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Abstract. Here, we describe a technique to define the Sin-
gularity Expansion Method (SEM) poles for short-circuited
thin-wire structures developed using the Method of Modal
Parameters (MoMP). The MoMP method consists of in the
expansion of the system of mixed-potential integral equa-
tions (MPIE) into the Fourier series, including the kernels
containing Green’s function. Corresponding equations for
Fourier modes contain infinite matrices of p.u.l. inductance
and capacitance, and the solution for current can be obtained
using the infinity matrix of p.u.l. impedance. The SEM poles
are given by the zeros of the determinant of this matrix. For
the case of the symmetrical circular loop, this equation trans-
forms to one well-know from the literature. Numerical inves-
tigation of solutions for the poles of the first layer has shown
good agreement with previously obtained analytical and nu-
merical results for different wire configurations.

1 Introduction

Thin-wire transmission lines play an important role in EMC.
Thin-wire transmission lines facilitate the transmission of the
desired signals between electronic devices of different kinds.
On the other hand, they are subject to different kinds of elec-
tronic interferences. Induced voltages are often the cause of
the failure of electronic devices. Different numerical meth-
ods (e.g., MoM, FDTD) can be applied to calculate induced
currents and voltages, but these are not very helpful for gain-
ing insight into the physics of coupling phenomena (e.g., to
make a qualitative analysis of the system response for various
values of system parameters, including the case of a statisti-
cally defined system or field parameters).

In contrast, the Singularity Expansion Method (SEM) (see
pioneer paper Baum, 1971, and reviews of results in books
Baum et al., 2012; Tesche et al., 1997) represents the scatter-
ing object as a set of oscillators, in which complex frequen-
cies are poles of the response function, which do not depend
on the type of excitation of the system. This set of poles yield
the main contribution to the coupling response of the object,
both in the frequency and time domains. It also defines the
radiation of the system and the scattering amplitude. More-
over, the SEM poles can be used for the identification of the
systems. Recently, this method has attracted increasing in-
terest in connection to the problem of target identification
(Myers et al., 2011a, b; Giri and Tesche, 2012). However, the
main method for obtaining the SEM expansion for a general
system is the processing of numerical (e.g., Method of Mo-
ments) data (Senior and Pond, 1981; Singaraju et al., 1976).

On the other hand, the application of SEM to thin-wire
systems (antennas and transmission lines) has several spe-
cific features that simplify the investigation of the SEM ex-
pansion, especially when the analytic form of the response
function is known. Such response functions were investi-
gated earlier for the straight transmission lines, when the
length of the line is essentially larger relative to its height
(Tkachenko et al., 2013, 2014, 2016; Middelstaedt et al.,
2016, 2018). To do this, the so-called asymptotic approach
was used (Tkachenko et al., 2001; Rachidi and Tkachenko,
2008). However, the application of the asymptotic approach
is restricted by long straight lines. In the present work, we
describe the application of another analytical method, the
method of modal parameters (Nitsch and Tkachenko, 2005,
2007) for the investigation of the SEM poles. This analytical
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technique can be applied for thin wires of arbitrary geomet-
rical form and arbitrary excitations.

The rest of the paper is organized in the following. In
Sect. 2, the method of modal parameters will be briefly de-
scribed. In Sect. 3, we present the analytical approach and a
numerical algorithm for finding the SEM poles. In Sect. 4,
some numerical results and comparisons with other methods
will be described. Section 5 concludes the paper.

2 Method of Modal Parameters for finite wires

We consider a wire of arbitrary geometrical form above a
perfect-conducting ground (Fig. 1). The wire is represented
by a three-dimensional space curve r(l) parameterized with
its natural parameter l(0≤ l ≤ L/2, where L/2 is the length
of the wire). It is assumed that both terminals of the line are
connected with the ground. The wire is thin, i.e. the radius of
the wire is essentially smaller relative to all other character-
istic dimensions of the problem (e.g., wavelength λ, length
of the line L/2). The line is excited by an arbitrary electro-
magnetic field, which can be external (e.g., an exciting plane
wave) or a lumped voltage source (a load also can be consider
as a current controlled voltage source). Since the thin-wire
approximation is used, it is assumed that: the azimuthal com-
ponent of the current is neglected; the charge density and the
current are concentrated on the wire axis; and the boundary
condition for the tangential component of the electric field is
satisfied on the surface of the wire. The current I (l′) and po-
tential φ(l) along the wire are described by the integrodiffer-
ential Mixed Potential Integral Equations (MPIE, e.g., Nitsch
and Tkachenko, 2007). Usually, the system of MPIE is de-
fined on the “physical” wire in the upper half-plane when the
perfectly conducting ground is taking into account by mirror-
ing the corresponding Green’s functions. Another way is to
add to a physical wire its mirror reflection and to consider the
loop closed and completed (Fig. 2). During this procedure,
the ground plane is removed. To excite only those modes, as
in the initial problem, one has to also to consider a symmet-
rical external and lumped excitation. Such a procedure yields
the MPIE system for the closed loop:

dφ(l)
d l + jω

µ0
4π

∮
{L}

el(l) · el(l
′)g(l, l′) I (l′)dl′ = Eex

l (l)∮
{L}

g(l, l′)
d I (l′)

d l′ dl′+ jω4πε0 φ(l)= 0
; (1a)

el(l) := ∂r(l)/∂l, |el(l)| = 1; (1b)

g(l, l′)=
e
−jk

√
(r(l)−r(l′))2+r2

0√
(r(l)− r(l′))2+ r2

0

(1c)

Here L is the length of the complete wire loop, Eex
l (l) is a

tangential component of a symmetrized exciting field, el(l)

is a tangential unit vector, and g(l, l′) is a scalar Green’s func-
tion defined on the curved wire.

Figure 1. Inhomogeneous thin conductor over a conductive ground
excited by external field and lumped source.

Figure 2. Short-circuited, semi-circular wire.

All functions of the natural parameter l in Eqs. (1a)–(1c)
are periodical, i.e., r(l+L)= r(l) and they can be expanded
in a complete orthogonal set of functions exp(−jkml) with
km :=

2πm
L
, m= . . .− 1,0,1. . . They can be represented in

the form

Eex
l (l)=

∞∑
m=−∞

Eex
l,me
−jkml = [e−jkml]T ·Eex

l ; (2a)

φ(l)=

∞∑
m=−∞

φme
−jkml = [e−jkml]T ·8; (2b)

I (l)=

∞∑
m=−∞

Ime
−jkml = [e−jkml]T · I (2c)

Here Eex
l , 8 and I are column vectors of the Fourier coef-

ficients of the exciting electric field, potential, and current;
and [e−jkml] := [. . .e−jk−1l,1,ejk1l, . . .]T is an infinite col-
umn vector of basic orthogonal functions.

Then, the MPIE system (Eq. 1a) can be re-written in a
modal representation:
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{
−jk ·8+ jωL′ · I =Eex

l

−jk · I + jωC′ ·8= 0 ; (3a)

k = diag(km); (3b)

L′ =
µ0

2π
GL; (3c)

C′ =
µ0

2π
2πε0G−1

C (3d)

where we introduce infinite square matrixes of inductance
per-unit-length L′ and capacitance per-unit-length C′, which
can be obtained by expansion of the kernels of the sys-
tem (Eq. 1a) in a double Fourier series:

GL = [G
L
m1,m2
];

GLm1,m2
=

∮
{L}

dl1

∮
{L}

dl2el(l1) · el(l2)g(l1, l2)

· exp(−jkm2 l2+ jkm1 l1) (4)

GC = [G
C
m1,m2
];

GCm1,m2
=

∮
{L}

dl1

∮
{L}

dl2g(l1, l2)exp(−jkm2 l2+ jkm1 l1) (5)

Using the modal representation of MPIE (Eq. 3a) one can
easily obtain a formal solution for the column-vectors of the
current and potential (Eq. 6), where Z′ is an infinite modal
impedance per-unit-length matrix (Eq. 7a), which defines the
scattering field on{

I = Z−1
·Eex

l

8= 1
jω

C−1
· jk ·Z−1

·Eex
l

; (6)

Z′(jω) : =
k ·C′

−1
· k

jω
+ jωL′

=
η0

4π jk

[
k ·GC · k− k

2GL

]
; (7a)

Esc
l =−Z′ · I ; (7b)

W =
L

4
Re
{
I+ ·Z · I

}
; (7c)

the boundary of the wire (Eq. 7b) and the radiation of the
system (Eq. 7c) (Nitsch and Tkachenko, 2007).

The general solution (Eq. 6) is valid for any exciting field,
including a plane wave excitation (Krauthauser et al., 2005)
or lumped voltage sources (Nitsch and Tkachenko, 2005,
2007; Tkachenko et al., 2011). Moreover, lumped loads
can be considered using current-controlled sources with un-
known current amplitudes, which can be defined by solution
of system of linear equations.

In this paper, however, we restrict our scope to the case of
a short-circuited wire with an arbitrary excitation.

For the case of the semi-circular wire (when the closed
wire is a circular loop, a structure with high symmetry with

constant curvature K = 1/R = const and zero torsion T =

0), the modal inductance, capacitance and impedance per-
unit-length are diagonal matrices and one can obtain a known
solution for the induced current in the thin-wire approxima-
tion (Wu, 1962)

L′m1,m2
= L′m1

δm1,m2; (8a)

L′m = µ0R
gm+1+ gm−1

4
; (8b)

Cm1,m2 = Cm1 · δm1,m2; (8c)

Cm =
2ε0

Rgm
(8d)

Z′m1,m2
(jω)= Z′m1

(jω) · δm1,m2; (9a)

Z′m(jω)= jωLm+
k2
m

jωCm
; (9b)

km :=
m

R
, m= . . .− 1,0,1. . . (9c)

where

gm =

2πR∫
0

ejkml−jk
√

4R2sin2(l/2R)+a2√
4R2sin2(l/2R)+ r2

0

dl (10)

3 SEM poles and Method of Modal Parameters

According to the definition of the SEM poles they are nat-
ural frequencies of the system, i.e., “complex frequencies at
which an integral equation representation of the scattering
problem has solution with no incident electromagnetic field”
(Baum). In the initial papers, “they can be found from the ze-
ros of the determinant of the corresponding moment method
matrixes” (Baum). Now, however, the MPIE system is repre-
sented in the modal form. Therefore, the SEM poles can also
be found from the zeros of the determinant of the impedance
per-unit length matrix (Eqs. 11a, b).

det(Z′(jω))= 0 or (11a)

det[k21−G−1
L (k) · k ·GC(k) · k] = 0 (11b)

For the symmetrical circular loop (Eqs. 11a, b) splits and one
has separate simple equations (Eq. 11b) for each integer m.

det(Zm(jω))= 0 or (12a)

k2
−

2k2
mgm(k)

gm+1(k)+ gm−1(k)
= 0; (12b)

The equation for the poles (Eq. 12b) up to notation coincides
with the one used by Blackburn (1976) and Blackburn and
Wilton (1978), if one assumes thin-wire approximation. In
these works, detailed research of the poles for circular loop,
including the case of high layers, was carried out.

It is noteworthy that from Eqs. (6), (7a), and (11a), the
SEM poles are independent of the kind of excitation of the
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system (e.g., distributed excitation, lumped excitation). Be-
low we describe both an approximate analytical method and
a numerical algorithm to find the poles.

3.1 Analytic approach: perturbation theory for SEM
poles

It is possible to show that for the case of infinitely thin wire
r0→ 0, the matrices GL and GC become diagonal and ap-
proximately equal to each other (GL ≈GC ≈ 2ln(L̃/r0) · 1,
where L̃ is some length parameter of the system, (i.e., for the
circle L̃≈ 2R), which leads to G−1

L (k) · k ·GC(k) · k→ k2.
Thus, we can obtain the approximate equation for the SEM -
poles, which has a simple solution:

k2
· 1− k2

= 0 ⇒ k2
= k2

m

⇒ k(0)m =±2πm/L, m= . . .− 2,−1,0,1,2. . . (13)

These values can be used as a zero-order approximation of
the iteration (perturbation theory) solution. Any subsequent
iteration can be evaluated from the previous iteration as:

det[diag((k(n+1)
m )2−G−1

L (k(n)m ) · k

·GC(k
(n)
m ) · k] = 0, n= 0,1,2, . . . (14)

In particular, for the circle wire, the solution of this equation
is:

k(n+1)
m = k(n)m

√√√√ 2gm(k
(n)
m )

gm+1(k
(n)
m )+ gm−1(k

(n)
m )

,

n= 0,1,2, . . .; k(0)m = km =m/R (15)

Note that, as in the case of the circle wire, the SEM poles in
the general case can be classified under the index m, which
defines the number of waves of current along the thin wire.
The considered iteration solution yields the poles of the so-
called first layer, which are nearest to the real axis.

3.2 Numerical realization of the Method of Modal
Parameters – algorithm of solution equation for the
SEM poles

In this sub-section we describe the numerical realization of
the method of modal parameters. For the first step, it is
necessary to calculate the matrix elements of the capacity-
like and inductivity-like G-matrixes (Eqs. 4–5). This is re-
alized by double numerical integration. The first integral is
solved numerically using the trapezoidal rule with 10 000
points. An important circumstance here is that the first in-
tegration is carrying out with function g(l, l′), which has a
“singularity” with characteristic dimension r0, when l ≈ l′.
Therefore, a step of the first integration 1 must describe
the singularity of the Green’s function: in other words, there
must be several points of integration on the radius of the

wire (e.g., if the complete length of the loop L is about
20 m, and the radius of the wire is r0 = 1 cm, we have
1= 20/10 000= 2 mm, i.e., a/1= 5). However, the second
integration contains a smooth integrand obtained as a re-
sult of the first integration, where the characteristic length
is about the wavelength or length of non-uniformity of the
wire. Tests have shown that 500 intervals are enough for
the second integration. Of course, in numerical calculations,
we use the finite matrix instead of the infinite matrix. The
calculations show that, if we consider a matrix with order
Mmax(−Mmax,−Mmax+1, . . .0. . .Mmax−1,Mmax, i.e., with
(2Mmax+1)×(2Mmax+1) elements), it issufficient to define
the SEM poles for index m up to Mmax− 2.

The knowledge of the matrices GL and GC gives a pos-
sibility to define a matrix Z′. Up to the constant factor this
matrix is given by:

Z′ ∼ k2
·GL(k)− k ·GC(k) · k (16)

Next, the determinant of Z′(x) is defined as a function of a
normalized complex wave number x := k ·L/2π . Then, we
look for the solution using the Newton algorithm. As the
zero-order approximation for the SEM poles of the first layer
for the wiring structure short-circuited at both ends, the next
values are used (see Eq. 13)

x(0)m =m (17)

Then we begin an iteration procedure. Because the calcula-
tion of the double integrals for all (2Mmax+ 1× 2Mmax+ 1)
matrix elements requires a long time (about 30 min on a HP
ENVY 17 Notebook personal computer with processor In-
tel(R) Core(TM) i7-550U CPU@240 GHz using the Fortran
code), we will do this for the function:

F (̃x,x) := det
(̃
k2
·GL(k)− k ·GC(k) · k

)
where x := k ·L/2π, x̃ := k̃ ·L/2π (18)

The iterations are carried out in two circles. In the internal
circle (15 iterations), we use the Newton algorithm only for
the value x̃ for a fixed value x

x̃
(j)
m := x̃

(j−1)
m −

F (̃x
(j−1)
m ,x

(i)
m )

∂
∂x̃
F (̃x,x

(i)
m )

∣∣∣
x̃=x̃

(j−1)
m

,

j = 1. . .Jmax = 15 (19)

For the next external circle, we repeat this procedure for the
x
(i+1)
m = x

(Imax)
m , repeating this procedure Imax = 3 times (i =

0, 1, 2. . . 3). Both initial values are the same x(0)m = x̃
(0)
m =m.

4 Numerical results for the SEM poles

4.1 Short-circuited semi-circular wire

To check the method, we consider a vertical, short-circuited,
semi-circular wire above a perfect conducting ground
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Figure 3. Function 1/|F(x,x)| for the circular wire.

Figure 4. The real part of the matrix GL for the circular wire. k =
2.3/R.

(Fig. 2). The parameters of the structure are: R = 4 m and
r0 = 1 cm. The matrixes GC(k) and GL(k) are calculated
by double integration and partially presented in Figs. 4–6.
Using the exact calculations this matrix must be diagonal
(see Eqs. 8–10). The relative value of the off-diagonal el-
ements relative to diagonal elements represents the error of
the method (about 10−3–10−4). But practically, the matrix Z′
is diagonal and coincides with the exact result. The determi-
nant of this matrix has minimum approximately for x ≈m1

(see Fig. 3 for the inverse value, which has maximums).
The comparison of the values of the poles of the first layer

obtained using the numerical algorithm described above with
the solution of the exact Eq. (12b) obtained by Maple soft-
ware has shown excellent agreement (Table 1). Note that for
corresponding values of the parameters of the circular loop
the values of the SEM poles of the first layer obtained by the

1The determinant can be a large value in dependence of the order
or the matrix. For the Mmax = 7 its value can reach 1014–1015

Figure 5. The real part of the matrix GC for the circular wire. k =
2.3/R.

Figure 6. The real part of the matrix Z′ for the circular wire. k =
2.3/R.

two methods described above coincide with these one ob-
tained earlier by Umashankar and Wilton (1974).

4.2 Short-circuited semi-elliptical wire

As the second example, we consider the semi-elliptical short-
circuited wire above a perfectly conducting ground (Fig. 7).

The parameters of the full ellipse (initial wire plus mir-
rored wire) are: a = 4 m, b = 1 m, r0 = 1 cm.

The matrixes GL and GC are presented in Fig. 9 for real
k. For non-symmetrical configurations, these matrices are
not diagonal. However, for the smooth wire (λ|dR(l)/dl| �
|R(l)|, where R(l) is the radius of curvature of the wire) the
number of essential non-diagonal elements is not too big.
This can be observed in Fig. 9, especially for the real parts.
For the imaginary parts, the non-diagonal elements are es-
sential.

Next, we investigate the symmetry properties of the ma-
trices, which can reduce the time needed to make the calcu-
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Table 1. SEM poles of the first layer for the circular wire.

Number of the pole m 1 2 3 4 5

Exact solution with gm Re(xm) 1.036 2.050 3.0593 4.0670 5.0736
Im(xm) 7.00× 10−2 1.0077× 10−1 1.2415× 10−1 1.4388× 10−1 1.6133× 10−1

Method of modal parameters Re(xm) 1.0342 2.0446 3.0514 4.0565 5.0606
Im(xm) 6.988× 10−2 1.0029× 10−1 1.2333× 10−1 1.3912× 10−1 1.5979× 10−1

Figure 7. Short-circuited semi-elliptical wire.

Figure 8. Function 1/|F(x,x)| for the elliptical wire.

lations. If one looks carefully at the numerical data for the
matrix GC (see Fig. 9c, d), one can see that:

(GC)−m1,−m2 = (GC)m1,m2; (20a)

(GC)m2,m1 = (GC)m1,m2 (20b)

The same is true for the matrixes GL(k) and Z(k). This can
be proven in the general case. From the definition of GC(k)

we have

(GC)m1,m2 =

L∫
0

L∫
0

ejkm1l1−jkm2l2gC(l1, l2,k)dl1dl2

=
l1−> l2
l2−> l1

L∫
0

L∫
0

ejkm1l2−jkm2l1gC(l2, l1,k)dl1dl2

=

L∫
0

L∫
0

ejkm1l2−jkm2l1gC(l1, l2,k)dl1dl2

= (GC)−m2,−m1 (21)

Here we used the symmetry property of the scalar Green
function when rearranging the arguments gC(l2, l1,k)=

gC(l1, l2,k).
To prove the property (Eq. 20b) one can write:

(GC)m1,m2 :=

L∫
0

L∫
0

ejkm1l1−jkm2l2gC(l1, l2,k)dl1dl2

=
l1−>−l1
l2−>−l2

−L∫
0

−L∫
0

e−jkm1l1+jkm2l2gC(−l1,−l2,k)dl1dl2

=

L∫
0

L∫
0

e−jkm1l1+jkm2l2gC(l1, l2,k)dl1dl2

=
l1−> l2
l2−> l1

L∫
0

L∫
0

e−jkm1l2+jkm2l1gC(l2, l1,k)dl1dl2

=

L∫
0

L∫
0

e−jkm1l2+jkm2l1gC(l1, l2,k)dl1dl2

= (GC)m2,m1 (22)

Here we use also the fact of the even number of integrations
and the periodic property of all considered functions.

The results of Eqs. (21) and (22) prove the suggestion
Eq. (20).

The matrix Z is also non-diagonal. However, near index
meff := kL/2π ≈m (m=±1,±2, . . .) corresponding non-
diagonal elements are small. The determinant of this matrix
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Figure 9. Matrices GL (a, b) and GC (c, d) for semi-elliptical short-circuited wire. kL/2π = 2/3.

has its minimum for x ≈m (see Fig. 8 for the inverse value,
which has its maximums). This value serves as a zero-order
iteration in the algorithm described above. Using this algo-
rithm, the SEM poles of the first layer were found (Fig. 10).
To check the developed method, we compared the results
with the SEM poles obtained from the frequency response
function of the line obtained using MoM NEC (Numerical
Electromagnetic Code) software. The SEM poles can be ex-
tracted from numerical data using a Padé approximation, as
described by Senior and Pond (1981). The comparison of the
poles obtained by the Method of Modal Parameters and pro-
ceeding of the data of NEC calculation is shown in Fig. 10.

The comparison of the SEM poles for the semi-elliptical
wire with the poles for the semi-circular wire with similar
length is shown in Fig. 11. One can see that the imaginary
part for the semi-circular wire is essentially larger relative
to the semi-elliptical wire. Both sets of poles have a practi-
cally linear dependence from the real part. We believe that
this is because, in the case of prolate semi-elliptical config-
uration, the horizontal part of the wire is much closer to the
conductive surface, which leads to a weaker radiation, which
is ultimately responsible for the appearance of the imaginary
part of the SEM poles.

Figure 10. SEM-poles for semielliptical configuration obtained by
modal parameter method and by analysis of NEC data.

4.3 Straight horizontal wire with short-circuited risers

As the third example, we consider another wiring structure,
which has many practical applications: the straight horizon-
tal wire with short-circuited risers. We also named this the

www.adv-radio-sci.net/17/177/2019/ Adv. Radio Sci., 17, 177–187, 2019
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Figure 11. SEM-poles for semi-circle and semi-elliptical structures.
Lellips = Lcircle = 17.1568 m.

Figure 12. Straight horizontal wire with short-circuited risers.

Vance configuration, because it appears in the book of Ed-
ward Vance (1978). The parameters of the line are (Fig. 12):
Lhor = 10 m, h= 0.5 m, r0 = 1 cm.

The matrixes GC and GL for this configuration are pre-
sented in Fig. 14. As in the previous example with the prolate
elliptic wire, these matrixes contain non-diagonal elements,
which, however, are larger than in the previous case, because
of the non-smoothness of the line. Nevertheless, the proper-
ties of the matrixes (Eqs. 20a, b) are still valid.

The frequency dependence of the inverse determinant of
the matrix Z (which is also non-diagonal) is shown in Fig. 13.
As in the previous cases, it has its maximums near meff :=

kL/2π ≈m (m=±1,±2, . . .), which approximately corre-
spond to the real parts of the SEM poles.

Knowledge of the determinant, as a function of complex
wave number k, gives us the possibility to determine the
SEM poles using the algorithm described above. To check the
modal parameter method we compared the results with the
one obtained by two alternative methods: the analysis of the
response function obtained by NEC (Senior and Pond, 1981),
and the asymptotic method (see Tkachenko et al., 2014; Mid-
delstaedt et al., 2016). The results are presented in Fig. 15.

Analyzing the results, we can draw several conclusions.
First, the agreement with the “exact” numerical results, as
well as with the approximate analytical method is much bet-
ter in the case of the elliptic wire. This might be caused by

Figure 13. Function 1/|F(x,x)| for the Vance configuration.

the uniform length division by sub-elements in this case, un-
like the case of the ellipsoid. In the last case, the uniform
division is applied to the parameter t in the usual parametric
representation of the ellipse, which leads to a non-uniform
division of the lengths of sections of integration and, as a re-
sult, the incorrect integration near the singular point at the
given number of sub elements (10 000). However, this defi-
ciency can be easily corrected in future calculations.

Another important observation is related to the excitation
of two types of modes: the common mode and differential
mode. The differential mode (m=∼ 0, 2, 4, . . . , see Fig. 15)
appears for any transmission line structure, which has hori-
zontal components. The common mode (m=∼ 1, 3, 5, . . . ,
see Fig. 15) appears for the transmission line structure, which
has vertical elements and excited, for example, by an external
field, which has vertical components. Note that both types of
modes appear in the two previous examples: semi-circular
wire and semi-elliptical wire above the perfectly conduct-
ing ground with a non-symmetrical excitation. In the case
of the wire without vertical components (horizontal open-
circuit line above ground), or in the case of a symmetrical
configuration (all three considered configurations) and exci-
tation (i.e., plane wave with normal incidence or with grazing
incidence), we can observe only one mode type (differential
modes or common modes).

The third note is connected with the fact that the presented
numerical calculations, using the method of modal parame-
ters is quite a time consuming (for example, the calculation
of the 7–10 poles requires 5–6 h on the computer used here).
It is possible to show that the modal parameter method allows
additional simplification in the case of smooth wires when
the radius of curvature of the wire axis is substantially greater
than the wavelength. In this case one can introduce for each
mode m smoothly length-dependent modal inductance per-
unit-length and capacitance per-unit length. These matrices
are diagonal (Tkachenko and Nitsch, 2005). The equation
for the SEM poles corresponding to the mth mode is given
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Figure 14. Matrices GL (a, b) and GC (c, d) for a straight horizontal wire with short-circuited risers. kL/2π = 2/3.

Figure 15. SEM-poles for the Vance configuration obtained by the
modal parameter method, by the asymptotic approach and by anal-
ysis of NEC data.

by the diagonal matrix element of the modal impedance per-
unit length with the modal functions. It is possible to show
that this result can also be obtained by the variation method

Figure 16. Differential (red color) and common (green color)
modes for the Vance structure.

(Myers et al., 2011a, b). These problems will be addressed in
future work.

5 Conclusion

The SEM poles of the short-circuited thin wire with arbi-
trary geometry above a perfect conducting ground were in-
vestigated by the method of modal parameters. Unlike the
Method of Moments using the localized basic functions, the
method of modal parameters uses physical modal basic func-
tions, which are the approximate solution of MPIE for thin
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wires, which essentially simplifies finding the poles. The
SEM poles are complex roots of the modal impedance matrix
of the system. The numerical method of solution of the cor-
responding equation was developed and applied for several
examples: semi-circular wire, semi-elliptical wire, and hor-
izontal wire with vertical risers. During this procedure, ma-
trices of modal inductance and capacitance were calculated
and their symmetry was investigated. The comparison of the
SEM poles with the ones obtained by other analytical and nu-
merical methods yields a good agreement. The causes of the
disagreement with the numerical results are analyzed. The
main cause is using matrices that are not sufficiently large.
In our opinion, it possible to improve results by accelerat-
ing calculations using the symmetry properties of modal ma-
trixes (Eqs. 20a, b).

Note, that the MoMP can also be applied for the open-
circuited wire if one uses a different modal function (sine
and cosine). In the future, the developed method can be gen-
eralized for the case of a loaded wire by including the lumped
impedances as current controlled voltage sources.
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