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A B S T R A C T

Subpopulation discovery is an essential objective of data analysis in medical research
and contributes to the prevention and treatment of adverse medical conditions.
Characteristic subpopulations are detected, for example, by identifying long-term
determinants of diseases or by revealing patient subgroups with differential re-
sponses to treatment.

Traditional medical data analysis has been mostly hypothesis-driven. With the
increasing volume and heterogeneity of medical data, these workflows are becom-
ing impractical, as important relationships between variables may go undetected.
Besides, medical studies often involve measurements that are collected repeatedly
over time. Investigating hidden temporal information can potentially lead to new
insights. While machine learning has the potential of automatically detecting pre-
viously unknown subpopulations, the results of complex black-box models must
be made understandable. Therefore, the medical expert must be equipped with
tools to understand, explore, and visualize the models, breaking down individual
patterns to extract actionable insights.

This thesis proposes machine learning-based solutions for expert-driven subpopu-
lation discovery in high-dimensional timestamped medical data.

The first part presents workflows to detect comprehensible and distinct subpopula-
tions described by classification rules and clusters. We present novel visualizations
and interactive tools to inspect and juxtapose the high-dimensional subpopulations
and compare their change over time.

The second part covers workflows to exploit temporal information. We present a
framework to extract evolution features that characterize the subpopulations’ change
over time. Furthermore, we provide a method to build representations from short
temporal sequences.

The third part addresses the topic of post-hoc interpretation of complex black-box
models. We propose an end-to-end data analysis workflow that includes steps for
data augmentation, modeling, nesting model training with feature elimination,
and post-hoc analysis of the trained models. This workflow returns statistics and
visualizations representing global feature importance, instance-individual feature
importance, and subpopulation-specific feature importance for a machine learning
model of any type. Besides, we provide a solution for visualizing differences
between two a priori defined subpopulations.

The proposed methods are evaluated with datasets from four medical studies:

• a longitudinal population study,
• an observational therapy study with data on self-report questionnaire re-

sponses from tinnitus patients,
• a clinical experiment with timestamped plantar pressure and temperature

recordings from diabetes patients and healthy volunteers, and
• a retrospective clinical study with image data on intracranial aneurysms.
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Z U S A M M E N FA S S U N G

Die Entdeckung von Subpopulationen stellt ein wesentliches Ziel der Datenanalyse
in der medizinischen Forschung dar und trägt zur Vorbeugung und Behandlung
von Erkrankungen bei. Charakteristische Subpopulationen werden beispielsweise
durch die Identifizierung von Langzeitdeterminanten von Krankheiten oder durch
die Bestimmung von Patientensubgruppen mit differenziellem Ansprechen auf
eine Behandlung entdeckt.

Die traditionelle medizinische Datenanalyse war bisher überwiegend hypothesen-
getrieben. Mit der zunehmenden Menge und Heterogenität medizinischer Daten
werden diese Workflows zunehmend ungeeignet, da wichtige Beziehungen zwi-
schen Variablen unentdeckt bleiben können. Außerdem beinhalten medizinische
Studien oft Messungen, die im Laufe der Zeit wiederholt erhoben werden. Das
Extrahieren verborgener zeitlicher Informationen kann potenziell zu neuen Erkennt-
nissen führen. Während maschinelles Lernen das Potenzial hat, bisher unbekannte
Subpopulationen automatisch zu erkennen, müssen die Ergebnisse komplexer
Black-Box-Modelle verständlich gemacht werden. Dies erfordert, medizinische
Expertinnen und Experten mit Werkzeugen auszustatten, die es ihnen ermöglichen,
die Modelle zu interpretieren, zu explorieren und zu visualisieren, um individuelle
Muster aufzuschlüsseln und daraus handlungsrelevante Erkenntnisse zu gewinnen.

In dieser Arbeit werden auf maschinellem Lernen basierende Lösungen für die
expertengesteuerte Entdeckung von Subpopulationen in hochdimensionalen, zeit-
gestempelten medizinischen Daten vorgeschlagen.

Der erste Teil stellt Workflows vor, um verständliche und unterscheidbare Subpo-
pulationen zu erkennen, die durch Klassifikationsregeln und Cluster beschrieben
werden. Wir stellen neuartige Visualisierungen und interaktive Werkzeuge vor, um
die hochdimensionalen Subpopulationen zu inspizieren und gegenüberzustellen
sowie ihre Veränderung über die Zeit zu vergleichen.

Der zweite Teil befasst sich mit Workflows zur Modellierung zeitlicher Informatio-
nen. Wir stellen ein Framework zur Extrahierung von Evolutionsvariablen vor, die
die zeitliche Veränderung der Subpopulationen beschreiben. Außerdem wird ein
Verfahren zur Erstellung von Repräsentationen aus kurzen zeitlichen Sequenzen
vorgestellt.

Der dritte Teil befasst sich mit dem Thema der Post-hoc-Interpretation von komple-
xen Black-Box-Modellen. Wir stellen einen Ende-zu-Ende-Datenanalyse-Workflow
vor, der Schritte zur Datenanreicherung, Modellierung, Verzahnung von Modell-
training mit Variablen-Eliminierung und Post-hoc-Analyse der trainierten Modelle
umfasst. Dieser Workflow liefert Kenngrößen und Visualisierungen, die die globale,
instanz-individuelle und subpopulationsspezifische Variablenbedeutsamkeit für
ein maschinelles Lernmodell jedweden Typs darstellen. Außerdem wird eine Visua-
lisierung von Unterschieden zwischen zwei apriorisch definierten Subpopulationen
präsentiert.
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Die vorgeschlagenen Methoden werden anhand von Datensätzen aus vier medizi-
nischen Studien evaluiert:

• eine longitudinale Bevölkerungsstudie,
• eine beobachtende Therapiestudie mit Daten zu Selbstbeurteilungsfragebögen

von Tinnitus-Patienten,
• ein klinisches Experiment mit zeitgestempelten Plantardruck- und Tempera-

turaufzeichnungen von Diabetes-Patienten und gesunden Probanden, und
• eine retrospektive klinische Studie mit Bilddaten zu intrakraniellen Aneurys-

men.
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1
I N T R O D U C T I O N

1.1 motivation and objectives

Subpopulation discovery is an essential objective of data analysis in medical research
[Sch15; Shi+14]. Knowledge of characteristic subpopulations can improve preven-
tion (public health) and treatment (clinical medicine) of adverse medical conditions.
Subpopulations are detected by (i) identifying long-term determinants and pro-
tective factors of a medical condition of interest [GLD+20; BEE17; Oli+20], (ii)
revealing subcohorts with increased disease prevalence or with different treatment
response [STF+20; CBC+21; CSZ+20], and (iii) generating robust statistical models
that can explain relationships between one or more independent variables and
the outcome [Tsi19; HCL19; Gug+19]. For example, epidemiologists attempt to
discover associations between specific features (e.g., demographics and descriptors
of lifestyle) and a target variable (e.g., obesity) in cohort studies by collecting and
analyzing extensive participant data obtained from questionnaires, medical exami-
nations, laboratory analyses, and imaging [VAS+11; Inv+88; Hol+05; HBD+09]. In
studies with a longitudinal design, these measurements are collected repeatedly
over time and contain hidden temporal information, the investigation of which can
potentially lead to new insights.

To find associations between variables, medical researchers usually first carefully de-
rive hypotheses from clinical practice, experimental studies, or extensive literature
reviews to test them formally for statistical significance [Kle+14]. However, with
the ever-increasing volume and heterogeneity of medical data [SRS20], traditional
hypothesis-driven workflows are becoming increasingly impractical, as, for this
reason, some critical inherent associations between variables may go undetected
[VHH15]. Machine learning can improve medical research by discovering under-
standable descriptions of patient or study participant subpopulations similar in
terms of the target variable and can thus be used to derive new hypotheses [Fri+21;
Ste18].

The proliferation of medical machine learning applications is motivated, among
others, by the desire to make automated use of the plethora of information collected
about study subjects, but sometimes also by the ubiquity of deep learning success
stories in the media [Car+19]. However, the ease of creating complex data-driven
models is no guarantee that insights can be effortlessly derived [CA17]. Most
state-of-the-art machine learning algorithms such as deep neural networks [GBC16]
and gradient boosting machines [Fri01] generate so-called black-box models with
multiple layers of complexity that involve many multivariate, nonlinear interactions
between variables that are difficult to represent intuitively [AB18; CPC19].

It is critical that the application expert, who is not a practitioner but a scientist work-
ing in a clinical or epidemiological setting, is equipped with tools to understand,
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2 introduction

explore, and visualize the models [PL20; Vel19] so that they can drill down to spe-
cific individual patterns and gain actionable insights that ultimately contribute to
the prevention, diagnosis, and treatment in clinical practice. Because medical data
come from a wide variety of sources, key characteristics of the collected datasets
vary, requiring adaptation of methods to each application scenario [Cor+20].

This work proposes methods that serve as intelligent assistance to medical re-
searchers to analyze high-dimensional, timestamped medical data. Hence, the core
research question of the thesis is:

RQ: How to derive accurate yet understandable patterns for subpopulation
discovery in high-dimensional timestamped medical data?

Before, during, and after the generation of machine learning models, several
challenges must be overcome for the medical expert to derive actionable knowledge.
We translate these challenges into the following three goals:

GOAL1: Comprehensibility and distinctiveness of subpopulations: The extracted models,
including clusters, rules, and other patterns, must be made understand-
able; preferably, the model generation process must also be comprehensible.
Furthermore, we must minimize redundancy, which negatively affects the
perceived quality of the model. Our task is to extract, process, and display
the most relevant patterns for expert-driven model exploration.

GOAL2: Exploitation of time: Hidden temporal information must be exploited. Med-
ical scholars search for long-term determinants of severe diseases. Finding
patterns from subject “evolution” can contribute to this goal.

GOAL3: Post-hoc interpretation of complex black-box models: If the discovered patterns are
not intrinsically interpretable, methods are required to extract the most rele-
vant subpopulations and present them intuitively to the application expert.

1.2 structure and contributions of this thesis

This thesis presents solutions to support medical researchers for expert-driven
subpopulation discovery in high-dimensional, timestamped medical data. Design
decisions and developments were partly inspired by suggestions from the respective
domain experts and cooperation partners, including three tinnitus experts, an
epidemiologist with statistical expertise, and a diabetes expert.

The thesis is organized into three parts and ten chapters tackling the research
question and challenges mentioned above. Part I covers methods for subpopula-
tion discovery in high-dimensional data. Part II focuses specifically on temporal
aspects of medical datasets and provides approaches that extract informative rep-
resentations from timestamped data. Part III addresses the post-hoc analysis of
machine learning models and includes solutions to derive model-, observation-,
and subpopulation-level insights from otherwise “opaque” black-box models.

• Chapter 2 (Medical Background and Datasets) presents the medical background
relevant to this thesis, a brief comparison of medical study types, and an
overview of the medical studies used to validate the proposed methods.



1.2 structure and contributions of this thesis 3

• Chapter 3 (Interactive Discovery and Inspection of Subpopulations) presents a
workflow for interactive data-driven analysis of population-based cohort data
using hepatic steatosis as an example. It includes steps (i) to detect subpopu-
lations that have different distributions with respect to the target variable, (ii)
to classify each subpopulation taking class imbalance into account, and (iii)
to detect variables associated with the outcome.

• Chapter 4 (Identifying Distinct Subpopulations) refines the analysis of the previ-
ous chapter by examining redundancy in large rule sets describing subpopula-
tions. We present a workflow that extracts a smaller number of “representative”
rules, i.e., rules that avoid instance overlap as much as possible, thus covering
different subpopulations.

• Chapter 5 (Visual Identification of Informative Features) introduces a
hyperparameter-free clustering approach for deriving phenotypes, phenotype
exploration, and visual juxtaposition of phenotypes in a high-dimensional
feature space.

• Chapter 6 (Constructing Evolution Features to Capture Change over Time) presents
a solution for cohort analysis in longitudinal cohort study data to construct
“evolution features” from latent temporal information describing the cohort
participants’ change over time.

• Chapter 7 (Feature Extraction from Short Temporal Sequences for Clustering)
complements the previous solution by presenting an approach to create
representations from short temporal sequences via clustering in experimental
data.

• Chapter 8 (Post-Hoc Interpretation of Classification Models) builds upon the
insights of the previous chapters on the role of features in subpopulation
understanding. We propose a method that makes already learned, complex
classification models understandable to the domain experts. We combine
the classification of high-dimensional medical data with model explanation
using post-hoc interpretation methods. To this end, we use Shapely value
explanations (SHAP), LASSO coefficients, and partial dependency plots. Our
approach delivers statistics and visualizations representing global feature im-
portance, instance-individual feature importance, and subpopulation-specific
feature importance, all of which help illuminate complex black-box machine
learning models.

• Chapter 9 (Subpopulation-Specific Learning and Post-Hoc Model Interpretation)
addresses the issue of visualizing differences between two subpopulations in
temporal data. For this purpose, we derive a post-hoc interpretation measure
to assess the difference in the predictors’ association with the target variable
between two subpopulations.

• Chapter 10 (Summary and Future Work) concludes the thesis by summarizing
the contributions and providing a detailed outlook for the presented work.



4 introduction

For the validation of the proposed methods, we used datasets from the following
epidemiological and clinical studies:

SHIP the longitudinal population “Study of Health in Pomerania” [VAS+11],

CHA an observational therapy study involving data on self-report questionnaire
responses from tinnitus patients [Nie+20a],

DIAB a clinical experiment yielding timestamped plantar pressure and temperature
recordings from diabetes patients and non-diabetic volunteers [Nie+20c], and

ANEUR a retrospective clinical study involving image data on intracranial aneurysms
[Nie+18].

These datasets are used for method validation as follows:

Dataset Chapter 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7 Ch. 8 Ch. 9

SHIP x x x x

CHA x x x

DIAB x

ANEUR x



2
M E D I C A L B A C K G R O U N D A N D D ATA S E T S

Medical research on data from clinical and epidemiological studies lays the foun-
dation for decisions about diagnosing and treating multifactorial conditions such
as diseases and disorders. Major goals are to identify long-term determinants and
protective factors for an outcome of interest [GLD+20; BEE17; Oli+20], discover
subpopulations with increased disease prevalence [STF+20; CBC+21; CSZ+20],
and study intervention effects by generating statistical models explaining cause-
and-effect relationships [Tsi19; HCL19; Gug+19]. Traditional medical data analysis
pipelines are usually structured in a hypothesis-driven way as follows [Kle+14]:

(1) A medical scientist formulates a hypothesis based on observations in clin-
ical practice or current research. Possible examples include: “How does a
risk factor such as alcohol abuse affect the prevalence of a particular out-
come?”, or “What effect does a novel therapy have on patients with depressive
symptoms?”

(2) A small set of relevant variables that can be controlled for confounders is
selected to test this hypothesis. Variable selection may include controlling for
confounders. The data necessary to test the hypothesis are then collected.

(3) The strength of associations between the selected variables and the outcome
is assessed using regression models and statistical methods.

(4) Based on the results, inferential statistical calculations will be performed,
and conclusions will be drawn that may support the implementation of new
preventive interventions or the use of appropriate treatments in high-risk
patients.

However, with the advent of big data [Ous+18] in various fields, including medicine,
data volume and heterogeneity are increasing dramatically, making traditional
hypothesis-driven workflows increasingly inadequate as important relationships
between variables may go undetected [VHH15]. In this thesis, we present methods
that deal with different aspects of high-dimensional timestamped medical data. We
validate our methods on a variety of datasets from diverse study types.

This chapter is divided into two parts. Section 2.1 provides a brief comparison of
medical study types. In Section 2.2, we present the studies and the data samples
for which we developed the methods proposed in this thesis.

2.1 brief comparison of medical study types

Primary medical research can be divided into basic, clinical, and epidemiological
studies [Röh+09]. The following comparison of these study types is based on the
reviews of Thiese [Thi14] and Röhrig et al. [Röh+09] if not indicated otherwise.
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6 medical background and datasets

basic research . Basic medical research (or experimental research) aims to
improve the understanding of cellular, molecular, and physiological mechanisms
of human health and disease by conducting cellular and molecular investigations,
animal studies, drug and material property studies in tightly controlled laboratory
environments. To study the effects of one or more variables of interest on the out-
come, all other variables are usually held constant, and only the variables of interest
are varied. The carefully standardized experimental conditions of basic medical
studies ensure high internal validity, but these conditions often cannot be easily
transferred to clinical practice without compromising the results’ generalizability.

clinical studies . Clinical studies are generally classified into interventional
(experimental) studies and non-interventional (observational) studies. The general
objective of an intervention study is to compare different treatments within a patient
population whose members differ as little as possible except for the treatment
arm. A common example is a pharmaceutical study that aims to validate the
efficacy and safety by investigating or establishing a drug’s main and side effects,
absorption, metabolism, and excretion. Selection bias can be avoided by appropriate
measures, in particular by randomly assigning patients to groups. Treatment may
be a medication, surgery, therapeutic use of a medical device (e.g., a stent), physical
therapy, acupuncture, psychosocial intervention, rehabilitation, training form, or
diet. A randomized controlled trial (RCT) is considered the gold standard of study
design [HL18]. Selection bias is minimized by (a) randomly assigning patients to
treatment and control groups and (b) ensuring equal distribution of known and
unknown influencing variables (confounders), such as risk factors, comorbidities,
and genetic variability. RCTs are thus suitable for obtaining an unambiguous answer
to a clear question concerning the (causal) efficacy of a treatment.

Non-interventional clinical trials are patient-based observational studies in which
patients either receive an individually defined treatment, or all patients receive
the same treatment. An example of a non-interventional design is a study inves-
tigating the regular use of drugs in therapies. Here, treatment, diagnosis, and
monitoring do not follow a predefined study protocol but rather medical practice
alone. Data analysis is often retrospective. Whether a study design is prospective or
retrospective depends on the sequence of hypothesis generation and data collection.
In prospective studies, hypothesis generation comes before data collection. First,
the hypotheses to be tested are defined, e.g., regarding a new treatment procedure.
Then, data are collected specifically for hypothesis testing. By first formulating
testable hypotheses, it is possible to ensure that the research questions can actually
be answered with the measured data. A retrospective study design means that data
collection took place before the study began.

epidemiological studies . Epidemiological studies are usually interested in
the distribution and change over time of the incidence of diseases and their causes
in the general population and subpopulations. Cohort studies examine individuals,
some of whom do not have the health outcomes of interest at the beginning of the
observation period and assess exposure status to various health-related conditions
[Gle05]. The included subjects are then followed up over time in longitudinal studies
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(as opposed to cross-sectional studies), where the outcomes of interest are recorded in
multiple waves. With these data, researchers can establish subgroups of subjects by
exposure status, sort them by exposure, and compare the incidence or prevalence of
a disease among exposure categories. Longitudinal studies are further categorized
into trend and panel design. In a trend study, each wave can involve a different
participant sample, i.e., an individual participant is not followed over time. In
contrast, a panel study investigates the same population at multiple points in time
which allows to also measure intra-individual temporal changes.

2.2 datasets investigated in this thesis

In this section, we present the datasets and the associated studies investigated in
this thesis, namely

• the Study of Health in Pomerania in Section 2.2.1,
• an observational therapy study on the health of tinnitus patients at baseline

and after therapy in Section 2.2.2,
• a clinical experiment study on diabetic foot syndrome in Section 2.2.3, and
• a retrospective clinical study with image data on intracranial aneurysms in

Section 2.2.4.

2.2.1 The Study of Health in Pomerania (SHIP)

After the reunification of Germany, it was found that life expectancy was signifi-
cantly lower in the East than in the West [Völ+15]. Furthermore, there were regional
differences within the new states, with the lowest life expectancy found in the
Northeast [Völ+15; WB04]. To find causal risk factors of mortality and other condi-
tions in the northeastern German population, the Community Medicine Research
Center in Greifswald established the Study of Health in Pomerania (SHIP) [VAS+11],
a longitudinal epidemiological study of two independent cohorts in northeastern
Germany. SHIP seeks to describe a broad spectrum of health conditions rather than
focusing on a specific target disease [VAS+11]. In particular, major study objectives
include investigations of the prevalence of common diseases and their risk factors,
the correlation and interaction between risk factors and diseases, the progression
from subclinical to manifest diseases, the identification of subpopulations with
increased health risk, the prediction of concomitant diseases, as well as the usage
and costs of medical service.

Cohort inclusion criteria were age from 20 to 79 years, main residency in the study
region, and German nationality. Participants of SHIP underwent an extensive,
recurring (ca. every 5 to 6 years) examination program that encompasses personal
interviews, body measurements, exercise electrocardiogram, laboratory analysis,
ultrasound examinations, and whole-body magnetic resonance tomography (MRT).
Baseline examinations for the first cohort were performed between 1997 and 2001

(SHIP-0, N = 4308). Follow-up examinations were carried out in 2002-2006 (SHIP-1,
n = 3300), 2008-2012 (SHIP-2, n = 2333), 2014 - 2016 (SHIP-3, n = 1718) and since
2019 (SHIP-4). Figure 2.1 illustrates participant response and age distribution of
show-ups across study waves. Baseline information for a second, independent
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cohort (SHIP-Trend-0, N = 4420) was collected between 2008 and 2012, and a
follow-up was conducted between 2016 and 2019. Major strengths of SHIP are a
high level of quality assurance, standardized examination protocols, and a high
cohort representativeness.
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Figure 2.1: Participation response and age distribution of show-ups across SHIP study
waves. (a) Change in the number of show-ups and non-respondents relative to
the cohort size across waves. (b) Age distribution of show-ups for each wave.

The examination program changed across waves. For example, MRT was not
performed until SHIP-2; liver ultrasound was performed in SHIP-0 and SHIP-2 but
not in SHIP-1; dermatologic examinations were performed in SHIP-1 and SHIP-2
but not in SHIP-0.

Our analyses focus on the disorder hepatic steatosis, also known as “fatty liver”,
characterized by a high accumulation of fat in the liver, occurring in approximately
30% of all adults [VAS+11; Völ+05]. Risk factors include alcohol abuse, obesity,
metabolic syndrome, and diabetes [Völ12]. Liver biopsy is considered the diagnostic
gold standard [AAG21] but is associated with intermediate risk for the patient.
Non-invasive diagnostic techniques include MRI, CT, and ultrasound. Because
hepatic steatosis is usually asymptomatic, it often goes undetected, which can
develop into more serious diseases, such as steatohepatitis, cirrhosis, hepatocellular
carcinoma, or even liver failure [AAG21].

We used SHIP data subsets to validate the methods presented in Chapters 3, 4, 6,
and 9.

2.2.2 The Charité Tinnitus Patients Observational Therapy Study Dataset (CHA)

Tinnitus is the perception of a phantom sound in the absence of an external sound
source. It is a complex, multifactorially caused and maintained phenomenon and is
estimated to affect 10% to 15% of the adult population [BMH13]. The associated
annual economic burden is 19.4 billion USD in the United States [BBL17] and 6.8
billion EUR in the Netherlands alone [Mae+13]. Clinical evaluation of tinnitus is
challenging due to patient heterogeneity in tinnitus perception (laterality, pitch,
noise characteristics, frequency, duration, chronicity), risk factors (including hearing
loss, temporomandibular joint disorder, aging), comorbidities (including hyper-
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acusis, depression, sleep disorders), perceived distress, and treatment response
[CGH+19]. These differences complicate the identification of an appropriate and
effective treatment modality. Currently, there is no treatment gold standard: sound
therapy (masking), informational counseling (minimal contact education), cogni-
tive behavioral therapy, and tinnitus retraining have been shown to be effective
for some patients, but there is also evidence that not all patients benefit equally
from these forms of treatment [HCE12; Krö+03; HW96; Mar+10; PM10]. Due to
the heterogeneous nature of the tinnitus symptom and the unclear evidence base
regarding its treatment and management, identification of patient subgroups is
critical to stratify individual pathophysiology and treatment pathways [Lan+17;
Tyl+08; Lan+10].

The “Charité tinnitus patients observational therapy study dataset” (CHA) includes
self-report data from 4103 tinnitus patients treated at the Tinnitus Center of Charité
Universitätsmedizin Berlin, Germany, between January 2011 and October 2015. All
patients were 18 years of age or older and had suffered from tinnitus for at least 3

months. Exclusion criteria were the presence of acute psychotic illness or addiction,
deafness, and insufficient knowledge of the German language. Treatment included
a 7-day multimodal program with intensive and daily informational counseling,
detailed ear-nose-throat psychological diagnosis, cognitive behavioral therapy in-
terventions, hearing exercises, progressive muscle relaxation, and physical therapy.
At baseline (T0; before the start of therapy) and after treatment (T1), patients were
asked to complete several self-report questionnaires. These questionnaires were se-
lected to obtain a comprehensive assessment of tinnitus, including tinnitus-related
distress and the psychosomatic background of tinnitus with anxiety, depression,
the general quality of life, and experienced physical impairments.
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Figure 2.2: Patient demographics (CHA). Overview of patient demographics by degree of
tinnitus distress measured before therapy commencement.

Table 2.1 provides an overview of all questionnaires used in our analyses. Most
questionnaires contain multiple-choice items with answers on a Likert scale. For
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Table 2.1: Description of questionnaires that form the basis for CHA. |F|: total number
of items, subscales and total scales.

Name Scope |F|

1 ACSA: Anamnestic Comparative Self-
Assessment [BB93]

Quality of life 1

2 ADSL: General Depression Scale [Rad77;
HB03]

Depressive symptoms 22

3 BI: Berlin Complaint Inventory [Hör+97] General well-being, autonomic nervous sys-
tem, pain and emotionality

29

4 BSF: Berlin Mood Questionnaire [HKS93] Mood 36

5 ISR: ICD-10 Symptom Rating [Tri+08] Mental disorders 36

6 PHQK: (Short-form) Patient Health Question-
naire [SKW+99]

Symptoms of depression and anxiety 16

7 PSQ: Perceived Stress Questionnaire [Fli+05] Stress 35

8 SES: Pain Perception Scale [Gei95] Pain 29

9 SSKAL: Visual Analog Scales Pain Pain impairment, frequency and intensity 3

10 SF8: Short Form 8 Health Survey [BM08] Health-related quality of life 18

11 SOZK: A socio-demographics questionnaire
[Bru+16]

Gender, partnership status, education, em-
ployment status, among others

27

12 SWOP: Self-Efficacy- Optimism-Pessimism
Scale questionnaire [SFK99]

Self efficacy, optimism, pessimism 12

13 TINSKAL: Visual analogue scales Tinnitus loudness, frequency and distress 3

14 TLQ: Tinnitus Localization and Quality ques-
tionnaire [GH92]

Location (left, right, bilateral, entire head) and
sound of tinnitus

8

15 TQ: Tinnitus Questionnaire (German version)
[GH98]

Tinnitus-related distress and tinnitus severity 60

example, the “Tinnitus Questionnaire” [GH98] (TQ) contains 52 statements, such as
“I am unable to enjoy listening to music because of the noises.”, and respondents
can give 3 possible answers: “not true” (coded as 0), “partly true” (1), and “true” (2).
Some questionnaires also include aggregate variables called “subscales” and “total
scores.” For example, the TQ total score (TQ_distress) is calculated as the sum of
40 item values, with 2 items used twice [GH98], resulting in a range of values from
0 to 84, with higher values representing higher tinnitus-related distress. The cutoff
value 46 [GH98] is used to distinguish between compensated (0-46) and decompensated
(47-84) tinnitus. Furthermore, the average time to answer an item was recorded for
each questionnaire. Figure 2.2 provides a graphical representation of demographic
data for 3803 (92.7%) patients with complete data for the socio-demographics
questionnaire [Bru+16] (SOZK) and TQ score.

We used the CHA dataset to validate the methods developed in Chapters 5, 8,
and 9.
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2.2.3 The Diabetic Foot Clinical Experiment Study (DIAB)

Diabetic foot syndrome is an umbrella term for foot-related problems in diabetic
patients. Up to one in four diabetes patients will develop a foot ulcer during
their lifetime [Bou+05], with many at risk of amputations in the next four years
[KSJ14]. More than 85% of foot amputations are due to foot ulcers [Gre+14; VL16].
The rate of foot amputations in diabetes patients is estimated to be 17-40 times
higher than in the general population [FEL07]. DFS patients are predisposed
to peripheral sensory neuropathy, which results, for example, in patients being
unaware of the temperature of their feet or the pressure applied to them. Affected
individuals may even injure themselves without realizing it. Excessive plantar
pressures can exacerbate tissue destruction and increase the lifetime risk of foot
ulceration [SAL05]. However, understanding of the pathomechanisms underlying
tissue destruction in the absence of trauma is limited.

At the university hospital of Magdeburg, Germany, an experimental study with 31

healthy volunteers and 30 diabetes patients diagnosed with severe polyneuropathy
was conducted to quantify pressure- and posture-dependent changes of plantar
temperatures as surrogate of tissue perfusion. For this purpose, plantar pressure
and temperature changes in the feet were recorded during extended episodes of
standing. Custom-made shoe insoles [Grü+15] equipped with eight temperature
sensors and eight pressure sensors at preselected positions were used for data
acquisition (Figure 2.3 (a)). The insoles were positioned into closed protective shoes
specifically developed for diabetes patients. Within such shoes, the temperature
increases over time due to exchange with the person’s body temperature and is
also affected by the environmental temperature. To closely monitor the in-shoe
temperature changes, one sensor was placed at the bottom of the insole without
contact to the feet, which was denoted “ambient temperature sensor”.

Data collection began immediately after the shoes were put on. Participants were
asked to follow a predefined sequence of actions, i.e., alternating between standing
(stance episode) and sitting (pause). A session consisted of 6 stance episodes lasting
5, 10, 20, 5, 10, and 20 minutes, respectively, separated by pause episodes lasting
5 minutes each. Participants were instructed to apply equal pressure to both feet
while standing. Participants did not receive immediate feedback on the actual
application of pressure during the sessions, but they were verbally encouraged by
the study nurses to maintain pressure while standing without releasing it. In the
seated position, participants were instructed to release pressure for 5 minutes while
maintaining contact with the insole. Participants were explicitly asked to adhere to
these instructions, i.e., not to release pressure during a standing episode temporarily.
The study protocol further included that the measurements were performed twice,
once at room temperature of approximately 22°C and once outdoors at an ambient
temperature of approximately 16°C. The two measurements were performed on
two independent days.

The thermographic images in Figure 2.3 (b) visualize exemplary changes in plantar
temperature in a healthy subject in a sitting position before pressure application (1),
after placing a 20 kg weight on the front of the thigh (2-6), and after removing the
additional weight (7-8). During pressure application, a gradual temporal decrease
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Figure 2.3: Positions of pressure- and temperature sensors on insole and temporal,
pressure-dependent temperature change. (a) Sensor positioning on the insole
in relation to foot placement. (b) Thermographic infrared images showing a
healthy subject in a seated position with no pressure applied to the feet (before)
and after placement of a 20 kg weight on both thighs. The measured temper-
ature ranged from 29°C (blue) to 34°C (red). A time-dependent temperature
decrease was observed predominantly in the forefoot region, visualized by
yellow color during pressure application. A rapid temperature increase was
noted within 1 min after pressure relief. MTB: metatarsal bone. The figure is
adapted from [Nie+20c].

in temperature was noted predominantly in the forefoot. After pressure relief, a
rapid temperature increase was observed within 1 min.

We used the DIAB dataset to validate the methods developed in Chapter 7.

2.2.4 The Intracranial Aneurysm Angiography Image Dataset (ANEUR)

Intracranial aneurysms are pathologic dilations of the intracranial vessel wall, often
in the form of a dilation. They bear a risk of rupture, leading to subarachnoidal
hemorrhages with often fatal consequences for the patient. Since treatment can
also cause severe complications, extensive studies were conducted to assess the
patient-individual rupture risk based on various parameters, including aneurysm
symptomatology, size, location, and patient age and sex [Wer+07]. Further studies
identified parameters, such as aspect ratio, undulation index, and nonsphericity
index, to be statistically significant with respect to aneurysm rupture status [Dha+08;
Xia+11]. However, although these studies allow for retrospective analysis, the
clinician needs further guidance if an asymptomatic aneurysm (as an accidental
finding) was detected and the rupture risk should be determined.
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We developed methods for the retrospective “Intracranial Aneurysm Angiography
Image Dataset” (ANEUR) comprising 3D rotational angiography data from 74

patients (age: 33-85 years, 17 male and 57 female patients) of the university hospital
of Magdeburg, Germany, adding up to a total of 100 intracranial aneurysms. We
identified two primary goals for this dataset: (i) build models that can accurately
predict rupture status based on morphological parameters only, and (ii) assess the
importance of these parameters to the models with optimal accuracy.

Motivated by the results of Baharoglu et al. [Bah+12], who found differences
between sidewall and bifurcation aneurysms (cf. Figure 2.4) in terms of the rela-
tionship of several morphological parameters and rupture status, we learn different
models for the subset of sidewall aneurysms (9 (37.5%) of 24 ruptured) and the
subset of bifurcation aneurysms (29 (46.8%) of 62 ruptured). Additionally, we run
experiments on a combined group (43 of 100 ruptured) containing 14 additional
samples that could not be clearly determined to be either sidewall or bifurcation
aneurysms.

Sidewall aneurysm Bifurcation aneurysm

Figure 2.4: Sidewall and bifurcation aneurysms. Illustration of an aneurysm at the side
of the parent vessel wall (left) and an aneurysm at a vessel bifurcation (right).
The figure is adapted from [Nie+18].

We used the ANEUR dataset to validate the methods developed in Chapter 8.
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Brief Chapter Summary

Analysis of population-based cohort data has been mostly hypothesis-
driven. We present a workflow and an interactive application for data-
driven analysis of population-based cohort data using hepatic steatosis as
an example. Our mining workflow includes steps

i. to discover subpopulations that have different distributions with re-
spect to the target variable,

ii. to classify each subpopulation taking class imbalance into account,
and

iii. to identify features associated with the target variable.

We show that our workflow is suited (a) to build subpopulations before
classification to reduce class imbalance and (b) to drill-down on the derived
models to identify predictive features and subpopulations worthy of further
investigation.

This chapter is partly based on:

• Uli Niemann, Henry Völzke, Jens-Peter Kühn, and Myra Spiliopoulou. “Learn-
ing and inspecting classification rules from longitudinal epidemiological data
to identify predictive features on hepatic steatosis”. In: Expert Systems with
Applications 41.11 (2014), pp. 5405-5415. DOI: 10.1016/j.eswa.2014.02.040.

• Uli Niemann, Myra Spiliopoulou, Henry Völzke, and Jens-Peter Kühn. “In-
teractive Medical Miner: Interactively exploring subpopulations in epidemio-
logical datasets.” In: ECML PKDD 2014, Part III, LNCS 8726. Springer, 2014,
pp. 460-463. DOI: 10.1007/978-3-662-44845-8_35.

This chapter is organized as follows. In Section 3.1, we motivate for classification
and interactive subpopulation discovery in epidemiological cohort studies and
review related work. We present our workflow and the interactive assistant in
Section 3.2. In Section 3.3, we report our results and main findings. The chapter
closes with a summary and a discussion of the main contributions in Section 3.4.

3.1 motivation and comparison to related work

Medical decisions about the diagnosis and treatment of multifactorial conditions
such as diseases and disorders are based on clinical and epidemiological studies
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[Elm+20]. The latter contain information about participants with and without a
disease and allow learning of discriminatory models and, in longitudinal designs,
understanding disease progression. For example, several studies identified risk
factors (such as obesity and alcohol consumption) and comorbidities (such as
cardiovascular disease) associated with hepatic steatosis [Itt+12; Lau+10; SBL+11;
TDB10; Mar+13]. However, these studies identified risk factors and associated
outcomes that relate to the entire population. Our work arose from the need to
identify such factors for subpopulations to promote personalized diagnosis and
treatment, as expected in personalized medicine [HWR+13; VFI+13].

3.1.1 Role of Subpopulations in Classifier Learning for Cohorts

Classification on subpopulations was studied by Zhanga and Kodell [ZK13], who
pointed out that classifier performance on the whole dataset may be low if the
entire population is very heterogeneous. Therefore, they first trained an ensemble
of classifiers and then used each ensemble member’s predictions to create a new
feature space. They performed hierarchical clustering to partition the instances into
three subpopulations: one where the prediction accuracy is high, one where it is in
the intermediate range, and one where it is low. Using this approach, Zhanga and
Kodell partition the original data set into subpopulations that are easy or hard to
classify. While the method seems appealing in general, it appears inappropriate for
the three-class problem of the SHIP data, which has a highly skewed distribution,
so it is clear that the low classification accuracy is caused (in part) by the class
imbalance. Therefore, we exploratively examined the data set before classification to
identify less skewed subpopulations and after classification to determine – within
each subpopulation – features strongly associated with the target.

Pinheiro et al. performed association rule discovery in patients with liver cancer
[Pin+13]. The authors pointed out that early detection of liver cancer reduces
the mortality rate. Early detection is still difficult because patients often do not
show symptoms in the early stages of liver cancer [Pin+13]. Pinheiro et al. used
the association rule algorithm FP-growth [HPY00] to discover high-confidence
association rules and high-confidence classification rules related to liver cancer
mortality. We also considered association rules promising for medical data analysis
because they are easy to compute and produce results that are understandable
to humans. Therefore, we used association rules as the primary method, but for
epidemiological data and classification rather than for mortality prediction. To use
association rules for classification, we specified that the rule’s consequence is the
target variable.

3.1.2 Workflows for Expert-Machine Interaction for Cohort Construction and Analysis

Zhang et al. [ZGP15] addressed the increasing technical challenges of medical
expert-driven subpopulation discovery due to increasingly large and complex
medical data, often including information from hundreds of features for thousands
of patients in the form of tables, images, or text. In the past, it was sufficient for a
physician to have some basic knowledge of statistics and spreadsheet software such
as Microsoft Excel to analyze a small table of patient data. Today, more effective
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and efficient approaches for managing, analyzing, and summarizing extensive
medical data are available [ZGP15]. However, domain experts typically rely on
technical experts to help them perform these tasks. This back-and-forth is often
slow, tedious, and expensive. Therefore, it would be better to provide the domain
expert with a technical tool that allows them to perform exploratory analysis by
themselves quickly. Zhang et al. [ZGP15] presented CAVA, a system that includes
various subgroup visualizations (called “views”) and analytical components (called
“analytics”) for subgroup comparison. The main panel in Figure 3.1 shows one
of the views: a flowchart [WG12] of patient subgroups with the same sequence
of symptoms. The user can obtain additional summaries by interacting with the
visualization, for example, by dragging and dropping one of the boxes in the
flowchart onto one of the entries in the analysis panel. The user can also expand
the selected cohort by having the tool search for patients who do not strictly
meet the current inclusion criteria but are somewhat similar to the selected patient
subpopulation of interest [Eba+10].

Figure 3.1: CAVA’s graphical user interface. The flowchart visualizes subgroups of cardiac
patients organized by the common occurrence of symptoms. Arc color represents
the hospitalization risk. The user can switch between graphical representations
and data processing methods by dragging and dropping. The upper right panel
contains detailed information about the currently selected patients. The lower
right panel contains a provenance graph that allows the user to undo operations
and revisit previous interaction steps. The figure is reprinted from [ZGP15]
with permission (Figure 1; © 2015 SAGE Publications).

Krause et al. [KPN16] argued that model selection should not be based only on
global performance metrics such as accuracy, as these statistics do not contribute to
a better understanding of the model’s reasoning. Moreover, a complex but highly
accurate model does not automatically guarantee actionable insights. Krause et
al. propose Prospector [KPN16], a system that provides diagnostic components
for complex classification models based on the concepts of partial dependence
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(PD) plots [Fri01]. PD plots are a popular tool for visualizing marginal effects of
features on the predicted probability of the target. Briefly, each point on a PD plot
represents the model’s average prediction over all observations, assuming that
these observations had a fixed value for a feature of interest. A feature whose
PD curve exhibits a high range or high variability is considered more influential
on model prediction than a feature with a flat PD curve. Closely related to PD
plots are individual conditional expectation (ICE) plots, [Gol+15] which display a
curve for each observation, helping to reveal contrasting subpopulations that might
“average out” in a PD plot. Prospector combines PD and ICE curves to show the
relationship between a feature and model prediction at a (global) model level and a
(local) patient-individual level. Besides, a custom color bar is provided as a more
compact alternative to ICE curves (Figure 3.2 (a)). A stacked bar graph shows the
distribution of predicted risk scores for each study group (Figure 3.2 (b)). The user
can click on a specific decile to obtain a list of individual patients with their exact
predicted score and label. In this way, patients whose prediction scores are close to
the decision threshold can be further investigated. For each feature, the authors
calculate the “most impactful feature change”: given a patient’s current feature
values, they identify a near-counterfactual value that leads to a large change in the
predicted risk score by minimizing the difference from the original feature value
and maximizing the predicted risk score. The top 5 of these so-called “suggested
changes” are displayed – separately for increasing and decreasing disease risk - in
a table (cf. Figure 3.2 (c)) and integrated as interactive elements into the IC color
bars (cf. Figure 3.2 (d)).

Pahins et al. [Pah+19] presented COVIZ, a system for cohort construction in large
spatiotemporal datasets. COVIZ includes components for exploratory data analysis
of treatment pathways and event trajectories, visual cohort comparison, and visual
querying. One of the design goals of COVIZ was to be fast, e.g., by using efficient
data structures such as Quantile Data Structure [LFC19] to ensure low latency
for all computational operations and thus suitability for large data sets. Bernard
et al. [Ber+15] proposed a system for cohort construction in temporal prostate
cancer cohort data that included visualizations for subpopulations and individual
patients. To guide users during exploration, visual markers indicate interesting
relationships between attributes derived from statistical tests. Recently, Corvo et
al. [Cor+20] presented a comprehensive visual analytics system for pathological
high-throughput data, which encompasses all major steps of a typical data analysis
pipeline, such as preprocessing raw histopathology images by interactive segmenta-
tion, components for exploratory data analysis, and interactive cohort construction
in a high-dimensional feature space, feature engineering which includes extraction
of potentially predictive biomarker features, modeling, as well as visualization and
summarization of the modeling results. Preim and Lawonn provided comprehen-
sive reviews of visual analytics methods and applications in public health [PL20]
and epidemiology [Pre+16] in particular.

3.1.3 Previous Work on Subpopulation Discovery with the SHIP Data

Since we carry out the proof-of-concept for our workflow on the SHIP data, we
list major scientific preparatory work hereafter. Preim et al. [Pre+19] provided
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Figure 3.2: Selected model diagnostics of Prospector. (a) The upper plot shows two curves
for the characteristic “age”: the gray partial dependence (PD) curve represents
the marginal prediction of the model over all patients, while the black individual
conditional expectation (ICE) curve illustrates the effect of counterfactual ages
on the predicted risk of diabetes for an example patient. The histogram shows
the age distribution. The color bar below is a compact representation of the ICE
curve above; the circled value represents the selected patient’s feature value.
(b) Stacked bars show the distribution of predicted risk scores for each study
group. Clicking on one of the bars opens a table showing the ID, predicted risk,
and true label for all patients belonging to the selected decile of predicted risk.
(c) Summary table of “most impactful feature changes” for a decreasing (upper
group) and an increasing (lower group) predicted risk: each row shows the
actual feature value and the “suggested change,” i.e., a similar but counterfactual
value that would lead to a significant change in predicted risk. (d) Multiple PD
color bars augmented with suggested changes (labels outlined in white). The
figure is reprinted (adapted) from [KPN16] with permission (Figures 5, 7, 8,
and 9; © 2016 ACM).
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an overview of the research that developed data mining and visual analytics
methods to gain insights into the SHIP data. Among them is the “3D Regression
Cube” of Klemm et al. [Kle+15], a system that allows interactive exploration
of feature correlations in epidemiological datasets. The system generates many
multiple linear regression models from different combinations of one dependent
and up to three independent variables and displays their goodness of fit in a
three-dimensional heat map. The system allows the user to modify the regression
equation, for example, by changing the number of independent variables, specifying
wild cards and interaction terms, fixing one of the variables to reduce computational
complexity, or focusing specifically on a variable of interest. Our approach is also
able to identify variables that are strongly associated with the target variable.
However, we search for subpopulation-specific relationships rather than generating
a global model for the entire dataset, and we additionally provide predictive
value ranges. Klemm et al. [Kle+14] presented a system that combines visual
representations of non-image and image data. They identify clusters of back pain
patients for the SHIP data. Since we specify hepatic steatosis as the target variable,
we instead build supervised models and classification rules that directly capture the
relationships between predictors and the target variable. Alemzadeh et al. [Ale+17]
presented S-ADVIsED, a system for interactive exploration of subspace clusters
that incorporates various visualization types such as donut diagrams, correlation
heatmaps, scatterplot matrices, mosaic diagrams, and error bar graphs. While
S-ADVIsED requires the user to input mining results obtained in advance outside
the system, our tool enables expert-driven interactive subpopulation discovery instead
of expert-driven interactive result exploration. Hielscher et al. [Hie+16] developed a
semi-supervised constrained-based subspace clustering algorithm to find diverse
sets of interesting feature subsets using the SHIP data. To guide the search for
predictive feature subsets, the expert can provide their domain knowledge in the
form of a small number of instance-level constraints, forcing pairs of instances
(i.e., study participants) to be assigned either to the same or a different cluster.
Hielscher et al. [Hie+18] extended their work and introduced a mechanism to
validate subpopulations on independent cohorts.

3.2 subpopulation discovery workflow and interactive mining

assistant

In this section, we present our subpopulation discovery workflow. We build clas-
sification models on the whole dataset and different partitions, as described in
Section 3.2.1. In Section 3.2.2, we introduce relevant underpinnings of classifi-
cation rule discovery, followed by a description of the primarily used HotSpot
[Hal12] algorithm in Section 3.2.3. We present our interactive mining assistant in
Section 3.2.4. The dataset used for population partitioning and class separation on
the target variable hepatic steatosis comes from the “Study of Health in Pomerania”
(SHIP), recall Section 2.2.1. In Section 3.2.5, we describe the origin and availability
of the target variable. In Section 3.2.6, the motivation for data partitioning and the
partitioning steps are presented.
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Table 3.1: Cost matrix. Cost matrix to penalize misclassification under class imbalance.

Predicted

A B C

A 0 1 2

B 2 0 1True

C 3 2 0

3.2.1 Classification

For the classification of cohort participants, we focus on algorithms that provide
interpretable models, as we aim to identify predictive conditions, i.e., features and
values/ranges in the models. Therefore, we consider decision trees, classification
rules, and regression trees. We use the J4.8 decision tree classification algorithm
(equivalent to the C4.5 algorithm [Qui92]) from the Waikato Environment for
Knowledge Analysis (Weka) Workbench [FHW16]. This algorithm builds a tree
successively by partitioning each node (a subset of the dataset) by the feature
which maximizes the information gain within that node. The original algorithm
works only with features that take categorical values, creating one child node per
value. However, the Weka implementation also provides an option that forces the
algorithm always to create exactly two child nodes: one for the best separating
value and one for all other values. We use this option in our experiments because
it yields better quality trees. The Weka algorithm also supports features that take
numeric values: A node is split into two child nodes by partitioning the variable’s
range of values into two intervals.

To deal with the skewed distribution, we consider the following classification
variants:

• Naive: the problem of imbalanced data is ignored.
• InfoGain: we keep only the top 30 of the 66 features by sorting the features on

information gain towards the target variable.
• Oversampling: We use SMOTE [Cha+02] to resample the dataset with minority-

oversampling: for class B, 100% new instances are generated; for class C, 300%
new instances are generated, resulting in the following distribution A: 438, B:
216, C: 128.

• CostMatrix: We prefer to misclassify a negative case rather than not detecting
a positive case, so we penalize false negatives (FN) more than false positives
(FP). We use the cost matrix depicted in Table 3.1.

3.2.2 Classification Rule Discovery

Classification rules can reveal interesting relationships between one or more features
and the target variable [FGL12; Her+11]. Compared to model families such as
deep neural networks, support vector machines and random forests, classification
rules usually achieve lower accuracy. However, they are easier to interpret and
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infer and are therefore more suitable for interactive subpopulation discovery. In
epidemiological research, interesting subpopulations could subsequently be used to
formulate and validate a small set of hypotheses or investigate associations between
risk factors for a particular target variable. A subpopulation of interest could be
formulated as follows: “In the sample of this study, the prevalence of goiter is
32%, whereas the probability in the subpopulation described by thyroid-stimulating
hormone less than or equal to 1.63 mU/l and body mass index greater than 32.5
kg/m2 is 49%.”

Classification rule algorithms induce descriptions of interesting subpopulations
where interestingness is quantified by a quality function. A classification rule is an
association rule whose consequent is fixed to a specific class value. Consider the
exemplary classification rule r1:

r1 : som_waist_s2 < 80∧ age_ship_s2 > 59 (∧ . . .)︸ ︷︷ ︸
Antecedent

−→ hepatic_steatosis = pos︸ ︷︷ ︸
Consequent

(3.1)

Classification rules are expressed in the form of r : antecedent −→ T = v. The con-
junction of conditions (i.e., feature - feature value pairs) left to the arrow constitutes
the rule’s antecedent (or left-hand side). In the consequent (or right-hand side), v
is the requested value for the target variable T .

We define s(r) as the subpopulation or cover set of r, i.e., the set of instances that sat-
isfy the antecedent of r. The coverage of r, which is the fraction of instances covered
by r, is then defined as Cov(r) = |s(r)|/N, where N is the total number of instances.
The support of r quantifies the percentage of instances covered by r that additionally
have T = v, calculated as Sup(r) = |s(r)T=v|/N. The confidence of r (also referred to
as precision or accuracy) is defined as Conf(r) = |s(r)T=v|/|s(r)| and expresses the
relative frequency of instances satisfying the complete rule (i.e., both the antecedent
and the consequent) among those satisfying only the antecedent. The recall or sensi-
tivity of r with respect to T = v is defined as Recall(r) = Sensitivity(r) = |s(r)T=v|

nT=v
.

The Weighted Relative Accuracy of a rule is an interestingness measure that balances
coverage and confidence gain and is often used as an internal criterion for candidate
generation [Her+11]. It is defined as

WRA(r) = Cov(r) ·
(
Conf(r) −

nT=v
N

)
. (3.2)

The odds ratio of r with respect to T = v is defined as

OR(r) =
|s(r)T=v|

|s(r)T 6=v|
/
nT=v − |s(r)T=v|

nT 6=v − |s(r)T 6=v|
. (3.3)

As an example, Figure 3.3 illustrates an exemplary rule r2 in a dataset with 10

instances and a binary target, where circles in cyan color represent instances from
the negative class and red circles are positive instances. The cover set of r2 contains
instances 7, 8, 9 and 10, hence Cov(r2) = 0.40. Further, Sup(r2) = 0.30, Conf(r2) =
0.75, WRA(r2) = 0.40 · (0.75 - 0.40) = 0.14 and OR(r2) = (3/1) / (1/5) = 15.
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r2: {Age > 52 ∧ BMI > 32}  ⟶Target = +

Figure 3.3: Exemplary classification rule. The gray area represents the data space of the
covered instances.

3.2.3 HotSpot

For classification rule discovery, we use the HotSpot [Hal12] algorithm provided
for Weka [FHW16]. HotSpot is a beamwidth search algorithm that implements
a general-to-specific approach to rule extraction. A single rule is constructed by
successively adding the condition to the antecedent that locally maximizes confi-
dence. Unlike general hill-climbing, which considers only the best rule candidate at
each iteration, HotSpot’s beam search retains the b highest-ranked candidates and
refines them in later steps. Consequently, HotSpot reduces the “myopia” [FGL12]
from which Hill-Climbing search typically suffers. Briefly, hill-climbing approaches
consider only the locally optimal candidate at each iteration. As a result, a globally
optimal rule will not be found if it is not locally optimal in each iteration. It is also
desirable to generate more than one rule from an application perspective since
alternative descriptions of subpopulations can facilitate hypothesis generation. The
beamwidth can be specified as a maximum branching factor, i.e., the maximum
number of conditions that can be added to a candidate rule. In each iteration, the
rule candidates must satisfy the minimum value count, the sensitivity threshold. To
avoid adding a condition only leads to a marginal improvement of the confidence,
the hyperparameter minimum improvement, i.e., the minimum relative improvement
of the confidence by adding another condition, can be specified. The rule search’s
computational complexity can be reduced by specifying a maximum rule length,
i.e., the number of conditions in the antecedent. In our experiments we set the hy-
perparameters as follows: maximum branching factor = 20, maximum value count

= 1/3, minimum improvement = 0.1, maximum rule length = 3.

3.2.4 Interactive Medical Miner

Classification rules can provide valuable insights into potentially prevalent con-
ditions for different subpopulations of the cohort under study. However, when
the number of rules created is large, as is usually the case with large epidemi-
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ological data, the rules’ conditions overlap. Hence, some conditions are present
under each of the classes of the target variable. Therefore, the medical expert needs
inspection tools to decide which rules are informative and which features should
be investigated further. Our Interactive Medical Miner (IMM) allows the expert to

• discover classification rules,
• inspect the frequency of these rules (a) against each class and (b) against the

unlabeled subset of the cohort, and
• examine the statistics of each rule for the values of selected features.

We describe these functionalities below, referring to the screenshot in Figure 3.4.

Figure 3.4: The user interface of the Interactive Medical Miner. Classification rules are
discovered for class B and shown in the bottom left panel. For the selected rule
som_huef_s2 > 109 & crea_u_s2 > 5.38 −→ mrt_liverfat_s2 = B, the distribution
of the participants covered by the rule among all three classes is shown in
absolute values (top middle panel) and as a histogram (bottom right panel)
with respect to age (top right panel).

The user interface consists of six panels. In the “Settings” panel (top left), the
medical expert can set the hyperparameters for rule induction before pressing
the “Build Rules” button. Below this panel, the discovered rules are displayed. In
the “Sorting preference” panel, the expert can specify whether the rules should be
sorted by confidence, by coverage, or rather alphabetically for a better overview of
overlapping rules.

Before rule generation, the user can specify a sub-cohort of the dataset. By clicking
on the button Select Subpopulation, a popup window appears, where multiple
filter queries in the form of <feature> <operator> <value> can be added, e.g.,
som_bmi_s2 >= 30. The defined constraints are displayed in a table and can be
undone. Furthermore, the user can select features for model creation, e.g., exclude
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a feature known to be highly correlated with another feature that is already
considered for model learning.

Mining criteria include the dataset (choose between the whole dataset and one of
the partitions), the class for which rules are to be generated (drop-down list “Class”),
and the constraints related to this class, i.e., “Minimum number of values” (which
can also be specified as a relative value), “Maximum rule length”, “Maximum
branching factor” and “Minimum improvement”. As an example of how these
hyperparameters affect rule search, consider the selected rule in Figure 3.4, som_-
huef_s2 > 109 & crea_u_s2 > 5.38 −→ mrt_liverfat_s2 = B, which has a coverage
of 0.12 and a confidence of 0.56. The sensitivity of 38/108 = 0.352 satisfies the
minimum value count threshold of 0.33. From the Apriori property, it is evident
that each of the two conditions in the antecedent of the rule, namely som_huef_s2

> 109 and crea_u_s2 > 5.38, must also exceed this threshold. The position of a
condition within the antecedent indicates at which refinement step the condition
was added to the rule candidate. For example, the first condition som_huef_s2 > 109

with a confidence of 44/107 = 0.41 was extended by the second condition crea_u_s2

> 5.38 because the confidence gain exceeds the minimum improvement threshold,
i.e., 38/68 - 44/107 = 0.15 > 0.05. However, this rule cannot be extended further
because the maximum rule length is set to 2. The maximum branching factor was
conservatively set to 1000 to prevent potentially interesting rules from not being
generated due to a small beamwidth. The expert can lower this hyperparameter
interactively if the number of rules found is too high or rule induction takes too
long.

The output list of an execution run (area below the “Settings”) is scrollable and
interactive. When the expert clicks on a rule, the upper-middle area “Summary
Statistics” is updated. The first row shows the distribution of cohort participants
across classes for the entire dataset. The second row shows how the participants
covered by the rule (column “Total” in the second row) are distributed across classes.
Thus, the expert can specify the discovery of classification rules for one of the classes
and then examine how often each rule’s antecedent occurs among participants in
the other classes. For example, a rule that covers most of the participants in the
selected class (class B in Figure 3.4) is not necessarily interesting if it also covers
a high number of participants in the other classes. The rule som_huef_s2 > 109 &
crea_u_s2 > 5.38 −→ mrt_liverfat_s2 = B covers a total of 68 participants, of which
38 are of class B. To reduce the number of covered participants from other classes,
i.e., to increase the confidence, the user can decrease the minimum value count
threshold to allow generating rules with a lower sensitivity but higher homogeneity
with respect to the selected class.

Some of the data may be incomplete. For example, not all participants in the cohort
underwent liver MRI. Therefore, it is also of interest to know the distribution of
unlabeled participants who support a given rule’s antecedent. For this purpose,
the “Histogram” panel can be used: The expert selects another feature from the
interactive “Variable selection” area in the upper right panel and can then see
how the values of this feature are distributed among the study participants – both
labeled and unlabeled; the latter are marked as “Missing” in the color legend.
For plotting the histograms, we use the free Java chart library JFreeChart [Gil21].
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Numerical features are discretized using “Scott’s rule” [Sco79] as follows: let Xs(r)
be the set of values for a numeric feature X with respect to the cover set s(r). The
bin width h is then calculated as h(Xs(r)) =

maxXs(r)−minXs(r)
3.49σs(r)

· |s(r)| 13 .

If the expert does not select a feature, the target variable is used by default, and
only the distribution of labeled participants is visible. The histogram in Figure 3.4
shows the age distribution of both labeled and unlabeled participants covered by
our example rule som_huef_s2 > 109 & crea_u_s2 > 5.38 −→ mrt_liverfat_s2 =
B. The distribution of values among the labeled participants indicates that age
may be a risk factor for the indicated subpopulation, as the probability of class B
increases with age. This visual finding suggests adding the condition age_ship_s2 >
56.8 to the antecedent of the rule. Indeed, the confidence of this more specific rule
increases from 38/68 = 0.56 to 27/40 = 0.675. However, as the sensitivity decreases
from 38/108 = 0.352 to 27/108 = 0.250, the minimum value count threshold is no
longer met. Thus, visualizing participant statistics for selected rules can provide
clues to subpopulations that should be monitored more closely and clues to how
to modify algorithm hyperparameters for subsequent runs, in our example, to
decrease the minimum value count to 0.25 and increase the maximum rule length
to 3.

3.2.5 The Target Variable

The target variable is derived from participants’ liver fat concentration calculated by
magnetic resonance imaging (MRI). At the time of writing the original manuscript,
MRI results were only available for 578 (from a total of 2333; ca. 24.7%) SHIP-
2 participants. We use the data from these participants for classifier learning,
while our Interactive Medical Miner also contrasts these data with data from the
remaining 1755 participants for whom MRI scans were not made available.

After discussions with domain experts, we decided to assign participants with
a liver fat concentration of 10% or less to class A (“negative” class, i.e., absence
of the disorder); values greater than 10% and less than 25% represent class B
(increased liver fat/fatty liver tendency) and values greater than 25% class C (high
liver fat). We consider classes B and C as “positive”. The cutoff value of 10% is
intentionally higher than the value of 5% proposed by Kühn et al. [KEF+11] to
separate subjects with and without hepatic steatosis because the primary interest
from a medical perspective was to identify predictive features for subjects likely
to be ill. Selecting a high cutoff value exacerbates class imbalance and makes data
analysis more difficult. Figure 3.5 depicts the class distribution stratified by sex. Of
the 578 participants, 438 belong to class A (approximately 76%), 108 to B (19%), and
32 to C (6%). Men were more likely to have elevated or high liver fat concentration
than women (30.7% vs. 18.8% in classes B or C).

In addition to the target variable, the data set contains 66 features extracted from
participants’ questionnaire responses and medical tests (cf. [VAS+11]). These are
features on socio-demographics (e.g., sex and age), self-reported lifestyle indicators
(e.g., alcohol and cigarette consumption), single-nucleotide polymorphism (SNP),
laboratory measurements (e.g., serum concentrations), and liver ultrasound. The
two available features of liver ultrasound are stea_s2 and stea_alt75_s2. Both
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Figure 3.5: Sex-specific distribution of the target variable. The boxes’ relative sizes depict
the number of female and male participants for each of the classes.

take symbolic values reflecting the probability that the participant has a fatty liver;
the latter is a combination of the former and the participant’s alanine transaminase
(ALAT) concentration; details are in the caption of Table 3.3 and in [VAS+11].
Almost all features mentioned below have the suffix _s2 indicating SHIP-2 follow-
up measurements, in contrast to SHIP-0 (_s0) and SHIP-1 (_s1). Exceptions are sex,
highest school degree, and the 10 SNP features.

3.2.6 Partitioning the Dataset into Subpopulations

Because the dataset is imbalanced with respect to sex (314 females, 264 males), we
decided to partition the dataset before classification. First, we examined the class
distributions for each sex. We observed that the distributions were very different,
especially for class B (see Figure 3.5). Second, we examined the class distribution
by sex and age. We found that age was associated with the female subpopulation,
but not with the male subpopulation. Third, we identified a cutoff point for age
by introducing a heuristic that determines the age value that minimizes the target
variable’s standard deviation. We then performed supervised learning separately
on the partitions of female and male participants, referred to as PartitionF and
PartitionM hereafter. We also created an additional learner for the subpopulation
of older female participants aged above the cutoff point of 52 (Partition F:age>52).

To understand how age affects the class distribution, we introduced a heuristic that
determines the cutoff age value at which PartitionF splits into two bins so that
the standard deviations of the liver fat concentration in each bin are minimized. Let
splitAge denote the cutoff value and Xy = {x ∈ PartitionF|age of x 6 splitAge},
Xz = {x ∈ PartitionF|age of x > splitAge} denote the bins. Further, let n be the
cardinality of Xy ∪ Xz, i.e., of PartitionF. Then, we define the Sum of Weighted
Standard Deviations (SWSD) as

SwSD (Xy,Xz) =
|Xy|

n
σ(Xy) +

|Xz|

n
σ(Xz) (3.4)
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where |Xi| is the cardinality of Xi and σ(Xi) the standard deviation of the original
liver fat values. Our heuristic selects the splitAge such that SwSD is minimal. For
PartitionF, the minimum value was 7.44 at the age of 52, i.e., close to the onset of
menopause.

F:age≤52 (n=131) F:age>52 (n=183) PartitionM (n=264)
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Figure 3.6: Distribution of liver fat concentration for each partition. Distribution of liver
fat concentration in male participants (PartitionM), and females younger and
older than 52 years. The horizontal axis shows the liver fat concentration in bins
of 5%, while the vertical axis indicates the number of participants in each bin.

The histograms in Figure 3.6 depict the differences in the liver fat concentration
distributions at the age cutoff value of 52. Next to PartitionM (n=264), we show
the subpartitions F : age 6 52 (n=131) and F:age>52 (n=183) of PartitionF. Most of
the female participants in F : age 6 52 have no more than 5% liver fat concentration,
and ca. 95% have no more than 10%, i.e., they belong to the negative class A. In
contrast, ca. 28% of F:age>52 have a liver fat concentration of more than 10%; they
belong to the positive classes B and C.

3.3 experiments and findings

3.3.1 Results of Decision Tree Classifiers

For the evaluation of decision tree classifiers, we consider accuracy, i.e., the ratio of
correctly classified participants, sensitivity and specificity, and the F-measure, i.e.,
the harmonic mean between precision and recall. We consider the two classes B
and C together as the positive class for specificity, precision, and recall.

Oversampling achieved the best performance with an accuracy of about 80% and an
F-measure score of 62%. We found the best decision trees for F:age>52, followed by
those for PartitionF, then PartitionM. The large discrepancy between the accuracy
and F-measure scores also appears in the partitions’ models, suggesting that the
accuracy scores are unreliable in such a skewed distribution. Therefore, we do not
report on accuracy below.

On partition F:age>52, the overall best decision tree is achieved by the oversampling
variant. On the larger PartitionF, the best performance was achieved by the
decision tree created with the InfoGain variant. In contrast, the best decision tree on
PartitionM was created with the CostMatrix variant. The sensitivity and specificity
values for these trees are given in Table 3.2, while the trees themselves are shown
in Figures 3.7 - 3.9 and discussed in Section 3.3.3.
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Table 3.2: Best decision trees for the three partitions. Best separation is achieved in
F:age>52; PartitionM is the most heterogeneous one, the performance values
are lowest.

Partition Variant Sensitivity (%) Specificity (%) F-measure (%)

F:age>52 Oversampling 63.5 93.9 81.5

PartitionF InfoGain 52.4 94.9 69.7

PartitionM CostMatrix 38.3 86.3 53.0

Table 3.2 indicates that the decision tree variants perform differently on different
partitions. Oversampling is beneficial for F:age>52 because it partially compensates
for the class imbalance problem. As PartitionM has the most heterogeneous class
distribution out of all partitions, all variants perform relatively poorly on it. Hence,
we expected most insights from the decision trees on F:age>52 and PartitionF,
where better separation is achieved.
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Figure 3.7: Best decision tree for F:age>52, achieved by the variant Oversampling.

3.3.2 Discovered Classification Rules

While the classification rules found by HotSpot on the whole dataset were con-
clusive for class A but not for the positive classes B and C, we omit to report
these rules as they are not useful for diagnostic purposes. The classification rules
found on the partitions were more informative. However, classification rules with
only one feature in the antecedent had low confidence. To ensure high confidence,
we restricted the output on rules with at least two features in the antecedent. To
ensure still high coverage, we allowed for at most three features. A selection of
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Figure 3.8: Best decision tree for PartitionF, achieved by the variant InfoGain.

high confidence and high coverage rules for each partition and class are shown
in Tables 3.3 - 3.5, respectively. We describe the most important features in the
antecedent of these rules in the next subsection, together with the most important
features of the best decision trees.

3.3.3 Important Features for Each Subpopulation

The most important features in the decision trees of Figures 3.7 - 3.9 are those closer
to the root. For readability, the tree nodes in the figures contain short descriptions
instead of the original feature names. In all three decision trees, the root node is
the ultrasound diagnosis feature stea_s2. A negative ultrasound diagnosis points
to negative class A, but a positive ultrasound diagnosis does not directly lead to
the positive classes B and C. The decision trees of the three partitions differ in the
nodes placed near the root.

important features for partitionf . In the best decision tree of Parti-
tionF (cf. Figure 3.8), it can be observed that if the ultrasound report is positive and
the HbA1C concentration is more than 6.8%, the class is C. The classification rules
with high coverage and confidence in Table 3.3) point to further interesting features:
a waist circumference of at most 80 cm, a BMI of no more than 24.82 kg/m2, a hip
circumference of 97.8 cm or less characterize participants of the negative class. All 6

participants with a serum glucose concentration greater than 7 mmol/l and a TSH
concentration greater than 0.996 mu/l belong to class C. Further, severe obesity (a
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Figure 3.9: Best decision tree for PartitionM, achieved by the variant CostMatrix.

BMI value of more than 38.42 kg/m2 points to class C with high confidence – but
only in combination with other features.

important features for f :age>52 In contrast to the best tree for Parti-

tionF, the best decision tree for the subpartition F:age>52 (cf. Figure 3.7) also
contains nodes with SNPs, indicating potentially genetic associations to fatty liver
for these participants. Classification rules with high coverage and confidence for
class B also contain SNPs, as shown in Table 3.4. Similar to PartitionF, high BMI
values point to a positive class when combined with other features. Table 3.4 shows
that all four participants with stea_alt75_s2 = 3 (i.e., a positive ultrasound diagnosis
combined with a critical ALAT value) and a BMI larger than 38.42 kg/m2 belong
to class C. A similar association holds for stea_alt75_s2 = 3 combined with a high
waist circumference (> 124 cm). 19 out of 20 participants in class B with a positive
ultrasound diagnosis, a genetic marker gx_rs11597390 = 1, and a high-density
lipoprotein (HDL) serum concentration of at most 1.53 mmol/l.

important features for partitionm . The role of the ultrasound report
in predicting the negative class is the same for PartitionM (cf. Figure 3.9 as for
PartitionF). As with the best tree for F:age>52, the best tree for PartitionM

contains nodes with SNPs and serum Gamma-glutamyltransferase (GGT) value
ranges. Such features are also in the antecedent of top Hotspot rules (cf. Table 3.5): a
Serum GGT concentration of more than 1.9 µmol/sl in combination with creatinine
concentration of at most 90 mmol/l or a thromboplastin time ratio (quick_s2) of
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Table 3.3: Classification rules (PartitionF). Best HotSpot classification rules (maxLength
= 3) for PartitionF (excerpt). Cov: coverage; Sup: support; Conf: confidence.
age_ship_s2: age; blt_beg_s2: time of blood sampling; ggt_s_s2: serum Gamma-
glutamyltransferase (GGT; µmol/sl); gluc_s_s2: serum glucose (mmol/l); gx_-
rs11597390: genetic marker; hrs_s_s2: serum uric acid concentration (µmol/l);
ldl_s_s2: serum low-density lipoprotein (LDL; mmol/l); sleeph_s2: sleep hours;
sleepp_s2: sleep problems; som_bmi_s0: body mass index; som_huef_s0: hip cir-
cumference (cm); som_waist_s2: waist circumference (cm); stea_alt75_s2: hepatic
steatosis (ultrasound diagnosis) and alanine aminotransferase (ALAT) concen-
tration > 0.55 µmol/sl – 0 = normal, 1 = hypoechogenic, 2 = hyperechogenic, 3

= questionable; stea_s2: hepatic steatosis (ultrasound diagnosis); tg_s_s2: serum
triglycerides (mmol/l); tsh_s2: thyroid-stimulating hormone (TSH; mu/l).

Rule antecedent Cov Sup Conf

Feature 1 Feature 2 Feature 3 Abs Abs Rel (%) Rel (%)

Target class: A

som_waist_s2 6 80 – – 132 132 52 100

som_bmi_s2 6 24.82 – – 109 109 43 100

som_huef_s2 6 97.8 – – 118 117 46 99

stea_s2 = 0 – – 218 214 84 98

stea_alt75_s2 = 0 – – 202 198 78 98

Target class: B

stea_s2 = 1 gx_rs11597390 = 1 age_ship_s2 > 59 20 17 40 85

stea_alt75_s2 = 1 hrs_s_s2 > 263 age_ship_s2 > 59 20 17 40 85

stea_alt75_s2 = 1 hrs_s_s2 > 263 ldl_s_s2 > 3.22 20 17 40 85

stea_s2 = 1 age_ship_s2 > 66 tg_s_s2 > 1.58 17 14 33 82

stea_s2 = 1 age_ship_s2 > 64 hrs_s_s2 > 263 17 14 33 82

Target class: C

gluc_s_s2 > 7 tsh_s2 > 0.996 – 6 6 35 100

som_bmi_s2 > 38.42 age_ship_s2 6 66 asat_s_s2 > 0.22 6 6 35 100

som_bmi_s2 > 38.42 sleeph_s2 > 6 blt_beg_s2 6 38340 6 6 35 100

som_bmi_s2 > 38.42 sleeph_s2 > 6 stea_s2 = 1 6 6 35 100

hrs_s_s2 > 371 sleepp_s2 = 0 ggt_s_s2 > 0.55 6 6 35 100

more than 59% points to class C. Similarly, positive ultrasound diagnosis and a
serum HDL concentration not exceeding 0.84 mmol/l point to class C.

The decision trees and classification rules provide insights into features that appear
diagnostically important. However, the medical expert needs additional informa-
tion to decide whether a feature is worth further investigation. Decision trees
highlight the importance of a feature only in the context of the subtree in which
it is found; a subtree describes a typically very small subpopulation. In contrast,
classification rules provide information about larger subpopulations. However,
these subpopulations may overlap; for example, the first four rules on class C for
PartitionM (cf. Table 3.5) may refer to the same 6 participants.
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Table 3.4: Classification rules (F:age>52). Best HotSpot classification rules (maxLength = 3)
for F:age>52 (excerpt). Cov: coverage; Sup: support; Conf: confidence. age_ship_-
s2: age; crea_u_s2: urine creatinine (mmol/l); fib_cl_s2: fibrinogen (Clauss) (g/l);
gluc_s_s2: serum glucose (mmol/l); ggt_s_s2: serum Gamma-glutamyltransferase
(GGT; µmol/sl); gx_rs11597390: genetic marker; hdl_s_s2: high-density lipopro-
tein (mmol/l); hrs_s_s2: serum uric acid concentration (µmol/l); som_bmi_s0:
body mass index; som_huef_s0: hip circumference (cm); som_waist_s2: waist
circumference (cm); stea_alt75_s2: hepatic steatosis (ultrasound diagnosis) and
alanine aminotransferase (ALAT) concentration > 0.55 µmol/sl – 0 = normal, 1 =
hypoechogenic, 2 = hyperechogenic, 3 = questionable; stea_s2: hepatic steatosis
(ultrasound diagnosis).

Rule antecedent Cov Sup Conf

Feature 1 Feature 2 Feature 3 Abs Abs Rel (%) Rel (%)

Target class: A

crea_u_s2 6 5.39 stea_s2 = 0 – 75 75 57 100

crea_u_s2 6 5.39 stea_alt75_s2 = 0 – 72 72 55 100

som_waist_s2 6 80 – – 54 54 41 100

som_bmi_s2 6 24.82 – – 50 50 38 100

crea_u_s2 6 5.39 ggt_s_s2 6 0.43 – 50 50 38 100

Target class: B

stea_s2 = 1 ggt_s_s2 > 0.48 ggt_s_s2 6 0.63 15 15 38 100

stea_s2 = 1 gx_rs11597390 = 1 hdl_s_s2 6 1.53 20 19 48 95

stea_s2 = 1 gx_rs11597390 = 1 fib_cl_s2 > 3.4 15 14 35 93

crea_s_s2 6 61 som_waist_s2 > 86 stea_s2 = 1 15 14 35 93

stea_s2 = 1 gx_rs11597390 = 1 hrs_s_s2 > 261 20 18 45 90

Target class: C

som_bmi_s2 > 38.42 age_ship_s2 6 66 – 4 4 33 100

som_bmi_s2 > 38.42 stea_alt75_s2 = 3 – 4 4 33 100

som_huef_s2 > 124 stea_alt75_s2 = 3 – 4 4 33 100

som_waist_s2 > 108 gluc_s_s2 > 6.2 – 4 4 33 100

stea_alt75_s2 = 3 som_bmi_s2 > 37.32 – 4 4 33 100

Furthermore, unless a classification rule has a confidence value close to 100%,
participants in the other classes may also support it. Therefore, to decide whether
the features in the antecedent of the rule deserve further investigation, the expert
also needs knowledge about the statistics of the rule for the other classes. To assist
the expert in this task, we have proposed the Interactive Medical Miner. This tool
discovers classification rules for each class and provides information about the
statistics of these rules for all classes.
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Table 3.5: Classification rules (PartitionM). Best HotSpot classification rules (maxLength
= 3) for PartitionM (excerpt). Cov: coverage; Sup: support; Conf: confidence.
age_ship_s2: age; ATC_C09AA02_s2: enalapril intake; chol_s_s2: serum choles-
terol (mmol/l); crea_u_s2: urine creatinine (mmol/l); crea_s_s2: serum creati-
nine (µmol/l); fig_cl_s2: Fibrinogen (Clauss) (g/l); ggt_s_s2: serum Gamma-
glutamyltransferase (GGT; µmol/sl); gout_s2: treated gout (self-report); hdl_s_s2:
high-density lipoprotein (mmol/l); hgb_s2: haemoglobin (g/l); hrs_s_s2: serum
uric acid concentration (µmol/l); jodid_u_s2: urine iodide (µg/dl); quick_s2:
thromboplastin time Quick test (%); sleeph_s2: sleep hours; stea_alt75_s2: hepatic
steatosis (ultrasound diagnosis) and alanine aminotransferase (ALAT) concen-
tration > 0.55 µmol/sl – 0 = normal, 1 = hypoechogenic, 2 = hyperechogenic, 3

= questionable; stea_s2: hepatic steatosis (ultrasound diagnosis); som_bmi_s0:
body mass index; som_huef_s0: hip circumference (cm); som_waist_s2: waist
circumference (cm); tg_s_s2: serum triglycerides (mmol/l).

Rule antecedent Cov Sup Conf

Feature 1 Feature 2 Feature 3 Abs Abs Rel (%) Rel (%)

Target class: A

stea_alt75_s2 = 0 – – 106 101 55 95

stea_s2 = 0 – – 138 131 72 95

ggt_s_s2 6 0.52 – – 79 73 40 92

hrs_s_s2 6 310 ggt_s_s2 6 0.77 – 81 74 40 91

som_waist_s2 6 90.8 – – 79 72 39 91

Target class: B

som_huef_s2 > 108.1 age_ship_s2 > 39 crea_u_s2 > 7.59 28 22 33 79

som_bmi_s2 > 32.29 hdl_s_s2 > 0.94 ATC_C09AA02_s2 = 0 29 22 33 76

som_bmi_s2 > 32.29 hgb_s2 > 8.1 gout_s2 = 0 29 22 33 76

som_waist_s2 > 109 sleeph_s2 6 8 jodid_u_s2 > 9.44 29 22 33 76

som_huef_s2 > 108.1 hdl_s_s2 > 0.97 crea_u_s2 > 5.38 29 22 33 76

Target class: C

ggt_s_s2 > 1.9 crea_s_s2 6 90 quick_s2 > 59 6 6 40 100

ggt_s_s2 > 1.9 crea_s_s2 6 90 chol_s_s2 > 4.3 6 6 40 100

ggt_s_s2 > 1.9 crea_s_s2 6 90 fib_cl_s2 > 1.9 6 6 40 100

ggt_s_s2 > 1.9 crea_s_s2 6 90 crea_u_s2 > 4.74 6 6 40 100

ggt_s_s2 > 1.9 tg_s_s2 > 2.01 som_waist_s2 > 93.5 6 6 40 100

3.4 conclusion

To date, analysis of population-based cohort data has been mostly hypothesis-
driven. We have presented a workflow and an interactive application for data-driven
analysis of population-based cohort data using hepatic steatosis as an example.
Our mining workflow includes steps

i. to discover subpopulations that have different distributions with respect to
the target variable,
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ii. to classify each subpopulation taking class imbalance into account, and
iii. to identify features associated with the target variable.

Our workflow has shown that it is appropriate (a) to build subpopulations before
classification to reduce class imbalance and (b) to drill-down on the derived models
to identify important features and subpopulations worthy of further investigation.

To assist the domain expert with the latter objective (b), we have developed the
Interactive Medical Miner, an interactive application that allows the user to explore
classification rules further and understand how the cohort participants supporting
each rule are distributed across the three classes. This exploration step is essential
for identifying not-yet-known associations between some features and the target.
These features must then be further investigated – in hypothesis-driven studies.
Therefore, our workflow and Interactive Medical Miner carry the potential of
data-driven analysis to provide insights into a multifactorial disease and generate
hypotheses for hypothesis-driven studies. Our Interactive Medical Miner has been
extended by Schleicher et al. [Sch+17c], who added panels that include tables
showing additional rule statistics such as lift and p-value. Besides, a mosaic plot
contrasts the class distributions of a subpopulation and its “complements,” i.e.,
subsets of participants who do not meet one or both conditions of a length-2 rule
describing that subpopulation.

In terms of the multifactorial disorder of interest, our results confirm the potential
of our data-driven approach because most of the features in the top positions of our
decision trees and classification rules have been previously shown to be associated
with hepatic steatosis in independent studies. In particular, indices of fat accumu-
lation in the body (BMI, waist circumference) and the liver enzyme GGT were
proposed by Bedogni et al. [Bed+06] as a reliable “Fatty Liver Index”. According to
Yuan et al. [Yua+08], the SNPs rs11597390, rs2143571, and rs11597086 are among
the “Independent SNPs Associated with Liver-Enzyme Levels with Genome-wide
Significance in Combined GWAS Analysis of Discovery and Replication Data Sets”.
Regarding the effects of alcohol consumption, toxic effects of alcohol on the liver
are well established and ascribe an even more significant role to obesity than heavy
alcohol consumption concerning fat accumulation in the liver [Bau+08; Bel+00].
Indeed, a feature related to alcohol consumption appears only in our decision tree
on F:age>52 (see Figure 3.7) and not among our top classification rules, where
we tend to see features associated with a person’s weight and obesity (cf. features
som_bmi_s2, som_huef_s2, som_waist_s2 in all figures and tables in Section 3.3).
The subpopulation F:age>52 itself was identified without prior knowledge of this
subpopulation’s semantics. Still, it is noteworthy that the age of 52 years is close to
the onset of menopause – Völzke et al. [Völ+07] showed that menopausal status
is associated with hepatic steatosis. Our results also verify another fact that was
known to medical experts by independent observation: the sonographic features
(cf. stea_s2, stea_alt75_s2 in all figures and tables in Section 3.3) is associated with
liver fat concentration found on MRI, but ultrasound alone does not predict hepatic
steatosis [Bel+00; Bed+06].

Our algorithms not only provide features associated with the target but also identify
the value intervals related to a specific class, see, for example, the value intervals of
BMI associated with class B for PartitionM (Table 3.5) and with classes A and C for
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F:age>52 (Table 3.4). These intervals do not imply that a person with a BMI within
the specific interval actually belongs to the corresponding class but can serve as a
starting point for hypothesis-driven analyses.

Our approach allows us to study subpopulations at two points in time. Before the
modeling step, we identify subpopulations that have different class distributions.
During the modeling step, our Interactive Medical Miner highlights the subpopu-
lation that supports each classification rule; these are overlapping subpopulations.
Overlapping subpopulations are not necessarily a disadvantage, especially for very
small subpopulations. However, working with overlapping data sets can be unin-
tuitive and tedious for a domain expert. In Chapter 4, we explore the potential of
clustering to identify and reorganize overlapping rules to reduce the user’s cognitive
load by displaying only semantically unique and representative rules.

Although the workflow’s main application is a longitudinal cohort study, it does not
exploit temporal characteristics in the data. However, indicators of lifestyle change
are potentially predictive for the later occurrence of a disease. Chapter 6 presents a
follow-up method that expands the feature space by extracting temporal features
that describe how a study participant changes over time to derive new informative
features for hypothesis generation.
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I D E N T I F Y I N G D I S T I N C T S U B P O P U L AT I O N S

Brief Chapter Summary

Subgroup discovery algorithms often generate redundant descriptions of
subpopulations. We present a workflow to extract a small number of repre-
sentative rules from a large set of classification rules. These so-called proxy
rules minimize instance overlaps across rule groups, thus covering different
subpopulations. We evaluate our workflow on SHIP data samples with
hepatic steatosis and goiter as target variables, respectively.

This chapter is partly based on:

Uli Niemann, Myra Spiliopoulou, Bernhard Preim, Till Ittermann, and Henry
Völzke. “Combining Subgroup Discovery and Clustering to Identify Diverse Sub-
populations in Cohort Study Data”. In: Computer-Based Medical Systems (CBMS).
2017, pp. 582-587. DOI: 10.1109/CBMS.2017.15.

Epidemiologists search for significant relationships between risk factors and a target
variable in large and heterogeneous datasets that encompass participant health
information gathered from questionnaires and medical examinations [Elm+20]. The
previous chapter describes an expert-driven workflow that can help epidemiologists
automatically detect such relationships in the form of classification rules, which are
descriptions of risk factors and predictive value ranges for a specific subpopulation
and an target variable of interest. However, rule induction algorithms often produce
large and overlapping rule sets requiring the expert to manually pick the most
informative rules and remove less informative or redundant ones. This post-filtering
step is time-consuming and tedious.

This chapter presents a clustering-based algorithm that hierarchically reorganizes
large rule sets and summarizes all essential subpopulations while maintaining
distinctiveness between the clusters. For each cluster, a representative rule is shown
to the expert who then can drill down to other cluster members. We evaluate our
algorithm on two subsets of SHIP where the target variables hepatic steatosis and
goiter serve as target variables, respectively. Further, we report on the effectiveness
of our algorithm, and we present selected subpopulations.

We propose SD-Clu, an approach that combines subgroup discovery with clustering
to return k representative classification rules. Building upon a set of potentially
highly overlapping rules generated by an SD algorithm, we leverage agglomerative
hierarchical clustering to find groups of rules that cover different sets of instances.
For each cluster, we nominate one rule as the group’s representative that exhibits
best tradeoff between rule confidence and coverage towards the target variable. We
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define the similarity between a pair of subgroups based on the fraction of mutually
covered instances and individually covered instances. Rules covering (almost) the
same instances are likely to be condensed into the same cluster and thus more
likely to be represented by a proxy rule.

Section 4.1 serves as motivation for the related field of subgroup discovery and
redundancy of classification rules. Section 4.2 presents our SD-Clu algorithm that
generates distinct rules. Section 4.3 describes the experimental setup. In Section 4.4,
we report on our evaluation results. In Section 4.5, we discuss our findings regarding
hepatic steatosis and goiter on the SHIP data. In Section 4.6, we summarize our
contributions.

4.1 motivation and comparison to related work

Subgroup discovery (SD) algorithms aim to uncover “interesting” relationships be-
tween one or more conditions (features and value ranges) and a target variable
in the form of classification rules [Her+11; Atz15]. Compared to more accurate
but predominantly opaque black-box models such as neural networks, support
vector machines, or random forests, SD algorithms yield more interpretable results,
making them highly suitable for domain expert-guided subpopulation discov-
ery. SD algorithms have been used in several medical studies where descriptive
knowledge needed to be inferred, e.g., to extract potential drug targets from
multi-relational data sources for the treatment of dementia [NPC15], to identify
predictive auditory-perceptual, speech-acoustic, and articulatory-kinematic features
of preschool children with speech sound disorders [Vic+14], and to discover dis-
criminative features in patient subpopulations with different admission times to
psychiatric emergency departments [Car+11].

However, SD methods often yield large sets of rules that domain experts are not
willing to tediously go through and manually separate interesting from irrelevant
or redundant ones. A common observation is that there are groups of rules that
cover almost the same set of instances, as shown in Figure 4.1. Instead of presenting
all rules found by an SD algorithm at once, we propose to organize rule sets
hierarchically so that the domain expert can explore a compact set of different
subpopulations, equipped with mechanisms to drill down to specific rules of
interest.

Similar to the HotSpot algorithm described in Section 3.2.3, popular SD algorithms
such as SubgroupMiner [KM02], SD [GL02], and CN2-SD [Lav+04] use a fixed
beamwidth [FGL12] to limit the number of further expanded subgroup candidates
at each iteration. A post-pruning step can be applied to reduce the size of the rule
set – e.g., to return the top k rules – using a quality criterion such as the Weighted
Relative Accuracy [LFZ99] or the p-value of a statistical test. Even when both
beamwidth search and top k pruning are applied, the result often still contains
redundant rules. This is due to the correlation between the (non-target) features,
which leads to a large number of variations of a given finding, cf. Figure 4.2 for an
illustrative example. In particular, top k pruning leads to different variations of the
same subpopulation (i.e., high instance overlap among rules) [LK12].
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Figure 4.1: Example of redundant rules. Both r2 and r3 cover the instances 7,8,9, and 10;
r3 additionally covers instance 2. The cover set overlap is due to the high
correlation between #Teeth and Age; and between BMI and Waist circumference.
Both rules describe the same subpopulation, i.e., elderly overweight people are at
higher risk of developing the disease.

Unlike SD algorithms which generate multiple rules that overlap in terms of their
coverage sets, predictive rule learning algorithms such as CN2 [CN89] or RIPPER
[Coh95] are designed to generate rules that capture different subpopulations. They
work iteratively according to a divide-and-conquer strategy [FGL12] as follows:
First, a rule that maximizes the algorithm’s quality function is generated on the
set of instances not yet covered. Second, all covered instances are removed from
the training set. This process of rule induction and removal of instances from the
training set is repeated until all instances are covered by at least one rule. The output
of this algorithm is often a decision list. To classify an instance, the prediction
of the first rule that covers the instance is used. While these algorithms avoid
rule redundancy, important subpopulations may remain undiscovered because of
order dependencies. For example, the algorithm might induce a rule that includes
instances with a high BMI, but it might not find a slightly weaker association
with income because those instances are immediately removed from the instance
candidate space. Also, the coverage of rules generally decreases with each iteration.
Rules with low coverage are negligible in epidemiological studies because they
may represent spurious correlations of the study sample.

Instead of merely eliminating covered instances from rule induction of subsequent
iterations, weighted covering approaches consider how many times instances have been
covered so far in the rule candidate expansion step [Lav+04]. While this leniency in
removing instances allows for a larger number of rules, a new hyperparameter is
introduced to control the tradeoff between reusing already covered instances and
minimum rule confidence. This hyperparameter is unintuitive and difficult to set,
especially for domain experts. Moreover, both traditional predictive rule learning
algorithms and their weighted covering extensions introduce order dependencies
between rules: a rule depends on all previous rules in the rule list and the instances
of the target variable it covers. It may not make sense to interpret a single rule.
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Figure 4.2: Illustration of rule redundancy. Graphical representation of 1115 HotSpot rules
found on SHIP data on 886 labeled instances. A gray cell indicates that the
instance at that x-position is covered by the rule at the associated y-position.
Instances and rules are sorted by agglomerative hierarchical clustering. When
partitioning into 10 clusters based on the covered instances, each cluster’s rules
describe similar subpopulations.

4.2 finding distinct classification rules

This section presents our algorithm SD-Clu, which combines subgroup discovery
with clustering to return a set of k distinct classification rules. The algorithm
consists of three main steps. First, the SD algorithm generates a set of (potentially
highly overlapping) rules. Using agglomerative hierarchical clustering, this set of
rules is then grouped into a distinct rule clusters covering different sets of instances.
For each cluster, the rule with the best tradeoff between confidence and coverage of
the target variable is appointed as the representative of the group. Rules covering
the same instances are grouped in the same cluster and are therefore represented
by the same proxy rule.

4.2.1 Rule Clustering and the Concept of “Proxy Rules”

We use the same notation for classification rule discovery as in Section 3.2.1.
Agglomerative hierarchical clustering iteratively merges clusters of similar instances
in a bottom-up way. Here, the instances are rules. Hence an alternative definition of
a distance measure is required. The order of merging two clusters depends on the
linkage strategy. In complete linkage, the distance between two clusters is defined
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as the maximum distance between any two of their instances. The pair of clusters
minimizing this maximum distance is selected for merging.

We define rule similarity for clustering on the basis of the mutually covered
instances as an adaption of the Sørensen–DICE coefficient [Dic45]. The distance
between two rules r1, r2 with corresponding subpopulations (cover sets) s(r1),
s(r2) is given as

dist(r1, r2) = 1−
2 · |s(r1)∩ s(r2)|
|s(r1)|+ |s(r2)|

. (4.1)

We propose two ways of completing the hierarchical rule clustering process:

1. Specification of the maximum number of clusters k
2. Discovery of the optimal k based on an internal clustering index such as the

Silhouette coefficient.

For a clustering ξ and a set of rules R, the Silhouette coefficient is calculated as

Silh(R, ξ) =
1

|R|

∑
r∈R

b(r) − a(r)

max {a(r),b(r)}
(4.2)

where

a(r) =

∑
y∈Y dist(r,y)
|Y|− 1

(4.3)

is the average dissimilarity between r and the other rules in the cluster Y ∈ ξ which
contains r, while

b(r) =

∑
y∈Z dist(r,y)

|Z|
(4.4)

is the average dissimilarity between r and the rules in the cluster Z ∈ ξ which is
the closest to the cluster Y containing r. Basically, any other cluster quality function
could be used. We choose the Silhouette coefficient here because of its understand-
able interpretation. The value of the silhouette coefficient can vary between -1 and
1. A negative value is undesirable because it represents a case where the average
distance to rules in the same cluster is greater than the minimum average distance
to rules in another cluster. We prefer a positive silhouette coefficient, i.e., a value
close to the maximum of 1.

Then, we traverse the dendrogram bottom-up, compute the Silhouette for each
set of clusters ξ, and select as ξopt the set of clusters with the best Silhouette
value. The optimal number of clusters is then the cardinality |ξopt|. Finally, we
map each cluster Y ∈ ξopt to a representative rule. To do so, we invoke the rule
interestingness measure Weighted Relative Accuracy [LFZ99] (WRA hereafter),
which balances coverage and confidence gain and is defined as

WRA(r) = Cov(r) ·
(
Conf(r) −

nT=v
N

)
(4.5)

where N is the total number of instances in the dataset and nT=v is the number of
instances with the target variable value of interest. We compute WRA for each rule
r ∈ Y and select as cluster proxy cp(Y) the rule for which WRA is maximum.
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4.2.2 Representativeness of a Set of Proxy Rules

The proxy rules should be a good representation of the total rule set. Thus, each
instance should be covered equally often by the cluster proxies compared to the
total rule set. Hence, we define representativeness as the difference between the
average fraction of proxy rules the instances are covered by and the total average
fraction of rules the instances are covered by. If the difference between the two
ratios is small, then the proxy rules’ representativeness is high.

Typically, the set of rule clusters ζ for a set of rules R will be the optimal set of
clusters, as described in the previous subsection, but it can be any set of clusters
chosen by the user, as long as it contains all rules in R. For ζ, let Rζ = {cp(Y)|Y ∈ ζ}
denote the set of proxy rules. To quantify how representative such a set of rules is,
we proceed as follows. First, let U ⊆ R be an arbitrary subset of the complete set of
rules, and let x be a data instance. The coverage rate of x towards U is calculated as

covRate(x,U) =
∑
r∈U isCovered(x, r)

|U|
(4.6)

where isCovered(x, r) is equal to 1, if r covers x, i.e., x ∈ s(r), and 0 otherwise.
We observe that for a set of rules U, an instance x cannot be covered by more
than |U| rules. Let Rx be the set of rules that cover instance x, i.e., for Rx = {r ∈
U|isCovered(x, r) = 1}. For the whole set of instances X, we create bins:

bini(U) = {x ∈ X||Rx| = i}. (4.7)

Further, let bin0(U) = {x ∈ X|∀r ∈ U : isCovered(x, r) = 0}. An instance x can be
covered by 0, 1, . . . , |U| rules, i.e., covRate(x,U) can take one of |U|+ 1 values. In
contrast, covRate(x,R) can take one of |R|+ 1 values, a usually much larger number.
Therefore, we map the possible values of covRate(x,R) into the much smaller set
of possible values by rounding, computing:

adjCovRate(x,U,R) =
bcovRate(x,R) · |U|e

|U|
(4.8)

where be is the rounding operator. Then, for the complete set of instances X, a
set of induced rules R, the clustering ζ over R and the set of proxy rules Rζ, the
representativeness of Rζ is defined as

representativeness(Rζ,R) = 1−
1

|X|

∑
x∈X

|adjCovRate(x,U,R)− covRate(x,Rζ)|.

(4.9)

We investigate how the representativeness changes with an increasing number
of proxy rules k for different criteria to select the cluster’s proxy rule. Ideally,
representativeness is high while k is low. In other words, the number of proxy
rules should be as small as possible, but these rules should cover all important
subpopulations within the data. For a fixed k, we compare our strategy of selecting
the cluster’s rule with the highest WRA as the proxy rule against three baselines:
the top k rules according to (i) WRA, (ii) odds ratio, and (iii) coverage.
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4.3 experimental setup

datasets . To evaluate our method, we used data from the SHIP study. For a
description of SHIP, see Section 2.2.1. We considered hepatic steatosis (see Sec-
tion 3.2.5) and goiter as target variables. For the sample HepStea, we derived a
binary target variable by discretizing the liver fat concentration obtained from the
MRI report, such that study participants with a concentration no greater than 10%
were assigned to the negative class, and values greater than 10% were assigned
to the positive class indicating the presence of the disease. Of 886 participants for
whom the MRI report from SHIP-2 was available at that time, 694 (78.3%) were neg-
ative, and 192 (21.7%) were positive. We considered 99 features selected exclusively
from SHIP-0 to assess their long-term effects expressed ten years later in SHIP-2.
For the Goiter sample, the target variable was derived by thyroid ultrasound. The
presence of goiter was defined for a thyroid volume greater than 18 ml in women
and 25 ml in men [Gut+88]. Of the 4400 participants for whom the target variable
is available in TREND-0, 3010 belong to the negative class (68.4%) and 1390 (31.6%)
to the positive class. Apart from the target variable, we use a total of 182 features
that were pre-selected by a medical expert as potential risk factors.

sd algorithms . For subgroup discovery, we use our approach from Chapter 3,
the algorithm HotSpot [Hal+09] (Section 3.2.3). We further try SD-Map [AP06], an
exhaustive algorithm that adapts the popular FP-Growth association rule learning
method [HPY00]. Rules that fall below a minimum coverage threshold are pruned.
A depth-first search is performed for candidate generation. Rules are ranked ac-
cording to a user-defined quality function. We use the implementation from the
VIKAMINE framework [AL12]. The implementation of SD-Map only supports cate-
gorical features. Therefore, each numeric feature is discretized using the minimum
description length based approach of Fayyad and Irani [FI93].

For SD-Map, we set the minimum coverage threshold to 0.05 to avoid overfitting,
too small rules. We use WRA as a quality function and define a minimum threshold
of 0.025. For HotSpot, we set the support threshold of a rule to be above 0.05. The
beamwidth is set to 500. Furthermore, to avoid rather meaningless literals, we
restrict the extension of a rule body with another literal to a relative confidence
gain of at least 0.3. To avoid having many overly specific rules that cover only a
small number of study participants, we limit the length of a rule body, i.e., the
number of literals to 3. To determine the optimal number of proxy rules k, we
compute the Silhouette coefficient for every possible number of clusters.

4.4 results

Figure 4.3 shows the optimal number of clusters for each study sample combination
and SD algorithm. Table 4.1 lists the optimal k and the ratio of proxy rules vs. the
total number of rules. For example, clustering with optimal Silhouette coefficient
for the algorithm HotSpot on Goiter has 76 clusters and thus 76 proxy rules
(cf. Table 4.1), which is only 21.3% of the total number of rules. Thus, if only the
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Table 4.1: Statistics of best runs per dataset and algorithm. Number of rules |R|, optimal
Silhouette coefficient Silh(ζopt), the corresponding number of rule proxies k of
the optimal clustering |ζopt| and percentage of rule proxies relative to the total
number of rules for every combination of data sample and SD algorithm.

Dataset Algorithm |R| Silh(ζopt) |ζopt|
|ζopt|

|R|
(%)

HepStea HotSpot 208 0.41 100 48.1

HepStea SD-Map 68 0.40 30 44.1

Goiter HotSpot 356 0.37 76 21.3

Goiter SD-Map 106 0.66 54 50.9

cluster proxies are initially displayed to the expert, the time needed to check the
rules is reduced by 78.7%.

|zopt| = 100 |zopt| = 30 |zopt| = 76

|zopt| = 54

HepStea + HotSpot HepStea + SD-Map Goiter + HotSpot Goiter + SD-Map
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Figure 4.3: Silhouette coefficients (Silh) of SD-Clu using complete linkage for each com-
bination of dataset and algorithm. The number of clusters k with the highest
Silh score (|ζopt|) is indicated by a dashed vertical line.

The optimal number of clusters k of |ζopt| shown in Figure 4.3 could be used as a
suggestion, but the expert is free to specify the number of rules they wish to obtain.
For example, if the expert considers |ζopt| = 100 too large for HotSpot on HepStea,
the diagram would show them a reduction to |ζopt| = 58 is possible, reducing Silh
only slightly from 0.48 to 0.37. Also in the other direction: if |ζopt| is relatively low,
the diagram shows that a small increase does not change Silh much; therefore, the
added rules may also be important. The expert could even analyze the diagram to
derive a range instead of a single value, e.g., the range where Silh is above 90% of
its maximum.

To assess the representativeness of the cluster proxies, we compare them with
three baseline criteria that return the top k rules according to odds ratio (baseline
1), coverage (baseline 2), and WRA (baseline 3). Figure 4.4 juxtaposes the repre-
sentativeness of SD-Clu and the three baselines for different numbers of rules k
returned to the expert for the HotSpot algorithm on the sample HepStea. The plot
matrix’ panels are arranged by rule selection method (rows), and the number of
representative rules k returned to the expert (columns). Each graph shows the
adjCovRate (y-axis) of instances (x-axis) for R (solid black curve). The instances
are sorted by the number of rules in R they are covered by, with their respective
covRate shown as dots. The dotted curve represents a locally weighted scatterplot



4.5 discussion of findings 47

smoothing (LOWESS) [Cle79] of the points. Ideally, both curves are close to each
other, meaning that the instances are covered by cluster proxy rules approximately
by the same proportion as all rules cover them.
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Figure 4.4: Evaluation of representativeness on HepStea using the HotSpot algorithm.
representativeness of SD-Clu and three baseline approaches for different
numbers of clusters k on the HepStea sample using HotSpot. Points depict an
instance’s adjCovRate for the set of representative rules of the approach (row)
and k (column). Instances are sorted by covRate with respect to R, i.e., the set
of all rules) in descending order, shown by a solid black curve. A dotted curve
depicts a LOWESS regression fit on the points. The similarity between solid and
dotted curves illustrates representativeness of the top k rules of the respective
approach, illustrated by the dark gray area in-between solid curve and dotted
curves. Smaller areas are better and reflect higher representativeness values.

For all approaches, representativeness improves as k increases. For example,
when we increase k from 10 to 50, representativeness increases from 0.87 to 0.96

for SD-Clu, which means that the absolute difference between adjCovRate of ζ
and covRate of R over all instances successively decreases. Further, for a given k,
the representative rules of the baselines are less representative than SD-Clu’s proxy
rules, e.g., 0.91, 0.92, and 0.91 vs. 0.96 for k = 50, respectively (cf. 5th column of
plot matrix in Figure 4.4).

4.5 discussion of findings

Tables 4.2 and 4.3 show the antecedent, support, and confidence of proxy rules
found by two algorithms for HepStea and Goiter with k=5. The prevalence of hep-
atic steatosis or goiter is significantly higher in each of the subpopulations described



48 identifying distinct subpopulations

Table 4.2: Representative rules (HepStea). Proxy rules for k = 5 on the HepStea sample and
the positive value of the target variable.

# Antecedent of proxy rule Sup Conf Lift

HotSpot

1 increased waist circumference = TRUE 0.72 0.37 1.69

2 hypertension = TRUE 0.60 0.33 1.54

3 age > 44 ∧ apolipoprotein A1 6 1.56 g/l 0.37 0.41 1.90

4 physical health score 6 47.3 ∧ increased waist circumference =
TRUE

0.29 0.48 2.12

5 high-sensitivity C-reactive protein > 2.8 mg/l ∧ uric acid > 246

µmol/l
0.29 0.46 2.21

SD-Map

1 diastolic blood pressure > 79.75 mmHg ∧ hip circumference >
98.05 cm ∧ cholesterol-HDL-quotient > 3.015

0.67 0.40 1.85

2 increased waist circumference = TRUE ∧ diastolic blood
pressure > 79.75 mmHg ∧ body mass index > 26.3 kg/m²

0.58 0.45 2.07

3 waist circumference > 88.15 cm ∧ diastolic blood pressure >
79.75 mmHg ∧ body mass index > 26.3 kg/m²

0.59 0.46 2.11

4 body mass index > 26.3 kg/m² ∧ alanin-aminotransferase >
0.385 µkatal/l ∧ diastolic blood pressure > 79.75 mmHg

0.55 0.48 2.20

5 body mass index > 26.3 kg/m² ∧ uric acid > 278.5 µmol/l ∧
alanin-aminotransferase > 0.385 µkatal/l ∧ treated urinary tract
diseases = TRUE

0.54 0.46 2.34

by these rules than in the corresponding overall population. These subpopulations
are characterized by known risk factors for hepatic steatosis, such as large waist
circumference and BMI, blood pressure and hypertension, advanced age, and high
values in some medical tests (ALAT and LDL). Furthermore, apolipoprotein A1

(ApoA1), a major protein component of high-density lipoprotein (HDL) particles in
plasma, is associated with target variable in elderly patients (see fourth hotspot rule
in Table 4.2). Lipoprotein metabolism is considered the main process contributing
to the development of fatty liver [JRY13]. Besides, Poynard et al. [Poy+86] found
that patients with hepatic steatosis had higher levels of ApoA1 than patients with
hepatic fibrosis, who in turn had higher levels than patients with cirrhosis. The
fifth HotSpot rule describes a subpopulation with elevated levels of liver high-
sensitivity C-reactive protein (CRP) (approximately 0.80-quantile) and elevated
levels of uric acid (approximately 0.36-quantile). Lizardi-Cervera et al. [Liz+07]
reported increased ultra-sensitive CRP levels in subjects with hepatic steatosis
independent of other metabolic states. Similarly, Keenan et al. [Kee+12] found
elevated uric acid levels in patients with hepatic steatosis independent of metabolic
syndrome.

Similarly, the identified subpopulations for goiter (see Table 4.3) are character-
ized by common risk factors, such as increased weight, body mass index and
angiotensin II receptor blocker intake (see second HotSpot rule). Furthermore, the
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Table 4.3: Representative rules (Goiter). Proxy rules for k=5 on the Goiter sample and
the positive value of the target variable.

# Antecedent of proxy rule Sup Conf Lift

HotSpot

1 intima-media thickness > 0.73 mm 0.27 0.43 1.34

2 intake of angiotensin II receptor blocker = TRUE 0.10 0.62 1.90

3 duration of QRS complex on ECQ > 114 ms ∧ discouraged and
sad mood = "never" ∧ body mass index > 26.65 kg/m²

0.06 0.87 2.68

4 education level = 8 ∧ thrombocytes < 209 Gpt/l 0.11 0.62 1.92

5 aorta descendens thickness > 2.79 mm ∧ thyroid-stimulating
hormone 6 1.05 mU/l ∧ hemoglobin > 8.8 mmol/l

0.06 0.88 2.73

SD-Map

1 intima media thickness > 0.55 mm ∧ proton pump inhibitors
intake = FALSE ∧ age > 38.5

0.68 0.44 1.34

2 duration of ECG P wave > 111 ms ∧ age > 38.5 ∧ proton pump
inhibitors intake = FALSE

0.60 0.45 1.38

3 hip circumference > 98.75 cm ∧ age > 38.5 ∧ proton pump
inhibitors intake = FALSE

0.60 0.44 1.34

4 increased waist circumference = TRUE ∧ age > 38.5 ∧ proton
pump inhibitors intake = FALSE

0.59 0.44 1.34

5 increased waist circumference = TRUE ∧ intima media thickness
> 0.55 mm ∧ proton pump inhibitors intake = FALSE

0.51 0.46 1.41

first HotSpot rule describes participants with intima-media thickness greater than
0.73 mm (approximately 0.80-quantile). Previous studies found associations be-
tween intima-media thickness and thyroid-stimulating hormone [Tak+09] as well as
subclinical hypothyroidism [Gao+13; Una+17]. The condition of the third HotSpot
rule describes the duration of an ECG phase. Jabbar et al. [Jab+17] summarized
that pathological thyroid hormone levels increase the risk of cardiovascular disease.
This association appears to be especially true in the elderly [Faz+04]. The fourth
rule suggests that certain thrombocyte levels indicate increased thyroid volume,
which confirms Erikci et al. [Eri+09], who found that hypothyroid patients had
higher platelet volume and platelet distribution width than a control group. This
shows that our approach delivers relevant results to the application field; here two
chronic reversible conditions.

4.6 conclusion

We have proposed SD-Clu, an algorithm for rule clustering, identifying cluster-
representative rules (“proxy rules”), and minimizing the proxy rules shown to the
domain expert. Our algorithm tackles the problem of high instance overlap in sets
of rules generated by subgroup discovery algorithms. By limiting the number of
rules, time spent for rule inspection is reduced. SD-Clu nominates a representative
rule from a hierarchical clustering from a large set of rules and thus returns rules
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that express distinct subpopulations, i.e., rules that cover different sets of instances.
The introduced representativeness measure assesses whether instances are similarly
often covered by representatives as by the total rule set. SD-Clu was evaluated on
two samples from an epidemiological study where an optimal set of proxy rules was
selected that (i) contains considerably fewer rules than the total rule set and (ii) is
more representative compared to the baseline approaches, respectively. SD-Clu can
not only be applied for subpopulation discovery in epidemiological data but high-
dimensional medical datasets in general. In the absence of a concrete target variable,
unsupervised methods for detecting subpopulations (or phenotypes) are needed.
Furthermore, more sophisticated visualizations are needed if subpopulations are
characterized by many features rather than just a few. We present our solution to
these challenges in the following chapter.
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Brief Chapter Summary

Knowledge of different disease phenotypes can help understand (a) which
patient subpopulations seek treatment and (b) the response to treatment
within each subpopulation We present a workflow to (i) determine distinct
phenotypes of medical conditions in high-dimensional data, (ii) visualize
these phenotypes to explore and compare essential subpopulation charac-
teristics, and (iii) interactively inspect them and their change over time with
an interactive web application. We evaluate our workflow on the CHA data
by identifying four distinct phenotypes of tinnitus patients.

This chapter is partly based on:

Uli Niemann, Petra Brueggemann, Benjamin Boecking, Matthias Rose, Myra
Spiliopoulou, and Birgit Mazurek. “Phenotyping chronic tinnitus patients using
self-report questionnaire data: cluster analysis and visual comparison”. In: Scientific
Reports 10 (2020), pp. 1-10. DOI: 10.1038/s41598-020-73402-8.

The supervised methods for subpopulation discovery described in the previous
chapters show great potential for applications with one or a small number of
well-defined target variables. However, some medical conditions are multifaceted
and are not well understood yet. For example, chronic tinnitus is a complex,
multifactorial and heterogeneous disorder [CGH+19]. Clinical assessment and
selection of a suitable treatment is difficult because not all patients benefit equally
from each type of intervention [Hes16; The+14; Tyl+08]. Due to the large number
and heterogeneity of available assessment tools, phenotyping appears promising to
(a) describe the subpopulations of patients seeking treatment and (b) understand the
response to treatment within each subpopulation [Lan+17; Tyl+08; Sch+12]. Clinical
acceptance of these empirical results can be further strengthened by comprehensive
visualizations that intuitively illustrate each phenotype’s major characteristics and
differences between multiple phenotypes.

This chapter describes a workflow to

• determine distinct phenotypes of medical conditions with a hyperparameter-
free clustering algorithm in high-dimensional data,

• visualize these phenotypes to explore and compare essential subpopulation
characteristics, and

• inspect them further in an interactive web application.
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Our workflow’s effectiveness is demonstrated on the CHA dataset (Section 2.2.2)
by exploring phenotypes of tinnitus patients.

This chapter is organized as follows. Section 5.1 describes the clinical value of
patient stratification, briefly reviews previous approaches for the example disorder,
and discusses significant challenges for phenotyping in high-dimensional data.
We present all our workflow components in Section 5.2, namely the clustering
algorithm, our novel visualization types, and our web application. Section 5.3
lists the features used for clustering and provides details on the CHA data subset
used for workflow evaluation. In Section 5.4, we present the discovered tinnitus
phenotypes and describe their characteristics.
In Section 5.5, we discuss our findings from the medical perspective and compare
them to related work. Finally, we conclude the chapter with a summary and outlook
in Section 5.6.

5.1 motivation and comparison to related work

Challenges for management and treatment of tinnitus are primarily caused by its
clinical heterogeneity, including individual perception, risk factors, comorbidities,
degrees of perceived stress, and treatment response (cf. Section 2.2.2). These factors
make it difficult for clinicians (a) to choose the treatment which is most effective for
an individual patient and (b) to design a unified treatment strategy from which all
patients equally benefit. The awareness of the existence of distinct patient subgroups
may stimulate the development of more effective therapy modules [Gen+20]. Since
clinically relevant subgroups have not been established yet, clustering emerges as a
promising approach to identify characteristic tinnitus phenotypes in a data-driven
and hypothesis-free way.

Previous studies found subgroups of tinnitus patients with cluster analysis based
on a small number of audiometric features [Lan+17], a combination of features
extracted from self-reports, audiometry, and psychoacoustics [Tyl+08], or neu-
roimaging data and socio-demographics [Sch+12]. Although each of these studies
provided insights into tinnitus subgroup patterns, acceptance among medical
scholars may be increased by presenting the clustering results with intuitive visual-
izations that show individual subgroup patterns and enable the visual juxtaposition
of multiple subgroups in high-dimensional data.

Addressing this requirement, Schlee et al. [Sch+17b] proposed a compact radar
graph to compare of the degree of health burden between individuals or subgroups
based on measurements from self-report questionnaires. While their visualization
could be applied to any disease domain, Schlee et al. demonstrated its efficacy
showing subgroup differences regarding measurements of tinnitus distress and
associated comorbidities. However, they did not aim to visualize clustering results.
Instead, they restricted themselves to pre-defined cohorts by graphically comparing
female against male patients and patients with low tinnitus frequency against
patients with high tinnitus frequency.

challenges for clustering in high-dimensional data . There are
several challenges when clustering on high-dimensional medical datasets:
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• How can we determine an appropriate number of clusters in the absence of a
ground truth?

• How can we represent high-dimensional data compactly but also faithfully?
• How can we visualize essential characteristics of high-dimensional clusters?

We present related work for each challenge below.

determination of an appropriate number of clusters in the absence

of a ground truth . Practical considerations of data clustering include how
to set the number of clusters k. Since a ground truth is often not available, several
heuristics to automatically determine k have been proposed. A popular approach
is the so-called “elbow” method, which involves running the clustering algorithm
with different k values, cf. Section 6.3.1 for the application of the elbow method
for density-based clustering. The number of clusters is plotted against cluster
compactness. In the popular k-means algorithm, cluster compactness is quantified
by the total within-sum of squares (WSS), the sum of squared distances between
each observation and its centroid over all clusters. As WSS or similar goodness
of fit measures increase monotonically with increasing k, the idea of the elbow
method is to identify the curve’s characteristic “knee point”, which is the first
point from which adding another cluster leads only to a minor improvement in
compactness. Because the plot is not guaranteed to exhibit such a distinctive knee
point and universal compactness thresholds do not exist, this approach is sometimes
impracticable. Another popular clustering evaluation measure is the Silhouette
coefficient (see Section 4.2.1), which favors clusterings that assign similar objects to
the same cluster and dissimilar objects to a different cluster. Instead of evaluating
clustering quality post-hoc, we decided to leverage an algorithm that automatically
determines a suitable number of subgroups already during clustering.

dimensionality reduction. Dimensionality reduction (DR) techniques are
often used to project the original high-dimensional data onto a low-dimensional
projection that allows simple visualization types such as scatterplots to be used.
Ideally, the DR projection preserves the original data’s essential structures, such as
relative pairwise distance, clusters, outliers, and correlations. Principal Component
Analysis [Hot33] (PCA) is a seminal DR algorithm that generates linear, orthogonal
combinations of the original dimensions. Each new dimension, called principal
component, contains a loading indicating how much variability of the data it
covers. Typically, the first two or three dimensions that carry the highest loads
are selected for visualization. PCA is not robust to outliers and cannot capture
nonlinear relationships. Multidimensional scaling [Gow66] (MDS) is another early
DR technique that emphasizes the preservation of pairwise distances, i.e., objects
close to each other in high-dimensional space should also be close to each other
in low-dimensional projected space. For complex, arbitrarily shaped structures,
pairwise distances may be subject to the curse of dimensionality, leading to poor re-
sults. t-stochastic neighborhood embedding [MH08] (t-SNE) and Uniform Manifold
Approximation and Projection [MHM18] (UMAP) are nonlinear dimensionality
reduction methods that represent a matrix of pairwise similarities. The idea is
to preserve both global structures such as clusters and local structures such as
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distances and neighbors. Both t-SNE and UMAP can produce superior projections
compared to traditional linear techniques, provided their hyperparameters are
appropriately tuned. However, a shortcoming of these techniques is that the de-
gree of preservation or contribution of the original features cannot be measured.
Moreover, a projection cannot be applied to new observations; instead, a new
projection must be recomputed. Because of their stochasticity, different runs with
the same hyperparameters may yield different results. Medical researchers are
usually interested in understanding the relationship between the original variables
and the new dimensions to draw actionable conclusions from the patterns found in
the projected space. Since the semantics of the original dimensions are lost in DR,
we prefer to maintain the high-dimensional space for clustering and visualization.

visualization of high-dimensional clusters . Visualizing clusters in
high-dimensional data is challenging. Scatterplot matrices (SPLOMs) can intu-
itively represent the relationship between all pairs of features as a matrix of
two-dimensional scatterplots [IML13; Kle+15]. However, as the number of features
increases, the number of scatterplots grows quadratically, leading to scalability
problems such as overplotting. Several advanced visualization techniques have
been proposed as a remedy, from merely adding transparency or colors to points
to more sophisticated density contours, hexagon binning, layers with aggregated
geometric features (minimal spanning trees, alpha shapes, convex hulls), anima-
tion, or combinations of several techniques such as splatterplots [MG13]. However,
SPLOMs and other traditional visualization techniques such as parallel coordinate
graphs [Har75] are still more suitable for low-dimensional data. In general, the
focus of phenotype visualization is not to represent the specifics of individual
subjects but to show the most important general characteristics of each subpopula-
tion. Therefore, to represent patterns in high-dimensional space, we do not create
multiple, often cluttered subplots, as the above approaches do, but we represent
essential phenotype characteristics in a single visualization. We further provide a
web application to explore one and juxtapose multiple phenotypes interactively.

5.2 discovery and visualization of phenotypes

We propose a workflow for determining, visualizing, and inspecting essential phe-
notypes for a medical condition in high-dimensional datasets. In the following, we
present the individual steps of our workflow. Section 5.2.1 describes the cluster-
ing algorithm X-means, which internally determines an appropriate number of
phenotypes. Then, we present our solution for visualizing these phenotypes with
radial bar graphs and radar graphs in Section 5.2.2. Section 5.2.3 describes our
web application which combines these visualizations with interactive elements for
further phenotype inspection and comparison.

5.2.1 X-means Clustering

X-means [PM00] is a hyperparameter-free adaption of the popular k-means algo-
rithm, which incorporates the Bayesian information criterion [Sch+78] (BIC) to find
a good tradeoff between a low total sum of squares and a small number of clusters.
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Let D be the dataset with d dimensions and let D be a subset of D, i.e., D ⊆ D. A
k-means clustering on D creates the set of clusters C = {C1, . . . ,Ck, . . . ,CK}, where
ck is the centroid of cluster k, rk is the number of objects in D assigned to Ck and
p is the number of free parameters, i.e., p = (d+ 1) · K. The BIC of a cluster Ck
using the Schwarz criterion is calculated as

BIC(Ck) = l̂k(D) −
pk
2
· log |D| (5.1)

where l̂k(D) is the log-likelihood of D according to Ck. The point probabilities are
computed as

P̂(xi) =
r(i)

|D|
· 1√
2πσ̂

exp
(
1

2σ̂2
||xi − c(i)||

)
(5.2)

where the maximum likelihood estimate for the variance (under the identical
spherical Gaussian assumption) is

σ̂2 =
1

|D|−K

|D|∑
i=1

(
xi − µ(i)

)2 . (5.3)

The log-likelihood of D according to C is

l(D) = log
|D|∏
i=1

P(xi) =

|D|∑
i=1

(
log

1√
2πσ̂

−
1

2σ2
||xi − c(i)||

2 + log
r(i)

|D|

)
. (5.4)

The main steps of the X-means algorithm are summarized in Figure 5.1. At the start,
an initial partitioning is generated by ordinary k-means with K = Klower, where
Klower is a lower bound for the number of clusters. Then, each cluster is bisected; the
resulting two child centroids are placed in the opposite direction along a randomly
chosen vector by a distance proportional to the cluster radius. For each pair of child
clusters, a local k-means clustering with K = 2 is run. If the new partitioning’s
BIC score exceeds the BIC score of the parental one, the child centroids are kept;
otherwise, the parent centroid is retained. The iterative steps are repeated until
there is no cluster whose bisection leads to a better BIC score or until the number
of clusters exceeds an optional upper bound Kupper. We used the R implementation
of Ishioka [Ish05]. Since we did not aim to restrict the solution space with respect
to the number of clusters, we set Klower to 2, i.e., the lowest possible value, and we
did not set Kupper.

stability of the clustering result. Like its predecessor, X-means is also
a non-deterministic algorithm since the initial centroids’ positions are set randomly,
leading to different clustering results. To assess the stability the total cluster number,
we performed an internal validation where we recorded the number of clusters
generated by X-means on 500 bootstrap samples.
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Step 1: 
Apply k-means 
with 𝐾 = 𝐾𝑙𝑜𝑤𝑒𝑟.

Step 2:
Split each centroid

into 2 children.

BIC(K=1) < BIC(K=2)

BIC(K=1) > BIC(K=2)
BIC(K=1) > BIC(K=2)

Step 3:
Apply local k-means

with k = 2.

Step 4:
Retain children where BIC(K=1) < BIC(K=2) 

and go back to Step 2 until none of the
clusters can be split, or if 𝐾 > 𝐾𝑢𝑝𝑝𝑒𝑟.

Figure 5.1: Principal steps of X-means (simplified). The figure is adapted from [PM00].

5.2.2 Phenotype Visualization with Radial Bar Graphs and Radar Graphs

requirements for phenotype visualization. Together with domain
experts, we transformed the visualization challenges (recall Section 5.1) into the
following requirements:

• represent high-dimensional data with dozens of features,
• preserve the semantics of the original features,
• allow for a comparison of multiple clusters at a glance, and
• contrast cluster characteristics with the overall patient mean.

Following these requirements, we implemented (a) a radial bar graph as a visual-
ization of a single cluster (Figure 5.2) and (b) a radial line graph visualization for
comparing multiple clusters at once (Figure 5.3). The radial bar graph is used to
compare observations assigned to a single cluster with the entire study population.
The mean values of the features within a cluster are represented by bars arranged
in a radial layout. Each bar begins at the black “zero line”, representing the fea-
ture means of the entire study population, i.e., all subjects used for clustering.
Because features are standardized (i.e., z-scored) before clustering, bars inclined
to the outside represent feature averages above the study population average, and
bars inclined to the inside represent feature averages below the study population
average. For example, a bar whose top is positioned at -1 characterizes a feature
average within a cluster that is one standard deviation smaller than the study
population average. In addition to the combination of bar height and bar direction,
within-cluster averages are also mapped to the bar color by a sequential color gra-
dient from dark blue (lower boundary) to yellow (population average) to light red
(upper boundary). Gray error lines at the top of a bar represent the within-cluster
standard error. To allow quick feature localization, features can be grouped into
(expert-defined) categories, displayed in the inner circle along with the cluster
name and the number of subjects assigned.

The radial line graph (Figure 5.3) allows a comparison of all clusters in a single dis-
play. Instead of bars, the feature averages are represented as points. Line segments
connect points of the same cluster and feature category. Points and line segments
are colored according to their respective cluster.
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Figure 5.2: Radial bar graphs for each of the four phenotypes (PT). (a) PT 1 characterizes
the subpopulation with the lowest health burden. (b) PT 2 includes the most
suffering subjects, in whom all mean values of psychosomatic and somatic
characteristics exceed the study population mean by more than 0.5 standard
deviations (SD). (c) PT 3 indicates somatic indicator scores above the study pop-
ulation mean. (d) PT 4 indicates subjects with elevated distress scores, including
subjective stress and perceived quality of life. Bars are arranged in a circular
layout, with the bar’s height and direction representing the within-cluster fea-
ture average and the gray line centered at the top of the bar illustrating the
95% confidence interval. The characteristics were grouped into nine categories
defined by tinnitus experts. The categories are shown inside the inner circle. See
Appendix A for a feature description. The figure is adapted from [Nie+20b].
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PT 1: avoidant
group (n=697)

PT 2: psychosomatic
group (n=173)

PT 3: somatic
group (n=187)

PT 4: distress
group (n=171)

Figure 5.3: Radial line graph for phenotypes comparison. Points show within-phenotype
feature averages. Points depicting features of the same category are connected
with line segments. Points and lines are colored by cluster. See Figure 5.2 for a
description of the phenotypes and Appendix A for a description of the features.
The figure is adapted from [Nie+20b].
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5.2.3 Interactive Exploration of Phenotypes

We provide an interactive application with phenotype visualizations as a web
application1 (Figure 5.4). The following interactive components have been added to
the visualizations described in Section 5.2.2. Hovering over a bar, line, or feature
label opens a tooltip with additional cluster summaries and compact feature
descriptions. Clicking on a bar or label triggers an additional plot showing the
original (unscaled) distribution of the respective feature stratified by cluster and, if
selected, after treatment. For continuous features, semi-transparent boxplots are
placed on top of violin plot [HN98] layers. For categorical features, points and
error lines show the percentages of each category and the 95% confidence interval.
While clustering is performed on static data, we added an option to display also
indicators of temporal change, which helps, for example, to discover potential
differences in response to treatment between the phenotypes visually. To this end,
we extended the radial bar graph by showing cluster averages at two time points
(T0 and T1) with adjacent bars. A line connects the ends of a pair of bars with an
arrowhead pointing from the T0 score to the T1 score. The connecting lines and
feature labels are colored according to their relative value change from T0 to T1.
Given the user-defined hyperparameter ∆, i.e., the minimum relative difference
between T0 and T1 considered as a change, elements are colored

• red if the T1 score is greater than the T0 score by at least ∆,
• green if the T1 score is smaller than the T0 score by at least ∆, and
• black otherwise.

5.3 selection of measurement instruments

Discussions with tinnitus experts about the selection of measurement instruments
(hereafter denoted as features) for clustering the CHA data resulted in two main
requirements: (1) The selected features should cover the clinical heterogeneity of
tinnitus to a high degree. (2) If available, more robust compound scores should be
preferred over single items from a questionnaire.

From the routine questionnaire assessment battery (cf. Section 2.2.2), we selected a
total of 64 features2 from 14 questionnaires. These include all questionnaire total
scores, all questionnaire subscale scores, and all items of questionnaires that have
neither subscales nor total scores. The features measure general tinnitus charac-
teristics, physical quality of life, pain experiences, somatic expressions, affective
symptoms, tinnitus-related distress, internal resources, perceived stress, and mental
quality of life.

From a total of 4103 patients, data from 2875 (70.1%) was incomplete and therefore
excluded. The N = 1228 patients included in the final sample were only slightly,
yet significantly younger than the excluded ones (µincluded = 50.0, σincluded = 11.9;
µexcluded = 51.7, σexcluded = 13.6; t(2630.8) = 4.0, p < 0.01). Additionally, for 989 of
the included patients (80.5%), post-treatment data were also available and used
to explore treatment effect differences between clusters visually. We assumed the

1 A demo is available at https://unmnn.de/phs/app/.
2 The complete list of features is provided in Appendix A.

https://unmnn.de/phs/app/
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Figure 5.4: The user interface of the phenotype exploration application. Interactive com-
ponents enhance the radial bar graphs: hovering over a bar or feature label
opens a tooltip with additional cluster summaries and a compact feature de-
scription. Clicking on a feature updates the right plot showing the distribution
of the selected feature stratified by cluster, and if selected, also after treatment.
Continuous features are shown using semi-transparent boxplots placed on vio-
lin plot [HN98] layers. In contrast, for nominal features, category proportions
alongside their 95% confidence intervals are displayed as points and error lines,
respectively.

missing data are “missing completely at random” as four questionnaires (ISR,
PHQK, SES, SSKAL) were not part of the assessment battery in the first year of data
acquisition. Data imputation was not justified because in the case of missingness
all answers of the respective questionnaire were missing, not only the answers to (a
few) individual items.

Since most of the features have greater scores for higher health burden, we reversed
the remaining features with greater scores for a higher quality of life. A feature X
is reversed as Xreversed = max (X) −X. The asterisk suffix in a feature name (e.g.,
ACSA_qualityoflife*) denotes a reversed feature. Due to widely differing value
ranges, each feature was standardized via z-score scaling. A feature Xwith expected
value E(X) = µ and variance Var(X) = σ2 was standardized into Z = X−µ

σ . For Z,
it holds that µ = 0 and σ2 = 1.
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5.4 results

According to X-means, four clusters (also referred to as phenotypes hereafter)
represent an optimal solution for the CHA data. This result is confirmed by
bootstrap validation: Figure 5.5 shows that four clusters are formed most frequently
(82 times; 16.4%) among the 500 runs.
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Figure 5.5: Results of internal validation. Bars show the frequency of the number of
clusters generated by X-means for 500 bootstrap samples. The most common
cluster number was 4, which occurred in 82 samples (16.4%).

Phenotype 1 (PT 1) represents the largest subgroup (697 of 1228 patients; 56.8%),
characterized by substantially below-average symptom expression on tinnitus-
related and more general psychosomatic symptom indices, including affective
symptoms, perceived stress, tinnitus-related distress, and somatic symptoms, as
well as (above-average) quality of life and internal resources (Figure 5.2 (a)). Because
this group of patients is potentially more help-seeking, presents to the clinic more
frequently, and wishes to participate in multimodal treatment, it can be assumed
that they experience psychological distress but strive to present as unburdened as
possible. Therefore, this phenotype is referred to as the “avoidance group”. Patients
in this subgroup have comparatively high levels of education, employment, and
duration of illness and psychotherapeutic treatment (Figure 5.6 (b), (e), (i), and (g)).

PT 2 included 173 patients (14.1%) who reported the highest emotional and somatic
burden among all PTs (Figure 5.2 (b)). More specifically, PT 2 represents a patient
subgroup with high psychosomatic comorbidity and is therefore referred to as
the “psychosomatic group”. This patient subgroup shows a high tinnitus burden
besides clinically relevant impairment in all affective indices, including depression,
anxiety, and perceived stress. These affective symptoms appear to be consistent with
somatoform expressions of distress, including somatic symptoms. Patients in this
subgroup report severely reduced quality of life and coping behaviors, with more
pessimism, less experienced self-efficacy, and optimism. Relative to the whole study
population, this subgroup has a higher percentage of women, patients who live
alone, are unemployed, or have an overall lower educational status. Patients in this
cluster also report consulting more physicians, taking more sick days, and using
more psychotherapy. PT 2 patients reported that the tinnitus noise was audible
throughout the head (i.e., not unilateral) with a higher percentage than the other
groups.

PT 3 contains 187 patients (15.2%) characterized by above-average scores of features
measuring somatic complaints and near-average scores for affective symptoms
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(Figure 5.2 (c)). Because the pain scores SF8_bodilyhealth* and SSKAL_painfre-
quency were similar in magnitude to PT2, this patient subgroup is referred to as
the “somatic group”. PT 3 includes the oldest subgroup, with the largest percentage
of female patients and the largest reported time since tinnitus onset.

In contrast to PT3, PT 4 (n=171; 13.9%) has above-average values for affective
scores, quality-of-life components, and perceived stress (Figure 5.2 (d)), e.g., mental
component summary score (SF8_mentalcomp*; 0.85) and anxious depression score
(BSF_anxdepression; 0.79). Therefore, PT 4 is referred to as the “distress group”. PT
4 represents the youngest of the four subgroups (mean 47.3 years), with the largest
share of male patients (Figure 5.6 (c)).
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Figure 5.6: Inter-phenotype comparison of demographic characteristics. Summaries are
given as mean [95% confidence interval] for the entire study population and each
of the four phenotype subpopulations. Confidence intervals were estimated
using nonparametric Basic Bootstrap Sampling [DH97] with 2000 samples each.
The Kruskal-Wallis test was used to compare differences between phenotypes
for continuous features (such as age), and Pearson’s chi-square test was used for
categorical features (such as gender). An asterisk indicates statistical significance
(α = 0.05). Correction for multiple comparisons was not performed due our
approach’s exploratory nature. The figure is adapted from [Nie+20b].

Figure 5.7 depicts the top 10 features with the greatest average change between
T1 and T0 per cluster. For PT 1 and PT 3, BSF_elevatedmood* decreased the most,
namely by 0.48 ± 0.75 and 0.65 ± 0.85 (Z units), respectively. For PT 2 and PT 4,
the top-ranked feature is ADSL_depression with an average difference between T1

and T0 of 0.73 ± 0.88 and 0.74 ± 0.83, respectively. Six out of these ten features
were among the top 10 features for all clusters, including BSF_elevatedmood*,
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TQ_cogintivedistress, TQ_psychodistress, TQ_emodistress, TQ_distress, and BSF_-
fatigue.
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Treatment effect (T1 - T0)

Figure 5.7: Cluster-specific top 10 features with highest average treatment effect magni-
tude. Bars depict the intra-cluster average differences between the measure-
ments at T1 and T0 based on the standardized values. Lower values represent
better treatment effectiveness. The symbols right to the feature names indicate
whether the feature is among the top 10 features for the cluster at position i. For
example, the character string 3 7 3 7 for TQ_intrusiveness (ranked 2nd for PT
1) means that the feature is among the top 10 for PT 1 and PT 3, but not for PT
2 and PT 4.

5.5 discussion of findings

5.5.1 Juxtaposition of the Phenotypes

Our clusters comparison showed that some questionnaires and characteristics
differed considerably between patient phenotypes. In particular, patient subgroups
differed substantially in coping behaviors, stress, tinnitus burden, perceived pain,
discomfort, and perception of life quality. In contrast, patients did not appear
to differ concerning localization and noise. Regarding the separability between
phenotypes, the predominantly high correlations between features within the same
category suggest that phenotyping is also possible with fewer questionnaires,
especially since some of the questionnaires overlap semantically, e.g., PHQK_-
depression, ISR_depression, ADSL_depression, among others.

5.5.2 Interpretation of the Phenotypes from the Medical Perspective

We discussed the phenotypes’ clinical relevance with three of the five tinnitus
experts who co-authored the original publication [Nie+20b].
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PT 1 (avoidant group) represents more than half of the patient sample. Besides
the actual tinnitus symptom, patients in this subgroup reported few other affec-
tive or psychosomatic symptoms. Because of these patients’ biased presentation
(“everything is fine if it were not for the tinnitus”), clinicians might easily be led to
believe that assessment of possible other factors contributing to individual distress
is unnecessary. However, clinical experience suggests a thorough assessment of
other psychosocial stressors. The psychosocial resourcefulness of this subgroup
enables patients to seek help quickly and in a solution-oriented manner. Ade-
quate tinnitus-specific counseling and individualized (online) therapy modules
that include audiological, psychological, or relaxation techniques may represent an
adequate treatment strategy for this patient subgroup.

PT 2 (psychosomatic group) represents 15% of patients with high tinnitus distress
and clinically relevant impairment across all affective indices, including depres-
sion, anxiety, and perceived stress. These affective symptoms appear to interact
strongly with somatoform expressions of distress, including physical complaints
and somatic symptoms. Patients in this subgroup reported greatly reduced quality
of life and coping behaviors, higher pessimism, lower experienced self-efficacy,
and optimism. The frequently asked question is whether increased tinnitus-related
distress contributes to an increase in depression or vice versa. In this group, de-
pressive or anxious symptoms may be considered a crucial underlying factor in
overall symptom distress, and treatment must initially focus on improving mood
and alleviating depression. Here, tinnitus-related distress may need to be viewed
in a broader context of medical and psychological contributing factors that require
patient-specific conceptualization.

PT 3 (somatic group) represents a patient subgroup characterized by somatopsychic
symptom expression, i.e., physical symptoms that may reflect stress or underlying
medical conditions. To meet this patient subgroup’s needs, multimodal interven-
tions may include a proportion of body-oriented procedures such as relaxation
exercises or physiotherapy. However, their effects should be interpreted in terms of
both direct and indirect psychological effects (e.g., through increased well-being or
affection from others).

Patients in PT 4 (distress group) reported above-average perceived stress, accompa-
nied by physical exhaustion and anxious-depressed mood. This group includes
younger, more employed, and more male patients who reported chronic distress
and may be susceptible to burnout syndrome with subjectively reduced mental
performance (“hamster wheel”), which describes life situations even in the absence
of tinnitus distress. Multimodal therapy should initially focus on stress regulation
techniques, including relaxation or individually tailored behavior modification ap-
proaches. Like PT 2, which has a high psychosomatic burden, patients in PT 4 could
also benefit from longer psychotherapeutic or multimodal treatment procedures
(inpatient or rehabilitative).

5.5.3 Comparison to Related Work on Tinnitus Phenotypes

Without a “ground truth” and given that different sets of available measurements
were used, it is difficult to compare our results with similar studies. An advantage
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of our approach is the inclusion of a wide range of self-report questionnaire
assessments. Other studies also used audiometry [Tyl+08; Lan+17], and cardiac
imaging data [Sch+12]. PT 2 (psychosomatic distress group) seems to be associated
with the “constant distressing tinnitus” subgroup reported by Tyler et al. [Tyl+08],
as the mean scores of tinnitus-related health distress were much larger than in the
other subgroups. Obviously, selecting a meaningful set of characteristics is central
to the effectiveness of any cluster analysis.

The closest to our radial bar graph visualization is the radar graph proposed
by Schlee et al. [Sch+17b], whose solution tends to overplot when more than
two subsets need to be displayed simultaneously. Therefore, we did not fill areas
spanned by connected points with color to avoid that one polygon completely
overlaps another. Furthermore, inferences about the radar map [Sch+17b] depend
heavily on the arrangement of features since the primary criterion for comparison
is the polygons’ shapes. Their solution to compute an arrangement that yields
areas that achieve a maximum mean area difference between subgroups and a
minimum area variance within subgroups only partially solves the problem. Still,
only a moderate number of up to about 20 features can be represented. We chose
to organize the 64 features according to expert-determined categories, e.g., quality
of life, making it easier to find features and compare similar features.

5.6 conclusion

We have presented a workflow for determining, visualizing, and inspecting essential
phenotypes of a medical condition in high-dimensional datasets using the example
of tinnitus. Although we have demonstrated our workflow’s usefulness on a specific
disorder, it can be easily adapted to any other medical condition.

To reduce the amount of input necessary from the medical expert, we leverage a
hyperparameter-free clustering algorithm for phenotype discovery. Although the
optimal number of clusters is four for our dataset, we expect that this number
may be different for a different sample of tinnitus patients even with the same
clustering algorithm. Figure 5.5 shows a high variance in the number of clusters
returned by X-means on different bootstrap samples. Considering the only slightly
lower occurrence of 5 and 6 clusters, our clustering result is certainly not set in
stone. Instead of using X-means, we could have evaluated k-means with different k
using a cluster quality function. The suitability of such a more heuristic approach
is investigated in Chapter 7.

Our novel visualization types provide the medical expert with a quick overview of
the most important characteristics of and differences between subpopulations. These
are integrated into and a web application with interactive functionalities for cluster
inspection and juxtaposition. Both the visualization and the application are not
tinnitus-specific but can be used to display a compact summary for any condition
or subset of index symptoms. Whether clinicians will adopt the visualizations
to guide appropriate tinnitus management strategies remains to be tested. In a
preliminary user study, clinicians suggested that graphical summaries of possible
patient subtypes could ease the challenge of assigning an appropriate treatment
strategy for specific combinations of symptom presentations.
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In Chapter 8, we revisit the CHA data and focus on supervised subpopulation
discovery and post-hoc interpretation of classification models by the example
of tinnitus-related distress and depression, respectively. In future work, we will
validate these phenotypes on a different cohort of tinnitus patients. Furthermore,
we will explore other clustering algorithm families. For example, self-organizing
maps [Koh12] seem to be a suitable candidate, as they already offer dedicated
visualizations [WK18] out of the box, and their extension for timestamped data
[Sar13] may allow us to study phenotype changes over time.

By excluding patients who did not complete all questionnaires at T0, there may
be a selection bias. Possible reasons for non-completion include unfamiliarity with
the technical equipment used to record item responses, loss of motivation due to
the relatively large number of questionnaires, and collisions with other baseline
studies in the laboratory. Nevertheless, the analysis of all 15 questionnaires led to
insights into these questionnaires’ contributions to phenotyping, possibly allowing
a reduction in the number of questionnaires. Because our results reflect only a
snapshot of the patients’ situation at baseline, a patient may transition from one
phenotype to another at later stages of life, depending on tinnitus management.
Therefore, the next step would be to investigate the effects of treatment on these
phenotypes in more detail and determine whether some patient phenotypes benefit
more than others.
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C O N S T R U C T I N G E V O L U T I O N F E AT U R E S T O C A P T U R E
C H A N G E O V E R T I M E

Brief Chapter Summary

We propose a framework to extract “evolution features” from timestamped
medical data, which describe the study participants’ change over time. We
show that exploiting these novel features improves classification perfor-
mance by validating our workflow on the SHIP data for the target variable
hepatic steatosis.

This chapter is partly based on:

Uli Niemann, Tommy Hielscher, Myra Spiliopoulou, Henry Völzke, and Jens-Peter
Kühn. “Can we classify the participants of a longitudinal epidemiological study
from their previous evolution?”. In: Computer-Based Medical Systems (CBMS). 2015,
pp. 121-126. DOI: 10.1109/CBMS.2015.12.

Medical studies with a longitudinal design collect participant data from question-
naires, medical examinations, laboratory analyses, and imaging repeatedly over
time [VAS+11; Inv+88; Hol+05]. Hidden temporal information could be made ex-
plicit by constructing features that describe the subjects’ change over time. However,
there is a lack of applicable methods for timestamped data with a tiny (< 5) number
of moments. We present a framework addressing this shortcoming and demon-
strate that augmenting the feature space with so-called evolution features increases
classification performance and yields understandable descriptors of change worthy
of further investigation.

Section 6.1 describes work related to the construction of temporal representations
in medical data. Section 6.2 introduces the notation and problem formulation.
Section 6.3 presents our evolution feature framework, including a full workflow
that encompasses steps to extract evolution features, dealing with class imbalance,
and feature selection. Section 6.4 describe the evaluation setup. We report on our
results in Section 6.5 and present evolution features found to be important for class
separation in Section 6.6. We conclude this chapter in Section 6.7.

6.1 motivation and comparison to related work

Epidemiological studies serve as a basis for the identification of risk factors as-
sociated with a medical condition [GLD+20; BEE17; Oli+20]. Machine learning is
still relatively little used in epidemiology, mainly due to the hypothesis-driven
nature of their research. However, examples of machine learning applications are
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the identification of health failure subtypes [Aus+13] and the discovery of factors
(including biomarkers) that modulate a medical outcome [Raj+14; Val+13]. In lon-
gitudinal cohort studies, measurements are performed in multiple study waves;
hence researchers obtain access to sequences of recordings. In the context of ma-
chine learning, extracting and leveraging the inherent temporal information from
these sequences may increase model performance and, thus, the understanding of
the medical condition of interest.

From a technical point of view, classification problems on timestamped data can be
very different. They can be broadly summarized into three categories:

a. Each instance (patient, study participant) has a label at each time point t. The
goal is to assign the instance’s label at t + 1. Typically, this is a data stream
classification problem [Unn+20; Agg14].

b. Each instance is associated with only one label for all time points. Typically,
this is a timeseries classification problem [Faw+19; HA18].

c. There are no labels but the time point of an event is to be predicted. This
problem is concerned with event prediction [Zha+19; Bag+19; Beu+19].

Our classification problem falls under (a), but we cannot use the advances of stream
classification because we our data is unlabeled except for the last time point and
our stream of three time points is tiny.

In clinical applications, temporal information is often exploited, predominantly for
the analysis of patient records. For example, Pechenizkiy et al. [Pec+10] analyzed
streams of recordings to predict rehospitalization because of heart failure events
during remote patient management. Sun et al. [Sun+10] computed the similarity
between streams of patients from patient monitoring data. Combi et al. [CKS10]
reported on streams of life signals, particularly on the temporal analysis of the
timestamped medical records of hospital patients.

However, participants of an epidemiological, population-based study are not hos-
pital patients – they are a random sample of the studied population, often with
a skewed class distribution. In a longitudinal study of this kind, recordings for
the same cohort member are made at each moment. Hielscher et al. [Hie+14a]
presented a feature engineering approach to extract temporal information from
multiple but few patient recordings in a longitudinal epidemiological study. First,
for each assessment, clusters of feature-value sequences associated with the target
variable are found. Afterward, original and sequence features are used in con-
junction for classification. Hielscher et al. [Hie+14a] showed that classification
performance increases when features with temporal information are incorporated
into the feature space. Instead of modeling the individual change of measurement
values, our approach involves deriving multivariate change descriptors.

Patient evolution with clustering was studied by Siddiqui et al. [Sid+15]. They
proposed a method that predicts patient evolution from timestamped data by clus-
tering them on similarity and predicting cluster movement in the multi-dimensional
space. However, the patient data considered in [Sid+15] are labeled at each moment.

Our workflow combines labeled and unlabeled timestamped data from a longitu-
dinal study to improve classification performance on skewed data. As the target
variable, we study the multi-factorial disorder hepatic steatosis (fatty liver) on a
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sample of participants from the longitudinal population-based “Study of Health in
Pomerania” (SHIP) [VAS+11], recall Section 2.2.1. For the SHIP cohort, the assess-
ments (interviews, medical tests, etc.) were recorded in several moments (SHIP-0,
SHIP-1, etc.), that are ca. 5 years apart. Temporal information is often used when
analyzing patient data in a hospital, but there the time granularity is different.
For example, in an intensive care unit, timestamped data are collected at a fast
pace, i.e., every minute or even every second. In contrast, the participants of a
longitudinal epidemiological study are monitored for months or even years. Hence,
measurements of the same assessment in an epidemiological dataset are few and
possibly far apart. The large period between two consecutive recordings compli-
cates applying methods designed for data that arrive with a higher frequency.
For example, a participant may exhibit alcohol abuse or become pregnant, stop
smoking and start again, take antibiotics that affect the liver, or experience other
lifestyle changes that turn the medical recordings taken five years ago irrelevant
for learning the participant’s current health state. Another patient may have no
lifestyle changes and no illnesses, so their past data reflect only aging.

A further challenge is that the label is unavailable for several waves. A reliable esti-
mate of the fat accumulation in the liver was computed from magnetic resonance
tomography images. In SHIP-0, MRT was unavailable. Instead, liver fat accumula-
tion was derived from ultrasound – a procedure with lower clinical accuracy. In
SHIP-1, the calculation was omitted altogether. Consequently, for a given SHIP
participant, the class label is available in SHIP-2, no label in SHIP-1, and a partially
reliable indicator in SHIP-0. Since hepatic steatosis is a reversible disorder, label
imputation – using a growth model [SW03] – is not possible; participant evolution
must be learned with only one moment with labeled data.

We address these challenges as follows. First, we group study participants at
each moment on similarity, thus building clusters of cohort members with similar
recordings at one of the three moments. Then, we connect the clusters across
time, thus capturing each cluster’s transition from one study wave to the next.
These transitions reflect the evolution of subpopulations, not individuals. Hence,
next to the single labeled recording per cohort participant, we also exploit the
earlier, unlabeled recordings, the description of the cluster they are assigned to,
and information on how the clusters evolve. We show that this new, augmented
dataset, combining labeled and unlabeled data on individuals and subpopulations,
improves classification and delivers additional insights on some factors associated
with hepatic steatosis.

6.2 problem formulation

We now provide some basic symbols and essential functions for our classification
problem, summarized in Table 6.1.

Our longitudinal study comprises data for a participant x ∈ X for every feature
f ∈ F and every time point t ∈ {1, . . . , T } (also referred to as moment). The (single)
value of x for feature f at moment t is denoted as v(x, f, t); the set of all values for
x at t, i.e., {v(x, f, t)|∀f ∈ F}, is denoted as obs(x, F, t). For some participant, v(·) is
NULL, i.e., there may be missing values. Our goal is to to predict the class label of
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Table 6.1: Symbols and essential functions.

Term Description

x a study participant from cohort X

t a study moment, one of {1, . . . , T }

f a feature from the set of all features F

v(x, f, t) the value of x for feature f at moment t

obs(x, F, t) all measurements for x at t, i.e., {v(x, f, t)|∀f ∈ F}
label(x, t) the class label of x at moment t

Z(t) all observations at t, i.e., {obs(x, F, t)|∀x ∈ X}
c(x, t) cluster membership of x at t; if x is an outlier at t, then c(x, t) is NULL

d(x, z, t) distance between x and z at t (cf. Eq. 6.1)

kNN(x,k, t) the set of k nearest neighbors of x at t

centr(x, t) centroid of c(x, t)

x at moment T , i.e., label(x, T) by using data from all observations in all previous
moments t ∈ {1 . . . T − 1}. The class label of each participant is unavailable except
for t = T . We model this prediction task as conventional classification problem. We
aim to improve classification performance by expanding the feature space with
change descriptors, the so-called evolution features, presented next.

6.3 evolution features

We leverage latent temporal information of a longitudinal cohort study dataset by
extracting informative features based on the individual change of participants and
the transition of their respective clusters over time. For this purpose, we exploit the
similarity among participants at each moment as a surrogate to the labels which are
not available in the first two moments, assuming that similar participants evolve
similarly. We call these new features “evolution features”. Our approach is illustrated
in Figure 6.1 (a). We monitor the individual change of participants across the study
waves, trace the clusters’ change separately, extract new features (from labeled and
unlabeled data) and augment the original data space with our new descriptors of
change. The complete classification workflow is depicted in Figure 6.1 (b).

In the following, we describe the clustering of study participants (Section 6.3.1), the
generation of evolution features (Section 6.3.2), and our feature selection strategy
to extract a subset of informative features as input for classification (Section 6.3.3),
while dealing with class imbalance by undersampling the majority class.

6.3.1 Clustering

For clustering, we prefer density-based clustering over partitional algorithms (like
k-means) because our data contain extreme cases, the clusters may be arbitrarily
shaped and of different sizes, and we cannot determine their number in advance.
At each moment t, we run the DBSCAN [Est+96] algorithm to cluster the set Z(t) of
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Figure 6.1: Concept of evolution feature extraction for classification performance im-
provement. (a) Clustering of longitudinal cohort data and subsequent gener-
ation of evolution features from the change of individuals (red) and whole
clusters (green). (b) Overview of the classification workflow which encompasses
building blocks for handling class imbalance via undersampling (U), feature
selection (F), and extraction of evolution features (G).

recordings of all cohort members observed at t. For participant x, v(x, f, t) denotes
the value of x for feature f ∈ feature-set F at t, and obs(x, F, t) the set of all feature
recordings for x at t (cf. notation in Table 6.1).

distance function. For the distance between participants x, z at t, we use
the adjusted heterogeneous Euclidean overlap metric [Hie+14a; WM97], which weights
the difference between two values x, z for feature f by the feature’s information
gain G(f), scaled to the largest observed value G∗, defined as:

d(x, z, t) =

√√√√∑
f∈F

(
G(f)

G∗
· δ (v(x, f, t), v(z, f, t))

)2
. (6.1)

For continuous features, δ(a,b) is the min-max-scaled difference between the values
a,b, i.e., (a− b)/(max(f) − min(f)). For nominal features, δ(a,b) is 0 if a = b, and
1 otherwise.

dbscan hyperparameter setting . DBSCAN relies on two parameters: the
radius eps of the neighborhood around a data point, and the minimum number
minPts of neighbors for a point to be a core point. We use the “elbow” heuristic
of Ester et al. [Est+96], which determines a suitable eps value for a given minPts
value, illustrated in Figure 6.2. More specifically, we define a parameter k and
compute for each x ∈ Z(t) the distance k-dist(x,k) to its kth nearest neighbor. We
sort these distances, draw the k-dist(x,k) graph g, and span the line l connecting
the smallest k-dist() value to the largest one. Then, we set eps to the k-dist value
with the maximum distance between g and l.

6.3.2 Constructing Evolution Features

We extract information about the participants’ evolution, distinguishing among
those that evolve smoothly and those that switch among clusters. We transfer this
information to evolution features, thus enriching the feature space with information
from the unlabeled moments. Table 6.2 describes all evolution features. They are
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Figure 6.2: Setting eps based on the k-dist graph for a given minPts. The k-dist graph g
depicts the sorted distances to the points’ kth next neighbors. A suitable epsopt
can be identified with the maximum distance between the k-dist and the line
l that connects the first and the last point of g. For DBSCAN clustering with
minPts = k, epsopt, points with k-dist 6 epsopt will become core points, else
border or noise points.

divided into four categories: (A) features for each participant at each moment, (B)
evolution features describing some aspect of change between study waves for an
individual participant, (C) evolution features measuring changes between study
waves concerning feature values for each participant, and (D) evolution features
linked to a whole cluster.

For each cohort member x and moment t, we record the cluster containing x
(feature 1 in Table 6.2), (2) the distance of x to this cluster’s centroid, (3) the
fraction of positively labeled participants among the k nearest neighbors of x, (4)
the (graph-based) cohesion [Tan+19] and (5) Silhouette coefficient [Tan+19] of x,
and (6) the (graph-based) separation [Tan+19] of x to cohort participants outside
this cluster. We compute the difference of the cohesion, Silhouette, and separation
values from t to all later moments {t ′ ∈ T |t ′ > t} (7-9), and also check how much
the values of these metrics change as x moves from c(x, t) to c(x, t ′) (10-12). We
record whether x is an outlier, i.e., a DBSCAN noise point at some moment (13).
For t and {t ′ ∈ T |t ′ > t}, we compute the fraction of cohort members who are
in the same cluster as x in t and t ′ (14), and the fraction of common k nearest
neighbors (15), and the change of the distance between x and its centroid at t,
from t to t ′ (16). We further record changes in the sequence of values for a feature,
including real (17), absolute (18), and relative (19) differences between the values
at two moments. We measure how a cluster shrinks/grows from t to t ′ (20), and
how much its members move (on average) closer or far apart from their previous
positions (21-23).

6.3.3 Extending Correlation-Based Feature Selection to Include Evolution Features

For imbalanced data, feature selection and classification are often biased in favor
of the majority class [Lee+18]. Hence, before feature selection, we undersample
the majority class and generate a balanced data set to select features informative
with respect to all classes. We use the feature selection method of Hielscher et al.
[Hie+14b] as follows: we invoke correlation-based feature selection [Hal00] (CFS),
which builds up a feature set by iteratively inserting the feature that adds the
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Table 6.2: Overview of extracted features. The first group of features (A) comprises the
cluster membership and aggregated distance information for each participant
and each moment; feature group (B) is on changes in the participant’s position
(in the hyperspace) relative to the cluster and its closest neighbors; feature group
(C) captures changes in the values of the participant’s recordings; feature group
(D) refers to changes in the clusters.

# Name Description

(A) Features for participant x at each moment

1 Cluster_t Cluster ID of x at t

2 dist_To_Centroid_t Distance of x to the centroid of cluster c(x, t), denoted
as ĉ(x, t)

3 fraction_Of_POS_kNN_k_t Fraction of the k nearest neighbors of x at t from the
positive class

4-6 a_t := a(x,t,c(x,t)) a is one of cohesion, Silhouette, separation [Tan+19];
cohesiont is the cohesion of x at t w.r.t. the members of
c(x, t) – and similarly for silhouette and for separation

(B) Evolution features linked to each participant x

7-9 a_Delta_t_t’ Difference at − at ′ for a as above

10-12 a_Movement_t_t’ Difference a(x, t, c(x, t))−a(x, t ′, c(x, t)) for a as above,
referring to the same cluster c(x, t) at two moments
t, t ′; at t ′, x ∈ c(x, t ′), which does not need to be the
same as c(x, t)

13 was_becomes_Outlier_t_t’ Four-valued flag on whether x was outlier in both t, t ′,
only in t, only in t ′ or in neithert, t ′

14 same_Cluster_t_t’ c(x, t)∩ c(x, t ′) \ {x}: set of cohort members that are in
the same cluster as x in t and in t ′

15 same_kNN_k_t_t’ kNN(x,k, t)∩ kNN(x, k, t ′), i.e., the set of cohort mem-
bers who are among the k nearest neighbors of x in
both t and in t ′; they do not need to be in the same
cluster as x

16 shift_To_Old_Centroid_t_t’ Difference d(x, ĉ(x, t), t ′) − (x, ĉ(x, t), t)

(C) Evolution features associated with the value of each original feature f for participant x

17-19 A_Diff_f_t_t’ Difference between v(x, f, t) and v(x, f, t ′) for feature f,
where A is either real difference, absolute difference or
relative difference to v(x, f, t)

(D) Evolution features linked to a whole cluster c

20 smaller_Cluster_Fraction_t_t’ Difference of the size of cluster c at t ′ and its size at
t; c is matched to the clusters of t based on member
overlap

21-23 movement_d_t_t’ Distance d between the locations of the members of
cluster c at t and their locations at t ′, where d is one of
Euclidean distance, HEOM distance (cf. Eq. 6.1), Cosine
similarity
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most “merit” to it. The merit MF of a feature set F is computed by calculating
the information gain for each pair of features in F (lower gain corresponds to low
correlation and is thus preferred) and for each feature in F towards the target
variable (higher gain is better). Continuous features are first discretized with the
entropy-based method of Fayyad and Irani [FI93]. We discretize only for feature
selection; for clustering and classification, we use the original values.

As shown in Figure 6.1, we perform feature selection twice. The first time, we
consider only features recorded in all moments, which is essential for evolution
tracing: we can only compute distances between objects in clusters located in the
same topological space. After generating the evolution features, we build up the
complete set of features, also considering those not recorded in each moment. On
this set, we perform feature selection again to discard unpredictive (original or
evolution) features. This final feature set is then used for classification.

6.4 evaluation setup

We evaluate our workflow with 10-fold cross-validation on four off-the-shelf classi-
fication algorithms: random forest [Bre01] (RF), C4.5 decision tree [Qui93], Naïve
Bayes (NB), and k-nearest neighbor (kNN). First, we compare each algorithm’s gen-
eralization performance when used alone (baseline variant) vs. when incorporated
into our workflow (workflow-enhanced variant). Further, we study the impact of
different combinations of the three workflow components undersampling (U), feature
selection (F), and incorporation of generated evolution features (G). Sensitivity (true
positive rate), specificity (true negative rate), and F-measure (harmonic mean of
precision and recall) serve as evaluation measures. As shown in Table 6.3, Baseline
invokes only the classification algorithm; we use the classification algorithm which
achieves the highest F-measure scores. The variant U-G performs undersampling
and uses the generated evolution features for classification. Since we undersample
only for feature selection and then build the classification models on the original
dataset, so U-G is identical to --G and U-- is identical to the Baseline variant, so
we omit to list U-G and U-- explicitly.

The main hyperparameter is k which is the number of neighbors of a data point:
we set minPts = k and use k to derive the values of the DBSCAN hyperparameter
eps (cf. Section 6.3.1) and of the hyperparameters for the features same_kNN_k_t_-

1_t_2 and fraction_Of_POS_kNN_k_t (cf. Table 6.2). Further, the number of nearest
neighbors for the k-NN classification algorithm is also set to k. We vary k to
measure its impact on classification performance.

Following the findings in Chapters 3 and 4 on the differences between female and
male participants with respect to the outcome, we run the experiments on the
whole dataset (PartitionAll) and on the partitions of female (PartitionF) and
male (PartitionM) participants. Finally, we list the most important features found
in PartitionAll and its two subsets.
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Table 6.3: Workflow variants. UFG is the complete workflow.

Workflow
components

Under-
sampling

Feature
selection

Evolution
features

UFG 3 3 3

UF- 3 3 7

-FG 7 3 3

-F- 7 3 7

--G 7 7 3

Baseline 7 7 7

6.5 results

Figure 6.3 shows sensitivity (left), specificity (center), and F-measure (right) for the
simple classifiers (gray curves) and their workflow-enhanced counterparts (same
line style, colored) for different k.
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Figure 6.3: Comparison of classification performance between workflow and baseline.
Sensitivity (left), specificity (center) and F-measure scores (right) of different
classifiers when varying the number k of neighbors to a cohort member which
impacts the clustering result. For each classifier, two performance curves are
shown: a colored one for the workflow-enhanced version and a gray one for the
baseline counterpart. Higher values are better for all measures. The figure is
adapted from [Nie+15].

Overall, each workflow-enhanced variant outperforms its simple counterpart with
respect to sensitivity and F-measure, and outperforms or performs slightly worse in
specificity. The workflow-enhanced Naive Bayes performs best concerning sensitiv-
ity for any k and best for k = 31. Decision trees exhibit the highest F-measure, with
improvements on sensitivity and F-measure compared to its simple variant, albeit
specificity being slightly worse; improvements are less for large k. Random Forests
benefit the most from our workflow, with an absolute improvement in F-measure of
over 30% (green vs. gray “+” curves in the right part of Figure 6.3). One explanation
for the relatively low sensitivity of the simple RF variant is the large number of trees
(100) learned on data samples containing very few positive examples: RF could
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have been trapped by the many majority class examples. This result is consistent
with the specificity curve (almost straight line around 95%) of simple RF, while the
F-measure is slightly above 40%. Our workflow improves RF sensitivity (63%) and
F-measure (65%), while specificity remains high (90%). Overall, the impact of k on
the three measures is limited for all algorithms except for the workflow-enhanced
and the baseline k-NN, which is naturally affected stronger by the value of k than
any other algorithm. Therefore, the workflow-enhanced variants outperform their
simple counterparts in terms of sensitivity and F-measure. For some algorithms,
our workflow prevents overfitting to the negative class.

The results of the workflow component-specific results in Figure 6.4 show that
our complete workflow UFG and the variants UF- and --G outperform the other
variants in sensitivity and F-measure. The variants -F- and -FG perform well only
regarding specificity, suggesting that feature selection may not be beneficial without
undersampling for datasets with class imbalance.
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Figure 6.4: Comparison of classification performance for workflow components. Sensi-
tivity (left), specificity (center) and F-measure scores (right) for each workflow
variant and the baseline using decision tree for learning. The figure is adapted
from [Nie+15].

6.6 identification of important evolution features

The performance of the workflow variants, which include feature selection, indicates
that a small number of features is sufficient for class separation. Hereafter, we
report on the evolution features selected for classification and appearing among
the top 15 features according to information gain for each partition; we term these
features “important”.

Figure 6.5 shows that for PartitionAll 3 out of these 15 features are generated
evolution features. The boxplots (a) and (c) in Figure 6.5 refer to differences between
values recorded in two moments. The feature separationDelta_g_1_2 measures the
difference in cluster separation for each participant based on the cluster assignment
in moment 1 and 2, and corresponds to entry #9 in Table 6.2. Participants belong-
ing to the positive class exhibit a higher median in separationDelta_g_1_2 than
participants without the disorder, indicating that clusters harboring mostly positive
participants cover larger, more sparse areas. The feature relative_Difference_-



6.6 identification of important evolution features 79

som_huef_g_0_1 (#19) quantifies the difference in a participant’s hip circumference
between SHIP-0 and SHIP-1, relative to the value in SHIP-0. On average, study
participants from both classes lose weight when they grow older. Negative par-
ticipants reduce more weight than positive participants (cf. Figure 6.5 (c)), which
generally reflects differences in lifestyles. The mosaic chart in Figure 6.5 (b) for fea-
ture fraction_of_Positives_kNN_1_g_2 (#3) indicates that the “nearest neighbor”
of a fatty liver participant is also more likely to exhibit the disorder than it is for a
participant without fatty liver.
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Figure 6.5: Selected evolution features with the highest contribution to class separation
for PartitionAll. (a) Difference in cluster separation between SHIP-1 and SHIP-
2. (b) Whether (=1) or not (=0) the nearest neighbor is of the positive class in
SHIP-2. (c) Relative difference in hip circumference between SHIP-0 and SHIP-1.

For PartitionF, 5 out of the top 15 features are evolution features, cf. Figure 6.6.
Compared with female participants without the disorder, female subjects with
fatty liver exhibit a larger distance to the centroid of their cluster in SHIP-1 (#2), a
lower silhouette coefficient in SHIP-1 (#5), a higher difference in waist circumfer-
ence between SHIP-0 and SHIP-2 (#19), and a lower relative difference in serum
triglycerides concentration between SHIP-0 and SHIP-1 (#19).
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Figure 6.6: Selected evolution features with the highest contribution to class separation
for PartitionF. (a) Distance to cluster centroid in SHIP-1. (b) Silhouette coeffi-
cient in SHIP-1. (c) Relative difference in waist circumference between SHIP-0
and SHIP-2. (d) Absolute value of relative difference in serum triglycerides
between SHIP-0 and SHIP-1.
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For PartitionM, 2 out of the top 15 features are evolution features (Figure 6.7),
including the relative difference in waist circumference between SHIP-1 and SHIP-2
(#19) and difference in cluster separation between SHIP-0 and SHIP-1 (#6). For both
features, participants exhibiting the disorder have greater values.
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Figure 6.7: Selected evolution features with the highest contribution to class separation
for PartitionM. (a) Relative difference in waist circumference between SHIP-1
and SHIP-2. (b) Difference in cluster separation between SHIP-0 and SHIP-1.

6.7 conclusion

We have extended our set of methods for static medical data presented in Part I
by proposing a workflow for the classification of longitudinal cohort study data
that exploits inherent temporal information by clustering the cohort participants
at each moment, linking the clusters, and tracing participant evolution over the
study’s moments. We extract evolution features from the clusters and their transitions,
which are added to the feature space and subsequently used for classification. The
workflow improves the generalization performance with respect to sensitivity and
F-measure scores. The generated evolution features contribute to this improvement,
even when used alone and without undersampling the skewed data. We have
shown that the change of somatographic features’ values and cluster quality indices
over time are predictive.

A limitation concerns the assessment of a feature’s importance using information
gain. The additional merit a feature has towards model predictions cannot be
assessed being decoupled from the actual model. Furthermore, models may incor-
porate complex feature interactions that are not captured or subpopulation-specific
differences in feature importance. Part III addresses post-hoc model interpretation,
which includes more sophisticated approaches of measuring a feature’s attribution
to a model.
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Brief Chapter Summary

Embedded mHealth devices continuously record vital functions. These tem-
poral sequences arrive mostly as raw sensor measurements, requiring the
extraction of meaningful features. We propose similarity measures for short
temporal sequences to build representations of distinct subpopulations. We
validate our approach by identifying characteristic plantar pressure profiles
from recordings of a controlled experiment with diabetic foot syndrome
patients and non-diabetic volunteers.
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Nowadays, mHealth devices, such as smart wearables, are ubiquitous in everyday
life [GBT18]. These embedded systems continuously record and process various
vital functions and send feedback to the user, for example, via popup notifications
or dashboard reports. Thus, they are designed to help live healthier by contributing
to more effective exercise or a better diet. mHealth solutions are also increasingly
being used in clinical settings. Pattern recognition in timestamped mHealth data is
used to timely detect adverse health events.
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For example, in diabetes patients with sensory neuropathy, repeated excessive
pressure loads can aggravate plantar tissue destruction and ultimately lead to
foot ulcers, in the worst case, even to amputation [BSA18]. Since frequent clinical
examinations would be too costly and bothersome for the patient [Min+19], sensor-
equipped systems for the patient’s shoe insoles are developed. These systems
measure foot pressures and temperatures continuously and transmit recordings
wirelessly to a smart device, which processes the data to send offloading instruc-
tions when potentially harmful pressures are detected [Abb+19] or temperature
differences between left and right foot exceed pre-specified thresholds [Min+19].
However, a universal pressure threshold with high sensitivity and specificity with
respect to ulcer development has not yet been determined [Wal12; FWC18]. Besides,
when a significant difference in temperature between the left and right foot is noted,
it is often already too late to warn the patient, as ulceration has already begun.
Evidence suggests that there are subpopulations with distinct plantar pressure
patterns requiring different preventive measures, for example, different peak pressure
thresholds [GM06; De +06; Ben+13; Des+13].

In the previous chapters, we presented methods for analyzing static data (Chap-
ters 3–5) and timestamped data (Chapter 6) with a small number of time points.
Raw mHealth data comprises hundreds or more time points, thus requiring the
extraction of meaningful features before any actual data analysis. This chapter
proposes similarity measures for short temporal sequences to create representa-
tions of distinct subpopulations from mHealth data. The DIAB data described in
Section 2.2.3 serve as proof-of-concept validation.

This chapter is organized as follows. Section 7.1 describes the medical background
of diabetic foot syndrome and reviews previous subtyping approaches to detect
plantar pressure patterns. Section 7.2 presents our approaches for modeling regional
plantar pressure similarity and identifying distinct foot profiles by clustering.
We report on our results in Section 7.3 and compare them to similar studies in
Section 7.4. We conclude the chapter in Section 7.5.

7.1 medical background

Diabetic foot syndrome (DFS) has a substantial negative impact on life quality
[Bou+05]. Affected patients have higher mortality [Bou+05; MMG03] and are at
higher risk of foot ulcerations [SAL05]. More than 85% of foot amputations relate
to foot ulcers [Gre+14; VL16].

Peripheral sensory neuropathy is most predisposing for foot problems in dia-
betes patients [BSA18]. In sensory neuropathy, damaging events and injuries go
unnoticed, and continued insults can exacerbate tissue destruction. However, under-
standing of the underlying pathomechanisms of tissue destruction in the absence
of trauma is limited.

Lower extremity (micro)blood flow of diabetes patients was compared with healthy
controls to establish a causal relationship between decreased blood flow and the
occurrence of diabetic foot syndrome [Sun+12; FEL07; Sch+17a; Ray+95; Ray+94;
Art+15]. Persistent elevated plantar pressure is a major risk factor for ulceration
in diabetes patients [Vev+92; Arm+98; Lav+03]. Custom-made footwear and or-
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thopedic shoes are used for ulcer prevention and individual therapy [FZA+06;
CB10; Riz+12]. However, a pressure threshold with high sensitivity and specificity
with respect to ulcer development has not yet been determined [Wal12; FWC18].
Researchers also investigate how pressure is applied to each foot region. Bennetts
et al. [Ben+13] suggested differences between foot types and biomechanics that
result in differences in pressure distribution between regions of the same foot. De-
schamps et al. [Des+13] proposed a stratification of patients based on their plantar
pressure pattern homogeneity. This approach may avoid the pitfall of smoothing
away variations within a pathophysiological subgroup.

In the absence of a ground truth, clustering is often used to derive subgroups
of patients who share similarities in pressure distribution, usually focusing on
peak plantar pressure, i.e., the maximum observed pressure recorded for a single
measurement, for example, the maximum pressure at a sensor during a step [GM06;
De +06; Ben+13; Des+13]. Giacomozzi and Martelli [GM06] examined the plantar
pressure curves of DFS patients and control subjects. They performed clustering
based on the curves’ similarity in shape and amplitude. They juxtaposed the
clusters to predefined subgroups: For example, all subjects in the group with
increased peak pressure and muscle weakness or limited joint mobility were
assigned to one cluster [GM06]. De Cock et al. [De +06] examined peak pressure
measured at different foot regions during jogging and identified four pressure
patterns with different pressure centers. For example, the “M2 pattern” is the
cluster where the maximum of the mean total regional impulse is located at the
second metatarsal bone. Bennetts et al. [Ben+13] considered seven plantar regions
and formed subgroups of patients with similar peak pressure distributions in
these regions. Deschamps et al. [Des+13] focused only on plantar forefoot peak
pressure distribution and studied both patients and controls. They formed clusters
of patients with similar forefoot pressure distributions and identified a cluster
consisting only of diabetes patients.

Similar to [Ben+13; De +06], we focus on patient stratification with clustering. As in
[Ben+13; GM06], we consider all foot regions, not just the forefoot. In contrast to all
the aforementioned methods that determined similarity in a single way and then
used k-means for clustering, we present alternative ways of modeling similarity
in terms of plantar pressure and we contrast the clusters formed by different
clustering algorithms in terms of their quality. Besides, we provide visualization
aids for inspecting the most representative instance (patient foot) in each cluster.

Initially, the study experiment was performed exclusively on patients. Volunteer
data became available only gradually. Hence, this chapter is divided into two parts:
In part A, we present alternative distance measures for regional plantar pressure
load and evaluate them by clustering experiment data from diabetes patients. In
part B, we use the best distance measure from part A to cluster the subgroups of
diabetes patients, healthy volunteers, and a combined group separately.

7.2 modeling similarity of regional plantar pressure

Our approach includes feature extraction (Section 7.2.1), plantar pressure dis-
tribution similarity modeling (Section 7.2.2), clustering of study participant feet
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(Section 7.2.3), clustering evaluation (Section 7.2.4), and visualization. We present
these steps below.

7.2.1 Feature Extraction from Short Time Series

The pressure measurements for one foot of an example participant are shown
in Figure 7.1. For each experiment, each foot, and each of the eight sensors, the
pressure recordings result in a time series. Within each time series, stance episodes,
i.e., phases in which the patient was standing, are indicated by dashed boxes.
During these episodes, the example patient applied more pressure to the central
sensors MTB-3 and Calcaneus than Digitus-1 and Lateral, suggesting a balanced
pressure pattern.
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Figure 7.1: Insole sensor locations and pressure time curve examples. Sensor locations on
the insole (center) and four pressure time curves of representative foot regions
of an example patient. Dotted boxes highlight time intervals where the patient
was asked to stand and apply pressure. These lasted over 5, 10, and 20 minutes,
respectively. D1: Digitus-1; MTB: metatarsal bone. The figure is adapted from
[Nie+16].

For each session i, i.e., for each experiment, participant and foot separately, the
minimum and maximum observed pressure values over all sensors were identified,
rmin
i and rmax

i , respectively. Then, within each session i and for each sensor s each
observed pressure value ri,s was normalized into the relative plantar pressure (RPP)
value

r∗i,s = (ri,s − r
min
i )/(rmax

i − rmin
i ). (7.1)
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7.2.2 Distance Measures

We consider three alternative ways of modeling plantar pressure similarity:

• similarity based on relative plantar pressure,
• similarity based on pressure distribution in pairs of sensors, and
• similarity based on centers of pressure.

similarity based on relative plantar pressure . We define the distance
dRPP between sessions i, j as Euclidean distance between the mean RPP over the
eight plantar regions:

dRPP(i, j) =

√∑
s

(
µ(r∗i,s) − µ(r

∗
j,s)
)2

, (7.2)

where µ(r∗i,s) is the average RPP in session i at region s.

similarity based on pressure distribution in pairs of sensors . For
each pair of regions s, t of a session i, a simple linear regression model Xt =

β0+β1Xs is derived, capturing the linear relationship between the plantar pressure
recordings at s and those at t. Figure 7.2 shows an example of the MTB-3 and
MTB-4 sensors with three feet. While a generally applied less pressure than b,
the linear relationship between the recordings at MTB-3 and MTB-4 is similar, as
indicated by the nearly parallel regression fit. Compared to a and b, the regression
fit of c has a smaller slope, indicating an increase in pressure at MTB-3 is associated
with a smaller increase in pressure at MTB-4. The regression lines also differ in the
goodness of fit. For example, the residual values are, on average, smaller for b than
for c.

Two feet are similar if the slopes of most of the
(
8
2

)
regression lines are similar, taking

into account the goodness of fit of each line. Let i be a session, and let s, t be two
plantar regions. The regression line’s slope between s and t for session i is denoted
as m(i, s, t) and the Pearson correlation coefficient as cor(i, s, t), quantifying the
goodness of fit of the regression lines. The dissimilarity between two sessions i, j
for these two regions is then defined as the difference between the slopes of the
regression lines m(i, s, t) and m(j, s, t), given by

Θ(i, j, s, t) = tan−1

(
m(i, s, t) −m(j, s, t)
1+m(i, s, t) ·m(j, s, t)

)
. (7.3)

We then sum the angular distances over all pairs of plantar regions to obtain a
value expressing the distance between two feet dpairs(i, j), defined as

dpairs = 1−
∑
r

∑
s

Θ(i, j, s, t) · |cor(i, s, t)|+ |cor(j, s, t)|
2

(7.4)
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Figure 7.2: Example of three RPP distributions. For three example feet a, b, and c, RPP
values for MTB-3 (x-axis) and MTB-4 (y-axis) are shown. Regression lines are
fitted to each set of points. The angular distance values Θ(·) are small for the
pairs of regression lines (a,b), while Θ(a, c) and Θ(b, c) are large, quantifying
that the slope of the fit for c is different from the fit for a and b, respectively.
MTB: metatarsal bone.

(if i 6= j; otherwise 0), where cor(i, s, t) is the Pearson correlation coefficient between
the plantar pressure records of r and s for foot i. Because the angular distance
depends on the goodness of fit of the regression, angular distances of more reliable
regression lines were assigned a higher weight in the distance calculation.

similarity based on centers of pressure . For the third variant of sim-
ilarity, we cluster the average RPPs in each region. Two feet are similar when
most of the k centroids are similar. For each region, we call k-means multiple
times with different k and select the run with the optimal Silhouette coefficient.
However, due to a possibly different number of clusters for the different regions,
we consider that the distance between two centroids may be smaller for a clustering
with many clusters than for a clustering with only a few clusters. Therefore, we
add a weighting factor so that the dcenters(i, j) is defined as:

dcenters(i, j) =
∑
s

|ctr(i, s) − ctr(j, s)| · log(|C(s)|)/
∑
t

log(|C(t)|) (7.5)

where ctr(i, r) is the centroid of the cluster to which i has been assigned with
respect to clustering for sensor s and |C(s)| is the number of clusters for the
clustering of s.

7.2.3 Identifying Foot Profiles by Clustering

To identify distinct pressure pattern subgroups, we carry out k-medoids [KR87],
DBSCAN [Est+96], and agglomerative hierarchical clustering.
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k-medoids . Like k-means and X-means (recall Section 5.2.1), a k-medoids
cluster is represented by an instance for which the sum of the distances to all
observations of the same cluster is minimal. The difference between a k-means
centroid and a k-medoids medoid is that the latter must be an actual observation. In
contrast, a centroid is an artificial observation derived from mean values. Compared
to k-means, k-medoids can be more robust to outliers [SC11] and has, at least for
this application, an arguably more intuitive cluster representation: The medoid can
be interpreted as the most representative foot in the cluster, whereas a centroid can
be very different from the pressure distribution of any patient within the cluster.
Thus, this notation allows us to use clustering to examine temporal patterns of
plantar pressure by visualizing the cluster medoids’ RPP time curve.

dbscan. DBSCAN [Est+96] partitions instances into clusters based on their
estimated density distribution and builds clusters of arbitrary shape and size. Pres-
sure distributions of feet that differ considerably from any cluster are declared as
outliers, which may be abnormal pressure patterns of patients potentially requiring
medical supervision. DBSCAN has two parameters: the radius eps defining the
“neighborhood” of an instance and the minimum number minPts of neighbors for
an instance to be a core point (recall Section 6.3.1).

hierarchical clustering . In agglomerative hierarchical clustering, similar
instances are iteratively merged into clusters in a bottom-up fashion. The order in
which two clusters are merged depends on the linkage strategy: In complete linkage,
the distance between two clusters is defined as the maximum distance between
a pair of instances (one from each cluster). The two clusters that minimize this
maximum distance are selected for merging. Using a dendrogram, it is possible to
break down the “tree” of clusters to understand the progressive merging process.
Optionally, a parameter k can be specified to obtain a specific partitioning with k
clusters.

7.2.4 Evaluation Setup

preprocessing . Some of the sensor recordings were identified as noisy or
erroneous. To reduce the impact of such extreme recordings, these values were
replaced with the median of all recordings for the sensor in that session. Following
the inner fence outlier definition in boxplots [Hoa03], a value x was flagged as
extreme if it fell outside the range [Q1− 1.5 · (Q3−Q1),Q3+ 1.5 · (Q3−Q1)], where
Qi is the ith quartile and (Q3 −Q1) is the interquartile range over all sensors in i.
Then the time curves were smoothed using locally weighted scatterplot smoothing
(LOWESS) [Cle79] with a smoother span of 5%. Recordings from all stance episodes
were used for distance calculation and clustering.

experimental setup. For part A, we use the three distance measures from Sec-
tion 7.2.2 to cluster the participant feet, using the algorithms k-medoids, DBSCAN,
and agglomerative hierarchical clustering (Section 7.2.3). For DBSCAN, we estimate
an appropriate value of eps using the elbow method presented in Section 6.3.1,
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where k is set to minPts. For hierarchical clustering, we cut the dendrogram to
obtain k clusters. Cluster quality was measured by the Silhouette coefficient (recall
Section 4.2.1). For k-medoids, we vary k from 2 to 10. For DBSCAN, we set minPts
from 2 to 10 and automatically determine eps. For hierarchical clustering, we set
the number of clusters from 2 to 10 and use single linkage, complete linkage,
and average linkage, respectively. For part B, we restrict to the best performing
combination of distance measure and clustering algorithm of part A.

included datasets . In part A, foot insole sensor recordings of 20 patients (5
female, 15 male, 66.2 ± 8.4 years) with type 1 or type 2 diabetes and sensomotoric
peripheral polyneuropathy were available. 19 participants performed the experi-
ment twice, the remaining participant only once. For 34 of these 39 experiments,
recordings of both feet were available, reaching a total of 73 experiment datasets.

For part B, data for 25
1 diabetes patients (6 females, 19 males, age 64.8 ± 9.8 years)

and 18 non-diabetic healthy volunteers (10 females, 8 males, age 62.9 ± 7.6 years)
were available. For all 43 sessions, both feet’ sensor recordings were available,
which were used independently, reaching a total of 86 session datasets.

7.3 validation on diab

7.3.1 Results on Part A

Table 7.1 shows the clustering results. The maximum Silhouette score is achieved
by k-medoids with dRPP (k = 4; Silh = 0.78). The number of clusters found by the 3

clustering algorithms differs: while k-medoids finds 4 clusters for each distance
measure, DBSCAN returns one large cluster and some outliers (i.e., noise points);
for hierarchical clustering, the number of clusters varies the most, from 2 to 10.
k-medoids outperforms DBSCAN and agglomerative hierarchical clustering for all
three distance measures. Besides, dRPP outperforms all other distance measures
with respect to the three algorithms.

For the best clustering (dRPP, k-medoids), a boxplot-based visualization of the RPP
distributions of the medoids for each sensor is shown in Figure 7.3. While the
RPP distribution of medoid 1 is balanced, medoid 2 has a pressure focus on the
centrally located MTB-3; medoid 3 has an overall higher pressure load, especially
for Digitus-1, MTB-2, MTB-3, MTB-5, and Lateral, while medoid 4 represents a
“skewed” pattern with increasing pressure from the medial to the lateral forefoot
(as measured at MTB-5). The substantial differences in the RPP distribution of
these medoids suggest high variability in how DFS patients apply pressure to
their feet. Determining patient subpopulations serves as a basis for reducing the
risk of DFS-related foot complications by supporting early detection, treatment,
and prevention [Bar+15; Waa+14; Bus12; Des+13; Lav+03; CB10], for example, by
personalized footwear tailored to patient needs [Ben+13].

1 The data for this chapter became available only gradually. Data analysis for part B was conducted
after part A. At that time, additional data of diabetes patients were available. We only considered
data from patients for whom recordings for both feet were available.
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Table 7.1: Clustering results (part A). Optimal number of clusters kopt and Silhouette
coefficient Silhopt for each distance measure and algorithm.

Algorithm kopt Silhopt

dRPP

k-medoids 4 0.78

DBSCAN 1 + 14 noise points 0.57

Hierarchical (single linkage) 2 0.40

dpairs

k-medoids 4 0.31

DBSCAN 1 + 2 noise points 0.13

Hierarchical (average linkage) 3 0.18

dcenters

k-medoids 4 0.45

DBSCAN 1 0.12

Hierarchical (average linkage) 10 0.18

The optimal clustering resulted in 4 subgroups. This number is consistent with the
results of Deschamps et al. [Des+13] (for the diabetes group) and De Cock et al.
[De +06]. Furthermore, some of our findings are similar to the study of Bennetts
et al. [Ben+13]. The RPP distribution of the second cluster’s medoid corresponds
to the “central pattern” of De Cock et al. [De +06] and cluster 2 of Deschamps et
al. [Des+13]. Being the medoid of the largest of the four clusters (n = 25 out of
73 feet (ca. 34%)), it is characterized by low to medium RPP the with focal point
of pressure on the central forefoot regions MTB-3. Our fourth medoid is similar
to cluster 4 of Deschamps et al. [Des+13]. However, while cluster 4 is the second
largest in our study (n = 22 feet (ca. 30%)), the relative proportion in Deschamps
et al. [Des+13] is much smaller (n = 30 of 194 feet (ca. 15%)). While RPP pressure
is rather low in the medial regions, median RPP gradually increases toward the
lateral forefoot regions. The balanced, moderate pressure on all regions of the first
medoid (n = 12 (ca. 16%)) represents a well-distributed pressure loading pattern. It
is similar to the largest cluster (cluster 4) of Bennets et al. [Ben+13]. The overall high
pressure loading of the third medoid may be an indicator of an adverse posture.
Patients from cluster 3 (n = 14 (ca. 19%)) may be overloading their feet and should
therefore be warned more urgently than the other subgroups.

7.3.2 Results on Part B

Figure 7.4 shows the Silhouette coefficient and the optimal number of clusters for
each subgroup. Patients, controls, and the combination of both groups can be best
described with four plantar pressure profiles. For the clustering with the optimum
k of each group, a summary of the relative plantar pressure distribution for the
session datasets of each cluster is provided in Figure 7.5.
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Figure 7.3: Cluster medoids of the best clustering. Visualization of the RPP distribution of
the medoids of the best clustering (dRPP; k = 4). The boxplot panel background
color represents the median RPP, from light gray (low median RPP) to dark
blue (high median RPP). D1: Digitus-1; MTB: metatarsal bone; C: Calcaneus.
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Figure 7.4: Silhouette coefficient for different numbers of clusters. Silhouette coefficient
for each group and k-medoids clustering using the distribution of eight plantar
pressure regions with the number of clusters k set between 2 and 10. For each
group, the best clustering is obtained with k = 4 clusters.

healthy volunteers . For cluster 1, representing 50% of the volunteer partici-
pants, the median RPP is high in all regions. Clusters 2 and 3 show some variability
for pressure in the forefoot regions. Cluster 4, characterized by low median RPP at
MTB-1 and MTB-5, describes only 2 of 36 feet in the volunteer group.

diabetes patients . Cluster 1 is the largest subgroup and is characterized by
high plantar pressure (median RPP above 80%). Cluster 2 represents an evenly
balanced median RPP profile. Here, median relative plantar pressures for Digitus-1,
MTB-1, and MTB-5 range from 30% to 50% of maximum, while median relative
plantar pressures for the central forefoot (MTB-2, MTB-3, MTB-4), Lateral, and
Calcaneus were recorded between 50% and 75%. For cluster 3, the median RPP is
above 80% of all regions’ maximum values except for the medial regions Digitus-1
and MTB-1. The latter cluster has the highest variance of all four clusters, with a
high difference between the first and third quartiles for several regions. For cluster
4, high median relative plantar pressures are perceived at all MTB sensors (RPP >
75%) and almost no pressure on Lateral (median RPP < 2%).
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Figure 7.5: Summary visualization of intra-cluster RPP distributions. Relative plantar
pressure distribution for each cluster and sensor over the whole session (in-
cluding pauses). Panel background of boxplots depicts median relative plantar
pressure with a linear color gradient, from light gray (low relative plantar pres-
sure) to violet (high relative plantar pressure). Pie charts show the percentages
of healthy volunteers and diabetes patients for each cluster in the combined
group. D1: Digitus-1; MTB: metatarsal bone; C: Calcaneus. The figure is adapted
from [Nie+16].



92 feature extraction from short temporal sequences for clustering

Table 7.2: Baseline characteristics. Characteristics of diabetes patients (P) and healthy
volunteers (V) with respect to the clustering on the combined group.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Characteristic P V P V P V P V

n 9 19 9 13 10 4 8 0

Sex (f/m) 2/7 9/10 4/5 8/5 4/6 3/1 1/7 –

Age (years) 61 ± 9 64 ± 7 68 ± 5 60 ± 9 68 ± 8 67 ± 6 63 ± 10 –

Body weight (kg) 97 ± 22 79 ± 13 85 ± 15 76 ± 11 92 ± 15 69 ± 18 100 ± 18 –

BMI 31 ± 6 27 ± 3 28 ± 4 27 ± 4 31 ± 5 25 ± 6 31 ± 4 –

When we perform clustering on the combination of both groups, some clusters
of the diabetes patients merge with the ones of controls. The optimal number of
clusters to describe the pressure distribution best remains 4. Clusters 1-3 contain
both patients and controls, but cluster 4 summarizes pressure distribution patterns
only found in diabetes patients with severe polyneuropathy.

Table 7.2 summarizes the data for diabetes patients and healthy volunteers within
the combined group’s four clusters. In clusters 1-3, the mean body weight and BMI
of patients are higher than those for volunteers. Since cluster 4 has the highest
values for body weight and BMI, it can be assumed that these anthropometric
characteristics also influence the measured pressure values and that the class
separation cannot be explained exclusively by pathology.

7.4 discussion of the findings from the medical perspective

Four pressure clusters each were identified for healthy volunteers and diabetes
patients. These clusters reflect the way the groups distribute pressure to foot regions
vulnerable for ulceration. The ultimate goal of these profiles is to reduce ulcer
risk: while clinical examination remains essential, pressure distribution analysis,
as proposed here, can serve as the basis for preventive strategies [Bar+15; Waa+14;
Bus12; Des+13; Dah+01; Lav+03; CB10], including the manufacturing of footwear
tailored to patient needs [Ben+13]. An interesting finding is that an unsupervised
procedure alone, i.e., without using the target variable (presence of diabetes),
generated a cluster consisting exclusively of diabetes patients, see Figure 7.5 (c).

This result is remarkable because the study protocol, with its strict sequence of
standing and sitting episodes, specifies exactly when and for how long pressure
loads are to be applied. Furthermore, during the experiment, participants were
instructed to adhere to the protocol, i.e., to apply pressure continuously during the
standing episodes. It is possible that the diabetes patients adhered more strictly
to the study protocol due to their neuropathy. It can also be assumed that a pain-
related fatigue effect occurs more frequently during the second loading phase over
20 min (stance episode 6) compared to the first (stance episode 3), indicated by a
larger percentage of recordings of pressure release. To quantify these changes, we
calculated the percentage of recordings in which the participants released pressure
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during stance episodes 3 and 6 (Figure 7.6). No significant intra-group differences
between stance episodes 3 and 6 were found. However, the mean percentage of
pressure release recordings was significantly different (p < 0.01) between healthy
volunteers and diabetes patients with sensoric polyneuropathy.
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Figure 7.6: Average percentage of recordings without pressure application during 20-
minute standing episodes. Intermittent pressure release in diabetes patients
with neuropathy occurs less frequently than in healthy controls. The underlying
dataset was introduced in [Nie+20c] where 114 propensity-score matched obser-
vations (57 from volunteers, 57 from diabetes patients) are analyzed. For intra-
and inter-group statistical comparison, a two-sided Student’s t-test is used. The
figure is adapted from [Nie+20c].

Comparing the clusters for healthy subjects and diabetes patients revealed a high
overlap in the plantar pressure distribution. For example, cluster 1 and cluster 3 of
healthy subjects and diabetes patients are characterized by almost identical pressure
loading patterns. To investigate whether a group-specific pressure distribution
could be identified, a cluster analysis was performed for the combination of both
groups. A random sample of diabetes patients was selected to ensure a balanced
distribution between the two groups. The observed pressure patterns in Figure
7.5 (c) support the assumption of common pressure patterns: clusters 1, 2, and 3

comprise the pressure distributions of both groups. However, cluster 4 was unique
to diabetes patients. This pattern is characterized by the lowest median relative
plantar pressure on the Lateral and Calcaneus.

Also, unlike other studies, we avoided k-means because it is sensitive to outliers
and because cluster centroids are composite objects, not true feet; rather, we provide
a cluster’s medoid, which is the most representative foot in the cluster, while a
cluster centroid (under k-means) is a derived vector of averages that may be very
different from any patient’s pressure distribution inside the cluster.

Some of the observed differences compared to related studies could be because
of differences in study participants, population sizes, experimental protocols, and
measurement devices [De +06; Ben+13; Des+13]. For example, neither the medial
M1 pattern nor the M2 pattern of [De +06], which focuses on either MTB-1 or
MTB-2, could be replicated. Besides, some of the results were not observed in
previous studies, such as the pattern disparity between lateral and other regions in
cluster 4 (diabetes patients).
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Our main finding is that a group of patients (cluster 4) applies plantar pressure in
a way that is not found in healthy volunteers. To draw conclusions from the other
clusters, it is necessary to consider a larger sample of healthy individuals, which
would allow reducing idiosyncrasies possibly found here and form homogeneous
clusters of healthy individuals.

The study protocol’s simplicity makes it easily reproducible, but the protocol cannot
capture the complexity of foot movement in everyday life. Thus, a limitation of the
study is to only detect differences in pressure distribution that can be detected by
changes in posture. When patients apply pressure in an uncontrolled environment,
the variance between their pressure profiles will inevitably increase. Therefore,
a study that considers more effortful activities of the patients (running, cycling,
climbing stairs, etc.) is needed to complement the results.

Another limitation of the results is the small sample size, which prevented examin-
ing differences between female and male participants because the gender samples
would have been too small for generalization.

Finally, a long-term follow-up would allow us to determine which patients even-
tually develop ulceration. This would provide a critical endpoint and evaluate
whether certain clusters are associated with a higher risk of developing diabetic
foot syndrome.

7.5 conclusion

We have proposed three similarity measures for short temporal sequences extracted
from raw mHealth data to create representations of distinct subpopulations via
clustering. The DIAB data served for proof-of-concept validation. The similarity
measures were based on (i) relative plantar pressure, (ii) pressure distribution in
pairs of sensors, and (iii) centers of pressure. We found four distinct subpopulations
of plantar pressure patterns.

Our approach needs to be validated on larger cohorts. The modeling of similarity
can be transferred from pressure to temperature recordings in the plantar regions,
possibly closing the gap in early detection of tissue damage and ulcer formation.
The formation of a diabetes patient cluster emphasizes pathological differences,
i.e., impaired sensation and microcirculatory defects leading to tissue damage.
Our results may lay the groundwork for approaches to identify pressure (and
temperature) patterns predictive for emerging foot problems with diabetes in the
future.
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Brief Chapter Summary

Complex black-box models can have high predictive performance but are
difficult to interpret. We propose an end-to-end data analysis workflow for
high-dimensional medical data that includes steps for data augmentation,
modeling, interleaving model training with feature elimination, and post-
hoc analysis of the trained models. Our approach delivers statistics and
visualizations representing global feature importance, instance-individual
feature importance, and subpopulation-specific feature importance. We
validate our workflow on three modeling tasks: (i) tinnitus-related distress
after treatment in tinnitus patients, (ii) depression at baseline in tinnitus
patients, and (iii) rupture risk in intracranial aneurysms.

This chapter is partly based on:

• Uli Niemann, Philipp Berg, Annika Niemann, Oliver Beuing, Bernhard Preim,
Myra Spiliopoulou, and Sylvia Saalfeld. “Rupture Status Classification of
Intracranial Aneurysms Using Morphological Parameters”. In: Computer-Based
Medical Systems (CBMS). 2018, pp. 48-53. DOI: 10.1109/CBMS.2018.00016.

• Uli Niemann, Benjamin Boecking, Petra Brueggemann, Wilhelm Mebus, Birgit
Mazurek, and Myra Spiliopoulou. “Tinnitus-related distress after multimodal
treatment can be characterized using a key subset of baseline variables”. In:
PLOS ONE 15.1 (2020), pp. 1-18. DOI: 10.1371/journal.pone.0228037.

• Uli Niemann, Petra Brueggemann, Benjamin Boecking, Birgit Mazurek, and
Myra Spiliopoulou. “Development and internal validation of a depression
severity prediction model for tinnitus patients based on questionnaire re-
sponses and socio-demographics”. In: Scientific Reports 10 (2020), pp. 1-9. DOI:
10.1038/s41598-020-61593-z.

In medical applications, understanding and clearly communicating the results of a
machine learning model is critical to deriving actionable knowledge that can ulti-
mately be used to improve disease prevention, diagnosis, and treatment [Ton+19].
Obtaining results that both data scientists and medical experts easily understand
helps formulate new hypotheses regarding the relationship between potential risk
or protective factors and the target; the significance of these relationships can be
tested in follow-up studies. Current state-of-the-art machine learning algorithms
produce models with superior performance compared to simpler but interpretable
models, such as decision trees, rule lists, or linear regression fits. However, because
these opaque black boxes involve many complex feature interactions or decisions,
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some of which are non-linear, it is often difficult to explain them understandably.
Arising from the need to provide understandable insights into otherwise opaque
models, the interpretability community of machine learning has gained traction,
intending to resolve the dilemma of choosing between moderately accurate but
interpretable models and highly accurate but opaque black-box models [Mol20;
AB18; CPC19]. This chapter describes an end-to-end data analysis workflow for
high-dimensional medical data that includes steps for data augmentation, model-
ing, interleaving model training with feature elimination, and post-hoc analysis of
the trained models. We validate our approach on three datasets.

This chapter is organized as follows. Section 8.1 describes reasons for using inter-
pretable machine learning methods and provides methodological underpinnings
of selected pioneering methods. Subsequently, we present the components of our
mining workflow in Section 8.2. In Section 8.3, we validate our workflow on three
datasets. Section 8.4 discusses our findings from the medical perspective. Section 8.5
concludes the chapter.

8.1 motivation and methodological underpinnings

Current state-of-the-art machine learning algorithms, such as gradient boosting
[Fri01] for tabular data and deep learning [GBC16] for unstructured data (images,
videos, audio recordings), are designed to support medical decision-making. These
methods produce models which typically achieve better predictive performance
than simpler models such as decision trees, rule lists, or linear regression fits.
However, they are also more complex, making it more difficult to understand
why a prediction was made. Thus, medical experts may face the dilemma of
choosing either an opaque black-box model with high predictive power or a simple,
less accurate model that can be explained to the domain expert. Especially in
high-risk domains such as healthcare, where misconceptions can have serious
consequences, the ability to explain a model’s reasoning is a highly desirable
(sometimes mandatory) property of any decision-support system [Gui+18; Mol20].

As a result, methods that explain the predictions of complex machine learning
models have attracted increasing attention in recent years [CPC19; AB18]. Existing
methods are classified according to different criteria [Mol20]. For example, a
distinction is made between intrinsically interpretable models and post-hoc explanations.
The former often entails limiting model complexity by choosing algorithms that
produce transparent models, such as decision trees or linear regression models.
Decision trees, for example, can be intuitively visualized with node-link diagrams.
Features in split conditions near the tree root generally have a higher impact
on predictions than features occurring at lower tree levels or within leaf nodes.
Quantitative measures calculate the overall importance of a feature by the decrease
in impurity or variance in nodes where the feature occurs compared to parent
nodes [Kaz+17]. Furthermore, the data partitions created by a decision tree can be
described by understandable conditions such as “body mass index > 30”, and the
decision paths from the root to leaf nodes provide insights into feature interactions.
Moreover, they can be used for contrasting predictions for individual instances, e.g.,
by considering alternative feature values and their effects on model prediction (“If
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the patient had a body mass index of 25 instead of 30, what difference in terms of prediction
would that have.”). Disadvantages are that decision trees cannot capture linear, non-
axis-parallel relationships between the features and the target variable, and they
can be unstable for small value changes in training data [HTF09]. Therefore, they
may be unsuitable for complex learning tasks.

If a more sophisticated model is trained, post-hoc methods can be applied to
examine the model after training. These methods’ outputs can be feature summary
statistics, model internals, individual observations, and feature summary visualizations
[Mol20]. In general, feature summary statistics are individual scores that express
the overall importance of a feature to the model prediction or the strength of the
feature’s interaction with the other features. Examples of model internals are the
coefficients of a linear model or weight vectors of a neural network. Individual
observations can describe representatives (or prototypes) of observation subgroups
for which the model provides consistent predictions for all subgroup members.
Individual observations can also provide counterfactual explanations, e.g., to deter-
mine the minimum change that will cause the model to predict a different class for
a particular observation of interest.

8.1.1 Selected Model Interpretation Methods

We discuss partial dependence plots [Fri01] (PDP), Local Interpretable Model-
Agnostic Explanations [RSG16] (LIME), and Shapley Additive Explanations [LL17]
(SHAP), with emphasis on the interpretation of their outputs.

partial dependence plots . Visualizations of feature summaries typically
depict trends in the relationship between a subset of features and the predicted
target variable, often in the form of curves or surface plots. The partial dependence
plot [Fri01] (PDP) is a widely used tool for visually depicting the marginal effect of
one or more feature on the model predictions. As an example, the PDP in Figure
8.1 (a) shows a roughly S-shaped relationship between the feature and the target
variable estimated by the model.
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Figure 8.1: Illustrations of a partial dependence plot (PDP) and an individual condi-
tional expectation (ICE) plot on artificial data. (a) PDP for a feature on an
artificial dataset. Points represent a sample of the feature distribution. (b) PDP
augmented with ICE curves. There are two distinct subsets of observations for
which the PD is different in the upper half of the feature distribution.
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Let ζ be the classification model (or any general function that returns a single real
value) and let F = Q∪ R be the total set of features, where Q is the chosen subset
of features and R is the complement subset. According to Friedman [Fri01], the
partial dependence PD of a model ζ on Q can be represented as

PD(Q) = ER [ζ(X)] =

∫
ζ(Q,R)pR(R)dR. (8.1)

Here, pR(R) is the marginal probability density of R, i.e., pR(R) =
∫
p(X)dQ, where

p(X) is the joint density of dataset X. When this complement marginal density
pR(R) is estimated from the training data, PD can be approximated as

PD(Q) =
1

N

N∑
i=1

ζ(Q,Ri) (8.2)

where Ri are the actual values of the complementary features for observation i,
and N is the total number of observations in the training data. The cardinality of Q
is usually chosen to be either equal to 1 or 2. The results are visualized as a line
chart (if |Q| = 1) or a contour chart (if |Q| = 2). In practice, a random sample is
often drawn from the dataset to reduce computation time.

Because averaging across all observations removes information about variability, PD
curves can obscure the potentially distinct observation subgroups with substantially
different effects between the features and the model output. As a remedy, Goldstein
et al. [Gol+15] proposed individual conditional expectation (ICE) plots to show a curve
for each observation. Figure 8.1 (b) illustrates an example of a small number of
observations (black curves) that differ from the rest because their PD is constant
for the second half of the feature distribution.

lime . Another criterion for distinguishing model interpretation methods is
whether their explanations are global or local, i.e., whether the explanations apply
to all observations, only one or a small number of selected observations. Local
Interpretable Model-Agnostic Explanations [RSG16] (LIME) is a popular local post-hoc
interpretation method. LIME’s central assumption is that a complex model is linear
on a local scale [RSG16]. Thus, to explain the predictions of a black-box model for
a particular observation of interest i, LIME generates a surrogate model that is
intrinsically interpretable and whose predictions are similar to the predictions of
the black-box model in the “proximity” of i. The main ideas of LIME are shown
in Figure 8.2, where Figure 8.2 (a) shows the decision boundary of a black-box
model. Since the non-linear decision boundary is quite complex, the model and its
predictions cannot be explained in simple terms. LIME attempts to approximate
the black-box model’s behavior by creating a linear surrogate model that performs
particularly well in the vicinity of a user-selected instance of interest. To this end,
a perturbed training set is created by repeatedly randomly changing the instance
of interest values. Figure 8.2 (b) shows the instance of interest and the perturbed
instances, where the glyph size represents the proximity to the instance of interest.
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A linear surrogate model is then trained on this dataset, with observation weights
proportional to their distance from the instance of interest. In Figure 8.2 (b), the
decision boundary of the surrogate model is shown by the dashed line. Finally,
model internals are displayed to the user as an explanation, such as the coefficients
of a logistic regression model. Figure 8.2 (c) shows a feature importance ranking,
where the horizontal bar length represents the model coefficient of a feature.
While LIME provides intuitive interpretations and applies to both tabular and
non-tabular data, there are several design decisions to make and hyperparameters
to tune, including neighborhood kernel and width, surrogate model family, feature
selection method and number of features considered for the surrogate model. The
stability of the results of LIME has been critically discussed [AJ18; VBC20].

Model coefficients

Original dataset Perturbed dataset

Instance of interest

Feature importance ranking 

Decision boundary of 
black-box model

Surrogate model

(a) (b) (c)

Figure 8.2: Illustration of LIME’s main ideas. (a) A data set with a two-class problem
represented as a two-dimensional scatterplot for simplicity. The non-linear
decision boundary of a black-box model cannot be easily explained. (b) LIME
aims to approximate a black-box model’s predictions in the vicinity of an
instance of interest by an intrinsically interpretable model, such as a logistic
regression model. The dashed line shows the linear decision boundary of this
surrogate model. (c) A feature importance ranking can be derived from the
model coefficients.

Model-specific interpretation methods are limited to specific model families, while
model-agnostic interpretation methods can be applied to any model type. Model-
specific methods are based on model internals and are widely used for neural
networks [Sam+20], e.g., layered relevance propagation [Bac+15], which explicitly
uses a neural network’s layered structure to infer explanations. In contrast, model-
agnostic methods are decoupled from the actual learning process and do not have
access to algorithmic internals. Since they only consider the model’s output, i.e., the
predictions, most model-agnostic methods are also post-hoc. For example, LIME is
a representative of a model-agnostic, post-hoc interpretability method.

shap. Closely related to LIME is the Shapley Additive Explanations [LL17] (SHAP)
framework, which derives additive feature attributions to a model’s predictions.
SHAP is based on Shapley values [LC01; ŠK14; Sha53], originally developed for game
theory. The term “additive” denotes that for a given observation, the model output
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should be equal to the sum of attributions over all features. More specifically, for
observation x, the model output ζ(x) is

ζ(x) = φ(ζ, x)0 +
M∑
j=1

φ(ζ, x)j (8.3)

where φ(ζ, x)0 = E(ζ(x)) is the expected value of the model over the training data,
φ(ζ, x)j is the attribution of feature j for x, and M is the total number of features.
Then, for each combination of feature j and observation x, the Shapely value φ
represents the impact of each feature being added, aggregated by a weighted
average over all possible feature subsets S ⊆ Sall:

φj(x) =
∑

S⊆Sall\{j}

|S|!(M− |S|− 1)!
M!

(
ζS∪j(x) − ζS(x)

)
. (8.4)

The SHAP feature importance estimates offer several practical properties:

• The sum of the feature attributions for an observation is equal to the difference
between the model’s average prediction and the actual prediction for that
observation (local accuracy).

• If a feature is more important in one model than in another, regardless of
which other features are also present, then the importance attributed to that
feature should also be higher (symmetry/monotonicity).

• If a feature value is missing, the associated feature importance should be 0

(missingness).

Several approaches have been proposed to reduce the complexity of Shapley value
estimation from exponential to polynomial time, including KernelSHAP [LL17],
which works on any model type, and TreeShap [Lun+19] for tree-based models.

feature selection. In Section 5.1, we discuss dimensionality reduction tech-
niques and conclude that these methods can only be used to a limited extent since
the original dimensions’ semantics are lost during the projection. An interpretation
of the transformed data space in the application context is thus hardly possible.
Feature selection (FS) can help with this limitation. In the context of predictive
modeling, FS methods reduce the number of features to either (a) maximize model
performance or (b) affect model performance as little as possible. Some modeling
families are sensitive to features that are irrelevant to the target variable, such as
support vector machines [BGV92] and neural networks [VR02; GBC16]. Others,
such as linear and logistic regression models, are susceptible to correlated features.
Often domain experts require intrinsically interpretable models [Ton+19], which
requires eliminating features that do not contribute substantially to the model
performance.

Traditionally, FS methods are broadly classified into three categories: embedded,
filter, and wrapper [GE03]. Embedded FS refers to internal mechanisms of modeling
algorithms that evaluate the usefulness of features. Examples of such algorithms
include tree- and rule-based models [Qui93; KJ13], regularization methods such as
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least absolute shrinkage and selection operator [FHT10] (LASSO), and Ridge [HK70]
regression. Filtering methods rank features only once based on some measure of
importance, e.g., correlation with the target variable. Popular examples include
correlation-based feature selection [Hal00] (cf. the application in Section 6.3.3) and
Relief [KR92]. Wrapper methods rank and refine candidate feature subsets through
an iterative search driven by model performance. Examples include sequential
forward search, recursive backward elimination, and genetic search [CS14].

8.2 overview of the mining workflow

In this section, we describe the four components of our mining workflow, which
are:

1. Data augmentation, including the construction of new features and correlation
analysis between features (Section 8.2.1),

2. Modeling of the learning task (Section 8.2.2),
3. Interleaving model training and feature elimination (Section 8.2.3), and
4. Post-hoc analysis of the learned models (Section 8.2.4).

8.2.1 Data Augmentation

To increase model performance, manual derivation of predictive features (feature
engineering) is required in many applications (recall the evolution features pre-
sented in Chapter 6). For example, with image data, a general approach is first
to derive descriptive features and transform the data into a tabular format to use
off-the-shelve classifiers. Therefore, we derive predictive features from image data
in the first step of our workflow. We also explore correlations between the (derived)
features as a step of exploratory data analysis.

8.2.2 Modeling of the Learning Task

In order not to be limited to a particular classification algorithm but to create a
model with the highest possible predictive power, we examine a total of eleven
classifiers:

• Least absolute shrinkage and selection operator [FHT10] (LASSO) and Ridge
[HK70] are extensions of ordinary least squares (OLS) regression that perform
feature selection and regularization to improve both predictive performance
and interpretability. For a dataset with n observations, p features and a target
y, the objective of LASSO and Ridge is to solve

argmin
β

n∑
i=1

yi −
β0 + p∑

j=1

xijβj

2
︸ ︷︷ ︸

Residual Sum of Squares

+αλ

p∑
j=1

|βj|︸ ︷︷ ︸
L1 Penalty

+(1−α)λ

p∑
j=1

β2j︸ ︷︷ ︸
L2 Penalty

(8.5)

where β are the to be determined model coefficients, and λ is a tuning
hyperparameter that controls the amount of regularization. LASSO uses the
L1 norm penalty term, i.e., α = 1, which “shrinks” the coefficients’ absolute
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values, often forcing some of them to be exactly equal to 0. Ridge uses the
L2 norm penalty term, i.e., α = 0, which shrinks the coefficient magnitudes.
In general, LASSO performs better than Ridge when there is a relatively
small number of features with substantial coefficients and the remaining
features have coefficients that are close or equal to zero. Ridge performs better
in settings where the target variable depends on many features, each with
approximately equal importance. From the perspective of interpretability,
LASSO has the advantage of producing sparser models by reducing the
values of some of the features’ coefficients to exactly zero.

• Partial least squares is another derivative of OLS regression, which first per-
forms a projection to extract latent variables that capture as much variability
among the features as possible while modeling the target variable well. A
linear regression is then fit on a preferably small number of latent features
from this projection. We use the generalized partial least squares (GPLS)
implementation from Ding and Gentleman [DG05].

• A support vector machine (SVM) [BGV92] learns linear or non-linear decision
boundaries in the feature space to separate the classes. The decision boundary
is represented by the training observations that are most difficult to classify,
i.e., the support vectors. The goal is to find the maximum margin hyperplane,
i.e., the separating hyperplane with the maximum margin to the support
vectors. In case a linear decision boundary does not exist, non-linear SVM
approaches can be used, which apply the so-called kernel trick to transform
the original feature space into a new, higher-dimensional space in which a
linear hyperplane can be found to separate the classes.

• An artificial neural network (NNET) consists of a structure of nodes connected
by directed edges. Each node performs a basic unit of computation. Nodes are
supplied by data values that are passed over via incoming edges from other
nodes. Each edge holds a weight that controls the impact on the node to which
it forwards values. The main goal of a NNET is to adjust the weights of the
edges such that the relationship between features and target variable in the
underlying data is represented. Neural networks extract new useful features
from the original features that are relevant for classification. By combining
interconnected nodes to complex predictive features, NNETs can extract
more classification-relevant feature sets compared to expert-driven feature
engineering or dimension reduction techniques. NNETs have undergone
widespread adoption in the last decade and led to various success stories
in computer vision and natural language processing [GBC16]. We used a
feed-forward NNET with one intermediary layer (hidden unit) [VR02].

• Weighted k-nearest neighbor [HS04] (WKNN) is a variant of KNN classifica-
tion. To classify an observation with an unknown value for the target variable,
the k nearest training observations are identified, and their modus of the target
variable is used as the prediction. The proximity between observations is quan-
tified by a distance measure such as Euclidean distance. Whereas in ordinary
KNN, all neighbors have equal influence on the prediction, weighted KNN
considers the actual distance magnitudes. As a result, WKNN assigns weights
to training observations that are inversely proportional to their distance from
the observation being classified.
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• A Naïve Bayes classifier (NB) uses Bayes’ theorem to calculate class mem-
bership probabilities. The naive property refers to the assumption of class-
conditional independence among the features, which is employed to reduce
computational complexity and obtain more reliable class-conditional proba-
bility estimates.

• Classification and regression trees [Bre+84] (CART), C5.0 [Qui93], random
forests [Bre01] (RF) and gradient boosted trees (GBT) [Fri01] are tree-based
models. Algorithms from this model family partition the feature space into
a set of non-overlapping hyperrectangles based on combinations of feature-
value conditions, such as “IF age > 52 & body-mass index < 25”. A new
observation is classified based on the majority class of training data associated
with the hyperrectangle to which it belongs. Random forests and gradient
boosted trees are ensembles of different decision trees, with each tree casting
a vote for the final prediction. In a random forest, the base trees are created
independently. In a gradient boosted model, the base trees are constructed
and added to the composite model so that any new tree reduces the error of
the current set of trees.

classifier evaluation and hyperparameter tuning . We use 10-fold
stratified cross-validation (CV) for classifier evaluation. In k-fold CV, the obser-
vations are split into k disjunct partitions. Each partition serves once as the test
set for a model trained on the remainder of the partitions. The k performance
estimates are aggregated to obtain an overall performance score. We performed
a grid search for hyperparameter selection (cf. Table 8.1). Because the three ap-
plications have dichotomous target variables with different skew, accuracy might
be inappropriate to estimate generalization performance. Instead, we used the
area under the receiver operating characteristic curve (AUC) as the performance
measure. A receiver operating characteristic curve (ROC) shows the relationship
between sensitivity (true positive rate (TPR)) and false positive rate (FPR) for a
binary classifier. The area under the ROC curve (AUC) takes values from 0 (0%
TPR, 100% FPR) to 1 (100% TPR, 0 %FPR). A higher AUC suggests that the classifier
is better at separating the classes.

8.2.3 Iterative Feature Elimination

We employ a feature selection wrapper that successively eliminates a subset of
features that do not positively contribute to a model’s performance. A feature’s
contribution is computed using model reliance [FRD19], which is a generalization of
random forest permutation feature importance [Bre01]. Model reliance estimates
the merit of a feature f toward a model ζ by comparing the classification error of ζ
on the original training set Xorig with the classification error of ζ on a modified
version of the training set Xperm where the values of f are randomly permuted.
Shuffling a feature’s values removes any relationship between the feature and the
target variable. Hence, it is assumed that permuting a more important feature
leads to a higher decrease in accuracy as opposed to a feature with a lower model
contribution.
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Table 8.1: Overview of hyperparameter tuning grid. All classifiers were implemented with
the statistical programming language R [Tea20] using the package mlr [Bis+16],
which provides a uniform interface to the listed machine learning algorithms
from other R packages. A grid search was used to tune the hyperparameters
using area under the ROC curve (AUC) as the evaluation measure. The table
provides an overview of each classifier, including the R package used, the tuned
hyperparameters, and their value ranges. All other hyperparameters were set to
default values. * = {linear, polynomial, radial, sigmoid}

Algorithm (R package) Parameter Min. Max. No. of values

LASSO, Ridge (glmnet [FHT10]) lambda 10
-2

10
10

100

GPLS (caret [Kuh08]) ncomp 1 5 5

SVM (e1071 [Mey+19]) cost 0.01 3 6

gamma 0 3 4

kernel – – 4*

NNET (nnet [VR02]) size 1 13 7

decay 10
-4

1 6

WKNN (kknn [HS04]) k 1 77 20

NB (e1071 [Mey+19]) laplace 1 5 5

CART (rpart [TA18]) cp 0.001 0.1 5

C5.0 (C50 [KQ18]) CF 0 0.35 7

winnow FALSE TRUE 2

rules FALSE TRUE 2

RF (ranger [WZ17]) mtry 4 100 7

min.node.size 1 25 6

GBT (xgboost [Che+19]) eta 0.01 0.4 4

max_depth 1 3 3

colsample_bytree 0.2 1 5

min_child_weight 0.5 2 3

subsample 0.2 1 3

nrounds 50 250 3

The model reliance MR of a model ζ on a feature f ∈ F is calculated as

MR(f, ζ) =
CE(y, ζ(Xperm))

CE(y, ζ(Xorig))
(8.6)

where CE is the classification error function that takes the true class labels y and
a vector of predicted class labels and returns the fraction of incorrectly classified
observations. A high MR score represents a high dependence of the model on
f, since shuffling the values of f increases the classification error. Conversely, a
MR score smaller than 1 suggests that f is potentially adversarial to the model
performance, and its removal could increase model performance. Thus, our feature
elimination wrapper starts by training a model on the full set of features, followed
by an iterative step where the subset of adversarial features according to model
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reliance is removed, and a new model on the remaining features is trained. In the
first iteration i = 1, an initial model ζ1 is calculated on the full set of features F1 = F.
For each feature f ∈ Fi, the model reliance MR(f, ζi) is calculated. Features with
f ∈ Fi :MR(f, ζi) > 1 are kept for iteration i + 1 while the remaining features are
removed. This procedure is repeated until all MR are smaller or equal to 1, i.e.,
∀f ∈ Fi :MR(f, ζi) 6 1, or Fi+1 = Fi. As random feature permutation introduces
some statistical variability, we compute mean MR over 10 runs to obtain a more
stable estimate.

8.2.4 Post-Hoc Interpretation

shap. To facilitate model interpretation, we use the model-agnostic post-hoc
framework SHAP [LL17; Lun+19] to assess feature importance for the CHA data.
Briefly, the SHAP value φf(ζ, x) expresses the estimated importance of a feature f
to the prediction of model ζ for an instance x as the change in the expected value
of the prediction if for f the feature vector of x is observed instead of being random.
The SHAP framework composes the model prediction as the sum of SHAP values
of each feature, i.e., ζ(x) = φ0(ζ, x) +

∑M
i=1φi(ζ, x), where φ0(ζ, x) is the expected

value of the model (bias), and M is the number of features.

SHAP values are calculated for the best model ζopt according to AUC. A ranking
of each feature’s attribution towards ζopt is determined by calculating the average
SHAP value magnitude over all instances, i.e., A(j) =

∑N
i=1 |φj(ζopt, x)|, where

A(j) is the attribution of the j-th feature. The N×M SHAP matrix is clustered with
agglomerative hierarchical clustering to identify subgroups of patients with similar
SHAP values.

pdp feature importance . We derive a global feature importance measure
from the PD of a feature. We assume that features with high PD variability are
important. Consider the two PD curves in Figure 8.3: the marginal prediction
changes considerably with different feature values for the blue PD curve, whereas
the green PD curve is a flat line. Therefore, the feature with the blue PD curve
should have a higher importance score than the feature with the green PD curve.
We define partial dependence importance I of a feature f as the average of the
magnitude of differences between consecutive values along the distribution of f,
i.e.,

If =
1

k− 1

k−1∑
i

|PD(Q = si) − PD(Q = si+1)| (8.7)

where k is the number of (sampled) values from the distribution of f.

8.3 validation on three datasets

We validate our workflow on three datasets:

• CHA-Tinnitus: CHA data (recall Section 2.2.2) with tinnitus-related distress at
baseline (T0) as target variable,
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Figure 8.3: Illustration of partial dependence importance. Partial dependence importance
If for two exemplary PD curves.

• CHA-Depression: CHA data with depression after treatment (T1) as target
variable, and

• ANEUR: ANEUR data (Section 2.2.4) with rupture status as the target variable.

Figure 8.4 illustrates our workflow adapted to the datasets.

Hereafter, we report our results on all three learning tasks, i.e., regarding CHA-
Tinnitus (Section 8.3.1), CHA-Depression (Section 8.3.2) and ANEUR (Section 8.3.3).

8.3.1 Results for CHA-Tinnitus

the learning problem . We use baseline (T0) data to predict the tinnitus
patients’ distress at the end of the therapy (T1). We derive our target variable
TQ_distress from the total score of “the Tinnitus Questionnaire” [GH98]. The mean
tinnitus-related distress score decreased between T0 to T1 from 38.3 ± 17.1 to 31.7 ±
17.2, indicating a positively perceived effect of the multimodal treatment. We apply
the cutoff at 46 suggested by Goebel and Hiller [GH98] to distinguish between
patients with compensated or decompensated tinnitus.

correlational analysis . We calculate the Spearman correlation coefficient
between each pair of features. Using agglomerative hierarchical clustering with
complete linkage, we arrange features in a correlation heat map visually identify
feature subgroups with similar intra-group and inter-group correlations. We calcu-
late the median correlation between the target variable and the features from the
same questionnaire at T0 and T1 to obtain potential candidate features important
in the later modeling step. Also, we identify features with the highest absolute
correlation with the target variable at T0 and T1, respectively. Finally, we examine
features whose correlation values with the TQ distress score differ most between
T0 and T1. Figure 8.5 (a) shows all pairwise correlations among the features in T0.
We identified two major subgroups with moderate to high intra-group correlations
and low or negative inter-group correlations. The larger group (cf. upper black
square in Figure 8.5 (a)) comprises 114 features (ca. 55.6%) representing negatively
worded items and scores where higher values represent a higher disease burden,
e.g., the ADSL_depression and BI_overallcomplaints. Consequently, the smaller
group (cf. lower black square in Figure 8.5 (a)) contains 47 features (ca. 22.9%)
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Figure 8.4: The (dataset-specific) mining workflow. For the CHA dataset, we select pa-
tients with complete data for each of the two classification tasks. For ANEUR,
we segment the aneurysms from the raw image data, perform automated cen-
terline and neck curve extraction, and generate the morphological features. We
perform correlation analysis to identify relevant correlations between features,
correlations between features and target variable, and significant differences in
correlation between features and target variable between T0 and T1. We embed
model training in an iterative feature elimination wrapper that retains features
identified as important to the model. We select the best overall model based
on AUC and used post-hoc interpretation methods to identify features with
the highest attribution to the model prediction on a global, subpopulation and
observation level.
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with positive wording, e.g., the SF8 mental health score (SF8_mentalhealth) and
the BSF elevated mood score (BSF_elevatedmood). Features of one of the two
subgroups exhibit a moderate to high negative correlation with the other subgroup
features. Figure 8.5 (b) compares the correlation of the features with TQ_distress
before (x-axis) and after treatment (y-axis). Overall, only low to moderate bivariate
correlations are observed, as all values are between -0.6 and +0.6. The average
absolute correlation change between T0 and T1 is 0.031. The change in absolute
correlation is smaller than 0.067 for ca. 95% of the features (compare the distance
of the points to the diagonal line in Figure 8.5 (b)). For 137 out of 205 features
(66.8%), absolute correlation decreased from T0 to T1. Median target-correlations of
the questionnaires ADSL, BSF, and BI (SF8) are greater (smaller) than +0.3 (-0.3) at
both moments, respectively, and thus greater than for the remaining questionnaires.
Figures 8.5 (c) and (d) reveal that features from ADSL, BSF, BI, SF8, TINSKAL, and
PSQ are among the top 20 features ranked by absolute correlation with TQ_distress
in T0 and T1. The general depression score ADSL_depression shows the largest
correlation magnitude before (ρ = 0.630) and after treatment (ρ = 0.564). Figure
8.5 (e) shows the ten features with the largest differences in correlation magnitudes
between T0 and T1. Correlation before treatment is larger for each of these features.

predictive performance of classification models . The performances
of all 11 classifiers across each feature elimination iterations are shown in Figure 8.6.
The gradient boosted trees model (GBT) yields highest AUC (iteration i = 7, AUC
= 0.890 ± 0.04; mean ± SD), using only 26 features (ca. 13%). The RIDGE classifier
achieves second-best performance (i = 2, AUC: 0.876 ± 0.05), relying on 127 features,
followed by the random forest model (i = 3, AUC: 0.872 ± 0.05) using 77 features.
Classification using the best model (GBT, i = 7) based on a probability threshold
of 0.5 result in an accuracy of 0.86, a true positive rate (sensitivity) of 0.72, a true
negative rate (specificity) of 0.88, a precision of 0.48, and a negative predictive value
of 0.95.

When trained using a smaller feature space, each classifier generates at least one
model with similar or even improved performance compared to the respective
model learned on the whole set of features. In fact, except for WKNN, all classifi-
cation methods benefit from feature elimination as they produce their best model
on a feature subset (cf. Figure 8.6). For GBT, the gain in AUC from 185 features
to 26 features (i = 11) is 0.01. This model achieves both maximum AUC and a
good tradeoff between high predictive performance and low model complexity,
and therefore, we decide to investigate this model further.

feature importance . For the best model, the attributions of the 26 selected
features are shown in Figure 8.7 (a). Among the 26 features are 6 compound scores,
13 single items, 4 demographic features (number of visited doctors, university-level
education, lower secondary education, tinnitus duration), and 3 features measuring
the average time spent completing an item. The TINSKAL tinnitus impairment score
(TINSKAL_impairment) represents the feature with the highest model attribution
as it exhibits the highest average absolute SHAP value (change in log odds) of 0.448.
The ADSL depression score (ADSL_depression) and a single question from ADSL
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Figure 8.5: Spearman correlation among features and correlation of features with TQ_-
distress in T0 and T1. (a) The heatmap depicts the correlation coefficients for
all pairs of features in T0. Features are arranged by the result of agglomerative
hierarchical clustering with complete linkage. The two black squares depict
two major subgroups of correlated features. (b) The relationship between each
feature with TQ_distress in T0 (x-axis) and T1 (y-axis). The diamond symbol
represents the median correlation of the features from the same questionnaire.
(c) Top 20 features that exhibit the highest absolute correlation with TQ_distress
in T0. (d) Top 20 features which exhibit the highest absolute correlation with
TQ_distress in T1. (e) Top 10 features with the highest change in absolute
correlation with TQ_distress from T0 to T1.
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Figure 8.6: Classification results for CHA-Tinnitus. Average cross-validation AUC and
relative number of retained features for each classifier with optimal hyperpa-
rameter configuration and each feature selection iteration. Yellow ribbons depict
standard deviation. Points highlight each classifier’s run with maximum AUC.
Classifiers are ordered by their maximum AUC from left to right.

(ADSL_adsl11: “During the past week my sleep was restless.”) are ranked second and
third most important, respectively. Remarkably, from each of the 9 questionnaires,
at least 1 feature is selected. Figure 8.7 (b) shows the patient-individual SHAP
values for each feature, where point color depicts feature value magnitude. The
high attribution of TINSKAL_impairment is highlighted by the high range of the
SHAP value distribution. For this feature, high values generally correspond to an
increased predicted probability of tinnitus decompensation. However, this trend is
non-linear since small values (light green to yellow) are associated with a SHAP
value just slightly smaller than or equal to 0. Moreover, there is a large spread in
SHAP value between ca. 0.7 and 1.2 for patients with high TINSKAL_impairment
values, unlike the somewhat more dense bulk of points representing patients with
SHAP values between ca. -0.7 and -0.4. This could indicate that patients who
report high tinnitus impairment are more challenging to classify. Further, it may
suggest that visual analog scales are not robust enough to quantify tinnitus-related
distress. This inference is supported by the SHAP feature dependence plot in
8.8 (1), which juxtaposes the feature’s actual values with the corresponding SHAP
values for all patients and reveals a J-shaped relationship between them. More
specifically, the predicted tinnitus-related distress decreases from 0 to 2.5, remains
at a plateau from 2.5 to 4 and increases from 4 to its maximum value of 10. Besides
TINSKAL_impairment, the features ADSL_depression, TINSKAL_loudness, BI_-
overallcomplaints, BSF_timestamp, and SWOP_pessimism also show a non-linear
relationship with respect to their SHAP values.

Even though several features exhibit only a low to moderate global importance,
some have a high attribution towards model prediction for specific subgroups. For
example, considering SOZK_lowersec, patients with lower secondary education
have an average SHAP value of +0.5, whereas patients with different education
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Figure 8.7: SHAP analysis results for the best model (GBT, feature elimination iteration
i = 7). (a) Global feature importance based on the mean absolute SHAP mag-
nitude over all observations. Values depict the absolute change in log odds
where higher values indicate higher feature attribution towards the model. (b)
Patient-individual SHAP values. A point represents the SHAP value of the
feature (y-axis) for an individual patient. The further afar a point from the
vertical 0-baseline, the larger the attribution of the corresponding feature value
to the model prediction. Vertically offset points depict high-density regions
(similar to a violin plot), i.e., there are more patients with similar SHAP values.
Actual feature values are mapped to point color. (c) Stacked patient-individual
SHAP values for the six features with the highest mean absolute SHAP values.
Patients are ordered according to hierarchical clustering with Ward linkage.
Black horizontal lines depict the average sum of SHAP values of the cluster
members for k = 5 clusters. The inset plot shows that the Bayesian information
criterion (BIC) is minimal for this number of clusters.
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Figure 8.8: SHAP feature dependence. The relationship between the actual values of a
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[Cle79] curves indicating the overall trend. Features are ordered by mean
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levels have an average SHAP value of -0.1 and hence are closer to the population
average (cf. Figure 8.7 (b), Figure 8.8 (13)). Most features show a monotonic relation-
ship between actual values and SHAP values. For example, increasing values of the
SF8 physical component score (SF8_physicalcomp) exhibit decreasing likelihood
of predicted decompensated tinnitus with increasing physical health (cf. Figure
8.7 (b), Figure 8.8 (14)).

To investigate whether there are subgroups of patients with similar model expla-
nations, we cluster the patients based on their SHAP values. Figure 8.7 (c) shows
stacked patient-individual SHAP values for the six features with the highest av-
erage absolute SHAP values and the remaining features combined. According to
the Bayesian information criterion (cf. inset plot in Figure 8.7 (c)), the optimal
number of patients clusters with similar SHAP value patterns is 5. Clusters 1 and 5

comprise subgroups where the sum of SHAP values over all features is positive;
see the horizontal lines in Figure 8.7 (c). Hence, these patients are more likely to be
predicted with decompensated tinnitus.

In comparison with the other subgroups, patients of clusters 1 and 5 reported
higher degrees of tinnitus impairment, depression, anxiety, tinnitus loudness,
sleeplessness, pessimism, psychosomatic complaints, and perceived levels of stress
and social isolation. In general, patients of cluster 1 have slightly higher values
across all features than patients of cluster 2. Also, cluster 1 contains a higher
fraction of patients with lower secondary education (“Hauptschule”), report more
frequently occurring headaches, higher levels of fears for the future, and a longer
tinnitus duration. Cluster 3 is the largest subgroup comprising 39.6% of all patients.
Together with cluster 2, these subgroups have the lowest predicted probability
of tinnitus decomposition. Patients of cluster 2 and 3 report the highest physical
health and levels of determination. Cluster 4 is somewhat close to the prediction
average, which means that positive and negative SHAP values nearly even out.
Concerning the average patient-sum of SHAP values, cluster 3 lies in between
cluster 2 and cluster 4.

8.3.2 Results for CHA-Depression

the learning problem . We use baseline (T0) data to classify the tinnitus
patients’ depression severity. We derive our target variable from the total score
of the General Depression Scale [Rad77; HB03] (ADSL). The mean depression score
at T0 is 18.2 ± 11.7. Our target variable “depression status” is the dichotomized
ADSL score. Following the recommendation of Hautzinger and Bailer [HB03], we
distinguish between patients with subclinical (0-15) or clinical (16-60) depression.

predictive performance of classification models . Figure 8.9 depicts
the performance of all classification methods across iterations. The LASSO classifier
achieves maximum AUC over all classification algorithms (iteration i = 1, AUC =
0.867 ± 0.037; mean ± SD), followed by Ridge (i = 1, AUC = 0.864 ± 0.040) and GBT
(i = 1, AUC = 0.862 ± 0.038). When considering only the best model per classifier,
the models are similar in performance, ranging in AUC from 0.809 (C5.0) to 0.867

(LASSO).
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Figure 8.9: Classification results for CHA-Depression. Average cross-validation AUC and
relative number of retained features for each classifier with optimal hyperpa-
rameter configuration and each feature selection iteration. Yellow ribbons depict
standard deviation. Points highlight each classifier’s run with maximum AUC.
Classifiers are ordered by their maximum AUC from left to right.

The best model (LASSO, i = 1) achieves an accuracy of 79%, a true positive rate
(sensitivity) of 61%, a true negative rate (specificity) of 88%, a precision of 72%,
and a negative predictive value of 82% based on a probability threshold of 0.5.
This final model includes 40 features with non-zero coefficients. Figure 8.10 shows
the median model coefficient for these features across ten cross-validation folds.
From the ADSL questionnaire alone, 16 single items are included in the final
model, including indicators of depression (ADSL_adsl09, ADSL_adsl18, ADSL_-
adsl12) perceived antipathy received from other people (ADSL_adsl19), sleepless-
ness (ADSL_adsl11), dejectedness (ADSL_adsl03), lack of appetite (ADSL_adsl02),
confusion (ADSL_adsl05), anxiety (ADSL_adsl10, ADSL_adsl08), absence of self-
respect (ADSL_adsl04, ADSL_adsl09), lack of vitality (ADSL_adsl09, ADSL_adsl09),
taciturnity (ADSL_adsl13) and irritability (ADSL_adsl01). Thus, this questionnaire
contributes the highest number of features to the model. From the tinnitus-distress-
oriented TQ, five features are selected. Further, the model uses another five features
from the socio-demographics questionnaire (SOZK), including German nationality
(SOZK_nationality), which has the highest absolute model coefficient, university-
level graduation (SOZK_graduate), tinnitus duration (SOZK_tinnitusdur), employ-
ment status (SOZK_job), marital status (SOZK_unmarried) and partnership status
(SOZK_partnership).

Table 8.2 provides a description for each feature from Figure 8.10.

effect of feature elimination on classification performance . All
classifiers but SVM show high stability in performance on smaller feature subsets.
From Figure 8.9, we see that for LASSO the difference in AUC when trained on
185 features (i = 1) vs. when trained on 6 features (i = 7) is only -0.017. Several
classifiers benefit from feature selection in terms of predictive performance. For



8.3 validation on three datasets 117

#40 TQ_distress (4)

#39 PSQ_stress18 (4)

#38 ADSL_adsl07 (5)

#37 TQ_tin51 (5)

#36 ADSL_adsl09 (6)

#35 PSQ_stress05 (6)

#34 TLQ_02_whistling (7)

#33 TQ_tin41 (7)

#32 ADSL_adsl01 (7)

#31 SOZK_partnership (7)

#30 SOZK_unmarried (7)

#29 ADSL_adsl13 (7)

#28 SF8_overallhealth (8)

#27 SOZK_job (8)

#26 TQ_tin07 (8)

#25 ADSL_adsl12 (8)

#24 SF8_sf05 (9)

#23 TQ_tin49 (9)

#22 PSQ_stress28 (9)

#21 ADSL_adsl18 (10)

#20 ADSL_adsl08 (10)

#19 SOZK_tinnitusdur (10)

#18 SF8_sf02 (10)

#17 PSQ_stress15 (10)

#16 ADSL_adsl16 (10)

#15 TQ_tin40 (10)

#14 ADSL_adsl10 (10)

#13 SF8_sf07 (10)

#12 ADSL_adsl04 (10)

#11 ADSL_adsl05 (10)

#10 ADSL_adsl02 (10)

#9 TQ_tin47 (10)

#8 TQ_tin50 (10)

#7 ADSL_adsl03 (10)

#6 ADSL_adsl11 (10)

#5 SOZK_graduate (10)

#4 PSQ_stress21 (10)

#3 ADSL_adsl19 (10)

#2 ADSL_adsl06 (10)

#1 SOZK_nationality (10)

-0.4 -0.2 0.0 0.2

Median coefficient

Figure 8.10: Coefficients of LASSO model. Cross-validation (CV) median ± median abso-
lute deviation (line ranges) of coefficients for the best LASSO model (i = 1). The
frequency of non-zero coefficients in 10-fold CV is given in parentheses right
to the feature name. From 185 features in total, 40 features exhibit a non-zero
model coefficient for at least one CV fold.
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GPLS, NNET, CART, C5.0 and RF, max. AUC is achieved on a feature subset. Both
decision tree variants CART and C5.0 gain the most in performance from feature
removal since their respective maximum AUC is obtained on the smallest feature
subset, with a cardinality of 22 and 10, respectively.

8.3.3 Results for ANEUR

the learning problem . We predict the rupture status for a total of 100

intracranial aneurysms with morphological parameters. We learn different models
for the subset of sidewall aneurysms (SW; 9 of 24 ruptured), for the subset of
bifurcation aneurysms (BF; 29 of 62 ruptured), and on a combined group (43 of 100

ruptured) with 14 additional samples that could not be determined to be either
SW or BF. For ANEUR, it is necessary to extract morphological features from raw
image data first.

segmentation and neck curve extraction. Aneurysms and vessels are
segmented using a threshold-based approach [Gla+15] from digital subtraction data
reconstructed from 3D rotational angiography images. Subsequently, the centerline
of the vessel is extracted using the Vascular Modeling Toolkit (VMTK, vmtk.org)
[Ant+08]. Subsequently, the plane separating the aneurysm from its parent vessel
is determined using the automatic ostium detection of Saalfeld et al. [Saa+18].

morphological feature extraction. For each 3D surface mesh, we obtain
the neck curve, the dome point D, and the two base points B1 and B2. As described
in [Saa+18], B1 and B2 are approximated as points on the centerline with the
largest distance where the rays from B1 and B2 to D do not intersect the surface
mesh. Figure 8.11 illustrates the extracted parameters, where Hmax, Wmax, Hortho,
Wortho, and Dmax (Figure 8.11 (a)) describe the aneurysm shape [Dha+08; LBM12].
The angle parameters α, β, and γ (Figure 8.11 (b)) are extracted based on B1, B2,
and D, respectively. The absolute difference between α and β is denoted as ∆αβ.
By separating the aneurysm from its parent vessel by the neck curve, we derive an
estimate for the surface area AA and volume VA of the aneurysm (Figure 8.11 (c)).
We provide two variants for the surface area of the ostium, AO1, and AO2 (Figure
8.11 (d)). AO1 is the area of the ostium, i.e., the area of the triangulated ostium
surface resulting from the connection of the neck curve points with their centroid
CNC, and AO2 denotes the area of the neck curve when projected into a plane
[Saa+18]. Therefore, AO2 is extracted as a parameter comparable to other studies
that often use a cutting plane to determine the ostium. Our method achieves a
local optimum for highly lobulated aneurysms and considers only one of the many
dome points. Although the estimated positions of B1 and B2 may vary slightly, neck
curve detection is still performed, and morphological parameters are calculated.
Table 8.3 provides an overview of all extracted morphological features.

Figure 8.12 shows the classification results on each data subset. GBT achieves
maximum AUC on ALL (cross-validation average 67.2% ± 1.8% standard deviation),
followed by C5.0 (AUC 64.6% ± 1.9%) and GPLS (AUC 63.3% ± 1.2%). On the
subset SW, SVM comes up best with 75.2% ± 5.7% AUC, slightly superior to GPLS
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Table 8.2: Most important features of LASSO model. Predictors with the highest absolute
coefficient in the final LASSO model (iteration i = 1). From 185 predictors in total,
these 40 predictors exhibit a non-zero model coefficient in at least one out of ten
cross-validation folds.

Feature Description Coef.

SOZK_nationality Nationality: German -0.370

ADSL_adsl06 “During the past week I felt depressed.” 0.309

ADSL_adsl19 “During the past week I felt that people disliked me.” 0.288

PSQ_stress21 “You enjoy yourself.” -0.284

SOZK_graduate Education: university-level degree -0.210

ADSL_adsl11 “During the past week my sleep was restless.” 0.196

ADSL_adsl03 “(. . . ) I felt that I could not shake off the blues even with help from my family
or friends.”

0.175

TQ_tin50 “Because of the noises I am unable to enjoy the radio or television.” 0.151

TQ_tin47 “I am a victim of my noises.” 0.137

ADSL_adsl02 “During the past week I did not feel like eating; my appetite was poor.” 0.132

ADSL_adsl05 “During the past week I had trouble keeping my mind on what I was doing.” 0.132

SF8_sf07 “(. . . ) how much have you been bothered by emotional problems (. . . ) ?” 0.125

ADSL_adsl10 “During the past week I felt fearful.” 0.107

ADSL_adsl04 “During the past week I felt I was just as good as other people.” -0.107

TQ_tin40 “I am able to forget about the noises when I am doing something interesting.” -0.104

ADSL_adsl16 “During the past week I enjoyed life.” -0.085

PSQ_stress15 “Your problems seem to be piling up.” 0.081

TQ_tin07 “Most of the time the noises are fairly quiet.” -0.069

ADSL_adsl08 “During the past week I felt hopeful about the future.” -0.064

SF8_sf02 “During the past 4 weeks, how much did physical health problems limit your
physical activities (such as walking or climbing stairs)?”

0.059

SOZK_tinnitusdur “How long have you been suffering from tinnitus (in years)?” 0.058

PSQ_stress28 “You feel loaded down with responsibility.” 0.055

ADSL_adsl18 “During the past week I felt sad.” 0.053

SOZK_job Job status: currently employed -0.050

ADSL_adsl13 “During the past week I talked less than usual.” 0.049

TQ_tin49 “The noises are one of those problems in life you have to live with.” -0.048

ADSL_adsl12 “During the past week I was happy.” -0.046

SF8_sf05 “During the past 4 weeks, how much energy did you have?” 0.040

SOZK_unmarried Marital status: unmarried 0.033

SOZK_partnership Partnership status: currently in partnership -0.032

TQ_tin41 “Because of the noises life seems to be getting on top of me.” 0.031

PSQ_stress05 “You feel lonely or isolated.” 0.025

ADSL_adsl01 “During the past week I was bothered by things that usually don’t bother
me.”

0.017

TQ_tin51 “The noises sometimes produce a bad headache.” 0.015

TLQ_02_whistling Tinnitus noise: whistling 0.010

ADSL_adsl07 “During the past week I felt that everything I did was an effort.” 0.010

ADSL_adsl09 “During the past week I thought my life had been a failure.” 0.005

SF8_overallhealth Overall health score -0.003

PSQ_stress18 “You have many worries.” 0.001

TQ_distress Total tinnitus distress score 0.001
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Figure 8.11: Illustration of the extracted morphological features. (a) Features that describe
aneurysm width, height, and diameter. (b) The angles α, β and γ are extracted
from the base points B1, B2 and the dome point D. (c) After separating the
aneurysm from its parent vessel via the neck curve, the area AA and volume
VA are computed. (d) The area of the ostium AO1 and the area of the projected
ostium AO2 are extracted after estimating the center of the neck curve CNC.

(AUC 73.6% ± 4.4%) and NNET (AUC 71.6% ± 5.5%). For BF, WKNN yields the
best (AUC 64.0% ± 1.1%) model, while GPLS (AUC 62.9% ± 2.6%) and RF (AUC
62.7% ± 2.3%) have similar yet slightly inferior generalization performances. Our
results indicate that all classifiers yield better performance on the subset of sidewall
aneurysms. Overall, none of the classification algorithms outperforms all others
across all three subsets.
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Figure 8.12: Classification results for ANEUR. For each combination of data subset and
classification algorithm, the performance of the run with the preprocessing
transformation that achieves the highest AUC is shown. SW = sidewall; BF =
bifurcation.

Concerning PD importance, Figure 8.13 illustrates the high attribution of the angle
parameter γ towards rupture status classification, as this feature is ranked first and
third for the best models of ALL and BF. On the SVM model trained on the SW
subset, ellipticity index (EI) is most important.

Figure 8.14 shows PDP and ICE curves for the most important features according
to If for the best models on each data subset. All ICE curves of the GBT model
and the SVM model (Figure 8.14 (a) and (b)) exhibit nearly identical trends but
different intercepts. In contrast, the ICE curves of WKNN (Figure 8.14 (c)) appear
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Table 8.3: Overview of morphological features extracted for ANEUR.

# Feature Description

1 AA area of the aneurysm (without the ostium) (mm2)

2 VA volume of the aneurysm (mm3)

3 AO1 area of the ostium (variant 1) (mm2)

4 AO2 area of the ostium (variant 2) (mm2)

5 Dmax max. diameter of the aneurysm (mm)

6 Hmax max. height of the aneurysm (mm)

7 Wmax max. width of the aneurysm perpendicular to Hmax (mm)

8 Hortho height of the aneurysm approximated as length of the ray perpendicular to
the ostium plane starting from CNC (mm)

9 Wortho max. width parallel to the projected ostium plane (mm)

10 Nmax max. NC diameter, i.e., the max. possible distance between two NC points
(mm)

11 Navg average NC diameter, i.e., the mean distance between CNC and the NC
points (mm)

12 AR1 aspect ratio (variant 1): Hortho/Nmax
13 AR2 aspect ratio (variant 2): Hortho/Navg
14 VCH volume of the convex hull of the aneurysm vertices (mm3)

15 ACH area of the convex hull of the aneurysm vertices (mm2)

16 EI ellipticity index EI = 1− (18π)
1
3 V

2
3
CH/ACH

17 NSI non-sphericity index, i.e., NSI = 1− (18π)
1
3 V

2
3 /A

18 UI undulation index. UI = 1− V
VCH

19 α min. of ]DB1B2 and ]DB2B1 (deg)

20 β max. of ]DB1B2 and ]DB2B1 (deg)

21 γ angle at D, i.e., ]B1DB2 (deg)

22 ∆αβ abs. difference between α and β (deg)

more jittery. The plots summarize some of the idiosyncrasies of the different model
families. The GBT model (Figure 8.14 (a)) produces jagged curves with distinct
vertical cuts, representing the splits in the base decision trees of this tree ensemble.
For example, the plot for γ shows 4 of such splits at {16.54, 49.26, 54.42, 64.35}. The
SVM classifier (Figure 8.14 (b)) is a linear model; hence the ICE and PD curves
are lines with a fixed slope. The marginal model posterior of aneurysm rupture
increases with higher values of ellipticity index, max. width of the aneurysm body,
aspect ratio Hortho/Navg and max. aneurysm diameter, whereas for the area of the
ostium (variant 2), lower values are more indicative of a high rupture likelihood. For
WKNN, the PDP is better able to clearly show the marginal posteriors of individual
features than the ICE curves. This could be due to the property of WKNN being a
“lazy” learner, which does not produce an actual model but makes its predictions
based on observation-individual similarity.
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Figure 8.13: Relative PD importance (ANEUR). PD importance for the best model of each
data subset. Values are relative to the maximum PD importance. SW = sidewall;
BF = bifurcation.

8.4 interpretation of the findings from the medical perspective

In this section, we discuss our findings with respect to all three classification tasks,
i.e., regarding CHA-Depression (Section 8.4.1), CHA-Tinnitus (Section 8.4.2) and
ANEUR (Section 8.4.3).

8.4.1 CHA-Depression

Machine learning is used to build predictive models of depression severity based
on structured patient interviews [Loo+14; Kes+16]. We refrain from quantitative
comparison with these studies due to differences in population characteristics and
measurements. But how good is the best of our models actually? A reasonable baseline
is a classifier that carries over the depression status at T0 as prediction for T1; such
as model yields 79% accuracy. Our models outperform this baseline, although they
are likely to provide a good fit only for our sample, with patient subgroups from
other centers yet to be studied. However, our models are a promising first step in
supporting a timely prediction of depression severity and selecting appropriate
treatment with only a few questionnaire items.

Consistent with previous studies [Lan+11], we have found a strong association
between tinnitus distress and depression severity. Furthermore, features measuring
perceived stress and demands are significant contributors to depression in tinnitus
patients [TMW18]. The fact that features are selected from different questionnaires
confirms the multifactoriality of depression, whose assessment requires the inclu-
sion of different measurements. Therefore, concomitant emotional symptoms and
other comorbidities must be taken into account to meet patient-specific needs. In a
previous study [Who+97], high sensitivity in detecting depression was achieved
using only a two-item questionnaire. One of the two items was “During the past
month, have you often been bothered by feeling down, depressed, or hopeless.” [Who+97],
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Figure 8.14: Relative PD importance (ANEUR). PD importance for the best model of each
data subset. Values are relative to the maximum PD importance. SW = sidewall;
BF = bifurcation.

which is similar to the ADSL_adsl06 (“In the past week, I have felt depressed.”), which
has the second-largest absolute coefficient in our best LASSO model.

Generally, care must be taken when interpreting the model coefficients: for example,
we have identified a strong relationship between non-German citizenship and
depression severity (cf. Figure 8.10 and Table 8.2). Although some studies reported
ethnic differences in depression [Rio+05; Wei+18], this item’s occurrence tends to
suggest higher perceived social stress in patients of predominantly Turkish origin
due to higher unemployment rates, larger families, and lower housing conditions
in this demographic group. Because only 5.0% of the cohort population were
non-German citizens, these results could also result from overfitting. Since the
associated feature in the first iteration of feature elimination has a model reliance
score of less than 1.0, it is omitted from the sparser models.

Regarding the stability of the models on smaller feature sets, our results show
that simpler models are only slightly inferior to the most predictive model. More
specifically, most classification methods show an improvement in AUC as the
number of features decreases. In fact, 5 of 11 classifiers improve by feature selection,
i.e., the AUC in the second or later iteration is superior to the AUC in the first
iteration (where all 205 features are used). For example, the two decision tree
variants achieve the highest performance on the smallest feature subset in each case.
Regarding the LASSO classifier, which performs best, it is encouraging that only 6

features from 4 questionnaires show similar performance (AUC = 0.850) compared
to the best overall model (AUC = 0.867). It is noteworthy that neither features of
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tinnitus localization and quality nor socio-demographic features are included in
this model. This finding could be used to reduce the number of questions or entire
questionnaires that patients must answer before and after treatment. Costs can
be measured not only by the financial expense of an examination, but also by the
psychological or physical burden for a subject undergoing an examination (e.g., a
painful biopsy vs. a blood test). For example, Yu et al. [YWB20] performed feature
selection under a budget, where the cost of feature acquisition was derived from
medical experts’ suggestions based on the total financial burden, patient privacy,
and patient inconvenience. Kachuee et al. [Kac+19] derived feature costs based on
the convenience of answering questions, performing medical exams, and blood and
urine tests.

In terms of clinical relevance, our results should be a first step to guide clinicians in
making treatment decisions regarding clinical depression in patients with chronic
tinnitus. The models could be used to design an appropriate treatment pathway.
However, before using the models in practice, one must be aware that they are
trained on cross-sectional data, i.e., the models separate subclinical and clinical
depression based on questionnaire responses and socio-demographic data before
treatment. Also, one must keep in mind that the treatment was a 7-day treatment,
and the target variable is depression status after treatment.

There are also some limitations to our approach. First, our models might be subject
to selection bias because patients who did not complete all seven questionnaires
both at admission and after treatment were excluded from our analyses. However,
we do not consider these data as “missing values” because this could lead to the
problematic suggestion of using imputation methods. We cannot use imputation
because (i) a proportion of patients did not complete the entire questionnaire
(rather than individual items) and (ii) we do not know whether the data are
missing at random. However, because the number of patients is large, we believe
our results are sufficiently robust. In future work, we will investigate possible
systematic differences between included and excluded patients. The exclusion of
patients who dropped out of completing the questionnaires prematurely, partly
because of a gradual loss of motivation, technical unfamiliarity with the computer,
or possible interruptions by staff to complete other baseline assessments, could
lead to selection bias. Because the patient population was from only one hospital,
future work involves external validation of the models on data from different
populations and hospitals. Because cross-sectional data limits the interpretation of
the prediction of depression severity beyond the end of therapy, future work will
need to validate the models with longitudinal data.

Another potential limitation is the greedy process of our iterative feature selection
wrapper, which can miss global optima as a result. At each iteration, features that
prevent the model from correctly classifying are removed from the feature set.
Once a feature is eliminated, it cannot be included in any subsequent iteration.
However, it is possible that including a feature that is removed in an early iteration
could lead to a better model in a later iteration. A possible solution would be
to backtrack or revisit earlier iterations if it turns out that some of the removed
features actually contributed positively to the model performance. Alternatively,
the MR cutoff value for discarding features (set to 1 in our experiments) could be
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subjected to hyperparameter tuning. Therefore, future work includes a comparison
with other feature selection algorithms.

8.4.2 CHA-Tinnitus

We have trained classification models to predict tinnitus-related distress after
multimodal treatment (T1) in patients with chronic tinnitus based on self-report
questionnaires data acquired before treatment (T0). The gradient boosted trees
model, which uses 26 (12.7%) from a total of 205 features, separates patients with
“compensated” vs. “decompensated” tinnitus with best AUC.

Among these features are measurements that describe a variety of psychological and
psychosomatic patient characteristics and socio-demographics, therefore confirming
the multi-factorial nature of tinnitus-related distress. These characteristics were used
for the phenotyping in Chapter 5. Additionally, the features can be investigated
in a follow-up study of how such characteristics influence treatment success. As
expected, features directly linked to tinnitus quality show high model attribution,
such as the degree of perceived tinnitus impairment and loudness. At the same
time, depression, attitudinal factors (self-efficacy, pessimism, complaint tendency),
sleep problems, educational level, tinnitus location, and duration also emerged as
highly important for the model prediction.

Quantitative features, such as tinnitus impairment and loudness, show non-
monotonic relationships with respect to the predicted outcome. Notably, very low
self-reported impairment or loudness measured by visual analog scales do not gen-
erally indicate low tinnitus-related distress measured by the TQ. One explanation
is that simple measurements like TINSKAL_impairment and TINSKAL_loudness
are less robust and show higher variability than a compound scale that combines
multiple single questionnaire items. These findings could be investigated further,
e.g., whether there is a relationship towards a subgroup of more fatigued patients
who fill some questionnaires less thoroughly.

Our results confirm the intricate interplay between depression and tinnitus-related
distress, elucidated by numerous previous studies [Dob03; Fol+99; HA91; Lan+11;
Sal+19]. For our best model, an ADSL score of more than 20 is associated with an
increased predicted risk of tinnitus decompensation (cf. Figure 8.8 (2)), which is
close to the cutoff of the clinical relevance of depression [HB03].

In the context of parsimonious learning, a general strategy is to determine the
set of features which is as small as possible and where the inclusion of any other
feature does not yield a considerable performance improvement. So how many
features are really necessary for an accurate tinnitus distress prediction? Figure
8.15 (a) illustrates the change in performance for a GBT classifier when features are
iteratively added to the feature space in the order of their SHAP values with respect
to our best model. A model that uses only the TINSKAL_impairment achieves
AUC = 0.79 ± 0.06. Adding ADSL_depression leads to an improvement in AUC
of 0.06. However, none of the remaining 24 features results in an improvement of
more than 0.01, respectively. Moreover, only 3 features are necessary for a model
with AUC = 0.85, 8 features for a model with AUC = 0.87 and 15 features for a
model with AUC = 0.89 (cf. Figure 8.15 (a)).
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Figure 8.15: Cumulative feature contribution and correlation network. (a) Cross-
validation AUC (average ± standard deviation) of a GBT model trained on
the feature subset comprising the features denoted on the y-axis up to that
iteration. The ordering of features is according to the mean absolute SHAP
value (cf. Figure 8.7 (a)). (b) Network illustrating 3 groups of features among
the 26 selected features of the best model with high intra-group correlation
(|ρ| > 0.5). Eight features (predominantly from SOZK) without any moderate
to high pairwise correlation are not shown. The node positions in the network
were determined by multidimensional scaling [Gow66].

One potential explanation could be multicollinearity among groups of features.
Figure 8.15 (b) shows a network of 3 feature groups among the 26 features of
the best model. For example, the features TINSKAL_impairment and TINSKAL_-
loudness are moderately correlated (Spearman correlation ρ = 0.69), which raises
the question of whether one of the two features could be removed without a
considerable loss in AUC. The largest subgroup spanning 14 features involves
descriptors of depression, perceived stress, and reported physical health. In future
work, an investigation of possible interaction effects among these moderately to
strongly correlated features could be investigated to understand better why all of
them were selected and to determine whether some of them could be removed to
achieve a better tradeoff between model accuracy and complexity.

Our workflow leverages the potential of machine learning for identifying key fea-
tures from a variety of features collected before treatment for post-treatment tinnitus
compensation by ensuring that every potential feature is included in the analysis
and by the internal validation of the classification models using cross-validation and
hyperparameter tuning. Furthermore, by selecting various classification algorithm
families, both linear and non-linear relationships between a feature and outcome
could be identified. A limitation of this hypothesis-free approach is that the learned
models could contain features that quantify the same or similar patient characteris-
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tics. For example, the best model in this study included the two highly correlated
features ADSL_depression and BSF_anxdepression (anxious depressiveness score).
While the inclusion of both features contributed to the model performance, from a
medical perspective, a predictive model with only certain features might be more
beneficial. Preselecting features to avoid multicollinearity could be a direction for
future work.

Finally, the exclusion of 2701 out of 4117 patients (65.6%) who did not complete all
10 questionnaires could have resulted in selection bias. Many patients spent more
than one hour completing the questionnaire on a dedicated minicomputer and
were, therefore, more likely to drop out of the completion process. Completers were
slightly younger than non-completers (mean age 49.8 ± 12.2 vs. 51.7 ± 13.8), were
more likely to have the highest German school degree “Abitur” (48.2% vs. 42.0%)
and had been suffering from tinnitus longer (> 5 years: 33.3% vs. 25.1%). In future
work, we intend to investigate to what extent insights from completers can be used
on subsamples of non-completers. Therefore, we can use the DIVA framework of
Hielscher et al. [Hie+18]. However, psychological treatment approaches are likely
to benefit only those who report psychological problems before tinnitus perception
or associated with tinnitus perception.

8.4.3 ANEUR

Our classification results are promising, as morphological parameters alone can
provide models with moderate power. Because previous studies found that hemo-
dynamic parameters are also predictive [Ceb+11; BB18], future work includes
exploring the potential of combining morphologic and hemodynamic features
for the classification of rupture status. Because our focus, for now, has been on
quantifying the merit of morphologic parameters, we have ignored demographic
characteristics, such as age and sex, which also correlate strongly with aneurysm
rupture [Det+18]. We expect that adding these patient characteristics will further
improve classification performance.

PDP analysis shows that for the best model (gradient boosted trees), the parameters
angle at the dome point γ, ellipticity index EI, maximum aneurysm width Wmax,
nonsphericity index NSI, and aneurysm area AO2 have the highest attribution (see
Figure 8.13 (a)). These differ from those found for two subsets of sidewall and
bifurcation aneurysms, respectively. Figure 8.14 shows that none of the features
appear among the top 5 features for sidewall aneurysms, bifurcation aneurysms,
and the overall data set. This is also partly because the family of the best model
is different for each of the subsets. Consequently, Figure 8.16 shows that the PDP
curves for the top 5 features on ALL differ substantially. Therefore, we argue that
PDPs are more appropriate for intra-model comparisons of feature attributions.

We observe that classification performance is consistently higher for the subset of
sidewall aneurysms vs. bifurcation aneurysms and that different parameters are
found to have high model attribution. This could be partially due to the relatively
small sample size or the already mentioned differences in model families. However,
Baharoglu et al. [Bah+12] identified significant differences between sidewall and
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Figure 8.16: PDP curves for top 5 features on ALL - GBT for each data subset’s best
model.

bifurcation aneurysms for morphological parameters and how they can predict
rupture status.

Some of our findings also suggest some form of higher-level interactions between
groups of features. For example, the ellipticity index (EI) is found second most
important for ALL - GBT and most important for SW - SVM, although differences
in EI between unruptured and ruptured aneurysms are not significant (p = 0.323,
Wilcoxon rank-sum test, α = 0.01).

There are some limitations to our analysis. The small sample size, especially for the
subset of sidewall aneurysms (N=24), could lead to overfitting. In future work, we
would like to retrain our models on a larger number of datasets and incorporate
a wider variety of features, such as hemodynamic and demographic features, as
mentioned above. A further limitation concerns the validity of the class label.
Samples that were labeled as unruptured could have ruptured at a later moment.
Further, we would like to investigate samples with a high classification error in
more detail. Here, our goal is to derive descriptions of aneurysms subgroups that
are hard to classify to understand reasons for misclassification better and signalize
to the medical expert that a manual diagnosis is necessary.

8.5 conclusion

The previous chapters present methods for subpopulation discovery that yield
interpretable results.
In the last years, more accurate black-box models have gained traction. However,
additional post-learning steps are required to interpret their behavior and extract
actionable insights due to their opacity.

In this chapter, we have complemented the previous chapters’ approaches by
proposing an end-to-end data analysis workflow for high-dimensional medical
data that includes steps for data augmentation, modeling, interleaving model
training with feature elimination, and post-hoc analysis of the trained models. The
post-mining step of the workflow removes the limitation for medical researchers
of being limited to intrinsically interpretable model families by determining the
key variables and the corresponding value ranges at the model-, subpopulation-,
and observation-level after model training. Future work includes investigating
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the robustness and uncertainty the interpretability methods bring, described as
“application-grounded” evaluation by Doshi-Velez and Kim [DK17].

For some applications, there are already predefined subpopulations, e.g., female and
male patients. It is interesting to study their differences regarding the relationship
between features and the target variable for a black-box model. We tackle this issue
in Chapter 9.





9
S U B P O P U L AT I O N - S P E C I F I C L E A R N I N G A N D P O S T- H O C
M O D E L I N T E R P R E TAT I O N

Brief Chapter Summary

We present a workflow to examine differences between two a priori defined
subpopulations in temporal data. For this purpose, we derive a post-hoc
interpretation measure to visually assess the difference in the features’
relationship with the predicted target variable between two subpopulations.
We validate our approach on two data samples and the target variables
tinnitus distress (CHA), depression (CHA), and liver fat concentration
(SHIP). We determine gender-specific differences, i.e., we separate between
discriminating features (i) for both, (ii) for one of the two, and (iii) neither
of the subpopulations.

This chapter is partly based on:

Uli Niemann, Benjamin Boecking, Petra Brueggemann, Birgit Mazurek, and Myra
Spiliopoulou. “Gender-Specific Differences in Patients With Chronic Tinnitus –
Baseline Characteristics and Treatment Effects”. In: Frontiers in Neuroscience 14

(2020), pp. 1-11. DOI: 10.3389/fnins.2020.00487.

The previous chapter describes a workflow for the post-hoc analysis of models
built on the entire population. For several medical applications, there are either
already established subpopulations that need further investigation, or it is unclear
whether there are indeed differences between predefined subgroups of interest.

This chapter presents a workflow to explore how two disjoint subpopulations
differ concerning their most predictive features. First, we build machine learning
models that separate between two subpopulations to identify informative features
associated with either subpopulation. Then, for each subpopulation separately, we
train models that predict the value of a target variable. We use a quantitative and
a qualitative mechanism to compare differences in feature importance between
the subpopulations. We validate our workflow on CHA and SHIP data samples.
For CHA, we investigate questionnaire items and scores predictive of tinnitus-
related distress and depression. For SHIP, we identify features from the baseline
examinations that are potentially long-term determinants of fatty liver measured at
the second follow-up ten years later.

This chapter is organized as follows. In Section 9.1, we motivate for subpopulation-
specific model interpretation by discussing gender differences in tinnitus. Sec-
tion 9.2 presents the workflow. Section 9.3 describes the measure to quantify
and visualize subpopulation-specific model differences. Section 9.4 explains the
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validation setup, including learning tasks, selected learning algorithms, and dataset-
specific preprocessing steps. In Section 9.5, we report our results and main findings.
The chapter closes with a summary and a brief discussion in Section 9.6.

9.1 motivation and comparison to related work

One example where the relationship between subpopulation membership on the
target variable is not well understood yet is gender differences in tinnitus patients.
Female gender has been identified as an important risk factor for psychological
comorbidities in many studies: women show higher prevalence rates regarding
depression, anxiety, and other psychosomatic diseases [Nol01; PW00; Mat04; Jau+11;
McL+11; AAA17; Lan+13]. However, previous studies presented conflicting results
on the relationship between gender and tinnitus severity and distress. Some studies
found no gender differences with respect to tinnitus severity [EH01], annoyance
[PST10], and similar tinnitus-related scores [Mer+98]. Others found higher tinnitus
distress in women [Sey+13], higher loudness and annoyance in men [HG06], a high
association of severe tinnitus with suicide attempts only in women [Lug+19], and a
high correlation of tinnitus severity with life quality, depression, and stress only in
men [Han+19]. Overall, there is no consensus on gender-specific determinants of
prevalence rates or accompanying symptoms of chronic tinnitus such as depression
or anxiety. However, gender differences in psychological response profiles and
coping strategies could substantially influence tinnitus chronification and treatment
success rates [Van+20]. Understanding gender differences may therefore facilitate a
more detailed identification of symptom profiles, increase treatment response rates,
and help provide access for vulnerable populations who may be less visible in the
clinical setting.

9.2 workflow

We present a workflow consisting of a modeling component and a post-modeling
component, extending the approach presented in Chapter 8. More specifically,
we (i) build machine learning models capable of predicting the values of a tar-
get variable while performing hyperparameter optimization in a cross-validation
scheme, and (ii) use post-hoc interpretation mechanisms to identify features that
contributed most to the prediction of the best model. We deviate from the workflow
presented earlier because we are interested in comparing a priori defined disjoint
subpopulations instead of determining them.

We proceed as follows. First, we train a model for each population where sub-
population membership is the target variable. Then, we build models for each
subpopulation separately and compare model reliance values between the best
performing models. More specifically, we compare which features appear to be
important (i) for both subpopulations, (ii) for one of the two subpopulations, or (iii)
for neither subpopulation. For example, we split a dataset into two non-overlapping
based on the feature defining the subpopulations and validate our workflow by
examining factors that discriminate between subpopulations and factors predictive
for the target variable in both or either of the two subpopulations.
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9.3 comparing differences in feature importance between two

subpopulations

To measure feature-individual attributions to a model’s predictions and to compare
them between two subpopulations, we use model reliance (MR; [FRD19]), which
is described in the context of iterative feature elimination in Section 8.2.3. Recall
that MR(f, ζ) is a permutation-based feature importance measure that calculates
the increase in the error of a model ζ when the values of the feature of interest f
are randomly shuffled within the training set. If f is important for the prediction
of ζ, MR(f, ζ) > 1. If random permutation of the feature values leads to a higher
performance of the model, then the feature’s attribute to model quality is low,
whereupon MR < 1.

For models that predict subpopulation membership, we rank features by MR value
and report on the most important features. For subpopulation-specific models, we
use scatterplots (see Figure 9.1) depicting a feature’s contribution (as MR value)
to the model Model_1 (x-axis), which is trained on one subpopulation, and to
the model Model_2 (y-axis), trained on the other subpopulation. Features that
contribute equally to both models are on the diagonal line, while higher MR values
for one model are further from the diagonal. The features with the highest average
MR score or the highest difference magnitude between subpopulation-specific MR
scores are colored and labeled.
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Figure 9.1: Subpopulation-specific feature importance. The position of a point represents
the model reliance score of a feature for the best model trained on the respective
subpopulation, denoted as Model_1 (x-axis) and Model_2 (y-axis). Higher values
represent a higher attribution of a feature relative to the model prediction. There
are four characteristic areas: (i) important features with similar attributions to
Model_1 and Model_2; (ii) important features with higher attribution to one of
the subpopulation-specific models; (iii) features important to either Model_1 or
Model_2 but adversarial to the other model; (iv) features that are adversarial to
both models.
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9.4 learning tasks and evaluation setup

We validate our workflow on the Charité tinnitus patient dataset (CHA, Sec-
tion 2.2.2) and the SHIP dataset (Section 2.2.1). We define five learning tasks (LT) for
the following target variables and subpopulations:

• LT 1: gender (CHA)
• LT 2: tinnitus-related distress (CHA)

– LT 2a: female subpopulation
– LT 2b: male subpopulation

• LT 3: depression (CHA)

– LT 3a: female subpopulation
– LT 3b: male subpopulation

• LT 4: gender (SHIP)
• LT 5: liver fat concentration at second follow-up (SHIP)

– LT 5a: female subpopulation
– LT 5b: male subpopulation

LT 1 and LT 4 have gender as the target variable, and characteristics are identified
that are predictive for one of the genders. For each learning task, we use features
from the first study as features. For the learning tasks LT 2, LT 3, and LT 5, we
build separate models for each of the two gender subpopulations. We refer to these
models as “F_model” and “M_model”, respectively; the learning task is explicitly
stated if it cannot be inferred from the context.

selection of algorithms and evaluation. Based on their encouraging
performances relative to other classifiers in Chapter 8, we use the following five
algorithms: least absolute shrinkage and selection operator (LASSO [FHT10]),
RIDGE [HK70], support vector machine (SVM [BGV92]), random forest (RF [Bre01])
and gradient boosted trees (GBT [Fri01]), see Section 8.2.2 for a description. We use
10-fold cross-validation to evaluate model generalization performance and perform
a grid search for hyperparameter selection (cf. listing of hyperparameter candidates
in Table 8.1). We choose the evaluation measures based on the type of the target
variable. For LT 1, we employ accuracy and sensitivity for each gender. For LT
2, we use root mean squared error (RMSE) and the coefficient of determination

R2, defined as R2 = 1−
∑N
i=1(ŷi−yi)

2∑N
i=1(ȳ−yi)

2
, where ȳ is the average value of the target

variable. Higher values are better for all measures except RMSE.

For each learning task, we define a baseline performance. For the classification
problem of LT 1 and LT 4, the baseline is equal to a model that always predicts the
majority class over all training observations. Similarly, for the regression problems
of LT 2, 3, and 5, the average value of a target variable over all training observations
is used as constant prediction.

data preparation for cha . For CHA, we use baseline data collected before
the start of therapy. To make the learning tasks nontrivial, we remove features from
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the same questionnaire as the target variable for each task. For example, for LT
2, we exclude all features from the TQ questionnaire because the target variable
is calculated from them. We include 1628 patients (828 female, 800 male) with
complete data for the ADSL, PSQ, SF8, SOZK, TINSKAL, TQ, and TLQ question-
naires (cf. Table 2.1). The selection of these questionnaires is motivated to obtain a
comprehensive assessment of tinnitus, comorbid conditions (e.g., depression), gen-
eral quality of life, and socio-demographic data. For CHA and SHIP, multinomial
features, i.e., features that take three or more symbolic values, such as reported
gender, marital status, and education level, are encoded as dummy variables. For
example, smoking status smoking_s0 can be one of the following values: 0 = never a
smoker, 1 = ex-smoker, 2 = current smoker. The dummy variable smoking_s0_1 then
indicates whether a study participant is an ex-smoker. To avoid multicollinearity,
we remove the first dummy of each variable, leaving only n-1 dummies. For the
smoking status example, we keep smoking_s0_1 and smoking_s0_2, and we remove
smoking_s0_0. Finally, a total of 181 features from the baseline measurements are
used as features, including responses to individual questionnaire items, subscale
scores, total scores, and, for each questionnaire, the average time taken to complete
an item. Tinnitus-related distress is measured by the TQ total score (TQ_distress).
The severity of depression is measured by the ADSL total score (ADSL_depression).

data preparation for ship. For the SHIP data, we consider only the features
recorded in SHIP-0 and use the liver fat concentration (liverfat_s2) measured via
MRT in SHIP-2. We use the same subset of 886 labeled participants as in Chapter 4,
of which 460 are female and 426 male. We remove the features related to the
ultrasound diagnosis of hepatic steatosis, stea_s0 and stea_alt75_s0, because we
have already identified their high correlation to the target in Chapters 3 and 4.
Furthermore, we remove “near-zero” variance features where the most frequent
value occurs at least 19 times more frequently than the second most frequent value.
Typical examples include the ATC_* medication features where few participants
report taking them. Features with a variance near zero can lead to resampling
problems because some of the resamples may have constant values for that feature.
Besides, it is difficult to infer significant correlations from them, as it is unclear
whether the measured effects can be generalized to the overall population or
whether they are just an artifact of this small and thus unrepresentative sample.

Finally, we remove highly correlated features using the algorithm of Kuhn and
Johnson [KJ13]. We first compute the Pearson correlation coefficient for each pair
of features. For feature pairs with an absolute correlation value of r > 0.9, we keep
the feature that has the lower average correlation with the other features. We repeat
this process until none of the correlation values exceed the specified threshold. Of
the original 350 features, 118 remain to be used for modeling. Since determining
the appropriate type of missingness for each feature is beyond our workflow’s
scope, we assume that missingness occurs completely at random (MCAR). Missing
values are thus imputed by random sampling with replacement.
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Table 9.1: Classifier performance (LT 1). Performance values are cross-validation mean ±
standard deviation. The best performance for each measure is highlighted in
bold. Sens. = Sensitivity.

Algorithm Accuracy (%) Sens. female (%) Sens. male (%)

LASSO 71.3 ± 3.0 69.5 ± 4.2 73.2 ± 4.9

Ridge 72.2 ± 2.9 71.4 ± 5.5 73.0 ± 4.3

SVM 71.8 ± 3.7 70.9 ± 5.2 72.7 ± 6.0

RF 68.6 ± 5.2 68.7 ± 6.0 68.6 ± 7.1

GBT 70.4 ± 3.4 70.9 ± 5.1 69.7 ± 6.2

Baseline 50.9 ± 2.9 100.0 ± 0.0 0.0 ± 0.0

9.5 validation on two datasets

9.5.1 Results for CHA

distribution of the target variables . Figure 9.4 shows the target vari-
ables’ distributions for the CHA learning tasks (LTs) 1-3. There are slightly more
female than male patients. In general, female patients report higher levels of
tinnitus-related distress (median ± median absolute deviation (MAD) 39.0 ± 17.8
vs. 35.5 ± 20.0) and depression (18.0 ± 11.9 vs. 14.00 ± 11.9). TQ_distress and
ADSL_depression are right-skewed in each subpopulation. Using the TQ cutoff
of 46 for tinnitus distress [GH98], 34.1% of females and 30.8% of males show de-
compensated tinnitus. Using the ADSL cutoff of 15 for depression severity [HB03],
57.4% of female and 45.0% of male subjects exhibit clinical depression.
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Figure 9.2: Distribution of target variables (LT 1-3). For the numerical targets, median,
median absolute deviation (MAD), and non-parametric 95% confidence interval
(CI) using bootstrap sampling [DE96] with 2000 samples are presented.

Tables 9.1-9.5 provide an overview of the generalization performances of each
method for each learning task.

learning task 1 (cha , gender classification). Ridge achieves best
cross-validation accuracy (mean: 72.2% ± standard deviation: 2.9%) with a sensitiv-
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ity of 71.4% ± 5.5% for female patients and 73.0 ± 4.3% for male patients. Figure 9.3
illustrates the item response frequencies for the features among the top 5% with
respect to model reliance (MR), i.e., the 8 features with the highest attribution to the
model prediction. For each feature, the horizontal legend shows the corresponding
text of the questionnaire item. The vertical axis shows the responses to that item,
and the horizontal axis depicts the relative frequency by gender. These frequencies
are shown as bars, red-violet for female patients and blue for male patients. A dif-
ference in the length of the two bars for the same answer means that the percentage
of giving that response is different for each gender; thus, the feature is contributing
to class separation.

The item ADSL_adsl17 (Figure 9.3 (a)) is the most discriminating feature for the
model (MR = 1.167): while 16% of female patients report having had crying spells
either “mostly” or “occasionally” in the past week, only 4% of male patients do;
they predominantly give the answer “rarely” (86.2%). Female patients tend to
express higher levels of worry (see Figures 9.3 (b) and 9.3 (f)) and subjective stress
(see Figure 9.3 (h)). Besides, there are gender-differences in tinnitus quality: More
than half (52.4%) of all male patients report the tinnitus sound (MR = 1.056) as
“whistling”, which is substantially more frequent than in female patients (35.6%),
who describe their tinnitus as “rustling” noise more often (33.3%) than male patients
(22.9%).
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Figure 9.3: Top 8 features on gender (LT 1). Gender-specific item response frequencies
for the top 5% features with the highest attribution towards model prediction
according to model reliance (MR).

learning task 2 (cha , tinnitus distress prediction). For LT 2, we
ran the five algorithms once for the female patients (LT 2a) and once for the male
patients (LT 2b). Table 9.2 shows RMSE and R2 for each algorithm. For both LT 2a
and LT 2b, GBT exhibits the best performance in terms of RMSE (LT 2a: 10.92 ± 0.68,
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Table 9.2: Regression model performance (LT 2a, LT 2b). Performance values are cross-
validation mean ± standard deviation. The best performance for each measure is
highlighted in bold.

LT 2a (female) LT 2b (male)

Algorithm RMSE R² RMSE R²

LASSO 11.55 ± 0.70 0.50 ± 0.04 10.59 ± 0.98 0.65 ± 0.05

Ridge 11.59 ± 0.63 0.50 ± 0.04 10.72 ± 1.05 0.64 ± 0.06

SVM 11.97 ± 0.51 0.46 ± 0.03 11.21 ± 1.02 0.61 ± 0.06

RF 11.38 ± 0.74 0.51 ± 0.05 10.58 ± 1.01 0.65 ± 0.06

GBT 10.92 ± 0.68 0.55 ± 0.04 10.11 ± 1.12 0.68 ± 0.06

Baseline 16.22 ± 1.38 0.00 ± 0.00 17.77 ± 1.00 0.00 ± 0.00

LT 2b: 10.11 ± 1.12) and R2 (LT 2a: 0.55 ± 0.04, LT 2b: 0.68 ± 0.06). It is noticeable
that GBT and the other models are slightly more accurate for male patients than for
females. The highest MR feature attribution is achieved by TINSKAL_impairment,
i.e., the TINSKAL visual analog scale for tinnitus impairment. Figure 9.4 (a) illus-
trates that MR scores are higher for male patients (MR = 1.42 vs. 1.24). Furthermore,
the features ADSL_depression (depression), ADSL_adsl11 (sleep problems), and
TINSKAL_loudness (tinnitus loudness) appear to be important for both models. It
is noteworthy that the MR scores of most of the 120 features are close to 1, which is
visualized by the clump of points in Figure 9.4 (a). In fact, only 8 features exhibit a
substantial attribution with MR > 1.05 for either of the gender-specific models.

learning task 3 (cha , depression prediction). For depression severity,
LASSO provides the best model for both female patients (RMSE = 5.80 ± 0.73;
R2 = 0.74 ± 0.06) and male patients (RMSE = 5.10 ± 0.38; R2 = 0.81 ± 0.03), as
depicted in Table 9.3. Similar to LT2, the RMSE and R2 estimates for the models
are consistently better for the subgroup of male patients. Figure 9.4 (b) shows that
the mental health indicator SF8_mentalhealth is the most important feature for
both the F_model and the M_model. Furthermore, features measuring subjective
stress (PSQ_stress05: “You feel lonely or isolated.”), worry (PSQ_worries score), and
vitality (SF8_sf05: “How much energy have you had in the last 4 weeks?”) contribute
substantially to the predictions of both genders’ models.

9.5.2 Results for SHIP

learning task 4 (ship, gender classification). Table 9.4 shows that
LASSO performs best in terms of accuracy (99.4% ± 0.8%) and sensitivity for
the male class (99.5% ± 1.0%), while GBT achieves the highest sensitivity for the
female class (99.6% ± 0.9%). All regression models outperform the baseline, which
constantly predicts the female majority class (51.9% ± 4.8%). Figure 9.5 depicts
the distributions of the 4 features with an MR score of at least 1.05 for the LASSO
model. The two anthropometric measures, waist circumference (som_tail_s0) and
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(b) Learning task 3: ADSL_depression

Figure 9.4: Juxtaposition of feature importance (LT 2 and LT 3). Each scatterplot shows
the model reliance (MR) score for each feature for the best model for each of
the subpopulations of female (x-axis) and male (y-axis) patients and for each
learning task; see Figure 9.1. Features among the top 10 highest-ranking features
by MR in the F_model (red-violet), M_model (blue), or both models (yellow)
are highlighted. (a) LT 2 (CHA, target variable: tinnitus-related distress); (b) LT
3 (CHA, target variable: depression severity).

hip circumference (som_huef_s0), appear to be predictive of the gender of the
study participant. From Figure 9.5 (a), it can be inferred that, in general, men
have a higher waist circumference than women (median: 92.2 cm vs. 77.5 cm).
While the median hip circumferences are similar (f: 99.8 cm, m: 100.0 cm), it can
be seen in Figure 9.5 (d) that the distribution of women has a wider spread and
more values beyond the distribution tails of men, i.e., values below 86 cm and
above 123 cm. The second most important feature, gfr_mdrd_s0, is the glomerular
filtration rate, a measure of overall renal function that describes the flow rate of
filtered fluid through the kidney. Figure 9.5 (b) shows that gfr_mdrd_s0 is generally
higher in men, consistent with the literature [HFD+12]. The third most important
feature, crea_s_s0 (Figure 9.5 (c)), measures serum creatinine concentration, another
indicator of renal function, which is higher in men [FNP00].

learning task 5 (ship, prediction of liver fat concentration). The
target variable liver fat_s2 is highly right-skewed in each gender subpopulation
(Figure 9.6 (a)). For example, whereas the lower half of the females’ distribution
lies between 1.18% and 3.29%, the upper half has a much wider spread, ranging
between 3.29% and 41.8%. Males have a higher median liver fat concentration
(5.57%) than females (3.29%). In the female subpopulation (LT 5a), LASSO performs
best in terms of RMSE (5.76 ± 1.05) and R2 (0.23 ± 0.12), whereas GBT achieves
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Table 9.3: Regression model performance (LT 3a, LT 3b). Performance values are cross-
validation mean ± standard deviation. The best performance for each measure is
highlighted in bold.

LT 3a (female) LT 3b (male)

Algorithm RMSE R² RMSE R²

LASSO 5.80 ± 0.73 0.74 ± 0.06 5.10 ± 0.38 0.81 ± 0.03

Ridge 5.88 ± 0.65 0.74 ± 0.06 5.14 ± 0.38 0.80 ± 0.03

SVM 6.12 ± 0.72 0.71 ± 0.06 5.29 ± 0.38 0.79 ± 0.03

RF 6.02 ± 0.62 0.72 ± 0.05 5.29 ± 0.46 0.79 ± 0.04

GBT 6.10 ± 0.65 0.72 ± 0.06 5.16 ± 0.42 0.80 ± 0.04

Baseline 11.36 ± 0.78 0.00 ± 0.00 11.52 ± 0.47 0.00 ± 0.00

Table 9.4: Classifier performance (LT 4). Performance values are cross-validation mean ±
standard deviation. The best performance for each measure is highlighted in
bold. Sens. = Sensitivity.

Algorithm Accuracy (%) Sens. female (%) Sens. male (%)

LASSO 99.4 ± 0.8 99.4 ± 1.0 99.5 ± 1.0

Ridge 98.2 ± 1.9 98.1 ± 2.0 98.3 ± 2.3

SVM 99.1 ± 0.9 98.9 ± 1.1 99.3 ± 1.2

RF 96.6 ± 2.5 98.3 ± 1.9 94.9 ± 4.1

GBT 99.3 ± 0.8 99.6 ± 0.9 99.1 ± 1.2

Baseline 51.9 ± 4.8 100.0 ± 0.0 0.0 ± 0.0

a minimum RMSE (6.02 ± 1.11) and a maximum R2 (0.20 ± 0.16) in the male
subpopulation (LT 5b), see Table 9.5. All regression models for LT 5a outperform
the baseline predicting subpopulation mean liver fat concentration. Only SVM
performs worse on the RMSE than the baseline for LT 5b.

Figure 9.6 (b) visualizes the LASSO models’ MR scores for the female and male
subpopulations. Waist circumference (som_tail_s0) and serum uric acid concentra-
tion (hrs_s_s0) are the only features that appear among the top 10 features in both
subpopulations. It is noteworthy that several features are contributing substantially
to the model predictions in one subpopulation but not the other, as illustrated by
the points near the horizontal and vertical dashed lines. Recall that these lines
indicate MR = 1, which expresses that a feature neither contributes to nor hinders
model performance.

Waist circumference (som_tail_s0) and serum uric acid concentration (hrs_s_s0) are
the only features that appear among the top 10 features in both subpopulations.
The feature metabolic syndrome (metsyn_s0_1) appears to be predictive only
for the female subpopulation. Indeed, the Pearson point biserial correlation of
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Figure 9.5: Top 4 features on gender (LT 4). Gender-specific distributions of the 4 features
with the highest attribution towards model prediction according to model
reliance (MR). For crea_s_s0, an outlier (creas_s_s0 = 281) was removed to
preserve plot readability. GFR = glomerular filtration rate.

Table 9.5: Regression model performance (LT 5a, LT 5b). Performance values are cross-
validation mean ± standard deviation. The best performance for each measure is
highlighted in bold.

LT 5a (female) LT 5b (male)

Algorithm RMSE R² RMSE R²

LASSO 5.76 ± 1.05 0.23 ± 0.12 6.18 ± 1.18 0.16 ± 0.22

Ridge 5.89 ± 1.09 0.20 ± 0.11 6.39 ± 1.13 0.11 ± 0.17

SVM 6.03 ± 1.09 0.17 ± 0.13 6.76 ± 1.29 0.02 ± 0.09

RF 5.88 ± 1.06 0.20 ± 0.10 6.18 ± 1.06 0.16 ± 0.17

GBT 6.02 ± 0.88 0.14 ± 0.16 6.02 ± 1.11 0.20 ± 0.16

Baseline 6.48 ± 1.04 0.00 ± 0.00 6.71 ± 1.21 0.00 ± 0.00

metsyn_s0_1 and liverfat_s2 is r = 0.44 for the female subpopulation, which is
considerably larger than for the male subpopulation, where r = 0.22. Similarly, the
feature alat_s_s0, which measures alanine aminotransferase (ALAT) concentration,
is more informative of liver fat concentration in the male subpopulation (r = 0.38 in
men vs r = 0.16 in women). Furthermore, important characteristics for women are
increased waist circumference categorization (waiidf_s0_1; waist circumference >
80 cm; cutoff is 94 cm for men), serum triglyceride concentration (tq_s_s0), heart
rate (heartr_s0), sleep problems (sleepp_s0_1), waist-to-hip ratio (whratc_s0_1),
antihypertensive medication (antihyp_s0_1), and ferritin concentration (ferri_s0).
In men, other features with the highest model attribution include restless legs
syndrome (rlegs_s0_1), serum creatinine concentration (crea_s0_s0), body mass
index (som_bmi_s0), diastolic blood pressure (diabp_s0), smoking status (smoking_-
s0_1), the genetic marker rs11597086 (gx_rs11597086_2) which is associated with
ALAT concentration [Yua+08], and the “SF-12 Physical and Mental Health Summary
Scale” score (mcs_sf12_s0; [Bul95]). In females (males), for 10 (16) of 116 features, it
holds that MR > 1. These numbers are identical to the number of features with a
nonzero coefficient in the respective LASSO models.
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Figure 9.6: Distribution of target variable and feature importance (LT 5). (a) Distribution
of liverfat_s2 for the subset of female and male SHIP participants. (b) Each scat-
terplot shows the model reliance (MR) score for each feature for the best model
for each of the subpopulations of female (x-axis) and male (y-axis) patients and
each learning task; see Figure 9.1. Features among the top 10 highest-ranked
features by MR in the F_model (red-violet), M_model (blue), or both models
(yellow) are highlighted. alat_s_s0: alanine aminotransferase (ALAT) concen-
tration; antihyp_s0_1: antihypertensive medication; crea_s_s0: serum creatinine
concentration; diabp_s0: diastolic blood pressure; ferri_s0: ferritin concentration;
gx_rs11597086_2: genetic marker associated with ALAT concentration [Yua+08];
heartr_s0: heart rate; hrs_s_s0: serum uric acid concentration; mcs_sf12_s0: SF-12

Physical and Mental Health Summary Scale [Bul95]; metsyn_s0_1: metabolic
syndrome; rlegs_s0_1: restless legs syndrome; sleepp_s0_1: sleep problems;
smoking_s0_1: ex-smoker; som_bmi_s0: body mass index; som_tail_s0: waist cir-
cumference; tg_s_s0: serum triglycerides concentration; waiidf_s0_1: increased
waist circumference; whratc_s0_1: waist to hip ratio.

9.6 conclusion

We have presented a workflow to juxtapose the most important features between
two a priori defined subpopulations based on black-box models. We have adapted
model reliance to estimate a feature’s attribution regarding the model and to
investigate subpopulation-specific differences in this respect. Compared to the
workflow in Chapter 8, our goal was not to find a parsimonious model; hence we
did not perform feature selection.

Our goals are related to causal inference, which aims to measure the true, uncon-
founded effect between features. Current efforts include building methods to detect
causal relationships in observational data [PM18; Sch19], opposed to a randomized
clinical trial (RCT) in clinical research. RCTs are considered the gold standard for
inferring causal effects of treatment [HL18]. In an RCT, individual patients of a
patient population are randomly assigned to one of two subgroups: a treatment
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subgroup and a control subgroup. Only the former receives the treatment. Ran-
domization of subgroup membership serves to minimize the effects of potential
confounders and selection bias. The two subgroups are as similar as possible before
the intervention so that it is possible to calculate the average treatment effect to
quantify the true causal efficacy of the treatment [HR20]. Translated to our appli-
cation, an appropriate causality question is: What is the effect of gender on tinnitus
severity and depression? However, our goal was different: we wanted to exploratively
examine similarities and differences between subpopulations regarding factors that
are predictive for a target variable of interest. Thus, we were interested not only in
the relationship of gender on the target variable, but also in differences between
the female and male subpopulations in the predictability of other features on the
target variable. With the generation of new hypotheses as the main goal in mind,
our focus is on providing exploratory methods for comparing differences between
predefined subpopulations.





Part IV

C O N C L U S I O N
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S U M M A RY A N D F U T U R E W O R K

Data-driven machine learning solutions can complement the traditionally hypothesis-
driven workflows of medical research by discovering characteristic subpopulations of
patients and study participants. Knowledge about characteristic subpopulations
can be the starting point for further investigation, e.g., identifying (long-term)
risk factors, determining differences in treatment response, and building robust
statistical models that explain cause-effect relationships for a medical condition of
interest.

This thesis has proposed solutions to assist expert-driven subpopulation discovery
in high-dimensional timestamped medical data. Section 10.1 reviews whether we
have addressed our core research question and the three challenges presented in
Chapter 1. Finally, we discuss directions for future work in Section 10.2.

10.1 summary

Our solutions for subpopulation discovery in Part I have tackled the challenge:

GOAL1: Comprehensibility and distinctiveness of subpopulations

We have dealt with this challenge by proposing the three workflows presented in
Chapters 3, 4, and 5.

Chapter 3 has presented a workflow and an interactive application for subpopu-
lation discovery in cohort data. By leveraging classification rules, our workflow
enables building self-explaining and concise descriptions of subpopulations with
distributions regarding the target variable. Our application Interactive Medical
Miner allows for interactive expert-driven subpopulation discovery with features to
drill-down on the derived models and explore subpopulations worthy of further
investigation. As a proof of concept, we have validated our workflow on a SHIP
dataset, focusing on hepatic steatosis (“fatty liver”) as the target variable. We have
confirmed features and value ranges shown to be associated with the target vari-
able, including obesity, age, sex, high serum concentrations of the liver enzyme
Gamma-glutamyltransferase (GGT), and genetic markers.

Chapter 4 has extended this workflow by tackling the problem of redundancy in
large rule sets, introducing an algorithm that extracts a small number of representa-
tive classification rules. These so-called proxy rules minimize instance overlap across
rule groups, thus covering different subpopulations. We have demonstrated that
our algorithm delivers more distinct rules compared to the baselines on SHIP data
samples with hepatic steatosis and goiter as target variables, respectively. Besides
the features found in Chapter 3, the conditions of proxy rules involve hypertension
and low physical health for hepatic steatosis, and high intima-media thickness and
angiotensin II receptor blocker intake for goiter.

147



148 summary and future work

The solutions in Chapters 3 and 4 assume the availability of a target variable, which
in many medical applications is unknown or too costly to obtain. Hence, Chapter 5

has proposed a workflow for unsupervised subpopulation discovery, visualization,
and interactive exploration in the absence of a ground truth. This workflow (i) ex-
ploits a clustering algorithm that automatically determines an appropriate number
of clusters, (ii) provides visualization techniques that show essential characteristics
of high-dimensional clusters compactly, and (iii) serves medical experts with a web
application to further investigate and juxtapose the found subpopulations further,
including treatment effect indicators. We have showcased our workflow’s efficacy
by identifying and juxtaposing four distinct tinnitus patient phenotypes in the CHA
dataset.

While the aforementioned solutions are designed primarily for static data, Part II
of this thesis has addressed the exploitation of temporal information in medical
data, translated to the challenge:

GOAL2: Exploitation of time

We have presented our solutions to this challenge in Chapters 6 and 7.

Chapter 6 has proposed a framework to extract evolution features from times-
tamped medical data, i.e., tiny streams with up to five time points that are months
or years apart (which is often the case in population studies). These change de-
scriptors quantify the study participants’ change over time. We have shown that
augmenting the original feature space with evolution features improves classi-
fication performance. Using a SHIP data sample, we have shown that somatic
changes and changes of cluster quality indices over time are associated with hepatic
steatosis.

Chapter 7 has focused on data with many recordings over a short time period
and proposes a clustering approach to build representations from new similarity
measures applicable to raw multivariate (sensor) timeseries. We have validated our
approach by identifying plantar pressure patterns in patients with diabetic foot
syndrome and healthy volunteers.

Part III has presented solutions for models that cannot be interpreted intrinsically.
Because medical decisions have serious consequences, more accurate models are
increasingly preferred in research as they suggest a higher degree of confidence in
their output. However, post-modeling methods are needed to translate the findings
of these black-box models into an expert-understandable form, leading to the
challenge:

GOAL3: Post-hoc interpretation of complex black-box models

Chapter 8 has proposed an end-to-end data analysis workflow with steps for data
augmentation, modeling, interleaving model training with feature elimination,
and post-hoc analysis of the trained models. Our workflow yields (for any type of
model) statistics and visualizations representing global feature importance, instance-
individual feature importance, and subpopulation-specific feature importance. We
have validated our workflow on three modeling tasks: (i) tinnitus-related distress
after treatment in tinnitus patients, (ii) depression at baseline in tinnitus patients,
and (iii) rupture risk in intracranial aneurysms.



10.2 future work 149

Finally, Chapter 9 has presented a solution to examine how pre-defined subpopu-
lations differ concerning their most predictive characteristics. We have derived a
post-hoc interpretation measure to assess differences in the predictors’ associations
between two subpopulations. We have validated our solution by finding gender
and sex differences (subpopulations of female and male patients) for the target
variables tinnitus-related distress, depression, and liver fat concentration.

10.2 future work

causal subpopulation discovery. While our machine learning solutions
can initiate the generation of new hypotheses, they are limited to discovering
mere associations between variables, not cause-effect relationships. For example, we
have shown that depression strongly correlates with distress in tinnitus patients
(recall Chapters 5 and 8). The direction of the relationship cannot be inferred – does
tinnitus distress cause depression or vice versa? Or can the correlation instead be
explained by a confounder, i.e., a “lurking” third variable, such as low physical
health or socioeconomic status? Pearl and Mackenzie [PM18] give an example
of the Simpson’s paradox, a phenomenon where traditional correlation analysis
even contradicts true cause-effect relationships. When considering only pairwise
relationships, the data suggested that people who exercise more had increased
cholesterol levels. However, this relationship was masked by age. Older participants
exhibited higher activity levels in the study population. In an age-stratified analysis,
it became evident that more exercise leads to a decrease in cholesterol levels.

In causal inference, relationships between variables are modeled as a directed
acyclic graph (DAG) where the nodes represent the variables and the edges the
direction of causality [HR20; PM18]. Schölkopf [Sch19] described potential links
between machine learning and causal inference. Yu et al. [Yu+20] reviewed causal
feature selection methods, which assume that the optimal feature subset for a
target variable is equal to its Markov boundary. The Markov boundary comprises
nodes with outgoing (parents) or incoming (children) edges to the target and other
parents of child nodes (spouses) in the DAG (Figure 10.1). The assumption is that by
conditioning on a target variable’s Markov boundary, all other variables in the DAG
become independent of the target [Yu+20]. Hence, a possible direction for future
work is to investigate the potential of combining our methods with causal inference,
for example, by leveraging causal feature selection for predictive modeling. Here,
we are interested in determining whether features in the Markov boundary are
sufficient to predict the response and how causal approaches compare against their
non-causal counterparts regarding classification performance.

domain adaptation. For the time being, the findings on the datasets investi-
gated in this thesis cannot be replicated on other datasets. For example, we expect
that the models of our evolution feature framework (Chapter 6) built for SHIP
will perform poorly when applied to data samples from other population studies,
such as MONICA [Inv+88], KORA [Hol+05], or the Rotterdam Study [HBD+09].
Domain adaptation deals with transferring knowledge from the source to the target
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Figure 10.1: Illustrative example of a directed acyclic graph and Markov boundary for
the target X. The other labeled variables P-W constitute the Markov boundary
of X, consisting of its parents, children and any additional parents of its
children (“spouses”).

domain. Lemberger and Panico [LP20] summarized four major challenges in domain
adaptation:

• Prior shift refers to a difference between the source (A) and the target (B)
domain in the target variable’s distribution. For example, in this situation,
the liver fat concentration in A is (on average) higher than in B. This could
be due to differences in sampling, e.g., when for A, a higher percentage of
subjects with pre-existing conditions were drawn.

• Covariate shift refers to a difference in the predictors’ distributions in A and
B, while the relationships between the predictors and the target variable are
assumed to be the same. For example, subjects in A are older than subjects
in B, while at the same time, a high body mass index is predictive in both
domains.

• Concept shift refers to a difference in the relationship between the predictors
and the target variable. For example, while in A, smoking is observed in
subjects with increased liver fat concentration, smokers in B generally exhibit
lower liver fat values than non-smokers.

• Subspace mapping refers to the situation where the feature sets in A and B are
different. For example, hepatic steatosis is determined by ultrasound in A
and by MRT in B. Besides, different questionnaires were used in A and B to
assess life quality, and neither of the questionnaires in A was used in B and
vice versa.

Future efforts include leveraging methods from domain adaptation, for example,
to transfer the tinnitus phenotypes from Chapter 5 detected in CHA to patient data
of other tinnitus centers with different baseline characteristics.

parsimonious and cost-aware learning . Our methods disregard the
fact that features are not always available for free. Feature acquisition in medical
research is associated with certain costs, divided into the financial expense and
the health burden for the patient undergoing a potentially painful and invasive
examination [Kac+19]. For example, a biopsy usually has a higher diagnostic value
than a simple blood test but is also more expensive and physically and mentally
stressful for the patient. Yu et al. [YWB20] perform feature selection under a budget
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to balance model performance and feature acquisition cost. Consequently, their
models favor cheaper features like demographics and questionnaire responses
over costly ones requiring more expensive or strenuous physical examinations or
laboratory tests. Recall Chapters 3 and 4, where both somatic and ultrasound fea-
tures appeared in the classification rules describing subpopulations with increased
liver fat concentration. Our methods do not distinguish between features of simple
body measurements (e.g., to obtain a participant’s waist circumference or body
weight) and elaborate imaging procedures. Future research includes implementing
mechanisms to enable cost-aware learning.
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For each of the 64 variables selected for phenotyping in Chapter 5, phenotype-
stratified distributions and a brief description are shown below. Half-violin/half-
boxplot geometries represent numerical variables; bar graphs represent categorical
variables. The order of the variables is analogous to the clockwise arrangement
in Figures 5.2 and 5.3. Variables with an asterisk at the end of their name were
reversed to ensure higher scores consistently represent higher health burden across
all variables.

The prefix of a variable’s name denotes the respective questionnaire: ACSA:
Anamnestic Comparative Self-Assessment [BB93]; ADSL: General Depression Scale
[Rad77; HB03]; BI: Berlin Complaint Inventory [Hör+97]; BSF: Berlin Mood Ques-
tionnaire [HKS93]; ISR: ICD-10 Symptom Rating [Tri+08]; PHQK: (Short-form)
Patient Health Questionnaire [SKW+99]; PSQ: Perceived Stress Questionnaire
[Fli+05]; SES: Pain Perception Scale [Gei95]; SF8: Short Form 8 Health Survey
[BM08]; SOZK: A socio-demographics questionnaire [Bru+16]; SWOP: Self-Efficacy-
Optimism-Pessimism Scale questionnaire [SFK99]; TINSKAL: Visual analog scales;
TLQ: Tinnitus Localization and Quality questionnaire [GH92]; TQ: Tinnitus Ques-
tionnaire (German version) [GH98].
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