. if Si represents an isolated system, the vector wci is empty. Thus,
G∗i (Ki, s) is in this case given by

y∗pi = ωi = G∗i (Ki, s)

wci

wsi


 , (8.6)
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Figure 8.4: Coupled power system model consisting of N subsystems Si. The vec-
tor ws is the disturbance input, representing aggregated static prosumers in the
system, i.e. ws = veci(wsi).

Further details on the use of the transfer functions can be found in Section 8.2.

8.1.3 Coupled power system model

The previous subsection outlined the modeling and structure for a single Si. We now
outline how the subsystems are coupled to obtain the model of the entire power system.
Physically, the subsystems are coupled via power lines, which we model using linearized
algebraic power flow equations, c.f. Fig. 8.4. The coupling between the subsystems is
given by

wc = Myc, (8.7)

where wc = veci(wci), yc = veci(yci), and M represents the linearized coupling be-
tween the subsystems and is a full-rank matrix. The transfer function of the coupled
system, i.e. G(K, s), from the disturbance input ws = veci(wsi) to the performance
output yp = veci(ypi), which quantifies oscillations between subsystems, is obtained
by combining (8.7) with Gci and Gpi in (8.5)

G(K, s) = bdi(Gpsi(Ki, s)) + bdi(Gpci(Ki, s)) (I −Mbdi(Gcci(Ki, s)))−1
Mbdi(Msi)

(8.8)

where K = veci(Ki). The transfer function G(K, s) has several challenging properties:
(1) The dependency of G on K is nonlinear, (2) the coupled system can be very
large with thousands of states, (3) no single entity knows the parameters and detailed
structure of G(K, s). Only the SO of Si is aware of all parameters of Gi(Ki, s). The
SC knows only the parameters of the coupling matrix M .

Given this setup, we can formulate the main research question considered in this
chapter: what are the optimal parameters K to minimize the H∞ norm of G(K, s)?
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8.2 Hierarchical parameter tuning

As outlined previously, centralized tuning is often undesired or not possible. Thus, we
introduce in this Section a hierarchical decentralized tuning approach. The hierarchical
tuning is based on the ideas sketched in Fig. 8.2. To allow scalability and to increase
privacy, we propose the following steps in the k-th iteration of the algorithm, compare
also Fig. 8.5:

1. Model reduction of the subsystems: all SOs first calculate a reduced model
of their subsystem, denoted with G̃

(k)
i (K̃(k)

i,init, s), based on the detailed model
Gi(K(k)

i,init, s), which is defined in (8.5). Here G̃i and K̃i denote the reduced
model of Si and its parameter vector, respectively, and (k) denotes the iteration.
The detailed parameters and dynamics of the individual prosumers and of the
power grid are "hidden" in G̃i and K̃i, which leads to increased data privacy. The
SOs send G̃(k)

i and K̃(k)
i,init to the SC.

2. Centralized H∞ parameter tuning based on the reduced subsystem models: the
system coordinator (SC) couples the reduced subsystems and calculates a reduced
model of the whole system G̃(k)(K̃, s). It optimizes the reduced system, which
has a smaller complexity than an overall detailed model capturing the detailed
dynamics of all subsystems. The optimized reduced set of parameters K̃(k)

i,opt are
sent back to the SOs.

3. Model matching: The optimized reduced subsystems G̃(k)
i (K̃(k)

i,opt, s) serve as a
reference model for the SOs. They optimize the parameters of their respective
detailed models Gi(Ki, s) to match the reference model to the best possible ex-
tent.

This iterative process is performed repeatedly until a stopping criterion is fulfilled.
Step 2, i.e. the optimization step based on the reduced models, contains the main
idea of the approach: instead of optimizing the entire detailed system, the SC uses
the reduced models, leading to improved data privacy and scalability of the approach.
However, the optimization of reduced models introduces challenges with respect to
the model reduction and model matching steps. In general, K̃(k)

init is not the same as
K̃(k−1)
i,opt , as K̃(k)

init is obtained from the model reduction step.
In the next sections we provide details for each step of the approach. We start

with the optimization step in order to better clarify the main idea of the approach.
Afterwards, we detail the model matching step before turning to the model reduction
step, which is detailed last as the requirements are derived from the optimization and
model matching steps.
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Figure 8.5: Details of the proposed optimization approach.

8.2.1 Structured H∞ parameter tuning of the reduced system

For the tuning, the SC receives reduced models of each subsystem, i.e. G̃
(k)
i (K̃i, s),

together with initial reduced parameter vectors K̃(k)
i,init from each SO. As the SC knows

the coupling matrix M , the overall reduced model can be formulated

G̃(K̃, s)=bdi(G̃psi(K̃i, s))+bdi(G̃pci(K̃i, s))
(
I−Mbdi(G̃cci(K̃i, s))

)−1
Mbdi(Msi), (8.9)

where bdi(Msi) constructs a block-diagonal matrix consisting of matrices Msi, for all
i. Based on this model, the SC performs the structured H∞ controller tuning

K̃(k)
opt = veci(K̃(k)

i,opt) = arg min
K̃≤K̃≤K̃

∥∥∥G̃(K̃, jω)
∥∥∥∞ (8.10)

with (3.19), where K̃ and K̃ are box constraints on the reduced vector of controller
parameters. The optimization is initialized with K̃(k)

init = veci(K̃(k)
i,init). The optimized

parameter vectors K̃(k)
i,opt are sent to the SOs.

8.2.2 Model matching step

When the SO of the i-th subsystem receives the reduced optimized parameter vector
K̃(k)
i,opt from the SC, it uses G̃(k)(K̃(k)

i,opt, jω) as the reference model to adapt the param-
eters of the full subsystem, such that the detailed model best matches the optimized
reduced model. The SOi solves an H∞ model matching problem to obtain the vector
of detailed controller parameters of Si in the k-th iteration

K(k)
i,opt= arg min

Ki≤Ki≤Ki

∥∥∥∥Gi(Ki, jω)− G̃(k)
i (K̃(k)

i,opt, jω)
∥∥∥∥∞

(8.11)
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where Ki and Ki represent box constraints on the controller parameters. From the
solution of this problem, the optimized detailed parameter vector in the k-th iteration
K(k)
i,opt is obtained for each area. This parameter vector is used as the initial value for

the model reduction for the next updated iteration.

8.2.3 Model reduction step

From the previous two steps, the following requirements for the reduced model
G̃

(k)
i (K̃, jω) are evident:

1. The error between G̃(k)
i (K̃(k)

i,init, jω) and Gi(K(k)
i,init, jω) should be small.

2. The reduced models need to have tunable parameters K̃(k)
i which can be opti-

mized in the optimization step.

3. The H∞ error between G̃(k)
i (K̃(k)

i,opt, jω) and Gi(K(k)
i,opt, jω) after the model match-

ing step should be small. This means that the reduced model needs to have a
representative, realistic dependency on the vector of reduced tunable parameters
K̃i, i.e. similar to the dependency of the detailed model on the full parameter
vector Ki.

Due to the second requirement, the application of unstructured model reduction ap-
proaches, such as balanced model order reduction, is difficult, as they do not retain
parametric dependencies in the reduced model. This can be overcome, e.g., by in-
troducing an additional static state-feedback controller for the reduced model whose
parameters can be optimized. However, such a model may have very different dynamic
properties after the optimization step, meaning that the model matching step may not
allow to reduce the error between the detailed model and the reduced model, i.e. the
third requirement may not be satisfied.
Instead, we propose to perform the model reduction step by selecting a structured

reference model for one area. The reference model has a fixed structure and is param-
eterized to match the detailed model. Structured reduced models have been widely
used in the power system community, replacing groups of interconnected power plants
by a small number of power plants, see e.g. in [19]. Every SO obtains its reduced
model G̃i by solving the following parameter matching problem

(R(k)
i , K̃(k)

i,init) = arg min
Ri≤Ri≤Ri

K̃i≤K̃i≤K̃i

∥∥∥∥G
′
i(Ri, K̃i, jω)−Gi(K(k)

i,init, jω)
∥∥∥∥∞

. (8.12)

Here G′i is the reduced model with the predefined structure, and Ri is the vector
of other model parameters. For power systems, Ri can represent, for example, the
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physical parameters of TGOVij, AVRij, and PSSij. The reduced model becomes

G̃
(k)
i (K̃i, jω) := G′i(R

(k)
i , K̃i, jω). (8.13)

The model reduction is outlined in detail in Section 8.3.3.

8.2.4 Condition for the improvement of the system H∞ norm

The minimization of
∥∥∥G̃(K̃, jω)

∥∥∥∞ does not guarantee that ‖G(K, jω)‖∞ will be re-
duced per iteration. This can be captured by the following Lemma:

Lemma 4
∥∥∥∥G(K(k)

init, s)
∥∥∥∥∞

is reduced if and only if

max
ω∈R

ε
(k)
opt(ω)− ε(k)

init(ω) + α(k)(ω) + σ(G(K(k)
init, jω)) < max

ω∈R
σ(G(K(k)

init, jω)). (8.14)

Here ε(k)
init(ω) denotes the singular value error between the detailed model G(K(k)

init, jω)
and the reduced model G̃(K̃(k)

init, jω) after the model reduction step

ε
(k)
init(ω) = σ(G(K(k)

init, jω))− σ(G̃(K̃(k)
init, jω)). (8.15)

Furthermore, ε(k)
opt(ω) is the error term which occurs after the model matching step

between G̃(K̃(k)
opt, jω) and G(K(k)

opt, jω)

ε
(k)
opt(ω) = σ(G(K(k)

opt, jω))− σ(G̃(K̃(k)
opt, jω)), (8.16)

and α(k)(ω) quantifies the change in the singular values of the reduced system during
the parameter tuning in the k-th iteration

α(k)(ω) = σ(G̃(K̃(k)
opt, jω))− σ(G̃(K̃(k)

init, jω)). (8.17)

Proof. Reduction of
∥∥∥∥G(K(k)

init, s)
∥∥∥∥∞

in an iteration is equivalent to the condition

‖G(K(k)
opt, jω)‖∞ < ‖G(K(k)

init, jω)‖∞ (8.18)
⇔ max

ω∈R
σ(G(K(k)

opt, jω)) < max
ω∈R

σ(G(K(k)
init, jω)). (8.19)

Combining Equations (8.15), (8.16), and (8.17), leads us to the following relation

σ(G(K(k)
opt, jω)) =ε(k)

opt(ω) + α(k)(ω)− ε(k)
init(ω) + σ(G(K(k)

init, jω)). (8.20)

Inserting (8.20) into (8.19), we obtain (8.14).
Note that α(k)(ω) does not need to be <0 for all ω ∈ R. Rather, the following relation
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must be satisfied for successful H∞ norm minimization

max
ω∈R

α(k)(ω) + σ(G̃(K̃(k)
init, jω)) < max

ω∈R
σ(G̃(K̃(k)

init, jω)). (8.21)

Ideally, ε(k)
init(ω) and ε

(k)
opt(ω) would be equal to 0 for all frequencies, i.e. no error is

introduced during model reduction and model matching. This reduces (8.14) to (8.21),
making optimization of the reduced and detailed models equivalent. However, in
general, ε(k)

init(ω) and ε(k)
opt(ω) are non-zero, since model reduction and model matching

are not exact. A consequence of (8.14) is that non-zero error terms can even be
beneficial for the success of the optimization. If ε(k)

opt(ω) is smaller than zero, and ε(k)
init(ω)

is greater than zero, for all ω ∈ R, (8.14) becomes less restrictive than (8.21). However,
this would mean that the reduced model G̃ needs to overestimate the detailed model G
for the initial parameters K(k)

init and K̃(k)
init, and vice-versa for the optimized parameters

K(k)
opt and K̃(k)

opt. Finding a model and optimization procedure, which guarantees this
property, is in general not possible. Hence, we adopt the strategy to find a model
which achieves minimal error terms both before and after the optimization.

8.2.5 Evaluation of the improvement of the system H∞ norm

To evaluate (8.14), ε(k)
init(ω) and ε(k)

opt(ω) need to be known. This is, however, challenging,
as G(K, s) is unknown and, thus, (8.15) and (8.16) cannot be directly evaluated.
This can be overcome by requiring that each SO sends the discrepancies at sampling
frequencies to the SC

∆i(ω)(k) = Gi(K(k)
i,opt, jω)− G̃(k)

i (K̃(k)
i,opt, jω). (8.22)

As the SC knows G̃(k)
i (K̃(k)

i,opt, jω), the values of G(K(k)
i,opt, jω) can be calculated combin-

ing (8.22) and (8.8) for frequency samples, and consequently
∥∥∥∥G(K(k)

i,opt, jω)
∥∥∥∥∞

, without
knowledge of the detailed structure of each Gi. The Condition (8.14) can be directly
used to evaluate whether the optimization was successful.

Remark 4 The sampled values ∆i(ω)(k) do not explicitly reveal detailed information
about the structure and parameters of the subsystems. However, arguably, providing
such sampling information decreases the data privacy. By using matrix norm in-
equalities, it is possible to find sufficient conditions for the norm improvement which
require less data to be exchanged between the SOs and SC. One example is ε(k)

opt(ω).
However, this introduces conservativeness to the approach, making it less applicable,
whereas (8.22) allows us to check the norm-improvement without any conservative-
ness. Finding less conservative conditions with increased data privacy is a part of
future research.
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Figure 8.6: Detailed illustration of the proposed optimization approach.

8.2.6 Detailed algorithm for the proposed approach

The overall proposed algorithm is shown in Fig. 8.6. Before the iterations, each SO
first tunes its parameters in order to eliminate local oscillations. As described in
Section 8.1.3, we use the transfer functionG∗i (Ki, s), defined with (8.6) for this purpose,
where the coupling inputs are used as disturbance inputs for the optimization, in
addition to the infeeds of static prosumers. Afterwards, the iterative procedure can
start.
In each iteration, the SOs reduce their detailed area model Gi(Ki, jω) by optimiz-

ing the parameters of the structured reduced model G̃′i(Ri, K̃i, jω) with (8.12). The
reduced models, together with the initial reduced parameter vectors K̃(k)

i,init are then
sent to the SC. The SC optimizes the reduced system model with (8.10) and sends the
optimized parameter vectors K̃(k)

i,opt to the SOs. Each SO performs the model matching
step by solving (8.11), and sends ∆(k)

i (jω) to the SC.
The SC calculates

∥∥∥∥G(K(k)
opt, jω)

∥∥∥∥∞
with (8.22) and (8.8). Based on the result, the

SC can make the decision to stop the algorithm if the results are satisfactory, to
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Figure 8.7: IEEE 68 bus model with 16 power plant prosumers, divided into 5
subsystems [105]. The disturbance inputs considered for theH∞ parameter tuning
are marked in blue.

continue with the next iteration, or to improve the optimization accuracy if the H∞
norm of the system increased during optimization. This can be achieved by improving
the accuracy of the structured reduced models, e.g. by introducing a more detailed
structure of reduced models. Another possibility is to make the box constraints K̃
and K̃ tighter around K̃init. With this adaptation, the reduced parameter vector K̃(k)

opt

remains in closer proximity to the initial vector, causing the model reduction error to
be smaller after the optimization of the reduced model.

8.3 Application to the IEEE 68 bus example

We consider the IEEE 68 bus power system [105] with 16 dynamic prosumers (power
plants), shown in Fig. 8.7. The system consists of five subsystems Si, i = 1...5, coupled
with power lines, where the subsystems 3-5 are represented by reduced models. The
parameters of the power grid and synchronous generators are provided in [105]. All
generators are operated with standard IEEE controllers, see Appendix C.4.
In order to justify the motivation of online parameter tuning for power systems with

high shares of renewable generation, we first apply the centralized tuning method,
which also allows to show the effects of increased renewable penetration in power
systems. Subsection 8.3.2, results for the hierarchical algorithm.
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8.3 Application to the IEEE 68 bus example

Table 8.1: Modes of the IEEE 68 bus system which have damping ratios below 5%
for the initial controller parameterization.

mode frequency (rad/s) damping ratio (%)
1 3.8 0.5
2 2.5 1.7
3 3.5 2.3
4 6.3 2.9
5 5 4.3
6 7.5 4.4
7 6.3 4.5
8 8.2 4.6
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Figure 8.8: Frequency response for a 100 MW load step in bus 52. Power plants in
subsystems 2 and 3 oscillate against areas 1 and 5.

8.3.1 Centralized tuning and the impact of renewables

In power systems, oscillations with a damping ratio below 5% are considered weakly
dampened [104]. With the initial parameterization of the controllers, eight oscillatory
modes show damping ratios below 5%, see Table. 8.1. The step response of the system
to a 100 MW load step in bus 52 is shown in Fig. 8.8. The simulation is performed
with a linearized system model, which has shown good accuracy in previous works [71,
72, 74, 75]. The linear system has 280 states and 160 controller parameters with the
initial parameter vector Kinit.

For the centralized tuning approach, we assume that the transfer function of the
entire system is completely known. The solution of the centralized problem will serve
as a baseline for the subsequent hierarchical optimization. For the optimization, we
use the Matlab toolbox YALMIP [61], together with the solver SeDuMi [109], and the
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Figure 8.9: Largest singular value of the IEEE 68 bus system as a function of fre-
quency ω. After centralized optimization with (3.19), the resonant peaks in the
system are practically eliminated.
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Figure 8.10: Frequency response for a 100 MW load step in bus 52 for the centrally
tuned parameters Kcent.

transfer function G∗ from (8.6). Disturbance inputs are the active power infeeds of
the static prosumers, see Fig. 8.7. After tuning, all oscillatory modes are sufficiently
dampened with a damping ratio above 7%. We denote the centrally tuned parameter
vector of all prosumers with Kcent. The system H∞ norm was reduced by 97.5%.
Figure 8.9 shows the largest singular values of the system for the initial and optimized
parameters. The largest values of the curves in Fig. 8.9 represent theH∞ norm with the
initial and optimized parameters. The largest peak at approx. 3.8 rad/s corresponds
to the oscillatory mode with the poorest damping ratios in Table 8.1. With Kcent, the
peak is completely eliminated, which is also visible in Fig. 8.10.
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8.3 Application to the IEEE 68 bus example

Table 8.2: Frequency and damping of three weakest-dampened modes, which have
damping ratios below 5%, for the considered scenarios and controller parameters.

Scenario Kinit Kcent

Initial
3.9 rad/s, 0.5%
2.51 rad/s, 1.7%
6.28 rad/s, 2.9%

P31 scaled
3.83 rad/s, 0.2%
2.7 rad/s, 1.4%
6.28 rad/s, 2.9%

4.02 rad/s, 3.6%

P22 scaled
3.9 rad/s, 0.4%
2.45 rad/s, 1.7%
6.28 rad/s, 2.9%

2.51 rad/s, 3%
3.46 rad/s, 3%
4.9 rad/s, 3.7%

When the amount of renewable generation in the system increases, conventional pro-
sumers, such as power plants, will be disconnected from the grid to prevent overpro-
duction. In the considered power system, power plants already represent aggregated
models of multiple smaller power plants, thus, the disconnection of smaller power
plants is modeled by reducing the nominal power of the power plants Pij. The power
infeed of the power plant is also reduced and shifted to static prosumers in the same
bus, i.e., we model renewable generation in this system as static prosumers [83, 87].
To simulate the effects of large scale renewable generation, we consider two scenarios.

The first scenario considers increased renewable integration in S3. For this purpose,
we reduce the power of P31 to 15% of its original value and assume that power plants
with PSSs are disconnected. In the second scenario, we consider increased renewable
generation in P22. We rescale the power of P22 to 50% of its original value and deacti-
vate PSS22. Details of the scenarios are presented in Table 8.2. In both scenarios, the
damping becomes worse for the initial parameters Kinit. Even though Kcent eliminates
weakly dampened eigenmodes for the initial, nominal, scenario, weakly dampened os-
cillations still emerge in the other two scenarios. New parameter sets are needed to
improve the oscillation damping for these scenarios, demonstrating the necessity for
online adaptation of parameters to counteract the change.
It is possible to consider all three scenarios during the parameter tuning procedure

by forming a parallel connection of the systems corresponding to the scenarios and
solving (3.19), similarly as in [71]. However, as the share of renewable generation
in the power system increases, the number of possible scenarios rises exponentially.
On one hand, this means that it becomes increasingly difficult to solve (3.19) for all
scenarios, and on the other, the parameters which we find for all scenarios can become
increasingly suboptimal when one concrete scenario is realized. Consequently, online
adaptation of controller parameters will lead to a more resilient system with a better
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Figure 8.11: Frequency response of the detailed model to a 100 MW load step in bus
52 for completely decentrally optimized parameters Kdcp.

performance, because the controller parameters are optimized for only the realized
scenario.

8.3.2 Hierarchical data privacy conserving H∞ parameter tuning

We now apply the proposed hierarchical data privacy preserving tuning method on the
IEEE 68 bus power system. Note that as subsystems S3 - S5 are already replaced with
reduced models, the reduction and matching step is not necessary for these systems.
As shown in Fig. 8.6, each SO first tunes the parameters of its controllers without

regarding other systems by using G∗i (Ki, s). We consider thereby the coupling inputs
as disturbances. Figure 8.11 shows the step response of the detailed coupled system
after this step. We denote this (decoupled) parameterization of each subsystem with
Kdcp = veci(Kdcp,i). As can be seen, the step response was significantly improved
compared to the response with initial parameters in Fig. 8.8. However, it is still
worse than the centrally tuned parameterization Kcent in Fig. 8.10, and three weakly
dampened modes still remain, as summarized in Table 8.3. Thus, even though each SO
eliminated the oscillations within the subsystem, oscillations between the subsystems
could not be eliminated without consideration of the coupling between the subsystems.
In order to improve the step response, we apply the described optimization steps in

the next sections.

8.3.3 Structured model reduction

Structured model reduction has been applied for decades in power systems for reducing
the number of power plants. However, this is most often done in order to decrease
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8.3 Application to the IEEE 68 bus example

Table 8.3: Frequency and damping ratios of weakly-dampened modes in the coupled
system when each SO optimizes its parameters separately, i.e. with Kdcp.

Mode frequency (rad/s) damping ratio (%)
1 2.51 2.6
2 3.52 3.8
3 4.9 4.4

the computational burden for simulation, and not for controller synthesis. Most works
in the literature perform model reduction based on the so-called coherency, i.e. the
generators are grouped according to the oscillatory mode to which they belong, c.f. [19,
33, 53]. On the other hand, approaches which perform model reduction based on
geographical location, require parameters from the whole system for the reduction
procedure [55], and/or generate reduced models which do not have a pre-specified
structure [95, 108]. An overview of different power system reduction techniques is
presented in [57].
Current state of the art approaches for structured model reduction are not suitable

for our approach. First, the approaches require the exchange of detailed parame-
ters/data of the subsystems, which violates our goal of data privacy. Second, un-
structured models are often generated, which do not allow to retain insight into what
parameters can be tuned to minimize the H∞ error between the reduced and detailed
model.
For this reason, we introduce a hybrid approach for distributed model reduction for

power systems. It consists of two steps. In the first step, we create an equivalent model
of a synchronous generator (SG) from a group of SGs in Si. As equivalent models of
SGs are well studied in the literature, we use the analytical procedure from [19] for
this step.
In the second step, we parameterize of equivalent controllers for the SG. This chal-

lenge, however, was not intensively studied. Thus, to parameterize the controllers of
the equivalent SG, i.e. TGOVij, AVRij, and PSSij, we use (8.12). We first choose
models for the controllers occurring in the system with the highest frequency. In case
of the IEEE 68 bus system, those are the controllers in Figs. C.9, C.1 and C.2 in
Appendix C.4. The tunable controller parameters, which are part of the vector K̃i,
are marked red in the figures, whereas all other parameters are a part of the vector
Ri.
In case of the IEEE 68 bus system, subsystems S1 and S2 are each replaced by

one equivalent power plant, which has shown to be sufficient. Figures 8.12 and 8.13
show the largest singular values of the reduced and detailed model of S1 and S2,
respectively, before and after the parameterization procedure. They show a very good
match between the detailed models and the reduced models after the parameterization.
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Figure 8.12: Largest singular values of the detailed and reduced model of S1. Note
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Figure 8.13: Largest singular values of the detailed and reduced model of S2, showing
a good match. Note that the blue curve is mostly covered by the red curve.

8.3.4 Structured H∞ optimization for the overall reduced system

The SC lumps the reduced subsystem models into G̃(K̃, s). The reduced system for
the IEEE 68 bus model is depicted in Fig 8.14. The static infeeds, marked blue, are
used as disturbance inputs, and are elements of the reduced vector of disturbances
w̃S. A system with 89 states and 50 optimization parameters is obtained, whereas the
detailed model has 280 states and 160 controller parameters. We denote the initial
parameter vector of the detailed and the reduced model by K(1)

init and K̃(1)
init, respectively.

The step response of the reduced system to a 100 MW load step in bus 2 is shown in
Fig. 8.15. The oscillations in the coupled system are less dampened than with K(1)

init
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Figure 8.14: Reduced model of the IEEE 68 bus power system. Disturbance inputs
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Figure 8.15: Step response of the reduced model in Fig. 8.14 in the first iteration
G̃(1)(K̃(1)

init,ω) to a 100 MW load step in bus 2 with K̃(1)
init.

in the detailed model, c.f. Fig. 8.11. However, a 100% accuracy of the reduced model
is not required for the approach to be successful, as described in Section 8.2.4.
The SC optimizes the reduced model using (8.10), and obtains the optimized pa-

rameter vector K̃(1)
opt.

8.3.5 Model matching

In the last step, the SOs optimize with (8.11) the parameters of the detailed subsystem
models to match the reduced model. Figures 8.16 and 8.17 show the results of the
model matching step for S1 and S2. For S2, model matching could not decrease the
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Figure 8.16: Largest singular values of the detailed and reduced system for S1 before
and after the model matching step.

difference between the detailed and reduced model. However, the error can be reduced
by relaxing the box constraints of controller parameters in S2 or by making the box
constraints for K̃2 in the reduced model tighter, which was not necessary, as the
obtained coupled system norm is sufficiently good even after one iteration.
Counter-intuitively, the reduced reference models for S1 and S2 have lagerH∞ norms

than the initial models. This underpins that H∞ optimization of the decoupled sub-
systems does not necessarily minimize the H∞ norm of the coupled system. This is
also evident from the optimization results shown subsequently in Fig. 8.19, in which
the optimized coupled (detailed and reduced) systems have a lower H∞ norm than
the initial respective systems, even though the H∞ norm of the decoupled subsystems
increased.

8.3.6 Results of hierarchical H∞ controller tuning

After the model matching step, the parameter vectors K(1)
i,opt are obtained for each

subsystem Si. The time response of the detailed system, with the parameterization
K(1)
opt = veci(K(1)

i,opt), to a 100 MW load step in bus 52 is shown in Fig. 8.18 with solid
lines. The same figure also shows the optimized step response of the reduced model
with K̃(1)

opt in dashed lines, showing a very good correspondence of the two models.
Furthermore, the response looks almost identical as the results with centralized tuning
in Fig. 8.10. With K(1)

opt, all weakly-dampened modes are eliminated from the system
as well. The system H∞ norm was reduced by 97.5%, which was also the case with
Kcent. This could not be achieved with Kdcp, when all SOs tuned their parameters
separately.
Figure 8.19 shows the largest singular values of the detailed and reduced system in
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Figure 8.17: Largest singular values of the detailed and reduced system for S2 before
and after the model matching step. Note that the red curve is under the yellow
curve.

the relevant frequency range for the various parameterizations. With the decoupled
parameterization Kdcp, a large peak is still present in the system at approx 2.5 [rad/s].
The reduced model with K̃(1)

init is able to recreate this peak, and introduces an additional
peak at approx. 4 Hz. However, 100% accuracy of the reduced model is not necessary
for the approach to be successful. Both peaks in the reduced model are eliminated with
K̃(1)
opt. The resulting parameterization of the detailed model K(1)

opt with the decentralized
approach achieves approximately the same results as Kcent.

8.4 Tuning for an artificial large scale power system

To show the applicability of the proposed approach on a large and complex power
system, we couple nine IEEE 68 bus power systems, as shown in Fig. 8.20. The
northern connection in each subsystem is made with bus 43, the southern connection
with bus 48, the eastern with 42, and western with 21. This system is strongly meshed,
and has 2520 states and 1440 controller parameters, making centralized optimization
impossible.
For the hierarchical tuning, we replace each subsystem Si with a single-generator

equivalent model in the model reduction step, analogously as in the previous example.
Thus, in the optimization step, a system with 171 states and 90 controller parameters is
optimized, instead of the original 2520 states and 1440 parameters, which is impossible
to handle.
Figure 8.21 shows the singular value plot of the system with the initial parameter-

ization and subsequent results. The largest peak, corresponding to the value 360 at
approximately 1 rad/s, is cut-off to improve visibility of other plots. With the pro-
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Figure 8.18: Step response of the optimized detailed and reduced IEEE 68 bus model
to a 100 MW load step. Solid lines represent simulation of a 100 MW load step
in bus 52 with the detailed model and K(1)

opt = veci(K(1)
i ), whereas dashed lines

represent simulation of a 100 MW load step in bus 2 with the reduced model and
K̃(1)
opt.

100 100.1 100.2 100.3 100.4 100.5 100.6 100.7 100.8 100.9 1010

2

4

6

8

10

12

ω (rad/s)

m
ax

.
sin

gu
la

r
va

lu
e
σ

Detailed model
with Kcent

Detailed model
with Kdcp

Reduced model
K̃(1)

init
Reduced model
K̃(1)

opt
Detailed model
K(1)

opt

Figure 8.19: Largest singular values of the reduced and detailed models of the IEEE
68 bus system achieved with the various parameterizations.

posed approach, the H∞ norm of the system was reduced by 95% in four iterations.
Thereby, the resonant peaks are almost eliminated. The decoupled parameterization,
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Figure 8.20: Large synthetic power system obtained by coupling nine IEEE 68 bus
systems. The system consists of 144 power plants, 2520 dynamic states and 1440
controller parameters.

i.e. when each SO tunes its respective controller parameters separately, is also shown
Fig. 8.21. Even though the H∞ norm of the system is significantly improved compared
to the initial parameterization, a large peak still remains.
The time-domain response of the system to simultaneous load steps in 10 buses with

the initial, decoupled, and optimized parameterization after four iterations, is shown
in Fig. 8.22. With the decoupled parameterization, large oscillations still prevail at the
end of the time horizon. On the other hand, the oscillations are significantly better
dampened with the proposed approach. This shows that the presented approach is
capable of optimizing such large and complex systems and can lead to very good
results.
This results were achieved using a Windows computer with an Intelr i7-4810MQ

CPU running at 2.8 GHz. The model reduction step requires approx 30s on average for
one subsystem. The optimization of the reduced system requires approx. 1 minute,
whereas the model matching step requires less than 5 minutes for each subsystem
due to the larger number of optimization parameters. Consequently, assuming that
the model reduction and model matching steps for each subsystem are executed in
parallel, approx. 7 minutes are needed for one iteration of the algorithm. Thus, even
such large systems can be optimized in less than 30 minutes, depending on the number
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Figure 8.21: Largest singular values of the large system in Fig. 8.20 with the ini-
tial parameterization, decoupled parameterization, when each SO optimizes its
parameters separately, and after the model matching step in each iteration of the
optimization. The highest peak of the plot with initial parameterization, corre-
sponding to the value 360 at approximately 1 rad/s, is cut-off to improve visibility
of other plots.

of iterations until a satisfactory system norm is achieved. Note that further subsystems
can be coupled without increasing the computation time significantly, as the model
reduction and model matching step are done in parallel.

8.5 Summary

Tuning of controller parameters in power systems increases system resiliency when
power system dynamics are constantly changing, e.g. due to an increasing share of
renewable generation. This is particularly challenging for two reasons: (a) the power
systems can have a very large size, and (b) large power systems often belong to a
multitude of subsystem operators which are not willing to exchange detailed informa-
tion about their subsystems. We proposed an algorithm for hierarchical structured
H∞ controller synthesis in power systems which addresses both of these challenges
and demonstrated its effectiveness on two simulation examples. Thereby, we derived
conditions when the hierarchical approach will lead to an improved parametrization
of the coupled system and introduced an algorithm which ensures that the H∞ norm
of the coupled system is improved. In the first simulation example, we demonstrated
how increased percentage of renewable generation leads to changing dynamics in the
system, showing the need for online reparameterization of controllers. Additionally,
we showed in the example that weakly-dampened oscillatory modes in the overall sys-
tem cannot be eliminated if all subsystems optimize their parameters separately. The
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8.5 Summary

Figure 8.22: Frequency response of the synthetic power system to 100 MW load steps
in 10 buses with the initial, decoupled, and optimized parameterization. Due to
the large amount of dynamic prosumers, each parameterization is represented with
one color.

proposed hierarchical approach eliminates the weakly dampened modes in the first
numerical example, and it achieves approximately the same results as with centralized
tuning. In the second example, we showed the scalability and efficacy of the approach
on an even larger power system, where centralized tuning cannot be applied, thereby
practically eliminating oscillations from the system.
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9 Conclusions and outlook

Increasing the share of renewable generation in power systems leads to increased
volatility and uncertainty in their operation. Depending on weather conditions, the
power generation of renewables will vary temporally, as well as geographically in the
power grid. Furthermore, if the weather conditions are not suitable, conventional gen-
eration, such as thermal power plants, will need to be used. This leads to changing
dynamics in power systems, i.e. time-varying oscillatory modes appear and they need
to be damped. However, existing automation systems for power systems are designed
for fixed, known, dynamics. Control systems of components are typically parameter-
ized only once during installation, which is a time-consuming task. When time-varying
dynamics are constantly present in the system, the risk of a blackout increases. Chang-
ing the existing control system entirely to increase stability is often not possible, as
it has gained the trust of operators during decades of practical operation, and due to
the high costs for the replacement.
In this thesis, we propose to solve this challenge by adapting the parameters of the

existing control system to the changing conditions. For this purpose, two base meth-
ods are introduced which minimize the H∞ norm of the system by tuning controller
parameters. The first method is based on the Bounded-Real Lemma, whereas the
second method uses frequency sampling. Both methods provide stability certificates
and are applicable to arbitrary power systems and on brown-field applications. The
system H∞ norm is chosen as the tuning goal as it improves robustness of the system
against uncertainties, in addition to improving oscillation damping.
The proposed methods are verified in multiple numerical examples. In each exam-

ple, the H∞ norm of the system was significantly reduced, thereby also improving the
time-domain step response. Furthermore, the approach was experimentally validated
on a testbed microgrid in Wildpoldsried, Germany. The testbed system consists of six
inverters connected to a load bank. Due to asymmetries in the power grid, oscilla-
tions were present in the system. With the proposed approach, they were successfully
eliminated, showing the applicability of the approach on existing systems and control
structures.
A comparison of the proposed approaches with existing approaches with respect to

performance and to the computational complexity was outlined. Thereby, the pro-
posed approach showed better results in the time-domain in the considered numerical
example, compared to methods which introduce an additional wide-area control layer
in the system. Furthermore, the proposed frequency-sampling based method, achieved
significantly reduced computation times and better scalability, compared to existing
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approaches and commercial software.
Furthermore, a hierarchical approach for the controller tuning was introduced, which

allows for data privacy and safety. It considers practical constraints arising from the
operation of large power systems, in which there is no entity which has access to all pa-
rameters of the power system. Moreover, such power systems usually have thousands
of states, making centralized optimization numerically intractable. The proposed ap-
proach successfully solves these issues by modularization, introducing model reduction,
which hides parameters of the detailed system inside the reduced model. Conditions
are derived for the success of the approach and an algorithm for the tuning process is
developed. Finally, the approach is validated on two large numerical examples.
Overall, the results in this thesis provide the basis for the adaptation of controller

parameters in power systems, showing approaches which give good results and are
scalable to large systems. They lay the basis for a series of future developments.

9.1 Outlook

Thes results addressed in this thesis offer the opportunity for further research. We
first describe logical extensions of the presented results before indicating more distant
research directions.
The considered modeling approach does not include dynamics of the power grid, i.e.

of the power lines, transformers etc. While this is a commonly used approximation,
recent results indicate that these dynamics can potentially impact the system stability
if no conventional generation is present in the system. The proposed approach can be
extended to include the grid dynamics. However, an approach is needed such that the
system can still be appropriately linearized. For this purpose, the so-called dynamic
phasors approach offers a possible research direction.
This thesis did not consider in depth a robust procedure of switching the controller

parameters. This procedure should consider constraints such as communication out-
ages and inexact time synchronization between the consumers. From this procedure,
new requirements for the parameter tuning algorithm could emerge.
To guarantee a stable operation even in extreme conditions, such as islanding or

cascading outages, more constraints can be included into the optimization problem.
This can be done by including additional constraints for stability of the decoupled
systems. However, it leads to a potentially large number of constraints, making the
optimization problem challenging to solve in a small time frame. The same problem is
encountered in the multi-scenario approach. Future research could focus on efficiently
solving the tuning problem for many scenarios. A possible way to do it is to optimize
a subset of “worst-case” scenarios, such that if these scenarios are optimized to have
satisfying performance, other scenarios have it as well.
An interesting further research direction considers the stability-certificate of the fre-
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9 Conclusions and outlook

quency sampling method for H∞ optimization, i.e. Theorem 3. If the H∞ constraint
can guarantee that a system will remain stable, given an initial stabilizing parameter-
ization, the question arises if the same constraint can be used for system stabilization.
This could be done by virtually shifting the imaginary axis into the unstable region
of the complex plane, such that all system poles lie on the left side of the virtual
imaginary axis. Then, the axis can be shifted to the left during optimization. In this
way, a fast method for the stabilization of linear systems could be developed.
Further research should be made to find a stability guarantee for the hierarchical

tuning approach. In the current algorithms, instability can be detected after the model
matching step and appropriate adjustments can be made to avoid instability. However,
a direct constraint for stability, which guarantees that the solution of model matching
will result in a stable coupled system, would significantly speed up the acceptance of
the approach. However, the constraint would need to have a distributed formulation.
For this purpose, the input-to-state-stability seems to offer a promising lead.
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A Oscillation damping in linear systems

In this thesis, we use H∞ optimization to improve the system robustness, as well as
improve the oscillation damping in power systems. However, these two terms are, at
a first glance, not directly correlated. For this purpose, we briefly summarize in this
appendix modal analysis of linear systems and show the connection between the H∞
norm and oscillation damping in linear systems.

A.1 Modal analysis of linear systems

We consider the linear system

ẋ = Ax, (A.1)

where A ∈ Rnxn. The goal is to find an analytic expressions for oscillations in (A.1),
called natural oscillations. To this end, we perform an eigenvalue decomposition of A

A = ΦΛΦ−1, (A.2)

where Φ is the complex-valued matrix of right eigenvectors of A, and Λ is the complex-
valued diagonal matrix of its eigenvalues λ1,...,λn. Note that λi may be complex, in
which case there exists λj equal to the complex-conjugate value of λi. By inserting
the previous equation into (A.1), and by introducing the new state vector z = Φ−1x,
we obtain

ż = Λz. (A.3)

Since Λ is a diagonal matrix, we obtained a system of uncoupled equations

żi = λizi, i = 1...n, (A.4)

which can be directly solved

zi(t) = zi(0)eλit. (A.5)

Remarkably, from the coupled system (A.1), we obtained a completely decoupled
system in terms of the so-called system eigenmodes z. It follows that the time response
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A Oscillation damping in linear systems

of x is given with

x = Φz =
n∑

i=1
Φizi(0)eλit, (A.6)

where Φi is the i-th right eigenvector of A, corresponding to λi. Since z = Φ−1x = Ψx,
where Ψ is the matrix of left eigenvectors of A, we can now write

x =
n∑

i=1
ΦiΨix(0)eλit, (A.7)

where Ψi is the i-th row of Ψ. Thus the initial condition response of the system is given
by the linear combination of n system eigenmodes, corresponding to the n eigenvalues
of the state matrix. Thereby, real eigenvalues correspond to non-oscillatory modes,
whereas complex eigenvalues correspond to oscillatory modes of the system. It is
possible to reformulate terms with complex-conjugate eigenvalue pairs σ±jω to obtain
the form eσt sin(ωt + θ). It represents a dampened sinusoid with the damping factor
σ. The frequency of the oscillation is ω, and the damping ratio for the eigenmode is
defined as

ξ = −σ√
σ2 + ω2 · 100%. (A.8)

With this definition, the amplitude of the oscillation decreases to 1/e of the initial
value in 1/(2πξ) oscillations.
Each system eigenmode, corresponding to an eigenvalue, has an associated damping

ratio which depends on the real and imaginary part of the eigenvalue. In power system
analysis, the damping ratio is most often used as a metric for oscillation damping. For
example, a 5% damping ratio is often used as the recommended minimal damping
factor of oscillations in power systems [104]. This means that all system eigenvalues
must lie inside a cone on the left-hand side of the complex plane, illustrated in Fig. A.1.
In summary, the damping of oscillations in linear systems only depends on the

location of system poles. If a minimal damping ratio ξ is desired in the system, then
all system poles need to lie in the region shown in Fig. A.1.

A.2 Relation between the H∞ norm and oscillation damping

The H∞ norm of the linear system G(s) = C(sI−A)−1B+D, denoted with ‖G(s)‖∞,
is defined as the maximal L2 amplification of an input w in any output direction y,
i.e.

‖G(s)‖∞ = max
0<‖w‖2<∞

‖y‖2
‖w‖2

. (A.9)
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Figure A.1: Illustration of the region in the complex plane where all system poles,
marked with a red “x”, have a minimal damping-ratio ξ.

In the frequency domain, the H∞ norm is calculated as

‖G(s)‖∞ := max
s∈C>0

σ(G(s)), (A.10)

where σ(G(s)) denotes the maximal singular value of G(s). As the L2 norm of a
signal is proportional to its energy, the minimization of ‖G(s)‖∞ decreases the energy-
amplification of disturbances in the system at the observed outputs. Additionally, it
improves the stability margin of the system [119], meaning that the system can tolerate
larger disturbances while still remaining stable (commonly known as the small gain
theorem).
The relation between oscillation damping and the system H∞ norm, i.e. the impact

of H∞ norm minimization on oscillation damping, is not trivially established. Equa-
tion (A.7) shows that damping of free oscillations in the system is only dependent on
the location of system poles, and not on any system input. The H∞ norm, however,
characterizes the system input-output behavior. In this Section, we show how these
two characteristics of a linear system are still related.
In Subsection 3.2.1, Lemma 2, it is shown that σ(G(s)) approaches +∞ as s ap-

proaches any detectable system pole spi. Since σ(G(K, s)) is a continuous function of
s [22], it follows that for arbitrary M ∈ R, there exists a non-empty environment of
every pole spi where σ(G(s)) is greater than M , i.e.

∀M ∈ R, ∃ϕ ∈ R, s.t. |s− spi| ≤ ϕ, ∀i⇒ σ(G(s)) ≥M . (A.11)

Additionally, if M1 and M2 in R are chosen such that M1 > M2, it follows that there
exist ϕ1 and ϕ2, respectively, such that ϕ1 < ϕ2. Thus, if ‖G(s)‖∞ ≤ M1, it follows
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that the nearest pole of the system is at least the distance ϕ1 from the imaginary axis.
Furthermore, if ‖G(s)‖∞ is minimized to M2, e.g. by controller tuning, this distance
is increased to ϕ2. Hence, minimization of ‖G(s)‖∞ guarantees that all system poles
have a minimal distance from the imaginary axis. This means that the resulting system
eigenmodes of the poles that were pushed away are automatically better dampened
and have a larger damping factor ξ. Thereby, the improvement of ξ is more successful
if badly dampened oscillations have a relatively low frequency, as the damping ratio
limit is closer to the imaginary axis in the low-frequency range. In power systems,
frequency oscillations are in the range of 0.1 - 10 Hz, so H∞ optimization can be
used effectively for power oscillation damping. If the system poles are far from the
imaginary axis, H∞ optimization can worsen the oscillation damping in the system.
This, however, was not observed for any considered power system, where large H∞
norms of the systems were obtained due to the proximity of poles to the imaginary
axis.
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B Modeling of coupled AC-DC power systems

The power system model introduced in Section 2.1 considers alternating current (AC)
power systems with dynamic and static prosumers. This section extends the modeling
to consider coupled AC-DC (alternating current-direct current) systems as well. A
numerical example with an AC/DC system is considered in Section 4.2.
Figure B.1 shows the structure of a coupled AC-DC power system. The AC and DC

grid are coupled via Nc converters, which convert AC power to DC power, and vice
versa. In the following, we describe how coupled AC-DC systems are modeled in this
work.

B.1 DC power grid model

The DC power flow equations, which describe the interconnection of converters, for
the high-voltage direct current(HVDC) system are given with

Pci =
N∑

j=1
cijVDCi(VDCi − VDCj), (B.1)

where Pci is the injected active power of the i-th converter into the DC grid, and cij
are elements of the conductance matrix of the DC grid. Without loss of generality,
we assume all buses without load or generation are eliminated from the system using
Kron reduction [25].

B.2 AC-DC converter models

Since we are interested in system oscillations below 10 Hz, fast inner control loops of
HVDC converters are not modeled and are represented by a first order delay system.
The measurement time delays are modeled as first-order delays as well, and the phased
locked loop (PLL) is approximated with a first-order system with one zero and one
pole.
Two converter types are considered, whose structure is also described in [113]. The

first type controls the DC voltage of the converter and is presented in Fig. B.2, where
Pcj and Pc0j are the active power flow and the power flow reference for the DC con-
verter, θcj is the voltage angle on the AC side, ωcm is the estimated AC frequency,
VDCj and VDC0j are the controlled DC voltage and DC voltage reference, and kcPj is
the converter active power droop gain. We consider the power system stabilizer (PSS)
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Figure B.1: Structure of a coupled AC-DC system consisting of an AC power grid
with ND dynamic prosumers Pi, as well as the static prosumers Ps and Qs, and
a DC grid. The AC and DC grids are coupled via Nc AC-DC converters Ci. The
dynamic prosumers, as well as converters, have tunable controller parameters,
marked red.
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Figure B.2: The voltage control law of DC-voltage-controlling converters. The PSS
parameters and kcPj are tuned.

model shown in Fig. B.3, for all converters. The second converter type controls the
active power flow according to the control law in Fig. B.4, where the same notation
is used as for the first converter type, and kV DCj is the converter DC voltage droop
gain. As shown in Figs. B.2 and B.4, both converter types contain PSSs in charge
of POD in the system. Additionally, both converter types are equipped with reactive
power controllers [62], depicted in Fig. B.5, where Q and Q0 are the controlled reactive
power and its setpoint, V and V0 are the AC voltage effective value and its setpoint,
and kV AC is the AC voltage droop gain. The analysis of POD with the active and
reactive power of HVDC lines is made in [107].

Remark 5 The PSS in Fig. C.2 used for reactive power control in Fig. B.5 contains
a washout filter which ensures that the PSS is not active during slow changes in the
system and in the steady state. Thus, the AC voltage droop gain kV AC is necessary
for steady-state reactive power support, however it can have an impact on POD in the
system as well.

The loses in both converter types are neglected as they are not relevant for the stability
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Figure B.3: Dynamic model of the simple power system stabilizer (taken from [51,
77]) used with HVDC converters, where KS,i is the PSS gain, Tw,i is the washout
time constant, T1,i-T4,i are the lead-lag filters time constants, and Ts,i is the sensor
time constant. All of the PSS parameters are tunable, except the sensor time
constant.
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Figure B.5: Reactive power control for both converter types. The PSS parameters
and kV AC are tuned.

analysis. Thus, the AC and DC side of converters are coupled through the active
power flow P, i.e. PAC = PDC = P . In total, each converter has 13 states.

B.3 Coupled AC-DC power system model
By coupling the AC prosumers and AC-DC converters with the AC and DC power grid
equations, we obtain an analogous model to (2.4). This model can be then further
linearized and the same optimization problem can be formulated as in described in
Chapter 2.
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C Power system models

This appendix presents the models of all power systems used for the numerical evalu-
ations throughout this work.

C.1 IEEE 39 bus power system

Figures C.1, C.2, and C.9 show the power plant controller models used for modeling of
the IEEE 39 bus grid. All models are a part of the system proposed in [77]. We optimize
the gain KA,i of the AVRi, shown red in Fig. C.1. We also optimize all parameters of
PSSi, except the physically-determined sensor time constant, marked red in Fig. C.2.
The governor and turbine model, shown in Fig. C.9, has one optimization parameter,
marked in red. It is the proportional gain of the governor. All presented controller
models are standard IEEE models.

C.2 Extended IEEE 39 bus AC/DC power system

This section expands the model of the IEEE 39 bus system to also include a high
voltage direct current (HVDC) power line, interfaced through converter stations with
the AC system. This model is then used for the numerical evaluation in Section 4.2.
For this purpose, we modify the IEEE 39 bus system by adding a 400 km and 400

kV HVDC line between buses 16 and 27, as depicted in Fig. 4.5. Thereby, converter C1
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1+ sTC,i
1+ sTA,i

KA,i Efd,i

VRMAX,i – KC,i ifd,i

VMIN,i

1+ sTr,i

1 1
Ke,i+ sTe,i

1+ sTfd,i

Kfd,is

Figure C.1: Dynamic model of AVRi [67], where Tr,i is the transducer time constant,
TC,i and TB,i are dynamic gain reduction time constants, KA,i is the AVR gain,
TA,i is the AVR lag time constant, Ke,i and Te,i are the exciter parameters, and
Kfd,i and Tfd,i additional damping coefficients of the AVR. We assume that KA,i,
Kfd,i, and Tfd,i, marked red, are tunable.
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C.3 Reduced European power system with 53 power plants
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1+ sT3,iωi – ωs
1+ sTs,i
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Figure C.2: Dynamic model of the simple power system stabilizer (taken from [51,
77]), where KS,i is the PSS gain, Tw,i is the washout time constant, T1,i-T4,i are
the lead-lag filters time constants, and Ts,i is the sensor time constant. All of the
PSS parameters are tunable, except the sensor time constant.
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1+ sT2,iRp,i 1+ sT1,i

1

Dt,i

Pref,i

Pm,i

Figure C.3: The TGOV1 standard IEEE turbine and governor model. The frequency
droop gain of the governor Rp,i is an optimization variable.

controls its DC-voltage and is connected to bus 27, whereas converter C2 is connected
to bus 16 and controls its active power. The HVDC line resistance is set to 0.0114
Ω/km [90], whereas all measurement time constants Tm and control time constants Tcon
of AC/DC converters are set to 10 ms. The PLL time constant is set to 100 ms to
avoid sharp initial reactions of converters, which results from the approximation of the
PLL and is not present in real systems. All PSS time constants of converters are the
same as in the PSS of power plants, all PSS gains of converters are set to 10 p.u., kP
and kV AC of C1 are set to 0.04 p.u. and 10 p.u., respectively, and kV DC and kV AC of
C2 are set to 20 p.u. and 10 p.u., respectively.

This model is then used for the numerical evaluation in Section 4.2.
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Figure C.4: The standard EXAC4 model of the AVRi, where Tr,i is the transducer
time constant, TC,i and TB,i are dynamic gain reduction time constants, KA,i is the
AVR gain, and TA,i is the AVR lag time constant. We assume that KA,i, marked
red, is tunable.
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Figure C.5: The standard IEEE PSS 1A model, where KS,i is the PSS gain, Tw,i is
the washout time constant, T1,i-T4,i are the lead-lag filters time constants, Ts,i is
the sensor time constant, and A1 and A2 are notch filter parameters. All of the
PSS parameters are tunable, except the sensor time constant.
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Figure C.6: A two-area system from [51, p. 813, Example 12.6].

C.3 Reduced European power system with 53 power plants

The reduced European grid, used in Subsection 4.3, uses controllers shown in
Figs. C.3, C.4, and C.5. Similar to the IEEE 39 bus controller models, the gains
of TGOVi and AVRi are tuned, as well as all parameters of PSSi. For this power
system, the standard model TGOV1 is used for TGOVi, the EXAC4 model is used for
AVRi, and the IEEE PSS 1A model is used for PSSi. All presented controller models
are standard IEEE models.

C.4 IEEE 68 bus power system

Parameters of synchronous generators and of the power grid are provided in [105],
whereas Figures C.9, C.3, C.1, and C.2 show the power plant controller models used
for modeling of the IEEE 68 bus grid. The governor and turbine models, shown in
Figs. C.9 and C.3 have one optimization parameter each, marked in red. It is the
proportional gain of the governor. Thereby, half of the power plants have the model
in Fig. C.3, whereas other power plants have the model in Fig. C.9. We optimize the
gain KA,i of the AVRi, shown red in Fig. C.1. We also optimize all parameters of PSSi
marked red in Fig. C.2, except the physically-determined sensor time constant. All
presented controller models are standard IEEE models.

C.5 Four power plant system from [51]

We consider the grid from [51, Example 12.6, page 813] presented in Fig. C.6. The
parameters of the transmission grid, as well as the parameters of power plants, can be
found in [51]. This power system, with different controllers, is used for two method
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Figure C.7: Dynamic model of a simple AVRi used, e.g. in [51]. It consists of a gain
KA,i and a transient gain reduction component with the time constants TA,i and
TB,i. The gain KA,i, marked red, is tunable. The input ui is additionally intro-
duced, marked blue, which is used as a control input for the methods presented
in Section 6.1.
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Figure C.8: Dynamic model of the simple power system stabilizer (taken from [51,
89]), where KS,i is the PSS gain, TW ,i is the washout time constant, T1,i-T4,i are
the lead-lag filters time constants. All of the PSS parameters are tunable.

comparisons in Chapter 6. For the first comparison in Section 6.1, all power plants
have a TGOV model shown in Fig. C.3, an AVR model from Fig. C.7, and a PSS shown
in Fig. C.8. The parameters of the TGOV model are T1 = 0.04s, T2 = 1s, T3 = 2s,
kP = 150, and Dt = 0, while the voltage regulator time constants are set to TA = 1s
and TB = 10s, as in [51]. The initial value for the tunable voltage regulator gain is
KA = 200, and for all PSSs: KS = 50.5, T1 = 0.0037s, T2 = 0.0079s, T3 = 40.9s,
T4 = 2.1386s, and TW = 3.9604s. However, the gain of the TGOV model is not an
optimization variable in this case. The AVR model has a wide-area input ui, used
by the additional methods considered in Section 6.1. This input is calculated as an
algebraic combination of states from all power plants. This system consists of 48 states
and 28 tunable parameters.
For the second, numerical, comparison in Section 6.2, the same TGOV model is

used as previously described, but for this comparison, the TGOV gain can be tuned.
Additionally, the AVR model from Fig. C.1 is used. This system consists of 56 states
and 32 tunable parameters.
As disturbance inputs for the optimization in both cases, we consider the loads in

buses 7 and 9, marked blue in Fig. C.6.

ωi – ωs
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1
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x
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1
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1
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1
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F5,i
ωi
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Figure C.9: Dynamic model of the turbine and governor from [69]. The frequency
droop gain of the governor Rp,i is an optimization variable.
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