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Abstract The linear theory of coupled gradient elasticity has been considered for hemitropic second gradient
materials, specifically the positive definiteness of the strain and strain gradient energy density, which is assumed
to be a quadratic form of the strain and of the second gradient of the displacement. The existence of the
mixed, fifth-rank coupling term significantly complicates the problem. To obtain inequalities for the positive
definiteness including the coupling term, a diagonalization in terms of block matrices is given, such that the
potential energy density is obtained in an uncoupled quadratic form of amodified strain and the second gradient
of displacement. Using orthonormal bases for the second-rank strain tensor and third-rank strain gradient tensor
results in matrix representations for the modified fourth-rank and the sixth-rank tensors, such that Sylvester’s
formula and eigenvalue criteria can be applied to yield conditions for positive definiteness. Both criteria result
in the same constraints on the constitutive parameters. A comparison with results available in the literature
was possible only for the special case that the coupling term vanishes. These coincide with our results.

Keywords Strain gradient elasticity · Coupling fifth-rank tensor · Positive definiteness of the potential
energy

1 Introduction

The classical theory of elasticity is one of the most important tools of engineering suitable to describe many
phenomena in bodies deformed under action of external forces. However, as any theory, it has a limited range
of application. It is scale insensitive, and its solutions contain singularities when the boundary conditions
contain singularities or the boundary geometry has sharp corners, as known from the Flamant–Boussinesq
problem, the Kelvin problem, the crack tip problem and others [35]. Indeed, in order to take into account size
effects (cf. [3,26,27]), to remove singularities in the stresses and displacements, when discontinues appear in
the boundary conditions (e.g., [5,16,34,35]), to describe phenomena in the micro- and nanometer range like
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dislocations [14], to catch some relevant phenomena in regions with a stress concentration [4], to generalize
theories of plates [12] and to include boundary and surface energies [13,21], more encompassing models are
required.

A natural generalization of classical elasticity is the strain gradient elasticity, in which higher derivatives of
the displacement appear. An early work in this regard is [9], who introduced first the rotation gradient and the
associated coupled stresses in the motion equations. The more general continua can be found almost fifty years
later in [17,29,37]. These continua are called second gradient continua by [17] or strain gradient continua by
[29], where the stored energy depends not only on the strain, but also on higher derivatives of the displacement
field. It has been shown in various papers (cf. [15,24,25,32] among other) that some limitations of classical
elasticity theory can be overcome with such gradient extensions.

Using the generalized mechanics incorporates higher gradients of the displacement leading to additional
parameters effected by the inner structure at the microscale. Development of a general methodology for
determining these additional parameters by using a computational approach was attempted in [1,2].

A key point of the theory is the uniqueness of the solution for the displacement field u(x) of the equilibrium
equations. A necessary condition is the positive definiteness of the strain energy. The uniqueness proof for
uncoupled isotropic gradient elasticity is due to [30]. Presuming that the constitutive coupling tensor C5
vanishes, this assumption leads to requirement of positive definiteness of both fourth-rank and sixth-rank
constitutive tensorsC4 andC6. Inequality constrains on both constitutive parameters in the absence of coupling
term are available in [11,19,29].

In the present paper, we extend the results of [11,30] and deduce the conditions of positive definiteness of
stored elastic energy for coupled strain gradient elasticity. To do so, a block diagonalization of the composite
stiffness in strain gradient elasticity is introduced. By this a formal diagonalization, whichmaps the constitutive
fourth-, fifth- and a sixth-rank stiffness tensors C4, C5, C6 to a modified, decoupled representation involving
C4,Cm

6 , we give necessary conditions for positive definiteness, i.e. the convexity of the strain and strain gradient
energy, involving the couple stiffness C5.

The presentation is organized as follows: In the next section, we introduce notations used in the paper.
Section 3 contains description of the block diagonalization of the composite stiffness in strain gradient elasticity
which leads to the desired decoupling of the strain- and strain gradient parts in the strain energy density. In
Sect. 4, the inequality constraints for all constitutive parameters are deduced using Sylvester’s and positive
eigenvalue criteria. The results are compared with the ones available in the literature for the special case that
the coupling tensor C5 vanishes. The last section presents concluding remarks and a discussion.

2 Notation

Scalars, vectors, second- and higher-rank tensors are denoted by italic letters (like a or A), bold minuscules
(like a), bold majuscules (like A) and blackboard bold majuscules (like A), respectively.

The strain and strain gradient energy is

w = 1

2
H2 · ·C4 · ·H2 + H2 · ·C5 · · · H3 + 1

2
H3 · · · C6 · · · H3 , (1)

where C4, C5, C6 are the stiffness tensors and the strains and the second gradient of displacement are defined
as:

H2 = 1

2
(u ⊗ ∇ + ∇ ⊗ u) , H3 = u ⊗ ∇ ⊗ ∇ , (2)

which are calculated from the displacement field u(x), where x is the position vector of a material point. For
convenience, we drop the independent variable x. “⊗” denotes the dyadic product. ∇ is the nabla operator,
with ∇i = ∂

∂xi
ei , where ei denotes an orthonormal base vector. Repeated indices imply a summation. The

nabla operator acts as follows on the displacement field u:

u ⊗ ∇ = ∂ui
∂x j

ei ⊗ e j = ui, jei ⊗ e j . (3)
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The dots are scalar contractions of the form

v1 ⊗ . . . ⊗ vk · . . . ·
︸︷︷︸

n dots

w1 ⊗ . . . ⊗ wl

= (vk−n · w1) . . . (vk · wn)v1 ⊗ vk−n−1 ⊗ wn+1 ⊗ . . . wl . (4)

For the double and triple scalar contractions in Eq. (1), the associations are

ei ⊗ e j · ·ekei ⊗ e j · ·ek ⊗ el = δikδ jl , (5)

ei ⊗ e j ⊗ ek · · · elei ⊗ e j ⊗ ek · · · el ⊗ emei ⊗ e j ⊗ ek · · · el ⊗ em ⊗ en = δilδ jmδkn . (6)

The arrangement of the scalar dot like : or · · · has no implications. The stiffnesses for the case of hemitropy
in accordance with [11,18,29] are

C4 = [

λδi jδkl + μ(δikδ jl + δilδ jk)
]

ei ⊗ e j ⊗ ek ⊗ el (7)

C5 = [

κ(εimkδ jl + εilkδ jm + ε jmkδil + ε jlkδim)
]

ei ⊗ e j ⊗ ek ⊗ el ⊗ em (8)

C6 = [

c1(δ jkδimδnl + δ jkδinδml + δ j iδklδmn + δ jlδikδmn)

+c2(δ j iδkmδnlδ jmδkiδnl + δ j iδknδml + δ jnδikδml)

+c3(δ jmδklδinδ jlδinδkm + δ jnδimδkl + δ jlδimδnk)

+c4(δ jnδilδkmδ jmδknδil)

+c5δilδ jkδmn
]

ei ⊗ e j ⊗ ek ⊗ el ⊗ em ⊗ en , (9)

where δi j is theKronecker symbol and εi jk the Levi-Civita permutation symbol,λ andμ are Lamé’s coefficients
and κ and c1...5 are the higher-order material parameters. One can check that the following index symmetries
hold [19]

Hi j = Hji , (10)

Hi jk = Hik j , (11)

Ci jkl = Ckli j = C jikl = Ci jlk , (12)

Ci jklm = C jiklm = Ci jkml , (13)

Ci jklmn = Clmni jk = Cik jlmn = Ci jklnm , (14)

where the number of indices corresponds to the tensor rank of H2, H3, C4, C5, C6.

Remark 1 It is of no matter whether we consider u ⊗ ∇ ⊗ ∇ or sym(u ⊗ ∇) ⊗ ∇ as the strain gradient. In
both cases, we have a third-rank tensor with one index symmetry, which has 18 independent components. The
linearized rotations that are purged from u ⊗ ∇ upon symmetrization are replaced by additional compatibility
conditions on H3 when sym(u ⊗ ∇) ⊗ ∇ is used as the strain gradient.

Remark 2 Hemitropy implies that the material’s symmetry group is the special orthogonal group SO(3), which
is, loosely speaking, half the whole orthogonal group O(3) as in case of isotropy, which gives rise to the label
“hemitropy.” The absence of improper rotations preserves the existence of C5, which is the only difference to
isotropic strain gradient elasticity.

One can classify the subgroups of O(3) into three types:

(1) Proper rotations with det(Q)=1 for all Q, where centro-symmetry is not included as it has det(-I)=-1
(2) Improper rotations including the central inversion -I
(3) Improper rotations excluding the central inversion -I
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The absence of improper rotations implies absence of centro-symmetry. But the converse does not hold because
of the existence of the third type of subgroups. The simplest example is the tetrahedral symmetry. A tetrahedron
has rotational symmetries and mirror symmetries but no central inversion.

However, in case of isotropy in the sense that SO(3) is the symmetry group, adding a singlemirror symmetry
generates the whole of O(3), including centro-symmetry. Therefore, for isotropy it is sufficient to distinguish
whether SO(3) or O(3) is the symmetry group, which can be reduced to asking whether the central inversion
is part of the otherwise isotropic symmetry group. To differentiate these cases, one may call the case that O(3)
represents all symmetries “isotropy” and the case that SO(3) represents all symmetries “hemitropy”, where
“hemi” refers to SO(3) being half of O(3), loosely speaking.

An example for a material that is hemitropic but not isotropic would be a body that is composed of chiral
sub-bodies (for example tiny, left handed screw springs) that have an isotropic orientation distribution. On
average, rotations do not change the structure, but a mirror operation flips the chirality of the springs.

3 Block diagonalization

It is known from Kirchhoff’s uniqueness theorem [22,23] that in linear elasticity the conditions sufficient for
a unique solution of the equilibrium equations for the displacement field require positive definiteness of the
potential energy density w and a suppression of rigid body motions through appropriate boundary conditions.
In second-gradient elasticity, the potential energy density is a quadratic form of strain H2 and second gradient
of displacementH3, see Eq. (1). The positive definiteness ofw yields inequality constraints on stiffness tensors
C4, C5 and C6.

For determination of these constrains, Eq. (1) can be rewritten in matrix form, and then, one of the criteria
[20] (cf. Sylvester’s criterion, positiveness of all matrix eigenvalues) should be applied to check the positive
definiteness of w.

In the case that the coupling tensorC5 vanishes,w has a block diagonal form, which allows the independent
determination of the constraints for the components of the tensors C4 and C6. Such restrictions for the inde-
pendent parameters μ and λ of C4 are standard in classical elasticity. Conditions for the positive definiteness
of C6 were analyzed in [11,29].

The presence of the coupling tensor C5 significantly complicates the determination of conditions for
positive definiteness of w. To decouple the strain and strain gradient contributions, we transform Eq. (1) by
introducing a modified strain and second gradient of displacement:

w = 1

2
Hm

2 · ·C4 · ·Hm
2 + 1

2
H3 · · · C

m
6 · · · H3. (15)

Here the superscript m denotes the modified strains and the modified stiffness tensor. The modified stiffness
tensor is specified as

C
m
6 = C6 − C

T
5 : C

−1
4 : C5. (16)

Considering that the tensor C5 is symmetric with respect to the first two and to the last two indices (Ci jklm),

the transposition of C5 is CT
i jklm = Cklmi j , i.e. the first two and the last three entries are exchanged, H2 :

C5 · · · H3 = H3 · · · C
T
5 : H2. The modified strains are defined as

Hm
2 = H2 + H3 · · · C

T
5 : C

−1
4 . (17)

Inserting Eqs. (16) and (17) into Eq. (15) yields Eq. (1) upon summarizing.
Indeed, if Eq. (1) holds, the constitutive relations for the Cauchy stress and the double stress tensors are

[33]

T2 = ∂w

∂H2
= C4 : H2 + C5 · · · H3 , (18)

T3 = ∂w

∂H3
= C

T
5 : H2 + C6 · · · H3, (19)
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and for the modified form of w (Eq. 15), the constitutive relations have the same form:

T2 = ∂w

∂Hm
2

= C4 : Hm
2 = C4 : H2 + C5 · · · H3, (20)

T3 = ∂w

∂H3
= C

m
6 · · · H3 + C

T
5 : C

−1
4 : C4 · ·Hm

2 = C
T
5 : H2 + C6 · · · H3. (21)

This is an additional validation of the block diagonalization.

Remark 3 We should point out that such a block diagonalization is applicable independently of the symmetry
class of tensors.

In the case of hemitropy, the tensor C
m
6 is isotropic and is characterized by five derived constants

C
m
6 = [

cm1 (δ jkδimδnl + δ jkδinδml + δ j iδklδmn + δ jlδikδmn)

+cm2 (δ j iδkmδnl + δ jmδkiδnl + δ j iδknδml + δ jnδikδml)

+cm3 (δ jmδklδin + δ jlδinδkm + δ jnδimδkl + δ jlδimδnk)

+cm4 (δ jnδilδkm + δ jmδknδil)

+cm5 δilδ jkδmn
]

ei ⊗ e j ⊗ ek ⊗ el ⊗ em ⊗ en, (22)

where

cm1 = c1 − 2κ2

μ
, (23)

cm2 = c2 + κ2

μ
, (24)

cm3 = c3 + 2κ2

μ
, (25)

cm4 = c4 − 4κ2

μ
, (26)

cm5 = c5 + 4κ2

μ
. (27)

Remark 4 Asmentioned above, themodified tensorCm
6 is isotropic and is characterizedbyoverall 7 parameters:

the five independent parameters c1 - c5 in Eqs. (23)–(27) from the original C6, the independent parameter κ
in C5, and μ, which is one of the Lamé constants of C4. The other Lamé constant λ does not appear in C

m
6 .

Indeed, the modified tensor C
m
6 is defined as a difference between the original tensor C6 and the contraction

C
T
5 : C

−1
4 : C5. Examining this more closely, the λ drops out due to the contraction of the anti-symmetric

Levi-Civita symbol with the symmetric Kronecker symbol in the term λI ⊗ I = λδi jδklei ⊗ e j ⊗ ek ⊗ el . This
is best seen in the projector representation of C

−1
4 = (9K )−1(I⊗ I)+ (2μ)−1(I− 1

3 I⊗ I), with λ = K −2μ/3
and I the identity on symmetric second-rank tensors. In C

−1
4 , only the first summand of the μ-part is nonzero

upon carrying out the scalar contractions with C
T
5 and C5.

The decoupling of the energy density simplifies determination of conditions for its positive definiteness. It
yields a separation of inequality constraints on both tensors C4 and C

m
6 .

4 Positive definiteness of the elastic energy

For determining the inequality constraints for positive definiteness of C4 and C
m
6 , we rewrite Eqs. (15), (20),

(21) in matrix form.
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4.1 An orthonormal basis and matrix representations of strain gradient elasticity

In order to express the Cauchy stress T2 or the second-rank strain Hm
2 tensors as a 6-dimensional vector and

write C4 as a 6 × 6 symmetric matrix, we use the following orthonormal basis vectors (for details see [6,7]):

ep =
(

1 − δi j√
2

+ δi j

2

)

(ei ⊗ e j + e j ⊗ ei ), 1 ≤ p ≤ 6. (28)

Then, the vectors τ 2 , ηm2 and the matrix C4 can be written down in the form:

τ 2 =
6

∑

p=1

τ pep , (29)

ηm2 =
6

∑

p=1

ηmp ep , (30)

C4 =
6

∑

p,q=1

C pqep ⊗ eq , (31)

where the index ordering i, j → p is in accordance with the scheme of the Voigt notation [31,38],

1, 1 → 1, 2, 2 → 2, 3, 3 → 3, 2, 3 → 4, 1, 3 → 5, 1, 2 → 6. (32)

With the new index running from 1 to 6, we have

ep : eq = δpq with p, q = 1 . . . 6. (33)

This normalized basis has been used implicitly first by [36] and then made more explicit more than 100 years
later by [28], see, e.g., [10]. An extensive account can be found in [8], chapter 26.

The third-rank double stress tensor T3 and the second gradient of displacement H3 can be represented
w.r.t. the following orthonormal basis

eα =
(

1 − δi j√
2

+ δi j

2

)

ek ⊗ (ei ⊗ e j + e j ⊗ ei ), 1 ≤ α ≤ 18 , (34)

as 18-dimensional vectors τ 3 , η3

τ 3 =
18
∑

α=1

ταeα , (35)

η3 =
18
∑

α=1

ηαeα , (36)

and the sixth-rank stiffness C
m
6 as a symmetric 18 × 18 matrix Cm

6 [6,7]:

Cm
6 =

18
∑

α,β=1

C
m

αβeα ⊗ eβ. (37)

In the case of the three-to-one subscript, the correspondence k, i, j → α is as follows:

1, 1, 1 → 1, 2, 1, 2 → 2, 1, 2, 2 → 3, 3, 1, 3 → 4, 1, 3, 3 → 5,

2, 2, 2 → 6, 3, 2, 3 → 7, 2, 3, 3 → 8, 1, 1, 2 → 9, 2, 1, 1 → 10,

3, 3, 3 → 11, 1, 1, 3 → 12, 3, 1, 1 → 13, 2, 2, 3 → 14, 3, 2, 3 → 15,

1, 2, 3 → 16, 3, 1, 2 → 17, 2, 1, 3 → 18. (38)

Again we have orthogonality

eα · · · eβ = δαβ with α, β = 1 . . . 18. (39)
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Remark 5 The double stresses T3 and the second gradient of displacement H3 are tensors of third-rank sym-
metric with respect to its last two indices. This is attributable to the form of the strain and strain gradient energy
Eq. (1) and definition of the coupling tensor C5.

With the orthonormal basis Eq. (28), the relationships between the vectors τ 2 , ηm2 and matrix components
C4 are

τ p =
{

Ti j if i = j ,
√
2 Ti j if i �= j ,

(40)

ηmp =
{

Hm
i j if i = j ,

√
2 Hm

i j if i �= j ,
(41)

C pq =

⎧

⎪
⎨

⎪
⎩

Ci jkl if i = j and k = l ,
√
2 Ci jkl if i �= j and k = l ,

2 Ci jkl if i �= j and k �= l ,

(42)

and with the orthonormal basis Eq. (34), the connection between the vectors τ 3 , η3 and matrix components
Cm
6 is

τα =
{

Tki j if i = j ,
√
2 Tki j if i �= j ,

(43)

ηα =
{

Hki j if i = j ,
√
2 Hki j if i �= j ,

(44)

C
m

αβ =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

Cm
i jklmn if i = j and l = m ,

√
2 Cm

i jklmn if i �= j and l = m or i = j and l �= m ,

2 Cm
i jklmn if i �= j and l �= m .

(45)

Remark 6 The bar 〈. . .〉 above tensors and Latin subscripts p, g correspond to vectors and matrices with a

two-to-one subscript transition, and the double bar 〈. . .〉 above tensors and Greek indices α, β correspond to
vectors and matrices with a three-to-one transition.

4.2 Application of Sylvester’s criteria

We can now rewrite Eq. (15) in the matrix form

w = 1

2
(ηm2 )T C4η

m
2 + 1

2
ηT
3 Cm

6 η3, (46)

where ηm2 , C4, η3 and Cm
6 are defined by Eqs. (41)–(44), (45), (17), (16). Assume that the elastic energy density

is a strictly convex function of the modified strain ηm2 and the second gradient of displacement η3, what is
equivalent to the positive definiteness of the corresponding quadratic form Eq. (15). In the case of hemitropic
materials (see Eqs. 7–9), the positive definiteness of w yields separate inequality constraints on both, the first
and the second gradient constitutive parameters λ,μ, cm1...5. The standard Voigt representation for Cauchy stress
and strain [38] yields the well-known constraints from classical mechanics for λ and μ

μ > 0 , (47)

3λ + 2μ > 0. (48)

Next, we consider only the relationship between double stresses and the second gradient of displacement,
which can be written as

τ 3 = Cm
6 η3, (49)
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where the matrix Cm
6 has following block diagonal form:

Cm
6 =

⎛

⎜

⎜

⎝

C(5) 0 0 0
0 C(5) 0 0
0 0 C(5) 0
0 0 0 C(3)

⎞

⎟

⎟

⎠

. (50)

Here 5 × 5 and 3 × 3 sub-matrices C(5), C(3) are specified

C(5) =

⎛

⎜

⎜

⎜

⎜

⎝

a1 a4 a5 a4 a5
a4 a2 a6 2cm2

√
2cm1

a5 a6 a3
√
2cm1 cm5

a4 2cm2
√
2cm1 a2 a6

a5
√
2cm1 cm5 a6 a3

⎞

⎟

⎟

⎟

⎟

⎠

, (51)

C(3) = 2

⎛

⎜

⎝

cm4 cm3 cm3
cm3 cm4 cm3
cm3 cm3 cm4

⎞

⎟

⎠ , (52)

with

a1 = 4cm1 + 4cm2 + 4cm3 + 2cm4 + cm5 , (53)

a2 = 2cm2 + 2cm3 + 2cm4 , (54)

a3 = 2cm4 + cm5 , (55)

a4 = √
2(cm1 + 2cm2 ) , (56)

a5 = 2cm1 + cm5 , (57)

a6 = √
2(cm1 + 2cm3 ) . (58)

Remark 7 Neglecting the coupling tensor C5 in the constitutive Eqs. (18), (19), we obtain the results identical
to one’s presented in [11,38].

For the analysis of positive definiteness of the matrix Cm
6 , we apply the decomposition of the double stress T3

and of the second gradient of displacement H3 into a completely symmetric third-rank tensor and a deviatoric
second-rank tensor

Kki j = K̃ki j + 1

3
(ε jkl K̂li + εikl K̂l j ). (59)

Here K̃ki j is the completely symmetric part of K3 and K̂li is the sym-skew part of K3, which are defined as

K̃ki j := 1

3
(Kki j + Kik j + Ki jk) , (60)

K̂li := εl jk Kki j . (61)

Using this decomposition, we can write down the constitutive Eq. (21) as follows (see [11,19])
⎛

⎝

T̃111
T̃122 + T̃133
T̂32 − T̂23

⎞

⎠ = D(3)
1

⎛

⎝

H̃111

H̃122 + H̃133

Ĥ32 − Ĥ23

⎞

⎠

⎛

⎝

T̃222
T̃233 + T̃112
T̂13 − T̂31

⎞

⎠ = D(3)
1

⎛

⎝

H̃222

H̃233 + H̃112

Ĥ13 − Ĥ31

⎞

⎠

⎛

⎝

T̃333
T̃223 + T̃113
T̂21 − T̂12

⎞

⎠ = D(3)
1

⎛

⎝

H̃333

H̃223 + H̃113

Ĥ21 − Ĥ12

⎞

⎠

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

, (62)
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T̃122 − T̃133 = 3d2(H̃122 − H̃133)

T̃233 − T̃112 = 3d2(H̃233 − H̃112)

T̃223 − T̃113 = 3d2(H̃223 − H̃113)

⎫

⎪
⎬

⎪
⎭

, (63)

T̂32 + T̂23 = 6d5(Ĥ32 + Ĥ23)

T̂13 + T̂31 = 6d5(Ĥ13 + Ĥ31)

T̂21 + T̂12 = 6d5(Ĥ21 + Ĥ12)

⎫

⎪
⎪
⎬

⎪
⎪
⎭

, (64)

⎛

⎝

T̂11
T̂22
T̂33

⎞

⎠ = D(3)
2

⎛

⎝

Ĥ11

Ĥ22

Ĥ33

⎞

⎠ , (65)

T̃123 = 3d2 H̃123 . (66)

Remark 8 The symbols 〈̃. . .〉 and 〈̂. . .〉 above a tensor in Eqs. (62)–(66) correspond to completely symmetric
third-rank tensor and a deviatoric second-rank tensor.

The 3 × 3 sub-matrices D(3)
1 , D(3)

2 are specified as:

D(3)
1 =

⎛

⎝

d1 2d1 − d2 d3
2d1 − d2 4d1 + d2 2d3

d3 2d3 d4

⎞

⎠ , (67)

D(3)
2 = d5

⎛

⎝

2 −1 −1
−1 2 −1
−1 −1 2

⎞

⎠ , (68)

where parameters d1...5 are defined as

d1 = 4cm1 + 4cm2 + 4cm3 + 2cm4 + cm5 , (69)

d2 = 2(cm4 + 2cm3 ) , (70)

d3 = 4

3
(2cm2 − cm1 − cm5 ) , (71)

d4 = 8

9
(2cm2 + 3cm4 + 2cm5 − 4cm1 − 3cm3 ) , (72)

d5 = 4

9
(cm4 − cm3 ) , (73)

Inserting Eqs. (23)–(27) into the latter equations gives

d1 = 4c1 + 4c2 + 4c3 + 2c4 + c5 , (74)

d2 = 2(c4 + 2c3) , (75)

d3 = 4

3
(2c2 − c1 − c5) , (76)

d4 = 8

9
(2c2 + 3c4 + 2c5 − 4c1 − 3c3) , (77)

d5 = 4

9
(c4 − c3 − 6κ2

μ
) . (78)

Thus, it turns out that only one of these di parameters, namely d5, is affected by the presence of the coupling
tensor C5.

Such a representation of constitutive relations between strain gradient and double stresses allows us to
reduce the maximal dimension of coupled blocks to three. That enables us to apply the Sylvester’s criteria [20]
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to analyze the positive definiteness of the energy density. As a result, we obtain the following constraints for
parameters d1...5,

d1 > 0
5d5 > d2 > 0

d4 >
5d23

5d5−d2
d5 > 0

⎫

⎪
⎪
⎬

⎪
⎪
⎭

(79)

what leads to constraints for constitutive parameters c1 - c5, μ and κ

c4 > 0

c4 − 6κ2
μ

> c3 > − 1
2c4

c5 > 2
5(c3−2c4)

c2 >
−10c21−12c1c3−4c23+4c1c4+2c3c4+2c24+c3c5+3c4c5

2(2c3−4c4−5c5)

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

(80)

As mentioned above, if we take κ = 0, what implies the absence of coupling term C5 in the constitutive
Eqs. (18), (19), these constraints are identical to the results presented by [11,29]. We consider this as an
additional confirmation of Eq. (80).

For verification, we present another way of obtaining these inequalitites in the next subsection, namely by
extracting the eigenvalues of the Cm

6 symbolically with the aid of a computer algebra system and requiring
their positivity. We apply the scheme proposed in [18] for the isotropic stiffness hexadic that appears in strain
gradient elasticity.

4.3 Eigenvalues of the modified hexadic C
m
6

In this section, we deduce conditions for positive definiteness of 18×18matrixCm
6 using eigenvalue technique.

In accordance with these criteria, a matrix is positive definite if all its eigenvalues are positive.
It is shown in [18] that an isotropic hexadic with five independent parameters c1 - c5 has four distinct

eigenvalues. Its spectral representation is

C6 =
4

∑

i=1

λiPi . (81)

The projectors P1...4 are defined as

P1 = B1 , (82)

P2 = B2 , (83)

P3 = 1

2

{

B5+
[

(12 c1 − 16 c2 + 2 c3 + 9 c5)

6 cr
B3 + 2

√
5 (3 c1 + 2 c2 + 2 c3)

3 cr
B4

]}

, (84)

P4 = 1

2

{

B5−
[

(12 c1 − 16 c2 + 2 c3 + 9 c5)

6 cr
B3 + 2

√
5 (3 c1 + 2 c2 + 2 c3)

3 cr
B4

]}

(85)

with respect to the basis

B1 = − 1

15
(B1 + B2 + B5) + 1

6
(B3 + B4) , (86)

B2 = 1

12
(2B1 − B2 − 2B3 + 4B4 − 4B5) , (87)

B3 = 1

60
(6B1 − 9B2 + 16B5) , (88)

B4 = 1

6
√
5

(3B1 − 4B5) , (89)
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B5 = 1

20
(−2B1 + 3B2 + 8B5) . (90)

Here B1...5 are linear combination of five base hexadics with components

B1 i jklmn = δ jkδimδnl + δ jkδinδml + δ j iδklδmn + δ jlδikδmn , (91)

B2 i jklmn = δ j iδkmδnl + δ jmδkiδnl + δ j iδknδml + δ jnδikδml , (92)

B3 i jklmn = δ jmδklδin + δ jlδinδkm + δ jnδimδkl + δ jlδimδnk , (93)

B4 i jklmn = δ jnδilδkm + δ jmδknδil , (94)

B5 i jklmn = δilδ jkδmn (95)

with respect to the basis
{

ei ⊗ e j ⊗ ek ⊗ el ⊗ em ⊗ en
}

. The eigenvalues are linear combination of five inde-
pendent parameters c1...5,

λ1 = 2 (c4 − c3) , (96)

λ2 = 4 c3 + 2 c4 , (97)

λ3 = 1

2
(4 c1 + 8 c2 + 2 c3 + 4 c4 + 3 c5) + cr , (98)

λ4 = 1

2
(4 c1 + 8 c2 + 2 c3 + 4 c4 + 3 c5) − cr (99)

with

cr =
√

1

36
(12 c1 − 16 c2 + 2 c3 + 9 c5)2 + 20

9
(3 c1 + 2 c2 + 2 c3)2. (100)

Introducing the dimensionless parameter γ as

cos γ = (12 c1 − 16 c2 + 2 c3 + 9 c5)

6 cr
⇐⇒ sin γ = 2

√
5 (3 c1 + 2 c2 + 2 c3)

3 cr
, (101)

allows to use the four eigenvalues λ1, λ2, λ3, λ4 and the parameter γ as the five independent parameters of
C6, where γ determines the third and fourth eigenprojector.

Using Eqs. (96)–(99), we can determine eigenvalues of the modified stiffness tensor C
m
6 in terms of cm1 -

cm5 . It turns out that only λ1 is altered by the presence of κ ,

λm1 = λ1 − 12κ2

μ
, (102)

λm2...4 = λ2...4. (103)

Since μ is itself an eigenvalue that is greater than zero, and κ2 is also greater than zero, the presence of the
coupling tensor C5 can only lower the eigenvalues, compared to the isotropic case. However, the eigenvalues
cannot be interpreted directly physically or compared to the isotropic case, as the modification involves a
modified strain Hm

2 . Nevertheless, one can check the sign, and notice that a too large magnitude of κ can
always produce a negative λm1 and hence leads to an indefinite strain energy w.

Requiring positivity of the eigenvalues involving coupling tensor C5, we obtain identical constraints for
constitutive parameters c1 - c5, μ and κ as in Eq. (80).

5 Concluding remarks

Positive definiteness conditions for the quadratic strain and strain gradient energy for the linear theory of
coupled gradient elasticity have been given for a hemitropic material. The presence of the coupling term
C5 significantly complicates the problem. To avoid this complication, a transformation of the equation for
the potential energy density Eq. (1) is made to represent w as an uncoupled quadratic form of the modified
strain and second gradient of displacement Eq. (15). This transformation, effectively a block diagonalization,
leads to decoupling of the strain and strain gradient term in the potential energy density. Further, introducing
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orthonormal bases for the fourth- and sixth order tensors gives matrix representations for these tensors, which
makes it possible to apply Sylvester’s criteria and eigenvalue extraction.We obtain the same constraints in both
cases. To the best of the authors knowledge, these results are not available in the literature and a comparison
is possible only for the special case when the coupling tensor C5 vanishes. In this case, conditions for positive
definiteness of the potential energy density are identical with ones presented in [11,29].

We found that in the case of hemitropic materials only one of the inequality constraints for the constitutive
parameters c1...5 and κ Eq. (80) is affected by presence of coupling tensor C5. Due to the coupling, also the
shear modulus μ appears when requiring positive definiteness of the sixth-rank stiffness. It turns out that large
magnitudes of κ , i.e., strong coupling between strain and strain gradient, can always lead to indefinite elastic
energies. We believe that the results presented in this work are the first of their type, both in terms of the block
diagonal quadratic form of the potential energy density, which contains a coupling tensor C5, and in terms of
positive definiteness conditions for constitutive parameters.

As mentioned above, the block diagonalization is applicable independently of the symmetry class of
materials and can be employed to anisotropic second gradient materials. However, a calculation by hand is
hardly feasible. Instead, one needs to resort to computer algebra systems. For this purpose, we provide a
notebook in the supplementary material.

Maybe even more important, the diagonalization opens the door to formally invert Hooke’s law even in the
coupled case. Due to the block diagonalization and the block matrix representations, one can easily obtain the
coupled compliance tensors S4, S5, S6 by forward modification {C4, C5, C6} → {C4, C

m
6 }, inversion of the

latter {C4, C
m
6 } → {S4, S

m
6 } and reversing the modification {S4, S

m
6 } → {S4, S5, S6}. This allows finally for an

explicit expression of the complementary energy even in the coupled case. This is prerequisite for generalizing
various proofs from classical elasticity, which have not yet been given for gradient elasticity, like existence
and uniqueness of solutions of boundary value problems with displacement or mixed boundary conditions.
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