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Understanding adherence 
to the recording of ecological 
momentary assessments 
in the example of tinnitus 
monitoring
Miro Schleicher1*, Vishnu Unnikrishnan1, Patrick Neff2,3, Jorge Simoes2, Thomas Probst4, 
Rüdiger Pryss5, Winfried Schlee2 & Myra Spiliopoulou1

The recording of Ecological Momentary Assessments (EMA) can assist people with chronic diseases 
in monitoring their health state. However, many users quickly lose interest in their respective EMA 
platforms. Therefore, we studied the adherence of users of the mHealth app TrackYourTinnitus 
(TYT). The app is used to record EMA in people with tinnitus. 1292 users, who interacted with the 
app between April 2014 and February 2017, were analyzed in this work. We defined “adherence” 
based on the dimensions of interaction duration and interaction continuity. We propose methods 
that are able to predict the (dis)continuation of interaction with the app and identify user segments 
that are characterized by similar patterns of adherence. For the prediction task we used the data of 
the questionnaires MiniTF and TSCHQ, which are filled in when the users enter TYT for the first time. 
Additionally, time series of the eight items of the daily EMA questionnaire were used. The distribution 
of user activity pertaining to the adherence dimension of interaction duration revealed a very skewed 
distribution, with most users giving up after only 1 day of interaction. However, many users returned 
after interrupting for some time. Some of the MiniTF items indicated that the worries of users might 
have lead to an increased likelihood of returning back to the app. The MiniTF score itself was not 
predictive, though. The answers to the TSCHQ items, in turn, pointed to user strata (more than 65 
years of age at registration), which tended towards higher interaction continuity. As the registration 
questionnaires predicted adherence only to a limited extent, it is promising to study the activities of 
the users in the very first days of interaction more deeply. It turned out in this context that the effects 
of interaction stimulants like personalized and non-personalized tips, pointers to information sources, 
and mechanisms used in online treatments for tinnitus (e.g., in iCBT) should be further investigated.

The interaction of users with mHealth apps has been the subject of several investigations. Some mHealth apps 
simply monitor user activity, while others rely on active forms of interaction. In this work, we concentrate on 
active engagement with a mHealth app, for the recording of longitudinal Ecological Momentary Assessments 
(EMA)1.

EMA is an instrument used in psychology, social sciences and medicine, intended to collect momentary 
snapshots of behaviour or performance of the individuals under investigation, in real life conditions. The term 
“ecological” stresses the high ecological validity of such  data1. The older term “experience sampling”, used by 
Csikszentmihalyi and Larson as early as 1978, reflects the use of the method for the investigation of highly fluc-
tuating motivational  states2, while the term “ambulatory asssessment”3 stresses the fact that data collection can 
be done in real time and in real life. May et al.4 performed a systematic literature review for EMA methodology 
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in people with chronic pain. They pointed out that the study of chronic pain depends mainly on self-reported 
pain intensity assessments, which fits to the principles of EMA. They identified 62 quantitative EMA research 
projects, with a total of 105 scientific publications. They also found that there is a trend towards using smart-
phones as data collection devices.

Among the studies which investigated EMA in mobile apps, Marcano et al. compared “self-administered sur-
vey questionnaire responses” via a mobile app to other forms of data  collection5. Other studies compared EMA 
collected via a mobile app with the retrospective statements of the  patients6–9. The Youth EMA System (YEMAS) 
allowed for the collection of “automated texted reports of daily activities, behaviors, and attitudes among ado-
lescents”, making use of the popularity of texting technology in that age  stratum10. A remarkable finding on the 
use of EMA in smartphones was reported by Probst et al.8: they compared the sociodemographics of patients of 
an outpatient tinnitus clinic to the sociodemographics of the users of an EMA-based app, and found that this 
app reached different strata with respect to age and time since tinnitus  onset8.

For the success of EMA-based monitoring of patients’ condition, it is essential that patients comply with 
the guidelines on how and how often they should fill in the EMA  questionnaires11–13. For example, Stone and 
Shiffman stressed that “success of an EMA study depends on a high degree of participant compliance with the 
sampling scheme protocol; the validity of the assessment scheme is threatened by noncompliance”11, while 
Shiffman et al. pointed out that “Missing assessments have the potential to bias the obtained sample of behavior 
and experience, especially if the missing data are nonrandom”12. In the same context, Jones et al. identified a 
limitation in EMA, namely “while there are considerable benefits to Ecological Momentary Assessment (EMA), 
poor compliance with assessment protocols has been identified as a limitation, particularly in substance users”13. 
Wen et al.14 presented a systematic review on compliance for EMA used with mobile technologies. The more 
recent systematic review of May et al. on  EMA4 does not focus on compliance but it discusses completion rates 
for the reported projects.

Recent investigations on the role of mobile technologies in healthcare also study how these technologies 
contribute to an increase of medical adherence. Badawy et al.15 performed a systematic review of more than 
1000 publications on how interventions based on text-messaging and smartphones can contribute to adher-
ence with respect to medication for children and adolescents. They performed a following systematic review 
on the potential of those technologies for “adherence to preventive behavior in adolescents”16; this systematic 
review also covered randomized clinical trials. Text messaging for reminders, alerts and motivation, but also for 
education and prevention, is discussed in the systematic review of systematic reviews by Marcolino et al.17 who 
covered 371 review studies.

While features such as reminders, pointers to educational content and EMA-questionnaires can be easily 
implemented as mobile apps, patients’ adherence to use them is not guaranteed and becomes a task by itself. 
Scherer et al. analyzed engagement with mHealth  apps18 and found a relationship between patient engagement 
and dropout likelihood. In their  investigation14 on compliance to mobile EMA protocols for children and ado-
lescents (age ≤ 18 years old), Wen et al.14 compared studies with clinical vs. non-clinical designs with respect 
to average compliance rates and found no significant difference (76.9% vs. 79.3%, P = .29 ). Previous studies 
focused explicitly on adolescents, e.g., Garcia et al.10, Badawy and  Kuhns15 and Badawy and  Kuhns16, and Dou 
et al.19 found that neither age nor sex had a significant impact on acceptance of smartphone health technologies 
for chronic disease management.

In our work, we use the term “adherence” to describe the extent to which users completed EMAs with 
smartphone-based mHealth services. We use the EMA service of the mHealth app TrackYourTinnitus (TYT)7 
as an example, and we study the potential of machine learning methods in characterizing users who are more/
less likely to stop interacting with the app. It must be stressed that TYT delivers observational data, i.e. the users 
have neither been recruited nor instructed to use the service in a particular way, and they were free to change 
the EMA prompt settings.

Tinnitus is a complex chronic disorder that has no uniform way of manifestation and  generation20. It describes 
the conscious perception of an auditory sensation in the absence of a corresponding external  stimulus21. Moreo-
ver, Cima et al. stated that the patients’ reaction is an important component of the  disorder22. The potential of 
smartphone technology for tinnitus management has been discussed previously, e.g. by Henry et al.23, and several 
studies on smartphone-based EMA for tinnitus demonstrated that valuable insights can be obtained on how 
people experience their tinnitus in everyday  life6–8,24–28.

The aforementioned studies mostly concentrated on app users, who have delivered many EMA recordings. 
We rather analyze the data of users who delivered few, as well as many, EMA recordings, in agreement with the 
finding that the absence of recordings may be  informative18. Using this observational data, we investigate fol-
lowing research questions: 

RQadherence:  How to quantify “adherence” with respect to EMA recorded with a smartphone-based service 
on the basis of observational data, thereby taking into account that some users who interrupt 
interaction with the app may return later?

RQ1:  How to frame the behavioral patterns of mHealth app users with respect to their adherence with 
the app?

RQ2:  To what extent can we predict discontinuation of app usage based on the first days of interaction?
RQ3:  To what extent can we predict user adherence from their data at registration, i.e., before they start 

interacting with the app?

Authors typically quantify adherence as the proportion of non-self-initiated prompts that received a par-
ticipant  response4,14; May et al. refer to this proportion as “response”  rate4, Wen et al. as “compliance”  rate14. 
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We rather use two measures; duration and continuity, which we introduce formally as indicators of adherence. 
Informally, under “duration” we count how long a user keeps answering the non-self-initiated prompts over a 
specified time period. Under “continuity” we capture periods of unanswered prompts during this time period. 
For RQadherence , we quantified adherence across these two dimensions. For RQ1 and RQ2, we analyzed the multi-
dimensional time series of the users’ EMA recordings. For RQ3, we analyzed the answers to the questionnaires 
they filled in at registration.

Materials
A multidisciplinary European guideline for  tinnitus22 from 2019 defined tinnitus as a perception of a sound 
or sounds without external sources, appearing in the ear or head. The authors pointed out that this phantom 
perception becomes a problem for some of the affected persons and named this form “bothersome (distress-
ing) tinnitus”22.  Cima29 described this type as a negative emotional and auditory experience, associated with, or 
described in terms of, actual or potential physical or psychological  harm22,29. Furthermore, patient profiles are 
described as very heterogeneous due to the highly complex nature of tinnitus with its multi-factorial  origins20,22. 
Treatments with a curative effect are not available in most  cases21,22,30. Therefore, some authors such as Tyler 
et al.31, emphasize the necessity to identify subgroups and to investigate effective treatments for them.

Tinnitus has several aspects for which valuable data can be gathered through the use of mobile technology 
and EMA. Firstly, tinnitus patients are very heterogeneous, which makes it difficult to find general treatments. 
Secondly, patients usually pose challenging moment-to-moment variations, which are difficult to capture with 
traditional clinical trials and methods. Therefore, the TrackYourTinnitus platform was developed by an inter-
disciplinary team. Clinically, it was developed to gather longitudinal data based on an observational study design. 
Through the use of a sophisticated collection  procedure32, TYT is able to provide a data source with many 
investigation opportunities. Most importantly for the work at hand, the condition of a user is captured when 
registering to the TYT app through the use of three mandatory questionnaires, that the new users have to answer 
sequentially during the process of registration on the TYT platform in order to create a user account (i.e., the 
baseline characteristics). Two of them are utilized in this work, namely the Tinnitus Sample Case History Question-
naire (TSCHQ, German version)33, as well as the Mini Tinnitus Questionnaire (MiniTF)34. As the MiniTF cannot 
be found in an English version in the literature, it is provided in the  appendix24 (“Supplementary A—Table 1”).

The study was approved by the Ethics Committee of the University Clinic of Regensburg (ethical approval 
#: 15-101-0204). All users read and approved the informed consent before participating in the study. The study 
was carried out in accordance with relevant guidelines and regulations.

EMA during interaction with the mHealth app. Table 1 shows the items of the EMA questionnaire of 
TYT 26, which the users must fill in more than once a day. Dichotomous questions were answered with Y (yes) or 
N (no). The other questions were answered using a Visual Analog Scale (VAS)26. For our analysis, we skipped the 
8th item due to an ambiguity in the recordings, hence we have a 7-dimensional time series per user.

Collection of the observational data. The complete database of the TYT app recordings contains EMAs 
from April 10 2014 onwards, supplemented by the questionnaire answers filled in by the users at registration. 
For our study, we acquired a data export for the period April 10 2014 to February 3 2017. These recordings stem 
from 1292 users (338f/908m/46u). The countries with the most registered users were Germany (457), US (188), 
GB (75), and The Netherlands (75). The average age at tinnitus onset was 35.51 years (SD: 14), while the average 
age at the moment of the registration was 44.08 years (SD: 13.25). The average number of years between tin-
nitus onset and registration was 9.02 years (SD: 10.98). This dataset, denoted as D[1292] hereafter, was used as 
the basis for our analysis. For the individual research questions, we applied further exclusion criteria as follows:

• For RQ1, we used the complete D[1292].
• For RQ2, we removed users that had only one EMA recording. 440 users were thus removed, retaining 852 

users (230f/592m/30u) with an average age of 35.27 years (SD: 14.31) at tinnitus onset, an average age of 
44.71 years (SD: 13.07) at the moment of registration and 9.37 years on average between tinnitus onset and 
registration (SD: 11.36). We denote this dataset as D[1292:852].

Table 1.  EMA questionnaire of TYT 26.

Item Translation of the German question

q1 Did you perceive the tinnitus right now? (Y/N)

q2 How loud is the tinnitus right now?

q3 How stressful is the tinnitus right now?

q4 How is your mood right now?

q5 How is your arousal right now?

q6 Do you feel stressed right now?

q7 How much did you concentrate on the things you are doing right now?

q8 Do you feel irritable right now? (Y/N)
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• For RQ3, we used both the D[1292] and a subset of the D[1292:852], produced after fixing the horizon of 
observations to N = 30 days. Ten users were excluded from D[1292:852], because their time series started at 
the end of the export. We denote this dataset as D[1292:842] with 842 users (227f/585m/30u) with an average 
age of 34.89 years (SD: 15.24) at tinnitus onset, an average age of 43.95 years (SD: 14.08) at the moment of 
registration and 8.90 years on average between tinnitus onset and registration (SD: 11.32). Furthermore, 26 
users were removed, because they have missing values for age or age at tinnitus onset. Therefore, 816 users 
remained (219f/567m/30u) with an average age of 35.83 years (SD: 14.31) at tinnitus onset, an average age of 
44.81 years (SD: 13.11) at the moment of registration and 9.04 years on average between tinnitus onset and 
registration (SD: 10.96). We denote this dataset as D[1292:816].

Methods
To quantify the user interaction with the mHealth app, we defined a two-dimensional concept of “adherence”, 
and we used these dimensions as target variables for classification (RQ2 and RQ3). To address RQ1, we expressed 
the interaction of a user as a set of sequences of EMA recordings, one sequence per item of the EMA question-
naire (cf. Table 1). Hence, we turned the activities of the users into time series. Accordingly, for RQ2, we used 
time series classification. For RQ3, which concerns the static data at registration (MiniTF and TSCHQ), we used 
classification rules induction. We evaluated the derived models on classification accuracy.

A multi-dimensional definition of adherence. The mHealth app TYT allows the user to specify how 
many times per day s/he wants to fill in the EMA questionnaire. Each time, the user may fill out the whole ques-
tionnaire or skip some items. We specify that on a given day a user has performed an “EMA entry” only if they 
responded at least once to the TYT notification and has filled in at least one questionnaire item. On this basis, 
we propose the following definitions:

• Interaction duration: number of days in which a user has performed EMA entries during the observation 
period

• Interaction continuity encompasses

– Days until first break (FirstDays): number of adjacent days with EMA entries from the day of registration 
onwards, until the first “break” in the user’s interaction was encountered, i.e., the first day without EMA 
entry.

– Return after first break (Return): dichotomous variable (Yes/No), determining whether the user returns, 
i.e., resumes the use of the app after the first break (Yes) or not (No).

Interaction duration thus captures the number of days of user–app interaction (maximally: the whole observa-
tion period), allowing for breaks during which the user has no EMA entries.

Interaction continuity captures breaks: if a user does not return after the first encountered break, then the 
interaction duration is equal to the number of adjacent days until break (and can be as low as 1).

It is noted that the values of interaction duration and interaction continuity are determined inside an obser-
vation period. Since TYT users may start interaction on any calendar day, we aligned all users’ first EMA entry 
as Day 1. Since some users had very long breaks in interaction, we collapsed all days with EMA entries into 
a sequence of non-adjacent days and used the FirstDays value to determine whether this sequence consists of 
adjacent days or not. For our study, we specified an observation period (H) of 30 days.

Modeling adherence with a user’s temporal and static data. For the j th EMA item j = 1 . . . JEMA , 
we denote as TSu,j[t] the set of EMA recordings for this item at the t  th day of interaction of user u with the app. 
All users are aligned at t = 1 , so that TSu,j[1] denotes the answers to the j th EMA item on the 1st day of interac-
tion. The observation period encompasses N days.

We denote as TSu,j the time series of u for the j th EMA item and as nu,j the length of this time series. If 
nu,j < N  , then TSu,j[t] is NULL for t > nu,j . Since u may selectively fill values for the different EMA items, 
the value of nu,j varies with j, we specify that the interaction duration of u within the observation horizon is 
Durationu = maxj=1...JEMA nu,j.

We further denote as FirstDaysu,j the number of days until first break for the j th EMA item. 
This means that the entries in TSu,j[t] for t ≤ FirstDaysu,j are adjacent. For user u, we specify that 
FirstDaysu = maxj=1...JEMA FirstDaysu,j . Accordingly, the dichotomous variable Returnu is set to Yes, if 
Durationu > FirstDaysu and to No otherwise.

Next to the temporal data that express the interaction of u with the app, we also consider the questionnaires 
filled in during registration. Hence, u is modeled as vector with four elements as follows:

Since the number of recordings per EMA item at a given day may vary across users, we collapse the set TSu,j[t] 
for t ≤ nu,j into the mean of the values observed for that day.

For RQ2 and RQ3, we use Return as the target variable and train classifiers that separate between users who 
return after the first break from those that do not return. For RQ2, we consider the time series data. For RQ3, 
we consider the responses to the MiniTF and the TSCHQ items.

MiniTFu, TSCHQu, {(nu,j , FirstDaysu,j ,TSu,j)|j = 1 . . . JEMA}, Returnu
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RQ2 as a time series classification task. We formulate RQ2 as the following time series classification 
task: among users with the same value of FirstDays, how well can we separate between those that stopped and did 
not come back ( Return = No ), and those that did come back again later ( Return = Yes)?

RQ2 as classification task on strata of time series. We used a time period of N days and a set of time series T , 
where the time series of a user u has length Durationu ≤ N ; entries after the N th are ignored. We set a cut-off 
τearly ≪ N for the first, early days of interaction and stratified the time series on length. For each length stratum 
k = 1 . . . τearly , we built the sets of users Uk,Return=No and Uk,Return=Yes:

• User u belongs to Uk,Return=No if and only if: Durationu = FirstDaysu = k.
• User u belongs to Uk,Return=Yes if and only if: FirstDaysu = k and Durationu > FirstDaysu.

For each stratum (value k = 1 . . . τearly ), we trained classifiers that separate between users who stopped the 
interaction after k adjacent days of interaction ( Return = No ), and those that returned after the first break 
( Return = Yes ). To identify properties that characterize users who returned after the first break, we investigated 
the discriminative power of the individual EMA items by training a separate classifier for the time series of each 
EMA item. Training separate classifiers also allowed us to take into account that some users did not fill all EMA 
items, i.e., some EMA answers may be Missing Not At Random. Training on strata also allowed us to adjust our 
evaluation measure (described later) to take into account that the proportions of Return = Yes vs. Return = No 
change with stratum length.

Algorithms for classification of time series strata. We took as a basis the comprehensive evaluation of algorithms 
by Bagnall et al.35 and chose the following well-performing algorithms: Shapelet Transform (ST)36, Time Series 
Forest (TSF)37, Elastic Ensemble (EE)38, Move–Split–Merge (MSM)39, Complexity Invariant Distance (CID)40, 
Derivative Transform Distance ( DTDC)41, and Derivative DTW ( DDDTW)42. We used the Java implementation 
offered by Bagnall et al.35,43, with the original parameter settings of the algorithms (see  also43).

For the use of these algorithms, the time series must be univariate, aligned, of the the same length, and without 
missing  values35. All these assumptions were satisfied in our study. In particular, for each user u, the time series 
TSu,j , j = 1 . . . JEMA were aligned as TSu,j[t] referring to the first EMA entry of the user, independently of the exact 
time point; they have no missing values because the t  th day of interaction and the t + 1 st day of interaction need 
not be adjacent; although the complete time series of the users are not of the same length, the inputs to a classifier 
are, because we train classifiers separately for each stratum—here for each value of FirstDays.

Next to the aforementioned dedicated algorithms for time series, we also studied the performance of clas-
sification algorithms that are not dedicated to time series, namely: Rotation Forest (RotF)44, Random Forrest 
(RandF)45,  C4546, Naïve Bayes (NB)47, 1-Nearest-Neighbors (1NN) based on a distance measure of Euclidean dis-
tance (ED), and 1NN using dynamic time warping (DTW)48). For these algorithms, the k observed EMA values 
per EMA item in the stratum of length k were treated as values of independent observations, ignoring their order.

Classifier evaluation with changing class priors. For each k = 1 . . .m , we partition the set 
Uk,Return=Yes ∪ Uk,Return=No into a training set and a test set using the “stratified holdout” method of the R library 
rminer49 with a 2:1 ratio (i.e., two thirds of the labeled data are used for training and one third for testing) and 
with seed = 145. As the basic evaluation criterion, we used accuracy. Since the priors of the two classes may 
change with the value of k (in D[1292:852], the majority class is even reversed from k = 1 to k = 2 ), we set as 
baseline for accuracy the prior of the majority class and discarded classifiers that achieved an improvement of 
less than τimprove percentage units.

RQ3 as classification task. We map RQ3 into a classification task for Return = Yes/No . Since 
‘ Return = Yes ” implies an interruption in the interaction of the user with the mHealth app, we focus on iden-
tifying items in the registration questionnaire, which predict discontinuous interaction (i.e., interruption and 
return) with high discriminatory power.

For classification rule induction, we skipped users who had missing values for some of the questionnaire 
items: 826 users were retained (452 with Return = Yes , 364 with Return = No).

Classification rule induction is based on the a priori algorithm for association rule discovery, first intro-
duced in  199350: these rules have the form “IF B THEN H”, or equivalently B → H , where the rule antecedent 
B consists of features, i.e. (item, value range) pairs, connected by a logical operator like “AND” (denoted as “&” 
or “ ∧”), while the rule consequent H contains the class to be  predicted51. Since we were mainly interested in 
interruption and return, we induce rules for Return = Yes, whereupon the features are the answers to the items 
of the MiniTF and TSCHQ.

Conventional classification rules discovery algorithms are restricted to non-numerical data only. Rules involv-
ing numerical features are supported by the HotSpot rule discovery  algorithm52. In our study, we use the Inter-
active Medical Miner  software53–55, which supports both conventional classification rules and HotSpot rules.

Rule discovery algorithms are typically evaluated on support(·) , precision(·) and lift(·) , which are defined as 
 follows56:

• support(B → H = P({B,H}) , i.e., the likelihood of observing the antecedent B and the consequent H together
• precision(B → H) =

support(B→H)

support(B)



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:22459  | https://doi.org/10.1038/s41598-020-79527-0

www.nature.com/scientificreports/

• lift(B → H) =
P(H|B)
P(H)  , where lift values of less than 1 indicate that the consequent counteracts with the ante-

cedent, the value of 1 indicates that the consequent is independent of the antecedent; hence, we concentrate 
on values larger than 1.

For our study, we set the support lower boundary to 1% and the maximum rule length to 2. We further con-
strained the rule induction process so that the maximum number of child rules derived from a rule is 800, the 
minimum gain in precision is 0.01. We retained only rules with a p-value of less than 0.05 (without correction 
for multiple testing). These thresholds already led to a substantial reduction of the set of induced rules that are 
subjected to further inspection.

Software for individual analysis tasks. Following packages of the statistical software “R”57 were used for 
most of the analysis:  rpart58,  rattle59 and  rminer49.

Results
We used D[1292] to identify patterns of interaction (RQ1), to predict adherence on the basis of the first days of 
interaction (RQ2), and to explain the discontinuation of interaction on the basis of static data (RQ3).

RQ1 on D[1292]: patterns of interaction duration. Figure 1 shows high-level patterns of interaction 
with the mHealth app in the form of histograms. The left-hand part of the figure depicts the distribution of 
interaction duration among the TYT users. The right-hand part of the figure condenses the previous histogram 
by counting the number of users who have at least one, two, ..., and τearly + 1 EMA entries. It is stressed that 
since we defined an “EMA entry” as a day in which an EMA recording was made, counting days is equivalent to 
counting EMA entries.

As expected, the number of users who entered EMA data more than once decreased quickly, but there were 
some users with a substantial number of EMA entries (see right area of the plot in the left-hand part of Fig. 1). 
852 users (230f/592m/30u) had more than one day with EMA entries. This is sufficient for all time series clas-
sification algorithms to learn on, except one (ST). ST needs at least three days of data as we defined the time 
series. This means that there must be at least two EMA entries in total, one of which is not on the first day and 
one more entry at a third day.

The decrease in the number of users slows down when moving from a minimum of two EMA entries to a 
minimum of three EMA entries: more than 42% of the users had an interaction duration of three or more days, 
independently of the interaction continuity.On the other hand, 280 users entered EMA data at least 10 times 
(see right area of Fig. 1).

RQ2 on D[1292:852]: predicting interaction continuity from the early interaction data. For 
each user u, we firstly computed the value of FirstDaysu . Then, setting the horizon of observation to N = 30 
days, we checked for each u with a FirstDays of less than N (i.e., for each user who had interrupted the interac-
tion) whether this user returned again within the N days ( Returnu = Yes ) or not ( Returnu = No ). For “early 
interaction”, we set the cut-off τearly equal to 9 days. This means that we made no distinction among users with 
FirstDays = τearly + 1, τearly + 2, . . . ,N.

Figure 1.  Two histograms of interaction duration on D[1292:852]: The number of users who recorded a given 
number of EMA entries decreases rapidly as this number increases above 1 (left-hand part); the number of users 
who recorded a given number of EMA entries as minimum decreases more slowly from 1 towards 10 (right-
hand part).
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Interplay between the value of FirstDays and the likelihood of Return. The interplay between the value of First-
Days and the value of the dichotomous variable Return is depicted in Table 2.

A cell in Table 2 contains the numbers of users with FirstDays = 1, 2, . . . τ . In particular, the first value (for 
Return = No ) refers to the set of users that interacted without interruption and then gave up, whereupon their 
interaction duration is also equal to their FirstDays value. The second value refers to the users who interrupted 
after FirstDays but then returned to the app at a later time point ( Return = Yes).

Since a user u may decide to answer only some of the EMA items, the value of FirstDaysu,j may vary with 
the EMA item j = 1 . . .KEMA . For example, the column for FirstDays = 2 (see 3rd column of Table 2) shows 
that 87 users answered q7 for the first and second day, and then stopped (for q7, see last row of the table), while 
only 86 users answered q6 for the first 2 days before stopping (see row previous to the last one). Similarly, after 
2 days, 100 users interrupted but then returned to the app to answer q7 again; for q6, only 96 users returned. 
These differences are not substantial though. In contrast, there are large differences in the values across columns: 
the number of users that interrupted after FirstDays days drops quickly; from more than 150 for FirstDays = 1 
to less than 5 for FirstDays = 6 . The number of users who did not return after FirstDays days ( Return = No ) 
increases from FirstDays = 1 to FirstDays = 2 , and then starts decreasing slowly. Hence, as the value of FirstDays 
increases, the likelihood that the user will quit altogether becomes higher than the likelihood of interrupting 
and then coming back again.

Influence of EMA items on classification quality. For an N = 30 days long observation period, with a cut-off for 
“early interaction” τearly set to 9 days, for each EMA item j = 1, . . . ,KEMA , and for each of the 13 classification 
algorithms, we induced one model per FirstDays = 1, 2, . . . , τ and one for FirstDays ≥ τ + 1 . Since KEMA = 7 , 
this resulted in 7× 10 = 70 models for each of 11 out of the 13 algorithms. Algorithm EE (the elastic ensemble) 
requires time series with at least two time points, while algorithm ST requires at least three time points, so we 
built fewer models accordingly.

For accuracy improvement over the prior distribution of the majority class, we took the prior of the major-
ity class for FirstDays = 6 as a basis, which is 92% for most of the EMA items: the maximal improvement is 
100%− 92% = 8% which led to τimprove = 8 percentage units. The original accuracy values are part of the Supple-
mentary Material, namely “Supplementary B” Table 2 (first 6 algorithms) and Table 3 (remaining 7 algorithms).

Table 3 depicts the FirstDays values and EMA items for which some models achieved a quality improvement. 
There was no improvement for the FirstDays = 1, 5, 6, 7, 8, 9 , i.e., for the strata with a very skewed distribution 
towards either of the two Return values. Despite the fact that no algorithm was tuned towards skew, the dedicated 
time series classification algorithms, as well as RotF, NB, and ED did achieve quality improvements of at least 
τimprove percentage units.

Table 3 shows that some EMA items contribute well to class separation. EMA item “q5” exhibits the most 
important contribution, since 11 out 13 models on this item can separate well between Return = Yes and 
Return = No at very early stages, namely for an interruption after FirstDays = 2, 3 or 4 days. EMA item “q1” 
also contributes greatly to separation, since 7 of the models on this item can separate between returning and 
non-returning users, again for FirstDays = 2 , 3, 4. Models on EMA item “q2” contribute to separation for 
FirstDays ≥ 10 . There are models on EMA items “q4”, “q6” and “q7” that lead to satisfactory separation, but 
only for few FirstDays values, while models on EMA item “q3” did not contribute to good model separation.

Table 2.  For each value of FirstDays, number of participants who did not vs. did return within the horizon of 
N = 30 days, sorted by EMA item; the likelihood of the majority class for each value of FirstDays and EMA 
item is shown in parentheses.

FirstDays = 1 2 3 4 5 6 7 8 9 ≥ 10

EMA item# Number of participants with Return = No (left) vs. Return = Yes (right)

q1
22 vs. 158 87 vs. 97 58 vs. 35 48 vs. 22 40 vs. 12 34 vs. 3 32 vs. 2 34 vs. 3 52 vs. 4 58 vs. 41

(0.88) (0.53) (0.62) (0.68) (0.77) (0.92) (0.94) (0.92) (0.93) (0.58)

q2
26 vs. 155 82 vs. 97 57 vs. 35 51 vs. 22 37 vs. 12 33 vs. 3 33 vs. 2 33 vs. 3 53 vs. 3 58 vs. 41

(0.85) (0.54) (0.62) (0.7) (0.75) (0.92) (0.94) (0.92) (0.93) (0.58)

q3
28 vs. 154 84 vs. 97 56 vs. 34 47 vs. 22 39 vs. 12 34 vs. 3 32 vs. 2 34 vs. 4 52 vs. 3 58 vs. 40

(0.85) (0.54) (0.62) (0.68) (0.76) (0.92) (0.94) (0.89) (0.95) (0.59)

q4
24 vs. 153 86 vs. 99 57 vs. 36 46 vs. 22 42 vs. 12 33 vs. 3 32 vs. 2 33 vs. 3 56 vs. 3 54 vs. 41

(0.86) (0.53) (0.61) (0.68) (0.78) (0.92) (0.94) (0.92) (0.95) (0.57)

q5
26 vs. 153 90 vs. 96 52 vs. 36 47 vs. 22 38 vs. 12 36 vs. 2 32 vs. 2 33 vs. 3 53 vs. 3 56 vs. 41

(0.85) (0.52) (0.59) (0.68) (0.76) (0.95) (0.94) (0.92) (0.95) (0.58)

q6
30 vs. 155 86 vs. 96 52 vs. 34 46 vs. 22 38 vs. 12 33 vs. 3 37 vs. 2 33 vs. 3 52 vs. 4 55 vs. 40

(0.88) (0.53) (0.6) (0.68) (0.76) (0.92) (0.95) (0.92) (0.93) (0.58)

q7
26 vs. 155 87 vs. 100 57 vs. 35 46 vs. 21 37 vs. 11 34 vs. 4 35 vs. 1 33 vs. 3 52 vs. 3 56 vs. 40

(0.85) (0.53) (0.62) (0.69) (0.77) (0.89) (0.97) (0.92) (0.95) (0.58)



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:22459  | https://doi.org/10.1038/s41598-020-79527-0

www.nature.com/scientificreports/

Hence, we conclude that the responses on the EMA items “q1” (tinnitus perception) and “q5” (arousal) in 
the first days of interaction can give indication of whether the user will discontinue interaction or return after 
some time.

RQ3 on D[1292:842]: user attitude at registration (MiniTF) predicts interaction continu-
ity. We have induced classification rules on MiniTF to identify the static properties characteristics of the users 
who returned after interrupting their use of the mHealth app (Return = Yes). Ten of the users in D[1292:852] 
were excluded because their time series started at the end of the export, as explained under “Materials”.

The induced classification rules for Return = Yes on MiniTF are depicted in Table 4. They are sorted based 
on the descending value of lift. By definition of lift, a subpopulation (rule antecedent) with a lift of more than 1.0 
is more likely to return after interruption ( Return = Yes ) than is the case for the whole population under study. 
If, additionally, the precision is equal to 1.0, then the consequent ( Return = Yes ) holds for all users described 

Table 3.  Models with an improvement of at least τimprove percentage units over accuracy ( Return = Yes/No ) 
in dependence of FirstDays value (columns) and EMA item (row), for a horizon of observations of 30 days and 
a cut-off τearly = 9 days.

Algorithm EMA item

FirstDays

2 3 4 ≥ 10

ST

q1 – 0.71 × ×

q5 – × 0.83 ×

q6 – 0.68 × ×

TSF
q1 0.61 × × ×

q5 0.61 0.69 × ×

EE q5 0.66 × × ×

MSM q5 0.63 × × ×

CIDDTW

q1 0.61 × × ×

q5 0.63 × × ×

DTDC

q1 0.62 × 0.78 ×

q2 × × × 0.67

q5 0.61 × × ×

DDDTW

q1 0.61 × × ×

q5 0.61 × × ×

DTW
q2 × × × 0.67

q5 0.63 × × ×

RotF
q1 × 0.71 × ×

q5 × 0.69 × ×

NB

q4 × × × 0.66

q5 × 0.69 × ×

q7 × 0.71 × ×

ED

q1 0.62 × 0.78 ×

q2 × × × 0.67

q5 0.63 × × ×

Table 4.  Classification rules for Return = Yes on MiniTF with the following parameter settings: support 
lower boundary = 0.01 , maximum rule length = 2 , maximum number of child rules = 800 , minimum gain in 
precision = 0.01 , p-value < 0.05 (without correction for multiple testing). The categorical items are encoded 
with 2 = True , 1 = Partially True, and 0 = False.

Classification rules Support Precision Lift

Return = Yes

(1) tf5 = 2 & tf10 = 0 0.01 1 1.81

(2) tf5 = 2 & tf1 = 1 0.06 0.74 1.34

(3) tf8 = 2 & tf10 = 1 0.05 0.73 1.32

(4) tf8 = 0 & tf10 = 0 0.05 0.71 1.29

(5) tf8 = 0 & tf11 = 0 0.14 0.66 1.2

(6) tf5 = 2 & tf2 = 1 0.11 0.66 1.2

(7) tf7 = 2 & tf6 = 1 0.15 0.64 1.16
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by the antecedent, i.e., all users of this subpopulation will return to using the app after they interrupted. This is 
the case for the first rule in Table 4.

By the nature of MiniTF, a value of 2 (True) for some questions indicates a worry of the users. Three of the 
rules depicted on Table 4, namely the 1st, 2nd, and 6th, refer to users with worries on the effects of tinnitus on 
their physical health ( tf5 = 2 ). The 3rd rule refers to users who have difficulties in sleeping ( tf8 = 2 ), while the 
7th one refers to users whose tinnitus signal is so disturbing that they cannot ignore it ( tf7 = 1 ). In contrast, the 
4th and the 5th rules refer to users that do not have difficulties in sleeping ( tf8 = 0 ), and have a more positive 
attitude towards the disease ( tf10 = 0 or tf11 = 0 or both).

These rules indicate that users who return after the first interruption do not constitute a homogeneous sub-
population, but vary substantially in how they experience their tinnitus. Nonetheless, concerns about physical 
health, difficulties with sleep, and disturbance through tinnitus loudness, as captured by MiniTF, are predictive 
of the continuation of the interaction after the first interruption.

RQ3 on D[1292:842]: interaction continuity does not depend on MiniTF scores. Only 697 of the 
users in D[1292:842] interacted with the mHealth app for more than one day. From the 842 users, 465 returned 
after the first interruption ( Return = Yes ), and 377 did not ( Return = No ). The juxtaposition of the scores for 
the two user groups (cf. Table 5) indicates that there is no difference in the likelihood of observing a specific 
score range within each group.

RQ3 on D[1292:816]: some user characteristics captured in TSCHQ are associated with inter-
action continuity and duration. We induced classification rules for Return = Yes onto the answers to the 
TSCHQ questionnaire, which is more detailed than MiniTF and also captures sociodemographics and physi-
ological aspects of tinnitus, next to tinnitus perception. To assess the association of the TSCHQ answers with 
the duration of interaction, we also used the NumDays variable, which counts the total days of interaction with 
TYT, independently on whether or not they were within a 30-days horizon of observation. As described in 
“Materials”, 26 more users were excluded from D[1292:842] because of missing values for the variables age or 
age at tinnitus onset.

Table 6 shows the induced classification rules, organized into two rule sets: the rule set in the upper part of 
the Table encompasses rules characterized by the users’ answers at registration, while the rule set in the lower 
part of the Table encompasses rules that include the NumDays from the interaction data. Within each group, 
the rules are sorted on lift descending, then on precision and then on support. It is noted that due to the com-
putation algorithm for HotSpot rules and due to the constraint on rule length, some of the induced rules may 
overlap: Rules 1) and 2) refer to the same users, and rules 3) and 4) are likely to refer to the same persons, too.

The users in the rule set in the upper part of the Table 6 constitute small groups of elderly users (ageAtReg-
istration > 65 for all antecedents). The first four rules refer to elderly female users whose tinnitus was caused 
by a trauma (rule 3) and without further incidents of tinnitus in the family history (rule 4). Rule 5) refers to 
users whose tinnitus does not vary during the day, while rule 6) refers to users that have had tinnitus for more 
than a year. These elderly users are very likely to return after an interruption in their interaction—as indicated 
by rule 12).

The antecedents in the rule set in the lower part of the Table 6 refer to NumDays of interaction. The rules 
indicate that the users who return after an interruption constitute small and very different groups: among those 
who interact for more than 9 days are young users (of 27 years or less, see rule 7), and users of at least 59 years of 
age (since they were 58 when the tinnitus started, see rule 9). Some users had tinnitus after a change in hearing 
( onsetrelation = 4 , see rules 8 and 10) and others after a head trauma ( onsetrelation = 3 , see rule 15).

The two rule sets in combination indicate that there is a homogeneous group of elderly users whose tinnitus 
has been caused by trauma and who interact with the app for more than 2 days and perhaps much longer (see 
rule 15). The younger users constitute less homogeneous groups.

Discussion
There are a large number of investigations on smartphone-based EMA for psychosomatic disorders. Linardon 
et al. point out that “although the efficacy of smartphone-delivered interventions for mental health problems is 
emerging, randomized controlled trials (RCTs) of smartphone interventions are characterized by high rates of 
attrition and low adherence”, and they report a “mean meta-analytic study attrition rate [of] 24.1% (95% CI [19.3, 
29.6]) at short-term follow up”60. Our findings on the duration of interaction among the participants in D[1292] 

Table 5.  MiniTF scores at registration for 842 users who returned after the first interruption and those that do 
not.

MiniTF score n Return = Yes Return = No

0–7 103 56 47

8–12 170 93 77

13–18 284 164 120

19–24 221 111 110

NA 63 41 23
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are even more severe, since only 852 of the TYT users (ca. 68%) had more than one EMA. This is close to the 
feasibility study of Henry et al. on tinnitus  management23, where it was observed that the app usage drastically 
dropped after the first day of interaction.

Since our analysis is on observational real life data rather than on data from participants recruited for a study, 
the actual values are not comparable, but the insight remains: a non-negligible subset of users gives up very early 
on, while those who continue recording their EMA do so with deteriorating intensity.

In an analysis on adherence to EMAs performed by Colombo et al.61 for depression, it was found that eleven 
out of thirteen analyzed studies reported technical problems, data loss or change in diagnosis as some of the 
reasons for participants to lose interest in recording their EMAs. The TYT users were not participants of a 
study, so we did not collect explicit feedback from them. However, our results from the analysis of the EMA 
themselves indicate that the responses of the users to some of the EMA items during the first two, three and four 
days of continuous interaction are predictive of whether the user will return after stopping the interaction or 
not: item q5 refers to arousal, a mediator of tinnitus  distress25, item q1 refers to the perception of tinnitus at the 
moment of interaction, and item q6 refers to stress. This agrees partially with the findings of Courvoisier et al.62, 
who found a small but still significant correlation between compliance of tinnitus patients and their mood, as 
recorded in EMAs.

The results of the analysis of the TSCHQ questionnaire indicate a higher likelihood of adherence 
( Return = Yes ) among older female users (aged 67 and 68). This agrees with the finding that female participants 
show a higher level of compliance to an EMA monitoring  protocol63. However, it must be stressed that the female 
subpopulation in our data was very small.

The results of the analysis of the MiniTF questionnaire indicate no associations between adherence and con-
dition at registration; an increased likelihood of adherence occurs both among users with worries about their 
health and among users with a more positive attitude at the moment of registration. Stratification of users on 
MiniTF scores does not show differences between users who return after an interruption and those that do not, 
except that there are substantially more of the former than the latter. Hence, we found no indication that user 
adherence can be predicted before the start of interaction with the app.

A threat to validity of our results is that the thresholds associated with adherence are ad hoc. Moreover, the 
number of users who interact only for one day with the mHealth app is very large and influences the model 
quality. Further, an independently identified software bug (different scales of Android and iOS) in the record-
ing of EMA items q4 (mood) and q5 (arousal) may have suppressed the contribution of these two items to the 
prediction of adherence. The rapid deterioration of interaction duration and the heterogeneous patterns of 
interaction continuity indicate that the very first days of interaction with the app are decisive for user adherence. 
In the investigated version of TYT, the recording of EMA is a user activity that does not trigger any feedback. 
Different forms of feedback, e.g., praise in response to achievements or pointers to information sources, may 
have led to higher adherence.

Although we found no indication that adherence can be predicted before interaction with the app starts, we 
found that the mood of the users in the first few days can predict further interaction and that adherence deterio-
rates quickly. Hence, designers of smartphone-based EMA should consider ways of sustaining and stimulating 
the participant-app-interaction from the very beginning. Services (e.g., personalized feedback), entertainment 
(e.g., gamification) or social features are ways of stimulating  interactions64–66. For example, within the Join Action 
CHRODIS-PLUS, the effects of tips for participants of a study were investigated using a follow-up version of 
TYT in the limited setting of a pilot study.

Table 6.  Classification rules for Return = Yes over TSCHQ and NumDays with the following parameter 
settings: support lower boundary = 0.01 , maximum rule length = 2 , maximum number of child rules = 800 , 
minimum gain in precision = 0.01 , p-value < 0.05 (without correction for multiple testing).

Classification rules Support Precision Lift

(1) ageAtRegistration > 68 & sex = 1 0.01 1 1.81

(2) ageAtRegistration > 67 & sex = 1 0.01 1 1.81

(3) ageAtRegistration > 67 & onsetrelation = 3 0.01 1 1.81

(4) ageAtRegistration > 65 & familyHistory = 1 0.01 1 1.81

(5) ageAtRegistration > 68 & variability = 1 0.02 0.92 1.66

(6) ageAtRegistration > 68 & ageAtOnset ≤ 68 0.01 0.92 1.66

(7) NumDays > 9 & ageAtRegistration ≤ 27 0.02 1 1.81

(8) NumDays > 3 & onsetrelation = 4 0.02 1 1.81

(9) NumDays > 9 & ageAtOnset > 58 0.01 1 1.81

(10) NumDays > 9 & onsetrelation = 4 0.01 1 1.81

(11) NumDays > 9 & NumDays ≤ 10 0.03 0.95 1.72

(12) NumDays > 2 & ageAtRegistration > 68 0.02 0.93 1.68

(13) NumDays > 5 & familyHistory = 1 0.1 0.91 1.64

(14) NumDays > 9 & familyHistory = 1 0.07 0.9 1.62

(15) NumDays > 20 & onsetrelation = 3 0.05 0.88 1.59
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Being momentary assessments, EMA can deliver more detailed information on a study participant’s condition 
and at much shorter intervals than is possible during the interim visits performed regularly in a clinical study. 
Our results show that this benefit comes at a cost though, since clinical study designers must also put measures in 
place to sustain adherence during the whole time of the study. This demands a tighter integration of the clinical 
study design with the design of the participant-app-interaction. For example, in the recently started Horizon 
2020 project UNITI on the “Unification of treatments and Interventions for Tinnitus patients”, EMA-based 
monitoring of participants’ condition is planned to be conducted as part of a multi-armed randomized clinical 
trial, whereupon adherence towards the app will be promoted through educational services.
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