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ABSTRACT

In this thesis, structure-preserving model order reduction for dynamical systems is studied.
The particular focus lies on mechanical systems described by differential equations with
second-order time derivatives. Different system classes are considered such as linear,
bilinear and general nonlinear systems. Starting with the linear system case, existing
theory from modal truncation and dominant poles is used to derive a new structure-
preserving dominant pole algorithm for the special case of modally damped mechanical
systems. Error bounds are proposed for this new method and an extension is suggested
for further improvement of the approximation quality. In the sense of model order
reduction with localized approximation behavior, structure-preserving extensions of the
frequency- and time-limited balanced truncation methods for linear second-order systems
are developed. Further approaches are discussed to counter the arising problem of stability
preservation, and numerical methods are outlined to apply the model reduction methods to
systems with large-scale sparse matrices. Moreover, the class of bilinear systems involving
the multiplication of state and control variables is considered. Mainly motivated by the
mechanical system case, a representation of structured bilinear systems in the frequency
domain is developed. Considering the structured subsystem transfer functions as main
object of interest, an interpolation framework is proven for structure-preserving model
order reduction of these special nonlinear systems. Thereafter, this framework is extended
to the case of structured parametric bilinear systems. Tangential interpolation can be
used in case of linear multi-input/multi-output systems to carefully steer the resulting
dimensions of constructed reduced-order models in contrast to the approach of matrix
interpolation, which depends on the input and output dimensions of the original system.
Based on different motivations, a similar theory for tangential interpolation is developed
for structured bilinear systems. Structured systems with more general nonlinearities
are considered last, where the process of quadratic-bilinearization is used to rewrite the
systems into a form with easier manageable nonlinearities. Similar to the bilinear system
case, a particular nonlinear mechanical system example is used to derive structured
representations of quadratic-bilinear systems in the frequency domain. Based on that, a
variety of transfer function interpolation results are developed for structure-preserving
model reduction of quadratic-bilinear systems. Numerical experiments are used for all
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introduced model reduction approaches to validate the developed theoretical results and
compare them to known model reduction methods from the literature.
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ZUSAMMENFASSUNG

Die vorliegende Arbeit befasst sich mit strukturerhaltender Modellordnungsreduktion für
dynamische Systeme. Dabei liegt der besondere Schwerpunkt auf mechanischen Systemen
mit Zeitableitungen zweiter Ordnung. Es werden verschiedene Systemklassen wie z.B. lin-
eare, bilineare und Systeme mit allgemeineren Nichtlinearitäten betrachtet. Beginnend mit
dem linearen Systemfall wird ein neuer strukturerhaltender Dominant-Pole-Algorithmus
für modal gedämpfte, mechanische Systeme entwickelt. Dieser basiert auf bekannter
Theorie über modales Abschneiden und dominante Pole. Es werden Fehlerschranken für
diese Methode bewiesen und eine Erweiterung vorgeschlagen, um das Approximationsver-
halten weiter zu verbessern. Im Sinne von Modellordnungsreduktion mit lokalisierter
Approximation werden frequenz- und zeitbeschränktes balanciertes Abschneiden zu struk-
turerhaltenden Methoden für lineare Systeme zweiter Ordnung erweitert. Um dem Verlust
der Stabilitätserhaltung entgegenzuwirken und um die Modellreduktionsmethoden auch
im Fall von großen, dünnbesetzten Systemen zweiter Ordnung anwenden zu können
werden weitere Ansätze diskutiert und numerische Verfahren skizziert. Des Weiteren wird
die Klasse der bilinearen Systeme, welche das Produkt aus Zustands- und Steuerungsvari-
ablen enthalten, betrachtet. Hauptsächlich motiviert durch den mechanischen Fall wird
eine Darstellung von strukturierten, bilinearen Systemen im Frequenzbereich entwickelt.
Zur strukturerhaltenden Modellreduktion dieser speziellen nichtlinearen Systeme wird ein
Interpolationsansatz hergeleitet, bei welchem die strukturierten Übertragungsfunktionen
als zu interpolierende Objekte betrachtet werden. Darauffolgend wird dieser Ansatz auf
den Fall von strukturierten, parametrischen, bilinearen Systemen erweitert. Tangentiale
Interpolation bietet im Fall von linearen Mehrgrößensystemen die Möglichkeit, die Dimen-
sionen des konstruierten, reduzierten Modells besser zu kontrollieren, welche beim Ansatz
der Matrixinterpolation an die Anzahl der Ein- und Ausgänge gebunden sind. Basierend
auf verschiedenen Motivationsbeispielen wird eine ähnliche Theorie für strukturierte,
bilineare Systeme entwickelt. Den Abschluss bildet die Betrachtung von Systemen mit
allgemeineren Nichtlinearitäten. Es wird die Methode der quadratischen Bilinearisierung
benutzt, um diese Systeme in eine Form umzuschreiben, welche einfachere Nichtlinear-
itäten beinhaltet. Ein spezielles nichtlineares, mechanisches Beispiel wird verwendet um
ähnlich zum bilinearen Fall strukturierte Darstellungen im Frequenzbereich herzuleiten.
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Es wird eine Vielzahl von Ergebnissen zur Übertragungsfunktionsinterpolation entwickelt,
welche der strukturerhaltenden Modellordnungsreduktion von quadratisch bilinearen
Systemen dienen. Numerische Experimente werden für alle entwickelten Modellreduktion-
smethoden benutzt um sowohl die theoretischen Resultate zu validieren, als auch diese
neuen Methoden mit anderen bekannten Modellreduktionsmethoden aus der Literatur
zu vergleichen.
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CHAPTER 1

INTRODUCTION

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Motivating examples for mechanical systems . . . . . . . . . . . . . . . . 5

1.3.1 Butterfly gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Artificial fishtail model . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 Toda lattice model . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Motivation
Almost all real-world phenomena and processes are nowadays described by systems of
partial differential equations (PDEs), which relate physical quantities to their partial
derivatives with respect to time and space. The most common approach to use these
mathematical descriptions of the real world in computer-aided design processes and
numerical experiments is a spatial discretization, usually via methods like finite elements
or finite differences/volumes, leading to systems of ordinary differential equations (ODEs)
or, in the presence of additional physical constraints such as conservation laws, to systems
of differential-algebraic equations (DAEs). The resulting systems, which describe the
time evolution of processes, are known as dynamical systems. In the presence of external
forcing (inputs) and the observation of certain quantities of interests (outputs), dynamical
systems can formally be written as

Eẋ(t) = f(t, x(t), u(t)),
y(t) = g(t, x(t)),

(1.1)
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1 Introduction

with the solution trajectory x : R≥0 → Rn1 described by a system of differential equations
with the state-evolution function f : R≥0 ×Rn1 ×Rm → Rn1 and mass matrix E ∈ Rn1×n1 .
The inputs u : R≥0 → Rm are used to influence the internal behavior of the system from
the outside and the outputs y : R≥0 → Rp model observations of the quantities of interest
via an algebraic output equation using the function g : R≥0 × Rn → Rp. Note that the
spaces, in which these functions exist, strongly depend on the final definitions of u, f
and g, and, therefore, are omitted here.

The complexity of a dynamical system (1.1) reflects the difficulties that come along
with the computation of the solution x(t). This can amount to different meanings,
for example, systems that are described by a linear state-evolution function f are less
complex than systems with a nonlinear f . However, an important measure for complexity
is the number of differential equations n1 used to describe the system. With a constantly
increasing demand for modeling accuracy also the number of differential equations in
dynamical systems grows fast, which makes the systems harder to evaluate in numerical
computations such as simulations, optimization procedures or the design of controllers.
Even with continuously increasing computational capabilities of modern computers, the
demand of large-scale dynamical systems (n1 ⪆ 106) for computational resources, such
as time and memory, easily becomes unmanageable for a growing number of differential
equations. Observing that in practice the numbers of inputs and outputs in (1.1) are
often very small compared to the number of differential equations, m, p ≪ n1, motivates
the assumption that not the full solution x(t) of the differential system is needed to
describe the system’s input-to-output behavior. The process of model order reduction
is the construction of a surrogate system for (1.1) that is described by a much smaller
number of differential equations r1 ≪ n1. This makes the surrogate model a lot easier to
evaluate than the original system in computations. To actually use the reduced-order
model as a surrogate, it needs to approximate the input-to-output behavior of the original
system, i.e., for the same input given to the full- and reduced-order models, the output
signals are close to each other:

∥y − ŷ∥ ≤ ϵ · ∥u∥, (1.2)

with the output of the reduced-order model ŷ, in some appropriate norm, for a suitable
tolerance ϵ and all admissible input signals u.

Depending on the underlying physical phenomena, dynamical systems (1.1) can inherit
certain structures in the differential equations. The main concern in this thesis are
mechanical systems. These usually result from the modeling process of mechanical
structures such as bridges, buildings, or vehicles, and describe the time evolution process
by differential equations involving second-order time derivatives. For example, linear
time-invariant mechanical systems are given by

Mẍ(t) + Eẋ(t) + Kx(t) = Buu(t),
y(t) = Cpx(t) + Cvẋ(t),

(1.3)
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with the system matrices M, E, K ∈ Rn2×n2 , the input matrix Bu ∈ Rn2×m and the
two output matrices Cp, Cv ∈ Rp×n2 . In principle, it would be possible to rewrite (1.3)
into the more classical form (1.1) using substitution variables such that only differential
equations with first-order time derivatives are used. However, this replacement process is
often undesired. It doubles the number of differential equations describing the system,
which increases the computational workload produced in the evaluation of the dynamical
system. Over the last decades, a lot of computational tools for dynamical systems were
extended to directly handle (1.3) in its original second-order form. In the context of
model order reduction, it is desired that the computed surrogate models provide exactly
the same structure as (1.3), since:

• this allows the use of the same computational tools as for the original systems,

• structure-preserving reduced-order models often yield a higher accuracy than
unstructured variants with the same number of differential equations, and

• the system quantities of the structure-preserving reduced-order model could yield
a physical reinterpretation, which gives further computational advantages or new
insights into the modeling process.

The preservation of the system structure in the model reduction process is referred to
as structure-preserving model order reduction. Besides the linear system case (1.3), also
other classes of mechanical systems involving special nonlinearities will be treated in this
thesis. However, these will be further explored in the corresponding chapters.

1.2 State of the art
The problem of structure-preserving model order reduction for linear mechanical systems
is basically as old as the topic of linear model reduction itself. This amounts to the
relevance of mechanical systems in practical applications. Modal truncation, as one of
the oldest model reduction methods [75], got quickly extended to the second-order setting
in various ways [73,105,125]. Even nowadays, structure-preserving modal truncation is
the preferred approach for model reduction in engineering sciences due to its generality
and computational simplicity [60]. However, a general problem of related approaches is
the selection of appropriate system modes to approximate the original dynamics. The
dominant pole algorithms [138] were developed as remedy to this problem, which in
recent years were extended to large-scale sparse systems [161, 162] as well as to the
general case of second-order systems like (1.3); see, for example, in [48, 163]. In practice,
the modeling of internal damping of mechanical systems is often simplified to the use of
combinations of the mass and stiffness terms of the system leading to so-called modally
damped mechanical systems. This subclass of linear mechanical systems holds several
advantageous properties that are currently not considered in theory or implementations
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of structure-preserving dominant pole algorithms. This point will be discussed in this
thesis, while also treating other problems of modal truncation concerning bounds for the
approximation error and the limited approximation quality. Further details on modal
truncation methods for linear first- and second-order systems can be found in Section 3.2.

A different question arising in model reduction is regions of approximation. Not
always the complete frequency axis or infinitely long time simulations are needed in
practice. Consequently, it is enough for surrogate models to only approximate frequency
or time ranges of interest. For first-order linear systems, this led to the development
of the frequency- and time-limited balanced truncation methods [47, 90, 130]. These
methods were recently re-considered for structure-preserving model reduction for second-
order systems (1.3) in [107, 108]. The authors selected only two ideas from the zoo of
second-order balanced truncation methods [69,143,159] to transfer the ideas of limited
model order reduction. Besides that, there is a general misconception regarding the
problem of stability preservation when using second-order balanced truncation methods,
and also the problem of applicability of the methods to the large-scale sparse system
case. A more general transition from second-order balanced truncation to limited model
order reduction is done in this thesis, discussing the problem of stability preservation
and proposing numerical methods for the application in the large-scale sparse system
setting. An introduction to (limited) balanced truncation and further details are shown
in Section 3.4.

Another current research topic in model reduction is the approximation of nonlinear
systems. In case of general nonlinearities, time simulations are usually used to gain
information about the underlying system dynamics. This is, for example, the case in
proper orthogonal decomposition (POD) or in the empirical Gramian framework; see,
e.g., [71, 112,114,128,133,165,186]. Besides strongly depending on the chosen control
signals and time discretization schemes, also the nonlinearities need to be approximated
in this setting. This usually amounts to some type of hyper-reduction method like the
(discrete) empirical interpolation method ((D)EIM) [20,71, 77]. Against this background,
the focus of research changed in the last years to systems with specially structured
nonlinearities, like bilinear and quadratic-bilinear systems [63, 95, 145, 146]. For these
systems, intrusive model reduction methods were constructed that do not involve time
simulations or the additional use of hyper-reduction methods. For overviews about
developed model reduction methods for bilinear and quadratic-bilinear systems see the
introductions of Chapters 5 and 6. However, all those newly developed approaches
only cope with the case of first-order systems without any further internal structures of
the differential equations. In other words, systems with internal structures such as the
second-order time-derivatives from the mechanical system case or, for example, systems
with internal time delays, cannot be handled by those methods. An important point in
this thesis will be to close this gap and to develop model order reduction methods for
systems with general internal structures involving bilinear and quadratic nonlinearities.
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(a) Manufactured specimen. (b) Schematic layout.

Figure 1.1: Design of the butterfly gyroscope [61,149].

1.3 Motivating examples for mechanical systems
In this section, three motivating examples with underlying mechanical systems are used
to illustrate the necessity of structure-preserving model order reduction in practical
applications.

1.3.1 Butterfly gyroscope
The butterfly gyroscope is an open benchmark example for model order reduction methods
from the Oberwolfach Benchmark Collection [61, 149]. It models a vibrating micro-
mechanical gyroscope for the use in inertial navigation applications. The design of the
chip itself is illustrated in Figure 1.1. The displacement field is described by linear three-
dimensional partial differential equations from elastodynamics involving second-order
time derivatives. Using a spatial finite element discretization yields a linear mechanical
system of the form (1.3) described by n2 = 17 361 ordinary differential equations. The
states are excited by a single input (m = 1) and measuring the displacement of the four
wings in the three spatial directions gives p = 12 outputs. The internal damping behavior
of the gyroscope is modeled by Rayleigh (or proportional) damping E = αM + βK, with
the coefficients α = 0 and β = 10−6.

In the practical process of improving the butterfly gyroscope, the mechanical system
needs to be simulated a lot of times with different input signals to analyze the system’s
behavior with respect to important physical phenomena, for example, its sensitivity
to shocks and vibrations. To perform the design process in a reasonable amount of
time, it is essential to improve the simulation efficiency of the system. A remedy is the
reduction of the number of describing/defining ordinary differential equations by model
order reduction techniques. Thereby, the second-order system structure needs to be kept
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(a) Transparent sketch. (b) Fluid chambers in relaxed and pressurized state.

Figure 1.2: Design and actuation principle of the artificial fishtail [168].

for the analysis process, and it is even more beneficial if additional mechanical properties
like the symmetry and definiteness of the system matrices are preserved. Therefore,
structure-preserving model reduction methods are required, here.

1.3.2 Artificial fishtail model
Autonomous underwater vehicles are an important and essential tool in environmental
observation tasks [119]. The classical thruster-driven approach has been proven to be
mostly inefficient and expensive [83], especially compared with the agile, fast and efficient
locomotion that fish naturally developed by evolution [168]. For the construction of
fish-like underwater vehicles, the artificial fishtail model was developed [168, 174, 175].
Three-dimensional partial differential equations are used to describe the deformation
of a fishtail-shaped silicon structure; see Figure 1.2a. For the fish-like locomotion, the
fluid elastomer actuation principle is used [137]. Therefore, the fishtail consists of two
symmetric, ripped chambers, as shown in Figure 1.2a, which are alternately put under
pressure; see Figure 1.2b. This bends the fishtail alternately into the corresponding
directions leading to the typical “flapping” behavior that fish use for locomotion.

The fishtail has a complicated geometric structure, which is expressed in the discretiza-
tion of the describing partial differential equations. Using the finite element method, the
discretized equations are given by a linear mechanical system (1.3) with n2 = 779 232
ordinary differential equations. A single input (m = 1) is used to describe the pressure
flow between the inner chambers and the displacement of the fishtail’s tip is observed in
all three spatial directions (p = 3). The internal damping behavior is modeled via the
Rayleigh approach with E = αM + βK, where α = 10−4 and β = 2 · 10−4. The size of
the resulting system leads to a tremendous amount of computational resources needed
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m1 m2 mi mn2
u(t)

Figure 1.3: Schematic idea of the Toda lattice model with n2 particles.

to perform simulations, e.g., the simulation of 2 s of the fishtail’s behavior easily takes
around 45 min of real-world computation time on the hardware described in Section 2.4.1.
The full-order system is simply unbearable when it comes to real-time applications or
the use of not so powerful hardware for computations, like an onboard chip. Therefore,
structure-preserving model reduction is needed here to provide a suitable surrogate model
described by only a few differential equations.

1.3.3 Toda lattice model

The Toda lattice [180] is a model that is used in solid-state physics to describe the motion
of particles in a one-dimensional crystal structure; see Figure 1.3; by modeling the system
as a single chain oscillator with “exponential springs” [70]. The dynamical system is
classically given by considering the particle masses with nearest-neighbor interaction and
the nonlinear Hamiltonian

H(x; q) =
n2∑

j=1

q2
j

2mj

+
n2−1∑
j=1

ekj(xj−xj+1)

kj

+ ekn2 xn2

kn2

− x1 −
n2∑

j=1

1
kj

,

where xj(t) is the displacement of the j-th particle from its initial position in the lattice,
qj(t) the corresponding momentum, and n2 the overall number of particles. Mass and
stiffness coefficients mj and kj can be used as parametrization of different particle types
and their interactions. To get the system description in terms of ordinary differential
equations, the Hamiltonian needs to be differentiated with respect to displacement and
momentum, which yields

∂H
∂qj

(x; q) = qj

mj

,
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for all j = 1, . . . , n2, in case of the momenta, and
∂H
∂x1

(x; q) = ek1(x1−x2) − 1,

∂H
∂x2

(x; q) = ek2(x2−x3) − ek1(x1−x2),

...
∂H
∂xi

(x; q) = eki(xi−xi+1) − eki−1(xi−1−xi),

...
∂H

∂xn2

(x; q) = ekn2 xn2 − ekn2−1(xn2−1−xn2 ),

for the displacements. The equations of motion

ẋ(t) = ∂H
∂q

(x; q), q̇(t) = −∂H
∂x

(x; q),

together with some additional internal damping, with coefficients γk > 0, results in a
nonlinear mechanical system of the form

Mẍ(t) + Eẋ(t) + f(x(t)) = g(t), (1.4)

with initial conditions x(0) = ẋ(0) = 0 and external forcing g(t), which models the
excitation of the particles. The system matrices are then given by

M =


m1

. . .
mn2

 and E =


γ1

. . .
γn2

 ,

and the nonlinear function in (1.4), which models the nonlinear springs, is

f(x(t)) =



ek1(x1(t)−x2(t)) − 1
ek2(x2(t)−x3(t)) − ek1(x1(t)−x2(t))

...
eki(xi(t)−xi+1(t)) − eki−1(xi−1(t)−xi(t))

...
ekn2 xn2 (t) − ekn2−1(xn2−1(t)−xn2 (t))


.

Usually, only a small amount of the particles in the model is of actual interest, which
adds an algebraic output equation to (1.4), for example,

y(t) = Cvx(t), (1.5)
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with Cv ∈ Rp×n2 , to observe p linear combinations of the velocities of the particles of
interest.

In practical applications with large crystal structures, the number of involved particles
quickly increases, which makes the nonlinear system (1.4) arbitrarily large and, conse-
quently, complicated to evaluate. When approximating the system (1.4) by a surrogate
model, the approximation should preserve the mechanical system structure, i.e., the
second-order time derivatives. Besides reinterpretation of the approximation, in presence
of the nonlinearities in (1.4), it might turn out to be beneficial to preserve as many
physical properties of the system as possible to provide, at the end, a suitable surrogate.

1.4 Outline of the thesis
This thesis is structured as follows. In Chapter 2, the basic mathematical theory and
notations are introduced. It starts with concepts from linear and multilinear/tensor
algebra, followed by notional conventions from functional analysis. Thereafter, a compact
overview about linear systems theory is given with focus on first-order systems and
extensions to the second-order case. For systems with bilinear and quadratic nonlinearities,
different frequency domain representations are introduced before the chapter concludes
with the setup for numerical experiments. This includes an introduction of the MORscore
for the comparison of model reduction methods used in the numerical experiments of
this thesis.

Chapter 3 introduces basic ideas of state-of-the-art model order reduction methods for
linear systems that are needed later in this thesis. The chapter starts with the projection
framework as the main construction approach for reduced-order models in first- and
second-order form, here. Thereafter, three different types of model reduction methods
are introduced. The first approach is modal truncation, where beside basic ideas for first-
and second-order systems also the dominant pole algorithm is discussed. It follows an
introduction of interpolation-based (moment matching) model reduction, including a
short historical overview, the idea of tangential interpolation for model reduction and
extensions to, not only, the case of second-order systems, but also linear systems with a
more general internal structure. The last discussed type of model reduction methods is
based on the balanced truncation approach. There, frequency- and time-limited variants
for first-order systems are outlined, and a collection of formulas for structure-preserving
second-order extensions of the classical (unlimited) balanced truncation method is shown.

In Chapter 4, new model reduction methods for linear second-order systems are
discussed. Section 4.1 contains a structure-preserving extension of the dominant pole al-
gorithm for modally damped second-order systems. A structured pole-residue formulation
is developed and used to define dominant pole pairs of modally damped second-order sys-
tems. These ideas are then used to derive a structure-preserving dominant pole algorithm
for which error bounds in the H∞-norm are derived. A structure-preserving strategy to
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overcome weaknesses in the approximation quality is proposed using structured interpola-
tion. The new dominant pole algorithms are then tested using two benchmark examples
and compared to other established structure-preserving model order reduction methods.
On the other hand, Section 4.2 is concerned with the question of structure-preserving
model reduction for second-order systems with localized approximation behavior in
frequency and time domain. A structure-preserving extension to second-order systems
for the frequency- and time-limited balanced truncation methods is proposed. To over-
come problems with the preservation of stability in the reduced-order model, alternative
approaches are discussed. To handle the arising large-scale sparse matrix equations,
numerical procedures such as large-scale matrix equation solvers, an α-shift strategy and
hybrid model order reduction methods are outlined. For two benchmark examples, the
different resulting limited structure-preserving model reduction methods are computed.
The results are compared to each other and to the classical approaches with global
(unlimited) approximation behavior.

Inspired by bilinear mechanical systems, in Chapter 5, model order reduction for bilinear
systems with a more general concept of internal structure is discussed. First, the frequency
representation of bilinear systems, namely the subsystem transfer functions, is extended
to the general structured setting using two different example structures as motivation. A
new structure-preserving interpolation framework for these structured transfer functions
of bilinear systems is then introduced. This includes results on matching interpolation
conditions in explicit as well as implicit ways. For the case of single-input/single-output
systems, numerical experiments are used to compare structured reduced-order models to
unstructured ones. The interpolation theory is then extended to the case of structured
parametric bilinear systems. Last, the idea of tangential interpolation is used to tackle
structured bilinear multiple-input/multiple-output systems. Via different motivations, a
unifying framework is developed that covers various ideas of tangential interpolation for
bilinear systems at the same time. In numerical experiments, the different tangential
interpolation methods are compared to each other, as well as to the alternative approach
of matrix interpolation.

Chapter 6 is motivated by nonlinear mechanical systems but considers more general
structures similar to the bilinear system case. The process of quadratic-bilinearization is
used to derive structured quadratic-bilinear systems. Frequency representations in terms
of subsystem transfer functions of quadratic-bilinear systems are then extended to the
structured setting, and afterwards, a structure-preserving model reduction approach is
proposed based on the interpolation of structured transfer functions. The Toda lattice
model is used as a nonlinear mechanical system example to test the developed theory in
numerical experiments.

This thesis is concluded in Chapter 7 with a summary of the results and an overview
of open questions and research perspectives.
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CHAPTER 2

MATHEMATICAL BASICS AND GENERAL SETTING

Contents
2.1 Basic linear algebra concepts and notation . . . . . . . . . . . . . . . . . 12

2.1.1 Tensor algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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2.2.1 First-order systems . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Second-order systems . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Frequency domain representations of special nonlinear systems . . . . . . 22
2.3.1 Bilinear control systems in frequency domain . . . . . . . . . . . . 23
2.3.2 Quadratic-bilinear systems in frequency domain . . . . . . . . . . 25

2.3.2.1 Volterra series expansion of quadratic-bilinear systems . 25
2.3.2.2 Symmetric subsystem transfer functions . . . . . . . . . 26
2.3.2.3 Regular subsystem transfer functions . . . . . . . . . . . 28
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2.4.1 Hardware and software environments . . . . . . . . . . . . . . . . 31
2.4.2 Comparison of model reduction methods in the MORscore . . . . 33

In this chapter, the mathematical preliminaries are summarized and the notation
of this thesis is fixed. First, some basic terms and notation from tensor algebra and
functional analysis are introduced in Section 2.1. Afterwards in Section 2.2, basic system-
theoretic notion and concepts are considered for linear systems in first- and second-order
form. Frequency representations of systems with special nonlinearities are discussed in
Section 2.3. The chapter is concluded in Section 2.4 by the hardware and software setup
used in all numerical experiments of this thesis, and by an introduction of the MORscore
used for the comparison of model reduction methods.
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2.1 Basic linear algebra concepts and notation

2.1.1 Tensor algebra
Before discussing tensors and some algebraic results for these, the following definition
gives two important operations for matrices. Similar introductions to tensor algebra can
be found in [63,95].

Definition 2.1 (Vectorization and Kronecker product [91]):
Let X =

[
x1 . . . xn2

]
∈ Cn1×n2 be an arbitrary matrix with columns xj ∈ Cn1 , for

j = 1, . . . , n2. The vectorization of X is defined as the row concatenation of the columns
of X:

vec(X) :=


x1
x2
...

xn2

 ∈ Cn1n2 .

Given another matrix Y ∈ Cn3×n4 , the Kronecker product of X with Y is defined to be

X ⊗ Y =


x11Y · · · x1n2Y

... ...
xn11Y · · · xn1n2Y

 ∈ Cn1n3×n2n4 . ♢

Results and properties following from Definition 2.1 can be found in standard linear
algebra textbooks, e.g., in [91,115]. Additionally, the Hermitian transposed of a matrix
X ∈ Cn1×n2 will be denoted by XH := X

T ∈ Cn2×n1 .
In the last decades, tensors received more and more attention by different mathematical

and engineering communities [98, 123, 127], especially in the application of low-rank
approximations [97]. Formally, a tensor X is a multi-linear description that relates
algebraic objects corresponding to vector spaces. It is usually interpreted as a number
array of order d with its elements indexed by a product index set

I = I1 × . . . × Id,

with |Ij| = nj and often assumed to be Ij = {1, 2, . . . , nj}, for j = 1, . . . , d. For
example, X ∈ Cn1×...×nd is a d-th-order tensor with entries from C and dimensions
n1, . . . , nd. While tensors are often a good way to represent certain types of data, they
are problematic when computations need to be performed. These are usually done via
matrix representations of the tensors. While there are various ways of flattening tensors
into matrices [98, 122], only the following definition will be of interest in this thesis.
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Definition 2.2 (Tensor µ-mode matricizations [123]):
The µ-mode matricization X(µ) ∈ Cnµ×n1···nµ−1nµ+1···nd of a tensor X ∈ Cn1×...×nd , with
1 ≤ µ ≤ d, is defined to be the mapping of tensor indices (i1, i2, . . . , id) onto matrix
indices (iµ, j) with

j = 1 +
d∑

k=1, k ̸=µ

(ik − 1)Jk, where Jk =
k−1∏

ℓ=1, ℓ ̸=k

nℓ. ♢

As illustration of Definition 2.2, consider the third-order tensor X ∈ C2×2×3. Then,
the matricizations of X read as follows

X(1) =
[
X(1,1,1) X(1,2,1) X(1,1,2) X(1,2,2) X(1,1,3) X(1,2,3)
X(2,1,1) X(2,2,1) X(2,1,2) X(2,2,2) X(2,1,3) X(2,2,3)

]
,

X(2) =
[
X(1,1,1) X(2,1,1) X(1,1,2) X(2,1,2) X(1,1,3) X(2,1,3)
X(1,2,1) X(2,2,1) X(1,2,2) X(2,2,2) X(1,2,3) X(2,2,3)

]
,

X(3) =

X(1,1,1) X(2,1,1) X(1,2,1) X(2,2,1)
X(1,1,2) X(2,1,2) X(1,2,2) X(2,2,2)
X(1,1,3) X(2,1,3) X(1,2,3) X(2,2,3)

 .

As one can already see by this example, in case of third-order tensors, all matricizations can
easily be converted into each other using matrix operations. Let a tensor X ∈ Cn1×n2×n3

be given with its 1-mode matricization

X(1) =
[
X1 X2 . . . Xn3

]
,

where Xj ∈ Cn1×n2 for all j = 1, . . . , n3. Then, the other two matricizations can be
written as

X(2) =
[
XT

1 XT
2 . . . XT

n3

]
and X(3) =

[
vec(X1) vec(X2) . . . vec(Xn3)

]T
.

Note that even with the elements of X to be from C, the matricizations are only
rearrangements of these and, therefore, involve only the transposed instead of the
conjugate transposed operation.

An important point when working with matricizations of tensors is the multiplication
with other matrices. Given a third-order tensor X ∈ Cn1×n2×n3 and three matrices
U ∈ Cn1×m1 , V ∈ Cn2×m2 , W ∈ Cn3×m3 , then if the tensor Y ∈ Cm1×m2×m3 is given by
its 1-mode matricization such that

Y (1) = UHX(1)(W ⊗ V ), (2.1)

equivalently Y can be computed by

Y (2) = V TX(2)(W ⊗ U) = V HX(2)(W ⊗ U), (2.2)

Y (3) = WTX(3)(V ⊗ U) = W HX(3)(V ⊗ U); (2.3)
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see, e.g., [123]. In other words, the product of matrices with a tensor matricization
is equivalently described by other matricizations of the resulting tensor. This allows
formally to change the order of multiplications.

Another property of third-order tensors that is often used in the context of model
order reduction approaches, e.g., in [4, 30,92], is symmetry.
Definition 2.3 (Symmetric tensors [123]):
A tensor X ∈ Cn×n×n is called symmetric if X(2) = X(3) holds. ♢

For a symmetric tensor X ∈ Cn×n×n and two arbitrary vectors u, v ∈ Cn, it is easy to
see by using (2.1) and (2.2) that

X(1)(u ⊗ v) =
(
vTX(2)(u ⊗ In)

)T
=
(
vTX(3)(u ⊗ In)

)T
= X(1)(v ⊗ u) (2.4)

holds. But usually, the occurring tensors are not given in symmetric form. Since
in [4, 30,92], they are used in quadratic systems to be multiplied only with a vector in
Kronecker product with itself, X(1)(v ⊗ v), it is possible to symmetrize the underlying
tensor since this will not change the application of its 1-mode matricization on (v ⊗ v). A
tensor X ∈ Cn×n×n can be symmetrized by computing a new tensor X̃ ∈ Cn×n×n such
that

X̃(2) = 1
2(X(2) + X(3)).

2.1.2 Notion from vector calculus
Due to its heavy use in this thesis, an abbreviation for partial derivatives is introduced

∂
s

j1
1 ···sjk

k

f(z1, . . . , zk) := ∂j1+...+jkf

∂sj1
1 · · · ∂sjk

k

(z1, . . . , zk), (2.5)

denoting the differentiation of a function f : Ck → Cℓ with respect to the complex
variables s1, . . . , sk and evaluated at z1, . . . , zk ∈ C. In the sense of (2.5), the Jacobian
of f will be denoted by

∇f(z1, . . . , zk) =
[
∂s1f(z1, . . . , zk) . . . ∂sk

f(z1, . . . , zk)
]

, (2.6)

to be the column concatenation of all partial derivatives.
In terms of the notation of general functions, this thesis will not involve any inverse

functions, i.e., for a given f : z 7→ y the function f−1 will not denote the inverse mapping
y 7→ z but the inversion of the resulting object of the function f . As example, consider
the matrix valued function K : C → Cn×n, which maps a complex variable onto an
n-dimensional square matrix. Then

K−1 := K(.)−1 (2.7)

14



2.2 System-theoretic concepts for linear systems

denotes the inverse of the n-dimensional square matrix in the frequency points in which
K is invertible.

These two types of abbreviations (2.5) and (2.7) will also occur combined. For example,
given a second matrix-valued function B : C → Cn×m, the partial derivative of the product
with the inverse of K will be denoted by

∂
s

j1
1 s

j2
2

(K−1B)(z1, z2) := ∂j1+j2K(.)−1B(.)
∂sj1

1 ∂sj2
2

(z1, z2).

Further on, the usual misuse of notation from systems theory and numerical analysis
will be applied in this thesis.

2.2 System-theoretic concepts for linear systems
This section is concerned with basic concepts for linear time-invariant systems. The
points presented here are mainly taken from [9] but can also be found in other standard
textbooks about systems theory or model order reduction; see, e.g., [10, 34, 113,154,177].
This section itself is additionally separated into the classical first-order systems and
(mechanical) second-order systems.

2.2.1 First-order systems
Before the special case of mechanical (second-order) systems is considered, some properties
of first-order linear time-invariant (LTI) systems are needed first. These systems have
the form

GL :
{

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(2.8)

with E, A ∈ Rn1×n1 , B ∈ Rn1×m, C ∈ Rp×n1 ; E invertible, if not stated otherwise, and
initial condition x(t0) = x0 with x0 ∈ Rn1 . Default assumptions for (2.8) in model order
reduction are x(t0) = 0 and t0 = 0 to neglect the initial value’s influence on the system’s
behavior. These assumptions are also made through-out this thesis. As in the general case
of dynamical systems (1.1), the behavior of (2.8) is given via the three time-dependent
functions: u : R≥0 → Rm, the inputs that are used to control x : R≥0 → Rn1 , the internal
states, to get the desired outputs y : R≥0 → Rp.

Remark 2.4 (Feed-through terms):
A common modification of (2.8) in systems and control theory is the addition of a
feed-through term D ∈ Rp×m to the output equation such that

y(t) = Cx(t) + Du(t).
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This feed-through term will not play any role in this thesis, but all developed model
reduction theory can be transferred to systems with feed-through term by preserving the
original term in the reduced-order system D̂ = D.

In some applications, the case D̂ ̸= D is of particular interest. This can be treated in cer-
tain model reduction approaches, like interpolation methods, by additional modifications
of the construction formulae; see, e.g., [24, 84]. ♢

The first-order system (2.8) can be found under different names in the literature, usually
depending on the specific realization of the E matrix. The system (2.8) is called a standard
state-space system in case of E = In1 and it is called a generalized state-space system if E is
invertible but not the identity, i.e., when the states are described by a system of ODEs with
a mass matrix. In case of E singular, (2.8) contains DAEs and is referred to as descriptor
system. Furthermore, the system (2.8) is called single-input/single-output (SISO) in case
of m = p = 1 and multiple-input/multiple-output (MIMO) otherwise. Since E is assumed
to be invertible, the state of (2.8) is analytically given via the variation of constants
principle with

x(t) = eE−1Atx0 +
t∫

t0

eE−1A(t−τ)E−1Bu(τ)dτ. (2.9)

Subsequently, the system output of (2.8) can be written as

y(t) = CeE−1Atx0 +
t∫

t0

CeE−1A(t−τ)E−1Bu(τ)dτ. (2.10)

Definition 2.5 (System realizations and order [9, Definition 4.2]):
The quadruple GL = (A, B, C, E) ∈ Rn1×n1 ×Rn1×m ×Rp×n1 ×Rn1×n1 is called a realization
of the system (2.8). The order of (2.8) is defined to be the dimension of the corresponding
state-space n1. ♢

In general, the realization of a system is not unique in the sense of its input-to-output
behavior, i.e., the same system can be described by different realizations. A system
realization (2.8) is called equivalent to another realization G̃L = (̃A, B̃, C̃, Ẽ) if and only if
there exist (invertible) transformation matrices Z, T ∈ Cn1×n1 such that

Ẽ = ZHET, Ã = ZHAT, B̃ = ZHB, C̃ = CT. (2.11)

Therein, the matrix T yields a coordinate transformation x̃ = T x and Z transforms the
describing equations. The change of one system to an equivalent one in the sense of (2.11)
is referred to as generalized state-space transformation.

The following definition introduces some important system properties.
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Definition 2.6 (Basic system properties [9, Definitions 4.2, 4.6, and 4.19]):
The system (2.8) is called:

(a) asymptotically stable or c-stable, if all eigenvalues of the matrix pencil λE − A, i.e.,
all λ ∈ C such that det(λE − A) = 0, have negative real parts.

(b) controllable in [t0, tf ], if any initial state x(t0) can be steered to any final state x(tf)
by an appropriate input signal u(t) with finite energy.

(c) observable in [t0, tf ], if the set of states such that y(t) = Cx(t) = 0, for all t ∈ [t0, tf ],
contains only the zero state x(t) = 0. ♢

Controllability and observability are important concepts in model order reduction to
characterize system components that do not contribute substantially to the input-to-
output behavior of the system. It can be shown that a system (2.8) is minimal, i.e., has
the smallest possible order to describe exactly the input-to-output behavior, if and only
if it is controllable and observable. There are a variety of different equivalent definitions
and criteria for the system properties in Definition 2.6. Some can be found, for example,
in [9, Chapters 4 and 5].

A useful tool to deal with systems of differential equations is the Laplace transformation.
For a time domain function f : R≥0 → Rn, its Laplace transform is defined to be

F (s) = L {f(t)} (s) :=
∞∫

0

f(t)e−stdt, (2.12)

if the integral exists, with the complex frequency variable s ∈ C. Applying now (2.12)
to the linear system (2.8) results in an equivalent description in the complex frequency
domain via algebraic equations rather than differential ones

sEX(s) − Ex0 = AX(s) + BU(s),
Y (s) = CX(s),

(2.13)

where X : C → Cn, U : C → Cm, and Y : C → Cp are the Laplace transforms of the
equally named time domain functions x, u and y, respectively. With the assumption that
x0 = 0, the input-to-output behavior of (2.8) in the frequency domain can be directly
described by

Y (s) =
(
C(sE − A)−1B

)
U(s)

=: GL(s)U(s),

where the complex, matrix-valued function

GL(s) = C(sE − A)−1B (2.14)
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is called the transfer function of (2.8).
In model order reduction, the input-to-output behavior of (2.8) is approximated via a

surrogate model of smaller order. For an analysis of the approximation quality, norms
for dynamical systems are needed. The following definition states two commonly used
system norms.

Definition 2.7 (System norms [9, Section 5.1.3]):
Assume (2.8) to be asymptotically stable with its transfer function (2.14).

(a) The H2-norm is defined as

∥GL∥H2 :=

√√√√√ 1
2π

∞∫
−∞

∥GL(ωi)∥2
F dω.

(b) The H∞-norm is defined as

∥GL∥H∞ := sup
ω∈R

∥GL(ωi)∥2. ♢

While most of the time, the norms in Definition 2.7 are sufficient for studying stable
systems, it should be noted that an important expansion of the H∞-norm for systems
with anti-stable parts, i.e., where eigenvalues of λE − A have positive real parts, is the
L∞-norm. This norm is analogously to the H∞-norm defined as

∥GL∥L∞ := sup
ω∈R

∥GL(ωi)∥2.

The norms in Definition 2.7 are defined using the system’s transfer function in the
frequency domain. Results from Parseval, Plancherel and Payley-Wiener give links
between the time and frequency domain description of (2.8) in terms of norms and
spaces [9, Proposition 5.1]. Roughly speaking, the approximation behavior of the transfer
functions in the frequency domain is equivalent to the input-to-output approximation
behavior in the time domain, i.e., the better the transfer function is approximated
the smaller the time domain input-to-output error will be. In fact, the following two
inequalities can be shown to hold in time domain (and also in frequency domain with
accordingly changed functions and spaces):

∥y − ŷ∥L2 ≤ ∥GL − ĜL∥H∞∥u∥L2 ,

∥y − ŷ∥L∞ ≤ ∥GL − ĜL∥H2∥u∥L2 ,

for u and y − ŷ in the appropriate spaces, and where ŷ is the output signal of an
approximating system corresponding to ĜL. The two norms used above are the time
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2.2 System-theoretic concepts for linear systems

domain L2- and L∞-norms, which are defined by

∥x∥L2 :=

√√√√√ tf∫
t0

∥x(t)∥2
2dt, (2.15)

∥x∥L∞ := sup
t∈[t0,tf ]

∥x(t)∥∞, (2.16)

for a time domain function x : R≥0 → Rn.

2.2.2 Second-order systems
The main interest of this thesis lies in mechanical systems. In the LTI case, these systems
are usually described by differential equations with second-order time derivatives of the
form

GL :
{

Mẍ(t) + Eẋ(t) + Kx(t) = Buu(t),
y(t) = Cpx(t) + Cvẋ(t),

(2.17)

with M, E, K ∈ Rn2×n2 , Bu ∈ Rn2×m, Cp, Cv ∈ Rp×n2 ; M invertible, if not stated
otherwise, and the initial conditions x(t0) = xp,0, ẋ(t0) = xv,0, with xp,0, xv,0 ∈ Rn2 .
Systems of the form (2.17) are further on referred to as second-order LTI systems. The
system matrices M, E, K are thereby known as mass, damping and stiffness matrices.
Conform with the previous section, the default assumptions for systems like (2.17) will
be zero initial conditions xp,0 = xv,0 = 0, with t0 = 0. The Definition 2.5 is extended
appropriately for (2.17). The order of (2.17) is the corresponding state-space dimension
n2, and the tuple

GL = (M, E, K, Bu, Cp, Cv)

is a realization of (2.17). In case of mechanical systems, M and K are usually symmetric
positive definite, and E + ET symmetric positive semi-definite. Often also E itself is
symmetric positive semi-definite.

In principle, the theory of linear first-order systems (2.8) can be directly transferred
to the second-order case by reformulating (2.17) as a first-order system. There exist
infinitely many first-order realizations of (2.17). The most commonly used ones are
summarized in the following; see, e.g., [151,159].

The first companion form realization can be obtained by introducing the first-order
state vector xT =

[
xT ẋT

]
. Reordering the lower-order dynamics to the right-hand side

yields an equivalent description of (2.17) by a first-order system of the form (2.8), with
the system matrices

Efc =
[
Jfc 0
0 M

]
, Afc =

[
0 Jfc

−K −E

]
, Bfc =

[
0

Bu

]
, Cfc =

[
Cp Cv

]
, (2.18)
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where Jfc ∈ Rn2×n2 is an arbitrary invertible matrix. The input-to-output behavior
of (2.17) and the first-order system (2.8) with the matrices (2.18) is identical. A classical
choice for the invertible matrix is Jfc = In2 . In case of M, E, K symmetric and K
invertible, another suitable choice for the invertible matrix is Jfc = −K, since thereby Efc
and Afc become symmetric. If additionally Bu = CT

v and Cp = 0 hold, the first companion
form realization is also state-space symmetric.

A different realization is obtained by moving only the state without time derivative to
the right-hand side. The second companion form realization of (2.17) is then given by

Esc =
[

E M
Jsc 0

]
, Asc =

[
−K 0

0 Jsc

]
, Bsc =

[
Bu
0

]
, Csc =

[
Cp Cv

]
, (2.19)

with Jsc ∈ Rn2×n2 an arbitrary invertible matrix. The default choice for Jsc in (2.19), if
M is invertible, is Jsc = M . Then, in case of M, E, K symmetric, the first-order system
matrices Esc and Asc become symmetric, too. Also, the second companion form realization
becomes state-space symmetric if additionally Bu = CT

p and Cv = 0 hold.
Since (2.18) and (2.19) are both realizations of the same second-order system, i.e.,

they are equivalent, the question of the corresponding transformation matrices in (2.11)
arises to switch between the two realizations. One can easily prove that (2.18) can be
transformed into (2.19) using the transformation matrices

Zfc2sc =
[
J−T

fc ET J−T
fc JT

sc
In2 0

]
and Tfc2sc =

[
In2 0
0 In2

]
= I2n2 , (2.20)

i.e., it holds

Esc = ZT
fc2scEfcTfc2sc, Asc = ZT

fc2scAfcTfc2sc, Bsc = ZT
fc2scBfc, Csc = CfcTfc2sc.

Note that the reverse transformation from second to first companion form is given by
the inverse transformation matrices

Z−1
fc2sc =

[
0 In2

J−T
sc JT

fc −J−T
sc ET

]
and T −1

fc2sc = I2n2 . (2.21)

In practice, while both companion forms have different advantages, they can quickly run
into numerical problems during computations due to the indefiniteness of the first-order
system matrices. Therefore, a third first-order realization is mentioned here for later use.
Assuming K to be invertible, the strictly dissipative realization of (2.17), as introduced
in [151], is given by

Esd =
[

K γM
γM M

]
, Asd =

[
−γK K − γE
−K γM − E

]
,

Bsd =
[
γBu
Bu

]
, Csd =

[
Cp Cv

]
,

(2.22)
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with the parameter 0 < γ < λmin
(
E(M + 1

4EK−1E)−1
)
. It was shown in [151] that in case

of mechanical systems with M, E, K symmetric positive definite, this realization is strictly
dissipative, i.e., Esd is symmetric positive definite and Asd + AT

sd is symmetric negative
definite. Using the realization (2.22) gives numerical advantages in computational
methods that work with projected spectra of λE − A rather than directly with the
second-order system matrices. But applying (2.22) comes with the cost of increased
computational complexity as there are no zero blocks in the matrix structure to make
use of in computational operations, in contrast to (2.18) and (2.19).

As before, the strictly dissipative realization (2.22) is equivalent to the other two
realizations (2.18) and (2.19) such that again the question of appropriate transformation
matrices to switch between the realizations need to be answered. While in [151] only the
transformation into (2.18) with a specific choice for Jfc, namely Jfc = K, was shown, it
can be observed that with

Zfc2sd =
[
J−T

fc KT γJ−T
fc MT

γIn2 In2

]
and Tfc2sd = I2n2 , (2.23)

the more general case holds

Esd = ZT
fc2sdEfcTfc2sd, Asd = ZT

fc2sdAfcTfc2sd, Bsd = ZT
fc2sdBfc, Csd = CfcTfc2sd.

The inverse transformation is given by

Z−1
fc2sd =

[
(K − γ2M)−TJT

fc −γ(K − γ2M)−TMT

−γ(K − γ2M)−TJT
fc (K − γ2M)−TKT

]
and T −1

fc2sd = I2n2 .

with the additional assumption that K − γ2M is invertible. The transformation of the
strictly dissipative realization into the second companion form realization follows then
by applying (2.20) or (2.21) to the transformations above.

As in the first-order system case, realizations of second-order systems are an important
point for the application of model reduction methods. In general, the realizations of two
second-order systems GL and G̃L are equivalent if and only if there exist Z, T ∈ Cn1×n1 ,
with n1 = 2n2, such that corresponding first-order realizations of GL and G̃L are equivalent.
This equivalence is in a certain sense unhandy due to the resulting difficult conditions on
the transformation matrices to preserve the second-order structure. A more applicable
special case of second-order system equivalence is given in the next definition.

Definition 2.8 (Restricted system equivalence, e.g., [159]):
Two second-order systems

GL = (M, E, K, Bu, Cp, Cv) and G̃L = (M̃, Ẽ, K̃, B̃u, C̃p, C̃v)
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are called restricted equivalent, if there exist transformation matrices Z, T ∈ Cn2×n2 such
that

M = ZHM̃T, E = ZHẼT, K = ZHK̃T, Bu = ZHBu,

Cp = C̃pT, Cv = C̃vT
(2.24)

hold. The change between two second-order system realizations in the sense of (2.24) is
called restricted state-space transformation. ♢

It can be shown that the restricted system equivalence is a special case of the general
equivalence of second-order systems by observing that (2.24) is obtained by setting

Z̃ =
[
Z11 0
0 Z

]
and T̃ =

[
T 0
0 T

]

as a generalized state-space transformation (2.11) to the first companion form realiza-
tion (2.18), where Z11 ∈ Cn2×n2 is an arbitrary invertible matrix.

Analogously to the first-order case, second-order systems can be equivalently described
in the frequency domain. Applying the Laplace transformation (2.12) to (2.17) yields

s2MX(s) − sMxp,0 − Mxv,0 = −sEX(s) + Exp,0 − KX(s) + BuU(s),
Y (s) = CpX(s) + sCvX(s) − Cvxp,0.

(2.25)

Using the assumption xp,0 = Mxv,0 = 0 and reordering the terms to get a direct
input-to-output relation in the frequency domain results in the second-order transfer
function

GL(s) = (Cp + sCv)(s2M + sE + K)−1Bu, (2.26)

with the complex variable s ∈ C. Note that equivalently, inserting any first-order
realization of (2.17), e.g., (2.18), (2.19), and (2.22), into the first-order transfer function
formulation (2.14) also results in (2.26).

While most system properties of second-order systems are only characterized for
their first-order form, e.g., controllability and observability, the concept of asymptotic
stability easily transfers to the second-order case: A second-order system (2.17) is
asymptotically stable (c-stable) if and only if all eigenvalues λ of the quadratic matrix
pencil λ2M + λE + K, i.e., all λ ∈ C such that det(λ2M + λE + K) = 0, have negative
real parts.

2.3 Frequency domain representations of special
nonlinear systems

The second part of this thesis is concerned with model order reduction of structured
systems with special nonlinearities, namely bilinear and quadratic-bilinear systems.
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Therein, the idea of frequency domain representation of these two system classes is
needed. This will be discussed in this section for the case of unstructured first-order
systems. The concepts presented here are based on the work in [166].

2.3.1 Bilinear control systems in frequency domain
The first system class discussed are first-order (unstructured) bilinear control systems of
the form

Eẋ(t) = Ax(t) +
m∑

j=1
Njx(t)uj(t) + Bu(t),

y(t) = Cx(t)
(2.27)

with E, A, Nj ∈ Rn1×n1 , for j = 1, . . . , m, B ∈ Rn1×m, C ∈ Rp×n1 ; E invertible, if not stated
otherwise, and the initial condition x(t0) = 0 with t0 = 0. Bilinear control systems (2.27)
form a special class of nonlinear dynamical systems as they only involve the multiplication
of control and state variables, where the inputs are written as

u(t) =
[
u1(t) u2(t) . . . um(t)

]T
,

i.e., these systems are linear in state and control separately, but not in the multiplication
of both [145]. Therefore, bilinear systems are an important link between linear systems
and systems with stronger nonlinearities.

The general idea to make (2.27) more open to known model reduction techniques is to
convert (2.27) into a series of linear-like systems using the Volterra series expansion [166].
Assume the input signal u to be one-sided, i.e., u(t) = 0 for t ≤ 0, then the internal state
of (2.27) can be rewritten into a series of states

x(t) =
∞∑

k=1
xk(t), (2.28)

where the new states xk(t) are given by a sequence of coupled linear subsystems

Eẋ1(t) = Ax1(t) + Bu(t),

Eẋk(t) = Axk(t) +
m∑

j=1
Njxk−1(t)uj(t), for k > 1.

(2.29)

The subsystem outputs are then given by multiplying the new states in (2.29) with the
output matrix C and, for the overall system (2.27), by multiplying (2.28) with C. The
first subsystem (k = 1) in (2.29) resembles the classical linear case (2.8). All further
subsystems (k > 1) are also linear in their differential states but come with new (artificial)
input signals depending on the state of the previous subsystem and the entries of the
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original input. In that sense, those systems (2.29) can be treated like in the linear case
and solved for the states via the variation of constants formula (2.9). Using (2.9) and
(2.10) for (2.28) and (2.29) yields the Volterra series expansion of (2.27) to be given by

y(t) =
∞∑

k=1

t∫
0

t1∫
0

. . .

tk−1∫
0

gB,k(t1, . . . , tk)
u(t −

j∑
i=1

ti) ⊗ · · · ⊗ u(t − t1)
 dtk · · · dt1. (2.30)

The time-dependent multivariate functions gB,k, for k ≥ 1, are the regular Volterra kernels
of (2.27), with

gB,k(t1, . . . , tk) = CeE−1Atk

k−1∏
j=1

(Imj−1 ⊗ E−1N)(Imj ⊗ eE−1Atk−j )


× (Imk−1 ⊗ E−1B),
(2.31)

where the bilinear terms were concatenated into N =
[
N1 . . . Nm

]
.

In the linear system case (2.8), the classical Laplace transformation (2.12) is used
to transform the kernel in the variation of constants formula (2.10) into the transfer
function (2.14) to describe the input-to-output behavior of the system in the frequency
domain. In case of bilinear systems, the Volterra kernels (2.31) play this role and together
with the multivariate extension of the Laplace transformation [166] yield the regular
subsystem transfer functions of (2.27) to be given by

GB,k(s1, . . . , sk) = C(skE − A)−1

k−1∏
j=1

(Imj−1 ⊗ N)(Imj ⊗ (sk−jE − A)−1)


× (Imk−1 ⊗ B),
(2.32)

with the complex variables s1, . . . , sk ∈ C. The compact expression (2.32) is actually the
collection of the different combinations of multiplications of the linear dynamics with the
m bilinear terms, i.e., by multiplying out the Kronecker products, (2.32) resembles the
column concatenation of the multiplications with the different bilinear terms

GB,k(s1, . . . , sk) =
[
C(skE − A)−1N1 · · · N1(s1E − A)−1B,

C(skE − A)−1N1 · · · N2(s1E − A)−1B,

. . .

C(skE − A)−1N1 · · · Nm(s1E − A)−1B,

. . .

C(skE − A)−1Nm · · · Nm(s1E − A)−1B
]
.

(2.33)
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In case of SISO bilinear systems, m = p = 1, only a single bilinear term is present N = N1.
Then, the multivariate transfer functions (2.32) simplify essentially to

GB,k(s1, . . . , sk) = C(skE − A)−1

k−1∏
j=1

N(sk−jE − A)−1

B, (2.34)

since all the Kronecker products become simple matrix multiplications. Note that (2.32)
and (2.34) can also be formulated in case of a singular E matrix if the matrix pencil
corresponding to the linear system part is regular, i.e., there exists a λ0 ∈ C such that
λ0E − A is invertible.

2.3.2 Quadratic-bilinear systems in frequency domain
The second system class to be discussed are quadratic-bilinear systems. These can be
seen as an extension of bilinear systems by adding a quadratic nonlinearity.

2.3.2.1 Volterra series expansion of quadratic-bilinear systems

First-order (unstructured) quadratic-bilinear systems have the form

Eẋ(t) = Ax(t) + H
(
x(t) ⊗ x(t)

)
+

m∑
j=1

Njx(t)uj(t) + Bu(t),

y(t) = Cx(t),
(2.35)

with E, A, Nj ∈ Rn1×n1 , for j = 1, . . . , m, H ∈ Rn1×n2
1 , B ∈ Rn1×m, C ∈ Rp×n1 . Similar

to the linear and bilinear system cases, the E matrix is assumed to be invertible, if not
stated otherwise, and the initial condition of (2.35) is assumed to be x(t0) = 0 with
t0 = 0.

To get a frequency domain representation of (2.35) in terms of transfer functions,
similar to the bilinear system case, the Volterra series expansion can be used [166].
Following the idea in [101], a scaled input signal αu(t), with scaling factor 0 < α ∈ R, is
applied to (2.35) and the state is assumed to have an analytic representation in terms of
a power series

x(t) =
∞∑

k=1
αkxk(t), (2.36)

where xk are auxiliary states from linear subsystems. Now, inserting (2.36) into (2.35)
yields a representation of the states xk in terms of coupled linear subsystems by sorting
the emerging components with respect to the power of the scaling factor α they are
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multiplied with. The first three coupled subsystems are then given by

Eẋ1(t) = Ax1(t) + Bu(t),

Eẋ2(t) = Ax2(t) + H
(
x1(t) ⊗ x1(t)

)
+

m∑
j=1

Njx1(t)uj(t),

Eẋ3(t) = Ax3(t) + H
(
x1(t) ⊗ x2(t) + x2(t) ⊗ x1(t)

)
+

m∑
j=1

Njx2(t)uj(t).

Applying the variation of constants formula (2.10) to the coupled linear subsystems and
reordering the variables yields a Volterra series expansion of (2.35) with

y(t) =
∞∑

k=1

t∫
0

t1∫
0

· · ·
tk−1∫
0

gQ,k(t1, . . . , tk)
(
u(t − t1) ⊗ · · · ⊗ u(t − tk)

)
dtk · · · dt1. (2.37)

The functions gQ,k(t1, . . . , tk) are the Volterra kernels of the corresponding Volterra series
representation, e.g., symmetric kernels are used in (2.37). Applying the multivariate
Laplace transformation [166] to (2.37) results in a frequency domain representation
of (2.35). Depending on the chosen kernels in the Volterra series (2.37), there are
different transfer function representations of (2.35) known in the literature. In the
following, the three most commonly used types are described.

2.3.2.2 Symmetric subsystem transfer functions

Historically, the first concept to represent quadratic-bilinear systems in the frequency
domain are the symmetric transfer functions [30,101]. In case of MIMO systems (2.35),
these transfer functions can, in general, be written as

GQ,sym,k(s1, . . . , sk) = CSQ,sym,k(s1, . . . , sk), (2.38)
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with the complex variables s1, . . . , sk ∈ C and k ≥ 1, following the recursion

SQ,sym,1(s1) = (s1E − A)−1B,

SQ,sym,k(s1, . . . , sk) = 1
k!

 k∑
j=1

sk

E − A
−1

×

H


k−1∑
j=1


∑

1≤α1<...<αj≤k
1≤αj+1<...<αk≤k

αi ̸=αℓ for i ̸=ℓ

SQ,sym,j(sα1 , . . . , sαj
)

⊗ SQ,sym,k−j(sαj+1 , . . . , sαk
)





+ N
Im ⊗

 ∑
1≤β1<...<βk−1≤k

SQ,sym,k−1(sβ1 , . . . , sβk−1)


 .

(2.39)

For illustration of (2.38) and (2.39), the first three symmetric subsystem transfer functions
of (2.35) for the SISO case are given by

GQ,sym,1(s1) = CSQ,sym,1(s1),
GQ,sym,2(s1, s2) = CSQ,sym,2(s1, s2),

GQ,sym,3(s1, s2, s3) = CSQ,sym,3(s1, s2, s3),

with the recursive terms

SQ,sym,1(s1) = (s1E − A)−1B,

SQ,sym,2(s1, s2) = 1
2
(
(s1 + s2)E − A

)−1
(

H
(
SQ,sym,1(s1) ⊗ SQ,sym,1(s2)

+ SQ,sym,1(s2) ⊗ SQ,sym,1(s1)
)

+ N
(
SQ,sym,1(s1) + SQ,sym,1(s2)

))
,
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for the first two subsystems, and

SQ,sym,3(s1, s2, s3) = 1
6
(
(s1 + s2 + s3)E − A

)−1
(

H
(
SQ,sym,1(s1) ⊗ SQ,sym,2(s2, s3)

+ SQ,sym,1(s2) ⊗ SQ,sym,2(s1, s3) + SQ,sym,1(s3) ⊗ SQ,sym,2(s1, s2)
+ SQ,sym,2(s1, s2) ⊗ SQ,sym,1(s3) + SQ,sym,2(s1, s3) ⊗ SQ,sym,1(s2)
+ SQ,sym,2(s2, s3) ⊗ SQ,sym,1(s1)

)
+ N

(
SQ,sym,2(s1, s2) + SQ,sym,2(s1, s3) + SQ,sym,2(s2, s3)

))
,

for the third one. A general advantage of symmetric subsystem transfer functions is
that, by construction, their evaluation is independent of the ordering of their frequency
arguments. For example, the second symmetric subsystem transfer function always
satisfies

GQ,sym,2(σ1, σ2) = GQ,sym,2(σ2, σ1),

for all σ1, σ2 ∈ C in which GQ,sym,2 is defined. On the other hand, a drawback of symmetric
transfer functions is the exponentially growing number of frequency-dependent terms in
the recursion formula (2.39). This leads to high computational costs for the evaluation
of higher-level symmetric subsystem transfer functions.

2.3.2.3 Regular subsystem transfer functions

The second type of transfer functions to be discussed was developed to compete with the
problem of the exponentially growing number of frequency-dependent terms in symmetric
transfer functions. Introduced in [4], the regular subsystem transfer functions of (2.35)
for MIMO systems can be written as

GQ,reg,k(s1, . . . , sk) = CSQ,reg,k(s1, . . . , sk), (2.40)

with the complex variables s1, . . . , sk ∈ C and k ≥ 1, following the recursion

SQ,reg,1(s1) = (s1E − A)−1B,

SQ,reg,k(s1, . . . , sk) = (skE − A)−1

×
H

k−1∑
j=1

SQ,reg,j(sk−j+1 − sk−j, . . . , sk − sk−j)

⊗ SQ,reg,k−j(s1, . . . , sk−j)


+ N(Im ⊗ SQ,reg,k−1(s1, . . . , sk−1))
 .

(2.41)
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For illustration of (2.40) and (2.41), and comparison to the symmetric transfer function
case, the first three regular subsystem transfer functions of (2.35) for the SISO case are
given by

GQ,reg,1(s1) = CSQ,reg,1(s1),
GQ,reg,2(s1, s2) = CSQ,reg,2(s1, s2),

GQ,reg,3(s1, s2, s3) = CSQ,reg,3(s1, s2, s3),

with the recursive terms

SQ,reg,1(s1) = (s1E − A)−1B,

SQ,reg,2(s1, s2) = (s2E − A)−1
(

H
(
SQ,reg,1(s2 − s1) ⊗ SQ,reg,1(s1)

)
+ NSQ,reg,1(s1)

)
,

SQ,reg,3(s1, s2, s3) = (s3E − A)−1
(

H
(
SQ,reg,1(s3 − s2) ⊗ SQ,reg,2(s1, s2)

+ SQ,reg,2(s2 − s1, s3 − s1) ⊗ SQ,reg,1(s1)
)

+ NSQ,reg,2(s1, s2)
)

.

In comparison to the symmetric subsystem transfer functions, the regular case has less
recursive terms and is therefore easier to evaluate, while still corresponding to a Volterra
series representation of (2.35) in terms of regular Volterra kernels. Also, note that the
regular subsystem transfer functions of quadratic-bilinear systems are a direct extension
of the regular transfer functions of purely bilinear systems (2.32).

2.3.2.4 Generalized transfer functions

Taking a closer look at (2.39) and (2.41) reveals that both transfer function types
contain linear combinations of similarly structured terms, which are multiplications of
the matrices from the linear, bilinear and quadratic system parts. In that sense and
inspired by the purely bilinear system case (2.32), where the transfer functions are
only products of the matrices from the linear and bilinear components, the authors
of [92] suggested a generalized transfer function concept for quadratic-bilinear systems.
These generalized transfer functions are restricted to using only multiplications of the
different system terms. A simplification of this approach was used in [39] for systems with
polynomial nonlinearities. Some reformulations of the ideas in [92] allow the extension of
the generalized transfer functions to MIMO systems. Let the following function model
the recursive application of the linear dynamics to the matrices corresponding to the
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input, bilinear or quadratic system components:

Γ(γ, s1, . . . , sk) =



(s1E − A)−1B,
if γ = (B)

and k = 1,

(sjE − A)−1N
(
Im ⊗ Γ(γ2, s1, . . . , sk−1)

)
,

if γ = (N, γ2)
and k ≥ 2,

(sjE − A)−1H
(
Γ(γ2, sℓ, . . . , sk−1)

⊗ Γ(γ3, s1, . . . , sℓ−1)
) if γ = (H, γ2, γ3)

and k ≥ 3,

(2.42)

with the complex variables s1, . . . , sk ∈ C and γ, a nested tuple with the possible
elements H, N and B, and tuples of these. The number ℓ in the quadratic case is uniquely
determined by the two sub-tuples γ2 and γ3. With (2.42), the generalized transfer
functions of (2.35) are given by

Gγ
Q,gen,k(s1, . . . , sk) = CΓ(γ, s1, . . . , sk). (2.43)

As in previous sections, the first three generalized transfer functions are considered for
the SISO case as illustration and comparison to the other concepts. Note that due to the
choice of γ, there may exist several different k-th-level generalized transfer functions. As
in the symmetric and regular cases, the first transfer function is unique and resembles
the linear system case

G(B)
Q,gen,1(s1) = C(s1E − A)−1B.

Also, the second transfer function is uniquely given by

G(N,(B))
Q,gen,2(s1, s2) = C(s2E − A)−1N(s1E − A)−1B,

which is also the second regular subsystem transfer function of bilinear systems (2.27).
For the third level, two different choices of transfer functions are possible depending on
the nested tuple γ:

G(N,(N,(B)))
Q,gen,3 (s1, s2, s3) = C(s3E − A)−1N(s2E − A)−1N(s1E − A)−1B,

G(H,(B),(B))
Q,gen,3 (s1, s2, s3) = C(s3E − A)−1H

(
(s2E − A)−1B ⊗ (s1E − A)−1B

)
.
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To further illustrate the role of the nested tuple γ, consider as example the SISO transfer
function with γ = (H, (N, (B)), (H, (B), (B))), which yields

G(H,(N,(B)),(H,(B),(B)))
Q,gen,6 (s1, . . . , s6) = CΓ((H, (N, (B)), (H, (B), (B))), s1, . . . , s5, s6)

= C(s6E − A)−1H
(
Γ((N, (B)), s4, s5)

⊗ Γ((H, (B), (B)), s1, s2, s3)
)

= C(s6E − A)−1H
(

(s5E − A)−1N(s4E − A)−1B

⊗ (s3E − A)−1H
(
(s2E − A)−1B ⊗ (s1E − A)−1B

))
.

Remark 2.9 (Transfer function levels):
The transfer function levels of the symmetric and regular cases do not necessarily
correspond to those of the generalized transfer functions due to the additional freedom
of choosing two unrelated frequency arguments for the quadratic term. For example,
the second generalized transfer function is uniquely determined with only the bilinear
terms involved, while in the symmetric and regular cases the quadratic term is already
concerned in the second subsystem transfer functions. ♢

2.4 Setup for numerical experiments
Numerical experiments will be performed in this thesis for demonstration and comparison
of the developed model order reduction techniques. To ensure proper, fair and reproducible
computations and comparisons, the following two sections state hardware and software
used in the computations as well as the basic idea of the MORscore used for the
comparison of different model reduction methods.

2.4.1 Hardware and software environments
All experiments reported in this thesis have been carried out on nodes of the compute
cluster mechthild at the Max Planck Institute for Dynamics of Complex Technical
Systems, Magdeburg. The fundamental hardware and software specifications of the two
types of compute nodes used for the experiments are listed in Table 2.1.

Each experiment was executed on a single node of either standard or big-memory type,
depending on the demand for main memory of the experiment. It should be mentioned
that large parts of the experiments could also be executed on less powerful hardware, e.g.,
with smaller amounts of main memory. In other words, the quantities in Table 2.1 are
not necessarily the required computational resources for the evaluation of the dynamical
systems or the computation of reduced-order models in the experiments. For the reason
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Table 2.1: Hardware and software environments for numerical experiments.

CPU 2× Intel® Xeon® Silver 4110 (Skylake) @ 2.10 GHz (3.0 GHz Turbo)
Cores 2×8
RAM 192 GB DDR4 with ECC (standard)

384 GB DDR4 with ECC (big-memory)
OS CentOS Linux release 7.5.1804
Platform x86_64 (64 Bit)
MATLAB 9.7.0.1296695 (R2019b) [139]

of comparability and reproducibility, nevertheless, all computations were performed on
the same mentioned hardware.

Furthermore, the following free, publicly available open-source MATLAB packages
were used in the computations:

• M-M.E.S.S. version 2.0.1 [44,167], for solving large-scale sparse matrix equations,

• MORLAB version 5.0 [55,56], for model reduction methods and matrix equation
solvers for medium-scale dense systems, and evaluation of linear systems in time
and frequency domain,

• SOLBT version 3.0 [58], for solving large-scale sparse Lyapunov equations with
right-hand side matrix functions arising in limited balanced truncation methods,
and

• SOMDDPA version 2.0 [59], for the second-order modally damped dominant pole
algorithm.

Code availability
The source codes and scripts used to compute the results presented in this thesis
can be obtained from

doi:10.5281/zenodo.4650402

under the BSD-2-Clause license, and the computed results are available at

doi:10.5281/zenodo.4650422

under the CC BY 4.0 license. Both are authored by Steffen W. R. Werner.
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2.4 Setup for numerical experiments

2.4.2 Comparison of model reduction methods in the MORscore
To evaluate the performance of model reduction methods, a common approach is the
comparison of model reduction errors for varying orders. Nevertheless, a one-by-one
comparison for multiple different model reduction methods quickly becomes too cum-
bersome or too complex to extract proper decisions about the performance. Inspired
by the so-called minimal realization profiles from the optimization community [74], the
MORscore was introduced in [111] to compress the performance of model reduction
methods in various measures into scalar values.
Definition 2.10 (MORscore [111]):
Given a graph (r, ε(r)) ∈ N0 × (0, 1] relating a reduced order r to a relative output error
ε(r) of a model reduction method, the normalized error graph (φr, φε(r)) is determined
via the two mappings:

φr : r 7→ r

rmax
, and φε(r) : ε(r) 7→

log10

(
ε(r)

)
⌊log10(ϵmach)⌋ ,

with a maximum reduced order rmax ∈ N and the used machine precision ϵmach ∈ (0, 1].
The MORscore is then defined to be the area under the normalized error graph (φr, φε(r)).♢

The normalized error graph in Definition 2.10 is a mapping of the relative model
reduction error varying with the reduced order into the unit square such that the
MORscore will be a value in [0, 1]. Note that in contrast to [111], Definition 2.10 actively
includes the case of reduced-order models of order 0 with the corresponding relative
approximation error of 1 as starting point of the error graphs. The maximum reduced
order rmax should be a reasonable small number compared to the full system order,
rmax ≪ n, since first, usually it is too computationally costly to compute all possible
reduced-order models up to the original system size, and second, the MORscore would
not show much difference if the minimal relative error for the model reduction methods
is attained earlier than for the full order. In computations using double precision, the
machine epsilon is given with ϵmach ≈ 2.22 · 10−16 such that ⌊log10(ϵmach)⌋ = −16. The
normalized error graph in Definition 2.10 assumes the relative error to be smaller or
equal to 1. This is not always the case, for example, when using a time domain measure
for an unstable performing reduced-order model, or when approximations are simply too
bad. In these cases, the relative model reduction error is restricted to 1 as this becomes
a 0 in the normalized error graph. In practical implementations, the MORscore can
easily be computed using the trapezoidal rule (in MATLAB trapz). In general, a larger
MORscore belongs to the better model reduction method. It can be interpreted as a
faster decay of the considered error measure.

For the comparison of model reduction methods in this thesis, only approximate norms
will be used for computational reasons. In time domain, approximations of the L2- and
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L∞-norms from (2.15) and (2.16) are used. Therefore, let y be the output signal of the
original system and ŷ the output of the reduced-order model, the absolute error in the
approximate L2-norm is then given by

∥y − ŷ∥L2 ≈ √
τ∥vec(yh − ŷh)∥2, (2.44)

where yh ∈ Rp×nτ and ŷh ∈ Rp×nτ are the discretized output signals of the full and
reduced-order models, respectively, in the time interval [t0, tf ] and with step size τ . The
absolute error in the approximate L∞-norm is then given by

∥y − ŷ∥L∞ ≈ ∥vec(yh − ŷh)∥∞; (2.45)

see, e.g., [111]. In frequency domain, the absolute error in the approximated H∞/L∞-
norm will be used with

∥G − Ĝ∥H∞/L∞ ≈ max
ωk

∥G(ωki) − Ĝ(ωki)∥2, (2.46)

for the full- and reduced-order transfer functions G and Ĝ, and discrete frequency
evaluation points ωk ∈ [ωmin, ωmax]. For a more diverse notation in this thesis and
since H∞- and L∞-norms have the same definition, both will be denoted by H∞ in the
upcoming numerical experiments. Note that here only absolute errors are depicted for
illustration of the approximate norms. For the MORscore, these absolute errors still
need to be divided by the approximate norms of the output signal or transfer function
of the full-order model (FOM). For example, in upcoming MORscore tables, columns
denoted by L∞ correspond to the approximate L∞-norm measure (2.45) such that in the
underlying error graphs, the approximate relative L∞-error is used with

∥y − ŷ∥L∞

∥y∥L∞

≈ ∥vec(yh − ŷh)∥∞
∥vec(yh)∥∞

.

Adjustments and presentation of the approximate norms will be explained when needed
in sections with numerical experiments.
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BASICS OF LINEAR MODEL ORDER REDUCTION
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This chapter is used to introduce basic ideas and concepts from the literature for model
order reduction of linear first- and second-order systems. In Section 3.1, the projection
framework for model reduction is established as the main construction approach for
reduced-order models in this thesis. Thereafter, state-of-the-art methods in modal
truncation, structured interpolation and balanced truncation for first- and second-order
systems are presented.
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3 Basics of Linear Model Order Reduction

3.1 Model reduction by projection
In general, model order reduction describes the process of simplifying dynamical systems
by reducing the internal state-space dimension and number of differential equations,
leading to easier-to-evaluate models that can be used as surrogates in applications. For
linear first-order systems

GL :
{

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(2.8)

the model order reduction problem is given as the construction of reduced-order systems
of the form

ĜL :
Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t),
(3.1)

with Ê, Â ∈ Rr1×r1 , B̂ ∈ Rr1×m, Ĉ ∈ Rp×r1 and a much smaller number of internal states
and differential equations r1 ≪ n1. The new system (3.1) is constructed to approximate
the input-to-output behavior of the original system (2.8) in the sense of (1.2).

A commonly used approach for the construction of (3.1) is the projection framework.
Therefore, let V ∈ Cn1×r1 be a basis matrix of the underlying right projection space
span(V ) such that x ≈ V x̂. Choosing a left projection space span(W ) with a corre-
sponding truncation matrix W ∈ Cn1×r1 , the reduced-order model (3.1) is computed
by

Ê = W HEV, Â = W HAV, B̂ = W HB, Ĉ = CV. (3.2)

This is further described in, e.g., [9, 184]. In the context of finite element methods,
span(V ) would be known as the ansatz space and span(W ) as the test space.

In principle, second-order systems (2.17) can be rewritten into first-order form, e.g.,
using one of the first-order realizations in Section 2.2.2, and then reduced by a model
reduction method for first-order systems. This results in a reduced-order system of the
form (3.1), which usually cannot be transformed back into second-order form. This
yields certain disadvantages, as missing physical interpretation of the reduced-order
system quantities, lesser approximation accuracy for the same reduced order or the
change of tools used in applications for the system class. The main goal in this thesis
is the construction of structure-preserving reduced-order models, i.e., given the original
second-order system

GL :
{

Mẍ(t) + Eẋ(t) + Kx(t) = Buu(t),
y(t) = Cpx(t) + Cvẋ(t),

(2.17)
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the task is to compute a reduced-order model of the same form

ĜL :
M̂ ¨̂x(t) + Ê ˙̂x(t) + K̂x̂(t) = B̂uu(t),

ŷ(t) = Ĉpx̂(t) + Ĉv ˙̂x(t),
(3.3)

with M̂, Ê, K̂ ∈ Rr2×r2 , B̂u ∈ Rr2×m, Ĉp, Ĉv ∈ Rp×r2 and r2 ≪ n2. Therefore, the
projection framework (3.2) is extended in the sense of the restricted state-space transfor-
mation (Definition 2.8) for the construction of (3.3). Choosing two truncation matrices
V, W ∈ Cn2×r2 , the reduced-order model (3.3) is then constructed by

M̂ = W HMV, Ê = W HEV, K̂ = W HKV, B̂u = W HBu,

Ĉp = CpV, Ĉv = CvV.
(3.4)

The following sections contain model reduction methods for first-order systems from
three major methodologies and their existing extensions to second-order systems. All of
these methods will use the projection frameworks (3.2) and (3.4).

3.2 Modal truncation and dominant poles

The modal truncation approach is one of the oldest ideas for model order reduction and
based on the eigenvalues of the system matrices. It was first mentioned in [75] for the
approximation of standard first-order LTI systems (E = In). The following sections will
give a short overview about the idea of the modal truncation method and an important
extension considering the poles of the underlying system’s transfer function.

3.2.1 Modal truncation method

In contrast to the original reference [75], consider here the case of generalized first-order
systems (2.8). The classical modal truncation method from [75] belongs to the projection-
based model reduction approaches. Thereby, the crucial point is the construction of the
reduction bases V and W . In modal truncation, these matrices are chosen as parts of
the eigenvector bases of the matrix pencil λE − A. For simplicity, it is assumed that
λE − A is diagonalizable. Let 0 ̸= xi ∈ Cn and 0 ̸= yi ∈ Cn be right and left eigenvectors
of λE − A for the same eigenvalue λi ∈ C, respectively, i.e., it holds

Axi = λiExi and yH
i A = λiyH

i E. (3.5)
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Assuming also the scaling yH
i Exi = 1, the full eigenvector bases can be used for a

state-space transformation (2.11) of (2.8), which yields

˙̃x(t) =


λ1

. . .
λn1

 x̃(t) +


b̃H

1
...

b̃H
n1

u(t),

ỹ(t) =
[
c̃1 . . . c̃n1

]
x̃(t).

(3.6)

The input and output matrices have been transformed and partitioned according to the
diagonal structure of the system matrix with b̃1, . . . , b̃n1 ∈ Cm and c̃1, . . . , c̃n1 ∈ Cp. Due
to the diagonal structure, the transformed system (3.6) decouples into n1 independent
subsystems, from which r1 are chosen to build the reduced-order model. In other words,
eigenvalues λ1, . . . , λr1 from the original matrix pencil are chosen (with appropriate
re-ordering of the indices) to remain in the reduced-order model such that the truncation
matrices are set to be the corresponding eigenvectors with W =

[
y1 . . . yr1

]
and

V =
[
x1 . . . xr1

]
. Other variants of the modal truncation method utilize, for example,

bases of invariant subspaces corresponding to the chosen eigenvalues; see, e.g., [50].
For second-order systems (2.17), there have been a lot of different attempts for the

extension of the modal truncation method. Overviews about developed techniques can
be found in [60,125]. Methods like static condensation (Guyan reduction) [105] or the
Craig-Bampton method [73] belong to the class of modal truncation approaches by
making use of the known structure of models resulting, e.g., from finite element methods.
These methods are in need of a certain engineering expertise during the model reduction
process and, therefore, not suited for automatic reduction in the sense that a common
user applies the methods directly to the data. Both approaches and related techniques
are not further discussed in this thesis.

In general, modal truncation methods for second-order systems can be related to the
underlying quadratic eigenvalue problem of (2.17) (or parts of it). In that sense, the
linear eigenvalue problems in (3.5) from the first-order case are replaced by the quadratic
eigenvalue problems

(λ2
i M + λiE + K)xi = 0 and yH

i (λ2
i M + λiE + K) = 0, (3.7)

which need to be solved as before for left and right eigenvectors, and the corresponding
eigenvalues. This shows the main advantage of modal truncation approaches as they can
easily be generalized to other internal system structures by adapting the corresponding
eigenvalue problem, and they are also very compatible in a computational sense since
only eigenvalue problems have to be solved.

Some changes to the first-order case need to be noted. While (3.5) provides exactly
n1 eigenvalues, the quadratic eigenvalue problem (3.7) has 2n2 eigenvalues. Also, the
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3.2 Modal truncation and dominant poles

quadratic matrix pencil λ2M + λE + K is generically not diagonalizable, which means,
out of the 2n2 eigenvalues only r2 can be chosen to remain guaranteed in the reduced-
order model. The missing r2 eigenvalues can in principle be unrelated approximations,
resulting from the truncation of the matrix pencil. As discussed in, e.g., [134], or used
in [174], often the problem (3.7) is simplified by neglecting the damping term E for the
computation of the model reduction basis. Assuming M and K to be symmetric positive
definite, only the generalized eigenvalue problem

Kvi = ω2
i Mvi (3.8)

is solved for the stiffness coefficients ωi. The generalized eigenvectors vi in (3.8) are
then used to set up the model reduction bases W = V =

[
v1 . . . vr2

]
. This can yield

good results and be very advantageous in terms of computational costs in case of special
damping matrices E.

3.2.2 Dominant pole algorithms
A crucial problem in modal truncation methods is the choice of eigenvalues to remain in
the reduced-order model. Note that the eigenvalues of λE − A are the potential poles of
the corresponding system’s transfer function. With the right and left eigenvector bases X
and Y as in (3.6), it holds

YHEX = In1 and YHAX = Λ,

where Λ = diag(λ1, . . . , λn1). Then, the transfer function of (2.8) can be rewritten in its
pole-resiude form

GL(s) = C(sE − A)−1B
= C(sY−HX−1 − Y−HΛX−1)−1B
= CX(sIn1 − Λ)−1YHB

=
n1∑

k=1

(Cxk)(yH
k B)

s − λk

. (3.9)

The problem is now to identify those poles of (3.9) that contribute most to the transfer
function’s behavior. This leads to the following definition.
Definition 3.1 (Dominant poles [138, 161]):
A pole λk ∈ C of (2.14) is called dominant if

∥(Cxk)(yH
k B)∥2

|Re(λk)| >
∥(Cxj)(yH

j B)∥2

|Re(λj)|
(3.10)

holds, for all j ̸= k. ♢
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The idea of dominant pole algorithms is now to compute the reduced-order model with
modal truncation by choosing the r1 most dominant poles with respect to the dominance
measure (3.10) such that

ĜL(s) =
r1∑

k=1

(Cxk)(yH
k B)

s − λk

≈ GL(s),

where the poles λk are assumed to be ordered with respect to (3.10). The method was
originally developed in [138] and then extended to large-scale sparse systems in [161,162].
Other dominance measures to alter the behavior of the constructed reduced-order models
are suggested, for example, in [185] for H2-like norms or in [182] to match the low
frequency behavior.

In case of second-order systems, a structure-preserving extension of the dominant
pole algorithm was developed in [163] for SISO systems and in [48] for the MIMO case.
In principle, the extensions consider the second-order system (2.17) in first-order form,
e.g., (2.18), for which the pole-residue form can be written with 2n2 terms, i.e.,

GL(s) = (Cp + sCv)(s2M + sE + K)−1Bu

=
2n2∑
k=1

(Cxk)(yH
k B)

s − λk

, (3.11)

where C and B are here the output and input matrices of the chosen first-order realization,
and xk and yk the right and left eigenvectors of the corresponding linearized eigenvalue
problem (3.5). The structure-preserving dominant pole algorithm is then used to compute
the r2 most dominant poles in (3.11) with corresponding eigenvectors such that the
reduced-order model is given by

ĜL(s) =
r2∑

k=1

(Cxk)(yH
k B)

s − λk

+
r2∑

k=1

(Cx̃k)(ỹH
k B)

s − λ̃k

,

where λ̃k are new poles introduced by the truncation of the quadratic eigenvalue problem.
In case of complex conjugate poles and the original system being real, some of the λ̃k are
set to be the complex conjugates of the dominant poles λk.

3.3 Interpolation and moment matching methods
A different approach is based on the idea of considering the system’s transfer function
as the object of interest to approximate. Inspired by the observation that in the cases
of first- and second-order systems the transfer functions (2.14) and (2.26) are rational
functions in the complex variable s, a lot of model reduction techniques and approaches
were based on the construction of rational interpolants for the transfer functions. See [10]
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for a general introduction to interpolatory model order reduction techniques and related
realization methods. In the following sections, the basic ideas for first- and second-order,
as well as for even more generally structured systems are recapped.

3.3.1 From moment matching to rational Krylov subspaces
The origins of interpolatory model reduction root in the theory of Padé approxima-
tions [18], i.e., the construction of rational approximants. Given a function G : C → C,
which is analytic in 0 and has the power series expansion

G(s) =
∞∑

j=0
mjs

j,

the coefficients mj ∈ C are called the moments of G. The unique, rational function R(s),
with

R(s) = a0 + a1s + . . . + aj1sj1

1 + b1s + . . . bj2sj2
=

∞∑
j=0

m̂js
j, (3.12)

is called a Padé approximation of G, if mj = m̂j holds for j = 0, . . . , j1 + j2. In other
words, a Padé approximation is a Hermite interpolating rational function in 0 of minimum
degrees in nominator and denominator. The idea of Padé approximation was then first
related to the standard case of SISO first-order systems (2.8) resulting in construction
formulae for the coefficients in (3.12); see, e.g., [67, 173]. Based on this, in the last
decades, the idea of rational interpolation got extended further and further, e.g., to the
interpolation at ∞ in the partial realization problem [9, 96], to the interpolation in other
and more frequency points than 0 also known as shifted Padé approximation [100,184], or
to efficient computational approaches in the projection framework (3.2) by Lanczos and
Arnoldi methods, e.g., in [14,87,100]. Besides Padé approximation, the idea of rational
interpolation of transfer functions for model order reduction is referred to as moment
matching or Krylov subspace methods in the literature.

The construction of a rational interpolation for (2.8) can be efficiently done in the
projection-based framework (3.2) by computing the truncation matrices V and W as
bases of rational Krylov subspaces. For example, let σ1, . . . , σk ∈ C be interpolation
points in which the transfer functions of the full-order system GL and of the reduced-order
system ĜL, computed by (3.2), exist. Then one can show that if either

span
( [

(σ1E − A)−1B . . . (σkE − A)−1B
] )

⊆ span(V ) (3.13)

or

span
( [

(σ1E − A)−HCT . . . (σkE − A)−HCT
] )

⊆ span(W ) (3.14)
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holds, the interpolation of the full-order transfer function follows

GL(σ1) = ĜL(σ1), . . . , GL(σk) = ĜL(σk).

This approach can be extended to match additional Hermite interpolation conditions
in an implicit or explicit way. For a more detailed inside of the theory about rational
interpolation by projection for first-order systems see, e.g., [100].

As the previous example shows, big advantages of this approach and related methods
are the cheap computational costs and the loose assumptions, since only a few shifted
linear systems need to be solved and the transfer function must exist (or be complex
differentiable in the Hermite interpolation case) in the interpolation points. This makes
interpolatory methods a good alternative to other model order reduction techniques with
stronger assumptions on the original system. On the other hand, a drawback of this
approach is that interpolation by projection lacks stability preservation in many cases,
which might lead to undesired results in time domain simulations while the approximation
in the frequency domain can still be good due to the interpolation.

A crucial part for the approximation quality of the interpolating reduced-order models
is the choice of interpolation points. This question was tried to be answered in different
system norms leading in case of the H2-norm to the iterative rational Krylov algo-
rithm (IRKA) [103,104,189] or to greedy approaches in the H∞-norm case [6–8,11,80,82].

Transfer function interpolation does not only work in the frequency argument but can
also be extended to the parametric system case

E(µ)ẋ(t) = A(µ)x(t) + B(µ)u(t),
y(t; µ) = C(µ)x(t),

where µ ∈ Rd is a vector of parameters, constant in time, allowing for different config-
urations of the system. Then, E(µ), A(µ), B(µ) and C(µ) are matrix-valued functions
depending on the parameter configuration. In frequency domain, this gives the parametric
equivalent to (2.14) with

GL(s, µ) = C(µ)
(
sE(µ) − A(µ)

)−1
B(µ),

such that interpolation can be done in the frequency and parameter arguments leading
to the additional choice of interpolation points in the parameter domian; see, e.g., [21].

3.3.2 Tangential interpolation for MIMO systems
In case of MIMO systems, the transfer functions are matrix-valued such that the cor-
responding interpolation problem changes from scalar to matrix interpolation. The
interpolation of matrix-valued functions can be interpreted as classical (scalar) interpola-
tion in each entry of the matrix-valued functions, i.e., it yields additional interpolation
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conditions for the entries of matrices and results in larger reduced-order models to
match these. The tangential interpolation problem instead considers the interpolation
of matrix-valued functions along selected directions and can be interpreted as adding
constraints to the matrix interpolation problem [19]. For given interpolation points
σ1, . . . , σk ∈ C, given function values y1, . . . , yk ∈ Cp and right evaluation (tangen-
tial) directions b1, . . . , bk ∈ Cm, the task of right tangential interpolation is to find an
interpolating function L : C → Cp×m such that

L(σj)bj = yH
j (3.15)

holds for j = 1, . . . , k. The left and two-sided tangential interpolation problems are
defined in a similar way using left tangential directions.

It was then mentioned in [19] and utilized in [89] to use tangential interpolation for
the purpose of model order reduction of linear unstructured MIMO systems. Therefore,
the interpolant in (3.15) is restricted to a rational matrix-valued function and the
function values are the system’s transfer function evaluations into certain directions. The
tangential interpolation problems in model reduction are formulated as follows: Given
the original system’s transfer function (2.14), the goal is to construct a reduced-order
model with ĜL(s) = Ĉ(ŝE− Â)−1̂B such that for given interpolation points σ1, . . . , σk ∈ C,
right directions b(1), . . . , b(k) ∈ Cm and left directions c(1), . . . , c(k) ∈ Cp, the following
interpolation conditions hold

GL(σj)b(j) = ĜL(σj)b(j),(
c(j)

)H
GL(σj) =

(
c(j)

)H
ĜL(σj), or(

c(j)
)H

GL(σj)b(j) =
(
c(j)

)H
ĜL(σj)b(j),

(3.16)

for j = 1, . . . , k. It has been proven in various examples that tangential interpolation
can be used to construct very accurate and smaller reduced-order models compared
to the matrix interpolation approach. Also, it allows for a more dedicated choice of
the reduced-order system size independent of the input and output dimensions. The
tangential interpolation problems (3.16) were then extended to structure-preserving
Hermite interpolation in [24] as discussed later in Section 3.3.4.

3.3.3 Extensions to second-order systems
As for other model reduction approaches, the extension of interpolation-based techniques
to the second-order system case (2.17) got a lot of attention. Starting with Padé ap-
proximation methods for second-order systems [14, 87, 88], other concepts as rational
Krylov subspaces [16], moments of transfer functions [152] and general rational interpola-
tion [23,169,170] got extended as well. The same holds for related algorithms such as
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choosing interpolation points, e.g., in case of second-order IRKA variants [188] or the
modified iterative rational Arnoldi (MIRA) algorithm [62]. In principle, all those results
boil down to replace the rational Krylov subspaces for first-order systems (3.13) and
(3.14) by second-order variants: Given interpolation points σ1, . . . , σk ∈ C, for which the
full-order transfer function (2.26) and the reduced-order transfer function ĜL, computed
by (3.4), exist. Then if either

span
( [

(σ2
1M + σ1E + K)−1Bu . . . (σ2

kM + σkE + K)−1Bu
] )

⊆ span(V )

or

span
( [

(σ2
1M + σ1E + K)−H(Cp + σ1Cv)H . . . (σ2

kM + σkE + K)−H(Cp + σkCv)H
] )

⊆ span(W )

holds, the full-order system’s transfer function is interpolated by a structure-preserving
reduced-order model such that

GL(σ1) = ĜL(σ1), . . . , GL(σk) = ĜL(σk).

More recently, the idea of structured optimality conditions got also extended to second-
order systems [22,144]. For brevity, those results are omitted here. The following section
gives a more general framework for the interpolation of structured linear systems, which
automatically encloses most of the above mentioned results for systems with first- and
second-order structures.

3.3.4 Structured interpolation via rational Krylov subspaces
Consider for a moment the first-order unstructured system case (2.8). With the Laplace
transformation, the dynamical system is described via two algebraic systems of equations
in the frequency domain (2.13). The first one describes the input-to-state relation and the
second one the state-to-output relation of the system. Inspired by much richer structured
systems than (2.13), for example, such as (2.25), a general framework for structured
systems and transfer functions was introduced in [24]. Therein, the authors consider the
two linear systems of equations

K(s)X (s) = B(s)U(s),
Y (s) = C(s)X (s),

(3.17)

with matrix-valued functions K : C → Cn×n, B : C → Cn×m and C : C → Cp×n, as
description of the input-to-state and state-to-output relations of linear dynamical systems
in the frequency domain. Note that (3.17) contains (2.13) and (2.25) as particular
instances. Assuming the problem to be regular, i.e., there exists an s ∈ C for which the
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matrix functions are defined and K(s) is full-rank, the equations in (3.17) lead to the
general formulation of structured transfer functions

GL(s) = C(s)K(s)−1B(s), (3.18)

describing the input-to-output behavior of a structured linear system in the frequency
domain. The goal of structured interpolation is to construct an interpolant for (3.18)
that has the same internal structure.

Considering the two system classes mentioned so far, the transfer functions of linear
first-order systems (2.8) are given in the structured setting by

C(s) = C, K(s) = sE − A, B(s) = B,

or, in case of second-order systems (2.17), the matrix-valued functions are set to be

C(s) = Cp + sCv, K(s) = s2M + sE + K, B(s) = Bu.

3.3.4.1 Structured-preserving model reduction by projection

For the construction of structured linear reduced-order models, the projection approach
as in (3.2) and (3.4) is generalized for systems described by (3.18). Given two full-rank
truncation matrices W, V ∈ Cn×r, reduced-order models of (3.18) are constructed by

Ĉ(s) = C(s)V, K̂(s) = W HK(s)V, B̂(s) = W HB(s). (3.19)

The structured reduced-order linear system ĜL is then given by the underlying reduced-
order matrices from (3.19) and provides the corresponding structured reduced-order
transfer function

ĜL(s) = Ĉ(s)̂K(s)−1B̂(s). (3.20)

In general, model reduction by projection (3.19) is structure-preserving. Every matrix-
valued function can be affinely decomposed with respect to its arguments, e.g., in case of
the frequency-dependent term K(s), it can be written as

K(s) =
nK∑
j=1

hK,j(s)Kj, (3.21)

with scalar functions hK,j : C → C depending on frequency and constant matrices
Kj ∈ Cn×n, for j = 1, . . . , nK. The choice of the scalar functions hK,j in (3.21) encodes
the internal structure of the system. In the worst case scenario, the number of terms
in (3.21) would be nK = n2, where Kj are elementary matrices with only a single non-zero
entry in each matrix. However, for common structured examples the number of terms
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in (3.21) is comparably small with nK ≪ n. Otherwise, there are other approaches like
the discrete empirical interpolation method (DEIM) to approximate the matrix-valued
functions [34]. Using (3.21), the corresponding reduced-order matrix function is then
given by

K̂(s) = W HK(s)V =
nK∑
j=1

hK,j(s)W HKjV =
nK∑
j=1

hK,j(s)̂Kj, (3.22)

where K̂j ∈ Cr×r are small constant matrices. Since the scalar functions hK,j(s), which
encode the structure of the system, do not change between (3.21) and (3.22), the internal
structure of the matrix function and consequently the system structure is preserved in
the reduced-order model. This works analogously for the other matrix-valued functions
in (3.19). For first- and second-order systems, this directly resembles the previously used
projection approaches (3.2) and (3.4).

3.3.4.2 Structured interpolation

The goal in structured interpolation is now to construct the truncation matrices V and
W in (3.19) such that

GL(σj) = ĜL(σj) (3.23)

holds, for j = 1, . . . , k, and given interpolation points σ1, . . . , σk ∈ C. The following
proposition gives conditions on the projection spaces span(V ) and span(W ) associated
with the truncation matrices to satisfy not only (3.23) but also Hermite interpolation
conditions.
Proposition 3.2 (Structured linear interpolation [24]):
Let GL be a linear system, described by (3.18), and ĜL the reduced-order linear system
described by (3.20) and constructed by projection (3.19). Let the matrix functions C,
K−1, B and K̂−1 be complex differentiable in the point σ ∈ C, and let k, θ ∈ N0 be
derivative orders.

(a) If span
(
∂sj (K−1B)(σ)

)
⊆ span(V ), for j = 0, . . . , k, then

∂sj GL(σ) = ∂sj ĜL(σ)

holds for j = 0, . . . , k.

(b) If span
(
∂sj (K−HCH)(σ)

)
⊆ span(W ), for i = 0, . . . , θ, then

∂siGL(σ) = ∂siĜL(σ)

holds for i = 0, . . . , θ.
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(c) If V and W are constructed as in Parts (a) and (b), then, additionally, it holds

∂sj GL(σ) = ∂sj ĜL(σ),

for j = 0, . . . , k + θ + 1. ♢

The original version of Proposition 3.2 was directly formulated for the case of tangential
interpolation, i.e., with the multiplication of B with an input direction b ∈ Cm and of
C with an output direction c ∈ Cp. The matrix interpolation results follow from [24,
Theorem 1] by concatenating the resulting projection spaces such that b = Im and c = Ip

are used. The underlying idea in the proof of Proposition 3.2 is the construction of
appropriate projectors onto the underlying projection spaces span(V ) and span(W ) by
using the basis matrices V and W , and parts of the transfer function. For the notation
in upcoming proofs let

PV(s) := V (W HK(s)V )−1W HK(s) and (3.24)
PW(s) := W (W HK(s)V )−HV HK(s)H, (3.25)

with s ∈ C, denote special frequency-dependent projectors onto span(V ) and span(W ),
respectively. In consequence, given vectors v ∈ span(V ) and w ∈ span(W ), it holds

v = PV(s)v and w = PW(s)w, (3.26)

for all s ∈ C for which PV and PW exist.
As for the first- and second-order system cases, the choice of interpolation points is

crucial for the quality of the computed approximation. An idea that was developed lately
is related to the computation of the H∞-norm via structure-preserving interpolation [6–
8, 172] leading to an H∞-norm minimizing selection of interpolation points for model
order reduction [26, 27]. Alternatively, instead of approximating the exact H∞-error,
estimators can be used for the same purpose [82]. There is no extension of the IRKA
method compliant with the general structured system case (3.18), except for some
special cases [22,144,155–157,188]. Nevertheless, the idea of constructing H2-optimal
reduced-order models was extended to general transfer functions in [25] with the transfer
function iterative rational Krylov algorithm (TF-IRKA). The method uses the Loewner
framework from [140] to construct an unstructured interpolating first-order system (2.8)
from frequency data and iterates this in an IRKA-like algorithm. It has been shown
to be very efficient in practice to use TF-IRKA for (3.18) to obtain good interpolation
points, which then can be used for structured interpolation via Proposition 3.2.

Remark 3.3 (Averaging subspaces):
A common drawback of interpolation methods is their error behavior. While being
exact in the interpolation points (and possible derivatives), the error away from these
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points can increase a lot depending on the actual transfer function behavior. A quite
often used approach to counter that was lately reformulated for the computation of
minimal realizations of linear structured parametric systems via dominant subspaces [41].
The general idea is to solve the linear systems in Proposition 3.2 for a large amount of
interpolation points. Then, a rank-revealing orthogonalization method, like pivoted QR
or the singular value decomposition (SVD), is used to obtain orthogonal basis matrices
with appropriate ordering of the basis contributions. Finally, these bases are truncated
to the desired reduced order. In principle, this method approximates the full projection
spaces corresponding to the interpolation conditions by lower-order ones and tries to fetch
the most important features. Therefore, the approximation results depend on the chosen
rank-revealing orthogonalization method and will likely not satisfy any interpolation
conditions anymore. ♢

3.4 Balanced truncation approaches
The introduction to balanced truncation presented here is mainly taken from [57].
Balanced truncation is a projection-based model reduction approach for first-order sys-
tems (2.8) using energy considerations to identify parts of the state only contributing
marginally to the input-to-output behavior of the system. Originally it was developed
in [147] for the standard system case, with E = In1 . The extension of the balanced trun-
cation method to descriptor systems (E non-invertible) was done in [179]. Assuming (2.8)
to be asymptotically stable and E to be invertible, the system Gramians of (2.8) are
defined by

P∞ := 1
2π

+∞∫
−∞

(ωiE − A)−1BBT(−ωiE − A)−Tdω =
+∞∫
0

eE−1AtE−1BBTE−TeATE−Ttdt,

ETQ∞E := 1
2π

+∞∫
−∞

ET(−ωiE − A)−TCTC(ωiE − A)−1Edω =
+∞∫
0

eATE−TtCTCeE−1Atdt,

(3.27)

with P∞, the infinite controllability Gramian, and ETQ∞E, the infinite observability
Gramian. Due to the integration up to infinity, the Gramians are equivalently defined
in frequency and time domain. It can be shown that the two matrices P∞ and Q∞
from (3.27) are also given as the unique, symmetric positive semi-definite solutions of
the two dual Lyapunov equations

AP∞ET + EP∞AT + BBT = 0,

ATQ∞E + ETQ∞A + CTC = 0.
(3.28)
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Algorithm 3.1: Balanced truncation square-root method.
Input: System matrices E, A, B, C from (2.8).
Output: Matrices of the reduced-order system Ê, Â, B̂, Ĉ.

1 Compute Cholesky factorizations P∞ = R∞RT
∞, Q∞ = L∞LT

∞ of the solutions of the
Lyapunov equations (3.28).

2 Compute the singular value decomposition

LT
∞ER∞ =

[
U1 U2

] [Σ1
Σ1

] [
TT

1
TT

2

]
,

with Σ1 = diag(ς1, . . . , ςr1) containing the r1 largest Hankel singular values.
3 Construct the projection matrices

V = R∞T1Σ
− 1

2
1 and W = L∞U1Σ

− 1
2

1 .

4 Compute the reduced-order model by

Ê = WTEV = Ir1 , Â = WTAV, B̂ = WTB, Ĉ = CV.

A measure for the influence of states to the input-to-output behavior of the system are
the Hankel singular values. These are defined to be the positive square roots of the
eigenvalues of the multiplied system Gramians P∞ETQ∞E. The main idea of balanced
truncation is to balance the system such that the Gramians are equal and diagonal

P∞ = ETQ∞E =


ς1

ς2
. . .

ςn1

 ,

with the Hankel singular values ς1 ≥ ς2 ≥ . . . ≥ ςn1 ≥ 0, and then to truncate states
corresponding to small Hankel singular values [147]. The complete balanced truncation
method using the square-root balancing formula is summarized in Algorithm 3.1.

The balanced truncation method provides an a-priori error bound in the H∞-norm

∥GL − ĜL∥H∞ ≤ 2
n1∑

k=r1+1
ςk, (3.29)

where GL is the transfer function of the original model (2.14) and ĜL of the reduced-order
model computed by Algorithm 3.1. The bound (3.29) depends only on the truncated
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Hankel singular values, which allows an adaptive choice of the reduced order with respect
to the resulting H∞-error. Also, this method preserves the stability of the original model,
i.e., since GL was asymptotically stable also ĜL is.

The application of the balanced truncation method to large-scale sparse systems is
possible by approximating the Cholesky factors of the Gramians via low-rank factors
P∞ ≈ ZR∞ZT

R∞ , ETQ∞E ≈ ETZL∞ZT
L∞E, with ZR∞ ∈ Rn1×kR∞ , ZL∞ ∈ Rn1×kL∞ and

kR∞ , kL∞ ≪ n1; see, e.g., [187]. The approximation of the Gramians is reasonable due to
a fast singular value decay that occurs due to the low-rank right-hand sides [17]. For the
computation of those factors, appropriate low-rank techniques are well developed [51].

3.4.1 Frequency-limited balanced truncation
Often due to physical limitations, only localized approximations of the system’s behavior
in time or frequency domain are needed. A suitable method to localize the approximation
behavior of the balanced truncation method in the frequency domain is the frequency-
limited balanced truncation method [90]. The idea is based on restricting the frequency
representation of the system Gramians (3.27) to the requested range of interest on the
frequency axis. The frequency-limited Gramians of (2.8) are then defined to be

PΩ := 1
2π

∫
Ω

(ωiE − A)−1BBT(−ωiE − A)−Tdω,

ETQΩE := 1
2π

∫
Ω

ET(−ωiE − A)−TCTC(ωiE − A)−1Edω,
(3.30)

with the frequency range of interest Ω = [−ω2, −ω1] ∪ [ω1, ω2] ⊂ R. It can be shown that
the left-hand sides of (3.30) are also given by the unique, symmetric positive semi-definite
solutions of the two dual Lyapunov equations

APΩET + EPΩAT + BΩBT + BBT
Ω = 0,

ATQΩE + ETQΩA + CT
ΩC + CTCΩ = 0.

(3.31)

The new right-hand side matrices BΩ := EFΩB and CΩ := CFΩE contain the frequency-
dependent matrix function

FΩ = Re
(
i

π
ln
(
(A + ω1iE)−1(A + ω2iE)

))
E−1

= E−1 Re
(
i

π
ln
(
(A + ω2iE)(A + ω1iE)−1

))
,

(3.32)

with ln(.) the principal branch of the matrix logarithm. Note that in case of ω1 = 0, i.e.,
Ω = [−ω2, ω2], the matrix function (3.32) can alternatively be simplified to

FΩ = Re
(
i

π
ln
(
−E−1A − ω2iIn1

))
E−1 = E−1 Re

(
i

π
ln
(
−AE−1 − ω2iIn1

))
;
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3.4 Balanced truncation approaches

Algorithm 3.2: Frequency-limited balanced truncation square-root method.
Input: System matrices E, A, B, C from (2.8), frequency range of interest Ω.
Output: Matrices of the reduced-order system Ê, Â, B̂, Ĉ.

1 Compute Cholesky factorizations PΩ = RΩRT
Ω, QΩ = LΩLT

Ω of the solutions of the
frequency-limited Lyapunov equations (3.31).

2 Follow the Steps 2–4 in Algorithm 3.1.

see, e.g., [47]. The frequency-limited Gramians can be extended to an arbitrary number
of frequency bands, i.e., for

Ω =
ℓ⋃

k=1

(
[−ω2k, ω2k−1] ∪ [ω2k−1, ω2k]

)
,

with 0 < ω1 < . . . < ωℓ. In this case, the matrix function (3.32) needs to be modified to

FΩ = Re
(
i

π
ln
(

ℓ∏
k=1

(A + ω2k−1iE)−1(A + ω2kiE)
))

E−1

= E−1 Re
(
i

π
ln
(

ℓ∏
k=1

(A + ω2kiE)(A + ω2k−1iE)−1
))

.

See [47] for a more detailed discussion of the theory addressed above. The extension of
this method to the large-scale system case can also be found in [47] and an extension to
descriptor systems in [117]. The resulting frequency-limited balanced truncation method
with square-root balancing is summarized in Algorithm 3.2.

3.4.2 Time-limited balanced truncation
The counterpart of the frequency-limited balanced truncation in time domain is the time-
limited balanced truncation method [90]. This approach aims for the approximation of
the system in a limited time interval Θ = [t0, tf ], where 0 ≤ t0 < tf . Basis is the limitation
of the time domain representation of the system Gramians (3.27). The time-limited
Gramians of (2.8) are then defined to be

PΘ :=
tf∫

t0

eE−1AtE−1BBTE−TeATE−Ttdt,

ETQΘE :=
tf∫

t0

eATE−TtCTCeE−1Atdt.

(3.33)
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3 Basics of Linear Model Order Reduction

Algorithm 3.3: Time-limited balanced truncation square-root method.
Input: System matrices E, A, B, C from (2.8), time range of interest Θ.
Output: Matrices of the reduced-order system Ê, Â, B̂, Ĉ.

1 Compute Cholesky factorizations PΘ = RΘRT
Θ, QΘ = LΘLT

Θ of the solutions of the
time-limited Lyapunov equations (3.34).

2 Follow the Steps 2–4 in Algorithm 3.1.

It can be shown that the left-hand sides of (3.33) are also given via the unique, positive
semi-definite solutions of the two following dual Lyapunov equations

APΘET + EPΘAT + Bt0BT
t0 − Btf BT

tf
= 0,

ATQΘE + ETQΘA + CT
t0Ct0 − CT

tf
Ctf = 0,

(3.34)

where the new right-hand side matrices Bt0/f = EeE−1At0/f E−1B = eAE−1t0/f B and Ct0/f =
CeE−1At0/f contain the matrix exponential. In case of t0 = 0, the right-hand sides of (3.34)
simplify to B0 = B and C0 = C. A more detailed discussion of the time-limited theory,
especially for the large-scale sparse system case, can be found in [130]. The extension
of the theory to descriptor systems is given in [106]. It can be noted that considering
more than one time interval at once [t0,1, tf,1] ∪ · · · ∪ [t0,ℓ, tf,ℓ] is not practical. Usually,
one cannot expect a good approximation behavior in the intermediate time intervals
since the time simulation strongly depends on the initial values at the beginning of each
interval, which might be badly approximated. Instead, it is common to take the smallest
and largest time points in the intervals to construct a new overarching time interval
[t0,min, tf,max], where t0,min = min{t0,1, . . . , t0,ℓ} and t0,max = max{tf,1, . . . , tf,ℓ} such that

ℓ⋃
k=1

[t0,k, tf,k] ⊂ [t0,min, tf,max] = Θ.

Note that with the same argumentation, it is not recommended choosing t0 different
from the actual initial time point of the full time simulation. The resulting time-limited
balanced truncation method is summarized in Algorithm 3.3.

3.4.3 Second-order balanced truncation approaches
Over time, there have been many attempts for the generalization of the classical balanced
truncation method to second-order systems [69, 143, 159]. The goal was to provide
a structure-preserving model reduction technique with the benefits of the balanced
truncation method in terms of stability preservation and an a-priori error bound. All of
those attempts for a second-order balanced truncation method are based on the same
first-order realization of (2.17), namely the first companion form realization (2.18).
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3.4 Balanced truncation approaches

Table 3.1: Second-order balanced truncation formulas [57]. The ∗ denotes factors of the
SVDs not needed, and thus not accumulated in practical computations. The
notation uses (3.36).

Type SVD(s) Transformation Reference

v UΣTT = LT
∞,vMR∞,v W = L∞,vU1Σ

− 1
2

1 , V = R∞,vT1Σ
− 1

2
1 [159]

fv ∗ ΣTT = LT
∞,pJfcR∞,p W = V, V = R∞,pT1Σ

− 1
2

1 [143]

vpm UΣTT = LT
∞,pJfcR∞,v W = M−TJT

fcL∞,pU1Σ
− 1

2
1 , V = R∞,vT1Σ

− 1
2

1 [159]

pm UΣTT = LT
∞,pJfcR∞,p W = M−TJT

fcL∞,pU1Σ
− 1

2
1 , V = R∞,pT1Σ

− 1
2

1 [159]

pv UΣTT = LT
∞,vMR∞,p W = L∞,vU1Σ

− 1
2

1 , V = R∞,pT1Σ
− 1

2
1 [159]

vp
∗ΣTT = LT

∞,pJfcR∞,v,

U ∗ ∗ = LT
∞,vMR∞,p

W = L∞,vU1Σ
− 1

2
1 , V = R∞,vT1Σ

− 1
2

1 [159]

p
∗ ΣTT = LT

∞,pJfcR∞,p,

U ∗ ∗ = LT
∞,vMR∞,v

W = L∞,vU1Σ
− 1

2
1 , V = R∞,pT1Σ

− 1
2

1 [159]

so
UpΣpTT

p = LT
∞,pJfcR∞,p,

UvΣvTv = LT
∞,vMR∞,v

Wp = L∞,pUp,1Σ
− 1

2
p,1 , Vp = R∞,pTp,1Σ

− 1
2

p,1 ,

Wv = L∞,vUv,1Σ
− 1

2
v,1 , Vv = R∞,vTv,1Σ

− 1
2

v,1
[69]

Consider the first-order system Gramians (3.27), alternatively given by (3.28), using
the first companion form realization (2.18) for the second-order system (2.17). Then, the
Gramians are partitioned according to the block structure in (2.18) such that

P∞ =
[

P∞,p P∞,12
PT

∞,12 P∞,v

]
and ETQ∞E =

[
JT

fcQ∞,pJfc JT
fcQ∞,12M

MTQT
∞,12Jfc MTQ∞,vM

]
, (3.35)

where P∞,p, JT
fcQ∞,pJfc are the so-called infinite position Gramians of (2.17) and P∞,v,

MTQ∞,vM the infinite velocity Gramians. Due to P∞ and Q∞ being symmetric positive
semi-definite, also the matrices defining the position and velocity Gramians are symmetric
positive semi-definite and can be written in terms of their Cholesky factorizations

P∞,p = R∞,pRT
∞,p, P∞,v = R∞,vRT

∞,v, Q∞,p = L∞,pLT
∞,p, Q∞,v = L∞,vLT

∞,v.

(3.36)
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3 Basics of Linear Model Order Reduction

Algorithm 3.4: Second-order balanced truncation square-root method.
Input: System matrices M , E, K, Bu, Cp, Cv from (2.17).
Output: Matrices of the reduced-order system M̂ , Ê, K̂, B̂u Ĉp, Ĉv.

1 Compute Cholesky factorizations P∞ = R∞RT
∞, Q∞ = L∞LT

∞ of the solutions of the
first-order Lyapunov equations (3.28), where the realization (2.18) is used.

2 Partition the Cholesky factors according to the first-order formulation

R∞ =
[
R∞,p
R∞,v

]
and L∞ =

[
L∞,p
L∞,v

]
.

3 Compute the SVDs and transformation matrices as in Table 3.1.
4 Compute the reduced-order model by either (3.4) for the methods p, pm, pv, vp,

vpm, v and fv, or by (3.37) for so.

Based on these, the different second-order balanced truncation methods are defined by
balancing certain combinations of the four second-order Gramians. For most of the
approaches, the resulting balanced truncation is computed as second-order projection
method (3.4), where the different choices for W and V can be found in Table 3.1. Therein,
the different transformation formulas are summarized and denoted by their type as used
in the corresponding references. The subscript 1 matrices denote the part of the SVDs
corresponding to the r2 largest singular values.

In contrast to the balancing methods that describe the reduced-order model by (3.4),
the second-order balanced truncation (so) from [69] computes the reduced-order model
by

M̂ = S
(
WT

v MVv
)

S−1, Ê = S
(
WT

v EVv
)

S−1, K̂ = S
(
WT

v KVp
)

,

B̂u = S
(
WT

v Bu
)

, Ĉp = CpVp, Ĉv = CvVvS−1,
(3.37)

where S = WpJfcVv and the transformation matrices Wp, Wv, Vp, Vv are given in the
last row of Table 3.1. This type of balancing can be seen as a projection method for the
first-order realization (2.18) with a recovering of the second-order structure afterwards.

The general second-order balanced truncation square-root method is summarized in
Algorithm 3.4.

Remark 3.4 (Second-order vs. classical balanced truncation methods):
In contrast to the first-order balanced truncation described in Section 3.4, none of the
second-order balanced truncation methods provides an error bound in the H∞-norm
or can guarantee stability preservation in the general case. A collection of examples
for the stability issue is given in [159]. In case of mechanical systems with M, E, K
symmetric positive definite and Cv = 0, it can be shown that the position-velocity
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3.4 Balanced truncation approaches

balancing (pv) as well as the free-velocity balancing (fv) are both stability preserving.
Note that the position-velocity balancing also belongs to the class of balanced truncation
approaches, which define the system Gramians as integral in the frequency domain using
relations of the underlying transfer function (2.26). These balancing approaches have
been generalized in [64] for systems with integro-differential equations. ♢

Recently, a new approach for the model reduction of passive second-order systems
was suggested in [76]. This method is based on the positive-real balanced truncation
and makes use of structure recovery rather than structure preservation, since first an
unstructured reduced-order model is computed and then modified into the second-order
form. This approach will not be further considered in this thesis.
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This chapter is concerned with newly developed model order reduction techniques
for linear second-order systems (2.17). First, an extension of the idea of dominant
pole algorithms (Section 3.2.2) is presented in Section 4.1 for an important subclass of
linear mechanical systems. Afterwards in Section 4.2, the limited balanced truncation
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4 Linear Mechanical Systems

methods (Sections 3.4.1 and 3.4.2) are extended in a structure-preserving fashion to the
second-order system case.

4.1 Second-order modally damped dominant pole
algorithm

An important problem in the work with mechanical systems is the modeling of the
damping term. A common choice for the internal damping behavior of the system is to
use combinations of the stiffness and mass matrices. This results in modally damped
mechanical systems; see, e.g., [148, 183]. In the following, the structured pole-residue
form of modally damped systems is developed to get a new dominance measure and a
structure-preserving dominant pole algorithm for modally damped mechanical systems.
Also, error bounds in the H∞-norm are proposed as well as a structure-preserving
approach to improve the approximation quality. The resulting algorithms are then tested
using two benchmark examples. The general ideas presented here and Algorithm 4.1 are
published in [27,168].

4.1.1 Structured pole-residue form
Modally damped mechanical systems are a special subclass of mechanical second-order
systems (2.17) of the form

Mẍ(t) + Eẋ(t) + Kx(t) = Buu(t),
y(t) = Cpx(t),

(4.1)

with M, E, K ∈ Rn2×n2 symmetric positive definite, Bu ∈ Rn2×m and Cp ∈ Rp×n2 , where
the damping and stiffness matrices commutate with respect to the inverse mass matrix,
i.e., it holds

EM−1K = KM−1E. (4.2)

The transfer function of (4.1) is given by

GL(s) = Cp(s2M + sE + K)−1Bu. (4.3)

The modal damping approach is a common method to model the internal damping
behavior of mechanical systems due to its convenient properties and wide understanding.
Often applied special cases are, for example, Rayleigh (or proportional) damping with

Eray = αM + βK, (4.4)
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4.1 Second-order modally damped dominant pole algorithm

where α, β ∈ R≥0, as used in the introductory examples (Sections 1.3.1 and 1.3.2), or a
scaled version of critical damping

Ecrit = 2δM
1
2

√
M− 1

2 KM− 1
2 M

1
2 ,

with δ ∈ R>0; see, e.g., [52, 53,181].
While in general the pole-residue formulation of second-order systems (3.11) can

be obtained using a first-order realization, modally damped systems yield a specially
structured pole-residue form. This structured pole-residue form of (4.3) was used in [22]
to derive H2-optimality conditions for modally damped second-order systems. Here, it
will be the basis for a dominant pole algorithm (cf. Section 3.2.2). To get the structured
pole-residue form of (4.3), consider first the generalized eigenvalue problem

Kxk = ω2
kMxk,

for the eigenvalues ω2
k, with ωk ∈ R>0, and eigenvectors 0 ̸= xk ∈ Rn2 . Due to the

symmetry of M and K, the left and right eigenvectors are identical, and both matrices
are simultaneously diagonalizable. Collecting all eigenvalues and eigenvectors into
matrices yields

KX = MXΩ2,

where Ω = diag(ω1, . . . , ωn2) and X =
[
x1 . . . xn2

]
. By appropriately scaling the

eigenvector basis, one gets

XTMX = Ω−1 and XTKX = Ω. (4.5)

With the modal damping assumption (4.2), the damping term can be diagonalized using
the same eigenvector basis, i.e.,

XTEX = 2Ξ, (4.6)

with Ξ = diag(ξ1, . . . , ξn2), the damping ratios. Then using (4.5) and (4.6), the structured
pole-residue form of (4.3) is given by

GL(s) = Cp(s2M + sE + K)−1Bu

= Cp(s2X−TΩ−1X−1 + 2sX−TΞX−1 + X−TΩX−1)−1Bu

= CpX(s2Ω−1 + 2sΞ + Ω)−1XTBu

=
n2∑

k=1

ωk(Cpxk)(xT
kBu)

(s − λ+
k )(s − λ−

k ) , (4.7)
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where the eigenvalues of the underlying quadratic eigenvalue problem (3.7) (the potential
poles of (4.3)) can be determined as pairwise solutions of quadratic equations using

λ±
k = −ωkξk ± ωk

√
ξ2

k − 1, (4.8)
for k = 1, . . . , n2.

The most important difference between the structured pole-residue form (4.7) and the
unstructured variant (3.11) is the number of summed terms. While the unstructured
version for (4.1) has 2n2 terms corresponding to the single poles and residues, the struc-
tured version has only n2 terms due to the pairwise appearing poles (3.7) corresponding
to single residues each.

Next, the idea of dominant poles (3.10) needs to be extended to the structured pole-
residue form (4.7). A first extension idea was used in [168]. The approach therein
considered

∥ωk(Cpxk)(xT
kBu)∥2

Re(λ+
k ) Re(λ−

k )
as measure for dominance. This can be seen as an easy straight-forward extension
of the dominance measure from the first-order system case (3.10), as it considers the
distance of the poles to the imaginary axis individually. Looking back to the origins of
dominant pole algorithms [138], the idea of the dominance measure is to identify those
pole-residue terms in the sum (3.9), which have potentially the biggest influence on the
transfer function behavior in an H∞ sense. Considering a single term of the structured
pole-residue form (4.7) in the H∞-norm shows∥∥∥∥∥ ωk(Cpxk)(xT

kBu)
(s − λ+

k )(s − λ−
k )

∥∥∥∥∥
H∞

= sup
f∈R

∥∥∥∥∥ ωk(Cpxk)(xT
kBu)

(f i − λ+
k )(f i − λ−

k )

∥∥∥∥∥
2

= ∥ωk(Cpxk)(xT
kBu)∥2

(
max
f∈R

1
|(f i − λ+

k )(f i − λ−
k )|

)

= ∥ωk(Cpxk)(xT
kBu)∥2

 1
min
f∈R

|(f i − λ+
k )(f i − λ−

k )|

 .

For the remaining minimum in the denominator, one has to remember that the modally
damped system (4.1) was considered to be real, i.e., its poles can only occur in either
real or complex conjugate pairs. With that in mind, it is easy to show that

arg min
f∈R

|(f i − λ+
k )(f i − λ−

k )| = ± Im(λ+
k ) = ∓ Im(λ−

k ), (4.9)

holds, i.e., the H∞-norm of a single pole-residue term is given by∥∥∥∥∥ ωk(Cpxk)(xT
kBu)

(s − λ+
k )(s − λ−

k )

∥∥∥∥∥
H∞

= ∥ωk(Cpxk)(xT
kBu)∥2

|Re(λ+
k )(Im(λ+

k )i − λ−
k )| = ∥ωk(Cpxk)(xT

kBu)∥2

|(Im(λ−
k )i − λ+

k ) Re(λ−
k )| .

This leads to the following definition of dominant pole pairs.
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4.1 Second-order modally damped dominant pole algorithm

Definition 4.1 (Modally damped dominant pole pairs):
A pole pair (λ+

k , λ−
k ) of the modally damped second-order system (4.1) is called dominant

if, with the corresponding eigenvectors 0 ̸= xk, xj ∈ Rn2 scaled as in (4.5), it holds

∥ωk(Cpxk)(xT
kBu)∥2

|Re(λ+
k )(Im(λ+

k )i − λ−
k )| >

∥ωj(Cpxj)(xT
j Bu)∥2

|Re(λ+
j )(Im(λ+

j )i − λ−
j )|

for all j ̸= k. ♢

Note that the new dominance measure in Definition 4.1 and the idea in [168] are, in
fact, identical in case of real pole pairs but not for complex conjugate ones.

A new dominant pole algorithm can now be developed, which computes the r2 most
dominant pole pairs of (4.7) such that the reduced-order model is given by

ĜL(s) =
r2∑

k=1

ωk(Cpxk)(xT
kBu)

(s − λ+
k )(s − λ−

k ) ≈ GL(s),

using an appropriate ordering in (4.7) with respect to Definition 4.1. The preserved
structure in the pole-residue form enforces the reduced-order model to be also a modally
damped second-order system.

4.1.2 Computing dominant pole pairs
After introducing the definition of dominant pole pairs and the structured pole-residue
form of modally damped second-order systems, an algorithm for the computation of
dominant pole pairs and reduced-order models is needed. The algorithmic ideas presented
here are based on [48, Algorithm 1] leading to the dominant pole algorithm for modally
damped second-order systems as summarized in Algorithm 4.1. The resulting algorithm
can be found similarly in [168].

All dominant pole algorithms are based on observing the transfer function behavior
close to system poles. For (4.3), it holds

g(s) := 1
σmax(GL(s)) → 0, (4.10)

when s approaches a pole of GL. Here, σmax(X) denotes the largest singular value of a
matrix X. In principle, dominant pole algorithms apply a Newton scheme to (4.10) to
find the zeros of g(s), i.e., the poles of the transfer function. The convergence behavior
of this Newton scheme is analyzed in [164]. It resembles an iteration over solutions of
linear systems of the form

(σ2M + σE + K)v = ũ and (σ2M + σE + K)Hw = ỹ, (4.11)
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for the solution vectors v, w ∈ Cn2 , the shift σ ∈ C and right-hand side vectors ũ, ỹ ∈ Cn2 .
The Newton scheme would additionally involve an update of the solutions v and w
as suggested in [163], but it is mentioned in [48] that in case of deflation with the
system’s input and output vectors, the Newton update becomes obsolete. In general,
the right-hand sides in (4.11) would consist of the system’s input and output matrices.
But following the ideas in [48,162], a tangential approach is used in (4.11) to compress
multiple input and output vectors in case of MIMO systems. This tangential approach
sets

ũ = Buu, and ỹ = Cpy,

with u and y pre-selected directions, usually chosen to be singular vectors corresponding
to the largest singular value of the transfer function for selected shifts. Overall, this gives
Step 4 in Algorithm 4.1.

In [48], the solutions of the linear systems, here (4.11), are collected into left and
right projection bases W and V . These bases are then used for the subspace acceler-
ation approach. For modally damped systems (4.1), one-sided projection, i.e., setting
V = W in (3.4), preserves the modal damping property in intermediate reduced-order
models. Assume that only a single basis V ∈ Rn2×r is given, the subspace acceleration
approach [162] truncates the original system (4.1) to get an intermediate reduced-order
model

G̃L = (M̃, Ẽ, K̃, B̃u, C̃p, 0), (4.12)

with

M̃ = V TMV, Ẽ = V TEV, K̃ = V TKV, B̃u = V TBu, C̃p = CpV.

The truncated system (4.12) is small, namely of dimension r ≪ n2, and has exactly
the same structure and properties as the original system, i.e., M̃, Ẽ, K̃ are symmetric
positive definite and ẼM̃−1K̃ = K̃M̃−1Ẽ holds. Therefore, the formulae (4.5), (4.6),
and (4.8) can be used to compute all poles of (4.12) in pairs with their corresponding
eigenvectors. The pole pairs of (4.12) are approximations to the pole pairs of (4.1) and
by back-projection, also the corresponding eigenvectors are approximated. Consequently,
the pole pairs and residues of the full-order system can be approximated.

The intermediate structure-preservation is an important point in the application of
the theory of dominant pole pairs of modally damped mechanical systems. Step 5 in
Algorithm 4.1 suggests the concatenation of the left and right projection bases from [48]
to preserve input and output information of the original system (4.1). Two different
special cases, and their combination, can occur here:

(i) Real shifts σj lead to Im(vj) = Im(wj) = 0, which results in only Re(vj) and Re(wj)
extending the projection space.
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(ii) As observed in [48], close to exact poles vj → wj holds, i.e., the real and imaginary
parts of vj and wj provide the same information to the subspace. Consequently,
only vj or wj should be used.

It is necessary to take care of the different occurring special cases in an implementation
of Algorithm 4.1.

Afterwards, the approximation quality is evaluated for the most dominant pole pairs
of (4.12) by computing the corresponding residuals. While in theory, the residuals for
both poles of a pair are identical, they can differ in finite arithmetic. If the newly found
pole pair with corresponding eigenvector is exact enough, it is deflated using one of the
approaches in [163] with an underlying first-order realization of (4.1). Otherwise, the
most dominant approximation of a pole pair is chosen as shifts in (4.11) in the next
iteration step.

The complete second-order modally damped dominant pole algorithm (SOMDDA) is
summarized in Algorithm 4.1. In the context of model reduction, the eigenvector matrix
X from the output of the algorithm is then used as basis of the projection spaces, i.e.,
reduced-order models are computed by (3.4) with W = V = X. The latest version of an
implementation of Algorithm 4.1 in MATLAB is published in [59].
Remark 4.2 (Alternative dominance measures):
While Definition 4.1 is the recommended measure for choosing dominant poles, different
alternatives can be used in Algorithm 4.1 to get other desired results or to change the
practical convergence behavior of the algorithm. The following measures are implemented
in [59]:

(i) dominance in the H∞-sense (Definition 4.1): ∥Rk∥2

|Re(λ+
k )(Im(λ+

k )i − λ−
k )| ,

(ii) product of real parts as in [168]: ∥Rk∥2

Re(λ+
k ) Re(λ−

k ) ,

(iii) the absolute value of the rightmost pole: ∥Rk∥2

|λ+
k | ,

(iv) distance to the imaginary axis of the rightmost pole: ∥Rk∥2

|Re(λ+
k )| ,

(v) product of pole pair: ∥Rk∥2

|λ+
k λ−

k | ,

where Rk = ωk(Cpxk)(xT
kBu) is the residue corresponding to the pole pair (λ+

k , λ−
k ). ♢

While the first two measures were discussed before, the measures in Parts (iii) and (iv)
in Remark 4.2 correspond to the classical definition of dominant poles (Definition 3.1)
with taking only the component into account, which is potentially closer to the imaginary
axis. The last measure in Remark 4.2 combines the ideas of (ii) and (iii).
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Algorithm 4.1: Second-order modally damped dominant pole algorithm.
Input: System matrices M, E, K symmetric positive definite with

EM−1K = KM−1E, Bu, Cp from (4.1), initial shift σ1, residual tolerance
0 < τ ≪ 1, number of requested pole pairs kwant.

Output: Eigenvector matrix X, dominant pole pairs λ± =
[
λ±

1 . . . λ±
k

]
.

1 Initialize V = X = [ ], λ± = [ ], k = 0, j = 1.
2 Compute the left and right singular vectors y0 and u0 of σmax(GL(σ1)).
3 while k < kwant do
4 Solve the linear systems of equations(

σ2
j M + σjE + K

)
vj = Buuk and

(
σ2

jM + σjE + K
)
wj = CT

p yk.

5 Expand the projection basis

V = orth
([

V Re(vj) Im(vj) Re(wj) Im(wj)
])

.

6 Compute the most dominant eigentriple (θ+
j , θ−

j , x̃j) of

G̃L = (V TMV, V TEV, V TKV, V TBu, CpV, 0),

using (4.5), (4.6) and (4.8).
7 Compute the corresponding eigenvector and residuals

xj = V x̃j,

r+
j =

((
θ+

j

)2
M + θ+

j E + K
)

xj,

r−
j =

((
θ−

j

)2
M + θ−

j E + K
)

xj.

8 if max(∥r+
j ∥2, ∥r−

j ∥2) < τ then
9 Set k = k + 1 and X =

[
X xj

]
, λ± =

[
λ± θ±

j

]
.

10 Deflate newly found eigentriple.
11 Update right and left singular vectors yk and uk of σmax(H(θ+

j )).
12 Set σj+1 = θ+

j and j = j + 1.
13 Restart if necessary.
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4.1.3 Bounding the approximation error in the H∞-norm
In practical situations, it is advantageous to be able to guarantee a certain approximation
quality of the computed reduced-order model in a given system norm (Definition 2.7). In
the unstructured first-order case (2.8), with the assumption of diagonalizability, the error
in the H∞-norm for modal truncation methods can be bounded by rewriting (3.6) into

d
dt

[
x1(t)
x2(t)

]
=
[
A1 0
0 A2

] [
x1(t)
x2(t)

]
+
[
B1
B2

]
u(t),

y(t) =
[
C1 C2

] [x1
x2

]
,

where the subscript-1 matrices belong to the reduced-order model, with A1 containing
the r1 chosen eigenvalues, and the subscript-2 matrices are the truncated parts. Then,
the H∞-approximation error can generally be bounded by

∥GL − ĜL∥H∞ ≤ ∥B2∥2∥C2∥2

min
λ∈Λ(A2)

|Re(λ)| ; (4.13)

see [50, 99]. A similar bound can be derived for the modal truncation of modally
damped second-order systems. Consider the matrix of appropriately scaled eigenvectors
X from (4.5) and (4.6) such that the transfer function (4.3) can be written with diagonal
system matrices

GL(s) =
[
C1 C2

] (
s2
[
Ω−1

1 0
0 Ω−1

2

]
+ 2s

[
Ξ1 0
0 Ξ2

]
+
[
Ω1 0
0 Ω2

])−1 [
B1
B2

]
.

Again, the subscript-1 matrices belong to the reduced-order model and subscript 2 are
the truncated parts. Then, the H∞-error can be bounded by

∥GL − ĜL∥H∞ = sup
f∈R

∥C2(−f 2Ω−1
2 + 2f iΞ2 + Ω2)−1B2∥2

≤ ∥C2∥2∥B2∥2

min
λ±∈Λ(Ω2,2Ξ2,Ω−1

2 )
|Re(λ+)(Im(λ+)i − λ−)| , (4.14)

where Λ(Ω2, 2Ξ2, Ω−1
2 ) is the set of all truncated eigenvalues, i.e., the set of all eigenvalues

of the quadratic eigenvalue problem using the truncated system matrices

(λ2Ω−1
2 + 2λΞ2 + Ω−1

2 )x = 0.

The general problem of both bounds (4.13) and (4.14) is that for the norm of the truncated
parts of input and output matrices, the full eigenvector basis is needed. This is usually
not computable for large-scale systems.
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An alternative to (4.14) can be found using the structured pole-residue form (4.7),
where the poles are ordered with respect to Definition 4.1. Using the triangle inequality
and (4.9), one obtains

∥GL − ĜL∥H∞ = sup
f∈R

∥∥∥∥∥
n2∑

k=1

ωk(Cpxk)(xT
kBu)

(f i − λ+
k )(f i − λ−

k ) −
r2∑

k=1

ωk(Cpxk)(xT
kBu)

(f i − λ+
k )(f i − λ−

k )

∥∥∥∥∥
2

= sup
f∈R

∥∥∥∥∥∥
n2∑

k=r2+1

ωk(Cpxk)(xT
kBu)

(f i − λ+
k )(f i − λ−

k )

∥∥∥∥∥∥
2

≤ sup
f∈R

n2∑
k=r2+1

∥ωk(Cpxk)(xT
kBu)∥2

|(f i − λ+
k )(f i − λ−

k )|

=
n2∑

k=r2+1

∥ωk(Cpxk)(xT
kBu)∥2

min
f∈R

|(f i − λ+
k )(f i − λ−

k )|

=
n2∑

k=r2+1

∥ωk(Cpxk)(xT
kBu)∥2

|Re(λ+
k )(Im(λ+

k )i − λ−
k )| , (4.15)

where r2 is the order of the reduced-order model and the number of preserved dominant
pole pairs. As for the previous bound (4.14), the new bound (4.15) would, in principle,
need the computation of all truncated pole pairs of the modally damped system (4.1),
which is infeasible in practice. This issue can be overcome by using the ordering of the
pole pairs with respect to the H∞-based dominance measure (Definition 4.1), i.e., it holds
that

∥ωk(Cpxk)(xT
kBu)∥2

|Re(λ+
k )(Im(λ+

k )i − λ−
k )| ≥ ∥ωj(Cpxj)(xT

j Bu)∥2

|Re(λ+
j )(Im(λ+

j )i − λ−
j )| ,

for all j > k. This can be used to over-estimate the dominance measure of non-computed
pole pairs. Therefore, assume that kwant ≥ r2 pole pairs were computed via Algorithm 4.1,
then one can bound the H∞ error by

∥GL − ĜL∥H∞ ≤
kwant∑

k=r2+1

∥ωk(Cpxk)(xT
kBu)∥2

|Re(λ+
k )(Im(λ+

k )i − λ−
k )|

+ (n2 − kwant)
∥ωkwant(Cpxkwant)(xT

kwantBu)∥2

|Re(λ+
kwant)(Im(λ+

kwant)i − λ−
kwant)|

.

(4.16)

In contrast to (4.15), the new bound (4.16) is computable in practice, under the assump-
tion that the most dominant poles were computed correctly. Also, the new bound (4.16)
becomes sharper if more pole pairs are computed since (4.16) approaches (4.15) for
kwant → n2. It is a common approach in modal truncation to compute more poles than
actually needed to increase the chance for sparse eigenvalue solvers to actually compute
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4.1 Second-order modally damped dominant pole algorithm

the desired eigenvalues. The gap between (4.15) and (4.16) depends on the decay of
the dominance measure, as well as the size of the original system n2 and the number
of computed dominant pole pairs kwant. It will become larger if kwant ≪ n2 and the
dominance measure continues to decay after the computed kwant pole pairs. In practice,
the constant multiplied with the last dominance measure term will be dominated by the
size of the original system, which results in a vast overestimation of the H∞-error in
cases where the dominance measure of the last computed pole pair is not small enough
but could decay further for upcoming pairs.

In general, the bounds (4.15) and (4.16) imply that the dominant pole algorithm for
modally damped second-order systems provides good approximations if the dominance
measure (Definition 4.1) decays fast. On the other hand, a slow decay, or even stagnation,
of the dominance measure indicates difficulties in approximating the original system via
its pole pairs.

4.1.4 Basis enrichment via rational Krylov subspaces
While modal truncation approaches are known to well approximate input-to-output
behavior related to single system poles, i.e., peaks in the frequency response behavior,
they usually fail to approximate “flat” regions or behavior that is determined by clusters
of poles. Therefore, it is recommended for model order reduction methods to enrich
the modal truncation basis with additional basis vectors to improve the approximation
quality especially in those regions, where the behavior of the system poles is less dominant.
An efficient model reduction approach to improve the approximation behavior of the
reduced-order model in desired frequency regions are interpolatory methods (Krylov
subspace methods); see Section 3.3.

First, consider the first-order system (2.8). Let Vmt and Wmt be right and left basis
matrices for modal truncation, i.e., it holds

xi ∈ span(Vmt) and yi ∈ span(Wmt) (4.17)

for 1 ≤ i ≤ r1 and xi, yi from (3.5) corresponding to the chosen eigenvalues λi. Because
of (4.17), reduced-order models computed by (3.2) preserve the chosen system poles if
span(Vmt) and span(Wmt) are contained in the final projection spaces. Given now two
other truncation bases V2 and W2, e.g., constructed by transfer function interpolation,
the final truncation bases can be constructed via the underlying projection spaces such
that

span(V ) ⊇ span
([

Vmt V2
])

and span(W ) ⊇ span
([

Wmt W2
])

(4.18)

hold. Since (4.17) translates into (4.18) by construction, reduced-order models constructed
by projection (3.2) with the basis matrices as in (4.18) also preserve the chosen poles
from the modal truncation approach, independent of the second chosen model reduction
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basis. While a lot of projection-based model order reduction methods could be used
for the construction of V2 and W2, interpolation-based methods are the recommended
choice. They have cheap computational costs and, in contrast to many other methods,
the interpolation property is given via subspace conditions in Proposition 3.2, i.e., the
interpolation conditions satisfied by V2 and W2 are inherited in (4.18) such that also the
final reduced-order model fulfills the same interpolation conditions.

The modal truncation method with basis enrichment via rational Krylov subspaces
was used in [178] for second-order systems to accelerate simulations of machine tools via
reduced-order models. Therein, only the undamped second-order system with E = 0:

Mẍ(t) + Kx(t) = Buu(t),
y(t) = Cpx(t),

is considered for the generation of the modal and Krylov bases. But the idea of basis
enrichment can similarly be used for modally damped second-order systems (4.1). A
suitable structure-preserving projection method for the basis enrichment is given using
the theory from Section 3.3.3 and Proposition 3.2. The resulting structure-preserving
dominant pole algorithm with basis enrichment is summarized in Algorithm 4.2. The
following remarks give some ideas for an explicit implementation of the algorithm.

Remark 4.3 (Number of dominant pole pairs):
As mentioned in Section 4.1.3, the second-order modally damped dominant pole algorithm
is comparably cheap in computational costs and can be run for more than the desired
number of dominant pole pairs, resulting in the choice of the kmt most dominant poles
to remain in the reduced-order model. This number of remaining pole pairs kmt can be
adaptively chosen, for example, by the H∞-error bound in (4.16), by observing stagnation
of the computed dominance measure (Definition 4.1), or by truncating dominant pole pairs
with dominance measure below a given tolerance. Especially, a drop in the dominance
measure indicates a good point for truncating pole pairs. ♢

Remark 4.4 (Choosing interpolation points for basis enrichment):
The choice of interpolation algorithms gives quite an amount of freedom to the user
in terms of realizing Algorithm 4.2. The only restriction done in Algorithm 4.2 is
the requirement of a single resulting basis matrix Vkry to preserve the modal damping
property of the original system. In general, interpolation can be performed via a one-sided
projection anyway (cf. Proposition 3.2). In case of interpolation via two-sided projection,
to additionally match the frequency sensitivities, the two computed basis matrices V
and W can be combined into a single basis by concatenation

Vkry = orth
([

V W
])

.

Two example choices for the interpolation points are outlined below:
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4.1 Second-order modally damped dominant pole algorithm

Algorithm 4.2: SOMDDPA with basis enrichment via structured interpolation.
Input: System matrices M, E, K symmetric positive definite with

EM−1K = KM−1E, Bu, Cp from (4.1), number of pole pairs kmt in the
reduced-order model.

Output: Matrices of the modally damped reduced-order system M̂, Ê, K̂, B̂u, Ĉp.
1 Compute the eigenvector basis X for kwant ≥ kmt pole pairs using Algorithm 4.1

with the system matrices M, E, K, Bu, Cp, an initial shift σ1 ∈ C and the residual
tolerance 0 < τ ≪ 1.

2 Partition X =
[
X1 X2

]
, with X1 the eigenvectors corresponding to the kmt most

dominant pole pairs.
3 Compute a real interpolation basis Vkry by any interpolation algorithm based on

Proposition 3.2 with

C(s) = Cp, K(s) = s2M + sE + K, B(s) = Bu.

4 Compute the orthogonal truncation basis

V = orth
([

X1 Vkry
])

.

5 Compute the reduced-order model

M̂ = V TMV, Ê = V TEV, K̂ = V TKV, B̂u = V TBu, Ĉp = CpV.

(a) As the transfer function on the imaginary axis is enough for stable systems to
describe their input-to-output behavior, interpolation points could be chosen as
complex conjugate pairs on the imaginary axis in the frequency range of interest.
Simple and efficient choices are, for example, logarithmically equidistant points
or to choose the points in the intervals spanned by the imaginary parts of the
computed dominant poles.

(b) Using the projection-based H∞-norm computation from [6–8,172] or error estima-
tors [82] allows for a similar greedy model reduction approach as described in [26,27]
such that interpolation points that minimize the H∞-approximation error can be
computed. The combination with the dominant pole algorithm corresponds to an
initialization of the greedy interpolation procedure ([26,27]) with a reduced-order
model from Algorithm 4.1. An advantageous side effect of this approach when
using the algorithms for H∞-norm approximation is the potentially very accurate,
final H∞-error as by-product. ♢
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4.1.5 Numerical experiments
In this section, the new SOMDDA approaches are tested and compared to classical
structure-preserving methods for second-order systems from Chapter 3. Therefore, the
two linear benchmark examples from Chapter 1 are used, namely the butterfly gyroscope
and the artificial fishtail model. The following list is an overview about the model
reduction methods used in the comparisons and their notation:
SOMDDPA denotes the pure structure-preserving dominant pole algorithm from Algo-

rithm 4.1,

SOMDDPA+StrInt(equi./H∞) is the structure-preserving dominant pole algorithm
with basis enrichment from Algorithm 4.2, where only one-sided interpolation
(Proposition 3.2 Part (a)) is used with the interpolation points chosen either
logarithmically equidistant on the imaginary axis (equi.) or via a successive greedy
H∞-selection (H∞),

MT is the classical modal truncation method (Section 3.2.1) computing the eigenvectors
of the smallest eigenvalues of (3.8) as truncation basis,

SOBT(p/pm/pv/vp/vpm/v/fv/so) is the second-order balanced truncation method
(Section 3.4.3) with the balancing formulae from Table 3.1,

StrInt(equi./H∞/IRKA) denotes the structure-preserving interpolation method using
the one-sided interpolation (Proposition 3.2 Part (a)) and the interpolation points
chosen either logarithmically equidistant on the imaginary axis (equi.), via H∞-
greedy selection (H∞) or as H2-optimal points from TF-IRKA (IRKA),

StrInt(avg.) computes the reduced-order model by approximating an oversampled inter-
polation subspace as in Remark 3.3 using the pivoted QR decomposition for the
basis truncation.

The numerical comparison of the different methods will be done using the MORscore from
Section 2.4.2, where the table columns corresponding to the time domain measures (2.44)
and (2.45) are denoted by L2 and L∞, respectively, and for the frequency domain
measure (2.46) by H∞. For a more detailed discussion, a practical reduced order r2 is
selected, for which the best performing methods are compared in frequency and time
domains using pointwise relative errors. In frequency domain, this will be

ϵrel(ω) := ∥GL(ωi) − ĜL(ωi)∥2

∥GL(ωi)∥2
, (4.19)

with the frequency range of interest ω ∈ [ωmin, ωmax] ⊂ R, and in time domain

ϵrel(t) := ∥y(t) − ŷ(t)∥2

∥y(t)∥2
, (4.20)
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Table 4.1: MORscores for the butterfly gyroscope example with reduced orders from 1 to
30, and the percentage of stable reduced-order models.

Method H∞ L2 L∞ Stab. ratio

SOMDDPA 0.2540 0.2188 0.2090 1.0000
SOMDDPA+StrInt(equi.) 0.1964 0.1980 0.1912 1.0000
SOMDDPA+StrInt(H∞) 0.2943 0.2328 0.2295 1.0000
MT 0.2094 0.1739 0.1677 1.0000
SOBT(p) 0.3147 0.2799 0.2758 1.0000
SOBT(pm) 0.1669 0.1170 0.1115 0.1333
SOBT(pv) 0.3165 0.2666 0.2634 1.0000
SOBT(vp) 0.1153 0.0539 0.0473 0.5000
SOBT(vpm) 0.0965 0.0725 0.0709 0.0000
SOBT(v) 0.3007 0.2665 0.2604 0.9667
SOBT(fv) 0.2714 0.2506 0.2455 1.0000
SOBT(so) 0.3079 0.2446 0.2383 0.8333
StrInt(equi.) 0.1355 0.1486 0.1433 1.0000
StrInt(H∞) 0.2853 0.2281 0.2238 1.0000
StrInt(IRKA) 0.2474 0.2118 0.2083 1.0000
StrInt(avg.) 0.2234 0.2095 0.2018 1.0000

with the time interval t ∈ [t0, tf ] used for simulations.

4.1.5.1 Butterfly gyroscope

The butterfly gyroscope is a mechanical system with n2 = 17 361 second-order differential
equations, m = 1 input and p = 12 position outputs. It is used as motivational example
in Section 1.3.1. The internal damping is modeled via the Rayleigh approach (4.4),
E = αM + βK, with α = 0 and β = 10−6. Therefore, this benchmark example belongs
to the class of modally damped second-order systems (4.1).

The resulting MORscores for all implemented methods are shown in Table 4.1. The
number of dominant pole pairs to reside in the reduced-order model for the SOMD-
DPA+StrInt approaches was fixed to 6. This choice was taken for the practical reason
of comparability to the other methods. For the time domain simulation in the interval
[0, 0.01] s, the input was chosen to be a piecewise constant white noise signal

u(t) = η(tj), for tj ≤ t < tj+1,

with j = 0, . . . , 99, equidistant time steps tj = j · 0.01
99 and presampled Gaussian white

noise η(t). The last column of Table 4.1 shows the relative amount of asymptotically
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Figure 4.1: Comparison of dominance measure, H∞-error bound (4.16) and absolute
H∞-error of SOMDDPA for the butterfly gyroscope example.
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Figure 4.2: Projection of complex dominant poles onto the frequency axis and relation
to the transfer function behavior for the butterfly gyroscope example.

stable reduced-order models, e.g., 0.8333 · 30 ≈ 25 stable reduced-order models were
computed for SOBT(so). By construction, the modal truncation and interpolation
approaches always produce asymptotically stable reduced-order models. In general,
beside some outliers within the SOBT methods, all techniques perform reasonably well
in this example.

Taking a close look at the new approaches, one can observe that the pure SOMDDPA
and SOMDDPA+StrInt(H∞) perform exceptionally better than the classical modal
truncation method, MT. Also, SOMDDPA+StrInt(equi.) is still able to outperform
the MT approach in time domain despite its very simple subspace enrichment strat-
egy of equidistant interpolation points. Another interesting observation is that both
SOMDDPA+StrInt methods perform better than their pure interpolation counterparts
StrInt(equi.) and StrInt(H∞). Overall comparing the MORscores, the best of the domi-
nant pole approaches is SOMDDPA+StrInt(H∞), which is only outperformed by some
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(b) Pointwise relative errors.
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Figure 4.3: Frequency domain results for the butterfly gyroscope example.

of the second-order balanced truncation methods SOBT(p/pv/v/so).
Figure 4.1 is used to compare the approximate error bound (4.16) with the actual

H∞-error of SOMDDPA and the corresponding dominance measure from Definition 4.1.
Thereby, SOMDDPA was used to compute up to 50 dominant pole pairs of the original
system, while reduced-order models were only computed up to order 30. One can see that
in the beginning, the dominance measure nicely decays and the error bound captures
very well the actual error behavior. However, after order 7 the error bound flattens
out and stops tracking the reduction error. This is due to the weaker decay of the
dominance measure arising after order r2 = 20 in the order of magnitude of 10−8 and
the multiplication with approximately n2 in the error bound. Figure 4.1 also shows, as
discussed in Section 4.1.3, that the stagnation of the dominance measure indicates the
stagnation of the approximation error. Following the decay of the dominance measure, a
good amount of dominant pole pairs to keep in the reduced-order model for the basis
enrichment strategy would be between 15 and 20.

For a better understanding of the influence of dominant poles on the transfer function
behavior, Figure 4.2 shows the first 12 pole pairs projected onto the imaginary axis and
the transfer function of the full and reduced-order SOMDDPA model of order r2 = 12.
The “strong dominant poles” are the first 6 most dominant pole pairs and the “less
dominant poles” the following 6 pairs. One can directly observe how the strong dominant
poles resemble the peaks of the transfer function and lead to a matching approximation
in these regions.

For a more detailed comparison, the reduced order r2 = 12 is picked also for the other
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(b) Pointwise relative errors of the complete output.
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Figure 4.4: Time domain results for the butterfly gyroscope example.

model reduction methods. To keep the upcoming plots clearly arranged, only the best
performing approaches from the second-order balancing and interpolation-based methods
are chosen, namely SOBT(pv) and StrInt(H∞). Figure 4.3 shows the results in frequency
domain. MT provides clearly the worst approximation where the transfer function is not
even matched anymore for higher frequencies. The SOMDDPA+StrInt(equi.) method
yields the overall best relative approximation error due to the interpolation points
equally distributed over the frequency range of interest. The methods with H∞-greedy
interpolation also nicely match the transfer function except for high frequencies, where
they begin to diverge. Figure 4.4 illustrates the approximation in the time domain with
one selected example entry of the output vector in Figure 4.4a and the pointwise relative
errors of the complete output signal in Figure 4.4b. All methods are performing equally
well except for MT, which is several orders of magnitude worse than the rest.
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Table 4.2: MORscores for the artificial fishtail example with reduced orders from 1 to 10,
and the percentage of stable reduced-order models.

Method H∞ L2 L∞ Stab. ratio

SOMDDPA 0.2490 0.2191 0.2192 1.0000
SOMDDPA+StrInt(equi.) 0.2461 0.2095 0.2133 1.0000
SOMDDPA+StrInt(H∞) 0.2447 0.2011 0.2050 1.0000
MT 0.2043 0.1657 0.1651 1.0000
SOBT(p) 0.2537 0.2631 0.2649 0.9000
SOBT(pm) 0.2447 0.2125 0.2123 0.8000
SOBT(pv) 0.2540 0.2441 0.2460 0.9000
SOBT(vp) 0.2461 0.2457 0.2468 1.0000
SOBT(vpm) 0.2352 0.2397 0.2399 1.0000
SOBT(v) 0.2548 0.2677 0.2721 1.0000
SOBT(fv) 0.2103 0.1890 0.1933 1.0000
SOBT(so) 0.2553 0.2671 0.2709 1.0000
StrInt(equi.) 0.0954 0.0921 0.0926 1.0000
StrInt(H∞) 0.2018 0.1747 0.1803 1.0000
StrInt(IRKA) 0.2005 0.1796 0.1843 1.0000
StrInt(avg.) 0.2262 0.2013 0.2041 1.0000

4.1.5.2 Artificial fishtail model

As second numerical example, the artificial fishtail model from Section 1.3.2 is considered.
The example has n2 = 779 232 states, m = 1 input and p = 3 position outputs. As in the
previous example, Rayleigh damping (4.4) is used to model the internal behavior of the
system, with E = αM + βK, where α = 10−4 and β = 2 · 10−4. Therefore, the artificial
fishtail model also belongs to the class of modally damped mechanical systems (4.1).

The MORscores of all compared methods are shown in Table 4.2. The maximum
reduced order for the comparison was chosen to be 10, because in [174] this was chosen
as reasonable large approximation order, and the SOMDDPA implementation is only
capable of computing 12 pole pairs before stagnating in large clusters of very weakly
observable/controllable eigenvalues. The number of dominant pole pairs to reside in the
reduced-order model in the basis enrichment methods was set to be 4 for the same practical
reasons as in the previous example. For MT, the eigenvalue computations in MATLAB
using eigs turned out to be difficult due to a cluster of weakly observable/controllable
eigenvalues close to the imaginary axis. To get similar results to [168, 174], the 50
smallest eigenvalues of (3.8) were computed using eigs and all values corresponding to
the occurring eigenvalue cluster were removed for MT. For the time domain simulation
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Figure 4.5: Comparison of dominance measure, H∞-error bound (4.16) and absolute
H∞-error of SOMDDPA for the artificial fishtail example.
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Figure 4.6: Projection of complex dominant poles onto the frequency axis and relation
to the transfer function behavior for the artificial fishtail example.

in the interval [0, 2] s, the input is chosen as piecewise constant white noise signal

u(t) = 5000 · η(tj), for tj ≤ t < tj+1,

with j = 0, . . . , 99, equidistant time steps tj = j · 2
99 and presampled Gaussian white

noise η(t).
Comparing the MORscores in Table 4.2 reveals the SOMDDPA approaches to be good

approximation methods that perform better than the classical MT, all interpolation-based
methods and also some second-order balancing methods. In contrast to the previous
example, the basis enrichment approach is not capable to improve the approximation
quality compared to SOMDDPA. Figures 4.5 and 4.6 are used to give more inside about
the dominant pole approach. Figure 4.5 shows, as for the previous example, the H∞-error
to behave very similar to the dominance measure from Definition 4.1. But for the
artificial fishtail, the error bound (4.16) does not provide any information due to the early
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(b) Pointwise relative errors.
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Figure 4.7: Frequency domain results for the artificial fishtail example.

stagnation of the dominance measure and the very large full-order state-space dimension.
The complex dominant pole pairs are shown in Figure 4.6. The figure only shows 6 pairs
since the rest of the pole pairs are real-valued. The 4 as “strong” denoted pole pairs
are the most dominant ones and those which are chosen to reside in the reduced-order
model in the basis enrichment methods. As recognized in the previous example, the most
dominant poles exactly capture the peaks and their surrounding behavior of the transfer
function very well.

For a more detailed comparison, the reduced order r2 = 10 is chosen. For clarity in
the upcoming plots, only selected reduction methods are chosen. SOBT(so) is used as
representative of the second-order balancing methods and from the interpolation-based
approaches StrInt(avg.) is taken. The approximation results in the frequency domain are
shown in Figure 4.7. From the modal truncation methods, the SOMDDPA+StrInt(H∞)
performs best and MT worst. MT clearly diverges from the original transfer function for
frequencies close to 104 rad/s. Best performing is the SOBT(so) approach. A general
problem in the approximation of the transfer function seems to be the sink close to
104 rad/s, which is best captured by SOMDDPA+StrInt(H∞) and SOBT(so). The
time simulation results can be seen in Figure 4.8. The first and third entries of the
system’s output describe the fishtail movement in the non-horizontal directions, for
which the original system’s output is nearly zero. Therefore, Figure 4.8a only shows
the second output entry giving the horizontal flapping movement of the fishtail. All
chosen model reduction methods seem to capture the behavior of the original system in
Figure 4.8a. Looking at the pointwise relative output errors for the complete system’s
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(b) Pointwise relative errors of the complete output.
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Figure 4.8: Time domain results for the artificial fishtail example.

output in Figure 4.8b reveals similar results to the frequency domain observations. MT
performs again worst and SOBT(so) best, where also SOMDDPA and StrInt(avg.) yield
comparably good approximations.

4.1.6 Conclusions
In this section, the idea of modal truncation via dominant poles was reconsidered for a
special subclass of mechanical systems, namely those with modal damping. By using the
special structure of the underlying quadratic eigenvalue problem, a structured pole-residue
form was attained leading to the definition of dominant pole pairs for modally damped
systems. An appropriate numerical procedure was developed to compute dominant
pole pairs efficiently in a structure-preserving fashion, based on classical techniques
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from first-order dominant pole algorithms. Two types of bounds for the absolute H∞-
approximation error were developed. While only being of limited practical use, these
bounds imply a good approximation behavior of the method in cases of a fast decay of
the dominance measure. Motivated by the observation that modal truncation quickly
reaches its limits of approximation possibilities, a structure-preserving expansion of
the constructed model reduction basis was suggested as refinement procedure using
structured interpolation. In two numerical examples, the newly developed dominant
pole algorithms for modally damped systems were compared to a variety of established
structure-preserving model reduction methods and turned out to be very competitive
alternatives in terms of approximation quality in time and frequency domains.
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4.2 Second-order frequency- and time-limited balanced
truncation methods

While most structure-preserving model reduction approaches, as well as the methods
from the previous section (Section 4.1), aim for a globally sufficient approximation,
this is not always necessary. In the presence of practical applications, often only local
approximations of the original system’s behavior in frequency or time domain are of
actual interest, i.e., an approximation is only needed for a specified time or frequency
range due to physical restrictions.

A class of approaches that can be used in the frequency domain to derive reduced-order
models with locally good approximations is structured interpolation (Section 3.3.4).
Interpolation-based methods usually provide good approximations in the surroundings of
the chosen interpolation points. But this might not be sufficient for the approximation
of a whole frequency region leading to larger numbers of interpolation points and,
therefore, larger reduced-order models needed for the approximation. In case of first-
order systems, the limited balanced truncation methods (cf. Sections 3.4.1 and 3.4.2) are
suitable alternatives concerning local approximations in both frequency and time domains.
Compared to the Krylov subspace approaches, these methods usually lead to a more
uniform error behavior of the approximation in the ranges of interest. Therefore, one can
expect smaller reduced-order models with the required approximation quality than using
interpolation methods or global approximations. A first attempt of extending the limited
balanced truncation approaches to second-order systems (2.17) was done in [107] for the
frequency-limited case and, in the same fashion, in [108] for the time-limited case. While
these references give a general idea, they are still incomplete concerning the concept of
second-order balanced truncation methods and their application to the large-scale sparse
system case. Also, they contain a general misconception about the problem of stability
preservation in reduced-order second-order systems.

In the following, a full extension of the limited balanced truncation approaches from
first- to second-order systems of the form (2.17) is presented, followed by proposed
alternative methods for the problem of stability preservation and discussions on how
to handle the large-scale sparse system case and numerical difficulties in computations.
This section is based on the results published in [54, 57] and also partially available
in [26,27,168].

4.2.1 Structured frequency-limited approach
The generalization of the frequency-limited balanced truncation method for second-
order systems has been discussed in [107] for the position (p) and position-velocity (pv)
balancing from [159] (cf. Table 3.1). A generalization to more second-order balanced
truncation approaches can be done by the following observation: The block partitioning
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of the Gramians (3.35) into position and velocity parts is given by

P∞,p =
[
In2 0

]
P∞

[
In2

0

]
, P∞,v =

[
0 In2

]
P∞

[
0

In2

]
,

JT
fcQ∞,pJfc =

[
In2 0

]
ETQ∞E

[
In2

0

]
, MTQ∞,vM =

[
0 In2

]
ETQ∞E

[
0

In2

]
,

(4.21)

for the infinite first- and second-order Gramians. Therefore, the extension of the existing
second-order balanced truncation methods to the frequency-limited approach follows the
replacement of the infinite first-order Gramians P∞ and ETQ∞E in (4.21) by the first-
order frequency-limited Gramians PΩ and ETQΩE from (3.30), using the same first-order
realization (2.18). Applying (4.21), the frequency-limited second-order Gramians are
defined to be

PΩ,p :=
[
In2 0

]
PΩ

[
In2

0

]
, PΩ,v :=

[
0 In2

]
PΩ

[
0

In2

]
,

JT
fcQΩ,pJfc :=

[
In2 0

]
ETQΩE

[
In2

0

]
, MTQΩ,vM :=

[
0 In2

]
ETQΩE

[
0

In2

]
,

(4.22)

or, equivalently,

PΩ =
[

PΩ,p PΩ,12
PT

Ω,12 PΩ,v

]
, and ETQΩE =

[
JT

fcQΩ,pJfc JT
fcQΩ,12M

MTQT
Ω,12Jfc MTQΩ,vM

]
,

with PΩ,p, PΩ,v the frequency-limited position and velocity controllability Gramians, and
JT

fcQΩ,pJfc, MTQΩ,vM the frequency-limited position and velocity observability Gramians.
Remember that the matrices PΩ and QΩ are given by (3.31) using the first companion form
realization (2.18). As for the infinite second-order Gramians, one can observe that the
frequency-limited position and velocity Gramians are symmetric positive semi-definite.

According to [90, 107, 159], the corresponding frequency-limited singular values are
defined as follows.
Definition 4.5 (Second-order frequency-limited characteristic values):
Consider the second-order system (2.17) with the first-order realization (2.18) and the
frequency range of interest Ω = −Ω ⊂ R.

1. The positive square roots of the eigenvalues of PΩ,pJT
fcQΩ,pJfc are the frequency-

limited position singular values of (2.17).

2. The positive square roots of the eigenvalues of PΩ,pMTQΩ,vM are the frequency-
limited position-velocity singular values of (2.17).

3. The positive square roots of the eigenvalues of PΩ,vJT
fcQΩ,pJfc are the frequency-

limited velocity-position singular values of (2.17).
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Algorithm 4.3: Second-order frequency-limited balanced truncation square-root
method.
Input: System matrices M , E, K, Bu, Cp, Cv from (2.17), frequency range of

interest Ω.
Output: Matrices of the reduced-order system M̂ , Ê, K̂, B̂u Ĉp, Ĉv.

1 Compute Cholesky factorizations PΩ = RΩRT
Ω, QΩ = LΩLT

Ω of the solutions of the
first-order frequency-limited Lyapunov equations (3.31), where the first companion
form realization (2.18) is used.

2 Follow the Steps 2–4 in Algorithm 3.4.

4. The positive square roots of the eigenvalues of PΩ,vMTQΩ,vM are the frequency-
limited velocity singular values of (2.17). ♢

Following the ideas of the first-order frequency-limited approach as well as the second-
order balanced truncation method, the characteristic values in Definition 4.5 can be seen
as a measure for the influence of the corresponding states to the input-to-output behavior
of the system in the frequency range of interest. Currently, there is no supporting energy
interpretation as for the classical first-order balanced truncation method available. But
in practical implementations, the decay of the values in Definition 4.5 can be used to
adaptively determine the reduced order.

Together with (4.22) and Definition 4.5, the resulting second-order frequency-limited
balanced truncation (SOFLBT) square-root method is summarized in Algorithm 4.3.

Remark 4.6 (Stability issues of SOFLBT):
The SOFLBT method is in general not stability preserving. The same goes for the
suggested approach in [107], which does neither necessarily yield a one-sided projection
as claimed by the authors, nor may produce stable reduced-order second-order systems.
Nevertheless, the general idea of the technique in [107] as well as a modified approach
that are potentially advantageous in terms of stability preservation are discussed in
Section 4.2.3. ♢

4.2.2 Structured time-limited approach
The idea of the second-order time-limited balanced truncation was first mentioned in [108].
Similarly to the frequency-limited case, the authors only considered two particular cases
of the second-order balancing formulae. As in the previous section, the idea for the
extension of the time-limited balanced truncation to second-order systems is to make use
of writing the second-order Gramians as truncation of the first-order Gramians (4.21).
Consequently, the infinite first-order Gramians in (4.21) are this time replaced by the
first-order time-limited Gramians from (3.33) to define the second-order time-limited
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Gramians

PΘ,p :=
[
In2 0

]
PΘ

[
In2

0

]
, PΘ,v :=

[
0 In2

]
PΘ

[
0

In2

]
,

JT
fcQΘ,pJfc :=

[
In2 0

]
ETQΘE

[
In2

0

]
, MTQΘ,vM :=

[
0 In2

]
ETQΘE

[
0

In2

]
,

or, equivalently,

PΘ =
[

PΘ,p PΘ,12
PT

Θ,12 PΘ,v

]
, and ETQΘE =

[
JT

fcQΘ,pJfc JT
fcQΘ,12M

MTQT
Θ,12Jfc MTQΘ,vM

]
,

using the first companion form realization (2.18). Then, PΘ,p and PΘ,v are the time-
limited position and velocity controllability Gramians, and JT

fcQΘ,pJfc and MTQΘ,vM are
the time-limited position and velocity observability Gramians. The two matrices PΘ
and QΘ are given via the time-limited dual Lyapunov equations (3.34) using the first
companion form realization (2.18). Inherited from the first-order Gramians, also the
second-order time-limited Gramians are all symmetric positive semi-definite. As pendant
to the frequency-limited characteristic values from Definition 4.5, the following definition
states the time-limited case.
Definition 4.7 (Second-order time-limited characteristic values):
Consider the second-order system (2.17) with the first-order realization (2.18) and the
time range of interest Θ = [t0, tf ], 0 ≤ t0 < tf .

1. The positive square roots of the eigenvalues of PΘ,pJT
fcQΘ,pJfc are the time-limited

position singular values of (2.17).

2. The positive square roots of the eigenvalues of PΘ,pMTQΘ,vM are the time-limited
position-velocity singular values of (2.17).

3. The positive square roots of the eigenvalues of PΘ,vJT
fcQΘ,pJfc are the time-limited

velocity-position singular values of (2.17).

4. The positive square roots of the eigenvalues of PΘ,vMTQΘ,vM are the time-limited
velocity singular values of (2.17). ♢

Similarly to the frequency-limited case, there is no energy interpretation for the
characteristic values in Definition 4.7. But they are used in practical implementations as
heuristics to determine the reduced order of the approximation.

As before, the resulting second-order time-limited balanced truncation (SOTLBT)
methods can be obtained by replacing the infinite Gramians in the second-order balanced
truncation method (Algorithm 3.4). This is summarized in Algorithm 4.4.
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Algorithm 4.4: Second-order time-limited balanced truncation square-root
method.
Input: System matrices M , E, K, Bu, Cp, Cv from (2.17), time range of interest

Θ.
Output: Matrices of the reduced-order system M̂ , Ê, K̂, B̂u Ĉp, Ĉv.

1 Compute Cholesky factorizations PΘ = RΘRT
Θ, QΘ = LΘLT

Θ of the solutions of the
first-order time-limited Lyapunov equations (3.34), where the first companion form
realization (2.18) is used.

2 Follow the Steps 2–4 in Algorithm 3.4.

Remark 4.8 (Stability issues of SOTLBT):
In principle, stability preservation is no important property for time-limited model
reduction methods. These techniques are supposed to approximate the system’s behavior
in a limited time range and are allowed to behave unstable outside this range. In some
cases, it is nevertheless desired to preserve the stability of the original system in the
reduced-order model. But as in the first-order case [130], there is no guarantee of stability
preservation for the SOTLBT method. Also, the approach suggested in [108] is not
capable to guarantee this. Another method that is potentially beneficial in terms of
stability preservation and the idea from [108] are further discussed in the next section.♢

4.2.3 Mixed and modified Gramian methods
A drawback of the frequency- and time-limited balanced truncation methods in the
first-order system case is the loss of stability preservation [90]. This holds as well for the
second-order limited balanced truncation methods. Some modifications are known in
the first-order system case to regain this property. However, these approaches cannot
guarantee the preservation of stability for general second-order systems, since the original
second-order balanced truncation method does not guarantee stability preservation
in most cases [159]. But these modifications have the potential to produce a stable
second-order reduced-order model in cases, in which the limited approaches failed to do
so.

The first approach mentioned is the mixed Gramian technique. Therefore, one of
the limited Gramians is replaced by their infinite counterpart such that the balanced
truncation method is performed with one limited and one infinite Gramian [106, 117].
This idea directly translates to the second-order system case. One of the first-order
Gramians in Algorithms 4.3 and 4.4 is replaced by the corresponding infinite first-order
Gramian. This approach is suggested in [107,108] but follows the misconception that the
second-order balanced truncation is like the classical first-order version able to preserve
stability. The mixed Gramian approach is in general not capable of preserving stability
but might potentially work in some cases where the limited methods result in unstable
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systems. In general, it is not clear which of the limited Gramians should be replaced
in the approach to yield a good approximation in the limited time or frequency ranges.
However, a good heuristic is the singular value decay of the limited Gramians since a
faster decay indicates a better approximation using a smaller reduced order, i.e., the
limited Gramian with the slower singular value decay could be replaced by the infinite
Gramian.

A different technique, proposed in [102], are the modified Gramians. These replace the
indefinite right-hand sides

BΩBT + BBT
Ω = B̃

[
0 Im

Im 0

]
B̃T, CT

ΩC + CTCΩ = C̃T
[

0 Ip

Ip 0

]
C̃,

Bt0BT
t0 − Btf BT

tf
= B̆

[
Im 0
0 −Im

]
B̆T, CT

t0Ct0 − CT
tf

Ctf = C̆T
[
Ip 0
0 −Ip

]
C̆,

(4.23)

with B̃ =
[
BΩ B

]
, C̃T =

[
CT

Ω CT
]
, B̆ =

[
Bt0 Btf

]
and C̆T =

[
CT

t0 CT
tf

]
, by definite

right-hand sides. Using eigenvalue decompositions, the right-hand sides (4.23) can be
rewritten as

BΩBT + BBT
Ω = UB,ΩSB,ΩUT

B,Ω, CT
ΩC + CTCΩ = UC,ΩSC,ΩUT

C,Ω,

Bt0BT
t0 − Btf BT

tf
= UB,ΘSB,ΘUT

B,Θ, CT
t0Ct0 − CT

tf
Ctf = UC,ΘSC,ΘUT

C,Θ,

where UB,Ω, UC,Ω, UB,Θ, UC,Θ are orthogonal matrices and

SB,Ω = diag(ηB
1 , . . . , ηB

2m, 0, . . . , 0), SC,Ω = diag(ηC
1 , . . . , ηC

2p, 0, . . . , 0),
SB,Θ = diag(µB

1 , . . . , µB
2m, 0, . . . , 0), SC,Θ = diag(µC

1 , . . . , µC
2p, 0, . . . , 0).

Let UB,Ω,1, UC,Ω,1, UB,Θ,1, UC,Θ,1 be the parts of the orthogonal matrices, which correspond
to the (potentially) non-zero eigenvalues. The modified frequency- and time-limited
Gramians are then given via the solutions of the following Lyapunov equations

APΩ,modET + EPΩ,modAT + BΩ,modBT
Ω,mod = 0,

ATQΩ,modE + ETQΩ,modA + CT
Ω,modCΩ,mod = 0,

APΘ,modET + EPΘ,modAT + BΘ,modBT
Θ,mod = 0,

ATQΘ,modE + ETQΘ,modA + CT
Θ,modCΘ,mod = 0,

(4.24)

with the definite right-hand sides

BΩ,mod = UB,Ω,1 diag(|ηB
1 | 1

2 , . . . , |ηB
2m| 1

2 ), CΩ,mod = diag(|ηC
1 | 1

2 , . . . , |ηC
2p| 1

2 )UT
C,Ω,1,

BΘ,mod = UB,Θ,1 diag(|µB
1 | 1

2 , . . . , |µB
2m| 1

2 ), CΘ,mod = diag(|µC
1 | 1

2 , . . . , |µC
2p| 1

2 )UT
C,Θ,1.

(4.25)

Using these modified Gramians for the limited balanced truncation methods preserves
the stability in reduced-order models in the first-order system case. Also, the modified
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frequency-limited balanced truncation yields a (global) H∞-error bound for first-order
systems [47]. Note that for the solution of (4.24), still the matrix functions from the
frequency- and time-limited Lyapunov equations (3.31) and (3.34) are needed to compute
the new right-hand sides (4.25). For second-order versions of the modified Gramian
methods, only the solutions of the frequency- and time-limited Lyapunov equations in
Algorithms 4.3 and 4.4 need to be replaced. As for the mixed Gramian methods, the
modified Gramians are not guaranteed to be stability preserving in the second-order
system case but have the potential to produce stable reduced-order models when the
fully limited methods failed to do so.

4.2.4 Numerical methods for the large-scale sparse systems case
In this section, numerical methods for applying Algorithms 4.3 and 4.4 to large-scale
sparse second-order systems are discussed.

4.2.4.1 Matrix equation solvers for large-scale systems

A substantial part of the numerical effort in the computations of the second-order
frequency- and time-limited balanced truncation methods goes into the solution of the
arising matrix equations (3.31) and (3.34). In general, it was shown for the first-order
case, that the singular values of the frequency- and time-limited Gramians are decaying
possibly faster than for the infinite Gramians; see, e.g., [47] for the frequency-limited
case. That leads to the natural approximation of the Gramians by low-rank factors, e.g.,

PΩ ≈ ZRΩZT
RΩ

, PΘ ≈ ZRΘZT
RΘ

, (4.26)

where ZRΩ ∈ Rn1×ℓ1 , ZRΘ ∈ Rn1×ℓ2 and ℓ1, ℓ2 ≪ n1. These low-rank factors then replace
the Cholesky factors in Algorithms 4.3 and 4.4.

The following three paragraphs will give a short inside into existing approaches for the
solution of such large-scale sparse matrix equations and corresponding implementations.

Quadrature-based methods A natural approach based on the frequency and time
domain integral representations of the limited Gramians (3.30) and (3.33) is the use of
numerical integration formulae. As used for example in [107,117], the low-rank factors of
the Gramians can be computed by rewriting the full Gramians using quadrature formulae,
for example, in the frequency-limited case

PΩ = 1
2π

∫
Ω

(ωiE − A)−1BBT(−ωiE − A)−Tdω

≈ 1
2π

ℓ∑
k=1

γk

(
(ωkiE − A)−1BBT(−ωkiE − A)−T + (−ωkiE − A)−1BBT(ωkiE − A)−T

)
,
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where γk are the weights and ωk the evaluation points of an appropriate quadrature rule.
This expression can be rewritten for the low-rank factors into

ZRΩ =
[
Re(B1) Im(B1) . . . Re(Bℓ) Im(Bℓ)

]
,

where Bk =
√

γk

π
(ωkiE − A)−1B. Note that this approach becomes impractical considering

the time-limited case, since there, for each step of the quadrature rule, an approximation
of the matrix exponential is needed. The empirical Gramians can be seen as a related
approach, which uses simulations of the system to compute the time domain representation
of the Gramians [110,131].

A different approach was suggested in [47], which writes the right-hand sides of the
frequency-limited Lyapunov equations (3.31) as integral expressions. In this way, the
right-hand sides are first approximated and afterwards the large-scale matrix equations
are solved, using one of the approaches in the following paragraphs. In principle, it is
also possible to approximate the right-hand sides with matrix functions in (3.31) and
(3.34) using the general quadrature approach from [109]. Currently, there is no stable,
available implementation of quadrature-based matrix equation solvers for the frequency-
and time-limited Lyapunov equations to be known. Therefore, the upcoming approaches
will be rather used than the quadrature-based methods.

Low-rank ADI method The low-rank alternating direction implicit (LR-ADI) method
[49,136] is a well-established procedure for the solution of large-scale sparse Lyapunov
equations via low-rank approximations. Originally developed for the Lyapunov equa-
tions corresponding to the infinite Gramians (3.28), the LR-ADI produces low-rank
approximations of the form ZR∞,j =

[
ZR∞,j−1 α̂jVj

]
using the iteration scheme

Vj = (A + αjE)−1Wj−1, Wj = Wj−1 − 2 Re(αj)Vj,

with α̂j =
√

−2 Re αj , W0 = B and shifts αj ∈ C; see [45–47,129] for more details on this
method.

The right-hand sides of the limited Lyapunov equations (3.31) and (3.34) can be
rewritten in terms of LDLT-factorizations as in (4.23). An extension of the LR-ADI
method for LDLT-factored right-hand sides is available by applying the same factorization
type to the solution of the Lyapunov equations [132], e.g., in case of the frequency-limited
controllability Gramian

PΩ ≈ ZRΩYRΩZT
RΩ

, (4.27)

with low-rank factor ZRΩ ∈ Rn1×ℓ1 and symmetric center term YRΩ ∈ Rℓ1×ℓ1 . Since the
limited Gramians are positive semi-definite, the three-term factorization in (4.27) can be
reduced after converged iteration to a classical ZZT-type low-rank factorization (4.26).
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For using the LR-ADI method to solve the large-scale matrix equations (3.31) and (3.34),
an approximation of the matrix functions in the right-hand sides is needed beforehand.
This could be done by methods from the previous or the next paragraph. It is noted
in [47], that the information used for the approximation of the matrix functions cannot
be re-used in the LR-ADI method. A stable implementation of the LR-ADI method in
low-rank ZZT- and LDLT-formats is available in [167].

Projection methods A class of methods that can be used to approximate the matrix
functions in the right-hand sides of the limited Lyapunov equations, as well as to solve
the large-scale matrix equations at the same time, are projection-based solvers. Thereby,
low-dimensional subspaces span(Vk) are used to obtain the low-rank solutions of the
large-scale matrix equations as solutions of projected small matrix equations. For example
in case of (3.31), the solution to the first Lyapunov equation is given by PΩ ≈ VkP̌ΩV T

k ,
where P̌Ω is the solution of the projected Lyapunov equation

TkP̌Ω + P̌ΩTT
k + B̌ΩB̌T + B̌B̌T

Ω = 0, (4.28)

where Tk = V T
k E−1AVk, B̌Ω = V T

k E−1BΩ and B̌ = V T
k E−1B are the projected matrices from

the large-scale Lyapunov equation (3.31). The equation (4.28) is now small and dense,
and can be solved using established dense solvers. As one can observe, this method gives
also the opportunity to approximate the matrix function in the right-hand side by the
same low-dimensional subspace span(Vk). The projected right-hand side can then be
computed using dense computation methods [109].

Usually, the low-dimensional subspace span(Vk) is constructed as standard [118],
extended [176] or rational Krylov subspace [78], all of which can be efficiently computed
for large-scale sparse systems. The implementation of the limited balanced truncation
methods for second-order systems in [58] is also based on rational Krylov subspaces. The
underlying theoretical algorithm and further details can be found in [47, Algorithm 4.1].

A drawback of the projection-based approach, especially for second-order systems,
is that the projected system matrices Tk are not necessarily Hurwitz, i.e., they might
have eigenvalues with nonnegative real parts. This can occur even if the original first-
or second-order systems are asymptotically stable. In fact, quality and performance
of the projection-based solvers strongly depend on the chosen first-order realization.
Concerning second-order systems, projection methods are generally failing for at least one
of the companion form realizations (2.18) and (2.19) due the occurring block structure.
Therefore, in [57] it is suggested to use the strictly dissipative realization of second-order
systems (2.22) from [151] for such computations. The advantages of this realization are
that E is symmetric positive definite and A + AT symmetric negative definite in case of
mechanical systems (M, E, K symmetric positive definite), and the same realization can
be used for both dual Lyapunov equations without running into problems because of
the block structure in the matrices. Following that, projection methods can preserve
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the eigenvalue structure in the projected matrices Tk if the computations are made on
the corresponding standard state-space realization, obtained by a symmetric state-space
transformation. Using the Cholesky factorization E = LLT, the projection methods should
work implicitly on a realization of the form

˙̃x(t) = L−1AL−Tx̃(t) + L−1Bu(t),
y(t) = CL−Tx̃(t).

By changing the first-order realization to (2.22), the computed solutions of the matrix
equations change compared to the definition of the Gramians in the second-order balanced
truncation methods. Consider for illustration the case of infinite Gramians. Given the
two solutions P̃∞ and Q̃∞ of the Lyapunov equations (3.28) using the strictly dissipative
realization (2.22), and let P∞ and Q∞ be the solutions of (3.28) with the first companion
form realization (2.18). Then it holds

P∞ = TT
fc2sd̃P∞Tfc2sd = P̃∞ and Q∞ = Zfc2sd̃Q∞ZT

fc2sd, (4.29)

with the transformation matrices from (2.23). The same transformation (4.29) can be
used analogously to compute the solutions of the limited Lyapunov equations (3.31) and
(3.34) with low-rank Gramian factors using the strictly dissipative realization (2.22).

4.2.4.2 Numerical stabilization and acceleration by second-order α-shifts

So far, it was always assumed that the second-order system (2.17) is asymptotically
stable. In practice, the eigenvalues of λ2M + λE + K can be very close to the imaginary
axis such that they behave numerically unstable, or they could be on the imaginary axis,
e.g., in the case of marginal stability. This makes the usage of balancing-related model
reduction methods and matrix equation solvers very difficult. A strategy to overcome
these problems has been proposed in [86]. Therein, a frequency domain shift was used
to move the spectrum of the pencil λE − A, which had eigenvalues at zero, away from
the imaginary axis to compute the system Gramians. This approach cannot be used
exactly the same for the first-order realizations (2.18), (2.19), and (2.22) of second-order
systems since it destroys the block structure used in the second-order balanced truncation
methods as well as the block structure which is exploited in the numerical computations.
Therefore, the concept of α-shifts needs to be transferred to second-order systems.

Remember the Laplace transformed second-order system (2.25) with the initial condi-
tions xp,0 = xv,0 = 0. Now, let the Laplace variable be given by s = ρ + α, with a shifted
Laplace variable ρ ∈ C and a real, positive shift α ∈ R>0. Then, the two equations
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in (2.25) can be rewritten in terms of the shifted Laplace variable ρ such that(
(ρ + α)2M + (ρ + α)E + K

)
X(s) = (ρ2M + 2αρM + α2M + ρE + αE + K)X(s)

=
(
ρ2M + ρ(E + 2αM) + (K + αE + α2M)

)
X(s)

= (ρ2M + ρẼ + K̃)X(s)
= BuU(s)

holds for the state equation, with Ẽ = E + 2αM and K̃ = K + αE + α2M . For the
output equation, it holds

Y (s) =
(
(ρ + α)Cv + Cp

)
X(s)

=
(
ρCv + (Cp + αCv)

)
X(s)

= (ρCv + C̃p)X(s),

with C̃p = Cp+αCv. The new system described by (M, Ẽ, K̃, Bu, C̃p, Cv) has its spectrum
shifted to the left by the constant α. This system is now used for the computation of the
truncation matrices W, V ∈ Cn2×r2 for model reduction by projection (3.4). Then, the
matrices of the reduced-order system (M̂, ˆ̃E, ˆ̃K, B̂u,ˆ̃Cp, Ĉv) yield the following additional
relations

ˆ̃E = Ê + 2αM̂, ˆ̃K = K̂ + αÊ + α2M̂, ˆ̃Cp = Ĉp + αĈv,

where Ê = WTEV , K̂ = WTKV and Ĉp = CpV are the transformed matrices of the
non-shifted second-order system. Assuming the reduced-order model to be written in
frequency domain via the shifted Laplace variable ρ, it can be transformed back to a
reduced second-order system using the original Laplace variable s. Using the substitution
ρ = s − α, the following two relations hold

ρ2M̂ + ρˆ̃E + ˆ̃K = s2M̂ + sÊ + K̂ and ρĈv + ˆ̃Cp = sĈv + Ĉp.

The back-substitution gives the final reduced-order model to be (M̂, Ê, K̂, B̂u, Ĉp, Ĉv).
The α-shift strategy can be interpreted as a structured perturbation in the frequency
domain during the computations. Experiments have shown that such an approach works
fine for α small enough. It has to be noted that there are no theoretical results on the
influence of the chosen α concerning the quality of the reduced-order model or properties
like stability preservation and error bounds.

Remark 4.9 (Convergence behavior of numerical methods):
The α-shift approach can also be used to improve the behavior of numerical methods. In
large-scale sparse matrix equation solvers, shifted linear systems with matrices of the
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form (σ2M + σẼ + K̃) need to be solved. Applying α-shifts can improve the conditioning
of these systems since eigenvalues with smaller real parts are stronger influenced by
the used shift compared to eigenvalues with larger real parts. Also, it can improve the
convergence behavior of numerical methods by pushing the spectrum of the matrix pencil
λ2M + λẼ + K̃ further into the left open half-plane and away from the imaginary axis.♢

The α-shift approach was used in [57] to apply the limited second-order balanced
truncation methods in a numerical example with a system that has eigenvalues in zero.
This technique will not further be investigated in the upcoming numerical experiments.

4.2.4.3 Two-step hybrid methods

The idea of two-step (or hybrid) model reduction methods has been used for quite some
time in different applications [79,135,187]. In general, two-step methods are based on
the division of the model reduction process into two phases. In the first step, a pre-
reduction is computed by an efficient numerical procedure, which yields a very accurate
approximation of the system’s behavior. The model resulting from the pre-reduction is
usually of medium-scale dimensions, to which the second reduction step using a more
sophisticated model reduction method is applied. This procedure has the advantage
that there is no necessity to solve complicated problems such as matrix equations in
the large-scale sparse setting. Instead, one can use dense computation methods on the
pre-reduced system usually avoiding the typical numerical problems as bad convergence
behavior or the restriction to only using sparse operations.

In order to have an efficient structure-preserving pre-reduction method, the sug-
gested approach is structured interpolation by rational Krylov subspaces (Sections 3.3.3
and 3.3.4). The pre-reduction is then computed via (3.4) with truncation matrices based
on Proposition 3.2. As a small note here, large-scale sparse matrix equation solvers
based on the solution of shifted linear systems (all methods in Section 4.2.4.1) are in fact
equivalent to a two-step solution procedure using rational Krylov subspaces; see [187]. In
general, the choice of interpolation points is crucial for the quality of the pre-reduced
model. While there are strategies for an adaptive or optimal choice of these, it is usually
enough to use as much sampling points as possible to be complex conjugate pairs on
the imaginary axis, since the corresponding computations are rather cheap. A different
problem that can occur in two-step methods is stability preservation in the pre-reduced
model. In general, interpolation methods only preserve stability in special cases but not
in general and might give an unstable pre-reduced model. However, this will not be
further discussed here, since in the upcoming numerical experiments only mechanical
systems are considered for which a one-sided projection (W = V ) is enough to preserve
stability.
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Remark 4.10 (Pre-reduction in the frequency-limited case):
For the pre-reduction via interpolation for the frequency-limited balanced truncation
method, a natural choice of interpolation points would be to sample locally in Ωi instead
of aiming for a global approximation. In this case, the resulting frequency-limited
balanced truncation will very likely not give the same results as the large-scale approach
that works with the original system matrices. This observation comes from the fact, that
the frequency-limited balanced truncation still takes information about the complete
system structure into account and the pre-reduced system can be completely different
from the original one, while being rather accurate in the frequency region of interest. It
is not known, which type of pre-reductions, local or global, performs better at the end.♢

Due to the required accuracy of the pre-reduced model, its order can be still comparably
large. Therefore, an efficient iterative solver for the Lyapunov equations appearing in the
second reduction step is suggested. In general, the following stable Lyapunov equations
are considered

AX1ET + EX1AT + BQBT = 0,

ATX2E + ETX2A + CTRC = 0,
(4.30)

with suitable E, A, B, C as in (2.8) and symmetric (possibly indefinite) matrices Q ∈ Rm×m

and R ∈ Rp×p. The solutions of (4.30) can then be factored in the same way as the
right-hand sides, i.e., X1 = Z1Y1Z

T
1 and X2 = Z2Y2Z

T
2 , with Y1 and Y2 symmetric

matrices. For efficiently computing the solutions of (4.30), the dual sign function
iteration method from [33] is extended to the LDLT-factorization of the solutions. As a
result, a sign function iteration that solves both Lyapunov equations with symmetric
indefinite right-hand sides (4.30) at the same time is presented in Algorithm 4.5.

An implementation of Algorithm 4.5 as well as dense versions of the second-order
frequency- and time-limited balanced truncation methods can be found in [55].

Remark 4.11 (Compression of solution factors):
In Step 4 of Algorithm 4.5, the memory requirements as well as the number of operations
for the next iteration step are doubling due to the concatenation of the solution factors.
It is recommended to do LDLT column and row compressions in that step to keep the size
of the factors reasonably small. For example, consider the solution factors corresponding
to X1 in the k-th iteration step, i.e., the product Bk+1Qk+1B

T
k+1. Computing a QR

decomposition followed by an eigenvalue decomposition such that

Bk+1 = V R and RQk+1R
T = UΣUT

hold, with V, U orthogonal matrices and Σ a diagonal matrix with the eigenvalues, allows
the approximation of the iteration factors in the following way. Let Σ1 contain the
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Algorithm 4.5: LDLT-factored sign function dual Lyapunov equation solver.
Input: A, B, C, E, Q, R from (4.30), convergence tolerance τ .
Output: Z1, Y1, Z2, Y2 – solution factors of (4.30).

1 Set A1 = A, B1 = B, Q1 = Q, C1 = C, R1 = R, k = 1.
2 while ∥Ak + E∥ > τ∥E∥ do
3 Compute the scaling factor for convergence acceleration ck =

√
∥Ak∥F

∥EA−1
k

E∥F
.

4 Compute the next iterates of the solution factors

Bk+1 =
[
Bk EA−1

k Bk

]
, Qk+1 =

[ 1
2ck

Qk
ck

2 Qk

]
,

Ck+1 =
[

Ck

A−1
k ECk

]
, Rk+1 =

[ 1
2ck

Rk
ck

2 Rk

]
.

5 Compute the next iteration matrix

Ak+1 = 1
2ck

Ak + ck

2 EA−1
k E.

6 Set k = k + 1.
7 Construct the final solution factors

Z1 = 1√
2

E−1Bk, Y1 = Qk, Z2 = 1√
2

E−TCT
k , Y2 = Rk.

eigenvalues from Σ with the largest absolute values and U1 the corresponding orthogonal
eigenvectors, then

Bk+1Qk+1B
T
k+1 ≈ (V U1)Σ1(V U1)T,

such that Bk+1 can be replaced by (V U1) and Qk+1 by Σ1 in the following iteration step
of Algorithm 4.5. ♢

4.2.5 Numerical experiments
Different numerical experiments employing the frequency- and time-limited second-order
balanced truncation methods can be found in [26, 27, 57, 168]. In these publications,
the limited approximation quality between the different balancing formulae is the main
focus. In this section, the limited second-order balanced truncation methods will be
compared in numerical experiments with their global pendants as well as with the mixed
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and modified Gramian approaches from Section 4.2.3. The methods for the comparisons
will be denoted as follows:

SOBT(p/pm/pv/vp/vpm/v/fv/so) is the second-order balanced truncation method
(Section 3.4.3) with the balancing formulae from Table 3.1,

SOFLBT(p/pm/pv/vp/vpm/v/fv/so) is the second-order frequency-limited balanced
truncation method (Section 4.2.1) with the balancing formulae from Table 3.1,

SOMFLBT(p/pm/pv/vp/vpm/v/fv/so) is the modified second-order frequency-lim-
ited balanced truncation method (Section 4.2.3) with the balancing formulae from
Table 3.1,

SOFLBTC(p/pm/pv/vp/vpm/v/fv/so) is the mixed second-order frequency-limited
balanced truncation method (Section 4.2.3) using the infinite controllability Grami-
ans with the balancing formulae from Table 3.1,

SOFLBTO(p/pm/pv/vp/vpm/v/fv/so) is the mixed second-order frequency-limited
balanced truncation method (Section 4.2.3) using the infinite observability Gramians
with the balancing formulae from Table 3.1,

SOTLBT(p/pm/pv/vp/vpm/v/fv/so) is the second-order time-limited balanced trun-
cation method (Section 4.2.2) with the balancing formulae from Table 3.1,

SOMTLBT(p/pm/pv/vp/vpm/v/fv/so) is the modified second-order time-limited
balanced truncation method (Section 4.2.3) with the balancing formulae from
Table 3.1,

SOTLBTC(p/pm/pv/vp/vpm/v/fv/so) is the mixed second-order time-limited bal-
anced truncation method using the infinite controllability Gramians (Section 4.2.3)
with the balancing formulae from Table 3.1,

SOTLBTO(p/pm/pv/vp/vpm/v/fv/so) is the mixed second-order time-limited bal-
anced truncation method using the infinite observability Gramians (Section 4.2.3)
with the balancing formulae from Table 3.1.

As the limited model reduction methods are supposed to approximate the system’s
behavior in restricted intervals, limited versions of the approximate norms (2.44)–(2.46)
will be used to compute the MORscores. Therefore, the norms will be restricted to the
approximation ranges of interest in either frequency or time domain. For the notation,
superscripts Ω and Θ are added to the current norm notation such that LΘ

2 , LΘ
∞, and

HΩ
∞ denote the local relative errors. For more detailed discussions, some methods will be

considered for fixed reduced orders in frequency and time domain. Therefore, the same
pointwise relative errors (4.19) and (4.20) as in Section 4.1.5 will be used.
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Figure 4.9: Sketch of the single chain oscillator example.

4.2.5.1 Single chain oscillator

The damped single chain oscillator benchmark was used in [142] with a holonomic
constraint to test the first-order balanced truncation method for descriptor systems.
As test example for the second-order frequency- and time-limited balanced truncation
methods, the holonomic constraint was removed. The resulting damped mass-spring
system can be seen in Figure 4.9. The system parameters are set exactly as in [142], with

k1 = . . . = kn2−1 = κ2 = . . . = κn2−1 = 2, κ1 = κn2 = 4,

d1 = . . . = dn2−1 = δ2 = . . . = δn2−1 = 5, κ1 = κn2 = 10,

for stiffness and damping coefficients, and m1 = . . . mn2 = 100 for the masses. The
number of masses in the system is set to n2 = 10 000 for the following experiments. The
input matrix is designed such that the first and last five masses are excited by the same
input, and the outputs such that the summed displacement of the first three, eighth til
tenth and the last three masses can be observed, i.e.,

Bu =



15
0
...
0
15

 , Cp =
[
e1 + e2 + e3 e8 + e9 + e10 en2−2 + en2−1 + en2

]T
,

where 1n is the vector of length n containing only ones and ej is the j-th column of the
n2-dimensional identity matrix. In the experiments with the single chain oscillator, the
computations were done directly on the large-scale sparse system using the projection-
based matrix equation solvers from [58] and the LR-ADI method from [167].

Frequency-limited methods The frequency-limited methods are considered with the
frequency range of interest [10−3, 3·10−1] rad/s. The resulting MORscores of all computed
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Table 4.3: MORscores of the classical and frequency-limited second-order balanced trun-
cation for the single chain oscillator example with reduced orders from 1 to
40, and the percentage of stable reduced-order models.

Method H∞ HΩ
∞ Stab. ratio

SOBT(p) 0.2621 0.2430 1.0000
SOBT(pm) 0.2619 0.2422 1.0000
SOBT(pv) 0.2602 0.2480 1.0000
SOBT(vp) 0.2544 0.2333 0.9250
SOBT(vpm) 0.2595 0.2373 1.0000
SOBT(v) 0.2620 0.2422 1.0000
SOBT(fv) 0.1991 0.1867 1.0000
SOBT(so) 0.2623 0.2428 1.0000

SOFLBT(p) 0.0835 0.3912 0.9500
SOFLBT(pm) 0.0861 0.3949 0.9500
SOFLBT(pv) 0.0845 0.3971 1.0000
SOFLBT(vp) 0.0776 0.3905 0.9250
SOFLBT(vpm) 0.0814 0.3827 1.0000
SOFLBT(v) 0.0785 0.3896 0.9500
SOFLBT(fv) 0.0649 0.2742 1.0000
SOFLBT(so) 0.0799 0.3860 0.9750

model reduction methods can be found in Tables 4.3 and 4.4. First, compare the classical
second-order balanced truncation and the frequency-limited variant in Table 4.3. The
SOFLBT methods behave exactly as expected. Their global approximation behavior is
very poor as indicated by the very small MORscores, but their local approximation quality
is much better than that of the classical second-order balanced truncation since these
MORscores are nearly twice as large. Concerning the amount of stable reduced-order
models, the global method always produced stable models except for the vp formula. This
is not true for the limited approach anymore. There, several formulae produced some
unstable reduced-order models. On the other hand for the vp formula, the frequency-
limited approach has exactly the same percentage of stable reduced-order models as the
global approach.

The alternative techniques with potential stability preservation are shown in Ta-
ble 4.4. The modified methods behave very similar to their global counterparts with only
marginally better approximations in the frequency range of interest. Also, the stability
ratio column of the SOMFLBT methods has exactly the same pattern as for SOBT,
where for the vp formula even less stable reduced-order models were computed. On the
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Figure 4.10: Frequency domain results of the frequency-limited methods for the sin-
glechain oscillator example.

other hand, the mixed Gramian methods seem to be very promising. Independent of
the chosen Gramian to be exchanged by its infinite version, the local approximations
yield good results. The version using the infinite observability Gramian performs better
than using the infinite controllability Gramian, and is also very close to the performance
of the fully limited methods. This observation coincides with the heuristic to keep the
frequency-limited Gramian with smaller rank, since the frequency-limited controllability
Gramian has rank 52 whereas the limited observability Gramian is of rank 144.

For a closer look at the frequency domain behavior of the reduced-order models,
the reduced order r2 = 14 was chosen. Comparing all the MORscores, the position-
velocity balancing is overall very well performing and, therefore, chosen as representative
for all different model reduction techniques. Transfer functions and pointwise relative
approximation errors are shown in Figure 4.10. The frequency range of interest is depicted
between the dashed vertical lines. The behavior of the methods for low frequencies is a
bit different than one would expect from the discussion and MORscores before. Here,
the mixed Gramian method using the infinite controllability Gramian performs better
than the fully limited approach, and also SOBT(pv) has a smaller relative error than
the modified and the other mixed Gramian method. This behavior changes close to
the right border of the frequency range of interest. Here, the errors of SOBT(pv) and
SOMFLBT(pv) shoot up due to the changing behavior of the transfer function, while
the errors of the other limited methods increase at a slower rate.
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Table 4.4: MORscores of the modified and mixed second-order frequency-limited balanced
truncation for the single chain oscillator example with reduced orders from 1
to 40, and the percentage of stable reduced-order models.

Method H∞ HΩ
∞ Stab. ratio

SOMFLBT(p) 0.2530 0.2539 1.0000
SOMFLBT(pm) 0.2541 0.2530 1.0000
SOMFLBT(pv) 0.2443 0.2599 1.0000
SOMFLBT(vp) 0.2506 0.2454 0.9000
SOMFLBT(vpm) 0.2584 0.2489 1.0000
SOMFLBT(v) 0.2535 0.2530 1.0000
SOMFLBT(fv) 0.1902 0.1946 1.0000
SOMFLBT(so) 0.2534 0.2537 1.0000

SOFLBTC(p) 0.1832 0.3062 0.9500
SOFLBTC(pm) 0.1876 0.3093 1.0000
SOFLBTC(pv) 0.1802 0.3132 1.0000
SOFLBTC(vp) 0.1820 0.2957 0.9250
SOFLBTC(vpm) 0.1933 0.3048 1.0000
SOFLBTC(v) 0.1847 0.3092 1.0000
SOFLBTC(fv) 0.1605 0.1982 1.0000
SOFLBTC(so) 0.1846 0.3105 0.9750

SOFLBTO(p) 0.1086 0.3688 0.9500
SOFLBTO(pm) 0.1144 0.3727 1.0000
SOFLBTO(pv) 0.1096 0.3743 1.0000
SOFLBTO(vp) 0.1071 0.3746 1.0000
SOFLBTO(vpm) 0.1116 0.3745 1.0000
SOFLBTO(v) 0.1063 0.3765 1.0000
SOFLBTO(fv) 0.0676 0.2656 1.0000
SOFLBTO(so) 0.1064 0.3756 0.9500
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Table 4.5: MORscores of the classical and time-limited second-order balanced truncation
for the single chain oscillator example with reduced orders from 1 to 40, and
the percentage of stable reduced-order models.

Method L2 LΘ
2 L∞ LΘ

∞ Stab. ratio

SOBT(p) 0.3568 0.3586 0.3567 0.3602 1.0000
SOBT(pm) 0.3640 0.3676 0.3634 0.3690 1.0000
SOBT(pv) 0.3456 0.3469 0.3454 0.3483 1.0000
SOBT(vp) 0.3425 0.3509 0.3418 0.3523 0.9250
SOBT(vpm) 0.3764 0.3853 0.3743 0.3859 1.0000
SOBT(v) 0.3633 0.3669 0.3632 0.3682 1.0000
SOBT(fv) 0.2733 0.2748 0.2755 0.2778 1.0000
SOBT(so) 0.3589 0.3606 0.3586 0.3620 1.0000

SOTLBT(p) 0.4556 0.8872 0.4288 0.8886 0.9500
SOTLBT(pm) 0.4616 0.8739 0.4409 0.8828 0.9750
SOTLBT(pv) 0.4612 0.8520 0.4391 0.8563 0.9750
SOTLBT(vp) 0.5283 0.8917 0.4985 0.8943 0.9750
SOTLBT(vpm) 0.5282 0.8684 0.4993 0.8752 0.9750
SOTLBT(v) 0.5281 0.8889 0.4982 0.8945 0.9750
SOTLBT(fv) 0.2588 0.6432 0.2366 0.6507 1.0000
SOTLBT(so) 0.4715 0.8698 0.4507 0.8740 0.9500

Time-limited methods Next, the time-limited approaches are considered. The time
interval for the full simulation is set to be [0, 10] s and the smaller time range for the
limited model reduction is [0, 2] s. The results in terms of MORscores are given in
Tables 4.5 and 4.6. For the simulations, the input signal

u(t) = 100 · η(tj), for tj ≤ t < tj+1,

was used, with j = 0, . . . , 99, equidistant time steps tj = j · 10
99 and presampled Gaus-

sian white noise η(t). Comparing the classical and unmodified time-limited methods
in Table 4.5, the second-order time-limited balanced truncation methods have an over-
whelmingly high MORscore in the time range of interest which is more than twice as
large as the MORscores of the global methods. An interesting side effect that will be
discussed later in more detail are the larger MORscores of the limited methods in the
global norms. As mentioned in Remark 4.8, the time-limited balanced truncation is used
to approximate the time domain behavior of the system only in a limited range and can
be unstable otherwise. This effect is only indicated by the lower percentage of stable
reduced-order models in case of SOTLBT.
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Figure 4.11: Time domain results of the time-limited methods for the single chain oscil-
lator example.

Looking at Table 4.6 for the stabilization ideas, the modified and mixed Gramian
approaches were often able to increase the number of stable reduced-order models. For
nearly all methods, all computed reduced-order models were stable. Concerning the
MORscores, similar relations as for the frequency-limited methods can be observed.
The modified Gramian methods are only marginally better in the local approximation
than SOBT and the mixed Gramian approaches perform still very well in the local
approximation. The difference in the ranks of the time-limited Gramian factors is very
small as the limited controllability Gramian has rank 10 and the limited observability
Gramian rank 28 such that it is not surprising that both of the mixed Gramian approaches
give compatible results. The MORscores reveal SOTLBTO to be usually better in the
local approximation, while SOTLBTC gives results similar to SOBT and SOTLBT in
the global norms.

100



4.2 Second-order frequency- and time-limited balanced truncation methods

Figure 4.11 shows the time-limited approaches with the vpm formula, choosing the re-
duced order r2 = 7. The limited methods perform exactly as indicated by the MORscores
with SOTLBT best followed by the mixed and then the modified Gramian methods. The
interesting effect already seen in the global MORscores of Table 4.5 is visible here again.
In the time simulation, the approximation quality of later time steps strongly depends
on previous ones. The time-limited methods are very accurate in the beginning of the
simulation and do not stop to approximate the full-order system right at the end of the
considered time interval. Therefore, their errors are slowly diverging from the original
system’s simulation behavior after the considered time range of interest ended. At some
point they will have larger simulation errors than SOBT as it can be already seen for
SOTLBTC. But due to the length of the full time interval, they perform still better than
the global approximations.
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Table 4.6: MORscores of the modified and mixed second-order time-limited balanced
truncation for the single chain oscillator example with reduced orders from 1
to 40, and the percentage of stable reduced-order models.

Method L2 LΘ
2 L∞ LΘ

∞ Stab. ratio

SOMTLBT(p) 0.3578 0.3603 0.3573 0.3617 1.0000
SOMTLBT(pm) 0.3626 0.3672 0.3616 0.3680 1.0000
SOMTLBT(pv) 0.3501 0.3515 0.3496 0.3530 1.0000
SOMTLBT(vp) 0.3354 0.3421 0.3340 0.3438 0.9000
SOMTLBT(vpm) 0.3750 0.3900 0.3730 0.3917 1.0000
SOMTLBT(v) 0.3648 0.3688 0.3639 0.3700 1.0000
SOMTLBT(fv) 0.2739 0.2773 0.2763 0.2803 1.0000
SOMTLBT(so) 0.3596 0.3617 0.3590 0.3629 1.0000

SOTLBTC(p) 0.3813 0.5707 0.3693 0.5751 0.8500
SOTLBTC(pm) 0.4021 0.7027 0.3882 0.7033 1.0000
SOTLBTC(pv) 0.3882 0.5754 0.3752 0.5794 1.0000
SOTLBTC(vp) 0.3910 0.5815 0.3795 0.5857 0.7250
SOTLBTC(vpm) 0.4169 0.7172 0.4038 0.7206 1.0000
SOTLBTC(v) 0.4106 0.6114 0.3986 0.6154 1.0000
SOTLBTC(fv) 0.2616 0.2645 0.2630 0.2665 1.0000
SOTLBTC(so) 0.4004 0.6108 0.3881 0.6148 1.0000

SOTLBTO(p) 0.2583 0.6354 0.2422 0.6481 1.0000
SOTLBTO(pm) 0.2791 0.6596 0.2583 0.6667 1.0000
SOTLBTO(pv) 0.2757 0.6542 0.2547 0.6610 1.0000
SOTLBTO(vp) 0.3169 0.7029 0.2976 0.7095 1.0000
SOTLBTO(vpm) 0.3173 0.7086 0.2939 0.7174 1.0000
SOTLBTO(v) 0.3169 0.7029 0.2975 0.7095 1.0000
SOTLBTO(fv) 0.2590 0.6431 0.2367 0.6506 1.0000
SOTLBTO(so) 0.2774 0.6571 0.2562 0.6646 1.0000
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Table 4.7: MORscores of the (hybrid) classical and frequency-limited second-order bal-
anced truncation for the artificial fishtail example with reduced orders from 1
to 10, and the percentage of stable reduced-order models.

Method H∞ HΩ
∞ Stab. ratio

SOBT(p) 0.2610 0.2770 0.9000
SOBT(pm) 0.1795 0.1795 0.5000
SOBT(pv) 0.2609 0.2772 0.9000
SOBT(vp) 0.2142 0.2674 0.6000
SOBT(vpm) 0.0884 0.0900 0.2000
SOBT(v) 0.2606 0.2778 1.0000
SOBT(fv) 0.2168 0.2338 1.0000
SOBT(so) 0.2610 0.2770 1.0000

SOFLBT(p) 0.1765 0.2876 0.6000
SOFLBT(pm) 0.1417 0.2521 0.2000
SOFLBT(pv) 0.1959 0.2876 0.8000
SOFLBT(vp) 0.2172 0.2816 0.9000
SOFLBT(vpm) 0.1206 0.1910 0.3000
SOFLBT(v) 0.2150 0.2832 0.7000
SOFLBT(fv) 0.1386 0.2404 1.0000
SOFLBT(so) 0.1876 0.2887 0.7000

4.2.5.2 Artificial fishtail model

As second numerical example, the artificial fishtail model from Section 1.3.2 is considered.
For this example, the structure-preserving balanced truncation methods are applied as
two-step approaches (cf. Section 4.2.4.3). A structured interpolation was computed
as pre-reduction using 200 logarithmically equidistant interpolation points in complex
conjugate pairs in the frequency range [10−2, 104] rad/s. Employing Parts (a) and (b)
from Proposition 3.2, and basis concatenation to use only a one-sided projection results
in a stable intermediate second-order system of order 1 600. The medium-scale dense
implementations of the classical and limited second-order balanced truncation methods
from [55] were then used. Results for the artificial fishtail model with the limited balanced
truncation methods directly employed on the large-scale sparse system can be found
in [57].

Frequency-limited methods From a practical point of view, the artificial fishtail cannot
be operated at higher frequencies than 20 Hz. While it would make sense to consider
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Figure 4.12: Frequency domain results of the frequency-limited methods for the artificial
fishtail example.

the frequency interval to begin at zero, this leads to unstable numerical behavior in
computations due to the inversion of the mass or system matrix in the matrix logarithm.
Therefore, the lower bound of the globally considered frequency range is taken leading
the frequency range of interest to be [10−2, 2π ·20] rad/s. The resulting MORscores of the
applied methods can be found in Tables 4.7 and 4.8. First, one can observe the impact
of the pre-reduction comparing the SOBT entries from Table 4.7 with those of Table 4.2.
Beside small disturbances in the MORscores, there are more unstable reduced-order
models in the two-step case. For the fully frequency-limited reduced-order models in
Table 4.7, all MORscores in the limited norm are larger than for SOBT. This comes
with the cost that less stable reduced-order models were computed by SOFLBT than by
SOBT, except for the vp and vpm formulae.

Figure 4.12 shows the frequency-limited results in comparison with the global ap-
proaches using the so formula and the reduced order r2 = 2. Here, the limited methods
perform exceptionally well with several orders of magnitude better than SOBT, and
SOFLBT and SOFLBTC as clear winners. The reason for the small difference in the
MORscores is that SOFLBT and SOFLBTC already reached their smallest possible
approximation accuracy in the frequency range of interest. Due to the bad conditioning
of the example data, it is not possible to further reduce the error in this region. In fact,
the rest of the methods also converge to this error level at latest with r2 = 4 and stay
there for all larger reduced-order models that were computed for the MORscores. The
modified and mixed Gramian methods in Table 4.8 behave like SOBT and SOFLBT,
respectively, but partially yield larger percentages of stable reduced-order models.
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4.2 Second-order frequency- and time-limited balanced truncation methods

Table 4.8: MORscores of the (hybrid) modified and mixed second-order frequency-limited
balanced truncation for the artificial fishtail example with reduced orders from
1 to 10, and the percentage of stable reduced-order models.

Method H∞ HΩ
∞ Stab. ratio

SOMFLBT(p) 0.2610 0.2770 0.9000
SOMFLBT(pm) 0.2234 0.2244 0.5000
SOMFLBT(pv) 0.2610 0.2771 0.9000
SOMFLBT(vp) 0.2175 0.2575 0.7000
SOMFLBT(vpm) 0.1240 0.1317 0.4000
SOMFLBT(v) 0.2606 0.2778 1.0000
SOMFLBT(fv) 0.2168 0.2336 1.0000
SOMFLBT(so) 0.2611 0.2770 0.9000

SOFLBTC(p) 0.2437 0.2883 0.7000
SOFLBTC(pm) 0.1783 0.2371 0.2000
SOFLBTC(pv) 0.2439 0.2888 0.8000
SOFLBTC(vp) 0.1773 0.2690 0.3000
SOFLBTC(vpm) 0.1050 0.1497 0.1000
SOFLBTC(v) 0.2192 0.2880 0.9000
SOFLBTC(fv) 0.2131 0.2356 1.0000
SOFLBTC(so) 0.2158 0.2880 0.6000

SOFLBTO(p) 0.2179 0.2888 0.6000
SOFLBTO(pm) 0.1488 0.2039 0.3000
SOFLBTO(pv) 0.2097 0.2886 0.8000
SOFLBTO(vp) 0.2467 0.2643 0.7000
SOFLBTO(vpm) 0.1374 0.1374 0.1000
SOFLBTO(v) 0.2484 0.2630 0.8000
SOFLBTO(fv) 0.1386 0.2334 1.0000
SOFLBTO(so) 0.2151 0.2860 0.6000
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Table 4.9: MORscores of the (hybrid) classical and time-limited second-order balanced
truncation for the artificial fishtail example with reduced orders from 1 to 10,
and the percentage of stable reduced-order models.

Method L2 LΘ
2 L∞ LΘ

∞ Stab. ratio

SOBT(p) 0.2538 0.2655 0.2571 0.2624 0.9000
SOBT(pm) 0.1467 0.1730 0.1473 0.1687 0.5000
SOBT(pv) 0.2364 0.2651 0.2391 0.2605 0.9000
SOBT(vp) 0.1750 0.1713 0.1817 0.1701 0.6000
SOBT(vpm) 0.0716 0.0946 0.0728 0.0918 0.2000
SOBT(v) 0.2538 0.2644 0.2578 0.2612 1.0000
SOBT(fv) 0.1888 0.1881 0.1934 0.1860 1.0000
SOBT(so) 0.2543 0.2678 0.2571 0.2624 1.0000

SOTLBT(p) 0.2533 0.2646 0.2568 0.2616 0.9000
SOTLBT(pm) 0.1178 0.1412 0.1180 0.1357 0.5000
SOTLBT(pv) 0.2535 0.2651 0.2564 0.2607 1.0000
SOTLBT(vp) 0.1656 0.1746 0.1679 0.1687 0.6000
SOTLBT(vpm) 0.0034 0.0064 0.0037 0.0066 0.1000
SOTLBT(v) 0.1933 0.1881 0.1955 0.1813 1.0000
SOTLBT(fv) 0.1812 0.1837 0.1841 0.1805 1.0000
SOTLBT(so) 0.2156 0.2210 0.2175 0.2166 0.9000

Time-limited methods To test the time-limited methods, the time interval of the full
simulation is chosen as in Section 4.1.5.2 to be [0, 2] s and the limited time interval for
the reduction is set to be [0, 0.5] s. For the simulations, the very same input signal as in
Section 4.1.5.2 is used, namely

u(t) = 5000 · η(tj), for tj ≤ t < tj+1,

with j = 0, . . . , 99, equidistant time steps tj = j · 2
99 and presampled Gaussian white noise

η(t). Tables 4.9 and 4.10 reveal the second-order time-limited balanced truncation meth-
ods to be at most as good as the global SOBT method in global and local approximation
quality. This indicates that in fact the chosen time interval [0, 0.5] s is already large
enough to nearly recover the infinite Gramians. The very small MORscores in Tables 4.9
and 4.10 result from unstable time simulations occurring for some reduced-order models.
Also, the time-limited methods are not always able to recover the behavior of SOBT. This
can be explained by accumulation of numerical errors due to the bad conditioning of the
original system combined with the pre-reduction step and the computation of the matrix
exponential in the time-limited Lyapunov equations. Therefore, further investigations of
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these numerical results are omitted here.

4.2.6 Conclusions
In this section, the limited balanced truncation approaches in time and frequency
domains were combined with the second-order balanced truncation methods to create
new structure-preserving model reduction approaches for linear second-order systems
that intend to approximate the original system only in limited time and frequency ranges
of interest. To provide alternative constructions of limited reduced-order models in those
cases where stability could not be preserved, mixed and modified Gramian methods
were considered. Solvers based on projection methods were the recommended tool to
compute the solutions of the frequency- and time-limited Lyapunov equations. The
strictly dissipative realization was the first-order realization of choice in computations
with mechanical systems to preserve stability of projected system matrices in the matrix
equation solvers. An extension of the α-shift theory from [86] was presented to accelerate
numerical computations, improve conditioning of the underlying linear systems, and to
handle systems with poles on the imaginary axis. The idea of two-step model reduction
methods was outlined as an alternative to the use of large-scale matrix equation solvers.
In two numerical examples, the different newly developed limited second-order balanced
truncation methods were compared to their global counterparts. In the first example and
the frequency-limited case of the second example, the new methods turned out to be very
effective in local approximations. In the time-limited case of the artificial fishtail example,
the time range of interest was not small enough to provide significant improvement of the
local approximations. The suggested alternatives using mixed and modified Gramians
have shown to be potentially more stability preserving than the fully limited methods.
But in general, it was not possible to predict if a computed reduced-order model of
a certain size would be stable or unstable. Also, in the comparison of the different
available second-order balancing formulae from Table 3.1, no outstanding winner could
be determined as for different examples also different formulae performed best.
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Table 4.10: MORscores of the (hybrid) modified and mixed second-order time-limited
balanced truncation for the artificial fishtail example with reduced orders
from 1 to 10, and the percentage of stable reduced-order models.

Method L2 LΘ
2 L∞ LΘ

∞ Stab. ratio

SOMTLBT(p) 0.2538 0.2655 0.2571 0.2624 1.0000
SOMTLBT(pm) 0.0988 0.1203 0.0992 0.1168 0.5000
SOMTLBT(pv) 0.2515 0.2609 0.2535 0.2557 1.0000
SOMTLBT(vp) 0.1705 0.1700 0.1766 0.1683 0.6000
SOMTLBT(vpm) 0.0477 0.0657 0.0491 0.0650 0.3000
SOMTLBT(v) 0.2537 0.2641 0.2578 0.2614 1.0000
SOMTLBT(fv) 0.1853 0.1861 0.1900 0.1847 1.0000
SOMTLBT(so) 0.2543 0.2678 0.2570 0.2625 1.0000

SOTLBTC(p) 0.2538 0.2654 0.2570 0.2624 0.9000
SOTLBTC(pm) 0.1410 0.1656 0.1428 0.1617 0.5000
SOTLBTC(pv) 0.2364 0.2650 0.2391 0.2603 0.9000
SOTLBTC(vp) 0.1850 0.1814 0.1921 0.1799 0.6000
SOTLBTC(vpm) 0.0072 0.0258 0.0082 0.0261 0.2000
SOTLBTC(v) 0.2537 0.2644 0.2578 0.2611 1.0000
SOTLBTC(fv) 0.1888 0.1881 0.1934 0.1860 1.0000
SOTLBTC(so) 0.2543 0.2679 0.2571 0.2625 1.0000

SOTLBTO(p) 0.2533 0.2646 0.2568 0.2616 0.9000
SOTLBTO(pm) 0.1269 0.1499 0.1272 0.1439 0.5000
SOTLBTO(pv) 0.2364 0.2651 0.2391 0.2605 0.9000
SOTLBTO(vp) 0.1727 0.1771 0.1747 0.1716 0.7000
SOTLBTO(vpm) 0.0387 0.0841 0.0392 0.0802 0.1000
SOTLBTO(v) 0.1935 0.1883 0.1956 0.1815 1.0000
SOTLBTO(fv) 0.1813 0.1838 0.1841 0.1805 1.0000
SOTLBTO(so) 0.2153 0.2211 0.2171 0.2166 0.9000
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5.1 Introduction
Bilinear control systems like (2.27) are an important class of dynamical systems bridging
between linear and nonlinear systems in theory and applications. They contain the
multiplication of state and control variables, i.e., they are still linear in state and control
separately but allow the modeling of nonlinear dynamics by the multiplication of both.
Bilinear systems got a lot of attention in the last decades, as they appear naturally
in the modeling of different physical phenomena, e.g., in the modeling of population,
economical, thermal and mechanical dynamics [145,146], of electrical circuits [5], of plasma
devices [150,158], or of medical processes [171]. They can result from the approximation
of general nonlinear systems employing the Carleman linearization process [68, 126],
or appear in parameter control of PDEs [120, 124]. Recently, bilinear systems were
considered as a generalizing framework in the modeling of linear stochastic [35] as well
as parameter-varying systems [28,32,66].

Until now, bilinear systems were only considered with no further internal struc-
ture (2.27). There is a variety of model reduction methods available for the unstructured
system case, for example, balanced truncation [5, 35, 116], interpolation of underlying
multivariate transfer functions in the frequency domain [2,10,15,65,72,81], Volterra series
interpolation [29,37,85,190] or even the construction of reduced-order bilinear systems
from frequency data with the bilinear Loewner framework [12, 93]. However, in practice,
as in the linear system case, also bilinear systems can inherit additional structures in the
differential equations from underlying physical phenomena leading to structured bilinear
dynamical systems. These systems come with two different concepts of structures that
need to be preserved. On the one hand, there are the bilinear terms as special nonlinear
structure and, on the other hand, the physically motivated internal structures of the
differential equations. For example, in accordance with the main subject of this thesis,
bilinear mechanical systems are given by

Mẍ(t) + Eẋ(t) + Kx(t) =
m∑

j=1
Np,jx(t)uj(t) +

m∑
j=1

Nv,jẋ(t)uj(t) + Buu(t),

y(t) = Cpx(t) + Cvẋ(t),
(5.1)

with the classical second-order structure from the linear mechanical case (2.17) described
by the matrices M, E, K ∈ Rn2×n2 , Bu ∈ Rn2×m and Cp, Cv ∈ Rp×n2 , and two types of
bilinear terms with Np,j, Nv,j ∈ Rn2×n2 , for j = 1, . . . , m. While in principle one could
rewrite (5.1) into a classical bilinear system (2.27) using the same idea as in the companion
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form realizations of linear systems (2.18), (2.19), and (2.22), the original structure is
completely lost in the model reduction process, which can lead to undesirable results
in terms of accuracy, stability and physical interpretation. Moreover, other structured
bilinear systems, e.g., such with internal time delays (see Section 5.2.4), cannot be
represented by (2.27), which complicates the application of established model order
reduction techniques. A structure-preserving reduced-order model for (5.1) that preserves
the mechanical as well as the bilinear structure looks like follows:

M̂ ¨̂x(t) + Ê ˙̂x(t) + K̂x̂(t) =
m∑

j=1
N̂p,jx̂(t)uj(t) +

m∑
j=1

N̂v,j
˙̂x(t)uj(t) + B̂uu(t),

ŷ(t) = Ĉpx̂(t) + Ĉv ˙̂x(t),
(5.2)

with M̂, Ê, K̂, N̂p,j, N̂v,j ∈ Rr2×r2 , for j = 1, . . . , m, B̂u ∈ Rr2×m and Ĉp, Ĉv ∈ Rp×r2 ,
where r2 ≪ n2.

In this chapter, a more general approach for model reduction of structured bilinear
systems is established utilizing the ideas of structured transfer functions from [24] and
subsystem interpolation for bilinear systems. Section 5.2 contains a generalization of
the subsystem transfer functions of bilinear systems from Section 2.3.1 to the structured
system case, for which in Sections 5.3 and 5.4 appropriate interpolation theory is developed.
Section 5.5 contains an extension of the interpolation theory to parametric structured
bilinear systems, and Section 5.6 adds the concept of tangential interpolation.

Parts of this introduction as well as Sections 5.2 to 5.4 are published in [43], and the
extension to parametric systems in Section 5.5 is available in [42].

5.2 Structured bilinear systems and transfer functions
Main item for structured interpolation is the object to be interpolated, namely the
multivariate transfer functions describing the dynamics of the bilinear control systems
in the frequency domain. Therefore, the transfer functions (2.32) developed for the
unstructured system case (2.27) will be generalized to structured bilinear systems in this
section. These will be used afterwards to develop structured interpolation approaches.

5.2.1 From classical to structured bilinear systems
Inspired by different examples, the frequency domain description of linear dynamical
systems got extended to the structured setting in [24]. Therein, the problem (3.17) is
considered with two algebraic equations defining the system’s state and output using
arbitrary matrix-valued frequency-dependent functions. In case of bilinear systems, this
approach can be combined with the Volterra series expansion, e.g., (2.30) and (2.31), from
the unstructured case. With the two upcoming structured examples in Sections 5.2.3
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5 Structured Bilinear Systems

and 5.2.4, it can be motivated that a suitable extension of (3.18) to the bilinear system
case using regular subsystem transfer functions is given by

GB,k(s1, . . . , sk) = C(sk)K(sk)−1

k−1∏
j=1

(
Imj−1 ⊗ N (sk−j)

)(
Imj ⊗ K(sk−j)−1

)
× (Imk−1 ⊗ B(s1)),

(5.3)

for k ≥ 1 and where N (s) =
[
N1(s) . . . Nm(s)

]
, with the matrix functions C : C →

Cp×n, K : C → Cn×n, B : C → Cn×m and Nj : C → Cn×n, for j = 1, . . . , m, such
that GB,k : Ck → Cp×mk . The main differences to the transfer function formulation of
structured linear systems (3.18) are the multivariate product structure, resulting from
the subsystem idea of the Volterra series expansion, and the new matrix-valued function
N (s) =

[
N1(s) . . . Nm(s)

]
for the bilinear terms.

This general formulation includes transfer functions of classical bilinear systems (2.32)
by choosing the matrix functions to be

C(s) = C, K(s) = sE − A, N (s) = N, B(s) = B.

Sections 5.2.3 and 5.2.4 will illustrate the derivation of two other structured examples,
including the case of bilinear mechanical systems (5.1), which can be formulated in this
general setting.

5.2.2 Structure-preserving model reduction by projection
In the linear case, projection-based model reduction methods (3.19) on the transfer
function level are structure-preserving by nature; see Section 3.3.4.1. This idea can be
extended to the bilinear system case. Given two basis matrices W, V ∈ Cn×r of underlying
projection spaces, the reduced-order bilinear system quantities are computed by

Ĉ(s) = C(s)V, K̂(s) = W HK(s)V, B̂(s) = W HB(s), N̂ j(s) = W HNj(s)V, (5.4)
for j = 1, . . . , m, and the concatenated reduced-order bilinear matrix function is

N̂ (s) =
[
N̂ 1(s) . . . N̂ m(s)

]
.

The only difference to the linear setting (3.19) is the additional truncation of the bilinear
terms. Utilizing the frequency-affine decomposition as in the linear case, e.g., in (3.21)
and (3.22), the matrices defining time and frequency domain descriptions of the bilinear
system can be extracted from (5.4). The corresponding structured regular subsystem
transfer functions of the reduced-order bilinear systems are then given by

ĜB,k(s1, . . . , sk) = Ĉ(sk )̂K(sk)−1

k−1∏
j=1

(
Imj−1 ⊗ N̂ (sk−j)

)(
Imj ⊗ K̂(sk−j)−1

)
× (Imk−1 ⊗ B̂(s1)),

(5.5)
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for k ≥ 1.

5.2.3 Bilinear second-order systems
As first example, the mechanical bilinear system (5.1) is revisited. Introducing the new
state vector x(t)T = [x(t)T, ẋ(t)T], (5.1) can be rewritten in the first-order form (2.27).
The resulting first-order bilinear system is then given by[

Jfc 0
0 M

]
︸ ︷︷ ︸

E

ẋ(t) =
[

0 Jfc
−K −E

]
︸ ︷︷ ︸

A

x(t) +
m∑

j=1

[
0 0

Np,j Nv,j

]
︸ ︷︷ ︸

Nj

x(t)uj(t) +
[

0
Bu

]
︸ ︷︷ ︸

B

u(t),

y(t) =
[
Cp Cv

]
︸ ︷︷ ︸

C

x(t),
(5.6)

with any invertible matrix Jfc ∈ Rn2×n2 . For the realization (5.6), the frequency domain
representation is given via the regular subsystem transfer functions (2.32). Inserting
the matrices from (5.6), the occurring block structures can be used to reformulate the
subsystem transfer functions in terms of the matrices defining (5.1). In general, it holds

(sE − A)−1 =
[
sJfc −Jfc
K sM + E

]−1

=
[1

s
J−1

fc − 1
s
(s2M + sE + K)−1KJ−1

fc (s2M + sE + K)−1

−(s2M + sE + K)−1KJ−1
fc s(s2M + sE + K)−1

]
,

for the frequency-dependent center terms and, by multiplication with the bilinear terms,
it follows that

Nj(sE − A)−1B =
[

0
(Np,j + sNv,j)(s2M + sE + K)−1Bu

]
.

Consequently, the repeated multiplications of frequency-dependent terms describing the
linear and bilinear dynamics in the k-th regular subsystem transfer function can be
written ask−1∏

j=1

(
Imj−1 ⊗ N

)(
Imj ⊗ (sk−jE − A)−1

) (Imk−1 ⊗ B)

=

 0(
k−1∏
j=1

(
Imj−1 ⊗ (Np + sk−jNv)

)(
Imj ⊗ (s2

k−jM + sk−jE + K)−1
))

(Imk−1 ⊗ Bu)

 ,
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where the following concatenation of the bilinear terms from the second-order system (5.1)
was used:

Np =
[
Np,1 . . . Np,m

]
and Nv =

[
Nv,1 . . . Nv,m

]
Multiplication with the one remaining frequency-dependent center term and the output
matrix yields the regular transfer functions of (5.1) to be given by

GB,k(s1, . . . , sk) = (Cp + skCv)(s2
kM + skE + K)−1

×
k−1∏

j=1

(
Imj−1 ⊗ (Np + sk−jNv)

)

×
(
Imj ⊗ (s2

k−jM + sk−jE + K)−1
) (Imk−1 ⊗ Bu).

(5.7)

In the setting of the general formulation of structured regular transfer functions (5.3),
for (5.7) the matrix functions are set to be

C(s) = Cp + sCv, K(s) = s2M + sE + K, N (s) = Np + sNv, B(s) = Bu. (5.8)

Assume the truncation matrices W and V for projection-based model reduction (5.4)
to be given. By (5.4), the reduced-order system quantities are computed via

Ĉ(s) = CpV + s(CvV ),
K̂(s) = s2(W HMV ) + s(W HEV ) + (W HKV ),
N̂ (s) = (W HNp(Im ⊗ V )) + s(W HNv(Im ⊗ V )),
B̂(s) = W HBu.

(5.9)

Since (5.9) has the same structure as the original system (5.8), the reduced-order model
can be interpreted as a reduced-order second-order bilinear system of the form (5.2),
where the reduced-order matrices are given in (5.9).

5.2.4 Bilinear time-delay systems
A second example for structured bilinear control systems is given by bilinear systems
with an internal time delay, e.g.,

Eẋ(t) = Ax(t) + Adx(t − τ) +
m∑

j=1
Njx(t)uj(t) + Bu(t),

y(t) = Cx(t),
(5.10)
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with E, Ad, Nj ∈ Rn1×n1 , for j = 1, . . . , m, B ∈ Rn1×m, C ∈ Rp×n1 , and the delay
0 ≤ τ ∈ R. Systems like (5.10) were shown in [93] to have regular subsystem transfer
functions of the form

GB,k(s1, . . . , sk) = C(skE − A − e−skτ Ad)−1

k−1∏
j=1

(
Imj−1 ⊗ N

)

×
(
Imj ⊗ (sk−jE − A − e−sk−jτ Ad)−1

) (Imk−1 ⊗ B).
(5.11)

As for the previous example, the regular transfer functions (5.11) of the time-delay
system (5.10) can be written in the structured transfer function setting (5.3) using

C(s) = C, K(s) = sE − A − e−sτ Ad, N (s) = N, and B(s) = B.

Once the model order reduction bases W and V are constructed, the resulting reduced-
order model retains the time-delay structure of the original system as its system matrices
are given by

Ĉ(s) = CV, K̂(s) = s(W HEV ) − (W HAV ) − e−sτ (W HAdV ),
N̂ (s) = W HN(Im ⊗ V ), B̂(s) = W HBu.

5.3 Interpolation of single-input/single-output systems
A tremendous simplification of the structured subsystem transfer functions (5.3) appears
in the SISO system case (m = p = 1), which will be considered in this section. Thereby,
the bilinear part consists of, at most, a single term N = N1 and the matrix functions
C and B map frequency points onto either row or column vectors, respectively. In this
setting, the Kronecker products in (5.3) simplify to classical matrix products and the
regular subsystem transfer functions can be written as

GB,k(s1, . . . , sk) = C(sk)K(sk)−1

k−1∏
j=1

N (sk−j)K(sk−j)−1

B(s1), (5.12)

for k ≥ 1. In the remainder of this section, the theory for structure-preserving interpo-
lation (the case of simple and higher-order (Hermite) interpolation) will be developed
followed by numerical examples to illustrate the analysis.

5.3.1 Structured transfer function interpolation
The goal here is the construction of the model reduction bases W and V and, subsequently,
the corresponding reduced-order structured bilinear systems via projection (5.4) such
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that their leading regular subsystem transfer functions interpolate those of the original
system:

GB,k(σ1, . . . , σk) = ĜB,k(σ1, . . . , σk),

for a sequence of selected interpolation points σ1, . . . , σk ∈ C. The following two theorems
answer the question of how the model reduction bases V and W can be constructed for
the structured bilinear transfer function case similarly to the well-known results from the
unstructured case, e.g., in [10]. Both theorems consider V and W independent of each
other, or in other words, the interpolation conditions are satisfied only via V or W , no
matter how the respective other matrix is chosen.

Theorem 5.1 (Bilinear interpolation via V ):
Let GB be a bilinear SISO system, described by (5.12), and ĜB the reduced-order bilinear
SISO system constructed by (5.4), with its subsystem transfer functions ĜB,k. Let
σ1, . . . , σk ∈ C be interpolation points for which the matrix functions C, K−1, N , B and
K̂−1 exist. Construct V using

v1 = K(σ1)−1B(σ1),
vj = K(σj)−1N (σj−1)vj−1, 2 ≤ j ≤ k,

span(V ) ⊇ span
([

v1 . . . vk

])
,

and let W be an arbitrary full-rank truncation matrix of appropriate dimension. Then
the subsystem transfer functions of ĜB interpolate those of GB in the following way:

GB,1(σ1) = ĜB,1(σ1),
GB,2(σ1, σ2) = ĜB,2(σ1, σ2),

...
GB,k(σ1, . . . , σk) = ĜB,k(σ1, . . . , σk). ♢

Proof. As in the linear case, the main idea of this proof is the construction of appropriate
projectors PV of the form (3.24) onto span(V ). Since the first subsystem transfer function
corresponds to the linear case and is thereby given in Proposition 3.2, the second
subsystem transfer function

ĜB,2(σ1, σ2) = Ĉ(σ2)̂K(σ2)−1N̂ (σ1)̂K(σ1)−1B̂(σ1).

is considered next. With the projector (3.24), it holds

V K̂(σ1)−1B̂(σ1) = V K̂(σ1)−1W HB(σ1)
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= V K̂(σ1)−1W HK(σ1)︸ ︷︷ ︸
= PV(σ1)

K(σ1)−1B(σ1)︸ ︷︷ ︸
= v1

= PV(σ1)v1

= v1,

where the construction of V with v1 ∈ span(V ) and the resulting identity (3.26) by
multiplying elements of span(V ) with the projector PV are used. Therefore, it holds

ĜB,2(σ1, σ2) = Ĉ(σ2)̂K(σ2)−1W HN (σ1)K(σ1)−1B(σ1)
= C(σ2)V K̂(σ2)−1W HN (σ1)v1.

Analogously, for the remaining reduced-order terms, a second projector is constructed
such that

V K̂(σ2)−1W HN (σ1)v1 = V K̂(σ2)−1W HK(σ2)︸ ︷︷ ︸
= PV(σ2)

K(σ2)−1N (σ1)v1︸ ︷︷ ︸
= v2

= PV(σ2)v2 = v2

holds, since by construction v2 ∈ span(V ). Expanding v2 into the matrix functions yields
the interpolation of the second subsystem transfer function

ĜB,2(σ1, σ2) = C(σ2)K(σ2)−1N (σ1)K(σ1)−1B(σ1) = GB,2(σ1, σ2).
Via induction over the transfer function index k and with the same construction arguments
of the projectors (3.24) onto span(V ) the theorem holds.

The proof of Theorem 5.1 shows the recursive construction of the projection space to
be necessary for the interpolation of higher-level regular transfer functions via projection.
For example, putting v1 into the projection space allows the interpolation of GB,1(σ1),
but for the interpolation of GB,2(σ1, σ2) having only v2 ∈ span(V ) is not enough. Both
vectors are necessary to lie in the projection space, i.e., only from v1, v2 ∈ span(V ) follows
the interpolation of GB,2(σ1, σ2). Consequently, aiming for the interpolation of the k-th
subsystem transfer function directly yields the interpolation of all preceding transfer
function levels.

Also, it should be noted that W was an arbitrary full-rank truncation matrix of suitable
dimensions but with no additional constraints for the interpolation of (5.12). Theorem 5.2
will be the counterpart to Theorem 5.1 by only giving constraints for the left model
reduction basis W , while V is now allowed to be arbitrary.
Theorem 5.2 (Bilinear interpolation via W ):
Let GB, ĜB, and the interpolation points σ1, . . . , σk ∈ C be as in Theorem 5.1. Construct
W using

w1 = K(σk)−HC(σk)H,

wj = K(σk−j+1)−HN (σk−j+1)Hwj−1, 2 ≤ j ≤ k,

span(W ) ⊇ span
([

w1 . . . wk

])
,
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and let V be an arbitrary full-rank truncation matrix of appropriate dimension. Then
the subsystem transfer functions of ĜB interpolate those of GB in the following way:

GB,1(σk) = ĜB,1(σk),
GB,2(σk−1, σk) = ĜB,2(σk−1, σk),

...
GB,k(σ1, . . . , σk) = ĜB,k(σ1, . . . , σk). ♢

Proof. The proof of this theorem follows analogously to the proof of Theorem 5.1 but
now with the construction of the projector PW from (3.25) onto span(W ). For illustration
and later reference, the proof is sketched nevertheless. As in the proof of Theorem 5.1,
the reduced-order second subsystem transfer function is considered in the proposed
interpolation points, i.e.,

ĜB,2(σk−1, σk) = Ĉ(σk )̂K(σk)−1N̂ (σk−1)̂K(σk−1)−1B̂(σk−1).

In contrast to Theorem 5.1, the projector (3.25) is now used such that

W K̂(σk)−ĤC(σk)H = W K̂(σk)−HV HC(σk)H

= W K̂(σk)−HV HK(σk)H︸ ︷︷ ︸
= PW(σk)

K(σk)−HC(σk)H︸ ︷︷ ︸
= w1

= PW(σk)w1

= w1

holds, since by construction w1 ∈ span(W ) and (3.26). This yields the reduced-order
transfer function to satisfy

ĜB,2(σk−1, σk) = wH
1 N (σk−1)V K̂(σk−1)−1W HB(σk−1).

For the rest, again a projector like (3.25) is constructed as follows:

W K̂(σk−1)−HV HN (σk−1)Hw1 = W K̂(σk−1)−HV HK(σk−1)H︸ ︷︷ ︸
= PW(σk−1)

K(σk−1)−HN (σk−1)Hw1︸ ︷︷ ︸
= w2

= PW(σk−1)w2

= w2,

which results in the interpolation of the second subsystem transfer function

ĜB,2(σk−1, σk) = wH
2 B(σk−1) = GB,2(σk−1, σk).

The rest of the theorem follows via induction over the transfer function index k.
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The main difference between Theorems 5.1 and 5.2 is the order in which the interpolation
points have to be used to end up in the same sequence for the k-th subsystem transfer
function. Switching between the two interpolation schemes leads to a reverse ordering of
the interpolation points for the intermediate transfer functions, which can easily be used
to increase the number of matched interpolation conditions. The last theorem of this
section states now the combination of Theorems 5.1 and 5.2 in the two-sided projection
approach.
Theorem 5.3 (Bilinear interpolation by two-sided projection):
Let GB and ĜB be as in Theorem 5.1, let V be constructed as in Theorem 5.1 for a
given sequence of interpolation points σ1, . . . , σk ∈ C, and let W be constructed as in
Theorem 5.2 for another sequence of interpolation points ς1, . . . , ςθ ∈ C, for which the
matrix functions C, K−1, N , B and K̂−1 exist. Then the regular subsystem transfer
functions of ĜB interpolate those of GB in the following way:

GB,1(σ1) = ĜB,1(σ1), . . . , GB,k(σ1, . . . , σk) = ĜB,k(σ1, . . . , σk), and
GB,1(ςθ) = ĜB,1(ςθ), . . . , GB,θ(ς1, . . . , ςθ) = ĜB,θ(ς1, . . . , ςθ),

(5.13)

and, additionally,

GB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ) = ĜB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ), (5.14)

for 1 ≤ q ≤ k and 1 ≤ η ≤ θ. ♢

Proof. The interpolation conditions in (5.13) are a reminder of the results in Theorems 5.1
and 5.2. Only the mixed interpolation conditions (5.14) involving both sequences of
interpolation points are left to be proven. Therefore, a combination of the projectors PV
and PW corresponding to the two truncation matrices V and W and their underlying
projection spaces is needed. Let q and η be as in the theorem, the reduced-order (q+η)-th
subsystem transfer function can be written as

ĜB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ)

= Ĉ(ςθ )̂K(ςθ)−1

η−1∏
j=1

N̂ (ςθ−j )̂K(ςθ−j)−1

 N̂ (σq)

×
q−2∏

i=0
K̂(σq−i)−1N̂ (σq−i−1)

 K̂(σ1)−1B̂(σ1)

=: ŵH
η N̂ (σq)v̂q

= ŵH
η W HN (σq)V v̂q,

where the vectors ŵH
η and v̂q resemble the vectors from construction of the projection

spaces span(W ) and span(V ) with the same subscripts but using the reduced-order

119



5 Structured Bilinear Systems

matrix functions. Following the proof of Theorem 5.1, it can be shown via induction that
the identity

V v̂q = V

q−3∏
i=0

K̂(σq−i)−1N̂ (σq−i−1)
 K̂(σ2)−1N̂ (σ1)̂K(σ1)−1B̂(σ1)

= V

q−3∏
i=0

K̂(σq−i)−1N̂ (σq−i−1)
 K̂(σ2)−1W HN (σ1)PV(σ1)v1

...
= V K̂(σq)−1W HN (σq−1)vq−1

= PV(σq)vq

= vq

holds by construction of span(V ), with vq as the q-th constructed vector in Theorem 5.1.
Analogously with the proof of Theorem 5.2, one can show that

Wŵη = wη

has to hold by construction of span(W ), with wη as the η-th constructed vector in
Theorem 5.2. With these two identities, the interpolation conditions follow

ĜB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ)
= ŵH

η W HN (σq)V v̂q

= wH
η N (σq)vq

= C(ςθ)K(ςθ)−1

η−1∏
j=1

N (ςθ−j)K(ςθ−j)−1

N (σq)

×
q−2∏

i=0
K(σq−i)−1N (σq−i−1)

K(σ1)−1B(σ1)

= GB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ).

With Theorem 5.3 it is now proven that higher-level transfer functions can be inter-
polated in an implicit way evaluating only parts of lower-level transfer functions and
combining the resulting subspaces in a two-sided projection approach. In fact, by using
Theorem 5.3, it is possible to interpolate transfer functions up to level k + θ, while
restricting the evaluation to only the k-th level for the right projection space and the
η-th level for the left one. In the same setting, it is possible to match up to k + θ + k · θ
interpolation conditions. These results are similar to the unstructured system case [10].
The special case of identical sequences of interpolation points will result in the interpola-
tion of partial derivatives with respect to the function’s frequency arguments. This will
be discussed in the upcoming section regarding Hermite interpolation.
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5.3.2 Matching Hermite interpolation conditions
In the linear case (Proposition 3.2), it is possible to interpolate higher-order derivatives of
the transfer function in various ways. Similar results can be obtained for the multivariate
transfer functions of bilinear systems considering partial derivatives with respect to the
different frequency arguments. The following theorem states a Hermite interpolation
extension of Theorem 5.1 via V only.

Theorem 5.4 (Bilinear Hermite interpolation via V ):
Let GB be a bilinear SISO system, described by (5.12), and ĜB the reduced-order bilinear
SISO system constructed by (5.4), with its subsystem transfer functions ĜB,k. Let
σ1, . . . , σk ∈ C be interpolation points for which the matrix functions C, K−1, N , B and
K̂−1 are complex differentiable, and ℓ1, . . . , ℓk ∈ N0 orders of partial derivatives to be
matched in the k-th subsystem transfer function. Construct V using

v1,j1 = ∂sj1 (K−1B)(σ1), j1 = 0, . . . , ℓ1,

v2,j2 = ∂sj2 K−1(σ2)∂sℓ1 (N K−1B)(σ1), j2 = 0, . . . , ℓ2,

...

vk,jk
= ∂sjk K−1(σk)

k−2∏
j=1

∂
s

ℓk−j (N K−1)(σk−j)


× ∂sℓ1 (N K−1B)(σ1), jk = 0, . . . , ℓk,

span(V ) ⊇ span
([

v1,0 . . . vk,ℓk

])
,

and let W be an arbitrary full-rank truncation matrix of appropriate dimension. Then
the subsystem transfer functions of ĜB interpolate those of GB in the following way:

∂
s

j1
1

GB,1(σ1) = ∂
s

j1
1

ĜB,1(σ1), j1 = 0, . . . , ℓ1,

∂
s

ℓ1
1 s

j2
2

GB,2(σ1, σ2) = ∂
s

ℓ1
1 s

j2
2

ĜB,2(σ1, σ2), j2 = 0, . . . , ℓ2,

...
∂

s
ℓ1
1 ···sℓk−1

k−1 s
jk
k

GB,k(σ1, . . . , σk) = ∂
s

ℓ1
1 ···sℓk−1

k−1 s
jk
k

ĜB,k(σ1, . . . , σk), jk = 0, . . . , ℓk. ♢

Proof. As in case of classical interpolation (Theorem 5.1), the first subsystem transfer
function corresponds to the linear case and, thereby, the interpolation results are available
in Proposition 3.2. Also, the case of all derivative orders to be zero, ℓ1 = . . . = ℓk = 0
resembles Theorem 5.1. The first interpolation condition to be considered next is given
for k = 2 and j2 = 0. Using the product rule, the partial derivative with respect to the
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first frequency argument only concerns the rightmost product of the bilinear, linear and
input terms, which can in general be written as

∂sℓ1 (N K−1B)(σ1) =
ℓ1∑

i=0
ci∂siN (σ1)∂sℓ1−i(K−1B)(σ1),

for some appropriate constants ci ∈ C, i = 0, . . . , ℓ1. The reduced-order transfer function
is then given by

∂
s

ℓ1
1

ĜB,2(σ1, σ2) = Ĉ(σ2)̂K(σ2)−1∂sℓ1 (N̂ K̂−1B̂)(σ1)

= Ĉ(σ2)̂K(σ2)−1

 ℓ1∑
i=0

ci∂siN̂ (σ1)∂sℓ1−i (̂K−1B̂)(σ1)


=: Ĉ(σ2)̂K(σ2)−1W H

 ℓ1∑
i=0

ci∂siN (σ1)V v̂1,ℓ1−i

 .

As in the proofs of the previous interpolation theorems, by construction of span(V ), the
identity

V v̂1,ℓ1−i = v1,ℓ1−i

holds for all 0 ≤ i ≤ ℓ1. This allows to further rewrite the reduced-order transfer function
such that the interpolation condition holds:

∂
s

ℓ1
1

ĜB,2(σ1, σ2) = Ĉ(σ2)̂K(σ2)−1W H

 ℓ1∑
i=0

ci∂siN (σ1)v1,ℓ1−i


= Ĉ(σ2)̂K(σ2)−1W H∂

s
ℓ1
1

(N K−1B)(σ1)

= C(σ2)PV(σ2)v2,0

= C(σ2)v2,0

= ∂
s

ℓ1
1

GB,2(σ1, σ2),

where PV(σ2) is the projector from (3.24) onto span(V ). Using the same arguments, the
rest of the theorem follows via induction over the partial derivative orders j2, . . . , jk and
the transfer function index k.

While for previous interpolation results, the subspaces were constructed in a recursive
way by using previously computed evaluations in the next step, this is not (easily) possible
in Theorem 5.4 due to N depending on the frequency argument of the terms right of it.
Note that, in this sense, the construction in Theorem 5.4 becomes a recursive formula
again in case of N being constant. Additionally, one can observe that for the interpolation

122



5.3 Interpolation of single-input/single-output systems

of the ℓ-th partial derivative, ℓ = ℓ1 + . . . + ℓk, of the k-th subsystem transfer function
GB,k in the interpolation points σ1, . . . , σk, the maximal dimension of the projection space
span(V ) is given by ℓ + k if all constructed vectors are linear independent.

As before, it is possible to formulate the counterpart to Theorem 5.4 using the output
term of the transfer function for the construction of W instead of V . In addition to
reversing the order of interpolation points, the order of the partial derivatives needs to
be reversed as well for Hermite interpolation.
Theorem 5.5 (Bilinear Hermite interpolation via W ):
Let GB, ĜB, the interpolation points σ1, . . . , σk ∈ C and the orders of partial derivatives
ℓ1, . . . , ℓk ∈ N0 be as in Theorem 5.4. Construct W using

w1,jk
= ∂sjk (K−HCH)(σk), jk = 0, . . . , ℓk,

w2,jk−1 = ∂sjk−1 (K−HN H)(σk−1)w1,ℓk
, jk−1 = 0, . . . , ℓk−1,

...
wk,j1 = ∂sj1 (K−HN H)(σ1)wk−1,ℓ2 , j1 = 0, . . . , ℓ1,

span(W ) ⊇ span
([

w1,0 . . . wk,ℓk

])
,

and let V be an arbitrary full-rank truncation matrix of appropriate dimension. Then
the subsystem transfer functions of ĜB interpolate those of GB in the following way:

∂
s

jk
1

GB,1(σk) = ∂
s

jk
1

ĜB,1(σk), jk = 0, . . . , ℓk,

∂
s

jk−1
1 s

ℓk
2

ĜB,2(σk−1, σk) = ∂
s

jk−1
1 s

ℓk
2

ĜB,2(σk−1, σk), jk−1 = 0, . . . , ℓk−1,

...
∂

s
j1
1 s

ℓ2
2 ···sℓk

k

GB,k(σ1, . . . , σk) = ∂
s

j1
1 s

ℓ2
2 ···sℓk

k

ĜB,k(σ1, . . . , σk), j1 = 0, . . . , ℓ1. ♢

Proof. The proof follows directly using the projection arguments from the proofs of
Theorems 5.2 and 5.4 with the construction of PW from (3.25).

It can be noted that Theorem 5.5, in contrast to Theorem 5.4, resembles the recur-
sive structure from the classical interpolation of the subsystem transfer functions in
Theorem 5.2. This results from the frequency dependency of the bilinear terms on the
frequency argument from the right side but not from the left.

An interesting approach in the structured linear case is the implicit matching of
Hermite interpolation conditions; see Proposition 3.2 Part (c). It is possible to avoid
the evaluation of higher-order derivatives of the transfer function by using the two-sided
projection approach in the same interpolation points for both projection spaces. Next,
this idea is extended to the structured bilinear system case. The following result is
a special case of Theorem 5.3 by using identical sets of interpolation points for the
construction of V and W .

123



5 Structured Bilinear Systems

Theorem 5.6 (Implicit bilinear Hermite interpolation):
Let GB be a bilinear SISO system, described by (5.12), and ĜB the reduced-order bilinear
SISO system constructed by (5.4), with its subsystem transfer functions ĜB,k. Let V and
W be constructed as in Theorems 5.1 and 5.2, respectively, for the same sequence of
interpolation points σ1, . . . , σk ∈ C, for which the matrix functions C, K−1, N , B and
K̂−1 are complex differentiable. Then the regular subsystem transfer functions of ĜB
interpolate those of GB in the following way:

GB,1(σ1) = ĜB,1(σ1), . . . , GB,k−1(σ1, . . . , σk−1) = ĜB,k−1(σ1, . . . , σk−1),
GB,1(σk) = ĜB,1(σk), . . . , GB,k−1(σ2, . . . , σk) = ĜB,k−1(σ2, . . . , σk),

and, additionally,

GB,k(σ1, . . . , σk) = ĜB,k(σ1, . . . , σk),
∇GB,k(σ1, . . . , σk) = ∇ĜB,k(σ1, . . . , σk),

GB,q+η(σ1, . . . , σq, σk−η+1, . . . , σk) = ĜB,q+η(σ1, . . . , σq, σk−η+1, . . . , σk)

hold, for 1 ≤ q, η ≤ k. ♢

Proof. The simple interpolation of the subsystem transfer functions without partial
derivatives directly follows from Theorem 5.3 by using identical sets of interpolation
points for V and W . The interpolation of the complete Jacobian ∇GB,k is left to be
proven. As the case k = 1 is covered by Proposition 3.2, assume k > 1. Since the
single entries of the Jacobi matrix are partial derivatives of the transfer function with
respect to a single frequency argument each, this can be combined with the special
structure of the subsystem transfer functions GB,k, where each matrix-valued function
only depends on a single frequency argument. With this observation, three general cases
of the differentiation of the matrix-valued functions can occur depending on the chosen
differentiation variable:

s1 : ∂s(N K−1B) = (∂sN ) K−1B + N
(
∂s(K−1B)

)
,

sj : ∂s(N K−1) = (∂sN ) K−1 + N
(
∂sK−1

)
, for 1 < j < k,

sk : ∂s(CK−1) = (∂sC) K−1 + C
(
∂sK−1

)
.

The resulting three cases of partial derivatives work analogously to each other, therefore,
it is enough to proof one of them, which will be here the first entry of the Jacobian, i.e.,
∂s1GB,k. The partial derivative of the terms of interest is extended further into

∂s(N K−1B) = (∂sN ) K−1B − N K−1 (∂sK) K−1B + N K−1 (∂sB) ,
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which allows to write the complete partial derivative of the reduced-order transfer function
to be

∂s1ĜB,k(σ1, . . . , σk)

= Ĉ(σk )̂K(σk)−1

k−2∏
j=1

N̂ (σk−j )̂K(σk−j)−1

 ∂s(N̂ K̂−1B̂)(σ1)

= Ĉ(σk )̂K(σk)−1

k−2∏
j=1

N̂ (σk−j )̂K(σk−j)−1


×
(
(∂sN̂ )̂K−1B̂ − N̂ K̂−1(∂sK̂)̂K−1B̂ + N̂ K̂−1(∂sB̂)

)
(σ1)

=: ŵH
k−1(∂sN̂ )(σ1)v̂1 − ŵH

k (∂sK̂)(σ1)v̂1 + ŵH
k (∂sB̂)(σ1)

= ŵH
k−1W

H(∂sN )(σ1)V v̂1 − ŵH
k W H(∂sK)(σ1)V v̂1 + ŵH

k W H(∂sB)(σ1),

with ŵk−1, ŵk and v̂1 vectors following the construction in Theorems 5.1 and 5.2 but with
the reduced-order matrix functions. In fact, the same projectors PV and PW from (3.24)
and (3.25) as in the proofs of Theorems 5.1 and 5.2 need to be constructed such that the
following identities hold

V v̂1 = v1, Wŵk−1 = wk−1, Wŵk = wk, (5.15)

using also the projection spaces span(V ) and span(W ). With (5.15), the formulation of
the reduced-order transfer function yields the desired interpolation condition

∂s1ĜB,k(σ1, . . . , σk) = wH
k−1(∂sN )(σ1)v1 − wH

k (∂sK)(σ1)v1 + wH
k (∂sB)(σ1)

= C(σk)K(σk)−1

k−2∏
j=1

N (σk−j)K(σk−j)−1


×
(
(∂sN )K−1B − N K−1(∂sK)K−1B + N K−1(∂sB)

)
(σ1)

= C(σk)K(σk)−1

k−2∏
j=1

N (σk−j)K(σk−j)−1

 ∂s(N K−1B)(σ1)

= ∂s1GB,k(σ1, . . . , σk).

As mentioned above, the same idea can be used for the other entries of the Jacobi matrix
giving the proposed interpolation condition.

As in the previous section, using two-sided projection allows to match interpolation
conditions for a larger number of interpolation points and higher-level transfer functions.
Following the results of Theorem 5.3 and using partial derivatives for the construction of
the subspaces in the two-sided projection approach, it can be expected to match at least
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(k + ℓ) + (θ + ν) + (k + ℓ) · (θ + ν) transfer function values and derivative evaluations,
where k, ℓ relate to span(V ) and θ, ν to span(W ), and where ℓ = ℓ1 + . . . + ℓk and
ν = ν1 + . . . + νθ denote the orders of the partial derivatives and k, θ the maximum levels
of the transfer functions to interpolate.

Theorem 5.7 (Bilinear Hermite interpolation by two-sided projection):
Let GB and ĜB be as in Theorem 5.4, let V be constructed as in Theorem 5.4 for a
given sequence of interpolation points σ1, . . . , σk ∈ C and orders of partial derivatives
ℓ1, . . . , ℓk ∈ N0, and let W be constructed as in Theorem 5.5 for another sequence of
interpolation points ς1, . . . , ςθ ∈ C and orders of partial derivatives ν1, . . . , νθ ∈ N0, for
which the matrix functions C, K−1, N , B and K̂−1 are complex differentiable. Then the
regular subsystem transfer functions of ĜB interpolate those of GB in the following way:

∂
s

j1
1

GB,1(σ1) = ∂
s

j1
1

ĜB,1(σ1), j1 = 0, . . . , ℓ1,

...
∂

s
ℓ1
1 ···sℓk−1

k−1 s
jk
k

GB,k(σ1, . . . , σk) = ∂
s

ℓ1
1 ···sℓk−1

k−1 s
jk
k

ĜB,k(σ1, . . . , σk), jk = 0, . . . , ℓk,

∂
s

iθ
1

GB,1(ςθ) = ∂
s

iθ
1

ĜB,1(ςθ), iθ = 0, . . . , νθ,

...
∂

s
i1
1 s

ν2
2 ···sνθ

θ
GB,θ(ς1, . . . , ςθ) = ∂

s
i1
1 s

ν2
2 ···sνθ

θ
ĜB,θ(ς1, . . . , ςθ), i1 = 0, . . . , ν1,

and, additionally,

∂
s

ℓ1
1 ···sℓq−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

GB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ)

= ∂
s

ℓ1
1 ···sℓq−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

ĜB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ)

holds for jq = 0, . . . , ℓq; iθ−η+1 = 0, . . . , νθ−η+1; 1 ≤ q ≤ k and 1 ≤ η ≤ θ. ♢

Proof. The first part of the result just summarizes the theorems stating the one-sided
projection approaches (Theorems 5.4 and 5.5), i.e., the mixed interpolation conditions
involving both sequences of interpolation points are left to be proven. Let jq = 0, . . . , ℓq;
iθ−η+1 = 0, . . . , νθ−η+1; 2 ≤ q ≤ k and 2 ≤ η ≤ θ. The limit case of q = 1 or η = 1 has a
deviating structure but can be treated analogously by taking also the input and output
matrix functions B and C into account. The reduced-order transfer functions are then
given by

∂
s

ℓ1
1 ···sℓq−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

ĜB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ)

= ∂sνθ (̂CK̂−1)(ςθ) · · · ∂s
νθ−η+2 (N̂ K̂−1)(ςθ−η+2)∂s

iθ−η+1 (N̂ K̂−1)(ςθ−η+1)
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× ∂sjq (N̂ K̂−1)(σq)∂sℓq−1 (N̂ K̂−1)(σq−1) · · · ∂sℓ1 (N̂ K̂−1B̂)(σ1)
=: ŵH

η,νθ−η+1
∂sjq (N̂ K̂−1)(σq)∂sℓq−1 (N̂ K̂−1)(σq−1) · · · ∂sℓ1 (N̂ K̂−1B̂)(σ1).

Evaluating the partial derivative in the middle via the product rule yields

∂sjq (N̂ K̂−1)(σq) =
jq∑

α=0
cα(∂sαN̂ )(σq)(∂sjq−αK̂−1)(σq),

with appropriate constants cα ∈ C. Therefore, it is possible to further rewrite the
reduced-order transfer function into

∂
s

ℓ1
1 ···sℓq−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

ĜB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ)

=:
jq∑

α=0
cαŵH

η,νθ−η+1
(∂sαN̂ )(σq)v̂q,jq−α

=
jq∑

α=0
cαŵH

η,νθ−η+1
W H(∂sαN )(σq)V v̂q,jq−α.

As in previous proofs, the truncation matrices and underlying projection spaces are now
used to show recursive identities for the constructed vectors using the projectors (3.24)
and (3.25), i.e., it holds

V v̂q,jq−α = vq,jq−α, and Wŵη,νθ−η+1 = wη,νθ−η+1 , for all 0 ≤ α ≤ jq.

Consequently, the mixed interpolation conditions in the theorem hold true:

∂
s

ℓ1
1 ···sℓq−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

ĜB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ)

=
jq∑

α=0
cαwH

η,νθ−η+1
(∂sαN )(σq)vq,jq−α

= ∂sνθ (CK−1)(ςθ) · · · ∂s
νθ−η+2 (N K−1)(ςθ−η+2)∂s

iθ−η+1 (N K−1)(ςθ−η+1)
× ∂sjq (N K−1)(σq)∂sℓq−1 (N K−1)(σq−1) · · · ∂sℓ1 (N K−1B)(σ1)

= ∂
s

ℓ1
1 ···sℓq−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

GB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ).

For an easier understanding of Theorem 5.7, a small theoretical experiment is considered,
where only the linear part is used choosing k = θ = 1, with the interpolation points σ, ς
and the orders of partial derivatives to be ℓ = ℓ1 = 2 and ν = ν1 = 1. Then, by the first
part of Theorem 5.7, the interpolation of the following terms by means of span(V ) is
enforced:

GB,1(σ), ∂s1GB,1(σ), ∂s2
1
GB,1(σ).
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Similarly via span(W ), the interpolation of

GB,1(ς), ∂s1GB,1(ς)

is given. Using the two-sided projection approach, it is now possible to additionally
match higher-level transfer functions and partial derivatives of these, namely

GB,2(σ, ς), ∂s1GB,2(σ, ς), ∂s2GB,2(σ, ς),
∂s2

1
GB,2(σ, ς), ∂s1s2GB,2(σ, ς), ∂s2

1s2GB,2(σ, ς).

As already realized in Theorem 5.6, using the same set of interpolation points in the
two-sided projection leads to additional interpolation of derivatives in an implicit way.
This works analogously in combination with Theorem 5.7. The following corollary states
this special case.

Corollary 5.8 (Implicit higher-order bilinear Hermite interpolation):
Assume GB and ĜB are constructed as in Theorem 5.7 for identical sets of interpolation
points σ1 = ς1, . . . , σk = ςk ∈ C and matching orders of the partial derivatives ℓ1 =
ν1, . . . , ℓk = νk ∈ N0. Then additionally to the interpolation results of Theorem 5.7, it
holds

∇
(

∂
s

ℓ1
1 ···sℓk

k

GB,k

)
(σ1, . . . , σk) = ∇

(
∂

s
ℓ1
1 ···sℓk

k

ĜB,k

)
(σ1, . . . , σk). ♢

5.3.3 Numerical experiments
As illustration of the established interpolation theory for structured bilinear SISO systems,
numerical experiments are performed for instances of the two example structures from
Sections 5.2.3 and 5.2.4. Parts of the experiments will resemble the results published in [43].
Different variants of structured interpolation, following the suggestions for interpolation
point selection in Section 3.3.4.2, will be compared to unstructured methods in the
MORscore. Additionally to the approximate time domain measures (2.44) and (2.45)
from Section 2.4.2, two frequency domain errors are computed based on the subsystem
transfer functions of bilinear systems. For the first subsystem transfer functions, the
classical approximate H∞/L∞-error (2.46) will be used and further denoted by H(1)

∞ , and
for the second subsystem transfer functions, the H∞/L∞-error (2.46) is extended in the
following sense

∥G − Ĝ∥H∞/L∞,2 ≈ max
ωk,ωj

∥GB,2(ωki, ωji) − ĜB,2(ωki, ωji)∥2, (5.16)

with discrete frequency evaluation points ωk, ωj ∈ [ωmin, ωmax]. The MORscores based
on this error will be further denoted by H(2)

∞ . For additional illustration, a fixed reduced
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order is selected for both examples and pointwise relative approximation errors are
plotted. For the first subsystem transfer functions and the time domain simulations,
(4.19) and (4.20) are used, respectively, and for the second subsystem transfer functions,

ϵrel(ω1, ω2) := ∥GB,2(ω1i, ω2i) − ĜB,2(ω1i, ω2i)∥2

∥GB,2(ω1i, ω2i)∥2
(5.17)

is shown.

5.3.3.1 Bilinear mass-spring-damper system

The first example to be considered is an extension of the single chain oscillator from
Section 4.2.5.1; see also [43, 142]. For the bilinearity, the springs are modeled to depend
on the applied input force such that a displacement to the right increases the stiffness
due to compression of the springs and to the left decreases it due to the appearing strain.
The resulting bilinear mechanical system has the form

Mẍ(t) + Eẋ(t) + Kx(t) = Npx(t)u(t) + Buu(t),
y(t) = Cpx(t),

(5.18)

where M, E, K are chosen exactly as in Section 4.2.5.1, also with n2 = 10 000 masses.
The bilinear term is constructed to be a scaled version of the stiffness matrix

Np = −SKS,

where S is a diagonal matrix with linearly decaying entries linspace(0.5,0,n2). Input
and output vectors are compressed versions of the inputs and outputs in Section 4.2.5.1,
with

Bu =



15
0
...
0
15

 , Cp =
(
e1 + e2 + e3 + e8 + e9 + e10 + en2−2 + en2−1 + en2

)T
.

The model reduction is performed with two general types of approaches: (i) the
new structure-preserving bilinear interpolation, denoted by StrInt, (ii) the classical
unstructured bilinear interpolation by converting (5.18) to first-order form (5.6), further
on as FOInt. For both approaches, the first and second subsystem transfer functions
are interpolated with the suggested interpolation point heuristics from the linear case in
Section 3.3.4.2:

equi. denotes the simple choice of logarithmically equidistant interpolation points on the
imaginary axis in complex conjugate pairs, where for both frequency arguments of
the second subsystem transfer function the same interpolation point is chosen,
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Table 5.1: MORscores for the bilinear mass-spring-damper example with reduced orders
from 1 to 40.

Method H(1)
∞ H(2)

∞ L2 L∞

StrInt(equi.) 0.1833 0.1365 0.1829 0.1841
StrInt(H∞) 0.2250 0.1625 0.1671 0.1660
StrInt(IRKA) 0.2285 0.1700 0.2030 0.2019
StrInt(avg.) 0.2738 0.2410 0.2478 0.2465

FOInt(equi.) 0.1097 0.0698 0.1109 0.1099
FOInt(H∞) 0.1713 0.0741 0.0893 0.0882
FOInt(IRKA) 0.1827 0.0819 0.0893 0.0889
FOInt(avg.) 0.1450 0.0890 0.0640 0.0645

H∞ is an H∞-greedy selection based on the first and second subsystem transfer function
errors,

IRKA computes H2-optimal interpolation points via TF-IRKA and uses these for the
first as well as second subsystem transfer function,

avg. is not an interpolation point selection but the averaged subspace approach from Re-
mark 3.3 based on interpolation using samples from the first and second subsystem
transfer functions in form of the input and output spaces.

To preserve even further mechanical properties of the bilinear mass-spring-damper system,
only a one-sided projection is performed, i.e., in the three interpolation point selections,
the reduced-order models are computed via Theorem 5.1 with V = W . The averaged
subspace approach uses additionally Theorem 5.2 to compute both projection spaces, then
concatenates the basis matrices into a single one and uses the pivoted QR decomposition
to obtain a single truncation matrix of appropriate size for the one-sided projection.

The results in terms of the different MORscores for computing reduced-order models
from order 1 to order 40 can be seen in Table 5.1. For the time domain MORscores, the
systems have been simulated in the time interval [0, 100] s using the input signal

u(t) = 10 · η(tj), for tj ≤ t < tj+1, (5.19)

with j = 0, . . . , 99, equidistant time steps tj = j · 100
99 and presampled Gaussian white noise

η(t). In general, one can say that the structured interpolation performs exceptionally
better than the unstructured approach in both frequency and time domains. The
structured averaged subspace approach (StrInt(avg.)) is the best performing method of
the full comparison, where StrInt(IRKA) is a strong competitor. This does not hold for
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Figure 5.1: First subsystem transfer functions and approximation errors for the bilinear
mass-spring-damper example.

the unstructured case, since except for the equidistant interpolation points, the other
methods have a very small MORscore in the time domain measures. In frequency domain,
from the unstructured methods the IRKA interpolation points perform best.

For a more detailed comparison of the methods, the reduced order is fixed to r2 = 12.
The methods with IRKA point selection are chosen and compared to StrInt(avg.) as the
overall best performing method and an unstructured interpolation with IRKA points of
double order FOInt2(IRKA). This additional comparison with FOInt2 is based on the
observation that every bilinear mechanical system can be alternatively described by a
first-order system of double order using, e.g., (5.6). The results for the first subsystem
transfer functions are shown in Figure 5.1. Except for FOInt(IRKA), the other three
methods behave very compatible to each other. The structured approaches have a slightly
larger error in the middle of the frequency axis due to the changing behavior of the transfer
function, which is nicely compensated in FOInt2(IRKA). But for increasing frequencies,
the relative error of FOInt2(IRKA) is vastly growing while the structured approaches
stay constantly small. The relative approximation errors of the second subsystem transfer
functions are given in Figure 5.2. Here, FOInt2(IRKA) gives a comparably small error
to the structured methods for small frequencies in both directions. Both structured
approaches perform overall very well, where the errors of StrInt(IRKA) are usually smaller
than for StrInt(avg.) except for a small region in the lower left area of the frequency
plane.

Last, the time domain simulations for the chosen methods are shown in Figure 5.3.
While all chosen methods perform stable for the given input signal (5.19), the approxi-
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(c) FOInt(IRKA).
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Figure 5.2: Relative approximation errors ϵrel(ω1, ω2) of the second subsystem transfer
functions for the bilinear mass-spring-damper example.

mation quality shows significant differences. FOInt(IRKA) is not fully able to capture
the behavior of the original system even in the eyeball-norm with visible deviations in
Figure 5.3a. FOInt2(IRKA) and StrInt(avg.) are of comparable quality, but StrInt(IRKA)
clearly performs best with exceptionally small relative errors in the beginning of the time
simulation.

5.3.3.2 Time-delayed heated rod

As second numerical example, the bilinear time-delay system from [93] is considered. This
example models a semi-discretized heated rod with distributed control and homogeneous
Dirichlet boundary conditions, which is cooled by a delayed feedback and described by
the partial differential equation

∂tv(ζ, t) = ∂ζ2v(ζ, t) − 2 sin(ζ)v(ζ, t) + 2 sin(ζ)v(ζ, t − 1) + u(t), (5.20)
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Figure 5.3: Time domain results for the bilinear mass-spring-damper example.

with (ζ, t) ∈ (0, π) × (0, tf) and boundary conditions v(0, t) = v(π, t) = 0 for t ∈ [0, tf ].
A spatial discretization using centered finite differences results in a bilinear time-delay
system of the form (5.10) with the time delay τ = 1. For the experiments, n = 5 000 is
chosen.

For the model reduction, the structured interpolation, StrInt, is used with the same
choices of interpolation points (equi./H∞/IRKA) as in the previous section, as well as the
averaged subspace approach (avg.), for the first and second subsystem transfer functions.
In this example, the two-sided projection approach is used based on Theorem 5.6. For
comparison, the bilinear Loewner framework [12,93], BiLoewner, is used to generate an
unstructured bilinear system (2.27) without the time delay.

The resulting MORscores for reduced-order models from order 1 to order 30 are given
in Table 5.2. For the simulations, the time interval [0, 10] s is chosen with the input signal

u(t) = 0.05 · η(tj), for tj ≤ t < tj+1, (5.21)
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Table 5.2: MORscores for the time-delay example with reduced orders from 1 to 30.

Method H(1)
∞ H(2)

∞ L2 L∞

StrInt(equi.) 0.4381 0.4932 0.4607 0.4472
StrInt(H∞) 0.4934 0.5075 0.4550 0.4474
StrInt(IRKA) 0.3850 0.4867 0.4656 0.4554
StrInt(avg.) 0.5092 0.5520 0.5213 0.5120
BiLoewner 0.1234 0.1188 0.0810 0.0663
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Figure 5.4: First subsystem transfer functions and approximation errors for the time-
delay example.

with j = 0, . . . , 9, equidistant time steps tj = j · 10
9 and presampled Gaussian white noise

η(t). The structured averaged subspace approach performs best, directly followed by the
H∞-greedy selection method StrInt(H∞). All structured methods perform pretty similar
except for StrInt(IRKA) in the approximation of the first subsystem transfer function.
Nevertheless, the structured approaches perform around 4 times better than the bilinear
Loewner framework in frequency domain and between 6 and 8 times better in the time
domain.

The large difference in the approximation quality becomes even clearer when considering
a fixed reduced order, here r1 = 8. In Figures 5.4 and 5.5, the frequency domain results are
shown. BiLoewner fails in both figures to be compatible with the structured interpolation
methods, which behave all very similar to StrInt(H∞), the clear winner. The same
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Figure 5.5: Relative approximation errors ϵrel(ω1, ω2) of the second subsystem transfer
functions for the time-delay example.

results can be seen in the time domain simulation in Figure 5.6. The bilinear Loewner
framework performs several orders of magnitude worse than the structured interpolation
methods. While the relative errors of the selected StrInt methods are in the same order
of magnitude, their error behavior strongly differs. Thereby, StrInt(H∞) provides an
overall very smooth and constant relative error, while StrInt(IRKA) provides a more
spiky error that is sometimes smaller than StrInt(H∞) but also sometimes larger.

5.4 Matrix interpolation of multi-input/multi-output
systems

In the previous section, the special case of SISO systems was treated to make use of the
significantly simplified structure of the transfer function (5.12) with only a single bilinear
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Figure 5.6: Time domain results for the time-delay example.

term. The more regularly occurring case in practice are MIMO systems, potentially
involving several different bilinear terms. In principle, the generalization of the results in
Section 5.3 to the MIMO case (5.3) is a straightforward procedure. However, one needs
to realize first that for bilinear MIMO systems the quantities to be interpolated, i.e., the
subsystem transfer functions, are matrix-valued with the column dimension increasing
exponentially with the transfer function level. The main difference to the SISO system
case in terms of formulae lies in the concatenation of the bilinear terms

N (s) =
[
N1(s) . . . Nm(s)

]
(5.22)

and the corresponding Kronecker products that produce different combinations of the
linear and bilinear parts in the k-th subsystem transfer function; cf. (2.33). This section
will only focus on matrix interpolation, i.e., the full matrix-valued structured subsystem
transfer functions will be interpolated. The concept of tangential interpolation from
the linear case [10,89] is an efficient way to handle matrix-valued transfer functions by
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5.4 Matrix interpolation of multi-input/multi-output systems

restricting the interpolation to certain evaluation directions; see Section 3.3.2. There
were attempts to generalize the definition of tangential interpolation to bilinear systems
in [31,160]. However, this topic will be discussed separately in more detail in Section 5.6.

For the results involving conditions on the left projection space span(W ), a different
concatenation of the bilinear terms than (5.22) is needed. Therefore, consider (5.22) to
be the 1-mode matricization of the tensor-valued function N : C → Cn×n×m given by

N (s) = N (1)(s).

In the upcoming theory, the 2-mode matricization of this tensor function is needed, which
is given by

N (2)(s) =
[
N1(s)T . . . Nm(s)T

]
. (5.23)

See Section 2.1.1 for more details on tensors and matricizations. The following theorem
extends the results from Theorems 5.1 to 5.3 to structured bilinear MIMO systems.
Theorem 5.9 (Bilinear matrix interpolation):
Let GB be a bilinear system, described by (5.3), and ĜB the reduced-order bilinear system
constructed by (5.4), with its subsystem transfer functions ĜB,k in (5.5). Given sets of
interpolation points σ1, . . . , σk ∈ C and ς1, . . . , ςθ ∈ C, for which the matrix functions C,
K−1, N , B and K̂−1 are defined, the following statements hold:

(a) If V is constructed as

V1 = K(σ1)−1B(σ1),
Vj = K(σj)−1N (σj−1)(Im ⊗ Vj−1), 2 ≤ j ≤ k,

span(V ) ⊇ span
([

V1 . . . Vk

])
,

then the following interpolation conditions hold true:

GB,j(σ1, . . . , σj) = ĜB,j(σ1, . . . , σj),
for j = 1, . . . , k.

(b) If W is constructed as

W1 = K(ςθ)−HC(ςθ)H,

Wi = K(ςθ−i+1)−HN (2)(ςk−i+1)(Im ⊗ Wi−1), 2 ≤ i ≤ θ,

span(W ) ⊇ span
([

W1, . . . , Wθ

])
,

where N (2) is the 2-mode matricization of the tensor defined by N (1) = N like
in (5.23), then the following interpolation conditions hold true:

GB,i(ςθ−i+1, . . . , ςθ) = ĜB,i(ςθ−i+1, . . . , ςθ),
for i = 1, . . . , θ.
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(c) Let V be constructed as in Part (a) and W as in Part (b), then, additionally to
the results in (a) and (b), the interpolation conditions

GB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ) = ĜB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ)

hold, for 1 ≤ q ≤ k and 1 ≤ η ≤ θ. ♢

Proof. As mentioned before, large parts of the proof directly follow from the ideas in the
SISO case. First, consider Part (a). Let GB,j,α, with 1 ≤ j ≤ k and 1 ≤ α ≤ mj, denote
a block entry of the transfer function GB,j with evaluated Kronecker products, i.e.,

GB,j,α(s1, . . . , sj) := C(sj)K(sj)−1Nαj−1(sj−1)K(sj−1)−1 · · · Nα1(s1)K(s1)−1B(s1), (5.24)

where the indices 1 ≤ α1, . . . , αj−1 ≤ m denote any appropriate combination of the
bilinear terms. In the way of Theorem 5.1, it is now possible to analogously construct the
projector PV from (3.24) onto span(V ). Therefore, consider the reduced-order version
of (5.24) in the interpolation points

ĜB,j,α(σ1, . . . , σj) = Ĉ(σj )̂K(σj)−1N̂ αj−1(σj−1)̂K(σj−1)−1 · · · N̂ α1(σ1)̂K(σ1)−1B̂(σ1).

Considering (5.24) and the entry of the reduced-order transfer function column-wise , it
can be seen that the interpolation conditions hold exactly as before in a recursive way
using the single columns of V1, . . . , Vj, i.e., it holds

ĜB,j,α(σ1, . . . , σj) = GB,j,α(σ1, . . . , σj)

for all 1 ≤ j ≤ k and 1 ≤ α ≤ mj, giving the result in Part (a).
Parts (b) and (c) work analogously using Theorems 5.2 and 5.3, where in the con-

struction of the matrices W1, . . . , Wk the 2-mode matricization of the bilinear concate-
nation (5.23) is used as complex conjugate such that the single matrix-valued entries
of (5.23) are the Hermitian transposed matrix functions of the original bilinear terms

N (2)(ςk−i+1) =
[
N1(s)H . . . Nm(s)H

]
.

This leads to an analogue to the proof of Part (a).

In a similar fashion, an extension for the Hermite interpolation results in Theorems 5.4,
5.5 and 5.7 to the MIMO case is given below.
Theorem 5.10 (Bilinear Hermite matrix interpolation):
Let GB be a bilinear system, described by (5.3), and ĜB the reduced-order bilinear system
constructed by (5.4), with its subsystem transfer functions ĜB,k in (5.5). Given sets of
interpolation points σ1, . . . , σk ∈ C and ς1, . . . , ςθ ∈ C, for which the matrix functions
C, K−1, N , B and K̂−1 are complex differentiable, and orders of partial derivatives
ℓ1, . . . , ℓk ∈ N0 and ν1, . . . , νθ ∈ N0, then the following statements hold:
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(a) If V is constructed as

V1,j1 = ∂sj1 (K−1B)(σ1), j1 = 0, . . . , ℓ1,

V2,j2 = ∂sj2 K−1(σ2)∂sℓ1

(
N (Im ⊗ K−1B)

)
(σ1), j2 = 0, . . . , ℓ2,

...
Vk,jk

= ∂sjk K−1(σk)

×
k−2∏

j=1
∂

s
ℓk−j

(
(Imj−1 ⊗ N )(Imj ⊗ K)

)
(σk−j)


× ∂sℓ1

(
(Imk−2 ⊗ N )(Imk−1 ⊗ K)(Imk−1 ⊗ B)

)
(σ1), jk = 0, . . . , ℓk,

span(V ) ⊇ span
([

V1,0 . . . Vk,ℓk

])
,

then the following interpolation conditions hold true:

∂
s

ℓ1
1 ···sℓq−1

q−1 s
jq
q

GB,q(σ1, . . . , σq) = ∂
s

ℓ1
1 ···sℓq−1

q−1 s
jq
q

ĜB,q(σ1, . . . , σq),

for q = 1, . . . , k and jq = 0, . . . ℓq.

(b) If W is constructed as

W1,iθ
= ∂siθ (K−HCH)(ςθ), iθ = 0, . . . , νθ,

W2,iθ−1 = ∂siθ−1 (K−HN (2))(ςθ−1)
(
Im ⊗ W1,νθ

)
, iθ−1 = 0, . . . , νθ−1,

...

Wθ,i1 = ∂si1 (K−HN (2))(ς1)
(
Im ⊗ Wθ−1,ν2

)
, i1 = 0, . . . , ν1,

span(W ) ⊇ span
([

W1,0 . . . Wθ,νθ

])
,

where N (2) is the 2-mode matricization of the tensor defined by N (1) = N like
in (5.23), then the following interpolation conditions hold true:

∂
s

iθ−η+1
1 s

νθ−η+2
2 ···sνθ

η
GB,η(ςθ−η+1, . . . , ςθ) = ∂

s
iθ−η+1
1 s

νθ−η+2
2 ···sνθ

η
ĜB,η(ςθ−η+1, . . . , ςθ),

for η = 1, . . . , θ and iθ−η+1 = 0, . . . , νθ−η+1.

(c) Let V be constructed as in Part (a) and W as in Part (b), then, additionally to
the results in (a) and (b), the interpolation conditions

∂
s

ℓ1
1 ···sℓq−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

GB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ)

= ∂
s

ℓ1
1 ···sℓq−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

ĜB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ)

hold, for jq = 0, . . . , ℓq; iθ−η+1 = 0, . . . , νθ−η+1; 1 ≤ q ≤ k and 1 ≤ η ≤ θ. ♢
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Proof. The results follow directly by using the ideas from the proof of Theorem 5.9 for
the MIMO case and the results from Theorems 5.4, 5.5 and 5.7 about structured Hermite
interpolation.

As in the SISO case, implicit interpolation of partial derivatives of the transfer functions
by two-sided projection is possible by using identical sequences of interpolation points
for the construction of left and right projection spaces in Theorems 5.9 and 5.10. This is
summarized in the following corollary without additional proofs.

Corollary 5.11 (Implicit bilinear matrix interpolation):
Let GB be a bilinear system, described by (5.3), and ĜB the reduced-order bilinear system
constructed by (5.4), with its subsystem transfer functions ĜB,k in (5.5). Given a set of
interpolation points σ1, . . . , σk ∈ C, for which the matrix functions C, K−1, N , B and
K̂−1 are complex differentiable, the following statements hold:

(a) Let V and W be constructed as in Theorem 5.9 Parts (a) and (b) for a matching
sequence of interpolation points σ1 = ς1, . . . , σk = ςk, then, additionally to the
results in Theorem 5.9, it holds

∇GB,k(σ1, . . . , σk) = ∇ĜB,k(σ1, . . . , σk).

(b) Let V and W be constructed as in Theorem 5.10 Parts (a) and (b) for a matching
sequence of interpolation points σ1 = ς1, . . . , σk = ςk and matching orders of partial
derivatives ℓ1 = ν1, . . . , ℓk = νk, then, additionally to the results in Theorem 5.10,
it holds

∇
(

∂
s

ℓ1
1 ···sℓk

k

GB,k

)
(σ1, . . . , σk) = ∇

(
∂

s
ℓ1
1 ···sℓk

k

ĜB,k

)
(σ1, . . . , σk). ♢

For brevity and prevention of repetitions, numerical experiments for the matrix in-
terpolation theory presented in this section are shown later in Section 5.6. The matrix
interpolation approach is then compared to a newly developed framework for structured
tangential interpolation of bilinear MIMO systems.

5.5 Extension to parametric structured bilinear systems
An important system class extension, when thinking about real-world applications,
are bilinear time-invariant systems with additional parameter dependencies. As the
system structure itself, parameter dependencies are usually modeled with a physical
interpretation, allowing to use a similar mathematical descriptions for different system
realizations, e.g., in case of material coefficients as parameters. Going back to the
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motivating example of mechanical bilinear systems (5.1) from the introduction of this
chapter, its parametric version can be written as

0 = M(µ)ẍ(t; µ) + E(µ)ẋ(t; µ) + K(µ)x(t; µ)

− Bu(µ)u(t) −
m∑

j=1
Np,j(µ)x(t; µ)uj(t) −

m∑
j=1

Nv,j(µ)ẋ(t; µ)uj(t),

y(t; µ) = Cp(µ)x(t; µ) + Cv(µ)ẋ(t; µ),

(5.25)

where M(µ), E(µ), K(µ), Np,j(µ), Nv,j(µ) ∈ Rn2×n2 , for j = 1, . . . , m; Bu(µ) ∈ Rn2×m

and Cp(µ), Cv(µ) ∈ Rp×n2 are constant matrices; and µ ∈ M ⊂ Rd is the collection of
the time-invariant parameters affecting the dynamics. The parameter µ may represent
variations in, e.g., material properties or system geometry.

The aim of structure-preserving parametric model order reduction is in principle
the same as in structure-preserving model reduction to construct a cheap-to-evaluate
approximation of the input-to-output behavior of the original system by reducing the state-
space dimension while additionally the internal system structure and even the parameter
dependencies are preserved in the reduced-order model to retain the underlying physical
structure and its interpretation. For example, for the system (5.25), the structure-
preserving parametric reduced-order model will have the form

0 = M̂(µ)¨̂x(t; µ) + Ê(µ) ˙̂x(t; µ) + K̂(µ)x̂(t; µ)

− B̂u(µ)u(t) −
m∑

j=1
N̂p,j(µ)x̂(t; µ)uj(t) −

m∑
j=1

N̂v,j(µ) ˙̂x(t; µ)uj(t),

ŷ(t; µ) = Ĉp(µ)x̂(t; µ) + Ĉv(µ) ˙̂x(t; µ),

with M̂(µ), Ê(µ), K̂(µ), N̂p,j(µ), N̂v,j(µ) ∈ Rr2×r2 , for j = 1, . . . , m, B̂u(µ) ∈ Rr2×m,
Ĉp(µ), Ĉv(µ) ∈ Rp×r2 , and r2 ≪ n2.

For parametric unstructured (classical) bilinear systems, i.e., for systems of the form

E(µ)ẋ(t; µ) = A(µ)x(t; µ) + B(µ)u(t) +
m∑

j=1
Nj(µ)x(t; µ)uj(t),

y(t; µ) = C(µ)x(t; µ),
(5.26)

an interpolatory parametric model reduction framework was developed in [160] by
synthesizing the interpolation theory for parametric linear dynamical systems [10, 21]
with the subsystem interpolation approaches for bilinear systems [10,15,65,72,81]. In
a similar fashion, the structured interpolation theory from Sections 5.3 and 5.4 can be
extended to the parametric system case. The following subsections describe the extension
of the structured subsystem transfer functions (5.3) to parametric systems and, thereafter,
subspace conditions to enforce transfer function interpolation in frequency and parameter
points. Large parts of this section are published in [42].
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5.5.1 Parametric structured subsystem transfer functions
Since the parameter µ ∈ M is considered to be constant in time, the parametric system
case resembles the non-parametric one for any chosen parameter configuration µ, i.e., the
structured subsystem transfer functions (5.3) can be directly extended to the parametric
setting:

GB,k(s1, . . . , sk, µ) = C(sk, µ)K(sk, µ)−1

k−1∏
j=1

(
Imj−1 ⊗ N (sk−j, µ)

)

×
(
Imj ⊗ K(sk−j, µ)−1

)(Imk−1 ⊗ B(s1, µ)
)
,

(5.27)

where the matrix-valued functions describing the different parts of the system dynamics are
now multivariate with the additional dependency on the parameter configuration µ ∈ M.
Therefore, in this and the following subsections belonging to Section 5.5, the matrix-valued
functions are considered to be C : C×M → Cp×n, K : C×M → Cn×n, B : C×M → Cn×m,
Nj : C×M → Cn×n, for j = 1, . . . , m, with the column concatenation of the bilinear terms
N (s, µ) =

[
N1(s, µ) . . . Nm(s, µ)

]
, such that GB,k : Ck × M → Cp×mk . For parametric

bilinear first-order systems (5.26), the matrix functions are realized by

C(s, µ) = C(µ), K(s, µ) = sE(µ) − A(µ), B(s, µ) = B(µ), Nj(s, µ) = Nj(µ),

and in case of parametric bilinear mechanical systems (5.25) by

C(s, µ) = Cp(µ) + sCv(µ), K(s, µ) = s2M(µ) + sE(µ) + K(µ),
B(s, µ) = Bu(µ), Nj(s, µ) = Np,j(µ) + sNv,j(µ),

with j = 1, . . . , m.
The very same projection approach (5.4) as for non-parametric bilinear systems is used

to compute the reduced-order matrix functions for parametric systems by

Ĉ(s, µ) = C(s, µ)V, K̂(s, µ) = W HK(s, µ)V,

B̂(s, µ) = W HB(s, µ), N̂ j(s, µ) = W HNj(s, µ)V,
(5.28)

with j = 1, . . . , m and constant truncation matrices V, W ∈ Cn×r. The reduced-order
system is then described by

ĜB,k(s1, . . . , sk, µ) = Ĉ(sk, µ)̂K(sk, µ)−1

k−1∏
j=1

(
Imj−1 ⊗ N̂ (sk−j, µ)

)

×
(
Imj ⊗ K̂(sk−j, µ)−1

)(Imk−1 ⊗ B̂(s1, µ)
)
.

(5.29)
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5.5 Extension to parametric structured bilinear systems

Additionally to the internal system structure, also the exact parameter dependencies
are preserved in the reduced-order system when using the projection framework (5.28).
In general, the frequency-affine decomposition (3.22) can be directly extended to a
parameter-and-frequency-affine decomposition such that

K(s, µ) =
nK∑
j=1

hK,j(s, µ)Kj

holds, with frequency- and parameter-dependent scalar functions hK,j and a possibly
different nK than in (3.22). This leads to the same observation as in the non-parametric
case that the reduction only affects the constant matrices Kj and, therefore, the original
system structure and now also the parameter dependencies described by the scalar
functions hK,j are preserved.
Remark 5.12 (Parametric bilinear SISO systems):
As used in Section 5.3, the case of SISO subsystem transfer functions simplifies significantly
due to the vanishing of Kronecker products and only a single bilinear term present:

GB,k(s1, . . . , sk, µ) = C(sk, µ)K(sk, µ)−1

k−1∏
j=1

N (sk−j, µ)K(sk−j, µ)−1

B(s1, µ). (5.30)

This also inherits the simplification of the conditions on projection spaces in the structured
interpolation theory. Due to the similarity to Section 5.3 and the recovering of SISO
results from matrix interpolation, those simplified results for parametric bilinear SISO
systems are omitted here. ♢

5.5.2 Structured interpolation in frequency and parameter
In the setting of parametric structured subsystem transfer functions GB,k in (5.27), the
goal is to construct V and W such that the reduced transfer functions ĜB,k in (5.29)
satisfy

GB,k(σ1, . . . , σk, µ̂) = ĜB,k(σ1, . . . , σk, µ̂) and (5.31)
∇GB,k(σ1, . . . , σk, µ̂) = ∇ĜB,k(σ1, . . . , σk, µ̂), (5.32)

for given frequency interpolation points σ1, . . . , σk ∈ C and the parameter interpolation
point µ̂ ∈ M. In (5.31), ∇GB,k denotes the complete Jacobi matrix with

∇GB,k =
[
∂s1GB,k . . . ∂sk

GB,k ∂µ1GB,k . . . ∂µd
GB,k

]
,

involving not only the partial derivatives with respect to the frequency arguments as in
the non-parametric case but also the parameter sensitivities. Having in mind that in
the general MIMO system case the transfer functions are matrix-valued, the conditions
in (5.31) and (5.32) enforce matrix interpolation. The following theorem extends the
results of Theorem 5.9 to the parametric case.
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Theorem 5.13 (Parametric bilinear matrix interpolation):
Let GB be a parametric bilinear system, with its structured subsystem transfer functions
GB,k in (5.27), and ĜB be the reduced-order parametric bilinear system, constructed
by (5.28) with its subsystem transfer functions ĜB,k in (5.29). Given sets of frequency
interpolation points σ1, . . . , σk ∈ C and ς1, . . . , ςθ ∈ C, and the parameter interpolation
point µ̂ ∈ M for which the matrix functions C, K−1, N , B and K̂−1 are defined, the
following statements hold:

(a) If V is constructed as

V1 = K(σ1, µ̂)−1B(σ1, µ̂),
Vj = K(σj, µ̂)−1N (σj−1, µ̂)(Im ⊗ Vj−1), 2 ≤ j ≤ k,

span(V ) ⊇ span
([

V1 . . . Vk

])
,

then the following interpolation conditions hold true:

GB,j(σ1, . . . , σj, µ̂) = ĜB,j(σ1, . . . , σj, µ̂), (5.33)

for j = 1, . . . , k.

(b) If W is constructed as

W1 = K(ςθ, µ̂)−HC(ςθ, µ̂)H,

Wi = K(ςθ−i+1, µ̂)−HN (ςθ−i+1, µ̂)(2)(Im ⊗ Wi−1), 2 ≤ i ≤ θ

span(W ) ⊇ span
([

W1 . . . Wθ

])
,

where N (2) is the 2-mode matricization of the tensor defined by N (1) = N , then
the following interpolation conditions hold true:

GB,i(ςθ−i+1, . . . , ςθ, µ̂) = ĜB,i(ςθ−i+1, . . . , ςθ, µ̂), (5.34)

for i = 1, . . . , θ.

(c) Let V be constructed as in Part (a) and W as in Part (b). Then, in addition
to (5.33) and (5.34), the interpolation conditions

GB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ, µ̂)
= ĜB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ, µ̂)

(5.35)

hold, for 1 ≤ q ≤ k and 1 ≤ η ≤ θ. ♢
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5.5 Extension to parametric structured bilinear systems

Proof. Given the fixed parameter point µ̂ ∈ M, the matrix functions C(s, µ̂), K(s, µ̂),
N (s, µ̂) and B(s, µ̂) can be viewed as realization of a non-parametric bilinear system.
Then, the interpolation conditions (5.33)–(5.35) can be considered as subsystem in-
terpolation of a non-parametric bilinear system as these conditions do not involve any
variation/sensitivity with respect to µ. Therefore, the subspace conditions in Theorem 5.9,
for interpolating a non-parametric structured bilinear system, apply here as well, which
are precisely the subspace conditions listed in Parts (a)–(c).

In Theorem 5.13, only function values are matched, i.e., the zeroth-order derivative.
The following theorem extends these results to matching higher-order derivatives in the
frequency arguments, i.e., to enforce Hermite interpolation conditions.
Theorem 5.14 (Parametric bilinear Hermite matrix interpolation):
Let GB be a parametric bilinear system, with its structured subsystem transfer functions
GB,k in (5.27), and ĜB be the reduced-order parametric bilinear system, constructed
by (5.28) with its subsystem transfer functions ĜB,k in (5.29). Given sets of frequency
interpolation points σ1, . . . , σk ∈ C and ς1, . . . , ςθ ∈ C, and the parameter interpolation
point µ̂ ∈ M for which the matrix functions C, K−1, N , B and K̂−1 are complex
differentiable, and given the orders of partial derivatives ℓ1, . . . , ℓk ∈ N0 and ν1, . . . , νθ ∈
N0, the following statements hold:

(a) If V is constructed as

V1,j1 = ∂sj1 (K−1B)(σ1, µ̂),
Vq,jq = ∂sjq K−1(σq, µ̂)

×
q−2∏

j=1
∂sℓq−j

(
(Imj−1 ⊗ N )(Imj ⊗ K)

)
(σq−j, µ̂)


× ∂sℓ1

(
(Imq−2 ⊗ N )(Imq−1 ⊗ K)(Imq−1 ⊗ B)

)
(σ1, µ̂),

span(V ) ⊇ span
([

V1,0 . . . Vk,ℓk

])
,

for 0 ≤ j1 ≤ ℓ1 and 2 ≤ q ≤ k; 0 ≤ jq ≤ ℓq, then the following interpolation
conditions hold true:

∂
s

ℓ1
1 ···sℓq−1

q−1 s
jq
q

GB,q(σ1, . . . , σq, µ̂) = ∂
s

ℓ1
1 ···sℓq−1

q−1 s
jq
q

ĜB,q(σ1, . . . , σq, µ̂), (5.36)

for q = 1, . . . , k and jq = 0, . . . , ℓq.

(b) If W is constructed as

W1,iθ
= ∂siθ (K−HCH)(ςθ, µ̂),

Wη,iθ−η+1 = ∂s
iθ−η+1 (K−HN (2))(ςθ−η+1, µ̂)(Im ⊗ Wη−1,νθ−η+2),

span(W ) ⊇ span
([

W1,0 . . . Wθ,νθ

])
,
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for 2 ≤ η ≤ θ and 0 ≤ iθ ≤ νθ; 0 ≤ iθ−η+1 ≤ νθ−η+1, and where N (2) is the 2-mode
matricization of the tensor defined by N (1) = N , then the following interpolation
conditions hold true:

∂
s

iθ−η+1
1 s

νθ−η+2
2 ···sνθ

θ

GB,η(ςθ−η+1, . . . , ςθ, µ̂)

= ∂
s

iθ−η+1
1 s

νθ−η+2
2 ···sνθ

θ

ĜB,η(ςθ−η+1, . . . , ςθ, µ̂),
(5.37)

for η = 1, . . . , θ and iθ−η+1 = 0, . . . , νθ−η+1.

(c) Let V be constructed as in Part (a) and W as in Part (b). Then, in addition
to (5.36) and (5.37), the interpolation conditions

∂
s

ℓ1
1 ···sℓq−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

GB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ, µ̂)

= ∂
s

ℓ1
1 ···sℓq−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

ĜB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ, µ̂)
(5.38)

hold, for jq = 0, . . . , ℓq; iθ−η+1 = 0, . . . , νθ−η+1; 1 ≤ q ≤ k and 1 ≤ η ≤ θ. ♢

Proof. As in Theorem 5.13, all the interpolation conditions are for a fixed parameter
µ̂ ∈ M. Therefore, the subspace conditions from Theorem 5.10 can be applied here,
which are precisely the subspace conditions listed in Theorem 5.14.

5.5.3 Matching parameter sensitivities
So far, the interpolation conditions enforced did not show variability with respect to the
parameter µ. Even in the Hermite conditions in Theorem 5.14, the matched derivatives
(sensitivities) are only with respect to the frequency points. This enabled to directly
employ the conditions and analysis from Section 5.4. However, for parametric systems
it is important to match the sensitivity with respect to the parameter variation as
well. This is what will be established in the next result, extending similar results from
linear dynamics [21] and unstructured bilinear dynamics [160] to the new parametric
structured framework. An important conclusion is that the parameter sensitivity is
matched implicitly, i.e., without any explicit computation of it. This is achieved via the
two-sided projection approach using the same set of frequency interpolation points (and
orders of partial derivatives) for V and W .
Theorem 5.15 (Implicit parametric bilinear matrix interpolation):
Let GB be a parametric bilinear system, with its structured subsystem transfer functions
GB,k in (5.27), and ĜB be the reduced-order parametric bilinear system, constructed
by (5.28) with its subsystem transfer functions ĜB,k in (5.29). Given a set of frequency
interpolation points σ1, . . . , σk ∈ C and the parameter interpolation point µ̂ ∈ M for
which the matrix functions C, K−1, N , B and K̂−1 are complex differentiable, the following
statements hold:
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(a) Let V be constructed as in Theorem 5.13 Part (a) and W as in Theorem 5.13
Part (b) with ςi = σi for i = 1, 2, . . . , k. Then, in addition to (5.33)–(5.35), it holds

∇GB,k(σ1, . . . , σk, µ̂) = ∇ĜB,k(σ1, . . . , σk, µ̂). (5.39)

(b) Let V be constructed as in Theorem 5.14 Part (a) and W as in Theorem 5.14 Part (b)
with ςi = σi and ℓi = νi for i = 1, 2, . . . , k. Then, in addition to (5.36)–(5.38), it
holds

∇
(

∂
s

ℓ1
1 ···sℓk

k

GB,k

)
(σ1, . . . , σk, µ̂) = ∇

(
∂

s
ℓ1
1 ···sℓk

k

ĜB,k

)
(σ1, . . . , σk, µ̂). (5.40)

♢

Proof. For brevity, only (5.39) will be proven. The proof of (5.40) follows analogously
using the correct subspaces and projectors. As in the proof of, e.g., Theorem 5.9,
appropriate projectors onto the projection spaces span(V ) and span(W ) need to be
constructed. In contrast to Theorem 5.14, now also the partial derivatives with respect
to the parameters are interpolated. Using the product rule, the partial derivative of ĜB,k

with respect to a single parameter entry µi, for 1 ≤ i ≤ d, is given by

∂µi
ĜB,k(σ1, . . . , σk, µ̂)

=
∑
α∈A

(
∂µ

α1
i

Ĉ(σk, µ̂)
) (

∂µ
α2
i

K̂−1(σk, µ̂)
)

×
k−1∏

j=1
(Imj−1 ⊗ ∂

µ
α2j+1
i

N̂ (σk−j, µ̂))(Imj ⊗ ∂
µ

α2j+2
i

K̂−1(σk−j, µ̂))


× (Imk−1 ⊗ ∂
µ

α2k+1
i

B̂(σ1, µ̂)),

(5.41)

where A denotes the set of all columns of I2k+1, the identity matrix of size 2k + 1. In
other words, the right-hand side of (5.41) is a sum of 2k + 1 terms, where each term
corresponds to the vector α taking a value from this set of columns. Therefore, in each
term only a single matrix function is differentiated. It will be shown that every single
term in the sum (5.41) matches the same term in the full-order model, thus, summed
together, proving the desired interpolation property (5.39). Consider, e.g., the second
term in (5.41), i.e., the term in which α is the second column of the identity matrix:

α =
[
α1 α2 α3 . . . α2k+1

]T
=
[
0 1 0 . . . 0

]T
Denote the corresponding term in the sum (5.41) by Â2 such that

Â2 := Ĉ(σk, µ̂)
(
∂µi

K̂−1(σk, µ̂)
)k−1∏

j=1
(Imj−1 ⊗ N̂ (σk−j, µ̂))(Imj ⊗ K̂(σk−j, µ̂)−1)
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× (Imk−1 ⊗ B̂(σ1, µ̂)).

The derivative of the inverse appearing in Â2 is given by

∂µi
K̂−1(σk, µ̂) = −K̂(σk, µ̂)−1

(
∂µi

K̂(σk, µ̂)
)
K̂(σk, µ̂)−1.

Therefore, Â2 can be rewritten as

Â2 = −̂C(σk, µ̂)̂K(σk, µ̂)−1
(

∂µi
K̂(σk, µ̂)

)
K̂(σk, µ̂)−1

×
k−1∏

j=1

(
Imj−1 ⊗ N̂ (σk−j, µ̂)

)(
Imj ⊗ K̂(σk−j, µ̂)−1

)
× (Imk−1 ⊗ B̂(σ1, µ̂))

=: −Ŵ H
1

(
∂µi

K̂(σk, µ̂)
)̂

V k.

Noting that the projection space span(V ) was constructed as in Theorem 5.13, it holds

V V̂ k = V K̂(σk, µ̂)−1

k−1∏
j=1

(Imj−1 ⊗ N̂ (σk−j, µ̂))(Imj ⊗ K̂(σk−j, µ̂)−1)


× (Imk−1 ⊗ B̂(σ1, µ̂))

= V K̂(σk, µ̂)−1W HK(σk, µ̂)︸ ︷︷ ︸
= PV(σk)

K(σk, µ̂)−1

k−1∏
j=1

(Imj−1 ⊗ N (σk−j, µ̂))

× (Imj ⊗ K(σk−j, µ̂)−1)
 (Imk−1 ⊗ B(σ1, µ̂))

= PV(σk)Vk

= Vk,

where PV(σk) is the projector onto span(V ) from (3.24). The other necessary projectors
PV(σ1), . . . , PV(σk−1) were directly applied in the second step without further mentioning.
Similarly, it holds

WŴ 1 = W K̂(σk, µ̂)−ĤC(σk, µ̂)H

= W K̂(σk, µ̂)−HV K(σk, µ̂)H︸ ︷︷ ︸
= PW(σk)

K(σk, µ̂)−HC(σk, µ̂)H︸ ︷︷ ︸
= W1

= W1,
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with PW(σk) the projector onto span(W ) from (3.25). Using these two identities, one
obtains

Â2 = −Ŵ H
1

(
∂µi

K̂(σk, µ̂)
)̂

V k

= −Ŵ H
1 W H

(
∂µi

K(σk, µ̂)
)

V V̂ k

= −W H
1

(
∂µi

K(σk, µ̂)
)

Vk

= C(σk, µ̂)
(
∂µi

K−1(σk, µ̂)
)k−1∏

j=1
(Imj−1 ⊗ N (σk−j, µ̂))(Imj ⊗ K(σk−j, µ̂)−1)


× (Imk−1 ⊗ B(σ1, µ̂)),

i.e., Â2 is identical to the same term using the original matrix functions. Since the same
technique can be used for all other possible α vectors, it holds

∂µi
ĜB,k(σ1, . . . , σk, µ̂) = ∂µi

GB,k(σ1, . . . , σk, µ̂), (5.42)

for all 1 ≤ i ≤ d. Interpolation of the partial derivatives with respect to the frequency
parameters follows by using Corollary 5.11 with the fixed parameter µ̂. Together
with (5.42), this proves (5.39).

5.5.4 Numerical experiments
The results for structured interpolation of parametric bilinear systems have a strong
similarity to the non-parametric results in Sections 5.3 and 5.4. Therefore and for brevity,
only two short proof-of-concept experiments are performed for parametric versions of
the models in Section 5.3.3. Only the equidistant interpolation point selection and
the averaged subspace approach with a light oversampling in frequency and parameter
arguments will be compared. Instead of full comparisons via MORscores, a fixed order is
directly assumed for the model reduction and the results are then compared in parametric
extensions of the pointwise relative errors (4.19), (4.20), and (5.17), namely

ϵrel(ω1, µ) = ∥GL(ωi, µ) − ĜL(ωi, µ)∥2

∥GL(ωi, µ)∥2
and

ϵrel(ω1, ω2, µ) = ∥GB,2(ω1i, ω2i, µ) − ĜB,2(ω1i, ω2i, µ)∥2

∥GB,2(ω1i, ω2i, µ)∥2

in frequency domain, and

ϵrel(t, µ) = ∥y(t; µ) − ŷ(t; µ)∥2

∥y(t; µ)∥2
,

for the time simulation error.
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Table 5.3: Maximum pointwise relative errors for the parametric bilinear mass-spring-
damper example and reduced models of order r2 = 40.

StrInt(equi.) StrInt(avg.)

max
ω1

ϵrel(ω1) 3.897330e-04 1.472924e-07
max

ω1,ω2,µ
ϵrel(ω1, ω2, µ) 2.928265e-03 1.076899e-05

max
t,µ

ϵrel(t, µ) 1.120365e-03 7.867531e-10

5.5.4.1 Parametric bilinear mass-spring-damper system

The first example is an extension of the bilinear mass-spring-damper system from
Section 5.3.3.1. The input vector is split into two according to its range of affection and
a second bilinear term is introduced acting into the opposite direction such that

Bu =


15 0
0 ...
... 0
0 15

 , Np,1 = −S1KS1, Np,2 = S2KS2,

with S1 a diagonal matrix with entries linspace(0.5,0,n2) and S2 a diagonal matrix
with entries linspace(0,0.5,n2). Also, the output matrix is split into two rows by
taking the observations of the first half of the chain into the first row and the rest into
the second row. The number of masses n2 = 10 000 stays unchanged and two parameters
(µ1, µ2) = µ ∈ M = [0, 1] × [0, 1] are used to control the strength of the bilinearities in
the system. The resulting parametric mechanical bilinear MIMO system has the form

Mẍ(t) + Eẋ(t) + Kx(t) = µ1Np,1x(t)u1(t) + µ2Np,2x(t)u2(t) + Buu(t),
y(t) = Cpx(t).

(5.43)

Note that for µ1 = µ2 = 0, the system (5.43) is linear. In the setting of structured
subsystem transfer functions, the matrix-valued functions in (5.27) are realized by

C(s, µ) = Cp + sCv, K(s, µ) = s2M + sE + K,

B(s, µ) = Bu, N (s, µ) =
[
µ1Np,1 µ2Np,2

]
,

such that only the matrix function representing the bilinear terms depends on the
parameters.

To preserve definiteness of the system matrices, only a one-sided projection, V = W ,
is employed in the model reduction process. Theorem 5.13 Part (a) was thereby used
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Figure 5.7: First subsystem transfer functions and approximation errors for the parametric
bilinear mass-spring-damper example.

in StrInt(equi.) to interpolate the first and second subsystem transfer functions in the
frequency interpolation points ±{10−2, 102}i and in the parameter interpolation points
{(0, 1), (1, 0)}. Observing that the first subsystem transfer function is independent of
the parameters, the resulting reduced-order model is of order r2 = 40. For StrInt(avg.),
Theorem 5.15 Part (a) was used to construct interpolation bases for ten logarithmically
equidistant points in frequency and four linearly equidistant points in both parameters
for the first and second subsystem transfer functions. The resulting matrices were then
concatenated and truncated by the pivoted QR decomposition into a single orthogonal
basis to the desired reduced order of r2 = 40.

The pointwise relative errors were computed for both approximations for the first and
second subsystem transfer functions in the frequency range ω1, ω2 ∈ [10−2, 102] rad/s, as
well as for the time simulations in the interval [0, 100] s. The following input signal was
used in the simulations

u(t) = 10 ·
[
η1(tj)
η2(tj)

]
, for tj ≤ t < tj+1, (5.44)

with j = 0, . . . , 99, equidistant time steps tj = j · 100
99 and presampled Gaussian white

noise η1(t), η2(t). The maximum attained pointwise relative erros are shown in Table 5.3.
Both methods perform very well, where the reduced-order model of choice would be
StrInt(avg.). The parameter-independent first subsystem transfer functions are shown in
Figure 5.7. One can see that both approaches deliver accurate reduced-order models,
where the worst case deviations happen to be in the middle of the frequency range, which
is far away from the chosen interpolation points in StrInt(equi.). This indicates that
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Table 5.4: Maximum pointwise relative errors for the parametric time-delay example and
reduced models of order r1 = 24.

StrInt(equi.) StrInt(avg.)

max
ω1

ϵrel(ω1, µ) 2.183130e-07 4.370906e-11
max

ω1,ω2,µ
ϵrel(ω1, ω2, µ) 9.491342e-07 7.536612e-11

max
t,µ

ϵrel(t, µ) 2.370008e-05 7.469150e-06
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Figure 5.8: Relative approximation errors ϵrel(ω1, µ) of the first subsystem transfer func-
tions for the parametric time-delay example.

another interpolation point at the maximum attained error might be very beneficial for
StrInt(equi.), or alternatively, that a more sophisticated selection of interpolation points
using, for example, the IRKA and H∞-greedy methods, will provide better reduced-
order models. StrInt(avg.) also shows an interesting error behavior in Figure 5.7. The
visible sink in the pointwise relative error in the middle of the frequency range leads
to the assumption that StrInt(avg.) is still interpolating at this point, i.e., that in the
compression of the projection space bases this specific information was dominant enough
to be preserved.

5.5.4.2 Parametric time-delayed heated rod

As second example, a parametric version of the time-delayed heated rod from Sec-
tion 5.3.3.2 is used. Therefore, the diffusivity coefficients in (5.20) are parametrized with

152



5.5 Extension to parametric structured bilinear systems

0 2 4 6 8 10
2
4
6
8

10

Time t (s)

Pa
ra

m
et

er
µ

(a) StrInt(equi.).

0 2 4 6 8 10
2
4
6
8

10

Time t (s)

Pa
ra

m
et

er
µ

(b) StrInt(avg.).

10−15 10−14 10−13 10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5

Figure 5.9: Relative approximation errors ϵrel(t, µ) of the time simulations for the para-
metric time-delay example.

µ ∈ [1, 10]. This results in a parametric bilinear time-delay SISO system of the form

Eẋ(t) = (A0 − µAd)x(t) + µAdx(t − τ) + Nx(t)u(t) + Bu(t),
y(t) = Cx(t),

(5.45)

with the time delay τ = 1 and n1 = 5 000 differential equations. Using the framework
of parametric structured subsystem transfer functions (5.30), the frequency domain
representation of (5.45) is given by the matrix-valued functions

C(s, µ) = C, K(s, µ) = sE − (A0 − µAd) − µe−sτ Ad, B(s, µ) = B, N (s, µ) = N,

where only the center term representing the linear dynamics depends on the parameter.
For model order reduction, a two-sided projection is used, where both approaches

StrInt(equi.) and StrInt(avg.) are based on Theorem 5.15 for the first and second
subsystem transfer functions. For the equidistant interpolation point selection, in
frequency domain the points ±{10−3, 103}i and in parameter domain {1, 5.5, 10} are used.
This results in the reduced order r1 = 24. For the averaged subspace approach, both left
and right interpolation spaces are set up for 40 logarithmically equidistant points in the
frequency range [10−3, 103] rad/s and 10 linearly equidistant points in [1, 10]. Afterwards,
the resulting bases are orthogonalized and truncated via the pivoted QR decomposition
to order r1 = 24.

The maxima of the pointwise relative errors are shown in Table 5.4, were in freqency
domain the range ω1, ω2 ∈ [10−3, 103] rad/s was used, and in time domain the systems
were simulated in the interval [0, 10] s with the same input signal as in the non-parametric
example (5.21). Both reduced-order models yield a suitable approximation quality. In the
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frequency domain comparison, the averaged subspaces perform clearly better. The reason
can be seen in Figure 5.8 as StrInt(equi.) has a stronger increase in the error behavior
for larger frequencies. Another frequency interpolation point in this region might fix this
issue. In time domain, the approximation errors of StrInt(equi.) and StrInt(avg.) are
very close to each other. The relative time domain errors are shown in Figure 5.9. Some
sinks and peaks of the approximation errors are visible for both methods but otherwise
the errors are very uniform over time and parameter.

5.6 Tangential interpolation framework for structured
bilinear systems

A general problem in matrix interpolation for MIMO systems is the fast growth of the
underlying projection spaces and, consequently, of the resulting reduced-order models.
This comes from matching interpolation conditions in each entry of the matrix-valued
transfer functions. A remedy used in case of linear systems is the tangential interpolation
approach (see Section 3.3.2) allowing for a fine control of the projection space dimensions.
In case of unstructured bilinear systems (2.27), a first attempt of generalizing tangential
interpolation to subsystem transfer functions was done in [31, 160]. This approach is
referred to as blockwise tangential interpolation as it is based on considering the single
block-matrix entries of the subsystem transfer functions (2.33) separately. For example,
the right blockwise tangential interpolation problem for the k-th subsystem transfer
function with interpolation points σ1, . . . , σk ∈ C and right tangential direction b ∈ Cm

aims for the construction of a reduced-order model that interpolates

GB,k(σ1, . . . , σk)(Im ⊗ b) =
[
C(σkE − A)−1N1 · · · N1(σ1E − A)−1Bb,

C(σkE − A)−1N1 · · · N2(σ1E − A)−1Bb,

. . . ,

C(σkE − A)−1Nm · · · Nm(σ1E − A)−1Bb
]
.

(5.46)

In this section, the idea of tangential interpolation (3.16) for model order reduction
is extended to structured bilinear systems in a much broader sense than in [31, 160].
Therefore, re-interpretations of tangential interpolation in frequency and time domain
are done in Sections 5.6.1 and 5.6.2, followed by a general framework for tangential
interpolation of structured bilinear systems in Section 5.6.3. The special case of blockwise
tangential interpolation from the literature is considered separately in Section 5.6.4 as
a special instance of the new framework. The tangential approaches are then tested in
different numerical examples.
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5.6.1 Frequency domain interpretation of tangential interpolation
Looking back to the origins of tangential interpolation (3.15) and the multivariate
transfer functions (5.3), a first idea is to consider an appropriately sized vector b̃ ∈ Cmk

as right tangential direction, which results by multiplication with the subsystem transfer
functions (5.3) in

GB,k(s1, . . . , sk)b̃ =
m∑

j1=1
. . .

m∑
jk−1=1

C(sk)K(sk)−1Njk−1(sk−1)K(sk−1)−1

× . . . × Nj1(s1)K(s1)−1B(s1)b̃(α),

(5.47)

where α is an appropriately changing index according to the k − 1 sums and the partition
of the full direction vector

b̃ =
[(

b̃(1)
)H

. . .
(
b̃(mk−1))H

]H
,

where b̃(α) ∈ Cm for α = 1, . . . , mk−1. This general approach leads to a problem concerning
the recursive structure of the transfer functions and the corresponding construction of
the projection spaces. For every new level of the subsystem transfer functions, a different
part of b̃ is multiplied with the input function B(s) in each term of the sum (5.47).
Therefore, the corresponding projection bases for the tangential interpolation would grow
vastly according to the number of different block entries in b̃, which is not suited to
produce small reduced-order models. A solution to this problem is the restriction of the
full direction vector to the repetition of a smaller one b ∈ Cm such that

b̃ = 1mk−1 ⊗ b =


b
...
b

 , (5.48)

with 1mk−1 the vector of length mk−1 containing only ones. With the particular choice
of (5.48), the right tangential interpolation problem can be written as

GB,k(σ1, . . . , σk)(1mk−1 ⊗ b) = ĜB,k(σ1, . . . , σk)(1mk−1 ⊗ b), (5.49)

for a given set of interpolation points σ1, . . . , σk ∈ C. In (5.49), the interpolation problem
is restricted to vectors of constant length p, independent of the input dimension m.
Therefore, it allows for an efficient construction of projection bases.

The left tangential interpolation problem in the classical approach (3.15) would lead
to the same idea as in the blockwise tangential interpolation, since the output dimension
p of the transfer function is constant over all subsystem levels. To consider a dual
formulation of (5.47) and, corresponding to that, a projection basis that does not increase
its dimension exponentially with the transfer function level, the natural choice is

cHGB,k(σ1, . . . , σk)(1mk−1 ⊗ Im) = cHĜB,k(σ1, . . . , σk)(1mk−1 ⊗ Im), (5.50)
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for a given direction c ∈ Cp and interpolation points σ1, . . . , σk ∈ C, as the left tangential
interpolation problem and, consequently,

cHGB,k(σ1, . . . , σk)(1mk−1 ⊗ b) = cHĜB,k(σ1, . . . , σk)(1mk−1 ⊗ b) (5.51)

for two-sided tangential interpolation.

5.6.2 Time domain interpretation of tangential interpolation
A different way to look at tangential interpolation of transfer functions with underlying
dynamical systems is (re-)interpretation in the time domain. Consider the tangential
interpolation problem for linear dynamical systems (3.16). For simplicity, the following
discussion is restricted to the simplified case of linear unstructured first-order systems (2.8)
with transfer function (2.14). But note that the upcoming ideas work analogously in
the general structured case [24]. The multiplication with tangential directions in the
frequency domain can be considered independent of the chosen interpolation points. This
yields new systems in the frequency domain described by transfer functions that are
restricted in one or both dimensions:

G̃L,b(s) = GL(s)b, G̃L,c(s) = cHGL(s) and G̃L,cb(s) = cHGL(s)b, (5.52)

with the tangential directions b ∈ Cm and c ∈ Cp. These new restricted systems (5.52)
can now be transformed back into time domain. The resulting tangential systems can be
seen as embedding the original linear system GL into single-input and/or single-output
systems. Let the outer inputs and outputs be set to be u(t) = bũ(t) and ỹ(t) = cHy(t),
respectively, the three embedded (restricted) systems are given by

G̃L,b :
{

Eẋ(t) = Ax(t) + Bbũ(t),
y(t) = Cx(t),

(5.53)

for the right tangential interpolation problem,

G̃L,c :
Eẋ(t) = Ax(t) + Bu(t),

ỹ(t) = cHCx(t),
(5.54)

for the left tangential interpolation problem, and

G̃L,cb :
Eẋ(t) = Ax(t) + Bbũ(t),

ỹ(t) = cHCx(t),
(5.55)

for the two-sided tangential interpolation. The systems (5.53)–(5.55) correspond to
the three identically denoted transfer functions in (5.52). With (5.53)–(5.55) one can
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interpret tangential interpolation as the restriction of the system inputs to a single input
signal that is spread along a given direction b to be fed into the original system (2.8)
and/or the restriction of the output to a linear combination of the observations of the
original system (2.8) using the direction c.

Now, consider the case of bilinear unstructured systems (2.27). The time domain
interpretation of tangential interpolation of the linear case (5.53)–(5.55) can be directly
transferred to bilinear systems. Using the same tangential directions b and c as before,
and the embedding strategy for the bilinear system (2.27), one gets

G̃B,b :


Eẋ(t) = Ax(t) +

m∑
j=1

Njx(t)bjũ(t) + Bbũ(t),

y(t) = Cx(t),
(5.56)

for the inputs,

G̃B,c :


Eẋ(t) = Ax(t) +

m∑
j=1

Njx(t)uj(t) + Bu(t),

ỹ(t) = cHCx(t),
(5.57)

for the outputs, and

G̃B,cb :


Eẋ(t) = Ax(t) +

m∑
j=1

Njx(t)bjũ(t) + Bbũ(t),

ỹ(t) = cHCx(t),
(5.58)

for the fully embedded system. These restricted bilinear systems (5.56)–(5.58) can be
transformed into their frequency domain representations to get back to the tangential
interpolation problem for subsystem transfer functions. The corresponding regular
subsystem transfer functions for the restricted systems look like follows:

G̃B,b,k(s1, . . . , sk) = C(skE − A)−1

k−1∏
j=1

(
m∑

i=1
biNi

)
(sk−jE − A)−1

Bb, (5.59)

G̃B,c,k(s1, . . . , sk) = cHC(skE − A)−1

k−1∏
j=1

(Imj−1 ⊗ N)(Imj ⊗ (sk−jE − A)−1)


× (Imk−1 ⊗ B), (5.60)

G̃B,cb,k(s1, . . . , sk) = cHC(skE − A)−1

k−1∏
j=1

(
m∑

i=1
biNi

)
(sk−jE − A)−1

Bb, (5.61)

for k ≥ 1. These new transfer functions (5.59)–(5.61) can now be combined with the
setting of structured subsystem transfer function (5.3). Denote the scaled summation of
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the bilinear terms in the structured multivariate transfer functions by

G̃B,k(s1, . . . , sk) = C(sk)K(sk)−1

 m∑
j=1

bjNj(sk−1)
K(sk−1)−1 · · ·

×
 m∑

j=1
bjNj(s1)

K(s1)−1B(s1),

with a given direction b ∈ Cm, and let the scaled and summed transfer function of
the reduced-order model be denoted by ˆ̃GB,k(s1, . . . , sk). The new right tangential
interpolation problem can then be written as

G̃B,k(σ1, . . . , σk)b =ˆ̃GB,k(σ1, . . . , σk)b, (5.62)

for a given set of interpolation points σ1, . . . , σk ∈ C. Again motivated by duality, the
left and two-sided tangential interpolation problems are chosen to be

cH̃GB,k(σ1, . . . , σk) = cĤ̃GB,k(σ1, . . . , σk), (5.63)

cH̃GB,k(σ1, . . . , σk)b = cĤ̃GB,k(σ1, . . . , σk)b, (5.64)

respectively.

Remark 5.16 (Relation to other control systems):
The idea of the time domain interpretation of tangential interpolation offers a wide
range of applications. It can easily be transferred for other types of control systems, e.g.,
systems with polynomial nonlinearities, such that it may be used to develop new and
efficient tangential interpolation approaches for nonlinear MIMO systems. ♢

5.6.3 Structured tangential interpolation framework
With the two re-interpretations of tangential interpolation from Sections 5.6.1 and 5.6.2
in mind, in the following, a unifying framework is developed, which allows for an
interpolation theory covering the problems from Sections 5.6.1 and 5.6.2, as well as the
blockwise tangential approach from [31, 160], for structured bilinear control systems.
Therefore, define the modified subsystem transfer functions to be:

GB,k(s1, . . . , sk | d(1), . . . , d(k−1)) := C(sk)K(sk)−1

k−1∏
j=1

N(sk−j | d(k−j))

× K(sk−j)−1
)

B(s1),
(5.65)
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for k ≥ 1, with the frequency variables s1, . . . , sk ∈ C, scaling vectors d(1), . . . , d(k−1) ∈
Cm, and where

N(sj | d(j)) := N (s)(d(j) ⊗ In) =
m∑

i=1
d

(j)
i Ni(sj) (5.66)

denotes the linear combination of the single matrix functions representing the bilinear
terms. Note that the first modified subsystem transfer function does not depend on
scaling vectors and corresponds again to the linear case since

GB,1(s1) = GB,1(s1) = GL(s1).

In this setting, the modified transfer functions of reduced-order models will be denoted
by ĜB,k(s1, . . . , sk | d(1), . . . , d(k−1)). The resulting tangential interpolation problem for
modified transfer functions reads as follows: For a given set of interpolation points
σ1, . . . , σk ∈ C, scaling vectors d(1), . . . , d(k−1) ∈ Cm, and right and left tangential
directions b ∈ Cm and c ∈ Cp, find a reduced-order model such that

GB,k(σ1, . . . , σk | d(1), . . . , d(k−1))b = ĜB,k(σ1, . . . , σk | d(1), . . . , d(k−1))b,
cHGB,k(σ1, . . . , σk | d(1), . . . , d(k−1)) = cĤGB,k(σ1, . . . , σk | d(1), . . . , d(k−1)), or

cHGB,k(σ1, . . . , σk | d(1), . . . , d(k−1))b = cĤGB,k(σ1, . . . , σk | d(1), . . . , d(k−1))b
(5.67)

hold. The following corollary summarizes some motivated choices of scaling vectors.
Corollary 5.17 (Motivated choices of the scaling vectors):
With an appropriate choice of scaling vectors d(j) in (5.65), different tangential interpola-
tion problems can be recovered from (5.67):

(a) Choosing d(1) = . . . = d(k−1) = 1m yields the extension of classical tangential
interpolation to the subsystem transfer functions of bilinear systems (5.49)–(5.51)
from Section 5.6.1.

(b) Choosing d(1) = . . . = d(k−1) = b, with b ∈ Cm the right tangential direction, yields
the tangential interpolation problems (5.62)–(5.64) resulting from the time domain
interpretation in Section 5.6.2. ♢

The following theorem solves the new tangential interpolation problems (5.67) via
conditions for the underlying projection spaces in the projection framework (5.4).
Theorem 5.18 (Bilinear tangential interpolation):
Let GB be a bilinear system, with its modified transfer functions GB,k in (5.65), and ĜB the
reduced-order bilinear system constructed by (5.4), with its modified transfer functions
ĜB,k. Given sets of interpolation points σ1, . . . , σk ∈ C and ς1, . . . , ςθ ∈ C, for which the
matrix functions C, K−1, N , B and K̂−1 are defined, two tangential directions b ∈ Cm

and c ∈ Cp, and two sets of scaling vectors d(1), . . . , d(k−1) ∈ Cm and δ(1), . . . , δ(θ−1) ∈ Cm,
the following statements hold:
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(a) If V is constructed as

v1 = K(σ1)−1B(σ1)b,
vj = K(σj)−1N(σj−1 | d(j−1))vj−1, 2 ≤ j ≤ k,

span(V ) ⊇ span
([

v1 . . . vk

])
,

then the following interpolation conditions hold true:

GB,1(σ1)b = ĜB,1(σ1)b,
GB,2(σ1, σ2 | d(1))b = ĜB,2(σ1, σ2 | d(1))b,

...
GB,k(σ1, . . . , σk | d(1), . . . , d(k−1))b = ĜB,k(σ1, . . . , σk | d(1), . . . , d(k−1))b.

(b) If W is constructed as

w1 = K(ςθ)−HC(ςθ)Hc,

wi = K(ςθ−i+1)−HN(ςθ−i+1 | δ(θ−i+1))Hwi−1, 2 ≤ i ≤ θ,

span(W ) ⊇ span
([

w1 . . . wθ

])
,

then the following interpolation conditions hold true:

cHGB,1(ςθ) = cĤGB,1(ςθ),
cHGB,2(ςθ−1, ςθ | δ(θ−1)) = cĤGB,2(ςθ−1, ςθ | δ(θ−1)),

...
cHGB,θ(ς1, . . . , ςθ | δ(1), . . . , δ(θ−1)) = cĤGB,θ(ς1, . . . , ςθ | δ(1), . . . , δ(θ−1)).

(c) Let V be constructed as in Part (a) and W as in Part (b), then, additionally to
the results in (a) and (b), the following conditions hold:

cHGB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ | d(1), . . . , d(q−1), z, δ(θ−η+1), . . . , δ(θ−1))b
= cĤGB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ | d(1), . . . , d(q−1), z, δ(θ−η+1), . . . , δ(θ−1))b,

for 1 ≤ q ≤ k, 1 ≤ η ≤ θ, and an additional arbitrary scaling vector z ∈ Cm. ♢

Proof. Parts (a) and (b) follow directly from Theorem 5.9 by using the vector-valued
inputs B(s)b and outputs cHC(s). One can observe that for given fixed scaling vectors
d(1), . . . , d(k−1) and δ(1), . . . , δ(θ−1), the modified bilinear terms (5.66) are functions de-
pending on a single frequency variable. Therefore, a single block entry of a full MIMO
subsystem transfer function is resembled.
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To prove Part (c), the modified transfer functions of the reduced-order model are given
by

cĤGB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ | d(1), . . . , d(q−1), z, δ(θ−η+1), . . . , δ(θ−1))b

= cĤC(ςθ )̂K(ςθ)−1

η−1∏
i=1

N̂(ςθ−i | δ(θ−i))̂K(ςθ−i)−1

 N̂(σq | z)

×
q−2∏

j=0
K̂(σq−j)−1̂N(σq−j−1 | d(q−j−1))

 K̂(σ1)−1B̂(σ1)b

=: ŵH
η N̂(σq | z)v̂q

= ŵH
η W HN(σq | z)V v̂q,

for 1 ≤ q ≤ k; 1 ≤ η ≤ θ and an arbitrary scaling vector z ∈ Cm. The right factor can
then be rewritten using the construction of V such that

V v̂q = V

q−3∏
j=0

K̂(σq−j)−1̂N(σq−j−1 | d(q−j−1))
 K̂(σ2)−1̂N(σ1 | d(1))̂K(σ1)−1B̂(σ1)b

= V

q−3∏
j=0

K̂(σq−j)−1̂N(σq−j−1 | d(q−j−1))
 K̂(σ2)−1W HN(σ1 | d(1))

× V K̂(σ1)−1W HK(σ1)︸ ︷︷ ︸
= PV(σ1)

K(σ1)−1B(σ1)b︸ ︷︷ ︸
= v1

= V

q−3∏
j=0

K̂(σq−j)−1̂N(σq−j−1 | d(q−j−1))
 K̂(σ2)−1W HN(σ1 | d(1))v1

= . . .

= V K̂(σq)−1W HN(σq−1 | d(q−1))vq−1

= V K̂(σq)−1W HK(σq)︸ ︷︷ ︸
=: PV(σq)

K(σq)−1N(σq−1 | d(q−1))vq−1︸ ︷︷ ︸
= vq

= vq,

where PV(σ1), . . . , PV(σq) are the projectors onto span(V ) from (3.24). Analogously, one
can show the identity

Wŵη = wη,

by constructing the projectors (3.25) onto span(W ) and using w1, . . . , wη ∈ span(W ).
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Combining the identities yields

cĤGB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ | d(1), . . . , d(q−1), z, δ(θ−η+1), . . . , δ(θ−1))b
= ŵH

η W HN(σq | z)V v̂q

= wH
η N(σq | z)vq

= cHGB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ | d(1), . . . , d(q−1), z, δ(θ−η+1), . . . , δ(θ−1))b,

for 1 ≤ q ≤ k; 1 ≤ η ≤ θ and an arbitrary scaling vector z ∈ Cm.

Theorem 5.18 Part (c) is an interesting result, as the modified bilinear term in the middle
between the interpolation by left and right projection allows for a completely arbitrary
scaling vector. Especially, by using certain realizations of z, blockwise interpolation
conditions hold true corresponding to the centering bilinear term, as the following example
demonstrates: With Theorem 5.18, construct span(V ) and span(W ) such that GB,1(σ)b
and cHGB,1(ς) are interpolated for chosen interpolation points σ, ς ∈ C, and tangential
directions b ∈ Cm and c ∈ Cp. Then, by two-sided projection it holds additionally

cHGB,2(σ, ς | z)b = cĤGB,2(σ, ς | z)b,

for all z ∈ Cm. Especially, choosing z =
[
1 0

]T
and z =

[
0 1

]T
yields the blockwise

two-sided tangential interpolation condition

cHGB,2(σ, ς)(Im ⊗ b) = cHĜB,2(σ, ς)(Im ⊗ b);

cf. Section 5.6.4.
Besides matching transfer function values, in practice, the interpolation of partial

derivatives with respect to the frequency points is important as it can improve the approx-
imation quality of the computed reduced-order model around the chosen interpolation
points significantly. The following theorem states conditions on the projection spaces to
satisfy tangential Hermite interpolation conditions.

Theorem 5.19 (Bilinear tangential Hermite interpolation):
Let GB be a bilinear system, with its modified transfer functions GB,k in (5.65), and
ĜB the reduced-order bilinear system constructed by (5.4), with its modified transfer
functions ĜB,k. Given sets of interpolation points σ1, . . . , σk ∈ C and ς1, . . . , ςθ ∈ C, for
which the matrix functions C, K−1, N , B and K̂−1 are complex differentiable, orders of
partial derivatives ℓ1, . . . , ℓk ∈ N0 and ν1, . . . , νθ ∈ N0, two tangential directions b ∈ Cm

and c ∈ Cp, and two sets of scaling vectors d(1), . . . , d(k−1) ∈ Cm and δ(1), . . . , δ(θ−1) ∈ Cm,
the following statements hold:
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(a) If V is constructed as

v1,j1 = ∂sj1

(
K−1B

)
(σ1)b, j1 = 0, . . . , ℓ1,

v2,j2 = ∂sj2 K−1(σ2)∂sℓ1

(
N(. | d(1))K−1B

)
(σ1)b, j2 = 0, . . . , ℓ2,

...

vk,jk
= ∂sjk K−1(σk)

k−2∏
j=1

∂
s

ℓk−j

(
N(. | d(k−j))K−1

)
(σk−j)


× ∂sℓ1

(
N(. | d(1))K−1B

)
(σ1)b, jk = 0, . . . , ℓk,

span(V ) ⊇ span
([

v1,0 . . . vk,ℓk

])
,

then the following interpolation conditions hold true:

∂
s

j1
1

GB,1(σ1)b = ∂
s

j1
1

ĜB,1(σ1)b, j1 = 0, . . . , ℓ1,

∂
s

ℓ1
1 s

j2
2

GB,2(σ1, σ2 | d(1))b = ∂
s

ℓ1
1 s

j2
2

ĜB,2(σ1, σ2 | d(1))b, j2 = 0, . . . , ℓ2,

...

∂
s

ℓ1
1 ···sℓk−1

k−1 s
jk
k

GB,k(σ1, . . . , σk | d(1), . . . , d(k−1))b

= ∂
s

ℓ1
1 ···sℓk−1

k−1 s
jk
k

ĜB,k(σ1, . . . , σk | d(1), . . . , d(k−1))b, jk = 0, . . . , ℓk.

(b) If W is constructed as

w1,iθ
= ∂siθ

(
K−HCH

)
(ςθ)c, iθ = 0, . . . , νθ,

w2,iθ−1 = ∂siθ−1

(
K−HN(. | δ(θ−1))H

)
(ςθ−1)w1,νθ

, iθ−1 = 0, . . . , νθ−1,

...
wθ,i1 = ∂si1

(
K−HN(. | δ(1))H

)
(ς1)wθ−1,ν2 , i1 = 0, . . . , ν1,

span(W ) ⊇ span
([

w1,0 . . . wθ,νθ

])
,
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then the following interpolation conditions hold true:

cH∂
s

iθ
1

GB,1(ςθ) = cH∂
s

iθ
1

ĜB,1(ςθ), iθ = 0, . . . , νθ,

cH∂
s

iθ−1
1 s

νθ
2

GB,2(ςθ−1, ςθ | δ(θ−1))

= cH∂
s

iθ−1
1 s

νθ
2

ĜB,2(ςθ−1, ςθ | δ(θ−1)), iθ−1 = 0, . . . , νθ−1,

...

cH∂
s

i1
1 s

ν2
2 ···sνθ

θ
GB,θ(ς1, . . . , ςθ | δ(1), . . . , δ(θ−1))

= cH∂
s

i1
1 s

ν2
2 ···sνθ

θ
ĜB,θ(ς1, . . . , ςθ | δ(1), . . . , δ(θ−1)), i1 = 0, . . . , ν1.

(c) Let V be constructed as in Part (a) and W as in Part (b), then, additionally to
the results in (a) and (b), the following conditions hold:

cH∂
s

ℓ1
1 ···sℓq−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 s

νθ
q+η

GB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ |

d(1), . . . , d(q−1), z, δ(θ−η+1), . . . , δ(θ−1))b
= cH∂

s
ℓ1
1 ···sℓq−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 s

νθ
q+η

ĜB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ |

d(1), . . . , d(q−1), z, δ(θ−η+1), . . . , δ(θ−1))b,

for jq = 0, . . . , ℓq; iθ−η+1 = 0, . . . , νθ−η+1; 1 ≤ q ≤ k; 1 ≤ η ≤ θ and an additional
arbitrary scaling vector z ∈ Cm. ♢

Proof. The proof follows the ideas of the proofs of Theorems 5.4, 5.5, 5.7 and 5.18 using
the projectors (3.24) and (3.25) onto either span(V ) or span(W ).

To complete the theory for the new tangential interpolation framework, the special
cases of Theorems 5.18 and 5.19 by using identical sets of interpolation points and scaling
vectors in the two-sided tangential interpolation case is left. As in Proposition 3.2,
Theorem 5.6 and Corollaries 5.8 and 5.11, this allows to implicitly interpolate partial
derivatives. Due to the dependency of the modified transfer functions on the scaling
vectors, also partial derivatives with respect to the scaling vectors will be considered for
interpolation, very similar to the results in the parametric system case (Theorem 5.15).
For the following theorem, the full Jacobi matrix (2.6) for the modified transfer functions
is given by

∇GB,k =
[
∂s1GB,k, . . . , ∂sk

GB,k, ∂
d

(1)
1

GB,k, . . . , ∂
d

(1)
m

GB,k, . . . , ∂
d

(k−1)
1

GB,k, . . . , ∂
d

(k−1)
m

GB,k

]
.
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Theorem 5.20 (Implicit bilinear tangential interpolation):
Let GB be a bilinear system, with its modified transfer functions GB,k in (5.65), and
ĜB the reduced-order bilinear system constructed by (5.4), with its modified transfer
functions ĜB,k. Given a set of interpolation points σ1, . . . , σk ∈ C, for which the matrix
functions C, K−1, N , B and K̂−1 are complex differentiable, two tangential directions
b ∈ Cm and c ∈ Cp, and scaling vectors d(1), . . . , d(k−1) ∈ Cm, the following statements
hold:

(a) Let V and W be constructed as in Theorem 5.18 Parts (a) and (b) for matching
interpolation points σ1 = ς1, . . ., σk = ςk and the scaling vectors d(1) = δ(1), . . .,
d(k−1) = δ(k−1), then additionally it holds

∇
(
cHGB,kb

)
(σ1, . . . , σk | d(1), . . . , d(k−1))

= ∇
(
cĤGB,kb

)
(σ1, . . . , σk | d(1), . . . , d(k−1)).

(b) Let V and W be constructed as in Theorem 5.19 Parts (a) and (b) for matching
interpolation points σ1 = ς1, . . ., σk = ςk, scaling vectors d(1) = δ(1), . . ., d(k−1) =
δ(k−1) and orders of partial derivatives ℓ1 = ν1, . . ., ℓk = νk, then additionally it
holds

∇
(

cH∂
s

ℓ1
1 ···sℓk

k

GB,kb
)

(σ1, . . . , σk | d(1), . . . , d(k−1))

= ∇
(

cH∂
s

ℓ1
1 ···sℓk

k

ĜB,kb
)

(σ1, . . . , σk | d(1), . . . , d(k−1)). ♢

Proof. The proof of Part (b) is analogous to Part (a) by replacing the simple interpolation
by the Hermite conditions from Theorem 5.19. Therefore, it is enough to prove Part (a).
First, consider the partial derivatives with respect to the scaling vectors. For arbitrary
1 ≤ j ≤ k − 1 and 1 ≤ i ≤ m, it holds

∂
d

(j)
i

(
cĤGB,kb

)
(σ1, . . . , σk | d(1), . . . , d(k−1))

= cĤC(σk )̂K(σk)−1

k−j−1∏
ℓ=1

N̂(σk−ℓ | d(k−ℓ))̂K(σk−ℓ)−1

(∂
d

(j)
i

N̂(σj | d(j))
)

×
 k−1∏

ℓ=j+1
N̂(σk−ℓ | d(k−ℓ))̂K(σk−ℓ)−1

 B̂(s1)b

=: ŵH
k−j−1

(
∂

d
(j)
i

N̂(σj | d(j))
)

v̂k−j−1

= ŵH
k−j−1W

H
(

∂
d

(j)
i

N(σj | d(j))
)

V v̂k−j−1
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such that only the modified bilinear term corresponding to the scaling vector d(j) needs
to be differentiated. Using exactly the approach from the proof of Theorem 5.18 and the
construction of span(V ) and span(W ) yields the two identities

V v̂k−j−1 = vk−j−1 and Wŵk−j−1 = wk−j−1,

which give the Hermite interpolation condition

∂
d

(j)
i

(
cĤGB,kb

)
(σ1, . . . , σk | d(1), . . . , d(k−1))

= ŵH
k−j−1W

H
(
∂

d
(j)
i

N(σj | d(j))
)
V v̂k−j−1

= wH
k−j−1

(
∂

d
(j)
i

N(σj | d(j))
)
vk−j−1

= ∂
d

(j)
i

(
cHGB,kb

)
(σ1, . . . , σk | d(1), . . . , d(k−1)),

for all 1 ≤ j ≤ k − 1 and 1 ≤ i ≤ m. Therefore, the interpolation of all partial derivatives
with respect to the scaling vectors holds. The interpolation of the partial derivatives with
respect to the frequency arguments can be proven in the same fashion but, in principle,
follows directly from Corollary 5.11.

5.6.4 Special case: Structured blockwise tangential interpolation
As mentioned before, the new tangential interpolation framework for structured bilinear
systems from Section 5.6.3 also covers the case of blockwise tangential interpolation. Due
to its relevance in the literature [31,160], the blockwise tangential interpolation results
are summarized here for the structured bilinear system case.

As first step, the blockwise tangential interpolation problem as in (5.46) needs to
be generalized to the structured system case. Therefore, take a look at the structured
subsystem transfer functions in the MIMO system case (5.3). Multiplying out the
Kronecker products in (5.3) yields the column concatenation of products of the dynamics
and the bilinear terms

GB,k(s1, . . . , sk)
=
[
C(sk)K(sk)−1N1(sk−1)K(sk−1)−1 · · · N1(s1)K(s1)−1B(s1),

C(sk)K(sk)−1N1(sk−1)K(sk−1)−1 · · · N2(s1)K(s1)−1B(s1),

. . .

C(sk)K(sk)−1Nm(sk−1)K(sk−1)−1 · · · Nm(s1)K(s1)−1B(s1)
]
.

(5.68)

Now, each block entry of (5.68) is considered as a separate transfer function such that
tangential interpolation can be used for each of them with the same tangential directions.
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For example, given the right tangential direction b ∈ Cm,

GB,k(s1, . . . , sk)(Im ⊗ b)
=
[
C(sk)K(sk)−1N1(sk−1)K(sk−1)−1 · · · N1(s1)K(s1)−1B(s1)b,

C(sk)K(sk)−1N1(sk−1)K(sk−1)−1 · · · N2(s1)K(s1)−1B(s1)b,

. . .

C(sk)K(sk)−1Nm(sk−1)K(sk−1)−1 · · · Nm(s1)K(s1)−1B(s1)b
]

is the blockwise evaluation of the transfer function in the direction b.
The general tangential interpolation framework from Section 5.6.3 can now be used

to construct results for blockwise tangential interpolation in the following way: Choose
the scaling vectors d(j) in (5.65) to be columns of the m-dimensional identity matrix Im.
Then, the single block entries of (5.68) are equivalently given by the modified transfer
functions (5.65) using different combinations of the possible scaling vectors. For example,
choosing d(1) = . . . = d(k−1) = e1 as the first column of Im yields

GB,k(s1, . . . , sk | e1, . . . , e1) = C(sk)K(sk)−1N1(sk−1)K(sk−1)−1 · · · N1(s1)K(s1)−1B(s1),

which is the first block entry in (5.68). Concatenation of these modified transfer functions
results in the recovery of (5.68) by

GB,k(s1, . . . , s1) =
[
GB,k(s1, . . . , sk | e1, . . . , e1),

GB,k(s1, . . . , sk | e1, . . . , e2),

. . . ,

GB,k(s1, . . . , sk | em, . . . , em)
]
.

Consequently, the blockwise tangential interpolation results are given by the concatenation
of the projection space bases in Theorems 5.18 to 5.20 for all possible combinations of
the columns of Im as scaling vectors.

For practical usage of the blockwise tangential interpolation for structured bilinear
systems, the theoretical results are stated below in three corollaries following the same
structure as the tangential interpolation in Section 5.6.3. Due to the argumentation
above, all proofs of the blockwise tangential interpolation results are omitted.
Corollary 5.21 (Bilinear blockwise tangential interpolation):
Let GB be a bilinear system, described by its subsystem transfer functions in (5.3),
and ĜB the reduced-order bilinear system constructed by (5.4), with the corresponding
subsystem transfer functions ĜB,k. Given sets of interpolation points σ1, . . . , σk ∈ C and
ς1, . . . , ςθ ∈ C, for which the matrix functions C, K−1, N , B and K̂−1 are defined, and
two tangential directions b ∈ Cm and c ∈ Cp, the following statements hold:
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(a) If V is constructed as

V1 = K(σ1)−1B(σ1)b,
Vj = K(σj)−1N (σj−1)(Im ⊗ Vj−1), 2 ≤ j ≤ k,

span(V ) ⊇ span
([

V1 . . . Vk

])
,

then the following interpolation conditions hold true:

GB,1(σ1)b = ĜB,1(σ1)b,
GB,2(σ1, σ2)(Im ⊗ b) = ĜB,2(σ1, σ2)(Im ⊗ b),

...
GB,k(σ1, . . . , σk)(Imk−1 ⊗ b) = ĜB,k(σ1, . . . , σk)(Imk−1 ⊗ b).

(b) If W is constructed as

W1 = K(ςθ)−HC(ςθ)Hc,

Wi = K(ςθ−i+1)−HN (2)(ςk−i+1)(Im ⊗ Wi−1), 2 ≤ i ≤ θ,

span(W ) ⊇ span
([

W1 . . . Wθ

])
,

where N (2) is the 2-mode matricization of the tensor defined by N (1) = N , then
the following interpolation conditions hold true:

cHGB,1(ςθ) = cHĜB,1(ςθ),
cHGB,2(ςθ−1, ςθ) = cHĜB,2(ςθ−1, ςθ),

...
cHGB,θ(ς1, . . . , ςθ) = cHĜB,θ(ς1, . . . , ςθ).

(c) Let V be constructed as in Part (a) and W as in Part (b), then, additionally to
the results in (a) and (b), the following conditions hold:

cHGB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ)(Imq+η−1 ⊗ b)
= cHĜB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ)(Imq+η−1 ⊗ b),

for 1 ≤ q ≤ k and 1 ≤ η ≤ θ. ♢
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Corollary 5.22 (Bilinear blockwise tangential Hermite interpolation):
Let GB be a bilinear system, described by its subsystem transfer functions in (5.3),
and ĜB the reduced-order bilinear system constructed by (5.4), with the corresponding
subsystem transfer functions ĜB,k. Given sets of interpolation points σ1, . . . , σk ∈ C
and ς1, . . . , ςθ ∈ C, for which the matrix functions C, K−1, N , B and K̂−1 are complex
differentiable, orders of partial derivatives ℓ1, . . . , ℓk ∈ N0 and ν1, . . . , νθ ∈ N0, and two
tangential directions b ∈ Cm and c ∈ Cp, the following statements hold:

(a) If V is constructed as

V1,j1 = ∂sj1

(
K−1B

)
(σ1)b, j1 = 0, . . . , ℓ1,

V2,j2 = ∂sj2 K−1(σ2)∂sℓ1

(
N (Im ⊗ K−1B)

)
(σ1)(Im ⊗ b), j2 = 0, . . . , ℓ2,

...

Vk,jk
= ∂sjk K−1(σk)

k−2∏
j=1

∂
s

ℓk−j

(
(Imj−1 ⊗ N )(Imj ⊗ K)

)
(σk−j)


× ∂sℓ1

(
(Imk−2 ⊗ N )(Imk−1 ⊗ KB)

)
(σ1)(Imk−1 ⊗ b), jk = 0, . . . , ℓk,

span(V ) ⊇ span
([

V1,0 . . . Vk,ℓk

])
,

then the following interpolation conditions hold true:

∂
s

j1
1

GB,1(σ1)b = ∂
s

j1
1

ĜB,1(σ1)b, j1 = 0, . . . , ℓ1,

...
∂

s
ℓ1
1 ···sℓk−1

k−1 s
jk
k

GB,k(σ1, . . . , σk)(Imk−1 ⊗ b)

= ∂
s

ℓ1
1 ···sℓk−1

k−1 s
jk
k

ĜB,k(σ1, . . . , σk)(Imk−1 ⊗ b), jk = 0, . . . , ℓk.

(b) If W is constructed as

W1,iθ
= ∂siθ

(
K−HCH

)
(ςθ)c, iθ = 0, . . . , νθ,

W2,iθ−1 = ∂siθ−1

(
K−HN (2)

)
(ςθ−1)(Im ⊗ W1,νθ

), iθ−1 = 0, . . . , νθ−1,

...

Wθ,i1 = ∂si1

(
K−HN (2)

)
(ς1)(Im ⊗ Wθ−1,ν2), i1 = 0, . . . , ν1,

span(W ) ⊇ span
([

W1,0 . . . Wθ,νθ

])
,
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where N (2) is the 2-mode matricization of the tensor defined by N (1) = N , then
the following interpolation conditions hold true:

cH∂
s

iθ
1

GB,1(ςθ) = cH∂
s

iθ
1

ĜB,1(ςθ), iθ = 0, . . . , νθ,

...
cH∂

s
i1
1 s

ν2
2 ···sνθ

θ
GB,θ(ς1, . . . , ςθ) = cH∂

s
i1
1 s

ν2
2 ···sνθ

θ
ĜB,θ(ς1, . . . , ςθ), i1 = 0, . . . , ν1.

(c) Let V be constructed as in Part (a) and W as in Part (b), then, additionally to
the interpolation conditions in (a) and (b), the following conditions hold:

cH∂
s

ℓ1
1 ···sℓq−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

GB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ)(Imq+η−1 ⊗ b)

= cH∂
s

ℓ1
1 ···sℓq−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

ĜB,q+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ)(Imq+η−1 ⊗ b),

for jq = 0, . . . , ℓq; iθ−η+1 = 0, . . . , νθ−η+1; 1 ≤ q ≤ k and 1 ≤ η ≤ θ. ♢

Corollary 5.23 (Implicit bilinear blockwise tangential interpolation):
Let GB be a bilinear system, described by its subsystem transfer functions in (5.3), and ĜB
the reduced-order bilinear system constructed by (5.4), with the corresponding subsystem
transfer functions ĜB,k. Given a set of interpolation points σ1, . . . , σk ∈ C, for which the
matrix functions C, K−1, N , B and K̂−1 are complex differentiable, and two tangential
directions b ∈ Cm and c ∈ Cp, the following statements hold:

(a) Let V and W be constructed as in Corollary 5.21 Parts (a) and (b) for a matching
sequence of interpolation points σ1 = ς1, . . . , σk = ςk, then additionally it holds

∇
(
cHGB,k(Imk−1 ⊗ b)

)
(σ1, . . . , σk) = ∇

(
cHĜB,k(Imk−1 ⊗ b)

)
(σ1, . . . , σk).

(b) Let V and W be constructed as in Corollary 5.22 Parts (a) and (b) for a matching
sequence of interpolation points σ1 = ς1, . . . , σk = ςk and matching orders of partial
derivatives ℓ1 = ν1, . . . , ℓk = νk, then additionally it holds

∇
(

cH∂
s

ℓ1
1 ···sℓk

k

GB,k(Imk−1 ⊗ b)
)

(σ1, . . . , σk)

= ∇
(

cH∂
s

ℓ1
1 ···sℓk

k

ĜB,k(Imk−1 ⊗ b)
)

(σ1, . . . , σk). ♢

An important point in the motivation of tangential interpolation was the vast growth
of the projection space dimensions in case of matrix interpolation. Now with the different
ideas of tangential interpolation for bilinear systems, the question of the resulting
projection space dimensions, and consequently the sizes of the constructed reduced-order
models, arises again. The following remark gives an overview about the dimensions
arising in the different presented approaches for structured interpolation of the k-th
subsystem transfer function.
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Remark 5.24 (Dimensions of projection spaces):
In practice, the subsystem transfer functions are not only interpolated in a single set of
interpolation points, but in multiple sets. Therefore, let ns ∈ N be the number of sets
of interpolation points and tangential directions to be used for interpolation. For the
matrix interpolation approach from Theorem 5.9, the dimensions are given by

dim
(

span(Vmtx)
)

≤ ns

 k∑
j=1

mk

 and dim
(

span(Wmtx)
)

≤ ns

 k∑
j=1

pmk−1

 ,

(5.69)

for the right and left projection spaces, respectively. The blockwise tangential approach
from Corollary 5.21 reduces these dimensions to

dim
(

span(Vbwt)
)

= dim
(

span(Wbwt)
)

≤ ns

 k∑
j=1

mk−1

 . (5.70)

Comparing (5.69) and (5.70) reveals the difference in the resulting dimensions using
matrix or blockwise tangential interpolation to be the reduction by the factor m (or p in
case of the left projection space). Still, the blockwise tangential interpolation leads to
an exponential growth of the projection space dimension with respect to the subsystem
transfer function level. In contrast, the new generalized tangential interpolation approach
as in Theorem 5.18 reduces the dimensions significantly to

dim
(

span(Vst)
)

= dim
(

span(Wst)
)

≤ nsk.

These dimensions only grow linearly with the transfer function level k. Therefore, the
tangential interpolation from Section 5.6.3 gives the most freedom in terms of choosing
the reduced order as well as interpolation points and tangential directions. Also note
that the new approach has an additional tuning opportunity with the scaling vectors,
which enables the recovery of blockwise tangential interpolation conditions or even matrix
interpolation if required. ♢

5.6.5 Numerical experiments
To test the obtained theoretical results in computations, the different structured tangential
interpolation approaches are compared to the matrix interpolation from Section 5.4 in
two numerical examples. The following interpolation methods will be compared:

MtxInt is the matrix interpolation approach from Section 5.4,

BwtInt denotes blockwise tangential interpolation from Section 5.6.4,
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SftInt is tangential interpolation with the generalized framework from Section 5.6.3,
choosing the scaling vectors as in the frequency domain motivation to be the all
ones vector (Corollary 5.17 Part (a)),

SttInt is tangential interpolation with the generalized framework from Section 5.6.3,
choosing the scaling vectors as in the time domain motivation to be identical to
the right tangential directions (Corollary 5.17 Part (b)).

The same interpolation point selections (equi./H∞/IRKA) and the averaged subspace
approach (avg.) are used as in Section 5.3.3, where the tangential directions are either
vectors with uniformly randomly generated entries from [0, 1] or the H2-optimal tangential
directions computed by the TF-IRKA approach in case of (IRKA). As in previous
numerical experiments, the MORscore will be used for a general comparison. This is
followed by a more detailed comparison of some selected methods for a chosen reduced
order via pointwise relative errors. The same error measures as in Section 5.3.3 are used
here. The different interpolation methods have also different restrictions concerning the
computable reduced orders as mentioned in Remark 5.24, i.e., if a reduced-order model
cannot be computed for a particular order the next smaller one is used instead. Note that
the following experiments are intended to compare the general interpolation approaches
rather than the selection strategies for interpolation points and tangential directions.
Also, only the structured interpolation methods are used in the comparison due to the
general lack of structure-preserving model reduction methods for bilinear systems and
the results from Section 5.3.3 for unstructured alternatives.

5.6.5.1 MIMO bilineaer mass-spring-damper system

As first example, the bilinear mass-spring-damper system from previous experiments
is reconsidered. In fact, the MIMO system from Section 5.5.4.1 is chosen with both
parameters fixed to 1. As a reminder, this bilinear mechanical system takes the form

Mẍ(t) + Eẋ(t) + Kx(t) = Np,1x(t)u1(t) + Np,2x(t)u2(t) + Buu(t),
y(t) = Cpx(t),

with n2 = 10 000 states, m = 2 inputs and p = 2 outputs. For model order reduction,
only a one-sided projection is used with W = V to preserve beside the internal system
structure also symmetry and definiteness of the system matrices. Therefore, in the
interpolation methods with (equi./H∞/IRKA) points, only the right projection space
span(V ) is constructed. For the averaged subspaces, an oversampling via the different
interpolation approaches is used to compute the left and right interpolatory projection
spaces. An one-sided projection of appropriate size is constructed by bases concatenation
and truncation using the pivoted QR decomposition.

The resulting MORscores for reduced orders from 1 to 48 are shown in Table 5.5.
For the time domain simulations in the interval [0, 100] s, the same Gaussian white
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Table 5.5: MORscores for the MIMO bilinear mass-spring-damper example with reduction
orders from 1 to 48.

Method H(1)
∞ H(2)

∞ L2 L∞

MtxInt(equi.) 0.2025 0.1549 0.2380 0.2478
MtxInt(H∞) 0.1752 0.1389 0.1770 0.1917
MtxInt(IRKA) 0.2034 0.1566 0.2137 0.2256
MtxInt(avg.) 0.3139 0.2634 0.2972 0.3113

BwtInt(equi.) 0.2113 0.1632 0.2585 0.2681
BwtInt(H∞) 0.2015 0.1654 0.1839 0.1929
BwtInt(IRKA) 0.2320 0.1841 0.2218 0.2334
BwtInt(avg.) 0.2845 0.2467 0.2585 0.2718

SftInt(equi.) 0.2169 0.1659 0.2696 0.2767
SftInt(H∞) 0.2111 0.1708 0.1814 0.1938
SftInt(IRKA) 0.2423 0.1924 0.2376 0.2486
SftInt(avg.) 0.2975 0.2616 0.2600 0.2723

SttInt(equi.) 0.2188 0.1675 0.2751 0.2828
SttInt(H∞) 0.2111 0.1709 0.1848 0.1973
SttInt(IRKA) 0.2401 0.1903 0.2365 0.2467
SttInt(avg.) 0.3010 0.2583 0.2573 0.2693

noise-based input signal as in (5.44) is used. The general tendency of the MORscores
revelas the tangential interpolation methods in the generalized framework, SftInt and
SttInt, to work best for the different choices of interpolation points. Therefore, the new
tangential framework seems to be a suitable alternative to matrix interpolation for the
purpose of model reduction, which allows for a more accurate choice of the reduced order
(Remark 5.24). However, this observation does not hold for the averaged subspaces, where
MtxInt(avg.) performs best followed by SttInt(avg.) and SftInt(avg.). This behavior
can be explained by the used oversampling procedure in which the matrix interpolation
provided more useful information for the model reduction process than the tangential
interpolations, which only consider the transfer function evaluations in certain directions.
Still, the MORscores are more than close enough to each other to suggest the tangential
interpolation-based averaging as suitable model reduction method, especially in cases
with more inputs and outputs when the matrix interpolation easily leads to uncomputable
large intermediate matrices and projection spaces. The performance of the blockwise
tangential interpolation lies more or less in between the matrix and the new tangential
interpolation methods.
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Figure 5.10: First subsystem transfer functions and approximation errors for the MIMO
bilinear mass-spring-damper example.

For a more detailed comparison, the reduced order r2 = 24 is chosen such that all
approaches can be used to compute a reduced-order model of exactly that order. For
clarity, only the methods with IRKA interpolation points are selected in the comparison.
The frequency domain results for the linear transfer functions are shown in Figure 5.10.
The tangential approaches have a very similar error behavior, with the blockwise tangential
interpolation having a slightly larger relative error in the middle of the frequency range.
MtxInt starts in a similar order of magnitude with its relative error for low frequencies and
overshoots the relative approximation error of the tangential techniques after 10−1 rad/s
before it converges to the smallest relative error of all approaches for higher frequencies.
Similar observations can be done for the second subsystem transfer functions in Figure 5.11.
MtxInt shows a comparably small error for low frequencies and a lot smaller error in
regions where only one of the transfer function arguments has high frequencies. In
comparison, the tangential methods provide mainly larger relative errors with a more
uniform error behavior.

Last, the time simulations of the full and reduced-order models are shown in Figure 5.12.
The upper plot contains for clarity only the second output signal, while the pointwise
relative errors are computed for the complete output vector and shown in the lower plot.
MtxInt(IRKA) starts here with a relative error two orders of magnitude better than
the tangential approaches, which increases to the same relative error level as the other
methods at the end of the time interval. The tangential methods behave again very
similar to each other, where SftInt(IRKA) and SttInt(IRKA) look exactly alike.
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(b) BwtInt(IRKA).
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(c) SftInt(IRKA).
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(d) SttInt(IRKA).
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Figure 5.11: Relative approximation errors ϵrel(ω1, ω2) of the second subsystem transfer
functions for the MIMO bilinear mass-spring-damper example.

5.6.5.2 MIMO time-delayed heated rod

As second numerical example, the time-delayed heated rod from Section 5.3.3.2 is
revisited. The system is extended to the MIMO case by modeling the control signal
and measurements to act independently on equally sized sections of the rod. For the
experiments, the rod is separated into three sections such that m = p = 3 holds. As
in Section 5.3.3.2, the number of differential equations is set to be n1 = 5 000. For the
model reduction, two-sided projections are computed for all interpolation approaches
and the averaged subspaces.

Reduced-order models have been constructed for orders 1 to 48 and the resulting
MORscores are shown in Table 5.6. For the time simulation, the interval [0, 10] s was
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(a) Second output entry y2(t) of the time simulation.
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Figure 5.12: Time domain results for the MIMO bilinear mass-spring-damper example.

chosen with the following input signal

u(t) = 0.05 ·

η1(tj)
η2(tj)
η3(tj)

 , for tj ≤ t < tj+1,

with j = 0, . . . , 9, equidistant time steps tj = j · 10
9 , and presampled Gaussian white

noise η1(t), η2(t), η3(t). As in the previous example, the MORscores reveal the tangential
interpolation methods with (equi./H∞/IRKA) to perform vastly better than the matrix
interpolation, with a small exception for the averaged subspaces. The larger differences
in the MORscores mainly result from the larger number of input and outputs of the
system and the corresponding dimensions of the projection spaces, as mentioned in
Remark 5.24. In consequence, only a few reduced-order models could be computed
for MtxInt and BwtInt. Comparing the tangential interpolation methods, the results
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Table 5.6: MORscores for the MIMO time-delay example with reduced orders from 1 to
48.

Method H(1)
∞ H(2)

∞ L2 L∞

MtxInt(equi.) 0.2694 0.2753 0.3547 0.3286
MtxInt(H∞) 0.2728 0.2692 0.3356 0.3154
MtxInt(IRKA) 0.2592 0.2776 0.3908 0.3811
MtxInt(avg.) 0.4044 0.3907 0.4510 0.4415

BwtInt(equi.) 0.2819 0.2871 0.4009 0.3988
BwtInt(H∞) 0.3260 0.3305 0.3985 0.3867
BwtInt(IRKA) 0.2925 0.2981 0.4070 0.4013
BwtInt(avg.) 0.3540 0.3576 0.4514 0.4417

SftInt(equi.) 0.3012 0.3009 0.4018 0.4042
SftInt(H∞) 0.3515 0.3395 0.3702 0.3724
SftInt(IRKA) 0.3281 0.3335 0.4274 0.4302
SftInt(avg.) 0.4230 0.3825 0.3849 0.3929

SttInt(equi.) 0.3010 0.3023 0.3982 0.3882
SttInt(H∞) 0.3395 0.3397 0.3966 0.3829
SttInt(IRKA) 0.3077 0.3114 0.4230 0.4186
SttInt(avg.) 0.3938 0.3650 0.4447 0.4386

are very mixed. For example, the blockwise tangential approach performs worse than
the generalized tangential framework in frequency domain but has again a comparable
or better MORscore in time domain. Looking at the averaged subspace methods,
the tangential interpolation-based approaches are better or comparable to the matrix
interpolation results, e.g., SftInt(avg.) is better than MtxInt(avg.) in the H(1)

∞ measure
and BwtInt(avg.) is better than MtxInt(avg.) in the L2 error.

As reduced order for the detailed comparison, n1 = 24 is chosen such that with all
methods a reduced-order model of the appropriate size could be obtained. For the
interpolation points, the TF-IRKA selection is used. Figures 5.13 and 5.14 show the
results with pointwise relative errors in frequency domain for the first two subsystem
transfer functions. Both figures show basically the same error behavior for the methods in
frequency domain, with SttInt(IRKA) having the largest relative error for low frequencies
followed by MtxInt(IRKA). Also, SftInt(IRKA) and BwtInt(IRKA) perform equally well,
with SftInt(IRKA) having an overall slightly smaller error and BwtInt(IRKA) with a
smoother error behavior.

The time domain results can be seen in Figure 5.15, with only the second output entry
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Figure 5.13: First subsystem transfer functions and approximation errors for the MIMO
time-delay example.

in the upper plot for clarity and the pointwise relative errors of the full output vector
in the lower one. Here, BwtInt(IRKA) shows the best apprxoimation behavior of all
methods in terms of the error magnitude. Both, SttInt(IRKA) and MtxInt(IRKA) are
comparable but with a less accurate approximation close to zero crossings resulting in a
spiky intermediate behavior. On the other hand, SftInt(IRKA) provides a very smooth
and constant relative error with only small disturbances in the zero crossings.

5.7 Conclusions
This chapter was concerned with the problem of structure-preserving model order reduc-
tion for bilinear control systems. Motivated by the structures arising from mechanical and
time-delay systems, an extension of the structured transfer functions from [24] to bilinear
systems was proposed. This uses matrix-valued functions to allow even more general
structures than those used here for motivation and illustration. A new interpolation
theory was developed for structured bilinear subsystem transfer functions to construct
structure-preserving reduced-order models by projection that satisfy different types of
interpolation conditions. A numerical comparison of the new structured interpolation
framework with established model reduction methods producing unstructured systems
revealed the new approach to be far more effective. While the general question of good
or even optimal interpolation point selection is postponed to future work, the chosen
selection strategies inspired by the linear system case performed very well. This theory
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(c) SftInt(IRKA).
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Figure 5.14: Relative approximation errors ϵrel(ω1, ω2) of the second subsystem transfer
functions for the MIMO time-delay example.

got then extended to the case of parametric bilinear systems including results on implicit
interpolation of parameter sensitivities. Two quick numerical examples showed the good
approximation quality for the structured parametric approach, where further comparisons
were omitted due to the results of the previous experiments for SISO systems.

A new unifying framework for tangential interpolation of structured bilinear systems
was proposed. The new framework was motivated in time and frequency domains
but proven in a far more general setting that gives a lot of freedom for realizations
of model reduction methods. It was also used to generate structured results for the
blockwise tangential interpolation method, known in the literature for unstructured
bilinear systems [31,160]. All different tangential interpolation approaches were tested
and compared in numerical experiments to the structured matrix interpolation method.
As result, the new tangential interpolation framework turned out to be an efficient
alternative approach especially in the cases when matrix interpolation would result in
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Figure 5.15: Time domain results for the MIMO time-delay example.

very large reduced-order models due to a large number of system inputs and outputs.
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STRUCTURED NONLINEAR SYSTEMS
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6.1 Introduction
After studying the cases of mechanical linear and structured bilinear control systems, at
last, the general case of structured nonlinear systems is considered. A particular and the
most relevant case for this thesis is nonlinear control-affine mechanical systems of the
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form

Mẍ(t) + f(x(t), ẋ(t)) = Buu(t),
y(t) = Cpx(t) + Cvẋ(t),

(6.1)

with the nonlinear description of the state evolution f : Rn2 × Rn2 → Rn2 . The moti-
vational example of the Toda lattice model from Section 1.3.3 belongs to this system
class. Model reduction methods for the general nonlinear mechanical system (6.1) or
the classical unstructured nonlinear system case often involve time simulations to gain
information about the underlying system dynamics. This is done for example in proper
orthogonal decomposition (POD); see e.g., [71,114,128,165,186]; or in the empirical Gra-
mian framework; see, e.g., [110, 112,131,133]. A certain problem is the treatment of the
nonlinearity f in (6.1) as it acts only on the full system state. This becomes costly when
working with a reduced-order approximation of the state x ≈ V x̂ since in each step, the
original state x needs to be recovered to evaluate f(x, ẋ) ≈ f(V x̂, V ˙̂x). Therefore, also
the nonlinear state evolution needs to be approximated, which leads to the use of hyper-
reduction methods to reduce the computational costs of evaluating the nonlinear function
f , for example, by the (discrete) empirical interpolation method ((D)EIM) [20,71,77].
Overall, the resulting model reduction processes come with several disadvantages such as
the dependence on time simulations, involving the choice of input signals, integrators and
corresponding parameters, and the additional layer of approximation introduced by the
hyper-reduction step, which especially needs a certain influence on the implementation
of the nonlinearity.

A different way of handling (6.1) in model order reduction, which avoids simulations
and the hyper-reduction, amounts from the reformulation of the general nonlinearities
in the system. For smooth enough f , nonlinear systems like (6.1) can be rewritten into
quadratic-bilinear systems (Section 2.3.2) to give the nonlinear term an easier manageable
structure for the model reduction process. In the sense of mechanical systems, (6.1)
would be rewritten into

0 = Mẍ(t) + Eẋ(t) + Kx(t)
+ Hvv

(
ẋ(t) ⊗ ẋ(t)

)
+ Hvp

(
ẋ(t) ⊗ x(t)

)
+ Hpv

(
x(t) ⊗ ẋ(t)

)
+ Hpp

(
x(t) ⊗ x(t)

)
−

m∑
j=1

Np,jx(t)u(t) −
m∑

j=1
Nv,jẋ(t)u(t) − Buu(t),

y(t) = Cpx(t) + Cvẋ(t),

(6.2)

with M, E, K ∈ Rn2×n2 , Bu ∈ Rn2×m and Cp, Cv ∈ Rp×n2 , the bilinear terms Np,j, Nv,j ∈
Rn2×n2 , for j = 1, . . . , m, and the quadratic terms Hvv, Hvp, Hpv, Hpp ∈ Rn2×n2

2 . The
class of (unstructured) first-order quadratic-bilinear systems (2.35) has recently received
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a lot of attention in model order reduction as suitable alternative to general nonlinear
systems. Methods developed for the reduction of (2.35) are, for example, subsystem
transfer function interpolation [1,3, 4,13,30,101], an IRKA-like method for H2-(quasi)-
optimal reduced-order models [40], balanced truncation [36,38], or a Loewner approach to
generate (2.35) from frequency domain data [92]. However, these methods are restricted
to systems of the form (2.35) and do not consider any internal structures arising from
physical phenomena. While mechanical quadratic-bilinear systems of the form (6.2) could
be rewritten in first-order form (2.35), this would lead to unstructured reduced-order
models without physical interpretation. These have already been shown to yield several
disadvantages in the bilinear system case; see Section 5.3.3. Also, other structures such as
internal time delays could occur, which cannot be rewritten into unstructured first-order
form and prevents the use of the intrusive model reduction methods from above. In
this case, it would be still possible to generate (2.35) using the Loewner framework [92].
But as demonstrated in the numerical experiments for the bilinear system case, see
Section 5.3.3.2, to omit the internal structure easily yields unsatisfactory results.

This chapter is concerned with the problem of structure-preserving model reduction for
nonlinear systems via interpolation of structured quadratic-bilinear systems. It begins
with the process of rewriting structured nonlinear systems into quadratic-bilinear ones, in
Section 6.2, using the example of the Toda lattice model from Section 1.3.3 for illustration.
Afterwards, the different concepts of subsystem transfer functions for quadratic-bilinear
systems are extended to the structured MIMO system case in Section 6.3. In Section 6.4,
interpolation theory for these different structured transfer functions of quadratic-bilinear
systems is developed. Finally, the theoretic results are tested in numerical experiments
in Section 6.5.

6.2 Quadratic-bilinearization of nonlinear systems
Roughly speaking, every nonlinear system like (6.1) with smooth enough nonlinearities
can be re-written into a quadratic-bilinear system like (6.2). This re-modeling procedure
is known as quadratic-bilinearization [63, 95,101]. It can be summarized into three basic
steps:

1. Introduce appropriate replacement variables for the nonlinear terms.

2. Replace the nonlinear terms in the differential equations by the new variables.

3. Derive differential equations or algebraic constraints to describe the new replacement
variables.

Quadratic-bilinearization has the big advantage of transforming difficult nonlinear terms
into easier manageable quadratic form allowing the application of model reduction
methods and often eases the general use of nonlinear systems, e.g., in time-domain
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simulations. On the other hand, it comes with the cost of increasing the number of state
variables and differential(-algebraic) equations in the system, as well as dealing with a
quadratic tensor as new nonlinearity. The quadratic-bilinearization approach has also
been known in the literature for quite some time as McCormick relaxation [141]. Since
it is counterintuitive to increase the order of the system in contrast to the process of
model order reduction that aims for the reduction of the order, it is not surprising that
this approach was only recently re-considered [63, 95, 101]. However, this process can
quickly payoff as it allows the application of sophisticated model reduction techniques
for the quadratic-bilinear formulations. It should be mentioned that the quadratic-
bilinearization of a nonlinear system is neither unique, i.e., there might be different
choices of the replacement variables leading to different systems, nor automatable so far.

The following two subsections re-consider the initial example of the nonlinear Toda
lattice model from Section 1.3.3 for quadratic-bilinearization. Two versions of the model
are constructed, first, with quadratic-bilinear differential-algebraic equations (QBDAEs)
and, thereafter, with quadratic-bilinear ordinary differential equations (QBODEs).

6.2.1 Toda lattice model as QBDAE system
The first step of quadratic-bilinearization is the definition of appropriate new variables
for the nonlinear terms in (1.4). These are of a repetitive shape involving exponential
functions. Therefore, consider the following substitution to linearize the equations in (1.4)
by

zj(t) :=
ekj(xj(t)−xj+1(t)) − 1, if j < n2,

eknxn2 (t) − 1, if j = n2,
(6.3)

for j = 1, . . . , n2. This specific choice of substitution is not the first intuitive thing
to do since additionally to the nonlinear terms, also the subtraction of 1 is present.
The important advantage of using (6.3) becomes clear when thinking about the initial
conditions of the system. When inserting the original initial state x(0) = 0 into (6.3),
one can observe that also z(0) = 0 holds, i.e., additional problems arising from non-
zero initial conditions in the later model reduction process are avoided. Inserting the
substitution (6.3) into (1.4) yields a new system of differential equations of the form

m1ẍ1(t) + γ1ẋ1(t) + z1(t) = g1(t),
mjẍj(t) + γjẋj(t) + zj(t) − zj−1(t) = gj(t), for 1 < j ≤ n2.

(6.4)

The new equations in (6.4) are linear in the state variables. As the last step, n2 further
equations are needed to describe the evolution of the introduced replacement variables
zj . Therefore, the definitions of zj in (6.3) need to be differentiated with respect to time.
This allows rewriting (6.3) in terms of the existing state variables xj and zj. The time
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derivative of (6.3) yields

żj(t) =


kj

(
ẋj(t) − ẋj+1(t)

)(
zj(t) + 1

)
, if j < n2,

knẋn2(t)
(
zn2(t) + 1

)
, if j = n2,

(6.5)

for j = 1, . . . , n2. Combining (6.4) and (6.5) results in a system of QBDAEs of the form

M̃ ¨̃x(t) + Ẽ ˙̃x(t) + K̃x̃(t) + H̃pv
(
x̃(t) ⊗ ˙̃x(t)

)
= g̃(t),

y(t) = C̃v ˙̃x(t),
(6.6)

with the concatenated state x̃(t)T =
[
x(t)T z(t)T

]
and initial conditions x̃(0) = ˙̃x(0) = 0.

The system matrices of (6.6) are given by

M̃ =
[
M 0
0 0

]
, Ẽ =

[
E 0

E21 In2

]
, K̃ =

[
0 K12
0 0

]
, H̃pv =

[
0 0
0 H(2,2)

pv

]

g̃(t) =
[
g(t)

0

]
, C̃v =

[
Cv 0

]
.

Therein, the single matrix blocks are the original system quantities M , E, g, Cv from (1.4)
and (1.5), and new matrices resulting from the quadratic-bilinearization, with

E21 =


−k1 k1

. . . . . .
−kn−1 kn−1

−kn

 , K12 =


1

−1 1
. . . . . .

−1 1

 ,

and the quadratic term such that

H(2,2)
pv

(
z(t) ⊗

[
ẋ(t)
ż(t)

])
=


−k1z1(t)ẋ1(t) + k1z1(t)ẋ2(t)

...
−kn2−1zn2−1(t)ẋn2−1(t) + kn2−1zn2−1(t)ẋn2(t)

−kn2zn2(t)ẋn2(t)

 .

6.2.2 Toda lattice model as QBODE system
The QBDAE system (6.6) has its advantages in the reasonably easy block structure of
the system matrices and with only a single out of four possible quadratic terms. However,
it comes with usual difficulties arising from DAEs that need to be handled, for example,
in time simulations. But the process of quadratic-bilinearization can be continued to
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transform (6.6) into a system of QBODEs. Therefore, consider the second-order time
derivatives of the substitution variables (6.3) such that

z̈j(t) =


kj

(
ẍj(t) − ẍj+1(t)

)(
zj(t) + 1

)
+ kj

(
ẋj(t) − ẋj+1(t)

)
żj(t), if j < n2,

kn2ẍn2(t)
(
zn2(t) + 1

)
+ kn2ẋn2(t)żn2(t), if j = n2.

(6.7)

Rearranging (6.4) in terms of ẍj and inserting into (6.7) yields the following QBODE
system

0 = M̃ ¨̃x(t) + Ẽ ˙̃x(t) + K̃x̃(t) − g̃(t) − Ñp
(
g̃(t)

)
x̃(t)

+ H̃pp
(
x̃(t) ⊗ x̃(t)

)
+ H̃pv

(
x̃(t) ⊗ ˙̃x(t)

)
+ H̃vv

(
˙̃x(t) ⊗ ˙̃x(t)

)
,

y(t) = C̃v ˙̃x(t),

(6.8)

with the concatenated state x̃(t)T =
[
x(t)T z(t)T

]
and initial conditions x̃(0) = ˙̃x(0) = 0.

The system matrices of (6.8) are given by

M̃ =
[
M 0
0 M22

]
, Ẽ =

[
E 0

E21 0

]
, K̃ =

[
0 K12
0 K22

]
, C̃v =

[
Cv 0

]
,

H̃pp =
[
0 0
0 H(2,2)

pp

]
, H̃pv =

[
0 0
0 H(2,2)

pv

]
, H̃vv =

[
0 0
0 H(2,2)

vv

]
,

with the original quantities M , E, Cv from (1.4), and additionally

M22 =


m1m2

k1 . . .
mn2−1mn2

kn2−1
mn2
kn2

 ,

E21 =


m2γ1 −m1γ2

. . . . . .
mn2γn2−1 −mn2−1γn2

γn2

 ,

K12 =


1

−1 1
. . . . . .

−1 1

 ,

K22 =



m1 + m2 −m1
−m3 m2 + m3 −m2

. . . . . . . . .
−mn2 mn2−1 + mn2 −mn2−1

−1 1

 .
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6.2 Quadratic-bilinearization of nonlinear systems

The quadratic terms are given by

H(2,2)
pp

(
z(t) ⊗

[
x(t)
z(t)

])
=


(m1 + m2)z1(t)2 − m1z1(t)z2(t)

−m3z2(t)z1(t) + (m2 + m3)z2(t)2 − m2z2(t)z3(t)
...

−mn2zn2−1(t)zn2−2(t) + (mn2−1 + mn2)zn2(t)2 − mn2−1zn2−1(t)zn2(t)
−zn2(t)zn2−1(t) + zn2(t)2

 ,

H(2,2)
pv

(
z(t) ⊗

[
ẋ(t)
ż(t)

])
=


m2γ1z1(t)ẋ1(t) − m1γ2z1(t)ẋ2(t)

...
mn2γn2−1zn2−1(t)ẋn2−1(t) − mn2−1γnzn2−1(t)ẋn2(t)

γn2zn2(t)ẋn2(t)

 ,

H(2,2)
vv

(
ż(t) ⊗

[
ẋ(t)
ż(t)

])
=


−m1m2ż1(t)ẋ1(t) + m1m2ż1(t)ẋ2(t)

...
−mn2−1mn2 żn2−1(t)ẋn2−1(t) + mn2−1mn2 żn2−1(t)ẋn2(t)

−mn2 żn2(t)ẋn2(t)

 .

The two terms left to explain involve the right-hand side g(t) and need adjustments
according to the final representation of the external forcing with the input signal u(t).
In general, the new right-hand side and the bilinear term are given by

g̃(t) =



g(t)
m2g1(t) − m1g2(t)

...
mn2gn2−1(t) − mn2−1gn2(t)

gn2(t)

 , and

Ñp(g̃(t))x̃(t) =



0
...
0(

m2g1(t) − m1g2(t)
)
z1(t)

...(
mn2gn2−1(t) − mn2−1gn2(t)

)
zn2−1(t)

gn2(t)zn2


.

Replacing now the right-hand side by the product of a matrix with an input signal such
that g(t) = Buu(t), the system (6.8) can be formulated in the mechanical quadratic-
bilinear form (6.2). Let bi,j be the (i, j)-th entry of the matrix Bu ∈ Rn2×m and let bi,∗
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denote the i-th row of Bu. Then, the new right-hand side can be written as

g̃(t) = B̃uu(t) =



Bu
m2b1,∗ − m1b2,∗

...
mn2bn2−1,∗ − mn2−1bn2,∗

bn2,∗

u(t),

and the bilinear component becomes Ñp
(
g̃(t)

)
x̃(t) = ∑m

j=1 Ñp,jx̃(t)uj(t), with

Ñp,j =



0 0

0

m2b1,j − m1b2,j

. . .
mnbn2−1,j − mn2−1bn2,j

bn2,j

 ,

where 0 abbreviates here the zero matrix of dimensions n2 × n2.
It can easily be seen that the QBODE system (6.8) is a lot more complex than the

QBDAE version (6.6) due to the additional quadratic and bilinear terms involved in the
formulation. This cost needs to be paid for removing the differential-algebraic constraints
from the QBDAE system. In practice, it is important to outweigh the advantages and
disadvantages of the different possible formulations.

6.3 Towards structured quadratic-bilinear systems
As in cases of linear and bilinear systems, for structure-preserving model reduction via
interpolation, some concept of structured transfer functions is needed first. In case of
quadratic-bilinear systems, different types of transfer functions are used in the literature
to represent the systems in the frequency domain; see Section 2.3.2. These types will
be extended in this section to the structured setting. Therefore, the initial example of
mechanical quadratic-bilinear systems (6.2) will serve as ongoing motivation. Similar
to Section 5.2.3, a first-order realization of (6.2) will be used in the known transfer
function formulations to develop the structured representations. Using the augmented
state vector x(t)T =

[
x(t)T ẋ(t)T

]
, the second-order system (6.2) can be rewritten in

first-order form (2.35) by using the following block matrices

E =
[
In2 0
0 M

]
, A =

[
0 In2

−K −E

]
, B =

[
0

Bu

]
,

C =
[
Cp Cv

]
, Nj =

[
0 0

Np,j Nv,j

]
,

(6.9)

188



6.3 Towards structured quadratic-bilinear systems

for j = 1, . . . , m, and the quadratic term

H = −
[

0 0 . . . 0 0 0 0 . . . 0 0
Hpp,1 Hpv,1 . . . Hpp,n2 Hpv,n2 Hvp,1 Hvv,1 . . . Hvp,n2 Hvv,n2

]
. (6.10)

For (6.10), the matrices of the quadratic terms in (6.2) are sliced into n2 × n2 pieces such
that, for example,

Hpp =
[
Hpp,1 Hpp,2 . . . Hpp,n2

]

is used, with Hpp,j ∈ Rn2×n2 for all j = 1, . . . , n2. The complicated expression in (6.10)
mixes the sliced matrices to fit with the Kronecker product of the augmented state vector
from the first-order system case. This can be simplified using an appropriate permutation
of the quadratic term as well as of the Kronecker product with the states. In fact, one
can easily show that

H
(
x(t) ⊗ x(t)

)
= −

[
0 0 0 0

Hpp Hpv Hvp Hvv

] 
x(t) ⊗ x(t)
x(t) ⊗ ẋ(t)
ẋ(t) ⊗ x(t)
ẋ(t) ⊗ ẋ(t)

 (6.11)

holds. Also, the bilinear terms of the second-order system (6.2) are concatenated concisely
such that

Np :=
[
Np,1 . . . Np,m

]
and Nv :=

[
Nv,1 . . . Nv,m

]
.

Inserting the matrices from (6.9) and (6.10) into the different transfer functions concepts
from Section 2.3.2 allows deriving subsystem transfer function formulations for (6.2).
This will motivate a more general formulation of structured transfer functions for qua-
dratic-bilinear systems similar to those in Chapter 5 for structured bilinear systems.

6.3.1 Structured symmetric subsystem transfer functions

For first-order quadratic-bilinear systems, the symmetric transfer functions are given
by the formulae (2.38) and (2.39). The special block structure of the system matrices
in (6.9) can now be used to develop symmetric transfer functions for second-order
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quadratic-bilinear systems (6.2). For the linear case with k = 1,

SQ,sym,1(s1) = (s1E − A)−1B

=
(

s1

[
In2 0
0 M

]
−
[

0 In2

−K −E

])−1 [ 0
Bu

]

=
[
∗ (s2

1M + s1E + K)−1

∗ s1(s2
1M + s1E + K)−1

] [
0

Bu

]

=
[

(s2
1M + s1E + K)−1Bu

s1(s2
1M + s1E + K)−1Bu

]

=:
[

SQ,sym,1(s1)
s1SQ,sym,1(s1)

]

holds, where ∗ denotes entries that are multiplied with zero and, therefore, can be omitted.
As consequence, the first symmetric transfer function can be written as

GQ,sym,1(s1) = (Cp + s1Cv)(s2
1M + s1E + K)−1Bu

= (Cp + s1Cv)SQ,sym,1(s1).

For the second symmetric subsystem transfer function, the recursion formula (2.39)
needs to be used. With (6.11), the application of the quadratic term can be re-written
into

H(SQ,sym,1(s1) ⊗ SQ,sym,1(s2))

= −
[

0 0 0 0
Hpp Hpv Hvp Hvv

]([
SQ,sym,1(s1)

s1SQ,sym,1(s1)

]
⊗
[

SQ,sym,1(s2)
s2SQ,sym,1(s2)

])

=
[

0
−(Hpp + s2Hpv + s1Hvp + s1s2Hvv)

(
SQ,sym,1(s1) ⊗ SQ,sym,1(s2)

)] .

(6.12)

Similarly, the bilinear terms yield

N
(

Im ⊗
(
SQ,sym,1(s1) + SQ,sym,1(s2)

))
=
[

0 0
Np Nv

](
Im ⊗

([
SQ,sym,1(s1)

s1SQ,sym,1(s1)

]
+
[

SQ,sym,1(s2)
s1SQ,sym,1(s2)

]))

=
[

0
(Np + s1Nv)

(
Im ⊗ SQ,sym,1(s1)

)]+
[

0
(Np + s2Nv)

(
Im ⊗ SQ,sym,1(s2)

)] .

(6.13)

Collecting together linear, bilinear, and quadratic components leads to the second
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symmetric subsystem transfer function

GQ,sym,2(s1, s2)

= −1
2
(
Cp + (s1 + s2)Cv

)(
(s1 + s2)2M + (s1 + s2)E + K

)−1

×
(

(Hpp + s2Hpv + s1Hvp + s1s2Hvv)
(
SQ,sym,1(s1) ⊗ SQ,sym,1(s2)

)
+ (Hpp + s1Hpv + s2Hvp + s1s2Hvv)

(
SQ,sym,1(s2) ⊗ SQ,sym,1(s1)

)
− (Np + s1Nv)

(
Im ⊗ SQ,sym,1(s1)

)
− (Np + s2Nv)

(
Im ⊗ SQ,sym,1(s2)

))
=:
(
Cp + (s1 + s2)Cv

)
SQ,sym,2(s1, s2).

Following the recursion formula in (2.39) for unstructured systems and using the idea of
structured matrix-valued functions as in (3.18) and (5.3) lead to the following formulation
of structured symmetric subsystem transfer functions:

GQ,sym,k(s1, . . . , sk) = C
 k∑

j=1
sk

SQ,sym,k(s1, . . . , sk), (6.14)

for k ≥ 1, with the recursion

SQ,sym,1(s1) = K(s1)−1B(s1),

SQ,sym,k(s1, . . . , sk) = 1
k!

K
( k∑

j=1
sk

)−1

×




k−1∑
j=1


∑

1≤α1<...<αj≤k
1≤αj+1<...<αk≤k

αi ̸=αℓ for i ̸=ℓ

H
 j∑

i=1
sαi

,
k∑

ℓ=j+1
sαℓ



×
(

SQ,sym,j(sα1 , . . . , sαj
) ⊗ SQ,sym,k−j(sαj+1 , . . . , sαk

)
)




+
∑

1≤β1<...<βk−1≤k

N
k−1∑

j=1
sβj

(Im ⊗ SQ,sym,k−1(sβ1 , . . . , sβk−1)
)
 ,

(6.15)
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the matrix-valued functions C : C → Cp×n, K : C → Cn×n, B : C → Cn×m, H : C × C →
Cn×n2 , and N (s) =

[
N1(s) . . . Nm(s)

]
, with Nj : C → Cn×n for j = 1, . . . , m.

In this new structured symmetric transfer function framework, the classical first-order
quadratic-bilinear systems (2.35) are given by setting

C(s) = C, B(s) = B, K(s) = sE − A, H(s1, s2) = H, N (s) = N. (6.16)

In the second-order system case (6.2), the symmetric transfer functions can be recovered
from the structured formulation using

C(s) = Cp + sCv,

B(s) = Bu,

K(s) = s2M + sE + K,

H(s1, s2) = −(Hpp + s2Hpv + s1Hvp + s1s2Hvv),
N (s) = Np + sNv.

(6.17)

For illustration of the structured symmetric transfer function formulae (6.14) and
(6.15), these are used to write down the third symmetric subsystem transfer function in
the SISO system case to be

GQ,sym,3(s1, s2, s3) = C(s1 + s2 + s3)SQ,sym,3(s1, s2, s3),

with

SQ,sym,3(s1, s2, s3) = 1
6K(s1 + s2 + s3)−1

×
(

H(s1, s2 + s3)
(
SQ,sym,1(s1) ⊗ SQ,sym,2(s2, s3)

)
+ H(s2, s1 + s3)

(
SQ,sym,1(s2) ⊗ SQ,sym,2(s1, s3)

)
+ H(s3, s1 + s2)

(
SQ,sym,1(s3) ⊗ SQ,sym,2(s1, s2)

)
+ H(s1 + s2, s3)

(
SQ,sym,2(s1, s2) ⊗ SQ,sym,1(s3)

)
+ H(s1 + s3, s2)

(
SQ,sym,2(s1, s3) ⊗ SQ,sym,1(s2)

)
+ H(s2 + s3, s1)

(
SQ,sym,2(s2, s3) ⊗ SQ,sym,1(s1)

)
+ N (s1 + s2)SQ,sym,2(s1, s2)
+ N (s1 + s3)SQ,sym,2(s1, s3)

+ N (s2 + s3)SQ,sym,2(s2, s3)
)

.
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6.3.2 Structured regular subsystem transfer functions
Next, regular transfer functions are considered, with (2.40) and (2.41) for unstructured
systems. As before, the second-order quadratic-bilinear system (6.2) is used as motiva-
tional structure. Since the first regular subsystem transfer function resembles the linear
case, from the previous section it is already known that

GQ,reg,1(s1) = (Cp + s1Cv)(s2
1M + s1E + K)−1Bu

=: (Cp + s1Cv)SQ,reg,1(s1).

Following the same calculations as in (6.12) and (6.13) for the quadratic and bilinear
parts as in the previous section with the symmetric transfer functions, the second regular
subsystem transfer function of (6.2) is given by

GQ,reg,2(s1, s2) = −(Cp + s2Cv)(s2
2M + s2E + K)−1

×
((

Hpp + s1Hpv + (s2 − s1)Hvp + s1(s2 − s1)Hvv
)

×
(
SQ,reg,1(s2 − s1) ⊗ SQ,reg,1(s1))

− (Np + s1Nv)
(
Im ⊗ SQ,reg,1(s1)

))
=: (Cp + s2Cv)SQ,reg,2(s1, s2).

Following this scheme with the recursion formula (2.41) yields the structured regular
subsystem transfer functions to be defined by

GQ,reg,k(s1, . . . , sk) = C(sk)SQ,reg,k(s1, . . . , sk), (6.18)

for k ≥ 1, with the recursion

SQ,reg,1(s1) = K(s1)−1B(s1),

SQ,reg,k(s1, . . . , sk) = K(sk)−1

k−1∑
j=1

H(sk − sk−j, sk−j)

×
(
SQ,reg,j(sk−j+1 − sk−j, . . . , sk − sk−j)

⊗ SQ,reg,k−j(s1, . . . , sk−j)
)

+ N (sk−1)
(
Im ⊗ SQ,reg,k−1(s1, . . . , sk−1)

) ,

(6.19)

and with the matrix-valued functions as before C : C → Cp×n, K : C → Cn×n, B : C →
Cn×m, H : C × C → Cn×n2 , and N (s) =

[
N1(s) . . . Nm(s)

]
, with Nj : C → Cn×n

for j = 1, . . . , m. The regular subsystem transfer functions for first- and second-order
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systems can be recovered using the same instances of the matrix-valued functions as in
the symmetric case (6.16) and (6.17).

As in the symmetric transfer function case, the third structured regular subsystem
transfer function for SISO systems shall serve as additional illustration of (6.18) and
(6.19). This transfer function is given by

GQ,reg,3(s1, s2, s3) = C(s3)SQ,reg,3(s1, s2, s3),

SQ,reg,3(s1, s2, s3) = K(s3)−1
(

H(s3 − s2, s2)
(
SQ,reg,1(s3 − s2) ⊗ SQ,reg,2(s1, s2))

+ H(s3 − s1, s1)
(
SQ,reg,2(s2 − s1, s3 − s1) ⊗ SQ,reg,1(s1)

)
+ N (s2)SQ,reg,2(s1, s2)

)
.

Remark 6.1 (Regular bilinear vs. quadratic-bilinear transfer functions):
The structured regular subsystem transfer functions of quadratic-bilinear systems in (6.18)
and (6.19) are a direct extension of the structured regular subsystem transfer functions of
bilinear systems from (5.3). This can quickly be seen by setting H ≡ 0, since the transfer
functions in (6.18) and (6.19) significantly simplify to products of matrix functions for
the linear and bilinear terms as all quadratic parts vanish. ♢

6.3.3 Structured generalized transfer functions

Finally, the structured formulation of the generalized transfer functions from (2.42) and
(2.43) is considered. Again, the second-order system (6.2) is used to motivate the more
general structure. As for the previous transfer function concepts, the first-level transfer
function resembles the linear system case such that for (6.2) one gets

G
(B)
Q,gen,1(s1) = (Cp + s1Cv)(s2

1M + s1E + K)−1Bu.

The higher-level transfer functions involving only bilinear terms are exactly the regular
transfer functions of bilinear systems, for which the structured extension is given by (5.3).
Therefore, the third-level transfer function with one quadratic term is considered next.
This can be rewritten for (6.2) to be

G
(H,(B),(B))
Q,gen,3 (s1, s2, s3) = −(Cp + s3Cv)(s2

3M + s3E + K)−1

× (Hpp + s1Hpv + s2Hvp + s1s2Hvv)
×
(
(s2

2M + s2E + K)−1Bu ⊗ (s2
1M + s1E + K)−1Bu

)
.
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Consequently, the following structured extension of the generalized transfer functions is
proposed: Given the function

Γ(γ, s1, . . . , sj) =



K(s1)−1B(s1),
if γ = (B)

and j = 1,

K(sj)−1N (sj−1)
(
Im ⊗ Γ(γ2, s1, . . . , sj−1)

)
,

if γ = (N, γ2)
and j ≥ 2,

K(sj)−1H(sj−1, sℓ−1)
(
Γ(γ2, sℓ, . . . , sj−1)

⊗ Γ(γ3, s1, . . . , sℓ−1)
) if γ = (H, γ2, γ3)

and j ≥ 3,

(6.20)

that describes the multiplication of the matrix-valued function for the linear dynamics
with the input, bilinear and quadratic components, the structured generalized transfer
functions are defined to be

Gγ
Q,gen,k(s1, . . . , sk) = C(sk)Γ(γ, s1, . . . , sk), (6.21)

with the unique ℓ depending on γ2, γ3 in the quadratic case, γ, a nested tuple with
the possible elements H, N and B, and tuples of those, the matrix-valued functions
as before C : C → Cp×n, K : C → Cn×n, B : C → Cn×m, H : C × C → Cn×n2 , and
N (s) =

[
N1(s) . . . Nm(s)

]
, with Nj : C → Cn×n for j = 1, . . . , m. Like in the regular

and symmetric subsystem transfer function cases, the generalized transfer functions for
first- and second-order systems can be recovered using (6.16) and (6.17) as particular
instances of the matrix-valued functions, respectively.

For illustration of (6.20) and (6.21), the three fourth-level generalized transfer functions
in the SISO system case are written out explicitly. These are given by

G(N,(N,(N,(B))))
Q,gen,4 (s1, s2, s3, s4) = C(s4)K(s4)−1N (s3)K(s3)−1N (s2)K(s2)−1N (s1)

× K(s1)−1B(s1),

in the purely bilinear case, and

G(H,(N,(B)),(B))
Q,gen,4 (s1, s2, s3, s4) = C(s4)K(s4)−1H(s3, s1)

(
K(s3)−1N (s2)K(s2)−1B(s2)

⊗ K(s1)−1B(s1)
)
,

G(N,(H,(B),(B)))
Q,gen,4 (s1, s2, s3, s4) = C(s4)K(s4)−1N (s3)K(s3)−1H(s2, s1)

(
K(s2)−1B(s2)

⊗ K(s1)−1B(s1)
)
,

with a single quadratic term each.
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6.4 Structured transfer function interpolation
The aim of this section is the construction of structure-preserving reduced-order quadra-
tic-bilinear systems based on transfer function interpolation: Given interpolation points
σ1, . . . , σk ∈ C, the task is to construct a reduced-order system such that

GQ,k(σ1, . . . , σk) = ĜQ,k(σ1, . . . , σk)

holds, where GQ,k and ĜQ,k denote the k-th level full and reduced-order structured transfer
functions of one of the three types in Section 6.3 and both systems with the same internal
structure. Analogously to the results for linear (Section 3.3.4) and bilinear systems
(Chapter 5), the solution to this problem will amount to projection-based model order
reduction and conditions on the underlying projection spaces.

The following sections will first extend the projection framework to structured qua-
dratic-bilinear systems before the structured interpolation is discussed for each transfer
function concept individually.

6.4.1 Structure-preserving model reduction via projection
Let the original full-order system be described in the frequency domain by any of the
introduced transfer function concepts with the matrix-valued functions C : C → Cp×n,
K : C → Cn×n, B : C → Cn×m, H : C × C → Cn×n2 , and N (s) =

[
N1(s) . . . Nm(s)

]
,

with Nj : C → Cn×n for j = 1, . . . , m. Given two basis matrices V, W ∈ Cn×r, the
reduced-order model is described by the truncated matrix functions

Ĉ(s) = C(s)V, B̂(s) = W HB(s),
K̂(s) = W HK(s)V, N̂ (s) = W HN (s)(Im ⊗ V ),

Ĥ(s1, s2) = W HH(s1, s2)(V ⊗ V ).
(6.22)

The structure preservation via projection follows exactly the same idea of the frequency-
affine decomposition in (3.21) and (3.22) as for linear and bilinear systems.

As example, the second-order quadratic-bilinear systems (6.2) is considered, where the
matrix functions in the frequency domain were determined in Section 6.3 to be

C(s) = Cp + sCv,

B(s) = Bu,

K(s) = s2M + sE + K,

N (s) = Np + sNv,

H(s1, s2) = −(Hpp + s2Hpv + s1Hvp + s1s2Hvv).

(6.23)
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Given the model reduction bases V, W ∈ Cn×r, the reduced-order model is given by
Ĉ(s) = (CpV ) + s(CvV ) = Ĉp + sĈv,

B̂(s) = (W HBu) = B̂u,

K̂(s) = s2(W HMV ) + s(W HEV ) + (W HKV ) = s2M̂ + sÊ + K̂,

N̂ (s) =
(
W HNp(Im ⊗ V )

)
+ s

(
W HNv(Im ⊗ V )

)
= N̂p + sN̂v,

Ĥ(s1, s2) = −
((

W HHpp(V ⊗ V )
)

+ s2
(
W HHpv(V ⊗ V )

)
+ s1

(
W HHvp(V ⊗ V )

)
+ s1s2

(
W HHvv)(V ⊗ V )

))
= −(Ĥpp + s2Ĥpv + s1Ĥvp + s1s2Ĥvv).

The complete second-order structure is inherited in the reduced-order matrix functions
and the truncated matrices give a realization of a reduced-order second-order quadratic-
bilinear system.

As noted in [30], the actual computation of the reduced-order model becomes nontrivial
in case of quadratic-bilinear systems. The arising problem is the Kronecker product of
the right truncation matrix in (6.22), which is used for the reduction of the quadratic
term. The resulting matrix V ⊗ V will be of dimension n2 × r2 and dense, which comes
along with a huge demand for memory to save this truncation matrix and even more
resources needed to formulate the multiplication with the quadratic term. To avoid
the explicit computation of the Kronecker product, one can use the underlying tensor
H(1) = H as suggested in [30]. In terms of later implementations, it is beneficial to use
the ideas from tensor algebra but working directly with parts of the matrix function H
instead of its underlying tensor H. Using the notation from Section 2.1.1, the reduction
of the quadratic term can also be written as

W HH(s1, s2)(V ⊗ V )

= W H
[
H1(s1, s2) . . . Hn(s1, s2)

] 
v11V · · · v1rV

... . . . ...
vn1V · · · vnrV


=
[
v11W

HH1(s1, s2)V + . . . + vn1W
HHn(s1, s2)V . . .

v1rW
HH1(s1, s2)V + . . . + vnrW

HHn(s1, s2)V
]

=
[
v11H̃1(s1, s2) + . . . + vn1H̃n(s1, s2) . . . v1rH̃1(s1, s2) + . . . + vnrH̃n(s1, s2)

]
=
[
Ĥ1(s1, s2) . . . Ĥn(s1, s2)

]
= Ĥ(s1, s2),

where vij is the (i, j)-th element of the matrix V , such that instead of forming V ⊗ V
explicitly, one can work with the n × n blocks that form H and compute in a first step
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the H̃j, which are then combined into Ĥ. Especially in the large-scale sparse setting,
where H only has a few non-zero elements, a lot of computations and memory usage
can be avoided using this idea. An alternative approach, that can be applied even if
the matricizations or tensor of H are not given, considers only the application of H on
vectors and matrices:

W HH(s1, s2)(V ⊗ V ) = W HH(s1, s2)
([

v1 . . . vr

]
⊗ V

)
= W H

[
H(s1, s2)(v1 ⊗ V ) . . . H(s1, s2)(vr ⊗ V )

]
= W H

[
H̃1(s1, s2) . . . H̃r(s1, s2)

]
= Ĥ(s1, s2),

where v1, . . . , vr are the columns of V . Products of the form H̃j(s1, s2) = H(s1, s2)(vj ⊗V )
can be evaluated rather cheaply by considering the application of H(s1, s2) as a function
acting on a vector and a matrix such that the Kronecker products are never computed
explicitly. The same ideas should be applied for the construction of the projection spaces
in the upcoming sections to avoid any explicit use of Kronecker products in practical
computations. Similarly, the Kronecker product in the truncation of the bilinear terms
can be avoided by observing that

W HN (s)(Im ⊗ V ) =
[
W HN1(s)V . . . W HNm(s)V

]
=
[
N̂ 1(s) . . . N̂ m(s)

]
= N̂ (s)

holds, i.e., in practice, the single bilinear terms are independently reduced without using
their concatenation.

An important difference to the literature when it comes to two-sided projections is
the use of symmetric tensors H for the quadratic term. In general, as mentioned in
Section 2.1.1, if H is not symmetric from the beginning, the symmetrization process
in time domain assumes the multiplication of the quadratic term with the Kronecker
product of a vector with itself, x(t) ⊗ x(t). Otherwise, the symmetrization changes the
dynamics of the quadratic-bilinear system. This assumption is, for example, not satisfied
for mechanical quadratic-bilinear systems (6.2) since these involve products of the state
with its derivative, e.g., x(t) ⊗ ẋ(t). Consequently, the symmetrization method cannot
be used for such systems. However, the case of symmetric tensors might naturally occur
or symmetrization might be possible, e.g., in case of first-order systems (2.35), for which
further theoretic results are added in the upcoming sections. In general, if the tensor H
is assumed to be symmetric, this is explicitly stated in the assumptions.
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6.4.2 Interpolating structured symmetric subsystem transfer
functions

According to the historical order in which the transfer function concepts for quadratic-
bilinear systems have been developed and are mentioned in Section 6.3, the symmetric
transfer functions are considered first. The following theorem gives conditions on the
right projection space associated with the truncation matrix V for the interpolation of
arbitrary high levels of the symmetric subsystem transfer functions.

Theorem 6.2 (Symmetric transfer function interpolation via V ):
Let GQ be a quadratic-bilinear system, described by its symmetric subsystem transfer
functions GQ,sym,k in (6.14) and (6.15), and ĜQ the reduced-order quadratic-bilinear
system constructed by (6.22), with its reduced-order symmetric subsystem transfer
functions ĜQ,sym,k. Also, let σ1, . . ., σk ∈ C be a set of interpolation points such that
the matrix functions C, K−1, B, N , H and K̂−1 are defined in these points and sums of
combinations of these points. Construct V using

V1 =
[
SQ,sym,1(σi1)

]
, 1 ≤ i1 ≤ k,

V2 =
[
SQ,sym,2(σi1 , σi2)

]
, 1 ≤ i1 < i2 ≤ k

...
Vk =

[
SQ,sym,k(σi1 , σi2 , . . . , σik

)
]
, 1 ≤ i1 < i2 < . . . < ik ≤ k,

span(V ) ⊇ span
([

V1 . . . Vk

])
,

with the recursive terms from (6.15), and let W be an arbitrary full-rank truncation
matrix of appropriate dimension. Then the symmetric transfer functions of ĜQ interpolate
those of GQ in the following way:

GQ,sym,1(σi1) = ĜQ,sym,1(σi1), 1 ≤ i1 ≤ k,

GQ,sym,2(σi1 , σi2) = ĜQ,sym,2(σi1 , σi2), 1 ≤ i1 < i2 ≤ k,

...
GQ,sym,k(σi1 , σi2 , . . . , σik

) = ĜQ,sym,k(σi1 , σi2 , . . . , σik
), 1 ≤ i1 < i2 < . . . < ik ≤ k.

Note that the indices in the last line 1 ≤ i1 < i2 < . . . < ik ≤ k are equivalent to
i1 = 1, i2 = 2, . . . , ik = k. ♢

Before moving on to the proof of Theorem 6.2, for illustration of the used notation and
the results, a closer look at the construction of the projection space in Theorem 6.2 is taken.
As example, the aim is to interpolate the fourth symmetric subsystem transfer function in
the interpolation points σ1, σ2, σ3, σ4. The matrices constructed in Theorem 6.2 are the
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concatenation of the different resulting recursive terms using the corresponding indices.
The constructed matrices look as follows

V1 =
[
SQ,sym,1(σ1), SQ,sym,1(σ2), SQ,sym,1(σ3), SQ,sym,1(σ4)

]
,

V2 =
[
SQ,sym,2(σ1, σ2), SQ,sym,2(σ1, σ3), SQ,sym,2(σ1, σ4),

SQ,sym,2(σ2, σ3), SQ,sym,2(σ2, σ4), SQ,sym,2(σ3, σ3)
]
,

V3 =
[
SQ,sym,3(σ1, σ2, σ3), SQ,sym,3(σ1, σ2, σ4), SQ,sym,3(σ1, σ3, σ4), SQ,sym,3(σ2, σ3, σ4)

]
,

V4 = SQ,sym,4(σ1, σ2, σ3, σ4).

By construction of the projection space, the following symmetric transfer function values
are interpolated

GQ,sym,1(σ1), GQ,sym,1(σ2), GQ,sym,1(σ3), GQ,sym,1(σ4),
GQ,sym,2(σ1, σ2), GQ,sym,2(σ1, σ3), GQ,sym,2(σ1, σ4),
GQ,sym,2(σ2, σ3), GQ,sym,2(σ2, σ4), GQ,sym,2(σ3, σ4),
GQ,sym,3(σ1, σ2, σ3), GQ,sym,3(σ1, σ2, σ4), GQ,sym,3(σ1, σ3, σ4), GQ,sym,3(σ2, σ3, σ4),
GQ,sym,4(σ1, σ2, σ3, σ4).

Next, the proof of this result is given.

Proof of Theorem 6.2. The interpolation of the first transfer function level follows from
Proposition 3.2 and by construction of V1. Thereby, only the interpolation of higher
transfer function levels is left to be proven. For simplicity, only the second symmetric
subsystem transfer function is considered as the rest follows by induction over the transfer
function index k. On the side of the reduced-order model, the interpolating transfer
functions are given by

ĜQ,sym,2(σi1 , σi2) = 1
2 Ĉ(σi1 + σi2 )̂K(σi1 + σi2)−1

×
(

Ĥ(σi1 , σi2)
(
ŜQ,sym,1(σi1) ⊗ ŜQ,sym,1(σi1)

)
+ Ĥ(σi2 , σi1)

(
ŜQ,sym,1(σi2) ⊗ ŜQ,sym,1(σi1)

)
+ N̂ (σi1)

(
Im ⊗ ŜQ,sym,1(σi1)

)
+ N̂ (σi2)

(
Im ⊗ ŜQ,sym,1(σi2)

))
,

for 1 ≤ i1 < i2 ≤ k, where ŜQ,sym,1 denotes the symmetric recursive level-1 terms using
the reduced-order matrix functions. For the recursive terms, it holds

V ŜQ,sym,1(σi) = V K̂(σi)−1B̂(σi)
= V K̂(σi)−1W HK(σi)K(σi)−1B(σi)
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= PV(σi)SQ,sym,1(σi)
= SQ,sym,1(σi),

for all 1 ≤ i ≤ k, since span
(
SQ,sym,1(σi)

)
⊆ span(V ) by means of V1 and PV is the

projector onto span(V ) from (3.24). It follows that

ĜQ,sym,2(σi1 , σi2) = 1
2 Ĉ(σi1 + σi2 )̂K(σi1 + σi2)−1W H

×
(

H(σi1 , σi2)
(
SQ,sym,1(σi1) ⊗ SQ,sym,1(σi2)

)
+ H(σi2 , σi1)

(
SQ,sym,1(σi2) ⊗ SQ,sym,1(σi1)

)
+ N (σi1)

(
Im ⊗ SQ,sym,1(σi1)

)
+ N (σi2)

(
Im ⊗ SQ,sym,1(σi2)

))
= 1

2C(σi1 + σi2) V K̂(σi1 + σi2)−1W HK(σi1 + σi2)︸ ︷︷ ︸
= PV(σi1 +σi2 )

K(σi1 + σi2)−1

×
(

H(σi1 , σi2)
(
SQ,sym,1(σi1) ⊗ SQ,sym,1(σi2)

)
+ H(σi2 , σi1)

(
SQ,sym,1(σi2) ⊗ SQ,sym,1(σi1)

)
+ N (σi1)

(
Im ⊗ SQ,sym,1(σi1)

)
+ N (σi2)

(
Im ⊗ SQ,sym,1(σi2)

))
= 1

2C(σi1 + σi2)PV(σi1 + σi2)SQ,sym,2(σi1 , σi2)

= GQ,sym,2(σi1 , σi2)

holds for all 1 ≤ i1 < i2 ≤ k, using again the projector PV and

span
(
SQ,sym,2(σi1 , σi2)

)
⊆ span(V ),

due to the construction of V2. The rest of the proof follows via induction over the transfer
function index k.

The quickly growing number of constructed vectors in Theorem 6.2 triggers the question
of the resulting projection space dimensions. The number of computed columns that
the matrix Vj, 1 ≤ j ≤ k, contributes to the projection space is

(
k
j

)
mj. Thereby, for the

interpolation of the k-th symmetric subsystem transfer function

dim
(

span(V )
)

≥
k∑

j=1

(
k

j

)
mj (6.24)
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holds, under the assumption that all constructed vectors are linear independent. Note
that (6.24) simplifies in case of SISO systems to

dim
(

span(V )
)

≥
k∑

j=1

(
k

j

)
= 2k − 1. (6.25)

While (6.24) and (6.25) can easily become pretty large, one needs to note that, at the
same time, (6.25) many scalar or matrix interpolation conditions are matched.

In practice, due to the complexity of the symmetric transfer functions often only the
first two levels are actively used. Therefore, the following corollary states the special
case of restricting Theorem 6.2 to the first two symmetric subsystem transfer functions
and formulates the construction of the projection space with the actual matrix-valued
functions instead of the recursive terms.
Corollary 6.3 (Simplified symmetric transfer function interpolation):
Let GQ be a quadratic-bilinear system, described by its symmetric subsystem transfer
functions GQ,sym,k in (6.14) and (6.15), and ĜQ the reduced-order quadratic-bilinear system
constructed by (6.22), with its reduced-order symmetric transfer functions ĜQ,sym,k. Also,
let σ1, σ2 ∈ C be two interpolation points such that the matrix functions C, K−1, B, N ,
H and K̂−1 are defined in these points and their sum. Construct V using

V1,1 = K(σ1)−1B(σ1),
V1,2 = K(σ2)−1B(σ2),
V2 = K(σ1 + σ2)−1

(
H(σ1, σ2)(V1,1 ⊗ V1,2) + H(σ2, σ1)(V1,2 ⊗ V1,1)

+ N (σ1)(Im ⊗ V1,1) + N (σ2)(Im ⊗ V1,2)
)
,

span(V ) ⊇ span
([

V1,1 V1,2 V2
])

,

and let W be an arbitrary full-rank truncation matrix of appropriate dimension. Then
the symmetric transfer functions of ĜQ interpolate those of GQ in the following way:

GQ,sym,1(σ1) = ĜQ,sym,1(σ1),
GQ,sym,1(σ2) = ĜQ,sym,1(σ2),

GQ,sym,2(σ1, σ2) = ĜQ,sym,1(σ1, σ2). ♢

Another possibility of limiting the dimension growth of the underlying projection space
is used in the literature, e.g., in [30]. A specific choice of interpolation points can be used
to construct as many linear dependent vectors as possible such that the dimension of
the underlying projection space becomes as small as possible. For symmetric subsystem
transfer functions, this can be done by choosing

σ1 = σ2 = . . . = σk = σ,
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with a single interpolation point σ ∈ C. By this choice, the dimension of the projection
space (6.24) for the interpolation of the k-th symmetric subsystem transfer function
can be reduced to ∑k

j=1 mj. Especially in Theorem 6.2, a lot of computations can be
avoided since for each basis contribution Vj only mj columns are needed. Consider the
previous example of interpolating the fourth symmetric subsystem transfer function. The
computation of the projection space is now restricted to

V1 = SQ,sym,1(σ), V2 = SQ,sym,2(σ, σ),
V3 = SQ,sym,3(σ, σ, σ), V4 = SQ,sym,4(σ, σ, σ, σ),

which yields the interpolation of

GQ,sym,1(σ), GQ,sym,2(σ, σ), GQ,sym,3(σ, σ, σ), GQ,sym,4(σ, σ, σ, σ).

In contrast to Proposition 3.2 and the results in Chapter 5, there will be nothing
equivalent to Theorem 6.2 for the construction of W . This follows directly from the
projection framework (6.22) and the quadratic term, which involves the Kronecker product
of two V matrices but only a single W matrix to be multiplied from the left. Still, there are
advantageous choices for W to increase the number of matched interpolation conditions,
as, for example, used in [30]. A first suggestion is given in the following lemma, which
enables the interpolation of the second symmetric subsystem transfer function without
evaluating quadratic or bilinear terms.

Lemma 6.4 (Implicit symmetric transfer function interpolation):
Let GQ be a quadratic-bilinear system, described by its symmetric subsystem transfer
functions GQ,sym,k in (6.14) and (6.15), ĜQ the reduced-order quadratic-bilinear system,
constructed by (6.22) with its reduced-order symmetric transfer functions ĜQ,sym,k, and
σ1, σ2 ∈ C two interpolation points such that the matrix functions C, K−1, B, N , H and
K̂−1 are defined in these points and their sum. Construct V using

span(V ) ⊇ span
([

K(σ1)−1B(σ1) K(σ2)−1B(σ2)
])

,

and W using

span(W ) ⊇ span
(
K(σ1 + σ2)−HC(σ1 + σ2)H

)
,

and let the two matrices V and W be of appropriate dimensions. Then the symmetric
transfer functions of ĜQ interpolate those of GQ in the following way:

GQ,sym,1(σ1) = ĜQ,sym,1(σ1), GQ,sym,1(σ2) = ĜQ,sym,1(σ2),
GQ,sym,1(σ1 + σ2) = ĜQ,sym,1(σ1 + σ2), GQ,sym,2(σ1, σ2) = ĜQ,sym,2(σ1, σ2).

♢
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Proof. While the interpolation of the first symmetric subsystem transfer function GQ,sym,1
in the points σ1, σ2 and σ1 + σ2 follows directly from the construction of span(V )
and span(W ) together with Proposition 3.2, the interpolation of the second symmetric
subsystem transfer function still needs to be shown. From the proof of Theorem 6.2, it is
already known that

ĜQ,sym,2(σ1, σ2) = 1
2 Ĉ(σ1 + σ2)̂K(σ1 + σ2)−1W H

×
(

H(σ1, σ2)
(
SQ,sym,1(σ1) ⊗ SQ,sym,1(σ2)

)
+ H(σ2, σ1)

(
SQ,sym,1(σ2) ⊗ SQ,sym,1(σ1)

)
+ N (σi1)

(
Im ⊗ SQ,sym,1(σi1)

)
+ N (σi2)

(
Im ⊗ SQ,sym,1(σi2)

))
holds via the construction of V . Taking a look at the first line, one can see that

Ĉ(σ1 + σ2)̂K(σ1 + σ2)−1W H = C(σ1 + σ2)K(σ1 + σ2)−1K(σ1 + σ2)V K̂(σ1 + σ2)−1W H

= C(σ1 + σ2)K(σ1 + σ2)−1︸ ︷︷ ︸
=: z, span(zH) ⊆ span(W )

PW(σ1 + σ2)H

= C(σ1 + σ2)K(σ1 + σ2)−1

yields the desired interpolation result, where PW is the projector from (3.25) onto the
projection space span(W ).

A generalization of Lemma 6.4 to higher transfer function levels is possible such that the
explicit sampling of the k-th symmetric subsystem transfer function can be avoided for the
interpolation. For brevity and less practical relevance, these results are omitted. Instead,
a related idea from [30] is considered next using the two-sided projection approach to
interpolate the first-order partial derivatives of the second symmetric subsystem transfer
function.
Theorem 6.5 (Implicit Hermite interpolation of sym. transfer functions):
Let GQ be a quadratic-bilinear system, described by its symmetric subsystem transfer
functions GQ,sym,k in (6.14) and (6.15), ĜQ the reduced-order quadratic-bilinear system,
constructed by (6.22) with its reduced-order symmetric transfer functions ĜQ,sym,k, and
σ1, σ2 ∈ C interpolation points such that the matrix functions C, K−1, B, N , H and K̂−1

are complex differentiable in these points and their sum. Let the following matrices be
given

V1,1 = K(σ1)−1B(σ1),
V1,2 = K(σ2)−1B(σ2),
V2 = K(σ1 + σ2)−1

(
H(σ1, σ2)(V1,1 ⊗ V1,2) + H(σ2, σ1)(V1,2 ⊗ V1,1)

+ N (σ1)(Im ⊗ V1,1) + N (σ2)(Im ⊗ V1,2)
)
,
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and, also,

W1 = K(σ1 + σ2)−HC(σ1 + σ2)H,

W2 = K(σ1)−H
(
H(2)(σ1, σ2)(V1,2 ⊗ W1) + N (2)(σ1)(Im ⊗ W1)

)
,

W3 = K(σ1)−HH(3)(σ2, σ1)(V1,2 ⊗ W1),

W4 = K(σ2)−H
(
H(2)(σ2, σ1)(V1,1 ⊗ W1) + N (2)(σ2)(Im ⊗ W1)

)
,

W5 = K(σ2)−HH(3)(σ1, σ2)(V1,1 ⊗ W1),

where H(2), H(3) are the 2- and 3-mode matricizations of the tensor corresponding to the
quadratic term such that H(1) = H, and N (2) is the 2-mode matricization of the tensor
corresponding to the bilinear term such that N (1) = N . Then the following statements
hold:

(a) If V and W are constructed such that

span(V ) ⊇ span
([

V1,1 V1,2
])

and span(W ) ⊇ span(W1),

then the following interpolation conditions hold:

GQ,sym,1(σ1) = ĜQ,sym,1(σ1), GQ,sym,1(σ2) = ĜQ,sym,1(σ2),
GQ,sym,1(σ1 + σ2) = ĜQ,sym,1(σ1 + σ2), GQ,sym,2(σ1, σ2) = ĜQ,sym,2(σ1, σ2).

(6.26)

(b) If V and W are constructed such that

span(V ) ⊇ span
([

V1,1 V1,2 V2
])

and span(W ) ⊇ span
([

W1 W2 W3
])

,

then, additionally to (6.26), the following Hermite interpolation condition holds:

∂s1GQ,sym,2(σ1, σ2) = ∂s1ĜQ,sym,2(σ1, σ2).

(c) If V and W are constructed such that

span(V ) ⊇ span
([

V1,1 V1,2 V2
])

and span(W ) ⊇ span
([

W1 W4 W5
])

,

then, additionally to (6.26), the following Hermite interpolation condition holds:

∂s2GQ,sym,2(σ1, σ2) = ∂s2ĜQ,sym,2(σ1, σ2). ♢
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Proof. First, note that Part (a) is a reminder of Lemma 6.4. Therefore, only Part (b)
and (c) are left to be proven. Consider first the derivative with respect to s1 of the
reduced-order model in Part (b), namely

∂s1ĜQ,sym,2(σ1, σ2) = 1
2∂ŝC(σ1 + σ2)̂SQ,sym,2(σ1, σ2)

− 1
2 Ĉ(σ1 + σ2)̂K(σ1 + σ2)−1∂sK̂(σ1 + σ2)̂SQ,sym,2(σ1, σ2)

+ 1
2 Ĉ(σ1 + σ2)̂K(σ1 + σ2)−1

×
(

∂s1Ĥ(σ1, σ2)
(
ŜQ,sym,1(σ1) ⊗ ŜQ,sym,1(σ2)

)
+ Ĥ(σ1, σ2)

(
∂s1ŜQ,sym,1(σ1) ⊗ ŜQ,sym,1(σ2)

)
+ ∂s2Ĥ(σ2, σ1)

(
ŜQ,sym,1(σ2) ⊗ ŜQ,sym,1(σ1)

)
+ Ĥ(σ2, σ1)

(
ŜQ,sym,1(σ2) ⊗ ∂s1ŜQ,sym,1(σ1)

)
+ ∂sN̂ (σ1)

(
Im ⊗ ŜQ,sym,1(σ1)

)
+ N̂ (σ1)

(
Im ⊗ ∂s1ŜQ,sym,1(σ1)

))
.

Interpolation of the first two terms in the sum follows directly using the projection
approach from the previous proofs with the construction of V and W1. Only the last
term is left and split again into several parts to be considered independent of each other.
Start with the terms involving the derivative of the bilinear or quadratic matrix functions,
for which

1
2 Ĉ(σ1 + σ2)̂K(σ1 + σ2)−1

(
∂s1Ĥ(σ1, σ2)

(
ŜQ,sym,1(σ1) ⊗ ŜQ,sym,1(σ2)

)
+ ∂s2Ĥ(σ2, σ1)

(
ŜQ,sym,1(σ2) ⊗ ŜQ,sym,1(σ1)

)
+ ∂sN̂ (σ1)

(
Im ⊗ ŜQ,sym,1(σ1)

))
= 1

2C(σ1 + σ2)V K̂(σ1 + σ2)−1W H
(

∂s1H(σ1, σ2)
(
SQ,sym,1(σ1) ⊗ SQ,sym,1(σ2)

)
+ ∂s2H(σ2, σ1)

(
SQ,sym,1(σ2) ⊗ SQ,sym,1(σ1)

)
+ ∂sN (σ1)

(
Im ⊗ ŜQ,sym,1(σ1)

))
= 1

2C(σ1 + σ2)K(σ1 + σ2)−1PW(σ1 + σ2)H
(

∂s1H(σ1, σ2)
(
SQ,sym,1(σ1) ⊗ SQ,sym,1(σ2)

)
+ ∂s2H(σ2, σ1)

(
SQ,sym,1(σ2) ⊗ SQ,sym,1(σ1)

)
+ ∂sN (σ1)

(
Im ⊗ ŜQ,sym,1(σ1)

))
= 1

2C(σ1 + σ2)K(σ1 + σ2)−1
(

∂s1H(σ1, σ2)
(
SQ,sym,1(σ1) ⊗ SQ,sym,1(σ2)

)
+ ∂s2H(σ2, σ1)

(
SQ,sym,1(σ2) ⊗ SQ,sym,1(σ1)

)
+ ∂sN (σ1)

(
Im ⊗ ŜQ,sym,1(σ1)

))
holds, using again the construction of W1 as well as V1,1 and V1,2. Now, only the terms
with derivatives in the Kronecker products are left. These are gathered into two groups
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depending on the position of the partial derivative in the Kronecker product. Consider
first

Ẑ1 := 1
2 Ĉ(σ1 + σ2)̂K(σ1 + σ2)−1

(
Ĥ(σ2, σ1)

(
ŜQ,sym,1(σ2) ⊗ ∂s1ŜQ,sym,1(σ1)

)
+ N̂ (σ1)

(
Im ⊗ ∂s1ŜQ,sym,1(σ1)

))
.

Instead of working directly on Ẑ1, this term is seen to be the 1-mode matricization of the
tensor Ẑ1 such that, equivalently, the conjugate 2-mode matricization can be considered
instead. Together with the identity (2.2) it holds

Ẑ
(2)
1 = 1

2∂s1ŜQ,sym,1(σ1)H
(

Ĥ(2)(σ2, σ1)
(̂
SQ,sym,1(σ2) ⊗ K̂(σ1 + σ2)−ĤC(σ1 + σ2)H

)
+ N̂ (2)(σ1)

(
Im ⊗ K̂(σ1 + σ2)−ĤC(σ1 + σ2)H

))
= 1

2∂s1ŜQ,sym,1(σ1)HV H
(

H(2)(σ2, σ1)
(
SQ,sym,1(σ2) ⊗ K(σ1 + σ2)−HC(σ1 + σ2)H

)
+ N (2)(σ1)

(
Im ⊗ K(σ1 + σ2)−HC(σ1 + σ2)H

))
= 1

2

(
∂sB̂(σ1)H − B̂(σ1)HK̂(σ1)−H

(
∂sK̂(σ1)H

))
K̂(σ1)−HV H

×
(

H(2)(σ2, σ1)(V1,2 ⊗ W1) + N (2)(σ1)(Im ⊗ W1)
)

= 1
2

(
∂sB(σ1)H − B(σ1)HK(σ1)−H

(
∂sK(σ1)H

))
PW(σ1)W2

= 1
2∂s1SQ,sym,1(σ1)H

(
H(2)(σ2, σ1)

(
SQ,sym,1(σ2) ⊗ K(σ1 + σ2)−HC(σ1 + σ2)H

)
+ N (2)(σ1)

(
Im ⊗ K(σ1 + σ2)−HC(σ1 + σ2)H

))
.

Thereby, for the 1-mode matricization it holds

Ẑ1 = 1
2C(σ1 + σ2)K(σ1 + σ2)−1

(
H(σ2, σ1)

(
SQ,sym,1(σ2) ⊗ ∂s1SQ,sym,1(σ1)

)
+ N (σ1)

(
Im ⊗ ∂s1SQ,sym,1(σ1)

))
.

In other words, the term with the reduced-order matrix functions is identical to the same
expression using the full-order matrix functions. The only thing left is the term with the
partial derivative at the first position in the Kronecker product

Ẑ2 := 1
2 Ĉ(σ1 + σ2)̂K(σ1 + σ2)−1Ĥ(σ1, σ2)

(
∂s1ŜQ,sym,1(σ1) ⊗ ŜQ,sym,1(σ2)

)
,
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which is again seen as the 1-mode matricization of another tensor Ẑ2. Now, the 3-
mode matricization of this tensor together with the identity (2.3) can be used to show
analogously to Ẑ1 that

Ẑ
(3)
2 = 1

2∂s1ŜQ,sym,1(σ1)HĤ(3)(σ1, σ2)
(̂
SQ,sym,1(σ2) ⊗ K̂(σ1 + σ2)−ĤC(σ1 + σ2)H

)
= 1

2∂s1ŜQ,sym,1(σ1)HV HH(3)(σ1, σ2)
(
V1,2 ⊗ W1

)
= 1

2∂s1SQ,sym,1(σ1)HH(3)(σ1, σ2)
(
SQ,sym,1(σ2) ⊗ K(σ1 + σ2)−HC(σ1 + σ2)H

)
holds, where the construction of V2, W1 and W3 was used. Therefore, it also holds that

Ẑ2 = 1
2C(σ1 + σ2)K(σ1 + σ2)−1H(σ1, σ2)

(
∂s1SQ,sym,1(σ1) ⊗ SQ,sym,1(σ2)

)
,

which gives overall the desired Hermite interpolation result with respect to s1. The
interpolation of the partial derivative with respect to s2 in Part (c) can be obtained the
same way, where now instead of W2 and W3 the two matrices W4 and W5 are used.

Theorem 6.5 shows the Hermite interpolation conditions in a separate fashion to point
out the single basis contributions and their effects. It can be noted that if Theorem 6.5
Parts (b) and (c) hold, then the complete Jacobian is interpolated

∇GQ,sym,2(σ1, σ2) = ∇ĜQ,sym,2(σ1, σ2).

The main difference of Theorem 6.5 to the two-sided projection results from the
literature [30] are the additional matrices constructed for span(W ). This comes from the
facts that neither an underlying symmetric tensor for H was assumed nor the system
was restricted to the SISO case. The following theorem considers exactly these special
assumptions.

Theorem 6.6 (Implicit Hermite interpolation of sym. SISO TFs):
Let GQ be a quadratic-bilinear SISO system, described by its symmetric subsystem
transfer functions GQ,sym,k in (6.14) and (6.15), ĜQ the reduced-order quadratic-bilinear
SISO system, constructed by (6.22) with its reduced-order symmetric transfer functions
ĜQ,sym,k, and σ ∈ C an interpolation point such that the matrix functions C, K−1, B, N ,
H and K̂−1 are complex differentiable in σ and 2σ. Also, let the tensor H, given by its
1-mode matricization H(1) = H, be symmetric. Construct V using

v1 = K(σ)−1B(σ),
v2 = K(2σ)−1

(
H(σ, σ)(v1 ⊗ v1) + N (σ)v1

)
,

span(V ) ⊇ span
([

v1 v2
])

,
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and W using

w1 = K(2σ)−HC(2σ)H,

w2 = K(σ)−H
(
H(2)(σ, σ)(v1 ⊗ w1) + 1

2N (σ)Hw1
)
,

span(W ) ⊇ span
([

w1 w2
])

,

and let V and W be of appropriate dimensions. Then the symmetric transfer functions
of ĜQ interpolate those of GQ in the following way:

GQ,sym,1(σ) = ĜQ,sym,1(σ), GQ,sym,1(2σ) = ĜQ,sym,1(2σ),
GQ,sym,2(σ, σ) = ĜQ,sym,2(σ, σ), ∇GQ,sym,2(σ, σ) = ∇ĜQ,sym,2(σ, σ). ♢

Proof. The simple interpolation conditions follow directly from Theorem 6.5 since these
are independent of the special choice of interpolation points and the number of inputs
and outputs of the system. The partial derivatives can be derived the same way as in
the proof of Theorem 6.5. Consider first the partial derivative with respect to s1 and
collect the terms with partial derivative of ŜQ,sym,1(σ) into

Ẑ := 1
2 Ĉ(2σ)̂K(2σ)−1

(
H(σ, σ)

(
∂s1ŜQ,sym,1(σ) ⊗ ŜQ,sym,1(σ)

)
+ H(σ, σ)

(
ŜQ,sym,1(σ) ⊗ ∂s1ŜQ,sym,1(σ)

)
+ N̂ (σ)∂s1ŜQ,sym,1(σ)

)
.

This expression can be simplified with the assumption of H being a symmetric tensor
and using (2.4) with the SISO system assumption such that

Ẑ = Ĉ(2σ)̂K(2σ)−1
(

Ĥ(σ, σ)
(
ŜQ,sym,1(σ) ⊗ ∂s1ŜQ,sym,1(σ)

)
+ 1

2N̂ (σ)∂s1ŜQ,sym,1(σ)
)

holds. Considering now the underlying tensor Ẑ(1) = Ẑ and its 2-mode matricization,
together with (2.2) it holds

Ẑ(2) = ∂s1ŜQ,sym,1(σ)H
(

Ĥ(2)(σ, σ)
(̂
SQ,sym,1(σ) ⊗ K̂(2σ)−ĤC(2σ)H

)
+ 1

2N̂ (σ)HK̂(2σ)−ĤC(2σ)H
)

= ∂s1ŜQ,sym,1(σ)HV H
(

H(2)(σ, σ)
(
V1 ⊗ w1

)
+ 1

2N (σ)Hw1

)
=
(

∂sB(σ)H − B(σ)HK(σ)−H
(
∂sK(σ)H

))
PW(σ)w2

= ∂s1SQ,sym,1(σ)H
(

H(2)(σ, σ)
(
SQ,sym,1(σ) ⊗ K(2σ)−HC(2σ)H

)
+ 1

2N (σ)HK(2σ)−HC(2σ)H
)

,
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which yields the desired interpolation of ∂s1GQ,sym,2(σ, σ). Due to the symmetry of the
transfer function with respect to the frequency arguments, the exact same expression Z
can be used to proof the interpolation of the partial derivative with respect to s2, which
gives the interpolation of the full Jacobi matrix.

6.4.3 Interpolating structured regular subsystem transfer functions

The regular transfer functions for quadratic-bilinear systems were developed to decrease
the number of terms evaluated in the frequency domain representation. Therefore, one
could expect a similar reduction of frequency-dependent terms and, consequently, of
the projection space dimensions in the corresponding structured interpolation approach.
The following theorem is a translation of Theorem 6.2 to the case of regular transfer
functions.

Theorem 6.7 (Regular transfer function interpolation via V ):
Let GQ be a quadratic-bilinear system, described by its regular subsystem transfer
functions GQ,reg,k in (6.18) and (6.19), and ĜQ the reduced-order quadratic-bilinear
system constructed by (6.22), with its reduced-order regular transfer functions ĜQ,reg,k.
Also, let σ1, . . ., σk ∈ C be a set of interpolation points such that the matrix functions
C, K−1, B, N , H and K̂−1 are defined in these points and differences between them.
Construct V using

Vj =
[
SQ,reg,j(σ1, . . . σj) SQ,reg,j(σ1+ij

− σij
, . . . , σj+ij

− σij
)
]

,

span(V ) ⊇ span
([

V1 . . . Vk

])
,

with 1 ≤ j ≤ k; 1 ≤ ij ≤ k − j and with the recursive terms from (6.19), and let W
be an arbitrary full-rank truncation matrix of appropriate dimension. Then the regular
transfer functions of ĜQ interpolate those of GQ in the following way:

GQ,reg,j(σ1, . . . σj) = ĜQ,reg,j(σ1, . . . σj),
GQ,reg,j(σ1+ij

− σij
, . . . , σj+ij

− σij
) = ĜQ,reg,j(σ1+ij

− σij
, . . . , σj+ij

− σij
),

for 1 ≤ j ≤ k and 1 ≤ ij ≤ k − j. ♢

In the construction of the projection space in Theorem 6.7 a special notation is used
for the concatenation of several recursive terms. Therefore, an illustrative example is
shown first before continuing with the proof of Theorem 6.7. Consider the interpolation
of GQ,reg,4 in the interpolation points σ1, σ2, σ3, σ4. The constructed matrices for the
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projection space are then given by
V1 =

[
SQ,reg,1(σ1), SQ,reg,1(σ2 − σ1), SQ,reg,1(σ3 − σ2), SQ,reg,1(σ4 − σ3)

]
,

V2 =
[
SQ,reg,2(σ1, σ2), SQ,reg,2(σ2 − σ1, σ3 − σ1), SQ,reg,2(σ3 − σ2, σ4 − σ2)

]
,

V3 =
[
SQ,reg,3(σ1, σ2, σ3), SQ,reg,3(σ2 − σ1, σ3 − σ1, σ4 − σ1)

]
,

V4 = SQ,reg,4(σ1, σ2, σ3, σ4),
which yields the interpolation of

GQ,reg,1(σ1), GQ,reg,1(σ2 − σ1), GQ,reg,1(σ3 − σ2), GQ,reg,1(σ4 − σ3),
GQ,reg,2(σ1, σ2), GQ,reg,2(σ2 − σ1, σ3 − σ1), GQ,reg,2(σ3 − σ2, σ4 − σ2),
GQ,reg,3(σ1, σ2, σ3), GQ,reg,3(σ2 − σ1, σ3 − σ1, σ4 − σ1),
GQ,reg,4(σ1, σ2, σ3, σ4).

Proof of Theorem 6.7. As in previous proofs, it is enough to show the interpolation of
the second regular subsystem transfer function as the rest follows via induction over the
transfer function level k. For simplicity, only the interpolation in the point (σ1, σ2) is
considered. The other combinations of interpolation points follow analogously. It holds

ĜQ,reg,2(σ1, σ2) = Ĉ(σ2)̂K(σ2)−1
(

Ĥ(σ2 − σ1, σ1)
(
ŜQ,reg,1(σ2 − σ1) ⊗ ŜQ,reg,1(σ1)

)
+ N̂ (σ1)

(
Im ⊗ ŜQ,reg,1(σ1)

))
= Ĉ(σ2)̂K(σ2)−1

(
W HH(σ2 − σ1, σ1)

(
SQ,reg,1(s2 − σ1) ⊗ SQ,reg,1(σ1)

)
+ W HN (σ1)

(
Im ⊗ SQ,reg,1(σ1)

))
= C(σ2) V K̂(σ2)−1W HK(σ2)︸ ︷︷ ︸

= PV(σ2)

K(σ2)−1

×
(

H(σ2 − σ1, σ1)
(
SQ,reg,1(σ2 − σ1) ⊗ SQ,reg,1(σ1)

)
+ N (σ1)

(
Im ⊗ SQ,reg,1(σ1)

))
= C(σ2)PV(σ2)SQ,reg,2(σ1, σ2)
= GQ,reg,2(σ1, σ2),

where PV is the projector onto span(V ) from (3.24) and using

span
(
SQ,reg,2(σ1, σ2)

)
⊆ span(V ).

The same ideas are then used to show the interpolation in the differences of the inter-
polation points (σ2 − σ1, σ3 − σ1), . . ., (σk−1 − σk−2, σk − σk−2) and the complete result
follows via induction over k.
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Counting the computed vectors and interpolation conditions shows that the matrix
Vj contributes (k − j + 1)mj columns to the projection space construction, i.e., for the
interpolation of the k-th regular subsystem transfer function

dim
(

span(V )
)

≥
k∑

j=1
(k − j + 1)mj (6.27)

holds, if all computed vectors are linearly independent. This dimension (6.27) is sig-
nificantly smaller than (6.24). It becomes easier to see in the case of SISO systems,
since (6.27) simplifies to

dim
(

span(V )
)

≥
k∑

j=1
(k − j + 1) =

k∑
j=1

j = k(k + 1)
2 . (6.28)

Therefore, the number of frequency-dependent terms in the regular transfer function
case is only growing quadratically (6.28) with the transfer function level in contrast to
the exponential growth in the symmetric transfer function case (6.25). On the other
hand, due to the less compute columns for the projection space, also less interpolation
conditions are matched.

Similar to the symmetric case, in practice, only the first two regular subsystem transfer
functions are of actual interest. Therefore, the following corollary states a simplified
version of Theorem 6.7 for this special case.
Corollary 6.8 (Simplified regular transfer function interpolation):
Let GQ be a quadratic-bilinear system, described by its regular subsystem transfer
functions GQ,reg,k in (6.18) and (6.19), and ĜQ the reduced-order quadratic-bilinear
system constructed by (6.22), with its reduced-order regular transfer functions ĜQ,reg,k.
Also, let σ1, σ2 ∈ C be two interpolation points such that the matrix functions C, K−1,
B, N , H and K̂−1 are defined in these points and in σ2 − σ1. Construct V using

V1,1 = K(σ1)−1B(σ1),
V1,2 = K(σ2 − σ1)−1B(σ2 − σ1),
V2 = C(σ2)K(σ2)−1

(
H(σ2 − σ1, σ1)(V1,2 ⊗ V1,1) + N (σ1)(Im ⊗ V1,1)

)
,

span(V ) ⊇ span
([

V1,1 V1,2 V2
])

,

and let W be an arbitrary full-rank truncation matrix of appropriate dimension. Then
the regular transfer functions of ĜQ interpolate those of GQ in the following way:

GQ,reg,1(σ1) = ĜQ,reg,1(σ1),
GQ,reg,1(σ2 − σ1) = ĜQ,reg,1(σ2 − σ1),

GQ,reg,2(σ1, σ2) = ĜQ,reg,1(σ1, σ2). ♢
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While the growth of the number of computed terms for the interpolation of regular
and symmetric transfer functions are in principle completely different, see (6.24) and
(6.27), this only holds for higher-level transfer functions (k ≥ 3). Corollaries 6.3 and 6.8
are both computing 3 terms for the interpolation of the second symmetric and regular
subsystem transfer functions.

As in the symmetric case, for the regular subsystem transfer functions the choice
of interpolation points can be used to reduce the dimension of the projection space
significantly. In contrast to the previous section, the interpolation points need to be
chosen to be integer multiples of each other:

σ1 = σ, σ2 = 2σ, . . . , σk = kσ, (6.29)

for a single interpolation point σ ∈ C. This is also the choice made in [4] for unstructured
regular transfer functions. Using this particular choice of interpolation points reduces
the dimension of the projection space (6.27) necessary for the interpolation of the k-th
regular subsystem transfer function to ∑k

j=1 mj. In terms of the previous example, the
constructed matrices can be reduced to

V1 = SQ,reg,1(σ), V2 = SQ,reg,2(σ, 2σ),
V3 = SQ,reg,3(σ, 2σ, 3σ), V4 = SQ,reg,4(σ, 2σ, 3σ, 4σ),

since all other matrices are identical to these four and, thereby, span the same subspace.
The cost for the reduction of the dimension of the projection space comes with the
decrease of the number of matched interpolation conditions. In this example, only four
matched interpolation conditions are left

GQ,reg,1(σ), GQ,reg,2(σ, 2σ), GQ,reg,3(σ, 2σ, 3σ), GQ,reg,4(σ, 2σ, 3σ, 4σ).

Remark 6.9 (Interpolation point selection in the purely bilinear case):
The suggested choice of interpolation points (6.29) for regular subsystem transfer functions
to reduce the number of computed terms differs significantly from the default suggestion
in case of regular bilinear transfer functions; see Chapter 5. There, the interpolation
points for higher regular subsystem transfer functions are proposed to be chosen as for
symmetric transfer functions

σ1 = . . . = σk = σ.

This choice is still possible and efficient for quadratic-bilinear systems, but comes with
the cost of forced interpolation in 0 due to the difference of the interpolation points
needed in the quadratic terms. Therefore, the matrix functions need to exist in 0. Also,
setting one of the frequency arguments in H permanently to 0 easily hides information of
the quadratic term, e.g., in (6.23), Hvp and Hvv are always multiplied with 0 and never
taken into account for the projection space construction. ♢
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The next lemma states an equivalent to Lemma 6.4 for the interpolation of the second
regular subsystem transfer functions without evaluating the nonlinear terms.
Lemma 6.10 (Implicit regular transfer function interpolation):
Let GQ be a quadratic-bilinear system, described by its regular subsystem transfer
functions GQ,reg,k in (6.18) and (6.19), ĜQ the reduced-order quadratic-bilinear system
constructed by (6.22), with its reduced-order regular transfer functions ĜQ,reg,k, and
σ1, σ2 ∈ C two interpolation points such that the matrix functions C, K−1, B, N , H and
K̂−1 are defined in these points and their difference σ2 − σ1. Construct V using

span(V ) ⊇ span
([

K(σ1)−1B(σ1) K(σ2 − σ1)−1B(σ2 − σ1)
])

,

and W using

span(W ) ⊇ span
(
K(σ2)−HC(σ2)H

)
,

and let the two matrices V and W be of appropriate dimensions. Then the regular
transfer functions of ĜQ interpolate those of GQ in the following way:

GQ,reg,1(σ1) = ĜQ,reg,1(σ1), GQ,reg,1(σ2) = ĜQ,reg,1(σ2),
GQ,reg,1(σ2 − σ1) = ĜQ,reg,1(σ2 − σ1), GQ,reg,2(σ1, σ2) = ĜQ,reg,2(σ1, σ2).

♢

Proof. The three interpolation conditions for the first subsystem transfer function follow
directly from Corollary 6.8 and Proposition 3.2. Left to be proven is the interpolation of
the second transfer function level via the two-sided projection. It holds

ĜQ,reg,2(σ1, σ2) = Ĉ(σ2)̂K(σ2)−1
(

Ĥ(σ2 − σ1, σ1)
(
ŜQ,reg,1(σ2 − σ1) ⊗ ŜQ,reg,1(σ1)

)
+ N̂ (σ1)

(
Im ⊗ ŜQ,reg,1(σ1)

))
= Ĉ(σ2)̂K(σ2)−1W H

(
H(σ2 − σ1, σ1)

(
SQ,reg,1(σ2 − σ1) ⊗ SQ,reg,1(σ1)

)
+ N (σ1)

(
Im ⊗ SQ,reg,1(σ1)

))
= C(σ2)K(σ2)−1 K(σ2)V K̂(σ2)−1W H︸ ︷︷ ︸

= P H
W(σ2)

×
(

H(σ2 − σ1, σ1)
(
SQ,reg,1(σ2 − σ1) ⊗ SQ,reg,1(σ1)

)
+ N (σ1)

(
Im ⊗ SQ,reg,1(σ1)

))
= GQ,reg,2(σ1, σ2)

with PW the projector (3.25) onto span(W ).
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A generalization of Lemma 6.10 for higher transfer function levels in the sense of The-
orem 6.7 is omitted here due to its similarity to the more practical result of Lemma 6.10.

Making further use of the two-sided projection allows to implicitly interpolate not only
the regular subsystem transfer functions but also their partial derivatives. These results
are given in the following theorem.
Theorem 6.11 (Implicit Hermite interpolation of reg. transfer functions):
Let GQ be a quadratic-bilinear system, described by its regular subsystem transfer
functions GQ,reg,k in (6.18) and (6.19), ĜQ the reduced-order quadratic-bilinear system
constructed by (6.22), with its reduced-order regular transfer functions ĜQ,reg,k, and
σ1, σ2 ∈ C two interpolation points such that the matrix functions C, K−1, B, N , H
and K̂−1 are complex differentiable in these points and their difference σ2 − σ1. Let the
following matrices be given

V1,1 = K(σ1)−1B(σ1),
V1,2 = K(σ2 − σ1)−1B(σ2 − σ1),
V2 = K(σ2)−1

(
H(σ2 − σ1, σ1)(V1,2 ⊗ V1,1) + N (σ1)(Im ⊗ V1,1)

)
,

and, also,

W1 = K(σ2)−HC(σ2)H,

W2 = K(σ1)−H
(
H(2)(σ2 − σ1, σ1)(V1,2 ⊗ W1) + N (2)(σ1)(Im ⊗ W1)

)
,

W3 = K(σ2 − σ1)−HH(3)(σ2 − σ1, σ1)(V1,1 ⊗ W1),

where H(2), H(3) are the 2- and 3-mode matricizations of the tensor corresponding to the
quadratic term such that H(1) = H, and N (2) is the 2-mode matricization of the tensor
corresponding to the bilinear term such that N (1) = N . Then the following statements
hold:

(a) If V and W are constructed such that

span(V ) ⊇ span
([

V1,1 V1,2
])

and span(W ) ⊇ span(W1),

then the following interpolation conditions hold:

GQ,reg,1(σ1) = ĜQ,reg,1(σ1), GQ,reg,1(σ2) = ĜQ,reg,1(σ2),
GQ,reg,1(σ2 − σ1) = ĜQ,reg,1(σ2 − σ1), GQ,reg,2(σ1, σ2) = ĜQ,reg,2(σ1, σ2).

(6.30)

(b) If V and W are constructed such that

span(V ) ⊇ span
([

V1,1 V1,2
])

and span(W ) ⊇ span
([

W1 W2 W3
])

,

then, additionally to (6.30), the following Hermite interpolation condition holds:

∂s1GQ,reg,2(σ1, σ2) = ∂s1ĜQ,reg,2(σ1, σ2).
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(c) If V and W are constructed such that

span(V ) ⊇ span
([

V1,1 V1,2 V2
])

and span(W ) ⊇ span
([

W1 W3
])

,

then, additionally to (6.30), the following Hermite interpolation condition holds:

∂s2GQ,reg,2(σ1, σ2) = ∂s2ĜQ,reg,2(σ1, σ2). ♢

Proof. Part (a) of the theorem is only resuming the results of Lemma 6.10 with the
construction of V1,1, V1,2 and W1.

To prove Part (b), consider the partial derivative of the second reduced-order regular
subsystem transfer function in the interpolation points, which is given by

∂s1ĜQ,reg,2(σ1, σ2) = Ĉ(σ2)̂K(σ2)−1
((

∂s2Ĥ(σ2 − σ1, σ1) − ∂s1Ĥ(σ2 − σ1, σ1)
)

×
(
ŜQ,reg,1(σ2 − σ1) ⊗ ŜQ,reg,1(σ1)

)
− Ĥ(σ2 − σ1, σ1)

(
∂s1ŜQ,reg,1(σ2 − σ1) ⊗ ŜQ,reg,1(σ1)

)
+ Ĥ(σ2 − σ1, σ1)

(
ŜQ,reg,1(σ2 − σ1) ⊗ ∂s1ŜQ,reg,1(σ1)

)
+ ∂sN̂ (σ1)

(
Im ⊗ ŜQ,reg,1(σ1)

)
+ N̂ (σ1)

(
Im ⊗ ∂s1ŜQ,reg,1(σ1)

))
.

The terms above need to be grouped according to the occurrence of partial derivatives in
the Kronecker products and also with respect to the position of the partial derivatives in
the Kronecker products. For the terms with no derivatives in the Kronecker products, it
can be shown that

Ĉ(σ2)̂K(σ2)−1
((

∂s2Ĥ(σ2 − σ1, σ1) − ∂s1Ĥ(σ2 − σ1, σ1)
)

×
(
ŜQ,reg,1(σ2 − σ1) ⊗ ŜQ,reg,1(σ1)

)
+ ∂sN̂ (σ1)

(
Im ⊗ ŜQ,reg,1(σ1)

))
= Ĉ(σ2)̂K(σ2)−1W H

((
∂s2H(σ2 − σ1, σ1) − ∂s1H(σ2 − σ1, σ1)

)
×
(
V ŜQ,reg,1(σ2 − σ1) ⊗ V ŜQ,reg,1(σ1)

)
+ ∂sN (σ1)

(
Im ⊗ V ŜQ,reg,1(σ1)

))
= C(σ2)K(σ2)−1

((
∂s2H(σ2 − σ1, σ1) − ∂s1H(σ2 − σ1, σ1)

)
×
(
SQ,reg,1(σ2 − σ1) ⊗ SQ,reg,1(σ1)

)
+ ∂sN (σ1)

(
Im ⊗ SQ,reg,1(σ1)

))
holds, by using the following identities

Ĉ(σ2)̂K(σ2)−1W H = C(σ2)K(σ2)−1,

V ŜQ,reg,1(σ2 − σ1) = SQ,reg,1(σ2 − σ1),
V ŜQ,reg,1(σ1) = SQ,reg,1(σ1),
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which can be shown following the ideas from the previous proofs and the correct application
of the projectors PV and PW from (3.24) and (3.25). Next, the term with the derivative
at the first position in the Kronecker product is considered

Ẑ1 := −̂C(σ2)̂K(σ2)−1Ĥ(σ2 − σ1, σ1)
(
∂s1ŜQ,reg,1(σ2 − σ1) ⊗ ŜQ,reg,1(σ1)

)
.

Associating the tensor Ẑ1 with this term such that Ẑ
(1)
1 = Ẑ1 holds, allows to use other

matricizations equivalently. For the conjugate of the 3-mode matricization of Ẑ1 together
with (2.3) and the identities from above, it holds

−Ẑ
(3)
1 = ∂s1ŜQ,reg,1(σ2 − σ1)HĤ(3)(σ2 − σ1, σ1)

(̂
SQ,reg,1(σ1) ⊗ K̂(σ2)−ĤC(σ2)H

)
= −∂s1ŜQ,reg,1(σ2 − σ1)HV HH(3)(σ2 − σ1, σ1)

(
V ŜQ,reg,1(σ1) ⊗ W K̂(σ2)−ĤC(σ2)H

)
= −

(
∂sB̂(σ2 − σ1)H − B̂(σ2 − σ1)HK̂(σ2 − σ1)−H∂sK̂(σ2 − σ1)H

)
K̂(σ2 − σ1)−HV H

× H(3)(σ2 − σ1, σ1)
(
SQ,reg,1(σ1) ⊗ K(σ2)−HC(σ2)H

)
= −

(
∂sB(σ2 − σ1)H − SQ,reg,1(σ2 − σ1)H∂sK(σ2 − σ1)H

)
× W K̂(σ2 − σ1)−HV HK(σ2 − σ1)H︸ ︷︷ ︸

= PW(σ2−σ1)

× K(σ2 − σ1)−HH(3)(σ2 − σ1, σ1)
(
SQ,reg,1(σ1) ⊗ K(σ2)−HC(σ2)H

)
︸ ︷︷ ︸

= W3

= −∂s1SQ,reg,1(σ2 − σ1)HH(3)(σ2 − σ1, σ1)
(
SQ,reg,1(σ1) ⊗ K̂(σ2)−HC(σ2)H

)
,

and, therefore,

Ẑ1 := −C(σ2)K(σ2)−1H(σ2 − σ1, σ1)
(
∂s1SQ,reg,1(σ2 − σ1) ⊗ SQ,reg,1(σ1)

)
.

Now, only the terms where the partial derivative enters in the second argument of the
Kronecker products are left. Consider

Ẑ2 := Ĉ(σ2)̂K(σ2)−1
(

Ĥ(σ2 − σ1, σ1)
(
ŜQ,reg,1(σ2 − σ1) ⊗ ∂s1ŜQ,reg,1(σ1)

)
+ N̂ (σ1)

(
Im ⊗ ∂s1ŜQ,reg,1(σ1)

))
,

which is also re-interpreted as a tensor Ẑ2 by Ẑ
(1)
2 = Ẑ2. This time its 2-mode matriciza-

tion is considered such that, with the identities from above and (2.2), it holds

Ẑ
(3)
2 = ∂s1ŜQ,reg,1(σ1)H

(
Ĥ(2)(σ2 − σ1, σ1)

(̂
SQ,reg,1(σ2 − σ1) ⊗ K̂(σ2)−ĤC(σ2)H

)
+ N̂ (2)(σ1)

(
Im ⊗ K̂(σ2)−ĤC(σ2)H

))
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= ∂s1ŜQ,reg,1(σ1)HV H
(

H(2)(σ2 − σ1, σ1)
(
V ŜQ,reg,1(σ2 − σ1) ⊗ W K̂(σ2)−ĤC(σ2)H

)
+ N (2)(σ1)

(
Im ⊗ W K̂(σ2)−ĤC(σ2)H

))
=
(
∂sB(σ1)H − SQ,reg,1(σ1)H∂sK(σ1)H

)
W K̂(σ1)−1V H

×
(

H(2)(σ2 − σ1, σ1)
(
V ŜQ,reg,1(σ2 − σ1) ⊗ W K̂(σ2)−ĤC(σ2)H

)
+ N (2)(σ1)

(
Im ⊗ W K̂(σ2)−ĤC(σ2)H

))
=
(
∂sB(σ1)H − SQ,reg,1(σ1)H∂sK(σ1)H

)
PW(σ1)W2

=
(
∂sB(σ1)H − SQ,reg,1(σ1)H∂sK(σ1)H

)
W2.

Consequently, one obtains

Ẑ2 = C(σ2)K(σ2)−1
(

H(σ2 − σ1, σ1)
(
SQ,reg,1(σ2 − σ1) ⊗ ∂s1SQ,reg,1(σ1)

)
+ N (σ1)

(
Im ⊗ ∂s1SQ,reg,1(σ1)

))
,

which then yields the desired interpolation condition for the partial derivative with
respect to s1.

For Part (c), the partial derivative of the second reduced-order regular subsystem
transfer function with respect to s2 in the interpolation points is considered

∂s2ĜQ,reg,2(σ1, σ2) = ∂ŝC(σ2)̂SQ,reg,2(σ1, σ2) − Ĉ(σ2)̂K(σ2)−1∂sK̂(σ2)̂SQ,reg,2(σ1, σ2)
+ Ĉ(σ2)̂K(σ2)−1

×
(

∂s1Ĥ(σ2 − σ1, σ1)
(
ŜQ,reg,1(σ2 − σ1) ⊗ ŜQ,reg,1(σ1)

)
+ Ĥ(σ2 − σ1, σ1)

(
∂s1ŜQ,reg,1(σ2 − σ1) ⊗ ŜQ,reg,1(σ1)

))
.

The single terms in this derivative are then grouped into two with respect to occurrence of
the partial derivatives in the Kronecker products. For the terms without the differentiation
in the Kronecker products, one can quickly show that

∂ŝC(σ2)̂SQ,reg,2(σ1, σ2) − Ĉ(σ2)̂K(σ2)−1∂sK̂(σ2)̂SQ,reg,2(σ1, σ2)
+ Ĉ(σ2)̂K(σ2)−1∂s1Ĥ(σ2 − σ1, σ1)

(
ŜQ,reg,1(σ2 − σ1) ⊗ ŜQ,reg,1(σ1)

)
= ∂sC(σ2)V ŜQ,reg,2(σ1, σ2) − Ĉ(σ2)̂K(σ2)−1W H∂sK(σ2)V ŜQ,reg,2(σ1, σ2)

+ Ĉ(σ2)̂K(σ2)−1W H∂s1H(σ2 − σ1, σ1)
(
V ŜQ,reg,1(σ2 − σ1) ⊗ V ŜQ,reg,1(σ1)

)
= ∂sC(σ2)SQ,reg,2(σ1, σ2) − C(σ2)K(σ2)−1∂sK(σ2)SQ,reg,2(σ1, σ2)

+ C(σ2)K(σ2)−1∂s1H(σ2 − σ1, σ1)
(
SQ,reg,1(σ2 − σ1) ⊗ SQ,reg,1(σ1)

)
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holds, where the identities from the proof of Part (b) were used as well as

V ŜQ,reg,2(σ1, σ2) = SQ,reg,2(σ1, σ2).

Only a single term with derivative in the Kronecker product is left. One can observe
that this leftover term is, in fact, Ẑ1 without the minus sign in front, which was already
proven to be interpolated by the use of W3. Therefore, the interpolation of the partial
derivative with respect to s2 holds.

Similar to Theorem 6.5, in case that Parts (b) and (c) of Theorem 6.11 are fulfilled,
the complete Jacobian is interpolated

∇GQ,reg,2(σ1, σ2) = ∇ĜQ,reg,2(σ1, σ2).

Further comparing the two theorems for implicit Hermite interpolation, one major
difference stands out. In Theorem 6.11, less conditions are imposed on the left projection
space span(W ) than in Theorem 6.5 for the interpolation of the full Jacobi matrix, while
for the simple interpolation in both transfer function concepts via two-sided projection
the same number of conditions are needed. This roots in the larger number of frequency-
dependent terms in symmetric transfer functions, which leads to more terms involved in
the differentiation than in case of regular transfer functions.

In the literature, most results are available for the special case of SISO systems with
symmetric quadratic tensors and the particular choice of interpolation points (6.29);
see [4]. In a similar fashion, Theorem 6.11 simplifies significantly as it will be shown in
the following theorem.
Theorem 6.12 (Implicit Hermite interpolation of reg. SISO TFs):
Let GQ be a quadratic-bilinear SISO system, described by its regular subsystem transfer
functions GQ,reg,k in (6.18) and (6.19), ĜQ the reduced-order quadratic-bilinear SISO
system constructed by (6.22), with its reduced-order regular transfer functions ĜQ,reg,k,
and let σ ∈ C be an interpolation point such that the matrix functions C, K−1, B, N ,
H and K̂−1 are complex differentiable in σ and 2σ. Also, let the tensor H, given by its
1-mode matricization H(1) = H, be symmetric. Given the following vectors:

v1 = K(σ)−1B(σ),
v2 = K(2σ)−1

(
H(σ, σ)(v1 ⊗ v1) + N (σ)v1),

and, also,

w1 = K(2σ)−HC(2σ)H,

w2 = K(σ)−HN (σ)Hw1,

w3 = K(σ)−HH(2)(σ, σ)(v1 ⊗ w1),

then, the following statements hold:
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(a) If V and W are constructed such that

span(V ) ⊇ span(v1) and span(W ) ⊇ span(w1),

then the following interpolation conditions hold:

GQ,reg,1(σ) = ĜQ,reg,1(σ),
GQ,reg,1(2σ) = ĜQ,reg,1(2σ),

GQ,reg,2(σ, 2σ) = ĜQ,reg,2(σ, 2σ).
(6.31)

(b) If V and W are constructed such that

span(V ) ⊇ span(v1) and span(W ) ⊇ span
([

w1 w2
])

,

then, additionally to (6.31), the following Hermite interpolation condition holds:

∂s1GQ,reg,2(σ, 2σ) = ∂s1GQ,reg,2(σ, 2σ).

(c) If V and W are constructed such that

span(V ) ⊇ span
([

v1 v2
])

and span(W ) ⊇ span
([

w1 w3
])

,

then, additionally to (6.31), the following Hermite interpolation condition holds:

∂s2GQ,reg,2(σ, 2σ) = ∂s2GQ,reg,2(σ, 2σ). ♢

Proof. Part (a) is a direct consequence of Theorem 6.11. For Part (b), the partial
derivative of the second regular subsystem transfer function with respect to s1 simpli-
fies significantly. By making use of the symmetric tensor H, the SISO system and
consequently (2.4), and the special choice of interpolation points, it holds

∂s1ĜQ,reg,2(σ, 2σ) = Ĉ(2σ)̂K(2σ)−1
((

∂s2Ĥ(σ, σ) − ∂s1Ĥ(σ, σ)
)(

ŜQ,reg,1(σ) ⊗ ŜQ,reg,1(σ)
)

− Ĥ(σ, σ)
(
∂s1ŜQ,reg,1(σ) ⊗ ŜQ,reg,1(σ)

)
+ Ĥ(σ, σ)

(
ŜQ,reg,1(σ) ⊗ ∂s1ŜQ,reg,1(σ)

)
+ ∂sN̂ (σ)̂SQ,reg,1(σ) + N̂ (σ)∂s1ŜQ,reg,1(σ)

)
= Ĉ(2σ)̂K(2σ)−1

((
∂s2Ĥ(σ, σ) − ∂s1Ĥ(σ, σ)

)(
ŜQ,reg,1(σ) ⊗ ŜQ,reg,1(σ)

)
+ ∂sN̂ (σ)̂SQ,reg,1(σ) + N̂ (σ)∂s1ŜQ,reg,1(σ)

)
.

220



6.4 Structured transfer function interpolation

Note that due to the symmetric tensor, the terms with derivatives in the Kronecker
products, which were multiplied with the quadratic term, vanished. Grouping the
remaining terms into two yields

Ĉ(2σ)̂K(2σ)−1
((

∂s2Ĥ(σ, σ) − ∂s1Ĥ(σ, σ)
)(

ŜQ,reg,1(σ) ⊗ ŜQ,reg,1(σ)
)

+ ∂sN̂ (σ)̂SQ,reg,1(σ)
)

= Ĉ(2σ)̂K(2σ)−1W H
((

∂s2H(σ, σ) − ∂s1H(σ, σ)
)(

V ŜQ,reg,1(σ) ⊗ V ŜQ,reg,1(σ)
)

+ ∂sN (σ)V ŜQ,reg,1(σ)
)

= C(2σ)K(2σ)−1
((

∂s2H(σ, σ) − ∂s1H(σ, σ)
)(

SQ,reg,1(σ) ⊗ SQ,reg,1(σ)
)

+ ∂sN (σ)SQ,reg,1(σ)
)

,

by using similar identities to those in the proof of Theorem 6.11. On the other hand, one
can show that

Ĉ(2σ)̂K(2σ)−1N̂ (σ)∂s1ŜQ,reg,1(σ)
= Ĉ(2σ)̂K(2σ)−1N̂ (σ)̂K(σ)−1

(
∂sB̂(σ) − ∂sK̂(σ)̂K(σ)−1B̂(σ)

)
= C(2σ)V K̂(2σ)−1W HN (σ)V K̂(σ)−1W H

(
∂sB(σ) − ∂sK(σ)V K̂(σ)−1B̂(σ)

)
= wH

1 PW(2σ)HN (σ)K(σ)−1PW(σ)H
(
∂sB(σ) − ∂sK(σ)PV(σ)v1

)
= wH

2 PW(σ)H∂s1SQ,reg,1(σ)
= C(2σ)K(2σ)−1N (σ)∂s1SQ,reg,1(σ)

holds, with PV and PW the projectors from (3.24) and (3.25), respectively, which gives
the desired interpolation result.

Part (c) can be shown in an analogous fashion. The partial derivative of the second
reduced-order regular subsystem transfer function with respect to s2 in the interpolation
points is given by

∂s2ĜQ,reg,2(σ, 2σ) = ∂ŝC(2σ)̂SQ,reg,2(σ, 2σ) − Ĉ(2σ)̂K(2σ)−1∂sK̂(2σ)̂SQ,reg,2(σ, 2σ)

+ Ĉ(2σ)̂K(2σ)−1
(

∂s1Ĥ(σ, σ)
(
ŜQ,reg,1(σ) ⊗ ŜQ,reg,1(σ)

)
+ Ĥ(σ, σ)

(
∂s1ŜQ,reg,1(σ) ⊗ ŜQ,reg,1(σ)

))
.
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For the first two terms, it holds

∂ŝC(2σ)̂SQ,reg,2(σ, 2σ) − Ĉ(2σ)̂K(2σ)−1∂sK̂(2σ)̂SQ,reg,2(σ, 2σ)
= ∂sC(2σ)V ŜQ,reg,2(σ, 2σ) − C(2σ)V K̂(2σ)−1W H∂sK(2σ)V ŜQ,reg,2(σ, 2σ)
= ∂sC(2σ)PV(2σ)v2 − wH

1 PW(2σ)H∂sK(2σ)PV(σ)v2

= ∂sC(2σ)SQ,reg,2(σ, 2σ) − C(2σ)K(2σ)−1∂sK(2σ)SQ,reg,2(σ, 2σ).

Similarly, one can show that

Ĉ(2σ)̂K(2σ)−1∂s1Ĥ(σ, σ)
(
ŜQ,reg,1(σ) ⊗ ŜQ,reg,1(σ)

)
= C(2σ)V K̂(2σ)−1W∂s1H(σ, σ)

(
V ŜQ,reg,1(σ) ⊗ V ŜQ,reg,1(σ)

)
= w1PW(2σ)∂s1H(σ, σ)

(
PV(σ)v1 ⊗ PV(σ)v1

)
= C(2σ)K(2σ)−1∂s1H(σ, σ)

(
SQ,reg,1(σ) ⊗ SQ,reg,1(σ)

)
holds. The term left contains the matrix function for the quadratic components and a
derivative in the associated Kronecker product

Ẑ := Ĉ(2σ)̂K(2σ)−1Ĥ(σ, σ)
(
∂s1ŜQ,reg,1(σ) ⊗ ŜQ,reg,1(σ)

)
.

Therefore, it is considered again with the underlying tensor Ẑ(1) = Ẑ such that

Ẑ(2) = ∂s1ŜQ,reg,1(σ)HĤ(2)(σ, σ)
(̂
SQ,reg,1(σ) ⊗ K̂(2σ)−ĤC(2σ)H

)
= ∂s1ŜQ,reg,1(σ)HV HH(2)(σ, σ)

(
V ŜQ,reg,1(σ) ⊗ W K̂(2σ)−ĤC(2σ)H

)
=
(
∂sB(σ) − ∂K(σ)K(σ)−1B(σ)

)H
PW(σ)K(2σ)−HH(2)(σ, σ)

×
(
PV(σ)v1 ⊗ PW(2σ)w1

)
=
(
∂sB(σ) − ∂K(σ)K(σ)−1B(σ)

)H
PW(σ)w3

= ∂s1SQ,reg,1(σ)HH(2)(σ, σ)
(
SQ,reg,1(σ) ⊗ K(2σ)−HC(2σ)H

)
holds, where (2.2) and (2.4) and the projectors (3.24) and (3.25) were used. This gives
finally the desired interpolation of the partial derivative with respect to s2.

Comparing Theorem 6.12 with its equivalent version in case of symmetric transfer
functions Theorem 6.6 shows some interesting differences. While in both theorems for
the right projection space one vector less is needed than before, the change of the left
projection space differs a lot. In case of symmetric transfer functions it was possible
to gather four of the previous conditions on the left projection space into a single one
thanks to the structural symmetry of the partial derivatives, which became even identical
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by the specific choice of interpolation points σ1 = σ2 = σ. This was not possible in case
of regular transfer functions. For these, the derivatives simplify in the sense that in one
case, there are no derivatives in the Kronecker products left, and, in the other case, no
bilinear term is involved anymore. This big difference in the partial derivatives makes it
impossible to combine the two associated conditions on the left projection space.

6.4.4 Interpolating structured generalized transfer functions
At last, the structured generalized transfer functions are considered. Therefore, a similar
interpolation theory as in the previous two sections for symmetric and regular transfer
functions is developed, starting with the following theorem of interpolation by right
projection.
Theorem 6.13 (Generalized transfer function interpolation via V ):
Let GQ be a quadratic-bilinear system, described by its generalized transfer functions
Gγ

Q,gen,k in (6.20) and (6.21), and ĜQ the reduced-order quadratic-bilinear system con-
structed by (6.22), with its reduced-order generalized transfer functions Ĝγ

Q,gen,k. Also,
let σ1, . . ., σk ∈ C be a set of interpolation points such that the matrix functions C, K−1,
B, N , H and K̂−1 are defined in these points, and let γ be an appropriate nested tuple.
Construct V using the following recursive concatenation of matrices:

V (γ, σ1, . . . , σj) =



[
Γ(γ, σj)

]
, if γ = (B),[

Γ(γ, σ1, . . . , σj), V (γj−1, σ1, . . . , σj−1)
]
, if γ = (N, γj−1),[

Γ(γ, σ1, . . . , σj), V (γj−1, σℓ, . . . , σj−1),

V (γj−2, σ1, . . . , σℓ−1)
]
, if γ = (H, γj−1, γj−2),

span(V ) ⊇ span
(
V (γ, σ1, . . . , σk)

)
,

and let W be an arbitrary full-rank truncation matrix of appropriate dimension. Then
the generalized transfer functions of ĜQ interpolate those of GQ in the following way:

Gγ
Q,gen,j(σ1, . . . , σj) = Ĝγ

Q,gen,j(σ1, . . . , σj),

and, additionally, if γ = (N, γj−1):

Gγj−1
Q,gen,j−1(σ1, . . . , σj−1) = Ĝγj−1

Q,gen,j−1(σ1, . . . , σj−1),

or, additionally, if γ = (H, γj−1, γj−2):

Gγj−1
Q,gen,j−ℓ+1(σℓ, . . . , σj−1) = Ĝγj−1

Q,gen,j−ℓ+1(σℓ, . . . , σj−1),
Gγj−2

Q,gen,ℓ−1(σ1, . . . , σℓ−1) = Ĝγj−2
Q,gen,ℓ−1(σ1, . . . , σℓ−1),

for j = k, k − 1, . . . , 1. ♢
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Proof. The proof follows exactly the same projection arguments as used in the proofs of
Theorems 6.2 and 6.7, and the recursive construction of span(V ).

As for the other two transfer function concepts, for illustration of Theorem 6.13, a
higher-level example is considered. Here, the aim will be the interpolation of Gγ

Q,gen,4,
with γ = (H, (N, (B)), (B)), in the interpolation points σ1, σ2, σ3, σ4. By the construction
formula of the projection space in Theorem 6.13, the matrix function V (γ, σ1, σ2, σ3, σ4)
will construct the following sub-matrices in concatenation (ordered by their occurrence
in the construction formula):

Γ((H, (N, (B)), (B)), σ1, σ2, σ3, σ4),
Γ((N, (B)), σ2, σ3),
Γ((B), σ1),
Γ((B), σ2).

(6.32)

Reversing the order yields the following practical construction of the projection space

V1 = K(σ2)−1B(σ2),
V2 = K(σ1)−1B(σ1),
V3 = K(σ3)−1N (σ2)(Im ⊗ V1),
V4 = K(σ4)−1H(σ3, σ1)(V3 ⊗ V2),

such that

span(V ) ⊇ span
([

V1 V2 V3 V4
])

.

Using now V for model reduction by projection yields the interpolation of the following
function values ordered according to (6.32):

G(H,(N,(B)),(B))
Q,gen,4 (σ1, σ2, σ3, σ4), G(N,(B))

Q,gen,2(σ2, σ3), G(B)
Q,gen,1(σ1), G(B)

Q,gen,1(σ2).

In contrast to the previous transfer functions (6.14) and (6.18), the number of fre-
quency-dependent terms is only growing linearly with the transfer function level since
no additional linear combinations are involved. This allows to match k interpolation
conditions, when constructing the projection space for a k-th level generalized transfer
function. In the SISO system case, this only needs the computation of k vectors compared
to (6.25) and (6.28). This gives a lot of additional freedom for choosing interpolation
points and transfer function levels in model order reduction. There is unfortunately no
direct way of computing the potential dimension of the projection space as for the other
transfer function concepts since here, the dimension strongly depends on the nested tuple
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γ. In principle, the number of columns to be computed can be recursively determined by

f(γ) =


m, if γ = (B),
dim2

(
Γ(γ, .)

)
+ f(γj−1), if γ = (N, γj−1),

dim2
(
Γ(γ, .)

)
+ f(γj−1) + f(γj−2), if γ = (H, γj−1, γj−2),

where dim2(X) gives the column dimension of a matrix X. For the example above, this
function resolves as follows

f((H, (N, (B)), (B))) = m3 + f((N, (B))) + f((B)))
= m3 + m2 + f((B)) + m

= m3 + m2 + 2m.

Due to the complexity of the recursion formulae in Theorem 6.13, a more practical
version of the theorem that restricts to the interpolation of the generalized transfer
functions of second level for the bilinear term and third level for the quadratic term is
outlined below. Note the difference to Corollaries 6.3 and 6.8, where already the second
transfer function level contains the quadratic term.
Corollary 6.14 (Simplified generalized transfer function interpolation):
Let GQ be a quadratic-bilinear system, described by its generalized transfer functions
Gγ

Q,gen,k in (6.20) and (6.21), and ĜQ the reduced-order quadratic-bilinear system con-
structed by (6.22), with its reduced-order generalized transfer functions Ĝγ

Q,gen,k. Also,
let σ1, σ2, σ3 ∈ C be three interpolation points such that the matrix functions C, K−1, B,
N , H and K̂−1 are defined in these points. Construct V using

V1 = K(σ1)−1B(σ1),
V2 = K(σ2)−1B(σ2),
V3 = K(σ2)−1N (σ1)(Im ⊗ V1),
V4 = K(σ3)−1H(σ2, σ1)

(
V2 ⊗ V1

)
,

span(V ) ⊇ span
([

V1 V2 V3 V4
])

,

and let W be an arbitrary full-rank truncation matrix of appropriate dimension. Then
the generalized transfer functions of ĜQ interpolate those of GQ in the following way:

G(B)
Q,gen,1(σ1) = Ĝ(B)

Q,gen,1(σ1),
G(B)

Q,gen,1(σ2) = Ĝ(B)
Q,gen,1(σ2),

G(N,(B))
Q,gen,2(σ1, σ2) = Ĝ(N,(B))

Q,gen,2(σ1, σ2),
G(H,(B),(B))

Q,gen,3 (σ1, σ2, σ3) = Ĝ(H,(B),(B))
Q,gen,3 (σ1, σ2, σ3). ♢
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Like for the previous two transfer function concepts, it is possible to produce the
interpolation results of Corollary 6.14 and even more in an implicit way, without evaluating
the nonlinear terms at all. The idea is to make use of the two-sided projection and the
second basis matrix W .

Lemma 6.15 (Implicit generalized transfer function interpolation):
Let GQ be a quadratic-bilinear system, described by its generalized transfer functions
Gγ

Q,gen,k in (6.20) and (6.21), ĜQ the reduced-order quadratic-bilinear system constructed
by (6.22), with its reduced-order generalized transfer functions Ĝγ

Q,gen,k, and σ1, σ2, σ3 ∈ C
three interpolation points such that the matrix functions C, K−1, B, N , H and K̂−1 are
defined in all these points and complex differentiable in σ2. Construct V using

span(V ) ⊇ span
([

K(σ1)−1B(σ1) K(σ2)−1B(σ2)
])

,

and W using

span(W ) ⊇ span
([

K(σ2)−HC(σ2)H K(σ3)−HC(σ3)H
])

,

and let the two matrices V and W be of appropriate dimensions. Then the generalized
transfer functions of ĜQ interpolate those of GQ in the following way:

G(B)
Q,gen,1(σ1) = Ĝ(B)

Q,gen,1(σ1),
G(N,(B))

Q,gen,2(σ1, σ2) = Ĝ(N,(B))
Q,gen,2(σ1, σ2),

G(H,(B),(B))
Q,gen,3 (σ1, σ2, σ3) = Ĝ(H,(B),(B))

Q,gen,3 (σ1, σ2, σ3),

and, additionally,

G(B)
Q,gen,1(σ2) = Ĝ(B)

Q,gen,1(σ2), G(B)
Q,gen,1(σ3) = Ĝ(B)

Q,gen,1(σ3),
∇G(B)

Q,gen,1(σ2) = ∇Ĝ(B)
Q,gen,1(σ2), G(N,(B))

Q,gen,2(σ1, σ3) = Ĝ(N,(B))
Q,gen,2(σ1, σ3),

G(N,(B))
Q,gen,2(σ2, σ2) = Ĝ(N,(B))

Q,gen,2(σ2, σ2), G(N,(B))
Q,gen,2(σ2, σ3) = Ĝ(N,(B))

Q,gen,2(σ2, σ3),

and

G(H,(B),(B))
Q,gen,3 (ω3,j3) = Ĝ(H,(B),(B))

Q,gen,3 (ω3,j3), j3 = 1, . . . , 7,

in the interpolation points

ω3,1 = (σ1, σ1, σ2), ω3,2 = (σ2, σ2, σ2), ω3,3 = (σ1, σ1, σ3), ω3,4 = (σ2, σ2, σ3),
ω3,5 = (σ1, σ2, σ2), ω3,6 = (σ2, σ1, σ2), ω3,7 = (σ2, σ1, σ3).

♢
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Proof. The interpolation conditions for the first-level transfer functions follow from
Proposition 3.2 and for the second-level generalized transfer functions from Section 5.4.
The interpolation of the third-level generalized transfer function is proven exactly the
same way with the construction of appropriate projectors as done in the proofs of
Lemmas 6.4 and 6.10.

It was shown in [92] that for first-order quadratic-bilinear SISO systems (2.35) with
the additional assumption of an underlying symmetric tensor for the quadratic term, the
left truncation matrix W could be used to implicitly interpolate different higher-level
generalized transfer functions in specific interpolation points. Also, in case of purely
bilinear systems without the quadratic nonlinearity, the generalized and regular transfer
functions are the same and yield a lot richer interpolation theory in the structure-
preserving setting (Chapter 5), e.g., allowing for high-order Hermite interpolation or
equivalent results for the left truncation matrix W as for V in terms of construction
and interpolation conditions. The following theorem generalizes the interpolation of
generalized transfer functions to the implicit matching of Hermite interpolation conditions.
Theorem 6.16 (Implicit Hermite interpolation of gen. transfer functions):
Let GQ be a quadratic-bilinear system, described by its generalized transfer functions
Gγ

Q,gen,k in (6.20) and (6.21), ĜQ the reduced-order quadratic-bilinear system constructed
by (6.22), with its reduced-order generalized transfer functions Ĝγ

Q,gen,k, and σ1, σ2, σ3 ∈ C
three interpolation points such that the matrix functions C, K−1, B, N , H and K̂−1 are
complex differentiable in these points. Let the following matrices be given

V1 = K(σ1)−1B(σ1),
V2 = K(σ2)−1N (σ1)(Im ⊗ V1),
V3 = K(σ2)−1B(σ2),
V4 = K(σ3)−1H(σ2, σ1)(V3 ⊗ V1),

and, also,

W1 = K(σ1)−HC(σ1)H,

W2 = K(σ2)−HC(σ2)H,

W3 = K(σ1)−HN (2)(σ1)(Im ⊗ W2),
W4 = K(σ3)−HC(σ3)H,

W5 = K(σ1)−HH(σ2, σ1)(2)(V3 ⊗ W4),
W6 = K(σ2)−HH(σ2, σ1)(3)(V1 ⊗ W4),

where H(2), H(3) are the 2- and 3-mode matricizations of the tensor corresponding to the
quadratic term such that H(1) = H, and N (2) is the 2-mode matricization of the tensor
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corresponding to the bilinear term such that N (1) = N . Then the following statements
hold:

(a) If V and W are constructed such that

span(V ) ⊇ span(V1) and span(W ) ⊇ span(W1),

then the following interpolation conditions are fulfilled:

G(B)
Q,gen,1(σ1) = Ĝ(B)

Q,gen,1(σ1), ∇G(B)
Q,gen,1(σ1) = ∇Ĝ(B)

Q,gen,1(σ1),

and, additionally,

G(N,(B))
Q,gen,2(σ1, σ1) = Ĝ(N,(B))

Q,gen,2(σ1, σ1),
G(H,(B),(B))

Q,gen,3 (σ1, σ1, σ1) = G(H,(B),(B))
Q,gen,3 (σ1, σ1, σ1).

(b) If V and W are constructed such that

span(V ) ⊇ span
([

V1 V2
])

and span(W ) ⊇ span
([

W2 W3
])

,

then the following interpolation conditions are fulfilled:

G(N,(B))
Q,gen,2(σ1, σ2) = Ĝ(N,(B))

Q,gen,2(σ1, σ2), ∇G(N,(B))
Q,gen,2(σ1, σ2) = ∇Ĝ(N,(B))

Q,gen,2(σ1, σ2),

and, additionally,

Gγ1,j1
Q,gen,1(ω1,j1) = Ĝγ1,j1

Q,gen,1(ω1,j1), j1 = 1, 2,

Gγ3,j3
Q,gen,3(ω3,j3) = Ĝγ3,j3

Q,gen,3(ω3,j3), j3 = 1, 2, 3,

Gγ4,j4
Q,gen,4(ω4,j4) = Ĝγ4,j4

Q,gen,4(ω4,j4), j4 = 1, 2, 3, 4,

Gγ5,j5
Q,gen,5(ω5,j5) = Ĝγ5,j5

Q,gen,5(ω5,j5), j5 = 1, 2, 3,

Gγ6
Q,gen,6(ω6) = Ĝγ6

Q,gen,6(ω6),

with

γ1,1 = (B), ω1,1 = σ1,

γ1,2 = (B), ω1,2 = σ2,

γ3,1 = (N, (N, (B))), ω3,1 = (σ1, σ2, σ2),
γ3,2 = (N, (N, (B))), ω3,2 = (σ1, σ1, σ2),
γ3,3 = (H, (B), (B)), ω3,3 = (σ1, σ1, σ2),
γ4,1 = (N, (N, (N, (B)))), ω4,1 = (σ1, σ2, σ1, σ2),
γ4,2 = (H, (N, (B)), (B)), ω4,2 = (σ1, σ1, σ2, σ2),
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γ4,3 = (H, (B), (N, (B))), ω4,3 = (σ1, σ2, σ1, σ2),
γ4,4 = (N, (H, (B), (B))), ω4,4 = (σ1, σ1, σ1, σ2),
γ5,1 = (H, (N, (B)), (N, (B))), ω5,1 = (σ1, σ2, σ1, σ2, σ2),
γ5,2 = (N, (H, (N, (B)), (B))), ω5,2 = (σ1, σ1, σ2, σ1, σ2),
γ5,3 = (N, (H, (B), (N, (B)))), ω5,3 = (σ1, σ2, σ1, σ1, σ2),
γ6 = (N, (H, (N, (B)), (N, (B)))), ω6 = (σ1, σ2, σ1, σ2, σ1, σ2).

(c) If V and W are constructed such that

span(V ) ⊇ span
([

V1 V3 V4
])

and span(W ) ⊇ span
([

W4 W5 W6
])

,

then the following interpolation conditions are fulfilled:

G(H,(B),(B))
Q,gen,3 (σ1, σ2, σ3) = G(H,(B),(B))

Q,gen,3 (σ1, σ2, σ3),
∇G(H,(B),(B))

Q,gen,3 (σ1, σ2, σ3) = ∇G(H,(B),(B))
Q,gen,3 (σ1, σ2, σ3),

and, additionally,

Gγ1,j1
Q,gen,1(ω1,j1) = Ĝγ1,j1

Q,gen,1(ω1,j1), j1 = 1, 2, 3,

Gγ2,j2
Q,gen,2(ω2,j2) = Ĝγ2,j2

Q,gen,2(ω2,j2), j2 = 1, 2,

Gγ3,j3
Q,gen,3(ω3,j3) = Ĝγ3,j3

Q,gen,3(ω3,j3), j3 = 1, 2, 3
Gγ4,j4

Q,gen,4(ω4,j4) = Ĝγ4,j4
Q,gen,4(ω4,j4), j4 = 1, . . . , 5,

Gγ5,j5
Q,gen,5(ω5,j5) = Ĝγ5,j5

Q,gen,5(ω5,j5), j5 = 1, . . . , 12,

Gγ6,j6
Q,gen,6(ω6,j6) = Ĝγ6,j6

Q,gen,6(ω6,j6), j6 = 1, 2,

with

γ1,1 = (B), ω1,1 = σ1,

γ1,2 = (B), ω1,2 = σ2,

γ1,3 = (B), ω1,3 = σ3,

γ2,1 = (N, (B)), ω2,1 = (σ1, σ3),
γ2,2 = (N, (B)), ω2,2 = (σ2, σ3),
γ3,1 = (H, (B), (B)), ω3,1 = (σ2, σ1, σ3),
γ3,2 = (H, (B), (B)), ω3,2 = (σ1, σ1, σ3),
γ3,3 = (H, (B), (B)), ω3,3 = (σ2, σ2, σ3),
γ4,1 = (N, (H, (B), (B))), ω4,1 = (σ1, σ2, σ3, σ3),
γ4,2 = (H, (N, (B)), (B)), ω4,2 = (σ1, σ1, σ2, σ3),
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γ4,3 = (H, (N, (B)), (B)), ω4,3 = (σ1, σ2, σ2, σ3),
γ4,4 = (H, (B), (N, (B))), ω4,4 = (σ1, σ1, σ2, σ3),
γ4,5 = (H, (B), (N, (B))), ω4,5 = (σ2, σ1, σ2, σ3),
γ5,1 = (H, (H, (B), (B)), (B)), ω5,1 = (σ1, σ1, σ2, σ3, σ3),
γ5,2 = (H, (H, (B), (B)), (B)), ω5,2 = (σ2, σ1, σ2, σ3, σ3),
γ5,3 = (H, (H, (B), (B)), (B)), ω5,3 = (σ1, σ1, σ1, σ2, σ3),
γ5,4 = (H, (H, (B), (B)), (B)), ω5,4 = (σ1, σ2, σ1, σ2, σ3),
γ5,5 = (H, (H, (B), (B)), (B)), ω5,5 = (σ1, σ1, σ2, σ2, σ3),
γ5,6 = (H, (H, (B), (B)), (B)), ω5,6 = (σ1, σ2, σ2, σ2, σ3),
γ5,7 = (H, (B), (H, (B), (B))), ω5,7 = (σ1, σ2, σ3, σ1, σ3),
γ5,8 = (H, (B), (H, (B), (B))), ω5,8 = (σ1, σ2, σ3, σ2, σ3),
γ5,9 = (H, (B), (H, (B), (B))), ω5,9 = (σ1, σ1, σ1, σ2, σ3),

γ5,10 = (H, (B), (H, (B), (B))), ω5,10 = (σ2, σ1, σ1, σ2, σ3),
γ5,11 = (H, (B), (H, (B), (B))), ω5,11 = (σ1, σ2, σ1, σ2, σ3),
γ5,12 = (H, (B), (H, (B), (B))), ω5,12 = (σ2, σ2, σ1, σ2, σ3),
γ6,1 = (H, (N, (H, (B), (B))), (B)), ω6,1 = (σ1, σ1, σ2, σ3, σ2, σ3),
γ6,2 = (H, (B), (N, (H, (B), (B)))), ω6,2 = (σ1, σ2, σ3, σ1, σ2, σ3). ♢

Proof. The first-level transfer function interpolation in Part (a) is an extract of Propo-
sition 3.2, and the interpolation of the second-level transfer function with the bilinear
term in Part (b) can be found in Corollary 5.11. In Part (c), only the interpolation of
third- and higher-level generalized transfer functions needs to be proven since the first-
and second-level interpolation results follow again from Proposition 3.2 and Section 5.4.
The higher-level results are omitted for brevity since they follow the same arguments as
used for the third-level transfer function. With the three matrices V1, V3 and W4, the
projection spaces corresponding to V and W satisfy the conditions in Lemma 6.15 such
that

G(H,(B),(B))
Q,gen,3 (σ1, σ2, σ3) = G(H,(B),(B))

Q,gen,3 (σ1, σ2, σ3)

holds. Only the interpolation of the partial derivatives in the three frequency arguments
is left to be proven since the Jacobian is given by

∇G(H,(B),(B))
Q,gen,3 =

[
∂s1G(H,(B),(B))

Q,gen,3 ∂s2G(H,(B),(B))
Q,gen,3 ∂s3G(H,(B),(B))

Q,gen,3

]
.

The derivative with respect to s3 is considered first, since this frequency argument does
neither enter the quadratic term nor the corresponding Kronecker product. For the
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reduced-order transfer function, this derivative is given by
∂s3Ĝ(H,(B),(B))

Q,gen,3 (σ1, σ2, σ3) = ∂ŝC(σ3)̂K(σ3)−1Ĥ(σ2, σ1)
(
K̂(σ2)−1B̂(σ2) ⊗ K̂(σ1)−1B̂(σ1)

)
− Ĉ(σ3)̂K(σ3)−1∂sK̂(σ3)̂K(σ3)−1Ĥ(σ2, σ1)

(
K̂(σ2)−1B̂(σ2)

⊗ K̂(σ1)−1B̂(σ1)
)
.

For the two terms in the subtraction, it holds
∂ŝC(σ3)̂K(σ3)−1Ĥ(σ2, σ1)

(
K̂(σ2)−1B̂(σ2) ⊗ K̂(σ1)−1B̂(σ1)

)
= ∂sC(σ3)V K̂(σ3)−1W HH(σ2, σ1)

(
V K̂(σ2)−1W HB(σ2) ⊗ V K̂(σ1)−1W HB(σ1)

)
= ∂sC(σ3)PV(σ3)K(σ3)−1H(σ2, σ1)

(
PV(σ2)V3 ⊗ PV(σ1)V1

)
= ∂sC(σ3)PV(σ3)V4

= ∂sC(σ3)K(σ3)−1H(σ2, σ1)
(
K(σ2)−1B(σ2) ⊗ K(σ1)−1B(σ1)

)
,

and
Ĉ(σ3)̂K(σ3)−1∂sK̂(σ3)̂K(σ3)−1Ĥ(σ2, σ1)

(
K̂(σ2)−1B̂(σ2) ⊗ K̂(σ1)−1B̂(σ1)

)
= C(σ3)V K̂(σ3)−1W H∂sK(σ3)V K̂(σ3)−1W HH(σ2, σ1)

×
(
V K̂(σ2)−1B̂(σ2) ⊗ V K̂(σ1)−1B̂(σ1)

)
= W H

4 PW(σ3)H∂sK(σ3)PV(σ3)V4

= C(σ3)K(σ3)−1∂sK(σ3)K(σ3)−1H(σ2, σ1)
(
K(σ2)−1B(σ2) ⊗ K(σ1)−1B(σ1)

)
,

with the projectors (3.24) and (3.25) onto span(V ) and span(W ), respectively, which
yields the interpolation of the partial derivative with respect to s3. The other two partial
derivatives are similar to each other in their structure but need different parts of the
projection spaces for the interpolation. Consider first the derivative with respect to s1,
given by

∂s1Ĝ(H,(B),(B))
Q,gen,3 (σ1, σ2, σ3) = Ĉ(σ3)̂K(σ3)−1

(
∂s2Ĥ(σ2, σ1)

(
K̂(σ2)−1B̂(σ2) ⊗ K̂(σ1)−1B̂(σ1)

)
+ Ĥ(σ2, σ1)

(
K̂(σ2)−1B̂(σ2) ⊗ ∂s(̂K−1B̂)(σ1)

))
.

The two resulting terms in the sum need to be handled independently of each other. For
the first one, it holds

Ĉ(σ3)̂K(σ3)−1∂s2Ĥ(σ2, σ1)
(
K̂(σ2)−1B̂(σ2) ⊗ K̂(σ1)−1B̂(σ1)

)
= C(σ3)V K̂(σ3)−1W H∂s2H(σ2, σ1)

(
V K̂(σ2)−1W HB(σ2) ⊗ V K̂(σ1)−1W HB(σ1)

)
= W H

4 PW(σ3)∂s2H(σ2, σ1)
(
PV(σ2)V3 ⊗ PV(σ1)V1

)
= C(σ3)K(σ3)−1∂s2H(σ2, σ1)

(
K(σ2)−1B(σ2) ⊗ K(σ1)−1B(σ1)

)
.
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The second term needs to be treated in a different way, therefore, let it be denoted by
Ẑ1, and let Ẑ1 be the associated tensor such that

Ẑ
(1)
1 = Ẑ1 = Ĉ(σ3)̂K(σ3)−1Ĥ(σ2, σ1)

(
K̂(σ2)−1B̂(σ2) ⊗ ∂s(̂K−1B̂)(σ1)

)
.

With the 2-mode matricization of this tensor and (2.2), it holds

Ẑ
(2)
1 = ∂s(̂K−1B̂)H(σ1)Ĥ(2)(σ2, σ1)

(̂
K(σ2)−1B̂(σ2) ⊗ K̂(σ3)−ĤC(σ3)H

)
= ∂s(̂K−1B̂)H(σ1)V HH(2)(σ2, σ1)

(
V K̂(σ2)−1W HB(σ2) ⊗ W K̂(σ3)−HV HC(σ3)H

)
= ∂s(̂K−1B̂)H(σ1)V HH(2)(σ2, σ1)

(
PV(σ2)V3 ⊗ PW(σ3)W4

)
=
(
∂sB̂(σ1)H − B̂(σ1)HK̂−1(σ1)∂sK̂(σ1)

)
K̂(σ1)−1V HK(σ1)HW5

=
(
∂sB(σ1)H − V1∂sK(σ1)

)
PW(σ1)W5

= ∂s(K−1B)H(σ1)H(2)(σ2, σ1)
(
K(σ2)−1B(σ2) ⊗ K(σ3)−HC(σ3)H

)
.

This gives the interpolation of the partial derivative with respect to s1. The interpolation
with respect to s2 follows analogously to s1 but now by using W6.

Theorem 6.16 shows additionally to matching Hermite interpolation conditions the
interpolation of generalized transfer functions up to level 6 in an implicit way. This
strongly motivates the restriction of evaluations for the projection spaces to the lower
transfer function levels, since a lot more can be matched implicitly. This advantage
comes from idea of generalized transfer functions to only use products of the involved
system terms. In comparison, the regular and symmetric transfer functions contain linear
combinations of these terms, which complicates corresponding interpolation approaches.

As for the other two transfer function concepts, the subspace conditions in Theorem 6.16
simplify under some additional assumptions, namely, a special selection of interpolation
points, the system being SISO and the quadratic term having an underlying symmetric
tensor. Since these simplifications are less significant than in Theorems 6.5 and 6.11 and
quickly follow from Theorem 6.16, they are only stated in the following corollary without
further proof.

Corollary 6.17 (Implicit Hermite interpolation of gen. SISO TFs):
Let GQ be a quadratic-bilinear SISO system, described by its generalized transfer functions
Gγ

Q,gen,k in (6.20) and (6.21), ĜQ the reduced-order quadratic-bilinear SISO system
constructed by (6.22), with its reduced-order generalized transfer functions Ĝγ

Q,gen,k, and
σ ∈ C an interpolation point such that the matrix functions C, K−1, B, N , H and K̂−1

are complex differentiable in this point. Also, let the tensor H, given by its 1-mode
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matricization H(1) = H, be symmetric. Let the following vectors be given

v1 = K(σ)−1B(σ),
v2 = K(σ)−1N (σ)v1,

v3 = K(σ)−1H(σ, σ)(v1 ⊗ v1),

and, also,

w1 = K(σ)−HC(σ)H,

w2 = K(σ)−HN (σ)Hw1,

w3 = K(σ)−HH(σ, σ)(2)(v1 ⊗ w1).

Then the following statements hold:

(a) If V and W are constructed such that

span(V ) ⊇ span(v1) and span(W ) ⊇ span(w1),

then the following interpolation conditions are fulfilled:

G(B)
Q,gen,1(σ) = Ĝ(B)

Q,gen,1(σ), ∇G(B)
Q,gen,1(σ) = ∇Ĝ(B)

Q,gen,1(σ),
G(N,(B))

Q,gen,2(σ, σ) = Ĝ(N,(B))
Q,gen,2(σ, σ), G(H,(B),(B))

Q,gen,3 (σ, σ, σ) = G(H,(B),(B))
Q,gen,3 (σ, σ, σ).

(6.33)

(b) If V and W are constructed such that

span(V ) ⊇ span
([

v1 v2
])

and span(W ) ⊇ span
([

w1 w2
])

,

then, additionally to (6.33), the following interpolation condition is fulfilled:

∇G(N,(B))
Q,gen,2(σ, σ) = ∇Ĝ(N,(B))

Q,gen,2(σ, σ),

and, additionally,

G(N,(N,(B)))
Q,gen,3 (σ, σ, σ) = Ĝ(N,(N,(B)))

Q,gen,3 (σ, σ, σ),
∂s2G(N,(N,(B)))

Q,gen,3 (σ, σ, σ) = ∂s2Ĝ(N,(N,(B)))
Q,gen,3 (σ, σ, σ),

G(N,(N,(N,(B))))
Q,gen,4 (σ, σ, σ, σ) = Ĝ(N,(N,(N,(B))))

Q,gen,4 (σ, σ, σ, σ),
G(H,(B),(N,(B)))

Q,gen,4 (σ, σ, σ, σ) = Ĝ(H,(B),(N,(B)))
Q,gen,4 (σ, σ, σ, σ),

G(N,(H,(B),(B)))
Q,gen,4 (σ, σ, σ, σ) = Ĝ(N,(H,(B),(B)))

Q,gen,4 (σ, σ, σ, σ),
G(H,(N,(B)),(N,(B)))

Q,gen,5 (σ, σ, σ, σ, σ) = Ĝ(H,(N,(B)),(N,(B)))
Q,gen,5 (σ, σ, σ, σ, σ),

G(N,(H,(B),(N,(B))))
Q,gen,5 (σ, σ, σ, σ, σ) = Ĝ(N,(H,(B),(N,(B))))

Q,gen,5 (σ, σ, σ, σ, σ),
G(N,(H,(N,(B)),(N,(B))))

Q,gen,6 (σ, σ, σ, σ, σ, σ) = Ĝ(N,(H,(N,(B)),(N,(B))))
Q,gen,6 (σ, σ, σ, σ, σ, σ).
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(c) If V and W are constructed such that

span(V ) ⊇ span
([

v1 v3
])

and span(W ) ⊇ span
([

w1 w3
])

,

then, additionally to (6.33), the following interpolation condition is fulfilled:

∇G(H,(B),(B))
Q,gen,3 (σ, σ, σ) = ∇G(H,(B),(B))

Q,gen,3 (σ, σ, σ),

and, additionally,

G(N,(H,(B),(B)))
Q,gen,4 (σ, σ, σ, σ) = Ĝ(N,(H,(B),(B)))

Q,gen,4 (σ, σ, σ, σ),
G(H,(B),(N,(B)))

Q,gen,4 (σ, σ, σ, σ) = Ĝ(H,(B),(N,(B)))
Q,gen,4 (σ, σ, σ, σ),

G(H,(B),(H,(B),(B)))
Q,gen,5 (σ, σ, σ, σ, σ) = Ĝ(H,(B),(H,(B),(B)))

Q,gen,5 (σ, σ, σ, σ, σ),
∂s3G(H,(B),(H,(B),(B)))

Q,gen,5 (σ, σ, σ, σ, σ) = ∂s3Ĝ(H,(B),(H,(B),(B)))
Q,gen,5 (σ, σ, σ, σ, σ),

G(H,(B),(N,(H,(B),(B))))
Q,gen,6 (σ, σ, σ, σ, σ, σ) = Ĝ(H,(B),(N,(H,(B),(B))))

Q,gen,6 (σ, σ, σ, σ, σ, σ). ♢

In Corollary 6.17, formally less interpolation conditions are matched than in Theo-
rem 6.16. This comes from the symmetry of H and the single interpolation point σ, i.e.,
transfer functions that involve the quadratic term H are independent of the application
order in the quadratic term and the associated Kronecker product, i.e.,

Γ
(
(H, γ2, γ3), σ, . . . , σ

)
= Γ

(
(H, γ3, γ2), σ, . . . , σ

)
.

In other words, interpolation conditions in Corollary 6.17 that contain quadratic and
bilinear terms actually count for two, e.g., from

G(H,(B),(N,(B)))
Q,gen,4 (σ, σ, σ, σ) = Ĝ(H,(B),(N,(B)))

Q,gen,4 (σ, σ, σ, σ),

it follows that

G(H,(N,(B)),(B))
Q,gen,4 (σ, σ, σ, σ) = Ĝ(H,(N,(B)),(B))

Q,gen,4 (σ, σ, σ, σ)

also holds. The choices in writing Corollary 6.17 remind of the results in [92] and the
simplified representation of generalized transfer functions therein.

6.5 Numerical experiments
In this section, the developed theory from Section 6.4 is tested in numerical experiments
with the Toda lattice model from Section 1.3.3. Therefore, the QBDAE version from
Section 6.2.1 as well as the QBODE version from Section 6.2.2 of the Toda lattice are
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6.5 Numerical experiments

considered separately. The model is used to describe a crystal structure with three
different particle types and the system parameters are set to be

m1 = m4 = ... = 1, m2 = m5 = ... = 4, m3 = m6 = ... = 2,

γ1 = γ4 = ... = 0.1, γ2 = γ5 = ... = 0.2, γ3 = γ6 = ... = 0.3,

k1 = k4 = ... = 1, k2 = k5 = ... = 0.5, k3 = k6 = ... = 1.5,

with n2 = 5 000 particles in the crystal. The system is modeled to be SISO with excitation
of the first five particles as input and measurement of the summed velocities of the 8-th
til 10-th particle as output.

For the model reduction, only one-sided projections are used to preserve mechanical
components of the quadratic-bilinearizations. On the one hand, Theorem 6.2 is used
for the interpolation of the first and second symmetric subsystem transfer functions
GQ,sym,k in identical interpolation points σ1 = σ2 = σ, and further denoted by SymInt.
On the other hand, Theorem 6.13 is applied for the interpolation of the first-, second- and
third-level generalized transfer functions with the nested tuples γ1 = (B), γ2 = (N, (B))
and γ3 = (H, (B), (B)) and identical interpolation points σ1 = σ2 = σ3 = σ, further on
denoted as GenInt. The case of regular subsystem transfer functions is omitted since for
the default choice (6.29), the constructed right projection space is identical to the one for
the symmetric transfer function interpolation. Also, the alternative choice described in
Remark 6.9 cannot be used since the quadratic matrix pencils of the linear system parts
in QBDAE and QBODE have eigenvalues in 0 and, therefore, cannot be evaluated in that
point. The reduced-order models are then generated similar to Section 5.5.4 with either
logarithmically equidistant interpolation points in the frequency range [10−2, 102] rad/s,
denoted by (equi.), or by an oversampling procedure and truncation via the pivoted QR
decomposition to the appropriate dimension, denoted by (avg.).

A foreseeable problem will be the preservation of stability. A standard truncation of
the block structures in the spring and damper matrices in (6.6) and (6.8) via an arbitrary
basis matrix will very likely corrupt the relation of the original state and substitution
variables. This might introduce unstable eigenvalues in the linear system components
and lead to unstable simulations using the reduced-order models. An approach to tackle
this problem by preserving the block structure of the system matrices is known as split
congruence transformation; see, e.g., [88]. Therefore, let V ∈ R2n2×r be any constructed
truncation matrix. In the split congruence transformation, the basis matrix is separated
into the parts corresponding to the different types of state variables and then rearranged
in block diagonal form for the one-sided projection, i.e., the new truncation matrix
Ṽ ∈ R2n2×2r is constructed such that

Ṽ =
[
V1 0
0 V2

]
, with V =

[
V1
V2

]
. (6.34)
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Table 6.1: Relative approximation errors for the QBDAE Toda lattice example with
reduced orders r2 = 36 or r2 = 72.

Method L2 L∞ H(1)
∞ H(2,sym)

∞ H(2,reg)
∞

SymInt(equi.) ∞ ∞ 8.623e-02 4.621e-01 4.612e-01
SymInt2(equi.) 9.906e-03 1.360e-02 5.269e-02 4.675e-01 5.454e-01
SymInt(avg.) ∞ ∞ 1.317e-01 6.446e-01 1.257e+01
SymInt2(avg.) 1.338e-01 2.899e-01 4.642e-02 3.563e-01 3.382e-01
GenInt(equi.) ∞ ∞ 3.024e-01 3.185e+00 2.497e+00
GenInt2(equi.) 4.874e-03 1.137e-02 2.109e-02 2.076e-01 2.297e-01
GenInt(avg.) ∞ ∞ 2.356e-01 1.969e+00 2.558e+00
GenInt2(avg.) 3.302e-02 5.547e-02 8.171e-03 1.095e-01 1.041e-01

An important observation is that by construction of (6.34), it holds

span(V ) ⊆ span(Ṽ ),

and, therefore, transfer function interpolation can be preserved. But note that the
constructed reduced-order model will be twice as large as when matching only the
interpolation conditions due to the additional preservation of the block structure. For all
model reduction methods above, a split congruence transformation-based version is also
computed and denoted with an additional 2 in the name. For example, SymInt2(equi.)
will denote the reduced-order model that interpolates the symmetric transfer functions
in logarithmically equidistant points and was computed via (6.34).

For the comparisons in the two following sections, the reduced-order models are
computed for a fixed chosen order and the relative approximation errors are given in the
approximate norms in time and frequency domain based on (2.44)–(2.46) and (5.16). For
the time domain norms, simulations in the interval [0, 100] s were computed using the
input signal

u(t) = η(tj), for tj ≤ t < tj+1, (6.35)

with j = 0, . . . , 99, equidistant time steps tj = j · 100
99 and presampled Gaussian white

noise η(t). Due to the different transfer function concepts, H(1)
∞ will denote the relative

H∞-error for the linear transfer function, H(2,sym)
∞ the extension of (5.16) to the second

symmetric subsystem transfer function, and H(2,reg)
∞ the extension to the second regular

subsystem transfer function. Also, the usual pointwise error measures (4.19) and (4.20)
will be used in plots.
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Figure 6.1: Time domain results for the QBDAE Toda lattice example.

6.5.1 Toda lattice QBDAE version

As first example, the QBDAE version of Toda lattice model (6.6) is considered. The
reduced order was set to r2 = 36 for the basic interpolation methods such that the
split-congruence-based models are of order r2 = 72. The resulting relative approximation
errors are shown in Table 6.1. A time domain error being infinity implies that the reduced-
order model did not produce a stable time simulation for the given input signal (6.35). In
that sense, only the split-congruence-based reduced-order models were successfully used
in the simulations. Comparing the different methods, SymInt2(equi.) and GenInt2(equi.)
performed best in the time domain and StrInt2(avg.) and GenInt2(avg.) provided
reasonably small errors in the frequency domain H∞-norms.

Figure 6.1 shows the time domain results for the split-congruence-based methods. In
Figure 6.1a, the amplitude of the output signal is shown and only the averaged subspace
methods differ from the original system’s behavior in the eyeball-norm. Looking at the
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Figure 6.2: First subsystem transfer functions and approximation errors for the QBDAE
Toda lattice example.

pointwise relative errors in Figure 6.1b, the interpolation methods with equidistant points
clearly perform better than the averaged subspace approaches. But SymInt2(avg.) and
GenInt2(avg.) are able to provide a very constant error behavior over the simulated time
range except at the beginning.

The results for the linear transfer functions are shown in Figure 6.2. It becomes clear
that the small relative H∞-errors in the averaged subspaces basically resulted from a
good approximation of the transfer function region with large magnitudes. SymInt2(avg.)
and GenInt2(avg.) basically fail to approximate the transfer function behavior for higher
frequencies. The pointwise relative errors in Figure 6.2b reveal all methods to have a
similar error behavior for low frequencies. But only SymInt2(equi.) and GenInt2(equi.)
are capable of keeping this error level and even improving the approximation quality for
higher frequencies due to enforced interpolation in this frequency region. While those
results are not explicitly shown here, a very similar behavior in the frequency domain
can be seen for the reduced-order models without the split congruence transformation
(r2 = 36). This is not surprising since the classical and split-congruence-based models are
based on the same interpolation conditions for the construction of the projection spaces.

6.5.2 Toda lattice QBODE version
As second numerical example, the QBODE version of the Toda lattice model (6.8) is
considered. It turned out that this model was more complicated to reduce than the
QBDAE version. Therefore, the reduced order was raised to r2 = 60 in the basic
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Table 6.2: Relative approximation errors for the QBODE Toda lattice example with
reduced orders r2 = 60 or r2 = 120.

Method L2 L∞ H(1)
∞ H(2,sym)

∞ H(2,reg)
∞

SymInt(equi.) ∞ ∞ 5.792e-02 4.116e-01 2.916e-01
SymInt2(equi.) 9.478e-05 2.342e-04 2.979e-03 3.634e-02 1.596e-02
SymInt(avg.) ∞ ∞ 2.503e-02 2.278e-01 2.327e+01
SymInt2(avg.) 6.206e-02 2.106e-01 1.304e-03 1.888e-02 1.619e-02
GenInt(equi.) ∞ ∞ 1.886e-01 1.098e+00 4.346e-01
GenInt2(equi.) 5.270e-03 9.482e-03 9.601e-02 1.137e-01 6.487e-02
GenInt(avg.) ∞ ∞ 1.195e-01 7.094e-01 5.414e+01
GenInt2(avg.) 1.142e-02 3.866e-02 2.090e-03 9.805e-03 8.086e-02

interpolation approach and, consequently, to r2 = 120 for the split-congruence-based
methods. This order was chosen such that all constructed reduced-order models based
on the split congruence transformation provided a stable time simulation behavior. The
resulting relative approximation errors are shown in Table 6.2. It is not surprising
that due to the increased reduced orders most of the relative errors are several orders
of magnitude smaller than those in Table 6.1. But this time, the symmetric transfer
function interpolation performs exceptionally better than the generalized transfer function
interpolation as the relative approximation errors are one to two orders of magnitude
smaller. For the H∞-errors in the frequency domain, SymInt2(equi.) is even compatible
with the results of the averaged subspace approaches.

The time simulation results for the split-congruence-based methods are shown in
Figure 6.3. In the eyball-norm, only SymInt2(avg.) misses a bit of the time simulation
behavior of the full-order system at the end of the time range in Figure 6.3a. The relative
pointwise errors (Figure 6.3b) look very similar to the results in the QBDAE case, with
SymInt2(equi.) and GenInt2(equi.) best performing followed by GenInt2(avg.) and
SymInt2(avg.) with a flatter error behavior. The clear winner of the comparison is
SymInt2(equi.).

In frequency domain, with the linear transfer functions shown in Figure 6.4, similar
results to the QBDAE case are obtained. While this time the approximation quality
of SymInt2(avg.) and GenInt2(avg.) increased significantly, both approaches still fail
to reflect the transfer function behavior for higher frequencies. However, this is again
provided by SymInt2(equi.) and GenInt2(equi.) due to interpolation points in that
frequency region. Similar results are obtained for the corresponding methods without
the split congruence transformation (r2 = 60), which are not plotted in Figure 6.4.

239



6 Structured Nonlinear Systems

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

Time t (s)

y
(t

)

(a) Time simulation.

0 10 20 30 40 50 60 70 80 90 10010−15

10−6

103

Time t (s)

ϵ r
el

(t
)

(b) Pointwise relative errors.

FOM SymInt2(equi.) SymInt2(avg.)
GenInt2(equi.) GenInt2(avg.)

Figure 6.3: Time domain results for the QBODE Toda lattice example.

6.6 Conclusions
In this chapter, the case of structured nonlinear systems was considered, with a particular
focus on nonlinear mechanical systems. To transform the general nonlinearities into
an easier manageable form, the process of quadratic-bilinearization, known from the
unstructured first-order system case, was outlined. It was used to derive systems
of quadratic-bilinear differential-algebraic and ordinary differential equations for the
motivating initial example of the nonlinear Toda lattice model. Then, the three known
transfer function concepts of quadratic-bilinear systems were extended to the structured
system setting using the example of quadratic-bilinear mechanical systems for motivation.
As a result, new formulations of the symmetric, regular and generalized subsystem
transfer functions were proposed for the case of structured quadratic-bilinear MIMO
systems. In a similar fashion to Chapter 5, structured interpolation theory was developed
for all three different transfer function concepts. This included results generalizing a
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Figure 6.4: First subsystem transfer functions and approximation errors for the QBODE
Toda lattice example.

lot of theory known from the literature about unstructured quadratic-bilinear systems
as well as formulations for the special case of SISO systems with underlying symmetric
tensors for the quadratic terms. The theory was tested in numerical experiments on
the two quadratic-bilinear versions (QBDAE and QBODE) of the Toda lattice model.
Concerning the numerical approximation results, one can say that the additional step
from DAEs to ODEs in the quadratic-bilinearization of the Toda lattice did not pay off
significantly. This is seen in the more complex structure in the QBODE case leading to
larger reduced-order models to provide stable simulations in comparison to the QBDAE
case. However, in practice, a careful consideration of the different possible formulations
resulting from the quadratic-bilinearization process is necessary. In both cases that
were presented here, it was possible to construct reasonably small, structured reduced-
order models that could be used as surrogates in numerical computations. Using the
split congruence transformation approach, it was possible to retain even parts of the
block structure of the system matrices, which allowed to compute structure-preserving,
interpolating reduced-order models, which also provided stable time simulations.
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CONCLUSIONS
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7.1 Summary
This thesis investigates new techniques for the problem of structure-preserving model order
reduction for different kinds of mechanical systems described by differential equations
involving second-order time derivatives. The contributions described in this thesis are of
theoretical as well as of computational nature.

In Chapter 4, the case of linear mechanical systems is studied. In the first part, a new
structure-preserving dominant pole algorithm has been developed for the special case
of modally damped second-order systems. A new definition of dominant pole pairs is
used to derive a numerical procedure that preserves the internal system structure in all
computational steps and to develop error bounds in the H∞-norm implying good approx-
imations via dominant poles if the computed dominance measure decays fast enough. In
contrast to related approaches from the literature, the new method takes the complete
system structure into account leading to an efficient model reduction algorithm, for which
even a structure-preserving extension has been proposed to tackle occurring problems of
the approximation quality using structured interpolation. Numerical experiments have
revealed the new dominant pole methods to easily outperform the classical modal trunca-
tion approach, as well as to be compatible with other types of structure-preserving model
reduction methods as, e.g., second-order balanced truncation, in terms of approximation
quality.

In practical applications, often only limited ranges in frequency or time domain are
of interest. Under the observation that localized reduced-order models can be more
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accurate or, alternatively, smaller than global approximations, in the second part of
Chapter 4, new structure-preserving balanced truncation methods for the limited model
reduction of linear second-order systems have been proposed. These methods are based
on an extension of the definition of limited system Gramians to second-order systems,
which generalizes ideas known from the literature. The application of the methods to
large-scale sparse systems becomes feasible by using appropriate solvers for the occurring
matrix equations with right-hand side matrix functions. The application of these solvers
to mechanical systems is heavily improved by using an appropriate underlying first-order
realization, namely the strictly dissipative realization. In general, reduced-order models
computed by limited balanced truncation methods tend to be unstable already in the
first-order system case. Therefore, alternative approaches were suggested replacing the
fully limited system Gramians by their infinite counterparts or by modified versions. Also,
the misconception from the literature is clarified that even these modifications cannot
guarantee stable reduced-order models in the general case. The capabilities of the new
structure-preserving limited model reduction methods is tested in numerical experiments,
which show the new approaches to be appropriate tools for localized approximation
problems.

A first step into the direction of describing nonlinear physical phenomena are bilinear
control systems. In Chapter 5, general structured bilinear systems has been considered
using the case of mechanical systems as motivation. Based on the Volterra series expansion
of bilinear systems, a new concept of structured subsystem transfer functions has been
developed. This new framework allows the representation of structured bilinear systems
in the frequency domain, and enables the development of structure-preserving model
reduction methods for bilinear systems. The usual question in projection-based model
reduction is the choice of the projection spaces. Here, transfer function interpolation is
suggested as it has been proven to be an efficient tool for the construction of reduced-
order models in the linear and unstructured bilinear case. Similar to [24], a variety of
interpolation results has been developed for scalar and matrix interpolation of structured
subsystem transfer functions. In contrast to the existing interpolation theory for bilinear
systems in the literature, the developed results hold for a large variety of internal
system structures. In numerical experiments, the new structure-preserving interpolation
is compared to existing model reduction methods that produce unstructured bilinear
systems. The structured interpolation turned out to be the superior approach in terms
of numerical costs as well as approximation quality. The considered system class is then
further extended by providing interpolation results for parametric structured bilinear
systems. A common problem in case of MIMO dynamical systems is the fast growth of
the reduced-order models to satisfy matrix interpolation conditions. Especially in the
bilinear system case with the multivariate subsystem transfer functions, the projection
space dimensions grow exponentially fast with the transfer function level. Therefore,
a new tangential interpolation framework has been developed that efficiently tackles
this problem. In contrast to an existing approach for blockwise tangential interpolation
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for unstructured bilinear systems from the literature [31, 160], the new framework is
capable of restricting the projection space dimensions to only linear growth with the
transfer function level, and can also handle structured bilinear systems. Also, due to
the generality of the new framework, it can be used to easily generalize the blockwise
tangential interpolation from the literature to the structured transfer function setting.
Numerical examples have verified the new tangential interpolation framework to be an
efficient tool for model reduction of structured bilinear MIMO systems.

Following the bilinear system case in Chapter 5, the case of structured nonlinear systems
has been discussed in Chapter 6, with a strong focus on nonlinear mechanical systems.
The process of quadratic-bilinearization has been used to simplify system nonlinearities
into quadratic-bilinear form. Based on that, the different concepts for subsystem transfer
functions from the literature have been generalized from first-order unstructured systems
to a new structured setting, which allows for a large variety of internal system structures
such as second-order time derivatives arising in the mechanical system case. A new
transfer function interpolation framework has been developed for the three considered
transfer function types of quadratic-bilinear systems, namely symmetric, regular and
generalized transfer functions. These results are, on the one hand, a generalization of
known theory from the literature to the structured system case. On the other hand,
they generalize previous interpolation theory in terms of system assumptions, since the
complete theory is formulated for the MIMO system case, as well as very often the tensor
associated with the quadratic terms is not assumed to be symmetric.

7.2 Future research perspectives
A common problem that was repeatedly mentioned in Chapters 4 to 6 is the preservation
of stability in the constructed reduced-order models. Already for linear systems, this
problem is only solved in very particular cases or by certain model reduction methods,
e.g., using a balanced truncation-based approach for first-order systems or using only a
one-sided projection in case of systems with dissipative generalized or quadratic matrix
pencils. This amounts even further to the question of appropriate stability concepts in
the structured bilinear and nonlinear system cases and what could be preserved in the
model reduction process. However, further research is needed with respect to structured
transfer functions for all the different system classes and the stability of the corresponding
dynamical systems.

While for the dominant pole-based method in the first part of Chapter 4 an error bound
in the H∞-norm has been developed, the general problem of bounding the approximation
error remains open for the limited second-order balanced truncation approaches in the
second part of Chapter 4. So far no error bounds are known even for the global (classical)
second-order balanced truncation methods. Also, in case of the first-order limited
balanced truncation methods, no error bounds for the local approximations in frequency
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or time domain have been developed so far. Only for the modified frequency-limited
balanced truncation, an a-priori error bound is provided in the H∞-norm for the global
approximation behavior [102]. In principle, a-posteriori error computations would be
possible. For frequency-limited methods, H∞-norm computation methods [6–8] can be
used to determine the local approximation quality. There are also generalizations of
the H2-norm to the frequency- and time-limited cases that could be computed; see,
e.g., [94, 153]. However, the computation of a-posteriori errors is usually hard and
corresponding numerical algorithms sometimes behave unreliably. In the frequency
limited case, an alternative is given by error estimators like in [82] that can be used to
efficiently bound the approximation errors in a localized version of the H∞-norm.

Drawing the attention to the new structured interpolation frameworks for bilinear and
quadratic-bilinear systems in Chapters 5 and 6 a question arises, which also exists for
the linear system case: What is a good or even optimal choice of interpolation points for
a given structured system? This question becomes even more involved when dealing with
the multivariate transfer functions of bilinear and quadratic-bilinear systems that need
sequences of interpolation points to be selected. In this thesis, heuristics inspired by the
linear system case have been used like the greedy H∞-selection or the points resulting
from TF-IRKA for the linear system components. These have been shown to work well
in the numerical examples. However, the question of optimal or better selections of
interpolation points remains open. The optimal interpolation point selection problem
has been solved only in the H2-norm for selected structures in the linear system case; see,
e.g., [22, 103,144,155,157]. Also in case of unstructured bilinear and quadratic-bilinear
systems, optimal interpolation points for H2-norm minimization are known but only in
the framework of Volterra series interpolation; see, e.g., [29, 40,85, 190]. A remedy could
be seen in the extension of the work on error estimators [82, 121], but in general, further
research is needed for the different structured nonlinear system types. In the same sense,
what is practically needed are bounds or estimates on the resulting approximation errors
in suitable norms for model reduction of bilinear and quadratic-bilinear system. Thinking
of the new tangential interpolation framework for bilinear systems in Section 5.6, similarly
to the problem of interpolation point selection, also appropriate tangential directions
as well as scaling vectors need to be found. In the experiments of this thesis, random
tangential directions and the H2-optimal directions from the linear TF-IRKA have been
used. The scaling vectors were chosen according to different motivations in frequency
and time domain. However, the question of heuristic or even optimal directions and
scaling vectors for the tangential subsystem interpolation of structured bilinear systems
remains open.
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THESES

1. This thesis is concerned with the development of new structure-preserving model
order reduction methods for mechanical systems. Modal and balanced truncation-
based techniques are considered for the linear system case as well as interpolation-
based approaches for nonlinear system classes covering an even more general
structure in differential equations than only second-order time derivatives as in the
mechanical system case.

2. For the special case of modally damped linear mechanical systems, a structured
pole-residue form is derived in which the system poles appear pairwise corresponding
to the same residue. Based on that, dominant pole pairs for modally damped
systems are defined and a new dominant pole algorithm is developed that preserves,
in each computation step, the modally damped system structure.

3. Two H∞-error bounds are derived for the new structured dominant pole algorithm.
One of them implies good approximation results in cases where the dominance
measure of the dominant pole pairs decays fast enough. This bound is reformulated
to be used in practical computations.

4. A structure-preserving basis enrichment method is suggested that allows for further
approximation when the error of the dominant pole algorithm stagnates. This
approach preserves computed dominant poles in the reduced-order model.

5. The ideas of second-order balanced truncation methods are combined with the fre-
quency- and time-limited system Gramians to develop structure-preserving limited
balanced truncation methods for linear second-order systems. These methods have
been shown to provide similar or better local approximation errors in time or
frequency ranges of interest compared to the classical (unlimited) second-order
balanced truncation methods while preserving the second-order system structure.

6. The preservation of stability in the constructed reduced-order models is a known
problem of limited balanced truncation. Two different modifications of the struc-
tured limited balanced truncation methods are outlined to potentially preserve
stability in the reduced-order models in cases where the fully limited methods fail
to do so. The approach that replaces limited by infinite Gramians provides good
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Theses

results in terms of stability preservation and compatible approximation quality in
frequency and time regions of interest compared to the fully limited methods.

7. The formulation of multivariate subsystem transfer functions of bilinear systems is
extended to the structured system case. This includes, in particular, the case of
mechanical bilinear systems. Another system class covered by this framework are
bilinear time-delay systems.

8. A new interpolation framework is developed for the structured subsystem transfer
functions of bilinear systems. Thereby, conditions on projection spaces used for
model order reduction are imposed to satisfy simple and Hermite interpolation
conditions. By two-sided projection, it is possible to match interpolation conditions
with higher transfer function levels as well as higher-order partial derivatives without
explicitly evaluating the corresponding transfer functions.

9. The interpolation theory is further extended to the case of structured parametric
bilinear systems. Conditions on the construction of the projection spaces similar to
the non-parametric case are imposed. The sensitivities of the subsystem transfer
functions with respect to the parameters can be matched implicitly via two-sided
projection.

10. In case of MIMO bilinear systems, the subsystem transfer functions are matrices, for
which the input dimension is growing exponentially with the transfer function level.
The scalar transfer function interpolation changes to matrix interpolation in this
case. Therefore, the dimensions of the projection spaces also grow exponentially.
A new tangential interpolation framework is proposed to restrict the subsystem
transfer function interpolation to vectors instead of matrices independent of the
transfer function level.

11. The three known concepts for the representation of quadratic-bilinear systems
in the frequency domain via multivariate transfer functions are extended to the
case of structured quadratic-bilinear MIMO systems. As motivation a nonlinear
mechanical system is used and rewritten into quadratic-bilinear form.

12. For all structured transfer function concepts, conditions on projection spaces
for model order reduction are imposed to satisfy transfer function interpolation
conditions. This includes results on the interpolation of arbitrarily high transfer
function levels and the implicit interpolation of higher-order partial derivatives.
The special case of SISO systems with underlying symmetric tensors representing
the quadratic terms from the literature is also treated.
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STATEMENT OF SCIENTIFIC COOPERATIONS

This work is based on articles and reports (published and unpublished) that have been
obtained in cooperation with various coauthors. To guarantee a fair assessment of this
thesis, this statement clarifies the contributions that each individual coauthor has made.
The following people contributed to the content of this work:

• Peter Benner (PB), Max Planck Institute for Dynamics of Complex Technical
Systems, Magdeburg, Germany;

• Serkan Gugercin (SG), Virginia Polytechnic Institute and State University, Blacks-
burg, USA;

• Jens Saak (JS), Max Planck Institute for Dynamics of Complex Technical Systems,
Magdeburg, Germany.

Chapter 4
The work in Section 4.1 was self-directed. Initially, I got pointed to [22] by PB for ideas
about structured H2-optimality conditions, which led instead to the idea of re-using the
structured pole residue form in [22] for modal truncation. Some parts of the section were
proofread first by JS for the publication in [168] and later by PB for [27]. Section 4.2
was initiated by PB with the idea to extend the previous work from [47, 130] to the
second-order system case. All theoretical and computational results were obtained by
myself and proofread by PB and in parts by JS for the publication in [26,27,57,168]. Also,
the results published in [168] were proofread by Dirk Wolfram, formerly Dirk Siebelts,
from Kiel University, and the results in [26,27] were proofread by Matthias Voigt and
Paul Schwerdtner from the Technical University Berlin, as well as by Ines Dorschky and
Timo Reis from the Hamburg University, and Rebekka S. Beddig from the Hamburg
University of Technology. The three MATLAB toolboxes [55,58,59], which implement
large parts of the methods described in this chapter, and the codes for the numerical
experiments were all authored by myself.
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Chapter 5
SG initiated the idea to investigate structure-preserving model reduction for mechanical
bilinear systems via interpolation. I extended this idea to general structured transfer
functions of bilinear systems in Sections 5.2 to 5.4. For Section 5.5, PB suggested
considering an extension to parametric structured bilinear systems. All these presented
theoretical and computational results were obtained by myself but proofread and improved
by PB and SG for the publication in [42, 43]. Section 5.6 was self-initiated. After my
initial motivation of extending tangential interpolation to bilinear systems in the sense
of Section 5.6.1 and discussions with JS leading to the time domain motivation in
Section 5.6.2, I developed on my own the unifying interpolation framework for tangential
interpolation of structured bilinear systems presented in Section 5.6.3. Discussions
with SG and PB improved the presentation of the theoretical results. All codes for
the numerical experiments in this chapter were authored by myself and I obtained the
computational results on my own.

Chapter 6
The idea to consider quadratic-bilinear mechanical systems in a similar interpolation
framework as developed for the bilinear case was suggested by SG. He pointed to [101]
for the concept of symmetric transfer functions. I extended the symmetric, and later the
regular and generalized transfer functions, to the general structured quadratic-bilinear
system setting and developed the presented interpolation theory by myself. The codes
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