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Abstract

Control systems lie at the heart of many technical achievements. Often overall system
and thus technological progress is achieved by increasing the quantity and complexity
of the imposed system requirements. Achieving the requirements typically involves
that controller satisfies safety limits, improves the performance, and provides efficient
operation. This, in turn, poses the challenge in systematically formulating and guar-
anteeing these often diverse requirements.
This work presents a set-based framework for guaranteed controller tuning and

analysis of hybrid dynamical systems. The three main pillars of this work are: first,
the discussion and formulation of quantitative and qualitative requirements; second,
providing guarantees for the system behaviour in spite of the uncertainties; and third,
taking the dynamical phenomena typical for hybrid systems into account.
With respect to the considered uncertainties, we consider an unknown-but-bounded

uncertainties, where the uncertainties are specified by semi-algebraic sets. To ac-
commodate the uncertainties and still provide guarantees, we consider a set-based
formulation in the form of a feasibility problem. This set-up allows to obtain in an
easy way approximation sets of the controller parameters that satisfy all conditions.
Furthermore, the set-up allows including system performance specifications and robust
control requirements, which we divide into quantitative and qualitative requirements.
Quantitative requirements enforce primarily fixed admissible ranges for the vari-

ables’ values at specified times, despite uncertainties. They are motivated by, for
example, the requirements on the transient response characteristics. They can also
be used to formulate control scenarios like disturbance rejection, path following, and
trajectory tracking. In contrast, qualitative requirements focus on temporal uncer-
tainty and conditional constraints. Through qualitative requirements, we can take
into account logical conditions and include temporal operators inspired by temporal
logic. Moreover, we show how to handle discontinuity phenomena directly in the con-
troller design. As a result, the quantitative and qualitative requirements provide the
foundation to consider and enforce a wide range of requirements when designing and
tuning a controller. For example, the set-based approach allows to design the control
response relative to the initial conditions or to derive reference values for controller
tuning. It furthermore allows to deal with the problem of robust error-free steady-state
control. Moreover, we are interested in the controller parameters that provide specific
behaviours for all initial conditions and all references from a desired set of values.
Throughout this work, we provide simulation examples, as well as experimental

validation results. These examples demonstrate the presented approach’s applicability
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starting from a single control loop up to the operation validation and at a plant-wide
scale. The applications vary from level control in tanks, through magnetic levitation
and battery charging, to discrete-manufacturing systems.



Deutsche Kurzfassung

Regelsysteme sind das Herzstück vieler technischer Innovationen. Häufig erfordert
dieser technologische Fortschritt eine Erhöhung notwendigen, oftmals komplexe Sys-
temanforderungen. Die Erfüllung der Anforderung involviert oftmals die Entwurf von
Regler, die unter aller Umständen Sicherheitsgrenzen einhält, die Güte verbessert und
einen effizienten Betrieb ermöglichen. Dies wiederum führt die Frage, wie sich die
unterschiedlichen Systemanforderungen systematisch formulieren und unter Unsicher-
heiten mit Garantien erfüllen lassen.
Dieser Arbeit stellt einen mengenbasierten Ansatz für die garantierte Reglertunen

und für die Analyse hybrider dynamischer Systeme vor. Die drei Eckpfeiler der Arbeit
bilden: die Diskussion und Formulierung quantitativer und qualitativer Anforderungen
und den Regelkreis; zweitens die Gewährleistung des Systemverhaltens trotz unver-
meidlichen Unsicherheiten und drittens die Berücksichtigung für die hybride Systeme
dynamische Phänomenen.
Hinsichtlich der betrachtenden Unsicherheiten berücksichtigen wir unbekannte, aber

begrenzte Unsicherheit, welche durch semi-algebraische Mengen spezifiziert werden
können. Um diesen Unsicherheiten Rechnung zu tragen und trotzdem Garantien zu
leisten, greifen wir auf einen mengenbasierten Formulierung des Regelungsproblem
zurück. Diese erlaubt es auf einfache Weise Reglerparametermengen zulassen zu be-
stimmen. Daneben kommen Anforderungen an die Güte und Robustheit in Form von
quantitative und qualitative Anforderungen berücksichtigen werden.
Quantitativen Anforderungen betreffen in erster Linie räumliche Forderungen in

Form von festen zulässigen Bereichen von (Regel-)Größen zu bestimmten Zeiten. Sie
sind durch Anforderungen an das transiente Antwortverhalten motiviert, erlauben aber
auch die Berücksichtigung anderen Regelungsszenarien wie Störungsunterdrückung,
Pfadverfolgung und Trajektorienverfolgung. Im Gegensatz hierzu erlauben qualitati-
ven Anforderungen die Berücksichtigung logischbedingte Einschränkungen. Qualitati-
ven Anforderungen erlauben es z. B. logische Anforderungen zu berücksichtigen und
zeitliche Verknüpfungen zwischen Signale einzubeziehen. Daneben zeigen wir auf, wie
Erreignisgebunden Phänomene in Reglerentwurf einbezogen werden können. Die quan-
titativen und qualitativen Anforderungen legen die Basis, um bei der Auswahl und Ein-
stellung eines Reglers eine breite Palette an Anforderung einzubeziehen. Die gewählte
mengenbasierten Ansatz liefern Antworten ein breites Spektrum an Fragen, wie z. B.
die Berücksichtigung von Anfangsbedingungen oder der Referenzwerten bei der Reg-
lereinstellen oder der robusten fehlerfreien stationären Regelung. Darüber erlaubt der
Ansatz Reglerparameter, die das gewünschte Verhalten für alle Anfangsbedingungen
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und alle Sollwerte garantieren, zu bestimmen.
Die Ergebnisse und Methoden werden anhand von Simulationen und Experimen-

te validiert. Die Beispiele untermauern die Anwendbarkeit des vorgestellten Ansatzes
von einem einzelnen Regelkreis bis hin zur Validierung des Verhaltens einer komplexen
Anlage im anlagenweiten Maßstab. Die vorgestellten Beispiele reichen von der Füll-
standsregelung, eine Magnetschweberegelung, der Regelung einer Batterieladung bis
hin zu diskreten Fertigungssystemen.



1 Introduction

Uncertainty is the only certainty there
is, and knowing how to live with
insecurity is the only security.

The father of John Allen Paulos

Automated processes support more and more of our daily private and professional
life. Each autonomous system poses a challenge, stemming, for example, from the size
or complexity of the system. Respectively, the requirements that need to be fulfilled
by the system grow in number and become more elaborate. Such a rise in complexity is
noticeable even for well-known and understood engineering systems, e.g. by the need
to take into account dependencies to other systems or to include complex temporal
and conditional behaviours.
Often, some parts of the dynamics are neglected or considered phenomenologically

due to either the lack of a systematic approach to handle them or the resulting com-
plexity. These cases are commonly handled by imposing limiting assumptions, e.g.
the system is allowed to operate only inside a narrow range where it behaves linearly
and does not exhibit challenging phenomena. Another possible strategy is switching
between multiple linear operational ranges, i.e. instead of finding a global solution,
numerous local ones are tediously developed and connected. These simplifications
are often valid approaches that are successfully used in practice. Although choosing
to work with simple models leads to an easier control design, which could be, how-
ever, insufficient in some cases. Therefore, systematic approaches that handle complex
dynamical phenomena and situations are a field of active research.

Figure 1.1: Basic block scheme of negative closed-loop control. The controller computes a
control signal to steer the measured outputs to the desired references. Typically,
the controller is based on the error between the outputs and references. In
practice, disturbances influence the often uncertain system dynamics directly
and noise influences the system outputs and thus the measurements.

1



1 Introduction

From a systems point of view, the correct, safe and efficient operation of a system
involves, first, defining and, second, guaranteeing the desired requirements. From a
control point of view, the requirements need to be taken into account and achieved by
the controller. One of the most distinctive characteristics of a control system is whether
it operates in open- or closed-loop. Open-loop control is useful for some problems, such
as manufacturing and low-level automation. In contrast, closed-loop control takes
advantage of the output information through a feedback loop to fight the disturbances
and the model errors, see Figure 1.1. In open-loop control, the feedback is missing.
Key advantages of closed-loop control are the abilities to compensate disturbances,
handle plant-model mismatch, the ability to reduce steady-state error, improve system
performance, provide stability of the system and to react to unexpected changes. In
this work, we consider systems from a simple control loop (Chapter 3 & 5), up to a
plant-wide validation (Chapter 6).

Figure 1.2: Considered key elements to achieve closed-loop guarantees.

The primary focuses of this work are the question of how to guarantee control
requirements and how can they be formulated and validated for closed-loop system?
We focus on uncertainties in the form of disturbances, noises, and model uncertainties.
The complexity of the requirements and the examined system class led us to consider
a hybrid system set-up.
Figure 1.2 shows the key elements of the proposed approach: the control require-

ments, the consideration of uncertainties described by semi-algebraic expressions, and
hybrid dynamics. Each of these needs to be carefully considered and formulated. We
aim to guarantee the performance taking all elements into account. The following
sections introduce and discuss the main elements.

2



1.1 Uncertain Systems

1.1 Uncertain Systems

"... Not doubt, certainty is what drives one insane...." [76]

Motivation

It is important to consider uncertainties explicitly when tuning a controller. Many
practically relevant system phenomenon involve uncertainties such as measurement
noise, disturbances, or plant-model mismatch. While it might be possible to construct
models that incorporate these phenomena, it is, in general, challenging and laborious.
Another arising challenge is that’..., the best ... model for a cat is another, or prefer-
ably the same cat.’ [182]. We consider in this work that all system elements can be
uncertain. Considering uncertainties in the parameters, states, outputs, inputs, refer-
ences, initial conditions pose challenges but also provides opportunities. For example,
by supporting the modelling effort by capturing some of the complex dynamics into
uncertain auxiliary variables, allowing to reduce the model size significantly, see e.g.
[193]. By explicitly considering these uncertainties, we can encompass behavioural
variations and design robust controllers and even enforce resilience against unmod-
elled dynamics [217]. We adopt the notion that a controller is robust when it is able
to handle uncertain systems [98], [149], [219].
Given a set of requirements, uncertainties and a fixed control structure, often, a set

of controller parameters can provide the desired behaviour. The shape and volume
of the feasible controller parameters set can be important information. In particu-
lar, one can analyse the feasible range of a particular control parameter and evaluate
the sensitivity with respect to the performance and stability [196]. A narrow range
of admissible controller values can point out the importance and sensitivity of the
closed-loop with respect to a tuning parameter. Also, being able to determine the set
of feasible parameters provides the advantage of having many controller parameteri-
sations to choose from that deliver the desired behaviour.
Additionally, considering uncertainties, allows to take into account time-variant pa-

rameters. This allows to tune the controller not only for the nominal case but also for
all possible uncertainties. Designing a controller robustly for the complete ranges of
uncertain parameters avoids the need to re-design it if the system parameters deviate
in the future. Moreover, one is often interested in providing guarantees of the tuning
in spite of the system uncertainties.

Considered Uncertainties

Depending on the system at hand, the uncertainties can originate from various sources
and have different influences on the system. We do not consider stochastic uncer-
tainties and thus avoid the need for first obtaining and second dealing with proba-
bilistic distributions. Indeed, such information is often neither common nor directly

3



1 Introduction

obtainable from industrial sensors [86]. We consider uncertainties of the unknown-
but-bounded type. In other words, each variable is considered bounded inside a set,
and the so-called ’true value’ or ’the measurement without noise’ lies inside it.
A common approach to deal with set-bounded uncertain systems is through interval

analysis [225]. We consider semi-algebraic sets, which allow for describing dynamical
relations with both uncertain time-variant and time-invariant variables. Example
sources for parametric uncertainties are confidence intervals from set-based observers,
or from a system identification procedure [36], [50], [141], [142], [146], [153]. To un-
derstand how interval and semi-algebraic uncertainties differ, we present the following
example:

Example 1. Let us consider a two-dimensional example [20], shown in Figure 1.3.
The non-convex black set illustrates a detailed shape that can be described through a
semi-algebraic set, i.e. (α, β) ∈ B. In contrast, the smallest interval that includes this
shape is the orange box, i.e. α ∈ [α, α], β ∈ [β, β].

-4

-3

-2

-1

0

1

2

3

4

Figure 1.3: Geometrical comparison between a semi-algebraic, in blue, and the smallest
interval box surrounding it, in orange.

In this work, we distinguish between spatial and temporal uncertainties. Spatial
uncertainties relate to uncertainty in the amplitude of signals or parameters. In con-
troller tuning, spatial uncertainty of the parameters is addressed in robust control
strategies [239]. Requirements with temporal uncertainties allow to specify the de-
sired behaviour to be achieved without fixing the exact execution time. Also, it allows
to consider time-varying disturbances. Conditional requirements might occur during
a control horizon multiple times or not at all. In contrast to the spatial uncertainties,
the temporal uncertainties are considered less often when tuning a controller [24].

Set-based Controller Tuning

We consider so-called set-based controller tuning, which differs fundamentally from
classical tuning. Classical tuning results in one specific value for each controller pa-
rameter, e.g. [161], [240]. Furthermore, in advanced control methods, like optimal

4



1.1 Uncertain Systems

control, a controller is not tuned but a series of control values for each control input
at each time is computed [179], [183]. In set-based tuning, we aim to obtain a set of
controller parameters that guarantee the satisfaction of the process requirements [8],
[9]. This set can be of two kinds, depending on the guarantees that it provides. The set
can be a feasible set, which guarantees that all elements satisfy the system dynamics,
constraints and uncertainties. The second type of a set of controller parameterisations,
which we refer to as for-all set, guarantees that the controlled performance is achieved
by any combination of uncertainties.
When tuning a controller for a system with uncertainties, there are many possible

control scenarios. The ones discussed in this work can be crudely summarised into four
categories. The first one is finding which of the uncertain values are feasible considering
the system dynamics, initial conditions and constraints [18], [185]. The second one
is tuning a controller such that it performs as desired despite all uncertainties, i.e.
guaranteed robust control [8]. The third one is a mixture of the previous two. One
example is controller tuning considering uncertain initial conditions, and another one
is to determine how the choice of a reference influences the controller tuning [7],
[194]. The fourth category deals with system monitoring and validation of the correct
operation. These four categories are tackled by an invalidation approach for system
performance.
These four scenarios can be seen as a robust form of control. We continue with an

overview of robust control methods that are relevant to the system class we consider.
Some of the classical robust control techniques are H2 and H∞ control, µ synthesis,
Youla-Kucera parametrizations, small-gain theorem approaches [68], [79], [239].
Among the robust control approaches, there are different strategies based on the

considered uncertainty type. In this work, we consider the unknown-but-bounded type
of uncertainties. Their key characteristic is the strong differentiation between the valid
(or safe) and invalid (or unsafe) regions of the variables. Such differentiation relates
to bounded-error estimation and we refer the interested reader for more information
on the basics and the development of this field to [18], [32], [141], [146], [160], [198],
[227] and the references therein. Often bounded estimation, set-based methods, and
set membership refer to the same class of approaches [142]. Here, we use set-based
methods developed in, among others, [36], [186], [211].
One approach that deals with uncertainties and constrained control are target sets

and target tubes [25]. They allow very similarly to the quantitative constraints consid-
ered in this work to specify a corridor of sets in time that needs to be visited. Another
set-based approach that guarantees a constrained behaviour in the closed loop is fun-
nel control [94], [95]. It defines a performance funnel in error coordinates by offsetting
the output by the reference. Both target tubes and funnel control do not consider
requirements with temporal or conditional uncertainties.
Specifying the system dynamics at each step is also possible through model predic-

tive control (MPC). MPC can also take into account system uncertainties or hybrid

5



1 Introduction

dynamics and even qualitative requirements [24], [23], [42], [170]. An MPC formu-
lations that allow to specify a margin around the future evolution of the system are
Tube-based MPC [139], [174], [235]. In contrast to MPC, we are interested in tuning a
given controller structure and obtaining controller parameterisations that fulfil certain
qualitative and quantitative requirements.
Another well-established approach to handle bounded uncertainties is through the

use of interval analysis techniques [98], [147]. There are approaches that compute a
stabilising controller through interval analysis, e.g. in the case of single-input single-
output linear systems [131]. Interval arithmetic allows to compute the reachable space
[121]. Interval methods have been used to tune PID controllers for linear systems,
open-loop nonlinear control, and path planning [100]. By mapping the reachable set
forward and backwards through inclusion functions, together with a set-inversion strat-
egy, can lead to an inner approximation of the desired space, such that the constraints
are held [97], [99]. However, interval methods might be challenged by the wrapping
effects and dependency problems [98]. Another group of methods that can provide
set-based guarantees are differential inclusions [14], [15], [16], [17], [90].
Due to the inherent uncertainties in the system, we need to look for suitable formu-

lations of the system requirements.

1.2 Quantitative & Qualitative Robust Requirements

Engineering systems require guarantees with respect to physical limitations, safety con-
siderations, and performance. All these constraints are forms of process requirements.
We are interested in including in the controller tuning information that originates in
a verbal form. For example, a requirement needs to be satisfied with respect to an ac-
tion that is not specified precisely in time. Furthermore, one of the key requirements,
guaranteeing the system stability, can be formulated in the form of keeping the system
dynamics inside a safe region.
Figure 1.4 depicts some of the considered requirement types. Considering uncertain

system renders exact enforcement of specific values non-meaningful. Due to uncer-
tainties, constraints become set relations. To be able to ensure system requirements
under uncertainties, we need to pose them in a suitable form. We organise them into
quantitative and qualitative requirements.
Quantitative requirements express spatial conditions, i.e. the variables lie in specific

ranges. They are often motivated by the classical transient response characteristics.
We consider formulations on the overshoot, undershoot, settling time, steady-state
error, rise time, delay time, and peak time. For each of these, we provide a set-based
formulation.
In contrast to the quantitative requirements, the qualitative ones can be conditional,

relative and are not fixed to specific time instances. They might furthermore contain
temporal uncertainty. These requirements stem from different sources. On one side,

6



1.2 Quantitative & Qualitative Robust Requirements

Figure 1.4: Different sources of requirements considered: verbal operator’s knowledge, un-
certain performance trajectory, safe amplitude ranges, logical and relative con-
ditional requirements.

some systems might need to follow a desired behaviour that is not fixed in time, e.g.
’After inserting an agent in a chemical system, a particular marker needs to increase
and after a period to decrease.’. When and how much it needs to increase and then
to decrease is not fixed or important. The second source comes from the need to
incorporate verbal operators like eventually, henceforth, next, until, and others. Such
operators are not common in classical controller tuning. Examples are: ’Until one
rotates this knob here and the other system is not working, first nothing will happen,
but then a signal will go up, and eventually it will start to decrease.’ To formulate such
qualitative requirements, we consider Boolean algebra and operators from temporal
logics.
Temporal logic has a long-standing history. A classical representative for temporal

logic is the Linear Temporal Logic, proposed in 1977 by Pnueli in [171]. It considers the
following four temporal operators next, eventually, until and henceforth [134]. Many
other logics use similar operators or provide additional theoretical capabilities, e.g.
Time Window Temporal Logic can specify the beginning and end time of the validity
of a statement [224]. Signal Temporal Logic works directly with the signal value as a
real number and does not require the segmentation of the state space [177]. Co-safe
Linear Temporal Logic allows to check safety properties [108], [111]. Metric Temporal
Logic provides a real-time framework [106]. Metric Interval Temporal Logic adds a
bounded period of validity of the temporal operators to the Metric Temporal Logic
[132]. Timed Propositional Temporal Logic adds a measure between two events [38].

7
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Parametric Metric Interval Temporal Logic adds the ability to consider the beginning
and end of the time intervals as parameters [58]. Computational Tree Logic and
CTL* are branching temporal logics that can consider alternative time executions [52],
[62]. Quantified Propositional Logic provides the ability to quantify over propositional
atoms [89], [69]. The mentioned logics are just some of the more common temporal
logics that exist, and many more are currently further developed and expanded [65].
All in all, quantitative and qualitative requirements can express and deal with spa-

tial and temporal uncertainties, conditional and absolute amplitudes of the variables.
Working with, in general, discrete-valued variables and, in particular, binary variables
enables not only the formulation of a broader class of requirements but also provide
the ability to express discrete-valued system description or hybrid dynamical systems.

1.3 Validation of Controlled Hybrid Systems

"...hybrids systems is such a wide notion that sticking to a single definition shall be
too restrictive..."[223]

Considered Hybrid System Phenomena

An overarching characteristic of the hybrid dynamical system is that they can change
their dynamical behaviour during operation [41], [120]. One example is the different
growth stages in a controlled bio-reactor [148] or the different dynamics of an aeroplane
during take-off in contrast to in-flight [48]. The resulting changes in the dynamics often
require a change in the controller structure, controller settings, or both. Such systems
are commonly referred to in literature either as switched/switching [120] or multi-
mode systems [43]. Switching and switched system differ in whether we control the
change or not. Switching allows to influence when to switch, and one can design rules
based on state thresholds, timers, or a combination of both [120]. To do so, we propose
a system description that allows to handle switched and switching systems, and also
allows to tackle state- and time-dependent rules into account. We desire also to allow
for discontinuities in the design [206].
One way to model switched dynamics is through the use of discrete-valued vari-

ables [24], [232]. Moreover, we can use discrete-valued variables to denote single
entities or objects, e.g. in production systems, i.e. in discrete manufacturing, where
separate items are processed or produced. A sub-class of the discrete-valued variables
are the binary variables, which allow to model Boolean algebraic decisions. We use
binary variables to formulate process requirements and special control scenarios,
see Chapter 3. A switching behaviour can also be modelled by time-variant param-
eters [101]. This allows the explicit consideration of physical phenomena that can
occur during longer times of operation, e.g. change of the values of friction coefficients
in mechanical systems or conductivity properties in electrical systems [82]. One can
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also work with a gain-scheduled set-up to obtain a switched system formulation [202].
Hybrid systems can also show cyclic behaviour [72], [138], [238], which a common

scenario in the manufacturing systems, where many identical pieces need to be pro-
duced. Cyclic behaviour is not limited to manufacturing, e.g. pumping trajectories
for a rigid-wing rotary kite [56]. Cyclic operation can be modelled, e.g. through Petri
nets [55], [145].
While constraints are not a distinct characteristic of hybrid systems, constrained

systems can be modelled as hybrid systems with different operating modes: one mode
corresponds to the system operating inside the allowed zone - unconstrained, while
the others would correspond to the system operating at the constraints. In this case,
the switching conditions are state-dependent.

Figure 1.5: The behaviour of a hybrid dynamical system changes and it can be depicted
as different operation modes. The switching between modes is governed by
conditions and typically only certain transitions are possible.

Figure 1.5 shows the operation of a hybrid system due to different modes. A par-
ticular example of a hybrid system with multiple modes is autonomous driving [19].
Autonomous cars have modes in which dynamics, constraints, references and control
strategies change. One can split the driving into different operation modes that switch
from one to another, e.g. turn left, overtake, keep lane, and so on [26], [63], [67]. For
more information on the topic of controlled hybrid systems, we refer the interested
reader to the following sources and the references therein [12], [77], [125].

Behaviour validation

The two main requirements to the tuning process itself are to provide guaranteed re-
sults with respect to the requirements and to work with controller structures fitting to
the considered system class. The guarantees need to hold despite the system uncer-
tainties and be valid for the discussed hybrid phenomena, quantitative and qualitative

9



1 Introduction

requirements. Moreover, the approach needs to be able to certify the desired require-
ments for all initial conditions and all references from given sets. We provide a short
overview of validation methods for hybrid systems.
One class of validation approaches for hybrid systems are called formal methods for

dynamical systems [233]. These methods are rather general and thus suffer from com-
putational burden [21], [22]. ’Semi-formal’ approaches allow verification but typically
do not allow for controller design [181]. To validate systems, one can also search for
barrier certificates. Barrier certificates allow to provide validity statements for hybrid
systems with constraints [6], [64], [172], [234].
The so-called correct-by-design methods aim to design controllers which provide

guarantees [215]. One way to do so is by Binary Decision Diagrams [140]. To find
the control action such that the specifications are met, the input space and possibly
the state or output space is quantised. The partitions are a finite amount of elements
and approximate the dynamics. For guarantees, one can use a reachability projection
- the space is over-approximated. Such abstraction of the space is a form of bisim-
ulation, i.e. substituting the original system with another that serves as a surrogate
one in the form of state transition system [188]. The two systems share behavioural
similarity [143]. One specific similar abstraction technique is symbolic control [214],
[216], [237]. Symbolic control experiences challenges with unmodelled disturbances
and time-variant parameters [75], [122]. Similarly, approaches from computer science
are used to verify the correctness of the programs and protocols, e.g. bounded model
checking [29], binary decision diagrams [44]. One idea in model checking is to enu-
merate over the states and to check the correctness of the requirements based on the
reachable states [61].

1.4 Contributions

In this work, we consider the task of tuning a controller. For this purpose, we use
guaranteed set-based estimation methods and expand them for controller tuning of
hybrid dynamical systems. The work is based and expands the set-estimation proce-
dures that can be found [36], [186], [187], and [211]. A major focus of this work is the
interplay of spatial and temporal specifications, uncertainties in the formulation, and
validation of the control requirements. The main contributions of this work are:

• A systematic approach for guaranteed tuning for uncertain hybrid dynamical
systems is provided. Some of the characteristics of the considered class are multi-
input multi-output, constrained, discrete-valued variables, time-variant and time-
invariant parameters, and allowing for uncertainties in each system element -
states, inputs, references, outputs, parameters, disturbances, noises. The uncer-
tainties can be spatial and temporal. The system can be multi-rate, multiplexed,
event-based, includes preview information, and operates on a finite-time horizon.

10



1.5 Thesis Outline

Moreover, the dynamics can be nonlinear through the consideration of polyno-
mial and rational expressions, and can also include algebraic dependencies. The
approach allows controllers to be posed in polynomial and rational form.

• To address controller tuning requirement of the transient response of a system, a
set-based formulation and discussion for each of the characteristics are provided.
These requirements are referred to as quantitative.

• Qualitative control requirements that express relative dependencies and temporal
uncertainties are considered. On one side, these requirements allow to include in
the controller design information containing temporal operators. On the other
side, they allow to express logical and relative amplitude conditions.

• Through extensions and further re-formulations of the quantitative and quali-
tative requirement, several control scenarios are presented. The major ones are
disturbance rejection, bumpless control, deadbeat control, path following, and
trajectory tracking.

• Simulation and experimental results demonstrate the applicability and perfor-
mance of the tuning procedure. The applicability of the approach spans from
a single control loop up to the validation of production plant behaviour. An
implementation demonstrates the real-time capabilities of the approach.

• Set-based formulation and estimation results are provided for the robust error-
free steady-state control under an endlessness requirement. Through this require-
ment, the system performance is guaranteed for an infinitely-long time through
a finite-time approach. It is solved by tackling two control tasks. The first task
provides robust set-point regulation for any reference from a reference set, where
the system starts from any initial condition from a specified set. The second one
delivers a form of robust controlled periodic set invariance.

1.5 Thesis Outline
In Chapter 2, we present the system class elements and their properties. In the
end, we combine them in the controlled system set-up and outline some of the major
challenges that we tackle.
In Chapter 3, we start by introducing the quantitative requirements and their

inspiration - the transient response characteristics. We explain the behaviour and
provide a set-based formulation for each of them. Based on the capabilities of the
quantitative requirements, we demonstrate how to tune a controller for disturbance
rejection, path following, or trajectory tracking. Afterwards, we introduce qualitative
requirements and their characteristics. They express Boolean algebra expressions and
can include temporal uncertainty operators that are inspired by the temporal logics.

11
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With the help of the qualitative requirements, we bring two control scenarios - bump-
less control and deadbeat control. We conclude the chapter with the formulation of
discontinuity phenomena.
In Chapter 4, we outline the set-based estimation method that provides the guar-

antees of the obtained results. We start by posing the control problem in a feasibility
problem formulation and deal with finding the feasible sets. This formulation aids
the design process by excluding the infeasible solutions. Afterwards, we look at the
constraint inversion formulation and how to use it to find a set of controller parame-
terisations despite all uncertainties.
InChapter 5, we introduce the robust error-free steady-state control under endless-

ness requirement scenario, which we solve in three steps. The first one re-formulates
the problem into error-coordinates to remove the layered uncertainty around the refer-
ences. The second one tunes a controller to perform robust set-point regulation. The
third one tunes possibly another controller to keep the system around the achieved
reference by providing a form of robust periodic controlled set invariance.
In Chapter 6, we demonstrate how the presented approach can be used to validate

the performance of large systems, e.g. the transportation system in discrete manufac-
turing. We abstract the system into sub-system elements and provide an approach to
validate the performance without the need to consider the complete plant.
In Chapter 7, we summarise the presented work and bring some concluding re-

marks. Furthermore, we outline several next-step extensions.

12



2 Control of Uncertain Hybrid Systems

Inside of every problem lies an
opportunity.

Robert Kiyosaki

In the systems and control literature, various processes are encompassed by the
term ’hybrid dynamical systems’ [78], [81], [105], [127], [176], [223]. For this reason, we
present a formulation that covers a broad spectrum of hybrid systems and phenomena.
For the system elements, we provide the description together with basic examples.
Furthermore, we discuss the structure of switching strategies in controlled hybrid
dynamical systems. We end the chapter with a summary of the system set-up and
comment on the applicability of the presented system class.

2.1 System Class Description

We consider systems with the general description:

x(k+) = f(x(k), u(k), p(k)),
y(k) = g(x(k), p(k)), (2.1)

where f and g are mixed-integer polynomial or rational functions. This structure
encompasses a broad class of nonlinear dynamics. For approximating other types of
nonlinearities and for multivariate systems, we refer the reader to [169]. The variables
x are system states, p are system parameters, u are system inputs, y are system
outputs, and k+ is the subsequent time instance to k ∈ N. This formulation allows
for time-variant and time-invariant system parameters. We assume that the variables
are contained within sets:

x(k) ∈ X k ⊂ Rnx × Zmx,

y(k) ∈ Yk ⊂ Rny × Zmy ,

u(k) ∈ Uk ⊂ Rnu × Zmu,

p(k) ∈ Pk ⊂ Rnp × Zmp,

(2.2)

where, nx, np, nu, and ny are the dimensions of real-valued and mx, mp, mu, and
my of the integer-valued variables and n,m ∈ N≥0. The integer-valued variables
allow the consideration of a broader system class and accommodate the formulation
of advanced process requirements, see Chapter 3, and hybrid phenomena, as discussed
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in Section 1.3. We aim to achieve these requirements by tuning a controller with a
fixed controller structure as described next.

Controller structure We consider that the controller structure is given in polynomial
form

u(k+) = h(y(k), r(k), u(k), c). (2.3)

The controller has as an input both the reference signal r ∈ Rk ⊂ Rnr × Zmr and the
system output y. Moreover, the controller states u(k) are the system inputs from (2.1).
The goal is to find controller parameters c ∈ C ⊂ Rnc × Zmc such that system (2.1)
performs as desired. Both closed- and open-loop control structures are considered in
this work. In the case where we have a controller in a non-polynomial or non-rational
form, we can approximate it up to the desired precision. The resulting approximation
error can be taken into account, e.g. either through an additive error term or by
adjusting the uncertainty ranges of the variables.

Control horizon We focus on controller tuning for finite-time specifications. In the
cases of a higher complexity on the requirements or with various execution stages
of the process, we can consider splitting them into a series of pre-defined tasks with
shorter finite-time periods. The example in Figure 2.1 illustrates how a process with
different operating points can be split into a series of finite-time control tasks. Each of

Figure 2.1: Requirements that are complex or span long or multiple horizons can be split
into several shorter ones. The coloured segments of the output signal depict
the four shorter finite-time control horizons. Each of the horizons T1, T2, T3, T4
corresponds to a single task, e.g. a reference change, or a period with expected
high disturbance load.

the control horizons T1, T2, T3, T4 corresponds to a single set-point control regulation
problem. Consider the following example:

Example 2. The environment conditions inside (bio-)chemical batch reactors need
to be controlled such that a desired yield is achieved. This is done by adjusting the
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chamber temperature, reactant feed rate, oxygen levels, or container pressure. Com-
monly, there is a known recipe that consists of several steps, each with a different range
and duration of the control signals, e.g. the oxygen is switched between high and low
concentrations to create aerobic or anaerobic conditions. Such recipe approaches are
conventional in the process control industry [73] and can be seen in our context as
several requirements over time.

Finite-time horizon set-ups can also be used to consider the control of periodic
systems. In such systems, the initial and end conditions of the system have the same
values, and during the control horizon, the states or outputs need to fulfil the process
requirements. Examples for such systems are cyclic surveillance of an area [158], or
maintaining the optimal trajectory of rigid-wing kites for producing electrical energy
[56].
Often the system behaviour should change once certain conditions are met and thus

at irregular time periods. To accommodate for such an event-based nature and the
corresponding requirements, we consider that control horizon T spans a collection of
time instances ki:

T := {k0, k1, ..., knt},

where nt ∈ N>0. Additionally, we introduce T − := T \ {knt}, where the symbol \
denotes set difference. The horizon T − is used for those expressions that formulate
the system dynamics. Constructing the horizon as a collection of instances allows
to consider non-equidistant spaced sampling time as well as the classical equidistant
discrete-time control. Unless stated otherwise, we introduce the next time instance
as k+ := ki+1, the previous time instance as k− := ki−1, and remove the subscript
index for the current time k := ki, i = {0, .., nt}. In this sense, the order of these
instances is k− → k → k+. This relative notion, compared to using absolute indices,
is used later to express some qualitative requirements that have temporal uncertainty
characteristics.

Considered Uncertainties We considered unknown-but-bounded uncertainties [141].
They are modelled as follows. A measurement instrument acquires the measured sig-
nal with a particular class of accuracy that certifies that the actual value lies within a
specified range [152]. These uncertainty ranges can also come from system identifica-
tion and regression models [133], [167], such as Gaussian kernels [173], support vectors
[60], or artificial neural networks [54], [180]. In first-principle models, the parameters
are related often to underlying physical laws that govern a considered system and thus,
the bounded-uncertainty assumption is justified for many engineering systems.
Furthermore, we categorise the uncertainties into two different types, those that

are present in the amplitude of the variables, i.e. spatial uncertainties, and those
with an uncertain execution time, i.e. temporal uncertainties. For both types, we
consider unknown-but-bounded uncertainties, c.f. Chapter 3. We refer to unknown-
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but-bounded uncertainty as

Definition 1. Unknown-but-bounded (UBB) uncertainties are drawn from closed sets
containing all admissible values for a variable.

Sources of uncertainties besides parameters can be system disturbances d and mea-
surement noises s. State disturbances d(k) ∈ Dk ⊂ Rnx × Rmx influence directly the
system dynamics and thus the system states x. They can be either explicitly modelled
and included additively to the system description, like

x(k+) = f(x(k), u(k), p(k)) + w(x(k), d(k))

To model them explicitly, we need knowledge about the source of the disturbances.
Depending on the particular system, it is possible to perform system identification
and obtain a disturbance model w(x(k), d(k)) [155]. Alternatively, the influence of the
disturbances can be added as time-variant variables d(k) ∈ Dk to each state.
Analogously, measurement noise s ∈ Sk ⊂ Rny × Rmy can be included explicitly to

the dynamics through a model v or implicitly by adjusting Yk. The noise model v can
be a random additive signal to the output or can have a state-dependent formulation
[208]. Including v to the output formulation leads to

y(k) = g(x(k), p(k)) + v(s(k), x(k)).

We redefine f and g to include disturbances and noises:

x(k+) = f(x(k), u(k), p(k), d(k)),
y(k) = g(x(k), p(k), s(k)). (2.4)

Additional to the signal uncertainties, we are interested in temporal uncertainties.
We consider expressing them through either imprecise execution times or time-variant
parameters, see Section 3.2 for more details. Moreover, time-variant parameters can
be used to model the operating mode of the controller and system.

Requirements Every practically relevant system has constraints and requirements.
They often originate from safety considerations, physical limitations, or preferred op-
erating ranges. We formulate them as polynomial inequalities of the following form:

l(x(k), u(k), y(k), z(k), r(k), k) ≥ 0, k ∈ T , (2.5)

where z(k) ∈ Zk := {0, 1}k are auxiliary binary variables used to express quali-
tative requirements. Formulation (2.5) allows to express control requirements like
input/output constraints, system performance, input energy limits, and others. For
brevity of notation, we refer to the i-th requirement as li. Due to the explicit consid-
eration of uncertainties, control requirements in the form of equalities that demand
achieving exactly a specific value are often questionable.
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The formulation of the system requirements is one of the major contributions of
this work. Accordingly, they are being discussed in detail, depending on the context,
throughout the next chapters.

2.2 Control of Hybrid Dynamical System with Multiple
Modes

Combining (2.4) and (2.3), we end up with a controlled hybrid dynamical system. In
the hybrid system literature, a differentiation exists between switched and switching
systems [120]. In the former, we have influence over the switching, e.g. an aeroplane
or car gearbox. In the latter, we cannot manipulate the transition from one mode to
another, e.g. a cell mutation or a system fault. The discussed system description is
suitable for both cases, and whether the change in modes is intentional depends on
the task at hand.
The information from the controllers or the active governing system can be included

in aggregated models, as seen next. The aggregate controller model Ξ consists of
controllers Ξi. Each Ξi defines a combination of a controller structure and a particular
parameterisation. We express this structure by posing it as a (weighted) sum of the
outputs for each controller Ξi, i.e.

Ξ =
na∑
i=1

aiΞi,
na∑
i=1

ai = 1.

Depending on the choice of ai, one can describe two switching scenarios: abrupt and
smooth switching. When the switching is done abruptly, only one of the controllers is
responsible for the input at each time step, i.e. ai = {0, 1}. We present an example
of such a case in Section 4.3.3, which deals with the constant-current constant-voltage
charging cycle of a Li-ion battery [203]. Figure 2.2 illustrates an abrupt switching
scheme.
In contrast to the abrupt switching, smooth switching blends two or more controller

output signals, and thus the weighting coefficients are chosen as ai = R[0,1], e.g. control
of biotechnological processes when switching from one nutrient to another, or from one
environmental condition to another [148]. Analogously, the same switching strategies
can be used to formulate the system dynamics:

Ω =
nb∑
i=1

biΩi,
nb∑
i=1

bi = 1,

where Ωi contains of system description for the particular mode.
A straightforward way of modelling switching behaviour is combining the modes
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Figure 2.2: A sketch of a closed-loop controlled switched system. Both the controller Ξ and
the system Ω have more than one operation modes. The change between them
is done abruptly and depicted by the two switching blocks S1 and S2.

by introducing auxiliary binary variables that enable the current mode and disable
the rest [195]. Doing so, we end up with an aggregated description for the system
dynamics and the control law. In some cases, the switching is dependent only on time
[120]. In other cases, we have to include additional information to form a decision
logic. In this work, we assume that the switching rules are given, and the design of
the switching block is outside the scope of this work. We continue with combining the
presented system elements into the control parameterisation set-up and pose the key
problems we are interested in.

2.3 Overall Set-up

Combining the system dynamics (2.4), controller structure (2.3), system uncertainty
description (2.2), and control system requirements (2.5), we obtain the following total
set-up:

x(k+) = f(x(k), u(k), p(k), d(k)), k ∈ T −,
y(k) = g(x(k), p(k), s(k)), k ∈ T ,
u(k+) = h(y(k), r(k), u(k), c), k ∈ T −,
l(x(k), u(k), y(k), z(k), r(k), k) ≥ 0,
x(k) ∈ X k, p(k) ∈ Pk, r(k) ∈ Rk,

u(k) ∈ Uk, y(k) ∈ Yk, s(k) ∈ Sk,
d(k) ∈ Dk, z(k) ∈ Zk, c ∈ C.

(2.6)

This set-up allows to consider a broad class of dynamical behaviours. We use (2.6)
as a general formulation, which allows to cover a wide range of control scenarios. We
aim to solve the following task:
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2.3 Overall Set-up

Problem 1. (Controller requirement formulation) For the system described in (2.6),
derive a systematic approach to express the control requirements in the form of (2.5).

The requirements in Problem 1 encompass both classical tuning criteria, e.g. tran-
sient response characteristics, and empirically obtained engineering knowledge, e.g.
from oral descriptions like ’eventually’, ’if’, ’until’, and others. To answer Problem 1,
we outline the descriptions of the control requirements in Chapter 3.
Due to the broad system class, obtaining the set of controller parameters analytically

is a non-trivial task. We propose to obtain a set-based approximation. Basically, we
are interested in the following problem:

Problem 2. (Guaranteed controller parameterisation) Obtain an estimation set Ĉ of
the set of consistent controller parameter values c∗ that satisfy (2.6).

Selecting particular values c∗ ∈ Ĉ the controlled system performs as desired. In
Chapter 4, we provide details on a method that obtains Ĉ and present different ap-
proximation formulations to address the task at hand. Because of the general set-up
and the chosen set-based estimation approach, we can formulate various control sce-
narios. These scenarios are created by adding new or modifying existing requirements.
Next, we continue with the discussion of the types of requirements and their formu-
lation based on whether their uncertainty aspect is in the spatial or in the temporal
domain. To illustrate the applicability of the constraints and their construction, we
provide examples.
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3 Control Requirements - A Set-based
Perspective

A theory that you can’t explain to a
bartender is probably no damn good.

Sir Ernest Rutherford

Requirements on the control system can originate from various sources, e.g. techni-
cal specifications, experience from working with the system, energy efficiency, pollution
reduction, etc. In this chapter, we discuss different types of controller requirements
and how to formulate them in a structured way. They need to be applicable to the
considered class of hybrid dynamical systems. On the other side, they need to respect
and take into account the present uncertainties, due to noises, disturbances, plant-
model mismatch, etc. Thus, we aim for a ’robust’ formulation in which to postulate
the requirements.
We consider the following two types of requirements: quantitative and qualitative.

Quantitative requirements enforce variables to take special values, possibly in a cer-
tain range. Examples are set points that should be tracked precisely. In contrast to
the quantitative, the qualitative requirements do not enforce specific values at specific
times. Rather, they demand certain behaviour, such as being error-free after some
time. Moreover, we use them to formulate relative or conditional value dependencies.
Qualitative requirements allow to take logical conditions or even verbally formulated
relevant information into account, e.g. statements that contain operators like eventu-
ally, next, etc.
We begin by focusing on quantitative requirements, concentrating on enforcing tran-

sient response characteristics. Secondly, we focus on Boolean logic expressions and
temporal logic predicates that are motivated by the consideration of qualitative re-
quirements. The results in this chapter build upon our works [7], [8], [9]. In addition,
we discuss disturbance rejection, bumpless control, trajectory tracking, path following,
deadbeat control and how to handle discontinuities in the variables.

3.1 Quantitative Requirements

We consider quantitative requirements, i.e. a range of admissible values at fixed time
instances. We consider the following definition for quantitative requirements:
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3.1 Quantitative Requirements

Definition 2. Quantitative requirements are system requirements that bound the ad-
missible values of a time-variant variable ψ to a specified semi-algebraic set Ψ at a
time-instance k, i.e. ψ(k) ∈ Ψk. In the case that ψ is time-invariant, then ψ ∈ Ψ.

Quantitative requirements relate to classical controller tuning by analysing the dy-
namical properties of the output system response after a step input. Those properties
are referred to as transient response characteristics [103].

3.1.1 Robust Transient Response Characteristics

A classic approach to evaluate the dynamical performance of a system is by the ap-
plication of a step input to the system and analysing the resulting system output.
Based on the resulting output profile, there are common dynamical characteristics
that characterise the system behaviour [59], [117], [162]. Figure 3.1 illustrates several
step responses and depicts some of the transient response characteristics.

Figure 3.1: System step responses for various initial conditions and different control param-
eterisations. The double T-bars (in green) define the desired regions that the
system’s response needs to satisfy. The trajectories in orange fail at satisfying
at least one of them, where the black trajectories satisfy all of them. The red
lightning symbols point to where the constraints are violated.

Transient response requirements have been studied widely, and analytical tools exist
for linear systems [168]. In contrast to the linear case, achieving transient response
properties for nonlinear systems remains non-trivial. Therefore, to take into account
the uncertainties, e.g. from noise, one can not aim to achieve exact values. One needs
to rather relax this expectation towards achieving set bounds, considering the UBB
uncertainty.
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Although the set-up (2.6) allows for multi-output systems, for illustrative purposes,
each of the characteristics is presented for a single-output system. We take a separate
look into the basic description and the robust form for each of the following transient
response characteristics: overshoot, peak time, rise time, delay time, settling time,
and steady-state error. Often, two or more characteristics are imposed simultaneously
[59]. Formulating the requirements separately is not limiting, as we can impose later
on a combination of them onto the corresponding outputs.

Overshoot is the behaviour when the output signal exceeds a desired reference value
rnew. As a specific example, consider the control of cranes, where while moving a
suspended cargo, significant sways, for safety and performance considerations, must
be contained below a certain level [163]. The overshoot can be characterised as the
difference between the absolute maximum value of the output signal ymax and the new
reference rnew over a time T = {k0, ..., kend} ⊂ N≥0, where

ymax = max{y(k)}, y(k) ∈ Yk, k ∈ T .

We present two mathematical formulations of overshoot requirements. The first one
sets a global constraint for the maximum output value at all time instances:

y(k) < rnew + δ, k ∈ T , δ ∈ R≥0.

The second formulation imposes the restriction locally in time:

y(k) < rnew + δ, k ∈ {kj, ..., kj+l},

where l ∈ N≥0, 0 ≤ l ≤ kend − kj defines the period during which the output is
constrained from above. In short, we formulate the overshoot requirement either as a
global bound, i.e. imposed for the entire horizon or locally. The overshoot parameter δ
needs to be chosen such that it is coherent with the present uncertainties. Alternatively
to an absolute value formulation, a relative formulation, depending on other process
variables exists, which can be formulated as a qualitative requirement, see Section 3.2.
Note that there could also be the requirement for a minimum overshoot, e.g. is in
some deadbeat response formulations [59].
In summary, the design parameters for the overshoot requirement are δ, kj and l.

Additional to the maximum value of the overshoot, the time when the maximum is
achieved can also be specified, which is referred to as the peak time and presented
next.

Peak time is the instance at which the output y has its maximum value. Examples
are the design of an autopilot of a jet fighter and the distance control between vehicles
[59].
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The peak time is defined as:

kpeak = argmax
k

y(k), k ∈ T .

One can specify time kpeak, as follows

y(kpeak) ∈ Ykpeak,

y(k) ∈ Yk, k ∈ T \{kpeak},
y(k) < y(kpeak), k ∈ T \{kpeak}.

Peak time requirements should be cautiously considered, as it might lead to unsat-
isfactory results. For example, the output noise could be responsible for producing
a false signal peak and thus a false peak time. This is even more critical when two
sampling instances are close to each other, which can result in wrongly interpreting
the temporary variation of the signal. In such cases, a more suitable approach is to
impose the requirement for a desired peak time over a series of instances kj, ..., kj+l:

y(kpeak) > y(k), kpeak ∈ {kj, ..., kj+l}, k ∈ T \{kj, ..., kj+l}.

Considering the period {kj, ..., kj+l}, one can counteract the risk that the peak value
is a result of short disturbance. The design parameters for the peak time requirement
are kpeak, kj, kj+l, and Ykpeak.

Rise time expresses the time period the system needs to reach a threshold β at a time
kβ, starting from a value α at time kα, i.e. α < β and kα < kβ. Application examples
are the control of wind turbines, and the shaping of the response of robotic arms [59],
pressure level control [236], and automatic voltage regulation [159]. Common pairs
for {α, β} are {10%, 90%} and {0%, 100%} on a relative scale [59]. To accommodate
the inherent uncertainties, we introduce a coefficient ε. The rise time can be thus be
formulated by:

y(kα) ≥ α− ε,
y(kα) ≤ α + ε,

y(kβ) ≥ β − ε,
y(kβ) ≤ β + ε.

Note that, β−ε > α+ε. We can use this information and formulate it in the controller
design by defining the duration of the rise time itself by specifying both times kα and
kβ:

krise = kβ − kα
The design parameters for the rise time requirement are krise, kα, kβ, ε, α, and β.

Delay describes the time until a system starts noticeably increasing its output am-
plitude after a change in reference. Examples are the tiltrotor control of an unmanned
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aerial vehicle [113]. Common threshold values α for the system output y are 10% and
50% of the absolute reference value r [162]. To formulate the delay time requirement,
we can impose a lower boundary on all time instances after the desired time kα.

y(k) ≥ α, k ∈ {kα.., kend}, α ∈ R≥0.

In this case, the output y(k) must be above the precise threshold α after kα. Alter-
natively, for a smoother start, we can impose, e.g. an upper limit during the initial
period of {k0, .., kα}:

y(k) ≤ α, k ∈ {k0, ..., kα−1}.

In general, this requirement is present for systems that need time until they start a
more rapid increase in the output amplitude, e.g. higher-order systems or systems
with delay. The design parameters for this requirement are kα and α.

Settling time & steady-state error are two characteristics that are closely asso-
ciated. The settling time ksettle marks the period the system output y(k) takes to
reach and afterwards stays inside a bounded region around a new reference rnew. This
bounded region is specified with a desired precision ε. This precision determines the
amplitude of the steady-state error. Typical values that are considered for the steady-
state error ε are either 2% or 5% of the reference change [59]. The steady-state error
requirement can be posed through the following constraints:

y(k) ≤ rnew + ε, k ∈ {ksettle, .., kend},
y(k) ≥ rnew − ε, k ∈ {ksettle, .., kend}.

In general, by increasing the allowed steady-state error ε, more controller values can be
able to satisfy the relaxed precision and achieve the new reference faster. In summary,
the design parameters for settling time and steady-state error requirements are the
ksettle and ε.

3.1.2 Remarks on the Transient Characteristics

In addition to the more common characteristics, one can also consider an undershoot
requirement. Undershoot describes the behaviour where the output changes in the
opposite direction of the step input, and later on, it achieves steady-state [40]. For
example, if the new reference rnew is bigger than the current one rcurr, i.e. rnew > rcurr,
then the output y(k) decreases before rising, i.e. y(k0) > y(k) where k is among
the first time steps after the change occurs. Many systems, such as servomechanisms
exhibit this behaviour [144]. For linear systems, this corresponds to having zeros in
the right half s-plane [116].
Combining the settling time and the steady-state error leads to an often desired

dynamical behaviour of steady-state error-free control [59]. We extend this behaviour
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for all initial conditions and any reference from a desired set for an infinitely long
time in Chapter 5. In linear control, it is common knowledge that having an integral
controller eliminates the steady-state error in the long run [231]. For nonlinear systems,
as considered here, guaranteeing small steady-state errors is a non-trivial task [119]
and becomes even more challenging for multi-input multi-output systems [46], [212].
Using the presented formalism, we continue with three control scenarios that can

be expressed through quantitative statements, namely, trajectory tracking, path fol-
lowing, and disturbance rejection.

3.1.3 Formulating Quantitative Control Scenarios

Set-based trajectory tracking

One control scenario that follows directly from the capability of enforcing constraints
at the time steps is trajectory tracking. We consider the problem of specifying a
trajectory tracking corridor for a single-output system, imposing the desired behaviour
by a series of sets Rk, c.f. Figure 3.2. Alternatively, the trajectory can be given as a
time-variant reference r(k) and a desired precision ε(k) ∈ R+. Typical applications of
trajectory tracking are quadrotor helicopter control [88] or synchronisation problem
[213].

Figure 3.2: Trajectory tracking example, where the admissible trajectories are limited ot
the ranges given by the green bars Rk = {r(k)− ε(k), r(k) + ε(k)}.

Trajectory tracking can be expressed as bounds on admissible values at each time
instance. They can be posed through the following constraints:

y(k) ≥ r(k)− ε(k), k ∈ T \k0,

y(k) ≤ r(k) + ε(k), k ∈ T \k0.
(3.1)

Here k0 is excluded, as it provides the initial conditions. We are interested in general-
ising this formulation following the definitions provided in [4], and therefore we pose

25



3 Control Requirements - A Set-based Perspective

the following robust form of the trajectory tracking problem:

Problem 3. (Set-based trajectory tracking) For the controlled system (2.6) with initial
conditions Yk0, obtain controller parameterisation set Ĉ, such that the system outputs
y(k) track a given trajectory T k, i.e. y(k) ∈ T k , k ∈ T \{k0}, for all parameters of
their corresponding sets.

Basically, the trajectory T k constraints are added to (2.6). To satisfy the above
constraint, we require T k ⊆ Yk, k ∈ T \{k0}. At the initial time k0, the output is
within the range y(k0) ∈ Yk0. Overall, Problem 3 leads to the following set constraints
for the outputs:

y(k0) ∈ Yk0,

y(k) ∈ T k, k ∈ T \{k0}.
(3.2)

Formulation (3.2) generalises (3.1), as it allows for a general semi-algebraic multi-
output formulation.
To alleviate the computation and allow for parallel processing, one can split the

trajectory into segments, e.g. each with a length of d + 1 time instances. To do so,
the last instance of the previous segment is part of the next segment. The obtained
set of controller parameters C̃ ⊆ Cinit for each segment are intersected, to obtain Ĉ.
The resulting set Ĉ contains controller parameterisations that achieve the behaviour
in Problem 3. The final approach using segments is formalised in Algorithm 1.

Algorithm 1 Obtaining controller parameterisation for robust trajectory tracking by seg-
mentation
Input: T k,Ω,Ξ, Cinit, d,Yk0

Output: Ĉ

set Ỹ = Yk0, Ĉ = Cinit
set n = size of T

set i = 1
while i+ d ≤ n do

based on Ω, Ξ, Ỹ obtain C̃, s.t. Y l ⊆ T l, l = {i, .., i+d}
update Ĉ = Ĉ ⋂ C̃
set Ỹ = T i+d−1

set i = i+ d

if i+ d > n AND n− i ≥ 1 then
set d = n− i

end if
end while

In Algorithm 1, d ∈ {1, .., n} denotes how many steps from the trajectory should
be computed at once. Obtaining a guaranteed set Y l is the focus of Chapter 4. Note
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that, Algorithm 1 does not guarantee that one obtains a non-empty set Ĉ. Obtaining
an empty set could indicate too tight precision, specified by the sets T k, which can be
an indication of a challenging trajectory to track. In such cases, the strategy can be
used iteratively, i.e. starting with a narrow trajectory corridor T k, and if no feasible
controller parameters are found, then one can relax the allowed regions until valid
parameterisations are found.

Figure 3.3: Illustration of trajectory tracking, employing the segmentation approach given
in Algorithm 1.

Two other control problems that can be expressed as robust trajectory tracking
are contract-based control and plug and play control. In the former, each system
communicates the predicted bounds of the coupling signals to the connected systems,
such that a control objective is guaranteed [189]. While in the latter, the goal is
to substitute a system with another one while guaranteeing performance. Thus, the
behaviour of the to-be-exchanged-system can be specified by the bounds at each step
and later provided by plugged in system [124], [209].

Set-based path following

A closely related scenario to trajectory tracking is the task of path following. In it, a
curve P ∈ Yk referred to as a path, and it should be followed precisely by a system Ξ.
In contrast to trajectory tracking, the geometric path is not fixed in time. The focus
lies on following the path precisely. An application for path following is the control of
autonomous underwater vehicles for precise ocean surveillance [109].
Path following can be expressed as follows:

Problem 4. (set-based path following) For the system (2.6) and initial conditions Yk0,
obtain the set of controller parameters Ĉ, such that the system outputs y(k) follows
the desired path P ∈ Yk within a specifiable precision.
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Problem 4 is formulated in the output space, which also allows a state-space for-
mulation. Note that the path is not time parameterised, i.e. the speed with which
the system follows it is not prespecified. Therefore, path following puts the focus on
keeping the system close to the path, independent from the time. This could lead
to the pathological case where the system halts at a point on the path, i.e. it does
not move along it any longer. A common way to overcome this hurdle is by adding a
virtual ’time state’ to the problem, which can be considered as a requirement on the
states [137]. To illustrate this, consider the following example:

Example 3. Imagine greyhounds racing along a track. The position of greyhounds
symbolise the system output, and the track is the path along which the system needs to
follow. Once the trap doors are opened, the dogs would just stay there, but if there is
an artificial lure that moves along the track, the hounds start chasing it. This artificial
lure lets the system output to move forward along the path.

To reduce the number of requirements, one can, as in the trajectory tracking case,
split the path P into η segments. Except for the first segment, the beginning point
of each segment is the end of the previous. We denote these waypoints with P i. In
doing so, the path P is abstracted by a sequence of waypoints {P1,P2, ..,Pη}. To
each of the path points, one can add a safety region B, i.e. Ri = P i ⊕B.

Figure 3.4: Segmenting the requirements for path following. The path P is segmented in a
series of waypoints P i, which with their safety region B result in the sets Ri.
The time needed to reach two consecutive waypoints P i can differ, e.g. P2 is
reached in one step, where between P2 and P3 four instances are needed.

Keeping in mind the challenge of moving forward along the path, we approach this
problem by looking for controller parameterisations C̃ that steer the system outputs
y(k) from one waypoint P i to the next one P i+1. We leave as design freedom the
choice of the maximum time kmax that the system needs to achieve the next consecutive
waypoint. We start by checking the existence of controller parameterisations such that
one step, i.e. k = 1, set inclusion is guaranteed, i.e. Yk|Ri−1 ⊆ Ri, where the symbol |
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should be read as starting from. If no controller parameterisations are found, then the
control horizon k is increased until a parameterisation is obtained. This local increase
leads to time dilation, i.e. a different amount of time is needed in the different path
segments, see Figure 3.4. This solution approach is structured in Algorithm 2.

Algorithm 2 Controller parameterisation and segmentation for path following

Input: P, Ω, Ξ, η, Yko Cinit, kmax, B

Output: Ĉ

segment P into η sequential points
for i = 1:1:η do

Ri = P i ⊕B

end for
for i = 1:1:η do

for j = 2:1:kend do
set Y0 = Rj−1

obtain C̃ s.t. Yj|Ri−1 ⊆ Ri

if C̃ 6= ∅ then
break

end if
end for
if C̃ = ∅ then

set Ĉ = ∅
break

end if
update C̃ = Cinit

⋂ C̃
end for

Obtaining a guaranteed estimated set C̃ is the focus of the next Chapter 4. If
consecutive waypoints cannot be reached with one time step, additional constraints
of the form (2.5) can be added to the problem set-up (2.6). Achieving path following
is dependent not only on the controller, the system constraints but also on the path
itself, the segmentation into waypoints and the safety set B [3].

Set-based disturbance rejection

Disturbances are undesired but not changeable influences on the system dynamics.
Examples of disturbances are side wind gust to a vehicle that pushes it outside the
lane or opening the door of a refrigerator and thus influencing the internal chamber
temperature.
The disturbances d(k) leads to a change of the states x(k), which, in turn, leads to
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a change of the output y(k). The control task is to return the system to the old or
some acceptable levels of the reference, which can be posed as follows:

Problem 5. (Set-based disturbance rejection) For a controlled system (2.6) and initial
output conditions Yk0 and disturbance d(k) ∈ D∗, obtain a set of controller parameter-
isations Ĉ, such that the closed-loop outputs are bounded by the desired output profile
Ȳk.

Figure 3.5 presents an example of a profile Ȳk for the admissible output values y(k),
following a linear decay.

Figure 3.5: An example of a desired output behaviour for a disturbance rejection scenario.
The green bars are the admissible output values for each time instance. The
black lines are example output trajectories. The dashed lines illustrate the
imposed linear decay on the range of the set Yk that contain the admissible
output signal values.

Based on the amplitude and type of the disturbance d, the target set Ȳkend at the end
of the control horizon kend might pose an offset compared to Yk0. Solving Problem 5
can be done straightforwardly by adding the desired output profile Ȳk to the problem
set-up as a requirement and estimating the admissible controller parameters, i.e.

y(k) ∈ Ȳk, k ∈ T \{k0}.

The bounding profile of the desired output sets Yk can be considered as design
freedom. Examples are linear decay rate or exponential decay [222]. Information that
could aid the disturbance rejection is to model the disturbance. Including identification
information of the disturbance is critical in aiding the disturbance rejection task, e.g.
information about the model of the noise or the precise amplitude of the disturbance
[115], [228]. To adjust the volumes of the sets, an online estimator of the amplitude
and time of occurrence of the disturbance can also be beneficial [126]. Compared to
the presented scenarios so far, we acknowledge the fact that other requirements involve
logical statements and are not given with specific time instances. This describes a more
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complex behaviour, including conditional dependencies and temporal uncertainty. We
refer to them as qualitative requirements.

3.2 Qualitative Requirements

In many systems, like manufacturing, biological or chemical processes, the controller
requirements are neither fixed in time nor having a precisely defined amplitude. They
contain and are characterised often through qualitative system behaviour. Examples of
such behaviour include conditional requirements like ’if Phenomenon A happens; then,
it must be followed by either Phenomenon B or Phenomenon C’. One way to formulate
each of these requirements is through Boolean algebra expressions. Moreover, the
desired characteristics are often not fixed at a particular time but need to be valid at
all times. This leads to the inability to pose a quantitative requirement at a fixed time.
We include temporal operators, like eventually in our formulation, and to express them,
we considered temporal logic. Temporal uncertainty can be due to a period during
which this requirement is active, or it can be conditional and thus only occur after a
particular event. Those two scenarios are illustrated in Figure 3.6.

(a) The yellow region and δT symbolise the temporal
uncertainty of the constraint depicted by the black
bars.

(b) The red lightnings illustrate the enforcement of a
condition, depicted by the green bars in the grey
bubble, at different stages.

Figure 3.6: A depiction of requirements with temporal (on the left) or conditional (on the
right) uncertainty.

In addition to the discussed qualitative requirements, we consider discontinuities.
They allow to capture behaviours like saturation, dead zone, rate limit. We present
their formulation in a suitable mixed-integer formulation in agreement with the prob-
lem set-up.

3.2.1 Basic Qualitative Requirements

In many systems, the performance or the safety of the system is expressed by basic
logical expressions that can be formulated using Boolean algebra operators. The three
basic operators are: AND - conjunction, depicted by ∧; OR - disjunction, depicted
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by ∨; and NOT - negation, depicted by ¬. In Boolean algebra, the variables and the
expressions can be either TRUE, denoted by the symbol > and have the numerical
value of 1, or FALSE, denoted by the symbol ⊥ and having the value of 0. Moreover,
0 and 1 are the only two possible values for a variable or an expression in Boolean
algebra. For a succinct presentation, we present the three basic Boolean operators by
the following truth table with the help of the two binary variables z1, z2 ∈ {0, 1}, cf.
Table 3.1.

z1 z2 ¬z1 z1 ∧ z2 z1 ∨ z2
0 0 1 0 0
0 1 1 0 1
1 0 0 0 1
1 1 0 1 1

Table 3.1: Truth table for the operators: NOT(¬), AND(∧), and OR(∨) through enumera-
tion of the binary variables z1 and z2.

Expressions based on these operators are commonly used in control, e.g. ’switch to
an automatic mode once a specified temperature is reached, AND the pressure alarm
is NOT active’. To use logical constraints in the problem formulation (2.6), we need
to formulate them in polynomial form (2.5). Expressing the logical operators through
polynomial expressions with binary variables can be done through the standard con-
version method [37]. To illustrate the re-formulation of a logical requirement, we take
a Boolean expression lb(z) and pose it as the mixed-integer polynomial l(z), e.g.

lb(z1, z2) = z1 ∧ z2 � l(z1, z2) = z1z2,

lb(z1, z2) = z1 ∨ z2 � l(z1, z2) = z1 + z2 − z1z2,

lb(z1) = ¬z1 � l(z1) = 1− z1,

(3.3)

where the symbol � should be read as ’is equivalent to the expression’. Using (3.3)
allows to formulate Boolean logic expressions into the requirement’s form (2.5). We
are interested in enforcing a general controller requirement (2.5) that is not only of
logical variables but an expression of the variables in the problem formulation. The
validity of a requirement constraint can be expressed as a binary result. Therefore, we
can bind the value of a binary variable zi to the validity of a constraint l(a) ≥ 0, a ∈ A.
Here a is a placeholder variable and A is the set of admissible values for a. For brevity,
we refer to the validity of a constraint li(a) ≥ 0 as the statement Li. For a detailed
tutorial on the topic of model building of systems with mixed integers, we refer the
reader to [24], [49], [232]. We point out the following basic relations that are commonly
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used to simplify or formulate logical expressions:

¬> = ⊥,
¬¬z1 = z1,

¬(z1 ∧ z2) = ¬z1 ∨ ¬z2,

¬(z1 ∨ z2) = ¬z1 ∧ ¬z1.

Besides the basic operators, we also use the equivalence operator - if and only if -
to connect the validity of requirement L to a binary variable z. In addition to the
presented three basic logical operators, we discuss three more commonly used logical
operators: IFF is the equivalence operator, denoted by ⇔; IF...THEN is the material
implication operator, denoted by ⇒; and XOR is the exclusive disjunction operator,
denoted by 6≡. The truth tables for these functions are given in Table 3.2.

z1 z2 z1 ⇔ z2 z1 ⇒ z2 z1 6≡ z2
0 0 1 1 0
0 1 0 1 1
1 0 0 0 1
1 1 1 1 0

Table 3.2: The truth table for the operators: IFF(⇔), IF(⇒), and XOR(6≡) through an
enumeration of the binary variables z1 and z2.

In principle, one logical operator can be expressed through others. For example,
exclusive disjunction can be formulated through negation, disjunction and conjunction.
Nevertheless, working only with the basic elements leads to longer expressions that
can cost more computation time. Also, longer expressions make the discussion more
challenging to follow and thus more susceptible to errors. Therefore, the decision,
whether the formulation should be limited to the basic operators, needs to be evaluated
for each specific case. For completeness, we provide the following expressions that
substitute the later three operators through the basic operators:

z1 ⇒ z2 � ¬z1 ∨ z2,

z1 ⇔ z2 � (¬z1 ∨ z2) ∧ (¬z2 ∨ z1),
z1 6≡ z2 � z1 ∧ ¬z2 ∨ ¬z1 ∨ z2.

In manufacturing, and in particular, in Industry 4.0 related examples, these oper-
ators are used to describe the decision-making of changing production routes in run-
time, e.g. ’IF an item is heavier than A kilograms, THEN an item can be processed
EITHER by Machine 1 OR by Machine 3’ [2], [102].
In this work, we consider the control of hybrid dynamical systems, which means that

the validity of a requirement, or generally speaking a constraint, is time-dependent,
e.g. it is allowed that a threshold can be crossed only at certain times but not in
others. As a consequence, each requirement li needs to be evaluated, whether it is
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valid at each instance k. In turn, the corresponding binary variable zi needs to be
also time-variant. Considering two requirements l1 and l2, their corresponding binary
variables z1 and z2 and their validity horizon T ∗ ⊂ T , we can derive the following
expressions for the presented logical operations:

L1(k) ∧ L2(k) = >, k ∈ T ∗ � z1(k) + z2(k) = 2, k ∈ T ∗,
L1(k) ∨ L2(k) = >, k ∈ T ∗ � z1(k) + z2(k) ≥ 1, k ∈ T ∗,
L1(k)⇔ L2(k) = >, k ∈ T ∗ � z1(k)− z2(k) = 0, k ∈ T ∗,
L1(k)⇒ L2(k) = >, k ∈ T ∗ � z1(k)− z2(k) ≤ 0, k ∈ T ∗,
L1(k) 6≡ L2(k) = >, k ∈ T ∗ � z1(k) + z2(k) = 1, k ∈ T ∗,
¬L1(k) = >, k ∈ T ∗ � z1(k) = 0, k ∈ T ∗,

where ¬L1(k) means that we desire the requirement L1 at time k to be violated.
Negating a requirement is a critical tool that we use for the estimation of the controller
parameters, see Section 4.4.
So far, we considered logical expressions consisting of either binary variables or

requirements statements. Now we take a look at a mixed case, in which we combine
the validity of a requirement and a binary variable. To connect a statement L with
the state of a binary variable z, we introduce M and m. These two variables are
correspondingly the upper and the lower boundary of a function l(a), i.e.

M := maxa∈A l(a),
m := mina∈A l(a).

Additionally, we introduce a small positive constant ε ≈ 0, ε ∈ R+, which is com-
monly chosen to be equal to the machine precision of the computation device [24].
Using these three additional variables, formulating the expression l(a) ≤ 0 if and only
if z = 1 can be done as:

l(a) ≤ 0⇔ z = 1 is valid iff l(a) ≤M(1− z)
l(a) ≥ ε+ (m− ε)z

Analogously, we can express disjunction, conjunction and implication between an
inequality and a binary variable

l(a) ≤ 0 ∧ z = 1 is valid iff l(a)− z ≤ −1 +m(1− z)
l(a) ≤ 0 ∨ z = 1 is valid iff l(a) ≤Mz

l(a) ≤ 0⇒ z = 1 is valid iff l(a) ≥ ε+ (m− ε)z.

To enforce a negation on a constraint, we can easily just inverse the sign and thus
avoid the introduction of an extra binary variable. So far, we looked at modelling
inequalities, but the framework is valid also for equalities, as they are also natively
supported in the problem formulation (2.6). Besides the obvious way of expressing an
equality - through two inequalities intersecting at the boundary, we refer the reader
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to [49] and [232] for more details on modelling through mixed-integer expressions.
The presented logical operators were discussed for two variables. Combining more

of them, we can formulate more complex expressions. In Boolean algebra, each binary
variable can be considered as a substitution for any Boolean formula. Nevertheless,
we point out a simple way of formulating the enforcement of disjunction and con-
junction for more than two variables through mixed-integer expressions. In the case
of enforcing multiple controller requirements that are in conjunction with each other,
adding and expressing them through binary variables could be skipped. They can
be directly included in the set-up and thus skipping the additional binary variables
and not increasing the problem size. Such formulation reduces the problem size and
saves computation time. Nevertheless, if more than two variables are combined with
conjunction inside a more complex logical expression, we can model the multiple con-
junction as:

z1 ∧ z2 ∧ ... ∧ zn = >�
n∑
i=1

zi = n.

For a conjunction of multiple variables to be true, we can use the following expres-
sion:

z1 ∨ z2 ∨ ... ∨ zn = >�
n∑
i=1

zi ≥ 1,

and thus the inequality is satisfied. The corresponding statement is true as long as
one of the binary variables is equal to 1.
In summary, the presented mixed-integer modelling techniques enable the consider-

ation of requirements that can be formulated as Boolean algebra expressions. There-
fore, we can address conditional system requirements directly in the controller tuning
process.

3.2.2 Temporal Operators

In addition to the Boolean logic operators, we are interested in a method of describing
requirements with temporal uncertainty. In such a case, the validity period that a
particular requirement needs to be fulfilled is not fixed to specific time instances. In
particular, examples for such behaviours are ’next after input A reaches a threshold B,
then output C raises and eventually returns to the initial range D’ and ’until flow A is
smaller than flow B, valve C has to be henceforth opened’. From these two examples,
four temporal operators can be identified: next, eventually, until, and henceforth.
Such formulations are met in the verbal description of the operation of systems and
contain system information that needs to be considered during the controller tuning.
These operators are beyond the expressing capabilities of Boolean algebra and are
not commonly considered in classical controller tuning methods but are conveying
important information. In this work, we are interested in including the qualitative
behaviour such operators describe.
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Remark 1. We neither perform formal verification nor utilise the analytical capabil-
ities that the different temporal logics posses and their proving capabilities. In partic-
ular, some of these logics are correct only in the case of infinite time operation [171],
which is not the case for the systems we consider, where others require fixed space
segmentation, which we also do not consider directly [21]. Nevertheless, as stated in
Problem 2, we are interested and thus provide a framework to include the qualitative
behaviour in a mathematically solid framework, such that the obtained control results
are guaranteed, see Chapter 4.

In particular, we have a look at the aforementioned four temporal operators next,
eventually, henceforth and until. To explain the behaviour of these operators, we intro-
duce the term literal, which in propositional calculus is used to refer to a propositional
variable or the negated form of the variable [45]. The operator next, denoted by #,
has a value 1 when the formula #a is valid at the next time instance. Therefore, this
operator is also referred to as nexttime. Intuitively, henceforth, denoted by �, is equal
to 1 if all upcoming time instances for the formula �a are true. A more common name
for this operator is always, but we find the latter misleading from a linguistic point of
view. Two variables are needed when using until, denoted by aU b, expresses that a
holds true until b becomes true. The operator eventually, denoted by ♦, conveys that
a literal A must be TRUE at some unspecified upcoming instance. An alternative
naming for this operator is sometimes. The moment in which A has to be TRUE is
unspecified, but it is required to happen in the future at least once. The effects these
operators have over a literal are presented in Table 3.3.

T k0 k1 k2 k3 k4 k5 k6
x 0 1 0 0 1 1 1
y 5.3 6.1 6.9 9.2 1.2 3.1 1.6

z1 ⇔ y < 6 1 0 0 0 1 1 1
z2 ⇔ x = 0 1 0 1 1 0 0 0

#z1 0 0 0 1 1 1 -
�z1 0 0 0 0 1 1 1
♦z1 1 1 1 1 0 0 0
z2U z1 0 0 1 1 0 0 0

Table 3.3: Illustrative evaluation of several temporal expressions.

where z1, z2, x ∈ {0, 1}, y ∈ R.
As seen from the definitions, these four operators are reflecting the meaning of the

words that they have in human language. In this way, a verbal description can be
expressed through a temporal logic formula, which in turn, we postulate as equalities
and inequalities. We offer the following formulations:
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#z1(k) → z1(k+) = 1,
�z1(k) → z1(k) = 1, k ∈ {l, ..., kend},
♦z1(k) → Σz1(k) ≥ 1, k ∈ {l, ..., kend},

z1(k)U z2(k) →
 z2(k) when k = kend,

z2(l) ∧ (z1(k) ∨ (z1(k+)U z2(k+))) otherwise.

where l is the current instance at the control horizon, and the formulation of until is
based on the presented one in [30].
Analogously to the Boolean operators, the temporal operators contain a form of

redundancy and can express one operator through others, e.g.:

�a ≡ ¬♦¬a,
�a ≡ aW ⊥,
♦a ≡ ¬�¬a,
aU b ≡ (aW b) ∧ ♦b.

Note that intentionally avoiding some of the available operators can lead to un-
necessary bloating of the expressions and thus of the problem size. To alleviate the
simplification of temporal formulae and also for completeness, we would like to point
several common equivalence relations of Linear Temporal Logic formulae:

¬♦a ≡ �¬a,
¬�a ≡ ♦¬a,
¬ # a ≡ #¬a,
♦♦a ≡ ♦a,
♦(a ∨ b) ≡ ♦a ∨ ♦b,
�(a ∧ b) ≡ �a ∧�b.

(3.4)

As seen from the examples, combining temporal logic operators is allowed. Never-
theless, due to the last two equivalence relations in (3.4), the following cases should
be kept in mind:

♦(a ∧ b) 6≡ ♦a ∧ ♦b
�(a ∨ b) 6≡ �a ∨�b.

To illustrate the construction of a temporal logic expression, let us consider the
following example of controlling a drying chamber:

Example 4. If the door is closed, keep the temperature higher than 40 degrees and
less than 45 until the moisture in the air is higher than 20 % and henceforth keep the
door open.

We denote with z1 the door being closed, with z2 the temperature being more than
40 degrees, with z3 the temperature being below 45 degrees, and with z4 the moisture
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being more than 20%. Therefore, we can formulate the temporal formula that describes
Example 4 like

z1 ⇒ (z2 ∧ z3)U z4 # �¬z1

Two or more temporal operators can be combined, and such a combination is referred
to as a modality. The order in which they are formulated is also defining their meaning.
Some of the combinations can be irrelevant for the set-up considered here, e.g. �♦
will henceforth eventually require fulfilment of the condition, which is not meaningful
since we work with systems that operate in a finite-time control horizon. In contrast,
the inverse combination ♦� is relevant for the control context as it expresses system
stability, i.e. reach the steady-state and stay there. The modality ♦� can be expressed
through Boolean operators:

♦�z = ∨nk
i=1

∧nk
j=i z(j)

In addition to the presented operators, there are two other common operators,
namely weak until and strong release [178]. They do not bring significant new expres-
sive capabilities to the control requirements, and thus we do not discuss them. Some
temporal logics consider an extension through which the validity of the constraint is
limited to a validity period, i.e. it has a beginning and an end time of the requirement.
As we deal with finite-time horizon control, and we use the temporal operators as in-
spiration, this extension is inherently included. Still, when constructing a modality,
the validity periods have to be the same.

Remark 2. Temporal logics have also definitions for executions that relate to the past.
The operators next, henceforth, eventually, until, unless have their corresponding past
versions: previously, has-always-been, once, since, back-to. For the detailed semantics
and proving axioms, we refer to [134]. There are also other operators proceed, ensure,
leads-to, entails. The reason we do not discuss them here is they have a time-mirrored
execution and do not bring new modelling capabilities for our set-up.

The different logic operators and the ability to pose them as mixed-integer equalities
and inequalities enables the framework to formulate requirements that are conditional
and have temporal uncertainty. The introduction of binary variables increases the
complexity of the problem. Therefore, shorter and simpler formulations are recom-
mended. Another step to reduce the computational load is to check for redundant
constraints and to eliminate them from the set-up as they might cause additional
computational overhead.

38



3.2 Qualitative Requirements

3.2.3 Qualitative Control Scenarios

Set-based deadbeat control

Deadbeat control is a commonly desired control system behaviour that combines a
fast step response during a step change of the reference with an overshoot limit.
This requirement is also known as posicast control [128]. Often doing so, transitory
oscillations can be observed in linear systems that are second or higher-order and also
in nonlinear systems. Although for linear systems recommended strategies exist, this
is still an open question for our system class [151], [229]. Regarding the damping
qualitative behaviour, a transient response can be classified as being underdamped,
overdamped, or critically damped, see Figure 3.7. An underdamped system reaches
the reference rnew much quicker, compared to a critically damped system kud < kcd.
This fast response often leads to a substantial overshoot and significant oscillations
around the reference. In contrast, the overdamped does not exhibit any overshoot, but
it takes much longer to reach the reference and quite often achieves a poor steady-state
error margin. There is a point beyond which the system is no longer underdamped and
starts exhibiting oscillations, and the process is referred to as critically damped. A
transient response example for each of the three behaviours is presented in Figure 3.7.

Figure 3.7: Qualitative comparison between an underdamped, overdamped and critically
damped transient behaviour. Although the underdamped achieves the precision
range much faster than the critically damped, it experiences significant oscil-
lations, and the overdamped does not manage to achieve the precision range
during the considered horizon.

Combining the fast rise time from the underdamped and the small or none overshoot
from the underdamped characterise the so-called critically damped behaviour [59]. In
the control engineering context, this behaviour is the main characteristic of deadbeat
control. Following the design requirements for deadbeat control in [59], we outline
them for systems with uncertainties:

• steady-state error smaller than ε,
• overshoot less than δ%,
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• undershoot less than δ%,
• minimum settling time ksettle for all possible trajectories.

In some formulations of deadbeat control, there is also a specified minimum over-
shoot δmin, such that the system is forced to improve its rise time [59]. As we deal
with uncertain systems, it is no longer possible or desirable to require that the system
achieves a singular value and stays at it. The minimum settling time can be achieved
through an iterative procedure where the settling time is shifted to an earlier time
instance as long as feasible controller parameters are found. The iterative solution ap-
proach leads to the inability to specify each of those characteristics with fixed times.
Therefore, they have to be specified qualitatively in a conditional manner.

Algorithm 3 Set-based tuning for deadbeat control
Input: Ω, Ξ, δ, δ, δ, ε, T
Output: Ĉ

set n = size of T
set i = 1
set Ĉ = ∅
while i < n AND Ĉ = ∅ do

set ksettle = i

obtain Ĉ s.t. the performance requirements: δ, δ, δ, ε, ksettle
set i = i+ 1

end while

Usually, the price to pay for a fast transient response is a higher amplitude and
sometimes significant oscillations of the input signal, which can be addressed through
additional requirements Li. Two examples of this scenario are the control of wind
rotors and X-Y plotters [59].

Set-based bumpless control

In this scenario, a system Ω is switched from one control strategy to another [51].
When the switching occurs at kswitch, a strong fluctuation, the so-called ’bump’, in the
output signal y is commonly observed, cf. Figure 3.8. Therefore, to avoid damaging
the system, a smooth transition between the two control strategies is desired, e.g. the
control of heat exchangers [118]. Classically, the switching between the two control
regimes is from a manual mode to an automatic one. Another example can be the
change from one control strategy that provides good reference change to a second one
that has good disturbance rejection properties. Therefore, to ensure the bumpless
control transition, the process requirement is a smooth switching transfer. Numerous
examples for such tuning rules of PID controller can be found in [161], [240].
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Figure 3.8: A depiction of a desired (in green) vs. undesired (in red) bumpless control.
At kswitch controller Ξ1 stops being active and Ξ2 takes over the control of the
system.

One of the reasons for this behaviour to occur is that the dynamical controller needs
time to adjust its states such that the output is maintained. To address it, strategies
that are based on mirroring the effect of the system exist to ensure a bidirectional
transfer [59]. However, this becomes challenging for constrained hybrid nonlinear
multi-input multi-output systems, and a resulting swinging output behaviour can lead
to system instability, performance degradation, or permanent damage to the system.
Therefore, depending on the system, managing the transition can be of critical im-
portance. To achieve it, we can specify output constraints Yk that are enforced after
the switching. We are interested in the general case of switching between any two
controllers Ξ1 and Ξ2 that can be posed as in (2.3).

Problem 6. (Set-based bumpless control) For system (2.6), achieve bumpless control
by finding a set of controller parameters C2, such that when the switching between
the two controllers Ξ1 and Ξ2 at kswitch occurs, the outputs y(k) are bounded by Yk,
k ∈ {kswitch+1, kswitch+2, .., kend}.

Problem 6 refers to two possible scenarios, depending on whether kswitch is fixed in
time or conditional. When the switching time is known a priori, it describes a switched
system behaviour. In this case, the first controller Ξ1 is active during the first part
of the control horizon, i.e. {k0, k1, ..., kα} and the second controller Ξ2 is active until
the end, i.e. {kα+1, kα+2, .., kend}. To tackle this scenario, the following controller
structure and constraints are added to the system description (2.6):

Ξ(k) = α1(k)Ξ1(k) + α2(k)Ξ2(k), k ∈ T ,
α1(k) = 1, α2(k) = 0, k ∈ {k0, k1, .., kswitch},
α1(k) = 0, α2(k) = 1, k ∈ {kswitch+1, kswitch+2, .., kend},
y(k) ∈ Yk, k ∈ {kswitch+1, kswitch+2, .., kend}.
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In contrast to working with a defined switching time kswitch, the case with an un-
known switching time describes a switching type of system [120]. Let us denote with
z1(k) and z2(k) the Boolean variables that are the bounding requirement for the out-
put to switch, and z3(k) is the condition that limits the output inside the admissible
region. For illustrative purposes, we consider the switching condition is the output
reaching ε close to the reference r. This can be formulated through the following
constraints:

z1(k)⇔ y(k) ≤ r + ε,

z2(k)⇔ y(k) ≥ r + ε,

z3(k)⇔ y(k) ∈ Yk,
(z1(k) ∧ z2(k))→ �z3(k).

A reasonable addition to the switching condition is a requirement that the outputs
spend several consecutive time instances close to the reference, and only then the
switch occurs. This switching condition and any additional ones can be added before
the material implication, in conjunction with z1(k) and z2(k). Although the bumpless
transfer can be addressed through techniques from anti-windup design [84], here we
presented a generic qualitative requirement formulation that tackles it directly and
allows more capabilities. In the following section, we take a look at several disconti-
nuities and, in particular, how to formulate and specify signal saturation, which is the
culprit for the windup challenge that arises in control.

3.2.4 Discontinuity Phenomena

We take a look at a particular class of nonlinear dynamical phenomena that is often
referred to as discontinuities [206]. These phenomena describe behaviours that are
not fixed to a specific time and are observed as long as the conditions describing them
occur. Therefore, we consider them as qualitative behaviours. Some of them are also
dependent on values from previous instances and hence have a dynamical component.
Moreover, the behaviour of each of these phenomena can be separated from the rest
of the system, thus allowing us for a targeted discussion and custom modelling.
We take a look at the following discontinuities: saturation, dead zone, rate limiter,

and relays with and without hysteresis. They can be formulated as a switching system
with a mode per sub-behaviour or as system requirements. To be consistent with the
approach here, we model these phenomena via mixed-integer polynomial expressions.
To illustrate the influence of the discontinuity elements, we look at their behaviour

and evaluate them as input-output blocks, with u(k) as the input signal and y(k) as
the output signal. This systematic view allows describing the nonlinear behaviour of a
particular discontinuity separately from the rest of the dynamics. For each of them, we
present a graphical input-output relation, the defining mathematical formulation, and
a qualitative formulation through which they can be added to the problem formulation.
To express the discontinuities, we introduce auxiliary binary variables zi(k) ∈ {0, 1}
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that are time-dependent, as the effect of the discontinuities is dependent on the values
of time-variant signals.

Saturation expresses a behaviour in which inside a defined range, the input signal is
passed through without modifying it, and outside this range, the signal is saturated.
Depending on whether u(k) is beyond u ∈ R or u ∈ R, it is correspondingly limited
to y ∈ R or y ∈ R, where u < u and y < y, see Figure 3.9 and (3.5). Practical
examples are any system that operates from 0% to 100%, e.g. mechanical, biological,
computer systems, etc. In particular, in any engineering system, some components
exhibit such behaviour, e.g. a valve, a voltage transformer, heating/cooling capabilities
of air-conditioning systems, practically speaking any actuator.

Figure 3.9: Signal transformation of a sat-
uration discontinuity.

y(k) =


y, u(k) ≥ u,

y, u(k) ≤ u,

u(k), otherwise.

(3.5)

To express saturation qualitatively, we use two additional binary variables z1(k)
and z2(k), where the first is equal to 1 when u(k) ≥ u and the latter is equal to 1 if
u(k) ≤ u. Between the two limits u and u the system output y(k) is equal to u(k), i.e.

z1(k) = 1 ⇐⇒ u(k) ≥ u,

z2(k) = 1 ⇐⇒ u(k) ≤ u,

y(k) = z1(k)u+ z2(k)u+ (1− z1(k))(1− z2(k))u(k).
(3.6)

In principle, the system can behave also non-linearly inside the saturation region
[u, u]. Still, we consider the influence of each discontinuity separately, and additional
phenomena can be added and analysed individually. In summary, the design parame-
ters for a saturation in (3.6) are u and u.

Dead zone phenomenon describes insensitivity to small signal amplitudes, see Fig-
ure 3.10. As long as the input signal u(k) is within the dead zone region (u, u),
u ∈ R>0, u ∈ R<0, the output y(k) remains unchanged, typically equal to zero, see
Figure 3.10 and (3.7). Outside this non-sensitive range, the system output behaves
linearly. An example of this effect is the sinusoidal control input signal for controlling
the position of a hydraulic piston [164]. In this case, a small amplitude of the applied
voltage does not cause displacement of the piston, but only after certain amplitude
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thresholds are reached.

Figure 3.10: Signal transformation of a
dead zone discontinuity.

y(k) =


u(k)− u, u(k) > u,

u(k) + u, u(k) < u,

0, otherwise.

(3.7)

In this case, we use two additional binary variables z1(k) and z2(k) to signify whether
the input u(k) is outside the dead zone. The insensitive region between them is
modelled by a conjunction of the negation of both auxiliary variables.

z1(k) = 1 ⇐⇒ u(k) > u,

z2(k) = 1 ⇐⇒ u(k) < u,

y(k) = z1(k)(u(k)− u) + z2(k)(u(k)− u).
(3.8)

In summary, the design parameters for a dead zone in (3.8) are u and u.

Rate limiter describes how much a signal changes between two consecutive time
instances. Practically speaking, this discontinuity relates to limiting the signal’s first
derivative in time. Therefore, we are interested not only in the current value of the
input signal u(k) but also in the output value at the previous time instance y(k−).
Examples where this limit is relevant are the acceleration of a vehicle [91], the rate of
change of altitude of an aeroplane [201].

y(k) =


y(k−) + (k − k−)y∗, u(k)−y(k−)

k−k− > y∗,

y(k−)− (k − k−)y∗, u(k)−y(k−)
k−k− < y∗,

u(k), otherwise.

(3.9)

In (3.9) y∗ ∈ R and y∗ ∈ R denote the maximum and minimum rate change, i.e.
the change in the signal from the previous step k− to the current one k, moreover,
y∗ > y∗. This phenomenon also has three regions in which it changes its operation.
Thus, we use two additional binary variables z1(k) and z2(k):

z1(k) = 1 ⇐⇒ (u(k)− y(k−))/(k − k−) > y∗,

z2(k) = 1 ⇐⇒ (u(k)− y(k−))/(k − k−) < y∗,

y(k) = z1(k)(y(k−) + (k − k−)y∗) + z2(k)(y(k−)− (k − k−)y∗)
+ (1− z1(k))(1− z2(k))u(k).

(3.10)

In some systems, depending on the modelling approach, the rate change is already
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present as a state. In such systems, it is preferred to impose the constraint directly
on the state and thus preserve the number of variables. In summary, the design
parameters for the rate limiter in (3.10) are y∗ and y∗.

Ideal infinite gain relay without hysteresis is a behaviour in which a system switches
between two levels: a high level y ∈ R and a low level y ∈ R, i.e. y > y. The switching
happens at a threshold level of u∗ ∈ R, see Figure 3.11 and (3.11).

Figure 3.11: Signal transformation of an
ideal relay without hysteresis.

y(k) =
 y, u ≥ u∗,

y, otherwise.
(3.11)

It is modelled with one extra binary variable z1(k):

z1 = 1 ⇐⇒ u ≥ u∗,

y(k) = z1(k)y + (1− z1(k))y. (3.12)

Structurally close to the infinite gain relay are Coulomb and viscous friction, e.g.
see [104]. Comparing the behaviour of the ideal relay and the Coulomb friction, three
quantitative differences appear. First, the switching behaviour in the relay is offset by
u∗. Second, after switching, the value of the friction profile increases in each direction,
where the relay keeps the output value constant. Third, if the input value of the
friction is equal to 0, then the output is also equal to 0, where the relay is an either-or
element. Which leads to the following qualitative constraints:

z1 = 1 ⇐⇒ u > 0,
z2 = 1 ⇐⇒ u < 0,
y(k) = z1(k1u(k) + y) + z2(k2u(k)− y).

(3.13)

In summary, the design parameters for Coulomb friction in (3.13) are y and y.

Relay with hysteresis is a common element in inexpensive control solutions with
low precision. This discontinuity is present as a control scheme in the thermostatic
control of ovens, irons, electric kettles. The width of the hysteresis zone is the tuning
parameter that relates to the quality of the control process. Thus, decreasing the
width leads to a smaller output variation but increases the switching frequency, which
in turn means faster wear of the switching hardware.

45



3 Control Requirements - A Set-based Perspective

Figure 3.12: Signal transforma-
tion of a relay with
hysteresis.

y(k) =
 y, (u > u) ∨ ((u < u < u) ∧ (y(k−) = y)),
y, (u < u) ∨ ((u < u < u) ∧ (y(k−) = y)).

(3.14)

In this case, the output y(k) switches between y ∈ R and y ∈ R, where y > y. The
switching occurs at u ∈ R and u ∈ R, where u < u, see Figure 3.12 and (3.14). To
model a relay with hysteresis, we use three auxiliary variables z1(k), z2(k), and z3(k).
The first two variables z1(k) and z2(k) are used to determine in which of the three
regions the input signal u(k) is, i.e. below u, above u, or between them. The third
binary variable z3(k) corresponds to whether the system is at the upper or lower state
inside the hysteresis region.

z1(k) = 1 ⇐⇒ u(k) > u,

z2(k) = 1 ⇐⇒ u(k) < u,

z3(k) = 1 ⇐⇒ y(k − 1) = y,

y(k) = z1y + z2y + (1− z1(k))(1− z2(k))(z3(k)y + (1− z3(k))y).

(3.15)

In summary, the design parameters of a relay with hysteresis in (3.15) are y, y, u,
and u.

Another discontinuity that is often discussed along the aforementioned is the back-
lash. An application where this phenomenon occurs is mechanical gears. There are
different ways to describe it mathematically, e.g. through polynomial functions or
logarithmic approximations of the hysteresis zone with dynamic ranges [136] or even
including rotational inertia, elasticity and damping properties with moving ranges as
in [5]. Therefore, it can be reduced down to the modelling techniques here without
any overhead.

In the presented cases, the phenomena are in a basic configuration. In general the
values of u, u, y, y and the other coefficients need not to be symmetric. Even more,
the functions outside the discontinuity regions can also be more complex than the
ones presented here. Still, these complex behaviours can often be reduced to a series
of simpler ones.
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3.3 Summary
In this chapter, we presented a broad class of control requirements and control sce-
narios and thus provided a solution to Problem 1. Based on their characteristic,
we grouped them into quantitative and qualitative requirements. The quantitative
requirements are characterised by a fixed range of spatial uncertainty/flexibility at
specified time instances. They are used to model the transient response characteris-
tics. We provided a formulation for each characteristic such that it fits the considered
system class.
The qualitative requirements are used to formulate conditional and temporal uncer-

tainties. We presented the formulations for Boolean algebra and temporal operators
and their mixed-integer expressions. Additionally, as a particular subclass of qualita-
tive requirements, we discussed the formulations of several discontinuity phenomena.
To illustrate the applicability of the quantitative and qualitative requirements, we ex-
amined several control scenarios and presented solution approaches for each of them.
Therefore, through the quantitative and qualitative requirements, we can include a
wide variety of control requirements in the problem set-up and address various control
scenarios. Next, we have a look at Problem 2 in Chapter 4, i.e. obtaining guaranteed
controller parameterisations such that these requirements are satisfied.
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Parameterisation

Sherlock Holmes: "When you have
eliminated all which is impossible, then
whatever remains, however improbable,
must be the truth."

Sir Arthur Conan Doyle

In this chapter, we present the theoretical foundations behind the invalidation
method used for controller parameterisation. Obtaining a set of feasible controller
parameters is achieved through certificates that invalidate sets of the variable space.
To do so, we express the problem as a feasibility problem and outline how to use this
formulation for set estimation and controller tuning. To do so, we use numerical set
estimation approaches, as obtaining the sets analytically is often impossible. We work
with two types of set approximations: outer and inner. The outer approximation is
used to reduce the search space and aid the control engineer where to find admissible
controller parameterisations. An inner approximation procedure looks for solutions
that are valid for all possible combinations of uncertain variables. We illustrate the
controller parameterisation validation by three examples: safe charging of a Li-ion
battery, level control of a two-tank system, and reference change of a magnetic levita-
tion plant. We conclude the chapter with a discussion of the potential challenges and
give recommendations on how to overcome them. Some of the results in this chapter
have been presented in [7], [9], [194].

4.1 Set-based Estimation

We use set-based estimation (SBE) to find sets of values for the variables of interest,
such that the structure of the considered problem, constraints, and measurement infor-
mation are satisfied. Specifically, we are interested in obtaining values that guarantee
the demanded performance.
When performing parameter estimation, it is common to define a fitness criterion

and use optimisation to achieve a good fit [197]. In this case, the goal is to find these
parameter values that result in system output behaviour that is as close as possible
to the measurement data. In contrast to parameter estimation, we are interested in a
set of values that fit the model and fulfil the constraints. Thus, we consider set-based
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estimation, which demands the requirements to be satisfied for the complete ranges of
uncertainties.

4.2 Feasibility Problem Formulation
We are interested in parameter values such that the requirements are satisfied under
all conditions. Therefore, we introduce the following definition:

Definition 3. We denote a set as feasible, if for all elements of the set, the require-
ments hold for all possible initial conditions, constraints and uncertainties.

The set-based framework is based on a feasibility formulation. The foundations of
the method have been laid out in [35], [36], [186], and expanded to consider binary
variables in [195].
We recall the control set-up (2.6) through the feasible set F that it defines:

F =



find (x, y, u, p, c, r, z, d, s)
s.t. x(k+) = f(x(k), u(k), p(k), d(k)), k ∈ T −,

y(k) = g(x(k), p(k), s(k)), k ∈ T ,
u(k+) = h(y(k), r(k), u(k), c), k ∈ T ,
l(x(k), u(k), y(k), z(k), r(k), k) ≥ 0,
x(k) ∈ X k, p(k) ∈ Pk, r(k) ∈ Rk,

u(k) ∈ Uk, y(k) ∈ Yk, s(k) ∈ Sk,
d(k) ∈ Dk, z(k) ∈ Zk, c ∈ C,

(4.1)

’Find’ represents the search for feasible values, and thus F contains all combinations
of variables that satisfy all constraints under the category ’subject to’. Therefore,
the set F contains the controller parameterisations that satisfy the desired hybrid
dynamical behaviour. As a result of that, obtaining F is the essential element in
providing guaranteed control performance.

4.2.1 Problem Relaxation

Obtaining the feasibility set F in (4.1) exactly is not a trivial task. The set is, in
general, non-convex and can be disjoint due to nonlinearities. To simplify the search,
we relax the problem. As a first step, we derive the problem into a quadratically
constrained quadratic problem (QCQP). To do so, we construct a monomial basis
that we use to describe the system dynamics (4.1)

φ = [1, xα, yβ, cγ, ..., x2
α, y

2
β, c

2
γ, ....., xαyβ, xαcγ, yβcγ, ....] ∈ Rnφ,

Here α ∈ {1, .., nxnt}, β ∈ {1, .., nynt}, γ ∈ nc correspond to the variables in the
problem formulation. Therefore, the dimensions of the vector φ reflect the problem
size, which grows with each time step and variable.
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We note that choosing a monomial basis is not unique, e.g. a monomial ab2 can be
split either into the couple ab and b or into the couple a and b2.
The QCQP looks like as follows:

QCQP =


find φ ∈ Rnφ

s.t. φTAiφ = 0, i ∈ {1, ..nA}, k ∈ T ,
φ1 = 1,
Bφ ≥ 0,

(4.2)

where nA is the number of quadratic dependencies and Bφ > 0 models the set con-
straints and other present inequalities, e.g. requirements or global bounds. Note that
a QCQP includes the binary variables. For example, for a ∈ R and a(a − 1) ≤ 0
together with a(a− 1) ≥ 0 leads to a ∈ {0, 1}. A suitable QCQP formulation can be
found for any polynomial system. Solvers that can handle QCQP directly exist, see
[80], [92], [150].
In the next step, we relax to problem by introducing the matrix Φ = φφT . Addi-

tionally, we replace the constraints tr(Φ) ≥ 1 and rank(Φ) = 1, with Φ � 0. This
allows transforming the QCQP into a mixed-integer semi-definite program (MISDP).
We can pose the relaxed MISDP as follows:

MISDP =



find Φ
s.t. tr(AiΦ) > 0, i ∈ {1, .., nA}, k ∈ T ,

tr(e1e
T
1 ) = 1,

BΦe1 > 0,
BΦBT > 0,
Φ � 0,

(4.3)

where e = (1, 0, .., 0)T ∈ R. In the case that MISDP does not contain any binary
variables, the program is semi-definite and can be tackled by standard solvers, e.g.
[150], [200], [218]. The presence of integer variables introduces an additional layer of
complexity. For solvers capable of handling MISDP see [53], [70].
Although relaxing the problem to an SDP or MISDP renders it easier to solve, we use

one further relaxation step and pose it as a mixed-integer linear program (MILP). For a
technical discussion on semi-definite vs linear programming for polynomial systems, we
refer to [110]. In particular, we relax the condition Φ � 0. For a computational analysis
of the proposed relaxation, we refer the reader to [192]. We obtain the following MILP
formulation:

MILP =



find φ

s.t. tr(AiΦ) = 0, i ∈ {1, .., nA},
tr(eeTΦ) = 1,
BΦe ≥ 0,
BΦBT ≥ 0.

(4.4)
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Formulating the feasibility problem (4.1) as a MILP allows the use of existing ef-
ficient solvers. For the examples presented in this work, we used CPLEX [92] and
Gurobi [80] as solvers. We take a look now at the last step needed to perform a
certified set-based estimation, namely, if one can still provide guarantees despite the
relaxation.

4.2.2 Infeasibility Certificate

From a conceptual point of view, infeasibility means that at least one of the require-
ments or constraints cannot be satisfied. We note that each optimisation problem
can be expressed through a dual formulation. Where instead of the original minimi-
sation, the optimisation is expressed as maximisation and vice versa. We consider a
Lagrangian dual formulation for the MILP (D-MILP) as:

D-MILP =


max ζ

s.t. ΣνiAi + ζeeT + eλT1B +BTλ1e
T +BTλ2B + λ3 = 0

λ1 ≥ 0, λ2 ≥ 0, λ3 � 0.
(4.5)

where νi and ζ are the scalar dual variables corresponding to the equality constraints
of the MILP, and λ1 ∈ Rnζ , λ2 ∈ Rnζ×nζ , λ3 ∈ Rnζ×nζ correspond to the inequality
constraints, and λ3 is symmetric.
The set Q is the Cartesian product of all spaces that are present in the problem

formulation. To perform the SBE, we use a probing set QP , which is a subspace of Q,
i.e.

QP ⊆ Q ≡ X × U × P ×R× Y ×D ×M× C × Z (4.6)

In this way, the probing spaceQP forms a placeholder space, which is chosen depending
on the task at hand. The MILP(QP ) and D-MILP(QP ) are the primal and the dual
problems.
We use a well-known result regarding the primal-dual relation: if the dual problem

is unbounded, denoted by D-MILP(QP ) → ∞, then the primal problem does not
contain any feasible solution, i.e. MILP(QP ) = ∅, see [36], [192], [226]. The second
key element to obtain a certification is the fact that the discussed relaxations are
conservative, i.e. that all solutions are preserved, and only spurious ones could be
added [35], [36], which leads to the following infeasibility certificate:

Definition 4. If D-MILP(QP ) is unbounded then MILP(QP ) = ∅. Thus as the
MILP(QP ) is a conservative relaxation of FP(QP ), the FP(QP ) does not contain any
feasible solutions.

The formulation of the probing space QP allows focusing on different aspects, such
as finding the control parameters. For example, for solving Problem 2 one can choose
QP ⊆ C. In such a way, we explore the controller parameter set and invalidate the
regions that do not contain any solutions and thus obtain an estimation of the feasible
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controller parameters. We continue with discussing strategies on how to obtain an
outer and later an inner approximation of the desired space.

4.3 Outer Approximation
We now outline how to efficiently obtain an outer approximation of the feasible set
in the desired coordinates. Figure 4.1 contains a geometrical representation of the
feasibility set F and its projection onto the space of interest.

Figure 4.1: Set F described by the problem set-up and its projection onto two arbitrary
coordinates α and β of interest.

In particular, we look for approximations of the projection of F onto different spaces
of interest. For example, to obtain a set of certified controller parameters using the
presented feasibility certificates, we project F onto the controller parameter space C
and look for an outer approximation C̃ of it, such that projC(F) ⊆ C̃, cf. Figure 4.1.
We first focus on outer approximation. Remember that in the set-based estimation,

the invalidation of a space Q is obtained through checking the unboundedness of the
corresponding D-MILP(Q). This way, the set estimation guarantees that the removed
regions Q∅ do not have feasible solutions.

4.3.1 Approximation Techniques

We consider two SBE strategies: outer-bounding and bisectioning. The outer-bounding
procedure employs a hyper-box set that contains the feasible set, and the outer approx-
imation reduces the size of this box. The outer-bounding technique can be performed
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4.3 Outer Approximation

either sequentially, for each bound of each variable, or simultaneously, by improving
more than one bound at once. The problem formulation and the technical details can
be found in [34], [36], [192]. To illustrate the outer-bounding approach, we sketch out
consecutive estimation iterations of simultaneous outer-bounding in Figure 4.2. The

Figure 4.2: Three iteration steps of an outer-bounding approach. The goal is to obtain an
outer approximation of QF . The sets Q1

O, Q2
O, Q3

O are respectively the first,
second and third approximation iteration.

illustration in Figure 4.2 presents the general case by using the placeholder set Q, i.e.
in the general case the projection of the feasibility set onto Q is

QF = projQ(F).

The initial search space is denoted by QS. The outer-bounding approximations are
expressed as QiO, where i ∈ N+ is the estimation iteration. The improvement of
estimated set varies with each iteration step. Moreover, it is even possible that only
the upper or the lower boundary of one of the dimensions of the hyper-box is updated,
which the case for the third iteration in Figure 4.2. All outer-bounding estimation
results are nested, i.e.

QS ⊇ Q1
O ⊇ Q2

O ⊇ ... ⊇ QiO, i ∈ N+. (4.7)

To provide QiO ⊇ QF it is recommended to start with wide bounds for the search
space. As seen from the examples in this work, the employed SBE can handle un-
certainty ranges of several orders of magnitude. Moreover, in most cases, the outer-
bounding estimation technique is efficient in shrinking the search space significantly
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only in a few iterations. Nevertheless, it results in a hyper-box estimation set, and if
the set is highly non-convex or with an odd shape, it might not provide tight estimation
results.
In such cases, we can, for example, employ bisectioning. Bisectioning procedure

belongs to the split-and-conquer algorithms that split the search space and certify the
bisected regions one by one. Although the bisectioning procedure increases the number
of invalidations that need to be performed, the computations can be parallelised.

Figure 4.3: Illustrative example of applying bisectioning approach to obtain an outer ap-
proximation of the set of interest QF . The union of the green sets composes the
outer approximation at each iteration.

For the bisectioning, we start with the initial search space QS, see Figure 4.3. At
each iteration, the not-yet invalidated space is split. Then each region is checkedand if
invalidated, it is removed from further consideration. The remaining sets are combined
under a set union operation. The estimation result at the ith bisectioning iteration is
denoted as QiB. The bisectioning estimation results from the outer approximation can
only shrink or remain the same size from one iteration to the next, as no new regions
are added, only the old ones have been split and checked, i.e.

QS ⊇ Q1
B ⊇ Q2

B ⊇ ... ⊇ QiB ⊇ QF , i ∈ N+.

Remark 3. For easing the discussion, we consider the probing space to be a multi-
dimensional box. As indicated in [211], the probing space’s geometry can have other
shapes, e.g. spherical, ellipsoidal, simplex, etc.

The main advantage of the bisectioning SBE is that it can provide much finer fidelity
estimation results. From a practical point of view, bisectioning the dimension with
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the largest absolute difference between the upper and the lower boundary could be
beneficial. In contrast, splitting a dimension in which the difference between the upper
and lower boundary approaches the machine precision should be avoided. We continue
with raising the important question of whether any controller exists at all that can
provide the desired behaviour.

4.3.2 Controller Existence

After performing an SBE for obtaining controller parameter values, although unde-
sired, it could turn out that Ĉ = ∅. One reason for such a result could be the wrong
parameter search space. Another reason could be that the controller structure, inde-
pendently of the parameterisation, is incapable of providing the desired behaviour. To
answer the question whether there is at all a controller that fits the problem formula-
tion and can achieve the requirements under the system constraints, we introduce the
following problem:

Problem 7. (Set-based controller existence) Does a controller exist that could fulfil
the system dynamics, control requirements and initial conditions formulated in (2.6)?

Basically, Problem 7 aims at figuring out at an early stage whether a problem
has challenging constraints. To do so, it removes the controller structure from the
validation problem and focuses on the system dynamics, requirements, and initial
conditions. Using the set-based estimation, we can provide a guaranteed invalidation
statement.
In particular, to provide an answer to Problem 7, we ask if there exists an input

sequence {u(k)} that satisfies the control requirements and system dynamics, By doing
so, we can invalidate all controller structures with a single check. We perform this
check by treating u(k) as a time-variant variable. Afterwards, we use u(k) itself as the
acting controller in the feasibility problem and invalidate it to produce the certificate.
To illustrate the idea, we provide a block scheme in Figure 4.4. To depict the key idea
in the approach, the input constraints Uk are shown as a separate saturation element
before the system dynamics.

Figure 4.4: Block scheme of the proposed solution to Problem 7. The block {u(k)} inside
the controller symbolises any possible control sequence that can be created.

By reducing the controller Ξ to sequences of control signals, the controller structure
and the parameterisation become irrelevant. To illustrate the idea of considering
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a time-variant variable as the acting controller, we provide the following academic
example:

Example 5. Let’s consider a rocket car, modelled through a discrete-time double in-
tegrator with the following dynamics:

x1(k+) = x1(k) + x2(k),
x2(k+) = x2(k) + u(k).

where x1, x2, and u are the car position, car speed and the control input that corre-
sponds to the car acceleration. The system starts at x1(k0) = 0, and x2(k0) = 0. The
goal is to design a controller u = h(·) that achieves at least 1000 distance units in two
time steps, i.e. the controller requirement is x1(k2) ≥ 1000, but the car has a safety
constraint on the acceleration, limiting it between 0 and 10, i.e. u(k) = [0, 10]. As the
system is linear, we can take the upper limit of u to compute the maximum position
that can be achieved in two instances is 30 distance units. Therefore, no controller
can fulfil this system set-up.

An obtained infeasibility certificate for Problem 7 guarantees that no controller can
respect all requirements. Still, in the case when such a certificate is not obtained, it
neither guarantees that a controller exists, nor shows how to obtain one. We con-
tinue by looking into a particular example that validates the system performance. To
demonstrate the outer approximation through an SBE, we continue with an exam-
ple with critical safety requirements and thus demanding guaranteed tuning results,
namely safe battery charging.

4.3.3 Example - Safe Battery Charging

We continue with an example that looks for the admissible input values with respect to
the initial conditions, such that the desired output is achieved and the constraints are
obeyed. This example deals with charging a Li-ion battery with a classical constant-
current constant-voltage charging policy. This policy consists of two stages. In the
first stage, the maximum safe current is applied to the battery, which allows for fast
charging. This is carried out until the maximum safe voltage is achieved (in our ex-
ample, the voltage is 4.2V). Then, in the second charging stage, a constant voltage
is maintained. This is achieved by decreasing the applied current until a minimum
current is attained. At this stage, the battery is considered fully charged [190]. Exem-
plary profiles of constant-current constant-voltage cycles are presented in Figure 4.5,
together with the corresponding the state of charge profile.
The higher the applied electrical current, the faster the battery reaches higher state

of charge levels, and thus the total charging time is faster. However, higher current
loads can lead to fast battery degradation. Moreover, for each battery cell, there is a
defined Imax that determines the safe charging current. Additionally to the maximum
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Figure 4.5: On the left are example electrical current profiles of constant-current constant-
voltage charging of a Li-ion battery and on the right are the corresponding
evolutions of the state of charge of the battery.

current, overcharging and under-charging a battery, as well as high or low tempera-
tures, should be avoided for Li-ion batteries [230].

Model Description

There are different modelling approaches for describing Li-ion battery dynamics [175].
We use an equivalent circuit model that describes the overall electrical behaviour of a
battery. Equivalent circuit models are based on fundamental electrical relations and
are used in many practical implementations as they have proven to be reliable and
sufficiently complex [57], [205].

Figure 4.6: Considered simple equivalent circuit model.

The model uses basic electrical elements like resistors, capacitors, voltage sources,
see Figure 4.6. Using Kirchoff’s law we can derive the following dependency:

V (k) = E(k)− VC(k)− I(k)R. (4.8)

Here V (k) is the applied voltage, I(k) is the current that flows through the battery,
the resistor R models the internal battery resistance, VC(k) is the voltage drop of
the resistor RC and a capacitor CR. We consider a nonlinear voltage source E that
corresponds to the open-circuit voltage of the cell, cf. Figure 4.7.
We use the system parameters of a Nokia BP-4L battery [1]. We approximate
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Figure 4.7: Relationship between the open-circuit voltage E and the state of charge s.

the open-circuit voltage E by a rational function η(z(k), κ). The overall dynamics is
described by the voltage drop VC(k) over the capacitor, and the state of charge s(k).

s(k+) = s(k) + δ(k)I(k),

VC(k+) = VC(k) + δ(k)
(
−VC(k)
CRRC

− I(k)
CR

)
,

E(k) = η(s(k), κ),
η(z(k), κ) = κ1 + κ2z(k) + κ3z(k)3 + κ4z(k)4 + κ5z(k)−1 + κ6z(k)−2,

z(s(k)) = ξ + s(k)(1− 2ξ).

(4.9)

Here δ(k) is the sampling time, ξ is a modelling coefficient, z(k) is an auxiliary function
that describes the open-circuit voltage. The parameters are presented in Table A.1.
Keeping the temperature of a cell inside the desired range is not only beneficial

for the cell performance but is also a critical safety constraint. Heating of a battery
occurs when a current passes through the cell, i.e. during charging or discharging.
Commonly, the battery temperature is measured only on the cell surface. The consid-
ered temperature model for the discussed cylindrical batteries:

TC(k+) = TC(k) + δ(k)(γ(TS(k)− TC(k)) + βI(k)2),
TS(k+) = TS(k) + δ(k)(−γ(TS(k)− TC(k)) + α(Tamb − TS(k)). (4.10)

where TC(k) ∈ Rk is the temperature in the core, TS(k) ∈ Rk is the surface battery
temperature, Tamb is the ambient temperature, and α, β, γ are the thermal coefficients.
All variables for the thermal model, electrical model, and initial conditions are pre-
sented in Table A.3.

Results and Discussion

The critical phase of battery overheating is typical during the first charging phase -
while the maximum current is applied. Therefore, we focus our attention on satisfying
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safety requirements during this first charging stage. We require that the battery is
charged to at least to 55% within 78 min, i.e. s(kend) ≥ 0.55, kend = 78 min. The
sampling time is δ(k) = 3 min. As a safety constrain, we pose TC(k) < 20.4 and for
the battery output voltage V (k) < 4.2 and V (k) > 3.15.

(a) Outer approximation of the maximum safe cur-
rent depending on the initial core temperature.

(b) Estimated admissible values of the state of
charge.

Figure 4.8: The set-based estimation results that provide certified bounds of operation dur-
ing the battery charging.

The estimation results from the set-based validation are presented in Figure 4.8.
The bisectioning estimation results in Figure 4.8a present the range of safe maximum
charging current depending on the initial core temperature of the cell. Figure 4.8b
presents the estimated ranges of the state of charge at each time steps. The blue
region in Figure 4.8b depicts the desired charge level for the cell. The obtained results
obey all safety requirements.
Through this safe battery charging example, we presented a scenario in which we

look for the safe control inputs with respect to the initial conditions. We continue
with a different control scenario, where we investigate the choice of a controller pa-
rameterisation depending on a new desired reference.

4.3.4 Experimental Validation - Magnetic Levitation

To illustrate the applicability of the presented tuning approach, we consider the control
of a magnetic levitation platform, shown in Figure 4.11. One maglev application
example is the maglev trains [83]. The goal is to control the position of a magnetically
responsive element that hovers due to an applied magnetic field. The object’s position
relative to the coil can be controlled by adjusting the strength of the magnetic field,
which is generated by applying voltage to an electrical coil.
We use the coil that is in the top part of the plant to control a floating disc. A glass

rod passing through the disc eliminates side motions. The friction between the disc
and rod is negligible. A laser measuring device provides the distance between the disc
and the upper magnet.
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Figure 4.9: Considered magnetic levitation test plant from [130].

We aim to control the unstable configuration, using only the upper coil. The time-
discretised dynamical model of the magnetic levitation is given by:

x1(k+) = x1(k) + δ(k)(x2(k) + e(k)),
x2(k+) = x2(k) + δ(k)(g − αx2(k)− u(k)

ma(x1(k)+b)2 ),
y(k) = x1(k).

(4.11)

Here x1, and x2 are the position and velocity of the levitating disc. The control input u
is the applied voltage to the coil. We furthermore consider additive noise e(k), where
e(k) ∈ [−0.5, 0.5]. The parameters g, m, a, b and α are the gravity constant, the
disc mass, an aggregated parameter, an offset parameter, and the friction coefficient.
The system parameters and their corresponding uncertainty ranges are summarised in
Table A.4.
As control scenario we consider is a reference change to a new set point rnew ∈

[1.5, 2.5]. The initial conditions are fixed within bounds x(k0) ∈ X k0 and we define
control specifications for both the disc position and the disc velocity. As control law,
we consider [96]:

u(k) = ma(y(k) + b)2(g + c(y(k)− rnew)), (4.12)

where c is the controller parameter. We choose as an initial region for the controller
parameter c ∈ [0, 1000]. We require the set point change to be completed in kend = 0.5
seconds, and the sampling time is δ(k) = 0.02 seconds.
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In the given scenario, we specify the constraints for both states at the end of the
control horizon. We limit the second state in order to reach the new position with small
velocity and thus accomplish a smooth set-point regulation, leading to the following
quantitative requirements: x1(k0) ∈ [2.99, 3.01], x2(k0) ∈ [−0.01, 0.01], x1(kend) ∈
[rnew − ε, rnew + ε] and x2(kend − 1) ∈ [−0.1, 0.1]. Here ε = 0.05 is the allowed error at
the end of the control horizon. Additionally, as global state and input constraints, we
set x1(k) ∈ [1, 5], x2(k) ∈ [−10, 0.1], and u(k) ∈ [−0.3, 0.3], based on the manufacturer
specifications and from experience with the plant.
We consider a projection of the feasible set onto the controller parameter space

and the new disc reference. In this way, by choosing a particular reference, we know
which admissible controller parameters could provide the desired behaviour. Based
on the posed constraints, the estimation returns as the outer-bounding region c ∈
[81.63, 99.18]. This result shrinks the search space and aids the consecutively executed
bisectioning procedure. The result of the bisectioning is depicted in Figure 4.10.

Figure 4.10: The blue set is the outer approximation of the admissible value that describe
the relation between the controller parameters and the new reference. The red
dots are valid Monte Carlo samples.

In Figure 4.10, we overlapped the bisectioning result, shown as the blue non-convex
set, and a generic Monte Carlo sampling, depicted by red dots. All of the Monte Carlo
runs are inside the outer approximation from the bisectioning procedure. Moreover,
they are relatively equally spread and cover the estimated region well. All those
characteristics point to the good quality of the estimation. Moreover, the distance
between the Monte Carlo samples and the outer approximation bounds are relative
close, which means that the estimation is tight. Still, if desired, the size of bisectioning
boxes can be further decreased for higher fidelity of results.
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For the implementation on the test plant, we consider a set point change to rnew =
1.5 cm, i.e. x1(kend) ∈ [1.45, 1.55]. The green bars in Figure 4.11 show the guaranteed
bounds, and in blue are the plant measurements. Despite the conservatism of the

(a) Disc position (b) Control action

Figure 4.11: Comparison of the set-based estimation maximum bounds for the chosen con-
troller parameters (in green) vs. the real states of a run (in purple).

state and input estimation, the actual system delivered a smooth transition during
the set-point change and settled successfully within the desired ranges.
Still, choosing and implementing the controller requires an extra step of validating

the particular parameterisation. To avoid this step and to be able to obtain values
that are valid for all possible combinations of admissible values, we take a look next
at inner approximations of the for-all solutions.

4.4 Inner Approximation

The discussed set-based estimation approach allows to obtain outer approximations of
the feasible controller parameterisations. Due to the nature of outer approximations,
the set can contain parameters that are not feasible, as the outer approximation in-
cludes not only the feasible values but also spurious ones. We now outline guaranteed
inner approximations of the set containing solutions such that all elements are valid
for all combination of uncertainties. We use the following definition:

Definition 5. A controller parameterisation set containing only valid values under all
conditions and uncertainties is referred to as for-all set.

Thus, by obtaining an inner approximation of the for-all set of controller parameter
values, we can pick any value and use it directly without further validation.
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4.4.1 Problem Formulation

There are three instrumental feasibility problem formulations and the three qualita-
tively different sets these formulations describe. These three sets are used in obtaining
an inner approximation of the for-all feasibility set. We refer to them as the uncon-
strained, the constrained, and the inverted feasibility problem. So far, we considered
the constrained feasibility problem (CFP), which describes F from (4.1). The uncon-
strained feasibility problem is a relaxed version of (4.1). We refer to it as unconstrained
feasibility problem (UFP) and the set correspondingly by FU . The third feasibility
formulation consists of the initial feasibility problem UFP together with a tailored
constraint inversion. We denote this inverted feasibility problem formulation (IFP)
and the for-all set it describes with FA. The following derivations are based on ideas
outlined in [184] and [211].
To demonstrate how to use the three feasibility problems for our purposes, we start

with the UFP. It contains of the system dynamics, the controller dynamics, and the
uncertainty ranges for each variable:

UFP(QP )



find q

s.t. q ∈ QP ,
x(k+) = f(x(k), u(k), p(k), d(k)), k ∈ T −,
y(k) = g(x(k), p(k), s(k)), k ∈ T ,
u(k+) = h(y(k), r(k), u(k), c), k ∈ T −,
x(k) ∈ X k, p(k) ∈ Pk, r(k) ∈ Rk,

u(k) ∈ Uk, y(k) ∈ Yk, s(k) ∈ Sk,
d(k) ∈ Dk, c ∈ C.

(4.13)

Here QP is the probing space, as defined in (4.6). If we set QP to the global safety
bounds, then UFP(QP ) results in the set FU . Hence, we recommend for UFP to use
QP to explore all dimensions present in the problem. Such exploration can provide a
tighter estimation of FU and thus a more precise description of FU . Next, we define
the CFP, which based on the UFP adds the controller requirements Li, i ∈ {1, ..nl}

CFP(QP )



find q

s.t. q ∈ QP ,
(x, y, u, p, r, s, d, c) ∈ FU ,
li(x(k), u(k), y(k), z(k), r(k), k) ≥ 0, i ∈ {1, .., nl},
z(k) ∈ Zk.

(4.14)

Here nl is the number of requirements that we are interested in guaranteeing despite
all uncertainties. The CFP describes the admissible set FC . Obtaining an outer
approximation of FC was outlined in Section 4.3.

The third feasibility problem uses a tailored inversion of the controller requirements
to describe the for-all set. This constraint inversion enforces that at least one of the
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control requirements Li is violated. Therefore, the IFP describes the space where
some or none of the constraints might be satisfied. Thus by invalidating a probing
region with the IFP, we are certain that this space contains only solutions that satisfy
all constraints for all uncertainties, as long as it is a subset of FU . To construct this
inversion, we use qualitative requirements, where a binary variable wi is assigned to
the validity of each constraint Li and enforcing the sum of all binary variables wi to
be less than the number of control requirements. This leads to the following feasibility
problem formulation:

IFP(QP )



find q

s.t. q ∈ QP ,
(x, y, u, p, r, s, d, c) ∈ FU ,
wi = 1⇔ li(x(k), u(k), y(k), z(k), r(k), k) ≥ 0, i ∈ {1, .., nl},∑nl
i=1wi ≤ nl − 1,

z(k) ∈ Zk, wi ∈ {0, 1}.
(4.15)

Through the constraint inversion, we describe the complement set FM to the for-all
set FA. The set FM also contains values that do not satisfy the global uncertainty
bounds. Therefore, to exclude them and obtain only the for-all values to the problem,
we use the set FU . We perform the following step FA = FU\FM to end up with only
the for-all solutions. Deciding the space on which to project FU , FC and FA is one of
the key elements in solving the problems. Therefore, to keep the formulation correct
for the various control tasks, we use the generic space of interest Q. Hence, we define
the following three projections:

QU := projQFU ,
QF := projQFC ,
QA := projQFA,

where QU , QF , and QA are the exact projections of the UFP, CFP, IFP onto Q.
For example, when we are interested in obtaining controller parameterisations, then
Q ≡ C. In some of the more complex scenarios, Q could also include the references or
the initial conditions of the dynamic system, see in Chapter 5.
We depict in Figure 4.12 the inner and outer approximations, as well as the qualita-

tive difference between them. For illustrative purposes, we consider multi-dimensional
feasibility sets in a 3-dimensional space, where Q is the space onto which the problem
is projected. For illustrative purposes, the projection space is two-dimensional.
Figure 4.12 depicts the sets FU , FC , and FA and their projections QU , QF , and QA.

As discussed, we rely on SBE methods to obtain their approximations. Analogously to
the OA, we use the presented feasibility problems to check for the unboundedness of
the Lagrangian dual of each of the problems. For example, if D-IFP(QP )→∞, then
it is guaranteed that the IFP(QP ) contains only for-all feasible solutions and thus QP
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Figure 4.12: Set projections of the UFP, CFP and IFP for two different controller require-
ments that define two different feasibility sets F1

C and F2
C . The figure on the

left contains a set with for-all values. The one on the right, has too restrictive
control requirements and thus there is no longer a pair (qi, qj) that is valid for
all uncertainties, i.e. FA = ∅.

is part of the inner approximation of the projection of the for-all solutions.

To systematise the estimation procedure and to give insight into the technicalities
of how to use the presented SBE methods, we provide Algorithm 4. Through it, we
start with the search space QS and obtain an inner approximation of the projection of
the for-all set QI , an outer approximation of the projection of the feasible values by
obtaining the space Q∅ that is guaranteed to not contain any feasible solutions, and
the undetermined space QU between them.

Algorithm 4 provides a systematic approach of probing, validating and classifying
the space of interest. The resulting three sets are QU , QI , Q∅, where

QU
⋃
QI

⋃
Q∅ = QS. (4.16)

By increasing the split depth, one can obtain a better resolution for each of the
sets. Note that the gap between the outer approximation of the admissible set and
the inner approximation of the for-all set does not need to close as they approximate
different sets, as shown in Figure 4.12. Still, relation (4.16) holds independently of the
gap size between QF and QA and the existence of QA. We continue with a scenario
that uses Algorithm 4 for the control tuning of a two-tank system.
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Algorithm 4 Inner & Outer approximation (IOA)

Input: QS
Output: (QU ,QI ,Q∅)

set QU := ∅, QI := ∅, Q∅ := ∅
if D-CFP(QS) <∞ then

if D-IFP(QS) <∞ then
if split depth is not reached then

partition QS → {Q1, ...,QN}
for i ∈ {1, . . . , N} do

call recursively (Q∗U ,Q∗I ,Q∗∅) := IOA(Qi)
QU := QU ∪Q∗U
QI := QI ∪Q∗I
Q∅ := Q∅ ∪Q∗∅

end for
else

set QU := QS
end if

else
set QI := QS

end if
else

set Q∅ := QS
end if
return (QU ,QI ,Q∅)

4.4.2 Example - Two-tank System

To illustrate Algorithm 4, we consider a control scenario in which we are interested in
controlling the levels of two connected tanks, see Figure 4.13.

Model description

The controlled inflow u(k) fills Tank 1. The two tanks are connected at the bottoms
with a pipe. The second tank has the output flow of the system.
The time-discrete model governing the levels of the liquid inside the two tanks are de-

rived from first principles using Torricelli’s law. We combine the technical parameters
into an aggregated parameter p = as

√
2g, where a = 0.45 cm2 is the pipe coefficient,

s = 0.1578 cm2 is the cross-section of the pipes, g = 981 cm/s2 is the standard gravity,
leading to the following dynamics:
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4.4 Inner Approximation

Figure 4.13: Illustration of the considered connected two-tank system.

x1(k+) = x1(k) + δ(k)(u(k)− p
√
x1(k)− x2(k))/A,

x2(k+) = x2(k) + δ(k)p(
√
x1(k)− x2(k)−

√
x2(k))/A.

(4.17)

Here x1 ∈ R+, x2 ∈ R+ are the levels in the first and the second tank. The sampling
time δ(k) is 2 s and A = 28 cm2 is the cross-section of the tanks. We require that
the level of Tank 1, i.e. x1, needs to be two times more than the level of Tank
2, i.e. x2. We express the difference between the tank levels and the references as
e1(k) = 2rdesired−x1(k) and e2(k) = rdesired−x2(k). Both errors are combined into an
aggregated error E(k) = c1e1(k) + c2e2(k) that is used in the controller given by:

u(k) = u(k−) + (E(k)− E(k−)) + c3δ(k)E(k−).

Using the formulation from Section 3.2, we express the saturated input by

z1(k) = 1⇔ u(k) ≤ u,

z2(k) = 1⇔ u(k) ≥ u,

u(k) = z1(k)z2(k)u(k) + (1− z1(k))u+ (1− z2(k))u.

Here u = 3 cm3/s, u = 0 cm3/s. The initial conditions are x1(0) = 18 ± 0.02 cm
and x2(0) = 9 ± 0.01 cm. There is a safety constraint for the maximum allowed
level for each tank: xi(k) ≤ 50, i = {1, 2}. We choose as starting search space for
c1 ∈ [0.01, 0.51], c2 ∈ [0.85, 1.85], and the third parameter is fixed to c3 = 0.01. The
new reference is rdesired ∈ [10, 10.01]. The control horizon consists of seven steps, i.e.
T = {0, 0.2, 0.4, 0.6, 0.8, 1, 1.2}. To ensure that we achieve a smooth reference change,
we pose additionally e2(kend) ≤ 0.1 and E(kend) ≤ 1. Using the SBE Algorithm 4,
we obtain the results in Figure 4.14. We used ADMIT [210] to formulate the problem
using CPLEX as the solver [92].
The estimation results in Figure 4.14 demonstrate successful outer and inner ap-

proximation for the two control parameters c1 and c2. All grey regions, i.e. the upper
left and lower right blocks, are certified not to contain any feasible solutions. The
union of the red blocks is the inner approximation of the for-all values for the chosen
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4 Set-based Controller Validation and Parameterisation

Figure 4.14: Set-based estimation results for the two-tank system. The grey areas are the
outer approximation, the red are the inner approximation, and the blue are
inconclusive regions.

controller under the particular control scenario. Moreover, the region between them,
depicted in blue, is where the boundaries of the feasible set and the for-all set lie. If
desired, a higher granularity of results is obtainable by splitting the probed spaces
further. In conclusion, implementing a parameterisation (c∗1, c∗2) ∈ CI (i.e. from the
red region) guarantees the fulfilment of the constraints despite all the uncertainties in
the system.

4.5 Summary

We conclude this chapter with a proposed workflow for structured control tuning.
Additionally, we discuss some of the technical challenges that could occur and explain
how to overcome them.

4.5.1 Overview of the Set Relations

From a design point of view, six distinctively different sets are important for the pre-
sented set-based approach. We discuss them in the projection space Q: the search
space QS defines the region to be checked. Next, by using the presented outer-
bounding method, we obtain QO. Taking QO as an initial set for the bisectioning, we
obtain QB, which in the general case provides a better fidelity of the shape of QF .
Furthermore, inside the projection QA of the for-all set is its inner approximation QI ,
see also Figure 4.15.
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Figure 4.15: An example for the geometrical relation of the projections.

Note that some of the set boundaries can intersect, e.g. of QI and QS as in Fig-
ure 4.14. If we perform the outer-bounding and use it as the initial search region for
the bisectioning, then the six sets have the following set relation:

QS ⊇ QO ⊇ QB ⊇ QF ⊇ QA ⊇ QI

The approximation of the projection of the UFP, although instrumental for the
construction of the inner approximation, is practically not necessary. This estimation
is not required because the invalidated region of the inner approximation can be in-
tersected with the projection of the CFP. Moreover, not estimating the set QU saves
computational time. To better understand the set-based controller tuning, we propose
a workflow that outlines the essential steps in the design process.

4.5.2 Set-based Controller Design - Analysis & Discussion

Having discussed the set relations, we outline how bounding methods can be used
for controller tuning, see Figure 4.16. First, we start with the ’Formulation of the
feasibility problem’. Next, one can perform ’Outer-bounding approximation’ in par-
allel to ’Constraint inversion’. The outer bounding results can be used as the initial
search region for the ’Bisectioning approximation’. The results from the bisectioning
approximation can be used as the search region for the ’Inverted feasibility problem’,
i.e. the inner approximation of the for-all set. In the end, we compare the obtained
sets and decide whether further refinement of the results is needed, or we can proceed
with picking a controller parameterisation and implementing it.
There are several general suggestions if the set-based design does not return success-

ful estimation results. For example, one can consider a different controller structure
or other ranges for the controller parameters that could lead to the correct solution.
Moreover, if obtaining an outer approximation is challenging, then relaxing the re-
quirements or the initial conditions expands the size of the feasible set and thus helps
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4 Set-based Controller Validation and Parameterisation

Figure 4.16: Set-based controller design workflow.

the estimation. The lack of an inner approximation could be due to too wide ranges of
uncertainties in the system. In such a case, strategies like improved system identifica-
tion or better sensors with higher precision could be advantageous. These suggestions
outline the major strategies for tackling potentially unsatisfactory results.
When considering the effort and time invested in obtaining the estimation, we should

keep in mind that we obtain guaranteed results. In Chapter 5, we use the results from
Chapter 3 and 4 to focus on parameterising and validating an advanced control scenario
on the process level for closed-loop control.
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5 Robust Error-free Steady-state Control

Es ist nicht genug zu wissen, man muß
auch anwenden; es ist nicht genug zu
wollen, man muß auch tun.

Johann Wolfgang von Goethe

In this chapter, we deal with validating a control design for robust error-free steady-
state control for a long time, which is a generalisation of the steady-state error control
requirement from Chapter 3. We are interested in obtaining a set of controller pa-
rameterisations that fulfil the requirements for all initial conditions and all references
from specified sets. We tackle this challenge by splitting it into two tasks. The first
one is the set-point regulation that steers the system to a new reference. The sec-
ond task maintains the system states and outputs bounded by imposing (periodic)
set invariance. To address the for-all requirement for the set of initial conditions and
references, we use the inverse-constrain formulation from Chapter 4. We re-formulate
also the system dynamics in error coordinates. The obtained parameterisation pro-
vides a bounded stability statement for the system. The results in this chapter are
based on and expand the presented results in [8].

5.1 Challenges and Problem Formulation
The error-free steady-state control is a fundamental process control requirement [59],
[85], [154], [156], [191]. Section 3.2 outlined the basic formulation by specifying the
size of the error margin in the transient response. We present an advanced version
that is not only valid for a single reference, but it is also not limited to a finite-time
consideration. We aim for a set of closed-loop controller guaranteed parameterisations
C̃ for a given controller structure Ξ.

Here, we are interested not only in achieving a particular new desired reference rnew,
as in the basic case, but any one from a given set Rnew, i.e. rnew ∈ Rnew, which implies
that the references need to be among the admissible output values, i.e. Rnew ⊆ Yknew.
Furthermore, any new references must be achieved starting from any initial condition
x(k0) ∈ X k0, or formulated in the system output space, starting from any y(k0) ∈ Yk0.
In short, the controller must bring the system to any new reference (from a specified
set), starting from any initial condition (from a specified set). As achieving the exact
reference for uncertain system is a very strong requirement, we relax this condition
requirement only to achieve it up to a certain precision ε ∈ Rny at knew and afterwards
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5 Robust Error-free Steady-state Control

stay inside, i.e.

y(knew) ∈ Ynew(rnew) := [rnew − ε, rnew + ε], rnew ∈ Rnew. (5.1)

Figure 5.1 illustrates the desired behaviour, where r1 and r2 are two examples for
rnew. The initial conditions and the new reference are depicted in the output space,
respectively Yk0 and Yknew. The horizontal stripes denote the desired steady-state
precision margin.

Figure 5.1: Robust steady-state error-free control for any reference value Yknew , starting
from any initial conditions from Yk0 . Two example values with their desired
precision r1 ± ε and r2 ± ε are shown.

Error-free steady-state performance is an often demanded objective, spanning from
the model predictive community [165] to PID control [13]. In practice, there is always
a mismatch, which leads to an offset at the steady-state [179], [183]. To overcome this
problem in model-based control, additional models can be developed to compensate
the offset and thus achieve the requirement [27], [129], [166]. We encompass (i.e.
over-approximate) the mismatch and work with a conservative model.
In difference to Section 3.1, we require the system outputs y(k) to stay close to rnew

endlessly long beyond knew. This leads to the following problem formulation:

Problem 8. (Set-based error-free steady-state control) Obtain a set of controller pa-
rameterisations Ĉ such that a controller Ξ is able to steer the system Ω, starting from
any initial condition x(k0) ∈ X k0, to any references rnew ∈ Rnew with an ε precision
within finite time knew, i.e. y(knew) ∈ Ynew(rnew). For k > knew, the system outputs
y(k) and states x(k) have to stay bounded, and the outputs have to re-visit periodically
the precision set Ynew(rnew) .
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Problem 8 combines the set-point regulation and stabilisation for a region of interest.
Furthermore, the system maintains bounded and respects the dynamics’ constraints.
We note that Problem 8 is formulated such that for every output, there is a corre-
sponding new reference. In many cases, this is not needed. The solution approach is
developed to be valid in both cases, i.e. for some or all outputs.

To solve Problem 8, we use two ideas. First, we re-formulate the problem in er-
ror coordinates. Second, we split the control task into two stages. We continue by
presenting the technical details of the proposed approach.

5.2 Solution Approach

Although the linear case has been extensively studied, and analytical solutions exist
[59], any additional dynamical phenomena increase the complexity of the task signifi-
cantly. Even the perturbed linear system case remains nowadays of interest [112].

The solution approach we propose consists of three steps. In the first one, we
transform the system into error coordinates. The second step delivers the controller
parameterisations that provide robust set-point regulation using the transformed sys-
tem. The last step requires the system outputs to end in the precision set.

5.2.1 Error Coordinate Transformation

All new references rnew need to be achieved with an ε precision. All these references are
contained in a set Rnew. Still, each reference is considered together with the precision
defines another set Y(rnew) := [rnew−ε, rnew +ε]. As a result, the uncertainties of these
two sets Rnew and Y(rnew) overlap. To separate the uncertainty of the precision from
the set of references, we express the system dynamics in error coordinates. Similar
error-coordinate transformations are used in many control approaches, such as path-
following strategies [3], funnel control [94], and sliding-mode control [221]. To re-
formulate the system dynamics, we apply the following coordinate transformation:

e(k) = y(k)− rnew, (5.2)

where e(k) ∈ Eny ⊂ Rny is the substitution variable. For ease of discussion, we
assume that there is a reference value for each output, i.e. nr = ny. Applying the
transformation (5.2) to the feasibility problem (4.1), we obtain the following error-
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5 Robust Error-free Steady-state Control

coordinate formulation:

EFP(Q) =



find q

s.t. x(k+) = f(x(k), u(k), p(k), d(k)), k ∈ T −,
e(k) = ge(x(k), p(k), s(k), r), k ∈ T ,
u(k+) = he(e(k), r(k), u(k), c), k ∈ T ,
l(x(k), u(k), e(k), z(k), r(k), k) ≥ 0,
x(k) ∈ X k, p(k) ∈ Pk, r(k) ∈ Rk,

u(k) ∈ Uk, e(k) ∈ Ek, s(k) ∈ Sk,
d(k) ∈ Dk, z(k) ∈ Zk, c ∈ C, q ∈ Q.

(5.3)

where ge(·) is the transformed output function, ce(·) is the corresponding controller
formulation. The variable q is a placeholder variable for the variables of interest,
as in (4.6) but expanded to take E , instead of Y , into consideration. Applying the
error coordinate transformation (5.2) preserves the qualitative behaviour of the system
dynamics. We refer to the transformed system as Ωe and the transformed controller as
Ξe. Adding further system requirements remains possible through l(·) ≥ 0 into (5.3),
as described in Chapter 3.
The purpose of the substitution (5.2) is to directly express the error between rnew

and the system output y(k). Thus, the requirement (5.1) is transformed into:

y(kend) ∈ Ynew(rnew)⇐⇒ e(kend) ∈ Bε :=
ny∏
i=1

[−ε, ε],

where Bε is the allowed precision range for the outputs at steady state.

5.2.2 Robust Set-point Regulation

We solve Problem 8 by splitting it into two stages. The first stage TSPR is the set-point
regulation, during which the outputs achieve the new references. The second stage
TRPI deals with keeping the system outputs close to the desired references. Dividing the
task into two tasks allows for more flexibility and design freedom by assigning different
controller parameterisations for each of the tasks [8]. Following the desired behaviour
from Problem 8, we pose the first step, i.e. the set-point regulation requirement, as

y(knew) ∈ [rnew − ε, rnew + ε] s.t. ∀x(k0) ∈ X k0,∀rnew ∈ Rnew, (5.4)

where knew is the last event of the set-point control horizon TSPR := {k0, .., , knew}, cf.
Figure 5.1. As a result of applying (5.2) to Ω, the complexity of the control task in
Problem 8 is reduced to steering the transformed system Ωe to the steady-state error
margin Bε. Therefore, we re-formulate (5.4) into

∀x(k0) ∈ X k0, e(knew) ∈ Bε. (5.5)
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In difference to Chapter 3, we neither want to estimate those values of the initial
conditions that can reach the desired references, nor those references that can be
reached from the initial conditions. Thus, we look for a controller parameterisation
that respects all values inside the set of initial conditions and the set of references.
Therefore, we use in the feasibility problem the inverted constraint formulation from
Section 4.4. Accordingly, we need to introduce the following set:

Binv := (Ykend 	R) \ Bε.

The set Binv allows to use the inverted-constraint formulation to look for an inner
approximation ĈSPR of the controller parameter values CSPR, i.e. ĈSPR ⊆ CSPR. There-
fore, any controller parameterisations c∗ ∈ ĈSPR fulfil the for-all requirement for the
initial conditions and the references. To express CSPR, we need to include (5.5) into
the feasibility problem leading to a new feasibility problem EFPSPR. Following the set
construction principles for the for-all set, we end up with

CSPR := projC EFPSPR(Bε) \ projC EFPSPR(Binv). (5.6)

While CSPR provides the theoretical set, in practice, we work with set approxima-
tions. Nevertheless, the statement (5.6) holds true also for an approximation, if we use
the conservative SBE methods from Chapter 4. Thus, the controller parameterisations
in ĈSPR provide the behaviour desired in (5.5). For more technical details in providing
robust set-point regulation, we point the reader to [8].

5.2.3 Periodic Set Invariance

We now address the second control stage, i.e. keeping the system close to the reference.
Classical designs use forms of (robustly controlled) invariant sets, as e.g. often used
in model predictive control [47] or for hybrid systems [77], [93]. We consider a more
general case, allowing for cyclic behaviour to be achieved after the set-point change.
Standard set invariance formulation requires that once all states reach the invariant
set, they need to stay inside infinitely long [32], which can be formulated as follows:

((x(k) ∈ X k0)⇒ (x(k+) ∈ X k0)) ∧ ((y(k) ∈ Yk0)⇒ (y(k+) ∈ Yk0)), k+ ∈ N≥0. (5.7)

In contrast to (5.7), we consider a formulation that allows the states, outputs,
inputs to leave the initial sets and return to them at the end of a specified period, see
Figure 5.2.
Such a behaviour is regarded as controlled periodic set invariance [114], [199]. To

do so, we consider the following definition:

Problem 9. (Robust controlled periodic positive set invariance requirement) Obtain a
set ĈRPI of controller parameterisations that bring all states, outputs and inputs back
to their corresponding initial sets after a given period kRPI, i.e. x(k0), x(kRPI) ∈ X k0;
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5 Robust Error-free Steady-state Control

Figure 5.2: Desired periodic set-invariant behaviour. The system trajectories remain
bounded at all instances and return at the end of the period to the initial
set.

y(k0), y(kRPI) ∈ Yk0; u(k0), u(kRPI) ∈ Uk0. Additionally, the system needs to stay
bounded between k0 and kRPI, i.e. x(k) ∈ X k, y(k) ∈ Yk, u(k) ∈ Uk, k ∈ T \{k0, kRPI}.

We refer to the requirement in Problem 9 as robust periodic invariance (RPI).
Allowing the system to leave the desired set introduces flexibility.
In set-point regulation, we are looking for the for-all sets. To obtain the bounding

sets of the system states and control inputs, in error formulation, we use the projection
of the EFPSPR onto the corresponding space. Moreover, to preserve the guarantees,
we define Xε and Uε as conservative invariant sets of these projections:

projx(kRPI) EFPSPR(Bε) ⊆ Xε,
proju(kRPI) EFPSPR(Bε) ⊆ Uε.

The sets Xε, Uε, and Bε are used to obtain the outer approximation which serves
as the initial region to look for the inner one of the for-all set. To describe the for-all
set, we introduce the following three placeholder sets Ee, Eu and Ex and formulate the
following constraint that we use to modify the EFP:

e(k0) ∈ Bε ∧ x(k0) ∈ Xε ∧ u(k0) ∈ Uε ∧ e(kRPI) ∈ Ee ∧ x(kRPI) ∈ Ex ∧ u(kRPI) ∈ Eu,
TRPI = {k0, .., kRPI}.

(5.8)
Compared to (5.7), in (5.8) we added also the statement for the control input, as

we achieve this behaviour through the influence of the controller Ξe. Analogously to
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EFPSPR, we add (5.8) to EFP and end up with the new feasibility problem EFPRPI,
which we use to obtain the controller parameterisations CRPI and provide the RPI
requirement. To exclude the system trajectories that end outside the desired invariant
sets at kRPI, we define Xinv := XkRPI \ Xε and Uinv := UkRPI \ Uε. In accordance to the
approach for obtaining the for-all controller parameterisation, we pose the following
relation:

CRPI := projC EFPRPI(Xε,Bε,Uε) \ projC EFPRPI(Xinv,Binv,Uinv)

The periodic set-invariance behaviour provides as design freedoms the variable
bounds during the period and also the length of the period itself. If we set the invari-
ance period to one step, i.e. T = {k0, k1}, then the RPI is reduced to the classical
one-step invariance, i.e. the signals are not allowed to leave the initial conditions.
Therefore, the periodic invariance is a generalisation of the one-step invariance.
Analogously to the set-point regulation, we apply the same SBE methods to obtain

an approximation ŜRPI of CRPI, i.e. ĈRPI ⊆ CRPI. Thus, any value c∗ ∈ ĈRPI provides
the robust periodic set invariant behaviour (5.8) and validates the controlled system
behaviour for all times.

5.3 Illustrative Example

We consider a second-order system, describing e.g. the behaviour of shock absorbers
in motorcycles [59] or a single joint of a robotic manipulator [204].

x1(k+) = x1(k) + δ(k)x2(k),
x2(k+) = x2(k) + δ(k)(p1x1(k) + p2x2(k) + u(k)).

Here p1, p2 ∈ R are the system parameters and u(k) is the system input. The particular
parameter values are p1 = −8 and p2 = −4. We consider that both states x1 and x2
are measured and are the system outputs of interest. The first state x1 is required to
achieve any reference in the range [3, 4] with an error tolerance of ε = 0.15. Where
the range for x2 is [−0.15, 0.15], which practically translates that the system needs
to achieve the new reference without much velocity. For this example, we consider a
fixed sampling time of δ(k) = 0.1, a final time of 2.5, i.e. kSPR = 2.5, and a periodic
invariance of 2.3, i.e. kPSI = 2.3. To provide the desired behaviour, we used the
following controller structure:

u1(k+) = u1(k) + δ(k)e1(k+),
u(k) = c1e1(k) + c2u1(k).

Here u1 is the controller state, and c1, c2 are the controller parameters. We apply the
error-coordinate transformation (5.2) not only to the system dynamics, but also to the
controller state. The offset coefficient for the controller state can be easily obtained
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from simulation experiments. Therefore, the combined controlled system dynamics is
expressed as

e1(k+) = e1(k) + δ(k)e2(k),
e2(k+) = e2(k) + δ(k)(p1e1(k) + p2e2(k)− c1e1(k) + e3(k)),
e3(k+) = e3(k) + δ(k)c2e1(k+).

Here e1, e2, e3 correspond to the error-coordinate formulations of x1, x2, u1. The
initial range of interest for the controller parameters is c1 = [0, 4], c2 = [0, 16]. We
used the same ranges for the bisectioning procedure for the set-point regulation and
the periodic set invariance tasks. The exact ranges for both tasks are in Table A.5
and A.6. The estimation results are presented in Figure 5.3.

Figure 5.3: Estimated controller parameters for the set-point regulation and the periodic
set-invariance tasks.

In this particular example, the estimated sets for both task overlap. As discussed
before, this is not necessary. One could also tune two controllers (ΞRPI and ΞSPR) as it
is often done for hybrid systems. In particular, the controller parameterisations that
lie inside intersection of the blue and red sets provide both (5.5) and (5.8) and thus
solve Problem 8.
To illustrate the estimation results, we performed a basic Monte-Carlo simulation

by varying the initial conditions and references for controller parameterisations that
were picked from inside and outside the estimated sets. The trajectories are presented
in Figure 5.4. The blue trajectories are from controller parameterisations picked from
inside the estimated set, where the red ones are from outside. As it can be seen from
the system output and control signal trajectories, the conditions have been satisfied.
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5.4 Discussion and Summary
We presented an approach to achieve robust error-free steady-state control under end-
lessness requirement for hybrid dynamical systems. The approach transforms the
system dynamics into the error-coordinate formulation to deal with the for-all re-
quirement of the references. We split the control task into set-point regulation and
robust periodic invariance afterwards. Therefore, we intersect the two estimated sets,
i.e.

Ĉ = ĈRPI
⋂
ĈSPR.

Nevertheless, if Ĉ = ∅ but still ĈSPR 6= ∅ ∧ ĈRPI 6= ∅, we can use a switching control
strategy. During the first stage TSPR, we can pick one parameterisation c∗1 ∈ ĈSPR,
and apply another one c∗2 ∈ ĈRPI after TSPR. Thus, by switching from c∗1 to c∗2, we
provide the desired behaviour. An additional benefit of working with the SBE from
Chapter 4 is that there is always a stability statement for free. It is a form of a
’bounded-input bounded-state bounded-output’ type of stability statement [207], i.e.
all system elements are kept bounded. This stability statement is the results of the
employed set-based approach, as successful estimation results imply that the system
elements stay inside the desired bounds.
After the in-depth look at a particular advanced requirement on the process control

level, we continue in Chapter 6 with the validation and monitoring of production
systems with structural similarities.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Monte Carlo runs for different initial conditions and references. The grey hori-
zontal stripes in (a), (b), (c), (d) depict the sets of references at the end of the
horizon. The blue trajectories are computed with controller parameterisation
from inside the estimated sets, and the red from outside them. Figures (a), (c),
(e) are the runs for the set-point regulation, and (b), (d) and (f) are for the
periodic set invariance. Figures (a) and (b) are for e1 state, (c) and (d) are for
the e2 state and (e) and (f) are the controller state e3.
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6 Validation of Production Systems with
Structural Similarities

You know, I am sorry for the poor
fellows that haven’t got labs to work in.

Sir Ernest Rutherford

In this chapter, we present an approach for validation of production systems with
numerous elements from a small set of basic elements. We abstract the basic elements
and develop a framework that combines these abstractions, depending on the task at
hand.
As an example of the system class, we consider transportation networks in discrete

manufacturing. In such systems, the sensors produce binary signals and generate
events only when a change occurs, e.g. an item is detected at defined places. We
take into account the event-driven operation considering the uncertainties from mea-
surements or system parameters. We conclude with illustrative simulation scenarios.
Moreover, we provide a summary of the execution times from a manufacturing test
plant. Some of the results in this chapter are based on [10].

6.1 Task Description

To understand the challenges when working with transportation systems, we outline
the defining characteristics and the challenges that originate from them. We present
a manufacturing test plant that serves as motivation for the developed approach and
later for the test cases. We conclude the section with the problem formulation.

6.1.1 System Properties and Challenges

Many manufacturing systems are characterised by production stages with numerous
process machines at different stations. We consider systems, which might change
during operation by adding or removing process stations. We are interested in the
case where, during operation, machines are added or removed from the system. We
model these systems by small modelling units called plant elements.
In manufacturing, the processing goods pass through or are being processed by

these elements. This movement across the plant describes a transportation network
throughout the plant. Two examples for such a transfer are the positioning of an
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item from a milling machine to a polishing one or the transport between a processing
station to storage.
We consider systems that operate event-based. Furthermore, the measurement sig-

nals that we obtain are in binary format. Boolean data is standard for many manu-
facturing systems, as it is sufficient to signalise the completion of a task, the arrival
of an item, or signalling a failure.
Moreover, the system might contain parametric and temporal uncertainties. The

parametric ones are due to the initial imprecise placement of the sensors or mechanical
shift or drift of their positions. The temporal ones express the uncertainty of the
arrival time of the measurement in the monitoring system. One challenge is that the
validation has to be performed independently of the control system. Often one does
not have access to the control logic but only to the plant measurement information.
Furthermore, the validation needs to be done in real-time. Clearly, the real-time

restriction is dependent on the particular system. For discrete manufacturing systems,
this translates to time requirements in the tens of milliseconds. We consider constraint-
based tailored models and verifying them using the presented set-based estimation
methods in Chapter 4. We continue with a brief overview of the test plant that
contains all the characteristics and challenges mentioned earlier.

6.1.2 Motivation

We consider a discrete-manufacturing plant consisting of different stations connected
via transportation network, c.f. Figure 6.1. This plant exhibits the outlined challenges:
dynamically adjustable layout, temporal and spatial uncertainties, event-driven oper-
ation.

Figure 6.1: Example manufacturing test plant at the Institute for Automation in the Uni-
versity of Magdeburg.

We can identify the following four elementary elements: conveyor belt, proximity
sensors, actuated gates, and junctions. The conveyor belts transport the items along
the network. The proximity sensors detect the item’s close presence, e.g. by laser
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gates, hall sensors, induction elements, etc. The actuated gates obstruct the further
motion of the item along the network. In the basic case, they are mechanical obstacles
that stop an item. In the general case, they can be a complex process station that can
be represented as an actuated gate, as it ’blocks’ the movement of the processed items.
Furthermore, there are junctions, which can be controlled. So-called always opened
junctions mix incoming goods’ flows, while controlled junctions set the consecutive
motion direction. Using these four elements, we can abstract large systems, e.g. as
shown in Figure 6.2.

Figure 6.2: An example for the schematic layout of a manufacturing plant.

The produced items are discrete entities and are sequentially transported. The
measurement information about the items we have is whether a proximity sensor
detects the presence of an item or not and whether an actuated gate is deployed
or not. In general, we cannot measure whether an item is actually in front of an
actuated gate. Note that the movement of items is influenced by corners, friction,
belt transitions, which in an abstract sense, introduces spatial uncertainties. These
spatial uncertainties and the lack of information of the controlled junctions can lead
to ambiguity of uncertain items’ positions. Another source of uncertainty to be taken
into account is the speed of the conveyor belts. Belts can operate at different speeds,
e.g. due to different power units or varying load ratios, and, therefore, cannot be
assumed to be constant throughout the plant and for all times.
Note that, although the plant description might appear to be very specific, several

industrially relevant systems fit into this system class, see Table 6.1. The approach
allows to handle systems that exhibit behaviour that can be abstracted through those
few structural elements. A common characteristic between all of them is a discrete
entity, e.g. goods, cars, suitcases, livestock, that passes through different processing
stations that for the validation purpose of the global behaviour can be considered as
obstacles at which an item is stopped.
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Table 6.1: Example systems exhibiting similar behavior to the described principles of oper-
ation

System Position sensors Obstacle Transported items

Discrete manufacturing proximity sensors actuated gates goods

Highway traffic traffic counters incidents cars

Logistic centers proximity sensors stoppers stored items

Baggage handling system photoelectric sensors separators suitcases

Livestock handling photoelectric sensors gates livestock

6.1.3 Problem Formulation

We are interested in monitoring and validating the correct operation of manufacturing
systems despite the uncertainties. Monitoring consists of validating the correct oper-
ation. We are interested not only in the events that have occurred but also in those
that should have. That includes not only the current situation but also the previous
execution of the processes. Detecting missing events is needed for the diagnosis of
broken or missing equipment. To perform the monitoring and fault diagnosis, we rely
not only on state but also on parameter estimation. Parameter estimation is used to
validate a characteristic of a particular element, e.g. to check if the conveyor belt is
not moving with the required speed or if a sensor is dislocated.
Another critical task of monitoring includes predictive maintenance by detecting

upcoming abnormal behaviour. We summarise these goals in the following problem:

Problem 10. Describe and validate the operation of event-driven systems with struc-
tural similarities through a flexible validation approach that is capable of

• state and parameter estimation,
• fault diagnosis,
• abnormal behaviour prediction.

The estimation procedure using these models should be solved in real-time and provide
guaranteed results, accounting for unknown-but-bounded uncertainties in states and
parameters.

6.2 System Abstraction
We tackle Problem 10 by segmenting the plant into sub-plant parts. In addition,
we combine these sub-parts into a validation entity that can be of different size and
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structure depending on the task at hand.
Our abstraction and segmentation approach is motivated by the three dominant

challenges: the scale of the system, the event-driven operation and the present un-
certainties. To handle the challenge arising from the problem scale, we decompose it
into basic elements. We exploit the event-driven operation due to the nature of the
problem. To cope with the uncertainties, we use the presented SBE methods.
To do so, we first decompose the plant into plant elements, i.e. proximity sensors,

actuated gates, conveyor belts. For each element, a simple first principle model is
then derived. Models of different elements are combined with the plant events into
so-called modules. The events are derived from the measurement data obtained from
the plant by an event generator. It is important to note that this procedure remains
valid when a new section is added to the plant during operation. We now present
the mathematical formulation for each plant element and how to construct modules
of treatable size.

Basic Elements

We decompose the system based on the transport layout and the basic elements. We
focus on the following elements: conveyor belt, proximity sensor (PS), and actuated
gate (AG). Afterwards, we deal with the junctions by combining the three elements.
To aid the discussion of the constraint derivation for SBE, we focus on the small
segment of the plant, depicted in Figure 6.3.

Figure 6.3: A plant segment composed of basic plant elements: proximity sensors, actuated
gates, conveyor belt and junctions. The position of an item is determined rela-
tive to the elements. The hatched zone illustrates the segmentation into serial
sequences of elements between two junctions.

Every basic element in Figure 6.3 interacts with the processed items in a specific
way. In particular, either an element influences the item’s movement, or it provides
information on the item position. In the following, we present these interactions for
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each plant element with the items. We refer to the resulting mathematical descrip-
tions as constraint blocks. Due to the event-driven nature of the system, we present
constraints blocks that relate to the change of the plant state between two consecutive
events.

Unobstructed item movement

We start with the basic element that connects the processing stations and transports
the goods - the conveyor belt. We can describe the position of an item moving along
a conveyor belt as:

x(k+) = x(k) + δ(k)(p− d(k)). (6.1)

Here x ∈ R≥0 is the item’s positions, p ∈ R≥0 is the belt velocity, and δ(k) is time
period between the events k+ and k. Reverse movement of the belt is not allowed, and,
if needed, it is practically realised by adding a parallel track connecting the section
between two junctions. Therefore, we assume p > max |d(k)| to ensure the forward
movement along the belt, where d(k) ∈ Rk are disturbances, e.g. due to friction. As
the item position cannot be measured continuously, we use proximity sensors to obtain
information about the items.

Proximity sensor constraints

Each proximity sensor (PS) provides binary information of whether an item is present
or not. For each PS, we introduce two auxiliary event-based binary states. The first
variable zin

PS corresponds to the event of a item entering the field at time kin
PS and the

second one zout
PS to the event of the item exiting at time kout

PS , i.e.

zin
PS(k) =

0, k < kPSi,
1, otherwise,

zout
PS (k)=

0, k < kout
PS ,

1, otherwise.

With the help of zin
PS(k), zout

PS (k), and the proximity sensor’s position pPS ∈ [pPS, pPS],
we can derive the following bounds on the position of an item:

x(k) ≤ (1− zin
PS(k))pPS + zin

PS(k)M,

x(k) ≥ (pPS + psize)zout
PS (k). (6.2)

Here psize ∈ R+ is the parameter denoting the item size, andM ∈ R+ is an auxiliary
parameter that is greater than the length of the considered conveyor belt segment.
The first constraint in (6.2) bounds the item position from above, i.e. before the item
passes the sensor. Whereas the second constraint bounds it from below, i.e. after the
item has passed the sensor.
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Actuated gate constraints

Unlike the proximity sensors, the actuated gates (AG) can influence the item’s dy-
namics by halting it and thus setting its position equal to the position of the deployed
gate.

The AG elements do not possess the ability to detect whether an item is obstructed.
They provide only information on whether and when the gates are being deployed or
removed from the belt. In general, if the belt segment contains an element AG, placed
at position pAG ∈ [pAG, pAG], the dynamics can be expressed as follows:

x(k+) =

pAG, if an item is stopped in front of the AG,
x(k) + δ(k)(p− d(k)), otherwise.

The case of being obstructed by the element AG is realised if the following two
conditions are met. First, the gate must be deployed, and second, the item would
have not yet passed the gate’s position pAG by the time k+. To model this behavior
we introduce an event-based plant state zAG, connecting it to the state of the element
AG as follows:

zAG(k) =

0, AG is deployed and x(k) ≤ pAG,

1, otherwise.

Here TAG := {kjAG}, j ∈ {1, .., nj} denotes the time points when the state of the element
AG changes between deployed and removed, and nj are the number of changes. In
other words, if the gate is deployed in front of the item at kjAG, then zAG(k) is set
to 0, otherwise to 1. The value of zAG is constant between two consecutive events.
Otherwise, it results in an additional event.

Since the value of zAG only indicates that the item’s movement might be obstructed,
an additional virtual state µ(k) is introduced. We assign µ(k) a value 1 if and only if
the item can reach the deployed gate by the time k+ using the equivalence relation⇔.
In this way, we can reformulate the unobstructed dynamics constraint (6.1) as follows:

x(k+) = (x(k) + δ(k)(p− d(k)))(1− µ(k)) + pAG µ(k),
µ(k) = 1⇔ x(k) + δ(k)(p− d(k)) ≥ pAG(1− zAG) +M zAG.

(6.3)

Using the presented constraints (6.1), (6.2) and (6.3) independently for each element
of the conveyor belt do not provide enough information to successfully solve all tasks
in Problem 10. We demonstrate next how these constraint blocks can be suitably
combined to do so.
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6.3 Modules

To tackle the monitoring task described in Problem 10, we present a validation entity.
Afterwards, we explain how it can be formulated in the set-based framework that we
use in this work. At the end of the section, we discuss how to deal with junctions.

Definition and Formulation of A Module

To validate the correct system operation and detect anomalies, we rely upon the
measured information from the plant in its basic form. In the previous section, we
pointed out that only the neighbouring elements around an item influence or provide
information about its position. Moreover, the propagation of uncertainties requires
considering a time horizon as small as possible to reflect the desire for obtaining
the results in relevant time. Still, the model should include a sufficient amount of
constraints to validate it or narrow down the estimates. We propose the following
definition of a local sub-plant model, satisfying these requirements.

Definition 6 (Module). A module consists of a sequence of plant elements. Each
module starts and ends with a proximity sensor and can have actuated gates between
them.

Structurally, a module is a sequence of PS and AG elements, where each PS serves
as the last element of the previous module and the first element in the next module.
The construction of a module contains the following three steps. First, the constraint
block for each element is selected. Second, each constraint block is parameterised
by selecting the corresponding signals and determining the values of the introduced
event-based variables. Lastly, the relevant events are organised in the time horizon for
the specific module. To illustrate this concept, we present next, the simplest module -
PS-PS (e. g. PS1-PS7 in Figure 6.3). This module consists of the dynamics constraint
block (6.1) and a constraint block (6.2) for each PS. Therefore, the module requires
four events: the item entering and exiting the field of each PS. The corresponding
events for this module are organised in

T := {kin
PS1, k

out
PS1, k

in
PS7, k

out
PS7}.

Another simple module is the PS-AG-PS, which includes one actuated gate between
two consecutive sensors (e. g. PS7-AG4-PS6 in Figure 6.3). Such a module consists of
one constraint block (6.2) for each PS and the modified dynamics (6.3). The amount
of considered time steps depends on the number of events, triggered by the actuated
gate between the time points kinPS7 and koutPS6, and thus equal to |TAG4| + 4. The time
horizon is defined as follows

T := ord
(
{kin

PS7, k
out
PS7, k

in
PS6, k

out
PS6} ∪ TAG4

)
,
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where the function ord denotes the ordering of the time points, so that ki ≤ kj for all
ki, kj ∈ T if i < j.

More complex modules consist of multiple actuated gates AGi, situated between
two consecutive proximity sensors (e. g. PS3-AG1-AG2-PS4 in Figure 6.3). This case
requires further adjustment of the dynamics constraints (6.3). As multiple obstacles
can be deployed at the same time, an item can only be stopped by one of them.
One way to model such a scenario is to reformulate the definition of the event-based
variable zAG(k) as follows

z̃AG(k) =

0, ∃ i ∈ I s.t. AGi is deployed and x(k) ≤ pAGi,

1, otherwise,

with an additional variable ν, denoting the position of the first deployed AG element

pd = min
i∈I
{pAGi | z̃AG(k) = 1 and p ≤ pAGi} . (6.4)

To implement (6.4) into the given set-up, we need to re-formulate it as mixed-integer
linear constraints. Therefore, we introduce the following binary variables zDAG1, ...,

zDAG2, zM and express (6.4) as

zDAGi ≤ zAGi, i ∈ {1, ..., nAG},
Σn
i=1zDAGi + zM = 1,

pDAG ≤ zAGipAGi
+ (1− zAGi)M, i ∈ {1, ..., nAG},

pDAG ≥ Σn
i=1zDAGi + zMM, i ∈ {1, ..., nAG},

(6.5)

where nAG is the number of gates between the two sensors. Then the item dynamics
for multiple gates can be formulated as

x(k+) = (x+ δ(k)(p− d(k)))(1− µ(k)) + µ(k)pDAG,

µ(k) = 1⇔ x+ δ(k)(p− d(k)) ≥ pDAG
(6.6)

The time horizon in this scenario needs to include the time points corresponding to
the events triggered by each AGi, situated within the module. We denote the horizon
containing the events of the actuated gates as

T̃AG :=
⋃
i ∈I
TAGi, T := ord

(
{kin

PS3, k
out
PS3, k

in
PS4, k

out
PS4} ∪ T̃AGi

)
.

Constructing the horizon for multiple gates concludes the discussion for selecting
the correct constraint block. The next step is summarising this information in the
set-based framework of this work.
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Feasibility problem formulation

Once the constraints blocks for the basic elements are present, constructing a module
is reduced to selecting the corresponding constraints and extracting the matching
events. The constructed module does not need any additional re-formulation and can
be directly posed as a module feasibility problem:

MFP :



constraint blocks (6.1), (6.2), (6.3), and (6.6),
relevant events: k ∈ T ,
disturbances: d(k) ∈ Dk,
dynamics’ states (i.e item’s position): x(k) ∈ X k,

parameters: p ∈ P , pPS ∈ PPS, pAG ∈ PAG, ν ∈ R>0,M∈ R>0,

auxiliary variables: zPS(k) ∈ {0, 1}k, zAG(k) ∈ {0, 1}k, µ(k) ∈ {0, 1}k.

Solving MFP allows obtaining certified results about the operation of the plant.
On the one side, by invalidating the problem, the procedure can inform about the
occurrence of a system failure. On the other side, by performing state and parameter
estimation, the current performance of the plant can be monitored. Through the
introduced modules, we can tackle the last element - junction. In short, we deal with
junctions by constructing competing modules and analyse the estimation outcomes to
verify which path has been taken.

Controlled Junctions

The purpose of controlled junctions is to redirect the movement of an item to one of
several possible paths, as depicted in Figure 6.4. Instead of modelling them directly,
we consider the possible modules that include the junction, see Figure 6.4.

Figure 6.4: A junction, which splits the infeed into three outfeed directions.

If a controlled junction remains unchanged long enough for the complete uncertain
position to traverse it, then the taken path is known. In this case, we construct the
corresponding module directly and verify the operation. Nevertheless, if the state
of the junction is unknown, we can construct multiple competing modules based on
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every possible path taken at the junction. For instance, in Figure 6.4 to encompass all
possibilities at the junction, we generate three modules. The modules are PS1-PS3,
PS1-OB1-OB2-PS4 and PS1-OB3-PS2. In addition, we need the events that belong
to the elements for each module. Determining which path was taken by the item is
then simply done by checking the feasibility of every module. To demonstrate the
capabilities and the quality of the results of the modules, we present one example for
each of the main problem scenarios.

6.4 Implementation and Results
We present several test cases that illustrate the capability of the developed approach.
Moreover, we outline the implementation workflow that provides the autonomous op-
eration of the monitoring system. In addition to the simulation results, we provide a
brief overview of implementation results from a test plant.

6.4.1 Real-time Workflow

Figure 6.5 shows a possible system architecture that enables the real-time implemen-
tation of the proposed abstraction through modules on a test plant.

Figure 6.5: Scheme of the proposed implementation workflow.

The discrete-event system operates and generates measurement events. These are
processed by the Event filtering & management that collects and organises them.
Based on the measured events, the Constraint selection procedure is started. The
module is constructed inside the Feasibility problem construction by combining the
suitable constraint blocks and events. Then the module is passed to the Monitoring
system that solves and analyses the validation results and informs the Supervision
system. Which, in turn, based on the current plant-wide operation status and the
monitoring information, decides how to influence the discrete-event system. Moreover,
the supervision system can initiate module construction on request. This ability is
useful in those cases when a sensor malfunction is suspected.
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6.4.2 Experimental Results

We demonstrate the presented approach with several simulation scenarios: state and
parameter estimation for predictive maintenance, prediction of abnormal behaviour,
and a segment with multiple speeds. All examples are tackled using the presented
abstraction approach through set-based formulation. We summarise the execution
times from a test manufacturing plant. All results are achieved using MATLAB and
ADMIT [210] to pose the problems, and Gurobi [80] as the solver.

Speed monitoring

In this example, the monitoring task consists of comparing the estimated speed of a
conveyor belt to the nominal one. The speed of the belt is the parameter of interest.
Therefore, the monitoring system compares the estimation results to the nominal
operation and decides whether an abnormal behaviour has occurred.
For the estimation, we employ the simplest module, i.e. PS-PS, which in turns

corresponds to combining (6.1) and (6.2) as explained in Section 6.3. In the presented
example, the positions of the sensors were known with a precision of±2 mm. Table A.7
contains the initial values for the estimation. The plant events are T = [230.341,
230.469, 234.164, 234.299] s. The result of the parameter estimation procedure is

p = [22.83, 23.18] cm/s

which lies inside the nominal range of [22.5, 23.5] cm/s and thus the system is operating
normally.
Alternatively to the monitoring task, the same parameter estimation procedure can

be used at the initialisation phase of a plant to establish the positions of the plant
elements and belt speeds. Another use case for this scenario is after concluding repair
works or after a significant change in the operating conditions.

Position monitoring

One of the essential monitoring tasks is the validation of the item’s position, i.e. state
estimation. Based on this information, different behaviours can be identified. If the
estimation procedure is invalidated, this indicates a deviation from normal behaviour,
and thus a fault is detected. Here, we would like to demonstrate the quality of the
estimation results, and hence we show the results from a normal run.
We consider a PS-AG-AG-PS module with parameters given in Table A.9. The

initial estimation bounds on the item position x are considered unknown, i.e. they
are much wider than the actual sensors’ positions. The selected events are T = [0,
0.401, 0.487, 2.102, 3.803, 4.204, 4.291] s. We have included an additional initial event
k0 = 0 for illustration purposes, and it does not influence the quality of the results.
The module is constructed using the approach in Section 6.3.
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Figure 6.6: The estimated item’s position x̃, on the right, for a PS1-AG1-AG2-PS2 module.
The corresponding event instances are on the left, and the grey horizontal strips
is the conveyor belt.

The broad grey horizontal stripes in Figure 6.6 depict the belt, and the arrow is
showing the direction of movement. The area in red is symbolising the uncertainty
range of the item’s position. The exact ranges are given on the right, and the corre-
sponding events are on the left. Additionally, only the elements that are responsible
for the current estimation are in colour, and the inactive elements are in grey. Improv-
ing the estimation precision can be obtained by starting with more precise information
about the four element’s positions, i.e. narrower uncertainty ranges of pPS1, pPS2, pAG1,
pAG2. Furthermore, measuring p more precisely or reducing the system uncertainties
d can lead to further improvements.

Traffic jam detection and prediction

A well-designed industrial system should not only react to current problematic situ-
ations but be capable also of anticipating such situations. Therefore, we discuss two
examples: detecting and predicting a production related traffic jam. We define a traf-
fic jam as a zone with a defined maximum capacity pmax and once the threshold pmax
is reached, a jam occurs. Furthermore, validating that it will occur ahead of time
provides predictive capabilities of the monitoring system. To solve these tasks, we
use the information of the last proximity sensor before the beginning of the zone. We
propagate the item motion further and estimate the time at which the item enters the
jam zone.
We take the time kin

PS the item enters and time kout
PS it leaves the proximity sensor.

To the nominal speed of the belt p, we add a term d(k) to encompass the disturbances
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and noises. Based on this information and the relative position pzone of the zone to
the position of the proximity sensor, we can estimate the virtual event kenter at which
the item enters the zone. The parameters for the simulation are given in Table A.8
and the estimation result is

kenter = [1.596, 1.627] s.

The traffic jam detection consists of the following two conditions that are connected
in logical conjunction:

kenter < know ∧ pmax ≤ pcurrent(k) + 1, (6.7)

where know is the time at which the check is executed, and pcurrent(k) is the number of
items at the time k. Thus, when both conditions in (6.7) are satisfied, then there is
an active traffic jam.

Multiple belts

In this example, we consider the movement of an item along three consecutive con-
veyors. Each of them has a different speed. We are interested in whether only two
proximity sensors are sufficient to establish the correct speeds of the belts. The first
sensor is on the first belt, and the second sensor is placed on the third belt. We
compare the two-sensor estimation results against a four-sensor scenario. In the latter
scenario, the first sensor is on the first belt, the second and third sensors are at the
beginning of the second and third belts, and the fourth sensor is further along on
the third belt, cf. Figure 6.7 In both scenarios, i.e. with two and four sensors, the
positions of the sensors are known. However, the item’s position and the velocities of
the belts are unknown and thus specified with wide uncertainty bounds. The values
used in simulating both scenarios are presented in Table A.10. For the two-sensor
scenario, the estimation procedure has access only to the time events of the first and
fourth proximity sensor, i.e.

T2 = {kin
PS1, k

out
PS1, k

in
PS4, k

out
PS4}

Accordingly, the four-sensor scenario considers additionally the events from the second
and the third sensor, i.e.

T4 = T2
⋃
{kin

PS2, k
out
PS2, k

in
PS3, k

out
PS3}

Table 6.2 compares the estimation results for the belt speeds, i.e. p1, p2 and p3,
based either on the information from 2 or 4 proximity sensors. The exact event times
are presented on the left in Figure 6.7. Furthermore, we can perform an estimation of
the transition times, e.g. of the time k12 item leaves the first belt and enters the second
and respectively the time k23 the item leaving the second and entering the third belt.
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Table 6.2: Estimated transition times and belt velocities for the multi-belt scenario

2 PS 4 PS Unit

k12 [1.331, 1.626] [1.593, 1.608] s
k23 [3.317, 3.529] [3.424, 3.434] s
p1 [24.75, 30] [24.7943, 25.2929] cm s−1

p2 [20, 28.3648] [21.7344, 22.1121] cm s−1

p3 [27.5, 30] [27.824, 28.1836] cm s−1

Comparing the velocity estimates, we conclude that the precision obtained from
only two sensors is not sufficient. Therefore, the results justify placing four proximity
sensors for providing tighter estimates, and thus better monitoring. Moreover, the
four-sensor results are contained inside the two-sensor estimates. This inclusion speaks
about the correctness and conservatism of the approach. As an additional outcome,
we get the item’s position estimate at each instance, see Figure 6.7.

Figure 6.7: The position estimation with of the item with 4 sensors for the multi-belt case.

The grey horizontal section in Figure 6.7 are the three sequential belts and p1, p2,
p3 are their corresponding speeds. The figure serves illustrative purposes and thus is
not in scale. The red region marks the estimated uncertainty range x̃ of the item, and
the exact values are on the right. The proximity sensors are in grey when they are
not triggered and in blue when the event corresponds to the particular one.
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With the last scenario, we showed that the approach could not only be used for
monitoring purposes but also for improving the system design. Therefore, we can
identify potentially problematic sections during the design stage.

Test Plant Implementation

The presented approach was not only validated in simulation but also through imple-
mentation on a test plant, cf. Figure 6.8. To give a feeling of the execution times, we
provide the results of six use cases of hardware-in-the-loop simulations on a test plant,
cf. Table 6.3. The use cases are motivated by the Industry 4.0 guidelines [102]. The
use cases vary from a validation of the healthy operation (use case 1), through param-
eter estimation (use case 4) and state estimation (use cases 5), up to fault diagnosis
(use cases 2 & 3 & 6).

Figure 6.8: Sketch of the test plant [220].

The execution times were found to be consistent, which is a marker for reliability
when implementing it on an industrial scale. Another indicator for the approach’s
applicability is the milliseconds’ range of the times in Table 6.3. Taken together, the
results in Table 6.3 prove the applicability of the approach.

6.5 Summary

In this chapter, we presented an approach for validating and monitoring the system
behaviour of event-driven production systems. We reduce the complexity of such sys-
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Table 6.3: Execution times of the considered use cases.

Use Case Description Execution Time Unit

1 OK Check 3-4 ms
2 Detect defective sensor 4-5 ms
3 Detect defective actuator 31-35 ms
4 Parameter estimation 1-2 ms
5 Jam prediction 6-10 ms
6 Jam detection 9-14 ms

tems by abstracting the plant to a few basic types of elements. Afterwards, we derived
tailored mathematical formulations for each type and demonstrated how to combine
them to validate the system operation. To aid the implementation, we outlined an
implementation framework that is designed to tackle plants with changing layouts and
still function in real-time. Furthermore, the same approach can be used to identify
missing events and even predict upcoming abnormal behaviour or faults. In summary,
we demonstrated how the same SBE methods we used for controller validation can
also be used for the monitoring and validation of plant-wide behaviours.
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7 Conclusions

All of physics is either impossible or
trivial. It is impossible until you
understand it and then it becomes
trivial.

Sir Ernest Rutherford

The main goal of this work is to aid the structured controller parameter tuning and
controller design subject to quantitative and qualitative control requirements. We use
set-based feasibility formulation to guarantee the tuning results despite the present
unknown-but-bounded system uncertainties. The validation approach is illustrated
through example scenarios ranging from the single control-loop level up to production-
scale systems, and also varying from conceptual discussions through simulation studies
to implementation results on test plants.

7.1 Summary

Tuning controllers has been and still is one of the core competences and duties of a con-
trol engineer. Although controller design and tuning are well studied and established
for linear systems, there are still open questions, and there is an increasing need for
suitable methods [33], [107]. This need is dictated by both the new applications and by
the increasing system complexity. Each considered system properties like constraints,
switching, time-variant parameters and other nonlinear dynamics complicates the de-
sign task significantly. Other challenges include uncertainties, algebraic constraints,
multi-input multi-output structure and plant-model mismatch. Often any of these
challenges either renders a well-established linear approach inapplicable or requires a
significant adaptation [40]. It is even more challenging to rely on an approach that is
capable of validating the system performance despite all the mentioned challenges.
To address the validation requirement and to provide guarantees, we work with set-

based methods through a feasibility problem formulation [35], [36], [186]. Through the
chosen set-based approach, we tackle one of the major challenges - uncertainties. The
method allows to consider unknown-but-bounded uncertainties and provides a math-
ematically rigorous statement about the obtained results. We allow uncertainties to
be present in all system elements, i.e. inputs, states, outputs, parameters, references,
requirements. The proposed set-based approach allows to not discriminate between
the different system elements but to consider them just as another variable inside the
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problem. Such a formulation provides enough flexibility to formulate a variety of the
different control tasks in a unified fashion.
Exploiting the problem formulation, with its polynomial form, inequalities, and dis-

crete variables, we can express hybrid dynamical systems. Such systems have diverse
characteristics and formulations. Therefore, we presented and formulated the phe-
nomena that we handle and use throughout the provided examples, e.g. switching
behaviour, cyclic dynamics, conditional dynamics, temporal and spatial uncertainties.
In some cases, the hybrid system behaviour can originate from the controller or the
control requirements.
Using verbal formulations for the requirements introduces challenges in posing them

mathematically rigorously such that they can be taken into consideration during the
controller design process. This arises from the complexity of the information, which
often contains conditional requirements, temporal uncertainties, or combining differ-
ent system elements. Therefore, we organised the requirements into two categories:
quantitative and qualitative types of requirements.
Although set-based methods are regarded as computationally expensive, we demon-

strated that computation times of milliseconds are possible. However, these times were
achieved by combining the skills of a team of specialists that constructed a highly tai-
lored implementation and custom industrial hardware. Based on these results and the
experience we have gathered lead us to believe that there is significant potential to
improve the computational times. Moreover, many of the estimation steps can be par-
allelised, e.g. the validation of the feasibility problems for each probing space. Such
effort is worth pursuing as not many approaches nowadays can handle multi-input,
multi-output, constrained, switching, temporally and spatially uncertain, nonlinear,
event-based, hybrid systems and still provide guarantees.

7.2 Outlook

The approach presented in this work demonstrated how to validate the performance
of a system and how to obtain appropriate sets of controller parameters. For all the
cases, we have assumed that we have a given controller structure, and we are interested
in its tuning. Thus, we avoided the question of choosing the controller structure.
Considering the system class, one of the most direct ideas is to start with a low-order
polynomial and, if it has been invalidated to increase the order iteratively and again
look for parameterisations. This challenge is closely related to one of the fundamental
problems in system identification, namely, which model structure to choose [71], [123].
Therefore, techniques from system identification could provide beneficial in figuring
out the controller structure, e.g. Kolmogorov-Gabor Polynomial Models [155].
The focus of the work is, in one form or another, the controller: its tuning, formula-

tion of requirements, tackling various control scenarios and validating its performance.
Nevertheless, sometimes the inability to design a control system with the desired spec-
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ifications could be due to the system dynamics itself. We can consider the problem
of invalidating all controllers through one of the fundamental system constraints - the
system input. Each controller can be abstracted to an input sequence, and using the
sets that include these sequences leaves a single feasibility problem to be checked.
Thus, by invalidating all input sequences that are admissible for the system, the effort
of tuning a controller can be used to analyse the system. Another idea towards the
analysis of the system itself is through adding slack variables to explore which of the
requirements [74] or the system characteristics need to be relaxed such that the desired
performance can be achieved [39], [66].
Another direction is putting the focus on the choice of the sampling time for nonlin-

ear systems with switching behaviour [28], [31], which also echoes towards the field of
self-triggered control [11], [135]. Through the feasibility formulation, we can investi-
gate any of the system variables, even the time. Therefore, the feasibility problem can
be re-structured such that we project the problem onto the time-space and perform
SBE to obtain ranges of the sampling periods such that the performance is validated.
A similar scenario is deciding the moment to switch from one controller to another
such that certain requirements are guaranteed [32], [87], [120], [157].
Through the inner approximations of the for-all sets, we obtain only values that

provide the desired behaviour. Nevertheless, we are still left with the choice of which
particular parameterisation to pick and use for the implementation in the plant. One
possibility is to divide the obtained inner approximation into subsets and to assign
a performance value to each subset. The performance value could be based on a
particular requirement, e.g. minimising the settling time or measuring and aiming at
reducing the system uncertainties based on the controller parameterisations.
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A Appendix

In this appendix, we present the particular values that we used for the various simu-
lations and experimental implementations and were omitted in the main part of this
work.

A.1 Details of the Li-ion battery example in Section 4.3.3

Table A.1 contains the estimated coefficients κi for the relation between the open
circuit voltage and the state of the charge for the lithium-ion battery example from
Section 4.3.3. Additionally, it lists the value for the offset parameter ξ. Table A.2
includes the thermal parameters values and the initial conditions. In Table A.3, we
list the coefficients for the equivalent circuit model of the lithium ion battery from
Section 4.3.3.

Table A.1: Fitted OCV-SOC coefficients and the SOC offset coefficient.

κ1 κ2 κ3 κ4 κ5 κ6 ξ

3.0545 0.8153 -0.5668 1.0457 0.2601 -0.0399 0.15

Table A.2: Parameter values for the thermal model and the initial condition.

Variable Value Unit

α 0.046 W J−1

β 0.0196 Ω K J−1

γ 0.098 W J−1

s(k0) [0, 0.01] -
Tamb 20 oC
TS(k0) 20 oC
VC(k0) [−0.01, 0] V
I [0.5, 2.0] A

TC(k0) [20, 20.4] oC
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Table A.3: Parameter values for the equivalent circuit model.

Variable Value Unit

R [0.25, 0.28] Ω
CR [5031, 5365] F
RC [0.093, 0.108] Ω

A.2 Details of the maglev example in Section 4.3.4

In Table A.4, we present the particular parameter values that we used in the maglev
example in Section 4.3.4. The ranges for a, b, and α are generated by adding a 5%
uncertainty to the nominal specification values.

Table A.4: Parameter values for the maglev example

Variable Value Unit

g 981 cm s−2

m 0.125 kg
a [5.25 · 10−5, 5.75 · 10−5] Vs2kg−1cm−3

b [2.33, 2.57] cm
α [14.9, 16.5] s−1

A.3 Details of the example in Section 5.3

Here, we present the initial and desired ranges for the second-order system, used to
illustrate the error-free steady-state behaviour in Section 5.3. The values in Table A.5
are for the set-point regulation task and in Table A.6 for the periodic set invariance
stage.

Table A.5: Considered uncertainty ranges for the set-point regulation

State k0 = 0 kSPR = 2.5 Global constraints

e1 [-4, -2] [-0.15, 0.15] [-5, 5]
e2 [0. 0.01] [-0.15, 0.15] [-10, 10]
e3 [-32, -24] - [-40, 40]
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Table A.6: Considered uncertainty ranges for periodic set invariance

State k0 = 0 kRPI = 2.3 Global constraints

e1 [-0.15, 0.15] [-0.15, 0.15] [-0.5, 0.5]
e2 [-0.15, 0.15] [-0.15, 0.15] [-1, 1]
e3 [-3, 3] [-3, 3] [-7, 7]

A.4 Details of the Industry 4.0 example in Section 6.4.2

In this section, we provide the particular values for the four validation scenarios in
Section 6.4.2. Table A.7 contains the initial estimation ranges for the parameter
estimation scenario. In Table A.8, we detail the values for the scenario, in which we
demonstrate the prediction and detection of a traffic jam capabilities of the approach.

Table A.7: The parameter values for the PS-PS module from Section 6.4.2.

Variable Value Unit

pPS1 [−0.2, 0.2] cm
pPS2 [87.8, 88.2] cm
psize [2.8, 3.2] cm
v [0, 100] cm s−1

∆v [0, 0.1] cm s−1

Table A.8: Considered ranges for the traffic jam scenario

Variable Value Unit

pzone 40 cm
kin

PS 0.041 s
kout

PS 0.121 s
p [24.5, 25] cm s−1

d(k)[cm/s] [0, 0.1] cm s−1

psize [2, 2.07] cm

To illustrate the state estimation capabilities, we consider a module with two con-
sequential actuated gates and the simulation values are in Table A.9.
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Table A.9: The values for the PS-AG-AG-PS example from Section 6.4.2.

Variable Value Unit

x [0, 50] cm
pPS1 [0, 15] cm
pPS2 [20, 40] cm
p̂PS1 [9.9, 11.2] cm
p̂PS2 [28.9, 31.3] cm
pAG1 [14, 16] cm
pAG2 [19, 21] cm
p [24.8, 25] cm s−1

z [0, 0.1] cm s−1

psize [2, 2.08] cm

The initial ranges for the multi-belt scenario are presented in Table A.10 and the
estimated transition times and belt velocities are given in Table 6.2.

Table A.10: Considered initial ranges for the multi-belt scenario

Variable Value Unit

x(k) [0, 500] cm
pPS1 [0.9, 1.1] cm
pPS2 [45.9, 46.1] cm
pPS3 [82.9, 83.1] cm
pPS4 [130.9, 13.1] cm
p1 [20, 30] cm s−1

p2 [20, 30] cm s−1

p3 [20, 30] cm s−1

d(k) [0, 0.1] cm s−1

psize [1.98, 2.02] cm
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