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Z U S A M M E N FA S S U N G

Um das Ziel der europäischen Union zu erreichen, bis 2050 klimaneutral
zu sein, werden erneuerbare Energiequellen stetig weiter ausgebaut. Die
Schwankungen in der Energieerzeugung, die mit diesen Energiequellen
einhergehen, müssen durch kurz- und langfristige Energiespeicher aus-
balanciert werden. Eine Option für langfristige Energiespeicher mit großer
Kapazität bieten chemische Energieträger, z.B. Wasserstoff, Methan oder
Methanol. Insbesondere Methan, welches durch die Methanisierung (Sabatier
Reaktion) von Kohlendioxid und Wasserstoff, welcher durch Elektrolyse
von Wasser hergestellt werden kann, zeigt großes Potential als Energieträger.
Zum einen ist das Erdgasnetz eine bereits vorhandene Infrastruktur, die zum
Speichern und Transport des Gases genutzt werden kann. Des weiteren kann
Methan zum Heizen oder als Kraftstoff in Erdgasfahrzeugen genutzt wer-
den und erlaubt so die Kopplung verschiedener Sektoren. Die zusätzlichen
chemischen Umwandlungsschritte der Power-to-Methan Prozesskette re-
duzieren jedoch die Gesamt

ienz des Energiespeichers. Zudem kann Methan aus Erdgas oder Biogas
deutlich günstiger hergestellt werden, was Power-to-Methan unwirtschaftlich
macht.

Der erste Teil dieser Arbeit widmet sich der Verbesserung von Power-to-
Methan Prozessen durch Identifizierung und Optimierung der attraktivsten
Prozesse bezüglich Prozesseffizienz und Investitionskosten. Unter Berück-
sichtigung der Einspeisespezifikationen für das deutsche Erdgasnetz und
mit Biogas als Quelle für Kohlendioxid wird die Effizienz verschiedener
Prozessalternativen auf Anlagenebene analysiert. Die Ergebnisse der ersten
Analyse zeigen, dass Biogas, eine Gasmischung aus Methan und Kohlen-
dioxid, nicht vor der Methanisierung in seine Bestandteile getrennt werden
muss. Die Gasmischung kann direkt in den Reaktor geleitet werden, ohne
Abtrennung des Methans, was zu einer höheren Prozesseffizienz führt.
Dieser Prozess, unter Nutzung von Elektrolyse, Methanisierung, Aufreini-
gung des Produktgases durch Gastrennung und Wiederverstromung des
Methans, hat eine Prozesseffizienz von 23%. Das Ergebnis ist vergleichbar
mit einer Studie für Methanol als Energieträger und zeigt eine deutlich
höhere energetische Effizienz der Nutzung von Methan.

Der nächste Schritt dieser Arbeit ist die globale Optimierung der Prozess-
alternativen mittels gemischt-ganzzahliger nichtlinearer Optimierung. Die
Arbeit präsentiert eine Superstruktur für den Power-to-Methan Prozess,
inklusive indirekter Wärmeintegration. Die Superstruktur beinhaltet 13
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alternative, technologisch relevante Prozesselemente in sieben Schichten.
Die Ergebnisse dieser Arbeit zeigen die besten Prozesse bezüglich Prozess-
effizienz, Investitionskosten und Jahreskosten unter verschiedenen Prozess-
bedingungen durch die Optimierung des Superstrukturmodels. Die in-
direkte Wärmeintegration ist ein wichtiger Faktor für die Zielfunktionen
in allen Szenarien. Sie bestimmt den Trade-off zwischen Effizienz und
Investitionskosten. Ebenso spielen die Spezifikationen des Gasnetzes eine
wichtige Rolle für die optimale Prozesskette. Wenn ein Anteil von bis zu
10 vol.-% Wasserstoff ins Gasnetz eingespeist werden darf, werden weniger
Prozesselemente zur Gastrennung benötigt, was Investitionskosten senkt
und die Prozesseffizienz erhöht. Die beste Prozesseffizienz (65%) von Strom
zu Methan wird durch Hochtemperaturelektrolyse, Wärmeintegration und
Einspeisung von bis zu 10 vol.-% Wasserstoff ins Gasnetz erreicht.

Der zweite Teil dieser Arbeit fokussiert sich auf die Optimierung von
Gastrennung mittels Druckwechseladsorption. Die Druckwechseladsorption
ist ein Prozess, der numerisch schwierig zu optimieren ist. Im Kontext von
Power-to-Methan Prozessen wird dieser Prozess eingesetzt, um Methan und
Kohlendioxid zu trennen. Ein reduziertes Modell wird genutzt, welches für
eine Vielzahl von weiteren zyklischen Adsorptionsprozessen Anwendung
finden kann, um die Druckwechseladsorption mittels eines Trust-Region
Verfahrens zu optimieren. Das Ergebnis zeigt eine Reduzierung der Berech-
nungszeit des Trust-Region Schrittes gegenüber einer vergleichbaren Studie
um drei Größenordnungen von 4800 s auf 4 bis 5 s.

Zuletzt wird ein Algorithmus zur Optimierung von Superstrukturen unter
der Nutzung von detaillierten Modellen für Prozesselemente vorgestellt. Der
Algorithmus nutzt reduzierte Modelle zur Unterstützung der Optimierung.
Diese Arbeit zeigt die nötigen Vorraussetzungen für die Anwendung der
Methode zur globalen Optimierung von Superstrukturen in der Verfahrens-
technik.
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A B S T R A C T

To fulfill the goals of the EU concerning climate neutrality, the share of
electrical energy from renewable energy sources has been increasing steadily.
The fluctuations in energy supply, which accompany these energy sources,
demand for more short and long term energy storage technologies. One
option to implement large capacities of long term storage is chemical storage
in form of energy carriers, e.g., hydrogen, methane, or methanol. In particu-
lar methane, which is produced via methanation (Sabatier reaction) from
carbon dioxide and hydrogen available from water electrolysis, shows great
potential as an energy carrier. The available infrastructure of the gas grid
allows for easy storage and transportation. Furthermore, energy in form of
methane can be integrated into other energy sectors (heating and mobility).
However, the many conversion steps of the power-to-methane route reduce
the process efficiency. Furthermore, cheaper sources of methane, i.e. natural
gas and biogas, make the process economically unattractive.

The first part of this thesis aims for the improvement of power-to-methane
processes by identification of the most efficient as well as most economically
attractive process configurations. Under consideration of the gas specifica-
tions of the German gas distribution system, we analyze the exergetic and
energetic efficiency of different power-to-methane processes on plant level.
Carbon dioxide from biogas plants is considered as carbon source.

The results of the first analysis demonstrate that the mixture of methane
and carbon dioxide from anaerobic digestion (AD) can be directly fed-in to
the methanation and no prior removal of biogenic methane is necessary. The
configuration using the AD mixture is the most efficient process in terms
of exergetic efficiency in this study. The process including the electrolysis,
methanation, separation via pressure and temperature swing adsorption
and gas conversion to electricity has an overall process efficiency of 23%,
covering the complete cycle from electricity over chemical storage back to
electricity. The obtained efficiency for methanation is clearly higher than that
reported in the literature using methanol as chemical intermediate storage.

As a second step we identify the optimal power-to-methane process config-
uration via global mixed integer optimization. We present a superstructure
optimization approach to power-to-methane process design that includes
heat integration. The superstructure includes 13 alternative process technolo-
gies in seven layers for Power-to-Methane processes at their current stage
of development. For different scenarios, the most efficient process in terms
of product chemical exergy and the most cost-effective process in terms
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of capital and total annual costs are identified. We consider indirect heat
integration via utilities, which for all scenarios is determined to be a main
contributor to both exergy efficiency and process cost. The product methane
must meet the requirements for feed into the gas grid. The requirements
for the gas grid have a direct influence on the most efficient process route.
The number of necessary process units is reduced, if 10 % hydrogen can
be fed to the gas distribution system instead of the 2 % currently specified
by law. Furthermore, extent of the heat exchanger network determines the
trade-off between efficiency and costs, rather than choice of unit operations.
High energetic process efficiencies (65%) can be achieved by combination of
SOEC, heat integration, and higher thresholds of H2 in the gas grid.

In the second part of this thesis, we take a closer look at the pressure
swing adsorption unit. Pressure swing adsorption is a numerically chal-
lenging gas separation unit, which in the context of power-to-methane can
be applied for the pre-treatment of the AD product mixture, as well as for
the downstream processing of the methanation product. A reduced model
based on equilibrium theory is proposed, which can be applied to optimize
a large variety of cyclic adsorption processes, via a trust-region filter (TRF)
method. The results show that the reduced model significantly reduces the
computational time of the methods trust-region step compared to literature
works by three orders of magnitude from over 4800 s to around 4 to 5 s.

Finally, we propose an approach for optimization of high-fidelity super-
structures based on branch-and-bound. The algorithm combines different
levels of detail for modeling unit operations, which we consider in parts
one and two of this thesis. We show the theoretical basis for convergence to
global optimality.
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1
I N T R O D U C T I O N

1.1 motivation

The supply of electrical energy originating from renewable energy sources
(RES) directly depends on changing environmental conditions such as wind
flow and solar irradiation. This results in strong temporal fluctuations and
a discrepancy between energy supply and demand, which destabilizes the
grid, and impedes the transition towards a more sustainable energy sector
[3]. To reach the goals of the EU, namely 32% electrical energy from RES
until 2030 and climate neutrality until 2050 [4], an increased implementation
of flexible short and long term energy storage is necessary. Furthermore, a
key element for reaching the EU’s long term goal of climate neutrality, is
the integration of RES into heating and mobility sectors. The future energy
infrastructure must include cost and energy efficient interfaces between the
sectors.

The energy storage technologies available today offer different advantages
in terms of power capacity, storage duration, start up time, and potential for
utilization of stored energy across sectors. Currently, mechanical storage of-
fers by far the largest potential in terms of power capacity. This is attributed
to pumped hydro storage technologies, which have huge capacities for long
term storage [4, 5, 6, 7]. However, the implementation of pumped hydro
storage depends on suitable geographical conditions and causes significant
ecological damage, which limits the expansion in the future [5] and cre-
ates demand for alternative long term storage technologies. Furthermore,
mechanical storage options have a limited potential for integration of RES
into the heating or mobility sectors. Integration of RES into the heating
sector is possible via a combination with other energy systems [8, 9], e.g., via
utilization of waste heat [10, 11, 12], or via the generation of solar thermal
energy [13, 14, 15]. Heat can be stored in form of thermal energy storage,
which denotes short term conservation of heat in solids or salts [16], as well
as long term storage in phase change materials [3, 17]. More challenging is
the integration of RES into the mobility sector. One option is electrochemical
storage in form of batteries, which can be placed in electric vehicles. As
of today, the technology has significant drawbacks of high cost, high self-
discharge rate, and a limited number of charge and discharge cycles [3, 5].
However, the application in the mobility sector via electric vehicles, and
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2 introduction

the short response time makes the technology an active field for further
development [18, 19].

Because of the current limitations of long term storage technologies and
interfaces between the sectors, chemical energy storages have important
roles in the future energy transitions scenarios [4, 20, 21]. Chemical energy
carriers, i.e., combustible gases or liquids produced via surplus energy from
RES, are easier to store and transport than the electrical energy. The process
of producing combustible chemicals from RES is referred to as Power-to-X,
where X denotes the produced chemical energy carrier. These chemicals
can be used as fuels for heating or mobility, as well as for balancing of
the electricity supply. As of today, vehicles with natural gas engines are
the most ecologically friendly [22] with regards to the German energy mix.
Furthermore, they are widely available and require little adjustments from
the end user, which increases public acceptance. As a result, vehicles with
natural gas engines are considered a bridge technology for the transition
towards a sustainable mobility sector [23].

Hydrogen (H2) [24] is the potential energy carrier with the fewest interme-
diate conversion steps. In the context of Power-to-X, hydrogen is produced
via water electrolysis, free of any carbon emissions. However, the low volu-
metric energy density at low pressures and the high fugacity of the gas
complicate storage and transport [25].

Alternative energy carriers, e.g. methane (CH4) [26], or methanol (CH3OH)
can be produced from hydrogen. This additional conversion step requires an
appropriate carbon source, e.g., carbon dioxide from flue gas, air separation,
or product gas of anaerobic digestion, where it is typically considered waste.
Furthermore, the conversion step reduces the overall energetic efficiency
of the process. However, both methane and methanol are much easier to
store and transport than hydrogen: Methane has a higher volumetric energy
density than hydrogen at equal pressure, and methanol is in liquid state
at ambient conditions [27]. For synthetic methane in particular, which is
alike the natural gas from fossil fuels, the gas grid is a well established
way for transport and storage [28]. Furthermore, using the established
gas grid facilitates sector coupling, i.e., the use of the energy carrier for
heating or mobility [29]. All of these advantages make methane a very
appealing energy carrier for the transition of the energy systems. Around
30 demonstration units, and over 128 research projects have been reported
to exist in Europe so far [29, 30, 31, 32, 33]. Some of which, e.g., the 6

MW e-gas unit in Werlte, Germany [34], produce methane at a product
quality suitable for feed to the gas grid. Nonetheless, the cheap alternative
of methane from fossil fuels, which are still available in abundance, makes
the power-to-methane process economically challenging [31, 35, 36].
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1.2 research problem statement

The goals of this thesis are summarized as follows:

R1 Exergy efficiency analysis comparing methane and methanol as energy
carriers.

R2 The analysis and scenario-based optimization of power-to-methane
processes with respect to thermo-economic aspects such as exergy
efficiency, capital costs and total annual costs.

R3 Conceptual design and optimization of an extensive superstructure, in-
cluding state-of-the-art technologies and internal heat exchange aiming
to identify the most promising process configurations.

R4 Development of a computationally efficient reduced model for opti-
mization of pressure swing adsorption processes for gas separation.

R5 Development of a novel superstructure branch-and-bound method to
combine detailed unit level models and superstructure optimization.

1.3 thesis outline

In Chapter 2 we introduce the power-to-methane process in the context
of process systems engineering. We address the methanation reaction,
carbon source and electrolyzer technologies needed to produce the reagent
hydrogen from RES and water. Furthermore, we present the concept of
exergy, which we use to analyze the process efficiency. Chapter 2 gives an
overview of the current state of the art in power-to-methane processes.

Chapter 3 discusses briefly the mathematical background of the optimiza-
tion strategies applied in this thesis. In the context of this dissertation we
formulate multiple optimization problems, which have the form of nonlinear
programs (NLPs) or mixed integer nonlinear programs (MINLPs). With the
exception of the trust-region filter method from Chapter 6 we apply estab-
lished software libraries to solve the optimization problems. The software
libraries include barrier methods for optimization of NLPs to local optimal-
ity and branch-and-bound methods for deterministic global optimization of
NLPs and MINLPs. Furthermore, we reduce constraints initially expressed
as partial differential equations to systems of ordinary differential equations,
and solve the obtained ordinary differential equations via integrators in a
nonlinear optimization framework. To improve numerical stability, we use
the method of direct multiple shooting.

Following these introductions into the background of the thesis, we start
addressing the research goals. To get an initial impression of the potential
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of different methanation process configurations, we analyze four alternative
options in Chapter 4. The configurations include catalytic methanation and
gas separation technologies, in particular pressure swing adsorption (PSA).
The results allow for a direct comparison with methanol as an energy carrier,
addressing the research goal R1.

In Chapter 5 we address the research goals R2 and R3. We expand
the process configurations of Chapter 4 to an extensive superstructure.
The proposed superstructure includes a large variety of process relevant
technologies, as well as a heat exchanger network and utilities for indirect
heat integration. We optimize the superstructure with respect to exergy
efficiency, capital costs and total annual costs. The results show the effect that
different electrolyzer technologies, gas distribution system specifications,
and methanation technology have in a power-to-methane framework.

One of the most challenging unit operations to optimize in the power-to-
methane process is the PSA unit. In Chapter 6 we optimize the detailed unit
level model from Chapter 4 with the aid of a trust-region filter method and
a reduced model based on equilibrium theory, according to goal R4. The
method is based on previous works on PSA optimization, extended here by
the reduced model and applied to a more complex PSA configuration.

In Chapter 7 we combine the results of the previous chapters to intro-
duce a new algorithm for multi-level problem analysis and optimization,
which connects different modeling levels, as stated in goal R5. We give the
theoretical foundation for application of the proposed algorithm to opti-
mize high-fidelity superstructure optimization problems as they appear in
systems engineering with respect to efficiency or economy.

Finally we summarize our findings in Chapter 8.

1.4 brief notation notes

Throughout this work we refer to mole fractions with the letter y instead of
the often used letter x to avoid any confusion with the general optimization
variables, which we refer to as x. We use the notation

[xi]i∈{1,...,n} := (x1, . . . , xn)>

to shorten some definitions. Furthermore, we use bold letters, e.g., x, when
we refer to a single solution candidate instead of the optimization variables
x. An extensive list of the notation is attached at the end of this thesis.
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P O W E R - T O - M E T H A N E A N D E X E R G Y E F F I C I E N C Y

2.1 power-to-methane

Key units of the Power-to-Methane (PtM) conversion process are the metha-
nation reactor, the water electrolyzer, and gas separation units. The process
is designed to produce methane, which fulfills the specifications for feed
into the gas distribution system (synthetic natural gas). In the following
we introduce the key issues to describe the PtM process, as well as process
boundaries we apply for the analysis in later chapters.

2.1.1 Catalytic and Biological Methanation

The conversion of hydrogen and carbon dioxide to methane via the Sabatier
reaction

CO2 + 4H2 
 CH4 + 2H2O, ∆H0 = −165 kJ/mol (1)

is carried out in a catalytic or biological methanation reactor.
Many pilot plants, including the aforementioned pilot plant in Werlte,

Germany [34], carry out the strongly exothermic reaction in a fixed bed
reactor. Nickel-alumina (Ni/Al2O3) catalysts are most commonly applied in
practice, which are much cheaper than alternative catalysts with very high
selectivity, e.g. platinum, or activity, e.g. ruthenium or iron [33].

Nickel-alumina (Ni/Al2O3) operate at temperatures between 425 and
975 K [32]. The optimal reactor temperature is a trade-off between favorable
chemical equilibrium and a fast reaction rate, as well as avoiding damage to
the catalyst by sintering or coking at high temperatures. Figure 1 shows the
molar fractions of the components at chemical equilibrium over temperature
at different pressures. The products are favored at lower temperatures and
higher pressures. On the other hand, the reaction rate, which constraints
the achievable conversion of reagents towards the chemical equilibrium,
increases with temperature, see Figure 2. In practice, the methanation
reaction is carried out below 700 K [32, 37, 38].

However, because of the process costs arising from the compression
typically methanation reactors are operated below 8 bar [32, 37, 38].

In this thesis biological methanation is considered as an alternative to
catalytic methanation. Biological methanation denotes here the conversion
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6 power-to-methane and exergy efficiency

Figure 1: The molar fractions at reaction equilibrium.
The figures show the molar fractions of CO4, H2, CH4, and H2O at the reaction
equilibrium of reaction (1) at stoichiometric balance. The water-gas shift reaction,
which produces minor concentrations of carbon monoxide, was neglected as a side
reaction. The plots show the equilibrium at 1 bar (left) and 15 bar (right) over
temperature.

Figure 2: The reaction rate over temperature at reactor inlet.
The figure shows the reaction rate of (1) according to kinetic equations proposed
by Koschany et al. [39] at stoichiometric CO2:H2 ratio of 1:4 assuming xCH4 ,
xH2O = 0.

of hydrogen and carbon dioxide via methanogenic bacteria without the
digestion of biomass. The process is typically carried out at moderate
conditions of 308 to 370 K and ambient pressure [40, 41]. Variations in type
of methanogens, reactor construction, feed, and gas transfer rates in the
studies, result in a large range of diversity in the reported conversion rates
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in the biological methanation process [31, 42, 43], from low dry product gas
concentrations of 58 vol.-% [44] to high concentrations of 96 vol.-% [45, 46].

2.1.2 Carbon Source

CO2, if not otherwise stored, e.g., in form of chemicals or via carbon capture
and storage, is often considered as its reuse would reduce carbon emissions
to the atmosphere [47]. High concentrations of CO2 are available in flue
gas from industrial processes (cement industry or power plants) [48, 49],
in the product gas of anaerobic digestion (AD) from biogas plants or in
low concentrations in air (air separation). The extraction of the latter is
associated with large costs and therefore not considered for the economically
challenging process of power-to-methane. AD product gas, however, is very
attractive as a feed gas, because biogas plants produce gas suitable for
feed to the gas distribution system, i.e., technologies for gas separation
from impurities and odorization are already on site. The AD product gas
is a mixture of carbon dioxide, methane, and minor amounts of nitrogen,
water, oxygen, ammonia and hydrogen sulfide, of which only oxygen and
hydrogen sulfide must be separated prior to feed to the methanation reactor
[50] to avoid damage to the process equipment, in particular the catalyst.
The gas purification methods on site of a biogas plant remove the smaller
impurities to avoid also damage to the gas distribution system. We therefore
assume in this thesis that the product gas of anaerobic digestion contains
no smaller impurities, e.g. it is a mixture of carbon dioxide and methane.
The dry concentrations of the product gas from anaerobic digestion strongly
depend on the digested biomass, however 30-50 vol.-% of carbon dioxide
can be expected [51]. We assume here that 40 vol.-% of the AD product gas
is carbon dioxide corresponding to a molar fraction of xCO2 = 0.4.

2.1.3 Gas Separation

Gas separation can be applied in different positions of the power-to-methane
process, e.g., for the separation of the AD product gas prior to feed to the
methanation reactor, or after the methanation reactor to remove reagents,
which were not converted. Absorption, adsorption, and membrane separa-
tion have been successfully applied on industrial scale [52] for the separation
of CH4/CO2 mixtures on site of a biogas plant. Absorption can be imple-
mented via chemicals (amine scrubbing) or water (water scrubbing). Typical
adsorbents are zeolites or carbon molecular sieves. Furthermore, if the
reagent hydrogen should be recovered from the product, adsorbents like
activated carbon can be applied [53].



8 power-to-methane and exergy efficiency

In addition, the gas must be dried from the side product water. We
consider condensation in a flash column or temperature swing adsorption
to dry the gas.

2.1.4 Hydrogen Production via Water Electrolysis

Water electrolysis is a process which uses electrical energy to split water
molecules into hydrogen and oxygen according to

H2O→ H2 +
1

2
O2.

The most mature electrolyzer technology are alkaline electrolyzers (AE),
which are largely commercially available. AE operate at temperatures of 333

to 353 K and below 30 bar and have reported lifetimes of 30 years [54].
One alternative to AE are polymer electrolyte membrane (PEM) electroly-

zers. They operate at the same operating conditions (333-353 K, <30 bar)
as AE [54] and are reported to have slightly lower process efficiencies [55].
Because of these similarities we do not include PEM electrolyzers in the
presented study. Their benefit in practice is the more flexible operation,
which is relevant for dynamic optimization of the PtM process [56], which
is out of the scope of this thesis.

Another alternative is high-temperature electrolysis, also called steam
electrolysis, via solid oxide electrolyser cells (SOEC). The SOEC operates at
much higher temperatures of around 1000 K, which makes the technology
suitable for heat integration [57]. The SOEC reports higher efficiency than
AE, however it still has a lower technology readiness level than AE or
PEM electrolysis. As a result the SOEC electrolyzer is still expensive today,
however, Thema et al. [58] predict that the costs for SOEC will reduce
drastically in the next years.

2.1.5 Process Boundaries and Overview

The specifications of the German gas distribution system according to [59]
are

yH2 6 0.02,
yCO2 6 0.05,
0.95 6 yCH4 ,
CH2O 6 200 mg/m3,

 (2)

where yi denotes the mole fraction and Ci the concentration of component
i ∈ {CO2,H2,CH4,H2O}. All processes designed in this thesis produce syn-
thetic natural gas, which fulfills these specifications, unless otherwise noted.
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Figure 3: Schematic overview of the process boundaries
The AD product gas (dark green) enters the process free of minor impurities at
ambient conditions. It is either directly mixed with hydrogen and supplied to the
methanation step, or pre-separated to supply only carbon dioxide for methanation.
The boxes indicate the different technologies for the different tasks, also listed in
Table 1. The process requires work in form of electrical energy for compression and
water electrolysis, here denoted by the dashed lines. Here, GDS denotes the gas
distribution system.

Table 1: List of the available technologies.

Task Unit operation

Water electrolysis Alkaline electrolyzer (AE)
High temperature electrolyzer (SOEC)

Methanation Thermo-catalytic methanation reactor
Biological methanation reactor

CO2 separation Pressure swing adsorption (PSA)
Water scrubbing (WSC)
Amine scrubbing (ASC)
Membrane separation (MEM)

H2 separation Pressure swing adsorption (PSA)
Gas drying Condensation

Temperature swing adsorption (TSA)

Figure 3 shows a schematic view of the process boundaries. The figure
highlights which alternative technologies and connections are considered
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to identify the optimal process configuration for production of synthetic
natural gas.

2.2 exergy efficiency

The exergy analysis is a unique methodology to estimate not only the
classical energy efficiency for a chemical process but to assess the value of
all energy contributions in a system [60], first applied as early as 1868 [61].
As opposed to the classical energy approach, exergy analysis considers fully
the limitations of the second law of thermodynamics, making qualitative
and quantitative assessment of all mass and energy streams in the system
possible [62]. This enables the precise identification of irreversibilities in
the process paving the way for the thermodynamically feasible energetic
improvement.

Exergy analysis allows us to combine the different forms of energy, i.e.,
electrical energy, heat, and the energy stored in forms of chemical energy
carriers, into one unified term. In the exergetic analysis we evaluate all types
of streams having energetic value in the system. The exergy value expresses
the amount of energy which is thermodynamically convertible to work. In
case of electrical energy, the exergetic value is equal to the energetic value.
Heat and chemical exergy, however, are determined in relation to a given
environment [60], [63].

The exergetic value of a heat stream is directly linked to the temperature
level of the heat. The exergy of a unit’s heat stream q working in a tempera-
ture range from Tin to Tout above ambient temperature Tamb is calculated
as

eheat =

Tout∫
Tin

(
1−

Tamb
T

)
q(T)dT . (3)

We assume that the heat flow q is constant over the temperature range
[Tin, Tout] and write q = Q/(Tout − Tin) where Q is the overall heat trans-
ferred over the corresponding temperature range. For units operating at
isothermal conditions at elevated temperature T the heat exergy is then
given by

eheat =

(
1−

Tamb
T

)
Q. (4)

This equation corresponds to the efficiency of a Carnot engine [64].
The material streams in a system make the third exergy contribution

consisting of kinetic, potential, chemical and physical contributions. The
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Table 2: Chemical energy of selected energy carriers [65].
The Table shows chemical exergy echemical and lower heating value (LHV) of
methane, methanol and hydrogen.

Energy carrier echemical [kJ/mol] LHV [kJ/mol]

Methane 831.9 802.3
Hydrogen 236.1 240.0
Methanol 722.3 638.6

chemical exergy of storage media is of foremost interest and is considered
in the present analysis, as the possible kinetic and potential exergy of a
material stream makes a negligible contribution and cannot be utilized in
the same extent. Here, we consider however fully the loss of the physical
exergy of the methane product steam due to depressurization prior to the
feed into the gas distribution system. Assuming perfect gas, the physical
exergy is given by

ephysical = cp

(
(T − Tamb) − Tamb ln

(
T

Tamb

))
+ RTamb ln

(
p

pamb

)
.

(5)

Here cp denotes the specific heat capacity of the material stream and R =

8.314 kJ/K/mol the gas constant. We assume here that the gas in the pipes
cools down to ambient temperature T = Tamb, so that the physical exergy is
solely dependent on pressure. The remaining expression for the physical
exergy of gas at pressure p corresponds to the work demand of compressing
the gas from pamb to p at isothermal conditions.

Table 2 summarizes the chemical exergy of different energy carriers, as
calculated via the combustion reaction with oxygen [65]. The chemical
exergy of a mixture is simply given by

echemical =
∑
i

eichemicalyi,

where yi denotes the mole fraction of component i in the mixture.
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3
M AT H E M AT I C A L O P T I M I Z AT I O N

In this chapter we provide a brief overview over the mathematical methods
used in this thesis to formulate and solve mathematical optimization prob-
lems. We assume that the reader is familiar with Newton or quasi-Newton
methods, convexity, and the concept of global and local optimality. For a
more detailed overview of nonlinear optimization we refer to Nocedal and
Wright [66], which was used as a reference for Section 3.1.

3.1 nonlinear programming

Constrained nonlinear programming refers to finding the minimum of an
objective function f : Rn −→ R subject to inequality constraints g : Rn −→
Rmg and/or equality constraints h : Rn −→ Rmh , where at least one of the
functions f, g, and h is nonlinear. A general nonlinear program (NLP) can
be written in the form

min
x∈Rn

f(x)

s.t. g(x) 6 0

h(x) = 0.

(nlp)

We assume here that f, g, and h are sufficiently smooth on the feasible set
Ω = {x ∈ Rn | g(x) 6 0, h(x) = 0} and that the feasible set Ω is closed and
bounded. A bounded feasible set is necessary to guarantee the convergence
of most conventional solving strategies and is easy to implement in practice,
e.g., by including box constraints on the variables

lb 6 x 6 ub, lb,ub ∈ Rn, (6)

in the inequalities g. In the following sections, we briefly introduce the
conditions for local optimality, before outlining the method used in this
thesis for finding local solutions of NLPs.

3.1.1 Optimality Conditions

The first step to identifying a solution candidate x ∈ Ω as a local optimum
of (nlp), is the check of a constraint qualification (CQ), also referred to as
regularity condition. A large variety of CQs exist, some of which imply

13
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others. The choice of which CQ to check is often a compromise between
the simplicity of performing the check, and the strength of the CQ, where
weaker conditions are preferred due to being less restrictive. One commonly
applied example for a CQ is the following linear independence constraint
qualification (LICQ).

Definition 3.1.1. Linear independence constraint qualification (LICQ): Let x ∈ Ω
be a feasible point of (nlp) and I be the index set of active inequality constraints, i.e.,
gi(x) = 0⇐⇒ i ∈ I. The LICQ hold in x, if the gradients ∇h(x) and ∇gI(x) are
linearly independent.

The LICQ is a strong assumption implying a variety of weaker CQs, such as
the Mangasarian-Fromovitz constraint qualification (MFCQ).

Definition 3.1.2. Mangasarian-Fromovitz constraint qualification (MFCQ): Let
x ∈ Ω be a feasible point of (nlp) and I be the index set of active inequality
constraints, i.e., gi(x) = 0⇐⇒ i ∈ I. The MFCQ hold in x, if the gradients∇h(x)
are linear independent and

∇gI(x)>u > 0,
∇h(x)>u = 0

holds for a u ∈ Rn.

The constraint qualifications are indicators for the regularity of (nlp) in x
and a necessary assumption for the optimality conditions. Let us define the
Lagrangian function L : Rn ×Rmg ×Rmh −→ R with Lagrange multipliers
µ ∈ Rmg and λ ∈ Rmh corresponding to (nlp) as

L(x,µ, λ) := f(x) +
mg∑
i=1

µigi(x) +

mh∑
j=1

λjhj(x).

Then we can introduce the necessary first order condition, also referred to
as Karush-Kuhn-Tucker condition, as follows:

Theorem 3.1.1. Karush-Kuhn-Tucker (KKT) condition: Let a constraint quali-
fication hold in a local optimum x ∈ Ω of (nlp). Then the Karush-Kuhn-Tucker
condition

0 = ∇xL(x,µ, λ) = ∇f(x) +
mg∑
i=1

µi∇gi(x) +
mh∑
j=1

λj∇hj(x),

0 6 µi ∀i ∈ {1, . . . ,mg},
0 = µigi(x) ∀i ∈ {1, . . . ,mg}

holds in x for some µ ∈ Rm
g and λ ∈ Rm

h . We call µ and λ the Lagrange multipliers.
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If the LICQ hold in x ∈ Ω, then the corresponding Lagrange multipliers µ
and λ are uniquely determined by the KKT condition. We call a point x ∈ Ω,
which fulfills the KKT condition, a KKT-point. The KKT condition is not
only fulfilled by local minima of (nlp), but also by other stationary points of
the Lagrangian, i.e., local maxima or saddle points. Nonetheless, numerical
solvers generally focus on finding a KKT-point of (nlp). By creating a series
of iterates with descending objective value, the limit point of the iteration
is expected to be a minimum in practice. A KKT-point, which fulfills the
following second order sufficient condition, is indeed a local minimum.

Theorem 3.1.2. Second order necessary condition: Let x ∈ Ω be a KKT-point of
(nlp), for which the LICQ hold, with Lagrange multipliers µ and λ. The second
order necessary condition is fulfilled in x, if

u>∇2xxL(x,µ, λ)u > 0 ∀u ∈ C,

where

C :=

{
u ∈ Rn

∣∣∣∣
(
∇gI(x)>,∇h(x)>

)>
u = 0,

I ⊆ {1, . . . ,mg} with gI(x) = 0
}

.

3.1.2 Finding a Local Optimum of an NLP

The two most common and efficient in practice approaches for solving (nlp)
to local optimality are active-set SQP methods and interior-point methods.

Active-set SQP methods focus on determining the active set, i.e., the in-
equality constraints g that are active in the optimal solution. They iterate
over the solutions of quadratic substitute models, utilizing derivative infor-
mation of f, g, and h. An active-set SQP is implemented for example in the
NAG library [67].

Interior-point methods, in particular barrier methods, are a wide-spread
alternative to active-set methods for solving NLPs. The solver IPOPT [68],
which is the solver we apply in this thesis (Ipopt 3.12.12), uses a barrier
approach. For this reason, we take a closer look at this particular method:

We call

min
x∈Rn,s∈Rmg

f(x) − τ
mg∑
i=1

ln si

s.t. g(x) − s = 0

h(x) = 0

(7)

the barrier problem to (nlp). The barrier problem (7) differs from (nlp)
by adding a slack s to the inequality constraints g and the barrier term
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−τ
∑mg
i=1 ln si with parameter τ > 0 to the objective, which assures that the

slack s remains positive. The barrier method finds a local solution of (nlp)
by iterating over a series of barrier parameters τk −→ 0 and finding an
approximate solution to the corresponding barrier problem (7), starting from
the approximate solution of the previous barrier problem. The solution of
(7) converges to a solution of (nlp) for τk −→ 0. In practice, the solution
to the barrier problem is approximated by applying a few iterations of a
Newton or quasi-Newton method towards solving the KKT conditions of
the problem (7), which are given by

∇f(x) +
mg∑
i=1

µi∇gi(x) +
mh∑
j=1

λj∇hj(x) = 0,

µisi − τ = 0, ∀i ∈ {1, . . . ,mg},
g(x) − s = 0,

h(x) = 0.

To guarantee global convergence of the algorithm, IPOPT uses a line-search
filter method when solving the KKT conditions of the problem (7). Let xk,l
be the current solution candidate, where the index l denotes the iteration of
the Newton or quasi-Newton method solving (7) with barrier parameter τk.
We call the set

Fk,l := {(f(xk,i), θ(xk,i)) | i ∈ {1, . . . , l}}

the filter set, where θ(x) = ‖
(
h(x)>, (g(x) − s)>

)> ‖ is called the feasibility
measure. As by definition, the filter set contains the objective values and
feasibility measures of all previous iterates of the Newton or quasi-Newton
method for the same barrier parameter τk. A proposed step in direction dk,l

x̂k,l = xk,l +αdk,l

is accepted by the filter, if a sufficient progress was made with respect to
feasibility

θ(x̂k,l) 6 (1− γθ)θ(xk,i) (8)

or optimality

f(x̂k,l) 6 f(xk,i) − γfθ(xk,i) (9)

with fixed parameters γθ,γf ∈ (0, 1) for all i ∈ {1, . . . , l}. If a new step is
rejected the step width α is reduced, until a point is acceptable to the filter.
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If the feasibility measure θ(xk,l) is below a predefined threshold, the Armijo
condition

f(x̂k) 6 f(xk) + γAα∇θ(xk)>dk (10)

replaces the filter condition to determine an acceptable step width. Here
γA ∈ (0, 1/2) is another fixed parameter. The software IPOPT utilizes
additional strategies to make sure that solutions to the barrier problem
exist, to make corrections if proposed steps are rejected, and to restore
feasibility. Under standard conditions, the algorithm reaches superlinear
convergence. We refer to [68] for a more detailed overview of the software.
If the optimization problem (nlp) is linear or smooth and convex, IPOPT
will give a global optimal solution. For non-convex optimization problems,
however, other methods must be used if a global solution if desired. One
method for global optimization of non-convex problems is the spatial branch-
and-bound method, which we introduce in Section 3.3. Beforehand we
discuss a different class of optimization problem for which the branch-and-
bound method can be applied.

3.2 mixed integer programming

An optimization problem, where a subset of the variables is from a discrete
domain, i.e., xI ∈ ZnI , is called a mixed integer program. Here I = {1, . . . ,nI}
denotes the index set of the discrete variables. Mixed integer programs have
many applications in practice, such as scheduling problems, network design,
or industrial production [69, 70, 71]. In many applications, including this
thesis, the integer variables are binary, i.e., xI ∈ {0, 1}nI . Other integer
variables v ∈ Z can be reformulated into binary form, e.g., via terms of the
form

v =
∑
i∈I
2i−1xi,

where xi are binary variables. A general mixed integer optimization problem
of the form

min
x

f(x)

s.t. g(x) 6 0

h(x) = 0

xI ∈ {0, 1}nI ,

similar to (nlp) with nonlinear objective function f, can be reformulated to
have a linear objective by introducing a new variable xf, which becomes the
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new objective, and an additional constraint gf(x) = f(x) − xf 6 0. Further-
more, the equality constraints h can be replaced by inequality constraints
of the form gh+ := h 6 0, gh− := −h 6 0. Thus, we write a general mixed
integer program with binary discrete variables as

min
x

c>x

s.t. x ∈ Ω = {x ∈ Rn | g(x) 6 0, xI ∈ {0, 1}nI} .
(minlp)

If g is linear, we call (minlp) a mixed integer linear program (MILP). Oth-
erwise, (minlp) describes a mixed integer nonlinear program (MINLP).
MINLPs combine the difficulties of nonlinear optimization problems (NLP)
and mixed integer linear problems (MILP), which also belong to the class
of NP-hard problems. Consequently, solving MINLPs is very challenging.
While we can reformulate (minlp) to an NLP via constraints of the form
xI(1− xI) = 0, the strategies we introduced for solving NLPs in Section
3.1 can not be expected to give good solutions. The disconnected domain
of the problem makes it impossible for interior point methods, which we
introduced in Section 3.1.2, to search in the complete problem domain.
Furthermore, mixed integer programs can not be solved by omitting the
constraint xI ∈ {0, 1}nI of (minlp), solving the problem via a solution strat-
egy for NLPs, and then rounding to the closest integer solution, shown in
Example 3.2.1.

Example 3.2.1. Example for a simple MILP

x1

x2

D

B

C

A

g1

g2

10
0

1
min
x

x3

s.t. g1(x) = x1 − x2 − 0.5 6 0
g2(x) = −x1/2− x2 + 0.75 6 0
g3(x) = x1/3+ x2 − x3 6 0

x1, x2 ∈ {0, 1}
0 6 x3 6 10

(11)

Figure 4: Example for a simple MILP

Let us consider the MILP (11). Figure 4 shows the problem in the space of the
discrete variables x1 and x2. The dashed lines indicate the level sets of the objective,
which decreases in the direction of the indicated gradient. The light blue area are
points, which are feasible if the integer constraints x1, x2 ∈ {0, 1} are omitted. We
refer to the linear program, gained from (11) by omitting the integer constraints, as
relaxed problem. The solution of the relaxed problem is the point A = (5/6, 1/3).
The figure shows that the next integer solution B = (1, 0), which is obtained from
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A via rounding, is not feasible with respect to the inequality constraints g1 and g2.
Furthermore, the closest feasible solution C = (1, 1) is not optimal. The optimal
solution of the MILP is D = (0, 1) as the dashed level sets indicate.

A large variety of strategies have been developed especially for solving
(minlp). If the feasible region of (minlp) is a convex set, strategies like
outer approximation [72, 73], extended cutting plane [74], or generalized
benders decomposition [75] can find the optimal solution. Extended cutting
plane can also be applied to special classes of non-convex MINLPs [76]. For
general mixed integer problems, however, branch-and-bound methods are
most commonly applied.

3.3 branch-and-bound

Branch-and-bound is a more general name for a large group of algorithms,
which try to find the global optimum of a non-convex optimization problem
via a divide-and-conquer approach. The key steps of the branch-and-bound
algorithm are branching, bounding, and pruning. We discuss all steps and
the pseudocode, before giving brief examples of the method in Sections 3.3.1
and 3.3.2.

Branching: The branch-and-bound method recursively divides the domain
of an optimization problem to get sub-problems on smaller domains. This
process is called branching. To illustrate this process, let P(Ω) be an opti-
mization problem of the form (minlp) over the bounded and closed domain
Ω with global optimal solution xΩ ∈ Ω. Branching on P(Ω) creates new
sub-problems P(Ωi) with respect to the same objective function on domains
Ωi ⊂ Ω with

∪iΩi = Ω

and global optimal solutions xΩi ∈ Ωi. Then for the minimum of P(Ω)

xΩ = min
i

{xΩi}

holds. Typically, but not necessarily, the interiors of the new domains Ωi
are disjoint. The branching process is repeated recursively on the sub-
problems, to create problems on smaller and smaller domains. We refer to
the relation of the constructed optimization problems as branching tree with
the optimization problems as nodes, see Figure 5.

Bounding: During the run of a branch-and-bound method, bounds on the
optimal value are calculated. An upper bound UB on the optimal solution
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P(Ω)

P(Ω0) P(Ω1)

P(Ω0,1)P(Ω0,0) P(Ω1,0) P(Ω1,1)

Figure 5: Example for a branching tree

value c>xΩ is given by the objective value c>x of any feasible point x ∈ Ω.
The algorithm uses the objective value of the best feasible point found
at the current iteration as a global upper bound on the optimal solution.
Lower bounds on the optimal solution value are derived at all nodes in the
branching tree individually. They underestimate the lowest value, which
the objective can reach on the domain of the corresponding node. To find a
lower bound to an optimization problem of the form (minlp), we consider
the relaxed problem given by

min
x

c>x

s.t. x ∈ Ω̃ = {x ∈ Rn | g̃(x) 6 0, xI ∈ XI},
(minlpr)

where g̃(x) 6 g(x) on the problem domain and {0, 1}nI ⊂ XI ⊂ RnI . Because
for the feasible sets of the problems Ω ⊂ Ω̃ holds, the global optimum of
(minlpr) is a lower bound on the global optimum of (minlp). By constructing
a convex relaxed problem, (minlpr) can be solved to global optimality
with active-set SQP or interior point methods, or, in the case of a linear
relaxation, with the dual simplex algorithm. The global lower bound LB on
the complete branching tree is then given by the smallest lower bound of
all leaf nodes of the branching tree. By definition, LB 6 c>x holds for all
x ∈ Ω(minlp). The branch-and-bound algorithm terminates successfully, if
the gap between the bounds is below a predefined threshold UB− LB < εtol.
Let x denote the solution candidate with objective value c>x = UB. At this
point c>x− c>x 6 UB− LB < εtol holds for all x ∈ Ω(minlp) and x is an
ε-optimal solution of (minlp).

Pruning: By dividing the domain of (minlp) recursively, the branching tree
grows exponentially. To reduce the number of problems which need to be
solved, and thus to improve computational efficiency, the branching tree is
pruned. A node is discarded for further branching, i.e., it is pruned from the
branching tree, if the created sub-problem is infeasible or the lower bound
of a node is larger than the global upper bound UB. To prune nodes as early
as possible, many solvers include heuristics to find good upper bounds.
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The implementation of branching and bounding differs in practice, depend-
ing on the problem class to be solved and the choice of solution strategy.
An example for a branch-and-bound pseudo-code is given by Algorithm 1,
where P̃ denotes a relaxed problem to P on the domain Ω̃.

Algorithm 1 Branch-and-Bound Method

1: procedure Branch-and-bound Method

2: Initialize LB = −∞, UB =∞, node queue P = {P(Ω)}, LBP(Ω) = −∞
3: while |P| > 0 and UB− LB > ε do
4: LB←− min { LBP : P ∈ P }

5: Choose P ∈ P, P←− P \ P
6: Solve P̃, save lower bound LBP ←− c>x

Ω̃
(if infeasible LBP ←−∞)

7: if LBP 6 UB then
8: Branch on P: create new subproblems Pi, i = 1, . . . ,k
9: P←− P ∪ Pi

10: LBPi ←− LBP
11: if A feasible solution x ∈ Ω is found then
12: if c>x < UB then
13: UB←− c>x
14: xΩ ←− x
15: if UB 6∞ then
16: return xΩ
17: else
18: Infeasible

3.3.1 Branch-and-Bound for Optimization of MILPs and Convex MINLPs

Let us consider a convex MINLP of the from (minlp) as the root, and at the
start of the algorithm also a leaf, of the branching tree. During the branching
step the branch-and-bound algorithm selects a node in the tree and a discrete
variable xi, i ∈ J to branch on. Here, J ⊂ I denotes the index set of discrete
variables, which have not been branched on in the selected node of the
branching tree. Two new sub-problems are created at the node by fixing
xi = 0 in one sub-problem and xi = 1 in the other. The sub-problems are
added to the branching tree as child nodes of the previously selected node.
Tight convex relaxations to a node, needed to derive lower bounds, are given
by replacing the constraint xJ ∈ {0, 1}|J| by xJ ∈ [0, 1]|J|. If the constraints g
are convex, branching on the discrete variables is sufficient to find the global
optimal solution of (minlp). The continuous variables can be handled by
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local optimization strategies, as introduced in Section 3.1.2, as soon as the
integer variables are fixed.

Example 3.3.1. Solving a simple MILP via branch-and-bound
Let us consider the MILP

min
x

x3

s.t. g1(x) = x1 − x2 − 0.5 6 0
g2(x) = −x1/2− x2 + 0.75 6 0
g3(x) = x1/3+ x2 − x3 6 0

x1, x2 ∈ {0, 1}
0 6 x3 6 10

(P(Ω))

from Example 3.2.1 again. The relaxed problem, where the integer constraints
x1, x2 ∈ {0, 1} are replaced by the convex hull x1, x2 ∈ [0, 1], has the optimal
solution x = [5/6, 1/3, 11/18], which was indicated by the point A in Example
3.2.1. The objective value of the relaxed problem x3 = 11/18 gives a lower bound
LB on the optimal solution of (P(Ω)). Let us furthermore assume that we have an
upper bound UB = 4/3 given by the feasible point x = [1, 1, 4/3]. Branching on
(P(Ω)) by splitting the domain {0, 1} of variable x2 into x2 = 0 and x2 = 1 results
in two new sub-problems.

min
x

x3

s.t. g1(x) = x1 − 0.5 6 0
g2(x) = −x1/2+ 0.75 6 0
g3(x) = x1/3− x3 6 0

x1 ∈ {0, 1}
x2 = 0

0 6 x3 6 10

(P(Ω0))

min
x

x3

s.t. g1(x) = x1 − 1.5 6 0
g2(x) = −x1/2− 0.25 6 0
g3(x) = x1/3+ 1− x3 6 0

x1 ∈ {0, 1}
x2 = 1

0 6 x3 6 10

(P(Ω1))
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Problem (P(Ω0)) is infeasible, because constraint g2 can not be fulfilled for x1 ∈
{0, 1}. The node (P(Ω0)) is pruned from the branching tree, i.e., not considered for
further branching. Relaxing the integer constraint x1 ∈ {0, 1} of problem (P(Ω1))
results in a relaxed problem with optimal solution x = [0, 1, 1], which gives the
lower bound LB1 = LB = 1. Because x = [0, 1, 1] is also a feasible point of (P(Ω)),
the upper bound is updated (UB = 1). The branch-and-bound method terminates
successfully with the optimal solution xΩ = [0, 1, 1].

3.3.2 Spatial Branch-and-Bound for Global Optimization of NLPs and MINLPs

The branch-and-bound algorithm can be used for global optimization of
non-convex NLPs and MINLPs by branching on the continuous variables.
Let us consider problem (nlp) again, with box constraints lbi < ubi on
each variable xi, i ∈ {1, . . . ,n}. To create new sub-problems from any
leaf node in the branching tree, one variable xi, i ∈ {1, . . . ,n}, is selected
and its domain [lbi,ubi] is split into two sets [lbi,ubnewi ], [lbnewi ,ubi] with
ubnewi = lbnewi . A branch-and-bound algorithm, which includes branching
on continuous variables, is referred to as spatial branch-and-bound. To
solve non-convex MINLPs, branching on discrete and continuous variables
is necessary. Convex envelopes are for example linear or quadratic functions,
underestimating the problem constraints on the problem domain.

Example 3.3.2. Spatial branch-and-bound with quadratic underestimators
Let us consider a non-convex, univariate function f(x) on a domain x ∈ Ω =

[lb,ub], see Figure 6. The root problem (P(Ω)) is the minimization of this function
f on the complete domain. Let an upper bound UB on the optimal value be given,
e.g. via the local minimization of the objective function by use of a solver as
introduced in Section 3.1.2. The domain is split into two subsets Ω0 = [lb0,ub0]
and Ω1 = [lb1,ub1], which are the domains of the new sub-problems. Convex
relaxations fi(x) 6 f(x), x ∈ Ωi for the new problems (P(Ω0)) and (P(Ω1))
are derived, here marked with blue lines. The optimal solutions of (P(Ω0)) and
(P(Ω1)) give new lower bounds LB0 and LB1 on the optimal value of the objective
in this domain. In this case UB < LB1 holds. This implies that on the domain
Ω1 = [lb1,ub1] no solution candidate exists, with a function value below the
current best solution candidate. The node (P(Ω1)) is pruned from the branching
tree and the search continues on (P(Ω0)). Note, that while this example shows
quadratic envelopes, other convex relaxations, e.g. linear envelopes, can also be
applied.

Finding tight convex envelopes to NLPs or MINLPs is a challenging task in
practice. Many approaches exploit certain problem structures to get tight
relaxations. One method for finding convex envelopes, called α branch-and-
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a) Root node problem P(Ω)
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s.t. f(x) − xf 6 0
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b) Sub-problems P(Ω0) and P(Ω1)

Figure 6: Example for branching and bounding via spatial branch-and-bound

bound, is implemented in the solver ANTIGONE [77, 78]. Idea of the α
branch-and-bound is, to find parameters α ∈ Rn such that

G(x) := g(x) −

n∑
i=1

αi(ubi − xi)(xi − lbi)

is convex. To do so, the algorithm uses second order derivative information
of the constraint g. Other solvers like Couenne [79] and SCIP [80] use linear
underestimators to get lower bounds.

3.3.3 Branch-and-Bound Solver SCIP

To solve the MINLPs, we use the software package Solving Constraint
Integer Programs (SCIP) [80, 81, 82] (SCIPOpt Suite 6.0.1) together with the
Python interface PySCIPOpt [83] (PySCIPOpt 1.2.0). SCIP is a state-of-the-
art branch-and-bound solver, with extensive presolving. In the numerical
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analysis carried out by Kronqvist [84], the solver SCIP showed performance
comparative to the commercial solver Baron [85] for convex problems. As
an open-source software, SCIP has the advantage over commercial solvers
of being easily extendable by the user. We refer to Vigerske et al. [82] as a
reference for the following underestimators used in SCIP.

SCIP uses a spatial branch-and-bound, where linear constraints, also
called cuts, are added to the relaxed problem formulation, when constraints
are violated. The SCIP algorithm reformulates the problem via expression
trees to analyze, which functions are known to be convex or concave. This
information makes it possible, to apply tighter bounds on the constraints.
SCIP has information about the convexity of simple functions. The con-
vexity information is propagated along the expression tree, if beneficial by
introducing new variables, via relations such as

g1,g2 convex functions =⇒



α · g1 convex for α > 0,
α · g1 concave for α 6 0,
g1 + g2 convex ,
max{g1,g2} convex ,
exp(g1) convex .

The underestimators are then derived from the following functions:

Corollary 3.3.1. For a convex function g : Rn −→ Rmg a linear underestimator
G is given by

G(x) = g(x̂) +∇g(x̂)>(x− x̂)

for any point x̂ ∈ Rn.

Corollary 3.3.2. For a concave function g : Rn −→ Rmg on [lb,ub] ⊂ Rn, a
linear underestimator G is given by the solution of the following linear optimization
problem

G(x) = min
α∈R2

n

2n∑
i=0
αi · g

(
vi
)

s.t.
2n∑
i=0
αi · vi = x

2n∑
i=0
αi = 1

α > 0

where vi ∈ Rn for i ∈
{
1, . . . , R2n

}
denote the vertices of [lb,ub].
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Corollary 3.3.3. For an indefinite function on [lb,ub] ⊂ Rn, i.e., neither convex
nor concave, the underestimator G is given by

G(x) = g(x̂) +
∑
i:xi>x̂i

di(xi − x̂i) +
∑
i:xi6x̂i

di(xi − x̂i),

where x̂ ∈ Rn, and d and d are chosen such that ∇g(x) ∈ [d,d] ∀x ∈ [lb,ub].

For proofs we refer to [82] and [86]. Automatic differentiation and interval
arithmetic is used to calculate d and d in SCIP.

3.4 pde constrained optimization

Many mathematical problems in process engineering include mass balances
and energy balances in form of partial differential equations (PDEs). Formu-
lating these balances as first order PDEs in one spacial dimension z ∈ [0,Z]
and time t ∈ [0, tf] results in conservation laws of the form

∂ψ(z, t)
∂t

+
∂a(ψ(z, t), z, t)

∂z
+ b(ψ(z, t), z, t) = 0 (12)

where ψ : R2 −→ Rnψ . To handle PDEs in the framework of numerical
optimization, we first reduce the PDEs to systems of ordinary differential
equations (ODEs) via the following two approaches: In the special case that
the PDE is quasi-linear, we apply the method of characteristics. Otherwise,
we semi-discretize the PDE via the Finite Volume method (FVM). The ODEs
can then be handled in an NLP framework by using numerical integrators,
such as IDAS [87]. We apply direct multiple shooting, to increase the
numerical stability of solving the ODEs [88].

3.4.1 Method of Characteristics

The method of characteristics is used to reduce a linear or quasi-linear PDE
into a system of ODEs, which describe the solution along characteristic
curves.

Definition 3.4.1. Characteristic curves
Let us consider a quasi-linear PDE with boundary conditions

∂ψ(z,t)
∂t + a(ψ(z, t), z, t)∂ψ(z,t)∂z + b(ψ(z, t), z, t) = 0,

ψ(0, t) = ψ0(t), ψ(z, 0) = ψiv(z).
(13)

The characteristic curves of PDE (13) are given by

∂z
∂t = a(ψ(z, t), z, t),
∂ψ
∂t = b(ψ(z, t), z, t).

(14)
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Using the boundary conditions of (13), the ODEs of the characteristic curves
can be solved as initial value problems to get the solution of (13). For more
details and some illustrative examples we refer to [89].

3.4.2 Finite Volume method (FVM)

The FVM is a conservative method for creating a set of ODEs, which approx-
imates the solution of a PDE (12) on a discrete spatial grid.

∂ψi−1

∂z
∂ψi

∂z

ψi ψi+1ψi−1

zi−1/2 zi+1/2zi−3/2 zi+3/2

Figure 7: Example for a finite volume grid with upwind-scheme

To apply the FVM we separate the spatial domain [0,Z] into smaller
intervals, which we call grid cells. Let zi+1/2 with i ∈ {0, . . . ,mGC} be a series
of strictly ordered points in [0,Z], with z1/2 = 0 and zmGC+1/2 = Z. These
points denote the end points of the grid cells [zi−1/2, zi+1/2], i ∈ {1, . . . ,mGC}.
Let furthermore

zi :=
zi−1/2 + zi+1/2

2
, i ∈ {1, . . . ,mGC},

∆zi := zi+1/2 − zi−1/2, i ∈ {1, . . . ,mGC},

be the centers and the length of the grid cells and

ψi(t) =
1

∆zi

zi+1/2∫
zi−1/2

ψ(z, t) dz, i ∈ {1, . . . ,mGC}

be the average value of ψ(z, t) on the grid cell [zi−1/2, zi+1/2]. Here, we
assume that all grid elements are of equal length. We integrate the PDE (12)
over the grid cells and get

zi+1/2∫
zi−1/2

∂ψ(z, t)
∂t

dz+

zi+1/2∫
zi−1/2

∂a(ψ(z, t), z, t)
∂z

dz+

zi+1/2∫
zi−1/2

b(ψ(z, t), z, t) dz = 0.

(15)
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According to Leibniz integral rule

zi+1/2∫
zi−1/2

∂ψ(z, t)
∂t

dz =
d
dt

zi+1/2∫
zi−1/2

ψ(z, t) dz = ∆zi
dψi(t)

dt

holds. Furthermore, we can write the convection term as

zi+1/2∫
zi−1/2

∂a(ψ(z, t), z, t)
∂z

dz = a(ψ(zi+1/2, t), zi+1/2, t) − a(ψ(zi−1/2, t), zi−1/2, t).

We approximate the terms on the borders of the grid cells via the upwind
scheme, i.e., for a flow through the grid from z = 0 towards z = Z we use

a(ψ(zi−1/2, t), zi−1/2, t) ≈ a(ψi−1(t), zi−1, t).

The last term
zi+1/2∫
zi−1/2

b(ψ(z, t), z, t) dz in Eq. (15) is approximated via a quadra-

ture rule. Here, we apply the mean value theorem to get

zi+1/2∫
zi−1/2

b(ψ(z, t), z, t) dz ≈ ∆zib(ψi(t), zi, t).

Combining these results, we approximate Eq. (15) by a system of ODEs

∆zi
dψi(t)

dt
+ a(ψi(t), zi, t) − a(ψi−1(t), zi−1, t) + b(ψi(t), zi, t) = 0,

i ∈ {0, . . . ,mGC},

which describe the average value ψi(t) of ψ(z, t) on the grid cells z ∈
[zi−1/2, zi+1/2]. Together with the boundary conditions of the PDE, we get
an initial value problem (IVP), which can be solved via integrators.

3.4.3 Direct Multiple Shooting

Let us consider an IVP

dψ(t)
dt = f(ψ(t), t), t ∈ [0, tf],
ψ(0) = ψ0.

(16)

The idea of multiple shooting is to solve the IVP (16) on grid cells by
introducing intermediate function values as new initial points.
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We introduce points 0 = t0 < t1 < · · · < tl = tf to divide the domain
[0, tf] into a grid and introduce variables ψi = ψ(ti), which represent the
function values at the grid points. We define a series of new initial value
problems using the grid points

dψ(t;ti,ψi)
dt = f(ψ(t; ti,ψi), t), t ∈ [ti, ti+1], i ∈ {1, . . . , l},

ψ(ti; ti,ψi) = ψi, i ∈ {1, . . . , l},
(17)

which represent the solution of (16) on the grid cells. The function values ψi
are considered variables in an NLP framework and determined iteratively
via the constraints

ψi+1 = ψ(ti+1;ψi, ti), i ∈ {1, . . . , l− 1},

which enforce continuity on [0, tf]. The method of direct multiple shooting
is more numerically stable than single shooting, i.e., solving IVP (16) on the
complete interval [0, tf]. Alternative approaches for solving time dependent
differential equations can be found in [90].
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4
E X E R G Y E F F I C I E N C Y O F C O 2 M E T H A N AT I O N
P R O C E S S E S

In this chapter, we investigate the exergetic and energetic efficiency for the
conversion process by a detailed exergy analysis for four feasible power-
to-gas configurations assuming CO2 to originate from anaerobic digestion
(AD), and make a direct comparison with methanol as an energy carrier.
We limit ourselves to technologies which are commercially available, e.g.,
alkaline electrolyzer for the production of hydrogen from RES as introduced
in Chapter 2. We use FVM and multiple shooting, see Chapter 3, to solve
the PDAEs which describe some of the process elements.

Methanol is likely the most promising alternative to methane as a C1

energy storage molecule. It is in liquid state under ambient conditions,
which greatly facilitates the handling and storage. Castellani et al. [91] have
carried out an energy analysis by estimating the ratio of the required process
energy input in relation to the stored energy in form of methane or methanol
as storage molecules. The energy contributions for the compression of the
feed streams as well as the product methane are included in their analysis.
They report slightly favorable energy consumption ratio (energy spent/en-
ergy stored excluding energy for water electrolysis) for methane, 0.41-0.43

(pressurized at 20 and 200 bar, correspondingly) than that for methanol, 0.45

(at ambient conditions, 1 bar). We would like to emphasize that the present
contribution gives a more detailed energy analysis of methane as an energy
carrier. Furthermore, the results presented here are fully comparable with
the results of a previous study where methanol was assumed as storage
molecule for electric power [92]. In both studies, strictly equivalent system
boundaries were applied which increases the scientific value of the present
analysis. Furthermore, we could identify here a new promising process
configuration with fewer units leading finally to a higher energy efficiency
than the state-of-the-art reactor cascade configuration.

The exergetic contribution of the excess heat in the methanation is easily
identifiable in the results (see Table 7), for the comparison it is however
excluded in the presentation of the exergetic efficiency value (Table 9).

We fix a pressure level of 200 kPa for the produced methane. This pressure
is suitable for intermediate storage [59] and the methane can be further
treated, e.g. by odorization, for feed into the gas distribution system. All
process configurations are simulated with the same electrical energy input
of 1 MW for the electrolysis of water, where a flow of 9.502 mol/hr of H2 is
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generated with an operational voltage of 1.96 V of the electrolyzer leading
to a molar energy consumption of 378.9 kJ/molH2 [92], as introduced in
Section 2.1.4.

The final step of the energy conversion chain in the simulations is the
conversion of methane back to electricity, where an efficiency rate ηLHV of a
combined-cycle power plant (CCPP) with respect to the lower heating value
(LHV) of the combustion gas of ηLHV = 57% is assumed. Recently, the most
sophisticated CCPP units achieve even higher efficiencies (ηLHV > 60%) [93],
but for better comparability of the results we adopt the value used in [92].

4.1 process configurations

In this section we introduce the four system level process configurations A,
B, C1 and C2. The rate expression and the corresponding parameter values
of the catalytic methanation reactor applied in all simulations are taken from
Koschany et al. [39]. The rate expression is thermodynamically consistent
as expressed in more detail in Section 4.2.1. Each configuration in this
contribution includes several gas separation units. The detailed description
of the applied dynamic models and the corresponding parameters of the
pressure (PSA) and temperature swing adsorption (TSA) units are given
in Sections 4.2.2 and 4.2.3. The initial feeding ratio of H2 and CO2/CH4
from anaerobic digestion varies. The process configurations A, B and C1

include separation of the CO2/CH4 mixture prior to mixing with H2 and
feeding into the reactor, while a direct feed-in of the anaerobic product gas
is considered with the process configuration C2. The initial H2/CO2 molar
ratio before feed-in to the methanation reactor is in the range of 3.8 to 4.0.

The molar flows of the process streams are shown in Table 3, along with
the electric energy demand for the initial separation of CO2 and CH4. In the
following sections the different process configurations are described in more
detail.

4.1.1 Process A: Reactor Cascade

Configuration A contains the initial separation of CO2 and CH4 of the AD
product gas by PSA units. Separation of CO2 and CH4 is typically done
on site at the biogas plant, following anaerobic digestion, if the product
methane is fed into the gas distribution system. Different separation pro-
cesses are commercially available, such as absorption (e.g. amine scrubbers),
adsorption (e.g pressure or vacuum swing adsorption) or membrane sep-
aration processes, as described by Kahn et al. [52] and Awe et al. [94]. In
particular absorption processes are widely implemented on sites of biogas
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Figure 8: Schemes of the process configurations.

Methanation reactors (1,2), TSA unit (3) for gas drying, PSA unit (4) for separation
of CH4 from H2 (Process B) or CO2 (Processes C1, C2) and PSA units (5,6) for
initial separation of CO2 and CH4 from anaerobic digestion.
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plants when a high product purity is required [95]. Because of this, we
choose adsorption as the separation process.

The separated CO2 is mixed with H2 and supplied into a cascade of metha-
nation reactors with the initial NH2/NCO2 molar ratio of 4.0 corresponding
exactly to the stoichiometric ratio. Intermediate water removal is performed
after the first reactor by condensation (T=278.15 K, p=1.365 MPa). Final dry-
ing with a combination of condensation (T=278.15 K, p=1.365 MPa) and TSA
(T=393.15 K at desorption) units lowers the water concentration CH2O below
the specified threshold of 200 mg/m3. El Sibai et al. [96] has demonstrated
recently that in a reactor cascade with an equilibrium limited second reactor
the product gas fulfills the gas distribution system specifications in terms of
H2 and CO2 concentration after drying. Configuration A is closely similar to
the pilot unit operating since 2013 in Germany [97, p. 821] and is therefore
seen as a reference in this exergy analysis. The inter-stage removal of water
between the reactors by condensation leads to an increased conversion of
the reagents in the second reactor. Figure 8a shows a simplified scheme for
configuration A. The compression of H2 and CO2 to the process pressure
(1.39 MPa) is realized by multistage compression with intermediate cooling.

4.1.2 Process B: H2 Separation

Configurations B, C1 and C2 contain only one methanation reactor. The
configuration B is simulated applying an initial H2 molar flow rate NH2
of 2.37, which leads to a H2 molar fraction of 0.05 in the methane after
drying, which is then separated in a following PSA unit. The drying process
is performed with the condensation and TSA units, similar to process
A. The maximal methane concentration in the product is limited by the
substoichiometric amount of CO2 in the feed. The system configuration
is simulated so that the product methane contains max. 0.05 vol.-% CO2
after the separation of H2 leading to a gas mixture of H2 and CH4 to be
recycled to the reactor unit as depicted in Figure 8b. The purge ratio of 1:4
(mol/mol) of the recycled stream is defined to avoid any accumulation of
contamination in a closed loop. The purge stream’s uses are of low value,
e.g. combustion, lowering the overall yield. The recycle ratio R (molar
flow ratio of the fresh feed to the reactor input) of 0.95 is established in the
system. The detailed description of the separation of H2 and CH4 is given
in Section 4.2.2.
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4.1.3 Process C1: CO2 Separation

The process scheme of configuration C is similar to that of configuration B.
Here, a substoichiometric NH2/NCO2 molar ratio of 3.8 is applied and H2
is nearly exhausted in the methanation unit (xH2 < 7.6× 10−3 after water
removal). The excess CO2 is removed from the product gas via a PSA unit,
filled with the adsorbent zeolite 5A (Z5A), as described in Section 4.2.2. A
mixture of CH4 and CO2 is recycled with a purge ratio of 1:4 and R=0.99.
The process scheme is illustrated in Figure 8c.

4.1.4 Process C2: Direct Methanation of the AD Product Gas

Configuration C2 omits the initial separation of CO2 and CH4 prior to the
methanation reactor. The product gas from anaerobic digestion is directly
mixed with H2 and fed into the reactor, see Figure 8d. In the methanation
reaction operating at T=526 K the thermodynamic reaction equilibrium is
strongly on the product side and therefore high conversion of CO2 with
H2 can be achieved even in the presence of CH4, as also confirmed by
Strangeland et al. [98]. The NH2/NCO2 molar ratio of 3.8 is equal to that
of process C1. After the water removal, excess CO2 is removed from the
product gas similar to process C1. Configuration C2 is simulated with a
recycle mixture of CH4 and CO2 with a purge ratio of 1:4 and a recycle ratio
R=0.98.

Table 3: Amount of CO2 from anaerobic digestion and electricity required for the
separation of CO2 from CH4. NCH4/NCO2=1.5.

CO2 A B C1 C2

Molar flow [kmol/hr] 2.38 2.37 2.50 2.50
Exergy flow [kW] 19.85 19.80 20.88 0

4.2 model formulation

An object oriented approach is used for the implementation of the process
configurations. For each required unit type, e.g. methanation reactor, an
individual model is implemented. These unit models are then used as
’building blocks’ to put together the different process configurations. We
introduce here the unit model ’building blocks’, which are used in the simu-
lation of all of the configurations. The combination of the individual unit
models to a process configuration model is described in Section 4.2.4. The
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superstructure optimization problem from Chapter 5 includes the process
configurations of the current chapter.

4.2.1 Catalytic Methanation Reactor

We consider the methanation of carbon dioxide, the Sabatier reaction (1), in
a fixed bed bundle reactor with a cooling mantle. The side reaction of CO2
to CO via the reverse water gas shift reaction is neglected.

The expression r describing the reaction rate (18) and the respective
parameters for methanation are taken from Koschany et al. [39].

r =

krp
0.5
H2
p0.5CO2

(
1−

pCH4p
2
H2O

pCO2p
4
H2

Keq

)

(
1+KOH

pH2O

p0.5
H2

+KH2p
0.5
H2

+Kmixp
0.5
CO2

)2 (18)

kr = k0 exp
(
−EA
R

(1/Tref − 1/T)

)

Ki = K0,i exp
(
−∆Hri
R

(1/Tref − 1/T)

)

The reactor is simulated by a 1D model, adapted from El Sibai et al. [96].
We include the heat transfer resistance of the cooling medium by calculating
the thermal conductivity coefficient from radial dispersion and effective wall
heat transfer coefficient of the tube in- and outside, as proposed by Schlereth
and Hinrichsen [99].

Table 4 shows the reactor inlet temperatures of gas mixture T and cooling
medium Tc, pressures and catalyst amount.

Table 4: Operating parameters for the methanation reactors.

Process A B C1 C2

R1 R2

T [K] 450 450 444 526 442

Tc [K] 500 500 515 500 500

p [MPa] 1.34 1.34 1.39 1.39 1.39
catalyst [kg] 56 56 56 56 56

4.2.2 Pressure Swing Adsorption

A pressure swing adsorption (PSA) unit was modeled for the purification of
methane from either CO2 or H2 (unit (3) in Figure 8) to meet the respective
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specification of 5 vol.-%. PSA is a process commonly applied for biogas
upgrading, as summarized in the reviews by Fendt et al. [100] or Zhou et
al. [101]. It is a cyclic process, with alternating adsorption under high pres-
sure (in the present study pAS=2.39 MPa for H2/CH4 separation, pAS=1.37
MPa for CO2/CH4 separation) and desorption (purging) under low pres-
sure (pDE=0.10 MPa for H2/CH4 separation, pDE=0.02 MPa for CO2/CH4
separation).

Mixture

Product

Off-gas

Figure 9: Pressure swing adsorption unit scheme.

A configuration of four adsorption columns, as shown in Figure 9, perform
the adsorption/desorption cycles shifted in time, such that always one
column of the unit executes the adsorption step. This operation results in a
steady output (CH4 in case of H2/CH4 separation, CO2 with CH4 residues
in case of CO2/CH4 separation). The second outgoing stream (purging gas)
is assumed to be collected in a vessel before leaving the unit, balancing out
the intermittent flow, so that a steady state can be calculated for the process
on the system level.

The use of PSA units to separate H2 and CH4 is a well studied process.
Several studies for the process exist, such as Jee et al. [102], who included
the co-adsorption of nitrogen, carbon dioxide and carbon monooxide, Yang
et al. [103], who focused on separation of mixtures with high fractions of
hydrogen, or Park et al. [53], who studied a complete ad- and desorption
cycle with four component mixtures. Here, we simulate a PSA unit to
separate H2 from the product methane of process B, using activated carbon
(AC) as the adsorbent. The adsorbent zeolite 5A (Z5A), owning higher
selectivity regarding CH4 and CO2 than AC, is simulated for processes C1
and C2.

The advantage of the PSA process is the high purity of the product
methane which however can only be achieved through the cost of limited
recovery. In our simulations we apply a 1-dimensional model for the separa-
tion of H2, CH4 and CO2 mixtures on AC and Z5A, adapted from the model
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published by Park et al. [53]. Radial gradients, axial dispersion, temperature
gradients and pressure gradients are assumed to be negligible. Furthermore,
ideal gas behavior and thermal equilibrium between gas and adsorbent is
assumed. The dynamic system behavior is then fully described by a system
of 11 differential equations and 15 algebraic equations in a combined system
of partial differential algebraic equations (PDAEs) as given in the following
sections.

Mass balances

The mass balances of each component i in the gas phase are given by

∂yi
∂t

+ v
∂yi
∂z

+
1− ε

ε
ρs
RT

p


∂qi
∂t

− yi
∑
j

∂qj

∂t


 = 0, (19)

i ∈ {CO2,H2,CH4,H2O},

where v denotes the interstitial velocity, T the temperature of the gas phase,
ε the void fraction of the adsorption bed, p the pressure and qi the amount
adsorbed of component i.

The overall mass balance of the gas phase

∂C

∂t
+
∂(vC)

∂z
+
∑
i

1− ε

ε
ρs
∂qi
∂t

= 0

is used in combination with the ideal gas law C = p/RT to gain

∂p
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+ p

∂v

∂z
−
p

T

(
∂T

∂t
+ v

∂T

∂z

)
− RT

∑
i

1− ε

ε
ρs
∂qi
∂t

= 0. (20)

Eq. (20) was used to determine the interstitial velocity v.

Energy balances

The temperatures of the gas phase T and of the column wall Tw are given by
the equations

(εcgC+ (1− ε)csρs)
∂T

∂t
+ εcgvC

∂T

∂z

−
∑
i

(−∆Hi)(1− ε)ρs
∂qi
∂t

+
2hw

Ri
(T − Tw) = 0, (21)

cwρwaw
∂Tw

∂t
− 2π(hwRi(T − Tw) −UwRo(Tw − Tamb)) = 0. (22)

The parameters ρs and ρw are the densities of the adsorbent and column
wall, ∆Hi the heat of adsorption of component i and cg, cs, and cw are the
heat capacities of the gas phase, adsorbent and column wall, respectively.
The ambient temperature Tamb is set to be 298.15 K.



4.2 model formulation 39

Mass transfer

The mass transfer on the adsorbent is modeled by the linear driving force
(LDF) model

∂qi
∂t

= ki(q
∗
i − qi), i ∈ {CO2,H2,CH4,H2O}, (23)

where q∗i is the multicomponent adsorption equilibrium of component i.

Adsorption equilibrium

We describe the adsorption equilibrium q∗i of components i ∈ {CO2, H2,
CH4} by the Langmuir isotherm (24).

q̂∗i = qmax,i
bipyi

1+ bipyi
(24)

bi = bi0 exp(bi1/T)
qmax,i = ai1 + ai2/T

In all process configurations, the water content is initially lowered by cooling
and condensation (T=278.15 K) and a TSA column (T=393.15 K at desorption)
before the gas is fed into the PSA column. The adsorption of water traces
on the adsorbent can modeled by the Qi-Hay-Rood (QHR) isotherm:

q̂∗H2O =
ρV0

1+ exp(ωH2O(
P1/2
P0

− P
P0
))

(25)

ρ =

4∑
j=0

cj(T − 273.15)j

ωH2O = Aexp(−Ea/RT)
p1/2

p0
= 0.121+ 1.3 · 10−3K−1 · T

The amount of water adsorbed on the AC at equilibrium is a sigmoid
function with respect to partial pressure, as shown by Lopes et al. [104] and
Rudisill et al. [105]. The QHR isotherm, introduced in [106], reproduces this
behavior. We assume ideal adsorption behavior of the gases to combine these
models with the Ideal Adsorbed Solution Theory (IAST). A multicomponent
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adsorption model can be obtained from the pure component isotherms (24)
and (25) by solving the system of equations

pyi = p0i (Πi)ŷi

Π∗ = Πi
RT =

∫p0i
0

q̂0i (p)
p dp

1
nt

=
∑
i

ŷi
q̂0i (p

0
i )∑

i

ŷi = 1

q∗i = ŷint


i ∈ {CO2,H2,CH4,H2O} (26)

for the equilibria q∗i . In this formulation q̂0i denotes the pure component
adsorption equilibrium, calculated from (24) and (25), nt is the total amount
adsorbed, and ŷi denotes the mole fraction of component i, which is ad-
sorbed on the adsorbent.

Parameters for Eqs. (19)-(24) to simulate the behavior of CH4, CO2 and
H2 on adsorbents AC and Z5A are taken directly from Park et al. [53]. The
multicomponent adsorption equilibrium by Park et al. showed excellent
agreement between the model output and experimental validation.

The QHR model for water adsorption was applied only in the PSA simu-
lation of activated carbon, as water and CO2 show non-ideal co-adsorption
behavior on Z5A [107]. Furthermore, to desorb water from zeolites high
temperatures are preferable due to the strong adsorption of water on zeolites
[104]. Therefore, the water concentration of the gas supplied to the Z5A PSA
unit had to be lowered far below the specified threshold (2) of 200 mg/m3

by the corresponding TSA unit.

Pressure

The change in pressure over time is given by the equation

∂p

∂t
= α(pend − p). (27)

The parameters α and pend are dependent on the step within the adsorption
cycle, namely adsorption step (AS), desorption step (DE), pressure equal-
ization step (PEQ), pressurization step (PR) or depressurization step (DP).
During pressurization the factor α has a value of 0.5, during depressur-
ization a value of 0.3 and during pressure equalization a value of 0.2. We
use a configuration with 4 adsorption columns and 9 steps, including an
adsorption and desorption phase. This setting is introduced in further detail
by Ruthven [108]. Both re- and depressurization of the column include two
pressure equalization steps. During these steps, the gas from a depressuriz-
ing column is used to repressurize a corresponding column. A scheme of
the configuration is depicted in Figure 14a.
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Bed length and adsorption time of the PSA units are shown in Table 6.
The 4 column setting is simulated with one adsorption column. The data
for the gas streams leaving the column are saved and utilized as input at a
different time step for the same column. An example for the mole fractions
of H2 and CH4 inside the adsorption column is shown in Figure 11. We
simulate that the total flow rate is split up to a number of nPSA equivalent
PSAs. Thus the interstitial velocity throughout the bed is reduced which
results in a strong adsorption into the adsorbent at the beginning of the
column, giving higher purity and recovery of the desired product.

During the different steps of the adsorption cycle different boundary
conditions apply. The boundary conditions show the connections of the four
internal recycle streams. The gas concentrations during the desorption step
yi,purge are calculated from the average product gas of DP I. The interstitial
velocity vpurge is calculated such that the complete product of the step DP
I is fed back to the column during the DE step. In the same way, the feed
concentrations and velocities of the pressurizing PEQ I and PEQ II steps
are connected to the respective depressurizing steps. Here, the parameter
α is free to avoid over-determination of the system variables. For the other
PSA cycle steps the value of α is fixed; to α = 0.01 during the DP I step,
to α = 0.5 for the DP II step and α = 0.1 otherwise. This results in the
rate of pressure change adapting to the gas flow into the column. The
composition of the gas fed to the column during the pressurization step
PR is equal to the product gas of the adsorption step AS, i.e. a part of the
product gas is used to re-pressurize the column. For the pressure parameters
pAS > pPEQI > pDPI > pPEQII > pDE holds. The intermediate pressures are
determined as linear functions of the ad- and desorption pressure. The time
of the respective PSA step is determined as ts · tf, where tf denotes the total
cycle time. Table 5 shows the boundary conditions of the PDAE system at
the time of the PSA step. The pressure changes according to pend(t) which
is constant during each step of the PSA cycle. The value assigned to pend
in each PSA step is shown in Table 5. Figure 10 shows an example of the
pressure in the adsorption column over time.

Pressure swing adsorption for gas pretreatment

The CO2/CH4 mixture from AD can either be fed directly to the reactor,
as in process C2, or it is separated into two streams: CH4, which leaves
the process as a product gas, and CO2 which is fed to the methanation
reactor. The separation implemented for configurations A, B and C1 consists
of two PSA units, as shown in Figure 12. This set-up has been introduced by
Augelletti et al. [109], who have shown that a high purity of CH4 and CO2
can be achieved. The separated methane fulfills the specifications to be fed
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Table 5: PSA boundary conditions and pressure change
The boundary conditions determine the velocity, concentration, and temperature
of gas flowing into the column. If u = 0 holds at the end of a column, Neumann
boundary conditions of the form ∂y

∂t = 0 hold for the mole fractions yi and gas
temperature T . The pressure in the column changes towards the value of pend
according to Eq. (27). Each PSA step is active for a duration of ts · tf, where tf
denotes the time of a complete operation cycle.

PSA step p change pend boundary conditions ts

1 AS constant pAS v(z = L) = vfeed,
yi(z = L) = yi,feed, 1/4

T(z = L) = Tfeed

2 DEQ I decreasing pPEQI v(z = L) = 0 1/20

3 DP I decreasing pDPI v(z = L) = 0 3/20

4 DEQ II decreasing pPEQII v(z = L) = 0 1/20

5 DP II decreasing pDE v(z = 0) = 0 1/20

6 DE constant pDE v(z = 0) = vpurge,
yi(z = 0) = yi,purge, 3/20

T(z = 0) = Tpurge

7 PEQ II increasing pPEQII v(z = L) = 0,
v(z = 0) = vPEQII, 1/20

yi(z = 0) = yi,PEQII,
T(z = 0) = TPEQII

8 PEQ I increasing pPEQI v(z = L) = 0,
v(z = 0) = vPEQI, 1/20

yi(z = 0) = yi,PEQI,
T(z = 0) = TPEQI

9 PR increasing pAS v(z = L) = vBF,
yi(z = L) = yi,PR, 1/5

T(z = L) = TPR
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Figure 10: Pressure change in an adsorption column
The figure shows the pressure in column 1 over time during the operation in 9 steps.
The pressure is constant during adsorption (AS) and desorption (DE) step and
changes in the intermediate steps.

Table 6: Values of the operating parameters of the PSA adsorption columns.

Process B C1 C2

Adsorption bed length [cm] 20 30 20

Adsorption time [s] 70 300 90

nPSA [−] 2 12 8

Adsorption pressure pAS [kPa] 2, 391.27 1, 365 1, 365
Desorption pressure pDE [kPa] 101.325 20 20

into the German gas distribution system according to (2).

Augelletti et al. [109] have determined the energy consumption of the
two PSA separation units to be 1250 kJ per kg of CH4 from a 2:3 mixture of
CO2 and CH4. A product quality of > 99% was reached for CO2. We use
these results to calculate the energy consumption of the initial separation of
the product gas from AD, assuming a final CO2 concentration of 100%.

4.2.3 Temperature Swing Adsorption

The methanation product gas needs to be dried to fulfill the specifications
of the gas distribution system. The combination of the TSA unit with a
condensation unit is shown in Figure 13. The wet gas is cooled and water is
removed by a flash column at a temperature of 278.15 K. The pretreated gas
is dried in the TSA unit below the specified threshold (2) of 200 mg/m3 using
a desorption temperature of 393.15 K. As the unit has a poor recovery rate
(e.g. process C1 had only 1.18 mol.-% water in the column purge stream),
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Figure 11: Gas phase mole fractions in the adsorption column.

The gas phase mole fractions of CH4 and H2 are shown during the adsorption
step on activated carbon. The separation of CH4 and H2 is simulated in process
configuration B. The adsorption phase is performed until a high concentration of
CH4 leaves the column. The AC adsorbs large amounts of CH4, which is desorbed
in high concentrations during the desorption phase.

CH4 CO2

(P1) (P2)

Figure 12: Two PSA configuration for CO2 and CH4 separation.

The PSA unit (P1) produces CH4 with a high purity (> 97%) at adsorption pressure
(p=1, 365 kPa). The purge stream of (P1) contains a mixture of CO2 and CH4
at desorption pressure (p=20 kPa), which is repressurized to adsorption pressure
and fed into the PSA unit (P2). This unit produces CO2 with a very high purity
(> 99%) at desorption pressure and a CO2/CH4 mixture at adsorption pressure,
which is recycled to the PSA unit (P1).

the purge gas is recycled to the flash column. A compressor compensates
for the pressure loss in the flash unit, keeping the pressure at p=1.39 MPa.

The TSA is modeled with the mass balances (19), (20), energy balances
(21), (22) and mass transfer (23) as introduced for the PSA. The TSA column
is assumed to be adiabatic, that means Uw = 0. The Langmuir isotherms
from Ohlin et al. [110] are used to simulate the adsorption equilibrium
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on zeolite Na-ZSM-5. Although Ohlin et al. [111] have stated that the
multicomponent model simulation deviates from their measurements, we
resort to these values due to a lack of other model parameters.

The TSA column is operated with a four step configuration, including an
adsorption step with a duration of 5 · 103 seconds and a desorption step with
a duration of 2 · 103 seconds, as depicted in Figure 14b. As especially desorp-
tion of water from the bed is comparatively slow, a complete regeneration of
the bed is not achieved in the desorption step. However, in the simulation
a complete regeneration was not needed for the unit to operate in a cyclic
steady state and is also not applied in practice, as reported by Ruthven
[108]. We simulate multiple columns (nPSA = 10) operating shifted in time
and thus reducing the interstitial velocity and giving a steady output. The
concentrations and temperatures of two outgoing gas streams, leaving the
column during the adsorption or desorption cycle respectively, are averaged
out.

H2O

278.15 K

393.15 K

Figure 13: Gas drying with condensation and TSA units.

4.2.4 Implementation

We discretize the PDEs (19), (20) and (21) with the Finite Volume method,
see Section 3.4.2, using an equidistant spatial grid consisting of 20 grid
volumes. The resulting system of ODEs and AEs is solved with MATLAB
and CasADi [112]. CasADi is a symbolic framework which allows for quick
ODE integration via an interface to IDAS. The PSA and TSA columns are
simulated to operate in a cyclic steady state via successive substitution, also
called Picard-Iteration. For each iteration step an adsorption/desorption
cycle of the PSA column is simulated via integration of the PDE system,
starting with the initial value xPSAi . The final values of the states after this
iteration step are stored in a vector xPSAi+1 and used as the initial values of
the next iteration step. The implemented Picard-Iteration terminates, when
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1 AS ↓ DEQ I ↓ DP I ↓ DEQ II ↓ DP II ↑ DE ↑ PEQ II ↑ PEQ I ↑ PR ↑
2 PEQ I ↑ PR ↑ AS ↓ DEQ I ↓ DP I ↓ DEQ II ↓ DP II ↑ DE ↑ PEQ II ↑
3 DP II ↑ DE ↑ PEQ II ↑ PEQ I ↑ PR ↑ AS ↓ DEQ I ↓ DP I ↓ DEQ II ↓
4 DEQ I ↓ DP I ↓ DEQ II ↓ DP II ↑ DE ↑ PEQ II ↑ PEQ I ↑ PR ↑ AS ↓

a) PSA column configuration.

1 AS ↑ DE ↓
b) TSA column configuration.

Figure 14: PSA column configuration of 9 different steps during an adsorption/des-
orption cycle over time.

A total of four adsorption columns periodically perform different steps of the ad-
sorption cycle. The 9 steps include adsorption (AS), pressure equalization with
decreasing pressure (DEQ), pressure equalization with increasing pressure (PEQ),
depressurization (DP), desorption (DE) and pressurization (PR). Arrows indicate
the direction of flow through the column. The pressure is constant during AS and
DE. The product gas methane is produced at high pressure during the adsorption
step at partially returned to the column during PR. The off-gas is produced at low
pressure during DP II and DE. Gas is exchanged during the pressure equalization
steps, from DEQ I to PEQ I and from DEQ II to PEQ II. Furthermore, gas from
the depressurization DP I is used to purge the column at DE and a fraction of the
AD product gas repressurizes the column at PR. We determine the final product
gas concentration at cyclic steady state (CSS).

‖xPSAi − xPSAi+1 ‖2 < 10−5, returning the material and energy streams computed
to leave the adsorption column at the last iteration step. The system of ODEs
describing the reactor are likewise integrated by Matlab and CasADi.

The system level process configuration is simulated with ASPEN Plus
V8.8. ASPEN is a commercially available process simulation environment,
which offers large thermodynamic databases and predefined unit models.
Furthermore, ASPEN allows the combination of individual unit models to
one process configuration model. The software CAPE-OPEN [113] acts as
the interface between MATLAB and ASPEN. ASPEN provides MATLAB
with the necessary variables, such as composition, temperature and pressure
of the connected input stream of the reactor, PSA or TSA unit and fetches the
results once MATLAB has finished the computations. For a more detailed
discussion about CAPE OPEN we refer to Peshev and Livingston [114],
where this interface was used for the implementation of a unit model for
organic solvent nanofiltration.
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4.2.5 Exergy Calculation

We calculate the exergy of a heat stream Q according to Eqs. (3) and (4).
The values for Q of the units, with exception of the PSA, TSA and reactor,
are taken from the ASPEN simulation results. The heat transfer QPSA of a
PSA unit is calculated from the energy balance (22). The heat demand of
the TSA column is calculated via the equation

QTSA = Ncp(TDE − TAS), (28)

where TAS denotes the average temperature over time of the gas leaving
the end of the column during an adsorption step, N denotes the purge gas
molar flow rate and cp the corresponding heat capacity. The excess heat of
the reactors is calculated as the difference of the enthalpies of the in- and
outgoing streams.

For the overall process exergy, we consider internal heat integration.
Excess heat from the reactor can be used for the desorption of the TSA
unit and the reactor pre-heating. Due to the high exothermicity of the
methanation however, only a small fraction of the heat can be used internally.
We assume a temperature difference of 10 K between heating and cooling
material streams to determine the internal utilization range of the produced
heat. The excess heat of the process, outside of the internal utilization range,
is a contribution of exergy.

The exergetic overall process efficiency is defined as the ratio of the
electrical energy attainable from the product with a combined-cycle power
plant and the initial electrical energy input.

4.3 results and discussion

4.3.1 Comparison of the Process Configurations

Table 7 lists in detail the energy and exergy contributions of methanation
including the multistage compression to the process pressure with interme-
diate cooling, the methanation reactors and the separation after the reactors.
Due to the large volumetric flow rate in the process feed and the recycle
stream, configuration C2 requires the largest amount of electrical power
for compression. The methanation reaction is very strongly exothermic
(∆HCH4=−165 kJ/mol) making the methanation reactor a significant heat
source. The multistage compression and the separation by condensation are
additional heat sources. The excess heat can be used only in the desorption
of the TSA column, in the heating of the feed to reactor inlet temperature
(T ≈ 440 K) and for the minor heat demand of the PSA unit. As the PSA
requires negligible heat at ambient temperatures, shown in Table 8, it could
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also be ignored in the energy analysis. Considering the overall process, the
excess heat of the process could also be used in the AD unit.

Table 7: The heat duty, exergy and compressor work, divided into gas compression,
reactor and separation.

Heat duty, Q [kW] A B C1 C2

Compression to methanation pressure 8.7 17.0 18.1 25.1
Reactor(s) 106.8 107.2 109.6 105.3
Separation 89.1 84.6 80.7 94.8

Compressor work, W [kW]

Compression to methanation pressure 32.8 33.1 34.3 46.0
Separationa 0.2 3.0 0.7 1.7

Exergy, E [kW]

Compression to methanation pressure 2.1 3.4 3.7 5.1
Reactor(s) 43.19 45.1 44.3 42.5
Separation 19.1 18.5 16.9 19.1

a The displayed values do not include the initial separation of the CO2/CH4
mixture from AD for processes A, B and C1.

The temperatures and molar flow rates of the gas streams leaving the
PSA unit (4) in Figure 8 are given in Table 8. Configuration A has no gas
recycle and the recycle gas composition in configurations B, C1 and C2 vary
strongly. In configuration B the recycle gas contains mostly CH4 and H2,
which causes exergy losses due to the purge. For configuration C1 the exergy
loss due to the purge is minor because the recycle gas contains mainly CO2.
In configuration C2 the amount of recycled gas is higher compared to the
other configurations and it contains both CH4 and CO2 in molar ratio of
0.30/0.54, see Table 8. The heat demands of the PSA units are provided at
ambient temperature.

The material and energy flows and the corresponding exergy values of
the four process configurations are summarized in Table 9. The electrical
energy being used for the production of hydrogen is denoted as wel,in and
directly corresponds to its exergy value. The exergetic values for CH4 as
given in Table 9 are calculated from the chemical exergy according to Table
2.

The required power input of process B is increased due to compression
of the product gas to the outlet pressure of 200 kPa, from atmospheric
pressure, which is the desorption pressure of the last PSA unit. Due to
this, the aforementioned higher exergy loss for the purge stream, as well
as the high adsorption pressure (p=2.39 MPa), process B has the highest
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Table 8: Material and energy streams leaving the PSA columns averaged out over
the adsorption/desorption cycle.

B Product Recycle Unit

Temperature T 328 308 [K]

CH4 2.22 0.70 [kmol/hr]

CO2 0.01 7 · 10−4 [kmol/hr]

H2 0.01 0.14 [kmol/hr]

exergy E 2.55 [W]

C1 Product Recycle Unit

Temperature T 297 291 [K]

CH4 2.35 0.08 [kmol/hr]

CO2 0.08 0.25 [kmol/hr]

H2 0.03 4 · 10−4 [kmol/hr]

exergy E 1.01 [W]

C2 Product Recycle Unit

Temperature T 297 289 [K]

CH4 6.11 0.30 [kmol/hr]

CO2 0.08 0.54 [kmol/hr]

H2 0.06 6 · 10−4 [kmol/hr]

exergy E 0.41 [W]

electrical energy demand of the four process configurations. The electrical
energy input is lowest for configuration C2 due to the completely avoided
initial separation of CO2 and CH4 for the AD product gas. Configurations
A, C1 and C2 release the product methane at pressure > 1.3 MPa, which
is the adsorption pressure of the corresponding PSA unit. Without energy
recuperation exergy is lost by the pressure release after the PSA units. By
depressurization to 200 kPa a physical energy of 3.2 kW, 3.3 kW and 8.3 kW
is lost for processes A, C1 and C2 respectively, calculated via Eq. (5), see
Chapter 2, assuming perfect gas behavior.

The quantities of produced methane in the methanation of the four process
configurations are similar. The largest quantity of 2.36 kmol/hr is produced
in configuration A, as it has no gas recycle and therefore no reagents and
products are lost through the purge stream, which is the case for config-
urations B, C1 and C2. The respective molar flow rates of the produced
methane are given in Table 9.
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a) Process A

b) Process B

Figure 15: Exergy diagrams including the considered processes A and B.
The figures show the exergy conversion from 1 MW of electrical energy over the
storage medium methane back to electrical energy via a combined-cycle power plant
(CCPP). The red marks exergy calculated as the chemical exergy of a substance.

Figures 15 and 16 depict the exergetic flow diagram of the complete
processes graphically. The energy efficiency η is calculated as η = (wout −

wCH4,in −winit)/wel,in, where wCH4,in is the exergetic workload required
for conversion processes A, B, C1 or C2 respectively, winit denotes the power
input for the initial separation of CO2 and CH4 from AD. The wout denotes
the electrical energy obtained in a CCPP from the produced methane. As
configuration A produces the largest amount of CH4, it gives the most
electrical energy wout after combustion in the CCPP (28.2%), see Table
9. After the electric energy output is reduced by the power input for
the methanation process, configuration C2 shows the highest efficiency at
η=23.4%. All methanation configurations have an excess heat contribution
(denoted as eheat in Figures 15 and 16) however the differences between
the configurations are minor in this sense. The exergetic efficiency of the
chemical conversion includes the excess heat. Assuming, that the heat flow
could be utilized to its exergetic value, we calculate the exergetic efficiency as
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a) Process C1

b) Process C2

Figure 16: Exergy diagrams including the considered processes C1 and C2.
The figures show the exergy conversion from 1 MW of electrical energy over the
storage medium methane back to electrical energy via combined-cycle power plant
(CCPP). The red marks exergy calculated as the chemical exergy of a substance.

ηE = (wout + eheat −wCH4,in −winit)/wel,in, gaining a value of ηE = 30.1%
for configuration C2. The methanol synthesis, having a comparatively low
excess heat contribution, see Table 10, has an exergetic efficiency of 18.2%.

Table 9: Overview over the process’s mass and exergy flows.

A B C1 C2

Additional methane yielda [kmol/hr] 2.36 2.22 2.35 2.36
Chemical exergy of the methane [kW] 545.1 513.0 543.8 544.3
Compressor work [kW] 32.8 36.1 35.0 47.7
Electric energy input wCH4,in [kW] 52.7 55.9 55.9 47.7
Electric energy output CCPP wout [kW] 282.4 265.8 281.7 282.1
Electrical energy output [kW] 229.7 209.9 225.8 234.4
a Methane leaving the process reduced by the methane in the process feed.



52 exergy efficiency of co2 methanation processes

4.3.2 Comparison with Methanol Synthesis

A comparison between material and energetic streams for the two alternative
chemical storage media CH4 and CH3OH is listed in Table 10. In the study in
[92] the energy efficiency for the comparable energy conversion chain using
methanol as the chemical storage medium was 17.6%, not considering the
possible energy expenditure for CO2 purification (to 100%). For comparison,
we estimated that the energy consumption would be 18.1 kW for 2.167
kmol/h when CO2 from the AD product gas (40 vol.-% CO2) is completely
separated from CH4. Reducing the net electrical output of the methanol
synthesis by this 18.1 kW gives an exergetic efficiency of 15.8% with respect
to the 1000 kW of electrical energy input. Our present study clearly shows
higher efficiency (η=23.4) for the utilization of methane as a chemical storage
medium than that reported for the methanol. Configuration C2, which
obtained the highest exergetic efficiency in the present study, does not
include the initial purification of CO2 to 100% from the AD product gas
because this configuration used the AD product gas directly as feed for the
methanation reactor with the assumed CO2/CH4 molar ratio of 2:3.

The mass flow of methanol was reported to be 3.03 kmol/h [92] and in
the present study the CO2 methanation produced 2.36 kmol/h methane
assuming the same initial reference hydrogen input (9.502 kmol/h). This
means that a wind turbine with a power output of 1 MW can produce
37.8 kg CH4 per hour, provided that the biogas plant supplies the required
amount of CO2.

By comparing the heating values of the product streams (CH3OH 541

kW, CH4 495 kW) we can state an 8.5% better energetic value for methanol
energy storage. However, by also considering the electric energy input for
both processes, one notes that the methanation process clearly requires
lower electric energy input. The main reason for the significant difference
in exergetic efficiency between the two alternatives we identified, is the
higher reactor pressure (p=5.0 MPa) for methanol synthesis compared to the
pressure of 1.34 to 1.39 MPa assumed to be the reactor pressure for the four
configurations in methanation. The reactor pressure directly influences the
electrical energy consumption for gas compression and in the simulations
we did not consider possible recuperation of energy during the pressure
release.

Noticeable is the comparatively high amount of excess heat eheat of
around 7%, which is produced by the power-to-methane processes. The
methanol synthesis includes a distillation unit, the reboiler of which requires
a significant heat input and acts as a heat sink for the process allowing for
reasonable heat integration. Furthermore, the methanation reaction is more
exothermic (∆HCH4=−165 kJ/mol) compared to the synthesis of methanol



4.4 chapter summary 53

(∆HCH3OH=−49.6 kJ/mol) and heat is required only for the preheating and
the TSA gas drying.

Table 10 explicates the efficiencies of methanol and methane as energy
carrier mediums. The values shown for the methanol synthesis from [92]
are extended with the additional compressor work of 18.1 kW for the
AD product gas separation. Without the initial separation, the methanol
synthesis requires a compressor work of 129.7 kW. If the electrical energy
required for the methanation process wCH4,in can also be acquired from
renewable energy sources, the efficiency of the process can be calculated
with respect to the overall energy input, i.e. η = wout

wel,in+wCH4,in+winit
. This

increases the efficiency for process C2 to 26.9 %. Likewise, the efficiency of
methanol as the energy carrier is increased to 26.6 %.

Table 10: Comparison between chemical energy storage mediums.

CH3OH
∗ CH4

Exergy Energy Exergy Energy

kmol/hr kW kW kmol/hr kW kW

Electric energy

input electrolyzer 1000 1000

Hydrogen 9.502 619.4 361.7a 9.502 619.4 361.7a

Energy carrier product 3.03 597.8 541.2a 2.36 544.3 494.7a

Compressor work 147.8 47.7

Excess heat 24.2 63.8 66.7 225.2

Electric energy

from CCPP 305.8 282.1

Net energy output 158.0 234.4

Net energy efficiency 15.8 23.4

Net exergy efficiency 18.2 30.1
a lower heating value of the energy carrier, ∗ results from [92].

4.4 chapter summary

We showed feasible alternatives for state-of-the-art methanation processes,
requiring less equipment while at the same time gaining a higher process
efficiency. The results demonstrate that especially the pressure swing adsorp-
tion which can be applied for various gas separation tasks in the methanation
process is a feasible and efficient alternative to multi-reactor configurations.
The most efficient process configuration, utilizing a PSA unit for CO2/CH4
separation, attained an efficiency of 23.4 %. The efficiency of the process
was improved by avoiding the separation of the product gas from anaerobic
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digestion prior to the methanation reactor. Configuration C2 however has
the drawback that it is not suitable for intermittent operation of a plant, due
to the fact that the CO2/CH4 mixture from anaerobic digestion can not be
fed into the gas distribution system without methanation. This could lead to
large production costs, as described by Collet et al. [115]. Configurations A,
B and C1 however include the separation of the anaerobic digestion product
gas, thus decoupling the feed of CH4 from anaerobic digestion to the gas
distribution system and the methanation of the remaining CO2.

By comparing the results of the present analysis with the results of using
methanol as a chemical storage medium we can conclude that methane is a
highly promising alternative.

The availability of CO2 was neglected in this study. In the present work it
was assumed that the amount of CO2/CH4 mixture from anaerobic digestion
was sufficient, which may not be the case for large scale applications.

In the present study we focused on re-conversion of the methane back
to electrical energy, considering the gas as a temporal chemical storage
medium. However methane can also be utilized in the mobility sector, as
fuel for gas-powered vehicles. The exergy efficiency of this application may
vary and call for further comparison with methanol in this sector.

The presented assessment and comparison cannot be fully exhaustive,
since minor modifications in the configurations might possibly lead to
higher efficiencies than the ones analyzed in this study. For example an
additional PSA unit could be included to reduce the estimated losses through
the purge stream. Implementing two PSA units as introduced for the
pretreatment of the CO2 from AD in Section 4.2.2 (see Figure 12) could
increase recovery of the product. Additional energy input arises, however,
from the repressurization of a stream between the two units from desorption
pressure pDE to adsorption pressure pAS. For process B this would require
increasing the pressure from 100 kPa to 2, 390 kPa and for processes C1 and
C2 from 20 kPa to 1, 390 kPa respectively.

Furthermore other units could be considered, e.g. biological methanation
in a bioreactor or amine scrubbing for CO2 separation, to analyze the full
range of power-to-methane processes. Chapter 5 widens the scope of the
analysis to include the electrolyzer and a wider range of separation and
methanation technologies.

As the focus of this Chapter is on the energy and exergy efficiencies
of the processes, it does not include a detailed cost analysis. However, a
few quantitative remarks can be made on the complexity of the plants and
respective running and acquisition costs. As mentioned above, avoiding
initial CO2/CH4 separation increases the costs for intermittent operation of
configuration C2. For continuous operation, however, the running costs for
the electrical energy input of configuration C2 as shown in Table 9, are the
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lowest of the four configurations. We furthermore expect the acquisition
cost of process C2 to be lower than that of processes B and C1. While
the larger flow rate of reagents and products of process C2 requires larger
separation units after the methanation reactor, the numbers of pressure
swing adsorption units, heat exchangers and compressors are reduced, as
can be seen from Figure 8. The process costs are evaluated in more detail in
the superstructure analysis of the next chapter.
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5
P R O C E S S S Y N T H E S I S O F C O 2 M E T H A N AT I O N V I A
S U P E R S T R U C T U R E O P T I M I Z AT I O N

In this chapter we extend the process configurations of Chapter 4 to an
extensive superstructure by including alternative relevant technologies for
the methanation process. We identify promising combinations of these
technologies via superstructure optimization at the steady state operating
conditions. We focus on optimization of thermo-economic aspects of the
process alternatives via exergy efficiency, capital costs and total annual
costs. As opposed to Chapter 4, we represent the process units via shortcut
models, which are more compatible with the computationally expensive
superstructure optimization.

Superstructure optimization is a powerful tool for determining the op-
timal process configuration from a large variety of technologies and their
respective combinations. As heat integration plays an important role in
improving the process efficiency, we further include indirect, simultaneous
heat integration via pinch analysis in the superstructure model.

Superstructures have been widely applied in systems engineering and
process design. They are applied for designing heat exchanger networks
[70, 116, 117], distillation columns [118], optimization of process flowsheets
[119], and process synthesis [120]. Further applications can be found in the
excellent reviews of Chen and Grossmann [121] and Trespalacios and Gross-
mann [122]. As most of the above examples, we formulate the superstructure
as a MINLP.

The key novelty of the current work is a detailed designed superstructure
for the power-to-methane process, which includes the most relevant unit
operations for catalytic CO2 methanation and additionally simultaneous
heat integration. The numerical results represent the global optimal value of
the optimization problem as determined by the global optimization solver
SCIP, see Section 3.3.3. The optimization of the resulting MINLP model
allows for an exhaustive technical analysis of a large variety of possible
process configurations.

We describe the superstructure model, including the individual process
unit models, in Section 5.1. The objectives of the superstructure optimization
are maximizing the process efficiency and minimizing the investment costs,
as addressed in detail in Section 5.1.2. We introduce different case studies in
Section 5.2 and show the respective optimization results.

57
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5.1 modeling

To derive the process superstructure model, we introduce two levels of
modeling: On the unit level we describe the behavior of a single process
unit mathematically, e.g., the temperature dependence of a chemical reactor.
We introduce the models used for the power-to-methane process in Section
5.1.1. On the next modeling level, the individual unit models are embedded
into the superstructure model, which is introduced in Section 5.1.2.

5.1.1 Unit Models

Unit level models represent the behavior of single-process units in terms
of material and energy balances. The scheme of a unit model U is shown
in Figure 17. We formally define a unit model U with in- and outgoing
material streams (MS) as

xU ∈ RnU variables
xinU ∈ Rm·dinU unit input MS
gU(xU, xinU ) 6 0 unit inequality constraints
hU(xU, xinU ) = 0 unit equality constraints
lbU 6 xU 6 ubU box constraints
XoutU : RnU ×Rm·dinU → Rm·doutU map to unit output MS
WU : RnU → R+ work demand
QU : RnU → Rnq heat demand/surplus
CAPEXU : RnU → R+ investment cost
dinU ,doutU ∈N # in- and outgoing MS
m ∈N dim. of a single MS

(29)

A uniform formulation of all unit models enables the connection of individ-
ual models to a superstructure. Material streams are sets of variables that
represent physical properties of the material flows entering or leaving a unit.
In the superstructure model, these variables are shared between connected
unit models. The dimension of material streamsm is equal for all considered
unit models, to allow for the connection of arbitrary models. The number
of in- and outgoing material streams is specific to a unit. For example,
separation units have typically doutU = 2 outgoing material streams, whereas
for a reactor, doutU = 1 holds. The information passed to a subsequent unit
are molar flows N, temperature T , and pressure p.

In the following, the molar gas flow rates are indicated by the variable N,
and the subscript indicates the component, respectively, e.g. NH2 indicates
the molar gas flow rate of hydrogen. For example, an input stream to unit U
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takes the form xinU =
(
Nin,U
CO2

,Nin,U
H2

,Nin,U
CH4

,Nin,U
H2O

, T in,U,pin,U
)>

, thus, for the
dimension of the material stream m = 6 holds.

WU

QU

xin
U xout

UUnit U
gU ≤ 0

CAPEXU

Figure 17: Scheme of a process unit model

A unit model consists of in- and outgoing material streams, here denoted xinU and
xoutU . Furthermore, energy is supplied to or produced by the unit in form of work
WU (only supplied to) and heat QU. The individual unit behavior is modeled by
constraints gU

In the following sections, the individual unit models are introduced. Here,
we drop the subscript U to increase simplicity and readability. Thus x for
example refers to the variables of a process unit model. We include it again
in the superstructure description in Section 5.1.2.

Electrolysis

For the electrolyzer we consider two different technologies, as introduced in
Section 2.1.4, namely AE and SOEC. We implemented AE as a simplified
black box model assuming the electrical energy demand to be linearly
dependent on the produced H2 amount according to

W(x) = wAE ·NoutH2

with wAE = 378.9 kJ/molH2 [92]. The variables of the process unit model are

here the produced hydrogen, i.e., x =
(
NoutH2

)
. The output material stream

is given by

Xout(x, xin) =
(
NinCO2 ,NinH2 +N

out
H2

,NinCH4 ,NinH2O, T in,pin
)

,

which means that the produced hydrogen is mixed to the input material
stream. The model furthermore includes a work demand for gas compres-
sion of the hydrogen to pressure pin, as introduced in Section 5.1.1. We
calculate the electrical energy demand W for SOEC from the value of 3.37

kWh/m3 given by Gruber et al. [123] corresponding to 269.9 kJ/molH2 . In
addition, high temperature electrolysis at T = 1023 K has a heat demand of
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66 kJ/molH2 and a heat production caused by the stack overpotential of 87

kJ/molH2 , resulting in an external excess heat of 21 kJ/molH2 . Furthermore,
the heat demand for the preheating and vaporization of water is considered.
We scale the process to 1 MW electrical energy for water electrolysis, with
2.64 molH2/s (AE) or 3.71 molH2/s (SOEC) entering the methanation pro-
cess. We use the corresponding stoichiometric amount of 0.66 molCO2/s
(AE) or 0.93 molCO2/s (SOEC) in the feed gas from anaerobic digestion as a
reference for a priori size estimations of the biological methanation reactor,
black box separation models.

Catalytic Methanation Reactor

To model the reaction in a catalytic methanation reactor, we allow conver-
sion up to thermodynamic equilibrium under isothermal conditions. The
output molar flow rates Ni are constrained by thermodynamic equilibrium
according to

pCO2p
4
H2
> p2H2OpCH4Keq(T

in) with pi = pin
Ni∑

j∈C
Nj

, (30)

where Ni denotes the molar flow rate in mol/s and pi is the partial pressure
of component i ∈ C = {CO2,H2,H2O,CH4}. The reaction equilibrium is
calculated according to Koschany et al. [39]

Keq(T) = 137 · T−3.998 exp
(
158.7
RT

)
.

We logarithmize Equation (30) and introduce new variables p̂i, K̂eq to get

p̂CO2 + 4p̂H2 > 2p̂H2O + p̂CH4 + K̂eq

exp(p̂i) 6 pi for i ∈ {CO2,H2}
exp(p̂i) > pi for i ∈ {CH4,H2O}

K̂eq = ln(137) − 3.998 ln(T in) +
158.7
RT in

which we implement instead of Equation (30). In addition the reaction
stoichiometry

Nouti − (ζνi +N
in
i ) = 0 for i ∈ C

must hold, where ζ denotes the extent of reaction and νi the stoichiometric
coefficient of component i. Thus, we have variables given by

x =
(
[p̂i,pi,Nouti ]i∈C, K̂eq, ζ

)>
.
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The reaction is highly exothermic. Consequently, the isothermally operating
methanation unit generates excess heat. The heat of reaction ∆Hrxn is
linearly approximated over the relevant temperature interval.

Xout(x, xin) = (NoutCO2
,NoutH2

,NoutCH4
,NoutH2O

, T in,pin)>

W(x) = 0

Q(x) = −ζ∆Hrxn

During the superstructure optimization the pressure of the methanation
reactor was fixed to 0.6 MPa, and the temperature was allowed to vary
in the range of 580 to 650 K. These conditions are typically applied to
heterogeneously catalyzed methanation reactors [39, 97, 37].

Investment cost is estimated based on equipment sizing via the Guthrie
relation [124]. Biegler et al. [124] also refer to these costs as bare module
costs. The Guthrie equation is used to estimate the unit capital cost via size
and cost of a known reference unit. We estimate the reactor costs without
heat exchange by equations given for pressure vessels. A unit of height L0
and diameter D0 is used as reference to estimate the unit cost from reference
cost C0 via

CAPEX(L,D) = MF CE C0

(
L

L0

)α(
D

D0

)β
. (31)

The parameter CE corresponds to the CE index, which updates prices to
account for inflation. As for the catalytic methanation reaction equilibrium
(30), we logarithmize the CAPEX functions of all unit models and express
them as inequalities to get

ln(CAPEX(L,D)) > ln(MF CE C0) +α(L̂− ln(L0)) +β(D̂− ln(D0)),

exp(D̂) 6 D,

exp(L̂) 6 L.

We use the reference value given by Biegler et al. [124] for the cost estimation.
To adapt these values to recent 2017 prices, the parameter CE has a value of
CE = CEPCI2017

CEPCIref
= 558.3

115 . Furthermore, the price is updated with the material
and pressure factor MF = 1.15 [124]. Finally, we include the cost of the
catalyst Ccat = 840 $.

CAPEX(x) = MF CE C0

(
L

L0

)α(
D

D0

)β
+Ccat (32)

Parameters for (32) were taken from Biegler et al. [124] as C0 = 690 $,
L0 = 1.22 m, D0 = 0.91 m, a = 0.78, b = 0.98. We assume the reactor to be a



62 process synthesis via superstructure optimization

bundle reactor with 100 pipes with L = 1.26 m and D = 0.02 m, containing
a total of 56 kg of catalyst. The price is estimated from commercial price
quotations [125, 126] to be 15 $ per kg. Note that the investment cost (32)
does not cover the equipment for reactor cooling. Cost estimates for heat
transfer equipment are introduced in Section 5.1.2.

Biological Methanation Reactor

A wide range of operational process data can be found in the literature,
particularly regarding the product gas concentrations. As mentioned in
Chapter 2 the reported values range from 58 mol.% [44] to 96 mol.% [45, 46].
The overall process design is strongly dependent on the product methane
concentration of the biological unit. Therefore, we consider two optional
bioreactor models: A bioreactor reaching 96% CH4 (BIO1) and one reaching
65% CH4 (BIO2) in the dry product gas. The product gas leaving the
biological methanation reactor is moist. Thus, we calculate the water in the
gas stream according to the vapor-liquid equilibrium calculation, shown in
Section 5.1.1. Both reactor models operate at ambient pressure and 363.15 K
and lose 5% of the reactants to biomass growth. For the CAPEX, we choose
an estimate from the literature of EUR 658K [41], corresponding to $723.8K.
The reference is the smallest fermenter studied by Graf et al. [41] producing
1 MWCH4 , which is slightly larger than the 0.8 MWCH4 needed for converting
the aforementioned 2.64 molH2/s (AE) to CH4.

Flash Separation

Flash separation is applied to reduce the amount of water in the gas mixture.
The process requires cooling, owing to the condensation of the liquid prod-
uct. The separation result is calculated from the vapor-liquid equilibrium at
fixed temperature. We describe the separation by the equilibrium conditions,
here directly expressed in terms of the molar flow rates:

Nli∑
j

Nlj
= Ki

Nini −Nli∑
j

Ninj −Nlj
, i ∈ {CO2,H2O,CH4},

Ki −
pvp,i

pin
= 0, i ∈ {CO2,H2O,CH4}

where Nli denotes the molar flow rate of component i in the liquid phase.
Phase equilibrium constants Ki are calculated from the pure component
vapor pressure pvp,i, with the exception of hydrogen, which is assumed to
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stay in the gas phase owing to its high volatility. The vapor pressure of a
component i is calculated from

Tr,i = 1−
T

Tc,i

pvp,i = pc,i exp
(
Tc,i

T

(
α1,iTr,i +α2,iT

1.5
r,i +α3,iT

3
r,i +α4,iT

6
r,i

))
,

where Tc,i and pc,i are the critical temperature and pressure of component i.
The parameters αk,i, k ∈ {1, 2, 3, 4} are taken from [127]. We consider a point
of operation at

T in = 298.15 K,

pin = 6 bar.

The variables of the process unit are x =
(
[Nli,Ki]i∈C

)>. The unit material
stream output is

Xout(x, xin) =
(
Xout,1(x, xin),Xout,2(x, xin)

)>,

Xout,1(x, xin) = (NlCO2 , 0,NlCH4 ,NlH2O, T in,pin),

Xout,2(x, xin) =

(NinCO2 −N
l
CO2

,NinH2 ,NinCH4 −N
l
CH4

,NinH2O −NlH2O, T in,pin),

where the liquid phase is considered as waste stream, i.e., it is not considered
for recycling. The flash unit requires heat removal to condensate water, but
no supply of electrical energy.

W(x) = 0

Q(x) = −
∑
i

Nli∆Hc,i

The cost is calculated similarly to the reactor model via

CAPEX(x) = CE C0

(
L

L0

)α(
D

D0

)β

with parameters C0 = 2, 950 $, L0 = 1.22 m, D0 = 0.91 m, α = 0.81, β = 1.05
from [124]. Unit parameters L and D were calculated from the liquid flow
rate Fl =

∑
iN

l
i via

ρ = 55345 mol/m3 Liquid density (mostly water)
τ = 300 s residence time

V = 2Flτ/ρ vessel volume

D = (V/π)(1/3) vessel diameter
L = 4D vessel length

in accordance with [124].
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Black Box Separation Models

We describe the adsorption, absorption, and membrane separation (MEM)
processes by simplified black box models. Adsorption, absorption, and
membrane separation are technologies commonly applied in practice [52,
128]. The variables are the molar flow rates of the chemical components.

x =
(
N1,CO2 ,N1,H2 ,N1,CH4 ,N1,H2O,N2,CO2 ,N2,H2 ,N2,CH4 ,N2,H2O

)>

We determine the two product streams

Xout(x, xin) =
(
Xout,1(x, xin),Xout,2(x, xin)

)>
,

Xout,i(x, xin) =
(
Ni,CO2 ,Ni,H2 ,Ni,CH4 ,Ni,H2O, Ti,pi

)
, i = 1, 2

of a separation unit from a single input stream

xin =
(
NinCO2 ,NinH2 ,NinCO,NinCH4 , T in,pin

)>

by predefined parameters T1, T2, p1, p2 and ι ∈ [0, 1]4 as

N1,j = ιjNin,j,
N2,j = (1− ιj)Nin,j,

}
j ∈ {CO2,H2,CH4,H2O},

as well as further energy balances distinct for the specific separation process.
The investment costs are calculated from

CAPEX(x) = C0
∑
i

Ni.

Tables 11 and 12 list the values of the parameter C0, which were adapted
from the review [52] corresponding to the commercial separation units of
the size to treat 500 Nm3/h, which is closest to the aforementioned a priori
gas flow estimate.

We consider the Pressure Swing Adsorption (PSA) process to separate CO2
and CH4. A large variety of established adsorbent materials are suitable
for this particular separation task, e.g., zeolites, silica gel, and activated
carbon (AC) [129]. Adsorption processes can separate a component to a very
high purity. As is well known from literature [109], CH4 can be extracted
with a purity of more than 99% from CO2 with zeolites. A drawback of
this method, however, is that large quantities of methane remain in the off-
gas. In accordance with studies on the adsorbent zeolite 5A [109] we chose
parameters denoted PSA (Z) in Table 11. We constrain the inlet pressure
to the adsorption pressure pin > p1, making additional compression at
this unit unnecessary. Decompression of the column is performed via a
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Table 11: Parameters of adsorption black box models

PSA (Z) PSA (AC) PSA (Z II) PSA (AC II)

ι [0.01,1,0.85,0] [0.05,0.99,0.1,0] [0.15,1,0.99,0] [0.7,0.99,0.85,0]
p1 [bar] 6 23 6 23

p2 [bar] 0.2 1.0325 0.2 1.0325

C0 [ 10
3$

mol/s
] 475.4 475.4 950.7 950.7

T1 = T2 = 298.15 K

subsequent state changer model, see Section 5.1.1. Furthermore, we assume
that no technical work can be recuperated from the depressurization state
to the desorption pressure p2 and that the temperature oscillations during
adsorption and desorption result in negligible heat flows, thus

W(x) = 0,
Q(x) = 0.

In a similar manner, we consider the separation of hydrogen via the ad-
sorbent AC [53]. Table 11 gives the parameters in the column labeled
PSA (AC). This technology can be applied after methanation to recycle
super-stoichiometric amounts of H2.

To avoid damage to the adsorbent, the gas stream entering the PSA unit
must be dry; therefore, we add the constraint

NinH2O = 0

to the model.
To separate both CO2 and CH4 with a very high purity, two PSA units

are used in parallel [109]. The setup is depicted and described in Figure 18.
The unit in position (P1) in Figure 18 has the operating parameters given
by PSA (Z) or PSA (AC) in Table 11. The unit in position (P2) has the
parameters given in Table 11 by PSA (Z II) or PSA (AC II), respectively. We
calculate the additional work for the repressurization via the state changer
model (see Section 5.1.1). We consider the two-PSA setup as a single-unit
alternative to the one-PSA model in the superstructure.

We apply Temperature Swing Adsorption (TSA) to dry the gas mixture
with parameters shown in Table 12. Furthermore, heat is required for the
desorption of the adsorbent.

Q(x) =
∑
i

N2,icpi(T2 − T1)
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CH4 CO2

(P1) (P2)

Figure 18: Two connected PSA units for CO2/CH4 separation

A typical PSA unit for separation of binary mixtures produces only one product gas
stream at a very high purity. In this application, the unit (P1) produces high-purity
CH4 and a mixture of CH4 and CO2. We achieve high product gas concentrations for
both product streams by redirecting the second gas stream to another PSA unit (P2).
This unit extracts CO2 at a high concentrations and redirects the second stream,
again a mixture, back to the first unit. To implement the cyclic depressurization
and repressurization of the PSA unit, we add an additional compressor between the
units.

Table 12: Parameters of adsorption, absorption and membrane separation black box
models

TSA ASC WSC MEM

ι [0.95,1,0.99,0] [0.95,1,0.99,0] [0.95,1,0.99,0] [0.95,1,0.99,0]
T1 [K] 298.15 333.15 298.15 298.15

p1 [bar] 6 1.0325 6 6

T2 [K] 418.15 413.15 - 298.15

p2 [bar] 6 1.5 - 0.2
C0 [ 10

3$
mol/s

] 475.4 907.5 172.9 570.4

An alternative process to separate CO2 from CH4 is absorption. Both
water and amine scrubbing are widely applied in the industry [128, 130]. In
alignment, we include the separation via chemical scrubbing with amines
(ASC) and that with water scrubbing (WSC) in the analysis with parameters
shown in Table 12. Note, that WSC is modeled to have a single output
material stream containing mostly methane, because the off-gas is a mixture
of carbon dioxide, oxygen, and nitrogen not suitable for further utilization
in the process. For ASC, work and heat demands are calculated via

W(x) = wASC

(∑
i

N1,i +
∑
i

N2,i

)
,
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Q(x) = qASC

(∑
i

N1,i +
∑
i

N2,i

)
,

where wASC = 13.8 and qASC = 54.1. The parameters for MEM were taken
from [128, 130]. As for PSA, drying of the gas stream is performed prior to
application of this unit.

State changer

To model the temperature and pressure changes of a material stream be-
tween unit operations, we include state changers. We model the isothermal
compression (Tout = T in) to calculate the reversible work demand by via

x =
(
Tout,pout, p̂,Wrev,QSC

)>

Wrev >
∑
i

NiRT
in
(
p̂− ln

(
pin
))

,

exp(p̂) 6 pout.

Assuming a working efficiency of 80%, we get W(x) = Wrev/0.8 and an
additional heat stream

Q(1)(x) = −W(x).

Furthermore, a temperature change is calculated according to

QSC =
∑
i

Nicpi(T
in)(Tout − T in),

Q(2)(x) = QSC.

The capital cost of a compressor is calculated via

CAPEX(x) = MF CE C0

(
W(x)

S0

)α

with C0 = 23000 $, S0 = 74.6 kW, α = 0.77, MF= 3.61.

5.1.2 Superstructure Model

To describe the setup of a superstructure, we use a directed, acyclic graph
G = (V,E), where nodes V denote the unit models and edges E represent
the intermediate material streams. For each process unit U ∈ V we assign a
binary indicator variable xT ,U ∈ {0, 1}. Indicator variables indicate whether
the respective node U is active (xT ,U = 1) or inactive (xT ,U = 0), given a
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solution to the superstructure problem. We use the subscript U for a unit
model U ∈ V again to describe unit models as introduced in (29). The
constraints of active nodes must hold, whereas for inactive nodes, they are
deactivated. Constraints corresponding to a unit operation model U can
be deactivated via different formulations. A classic example is the big M
formulation, where a parameter M ∈ R is chosen large enough such that a
constraint gU(xU, xinU ) 6 0 is not enforced if xT ,U = 0,

gU(xU, xinU ) 6M(1− xT ,U).

The big M formulation has the advantages of being linear if gU is linear, and
that CQs are not violated. However, weak relaxations and ill-conditioning
make this formulation unsuitable for practical applications if the upper
bound on the constraints is unknown or very large [131]. Therefore, we
apply this formulation only to the box constraints and to calculate the
material stream xinU entering unit U from the output streams Xoutpre(U) :=

{XoutV | V ∈ pre(U)} of connected units, where a suitable upper bound is
known a priori. The box constraints are used to fix variables of inactive
models. A variable is forced to zero via Eq. (33) or to the lower bound via
Eq. (34) if zero is not part of its domain.

xT ,U · lbU 6 xU 6 xT ,U · ubU if 0 ∈ [lbU, ubU], U ∈ V (33)
lbU 6 xU 6 lbU + xT ,U · (ubU − lbU) if 0 /∈ [lbU, ubU], U ∈ V (34)

An alternative to the big M formulations is the complementary formulation
or vanishing constraint. A general vanishing constraint takes the form

xT ,U · gU(xU, xinU ) 6 0, U ∈ V, (35)

which violates LICQ and MFCQ in points for which gU(xU, xinU ) = 0 and
xT ,U = 0 holds [131, 132]. This can cause feasible points to be falsely
identified as optimal by NLP solvers applied in subpoblems. Therefore,
regularization or smoothing is necessary, for example via the relaxation

xT ,U · gU(xU, xinU ) 6 ε.

This relaxation fulfills the CQs, but results in an ill-conditioned optimization
problem and inexact solutions. The smooth perspective function [132]

ĝ
(
(1− ε)xT ,U + ε, xU, xinU

)
+ ε(xT ,U − 1) · gU(0, 0) 6 0

with

ĝ
(
x̂T ,U, xU, xinU

)
:= x̂T ,U · gU

(
xU/x̂T ,U, xinU /x̂T ,U

)
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avoids this problem and does not violate CQs. However, the runtime of
solving the corresponding optimization problem is increased [132].

So instead of applying the perspective function, we use the general vanish-
ing constraint (35). Having feasible points, which violate CQs, is a problem
for NLP optimization. Degenerate, feasible points are falsely classified as
locally optimal by general NLP solvers. However, in the global optimization
framework of branch-and-bound solvers with linear underestimators, this
is not the case. The optimality conditions come from the convergence of
the upper and lower bounds. Feasible points, which give the upper bound
do not need to be locally optimal for the algorithm to work, thus the upper
bound is still correct. Furthermore, the optimization problem, which gives
the lower bound is a linear problem. Linear problems fulfill the Abadie CQ,
which is a sufficient CQ for the application of KKT conditions [133]. Thus,
the lower bound is also correct and we do not expect degenerate points to
impact the final result of the optimization, only the runtime. For a discus-
sion of a reformulation of the superstructure problem, which fulfills the
LICQ, we refer to the Appendix B. Such an alternative formulation might be
necessary if other optimization algorithms with nonlinear underestimators
are applied.

We use the directed graph G = (V,E) to formulate the topology of the
superstructure. We define

pre : V→ P(V), pre(U) := {V ∈ V | (V, U) ∈ E}

post : V→ P(V), post(U) := {V ∈ V | (U, V) ∈ E}

where P(V) denotes the power set of V. With these mappings, we can derive
special ordered set (SOS) constraints restricting solutions to a single path
through the connection graph.

xT ,U 6
∑

V∈pre(U)

xT ,V 6 1 ∀U ∈ V (36)

xT ,V 6
∑

U∈post(V)

xT ,U 6 1 ∀V ∈ V (37)

Recycle and material streams

The superstructure includes recycling from separation units back to the
reactor. For a recycle stream from model V ∈ V, variable rV ∈ [0, 0.95]
describes the fraction of the product stream recycled back to the process.
The rest is purged, i.e., considered a waste stream. PSA, ASC and MEM are
considered for recycling. For processes with a recycle loop, we add the costs
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WU
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UUnit U
gU · xT,U ≤ 0
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xin
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WUnit W
gW · xT,W ≤ 0

WV

QV

xin
V xout

VUnit V
gV · xT,V ≤ 0

Utilities

Figure 19: Scheme of connected unit level models to a structure with connections
pre(U) = {V, W}

We route material streams of parent nodes V and W to a child node U. The
corresponding indicator variables xT ,U, xT ,V, xT ,W determine whether a unit is part
of a solution candidate. We obtain the work demand of the process by summing up
the work demand of the individual nodes. We collect the heat flows and consider
them for indirect heat integration.

of an additional mixer to the CAPEX. The material stream entering a unit
model U ∈ V is fixed by

xinU −
∑

V∈pre(U)
xT ,Vx

out
V −

∑
V∈rec(U)

rVx
out,rec
V , for U ∈ V. (38)

where rec(U) ⊂ V are the units which can recycle reagents back to unit U
and rV 6 xT ,V .

Heat Integration

Heat integration between the unit models and utilities covers the heat
and cooling demands of the process units. In addition, heat sinks and
sources throughout the process are identified to detect the internal utilization
potential of the heat flows. To implement this, heat flows must entail
information regarding the temperature, as heat can only be supplied from
sources of higher temperature.

Heat integration is performed indirectly, according to the method pro-
posed by Schack et al. [134] and Liesche et al. [135]. For this purpose,
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we assume that we have utilities at temperatures T̂i, i ∈ {1, . . . ,nE}, where
nE ∈N denotes the number of utilities. A minimal temperature difference
of ∆T = 10 K must hold for the heat integration between a utility and a
unit for realistic heat transfer rates. As opposed to the model introduced
by Schack et al. [134], we consider the unit temperatures to be variables;
therefore, we do not classify the heat flows into the three cases (full, partial,
or no heat integration) a priori. Instead, we differentiate between two types
of heat flows: Heat flow with a temperature change between two temper-
atures Tin, Tout (type I) and heat flow at a constant temperature (type II),
e.g., excess heat from the isothermal reactor model. For heat flows of type I,
we calculate the heat flow QIj,i between utility i ∈ {1, . . . ,nE} and unit U ∈ V

with QIU = CpU(T
I
U,out − T

I
U,in) via the constraints

cU,iCpU 6 Q
I
U,i 6 cU,iCpU, for i ∈ {1, . . . ,nE}, U ∈ V, (39)

with

cU,i = max
{

min
{
T IU,out, T̂i −∆T

}
− T IU,in, 0

}
,

cU,i = min
{

max
{
T IU,out, T̂i +∆T

}
− T IU,in, 0

}
.

If the direction of the heat flow is known a priori (e.g., heating of the TSA
desorption gas), some of the minimum and maximum functions can be
omitted. This reduces the constraints to

cU,i = 0,

cU,i = max
{
T IU,out, T̂i +∆T

}
− T IU,in,

}
for i ∈ {1, . . . ,nE}, U ∈ V (40)

for hot and

cU,i = min
{
T IU,out, T̂i −∆T

}
− T IU,in,

cU,i = 0,

}
for i ∈ {1, . . . ,nE}, U ∈ V (41)

for cold material streams. Note that the remaining min/max functions can
also be omitted for the outer utilities, i.e., for the hottest and for the coldest
utility. Other min/max functions are implemented as

min{a,b} = (a+ b− |a− b|)/2, max{a,b} = (a+ b+ |a− b|)/2
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with the use of SCIPs abs() function. The abs() function is implemented via
the use of new continuous and/or binary variables and secant cuts. For heat
flows of type II, the general constraints

min
{
QIIU, 0

}
6 QIIU,i 6 max

{
QIIU, 0

}
min

{∑
i∈I
QIIU,i, 0

}(
min
i∈I

{
T̂i +∆T − T

II
U , 0
})
> 0

max

{∑
i∈I
QIIU,i, 0

}(
max
i∈I

{
T̂i −∆T − T

II
U , 0
})
> 0

for i ∈ {1, . . . ,nE} can be simplified significantly, if the flow direction, and
therefore the sign of the heat flow QU,i, is known a priori. This is the case for
all heat flows of type II in the current application. The simplified constraints
are given by

QIIU,i

(
T̂i +∆T − T

II
U

)
> 0, for i ∈ {1, . . . ,nE}, U ∈ V (42)

for hot and

QIIU,i

(
T̂i −∆T − T

II
U

)
> 0, for i ∈ {1, . . . ,nE}, U ∈ V (43)

for cold heat flows. Furthermore,∑
i∈{1,...,nE}

QIU,i = Q
I
U, U ∈ V, (44)

∑
i∈{1,...,nE}

QIIU,i = Q
II
U, U ∈ V (45)

holds for all heat flows. Figure 20 shows an example of indirect heat
integration.

The external heat demand/surplus of a utility i is denoted by

Qext,i =
∑
U∈V

QIU,i +
∑
U∈V

QIIU,i, . for i ∈ {1, . . . ,nE}. (46)

To cover the external heat demand of utilities, we add directly fired heaters.
Cooling is performed via water cooling towers. We calculate the capital
costs of heat exchangers and directly fired heaters via the Guthrie equation.
For heat exchangers, the parameters C0 = 5, 000 $, S0 = 37.2 m2, α = 0.65,
MF = 3.3 and for directly fired heaters C0 = 20, 000 $, S0 = 1465m2, α = 0.77,
MF = 2.73 were taken from Biegler et al. [124]. The cooling of utilities is
performed via a cooling tower. The capital cost of a cooling tower was
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Figure 20: Scheme for the indirect heat integration
The Figure shows an example for the heat flows between units and utilities. The
example has three utilities at temperatures T̂0 < T̂1 < T̂2, one unit U producing
excess heat at isothermal conditions at temperature T IIU (T̂1 +∆T < T IIU < T̂2 −∆T ),
and one unit V heating up a material stream from temperature T IV ,in (T̂0 +∆T <
T IV ,in < T̂1 −∆T ) to temperature T IV ,out (T̂1 +∆T < T IV ,out < T̂2 −∆T ). Eq. (42)
assures that QU,2 = 0, since excess heat can only be supplied to utilities of lower
temperature. The solver can freely distribute the excess heat QIIU to the utilities 0
and 1. A fraction of the heat flow QIV can be fed to utility 1. As the temperature
rises above T̂1 −∆T , however only utility 2 can provide heat to unit V . The fraction
of the heat, which can be supplied by either utility 1 or utility 2 is given by Eq. (40).

calculated by EWK [136], specifically to meet the cooling demand of the
coldest utility (T = 288.15 K). The cost including frost protection but without
transport is 38, 477 e. Assuming a rate of exchange of 1.1, this corresponds
to 42, 305 $.

Note that the hottest and coldest utility temperatures are fixed by the
process temperature boundaries, i.e., T̂1 = Tmin − ∆T , T̂nE = Tmax + ∆T .
This is necessary to make heat transfer realistic and the integration feasible.
Temperatures of additional utilities T̂i ∈ [Tmin, Tmax], i ∈ {2, . . . ,nE} if nE > 2
are optimized by the solver. Increasing the number of heat exchangers is
expected to increase the heat network cost and, therefore, the capital cost
of the plant. In the case of two utilities, no indirect heat integration can be
performed. All heat is flowing from the hot utility to the process and from
the process to the cold utility. Therefore, we chose nE = 3.

Objective

We optimize the superstructure with regards to two objectives: to maximize
the exergetic efficiency, which is a goal of many climate change mitigation
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actions both nationally and internationally, and to minimize investment
costs, which is relevant for plant operators. Furthermore, the two objectives
are combined via linear combination to get Pareto optimal solutions to this
multi-objective optimization problem.

We describe efficiency via chemical exergy of the produced methane and
the investment cost via total process CAPEX. The efficiency η is calculated
in reference to the 1 MW used for water electrolysis as

η =
FCH4 − FW − FQ

Fref

=

∑
j∈{1,...,nP}

F
j
CH4

− FfeedCH4
−
∑
u∈V

WU −
∑

i∈{1,...,nE}
(1− T0

T̂i
)max{0,Qext,i}

1000 kW
(47)

where FjCH4 denotes the chemical exergy of material stream j leaving or
entering the process. The heat demand of the utilities is weighted by the term
(1− T0

T̂i
), which is the efficiency of a Carnot engine. The fraction T0

T̂i
relates

the temperature of the utility i to the ambient temperature T0 = 298.15 K.
Electrical energy directly relates to its exergetic value.

A material stream leaving the superstructure is evaluated via the chemical
exergy of methane eCH4 = 831.2 kJ/mol and hydrogen eH2 = 236.1 kJ/mol
if the requirements for feed into the gas distribution system, see Eqs. (G1) to
(50), are met. If the requirements are not met, the respective product stream
has no contribution to the objective.

The process CAPEX acts as a penalty term. The most efficient solutions
tend to include extensive heat exchanger networks to integrate even very
small heat flows back into the process. This leads to very costly processes. By
adding the penalty term to the objective, these solutions to the superstructure
are avoided. The objective is given by

f1(x) = wCCAPEX−wηη (48)

where the weights wC and wη determine the position of the solution along
the Pareto front.

The process CAPEX is the sum of the unit model CAPEX contributions:

CAPEX =
∑
u∈V

CAPEXU(xU)

Alternatively to multi-objective optimization, we consider the total annual
costs (TAC) as an objective for optimization. The TAC are calculated from
the CAPEX and the operating costs (OPEX) as

TAC = OPEX+

(
σ

1− (σ+ 1)−tpayback

)
CAPEX (49)
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Figure 21: Graph of the superstructure
The superstructure graph has 7 layers between the biogas plant and gas distribution
system. Recycling is considered from layers 4 and 5 to the reactor at layer 3. Layers
1, 5, 6, and 7 may be skipped by the solution, which is indicated in the figure by
the empty boxes. We have different technologies for the purification of CO2 in layer
1. Layer 2 includes the choice of electrolyzer, and layer 3 provides the choice of
the first methanation step. After methanation, the gas mixture includes water as a
side product. Therefore, we consider separation technologies which are not damaged
by water in layer 4. These separation technologies in layer 4 can separate either
reactants or water from the gas mixture. In layer 5, reagents can be separated from
a dry gas mixture and recycled back to the reactor. Finally, a second reactor can be
added in layer 6, which makes a final drying effort in layer 7 necessary. Each unit
has the option to take or supply heat to the utilities. Finally, the gas is fed to the gas
distribution system (GDS).
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with an interest rate σ = 0.06 and a payback time tpayback = 20 a. For the
calculation of the OPEX, we assume prices of 22 ct/kWh for electrical energy,
1.89 $/kg water, 2.64 $/kg waste water removal, and 2.53 ct/kWh steam.

Composite Model

A superstructure, including a methanation reactor, AE, SOEC, PSA (zeolite),
PSA (AC), double PSA, TSA, flash condensation, ASC, WSC, MEM, com-
pression, heating/cooling, a mixer, recycling and indirect heat integration
was built. The overall superstructure optimization problem is given by

min
x=(xT ,xV,xMS,xe)>

f(x)

s.t. (33) − (46)

xU ∈ RnU ∀U ∈ V

xV = [xU]U∈V
xT ∈ {0, 1}n

xMS = [xinU , xoutU ]U∈V,

where xe =
(
[cU,i, cU,i,QIU,i,Q

II
U,i]U∈V,i∈{1,...,nE}, [T

I
U,in, T IU,out, T

II
U ]U∈V, . . .

[T̂i,Qext,i]i∈{1,...,nE}
)> includes all variables of the heat integration, and f(x)

relates to either the linear combination of efficiency and CAPEX (48) or the
TAC (49). The structure is shown in Figure 21, with a total of 600 alternative
process routes.

5.2 results

5.2.1 Catalytic Methanation

We solve the superstructure model introduced in the previous section under
various conditions.

• Electrolyzer technology (AE or SOEC)
AE are well-established technologies, commercially available at var-
ious scales. Because of this, they have lower cost than other water
electrolysis technologies. However, AE have comparably low efficiency.
SOEC operate at high temperatures, significantly increasing cell effi-
ciency. The technology is in its early stage and, therefore, still quite
expensive. Instead of allowing the solver to choose between these two
technologies, we manually choose one of the technologies. This allows
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us to directly observe the influence of the choice of electrolyzer on the
optimization result.

• Weight of linear combinations of the objectives
To compare the different alternative solutions, we select different points
along the Pareto front via linear scaling of the objectives. We consider
the weights wη = 1, wC = 10−8 to focus on the process efficiency
(O1). This typically leads to very extensive heat integration networks
that utilize heat flows within the process. This is expected to lead to
high capital costs. Therefore, we consider wη = 1, wC = 10−5 as an
alternative (O2). These weights scale efficiency and capital costs to
roughly the same order of magnitude. Thus, we can obtain an efficient
process with reasonable capital costs. We do not optimize with regard
to only capital costs, as this typically leads to solutions close to an
efficiency of 0%. Alternatively, we optimize the system with respect to
the TAC (O3).

• Constraints for feed into the gas distribution system
We consider two different thresholds for the amount of hydrogen
allowed in the gas distribution system. Currently restrictive constraints
of 2 mol-% H2 need to be fulfilled in some areas. However, to facilitate
the implementation of power-to-gas technologies in the future, these
constraints are under discussion. Local distributors already allow
for the feed-in of gas with up to 10 mol-% H2. We consider the less
restrictive bound of 10 mol-% H2 as an alternative to the 2 mol-% H2

constraint. The constraints for the two cases are given by (G1) and
(G2), where xi and Ci denote the molar fraction and concentration of
component i.

yH2 6 0.02
0.95 6 yCH4

}
(G1)

yH2 6 0.1
0.90 6 yCH4

}
(G2)

In both cases

yCO2 6 0.05
CH2O 6 200 mg/m3

p = 16 bar
T = 298.15 K

 (50)
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must hold in addition. We perform global optimization for the 12 different
introduced cases. In all cases we could identify a single optimal process
configuration. For most of the results an optimality gap of below 0.1% with
respect to process efficiency and a relative optimality gap of 1% with respect
to CAPEX or TAC was reached, which is very tight given the low accuracy of
shortcut models and the estimation of the process costs via CAPEX, which
only has an accuracy of 25-40% [124]. For the optimization with respect to
the TAC (O3) with water electrolysis via SOEC the optimization exceeded
the hardware’s memory limitation. In the worst case, SOEC (G1) (O3) had a
relative optimality gap of 5%, upon reaching the memory limitation, which
implies that a process cost of $6.048M instead of $6.366M could be possible.
SOEC (G2) (O3) had a relative optimality gap of 3.5%. However, we stress
again that even in these cases one single process configuration could be
clearly identified as optimal and that a gap of 5% is small given the accuracy
of the CAPEX is 25-40% with regard to the real process costs. Reaching
the hardware limitations is attributed to the model of the heat exchanger
network, which is described by highly nonlinear functions and, in case of
the high temperature electrolysis, is very extensive.

After fixing the choice of electrolyzer, we have a total of 3175 variables of
which 33 are binary. The values of the objective functions after optimization
are shown in Table 13. Figure 22 shows a comparison of the CAPEX values
of the different cases. More detailed capital investment costs of the solutions
can be found in the Appendix, Tables 20-31. We note here, that for the
optimization with respect to objective (O3) of the process using AE for water
electrolysis gave a point which is Pareto dominant over the optimization with
respect to (O2). This behavior can be caused by the feasibility thresholds.
The different numerical accuracy of the optimization problems can be caused
by different presolving steps or branching within SCIP.

Two different process routes were chosen by the solver. A cascade of
two reactors with intermediate water separation was used, if only 2 mol-%
of hydrogen can be supplied to the gas distribution system, according to
the constraints (G1). The configuration is shown in Figure 24. If a higher
concentration of hydrogen can be supplied to the grid (G2), a second reactor
for methanation is not needed. In this case, focusing on the efficiency
results in the process configuration shown in Figure 25. The cases for
which this configuration was optimal are marked blue in Table 13. This
configuration results in increased process efficiency. This effect occurs
because less hydrogen is converted to methane. This reduces the exergetic
losses in the chemical conversion steps.

If the weights of the objective favor the efficiency objective (O1), the opti-
mal intermediate utility temperature is 570 K. This temperature is directly
below the optimal reactor temperature with a difference equal to ∆T = 10 K.
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Table 13: Objective values
Values of the efficiency and CAPEX for the 12 considered cases after global optimiza-
tion. The results with respect to objectives (O1) and (O2) give different values on
the Pareto front of efficiency and CAPEX. Meanwhile, objective (O3) corresponds
to the TAC. The solutions marked in blue correspond to the optimal configuration
shown in Figure 25. The other solutions correspond to the optimal configuration
shown in Figure 24.

Electrolyzer AE SOEC

H2 constraint Eq. (G1) Eq. (G2) Eq. (G1) Eq. (G2)

η [%] (O1) 50.0 50.8 65.1 65.8
CAPEX [10−6· $] 3.274 2.811 5.645 5.276

η [%] (O2) 45.3 45.3 58.6 65.0
CAPEX [10−6· $] 2.538 2.538 5.204 4.990

η [%] (O3) 45.7 45.8 64.5 61.4
CAPEX [10−6· $] 2.475 2.479 6.366 5.474

Figure 22: CAPEX values of the optimization results

The figure shows the contributions of the unit, compressor (W), and heat exchanger
(Q) costs to the CAPEX. The CAPEX is scaled to the plant’s product capacity of
total CH4 in terms of LHV in kW. Note that SOEC is a technology on demonstration
level and has potential for cost improvement.
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Table 14: Contribution of product, heat, and work to the exergetic efficiency η
The exergy values of FCH4 , FW , and FQ at the optimal solution determine the
efficiency η via Eq. (47). In addition the lower heating value of the product stream
(LHV) is shown. Note, that this value includes the contribution of hydrogen in the
product gas.

Case η % LHV [kW] FCH4 [kW] FW [kW] FQ [kW]

AE (G1) (O1) 50.0 525.0 544.1 40.8 2.8
AE (G2) (O1) 50.8 530.8 550.3 41.4 1.5
AE (G1) (O2) 45.3 505.6 522.3 33.2 36.1
AE (G2) (O2) 45.3 510.7 528.3 39.2 36.1
AE (G1) (O3) 45.7 511.2 529.1 39.3 32.8
AE (G2) (O3) 45.8 511.7 529.0 39.3 31.7
SOEC (G1) (O1) 65.1 744.2 771.3 54.6 65.2
SOEC (G2) (O1) 65.8 750.9 778.2 55.2 65.2
SOEC (G1) (O2) 58.6 728.6 755.1 75.3 93.4
SOEC (G2) (O2) 65.0 742.0 769.0 54.8 64.6
SOEC (G1) (O3) 64.5 748.3 775.5 54.8 75.8
SOEC (G2) (O3) 61.4 745.1 772.2 55.1 103.0

This allows the maximal supply of excess heat of the reactor to this utility.
The excess heat is then used to heat other process elements. If the CAPEX is
weighted higher (O2), internal heat integration is omitted. Instead all heat
is supplied and withdrawn externally. This reduces the costs of the heat
integration network significantly, as the detailed costs in the Appendix show.
For example in the case of AE and grid constraints (G1), the costs for the heat
exchanger network are reduced from 2063 $/kWCH4 to 1263 $/kWCH4 by
avoiding internal heat integration, where kWCH4 denotes the energy of the
product gas calculated by the lower heating value. Results of optimization
of the superstructure with respect to TAC (O3) give very similar results. The
results show adaptation of the extent of the heat exchanger network to the
objective.

By using SOEC for water electrolysis, a higher process efficiency can be
reached. This comes with a great increase in capital costs, roughly double
than for using AE for water electrolysis, because of the still high costs of
SOEC, as noted in Chapter 2. The excess heat of the reactor(s) (roughly
150 kW) covers the main bulk of the heat required for pre-heating of the
SOEC at 373 K (roughly 150 kW for vaporization of water at 373 K). This
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Figure 23: OPEX, Operating costs of the optimization results

The figure shows the contribution of feed water, waste water, work (W) and heat
(Q) to the OPEX. The 220 $/hr for 1 MW of electrical energy for water electrolysis,
equivalent to around 1.25 (SOEC) to 2 (AE) $/kWh, are not included in this figure.
The costs for feed water and waste water are small in comparison to the costs from
work and heat.

result shows that the positive effect of the heat integration on the efficiency
does not improve with higher temperatures of the reactor.

Furthermore, the results show that if heat integration is avoided to reduce
capital costs, supplying heat to the system greatly reduces the system
efficiency.

For the solutions of (O1) and (O2), we estimate the OPEX after optimiza-
tion. The results are shown Figure 23. The cost of electrical energy, denoted
as W, does not include electricity for water electrolysis, which adds up to an
additional cost contribution of 220 $/hr, corresponding to 1.25 to 2 $/kWh.
The costs associated with the heat flows include the costs for hot steam
and the electrical costs for the operation of the cooling tower, which needs
around 7.5 kW of electrical energy.

The shortcut models used are afflicted with inaccuracies, which propagate
to the optimal solution. Other solutions to the superstructure problem
have objective values close to the global optimum, such that a clear optimal
process must be determined with more accurate models. We consider a few
other configurations to compare with the global optimal solution.

For the case of AE and grid specification (G1), another interesting config-
uration includes the separation of the CH4/CO2 gas mixture prior to the
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Figure 24: Solution path: Two reactor configuration.

The configuration is optimal in terms of efficiency and CAPEX for the choice of
SOEC electrolyzer. If we replace SOEC by AE in layer 2, the same path through the
rest of the superstructure is chosen, with changes to the heat exchanger network.

methanation reactor. Utilization of membrane separation for this task gives
an efficiency of 49.4 % for (O1), compared with the 50.0% of the optimal
solution. Furthermore, the unit costs increase from $1.804M to $1.817M,
which is negligible with the given accuracy of the models.

Alternatively, we calculate the objective value of replacing the second
methanation reactor by the separation and recycling of reactants. This
process configuration has promising efficiency at higher process pressures
of 13 bar [1]. For the current study, at lower process pressure of 6 bar,
the configuration has an efficiency of 47.9%. We attribute the decrease in
efficiency to the shortcut model for gas separation. For the gas separation,
we used a more detailed PSA model in Chapter 4, which resulted in better
separation properties.
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Figure 25: Solution path: Single reactor configuration.

The configuration is optimal in terms of efficiency for the choice of SOEC electrolyzer
if a large quantity of hydrogen can be supplied to the gas distribution system. If we
replace SOEC by AE in layer 2, the same path through the rest of the superstructure
is chosen, with changes to the heat exchanger network.

5.2.2 Biological Methanation

None of the previous process design solutions included the biological metha-
nation in layer 3. To compare the biological methanation process with the
previous results, we enforce the biological methanation to be chosen by the
solver by fixing the corresponding indicator variable to be 1. The results
of the optimization, including AE and SOEC, are shown in Table 15. In
the previous section, the methanation reactor was found to act as a signifi-
cant heat source. The bioreactor, however, operates at lower temperatures,
strongly limiting the heat integration within the process. This contributes to
the decrease in the overall process efficiency shown in Table 15, as compared
with that of the previous section.
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Table 15: Results of the optimization with biological methanation
The table shows the results of the optimization with biological methanation with
respect to (O1). We consider the two bioreactors BIO1 and BIO2 with 96 % and
65 % of CH4 in the dry product gas, respectively. Optimization with respect to
(O2) or (O3) shows almost identical results to the result of (O1). This is due to the
limitation of the heat integration for this case.

Electrolyzer AE SOEC

Bioreactor BIO1 BIO2 BIO1 BIO2

η [%] (O1) 47.0 46.5 56.1 55.3
CAPEX [10−6· $] 3.554 3.839 5.709 6.134

Figure 26: CAPEX values of the optimization results for biological methanation
The figure shows the contributions of the unit, compressor (W), and heat exchanger
(Q) costs to the CAPEX. The CAPEX is scaled to the plants product capacity of
total CH4 in terms of LHV in kW. For reference, the value AE (G1) O1 for catalytic
methanation is shown, which is also included in Figure 22.

For the bioreactor BIO1 with a high concentration of methane in the
output gas of 96 %, the product gas does not need further purification apart
from drying. Figure 28 shows the corresponding process configuration. The
bioreactor BIO2 produces gas with a concentration of 65 % CH4, which is
not suitable for direct feeding to the gas distribution system. The result for
this case shown in Figure 29 includes additional purification via membrane
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Figure 27: OPEX, Operating costs of the optimization results
The figure shows the contribution of water, waste water, work (W) and heat (Q) to
the OPEX for the biological methanation. We do not include 220 $/hr for 1MW of
electrical energy for water electrolysis, which would be equivalent to around 1.5
(SOEC) to 2 (AE) $/kWh. For reference, we show the value AE (G1) O1 for catalytic
methanation, which is also included in Figure 22.

separation. However, the second-best solution utilizing PSA instead of
membrane separation was very close to this result (within 0.4 % of the
objective value with respect to efficiency). A more detailed analysis for this
case is needed.

The processes using biological methanation show increased capital costs
compared to the processes using catalytic methanation. The increase in cost
is contributed to the increased cost of the biological methanation unit itself.
However, capital costs of the heat integration network for the AE process
are reduced significantly, as shown in Figure 26 and Figure 27 in terms of
CAPEX and OPEX respectively. Combining the high efficiency of the SOEC
with a high conversion rate in the bioreactor results in a large amount of
product gas (SOEC BIO1). Nonetheless, the SOEC processes have a higher
CAPEX per product in terms of LHV than the AE processes, as Figure 26

shows. If the conversion rate is low (SOEC BIO2), a large quantity of gas is
recycled from the membrane separation unit. This results in large mass flow
rates within the process and high costs for compression and heat exchanger
equipment.
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Figure 28: Solution path: Biomethanation with high CH4 product concentration.

The configuration is optimal in terms of efficiency for the choice of AE if a high
concentration of methane can be produced by the bioreactor.

5.2.3 Methane as Chemical Energy Carrier

To estimate the efficiency of methane as an energy carrier, we compute the
power-to-power efficiency, as in Chapter 4, for the optimal process configura-
tions of the current results. For comparability we again assume an efficiency
of 57% for the CCPP corresponding to the lower heating value of the prod-
uct gas. The exergetic values of the chemical exergy of the product, the
required heat and work, and the lower heating value are shown in Table 14.
We assume that all electrical energy required for the process comes from
RES. The process has a heat demand at high temperatures, at which district
heating is typically not available. Instead, the heat demand of the process
is covered by using a part of the product methane in the direct fired heater.
The amount of methane which is required is calculated from the energetic
value of the heat demand and the lower heating value of the methane. We
assume a thermal efficiency of the direct fired heater of 92%. We note here
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Figure 29: Solution path: Biomethanation with low CH4 product concentration.

The configuration is optimal in terms of efficiency for the choice of AE if a low
concentration of methane can be produced by the bioreactor. Membrane separation
is chosen twice in the process, prior to and after methanation.

that the heat demand of the processes with SOEC as shown in Table 14 could
be reduced further by using direct heat integration instead of indirect heat
integration. The 21 kJ/mol of heat, which are produced by the electrical en-
ergy dissipation within the SOEC producing 3.71 mol/s of hydrogen could
pre-heat the water steam prior to the electrolysis, significantly reducing the
energetic heat demand by 77.9 kW, i.e., the exergetic heat demand FQ of high
temperature heat by about 55 kW. We thus calculate the power-to-power
efficiency of the processes as

ηP =
0.57(LHVCH4 −Qext/0.92)

FW + 1000

where Qext denotes the external energetic heat demand of the processes cov-
ered by methane combustion, corresponding to the exergetic heat demand
FQ, which in case of the SOEC processes is reduced assuming direct heat
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Table 16: Efficiency ηP of using methane as an energy carrier from power to power.

Case ηP % Case ηP %

AE (G1) (O1) 28.4 SOEC (G1) (O1) 39.4
AE (G2) (O1) 28.9 SOEC (G2) (O1) 39.7
AE (G1) (O2) 23.3 SOEC (G1) (O2) 35.5
AE (G2) (O2) 23.5 SOEC (G2) (O2) 39.3
AE (G1) (O3) 24.0 SOEC (G1) (O3) 38.7
AE (G2) (O3) 24.1 SOEC (G2) (O3) 36.3

Figure 30: Exergy diagram of the optimal solution of the case SOEC (G2) (O1)
This diagram shows the exergy efficiency of the optimal power-to-power route with
respect to efficiency. All energy and material flows are depicted in their exergetic
value. Here, win denotes the work demand of compressors in the methanation
process. The process excess heat qrec and some of the product methane qin are used
for pre-heating of water for the SOEC. Finally, the work produced from the product
methane is labeled wout.

integration for the gas pre-heating and LHVCH4 denotes the lower heating
value of the product as shown in Table 14.

The results are shown in Table 16. Via optimization we could identify
better alternatives than the process C2 from Chapter 4. An exergy flow
diagram for power-to-power conversion is shown in Figure 30 for the optimal
steady-state process of the case SOEC (G2) (O1) assuming the additional
heat integration for pre-heating of water for the SOEC. The figure shows
that using SOEC for the production of hydrogen improves the efficiency
of the process. A significant amount of energy is lost at reconversion of
methane to electrical energy via the CCPP.
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The efficiency of storing electrical energy in form of methane is low
compared to other energy storage technologies, such as compressed air
energy storage systems (42-55%) and pumped hydro energy storage (70-
80%) [3]. However, as mentioned in Chapter 1, the extension of pumped
hydro energy storage is limited due to geographical prerequisites.

Instead of converting methane back to electrical energy, it can be used as
transportation fuel in vehicles with gas combustion engines. If we use an
estimated consumption of synthetic methane of 4 kg/100 km and a best case
scenario of a methane production of 0.874 mol/MJ of electrical energy used
for the methanation process, this results in 2.85 MJ/km. For comparison,
electric cars report efficiencies of approximately 540 to 900 kJ/km.

5.3 chapter summary

We applied a superstructure optimization approach to power-to-methane
processes, related to 12 different scenarios. The processes were optimized in
terms of exergy efficiency, which unifies the contributions of electrical, heat,
and chemical flows to one energetic value. Alternatively, the processes were
optimized with respect to the economic objectives CAPEX and TAC.

• The most efficient process with an efficiency of 65.8% utilizes SOEC
for water electrolysis and includes heat integration within the process.
The catalytic methanation was found to be a suitable heat source for
preheating the steam for water electrolysis. The excess heat of the
reactor covers the main bulk (vaporization of water) of the pre-heating
process. However, an extensive heat exchanger network and the SOEC
electrolyzer technology lead to high capital costs.

• The indirect heat integration, as included in the superstructure, showed
a significant influence both on the process costs and efficiency, which
was especially pronounced in the case of high-temperature electrolyzer,
SOEC, where the catalytic methanation reactor can act as heat source
for steam generation and/or pre-heating of the SOEC feed stream.
Including internal heat integration increased the efficiency of processes
with AE by 5%, while the efficiency of processes with SOEC increased
by 7%.

• We showed, that the specification of the gas distribution system has
an influence on the optimal process configuration. Increasing the
threshold for feed of hydrogen to the gas distribution system reduces
the number of necessary unit operations.

Furthermore, we assessed the potential of substituting the conventional
chemical methanation unit with a biological one.
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• The downstream configuration of the biological methanation was
found to be dependent on the expected methane concentration of the
unit, and as shown in the analysis a membrane separation unit was
preferred for a methane concentration of 65 mol-% in the product
gas. However, using other separation units such as pressure swing
adsorption results in similar efficiency and cost, so that we can not
determine a clear best solution given the limited accuracy of the black
box models.

• Process configurations with biological methanation have a limited
potential for internal heat integration because of the low temperature
level at which heat from the methanation is released. This results in
decreased efficiency, especially for processes equipped with a SOEC.
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O P T I M I Z AT I O N O F P R E S S U R E S W I N G A D S O R P T I O N V I A
A T R U S T- R E G I O N F I LT E R A L G O R I T H M A N D
E Q U I L I B R I U M T H E O RY

In this chapter we take a closer look at the gas separation via pressure swing
adsorption, which is a process commonly applied to many gas separation
tasks, such as oxygen separation from air, flue gas separation, and biogas
upgrading [137, 138, 129, 139]. For our application of biogas upgrading,
PSA processes have an important advantage compared to other separation
technologies. Namely, that other impurities, such as H2S, N2, and O2 can be
extracted from the product mixture of anaerobic digestion [140]. The process
is frequently applied in industry, usually for purification of a gas mixture to
up to 99 mol.-% purity [128], which we also applied in the previous chapters.
To feed into the gas distribution system, however, only a purity of 95 mol.-%
is required. This gives room to improve the process operation in regard to
our application.
Another incentive to consider high-fidelity optimization of the PSA process
in a PtM framework is the reduction of required storage units for the carbon
source for dynamic plant operation. To use power-to-methane processes as
a way to balance out supply of electricity from RES and demand, dynamic
process operation must match the availability of RES. Storing large quantities
of a CH4/CO2 mixture, rather than pure CO2 increases the overall process
cost. While technologies such as gas bags or gas cylinders [141, 142, 143] are
readily available, storing a 3:2 mixture of CH4/CO2 significantly increases
the volume of the gas to be stored. Furthermore, methane is flammable,
which denotes a safety hazard for large quantities of stored mixtures. In
practice, these are incentives to consider gas separation technologies for
dynamic operation, despite the advantage of directly supplying the gas
mixture to the methanation process, which we showed for steady state
processes in the previous chapter. A holistic dynamic process optimization
is out of the scope of this thesis. However, we take a first step in the
direction of a high-fidelity process model by taking a closer look at the very
challenging optimization of a high-fidelity PSA model.

Because of the technology’s broad application in industry many studies
exist on the simulation and optimization of PSA processes to maximize
operation efficiencies and adsorbent materials [144, 145, 146, 147]. Despite
the corresponding improvement in mathematical modeling of the process,
optimization of the PSA process is still a challenging task. Typical mathe-

91
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matical models for PSA processes describe the sharp adsorption fronts,
cyclic behavior, and internal recycle streams by systems of stiff PDEs. Spatial
discretization of these models results in systems of differential algebraic
equations (DAEs), which are time consuming or numerically difficult to
solve. The problem formulations are often ill-conditioned and internal
recycle streams and the cyclic behavior result in dense constraint Jacobians
of the nonlinear programs (NLPs).

Different successful approaches to PSA optimization have been demon-
strated over the years. One key factor of the optimization of PSA processes
is the determination of the cyclic steady state (CSS), i.e., when the initial
and final states of the system coincide. Many publications utilize successive
substitution (i.e. Picard iteration) [145]. This method iterates by integrat-
ing over the model equations, starting with the final state of the previous
iteration as the new initial value. This process is repeated until the differ-
ence between initial and final states is smaller than a predefined threshold.
This method has the advantage of being numerically stable, but it features
slow convergence properties. Another approach to finding a solution to a
PSA model with respect to the CSS condition, is the addition of algebraic
constraint [137, 148, 149, 150]. The convergence of this method is much
faster, and it converges globally [147]. Simultaneous solving of the fully
discretized PDEs and the CSS condition has been successfully applied to
set-ups with two columns. To give a few examples: Smith et al. [151]
proposed a MINLP approach with a fully discretized PDE to optimize the
operation cycle and the number of beds. The SQP method was successfully
applied to optimize fully discretized PSA models by Biegler et al. [147] and
Tao et al. [152]. Vetukuri et al. [153] proposed a quasi-Newton method,
which approximates the dense constraint Jacobian of the NLP, and could
show a significant reduction in computational costs. Dowling et al. [154]
formulated the PSA as an optimal control problem to determine optimal
cycle times. This approach was further improved by Wang et al. [146], who
used flux limiter schemes for reducing computational costs. Agarwal et
al. [155] developed a reduced model via proper orthogonal decomposition,
which was used by a trust-region filter (TRF) method for PSA optimization
[156]. The TRF method uses a reduced model to assist the optimization of
the PDE constrained problem by reducing the evaluations of the PDE model.
Agarwal pointed out that the computational effort of the TRF method can
still be improved by choosing a different reduced model in the trust-region
step.

Another challenge arises with the complexity of the PSA cycle. In the
literature many optimization examples for 2-column PSA cycles can be
found, as well as simulation studies for more complex cycles. To the author’s
knowledge, only Jiang et al. [148] optimized an adsorption cycle with more
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than two adsorption columns. We therefore perform the optimization of a
more complex 4-column PSA cycle with a 9-step operating cycle, including
4 internal recycle streams, as opposed to the two column set-ups common
in the literature.

We apply here the TRF method as used by Agarwal et al. [156]. We
propose a different reduced model based on equilibrium theory [157] for
the application of the TRF method to minimize the computational time of
the trust-region step. Despite the increased complexity of the PSA cycle,
the equilibrium model has fewer variables than the proper orthogonal
decomposition (POD) approach by Agarwal.

Mixture

Product

Off-gas

a) Pressure swing adsorption unit scheme.

1 AS ↓ DEQ I ↓ DP I ↓ DEQ II ↓ DP II ↑ DE ↑ PEQ II ↑ PEQ I ↑ PR ↑
2 PEQ I ↑ PR ↑ AS ↓ DEQ I ↓ DP I ↓ DEQ II ↓ DP II ↑ DE ↑ PEQ II ↑
3 DP II ↑ DE ↑ PEQ II ↑ PEQ I ↑ PR ↑ AS ↓ DEQ I ↓ DP I ↓ DEQ II ↓
4 DEQ I ↓ DP I ↓ DEQ II ↓ DP II ↑ DE ↑ PEQ II ↑ PEQ I ↑ PR ↑ AS ↓

b) Periodic cycle steps of the four columns over time.

Figure 31: PSA column configuration.
To recall the PSA set-up from Chapter 4, we repeat here the scheme of the adsorption
cycle steps. These 9 steps include adsorption (AS), pressure equalization with
decreasing pressure (DEQ), pressure equalization with increasing pressure (PEQ),
depressurization (DP), desorption (DE) and pressurization (PR), with arrows
indicating the direction of flow through the column.

The PSA cycle is repeated from Chapter 4 in Figure 31, including adsorp-
tion (AS), pressure equalization with decreasing pressure (DEQ), pressure
equalization with increasing pressure (PEQ), depressurization (DP), desorp-
tion (DE) and pressurization (PR). The cycle includes four recycle material
streams: two pressure equalization streams, one purge stream, and one
stream to repressurize the column prior to the adsorption step. The pressure
is constant during AS and DE. The product gas methane is produced at
high pressure during the adsorption step at partially returned to the column
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during PR. The off-gas is produced at low pressure during DP II and DE.
Gas is exchanged during the pressure equalization steps, from DEQ I to PEQ
I and from DEQ II to PEQ II. Furthermore, gas from the depressurization
DP I is used to purge the column at DE and a fraction of the AD product
gas repressurizes the column at PR. We determine the final product gas
concentration at cyclic steady state (CSS). As an example, we model the
separation of methane and carbon dioxide, as commonly applied for biogas
upgrading. Goal is the purification of the light component methane from
the mixture via adsorbents such as carbon molecular sieves with a focus
on product purity, recovery and process efficiency. As a second example,
we consider the separation of a ternary mixture, including hydrogen. This
application may arise with the production of synthetic natural gas from
hydrogen and carbon dioxide [2], see for example process routes B, C1, C2

from Chapter 4. As hydrogen is almost inert on the adsorbent, hydrogen
remains in the product methane. Only carbon dioxide is separated from the
mixture as an impurity.

We note that these applications are examples to model the separation
process in the framework of PtM processes. The method and the proposed
reduced model can be applied to any other adsorption separation task by
applying different model parameters and boundary conditions.

6.1 modeling

In this section we introduce the high-fidelity and reduced PSA models: In
Section 6.1.1 we describe the PSA model, which we aim to optimize in this
work. The high-fidelity PSA model is described by a set of PDAEs with
changing boundary conditions, according to the cycle configuration in Figure
14a. Optimization of this PDAE model is computationally and numerically
quite challenging. Much simpler representations for PSA models have been
derived in the past. One example is the equilibrium model by Knaebel et al.
[157], which we introduce in Section 6.1.2. The equilibrium theory allows for
reformulation of the PDAEs to algebraic equations, which are much easier
to evaluate and optimize.

6.1.1 PSA Modeling via PDAEs

The PSA is described by a system of partial differential and algebraic equa-
tions assuming ideal gas behavior, no axial pressure gradient, no accumu-
lation in the shockwaves, non-isothermal adsorption behavior, adsorption
according to the linear driving force model (LDF) and Langmuir-type equi-
librium isotherms. The mass balances do not include diffusion terms to
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avoid smearing of the steep adsorption fronts. We introduced this model
in Section (4.2.2) with a different approach for calculating the adsorption
equilibrium. Instead of applying the Ideal Adsorbed Solution Theory (IAST)
(26), which is numerically difficult in practice, the adsorption equilibrium
q∗i for component i ∈ {CO2,CH4} is given as a multi-component extension
of the multi-site Langmuir isotherm.

q∗i = qmax,iKipyi


1−

∑
j∈{CO2,CH4}

q∗j
qmax,j



αi

(51)

Ki = Ki0 exp(−∆Hi/RT) (52)
∂qi
∂t

= ki(q
∗
i − qi) (53)

Parameters for the adsorption of methane and carbon dioxide of the ad-
sorbent CMS-KP 407, are taken from Canevesi et al. [139]. Hydrogen is
assumed to behave as a non-adsorbing gas component.

The PDAE system is semi-discretized with respect to the space coordinate
via a finite volume method to get a system of differential algebraic equations
(DAEs) on a spatial grid with 50 elements. We consider the cyclic operation
with 4 columns and 9 steps [1], shown in Figure 31, including pressure
equalization steps between the columns.

Semi-discretization of the PDAE model results in a DAE system of differ-
entiation index 1 with differential states

xPSA =
(
y>CO2 ,y>CH4 ,q>CO2,q

>
CH4

, T>, T>W ,p
)>

determined by the discretized PDEs (19), (23), (21), (22), and (27). The
algebraic states

yPSA =
(
y>H2 ,q∗CO2

>,q∗CH4
>, v>,αPEQI,αPEQII

)>

are given by the sum of mole fractions, (51), (20), and the additional bound-
ary conditions in Table 5. Note here that xPSA does not correspond to the
variables x of the TRF method introduced in Section 6.2.

The system is difficult to solve directly via full discretization to an NLP.
The sharp adsorption fronts result in stiff differential equations and internal
recycle streams during the pressure equalization steps complicate the solving
process further. Therefore, we calculate the CSS via the stable method of
successive substitution. The successive substitution terminates when the
CSS error is below a predefined threshold

||xPSA0 − xPSA(tf)|| 6 CSStol
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where xPSA0 denotes the states of the PSA model at t = 0. Implementation
of a direct method to reach the CSS, as mentioned at the beginning of this
chapter, can further improve the proposed method.

6.1.2 PSA Modeling via Equilibrium Theory

The PSA model introduced by Knaebel et al. [157] is able to represent the
dynamic behavior within the PSA columns without the need for partial dif-
ferential equations. Additional assumptions on the PSA, namely isothermal
behavior, amount of gas adsorbed is always at adsorption equilibrium, linear
adsorption isotherms and a binary gas mixture, facilitate the PDAE model.
The result is a model, for which it is possible to find analytical solutions. We
give a brief overview over the model equations and refer to Knaebel et al.
[157] for the detailed derivation.

The different steps of the PSA operation cycle shown in Figure 14a can
be classified into two types: PSA steps with changing pressure (DEQ I, DP
I, DEQ II, DP II, PEQ II, PEQ I, PR) and PSA steps with constant pressure
(AS, DE). The linear adsorption isotherm for adsorbed amount of qi of
component i is given by

qi = kiCi = ki
pi
RT

, i ∈ {CO2,CH4}.

Furthermore, let z ∈ [0, 1] be the dimensionless position in the adsorption

bed, and βCO2 = 1/(1+ (1− ε)kCO2/ε), β =
βCO2
βCH4

6 1. We also consider the
component mass balance in terms of the partial pressure of CO2 and the
total mass balance

ε

(
∂pCO2
∂t

+
∂vpCO2
∂z

)
+ RT(1− ε)

∂qCO2
∂t

= 0

ε

(
∂p

∂t
+
∂vp

∂z

)
+ RT(1− ε)

∂q

∂t
= 0.

Using the assumption of linear adsorption, we reformulate these mass
balances to get

∂yCO2
∂t

+
βCO2v

1+ (β− 1)yCO2

∂yCO2
∂z

=
(β− 1)(1− yCO2)yCO2
1+ (β+ 1)yCO2

1

p

dp
dt

(54)

1

βB

∂p

∂t
+ (β− 1)

∂vpyCO2
∂z

+
∂vp

∂z
= 0. (55)
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Applying the method of characteristics to Eq. (54) gives

dz
dt

=
βCO2v

1+ (β− 1)yCO2
(56)

dyCO2
dp

=
(β− 1)(1− yCO2)yCO2
(1+ (β− 1)yCO2)p

. (57)

Figure 32: Characteristics and shockwaves for different boundary conditions of the
column.

The plots show the dimensionless position of characteristics in the column as dashed
lines. The position of waves and shockwaves is depicted as solid lines. In Figure
A the characteristics represent the AS step (and the shockwave), with feed gas
entering the column from the top and product gas leaving the bottom at constant
pressure. Figures B and C show different depressurization steps (and a shockwave).
In both Figures the characteristics change with pressure and gas leaves one end of
the column. In Figure B the top of the column is closed, gas leaves at the bottom,
representing the steps DEQ I, DP I, and DEQ II. Figure C shows the reversed case
of step DP II, during which gas is leaving the column at the top. The DE step is
represented by Figure D (along with a wave), where purge gas enters the column
from the bottom and off-gas leaves the column at the top at constant pressure.
Repressurization of the column is done via gas entering the column from the bottom,
as is shown in Figure E. This corresponds to the steps PEQ I, PEQ II, and PR.

The model includes the position of shockwaves and waves within the
adsorption column. Shockwaves appear, if a gas mixture moves towards a
gas mixture of higher concentration of light component. If a gas mixture
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moves towards a gas mixture of lower concentration of light component, a
wave occurs. A shockwave occurs during the steps AS, DEQ I, DP I, and
DEQ II, a wave appears during the steps DE, PEQ II, PEQ I, and PR. In these
cases, the reference points, to determine the state of the column, are chosen
from the same side of the shockwave or wave. Under the assumption that
there is no accumulation at the shockwave,

vs =
dz
dt

∣∣∣∣
s

= βCO2
vTyT − uLyL
yT − yL

(58)

holds for the interstitial velocity of the shockwave vs. The subscript L
denotes a value directly in front (lead) of the shockwave and T denotes a
value directly after (trail).

If the pressure in the adsorption bed changes, u = 0 holds at one of the
ends of the adsorption bed. We assume w.l.o.g. that u = 0 at z = 0. Then
integration of (55) gives

v =
−z

βCH4(1+ (β− 1)yCO2)p

dp
dt

(59)

and from (57) and (59) we get

yCO2
yCO2,0

=

(
1− yCO2
1− yCO2,0

)β(
p

p0

)β−1

z

z0
=

(
yCO2
yCO2,0

) β
(1−β)

(
1− yCO2,0

1− yCO2

) 1
(1−β)

(
1+ (β− 1)yCO2
1+ (β− 1)yCO2,0

)
,

where the subscript 0 denotes a reference value on the same characteristic.
From (58) follows

vs =
−βz

(1+ (β− 1)yT )(1+ (β− 1)yL)p

dp
dt

.

By considering v and vs as functions over pressure, we get a system of
algebraic equations to describe the PSA steps with changing pressure.

If the pressure is constant, i.e., ∂p∂t = 0, integration of Eq. (55) results in

v

v0
=
1+ (β− 1)y0
1+ (β− 1)y

.

From (57) follows that the concentration along the characteristic is constant

yCO2 = yCO2,0

and according to (58)

vs = βCO2
uLyL − uTyT
yL − yT
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holds for the shockwave.

To determine the initial conditions of the adsorber bed in the next PSA
step, we consider linear approximations of the previous state, still preserving
the position of shockwaves. If a shockwave is in the column during a change
in PSA steps, the states above and below the shockwave are approximated
separately. The CSS condition is added to the model as an algebraic con-
straint. Figure 32 shows an example of the behavior of the characteristics for
the different boundary conditions of the PSA cycle.

6.2 trust-region filter method

In this section we introduce the TRF method for optimization of nonlinear
optimization problems as developed by Eason [158]. We first present the
main idea, before highlighting the additional parts of the algorithm. Finally,
we summarize the assumptions needed for convergence of the TRF method.
For a detailed proof of the convergence of the TRF method we refer to
[158, 159].

6.2.1 Main Idea of the TRF Method

The TRF method finds the optimal solution of a nonlinear problem of the
form

min
x=(xv,xw,xy)>∈Rn

f(x)

s.t. g(x) 6 0

h(x) = 0

d(xw) = xy

(NLP)

We denote constraints g and h as glass box constraints, as they are easy to
evaluate and differentiate. The constraints d, on the other hand, are very
time-consuming and numerically difficult to evaluate. The TRF method
reduces the number of calls to d(xw) : Rnw −→ Rny during the optimization,
by replacing d with a local surrogate model. A local surrogate model
rk(xw) : Rnw −→ Rny , i.e., a reduced model (RM) at the current iterate,
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replaces d(xw), which we call the truth model (TM), in each iteration of the
algorithm. Instead of the (NLP) a series of subproblems

min
x=(xv,xw,xy)>∈Rn

f(x)

s.t. g(x) 6 0

h(x) = 0

rk(xw) = xy

||x− xk|| 6 ∆k

(TRSPk)

is solved within a respective trust-region ∆k.

Definition 6.2.1. κ-fully linear: The reduced model rk(xw) is κ-fully linear on
B(xw,k,∆k) if for constants κf, κg > 0

||rk(xw) − d(xw)|| 6 κf∆2k
||∇rk(xw) −∇d(xw)|| 6 κg∆k

(60)

holds ∀xw ∈ B(xw,k,∆k).

For the convergence of the TRF method, rk(xw) must be κ-fully linear in
the trust-region at each iteration. This condition assures that for ∆k −→ 0

the difference between the two models and their sensitivities within the
trust-region converge to zero. If the model sensitivities ∇d(wk) are known,
we get a κ-fully linear reduced model rk(xw) from any sufficiently smooth
model r̂k(xw) : Rnw −→ Rny by applying the first order correction, defined
by

rk(xw) = FOC(r̂k(xw)) := r̂k(xw) + d(xw,k) − r̂k(xw,k)+ (FOC)

(∇d(xw,k) −∇r̂k(xw,k))
T (xw − xw,k).

6.2.2 Additional Strategies and Pseudocode of the TRF Algorithm

The TRF method includes additional strategies to handle infeasible sub-
problems and to determine conditions for termination. The algorithm’s
pseudocode is shown in Algorithm 2.

To make sure that a feasible point to (TRSPk) close to the trust-region
center exists, where the approximation of the κ-fully linear RM is more
reliable, the TRF method solves a series of compatible problems (TRSPk).
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Algorithm 2 Trust-Region Filter Algorithm

1: procedure Trust-Region Filter Algorithm

2: Initialize x0, ∆0, ω ∈ (0, 1), γc ∈ (0, 1), θ0 ← ‖xy,0 − d(xw,0)‖
3: for iteration = 0, 1, 2, . . . do
4: Generate κ-fully linear surrogate model rk(xw) wrt. xk, ∆k
5: if trust-region step from (TRSPk) wrt. rk(xw), ∆k is compatible

then
6: Compute criticality measure χk
7: if χk < ζ∆k then
8: ∆k ← ω∆k

9: Optimize trust-region step from (TRSPk) wrt. rk(xw), ∆k and
obtain xk.

10: if x̂k acceptable to the filter then
11: xk+1 ← xk
12: θk+1 ← ‖xy,k+1 − d(xw,k+1)‖, fk+1 ← f(xk)
13: Update ∆k according to the switching condition
14: if switching condition (SW) does not hold then
15: Add (fk, θk) to the filter
16: else
17: ∆k+1 ← γc∆k, xk+1 ← xk
18: θk+1 ← θk, fk+1 ← fk

19: if χk+1 < χtol and θk+1 < θtol then
20: Terminate successfully

21: else
22: Restoration: Find xk+1, which is feasible for (NLP)
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Definition 6.2.2. Compatibility: The trust-region step from (TRSPk) is compatible,
if for κ∆ ∈ (0, 1), κµ > 0 there exists an x = (xv, xw, xy)> ∈ Rn with

g(x) 6 0

h(x) = 0

rk(xw) = xy

||x− xk|| 6 κ∆∆k min{1, κµ∆
µ
k}.

If (TRSPk) is not compatible, the algorithm enters a restoration phase to
create a new iterate xk+1 and a new RM rk+1(xw), which results in a compat-
ible subproblem (TRSPk+1). For the restoration phase to be successful it is
sufficient to find a feasible point to (NLP). If xk+1 is a feasible point to (NLP)
and rk+1(xw) was created via the correction (FOC), the new subproblem
(TRSPk+1) is guaranteed to be compatible, as the trust-region center xk+1
is a feasible point. For example, a feasible point to (NLP) can be found by
repeatedly solving the optimization problem

min
x=(xv,xw,xy)

||d(xw,i) − xy||

s.t. g(x) 6 0

h(x) = 0

via iteration over the tear stream xw,i and choosing xw,i+1 = xw from the
optimal solution.

To get an indicator of how close the current iterate is to an optimal point,
we consider the criticality measure. We now define xc,k to be a feasible
point for (TRSPk) close to the trust-region center according to ||xc − xk|| 6
κ∆∆k min{1, κµ∆

µ
k}. According to Definition 6.2.2, this point xc,k exists for

any compatible subproblem (TRSPk) and may indeed be xk itself.

Definition 6.2.3. Criticality measure: Let (TRSPk) be compatible and φ(x) be the
optimal solution of the linear program

φ(x) = min
∆x=(∆xv,∆xw,∆xy)∈Rn

∇f(x)>∆x

s.t. g(x) +∇g(x)>∆x 6 0
∇h(x)>∆x = 0
∇rk(w)>∆xw −∆xy

‖∆x‖∞ 6 1
where ∆xv ∈ Rnv , ∆xw ∈ Rnw , ∆xy ∈ Rny . Then the criticality measure χk is
given by

χk = |φ(xc,k)|
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The criticality measure χk goes to zero, if the iterate xk approaches a
KKT-point of (TRSPk) without the trust-region constraint. Because the RM
is κ-fully linear, the error of the RM approaches zero for ∆k −→ 0, and
a KKT-point of (TRSPk) without the trust-region constraint approaches a
KKT-point of (NLP). Hence, if the criticality measure is small with respect
to the trust-region radius, the trust-region radius is reduced and the TRF
method continues until ∆k approaches zero. On the other hand, shrinking
∆k to 0 is not needed if the RM is generated via the first order correction
(FOC), ∇rk(xw,k) = ∇d(xw,k) holds, and χk = 0 indicates a KKT-point of
(NLP). In this case. optimality holds, even if ∆k is large.

The TRF method furthermore includes a filter check. A filter is defined as
the set

Fk = {(f(xi), θ(xi)) for i ∈ IF ⊂ {1, . . . ,k}}

where θ(xi) = ‖xy,i − d(xw,i)‖∞ is the infeasibility measure. A new iterate
xk+1 is accepted by the filter Fk, if θ(xk+1) 6 (1−γθ)θi or f(xk+1) 6 fi−γfθi
holds ∀(fi, θi) ∈ Fk i.e., if sufficient progress was made to improve feasibility
or objective of the previous iterates. If a new step is rejected by the filter, the
iteration continues with xk+1 = xk and a reduced trust-region radius. If a
step is accepted, the switching condition

fk − f(xk+1) > κθθ(xk)
γs (SW)

is checked. If (SW) holds, the iterate is an f-type step. In this case, the new
iterate is accepted and the trust-region radius ∆k is increased. If (SW) does
not hold, the iterate is a θ-type step. The previous iterate (fk, θk) is added
to the filter, and the trust-region radius is changed according to

υk := 1−
θ(xk+1)

θk

∆k+1 =


γc∆k if υk < η1

∆k if η1 6 υk < η2
γe∆k if η2 6 υk

An exception is made if υk < 0 holds. In this case a new step is rejected,
despite making small progress in fk.

6.2.3 Convergence

Eason [158] showed that the TRF method converges to a first order KKT
point of (NLP), given the following assumptions hold:
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A1 The functions f, g, h, and d defining (NLP) are twice continuously
differentiable.

A2 The problem domain is closed and bounded.

A3 MFCQ holds for (NLP) at all limit points of the TRF iteration.

A4 The reduced model is κ-fully linear, twice-continuous differentiable
and the second derivatives are uniformly bounded.

A5 The solution x̂k of (TRSPk) reduces the objective function value accord-
ing to the fraction of Cauchy decrease

f(xc,k) − f(x̂k) > κtχk min{χk/βk,∆k}

for a κt > 0 and a bounded sequence βk > 1. In other words, the
solver used for optimizing the trust-region step must make sufficient
progress in relation to the criticality measure evaluated in xc,k.
In practice this condition is fulfilled, by using an NLP optimization
strategy to solve (TRSPk), which is initialized in the feasible point xc,k.

A6 The condition ‖xc,k − xk‖ 6 κuθk holds for small θk < δ and a κu > 0.
If rk(xw,k) = d(xw,k) holds, as is the case if the first order correction
(FOC) is used to generate the RM, this condition is fulfilled.

Eason shows that the TRF method will create a subsequence {ki} with
compatible trust-region steps (TRSPki) and

lim
i−→∞χki = 0, lim

i−→∞ θki = 0, lim
i−→∞∆ki = 0, lim

i−→∞ xki = x

where x is a KKT-point of (NLP). For the convergence proof we refer to
Eason [158].

6.2.4 Simplifications of the TRF Method

Trust-region radius

As shown by Yoshio and Biegler [160], the trust-region radius in the sub-
problem (TRSPk) must not necessarily extend to all model variables x.
Instead it can be formulated in terms of the degrees of freedom alone.
We partition x = (x̂, x̄)>, where x̄ = (xvx̄ , xwx̄)

> are the degrees of free-
dom and x̂ = (xvx̂ , xwx̂ , xy)> are determined by the equality constraints



6.2 trust-region filter method 105

ĥ = (h(x)>, (d(xw) − xy)>)>. As long as the model sensitivities are non-
singular, the trust-region constraint on the degrees of freedom propagates
to the remaining variables according to

‖x− xk‖ 6 ‖x̄− x̄k‖+ ‖x̂− x̂k‖
6 ‖x̄− x̄k‖+ ‖∇x̄ĥ(x̄k)−>∇x̂ĥ(x̂k)>(x̄− x̄k)‖
6 (1+ ‖∇x̄ĥ(x̄k)−>∇x̂ĥ(x̂k)>‖)‖(x̄− x̄k)‖.

For a detailed proof we refer to [160]. We can therefore rewrite the trust-
region radius as

‖x̄− x̄k‖ 6 ∆k. (61)

In the current work, the degrees of freedom correspond to x̄ = xw. We
apply both strategies, the full trust-region radius and the trust-region radius
regarding the degrees of freedom, and compare the results.

Regularity and feasibility of the trust-region step

To ensure that MFCQ holds, which is required in the limit point of the
iteration to ensure convergence according to assumption A3, for all x ∈ Rn,
one can introduce artificial variables xp, xn, xq, and `1 penalties, and rewrite
(NLP) as:

min
x=(xv,xw,xy)>∈Rn,
xp,xn∈Rnh+ny ,

xq∈Rnh

f(x) +β((xp + xn)
>eh + x>q eg)

s.t. g(x) 6 xq(
h(x)>, (xy − d(xw))>

)>
= E(xp − xn)

xp, xn, xq > 0

(62)

where eh ∈ Rnh and eg ∈ Rnh+ny are vectors with elements of 1 and E is a
scaling matrix. Note here that the artificial variables only need to be added
to constraints which may violate the MFCQ. The corresponding trust-region
subproblem

min
x=(xv,xw,xy)>∈Rn,
xp,xn∈Rnh+ny ,

xq∈Rnh

f(x) +β((xp + xn)
>eh + x>q eg)

s.t. g(x) 6 xq(
h(x)>, (xy − rk(xw))>

)>
= E(xp − xn)

‖xw − xw,k‖ 6 ∆k
xp, xn, xq > 0

(63)
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has a feasible solution with xq,j = max(0,gj(x)), xp ⊥ xn, xp,i + xn,i =

|
(
h(x)>, (xy − rk(xw))>

)>
i
| and the compatibility check can be skipped. In

this case, we compute the infeasibility measure as

θk = ‖
((
d(xw,k) − xy,k

)> , x>p,k, x>n,k, x>q,k

)>
‖

and enter the restoration phase if ∆k 6 ∆tol and θk > θtol.

6.2.5 Application of the TRF Method to PSA Optimization

We show here, how we optimize the PDAE model from Section 6.1.1 with
the TRF method and how the model based on equilibrium theory from
Section 6.1.2 is used as a local surrogate model. In Section 6.2.5 we define
the function d(w), which is used to apply the TRF method. The TM d(w)

represents the correlation between the columns design and cycle operation,
given by the variable w, and the product gas flow and concentrations of the
PDE model at cyclic steady state (CSS), denoted y. In Section 6.2.5 we show
the corresponding reduced model r(w), which calculates the correlation
between design and product via a set of algebraic equations derived from
equilibrium theory. Finally, we discuss the calculation of derivatives of the
TM, which are needed to apply the first order correction.

The Truth Model d(xw)

To optimize the separation performance of the PSA via the TRF method,
we need to introduce the variables xw, xy, and the TM function d(xw).
The degrees of freedom of the PSA model are the adsorption pressure pAS,
desorption pressure pDE, column diameter Ri, column length L, cycle time tf,
and a fraction of product gas fed back to the column during the PR step Bf.
With proper scaling of the variables, we define w = (pAS,pDE,Ri,L, tf,Bf)>.
The model response is given by the gas flow rates of the product stream
d(xw) = (NCO2 ,NCH4 ,NH2)

> at CSS, where Ni denotes the mole flow rate
of component i in mol/s. The product stream gas flow rates are given by

Ni = εas(1−Bf)

tf/4∫
t=0

p(t)

RT(t, z = 0)
yi(t, z = 0)v(t, z = 0) dt.

which is the flow rate of the gas leaving adsorption column during the
adsorption step AS. This implies that for each function call d(xw) the CSS of
the DAE system must be evaluated.
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Building a Reduced Model

The reduced model r(xw), which is needed for the TRF method, has the same
output stream rk(xw) = (NkCO2 ,NkCH4 ,NkH2)

> as the TM. The reduced model
is calculated based on dimensionless pressure and time. The parameters Ri,
L, and tf are scaling the interstitial velocity of the gas flowing in and out of
the column. In addition to the inputs xw for the truth model, the equilib-
rium model has additional degrees of freedom, which are the adsorption
parameters kCO2 , kCH4 as well as the concentration of the gas entering the
column during DE and PR, denoted yDE and yPR. We allow for different
values of the adsorption parameters in various step of the PSA process,
i.e. kCO2 = (kADCO2 ,k

DPI
CO2

,kPRCO2 , . . . ) and let pRM denote the additional DOFs
pRM = (kCO2 ,kCH4 ,yDE,yPR)>. We use these additional DOFs to derive a
local reduced model rk(xw) from the equilibrium model at a current iterate
xw,k of the TRF algorithm:

Let r(xw,pRM) denote the model response of the equilibrium model, which
is the product gas flow rates of the separation at CSS. We minimize the error
of the equilibrium model to the TM response d(xw,k) at the current iterate
according to

p∗k = arg min
p

||d(xw,k) − r(xw,k,p)||2

and define r̂k(xw) = r(xw,p∗k). To guarantee convergence of the TRF Equa-
tions (60) must hold for the reduced model at the current iterate xw,k. We
can assure that these conditions hold, by applying the first order correction
(FOC).

6.2.6 Derivatives

To apply the first order correction (FOC) we need to calculate the sensitivities
∇d(xw,k) of the TM at CSS. One option to calculate the sensitivities is the
Finite Difference approach, which is simple to implement, but has several
disadvantages in practice. Firstly, the evaluation of the Finite Differences is
very time consuming. It requires multiple function evaluations of the TM,
each of which include the calculation of the CSS via successive substitution.
Furthermore, the successive substitution calculates the CSS only up to a
predefined tolerance ||xPSA0 − xPSA(tf)|| 6 CSStol, where xPSA(tf) denotes the
states of the system of ODEs of the TM at final time tf, and xPSA0 denotes
the corresponding initial value. This CSS tolerance results in an error in the
model response d(xw), which is amplified in the finite difference calculation
and results in a large error in ∇d(xw,k).
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An alternative is to consider d as a function of the input xw and xPSA(0, xw)
at CSS, which is implicitly depending on xw via the CSS equation

hCSS(xw) = x
PSA(0, xw) − xPSA(tf, xw) = 0.

Then we calculate ∇d(xw,k) via

∇d(xw,k) =
dd(xw, xPSA(0, xw))

dxw
(xw,k)

=
∂d(xw, xPSA(0, xw))

∂xw
(xw,k)+ (64)

∂d(xw, xPSA(0, xw))
∂xPSA(0, xw)

(xw,k)
>dxPSA(0, xw)

dxw
(xw,k)

where the partial derivatives ∂d(xw,xPSA(0,xw))
∂xw

and ∂d(xw,xPSA(0,xw))
∂xPSA(0,xw)

are the
backward sensitivities of the PSA model equations. Furthermore, we apply
the implicit function theorem to get

dxPSA(0, xw)
dxw

(xw,k) = −∇h−>CSS,x(xw,k)∇hCSS,xw(xw,k) (65)

from the CSS equation. We then use automatic differentiation of CasADi
[112] to calculate (65) and the backwards sensitivities.

6.3 results

6.3.1 Comparison of TM and RM

To get an impression of the accuracy of the RM, we compare the results
at the reference point xw,ref for separation of a binary gas mixture. The
values of the reference point are shown in Table 17. For comparison, we
consider the separation of a binary mixture of CO2 and CH4. Figure 33

shows the mole fraction of CH4 in the gas phase of one column over bed
length (ordinate) and time (abscissa), starting with the adsorption step AS.
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a) PDAE model. b) Equilibrium model.

Figure 33: Mole fraction of CH4 in the gas phase over the position in the column
and time

The plots show the result of the CH4 mole fraction at cyclic steady state with
parameter xw,ref and feed yCO2 = 0.4, yCH4 = 0.6. While the states of the TM
indicate a mixing of gases entering the column at different points in time, the RM
shows a clear separation at the shockwaves and waves. This effect is particularly
pronounced during the DE step, at 0.5 to 0.7 on the dimensionless time scale.

a) CO2. b) CH4.

Figure 34: The difference q∗−q between amount adsorbed q and amount adsorbed
at equilibrium q∗ in mmol/g.

The plots show the difference of the amount adsorbed q and the amount adsorbed at
adsorption equilibrium q∗ with parameter xw,ref and feed yCO2 = 0.4, yCH4 = 0.6
for the components CH4 and CO2 in mol/g.
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Table 17: Values of the reference point xw,ref prior to scaling.

pAS pDE Ri L tf Bf

13 bar 1 bar 0.3 m 2 m 200 s 0.7

Figure 35: Relative difference between the model response of the TM and the RM
corresponding to the reference point xw,ref.

The plots show the error ∆y
|d(xw)|∞ =

|rref(xw)−d(xw)|∞
|d(xw)|∞ of the RM created at reference

point xw,ref prior to application of the first order correction (FOC). After fitting the
parameters of the equilibrium model to the model response of the TM at reference
point xw,ref, the resulting RM was evaluated at different inputs xw on a grid around
xw,ref. The x-axis shows the difference ∆w of the input xw to the reference point
xw,ref. At ∆w = 0 the error of the parameter fitting, which was used for building
the RM, is shown. The plot shows the increasing error of the model with greater
distance from the reference point xw,ref.

Notable is a shift in time of the desorption of CO2 from the adsorbent, which
is indicated by the vertical dark blue area in this figure at times 0.5 to 0.7.
Also, while the TM shows a monotonic decrease of CH4 concentration over
space, the RM has increased CH4 concentrations near the end of the column.
Both of these phenomena can be explained by the adsorption kinetics of the
models. The ad- and desorption happens instantaneously in the equilibrium
RM, while the TM has adsorption kinetics that slow the ad- and desorption.
Figure 34 shows the divergence of amount adsorbed and the adsorption
equilibrium in the column of the TM. The strong adsorption of CO2 during
the desorption step, at times 0.5 to 0.7 on the dimensionless time scale, is
clearly visible, causing the aforementioned shift in time. The difference in
the amount adsorbed and the amount adsorbed at equilibrium is higher for
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CH4, which is the light component, because of the faster adsorption kinetic
of CO2.

Important for the speed of convergence of the TRF method is not the
accurate representation of the states within the column, but an accurate
representation of the TM model response, d(w), close to the reference point
at which the RM was created. Figure 35 shows the relative error of the
model response with respect to the distance to the reference point xw,ref.
This figure shows that the error is small close to the reference point, as
desired, and increases linearly with greater distance.

6.3.2 Optimization of PSA Processes via the TRF Method

We apply the TRF algorithm to optimize the PSA model with respect to
recovery and purity of the product gas CH4. The variables xw, xy, and the
function d(xw) are as defined as in Section 6.2.5. We introduce additional
variables, xv = (vp, vr)>, which represent the purity and recovery of the
product methane and define the optimization problem

max
x=(xv,xw,xy)>∈Rn

f(x) = vp + vr

s.t. vr −
NCH4
NfeedCH4

= 0

vp −
NCH4

NCH4+NH2+NCO2
= 0

d(xw) = xy

lbw 6 xw 6 ubw
0 6 xy,i 6 Nfeedi i ∈ {CO2,H2,CH4}
0 6 xv 6 1

The objective corresponds to finding a Pareto optimal point with respect to
product purity and recovery.

The superscript feed refers to the mole flow rate of the feed gas. We
choose a CSS tolerance of

CSStol = 10
−3∆k (66)

to assure that the error of the model evaluation decrease with the trust-
region radius. The results we show here have a trust-region radius of 10−4

to 10−6 upon termination, which implies a CSS tolerance of 10−7 to 10−9.
The parameters of the TRF algorithm for the different cases we consider in
the following are shown in Table 18.

We also validate the assumptions for convergence of the TRF method
introduced in Section 6.2.3. Assumption A2 is fulfilled by having box
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constraints for the problem variables. By using the first order correction
(FOC) and proper formulation and scaling of the RM, Assumptions A4 and
A6 hold. Initializing the optimization of the subproblem in the trust-region
step with xc,k and returning a local optimum results in sufficient progress
with respect to xc,k to fulfill A5. During the optimization run, we check,
whether the linear independence constraint qualification (LICQ) holds for
(NLP). The LICQ holds at every iterate of our optimization runs and implies
the MFCQ, which is needed for A3. Finally, Assumption A1 may not always
hold, because the model response d(xw) and sensitivities ∇d(xw) include
the error of the CSS calculation and the integration of the discretized model
DAEs. During the optimization this is noticeable by oscillations in the
objective value, feasibility measure and criticality measure. We terminate
the TRF method here, when θk,χk 6 10−5.

In the following, we separate a 4:6 binary mixture of CO2 and CH4. Figure
36 shows the development of objective fk = f(xk), infeasibility measure θk =
‖xy,k − d(xw,k)‖ and criticality measure χk over time, where the trust-region
radius is calculated with respect to all variables. Termination occurs after 72

iterations. We validated the calculation of derivatives described in Section
6.2.6 with a straightforward Finite Differences approach. Qualitatively, the
calculated derivatives were identical. However, as expected the unavoidable
numerical noise in the Finite Differences led to an increase in the number of
iterations (roughly 300).

Figure 36: Objective fk, infeasibility measure θk, and criticality measure χk over
the number of iterations (trust-region radius: Full).

The plots show the development of objective value fk, infeasibility measure θk and
criticality measure χk at each iteration. Objective is to find a Pareto optimal point
with respect to purity and recovery. The trust-region radius is calculated with
respect to all variables x.
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Figure 37: Objective fk, infeasibility measure θk, and criticality measure χk over
the number of iterations (trust-region radius: DoFs).

As in Figure 36, but now the trust-region radius is calculated with respect to the
degrees of freedom.

Figure 38: Objective fk, infeasibility measure θk, and criticality measure χk over the
number of iterations (mixture with hydrogen, trust-region radius: DoFs).

As in Figure 37, but a ternary mixture with hydrogen is the feed gas to the PSA
columns.

The number of iterations needed and the total time spent in the calcu-
lations of the trust-region step are summarized in Table 19 as case A (TR:
full). In the previous work of Agarwal et al. [156] a reduced model based
on proper orthogonal decomposition (POD) was used for the optimization
of a 2 column PSA cycle, which has 52247 algebraic variables. For a direct
comparison we note that the study of Agarwal differs from the present one
in multiple aspects, such as the PSA set-up, the number of modeled columns,
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the cycle configuration, and the direct determination of the CSS via Newton
method. Considering these differences, we can make the following observa-
tions; our approach requires more iterations, presumably due to the lower
model accuracy of the RM and the more complex PSA set-up. However,
the total accumulated time spend in the trust-region step is significantly
lower. We attribute the reduction in computational time to the smaller size
of the RM. The proposed RM based on equilibrium theory has a total of
67 variables for our 4-column, 9-step configuration and required a total of
5.5 seconds to solve over 72 iterations. If the trust-region radius is only
calculated with respect to the degrees of freedom, termination occurs after
55 iterations. The results are shown in Figure 37 and Table 19 as case A (TR:
DoFs).

As a second case, we consider the calculation of the trust-region radius
with respect to the degrees of freedom according to (61). The optimization
results are shown in Figure 37 and in Table 19 as case A (TR: DOFs). Table
19 shows that fewer iterations are needed in this case.

The equilibrium model which we apply as the reduced model has the
drawback of only modeling binary mixtures in the gas phase. To analyze if
the optimization of a ternary mixture is possible nonetheless, we optimize
the separation of a 1:1:1 mixture of CO2, CH4 and H2, which we denote
as case B (H2, TR: DoFs) in Table 19. The hydrogen in the gas phase is
here approximated only by the first order correction term. In this case
the criticality measure did not reach the threshold of χtol = 10−5 with the
adaptive CSS tolerance (66) even after 200 iterations. We attribute this to
the lower accuracy of the reduced model in this case, and chose a fixed
CSS tolerance of CSStol = 10−8 instead of using (66). While this increases
the overall computational costs, it converges successfully and improves the
reliability of the function evaluations and corresponding gradients.

6.3.3 Optimizing the PSA Work Demand

In the following we use the introduced algorithm and the reduced model to
the application of biogas upgrading. Carbon dioxide must be removed from
the product gas of anaerobic digestion, which is a gas mixture of CO2 and
CH4, prior to feed to the gas distribution system. Typically, product gas from
anaerobic digestion contains 50-70 mol.-% of CH4 [51]. We assume here that
the mixture contains 60 mol.-% CH4 and 40 mol.-% CO2. The purity of the
product gas must meet specifications of the local gas distribution system,
i.e., 95 mol.-% of CH4 after the separation, according to [59].

We formulate a new objective

f(x) =Wrev/0.8− 831.9vr,
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which we aim to minimize, where

Wrev = RTamb · 10−3 ln
(
pAS
pDE

)

is the reversible isothermal specific work demand in kJ/mol for the gas
compression at Tamb = 298.15 K with ideal gas constant R = 8.3145 J/K/mol
and 831.9 kJ/mol is the chemical exergy of the product methane. The
objective reflects the chemical exergy of the produced methane reduced by
the work demand for the purification in kJ/mol. Furthermore, we add the
constraint

vp > 0.95

to the model to ensure the desired product quality. We use this optimization
problem to compare the two approaches to ensure feasibility of the trust-
region step, which we introduced in Section 6.2.4: On the one hand, we
use the compatibility check to test the feasibility of the trust-region step. If
the trust-region step is infeasible, the restoration phase is called. We refer
to this approach as case C (Compatibility Check) in the results of Table 19.
Alternatively, the trust-region step is always feasible if artificial variables are
added as described in Section 6.2.4. We call this approach case C (Artificial
Variables). A fixed CSS tolerance of CSStol = 10−8 was applied as for case B.
The parameters of the TRF algorithm are shown in Table 18.

Figure 39: Objective fk, infeasibility measure θk, and criticality measure χk over
the number of iterations (with Compatibility Check).

As in Figure 36, but the objective is to maximize the units efficiency with respect to
a product purity of at least 95 %. The feasibility of the trust-region step is enforced
by performing the compatibility check and calling the restoration phase if necessary.
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Figure 40: Objective fk, infeasibility measure θk, and criticality measure χk over
the number of iterations (with Artificial Variables).

The difference to the case shown in Figure 39 is that the trust-region step is always
feasible because of artificial variables, which are penalized in the objective. The
restoration phase is called if an iteration is not feasible or optimal, but the trust-
region size is below the predefined threshold.

Figure 39 shows the optimization of the PSA model with the compatibility
check until termination with θk = χk = 10−5. The computational time
is listed in Table 19. The iteration terminates after 94 iterations. The
final optimization leads to a specific work demand of 12.0 kJ/mol for the
purification of raw biogas. According to Bauer et al. [128] a work demand of
0.15 to 0.3 kWh/Nm3 is typical in the industrial application of PSA processes
for biogas upgrading. Assuming a mole density of 44.44 mol/Nm3 for the
raw biogas, this corresponds to 12.2 to 24.3 kJ/mol. The result of our
optimization is therefore slightly below the minimum level of technology
reported in the industry.

Alternatively, Figure 40 shows the optimization of the PSA model with
artificial variables. In this case we stop the optimization at iteration 73, when
a criticality measure of χk = 1.02 · 10−5 is reached. To reach a point with
χk 6 10−5 a total of 209 iterations are needed here, despite that almost no
progress is made after iteration 73 (relative difference of the objectives at
iteration 73 and 209 below 0.0001 %). The final objective value is shown in
Table 19 as case C (Artificial Variables). The value is slightly larger than the
final objective of the comparative case C (Compatibility Check). We attribute
this to the fact that we apply a local solver to a non-convex NLP, which can
result in termination at a different local optimum.
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Table 18: Parameters of the TRF algorithm.

case γe γc η1 η2 ω κ∆

A 1.5 0.5 0.05 0.2 0.8 0.8
B & C (Compatibility Check) 1.1 0.5 0.05 0.5 0.1 0.8
C (Artificial Variables) 1.01 0.5 0.05 0.5 0.1 0.8

Table 19: Number of iterations and computational time.
The table shows the number of iterations and the total computational time spend in
the trust-region step of the different optimization runs. The computation time is
obtained using an Intel Quad core i5 3.30 GHz system with 6 GB RAM. Agarwal
et al. used an Intel Quad core 2.4 GHz system with 8 GB RAM. Considering
the different specifications of the devices, the results show a clear decrease in
computational time of the current method over the POD approach. Agarwal et al.
considered three different optimization runs: the optimization via a filter method, as
we applied here, and the optimization via an exact penalty method with first (FOC)
and zero order correction (ZOC). The ∗ marks a case for which the iteration was
stopped at χk = 1.02 · 10−5 instead of χk = 1.0 · 10−5.

case objective # vars # iterations tTM [s]

A (TR: full) 1.7892 67 72 5.5
A (TR: DoFs) 1.7896 67 55 4.5
B (H2, TR: DoFs) 1.3808 67 84 5.0
C (Compatibility Check) -0.7318 67 94 5.3
C (Artificial Variables)∗ -0.7257 67 73 5.1

Agarwal et al. [156] (filter) 52247 51 4896.0
Agarwal et al. [156] (ZOC, exact penalty) 52247 13 2142.0
Agarwal et al. [156] (FOC, exact penalty) 52247 92 6768.0

6.4 comparison with the previous chapters

In the previous chapters we answered the questions of the most energy and
cost efficient power-to-methane processes at steady state. We successfully
identified a cascade of multiple catalytic methanation reactors without prior
gas separation as the most ideal process choice. As a result of the simulation
in Chapter 4 we could identify a process configuration with gas separation
as the most efficient process route. We reevaluate this route, by using the
same models for the units and heat integration as used for the superstructure
of Chapter 5 and a PSA model, which is updated with the optimization
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result of this chapter. We apply the grid specifications (G1) and use the
alkaline electrolyzer. Focusing on the efficiency of the process, we chose the
objective (O1). The result here is therefore directly comparable with the case
AE (G1) (O1) from Chapter 5, which had an efficiency of 50.0%. Using the
result of the optimization of this chapter to model the PSA, we reach an
efficiency of 48.3%. This is very close to the optimal solution, given the low
model accuracy of the unit operations in the superstructure of Chapter 5.
An simultaneous optimization of the PSA and the methanation reactor could
increase the process efficiency further. If pressure of the unit operation after
the PSA unit is high, which is the case here with the methanation reactor,
then there is no benefit from reducing the pressure of the PSA to reduce the
units work demand. This offers optimization potential for a simultaneous
optimization.

6.5 conclusions

We propose a reduced model based on equilibrium theory, suitable for
optimization of PSA processes within the trust-region filter (TRF) algorithm.
Our reduced model results in a significant reduction in computational cost
of the trust-region step, even for complex PSA cycles, over a comparative
study by Agarwal et al. [156]. We attribute the reduction in computational
time to the reduced number of variables of the model. Nevertheless, by
sampling the truth model (TM), the TRF method converges to the optimal
solution for the truth model. The reduced model was applied successfully
to optimize a 9-step 4-column PSA process. The optimization required more
iterations than the comparative study, yet the overall computational time
spent in the trust-region steps was reduced significantly, from 4 to 6 seconds
as opposed to 4896 seconds with a POD approach. The trust-region filter
method we applied required fewer iterations until termination if the trust-
region is calculated only in the degrees of freedom (55 iterations) as opposed
to all variables (72 iterations). The solution of the reduced model based on
equilibrium theory differs from the PDAE (TM) solution within the column.
We identified that assuming adsorption to be at equilibrium is the main
reason for the differences between the two models. We expect processes
with fast ad- and desorption kinetics to be represented more accurately by
the reduced model which could reduce the number of iterations needed for
convergence.

The bottleneck of the proposed method is the calculation of the cyclic
steady state (CSS). An implementation of simultaneous methods for CSS
calculations, as previously applied in the literature [148, 153, 149, 161, 162],
would shorten runtime and improve the accuracy of calls to the PSA model.
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I N T E G R AT I O N O F D E TA I L E D U N I T L E V E L M O D E L S
I N T O S U P E R S T R U C T U R E O P T I M I Z AT I O N

Finding the global optimum of a superstructure Chapter 5 with detailed
unit level models, as used for example in Chapters 4 and 6, is not possible
in reasonable time with widely applied global solvers, as it is too compu-
tationally expensive. In practical applications, shortcut models are used
to replace the detailed unit models [163], as we have done in Chapter 5.
However, shortcut models often lack in accuracy or modeling capability. For
instance, dynamic process behavior is difficult to represent by simplified
models. One option to circumvent this problem is to select the best process
route via shortcut models, as done in Chapter 5, and then optimize the best
process configuration via detailed models as a second step. A drawback of
this method is that the solution is not guaranteed to deliver the best process
configuration with regard to the detailed models.

In the following chapter we propose an alternative approach, using short-
cut and detailed models together in a branch-and-bound framework to
find the global optimal solution of a superstructure with high-fidelity unit
level models. By using shortcut models for fractional solutions, promising
process configurations are identified. We give criteria under which the
shortcut models are guaranteed to underestimate the optimal solution of
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Figure 41: Representation of one unit operation by two models.
Unit models are represented by a shortcut model, which is easy to evaluate, as
well as a high-fidelity model. Both models have the same in- and output stream
representation.

119



120 detailed unit model superstructure optimization
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Figure 42: Representation of the high-fidelity superstructure by the shortcut models
and configurations of the high-fidelity models.

Instead of solving the high-fidelity superstructure, we solve two types of subproblems.
The reduced superstructure model replaces the high-fidelity unit operations with
reduced model and gives a lower bound on the optimal solution of the original
superstructure for fractional solution candidates. Single configurations, which are
extracts of the original superstructure, are evaluated for integer solution candidates.
The solution of a configuration model corresponds directly to a feasible solution
candidate of the original model, thus is an upper bound of the optimal solution of
the original problem.

the original superstructure. The shortcut models give lower bounds, while
the detailed models, which are evaluated upon finding an integer solution
candidate in the branching tree, give the feasible solution candidates and
the upper bound, as indicated in Figure 42. The subproblems must fulfill
certain criteria, i.e.:

• the reduced model must be guaranteed to give a lower bound on the
original superstructure.
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• the optimal solution must be represented by one path in the super-
structure.

• inactive unit models must not contribute to the objective value.

We address these points individually in the following sections. To show an
example of how to guarantee a lower bound of the reduced model, we focus
here on the example of exergy efficiency as the objective function.

7.1 the optimization problem

We use an alternative representation of the superstructure we considered in
Chapter 5. Here, the unit model constraints gU extend the unit model con-
straints gU(xU, xinU ) from Chapter 5 by including the effect of the indicator
variables by constraints such as (33) and (34), thus they also become func-
tions of the indicator variables. We define the variable xMS := [xinU , xoutU ]U∈V
to include all material streams and the variable xe :=

(
[xe,U]

>
U∈V, xE

)>, which
includes work demand or heat flows of individual units xe,U, corresponding
to a particular unit model U ∈ V, and of the overlaying heat integration
model. The variables xe,U include work demand wU, heat flows qIU, qIIU and
corresponding temperatures T Iin,U, T Iout,U, T IIU , and variables necessary for
modeling the heat integration. Both material and energy flows correspond-
ing to a unit model U ∈ V are fixed to the value given by the unit model via
the constraints houtU . In our application the constraints houtU are defined as

xoutU −XoutU (xU) = 0

wU −WU(xU) = 0
(
qIU, T Iin,U, T Iout,U,qIIU, T IIU

)>
−QU(xU) = 0.

We call gV : {0, 1}nV −→ RngV the superstructure topology and g the super-
structure overhead, which includes constraints modeling the heat integration
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and the connections of material streams between unit models. Then we get
a superstructure optimization problem of the form

min
x=(xT ,xV,xMS,xe)>∈Rn

f(xMS, xe)

s.t. g(xMS, xe) 6 0
gV(xT ) 6 0

gU(xT ,U, xU, xinU ) 6 0, U ∈ V

hU(xT ,U, xU, xinU ) = 0, U ∈ V

houtU (xU, xoutU , xe,U) = 0, U ∈ V

xT ∈ {0, 1}nV

xV = [xU]U∈V
xMS = [xinU , xoutU ]U∈V
xe =

(
[xe,U]

>
U∈V, xE

)>,

(op)

where xT are the indicator variables and xV the unit model variables. In the
following, Ω(op) denotes the bounded and closed feasible set of (op). Let
furthermore

X(op) := {xT ∈ {0, 1}nV | ∃y ∈ Ω(op) with xT = yT }

be the set of feasible integer values of Ω(op) and

X
g
(op) := {xT ∈ {0, 1}nV | gV(xT ) 6 0}

the set of integer values which satisfy the topology constraint. Note that

X(op) ⊆ X
g
(op)

holds. We furthermore define

Ωn := {0, 1}nV ×Rn−nV ⊂ Rn

To introduce the superstructure branch-and-bound (SBnB) algorithm we
need two different optimization problems, which are derived from the
original problem (op) as follows.

7.2 the reduced model

If the unit operations are represented by detailed models, such as for exam-
ple the PDAE model for PSA separation from Chapter 6, the superstructure
(op) can become too complex to solve via a branch-and-bound approach
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in reasonable computational time. Replacing the unit models by reduced
models results in the MINLP

min
x=(xT ,x̃V,xMS,xe)>∈Rñ

f(xMS, xe)

s.t. g(xMS, xe) 6 0
gV(xT ) 6 0

g̃U(xT ,U, x̃U, xinU ) 6 0, U ∈ V

h̃U(xT ,U, x̃U, xinU ) = 0, U ∈ V

h̃outU (xT ,U, x̃U, xoutU , xe,U) = 0, U ∈ V

xT ∈ {0, 1}nV

x̃V = [x̃U]U∈V
xMS = [xinU , xoutU ]U∈V
xe =

(
[xe,U]

>
U∈V, xE

)>.

(rp)

which represents the same superstructure, but is significantly easier to solve.
We call (rp) the reduced problem to the original problem (op). Note that the
topology gV, the objective function f, the overhead of the superstructure g,
and the variables xT , xMS, xe of the reduced problem (rp) are the same as
for the original problem (op). Only the representation of the unit models,
i.e., the variables xU and the constraints gU, hU and houtU changed. In the
following we call Ω(rp) the feasible set of the problem (rp), which we assume
to be closed and bounded. Our algorithm is formulated under the following
Assumption 7.2.1. We will show later in Section 7.5, how we fulfill this
assumption for the optimization of exergy efficiency.

Assumption 7.2.1. For all xT ∈ X(op) there exists a x̃ = (x̃T , x̃V, x̃MS, x̃e)> ∈
Ω(rp) with xT = x̃T . Furthermore (rp) gives a lower bound on (op) according to

min
x̃

(rp)

s.t. x̃T = xT
6

min
x

(op)

s.t. xT = xT
, ∀xT ∈ X(op).

Note. The reduced problem acts as a lower bound on the original problem in the
branch-and-bound framework which we introduce in this chapter. In practice this
means that a trade-off between simplicity, which preferably implies convexity, and
tightness of (rp) must be made. If the problem (rp) is non-convex, the solution of a
convex envelope can also act as a lower bound in the branch-and-bound algorithm.
We will come back to this when we describe the algorithm in Section 7.4.

7.3 the configuration model

In this section we introduce the process configuration model, which consid-
ers only active unit models of a solution candidate.
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Definition 7.3.1. Partitioning of a solution candidate: We define a partitioning
of a solution candidate x = (xT , xV, xMS, xe)> ∈ Ωn according to the value of the
indicator variables xT ∈ {0, 1}nV as

part0(x) =
(
[xU]U∈V\xT

, [xMS,U]U∈V\xT
, [xe,U]U∈V\xT

)>,

part1(x) =
(
[xU]U∈VxT

, [xMS,U]U∈VxT
, [xe,U]U∈VxT

, xE
)>,

where V\xT = {U ∈ V | xT ,U = 0} and VxT = {U ∈ V | xT ,U = 1}. We call

Ω
0,xT
(op) =

{
{x0 = part0(x) | x ∈ Ω(op), xT = xT } ⊆ R

n0,xT if xT ∈ X(op)

∅ else

the domain of the inactive part and

Ω
1,xT
(op) =

{
{x1 = part1(x) | x ∈ Ω(op), xT = xT } ⊆ R

n1,xT if xT ∈ X(op)

∅ else

the domain of the active part of an integer configuration xT ∈ {0, 1}nV . Note that
n0,xT +n1,xT = n.

Assumption 7.3.1. We assume in the following that

f(xMS, xe) = f(yMS,ye),
g(xMS, xe) = g(yMS,ye),

∀x,y ∈ Ω(op) with
xT = yT ,
part1(x) = part1(y).

Assumption 7.3.1 assures that inactive unit models do not contribute to the
objective function value.

Definition 7.3.2. Extension: We call a function φxT : R
n1,xT −→ Rn with

part1(φxT (x1)) = x1, ∀x1 ∈ R
n1,xT

an extension if

φxT (Ω
1,xT
(op)) ⊆ Ω(op)

holds.

The extension maps the active part of a solution candidate back to a full
solution of (op) by assigning feasible values for the inactive part. With
the extension φxT we define the functions fxT : R

n1,xT −→ R and gxT :

R
n1,xT −→ Rng as

fxT (x1) = f(xMS, xe), (67)
gxT (x1) = g(xMS, xe), (68)

where (xT , xV, xMS, xe)> = φxT (x1).
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Lemma 7.3.1. The functions fxT and gxT are independent of the choice of φxT .

Proof. Let x, y ∈ Ωn be such that

x = φxT (x1)

y = φ̂xT (x1)

for x1 ∈ R
n1,xT and extensions φxT and φ̂xT . From Definition 7.3.2 follows

that

part1(x) = part1(φxT (x1)) = x1 = part1(φ̂xT (x1)) = part1(y)

holds and according to Assumption 7.3.1

f(xMS, xe) = f(yMS, ye),
g(xMS, xe) = g(yMS, ye).

Assumption 7.3.2. Let Ω be the set of all x1 = (x̂V, x̂MS, x̂e)> ∈ R
n1,xT which

fulfill

gxT (x) 6 0

gU(1, xU, xinU ) 6 0, U ∈ VxT

hU(1, xU, xinU ) = 0, U ∈ VxT

houtU (1, xU, xoutU , x̂e,U) = 0, U ∈ VxT

x̂V = [xU]U∈VxT

x̂MS = [xinU , xoutU ]U∈VxT

x̂e =
(
[xe,U]U∈VxT

, xE
)>.

for VxT = {U | xT ,U = 1,U ∈ V}. Then

Ω ⊆ Ω1,xT(op)

holds for all xT ∈ X
g
(op).

Note. Assumption 7.3.2 enforces restrictions on the constraints of the original
problem (op), namely on the inactive unit models. The assumption is for example
violated if there exists a unit model constraint which causes the problem to become
infeasible for xT ,U = 0. In this case, including in the topology constraints gV(xT )
that xT ,U = 1 must hold makes sure that Assumption 7.3.2 holds. The purpose of
this assumption is to make sure that no additional solutions of (op) exist in terms
of the active part, if an inactive unit model is removed from the superstructure.
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With these functions we can now define a configuration model:

Definition 7.3.3. Configuration model: We call an optimization problem of the
form

min
x=(x̂V,x̂MS,x̂e)>∈R

n1,xT
fxT (x)

s.t. gxT (x) 6 0

gU(1, xU, xinU ) 6 0, U ∈ VxT

hU(1, xU, xinU ) = 0, U ∈ VxT

houtU (1, xU, xoutU , x̂e,U) = 0, U ∈ VxT

x̂V = [xU]U∈VxT

x̂MS = [xinU , xoutU ]U∈VxT

x̂e =
(
[xe,U]U∈VxT

, xE
)>.

(cp)

the configuration problem (cp(xT )) of xT ∈ {0, 1}nV with VxT = {U | xT ,U = 1,U ∈
V}.

The configuration model (cp(xT )) models a single configuration in the su-
perstructure given by (op) according to the index set of unit models VxT ,
which are active in (op) according to a solution candidate xT . Note that
the problem size of (cp(xT )) is significantly smaller than the problem size
of (op). Furthermore, (cp(xT )) is an NLP, because all the integer variables
have been fixed to xT . A configuration problem cp(xT )) is equivalent to
adding the constraint xT = xT to (op) and removing inactive unit models
and corresponding variables from the superstructure as is shown in the
following lemmas:

Lemma 7.3.2. The feasible set of (cp(xT )) is the domain of the first partitioning of
solutions of (op) corresponding to xT ∈ X

g
(op), i.e.,

Ω
1,xT
(op) = Ω(cp(xT )), ∀xT ∈ X

g
(op).

Proof. From Assumption 7.3.2 follows that Ω(cp(xT )) ⊆ Ω
1,xT
(op) . To prove that

the converse holds, we show that every x1 ∈ Ω1,xT(op) corresponds to a feasible

point of (cp(xT )). By construction in Definition 7.3.1, each point x1 ∈ Ω1,xT(op)
for xT ∈ X(op) corresponds to a feasible solution of (op), which fulfills the
unit model constraints. This implies that x1 fulfills the active unit constraints
in (cp(xT )). From (68) follows that x1 also fulfills the constraint gxT

gxT (x1) = g(xMS, xe) 6 0
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where x = (xT , xV, xMS, xe)> = φxT (x1) which makes x1 a feasible solution
candidate of (cp(xT )).

If xT ∈ {0, 1}nV \ X(op) then Ω1,xT(op) = ∅ according to Definition 7.3.1 and

from Ω
1,xT
(op) ⊆ Ω(cp(xT )) follows that Ω(cp(xT )) = ∅.

Note. Lemma 7.3.2 shows that we can apply any extension φxT to map any
x1 ∈ Ω(cp(xT )) to an x = φxT (x1), x ∈ Ω(op) such that

x1 = part1(x).

Lemma 7.3.3. For all xT ∈ X(op) the optimal solution value of (cp(xT )) is equal to
the optimal solution value of

min
x

(op)

s.t. xT = xT .

Proof. We show in the following that to each feasible point of (cp(xT )) corre-
sponds a feasible point x ∈ Ω(op) of (op) with xT = xT and the same objective
value and vice versa. Then this implies that the optimal solution values of
the two problems are identical.

Let x1 ∈ Ω(cp(xT )) be a feasible point with objective value fxT (x1). Accord-
ing to Eq. (67)

fxT (x1) = f(xMS, xe)

holds, where x = (xT , xV, xMS, xe)> = φxT (x1) with xT = xT and f is the
objective function of (op). According to Lemma 7.3.2 Ω(cp(xT )) = Ω

1,xT
(op) holds,

thus x1 ∈ Ω1,xT(op) . From Definition 7.3.2 follows that φxT (x1) ∈ Ω(op), which
implies that x is a feasible point of (op) s.t. xT = xT with the same objective
value as x1.

Conversely, let x = (xT , xV, xMS, xe)> be a feasible point of (op) s.t. xT =

xT with objective value f(xMS, xe). Then part1(x) = x1 ∈ Ω1,xT(op) is a feasible
point of Ω(cp(xT )) according to Lemma 7.3.2 for which fxT (x1) = f(xMS, xe)
holds with the same argumentation as used for the other direction.

Lemma 7.3.4. Let (op) have a feasible solution. Then

min
xT∈X(op)

(
min

x∈Rn1,xT
(cp(xT ))

)

is a global optimal solution of (op).
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Proof. According to Lemma 7.3.3 (cp(xT )) is equivalent to fixing the integer
variables of (op) to xT = xT for xT ∈ X(op). Thus

min
xT∈X(op)

(
min

x∈Rn1,xT
(cp(xT ))

)
= min

xT∈X(op)

min
x

(op)

s.t. xT = xT .

We can reformulate the right hand side to

min
xT∈X(op)

min
x

(op)

s.t. xT = xT
=

min
x

(op)

s.t. xT ∈ X(op)

= min
x

(op) ,

where the second equality holds according to the Definition of X(op).

7.4 the superstructure branch-and-bound algorithm

We start by solving (rp), which approximates the solution of (op), via a
branch-and-bound method. When an integer solution candidate xT ∈ X(op)
is found during the solving process, a process configuration model (cp(xT ))
corresponding to xT is solved. The upper bound is updated to be the
minimum of all solutions of configuration problems (cp) evaluated at the
current iteration.

Furthermore, for each evaluated configuration model, a cut is added,
which stops the branch-and-bound algorithm from considering this integer
solution for further branching. Let x denote the solution of a configuration
model (cp(xT )). Then we add the cut variable c and the linear constraints

0 6 c 6 1

c 6 xT ,U + xT ,U − 2xT ,UxT ,U ∀U ∈ V

f(x) > f(x)(1− c)

 (69)

to problem (rp) and continue with the branch-and-bound search.

Note. The lower bound LBP on a node P, as calculated in line 6 of Algorithm 3,
does not need to be the global optimal solution. The solution of an underestimator
(e.g. a linear envelope) is sufficient and more computationally efficient, given that
the problems in the nodes can be non-convex. Here, we want to only branch on the
integer variables, because knowing the values of the variables in the solution of (rp)
does not aid the solving process of (cp).

Note. In practice, where a plant designer is solely interested in the optimal process
configuration and its design parameters, the extension φ is not needed, and the
algorithm may return x∗T and x∗ ∈ Ωn1,x∗

T directly instead of φx∗T (x
∗).
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Algorithm 3 Superstructure Branch-and-Bound Method

1: procedure Superstructure Branch-and-bound Method

2: Initialize LB = −∞, UB =∞, node queue P = {(rp)}, LB(rp) = −∞
3: while |P| > 0 and UB > LB do
4: Choose P ∈ P, P←− P \ { P }

5: Update lower bound on P, LBP ←− c>x∗P̃ (if infeasible LBP ←−∞)
6: LB←− min { LBP : P ∈ P }

7: if LBP < UB then
8: if An integer solution x̃ ∈ Ω(rp) is found then
9: Add cut to remove x̃T from Ω(rp)

10: Solve (cp(x̃T ))
11: if (cp(x̃T )) is feasible and fx∗T (x

∗
(cp)) < UB then

12: UB←− fx∗T (x
∗
(cp(x̃T ))

)

13: x∗ ←− x∗(cp(x̃T )), x
∗
T ←− x̃T

14: else
15: Integer branching on P: new subproblems Pi, i = 1, 2
16: P←− P ∪ { Pi : i ∈ {1, 2} }
17: LBPi ←− LBP
18: if UB <∞ then
19: return φx∗T (x

∗)
20: else
21: Infeasible

In the following, the set ΩP ⊆ Ω(rp) denotes the feasible set of a subproblem
P from the node queue and XP ⊆ X

g
(op) ⊆ {0, 1}nV the set of binary variables,

for which there exists a feasible solution in ΩP. Since Algorithm 3 performs
only integer branching starting with the root node (rp), we can write any
subproblem P as

min
x

(rp)

s.t. xT ∈ XP ⊆ {0, 1}nV .

Corollary 7.4.1. If (op) has a feasible solution x = (xT , xV, xMS, xe)> ∈ Ω(op),
then as long as Algorithm 3 has not found a solution candidate x∗T ∈ X(op),

x∗ ∈ Ω1,x
∗
T

(op) with fx∗T (x
∗) 6 fxT (part1(x)), there is a node P in the node queue with

a feasible point x̃ = (x̃T , x̃V, x̃MS, x̃e)> ∈ ΩP and xT = x̃T .

Proof. Let x = (xT , xV, xMS, xe)> ∈ Ω(op) be a solution candidate of (op) with
objective value f(xMS, xe), which is equal to fxT (part1(x)) according to Eq.
(67). At the root node (rp) there is a point x̃ = (x̃T , x̃V, x̃MS, x̃e)> ∈ ΩP with
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xT = x̃T according to Assumption 7.2.1. During each integer branching on a
node P ∈ P a new subproblem Pi is created with xT ∈ XPi . Because x̃ ∈ ΩPi
holds, the subproblem Pi is feasible and

LBP 6

min
x

(rp)

s.t. xT ∈ XP ⊆ {0, 1}nV

xT ∈ XP

6

min
x

(rp)

s.t. xT ∈ XPi ⊆ {0, 1}nV

xT ∈ XPi

6
min
x

(rp)

s.t. xT = xT
6

min
x

(op)

s.t. xT = xT
6 fxT (part1(x))

The upper bound UB is the objective value of the best solution candidate
found so far, or UB = ∞ if no solution has been found yet. This implies
that as long as no solution candidate x∗T ∈ X(op) and x∗ ∈ Ω

1,x∗T
(op) with

fx∗T (x
∗) 6 fxT (part1(x)) was found, the upper bound fulfills

fxT (part1(x)) < UB.

Thus LBP < UB holds and Pi is added to the node queue.

Lemma 7.4.1. If there exists a feasible solution to (op) and the configuration
models (cp) are solved to ε-global optimality, Algorithm 3 finds an ε-global optimal
solution of (op). Otherwise it terminates with UB =∞.

Proof. Algorithm 3 performs only integer branching on the indicator vari-
ables xT ∈ {0, 1}nV and fixes one indicator variable at each branching. There-
fore, the algorithm considers at most 2nV+1 − 1 branching nodes before
termination.

First, let us consider the case that (op) is not feasible. Then (cp(xT )) is
infeasible for all xT ∈ {0, 1}nV , because a feasible solution of (cp(xT )) would
correspond to a feasible solution of (op) according to Lemma 7.3.2. Therefore,
the upper bound is never updated from the initial value and the algorithm
terminates with UB =∞.

If (op) is feasible, there exists an ε-global optimal solution candidate
x = (xT , xV, xMS, xe)> ∈ Ω(op). Corollary 7.4.1 still holds, because the reduced
model still gives a correct lower bound on the solutions of the original
problem. As long as no other ε-global optimal solution was found, Corollary
7.4.1 implies that a node P in the node queue exists with x ∈ ΩP. In this case

LB 6 LBP 6 fx̃T (part1(x̃)) 6 fxT (part1(x)) < UB

holds and branching continues until an ε-global optimal solution is found.
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Lemma 7.4.2. If there exists a feasible solution to (op) and the configuration models
(cp) are solved to local optimality, Algorithm 3 examines the detailed configuration
model (cp) of an ε-global optimal solution of (op) during the solving process.

Proof. As in the proof of Lemma 7.4.1, if a feasible point exists, LB < UB
holds and branching continues until an ε-global optimal solution is con-
sidered. The algorithm terminates with a solution which is not ε-global
optimal if solving the configuration models corresponding to ε-global op-
timal solutions returns a local optimum of (cp) which is greater than the
upper bound and the configuration is cut from the feasible set.

Note. Lemmas 7.4.1 and 7.4.2 show that while solving (cp) locally reduces the
computational costs of solving the subproblem, more subproblems might need to be
solved before termination.

7.5 calculation of a lower bound : process exergy efficiency

Let us consider an optimization problem of the form (mp) which represents
a superstructure model, as proposed in Chapter 5. It is a special case of the
more general problem formulation (op).

min
xT ,xV,xMS,xe,w

f(xMS, xe,w) =
e>chxMS+

∑
e+
∑
w

wref

s.t. Eqs. (70)
gU(xT ,U, xU, xinU ) 6 0

hU(xT ,U, xU, xinU ) = 0

houtU (xT ,U, xU, xoutU , xe,U,wU) = 0

 U ∈ V

(mp)

material stream constraints gMS(xMS) 6 0

heat exergy demand gE(xe) 6 0

exergy demand e,w > 0
superstructure topology gV(xT ) 6 0

integer constraints xT ∈ {0, 1}nV

unit model variables xV = [xU]U∈V
material streams xMS = [xinU , xoutU ]U∈V
work and heat integration xe =

(
[xe,U]

>
U∈V,Qext, e

)>

xe,U =
(
qIU, T IU,in, T IU,out,

qIIU, T IIU ,wU,
[QIU,i,Q

II
U,i]
>
i∈{1,...,nU}

)>



(70)
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The variables xMS represent the material streams between the unit models,
e.g. xinU , as well as process product streams, which are weighted according
to the chemical exergy in the objective. The vector ech, which weights the
material streams in the objective, is equal to zero for waste and internal
material streams. We here explicitly differentiate between the variables
describing the heat integration xe and the work demand w, because w does
not enter the heat integration constraints. The reference value wref = 1 MW
is the electrical energy used for water electrolysis, as in Chapters 4 and
5. Material stream constraints, heat exergy demand, and exergy demand
together correspond to what was denoted as superstructure overhead in the
previous Section. The function gE represents the constraints Eqs. (39)-(46)
of the indirect heat integration, as considered in Chapter 5. In addition, gE
includes

ei >

(
1−

Tamb

T̂i

)
Qext,i, if T̂i > Tamb, (71)

ei >

(
T̂i
Tamb

− 1

)
Qext,i, if T̂i < Tamb, (72)

where T̂i denotes the temperature of utility i and e is the exergy, which is
required from external sources for heating or cooling of the utility. Instead
of calculating the exergy of the heat flow, as done here, the exergy of a fuel
used for heating, e.g., methane, could be used to assess the exergetic value
of heat supplied to the process. Let T̂max and T̂min denote the utilities at
highest or lowest temperature for which

T̂max −∆T > T
I
in > T̂min +∆T

T̂max −∆T > T
I
out > T̂min +∆T

T̂max −∆T > T
II > T̂min +∆T

holds.

Assumption 7.5.1. We have a utility at ambient temperature, with

|T Iout − T̂amb| > ∆T

|T II − T̂amb| > ∆T .

Furthermore, if T Iout > T̂amb + ∆T then T Iin > T̂amb − ∆T and, vice versa, if
T Iout < T̂amb −∆T then T Iin < T̂amb +∆T .

Note. Assuming that all units can supply or take heat from a utility at ambient
temperature if the heat flow temperature change is directed towards ambient temper-
ature, is necessary for Lemma 7.5.1, which is following in Section 7.5, as a way of
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discarding excess heat or heat sinks below ambient temperature. This assumption
is reasonable, if all heat flows close to ambient conditions are negligible, e.g., the
heat flows of the PSA in Chapters 4 and 5. Heat flows of type I, which cross
over the ambient temperature towards a temperature with sufficient distance to the
ambient temperature, can simply be split into two separate heat flows to fulfill this
assumption.

Assumption 7.5.2. No work can be generated from excess heat above or heat sinks
below ambient temperature, thus e > 0.

The heat flows are denoted according to their type as defined in Chapter 5,
i.e., type I denotes a heat flow between temperature T Iin and T Iout, while type
II denotes a heat flow at constant temperature T II. The constraints gV(xT )
restrict the binary variables xT according to a given superstructure topology,
see Eqs. (36), (37).

Replacing a unit model U by a shortcut model Ũ must result in a lower
bound on the detailed model superstructure (mp), as postulated by Assump-
tion 7.2.1. We fulfill this assumption by making use of the units interface
with the rest of the superstructure. Each unit model interacts with the rest
of the superstructure via in- and outgoing material streams xinU , xoutU , work
demand wU and heat flows qIU, qIIU at temperatures T IU,in, T IU,out, T

II
U .

Let ΩU(xinU ) be the set of unit variables xU ∈ RnU which for a given
in-going material stream xinU fulfill the unit constraints

gU

(
1, xU, xinU

)
6 0,

hU

(
1, xU, xinU

)
= 0.

Lemma 7.5.1. Lower Bound via Replacement of a Unit Model : Switching a unit
model U out for a reduced model Ũ gives a lower bound on (mp) with respect to
exergy efficiency, if

A The output space of model U is a subset of the output space of model Ũ for
each input xinU .{

x
∣∣∣ x = XoutU (xU) ,xU ∈ Ω

(
xinU

)}
⊆{

x
∣∣∣ x = X̃outU (xU) , xU ∈ Ω̃

(
xinU

)}
Note. It is a priori not clear, how the output of a single unit model must
change to improve the overall objective function. If the process has one desired
product, e.g. methane, one could argue under which conditions an increase
of the amount of methane or a decrease of the amount of impurities in the
material stream improves the overall objective function. Other changes of
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the material stream, however, e.g. decrease of the amount of methane and
impurities simultaneously, can not be evaluated at unit level and must be
considered at superstructure level. We therefore create a lower bound by
relaxing the output space of the model.

B For the work demand

w̃U (x̃U) 6 wU (xU)

holds ∀ xU ∈ Ω
(
xinU
)

, x̃U ∈ Ω̃
(
xinU
)

, with XoutU (xU) = X̃
out
U (x̃U).

Note. A decrease of a unit’s work demand with the same in- and output
material streams (which include the pressure) always improves the process
efficiency.

C For the heat flows of type I

(
qIU, T IU,in, T IU,out

)>
= QIU(xU)

(
q̃IU, T̃ IU,in, T̃ IU,out

)>
= Q̃IU (x̃U)

the following applies for all xU ∈ Ω
(
xinU
)
, x̃U ∈ Ω̃

(
xinU
)

with XoutU (xU) =

X̃outU (x̃U):

a) if qIU > 0, T
I
U,out 6 Tamb −∆T then

q̃IU > q
I
U, T̂min +∆T 6 T̃ IU,in 6 T

I
U,in, T̃ IU,in 6 T̃

I
U,out 6 T

I
U,out

b) if qIU > 0, T
I
U,in > Tamb −∆T then

0 6 q̃IU 6 q
I
U, T̂min +∆T 6 T̃ IU,in 6 T̃

I
U,out,

T̃ IU,in 6 T̃
I
U,out 6 T

I
U,out

c) if qIU < 0, T
I
U,out > Tamb +∆T then

q̃IU 6 q
I
U, T̂max −∆T > T̃ IU,in > T

I
U,in, T̃ IU,in > T̃

I
U,out > T

I
U,out

d) if qIU < 0, T
I
U,in < Tamb −∆T then

0 > q̃IU > q
I
U, T̂max −∆T > T̃ IU,in > T

I
U,in,

T̃ IU,in > T̃
I
U,out > T

I
U,out
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e) if qIU = 0 then

q̃IU > q
I
U, T̂min +∆T 6 T̃ IU,in 6 T

I
U,in, T̃ IU,in 6 T̃

I
U,out 6 T

I
U,in

or
q̃IU 6 q

I
U, T̂max −∆T > T̃ IU,in > T

I
U,in, T̃ IU,in > T̃

I
U,out > T

I
U,out

D For the heat flows of type II
(
qIIU, T IIU

)>
= QIIU(x),

(
q̃IIU, T̃ IIU

)>
= Q̃IIU(x̃)

the following applies ∀ x ∈ Ω
(
xinU
)
, x̃ ∈ Ω̃

(
xinU
)
, with XoutU (x) = X̃outU (x̃):

a) if qIIU > 0, T
II
U 6 Tamb −∆T then

q̃IIU > q
II
U, T̂min +∆T 6 T̃ IIU 6 T

II
U

b) if qIIU > 0, T
II
U > Tamb +∆T then

q̃IIU 6 q
II
U, T̂min +∆T 6 T̃ IIU 6 T

II
U

c) if qIIU < 0, T
II
U > Tamb +∆T then

q̃IIU 6 q
II
U, T̂max −∆T > T̃ IIU > T

II
U

d) if qIIU < 0, T
II
U < Tamb −∆T then

q̃IIU > q
II
U, T̂max −∆T > T̃ IIU > T

II
U

e) if qIIU = 0 then

q̃IIU > q
II
U, T̂min +∆T 6 T̃ IIU 6 T

II
U

or
q̃IIU 6 q

II
U, T̂max −∆T > T̃ IIU > T

II
U

Note. A decrease of a unit’s demand for heating above or cooling below
ambient temperature reduces the overall external heat exergy demand of the
superstructure, as soon as this demand can not be met by other units. This
corresponds to cases b) and d). Simultaneously, an increase of the exergy,
which a unit model produces in terms of excess heat above ambient temperature
can be used internally to reduce the external heat demand, here cases a), c),
and e).
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Proof. Let us assume, that Ũ is a shortcut model, which fulfills A, B, C, and
D. Let x = (xT , xV, xMS, xe)> denote the global minimum of (mp) and let
U ∈ V denote the unit model, which was switched for shortcut model Ũ. We
show, that under these conditions, the reduced problem gives a lower bound
on (mp), by constructing a point x̃ = (x̃T , x̃V, x̃MS, x̃e)> which is feasible for
the reduced problem, with an objective value f(x̃) 6 f(x).

For the trivial case that xT ,U = 0, we have a feasible solution of the
reduced problem with part1(x̃) = part1(x) and therefore f(x̃MS, x̃e, w̃) =

f(xMS, xe, w). Let us consider the case, that xT ,U = 1. From Assumption 7.2.1
follows that we can choose

x̃T = xT .

According to A, we can furthermore choose

x̃outU = xoutU ,

which implies that

x̃MS = xMS, (73)
x̃V = xV , V ∈ V \U

is feasible within the unit model constraints. From this follows

q̃IV = qIV , V ∈ V \U,

T̃ IV ,in = TIV ,in, V ∈ V \U,

T̃ IV ,out = TIV ,out, V ∈ V \U,

q̃IIV = qIIV , V ∈ V \U,

T̃ IIV = TIIV , V ∈ V \U,
w̃V = wV , V ∈ V \U.

With this, we can choose

Q̃IV ,i = QI
V ,i V ∈ V \U,

Q̃IIV ,i = QII
V ,i V ∈ V \U,

where QIV ,i and QIIV ,i are the heat flows from unit V to utility i at temperature
T̂i. According to B, w̃U 6 wU holds and therefore∑

U∈V
w̃U 6

∑
U∈V

wU. (74)
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For heat flows of type I the following holds: If qIU > 0, TIU,out 6 Tamb −∆T

then q̃IU > qIU, T̂min + ∆T 6 T̃ IU,in 6 TIU,in, T̃ IU,in 6 T̃ IU,out 6 TIU,out holds
according to C a). From Eq. (44) follows∑

i

Q̃IU,i = q̃
I
U > qIU =

∑
i

QI
U,i,

where QIU,i is the heat flow from unit U to utility i at temperature T̂i. Since
T̃ IU,out 6 T

I
U,out 6 Tamb −∆T , the utility at ambient temperature is available

for heat integration according to Eq. (40) and we can choose

Q̃IU,amb > QI
U,amb,

Q̃IU,i = QI
U,i, for i 6= amb,

from which follows∑
V∈V

Q̃IV ,amb >
∑
V∈V

QI
V ,amb,∑

V∈V
Q̃IV ,i =

∑
V∈V

QI
V ,i, for i 6= amb. (75)

The cases C c) and e) lead to Eq. (75) in the same way with some reversed
inequalities by using Eq. (41) instead of Eq. (40). For the case C b) qIU > 0,
TIU,in > Tamb + ∆T , 0 6 q̃IU 6 qIU, T̂min + ∆T 6 T̃ IU,in 6 T̃ IU,out, T̃

I
U,in 6

T̃ IU,out 6 TIU,out holds, thus according to Eq. (44)∑
i

Q̃IU,i = q̃
I
U 6 qIU =

∑
i

QI
U,i.

From Eqs. (39) - (41) follows that utilities at and below ambient temperature
are not available for heat integration (note that TIU,in < TIU,out holds for heat
flows of type I with qIU > 0), i.e.,

QI
U,i = 0, for i ∈ {1, . . . ,nE} with T̂i 6 Tamb.

Eq. (40) in combination with T̂min + ∆T 6 T̃ IU,in 6 T
I
U,in, T̃ IU,in 6 T̃

I
U,out 6

TIU,out also shows that all utilities which are available for heat integration of
qIU are also available for q̃IU. We can therefore choose

0 6 Q̃IU,i 6 QI
U,i for i ∈ {1, . . . ,nE}

and get∑
V∈V

Q̃IV ,i =
∑
V∈V

QI
V ,i, for i ∈ {1, . . . ,nE} with T̂i 6 Tamb, (76)∑

V∈V
Q̃IV ,i 6

∑
V∈V

QI
V ,i, for i ∈ {1, . . . ,nE} with T̂i > Tamb. (77)
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In the same way we get∑
V∈V

Q̃IV ,i >
∑
V∈V

QI
V ,i, for i ∈ {1, . . . ,nE} with T̂i < Tamb, (78)∑

V∈V
Q̃IV ,i =

∑
V∈V

QI
V ,i, for i ∈ {1, . . . ,nE} with T̂i > Tamb. (79)

for the case C d).
Combining the results of the different cases, i.e., Eqs. (75) - (79), results in∑

V∈V
Q̃IV ,i >

∑
V∈V

QI
V ,i, for i ∈ {1, . . . ,nE} with T̂i < Tamb, (80)∑

V∈V
Q̃IV ,i 6

∑
V∈V

QI
V ,i, for i ∈ {1, . . . ,nE} with T̂i > Tamb. (81)

for the heat flows of type I.
The results for the heat integration of type II follow similarly:
If qIIU > 0 and TIIU 6 Tamb, then q̃IIU > qIIU, T̃ IIU 6 TIIU holds according to D a).
From Eq. (45) follows, that∑

i

Q̃IIU,i = q̃
II
U > qIIU =

∑
i

QII
U,i

for the heat flows QIIU,i from unit U to utility i at temperature T̂i. Since
T̃ IIU 6 TIIU 6 Tamb −∆T , the utility at ambient temperature is available for
heat integration according to Eq. (43) and we can choose

Q̃IIU,amb > QII
U,amb

Q̃IIU,i = QII
U,i for i 6= amb

Then ∑
V∈V

Q̃IIV ,amb >
∑
V∈V

QII
V ,amb∑

V∈V
Q̃IIV ,i =

∑
V∈V

QII
V ,i for i 6= amb (82)

holds for the external heat flows of the utilities. Eq. (82) follows from cases
D c) and e) accordingly with some inverted inequalities by using Eq. (42)
instead of Eq. (43).

If qIIU > 0 and TIIU > Tamb + ∆T , then 0 6 q̃IIU 6 qIIU, T̃ IIU 6 TIIU holds
according to D b). From Eq. (44) follows

q̃IIU =
∑
i

Q̃IIU,i 6
∑
i

QII
U,i = qIIU.
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According to Eqs. (42) and (43), the utilities below ambient temperature are
not available for heat integration of qIIU, i.e.,

QII
U,i = 0 for i ∈ {1, . . . ,nE} with T̂i < Tamb

According to Eq. (43) and T̃ IIU 6 TIIU we can choose

0 6 Q̃IIU,i 6 QII
U,i for i ∈ {1, . . . ,nE} (83)

from which follows that∑
V∈V

Q̃IIV ,i =
∑
V∈V

QII
V ,i, for i ∈ {1, . . . ,nE} with T̂i 6 Tamb, (84)∑

V∈V
Q̃IIV ,i 6

∑
V∈V

QII
V ,i, for i ∈ {1, . . . ,nE} with T̂i > Tamb. (85)

As before, we get∑
V∈V

Q̃IIV ,i >
∑
V∈V

QII
V ,i, for i ∈ {1, . . . ,nE} with T̂i < Tamb, (86)∑

V∈V
Q̃IIV ,i =

∑
V∈V

QII
V ,i, for i ∈ {1, . . . ,nE} with T̂i > Tamb. (87)

for the case D d) in a similar way. For the heat flows of type II then∑
V∈V

Q̃IIV ,i >
∑
V∈V

QII
V ,i, for i ∈ {1, . . . ,nE} with T̂i < Tamb, (88)∑

V∈V
Q̃IIV ,i 6

∑
V∈V

QII
V ,i, for i ∈ {1, . . . ,nE} with T̂i > Tamb (89)

holds according to Eqs. (82) - (87).
For the external heat demand of utility i above ambient temperature

T̂i > Tamb according to Eqs. (46), (81), (89) we then get

Q̃ext,i =
∑
V∈V

Q̃IV ,i +
∑
V∈V

Q̃IIU,i 6
∑
V∈V

QI
V ,i +

∑
V∈V

QII
U,i = Qext,i

and thus

ẽi = min{(1−
Tamb

T̂i
)Q̃ext,i, 0} 6 min{(1−

Tamb

T̂i
)Qext,i, 0} = ei

holds with Eq. (71) for the exergy demand for heating above ambient
temperature. Similarly, for a utility i below ambient temperature T̂i < Tamb
according to Eqs. (46), (80), (88)

Q̃ext,i =
∑
V∈V

Q̃IV ,i +
∑
V∈V

Q̃IIU,i >
∑
V∈V

QI
V ,i +

∑
V∈V

QII
U,i = Qext,i
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and according to Eq. (72)

ẽi = min{(
T̂i
Tamb

− 1)Q̃ext,i, 0} 6 min{(
T̂i
Tamb

− 1)Qext,i, 0} = ei

For the utility at ambient temperature

ẽi = 0 = ei

holds according to Eq. (71) and finally∑
i∈{1,...,nE}

ẽi 6
∑

i∈{1,...,nE}
ei. (90)

As a result, for the objective function

f(x̃MS, x̃e, w̃) =
e>chx̃MS +

∑
ẽ+
∑
w̃

wref

6
e>chxMS +

∑
e +
∑

w
wref

= f(xMS, xe, w)

holds according to Eqs. (73), (74), (90).

An example illustrating an estimation for the heat flow is shown in Figure 43.

Direct
Fired

Heater

Water
Cooling
Tower

T̂2 −∆T

T̂1 + ∆T

T̂1 −∆T

T̂0 + ∆T
T̂0

T̂1

T̂2

T̃ II
U , Q̃II

U < QII
U < 0

Q̃U,1

Q̃U,0

T II
U , QII

U < 0

QU,0
T II
V , QII

V > 0

QV,1

Figure 43: Example for the heat integration of a replacement model.
The figure shows an example for the case c) of type II. Here, the excess heat QIIU is
discarded, as it can not be used internally. Increasing the heat flow Q̃IIU > Q

II
U does

not increase the objective. Is the excess heat emitted at a higher temperatures, the
potential for internal use increases. If another unit, here unit V , can use the heat
from unit Ũ, the objective value decreases.
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Note. Economic objectives like the CAPEX can be considered similarly. The unit
costs can be easily evaluated on unit level (in the same way as the work demand
here). The costs of the heat exchanger network are reduced, if less heat is transferred
(|q̃U| 6 |qU|), or temperature differences between units and utilities are larger. This
contradicts the requirements of C, D, which makes a simultaneous optimization of
efficiency and capital costs difficult. This is illustrated by the results of Chapter 5,
where the choice of the objective strongly effects the extent of the heat exchanger
network. Using reduced models, which give lower bounds for minimizing efficiency
and cost simultaneously might result in bounds which are not tight.

7.6 examples

In this section we show a few examples of pairs of unit models, of which one
works as a reduced model to the other. We discuss the catalytic methanation
reactor and the pressure swing adsorption, for which we introduce the short-
cut and the original model. Furthermore, we calculate the exergy efficiency
for different process configurations, which use either the reduced or the
original model. The other models of the configuration, e.g., heat exchangers
or flash separation, are the same for both models and are represented by the
models introduced in Chapter 5.

Example 7.6.1. Catalytic Methanation Reactor
Let us consider the catalytic methanation in a plug flow reactor at steady state

and at isobaric conditions. Using the reaction kinetic of Koschany et al. [39] and
energy balances for the gas and a cooling medium (subscript cool) we get

v
dNi
dz

= ζirfc

vρgcp,g
dT
dz

= α(Tcool − T) − fcr∆H

mcoolcp,cool
dTcool

dz
= εAα(T − Tcool)

r =

krp
0.5
H2
p0.5CO2

(
1−

pCH4p
2
H2O

pCO2p
4
H2

Keq(T)

)

(
1+KOH

pH2O

p0.5
H2

+KH2p
0.5
H2

+Kmixp
0.5
CO2

)2

kr = k0 exp
(
−EA
R

(1/Tref − 1/T)

)

Ki = K0,i exp
(
−∆Hri
R

(1/Tref − 1/T)

)

xout(xU, xin) = (NCO2 |z=L,NH2 |z=L,NCH4 |z=L,NH2O|z=L, T |z=L,pin)>
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W(xU) = 0

QI(xU) = mcoolcp,cool(Tcool|z=0 − Tcool|z=L)

T Iin(xU) = Tcool|z=L

T Iout(xU) = Tcool|z=0

where fc = ρc
1−ε
ε , mcool is the flow rate of the coolant, and ∆H = −165 kJ/mol

denotes the heat of reaction. We discretize the ODEs on a spatial grid z ∈ [0,L] and
add the box constraint 400 K 6 T , Tc 6 700 K on each grid point. Furthermore,
400 K 6 Tc 6 500 K holds at inlet z = 0.

As a reduced model, we use the equilibrium model from Chapter 5:

xU = (NCO2 ,NH2 ,NCH4 ,NH2O, ξ, T)>

g(xU) = pCO2p
4
H2

− p2H2OpCH4Keq(T) with pi =pin
Ni∑

j∈C
Nj

h(xU) = Ni − (ξνi +N
in
i ) for i ∈ C

400 6 T 6 700

xout(xU, xin) = (NCO2 ,NH2 ,NCH4 ,NH2O, T ,pin)>

W(xU) = 0

QI(xU) = ξ∆H+mgcp,g(T − Tin)

T Iin(xU) = 700 K

T Iout(xU) = 500 K

The extent of the reaction ξ is for the reduced model only limited by the reaction
equilibrium. The equilibrium depends on the temperature, which can be chosen
freely by the solver. The plug flow reactor on the other hand is limited by a
thermodynamically consistent kinetic expression, i.e., it can only approach the
reaction equilibrium for L −→∞. Thus the output space of the reduced model is
relaxed according to A. Both models do not have an additional work demand, thus
B is fulfilled. The methanation reactor produces excess heat at high temperature, so
case D c) applies. We set the temperatures T Iin(xU) and T Iout(xU) to the respective
upper bounds of 700 K and 500 K. The heat flow ξ∆H is the thermal energy which
is created by the methanation reaction. To calculate the amount of heat which is
transferred to the coolant, we subtract the enthalpy of the products temperature
change from the heat of the reaction. Thus, if the product material streams of the
two models is identical, their heat flow QI(xU) is equal and the requirements of D
c) are fulfilled.

Example 7.6.2. Pressure Swing Adsorption
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The black box separation model from Section 5.1.1 gives a lower bound on the
PDAE from Chapter 6. We treat the separation fraction s of the components CO2

and CH4 as variables and add the constraints

sCH4 − 0.8− sCO2 6 0
sCH4 − 0.65− 7sCO2 6 0.

The output space of the black box model and the PDAE model are shown in Figure 44.
It shows that the output space of the black box model is indeed a relaxation of the
PDAE model and A is fulfilled. The model has no additional work or heat flows,
thus the black box model is a reduced model.

Figure 44: Feasible output space of the shortcut model.
The output space of the shortcut model is the area in white, limited by the black lines.
The blue dots indicate the output space of the PDAE model, evaluated with different
model parameters. The figure illustrates that the output space of the shortcut model
is a relaxation of the output space of the PDAE model.

7.7 chapter summary and thoughts for further work

We propose a method, which allows for optimization of detailed unit level
models within a superstructure. The approach has the advantage of com-
bining different levels of process design, i.e. decisions on plant level are
considered simultaneously to unit level design choices. It converges to global
optimality, if so desired. A large library of unit models is necessary with the
appropriate shortcut unit underestimators. Available chemical engineering
toolboxes can be used to get models for different units, e.g. COMSOL [164].
While the computational time can get large, as difficult subproblems must
be solved, the method can be terminated at any time, and the LB gives
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information about the optimality of the current best solution. Key elements
for the runtime of a branch-and-bound type method are the chosen relaxed
shortcut models [165]. Effort must be put into making sure the reduced
models give tight bounds. Overall, we gave a theoretical background of the
method for application to process synthesis. Further studies are required
to observe the application in practice. The implementation of the proposed
method in SCIP is possible via the interface of constraint handlers.



8
C O N C L U S I O N S A N D F U T U R E W O R K

The results of this thesis can be divided into three main parts: Firstly, this
thesis contributes to research in the field of power-to-methane by identi-
fication of the alternative technologies and the optimal process route for
methanation at steady state. Secondly, this work progresses the computa-
tional methods for the optimization of cyclic adsorption processes such as
pressure or temperature swing adsorption processes. Finally, a new branch-
and-bound based algorithm to combine the previous results and to allow
for more in depth analysis and optimization of processes at plant level is
proposed. The overarching results of this work pave the road for further
studies of dynamic power-to-methane processes, which are of interest for
the storage of electrical energy from volatile renewable energy sources.

8.1 contributions to power-to-methane processes

We identified the best process route for steady state methanation from pro-
cess relevant technologies in terms of energy efficiency, capital costs and
total annual costs. The best process route considering all three objectives
includes a cascade of catalytic methanation reactors and gas drying. Espe-
cially, the question whether the CH4/CO2 mixture should be supplied to
the reactor directly or prior separation of CH4 and CO2 is beneficial to in-
crease the methane yield in the subsequent methanation unit was addressed:
The analysis demonstrated that it is beneficial to supply the mixture to the
methanation reactor. This reduces the process costs and increases process
efficiency at steady state. We note however that a process, which includes
pressure swing adsorption for gas separation prior to the methanation was
close to the optimal solution (48.3% process efficiency instead of 50.0% using
alkaline electrolyzer in both cases). This process with gas pre-treatment
motivates further studies of dynamic process operation to reduce storage of
the carbon source.

The proposed superstructure model includes not only the process relevant
technologies, but also a detailed heat integration network for indirect heat
recovery, which was identified as the key element in the trade-off between
process efficiency and cost. The power-to-methane process offers significant
heat integration potential because the exothermic methanation reaction
occurs at elevated temperature (∼580 K). To increase the process efficiency
the excess heat can be used internally, in particular in combination with

145
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high temperature electrolysis (SOEC), which requires pre-heating of the
steam to a temperature of over 1000 K. The methanation excess heat can
be used for the first part of the pre-heating, up to reactor temperature.
This increased the process efficiency by up to 7%. Because it is in an early
state of development, SOEC is still expensive today. The electrolyzer was
by far the largest contribution to the process costs. However, in terms of
efficiency, using the SOEC was shown to be significantly better (65.1%) than
the established alkaline electrolyzer (AE) (50.0%) on plant level.

A comparison of catalytic and biological methanation showed that at
the current state of technologies catalytic methanation is the preferred
option, both with respect to efficiency and costs. We attribute this to the
presently limited technology readiness of biological methanation, which is
still in the research phase. As a result, the technology is expensive and the
reported conversion rates of different methanogens in the literature varied
significantly. If a high conversion rate from carbon dioxide to methane can
be reached in the biological reactor (> 95 mol.-% CH4 in the dried product
gas), the investment costs of the process are only slightly larger than the
investment costs for a process with catalytic methanation. However, for
lower conversion rates additional gas separation technologies are necessary
prior to feed to the gas distribution system, which significantly increases the
process costs. The decrease of the process efficiency is primarily attributed
to the limited heat integration potential. This becomes especially obvious in
the case of using SOEC for water electrolysis. In this case, the efficiency is
reduced from 65% (catalytic methanation) to 56.1% (biological methanation).

As demonstrated in this thesis, the heat integration potential makes
catalytic methanation favorable over biological methanation for the power-
to-methane process.

We compared methane with methanol as an energy carrier in a power to
chemical to power scenario, showing that methane is more efficient (23.4%)
than methanol (15.8%) in terms of exergy efficiency when using technologies
which are commercially available today.

8.2 contributions to optimization of cyclic adsorption pro-
cesses

A trust-region filter (TRF) method for the optimization of pressure swing
adsorption (PSA) processes was implemented, which uses local surrogates
for the optimization of high-fidelity models. The 4-column, 9-step PSA
process was modeled via a system of partial differential algebraic equations,
and included internal recycle streams. By using a reduced model based
on equilibrium theory, the trust-region step of the method, i.e., finding the
optimal solution of the reduced model within the trust region, was speed
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up by three orders of magnitude compared to a prior study using the same
TRF method for PSA optimization. We could successfully optimize the
high-fidelity PSA model under different approaches of the TRF method for
this particular example. Despite the restricted ability of the reduced model
to approximate the states of the truth model in the adsorption column, the
approximation of the product gas composition was sufficient for convergence
in 55 to 209 iterations. We compared different variations of the TRF method
and found that calculating the trust-region radius in terms of the degrees of
freedom instead of all variables reduced the number of iterations needed
from 72 to 55 iterations.

8.3 contributions to high-fidelity process synthesis

Furthermore, in this thesis the theoretical foundation for high-fidelity process
synthesis using multiple modeling levels in a branch-and-bound framework
was developed. Criteria for application of the method to optimization of
process efficiency, or alternatively for capital costs are discussed. The method
guarantees convergence to global optimality. However, one can expect the
local convergence of the nonlinear parts of the superstructure to be more
computationally efficient. In this case the optimal process configuration is
certainly considered during the solving process. Storing intermediate integer
solution candidates is therefore beneficial to compare possible optimal
solution candidates. The models as proposed in this work are well suited
for the application of this method to different process optimization tasks.

8.4 future work

Jeanmonod et al. [166] recently reported that the use of SOEC for co-
electrolysis shows promising results for power-to-methane processes. This
technology is still far from industrial application, yet process efficiency
and costs could be compared with the current results once the technology
reaches a higher technology readiness level.

The next step in optimizing power-to-methane processes is the dynamic
operation. Studies focusing on the dynamic operation of the methanation re-
actor [38, 167] exist in the literature. Dynamic operation of water electrolysis
can be implemented via polymer electrolyte membrane (PEM). Combination
of the dynamic gas separation model with dynamic methanation and PEM
electrolyzer could give first insights to the optimization potential of dynamic
energy storage. This thesis as a whole proposes a first step towards dynamic
optimization of the complete methanation process. The TRF framework
can efficiently handle problematic unit level models, as we have shown
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for the pressure swing adsorption unit. It can therefore be applied to the
methanation route as a whole to find the optimal solution.

The optimization of cyclic adsorption processes still requires the calcula-
tion of the cyclic steady state (CSS) in each iteration, which is computation-
ally expensive and numerically challenging. In this work, the calculation of
the CSS was the most time consuming step, which caused numerical errors
in the function evaluation. Further research is recommended to improve the
calculation of the CSS.

In summary, one can state that the tools and methods as applied in this
thesis are suitable for more detailed optimization of dynamic processes via
the proposed superstructure branch-and-bound (SBnB) method. A challenge
remains to make the SBnB method itself more practically applicable before
it can be used for a plant level optimization.
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Here, GDS relates to the gas distribution system.

Table 20: Optimal result of individual units for wη = 1, wC = 10−8, AE, 2% H2

La
ye

r Unit Compressor Heat Exchanger

CAPEX [$] Wu [kW] CAPEX [$] |Qu| [kW] CAPEX [$]

AE 1,025,000 0 0 0 0

2 Mixer 37,000 27.1 292,120 67.3 280,374

3 Reactor 10,180 0 0 44.8 74,279

4 Flash 1,361 0 0 57.6 180,952

6 Reactor 10,180 0 0 94.6 236,298

7 TSA 720,156 0 0 38.3 201,805

8 GDS - 6.1 94,609 6.1 33,389

Utilities 151.9 76,045∑
1,803,877 33.2 386,729 460.6 1,083,142

Table 21: Optimal result of individual units for wη = 1, wC = 10−5, AE, 2% H2

La
ye

r Unit Compressor Heat Exchanger

CAPEX [$] Wu [kW] CAPEX [$] |Qu| [kW] CAPEX [$]

AE 1,025,000 0 0 0 0

2 Mixer 37,000 26.2 210,049 64.7 204,579

3 Reactor 10,180 0 0 91.1 13,064

4 Flash 1,361 0 0 75.5 162,363

6 Reactor 10,180 0 0 37.3 84,345

7 TSA 518,838 0 0 28.2 127,617

8 GDS 5.6 54,658 5.6 15,157

Utilities 151.2 63,429∑
1,602,559 31.8 264,707 460.6 670,554
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Table 22: Optimal result of individual units for TAC, AE, 2% H2

La
ye

r Unit Compressor Heat Exchanger

CAPEX [$] Wu [kW] CAPEX [$] |Qu| [kW] CAPEX [$]

AE 1,025,000 0 0 0 0

2 Mixer 37,000 26.2 210,144 58.0 195,574

3 Reactor 10,180 0 0 101.9 64,954

4 Flash 1,361 0 0 55.2 110,351

6 Reactor 10,180 0 0 27.2 56,133

7 TSA 518,947 0 0 19.3 102,732

8 GDS - 5.6 54,667 5.6 15,159

Utilities 267.1 62,208∑
1,602,668 31.8 264,811 534.3 607,111

Table 23: Optimal result of individual units for wη = 1, wC = 10−8, AE, 10% H2

La
ye

r Unit Compressor Heat Exchanger

CAPEX [$] Wu [kW] CAPEX [$] |Qu| [kW] CAPEX [$]

AE 1,025,000 0 0 0 0

2 Mixer 37,000 27.6 219,238 68.6 241,151

3 Reactor 10,180 0 0 107.4 74,495

4 TSA 885,728 0 0 46.5 179,570

GDS 6.4 60,530 6.4 16,520

Utilities 124.1 45,150∑
1,957,908 34.0 279,768 343.0 573,406
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Table 24: Optimal result of individual units for wη = 1, wC = 10−5, AE, 10% H2

La
ye

r Unit Compressor Heat Exchanger

CAPEX [$] Wu [kW] CAPEX [$] |Qu| [kW] CAPEX [$]

AE 1,025,000 0 0 0 0

2 Mixer 37,000 26.2 210,049 64.7 204,579

3 Reactor 10,180 0 0 91.1 13,064

4 Flash 1,361 0 0 75.5 162,363

6 Reactor 10,180 0 0 37.3 84,345

7 TSA 518,838 0 0 28.2 127,617

8 GDS 5.6 54,658 5.6 15,157

Utilities 302.4 63,429∑
1,602,559 31.8 264,707 460.6 670,554

Table 25: Optimal result of individual units for TAC, AE, 10% H2

La
ye

r Unit Compressor Heat Exchanger

CAPEX [$] Wu [kW] CAPEX [$] |Qu| [kW] CAPEX [$]

AE 1,025,000 0 0 0 0

2 Mixer 37,000 26.2 210182 58.0 202057

3 Reactor 10,180 0 0 101.9 66628

4 Flash 1,362 0 0 55.2 110381

6 Reactor 10,180 0 0 27.2 57852

7 TSA 519138 0 0 17.4 96774

8 GDS - 5.6 54684 5.6 15163

Utilities 265.2 62,025∑
1,602,860 31.8 264,866 530.5 610,880
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Table 26: Optimal result of individual units for wη = 1, wC = 10−8, SOEC, 2% H2

La
ye

r Unit Compressor Heat Exchanger

CAPEX [$] Wu [kW] CAPEX [$] |Qu| [kW] CAPEX [$]

SOEC 2,540,000 0 0 359.7 349,945

2 Mixer 37,000 28.6 214,783 120.5 584,456

3 Reactor 10,180 31.0 242,194 152.3 293,438

4 Flash 1,439 0 0 59.1 113,670

6 Reactor 10,180 0 0 62.3 93,302

7 TSA 855,665 0 0 24.9 129,071

8 GDS 8.2 73,567 8.2 19,477

Utilities 355.7 76,787∑
3,454,464 67.8 530,544 1142.7 1,660,146

Table 27: Optimal result of individual units for wη = 1, wC = 10−5, SOEC, 2% H2

La
ye

r Unit Compressor Heat Exchanger

CAPEX [$] Wu [kW] CAPEX [$] |Qu| [kW] CAPEX [$]

SOEC 2,540,000 0 0 359.7 363,523

2 Mixer 37,000 0 0 92.0 152,401

3 Reactor 10,180 38.8 280,861 179.7 441,194

4 Flash 1,608 0 0 68.8 121,486

6 Reactor 10,180 0 0 43.1 104,622

7 TSA 848,218 0 0 24.9 124,911

8 GDS 8.9 78,282 8.9 20,525

Utilities 294.1 68,606∑
3,447,186 47.7 359,143 1071.2 1,397,268
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Table 28: Optimal result of individual units for TAC, SOEC, 2% H2

La
ye

r Unit Compressor Heat Exchanger

CAPEX [$] Wu [kW] CAPEX [$] |Qu| [kW] CAPEX [$]

SOEC 2,540,000 0 0 359.7 720,291

2 Mixer 37,000 38.6 279,931 118.1 812,503

3 Reactor 10,180 0 0 209.9 392,543

4 Flash 1,777 0 0 76.9 128,351

6 Reactor 10,180 0 0 32.2 301,631

7 TSA 782,156 0 0 23.9 179,413

8 GDS - 8.7 77,300 8.7 20,333

Utilities 331.3 72,305∑
3,381,293 47.3 357,231 1160.7 2,627,370

Table 29: Optimal result of individual units for wη = 1, wC = 10−8, SOEC, 10% H2

La
ye

r Unit Compressor Heat Exchanger

CAPEX [$] Wu [kW] CAPEX [$] |Qu| [kW] CAPEX [$]

SOEC 2,540,000 0 0 359.7 382,366

2 Mixer 37,000 38.5 279,365 92.0 188,734

3 Reactor 10,180 0 0 210.6 294,776

4 TSA 1,234,257 0 0 30.6 142,690

8 GDS 8.8 77,858 8.8 20,431

Utilities 231.1 68,400∑
3,821,437 47.3 357,223 932.8 1,097,397
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Table 30: Optimal result of individual units for wη = 1, wC = 10−5, SOEC, 10% H2

La
ye

r Unit Compressor Heat Exchanger

CAPEX [$] Wu [kW] CAPEX [$] |Qu| [kW] CAPEX [$]

SOEC 2,540,000 0 0 359.7 349,945

2 Mixer 37,000 0 0 92.9 146,897

3 Reactor 10,180 38.4 278,817 195.1 287,675

4 Flash 1,536 0 0 64.7 118,252

6 Reactor 10,180 0 0 27.2 61,240

7 TSA 857,523 0 0 25.0 125,210

8 GDS 8.7 76,792 8.7 20,195

Utilities 294.7 68,601∑
3,456,419 47.1 355,609 1068.0 1,178,015

Table 31: Optimal result of individual units for TAC, SOEC, 10% H2

La
ye

r Unit Compressor Heat Exchanger

CAPEX [$] Wu [kW] CAPEX [$] |Qu| [kW] CAPEX [$]

SOEC 2,540,000 0 0 359.7 354,176

2 Mixer 37,000 0 0 92.0 101,808

3 Reactor 10,180 38.7 280,352 210.8 440,609

4 TSA 1,243,326 0 0 30.7 143,155

8 GDS - 8.9 78,592 8.9 20,594

Utilities 329.8 81,335∑
3,830,606 47.6 358,944 1031.9 1,284,832
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Table 32: Optimal result of individual units for wη = 1, wC = 10−8, AE, 10% H2,
96% Bioreactor

La
ye

r Unit Compressor Heat Exchanger

CAPEX [$] Wu [kW] CAPEX [$] |Qu| [kW] CAPEX [$]

AE 1,025,000 0 0 0 0

1 Membrane 503,725 10.8 90,723 14.3 79,456

2 Mixer 37,000 4.2 46,494 4.2 13,940

3 Bioreactor 723,800 0 0 4.9 47,142

4 TSA 595,437 15.9 122,562 27.6 112,177

8 GDS - 5.7 65,759 2.2 8,395

Utilities 53.3 45,930∑
2,884,962 41.7 325,538 118.8 307,040

Table 33: Optimal result of individual units for wη = 1, wC = 10−8, AE, 10% H2,
65% Bioreactor

La
ye

r Unit Compressor Heat Exchanger

CAPEX [$] Wu [kW] CAPEX [$] |Qu| [kW] CAPEX [$]

AE 1,025,000 0 0 0 0

1 Membrane 484,236 11.9 98,334 15.3 35,898

2 Mixer 74,000 5.3 61,076 5.3 27,267

3 Bioreactor 723,800 0.4 44,297 5.3 51,081

4 TSA 632,128 16.9 128,337 29.2 114,681

5 Membrane 202,343 0 0 0 0

8 GDS - 7.2 78,587 3.8 11,922

Utilities 59.9 46,160∑
3,141,507 41.7 410,631 118.8 287,009
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Table 34: Optimal result of individual units for wη = 1, wC = 10−8, SOEC, 10% H2,
96% Bioreactor

La
ye

r Unit Compressor Heat Exchanger

CAPEX [$] Wu [kW] CAPEX [$] |Qu| [kW] CAPEX [$]

SOEC 2,540,000 0 0 359.7 199,552

1 Membrane 676,861 14.4 113,896 19.2 41,863

2 Mixer 37,000 5.7 55,511 97.7 245,016

3 Bioreactor 493,500 0.3 43,476 5.3 37,625

4 TSA 800,095 21.3 153,869 36.2 94,664

8 GDS - 7.8 82,556 3.0 10,171

Utilities 241.5 83,769∑
4,547,456 49.5 449,308 762.6 712,660

Table 35: Optimal result of individual units for wη = 1, wC = 10−8, SOEC, 10% H2,
65% Bioreactor

La
ye

r Unit Compressor Heat Exchanger

CAPEX [$] Wu [kW] CAPEX [$] |Qu| [kW] CAPEX [$]

SOEC 2,540,000 0 0 359.7 246,341

1 Membrane 679,738 14.5 114,270 19.3 41,979

2 Mixer 37,000 8.7 89,828 96.3 178,746

3 Bioreactor 493,500 0.6 46,318 3.0 26,970

4 TSA 887,339 23.7 166,633 39.9 97,837

5 Membrane 284,036 0 0 0 0

8 GDS - 11.3 109,930 3.0 10,121

Utilities 235.9 83,854∑
4,921,613 58.8 526,979 757.1 685,848
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A P P E N D I X : C O N S T R A I N T Q UA L I F I C AT I O N S O F
P R O C E S S S Y N T H E S I S M I N L P

In this appendix we describe an alternative formulation of the superstructure
optimization problem of Chapter 5, which fulfills the LICQ. Let us write the
superstructure optimization problem from Chapter 5 as follows: We describe
the variables of the optimization problem as before: We have V as the set
of all unit models in the superstructure, including the check of the product
quality constraints. The indicator variables are still denoted by xT ∈ {0, 1}nV .
We lump the variables corresponding a unit model together as xV = [xU]U∈V.
The material streams entering and leaving the unit models are summarized
by xMS = [xinU , xoutU ]U∈V. The information of energy streams leaving or
entering a unit model U ∈ V, as given by the functions Wout

U (xU), QoutU (xU)

is stored in variables we denote by xe,U =
(
wU,QIU,QIIU, T IU,in, T IU,out, T

II
U

)>
.

The variables QIU,i, Q
II
U,i, cU,i, cU,i, and Qext,i for utilities i ∈ {1, . . . ,nE},

which model the heat integration are included in xE. We summarize all
variables associated with the energy flows as xe =

(
[xe,U]

>
U∈V, xE

)>. We add
a notation to our constraints, similar as in Chapter 7. The constraints of our
superstructure problem include the connections of material streams between
the units, i.e., constraints of the form (38), which determine the material
stream entering a unit model U ∈ V. We cluster these material stream
constraints as hMS. The constraints, which determine the heat integration
are denoted by ge. The equality hV describes the topology, as given by

hVj :=
∑
U∈Vj

xT ,U − 1 (91)

for a layer Vj in the superstructure. This replaces the SOS type constraints
(36), (37). We model the linear and nonlinear unit level models via big M for-
mulation, because the vanishing constraints violate LICQ, see Section 5.1.2.
Finally, the energy and material streams of the unit level models are fixed.
Thus, we can write the superstructure optimization problem as
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min
x=(xT ,xV,xMS,xe)>∈Rn

f(xMS, xe)

s.t. hMS(xMS) = 0

ge(xe) 6 0

hV(xT ) = 0

gU(xU, xinU ) − (1− xT ,U)M 6 0, U ∈ V

xoutU −XoutU (xU) = 0 U ∈ V

xe,U −
(
Wout
U (xU),QoutU (xU)

)>
= 0 U ∈ V.

To analyze the degeneracy of the problem, we assume that we have a feasible
solution candidate with fixed binary variables. We call Vj the active unit
model in the layer Vj, i.e., the node Vj ∈ Vj with xT ,Vj = 1.

Table 36 shows the structure of the derivatives of the constraints with
respect to the variables. For the LICQ to hold, the rows of the equality
constraints and the active inequalities must be linear independent. Here, I
denotes the identity matrix and X denotes matrices with non-zero entries
and suitable dimensions. We examine the blocks marked in red closer to
show under which conditions LICQ hold.

Table 36: Pattern of the derivative of the optimization constraints
The pattern of the derivative of the optimization constraints with respect to the
variables. Here, I denotes identity matrices and X denotes matrices with non-zero
entries of suitable dimensions. The problem fulfills LICQ in a feasible point, if
the rows of all equality constraints and all active inequality constraints are linear
independent.

xT xV xin xout [xe,U]U∈V xE

hMS(xMS) X 0 I X 0 0

ge(xe) 0 0 0 0 X X

hV(xT ) X 0 0 0 0 0

gU(xU, xinU ) − (1− xT ,U)M M · I X X 0 0 0

xoutU −XoutU (xU) 0 X 0 I 0 0

xe,U −
(
Wout
U (xU),QoutU (xU)

)>
0 X 0 0 I 0

The derivatives of ge(xe), which corresponds to Eqs. (39)-(46) as defined in
Chapter 5, with respect to xE violate the LICQ for some points. The heat
integration must be regularized as stated below to avoid degeneracy:
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Eqs. (40), (41), and (46) are not problematic, as the derivatives with respect
to cU,I, cU,I, and Qext,i give linear independent rows in form of an identity
matrix.

Assuming that Eq. (39) is active for all units and utilities, the derivative of
Eq. (39) with respect to the heat flows QIIU,i gives a diagonal matrix of size
(nE ·nU)× (nE ·nU), which is of full rank. This special case occurs if all heat
of a unit is supplied to a single utility. In this case, Eqs. (44) becomes active
as well, whose gradient with respect to QIIU,i must be linear dependent to
the gradient of Eq. (39) as by the number alone. The same problem occurs
for heat flows of type II if QIIU = 0. We therefore regularize the problem, by
adding a slack to the equality constraints (44) and (45)∑

i

QIU,i 6 Q
I
U + ε,

∑
i

QIU,i > Q
I
U − ε.∑

i

QIIU,i 6 Q
II
U + ε,

∑
i

QIIU,i > Q
II
U − ε.

Thus, from Eqs. (39) and (44) a maximum of (nE ·nU) inequalities become
active in any feasible point.

Another problem occurs with the temperature levels of the utilities in
Eqs. (42) and (43). The derivative of these functions with respect to QIIU,i
becomes zero, if T̂i +∆T − T IIU = 0 or T̂i −∆T − T IIU = 0 holds. If QIIU,i is also
zero in a solution candidate, the matrix in Table 36 has an empty row, which
implies degeneracy. We solve this problem, by fixing the temperatures of
the utilities to temperatures with sufficient distance to the temperature level
of all isothermal unit models, i.e., we make sure that

|T̂i +∆T − T
II
U | > εT

|T̂i −∆T − T
II
U | > εT

holds for a εT > 0. This implies that for the outer temperature levels

T̂0 = Tmin −∆T − εT

T̂nE = Tmax +∆T + εT

holds, where Tmin and Tmax denote the minimal and maximal temperatures
occurring in the process. The temperature of intermediate units must be
kept between temperatures at ambient temperatures and the methanation
reactor, with sufficient distance to both directions. Thus T̂i +∆T − T IIU = 0

or T̂i −∆T − T IIU = 0 never hold. With this changes, the derivative of ge(xe)
with respect to xE is linearly independent.

The topology constraints (91) have entries for each node in the correspond-
ing layer, i.e.

∂hVj
∂xT ,U

= 1 U ∈ Vj.



Thus, the matrix ∂hV
∂xT

has at least one entry per row and exactly one entry
per column, which makes the rows linear independent. In the special case
that each layer has a single node, this results in an identity matrix.

Finally, if the derivatives of the unit model constraints

∂gU(xU, xinU ) − (1− xT ,U)M

∂(xU, xinU )
= ∇gU(xU, xinU )

are linear independent, the LICQ hold for the superstructure optimization
problem. However, optimization of the superstructure in the case AE (G1)
(O2) was not successful with the given memory limitations. The result
had a gap between upper and lower bound of around 27 %. This is most
likely caused by the ill-conditioned big M formulation for the unit model
constraints.
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N O TAT I O N A N D A C R O N Y M S

Notation

C mol/cm3 concentration
Cp J/K heat capacity
cp J/molK specific heat capacity
e kJ/mol exergy
echemical kJ/mol specific chemical exergy
eheat kJ/mol specific thermal exergy of a heat flow
ephysical kJ/mol specific physical exergy
F kW exergy
Fk,l filter set
f objective function
g inequality constraints
h equality constraints
mGC - number of FVM grid cells
mg - number of inequality constraints
mh - number of equality constraints
N mol/s molar gas flow rate
n - number of variables
Keq equilibrium constant
LB lower bound of branch-and-bound
lb lower bound on variables
p Pa pressure
pamb Pa ambient pressure
pi Pa component i partial pressure
pvp Pa pure component vapor pressure
Q, q kW heat flow
R cm3Pa/molK gas constant
s slack variables
T K temperature
Tamb K ambient temperature
t s time
tf s final time
UB upper bound of branch-and-bound



Notation

ub upper bound on variables
W, w kW work
yi - component i gas phase mole fraction
γ - opt. algorithm meta parameter
∆T K temperature difference
η efficiency
Ω feasible set
ρ g/cm3 density
τ - barrier parameter
θ - infeasibility measure
Subscripts

ref reference value
amb at ambient conditions
Catalytic Methanation Reactor

EA, ∆Hri kJ/mol LHHW rate parameter [39]
K0,i 1/bar LHHW rate parameter [39]
k0 mol/bar s g LHHW rate parameter [39]
r mol/s g reaction rate
Pressure Swing Adsorption (PSA)

A, Ea - QHR isotherm parameter [106]
ai1, ai2 - Langmuir isotherm parameter [53]
a cm2 cross sectional area
bi0, bi1 - Langmuir isotherm parameter [53]
cj - QHR isotherm parameter [106]
c cal/mol K heat capacity [53, 139]
h, U cal/cm2 s K heat transfer coefficients [53, 139]
ki 1/s component i mass transfer coefficient [53, 139]
nt mol/g total amount adsorbed
qi mol/g component i amount adsorbed
q∗i mol/g component i adsorption capacity
Ri, Ro cm inner and outer bed diameter [53]
V0 cm3/g QHR isotherm parameter [106]
v cm/s interstitial velocity
Z cm length of the adsorption bed
z cm axial coordinate in the adsorption bed
α 1/s rate of pressure drop or rise
∆Hi cal/mol component i heat of adsorption [53, 139]



Pressure Swing Adsorption (PSA)

ε - bed void fraction [53, 139]
Πi Pa component i spreading pressure
Pressure Swing Adsorption (PSA) Subscripts

c cooling medium
F feed
g gas phase
s adsorbent
w wall
Superstructure

C $ cost
CE CE index, Guthrie parameter
D m diameter
d number of material streams
E edges of the superstructure graph
L m length
M big M parameter
MF material factor, Guthrie parameter
mMS dimension of material streams
nE # utilities
nU # variables in unit model U
nV # unit models in the superstructure
r recycle rate
S kW Guthrie parameter
s separation fraction
T̂ K utility temperature
V m3 volume
V nodes of the superstructure graph
xT indicator variable
α, β Guthrie parameters
ζ extent of reaction
Superstructure Subscripts

ext external heat demand/surplus
MS material stream
Superstructure Superscripts

in ingoing stream
l liquid phase
out outgoing stream



Acronyms
AC Activated carbon
AD Anaerobic digestion
AE Alkaline electrolyzer
ASC Amine scrubbing
CCPP Combined-cycle power plant
CQ Constraint qualification
DAE Differential algebraic equation
EU European Union
FVM Finite Volume method
GDS Gas Distribution System
IVP Initial value problem
KKT Karush-Kuhn Tucker
LHV Lower heating value
LICQ Linear independence constraint qualification
MEM Membrane separation
MFCQ Mangasarian-Fromovitz constraint qualification
MILP Mixed integer linear program
MINLP Mixed integer nonlinear program
MS Material stream
NLP Nonlinear programm
ODE Ordinary differential equation
PDE Partial differential equation
PSA Pressure swing adsorption
PtM Power-to-methane
RES Renewable energy sources
SOEC Solid oxide electrolyzer cell
SQP Sequential quadratic programming
TRF Trust-region filter
TSA Temperature swing adsorption
WSC Water scrubbing
Z5A Zeolite 5A
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