
 

 

 

 
 

Relationships of local abundance of vascular plants  
with range-wide niche characteristics,  

and the role of functional traits 
 
 

 
 

Dissertation 
 

zur Erlangung des 
Doktorgrades der Naturwissenschaften (Dr. rer. nat.) 

 
der 

 
Naturwissenschaftlichen Fakultät I – Biowissenschaften – 

 
 

der Martin-Luther-Universität  
Halle-Wittenberg, 

 
 

vorgelegt 
 

von Frau Maria Sporbert 
 

geb. am 30.07.1987 in Halle (Saale) 
 
 

 
 
GutachterInnen: 
Prof. Dr. Helge Bruelheide 
Prof. Dr. Isabell Hensen 
Prof. Dr. Holger Kreft 
 
Datum der Verteidigung: 06.04.2021 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright notice  

Chapters 2 to 4 have been either published in or submitted to international journals. Copyright 

is with the authors. Only the publishers and authors have the right for publishing and using the 

presented material. Reprint of the presented material requires the publishers’ and authors’ 

permissions. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Who can explain why one species ranges widely and is very numerous,  

and why another allied species has a narrow range and is rare?” 

 

    Charles Darwin, On the Origin of Species (1859) 
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Summary 

In plant ecology abundance is a measure of spatial density of individuals and species 

performance. At the interspecific level, there is an observed tendency of widespread 

species to also occur in higher densities compared to species restricted in their 

geographic distribution. However, at the intraspecific level, abundance patterns found 

at fine spatial scales are less clearly related to occurrence patterns at broad spatial 

scales, and quite often species are found at low abundance at the local scale yet are 

widespread at the global scale. Understanding spatial patterns of species abundance 

is of interest for applied issues such as the identification of suitable habitat conditions. 

Therefore, it remains crucial to understand whether species local abundances follow 

the same pattern as the species broad-scale distribution.  

Plant species functional traits are used as proxies for species dispersal abilities, 

tolerance of environmental conditions and competitiveness and have been linked to 

species commonness and rarity on both, local and broad geographic scale. 

Biodiversity databases, which are a fundamental resource for studying and 

understanding macroecological patterns in species distribution, often suffer from 

sampling gaps or biases that can limit their applicability in ecological research. 

Therefore, a representative sampling coverage in both geographic and climatic space 

is crucial for reliable analyses of distribution patterns. 

In this thesis, broad-scale range attributes were calculated based on Eurasian range 

maps for more than 500 species and combined with fine-scale abundance information 

from more than 800,000 vegetation plots and 20 functional traits that are expected to 

capture the essence of plant life forms and functions.  

To support my analyses, I developed the Dynamic Match Coefficient, a measure to 

quantify the sampling coverage of species ranges by vegetation plots. I detected a 

positive correlation between the observed sampling coverage of species ranges by 

vegetation plots and the expected sampling coverage, based on null models, for both 

the geographic space and the climatic space. In my analyses I found no clear support 

for three macroecological theories that relate species local abundance with (1) their 

broad-scale distributions in geographic and climatic space, (2) the location of sampling 

plots within a species’ range or (3) the predicted climatic suitability for species at the 

plot location. This indicated that, across entire species ranges, the distribution of 
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abundance is highly heterogenous, because local drivers strongly influence plant 

species growth performance across their global range.  

Finally, species local abundances were much more strongly related to traits than to 

geographic distribution attributes. Although no clear relationship could be found in 

species patterns of local abundance with broad-scale distribution, traits related to the 

leaf economics spectrum were found to be important for species abundance and 

occurrence at both spatial scales. This finding emphasizes the general importance of 

resource acquisition strategies for the abundance and distribution of vascular plant 

species. 
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Zusammenfassung 

In der Pflanzenökologie ist die Abundanz ein Maß für die räumliche Vorkommensdichte 

von Individuen und die individuelle Leistung einer Art. Auf interspezifischer Ebene 

zeigen weitverbreitete Arten eine Tendenz zu höherer Vorkommensdichte im Vergleich 

zu jenen Arten mit begrenzter geographischer Verbreitung. Auf intraspezifischer 

Ebene hingegen, scheinen lokale Abundanzmuster weniger deutlich mit großräumigen 

Verbreitungsmustern in Beziehung zu stehen. So weisen Arten auf lokaler Skala 

oftmals eine geringe Abundanz auf, können auf großräumiger Skala hingegen weit 

verbreitet sein. In der praktischen Anwendung sind Abundanzmuster beispielsweise 

für die Identifikation von zukünftig geeigneten Schutzgebieten von Interesse. Daher ist 

es wichtig zu verstehen, ob und inwieweit die lokale Abundanz einer Art dem Muster 

ihrer großräumigen Verbreitung folgt.  

Funktionelle Merkmale von Pflanzen, die als ein Maß für deren 

Ausbreitungsfähigkeit, ihrer Toleranz gegenüber Umweltbedingungen und 

Konkurrenzfähigkeit angesehen werden, wurden in Verbindung mit der Häufigkeit und 

Seltenheit einer Art, sowohl auf lokaler als auch auf großräumiger Skala, gebracht. 

Biodiversitätsdatenbanken, die eine fundamentale Grundlage für Untersuchungen und 

das Verständnis makroökologischer Muster in der Verbreitung von Arten sind, weisen 

oftmals Datenlücken oder Inhomogenitäten in der räumlichen Verteilung von 

Stichproben auf, die ihre Anwendbarkeit in der ökologischen Forschung einschränken 

können. Aus diesem Grund ist eine repräsentative Abdeckung von Stichproben im 

geographischen und klimatischen Raum wichtig, um Verbreitungsmuster verlässlich 

analysieren zu können.  

In dieser Arbeit nutzte ich Verbreitungskarten um das großräumige Vorkommen von 

mehr als 500 Gefäßpflanzenarten im eurasischen Raum zu bestimmen. Diese 

Informationen verknüpfte ich mit lokalen Abundanzdaten aus mehr als 800,000 

Vegetationsaufnahmen und mit Informationen zu 20 funktionellen Merkmalen, von 

denen angenommen wird, dass sie die Lebensformen und Funktionen von Pflanzen 

widerspiegeln.  

Um meine Analysen zu stützen, habe ich den Dynamic Match Coefficient entwickelt, 

ein Maß, um die Abdeckung der Artareale durch Vegetationsaufnahmen zu 

quantifizieren. Ich konnte einen positiven Zusammenhang zwischen der realen 

Abdeckung der Artareale durch Vegetationsaufnahmen und der erwarteten 
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Abdeckung, die mittels Null-Modellen berechnet wurde, sowohl im geographischen als 

auch im klimatischen Raum finden. Jedoch fand ich keine einheitliche Bestätigung zu 

drei getesteten makroökologischen Theorien, die die lokale Abundanz in Beziehung 

setzen mit (1) der großräumigen Verbreitung einer Art im geographischen und 

klimatischen Raum, (2) der geographischen Lage einer Vegetationsaufnahme 

innerhalb des Areals, und (3) der vorhergesagten klimatischen Eignung am Ort der 

Vegetationsaufnahme. Diese Ergebnisse deuten darauf hin, dass die lokale Abundanz 

einer Art über ihr gesamtes Verbreitungsgebiet von sehr komplexen Einflüssen 

bestimmt wird.  

Des Weiteren hat sich gezeigt, dass die lokale Abundanz einer Art stärker als ihre 

großräumige Verbreitung in Zusammenhang mit funktionellen Merkmalen steht. 

Obwohl kein eindeutiger Zusammenhang zwischen Mustern der lokalen Abundanz und 

der großräumigen Verbreitung gefunden wurde, zeigte sich, dass jene funktionellen 

Merkmale, die dem ‚leaf economics spectrum‘ zugeordnet werden, eine signifikante 

Bedeutung für die Abundanz und die großräumige Verbreitung der Arten auf beiden 

räumlichen Skalen zeigen. Dieses Ergebnis verdeutlicht, dass Kombinationen 

funktioneller Merkmale, die die Lebensstrategien von Arten charakterisieren, eine 

generelle Bedeutung für die Verbreitung von Gefäßpflanzenarten haben.  
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Chapter I 

General Introduction 

 

Biogeography aims at discovering, describing, and understanding geological, 

environmental and historic factors that determine the geographic distribution of 

organisms and biodiversity (Lomolino, Riddle, & Whittaker, 2007). In macroecological 

frameworks, one key goal is to identify the processes that underlie the broad-scale 

patterns by applying non-experimental and statistical investigations (Brown, 1995). 

Plant species abundance is understood as the result of species’ growth and 

demographical performance and is influenced by biotic and abiotic factors acting at the 

local scale (Peterson et al., 2011). Analyses of species abundance patterns have been 

used to develop hypotheses about applied issues such as potential responses to 

climate change or the identification of suitable future locations for natural reserves 

(McGill & Collins, 2003). At the interspecific level, there is an observed tendency of 

widespread species to also occur in higher densities compared to species that are 

restricted in their geographic distribution (Brown, 1984). However, at the intraspecific 

level, abundance patterns found at fine spatial scales are less clearly related to 

occurrence patterns at broad spatial scales, and quite often species are found at low 

abundance at the local scale yet are widespread at the global scale (Rabinowitz, 1981; 

Murray & Lepschi, 2004). Most conservation strategies are implemented at the local 

scale but follow guidelines based on predictions that were made at the global or 

regional scale (Guerrero, McAllister, Corcoran, & Wilson, 2013). Therefore, it remains 

crucial to understand whether species local abundance follows the same pattern as 

the species broad-scale distribution and, following from this assumption, is mainly 

driven by the same predictor variables such as climatic conditions.  

Plant functional traits that are related to productivity, competitive ability, dispersal, 

regeneration and persistence have been linked to species commonness and rarity 

(Gaston & Kunin, 1997). It remains a central question in macroecology to understand 

to what degree functional traits affect species local abundance and broad-scale 

distribution (McGill, Enquist, Weiher, & Westoby, 2006). It has been stated that studies 

carried out at a broader scale tend to be more representative of the global range extent 

of species (Sagarin, Gaines, & Gaylord, 2006; Pironon et al., 2017). Therefore, it would 

be crucial to investigate all the above-mentioned relationships based on the species’ 
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complete distribution range, and at the same time, achieve representativeness from 

local site measurements. 

For this dissertation I had the opportunity to combine and analyse data on vascular 

plant species distribution throughout their Eurasian range with information on local 

abundance in vegetation plots all over Europe with measurements on functional traits 

that were collected from globally distributed sites and studies. All this information, 

nowadays stored in biodiversity databases and digitally available, is the long-term 

effort of researchers that went to the field, carried out vegetation surveys, collected 

plant material, analysed samples in the laboratory and conducted intense literature 

research. I acknowledge this effort which enabled me to conduct a cross-scale study 

on abundance distribution patterns and the effect of functional traits on the local 

abundance and broad-scale distribution of vascular plant species. 

 

Broad-scale distribution metrics: geographic ranges and climatic niches 

 

Over broad geographical extents, expert-drawn range maps are commonly the primary 

source of species distribution data (Hurlbert & Jetz, 2007). The availability of extensive 

data sets on species occurrences allows the investigation of macroecological patterns, 

such as range sizes (Gaston & Fuller, 2009). A measure of species’ geographic range 

size is the area of occupancy (AOO), defined as the area of a species’ actual 

occurrence within the species extent of occurrence (EOO, i.e. the area which lies within 

the outermost geographic limits to the occurrence of a species) (Gaston, 1991; Gaston 

& Fuller, 2009). 

Following Hutchinson (1957), the fundamental niche is the sum of all environmental 

factors that constrain a species’ performance and survival, conceived in a 

multidimensional hypervolume, comprising also unpopulated but suitable 

environmental conditions. As a subset of the fundamental niche, a species’ realized 

niche is the range of abiotic and biotic conditions under which a species actually 

occurs, thereby taking into account the effects of species interactions and dispersal 

limitation (Soberón, Jiménez, Golubov, & Koleff, 2007; Colwell & Rangel, 2009). 

The niche is a central conception in ecology to describe a species’ occurrence in 

environmental space (Guisan & Thuiller, 2005; Soberón et al., 2007; Colwell & Rangel, 

2009). The species range is conceived as a map, of which each occurrence is 

characterized by geographical coordinates. The environmental conditions at these 
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coordinates define the corresponding niche space and allow for reciprocal projections 

between the geographic distribution of a species and its niche. However, the rules that 

define this duality, proposed by Hutchinson (1978), are not proportionally reciprocal. 

Whereas each point in the geographic space corresponds to exactly one point in niche 

space, a single point in niche space may correspond to many in the geographic space. 

With this, the duality between a species’ realized climatic niche and geographic range 

is a suitable way to analyse biogeographical distributions in relation to spatial climatic 

patterns (Colwell & Rangel, 2009). 

 

Patterns of local abundance throughout species distribution ranges 

 

Species local abundances result of species populations growth and demographical 

performance and depend on factors like habitat suitability, the combination of 

environmental conditions and biotic interactions such as competition, operating at the 

local scale of species assemblages (Peterson et al., 2011; Staniczenko, 

Sivasubramaniam, Suttle, & Pearson, 2017). Within a species’ geographic range, local 

abundance is often highly variable, and in most species, abundance is high at only a 

few sites and low at most remaining sites (Murphy, VanDerWal, & Lovett-Doust, 2006). 

These ‘somewhere-abundant’ species exhibit a right-skewed abundance frequency 

pattern, a common pattern in plant community ecology (McNellie, Dorrough, & Oliver, 

2019). 

Species can be rare or common within a local plant community. Similarly, some 

species have restricted distribution ranges while other species are widely distributed 

(Rabinowitz, 1981; Gurevitch, Scheiner, & Fox, 2002). Several macroecological 

theories relate species local abundance to their broad-scale distributions in geographic 

and climatic space and three of them, which are highly debated, have been 

investigated in this thesis. 

The abundance-range size relationship states that locally rare species tend to be 

more narrowly distributed, whereas locally abundant species tend also to be more 

widespread (Brown, 1984; Gaston & Blackburn, 2008). Under the assumption that local 

abundance is driven by the same climatic factors as the species’ geographic 

distribution, one would expect that species that tolerate a higher variability of climatic 

conditions are both locally abundant and widespread throughout the geographic range 
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space. Although this relationship has been widely postulated, it has received only 

mixed empirical support (Gaston, Blackburn, & Lawton, 1997; Guisan & Thuiller, 2005). 

The abundance-range centre relationship states that species performance (i.e. 

abundance) decreases from the centre to the edge of the geographic range (Brown, 

1984; Hengeveld & Heck, 1982). Based on the assumption that species ranges are the 

spatial representation of the distribution of their environmental requirements (i.e. the 

niche), this theory predicts habitat suitability to decrease from the centre to the edge 

of a species’ range. Subsequently, species abundance is expected to show the same 

distributional pattern. However, climatic conditions do not systematically follow 

geographic gradients, and in consequence, abundance might not systematically follow 

a geographical or climatic gradient from the centre to the edge of a species’ range 

(Hargreaves, Samis & Eckert, 2013; Pironon et al., 2017). 

Finally, the more recently proposed abundance-suitability relationship assumes 

species to show higher local abundance in environmentally more suitable areas, 

whereas they should achieve lower abundance in less suitable areas (Weber, Stevens, 

Diniz-Filho, & Grelle, 2017; Santini, Pironon, Maiorano, & Thuiller, 2019). Often, 

environmental suitability of a site is estimated by climate-based predictions from 

species distribution models (SDMs). The above-described abundance-range centre 

relationship serves as a basis for this ecological hypothesis (Van Couwenberghe, 

Collet, Pierrat, Verheyen, & Gégout, 2013). As species niches might show highest 

climatic suitability somewhere towards the edges and not in the very centre, the 

abundance-suitability relationship recognizes the non-reciprocal relationship between 

geographic and climatic gradients. 

 

The effect of plant functional traits on local abundance and broad-scale 

distribution 

 

Plant functional traits are valuable attributes that describe species morphological, 

physiological and life-history processes and their fitness and performance (Violle et al., 

2007). The plant functional space is reflected by trade-offs between trait constellations 

that separate slow-growing and fast-growing species (Diaz et al., 2004). The leaf 

economics spectrum spans from species with the potential for fast return on 

investments of nutrition and leaf dry mass on the one end (e.g. high nutrient 

concentration, low leaf dry mass investment per leaf area) to species with slow 
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potential rates of return on the other end of the spectrum (Wright et al., 2004). The 

global spectrum of plant form and function reflects a species’ life-cycle, contrasting 

species with small stature, small diaspores and short lifespan (i.e. non-woody) with 

long-lived and tall woody plant species (Diaz et al., 2016). 

Species functional traits are assumed to reflect the species’ ability to maximise 

fitness in response to abiotic and biotic conditions on both local and broad geographic 

scale (Suding et al., 2008). Traits are used as proxies for species dispersal abilities, 

tolerance of environmental conditions and competitiveness (Thompson, Moles, Auld, 

& Kingsford, 2011; Bohner & Diez, 2020; Kunstler et al., 2016) and have been linked 

to species commonness and rarity on both local and broad geographic scale. On both 

local and broad geographic scales, species with taller stature, as a proxy for a species’ 

competitive ability, were found to be more common and widespread than shorter 

species (Lavergne, Thompson, Garnier, & Debussche, 2004). Locally more abundant 

species were found to produce lighter and heavier seeds, while the contrasting pattern 

was encountered in widespread species that tended to produce heavier seeds in 

higher numbers (Hedge & Ellstrand, 1999; Kolb, Barsch, & Diekmann, 2006). 

Regarding species persistence, locally more abundant species have been found to be 

perennials rather than annuals and to be associated with clonal growth. In contrast, on 

a broad geographic scale, rare species are associated with clonal growth and longer 

life cycles, being shrubs rather than herbs (Eriksson & Jakobsson, 1998; Kelly & 

Woodward, 1996; Oakwood, Jurado, Leishman, & Westoby, 1993). 

Many studies investigated single traits instead of trait combinations or trait 

syndromes and found no unequivocal support for a relationship between functional 

traits with local abundance and broad-scale distribution (Diaz et al, 2016; Guo et al., 

2018). However, no single trait can completely describe a species’ ecological strategy 

(Winnemiller, Fitzgerald, Bower, & Pianka, 2015) and species patterns in local 

abundance and broad-scale distribution might rather be affected by different sets of 

traits (Marino et al., 2020). 

 

Advantages and limitations of biodiversity databases 

 

Biodiversity databases, e.g. the Global Biodiversity Information Facility (GBIF; 

Edwards, Lane, & Nielsen, 2000) or the Botany Information and Ecology Network 

(BIEN, Enquist, et al., 2009), are a valuable and fundamental resource for studying 
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and understanding macroecological patterns in species distribution (Meyer, Weigelt, & 

Kreft, 2016). Detailed information on the geographic occurrences of species are crucial 

for an effective conservation management and advances in ecological theory. 

However, biodiversity databases often suffer from sampling gaps or biases that can 

limit their applicability in ecological research. Uneven collection effort that may result 

in sampling bias includes the under-sampling of specific taxa (e.g. of rare species) or 

of specific geographical regions (e.g. due to limited physical accessibility of a site 

caused from terrain conditions or distance from a road (Zizka, Antonelli, & Silvestro, 

2020). Furthermore, site-selection bias, i.e. a preference for sites that are either 

densely populated, must be considered especially when working with species 

abundance data (Mentges, Blowes, Hodapp, Hillebrand, & Chase, 2020). 

At broad spatial scale, climate is one of the most important factors that shape 

species distribution (Woodward, 1987). Therefore, a representative sampling coverage 

in both geographic and climatic space is crucial for reliable distribution pattern analyses 

based on SDMs, which are highly sensitive to poor climatic sampling coverage 

(Fourcade, Engler, Rödder, & Secondi, 2014). However, until now only few studies 

have investigated how occurrence data are distributed in geographic and in climatic 

space (Bruelheide et al., 2019). 

For broad-scale abundance analyses over the entire range of a species, sampling 

coverage of plots from vegetation plot databases, such as sPlot (Bruelheide et al., 

2019) or the European Vegetation Archive (EVA, Chytrý et al., 2016), is important. A 

representative sampling coverage mainly depends on two factors: a sufficient sampling 

size and the even coverage of geographic and climatic gradients. Sampling coverage 

depends on the spatial resolution of the study side. Just by chance, sampling coverage 

will be higher towards a coarser spatial resolution, and therefore, the influence of 

sampling bias is related to spatial grain. Several studies have already investigated and 

developed tools to measure sampling biases in biodiversity databases (Meyer et al., 

2016; Zizka et al., 2020; Mentges et al., 2020). Other studies have assessed the 

completeness of biodiversity datasets at different spatial resolution in geographic 

space (Lobo et al., 2018; Marsh, Barwell, Gavish, & Kunin, 2018). However, studies 

and tools that consider quantity and quality of species-specific sampling coverage in 

geographical and climatic space are missing. 
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Thesis Objectives 

 

So far, the studies that investigated the relationships between species broad-scale 

distribution and local abundance with functional traits have focused on popular taxa, 

functional species groups and single traits. In contrast, in this study, I tested the 

relationships on a large group of herbaceous, dwarf shrub and shrub species over their 

full Eurasian distribution ranges and included trait syndromes in addition to single traits. 

For this purpose, I extracted species distribution maps from the Chorological 

Database Halle (CDH, E. Welk et al., unpublished data) to derive information on the 

geographic range size for 564 plant species. CDH stores information on species 

distribution ranges for more than 17,000 vascular plant species and expert-drawn 

range maps were compiled for 5,583 taxa based on national and floristic databases 

and maps from floristic literature (Tralau, 1969-1981; Lundquist & Nordenstam, 1988; 

Lundquist, 1992; Lundquist & Jäger, 1995-2007). These data are published as 

distribution range maps (Meusel, Jäger, & Weinert, 1965; Meusel, Jäger, Rauschert, 

& Weinert,1978; Meusel & Jäger, 1992).  

I used the number of 2.5-min grid cells occupied by a species (the area of 

occupancy, AOO) as a measure of its geographic range size. Species climatic niche 

size was measured as the number of 2.5-min grid cells occupied in bioclimatic space, 

based on 19 bioclimatic variables from the WorldClim2.0 database (Fick & Hijmans, 

2017).  

A test selection of 808,794 vegetation plots was provided by the European 

Vegetation Archive (EVA). EVA stores information on ~1.5 million vegetation plots from 

57 countries on more than 10,000 vascular plant species (Chytrý et al., 2016). As a 

measure of species local abundance, I used the arithmetic mean of the percentage 

cover value from all vegetation plots within a 2.5-min grid cell in which a species was 

present. Finally, I compiled a complete species-trait-matrix of 20 plant functional traits 

from three trait databases that store information on species leaf and seed traits (TRY, 

Kattge et al., 2020), species life form and life span (BiolFlor, Kühn, Durka, & Klotz, 

2004) and clonality (CLO-PLA, Klimešová, Danihelka, Chrtek, de Bello, & Herben, 

2017). 
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The specific objectives of this thesis can be grouped in three research topics: 

In chapter II, I propose and test a box-counting method to assess the sampling 

coverage of species distribution in biodiversity databases in geographic and climatic 

space across different spatial resolution (Figure I.1). I assessed the sampling coverage 

of 808,794 vegetation plots provided by EVA on the geographic ranges and climatic 

niches of 564 species derived from CDH. I applied null models to compare the 

observed sampling coverage with expectations from a random distribution of 

vegetation plots across a species’ geographic range and climatic niche. 

In chapter III, I test three macroecological hypotheses that link species local 

abundance to the following broad-scale distribution properties: (a) the interspecific 

abundance-range size relationship, (b) the intraspecific abundance-range centre 

relationship and (c) the intraspecific abundance-suitability relationship throughout the 

species whole Eurasian distribution ranges (Figure I.1). In this third chapter, I included 

broad-scale distribution data of 517 from the above mentioned 564 herbaceous, dwarf 

shrub and shrub species. The estimated local species abundances were based on 

744,513 vegetation plots from EVA. 

In chapter IV, I investigate whether species local abundance and broad-scale 

distribution can be predicted by single functional traits and sets of traits (trait 

syndromes) (Figure I.1). In this chapter, I included distribution information of 456 from 

the above mentioned 564 herbaceous, dwarf shrub and shrub species. The estimated 

local species abundances were based on 740,113 vegetation plots from EVA and used 

to calculate the species-specific skewness of cover values. The selected 20 functional 

traits are expected to capture the essence of plant life forms and functions (Wright et 

al., 2004, Diaz et al., 2016). 

A synthesis in chapter V highlights the relationships between the partial results and 

creates the frame for the general discussion. 
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Figure I.1 Overview of the three objectives investigated in chapters II to IV in this 

thesis. The used database data on species local abundance, broad-scale distribution 

and functional traits are highlighted in grey boxes. 
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Chapter II 

Assessing sampling coverage of species distribution in biodiversity 

databases 
 

 

This chapter is published in Journal of Vegetation Science as 

 

Sporbert, M., Bruelheide, H., Seidler, G., Keil, P., Jandt, U., Austrheim, G., Biurrun, I., 

Campos, J.A., Čarni, A., Chytrý, M., Csiky, J., De Bie, E., Dengler, J., Golub, V., 

Grytnes, J.-A., Indreica, A., Jansen, F., Jiroušek, M., Lenoir, J., Luoto, M., Marcenò, 

C., Moeslund, J. E., Pérez-Haase, A., Rūsiņa, S., Vandvik, V., Vassilev, K., & Welk, E. 

(2019). Assessing sampling coverage of species distribution in biodiversity databases. 

Journal of Vegetation Science, 30(4), 620–632 
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Abstract 

 

Aim: Biodiversity databases are valuable resources for understanding plant species 

distributions and dynamics, but they may insufficiently represent the actual geographic 

distribution and climatic niches of species. Here we propose and test a method to 

assess sampling coverage of species distribution in biodiversity databases in 

geographic and climatic space. 

Location: Europe.  

Methods: Using a test selection of 808,794 vegetation plots from the European 

Vegetation Archive (EVA), we assessed the sampling coverage of 564 European 

vascular plant species across both their geographic ranges and realized climatic 

niches. Range maps from the Chorological Database Halle (CDH) were used as 

background reference data to capture species geographic ranges and to derive 

species climatic niches. To quantify sampling coverage, we developed a box-counting 

method, the Dynamic Match Coefficient (DMC), which quantifies how much a set of 

occurrences of a given species matches with its geographic range or climatic niche. 

DMC is the area under the curve measuring the match between occurrence data and 

background reference (geographic range or climatic niche) across grids with variable 

resolution. High DMC values indicate good sampling coverage. We applied null models 

to compare observed DMC values with expectations from random distributions across 

species ranges and niches. 

Results: Comparisons with null models showed that, for most species, actual 

distributions within EVA are deviating from null model expectations and are more 

clumped than expected in both geographic and climatic space. Despite high 

interspecific variation, we found a positive relationship in DMC values between 

geographic and climatic space, but sampling coverage was in general more random 

across geographic space. 

Conclusion: Because DMC values are species-specific and most biodiversity 

databases are clearly biased in terms of sampling coverage of species occurrences, 

we recommend using DMC values as covariates in macroecological models that use 

species as the observation unit. 

 

Keywords: Chorological Database Halle (CDH), climatic niche, Dynamic Match 

Coefficient (DMC), European Vegetation Archive (EVA), macroecology, multi-scale, 
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realized niche, sampling bias, spatial scale, species range, vascular plant, vegetation-

plot databases. 

 

Introduction 

 

Broad-scale biodiversity databases (e.g. Global Biodiversity Information Facility 

(GBIF), Edwards, Lane, & Nielsen, 2000; Botany Information and Ecology Network 

(BIEN), Enquist, Condit, Peet, Schildhauer, & Thiers, 2009; sPlot, Bruelheide et al., 

2019) are valuable resources for understanding species distributions and dynamics. 

Possible applications include broad-scale analyses across species or community types 

(e.g. Bruelheide et al., 2018; Jiménez-Alfaro et al., 2018), species distribution models 

(SDM) (Gomes et al., 2018; Wasof et al., 2015); and monitoring biodiversity changes 

over time (Bertrand et al., 2011; Jandt, von Wehrden, & Bruelheide, 2011). For broad-

scale analyses covering the entire range of species, the quality of the sampling 

coverage across a given species range or throughout its realized niche is crucial. 

Hence, consistent data distribution is highly desirable across both the geographic and 

environmental space (Broennimann & Guisan, 2008; Pearman, Guisan, Broenniman, 

& Randin, 2008; Troia & McManamay, 2016). However, biodiversity databases often 

suffer from sampling gaps and biases limiting their application potential. Because of 

the uneven collection effort (Daru et al., 2018; Soria-Auza & Kessler, 2007; Speed et 

al., 2018) often caused by difficult access to some areas (Sousa-Baena, Garcia, & 

Peterson, 2014), broad regions of the world remain poorly sampled. Even 

comprehensive databases of species occurrences in well-surveyed regions are prone 

to geographic (Yang, Ma, & Kreft, 2013) and taxonomic biases (Pyke & Ehrlich, 2010; 

Soberón, Jiménez, Golubov, & Koleff, 2007). In an in-depth evaluation, Meyer, Weigelt, 

& Kreft (2016) found severe geographical bias in the GBIF database (Edwards et al., 

2000), concluding that data limitations are rather the rule than the exception for most 

species and regions. 

Species distribution models (SDM) are commonly used for macroecological niche 

analyses. They represent the estimation of species occurrence probabilities based on 

observed geographic distributions. Thereby, SDMs are sensitive to poor sampling 

coverage, especially if spatial bias results in climatically biased sampling (Fourcade, 

Engler, Rödder, & Secondi, 2014). In such situations, SDMs tend to misestimate 

species climatic niches (Titeux et al., 2017). Thus, for reliable analyses of biodiversity 
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distribution patterns, sampling coverage needs to be representative for both the 

climatic and geographic space (Hortal, Jiménez-Valverde, Gómez, Lobo, & Baselga, 

2008; Troia & McManamay, 2016). Unbiased sampling is typically obtained by meeting 

two interrelated requirements: sufficient sample size and even coverage of 

geographical and environmental gradients. Towards coarser spatial resolution, good 

coverage is easier to achieve and, as a consequence, sampling bias typically 

decreases. Consequently, the negative impact of sampling bias is clearly related to 

spatial grain. Several studies have analysed the importance of spatial scaling in niche 

studies (e.g. Pearman et al., 2008; Soberón et al., 2007; Hortal, Borges, & Gaspar, 

2006). Recently, procedures have been developed to assess the completeness of a 

spatial dataset at different spatial resolutions in geographic space (KnowBR, Lobo et 

al., 2018; downscale, Marsh, Barwell, Gavish, & Kunin, 2018). At large spatial extent, 

climate is among the most important factors determining species distributions 

(Woodward, 1986). However, although including climate seems straightforward, until 

now, few studies have accounted for how evenly occurrence data cover species 

ranges in climatic space (e.g. Bruelheide et al., 2018). To our knowledge, no study has 

explicitly tested the degree to which the spatial distribution of occurrences represents 

the geographical range as well as the climatic niche of the sampled species. 

Here we test the spatial and climatic coverage of plant occurrence data using an 

example dataset of the European Vegetation Archive (EVA). EVA is a key 

macroecological resource that incorporates information from 57 countries on 

approximately 1.5 million vegetation plots containing more than 10,000 vascular plant 

species (Chytrý et al., 2016). EVA data are used for various research objectives, yet 

the degree of unevenness in sampling effort across Europe's geographic and 

environmental space is unclear. A species’ distribution database covering EVA's 

spatial extent, but otherwise independent from EVA, is the Chorological Database 

Halle (CDH) (Welk et al., unpubl.). CDH stores georeferenced information (range 

polygons and point occurrences) on the distribution range of more than 1,200 

European vascular plant species. Species distribution data from CDH have already 

been used in several biodiversity studies (e.g. Csergő et al., 2017; San-Miguel-Ayanz, 

de Rigo, Caudullo, Houston Durrant, & Mauri, 2016; Schleuning et al., 2016) and as 

basis for biogeographical experiments on plant range limits (Bütof et al., 2012; 

Hofmann, Bütof, Welk, & Bruelheide, 2013; Welk, Welk, & Bruelheide, 2014). Here, we 

made use of expert-based range maps stored in CDH to extract information on both 



18 | Chapter II 

 

the species’ geographic ranges and climatic niches and assess the sampling coverage 

of species occurrences stored in EVA across each of these two backgrounds 

(geographic and climatic).  

To quantify sampling coverage, we developed the Dynamic Match Coefficient 

(DMC), a measure based on the area-under-the-curve (AUC) derived from threshold-

independent box-counting statistics across variable spatial grains. We compared the 

observed DMC values with the values of plots randomly distributed across the species 

range and niche. Thereby, we produced an expected null reference distribution (Nunes 

& Pearson, 2017) within both the geographic and climatic space for a given sampling 

effort (sample size) and corresponding to the observed species frequency in the 

database. This enabled us to evaluate the observed plot distribution in geographic 

space (DMCGEO) and climatic space (DMCCLIM) in comparison to expectations of 

randomly distributed plots across the species range and realized climatic niche. We 

tested four hypotheses on sampling coverage of species occurrences across both the 

geographic and climatic space: 

(1) Sampling coverage within the climatic space depends strongly on good sampling 

coverage across the geographic space because climatic conditions are spatially 

autocorrelated. We expect a positive correlation between sampling coverage in the 

geographic and climatic space. 

(2) Sampling coverage is less representative in the climatic space than in the 

geographic space. The reason is the asymmetric transferability between points in the 

climatic and geographic space: a single point within the climatic space might translate 

to several geographic locations, while a single geographic location can only translate 

to one point in the climatic space. An increase in sampling coverage within the 

geographic space might thus be without positive effect on sampling coverage within 

the climatic space.  

(3) Given the general sampling issues of biodiversity databases mentioned above 

and the heterogeneous nature of their source data, we expect that sampling coverage 

of the realized niches of plant species by such data is largely imperfect because of an 

underdispersed (clumped) distribution of species observations within the geographic 

space and supposedly also within the climatic space. 

(4) Finally, for a given range size and macroclimatic niche size, we expect sampling 

coverage to increase with increasing sample size. 
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Material and Methods 

 

We assessed the sampling coverage of European vascular plant species ranges (using 

species range data from the Chorological Database Halle, CDH) by a test selection of 

species occurrence data taken from vegetation plots from the European Vegetation 

Archive (EVA, Chytrý et al., 2016). We did this both in the geographic space 

(distribution range data from CDH) and in the climatic space (realized climatic niche 

space derived from CDH geographical distributions). We focused on species presence 

data (i.e. locations of vegetation plots in which the focal species was recorded) and 

examined the relationship between the geographic and climatic sampling coverage, as 

well as interspecific variability. The study area comprised all European countries plus 

Turkey, Georgia, Armenia and Azerbaijan (Figure II.1a).  

 

Background data on species geographic range and climatic niche  
 
The Chorological Database Halle (CDH) stores information on distribution ranges of 

about 17,000 vascular plant taxa. For 5,583 taxa, maps were compiled based on 

published distribution range maps (Meusel, Jäger, & Weinert, 1965; Meusel, Jäger, 

Rauschert, & Weinert, 1978; Meusel & Jäger, 1992), national and floristic databases 

and further maps from floristic literature (see bibliographic details in Index Holmiensis, 

Tralau, 1969-1981; Lundqvist & Nordenstam, 1988; Lundqvist, 1992; Lundqvist 

& Jäger, 1995-2007). CDH data can be requested for research objectives via 

http://chorologie.biologie.uni-halle.de/choro/. We retrieved from CDH the available 

geographical information for the distribution ranges of 1,200 European vascular plant 

species in electronic format (range polygons and point occurrences) in October 2015. 

The species range information was processed as raster layers of 2.5-min cell 

resolution, which is about 15 km² in Central Europe (Figure II.1a). The multi-

dimensional climatic space (climatic niche) was determined by principal components 

analysis (PCA) of 19 bioclimatic variables from Worldclim with 2.5-min cell resolution 

(Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) (for detailed information see 

Appendix S II.1 in the Supporting Information).  
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Figure II.1 Distribution of the 808,794 vegetation plots (green dots) extracted from EVA 

(European Vegetation Archive). Only plots with at least one of the 564 study species 

are shown. The study species merged distributions based on CDH are represented by 

grey cells. White areas (large water bodies, glaciers, and deserts) represent regions 

where none of the studied species occurs. (a) Distribution of vegetation plots in the 

geographic space. (b) Distribution of vegetation plots in climatic space represented by 

its first two PCA axes (74.1% and 13.9% variance explained by PC1 and PC2, 

respectively), where PC1 and PC2 were negatively and positively related to 

temperature and precipitation, respectively. 

 

Vegetation plots 
 
A test selection of vegetation plots was provided by the European Vegetation Archive 

in October 2015, containing information on 10,082 species from 933,228 vegetation 

plots. This selection included all the plots that were available in EVA at that time. Data 

for intraspecific taxa such as subspecies were merged at the species level. Further, 

we matched species names and checked for synonyms according to (i) the taxonomic 

reference list for Germany (German SL version 1.2, Jansen & Dengler, 2008) and (ii) 

all taxonomic reference lists available via the R package 'taxize' (Chamberlain & Szöcs, 

2013; Chamberlain et al., 2018). We excluded trees, bryophytes, lichens, fungi, algae 

and species exotic to Europe. We also excluded 67,200 vegetation plots with location 

uncertainty larger than 10 km and 417 species that occurred in less than 10 plots.  

After matching EVA and CDH species, 808,794 vegetation plots contained at least 

one of the 564 vascular plant species (herbs, dwarf shrubs and shrubs) with available 
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digitized geographic distribution data in CDH. A list of these species is available online 

in the Supporting Information S II.2 (https://doi.org/10.1111/jvs.12763) and all the 

databases that provided vegetation plot data can be found in Appendix S II.3. The 

808,794 vegetation plots from EVA were heterogeneously distributed across the study 

area in the geographic space. While some geographic regions were represented very 

well and with high density (e.g. the Czech Republic, the Netherlands), other regions 

were represented sparsely (e.g. Norway, Sweden, Finland, Belarus, parts of Russia; 

Figure II.1a). In contrast to geographic space, the study area was well represented by 

EVA vegetation plots in climatic space, except some marginal parts of the climatic 

background space (Figure II.1b). The maximum density of species was 396 species 

per 2.5 min raster cell in geographic space (Figure II.2a) and 528 species per cell in 

climatic space (Figure II.2b). Stacked CDH ranges of the 564 study species covered 

98.5% of the study area in geographic space (154,455 raster cells of 2.5-min in total; 

Figure II.2a) and 100% in climatic space (9,931 cells in total; Figure II.2b). 

 

 

 

Figure II.2 Study species data density in the geographic and climatic space. (a) Data 

density on species geographic ranges of 564 vascular plant species included in this 

study in 2.5-min resolution raster. White areas (large water bodies, glaciers, and 

deserts) represent regions where none of the studied species occurs. (b) Data density 

on climatic niches of 564 species in the respective common climatic space represented 

by its first two PCA axes (74.1% and 13.9% variance explained by PC1 and PC2, 

respectively), where PC1 and PC2 were negatively and positively related to 

temperature and precipitation, respectively. 
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Dynamic Match Coefficient (DMC) - a measure of plot sampling coverage across 
spatial scales 
 
Sampling bias is mainly a result of two interrelated issues: insufficient number of 

samples and inadequate sample distribution. The impact of sampling bias is related to 

spatial scale (spatial extent and grain size) and should decrease with increasing grain 

size. The spatial arrangement of sampling locations could be evaluated by classical 

methods of point pattern analysis (Boots & Getis, 1988; Wiegand & Moloney, 2013). 

However, there are two main issues related to the spatial pattern in the ecological 

domain of the data of interest. First, because of the generally irregular, often non-

contiguous geometry of plant distribution ranges, traditional Euclidean geometry often 

fails to estimate characteristics of point patterns correctly (Pentland, 1984). Second, 

species ranges and niches cannot be regarded as merely geometric phenomena. 

Spatio-temporal population processes often result in complex range structures of 

genetic diversity, demographic performance and abundance (Peterson et al., 2011; 

Ricklefs, 2004). 

To measure how well, i.e. how uniform vs. clustered and simultaneously how dense 

or scarce vegetation plots containing the focal species are located across the species’ 

range or niche, we developed a measure inspired by fractal dimension analysis (Hall 

& Wood, 1993), which we call the Dynamic Match Coefficient (DMC). The DMC 

represents a measure of cell matches between a point pattern and spatial layers that 

are iterated across different raster cell resolutions (grain sizes), from fine to coarse 

(Figure II.3). Here, 20 iterative scaling steps were used, which resulted in a maximum 

achievable DMC of 2000 (20 × 100% match). The obtained values were standardized 

to 0-1. For all species, the starting grain size in geographic space was 1/20th of the 

respective species maximum North-South and East-West range extent. Hence, the 

initial grain size was smaller for small-range species (e.g. 50 km × 20 km for Centaurea 

deustiformis) than for large-range species (e.g. 211 km × 273 km for Plantago major) 

(see Appendices S II.2 and S II.4.1 in the Supporting Information for distribution of 

initial grain sizes in DMC calculations). Among the chosen starting grain sizes for the 

geographic space, even the finest grid cells (50 km × 20 km) are at a spatial resolution 

where climate conditions are considered the most important (Pearson & Dawson, 

2003). The scaling procedure used in the climatic space was similar to that in the 

geographic space. Here the initial grain size was derived as the 1/20th fraction of the 

respective species maximum niche extent along the first two PCA axes. High DMC 
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values indicate high sampling coverage, i.e. a more regular distribution and density of 

EVA vegetation plots across a species distribution range or within its realized climatic 

niche. In contrast, low DMC values indicate underdispersed sampling coverage, i.e. 

clumped distribution and/or inappropriately low density of EVA vegetation plots across 

a species distribution range or within its realized climatic niche (Figure II.3). 

 

 
 

Figure II.3 Dynamic Match Coefficient (DMC) calculated for two example species X 

and Y with different plot distributions but similar ranges and climatic niches. DMC 

measures sampling coverage from fine resolution to coarse resolution as the area 

under the curve (AUC). Scaling for species X, with clumped plots (10 red dots) in the 

species range or climatic niche (grey background), results in a low DMC value. Scaling 

for species Y, with more regularly distributed plots (10 blue dots) in the species range 

or climatic niche (grey background), results in a high DMC value. 

 

Figure II.4 shows how the DMC approach works for the geographic and climatic space 

and for two contrasting species: Hieracium murorum, a species with clumped 

distribution in EVA plots, and Calluna vulgaris, a species with a more regular 

distribution in EVA plots, both in the species range and in the realized climatic niche 

(Figure II.4a). Range size and the number of vegetation plots are similar in both 

species. The cell match ratio between species range and EVA vegetation plots was 

calculated in 20 iterations from fine to coarse raster cell resolution for both species in 
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the geographic and climatic space (Figure II.4b). The cell match ratio at the 20 single 

raster steps was summed up, and this sum is what we term the final DMC value of a 

species in the geographic space (DMCGEO) and climatic space (DMCCLIM). For 

Hieracium murorum, DMC values reached 0.42 and 0.58 for the geographic (DMCGEO) 

and climatic (DMCCLIM) space, respectively. For Calluna vulgaris, DMC values reached 

0.74 for both the geographic (DMCGEO) and climatic (DMCCLIM) space. 

 

 

 

Figure II.4 The DMC scaling approach applied to the distribution of EVA vegetation 

plots inside species ranges in geographic space and inside species niches in climatic 

space (grey cells). (a) The distribution of EVA plots containing Hieracium murorum 

(left, red) and Calluna vulgaris (right, blue). (b) Four selected scaling steps from fine to 

coarse raster-cell resolution in geographic space (left-hand four panels in each set) 

and climatic space (right-hand four panels in each set). (c) The resulting DMC curves 

along 20 scaling steps, where the cell match ratio is the percentage of grey raster cells 

(species range or climatic niche) matched by a vegetation plot containing the species. 
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In all cases, the maximum achievable DMC is 1 (100% cell match in all scaling steps). 

DMC values reached 0.42 and 0.58 for the geographic (DMCGEO) and climatic 

(DMCCLIM) space for Hieracium murorum and 0.74 for both the geographic (DMCGEO) 

and climatic (DMCCLIM) space for Calluna vulgaris. 

 

Observed vs. expected distributions 
 
In order to quantify how far the observed DMC deviates from an expected random 

distribution, we applied a null model simulation (Nunes & Pearson, 2017) for each 

species. We randomly distributed a number of species occurrences for each species 

(n = number of plots containing the species) across its geographic range and climatic 

niche. We calculated the DMCGEO and DMCCLIM values for 100 such random 

distributions in the geographic and climatic space, respectively, and compared the 

simulated DMC distribution with the observed value. To quantify the deviation of the 

observed DMC value from the median of the simulated ideal random distribution 

(DMCNULL) we calculated a DMC ratio as: 

 

𝐷𝑀𝐶 𝑟𝑎𝑡𝑖𝑜 =  
(𝐷𝑀𝐶 𝑁𝑈𝐿𝐿 − 𝐷𝑀𝐶 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

𝐷𝑀𝐶 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
 

 

A high DMC ratio corresponds to an underdispersed distribution of the EVA plots 

containing the species, while a low DMC ratio corresponds to a more random 

distribution. A negative ratio corresponds to an overdispersed distribution. 

 

Effect of sample size on the DMC value 
 
We analysed the effect of sample size (number of EVA plots containing a given 

species) on DMC values while accounting for range size (or niche size) by applying 

linear models with DMCGEO (or DMCCLIM) values as the response variable, sample size 

as the main explanatory variable and range size (resp. niche size) as a covariate to 

correct for potential confounding effects of range size or niche size. In a first step, for 

each species, the percentage match of the species range (derived from CDH) by the 

respective EVA vegetation plots where the species occurred was calculated at 2.5-min 

raster cell resolution. Multiple occurrences per raster cell were reduced to presence-

absence data per species and 2.5-min raster cell. In the second step, species ranges 

and the respective vegetation plots were projected into the climatic space. The study 
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area in the climatic space is well represented by its first two PCA axes, which explain 

88.0% of the data variance (for details see Appendix S1 in Supporting Information). 

Finally, the percentage of a species climatic niche matched by vegetation plots where 

the species occurred was calculated as the ratio of PCA cells of the respective EVA 

vegetation plots where the species occurred to all raster cells matched by the species 

range in the PCA space (species percentage match of its range and niche by EVA 

vegetation plots is provided in Appendix S II.2 in the Supporting Information).  

 

Results 

 

Overall, sampling coverage of European vascular plant species ranges by EVA 

vegetation plots was more complete within the geographic space than within the 

climatic space (Figure II.5), i.e. consistently higher DMC values were within the 

geographic space (DMCGEO). The mean of DMCGEO was slightly higher than that of 

DMCCLIM, with values of 0.56 and 0.49, respectively. Species DMCGEO values ranged 

from 0.08 to 0.94. For half of the species the DMCGEO was between 0.48 and 0.65 (25th 

and 75th percentile). DMCCLIM values ranged from 0.08 to 0.82 and for half of the 

species the DMCCLIM was between 0.40 and 0.60 (25th and 75th percentile). We found 

a highly significant positive correlation (Spearman´s rho = 0.768; p < 0.001) between 

species geographic DMC values (DMCGEO) and their climatic DMC values (DMCCLIM) 

(Figure II.5). DMCCLIM values were higher than DMCGEO values for only 119 species 

(21.1%), while 445 species (78.9%) had higher DMCGEO values than DMCCLIM values. 

Furthermore, some species showed a high deviation in DMC values between the 

geographic and climatic space. For instance, Arabis alpina was more randomly 

sampled within the climatic space (DMCCLIM: 0.55) than within the geographic space 

(DMCGEO: 0.24), while this was the opposite for Vinca major (DMCGEO: 0.63, DMCCLIM: 

0.29). In general, a positive relationship between species range size and niche size 

could be observed (Spearman´s rho = 0.805; p <0.001; Appendix S II.4.2 in Supporting 

Information). 
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Figure II.5 Scatterplot and Spearman correlation coefficients (rho) of the relationship 

between DMC values in geographic space (DMCGEO) and DMC values in climatic 

space (DMCCLIM) for 564 plant species. Low DMC values indicate an underdispersed 

(more clumped) distribution of species occurrences in EVA vegetation plots, while high 

DMC values indicate a homogenous distribution in EVA vegetation plots, in the 

geographic range or realized climatic niche of a species.  

 

Deviation of the observed DMC from the expected random distribution 
 
We found a positive correlation between the observed DMC values and the expected 

DMC values, based on our null model, for both the geographic space (weaker, 

Spearman´s rho = 0.389; p <0.001) and the climatic space (stronger, Spearman´s rho 

= 0.824; p <0.001) (Figures II.6a and b). Importantly, a large majority (92.0%) of the 

observed species distributions in EVA were significantly underdispersed in both the 

geographic and climatic space. This is indicated by the position of most of the points 

above the 1:1 line, especially in the climatic space. Exceptionally, for a small number 

of species in the geographic space (43 species, 7.6%) (Figure II.6a) and for two 

species in the climatic space (Figure II.6b), the observed DMC values were higher than 

the null random expectation, indicating overdispersion. 
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Figure II.6 Scatterplots and Spearman correlation coefficients (rho) of the relationships 

between the observed DMC and expected DMC derived by null models for (a) 

geographic space and (b) climatic space. Dots are medians; lines are inter-quartile 

ranges of the simulations from the null model. Colour gradient represents the 

percentage match of a species range by EVA vegetation plots in the geographic space 

(match at 2.5-min raster cell resolution) or climate space (ratio of PCA cells matched 

by EVA plots to all species-specific raster cells matched by the geographic range data 

in the PCA space). 

 

For each species, we calculated the deviation of the observed DMC values from the 

null model DMC values in geographic and climatic space. While a low deviation of the 

observed DMC values from the null expectation indicates a more regular distribution 

of occurrences for a given species across its reference range or realized climatic niche, 

a high deviation indicates an underdispersed (more clumped) distribution. We found a 

positive correlation for the deviation of observed DMC values from the null model DMC 

values between geographic and climatic space (Spearman´s rho = 0.615; p <0.001). 

Despite a higher variability, DMC deviation from the null model was on average slightly 

lower in geographic space (minDEV_GEO: -0.31, maxDEV_GEO: 2.47, medianDEV_GEO: 0.46) 

than in climatic space (minDEV_CLIM: -0.10, maxDEV_CLIM: 2.09, medianDEV_CLIM: 0.47, see 

Figure II.7).  
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Figure II.7 Scatterplot and Spearman correlation coefficients (rho) of the relationship 

between the deviation of the observed DMC values from null model DMC values in the 

geographic space (DEVGEO) and in climatic space (DEVCLIM). Low deviation of the 

observed DMC values from the null expectation indicates a more regular distribution 

of occurrences for a given species across its reference range or realized climatic niche, 

a high deviation indicates an underdispersed (more clumped) distribution.  

 

Effect of sample size on DMC values 
 
In geographic space, the percentage match of species ranges by EVA vegetation plots 

containing the same species (measured as the percentage of the range containing the 

EVA plots at 2.5-min raster cell resolution) ranged from 0.01% to 67.6%. For half of 

the species, the percentage match was between 0.5% and 2.3% (25th and 75th 

percentile), with a mean of 1.1% in the geographic space. In the climatic space, the 

percentage match of species niches by EVA vegetation plots ranged from 0.5% to 

72.7% and for half of the species the percentage match was between 7.6% and 22.1% 

(25th and 75th percentile), with a mean of 14.1%. The applied linear models revealed a 

positive effect of sample size (vegetation plots) on DMC values while accounting for 

range size or niche size in both the geographic space (multiple R2: 0.212) and climatic 

space (multiple R2: 0.571). We found a significantly positive correlation between the 

percentage match of the species range by EVA plots in both the geographic space 

(Spearman´s rho= 0.726; p <0.001) and climatic space (Spearman´s rho= 0.901;  
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p <0.001) (Figure II.8a and b). Furthermore, we encountered a significantly negative 

relationship between percentage match of species ranges by EVA vegetation plots and 

deviation from the null model in the geographic space (Spearman´s rho= -0.601; p 

<0.001) and climatic space (Spearman´s rho= -0.651; p <0.001) (Figure II.8c and d). 

Apart from this, a significantly positive correlation between the percentage match of 

the species range by EVA plots in the geographic space and climatic space could be 

found (Spearman´s rho= 0.865; p <0.001; Appendix S II.4.3 in Supporting Information). 

 

 

Figure II.8 Scatterplots and Spearman correlation coefficients (rho) of the relationships 

between percentage match of species ranges by EVA vegetation plots and (a) 

observed DMC in geographic space (DMCGEO); (b) observed DMC in climatic space 

(DMCCLIM); (c) deviation of observed DMC values from null model DMC values in 

geographic space (DEVGEO); (d) deviation of observed DMC values from null model 

DMC values in climatic space (DEVCLIM). 
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Discussion 

 

Plot sampling coverage across spatial scales 
 
In line with the general positive relationship between range size and niche size (see 

Appendix S4.2 in Supporting Information), we assumed that (1) a species will be well 

sampled throughout its multidimensional climatic niche (reaching high DMCCLIM values) 

only if it is well sampled throughout its geographic range (high DMCGEO values). The 

demonstrated positive correlation between DMCCLIM and DMCGEO confirms the first 

hypothesis. However, the relationship was far from perfect, since there are also 

species that are well sampled within the geographic space (reaching high DMCGEO 

values) but less well sampled in the climatic space (reaching low DMCCLIM values), and 

vice versa. Exceptions from the suggested positive relationship can arise especially 

due to high spatial heterogeneity in climatic conditions, e.g. in mountain regions (Hirst, 

Griffin, Sexton, & Hoffmann, 2017; Köckemann, Buschmann, & Leuschner, 2009).  

Because of the one-to-n relationship between climatic and geographic data points 

we expected (2) a sparser species sample coverage (lower DMC values) in the climatic 

space. Accordingly, we found that the sampling coverage (DMC value) of species 

distribution in EVA was more random in the geographic space (DMCGEO) than in the 

climatic space (DMCCLIM) for 77.9% of the studied species. This more random sampling 

coverage in geographic space is explainable by the niche–biotope duality (Hutchinson, 

1978). The same combination of climate factors can occur in only one location in 

geographic space, but will more likely occur in several localities with increasing spatial 

extent (Colwell & Rangel, 2009; Soberón & Nakamura, 2009). However, the rules that 

define the niche–biotope duality are not reciprocal (Colwell & Rangel, 2009; Soberón 

& Nakamura, 2009), and the climatic niche of a species might be fully captured even if 

only a part of its geographic distribution was sampled (Guisan, Petitpierre, 

Broennimann, Daehler, & Kueffer, 2014). This seems to be the case for 22.9% of the 

studied species that occupy ranges with highly heterogeneous climatic conditions (e.g. 

in mountain regions as mentioned above). For those species, the sampling coverage 

was higher in the climatic space (DMCCLIM) than in geographic space (DMCGEO).  

Broad-scale biodiversity databases consist of heterogeneous, non-systematically 

sampled datasets with underdispersed observations within the geographic space and 

supposedly also within the climatic space. We therefore expected (3) the sampling 

coverage of species geographic ranges and climatic niches to be largely imperfect due 
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to sampling biases. Accordingly, we found limited sampling coverage for most of the 

studied species. In almost all cases, the observed species distributions in EVA 

significantly underrepresented both the species geographic range and climatic niche 

space. It is achievable to identify species which are poorly represented in biodiversity 

databases relative to their geographic ranges or realized climatic niches (Boakes et 

al., 2010; Hoffmann et al., 2014). Since the observed and expected DMC values were 

highly positively correlated, the applied null model approach supports the usefulness 

of the presented DMC metric to assess sampling bias in the distribution of species 

occurrences in biodiversity databases.  

We assumed that (4) on condition that range size and climatic niche size are 

correlated, sampling coverage increases with increasing sample size. The applied 

linear models revealed a positive effect of sample size on DMC values while 

accounting for range size and niche size, which supports our fourth hypothesis. 

Nevertheless, especially for the geographical space, high percentage cover of species 

range by the EVA plots cannot directly indicate high DMC values. In general, the 

correlation of percentage match of a species range by the EVA plots at 2.5-min raster 

cell resolution with DMC values was highly positive in geographic space. Nevertheless, 

there were species with higher percentage match that only reached lower DMC values 

while there were also species with lower percentage match that reached higher DMC 

values. Our results show that the number and thereby the density of observations 

across a species distribution range remains crucial. On the one hand, too small number 

of plots representing a species distribution range may be a sample of insufficient size 

even if the plots are distributed randomly (as suggested by the null model calculations). 

On the other hand, even a large number of vegetation plots may underrepresent a 

species range if their spatial distribution is underdispersed. Consequently, both 

clumping and density of occurrence observations have to be considered, computed 

and estimated simultaneously to evaluate the representativeness of biodiversity 

databases.  
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Possible applications of the DMC  
 

Occurrence data and distribution maps for species of various taxa are increasingly 

being made available from biodiversity databases (e.g. Map Of Life, Jetz, McPherson, 

& Guralnick (2012); The IUCN Red List, IUCN (2019); Euro+Med Plantbase, 

Euro+Med (2019); The PLANTS Database, USDA, NRCS (2019)).  

(I) Our DMC approach enables evaluation and comparison of the coverage of 

occurrence data across irregular and even non-contiguous background spaces. Thus, 

it helps identifying species with a suitable representation of their range / niche by 

existing point samples. In species distribution modelling, uneven or inconsistent 

representation of environmental gradients by occurrence records can strongly 

influence the model accuracy (Tessarolo, Rangel, Araújo, & Hortal, 2014), which can 

result in limited applicability for climate change predictions (Araújo & Guisan, 2006; 

Titeux et al., 2017).  

(II) The DMC value calculation is applicable in both the climatic and geographic 

space and can help evaluate the coverage of species samples for species distribution 

modelling. Using such information derived from the DMC metric inside the modelling 

framework of SDM is likely to improve SDM predictive performance. Nevertheless, 

independent information on species geographic distribution is needed to correctly 

evaluate point sampling coverage for SDM studies. It is not recommended to generate 

range models based on sampling data of unknown coverage. While DMC(GEO) values 

generated this way might be used to gather information on species geographic point 

sampling quality, DMC(CLIM) values might be highly biased. Without independently 

generated distribution information, DMC(CLIM) values are not applicable for SDM 

evaluation. Since observed and expected DMC values (see the applied null model 

approach) were highly positively correlated, the deviation from the expected DMC is a 

suitable measure for the representativeness of species occurrence data. A high 

deviation corresponds to an underdispersed distribution of plots, while a low deviation 

corresponds to a more random distribution of plots and a negative deviation 

corresponds to an overdispersed distribution of plots.  

(III) Data limitations (i.e. lack of fine-resolution data of species occurrences over 

large spatial extents) will remain the norm for most species and regions, and best-

possible use should be made of limited information (Hoffmann et al., 2014; Meyer et 

al., 2016). Here, based on the curves resulting from the DMC calculations it would be 

possible to determine the raster cell resolution where results of the analyses are least 
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vulnerable to errors due to the existing sampling gaps by calculating the inflection point 

of the DMC curve. Nevertheless, one must be aware that the achievable raster cell 

resolution always depends on the spatial extent of the study (e.g. regional, continental 

or global scale) (Hartley & Kunin, 2003; Pearson & Dawson, 2003; Willis & Whittaker, 

2002).  

(IV) The efficacy of database platforms strongly depends on the completeness of 

species inventories and the survey coverage across space and the environment 

(Hortal et al., 2008; Troia & McManamay, 2016), therefore it is necessary to continue 

surveys in undersampled areas (Beck et al., 2012; Engemann et al., 2015). Here, 

results of the DMC analyses can be used to identify these undersampled areas and 

help focus search efforts for data information in relevant literature or further databases. 

This would be possible by selecting undersampled parts of the niche and translate 

them back to the geographical space. Furthermore, the results of DMC analyses can 

be used to guide future botanical explorations and practical fieldwork, to make new 

sampling in geographical and climate spaces cost-efficient.  

(V) Including both the DMC metrics as covariates in any model with species as the 

observational unit may help to account for potential confounding effects due to the 

varying sampling coverage of the sampled species distribution within both the climatic 

and geographic space. Since DMC values are species-specific, they can be included 

as weights in macroecological analyses and models, where well-represented species 

might be weighted higher than less-well represented species. Nevertheless, it might 

be necessary to apply re-sampling methods (e.g. Lengyel, Chytrý, & Tichý, 2011) to 

prevent spatial autocorrelation in model residuals.  
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Appendices 

 

Appendix S II.1  
Climatic resampling procedure and background PCA niche space of the study 
area 
 
Multivariate approaches such as PCA or clustering algorithms are sensitive to the 

frequency distribution of the input variables values, and more average conditions might 

be lumped in the presence of extreme values. To minimize the spatial autocorrelation 

between species occurrences in terms of climatic data, it is desirable to sample climatic 

conditions equally. 

 

Spatial climatic pre-stratification procedure 
 
We developed a climatic pre-stratification to enable spatially unbiased resampling as 

follows: 

1 – We used global layers with monthly mean values of temperature and 

precipitation at 2.5-min raster cell resolution (hemisphere-adjusted). All precipitation 

values were log-transformed to take into account the decreasing ecological importance 

of differences with increasing precipitation. Monthly mean values of temperature and 

(log) precipitation were separately standardized (0-1).  

2 – After standardization (0-1), 10 classes (class width 0.1) per variable (monthly 

temperature and (log) monthly precipitation) were derived and labelled “A” to “J” 

(Figure S II.1.1a).  

3 – The cells of a unique climate class are defined by an identical string of class 

labels (= climate class ID) containing 12 “A” to “J” combinations, one for each month.  

All 2.5-min raster cells of one climatically homogeneous region are labelled by an 

identical climate class ID. By this, 29,550 unique climate class IDs were assigned to 

the raster cells of the analysed species ranges. One climatically homogeneous region 

was represented by one to many geographical patches of different size (Figure S 

II.1.1b). The smallest climatically homogeneous region consisted of only one 2.5-min 

raster cell while the largest climatically homogeneous region consisted of 38,577 2.5-

min raster cells. 

Based on this spatial pre-stratification, climatic data enclosed by species range 

polygons and extracted at species’ occurrence locations can be subsampled evenly 

from 29,550 differently sized, yet climatically homogeneous regions.  
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Figure S II.1.1 Illustration of the spatial climatic pre-stratification procedure. (a) 

Monthly mean values of temperature and (log) precipitation were standardized 

separately (0-1). Ten classes (class width 0.1) per variable were derived and labelled 

“A” to “J”.  Cells of a unique climate class are labelled by a unique climate class ID. (b) 

All cells of one climatically homogeneous region are represented by identical colour. 

Black lines represent the country borders on the continent. 
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Background PCA niche space and determination of species niche size 
 
To incorporate not only the number of populated climate classes but also between-

class climatic similarity, the multivariate niche space of the species is determined by a 

PCA-approach:  

1 – To generate data for a background niche, for each homogeneous climatic region 

(cells with identical climate class ID from climatic pre-stratification), we determined 

mean cell values for each of the 19 bioclimatic variables from WorldClim2.0 at 2.5-arc-

min resolution (Fick and Hijmans, 2017).  

2 – With these 29,550 class mean values, a multi-dimensional climatic space (or 

climatic niche) was determined by principal components analysis (PCA). The 

worldwide terrestrial climatic space is well represented by the first two PCA axes which 

explain 70.75% of the data variance (Figure S II.1.2). Pearson correlations of the 19 

bioclimatic variables (BIO 01 – BIO 19) with the first two axes of the principal 

component analysis (PC1 and PC2) are given in Table S II.1.3. Accordingly, the PCA 

space is spread out across 29,550 data points, each representing a unique climate 

class.  

3 – Since the class-point density is uneven, the whole PCA area was gridded into a 

100 x 100 PCA-cell raster to enable a generalized, more robust species comparison. 

4 – The multivariate niche space of a single species is finally determined as the 

occupied PCA area by counting all PCA-cells matched by a minimum convex hull of 

the occupied PCA space locations. 
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Figure S II.1.2 Principal component analysis (PCA) for bioclimatic variables in the 

global terrestrial regions excluding Antarctica. The two principal components (PC1 and 

PC2) explained 70.75% of the total variation in bioclimatic data. PC1 was positively 

related to temperature and negatively to temperature seasonality, while PC2 was 

negatively related to precipitation and positively to precipitation seasonality. 
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Table S II.1.3 Results of Pearson correlation between the 19 bioclimatic variables (BIO 

01 – BIO 19) and the first two axes of the principal component analysis (PC1 and PC2). 

 

Bioclim variable PC1 PC2 

BIO1 = Annual Mean Temperature 0.885 0.425 

BIO2 = Mean Diurnal Range (Mean of monthly (max - min temp)) -0.789 0.227 

BIO3 = Isothermality (BIO2/BIO7) (* 100) 0.735 0.005 

BIO4 = Temperature Seasonality (standard deviation *100) -0.857 0.028 

BIO5 = Max Temperature of Warmest Month 0.545 0.621 

BIO6 = Min Temperature of Coldest Month 0.958 0.257 

BIO7 = Temperature Annual Range (BIO5-BIO6) -0.873 0.081 

BIO8 = Mean Temperature of Wettest Quarter 0.673 0.397 

BIO9 = Mean Temperature of Driest Quarter 0.820 0.371 

BIO10 = Mean Temperature of Warmest Quarter 0.664 0.562 

BIO11 = Mean Temperature of Coldest Quarter 0.946 0.301 

BIO12 = Annual Precipitation 0.548 -0.783 

BIO13 = Precipitation of Wettest Month 0.558 -0.617 

BIO14 = Precipitation of Driest Month 0.289 -0.751 

BIO15 = Precipitation Seasonality (Coefficient of Variation) 0.165 0.489 

BIO16 = Precipitation of Wettest Quarter 0.557 -0.628 

BIO17 = Precipitation of Driest Quarter 0.296 -0.757 

BIO18 = Precipitation of Warmest Quarter 0.304 -0.669 

BIO19 = Precipitation of Coldest Quarter 0.400 -0.585 
 
 

 

Appendix S II.2 Information on the 564 species included in this study. This Appendix 

can be found online, https://doi.org/10.1111/jvs.12763 
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Appendix S II.3 Information on the 59 databases that provided vegetation plots analysed in this thesis.  

Official database name, database code in the Global Index of Vegetation-Plot Database (GIVD), name of the database custodian, total 

number of vegetation-plot samples included in the dataset [data access: October 2015], number of vegetation plot samples included in 

this study, proportional contribution of the datasets plot samples to this study [proportion = (Count Dataset Sporbert et al. *100) / 808794]. 

 

Database name GIVD Code Custodian 
name 

Count 
Dataset total 
(10/2015) 

Count Dataset 
Sporbert et al. 

Proportion [%] 

Vegetation Database of Eurasian Tundra 00–00–004  Risto Virtanen 1 132 294 0.036 

Vegetation Database Forest of Southern Ural 00-RU-001 Pavel Shirokikh 997 222 0.027 

Database Meadows and Steppes of Southern Ural + 
Database of South Ural Order Galietalia veri + Database 
of South Ural Order Arrhenatheretalia 

00-RU-003 +  
00-RU-004 +  
00-RU-005 

Sergey Yamalov 2 034 1 093 0.135 

Forest Vegetation Database of Turkey – FVDT 00-TR-001  Ali Kavgacı 144 127 0.016 

Vegetation Database of the Grassland Communities in 
Anatolia 

AS-TR-001  Deniz Işık 
Gürsoy 

20 6 0.001 

Vegetation Database of Oak Communities in Turkey AS-TR-002  Emin Uğurlu 68 61 0.008 

Nordic-Baltic Grassland Vegetation Database EU-00–002  Jürgen Dengler 6 062 6 056 0.749 

Iberian and Macaronesian Vegetation Information 
System (SIVIM) 

EU-00–004 Xavier Font 3 496 3 091 0.382 

Iberian and Macaronesian Vegetation Information 
System (SIVIM) - Catalonia 

EU-00–004 Xavier Font 3 875 3 512 0.434 

Iberian and Macaronesian Vegetation Information 
System (SIVIM) – Grasslands  

EU-00–004  Maria Pilar 
Rodríguez-Rojo 

7 331 7 199 0.89 

Iberian and Macaronesian Vegetation Information 
System (SIVIM) – Sclerophyllous forests 

EU-00–004  Federico 
Fernández-
González 

3 799 3 170 0.392 

Iberian and Macaronesian Vegetation Information 
System (SIVIM) - Shrublands  

EU-00–004  Xavier Font 3 007 2 386 0.295 

Vegetation-Plot Database of the University of the 
Basque Country (BIOVEG) 

EU-00–011 Idoia Biurrun 18 429 16 405 2.028 
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Balkan Dry Grasslands Database EU-00–013 Kiril Vassilev 8 152 4 769 0.59 

Mediterranean Ammophiletea database EU-00–016  Corrado 
Marcenò 

6 835 4 843 0.599 

European Coastal Vegetation Database EU-00–017 John Janssen 4 311 2 251 0.278 

The Nordic Vegetation Database EU-00–018 Jonathan Lenoir 7 718 7 144 0.883 

Balkan Vegetation Database EU-00–019  Kiril Vassilev 9 579 7 092 0.877 

WetVegEurope EU-00–020 Flavia Landucci 1 994 6 0.001 

SE Europe Forest Database EU-00–021  Andraž Čarni 3 659 3 656 0.452 

European Mire Vegetation Database EU-00–022  Tomáš Peterka 10 099 9 047 1.119 

Iberian and Macaronesian Vegetation Information 
System (SIVIM) - Deciduous Forests 

EU-00–023 Juan Antonio 
Campos 

6 630 6 286 0.777 

Vegetation Database of Albania EU-AL-001 Michele De 
Sanctis 

290 193 0.024 

Austrian Vegetation Database EU-AT-001  Wolfgang Willner 30 659 23 941 2.960 

INBOVEG EU-BE-002 Els De Bie 13 541 8 204 1.014 

Bulgarian Vegetation Database EU-BG-001  Iva Apostolova 5 235 1 935 0.239 

Swiss Forest Vegetation Database EU-CH-005  Thomas 
Wohlgemuth 

14 193 14 182 1.753 

Czech National Phytosociological Database EU-CZ-001  Milan Chytrý 110 534 97 650 12.074 

VegMV EU-DE-001  Florian Jansen 49 631 44 410 5.491 

VegetWeb EU-DE-013  Jörg Ewald 22 363 21 525 2.661 

GVRD Vegetation Reference Database Halle EU-DE-014  Ute Jandt 29 797 28 418 3.514 

NATURDATA.DK EU-DK-002  Jesper 
Erenskjold 
Moeslund 

24 264 23 994 2.967 

Iberian and Macaronesian Vegetation Information 
System (SIVIM) - Wetlands  

EU-ES–001  Aaron Pérez-
Haase 

6 539 4 507 0.557 

SOPHY  EU-FR-003  Henry Brisse 155 275 143 323 17.721 
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UK National Vegetation Classification Database EU-GB-001 John S. Rodwell 25 485 24 104 2.980 

Hellenic Natura 2000 Database (HelNatVeg) EU-GR-005  Panayotis 
Dimopoulos 

4 857 4 295 0.531 

Hellenic Woodland Database + Hellenic Beech Forests 
Database (Hell-Beech-DB) 

EU-GR-006 +  
EU-GR-007  

Ioannis Tsiripidis 3 199 636 0.079 

Croatian Vegetation Database EU-HR-002  Željko Škvorc 8 517 8 249 1.020 

CoenoDat Hungarian Phytosociological Database  EU-HU-003  János Csiky 5 104 812 0.1 

Irish Vegetation Database EU-IE-001 Úna FitzPatrick 26 687 25 010 3.092 

VegItaly EU-IT-001  Roberto 
Venanzoni 

15 332 8 957 1.107 

Vegetation database of Habitats in the Italian 
Alps (HabItAlp) 

EU-IT-010 Laura Casella 3 562 3 496 0.432 

Georeferenced Vegetation Database - Sapienza 
University of Roma 

EU-IT-011  Emiliano Agrillo 12 665 10 981 1.358 

Lithuanian Vegetation Database  EU-LT-001  Valerijus 
Rašomavičius 

2 206 1 842 0.228 

Semi-natural Grassland Vegetation Database of Latvia EU-LV-001  Solvita Rūsiņa 5 594 5 581 0.69 

Vegetation Database of the Republic of Macedonia EU-MK-001  Renata 
Ćušterevska 

1 269 370 0.046 

Dutch National Vegetation Database EU-NL-001  Joop H.J. 
Schaminée 

93 812 83 968 10.382 

Polish Vegetation Database EU-PL-001  Zygmunt Kącki 56 989 53 381 6.600 

Romanian Forest Database EU-RO-007  Adrian Indreica 6 017 6 006 0.743 

Romanian Grassland Database EU-RO-008  Eszter Ruprecht 4 962 4 718 0.583 

Vegetation Database Grassland Vegetation of Serbia EU-RS-002  Svetlana Aćić 5 587 5 364 0.663 

Database of Forest Vegetation in Republic of Serbia + 
Vegetation Database of Northern Part of Serbia (AP 
Vojvodina) 

EU-RS-003 +  
EU-RS-004 

Mirjana 
Krstivojević Ćuk 

1 131 1 131 0.14 

Lower Volga Valley Phytosociological Database EU-RU-002  Valentin Golub 11 846 5 320 0.658 

Vegetation Database of Tatarstan EU-RU-011  Vadim 
Prokhorov 

7 426 2 301 0.284 
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Vegetation Database of Slovenia EU-SI-001  Urban Šilc 10 986 10 750 1.329 

Slovak Vegetation Database EU-SK-001  Milan Valachovič 36 266 33 320 4.120 

Ukrainian Grassland Database EU-UA-001  Anna Kuzemko 4 043 3 954 0.489 

Halophytic and Coastal Vegetation Database of Ukraine EU-UA-005  Tetiana Dziuba 4 399 13 0.002 

Vegetation Database of Ukraine and Adjacent Parts of 
Russia 

EU-UA-006  Viktor 
Onyshchenko 

3 325 3 192 0.395 
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Appendix S II.4 Distribution of initial grain size (in km²) in DMC calculations (Figure S 

II.4.1). Scatterplots and Spearman correlation coefficients (rho) of the relationship 

between species range sizes and niche sizes (Figure S II.4.2). Scatterplots and 

Spearman correlation coefficients (rho) of the relationship between percentage match 

of species ranges by EVA vegetation plots and percentage match of species niches by 

EVA vegetation plots (Figure S II.4.3).  

 

 

 

Figure S II.4.1 Distribution of initial grain size (in km²) in DMC calculations. Bandwidth 

of scaling steps were calculated species specific according to the species range sizes 

at 2.5-min raster cell resolution in geographic space. 
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Figure S II.4.2 Scatterplots and Spearman correlation coefficients (rho) of the 

relationship between species range sizes (occupied raster cells at 2.5-min raster cell 

resolution) in geographic space and niche sizes (occupied niche cells) in climatic 

space. 
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Figure S II.4.3 Scatterplots and Spearman correlation coefficients (rho) of the 

relationship between percentage match of species ranges by EVA vegetation plots and 

percentage match of species niches by EVA vegetation plots. X axis and y axis are 

log-transformed. 
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Chapter III 

Testing macroecological abundance patterns: the relationship between 

local abundance and range size, range position and climatic suitability 

among European vascular plants 
 

 

This chapter is published in Journal of Biogeography as  

 

Sporbert, M., Keil, P., Seidler, G., Bruelheide, H., Jandt, U., Aćić, S., Biurrun, I., 

Campos, J.A., Čarni, A., Chytrý, M., Ćušterevska, R., Dengler, J., Golub, V., Jansen, 

F., Kuzemko, A., Lenoir, J., Marcenò, C., Moeslund, J.E., Pérez-Haase, A., Rūsiņa, S., 

Šilc, U., Tsiripidris, I., Vandvik, V., Vasilev, K., Virtanen, R., & Welk, E. (2020). Testing 

macroecological abundance patterns: the relationship between local abundance and 

range size, range position and climatic suitability among European vascular plants. 

Journal of Biogeography, 47(10), 2210–2222  
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Abstract 

 

Aim: A fundamental question in macroecology centres around understanding the 

relationship between species’ local abundance and their distribution in geographic and 

climatic space (i.e. the multi-dimensional climatic space or climatic niche). Here, we 

tested three macroecological hypotheses that link local abundance to the following 

range properties: (1) the abundance-range size relationship, (2) the abundance-range 

centre relationship, and (3) the abundance-suitability relationship. 

Location: Europe 

Taxon: Vascular plants 

Methods: Distribution range maps were extracted from the Chorological Database 

Halle to derive information on the range and niche sizes of 517 European vascular 

plant species. To estimate local abundance, we assessed samples from 744,513 

vegetation plots in the European Vegetation Archive, where local species’ abundance 

is available as plant cover per plot. We then calculated the ‘centrality’, i.e. the distance 

between the location of the abundance observation and each species’ range centre in 

geographic and climatic space. The climatic suitability of plot locations was estimated 

using coarse-grain species distribution models (SDMs). The relationships between 

centrality or climatic suitability with abundance were tested using linear models and 

quantile regression. We summarized the overall trend across species’ regression 

slopes from linear models and quantile regression using a meta-analytical approach. 

Results: We did not detect any positive relationships between a species’ mean local 

abundance and the size of its geographic range or climatic niche. Contrasting yet 

significant correlations were detected between abundance and centrality or climatic 

suitability among species. 

Main conclusions: Our results do not provide unequivocal support for any of the 

relationships tested, demonstrating that determining properties of species’ distributions 

at large grains and extents might be of limited use for predicting local abundance, 

including current SDM approaches. We conclude that environmental factors 

influencing individual performance and local abundance are likely to differ from those 

factors driving plant species’ distribution at coarse resolution and broad geographic 

extents.  
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Keywords: abundance, climatic suitability, commonness and rarity, range size, 

realized climatic niche, resolution, species distribution models, vegetation-plot data 

 

Introduction 

 

A fundamental question in macroecology centres around what drives spatial variation 

in species’ abundance, with species’ abundance across the geographic range having 

recently been proposed as one of the so-called essential biodiversity variables (Jetz et 

al., 2019). Much effort has gone into identifying the drivers of local abundance, and 

there is a substantial body of literature establishing that it depends on local factors 

such as environmental suitability and local biotic interactions (e.g. Andrewartha & 

Birch, 1954; MacArthur, Diamond, & Karr, 1972; Peterson et al., 2011; Staniczenko, 

Sivasubramaniam, Suttle, & Pearson, 2017). Similarly, it has been established that the 

limit of species’ distribution is a function of the interplay between environmental 

conditions and barriers affecting dispersal and evolution (Baselga, Lobo, Svenning, & 

Araujo, 2012). Based on metapopulation and metacommunity concepts, local and 

regional processes are hypothesised to be mechanistically linked (Leibold et al., 2004), 

and relationships between species’ local abundance and geographical distribution may 

be expected. However, supporting empirical data, especially for herbaceous plants, is 

lacking. In this paper, we explore whether local abundance is associated with 

geographic distribution in 517 European vascular plant species at broad geographic 

extents. Specifically, we focus on three macroecological relationships: (1) the 

abundance-range size relationship, (2) the abundance-range centre relationship, and 

(3) the abundance-suitability relationship (Table III.1). To test the relationships, we 

interrogated existing data on the species’ geographic range characteristics and local 

abundances, deriving range information from the Chorological Database Halle (CDH; 

E. Welk et al., unpublished data) and local abundance data from the European 

Vegetation Archive (EVA; Chytrý et al., 2016). The EVA data are recorded as 

percentage cover per plot, which we extrapolated to determine local abundance 

following Preston (1948). 

For the first relationship, we checked for associations between species’ local 

abundance and the size of the respective geographic range or climatic niche and ask 

whether locally abundant species are generally more widely distributed, i.e. whether 

they have larger geographic ranges than species with relatively lower local abundance 
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values (Table III.1). Such a relationship has been widely and empirically documented 

(Hanski, 1982; Brown, 1984; Gaston et al., 1997; Reif et al. 2006; Gaston & Blackburn, 

2008), and several mechanisms have been proposed as drivers (Gaston et al., 1997). 

For instance, when a species can tolerate a large variability of climatic conditions 

across its range, it should be able to cope with local temporal climatic variability and 

thus perform better than local competitors with narrower climatic niches and limited 

plasticity, resulting in it showing higher local abundance. This mechanism relies on the 

assertion that a species’ geographical distribution is driven by the same climatic 

tolerances that influence its local abundance, which may not be the case (Guisan & 

Thuiller, 2005; Mertes & Jetz, 2018). Gaston, Blackburn, & Lawton (1997) reviewed 

eight other mechanisms that could lead to this relationship, two of which were 

artefactual, while the others considered niche breadth, resource availability, habitat 

selection, dispersal limitation, metapopulation dynamics or position within the 

distributional range. In conclusion, the authors noted that none of the proposed 

mechanisms has received unequivocal support. As such, the abundance-range size 

relationship has seen mixed empirical support (Gaston et al., 1997; Köckemann, 

Buschmann, & Leuschner, 2009), and there have been concerns that species’ 

abundance and range-size were mostly analysed at completely different, or 

inappropriate, scales (Thompson, Hodgson & Gaston, 1998; Conlisk, Conlisk, Kassim, 

Billick, & Harte, 2012; Kambach et al., 2019). For our study, on a large group of 

herbaceous plant and shrub species predominantly over their full distributional ranges, 

we expected locally less abundant species to be more narrowly distributed, and locally 

abundant species to be more widespread in geographic and climatic space (Figure 

III.1a). 

The second intraspecific abundance-range centre relationship tested here links 

local abundance values to the distance of the locality from the centre of the species’ 

geographic range or climatic niche (Table III.1). The hypothesis stems from the 

assumption that the environment tends to be more suitable at the centre of the range 

than near its edges (Grinnell, 1922; Hengeveld & Haeck, 1982; Brown, 1984). 

However, it has become clear that species’ geographic ranges can be shaped by 

barriers such as mountains or coastlines (Hargreaves, Samis, & Eckert, 2013), and 

ecological conditions do not systematically follow geographic gradients (Pironon et al., 

2017). Thus, the geographic distribution of suitable environment can be unrelated to 

the geometry of a species’ range (Manthey et al., 2015). Empirical support for the 
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positive form of this relationship in geographic space is weak (e.g. Gaston et al., 1997; 

Sagarin, Gaines, & Gaylord, 2006; Dallas, Decker, & Hastings, 2017; Pironon et al., 

2017). While supported in theory, empirical support for the hypothesis in climatic space 

is mixed, with some studies finding stronger support for this relationship in climatic than 

in geographic space (Martínez-Meyer, Díaz-Porras, Peterson, & Yáñez-Arenas, 2013; 

Van Couwenberghe, Collet, Pierrat, Verheyen, & Gégout, 2013; Osorio‐Olvera, Yáñez‐

Arenas, Martínez‐Meyer, & Peterson, 2020), while others finding weak or no support 

(Abeli, Gentili, Mondoni, Orsenigo, & Rossi, 2014; Pironon, Villellas, Morris, Doak, & 

García, 2015; Dallas, Pironon, & Santini, 2020). For our study, we therefore expected 

the relationship between local abundance and distance from the range centre to be 

weak or absent in geographic space, while to be positive in climatic space (Figure 

III.1b). 

The third abundance-suitability relationship assumes that the more suitable the 

climate for a species within a larger area, the higher the abundance of the species 

should be within local plots in that area (Table III.1). By equating occurrence probability 

with climatic suitability, it is expected that favourable climatic conditions support higher 

species’ abundance as a result of improved population and/or individual performance 

(Araújo, Williams, & Fuller, 2002). While some previous studies have found strong 

support for this relationship (VanDerWal, Shoo, Johnson, & Williams, 2009; Weber et 

al., 2017), others failed to detect any effects (Gomes et al., 2018; Santini et al., 2019). 

As statistically significant relationships have only been recorded for a few species, a 

low generality of climatic suitability as a predictor of spatial patterns of abundance may 

be assumed (VanDerWal et al., 2009). In addition, species’ responses to differing 

climatic conditions can be non-Gaussian (i.e. skewed, bi-modal, or truncated) (Austin, 

1987). Therefore, species’ climatic niche may not show highest climatic suitability in 

the very centre, but somewhere closer to the edges. For this study, we expected local 

abundance to be positively related to the coarse-grain climatic suitability predicted for 

the 15 km² grid cells containing the respective vegetation plots (Figure III.1c). 

It is noted that there is a suite of mechanisms that can weaken or limit the above-

described relationships by affecting species’ local abundance but without affecting their 

overall geographic distribution. Examples include: environmental and demographic 

stochasticity (Lande, Engen, & Saether, 2003), particularly when they are temporally 

synchronous over large geographic extents; biotic interactions (Dallas et al., 2017); soil 

and disturbance parameters (VanDerWal et al., 2009), or isolation by dispersal barriers 
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(Reif et al., 2006). Since correlative models of climatic suitability do not integrate these 

factors, species might be absent or show low abundance at sites with predicted high 

climatic suitability (VanDerWal et al., 2009). Consequently, relationships could be 

absent or triangular (Figure III.1b and c), which are common forms of relationship 

between macroecological variables (Brown & Maurer, 1987), indicating more limiting 

factors at play than just a linear response of central tendency (as in Figure III.1a). 

 

Table III.1 Description and references to the three tested relationships that link species’ 

local abundance to distribution in coarse-grain geographic or climatic space.  

 
Relationship Description References 

(Interspecific) abundance-

range size relationship 

Locally rare species tend 

to be narrowly distributed, 

while locally abundant 

species tend to be more 

widespread in geographic 

or climatic space. 

Brown, 1984; Gaston & 

Blackburn, 2008; Gaston 

et al., 1997; Hanski, 

1982; Reif et al., 2006; 

Thompson et al., 1998 

(Intraspecific) abundance-

range centre relationship 

Sites with low abundance 

are located towards range 

or niche margins, while 

sites with high abundance 

are clustered at the centre 

of a species’ range or 

niche. 

Brown, 1984; Hengeveld 

& Haeck, 1982; Osorio‐

Olvera et al., 2020; 

Pironon et al., 2017; 

Sagarin & Gaines, 2002; 

Sagarin et al., 2006; 

Santini et al., 2019  

(Intraspecific) abundance-

suitability relationship 

Species show lower local 

abundance in climatically 

less suitable areas but 

achieve higher local 

abundance in climatically 

more suitable areas. 

Dallas & Hastings, 2018; 

Gomes et al., 2018; 

Santini et al., 2019; 

VanDerWal et al., 2009; 

Weber et al., 2017 
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Figure III.1 Hypothesized relationships between local abundance and: (a) the size of 

the geographic range or climatic niche derived at the coarse grain; (b) the vegetation 

plot position (i.e. distance to centre) within the species’ range in either geographic or 

climatic space; and (c) the climatic suitability of a grid cell within which a local plot is 

situated in the species’ range in climatic space. 

 

Material and Methods 

 

Geographic ranges 
 
For this study, we used existing data on the geographic ranges of European vascular 

plant species from the CDH (E. Welk et al., unpublished data). The study area 

comprised all geographical European countries as well as Turkey, Georgia, Armenia 

and Azerbaijan (see Figure II.1 and II.2 in chapter II). We only included species for 

which digitized GIS-data were available (i.e. range polygons and point occurrences). 

We excluded trees, bryophytes, lichens, fungi and algae from the vegetation-plot 

records to obtain a more homogeneous dataset of herbaceous species, dwarf shrubs 

and shrubs. Data on a total of 517 species were consequently amassed for the study, 

which represents approximately 10% of all Central European vascular plant species 

(Meusel & Jäger, 1992). Species’ range information was processed to coarse-grain 

raster layers of 2.5-min resolution, which corresponded to grid cells covering 

approximately 15 km² each across Central Europe (see e.g. the range of Inula conyzae 

in Figure III.2a). The measure of range size for each species then corresponded to the 

number of grid cells it occupied (Area of Occupancy (AOO)) (IUCN, 2019).  
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Climatic niches 
 
The multi-dimensional climatic space (or climatic niche) of each geographic range was 

determined using principal components analysis (PCA) of 19 bioclimatic variables from 

WorldClim (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) at 2.5-min cell resolution 

(Figure III.2b; climatic niche of Inula conyzae). The common European climatic space 

is represented by the first two PCA axes, which explain 88.0% of the data variance. 

Unique PCA space locations were considered and counted as grid cells in climatic 

space. Species’ niche size was calculated as the number of occupied grid cells in 

climatic space (see Appendix S II.1 in chapter II). 

 

Local abundance in vegetation plots 
 
Local abundance values for a total of 744,513 vegetation plots were obtained from 

EVA (Chytrý et al., 2016) for the 517 study species in October 2015. For half of the 

plots, the recorded area was between 9 and 100 m² (25th and 75th percentile) with a 

median of 25 m². Data for subspecies were merged at the species level, and we 

matched synonymous species names according to: (i) a taxonomic reference list for 

Germany (GermanSL version 1.2, Jansen & Dengler, 2008); and (ii) for all taxonomic 

reference lists available via the R package 'taxize' (Chamberlain & Szöcs, 2013; R 

Core Team, 2018). We only included species that occurred in at least 100 vegetation 

plots in the EVA dataset, and plots with geographic location uncertainty of < 10 km. 

The number of vegetation plots for each species ranged from 101 plots for Malva 

pusilla to 23,464 plots for Plantago lanceolata. For half of the studied species, the 

number of plots ranged between 631 and 4,531 plots (25th and 75th percentile), with a 

median of 1,863 plots (see Appendix S III.1.1).  

Cover-abundance values compiled in EVA that were based on different scales (e.g. 

Domin, 1928; Braun-Blanquet, 1951) were transformed to a common percentage scale 

(van der Maarel, 1979). 

When more than one plot per species was present in a 2.5-min raster cell, we 

calculated mean values of abundance (%) to reduce effects of spatial autocorrelation 

and pseudo-replication. The percentage of grid cells with less than four plots ranged 

from 39.1% to 97.1% per species. For half of the studied species, the percentage of 

grid cells with less than four plots was between 66.7% and 77.4% (25th and 75th 

percentile) with a median of 71.5%. The percentage of grid cells with more than 10 

plots ranged from 0.0% to 28.6%. For half of the studied species, the percentage of 
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grid cells with more than 10 plots was between 2.6% and 6.1% (25th and 75th 

percentile), with a median of 4.3% (see Appendix S III.1.2). Information on source 

databases that provided vegetation plot data can be found in Appendix S II.3 in chapter 

II.  

 

Distance from centre of the geographic range or climatic niche 
 
To determine the centroids of each species’ geographic range and climatic niche, all 

grid cells in which a species was indicated as present in the CDH database were 

considered. Geographic range centroids were calculated as the arithmetic mean of 

spatial central coordinates of grid cells over the species’ CDH geographic range. To 

determine species’ niche centroids, the multivariate climatic space was translated into 

two-dimensional space (using PCA), and species’ geographic occurrences were 

projected into this climatic niche space. Niche centroids were determined as the 

arithmetic mean of PCA-coordinates of the respective species’ raster cell values. 

Geographic distance (in kilometres) from each respective EVA vegetation plot to the 

respective species’ CDH range centre was determined using Haversine great circle 

geographic distance (Figure III.2c and d). We calculated Mahalanobis distance to the 

climatic niche centroid as a measure in climatic space (Figure III.2e and f). 

Mahalanobis distance is considered as a good proxy for marginality since it takes into 

account the covariance structure of the data (Osorio‐Olvera, Soberón, & Falconi, 2019; 

Osorio‐Olvera et al., 2020). For each species’ vegetation plot position, the distance to 

range or niche centroid was divided by the species-specific maximum distance to the 

range or niche centroid (distance/distancemax). This standardization enabled and 

simplified comparison among the species in our study. 

 

Coarse-grain climatic suitability 
 
We used species distribution modelling (SDM) to obtain spatial estimates of climatic 

suitability within each species’ geographic range. SDMs estimate occurrence 

probabilities based on the relationship between species occurrence and environmental 

(climatic) characteristics. We used occurrence data from CDH and bioclimatic 

variables provided by the CHELSA project (Karger et al., 2017) at 2.5 min-resolution 

as explanatory variables to build SDMs. The distribution range data of CDH are point-

polygon maps covering the complete distribution of the recorded species. Apart from 

isolated or fragmented single occurrences (points), the areas outside the range 
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polygons are proven to be ‘absence areas’ by accumulated regional expert knowledge, 

as documented in national to regional floristic atlases, floras or floristic inventories. 

Thus, pseudo-absences were sampled from bordering regions in geographical and 

climatic space. The general sampling approach is based on a climatic pre-stratification 

of the species’ geographic range into differing climatic regions. A fixed number of 

presence and pseudo-absence samples were drawn randomly from each climatic 

region, irrespective of the size of the respective climatic region. As recommended by 

Barbet-Massin, Jiguet, Albert, & Thuiller (2012), we kept the number of selected 

pseudo-absence samples equal to the number of presence samples for all models 

respectively (see Appendix S III.2.1 and 2.2).  

SDMs estimate spatial predictions of environmental suitability from 0 (not suitable) 

to 1 (most suitable) (Figure III2g and h). We applied four different suitability modelling 

methods from the three main groups of modelling approaches (i.e. machine learning 

methods, statistical modelling and similarity methods). The methods we applied are 

‘bioclim’ (similarity method), ‘multivariate adaptive regression splines’ (mars) 

(statistical modelling), ‘random forest’ (rf) and ‘support vector machine’ (svm) (machine 

learning methods). We used the area under the receiver operating characteristic 

(ROC) curve (AUC; Bradley, 1997) to calculate model accuracy, within which high AUC 

values (i.e. those closer to 1) indicate a strong capacity for model discrimination (Bedia, 

Herrera, & Gutiérrez, 2013). Species distribution modelling was performed using the R 

package 'sdm' (version 1.0-67) (Naimi & Araújo, 2016). We fitted and evaluated the 

four models using 10 runs of subsampling replications withholding 30 percent samples 

as test data. 
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Figure III.2 Range of Inula conyzae (grey) and locations of vegetation plots (blue dots) 

from EVA in (a) geographic and (b) climatic space. Centrality and predicted climatic 

suitability for Inula conyzae illustrated in blue (low centrality/suitability) to red (high 

centrality/suitability). The distance to range centroid in (c) geographic and (d) climatic 

space refers to the abundance-range centre relationship. The distance to niche 

centroid in (e) geographic and (f) climatic space refers to the abundance-range centre 
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relationship. The predicted climatic suitability from the model ‘random forest’ (rf) in (g) 

geographic and (h) climatic space refers to the abundance-suitability relationship. 

 

Abundance vs range size, centrality and coarse-grain climatic suitability 
 
We applied ‘ordinary least squares’ (OLS) linear regression models to examine the 

relationship of local abundance with range size, centrality and coarse-grain climatic 

suitability. We used ‘linear quantile regression’ to examine the relationship between 

centrality and coarse-grain climatic suitability to upper limits (90th quantile) of 

abundance values to test whether the relationships would be better described as 

“triangular”, as illustrated in Figures III.1b and c. To estimate the overall trend across 

species, a meta-analysis was performed on species’ slopes for each of the applied 

centrality and climatic suitability measures (Borenstein, 2009). We conducted a mixed-

effect meta-analysis on the slopes and the associated variance of each of the centrality 

and suitability measures to calculate a summary effect size including species as a 

random factor. Quantile regressions were performed using the R package 'quantreg', 

(version 5.38) (Koenker, 2018) and the mixed-effect meta-analysis using the function 

'rma' from package 'metafor' (Viechtbauer, 2010). All the analyses were rerun on a 

subset of the dataset, for which only grid cells with a minimum number of four 

occurrences of each species were included.  

 

Results  

 

Abundance vs range size and niche size 
 
Species’ range size (no. of occupied grid cells) ranged from 1,202 in Juniperus sabina 

to 782,025 in Stellaria media. For half of the species, range size was between 74,867 

and 476,865 (25th and 75th percentile), with a median of 254,579 grid cells. Species’ 

niche size (no. of occupied grid cells) ranged from 162 in Scabiosa canescens to 9,318 

in Plantago major. For half of the species, the niche size was between 1,657 and 4,614 

(25th and 75th percentile), with a median of 3,002 grid cells (see Supporting Information 

S III.3, available online https://doi.org/10.1111/jbi.13926). There was a strong 

significant positive relationship between species range and niche size (R2 = 0.616, p-

value < 0.001, see Appendix S III.4.1). Species’ local abundance (mean plot cover) 

was significantly, yet weakly, related to range size (R2 = 0.011, p-value = 0.020) but 
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not to niche size (R2 = 0.001, p-value = 0.398) (Figure III.3a and b). For both 

relationships we found high intraspecific variation in species’ abundance values, as 

indicated by the width of the vertical error bars in Figure III.3. 

 

 

 

Figure III.3 Absence of a relationship between species’ mean abundance with (a) 

range size and (b) niche size at coarse (2.5-min) raster grain. Points indicate species’ 

mean abundance values; grey error bars are standard deviations, and black solid lines 

are linear regressions. 

 

Abundance vs centrality in geographic space 
 
Across the 517 species we found large variation in slopes of linear regressions relating 

abundance to the distance from the centre of geographic ranges, with species showing 

positive (e.g. Brachypodium phoenicoides), negative (e.g. Luzula pilosa), or no 

relationship (e.g. Potentilla argentea; Figure III.4), ranging from -0.31 to 0.38, with a 

median of -0.03 (Figure III.5a). Similarly diverse results were obtained using quantile 

regressions (90th quantile used to determine the upper limit of a triangular abundance-

range centre relationship), with positive but also negative relationships ranging from -

1.0 to 1.0, with a median of -0.08 (Figure III.5b). For 13.5% of the species, quantile 

regression revealed slopes not significantly different from 0 (Table III.2). When we 

summarized the slopes of both linear and quantile regressions with a mixed-effect 

meta-analysis, we found that the overall mean slope across 517 species was slightly 

negative and significantly different from 0 in both OLS linear models and linear quantile 
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regressions, with values averaging -0.04 and -0.10, respectively (Table III.3). This 

indicates that the distance of the plot location to the centre of the species’ geographic 

range is a weak and variable predictor of local abundance.  

 

Abundance vs centrality in the climatic niche 
 
Similar to the above-described analysis involving geographic space, we found large 

variation in regression slopes for the relationships between abundance and distance 

from the centre of climatic niches (Figure III.5c and d). Slopes from linear models 

ranged from -0.30 to 0.29 with a median of -0.02, while slopes from the quantile 

regression ranged from -1.00 to 0.89 and had a median of -0.01. For 24.1% of the 

species, quantile regression slopes were not significantly different from 0 (Table III.2). 

Summarized in a mixed-effect meta-analysis, the overall mean slope was slightly 

negative and significantly different from 0 in both linear models and quantile 

regressions, with means of -0.03 and -0.08 respectively (Table III.3). Again, this points 

to a weak and considerably varying relationship. 

 

Abundance vs coarse-grain climatic suitability 
 
The four SDM techniques (‘bioclim’, ‘mars’, ‘rf’, ‘svm’) predicted similar maps of coarse-

grain climatic suitability (Figure III.2g and h). According to AUC scores, all techniques 

had high success rates, with AUC values averaged over 517 species being 0.947, 

0.930, 0.916 and 0.718 for ‘bioclim’, ‘mars’, ‘rf’, and ‘svm’, respectively. Importantly, 

when predicted climatic suitability was used as a predictor of abundance, we found no 

general relationship, irrespective of the SDM technique used. Specifically, both OLS 

linear regression and linear quantile regression showed a number of relationships with 

both positive and negative slopes, as well as no relationship. For some of the species, 

linear quantile regression revealed no relationship (slope=0) between abundance and 

climatic suitability (Table III.2, Figure III.5e and f and Appendix S III.4.2).  

Summarized in a mixed-effect meta-analysis, the overall mean slope was slightly 

negative for all applied SDM methods in OLS linear regression models and linear 

quantile regressions. The overall mean slope was significantly different from 0 for 

‘bioclim’, ‘svm’ and ‘rf’ based predictions in OLS linear regressions and for all models 

in quantile regression, indicating a slightly negative trend in local plot abundance with 

increasing coarse-grain climatic suitability, which again points to a weak and 

heterogeneous relationship. The analyses were rerun on a subset of the dataset that 



Chapter III | 61 

 

included only grid cells with a minimum number of four occurrences for each species, 

which revealed similar results (see Appendix S III.4.3 and 4.4). 

 

 

 

Figure III.4 Examples of herbaceous species having positive (Brachypodium 

phoenicoides, left column), nearly absent (Potentilla argentea, middle column), and 

negative (Luzula pilosa, right column) relationships between local abundance and 

properties derived from distributions in the coarse-grain geographic and climatic space. 

Scatterplot and regression coefficients from OLS linear regression models (ols) and 

linear quantile regressions (qr, 90th quantile) between abundance and centrality in 

geographic space (a-c), centrality in climatic space (d-f), and predicted climatic 

suitability from model ‘random forest’ (rf) (g-i). Bold lines represent the 50th quantile 

regression (regression from linear model); the dashed line represents the 90th quantile 

regression. 
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Figure III.5 Frequency distributions for 517 vascular plant species of slopes from OLS 

linear regressions (ols) (left) and linear quantile regressions (qr; 90th percentile) (right) 

between mean species local abundance and distance to range centroid (a,b); distance 

to niche centroid (c,d), and climatic suitability predicted from model ‘random forest’ (rf) 

(e,f). Green bars represent significant slope values. The dotted line represents 

slope=0; the dashed line represents the average slope. 
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Table III.2 Regression slopes derived from OLS linear regression models and quantile 

regressions (90th quantile) between species’ local abundance and the six measures 

for distance and suitability applied (distance to range centroid, distance to niche 

centroid, predicted climatic suitability from ‘bioclim’, ‘mars’, ‘rf’ and ‘svm’) for 517 

vascular plant species. The percentage of all 517 species included in this study 

showing significant (p < 0.05) positive, negative or no slope.  

 

  

 Slope OLS linear regression 

 

Slope linear quantile regression  

(90th quantile) 

Measure [+] slope [-] slope [+] slope [-] slope no slope 

Geographic centrality   6.2 54.0   6.2 45.8 13.5 

Climatic centrality   3.9 32.5   4.3 23.4 24.1 

Suitability bioclim 13.0 34.6 10.4 29.0 17.7 

Suitability mars 17.2 22.8 11.8 18.8 14.7 

Suitability rf 13.5 24.2   8.5 17.6 20.9 

Suitability svm 10.8 28.0   7.4 22.6 14.6 

 

 

Table III.3 Slopes of the mixed-effect meta-analysis for linear models and quantile 

regressions (90th quantile) between species’ local abundance and the six measures 

for distance and suitability applied (distance to range centroid, distance to niche 

centroid, predicted climatic suitability from ‘bioclim’, ‘mars’, ‘rf’ and ‘svm’); summary 

effect size (SE) is given in brackets; p-values: *= p < 0.05, ** = p < 0.01, *** = p < 0.001.  

 

                               Slope (SE) p-value 

Measure 

OLS linear 

regression 

linear quantile regression  

(90th quantile) 

Geographic centrality -0.036 (0.002) *** -0.100 (0.008) *** 

Climatic centrality -0.032 (0.003) *** -0.081 (0.009) *** 

Suitability bioclim -0.013 (0.002) *** -0.036 (0.005) *** 

Suitability mars -0.005 (0.006) -0.043 (0.015) ** 

Suitability rf -0.010 (0.005) * -0.031 (0.011) ** 

Suitability svm -0.029 (0.004) *** -0.092 (0.013) *** 
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Discussion 

 

In our attempt to link species’ local abundance to their distribution at coarse resolution 

and broad extents in geographic and climatic space we tested for three 

macroecological relationships: (1) the abundance-range size relationship, (2) the 

abundance-range centre relationship, and (3) the abundance-suitability relationship. 

For (1), we found no empirical association between species’ local abundance and 

the size of the species’ geographic range or the size of its climatic niche estimated at 

a coarse spatial grain. For (2), contrary to some of our expectations, we found that, on 

average, species’ local abundance was not related to distance with respect to the 

centre of its geographic range or climatic niche; however, a generally weak and slightly 

negative relationship indicates substantial variation, with many species having strong 

positive or strong negative forms of the relationship. For (3), we again unexpectedly 

found species’ local abundance to be nearly unrelated to its predicted climatic 

suitability, notwithstanding the weak negative trend and, again, considerable variation. 

As such, despite the significant statistical associations discussed below, most of the 

relationships were weak and highly variable. While this finding contradicts some early 

macroecological propositions (Brown, 1984), it accords with some more systematic 

and data-intensive empirical evaluations that often showed similarly noisy and weak 

relationships (Gaston et al., 1997; Köckemann et al., 2009; Dallas & Hastings, 2018).  

Whereas our study tested the relationships on a large group of herbaceous plant 

and shrub species predominantly over their full distributional ranges, many other 

studies focused on popular taxa and functional species groups (e.g. trees and 

amphibians, VanDerWal et al., 2009; mammals and trees, Dallas & Hastings, 2018; 

birds, Osorio‐Olvera et al., 2020), or they were restricted to specific geographic regions 

(e.g. Australian rainforest, VanDerWal et al., 2009; China, Ren et al., 2013). 

Overall, we offer two general and plausible explanations for our results. First, that 

processes driving species’ local abundance can differ from those driving occupancy 

across their geographic or climatic space (Shmida & Wilson, 1985; Wiens, 1989; 

Bradley, 2016; Mertes & Jetz, 2018). Continental-scale presence or absence of 

species may be primarily shaped by broad-scale environmental conditions (e.g. 

climate), historical factors (Brändle & Brandl, 2001) and long-distance dispersal 

limitation. In contrast, species’ abundance at the local scale may be more influenced 

by abiotic microhabitat characteristics such as soil or microclimatic conditions 
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(Köckemann et al., 2009; De Frenne et al., 2013), or the prevailing disturbance regimes 

or successional stages (Meurant, 2012; Morris, Ehrlén, Dahlgren, Loomis, & Louthan, 

2020). Furthermore, biotic interactions may strongly influence local species’ 

abundance (Moeslund et al., 2017; Dallas & Hastings, 2018).  

The second explanation emphasizes the central role of temporal scale and short-

term stochasticity (Lande et al., 2003), which can particularly disrupt patterns of local 

abundance, thereby disconnecting them from coarse-grain occurrence patterns, which 

are driven by long-term average conditions. This acknowledges that vegetation plots 

only reflect abundance at any one point in time (and thus vary within and across years, 

e.g. due to stochasticity), while species’ coarse-grain occurrence patterns, and any 

derived assumptions on their climatic niches, represent long-term averages.  

We consider both explanations to be plausible as that they can explain results 

associated with the three examined relationships, and because the grain of the 

vegetation plots is particularly small and thus potentially highly sensitive to both local 

spatial variation of microhabitats and short-term stochasticity. This is also supported 

by the observed high variation of abundance values around the determined 

relationships (see Figure III.4). 

Our results have several important practical implications: The first concerns the 

interpretation of SDMs, which have become an essential tool in conservation planning 

and assessment (Peterson et al., 2011) and have been used to identify priority species 

and regions (Hoffmann et al., 2010). Species’ coarse-grain occurrence and local 

abundance do not frequently display similar patterns, and they often do not even 

correlate well (Mi, Huettmann, Sun, & Guo, 2017). In a study by Johnston et al. (2015), 

locations that had been prioritized for conservation by SDMs based on species’ 

occurrence only showed 10–58% overlap with locations prioritized by Species 

Abundance Models (SAMs) based on species’ abundance. They conclude that SDMs 

do not typically identify locations of highest abundance that are crucial for the 

conservation of populations. Our results support this conclusion as we found no clear 

correlation between coarse-grain climatic suitability predicted by SDMs and local 

species’ abundance. Since most conservation strategies are implemented at the local 

scale, we highlight the need to check predictions made at a global or regional scale 

and their transferability to the local scale, as previously proposed by Guerrero, 

McAllister, Corcoran, & Wilson (2013). 
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Another practical implication concerns rarity as a proxy for threat or conservation 

status. Our results indicate that for European plants, range size, especially when used 

as the only proxy for local abundance, seems to be a weak predictor of local rarity. 

Species with small ranges may be locally abundant, while those with large ranges may 

be locally rare. Thus, we argue that range size and local abundance should be 

independently considered when developing conservation measures for species or 

habitats. 

In conclusion, we found conflicting evidence for some of the hypothesized links 

between species’ coarse-grain distribution and local abundance, which may be due to 

the nature of dispersal barriers across Europe. In addition, we note that the size of the 

vegetation plots used can make species’ abundance values more or less sensitive to 

local microhabitat variation and stochasticity. These results call into question any 

assumptions made on species’ abundance at the local scale, particularly where 

predictive SDMs on coarse grain occurrence data were used. As such, we recommend 

that further detailed investigations of the processes driving species’ local abundance 

in relation to their geographic range are required, particularly to better inform 

conservation measures. 

 

  



Chapter III | 67 

 

Appendices 

 

 

 

Figure S III.1.1 Distribution of number of vegetation plots per species (at 2.5-min raster 

resolution). Number of plots occupied per species ranged from 101 to 23,464 and for 

half of the studied species; number of plots was between 631 and 4,531 (25th and 75th 

percentile) with a median of 1,863 plots. 

 

Moran’s I was calculated to test for spatial autocorrelation between plot size and plot 

occurrence coordinates (latitude/longitude) in geographic space. Moran’s I is ranging 

from -1 to 1, with perfect dispersion (negative spatial autocorrelation) at -1, complete 

random arrangement at 0, and perfect correlation (positive spatial autocorrelation) at 

+1. Here, Moran’s I was 0.075, meaning plot size is randomly distributed in the studied 

geographic space. 
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Figure S III.1.2 Boxplots on the species’ specific distribution of number of vegetation 

plots per grid cell. Seven groups were classified by number of vegetation plots per 2.5-

min raster cell.  

 

 

 

Figure S III.2.1 Geographic range (blue polygon) and range size related buffer (orange 

line) for Inula conyzae. 



Chapter III | 69 

 

 

 

Figure S III.2.2 Available climatic combinations based on range size related buffer 

zone (orange dots); species realized niche based on geographic occurrences from 

CDH (blue line); niche size related buffer zone (red line); selected presences (blue 

dots); selected pseudo-absences (red dots) for Inula conyzae. 

 

Appendix S III.3 Information on the 517 species included in this study. This Appendix 

can be found online, https://doi.org/10.1111/jbi.13926 
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Figure S III.4.1 Relationship between niche size and range size for the 517 species 

included in this study 
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Figure S III.4.2 Frequency distributions for 517 vascular plant species of slopes from 

OLS linear regressions (ols) (left) and linear quantile regressions (qr, 90th percentile) 

(right) between mean species local abundance and climatic suitability predicted by 

‘bioclim’ (a, b), ‘mars’ (c, d) and ‘svm’ (e, f). Green bars represent significant slope 

values. Dotted line represents slope=0, the dashed line represents average slope. 
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Table S III.4.3 Regression slopes derived from OLS linear regression models and 

quantile regressions (90th quantile) between species’ local abundance and the six 

measures for distance and suitability applied (distance to range centroid, distance to 

niche centroid, predicted climatic suitability from ‘bioclim’, ‘mars’, ‘rf’ and ‘svm’) for 517 

vascular plant species. The percentage of all species included in this study showing 

significant (p < 0.05) positive or negative or no slope. Results based on a subset 

dataset (including only cells with a minimum number of four plots per cell and species). 

 

  Slope OLS linear regression 

Slope linear quantile regression  

(90th quantile) 

Measure 

[+] slope 

 

[-] slope 

 

[+] slope 

 

[-] slope 

 

no 

slope 

Geographic 

centrality  9.0  22.7 6.2 17.2 2.7 

Climatic centrality  7.8 27.5 8.2 20.3 1.4 

Suitability bioclim  92.0 0.0 60.4 0.2 0.2 

Suitability mars na na na na na 

Suitability rf  11.9 19.3 11.9 17.0 2.3 

Suitability svm  7.6 32.6 6.8 23.8 1.2 
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Table S III.4.4 Slopes of the mixed-effect meta-analysis for linear models and quantile 

regressions (90th quantile) between species’ local abundance and the six measures 

for distance and suitability applied (distance to range centroid, distance to niche 

centroid, predicted climatic suitability from ‘bioclim’, ‘mars’, ‘rf’ and ‘svm’); summary 

effect size (SE) is given in brackets; p-values: *= p < 0.05; ** = p < 0.01; *** = p < 0.001. 

Results based on a subset dataset (including only cells with a minimum number of four 

plots per cell and species). 

 

  Slope (SE) p-value 

Measure 

OLS linear 

regression 

linear quantile regression  

(90th quantile) 

Geographic 

centrality -0.038 (0.003) *** -0.097 (0.006) *** 

Climatic centrality -0.034 (0.003) *** -0.068 (0.008) *** 

Suitability bioclim -0.016 (0.002) *** -0.037 (0.004) *** 

Suitability mars na na 

Suitability rf -0.023 (0.005) *** -0.049 (0.012) *** 

Suitability svm -0.036 (0.005) *** -0.087 (0.012) *** 

 

  



74 | Chapter IV 

 

Chapter IV 

Different sets of traits explain abundance and distribution patterns of 

European plants at different spatial scales 
 

 

This chapter is under revision in Journal of Vegetation Science as  

 

Sporbert, M., Welk, E., Seidler, G., Jandt, U., Aćić, S., Biurrun, I., Campos, J.A., Čarni, 

A., Cerabolini, B.E.L., Chytrý, M., Ćušterevska, R., Dengler, J., De Sanctis, M., Dziuba, 

T., Fagúndez, J., Field, R., Golub, V., He, T., Jansen, F., Lenoir, J., Marcenò, C., 

Martín-Forés, I., Moeslund, J.E., Moretti, M., Niinemets, Ü., Penuelas, J., Pérez-

Haase, A., Vandvik, V., Vassilev, K., Vynokurov, D. & Bruelheide, H.. Different sets of 

traits explain abundance and distribution patterns of European plants at different 

spatial scales 
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Abstract 

 

Aim: Plant functional traits summarize major axes describing plant form and function 

across taxa and biomes. We assess whether geographic range size, climatic niche 

size, and local abundance of plants relate to predictive sets of traits (trait syndromes) 

or are driven by single traits. 

Location: Europe (vegetation plots), Eurasia (distribution ranges) 

Methods: Plant species distribution maps were extracted from the Chorological 

Database Halle to derive information on the geographic range size and climatic niche 

size for 456 herbaceous, dwarf shrub and shrub species. We estimated local species 

abundances based on 740,113 vegetation plots from the European Vegetation 

Archive, where abundances were available as plant species cover per plot. We 

compiled a complete species-trait-matrix of 20 plant functional traits from trait 

databases (TRY, BiolFlor and CLO-PLA). The relationships of species geographic 

range size, climatic niche size and abundance with single traits and trait syndromes 

were tested with multiple linear regression models. 

Results: All plant distribution and abundance variables were related to functional traits. 

Generally, local abundances were much more strongly related to traits than geographic 

distributions, yet the specific traits also differed. Geographic range size increased with 

plant height, whereas climatic niche size decreased with leaf C content. Both, 

geographic range size and climatic niche size increased with specific leaf area (SLA). 

Species local abundance increased with leaf area and SLA.  

Conclusion: Functional traits matter for species’ distributions at both local and large 

regional scales. Local abundances are shaped by a different combination of traits as 

compared to broad-scale distributions, pointing to filtering by different environmental 

and ecological factors acting at distinct spatial scales. However, traits related to the 

leaf economics spectrum were found to be important at both spatial scales, 

emphasizing the general importance of the acquisitive-conservative trait syndrome 

axis for the distribution of vascular plant species. 

 

Keywords: Chorological Database Halle (CDH), climatic niche, commonness and 

rarity, European Vegetation Archive (EVA), functional traits, geographic range, 

macroecology, multi-scale, vegetation-plot data. 
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Introduction 

 

A central aim in functional macroecology is to understand to what degree plant 

morphological and physiological fitness-determining traits (Violle et al., 2007) affect 

species’ distributions at broad spatial scales (i.e. occurrences across the geographic 

and climatic space) as well as local abundances within communities (Brown, 1995; 

McGill et al., 2006). The limits of species’ broad-scale distributions reflect the interplay 

between dispersal barriers and bioclimatic conditions that affect range dynamics and 

evolution (Baselga et al., 2012). In contrast, species’ local abundance depends on 

factors operating at the local scale of species assemblages, such as habitat suitability, 

the local combination of environmental conditions, and biotic interactions (Peterson et 

al., 2011; Staniczenko et al., 2017). Under the assumption that species’ functional traits 

reflect the mechanisms through which species respond to abiotic and biotic conditions 

to maximise their fitness, these traits are expected to predict both broad-scale 

distribution and local abundances (Suding et al., 2008; Heino and Tolonen, 2018). 

Plant communities consist of different kinds of locally co-occurring species. Among 

these, some species are widely distributed, while others have restricted distributions. 

Similarly, some co-occurring species are locally abundant, while others are locally rare 

(Rabinowitz, 1981; Gurevitch et al., 2002; Enquist et al., 2019). It has been observed 

that widely distributed species with large geographic range sizes tend to have broad 

environmental tolerances (i.e. broad climatic niches), while geographically narrowly 

distributed species are also more likely to be narrowly distributed in climatic space 

(Slatyer et al., 2013). A positive relationship between climatic niche size and 

geographic range size across species thus seems to be a general macroecological 

pattern (Gaston, 2000; Slatyer et al., 2013; Cardillo et al., 2019). At the local scale, 

species abundance values are frequently used as descriptors of species performance 

and are an important characteristic of the composition of herbaceous plant 

communities (Kent and Coker, 1992; Chiarucci et al., 1999). Within the geographic 

distribution range of a species, local abundance is often highly variable. Typically, 

species exhibit low cover at most sites and high cover at only a few sites across their 

distribution range (Murphy et al., 2006). In contrast to ‘everywhere‐sparse’ species, 

these `somewhere-abundant´ species are reflected in right-skewed species 

abundance patterns that are ubiquitous in plant community ecology (McNellie et al., 

2019). This skewness in local abundance might be caused by the distribution of optimal 
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habitats, and thus, might represent a species characteristic itself. It has to be assumed 

that mean abundance does not capture the full variability of skewed frequency 

distributions. Thus, both the mean and the skewness of a species’ cover value 

distribution should be considered as proxies for rarity or commonness. 

Functional traits have been used as proxies for species’ dispersal abilities (Greene 

and Johnson, 1993; Thompson et al., 2011), environmental tolerances (Loehle 1998; 

Bohner and Diez, 2020) or competitiveness (Kunstler et al., 2016). Specific functional 

traits have been linked to commonness and rarity on both local and broad spatial 

scales. For example, studies have found plant height, used as a proxy for species 

competitive ability, to be positively correlated with range size, with taller species more 

widespread than shorter ones (Lavergne et al., 2004; Kolb et al., 2006). On the local 

scale, common species have again been associated with taller stature and with other 

traits that are proxies for species’ productivity, i.e. larger specific leaf area (SLA) and 

higher leaf nitrogen (N) content (Grime et al., 1997; Hegde and Ellstrand, 1999; 

Lavergne et al., 2004; Mariotte, 2014). Nitrogen (N) and phosphorus (P) availability 

limit plant growth in most terrestrial ecosystems (Güsewell, 2004). Low nutrient 

availability (e.g. phosphorus limitation) may weaken the relationships between 

productivity-related traits and macroclimate (Bruelheide et al., 2018). As a 

consequence, there might be a negative correlation between species’ N:P ratio and 

both their local abundance and broad-scale distributions. Regarding species 

persistence, locally more abundant species have been associated with perennial life 

span and clonal growth (Eriksson and Jakobsson, 1998; Kolb et al., 2006). In contrast, 

at broad spatial scales, rare species have been associated with clonal growth (Kelly 

and Woodward; 1996) and being shrubs and trees rather than herbs (Oakwood et al., 

1993). Several studies investigated the relationship linking dispersal or regeneration-

related traits with species’ local abundance and broad-scale distribution. On the local 

scale, more abundant species were found to produce fewer and lighter seeds than rare 

species (Hedge and Ellstrand, 1999; Guo et al., 2000; Kolb et al., 2006). In contrast, 

across broad spatial extents, geographically widespread species have been found to 

produce significantly more and heavier seeds than restricted plant species (Lavergne 

et al., 2004; Kolb et al., 2006; Van der Veken et al., 2007).  

While some studies have found relationships between functional traits and local 

abundance and/or broad-scale distribution, others failed to detect a clear correlation 

(see Table IV.1). 
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Table IV.1 Traits used in this study, their function in the community, and their reported 

correlation with local abundance and broad-scale distribution being unimodal (─), 

positive (↑) or negative (↓). 

 

Trait Function Reported correlation with 

  local abundance broad-scale 

distribution 

Specific leaf area, Leaf 

C, Leaf N, Leaf P, Leaf 

dry matter content 

Productivity, 

competitive 

ability 

Specific leaf area↑1, 

Leaf N↑1 

Specific leaf area─2, 

Leaf N─2, leaf dry 

matter content─2 

Leaf N:P ratio Nutrient supply ↓3,14 ↓3,14 

Plant height, Leaf area Competitive 

ability 

Plant height↑1,2,4,5, Leaf 

area↑1 

Plant height─6↑2,7 

Seed mass, Seed 

number per 

reproductive unit, 

Dispersal unit length 

Dispersal, 

regeneration 

Seed mass─6,7,13↓10, 

Seed number per 

reproductive unit↓4,7 

Seed 

mass─2,9↑7↓10,11, 

Seed number per 

reproductive unit↑2,7,8 

Life span, Life form, 

Clonality 

Persistence Perennials↑6,7, Clonal 

growth↑6,7 

Therophytes↑11, 

Phanerophytes↓11, 

Clonal growth─6↓12 

 

1 Mariotte, 2014; 2 Lavergne et al., 2004; 3 Bruelheide et al., 2018; 4 Hedge and 

Ellstrand, 1999; 5 Grime et al., 1997; 6 Eriksson and Jakobsson, 1998; 7 Kolb et al., 

2006; 8 Van der Veken et al., 2007; 9 Thompson et al., 1999; 10 Guo et al., 2000; 11 

Oakwood et al., 1993; 12 Kelly and Woodward, 1996; 13 Leishman and Murray, 2001; 14 

Güsewell, 2004 

 

So far, the majority of studies have focused on single traits rather than on trait 

combinations or trait syndromes (Diaz et al., 2016; Guo et al., 2018) as predictors of 

broad and local distribution patterns. However, no single trait can completely describe 

a species’ ecological strategy (Winemiller et al., 2015; Marino et al., 2020). Rather, 

species’ local abundance and broad-scale distribution patterns might be affected by 
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different sets of traits (Marino et al., 2020). It has been suggested that locally rare and 

geographically restricted plant species differ systematically from more common 

species in functional traits that are related to species productivity, competitive ability, 

dispersal, regeneration and persistence (Murray et al., 2002). However, the different 

states and values of traits cannot be unconditionally combined. Diaz et al. (2004) 

highlighted that the functional space occupied by vascular plant species is strongly 

constrained by trade-offs between traits. On the one hand, the leaf economics 

spectrum describes a productivity‐persistence trade‐off and contrasts species with a 

set of successful trait combinations for quick returns on investments of nutrients and 

dry mass in leaves to species with a slower potential rate of return (Wright et al., 2004). 

On the other hand, the size spectrum reflects the species life cycle, with small stature 

species, smaller seeds and short lifespans versus long-lived woody plants (Díaz et al., 

2016; Table IV.1). 

In this study, we aim to unravel the relationship existing between single traits and 

trait syndromes and species distribution and dominance at broad and local scales. 

Specifically, we focused on 20 traits that are expected to respond to bioclimatic drivers 

and capture the essence of plant life forms and functions (Wright et al., 2004; Petchey 

and Gaston, 2006; Diaz et al., 2016; Bruelheide et al., 2018). We tested for these 

relationships across 456 European herbaceous, dwarf shrub and shrub species by 

inter-relating existing data on functional traits with the species’ (i) geographic range 

size, (ii) climatic niche size, and (iii) species’ local abundance, which was measured 

as (iii. a) mean cover from all the vegetation plots in which a species was present and 

(iii.b) skewness of cover values. We expect climatic niche size and geographic range 

size to be driven by the same underlying environmental factors and ecological 

processes (Colwell and Rangel, 2009), and therefore to be positively correlated, and 

to be predicted by many of the same single traits or trait syndromes (Table IV.1). 

 

Material and Methods 

 

Broad-scale distribution metrics: geographic ranges and climatic niches 
 
We used available digitized species distribution data (i.e. range polygons and point 

occurrences) of the Chorological Database Halle (CDH) (E. Welk et al., unpublished 

data) to assess the Eurasian geographic ranges of 456 herbaceous, dwarf shrub and 
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shrub species, including their neophytic occurrences. A list of these species can be 

found in Appendix S IV.1, available online, https://figshare.com/s/e61c08fea258e420f309. 

CDH stores information on distribution ranges of about 17,000 vascular plant taxa. For 

5,583 taxa, maps were compiled based on published distribution range maps (Meusel 

and Jäger, 1992; Meusel et al., 1978; Meusel et al., 1965), national and floristic 

databases and further maps from floristic literature (see bibliographic details in Index 

Holmiensis: Lundqvist, 1992; Lundqvist and Jäger, 1995‐2007; Lundqvist and 

Nordenstam, 1988; Tralau, 1969‐1981). CDH data can be requested for research 

objectives via chorologie.biologie.uni-halle.de/choro/. We aggregated species’ point 

and polygon distribution data using a raster grid layer of 2.5 arc-min resolution, which 

corresponds to grid cells covering approximately 15 km² each across Central Europe. 

As a measure of range size for each species, we counted the number of grid cells 

occupied (approximating the area of occupancy in the geographical space). 

We determined the multi-dimensional climatic space (or climatic niche) of each 

geographic range based on principal components analysis (PCA) of 19 bioclimatic 

variables from the WorldClim2.0 database (Fick and Hijmans, 2017), also at 2.5 arc-

min resolution. The resulting global background climatic space is well represented by 

the first two PC axes, which accounted for 70.75% of the total climatic variance. The 

two-dimensional PCA space was rasterized into 100 x 100 PCA-grid cells, considered 

as the background climatic niche, as explained in Appendix S II.1 in chapter II. The 

species’ niche size was then calculated as the number of PCA grid cells occupied in 

the climatic space (i.e., the area of occupancy in the bioclimatic niche space) (for 

detailed information see S II.1 in chapter II). 

 

Local abundance metrics in vegetation plots: mean cover and skewness of cover 
values 
 
As a measure of local abundance, cover percentage values were obtained for each of 

the 456 study species in 740,113 vegetation plots from the European Vegetation 

Archive (EVA) (Chytrý et al., 2016) in October 2015. EVA comprised vegetation plots 

from all European countries plus Turkey, Georgia, Armenia, Azerbaijan and parts of 

Russia. We included vegetation plots from all vegetation types available from EVA, 

except aquatic vegetation. We matched synonymous species names according to the 

taxonomic reference list for Germany (German SL version 1.2, Jansen and Dengler, 

2008) and to four taxonomic reference lists available via the R package ‘taxize’ 
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(Chamberlain and Szöcs, 2013; R Core Team, 2018), i.e. Encyclopedia of Life (EOL), 

International Plant Names Index (IPNI), Integrated Taxonomic Information Service 

(ITIS) and Tropicos. In cases where no exact match was found, taxon names were 

resolved using Taxonomic Name Resolution Service (TNRS) and all names matched 

or converted from a synonym where considered accepted taxon name when 

probabilities were ≥ 95%. We merged the data for subspecies at the species level 

following the taxonomic hierarchy in TNRS. We only selected species that occurred 

within at least 100 vegetation plots in the selected EVA dataset. Vegetation plots with 

geographic location uncertainty of more than 10 km were removed prior to this 

selection. The median number of vegetation plots per species was 2,162 (interquartile 

range 846 to 5,137). Information on source databases that provided vegetation plot 

data can be found in Appendix S II.3 in chapter II. Cover or cover-abundance values 

that were based on ordinal scales (e.g. Domin, 1928; Braun-Blanquet, 1951) were 

transformed to percentage cover (van der Maarel, 1979). When more than one plot per 

species was present in a 2.5 arc-min raster cell, mean values of percentage cover were 

calculated. 

For each species, we measured two aspects of its abundance across the vegetation 

plots. First, we calculated its ‘mean cover’: the arithmetic mean of the percentage cover 

values from all the vegetation plots at 2.5 arc-min raster cells in which the species was 

present in EVA. Second, we evaluated the frequency distribution of these percentage 

cover values (see Figure IV.1 for details on the procedure for three example species). 

To do this, we computed the shape of the distribution function of the percentage cover 

values. As those values are not normally distributed (Figure IV.1 a-c), we developed a 

non-parametric approach for measuring the shape of the distribution function. This was 

achieved by calculating the distribution quantiles in 5%-steps, resulting in 20 quantile 

values. We then fitted a non-linear model on the extracted 20 quantile values and 

obtained the estimate and the credible interval of the area under the histogram, AUH 

(Figure IV.1 d-f). We applied a Bayesian Markov chain Monte Carlo (MCMC) method 

following Feng et al. (2017), using an exponential distribution, 0.95 confidence level 

and 10,000 iterations. The resulting AUH value ranged from 0 to 1, with values lower 

or higher than 0.5 meaning that the distribution of cover values for a focal species is 

right- or left-skewed, respectively. The lower the AUH value, the higher was the rarity 

(i.e. the proportion of relatively low cover values). Thus, the AUH values are suitable 

as proxies for abundance structure across the vegetation plots. Hereafter, we refer to 
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the AUH values as ‘skewness of cover values’ and use it as an alternative metric, 

additional to mean cover, to assess across-plot species abundance. 

 

 

 

Figure IV.1 Examples of distribution of species’ cover values from vegetation plots and 

calculated mean cover value for (a) Achillea nobilis, the species with the lowest mean 

cover value, (b) Atriplex portulacoides, a species with intermediate mean cover value 

and (c) Carex elongata, the species with the highest mean cover value. Note the log 

scale for frequency. Distribution quantiles from species’ cover values were calculated 

and used to compute the shape of the frequency distribution function for each species, 

respectively (d-f). Non-linear models on the extracted quantile values were applied to 

calculate the area under the histograms of cover values (AUH), ranging from 0 to 1, 

with values close to 0 indicating for a strongly right-skewed distribution whereas values 

close to 1 point to a strongly left-skewed distribution of cover values. 

 

Plant functional traits  
 
We compiled a complete species trait matrix with 20 plant functional traits (see Table 

IV.2 and Appendix S IV.1). The trait matrix included nine binary variables: five for life 

form following Raunkiaer (1934), three for life span (derived from BiolFlor database; 
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Kühn et al., 2004) and the latter for clonality (derived from CLO-PLA database; 

Klimešová et al., 2017). We included information on 11 continuous trait variables from 

the global plant-trait database TRY (Kattge et al., 2020). All continuous traits were 

derived from Bruelheide et al. (2018) who applied a gap-filling approach with Bayesian 

Hierarchical Probabilistic Matrix Factorization (BHPMF; Schrodt et al., 2015) to fill gaps 

in the observed species-by-trait matrix data received from TRY. Continuous trait 

variables were ln-transformed prior to analysis. Functional traits values for each 

species can be found in Appendix S IV.1.  
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Table IV.2 Traits, abbreviation of trait names, units of measurement, mean and 

standard deviation of observed trait values and ln-transformed trait values. 

 

Trait Abbreviation Unit Mean SD Mean 
(ln) 

SD 
(ln) 

Leaf area LeafArea mm2 2128.74 6346.69 6.36 1.64 

Specific leaf area SLA m2/kg 23.30 8.99 3.08 0.37 

Leaf C content LeafC mg/g 451.36 24.93 6.11 0.06 

Leaf N content LeafN mg/g 24.59 7.61 3.16 0.31 

Leaf P content LeafP mg/g 2.14 0.95 0.67 0.45 

Leaf dry matter content LDMC mg/g 0.22 0.08 -1.58 0.35 

Leaf N:P ratio LeafNPratio g/g 12.13 6.35 2.41 0.40 

Plant height PlantHeight m 0.41 0.44 -1.17 0.71 

Seed mass SeedMass mg 2.36 4.59 -0.22 1.59 

Seed number per 
reproductive unit 

SeedNumRepUnit  42956.49 447429.20 6.15 2.38 

Dispersal unit length DispUnitLeng mm 3.18 2.29 0.93 0.69 

  Proportion 
of the 456 

study 
species [%] 

    

Life span       

Annual annual 16.2 - - - - 

Biennial biennial 9.4 - - - - 

Perennial  perennial 81.8 - - - - 

Life form   - - - - 

Phanerophyte Phaneroph 5.0 - - - - 

Chamaephyte Chamaeph 6.1 - - - - 

Hemicryptophyte Hemicrypt 78.2 - - - - 

Geophyte Geoph 10.7 - - - - 

Therophyte Theroph 14.3 - - - - 

Clonality   - - - - 

Clonal Growth ClonalGrowth 88.8 - - - - 

 
 

A principal component analysis (PCA) of the 20 traits included in this study was 

generated using the package ‘factoextra’ (Kassambara and Mundt, 2017), allowing the 

visualization of the trait contributions (loadings) to the first and second axis of the PCA 
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(Figure IV.2). The first axis corresponded to traits of life form, life span and clonal 

growth and accounted for 18.8% of the total variation in trait values. The second axis, 

corresponding to leaf traits, accounted for 14.6% of the total variation in trait values. 

The third and fourth axis corresponded to dispersal traits and life form and accounted 

for 11.4% and 8.7% of the total variation in trait values, respectively. The mean and 

standard deviation of observed trait values and ln-transformed trait values are given in 

Table IV.2. A correlation matrix including the correlation coefficients of all trait 

combinations can be found in Appendix S IV.2.1. The values of trait contributions 

(loadings) to all PCA axes are given in Appendix S IV.2.2.  

 

Figure IV.2 Principal component analysis of the 20 traits included in this study. Colour 

represents the trait contributions (loadings) to the PCA. The first and second axis 

accounted for 18.8% and 14.6% of the total variation in trait values, respectively. For 

abbreviation of the trait names see Table IV.2. 
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Relationships linking geographic range size, climatic niche size, and mean cover 
and skewness of cover values as response variables with functional traits as 
explanatory variables 
 
We used the function ‘phylo.maker’ from the package ‘V.PhyloMaker’ (Jin and Qian, 

2019) to create a phylogenetic tree of the studied species. The function ‘phylo4d’ from 

the package ‘phylobase’ (Hackathon et al., 2013) was applied to link trait data to the 

species’ phylogeny. We applied Pagel’s Lambda statistic (Pagel, 1999) and Fritz and 

Purvis’ D (2010) statistics to quantify the strength of phylogenetic signal in each of the 

20 studied trait variables. Pagel’s Lambda statistic revealed a strong phylogenetic 

signal in all continuous trait variables. Fritz and Purvis’ D revealed a phylogenetic 

signal in all binary trait variables (see Appendix S4.3). Therefore, we ran phylogenetic 

generalized least squares models using the function ‘pgls’ from the package ‘caper’ 

(Orme et al., 2018), that take into account the phylogenetic non-independence 

between species trait values when analyzing the relationships linking plant functional 

traits and mean cover values, skewness of cover values, geographic range size, and 

climatic niche size. To allow fair comparisons of the magnitude of effect sizes between 

continuous and binary trait variables, all continuous and ln-transformed trait variables 

were standardized by subtracting the mean and dividing by two standard deviations 

(Gelman, 2008).  

The lasso procedure in function ‘glmnet’ from the package ‘glmnet’ (Friedman et al., 

2010) was applied to extract those of the 20 trait variables that contributed the most in 

the four linear models (i.e. mean cover values, skewness of cover values, geographic 

range size, and climatic niche size being the four studied response variables). The 

minimum lambda ratio value in each of the four linear models was 0.01, 0.0005, 0.0001 

and 0.01 for mean cover values, skewness of cover values, geographic range size and 

climatic niche size, respectively (see Appendix S IV.2.4 for the predictor variables 

included in the models). To test the effect of trait combinations and interactions for 

each of the four response variables, we then tested all possible combinations of the 

predictor variables that contributed the most, including their two-fold interaction terms, 

applying the ‘dredge’ function from the ‘MuMIn’ package (Barton, 2019). We allowed 

for a maximum of three predictor terms to be included in a given candidate model 

(m.max=3). Finally, the Akaike Information Criterion (AIC), with delta AIC < 2 was used 

to identify the most parsimonious candidate model for each of the four studied 

response variables. We computed the Variance Inflation Factor (VIF) for each predictor 

term in the most parsimonious models to check for potential multicollinearity issues 
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among the continuous predictor variables, using the function ‘vif’ from the package ‘car’ 

(Fox & Weisberg, 2019). To account for the fact that traits can be summarized by a 

few trait dimensions (Díaz et al. 2016), we repeated this analysis with using principal 

components instead of trait values. We used all the species scores on all PC axes as 

predictor terms in the models described above and tested for combinations and 

interactions of PC scores in the same way as described for traits. By applying the 

‘dredge’ function we tested all possible combinations of the predictor variables that 

contributed the most, including two-fold interaction between PC scores, for each of the 

four response variables. AIC with delta AIC < 2 was used to identify the most 

parsimonious candidate model with a maximum of three predictor terms for each of the 

four studied response variables (see Appendix S IV.2.2 for the trait contributions 

(loadings) to all PC axes). 

 

Results 

 

Broad-scale distribution metrics: geographic range size and climatic niche size 
 
Species’ range size (number of occupied grid cells in geographical space) ranged from 

1,947 in Dactylorhiza sambucina to 782,025 in Stellaria media. The median range size 

was 310,070 cells (interquartile range 108,374 to 511,619). Species’ climatic niche size 

(number of occupied PCA grid cells within the climatic niche space) ranged from 162 

in Scabiosa canescens to 9,318 in Plantago major (median 3,236; interquartile range 

1,831 to 4,828. We found a positive relationship between species geographic range 

and climatic niche size (R2 = 0.605, p-value < 0.001 in a phylogenetically corrected 

model; Figure IV.3a).  

 

Local abundance metrics: mean cover and skewness of cover values 
 
Species’ mean cover from all the vegetation plots in which a species was present 

ranged from 2.4% for Achillea nobilis to 24.8% for Carex elongata (Figure IV.1a and 

c). For the middle two quarters of the studied species, the mean cover ranged from 

4.6% to 8.1% (interquartile range between the 25th and 75th percentile) with a median 

of 5.9%. Species’ skewness of cover values ranged from 0.081 (strongly right-skewed 

distribution of low cover values) in Achillea nobilis to 0.385 in Atriplex portulacoides 

(Figure IV.1d and e). The interquartile range was 0.158 to 0.226 and the median was 
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0.180. Species’ mean cover was positively related to species’ skewness of cover 

values in a phylogenetically corrected model (R2 = 0.763, p-value < 0.001; Figure 

IV.3b). 

 

 

Figure IV.3 Scatterplot and regression coefficient from phylogenetic generalized least 

squares models between (a) species’ climatic niche size and geographic range size 

and (b) abundance measured as mean cover and frequency distribution of cover 

values 

 

Relationships between mean cover, distribution of cover values, geographic 
range size, and climatic niche size with functional traits  
 
In general, species geographic range and climatic niche size were larger in species 

that had a higher SLA value. In addition, geographic range size was larger in species 

with taller stature and a lower leaf N:P ratio. In contrast, climatic niche size was larger 

in species that had a lower leaf C content. The mentioned functional traits were 

significantly related to species’ geographic range size (R2 = 0.090, p-value < 0.001) 

and climatic niche size (R2 = 0.069, p-value < 0.001) in the phylogenetic generalized 

least squares models (Table IV.3, Figure IV.4a and b). Species mean cover and the 

skewness of cover values was higher in species with a higher SLA value and with 

higher leaf area values. The interaction of the variables SLA and leaf area was positive 

and the named functional traits were significantly related to species mean cover (R2 = 

0.211, p-value < 0.001) and the AUH measure of the skewness of cover values (R2 = 

0.169, p-value < 0.001; Table IV.3, Figure IV.5a and b).  
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The above-mentioned traits that were identified in the final models for the four predictor 

variables had also high loadings of the PC axes that were identified as important 

predictors in the PCA based models (see Appendix S IV.2.2 for the trait contributions 

(loadings) to the first (PC1) to 20th (PC20) PC axes). In addition, the axes represented 

some more traits with maximum absolute loadings that were not selected in the final 

models based on only single trait variables, such as leaf area for geographic range 

size, leaf P content for climatic niche size, clonal growth for mean cover and leaf area 

for skewness of cover values. However, for each of the four response variables, the 

three PCs in the final models explained less variation than in the trait-based models: 

geographic range size (R2 = 0.063, p-value < 0.001; in the sequence of importance, 

the model included PC 12, 2 and 1), climatic niche size (R2 = 0.069, p-value < 0.001; 

based on PC 1, 12 and 19), mean cover (R2 = 0.123, p-value < 0.001; based on PC 

13, 2 and 4) and skewness of cover values (R2 = 0.094, p-value < 0.001; based on PC 

6, 2 and 4). 
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Table IV.3 Effects of species traits on species geographic range size, climatic niche 

size, mean cover and skewness of cover values. Phylogenetic generalized least 

squares models were applied to test for the relationships. Following the lasso 

procedure in function ‘glmnet’ from the package ‘glmnet’ (Friedman et al., 2010) to 

extract those of the 20 trait variables that contributed the most in the four linear models, 

Akaike Information Criterion (AIC) was used to identify the most parsimonious model 

for each of the four response variables. We allowed for a maximum of three terms to 

be included in the respective models, including two-fold interactions. Interaction terms 

are indicated by ‘*’. Computed Variance inflation factor (VIF) for each predictor variable 

was low, indicating that the predictors were not correlated with each other.  

 

Response 
variable 

Multiple R²; 
p-value 

Predictor terms 
entered in model 

Regression 
coefficient p-value VIF 

Geographic 
range size 

0.090; < 0.001     

SLA (m²/kg) 0.213 < 0.001 1.015 

Plant height (m) 0.140 < 0.01 1.014 

Leaf N:P ratio (g/g) -0.140 < 0.01 1.020 
Climatic niche 
size 

0.069; < 0.001     

SLA (m²/kg) 0.181 < 0.001 1.063 

Leaf C (mg/g)   -0.126 < 0.01 1.043 

Therophyte 0.108  0.096 1.024 
Mean cover             0.211; < 0.001 

  SLA (m²/kg) 2.146 < 0.001 1.066 

Leaf area (mm²) * SLA (m²/kg) 1.722 < 0.001 1.041 

Leaf area (mm²) 1.417 < 0.001 1.076 
Skewness of cover 
values 

0.169; < 0.001       

SLA (m²/kg) 0.033 < 0.001 1.066 

Leaf area (mm²) * SLA (m²/kg) 0.030 < 0.001 1.041 

Leaf area (mm²) 0.025 < 0.001 1.076 
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Figure IV.4 Scatter plot of observed values and regression lines from phylogenetic 

generalized least squares models, showing the effects of the three most predictive 

terms on species’ (a) geographic range size and (b) climatic niche size. For geographic 

range size, coloured and dashed lines represent the 5th, 50th and 95th percentile in 

values for plant height and leaf N:P ratio, respectively; for climatic niche size, coloured 

lines, solid and dotted, represent the 5th, 50th and 95th percentile in leaf C content 

values for therophytic and non-therophytic species, respectively.  
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Figure IV.5 

Scatter plot of observed values and regression lines from phylogenetic generalized 

least squares models, showing the effects of the relevant species traits on species’ 

local abundance. Plots show the effect of the interaction between leaf area and SLA 

on (c) mean cover and (d) skewness of cover values. Coloured lines represent the 5th, 

50th and 95th percentile in values for leaf area. 

 

Discussion 

 

Our main finding was that local species abundance was better predicted by plant traits 

than broad-scale distribution metrics. This indicates that plant traits to better capture 

local processes acting at the community level, such as biotic processes, than to 

capture broad-scale macroecological processes. Our results largely confirm trends 

previously reported about the existing association between species geographic range 

and climatic niche size, with widely distributed species also having broad climatic 

tolerances and geographically narrowly distributed species also narrowly distributed in 

climatic space (Gaston, 2000; Slatyer et al., 2013; Cardillo et al., 2019). We found an 

overall right-skewed distribution in cover values for most of the studied species, with 

species exhibiting low cover at most sites and high cover in only a few sites across 

their distribution range. The species mean cover values were positively related to the 

skewness of cover values. Therefore, for our species set, we consider the measure of 
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skewness, calculated as area under the histogram (AUH), a robust tool to capture both, 

the mean and the variability of cover values across a species' whole distribution range. 

Specific leaf area (SLA) had a significant positive effect and explained most of the 

observed variation in all four models predicting species local abundance and broad-

scale distribution. In line with our findings, several studies state common species to be 

associated with higher SLA (Grime et al., 1997; Diaz et al., 2004; Mariotte, 2014). SLA 

is a productivity- and competitive ability- related trait, that reflects species strategies 

for rapid acquisition of resources, with higher SLA values allowing a species for e.g. 

better light capture (Wright et al., 2004; Diaz et al., 2004; Mariotte, 2014). Our results 

support these findings, as we found that species with higher SLA values are more 

common than species with low SLA values in the local community and on a broad 

spatial scale. Furthermore, at the local scale, leaf area showed a significantly positive 

effect on species commonness. On the one hand, this is the direct consequence of 

how cover was estimated, as large-leaved-plants of the same size will attain higher 

cover values than small-leaved ones. On the other hand, like SLA, leaf area is 

interpreted as a trait that is positively related to species productivity and competitive 

ability (Wright et al., 2004; Diaz et al., 2004). This result confirms the assumption that 

species with larger leaves, allowing better light capture, are found to be generally more 

common than species with smaller leaves (Mariotte, 2014). However, leaf area was 

particularly important in interaction with SLA values, as local abundance was higher in 

species with large leaves and high SLA values than expected by the single traits alone. 

In contrast, the ability to grow clonally was not selected in any of the final models based 

on only single trait variables. The ability of species for clonal growth plays an important 

role both in short-distance spread and in persistence within habitats (Benot et al., 2010) 

and previous studies found clonality to be positively associated with local abundance 

(Eriksson and Jakobsson, 1998; Kolb et al., 2006). Accordingly, this trait had high axes 

loadings in the PCA-based model with mean cover value as response variable. 

However, clonal growth was not included in our final models based on original trait 

values, which probably is explained by a significantly negative correlation of clonal 

growth with SLA in our set of species. 

At broad spatial scale, species distribution in geographic space (i.e. geographic 

range size) was positively related to species plant height (i.e. with taller species being 

more widespread). High stature is known to have a competitive advantage and to be 

associated with common species. Greater plant height of widely distributed species 
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suggests that these species may have higher competitive ability for space and light 

than narrowly distributed species. A similar positive pattern between plant height and 

geographic range size was found in studies on Mediterranean herbaceous species by 

Lavergne et al. (2004) and on herbaceous forest species in Germany by Kolb et al. 

(2006). We found species leaf N:P ratio to be negatively correlated with geographic 

range size. Nitrogen (N) and phosphorus (P) availability can limit plant growth in 

terrestrial ecosystems, and N:P ratios are on average higher in stress-tolerant species 

compared to ruderals (Güsewell, 2004). Ruderal species are characterized by rapid 

growth and they establish much quicker and thrive better in disturbed habitats than 

stress-tolerant and competitor species (Grime, 1979; Wright et al., 2004; Guo et al., 

2018) and generally undergo long-distance dispersal (Baker, 1965). With this, we see 

a plausible explanation by which low N:P ratio, typically displayed by ruderal species, 

had a positive effect on species geographic range size. 

In our study, the distribution range in climatic space was larger in species with lower 

leaf carbon content, even when accounting for SLA. In general, carbon content would 

be expected to be negatively related to SLA (Reich, 2014), but both traits seem to 

explain independent proportions in climatic niche size. This was brought about by 

species with a broad climatic niche size, for which SLA alone was a poor predictor, 

such as species with a tendency to succulence (e.g. Plantago major), which however 

have leaves with low SLA and a low leaf C content. Species with a therophytic life form 

(i.e. annual plants that overwinter as a seed) did show a marginally positive effect 

towards greater climatic tolerance (i.e. broader climatic niche size). A short generation 

time is a selective advantage to annuals over biennials and perennials (Pysek and 

Richardson, 2007), with annual species being capable of faster reproduction and 

spread by seeds than perennials, e.g. many weed species are annual ruderal species 

that generally undergo long-distance dispersal (Baker, 1965). Finally, traits related to 

dispersal, regeneration and persistence did not show significant effect on species local 

commonness or broad-scale distribution in our models. These results confirm previous 

studies that found no significant relationship between species commonness with seed 

mass (Leishman & Murray, 2001; Kolb et al., 2006; Lavergne et al., 2004) or life form 

(Oakwood et al., 1993). Our findings show that especially traits related to the leaf 

economic spectrum, especially SLA, affect both broad-scale distribution and local 

abundances. 
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Nevertheless, single plant traits and trait syndromes only weakly explained the total 

observed variation in species’ broad-scale distribution metrics. Our study was carried 

out on the species’ whole Eurasian distribution range, and with this comprises plenty 

of different habitat types and different bioclimatic zones. Species functional traits are 

expected to be related to those environmental conditions under which the species 

occurs (Lavorel & Garnier, 2002; McGill et al., 2006). Thus, a species can be common 

at one site while being rare in another, depending on the specific local environmental 

conditions (Wellstein et al.  2013; Mariotte, 2014). For example, Aerts & Chapin (2000) 

found fast-growing species from nutrient-rich habitats to have a combination of high 

SLA, high tissue N concentrations and high rates of C and N uptake, while the opposite 

direction for those traits characterized species from nutrient-poor habitats. In 

consequence, the association between plant species’ functional traits and both local 

abundance and broad-scale distribution is highly context-dependent, differing between 

habitats, vegetation types and geographical regions (Murray et al., 2002; Kolb et al., 

2006). 

Several studies have provided evidence of significant intraspecific trait variation and 

global variability in leaf traits (Reich and Oleksyn, 2004; Albert et al., 2011; Moles et 

al., 2014; Niinemets, 2015; Wright et al., 2017). Therefore, we encourage future studies 

to include intraspecific trait variation in addition to mean values for species traits when 

investigating studies over broad geographic scales. Furthermore, to confirm the key 

role of context-dependency, future studies should incorporate habitat variability, by 

means of comparisons among single habitat types (e.g. by applying EUNIS habitat 

classification; Chytry et al., 2020), and test for consistency of the role of traits for 

patterns of species commonness at different spatial scales. 

 

  



96 | Chapter IV 

 

Appendices 

 

Appendix S IV.1 Information on the 456 species included in this study. This Appendix 

is available online from  

Figshare Digital Repository: https://figshare.com/s/e61c08fea258e420f309 

 

Table S IV.2.1 Correlation matrix including the correlation coefficients of all trait 

combinations; significant correlations (p < 0.01) are highlighted in bold. 

 

  

LeafArea SLA LeafC LeafN LeafP 
Plant 

Height 
Seed 
Mass LDMC 

LeafNP 
ratio 

Seed. 
num.rep. 

unit 

LeafArea  0.168 -0.152 0.286 0.349 0.526 0.291 -0.278 -0.129 0.261 
SLA 0.168  -0.122 0.462 0.401 0.054 0.037 -0.456 -0.124 0.024 
LeafC -0.152 -0.122  -0.115 -0.174 -0.114 0.029 0.346 0.059 -0.217 
LeafN 0.286 0.462 -0.115  0.477 0.242 0.315 -0.323 0.171 0.121 
LeafP 0.349 0.401 -0.174 0.477  0.139 0.062 -0.335 -0.596 0.150 
PlantHeight 0.526 0.054 -0.114 0.242 0.139  0.299 0.043 0.108 0.348 
SeedMass 0.291 0.037 0.029 0.315 0.062 0.299  0.062 0.208 -0.359 
LDMC -0.278 -0.456 0.346 -0.323 -0.335 0.043 0.062  0.108 -0.230 

LeafNPratio 
-0.129 -0.124 0.059 0.171 -0.596 0.108 0.208 0.108  -0.070 

Seed.num. 
rep. unit 0.261 0.024 -0.217 0.121 0.150 0.348 -0.359 -0.230 -0.070  
Disp.unit.  
length 0.358 -0.081 -0.074 0.116 0.003 0.342 0.704 0.071 0.202 -0.162 
annual -0.112 0.160 -0.042 0.128 0.043 -0.085 0.078 -0.150 0.002 0.012 
biennial 0.064 0.000 -0.086 0.057 0.045 0.103 -0.019 -0.110 -0.010 0.155 
perennial 0.100 -0.162 0.049 -0.148 -0.098 0.066 -0.067 0.162 0.052 -0.047 
Clonal 
Growth 0.092 -0.124 0.010 -0.053 -0.002 0.073 -0.065 0.087 0.019 0.000 
Phaneroph -0.054 -0.158 0.130 -0.096 -0.147 0.013 0.006 0.193 0.047 -0.107 
Chamaeph -0.128 0.006 -0.036 -0.038 0.013 -0.115 -0.029 -0.104 -0.071 -0.010 
Hemicrypt 0.061 0.023 -0.041 0.018 0.053 0.050 -0.005 0.021 -0.012 0.091 
Geoph 0.078 0.085 0.010 0.024 -0.004 0.016 -0.006 -0.058 0.026 -0.059 
Theroph -0.128 0.148 -0.026 0.119 0.049 -0.103 0.072 -0.137 -0.018 0.008 
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Table S IV.2.1 (continuing) Correlation matrix including the correlation coefficients of 

all trait combinations; significant correlations (p < 0.01) are highlighted in bold. 

 

  
Disp.unit
.length annual biennial perennial 

Clonal 
Growth 

Phan- 
eroph. 

Cham- 
aeph. 

Hemi- 
crypt. Geoph. Theroph. 

LeafArea 0.358 -0.112 0.064 0.100 0.092 -0.054 -0.128 0.061 0.078 -0.128 
SLA -0.081 0.160 0.000 -0.162 -0.124 -0.158 0.006 0.023 0.085 0.148 
LeafC -0.074 -0.042 -0.086 0.049 0.010 0.130 -0.036 -0.041 0.010 -0.026 
LeafN 0.116 0.128 0.057 -0.148 -0.053 -0.096 -0.038 0.018 0.024 0.119 
LeafP 0.003 0.043 0.045 -0.098 -0.002 -0.147 0.013 0.053 -0.004 0.049 
PlantHeigh
t 0.342 -0.085 0.103 0.066 0.073 0.013 -0.115 0.050 0.016 -0.103 
SeedMass 0.704 0.078 -0.019 -0.067 -0.065 0.006 -0.029 -0.005 -0.006 0.072 
LDMC 0.071 -0.150 -0.110 0.162 0.087 0.193 -0.104 0.021 -0.058 -0.137 
LeafNPrati
o 0.202 0.002 -0.010 0.052 0.019 0.047 -0.071 -0.012 0.026 -0.018 

Seed.num. 
rep. unit -0.162 0.012 0.155 -0.047 0.000 -0.107 -0.010 0.091 -0.059 0.008 

Disp.unit.  
length  0.022 0.009 -0.007 -0.028 -0.035 -0.076 0.060 -0.022 0.014 
annual 0.022  0.084 -0.843 -0.737 -0.110 -0.084 -0.053 -0.151 0.959 
biennial 0.009 0.084  -0.249 -0.100 -0.081 -0.081 0.173 -0.112 0.055 
perennial -0.007 -0.843 -0.249  0.665 0.115 0.115 0.032 0.159 -0.866 

Clonal  
Growth -0.028 -0.737 -0.100 0.665  0.001 0.089 -0.140 0.123 -0.770 
Phaneroph -0.035 -0.110 -0.081 0.115 0.001  0.016 -0.467 -0.087 -0.105 
Chamaeph -0.076 -0.084 -0.081 0.115 0.089 0.016  -0.356 -0.087 -0.105 
Hemicrypt 0.060 -0.053 0.173 0.032 -0.140 -0.467 -0.356  -0.409 -0.071 
Geoph -0.022 -0.151 -0.112 0.159 0.123 -0.087 -0.087 -0.409  -0.145 
Theroph 0.014 0.959 0.055 -0.866 -0.770 -0.105 -0.105 -0.071 -0.145  
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Table S IV.2.2 Abbreviation of trait names and values of trait contributions (loadings) to the first (Dim1) to twentieth (Dim20) PCA axes. 

 

Abbreviation Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7 Dim8 Dim9 Dim10 Dim11 Dim12 Dim13 Dim14 Dim15 Dim16 Dim17 Dim18 Dim19 Dim.20 

LeafArea 0.69 19.21 0.61 0.17 4.00 2.17 0.17 2.66 0.52 0.02 14.23 3.23 0.04 7.35 43.91 0.03 0.30 0.00 0.69 0.00 

SLA 4.72 6.48 2.58 4.76 3.17 2.65 2.00 11.04 0.00 0.15 6.80 24.31 6.92 21.30 2.49 0.07 0.02 0.00 0.52 0.02 

LeafC 1.95 4.88 1.82 0.02 0.11 5.71 6.89 18.49 0.92 30.93 22.28 3.93 0.03 0.24 1.63 0.16 0.02 0.01 0.00 0.00 

LeafN 4.14 10.81 0.43 2.86 0.05 3.81 0.03 23.18 0.01 2.37 15.34 3.79 5.54 2.04 1.13 0.24 0.03 0.53 23.66 0.00 

LeafP 3.12 11.68 4.22 0.48 3.99 17.64 0.21 1.13 0.63 0.26 7.47 1.16 2.41 0.23 3.47 6.54 0.11 0.36 34.86 0.02 

PlantHeight 0.10 9.55 6.37 0.70 19.53 1.38 0.02 0.00 1.38 1.68 0.05 24.20 6.09 10.80 16.06 1.39 0.00 0.03 0.63 0.04 

SeedMass 0.97 3.36 27.48 1.38 5.18 0.44 0.58 0.19 1.09 0.02 0.05 0.10 0.15 0.01 1.29 54.24 0.94 0.01 2.52 0.00 

LDMC 3.84 4.39 8.63 3.53 0.21 7.46 2.00 0.18 0.04 5.79 24.29 9.98 0.01 4.78 24.13 0.15 0.01 0.01 0.57 0.01 

LeafNPratio 0.28 0.82 10.66 0.19 3.49 41.47 0.49 4.20 1.14 0.10 0.05 0.77 0.28 0.45 0.22 3.69 0.04 0.22 31.43 0.00 

Seed.num.rep.unit 0.33 2.78 7.81 4.66 27.27 0.07 0.54 0.09 6.31 8.87 0.28 4.79 1.54 23.37 0.97 9.57 0.22 0.05 0.48 0.00 

Disp.unit.length 0.49 4.12 25.14 0.01 1.17 0.37 1.54 6.79 0.04 0.00 1.51 4.04 0.14 26.55 2.09 22.22 0.45 0.00 3.33 0.00 

annual 20.14 4.89 0.24 0.36 0.25 0.05 0.05 0.38 0.56 0.24 0.07 0.42 2.18 0.21 0.35 0.34 17.70 20.79 0.36 30.43 

biennial 1.28 0.14 0.22 8.21 4.15 0.95 4.90 0.32 75.25 0.07 0.07 0.43 0.14 0.13 0.41 0.09 3.08 0.01 0.00 0.15 

perennial 19.40 3.65 0.02 0.00 0.73 0.14 0.00 0.03 1.64 0.41 0.72 0.85 6.29 0.01 0.01 0.67 64.27 0.02 0.22 0.90 

ClonalGrowth 14.93 4.40 0.44 0.22 0.47 0.41 0.09 0.16 1.15 0.20 4.00 9.75 42.38 0.07 0.00 0.07 0.00 18.80 0.15 2.30 

Phaneroph. 1.63 1.74 1.41 6.86 13.13 10.84 2.84 14.39 0.04 24.52 0.85 0.01 4.77 1.44 0.01 0.06 1.15 13.44 0.06 0.81 

Chamaeph. 0.51 0.12 1.61 11.99 1.63 0.00 40.86 2.40 0.09 22.47 0.55 5.00 3.26 0.48 1.06 0.10 1.19 6.09 0.03 0.55 

Hemicrypt. 0.41 0.94 0.00 40.58 9.08 1.28 0.18 0.99 1.99 0.15 1.14 1.80 6.89 0.39 0.19 0.10 2.95 28.56 0.36 2.01 

Geoph. 0.80 0.54 0.09 12.60 2.13 2.93 36.34 12.97 6.31 1.51 0.10 0.91 9.69 0.05 0.35 0.03 1.12 10.86 0.14 0.53 

Theroph. 20.29 5.50 0.22 0.41 0.25 0.23 0.25 0.42 0.87 0.22 0.17 0.54 1.27 0.10 0.21 0.23 6.40 0.22 0.00 62.21 
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Table S IV.2.3 Test for phylogenetic signal in the trait variables. We applied Pagel’s 

Lambda statistic (Pagel, 1999) and Fritz and Purvis’s D (2010) statistics to quantify the 

strength of a phylogenetic signal in the 20 studied trait variables. Pagel’s Lambda 

statistic ranges from 0 for traits being phylogenetically unrelated to 1 for traits following 

trait evolution according to a Brownian motion (BM) model; Pagel 1999; Freckleton, 

Harvey and Pagel, 2002). Fritz and Purvis’s D is equal to 0 if the observed binary trait 

has a phylogenetically random distribution across the tips of the phylogeny; D is equal 

1 if the observed trait is as clumped as if it had evolved by Brownian motion. Pagel’s 

Lambda statistic revealed a strong phylogenetic signal in all continuous trait variables. 

Fritz and Purvis’s D revealed a phylogenetic signal in all binary trait variables. 

 

Trait    

 Lambda p-value  
Leaf area 0.911 < 0.001  
Specific leaf area 0.811 < 0.001  
Leaf C content 0.897 < 0.001  
Leaf N content 0.835 < 0.001  
Leaf P content 0.729 < 0.001  
Leaf dry matter content  0.890 < 0.001  
Leaf N/P ratio 0.809 < 0.001  
Plant height 0.906 < 0.001  
Seed mass 0.984 < 0.001  
Seed number per reproductive 
unit 0.773 < 0.001  
Dispersal unit length 0.975 < 0.001  
    

 Estimated D p-value (D > 0)  p-value (D < 1) 

Annual 0.746 < 0.001 < 0.001 
Biennial 0.829 < 0.001 < 0.051 
Perennial  0.804 < 0.001 < 0.001 
Phanerophyte 0.448 < 0.001 < 0.05 
Chamaephyte 0.816 < 0.001 < 0.05 
Hemicryptophyte 0.638 < 0.001 < 0.001 
Geophyte 0.893 n.s. < 0.001 
Therophyte 0.772 < 0.001 < 0.001 
Clonal Growth 0.802 < 0.001 < 0.001 
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Table S IV.2.4 The lasso procedure in function ‘glmnet’ from the package ‘glmnet’ 

(Friedman et al., 2010) was applied to extract those of the 20 trait variables that 

contributed the most in the four linear models (i.e. mean cover values, skewness of 

cover values, geographic range size, and climatic niche size being response variable). 

The minimum lambda ratio (s) in the models was 0.01 (mean cover values), 0.0005 

(skewness of cover values), 0.0001 (geographic range size) and 0.01 (climatic niche 

size).  

 

Response variable Mean cover 
Skewness of cover 

values Geographic range size Climatic niche size 

Multiple R²; p-value 0.245; < 0.001 0.209; < 0.001 0.112; < 0.001 0.113; < 0.001 

Trait 
(Abbreviation) 

Regression 
coefficient p-value 

Regression 
coefficient p-value 

Regression 
coefficient p-value 

Regression 
coefficient p-value 

LeafArea 0.531 0.160 0.011 0.096 -0.108 0.097 0.061 0.222 

SLA 1.976 < 0.001 0.032 
< 

0.001 0.209 < 0.001 0.052 < 0.001 

LeafC 0.284 0.336 0.008 0.147 -0.034 0.503 0.050 < 0.001 

LeafN     0.107 0.209   
LeafP 0.205 0.614   -0.158 0.107 0.071 0.002 

LDMC -0.738 0.066 -0.012 0.099 -0.023 0.707   
LeafNPratio -0.439 0.259 -0.011 0.031 -0.279 0.002 0.065 < 0.001 

PlantHeight 1.013 0.003 0.012 0.042 0.214 < 0.001 0.055 0.002 

SeedMass -0.804 0.129 -0.017 0.092 -0.018 0.829   
SeedNumRepUnit -0.277 0.388 -0.007 0.203 0.003 0.959   
DispUnitLength 1.010 0.047 0.027 0.004 -0.006 0.939   

annual 1.159 0.322   -0.065 0.770   

biennial -0.227 0.618 -0.001 0.862 -0.076 0.382   

perennial -0.252 0.715 0.001 0.937 -0.072 0.586 0.117 0.577 

Phaneroph. 0.839 0.320 0.022 0.078 0.185 0.228 0.101 0.453 

Chamaeph. -0.736 0.295 -0.004 0.742 0.109 0.406   
Hemicrypt. -0.640 0.296 -0.005 0.523 0.142 0.207   

Geoph. -0.348 0.553   0.172 0.116 0.075 0.211 

Theroph. -1.812 0.231 -0.001 0.946 0.146 0.607 0.124 0.706 

ClonalGrowth 0.392 0.617 0.017 0.188 0.131 0.361   
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Chapter V 

Synthesis 

 

In this thesis, I investigated abundance distribution patterns of vascular plant species 

and the effect of functional traits on species local abundance and broad-scale 

distribution. I analysed the relationships for a large group of herbaceous, dwarf shrub 

and shrub species over their full Eurasian distribution ranges and included trait 

syndromes in addition to single traits. The following results are based on analyses that 

included information on the geographic range size for 564 plant species from the 

Chorological Database Halle (CDH, E. Welk et al., unpublished data), 808,794 

vegetation plots provided by the European Vegetation Archive (EVA, Chytrý et al., 

2016) and a complete species-trait-matrix of 20 plant functional traits that was compiled 

from three trait databases that store information on species leaf and seed traits (TRY, 

Kattge et al., 2020), species life form and life span (BiolFlor, Kühn et al., 2004) and 

clonality (CLO-PLA, Klimešová et al., 2017). 

 

Summary of Results 

 

In chapter II, I proposed and tested a box-counting method to assess the sampling 

coverage of species distribution in biodiversity databases in geographic and 

climatic space across different spatial resolution. First, I found a positive 

relationship between species geographic range size and climatic niche size. Second, 

the sampling coverage of European vascular plant species ranges by EVA vegetation 

plots was more complete within the geographic space than within the climatic space. 

Third, I detected a positive correlation between the observed sampling coverage and 

the expected sampling coverage, based on null models, for both the geographic space 

and the climatic space. Importantly, a large majority (92.0%) of the observed species 

distributions in EVA were significantly underdispersed in both the geographic and 

climatic space. Fourth, I found a positive effect of sample size (number of vegetation 

plots in which a species occurred) on sampling coverage while accounting for range 

size or niche size in both the geographic space and climatic space.  
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In chapter III, with respect to the abundance-range size relationship, I found that 

species local abundance was significantly, yet weakly, related to range size but not to 

niche size, with high intraspecific variation in species abundance values. Regarding 

both, the abundance-range centre relationship and the abundance-suitability 

relationship, I found large variation in regression models relating abundance to the 

distance from the centre of the species’ geographic ranges and climatic niches and the 

predicted climatic suitability of the plot location, with species showing positive, negative 

or no relationship. Summarized in a mixed-effect meta-analysis, the overall mean slope 

was slightly negative for the two distance measures and for all applied SDM methods 

in the applied regression models. This indicated that both, the distance to the centre 

of the species’ geographic range and the predicted climatic suitability of the plot 

location are poor predictors of local abundance. 

In chapter IV, I investigated whether species local abundance and broad-scale 

distribution can be predicted by single functional traits and sets of traits (trait 

syndromes). First, all plant distribution and abundance variables were related to 

functional traits. Second, I found local abundances to be much more strongly related 

to traits than to geographic distributions. While geographic range size increased with 

plant height, climatic niche size decreased with leaf C content. The species’ mean 

cover was positively related to the species’ skewness of cover values and both 

increased with leaf area and specific leaf area (SLA). Both geographic range size and 

climatic niche size increased with SLA. For each of the four response variables, sets 

of traits (trait syndromes) explained less variation than single functional traits. 

 

Discussion  

 

Brown, Stevens, & Kaufman (1996) pointed out that distribution maps of species 

geographic ranges are simplifications of the complex spatial and temporal distribution 

patterns of species on earth. Furthermore, they highlight that range maps suffer from 

problems of lacking precision, accuracy and completeness. Polygon range maps 

potentially encompass a large number of localities where a species does not really 

occur. One might argue that this might also be the case for range maps used in this 

thesis and provided by the CDH. Although range maps stored in the CDH are based 

on expert-drawn range maps, they are constantly updated with information from 

national and floristic databases and maps from floristic literature and information on 
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species occurrences from online databases like GBIF. Nevertheless, I am aware that 

the range maps from CDH also include geographical areas that might be unoccupied 

by the species. Due to advances in phylogenetic systematics through molecular 

studies, the variation at the molecular level has resulted in splitting of species into 

multiple new species based on distinctive molecular genetic characteristics in the past 

(Brown et al., 1996). CDH range maps are therefore constantly updated regarding 

species taxonomy. Besides the completeness of species distribution maps, for this 

study on broad-scale abundance patterns the quality of sampling coverage of plots 

from EVA over the entire range of species was crucial. Although the observed species 

distributions in EVA were significantly underdispersed in both the geographic and 

climatic space, the correlation between the observed sampling coverage and the 

expected sampling coverage, based on null models, was positive (see chapter II). 

Furthermore, both CDH and EVA data were processed to a coarse-grain raster layer 

of 2.5 min resolution, which corresponds to grid cells covering approximately 15km² 

each across Central Europe. This coarse-grain resolution did reduce the influence of 

possible geographic location uncertainty at fine-grain resolution. 

The positive relationship that I found in chapter II between species geographic range 

size and climatic niche size confirms the assumption that the shapes of a species’ 

range and the range boundaries reflect the influence of limiting climatic conditions 

(Brown et al., 1996). That these climatic factors also account for the pattern of variation 

in abundance of species among sites within their range is the theoretical explanation 

for the abundance-range size relationship (Brown et al., 1996). In addition, the 

abundance-range centre relationship and the abundance-suitability relationship 

assume that species reach highest abundances where the environmental conditions 

are assumed to be most suitable. As a consequence, species abundance should be 

related to range position, and in case of the abundance-range centre relationship, 

the favourable conditions should be met towards the centre of the species range. 

Nevertheless, in this thesis, I found no clear support for any of the three 

macroecological hypotheses (chapter III) and there are several plausible explanations 

for these results.  

First, there are different abiotic and biotic factors that limit range expansion along 

different margins of species ranges in geographic space. While biotic interactions tend 

to limit species distribution and abundance at lower latitudes, abiotic factors are more 

likely to be limiting at higher latitudes (MacArthur, 1984; Normand et al., 2009; Greiser 
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et al., 2020) or towards higher elevation (Bruelheide & Scheidel, 1999; Rumpf et al., 

2018). This means that increasing physical stress limits species distributions in one 

direction along the gradient, while in the other direction they are limited by e.g. an 

increasing number of competitors and suffer from increasing impacts of competition 

(Louthan, Doak & Angert, 2015). Furthermore, geographic barriers such as coastlines 

or mountains can impede further range expansion in otherwise climatically suitable 

habitats, and in consequence, may lead to marginal range areas that are highly 

climatically suitable. Therefore, range boundaries and abundance towards the range 

edges can be determined by multiple abiotic and biotic factors that interact in complex 

ways and do not strictly follow solely climatic gradients (Sagarin et al., 2006). 

Second, the environmental factors that drive species distribution at broad 

geographic extents may differ from those that influence species performance and 

abundance on the local scale, and consequently, the pattern of abundance 

relationships with range characteristics is blurred. In general, species broad-scale 

distribution, measured on the regional or the continental scale, is shaped by coarse-

scale bioclimatic conditions and geographic barriers that affect range dynamics and 

long-distance dispersal (Wiens, 1989; Baselga, Lobo, Svenning, & Araújo, 2012). In 

contrast, species abundance, that is measured on the small local scale of a few square 

meters, depends on factors that are operating at the local scale (Bruelheide et al., 

2018) such as habitat structure (e.g. soil or microclimatic conditions, De Frenne et al., 

2013), prevailing disturbance regimes or successional stages and biotic interactions 

(e.g. competition, Moeslund et al., 2017). 

Third, species range size on the broad geographic scale and abundance at the local 

scale are measured on very different temporal scales. Species abundance, at different 

sites throughout its geographic range, is only reflected at any one point in time by a 

vegetation record and thus, varies between and even within years. A species might be 

locally abundant at specific times but not others (Sagarin et al., 2006). In contrast, 

species broad-scale geographic ranges are driven by long-term average conditions. 

Although species range boundaries are dynamic, range shifts, expansions or 

contractions, are, in most cases, the result of long-term environmental changes. For 

example, in Europe and North America, northern range boundaries within the last 

10,000 years tracked the retreat of the last continental ice sheets (Brown, 1995). 

Further range shifts were caused by human activities mainly during the last two 

centuries (Mack et al., 2000). Murray and Lepschi (2004) conclude that if distributions 
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of species abundance are variable in time, it is unlikely that higher-order processes, 

such as gene flow between populations or responses of ranges to climate change can 

be predicted based on a single description of a distribution of abundance. 

The results of this thesis, with no unequivocal support for any of the three 

macroecological hypotheses, are in line with previous empirical studies (e.g. Gaston 

et al., 1997; Pironon et al., 2017; Santini et al., 2019; Dallas, Pironon, & Santini, 2020). 

The tested general macroecological abundance patterns are probably only valid when 

local abundance is measured by species individuals’ density but not when measured 

by species growth performance (i.e. cover values). This indicated that, across entire 

species ranges, the distribution of abundance is highly heterogenous, because local 

drivers strongly influence plant species growth performance across their global range. 

Therefore, I agree with the statement by Sagarin et al. (2006) that even in systems, 

where entire species ranges can be studied, the distribution of abundance involves a 

high complexity. 

The jack-of-all-trades-master-of-none hypothesis states that habitat specialists can 

have higher abundance in their preferred habitat than habitat generalists, i.e. species 

able to occupy a wide range of environmental conditions (Devictor et al., 2010). This 

hypothesis reflects the assumption of Rabinowitz (1981), that there are habitat 

specialists with small geographic ranges, yet they dominate the community they are 

found in.  

As plant species’ functional traits are assumed to reflect the mechanisms through 

which species respond to abiotic and biotic conditions to maximise their fitness (Suding 

et al., 2008), I was interested to investigate whether and which traits or sets of traits 

can explain patterns in species local abundance and broad-scale distribution. In 

general, sets of traits (trait syndromes) explained less variation than single functional 

traits. I found local abundances to be much more strongly related to traits than to 

geographic distributions, indicating that functional traits better capture processes 

acting at the local community level than broad-scale processes. Variation in species 

broad-scale distribution was e.g. explained by leaf nitrogen (N) and phosphorus (P) 

concentration. N:P ratios are on average lower in ruderal species which also establish 

quicker and perform better in disturbed habitats than stress-tolerant or competitor 

species (Grime, 1979; Guo et al., 2018). Therefore, it seems plausible that low N:P 

ratios had a positive effect on species broad-scale distribution. Traits related to 

dispersal and regeneration (e.g. seed size and weight) and persistence (e.g. life span) 
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did not show any significant effect on species local abundance or broad-scale 

distribution, which is in line with findings from previous studies (Lavergne et al., 2004; 

Oakwood et al., 1993). Confirming these results, Fried et al. (2020) found no direct 

relationship between traits related to dispersal and colonization ability with broad-scale 

(national) distribution in arable weeds. 

Although I found no clear relationship of species patterns of local abundance with 

broad-scale distribution (chapter II), it is even more interesting that specific leaf area, 

a trait related to the leaf economics spectrum, did have a positive effect on both the 

species’ local abundance and broad-scale distribution. SLA is interpreted as a trait that 

is positively related to species productivity and competitive ability, with higher SLA 

values allowing a better light capture (Wright et al., 2004). Several studies found more 

abundant species to be associated with higher SLA (Grime, 1997; Mariotte, 2014). 

Moreover, SLA tends to be higher in ruderal species that are adapted to frequent 

disturbance especially in productive habitats (Guo et al., 2018; Fried et al., 2020). 

I see two plausible explanations for the partially contradicting or missing results 

found in previous studies (see Table IV.1) and in this thesis on the relationship between 

traits with local abundance and broad-scale distribution.  

First, the association between functional traits and both local abundance and broad-

scale distribution is highly context-dependent (Murray et al., 2002). Theory suggests 

that temperature and precipitation are major determinants of plant traits at a global 

scale (Moles et al., 2014). Wright et al. (2017) characterized a worldwide pattern in leaf 

size, with leaf size to be on average larger in equatorial regions and smaller toward the 

poles and higher elevations. Reich and Oleksyn (2004) found a similar pattern for plant 

leaf N and P contents, with leaf N and P to decline and the N:P ratio to increase toward 

the equator as average temperature and growing season length increase. As I stated 

above, a plausible explanation for a missing abundance pattern following broad-scale 

climatic gradients are other factors than macroclimate that operate at the local scale 

and influence species local abundance, such as microclimatic conditions or biotic 

interactions. Thus, a species can be common at one site within its geographic range, 

while being rare in another in close proximity, simply because of differing specific local 

environmental conditions (Mariotte, 2014). As a species’ functional traits are expected 

to be related to the environmental conditions under which the species occurs, rare and 

common species might be characterized by the same traits in different habitats, 
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vegetation types or geographic regions, depending on the local conditions (Aerts & 

Chapin, 2000). 

Second, functional traits express not only species-specific characteristics, but also 

intraspecific variability (Albert, Grassein, Schurr, Vieilledent, & Violle, 2011; Niinemets, 

2015). Intraspecific variation in functional traits reflects phenotypic plasticity, and this 

variation influences plant responses to abiotic conditions and biotic interactions 

(Fridley & Grime, 2010). Studies detected intraspecific trait variation e.g. in SLA values 

and N:P ratios along elevation gradients (Kichenin, Wardle, Peltzer, & Freschet, 2013) 

or in SLA values and height along flooding gradients in flood meadows (Jung, Violle, 

Mondy, Hoffmann, & Muller, 2010). In a global meta-analysis, Siefert et al. (2015) found 

intraspecific trait variation to account for 25% of the total trait variation within plant 

communities. This intraspecific trait variation may influence the interactions among and 

between species and their environment and, therefore, might influence species 

performance and plant species community assembly (Bolnick et al., 2003; Siefert et 

al., 2015).  

 

Conclusion and Future perspectives 

 

Although I found no unequivocal support for any of the three macroecological 

hypotheses tested, this is an important finding and highlights the complexity of factors 

that determine species abundance throughout their geographic range. This complexity 

can strongly influence predictions about habitat conservation (Hampe & Petit, 2005) 

and species responses to climate change (Helmuth, Kingsolver, & Carrington, 2005), 

which previously were based on assumptions from Species Distribution Models 

(SDMs). SDMs are applied to identify places that are suitable for the survival of 

populations of a species by identifying their environmental requirements (Soberon & 

Nakamura, 2009). Since the importance of local environmental heterogeneity that 

influences species local abundance has been highlighted in several studies (see e.g. 

De Frenne et al., 2013; Köckemann et al., 2009), I advocate for including information 

on microclimatic conditions that are available at fine spatial resolution (e.g. soil 

temperature, Lembrechts et al., 2020) in addition to commonly used bioclimatic 

variables to improve predictions of species local abundance based on broad-scale 

occurrence data.  
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Furthermore, since some studies have detected abundance patterns at regional scales 

(Fried et al., 2020) and pointed out the importance of habitat variability that influences 

species local abundance (Murray et al., 2002), it seems promising to include this in 

between regional scale, e.g. by applying habitat classifications (EUNIS, Chytrý et al., 

2020), to investigate the existence of abundance patterns at different spatial scales. I 

found that especially functional traits related to the leaf economics spectrum affect 

species local abundance and broad-scale distribution. As evidence has been provided 

of global variability in leaf traits, it seems straightforward to include intraspecific trait 

variation in addition to mean trait values in future studies to gain more specific insights 

when investigating abundance patterns over broad geographic scales. However, this 

would require recording traits with abundance values on the same individuals. Finally, 

as a species’ abundance is variable also temporally, it would be highly interesting to 

investigate whether patterns of temporal change in abundance can be found in species 

characterized by their functional traits by resurvey analyses from vegetation surveys. 
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