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Abstract: We present small-angle X-ray scattering, polarized optical microscopy and electric
current measurements of a sulfur-containing bent-core liquid crystal material for characterization
of the layer and director structures, thermally and electrically driven transitions between
antiferroelectric and ferroelectric structures and switching properties. It was found that the material
has polarization-modulated homochiral synclinic ferroelectric (SmCsPFmod), homochiral anticlinic
antiferroelectric (SmCaPA) and racemic synclininc antiferroelectric (SmCsPA) structures that can be
reversibly switched between each other either thermally and/or electrically. High switching polarization
combined with softness of the liquid crystalline structure makes this compound a good candidate for
applications in high-power capacitors and electrocaloric devices.
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1. Introduction

Recent advances in wearable electronic devices drive the development of miniature chemical
and electric sensors and miniature power and information storage devices. In particular, the personal
health care industry requires reliable and robust pressure and voltage-specific sensors for monitoring
blood circulation, heart activity and body temperature [1]. Electric energy storage is another area
where soft organic ferroelectrics may find prospective applications for their flexibility and even
semiconducting properties [2–4]. For instance, umbrella-shaped columnar liquid crystals have been
shown to store information of unprecedented density due to the ability to address each molecular
column separately [5]. Efficient and reliable energy storage is crucial in our society. Electrical energy
can be stored either electro-chemically in batteries or electro-statically in capacitors. Batteries have
high energy density (~50–200 Wh/kg) and low power density (~1–1000 W/kg), while electro-static
capacitors, have energy densities less than 0.1 Wh/kg and power densities over 5000 W/kg [6]. The gap
between batteries and capacitors has been partially bridged with super-capacitors, which are currently
being utilized in power conditioning and electric transportation, although they still have an order of
magnitude smaller energy densities than batteries and take longer time to charge and discharge than
conventional capacitors [7–9]. Capacitors made of antiferroelectric materials that undergo a reversible
thermal or electric-field-induced transition to a ferroelectric state have the potential to store as much
energy as electrochemical capacitors while maintaining the advantages of traditional capacitors [10,11].
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Bent-core liquid crystals (BCLC) [12–20] often have a ferroelectric (FE) [21–23] or antiferroelectric
(AF) smectic phase [24–28] with permanent polarization up to P~10−2 C/m2 [14] that can be switched
with E~10 V/µm fields as quickly as t~10 µs. Although the specific stored energy in such a device is of
order of 0.2 Wh/kg, it is considerably lower than in batteries. Their power density w/t can be as high as
107–108 W/kg—i.e., much higher than of the current dielectric capacitors.

Especially interesting are those AF BCLC materials that have both antiferroelectric and ferroelectric
(FE) phases with reversible AF-FE phase transitions [29–32], as the phase transition is accompanied
by the electric energy generation of dissipation that can be used in electro-caloric [33] applications
(cooling or heating). Assuming a phase transition happening within a less than 1 K temperature range,
the isothermal entropy change can be more than 100 Jkg−1 K−1.

In this paper we describe the phase behavior, nanostructures and electric properties of a sulfur
containing bent-core material B-10(S) with Ferroelectric (FE) Smectic–Antiferroelectric (AF) Smectic
phase transition. Our X-ray, Polarized Optical Microscopy (POM) studies, polarization current
and electro-optical measurements clarify the nanostructure and electric properties of the FE and AF
phases. Based on these results, they have the potential for energy storage and electrocaloric applications.

2. Materials and Methods

The molecular structure of B-10(S) is shown at the top of Figure 1a. The synthesis and the preliminary
(without X-ray studies) phase assignment of this material was reported by Heppke et al., was given as
Cr 112 ◦C, B3 133.7 ◦C, B7 148.3 ◦C Iso [34,35]. Here, the B7 structure is characterized by a birefringent
“telephone-wire type texture” that grows by cooling into the isotropic fluid [36] and is identified later
as a polarization-modulated smectic or columnar phase [37,38]. The B3 phase is a higher-ordered or
crystalline smectic phase [17].

Small angle X-ray scattering (SAXS) measurements were carried out at beamline 7.3.3 of
the Advanced Light Source (ALS) at Lawrence Berkeley Laboratory with 10 KeV X-ray energy.
B-10(S) was loaded in 2 mm dimeter quartz capillaries and placed in customized Instec hot stage,
allowing us to apply a 1.5 Tesla magnetic field on the sample for alignment. Two-dimensional SAXS
patterns were recorded by a Pilatus 2M detector (Dectris, Inc., Baden, Switzerland) at a 2.068 m distance
from the sample. The beam center and the sample-to-detector distance were calibrated using silver
behenate. The material was heated to isotropic phase and cooled slowly though all liquid crystal
phases to the crystal phase.

Electro-optical and polarization current measurements were carried out in 4 µm thick films,
where B–10(S) was sandwiched between transparent indium tin oxide (ITO) electrodes overcoated
with rubbed polyimide alignment layers. The sandwich cells were placed in Instec HS2000 heat
stage and viewed through an Olympus BX60 polarizing microscope equipped with crossed polarizers.
The electric signals were applied by a HP 33120A function generator and amplified by a FLC E20AD
voltage amplifier.

Ferroelectric polarization and switching time measurements were carried out by monitoring
the time dependence of the electric current flowing through B-10(S) with the A = 25 mm2 active area
under triangular and rectangular wave voltages at various frequencies. The time dependence of
the applied and measured voltages V (t) and V m(t) were monitored by an InfiniVision MSO-X 302A
mixed signal oscilloscope. Prior to measurements, the material was treated by a large (~20 V/µm) low
frequency (~12 Hz) rectangular wave voltage that aligned all the layers parallel to the electric field.
That alignment remained stable as long as the material was not heated to the isotropic phase or was
not cooled to the crystal phase. Applying a triangular waveform, where the voltage is proportional to
the time in each half period, allows for accurate measurements of the switching polarization, since
the response of the rest of the cell is linear, proportional to the electric conductivity. The value of
the polarization P is calculated from the integral area of the measured voltage peak Vp

m above a
background line V(t) ·Rs/RLC dropped under a resistance Rs (Rs << RLC), connected in series with
the liquid crystal as P =

(∫
Vp

m(t)dt
)
/(2Rs ·A) [39]. There are one and two peaks in one half period of
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the triangular wave voltage for ferroelectric and antiferroelectric phases, respectively. The threshold
voltage for switching is determined by the voltage where the polarization peak appears. The current
response to the square-waveform enables accurate measurements of the switching time. On poling,
the polarization follows the constant external field applied to the cell. This simplifies the description of
the switching process and gives the switching time, as well as its dependence, on the field strength.
The switching times are determined from the peak positions of the current peaks that appear after
switching rectangular wave voltage.
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Figure 1. Molecular structure of B-10(S) and summary of small angle X-ray scattering (SAXS) results of
B-10(S). (a) Molecular structure and observed phase sequence. (b,c) Scattering intensity versus q in
the B7 texture in 0.01–0.5 Å−1 range (b) and 0.01–0.06 Å−1 range (c) at selected temperatures. Insets
show the 2-D scattering image at 141 ◦C; (d) Scattering intensity versus q in the B2 phase in 0.01–0.5 Å−1

range at selected temperatures (inset: 2-D scattering image at 121 ◦C); (e) Scattering intensity versus q
in the SmX phase in 0.01–0.5 Å−1 range at selected temperatures (inset: 2-D scattering image at 109 ◦C).
The broad peak at 0.4 Å−1 is due to the Kapton tape used as a window in the SAXS measurements.

3. Results and Discussion

The SAXS results are summarized in Figure 1a–d. No diffraction peaks were observed above
150 ◦C, showing its 3-D fluid nature.

As shown in Figure 1b, between 150 ◦C and 125 ◦C, several rings appear in the 0.05–0.5 Å−1 q-range.
The strongest temperature independent peak at q(10)~0.149 Å−1 and its two harmonics at q(20) = 2q(10)

and q(30) = 3q(10) indicate a layer structure with periodicity d = 2π/q1 = 40.21 Å. Considering that
the length of the symmetrically bent molecule is L = 54 Å, the tilt angle θ, assuming no intercalation
between the terminal chains of the neighbor molecules, can be calculated as θ = arccos

(
d
L

)
≈ 42◦.

Allowing some interdigitation, this angle can be smaller, but considering the length of the terminal
chains, it cannot be zero, even for complete interdigitation. Additionally, there are temperature
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dependent peaks in the 0.01 < θ < 0.06 Å−1 range. The main peak at q(01)~0.015 Å−1 and its four
harmonics show layer undulations with periodicities pm increasing from 330 Å at 147 ◦C to 420 Å at
127 ◦C (seen separately in Figure 1c). Such tilted smectic phases with undulated layers agree with
the structural assignment of the B7 phase [37,40]. The layer undulations disappear below 125 ◦C, where
only the weakly temperature dependent peaks appear at q(10) ~0.128 Å−1 and at harmonics q(i,0) = i·q(10)

(I = 2–4) corresponding to a layer spacing of d = 2π/q1 = 48.8 Å (see Figure 1d). Such periodicity,
assuming some degree of interdigitation between the terminal chains, indicates a fluid tilted smectic
phase with tilt angle θ< 25◦. Such a structure is not compatible to the B3 phase assignment with in-plane
or crystalline order that would lead to peaks with other periodicities. Below 115 ◦C, with about a 5 ◦C
overlap, another smectic phase without in-plane order is observed, as seen in Figure 1e. The peaks
at q(10)~0.122 Å−1 and its harmonics with q(i,0) = i·q(10) (I = 2–4) correspond to a layer periodicity of
d = 2π/q1 = 50.12 Å. Depending on the interdigitation by the terminal chains, this could correspond
to a tilted smectic phase with a tilt angle of up to θ = 20◦ or to an orthogonal (SmA) smectic phase.
For the time being, we call it an SmX phase.

The temperature dependences of the layer spacing d and correlation length ξ are calculated from
the first harmonic wavenumber peak q(10), as d = 2p/q(10) and from the full width at half maxima
(FWHM). The correlation length ξ is proportional to the inverse of FWHM. The order of magnitude
and the temperature dependence of the correlation length is plotted against the right axis, assuming
the proportionality constant is 1. The temperature dependence of the layer spacing is plotted against
the left axis of Figure 2. The shaded area between the B2 and SmX phases indicates phase overlap
due to the first order nature of the transition. Although wide angle X-ray scattering would be needed
to find out if the SmX phase has an in-plane order or not, the strongly first order transition between
the B2 and SmX phases indicate it has in-plane order. The inset shows the half periodicity of the layer
undulation measured in the B7 phase. While the layer periodicities d = 40.21, 48.8 and 50.12 Å
and the correlation lengths ξ = 370, 483 and 502 nm are basically constant in the B7, B2 and SmX phases,
respectively, the periodicity of the in-layer modulation in the B7 phase is clearly increasing on cooling.
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Figure 2. Temperature dependence of the layer spacing, and correlation length of B-10(S), calculated
from SAXS measurements. Shaded area between the B2 and SmX phases indicates phase overlap due
to the first order nature of the transition. Inset shows the half periodicity of the layer undulation
measured in the B7 phase.
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Temperature dependence of the voltage threshold for switching, together with representative
electric current waveforms (in inset) in the B7 and B2 phases are shown in Figure 3. At and above
125 ◦C, a ferroelectric type switching is seen with a threshold field of Eth ≈ 10.5 V/µm (one current peak
in each half period of the triangular wave voltage, as seen in the inset at 127 ◦C), which is basically
constant in the entire B7 phase range. Based on this and the SAXS results, we denote this as an
SmCPFmod phase, where SmC stands for tilted smectic phase, P refers to the polar nature of the phase
and F in the subscript denotes ferroelectric switching and “mod” describes the modulated layer
structure. Below 125 ◦C in the B2 phase the electric current under triangular wave voltage has a
double peak in each half period (see the time dependence of the electric current at 118 ◦C in the inset),
corresponding to an antiferroelectric tilted smectic (SmCPA) phase. In this phase the threshold field
decreases continuously to Eth ≈ 3.5 V/µm. Below 115 ◦C, no polarization peak can be observed even
up to 20 V/µm fields, indicating a paraelectric or dielectric nature of the phase.
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Figure 3. Main pane: Temperature dependence of switching electric threshold (where polarization
peak appears). Inset shows the time dependences of electric current at 127 ◦C in the B7 phase (green)
and at 118 ◦C in the B2 phase under Vpp = 160 V, f = 23 Hz triangular wave voltage (red). The error of
the threshold field is ±0.2 V/µm.

Electric current measurements under rectangular voltage waveforms (see Figure 4) reveal two
peaks in both the SmCPFmod and SmCPA phase ranges. The slow peak is in the 0.5–0.9 ms range, while
the fast one with 5–6 µs range. The integral areas below these peaks, however, are very different in
these two phases: the slow peak is dominating in the ferroelectric SmCPFmod range, while the fast
peak area is much larger in the antiferroelectric SmCPA phase. These behaviors are very similar to that
observed and explained for a Fluorine containing bent-core material [29]. The presence of two peaks
indicates a coexistence of chiral and racemic domains in both phases. From the ratios of the integral
areas (see Figure 5) we can see that about 80% of the material in the SmCPFmod state has synclinic chiral
structure (SmCsPFmod). This ratio reverses as the material is cooled to the SmCPA phase, where over
80% of the material appears to be in the racemic synclinic SmCsPA state. It is known that switching
the polarization while retaining homo-chirality requires rotation around the tilt cone, whereas in
the racemic state it can be done by rotation around the long axis, which is much faster than the rotation
around the tilt cone [14].
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the current peaks. Triangular symbols indicate the values measured under triangular wave voltages,
and rectangular symbols correspond to data extracted from the measurements under rectangular
voltage waveform. Open rectangles correspond to the areas of the slow (blue) and fast (red) peaks,
while solid black rectangles are the sums of these two areas. The polarization values were determined
with better than 10% precision.
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The temperature dependence of the polarization, as calculated from the areas below the current
peaks, are shown in Figure 5. Triangular symbols indicate the values measured under triangular
wave voltages and rectangular symbols correspond to data extracted from the measurements under
rectangular voltage waveform. Open rectangles correspond to the areas of the slow (blue) and fast
(red) peaks, while solid black rectangles are the sum of these two areas. The total polarization
values in the Sm CPFmod phase increase weakly on cooling from 140n C/cm2 to about 170n C/cm2,
then jump up to 240n C/cm2 in the B2 phase. The value of the polarization drops quickly upon
the first-order transition to the Sm A phase. We note that each polarization measurements took only a
few seconds and between two temperatures the material was cooled without field to prevent long-term
structural transformations.

Although the dominating slow switching in the SmCPFmod phase and the mainly fast switching
in the SmCPA phase have already indicated that the tilt is mainly synclinic in both phases, we also
carried out electro-optical investigations to verify this independently. Representative POM textures
and their schematic director and layer structures are summarized in Figures 6 and 7 for the SmCPFmod

and SmCPA phases, respectively.
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Figure 6. Representative POM textures of d = 4 µm B-10(S) film and their schematic director and layer
structures of the circular area in the center of the image in the SmCPFmod phase at 127 ◦C. (a) While
−80 V applied; (b) after the field is turned off; (c) when +80 V is applied.

Figure 6a shows the texture at 127 ◦C in the field-induced SmCPF- state under −80 V applied
across the cell. The central area shows Maltese crosses rotated by about 30–35◦ with respect to
the vertical and horizontal polarizers. The cross-section of the director and layer structure in the plane
of the substrates is illustrated below the image. The smectic layers form concentric cylinders with a
defect in the middle of the Maltese cross. The director is tilted uniformly (synclinic structure) with
respect to the layer normal to the left by angle q; thus, it is parallel to the polarizers at an angle −θ.
The yellowish-green birefringence color corresponds to an optical path difference ∆n · d ≈ 800 nm,
corresponding to a birefringence ∆n ≈ 0.2. After turning the field OFF, the direction of the Maltese
crosses remains unchanged, indicating bistability. Only the birefringence color shifts toward green with
optical path difference ∆n · d ≈ 750 nm, corresponding to a birefringence ∆n ≈ 0.188. As illustrated
in the director and layer structure below, this is due to the modulated layer structure both along
and normal to the substrates. This causes the inhomogeneity of the director structure, explaining
the decreased effective birefringence. On applying +80 V, the Maltese crosses rotated by about 70◦—i.e.,
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by twice the tilt angle. This is the consequence of the switching of the polarization to the opposite
direction, as shown in Figure 6c. The birefringence color again shifts to yellowish green, indicating
the field induced SmCPFmod to SmCPF transition, as observed on other bent-core materials, as well [41].
Based on these observations, we verify that this layer-modulated tilted smectic phase is synclinic
SmCsPFmod—i.e., homochiral [19].
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Figure 7. Representative POM textures of d = 4 µm B-10(S) film and their schematic director and layer
structures of the circular area in the center of the image in the SmCPA phase at 118 ◦C. (a) Texture
and schematics of the director and layer structure of the central circularly shaped domain after cooling
at zero field from the isotropic phase; (b) texture and schematics of the director and layer structure of
the central circularly shaped domain after driving with 12 V/µm, f = 12 Hz square wave field.

After cooling to the antiferroelectric SmCPA phase at zero electric field, two different types of
domains appear in Figure 7a. One is characterized by a turquoise (“Tiffany blue”) birefringent color
with ∆n · d ≈ 700 nm (∆n ≈ 0.175), the other one has orange color with ∆n · d ≈ 450 nm(∆n ≈ 0.11).
The director and layer structure of these domains are shown below the texture. The turquoise domain in
the center is synclinic antiferroelectric (SmCsPA)—i.e., racemic [19] as our switching time measurements
indicated above, while the minority outside orange area is anticlinic (SmCaPA)—i.e., homochiral.
In the approximation that the birefringence is much smaller than the ordinary refractive index (ns << no),
the effective birefringence of an anticlinic state can be given as ∆na ≈ ∆ns · cos2(2θ) [42], which with
the synclinic ∆ns ≈ 0.18 value gives the measured ∆na ≈ 0.11 for θ~20◦. This value agrees with
the estimated θ < 25◦ tilt angle from the layer periodicities by SAXS measurements, shown in Figure 2
and indicates some interdigitation between terminal chains of molecules in neighbor layers.

Representative textures and schematics of the corresponding director and layer structure of
the central circularly shaped domain after driving by 12 V/µm, f = 12 Hz square wave field for a few
minutes, are shown in Figure 7b. The birefringence color is uniformly purple with Maltese crosses
parallel to the crossed polarizers, indicating an anti-clinic antiferroelectric (homochiral) structure
everywhere. Such a rectangular electric-field-induced racemic to chiral phase transformation is
already found and explained for other bent-core materials [43]. The increased optical path difference
n·d ≈ 550 nm means an effective birefringence of ∆na ≈ 0.138, which with θ ≈ 20◦ gives ∆ns ≈ 0.234.
This value is much larger than that observed after cooling at zero field, indicating that the smectic
layers were tilted upon cooling at zero field and became upright after applying the large field.
The birefringence of the SmCsPA structure with upright layers is also larger than of the field induced
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SmCsPF structure in the higher temperature phase range, which is consistent with the increasing
birefringence (decreased director fluctuations) toward lower temperatures.

4. Conclusions

In this paper we have characterized the nanostructures, the thermally and electrically driven
transitions, between antiferroelectric and ferroelectric structures and the switching properties of a sulfur
containing bent-core liquid crystal material. It was found that the material has polarization-modulated
ferroelectric (SmCPFmod) and antiferroelectric (SmCsPA) structures that can be switched between
one another either thermally and/or electrically. Fast sub-millisecond reversible switching between
antiferroelectric and ferroelectric states with up to P = 2.4 mC/m2 polarization provides a charging
capacity with as high as a 30 kW/kg power density. Such power density makes this material comparable
to state-of-the-art electronic double layer capacitors. [9] The modulated structure of the ferroelectric
phase (SmCsPFmod) allows for the stabilization of the polar domains at a modulation scale of 50 nm.
Piezo and pyroelectric properties of ferroelectric bent-core liquid crystals also make them promising
for sensor applications as touch and pressure sensors [44]. Although with the present materials these
features can be achieved only at elevated temperatures, the recent development of wide temperature
range (from −40 ◦C to +80 ◦C) antiferroelectric bent-core liquid crystal mixtures [45,46] may make such
high power density storage devices a realm of the near future. An added advantage of the material
studied here is the thermally induced antiferroelectric–ferroelectric transitions, that may offer their use
in electro-caloric devices with over 100 Jkg−1K−1 isothermal entropy change either at the Iso–SmCPsFmod

or the SmCPA–SmCPsFmod phase transitions. This value is larger than those found in dielectric liquid
crystals [47].
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