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Zusammenfassung

Unter Metabolomics versteht man Forschung an kleinen Molekülen z.B. in der Biologie mit dem Ziel,
die Funktion von Stoffwechselprodukten (Metabolite) in biologischen Systemen zu beschreiben. Massen-
spektrometrie ist dabei eine Schlüsseltechnologie für die Messung der Metabolite. Durch den immensen
technologischen Fortschritt in den letzten Jahren haben Menge und Komplexität der erzeugten Daten
rasant zugenommen. Die Aufgabe der rechnergestützten Metabolomik ist es, Software und Datenbanken
für Management und Analyse der Daten zu entwickeln.

Diese Arbeit beschreibt verschiedene Schritte einer typischen Analysepipeline von der Verarbeitung der Mes-
sungen und Kombination mehrerer Peaklisten aus verschiedenen Proben, mit dem Ziel, eine Datenmatrix zu
erstellen. Die statistische Analyse solcher Matrizen hat dann das Ziel, interessante Metaboliten aufzudecken.
Für deren biochemische Interpretation müssen die Metabolite identifiziert werden, einschließlich ihrer
Molekularstrukturen.

Tandem-Massenspektren können dabei als Fingerabdruck der Moleküle genutzt und gegen Datenbanken mit
Spektren bekannter Verbindungen verglichen werden. Informatische Ansätze ermöglichen die Identifizierung
über Spektraldatenbanken hinaus. Diese Fortschritte in der rechnergestützten Metabolomik haben stark
von der Entwicklung offener Datenformate und Repositorien profitiert, die die Grundlage der FAIR Prinzipien
sind.

Wenngleich rechnergestützte Analysen die einzelnen Aufgaben wesentlich schneller erledigen als eine
manuelle Interpretation, so geht der Nutzen über die reine Beschleunigung dieser Aufgaben hinaus.
Die Effizienzsteigerung erlaubt die Bearbeitung gänzlich neuer, bis dato zu komplexer Analysen. Diese
Herausforderungen treiben auch die Entwicklungen in der Informatik voran, von Datenbanken für die ständig
wachsenden Datenmengen über effizientere Algorithmen bis hin zu Visualisierungen großer (biologischer)
Netzwerke.

Stichworte: Computergestützte Massenspektrometrie, Metabolomik, Datenprozessierung, Metaboliten-
profil, Metabolitenidentifikation, Datenpublikationen, Datenstandards
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Abstract

Metabolomics is the modern term for the field of small molecule research in biology with the aim to capture
the metabolites in biological systems and describe their biochemical role. Today, mass spectrometry is a
key technology for metabolomics research. Due to immense technological advances in mass spectrometry
over the last years, the amount and complexity of the data produced has been growing rapidly. The task
of computational metabolomics is to develop tools and databases for the handling and analysis of mass
spectrometry data.

This thesis describes the steps in a metabolomics data processing pipeline, from processing of signals
and alignment of several peak lists from different samples into a data matrix. The statistical analysis
of metabolomics experiments will reveal a number of “interesting” metabolites, but for the biochemical
interpretation it is required to determine the metabolite identities including their molecular structure.

Tandem mass spectra can be considered a fingerprint of a molecule, and thus it is possible to create
databases of spectra from known compounds for later comparison. Computational approaches allow
identification beyond spectral databases. Most of the advances in computational metabolomics came along
with the development of open data formats and repositories of open data. Together they are the basis of
FAIR data.

While computational and integrated approaches are certainly faster than performing the individual tasks
manually, the real benefit is beyond mere speed-up of such tasks. Ultimately they allow to answer biochemical
questions that could not be tackled before, and also spur novel developments in computer science, ranging
from databases for the ever growing amounts of data, to faster or more efficient data analysis algorithms or
visualisation approaches for large (biological) networks and their dynamic behaviour.

Keywords: Computational mass spectrometry, metabolomics, data processing, metabolite profiling,
metabolite identification, data publication, data standards
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Preface

This habilitation thesis was written after several years of research on computational mass spectrometry
and metabolomics at the Leibniz Institute of Plant Biochemistry (IPB Halle). During that time, I had
many collaborations with excellent researchers at the IPB, in Germany and world-wide. Without these
collaborations, the work would have been less exciting and less successful. For this reason I use the
pronoun “we” in most places of this work.

The first part of the thesis gives an overview of the field of metabolomics and brings the individual publications
into perspective. The bibliography at the end of Part I is split into several categories. All numeric citations
like [5] refer to work in the scientific community. The citations with author abbreviation like [BAN+14] refer
to own published work in refereed articles, preprints, conference proceedings and books. Part II provides
reprints of selected original research articles grouped analogous to the chapters in Part I. The full final
article is included where the publication license allows, or an author preprint otherwise.
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Part I.

Computational Mass Spectrometry
in Metabolomics
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Introduction 11
Biology is the research of “living matter” and spurred the interest of bright minds for hundreds of years.
Mendel described principles of inheritance [1] and modern molecular biology has been studied for more than
50 years [2], resulting in important discoveries about the relationship between genotype and phenotypes.
Research in the life-sciences aims at the understanding of living organisms, where all processes between
the genome and the phenotype are of interest. The subject of studies include gene regulation, protein
synthesis, their post-translational modifications, and the biochemistry of proteins and small molecules –
metabolites.

Metabolomics is the modern term for the field of small molecule research in biology, but the underlying
questions have been addressed already for hundreds of years by physicians using the smell and colour (and
hence metabolic state) of urine for diagnosis. In 1971, Pauling et al. [3] analysed more than 200 metabolites
in breath and urine headspace, but the terms “metabolomics” or “metabonomics” only appeared in the
scientific literature more than 25 years later [4, 5]. In the last two decades, huge progress has been made
regarding the number of metabolites that can be (simultaneously) detected, lowering the limits of detection
with modern analytical technologies, and the increased throughput of samples that can be processed.

Today, mass spectrometry is a key technology for metabolomics research. Due to immense technological
advances in mass spectrometry over the last years, the amount and complexity of the data produced has
been growing rapidly. These advances would not have been possible without the extensive use of computers
throughout the data processing and -analysis steps of the experiments. While the first mass spectrometers
used photo platters to record spectra, computers such as the setup shown in Figure 1.1 became an integral
part of the instruments already in the 1970s [6].

The digital recording of mass spectra also allowed to couple the MS instruments to chromatographic
separation, such as liquid (LC-MS) or gas chromatography (GC-MS). These separation processes greatly
reduce the complexity of the individual mass spectra, which in turn allows to measure more complex
samples, such as full methanolic extracts of plants or human body fluids. The amount of data from raw
spectra is overwhelming, hence a feature detection step is typically applied to extract the chromatographic
and spectral peaks into so called feature lists. These feature lists can be used as metabolic fingerprints,
which represent a molecular phenotype. Typical metabolomics experimental designs include the comparison
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1. Introduction

Figure 1.1.: The HP 5930A GC/MS (left) is coupled to a HP 5932A data station (right), which captures the
spectra and stores them on magnetic tape. This system was exhibited at the 61st ASMS Conference on
Mass Spectrometry and Allied Topics in Minneapolis in 2013. (Own photography)

of different genotypes, intervention studies or time-series experiments. These setups require the processing
of dozens to hundreds, even thousands of samples. With microarrays it is possible to quantify the abundance
of RNA and directly compare the gene expression across samples. In LC-MS and GC-MS however, the peak
lists need to be matched across samples, and both chromatographic shifts and mass deviations have to be
considered or even compensated for. A single metabolite will often give rise to more than one feature, and
several metabolites can have very similar masses and/or chromatographic retention times. Thus, another
data processing step is the grouping of features into compound spectra, and the annotation of ion species.
Chapter 2 will describe the contributions to the data processing steps in metabolite profiling and give the
required background on mass spectrometry.

For the biochemical interpretation, it is required to determine the metabolite identities, including the molecular
structure. A main advantage here is that MS is independent of the availability of the genome sequence,
and can be applied to any organism and tissue type. On the other hand, both analytical limitations and the
chemical diversity of metabolites and biochemical processes prevents that all possible features are known a
priori.

Thus, metabolite identification is an important task in computational metabolomics. For several organisms,
including human and model organisms such as Arabidopsis thaliana, metabolite databases have been
developed. If the compound is assumed to be known in that databases, it will be returned with a rather
simple search for metabolites having a mass within an instrument-dependent error window. However, all
compounds with a similar mass and of course all with the same molecular formula will be retrieved as false
positive hits. Their number can be reduced if the molecular formula itself can be deduced from the accurate
mass, isotopic pattern and further hints.

More structural information is available from higher-order mass spectra, such as tandem MS or MSN . Here
the analyte ions undergo fragmentation, and the fragmentation spectra provide a fingerprint of the molecular
structure. Those spectra can be compared against reference data to identify the metabolite. Especially if no
reference data are available, the spectra have to be interpreted, and structural hints can constrain the set of
possible molecular structures. The topic and contributions to the metabolite identification task are described
in Chapter 3.

8



The scientific discourse through letters among researchers and later articles in scientific journals has a long
history going back centuries, but electronic data publications have emerged only in the last few decades. The
amounts of data recorded in the life sciences mandate that they are available and enriched with experimental
metadata. Contributions to open formats and structured data storage are described in Chapter 4.

All new methods developed show their value in real applications, and whether they can be applied by
researchers worldwide. Most of our software implementations are available as Open Source software
or easily accessible web applications. A holistic view of the resulting software environment and several
biological applications are shown in Chapter 5. Chapter 6 concludes with a summary and an outlook.

Many of the challenges described here for metabolomics also apply to other – seemingly unrelated –
disciplines. One task in environmental research is the monitoring of water quality which requires the profiling
and comparison of samples across sites, time and in response to water treatment and the identification of
unknown contaminants. Here, the environmental research questions will not be explicitly addressed unless
the underlying problems or their solutions are markably different from the life sciences.

The task of computational mass spectrometry is to develop tools and databases for the handling and
analysis of mass spectrometry data. While computational and integrated approaches are certainly faster
than performing the individual tasks manually, the real benefit is beyond mere speed-up of such tasks. If
determining the molecular formula of structure is fast, this enables to apply the analysis to entire experiments,
rather than just one interesting metabolite. And if that data is available globally, this enables entirely novel
data analysis strategies, and subsequently helps to answer biochemical questions that could not be tackled
before [MRTN17]. These new applications also spur novel developments in computer science, ranging
from databases for the ever growing amounts of data, to faster or more efficient data analysis algorithms or
visualisation approaches for large (biological) networks and their dynamic behaviour.
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Metabolite Profiling 22
In metabolomics, the aim is to capture the metabolite abundances in a biological system at a given point in
time. In many experimental designs, the experimentalist will search for e.g. patterns in time series data,
or differences between two or more sample classes representing wildtype and mutants, control versus
treatment or healthy and diseased. This chapter will give an overview of mass spectrometry and the
corresponding data processing steps for metabolite profiling.

2.1. Mass Spectrometry in Metabolomics

Due to the huge chemical diversity and limitations of today’s analytical chemistry instrumentation, the full
metabolome can not be obtained with a single technology. Mass spectrometry (MS) is a highly sensitive
analytical method to characterise the composition even of complex samples. The samples can be in solution
or in gas phase (e.g. in head space analysis). Although different types of MS instruments and configurations
exist, the key principles remain the same. Figure 2.1 shows the schematic architecture of an LC-QqTOF
mass spectrometer, and Figure 2.2 an actual instrument in operation at the IPB.

The molecules in the sample acquire a positive or negative charge in the ion source. In metabolomics,
electron impact (EI) and electrospray ionisation (ESI) are the most widespread ionisation methods. The
charged ions can then be accelerated with defined kinetic energy through an electric potential in the
instrument. Multiply charged ions will consequently obtain a higher kinetic energy and travel at a higher
speed. Therefore, mass spectrometry can only determine the mass over charge ratio m/z.

The actual m/z value is determined in the analyser. Common analysers include the quadrupole, which can
be considered a bandpass filter where only ions within a specific m/z range can pass through. Cycling the
filter mass from e.g. 50 to 600 in steps of one then allows to deduce the m/z or the detected ions based on
the filter setting. Ion trap instruments can select (or trap) ions of a specified m/z value, before they induce an
electric signal in the detector, where also the abundance is measured either in arbitrary units or sometimes
as counts per second. The ion abundances across a specified m/z range is then called a mass spectrum.
An example is shown in figure 2.3.

11



2. Metabolite Profiling

DetectorInlet & Ion 
source

Q1 quadrupole q2 collision cell

TOF analyser

Chromatographic
separation column

Autosampler

Mass spectrometry instrument (MS)
Liquid chromatography
instrument (LC)

Figure 2.1.: Schema and flow of sample and ions in an LC-QqTOF/MS instrument (left). Samples are
selected in the autosampler holding e.g. 96 sample vials. One sample is subjected to separation in the
chromatographic column, and transferred to the mass spectrometer. The ion source turns molecules into
charged ions, which are then transferred to the time-of-flight (TOF) analyser and abundance is determined
in the detector. Optionally, in case of MS/MS, ions can be selected in the quadrupole Q1, and undergo
fragmentation in the collision cell q2 before transmission into the TOF analyser.

Figure 2.2.: A typical LC-QqTOF/MS in 2005 (Photo: Annett Kohlberg, IPB).
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2.2. Data Processing

An optional step is the separation of the sample according to the physico-chemical properties with gas- or
liquid chromatography, adding one (or more in the case of two-dimensional GC×GC or LC×LC separation)
retention times to each spectrum. Recently, also ion mobility has been introduced into commercially available
MS instruments, adding yet another type of separation. Here, the result is a run, where many spectra are
measured at a rate of up to tens, rarely hundreds of scans per second.

During the ionisation process the uncharged molecules [M] obtain a charge, which is carried in positive
mode by e.g. a proton H+ to form a pseudo-molecular ion [M H]+ or heavier adduct ions such as [M Na]+,
[M K]+ or [M NH4]+, or in negative mode e.g. [M−H]– and [M Cl]– . The ionisation is further complicated by
dimerisation, where two or more molecules form a complex ion, e.g. [2M H]+, with corresponding increase
of the observed m/z value. A doubly-charged ion, e.g. [M 2H]2+ with z = 2 will instead result in a m/z value of
half the mass of the ion [M 2H]2+. Almost all of the atoms in the observed molecules [M] can occur in several
isotopic variants with different numbers of neutrons in the nucleus and characteristic relative abundances.
About 98.9% of carbon exists as 12C with a mass of 12.0000, and 1.1% as 13C with a mass of 13.0034.
The natural relative abundance leads to the isotope patterns, i.e. groups of peaks with an average mass
distance of ≈ 1.002 that can be observed in the example spectrum in figure 2.3. In general, all of these
effects lead to complex mass spectra where a molecule gives rise to a multitude of peaks in the spectrum.
On the one hand, this complicates the data analysis, on the other hand the defined mass differences can be
exploited to annotate the spectrum.

Metabolite identification as discussed in Chapter 3 requires further structural hints in addition to the mass of
the pseudo molecular ion. Multi-stage mass spectrometry introduces an additional fragmentation step in the
MS instrument. In the schema in Figure 2.1 above, the Q1 quadrupole can be configured as a mass filter,
which then selects ions of a specific mass. The collision cell q2 is filled with an inert gas such as nitrogen
(N2) or argon (Ar) at low pressure. An alternating electric field is applied to the quadrupole electrodes
to apply energy to the ions, which dissociate into fragments upon collision with the gas, hence the term
Collision Induced Dissociation (CID). Other fragmentation methods have been developed as well, such as
infrared multiple photon dissociation (IRMPD) or higher energy collisional dissociation (HCD), which can
result in different MS/MS spectra.

2.2. Data Processing

Regardless of the actual vendor and instrument category, a mass spectrometer will not measure the
metabolome of an organism. Instead, it records the amount of ions arriving at the detector, while the
biologists would be interested in concentrations of metabolites in a sample.

The HP 5930A/5932A system shown in Figure 1.1 was one of the first mass spectrometers that was sold
together with a computer. In a “Scientific instrument selection guide” [7] they were advertised for $73 600, and
were used e.g. to measure the abundance of altosid, which “is necessary for correlations of concentrations
with biological response as well as to satisfy the requirements of regulatory agencies” [8]. Since then,
computers are used in all stages of data processing and to facilitate the biological interpretation of the
spectral data.
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Figure 2.3.: Example mass spectrum of ions extracted by CAMERA (left), and corresponding extracted ion
chromatograms (right). The metabolite causing the peaks is camalexin, measured on a Bruker micrOTOF-
Q instrument from an Arabidopsis thaliana sample. Data is published in the MetaboLights repository as
MTBLS2.
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2.2. Data Processing

2.2.1. Feature Detection

The first step in a metabolomics data processing pipeline is the processing of signals, to reduce complex
chromatographic data into peak lists, and align several peak lists from different samples into a data matrix.
We are maintaining the successful Bioconductor package xcms, which is downloaded about 11 000 times
per year1 and was initially developed at the Scripps Institute [9].

The xcms package performs the steps 1) feature detection and quantification, 2) the retention time correction
and alignment between several mass spectrometry runs and 3) the gap filling of features which were absent
in some of the samples. The result is a rectangular N×M matrix with N columns for the samples and M
rows for the detected features. The gap filling step is required because the downstream analysis often can
not deal with matrices containing NA values, and imputing the missing values from the raw data is often a
better choice than imputing the values based on the other samples or just random values.

Especially for high resolution LC-MS data we developed the feature detection algorithm centWave, which
has become the algorithm of choice for high-resolution LC-MS data [TBN08]. For an evaluation of peak
picking software (the new ccentWave and the original matchedFilter in xcms and mzMine [10]) we performed
a thorough investigation of precision and recall of the algorithms. To do so, a known “ground truth” is
needed to assess the quality of the algorithms. Instead of using an artificial mixture of a handful selected
compounds and manual spectrum interpretation to determine “true” peaks, we used complex samples of
Arabidopsis seed and leaf material, both pure at different concentrations and mixed at different ratios. The
reliable peaks were then determined as the intersection of feature detected by all algorithms in several
technical replication measurements. The rationale is that these peaks are the consensus features in the
highest concentrations, but that their detection becomes more challenging at lower concentrations or even
in mixtures of different samples, and that algorithms can be evaluated on the challenging samples. Using
this reliable set of thousands of seed- and leaf specific peaks (removing those which occur in both samples),
we were able to calculate the percentage of the “pure” features also found in the more complex mixture. We
found that centWave has a better recall (i.e. finds more true peaks) and precision (i.e. less false positives)
than both the matchedFilter approach and the peak picker in the open source tool mzMine. The evaluation
data was published as MTBLS1430.

We also designed an evaluation protocol for the alignment of several LC-MS runs [LTNG08], which is
the next step in the metabolomics workflow. The aim was again to create an unbiased ground truth with
additional information that was not available to the alignment algorithms, instead of a (small) set of manually
determined matching features. The ground truth was created from real-world samples, for which the
alignment result was known with sufficient confidence from information not used for the actual alignment.
This information included peptide identifications for the MS1 precursor ions obtained from tandem MS
spectra, or ion species annotations such as isotopic patterns which have to occur also in the aligned data.
This set consisted of 80.000 peaks. Several open source alignment algorithms were tested, again recording
the statistically sound precision and recall measurements. As a side effect, the protocols developed for
assessing the different peak picking and alignment tools are also useful to fine-tune the parameters to the
chromatographic and mass spectrometry setup at the IPB. In both comparisons, the xcms algorithms were

1http://bioconductor.org/packages/stats/bioc/xcms/
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2. Metabolite Profiling

top performers for the data acquired in the IPB metabolic profiling group, now available as MTBLS188. This
excellent performance of the peak picking and alignment steps required a careful choice and optimisation of
several parameters in the centWave algorithm, and relied on experience with both mass spectrometry and
the data processing.

The authors of [11] describe an approach for a more objective optimisation of these parameters. A dilution
series of a representative biological sample has to be measured in a pilot study on the given analytical setup
prior to the actual experiment. The objective of the data processing is to detect as many features as possible
with an intensity that correlates with the dilution steps. The optimal parameters were then found with a
Design-of-Experiments strategy to avoid an exhaustive parameter scan. The drawback is the requirement
for a separate pilot study.

To remove this requirement, the method described in [LDK15] implemented in the R package IPO relies only
on the intrinsic properties of biological samples, namely the occurrence of isotopic peaks. The objective
function can then be simplified to detect as many pairs of features as possible where one is the first isotopic
peak.

The user defined parameters in the original centWave implementation was entirely untargeted and without
any prior information about the sample and metabolites, even though some of that knowledge can be inferred
from databases or previous experience. The feature detection algorithm apLCMS [12] used a database of
expected or known metabolites. We implemented and evaluated a two-step strategy which uses a set of
robust parameters in a first iteration of feature detection, and then extends the set of regions-of-interest
(ROI) in centWave to cover expected peaks, e.g. isotopic peaks at predictable m/z values [TN16].

2.2.2. Deconvolution

In general there is a 1:n relation between the metabolites and the corresponding observed features in the
MS data. Due to the characteristics of the mass spectrometry methods, the feature lists typically contain
between 1 and 50 features for each single metabolite, where the additional features include isotope peaks,
adducts and in-source fragmentation. It is desirable to assign features to metabolites for two reasons: 1) the
mass differences between multiple features provide hints about the neutral molecular mass of the metabolite,
which is of relevance for the biological interpretation, and 2) for the statistical analysis, the differences at the
level of metabolites are of interest, rather than the underlying spectral features.

For the assignment of individual features to metabolites we first exploited their common intensity profile in
the chromatographic domain, as shown in Figure 2.3. The underlying reason is that it is the metabolite that
is traversing the chromatographic column, and only inside the mass spectrometer the individual ions are
separated by their different masses.

We first created the ESI package [TBN07], which uses the retention time and pointwise correlation of the
intensities across the chromatographic peak shape to assign peaks to compound spectra. Within these
compound spectra, a fixed set of mass differences was used to annotate ions as e.g. [M+H] and [M+Na] if
they have a mass difference of 21.9819 Da. This also creates a set of equations with one variable, and

16
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2.2. Data Processing

allows to calculate the mass of the neutral [M] molecule. The neutral mass can then be used to query
metabolite databases, or to calculate the molecular formula, using e.g. our Rdisop package, which in turn is
based on the decomp software library [13].

The ESI package was already very successful and formed the basis for the later developments on the
CAMERA package [KTB12] to annotate ion species typically found in electrospray ionisation (ESI-MS). The
Collection of Algorithms for MEtabolite pRofile Annotation in the CAMERA package represents the features
as a graph, and multiple hints on the “relatedness” between pairs of features are assigned to the edges. In
addition to the peak shape correlation, CAMERA also uses the intensity correlation across samples, which in
turn is based on the assumption that the ratios between different ion species remains constant. This holds
true for the majority of experiments, but in a few very specialised experimental designs the ratio may not be
fixed. An example are salt stress experiments with different concentrations of Na in the samples. In CAMERA,
the fixed set of mass differences was also replaced with a more dynamic rule set to cover a wider range of
ion species.

A similar approach was used in the RAMClustR package, which is designed to assign precursor-product ion
relationships in data-independent-acquisition (DIA) MS/MS data [BAN14]. This acquisition mode is a way to
multiplex different instrumental parameters, but requires that corresponding features are linked for further
interpretation.

Together, our developments formed the basis for automated mass spectrometry data processing pipelines,
and have been used in a multitude of infrastructures and studies. These include e.g. integrated systems like
MeltDB [14], MetaDB [14], XCMS online [15] or the workflows for Metabolomics [16] available for the Galaxy
workflow environment.
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Metabolite Identification 33
The statistical analysis of Metabolomics experiments will reveal a number of “interesting” metabolites.
Although the MS profiling data often allows to determine the molecular formula, e.g. C9H15O6 of the
unknown features with reasonable reliability, no further identification of the molecular structure is possible
from that information alone, because dozens or hundreds of compounds might be isomers of a single
molecular formula. Mass spectrometry is also a key technology for the identification of small molecules.

In tandem mass spectrometry the ions are fragmented using e.g. collision induced dissociation (CID) as
described in section 2.1. The resulting tandem mass spectra can provide additional structural hints. The
acquisition of tandem mass spectra requires to specify the isolation window, i.e. specialised instrument
parameters to isolate the precursor ion. This is either a tedious manual step, or it has to rely on data-
dependent MS/MS methods (DDA, data-dependent acquisition) where a survey scan is acquired and the
most intense top N ions are subsequently fragmented.. We have developed the MetShot approach [NTB12]
to acquire tandem mass spectra of biologically relevant mass spectral features. After the acquisition, high-
quality MS/MS spectra have to be extracted. To avoid the inclusion of background features, we combined
the highly sensitive xcms feature finding and the compound spectra extraction from the CAMERA package.

Recently, developments in mass spectrometry instrumentation have introduced the concept of data inde-
pendent acquisition, in short DIA. Here, the fragmentation spectra are acquired with either no precursor
isolation at all (called MSE for instruments manufactured by Waters), or in very broad, e.g. 25 Da wide,
isolation windows which successively cover the whole mass range of interest. The latter has been termed
Sequential Window Acquisition of all THeoretical mass spectra (SWATH) for Sciex instruments. In both
cases, the assignment between the precursor and the fragments is a challenge. For the case of DIA the
RAMClustR approach was developed [BAN14], where a hierarchical clustering is used to group features
and assign them to the precursor.

The metabolomics standards initiative (MSI) has defined four levels of identification [17]. These are level one
for comparisons of two or more orthogonal properties (such as retention time and (tandem) mass spectrum)
against authentic standards measured in-house on an identical analytical setup, level two where the same
comparison is performed against external or literature data including spectral libraries. In level three only the
compound class is known, while level four refers to the “known unknowns”, i.e. compounds where the identity
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is unknown, but which have been detected in other samples as well. The scientific discourse in this area has
not stopped, and we are continuing to contribute to recommendations on metabolite identification [CDF14].

A more detailed summary on metabolite identification methods including several case studies has been
reviewed in [NB10] and later with a different focus in [DEW13].

3.1. Metabolite Identification with Reference Spectra

The tandem mass spectra can be considered as a fingerprint of a molecule, and thus it is possible to create
databases of spectra from known compounds for later comparison. Several spectral reference libraries
have been created in the last decades for gas chromatography coupled to mass spectrometry, mostly
using electron impact ionisation (GC/EI-MS). This particular type of instrumentation benefits from highly
reproducible spectra, resulting in a good coverage of chemical substances in the libraries, and also very
stable spectra even across different instrument vendors.

Reference libraries for LC/ESI-MS/MS were in contrast comparatively small, and the comparability of
spectra across analytical setups was much lower. The MassBank consortium [HAK10] developed the first
open database of reference spectra, accepting spectra from the community, but also spectra deposited
as supplemental information for journal publications. The IPB Halle was the first European member of
the MassBank consortium and is hosting a MassBank server1. We develop an ecosystem of tools and
workflows around MassBank. This spectral database is an important resource for metabolomics researchers,
but also the foundation for the development of computational mass spectrometry methods for metabolite
identification. The spectra are used to train and validate computational models. MassBank records are now
carrying explicit licensing terms, and in most cases the open Creative Commons license is used. In addition
to online searches, the records are available for download and can be accessed through the version control
system git. Since 2019, we prepare releases of the MassBank spectra. Releases are assigned a DOI and
are archived on Zenodo ( ).

With the multitude of spectral libraries available, the question arises how similar or different they are in
their coverage. This can be evaluated comparing the InChiKeys (a hash value of a molecular structure)
of the compounds contained in the libraries. The review in [VSN16] summarises the characteristics and
analyses the content and overlap between different open and commercial libraries. Beyond the sheer
number of unique or shared compounds or adducts covered, the next question is the coverage with regard
to different biological questions. In [FSN18] the analysis was continued to determine the coverage between
spectral libraries and genome scale metabolic networks (GSMN) for different model organisms. The GSMN
were further analysed to determine distribution of neighbourhood coverage, whether known pathways are
over-/underrepresented in the (non-)covered metabolites and occurrence in the scientific literature. Such an
analysis also allows to declare a set of “most wanted” metabolites, for which reference spectra should be
acquired to improve the coverage.

1http://msbi.ipb-halle.de/MassBank/
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3.2. In silico Identification

Because reference spectra are often expensive to obtain (both in consumables and chemicals, but even more
so in manpower), reference libraries will never be covering as many compounds as can be found in general
purpose compound databases. Therefore, we are developing the MetFrag system [WSMHN10, RSW16,
WRNSK17, RNP19]. The tool uses the tandem mass spectrum and the calculated mass of the neutral
compound as input to search chemical structure databases such as KEGG, PubChem or ChemSpider for
matching molecules. In some cases, it can be necessary to consider not only the known-unknowns, but
also the unknown-unknowns where the structure has not yet been deposited in a chemical database. For
that case, users can upload sets of structures as structure-data files (SDF format). Regardless of its origin,
for each candidate every possible fragment is created using several heuristics. Because a mechanistic
simulation of the process is computationally infeasible, we employ simplified in silico fragmentation methods,
statistical models, and apply machine learning to a large set of training spectra. A user-friendly web
application is available2, but we also provide the source code under the LGPL open-source license for local
deployments, a command line version and the R package MetFragR for inclusion into workflows.

The processing of a typical candidate structure might only take a few seconds or even less, but the candidate
query in a large database like PubChem can return hundreds to thousands of candidates, which results
in overall runtimes between minutes and several hours. Initially, the candidates were processed in an
unspecified pseudo-random order as provided by the upstream structure database. If instead they could
be retrieved in a pre-sorted order, where the promising candidates are processed first, the user could be
presented with preliminary results, and might choose to not process the less promising candidates at all.
Both the preliminary scoring and the sorted retrieval are required to be computationally very efficient. To
that end, we created the MassStruct system, which is a relational database of the PubChem content, and
includes an initial training step that allows to obtain a fast preliminary scoring for the candidate structures.
In the training, we created a lookup table between observed tandem MS peaks and putative fragment
structures, and stored them in a relational database. In our case, we chose the Open Source PostgreSQL
with the chemistry extension pgchem::tigress, which in turn is based on the OpenBabel toolbox [18]. This
combination allows to combine both the precursor information (exact mass or molecular formula) and
structural properties like the “is-a-substructure-of” predicate in complex SQL statements. The performance
and runtime of this approach were shown in [HWN11].

Because MetFrag allows both a precursor mass and a molecular formula based candidate selection, we
also demonstrated in [NRWB13] the combined use of the SIRIUS tool [19] for the de novo calculation of
fragmentation trees with MetFrag. In addition to a smaller candidate set, the calculated molecular formulae
for the fragment peaks also allow to use the theoretical fragment masses instead of the measured ones,
which can decrease the false positive rate of matched fragment peaks.

A problem arises if the correct compound is not contained in a compound database. Without the molecular
structure, the MetFrag approach is not applicable. For small compound structures it is feasible to use
structure generation to generate all plausible structures from a given molecular formula, which in turn can

2http://msbi.ipb-halle.de/MetFrag/
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be deduced from the accurate mass and isotopic pattern of the unfragmented precursor. In [SGK12] we
also used semiempirical quantum chemistry calculations to eliminate energetically unfeasible generated
candidate structures.

A second approach to obtain candidate structures in cases where the chemical coverage for a given
molecular formula in the chemical database is low was described in [GKN13], and included one case where
the PubChem database had not a single candidate structure for the molecular formula of a novel metabolite
discovered in Nicotiana attenuata. To overcome the limited coverage of metabolites for Nicotiana, we used
structures of metabolites that are structurally related to the unknown compound: correlation networks of
metabolites which show similar abundance behaviour across the samples can provide information which
metabolites are co-regulated, and thus potentially originate from related biochemical processes. It had
been proposed already in [20] that in a correlation network the identification of one node can support the
identification of a connected node. Thus, we pooled all results from candidate queries using the precursor
masses of nodes in the direct neighbourhood of an unknown metabolite to obtain chemically possibly related
candidates. While these are guaranteed to be not the unknown structure if their precursor mass is different,
especially those with a good MetFrag score can be expected to reveal structurally similar compounds. An
experienced experimentalist can then use these together with the mass difference between the neighbouring
nodes to deduce the possible structure of the unknown compound.

The results from MetFrag are the ranked candidate lists. They consider the score, but no chemical or struc-
tural information is used to navigate the results. To overcome this, we used a hierarchical clustering based
on the chemical similarity (calculated as pairwise Tanimoto distance between the molecular fingerprints)
as a postprocessing step. This visual representation helps to interpret which compound clusters include
candidates with high scores. The next step is to calculate a representative structure for the individual
candidate clusters, and obtain the maximum common substructure (MCSS) within clusters of chemically
similar compounds. This approach was shown in [NRWB13], [GKN13] and later automated in [SGRN14].

A difficulty in the assessment of the ranked candidate list is that different compound classes with different
structural properties can achieve different ranges of candidate scores. It is hence possible that a poor score
of a candidate in the correct compound class is similar or even lower than a score in a different class. As
a consequence, we developed a classification system that predicts for each candidate whether its score
within its compound class is likely to be correct [WRNSK17].

In the original MetFrag scoring terms all fragment peaks in MS/MS spectra are treated alike (only the m/z,
intensity and bond dissociation energy are used as weights in the final score) and no context information
is considered. The increasing amount of available MS/MS spectra can be used as training data to model
associations between fragment peaks and likely fragment structures. For the training set, it is thus possible
to estimate the probability distribution of fragment structures given the MS/MS peaks P f |m. For the test set
and during application, they are used as weighting term for the assignment of fragments in the candidate
structures [RNP19].
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3.2.1. Additional Structural Hints through Experimental Modification

Mass spectrometry is superior to NMR for structure elucidation due to its higher sensitivity, especially for low-
concentration compounds. On the other hand, the information content of MS/MS spectra is comparatively
limited. One way to boost the structural hints is to modify the unknown compound in question to obtain
additional spectral information. Deuterium (denoted D with an atomic mass of 2.0141 Da) is a stable, heavy
isotope of hydrogen (denoted H with mass 1.0078) with two neutrons in the nucleus. Hydrogen Deuterium
eXchange (HDX) has been applied in structure elucidation with electrospray ionisation mass spectrometry
since the mid-90s [21, 22]. Deuterium can be used in either the mobile phase of chromatography (e.g.
with D2O instead of H2O), or inside the mass spectrometer as part of the curtain gas (ND3). The resulting
MS/MS spectra differ by the mass of the additional neutrons in the fragments, which in turn allows to score
and differentiate candidate structures with different numbers or positions of exchangeable hydrogens. The
detailed method and an evaluation were shown in [RSS19].

3.2.2. Integration and use of MetFrag in Metabolomics and Mass Spectrometry Software

Due to the LGPL Open Source license, MetFrag can be used by and integrated into software developed
by external collaborators in academia and industry alike. It is also easy to create an URL pointing to a
landing page that passes all the query information to the MetFrag web application, saving the user manual
copy&paste into the browser.

MetFrag has been included in the MolFind software [23] developed at University of Conneticut. For users of
the Bruker Data Analysis software SmartFormula3D, a direct link to the MetFrag web application is available.
In the Bruker MetaboScape software, MetFrag has been integrated as a module directly into the application.
Nonlinear Dynamics (a Waters company) has ported3 MetFrag to C# and integrated it into their Progenesis
QI software. Other developments by third parties involving MetFrag are the tools for suspect and non-target
analysis in the BMBF project FOR-IDENT4, the Python wrapper of MetFrag for MS/MS based identification
of LC/MS data5 as part of the Eawag enviPy workflow project, and the integration of MetFrag into the Global
Natural Products Social Molecular Networking (GNPS) resource [24] at UCSD.

3.3. Integrated Identification with Spectral Libraries and in silico
Approaches

The approaches introduced above use either a spectral reference library or in silico approaches. Both have
their benefits, i.e. the former contain actual experimental measurements, while the latter are backed by
large chemical databases and usually a better chemical coverage. But both also have their drawbacks,

3https://github.com/NonlinearDynamics/MetFrag.NET
4http://for-ident.hswt.de/pages/en/tasks.php?lang=EN
5https://pypi.python.org/pypi/pymetfrag/
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especially the limited chemical coverage for the spectral libraries on the one hand, and the imperfect in silico
fragmentation and scoring on the other.

MetFusion [GN13] is a strategy and system to combine the compound hypotheses obtained by these
complementary identification approaches. This strategy combines the best of both worlds: the identification
using spectral libraries if similar spectra are available, and the huge chemical coverage of the compound
databases queried by MetFrag. In the MetFusion software, the query spectrum for an unknown is passed
simultaneously to both MetFrag and MassBank.

The core idea is that the candidates considered by MetFrag do include the correct solution, possibly
with a low score. At the same time, MassBank will return structures with a similar mass spectrum. As
MassBank does not restrict the search to compounds with the same precursor mass, these results can
include structures that are chemically related to the unknown query, assuming that compounds with similar
structures also have similar mass spectra. In the publication [GN13] we also included a specialised concept
for cross validation of the performance: the results depend highly on the MassBank content, and whether
the spectral library contains spectra from the correct or similar compounds. For the evaluation we thus
“pruned” all results from MassBank above a defined chemical similarity to the correct solution.

Independent of the evaluation, an analysis of the chemical similarity to compound databases also allows to
detect “blank spots” in the spectral library, and to prioritise which reference spectra should be acquired. With
the given data and under certain assumptions MetFusion can be expected to identify 2 500 of the 15 000
KEGG compounds in the top 10 among all PubChem candidates.

3.4. Critical Assessment of Small Molecule Identification Contest

Since environmental research and metabolomics share many analytical and bioinformatics challenges,
we initiated cooperations with Eawag, the Swiss Federal Institute of Aquatic Science and Technology and
the Helmholtz Centre for Environmental Research (UFZ), especially in the area of metabolite and small
molecule identification. Together with Dr. Emma Schymanski, we started the CASMI contest series: the
Critical Assessment of Small Molecule Identification in 2012.

This contest was the first event where a set of spectral information of “unknown” compounds (i.e. unknown
to the participants) was provided, and the community was called to submit hypotheses in Category 1 for the
molecular formulae and the molecular structures for Category 2. Together with the challenges described
in [SN13b] we have created a set of rules and an automatic evaluation pipeline. This allowed the rapid
comparison of the available tools in an unbiased way after the contest submission deadline.

Because we were part of the organising team and possessed full knowledge about the “unknown” challenge
compounds, we could only take part as internal participants [RGN13]. Together, all submissions from
the four external participants had their strengths and weaknesses. The team of Rick Dunn (University of
Birmingham) had the highest number of correct molecular formulae correct in Category 1, but their approach
was to determine first the possible molecular structures, and then to submit their molecular formulae [25] to
Category 1, while the team Dührkop et al. [26] used a de novo formula prediction without any database
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support, based on MS data alone. The final evaluation [SN13a] showed that while the molecular formula
was found ranked first by one of the participants in 11 out of 14 cases, and always among the top 5, the
correct structure was found only five times ranked first, and 8 times among the top 10.

After the initial contest CASMI was repeated, where the organisation was performed by different teams on
different continents. The 2013 CASMI edition was organised by Prof. Takaaki Nishioka (Nara Institute of
Science and Technology, Japan) and the 3rd edition in 2014 was organised by Rick Dunn and members of
the metabolite identification focus group of the Metabolomics Society. The 4th edition was organised by
Dr. Grégory Genta-Jouve (University of Paris Descartes, France), Prof. Olivier P. Thomas (University of Nice
Sophia Antipolis, France) and Dr. Coralie Audoin (Laboratoires Clarins, France), and the 5th by Dr. Dejan
Nikolic (University of Illinois at Chicago, US), Dr. Nir Shahaf (Weizmann Institute of Science, Rehovot, Israel),
Dr. Emma Schymanski (Eawag, CH) and Dr. Steffen Neumann [27].

3.5. Integrating Multivariate Statistics and Metabolite Annotation

So far, the workflow has been sequential, where first the raw data was processed, followed by statistical
analysis and then identification of the interesting features. With the development of MS instruments capable
of acquiring MS/MS spectra for most features, it has become possible to perform an integrated analysis of
the LC-MS and MS/MS data as described in [TTP16].

The necessary innovation in that approach was to align all LC-MS features and their corresponding MS/MS
spectra into two matrices, connected by the precursor ion information. The first matrix is derived from the
LC-MS data and has quantification information, with samples in the columns, and features in the rows.
This matrix can be subjected to a multivariate statistics, e.g. a principal component analysis (PCA), but
other statistical methods can be applied as well. The second matrix is assembled from individual MS/MS
spectra and contains the precursor features in the rows and the MS/MS fragment information in the columns.
This matrix can be subjected to hierarchical clustering analysis (HCA), resulting in clusters of high spectral
similarity. With the precursor as linking information, it is then possible to highlight spectral clusters within the
PCA, or vice-versa show for a selection of LC-MS features into which spectral clusters they map.

Under the assumption that spectral similarity often translates into similar biochemistry, this enables the
discovery of regulated metabolite families. In addition to a study performed at the IPB with data published
as MTBLS297, we also re-used the GC-MS dataset MTBLS288 and reproduced some of their multivariate
analyses now with added spectral clustering.

3.6. Structure Elucidation with NMR

Nuclear magnetic resonance (NMR) instruments measure the resonance of atoms, and provide an orthog-
onal method for both metabolite profiling and the elucidation of molecular structures. Analogous to the
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described reference libraries for mass spectrometry, several databases with 1D and 2D NMR spectra of
pure compounds exist, e.g. [28, 29, 30].

If reference spectra are not available, several approaches exist to simulate NMR spectra. Then a large
number of molecular structures can be scored based on the agreement with the measured spectrum. Again
it is possible to use known molecular structures, or generate them de novo based on the molecular formula
and possibly additional structural constraints. We have compared the performance of several machine
learning techniques for the prediction of 1H NMR spectra [KENS08]. Such a prediction allows to generate
the spectra for a large number of candidate structures and rank structures based on spectral similarity to
the simulated spectrum.
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The FORCE11 initiative has published a set of guidelines [31] that help to make data FAIR, which is an
acronym for making data Findable, Accessible, Interoperable and Reusable. The details of how to implement
these criteria are deliberately left to the individual scientific communities, but in metabolomics many of the
required components to make data FAIR have been developed in the last years.

4.1. Data Standards and Data Repositories

Data standards are not required if the data acquisition, processing and later analysis are all performed in
a single software, where no data or intermediate results are stored to disk, analysis is limited to a single
experiment and where reproducibility is of no concern. Good scientific practice is the exact opposite and
mandates the availability of data, preferably in (open) data standards. In the light of the FAIR principles, the
metadata made available helps to make data sets Findable, and (raw) data standards help to make the data
Interoperable.

Storage and processing of mass spectrometry and metabolomics data can not be performed with simple
text formats or ad hoc defined spread sheets. The complexity of the underlying data and requirements of
data exchange and future-proof archival require a well-designed data model.

The early raw data exchange format mzXML [32] had been developed at the Seattle Proteome Center
(SPC), while mzData [33] had been developed in the context of the Human Proteome Organisation (HUPO)
and Proteomics Standards Initiative (PSI) communities. Several conversion tools exist to create mzData
and mzXML from mass spectrometry instruments and other file formats. Since then, the developer
communities of both mzData and mzXML collaborated to develop the joint successor mzML [MCS10]. The
PSI also created a set of related data standards with similar design principles. These principles include
a comparatively simple XML schema where flexible annotations in form of controlled vocabulary (CV)
parameters are used. These annotations are taken from the separately maintained PSI-MS ontology. To
constrain these generic tag-value pairs that characterise the CV terms, a mapping file describes which
branch of ontology terms are allowed in which place of the XML schema. New terms can be added to
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the ontology without modifying the schema or the software parsers. Together, the schema, ontology and
mapping file allow for a robust and future proof file format. We have supported the mzML format in the
software package xcms and the data import package mzR [CMB12]. Later, the PSI developed the TraML
format [DCN11] for the description of multiple reaction monitoring (MRM) and tandem mass spectrometry
(MS/MS), which follows the same design principles. Nuclear magnetic resonance (NMR) is another important
analytical technology in metabolomics, and the nmrML standard [SJW18] has been developed with a large
number of international contributors, coordinated by the EU projects COSMOS and later PhenoMeNal.

While such data files can of course be stored on normal file systems, the development of databases for
mass spectrometry data facilitates complex queries to retrieve a subset of current and archived data. The
Model Driven Architecture paradigm (MDA) in software development allows to generate large parts of the
required software and databases from a graphical model (Universal Modelling Language, UML) or from
the XML Schema Definition (XSD). We have created graphical editors for the mzData raw data and ArMet
(see Section 4.2 below) metadata standards, and developed a prototype for an infrastructure which allows
experimentalists to edit, store and annotate their mass spectrometry data. It uses the Eclipse framework to
generate Java objects, XML input/output bindings, database persistence and a user-friendly editor for both
the XML files and database content. A prototype of a web frontend has been created to view, verify and
upload to such a repository [KN06].

We also designed a data warehouse to store the results of the data processing described in section 2.2,
i.e. the features detected in the MS data [GN07]. A data warehouse is a database optimised for online
analytical processing (OLAP), and allows to retrieve subsets of data based on arbitrary filter criteria. The
BioMart framework [34] has been used to establish the MetHouse database for preprocessed peaks as
obtained e.g. by xcms. BioMart provides several frontends, including standalone and web interfaces, and a
powerful command line and scripting client. Possible filters against the warehouse are e.g. plant genotype,
growth conditions, treatment, ionisation mode or the model of the MS instrument used.

4.2. Metadata, Data Sharing and Reproducible Research

The term “reproducible research” refers to the ability to recreate and confirm a given analysis. For repro-
ducible research it is a necessity that data underlying a publication is available as open data. If the used
analysis software and scripts are published alongside with the data, together they allow to easily repeat
individual steps or the whole analysis.

Once the data is in a vendor independent machine readable format, the next step is to publish various
-omics data in a well annotated format, according to community accepted (at least minimal) information
about the experiment [SRSF12].

The ArMet (Architecture for Metabolomics) model [35] used in the databases described above has been
one of the first implementations of a metadata format, and later served as the basis of the Core Information
for Metabolomics Reporting (CIMR) described in [36]. Other -omics disciplines also resulted in checklists,
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which later on have been consolidated under the umbrella of the Minimum Information for Biological and
Biomedical Investigations (MIBBI) community [KFS10].

But these individual checklists had not been created with a common, simple machine readable format in
mind. This was later specified by the ISA-Tab consortium in form of the ISA-Tab format, which consists
of several tab delimited spreadsheet-like files capturing information about the Investigation, one or more
Studies per investigation and one or more Assays per study. In addition to the format itself, a whole set of
related tools, databases and web applications have been created. We have contributed to the design of the
ISA tools [RSBM10] and the related Risa package [GBNM14].

The MetaboLights repository [HSC13] at the European Bioinformatics Institute (EBI) is the first open
access and long-term archive for metabolomics data. We started early to prepare data submissions for
MetaboLights to support the design and testing of this repository, but also to have well-annotated data
sets for the development of our software. These included MTBLS2 with MS data collected at the IPB as
supplemental data for the MetShot publication [NTB12], MTBLS10 with MS data collected as supplemental
data for [GKN13], MTBLS74 as supplemental data for [TSGN14] and MTBLS169 for [KTB12] and several
more. It shows that leading-by-example can help to increase the adoption of the open data concept.

The metadata in ISA-Tab format serves not only as a description of the experiments performed, it also
connects the experimental design to the data in the assays. The Bioconductor package Risa [GBNM14]
can import an ISA-Tab description and calls analysis functions from e.g. xcms to create an xcmsSet object
with the detected features. The subsequent statistical analysis can directly use the experimental design
factors captured in the ISA-Tab information for the groupwise statistical analysis, visualisation of the data or
for supervised machine learning algorithms.

Together, the open formats, data repositories, machine-readable metadata and integrated scripted analysis
tools are the foundation of reproducible research in metabolomics. The computational tools such as those
described in the previous chapters are becoming an integral part of conducting and analysing metabolomics
experiments, and can be described in terms of standard operating procedures (SOPs), just like the SOPs
for individual steps in the wetlab and analytical chemistry. All these aspects of why standards are important,
which ones to use in metabolomics, what software and which libraries support them is summarised for both
biologists and bioinformaticians in [RSSA16], together with examples that demonstrate the Reusability in
cases where published data was re-analysed to showcase and compare novel data analysis strategies.
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Similarly to the data sharing efforts, it is of high importance to also pave the way for a software ecosystem
to process and analyse metabolomics data. Finally, examples for the application of the previously described
approaches in metabolomics experiments will be presented.

5.1. Metabolomics in R and Bioconductor

The R language was initiated by Ross Ihaka and Robert Gentleman under the umbrella of “The R Project for
Statistical Computing” in 1992. The language is inspired and mostly compatible to the statistical language S,
developed at the Bell Laboratories already in the 1970s. The package system in R and the Comprehensive
R Archive Network (CRAN) spured literally thousands of contributed packages. On May 1st, 2002 the
Bioconductor version 1.0 was released. Bioconductor started out as “an initiative for the collaborative
creation of extensible software for computational biology and bioinformatics (CBB)” [37]. While the initial
focus was on gene expression data and gene annotation, packages for other areas emerged soon after.

The organisation in individual packages allows to create a modularised data analysis pipeline for metabolomics
data Starting from the signal processing tasks on mass spectrometry raw data. xcms has been initiated at
the Scripps Institute as open source software and was extended and maintained at the IPB later. Figure 5.1
shows an overview of R packages for metabolomics and mass spectrometry that are (co-)developed at the
IPB. These packages are just a subset of the impressive dependency network shown in Figure 2 of [SBH19].

Bioconductor enforces that all packages are tagged with different labels, to facilitate the organisation into
BiocViews, collections of related packages. As of February 2020, the metabolomics biocView includes 63
packages related to metabolomics, ready to be used in research and education. Even more metabolomics
packages are available on CRAN and in other package and source code repositories, but they are more
difficult to find. Our recent review [SBH19] collected these and a much larger set of R packages for
metabolomics into a review. In addition to the literature review, the publication also contains code to perform

31



5. Software Environments and Biological Applications

MetShot 

Rdisop
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Risa 
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Figure 5.1.: R packages for metabolomics and mass spectrometry, developed, co-developed or maintained
at the IPB. Some packages have been accepted into Bioconductor as indicated by the logo. Light yellow
coloured packages are used for MS data processing, while the functions in the cyan coloured boxes are
for metabolite identification. Risa deals with experimental metadata, and the purpose of spCCA is the
combination of multiple -omics datasets.

a network analysis of the packages covered. The review was later turned into a live-book hosted at the
RforMassSpectrometry project1.

5.2. Workflows for Metabolomics

Not all metabolomics related data analysis software has been written in R, other projects have chosen
Matlab, Python, Java, C++ or Python (to mention just a few) as the underlying programming language.

In computer science, workflow systems have been developed that usually allow to combine and integrate
individual tools or modules from different sources and languages. The use of Galaxy [38] in metabolomics
have been pioneered by the Workflows4metabolomics team in France [16], and the Galaxy-M team in
Birmingham [39], with later contributions by the EU H2020 project PhenoMeNal [PBB19]. The KNIME
workflow environment offers slightly different concepts, but in general a software module can be integrated
in both the Galaxy and KNIME environment [40, 41].

Using a combination of public metabolomics data repositories and Galaxy instances with preinstalled data
processing modules inside a docker container it is possible to provide a fully reproducible research workflow,
as demonstrated in [PGBN18a].

1https://rformassspectrometry.github.io/metaRbolomics-book/
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5.3. Biological Metabolomics Applications

One of the important areas of biological research is the elucidation of metabolic pathways. Before any
deeper biochemical characterisation of the reactions can be performed, it is important to determine the
“ingredients” of a pathway, i.e. the substrates, enzymes and resulting products of the biosynthesis steps.
For a given enzyme, untargeted metabolite profiling can be used to obtain information about the putative
substrates and products.

In [42] an experiment was performed to describe several steps in the biosynthesis of camalexin. Wild-type
and cyp79B2 cyp79B3 double knockout mutants were analysed with UPLC-ESI-QqTOF/MS. The hypothesis
is that features that are missing in the knockout mutant are downstream of the enzyme, whereas features
that accumulate are upstream of the enzyme. In [NTB12] we repeated the analysis on a subset of the
samples and performed the data analysis with the R packages xcms, CAMERA and the newly developed
MetShot.

In the first step, we used the xcms feature detection together with the CAMERA ion species annotation to
obtain a metabolite profile matrix. Then we determined the features which are 1) differential, 2) have a
higher intensity in the wild-type than in the mutant, and are 3) annotated as [M+H] or [M+Na] ions. For the
subsequent acquisition of tandem MS spectra we included only features 4) above an intensity threshold that
promised tandem MS spectra of reasonable quality. The following identification step used the molecular
formula, retention time and MS/MS reference spectra to re-identify several metabolites also known from
previous publications, but also revealed annotations for six metabolites previously uncharacterised.

A second plant metabolomics experiment was performed in [GKN13]. The biological question was the
response of Nicotiana attenuata to simulated herbivory. The plant leaves were mechanically wounded
and treated with the oral secretions of Manduca sexta larvae to induce large-scale changes especially in
the secondary metabolic network as defence response. The leaf material was collected at six different
time-points, and methanolic extracts were measured on a HPLC-ESI-TOF/MS platform at the Max Planck
Institute for Chemical Ecology (Jena). The MS data processing was performed with xcms and CAMERA. Of
the ≈1 000 reliably detected features across all samples, 324 were annotated as monoisotopic peaks, and
for 326 an annotation of the ion species was possible. Almost 400 features were changed (t-test against
0h timepoint, p≤0.05, no multiple testing correction) after the herbivory feeding. We created a correlation
network using the Pearson coefficient to obtain a hint towards the metabolic links between pairs or groups
of metabolites. These connections can result from direct enzymatic conversions in a biochemical pathway,
but also from indirect transcriptional controls.

Two properties of both the biological system and the analytical setup made the identification of metabolites
challenging: first, only nine metabolites are known for Nicotiana attenuata and about 800 compounds for the
entire Nicotiana genus (as of 02/2020, KNApSAcK [43]). Secondly, the analytical platform was not equipped
to measure tandem MS spectra. For the identification we extracted therefore in source fragment peaks from
the MS data and used MetFrag for the candidate scoring.

The molecular structures were obtained from PubChem, but in addition to the candidates of the compound of
interest itself, we also retrieved the candidates of the immediate network neighbours. Here the assumption
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is that the network neighbours are biosynthetically related. This “guilt-by-association” approach can improve
the structure elucidation of unknown metabolites based on their co-regulation with known pathways or sets
of metabolites by providing additional candidates from the same or a related compound class.

Finally, in this paper we performed a hierarchical clustering with the chemical similarity as distance measure,
and calculated the Maximum Common Substructure (MCS) of cluster members to represent their consensus
structure. The MCS was later also used by [44] to calculate constraints for structure generation to resolve
unknown-unknown compounds.

The approaches shown are applicable to all areas of metabolomics research, and are not limited to plant
research. In nutrition experiments, the biomedical question is to determine the influence of a given diet
on the human system. This influence can be monitored by metabolite profiling of e.g. blood serum. In
[SGDN13] we applied the computational mass spectrometry pipeline to a dataset of 220 samples obtained
in a nutrition study at the KU in Kopenhagen, Denmark. We then applied the MetShot approach to acquire
tandem MS spectra for the most interesting features. Since the profiling measurements were performed
in Kopenhagen, whereas the tandem MS spectra were acquired at the IPB Halle, it was required to map
retention times between the two chromatographic systems. We used a predictive model that was iteratively
trained with initially a few manually determined landmark features, and then refined with additional features
that were automatically matched by xcms after the retention time correction with the initial model.

For the subsequent identification, we used the MetFusion system to obtain and score candidate structures
having the correct exact mass (within a given error margin) from ChemSpider. In addition to the MetFusion
score, we used the R package Rdisop [13] to calculate the similarity between the theoretical and the
observed isotopic ratio for each candidate. While traditionally the molecular formula is determined from
the spectra of an individual sample, we evaluated several alternatives to exploit the large (≈220 samples)
profiling dataset. We found that the averaged isotope ratios had a better accuracy, especially if a subset of
10% of the samples were used which had the highest intensities.

As another hint for the identification we used the retention time predicted for each candidate, also known
as Quantitative Structure Retention time Relationshop (QSRR) [45]. Instead of directly training based
on on the chemical fingerprints, we used the logD and experimental retention time for a small set of
authentic standards to create a model for the prediction of retention times. The logD was calculated with
cheminformatics software (ChemAxon Marvin).

In this study we demonstrated the benefit of using a mostly automatic data processing pipeline and multiple
hints to streamline the metabolite identification task. In particular, fewer authentic standards had to be
purchased to finally confirm the identification at the highest confidence level as defined by the Metabolomics
Standards Initiative.
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The previous chapters covered multiple aspects of computational metabolomics, the work and progress that
has been made over the last 15+ years in my group and the computational mass spectrometry community
in general.

Successful (untargeted) metabolomics research first require automated, high-throughput algorithms for
metabolite profiling. Early typical metabolomics experiments were conducted with just several dozen
samples. Today, larger experiments include several thousands of samples. Metabolite profiling allowed to
uncover interesting features, which in turn require the identification of their molecular structure. Nowadays,
workflows for metabolite identification can use a range of spectral libraries and in silico algorithms.

In future work, we can expect to see improvements in all above mentioned areas, simplifying the data
processing and initial data analysis in metabolomics experiments. Especially the renaissance of neural
networks in form of deep learning approaches can be expected to dramatically change and likely improve
several tasks along the data analysis pipeline. The coming challenges in biology and biochemistry will be to
truly combine and interpret data from multiple -omics technologies and to obtain an understanding on the
systems level.
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[BvRLS08] C. Böttcher, E. von Roepenack-Lahaye, J. Schmidt, C. Schmotz, S. Neumann, D. Scheel, and
S. Clemens. Metabolome Analysis of Biosynthetic Mutants Reveals a Diversity of Metabolic
Changes and Allows Identification of a Large Number of New Compounds in Arabidopsis.
Plant Physiol., 147(4):2107–2120, August 2008.

[CDF14] D. J. Creek, W. B. Dunn, O. Fiehn, J. L. Griffin, R. D. Hall, Z. Lei, R. Mistrik, S. Neumann, E. L.
Schymanski, L. W. Sumner, and et al. Metabolite identification: are you sure? And how do
your peers gauge your confidence? Metabolomics, 10(3):350–353, Jun 2014.

[CMB12] M. C. Chambers, B. Maclean, R. Burke, D. Amodei, D. L. Ruderman, S. Neumann, L. Gatto,
B. Fischer, B. Pratt, J. Egertson, K. Hoff, D. Kessner, N. Tasman, N. Shulman, B. Frewen, T. A.
Baker, M.-Y. Brusniak, C. Paulse, D. Creasy, L. Flashner, K. Kani, C. Moulding, S. L. Seymour,
L. M. Nuwaysir, B. Lefebvre, F. Kuhlmann, J. Roark, P. Rainer, S. Detlev, T. Hemenway,
A. Huhmer, J. Langridge, B. Connolly, T. Chadick, K. Holly, R. L. Moritz, J. Eckels, E. Deutsch,
J. E. Katz, D. B. Agus, M. MacCoss, D. L. Tabb, and P. Mallick. A Cross-platform Toolkit for
Mass Spectrometry and Proteomics. Nat Biotechnol, 2012.

[DCN11] E. W. Deutsch, M. Chambers, S. Neumann, F. Levander, P.-A. Binz, J. Shofstahl, D. S.
Campbell, L. Mendoza, D. Ovelleiro, K. Helsens, L. Martens, R. Aebersold, R. L. Moritz,
and M.-Y. Brusniak. TraML: a standard format for exchange of selected reaction monitoring
transition lists. Mol Cell Proteomics, Dec 2011.

[DEW13] W. Dunn, A. Erban, R. Weber, D. Creek, M. Brown, R. Breitling, T. Hankemeier,
R. Goodacre, S. Neumann, J. Kopka, and M. Viant. Mass appeal: metabolite identifica-
tion in mass spectrometry-focused untargeted metabolomics. Metabolomics, 9:44–66, 2013.
10.1007/s11306-012-0434-4.

[DPRC18] E. W. Deutsch, Y. Perez-Riverol, R. J. Chalkley, M. Wilhelm, S. Tate, T. Sachsenberg, M. Walzer,
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This part contains the explanation of my contributions to the topics introduced in part I and reprints of the
original research articles for selected papers in peer-reviewed journals. The citations of articles included
here are given in boldface. Permission to reprint was either obtained on a per-paper basis from the
publishers, or is granted through an Open Access license. The footer includes the DOI and a link to the full
publication.

My contributions in the area of metabolite profiling started with the supervision of the PhD student Ralf
Tautenhahn and work on feature detection in xcms [TBN08] and feature alignment [LTNG08]. Later, I
supervised the PhD student Carsten Kuhl, and we developed the graph-based feature annotation [KTB12].
Most recently, I supervised the PhD student Hendrik Treutler, and we incorporated additional prior information
into the feature detection step in xcms [TN16]. For many years, I am now the maintainer of xcms and the
CAMERA packages in Bioconductor.

My contributions in developments on feature clustering [BAN14] and automated parameter optimisa-
tion [LDK15] were limited to scientific discussions and creating packages for the R and Bioconductor
environment from existing code.

The general principles in mass spectrometry data analysis were described in a textbook [NYMF19] where I
coordinated the chapter on “Mass Spectrometry Data Processing”.
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Abstract
Background: Liquid chromatography coupled to mass spectrometry (LC/MS) is an important
analytical technology for e.g. metabolomics experiments. Determining the boundaries, centres and
intensities of the two-dimensional signals in the LC/MS raw data is called feature detection. For the
subsequent analysis of complex samples such as plant extracts, which may contain hundreds of
compounds, corresponding to thousands of features – a reliable feature detection is mandatory.

Results: We developed a new feature detection algorithm centWave for high-resolution LC/MS
data sets, which collects regions of interest (partial mass traces) in the raw-data, and applies
continuous wavelet transformation and optionally Gauss-fitting in the chromatographic domain.
We evaluated our feature detection algorithm on dilution series and mixtures of seed and leaf
extracts, and estimated recall, precision and F-score of seed and leaf specific features in two
experiments of different complexity.

Conclusion: The new feature detection algorithm meets the requirements of current
metabolomics experiments. centWave can detect close-by and partially overlapping features and has
the highest overall recall and precision values compared to the other algorithms, matchedFilter (the
original algorithm of XCMS) and the centroidPicker from MZmine. The centWave algorithm was
integrated into the Bioconductor R-package XCMS and is available from http://
www.bioconductor.org/

Background
Metabolomics aims at the unbiased and comprehensive
quantification of metabolite concentrations in organisms,
tissues, or cells [1,2]. The combination of chromato-
graphic separation with subsequent mass spectrometric
detection has emerged as a key technology for multiparal-
lel analysis of low molecular weight compounds in bio-
logical systems. Gas chromatography-mass spectrometry
(GC/MS) based techniques are mature and well-estab-
lished, but restricted to volatile compounds, often requir-
ing chemical derivatisation. High-performance liquid
chromatography-mass spectrometry (HPLC/MS) facili-

tates the analysis of compounds of higher polarity and
lower volatility in a much wider mass range without deri-
vatisation [3-5]. With LC/MS the injected sample is sepa-
rated on the chromatographic column, resulting in the
consecutive elution of different compounds. The mass
spectrometer acquires mass spectra from the column out-
put at a specified scan rate, so each compound can be
measured in several consecutive scans. Due to the fact that
each eluting compound gives rise to a number of mass sig-
nals (adducts, fragments and isotopic peaks), a metabolite
induces several two-dimensional features.
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In the following, we use the term "feature" for a bounded,
two-dimensional (m/z and retention time) LC/MS signal.
The term "peak" is used for one-dimensional signals: both
m/z peaks (centroids) in the mass spectrum and chroma-
tographic peaks.

For complex metabolomics samples, the LC/MS data con-
tains hundreds to thousands of metabolites. For the statis-
tical analysis of biological experiments the feature
intensity is of interest and has to be calculated from the
raw data. Spectra can be acquired in profile mode or cen-
troid mode. Vendor supplied centroidisation algorithms
usually employs machine-specific models, which are
superior to generic approaches. In addition, the centroid
mode results in considerable size reduction of the LC/MS
data set.

The processing pipeline for LC/MS based metabolomics
can be divided into the following steps:

1. Signal preprocessing and centroidization in m/z,

2. Two-dimensional feature detection and integration

3. Alignment of corresponding features in multiple sam-
ples

4. Statistical analysis, chemical and biological interpreta-
tion.

Feature detection is a crucial step in the LC/MS data
processing pipeline – it should be reliable, i.e. report as
many as possible "real" features, while keeping the false
positive rate low. The challenge for the algorithms is to
detect features of low intensity induced by compounds
with low abundance on the one hand, and to avoid fea-
ture-like signals caused by e.g. chemical noise on the other
hand.

Several frameworks for feature detection (and alignment)
of metabolomics LC/MS data have been developed in the
last years, both commercial products such as MarkerLynx
(Waters), the closed-source (but freely-available) MetA-
lign [6], or XCMS [7] and MZmine [8] which have open-
source licenses. Other packages, some of them specific for
LC/MS-based proteomics, have been reviewed in [9].

A widely used approach for the processing of LC/MS data
is to transform the raw data into a matrix representation
with the dimensions m/z, retention time and intensity. To
convert high resolution mass spectra into this representa-
tion, it is necessary to divide the m/z axis into equidistant
chunks depending on the resolution of the mass spec-
trometer, e. g. 0.1 m/z wide. This procedure is usually
referred to as binning. Some drawbacks of this method

were already mentioned in [7,10,11]. In particular, speci-
fying the optimal bin size for the particular data set can be
difficult. If the bin size is chosen too small, chromato-
graphic peaks are alternating between bins and cannot be
detected due to the loss of the chromatographic shape. If
the bin size is too large, peaks can overlay each other and
small features are rather buried by the increased chroma-
tographic noise level. On the positive side it should be
mentioned that the binning approach is all-purpose and
allows for a fast data processing.

A density based LC/MS feature detection approach – an
alternative to the common binning technique – was intro-
duced by Stolt et al. [10]. The authors consider the emerg-
ing analyte as a region of data points with high density
anked by a specific "data void". Based on these properties,
they calculate a potential field which is then used to create
a matrix of mass traces (runtime ~2 h/sample). Recently,
the extraction of "pure ion chromatograms" using Kalman
tracking was demonstrated in [11]. The applicability of
Wavelet based techniques for peak picking in MALDI- and
SELDI-TOF mass spectra was shown by e.g. [12-15]. Here
we will discuss a new method for the reliable detection
and integration of two-dimensional LC/MS signals,
referred to as features. By using a combination of a density
based technique to detect regions of interest in the m/z
domain, and a Wavelet based approach to resolve chro-
matographic peaks, we achieve a high sensitivity even in
very complex mixtures compared to two other algorithms,
matchedFilter (the original algorithm of XCMS) and the
centroidPicker from MZmine.

So far, there is no common method for evaluating the per-
formance of feature detection algorithms. Even for the
same feature detection algorithm, different parametrisa-
tion can lead to (vastly) different results, if e.g. many false
positive noise signals are detected as features. Therefore
the absolute number of detected features per sample is not
suitable to characterise a feature detection algorithm.
More elaborate approaches consider mixtures of known
compounds spiked into complex samples [16]. To the
best of our knowledge, no evaluation has been performed
to assess recall and precision of feature detection algo-
rithms for multiple complex samples.

The remainder of this paper is structured as follows: In
section 2 we give a detailed description of the centWave
algorithm, followed by the description of the experimen-
tal comparison between several feature detection algo-
rithms. In section 3 we present the evaluation results and
discuss the benefits of centWave, followed by a conclusion
and outlook of expected future developments in section 4.
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Methods
This section describes the centWave method which com-
bines density based detection of regions of interest in the
m/z domain, and a Continuous Wavelet Transform (CWT)
based approach for chromatographic peak resolution. The
experimental setup is depicted as well as the layout of the
evaluation procedure.

2.1 The centWave algorithm
2.1.1 Detecting regions of interest (ROI) in the m/z domain
To circumvent the mentioned problems of the binning
technique, an alternative, fast computing approach was
used which directly detects regions of interesting mass
traces. Figure 1 shows the extracted ion chromatogram
and the corresponding m/z centroids in the consecutive
mass spectra for a typical LC/MS feature, recorded in cen-
troid mode. With the chromatographic peak emerging,
the consecutive centroids form a compact mass trace
bounded in m/z and retention time. The m/z deviation is
determined by the mass accuracy of the mass spectrometer
and typically increases with lower signal intensities.

Due to the fact that the mass accuracy (μ, given in ppm)
of the mass spectrometer and the minimum chromato-
graphic peak width is known or can easily be assessed, it
is possible to directly scan for regions where at least pmin
centroids with a deviation less than μ ppm occur. This task
is achieved by the following algorithm for samples in cen-
troid mode, with scans numbered s = 1,...,S:

1. Initialisation:

(a) Initialise a list ROI using all m/z values  from the

first scan:

∀ i = 1,..., N, N = |mzs = 1|: ROI(i).values(1) = 

(b) Initialise the m/z mean value for each actually proc-
essed region :

ROI(i).mzmean = , i = 1,..., N, N = |mzs = 1|

mz i
s

mz i
s=1

mz i
s=1

Mass trace and chromatographic peak of Biochanin A [M + H]+ mass signalFigure 1
Mass trace and chromatographic peak of Biochanin A [M + H]+ mass signal. The upper panel shows the mass trace 
of the biochanin A [M + H]+ mass signal across 10 seconds with colour-coded intensities. The corresponding chromatographic 
peak is shown below.
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2. For each scan s = 2,..., S :

(a) For each m/z value , i = 1,..., N, N = |mzs| in the

current scan s:

Exists j, j = 1,..., J, J = |ROI| such that |ROI(j).mzmean -

| < = μ ?

• Yes: Append  to ROI(j) and update the m/z mean

value

K = |ROI(j).values| + 1, ROI(j).values(K) = 

ROI(j).mzmean = .values(k)

• No: Initialise a new ROI and append it to the list

J = |ROI| + 1, ROI(J).values(1) = , ROI(J).mzmean =

(b) Check & Cleanup:

• Remove all ROI which were not extended in step 2a and
contain less than pmin centroids

• Mark ROI that were not extended, but contain at least
pmin centroids as completed

Optionally an intensity filter (prefilter = (k, I), e. g. prefilter
= (2, 100)) can be set to early discard regions of small
intensity. Then only those ROI are retained (in step 2b)
that contain at least k consecutive values with intensity ≥
I. This prefilter vastly speeds up the overall processing
time.

Each m/z value needs to be considered only once, so the
ROI algorithm is fast (approximately 10–20 seconds on a
2.5 GHz CPU for a measurement with 3000 scans). Figure
2 shows the result of the ROI detection algorithm for a
small region of a complex LC/MS sample.

In some rare cases "gaps" are observed in the mass trace of
features with low intensity. Due to the fact that each ROI
is laterally extended for the following chromatographic
peak detection, only a small contiguous region needs to
be found for the successful detection of such features. To
a certain extent, the algorithm is therefore able to detect
features with such gaps. Otherwise, in case of samples
which might show this phenomenon more often, the
algorithm can easily be modified to be even more "gap-

tolerant". In contrast to binning, this approach has the
advantage that no fixed bin size has to be chosen. Each
ROI is detected separately and the drawbacks of binning
can be circumvented. Unlike binning the result is not a
matrix but a list of mass traces with different lengths.
Depending on the chromatography and the mass accuracy
of the mass spectrometer, each ROI may contain none,
exactly one or more than one distinct chromatographic
peaks. Therefore it is necessary to subject each ROI to an
extensive analysis in the chromatographic domain.

2.1.2 Detecting chromatographic peaks
Depending on the separation technique (e. g. HPLC/
UPLC/CE) features can show considerable variations in
their chromatographic width and shape. The matched fil-
ter approach makes use of a filter based on a model peak
with defined shape and fixed width. This technique gives
good results in most cases and was shown to work in prin-
ciple also for peaks of differing width and shape (see
[17,18]) but nevertheless some problems occur if the
model peak width is not chosen appropriately. Figure 3
shows a mass trace from a HPLC/MS sample, containing
three peaks of different width. The application of three
independent matched filters with different width of the
model peak (second derivative Gaussian) reveals the
problem of assessing the perfect model peak width. Nar-
row peaks are found perfectly with a small model peak
width (e. g. σ = 5–10 s) while broad peaks can only be
properly detected with an increased model peak width (e.
g. σ = 20 s).

Another aspect of this optimisation problem are chroma-
tographic close-by peaks. Figure 4 shows the response of
three independent matched filters with different σ on a
chromatogram with many narrow, close-by peaks. It can
be seen that only a matched filter with a very small model
peak width (e. g. σ = 5 s) gives reasonable results in this
case. Figure 3 and 4 are examples from the same LC/MS
measurement. In this case, none of the three chosen
model peak widths yields satisfying results for all occuring
peaks. The enhancement of the matched filter approach is
the peak detection on multiple scales using Continuous
Wavelet Transform (CWT), which reliably detects chro-
matographic peaks of differing width. The CWT is widely
used in signal processing and pattern recognition. The
mathematical representation [19] is as follows:

where f(t) is the signal, ψ the mother wavelet, s the scale

and τ the translation. The result of the CWT is a two-
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dimensional matrix of wavelet coefficients Twav. Since the
"Mexican Hat" wavelet (normalised second derivative of

Gaussian , Figure 5) is used as the mother wavelet,
the result of the CWT is comparable to the combined
application of the matched filter technique with the sec-
ond derivative Gaussian of different widths as model
peak. The algorithms for CWT and CWT-coefficient anal-
ysis described and implemented in [13] for the peak
detection in SELDI/TOF spectra were adapted for peak
detection in the chromatographic domain.

2.1.3 The centWave workflow
The three relevant input parameters for the centWave algo-
rithm are

1. Mass deviation μ in ppm, typically set to a generous
multiple of the mass accuracy of the mass spectrometer.
We use μ = 30 ppm for the Bruker MicrOTOF-Q, which is
advertised with a mass accuracy of 3–5 ppm.

2. Chromatographic peak width range wmin, wmax in sec-
onds, e. g. wmin, wmax = (5, 10) for UPLC separation as
described in the experimental setup.

3. Signal to noise ratio threshold SNRThr, e.g. SNRThr = 10

e x− 2 2/

Region Of Interest (ROI) detectionFigure 2
Region Of Interest (ROI) detection. Raw data in the chromatographic and m/z region around the [M + H]+ mass signal (1) 
of biochanin A. In addition to the three isotopic peaks (2–4) other mass signals are marked as ROIs.
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The following is the description of the most important
steps of the centWave workflow:

• The scale range smin, smax for the CWT and the pmin
parameter for the ROI detection are calculated from the
input parameters wmin, wmax and the average inter-scan
distance.

• ROI detection (see section 2.1.1) is performed using the
parameters μ and pmin

• Chromatographic analysis of each detected ROI:

- To accommodate noise and baseline estimation, each
ROI is laterally extended by a multiple of the expected
chromatographic peak width

- Local noise and baseline estimation: Let x be the vector
of intensity values of the actual (extended) ROI, and xt the
10% trimmed x (5% of the smallest and 5% of the largest
intensity values are discarded). Then the baseline BL is
assessed as the mean value of xt and the noise level NL as
the standard devation of xt.

Matched filter effects, example region 1Figure 3
Matched filter effects, example region 1. HPLC/ESI-QTOF-MS of a A. thaliana leaf extract. Extracted ion chromatogram 
(277.213 – 277.221 m/z) and matched filter results using second derivative Gaussian with different filter widths. Negative filter 
values were omitted.
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- The Continuous Wavelet Transform (see 2.1.2) is
applied to the intensity values of the ROI (the extracted
ion chromatogram), using the scale range smin,..., smax.

- Local maxima of the CWT coefficients at each scale are
detected.

- "Ridges" can be identified by linking the detected local
maxima (described in [13]). The ridges describe the scale
range where the chromatographic peak was located. If
more than one chromatographic peak was detected, the
following steps are applied for each peak separately.

- Locate the chromatographic peak boundaries rtmin and
rtmax by descent on the filtered peak data, i.e. the CWT
coefficients of the scale where the peak was optimally
located.

- Calculate the feature intensity I using the intensity values
within rtmin and rtmax. Imax is defined as the maximal inten-
sity value within this range.

- Compute the m/z centroid of the feature as the weighted
mean of the m/z values within rtmin and rtmax.

Matched filter effects, example region 2Figure 4
Matched filter effects, example region 2. HPLC/ESI-QTOF-MS of a A. thaliana leaf extract. Extracted ion chromatogram 
(967.53–967.56 m/z, same sample that was used for Figure 3) and matched filter results using second derivative Gaussian with 
different filter widths. Negative filter values were clipped.

2650 2700 2750 2800

0
5

10
15

Seconds

In
te

ns
ity

 *
 1

03

Chromatogram
Matched filter result, σσ = 5
Matched filter result, σσ = 10
Matched filter result, σσ = 20

DOI:10.1186/1471-2105-9-504

https://doi.org/10.1186/1471-2105-9-504


BMC Bioinformatics 2008, 9:504 http://www.biomedcentral.com/1471-2105/9/504

Page 8 of 16
(page number not for citation purposes)

- Calculate the signal to noise ratio SNR = (Imax – BL)/NL
of the feature. Discard the feature if SNR < SNRThr.

- The deviation μ* of m/z values within rtmin and rtmax is
calculated in ppm. The value μ* can be interpreted as the
mass deviation value which would have been sufficient
for the detection of this feature.

- Optionally, a Gaussian curve is fitted to the feature, using
the Nonlinear Least Squares (NLS) implementation of R.

The result of the centWave algorithm for the regions
shown in Figure 3 and 4 is depicted in Figure 6 and 7,
respectively. The following experiments were designed to
pose challenges with increasing complexity to the feature
detection algorithms. We used complex mixtures with
Arabidopsis thaliana leaf and seed extracts.

2.2 Experimental setup and Sample description
Arabidopsis thaliana (ecotype Col-0) was grown under con-
trolled conditions and pooled after harvest. Methanolic
extracts were prepared from ground seed and leaf tissue. o-
Anisic acid, biochanin A, p-coumaric acid, ferulic acid, N-
(3-indolylacetyl)-L-valine, kinetin, indole-3-acetonitrile,
indole-3-carbaldehyde, kaempferol, phloretin, phlorizin
and phenylglycine, rutin, and phenylalanine-d5 were
used as marker compounds. The chromatographic separa-
tions were performed on an Acquity UPLC system
(Waters) equipped with a modified C18 column with a 20
min water/acetonitrile gradient. The eluted compounds
were detected by a Bruker MicrOTOF-Q in positive ion
mode at a scan rate of 3 Hz. Mass calibration was per-
formed against lithium formiate. The detailed experimen-
tal setup is available as Additional file 1.

Mexican Hat WaveletFigure 5
Mexican Hat Wavelet. Mexican hat wavelet at different scales.
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Sample 1 A mixture containing each of the fourteen
marker compounds (referred to as MM14) at a concentra-
tion of 20 μM was prepared and analysed by UPLC/ESI-
QTOF-MS.

Sample set 2 Mixtures containing solvent and seed or leaf
extracts were prepared with following volume portions
(solvent/seed/leaf, v/v/v): 0/100/0, 25/75/0, 50/50/0, 75/
25/0, 0/0/100, 25/0/75, 50/0/50, 75/0/25. The sample set

(8 samples) was analysed by UPLC/ESI-QTOF-MS in ten
technical replications.

Sample set 3 Mixtures containing solvent, seed, and leaf
extracts were prepared with following volume portions
(solvent/seed/leaf, v/v/v): 75/0/25, 0/75/25, 0/50/50. The
sample set (3 samples) was analysed by UPLC/ESI-QTOF-
MS in ten technical replications.

centWave results for example region 1Figure 6
centWave results for example region 1. centWave results for example region 1. The lower part shows the same 
extracted ion chromatogram (277.213–277.221 m/z) as in Figure 3 and the detected chromatographic peaks from the cent-
Wave algorithm as Gaussian fits. The upper part shows the CWT coefficients on the different scales. A cross marks the scale 
where the peak was optimally localised. The vertical grey lines show the peak borders which were estimated from the coeffi-
cients of this scale.
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All files were acquired in centroid mode and converted to
mzData file format using Bruker CompassXport software.
The data sets are available at http://msbi.ipb-halle.de/
msbi/centwave/.

2.3 Parameter optimisation
Beside centWave, there are currently only two other feature
detection algorithms available [9], which meet the follow-
ing criteria: freely available, open source, and suited for
feature detection in metabolomic LC/MS samples meas-
ured in centroid mode: matchedFilter- the originally imple-

mented algorithm from XCMS and the centroidPicker from
MZmine (Table 1).

The three algorithms tested have a number of parameters
each, which have to be tuned to deliver good performance
on the analytical setup. The centWave algorithm uses the
peakwidth (= wmin, wmax) parameter to specify the chroma-
tographic peak width range, the ppm parameter to set the
tolerated mass deviation and snthresh, which defines the
chromatographic signal-to-noise threshold. The matched-
Filter algorithm has a similar parameter snthresh, the chro-

centWave results for example region 2Figure 7
centWave results for example region 2. centWave results for example region 2. The lower part shows the same 
extracted ion chromatogram (967.53–967.56 m/z) as in Figure 4 and the detected chromatographic peaks from the centWave 
algorithm as Gaussian fits. The upper part shows the CWT coefficients on the different scales. A cross marks the scale where 
the peak was optimally localised. The vertical grey lines show the peak borders which were estimated from the coefficients of 
this scale.
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matographic peak width is specified by the fwhm
parameter, which defines the width of the model peak for
matched filtering. The mass accuracy is indirectly defined
by the bin size (parameter step).

The centroidPicker from MZmine also needs a bin size to
be specified (bin size), and additionally the tolerated mass
deviation (m/z tolerance). Moreover, there are five param-
eters that affect the chromatographic domain: chromato-
graphic threshold level, intensity tolerance, minimum peak
duration, minimum peak height and noise level. The first two
of those are specified as a relative value, while the last
three are set using absolute values.

The parameters of the three algorithms were tuned to
detect as many of the real features, without allowing too
many false positives. Based on known "good working"
settings, we performed parameter sweeps and evaluated
the number of real features and the number of other
("false") features for each setting. After initial optimisa-
tion of the other parameters, we found that for centWave
and matchedFilter the snthresh parameter shows the highest
influence on this ratio.

The centroidPicker from MZmine was more complex to
optimise, due to its many parameters. Using settings from
the authors as a starting point, a sweep was performed
over a wide parameter range. Approximately 500 parame-
ter settings were tried for MZmine, and about 50 for
matchedFilter and centWave.

For the parameter optimisation we used the mixture of 14
compounds (MM14). Due to the electrospray ionisation,
each compound gives rise to a number of features. A data
set of known features was created using the separately
measured substances. We annotated features that can be
explained as adducts and fragments of the compound as
well as their isotopic peaks. For all 14 compounds this
results in a set of 296 features, about 21 features per com-
pound. We observed up to eight in-source fragments per
compound and also various cluster ions like [2M+H]+

oder [3M+Na]+. The annotations are available as Addi-
tional file 2. Manual verification shows, that 122 of the
296 known features are clearly visible in the MM14 mix-

ture, while the other 174 features are hard to detect by the
human eye. The 122 verified features are considered as
required features, which should be detected by the algo-
rithms.

All other features (beyond the 296) which were reported
by the programs, but cannot be explained as features orig-
inating from the marker mixture, are considered as "false"
features, e.g. (usually small) signals from solvents or
chemical impurities, background noise etc.

As one result from the optimisation, we found that all
algorithms are able to detect more than 100 from the 122
selected real features, but only if approximately 450
"false" features are tolerated. The total number of 122 real
features are detected only with settings that give more
false positives (see section 3.4). Therefore, as a trade-off
between real and "false" features, we chose those parame-
ter settings which detect a maximal number of real fea-
tures, but return less than 450 "false" features.

Since the algorithms detect around 200–300 features in
the separately measured blank solvent, these 450 "false"
features can be explained as a "background", consisting of
features originating from the solvents, tubes, vials, or
impurities of the used marker compounds.

The result of the optimisation process can be seen in Table
2. These parameter settings were used for the following
experiments.

2.4 Evaluation

Since feature detection can be seen as an information
retrieval task, the performance can be assessed using the
precision and recall values. The recall value (also referred to
as sensitivity) measures the fraction of relevant items that
are found by a query, while the precision value quantifies
the relation of relevant items to the false positives. Denot-
ing the total number of features that were detected by an
algorithm by N, the number of real features that were
found by TP, and the total number of real features by NP,

we can measure Recall =  and Precision =  of a fea-TP
NP

TP
N

Table 1: Overview of the evaluated feature detection algorithms

Algorithm Framework Version Programming Language Availability

centroidPicker MZmine 0.60 Java http://mzmine.sourceforge.net/

centWave matchedFilter XCMS 1.12.1 C, R http://bioconductor.org/packages/release/bioc/html/xcms.html

Overview of the compared feature detection algorithms for metabolomics data. MZmine has three feature detection algorithms implemented, but 
only the centroidPicker is suitable for centroided data and therefore was used for the evaluation.
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ture detection algorithm. A perfect feature detection algo-
rithm will have both measures equal to 100%. False
positives features lower the precision; false negatives
(undetected real features) lower the recall.

For a compact representation of the results we used the F-
score as a combined measure of precision and recall,

which is defined as F-score = [20]. A perfect feature

detection will achieve a F-score of 100%, and both false
positives and false negatives features lower its value. The
F-score can be interpreted as a measure of the overall per-
formance of a feature detection algorithm.

Results and discussion
We performed two experiments to assess the performance
of the three algorithms. The experiments were designed to
evaluate the sensitivity of the algorithms using complex
biological samples at different concentrations.

First, the feature set representing the ground truth had to
be created. For this purpose we used ten technical repli-
cates of undiluted Arabidopsis thaliana seed and leaf
extracts from Sample set 2 (solvent/seed/leaf): (0/100/0)
and (0/0/100).

Since a manual annotation of the features was out of
scope, we applied the following procedure to create a list
of reliably detected features:

1. Feature detection on the 2 × 10 samples was performed
using the three algorithms

2. We investigated the number of features which are found
reproducibly in repeated measurements. The features
detected in the ten technical replicates of undiluted seed
and leaf extracts were separately aligned using XCMS group
function (mzwid = 0.05, bw = 2). After the alignment only
those features which were detected in at least seven out of
the ten samples were retained. The resulting numbers of
features are shown in Table 3.

3. We matched the aligned feature lists of all three algo-
rithms (using 0.015 m/z and 5 s tolerance) and removed
those features which had been found by only a single
algorithm.

The resulting feature list contains 2281 features for the
leaf- and 2345 features for the seed extract. 4076 features
are unique, 550 features appear in both extracts. The filter-
ing (step 2. & 3.) retained only the reliable features both
across the replicates and detected by the majority of fea-
ture detection algorithms, see Figure 8. This data set was
considered as ground truth feature data and used for the
further evaluation.

3.1 Experiment 1
We evaluated the F-score (calculated from recall and pre-
cision values) for dilution series of the seed extract (Sam-
ple set 2 (solvent/seed/leaf): (25/75/0), (50/50/0), (75/
25/0)). Feature detection was performed on the 3 × 10
samples with the three algorithms using the optimised
parameters. Detected features that match the seed specific
ground truth features were marked als true positives,
while all other returned features were considered as false
positives. The results are shown in the the left-most part of
Figure 9. The same was done for the leaf specific features
and different concentrations of the leaf extract (Sample set
2 (solvent/seed/leaf): (25/0/75), (50/0/50), (75/0/25)).
The middle part of Figure 9 depicts the results. The cent-
Wave algorithm achieved up to 6% higher F-score values
than MZmine and up to 14% more than matchedFilter in
this experiment.

2⋅ ⋅
+
R P

R P

Table 2: Parameter optimisation using the MM14 marker mixture

Algorithm Number of detected MM14 features Number of other reported features Parameters

centWave 115 443 peakwidth = (5,10), ppm = 30, snthresh = 5, prefilter 
= (2,400)

matchedFilter 114 425 fwhm = 4, snthresh = 12, step = 0.02, mzdiff = 0, max 
= 50

MZmine 107 442 bin size = 0.05, chromatographic threshold level = 0.8, 
intensity tolerance = 0.7, minimum peak duration = 3, 
minimum peak height = 500, m/z tolerance = 0.03, 
noise level = 20

Number of features detected in the MM14 marker mixture and the parameter values that were chosen after the parameter optimisation step.

Table 3: Aligned features

Number of aligned features
Algorithm Seed Leaf

centWave 2634 2423
matchedFilter 1568 1919
MZmine 2529 2699

Number of features that have been reliably detected in at least seven 
out of ten technical replicates from LC/MS analyses of seed and leaf 
extracts (Experiment 1).
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3.2 Experiment 2
For the second experiment we created mixtures of the seed
and leaf extract at different concentrations (Sample set 3)
and evaluated the F-score of the ground truth features.
Again, feature detection was performed with the three
algorithms. The ground truth seed and leaf specific fea-
tures were considered together as true positives for this
measurement. Thereby, the features which appear in both,
seed and leaf extracts, were considered only once. All
other features that were returned by the algorithms were
considered as false positives. The right-most part of Figure
9 shows the result.

The detailed F-score, recall, and precision values of both
experiments are available as Additional file 3. By manual
inspection of the "true" features that were detected by
centWave, but not by MZmine or matchedFilter, we found
that these features were often close to other – in many
cases larger – chromatographic peaks. This can be inter-
preted as a masking effect caused by noise level computa-
tion on the full chromatogram. The centWave algorithm
uses local baseline and noise estimation to circumvent
this problem.

Looking at the false positive features, we observed that
matchedFilter frequently reports spikes (very narrow chro-

matographic peaks, consisting of 1–3 points) while
MZmine tends to detect features in regions where only a
high level noise can be seen.

3.3 Runtime
All three algorithms perform the feature detection for one
sample in less than two minutes. centWave was the fastest
algorithm in the test, with on average only one minute
runtime per sample. The runtimes shown in Table 4 were
measured as wall-clock time including all file input with-
out other programs running. All measurements were done
on an AMD Athlon 64 X2 Dual Core Processor 4200+
with 4GB RAM, running Linux (Ubuntu 6.06). Both
frameworks can distribute the processing tasks, MZmine
using Java RMI and XCMS using the Message Passing
Interface (MPI) via Rmpi [21] on multicore architectures
(and even cluster setups) to speed up the processing of
many samples. This option was not used for the runtime
measurements.

3.4 Alternative parameter settings
The optimisation strategy outlined in section 2.3 tried to
balance the recall and precision, using a rough estimate of
the potential chemical background signals. The settings in
typical metabolomics profiling experiments of e.g. plant
extracts usually will be tuned more aggressively towards

Venn Diagrams of Detected FeaturesFigure 8
Venn Diagrams of Detected Features. Venn Diagrams showing the number of features in seed and leaf extracts that were 
found by the three different algorithms. Only the overlapping (green coloured) subsets were used as ground truth.
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higher sensitivity. The resulting false positive features are
often filtered by the downstream analysis, such as the
alignment of replicate measurements and statistical tests
for differential features.

We repeated the parameter optimisation, this time allow-
ing up to 1000 background features. Essentially, the
respective chromatographic threshold parameters were
lowered, to achieve higher sensitivity. With these parame-
ters we recreated the ground truth, and repeated both
experiments. The results are depicted in Figure 10. The
parameter settings and the number of features in the
ground truth, as well as the detailed F-score, recall, and
precision values are available as Additional file 4.

With the second parameter set, we observed higher sensi-
tivity for all algorithms. The number of aligned features
almost doubled, the resulting ground truth contains 6649
unique features. The recall values of matchedFilter
improved notably with the alternative parameter settings.

The results based on the second parameter set confirm the
general trend shown above. The centWave algorithm
achieved up to 6% and 15% higher F-score values than
MZmine and matchedFilter, respectively.

Conclusion
We presented a new feature detection algorithm for high
resolution LC/MS data called centWave. With the increas-
ing deployment of high-resolution mass spectrometers
such as QTOF or Orbitrap instruments, and high-through-
put applications such as metabolomics experiments of
highly complex samples, a reliable and sensitive feature
detection is essential. centWave shows a high sensitivity,
while trying to keep the false positive features low.

In the past, the Bioconductor project has attracted more
and more development related to mass spectrometry and
metabolite pathways. The implementation of centWave is

F-score values for Experiment 1 & 2Figure 9
F-score values for Experiment 1 & 2. F-score (combined measure of recall and precision, calculated from the ground truth 
features) for dilution series of the seed and leaf extract (left-most and middle part) and for mixtures of the seed and leaf 
extract (right-most part of the figure). Detected features that match the respective ground truth features were counted als 
true positives, while all other features returned were considered as false positives. Higher F-score values represent better fea-
ture detection performance.
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Table 4: Runtimes

centWave matchedFilter MZmine

Runtime in minutes 1.02 1.85 1.54

Average wall-clock runtime in minutes for feature detection in one 
sample averaged across ten samples containing a 50/50 leaf/seed 
extract mixture.
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available in the R-package XCMS and can be obtained
from http://bioconductor.org/packages/release/bioc/
html/xcms.html. Integration with Bioconductor provides
good support for the common file formats (netCDF,
mzData and mzXML, with mzML currently under devel-
opment) and allows for powerful downstream statistical
analysis. The user feedback on the XCMS mailing list
showed, that the centWave algorithm (introduced in
2007) is successfully used for LC-QTOF, LC-Orbitrap and
even CE-MS or GC-MS data. For a more objective compar-
ison we have evaluated centWave against two other open
source algorithms. We performed two experiments to
assess the performance of the algorithms, using complex
chemical mixtures at different concentrations. The F-
score, as a combined measure of recall and precision, was
calculated using the ground truth data. The result was for
centWave always higher than for matchedFilter and
MZmine. The centWave algorithm is based on a sensitive
detection of potentially interesting mass traces (ROIs),
followed by an extensive chromatographic analysis, that
reliably detects chromatographic peaks with different
width via CWT. To allow for high sensitivity, baseline and
noise are estimated locally. Some efforts are made to
locate the exact chromatographic peak boundaries to pro-
vide accurate peak intensities. Feature quality can be

assessed using numerous metrics, including signal to
noise ratio, m/z fluctuation, and the residual of the Gaus-
sian fit. Further development of the centWave algorithm
will include an automatic estimation of the processing
parameters.

In addition to centWave and the LC/MS data sets we have
released the manual annotation of an LC/MS measure-
ment of several pure compounds as a benchmark data set
for both machine and software comparisons. The data sets
are available at http://msbi.ipb-halle.de/msbi/centwave/.

Authors contributions
CB performed the LC/MS measurements and was
involved in the development of the centWave. RT designed
and implemented the centWave algorithm. RT and SN per-
formed the evaluation of the algorithms. All authors con-
tributed to, read and approved the fnal manuscript.

F-score values for Experiment 1 & 2 (alternative parameter settings)Figure 10
F-score values for Experiment 1 & 2 (alternative parameter settings). F-score (combined measure of recall and pre-
cision, calculated from the ground truth features) for dilution series of the seed and leaf extract (left-most and middle part) and 
for mixtures of the seed and leaf extract (right-most part of the figure). Detected features that match the respective ground 
truth features were counted als true positives, while all other features returned were considered as false positives. Higher F-
score values represent better feature detection performance. Alternative parameter settings were used (see Additional file 4).
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Abstract
Background: Liquid chromatography coupled to mass spectrometry (LC-MS) has become a
prominent tool for the analysis of complex proteomics and metabolomics samples. In many
applications multiple LC-MS measurements need to be compared, e. g. to improve reliability or to
combine results from different samples in a statistical comparative analysis. As in all physical
experiments, LC-MS data are affected by uncertainties, and variability of retention time is
encountered in all data sets. It is therefore necessary to estimate and correct the underlying
distortions of the retention time axis to search for corresponding compounds in different samples.
To this end, a variety of so-called LC-MS map alignment algorithms have been developed during the
last four years. Most of these approaches are well documented, but they are usually evaluated on
very specific samples only. So far, no publication has been assessing different alignment algorithms
using a standard LC-MS sample along with commonly used quality criteria.

Results: We propose two LC-MS proteomics as well as two LC-MS metabolomics data sets that
represent typical alignment scenarios. Furthermore, we introduce a new quality measure for the
evaluation of LC-MS alignment algorithms. Using the four data sets to compare six freely available
alignment algorithms proposed for the alignment of metabolomics and proteomics LC-MS
measurements, we found significant differences with respect to alignment quality, running time, and
usability in general.

Conclusion: The multitude of available alignment methods necessitates the generation of standard
data sets and quality measures that allow users as well as developers to benchmark and compare
their map alignment tools on a fair basis. Our study represents a first step in this direction.
Currently, the installation and evaluation of the "correct" parameter settings can be quite a time-
consuming task, and the success of a particular method is still highly dependent on the experience
of the user. Therefore, we propose to continue and extend this type of study to a community-wide
competition. All data as well as our evaluation scripts are available at http://msbi.ipb-halle.de/msbi/
caap.
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1 Background
Mass spectrometry (MS) has become the predominant
technology for both proteomics and metabolomics exper-
iments. In shotgun proteomics, proteins are first digested,
then the resulting peptides are separated by liquid chro-
matography. The fractions of the mixture are transferred
to the mass spectrometer. Soft ionization techniques like
matrix-assisted laser desorption ionization (MALDI) or
electrospray ionization (ESI) and high resolving mass
analyzers are used to identify the individual compounds
by peptide mass fingerprinting (PMF) or by tandem mass
spectrometry. The latter uses another step of fragmenta-
tion and MS analysis (MS/MS). Multiple technologies also
exist in metabolomics applications, where mass spec-
trometers are coupled to gas chromatography (GC), liq-
uid chromatography (LC) or capillary electrophoresis
(CE) for separation. For recent reviews see [1,2]. In this
paper our focus is on LC-MS in proteomics and metabo-
lomics applications.

The quantitative information in a proteomics LC-MS map
can be used in numerous applications [3,4] ranging from
additive series in analytical chemistry [5], analysis of time
series in expression experiments [6,7], to applications in
clinical diagnostics [8], where statistically significant
markers detect certain states of diseases. Common appli-
cations in metabolomics are: The verification of substan-
tial equivalence [9], or the profiling of, e.g., biosynthetic
mutants to reveal cross-talk between pathways [10]. What
applications have in common is that the same compo-
nents in different measurements have to be related to each
other. As with every laboratory experiment, chromato-
graphic separation is stable and reproducible only to a cer-
tain extent. The retention time often shows large shifts,
and distortions can be observed when different runs are
compared. Even the m/z dimension might show (typically
smaller) deviations. The overall change in RT and m/z is
called warp. Pressure fluctuations, or changes in column
temperature or mobile phase result in distorted elution
patterns, and can even cause changes in the elution order
of components. Elution order changes are not unlikely if
their retention times are similar [11]. For example, in one
of our data sets the ground truth contained 88 verified
matching peptide signals, but no more than 66 of them
can be aligned without elution order changes (see last fig-
ure in additional File 1 for further information). The cor-
rection of the shift in RT and m/z is called dewarping
according to the time warping problem of Sakoe and
Chiba [12] in speech processing. The advent of high-
throughput quantitative proteomics and metabolomics
makes an efficient solution to this problem an important
task.

In general, the data processing pipeline for label-free LC/
MS data proteomics and metabolomics applications can
be divided into the following steps:

1. Signal preprocessing and centroidization,

2. Detection and extraction of two-dimensional signals,
so-called features, which are caused by chemical entities,

3. Intensity normalization,

4. Compensation of retention time distortions by dewarp-
ing,

5. Computation of a consensus map by assigning corre-
sponding features across multiple maps,

6. Statistical analysis, feature identification, and the bio-
logical interpretation.

A typical label-free quantification protocol might be the
connection of the proposed analysis steps, but it can also
consist of the comparison of LC-MS maps on the raw data
level [13]. The comparison of LC-MS raw maps enables
the search for differentially expressed peptides directly by
using multiway data analysis methods (e.g., PARAFAC
[14]). Hence, a typical analysis pipeline for this approach
avoids the steps 2 and 5, and merely includes the preproc-
essing and intensity normalization of the LC-MS raw
maps, the correction of the retention time distortion, as
well as the statistical analysis, feature identification and
the biological interpretation of the data. We call the
dewarping and thereby superposition of multiple LC-MS
raw maps the LC-MS raw map alignment problem. Several
algorithms have been designed to deal with this problem
[15-19]. They avoid errors introduced by centroidization
and feature finding algorithms, but they tend to have high
runtimes and are liable to time order changes. Moreover,
the algorithms are usually described for pairwise align-
ment and do not easily generalize to a multiple alignment
of N maps. In this paper we will concentrate on the typical
label-free quantification analysis pipeline and focus on
the so-called LC-MS feature map alignment problem, which
comprises the dewarping of multiple feature maps as well
as the grouping of corresponding features in different
maps. Since feature maps have a much smaller data
amount than raw maps, they allow for much faster
dewarping algorithms. On the other hand, signal preproc-
essing, centroidization and feature finding may also intro-
duce errors. Therefore, the quality of the feature maps
strongly depends on the reliability of these processing
steps.

Within the last four years several algorithms for LC-MS
feature map alignment have been developed [20-27].
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These tools are either standalone tools or part of a whole
framework for the analysis of MS based data. In this paper
we concentrate on the comparison of the freely available
feature map alignment algorithms implemented within
the frameworks msInspect [25], MZmine [21], OpenMS
[28] and XCMS [26], as well as the tools SpecArray [22]
and XAlign [23] (see Table 1). Except for the alignment
algorithm of MZmine, all methods estimate a linear
(OpenMS, XAlign) or non-linear shift to correct the distor-
tion of the RT dimension in all feature maps. The assign-
ment of corresponding features and the determination of
the consensus map is either done consecutively by
processing the maps in a star-wise manner (MZmine,
OpenMS, SpecArray, XAlign), or by a clustering approach
(msInspect, XCMS). All algorithms take advantage of the
more precisely measured m/z dimension to group corre-
sponding features and to estimate the underlying warping
function in RT. The general approach of the six different
alignment methods compared by us will be described in
the next section.

With the recent advent of LC-MS alignment reviews
[13,29] it became obvious that a comprehensive unbiased
performance study on a common benchmark set is
needed to foster further competition and collaboration
between the developers. In related fields, the Critical
Assessment of Methods for Protein Structure Prediction
(CASP) contests [30] and the Affycomp II Benchmark for
Affymetrix GeneChip Expression Measures [31] have been
quite fruitful in this respect. We have collected benchmark
data sets from both proteomics and metabolomics exper-
iments to compare only the feature map alignment modules
of different software packages. We aim to minimize the
influence of the preceding and subsequent processing

steps. Therefore, we eliminated the influence of the indi-
vidual signal processing modules by importing a common
feature list. We furthermore abandoned the search for fea-
tures in individual files based on features found in other
measurements which is sometimes referred to as filling-in
missing features. For proteomics, we have selected two
data sets from the Open Proteomics Database [32], which
have been used previously for the evaluation of the raw
map alignment algorithm OBI-Warp [17]. For metabo-
lomics data, no such public data repository currently
exists, so we used two of our own data sets from a typical
comparative metabolomics study. We are making these
data sets available at http://msbi.ipb-halle.de/msbi/caap.

The remainder of this paper is structured as follows: In
Sections 2.1 and 2.2 the benchmark data sets and the def-
inition of ground truth are described. Section 2.3 intro-
duces the MS software packages and how they were
configured for the benchmark. The evaluation criteria are
defined in Section 2.4. The results of our comparison are
presented in Section 3, followed by a discussion of the
merits of the underlying algorithms, and a conclusion of
expected future developments in Section 4.

2 Methods
Before we describe the experimental setup and signal
processing for the evaluation data sets we introduce some
definitions that are used throughout the following sec-
tions. In our context, a feature is the two-dimensional (RT
and m/z) signal caused by a single charge variant of a
chemical entity. Feature detection involves identifying the
signal region in the raw data (usually a union of convex
sets) and fitting a theoretical model (e. g. elution profile,
isotope distribution) to the observed data. The map align-

Table 1: Overview of alignment tools

framework
tool name

input format version URL programming 
language

operating 
system

source code 
available

modularity

msInspect
peptideMatch

feature data in own tab- 
separated format

1.0.1 http://
proteomics.fhcrc.
org

Java, R Windows
Linux
MaxOS

✓ ✓

MZmine raw data 0.60 http://
mzmine.sourcefor
ge.net

Java Windows
Linux
MacOS

✓ -

OpenMS
MapAlignment

feature data in 
featureXML or raw or 
peak data in mzData 
format

1.0 http://
www.openms.de

C++ Linux
MacOS 
(Windows)

✓ ✓

SpecArray
PepMatch, 
PepArray

feature data in own 
binary format

2.1 http://
tools.proteomece
nter.org

C Linux ✓ ✓

XAlign feature data in own 
tabular separated format

03.09.2007 request from the 
author

C++ Windows - ✓

XCMS raw data 1.10.7 http://
www.bioconduct
or.org

R, C Windows Linux 
MacOS

✓ ✓
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ment problem has two aspects: (1) finding a suitable
transformation of retention times, so that corresponding
features will be mapped to nearby retention times, and (2)
reporting the actual groups of corresponding features
across multiple LC-MS feature maps. We will refer to these
groups as consensus features, emphasizing that the individ-
ual features constituting a consensus feature should repre-
sent the same charge state of the same ionized compound.
Referring to the consensus feature as a whole, one can
then speak of an average retention time, mass charge ratio,
etc. The collection of all consensus features constitutes a
consensus map, which stores the correspondence informa-
tion of all detected features in multiple LC-MS feature
maps.

Ideally, each feature should be assigned to one consensus
feature and each consensus feature should contain one
feature from each map. However, limited dynamic range
or large variation in the sample will lead to consensus fea-
tures which do not extend across all LC-MS experiments.
Artifacts of the feature detection phase, such as "broken"
elution profiles, may also show up during the map align-
ment, resulting in consensus features which contain more
than one feature from a particular map. As a special case,
a consensus feature may consist of a single feature from a
single map, if no other map contains the same charge state
of the ionized compound. We will refer to these as single-
tons.

We consider the transformation of retention times as an
intermediate step, because the downstream data analysis
will mainly be concerned with groups of features and their
average position, etc. rather than the distortions of reten-
tion times. The ultimate goal of multiple LC-MS feature
map alignment is to derive a consensus map. This fact
should be reflected by our quality metrics. An alignment
method should create a "meaningful" partition of the fea-
ture maps: Corresponding features should be grouped in
only one consensus feature instead of being split in mul-
tiple subsets, but the algorithm must also avoid grouping
together unrelated features.

In Section 2.4 we introduce two measures that reflect the
quality of a determined consensus map with respect to an
optimal consensus map, the so-called ground truth. This is
illustrated in Figure 1. The left part shows an optimal con-
sensus map, representing the correspondence in four dif-
ferent feature maps. The right part shows a consensus map
with various kinds of errors, which can occur in an align-
ment.

The quality of the transformation of retention times might
also be assessed, but only after groups of corresponding
features have been found. The transformation is often
called a warping function, because original retention times
x and transformed retention times y are related through a
monotone increasing function f(x) = y. The difficulty with

Consensus precision and recallFigure 1
Consensus precision and recall. The left figure shows the two consensus features of a ground truth for the alignment of 
five feature maps. The features of the feature maps are distinguished by the five types of marker. Corresponding features in the 
different maps are illustrated by the same colour. The right figure shows three consensus features of a consensus map deter-
mined by an alignment algorithm. Note that the red features were assigned to separate consensus features, and the blue ones 
as well. The consensus feature in the middle even contains features from the same map. Thereby, the alignment results in a low 
recall value of (1/2)·(5/(2·5) + 4/(2·4)) = 0.5. Since most of the determined consensus features are "relevant" the method 
achieved a precision of (1/2)·(5/7 + 4/5)  0.76.
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this approach is that the distance between corresponding
features can be minimized by unrealistic, step-like warp-
ing functions. Hence in order to avoid overfitting, one has
to include regularity (or "smoothing") conditions into the
quality measure, which are hard to formalize.

In the following section we will describe the sample prep-
aration of the complex biological proteomics and metab-
olomics data sets. Furthermore, we establish methods for
the generation of proteomics and metabolomics ground
truth consensus maps.

2.1 Proteomics data
We selected two proteomics data sets from the Open Pro-
teomics Database (OPD) [32] resulting from two different
experiments. The first data set originates from a dilution
series of Escherichia coli and the other data set represents
different cell states of Mycobacterium smegmatis. Both sam-
ples are of high complexity and provide typical alignment
scenarios. They have previously been used for the evalua-
tion of the LC-MS raw map alignment algorithm OBI-
Warp [17].

We will briefly describe the sample preparation and the
LC-LC-MS/MS analysis of the two experiments. Further
information of the E. coli data set can be found on the
OPD website and the M. smegmatis experiment is explic-
itly described in [33].

2.1.1 Experimental setup
Data set P1: LC-LC-ESI-IT-MS/MS

E. coli soluble protein extracts representing cells in expo-
nential growth-phase were diluted in digestion buffer,
denatured, and digested with trypsin. Tryptic peptide mix-
tures were separated by automated LC-LC-MS/MS. The
injection quantity of the analyte was altered between two
different runs: 021016_jp32A_10ul_3 (10 μL, [OPD:
opd00005_ECOLI]) and 021010_jp32A_15ul_1 (15 μL,
[OPD: opd00006 ECOLI]). We refer to these data sets as
P1_1 and P1_2, respectively. Chromatography salt step
fractions were eluted from a strong cation exchange col-
umn (SCX) with a continuous 5% acetonitrile back-
ground and 10-min salt bumps of 0, 20, 40, 60, 80, and
100 mM ammonium chloride. Each salt bump was eluted
directly onto a reverse-phase C18 column and washed free
of salt. Reverse-phase chromatography was run in and
peptides were analyzed online with an ESI ion trap mass
spectrometer (ThermoFinnigan Dexa XP Plus). In each MS
spectrum, the three tallest individual peaks, correspond-
ing to peptides, were fragmented by collision-induced dis-
sociation (CID) with helium gas to produce MS/MS
spectra. Centroided mzXML data and corresponding
SEQUEST identification results of P1_1 and P1_2 were
downloaded from the OPD.

Data set P2: LC-LC-ESI-IT-MS/MS

M. smegmatis soluble protein extracts were diluted in
digestion buffer, denatured, and digested with trypsin.
Tryptic peptide mixtures were separated by automated LC-
LC-MS/MS. The three different runs 6-17-03, 7-17-03, and
6-06-03 represent protein profiles of a M. smegmatis cell in
middle exponential, early exponential and stationary
phase [OPD: opd00009_MYCSM, opd00014_MYCSM,
opd00028_MYCSM]. We refer to these data sets as P2_1,
P2_2, and P2_3, respectively. The remaining setup is the
same as above in P1. Centroided mzXML data and corre-
sponding SEQUEST identification results of P2_1, P2_2,
and P2_3 were downloaded from the OPD.

2.1.2 Data extraction
The raw data had been exported in centroided mode by
the instrument. Preprocessing and data extraction was
performed using TOPP tools [34]. We converted all data
from mzXML to mzData format using FileConverter and
transformed the data into a uniformly spaced matrix by
bilinear resampling using Resampler. The spacing of the
transformed matrix was 1 Th and 1 second. Afterwards we
detected and extracted peptide signals in the resampled
raw data maps using FeatureFinder ignoring the charge
states to provide fair means of comparison for all align-
ment tools. The sizes of the feature maps from the P1 and
the P2 alignment test set are available as additional File 2.

2.1.3 Ground truth
We established ground truth for the P1 and the P2 data
sets by means of MS/MS information that was not availa-
ble to the tested alignment procedures. As a consequence,
our ground truth consist exclusively of features that can be
annotated with a reliable peptide identification. This is
discussed further below.

The reference method uses five steps: (1.) We establish an
initial correspondence between MS/MS identifications
and LC-MS features. (2.) We filter the peptide annotations
based on the retention times of the features they are
assigned to. The first two steps operate on each LC-MS/MS
map individually. (3.) We compute an initial set of con-
sensus features across multiple experiments. (4.) We
reduce the list such that each feature is contained in at
most one consensus feature. (5.) We filter the consensus
features by comparing retention times across maps.

In the first step we scan through all peptide identifica-
tions. We disregard unreliable peptide identifications hav-
ing a SEQUEST XCorr score less than 1.2. We check
whether the RT and the m/z value of the precursor ion lies
within the convex hull of a feature. In this case we assign
the peptide identification to the feature. Each feature can
be annotated with many peptide identifications originat-
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ing from many MS/MS scans within the experiment. The
values in parentheses in additional File 2 are the number
of annotated features.

In the second step we filter the peptide annotations with
respect to the retention times of the features they are
assigned to. If a peptide identification is assigned to two
features with very different RTs in one map, it is likely that
one or both features are falsely annotated. This observa-
tion is used to filter out dubious identifications which
otherwise might give rise to incorrect consensus features
in the ground truth. For each peptide identification, we
compute the mean μ and standard deviation σ of the RT
positions of the features to which it is assigned. If σ > 100
s, then the identification is considered dubious and
removed from all features. Moreover, the identification is
removed from all features, if any, whose RT positions
deviate by more than 2σ from μ. These filters are applied
for each experiment separately.

In the third step we compute an initial list of consensus
features, in which features with identical identifications
are grouped across maps. In the previous steps we have
computed a set of associations between peptide identifica-
tions from MS/MS and LC-MS features. The consensus fea-
tures in our ground truth should have unique peptide
identifications. Therefore we start by compiling a com-
plete list of all peptide identifications over all experi-
ments. Then we step through this list and for each
identification we find the best-scoring features associated
with it, but at most one from each experiment, and add
these features to the corresponding consensus feature. In
this way we maximize the sum of XCorr values for the
peptide identifications in a consensus feature. We discard
dubious consensus feature whose m/z standard deviation
is greater than 1.

Let the total XCorr score of a consensus feature be defined
as the sum of XCorr values of all features contained in it.
After step three, it is possible that a feature is contained in
different consensus features from the initial list. In the
fourth step we reduce the initial list such that each feature
is contained in at most one consensus feature, whose total
score is the largest among all consensus features contain-
ing it. We have developed a simple "greedy" strategy to
achieve this goal. The purified list of candidate consensus
features is sorted in order of decreasing total score. In each
step we extract a consensus feature with maximum total
XCorr score from the list. This consensus feature is added
to the consensus map, and all consensus features having a
non-empty intersection with it are also removed from the
list. The process is iterated until no more consensus fea-
tures can be found, i. e., the list has become empty.

In the fifth step, we apply a final filter for outliers and
dubious identifications by comparing retention times
across maps. We calculate the RT sample variance within
all consensus features in the consensus map and discard
consensus features whose standard deviation is greater
than 2 times the sample standard deviation. Since this fil-
ter relies upon RT information and hence bears the risk of
introducing bias into the ground truth, we confirmed that
the removed consensus features are indeed outliers by vis-
ual inspection.

The numbers of consensus features in the ground truth are
also shown in additional File 2. A ground truth is only
considered if its number of consensus features corre-
sponds to a least 10% of the number of annotated featues
in the aligned feature maps.

As stated above, the assignment used as a ground truth is
restricted to features in different feature maps that were
annotated by a peptide identification. We believe that this
will not introduce a bias toward any of the tools, based on
the assumption that the features, which are selected for
MS/MS fragmentation are chosen randomly and inde-
pendently with the same probability p. For simplicity,
consider the case of pairwise alignment. The extension to
multiple map alignment will be discussed in Section 2.4.
The classical precision value is defined as TP/(TP + FP).
Note that the denominator does not depend on the
ground truth, and the enumerator is expected to be a con-
stant fraction TP = p ·TP* of the "real" true positive
number TP*. Thus, it is still possible to compare the prob-
ability that a computed consensus feature is contained in
the ground truth between the different tools, although the
absolute precision values will be underestimated by a fac-
tor of p using the available ground truth. The recall value
TP/(TP + FN) is not affected by such a bias, since both TP
and FN will be underestimated by a factor of p, which can-
cels out. Hence, the classical recall value can still be used
as an estimator for the probability that an "existing" con-
sensus feature is actually computed by the tool.

2.2 Metabolomics data
We have selected a typical Arabidopsis thaliana metabo-
lomics experiment, with different plant lines and treat-
ments measured at multiple time points in triplicates. The
same samples were measured on two different LC-MS set-
ups as follows.

2.2.1 Experimental setup
Preparation of Extracts

Freshly ground Arabidopsis thaliana leaf tissue (130 ± 5
mg) was subjected twice to the following extraction proce-
dure: mixing with 200 μL of methanol/water, 4/1 (v/v),
sonication at 22°C for 15 min and centrifugation for 10
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min. Both extracts were combined and evaporated at
reduce pressure in a vacuum centrifuge at ambient tem-
perature. The remaining residue was redissolved in 400 μL
methanol/water, 3/7 (v/v).

Data set M1: Capillary LC-ESI-QTOF-MS

1 μl of the extract was separated using an Ultimate capil-
lary LC system (Dionex) on a modified C18 column
(GROMSIL ODS 4 HE, 0.3 × 150 mm, particle size 3 μm,
Alltech-Grom) applying a binary acetonitrile-water gradi-
ent at a flow rate of 5 μLmin-1. Eluted compounds were
detected from m/z 75 to 1000 by an API QSTAR Pulsar i
(Applied Biosystems/MDS Sciex) equipped with an Ion-
spray electrospray ion source in positive ion mode. Accu-
mulation time was 2 s. Mass resolution for [M + H]+ of a
calibration peptide was RFWHM (resolution full width at
half maximum) = 8500 at 829 m/z.

Data set M2: LC-ESI-QTOF-MS.

10 μl of the A. thaliana extract were separated using a Agi-
lent 1100 Series HPLC system on a modified C18 column
(Atlantis dC18, 2.1 × 150 mm, particle size 3 μm, Waters)
applying the same binary gradient as above at a flow rate
of 200 μLmin -1. Eluted compounds were detected from
m/z 100–1000 by a MicrOTOF-Q (Bruker Daltonics)
equipped with an Apollo II electrospray ion source in pos-
itive ion mode. Accumulation time was 1.5 s. Mass resolu-
tion for [M + H]+ of a calibration peptide was RFWHM =
14000 at 829 m/z.

2.2.2 Data extraction
All data were exported in centroid mode by the converter
software from Applied Biosystems and Bruker, respec-
tively. The feature finding was done using XCMS [26]
using the parameters method = "centWave", peakwidth =
c(20, 50), snthresh = 5, ppm = 120 for the data set M1 and
ppm = 30 for the data set M2, respectively. The number of
features for each file is available as additional File 3.

2.2.3 Ground truth
In contrast to the proteomics data sets, usage of MS/MS
information and SEQUEST annotation are not applicable.
Compound spectra libraries exist for GC/EI-MS, but no
extensive set of reference spectra is available for LC-ESI-
MS. However, a relative annotation of "anonymous" sub-
stances is sufficient for the purpose of our alignment eval-
uation.

For soft ionization methods like LC-ESI-MS, different
adducts (e.g. [M + K]+, [M + Na]+) and fragments (e.g., [M
- C3H9N]+, [M + H - H20]+) occur. Using these known
mass differences and verification techniques such as peak
shape comparison by correlation analysis, features which

originate from the same substance can be grouped
together as annotated feature groups. Even if the sub-
stances are unknown, their spectra can be reconstructed in
this way. Details are described in [35].

We used features that do not only have the same retention
time but also show high correlation (Pearson correlation
coefficient > 0.9) in their chromatographic peak shapes to
create annotated feature groups. The correlation verified
feature annotations were created using the R-Package ESI,
which can be downloaded from http://msbi.ipb-halle.de/
msbi/esi.

Only those highly confident feature groups that were
reproducible over at least four files and show limited devi-
ation across the files (data set M1: ΔRT = 90 s, Δm/z = 0:02
Th, data set M2: ΔRT = 20 s, Δm/z = 0:01 Th) were used to
create a verified alignment of these feature groups. Subse-
quently, the aligned feature groups were split up into their
consensus features, which form the alignment ground
truth. The number of features for each file and the size of
the ground truth for each alignment are available in the
additional File 3.

2.3 Computation of alignments
In the following subsections we will shortly describe the
general approach of the six alignment methods as well as
their most relevant parameters. Furthermore, we present
our procedure to import the input feature lists into the dif-
ferent tools. Each program provides a consensus map in a
proprietary file format which was parsed for the evalua-
tion.

2.3.1 OpenMS
The open source framework OpenMS [36] offers a multi-
ple LC-MS map alignment algorithm [28] for raw as well
as feature maps.

The maps are aligned in a star-wise manner with the most
complete map as the reference map. The correction of the
warp in RT and m/z and the determination of a consensus
map are performed in two steps called superposition phase
and consensus phase. This modularization allows for the
implementation of a general algorithm that either aligns
multiple raw maps using just the superposition phase, or
aligns multiple feature maps applying both phases. In the
superposition phase the parameters of a suitable affine
transformation are determined using a general paradigm
for point pattern matching algorithms called pose cluster-
ing. The optimal transformation, which is defined as the
transformation that maps as many elements of one map
as possible close to elements in the other map, is deter-
mined by a so-called voting schema. The pose-clustering
algorithm considers the different measuring accuracies of
the RT and m/z dimension as well as the intensity infor-
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mation of the LC-MS map elements. After the estimation
of the initial transformation by the pose-clustering
approach, landmarks are searched in the two maps. These
landmarks are used for the refinement of the affine warp
by a linear regression step. The following consensus phase
is based on a nearest neighbors search and determines the
final consensus map given the dewarped feature maps.
The OpenMS multiple feature map alignment algorithm
is implemented in the TOPP tool MapAlignment. The
most important parameter for the user are precisionRT, pre-
cisionm/z and mz_bucket_size. The parameter mz_bucket_size
is a parameter for the superposition phase. It restricts the
computation of all possible transformations by mapping
only features in both maps that have similar m/z posi-
tions. Whereas, precisionRT and precisionm/z are parameters
of the consensus phase that define the maximal distance
of corresponding features for the grouping process. The
metabolomics feature lists were converted into the fea-
tureXML input format by the FileConverter TOPP tool.

2.3.2 msInspect
The multiple feature map alignment algorithm presented
in [25] is part of the open source LC-MS analysis platform
msInspect. The software package is written in the platform
independent language Java and is freely available at http:/
/proteomics.fhcrc.org.

Before a consensus map, the so-called peptide array, is
determined the algorithm corrects the non-linear distor-
tions of the RT dimension of all maps in a star-wise man-
ner with respect to a certain reference map. It is assumed
that the distortion in RT is explained by a global linear
trend plus a remaining non-linear component. In the first
step, the linear trend is estimated using the most intense
features with similar m/z positions. This initial model of
the RT transformation is used to iteratively determine a
non-linear transformation using smoothing-spline regres-
sion methods from the previous model. After dewarping
all maps, a global alignment is performed by applying
divisive clustering, with user-supplied tolerances in RT
and m/z of assigned features. The algorithm optionally
offers the automatic choice of the optimal RT and m/z tol-
erances using the quality of clustering. The quality of the
alignment is defined by the number of clusters that
include at most one feature from each map.

msInspect uses various tsv (tab-separated values) files for
input and output. We implemented utilities for convert-
ing data from our feature map format featureXML into the
msInspect tsv format and to extract the resulting consen-
sus map from the msInspect output files. The alignment
algorithm of msInspect provides the setting of two param-
eters: scanWindow, which is the maximum size of a con-
sensus feature in time space, and massWindow, the
maximum size of a consensus feature in mass space. The

option – optimize is used to determine the best choices
for the two parameters with respect to the number of per-
fect matches, which contain exactly one feature of each
map. We used the parameters suggested by the optimizer
but also different parameters to evaluate msInspect's
alignment algorithm.

2.3.3 SpecArray
Li et al. [22] developed a multiple feature map alignment
algorithm embedded in the open source software suite
SpecArray http://tools.proteomecenter.org.

The proposed algorithm computes all pairwise align-
ments and combines them to a final consensus map. To
correct the distortion in RT a retention time calibration
curve (RTCC) is iteratively computed for each pairwise
alignment by pairing features with similar m/z values to
construct an original feature pairs set. The RTCC curve is
estimated by minimizing the root mean square distance
of the features' RT positions to the monotonic function.
Pairs with a small pairing score are removed and the
reduced set of feature pairs is again used to estimate a
RTCC. The two steps are repeated until only the pairs with
a high pairing score remain and each feature in one map
is paired with at most one feature in the other map. The
final RTCC curve and the distance of peptides in m/z is
used to select likely and unique feature pairs from the
original set of feature pairs. The combination of all pair-
wise alignments yields the final consensus map, or the so-
called super list. The parameters for the alignment algo-
rithm are hard-coded and cannot be changed by the user.
Calculating all pairwise alignments results in a high runt-
ime and makes the algorithm inapplicable for the com-
parison of a large number of feature maps. SpecArray
provides two tools for the alignment of feature maps.
Whereas, PepMatch performs the actual alignment step,
PepArray can be used for the postprocessing and filtering
of the consensus map. We avoid the filtering step and use
the unprocessed final consensus map for evaluation pur-
poses.

We implemented software to convert our feature map for-
mat featureXML into the SpecArray's binary feature format
pepBof. Furthermore, we forced SpecArray to directly
export our consensus format by the addition of some lines
of code to the sources of PepMatch.

2.3.4 XAlign
Zhang et al. [23] propose a stand-alone tool, called XAlign,
for the alignment of multiple feature maps. The Xalign
software for Windows is available upon request from the
author.

XAlign computes in a first step a so-called gross-align-
ment, where the algorithm corrects a systematic shift in
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RT. In the second step, a final consensus map, the so-
called micro alignment, is determined. The gross-alignment
algorithm aligns multiple maps in a star-wise manner,
where the reference map is chosen as follows: for all pre-
defined RT and m/z windows the most intense features of
each map are determined. If a window contains features
from all maps, the features are called significant and their
intensity weighted average mean RT position is calculated.
The map with the minimal difference of all its significant
features to the averaged RT positions is chosen as the ref-
erence map. Afterwards, all other maps are dewarped with
respect to the reference by estimating a linear function
that minimizes the mean absolute deviation of the RT
positions of significant features. In the micro-alignment
phase features yielding a high correlation coefficient are
successively grouped together and establish the final con-
sensus map. XAlign [23] is designed as a component of a
data analysis pipeline for protein biomarker discovery.
The stand-alone executable runs in the Windows com-
mand line. It reads tab-separated feature lists and gener-
ates several output files including the alignment table and
peak statistics.

2.3.5 XCMS
The XCMS package presented in [26] is part of Bioconduc-
tor [37], a larger open source software project for bioinfor-
matics written in the platform-independent programming
language R. All Bioconductor packages can be obtained
from http://www.bioconductor.org. XCMS is designed for
both LC/MS and GC/MS data. It includes functionality for
visualization, feature detection, non-linear retention time
alignment and statistical methods to discover differen-
tially expressed metabolites. We modified XCMS to skip
the feature detection step and imported the featurelists
directly from feature map format featureXML. XCMS' fea-
ture-matching algorithm makes use of fixed-interval bins
(e.g., 0.1 Th wide) to match features in the mass domain.
After this initial binning of features by mass, groups of fea-
tures with different retention time in each bin are
resolved. Kernel density estimation is used to calculate the
distribution of features in chromatographic time and sub-
sequently boundaries of regions where many features
have similar retention times are identified.

XCMS supports an optional retention time correction step
where "well-behaved" groups of features are used to calcu-
late a nonlinear retention time deviation for each sample.
The resulting deviation profiles are then used to correct
the retention times of the original samples. The matching
and retention time correction procedure can be repeated
for an increasingly precise alignment. However, we
observed that it is hard to predict whether the retention
time correction will actually lead to a better consensus
map and depends on the input. Therefore, we decided to

report results both without and with the optional reten-
tion time correction step.

2.3.6 MZmine
The MZmine toolbox [38] for processing and visualiza-
tion of LC/MS data is used via a graphical user interface.
Due to its implementation in Java it is platform independ-
ent. MZmine is open source and can be downloaded from
http://mzmine.sourceforge.net. We modified MZmine to
skip the feature detection step and import featurelists
instead.

MZmine's alignment approach does not estimate any
dewarping transformations. The toolbox currently imple-
ments a simple alignment method utilizing a so-called
master feature list, where features from each map are
aligned against the master list. A score function is used to
compute the similarity of a feature and a row of the master
list, which represents the current consensus feature. If the
score obtained between the best matching master list row
and a feature is "good enough" (both the m/z and reten-
tion time difference are within tolerances) the feature is
assigned to that row, otherwise it is appended to the mas-
ter list. MZmine offers two alignment algorithms, "slow
aligner" and "fast aligner", which differ in the implemen-
tation of the score function. We found only minimal dif-
ferences in the alignment quality of both algorithms so we
used the "fast aligner" due to the better runtime.

2.3.7 Parameters
We performed extensive test runs to optimize the param-
eters controlling the tolerance in RT and m/z for our test
data. Using the known deviations of the data as a starting
point we varied the parameters of each tool within reason-
able ranges. The parameters which yielded the best results
on the first experiment of each data set were choosen. The
final settings are shown in Table 2.

2.4 Evaluation
The performance of an information retrieval system can
be assessed using the precision and recall values. Our eval-
uation of the map alignment problem will follow these
lines. As stated in the beginning of this section, the correc-
tion of retention times is a very important aspect of the
LC-MS map alignment problem, and there is a trade-off
between the smoothness of the warping function and the
remaining distance among matched features. But at the
end, the purpose of warping the retention times is to find
groups of corresponding features that are reported as con-
sensus features, which is why our analysis focuses on this
aspect of the map alignment problem. That is, we will
evaluate the quality of the consensus map rather than the
warping function, because we consider the latter an inter-
mediate step for the map alignment problem. Given a
"query" feature in one map, the consensus map can serve
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to retrieve related "items" in the other maps. Consensus
features are simply taken as sets of features; assigning an
appropriate average position to these sets etc. is another
problem and not addressed here.

In the frequentist interpretation, precision is the probabil-
ity that a found item is relevant, whereas recall is the prob-
ability that a relevant item is found. In the special case of
pairwise map alignment, the relevant items are matching
features; an item is either found or not. In order to extend
these concepts to the multiple map alignment problem,
we need to deal with consensus features that do not con-
tain features from all maps, as well as consensus features
reported by tools, that overlap but are not identical to the
ground truth.

Let us denote the consensus features in the ground truth
by gti, where the index i runs from 1 to N. Likewise, the

consensus features from the tool will be denoted by toolj,

for index j = 1,...,M. We consider the set of consensus fea-
tures from the tool that contain at least two features (so
that they can be used to retrieve items) and intersect with
a given consensus feature from the ground truth. Thus, for
each index i let us denote by Mi the set of all indices j such

that |toolj| ≥ 2 and |gti ∩ toolj| > 0. Now we can look at the

cardinality of this index set, |Mi|. In some way, this is the

number of "parts" into which consensus feature gti from

the ground truth has been "split up" by the tool. But we
can also look at the union of these consensus features,

. Then  is the set of all items that

can be retrieved if the query belongs to gti.

Therefore, following the classical definition of precision
and recall, we define the alignment precision:

and the alignment recall:

The factor |Mi| in the denominator serves as a penalty for
breaking up a consensus feature from the ground truth.
Note that in the case of pairwise alignments, the sum-
mands in these definitions are either zero or one, and our
definitions become equivalent to the classic precision and
recall. Thus, their names are justified as generalizations. A
perfect alignment will have both measures equal to one.
False positives (erroneously grouped features) lower the
alignment precision; false negatives (erroneously una-
ligned features) lower the alignment recall.

An example is shown and calculated in Figure 1.

An R script was written for the automated computation of
the recall and precision values. The runtimes were meas-
ured as wall-clock time including all file input/output
while no other programs were running. All measurements
were done on an AMD Athlon 64 X2 Dual Core Processor
4800+ with 2 GB RAM running Linux (Ubuntu 6.06).
Since XAlign does not run under Linux, we evaluated it
under Windows XP running in a virtual machine using
VMWare Workstation 5.5.3 on the same computer (native
Windows XP should typically be 10–20% faster). The
reported wall-clock runtimes are cumulative over all runs
per data set.

tool toolj ∪i jj Mi
:=

∈
toolj i

Precision
gt tool

toolAlign =
=
∑1

1
N

i i
ii

N
| |

| |
∩ j
j

Recall
gt tool

gtAlign =
⋅

=
∑1

1
N

i i
Mi ii

N
| |

| || |
.

∩ j

Table 2: Alignment parameters

Tool Parameter Metabolomics Data Metabolomics Data
Data Set P1 Data Set P2 Data Set M1 Data Set M2

msInspect massWindow 1.5 1.5 0.1 0.05
scanWindow 250 300 250 300

MZmine m/z tolerance size 1.5 1.5 0.03 0.025
RT tolerance size (absolute) 150 300 50 30

OpenMS m/z bucket 0.5 0.5 0.1 0.01
precision m/z 2 2 0.1 0.1
precision RT 150 300 100 100

SpecArray (hard coded parameters) - - - -
XAlign m/z variation 2 2 0.04 0.03

retention time variation 3 3 0.5 0.5
XCMS mzwid 2.5 2.5 0.15 0.05

bw 40 80 30 30
retcor method loess linear loess loess
span 0.75 - 0.75 0.75
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3 Results
The proteomics (P1, P2) and metabolomics (M1, M2)
data sets pose different challenges for the alignment tools.
Each tool has to correct the global trend of the retention
time variation resulting from the flow rate variability from
experiment to experiment. Furthermore, it has to over-
come local distortions resulting from e. g. gradient noise
or temperature changes and assign corresponding features
across the different maps.

To illustrate the ground truth established for these data
sets, we plot the retention time deviation versus the reten-
tion time. Figure 2 shows a significant shift between cor-
responding features in fraction 100 of P1_1 and P1_2, but
almost no difference in scale. Figure 3 shows that fractions
20 of P2_2 and P2_3 are slightly scaled with respect to
P2_1, but apart from that the retention times are in fact
better correlated. While an average absolute retention
time deviation of 57 s can be observed in the ground truth
maps of P1, the average absolute retention time deviation
for P2 is 131 s (before retention time correction). The
retention time deviation plots for each single fraction of
the data sets P1 and P2 are available as additional File 1.

The metabolomics data sets M1 and M2 contain a larger
number of experiments (24 resp. 44). Therefore, we use
box-whiskers plots for visualization. Figures 4 and 6 show
that variation is higher in M1 than in M2, but still much

smaller than in P1 or P2. The average absolute retention
time deviation for the ground truth of the metabolomics
data sets M1 and M2 is 5.4 s and 2.7 s respectively. Pre-
sumably, "large" deviations are the reason for most of the
alignment errors. Loess regression curves for three ran-
domly chosen files show that the global trends are not as
pronounced as the local variation, see Figures 5 and 7.

Both proteomics data sets challenge the ability of the
alignment tools to correct strong retention time varia-
tions. Especially the data of P2, which were measured dur-
ing several weeks and show huge retention time
deviations of around 13 minutes, confront the dewarping
step of the tools with a serious problem. However, the
highly complex metabolomics data sets reveal the capabil-
ity of the alignment tools to assign the correct features
across multiple maps. The maximum retention time devi-
ations of feature maps in M1 and M2 are only 90 s and 20
s respectively, without an obvious global trend. The warps
are mainly affected by local non-linear distortions of
retention times similar to uncorrelated statistical noise. In
M1 the high density of the feature maps complicates the
determination of the correct consensus features. However,
M2 challenges the grouping step of the tools by its large
number of input maps.

Our evaluation of the tools' performance is based on
alignment recall and alignment precision as defined in

Retention time deviations of data set P1Figure 2
Retention time deviations of data set P1. Exemplary plot of retention time deviations in the ground truth of data set P1. 
Retention time deviation of File P1_2 is plotted against retention time of File P1_1 (fraction 100).
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Retention time deviations of data set P2Figure 3
Retention time deviations of data set P2. Exemplary plot of retention time deviations in the ground truth of data set P2. 
Retention time deviations of File P2_2 and P2_3 are plotted against retention time of File P2_1 (fraction 20).
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Retention time deviations of data set M1Figure 4
Retention time deviations of data set M1. Box-whiskers-plot showing the retention time deviations in the ground truth 
of data set M1.
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Section 2.4, as well as their running times. Memory con-
sumption was not a critical resource. Since the chromato-
graphic separation steps for the metabolomics and the
proteomics data sets resemble each other, we decided to
test all tools on all data sets, even though most of them
were originally designed for either metabolomics or pro-
teomics data. Figure 8 shows a summary of the results on
the different data sets.

The results for the proteomics data sets P1 and P2 are
shown in Tables 3, 4, and 5. We found that OpenMS per-
forms best on P1, closely followed by XAlign, XCMS and
MZmine. All four tools achieved high recall as well as high
precision values on this data set. However, SpecArray and
msInspect result in slightly worse recall and precision val-
ues. The evaluation on the second proteomics data set

shows a similar trend, despite the overall recall and preci-
sion of all tools is reduced on this more demanding data
set. OpenMS again performs best on most fractions of P2
and is closely followed by XAlign, XCMS and MZmine.
SpecArray and msInspect are closely ranked after these
four tools. All programs completed within two minutes
on the relatively small data sets of P1 and P2.

The results for the metabolomics data sets M1 and M2 are
shown in Tables 6 and 7. Here, XCMS performs best on
both data sets, and MZmine does equally well on M2,
with OpenMS and XAlign not far behind. Alignment recall
is much more discriminative than alignment precision,
due to the penalty for breaking up a consensus feature
from the ground truth. The running times were signifi-
cantly different on these relatively large data sets, which

Retention time deviations in the ground truth of three randomly chosen files from data set M1Figure 5
Retention time deviations in the ground truth of three randomly chosen files from data set M1. Loess regression 
curves were superimposed for better visualization.

0 500 1000 1500 2000 2500

−
20

−
10

0
10

20

Retention time (seconds)

R
et

en
tio

n 
tim

e 
de

vi
at

io
n 

(s
ec

on
ds

)

DOI:10.1186/1471-2105-9-375

https://doi.org/10.1186/1471-2105-9-375


BMC Bioinformatics 2008, 9:375 http://www.biomedcentral.com/1471-2105/9/375

Page 14 of 19
(page number not for citation purposes)

contain more than 200 000 features in 24 (M1) respec-
tively 44 (M2) feature maps. The alignments using Spe-
cArray were canceled after 24 hours with an estimated
remaining runtime of more than two weeks. SpecArray
performs all pairwise map alignments and seems inappli-
cable to this kind of metabolomics data. In contrast,
XCMS computes the alignment of the M1 and M2 in less
than seven minutes. OpenMS requires 13 minutes for the
determination of the metabolomics consensus maps.
MZmine and XAlign both result in a high runtime of more
than one hour for the quite complex metabolomics data
sets.

msInspect has a runtime of only half an hour, but with
very low recall and precision values. We were unable to
obtain good results on the data sets M1 and M2 using
msInspect with parameters suggested by the optimizer as
well as different values chosen manually. In most cases
the automatic choice of "optimized" parameters did not
lead to better alignment results than manually chosen
"good" values. Furthermore, we observed that a different
order of the input files leads to different results with msIn-
spect. Placing the feature list with the highest number of
features on top of the list seems to give the best results.

Another outcome of our evaluation is that it is hard to pre-
dict whether XCMS map alignment should be used with

or without retention time correction, and that the charac-
teristics of the correction need to be checked.

4 Discussion and conclusion
The automatic alignment of LC-MS data sets is an impor-
tant step in most analysis pipelines for metabolomics and
proteomics high-throughput experiments. Algorithms
that perform this task efficiently and accurately have a
large impact not only on basic research in biology, but
also on more applied questions such as biomarker discov-
ery and drug research in general. Due to the importance of
this step and the multitude of different approaches a
meaningful standard data set and a sophisticated scoring
method are needed. We offer both proteomics (P1, P2)
and metabolomics (M1, M2) benchmark data sets, as well
as proper quality measures (PrecisionAlign, RecallAlign) and
an evaluation procedure. On the basis of these data sets
we have assessed the performance of six freely available
alignment tools.

Perhaps surprisingly, we observed that in many cases the
largest part of the systematic deviation of retention time in
our data sets could have been corrected by a simple shift
without any further scaling or non-linear warping at all.
The remaining error is very similar to statistical noise, not
correlated among neighboring consensus features, and
further scan-wise corrections of retention time will face
the risk of overfitting. This suggests that the choice of the

Retention time deviations of data set M2Figure 6
Retention time deviations of data set M2. Box-whiskers-plot showing the retention time deviations in the ground truth 
of data set M2.
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warping function is less important than the following
clustering step (i. e., the correction of the retention times
of the individual features), as this will establish the actual
consensus features.

The implemented methods are based on a variety of algo-
rithmic principles with complementary strengths and
weaknesses [13]. Combining them into "hybrid"
approaches seems to be a promising direction for future
research. However, such a project requires a long-term
commitment and, if possible, several software developers
are necessary. We expect to see a consolidation in the area
in the future with a tendency toward open source frame-
works such as Bioconductor or OpenMS.

Recently, the Association of Biomolecular Resource Facil-
ities (ABRF) has organized a collaborative study focusing

on evaluating the ability of proteomics laboratories to
determine the identities of a complex mixture of proteins
present in a single mass spectral data set, as a follow-up to
an earlier study in which the actual samples were distrib-
uted [39]. This indicates the growing attention paid to
data processing versus "wet-lab" techniques in the pro-
teomics field. Similar competitions should be organized
for all the other aspects of a typical LC-MS data processing
pipeline, including the LC-MS map alignment problem.
The experience from the plasma proteome project [40]
has shown that it is difficult to assess the performance if
many aspects change simultaneously.

We would like to encourage other MS software developers
(including commercial vendors) to use our benchmark
data for evaluation. Further benchmarks are also highly
welcome, e. g. identical samples run at different laborato-

Retention time deviations in the ground truth of three randomly chosen files from data set M2Figure 7
Retention time deviations in the ground truth of three randomly chosen files from data set M2. Loess regression 
curves were superimposed for better visualization.
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Result OverviewFigure 8
Result Overview. Average alignment recall values for the results on the four data sets P1, P2, M1 and M2. XCMS was evalu-
ated without(1) and with(2) application of retention time correction. The detailed results are shown in Tables 3, 4 and 6.
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Table 3: Alignment recall and precision results for the proteomics data set P1.

msInspect MZmine OpenMS SpecArray XAlign XCMS
without retention time with correction

fraction 00
RecallAlign 0.52 0.75 0.86 0.61 0.82 0.72 0.62

PrecisionAlign 0.38 0.81 0.86 0.61 0.82 0.54 0.58
fraction 20

RecallAlign 0.56 0.87 0.92 0.62 0.85 0.88 0.81
PrecisionAlign 0.45 0.88 0.92 0.62 0.85 0.84 0.80
fraction 40

RecallAlign 0.63 0.87 0.94 0.75 0.87 0.92 0.81
PrecisionAlign 0.48 0.90 0.94 0.75 0.87 0.85 0.80
fraction 60

RecallAlign 0.73 0.79 0.96 0.71 0.87 0.91 0.78
PrecisionAlign 0.54 0.84 0.96 0.71 0.87 0.80 0.75
fraction 80

RecallAlign 0.70 0.92 0.96 0.74 0.90 0.94 0.89
PrecisionAlign 0.57 0.94 0.96 0.74 0.90 0.88 0.88

fraction 100
RecallAlign 0.82 0.92 0.94 0.77 0.96 0.95 0.96

PrecisionAlign 0.56 0.94 0.94 0.77 0.96 0.89 0.96
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Table 4: Alignment recall and precision results for the proteomics data set P2.

msInspect MZmine OpenMS SpecArray XAlign XCMS
without retention time with correction

fraction 00
RecallAlign 0.23 0.77 0.77 0.07 0.65 0.70 0.58

PrecisionAlign 0.07 0.6 0.65 0.05 0.49 0.31 0.44
fraction 20

RecallAlign 0.67 0.87 0.92 0.57 0.84 0.89 0.86
PrecisionAlign 0.24 0.71 0.77 0.42 0.70 0.55 0.66
fraction 40

RecallAlign 0.44 0.79 0.76 0.60 0.71 0.72 0.72
PrecisionAlign 0.26 0.76 0.74 0.41 0.69 0.56 0.69
fraction 80

RecallAlign 0.73 0.61 0.80 0.65 0.58 0.64 0.49
PrecisionAlign 0.34 0.56 0.70 0.44 0.56 0.50 0.45

fraction 100
RecallAlign 0.82 0.80 0.90 0.63 0.85 0.95 0.85

PrecisionAlign 0.39 0.65 0.75 0.44 0.69 0.65 0.69

Table 5: Wall-clock runtime for the proteomics data sets P1 and P2 in minutes.

Data set msInspect MZmine OpenMS SpecArray XAlign XCMS
without retention time with correction

P1 1 0.67 1.6 1.85 1.15 0.53 0.90
P2 0.75 1.22 0.36 5.19 0.29 0.33 0.49

Total 1.75 1.89 1.96 7.04 1.44 0.86 1.39

Table 6: Alignment recall and precision results for the metabolomics data sets M1 and M2

Data set msInspect MZmine OpenMS SpecArray XAlign XCMS
without retention time with correction

M1
RecallAlign 0.27 0.89 0.87 - 0.88 0.98 0.94

PrecisionAlign 0.46 0.74 0.69 - 0.70 0.60 0.70
M2

RecallAlign 0.23 0.98 0.93 - 0.93 0.97 0.98
PrecisionAlign 0.47 0.84 0.79 - 0.79 0.58 0.78

Table 7: Wall-clock runtime for the metabolomics data sets M1 and M2 in minutes

Data set msInspect MZmine OpenMS SpecArray XAlign XCMS
without retention time with correction

M1 12 20 4.4 - 51 0.9 1.4
M2 24 44 8.7 - 35 5.5 5.8

Total 36 64 13.1 - 86 6.4 7.2
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ries under "identical" conditions, or even on MS equip-
ment from different vendors. We will collect future results
and contributions upon request on http://msbi.ipb-
halle.de/msbi/caap.
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ABSTRACT: Liquid chromatography coupled to mass spectrometry is routinely used for metabolomics experiments. In contrast
to the fairly routine and automated data acquisition steps, subsequent compound annotation and identification require extensive
manual analysis and thus form a major bottleneck in data interpretation. Here we present CAMERA, a Bioconductor package
integrating algorithms to extract compound spectra, annotate isotope and adduct peaks, and propose the accurate compound
mass even in highly complex data. To evaluate the algorithms, we compared the annotation of CAMERA against a manually
defined annotation for a mixture of known compounds spiked into a complex matrix at different concentrations. CAMERA
successfully extracted accurate masses for 89.7% and 90.3% of the annotatable compounds in positive and negative ion modes,
respectively. Furthermore, we present a novel annotation approach that combines spectral information of data acquired in
opposite ion modes to further improve the annotation rate. We demonstrate the utility of CAMERA in two different, easily
adoptable plant metabolomics experiments, where the application of CAMERA drastically reduced the amount of manual
analysis.

Mass spectrometry (MS) is one of the dominant analysis
methods for metabolomics experiments. In metabolite

profiling studies, a large number of complex samples are
analyzed. Typically, samples are separated prior to ionization
and MS-based detection, mostly chromatographically either by
gas chromatography (GC) or liquid chromatography (LC). An
overview of techniques and applications was given by Dunn.1

Depending on the sample preparation method and the analyzed
organism, samples contain anywhere between dozens to
thousands of compounds, e.g., the estimated number of
metabolites in Escherichia coli2 is just above 1000, in human
serum3 above 4000, and 5000 to 25000 for higher plants.4 The
coverage within an experiment is much lower due to analytical
limitations.
The typical metabolomics data processing pipeline first

performs a feature detection step. The term feature describes a
two-dimensional bounded signal: a chromatographic peak

(retention time) and a mass spectral peak (m/z). Several
software packages exist for feature detection, for example, the
closed-source but freely available MetAlign,5 or frameworks
with open-source licenses, such as OpenMS,6 MZmine,7 and
XCMS.8 Other packages, some of them specific for LC/MS-
based proteomics, have been reviewed elsewhere.9

Upon ionization, an individual chemical compound gives rise
to one or more ion species, which can be observed in the same
mass spectrum. Those ion species include isotopologue ions,
fragment ions, and, in particular for electrospray ionization
(ESI), adduct and cluster ions. A summary can be found in
Keller et al.10
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For biological interpretation, users are mainly interested in
the compounds, rather than the redundancy of the different ion
species, which induce an undesired bloat in the number of
observed features, e.g., for an Arabidopsis thaliana seed extract
Bottcher et al.11 reported 434 features for 180 compounds. The
complexity of both the downstream statistical analysis and
subsequent compound identification especially in untargeted
metabolite profiling experiments is unduly increased.
To address these problems, two additional processing steps

are desired for LC/MS data analysis: (1) grouping all features
which are derived from the same analyte, and (2) annotation of
the type of ion species. The first step alone achieves both a data
reduction and a first estimation of the total number of
detectable compounds in a MS analysis. Such an estimate can
be used for the optimization of the analytical protocol, similar
to Yanes et al.12 where the authors used the feature number as
optimization criterion. Both steps together can reveal quasi-
molecular ions, whose annotation is essential for further
metabolite identification, such as elemental composition
calculation based on accurate mass and isotope pattern or
tandem MS analysis.
The authors of Brown et al.13 have developed a workflow

using the retention time, m/z-difference, and intensity
correlation across samples to group related features, both
reducing the number of relevant features down to 50% and
matched 60% of the remaining features against the Manchester
Metabolome Database (MMD). Intensity correlation across
samples is also used by Alonso et al.,14 and a data-reduction of
86% is reported.
Alternatively, similarity across chromatographic peak shapes

allows the grouping of related features. Ipsen et al.15 use a χ2

test to check for exact coelution. In case of LC/MS data
acquired on TOF instruments with a time-to-digital converter,
the test provides p-values for the (un)certainty of coelution.
The test works best with low ion counts, and the instruments’
detector saturation correction had been disabled for this
evaluation. ACD/IntelliXtract16 is a commercial software
solution to cluster features based on their retention time and
the annotation of ion species according to a given rule table.
Both correlation across samples and peak shape analysis

techniques are used in the R package ESI.17 A fixed m/z-
difference rule table is used for annotation and detection of
isotopic peaks. The same approach was later used by Scheltema
et al.18 for high-resolution LC/MS data. By explicitly removing
features exhibiting both similar peak shapes and intensity
correlation across samples, they achieved a 60% size-reduction
of the feature list.
In this paper we present the CAMERA package, which

integrates multiple methods for grouping related features and
uses a dynamic rule table for the annotation of ion species. We
evaluate the performance of CAMERA with several validation
experiments and demonstrate the analysis of two metabolomics
experiments.

■ THEORY, ARCHITECTURE, AND ALGORITHMS
The analysis workflow with CAMERA is shown in Figure 1 and
numbering (1−5) describes the typical workflow order. In the
next paragraphs the steps are explained in more detail.
Creating Compound Spectra Based on Retention

Time ①. The initial creation of compound spectra has to be
fast, if dozens to hundreds of samples with thousands of
features have to be processed. We select the most intense
feature from the feature table not yet assigned to a compound

spectrum and calculate a feature specific retention time
window, typically 60% of the chromatographic peak fwhm
(full width at half-maximum) around the centroid. All features
within this range are then included into a new compound
spectrum. This step is repeated until all features are assigned to
a compound spectrum. The most intense feature usually has the
highest signal-to-noise (S/N) ratio and often provides the most
accurate estimate of the centroid and retention time.

Isotopic Peak Detection and Charge State Calculation
②. The detection of isotopic patterns is required to deduce the
charge states. Within each compound spectrum we calculate a
pairwise m/z distance matrix and detect isotopes which exhibit
a m/z-difference of 1.0033/z19 and also pass an additional
intensity ratio check, described in detail in the Supporting
Information, section S1.

Compound Spectrum Refinement Graph ③. Depend-
ing on the chromatographic separation, the resulting compound
spectra might still encompass features of two or more closely
coeluting compounds. We use a graph-based algorithm to
integrate three more cues for an improved separation (see
Figure 2 for an example).
First, we use the chromatographic peak shape similarity.

CAMERA uses the raw data to obtain the extracted ion
chromatograms (EIC) for each feature and calculates a
pointwise pearson correlation of the intensities between the
chromatographic peak boundaries for all pairs of features in a
compound spectrum. CAMERA uses the EICs from the sample
which had the most intense feature, often the one with the best
S/N ratio. Alternatively, the peak shape correlation can be
performed for all samples in the experiment. Second, we
include the pearson correlation of intensities across all samples
for each pair of features in a compound spectrum. Finally we
encode the isotope relationship between two features detected
in step ② as 1, and 0 otherwise. These three values are
combined as shown in eq 1.

∑= + +
=

x y
N

score( , ) CAS ISO
1

CPSxy xy
i

N

ixy
1 (1)

The score which represents the relationship between two
features x and y is the combination of the intensity correlation
across samples (CAS) for these two features, the binary

Figure 1. The CAMERA workflow for LC/MS data analysis. Raw data
files are preprocessed with XCMS (upper part) and the resulting
feature lists are passed to CAMERA. The feature grouping steps
integrate retention time ① and chromatographic peak shape ③.
Features are identified as isotopic peak ②, and adducts are annotated ④
using a dynamic rule table. Optionally, the annotation can be verified
⑤ with LC/MS data acquired in the opposite ion mode.
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encoded presence or absence of an isotope relationship, and the
peak shape correlation (CPSi) calculated for sample i.
In a graph, all features in a compound spectrum, which could

still include features of two or more closely coeluting
compounds, are represented as nodes, connected by edges
with this score as edge weight. Several algorithms for graph
separation have been developed, and we employ the “Highly-
connected-subgraphs” (HCS20) from the R package RBGL or
the “label propagation community” (LPC21) from the R
package igraph. After the graph clustering, the initial compound
spectrum is split into one refined compound spectrum for each
subgraph. Figure 2 shows an example for a relationship graph
before and after separation. Both coeluting compounds were
separated completely.
Annotation of Adducts, Common Neutral Losses, and

Cluster-Ions ④. For ESI, uncharged compounds are ionized
through adduct formation with cations or anions or abstraction
of protons. In addition, neutral losses occur leading to the
formation of fragment ions. An annotation of these ion species
reduces the number of features which have to be considered
further in the downstream analysis. From at least two annotated
ions, the molecular mass can be calculated, which is necessary
to search in compound libraries or to calculate the elemental
composition of the neutral compound.
CAMERA uses a dynamic rule set, which is created from the

combination of lists of observable ions. Each rule describes a
specific ion species with the mass difference to the molecular
mass, ion charge, and the number of molecules the ion species
contains. All m/z-differences within a compound spectrum are
matched against the dynamic rule set. Matches with the same

molecular mass hypothesis (below a given relative error) are
combined into hypothesis groups. If no peaks can be explained
via the rules, a reliable annotation is impossible. CAMERA does
not use ad-hoc heuristics such as assuming that the most
intense feature in a spectrum is the [M + H]+-ion. Afterward,
conflicting hypothesis groups are resolved as described in the
Supporting Information, section S2.

Combining Data from Opposite Ion Modes for
Verification ⑤. In metabolite profiling, samples are often
measured in both positive and negative ion modes to increase
the metabolite coverage. Although some compounds ionize in
only one mode, many compounds are detectable in both. In
these cases, the complementary ions provide further evidence
for the quasi-molecular ion.
CAMERA includes a novel annotation verification algorithm

using compound spectra measured in both ion modes. The
algorithm calculates m/z-differences for all features of
corresponding compound spectra from both modes within a
retention time window. These differences are matched against a
second, cross-polarity rule table. If a cross-polarity rule matches,
it will either (1) annotate two previously unannotated ions, e.g.,
[M + H]+ and [M − H]−, or (2) verify an existing annotation,
or (3) conflict with an existing annotation. In the latter case,
the existing annotation is replaced. The cross-polarity rule table
should only contain common and trusted combinations
because these rules can override the single-polarity annotations.

Documentation and Availability. CAMERA is imple-
mented in R, the packages for Windows (both 32 and 64 bit),
Mac OS, and Linux are available from the Bioconductor
repository22 since release 2.4 in 2009.

Figure 2. Schematic clustering of low-intensity features initially grouped by retention time into a single compound spectrum. Top left: the features,
initially grouped by retention time. Top right: the EICs of all features. The labels A and B correspond to the result after graph clustering. Bottom left:
the scoring matrix, used as edge weights in the graph. Bottom right: the relationship graph, where edges indicate an above-threshold score. The node
labels include the ion species annotation, and the node color shows the graph separation after refinement with the LPC algorithm (A = blue, B =
red).
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■ EXPERIMENTAL SECTION

Reagents and Materials. All solvents used for sample
preparation and analyses were of LC/MS-grade quality
(CHROMASOLV, Fluka). A list of standard compounds
used for the recovery experiment including sum formulas,
molar masses, PubChem IDs and suppliers can be found in the
Supporting Information, section S3. L-Tryptophan-2′,4′,5′,6′,7′-
d5 (98%) was purchased from Cambridge Isotope Laboratories.
Arabidopsis thaliana (ecotype Col-0) was grown for 6 weeks on
a soil/vermiculite mixture (3/2) in a growth cabinet with 8 h
light (150 μE m−2s−1) at 22 °C and 16 h dark at 20 °C. Seeds
of Brassica napus, Brassica oleracera, and Brassica rapa were
kindly provided by D. Strack, Department of Secondary
Metabolism, Leibniz Institute of Plant Biochemistry, Halle.
All other seeds were obtained from local distributors.
Procedures for extraction of leaf and seed material are provided
in the Supporting Information, section S4.
Feeding Experiments. Plants were sprayed with 5 mM

aqueous silver nitrate solution 1 h after the beginning of the
light period. After 5 h, 25 rosette leaves originating from 5
individual plants were excised at the petiole and immersed in
PCR tubes containing either 200 μL of water or 200 μL of an
aqueous [ring-D5]-Trp solution (1 mM), respectively. Leaves
were incubated for an additional 2 days in a growth cabinet
under the same conditions as described above. Individual leaves
of the same treatment were pooled, frozen in liquid nitrogen,
and stored at −80 °C until analysis.
Ultraperformance Liquid Chromatography (UPLC)/

ESI-Quadrupole Time-of-Flight (QTOF)MS Analysis.
Chromatographic separations were performed on an Acquity
UPLC system (Waters) equipped with a HSS T3 column (100
mm × 1.0 mm, particle size 1.8 μm, Waters) applying the
following binary gradient at a flow rate of 150 μL min−1: 0−1
min, isocratic 95% A (water/formic acid, 99.9/0.1 (v/v)), 5% B
(acetonitrile/formic acid, 99.9/0.1 (v/v)); 1−16 min, linear
from 5 to 95% B; 16−18 min, isocratic 95% B; 18−20 min,
isocratic 5% B. The injection volume was 2.7 μL (full loop
injection). Eluted compounds were detected at a spectra rate of
3 Hz from m/z 100−1000 using a MicrOTOF-Q-I hybrid
quadrupole time-of-flight mass spectrometer (Bruker Dalton-
ics) equipped with an Apollo II electrospray ion source in
positive and negative ion modes. We made sure that the
concentration of the samples do not lead to saturation of the
MS detector system, which is known to cause shifts of m/z, and
retention time centroids of the features leads to truncated
chromatographic peak profiles and distorted isotopic patterns.
For detailed instrument settings and acquisition of collision-
induced dissociation mass spectra see the Supporting
Information, section S4.
LC/MS Data Preprocessing. Processing of raw data was

performed with the XCMS package.8 For the feature detection,
we used the XCMS centWave23 algorithm with the following
parameters: snthresh = 6, ppm = 30, peakwidth = (5,12),
prefilter = (2,200). The feature alignment was performed with
the standard group.density algorithm from XCMS with bw = 3
and mzwid = 0.015. Afterward, each data set was processed
with CAMERA functions in the following order groupFWHM,
f indIsotopes, groupCorr, and f indAdducts using standard
parameters. The Supporting Information, section S9 provides
runtime measurements of CAMERA.

■ RESULTS AND DISCUSSION

We evaluated CAMERA with several experiments. First, using
standards we analyzed the performance of compound spectrum
creation and success rate of molecular mass annotation. Then,
we processed the output from two different experiments, where
the CAMERA results were used to perform targeted profiling of
phenolic choline esters and tryptophan-derived metabolites,
respectively.

Evaluation on Known Compound Mixture. For the
evaluation we used a mixture of 39 known compounds (short,
MM39), covering a broad mass range between 161 and 822 Da
and different physicochemical properties (see the Supporting
Information, section S3). The mixture was measured as pure
solution and spiked in different concentrations (20, 5, 1, and
0.2 μM) into methanolic extracts of Arabidopsis thaliana leaves
to simulate a realistically complex matrix.
The first evaluation focuses on the extraction of compound

spectra, which requires a data set and a gold standard of true
positive and true negative cases, i.e., pairs of peaks which should
or should not be part of the same compound spectrum. Because
it is very tedious to manually create a gold standard of a
sufficiently large number of features from different compounds
which coelute, we altered the retention times in the raw data
files to artificially force “coelution” for this evaluation. We used
only those peaks in the compound spectra of the MM39 for
which a reliable annotation exists, to rule out false positives and
randomly collected peaks from the remaining file with
unrelated retention times to assemble a negative set. These
data sets allowed us to calculate the precision and recall for the
collection of compound spectra. The default peak shape
correlation threshold of 0.75 results in a recall of 0.93, with a
precision of 0.48. We also analyzed the influence of different
acquisition parameters (scan rates varied from 0.5 to 6 Hz).
Precision and recall had a standard deviation of 0.07 and 0.03,
respectively, across the different conditions, see the Supporting
Information, section S5 for details, including the ROC curves.
We then evaluated how successfully CAMERA could

annotate the different ion species from a compound, which is
required for the calculation of the molecular mass. We created
baseline values for all annotatable compounds: we define an
annotatable compound as observed to produce (1) the
protonated molecular ion, (2) its first isotopic peak (required
to calculate the charge state), and (3) the most prominent
adduct ion (observed at 20 μM). This strategy serves as the
gold standard to determine the number of annotatable
compounds in the MM39 measurement; 35 out of 39
compounds pass the above requirements for the 20 μM
positive mode measurement. If the mixture is diluted 2 orders
of magnitude to 0.2 μM, many peaks drop below the detection
limit and only 10 compounds remain annotatable.
CAMERA was able to detect the correct molecular mass in

90% of all annotatable compounds in either the positive or
negative mode across all concentrations. After combining
results from both ionization modes, CAMERA correctly
determined molecular mass for all annotatable compounds
and additionally for four compounds that were not on the gold
standard list. Because the manual assignment of corresponding
features in both positive/negative mode data is quite
cumbersome, the combined annotation promises to annotate
more compounds than a human operator could do on a routine
basis.

Analytical Chemistry Article

dx.doi.org/10.1021/ac202450g | Anal. Chem. 2012, 84, 283−289286

DOI:10.1021/ac202450g Reprinted with permission. © 2011 American Chemical Society.

https://doi.org/10.1021/ac202450g


It is remarkable that the complex leaf matrix does not have an
observable negative effect on the annotation performance.
Table 1 shows the results for the individual concentrations. On
closer inspection, the missing molecular mass annotations have
few common causes: they occurred either because the
compound spectrum did not contain enough explained features
or, in other cases, several hypotheses had the same precedence
scores and we did not count those as successful. For some
compounds the compound spectra contained only the
molecular ion and fragment ions but no further adducts. In
this case, the compound cannot be annotated directly, unless
the neutral loss is added to the rule set. The Supporting
Information, section S10 shows an overview of the frequency of
annotated adducts we observed.
In the measurements with different scan rates, we found that

CAMERA only missed up to two correct annotations in those
cases where either an essential (albeit low abundant) feature
was not found by the feature detection algorithm or features
were assigned to a different compound spectrum, especially in
the case of lower scan rates where chromatographic peaks were
covered by only a few scans. This suggests that CAMERA can
also be used for LC/MS measurements with a low scan rate,
e.g., on Orbitrap instruments at high resolution.
Case Study I: Screening for Phenolic Choline Esters in

Brassicaceous Seeds. In this section we use untargeted LC/
MS profiles of seeds from some Brassicacea, and demonstrate
how CAMERA can be used to perform a neutral loss screen for
phenolic choline esters as a targeted analysis strategy on a TOF
instrument.
Phenolic choline esters accumulate in considerable amounts

in seeds of many plant species within the Brassicacea24 family.
Representatives of this compound class structurally charac-
terized so far include substituted cinammoyl and benzoyl
cholines, which are further diversified by glycosylation or
oxidative coupling to monolignols. A total of 30 phenolic
choline esters could be identified in seeds of the model plant
Arabidopsis thaliana and the oil crop Brassica napus using LC/
ESI-tandem mass spectrometry.25 A study of the fragmentation
behavior of phenolic choline esters under positive-ion electro-
spray-CID conditions revealed a loss of trimethylamine as the
initial fragmentation step (see the Supporting Information,
section S6). The formation of the corresponding fragment ion
[M − C3H9N]

+ requires different collision energies depending
on the compound. However, it is also inducible by in-source
CID allowing a systematic screening for phenolic choline esters
even by single-stage MS. For that purpose, the neutral loss
detection has to be performed in silico after data acquisition by
searching for a given m/z-difference between pairs of peaks
within a set of extracted compound spectra.
We prepared extracts from seeds of 12 different Brassicacea

species and cultivars and analyzed each extract by UPLC/
ESI(+)-QTOFMS at four different in-source CID voltages (0,

30, 60, and 90 V) to induce fragmentation of a broad range of
phenolic choline esters. All 48 raw data files were preprocessed
with XCMS with snthresh = 5 and ppm = 20, other parameters
analogous to the evaluation section. Because of the large
number of chromatographically unresolved compounds eluting
near the void time, compounds with a retention time below 45
s were excluded from further analysis. Afterward CAMERA was
used to create the compound spectra. Each compound
spectrum was then screened for peak pairs displaying a m/z-
difference of 59.074 ± 0.015 corresponding to a neutral loss of
trimethylamine. In addition, we included a m/z-difference of
221.126 ± 0.015, related to a successive loss of trimethylamine
and anhydrohexose (162.053 Da), because [M − C3H9N]

+-
type ions formed from 4-O-hexosylated phenolic choline esters
are known to readily eliminate their hexose moiety.25 After
alignment of positively screened peak pairs, the elimination of
isotopic peak pairs, and application of a reasonable intensity
threshold (1000 counts), we detected a total of 90 putative
choline esters. A data matrix including m/z ratios of proposed
molecular ions, retention times, and intensities can be found in
the Supporting Information, section S6. It should be noted, that
the number of putative candidates is rapidly increasing when
tolerance thresholds for m/z-differences were increased.
Therefore, use of mass analyzers providing adequate resolution
and mass accuracy, such as TOFMS, is mandatory for this type
of screening approach in order to ensure a highly specific
neutral loss detection. In order to evaluate the obtained
candidate list, previously published analytical data of choline
esters from seeds of Arabidopsis thaliana and Brassica napus
were used for compound annotation.25 Out of 31 choline esters
described recently, we were able to retrieve 22 from our list.
Seven choline ester were consistently detected across all
samples. Five of them could be annotated (Table 2), including

sinapoylcholine, which is known to occur as a major phenolic
choline ester in seeds of numerous Brassicacea species.24

Although a rigorous evaluation is not possible because the
choline ester composition of analyzed seeds is unknown,
recovery of the majority of compounds described in the
literature demonstrates the usability of CAMERA for such a

Table 1. Calculation of Molecular Mass for the MM39 Compound Mixture Analyzed by UPLC/ESI-QTOFMS in Positive and
Negative Ion Mode, Either in Pure Solvent or Spiked at Different Concentrations into a Arabidopsis thaliana Leaf Extracta

in solvent spiked into leaf extract overall

20 μM 20 μM 5 μM 1 μM 0.2 μM

ESI(+) 32 (35) 29 (32) 24 (28) 18 (21) 10 (10) 113 (126) 89.7%
ESI(−) 15 (19) 18 (18) 15 (16) 6 (6) 2 (3) 56 (62) 90.3%
ESI(±) 36 35 28 23 15 137

aThe number of annotatable compounds is shown in brackets. In the combined case, the annotations of the positive ion mode are verified and
augmented with the negative ion mode data.

Table 2. Five Phenolic Choline Esters Found and Annotated
in All 12 Brassicaceous Seedsa

m/z tr [s] NL elemental composition annotation

280.15 275 −59 C15H22NO4
+ FC

310.16 279 −59 C16H24NO5
+ SC

458.21 403 −59 C25H32NO7
+ FC(5-8′)G

472.21 221 −221 C22H34NO10
+ SC 4-O-Hex

476.23 303 −59 C25H34NO8
+ FC(4-O-8′)G

aNL, neutral loss; FC, ferulolycholine; SC, sinapoylcholine; G,
guaiacyl; Hex, hexose.
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screening approach. An additional advantage of this approach
compared to triple quadrupole MS-based neutral loss scanning
techniques is that any number of neutral losses can be
simultaneously detected after data acquisition, allowing screen-
ing for a broad range of compound classes.
Case Study II: Identification of Trp-Derived Metabo-

lites from Arabidopsis thaliana after [ring-D5]-Trp
Feeding. In vivo administration of isotope-labeled substrates
combined with mass spectrometry-based analysis represents a
powerful tool to investigate biochemical pathways. The
detection of an isotope-labeled substrate incorporated into a
known metabolite allows one to deduce a biosynthetic
relationship between the fed precursor and the metabolite
under study. Nontargeted screening for metabolites and their
isotopologues after partial isotope-labeling of an endogenous
precursor pool has been applied to explore unknown
biosynthetic pathways and to discover novel intermediates
and products.26

To demonstrate the applicability of the CAMERA package
for such an analytical approach, the metabolic fate of the
aromatic amino acid Trp was studied in the model plant
Arabidopsis thaliana using [ring-D5]-Trp as the isotope-labeled
tracer. In Arabidopsis, Trp represents an important precursor
for a variety of secondary metabolites including the
phytoanticipin indol-3-ylmethyl glucosinolate and the phytoa-
lexin camalexin (3-thiazol-2′-yl-indole).
Arabidopsis leaves were sprayed with silver nitrate to induce

expression of Trp-metabolizing enzymes, detached from plants
and fed with [ring-D5]-Trp or water as the control. Methanolic
extracts of label-fed and control leaves were analyzed in
duplicate by UPLC/ESI-QTOF-MS in the positive and
negative ion modes. In order to identify Trp-derived
metabolites, the raw data was processed with XCMS and
CAMERA to extract compound spectra and annotate isotopic
peaks within these spectra. Afterward, deisotoped compound
spectra extracted from data sets of label-fed leaves were
screened for feature pairs that exhibit an m/z-difference of
5.031, reflecting the exchange of five hydrogen atoms by
deuterium. Since deuterium labeling can slightly shift retention
times, we searched for these feature pairs between compound
spectra within a sliding retention time window of 8 s. For this
purpose, we created a dedicated script using CAMERA
functionality for the positive/negative polarity combination.
We also included the m/z-difference of 4.025 because indole
ring hydroxylation (a frequently observed transformation in
Trp metabolism in Arabidopsis) results in a loss of one of the
five deuterium labels. The retention time for Trp-candidates

was restricted between 45 and 600 s. All features related to
unlabeled Trp-metabolites have to be detectable in both label-
fed and control samples whereas the labeled ones in label-fed
samples only, see Figure 3. After those filtering steps, 46
putative Trp-derived metabolites could be identified in the
positive ion mode and 34 in the negative ion mode.
Corresponding candidate lists including compound annotation
can be found in the Supporting Information, section S7.
To verify the obtained candidate lists, tandem mass spectra

of quasimolecular ions of putative pairs of nonlabeled and
labeled metabolites were acquired and compared (Supporting
Information, section S8). Because of low peak intensities or low
incorporation rates, only 19 candidate pairs could be rigorously
verified following this strategy. Together with literature data, a
total of 23 Trp-metabolites could be identified, of which 20
were already known from the literature. This case study clearly
demonstrates applicability of CAMERA for such a screening
approach, even in case of a retention time shifts when using
deuterium labels.

■ CONCLUSIONS

The CAMERA package is designed to postprocess XCMS
feature lists and to collect all features related to a compound
into a compound spectrum. For this, a set of algorithms has
been implemented in CAMERA, such as the fast retention
time-based grouping but also a novel, graph-based algorithm to
integrate the peak shape analysis, isotopic information, and
intensity correlation across samples. The automatic sample
selection avoids poor results if compounds have a low intensity
(or are absent) in some samples. The ion species annotation
uses a dynamic rule set and a new strategy to combine spectral
information from samples measured in the positive and
negative ion modes, resulting in both more and more reliable
ion species annotation. We evaluated the reliability of the
molecular mass calculation and found a 90% success rate for
MM39 in different concentrations, both pure and after spiking
the mixture at various concentrations into a complex
Arabidopsis thaliana leaf extract.
Finally, we performed two experiments, demonstrating

advanced analyses which can be performed with CAMERA.
The first case study essentially performed a neutral loss screen
for putative phenolic choline esters using multiple in-source
voltages to induce fragmentation. In total, 90 putative choline
esters were detected. The second case study demonstrated the
search for mass differences as a result of [ring-D5]-Trp feeding
in Arabidopsis thaliana leaves. CAMERA was used to detect
pairs of isotopologue features indicating 46 Trp-derived

Figure 3. Identification of the phytoalexin camalexin as Trp-derived metabolite in silver nitrate-treated /Arabidopsis thaliana/ leaves using [ring-D5
]-Trp as the isotope-labeled tracer. Extracted ion chromatograms (EICs) corresponding to the protonoted molecular ions of camalexin (black) and
D5 -camalexin (red) obtained from UPLC/ESI(+)-QTOFMS analyses of extracts of [ring-D5 ]-Trp-fed leaves (A) and control leaves (B). Extracted
compound spectra of camalexin and its isotopologue are shown in the right picture (C).
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metabolites. In addition to 20 already known compounds, 3
new ones were found and verified with tandem MS. Both
studies can easily be adopted to other compound classes and
metabolites. The CAMERA packages for Windows, Mac OS,
and Linux, manuals, and tutorials are freely available from the
Bioconductor repository and its mirrors under the open source
GPL license.
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Abstract: Mass spectrometry is a key analytical platform for metabolomics. The precise quantification
and identification of small molecules is a prerequisite for elucidating the metabolism and the
detection, validation, and evaluation of isotope clusters in LC-MS data is important for this task.
Here, we present an approach for the improved detection of isotope clusters using chemical prior
knowledge and the validation of detected isotope clusters depending on the substance mass using
database statistics. We find remarkable improvements regarding the number of detected isotope
clusters and are able to predict the correct molecular formula in the top three ranks in 92% of the
cases. We make our methodology freely available as part of the Bioconductor packages xcms version
1.50.0 and CAMERA version 1.30.0.

Keywords: isotope cluster; software; raw data

1. Introduction

The elucidation of the metabolism provides deep insights into complex processes in the cell such
as responses to nutrition deficiency, pathogen exposure, and drought stress in plants or the implications
of mutations, age, and tissue development in animals. Mass spectrometry is a key technology for the
identification and quantification of metabolites in biological samples. After measurement using mass
spectrometers, feature detection algorithms extract basic properties about peaks in the raw data such
as retention time and peak height. The set of properties describing single peaks are called features and
the exhaustive extraction of features is a prerequisite for downstream analyses such as metabolite
identification and quantitative comparisons between samples.

The feature detection algorithm centWave in the R package xcms version 1.50.0 [1] adapts the
following procedure. First, a set of regions of interest (ROIs) is identified in the ROI identification step,
where ROIs are two-dimensional intervals in the mass-to-charge (m/z) dimension and the retention
time dimension containing potential signals. The set of ROIs is examined in the ROI examination step
in order to validate, localize, and quantify features. In the ROI identification step, a heuristic method
is applied to the raw data to substantially reduce the processing time of the more computationally
intensive ROI examination step. This heuristic method aims at a high specificity at the cost of sensitivity,
especially in case of features with a low signal-to-noise ratio. Consequently, potentially important
features in the raw data are not detected and the information behind these features cannot be used in
downstream analyses.

Most chemical elements are present in different variants called isotopes. Though chemically
almost equivalent, the isotopes of a particular chemical element differ in mass and are thus well
distinguishable using mass spectrometry. The isotopes of each element have a known natural
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abundance and the distribution of isotopes across all atoms of a molecule results in a set of related
signals. The features extracted from these signals are called isotopologue features and the set of
all isotopologue features from one analyte is called isotope cluster also known as isotope pattern.
Unfortunately, many of these signals are below the detection limit which results in the underestimation
of isotopologue features.

Based on isotope clusters, it is possible to determine the charge state, abundance, and elemental
composition of the measured ion with high precision. The arrangement of isotopologue features to
isotope clusters leads to a considerable reduction of data complexity facilitating the interpretation
of data sets. It has been demonstrated that the analysis of isotope clusters leads to an increased
confidence and precision of comparative analyses [2]. Isotope clusters from precursor ions and tandem
mass spectrometry are pivotal for the determination of the molecular formula using software like
SIRIUS [3], Rdisop [4], and others [5–12]. The molecular formula strongly facilitates the identification
of molecules known as a major bottleneck in metabolomics [13,14] and has been demonstrated
metabolome-scale [15]. There are approaches in metabolomics and proteomics which use isotope
clusters to improve peak picking [16–18]. In addition, isotope clusters have been used as a valuable
source for the assessment of the data quality [19] and for database searches with high precision [20].

The detection of isotope clusters is usually performed after peak picking by consideration of
coeluting features separated by certain distances in the m/z dimension. However, a validation of
putative isotope clusters in terms of the removal of leading peaks from hydrogen–losses and the
decomposition of overlapping isotope clusters into individual isotope clusters is usually lacking in
case of small molecules. The deconvolution of overlapping isotope clusters has been described in
case of peptides and proteins, for isotope dilution experiments, and in case of substances with known
molecular formula [17,21,22].

Aiming at the exhaustive detection and precise validation of isotope clusters, we propose the
following approach for liquid chromatography–high resolution mass spectrometry data. We predict
new ROIs for putative isotope peaks based on previously detected features and implement this
approach in combination with the centWave algorithm as part of the R package xcms version 1.50.0 [23].
We validate putative isotope clusters depending on the mass of the substance based on database
statistics and implement this approach as part of the R package CAMERA version 1.30.0 [24].

For evaluation purposes, we apply the modified centWave algorithm to different sets of mass
spectrometry raw data and detect and validate isotope clusters as proposed. We evaluate the
results using various performance measures and find remarkable improvements regarding the
number of detected isotope clusters. The extended R packages xcms and CAMERA are available
at Bioconductor [25].

2. Results

We demonstrate the performance of our approach for an enhanced isotope cluster detection and
validation. First, we describe the workflow which includes our approach; Second, we evaluate the
proposed targeted peak picking with predicted isotope ROIs compared to peak picking with random
ROIs and traditional peak picking on basis of various performance measures; Third, we evaluate
the proposed isotope detection routine with mass–specific isotope cluster validation compared to
several isotope detection routines on basis of various performance measures; Fourth, we present the
isotope ratio quantiles which are used for the validation of isotope clusters; Fifth, we exemplify the
proposed isotope detection routine with and without mass–specific isotope cluster validation on six
example substances.

2.1. Workflow of the Approach

We integrated the proposed methodology into an untargeted workflow which extracts annotated
peak tables from LC-MS raw data as summarized in Figure 1. The user supplies the LC-MS raw data
files in a xcms-supported format, namely one of AIA/ANDI NetCDF, mzXML, mzData, or mzML.

DOI:10.3390/metabo6040037

https://doi.org/10.3390/metabo6040037


Metabolites 2016, 6, 37 3 of 21

The workflow incorporates one function from the R package xcms [23], one function from the R package
CAMERA [24], and two new function as follows.

First, we perform peak picking without any prior knowledge which we denote as traditional peak
picking. Here, we use the centWave algorithm [1] which applies a heuristic for the detection of ROIs
(ROI identification step). Given the set of detected ROIs, chromatographic peaks are extracted using
continuous wavelet transformation (ROI examination step). This step results in a peak table with one
row for each detected feature and one column for each feature property such as m/z, retention time,
integrated peak area, and signal-to-noise ratio.

Figure 1. Workflow of the proposed approach. We depict data sets with cylinders, algorithms with
continuous rectangles, and R packages with dotted rectangles. Each algorithm rectangle comprises the
step number (top left corner), the purpose of the algorithm (heading), the R function name (monospace
font), algorithm steps (itemized), and a reference for the algorithm or the individual algorithm steps
(in square brackets, asterisk stands for this manuscript). 1© The workflow starts with traditional peak
picking on LC-MS raw data to extract a peak table comprising features; 2© This peak table is extended
by a targeted peak picking which targets on isotope features; 3© The extended peak table is split into
putative compound spectra denoted pseudospectra; 4© The detection and validation of isotope clusters
is performed on each pseudospectrum resulting in annotated pseudospectra.

Second, we perform the proposed targeted peak picking as described in Section 4.1. Here, a set
of isotope ROIs is predicted on basis of the previously extracted peak table. Given the set of
predicted isotope ROIs, chromatographic peaks are extracted using continuous wavelet transformation
(ROI examination step). Notably, this ROI examination step is identical to the ROI examination step in
the traditional peak picking step with the exception that we use relaxed peak picking parameters this
time. This step results in an extended peak table which is enriched with features corresponding to
isotope isotope peaks as demonstrated in the second results section.

Third, we extract pseudospectra from the extended peak table [24]. This step aims at the extraction
of compound spectra on basis of the retention times, but multiple coeluting compounds are potentially
assigned to the same spectrum which is the reason for the usage of the term pseudospectrum. In case
of multiple raw data files a retention time correction (xmcs function retcor) can be advisable prior to
the extraction of pseudospectra. This step results in a set of pseudospectra. Each pseudospectrum is a
peak table comprising all properties of a subset of the features from the extended peak table.
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Fourth, we detect isotope clusters in each pseudospectrum using the proposed isotope detection
routine with mass–specific isotope cluster validation as described in Section 4.2. Here, putative isotope
clusters are detected and putative isotope clusters are validated based on database statistics as
demonstrated in the third results section. This step results in a set of annotated pseudospectra,
i.e., the given set of pseudospectra enriched with isotope annotations.

The presented workflow is implemented exemplarily in the vignette IsotopeDetectionVignette in
R package CAMERA in version 1.30.0. In addition the R package CAMERA supports a number
of further analyses given the set of annotated pseudospectra. This includes, amongst others,
the annotation of adducts and neutral losses, the filling of missing values, and the combination
of results from opposite ion modes.

2.2. Targeted Peak Picking Using Predicted Isotope ROIs

We examine whether the proposed prediction of isotope ROIs in combination with the centWave
algorithm increases the number of detected isotope peaks. To verify the specificity of the predicted
isotope ROIs to isotopes, we compare predicted isotope ROIs with the same number of random ROIs
denoted noise ROIs. In addition, we compare our approach to the unmodified centWave algorithm
with different signal-to-noise thresholds snthr. We evaluate our approach based on a dilution series
experiment with 40 LC-MS measurements. These data sets comprise both strong and weak signals and
constitute the basis to test the detection of weak signals like isotope peaks.

We evaluate the performance of predicted isotope ROIs detected with different relaxed
signal-to-noise thresholds snthr’ as described in Section 4.1 on 40 LC-MS measurements described in
Section 4.4. We quantify the performance using the performance measures (i) number of detected peaks;
(ii) number of detected isotope peaks; (iii) number of detected isotope clusters; (iv) isotope coverage;
and (v) Peak Picking Score (PPS). The isotope coverage is the ratio between the number of detected
isotope peaks and the number of detected peaks. The isotope coverage ranges from 0 to 1, where 0
means that no isotope clusters have been detected and 1 means that all peaks are part of isotope clusters.
A higher isotope coverage indicates a higher peak picking quality as exploited in [19]. The PPS was
proposed in [19] for the quantification of the peak picking quality and implemented in the R package
IPO. The PPS is defined as the ratio between the number of reliable peaks squared and the number
of non–reliable peaks. The number of reliable peaks is defined as the number of peaks in isotope
clusters which are detected in the IPO package by a custom isotope detection routine. The number
of non–reliable peaks is defined as the number of peaks which are not in a isotope cluster although
it is to be expected based on different criteria. We compute each performance measure as a function
of the relaxed signal-to-noise threshold snthr’ ∈ {100, 95, ..., 5}% ∗ snthr, where snthr = 25 is the
signal-to-noise threshold used in the traditional peak picking step.

In Figure 2 we show the performance of the traditional peak picking in combination with targeted
peak picking with isotope ROIs as well as traditional peak picking in combination with targeted
peak picking with noise ROIs for varying signal-to-noise threshold snthr’. In addition, we show
the performance of traditional peak picking with varying signal-to-noise threshold snthr. In case
of predicted isotope ROIs, all five measures increase with decreasing snthr’. The isotope coverage
appears to saturate for a relaxed signal-to-noise threshold snthr’ of approximately 6.25. For this
threshold, we find in case of predicted isotope ROIs an average increase of approximately +10%
peaks, +37.6% isotope peaks, +33.5% isotope clusters, +25.2% isotope coverage, and +102.8% PPS in
contrast to noise ROIs, suggesting an isotope-specific improvement of peak picking. More specifically,
20 isotope clusters could be extended and 37 isotope clusters could be newly detected. In addition,
we find that the PPS decreases for a relaxed signal-to-noise threshold snthr’ lower than 5. This finding
confirms the general observation that peak picking with a too low signal-to-noise threshold results
in unreliable peaks and is therefore not advisable. We also tested the performance of traditional
peak picking with varying signal-to-noise threshold snthr and find that the number of peaks more
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than doubles. However, the proportion of low–intensity peaks which are not part of isotope clusters
increases disproportionately and there is no specificity for isotope peaks.

Figure 2. Evaluation of predicted isotope ROIs for varying relaxed signal-to-noise threshold snthr’.
We show the mean (solid line) and the standard error of the mean (SEM, interval in dark grey) of the
performance measures (i) number of detected peaks; (ii) number of detected isotope peaks; (iii) number
of detected isotope clusters; (iv) isotope coverage; and (v) Peak Picking Score (PPS). In case of isotope
ROIs and noise ROIs, we plot the performance of each measure without additional ROIs in the first
column (“N/A”) as reference value (horizontal dashed line) and in the subsequent columns with
additional ROIs for decreasing relaxed signal-to-noise threshold snthr’. In case of “Lower S/N
threshold”, we plot the performance of each measure for decreasing signal-to-noise threshold snthr
without additional ROIs. All four measures increase for predicted isotope ROIs with decreasing
signal-to-noise threshold snthr’ in contrast to noise ROIs.

2.3. Isotope Cluster Detection and Validation

There is a multitude of isotope detection routines for the recognition of isotope clusters.
These detect coeluting features which are separated by certain distances in the m/z dimension and
group these features to isotope clusters. However, a validation of detected isotope clusters is typically
based on simple ad hoc rules. There are at least four cases for which the validation of isotope clusters
can be beneficial as shown in Figure 3.

First, valid isotope clusters can be verified which strengthens the trust in the data; Second,
multiple coeluting substances with mass differences of a few dalton can result in isobaric ion species
and thus in overlapping isotope clusters [26]. These are potentially misinterpreted as a single isotope
cluster affecting downstream analyses. This necessitates the deconvolution of the overlapping isotope
cluster into at least two valid isotope clusters; Third, substances can be affected by hydrogen loss
as reported in [27] and exploited in [28]. This leads to mass differences similar to isotope peaks
(mass(1H) = 1.008 ≈ 1.0034 = mass(13C) −mass(12C)) and results in a small trailing peak which is
potentially misinterpreted as monoisotopic peak of the putative isotope cluster. This may result in the
assumption of a wrong monoisotopic mass and may even lead to the rejection of the entire isotope
cluster on the basis of failed intensity-checks [24]. Although this small trailing peak corresponds to
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the same substance, it needs to be removed from the isotope cluster in order to allow more precise
molecular formula predictions. Fourth, the intensity of small peaks is systematically underestimated
by some mass spectrometers which leads to distorted ratios between different isotope peaks as
reported previously [3]. This intensity bias would lead to distorted molecular formula predictions and
the removal of these underestimated peaks from the isotope cluster allows more precise molecular
formula predictions.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Four cases necessitating the validation of putative isotope clusters. Figure 3a,b: Valid isotope
cluster without and with isotope cluster validation; Figure 3c,d: Two overlapping isotope clusters
without and with isotope cluster validation; Figure 3e,f: Hydrogen loss without and with isotope
cluster validation; Figure 3g,h: Underestimated small peak without and with isotope cluster validation.
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We compare the proposed isotope detection routine with mass–specific isotope cluster validation
(IDRNewVal) with the isotope detection routine without isotope cluster validation (IDRNewNoVal),
the isotope detection routine implemented in the AStream package (IDRAStream) [29], the isotope
detection routine implemented in the CAMERA package (IDRCAMERA) [24], and the isotope detection
routine implemented in the mzMatch package (IDRmzMatch) [30]. The isotope detection routines from
AStream, CAMERA, and mzMatch apply different requirements for the validation of isotope clusters.
In IDRAStream it is required that the abundance of the monoisotopic peak, the first isotope peak, and the
second isotope peak decreases strictly, which corresponds to a ratio <1 between consecutive isotope
peaks. In IDRCAMERA it is required that the ratio of the monoisotopic peak to the first isotopic peak is
within an interval which is given by the ratios of the monoisotopic peak to the first isotopic peak of a
substance consisting exactly one carbon atom and a substance consisting exactly massmono/mass(12C)
carbon atoms, where massmono is the assumed monoisotopic mass of the substance. In IDRmzMatch it is
required that isotope peaks show a high correlation regarding coelution.

We evaluate the performance of the isotope cluster detection and validation described in
Section 4.2 on a dilution series experiment with 40 LC-MS measurements described in Section 4.4.
We quantify the performance using the performance measures (i) number of detected peaks; (ii) number
of detected isotope peaks; (iii) number of detected isotope clusters; and (iv) isotope coverage,
i.e., the proportion of detected isotope peaks versus all detected peaks. We compute each performance
measure without predicted isotope ROIs as well as with predicted isotope ROIs for a relaxed
signal-to-noise threshold snthr’ of 6.25. We present the results with predicted isotope ROIs relative
to the results without predicted isotope ROIs in Figure 4. These results are a subset of the results
in Figure A1 in the Appendix A where we present the results for varying relaxed signal-to-noise
threshold snthr’. We relate the results to the quality of the predicted molecular formulas presented in
the Appendix B on a gold standard of 11 data sets with known content.

In Figure 4 we show the performance measures for IDRNewVal, IDRNewNoVal, IDRAStream,
IDRCAMERA, and IDRmzMatch. We find that all four measures increase with predicted isotope ROIs in
case of all isotope detection routines. IDRNewNoVal detects the most isotopes which reflects the fact
that there are no constraints regarding the shape of the isotope cluster. This indicates that a certain
proportion of the detected isotope clusters might be invalid. We point out, that this highly sensitive
algorithm can be useful in case of substances containing uncommon elements such as Cl, Br, Se, or B as
scrutinized in [31]. IDRmzMatch detects by far the lowest number of isotopes which reflects that this
algorithm requires a high degree of correlation between isotope peaks resulting in a high specificity at
the cost of sensitivity. IDRNewNoVal and IDRmzMatch show the lowest number of correctly predicted
molecular formulas as shown in Appendix B. We find comparable results for IDRAStream, IDRCAMERA,
and IDRNewVal. Also the numbers of correctly predicted molecular formulas are similar as shown in
Appendix B. Interestingly, IDRNewVal showed the highest number of correctly predicted molecular
formulas and was also able to rank the highest number of correct molecular formulas to the first three
ranks. Remarkably, in case of 85% to 92% of all tested ions the detected isotope clusters from all isotope
detection routines with or without predicted isotope ROIs were sufficient for the prediction of the
correct molecular formula to the first three ranks. This finding states, that the prediction of molecular
formulas from isotope clusters works well in general and hence it is challenging to improve upon.
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Figure 4. Evaluation of predicted isotope ROIs in combination with different isotope detection routines
for a relaxed signal-to-noise threshold snthr’ of 6.25. We plot the increase of the mean and the
standard error of the mean (SEM, error bars) of the performance measures (i) number of detected
peaks; (ii) number of detected isotope peaks; (iii) number of detected isotope clusters; and (iv) isotope
coverage relative to the performance of the CAMERA isotope detection routine without predicted
isotope ROIs. All four measures increase with predicted isotope ROIs.

2.4. Isotope Cluster Statistics

We examine the compounds of the publicly available databases ChEBI [32], KEGG [33],
KNApSAcK [34], LIPID MAPS [35], and PubChem [36] in order to compute mass–specific confidence
intervals for the abundance–ratio of the monoisotopic peak to the first to fifth isotope peak as described
in Section 4.3. For each database and each isotope peak, we compute multiple quantiles in order to
define confidence intervals with different confidence levels. We validate isotope clusters on basis of
mass–specific confidence intervals of peak abundance–ratios as described in Section 4.2.

We exemplarily examine the interval size and magnitude of the computed confidence intervals of
isotope ratios. A small interval size indicates a small range of observed isotope ratios for the analyzed
substances and allows a precise definition of valid isotope ratios, whereas a large interval size indicates
a diverse range of observed isotope ratios for the analyzed substances and requires a loose definition of
valid isotope ratios. If the interval size and magnitude of the computed confidence intervals depends
on the mass range, then mass–specific confidence intervals can increase the specificity of isotope
cluster validation.

See Figure 5 for the 95% confidence interval of the ratios of the monoisotopic peak to the first;
second, and third isotope peak for the database KEGG with a mass window size of 50 dalton. The ratio
of the monoisotopic peak to the first isotope peak depends on the abundance of the first isotope peak,
which is dominated by the proportion of 13C. This results in a relatively narrow confidence interval,
because the variation of the number of carbon atoms is limited within a 50 dalton mass window.
The ratio of the monoisotopic peak to the second isotope peak depends on the abundance of the
second isotope peak, which is dominated by the proportion of 13C and 34S. The 97.5%-quantile and
the 50%-quantile are higher compared to the case of the first isotope peak because the second isotope
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peak has typically a lower abundance than the first isotope peak. In contrast, the 2.5%-quantile is
smaller compared to the case of the first isotope peak because a subset of compounds comprises at
least one sulfur (partially also chlorine or bromine) with a high abundance of 34S (or 37Cl, 81Br) causing
a relatively high abundance of the second isotope peak and thus a small ratio of the monoisotopic
peak to the second isotope peak. This results in a relatively large confidence interval. The ratio
of the monoisotopic peak to the third isotope peak mainly depends on the abundance of the third
isotope peak, which is dominated by the proportion of 13C and 34S (and 37Cl, 81Br). This results in a
relatively large confidence interval analogous to the case of the second isotope peak. The quantiles are
higher compared to the case of the second isotope peak because the third isotope peak has typically a
lower abundance compared to the second isotope peak. We find that the magnitude of the quantiles
substantially depends on the mass of the substances. Specifically, the quantiles are typically inversely
proportional to the substance mass. For example, in case of the mass interval 200 to 250 dalton versus
the mass interval 800 to 850 dalton the 50%-quantiles deviate by a factor of 3.5 in case of the ratio of the
monoisotopic peak to the first isotope peak, by a factor of 8.4 in case of the ratio of the monoisotopic
peak to the second isotope peak, and by a factor of 25.6 in case of the ratio of the monoisotopic peak
to the third isotope peak. This finding suggests that mass–specific confidence intervals can indeed
increase the specificity of isotope cluster validation. See Figure C1 in Appendix C for an overview of all
computed quantiles and the resulting symmetric confidence intervals of the ratio of the monoisotopic
peak to the first isotope peak for the database PubChem with a mass window size of 50 dalton.

(a) (b)

(c)

Figure 5. 95% confidence interval of the ratio of the monoisotopic peak to the first (a), second (b),
and third isotopic peak (c) of all compounds in KEGG for different compound masses arranged in
mass windows of size 50 dalton. We plot the 50%-quantile in green, the 2.5%-quantile in blue, and
the 97.5%-quantile in red and we emphasize the enclosed 95% confidence interval in grey. The ratios
decrease with increasing compound mass reflecting the increasing proportion of isotopic atoms.
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2.5. Exemplary Isotope Cluster Detection

We exemplify the detection of isotope clusters for selected substances to demonstrate the
proposed isotope detection routine without isotope cluster validation IDRNewNoVal and the isotope
detection routine with mass–specific isotope cluster validation IDRNewVal. We simulate the mass
and relative intensity of the monoisotopic peak and the first five isotope peaks of six substances
with enviPat [37] in centroid mode with a resolution of 10,000, namely (i) aspartic acid which has a
low mass and comprises only the elements CHNO (see Table 1 for details); (ii) cysteine which has a
low mass and comprises sulfur; (iii) chloramphenicol which has a low mass and comprises chlorine;
(iv) digoxigenin monodigitoxoside which has a medium mass and comprises only the elements CHNO;
(v) 2-Chloro-2′-deoxyadenosine-5′-triphosphate which has a medium mass and comprises chlorine;
and (vi) autoinducer-2 which has a low mass and contains boron. The isotopic fine structure of these
substances is not detectable at this resolution and hence each simulated peak is a mixture of multiple
peaks from the isotopic fine structure. We only include isotope peaks with an abundance of at least
0.01% of the abundance of the monoisotopic peak which results in isotope clusters of size 4, 5, 6, 6, 6,
and 6 respectively.

For each isotope cluster, we calculate the minimal absolute mass error ∆mabs in units of dalton
and the minimal relative mass error ∆mppm in units of PPM which are required for a successful isotope
cluster detection. The incorporation of a mass error is necessary because the mass differences between
individual isotope peaks depend on the elemental composition and hence deviates from the default
mass difference of 13C isotopes. It is possible to use only one of both parameters or a combination of
both parameters to enable the detection of isotope clusters (see Equation (2) in Section 4.2).

We merge all six isotope clusters resulting in a single synthetic spectrum comprising 33 peaks.
We apply the isotope detection routines IDRNewNoVal and IDRNewVal as described in Section 4.2 to
the synthetic spectrum. We evaluate whether the isotope detection routines are able to assemble the
original isotope clusters.

In Table 1 we show the results. We find that IDRNewNoVal is able to detect all six isotope clusters
provided that a sufficiently large mass error is set (e.g., ∆mabs = 0.01). In case of a smaller mass
error (e.g., ∆mabs = 0.005) we find that isotope clusters become split at isotope peaks which are
dominated by the isotopes of sulfur, chlorine, or boron, i.e., the second isotope peak of substance (ii);
the second and fourth isotope peak of substance (iii); the second isotope peak of substance (v); and the
first isotope peak of substance (vi). We find that IDRNewValis able to validate all but one isotope
cluster. The first peak of the boron-containing substance (vi) is not included in the isotope cluster,
because the abundance of this peak is too small relative to the space of biological substances of this
mass. Hence, the excluded peak is assumed to be a potential hydrogen-loss. However, this isotope
cluster can be correctly identified without validation or with specialized approaches [31].
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Table 1. Isotope cluster detection exemplified for six substances. We show the substance name,
the sum formula, the mass of the monoisotopic peak and the first five isotope peaks (rounded to five
digits), the mass difference to the monoisotopic peak (∆m, rounded to five digits), the relative peak
intensity (Int., normalized to 100 and rounded to two digits), the absolute m/z error ∆mabs and the
relative m/z error in ppm ∆mppm for a successful isotope cluster detection (∆mabs is rounded to five
digits and ∆mppm is rounded to one digit), whether the isotope cluster assignment using the isotope
detection routine without isotope cluster validation IDRNewNoVal is successful or not (No val., “+”/“–”),
and whether the isotope cluster assignment using the isotope detection routine with mass–specific
isotope cluster validation IDRNewVal is successful or not (Val., “+”/“–”). IDRNewNoVal is able to detect
the isotope clusters of all substances and IDRNewVal successfully validates the isotope clusters of all
but one substance.

Substance Name Sum Formula Mass ∆m Int. ∆mabs ∆mppm No Val. Val.

Aspartic acid C4H7NO4

133.037508 100.00

0.00191 14.3

+ +

134.040468 1.00296 4.96 + +

135.041918 2.00441 0.93 + +

136.044728 3.00722 0.04 + +

Cysteine C3H7NO2S

121.019749 100.00

0.00895 73.9

+ +

122.021976 1.00223 4.59 + +

123.016385 1.99664 5.05 + +

124.019165 2.99942 0.19 + +

125.018404 3.99866 0.03 + +

Chloramphenicol C11H12Cl2N2O5

322.012327 100.00

0.00913 28.4

+ +

323.015369 1.00304 13.00 + +

324.009595 1.99727 66.20 + +

325.012562 3.00024 8.53 + +

326.007250 3.99492 11.54 + +

327.010016 4.99769 1.45 + +

Digoxigenin
monodigitoxoside C29H44O8

520.303618 100.00

0.00078 1.5

+ +

521.307027 1.00341 32.24 + +

522.309803 2.00619 6.70 + +

523.312531 3.00891 1.04 + +

524.315166 4.01155 0.13 + +

525.317742 5.01412 0.01 + +

2-Chloro-2′-
deoxyadenosine-5′-
triphosphate

C10H15ClN5O12P3

524.961858 100.00

0.00817 15.6

+ +

525.964411 1.00255 13.30 + +

526.959596 1.99774 35.41 + +

527.962023 3.00017 4.63 + +

528.963673 4.00182 1.11 + +

529.966017 5.00416 0.12 + +

Autoinducer-2 C5H10BO7

192.055590 24.37

0.00689 35.9

+ –

193.052059 0.99647 100.00 + +

194.055706 2.00012 6.13 + +

195.056530 3.00094 1.59 + +

196.059851 4.00426 0.09 + +

197.060963 5.00537 0.01 + +

3. Discussion

Aiming at the exhaustive detection and precise validation of isotope clusters we propose
an additional targeted peak picking step with predicted isotope ROIs and the mass–specific validation
of putative isotope clusters based on database statistics. Compromising between peak reliability and
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exhaustive detection we use a relaxed signal-to-noise of 6.25 threshold for predicted isotope ROIs and
achieve an increase of +37.6% isotope peaks and +102.8% PPS. We use this relaxed signal-to-noise
threshold by default in the freely available implementation of this algorithms in the R package xcms.
The targeted peak picking with predicted isotope ROIs can easily be adapted in other tools such as
MZmine2 [38], apLCMS [39], and related approaches [40]. The validation of putative isotope clusters
in combination with predicted isotope ROIs results in the highest number of correctly predicted
molecular formulas and also the highest number of correct molecular formulas among the first three
ranks. However, the ranks of correctly predicted molecular formulas were robust with respect to
different approaches for peak picking and isotope cluster detection and it is challenging to improve
upon. We exemplify the use of the proposed isotope detection routine with and without mass–specific
isotope cluster validation and find that it is possible to detect substances with and without biologically
unusual elements using an absolute mass error of 0.01 dalton. Consequently, we use this absolute mass
error by default in the freely available implementation of these algorithms in the R package CAMERA.

The enhanced isotope cluster detection and validation presented in this work could improve
the accuracy of substance quantification. All isotope peaks of one isotope cluster originate from the
same substance and we point out that the consideration of a greater number of features from a certain
substance—although small and noisy—reduces the technical variance in the data. In turn, this would
enhance the precision and yield of comparative analyses, because a reduced data variance would not
only improve calculated fold changes but would enable the statistically valid detection of smaller effect
sizes. The slight improvement in molecular formula prediction could affect a considerable number
of substances in case of metabolome-scale metabolite identification studies. Especially in untargeted
metabolomics reliable hints for metabolite identification are urgently needed.

4. Materials and Methods

We present the methodology of the proposed approach and the used data for evaluation.
Specifically, we describe (i) the targeted peak picking with predicted isotope ROIs; (ii) the detection
and mass–specific validation of isotope clusters; (iii) the computation of isotope ratio quantiles; and (iv)
two sets of mass spectrometry raw data.

4.1. Targeted Peak Picking with Predicted Isotope ROIs

A requirement for the prediction of isotope ROIs is a set of peaks that have been detected
previously. This initial peak picking can be accomplished by one of the numerous peak picker which
are available [1,18,38]. In untargeted approaches, these peak picker typically do not use any prior
knowledge and we refer to this kind of peak picking as traditional peak picking. We propose the
following approach for the targeted detection of isotope peaks. This approach is designed for liquid
chromatography–high resolution mass spectrometry data and does not consider the isotopic fine
structure available with ultrahigh resolution mass spectrometry.

Given a set of detected peaks from traditional peak picking, a maximum charge Z = 3,
and a maximum number of isotopes I = 5 we predict putative isotope ROIs as follows. For each
charge state z ∈ {1, ..., Z} and for each isotope number i ∈ {1, ..., I}, we compute the theoretical m/z
distance to the monoisotopic peak

dz,i =
i ∗ ∆m

z
, (1)

where ∆m = mass(13C) – mass(12C) ≈ 1.003355. We use ∆m as an approximation for the mass
difference between successive peaks in isotope clusters because the isotopic nuclide 13C has usually
the largest impact on isotope clusters in biological samples. Other isotopic nuclides such as 15N, 18O,
and 34S cause isotope peaks with mass differences which can only be discriminated from 13C-isotope
peaks using mass spectrometers with resolution above 40,000 (in case of ions with an m/z of 500 dalton).
For each peak detected by traditional peak picking we predict for each charge state z and for each
isotope number i one putative isotope ROI. Each putative isotope ROI is composed of the retention time
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interval of the detected peak and the m/z interval of the detected peak shifted by dz,i as exemplified in
Figure 6. An additional targeted peak picking is performed based on the set of predicted isotope ROIs
using a relaxed signal-to-noise threshold snthr’ = snthr ∗ r/100, where snthr is the signal-to-noise
threshold for traditional peak picking and r ∈ {100, 95, ..., 5}. Subsequently, the peak table from
traditional peak picking and the peak table from the targeted peak picking on basis of putative isotope
ROIs are merged and redundant peaks are removed.

For control purposes, we generate a set of noise ROIs given the set of predicted isotope ROIs
as follows. To approximate the distribution of the predicted isotope ROIs in the m/z dimension and
the retention time (RT) dimension, we calculate the minimum and maximum m/z and RT of the
predicted isotope ROIs and use a uniform distribution in the calculated intervals of both dimensions.
To approximate the distribution of peak widths in m/z and RT we calculate a histogram of peak widths
in m/z relative to the peak m/z and a histogram of peak widths in RT. For each predicted isotope
ROI we sample one new noise ROI which m/z and RT is uniformly drawn within the calculated
ranges in m/z and RT and which peak width in m/z and RT is drawn from the calculated histograms.
Subsequently, targeted peak picking is applied to the set of noise ROIs using a relaxed signal-to-noise
threshold snthr’ analog to predicted isotope ROIs and the results from traditional peak picking and
targeted peak picking on basis of noise ROIs are merged as before.

Figure 6. Exemplary section of LC-MS raw data. We mark two detected peaks from traditional peak
picking in blue and 12 predicted isotope ROIs in red, orange, and green calculated on basis of the
(monoisotopic) peak (apex m/z ≈ 363.075 dalton / retention time ≈ 291 seconds) given a maximum
isotope number I = 5 and a maximum charge state Z = 3. Via prediction of isotope ROIs, we are able
to expand the region of the already detected first isotope peak and to encompass the signals of the
second, third, fourth, and fifth isotope peak. Here, the subsequent peak picking procedure will not
find relevant signals for the predicted isotope ROIs corresponding to the charge states 2 (orange) and 3
(green) and will reject these accordingly.

4.2. Detection and Mass–Specific Validation of Isotope Clusters

We propose an approach for the detection and validation of isotope clusters in liquid
chromatography–high resolution mass spectrometry data which does not resolve the isotopic fine
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structure. In this approach we detect putative isotope clusters based on characteristic distances in
the m/z dimension. We validate putative isotope clusters depending on the substance mass and we
refer to this validation as mass–specific validation. We detect and validate isotope clusters given a set of
coeluting features, a maximum charge Z = 3, a relative m/z error in ppm ∆mppm, and an absolute m/z
error ∆mabs as follows.

First, we detect putative isotope clusters. For each charge state z ∈ [1, Z], we mark all pairs of
peaks (p1, p2) for which

δz,p1,p2 = ||mass(p1)−mass(p2)| − ∆m/z| ≤ max
(mass(p1) ∗ ∆mppm

106 , ∆mabs
)

(2)

holds, where ∆m = mass(13C)−mass(12C) ≈ 1.003355 is the expected distance between two isotope
peaks (cf. Section 4.1). For each charge state and for each peak p, we compute all putative isotope
clusters (p1, p2, ..., pn) for which δc,p′ ,p′′ holds for each successive pair of peaks (p′, p′′). We retain the
putative isotope cluster with the maximum number of peaks and remove the peaks of this putative
isotope cluster from the set of available peaks. We iteratively perform the last steps with the remaining
peaks until there are no putative isotope clusters with at least two peaks left.

Second, we validate the set of putative isotope clusters which have been extracted previously
depending on the monoisotopic mass. See Figure 3 for four cases which necessitate the following
validation of putative isotope clusters. For each putative isotope cluster (p1, p2, ..., pn) we examine
the second to last peak p′ ∈ (p2, ..., pn). For each peak p′ we compute the ratio of the abundance of
the monoisotopic peak p1 and the abundance of peak p′. Specifically, we compute the minimum and
maximum ratio considering that the abundance estimates of both peaks are affected by the ubiquitous
noise using an estimate of the signal-to-noise ratio of both peaks. If the computed interval of ratios
does not overlap with the 99% confidence interval derived from the KEGG database for the current
monoisotopic mass (mass window size 50) we split the putative isotope cluster. In this case we turn the
peak p′ into the new monoisotopic peak resulting in a new putative isotope cluster (p′, ..., pn) which
is validated as well. We retain all putative isotope clusters which comprise at least two peaks and
consider these as validated isotope clusters.

4.3. Isotope Ratio Quantiles

We perform isotope statistics for each of the databases ChEBI, KEGG, KNApSAcK, LIPID MAPS,
and PubChem as follows [32–36]. We iterate all compounds, compute the exact mass and the theoretical
isotope cluster from the molecular formula, and record the ratio of the monoisotopic peak to the first to
fifth isotope peak. We group all compounds by the exact mass in consecutive mass windows for each
of the mass window sizes 10, 25, 50, 100, and 250 dalton to support different compromises between
mass specificity and quantile robustness. For each mass window size, each mass window, and each
isotope peak (1st–5th) we compute the isotope ratio for several p-quantiles, where p ∈ {5.0× 10−6,
0.999995, 1.0× 10−5, 0.99999, 5.0× 10−5, 0.99995, 1.0× 10−4, 0.9999, 5.0× 10−4, 0.9995, 0.001, 0.999,
0.005, 0.995, 0.01, 0.99, 0.025, 0.975, 0.05, 0.95, 0.1, 0.9, 0.5}. For each mass window size and each
isotope peak we record the isotope ratio in a matrix with one row for each p-quantile and one column
for each mass window. We encapsulate the resulting data for each database, each mass window size,
and each isotope peak in an R object of class S4 named compoundQuantiles. This implementation
supports a simple API for convenient retrieval of the data (see documentation of package CAMERA
version 1.50.0 for details). Based on this implementation, it is also possible to compute isotope ratios
amongst isotope peaks, e.g., the confidence interval of the isotope ratio between the third isotope peak
and the fifth isotope peak for a given mass range.
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4.4. Data Sets

4.4.1. MM48

We perform a case study based on a gold standard data set comprising 11 LC-MS measurements
(UPLC-ESI-QTOF-MS, positive mode) each of a solution of 48 known reference substances denoted
as MM48. The raw data is available in MetaboLights [41] accession MTBLS381 in Supplementary
Materials link. This set of compounds was also used in [24] and the measurements have been deposited
in MetaboLights accession MTBLS188. We compile a ground truth of detectable ions as follows. First,
we assume a set of three expected ions ([M]+, [M + H]+, [M + Na]+) as well as isotope peaks up to the
fifth isotope peak (i.e., [M + 1]+, [M + 2]+, [M + 3]+, [M + 4]+, and [M + 5]+ in case of the [M]+ ion)
for each compound and calculate the exact mass of these 18 molecular formulas (three ions each with
an isotope cluster with six peaks); Second, we check the abundance of these ions in the 11 data sets
and define all ions with a peak area of at least 1000 counts within a retention time interval of at most
five seconds as measurable ions constituting the ground truth. Considering the set of ions which are
measurable in at least six of 11 data sets, we detect 72 monoisotopic ions (see Figure 7), 63 isotope
clusters with at least two ions, and 190 ions in total.

Figure 7. Overview of monoisotopic measurable ions in the MM48 data set. We plot the logarithmic
raw data intensities in the dimensions mass-to-charge ratio (m/z) and retention time and mark the
location of 72 monoisotopic ions which are measurable in at least six of eleven data sets. In case of three
ions with exact mass 175.037, 390.095, and 823.413 dalton, we exemplarily plot the theoretical relative
intensities of the monoisotopic peak and the first to fifth isotope peak in the insets at the top. The set of
measurable ions spans a huge range in both dimensions with different isotope clusters constituting a
diverse basis for validation purposes.
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4.4.2. Dilution Series

We perform a case study based on 40 LC-MS measurements (UPLC-ESI-QTOF-MS, positive
mode), which is a subset of the data used in [24] and is available from the MetaboLights repository
with accession MTBLS188. This set of measurements is composed of a dilution series varying the ratio
of solution and leaf sample. Specifically, the ratio of solution and leaf sample is 0:100, 25:75, 50:50,
and 75:25 in 10 data sets each. This experimental design implies a diverse range of cases in the data
regarding the signal-to-noise ratio of peaks and constitutes the basis to test the detection of weak
signals like isotope peaks.

5. Conclusions

We implemented the targeted peak picking with predicted isotope ROIs in combination
with the centWave algorithm as part of the R package xcms in version 1.50.0 (functions
findPeaks.centWaveWithPredictedIsotopeROIs and findPeaks.addPredictedIsotopeFeatures).
We implemented the mass–specific validation of putative isotope clusters as part of the R package
CAMERA in version 1.30.0 (function findIsotopesWithValidation).

Supplementary Materials: The following are available online at www.ebi.ac.uk/metabolights/MTBLS381, 11
MM48 raw data files used for performance evaluation in the manuscript.

Acknowledgments: The open access fee was funded by the Deutsche Forschungsgemeinschaft (DFG funding
No. NE 1396/5-1). The authors would like to thank Carsten Kuhl and Christoph Böttcher for providing the
UPLC-ESI-QTOF-MS data and Sarah Scharfenberg for refining the manuscript.

Author Contributions: Hendrik Treutler, and Steffen Neumann conceived and designed the methodology;
Hendrik Treutler performed the case studies; Hendrik Treutler wrote the paper. Hendrik Treutler, and
Steffen Neumann read and approved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Isotope Cluster Detection and Validation: Extended Results

We compare the proposed isotope detection routine with mass–specific isotope cluster validation
(IDRNewVal) against the isotope detection routine without isotope cluster validation (IDRNewNoVal),
the isotope detection routine implemented in the AStream package (IDRAStream) [29], the isotope
detection routine implemented in the CAMERA package (IDRCAMERA) [24], and the isotope detection
routine implemented in the mzMatch package (IDRmzMatch) [30].

We evaluate the performance of the isotope cluster detection and validation described in
Section 4.2 on a dilution series experiment with 40 LC-MS measurements described in Section 4.4.
We quantify the performance using the performance measures (i) number of detected peaks; (ii) number
of detected isotope peaks; (iii) number of detected isotope clusters; and (iv) isotope coverage,
i.e., the ratio of the number of detected isotope peaks and the number of all detected peaks.
We compute each performance measure as a function of the relaxed signal-to-noise threshold
snthr’ ∈ {100, 95, ..., 5} % ∗ snthr, where snthr = 25 is the signal-to-noise threshold of the
traditional peak picking step. In the Section 2.3 we show an excerpt of these results, i.e., we present
the results for each isotope detection routine with predicted isotope ROIs relative to the results of
IDRCAMERA without predicted isotope ROIs in Figure 4.

In Figure A1 we show the performance measures for IDRNewVal, IDRNewNoVal, IDRAStream,
IDRCAMERA, and IDRmzMatch.
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Figure A1. Evaluation of predicted isotope ROIs in combination with validated isotope clusters for
varying relaxed signal-to-noise threshold snthr’. We plot the mean (solid line) and the standard
error of the mean (SEM, interval in dark grey) of the performance measures (i) number of detected
peaks; (ii) number of detected isotope peaks; (iii) number of detected isotope clusters; and (iv) isotope
coverage. We plot the performance of each measure without additional ROIs in the first column
(“N/A”) as reference value (horizontal dashed line). All four measures of all isotope detection routines
increase with decreasing signal-to-noise threshold snthr’.

Appendix B. Prediction of Molecular Formulas From Isotope Clusters

In order to study to which degree the proposed approach is capable of improving the detection
and validation of isotope clusters, we test the quality of predicted molecular formulas. The prediction
of molecular formulas is an important step towards the identification of substances and can be done
automatically on the basis of isotope clusters. We use 11 LC-MS measurements with 48 known
compounds and select a set of 72 ions. We predict for each ion a list of ranked molecular formula
candidates using SIRIUS and evaluate the rank of the correct molecular formula [3].

We evaluate the performance of predicted isotope ROIs described in Section 4.1 and the isotope
detection routine with mass–specific isotope cluster validation described in Section 4.2 on 11 LC-MS
measurements of known compounds described in Section 4.4 using predicted molecular formulas
from SIRIUS as described in the Appendix D.4. We quantify the performance using the number of
compounds with a certain rank averaged over all measurements. If the proposed approaches increase
the quality of detected isotope clusters, then the rank of the predicted molecular formulas should
decrease and be ranked first in the ideal case. We compare different combinations of two peak picking
approaches and five isotope detection routines, namely (iA) the traditional peak picking and (iB)
the traditional peak picking in combination with targeted peak picking with predicted isotope ROIs
(see Section 4.1) and (iiA) the isotope detection algorithm from AStream; (iiB) the isotope detection
algorithm from mzMatch; (iiC) the isotope detection algorithm from CAMERA; (iiD) the proposed
isotope detection algorithm without isotope cluster validation; and (iiE) the proposed isotope detection
algorithm with mass–specific isotope cluster validation resulting in ten combinations of algorithms
(see Section 4.2 and the Appendix D). In Table B1 we show the ranks of the predicted molecular
formulas for ten algorithms averaged over 11 data sets.
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Table B1. Molecular formula prediction from isotope clusters. Using SIRIUS we predict molecular
formulas from isotope clusters which have been detected using different algorithms. In the first
column we indicate whether we use targeted peak picking with predicted isotope ROIs (’+’) or not (’−’)
and in the second column we indicate the isotope detection algorithm (IDRAStream for the algorithm
implemented in R package AStream, IDRCAMERA for the algorithm implemented in R package CAMERA,
IDRmzMatch for the algorithm implemented in R package mzMatch, IDRNewNoVal for the proposed
isotope detection algorithm without isotope cluster validation, and IDRNewVal for the proposed isotope
detection algorithm with mass–specific isotope cluster validation). We specify the number of ions with
a molecular formula on rank 1, on rank 2, on rank 3, between rank 4 and rank 10, on a rank above
10, the number of ions which molecular formula is not among the top 1000 candidates (’No rank’),
and the number of ions which have not been detected during peak picking (’No peak’). We arranged
the isotope detection algorithms by the number of ions with molecular formula on rank 1.

Predicted Isotope ROIs Isotope Detection Algorithm Rank 1 Rank 2 Rank 3 3 < Rank ≤ 10 Rank > 10 No Rank No Peak

− IDRmzMatch 48.82 11.55 1.18 3.36 0 4.64 2.45
+ IDRmzMatch 48.18 12 1.18 3.36 0 4.82 2.45
− IDRNewNoVal 49.09 10.91 0.91 1.55 0 7.09 2.45
+ IDRNewNoVal 49.36 11.18 0.73 1.64 0 6.73 2.36
− IDRAStream 52.82 11.27 1.09 1.82 0 2.55 2.45
+ IDRAStream 53.27 11.55 0.55 1.91 0 2.36 2.36
− IDRCAMERA 53.73 10.27 0.82 1.55 0 3.18 2.45
+ IDRCAMERA 52.82 11 0.64 1.64 0 3.55 2.36
− IDRNewVal 53.82 11.09 1 1.55 0 2.09 2.45
+ IDRNewVal 54.09 11.36 0.73 1.64 0 1.82 2.36

Appendix C. Isotope Cluster Statistics: Full Quantile Set for PubChem

In Figure C1 we depict all computed quantiles and the resulting symmetric confidence intervals
of the isotope ratio of the monoisotopic peak to the first isotope peak for the database PubChem with a
mass window size equal to 50 dalton. See Section 4.3 for a detailed description of the database statistics.

Figure C1. The full set of 23 quantiles of the monoisotopic peak versus the first isotopic peak for
the PubChem database for different compound masses arranged in mass windows of size 50 dalton.
We emphasize the enclosed confidence intervals with different colors.
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Appendix D. Software Versions and Processing Parameters

Tools versions, used functions, and parameters of xcms/CAMERA, AStream, mzMatch, and SIRIUS
are given subsequently.

Appendix D.1. xcms/CAMERA

We use the R package xcms version 1.44.0 [23] and the R package CAMERA version 1.27.0 [24]
for peak picking using centWave [1], the grouping of features into pseudospectra, and the detection
of isotope clusters. We processed the raw data of each LC-MS measurement individually as follows.
We performed peak picking with the centWave algorithm with parameters peakwidth = (5, 12),
prefilter = (2, 200), ppm = 10, and snthr = 25. We use a signal-to-noise ratio of 25, because it
has been shown that this ratio yields reliable molecular formula predictions from mass spectrometry
data [42]. Subsequently, we group detected peaks by retention time into pseudospectra-groups using
function groupFWHM with perfwhm = 1 and standard parameters and detect isotope clusters using
function findIsotopes with intensityValue = ’intb’ and standard parameters.

Appendix D.2. AStream

We use the R package AStream version 2.0 [29] for the detection of isotope clusters. We import
the peaks which have been detected using xcms into the AStream datalist structure. We apply the
function data.norm with the parameters mz.tol = 0.005 (the mean m/z error for ppm = 10 as used in
xcms and mzMatch) and we detect isotope clusters using function isotope.search with the parameter
mz.tol = 0.005. In a postprocessing step we remove contradictory isotope annotations, i.e., if (i) peak
B is annotated as [M + 1] isotope peak of peak A and (ii) peak C is annotated as [M + 2] isotope peak of
peak A and (iii) peak C is annotated as [M + 1] isotope peak of peak B; then we remove annotation (iii).

Appendix D.3. mzMatch

We use the R package mzmatch.R version 2.0-13 [30] for the detection of isotope clusters.
We import the peaks which have been detected using xcms via the peakML file format used
by mzMatch using the function PeakML.xcms.write.SingleMeasurement with the parameters
writeRejected = TRUE, ppm = 10, addscans = 0, and ApodisationFilter = FALSE. We convert
this data using function mzmatch.ipeak.Combine and we detect isotope clusters using function
mzmatch.ipeak.sort.RelatedPeaks with the parameters ppm = 10 and rtwindow = 50. In a
postprocessing step we remove all isotope clusters with gaps, i.e., the isotope cluster with monoisotopic
peak [M] and isotope peak [M + 2] without the [M + 1] isotope peak is considered non-evaluable and
removed from the output. Approximately 10% of the isotope annotations are removed in this way.

Appendix D.4. Prediction of Molecular Formulas Using SIRIUS

We predict ranked candidate lists from isotope clusters using command–line SIRIUS [3]
version 3.1.3. We use the parameters –elements = CHNOPS, –isotope = score, –candidates = 1000,
–ppm-max = 10, and –profile = qto f and give the ion species (–ion), the monoisotopic m/z (–mz),
the (m/z, intensity) pairs (into intensity from xcms; –ms1), and an empty MS/MS spectrum (–ms2)
as input. We rank the resulting candidate lists according to the tree score and select the rank of the
correct molecular formula.
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My contributions in the area of metabolite profiling started with supervising the student Stefan Kuhn and
PhD student Björn Egert, and joint work with Christoph Steinbeck on prediction of NMR spectra [KENS08].

Databases of reference spectra are the foundation of metabolite identification approaches. In 2008 I initiated
a collaboration with the MassBank consortium and IPB Halle became the first MassBank server [HAK10]
outside of Japan.

Later, I designed metabolite annotation approaches. I supervised four PhD students working on metabolite
identification: Sebastian Wolf implemented the initial MetFrag system [WSMHN10], and the master student
Christian Hildebrandt [HWN11] implemented the MassStruct system. The PhD student Michael Gerlich
integrated MetFrag and MassBank into MetFusion [GN13]. I designed and implemented the MetShot
package [NTB12] for improved automated LC-MS/MS data acquisition. The PhD student Hendrik Treutler
developed the MetFamily system [TTP16], with strong analytical chemistry insights by Gerd Balcke. I am
supervising the PhD student Christoph Ruttkies, who improved the MetFrag system [RSW16, RNP19],
[WRNSK17], with additional developments by Emma L. Schymanski, Michael Witting and Stefan Posch.
MetFrag was evaluated in conjunction with structure generation [SGK12] and for derivatised GC-APCI-MS
or deuterium exchange analytical setups [RSSN15b, RSS19] and in lipidomics [WRNSK17].

I am also supervising the PhD student Sarah Scharfenberg, who developed an approach for post-processing
of MetFrag result lists to obtain information on compound classes [MBH15] with the group of Chris Steinbeck.
I am mentoring the PhD student Jördis Ann-Schüler, who developed an approach similar to MetFrag that
uses energy calculations from MOPAC to explain the fragmentation in MS/MS [SNMHB18].

Since 2012 I am co-organising the CASMI contest with Emma L. Schymanski, the most recent edition was
CASMI 2016 [SRK17]. I developed the automatic setup and evaluation of the contest. In several cases
tools developed by my PhD students participated in CASMI [RGN13, SGRN14], sometimes as inofficial
participants.

With this expertise, I also wrote both a review on methods [NB10] and a book chapter on computational
methods [NRWB13] with Sebastian Böcker and recommendations as part of the Metabolomics Society task
group on metabolite identification [DEW13].
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MassBank is the first public repository of mass spectra of small chemical compounds for life sciences (<3000 Da). The database
contains 605 electron-ionization mass spectrometry(EI-MS), 137 fast atom bombardment MS and 9276 electrospray ionization
(ESI)-MSn data of 2337 authentic compounds of metabolites, 11 545 EI-MS and 834 other-MS data of 10 286 volatile natural and
synthetic compounds, and 3045 ESI-MS2 data of 679 synthetic drugs contributed by 16 research groups (January 2010). ESI-MS2

data were analyzed under nonstandardized, independent experimental conditions. MassBank is a distributed database. Each
research group provides data from its own MassBank data servers distributed on the Internet. MassBank users can access
either all of the MassBank data or a subset of the data by specifying one or more experimental conditions. In a spectral
search to retrieve mass spectra similar to a query mass spectrum, the similarity score is calculated by a weighted cosine
correlation in which weighting exponents on peak intensity and the mass-to-charge ratio are optimized to the ESI-MS2 data.
MassBank also provides a merged spectrum for each compound prepared by merging the analyzed ESI-MS2 data on an identical
compound under different collision-induced dissociation conditions. Data merging has significantly improved the precision of
the identification of a chemical compound by 21–23% at a similarity score of 0.6. Thus, MassBank is useful for the identification
of chemical compounds and the publication of experimental data. Copyright c© 2010 John Wiley & Sons, Ltd.
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Introduction

Mass spectral data are important experimental data for sup-
porting life science research. Researchers are encouraged to
annotate/describe every detail of their experimental data, es-
pecially metadata, available to the public at publication of their
studies. Full disclosure of supporting experimental data is required
for other scientists to confirm the quality of experimental data.[1]

However, most mass spectral or supplementary data in journal
articles are not fully disclosed because they are published only as
figures showing the mass-to-charge ratio (m/z) and the relative
intensity values of major peaks.

Although published mass spectral data are valuable research
products that should be shared as reference data for the identi-
fication of chemical compounds detected by mass spectrometry,
their retrieval from journal archives is extremely time consuming.
Therefore, mass spectral data as supporting experimental data
and as useful research products should be publicly accessible not
in figures but in digital format. However, at present there is no
public repository for mass spectral data of small chemical com-
pounds except for those of proteomics data. Before considering
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the reasons for this, we will briefly review a few currently available
mass spectral databases.

Several small-scale databases of mass spectral data of small
chemical compounds provide reference mass spectral libraries
for metabolite identification. The Golm Metabolome Database
(GMD@CSB.DB), established by the Max Planck Institute of
Molecular Plant Physiology (Golm, Germany), is a library of
GC-MS data of plant metabolites.[2] The METLIN database of
the Scripps Research Institute (San Diego, CA, USA) provides
8800 MS2 data on 1662 metabolites and drugs[3] and the Glycan
Mass Spectral Database (GMDB), created by the Research Center
for Medical Glycoscience of the National Institute of Advanced
Industrial Science and Technology (AIST), Japan, is a library of
MSn data of polysaccharide chains.[4] The Human Metabolome
Database (HMDB) of the University of Alberta (Edmonton, Canada)
contains liquid chromatography (LC)- and GC-MS data (as PNG
images) of 799 and 279 endogenous metabolites reported in
the literature that were found in biofluids, respectively.[5] All
the electrospray ionization (ESI)-MS2 data were collected at
three different collision energy levels. Two major mass spectral
databases, the Mass Spectral Library[6] [the National Institute
of Standards and Technology (NIST)/Environmental Protection
Agency (EPA)/National Institutes of Health (NIH), USA] and the
Spectral Database System (SDBS)[7] of AIST provide 220 000 and
24 000 official mass spectral data, respectively. These national
laboratories analyze purified natural and synthetic chemical
compounds by electron-ionization mass spectrometry (EI-MS).

In those six databases, all mass spectra were analyzed under
fixed, well-controlled experimental conditions. To retain the
quality of the data as reference data for the identification of
chemical compounds, curators do not mix data in their databases
with data analyzed by other research groups.

In the life sciences, different types of mass spectrometers
are used to analyze chemical compounds in biological samples
because their diverse chemical structure results in different physic-
ochemical properties.[8,9] For example, in most metabolomics
studies, GC and LC are coupled to EI-MS and ESI-MSn, respectively.
EI-MS, which applies a standardized analytical method, yields re-
producible data for an identical chemical compound. On the other
hand, no standard experimental protocol is available for ESI-MSn.
Individual researchers optimized their experimental methods of
ESI-MSn depending on the physicochemical properties of their
target chemical compounds. However, slight differences in the ex-
perimental methods of ESI-MSn may yield different mass spectra
for an identical chemical compound. Therefore, if a public repos-
itory were available, the mass spectral data analyzed by different
experimental methods would be mixed. This raises concerns about
the suitability of a public repository for sharing mass spectral data
as reference data for the identification of chemical compounds de-
tected by mass spectrometry. This may be the main reason for the
continuing absence of a public repository of mass spectral data.

Although standardization of experimental methods of mass
spectrometry is thought to be essential for sharing the mass
spectral data of chemical compounds and standardized proce-
dures to unify experimental protocols have been proposed, the
metabolomics research community has not reached consensus
on those proposals.[10,11] As research groups individually opti-
mized their experimental methods based on their projects and the
physicochemical properties of their target compounds, switching
to other analytical methods would be almost impossible. Con-
sequently, each group prepared its own reference mass spectral
library by analyzing commercially available standard reagents.

However, commercially available standard reagents, especially
those of secondary metabolites produced by plants and microor-
ganisms, are limited in number. Because this limited availability
restricts the ratio of identified metabolites to those detected on
LC-MS and -MS2, it remains as low as 3–5% (48/1233) in plant[12]

and 20–30% (175/626) in human tissues.[13]

Usually, metabolites are identified by comparing two data, re-
tention index of chromatographic separation and mass spectrum,
with authentic compounds analyzed under identical experi-
mental conditions. New technologies such as single-cell mass
spectrometry using matrix-assisted laser desorption/ionization
(MALDI) imaging mass spectrometry[14] and direct nano-ESI mass
spectrometry[15] do not employ chromatographic separation but
rather, they ionize all chemical compounds in a cell at once. There-
fore, metabolite identification in new technologies depends solely
on the reference library of the MSn data.

In summary, although we must not expect the standardization
of experimental protocols or platforms, this does not justify the
absence of a public repository for mass spectral data.

Here, we report MassBank, the first public repository of mass
spectral database of small chemical compounds (<3000 Da) for
life sciences. Research groups contributing to the repository make
their mass spectral data available to the public as supporting
experimental data for other researchers. MassBank accepts mass
spectral data analyzed on chemical compounds using optimized,
up-to-date analytical methods. It is also the first internationally
allied spectral database. As contributors deposit their mass
spectral data not on a centralized repository, but on their own
MassBank data servers, the contributed data and their quality
are not mixed but independent from those of other contributors.
Users of MassBank are provided with informatics tools to search
the distributed data for identification of chemical compounds
detected by mass spectrometry.

Experimental

Concepts underlying MassBank

We designed the software architecture and record format of
MassBank based on three concepts. First, MassBank should be
a public repository for sharing mass spectral data. Contributors
should prepare their data in a common record format that defines
the data field for the experimental methods, details the analytical
parameters of the mass spectrometry and provides peak data.
Second, data should be distributed on the Internet. Ideally, each
contributor should have a local data server for publication of the
formatted data. A contributor may have multiple databases to
facilitate the separate management of data analyzed on different
instruments, and (s)he could specify which data servers are and
are not open to the public. Third, the query interface of MassBank
functions as an access point to data servers distributed on the
Internet.

Software architecture of MassBank servers

Despite its distributed design, from the user’s point of view,
MassBank should appear and function as a normal centralized
database. Users should be able to access MassBank data without
knowing where the data are or what data are involved and
contributors should be able to update and manage their data
independently.
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Table 1. MassBank record

Tag Description of record field

Summary section

ACCESSION Accession number

RECORD TITLE Short summary of the record, including the chemical name of the
compound analyzed and the analytical method

DATE Date of contribution

AUTHORS Contributors and their affiliations

COPYRIGHT Copyright notice

Chemical section

CH$NAME Chemical name of the compound analyzed

CH$COMPOUND CLASS Chemical class of the compound

CH$FORMULA Chemical formula of the compound

CH$EXACT MASS Exact mass of the compound

CH$SMILES SMILES code of the chemical structure of the compound

CH$IUPAC InChI code of the chemical structure of the compound

Analytical section

AC$INSTRUMENT Mass spectrometer and name of manufacturer

AC$INSTRUMENT TYPE Type of ion analyzer

AC$ANALYTICAL CONDITION/MODE Ionization mode

Spectral section

PK$NUM PEAK Total number of peaks

PK$PEAK Peak data: m/z, intensity and relative intensity

Others

MOLFILE NAME File name of the molfile that defines the chemical structure of the
compound analyzed

Each data field is labeled by the tag specifying the data item. The 16 tags listed in the table are mandatory; they are shown on Record Editor.

To satisfy these requirements, we adopted a three-tier archi-
tecture for the MassBank system; it is comprised of database,
application and presentation layers. The database layer stores the
mass spectral data in text format in the relational MySQL database.
The application layer is a search engine for the data stored in the
database layer. The presentation layer is the user interface that
specifies servers to be accessed. The application and presentation
layers are implemented in Java on the Apache Tomcat web server.

Software distribution and maintenance

The MassBank system software is distributed free-of-charge under
the GNU General Public License. The latest source codes are
downloadable from SourceForge.net and they are provided for
both Linux and Microsoft Windows operating systems (OS).
MassBank Installer is a single archive file that includes precompiled
object files and a script for the installation of required free software
such as Apache, Tomcat and MySQL. As the MassBank Installer is
not updated as often as the frequently updated MassBank system,
we recommend that users install the MassBank system by means
of the MassBank Installer first and then perform updates using the
latest source codes from SourceForge.net.

An update service is provided to make maintenance of MassBank
easy. The version of each component of the MassBank system is
checked automatically using the http access to the MassBank.jp
website. When an old component is found, the latest version is
transferred and installed automatically.

MassBank record format

MassBank data must be prepared in the MassBank record format.
Each record contains one mass spectrum attributable to one

chemical compound with a specific chemical formula and each
record consists of four sections: a summary, chemical, analytical
and spectral section. Each data field carries a tag that specifies the
data item (Table 1). For example, for the chemical, analytical and
spectral sections the tags are CH$, AC$ and PK$, respectively.

The summary section contains the accession number that
uniquely defines the record and summary information of the
analytical and chemical sections, authors and copyright. The first
three letters of the accession number specify the contributor.

The chemical section, CH$, defines the chemical information of
the compound analyzed, including chemical names, the CAS
number, compound category and IDs with links to available
chemical compound databases such as KEGG,[16] PubChem,[17]

KNApSAcK,[18] LipidBank,[19] and LipidMaps,[20] if available. The
chemical structure is given in SMILES[21] and InChI code[22] and is
defined separately by an MDL molfile.

The analytical section, AC$, describes the instrument types
and analytical parameters used for mass spectrometry, including
the instrument manufacturer, the catalog number of the mass
spectrometer, the method of ionization, the type of ion analyzer,
ionization voltage, matrix for MALDI ionization and the collision-
induced dissociation (CID) conditions for MSn measurement. For
chemical compounds in biological samples that were separated
and purified by LC, GC or capillary electrophoresis (CE) coupled
to a mass spectrometer, the chromatographic column used, the
chromatographic separation conditions and the retention index
should be described in detail. These data are helpful for the
identification of chemical compounds.

The spectral section, PK$, lists peak data with m/z and intensity
and relative intensity values in integral or real numbers.
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Evaluation of the precision of compound identification
by spectral search

The query and target datasets (QSs, TSs) were prepared by extract-
ing ESI-MS2 data from MassBank data. The two datasets consisted
of ESI-MS2 data in which identical metabolites were analyzed
under different analytical conditions. Using the QS spectrum as
the query, a spectral search against TSs retrieved a list of similar
spectra with corresponding similarity scores. If the metabolite of
a similar spectrum was the same as the metabolite of the query
spectrum, the search result was considered correct; if not, it was
considered incorrect. Each search result was recorded with the
similarity score. We repeated the spectral search for all QS spectra.

Considering the search results with a similarity score higher
than the threshold, say s, to be true, we counted the number
of true positives, TP(s), false negatives, FN(s) and false positives,
FP(s), as follows.

TP(s) = Total number of correct results with a similarity score
higher than the threshold value s,
FN(s) = Total number of correct results with a similarity score
lower than the threshold value s,
FP(s) = Total number of incorrect results with a similarity score
higher than the threshold value s.

We then calculated the precision, recall and F-value at threshold
s as follows.

Precision(s) = TP(s)/[TP(s) + FP(s)] (1)

Recall(s) = TP(s)/[TP(s) + FN(s)] (2)

F-value(s) = Harmonic means between Precision(s)

and Recall(s) (3)

Results

Tools for contributors

Contributors to MassBank must prepare the mass spectral data
in the MassBank record format and deposit the formatted
data on their own MassBank data servers. Previously, data
preparation involved tedious manual work. For example, for
the analytical section, contributors had to manually detail
the experimental methods and analytical parameters of mass
spectrometry. Additionally, experience with MySQL and the Linux
OS was essential for data management on their data servers.
To reduce the workload and the experience requirement, we
developed two tools: Record Editor and Administration Tool.

Generally, mass spectrometers output mass spectral data in
the form of binary raw data readable only by the specific
software provided by the instrument manufacturer. Binary raw
data contain the peak data and the analytical parameters used
to control the mass spectrometers. Previously, contributors had
to manually extract the peak data and the analytical method,
including parameters from the binary raw data with appropriate
software. Then they manually prepared the data of the analytical
and spectral sections in the MassBank record format.

The Mass++ program can directly import the binary raw data
of major instrument companies and output the data in mzML
and other data formats.[23,24] Mass++ has newly incorporated
functionality that imports binary raw data and automatically
outputs the spectral data and the analytical methods in the
MassBank record format. The formatted data output from Mass++

is then combined with the molfile that defines the structure of the
chemical compound in the Record Editor. This tool automatically
calculates the chemical formula and the exact mass of the
molecule, and generates SMILES and InChI codes to complete
the chemical data section. After the accession number of the
record, the authors and other necessary data are manually input
in the summary section, and the Record Editor outputs a complete
MassBank record as shown in Fig. 1.

Finally, using Administration Tool on a web browser, contrib-
utors can upload and manage their data on their MassBank data
servers. Thus, contributors no longer need to have experience with
either Linux or MySQL commands for data management.

Manuals are available from the manual page of the MassBank site
(http://www.massbank.jp/en/manual.html) for contributors want-
ing to know more about Record Editor and Administration Tool.

Statistics of MassBank data

As of January 2010, 16 research groups, 12 in Japan, 3 in
the United States and 1 in Germany, are contributing data to
MassBank (Table 2). Mass spectral data, chemical compounds and
analytical methods are summarized for each research group on
the website (http://www.massbank.jp/en/published.html). These
data are distributed on eight MassBank data servers, one of which
is located in the Leibniz Institute of Plant Biochemistry (Halle,
Germany). Eight small research groups currently without their
own data servers contribute their data to the MassBank data
servers in Japan or Germany. In January 2010, MassBank data
included 10 294 mass spectra [9276 ESI-MSn, 605 EI-MS, 137 fast
atom bombardment (FAB)-MS] of 2337 chemical compounds,
3045 ESI-MS2 data of 679 synthetic drugs and 11 545 EI-, 795 CI-,
38 FD- and 1 FI-MS data of 10 286 volatile natural and synthetic
compounds. The MassBank data consist of data analyzed on 21
different instrument types.

MassBank data are composed of the mass spectra of primary
metabolites, flavonoids, gibberellins, saponins, carotenoids, phos-
pholipids and oligosaccharides. Most of these were analyzed on
ESI-MS2, and some on FAB-MS. In their analysis on ESI-MSn, differ-
ent CID energies were applied to obtain as many product ions as
possible. This resulted in 9276 ESI-MSn data of 1889 chemical com-
pounds, an average of 4.9 ESI-MSn data per chemical compound.
EI-MS data are for bile acids and volatile chemical compounds
such as terpenoids, alkyl alcohols, aldehydes and carboxylic acids.
Since standard experimental conditions are available for EI-MS,
each chemical compound has only one spectral datum.

In collaboration with LipidBank (http://www.lipidbank.jp/), the
official database of the Japanese Conference on the Biochemistry
of Lipids (JCBL), MassBank also collects the mass spectra of lipids
from the literature. As of June 2008, MassBank is the official
database of the Mass Spectral Society of Japan.

Users can access MassBank data from two access points, one
in Japan[25] and the other in Germany.[26] Monthly access to
MassBank data originating from Japan, USA, UK, Germany, Spain
and other countries has reached 7800 hits on average, more than
half originated from countries other than Japan.

Tools for users

Here we briefly introduce the tools developed for users to
access MassBank data and their functions. Users wanting to
know more details about the functions can consult a user
manual available as a pdf file from the MassBank website
(http://www.massbank.jp/en/manual.html).
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Figure 1. Example of a MassBank record.

To obtain suitable search results, users should specify search
conditions using the Search Parameter Setting applet before their
first search. The users should first specify the search tolerance, that
is the experimental error allowance in the m/z value, the cutoff
threshold for lower intensity peaks and the precursor ion by the
m/z value. Then, the users select the instrument type identical with
or similar to the type of the query mass spectrum and the ionization
mode (Fig. 2(a)). Currently, the applet displays 21 instrument types.

Spectral Search

Spectral Search retrieves MSn data identical with or similar to
the query data. The search results are output in the order of the
similarity score together with the number of identical product ions.

MassBank currently adopts the database search algorithm
that calculates the similarity score based on a modified cosine
correlation proposed by Stein and Scott.[27] The intensity of the ith
peak is weighed by a factor, Wi, as follows:

Wi = [Intensity of peaki]
m[m/z of peaki]

n (4)

Stein and Scott empirically determined the optimal exponents
as m = 0.6 and n = 3 by analyzing ca 12 000 EI-MS data of
8000 organic compounds in the NIST Mass Spectral Library. Similar
to their method, we optimized the exponents as m = 0.5 and
n = 2 by analyzing 8785 ESI-MS2 data of ca 700 authentic
compounds of primary metabolites.[28] The difference between
the present exponents and those determined by Stein and Scott

is primarily attributable to the smaller number of peaks and the
higher intensity of higher m/z peaks in the ESI-MS2 data analyzed.

By displaying the search results peak-by-peak on the three-
dimensional display, users can identify peaks in a database mass
spectrum that are common to peaks in the query mass spectrum
(Fig. 2(b)). MassBank provides a batch service for heavy users who
submit many MSn data as queries to the search service.

Quick Search and Substructure Search

MassBank features two tools to search for chemical compounds in
its repository: Quick Search and Substructure Search. Quick Search
retrieves chemical compounds by the chemical name, chemical
formula and a list of the m/z and relative intensity values. The search
results show the chemical compounds with their chemical names,
spectral data and chemical structure (Fig. 3). Substructure Search
retrieves chemical compounds containing a specified chemical
substructure as a part of their chemical structure (Fig. 4). Users
can select three different search options depending on how many
π electrons in the query substructure are included in the target
structures. The number of π electrons should be (1) the same,
(2) higher in the target data or (3) ignored.

Peak Search and Peak Difference Search

Peak Search retrieves MSn data containing the peaks specified by
the m/z values within a specified error allowance. Peak Difference
Search shows chemical compounds containing one or more peak
pairs whose m/z values are different from each other by the
specified m/z values.
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Table 2. Statistics of MassBank data as of January 2010

Research group Group ID Analytical method Num of spectra Num of compounds

Institute for Advanced Biosciences, Keio University KO ESI-QqTOF-MS/MS 914a 695

ESI-QqQ-MS/MS 4 275

ESI-IT-(MS)n 515

PSC, RIKEN PR GC-EI-TOF-MS 241 767

LC-ESI-TOF-MS 85

LC-ESI-QqQ-MS/MS 87

CE-ESI-TOF-MS 20

LC-ESI-QTOF-MS/MS 1 290

Waters WA LC-ESI-Q-MS 2 721 577

ESI-QqQ-MS/MS 273

Akimoto, Graduate School of Pharmaceutical
Sciences, Kyoto and Maoka, Research Institute
for Production Development

CA FAB-CID-EBEB-MS/MS 106 106

Taguchi, Graduate School of Medicine, The
University of Tokyo

UT ESI-QqIT-MS/MS 378 42

Kazusa DNA Research Institute KZ GC-EI-TOF-MS 273 163

Iida, College of Humanities and Sciences, Nihon
University

NU EI-MS 75 74

Tanaka, Institute of Natural Medicine, University of
Toyama

TY LC-ESI-IT-TOF-MS 91 69

Kimura, Faculty of Agriculture, Tottori University TT EI-MS 11 11

FAB-MS 5

Funatsu, Graduate School of Engineering, The
University of Tokyo

JP EI-MS 11 545 10 286

CI-MS 795

FD-MS 38

FI-MS 1

Leibniz Institute of Plant Biochemistry PB ESI-QqTOF-MS/MS 297 90

ESI-QqQ-MS/MS 63

Matsuura, Fukuyama University FU LC-ESI-QqQ-MS/MS 285 71

Metabolon, Inc. MT ESI-IT-MS/MS 149 149

Morii, University of Occupational and
Environmental Health

UO FAB-MS 26 25

EI-MS 5

FD-MS 3

CI-MS 1

Kanaya, Graduate School of Information Science,
Nara Institute of Science and Technology

KNA LC-ESI-IT-MS/MS 619 75

LC-ESI-FT-MS 208

Grant, University of Connecticut CO ESI-QqTOF-MS 510 102

a Number of merged spectra.

Peak Search Advanced

Peak Search Advanced is similar to Peak Search and Peak Difference
Search in function, but it is different in that it specifies the peaks
with the molecular formulae of the ions. Peaks in the merged data
(see the next section for details) are annotated by the chemical for-
mula within an error range of 50 ppm (the threshold is adjustable).
Currently, there are 817 positive and 797 negative ESI-QqTOF-MS2

merged data available as the target for Peak Search Advanced.

Merged mass spectra as artificial reference mass spectra
for metabolite identification

One of the most important applications of MassBank data in the
life sciences is metabolite identification. Generally, ESI-MS2 data of
chemical compounds are useful as reference data for metabolite
identification when the analytical conditions of the query ESI-MS2

data are the same as or very similar to those of the reference mass
spectra. When the query and the reference chemical compounds
are the same, the spectral search retrieves the reference mass
spectrum with higher similarity scores. In other cases, the query
and reference mass spectra are less similar or different even when
the two chemical compounds are the same. As most MassBank
users may encounter the latter situation, MassBank provides an
artificial reference, that is the ‘merged’ mass spectrum.

As the reproducibility of the ESI-MS2 data is reportedly low,[29,30]

we evaluated the degree of reproducibility of MassBank ESI-MS2

data for use as reference data in the metabolite identification.
We took two datasets of common metabolites extracted from
MassBank: datasets [QqQ] and [QqTOF] consisting of 4205 ESI-
QqQ-MS2 and 4431 ESI-QqTOF-MS2 data of 856 common chemical
compounds, respectively. Each chemical compound in each
dataset has four or five spectral data. In the first experiment,
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(a) (b)

Figure 2. Search Parameter Setting and Spectral Search. (a) Search parameters are selected and input on the applet. The ‘Precursor ion’ is specified by the
m/z value. ‘Tolerance’ is the error allowance of m/z values. When a peak in the query data and the corresponding peak in the target data have different
m/z values but are within the tolerance, the two peaks are treated as identical. ‘Cutoff threshold’ is used to distinguish real peaks from noise peaks.
(b) The left upper and lower panels show the QS and the search results in the order of the similarity score, respectively. When some of the search results
are selected in the left lower panel, the three-dimensional display in the right upper panel shows the spectral search results in peak-by-peak mode.

the query dataset (QS) was [QqQ] and the TS was [QqTOF]. In
the second experiment, QS and TS were [QqTOF] and [QqQ],
respectively. We performed two spectral searches and evaluated
precision (see Experimental section, Eqn (1)), recall (Eqn (2)) and
the F-value (Eqn (3)) at various threshold similarity scores for each
QS and TS pair. When the threshold of the similarity score was 0.6,
the precision, recall and the F-value for TS = [QqQ] and [QqTOF]
were [0.222, 0.327, 0.264] and [0.276, 0.292, 0.284], respectively.
Thus, in their original form, ESI-MS2 data in MassBank are not likely
to serve as reference data.

ESI-MS2 data using CID reflect the employed collision energy
(Fig. 5(a)); smaller product ion nonlinearly increase with the
collision energy. This is one of the major reasons for the low
reproducibility of ESI-MS2 data analyzed under different analytical
conditions. Therefore we expect that merged mass spectra,
that is superposition of spectra in different collision energies,
would better serve as the reference mass spectra for metabolite
identification.

In fact, metabolomics groups at the Institute for Advanced
Biosciences, Keio University, Tokyo, Japan (’Keio group’) and the
RIKEN Plant Science Center, Yokohama, Japan (’RIKEN group’)
measured the ESI-MS2 data of chemical compounds at five
different CID collision energies in both positive and negative
modes. The Keio group assessed 4570 ESI-QTQF-MS2 data of 695
chemical compounds under five different collision energies at
10–50 V. For each chemical compound, the ESI-QTQF-MS2 data
were overlaid and merged into a single artificially merged MS2

spectrum (Fig. 5(b)). Each of the chemical compounds has one
merged mass spectrum. The Keio group contributed 914 merged
ESI-QTQF-MS2 data of 695 chemical compounds to MassBank.
The RIKEN group measured 535 chemical compounds on LC-ESI-
QTOF-MS2 under the ramp mode, which we regard as merged mass
spectra, in the range of 5–60 V collision energies in both positive

and negative modes, contributing to a total of 1290 ESI-MS2 data.
Merged mass spectral data have the character ‘X’ in the third
position of the record number, e.g. KOX000031. These merged
ESI-QTOF-MS2 data contain most of the product ions observed
under the commonly adopted CID conditions for measuring ESI-
MS.[2] Therefore, for each chemical compound, the merged data
yield a representative fragmentation pattern.

Evaluation of compound identification using merged ESI-MS2

data as reference data

We evaluated the quality of merged ESI-MS2 data as reference
data vis-à-vis the original ESI-MS2 data. The TSs [Merged QqQ] and
[Merged QqTOF] were prepared by merging [QqQ] and [QqTOF]
for each chemical compound. This yielded 856 merged data for
each dataset. In the first experiment, QS was [QqQ] and TS was
[Merged QqTOF], and in the second, QS and TS were [QqTOF] and
[Merged QqQ], respectively. We performed two spectral searches
and evaluated precision, recall and the F-value at various threshold
similarity scores for each QS and TS pair. When the threshold of the
similarity score was 0.6, precision, recall and F-value observed for
TS = [Merged QqQ] and [Merged QqTOF] were [0.454, 0.307, 0.366]
and [0.490, 0.299, 0.371], respectively. Therefore, merging the ESI-
QqQ and QqTOF-MS2 data improved the precision of the spectral
searches by 23% and 21%, respectively, at similarity scores higher
than 0.6. Merging the data did not significantly affect recall. The
merged data improved metabolite identification using ESI-QIT-MS
data as queries (data not shown). Therefore, a spectral search with
weighting parameters optimized against the merged mass spectra
yields satisfactory results for metabolite identification.

We recommend that contributors of ESI-MS2 data deposit
multiple data for each chemical compound analyzed under at
least a few different levels of collision energy in both positive and
negative mode.
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Figure 3. Quick Search. When, for example, the search involves chemical compounds containing ‘adenine’ in the name, Quick Search displays the
chemical compounds matching the search together with the spectral data and chemical structure.

API services

The MassBank Application Programming Interface (API), the Sim-
ple Object Access Protocol (SOAP) interface to MassBank, allows
users to write their own programs for accessing, customizing
and utilizing MassBank. Currently available methods, down-
loadable from http://www.massbank.jp/en/download.html and
described by a schema in Web Service Definition Language (WSDL)
(http://www.massbank.jp/api/services/MassBankAPI?wsdl), are
Spectral Search, Peak Search and Peak Difference Search.

We show an example using MassBank API. As described above,
mass spectrometers output spectral data as binary raw data.
Because binary raw data are not accepted as a query for a spectral
search in MassBank, they must first be converted into text data
format. Conducting a spectral search query for several hundred
binary raw data outputs with a single run of LC-MSn was a time-
consuming task in metabolomics studies. The Mass++ program
frees users from this burden with a new function that imports
binary raw data for submission as a spectral search query using
MassBank API and shows the search results in its own display
mode. In the near future, MassBank will provide the WSDL batch
service method for spectral searches.

Program source codes and tool manuals

MassBank is currently available in Linux and Microsoft Windows
versions. Typically, the Windows version is released more than
6 months after the Linux version. The source codes of the
MassBank system are freely available from SourceForge[31] with
the GNU General Public License. Manuals for using the search
tools, preparing the data in the MassBank record format, installing

the MassBank system and for managing data on MassBank servers
are available from the MassBank Manual download site.[32]

Discussion

Merged mass spectra for the identification of chemical
compounds

Public mass spectral databases accept mass spectral data
analyzed by nonstandardized analytical methods. Among different
analytical methods, ESI-MSn data are of low reproducibility;
therefore, these data were not thought to be useful as reference
data. However, Volná et al.[30] found that the fragmentation
patterns are almost identical for all tandem mass analyzers and
that only the ratios of the product ions differ somewhat. They
recommend analyzing ESI-MSn at three different CID collision
energy levels. Our present analysis of MassBank data supports their
findings. In fact, most contributors of ESI-MSn data to MassBank
analyzed each chemical compound under five collision energy
levels ranging from 5 to 50 V to observe all possible product ions.
Additionally, MassBank provides a merged mass spectrum for each
compound. Although merging ESI-MSn data statistically improved
the precision of metabolite identification without decreasing
recall, we encountered two problems with the merged data.
First, the total number of product ions in the merged data tended
to be much larger than the number of product ions in the original
ESI-MSn data. For example, merging five data increased the total
number of product ions by 3.82 times (an average of 870 merged
data). This resulted in an increase in the number of false-positive
hits and a consequent decrease in precision. Second, the base
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Figure 4. Substructure Search. When a substructure is submitted as a query, all chemical structures containing the query substructure are listed.

peak in the merged data was different from the base peak in the
original data. The development of a better merging method and a
new database-searching algorithm will solve these problems and
improve metabolite identification in MassBank.

Cost of publication of a distributed database

In MassBank, contributing research groups openly avail their
data to the public from their own data servers. From this
aspect, MassBank is similar to the currently available mass
spectral databases discussed in the Introduction (GMD@CSB.DB,
METLIN, GMDB, HMDB, NIST/EPA/NIH Mass Spectral Library,
SDBS). However, MassBank is different because it accepts data
contributions from researchers and groups; the repository contains
data analyzed with a wide range of mass spectrometry methods.
Via the Search Parameter Setting interface, MassBank allows users
to select datasets obtained with different analytical methods as
the search target.

In other databases, only the owning research groups or
laboratories contribute to their databases and the data in each
database are prepared in different record formats. Consequently,
the (owning) users of a database cannot access other (nonowned)
databases in parallel. In MassBank, contributors must prepare
their data in the specified record format. This includes not only
the peak data but also the analytical method and conditions,
and the chemical structure information on the analyzed chemical
compounds. In addition, contributors must manage their data on
their own local data servers. As the preparation of formatted data
and data management on owned servers was time consuming,
at the request of contributors we made efforts to reduce their

workload. Our efforts resulted in an increase in the data deposited
in MassBank in 2009.

The cost incurred by contributors in the preparation and
management of their data in the MassBank-distributed database
system is proportional to the amount of data deposited.
Contributors of larger quantities of data need high-performance
computers and large storage capacity. This is one of the rationales
behind a distributed database system. In grant applications,
contributors should include costs involved in the publication of
experimental data as a necessary expense for the sharing of their
data as a research product. Funding organizations should judge the
performance of researchers not only based on publications but also
on products made available to the wider research community.[1]

The freely available source code is also useful for an independent
database project outside of the MassBank consortium. An example
is MS/MS spectral tag (MS2T) viewer[12,33] where the data are pre-
pared in the MassBank record format and whose database server is
the MassBank clone. The users cannot access the viewer from the
common MassBank interface, but only from its original website
(http://prime.psc.riken.jp/lcms/ms2tview/ms2tview.html).

Retaining the quality of mass spectral data in MassBank

Some users of MassBank are concerned with the quality of
MassBank data with respect to the technical quality of the
mass spectrometry and the chemical purity and identification
levels of the samples. At present, we cannot offer a practical
method for evaluating the technical quality of contributed data.
However, before data submission, contributors can easily look
for experimental mistakes on Record Editor. Thus, mistakes such
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Figure 5. Merged mass spectral data. (a) The mass spectra of tryptamine analyzed on ESI-QqQ-MS2 by different collision energies (CE), 10–50 V. (b) The
five ESI-QqQ-MS2 data of tryptamine were overlaid and merged into one ‘merged mass spectrum’.

as the mislabeling of a test tube are caught by comparing the
observed mass of the molecular ions with the calculated mass from
the molfiles. For higher resolution MSn data of known chemical
compounds, chemical formulae may be uniquely assignable to
most of the product ions in a higher m/z range within an error
range of 50 ppm. Contributors are advised to add the chemical
annotation of as many product ions as possible in an optional
data field, PK$ANNOTATION, of the MassBank record format. Such
chemical annotations are useful for the removal of mass spectral
data that contain ions from contaminants. Annotations are also
helpful to MassBank contributors who evaluate the mass accuracy
of the data.

At present, MassBank data are the mass spectra of specific
chemical compounds commercially available as purified reagents
of metabolites. In the near future, we will accept the mass
spectral data of metabolites detected and identified by LC-
MSn analysis of biological cell and tissue samples. In such cases,
contributors must provide satisfactory experimental evidence for
the identification of the chemical compounds in the chemical
section.[11] We will also accept LC-, GC- and CE-coupled or direct
MSn data analysis of tissue pieces or single cells. Such data will
include the mass spectra of identified and unidentified chemical
compounds. Identified chemical compounds are indicated by
their chemical names or structures and unidentified or unknown
chemical compounds by their MSn data. MSn data are used as the
tag of unidentified chemical compounds. By comparing the MSn

data analyzed on different biological samples, the intersample
similarity or difference of the chemical compounds can be
determined.

Sharing mass spectral data among research communities

Beginning in June 2008, the Mass Spectrometry Society of Japan
supported MassBank as the official database of the society. In the
near future, the society’s journal will recommend the authors to
register their mass spectral data in MassBank at the time they
submit their manuscripts. MassBank will provide the authors with
accession numbers for citation of the data in the manuscript.
This will make it possible for readers to lookup data details
on MassBank and to search for related articles with Spectral
Search and other search tools available on MassBank. We plan
to advocate the registration of mass spectral data in MassBank
among contributors to other academic journals. In 2009 we started
collaboration with LipidBank, the official database of the JCBL and
organized joint special lectures on MassBank and LipidBank at
annual meetings. The society and the conference will work jointly
to seek continuous academic funding to support both MassBank
and LipidBank.

MassBank provides a record field for copyright, the default
holders of which are contributors, but none for data distribution.
Because the distribution of mass spectral data is another method of
data sharing, users and contributors propose to prepare a record
field for data distribution in which contributors express under
the terms of the Creative Commons Attribution Licenses.[34] We
will prepare the record field and an FTP site for the download
of data. Additionally, we consider augmenting the record
documentation of MassBank by conforming to the guidelines for
the controlled vocabularies from Proteomics Standards Initiative
(PSI).[35]
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Conclusions

MassBank is based on the three concepts. First, it is a public
database of mass spectral data analyzed under nonstandardized
experimental conditions. Second, it is a distributed database in
which contributors prepare and provide their data from their own
data servers on the Internet. Third, it develops and provides
free tools for contributors to prepare and manage data on
their sites. To improve the metabolite identification from mass
spectra, we merged ESI-MS2 data of identical chemical compounds
analyzed under different experimental conditions. Merged data
as a TS of spectral search were significantly improved precision
without decreasing recall of the spectral search when compared
with the unmerged original data set. This showed that merging
spectral data is useful for generating reference data for metabolite
identification.

Acknowledgements

We thank Ms Rie Matsuzawa and Ms Michi Kittaka for their input
of data, Dr Toshiaki Katayama for his advice on the development
of Web API on MassBank, Dr Zenzaburo Tozuka and Dr Yoshinao
Wada for their support on introducing MassBank as the official
database of the Mass Spectrometry Society of Japan and Dr Masaru
Tomita for his financial support. This work was supported by a grant
for the advancement and standardization of biological databases
(2006-2010) from the Institute for Bioinformatics Research and
Development of the Japan Science and Technology Agency (to
T. N., M. A. and S. K.), a grant-in-aid for Scientific Research on
the Priority Area from the Ministry of Education, Culture, Sports,
Science and Technology of Japan (grant number 18016028 to
T. N., M. A. and S. K.), research grants from Yamagata Prefecture and
Tsuruoka City (to T. N. and M. A.) and a grant from the New Energy
and Industrial Technology Development Organization (NEDO) of
Japan as part of the ‘Development of Fundamental Technologies
for Controlling the Material Production Process of Plants’ (to T. A.,
N. S., H. S. and D. S.).

References
[1] P. N. Schofield, T. Bubela, T. Weaver, L. Portilla, S. D. Brown,

J. M. Hancock, D. Einhorn, G. Tocchini-Valentini, M. Hrabe de
Angelis, N. Rosenthal. Post-publication sharing of data and tools.
Nature 2009, 461, 171.

[2] J. Kopka, N. Schauer, S. Krueger, C. Birkemeyer, B. Usadel,
E. Bergmuller, P. Dormann, W. Weckwerth, Y. Gibon, M. Stitt,
L. Willmitzer, A. R. Fernie, D. Steinhauser. GMD@CSB.DB: the Golm
Metabolome database. Bioinformatics 2005, 21, 1635.

[3] C. A. Smith, G. O’Maille, E. J. Want, C. Qin, S. A. Trauger,
T. R. Brandon, D. E. Custodio, R. Abagyan, G. Siuzdak. METLIN: a
metabolite mass spectral database. Ther. Drug Monit. 2005, 27, 747.

[4] A. Kameyama, N. Kikuchi, S. Nakaya, H. Ito, T. Sato, T. Shikanai,
Y. Takahashi, K. Takahashi, H. Narimatsu. A strategy for identifica-
tion of oligosaccharide structures using observational multistage
mass spectral library. Anal. Chem. 2005, 77, 4719.

[5] D. S. Wishart, C. Knox, A. C. Guo, R. Eisner, N. Young, B. Gautam,
D. D. Hau, N. Psychogios, E. Dong, S. Bouatra, R. Mandal,
I. Sinelnikov, J. Xia, L. Jia, J. A. Cruz, E. Lim, C. A. Sobsey,
S. Shrivastava, P. Huang, P. Liu, L. Fang, J. Peng, R. Fradette,
D. Cheng, D. Tzur, M. Clements, A. Lewis, A. De Souza,
A. Zuniga, M. Dawe, Y. Xiong, D. Clive, R. Greiner, A. Nazyrova,
R. Shaykhutdinov, L. Li, H. J. Vogel, I. Forsythe. HMDB: a knowledge
base for the human metabolome. Nucleic Acids Res 2009, 37, D603.

[6] National Institute of Standards and Technology, NIST Standard
Reference Database 1A, NIST/EPA/NIH Mass Spectral Library with
Search Program: (Data Version: NIST 08, Software Version 2.0f).
http://www.nist.gov/srd/nist1a.htm. [Last accessed: March 2010].

[7] National Institute of Advanced Industrial Science and Technol-
ogy, Japan. Spectral Database for Organic Compounds, SDBS.
http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct frame top.cgi.
[Last accessed: March 2010].

[8] C. M. Dobson. Chemical space and biology. Nature 2004, 432, 824.
[9] J. Clardy, C. Walsh. Lessons from natural molecules. Nature 2004,

432, 829.
[10] S. A. Sansone, T. Fan, R. Goodacre, J. L. Griffin, N. W. Hardy,

R. Kaddurah-Daouk, B. S. Kristal, J. Lindon, P. Mendes, N. Morrison,
B. Nikolau, D. Robertson, L. W. Sumner, C. Taylor, M. van der Werf,
B. van Ommen, O. Fiehn. The metabolomics standards initiative.
Nat. Biotechnol.. 2007, 25, 846.

[11] L. Sumner, A. Amberg, D. Barrett, M. Beale, R. Beger, C. Daykin,
T. Fan, O. Fiehn, R. Goodacre, J. Griffin, T. Hankemeier, N. Hardy,
J. Harnly, R. Higashi, J. Kopka, A. Lane, J. Lindon, P. Marriott,
A. Nicholls, M. Reily, J. Thaden, M. Viant. Proposed minimum re-
porting standards for chemical analysis. Metabolomics 2007, 3, 211.

[12] F. Matsuda, K. Yonekura-Sakakibara, R. Niida, T. Kuromori,
K. Shinozaki, K. Saito. MS/MS spectral tag-based annotation
of non-targeted profile of plant secondary metabolites. Plant J.
2009, 57, 555.

[13] A. Sreekumar, M. Poisson, T. M. Rajendiran, A. P. Khan, Q. Cao,
J. Yu, B. Laxman, R. Mehra, R. J. Lonigro, Y. Li, M. K. Nyati, A. Ahsan,
S. Kalyana-Sundaram, B. Han, X. Cao, J. Byun, G. S. Omenn,
D. Ghosh, S. Pennathur, D. C. Alexander, A. Berger, J. R. Shuster,
J. T. Wei, S. Varambally, C. Beecher, A. M. Chinnaiyan. Metabolomic
profiles delineate potential role for sarcosine in prostate cancer
progression. Nature 2009, 457, 910.

[14] L. A. McDonnell, R. M. A. Heeren. Imaging mass spectrometry. Mass
Spectrom. Rev. 2007, 26, 606.

[15] T. Masujima. Live single-cell mass spectrometry. Anal. Sci. 2009, 25,
953.

[16] M. Kanehisa, S. Goto, M. Furumichi, M. Tanabe, M. Hirakawa. KEGG
for representation and analysis of molecular networks involving
diseases and drugs. Nucleic Acids Res 2010, 38, D355.

[17] United States National Library of Medicine, National Institutes of
Health, National Center for Biotechnology Information. PubChem
Compounds Database. http://pubchem.ncbi.nlm.nih.gov/. [Last
accessed: March 2010].

[18] Y. Shinbo, Y. Nakamura, M. Altaf-Ul-Amin, H. Asahi, K. Kurokawa,
M. Arita, K. Saito, D. Ohta, D. Shibata, S. Kanaya. KNApSAcK:
A comprehensive species-metabolite relationship database.
In Plant Metabolomics, K. Saito, R. A. Dixon, L. Willmitzer(Eds).
Springer-Verlag Berlin: NY, 2006, 165.

[19] Japanese Conference on the Biochemistry of Lipids. Database of nat-
ural lipids. http://www.lipidbank.jp/. [Last accessed: March 2010].

[20] E. Fahy, S. Subramaniam, H. A. Brown, C. K. Glass, A. H. Merrill,
R. C. Murphy, C. R. H. Raetz, D. W. Russell, Y. Seyama, W. Shaw,
T. Shimizu, F. Spener, G. van Meer, M. S. VanNieuwenhze,
S. H. White, J. L. Witztum, E. A. Dennis. A comprehensive classifica-
tion system for lipids. J. Lipid Res. 2005, 46, 839.

[21] D. J. Weininger. SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules.
J. Chem. Inf. Comput. Sci. 1988, 28, 31.

[22] International Union of Pure and Applied Chemistry. The IUPAC
International Chemical Identifier. http://www.iupac.org/inchi/.
[Last accessed: March 2010].

[23] S. Tanaka, K. Aoshima, Y. Miura, Y. Oda. 57th ASMS Conference on
Mass Spectrometry and Allied Topics (American Society for Mass
Spectrometry), Philadelphia, PA, 31 May to 04 June, 2009.

[24] Biomarkers and Personalized Medicine Core Function Unit,
Eisai Product Creation Systems, Eisai Co. Ltd. Mass++.
http://groups.google.com/group/massplusplus. [Last accessed:
March 2010].

[25] Institute for Advanced Biosciences, Keio University. MassBank.
http://www.massbank.jp. [Last accessed: March 2010].

[26] Leibniz Institute of Plant Biochemistry, Stress and Developmental
Biology. MassBank. http://msbi.ipb-halle.de/MassBank/. [Last
accessed: March 2010].

[27] S. E. Stein, D. R. Scott. Optimization and testing of mass spectral
library search algorithms for compound identification. J. Am. Soc.
Mass Spectrom. 1994, 5, 859.

[28] H. Horai, M. Arita, T. Nishioka. Comparison of ESI-MS in Mass-
Bank Database. 1st International Conference on BioMedical
Engineering and Informatics, Sanya, Hainan, China, 28–30

J. Mass. Spectrom. 2010, 45, 703–714 Copyright c© 2010 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/jms

DOI:10.1002/jms.1777 Reprinted with permission. © 2010 John Wiley & Sons, Inc. All Rights Reserved.

https://doi.org/10.1002/jms.1777


7
1

4

H. Horai et al.

May, 2008. (The abstract is downloadable from the site
http://www.massbank.jp/en/document.html).

[29] C. Hopley, T. Bristow, A. Lubben, A. Simpson, E. Bull, K. Klagkou,
J. Herniman, J. Langley. Towards a universal product ion mass
spectral library – reproducibility of product ion spectra across
eleven different mass spectrometers. Rapid Commun. Mass
Spectrom. 2008, 22, 1779.
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J. Poustka, M. Hubálek. Comparison of negative ion electrospray
mass spectra measured by seven tandem mass analyzers towards
library formation. Rapid Commun. Mass Spectrom. 2008, 22, 101.

[31] Geeknet, Inc. SourceForge.net. http://sourceforge.net/projects/
massbank/. [Last accessed: March 2010].

[32] Institute for Advanced Biosciences, Keio University. Mass++
Manual. http://www.massbank.jp/en/manual.html. [Last accessed:
March 2010].

[33] RIKEN, Plant Science Center. Platform for RIKEN Metabolomics
MS/MS spectral tag (MS2T) viewer. http://prime.psc.riken.jp/lcms/
ms2tview/ms2tview.html. [Last accessed: March 2010].

[34] Creative Commons. Creative Commons Attribution Licenses.
http://creativecommons.org/. [Last accessed March 2010].

[35] R. G. Cote, P. Jones, L. Martens, R. Apweiler, H. Hermjakob. The
ontology lookup service: more data and better tools for controlled
vocabulary queries. Nucleic Acids Res. 2008, 36, W372.

www.interscience.wiley.com/journal/jms Copyright c© 2010 John Wiley & Sons, Ltd. J. Mass. Spectrom. 2010, 45, 703–714

DOI:10.1002/jms.1777 Reprinted with permission. © 2010 John Wiley & Sons, Inc. All Rights Reserved.

https://doi.org/10.1002/jms.1777


METHODOLOGY ARTICLE Open Access

In silico fragmentation for computer assisted
identification of metabolite mass spectra
Sebastian Wolf1*, Stephan Schmidt1, Matthias Müller-Hannemann2, Steffen Neumann1

Abstract

Background: Mass spectrometry has become the analytical method of choice in metabolomics research. The
identification of unknown compounds is the main bottleneck. In addition to the precursor mass, tandem MS
spectra carry informative fragment peaks, but the coverage of spectral libraries of measured reference compounds
are far from covering the complete chemical space. Compound libraries such as PubChem or KEGG describe a
larger number of compounds, which can be used to compare their in silico fragmentation with spectra of
unknown metabolites.

Results: We created the MetFrag suite to obtain a candidate list from compound libraries based on the precursor
mass, subsequently ranked by the agreement between measured and in silico fragments. In the evaluation
MetFrag was able to rank most of the correct compounds within the top 3 candidates returned by an exact mass
query in KEGG. Compared to a previously published study, MetFrag obtained better results than the commercial
MassFrontier software. Especially for large compound libraries, the candidates with a good score show a high
structural similarity or just different stereochemistry, a subsequent clustering based on chemical distances reduces
this redundancy. The in silico fragmentation requires less than a second to process a molecule, and MetFrag
performs a search in KEGG or PubChem on average within 30 to 300 seconds, respectively, on an average
desktop PC.

Conclusions: We presented a method that is able to identify small molecules from tandem MS measurements,
even without spectral reference data or a large set of fragmentation rules. With today’s massive general purpose
compound libraries we obtain dozens of very similar candidates, which still allows a confident estimate of the
correct compound class. Our tool MetFrag improves the identification of unknown substances from tandem MS
spectra and delivers better results than comparable commercial software. MetFrag is available through a web
application, web services and as java library. The web frontend allows the end-user to analyse single spectra and
browse the results, whereas the web service and console application are aimed to perform batch searches and
evaluation.

Background
Mass spectrometry has become the analytical method of
choice in metabolomics research [1]. Various ionisation
methods are commonly used, such as electron impact
(EI) used with gas chromatography (GC/MS), or the soft
electrospray ionisation (ESI), which is employed in LC/
ESI-MS systems. The main bottleneck in the interpreta-
tion of metabolomics experiments is the identification of
compounds. In addition to the exact mass, tandem MS
spectra provide additional structural hints, providing a

fingerprint of the measured molecule. In tandem MS,
the molecules are interacting with a collision gas at spe-
cified kinetic energies, hence the name collision induced
dissociation. Large spectral libraries of measured refer-
ence spectra exist for GC/MS, such as the commercial
NIST library ‘08 (Gaithersburg, MD) or the GMD [2],
but for ESI-tandem MS spectral libraries are still few
and comparably small [3,4]. A different approach
towards identification is the interpretation of the mea-
sured spectra, usually with regard to the known (or
hypothetical) molecular structure.
Fragmenter with a rule set like the commercial tools

ACD Fragmenter [5] and Mass Frontier [6] generate
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fragments based on cleavage rules known from the lit-
erature, in both cases the algorithmic details are
not published. For some compounds, MassFrontier 5 is
not able to identify any fragments in negative mode [7].
Hill et al. used Mass Frontier 4 to predict the
tandem MS spectra of 102 test compounds, which were
analysed using a Micromass Q-TOF II in positive mode,
to identify the measured compound and its structure.
Candidate compounds were retrieved from PubChem
using the exact mass. MassFrontier used those struc-
tures as input and generated spectra which were
compared to the measured spectra. Finally, the com-
pounds were ranked according to the peaks common
to both the predicted and measured spectra [8]. Combi-
natorial Fragmenter such as Fragment Identificator
(FiD) proposed by Heinonen et al. [9] try to predict
the fragmentation tree given both a metabolite’s mole-
cular structure and its tandem mass spectrum. Due to
high computational complexity, even for a single med-
ium sized compound (around 300 Da) runtimes can
reach several hours. Another approach is the systematic
bond disconnection method without a rule set as
described in [10]. The resulting product ions from a sin-
gle precursor structure are matched against the
peaks measured with a high-resolution mass spectro-
meter. The software EPIC was tested against two
hand annotated spectra from the literature and is not
publicly available. The runtime was reported to be
around 1 minute to process 1-(3-(5-(1,2,4-triazol-4-yl)-
1H-indol-3-yl)propyl)-4-(2-(3-fluorophenyl)ethyl)pipera-
zine (432 Da).

MetFrag is a combinatorial fragmenter using the bond
disconnection approach, which is fast enough to screen
dozens to thousands of candidates retrieved from e.g.
KEGG, PubChem or ChemSpider compound databases.
We do not attempt to create a mechanistically correct
prediction of the fragmentation processes. Instead, we
want to perform a search in compound libraries using
the measured fragments as additional structural hints.
The paper is structured as follows: in the next section

we describe the architecture and the in silico fragmenta-
tion algorithm, including heuristics to speed up calcula-
tions and to account for molecular rearrangements
upon fragmentation. Afterwards, we explain the scoring
function. In the results section we evaluate MetFrag on
a set of 710 spectra from 151 compounds. The paper
finishes with our conclusions. All detailed results are
available as additional files.

Implementation
The workflow implemented in MetFrag is shown in
Figure 1, and covered in detail in the following sections.
MetFrag is implemented in Java and uses the Chemistry
Development Kit [11], an open source Java library. The
CDK provides algorithms and data structures for struc-
tural Chemo- and Bioinformatics and is able to read
and write common formats such as MDL, CML, InChI,
and many more.

Retrieval of candidates from compound libraries
First we perform a search in a general purpose com-
pound database for candidate molecules based on the

Figure 1 Workflow of a search based on exact mass and tandem MS spectrum. First the upstream compound library is searched using
their respective web service API. The scoring ranks the measured peaks against the in silico fragments.
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exact mass (within an error range given in ppm) of
the neutral and intact molecule. Currently three
compound databases can be queried: KEGG Com-
pound (about 16 021 entries, October 2009) [12], Pub-
Chem (37 million, June 2009) [13] and ChemSpider
(23 million, October 2009) [14]. Optionally, the search
can be restricted to compounds containing only the
elements CHNOPS, commonly occurring in natural
products.
Alternatively, the compound databases can be

searched with the elemental composition if this has
been derived from e.g. exact mass and isotopic pattern
of the precursor. Finally, the set of candidates can be
supplied by simply enumerating all database IDs to
be processed, e.g. obtained by an independent search
for metabolites of a pathway. To query other (local)
libraries, a custom wrapper can be added which contains
the search logic.
The results usually contain dozens to thousands of

hits with a similar (or identical in case of isomeric com-
pounds) mass. The databases are accessed via their web-
service interface and the resulting candidate compounds
are downloaded automatically. Hydrogens are added
explicitly to the structure where necessary.

In silico fragmentation of candidates
MetFrag generates all possible topological fragments of a
candidate compound in order to match the fragment
mass with the measured peaks. The problem of enumer-
ating all possible molecular fragments can be solved by
creating a fragmentation tree. The root consists of the
intact molecule, and each node represents a fragment,
obtained by splitting the molecule at a given bond. We
implemented this as an iterative, breadth-first algorithm.
One major speed determining factor is the number of
fragments generated, because of the combinatorial nat-
ure of the algorithm. Thus, the maximum tree depth
was introduced to improve the performance and specifi-
city. We perform additional application-specific steps to
prune the search space and take care of molecular rear-
rangements, see below. For each candidate structure the
fragments are generated in the following way (Figure 2):
Initially the candidate structure is pushed into an

“unprocessed” queue. The candidate structure is prepro-
cessed using a (small) set of rules, which describe mole-
cular rearrangements during the CID fragmentation that
can not be accounted for by the simple bond disconnec-
tion approach. Each application of these rules results in
one or more derived fragments which are added to the

Figure 2 Algorithm for in silico fragmentation. Each compound is fragmented using the bond dissociation approach. Bonds in ring systems
need special treatment. Every possible structure is generated until a given tree depth is reached. The redundancy heuristics and mass checks
reduce the search space.
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“unprocessed” queue. The actual rules will be described
later in this paper.
Then a structure is dequeued and its molecular graph

is traversed to collect all bonds to be split. A linear
bond (which is not part of a ring system) only needs to
be cleaved and results in two new fragments. Within a
ring system two bonds have to be split simultaneously,
to create the new fragments. Only the fragments larger
than the peak with the smallest mass are created, since
smaller fragments can not explain an experimental peak.
Before proceeding to the next fragment, a redundancy

check is performed to eliminate duplicate fragments.
Redundancy occurs if a fragment A is part of both par-
ent fragments AB and ABC, or the fragment A appears
in different places of the molecule, as in ABA. In both
cases the redundant structures would cause longer run-
times and higher memory consumption without gaining
any information. In addition to full (and time consum-
ing) graph isomorphism checks we describe simpler
heuristics later in this paper.
Finally, the in silico fragments are matched against the

query peaklist. The measured peaks correspond to the
charged fragments, so the matching function adds (posi-
tive mode) or removes (negative mode) a proton (1.007
Da) to the fragment mass. In a few cases, fragment ions
can have an intrinsic charge, where one of the heteroa-
toms is charged. In this case the fragment mass is used
as-is, but a penalty is added to the bond dissociation
energy of this fragment (see below).
The accuracy of a mass measured by an MS instru-

ment is typically expressed relatively in ppm. In practice
we found that especially for low masses, an additional
(absolute) deviation has to be considered. Hence Met-
Frag uses two values mzppm and mzabs respectively, to
calculate the mass error used for fragment matching.
Peaks that have such an explanation are subsequently

removed from the query peaklist and the fragment-peak
pair is saved for the final scoring. If the peak with the
smallest mass has been explained, this will raise the
minimal-mass cut-off, resulting in even fewer fragments
that need to be considered. The “unprocessed” queue is
then populated with the created and filtered fragments
and processed as described above. The fragmentation
terminates if the queue is empty or the maximum tree
depth has been reached. The candidate is then scored
based on all matched fragment-peak pairs as explained
in the following section.

Scoring candidates based on fragments explaining the
measured peaks
The score is an extension of a simple peak count: Si of a
candidate compound i is calculated based on all frag-
ments Fi that explain peaks in the measured spectrum

and the bond dissociation energy (BDE) calculated dur-
ing the in silico fragmentation:
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In general a peak with a high mass and intensity is
more characteristic than peaks with lower mass and
intensity. This is reflected by the weighted peak count
wi, as already proposed by [3,15]. The exponents
m = 0.6 and n = 3 we use are taken from the literature
[15]. The weights wi are scaled by max(w) such that it is
between 0 and 1. We also take the bond dissociation
energy (BDE) into account, the higher the BDE, the less
likely we consider a fragment. We use the standard
enthalpy change upon bond fragmentation from litera-
ture, see e.g. [16]. For each candidate f we sum up BDEb
for all bonds Bf cleaved along the fragmentation tree for
the explained fragments Fi. Afterwards, for each candi-
date the arithmetic mean ei of these BDEs is scaled by 2
max(e) such that it is between 0 and 0.5.

Neutral loss rules account for rearrangements
The ionised molecules typically have a single charge.
After the fragmentation, the charge remains with either
of the resulting fragments, the other is neutral. Because
only charged ions can be measured, the mass difference
between the two charged ions before and after the frag-
mentation is referred to as the “neutral loss” [17].
One example of a common neutral loss is H2O, which

is not a true substructure of any molecule. Instead, H2O
is formed after a hydroxyl group (OH) and a single H
are split off at different (though usually nearby) positions
(see Figure 3, where the distance is three). Because indi-
vidual H atoms are not considered during the in silico
fragmentation, the resulting fragment would never be
found without special treatment. MetFrag is checking
for structural patterns that can lead to such a non-topo-
logical fragmentation. We check within a specified topo-
logical distance of the OH-group for another hydrogen
and remove both OH and H.
This non-topological fragmentation is handled by the

rules shown in Table 1, other neutral losses are covered
by the bond-disconnection approach. Rules can be
added easily, e.g. if the compounds measured belong to
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unusual compound classes. MetFrag reads these during
start up and applies the rules to the initial candidates,
resulting in new (derived) candidate molecules.

Elimination of redundant fragments
We implemented three alternative structure redundancy
checks. Intuitively, a proper graph isomorphism check is
the best approach to eliminate structures with the same
molecular connectivity. In practice, graph isomorphism
checks are not fast enough to process thousands of
structures in reasonable time.
Alternatively we implemented an atom based redun-

dancy check: each atom is labelled with a unique identi-
fier and resulting fragments are compared to others
based on atom IDs. This method will not detect the
redundancy as in ABA mentioned above, because the
atoms in the two identical substructures A carry different
IDs. This method showed the same identification rate at
much lower runtime requirements. To reduce the com-
plexity of the test even further, the molecular formula

redundancy check was introduced, which compares frag-
ments based only on their elemental composition. This
check will detect the ABA redundancy, but will produce
false positives if two structures have the same elemental
composition, but with different bond structure, i.e. con-
nectivity. If two fragments have the same molecular for-
mula, the one that requires the lower bond dissociation
energy is chosen. This way the fragments which are more
likely to occur are considered. The molecular formula
redundancy check is used by default, because the results
are comparable at considerably reduced runtime.

Structure clustering
Depending on the upstream database, the MetFrag
result list can contain many similar structures or stereo
isomers which have identical MetFrag scores. Therefore,
we cluster the hits with tied ranks using the pairwise
Tanimoto [18] distance of the molecular fingerprints, as
implemented in the CDK [11]. All hits with a pairwise
similarity ≥ 0.95 are collapsed into one cluster.

Figure 3 Annotated tandem MS spectrum of Epicatechin. This spectrum for Epicatechin was measured on a Bruker-micrOTOFQ mass
spectrometer and manually annotated by an expert. The measured peaks and corresponding fragments for the major signals are depicted. In
addition, the non-topological water loss is highlighted in blue.

Table 1 Neutral loss rules

Ion Modea Exact Massb Topological Fragmentc Neutral Lossd Maximum Distancee

+ - 18.0106 OH H2O 3

+ - 27.0109 CN HCN 3

+ - 17.0266 NH2 NH3 3

+ - 30.0106 COH CH2O 3

+ 46.0055 COOH HCOOH 3

These rules are applied to the initial candidate structures to account for rearrangements during the tandem MS fragmentation, i.e. neutral losses of unconnected
fragments: aionisation mode where this rule can be applied, bexact mass in Da of the neutral loss, cmolecular formula of the characteristic fragment, dall atoms
that are removed, e maximum number of bonds traversed to match neutral loss.
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User interface and available APIs
Our MetFrag application features an user friendly
web interface, http://msbi.ipb-halle.de/MetFrag/. The
required input includes the tandem MS peaklist with
intensities (Figure 4, top left), selection of the upstream
compound database and respective search parameters
(top right). Alternatively, a list of database IDs can be
provided explicitly. This allows e.g. to select the candi-
dates based on their occurrence in specific pathways.
Figure 4 also shows the results browser. A feedback
form allows to store all input data, user rating of the
hypotheses, and further comments. This helps to collect
user-provided test- and training data. Spectra will not be
saved unless explicitly granted. The web interface is
based on Java Server Faces (JSF) [19], using the Apache
MyFaces [20] implementation, ICEfaces [21] (a compo-
nent library with AJAX capabilities) in an Apache Tom-
cat [22] servlet container. Thus, MetFrag is platform
independent and accessible using most javascript
enabled browsers.
We also provide a BioMoby [23] web service, which

can be called from other software, including the Taverna
workflow engine. Finally, the actual MetFrag algorithms
are available as Java library, which can be used to per-
form batch searches and evaluation.

Results and Discussion
In this section we give an example of MetFrag results
for an exemplary compound, and describe the full test
data sets and evaluation criteria. We evaluate MetFrag
on two data sets, measured on different instruments,
using either KEGG or PubChem as compound library.
For the evaluation we use the merged spectra from

different collision energies of compounds where the
database id is known. If MetFrag returns multiple
hypotheses with tied ranks, we report the most pessi-
mistic position: even if the correct solution has the high-
est observed score, if 9 other candidates also have the
same score, then we assign rank 10.
In addition to the worst case rank we report the clus-

ter rank. Clusters of compounds having a structural
Tanimoto similarity ≥ 0.95 are collapsed and treated as
one compound cluster. Again, this measure is quite con-
servative, because ranks are collapsed only within results
having identical scores, and still the worst case cluster
rank is reported. The standard deviation of both the raw
and cluster ranks for a larger benchmark data set can be
quite high, therefore we report not only the average
rank, but also the median and 75% quantile.

Example: Spectrum of Naringenin
As an example we show the analysis of a tandem MS
spectrum of Naringenin (C15H12O5, KEGG C00509)
with MetFrag. Using KEGG as compound library with a

realistic 10 ppm window around the exact mass of
272.068 Da will return 15 hits. Each candidate structure
is retrieved and fragmented as described in the previous
section.
After scoring each structure, the first three results can

be seen in Figure 4. The details window shows the frag-
ments that can be explained by the spectrum. The same
query in PubChem yields 736 candidates, and Figure 5
shows the 9 top ranked solutions, including the correct
compound at worst case rank 8. The similarity would
collapse the isomers into two clusters, resulting in a
cluster rank 5.

Benchmark data sets
Two data sets were used for evaluation, together con-
sisting of 710 spectra of 151 known compounds. Cur-
rent instruments allow the acquisition of so called ramp
spectra, which combine a range of collision energies in
one measurement. In both data sets the compounds
were measured at different collision energies. Depending
on the compound, informative fragmentation might
occur only at higher energies. For other compounds,
even low collision energies can lead to a very high
degree of fragmentation. For this reason we use compo-
site spectra: two peaks p1 and p2 from different collision
energies are merged mz = avg(mz1, mz2) if |mz1 - mz2|
≤ 0.01 Th, retaining the higher intensity max(int1, int2).
Data set I with compound library KEGG
The first data set consists of 200 spectra from 49 com-
pounds obtained on the API QSTAR Pulsar I in positive
mode at several different collision energies, e.g. 10, 20,
30 and 40 eV. The spectra were measured at the IPB
and are publicly available in the MassBank database
http://msbi.ipb-halle.de/MassBank/, see additional file 1
for a list of accession numbers.
MetFrag was used to identify the compounds using

the 49 composite spectra within KEGG. Fragments are
generated until a tree depth of two is reached. The
instrument specific deviation was set to mzabs = 0.01
and mzppm = 50.
The initial list of candidates obtained from KEGG

contained on average 10.3 compounds. The correct
compound has a median of 3 in the MetFrag result list.
25 of the correct compounds were ranked in the top 3
hits and 11 of these are ranked first. MetFrag is a great
improvement over a mass-only library search. With 16
021 entries KEGG is a comparably small library. How-
ever, the compounds are highly relevant to metabolo-
mics research.
Data set II searched against PubChem
For the second data set we used the PubChem database,
with a much larger collection of natural and synthetic
compounds. A collection of 102 compounds with an
average mass of 372.5 Da has been measured on a
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Figure 4 MetFrag web interface. The web interface with the search parameters at the top and the result list below. The extra window can be
opened for each result and shows details such as the spectrum and matching fragment structures.
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Micromass Q-TOF II in positive mode and published by
Hill et al. in [8]. Each compound was measured at five
different collision energies: 10, 20, 30, 40 and 50 eV, for
an overall of 510 spectra. All spectra are available from
MassBank as well, see additional file 2 for a list of acces-
sion numbers. For the spectra from this instrument we
used 10 ppm (mzabs = 0) as mass deviation and a maxi-
mum tree depth of two. Based on a PubChem snapshot
(June 2009) we retrieved on average 2508 candidate
compounds.
After the MetFrag scoring, the correct candidate

occurred at median rank 31.5, with the structure clus-
tering the median decreased to 14.5. The complete
results are shown in additional file 2.

We were also interested in the effect of a larger tree
depth: raising the tree depth to three increases the aver-
age runtime 5-fold, and worse, the prediction accuracy
decreases. The median of the correct compound
degraded to 39 (cluster rank 18). This behaviour can be
explained with the positive predictive value (PPV):

PPV 


TP
TP FP

where

TP

FP




peaks explained by correct compound

peaks explained byy other candidates.

Figure 5 Top candidates for Naringenin against PubChem. The 9 top ranked compounds where the correct solution (CID 932) is reported at
(tied) rank 8. Two clusters of structures (green and blue) are identical apart from their stereochemistry, the remaining three structures (yellow)
that explain all six tandem MS peaks have a Tanimoto similarity < 0.95. After clustering with a similarity ≥ 0.95 the stereoisomers are collapsed
into one cluster, resulting in a cluster rank 5 for the correct solution.
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The more (smaller) fragments are generated, the more
peaks can be matched, which leads to more false posi-
tive hits. This dependency is the reason to include the
exponent mass f

3 in the scoring function. The higher
number of false positives results in a PPV of only 0.017
(tree depth three) versus 0.028 using tree depth of two.
Similarly, we applied the neutral loss rules (Table 1) to

every generated fragment, not just the initial candidates.
Again, we obtained more matching fragments, and the
PPV decreased from 0.028 to 0.017, with an even higher
median of the correct compound cluster of 67.
Another aspect of the evaluation was to use individual

spectra instead of the composite spectra. MetFrag
showed a poor performance resulting in a median of 43
using 10 ppm. An interesting observation is that the
median improved to 39.5 if the allowed mass deviation
is increased from 10 ppm to 20 ppm. Because the mer-
ging (and averaging) of peaks in the composite spectra
usually results in a more accurate mass, some peaks in
individual spectra with a deviation beyond 10 ppm are
only matched after relaxing the allowed error window to
20 ppm.
Finally, we interpreted some of the cases where Met-

Frag did not return good results. Table 2 shows many
top 10 hits, but also several cases where MetFrag is not
able to rank the correct compound even among the top
100. Some of the problematic compounds are Ormeto-
prim, Strychnine N-oxide and Tetramisole. One reason
is the high number of very similar candidate structures,
and the difficulty to distinguish them based on the pre-
dicted spectra. Another example where many similar
structures occur is Tetracycline, but here the rather
high rank decreased from 92 to cluster rank 10. Even
these large result lists with many similar entries will still
give a very good estimation of the possible compound
class, which simplifies the subsequent (manual) interpre-
tation and identification.
We also evaluated data set I (measured on the API

QSTAR Pulsar I) against PubChem 2009. Because this
older mass spectrometer has a much lower mass accu-
racy than the Micromass Q-TOF II, both the candidate
search and the scoring found more false positive
matches. Within the 3896 (average) candidates, the
median of the correct solution is only 91. This leads to
the conclusion that a good mass accuracy of ≤10 ppm is
required. Almost all current QTOF instruments are spe-
cified at 5 ppm or less, and even higher accuracies are
available from Orbitrap or FTICR-MS instruments.
Comparison between MetFrag and MassFrontier
In their paper [8] Hill et al. evaluate the prediction per-
formance of MassFrontier 4.0 with an approach similar
to MetFrag, using PubChem (in the version from Febru-
ary 2006, with 6·106 entries) as compound database. We
added a constraint to our candidate search to include

only compounds added in or before February 2006. Our
simulated PubChem snapshot returns on average 338
candidates, the previous study only 272 structures.
Nevertheless, we use following results to compare Met-
Frag and MassFrontier. Both MetFrag and the search
procedure by Hill consider only compounds containing
the elements CHNOPS and ignore molecules which
consist of C, H only. The previous study reports two
separate evaluation strategies: the first combines the
automatic ranking with the manual a-posteriori selection
of the best spectrum, obtaining the correct result on a
median rank 2.5. In practice, this knowledge will not be
readily available. The more realistic results are presented
in the supplementary material of [8], where a heuristic
was used to select one spectrum per compound. The
heuristic rule chooses the spectrum with the lowest col-
lision energy which has at most 22% of the precursor
ion intensity. In this case the median drops to 4 (3rd

quantile at 17.5).
The median for MetFrag is 8 (3rd quantile at 19), and

decreases to 4 (3rd quantile at 11.75) if the 95% similar-
ity criterion is used. If the results are compared in more
detail, this improvement is significant (p = 0.01), tested
with a one-tailed, paired Wilcoxon signed rank test. The
results for both systems are available as additional file 3.
It would be interesting to evaluate the MassFrontier

approach with composite or ramp spectra, where neither
automatic nor manual spectra selection would be
required.

Empirical runtime evaluation
The naïve and recursive bond-disconnection approach
has very high theoretical complexity. We evaluated the
real-world runtime by sampling 5900 compounds (unre-
lated to the test sets) from PubChem with a mass
between 100 and 1000 Da. In metabolomics research,
only few compounds exceed a mass of 1000. Each com-
pound was fragmented (minimum fragment mass 30
Da) to a given tree depth of two and three. Figure 6
shows the runtime of MetFrag on a PC with Intel
Q9400 CPU at 2.66 Ghz and 8 Gb RAM with Ubuntu
8.04, and JVM Sun Java 1.6.0_16-b01. Each point shows
the time needed to compute all fragments above 30 Da.
The yellow and red lines show the non-linear runtime
for tree depth two (on average 0.2 s) or three (on aver-
age 3.4s), respectively. In practice a tree depth of two
has the best prediction accuracy (see above) and is fast
enough to analyse compounds on demand, even with
masses up to 1000 Da.

Conclusions
We have presented an algorithm which is able to identify
small molecules from tandem MS measurements among
a large set of candidate structures. The scoring function
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Table 2 Results for data set II searched against PubChem

Compound Candidates MassFrontier Rank Candidates MetFrag Rank Cluster Rank

Thioridazine 849 1 1091 1 1

Bumetanide 619 10 768 1 1

Piperacetazine 494 1 626 1 1

Sufentanil 445 1 512 1 1

Diphenoxylate 333 4 369 1 1

Tetracaine 308 22 362 1 1

Remifentanil 246 1 286 1 1

Hydroxybutorphanol 180 2 201 1 1

Alfentanil 134 1 162 1 1

Etamiphylline 100 3 104 1 1

Ergoloid Mesylate 7 1 10 1 1

Gallamine 10 1 8 1 1

Thonzide 4 1 4 1 1

Spectinomycin 310 1 361 2 1

Methionine Enkephalin 66 1 68 2 1

Leucine Enkephalin 53 2 60 2 1

Dihydroergotamine 35 1 38 2 1

Thiothixene 726 1 909 3 1

Etodolac 420 1 580 3 1

Prednisolone Tebutate 143 4 165 3 1

Oxybutynin 114 6 156 3 1

Apramycin 54 1 60 3 1

Tenoxicam 28 1 34 3 1

Vecuronium 3 1 4 3 1

Methylergonovine 515 1 629 6 1

Rolitetracycline 105 1 151 6 1

Oxytetracycline 483 4 614 11 1

Tetracycline 529 5 673 19 1

Thiethylperazine 569 2 671 2 2

Acetophenazine 435 1 546 2 2

Mebeverine 96 2 112 2 2

Salmeterol 32 1 37 2 2

Terfenadine 34 1 35 2 2

Boldenone Undecylenate 21 2 32 2 2

Buspirone 36 1 31 2 2

Gingerol 182 2 195 3 2

Betaxolol 190 5 259 4 2

Fenoterol 370 5 521 6 2

Taurocholate 59 4 65 9 2

Aminophylline 94 21 176 3 3

Sulfadimethoxine 94 18 145 3 3

Adiphenine 623 6 796 4 3

Perindopril 102 2 119 6 3

Sulfasalazine 106 5 116 6 3

Anileridine 563 251 668 7 3

Prednisolone 269 13 363 8 3

Adenosine Diphosphate 32 3 46 9 3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Tetramisole 120 1 123 85 79

Oxaprozin 461 101 607 143 94
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does not require a set of fragmentation reactions or an
actual simulation of the fragmentation process. MetFrag
is able to query KEGG, PubChem and ChemSpider, and
local databases can be integrated with little effort.
In comparison to the system described in [8] (which

included human expertise), MetFrag achieves better
results than MassFrontier.
For dedicated metabolite databases such as KEGG, the

correct identification is generally among the first few
candidates. Given the sheer size of generic compound
libraries such as PubChem, it is no surprise that the
result lists contain many structurally highly similar

compounds. Hence, an unambiguous identification is
generally not possible, but usually the compound class
can be derived from the results. A principal limitation is
the inability to distinguish stereoisomers which is not
possible from MS data alone. The final identification
according to MSI recommendations [24] requires the
comparison against spectra of authentic standards, or
even complementary analysis methods such as NMR.
Our tool MetFrag improves the identification of

unknown substances from tandem MS spectra. It is
fast enough to be used in the interactive web applica-
tion, and has a user-friendly interface and result
browser.

Availability and Requirements
• Project home page: http://metware.org/
• Operating system(s): Platform independent
• Programming language: Java
• Other requirements: Java ≥ 1.6, Tomcat ≥ 6.0
• License: GNU LGPL v3 (or later)

Additional file 1: MassBank_KEGG_results. Full list of mass spectra and
compounds used in section “Data set I searched against KEGG”. This
includes accession numbers in the MassBank system. For each
compound the number of candidates and the rank of the correct
solution is given.

Additional file 2: HillData_PubChem2009. Full list of mass spectra and
compounds used in section “Data set II searched against PubChem”. This
includes accession numbers in the MassBank system. For each
compound the number of candidates and the rank of the correct
solution is given.

Additional file
3: Comparison_MassFrontier_MetFrag_PubChem2006. This file
includes the full results from table 2 in section “Data set II searched
against PubChem”. The candidate search was restricted to the PubChem
as of February 2006. For convenience, we also include the results
reported in [8].
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Table 2: Results for data set II searched against PubChem (Continued)

Antipyrine 306 97 341 122 104

Mefenamic Acid 579 328 633 146 124

Strychnine 664 575 882 259 171

Dimefline 644 644 876 294 175

Ormetoprim 270 124 317 233 191

Strychnine N-oxide 1185 1098 1672 1012 618

Average: 272.2 (± 24.2) 44.2 (± 14.1) 338.4 (± 31.5) 34.2 (± 10.9) 21.6 (± 6.8)

Median: 183.5 4 231.5 8 4

75% Quantile: 431.3 17.5 518.8 19 11.8

Std. Deviation: 244.1 142.4 318.1 109.8 69.1

The results on the left were reported in [8]. The corresponding MetFrag results are on the right where the candidate search was restricted to the PubChem as of
February 2006 (we retrieved slightly more candidates than reported by Hill et. al.). Only the best 47 and eight worst Metfrag results are shown, the full table is
given as additional file 3.
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Summary

Mass spectrometry is an important analytical technology for the identification of metabo-
lites and small compounds by their exact mass. But dozens or hundreds of different com-
pounds may have a similar mass or even the same molecule formula. Further elucidation
requires tandem mass spectrometry, which provides the masses of compound fragments,
but in silico fragmentation programs require substantial computational resources if applied
to large numbers of candidate structures.
We present and evaluate an approach to obtain candidates from a relational database which
contains 28 million compounds from PubChem.
A training phase associates tandem-MS peaks with corresponding fragment structures. For
the candidate search, the peaks in a query spectrum are translated to fragment structures,
and the candidates are retrieved and sorted by the number of matching fragment structures.
In the cross validation the evaluation of the relative ranking positions (RRP) using different
sizes of training sets confirms that a larger coverage of training data improves the average
RRP from 0.65 to 0.72. Our approach allows downstream algorithms to process candidates
in order of importance.

1 Introduction

Mass spectrometry is an important analytical technology in systems biology, and allows the
detection of a large number of metabolites in biological samples. For a biological interpretation,
their structures and/or accession numbers are required. Individual metabolites can be identified
by their accurate mass, but dozens or hundreds of different compounds may have a similar mass
or even the same molecular formula (and hence identical mass).

In tandem mass spectrometers, such as hybrid instruments like a triple quadrupole (QqQ), or
quadrupole coupled to a time-of-flight analyser (QqTOF), the molecules of interest are isolated
in the first quadrupole. This filter allows only the molecules within a narrow precursor mass
window to pass through, and other molecules are discarded. These filtered molecules undergo
collision induced dissociation (CID) in the second quadrupole (the so called collision cell),
where they literally break apart. The masses (more correctly, the mass-over charge ratio m/z)
of the resulting fragments are measured in the final mass analyser, either another quadrupole, or

*To whom correspondence should be addressed. Email: Steffen.Neumann@ipb-halle.de
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Figure 1: Top: tandem MS spectrum of Epicatechin, with some manually annotated fragment
peaks. Below: database table with m/z→ fragment association. Candidate compounds are scored,
based on the number of substructures they contain.

a high-resolution time-of-flight (TOF) analyser. Other instruments such as Iontraps or Orbitrap
perform these steps sequentially in time, rather than in different instrument compartments. A
typical result of the fragmentation is shown in the tandem mass spectrum of Epicatechin in
Figure 1.

For metabolite identification, a query spectrum can be compared with reference spectra from
databases like MassBank [6] or commercial libraries provided by several vendors [7]. How-
ever, their chemical coverage is far from complete, especially in areas such as plant metabolo-
mics, where most of the estimated 200 000 compounds are still uncharacterised [1].

If reference spectra are not available, the spectra can be interpreted using computational mass
spectrometry methods, such as FiD [3], or the commercial ACD Fragmenter and HighChem’s
MassFrontier – see [7] for a review. These programs can also be used to search general purpose
compound libraries, such as KEGG with about 14 215 metabolite structures or the much larger
PubChem database with 28 million compounds [5, 10].

The MetFrag approach is designed to search online accessible compound databases with the
accurate mass of the unfragmented metabolite. MetFrag obtains candidates from the com-
pound databases, fragments these candidates in-silico, and scores the match between the query
spectrum and the in silico fragments.

However, analysing thousands of candidate structures is a time-consuming process, especially
for non-trivial compounds, and may take hours on a single machine. For example it takes
≈3 minutes to process about 1 672 candidates of strychnine N-oxide [10]. But for some spectra
there are even more candidates. All hypotheses are processed in the (arbitrary) order determined
by the candidate search. The correct compound might appear first, or towards the end of the
list. If the candidate search would already pre-sort the corresponding candidates, it would be
possible to process and display the correct one earlier.

The MetFrag web application will implement a dynamically updated user interface, and pro-
cess all candidates in smaller batches. That way it is possible to present informative (but still
preliminary) results almost from the beginning. The final result in MetFrag after completion
of all candidates remains the same. Alternatively, the set of candidates can be filtered based on
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the preliminary scores, and the subsequent MetFrag runtime would be reduced.

In this paper, we present the MassStruct approach to learn the association between the mea-
sured mass peaks and fragment structures, which allows to integrate the accurate molecule
mass search with the score-based ordering. The next section describes the system architecture,
the training phase and the candidate retrieval with dynamically generated SQL queries during
operation. In section 3 we evaluate our approach on a dataset of 240 spectra from 218 unique
compounds, and assess the runtime of the dynamically generated query.

2 Implementation

The MassStruct approach requires an offline preprocessing step to associate measured peak
masses to the corresponding fragment structures in a set of training spectra. Afterwards these
fragments are grouped by their mass. During a candidate search, the molecule mass and the
peaks of a query spectrum are both combined into a single dynamically generated SQL query.
If one or more fragment structures of a given mass exist within one candidate, one match is
counted and added to the score of this candidate.

2.1 Learning the association between mass and fragment structure

The training spectra are processed with the MetFrag algorithm, to obtain a set of m/z→ structure
associations as shown in Figure 2. The training set of tandem MS spectra is synthetically frag-
mented with MetFrag and all annotated fragments are stored with their corresponding mass into
a relational database.

MetFrag usually is not able to annotate every measured peak with a structure, and it is possible
that one observed m/z value can be explained by different structures in different compounds,
therefore all alternatives are stored.

We developed a batch import to store the fragments and their masses into a PostgreSQL 9.0
RDBMS1 with the chemistry extension pgchem2 1.3-GiST [8]. All of the chemical algorithms
and datatypes are handled by functions in the chemistry library OpenBabel3 2.3.0 [2]. The
RDBMS integration allows chemical calculations, comparisons and predicates as a part of SQL
statements. The ER diagram of the developed database is shown in Appendix B.

2.2 Multiple substructure database queries

The candidate retrieval query (see abbreviated query in Figure 3) selects all compounds within
an error margin around the precursor mass. Then, any fragments matching the measured peak
masses (within an error window) are joined with the condition fragment.structure <=
compound.structure. This is provided by the OpenBabel chemistry algorithms and tests
whether the fragment is a substructure of the candidate. The sum of the matched substructures
is used as score for the accession.

1http://www.postgresql.org
2http://pgfoundry.org/projects/pgchem
3http://www.openbabel.org/
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Figure 2: The training step (top) shows the MassBank spectra and the fragments predicted with
MetFrag. The peaks annotated with a fragment structure are stored in the MassStruct database
(lower left). In the operation phase the stored m/z→ structure associations are used to retrieve
the ordered candidates in batches of e.g. 100 structures.

To determine whether a fragment is a substructure of a molecule, their chemical fingerprints
are compared. These 1536 bit fingerprints store characteristic chemical properties (such as
bond- and atom counts or functional groups). For substructure searches, pgchem compares
these fingerprints between the query molecule and the database content (primary filtering),
using a Generalized Search Tree index (GiST) [4]. Afterwards, a time consuming substructure
matching (secondary filtering) of the molecular structures on the previously selected records is
done. All chemical operations benefit from the PostgreSQL query planning optimization.

The unabbreviated query in Appendix A also takes into account that 1) the database contains
compounds from multiple compound libraries, and candidates can be restricted to a certain li-
brary 2) the compounds in the strcuture libraries might occur in multiple stereo conformations.
Since mass spectrometry can hardly distinguish stereo isomers, MetFrag ignores the stereo-
chemistry. Redundant candidates are removed by the query, such that only the first compound
is considered. Because the fragments are measured with a certain error, the fragment masses
are grouped into m/z cluster by hierarchical clustering analysis (HCA). The actual score counts
at most one matching substructure per m/z cluster.

3 Results and Discussion

In the following we are going to present an example, and assess two separate performance
aspects of the system. We evaluate the ability of the scoring to obtain the correct compound
with a good rank, simulating various training set sizes. Second, we report the runtime on a
snapshot (Q4 2010) of the PubChem compound database.
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SELECT accession, count(fragment.id) AS score
FROM compound, fragment
WHERE compound.mass BETWEEN 290.2 AND 290.3
AND ( fragment.mass BETWEEN 123.0 AND 123.1

OR fragment.mass BETWEEN 139.0 AND 139.1
OR fragment.mass BETWEEN 165.0 AND 165.1
OR fragment.mass BETWEEN 207.0 AND 207.1
OR fragment.mass BETWEEN 249.0 AND 249.1
OR fragment.mass BETWEEN 273.0 AND 273.1)

AND fragment.structure <= compound.structure
GROUP BY accession
ORDER BY score;

Figure 3: A SQL statement performing a combined search for the molecule’s mass, and
fragments which are a substructure (the <= predicate) ranked by score, where <= is the
chemical substructure operator. The peak data corresponds to the example spectrum in
Figure 1.

3.1 Metabolite identification results

We used 240 metabolite spectra (see Appendix C or supplementary files as xls or csv hosted on
http://msbi.ipb-halle.de/msbi/massstruct) with known PubChem accessions
obtained from MassBank. These spectra contain data of several compounds, some of them
were measured repeatedly with different instrument settings, so they covered 218 different
compounds. Together, all spectra contained 2 083 peaks, and MetFrag was able to annotate
1 280 fragments with the parameters reported earlier [10]. The PubChem compound snap-
shot (Q4 2010) contained 28 838 421 structures. Including the indices, the database occupied
≈150 GB storage space.

To evaluate our approach, we annotated a randomly drawn sample of the 240 spectra, and
used the remaining spectra as query spectra. For each query spectrum, we count the total
number of candidates (TC), those with a better and those with a score worse than the correct
compound (BC and WC, respectively). This allows to calculate a relative ranking position
RRP = 0.5

(
1− BC−WC

TC−1

)
, where the first position results in RRP = 1, and RRP = 0 in the

worst case. A similar RRP was introduced in [9], where the authors used RRP = 0 for the
best case. We modified the scoring to keep it consistent with the MetFrag scoring.

If all candidates have the same score, then BC = WC = 0, and hence RRP = 0.5. Similarly,
a random score would also lead to an average RRP = 0.5 on a larger test set.

For evaluation we partitioned the set of spectra, again storing one subset of m/z → structure
associations in the database, and used the remaining ones to evaluate the rank of the correct
solution in the ordered result set. We used different ratios (1:1, 2:1, 3:1, 4:1 and 9:1) for
partitioning, to simulate an increasing coverage of the training spectra in the dataset. The
results are shown in Table 2. The average RRP increases from 0.65 to 0.72, and even more
apparent the median RRP raises to 0.84 if the large training sets are used. An extract of an
example for one evaluation run is summarized in Table 1.
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Table 1: The best and worst examples from one of the evaluation runs.

CID formula mass TC RRP runtime in s

13804 C15H16O9 340.07 50 910 0.999 476
834 C7H14N2O4S 222.06 34 491 0.999 282

5319853 C21H22O11 450.11 72 127 0.999 867
165627 C6H11NO4 161.06 8 743 0.999 99
439155 C14H20N6O5S 384.12 105 691 0.998 949
442456 C28H34O14 594.19 9 745 0.997 200
160556 C11H20N2O6 276.13 63 768 0.997 497

5318759 C21H18O12 462.07 54 545 0.996 686
2901 C6H11NO2 129.07 4 974 0.995 25

101781 C21H22O11 450.11 72 127 0.995 1 147
5281673 C21H20O12 464.09 59 828 0.995 469
5316673 C21H20O10 432.10 78 553 0.995 638

. . . . . . . . . . . . . . . . . .
637540 C9H8O3 164.04 13 098 0.296 191

649 C4H6N2O2 114.04 4 175 0.261 41
70346 C7H8N4O3 196.05 22 378 0.250 208

Table 2: RRP of different partition sizes.

RRP

Partition median ø Std. Err.

1:1 0.50 0.65 ± 0.018
2:1 0.70 0.71 ± 0.019
3:1 0.69 0.70 ± 0.019
4:1 0.75 0.71 ± 0.019
9:1 0.84 0.72 ± 0.019

3.2 Runtime and PostgreSQL database tuning

The query spectra result in 31 700 candidates on average (green circle in Figure 4), 16 630 in
the median and in a few cases up to 100 000. The mean runtime of a query is 330s, or roughly
10ms per candidate.

The (virtual) database server had 2 CPUs, 2 GB RAM, and was hosted on a VMWare ESX
cluster with 2.6 GHz Intel Xeon CPUs. The data partition was kept on a FC-SAN storage
system.

The runtime clearly depends on the number of candidates. Therefore, any increase in e.g.
instrument accuracy will decrease both the number of candidates and the runtime. The per-
formance of an RDBMS often depends on the speed of the storage subsystem, but not in this
case: the majority of time is spent in the actual sub-structure search, and the CPU speed is the
limiting factor. Latencies for multiple concurrent queries can best be reduced using a server
with a sufficient number of CPU cores.
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Figure 4: Runtimes of all candidate queries in the data set. The slope of the regression line is
10ms/candidate, the average (32 000 candidates in ≈ 5min) is encircled.

4 Conclusion

The process of structure elucidation with mass spectrometry data has been – and still is – the
major bottleneck in metabolomics experiments. Starting from the mass of the molecule, dozens
to thousands of candidates can be retrieved from compound databases like KEGG or PubChem,
and subsequently analysed with computer aided structure elucidation (CASE) systems.

We introduced the MassStruct approach, improving the initial candidate query step to provide
an ordered list of candidates. We evaluated the method with a medium sized test dataset.
The benefit is that the interactive MetFrag web application can then process the candidates in
batches of 100 or 1000 structures, and present intermediate results. Since the candidates are
pre-sorted, the user might be satisfied after the first few iterations. The source code (including
training procedure and dynamic queries) is available under the GNU General Public License
from https://github.com/childebr/MassStruct/.

Future developments will be reducing the number of candidates to consider, e.g. by filtering the
common ranges of ratios between elements for biological compounds. The growing number of
spectral data in reference libraries such as MassBank will further improve the performance of
the system by adding more m/z→ structure associations.

References

[1] Oliver Fiehn. Combining genomics, metabolome analysis, and biochemical modelling to
understand metabolic networks. Comparative and Functional Genomics, 2(3):155–168,
2001.

C
op

yr
ig

ht
 2

01
1 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

Journal of Integrative Bioinformatics, 8(2):157, 2011 http://journal.imbio.de

doi:10.2390/biecoll-jib-2011-157 7

DOI:10.2390/biecoll-jib-2011-157

https://doi.org/10.2390/biecoll-jib-2011-157


[2] Rajarshi Guha, Michael T Howard, Geoffrey R Hutchison, Peter Murray-Rust, Henry
Rzepa, Christoph Steinbeck, Jörg Wegner, and Egon L Willighagen. The Blue Obelisk-
interoperability in chemical informatics. J Chem Inf Model, 46(3):991–998, 2006.

[3] Markus Heinonen, Ari Rantanen, Taneli Mielikäinen, Juha Kokkonen, Jari Kiuru,
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Abstract Liquid chromatography–mass spectrometry

(LC–MS) is a commonly used analytical platform for non-

targeted metabolite profiling experiments. Although data

acquisition, processing and statistical analyses are almost

routine in such experiments, further annotation and sub-

sequent identification of chemical compounds are not. For

identification, tandem mass spectra provide valuable

information towards the structure of chemical compounds.

These are typically acquired online, in data-dependent

mode, or offline, using handcrafted acquisition methods

and manually extracted from raw data. Here, we present

several methods to fast-track and improve both the acqui-

sition and processing of LC–MS/MS data. Our nearly

online (nearline) data-dependent tandem MS strategy cre-

ates a minimal set of LC–MS/MS acquisition methods for

relevant features revealed by a preceding non-targeted

profiling experiment. Using different filtering criteria, such

as intensity or ion type, the acquisition of irrelevant spectra

is minimized. Afterwards, LC–MS/MS raw data are pro-

cessed with feature detection and grouping algorithms. The

extracted tandem mass spectra can be used for both library

search and de-novo identification methods. The algorithms

are implemented in the R package MetShot and support the

export to Bruker, Agilent or Waters QTOF instruments and

the vendor-independent TraML standard. We evaluate the

performance of our workflow on a Bruker micrOTOF-Q by

comparison of automatically acquired and extracted tan-

dem mass spectra obtained from a mixture of natural

product standards against manually extracted reference

spectra. Using Arabidopsis thaliana wild-type and bio-

synthetic gene knockout plants, we characterize the meta-

bolic products of a biosynthetic pathway and demonstrate

the integration of our approach into a typical non-targeted

metabolite profiling workflow.

Keywords Metabolomics � Tandem mass spectrometry �
Data-dependent acquisition � Feature detection �
Feature grouping � Collision-induced dissociation

1 Motivation

Today, liquid chromatography–mass spectrometry (LC–

MS) is a key technology for targeted and non-targeted

profiling of small molecules. In contrast to targeted

approaches where a small set of known compounds is

analyzed, non-targeted profiling aims at a comprehensive

analysis of all detectable compounds without any prior

knowledge. When applied to biological samples, non-tar-

geted approaches have a high potential to reveal novel

biomarkers predicting e.g. a disease state (Jansson et al.

2009; Wang et al. 2011) or to explore biosynthetic path-

ways (Böttcher et al. 2008; Okazaki et al. 2009). However,

they require efficient means to assign detected molecular

entities characterized by unique pairs of mass-to-charge
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ratios (m/z) and retention times (features) to individual

chemical compounds and to subsequently elucidate their

molecular structure.

The first step of a non-targeted profiling experiment is

the acquisition and analysis of a (high) number of LC–MS

profiles. Besides the instrument specific vendor software,

several open source software packages exist to process the

resulting raw data including XCMS (Smith et al. 2006) and

MZmine (Pluskal et al. 2010), or closed-source tools like

MetAlign (Tikunov et al. 2005). In combination with

downstream statistical analyses, the profiling data can

reveal a potentially large number of ‘‘interesting’’ features

with different intensities between sample classes or char-

acteristic trends in time series experiments. For any further

interpretation, the chemical compounds underlying these

features have to be identified.

The mass and relative isotope abundance accuracy of

modern high-resolution MS platforms facilitate the estab-

lishment of putative elemental compositions (Kind and

Fiehn 2006; Böcker et al. 2008). In addition, tandem mass

spectra provide valuable structural information for the

elucidation of the underlying molecular structure. Hybrid

instruments such as quadrupole time-of-flight (QTOF) or

linear quadrupole trap Orbitrap mass spectrometers permit

fragmentation of individual precursor ions by collision-

induced dissociation (CID) and detection of the resulting

fragment ions with high mass accuracy. The elemental

composition of fragment ions which can be readily derived

from such spectra can provide valuable hints for structural

elucidation.

Most mass spectrometers allow acquisition of tandem

mass spectra online in data-dependent acquisition (DDA)

mode: the instrument performs a survey scan and selects

the most abundant peak(s) for the following tandem MS

scan(s). Both static and dynamic exclusion lists try to

reduce the acquisition of redundant or uninteresting (sol-

vent, plasticizer and other chemicals) tandem mass spectra.

For proteomics applications Hoopmann et al. (2009)

describes a method of iterative DDA, which increases the

ratio of useful peptide- to unrelated spectrum acquisitions.

The first problem of the existing DDA approaches is the

need for survey scans. In particular when using fast chro-

matographic separations resulting in narrow peaks of a few

seconds, the number of tandem MS scans across a chro-

matographic peak is drastically reduced. Closely related is

the problem that the tandem MS scan should ideally be

measured at the apex of a chromatographic peak to obtain a

high quality spectrum. Not all vendors provide such an

‘‘apex-prediction’’ algorithm in their software. Low

molecular weight compounds exhibit non-uniform ioniza-

tion properties, and form, in contrast to peptides, different

types of adduct, fragment and cluster ions upon electro-

spray ionization (ESI) (Brown et al. 2009, 2011; Draper

et al. 2009; Kuhl et al. 2011). Usually, the quasi-molecular

ions are subjected to tandem MS analysis, but the DDA

approach completely ignores origin and type of detected

ion species. Finally, the DDA strategy has no knowledge

about ‘‘interesting’’ features, revealed by a preceding non-

targeted profiling experiment, and instead acquires spectra

irrelevant to the biological experiment at hand.

For these reasons, LC–MS/MS experiments in meta-

bolomics are usually done in a targeted way with manually

created lists of retention time and precursor m/z windows.

The tandem mass spectra are extracted from the resulting

LC–MS/MS raw data by averaging an (again manually

selected) range of spectra, using the instrument vendor’s

software. This is an offline process, sometimes days or

weeks after the profiling experiments have been performed.

Our nearly online (nearline) data-dependent tandem MS

strategy aims to close the gap between instant online tan-

dem MS acquisition which has no knowledge about fea-

tures of interest, and the tedious manual approach.

The obtained tandem mass spectra can be searched

against spectral libraries such as the commercial NIST

library ’08 (Gaithersburg, MD) or spectral libraries from

the academic community, including METLIN (Smith et al.

2005) or MassBank (Horai et al. 2010). If no reference

spectra are available, tools such as MetFrag (Wolf et al.

2010) can support the identification.

In this paper we present our nearline data-dependent

tandem MS data acquisition and processing strategies. In

the next section we will explain how to schedule a mini-

mum number of LC–MS/MS methods to cover a set of

interesting features for CID experiments, and how these are

translated to machine control methods. After that, we show

how the resulting LC–MS/MS raw data are processed with

feature detection and grouping algorithms to obtain tandem

mass spectra. We apply this strategy to a mixture of natural

product standards and discuss the quality of the resulting

tandem mass spectra. Finally, we show integration of our

workflow into a non-targeted metabolite profiling

experiment.

2 Methods

The general workflow for our nearline data-dependent

tandem MS strategy is shown in Fig. 1. It consists of the

following steps: � creation of a target list of interesting

features for tandem MS analysis; ` preparation and export

of LC–MS/MS methods, followed by data acquisition; ´

processing of the resulting LC–MS/MS raw data and

extraction of tandem mass spectra into compound spectra;

ˆ querying compound spectra against reference libraries or

subjecting to de-novo identification approaches.
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2.1 Target selection and LC–MS/MS method

generation

Target lists for nearline data-dependent tandem MS

include m/z and retention time ranges of features to be

analyzed. The retention time ranges should cover the

complete chromatographic peak. In addition, specific

instrument parameters are required, such as isolation width

and collision energy for the Bruker micrOTOF-Q. Target

lists can be generated in the simplest way manually, but

here we describe a way to automate this task.

Typical LC–MS profiles of biological samples contain

thousands of features. It is impossible to perform routine

tandem MS analysis on each of them within a non-targeted

profiling experiment. However, statistical analysis of LC–

MS profiles in the context of the experimental design

usually reveals tens to a few hundred ‘‘interesting’’ features

which have to be characterized further. Such a set of fea-

tures serves as a target list for our nearline data-dependent

tandem MS approach, and a set of filters and sorting can be

applied:

– Sorting and prioritizing features by p-value or fold-

change revealed by the preceding statistical analyses.

– Selection of features related to quasi-molecular ions

using a CAMERA-based annotation (Kuhl et al. 2011)

of the feature list.

– Removal of features with insufficient intensity for

tandem MS analysis.

After these steps, the set of interesting features is

reduced to a number which can be annotated and identified

in more detail. In particular for close- or co-eluting fea-

tures, tandem mass spectra have to be acquired in multiple

analytical runs. The creation of LC–MS/MS acquisition

methods can be interpreted as an optimization problem,

where as many of the features to be analyzed as possible

have to be arranged in a given number of methods.

This problem is known in computer science as ‘‘Fixed

Interval Scheduling’’ (Gertsbakh and Stern 1978; Kleinberg

and Tardos 2005). One can either choose to create the

smallest number of methods to cover all interesting fea-

tures, or maximize the number (and their importance) of

features covered using a given, limited number of methods.

The maximum number of methods necessary is determined

by the highest number of overlapping features. We have

implemented the algorithm to either stop after a given

percentage of features covered, or create a given number of

LC–MS/MS methods.

After scheduling the target list, it has to be transferred

into a set of acquisition methods for the instrument. To

render the approach generally applicable, we support the

export of scheduled target lists into the TraML format

(Deutsch et al. 2011), a vendor independent XML data

exchange standard for transition- and target lists which is

currently under development by the proteomics standards

initiative (PSI). In addition, the package allows to directly

export method files for controlling a Bruker micrOTOF-Q

instrument, which also records all method parameters in an

XML file, but uses a different XML structure. Because the

Bruker format is not documented in detail, it is difficult to

create such a file from scratch. Instead, we chose an

approach where a template method file contains a single

prototype segment which describes the desired tandem MS

settings. For each entry in the scheduled target list this

segment is cloned and precursor m/z and retention time

ranges are replaced by the values from the scheduled target

list. An example is shown in Fig. 2. Other currently sup-

ported platforms are the Agilent QTOF instruments, which

accepts specially formatted tabular CSV files, and the

Waters QTOF instruments, which encode the acquisition

segments similar to the Bruker format, but use a plain text

*.EXP file instead of XML. The collision energies (either

Fig. 1 The workflow for nearline data-dependent tandem MS data

acquisition and processing. The steps ` and ´ are covered by the

MetShot software package

Fig. 2 Single segment of a Bruker micrOTOF-Q method for tandem

MS acquisition (some names have been edited for brevity and

readability). This segment is copied for each target feature, using the

actual values from the precursor feature
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one or more individual CID eV settings, or the range of the

collision energy in RAMP mode) should be chosen based

on experience with the instrumental setup. This approach

can be generalized to other instruments which take the LC–

MS/MS parameters from external files such as spread-

sheets, although these formats do not usually allow to

include many machine configuration parameters.

2.2 Acquisition of LC–MS and LC–MS/MS data

Chromatographic separations were performed on an Acquity

UPLC system (Waters) equipped with a HSS T3 column

(100 9 1.0 mm, particle size 1.8 lm, Waters) applying a

binary gradient of water and acetonitrile, both acidified with

0.1% formic acid at a flow rate of 150 lL/min. Eluted

compounds were detected from m/z 90–1,000 at a scan rate

of 3 Hz in centroid mode using micrOTOF-Q hybrid quad-

rupole time-of-flight mass spectrometers (Bruker Daltonics)

equipped with Apollo II electrospray ion sources in positive

ion mode. For acquisition of tandem mass spectra precursor

ions were selected using an isolation width of ±4 Da and

fragmented using argon or nitrogen as collision gases and

collision energies in the range of 10–30 eV. For detailed

information on gradients, mass spectrometer settings and

calibration see Supplemental Material S1.

2.3 Processing of LC–MS/MS raw data

LC–MS/MS raw data represent a continuous set of mass

spectra and can in general be treated like LC–MS raw data.

However, they contain orders of magnitudes less features,

with much lower intensities compared to LC–MS raw data.

Depending on the sample complexity and the precursor

isolation width, individual LC–MS/MS raw spectra may

comprise peaks originating from co-eluting and co-frag-

menting precursor ion species. E.g. lipids with different

degrees of saturation and a resulting m/z difference of only

2 or 4 Da between the precursor ions might elute closely

together. The resulting mixed spectra will be difficult to

interpret, unless very good precursor isolation is available.

For this reason, extraction of pure tandem mass spectra

requires a set of processing steps. For processing of LC–

MS/MS raw data, we first perform a feature detection step

using centWave (Tautenhahn et al. 2008). The centWave

algorithm was developed for high resolution LC/MS data

and is characterized by a higher sensitivity and a lower

false-positive rate compared to several other feature

detection algorithms. After the feature detection step, the

relationship between features is lost. Therefore, features

have to be subsequently assigned to compound spectra.

This is done using the grouping algorithms implemented in

the Bioconductor package CAMERA (Kuhl et al. 2011).

The features detected within a retention time window

constitute an initial compound spectrum, which can be

subsequently refined using chromatographic peak shape

similarity. We identify the compound spectrum best

matching the retention time of the targeted precursor fea-

ture as the desired tandem mass spectrum.

2.4 Availability

We have created the MetShot package for the R statistics

environment, which performs the steps ` and ´, interfaces

to other R packages (XCMS and CAMERA) and external

services (MassBank and MetFrag). The package is avail-

able under the Open Source GPL license together with

extensive documentation and examples from our website

(http://msbi.ipb-halle.de/msbi/MetShot/). The related

XCMS and CAMERA packages are available from the

Bioconductor web site (http://bioconductor.org/).

3 Results and discussion

3.1 Acquisition and processing of tandem MS data

of standard compounds

The aim of the first experiment was to acquire and extract

tandem mass spectra of protonated molecular ions of a set

of standard compounds using the nearline data-dependent

tandem MS approach and to evaluate their quality. For that

purpose, we prepared a mixture of 27 natural product

standards (Supplemental Material S2), each at a concen-

tration of 20 lmol/L and analyzed it by UPLC/ESI-

QTOFMS in positive ion mode. We manually collected

retention times and m/z of corresponding protonated

molecular ions for preparation of the target precursor list.

The MetShot package was used to create a minimal number

of LC–MS/MS methods which were subsequently used for

acquisition of raw data at a collision energy of 15 eV and a

precursor isolation width of ± 4 Da.

To estimate the difficulty of matching a precursor ion

from the target list to the detected fragment ions, we

determined the number of features being detectable at the

retention time and precursor isolation windows for each

acquisition segment. For an isolation width of ±0.5 Da,

each acquisition segment contains 1.5 precursor features on

average. This number raises to 6.2 for an ±4 Da isolation

window used for acquisition of tandem mass spectra on the

micrOTOF-Q in this study. This demonstrates the need for

a careful assignment between precursor and tandem MS

features.

We used the XCMS centWave algorithm to detect fea-

tures in the LC–MS/MS raw data, and obtained between 49

and 380 features per analytical run, on average 18 per
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acquisition segment. The feature detection also helps to

improve the m/z accuracy, because the centroids of the raw

spectra are averaged and weighted by their intensity. In the

raw spectra, the maximum deviation of the centroids across

a chromatographic peak is on average 16.8 ppm (std.

deviation 9.7 ppm) from the averaged m/z, especially in the

low-intensity flanks of the chromatographic peaks (Sup-

plementary Material S3). As the last step, we used CAM-

ERA and grouped the detected features into compound

spectra to obtain the final tandem mass spectra.

As a reference, we used tandem mass spectra from our

spectral library, which were previously extracted manually

using the Bruker Data Analysis software. These curated

spectra have been deposited in the MassBank database,

their accession numbers are shown in the Supplemental

Material S2.

To evaluate the quality of the spectra, we calculated the

MassBank similarity score of an automatically extracted

spectrum against the reference spectrum. In 25 cases, the

MassBank similarity score was above 0.95, in only two

cases it was below 0.95 (Supplemental Material S4).

For one of these two cases (emetine), our algorithm

created spectra with several additional peaks compared to

the reference spectrum. On closer examination, we found

that those extra peaks can be easily explained as true

fragments, which were erroneously missing in the library

spectrum. In the other case (indole-3-acetonitrile), the

extracted spectrum was missing several peaks, all of which

had a very low intensity (below 150 cps) in the raw data.

3.2 Product analysis of a biosynthetic pathway

in Arabidopsis thaliana by non-targeted profiling

of wild-type and biosynthetic gene knockout plants

To demonstrate the usability of our approach in a non-

targeted metabolomics workflow, we set up an profiling

experiment using Arabidopsis thaliana wild-type and

cyp79B2 cyp79B3 double knockout plants (Zhao et al.

2002). The latter are completely impaired in the conversion

of tryptophan to indole-3-acetaldoxime (IAOx) and do not

accumulate IAOx-derived metabolites. Consequently,

comparative analysis of wild-type and cyp79B2 cyp79B3

plants has the potential to reveal the complete range of

IAOx-derived indolic secondary metabolites.

Wild-type and cyp79B2 cyp79B3 plants were grown in

parallel in two independent experiments and sprayed with

silver nitrate to induce accumulation of indolic secondary

metabolites (Böttcher et al. 2009). For each independent

experiment, leaves of six plants per genotype were har-

vested, pooled, extracted with aqueous methanol in qua-

druplicate and analyzed by UPLC/ESI-QTOFMS in

positive ion mode. The resulting 16 raw data files were

processed with XCMS using the centWave feature

detection algorithm. Subsequent alignment gave 15,272

features with signal-to-noise ratios [3 which could be

reliably detected in 75% of the technical replicates of a

sample class. To identify features associated with IAOx-

derived metabolites we filtered features whose median

intensity within an independent experiment was 4-fold

increased in wild-type samples in comparison to cyp79B2

cyp79B3 samples at a significance level of p \ 0.01 (Stu-

dent’s t test, two-sided, uncorrected). A total of 327 fea-

tures met these criteria in both independent experiments

(Supplemental Material S5). Using the CAMERA package,

retention time grouping and chromatographic peak shape

analysis allowed reconstruction of a set of 729 non-trivial

compound spectra from the raw data whose automatic

annotation revealed 1,085 and 1,140 putative protonated

and sodiated molecular ions, respectively. The intersection

of these annotated features and the differential features

gave 72 features, which were passed without any intensity

threshold into nearline data-dependent tandem MS analy-

sis. As a result of the experimental design, these features

are expected to be related to the IAOx-derived indolic

secondary metabolites. The scheduling was able to dis-

tribute these features into 11 LC–MS/MS acquisition

methods (see Fig. 3), where the first three already covered

39 (54%) of the features to be analyzed. Raw data were

acquired at three different collision energies (10, 20 and

30 eV) using an isolation width of ±4 Da and processed as

Fig. 3 Overview of the acquisition segments of the 11 LC–MS/MS

methods generated by MetShot based on the target list of 72 precursor

ions. The target list comprises putative protonated and sodiated

molecular ions which were identified from a set of 327 differential

features revealed by comparative analysis of Arabidopsis Col-0 and

cyp79B2 cyp79B3 leaf extracts. Target windows of the same color

(black, red, green, blue, . . . ) belong to an individual acquisition

method
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described above. A zoom into the visualization of the

features of interest, their isolation windows and the

extracted tandem mass spectra is shown in Fig. 4.

To evaluate the obtained results (Supplemental Material

S6) we first checked the quality of automatic annotation of

protonated and sodiated molecular ions within the identi-

fied differential features. Based on the published indolic

secondary metabolites known to be derived from IAOx

(Böttcher et al. 2009) and manual analyses, 22 out of 72

putative annotations could be confirmed, representing 15

unique compounds, 9 of which were already described.

However, features of numerous known IAOx-derived

metabolites were not properly annotated and therefore not

included in the subsequent tandem MS analysis. Reasons

for this are to be found in the lack of characteristic pairs of

quasi-molecular ions (e.g. [M ? H]? and [M ? Na]?) or

neutral losses in the ESI mass spectra of these metabolites,

whose presence is imperative for successful spectra anno-

tation on basis of the CAMERA package. The quality of

tandem mass spectra was mainly dictated by the intensity

of the corresponding precursor ions. Only 18 of the 72

analyzed features had sufficient intensity to result in tan-

dem mass spectra with fair signal-to-noise ratios. Conse-

quently, high quality tandem mass spectra were obtained

for 7 out of 15 properly annotated compounds (Supple-

mental Material S6). For the sake of a simpler evaluation

we had limited nearline data-dependent tandem MS anal-

ysis to differential features which were putatively

annotated as [M ? H]? and [M ? Na]? ions. An alterna-

tive strategy would be to acquire tandem mass spectra of all

differential features of sufficient intensity, only excluding

isotopologues (which can be annotated more reliably than

the ion species). In that case, all relevant tandem mass

spectra would be available, at the expense of more irrele-

vant ones. Nevertheless, the acquired tandem mass spectra

would have a high quality and relevance to the biological

experiment.

The raw data are available as mzData files, together

with extensive metadata annotation in the ISAtab format

(Rocca-Serra et al. 2010) from our website (http://

msbi.ipb-halle.de/msbi/MetShot/) and from the upcoming

Metabolights repository (accession number MTBLS2,

http://www.ebi.ac.uk/metabolights/MTBLS2).

4 Conclusion

Current acquisition strategies for tandem MS data are

either designed manually, or performed using the data-

dependent acquisition mode of the mass spectrometer. The

first is very time consuming, the latter does not take into

account which compounds are of (biological) interest, and

the data processing is limited to individual spectra of

possibly co-eluting and co-fragmenting compounds.

We have presented our nearline data-dependent tandem

MS approach, which creates a minimal set of LC–MS/MS

methods to obtain tandem mass spectra for a ranked list of

interesting precursor features. We have also shown how to

create these ranked lists, including a real metabolomics

experiment on an Arabidopsis thaliana biosynthetic path-

way mutant. The automated selection of quasi-molecular

ions for fragmentation remains a challenge, because not all

metabolites produce ion series to allow a reliable annota-

tion, and the quasi-molecular ions might not be present in

first place.

Compared to a manual analysis, the time between

LC–MS profiling and the LC–MS/MS identification mea-

surements can be drastically reduced. We envision that in a

typical metabolomics study, the nearline data-dependent

tandem MS steps are performed right after the metabolite

profiling measurements, within hours after the profiling

data was acquired, converted and processed with XCMS.

The tandem MS acquisition thus benefits from a much

better retention time stability, which in turn allows to

reduce the acquisition windows to a minimum. The

resulting smaller retention time uncertainty allows to cover

more peaks of interest with a single tandem MS method,

because the LC–MS/MS segments can focus on the chro-

matographic peaks without the need for a ‘‘safety-margin’’.

The LC–MS/MS data processing performs a feature

Fig. 4 Zoom into processed LC–MS/MS raw data. The target

windows for the tandem MS precursor selection are shown as black
rectangles. The precursor features (see Supplemental Metarial S6 for

annotation and numbering) are encircled in green. The extracted LC–

MS/MS features are shown as (9), scaled logarithmically by their

intensity. The colors indicate the grouping into compound spectra,

and non-trivial compound spectra are connected by vertical lines
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detection and separates features from co-eluting and

co-fragmenting compounds.

The nearline data-dependent tandem MS approach is

suitable for any kind of LC-coupled tandem MS platform

and experiments where a subsequent acquisition of tandem

MS data is a requirement for further identification and

biological interpretation. The R package MetShot includes

the functions to schedule and write the instrument method

files in several formats, and to process the resulting

LC–MS/MS data.
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Böcker, S., Letzel, M., Lipták, Z., & Pervukhin, A. (2008). SIRIUS:

Decomposing isotope patterns for metabolite identification.

Bioinformatics, 25(2), 218–224.
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MetFusion: integration of compound
identification strategies
Michael Gerlich* and Steffen Neumann

Mass spectrometry (MS) is an important analytical technique for the detection and identification of small compounds. The
main bottleneck in the interpretation of metabolite profiling or screening experiments is the identification of unknown com-
pounds from tandem mass spectra.

Spectral libraries for tandem MS, such as MassBank or NIST, contain reference spectra for many compounds, but their limited
chemical coverage reduces the chance for a correct and reliable identification of unknown spectra outside the database domain.

On the other hand, compound databases like PubChem or ChemSpider have a much larger coverage of the chemical space,
but they cannot be queried with spectral information directly. Recently, computational mass spectrometry methods and in
silico fragmentation prediction allow users to search such databases of chemical structures.

We present a new strategy called MetFusion to combine identification results from several resources, in particular, from the
in silico fragmenter MetFrag with the spectral library MassBank to improve compound identification. We evaluate the perfor-
mance on a set of 1062 spectra and achieve an improved ranking of the correct compound from rank 28 using MetFrag alone,
to rank 7 with MetFusion, even if the correct compound and similar compounds are absent from the spectral library. On the
basis of the evaluation, we extrapolate the performance of MetFusion to the KEGG compound database. Copyright © 2013
John Wiley & Sons, Ltd.

Supporting information may be found in the online version of this article.

Keywords: metabolomics; integrated identification; MassBank; MetFrag; in silico fragmentation

Introduction

Soft ionization mass spectrometry, often coupled to liquid chro-
matography (LC-ESI-MS), has been established as an important
analytical technology in several applications, such asmetabolomics
or screening of unknowns in the environmental sciences.[1,2] In
untargeted approaches, complex samples are analyzed by
LC-ESI-MS and can lead to elucidation of metabolites in bio-
synthetic pathways,[3,4] discovery of biomarkers,[5,6] prediction
of disease states or detection of emerging pollutants in water
samples.[7,8] However, these compounds are only characterized by
their mass-to-charge ratio (m/z) and retention time, and subse-
quent identification requires substantial effort.

Tandem mass spectra provide valuable structural hints for the
identification and structure elucidation of compounds and can
be obtained from ion-trap or hybrid instruments, such as
triple-quadrupole (QqQ) or quadrupole-time-of-flight (QqTOF).
Collision-induced dissociation (CID) is a common fragmentation
method for small compounds, resulting in a detailed fragmentation
spectrum.[9]

These characteristic fragmentation patterns are available from
spectral libraries such as MassBank,[10] HMDB,[11] where version
v2.5 contains 2654 compoundswith threeMS/MS reference spectra
on average, and NIST’11[12] that provides an MS/MS library with a
total of 95 409 spectra representing 5843 compounds, including
dipeptides and tripeptides, and METLIN,[13] which contains 48 596
high-resolution spectra for 10 076 metabolites as of February 2012.

MassBank is the first open community repository for mass
spectral data (including spectral information, as well as analytical
conditions) and provides both a web interface for human interac-
tion and an application programming interface for programmatic

access to the data and search functions. MassBank contains spectra
from different instruments, including QqTOF, QqQ and ion-trap
from different vendors. Most compounds are measured under
various analytical conditions, for example in both positive and
negative mode, or at several collision energies. The federated archi-
tecture of MassBank provides access to distributed data contributed
by various institutes. There are approximately about 13623 spectra
high-resolution ESI-spectra representing about 2000 compounds in
MassBank as of February 2012 (including redundancies, where the
same compound was measured with different analytical settings
on various instruments). A sample query result is shown in Figure 1.

Compound databases like PubChem,[14] KEGG[15] or ChemSpider[16]

provide information on a huge number of both natural products
and synthetic compounds. Although these databases excel in
terms of chemical information (measured and predicted chemical
properties, structure information and for some also assay results),
they do not support queries using mass spectral measurements.
The acquisition of reference spectra of all known compounds is un-
feasible because of the enormous efforts required and the limited
availability of commercial standards.

To alleviate the problem of limited availability of reference
spectra, computational mass spectrometry tools with in silico
spectra prediction have been developed.[17] MetFrag is a free
and open-source program for compound identification based

* Correspondence to: Michael Gerlich, Department of Stress and Developmental
Biology, Leibniz Institute of Plant Biochemistry, Germany. E-mail: mgerlich@
ipb-halle.de

Department of Stress and Developmental Biology, Leibniz Institute of Plant
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on compound databases.[18] The MetFrag web interface is shown
in Figure 1. MetFrag obtains candidate structures from a com-
pound database and matches in silico predicted fragments to
the query spectrum. Each candidate is ranked according to a
fragmentation score.
But despite the advent of in silico tools, reference spectra

obtained under comparable analytical conditions are still the
preferred way to achieve a reliable compound identification. To
the best of our knowledge, there is currently no approach to
integrate both strategies, where the most reliable answers of
the two are returned.
In this paper, we present MetFusion, a strategy and system to

combine the compound hypotheses obtained by complementary
identification approaches. Here, we integrate the results from
MassBank and MetFrag. This strategy combines the best of both
worlds: the identification using spectral libraries if similar spectra
are available and the huge chemical coverage of the compound
databases queried by MetFrag.

Methods

In the following, we describe how the individual compound identi-
fication sources are queried, show the mathematical background
for the integrated score and depict the web application. Subse-
quently, we explain the evaluation dataset and our evaluation
approach to make the results more realistic and finally extrapolate
the generalization to any compound in KEGG.

System architecture

The underlying assumption in MetFusion is that the correct com-
pound is present in the compound database and consequently
among the structure candidates in the MetFrag result. The idea
of MetFusion is to confirm the in silico predicted results with
spectral reference data and calculate a new integrated score for

each candidate processed by MetFrag. This is depicted in the
workflow shown in Figure 2.

The MassBank scores are calculated on the basis of a modified
cosine distance to compute the similarity between the query spec-
trum and the reference spectra.[10] Results are ranked according to
this spectral similarity. MassBank is accessed using a Java library
application programming interface, which queries the individual
servers, and passes the relevant parameters (intensity cutoff, ioniza-
tion mode and instrument filter) directly to the servers.

Figure 1. Individual results from MassBank and MetFrag. Left: The upper part of the MassBank screenshot shows the query spectrum, below are the
resulting matches, sorted by spectrum similarity. Right: The top part of MetFrag contains the query input, the result list is presented below.

Figure 2. The MetFusion workflow: the query spectrum is passed to
both the MassBank and the MetFrag query tools. Both return ranked lists,
providing spectra matches and compound candidates, respectively.
These lists are combined by calculating the chemical similarity between
all structures. The integrated score is used to re-rank the list of MetFrag
candidates from the compound database.
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The in silico fragmentation is performed with an embedded
MetFrag module, which queries KEGG, PubChem or ChemSpider
as a compound database. In addition, local compound libraries
can be used, which allows the use of in-house compound
databases or mirrors of, e.g. PubChem. This is performed either
by SD file upload or direct database access. Likewise, this upload
allows users to submit their own generated structures as candi-
dates for in silico fragmentation.

MetFusion requires a spectrum with m/z and intensity values as
query input and passes the provided settings to the corresponding
databases. MetFrag settings can also be adjusted, most importantly
the allowed mass deviation for the generated fragments.

The core of MetFusion is implemented as a Java library, which
is used both by the command line and web interface. Both the
MassBank and MetFrag queries are performed in separate
threads and run in parallel.

Integration of spectral matches, in silico scores and chemical
similarity

The identification strategies return two individual lists of spectra
matches and candidate compounds, both with associated scores.
The spectra scores are combined into a spectral summary. This is
an aggregation of similar spectra and their respective chemical
similarity to a candidate compound.

The spectral library can contain multiple measurements of a sin-
gle compound or its isomeric variants, so we use an InChIKey-based
filtering of the original MassBank result list, which only retains the
highest-scoring record for each compound constitution. This is also

justified because distinguishing between stereoisomers is hardly
possible with mass spectrometry alone. For this filter step, we rely
on the connectivity information stored in the first block of the
InChIKey.[19]

Equation (1) describes the integrated MetFusion score sc: for
each MetFrag candidate c, we calculate sc as a sum of the MetFrag
score fc and the ‘spectral summary’ on the basis of the scoresmj for
all MassBank results j, and the chemical similarity tcj between
MetFrag candidate c and each MassBank result j. The number of
results fromMetFrag is denoted byN, and the number of MassBank
results is denoted by M. This leads to an N�M matrix of chemical
similarities. An excerpt of such a matrix can be seen in Figure 3.

The chemical similarity tcj between a MetFrag candidate c and
eachMassBank result j allows us to determine how similar each pair
of compounds is. This provides a validation of in silico generated
spectra with measured spectra, based not on spectral similarity
but rather on the chemical similarity between the corresponding
compounds represented by their spectra. This approach results in
the integrated score, allowing us to rank the MetFrag candidates
with an additional level of information.

We use the sigmoid function sig(x) shown in Equation (2) to
introduce a non-linear behavior, which reduces the influence of
mediocre spectral matches and chemical similarities. Further
information about the sigmoid function is available in Supplemen-
tal Material S-1, describing the impact of the parameters b and g.

sc ¼ a � fc|ffl{zffl}
MetFrag

þ 1� að Þ �
XM
j¼1

sig mj � tcj
� �

f“spectral summary”

(1)

Figure 3. The MetFusion web application. Left: The background shows an excerpt of the similarity matrix for a query with the Gly-Gly-His spectrum
(NIST# 1012075, CID: 100097) prior to re-ranking. Columns contain MassBank results, and rows correspond to MetFrag results. Each cell shows the
chemical similarity between 0 (red) to 1 (green). The correct structure appears at tied rank 23 (not visible). None of the top MetFrag candidates show
high chemical similarity. Overlaid is the similarity matrix after re-ranking. Here, several MetFrag candidates have a reasonable similarity to MassBank
results, and the correct candidate is circled in green. The combination via chemical similarity improves the rank of the correct structure to two. Right:
The head of the re-ranked MetFusion output, showing the results with structure formula, database link and scores.

MetFusion
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sig xð Þ ¼ 1

1þ e b� x�gð Þð Þ (2)

The ‘spectral summary’ for the candidate c is then the sum of
all MassBank scores mj, weighted by their chemical similarity tcj
to the candidate c. The MassBank spectral scores mj use a modi-
fied cosine distance in the range from 0 to 1, where values ≥ 0.65
indicate reasonable spectral similarity.[10]

For the chemical similarity calculation, we use the Chemistry
Development Kit (CDK, version 1.4.7).[20] The chemical similarity
tcj between the molecular fingerprints (CDK standard fingerprint
with 1 024 bit length) of the compounds c and j is calculated
using the Tanimoto (also known as Jaccard) coefficient.[21,22]

The balance between the individual identification approaches
is determined by the weight a, where a=1 uses exclusively the
MetFrag scores and a= 0 results in a compound library search
for those compounds that have the most similar high-scoring
MassBank hits. Although both individual MetFrag and MassBank
scores fall in the range of 0–1, the MetFusion result score has
no upper bound and depends on the original MetFrag score fc,
the number of spectral database hits and the corresponding
chemical similarity. The lower limit of the MetFusion score is 0.

Evaluation method and dataset

MetFusion was evaluated on a dataset of 1099 spectra, contain-
ing compounds ranging in molecular weight from 89 to 837Da.
A wide range of compound classes is covered, including
flavonoids, steroids, amino acids, carboxylic acids, glucosides,
drugs and toxins. Nine hundred and eighteen spectra were
measured with a single collision energy (such as 10, 20, 30, 40
and 50 eV). The remaining 181 spectra were created by merging
spectra at several collision energies for a single compound. The
corresponding spectra were measured on the same instrument
type, and only the collision energies differed. In this way, more
informative peaks are present in a merged spectrum. The use of
merged spectra for similarity search is also recommended by
the MassBank consortium.[10]

The reference spectra used to evaluateMetFrag[18,23] are a subset
of this evaluation dataset. All spectra are available from MassBank;
for details, see Supplemental Material S-7.
The dataset contains 37 spectra, which contain only the pre-

cursor ion information, resulting from soft ionization with
10 eV. The results presented in the main article exclude these
spectra, but the complete results can be found in Supplemental
Materials S-5 to S-8.
For each test spectrum, we determine the rank of the correct

candidate obtained with MetFusion. For the evaluation, we con-
sider all different configurations of a candidate compound as a
single constitution because the compound databases often include
several stereoisomers and unspecified stereo configurations. We
again use an InChIKey-based filtering of the candidate list.
The relative ranking position (RRP) describes the position of the

correct compound in relation to the whole result set.[24,25]

RRP ¼ 1

2
1� BC �WC

TC � 1

� �
(3)

In Equation (3), BC denotes the number of candidates that
have a higher MetFusion score than the correct compound. WC
denotes the number of candidates that have a lower score. TC

denotes the total number of candidates, i.e. the number of
MetFrag results N.

We have defined Equation (3) such that an RRP of 1.0 is equiv-
alent to the correct compound at the first position, this value also
implies that no other compound is ranked first. If the compound
is ranked last, this results in an RRP of 0.0. If all compounds share
the same score, this results in an RRP of 0.5.

We also report the median rank of the correct solution, which
indicates how many candidates have to be considered before
the correct solution appears in the web application. If several
compounds (including the correct solution) have an identical
score, we use the most conservative approach and report the
maximum (worst case) rank of equally scored candidates.

Simulation of real world queries for training and evaluation

We cannot use the ‘normal’ operation mode of MetFusion to
evaluate the identification performance, as all test spectra are
also present in MassBank. If we did so, MetFusion would be sim-
ply ‘too good’. This is because of the fact that querying MassBank
with spectra from our dataset is guaranteed to find matches at
the top positions, as these spectra are present in MassBank. The
correct candidate would also have a Tanimoto similarity of 1.0,
which would favor its scoring even more because the parameter
optimization would result in a scoring function strongly biased
towards MassBank.

To avoid this, we simulated the identification of unknown spec-
tra: we removed not only the query spectrum from the MassBank
results in our evaluation but also any spectra whose compounds
were above a certain chemical similarity to the query compound.
This filtering approach provides controlled conditions for the
evaluation because for an independent set of evaluation spectra,
we also would need to specify to what degree the compounds
are present in the reference library. We used 0.7 as the most strin-
gent Tanimoto similarity threshold, which removed on average
2.4 MassBank records for each test spectrum. Less stringent filters
are 0.8 and 0.9, which removed on average 1.8 and 1.3 results,
respectively. A threshold of 1.0 removed only the correct
compound. So with just one set of test spectra, we can evaluate
our approach against several levels of completeness of the spec-
tral library used and find to what degree the identification
depends on the reference spectra.

MetFusion web application and availability

The MetFusion application is available at http://msbi.ipb-halle.de/
MetFusion/ and features a user-friendly interface.

The query spectrum should contain at least m/z and intensity
values. The three column MassBank peaklist format is supported
as well. Additional search parameters allow users to modify the
search behavior for compound database and spectral database,
respectively. The results are presented in a table with 20 entries
per page, ordered by decreasing MetFusion score. It is also possi-
ble to download all results as a spreadsheet, which contains the
result lists of MetFusion, MetFrag and MassBank, with
corresponding scores and images of the molecular structures
and the computed similarity matrix. Users can then add this
report to the supplemental information of publications to support
their findings.

It is possible that several candidate compounds obtain identi-
cal scores and thus have tied ranks. To improve the overview of
the MetFusion result list in the web application, we perform a
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structural clustering of all compounds that have the same MetFu-
sion score and a Tanimoto fingerprint similarity ≥ 0.95 and join
them into a cluster. This applies in particular to stereo isomers,
which can in general not be distinguished with mass spectrome-
try. In contrast to our evaluation, the web application does not
perform any filtering of the candidates because for a downstream
analysis (such as citation counts), the full candidate list could be
relevant. The clustered results can be expanded and viewed in
detail by the user.

The web interface is based on Java Server Faces 2, ICEfaces 2
(component library with AJAX capabilities) and an Apache
Tomcat 7 server.

The application is suitable for browsers with JavaScript enabled.
The MetFusion implementation is available as a Java library

from the project repository at https://github.com/mgerlich/
MetFusion, which can be used to perform batch searches on
a local computer or cluster. The code is available under the
open-source GPL license.

Results and discussion

MassBank contains spectra from various MS instruments and
chromatography types. For this paper, we focused on ESI tandem
MS spectra. This includes 13 instrument types with a total of
13 623 spectra as of February 2012. The result size for a MassBank
query was limited to the best 100 records.

MetFrag was used with two different values for the mzabs
parameter. This parameter defines the allowed absolute mass
deviation between the in silico generated fragments and the
measured peaks. Spectra that were measured on high-resolution
devices with good accuracy used mzabs=0.0, so only the relative
mzppm error threshold is used. For less accurate spectra, we
increased this value to mzabs= 0.01, allowing a broader range
for the exact mass of generated fragments to match. The
additional parameter mzppm was set to 10 ppm in all cases. After
filtering for unique InChIKeys, we found that the result list
contained on average 1247 candidates per query spectrum from
the PubChem database.

Optimization of scoring function parameters

The integrated scoring function has three internal parameters: a
balances the in silico prediction and the spectral summary, and
b and g determine the shape of the sigmoid function in the spec-
tral summary. For an optimal choice of these parameters, we per-
formed a parameter scan using the complete set of 1 099 spectra
for each of the filter thresholds. The resulting parameter sets are
shown in Supplemental Material S-2. To assess the stability and
generalization of such a parameter optimization, we performed
a tenfold cross-validation. Across all ten partitions, we obtained
very similar optimal parameter combinations when optimizing
the mean rank of the correct compound, which suggests that
the scoring function is robust to parameter and data variations.
The detailed results of the cross-validation are shown in Supple-
mental Material S-2.

For the remainder of the paper and for the web application, we
have chosen the parameter set obtained with the similarity filter-
ing threshold of 0.9. The corresponding optimal parameters are
thus a= 0.3, b=� 9 and g=0.6. Additional information on the
performance of MetFusion is available in Supplemental Material
S-3 to S-8.

Examples: Gly-Gly-His and naringenin

First, we have selected two example query spectra to demon-
strate MetFusion and discuss the results.

We selected a spectrum for the tripeptide Glycine-Glycine-
Histidine (Gly-Gly-His, Pubchem CID: 100097) with 42 peaks,
measured on a Micromass Quattro Micro QqQ device with nom-
inal mass resolution from the NIST 2008 database. MassBank has
very little spectral information on dipeptides and almost none
for tripeptides or polypeptides. However, the basic amino acids
are present in MassBank. So the challenges for MetFusion are to
deal with the low mass resolution and the lack of a reference
spectrum for this compound.

Gly-Gly-His has an exact mass of 269.112Da. We modified the
MetFrag parameters and increased mzabs to 0.1 Da and mzppm
to 30 ppm to account for the low resolution spectrum.

With MetFrag alone, the top ranked candidates explain up to
35 fragments, and many have purine or furan substructures.
The correct structure explains 26 fragments and is returned at
tied rank 23. The first MassBank hits contain spectra for Histidine
(155.069Da, best score 0.856), Carnosine (a dipeptide of b-Alanine
and Histidine, 226.106Da) and L-Homocarnosine (240.122Da, score
of 0.798). Figure 3 shows the similarity matrix dominated by chem-
ical similarities < 0.3.

Although none of the MassBank hits fully resemble the tripep-
tide of interest, the basic building blocks and their corresponding
characteristic fragment peaks provide enough information to
obtain the higher rank of the correct compound. The rank of
Gly-Gly-His is improved from rank 23 in MetFrag to rank 2 in
MetFusion. After MetFusion was run, the visual inspection of
the similarity matrix helps to interpret the result and avoid some
pitfalls. In another example, for the naringenin chalcone (CID:
155802) spectrum, both MetFrag and MassBank results also
contain the related naringenin (CID: 932). The spectrum
PB000129 of naringenin chalcone has a MassBank score of 0.98
compared with the spectrum PB000125 of naringenin. The ring
break of naringenin chalcone leads to very low chemical similar-
ity scores, thus promoting the rank of naringenin with intact rings
and its higher spectral and chemical similarity towards naringin
(spectrum PB000804, CID: 442428), favoring naringenin over
naringenin chalcone. Additional information is available in Sup-
plemental Material S-3.

Evaluation with benchmark dataset

We performed the evaluation on both the reduced dataset of
1062 spectra, which excluded spectra that contain only precursor
ion information, as well as the complete dataset with 1099 spec-
tra. The latter are available in Supplemental Material S-5. We first
queried MetFrag separately and use these results as baseline. As
stated before, we applied the InChIKey-based filter step to the
candidate lists prior to the MetFusion combination to remove
duplicated constitutions. Here, the correct compound had a
median tied rank position of 28 and a mean rank position of
164. The corresponding median RRP is 0.959, and the mean RRP
is 0.886. The discrepancy between mean and median shows that
the distribution is skewed and the low performance for several
compounds increases the mean considerably.

For the evaluation of our MetFusion strategy, we used the sim-
ulated real world queries for the evaluation dataset. We chose the
similarity filter of 0.9 as the basis for the optimization and evalu-
ation. With this setting, we obtain the correct solution among the
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top 2% (median RRP 0.991) in the result list or at an absolute rank
7 (median). Without filtering the correct compound from the
MassBank results, we obtain a median RRP of 1.
With the most restrictive filtering we used (similarity threshold

0.7), the median RRP drops to 0.986, with a median rank of 10.
This filter setting removed on average 2.4 spectra from the
MassBank results, and in one case up to 23. With these results,
one can expect to find the correct solution on the first page of
the result list of the web application. The other (less pessimistic)
filter settings are shown in Table 1.
The main advantage of this approach is the combination of

two separate identification approaches: (1) Instead of dealing
with multiple interfaces, all results are available in a single appli-
cation. More importantly, (2) MetFusion does neither depend
solely on in silico prediction nor on the possibly poor coverage
of reference spectra. A distinct advantage is that the spectrum
search from MassBank will not only retrieve spectra from com-
pounds with the actual precursor mass but also includes related
compounds with different masses that share similar fragment
peaks. These peaks can be attributed to similar structural features
of a compound. MetFrag usually retrieves the candidates on the
basis of the precursor mass or elemental composition, so all
candidates of a query will have the same mass. Hence, if the cor-
rect compound is contained in the compound database, it is also
included in the MetFusion result list.
Please also note that in this evaluation, we used PubChem to

demonstrate the ability to process large compound databases,
although for metabolomics applications, many of the candidates
will be irrelevant. Generally, an experimentalist will have addi-
tional prior information, which can be used to ignore candidates
that could not occur in the sample under investigation.
These results show that combining an in silico approach with

curated reference measurements can directly improve compound
identification and give the best of both worlds.

Extrapolation to KEGG

The results presented earlier show the performance of MetFusion
on the benchmark dataset from MassBank. But what perfor-
mance can we expect for arbitrary compounds in, e.g. KEGG? This
depends on the number of ‘similar’ reference spectra available in
MassBank for each KEGG compound so that the results in Table 1
can be extrapolated to the KEGG compound database.
We calculated the pairwise chemical similarity between

compounds in MassBank and KEGG. Using the last publically
available KEGG COMPOUND snapshot (15 499 entries as of 24
June 2011) and a local MassBank database of 5 063 compound
structures for which ESI reference spectra are available, we found

that for 2690 KEGG entries, there is a MassBank record with a
Tanimoto similarity of 0.9 or better. Additional information is
available in Supplemental Material S-4.

Under the assumption that our compound selection in the test
data is unbiased and that Table 1 can be generalized to all KEGG
compounds, we would expect that half of these 2690 compounds
can be ranked among the first seven MetFusion results, even if they
are searched against the whole of PubChem. If we relax the restrictions,
we find that for 5513 entries in KEGG, there is a MassBank spectrum
with a Tanimoto similarity of at least 0.7, so the extrapolation from
Table 1 suggests a median rank of 10 for the correct compound.

We were able to validate this extrapolation on the subset of
180 unique compounds from our dataset that also provide a
KEGG identifier. We used the identical settings as for the full
benchmark dataset and also retrieved the candidates from Pub-
Chem. The results are shown in Table 1. Although the RRPs are
slightly lower, the absolute ranks are even slightly better. One
reason is that PubChem returned fewer candidates for the com-
pounds also present in KEGG.

These calculations are just an extrapolation under several
assumptions, which cannot be taken for granted. If a compound
is not amendable to mass spectrometry, e.g. because of low ion-
ization efficiency, the identification is impossible with MetFusion,
and other analytical methods have to be used. Secondly, the
extrapolation assumes the same performance on compounds
not contained in the benchmark dataset. Although there are sev-
eral diverse compound classes in the evaluation dataset we used,
the benchmark data could be biased and MetFusion could have a
different performance (lower, but also higher) for classes not
taken into account here. On the other hand, because of the dis-
tributed nature of MassBank, we only considered those structures
that were available in our local database mirror, so the number of
KEGG structures for which similar reference spectra are available
is definitely higher than 2690.

Conclusions

The MetFusion approach was developed to combine the knowl-
edge from reference spectra with the in silico prediction tool Met-
Frag for structure identification in metabolomics studies and small
molecules in general. We showed that merging this information via
chemical similarity improves the position of the correct compound
from rank 28 to rank 7 comparedwith in silico prediction alone. This
improvement is even more remarkable, given that in the evalua-
tion, we made sure that reference spectra of the correct (and
similar) compounds were excluded. Solely relying on the spectral
library as identification strategy would result in no – or a wrong –

identification for these cases.
As this paper used existing benchmark data from spectral

libraries, we have described a metabolomics workflow else-
where.[26] The MetShot approach first obtains a list of peaks of
interest from metabolite profiling and statistical analysis and
acquires high-quality tandem mass spectra, which can be con-
verted to MetFusion batch query files.

The metabolomics standards initiative has defined four levels
of confidence in metabolite identification.[27] The most confident
level 1 identification requires the comparison of an unknown
compound with authentic standards under the same analytical
conditions, and level 2 can be achieved by a comparison of
spectral data with literature or database information of the same
compound. MetFrag alone can be considered to achieve the

Table 1. Results of MetFusion for the 1062 spectra dataset with the
(artificially) filtered MassBank

Similarity filter

0.7 0.8 0.9 1 none

MetFusion Rank 10 8 7 4 1

RRP 0.986 0.990 0.991 0.993 1

KEGG only Rank 8 6 6 4 1

RRP 0.976 0.984 0.987 0.989 1

Both the median rank and the median relative ranking position (RRP)
are shown for a given filter stringency. In addition, the results for 180
unique KEGG compounds are presented.
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annotation of compound classes, resulting in a level 3 identifica-
tion. With MetFusion, we can often achieve a level between two
and three, even if a reference spectrum of the actual unknown is
absent from MassBank. Beyond MetFusion, additional steps such
as the comparison of retention time and predicted logP ranges,
UV spectra or filtering for known substructures can further
improve the confidence of the identification. Some of these
aspects have been evaluated elsewhere.[28]

The approach is generally applicable to any identification strate-
gies that return compound structures and can bemodified for other
spectral libraries (such as Metlin, HMDB or GMD[29]) as well as other
identification strategies, such as the recently published analysis of
fragmentation trees.[30–32] Furthermore, it is not only restricted to
tandem MS spectra but can readily be applied to MS1 spectra with
informative in-source fragments, MSn data and GC-MS spectra.

Because the number of known metabolites will grow faster
than the coverage of spectral libraries, our approach to integrate
multiple identification strategies will remain of high importance
in the future. Even if all KEGG compounds (as of today) were
available in MassBank, the huge number of 200 000 metabolites
estimated in the plant kingdom[33] will not be part of reference
libraries any time soon.

Of course, a major improvement in general would be an
increase in high-resolution spectra contributions to reference
databases. The analysis of the chemical similarities between
MassBank and KEGG allows to prioritize future efforts and select
substances for which spectra should be added to MassBank to
improve the coverage of biologically relevant reference spectra.
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ABSTRACT: The identification of metabolites by mass spectrometry constitutes a major bottleneck which
considerably limits the throughput of metabolomics studies in biomedical or plant research. Here, we present a
novel approach to analyze metabolomics data from untargeted, data-independent LC-MS/MS measurements.
By integrated analysis of MS1 abundances and MS/MS spectra, the identification of regulated metabolite
families is achieved. This approach offers a global view on metabolic regulation in comparative metabolomics.
We implemented our approach in the web application “MetFamily”, which is freely available at http://msbi.
ipb-halle.de/MetFamily/. MetFamily provides a dynamic link between the patterns based on MS1-signal
intensity and the corresponding structural similarity at the MS/MS level. Structurally related metabolites are
annotated as metabolite families based on a hierarchical cluster analysis of measured MS/MS spectra. Joint
examination with principal component analysis of MS1 patterns, where this annotation is preserved in the
loadings, facilitates the interpretation of comparative metabolomics data at the level of metabolite families. As a
proof of concept, we identified two trichome-specific metabolite families from wild-type tomato Solanum
habrochaites LA1777 in a fully unsupervised manner and validated our findings based on earlier publications
and with NMR.

■ INTRODUCTION

Metabolomics experiments provide small molecule measure-
ments from biological samples in a broad range of applications
including cancer research, drug development, and plant
science.1−5 Mass spectrometry (MS) coupled to liquid
chromatography (LC) is an essential analytical technology to
acquire a snapshot of the metabolic state of a sample. On the
basis of untargeted MS measurements, it is possible to measure
thousands of detectable signals as MS1 features per chromato-
graphic run and to acquire signal profiles of small molecules
based on retention time (RT), accurate mass-to-charge ratio
(m/z), and abundance.6 Univariate or multivariate statistical
analysis is then applied to signal profiles of different sample
groups to detect MS1 features that are group-discriminating or
of interest based on the experimental design.
Hints for the structural characterization or even identification

of MS1 features are obtained from tandem MS measurements
(MS/MS), where the metabolites undergo fragmentation
resulting in MS/MS spectra. MS/MS spectra can be collected
by data-dependent acquisition (DDA) or in data-independent
acquisition (DIA) mode, requiring a trade-off between dwell
time and spectral purity.7,8 Using DIA, it is possible to collect
thousands of MS1 features from a single LC run as well as the
associated MS/MS spectra.9 However, in most studies, the
identity of the vast majority of MS1 features is unknown.

Structure elucidation of each individual MS1 feature from
complex biological samples, e.g., by NMR and interpretation of
MS/MS spectra, is currently out of reach. Thus, the
biochemical relation between MS1 features remains largely
unexplained.
Group-discriminating MS1 features are often structurally

related, e.g., if particular metabolic pathways are differentially
regulated as a consequence of disease,10 stress,11 genetic
manipulation,12 or in the case of organ-specific accumulation of
structurally related metabolites.13 Structurally related metabo-
lites often exhibit latent similarity in their MS/MS spectra in
which characteristic fragmentation patterns arise from common
functional groups or structural features. For instance, upon
negative mode ionization and collision-induced dissociation
(CID), adenylated metabolites such as adenyl nucleotides, CoA
esters, and NAD cofactors form a fragment ion of m/z
134.0472 Da (C5N5H4

−), which corresponds to the mass of the
purine core element. Under the same conditions, glucosides
often form a fragment ion of m/z 161.0455 Da (C6H9O5

−),
characteristic of the hexose side-chain. Thus, on the basis of
existing information, precursor ions showing these character-
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istic fragments could be grouped together as metabolites
sharing common structural features, or metabolite families.
However, even pre-existing MS/MS information characteristic
of certain metabolite families is sparse. Hence, novel
approaches that turn MS1- and MS/MS-features into
interpretable information within a reasonable amount of time
are urgently needed. These approaches should be able to relate
MS1 abundances to latent similarity at the MS/MS spectral
level.
Recently, several studies reported on the organization of

hundreds of MS1 features by molecular networking depicting
relationships between structurally related molecules based on
their spectral similarity.14−17 However, an explicit assignment of
MS1 features to similarity clusters and the source of structural
similarity between up- or downregulated MS1 features was not
apparent. Previously, Wagner et al. used GC-MS data for
hierarchical cluster analysis (HCA) to arrange known and
structurally related metabolites.18 Using HCA, it was possible to
identify structural classes among 59 metabolites. Rasche et al.
described FT-BLAST19 to compare spectra and computation-
ally derived fragmentation trees, revealing clusters of
structurally closely related compounds. However, neither
Wagner et al. nor Rasche et al. considered the abundance of
MS1 features in different samples.
Inspired by the idea to comprehensively analyze molecular

networks and to explicitly group MS1 features, we performed
HCA across hundreds of MS/MS spectra obtained from
glandular trichomes of wild-type tomato Solanum habrochaites
LA1777. Glandular trichomes of vascular plants such as tomato
are metabolic factories producing a plethora of secondary
metabolites involved in plant defense and the communication
with its environment.13,20 We considered characteristic frag-
ments prevalent in MS/MS similarity clusters to assign MS1

features to certain trichome-specific metabolite families. In
addition, we applied principal component analysis (PCA) to
metabolite profiles for the discovery of group-discriminating
MS1 features and combined the information on metabolite
families obtained from HCA (MS/MS feature similarity) with
the PCA loadings (sample-specific MS1 abundance). This
combination of statistical analyses of MS1 feature abundances
and MS/MS structural annotations can not only speed-up the
individual analysis steps, but allows us to address new
questions, such as the discovery of group-discriminating
metabolite families with biochemical relevance. Here, we
exemplarily selected two metabolite families being produced
by tomato glandular trichomes which play important roles in
the plant defense against herbivores, namely the branched chain
acyl sugars21−24 and the sesquiterpene glucosides which are
potentially poisonous to plant herbivores.25,26 We implemented
the proposed methodology in the Open Source web application
“MetFamily” and made our approach freely available (accessible
via http://msbi.ipb-halle.de/MetFamily/).

■ MATERIALS AND METHODS

Fragment Matrix Assembly. MetFamily processes a
metabolite profile of a set of MS1 features together with an
MS/MS library comprising MS/MS spectra for these MS1

features. We obtain both data sets as output of MS-DIAL,9

where the metabolite profile contains extracted m/z/retention
time features from MS1 scans with the corresponding feature
abundances (Data S-1 of the Supporting Information, SI) and
the MS/MS library contains deconvoluted MS/MS spectra of
the MS1 features with relative intensities of the fragment ions
(Figure 1, Data S-2). Instead of MS-DIAL, other tools can
produce similar input data as described in Note S-3. Upon data

Figure 1. MS/MS library format before upload into MetFamily.
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import, MetFamily aligns all MS/MS spectra with a user-
defined m/z error to create the f ragment matrix as shown in
Figure 2, where the relative intensity of unique MS/MS
fragments is associated with the corresponding MS1 feature
(i.e., precursor ion) and its MS1 abundance in individual
samples (Data S-3). For our showcase, this preprocessing step
takes one or 2 min. The fragment matrix is assembled as
follows.
First, we process the set of all fragments. Here, we remove

fragments with an intensity below a user-defined noise
threshold. We normalize fragment intensities within each
MS/MS spectrum to a maximum of 1 (base peak). In addition,

we add one neutral loss (NL) for each fragment by calculating
the mass of the neutral loss as the difference of fragment m/z
and precursor m/z in MS1 (intentionally a negative m/z value).
The intensity of the NLs is chosen equal to the intensity of the
corresponding fragment. In this manuscript, we treat fragments
and NLs equally by denoting both as fragments.
Second, we align the individual MS/MS spectra (Figures 1

and 2). Here, we match fragments from different MS/MS
spectra with similar m/z and merge these to f ragment groups of
unique m/z. We call the mean of all fragment m/z’s of one
fragment group the f ragment group mean. For the alignment of
the individual MS/MS spectra, we use an efficient algorithm

Figure 2. Combined data matrix after data preprocessing by MetFamily. The quantification part (red, left) contains the MS1 features (rows;
precursor ions) and the MS1 abundances in individual samples. In the fragment part (green, right), the column headers are the mean of binned MS/
MS features (m/z or neutral loss) from the MS/MS library. Upper zoom: m/z; retention time of feature (628.2452; 9.16) and its respective peak
heights in two trichome samples. Lower zoom: relative MS/MS intensities of fragment ion m/z 323.09570 Da. Arrows to the left and to the right:
MS1 abundances are analyzed using PCA and MS/MS spectra are analyzed using HCA.
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implemented in the R package xcms31 (version 1.44.0). This
algorithm avoids the usage of fixed m/z bins with a heuristic
approach that groups fragments with similar m/z and
decomposes contiguous fragment groups using hierarchical
clustering. Here, a fragment m/z matches a fragment group, if
the following:

| − | ≤ + ×m m mz m mz EAbs PPM /1 6group MS/MS MS/MS

where m is the fragment m/z, mgroup is the fragment group
mean, mzAbsMS/MS is a parameter representing the absolute m/
z error, and mzPPMMS/MS is representing the relative m/z error
in ppm (parts per million). See Table S-3 for a summary of
user-customizable parameters. After fragment group assembly,
we remove fragment groups which correspond to isotopic ions.
Specifically, we detect fragment groups with a m/z difference of
1.0033 Da (regarding the fragment group means ± m/z error)
which correspond to 13C isotopes. Third, we create the
fragment matrix with one row for each unique MS1 precursor
and columns of fragment groups (Figure 2). We register the
intensity of each fragment in the row and column of the
corresponding MS1 feature and fragment group, respectively.
For each MS1 feature, we generate an ID given by “m/z/
retention time” in MS1.
Finally, we add the set of MS1 abundances in all samples and

other annotations to each row resulting in a combined data
matrix. The combined data matrix represents the data basis for
subsequent analyses and can be examined in a spreadsheet
program for complementing analyses (Figure 2 and Data S-3).
MS1/MS/MS Combined Data Analysis. A principal

component analysis (PCA) for the set of m MS1 features in n
samples is performed as follows. Given the m by n matrix of
scaled MS1 abundances, we calculate the scores and the
loadings. Here, MetFamily supports the scaling functions log2
transformation, Pareto scaling, Centering, and Autoscaling.27 The
scores comprise one data point per sample and reflect
differences between samples. The loadings comprise one data
point per MS1 feature and emphasize MS1 features with
differential abundance between samples.
We perform a hierarchical cluster analysis (HCA) on MS/

MS spectra of a set of MS1 precursor features as follows. We
calculate the distance matrix of pairwise dissimilarities between
the MS/MS spectra of all MS1 features. Here, we provide
different distance functions to score common and distinct
fragments. Specifically, we recommend the distance function
‘Jaccard (intensity-weighted)’, which sums the intensities of
common and disjoint fragments:

= − ∩
∪f s s

sum map s s

sum map s s
( , ) 1

( ( ))

( ( ))i j
i j

i j

where si and sj are the fragments in the MS/MS spectrum of
MS1 feature i and j. To suppress noise and emphasize the
importance of intense fragments, map discretizes the intensities
of the fragments as follows. Intensities smaller than 0.2 are
mapped to 0.01, intensities greater or equal than 0.2 and
smaller than 0.4 are mapped to 0.2, and intensities greater or
equal than 0.4 are mapped to 1. Given the distance matrix, we
calculate a hierarchical cluster dendrogram where each cluster
of MS1 features represents a putative metabolite family.
For each cluster of MS/MS spectra, we calculate the cluster-

discriminating power for prevalent fragments as follows. For each
fragment present in more than 50% of the MS/MS spectra in a

cluster, we measure the ability of this fragment to discriminate
spectra in the cluster from spectra outside the cluster as

= −
f

p p

n
cdp( )k l,

in out

where f k,l is the l-th fragment of the k-th cluster, pin is the
number of MS/MS spectra in the k-th cluster containing the
fragment f k,l, pout is the number of MS/MS spectra outside the
k-th cluster containing the fragment f k,l, and n is the total
number of MS/MS spectra in the k-th cluster. If pout > pin, then
we define cdp( f k,l) = 0. The cluster-discriminating power of a
fragment is in the range from zero to one, and a fragment with
a cluster-discriminating power close to one indicates a very
specific fragment.
Clusters containing fragments with a cluster-discriminating

power close to one indicate metabolite families. Currently, the
annotation of metabolite families based on characteristic MS/
MS fragments is performed by a mass spectrometry expert who
manually evaluates the hierarchy of putative metabolite families
and labels a set of clusters with functional and/or structural
annotations based on characteristic fragment patterns. Each
MS1 feature can be labeled with one annotation, i.e.,
membership in a metabolite family.

Plant Growth and Harvest. Solanum habrochaites LA1777
was grown on soil in a greenhouse (65% humidity, light
intensity: 165 μmol s−1 mm2, 21−24 °C, 16 h light period) and
watered with tap water every 2 days. The plant material was
harvested 12 weeks after germination during the light phase in
the early afternoon. For trichome harvest, tomato leaves were
put on the hand palm (using gloves) and trichomes were
quickly brushed off the leaves by a 2 cm broad paint brush
which was dipped in liquid nitrogen. The frozen trichomes
were collected in a mortar filled with liquid nitrogen.
Trichomes from 15 plant leaves were pooled under cryogenic
conditions and further purified by sieving through steel sieves
of 150 μm mesh width (Retsch, Hahn, Germany). After
removal of trichomes, the plant leaves were immediately
quenched in liquid nitrogen. Pooled leaves were ground in a
mortar under liquid nitrogen conditions. After evaporation of
all liquid nitrogen during storage at −80 °C leaves and
trichomes were lyophilized overnight and stored in a deep
freezer until extraction.

Metabolite Extraction. Using wall-reinforced cryo-tubes of
1.6 mL volume (Precellys Steel Kit 2.8 mm, Peqlab
Biotechnologie GmbH, Erlangen, Germany) filled with 5 steel
beads (3 mm), 25 mg aliquots of dry leaf or trichome powder
was suspended in 900 μL dichloromethane/ethanol (−80 °C).
Then, 200 μL of 50 mM aqueous ammonium formate/formic
acid buffer (0 °C, pH 3) was added to each vial, and two rounds
of cell rupture/metabolite extraction were conducted by
FastPrep bead beating (60 s, speed 5.5 m/s, first round −80
°C, second round room temperature, FastPrep24 instrument
with cryo adapter, MP Biomedicals LLC, Santa Ana, CA,
U.S.A.). After phase separation by centrifugation at 20 000g (2
min, 0 °C) the aqueous phase was removed, and 600 μL of the
organic phase was collected. Following, 500 uL tetrahydrofuran
(THF) was added to exhaustively extract hydrophobic
metabolites and the Fastprep and centrifugation were repeated
accordingly. The THF supernatant was combined with the first
organic phase extract and dried in a stream of nitrogen gas. The
dried extract was resuspended in 150 μL 75% methanol
(aqueous) and filtered over 0.2 μm PVDF.
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Analytical Conditions for Liquid Chromatography
and Mass Spectrometry. 0.5 μL methanolic extract was
injected into an Acquity-UPLC (Waters Inc.) and separated on
a Nucleoshell RP18 (150 mm × 2 mm × 2.7 μm; Macherey &
Nagel, Düren, Germany) at 40 °C. The mobile phase A was
0.33 mM ammonium formate with 0.66 mM formic acid in
water; mobile phase B was acetonitrile. The gradient was 0 min,
5% B; 2 min, 5% B; 19 min, 95% B; 21 min, 95% B; 21.1 min,
5% B; and 24 min, 5% B. The column flow rate was 0.4 mL/
min, the autosampler temperature was 4 °C.
ESI-(−)-Mass Spectrometry was performed on an AB Sciex

TripleTOF 5600 system (Q-TOF) equipped with a DuoSpray
ion source. All analyses were performed at the high sensitivity
mode for both TOF MS1 and product ion scan. The mass
calibration was automatically performed every 20 injections
using an APCI calibrant solution via a calibration delivery
system (CDS). The instrument (TripleTOF 5600, Sciex,
Toronto, Canada) was configured to simultaneously acquire
high resolution MS/MS spectra for all MS1 features (sequential
window acquisition of all theoretical fragment-ion spectra,
SWATH)28 (Figure S-1). The SWATH parameters were MS1

accumulation time, 150 ms; MS2 accumulation time, 20 ms;
collision energy, −45 V; collision energy spread, 35 V; cycle
time, 1160 ms; Q1 window, 25 Da; mass range, m/z 65−1250.
The other parameters were curtain gas, 35; ion source gas 1, 60;
ion source gas 2, 70; temperature, 600 °C; ion spray voltage
floating, −4.5 kV; declustering potential, 35 V.
Raw Data Processing. After measurement, raw data of

triplicate trichome and trichome-free leaf material was
converted from the vendor file format (in our case *.wiff)
into the common file format of Reifycs Inc. (Analysis Base File
format *.abf) using the freely available Reifycs ABF converter
(http://www.reifycs.com/AbfConverter/index.html).This
process took about 1 min per sample. After conversion, the
freely available MS-Dial software was used for feature detection,
ion species annotation, compound spectra extraction, and peak
alignment between samples.9 Data processing by MS-Dial using
the parameters in Table S-1 took about 30 min. Data

processing by MetFamily using the parameters in Table S-2
took 1 min.
Notably, neither the use of SWATH-triggered CID

fragmentation nor the use of MS-Dial are prerequisite to run
MetFamily. Any data independent or data dependent
acquisition to collect MS/MS spectra and other peak picking
and deconvolution software can alternatively be used.29−32 In
that case, their output has to be provided as a text file
containing the peak intensities and a msp-type spectral library
which are formatted as exemplified in Data S-1 and Figure 1,
and described in Note S-3. However, as unique feature, MS-
Dial jointly deconvolutes MS1 and MS/MS features and
automatically predicts the precursor ion when DIA was applied.
Via the Reifycs ABF converter, MS-DIAL accepts all of major
MS vendor-formats as well as the common mzML data and is
applicable to either DIA or DDA MS/MS fragmentation
methods.

Substance Purification. Since NMR requires purified
analytes in the upper μm range, 1 kg of LA1777 leaf material
was surface-extracted with methanol for 2 h. After evaporation,
a methanolic concentrate of this extract was produced and
injected into a LC system in 100 μL increments. For peak
separation using semipreparative HPLC and an analysis by
mass spectrometry (1260 Infinity system, Agilent), a full scan
between 200 and 800 m/z was performed after negative
electrospray ionization (ion source: API-ES, gas temperature:
350 °C, drying gas 10 mL/min, nebulizer pressure 35 psig,
capillary voltage 4500 V). For HPLC, a XTerra prep MS C18
column (5 μm × 7.8 mm × 150 mm; Waters) was used and run
at a flow rate of 6 mL/min at 25 °C. Solvent A was 0.3 mM
ammonium formate acidified with formic acid to pH 6.2.
Solvent B was acetonitrile. Gradient conditions were: 0−5 min
5% B; 5−87 min linear gradient to 95% B; 87−88 min 95% B;
and 88−90 min 5% B. For fractionation, m/z 605.5, 737.5, and
751.5 triggered the selective collection. A makeup pump that
transferred an aliquot of the eluate to the mass analyzer was set
to 0.5 mL/min 50% A - 50% B. Subsequently, all collected
fractions were dried by lyophilization prior to NMR analysis.

Figure 3. Principal component analysis of metabolite extracts of glandular trichomes and leaves of Solanum habrochaites LA1777. Comparison of
2585 MS1 features from TOF-MS measurements (n = 6). (a) scores and (b) loadings with annotations. The PCA loadings with annotations indicate
a predominant enrichment of acyl sugars in glandular trichomes. AS: acyl sugars, SQT-glucosides: sesquiterpene glucosides, and Unknown: Not
characterized here.
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Analytical Conditions for NMR. NMR spectra were
recorded on an Agilent/Varian VNMRS 600 NMR spectrom-
eter operating at a proton NMR frequency of 599.83 MHz
using a 5 mm inverse detection cryoprobe. 2D NMR spectra
were recorded using standard pulse sequences (gDQCOSY,
zTOCSY, gHSQCAD, gHMBCAD) implemented in Agilent
(Varian) VNMRJ 4.2A (CHEMPACK 7.1) spectrometer
software. A TOCSY mixing time of 80 ms was used. HSQC
experiments were run with multiplicity editing and optimized
for 1JCH = 146 Hz. HMBC experiments were optimized for a
long-range coupling constant of 8 Hz; a 2-step 1JCH filter was
used (130−165 Hz). Proton and carbon chemical shifts are
referenced to internal TMS (0 ppm).

■ RESULTS AND DISCUSSION

As a proof of concept, we applied MS signal profiles to compare
the metabolism of a special plant organ in tomato, the glandular
trichomes, to tomato leaves. Plant glandular trichomes are
secretory cells that protrude from the epidermis of many
vascular plants. As “metabolic factories”, they produce
important drugs such as the antimalaria artemisinin or
compounds known to be involved in plant defense.20,33 Here,
we used Solanum habrochaites LA1777, a wild type tomato
accession with a rich profile of secondary metabolites produced
in the glandular trichomes.34 We used six UPLC-(−)ESI-
SWATH-MS/MS runs of triplicate trichome and trichome-free
leaf extracts (cf. Materials and Methods). However, MetFamily

is applicable to a larger number of samples and sample groups.
We used MS-DIAL9 for data preprocessing and exported (i) a
signal profile with MS1 features and (ii) a spectral library with
deconvoluted MS/MS spectra extracted from the raw data
(Data S-1 and Data S-2). Using the software MetFamily, we
aligned the MS/MS spectra of the spectral library resulting in a
novel fragment matrix structure, and we fused this fragment
matrix with the matching set of MS1 features from the six
individual samples to a single matrix (cf. Materials and
Methods, Figures 1 and 2, Data S-3, Table S-3).
MetFamily provides options to perform principal component

analyses (PCA). Here, we performed a PCA on 2585 MS1

features detected in glandular trichomes or leaves of LA1777
using Pareto-scaled data. In our example, PC1 shows a clear
separation between trichomes and leaves with R2 = 0.90, Q2 =
0.82 and a large number of MS1 features more abundant in
glandular trichomes (Figure 3A,B). A Scree plot on additional
principal components is provided in Figure S-2. Up to this
point, all data have been acquired in a fully untargeted manner
and traditionally this is where group-discriminating MS1

features would be subjected to tedious manual structure
elucidation. In our approach, we amended the loadings plot
of the PCA (Figure 3B) with a set of structural annotations
based on characteristic MS/MS fragments which we identified
in different signal-clusters using HCA (Figure 4). Using
MetFamily, we performed a hierarchical cluster analysis
(HCA) on MS/MS spectra of the fragment matrix (Data S-

Figure 4. Hierarchical cluster analysis of 135 trichome-specific MS1 features using the corresponding MS/MS spectra obtained from organic extracts
of S. habrochaites LA1777. For comparison of the groups trichomes versus leaf focusing on trichome-specific features, the set of 2585 MS1 features
was filtered using an MS1 abundance threshold of 20 000 counts and a log2-fold change (LFC) of two. The heatmap below depicts the LFC and the
absolute MS1 abundance in glandular trichomes (TRI) and trichome-free leaves (LVS), respectively. The 135 filtered MS1 features clearly segregated
into two main signal-clusters which in turn further segregated into signal-clusters with different levels of similarity between MS/MS spectra.
Specifically, we identified a cluster of 73 short branched chain acyl sugars (AS, in blue) and a cluster of four sesquiterpene glucosides (SQT-
glucosides, in red) on the basis of a set of characteristic fragments which were prevalent in both clusters (see legend “Annotations” on the right).
Both signal-clusters show characteristic fragments with a cluster-discriminating power of 80% and more (size of the branch nodes, see legend
“Cluster-discriminating power” on the right). 58 trichome-specific MS1 features partially showed further clusters, but remained uncharacterized in
this study (Unknown in black).
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3). For PCA as well as for HCA, MetFamily allows the usage of
thresholds for the MS1 abundance of individual MS1 features
(average of all samples) and for the log2-fold change between
the average MS1 abundance of two sample groups. Since we
were interested in abundant trichome-specific metabolites, we
retained 135 MS1 features in the HCA with MS1 abundances
≥20 000 counts and a log2-fold change ≥2 comparing
trichomes versus leaf. After hierarchical cluster analysis, the
resulting dendrogram indicated a clear segregation into two
main clades with internal spectral similarity (Figure 4).
The first signal-cluster contained 73 MS1 features which

correspond to short branched chain acyl sugars21 (AS, blue in
Figure 4). The structural similarities among members of this
clade was supported by prevalent fragment ions 87.0451 Da
(theoretical mass for C4H7O2

− is 87.0452) and 101.0603 Da
(theoretical mass for C5H9O2

− is 101.0608), which are
indicative for short branched acyl groups. These acyl moieties
were esterified to sucrose as reflected by the fragments
323.0957 Da (theoretical mass for C12H19O10

− is 323.0984;
sucrose-H2OH−) and 305.0864 Da (theoretical mass for
C12H17O9

− is 305.0878; sucrose-2H2OH]−). MS/MS
fragmentation patterns and NMR analysis of two selected
MS1 features of this clade ([m/z; RT]: [737.3578; 14.65] and
[751.3749; 15.64]) confirmed the membership to the
metabolite family of short branched chain acyl sugars (Figures
S-3, S-4, S-7, S-8, S-11−S-14, S-15−S-19 and Tables S-5, S-6).
Our NMR analysis revealed that the feature [737.3578; 14.65]
comprised an isomeric mixture of isobutyl, isopentyl, and
anteisobutyl acyl moieties, which were not resolvable using our
chromatography. MS/MS fragmentation and NMR of various
AS have been thoroughly studied earlier by Ghosh et al., where
compounds selected here for analysis were annotated as
acylsucrose S4:21[2] (theoretical m/z:737.36012 Da (formate
adduct-H)) and acylsucrose S4:22[6] (theoretical m/z:
751.37577 Da (formate adduct-H)), respectively.21

The second signal-cluster contained a group of four MS1

features which correspond to sesquiterpene glycosides (SQT-
glucosides, red in Figure 4). The structural similarities among
members of this clade was supported by three prevalent
fragment ions: m/z 401.2548 Da (theoretical mass for
C21H37O7

− is 401.2545), 563.3051 Da (theoretical mass for
C27H47O12

− is 563.3073), and 605.3176 Da (theoretical mass
for C29H49O13

− is 605.3179) (Figure S-5). Recently, Ekanayaka
et al. identified a novel class of trichome-specific sesquiterpene
glucosides from S. habrochaites using these fragment ions and
elucidated the structures of purified representatives by NMR.26

In our study, CID fragmentation and preparative isolation of
MS1 feature [605.3160; 7.07, an abundant in-source fragment]
with subsequent NMR confirmed the structure of 12-O-(6″-O-
malonyl-β-D-glucopyranosyl-(1 → 2)-β-D-glucopyranosyl)-cam-
pherenane-2-endo,12-diol, a member of the novel sesquiter-
pene glucoside metabolite family (Figures S-3−S-6, S-9, S-10
and Tables S-3, S-4).
After annotation of both metabolite families, the correspond-

ing MS1 features are highlighted by their color-code in the PCA
loadings (Figure 3B). In our case, it was evident that the
representatives of both metabolite families were enriched in
glandular trichomes, indicating a trichome-specific upregulation
of short branched chain acyl sugars and sesquiterpene
glucosides. Please note that the hierarchical cluster dendrogram
comprised more clades with internal spectral similarity, but we
concentrated on the short branched chain acyl sugars and
sesquiterpene glucosides whose structures were confirmed by

NMR. A detailed workflow exemplified here is given in Figure
S-1, and the full showcase protocol is given in Note S-1. A
general user guide for MetFamily is given in Note S-2.

Additional Features of MetFamily. MetFamily also
supports semitargeted analyses. In this case, sets of MS1

features can be selected by certain fragment masses, neutral
losses, or combinations thereof within a user-defined mass error
in ppm as filter criteria. Using this option, only selected MS1

features are considered in subsequent PCA or HCA
calculations and the data analysis is consequently constrained
to selected metabolite families. For example, to isolate only
glycosylated MS1 features from all data the user can specify a
fragment ion of m/z 161.0455 Da (C6H9O5

−) from MS/MS
spectra in negative mode and can then focus on the regulation
of enzymatic glycosylations in a biological context (for details,
see the MetFamily user guide in Note S-2). When we applied
this filter with a mass error of 25 ppm, we obtained 568 MS1

features from our example data, presumably containing a
hexose as a structural moiety. In addition, it is possible to search
MS1 features with certain fragments or neutral losses
postanalysis. The corresponding MS1 features can then be
jointly visualized in the PCA loadings and the hierarchical
cluster dendrogram.
It is possible to export different kinds of results from

MetFamily. Selected sets of precursor ions can be exported and,
e.g., reloaded into the original MS data acquisition software.
Further, it is possible to export both the hierarchical cluster
dendrogram and the PCA plots as publication-ready high
quality images. The set of parameters used for the initial data
import can be exported and imported. Finally, it is possible to
export the whole project (including all annotations and color
codes) to enable the user to share the project or to continue the
data analysis at a later time (Data S-4).

■ CONCLUSIONS
The web application “MetFamily” presented here constitutes a
novel approach to analyze metabolomics data from untargeted,
data-independent LC-MS/MS measurements. Rather than
relying on the time-consuming structure identification of
individual metabolites, MetFamily assists in the interpretation
of complex metabolomics data by identifying metabolite
families through patterns in MS/MS. These are generated by
similarity clustering of associated MS/MS spectra and can be
annotated with names and colors. After preprocessing of LC-
MS/MS raw data, MetFamily performs a joint data analysis of
MS1 abundances and MS/MS spectra in which the annotation
of metabolite families facilitates the interpretation of com-
parative data sets. Structure elucidation at the metabolite level
can be performed afterward in a much more focused way. As a
proof of concept, we identified two trichome-specific
metabolite families from wild type Solanum habrochaites
LA1777 in a fully unsupervised manner and validated our
findings based on earlier publications and with NMR. The
plethora of identified trichome-specific acyl sucroses correlates
with upregulation of acyltransferases of the BAHD family in
tomato glandular trichomes (Schilmiller 2012). In addition, the
size of the clade “acyl sugar” is related to a low substrate
specificity of BAHD acyltransferases, illustrating that MetFam-
ily can uncover links between enzymatic promiscuity and
organ-specific regulation of enzymes.
Using the proposed approach, it is now possible to obtain a

comprehensive overview of data sets containing thousands of
mass features within a reasonable amount of time. Thus, by

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.6b01569
Anal. Chem. 2016, 88, 8082−8090

8088

DOI:10.1021/acs.analchem.6b01569 Reprinted with permission. © 2016 American Chemical Society.

https://doi.org/10.1021/acs.analchem.6b01569


providing a dynamic link between structural similarity at the
MS/MS level (HCA) and the corresponding MS1-signal
intensity-based patterns (PCA) we bridge the gap between
raw data and structural information. Moreover, using
MetFamily, precursor ions can now be filtered via combinations
of fragment ions and neutral losses, permitting the selection of
metabolite families based on characteristic fragmentation
patterns.
While traditional compound identification is based on the

comparison of MS/MS spectra (or electron impact MS spectra)
with reference spectra from known compounds, future
developments should exploit spectral patterns of MS/MS
features being characteristic of certain metabolite families.
Public knowledge on such characteristic fragment ions or
neutral losses, e.g., based on metabolite families, can assist mass
spectrometry specialists in the elucidation of unknown features
and will open new perspectives in life science.
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MetFrag relaunched: incorporating 
strategies beyond in silico fragmentation
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Abstract 

Background: The in silico fragmenter MetFrag, launched in 2010, was one of the first approaches combining 
compound database searching and fragmentation prediction for small molecule identification from tandem mass 
spectrometry data. Since then many new approaches have evolved, as has MetFrag itself. This article details the latest 
developments to MetFrag and its use in small molecule identification since the original publication.

Results: MetFrag has gone through algorithmic and scoring refinements. New features include the retrieval of refer-
ence, data source and patent information via ChemSpider and PubChem web services, as well as InChIKey filtering 
to reduce candidate redundancy due to stereoisomerism. Candidates can be filtered or scored differently based 
on criteria like occurence of certain elements and/or substructures prior to fragmentation, or presence in so-called 
“suspect lists”. Retention time information can now be calculated either within MetFrag with a sufficient amount of 
user-provided retention times, or incorporated separately as “user-defined scores” to be included in candidate rank-
ing. The changes to MetFrag were evaluated on the original dataset as well as a dataset of 473 merged high resolu-
tion tandem mass spectra (HR-MS/MS) and compared with another open source in silico fragmenter, CFM-ID. Using 
HR-MS/MS information only, MetFrag2.2 and CFM-ID had 30 and 43 Top 1 ranks, respectively, using PubChem as a 
database. Including reference and retention information in MetFrag2.2 improved this to 420 and 336 Top 1 ranks with 
ChemSpider and PubChem (89 and 71 %), respectively, and even up to 343 Top 1 ranks (PubChem) when combin-
ing with CFM-ID. The optimal parameters and weights were verified using three additional datasets of 824 merged 
HR-MS/MS spectra in total. Further examples are given to demonstrate flexibility of the enhanced features.

Conclusions: In many cases additional information is available from the experimental context to add to small mol-
ecule identification, which is especially useful where the mass spectrum alone is not sufficient for candidate selection 
from a large number of candidates. The results achieved with MetFrag2.2 clearly show the benefit of considering this 
additional information. The new functions greatly enhance the chance of identification success and have been incor-
porated into a command line interface in a flexible way designed to be integrated into high throughput workflows. 
Feedback on the command line version of MetFrag2.2 available at http://c-ruttkies.github.io/MetFrag/ is welcome.

Keywords: Compound identification, In silico fragmentation, High resolution mass spectrometry, Metabolomics, 
Structure elucidation
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Background
The identification of unknown small molecules from 
mass spectral data is one of the most commonly-men-
tioned bottlenecks in several scientific fields, including 

metabolomic, forensic, environmental, pharmaceutical 
and medical sciences. Recent developments to high reso-
lution, accurate mass spectrometry coupled with chroma-
tographic separation has revolutionized high-throughput 
analysis and opened up whole new ranges of substances 
that can be detected at ever decreasing detection limits. 
However, where “peak inventories” are reported, the vast 
majority of the substances or peaks detected in samples 
typically remain unidentified  [1–3]. Although targeted 
analysis, where a reference standard is available, remains 
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the best way to confirm the identification of a compound, 
it is no longer possible to have access to reference stand-
ards for the 100s–1000s of substances of interest in com-
plex samples. While mass spectral libraries are growing 
for high accuracy tandem and MSn spectra, the cover-
age is still relatively small compared with the number of 
compounds that could potentially be present in typical 
samples  [4, 5]. Thus, for substances without reference 
standards or not present in the spectral libraries, the 
challenge of identification still remains. This has spurred 
activities in computational mass spectrometry, aimed at 
proposing tentative identifications for the cases where 
the mass spectrum is not (yet) in a mass spectral library.

The in silico fragmenter MetFrag, launched in 2010, 
was one of the first approaches to address this niche 
for accurate tandem mass spectra in a fast, combinato-
rial manner [6]. The MetFrag workflow starts by retriev-
ing candidate structures from the compound databases 
PubChem  [7], ChemSpider  [8] or KEGG  [9, 10], or 
accepting the upload of a structure data file (SDF) con-
taining candidates. Candidates are then fragmented using 
a bond dissociation approach and these fragments are 
compared with the product ions in the measured mass 
spectrum to determine which candidates best explain 
the measured data. The candidate scoring is a function of 
the mass to charge ratio (m/z),   intensity and bond dis-
sociation energy (BDE) of the matched peaks, while a 
limited number of neutral loss rules (5 in total) account 
for rearrangements  [6]. Searching PubChem, the origi-
nal MetFrag (hereafter termed “MetFrag2010” for read-
ability) achieved a median rank of 8 (with an average of 
338 candidates per compound) when restricted to a Feb. 
2006 version of PubChem, and 31.5 querying PubChem 
in 2009 (average of 2508 candidates per compound) on a 
102 compound dataset from Hill et al. [11]. As PubChem 
is now double the size of the 2009 version, the candidate 
ranking becomes more challenging over time due to the 
increase in numbers of candidates. Thus, innovations are 
required to improve performance and efficiency.

Other methods for in silico fragmentation are also 
available. The commercial software Mass Frontier  [12] 
uses rule–based fragmentation prediction based on 
standard reactions, a comprehensive library of over 
100,000 fragmentation rules, or both. The approaches 
of MetFrag and Mass Frontier are complementary and 
have been used in combination to support structure elu-
cidation  [13, 14], but Mass Frontier does not perform 
candidate retrieval or scoring by itself. With increasing 
amounts of data available, machine learning approaches 
have been used to train models of the fragmentation pro-
cess. Heinonen et  al.  [15] introduced FingerID, which 
uses a support vector machine to learn the mapping 
between the mass spectra and molecular fingerprints of 

the candidates. Allen et al. [16] use a stochastic, genera-
tive Markov model for the fragmentation. Implemented 
in CFM-ID (competitive fragment modelling), this can 
be used to assign fragments to spectra to rank the can-
didates, but also to predict spectra from structures alone. 
The MAGMa algorithm  [17] includes information from 
MSn fragmentation data, but also uses the number of 
references as an additional scoring term. The latest frag-
menter, CSI:FingerID combines fragmentation trees and 
molecular fingerprinting to achieve up to 39  % Top  1 
ranks, outperforming all other fragmenters  [18]. The 
MetFusion  [19] approach takes advantage of the availa-
bility of spectral data for some compounds and performs 
a combined query of both MetFrag and MassBank  [20], 
such that the scores of candidates with high chemical 
similarity to high-scoring reference spectra are increased.

Lessons from recent critical assessment of small mol-
ecule identification contests (CASMI)  [21, 22], which 
included many of the above-mentioned algorithms, 
show that the use of smaller, specific databases greatly 
improves the chance of obtaining the correct answer 
ranked highly and that the winners gathered information 
from many different sources, rather than relying on the 
in silico fragmentation alone. Furthermore, performing 
candidate selection by molecular formula can risk losing 
the correct candidate if the formula prediction is not cer-
tain, such that an exact mass search can be more appro-
priate in cases where more than one formula is possible. 
Despite the progress achieved for in silico fragmentation 
approaches, there are still some fundamental limitations 
to mass spectrometry that mean that candidate rank-
ing cannot be solved by fragment prediction alone. For 
example, mass spectra that are dominated by one or only 
a few fragments (e.g. a water loss) that can be explained 
by most of the candidates simply do not contain enough 
information to distinguish candidates. Further examples 
and limitations are discussed extensively in [4].

The aim of MetFrag2.2 was to incorporate many addi-
tional features into the original MetFrag in silico frag-
menter, considering all the information presented above. 
Features to explicitly include or exclude combinations of 
elements and substructures by either filtering or scor-
ing were added. Suspect screening approaches, growing 
in popularity in environmental analysis [1], were also 
incorporated to allow users to screen large databases (i.e. 
PubChem and ChemSpider) while being able to check 
for candidates present in smaller, more specific databases 
(e.g. KEGG [9], HMDB [23], STOFF-IDENT [24], Mass-
Bank  [20] or NORMAN suspects  [25]), enabling users 
to “flag” potential structures of interest. The number of 
references, data sources and/or patents for a substance 
are now accessible via PubChem and/or ChemSpider 
web services, and a PubChem reference score has already 
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been included in the MAGMa web interface  [26]. A 
high number of literature references or patent listings 
may indicate that the substance is of high use and thus 
more likely to be found in the environment. Similarly, a 
higher number of scientific articles for a metabolite could 
indicate that this has been observed in biological sam-
ples before. Reference information has been shown to 
increase identification “success” in many cases, for exam-
ple [17, 27, 28], by providing additional information com-
pletely independent of the analytical evidence. However, 
as this information can introduce a bias towards known 
compounds, this information should be incorporated 
with caution, depending on the experimental context.

Retention time information is often used for candi-
date selection in LC/MS. Unlike the retention index (RI) 
in GC, where the Kovats RI [29] is quite widely applied, 
there is not yet an established RI per se for LC/MS 
despite a high interest. Instead, where a reverse phase 
column is used for the LC method, the octanol–water 
partitioning coefficient (log P) and retention times (RT) 
of substances can be correlated due to the column prop-
erties [30]. The log P of the measured standards can be 
predicted with various software approaches and corre-
lated with the retention times (see e.g.  [31] for an over-
view on different methods). This has already been used 
in candidate selection (e.g. [13, 32–34]), with various log 
P predictions. The orthogonal information proved useful 
despite the large errors associated with the predictions 
(e.g. over 1 log unit or up to several minutes retention 
time window depending on the LC run length). These are 
due to uncertainties in log P prediction that are common 
among different prediction implementations when con-
sidering a broad range of substances with different (and 
many) functional groups and ionization behaviour. As the 
Chemical Development Kit (CDK  [35, 36]) offers log P 
calculations, this can be incorporated within MetFrag2.2. 
Alternative approaches with log D, accounting for ioni-
zation, or those requiring more extensive calculations 
(e.g.  [37–39]) can be included via a user-defined score, 
described further below.

This article details the developments and improve-
ments that have been made to MetFrag since the origi-
nal publication, including a detailed evaluation on several 
datasets and specific examples to demonstrate the use of 
MetFrag2.2 in small molecule identification.

Implementation
MetFrag architecture
MetFrag2.2 is written in Java and uses the CDK  [35] to 
read, write and process chemical structures. To start, 
candidates are selected from a compound database 
based on the neutral monoisotopic precursor mass and 
a given relative mass deviation (e.g. 229.1089 ± 5 ppm), 

the neutral molecular formula of the precursor or a set 
of database-dependent compound accession numbers. 
Currently, the online databases KEGG [9, 10], PubChem 
[7] or ChemSpider [8] can be used with MetFrag2.2, as 
well as offline databases in the form of a structure data 
file (SDF) or, new to MetFrag2.2, a CSV file that con-
tains structures in the form of InChIs [40] together with 
their identifiers and other properties. Furthermore, Met-
Frag2.2 is able to query local compound database systems 
in MySQL or PostgreSQL, as performed in [41].

MetFrag2010 considered the ion species [M  +  H]+, 
[M]+, [M]− and [M − H]− during candidate retrieval and 
fragment generation. While the web interface contained 
an adduct mass adjustment feature, the presence of 
adducts was not considered in the fragments. MetFrag2.2 
can also handle adducts also appearing in the product 
ions associated with [M + Na]+, [M + K]+, [M + NH4]+  
for positive ionization and [M +  Cl]−, [M +  HCOO]− 
and [M  +  CH3COO]− for negative ionization. As the 
candidate retrieval is performed on neutral molecules, 
the precursor adduct type must still be known before-
hand; for high-throughput workflows this information is 
intended to come from the workflow output.

Additive relative and absolute mass deviation values are 
used to perform the MS/MS peak matching and can be 
adjusted according to the instrument type used for MS/
MS spectra acquisition. The number of fragmentation 
steps performed by MetFrag2.2 can be limited by setting 
the tree depth (default is 2).

The overall score of a given candidate is calculated as 
shown in Eq. 1.

The final candidate score SCFinal
 is the weighted sum of 

all single scoring terms used, where the weights given 
by ωi specify the contribution of each term. All SC scor-
ing terms used to calculate SCFinal

 are normalized to the 
maximum value within the candidate result list for a 
given MS/MS input. The calculation of individual scor-
ing terms are detailed in the subsections below; all terms 
besides SCFrag are new to MetFrag2.2.

A variety of output options are available. Output SDFs 
contain all compounds with a structure connection table 
and all additional information stored in property fields. 
For the CSV and XLS format, the structures are encoded 
by SMILES [42] and InChI codes, while an extended XLS 
option is available that includes images of the compounds 
and/or fragments. In all cases the compounds are sorted 
by the calculated score by default.

(1)

SCFinal
= ωFrag · SCFrag + ωRT · SCRT + ωRefs · SCRefs

+ ωIncl · SCIncl

+ ωExcl · SCExcl
+ ωSuspects · SCSuspects

+ · · · + ωn · SCn
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In silico fragmentation refinements
The in silico fragmentation part of MetFrag2.2 has under-
gone extensive algorithmic and scoring refinements. The 
fragmentation algorithm still uses a top-down approach, 
starting with an entire molecular graph and removing 
each bond successively. However, the generated frag-
ments are now stored more efficiently by using only 
the indexes of removed bonds and atoms, similar to the 
MAGMa approach [43]. This not only increases process-
ing speed and decreases memory usage, but still allows 
the fast calculation of the masses and molecular formulas 
of each fragment. This makes it possible to process MS/
MS spectra with higher tree depths to generate reliable 
fragments for molecules with complex ring structures 
with lower CPU and memory requirements. As a result, 
fragment filters such as the molecular formula dupli-
cate filter used in MetFrag2010 to decrease the number 
of generated structures were no longer required, their 
removal reduces the risk of missing a potentially correct 
fragment. The calculation of the fragmentation score, 
SCFrag, modified from the score given in [6], is shown in 
Eq. 2 for a given candidate C:

For each peak p matching a generated fragment, the 
relative mass RelMassp and intensity RelIntp as well as the 
sum of all cleaved bonds b of the fragment f assigned to 
p are considered. Where more than one fragment could 
be assigned to p, the fragment with the lowest denomi-
nator value is considered. In contrast to Eq. 2, the Met-
Frag2010 scoring used the difference between 1/max(wc) 
and 1/max(e) · ec, which could lead to negative scores if 
the BDE penalty was large. The weights α, β and γ were 
optimized on a smaller subset of spectra from Gerlich 
and Neumann [19] that was not used further in this work 
including merged MassBank IPB (PB) and RIKEN (PR) 
MS/MS spectra and were set to α = 1.84, β = 0.59 and 
γ = 0.47. Once SCFrag has been calculated for all candi-
dates within a candidate list, it is normalised so that the 
highest score is one.

Compound filters, element and substructure options
The unconnected compound filter was already imple-
mented in MetFrag2010 to remove salts and other 
unconnected substances that could not possibly have the 
correct neutral mass from the candidate list. InChIKey 
filtering has now been added to reduce candidate redun-
dancy due to stereoisomerism, as stereoisomers inflate 
candidate numbers but cannot (usually) be distinguished 
with MS/MS. The InChIKey filtering is performed using 
the first block, which encodes the molecular skeleton (or 

(2)SCFrag =
∑

p∈P

RelMassp
α · RelIntpβ

(

∑

b∈Bf BDEb

)γ

connectivity), but not the stereochemistry. While this is 
generally reasonable, some tautomers may have differing 
InChIKey first blocks (see e.g. [40]), such that not all tau-
tomers will be filtered out. The highest-scoring stereoiso-
mers overall with a matching first block are retained.

Element restrictions have been added to enhance the 
specificity of the exact mass search. Three options are 
available to restrict the elements considered: (a) include 
only the given elements, (b) the given elements have to be 
present, but other elements can also be present (as long 
as they are not explicitly excluded) and (c) exclude certain 
elements. Options (b) and (c) can be used in combina-
tion. These filters can be used for example to incorporate 
isotope information (e.g. Cl, S) that has been detected in 
the full scan (MS1) data.

Substructure restrictions allow the inclusion and exclu-
sion of certain molecular substructures, encoded in 
SMARTS [44]. Each substructure is searched indepen-
dently, thus overlapping substructures can also be con-
sidered. This option is particularly useful for cases where 
detailed information about a parent substance is known 
(e.g. transformation product, metabolite elucidation), 
or complementary substructure information is available 
from elsewhere (e.g. MS2Analyzer [45] or other MS clas-
sifiers [13]). Candidates containing certain substructures 
can either be included and/or excluded prior to frag-
mentation, or scored differently. To calculate a score, the 
number of matches in the inclusion or exclusion list con-
taining n substructures are added per candidate as given 
in Eq. 3 (where Mi = 1, if substructure i matches candi-
date C from the given candidate list L or 0 otherwise):

The inclusion (SCIncl
) and/or exclusion (SCExcl

) score(s) per 
candidate are then calcualted as shown in Eq. 4:

where maxC ′∈L(NC ′
Match

) is the maximal value of 
NCMatch

 within the candidate list and the scores SCIncl
 

or SCExcl
 are set to 0 when maxC ′∈L(NC ′

Match
) = 0 or 

maxC ′∈L(n− NC ′
Match

) = 0, respectively.

Additional substance information
Reference and patent information
While the reference and patent information is repre-
sented by the placeholder term ωRefs · SCRefs

 in Eq. 1, the 
score can either be composed of several terms or added 
as a combined term, as described below.

(3)NCMatch
=

∑

M1 +M2 + · · · +Mn; Mi ∈ {0, 1}

(4)

SCIncl
=

NCMatch

maxC ′∈L
(

NC ′
Match

) ;

SCExcl
=

n− NCMatch

maxC ′∈L
(

n− NC ′
Match

)
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If the query databases is PubChem, the number of pat-
ents (PubChemNumberPatents, PNP) and PubMed ref-
erences (PubChemPubMedCount, PPC) are retrieved 
for each candidate via the PubChem PUG REST API 
[46]. These values result in the scoring terms SCPNP and 
SCPPC, which can be weighted individually, or a combined 
term with either or both parameters. For the latter, first, a 
cumulative reference term is calculated as shown in Eq. 5, 
before the PubChem combined reference score (SCPCR) is 
calculated for candidate C in candidate list L as shown in 
Eq. 6 for PubChem:

For ChemSpider, five values with reference infor-
mation can be retrieved using the ChemSpider web 
services  [47]), including the number of data sources 
(ChemSpiderDataSourceCount, CDC), references 
(ChemspiderReferenceCount, CRC), PubMed references 
(ChemSpiderPubMedCount, CPC), Royal Society for 
Chemistry (RSC) references (ChemSpiderRSCCount, 
CRSC) and external references (ChemSpiderExternal-
ReferenceCount, CERC). Any combination of these ref-
erence sources can be used and weighted individually, 
yielding the score terms SCCDC, SCCRC, SCCPC, SCCRSC and 
SCCERC. Alternatively, the ChemSpider Combined Refer-
ence Scoring term (SCCCR) can be calculated, as shown 
below in Eqs. 7 and 8:

The corresponding command line terms are given in the 
additional information (see Additional files 1, 2, 3).

Suspect lists
Additional lists of substances (so-called “suspect lists”) 
can be used to screen for the presence of retrieved candi-
dates in alternative databases. The suspect lists are input 
as a text file containing InChIKeys (one key per line) for 
fast screening. The first block of the InChIKey is used to 
determine matches. Example files are available from [25]. 
This “suspect screening” can be used as an inclusion fil-
ter (include only those substances that are in the suspect 
list) or as an additional scoring term for the ranking of 
the candidates, yielding the term ωSuspects · SCSuspects given 
in Eq. 1.

(5)NCPCR = a1 · PNPC + a2 · PPCC , a1, a2 ∈ {0, 1}

(6)
SCPCR =

NCPCR

maxC ′∈LNC ′
PCR

(7)

NCCCR
= b1 · CRCC + b2 · CERCC + b3 · CRSCC

+ b4 · CPCC + b5 · CDCC

b1, b2, b3, b4, b5 ∈ {0, 1}

(8)SCCCR =
NCCCR

maxC ′∈L NC ′
CCR

Retention time score via log P
The retention time (RT) scores offered within MetFrag2.2 
are based on the correlation of log P and user-provided 
RT information. The RTs must be associated with suf-
ficient analytical standards measured under the same 
conditions as the unknown spectrum (a minimum of 
ten data points are recommended, depending on the 
distribution over the chromatographic run). By default, 
the log P is calculated using the XlogP algorithm in the 
CDK library [36, 48, 49]. Alternatively, if PubChem is 
used as a candidate source, the XLOGP3 value retrieved 
from PubChem can also be used [50]. The user-provided 
RTs and their associated log P values comprise a train-
ing dataset to generate a linear model between RT and 
the log P, shown in Eq. 9, where a and b are determined 
using least squares regression:

This equation is then used to estimate log PUnknown, given 
the measured RT associated with the unknown spec-
trum, and compared with log PC calculated for each can-
didate. It is imperative that the log P calculated for each 
candidate arises from the same source as the log P used 
to build the model in Eq. 9. Lower log P deviations result 
in a higher score for a candidate; the score is calculated 
using density functions assuming a normal distribution 
with σ = 1.5 (chosen arbitrarily), as shown in Eq. 10:

Alternative log P values that are not available within 
MetFrag2.2 can also be used to establish a model and 
calculate a different SCRT in a two-step approach. First, 
MetFrag2.2 can be run either with or without one of the 
built-in models, so that candidates and all other scores 
can be obtained. The InChIs or SMILES in the output 
CSV, or structures in the output SDF can then be used by 
the user to calculate their own log P values. These should 
be included in the output CSV or SDF using the “User-
LogP” tag (or a self-defined alternative) and used as input 
for MetFrag2.2 with the Local Database option and a RT 
training file containing retention times and the user log 
Ps with the column header matching the tag in the results 
file. The values a and b in Eq. 9 are then determined and 
used to calculate SCRT for the final scoring. Alternative 
RT models that do not use log P should be included as a 
“user-defined score”, as described below.

User‑defined scoring functions
The final term in Eq.  1, ωn · SCn, represents the “user-
defined scoring function”, which allows users to incorpo-
rate any additional information into the final candidate 
scoring. The MetFrag2.2 output (InChIs, SMILES, SDF) 

(9)log PUnknown = a · RTUnknown + b

(10)SCRT =
1

σ
√
2π

e−(|log PUnknown−log PC|)2/2σ 2
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can be used to calculate additional “scores” for the can-
didates using external methods and these scores can be 
reimported with the candidates and all other MetFrag2.2 
scores in the pipe-separated (|) format for final scoring. 
The scores and weights are matched from the column 
headers in the input file and the parameter names added 
to the score list. The commands are given in a additional 
table (see Additional files 1, 2, 3), with an example (“ter-
butylazine and isomers”) below.

Results and discussion
The changes to MetFrag2.2 were evaluated on several 
datasets, described in the following. Further examples 
are given to demonstrate the use of different new fea-
tures. Unless mentioned otherwise, candidate structures 
were retrieved from the compound databases PubChem 
and ChemSpider in June, 2015. If not stated explicitly, 
the datasets were processed with a relative and absolute 
fragment mass deviation of 5 ppm and 0.001 Da, respec-
tively. The resulting ranks, if not specified explicitly, cor-
respond to pessimistic ranks, where the worst rank is 
reported in the case where the correct candidate has the 
same score as other candidates. Stereoisomers were fil-
tered to keep only the best scored candidate based on the 
comparison of the first part of the candidates’ InChIKeys. 
The expected top ranks calculated as in Allen et al. [16], 
which handles ties of equally scored candidates in a uni-
formly random manner, are also given when compar-
ing the two in silico fragmenters. This demonstrates the 
effect of equally scored candidates on ranking results.

The datasets from Eawag and UFZ used in this publi-
cation arose from the measurement of reference stand-
ard collections at Eawag and UFZ, which comprise small 
molecules of environmental relevance such as pharma-
ceuticals and pesticides with a wide range of physico-
chemical properties and functional groups, and also 
include several transformation products which typically 
have lower reference counts. All spectra are publicly 
available in MassBank.

In Silico fragmentation performance
Comparison with MetFrag2010
The merged spectra from 102 compounds published 
in Hill et  al.  [11], also used in [6, 19], formed the first 
evaluation set. The candidate sets from Gerlich and 
Neumann  [19] were used as input for MetFrag2.2 and 
processed with consistent settings: relative mass devia-
tion of 10 ppm and absolute mass deviation of 0 Da, i.e. 
no absolute error, for a direct comparison with Met-
Frag2010. With MetFrag2.2, the median rank improved 
from 18.5 to 14.5, while the number of correct ranked 
candidates in the top 1, 3 and 5 improved from 8 to 9, 20 
to 24 and 28 to 34, respectively.

Baseline performance on Orbitrap XL Dataset
A set of 473 LTQ Orbitrap XL spectra resulting from 
359 reference standards formed the second dataset. The 
spectra were measured at several collision energies with 
both collision-induced ionization (CID) 35 and higher-
energy CID (HCD) 15, 30, 45, 60, 75 and 90 normalized 
units (see [51] for more details) coupled with liquid chro-
matography (LC) with a 25 min program on an Xbridge 
C18 column. The raw files were processed with RMass-
Bank [51, 52], yielding the “EA” records in MassBank. 
These spectra were merged using the mzClust_hclust 
function in xcms [53] (parameters eppm  =  5× 10−6 
and eabs = 0.001 Da) to create peaks with the mean m/z 
value and highest (relative) intensity and retained where 
they contained at least one fragment peak other than 
the precursor. In total 473 spectra (319 [M  +  H]+and 
154 [M − H]−) were evaluated with MetFrag2010 using 
ChemSpider, as well as MetFrag2.2 using either PubChem 
or ChemSpider. The correct molecular formula was used 
to retrieve candidates. The results, given in Table 1, show 
the clear improvement between MetFrag2010 (73 Top 1 
ranks with ChemSpider) and MetFrag2.2 (105 top 1 ranks 
with ChemSpider). This is also indicated by the higher 
relative ranking positions (RRP)  [19] retrieved by Met-
Frag2.2 where a value of 1 marks the best possible result 
and 0 the worst possible result. Note that the version 
used here is 1-RRP as defined in Kerber et  al.  [54] and 
Schymanski et al. [55]. The results show that the algorith-
mic refinements improved the baseline in silico fragmen-
tation performance, although it is difficult to tell which of 
the changes had the greatest influence.

Comparison with CFM‑ID using Orbitrap XL Dataset
The same dataset of 473 merged spectra and the corre-
sponding PubChem candidate sets were used as input 
for CFM-ID [16] version 2.0 (“Jaccard”, RDKit 2015.03.1, 
lpsolve 5.5.2.0, Boost 1.55.0), to form a baseline compari-
son with an alternative in silico fragmenter. The results, 
given in Table 1, show that CFM-ID generally performed 
better, indicated by the higher number of correct first 
ranked candidates (43 vs. 30), top 5 (170 vs. 145), top 10 
(232 vs. 226) and a lower median and mean rank of 11 
versus 12 and 127 versus 141. The expected ranks, includ-
ing equal ranked candidates, also implied a better perfor-
mance of CFM-ID (top  1: 43 vs. 57, top  5: 163 vs. 193, 
top  10: 245 vs. 261). This was not entirely unexpected 
as CFM-ID uses a more sophisticated fragmentation 
approach, but also requires a much longer computa-
tion time. For run time analysis, 84 of the 473 queries, 
selected at random, were processed (single-threaded) 
with MetFrag2.2 and CFM-ID in parallel on a computer 
cluster with a maximum of 28 (virtual) computer nodes 
with 12 CPU cores each. The total run times (system + 
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user runtime, retrieved by linux bash command time) 
were 75  min for MetFrag2.2 and 12,570  min (209.5  h) 
for CFM-ID. These values represent the runtime on a 
single CPU core for all 84 queries in series. The average 
run time per query amounts to 54 s for MetFrag2.2 and 
8979 s (150 min) for CFM-ID.

As CFM-ID and MetFrag2.2 use independent in silico 
fragmentation approaches, one can hypothesize that 
the combination of the approaches should improve 
the results further. To demonstrate this, the CFM-ID 
results were incorporated into MetFrag2.2 by introduc-
ing an additional scoring term ωCFM-ID · SCCFM-ID, where 
SCCFM-ID defines the normalized CFM-ID probability of 
candidate C. Different contributions of each fragmenter 
relative to another was determined by randomly draw-
ing 100 combinations of ωFrag and ωCFM-ID such that 
(ωFrag + ωCFM-ID = 1). The best results, shown in Table 1, 
were obtained with ωFrag = 0.67 and ωCFM-ID = 0.33 , 
where the change in number 1 ranks with weight is 
shown in Additional file  4. With this best combination, 
the number of Top 1 ranks improved from 30 to 61, while 
the median rank improved to 8. This shows that the com-
bination of independent fragmentation methods can 
indeed yield valuable improvements to the results, shown 
again in the next paragraph after including the additional 
information. Further validation was beyond the scope 
of the current article, as further improvements could be 
made by retraining CFM-ID on Orbitrap data, but would 
be of interest in the future.

Adding retention time and reference information
Parameter selection on Orbitrap XL Dataset
The next stage was to assess the effect of references 
and retention time information on the MetFrag results. 

Firstly, each score term (i.e. fragmenter, retention time 
and/or reference information) was either included or 
excluded by setting the weight (ωFrag,ωRT,ωRefs) to 1 or 
0, to assess the impact of the various combinations on 
the number of correctly-ranked number 1 substances. 
The results are shown in Table  2. The best result was 
obtained when all three “score terms” (fragmenter, 
RT and references) were included in candidate rank-
ing. For PubChem, both RT/log P models (CDK XlogP 
and XLOGP3 from PubChem directly) were assessed 
and thus two sets of results are reported. The reference 
information was included using the combined reference 
scores introduced in Eqs.  6 and  8, where all combina-
tions of the reference values described above (1–2 for 
PubChem, 1–5 for ChemSpider, i.e. 3 and 31 combina-
tions in total, respectively), were used to form a cumu-
lative total reference term, shown in Eq. 5 for PubChem 
and Eq. 7 for ChemSpider. The best results were achieved 
with PubChem when using both patents and PubMed 
references (SCPNP+PPC; a1 = 1, a2 = 1), while for Chem-
Spider using the ReferenceCount, ExternalReference-
Count and the DataSourceCount (SCCRC+CERC+CDC) proved 
best, i.e. b1 = 1, b2 = 1, b3 = 0, b4 = 0, b5 = 1. Table  2 
contains the number of Top  1 ranks for each combina-
tion of ωFrag,ωRT,ωRefs ∈ {0, 1}. The results show clearly 
that, while references alone result in over 311 top 1 ranks 
(65 % for PubChem), the addition of both fragmentation 
and retention time information improves the results fur-
ther, to 69  % of candidates ranked first (PubChem) and 
even 87  % of candidates ranked first (ChemSpider). For 
PubChem the distribution of the number of Combine-
dReferences (including patents and PubMed references) 
for the 359 queries of the (unique) correct candidates is 
shown in Additional file 5.

Table 1 Comparison of in silico fragmentation results for 473 Eawag Orbitrap spectra (formula search)

MetFrag2010 and MetFrag2.2 were compared with the same ChemSpider candidate sets; MetFrag2.2 and CFM-ID with the same PubChem candidate sets. Far right: 
Best top 1 pessimistic ranks obtained by combining MetFrag2.2 and CFM-ID 2.0 with the weights ωFrag = 0.67 and ωCFM-ID = 0.33. The expected ranks, which partially 
account for equally scored candidates as calculated in [16], are shown in the lower part of the table

MetFrag2010 MetFrag2.2 CFM‑ID MetFrag2.2 + CFM‑ID

ChemSpider ChemSpider PubChem PubChem PubChem

Pessimistic ranks

 Median rank 8 4 12 11 8

 Mean rank 74 38 141 127 85

 Mean RRP 0.859 0.894 0.880 0.881 0.901

 Top 1 ranks 73 (15 %) 105 (22 %) 30 (6 %) 43 (9 %) 62 (13 %)

 Top 5 ranks 202 267 145 170 202

 Top 10 ranks 258 320 226 232 276

Expected top ranks

 Top 1 ranks 90 (19 %) 124 (26 %) 43 (9 %) 57 (12 %) 70 (15 %)

 Top 5 ranks 218 280 163 193 213

 Top 10 ranks 274 329 245 261 288
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Following this, the combination of each scoring term 
was assessed by randomly drawing 1000 different weight 
combinations such that (ωFrag + ωRT + ωRefs = 1 ) to 
determine the optimal relative contributions of each 
term for the best results. This was performed for all 
combinations of reference sources (3 for PubChem, 31 
for ChemSpider). The best result was obtained again 
when using both patents and PubMed references for 
PubChem (SCPNP+PPC; a1 = 1, a2 = 1), but using only the 
ReferenceCount (SCCRC; b1 = 1, b2 = 0, b3 = 0, b4 = 0 , 
b5 = 0) for ChemSpider. The results are summarized 
in Table  3 (including the weight terms) and shown in 
Figs. 1 and 2 for PubChem and ChemSpider respectively. 
These triangle plots show the top 1 candidates for all ωi 
combinations, colour-coded (black—0  % of the correct 
candidates ranked first, yellow—10  0  % of the correct 
candidates ranked first) with the ωi per category increas-
ing in the direction of the arrow. Each corner is ωi = 1. 
The 25th and 75th percentiles are shown to give an idea 
of the distribution of the ranks. The equivalent plots 
for the number of top  5 and top  10 ranks are given in 
Additional files 6, 7, 8 and 9. Although the results from 
(ωFrag, ωRT, ωRefs ∈ {0, 1}) above indicated that the term 
SCCRC+CERC+CDC yielded the best result for ChemSpider 
with 411 top  1 ranks, SCCRC yielded 410 top  1 ranks for 
the same calculations, indicating that there is little dif-
ference between the two combinations. Using the ran-
domly-drawn weights, the top  1 ranks improved to 420 
(ChemSpider) and 336 (PubChem). This proves without 
a doubt that the addition of reference and retention time 
information drastically improves the performance, going 
from 22 to 89  % top  1 ranks (ChemSpider) and 6.3 to 
71 % (PubChem).

As above, it was interesting to investigate whether the 
addition of a complementary fragmentation technique, 
i.e. CFM-ID, would improve the results even further. 
MetFrag2.2 and CFM-ID were combined with retention 
time and reference information using 1000 randomly 

drawn combinations of ωFrag, ωCFM-ID, ωRT and ωPNP+PPC 
such that (ωFrag + ωCFM-ID + ωRT + ωPNP+PPC = 1). The 
results, shown in Table  3, indicate that the PubChem 
results can be improved further, to 343 top  1 ranks 
(73  %). This is a drastic improvement from the perfor-
mance of both original fragmenters alone, with CFM-ID 
alone yielding between 10 and 12 % top 1 hits (expected 
rank) in their original publication  [16] with an older 
PubChem, the combination of both fragmenters alone 
yielding 15  % (expected rank) here. These combined 
results are also drastically better than the latest in silico 
fragmentation results just published for CSI:FingerID. 
Dührkop et  al.  [18] investigated each individual frag-
menter currently available and compared the results with 

Table 2 PubChem and ChemSpider results (number of pessimistic top 1 ranks) for 473 Eawag Orbitrap spectra

The weights indicate where the score term was included (1) or excluded (0) from the candidate ranking. For PubChem ωRefs · SCRefs = ωRefs · (SCPNP+PPC
); for ChemSpider 

SCRefs = SCCRC+CERC+CDC
 only. See text for explanations

Weight term Score term Weights

ωFrag SCFrag 1 1 1 0 1 0 0

ωRT SCRT 1 1 0 1 0 1 0

ωRefs SCRefs 1 0 1 1 0 0 1

 Database RT source Top 1 ranks

PubChem XLOGP3 325 (69 %) 53 322 315 30 10 311

PubChem CDK XlogP 326 (69 %) 43 322 316 30 8 311

ChemSpider CDK XlogP 411 (87 %) 113 411 376 105 41 376

Table 3 PubChem and  ChemSpider results for  473 Eawag 
orbitrap spectra with  formula retrieval, including  in silico 
fragmentation, RT and  reference information as  shown, 
with the given ωi for the highest number of Top 1 ranks

For PubChem ωRefs · SCRefs = ωRefs · (SCPNP+PPC
); for ChemSpider SCRefs = SCCRC 

only. See text for explanations. Far right: combining CFM-ID results to 
incorporate complementary fragmentation information

MetFrag2.2 MetFrag2.2 + 
CFM‑ID

Database ChemSpider PubChem PubChem PubChem

RT/log P  
Model

CDK XlogP CDK XlogP XLOGP3 CDK XlogP

ωFrag (SCFrag) 0.49 0.57 0.50 0.33

ωRT (SCRT) 0.19 0.02 0.16 0.03

ωRefs (SCRefs) 0.32 0.41 0.34 0.35

ωCFMID (SCCFMID
) – – –  0.29

Median rank 1 1 1 1

Mean rank 6.5 35 41 18

Mean RRP 0.990 0.977 0.977  0.978

Top 1 ranks 420 (89 %) 336 (71 %) 336 (71 %)  343 (73 %)

Top 5 ranks 447 396 398  411

Top 10 ranks 454 422 414  429
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the CSI:FingerID. Despite using different data and set-
tings to those here, their results on the Agilent dataset 
indicated that MetFrag2010 and CFM-ID achieved 9 and 
12 % top 1 (expected) ranks, which are reasonably com-
parable with the results presented above. FingerID  [15] 
achieved 19.6 %, while CSI:FingerID achieved 39 % top 1 
results, which is a dramatic improvement over the other 
fragmenters. Since the external information boosted the 
top  1 ranks to 73  % for MetFrag2.2 plus CFM-ID, one 
could speculate that the combination of CSI:FingerID, 
MetFrag2.2 and CFM-ID would result in an even greater 
performance.

Cross‑evaluation on additional datasets
As the RT and reference scores are very subjective to 
experimental context, MetFrag2.2 now contains so many 
tuneable parameters that it will be beneficial to users 
when a few default cases are suggested. Thus, once the 
optimal reference source combinations were determined 
as described above, alternative datasets were used to re-
determine the optimal weights ωFrag, ωRT and ωRefs to 

investigate the variation over different datasets. Three 
sufficiently large datasets available on MassBank con-
tained good quality MS/MS and RT data, all processed 
with RMassBank [51].

UF dataset: A susbset of the 2758 UFZ Orbitrap XL 
records were acquired on an Kinetex Core-Shell C18 col-
umn from Phenomenex with a 40 min chromatographic 
program (all others were direct infusion experiments). 
These MS/MS spectra, arising from [M  +  H]+  and 
[M  −  H]−  precursors, were recorded at four collision 
energies: CID 35 and 55 as well as HCD 50 and 80. 
These spectra were merged and processed as described 
above for the Orbitrap XL dataset, resulting in 225 
merged spectra (“UF” dataset) from 195 substances (184 
[M + H]+ and 41 [M − H]−).

EQex and EQxPlus datasets: Two additional Eawag 
datasets were also available. The “EQex” dataset, meas-
ured on a Q Exactive Orbitrap, contained MS/MS spec-
tra associated with [M + H]+ and [M − H]− precursors 
recorded at six different collision energies (HCD 15, 30, 
45, 60, 75 and 90). The “EQExPlus” dataset, measured 
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on a Q Exactive Plus Orbitrap, contained MS/MS spec-
tra associated with [M + H]+ and [M − H]− precursors 
recorded at nine different collision energies (HCD 15, 30, 
45, 60, 75, 90, 120, 150, 180).

Both datasets were acquired using the same LC set-
up as the other Eawag dataset. The MS/MS from these 
two datasets were merged as above to yield 294 merged 
spectra from 204 compounds (195 [M  +  H]+  and 94 
[M  −  H]− ) for the “EQEx” dataset and 314 merged 
spectra from 232 compounds (219 [M  +  H]+  and 91 
[M − H]−) for the “EQExPlus” dataset. There was a very 
small overlap between the different Eawag datasets (5, 2 
and 2 substance overlap between EA and EQEx, EA and 
EQExPlus and EQEx and EQExPlus, respectively).

The overlap between the UFZ and Eawag datasets was 
larger, with 97, 16 and 21 substances in common between 
the UFZ and EA, EQEx and EQExPlus datasets, respec-
tively. The overlap was determined using the first block of 
the InChIKey. As the spectral and retention time data for 
the substances in the individual datasets were processed 

independently with different collision energies and ioni-
zation modes, none of the overlapping substances were 
removed from the datasets. The retention times extracted 
from the MassBank records per substance were used to 
establish the RT–log P model (see Eq. 9) for each dataset 
independently based on a tenfold cross-validation.

The influence of the different parameters was assessed 
for each dataset by setting ωFrag,ωRT and ωRefs to either 
0 or 1 again; these results are presented in Table  4. As 
above, the performance improved from between 2 and 
9  % of the candidates ranked first using fragmentation 
alone, through to 64–82 % ranked first when all ωx were 
weighted equally, although the results varied quite dra-
matically between the datasets. The 473 spectrum dataset 
used above thus fell within this range.

Similarly, the optimization of ωFrag,ωRT and ωRefs was 
performed again for each dataset independently using the 
1000 randomly-drawn weights. The results are presented 
in Table  5 and show that the percentage of top  1 ranks 
varies widely between the datasets, from 63 to 82 %; the 
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original dataset falls in the middle with 71 %. The results 
in Table 5 also show that the suggested relative weights to 
one another remain consistent enough to enable default 
parameter suggestion, with ωFrag ≈ 0.5,ωRT ≈ 0.2 and 
ωRefs ≈ 0.3. All results for the number of top 1 ranks for 
the three additional datasets are shown in Additional 
files 10, 11 and 12.

Specific examples
As the additional features are more difficult to evaluate 
using large datasets, individual examples are presented 
below to demonstrate the flexibility of MetFrag2.2 com-
mand line (CL), with the corresponding commands give 
in a different font. Lists of the available parameters are 
given in Additional files 1, 2 and 3. These examples serve 
to show how MetFrag2.2 can also be adjusted by the user 
to explore individual cases in greater detail than during 
e.g. a high-throughput screening.

Gathering evidence for unknown 199.0428
During the NORMAN Collaborative Non-target Screen-
ing Trial [1], a tentatively identified non-target substance 
of m/z [M − H]− 199.0431 was reported by one partici-
pant as mesitylenesulfonic acid (ChemSpider ID (CSID) 
69438, formula C9H12O3S, neutral monoisotopic mass 
200.0507) or isomer. The same unknown was detected in 
the same sample measured at a second institute, where 
the standard of mesitylenesulfonic acid was available. 
Although the retention time was plausible (5.96  min), 
comparing the MS/MS spectra clearly disproved the 
proposed identification, with many fragments from the 

unknown absent in the standard spectrum. Thus, Met-
Frag2.2 was used to investigate other possibilities.

Firstly, the following parameter combination was 
used, taking the unknown MS/MS peak list from the 
second participant: ChemSpider exact mass search, 
fragment error 0.001 Da + 5 ppm, tree depth 2, uncon-
nected compound and InChIKey filter, filter included 
elements = C, S (as isotope signals were detected in the 
full scan), experimental RT =  6.20  min, an RT training 
set of 355 InChIs and RTs measured on the same sys-
tem and score weights of 1 (fragmenter and RT score) 

Table 4 Results (Top 1, 5 and 10 ranks) using PubChem formula queries on three additional datasets

The weights indicate where ranking parameters were included (1) or excluded (0) from the candidate ranking. Retention time score calculation was performed using 
the XLOGP3 values of PubChem. ωRefs · SCRefs = ωRefs · SCPNP+PPC

. See text for explanations

Weight term Score Term Weights

ωFrag SCFrag 1 1 1 0 1 0 0

ωRTs SCRT 1 1 0 1 0 1 0

ωRefs SCRefs 1 0 1 1 0 0 1

 Dataset Metric Ranks

UF (n = 225) Top 1 ranks 164 (73 %) 9 163 159 3 2 157

UF (n = 225) Top 5 ranks 186 (83 %) 48 189 189 36 13 199

UF (n = 225) Top 10 ranks 191 (53 %) 77 196 192 61 25 204

EQex (n = 289) Top 1 ranks 235 (81 %) 33 232 230 26 11 223

EQex (n = 289) Top 5 ranks 263 (91 %) 87 260 258 88 38 276

EQex (n = 289) Top 10 ranks 270 (93 %) 132 269 263 139 55 280

EQexPlus (n = 310) Top 1 ranks 190 (61 %) 32 183 182 21 8 181

EQexPlus (n = 310) Top 5 ranks 238 (77 %) 84 246 238 83 28 243

EQexPlus (n = 310) Top 10 ranks 254 (82 %) 115 258 247 121 37 256

Table 5 Best Top  1 rank results on  three additional data-
sets using PubChem formula queries including  in silico 
fragmentation, RT and  reference information as  shown, 
with the given ωi

Retention time score calculation was performed using the XLOGP3 values of 
PubChem. ωRefs · SCRefs = ωRefs · SCPNP+PPC

. See text for explanations

 Dataset MetFrag2.2

UFZ (n = 225) EQex (n = 289) EQexPlus (n = 310)

ωFrag (SCFrag) 0.40 0.38 0.61

ωRT (SCRT) 0.23 0.27 0.11

ωRefs (SCRefs) 0.37 0.35 0.28

Median rank 1 1 1

Mean rank 58.0 14.6 46.2

Mean RRP 0.972 0.981 0.976

Top 1 ranks 165 (73 %) 236 (82 %) 196 (63 %)

Top 5 ranks 188 261 233

Top 10 ranks 191 268 247
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and 0.25 each for four ChemSpider reference sources. 
This yielded 134 candidates with four different formulas 
(C9H12O3S, C8H16SSi2, C7H13BO2SSi, C7H10N3O2S), all 
fulfiling the element filter (C, S). SCFinal

 ranged from 0.70 
to 2.12, where several candidates had high numbers of 
references and similar number of peaks explained. Three 
candidates are shown in Table 6, along with a summary 
of the information retrieved. The clear top match, ethyl 
p-toluenesulfonate (CSID 6386, shown to the left) was 
unlikely to be correct, as the MS/MS contained no evi-
dence of an ethyl loss and also had a clear fragment peak 
at m/z 79.9556, corresponding with an SO3H group (thus 
eliminating alkyl sulfonates from consideration).

MetFrag2.2 was run again with the SMARTS substruc-
ture inclusion filter, which resulted in 31 candidates but 
with the same top matching structure. However, adding 
the SMARTS S(=O)(=O)OC to the exclusion list elimi-
nates the alkyl sulfonate species and resulted in 18 can-
didates, where the top candidate was now the originally 
proposed (and rejected) identification mesitylenesulfonic 
acid, shown in the middle of Table 6. The next matches 
were substitution isomers. Referring to the MS/MS 
again, another large peak was present at m/z 183.0115, 
which is often observed in surfactant spectra corre-
sponding with a p-ethyl benzenesulfonic acid moiety. 
Running MetFrag2.2 again with a substructure inclusion 
of CCc1ccc(cc1)S(=O)(=O)O yielded only two candi-
dates, 4-isopropylbenzenesulfonic acid (SCFinal

= 2.5, 
CSID 6388), shown to the right in Table 6 and 4-propylb-
enzenesulfonic acid (SCFinal

= 2.0, CSID 5506213).
To check the relevance of the proposed candidates in 

an environmental sample, a “suspect screening” was per-
formed. The STOFF-IDENT database [24] contains over 

8000 substances including those in high volume pro-
duction and use in Europe registered under the Euro-
pean REACH (Registration, Evaluation, Authorisation 
and Restriction of CHemicals) Legislation. The STOFF-
IDENT contents were downloaded (February 2015) and 
the SMILES were converted to InChIKeys using OpenBa-
bel and given as input to MetFrag as a suspect list. Of the 
134 original candidates, only one, 4-isopropylbenzene-
sulfonic acid, was tagged as being present in the STOFF-
IDENT database. This gives additional evidence that 
indeed 4-isopropylbenzenesulfonic acid is the substance 
behind the unknown spectrum, however it has not been 
possible to confirm this identification at this stage due to 
the lack of a sufficiently pure reference standard.

Terbutylazine and isobars
The example of terbutylazine (CSID 20848, see Table 7) 
shows how MetFrag2.2 can help in gathering the evi-
dence supporting the identification of isobaric sub-
stances. Terbutylazine and secbutylazine (CSID 22172) 
often co-elute in generic non-target chromatographic 
methods and have very similar fragmentation pat-
terns, but can usually be distinguished from the other 
common triazine isobars propazine (CSID 4768) and 
triethazine (CSID 15157) via MS/MS information. 
However, during the NORMAN non-target screen-
ing collaborative trial  [1], all four substances were 
reported as potential matches for the same mass, show-
ing clearly the danger of suspect screening based only 
on exact mass. For this example, the merged [M + H]+
MS/MS spectrum of terbutylazine from the EA dataset 
above (EA02840X) was used as a peak list to run Met-
Frag2.2, as the correct answer is clear with a reference 

Table 6 Top MetFrag2.2 candidates for unknown at m/z 199.0428 with different settings

Structures overlaid with the included substructure were generated with AMBIT [57]. See text for details

CSID 6386 69438 6388

Original results (134 candidates)

 Rank (n = 134) 1 6 90

 #Peaks explained 5 5 5

 CDK log P/SCRT 1.44/0.167 1.50/0.161 2.02/0.107

 
∑

SCRefs 94+ 15+ 7+ 70 = 186 179+ 1+ 0+ 40 = 220 32+ 0+ 0+ 21 = 53

Substructure interpretation

 Included S(=O)(=O)O S(=O)(=O)O CCc1ccc(cc1)S(=O)(=O)O

 Excluded – S(=O)(=O)OC –

 Comment No ethyl loss in MS/MS Disproven via standard Present in suspect list
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spectrum. Table  7 shows the data for the four sub-
stances mentioned above plus the top match based 
on fragmentation data alone, N-butyl-6-chloro-N ′

-ethyl-1,3,5-triazine-2,4-diamine (CSID 4954587, given 
the synonym “nButylazine” hereafter to save space). 
ChemSpider was used to perform an exact mass search, 
resulting in a total of 112 structures (data from only 
five are shown). Five scores were used, all with weight 
1: FragmenterScore, ChemSpiderReferenceCount, 
RetentionTimeScore, SuspectListsScore and Smart-
sSubstructureInclusionScore. To show the inclusion 
of external log  P calculations, ChemAxon JChem for 
Excel [56] was used to predict log  P and log  D at pH 
6.8 (the pH of the chromatographic program used) for 
a training dataset of the 810 substances in the Eawag 
database on MassBank. The log P and log D predictions 
were then performed externally for all MetFrag candi-
dates on the dominant tautomeric species and added 
to the MetFrag CSV file for final scoring. The scores, 
shown in Table  7, showed that different candidates 
were the best match for different categories, indicated 
in italics. The candidates are ordered by the number of 
references. As above, STOFF-IDENT was used as a sus-
pect list and all four of the substances reported by trial 

participants were indeed in STOFF-IDENT. However, 
Table 7 clearly shows that two can be eliminated using 
SCFrag and substructure matches (as the MS/MS clearly 
displays the loss of a C2H5 and C4H9 group, indicating 
these are likey attached to a heteroatom, in this case 
N). Although secbutylazine is scored lower than terbu-
tylazine, the reference count is the main influence here 
and both substances could be present in an environ-
mental sample—depending on the context.

The large dataset evaluations show that MetFrag2.2 is 
suitable for high-throughput workflows, with a relatively 
quick runtime. On the other hand, the detailed examples 
shows how the various features of MetFrag2.2 can be 
used to investigate the top candidates in more detail and 
enhance the interpretation of the results, including the 
inclusion of external RT/log P and/or log D information 
that cannot be calculated within MetFrag2.2 (e.g. due to 
license restrictions, as in the case of ChemAxon).

Conclusions
In many cases additional information is available and 
needed from the experimental context to comple-
ment small molecule identification, especially where 
the mass spectrum alone is not sufficient for candidate 

Table 7 Summary of MetFrag2.2 results for terbutylazine and four isobars

The predicted log P and log D from the retention time was 3.17 and 2.18 using a training set of 810 substances calculated externally with ChemAxon and added to 
MetFrag2.2 via the UserLogP option. Included substructure SMARTS were N[CH2][CH3], NCCCC, NC(C)CC, NC(C)(C)C
aName synonym assigned for space reasons. The values in italics indicates the best result per category. Structures overlaid with the included substructure were 
generated with AMBIT [57]. See text for details and weights

Name Terbutylazine Propazine Secbutylazine Triethazine nButylazinea

CSID 20848 4768 22172 15157 4954587

SCFrag 0.958 0.765 0.997 0.653 1.0

#Peaks explained 11/15 10/15 12/15 8/15 12/15

SCCSRefs 286 204 56 45 4

ChemAxon log P 1.65 2.75 2.28 1.11 2.31

SCRT log P 0.159 0.256 0.223 0.103 0.225

ChemAxon log D 1.63 2.75 2.19 0.97 2.23

SCRT log D 0.249 0.247 0.266 0.192 0.266

Suspect hit 1 1 1 1 0

Substructure hits 2 0 2 1 2

Matches NC(C)(C)C – NC(C)CC N[CH2][CH3] NCCCC

N[CH2][CH3] N[CH2][CH3] N[CH2][CH3]

SCFinal (log P) 4.22 3.43 3.69 2.53 2.52

SCFinal (log D) 4.56 3.41 3.85 2.87 2.68

Comment Correct substance No longer in use Can co-elute with 20848
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selection from a large number of candidates. The results 
for MetFrag2.2 clearly show the benefit of considering 
this additional information, with a tenfold improvement 
compared with MetFrag2.2 fragmentation information 
alone. The flexibility of the new features in addition to 
the ability to add user-defined scores means that Met-
Frag2.2 is ideally suited to high-throughput workflows, 
but can also be used to perform individual elucidation 
efforts in greater detail. The ability to incorporate CFM-
ID as an additional scoring function shows the potential 
to improve these results further using complementary 
in silico fragmentation approaches. The parameter files 
including the spectral data, the candidate, result and 
ranking files of the used EA, UF, EQEx, EQExPlus and 
HILL datasets are available at http://msbi.ipb-halle.de/
download/CHIN-D-15-00088/ and can be downloaded 
as ZIP archives. Feedback on the command line version 
available at http://c-ruttkies.github.io/MetFrag/ is wel-
come. The new functions greatly reduce the burden on 
users to collect and merge ever increasing amounts of 
information available for substances present in different 
compound databases, thus enabling them to consider 
much more evidence during their screening efforts.

Availability and requirements
  • Project name: MetFrag2.2;
  • Project home page: http://c-ruttkies.github.io/Met-

Frag/;
  • Operating system(s): Platform independent;
  • Programming language: Java;
  • Other requirements: Java ≥1.6, Apache Maven 
≥3.0.4 (for developers);
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Additional files

Additional file 1. MetFrag2.2 Command Line (CL) general parameters. 

Additional file 2. MetFrag2.2 CL local database parameters (MySQL, 
PostgresSQL)  

Additional file 3. MetFrag2.2 CL - Different Scoring terms (MetFragScore-
Types) available for online databases used by MetFrag All or a subset of 
these values can also be used as a total with CombinedReferenceScore 
(Table in Additional file 1).

Additional file 4. Top 1 ranks of MetFrag2.2. combined with CFM--ID This 
figure shows the distribution of the number of top 1 ranks with different 
weights (100 drawn randomly between 0 and 1) for MetFrag2.2 and CFM-
-ID. Lightestyellow dot marks the maximum, 62 top 1 ranks at MetFrag = 
0.67 and CFM-ID = 0.33. The red dot at the right marks the minimum, 36 top 
1 ranks at MetFrag = 0.997 and CFM-ID = 0.003. The most left dot marks 49 
top 1 ranks at MetFrag = 0.02 and CFM-ID = 0.98.

Additional file 5. Number of patents and PubMed references shown 
as CombinedReferences retrieved from PubChem for the Orbitrap XL 
dataset This figure shows the distribution of the number of references and 

patents for all candidates (marked by black dots) retrieved from PubChem 
for the 359 (unqiue) correct candidates (marked with green line) and the 
additional (wrong) candidates retrieved for each query. The queries are 
sorted by the number of CombinedReferences for the correct candidate, 
respectively. The intensity of the black dots indicate the number of candi-
dates which overlap at that position. 

Additional file 6. Top 5 ranks with PubChem (XlogP3) on the Orbitrap XL 
Dataset The results were obtained with MetFrag2.2 formula query and the 
inclusion of patents, references and retention time. Each small dot shows 
the number of first ranks with a given combination of weights. The larger 
dots show the best result (402 in the top 5), 90th percentile (386), median 
(375), 10th percentile (325) and worst result (145). 

Additional file 7. Top 5 ranks with ChemSpider on the Orbitrap XL 
Dataset The results were obtained with MetFrag2.2 formula query and 
the inclusion of references and retention time. Each small dot shows the 
number of first ranks with a given combination of weights. The larger dots 
show the best result (463 in the top 5), 90th percentile (452), median (440), 
10th percentile (385) and worst result (195). 

Additional file 8. Top 10 ranks with PubChem (XlogP3) on the Orbitrap 
XL Dataset The results were obtained with MetFrag2.2 formula query and 
the inclusion of patents, references and retention time. Each small dot 
shows the number of first ranks with a given combination of weights. 
Each small dot shows the number of first ranks with a given combination 
of weights. The larger dots show the best result (422 in the top 10), 90th 
percentile (406), median (391), 10th percentile (351) and worst result (187). 

Additional file 9. Top 10 ranks with ChemSpider on the Orbitrap XL 
Dataset The results were obtained with MetFrag2.2 formula query and 
the inclusion of references and retention time. Each small dot shows the 
number of first ranks with a given combination of weights. The larger dots 
show the best result (471 in the top 10), 90th percentile (460), median 
(450), 10th percentile (404) and worst result (223). 

Additional file 10. Top 1 ranks with PubChem (XlogP3) on the UFZ 
dataset The results were obtained with MetFrag2.2 formula query and the 
inclusion of patents, references and retention time. Each small dot shows 
the number of first ranks with a given combination of weights. The larger 
dots show the best result (165 in the top 1), 90th percentile (159), median 
(156), 10th percentile (112) and worst result (11). 

Additional file 11. Top 1 ranks with PubChem (XlogP3) on the EQex 
dataset The results were obtained with MetFrag2.2 formula query and the 
inclusion of patents, references and retention time. Each small dot shows 
the number of first ranks with a given combination of weights. The larger 
dots show the best result (236 in the top 1), 90th percentile (230), median 
(225), 10th percentile (162) and worst result (29). 

Additional file 12. Top 1 ranks with PubChem (XlogP3) on the EQexPlus 
dataset The results were obtained with MetFrag2.2 formula query and the 
inclusion of patents, references and retention time. Each small dot shows 
the number of first ranks with a given combination of weights. The larger 
dots show the best result (196 in the top 1), 90th percentile (184), median 
(181), 10th percentile (142) and worst result (28). 
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Abstract

Background: Molecule identification is a crucial step in metabolomics and environmental sciences. Besides in silico
fragmentation, as performed by MetFrag, also machine learning and statistical methods evolved, showing an
improvement in molecule annotation based on MS/MS data. In this work we present a new statistical scoring method
where annotations ofm/z fragment peaks to fragment-structures are learned in a training step. Based on a Bayesian
model, two additional scoring terms are integrated into the new MetFrag2.4.5 and evaluated on the test data set of
the CASMI 2016 contest.

Results: The results on the 87 MS/MS spectra from positive and negative mode show a substantial improvement of
the results compared to submissions made by the former MetFrag approach. Top1 rankings increased from 5 to 21
and Top10 rankings from 39 to 55 both showing higher values than for CSI:IOKR, the winner of the CASMI 2016
contest. For the negative mode spectra, MetFrag’s statistical scoring outperforms all other participants which
submitted results for this type of spectra.

Conclusions: This study shows how statistical learning can improve molecular structure identification based on
MS/MS data compared on the same method using combinatorial in silico fragmentation only. MetFrag2.4.5 shows
especially in negative mode a better performance compared to the other participating approaches.

Keywords: Mass spectrometry, Statistical modeling, Identification

Background
The identification of small molecules such as metabolites
is a crucial step in metabolomics and environmental sci-
ences. The analytical tool of choice to achieve this goal
is mass spectrometry (MS) where ionized molecules can
be differentiated by their mass-to-charge (m/z) ratio. As
a single m/z value is not sufficient for the unequivocal
determination of the molecular structure, tandem mass
spectrometry (MS/MS) is applied, which results in the
formation of fragment ions of the entire molecule. These
fragments result in fragment peaks that are characterized
by their m/z and intensity value. The intensity correlates
with the amount of ions detected with that particularm/z
value. These m/z fragment peaks can be used to infer
additional hints about the underlying molecular structure.

*Correspondence: christoph.ruttkies@ipb-halle.de
1Department Biochemistry of Plant Interactions, Leibniz Institute of Plant
Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
Full list of author information is available at the end of the article

The interpretation of the generated data is complex
and usually requires expert knowledge. Over the past
years, several software tools have been developed to over-
come the time-consuming manual analysis of the growing
amount of MS/MS spectra in an automated way. The first
approaches tried to reconstruct observed fragment spec-
tra by performing in silico fragmentation in either a rule
based (e.g. MassFrontier [1]) or combinatorial manner
such as MetFrag [2, 3], MIDAS [4], MS-Finder [5] and
MAGMa [6].
MetFrag was one of the first combinatorial approaches

developed and performs in silico fragmentation of molec-
ular structures. Given a single MS/MS spectrum of an
unknownmolecule,MetFrag first selects molecular candi-
dates from databases given the neutral mass of the parent
ion. In the next step, each of the retrieved candidates
is treated individually and fragmented in silico using a
bond-disconnection approach. The generated fragment-
structures are assigned to the m/z fragment peaks of the
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MS/MS spectrum, based on the comparison of the theo-
retical mass of the generated structure and the m/z value
of the acquired fragment peak. Given a set of assignments
ofm/z fragment peaks to fragment-structures for one can-
didate, MetFrag calculates a score that indicates how well
the candidate matches the given MS/MS spectrum. These
scores are used to rank all retrieved candidates. Ideally, the
correct one is ranked in first place.
Statistical approaches have evolved, which are learn-

ing fragmentation processes on the basis of annotated
experimental MS/MS data. CFM-ID [7] is using Markov-
chains to model transitions of fragment-structures for
the prediction of MS/MS spectra. Generated spectra can
be aligned with the spectrum of interest and report the
candidates with the best matching spectral prediction.
FingerID [8] usesMS/MS spectra to predictmolecular fin-
gerprints. These Fingerprints are bit-wise representations
of molecular structures where each position in the fin-
gerprint encodes a structural property of the underlying
molecule. FingerID uses support vector machines (SVM)
and is enhanced by CSI:FingerID (CSI:FID) [9], integrat-
ing fragmentation trees which are calculated by SIRIUS
[10]. CSI:IOKR [11] replaces the SVM prediction by an
input-output kernel regression approach. Recent analysis
in one of the latest CASMI (Critical Assessment of Small
Molecule Identification) contests (2016) [12] reveal that
techniques supported by statistical learning (i.e. CSI:FID
and CSI:IOKR) are the most promising and powerful
methods used to perform structure elucidation if only the
MS/MS data is considered.
In this work we introduce a new statistical approach

to evaluate candidates for MS/MS spectra. Using training
data, probabilities of the predicted fragment-structures
given the observed m/z peaks are estimated with a
Bayesian approach. These probabilities are integrated as
new scoring terms for MetFrag to rank candidates. The
new scoring schema is tested on the challenge data sets
of the CASMI contest 2016. The method shown here
complements the different machine learning and statis-
tical approches that perform MS/MS spectra prediction
(CFM-ID), prediction of molecular fingerprints (CSI:FID,
CSI:IOKR) and now combining in silico fragmentation
and statistical scoring for the evaluation of retrieved
molecular candidates. The new scoring functions are
available with the new MetFrag version 2.4.5.

Methods
This section introduces the notation and the Bayesian
model approach used to evaluate how likely a fragment-
structure is in the presence of an m/z fragment peak.
The resulting probabilities are defined across the domain
of all possible fragment-structures and all m/z fragment
peaks, but can be reduced to become tractable. The result-
ing probability distribution will be used in the candidate

score ScRawPeak indicating whether a candidate can explain
the m/z fragment peaks with fragment-structures seen in
the training spectra. In analogy, neutral losses will also be
considered. The parameter estimation to model the prob-
ability distribution is at the heart of our approach. We
describe how they are estimated from training data, taking
care to clearly separate training data from evaluation data.
Finally we describe the evaluation using the CASMI 2016
challenge data and comparison to the results obtained
by other approaches and state-of-the art small molecule
identification programs.
First, we introduce notations required for our approach.

A summary of the notation used in the following and
their description can be found in Additional files 4
and 5: Tables S1 and S2. Consider a set of N centroided
MS/MS spectra m = {mn|n = 1, . . .N} where mn =
(mn1, . . .mnKn) consists of Kn m/z fragment peaks mnk .
Furthermore, for each spectrummn a set of candidates cn
of length Cn is given, typically retrieved from a database.
For a given candidate cnc ∈ cn, MetFrag performs an
in silico fragmentation and assigns each observed m/z
fragment peak mnk to one of the generated fragment-
structures, denoted fnck in the following. This can be
interpreted as explaining them/z fragment peakmnk with
the fragment-structure fnkc. On the basis of the in sil-
ico fragmentation, assignments of m/z fragment peaks
to fragment-structures (mn, f nc), c = 1, . . .Cn, are deter-
mined. As there is not necessarily a matching fragment-
structure for every m/z fragment peak mnk , we introduce
⊥ in case anm/z fragment peakmnk cannot be annotated,
and denote fnck =⊥ in this case.
As stated in the introduction, we want to evaluate

candidates for an MS/MS spectrum by a statistical scor-
ing approach to be integrated into MetFrag. There-
fore, we apply a scoring term based on the probability
P(f nc|mn). The distribution P(f |m) models the occurence
of fragment-structures in f in the correct candidate for
a given list m of m/z fragment peaks in an observed
spectrum. In the following we assume the independence
of the assignments of m/z fragment peaks to fragment-
structures yielding

P(f |m) =
K∏

k=1
P(fk|mk),

with m = (m1, , . . . ,mK ) and f = (f1, . . . fK ). From a
chemical point of view, we know that certain m/z frag-
ment peaks occur concurrently with other m/z fragment
peaks (or at least with a higher certainty) due to multi-
stage fragmentation pathways that lead to a further frag-
mentation of a generated fragment-structure. However,
for the sake of model simplification we do not consider
this information when assuming independence of assign-
ments ofm/z fragment peaks to fragment-structures.
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A fragment-structure can be regarded as a connected
charged molecular structure consisting of atoms con-
nected via bonds. A graph can be used as data structure
to represent a fragment-structure, as atoms and bonds
can be represented by graph nodes and edges, respec-
tively. However, to reduce the computational costs for
comparing graphs by determining graph isomorphisms,
especially whenworking with thousands or even hundreds
of thousands of fragment-structures, we use molecular
fingerprints as a bit-string representation of a molecu-
lar structure. Each bit of the fingerprint describes the
presence or absence of a molecular feature within the
structure. As different fragment-structures may share the
same fingerprint, this approach reduces the the domain
size and also generalizes very similar fragment-structures
that would explain the same m/z fragment peak. There
are different molecular fingerprint functions available,
e.g., the MACCSFingerPrint [13] and the LingoFinger-
print [14]. A fragment-structure fingerprint is defined as
f̃k = MolFing(fk), calculated by the fingerprint function
MolFing.
We regard two fragment-structures f and f ′ to be equal,

if f̃ and f̃ ′ are equal, although f and f ′ might be struc-
turally different. This reduces the comparison to constant
time as the fingerprint length is independent of the size
of the fragment-structure. The distribution can now be
re-defined as

P(̃f |m) =
K∏

k=1
P(̃fk|mk).

The comparison of twom/z fragment peaksm andm′ can
not be performed as a simple test for equality by m = m′.
This is impractical for MS measurements as they show a
certain degree of deviation depending on the mass accu-
racy of the instrument. For this reason, the m/z range
covered by training and test spectra is discretized into
non-equidistant bins [ bi, bi+1]. The boundaries are calcu-
lated as bi+1 = bi + 2 · (mzppm(bi) + mzabs) with b0
set to the minimum mass value of this range. The values
mzabs andmzppm(bi) represent the absolute (inm/z) and
relative mass (in ppm) deviation given by the MS setup.
Twom/z fragment peaksm andm′ are considered to be

equal if they fall into the same bin. In the following each
m/z fragment peakm is discretized to the central value of
its bin.

Domains and Parameters
As a next step, the two domains M of m/z values m and F
of all fragment-structure fingerprints f̃ need to be defined.
For M one could consider all bins resulting from dis-
cretization. However, this is impractical as the major part

of this domain is not observed for a given data set. Like-
wise, the domain F can be defined to contain all possible
fragment-structure fingerprints. Using the MACCSFin-
gerprint with 166 bits would result in 2166 ≈ 9.35 · 1049
different fingerprints. In practice this space needs to be
reduced to be tractable, and again only a fraction will be
observed for a given problem. For a spectral training data
set ofN MS/MS spectra andCn candidates each, we define
a reduced peak domain M̃tr and a reduced fingerprint
domain F̃tr as

M̃tr = {mnk|n ∈ 1, . . .N , k = 1, . . .Kn} ⊆ M

F̃tr =
{
f̃nck|n∈1, . . .N , c=1, . . .Cn, k=1, . . .Kn

}
⊆ F ,

which are them/z fragment peaks and fragment-structure
fingerprints observed in this data set.
Furthermore, we define Dtrain as a list of all assign-

ments of m/z fragment peaks to fragment-structures in
the training data, i.e.

Dtrain=(
(mnk , fnck)|n=1, . . .N , c=1, . . .Cn, k=1, . . .Kn

)
.

Besides the MS/MS spectra given in this training data
set we also need to address observations of an additional
centroided MS/MS query spectrum mq that is not part of
the training data set. The processing of mq is illustrated
in Fig. 1. The domains are extended by the observa-
tions retrieved from this single query spectrum with Cq
candidates and Kq m/z fragment peaks, i.e.

M̃ = M̃tr ∪ {mqk|k = 1, . . .Kq}
F̃ = F̃tr ∪ {̃fqck|c = 1, . . .Cq, k = 1, . . .Kq}.

To define the distribution P(̃f |m) with m ∈ M̃ and
f̃ ∈ M̃, we introduce the notation θm̃f := P(̃f |m), which
is the probability of fragment-structure fingerprint f̃ given
an observed mass m. The complete set of parameters is
given as

θ = (θm̃f ), for m ∈ M̃, f̃ ∈ F̃ .

Parameter estimation
The parameters are initially not known and need to be
estimated from the training data. In the process of param-
eter estimation cn is set to only contain the known cor-
rect candidate (Cn = 1) for the generation of Dtrain
as this results in mainly correct predicted fragment-
structure assignments as ground truth. The generation
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Fig. 1MetFrag processing of a single query spectrum (mq). The input for a MetFrag processing run is a query MS/MS spectrum and the candidate
list. Fragments are generated in silico for each candidate and mapped tom/z fragment peaks in the given spectrum. The output is a list of
assignments ofm/z fragment peaks to fragment-structures for each candidate

of Dtrain is illustrated in Fig. 2 where only the correct
candidate for each spectrum is processed. One paradigm
for parameter estimation is the maximum likelihood
principle

θ̂
ML = argmax

θ

P(Dtrain|θ),

which results in

θ̂ML
m̃f =

Nm̃f∑
f̃ ′∈F̃ Nm̃f ′

,

with Nm̃f =
∑

(mt ,̃ft)∈Dtrain

δ(̃ft , f̃ )δ(mt ,m)

Nm̃f is the absolute frequency of the assignments of m/z
fragment peaks to fragment-structures (m, f̃ ) in the train-
ing data setDtrain.
If such an assignment (m, f̃ ) resulting from the query

spectrum is not contained in the training data, a probabil-
ity θ̂ML

m̃f
= 0 is estimated. As a consequence the probability

P(̃f |m) for the query will be zero.

Due to the limitation of the available training data,
this situation will arise quite often. To avoid this prob-
lem, we use the Bayes paradigm including a priori dis-
tribution for the parameters to be estimated. In addi-
tion, as we only consider the correct candidate for each
spectrum in Dtrain it is not possible to reliably esti-
mate parameters in case f̃ =⊥, which is the proba-
bility for an m/z fragment peak without an assigned
fragment-structure. Within the Bayesian approach we
model this probability with the prior distribution and set
Nm⊥ = 0.
In the following we will use the mean posterior (MP)

principle

θ̂MP
m̃f = EP(θ |Dtrain,π)[ θ ]

where

P(θ |Dtrain,π) = P(θ |π)P(Dtrain|θ)

P(Dtrain|π)

is the a posteriori distribution of parameters θ . As a prior
distribution P(θ |π) on the parameters we use a prod-
uct Dirichlet distribution with hyper parameters πm̃f ,
m ∈ M̃, f̃ ∈ F̃ defined as

πm̃f =
{

α, f̃ �=⊥
β , f̃ =⊥

}
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Fig. 2 The training phase. The training consists of two major phases. For each phase a subset of the known reference MS/MS spectra is used. In the
first phase MetFrag generates a list of assignments ofm/z fragment peaks to fragment-structures for the given MS/MS spectra and their correct
candidates. These assignments are generated by the in silico fragmentation of the correct candidate and the mapping of the generated
fragment-structures to them/z fragment peaks in the training spectrum. This assignments list (Dtrain) is used in the second training phase along
with the second subset of the reference spectra. Here, for each MS/MS spectrum the correct candidate is ranked with a candidate list using the
consensus candidate score integrating besides the fragmenter (ScMetFrag) the two new statistical scoring terms (ScPeak , S

c
Loss). The number of correct

Top1 rankings is used to optimize pseudo count and scoring weight parameters. The first training phase is used in analogy for the generation of the
list containing assignments ofm/z fragment losses to fragment-structures (DL

train)

where α and β are also called pseudo counts.
The parameter estimation is given by

θ̂MP
m̃f =

Nm̃f + πm̃f
∑

f̃ ′∈F̃
(
Nm̃f ′ + πm̃f ′

) .

Fragment losses
Fragment losses can provide additional evidence for a
molecular structure as the difference between two m/z
fragment peaks provides hints about a substructure that
was lost but not observed directly by an m/z fragment
peak (neutral loss). However, we want to include this
information in the evaluation of candidates for a given
MS/MS spectrum. We define lnkh to be the m/z fragment

loss between two different m/z fragment peaks mnk and
mnh from the spectrummn, where

lnkh = mnk − mnh, mnk > mnh.

For each pair of assignments of m/z fragment peaks to
fragment-structures (mnk , fnck) and (mnh, fnch) with fnch
being a genuine substructure of fnck (fnck �= fnch), we intro-
duce fnckh as a loss fragment-structure. This fragment-
structure is a substructure of fnck , that is generated if all
bonds and atoms present in fnch are removed (fnckh =
fnck \ fnch). If fnckh is connected, we define (lnkh, fnckh) to
be an assignment of an m/z fragment loss to a fragment-
structure.
In analogy to the pairs of m/z fragment peaks and

fragment-structures (mnk , fnck), we define the domains for
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the m/z fragment losses and loss fragment-structures for
the N MS/MS training spectra as

L̃tr = {lnkh|n ∈ 1, . . .N , k = 1, . . .Kn, h = 1, . . .Kn}
F̃L
tr =

{
f̃nckh|n ∈ 1, . . .N , c = 1, . . .Cn,

k = 1, . . .Kn, h = 1, . . .Kn
}

for a given training data set

DL
train = (

(lnkh, fnckh)|n = 1, . . .N , c = 1, . . .Cn,
k = 1, . . .Kn, h = 1, . . .Kn)

of assignments of m/z fragment losses to fragment-
structures.
In addition, both domains need to be extended for the

additional query MS/MS spectrummq

L̃ = L̃tr ∪ {lqkh|k = 1, . . .Kq, h = 1, . . .Kq},
F̃L = F̃L

tr ∪
{
f̃qckh|c= 1, . . .Cq, k= 1, . . .Kq, h = 1, . . .Kq

}
.

We consider the distribution P(̃f |l) for assignments of
fragment-structures tom/z fragment losses with l ∈ L̃ and
f̃ ∈ F̃L, and denote φL

l̃f
:= P(̃f |l). In analogy to the esti-

mation of the parameters θm̃f , we can now formulate the
estimation of φL

l̃f
including a Dirichlet a priori distribution

with the additional hyper parameters ψl̃f :

ψl f̃ =
{

αL, f̃ �=⊥
βL, f̃ =⊥

}

This yields the mean posterior estimates

φ̂MP
l f̃ =

NL
l̃f

+ ψl̃f
∑

f ′∈F̃L
(
NL
l̃f ′ + ψl̃f ′

) ,

with NL
l̃f =

∑

(lt ,̃ft)∈DL
train

δ(̃ft , f̃ )δ(lt , l)

analogous to the parameter estimation for the assign-
ments of m/z fragment peaks to fragment-structures,
where NL

l̃f
is the absolute frequency of the m/z fragment

loss and fragment-structure pair (l, f̃ ) observed in the
training data setDL

train.

Evaluation of the assignments of fragment-structures to
m/z fragment peaks and losses in MetFrag candidate
scoring
To evaluate a given candidate c retrieved from a com-
pound database for an MS/MS query spectrum mq based
on the statistical models, we define a score for both the
models of the assignments of m/z fragment peaks/losses
to fragment-structures. In addition, the MetFrag frag-
menter score ScMetFrag as defined in [3] is also integrated
in this candidate evaluation. We define the score ScFin as

the final or consensus score for a candidate c to be the
weighted sum of these three scoring terms

ScFin = ω1 · ScMetFrag + ω2 · ScPeak + ω3 · ScLoss
ωi ≥ 0,

∑

i=1,2,3
ωi = 1.

To define ScPeak and ScLoss, we first introduce the raw score
of a candidate as

ScRawPeak = 1

− logP
(
f̃ nc|mn, θ̂

MP)

using the log likelihood based on the estimated param-
eters θMP for the assignment of an m/z fragment peak
to a fragment-structure (mn, f nc) for candidate c. With
f̃ nc = (̃fnc1, . . . , f̃ncKn) and mn = (mn1, . . . ,mnKn) the log
likelihood decomposes as

logP
(
f̃ nc|mn, θ̂

MP) =
Kn∑

k=1
logP

(
f̃nck |mnk , θ̂

MP) .

Furthermore, the raw score is normalized to the interval
[ 0, 1] by

ScPeak = ScRawPeak
maxc′∈Cq Sc

′
RawPeak

.

Using identical ranges for the different scoring terms as
for the MetFrag fragmenter score simplifies their integra-
tion into the weighted sum of the final score. The score
for including the assignments of m/z fragment losses to
fragment-structures ScLoss is defined in analogy.

Method evaluation
For the evaluation of the presented approach we used
the challenge data set and evaluation procedures of the
CASMI 2016 contest. In this contest candidate lists were
provided by the organizers along with the spectra to be
used by all participants. After the contest, several par-
ticipants which used statistical learning (e.g. CSI:FID,
CSI:IOKR, CFM-ID) coordinated which compounds were
used in the training steps to improve the comparabil-
ity between methods. They exchanged the InChIKeys
(InChI: International Chemical Identifier) [15] of the spec-
tra used in training their approaches, although it was not
guaranteed that two participants used exactly the same
MS/MS spectrum for a compound identified by a com-
mon InChIKey if they used different spectral databases.
This evaluation is based on 87 of the 208 spectra provided
originally in the challenge, as the remaining 121 spectra
were removed as they were included in the training data of
at least one participant. The results for this subset of the
challenge spectra were published in [12] and used here in
Table 2 for comparison against MetFrag2.4.5. We used the
same set of InChIKeys to obtain the training spectra for
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this paper. The training data is available from the github
repository accompanying the paper.

Preparation of the training data set
The training data set includes MS/MS spectra provided
by the contest organizers consisting of 312 CASMI train-
ing spectra. Participants were allowed to use additional
training spectra retrieved from spectral databases e.g.
the MassBank of North America (MoNA) [16] and the
Global Natural Products Social Molecular Networking
(GNPS) [17] spectral library. The InChIKeys of the
molecules of these additional spectra were provided by the
participants.
We used the provided InChIKeys to retrieve the addi-

tional training spectra by querying the MoNA and GNPS
spectral databases. For MoNA, retrieved MS/MS spec-
tra from one institution were merged in case more than
one spectrum was present for a molecule based on the
first block the InChIKey. Thus for one InChIKey several
merged spectra can be present in case they originate from
different sources. Spectra originating from GNPS spectral
database were merged independently of their source. The
spectra merging was performed by averaging m/z frag-
ment peaks within a specified mass range (given by MS
setup of the MS/MS spectra) and retaining the peak of
maximum intensity. This resulted in 5 622 spectra (4728
positive and 884 negative) which were used for train-
ing. To reduce the spectral complexity only the 40 most
abundant (based on intensity) m/z peaks in each spec-
trum were used. The same applies to test spectra used for
evaluation.

Training of parameters
In the training phase the optimal parameters used to
calculate the candidates’ consensus score need to be deter-
mined. This parameter set consists of the absolute fre-
quencies Nm̃f and NL

l̃f
of the assignments ofm/z fragment

peaks and losses to fragment-structures, the hyper param-
eters α, β , αL and βL, and the score weights ω1, ω2 and
ω3. The whole training phase described in this paragraph
is illustrated in Fig. 2.
Training was separated into two phases where in the

first phase the Nm̃f and NL
l̃f
parameters were determined

using only the correct candidate for each training spec-
trum. Based on these absolute frequencies the optimal
hyper parameters and weight scores are determined in the
second phase.
If we had used the same data set for the estimation

of all parameters, Dtrain and DL
train would have con-

tained the same pairs of m/z fragment peaks/losses and
fragment-structures for the correct candidate to be ranked
in the second phase. The correct candidate would then
be favoured during candidate ranking. This is not rep-
resenting a realistic case when a query spectrum of an

unobserved molecule is processed where we expect also
m/z fragment peak and loss assignments not previously
observed in the optimization phase.
For this reason the complete training data set was

split randomly into two disjunct groups of spectra. The
splitting was performed by dividing the unique list of
InChIKeys (first block) with a ratio of 70:30 and collect-
ing each corresponding spectrum to a group based on the
InChIKey of the underlying molecule. The larger group is
used in the first phase to calculate the Nm̃f and NL

l̃f
.

In the first phase the correct candidate of each spectrum
was processed by MetFrag’s in silico fragmentation. The
m/z fragment peaks explained by a fragment-structure
were corrected to the mass of the molecular formula of
the assigned fragment-structure. This is required to be
independent of the different mass accuracies of MS/MS
spectra acquired under different instrument conditions.
Thus the list of assignments ofm/z fragment peaks/losses
to fragment-structuresDtrain andDL

train contained assign-
ments with the corrected m/z values used for the calcula-
tion of Nm̃f and NL

l̃f
.

In the second training phase candidates were retrieved
from a local PubChem [18] mirror (June 2016) using the
monoisotopic mass of the correct candidate of each spec-
trum and a relative mass deviation dependent on the
experimental conditions of the underlying MS measure-
ment. To reduce runtime the correct and at most 500
randomly sampled candidates were processed from the
retrieved list of candidates. The rank of the correct can-
didate was determined and the overall number of Top1
ranks was used as optimization criterion.
For the hyper parameters the optimization was per-

formed by a grid search over an initial domain including
a set of all combinations of the values 0.0025, 0.0005
and 0.0001 resulting in a total of 34 = 81 sets of hyper
parameters. If the optimal number of Top1 ranks was
located at the border of this hyper parameter domain the
search space was extended by increasing or decreasing the
parameter by a factor of 5 or 1/5 respectively. This pro-
cedure was continued until an optimum was found with
an improvement of less than 1% compared to the previous
optimumof Top1 ranks. For the score weights a set of 1000
parameter combinations was sampled equally distributed
on the simplex. Consensus scores and the rankings of the
correct candidates were calculated for all combinations of
hyper parameters and weights resulting in initially 81.000
combinations.
Subsequent to this training procedure, the absolute fre-

quencies Nm̃f and NL
l̃f
were recalculated using the entire

training data set to increase the observation domain of
assignments of m/z fragment peaks/losses to fragment-
structures used for the processing of the challenge
data set.
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Fingerprint function
To investigate the effect of the fingerprint function MolF-
ing on the results, the complete training phase was per-
formed four times with different fingerprint functions for
the same training spectra. For comparison the Lingo- [14],
the MACCS- [13], the Circular- [19], and the GraphOn-
lyFingerprint were used. For calculation of the different
fingerprints CDK (version 2.1) [20] implementations were
used. The fingerprint with the best training result was
selected for the processing of the challenge data set.

Processing of the CASMI challenge data set
After the training phase and the selection of the finger-
print function, the in silico fragmentation and scoring was
performed for the 87 challenge spectra using the provided
candidate lists. Candidates that included non-connected
substructures or non-natural isotopes (like deuterium)
were discarded from the candidate lists. The candidate
ranking was performed after the removal of multiple
stereoisomers in compliance with the contest rules and
evaluation. Stereoisomers were detected based on the first
block of the candidates’ InChIKey representing themolec-
ular skeleton and only the best scoring stereoisomer was
regarded for candidate ranking. The results were evalu-
ated and compared on the basis of the average Top1, Top3,
and Top10 rankings and the median and mean average
rankings of the correct candidate as in [12].

Stability of parameter optima and ranking results
Splitting of the training data set for the two phases was
performed randomly. As the resulting parameters depend

on the splitting, we performed ten independent trials with
different splits of the training data. The resulting parame-
ters and their performance on the challenge data set were
reported to investigate the effect of randomization.

Results
Comparison of different fingerprint functions
The ranking results obtained in the training phase on
the basis of the different fingerprint functions (MolF-
ing) are shown in Fig. 3. The fingerprints used are the
Lingo-, MACCS-, Circular-, and GraphOnlyFingerprint.
The training results are based on the spectra processed
in the second phase during training consisting of 1389
to 1471 spectra in positive and 255 to 279 spectra in
negative mode depending on the run and the spectra
splitting.
Comparable results are obtained with the Circular- and

LingoFingerprint across both ion modes and across the
different rankings as shown in Fig. 3 by the similar curve
for the Top1, Top3 and Top10 rankings. Similar means
of the rankings across the ten runs confirm this obser-
vation with 402.3, 639.8, and 881.2 for the mean Top1,
Top3 and Top10 rankings using the Circular- and 398.4,
640.0 and 881.9 using the LingoFingerprint. These two
fingerprint functions show superior results for the Top1
rankings compared toMACCS with 371.0 and GraphOnly
328.6. For Top3 and Top10 rankings and positivemode the
MACCSFingerprint gives comparable results. Top3 and
Top10 rankings in negative mode are comparable for all
fingerprint functions.

Fig. 3 Top rankings of training results. The Top rankings (Top1, Top3, Top10) of the ten training runs are shown for the different fingerprint function.
The results are based on the rankings of the correct candidates of the training data used in the second training phase consisting of 1389 to 1471
spectra in positive mode (top) and 255 to 279 spectra in negative mode (bottom)
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The CircularFingerprint shows with the runs R07 in
positive and R09 in negative mode the overall highest
number of Top1 rankings with 518 of the 1686 training
spectra. Due to this performance the CircularFingerprint
is used for subsequent investigations and the evaluation of
the challenge data set.

Randomization of training data sets
In this section we evaluate the impact of the random-
ization of the training data on parameter optimization.
Table 1 shows the optimal parameter sets and the per-
formance achieved on the training data using the Circu-
larFingerprint. The overall ranking results vary across the
ten runs for the Top1, Top3 and Top10 numbers in both
positive and negative ion mode as expected. Boxplots of
the parameter sets are shown in Fig. 4. The variation of
optimal hyper parameters as well as weights shows a simi-
lar pattern for both positive and negative ion mode where
a larger variation can be observed in negative mode. Par-
ticularly the pseudo counts for annotated m/z fragment
peaks show a broader variation with 5e-04 to 2e-05 (α)

and 1e-03 to 2e-05 (αL) compared to positive mode with
1e-04 as optimum for α and an interval of 2e-03 to 1e-04
for αL.
The largest of the weights combining the three scores is

ω2 which gives the score ScPeak the largest influence in the
overall assessment. The median of ω2 is 0.4855 in positive
and 0.4935 in negative mode. The impact of the original
MetFrag score ScMetFrag and ScLoss are distinctively lower
and comparable to each other. The weight ω1 for the Met-
Frag score has a median of 0.2875 in positive and 0.2840 in
negative mode. The weights for ω3 are 0.2355 respectively
0.2045.
In the following we analyze the robustness and the

homogeneity of the results on the challenge data set with
regard to varying parameters across the parameter space
evaluted during optimization. This also helped to obtain a
better explanation on the deviation of optimized param-
eters. Specifically we compare the distribution of the
Top1 rankings considering (i) the ten optimal parameter
sets from the ten randomizations, (ii) the parameter sets
within the convex hull constituted by these ten optimal

Table 1 Ranking results in the training phase based on the CircularFingerprint

Top1 Top3 Top10 Top1 (%) α β αL βL ω1 ω2 ω3 # Spectra

Negative Mode

55 93 151 20.8 0.00002 0.00250 0.00050 0.00050 0.268 0.460 0.272 265

51 89 155 19.5 0.00002 0.06250 0.01250 0.00050 0.434 0.380 0.186 261

62 101 165 22.9 0.00050 0.01250 0.00010 0.01250 0.309 0.508 0.184 271

70 106 170 25.8 0.00050 0.00250 0.00002 0.01250 0.317 0.494 0.189 271

62 103 161 23.8 0.00010 0.00010 0.00010 0.00250 0.170 0.616 0.214 260

67 110 153 24.0 0.00010 0.00250 0.00250 0.00010 0.300 0.493 0.207 279

63 98 157 22.9 0.00010 0.00050 0.00010 0.00050 0.054 0.512 0.434 275

68 102 158 25.0 0.00002 0.00250 0.00250 0.00250 0.240 0.558 0.202 272

86 114 171 31.2* 0.00010 0.00250 0.00250 0.00010 0.413 0.398 0.189 276

74 106 161 29.0 0.00010 0.00010 0.00002 0.00010 0.189 0.465 0.346 255

Positive Mode

412 664 925 28.0 0.00010 0.00250 0.00010 0.00250 0.333 0.438 0.229 1471

402 622 866 28.2 0.00010 0.00050 0.00010 0.00250 0.208 0.483 0.309 1426

406 665 913 29.0 0.00010 0.01250 0.00250 0.00250 0.333 0.438 0.229 1399

395 651 894 27.6 0.00010 0.00250 0.00250 0.00250 0.309 0.503 0.188 1432

387 618 839 27.4 0.00010 0.00250 0.00050 0.00050 0.413 0.398 0.189 1413

408 630 870 28.6 0.00010 0.00050 0.00050 0.00050 0.165 0.584 0.251 1428

432 655 910 30.6* 0.00010 0.01250 0.00250 0.00050 0.378 0.488 0.134 1410

400 642 874 28.2 0.00010 0.00250 0.00250 0.00050 0.210 0.488 0.302 1420

385 613 830 27.7 0.00010 0.00250 0.00010 0.00010 0.266 0.388 0.346 1389

396 638 891 27.7 0.00010 0.00050 0.00050 0.00010 0.165 0.593 0.242 1428

The optimization of the parameters was performed on the training data set with ten different random splits of the MS/MS training spectra to be used for first and second
training phase. Optimizationwas performed separately for positive and negative mode. *Runs with the best results based on the relative correct Top1 rankings (neg: R09, pos:
R07)
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Fig. 4 Boxplots of optimal weight and hyper parameters retrieved in the training phase. The parameters were obtained from the ten training runs
with randomized splits of the training set and the CircularFingerprint. The rankings results show the optimal weight and hyper parameters for
positive and negative mode

parameter sets in the six dimensional parameter space,
and (iii) the complete parameter space evaluated during
training of the parameters. The convex hull over the
ten optimal parameter sets was calculated using the six
degrees of freedom (α, β , αL, βL, ω1, ω2) from the seven
parameters with the Python Numpy package.
Figure 5 shows in yellow the distribution of the Top1

rankings of the CASMI challenge data set for the com-
plete parameter space. Top1 ranking vary from 1 to 12
for the positive and from 4 to 14 for the negative chal-
lenge spectra, where the maximum of the distributions
are six and ten for positive and negative mode, respec-
tively. If parameter sets are restricted to the convex hull
the distribution is clearly shifted to better performance,

where Top1 rankings vary between 8 to 11 for positive
and 10 to 13 for negative mode. This range of Top1 rank-
ings is almost identical to the one resulting from the ten
optimal parameter sets. The only exception are nine Top1
rankings for parameter sets within the convex hull in
negative mode. In positive mode about 76% of the inves-
tigated parameters show worse results than achieved by
the parameters contained in the convex hull. For nega-
tive mode this proportion is reduced to around 15% which
can again be explained by the smaller number of available
training data.
For the subsequent comparison to other methods on the

challenge data set we use the parameter sets resulting in
the best relative Top1 ranking performance in the training

(a) (b)

Fig. 5 Distribution of Top1 rankings on the challenge data set. The collection of barcharts show the Top1 rankings retrieved using the
CircularFingerprint for selected parameter sets. Yellow bars show the normalized Top1 counts for all parameter sets used in the training phase. The
green bars show the normalized rankings for all parameter sets within the convex hull spanned by the ten optimal parameter sets retrieved from the
ten randomized training runs. The violet bars show the normalized counts from these optimal parameter sets. a Positive mode b Negative mode
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phase. The corresponding runs are highlighted in Table 1
and are R07 for positive and R09 in negative mode.

Comparison with MetFrag2.3
Themain goal of the integration of the proposed approach
into MetFrag was to improve the candidate ranking aug-
menting the fragmenter score with statistical scores. The
MetFrag versions 2.3 and 2.4.5 use exactly the same in
silico fragmentation approach. MetFrag2.4.5 scoring was
extendedwith the statistical scoring termswhichmake the
difference in the comparison of both version. The results
of MetFrag version 2.4.5 show a drastic improvement of
the rankings for the CASMI challenge data compared to
its older version 2.3 with regard to all performance mea-
sures as given in the first two columns of Table 2. The
correct Top1 rankings show amore than four fold increase
from 5 to 21 Top1 rankings. The improvement is espe-
cially distinct for positive mode with 9 Top1 rankings
where MetFrag2.3 resulted in one single query correctly
ranked at first position. The number of Top1 hits in neg-
ative mode is also increased three fold from 4 to 12. The
improvement is also illustrated by the reduced mean and
median ranks. Where the mean rank halved to 34.6 the
median rank was even reduced by two third to 5. All three
scores contribute substantially to these improvements and
Top1 rankings vary smoothly with the weight scores (see
Additional file 1: Figure S1).

Comparison with other CASMI participants
The MetFrag2.4.5 results were compared to the results
obtained by all other participants of CASMI 2016,
i.e., CFM_retrain, CSI_IOKR_AR, and CSI:FID_leaveout
(abbreviated by CFM-ID, CSI:IOKR, and CSI:FID), MS-
Finder and MAGMa. Table 2 shows the original data
from Table 7 of [12] with the ranking results for the 87
Challenge MS/MS spectra. The additional MetFrag2.4.5
column summarizes the results achieved using the new
MetFrag statistical scoring terms.
In positive mode, MetFrag2.4.5 obtains nine Top1 rank-

ings and shows a similar performace as CFM-ID (9)

and CSI:IOKR (10). CSI:FID (13) outperforms all other
approaches with regard to Top1 rankings in positive
mode, however did not submit results for negative mode
spectra. Figure 6b shows the overlap of the Top1 ranked
challenges in positive mode forMetFrag2.4.5 and CSI:FID.
There are only five challenges ranked first by both tools
and thus a large degree of divergence between the correct
predictions.
For the negative mode spectra MetFrag2.4.5 consider-

ably outperformed all participants with 12 Top1 rankings.
These are five more queries than MS–Finder could rank
in first position and even twice as many than the other
statistical approaches CFM-ID and CSI:IOKR.
Considering the complete test data set MetFrag2.4.5

outperforms all participants with regard to Top1, Top3,
and Top10 rankings including the declared winner of the
contest CSI:IOKR (Top1: 21, Top3: 38, Top10: 55 vs. Top1:
16, Top3: 26, Top10: 46). The improved results are also
confirmed by the smaller median and mean rankings of 5
and 34.6 compared to 10 and 97.9. We note that consider-
ing the median, CSI:FID shows a better performance than
MetFrag2.4.5, however did only submit results for positive
mode.
Figure 6a shows the overlap of correctly identified

Top1 challenges of the participants which use statistical
approaches. Interestingly, there is a relatively large num-
ber of challenges that are identified by only one of the
approaches. With 10 challenges MetFrag2.4.5 shows the
highest amount of unique queries ranked correctly in first
place, which is predominantly caused by the eight Top1
negative mode challenges.

Discussion
The results obtained by the combination of MetFrag’s
in silico fragmentation approach and statistical fragment
annotation learning have shown an overall improvement
of the ranking results of the relevant CASMI 2016 test set.
Different fingerprint functions have been tested to avoid
the expensive graph isomorphism problem to find match-
ing fragments. The training phase revealed a dependency

Table 2 Results for the 87 MS/MS test spectra from the CASMI 2016 Challenge taken from Table 7 in [12] augmented with the results
of the proposed approach (MetFrag 2.4.5). For the participants of the challenge the best result is given

MetFrag 2.4.5 MetFrag 2.3 CFM-ID CSI:IOKR CSI:FID MS-Finder MAGMa

Top 1 Pos. 9 1 9 10 13 3 2

Top 1 Neg. 12 4 6 6 −∗ 7 4

Top 1 21 5 15 16 13∗ 10 6

Top 3 38 16 24 26 23∗ 25 16

Top 10 55 39 40 46 32∗ 38 35

Mean rank 34.6 68.4 64.1 97.9 41.5∗ 28.7 76.8

Med. rank 5 14.5 12.5 10 3∗ 17.5 23.5

*CSI:FID did not submit results for negative mode spectra
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(a)

(b)

Fig. 6 Overlap of the correctly identified Top1 spectra of the challenge data set for selected participants. The Venn diagram (a) includes the four
tools using statistical approaches (MetFrag2.4.5, CFM-ID, CSI:IOKR, CSI:FID) and shows the overlap of correcly identified challenges out of the 87
spectra (positive and negative mode). The diagram (b) shows the overlap of CSI:FID and MetFrag2.4.5 for the positive mode challenges. The large
numbers indicate the amount of common challenges and the numbers listed underneath their challenge IDs

between the number of correct top hits and the finger-
print used. While MACCS- and especially Lingo- and the
CircularFingerprint showed the best and also comparable
results, the GraphOnlyFingerprint showed a significantly
lower number of correct top rankings on the training set.
We attribute the inferior performance of the GraphOn-
lyFingerprint primarily to the lack of representing bond
orders and hence encoding less chemical information
than all other fingerprint types evaluated. Due to the
best performance in the training phase the CircularFin-
gerprint was selected for further investigation on the
test set.
Ten different hyper and weight parameter sets result-

ing from optimization with ten randomized splits of
the training data were used to investigate the robust-
ness and the distribution of these parameters accross the
different training sets. While the optima of the seven
parameters varied slightly between the different splits, the
parameter sets still showed a clear trend across all ten
runs. Especially the effect of the ScPeak score weight ω2
was predominantly higher compared to ω1 and ω3 for
both positive and negative ion mode. The assumption

that the observed parameter variation is an indication
for a relatively broad and homogenious parameter opti-
mum was confirmed by the investigation of the ranking
results retrieved using parameters located in the con-
vex hull spanned by the ten optima. These distribu-
tions also indicate a high robustness of the performance
with varying parameter sets across these parameter
optima.
An important outcome of this study is the signifi-

cant improvement of the ranking results retrieved adding
the presented Bayesian approach to MetFrag’s native
in silico fragment annotation. While the improvement
gain for the Top3 and Top10 rankings are less pro-
nounced, this comparison impressively demonstrates the
benefit including statistical approaches for MS based
compound identification. This corresponds to the out-
come of CASMI 2016 where a comparison of dif-
ferent statistical and non-statistical approaches was
made [12].
The proposed Bayesian approach follows a different

mechanism than the existing statistical compound iden-
tification methods predicting molecular fingerprints
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(CSI:FingerID, CSI:IOKR) or MS/MS spectra (CFM-ID).
The comparison of the different approaches on the
CASMI 2016 test set used in this study shows on the
one hand that the presented approach compares well to
the existing ones and on the other hand that a rela-
tively large number of challenges are identified by only
one of the approaches (Fig. 6a). From the latter finding
it may be concluded that there are different preferences
for certain types of spectra of the CASMI 2016 contest.
The comparison also revealed that for MetFrag2.4.5 the
performance is comparable between positive and nega-
tive mode (9 vs. 12). CSI:IOKR shows lower performance
ranking result for the negative mode spectra compared
to positive mode (6 vs. 10). We assume the combina-
tion of in silico fragmentation and statistical scoring has
a positive effect in case only limited training data is
available. Only a small fraction of negative mode train-
ing data was available for this contest and resulted in
generally worse results of the statistical approaches in
negative mode.

Conclusions
In this work new statistical scoring terms are intro-
duced to MetFrag. This model assesses the assignments
of m/z fragment peaks/losses to fragment-structures
derived from in silico fragmentation of a candidate and
assumes independence of the individual assignments. The
model parameters are estimated using the mean poste-
rior approach. Hyper parameters of the statistical model
as well as score weights are optimized by a grid search.
The performance is evalutated on a subset of the CASMI
2016 contest challenge spectra for which the spectrum
was not among the training data set of any participant.
The results show that with the integration of the two new
statistical scoring terms MetFrag could be improved four
fold regarding the number of Top1 rankings. In addition
it showed a better performance than the declared win-
ner of the contest CSI:IOKR regarding the number of
correctly ranked Top1, Top3 and Top10 candidates. The
new scoring terms are now available in the command line
tool (version 2.4.5) as AutomatedPeakFingerprintAnno-
tationScore and AutomatedLossFingerprintAnnotation-
Score and also in the web interface (https://msbi.ipb-halle.
de/MetFrag) as “Statistical Scoring” trained on extended
data set than used in this work. The additional scoring
terms complement current scoring terms based on exper-
imental data and can also be combined with additional
meta information if available as described in [3].
We also want to stress that once the method is trained

on spectra in the training phase, it can be applied and
used for annotation on any data set. The data set can vary
whereas the training data set is fixed once the method was
trained, which is similar to all other machine learning and
statistical methods mentioned in this work.
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Abstract 

Background: The fourth round of the Critical Assessment of Small Molecule Identification (CASMI) Contest (www.
casmi-contest.org) was held in 2016, with two new categories for automated methods. This article covers the 208 
challenges in Categories 2 and 3, without and with metadata, from organization, participation, results and post-
contest evaluation of CASMI 2016 through to perspectives for future contests and small molecule annotation/
identification.

Results: The Input Output Kernel Regression (CSI:IOKR) machine learning approach performed best in “Category 
2: Best Automatic Structural Identification—In Silico Fragmentation Only”, won by Team Brouard with 41% challenge 
wins. The winner of “Category 3: Best Automatic Structural Identification—Full Information” was Team Kind (MS-
FINDER), with 76% challenge wins. The best methods were able to achieve over 30% Top 1 ranks in Category 2, with 
all methods ranking the correct candidate in the Top 10 in around 50% of challenges. This success rate rose to 70% 
Top 1 ranks in Category 3, with candidates in the Top 10 in over 80% of the challenges. The machine learning and 
chemistry-based approaches are shown to perform in complementary ways.

Conclusions: The improvement in (semi-)automated fragmentation methods for small molecule identification has 
been substantial. The achieved high rates of correct candidates in the Top 1 and Top 10, despite large candidate 
numbers, open up great possibilities for high-throughput annotation of untargeted analysis for “known unknowns”. 
As more high quality training data becomes available, the improvements in machine learning methods will likely 
continue, but the alternative approaches still provide valuable complementary information. Improved integration 
of experimental context will also improve identification success further for “real life” annotations. The true “unknown 
unknowns” remain to be evaluated in future CASMI contests.

Keywords: Compound identification, In silico fragmentation, High resolution mass spectrometry, Metabolomics, 
Structure elucidation
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Background
The Critical Assessment of Small Molecule Identification 
(CASMI) Contest  [1] was founded in 2012 as an open 
contest for the experimental and computational mass 
spectrometry communities  [2, 3]. Since then, CASMI 
contests have been held in 2013 [4], 2014 [5] and now in 
2016, which is summarized in this article. The focus of 

CASMI has changed slightly with each contest, reflect-
ing differences in focus of the organizers as well as the 
perceived interest and challenges in structure elucida-
tion with mass spectrometry. CASMI is purely a research 
activity—there is no fee for participation but likewise 
also no prize money for the winners.

In 2016, Category  1 was “Best Structural Identifica-
tion on Natural Products”, with 18 challenges available, a 
number achievable for both manual and automatic meth-
ods. Any methods could be used to submit entries and 
seven groups participated in this category. The outcomes 
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of this category are presented separately [6] and reported 
here briefly for comparison purposes.

In contrast, Categories 2 and 3 were defined with 208 
challenges in total. Candidate lists containing the cor-
rect solution were provided, along with training data for 
parameter optimization. These categories were specifically 
designed for automated methods, as no participant with 
a manual approach could be expected to invest so much 
time in solving all challenges. Category  2 was defined as 
“Best Automatic Structural Identification—In Silico Frag-
mentation Only”. The aim was to compare the different 
fragmentation approaches, ranging from combinatorial, to 
rule-based, to simulations; the use of mass spectral library 
searching or additional information was not allowed. In 
contrast, Category 3 was “Best Automatic Structural Iden-
tification—Full Information”. The same data files and can-
didate lists were provided as for Category 2, but any form 
of additional information could be used (retention time 
information, mass spectral libraries, patents, reference 
count, etc.). This was to assess the influence of additional 
information (hereafter termed metadata) on the results 
of the contest. Participants were required to detail their 
submissions in an abstract submitted with the results. The 
rules and submission formats were communicated on the 
CASMI rules website  [7] prior to the release of the chal-
lenge data; the evaluation was automated provided the 
submission format passes all checks. In contrast to previ-
ous years, participants were allowed to submit up to three 
entries each, to evaluate the performance of different 
approaches. More details are given below.

This article summarizes Categories 2 and 3 of CASMI 
2016, including organization, participation and addi-
tional post-contest analysis. Six external groups partici-
pated in these categories (see Graphical Abstract); 10 in 
total combined with the Category 1 participants, which is 
more than ever before.

Methods
Contest data for CASMI 2016
Mass spectra
All MS/MS spectra were obtained on a Q Exactive Plus 
Orbitrap (Thermo Scientific), with <5 ppm mass accu-
racy and nominal MS/MS resolving power of 35,000 
at m/z = 200 using electrospray ionization (ESI) and 
stepped 20/35/50 nominal higher-energy collisional dis-
sociation (HCD) energies. The spectra were obtained 
by measuring 22 mixes of authentic standards with the 
same liquid chromatography–mass spectrometry (LC–
MS) method, in data-dependent acquisition mode using 
inclusion lists containing the [M+H]+ (positive) and 
[M−H]− ion masses. Positive and negative mode data 
were acquired separately. Each mix contained between 
10 and 94 compounds. A reversed phase column was 

used (Kinetex C18 EVO, 2.6  μm, 2.1× 50  mm with a 
2.1× 5 mm precolumn from Phenomenex). The gradient 
was (A/B): 95/5 at 0 min, 95/5 at 1 min, 0/100 at 13 min, 
0/100 at 24  min (A =  water, B =  methanol, both with 
0.1% formic acid) at a flow rate of 300 μL/min.

The MS/MS peak lists were extracted with RMass-
Bank  [8] using the ion mass and a retention time win-
dow of 0.4 min around the expected retention time and 
reported as absolute ion intensities. To obtain high-
quality spectra, the data was cleaned and recalibrated to 
within 5 ppm using known subformula annotation [8], all 
other peaks without a valid subformula within 5 ppm of 
the recalibrated data were removed. All substances with 
double chromatographic peaks, different substances 
with identical spectra (detected via the SPectraL hASH 
(SPLASH) [9, 10]), MS/MS containing only one peak or 
with a maximum intensity below 1× 105 were excluded 
from the datasets. Substances that were measured mul-
tiple times (because they were present in more than one 
mix) in the same ionization mode were only included 
once, selected by higher intensity. MS/MS from positive 
and negative mode were included if the substance ion-
ized in both modes. The final peak lists were saved in 
plain text format and Mascot Generic Format (MGF). All 
MS/MS spectra are now available on MassBank [11].

Candidates
The candidates were retrieved from ChemSpider via 
MetFrag2.3  [12] using the monoisotopic exact mass 
±5 ppm of the correct candidate on February 14th, 2016. 
The SMILES from the MetFrag output were converted to 
standard InChIs and InChIKeys with OpenBabel  (ver-
sion 2.3.2) [13]. Candidates were removed if the SMILES 
to InChI conversion failed, all other candidates were 
retained without any additional filtering. The presence of 
the correct solution in the candidate list was verified and 
the lists were saved as CSV files.

Training and challenge datasets
The MS/MS spectra and corresponding candidates 
were split into training and challenge datasets, accord-
ing to the spectral similarity to MassBank spectra (as 
many substances were already in MassBank). Challenge 
spectra were those where no MassBank spectrum was 
above 0.85 similarity (calculated with MetFusion  [14]); 
all spectra where there was a match in MassBank above 
0.85 were included in the CASMI training set. There 
were two exceptions: Alizarin, similarity 0.88 to laxapur 
(FIO00294), and anthrone, similarity 0.86 to phosphocre-
atine (KO003849), to ensure a sufficient number of natu-
ral products remained as challenges for Category 1 (see 
below). Many of the natural products in the mixes did 
not ionize well with the experimental setup used.
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The challenge dataset consisted of 208 peak lists from 
188 substances, 127 obtained in positive mode (all 
[M+H]+) and 81 in negative mode (all [M−H]−). The 
retention times for each substance was provided in a 
summary CSV file. The training dataset consisted of 312 
MS/MS peak lists (from 285 substances), of which 254 
were obtained in positive mode (all [M+H]+) and 58 
negative mode (all [M−H]−). The identities and retention 
times of the substances in the training dataset were pro-
vided in a summary CSV file. All files were uploaded to 
the CASMI website [15]. Participants were asked to con-
tact the organizers if they required additional formats.

To allow a comparison with manual approaches, Chal-
lenges 10–19 in Category  1 were a (re-named) subset 
of the dataset in Categories 2 and 3. The corresponding 
challenge numbers are given in Table 1.

Information about the full scan (MS1) data was not 
originally provided for CASMI 2016, but was provided 
retrospectively for Challenges 10–19 in Category  1 
upon request and post-contest for Categories 2 and 3 for 
another publication [16]. All data is now available on the 
CASMI website [15].

Rules and evaluation
The goal of the CASMI contest was for participants to 
determine the correct molecular structure for each chal-
lenge spectrum amongst the corresponding candidate 
set, based on the data provided by the contest organiz-
ers. A set of rules were fixed in advance to clarify how the 
submissions were to be evaluated and ranked, to ensure 
that the evaluation criteria were transparent and objec-
tive. All participants were encouraged to follow the prin-
ciples of reproducible research and accurately describe 
how their results were achieved in an abstract submit-
ted with the results. Submission formats were defined in 
advance (described below) to satisfy the R scripts used to 

perform the automatic evaluation, results and web page 
generation. Test submissions could be submitted pre-
deadline to check for issues; any post-deadline problems 
were resolved prior to the release of the solutions.

Participants could enter a maximum of three submis-
sions per approach and category, provided they used 
these submissions to assess the influence of different 
strategies on the outcomes. The rationale and differences 
had to be detailed in the abstract. The best overall per-
forming submission per participant was considered in 
declaring the winner(s). The submission requirements 
were an abstract file (per submission, see website for 
details) plus results files for each challenge to be consid-
ered in the contest. There was no explicit requirement 
to submit entries for all challenges. Valid challenge sub-
missions were plain text, tab separated files with two col-
umns containing the representation of the structure as 
the standard InChI or the SMILES code (column 1) and 
the score (column 2). To be evaluated properly, the score 
was to be non-negative with a higher score representing a 
better candidate.

For each challenge, the absolute rank of the correct 
solution (ordered by score) was determined. The aver-
age rank over all equal candidates was taken where two 
or more candidates had the same score. Due to incon-
sistencies with how participants dealt with multiple 
stereoisomers (and since stereoisomers amongst the can-
didates could not be separated with the analytical meth-
ods used), submissions were filtered post-submission to 
remove duplicate stereoisomers using the first block of 
the InChIKey. The highest scoring isomer was retained. 
The ranks were then compared across all eligible entries 
to declare the gold (winner), silver and bronze positions 
for each challenge. Gold was awarded to the contestant(s) 
with the lowest rank among all contestants for that chal-
lenge. This way, a winner could be declared even if no 
method ranked the correct candidate in the Top 1. Joint 
positions were possible in case of ties. The overall winner 
was determined using an Olympic medal tally scheme, 
i.e. the participants with the most gold medals per cat-
egory won. The winners were declared on the basis of this 
automatic evaluation.

Additional scores
Further scores that were used to interpret the results 
included the mean and median ranks, Top X rank counts, 
relative ranking positions (RRPs, defined in [2]) and 
quantiles. The Formula  1 Score, based on the method 
used in Formula 1 racing  [17] since 2010, is the sum of 
the Top 1 to 10 ranks of the correct candidates weighted 
by the scores 25, 18, 15, 12, 10, 8, 6, 4, 2 and 1. The Medal 
Score (as opposed to the per-challenge Gold Medal count 
used in CASMI to declare the winner) is the sum of 

Table 1 Overlapping challenges between  Category 1 
and Categories 2 and 3

Name Category 1 Categories 2 and 3 Mode

Creatinine Challenge-010 Challenge-084 Positive

Anthrone Challenge-011 Challenge-162 Positive

Flavone Challenge-012 Challenge-166 Positive

Medroxyprogesterone Challenge-013 Challenge-184 Positive

Abietic acid Challenge-014 Challenge-207 Positive

Estrone-3-(β-d-glucu-
ronide)

Challenge-015 Challenge-034 Negative

Alizarin Challenge-016 Challenge-045 Negative

Thyroxine Challenge-017 Challenge-048 Negative

Purpurin Challenge-018 Challenge-054 Negative

Monensin Challenge-019 Challenge-079 Negative
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weighted Top 1 ranks with 5 points (gold medal), Top 2 
ranks with 3 points (silver) and Top  3 ranks (bronze) 
with 1. Non-integer ranks (due to equally-scoring candi-
dates) were rounded up to the higher rank for calculat-
ing Top X, Formula 1 and medal scores (e.g. rank 1.5 was 
counted as 2).

Participant methods
Team Allen (Felicity Allen, Tanvir Sajed, Russ Greiner 
and David Wishart) processed the provided candidates 
for Category 2 using CFM-ID [18]. CFM-ID uses a proba-
bilistic generative model to produce an in silico predicted 
spectrum for each candidate compound. It then uses 
standard spectral similarity measures to rank those can-
didates according to how well their predicted spectrum 
matches the challenge spectrum. The original Competi-
tive Fragmentation Model (CFM) positive and negative 
models were used, which were trained on data from 
the METLIN database  [19]. Mass tolerances of 10  ppm 
were used, the Jaccard score was applied for spectral 
comparisons and the input spectrum was repeated for 
low, medium and high energies to form the CFM_orig 
entry. The CFM_retrain entry consisted of a CFM 
model trained on data from METLIN and the NIST MS/
MS library  [20] for the positive mode spectra. This new 
model also incorporated altered chemical features and 
a neural network within the transition function. Mass 
tolerances of 10  ppm were used, and the DotProduct 
score was applied for spectral comparisons. This model 
combined the spectra across energies before training, so 
only one energy exists in the output. The negative mode 
entries were the same as for CFM_orig.

CFM-ID was also used to submit entries for Category 3, 
by combining the above CFM-based score with a data-
base score (DB_SCORE). For each hit in the databases 
HMDB  [21], ChEBI  [22], FooDB  [23], DrugBank  [24] 
and a local database of plant-derived compounds, 10 
was added to DB_SCORE. The CFM_retrain+DB and 
CFM_orig+DB submissions were formed by adding the 
DB_SCORE for each candidate to the CFM_retrain 
and CFM_orig entries from Category 2, respectively.

Team Brouard (Céline Brouard, Huibin Shen, Kai Düh-
rkop, Sebastian Böcker and Juho Rousu) participated in 
Category 2 using CSI:FingerID [25] with an Input Output 
Kernel Regression (IOKR) machine learning approach to 
predict the candidate scores [26]. Fragmentation trees 
were computed with SIRIUS version 3.1.4 [27] for all the 
molecular formulas present in the candidate set. Only 
the tree associated with the best score was considered. 
SIRIUS uses fragment intensities to distinguish noise and 
signal peaks, while the intensities were weighted lowly 
during learning (see [25, 26]). Different kernel functions 
were computed for measuring the similarities between 

either MS/MS spectra or fragmentation trees. Multiple 
kernel learning (MKL, see  [28]) was used to combine 
the kernels as input for IOKR. In the CSI:IOKR_U sub-
mission, the same weight was associated with each ker-
nel (uniform multiple kernel learning or “Uni-MKL”). In 
the CSI:IOKR_A submission the kernel weights were 
learned with the Alignf algorithm [29] so that the com-
bined input kernel was maximally aligned to an ideal 
target kernel between molecules. In both submissions, 
IOKR was then used for learning a kernel function meas-
uring the similarity between pairs of molecules. The val-
ues of this kernel on the training set were defined based 
on molecular fingerprints, using approximately 6000 
molecular fingerprints from CDK  [30, 31]. Separate 
models were trained for the MS/MS spectra in positive 
and negative mode. The method was trained using the 
CASMI training spectra, along with additional merged 
spectra from GNPS  [32] and MassBank  [33]. For the 
negative ion mode spectra, 102 spectra from GNPS and 
714 spectra from MassBank were used. For the positive 
ion mode spectra, 3868 training spectra from GNPS were 
used. These training sets were prepared following a pro-
cedure similar to that described in [25].

The additional post-competition submission CSI:IOKR_
AR used the same approach as CSI:IOKR_A, but the posi-
tive model was learned using a larger training set containing 
7352 positive mode spectra from GNPS and MassBank. 
This training set was effectively the same as that used by 
Team Dührkop, with minor differences due to the pre-selec-
tion criteria of the spectra. The negative mode training set 
was not modified.

Team Dührkop (Kai Dührkop, Huibin Shen, Marvin 
Meusel, Juho Rousu and Sebastian Böcker) entered Cat-
egory  2 with a command line version of CSI:FingerID 
version 1.0.1  [25], based on the original support vector 
machine (SVM) machine learning method. The peaklists 
were processed in MGF format and fragmentation trees 
were computed with SIRIUS version 3.1.4 [27] using the 
Q-TOF instrument settings. Trees were computed for 
all candidate formulas in the given structure candidate 
list; trees with a score <80% of the optimal tree score 
were discarded. The remaining trees were processed 
with CSI:FingerID. SIRIUS uses fragment intensities to 
distinguish noise and signal peaks, while the intensities 
are weighted lowly in CSI:FingerID (see  [25]). Molecu-
lar fingerprints were predicted for each tree (with Platt 
probability estimates [34]) and compared against the 
fingerprints of all structure candidates (computed with 
CDK  [30, 31]) with the same molecular formula. The 
resulting hits were merged together in one list and were 
sorted by score. A constant value of 10,000 was added 
to all scores to make them positive (as required in the 
CASMI rules). Ties of compounds with same score (and 
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sometimes also with same 2D structure) were ordered 
randomly. The machine learning method was trained 
on 7352 spectra (4564 compounds) downloaded from 
GNPS  [32] and MassBank [33]. All negative ion mode 
challenges were omitted due to a lack of training data; i.e. 
entries were only submitted for positive challenges. This 
formed the CSI:FID entry.

Team Dührkop submitted a second “leave out” entry, 
CSI:FID_leaveout, during the contest. Before the 
correct answer was known, the team observed that the 
top-scoring candidate matched a compound from the 
CSI:FID training set in 67 challenges, which could 
indicate that the method had memorized the training 
spectra. To assess the generalization of their method, 
the classifiers were retrained on the same training set, 
plus CASMI training spectra, but with these top scor-
ing candidates removed. As this entry was “guesswork” 
and did not affect the contest outcomes, upon request 
Team Dührkop resubmitted a true “leave out” entry post-
contest where all CASMI challenge compounds were 
removed from their training set (not just their “guess” 
based on top scoring candidates) prior to retraining and 
calculating the CSI:FID_leaveout results. For the 
sake of interpretation, only these updated “leave out” 
results are presented in this manuscript.

Team Kind (Tobias Kind, Hiroshi Tsugawa, Masanori 
Arita and Oliver Fiehn) submitted entries to Category 3 
using a developer version (1.60) of the freely available 
MS-FINDER software  [35, 36] combined with MS/MS 
searching and structure database lookup for confirmation 
(entry MS-FINDER+MD). MS-FINDER was originally 
developed to theoretically assign fragment substruc-
tures to MS/MS spectra using hydrogen rearrangement 
(HR) rules, and was subsequently developed into a struc-
ture elucidation program consisting of formula predic-
tion, structure searching and structure ranking methods. 
For CASMI, an internal database was used to prioritize 
existing formulas from large chemical databases over 
less common formulas and the top 5 molecular formu-
las were regarded for structure queries. Each formula was 
then queried in the CASMI candidate lists as well as an 
internal MS-FINDER structure database. A tree-depth 
of 2 and relative abundance cutoff of 1% as well as up to 
100 possible structures were reported with MS-FINDER. 
The final score was calculated by the integration of mass 
accuracy, isotopic ratio, product ion assignment, neu-
tral loss assignment, bond dissociation energy, penalty 
of fragment linkage, penalty of hydrogen rearrangement 
rules, and existence of the compound in the internal MS-
FINDER structure databases (see Additional file 1 for full 
details). MS-FINDER uses ion intensities in the relative 
abundance cutoff and isotopic ratio calculations, but not 
in candidate scoring.

Secondly, MS/MS search was used for further confir-
mation via the NIST MS Search GUI [37] together with 
major MS/MS databases such as NIST  [20], MassBank 
of North America (MoNA) [38], ReSpect [39] and Mass-
Bank [33]. The precursor was set to 5 ppm and product 
ion search tolerance to 200 ppm. Around 100 out of the 
208 candidates had no MS/MS information. For these 
searches, a simple similarity search without precur-
sor information was also used, or the precursor window 
was extended to 100 ppm. Finally, those results that gave 
overall low hit scores were also cross-referenced with the 
STOFF-IDENT database of environmentally-relevant 
substances  [40, 41] to obtain information on potential 
hit candidates. This step was taken because the train-
ing set consisted of mostly environmentally relevant 
compounds.

Team Vaniya (Arpana Vaniya, Stephanie N. Samra, Saj-
jan S. Mehta, Diego Pedrosa, Hiroshi Tsugawa and Oliver 
Fiehn) participated in Category 2 using MS-FINDER [35, 
36] version 1.62 (entry MS-FINDER). MS-FINDER uses 
hydrogen rearrangement rules for structure elucidation 
using MS and MS/MS spectra of unknown compounds. 
The default settings were used; precursor m/z, ion mode, 
mass accuracy of instrument, and precursor type (given 
in CASMI) were used to populate the respective fields 
in MS-FINDER. Further parameter settings were: tree 
depth of 2, relative abundance cutoff of 1, and maximum 
report number of 100. Although relative abundance cut-
offs were used to filter out noisy data, ion abundances 
were not used by MS-FINDER for calculation of either 
the score or rank of candidate structures. The default 
formula finder settings were used, except the mass toler-
ance, which was set to ±5 ppm mass accuracy as given by 
the CASMI organizers.

MS-FINDER typically retrieves candidates from an 
Existing Structure Database (ESD) file compiled from 
13 databases, but this was disabled as candidates were 
provided. Instead, one ESD was created for each of the 
208 challenges, containing the information from the can-
didate lists provided by the CASMI organizers. A batch 
search of the challenge MS/MS against the challenge 
candidate list (in the ESD) was performed on the top 500 
candidates, to avoid long computational run times. Up 
to 500 top candidates structures were exported as a text 
file from MS-FINDER. Scores for automatically match-
ing experimental to virtual spectra were ranked based on 
mass error, bond dissociation energy, penalties for link-
age discrepancies, or violating hydrogen rearrangement 
rules. Final scores and multiple candidate SMILES were 
reported for 199 challenges for submission to CASMI 
2016. Nine challenges could not be processed due to 
time constraints (Challenges 13, 61, 72, 78, 80, 106, 120, 
133, 203). Full details on this entry, MS-FINDER and file 
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modifications required are given in Additional files 1 and 
2.

Team Verdegem (Dries Verdegem and Bart Ghes-
quière) participated in Category 2 with MAGMa+  [42], 
which is a wrapper script for the identification engine 
MAGMa  [43]. For any given challenge, MAGMa+ runs 
MAGMa twice with two different parameter sets. A total 
of four optimized parameter sets exist (two for positive 
and two for negative ionization mode), which all differ 
from the original MAGMa parameters. Within one ioni-
zation mode, both corresponding parameter sets were 
each optimized for a unique latent molecular class. Fol-
lowing the outcome of both MAGMa runs, MAGMa+ 
determines the molecular class of the top ranked can-
didates returned by each run using a trained two-class 
random forest classifier. Depending on the most preva-
lent molecular class, one outcome (the one from the run 
with the parameters corresponding to the most preva-
lent class) is returned to the user. The candidate lists 
provided were used as a structure database without any 
prefiltering. MAGMa determines the score by adding 
an intensity-weighted term for each experimental peak. 
If a peak is explained by the in silico fragmentation pro-
cess, the added term reflects the difficulty with which 
the corresponding fragment was generated. Otherwise, 
an “unexplained peak penalty” is added. Consequently, 
MAGMa returns smaller scores for better matches, and 
therefore the reciprocal of the scoring values was submit-
ted to the contest. MAGMa was run with a relative m / z 
precision of 10  ppm and an absolute m  /  z precision of 
0.002 Da. Default values were taken for all other options. 
MAGMa+ is available from [44].

To enable a comparison between MAGMa+ (entry 
MAGMa+) and MAGMa, entries based on MAGMa were 
submitted post-contest (entry MAGMa). MAGMa was run 
as is, without customization of its working parameters 
(bond break or missing substructure penalties). Identical 
mass window values as for MAGMa+ were applied (see 
above). Default values were used for all other settings. 
Again, the reciprocal of the scoring values was submitted 
to obtain higher scores for better matches.

Additional results
Additional results were calculated using MetFrag2.3 [12] 
to compare these results with the other methods out-
side the actual contest and to investigate the influence 
of metadata on the competition results. MetFrag com-
mand line version 2.3 (available from  [45]) was used to 
process the challenges, using the MS/MS peak lists and 
the ChemSpider IDs (CSIDs) of the candidates provided. 
MetFrag assigns fragment structures generated in silico 
to experimental MS/MS spectra using a defined mass 
difference. The candidate score considers the mass and 

intensity of the explained peaks, as well as the energy 
required to break the bond(s) to generate the fragment. 
Higher masses and intensities will increase the score, 
while higher bond energies will decrease the score. The 
MetFrag submission consisted of the MetFrag frag-
mentation approach only. In the MetFrag+CFM entry 
the MetFrag and CFM-ID (version  2)  [18] scores were 
combined. The CFM scores were calculated indepen-
dently from Team Allen. Additionally, a Combined_MS/
MS entry was prepared, combining six different frag-
menters with equal weighting: CFM_orig, CSI:FID, 
CSI:IOKR_A, MAGMa+, MetFrag and MS-FINDER.

Several individual metadata scores were also prepared. 
A retention time prediction score was based on a corre-
lation formed from the CASMI training set (submission 
Retention_time; +RT, see Additional file  1: Fig-
ure  S1. The reference score (submission Refs) was the 
ChemSpiderReferenceCount, retrieved from ChemSpi-
der  [46] using the CSIDs given in the CASMI data. The 
MoNA submission ranked the candidates with the Met-
Fusion-like  [14] score built into MetFrag2.3, using the 
MoNA LC–MS/MS spectral library downloaded Janu-
ary 2016 [38]. The Lowest_CSID entry had candidates 
scored according to their identifier, where the lowest 
ChemSpider ID was considered the best entry.

The combined submissions to test the influence 
of different metadata on the results were as follows: 
MetFrag+RT+Refs, MetFrag+CFM+RT+Refs, 
MetFrag+CFM+RT+Refs +MoNA, Combined_
MS/MS+RT+Refs and finally Combined_MS/
MS+RT+Refs+MoNA. Full details of how all these sub-
mission were prepared are given in Additional file 1.

Results
CASMI 2016 overall results
The sections below are broken up into the official results 
of the two categories during the contest, shown in 
Table  2, followed by the post-contest evaluation and a 
comparison with all approaches from Category 1.

Category 2: In silico fragmentation only
The results from Category 2 are summarized in Table 2. 
The participant with the highest number of wins over 
all challenges (i.e. gold medals) was Team Brouard with 
86 wins over 208 challenges (41%) for CSI:IOKR_A. 
Team Dührkop with CSI:FID (82 gold, 39%) and 
Team Vaniya with MS-FINDER (70 gold, 34%) were in 
second and third place, respectively. This clearly shows 
that the recent machine-learning developments have 
greatly improved the performance relative to the bond-
breaking approaches and even CFM. The third place for 
MS-FINDER shows that it performs in quite a comple-
mentary way to the CSI methods. The performance of 
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Team Dührkop is especially surprising considering that 
they did not submit any challenges in negative mode (due 
to a lack of training data).

Table  2 also includes the Top  1 (correct candidate 
ranked in first place), Top 3 (correct candidate amongst 
the top 3 scoring entries) and Top  10 entries per par-
ticipant as well as the Formula 1 and Medal scores. The 
CSI:FID entry from Team Dührkop had the best Top 1 
result (70, or 34%), followed by Team Brouard and Team 
Vaniya with 62 and 46 Top 1 candidates. This is an amaz-
ing improvement on previous contests and consistent 
with recent results  [25], despite their use of larger can-
didate sets (PubChem instead of ChemSpider) and a 
slightly different ranking system. Very interesting to 
note is that all methods have the correct candidate in 
the Top 10 in ≥49% of cases, which is likewise a dramatic 
improvement for automatic annotation. CFM_orig had 
the most the correct candidates in the Top  10 (123 or 
59%) and this is reflected in the Formula 1 Score, which 
weighted the CFM_orig performance ahead of MS-
FINDER, despite their lower Top 1 ranks.

Separating the challenges into positive and negative 
modes revealed that Team Dührkop clearly led the posi-
tive mode predictions (82 wins/gold medals and 70 Top 
1 candidates, versus 66 wins and 53 Top 1 candidates 
for Team Brouard). Both MS-FINDER (14 Top 1) and 
CFM_orig (12 Top 1) outperformed Team Brouard for 
negative mode (9 Top 1), showing that a greater amount 
of training data for negative spectra would likely improve 
the CSI methods in the future. The training set used by 

Team Brouard contained 7300 spectra for positive mode 
and only 816 negative mode spectra. The difference 
between positive and negative mode was less dramatic 
for the other approaches.

The results of Category 2 were dominated by the meth-
ods that use machine learning on large spectral data-
bases (GNPS  [32], MassBank  [33], METLIN  [19] and 
NIST  [20]), namely Teams Brouard and Dührkop (CSI) 
and Allen (CFM). The great increase in data available for 
training these methods has led to the dramatic improve-
ments in in silico methods seen in this contest—increas-
ing the availability of open data will only improve this 
situation further! The performance of MS-FINDER, 
which does not use machine learning but instead chemi-
cal interpretation, is also particularly encouraging and 
below is shown to perform quite complementary to the 
machine learning methods. The influence of the train-
ing data was investigated during the contest by Teams 
Dührkop (CSI:FID_leaveout) and Allen (CFM_
retrain); see Table  3. This was investigated for all 
approaches post-contest, discussed in “Machine learning 
approaches and training data” section.

Category 3: Full information
The results of Category 3, also summarized in Table  2, 
were extremely close considering the freedom given to 
the use of metadata in this Category. Team Kind was the 
winner with 159 gold (64 positive, 95 negative), closely 
followed by Team Allen on 156 gold (61 positive, 95 
negative). Interestingly, the number of Top 1 ranks were 

Table 2 Results summary for Categories 2 and 3: medal tally and other statistics
Category 2 Category 3

Allen Brouard Dührkop Vaniya Verdegem Allen Kind
CFM CSI: CSI:FID MS– MAGMa+ CFM MS–
orig IOKR A FINDER retrain FINDER

+DB +MD
Gold 63 86 82 70 44 156 159
Silver 71 50 21 26 53 52 38
Bronze 40 31 11 35 65 0 0
Gold (neg) 26 20 0 33 24 61 64
Gold (pos) 37 66 82 37 20 95 95
Top 1 (neg) 12 9 0 14 8 47 59
Top 1 (pos) 27 53 70 32 16 73 47
Top 1 39 62 70 46 24 120 146
Top 3 77 93 90 79 59 160 162
Top 10 123 118 100 101 105 182 174
Mean rank 47.98 127.34 25.17 19.75 70.79 13.72 6.4
Median rank 6 5.2 1 3 9.8 1 1
Mean RRP 0.906 0.874 0.945 0.804 0.88 0.971 0.904
Median RRP 0.987 0.988 1 0.922 0.972 1 1
Formula 1 1957 2276 2156 1867 1524 3861 4011
Medal Score 275 375 396 305 195 700 766

The first, second and third place by “Gold medals” (used to declare CASMI winners) are highlighted in red, orange and yellow, respectively. The best value per statistic 
is marked in bold
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very different, 146 (Team Kind) versus 120 (Team Allen); 
consistent with Category 2 CFM_orig had more Top 10 
entries but fewer Top 1 and 3 entries than MS-FINDER. 
In this category the CFM_retrained model from Team 
Allen outperformed CFM_orig, which performed better 
in Category 2.

While very different approaches were used to obtain 
the “metadata”, the results of Category 3 clearly dem-
onstrate the value of using metadata when identifying 
“known unknowns” as was the case in this contest where 
candidates were provided. This decision to provide can-
didates was taken deliberately to remove the influence 
of the candidate source on the CASMI results. The role 
of this “metadata” is discussed further below (Category 
3: Additional Results). For true unknown identification 
the benefit of this style of metadata could be consider-
ably reduced depending on the context, however this 
would have to be the subject of an alternative category in 
a future contest.

Post‑contest evaluation
While the best overall results per participant were used 
to declare the winners, each participant was able to sub-
mit up to three entries to the contest if they chose to 
assess the influence of different strategies on their out-
come. This has revealed many interesting aspects that 
would otherwise have gone undetected with only one 
entry per participant, as in previous contests. To explore 
these further and take advantage of the automatic evalu-
ation procedure offered in CASMI, several internal and 

post-contest entries were also evaluated, as described 
in the Methods section. The results of all these entries, 
including those run in the contest, are given in Table  3 
for Category 2 and in Table 4 for Category 3.

Category 2: Additional results
The additional results for Category 2 (see Table 3) show 
that the retrained CSI:IOKR_AR entry from Team 
Brouard (using the more extensive CSI:FID training 
data plus negative mode results) would have outper-
formed their winning CSI:IOKR_A entry as well as the 
CSI:FID entry from Team Dührkop. The improvement 
with additional training data was dramatic for some chal-
lenges, e.g. Challenge 178 went from Rank 3101 with 
CSI:IOKR_A to rank 1 with CSI:IOKR_AR. Sepa-
rating the Top 1 ranks into positive and negative mode 
(see Table  3) shows indeed that the performance for 
CSI:IOKR_AR and CSI:FID in positive mode was 
quite similar (69 vs. 70 wins, respectively), whereas all 
CSI methods are outperformed by MS-FINDER and 
CFM_orig in negative mode.

The MetFrag entry performed quite similarly to 
Team Verdegem (MAGMa+); as both are combinatorial 
fragmentation approaches this is not surprising. While 
the MetFrag+CFM entry improved these results dra-
matically, it was only slightly improved compared with 
the individual CFM entries of Team Allen. However, the 
improvement by combining the two fragmenters in nega-
tive mode was marked, increasing the Top 1 ranks from 
9 (MetFrag) and 12 (CFM) to 20 (MetFrag+CFM). 

Table 4 Results summary for additional Category 3 entries

The column header of entries used in Table 2 are given in italics. The best value per statistic is marked in bold. * Indicates internal and post-competition submissions. 
Q_X indicates Xth quantile

Allen Kind Ruttkies

CFM orig +DB CFMretrain+DB MS-FINDER+MD MetFrag+ 
RT+Refs*

MetFrag+CFM 
+RT+Refs*

MetFrag+CFM+RT 
+Refs+MoNA*

Top 1 117 120 146 162 163 155

Top 3 159 160 162 183 180 182

Top 10 182 182 174 191 199 194

Mean rank 14 13.62 6.4 7.04 5.39 4.25
Median rank 1 1 1 1 1 1
Mean RRP 0.969 0.971 0.904 0.987 0.989 0.990
Median RRP 1 1 1 1 1 1
Gold 124 128 148 168 174 167

Formula 1 3798 3861 4011 4469 4509 4437

Medal score 687 700 766 855 856 840

Q_10 1 1 1 1 1 1

Q_25 1 1 1 1 1 1

Q_50 1 1 1 1 1 1

Q_75 3 3 2 1 1 2

Q_90 13.7 14.0 15.0 5.0 5.0 4.3
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MS-FINDER still performed the best in negative mode of 
all the individual entries. MAGMa+ outperformed MAGMa 
in Top 1 and Top 3 entries.

Category 3: Additional results
The additional results for Category 3 (see Table 4) show 
that MetFrag+CFM+RT+Refs outperformed the 
other approaches both in terms of wins and the num-
ber of Top 1 ranks. Although adding MoNA to the mix 
resulted in a poorer performance, this was because 
spectral similarity was used to separate the training and 
challenge sets and the resulting MoNA weight was too 
optimistic for the challenges.

As these results are driven more by the metadata used 
than the fragmenter behind, a variety of entries were cre-
ated to assess the contribution of the individual metadata 
aspects, as well as a “Combined Fragmenter” entry (Com-
bined MS/MS) to remove the influence of the fragmen-
tation method (see “Methods” for details). These results 
are given in Table 5. The Combined MS/MS entry out-
performed all of the individual Category 2 entries, show-
ing the complementarity of the different approaches. 
These also outperformed the MS library (MoNA) entry. 
The retention time prediction alone performed poorly, 
because this does not contain sufficient structural infor-
mation to distinguish candidates, as demonstrated in 
Additional file 1: Figure S2. The lowest identifier strategy, 
which was used as a “gut feeling” decision criteria com-
monly in environmental studies before retrieval of refer-
ence information could be automated, takes advantage 
of the fact that well known substances were added to 
ChemSpider earlier and thus have lower identifiers. Sur-
prisingly this still outperformed the combined fragment-
ers—but again this is highly dependent on the dataset. 
The references outperformed all individual metadata cat-
egories and even the combined fragmenters clearly. The 
influence of the metadata is discussed further in “Meta-
data and consensus identification” section. 

Comparison with results from Category 1
Challenges 10–19 in Category 1 were also present among 
the Category  2 and 3 challenges, as given in Table  1. 
The results for these challenges, separated by category, 
are summarized in Table  6 and visualized in Figure  S3 
and S4 in Additional file 1. Interestingly, this shows that 
the results of Categories 1 and 3 were remarkably com-
parable, while the ranks of Category  2, using only MS/
MS data, were generally worse. Again, this shows that 
the incorporation of metadata in automated methods is 
essential to guide users to the identification for known 
substances—but misleading when assessing the perfor-
mance of computational methods. As metadata cannot 
assist in the identification of true unknowns for which 
no data exists, more work is still needed to bring the 
performance of the in silico MS/MS identification meth-
ods (Category  2) closer to that of Categories  1 and 3. 
However, it is clear from this 2016 contest that much 
progress has been made with the new machine learn-
ing methods and—as observed above—continuing to 
improve the availability of training data will improve 
these further.

Interestingly, Challenge  14 (Abietic acid) was chal-
lenging for all participants in all categories; this was the 
only challenge in Category 1 where no participant had 
the correct answer in first place despite the fact that the 
challenge spectrum was very informative and the candi-
date numbers were relatively low (see Additional file  1: 
Figure S7).

Discussion
Visualization of CASMI results: clustering
To visualize the CASMI 2016 results together, a hierarchi-
cal clustering was performed. The heat map of the nega-
tive mode challenges (1–81, excluding Team Dührkop) 
can be seen in Fig. 1, while the heat map of the positive 
mode challenges (82–208) is given in Fig. 2. These are dis-
cussed below; in addition interactive plots are provided 

Table 5 Contribution of Metadata to the results

The first four columns contain submissions formed using just one type of metadata, the “Combined MS/MS” column was formed by equally weighting all Category 2 
entries from Table 2, while the last two columns combined this with retention time and references without and with MoNA, respectively
The best value per statistic is marked in bold

RT MoNA Lowest CSID Refs Combined MS/MS Combined MS/MS+RT+Refs Combined MS/MS+RT+Refs+MoNA

Top 1 1 70 113 143 82 164 164
Top 3 5 87 158 177 126 183 187

Top 10 20 104 177 196 166 194 195

Mean rank 504.5 238.3 37.7 3.0 13.4 3.9 3.7

Median rank 135 10.25 1 1 2 1 1
Mean RRP 0.576 0.780 0.959 0.995 0.955 0.990 0.991

Median RRP 0.630 0.977 1 1 0.998 1 1
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(see reference links provided in the captions) for readers 
to investigate these clusters in more detail. Corresponding 
clusters excluding challenges in the training sets are avail-
able in Additional file 1: Figures S5 and S6.

The dark blue areas in Fig. 1 indicate very good ranking 
results. It is clear for the negative spectra that the meta-
data (Category 3) really improved performance, with very 
few yellow or red entries for the Category 3 participants, 
which all grouped together in the cyan cluster (middle 

left), indicated by the dark blue participant names (mid-
dle right). What is also clear is that all methods were 
very good for most of the compounds in the red chal-
lenge cluster (shown at the top, right-most cluster). The 
combinatorial fragmenters and CFM also performed 
well on the dark blue challenge cluster (second clus-
ter from right)—in contrast both MS-FINDER and the 
CSI:IOKR methods struggled for these challenges, 
shown with the yellow to red coloring in the heat map. 

Table 6 Comparison of Categories 1, 2 and 3 results for the overlapping challenges in Category 1

Chal.
Median rank of
correct candidate
per Category

Number of
valid entries
per category

Minimum and maximum
rank of correct candidate
per category (min, max)

All 1 2 3 1 2 3 1 2 3
10 1 1 19.5 1 14 12 6 (1, 15) (11, 63) (1, 1)
11 9 2 21 2 11 12 6 (1, 175) (2, 208) (1, 9)
12 1.5 1 16 1.5 15 11 6 (1, 88) (1, 299.5) (1, 8)
13 3 2 20 3.5 8 12 6 (1, 146) (1, 270) (1, 87)
14 25 23 26.5 20 11 12 6 (2, 292) (17, 164.5) (12, 144)
15 1 1 1.25 1 12 10 6 (1, 4) (1, 6) (1, 3)
16 2.5 2 25 2 12 9 6 (1, 25) (14, 288) (1, 14)
17 1 1 2.5 1 10 10 6 (1, 3) (2, 5) (1, 1)
18 11 4 19.5 2 9 10 6 (1, 34.5) (3, 50) (1, 11)
19 1 1 4.5 1 12 10 6 (1, 3) (1, 7.5) (1, 1)

The median ranks of Categories 1 and 3 (highlighted) are remarkably similar

ch
al

le
ng

e−
04

1
ch

al
le

ng
e−

02
6

ch
al

le
ng

e−
04

6
ch

al
le

ng
e−

07
7

ch
al

le
ng

e−
00

6
ch

al
le

ng
e−

04
3

ch
al

le
ng

e−
00

1
ch

al
le

ng
e−

03
9

ch
al

le
ng

e−
02

7
ch

al
le

ng
e−

01
7

ch
al

le
ng

e−
04

5
ch

al
le

ng
e−

05
6

ch
al

le
ng

e−
01

4
ch

al
le

ng
e−

04
7

ch
al

le
ng

e−
03

6
ch

al
le

ng
e−

01
1

ch
al

le
ng

e−
00

5
ch

al
le

ng
e−

02
3

ch
al

le
ng

e−
01

2
ch

al
le

ng
e−

05
3

ch
al

le
ng

e−
03

0
ch

al
le

ng
e−

05
4

ch
al

le
ng

e−
03

7
ch

al
le

ng
e−

04
9

ch
al

le
ng

e−
01

5
ch

al
le

ng
e−

02
4

ch
al

le
ng

e−
06

2
ch

al
le

ng
e−

05
1

ch
al

le
ng

e−
06

9
ch

al
le

ng
e−

06
0

ch
al

le
ng

e−
06

1
ch

al
le

ng
e−

02
1

ch
al

le
ng

e−
01

9
ch

al
le

ng
e−

06
5

ch
al

le
ng

e−
05

0
ch

al
le

ng
e−

07
0

ch
al

le
ng

e−
03

2
ch

al
le

ng
e−

05
2

ch
al

le
ng

e−
07

8
ch

al
le

ng
e−

04
0

ch
al

le
ng

e−
06

7
ch

al
le

ng
e−

05
9

ch
al

le
ng

e−
01

3
ch

al
le

ng
e−

08
0

ch
al

le
ng

e−
05

7
ch

al
le

ng
e−

01
6

ch
al

le
ng

e−
07

2
ch

al
le

ng
e−

00
9

ch
al

le
ng

e−
06

3
ch

al
le

ng
e−

07
4

ch
al

le
ng

e−
05

5
ch

al
le

ng
e−

07
6

ch
al

le
ng

e−
03

8
ch

al
le

ng
e−

00
7

ch
al

le
ng

e−
02

5
ch

al
le

ng
e−

07
3

ch
al

le
ng

e−
03

4
ch

al
le

ng
e−

07
9

ch
al

le
ng

e−
01

8
ch

al
le

ng
e−

00
8

ch
al

le
ng

e−
04

8
ch

al
le

ng
e−

06
8

ch
al

le
ng

e−
07

1
ch

al
le

ng
e−

01
0

ch
al

le
ng

e−
04

4
ch

al
le

ng
e−

05
8

ch
al

le
ng

e−
06

4
ch

al
le

ng
e−

02
9

ch
al

le
ng

e−
07

5
ch

al
le

ng
e−

08
1

ch
al

le
ng

e−
03

3
ch

al
le

ng
e−

04
2

ch
al

le
ng

e−
02

2
ch

al
le

ng
e−

02
8

ch
al

le
ng

e−
02

0
ch

al
le

ng
e−

03
5

ch
al

le
ng

e−
00

3
ch

al
le

ng
e−

03
1

ch
al

le
ng

e−
06

6
ch

al
le

ng
e−

00
2

ch
al

le
ng

e−
00

4

MS−FINDER

CSI:IOKR_A

CSI:IOKR_U

CFM orig+DB

MS−Finder+MD

MetFrag+CFM+RT+Refs+MoNA

MetFrag+RT+Refs

MetFrag+CFM+RT+Refs

CFM orig

MetFrag+CFM

MetFrag

MAGMa

MAGMa+

Negative mode

0 1 2 3

log10(rank)

Color Key

Fig. 1 Heat Map of CASMI Challenges 1–81 (negative mode). Both Category 2 (green labels on the right) and 3 (blue labels) participants are included. 
Missing values (correct solution missed, or no submission for a challenge) were replaced with the number of candidates for that challenge. Ranks 
are log-scaled from good (blue) to poor (red). Team Dührkop was omitted as they did not submit for any challenge, while CSI:IOKR_AR and 
CFM_retrain were omitted as these were identical with their original submissions. An interactive version of this plot with legible challenge 
numbers is available from [47]
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MS-FINDER outperformed other Category 2 approaches 
in the green challenge cluster (second from left)—show-
ing the complementarity of the different approaches. This 
is reinforced by the fact that MS-FINDER was split into a 
participant cluster on its own and also explains partially 
why the Combined MS/MS entry performed better than 
all individual participant entries. For the clusters of chal-
lenges (top), the mean candidate numbers per cluster 
were (left to right): black (611), green (1603), blue (1019) 
and red (380), compared with a mean overall of 816. Both 
the red (“good” overall performance) and black (“poor”) 
clusters have mean candidates below the overall mean, 
whereas the poorly performing green cluster had mean 
candidates well above the overall mean. Thus, candidate 
numbers are not the only driver of performance.

Looking at individual challenges, all machine learning 
approaches performed poorly for Challenge 36, which 
was a 3 peak spectrum of a substance typically measured 
in positive mode (see Additional file  1: Figure  S8). The 
combinatorial approaches performed poorly for Chal-
lenge 41 (see Additional file  1: Figure  S9), monobenzyl 
phthalate, where the main peak is a well-known rear-
rangement that is not covered by these approaches. For 
this challenge, both CSI:IOKR and MS-FINDER per-
formed well, indicating that this substance is in the train-
ing data domain (many phthalate spectra are in the open 
domain) and that MS-FINDER interprets the spectrum 
beyond combinatorial methods. The compounds in the 

dark blue and green challenge clusters are likely not to 
be covered too well in the training data for CSI:IOKR. 
While it appears that MS-FINDER performs very poorly 
for some challenges, this is in fact an artifact of their sub-
missions; for all the red entries in the heatmap, either the 
correct answer was absent from their submission (as they 
took only the top 500 candidates—this applied for 15 
challenges) or no answer was submitted (5 challenges). In 
these cases the total number of candidates was used for 
the clustering. Removing the challenges where no sub-
mission was made from the clustering did not drastically 
alter any of the outcomes discussed above.

The positive mode cluster (Fig.  2) revealed an even 
darker blue picture (and thus generally very good results) 
than the negative mode cluster. The large dark blue 
patch in the middle of the heat map indicates that for the 
majority of challenges, largely those in the black chal-
lenge cluster (top, middle), both the metadata but also 
the more extensive training data in positive mode for the 
machine learning approaches ensured that many Top  1 
ranks were achieved. This is also shown well in the green 
challenge cluster, where the improvements that the meta-
data and machine learning add beyond the combinatorial 
approaches can be seen moving down and getting darker 
from the generally yellow top right corner. As for nega-
tive mode, the mean candidate numbers per challenge 
cluster were calculated (left to right): magenta (5297), 
cyan (1029), red (886), black (1534), blue (978), green 
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Fig. 2 Heat Map of CASMI Challenges 82–208 (positive mode) both Category 2 (green labels on the right) and 3 (blue labels) participants are 
included. Missing values (correct solution missed, or no submission for a challenge) were replaced with the number of candidates for that chal-
lenge. Ranks are log-scaled from good (blue) to poor (red). Interactive version with legible challenge numbers available from [48]
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(722), with an overall mean of 1281. The performance 
for the magenta, cyan and blue clusters were all relatively 
“poor”, yet only the magenta cluster contained mean can-
didate numbers far above the overall mean. The combina-
torial fragmenters performed poorly for the green cluster, 
which had mean candidate numbers below the overall 
mean. As mentioned above, candidate numbers are again 
not the only driver of performance. Investigations into 
other parameters that may influence the challenge clus-
ters, such as number of peaks in the spectra, revealed 
similarly inconclusive results.

In contrast to negative mode, several participant clus-
ters were formed in positive mode. The top two clus-
ters contained the combinatorial fragmenters MAGMa, 
MAGMa+ and MetFrag, which clustered apart from the 
CFM-ID entries, either alone or in combination with 
MetFrag. Below this was one very large cluster with all 
Category 3 entries (metadata, yellow). This is followed 
by three smaller clusters, one in green with the two best 
CSI entries (CSI:FID and CSI:IOKR_AR), one blue 
cluster with the remaining CSI entries, followed by MS-
FINDER by itself. Note that MS-FINDER still clustered 
by itself in both positive and negative mode, even when 
compensating for the challenges with no submission, as 
mentioned above. This is due in part to their strategy to 
only select the top 500—again for the vast majority of the 
red MS-FINDER entries in the heat map either the cor-
rect candidate was missing in the submission (29 chal-
lenges in positive mode), or no submission was made (4 
challenges). However, their location in a separate cluster 
is also possibly due to the fact that MS-FINDER does 
indeed use a different approach to fragmentation than 
either the combinatorial fragmenters or the machine 
learning approaches.

The challenge clusters revealed some interesting pat-
terns: four small clusters contained challenges that were 
problematic for different approaches. Most metadata-
free methods performed poorly for the pink cluster (chal-
lenges 152, 202, 178); all approaches performed relatively 
poorly for the cyan cluster adjacent (challenges 131, 126, 
207 and 119). The challenges in the red cluster were 
likely reasonably dissimilar to the other substances in 
the machine learning training sets, as the combinatorial 
fragmenters outperformed the CSI approaches clearly 
in this cluster. The machine learners performed well on 
the dark blue cluster (challenges 184, 168, 199, 92, 197), 
where surprisingly the metadata even failed the combi-
natorial fragmenters. Three of these (92, 168, 199) involve 
breaking an amide bond, which may be something for 
these approaches to investigate further. Challenge 197 
is a fused N heterocycle with one fragment. Spectra of 
these challenges, with additional comments, are available 
in Additional file 1: Figures S7–S20.

Visualization of CASMI results: candidate numbers and raw 
scores
Additional plots have been included in Additional file 1 
to provide further visualization of the results. Addi-
tional file 1: Figure S21 shows the number of candidates 
for each challenge, ordered by the number of candidates 
versus the results for all CASMI entries (during and 
post-contest). Interestingly, fewer Top 1 entries and 
higher median/mean ranks were observed for the chal-
lenges with moderate candidate numbers (200–1000 
candidates); lower median ranks and more Top 1 entries 
were observed for lower and higher candidate numbers. 
Additional file  1: Figures S22–S30 show the raw scores 
for selected submissions per participant and category, in 
order: MAGMa+, CSI:IOKR_A, CSI:FID, CFM_orig, 
CFM_retrain+DB, MS-FINDER, MS-FINDER+MD, 
MetFrag and MetFrag+CFM+RT+Refs+MoNA. 
These reveal interesting differences in the raw data 
behind each submission, including for instance the influ-
ence of training data availability on the positive and nega-
tive challenge results for CSI:IOKR_A, the metadata 
step function in CFM_retrain+DB as well as the effect 
of score scaling on MetFrag.

Machine learning approaches and training data
The CASMI2016 results show very clearly how the 
training data influences the performance of differ-
ent approaches. The difference in Top  1 positive mode 
ranks between CSI:IOKR_A, 62 and CSI:FID, 70 
(see Table  2) were due to the different training sets 
used, the CSI:IOKR_AR results (retrained on the same 
data as CSI:FID) had 69 Top  1 ranks. The results for 
CSI:IOKR in negative mode were also generally worse 
than all other approaches, which shows that the decision 
of Team Dührkop not to submit entries due to a lack of 
training data was quite well justified (even though it likely 
cost them the overall contest “win” for Category 2).

Team Dührkop noted that there was a large over-
lap between the challenges and their training set and 
investigated this with the CSI:FID_leaveout entry 
(described in the methods). For the sake of interpreta-
tion in this manuscript, this entry was updated post-
contest once the exact solutions were known to make it a 
true “leave out” analysis. Although the performance was 
reduced compared with CSI:FID (36 vs. 70 Top 1 ranks 
in positive mode), the CSI:FID_leaveout entry still 
had more Top 1 ranks than any other non-CSI method 
in the contest (for positive mode only).

Following the idea of Team Dührkop, the CASMI 
results were evaluated for all participants on only those 
challenges where no contestant had the correct candidate 
in their training sets. Teams Dührkop, Allen and Brouard 
provided comprehensive lists of their training sets. These 
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were used to determine the overlap between all training 
sets and the CASMI challenges. The results over those 
challenges that were not in any training set (44 positive 
and 43 negative challenges) are given in Table 7.

The general observations made on the full contest data 
are supported by this reduced dataset as well, despite the 
unsurprising fact that the results on this reduced dataset 
were generally worse than the official contest results (see 
Table  2). This demonstrates that, as expected, machine 
learning methods do better on compounds from within 
their training sets (for example, the percentage of maxi-
mum Top 1 ranks dropped from 34 to 18%). Although the 
median ranks were worse, the Top 10 ranks still remained 
around 40–50% for most methods. Cluster plots on this 
reduced dataset for negative and positive mode, given in 
the supporting information (Additional file 1: Figures S5, 
S6), show similar patterns to the cluster plots on the full 
dataset.

Interestingly, these results show that the CSI:FID_
leaveout entry outperformed CSI:FID, while 
CSI:IOKR_A also outperformed CSI:IOKR_AR, the 
retrained dataset, also for some different scores—simi-
lar observations could be made for CFM_orig versus 
CFM_retrain. While this could be a potential sign for 
overfitting, this is a small dataset and some or all of these 
observations could be due to fluctuations in the data. 
Overfitting is a potential problem that developers, espe-
cially of non-standard machine learning methods should 
test for, e.g. by checking if their performance decreases 
significantly for compounds which are structural dis-
similar to compounds in the training data. These results 
highlight just one means by which the choice of training 
set can influence the performance of automated meth-
ods. The training set can also impact challenge results 
in a range of other ways that are harder to disambiguate. 
One training set may be more or less compatible with 
the challenge set, even after common compounds are 
removed. This suggests the importance of assessing auto-
mated methods using the same training set, where at all 
possible.

Metadata and consensus identification
The dataset for CASMI 2016 was predominantly well-
known anthropogenic substances and as a result there 
are many distinct and highly referenced substances in 
the candidate lists. This is shown in the huge improve-
ment that the metadata made to the ranking perfor-
mance (Tables 4, 5). Figure 3 shows clearly that the vast 
majority of substances were either ranked first or second 
based purely on the reference count, with most other 
candidates having much lower counts. Figure  4 gives 
an overview of the contribution the metadata made 
to each approach based on the CASMI 2016 entries, 

merging team results in the case of MS-FINDER. In the 
environmental context, it is quite common to search an 
exact mass or formula in databases such as ChemSpi-
der, where e.g. the highest reference count as well as the 
substance with the “lowest CSID” are often picked as 
the most promising hit in many cases, discussed e.g. in 
[49]. The success with these strategies would have been 
quite considerable with this dataset. However, for new 
(emerging) anthropogenic substances and transformation 
products of known chemicals, these strategies would not 
work so well as they would have neither a high reference 
count nor a low database identifier. This situation is also 
likely to be drastically different for natural products and 
metabolites, where many more closely-related substances 
or even isomers could be expected.

The metadata results in Category  3 show that the 
importance of the sample context cannot be ignored 
during identification, especially for studies looking to 
find well-known substances. This is also highlighted by 
the comparison with the approaches used in Category 1, 
where also manual and semi-automatic approaches were 
considered. The current reality is that most automated 
approaches still depend on retrieving candidates from 
compound databases containing known structures—i.e. 
the situation replicated in this CASMI contest. Com-
pound databases such as the Metabolic In Silico Network 
Expansion Databases (MINEs)  [50] could be used as 
alternative sources of candidates for predicted metabo-
lites in the metabolomics context, but would have had 
limited relevance in this contest.

While metadata, the way it was used here, will not 
help in the case of true unknowns, there are two cases 
to consider for automated approaches at this stage. For 
“unknowns” that happen to be in a database almost 
accidentally (e.g. a to-date unknown transformation 
product), the automated fragmentation approaches are 
very useful, because these structures can be retrieved 
from substance databases. However for true “unknown 
unknowns” that are not in any database, fragmenters 
could only be used in combination with structure gen-
eration, which is still impractical with the quality of data 
and methods at this stage unless candidate numbers can 
be restrained sufficiently. These cases are often extremely 
difficult to elucidate using MSn alone and the informa-
tion from additional analysis such as NMR will usually be 
necessary.

Stereoisomerism is another aspect of identification 
that was not covered in this contest. None of the cur-
rent approaches are able to distinguish stereoisomers 
(even cis/trans isomers) using only MS/MS informa-
tion for known unknowns. The evaluation of this contest 
addressed this by taking the best scoring stereoisomer 
and eliminating others (see “Methods”) to reduce the 
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influence of stereoisomers on the ranking results. How-
ever, for electron ionization (EI) MS it is already possi-
ble to distinguish stereoisomers in some cases using ion 
abundances. This is an aspect that should be developed 
in the future for MS/MS once the spectrum generation 
is sufficiently reproducible to allow this. Coupling with 
suitable chromatography will potentially enhance the 
ability to distinguish between stereoisomers further.

Evaluating methods and winner declaration
Contests such as CASMI always generate much discus-
sion about how the winner was evaluated and declared; 

this years contest was no exception. A “contest” setting 
is different to the way individual methods compare their 
performance with others and this is the role of CASMI—
to look at the approaches in different ways, relative to 
one another. One change in CASMI 2016 was to use the 
“average rank” instead of the “worst-case” rank to account 
for equal candidate scores, as participants pointed out 
that for previous contests one could add small random 
values to break tied scores and improve results in the 
contest. There will be several cases where candidates are 
indistinguishable according to the MS and it is impor-
tant to capture this aspect in CASMI. While equal scores 
may make most chemical sense in these cases, compu-
tational methods deal with this differently; some report 
equal scores, others generate slightly different scores for 
effectively equal candidates. The average rank deals with 
this better than the “worst-case” rank, but can now disad-
vantage methods that report equal scores compared with 
others, as the chances are that at least one other method 
will beat it each time.

The criteria for declaring the winner in this contest 
was that the best performing participant(s), i.e. the win-
ner, was defined per challenge and then the wins were 
added to determine the overall winner. This allows 
the declaration of a winner per challenge, irrespec-
tive of the actual performance (i.e. the winner could 
have rank 100, if all other participants were worse). 
The drawback of this approach is that it creates cross-
dependencies between participants, i.e. the removal 
(or addition) of one participant completely changed the 
rank of the other participants. CFM likely suffered from 

Fig. 3 The distribution of references for CASMI 2016 candidates
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Fig. 4 The influence of Metadata on CASMI 2016 first seven 
groups—light green MS/MS information only, i.e. Category 2. Dark 
green with metadata, i.e. Category 3 participants. Note these are plot-
ted according to the number 1 ranks, not wins. Next 4 groups: dark 
green metadata only; Last group: light green is the equally-weighted 
combination of the six individual Category 2 entries and dark green is 
this plus metadata as shown in Table 5
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this, as a machine-learning approach with similar train-
ing set coverage to CSI, which allowed the complemen-
tary approach of MS-FINDER to claim third place ahead 
of CFM. An alternative approach could be to look at this 
in terms of overall success and say that if a team had the 
correct structure as the 20th hit and other teams were 
even worse, none of the approaches were really suffi-
cient to the task and nobody should then earn a ‘win’. This 
may reflect real structure elucidation cases better, where 
investigators would likely also consider the Top 3, Top 5, 
or maybe even Top 10 structures, but is perhaps not so 
good to declare a winner in a contest as some (difficult) 
challenges would have no “winner” and the performance 
of methods on difficult challenges is also an important 
aspect of the contest. This idea was investigated in this 
publication by also providing the Top  1, Top  3, Top  10 
ranks per participant, as well as the Formula 1 Score 
(scaled Top  1–10 results) and Medal Score, where the 
medal count is based on Top 1, 2 and 3 ranks. The results 
of these metrics confirm the overall pattern observed in 
the contest: the two CSI teams outperformed all others 
in Category 2, followed by either MS-FINDER or CFM 
depending on exactly which score was used. In other 
words, the approaches have made fantastic progress, are 
complementary to one another but actually quite diffi-
cult to tell apart. Although 208 challenges is an order of 
magnitude in terms of challenge numbers above previous 
CASMIs, these numbers are still quite small and almost 
random differences between the methods resulted some-
times in large changes in the various scores, as shown 
with the different CSI entries.

Participant perspectives
Team Allen submitted two alternative versions of CFM, 
the main difference being that for CFM_retrain ver-
sion, additional training data was added from the 2014 
NIST MS/MS database. While the addition of extra train-
ing data may have been expected to improve the results, 
this appears not to have been the case for this competi-
tion. One possible reason for this is that the additional 
data were generally of poorer (often integer) mass accu-
racy as compared to that used to train the original CFM 
model. This required a wider mass tolerance (0.5 Da) to 
be used during the retraining (compared to 0.01 Da pre-
viously), which may have hindered the training algorithm 
from accurately assigning explanations to peaks, and so 
modeling their likelihoods. This highlights that while the 
production of larger, more comprehensive data sets is 
likely crucial for better training of automated methods, 
the quality of these data sets is also very important. Most 
automated methods would likely benefit from training on 
cleaner data with better mass accuracies.

Team Dührkop investigated how CSI:FingerId 
compared with a direct spectral library search. A spec-
tral library containing all structures and spectra used to 
train CSI:FingerId was created and searched with a 
10 ppm precursor mass deviation. The resulting spectra 
were sorted via cosine similarity (normalized dot prod-
uct), again with 10 ppm mass accuracy. Candidates were 
returned for 91 of the 127 (positive mode) challenges; 
the correct answer was contained in the library for 69 of 
these. The spectral library search correctly identified 63 
of the 69 structures in total, 40 of these were “trivial” (the 
correct answer was the only candidate). On average, can-
didate lists for the spectral library search contained only 
2.4 candidates, which was almost three orders of mag-
nitude below the average CASMI candidate list of 1114 
candidates. The cosine product between the challenge 
spectrum and the corresponding training spectrum of the 
same compound was only 0.76 on average; for one chal-
lenge it was below 0.01. For example, the cosine similarity 
between the spectrum for Challenge 202 (Pendimethalin) 
and the training spectrum was only 0.137, but it was still 
“correctly identified” as it was the only candidate with 
this precursor mass. This compound was correctly iden-
tified in the original CSI:FID submission, and ranked 
569 for the CSI:FID_leaveout submission. This indi-
cates that CSI:FingerId and other machine-learning 
approaches are capable of learning inherent properties 
from the mass spectra, beyond simple spectral similarity.

Team Vaniya The CASMI Category 2 contest was a 
reshuffling contest: potential structures were given to 
all participants, listing one to over 8000 potential struc-
tures for each challenge. These structures were within 
5  ppm mass accuracy and often included different ele-
mental formulas. Therefore, Category 2 was a ‘structure 
dereplication’ contest, finding the best structure within 
a pre-defined list of structures, not a completely open 
in silico test on all exhaustive structures in the chemos-
phere. In practical terms, it is important to note that an 
in silico software does not eliminate the time consuming 
aspects of data preparation, formatting, and interpreta-
tion. Counting the computing power and manual effort 
between two people, it took about 24 h to complete the 
208 challenges for the MS-FINDER submission.

From Table 2, one could say that MS-FINDER was best 
based on the mean rank (19.75), but ranks lower than 
10 are less relevant in reality. While MS-FINDER had 
almost 50% of the challenges within the top 10 ranks, so 
did every other software (or team). In reality, no chem-
ist would use a software without any database or mass 
spectral library behind it. The importance of using a 
priori knowledge is seen by Team Allen’s submission 
that improved the Top  1 correct structure hits from 39 
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to 120 challenges in Category 3, a bit more than 50% of 
the challenges. Hence, we conclude that the glass is half 
full: if only in silico methods are used, some 50% of the 
challenges are within the top  10 hits within the struc-
tures given by the CASMI organizers. However, many 
challenges would score much higher if other metadata 
are used, e.g. constraining the search database to par-
ticular classes of compounds that can be expected for a 
specific study. Which parameters need to be optimized, 
and which a priori metadata should be used? Those ques-
tions may be answered in a more tailored future CASMI 
contest.

Team Verdegem participated in Category  2 of the 
CASMI 2016 contest with MAGMa+, which is a fast, plug-
and-play method relying on combinatorial fragmenta-
tion without requiring a preliminary training phase for 
improved performance. The entire submission, includ-
ing scripting for automation and single core calculations, 
took less than 1  day. MAGMa+ outperformed MAGMa, 
showing the use of the parameter optimization per-
formed to improve several second and third ranked can-
didates to first place. MAGMa+ shared the best ranking 
for 44 of 208 challenges (see Table 2) and performed con-
siderably better than other contestants for nine of those 
challenges (21, 32, 36, 40, 52, 61, 121, 157 and 189), indi-
cating the relevance of the underlying algorithm.

Since MAGMa+ outperformed MAGMa accord-
ing to some (e.g. number of gold medals, Top 1 and 
3 ranks) but not all metrics, further more advanced 
parameter optimizations are planned to achieve a more 
global performance improvement. However, further 
improvements to the performance of MAGMa/MAGMa+ 
will require interventions of a different kind. The per-
formance of MAGMa+ decreases with increasing can-
didate numbers (in this contest 1116 on average after 
the removal of duplicate stereoisomers), however, in 
case of smaller numbers, it starts to outperform some 
of the other methods  [25, 42]. For untargeted metabo-
lite identification in biological/biomedical setups, it is 
arguably more suitable to restrict the candidate struc-
ture database to those metabolites known to exist in 
the organism under study, e.g. using only the ≈42,000 
metabolites currently present in the HMDB  [21] for 
samples of human origin. This was noted also in pre-
vious CASMI contests  [2]. Many candidate structures 
had identical scores with MAGMa+, resulting in the cor-
rect matches being given lower ranks according to the 
evaluation rules. Whereas on average 1098 structures 
were retained from the structure database based on the 
parent mass match, only 616 different score values were 
observed (on average). Team Verdegem will investigate 
more discriminative scoring options for MAGMa+ in the 
future.

Conclusions
This was the first CASMI contest to use a large set of 
challenges, targeted especially at the automated methods. 
This decision was taken on the basis of feedback from 
several representatives at the 2015 Dagstuhl seminar in 
Computational Metabolomics [51], to allow a statistically 
more robust comparison of the methods. The decision to 
provide candidates this year was also on the basis of Dag-
stuhl discussions, to eliminate the data source as an influ-
ence on the contest outcomes and thus focus more on the 
role of the in silico fragmentation approaches themselves.

From the perspective of the organizers, it was a great 
success to have participants contribute from each of the 
major different approaches; MetFrag was added inter-
nally for the sake of completion as this was not otherwise 
represented and allows this paper to complement the 
work in [25] on a different dataset. Very interesting and 
constructive discussions have resulted from choosing to 
prepare this article with “all on board” and the post-con-
test analysis has been instrumental in teasing apart some 
of the differences between the actual contest results.

The contest winners, Team Brouard with 
CSI:IOKR_A in Category 2 and Team Kind with MS-
FINDER+MD in Category 3 prove that the latest develop-
ments in this field have indeed resulted in great progress 
in automated structure annotation. Despite the very 
large candidate sets, the majority of methods achieved 
around 50% in the Top  10, which is very positive for 
real-life annotation, especially with an outlook to higher-
throughput untargeted analysis. The combination of the 
Category  2 submissions resulted in even better overall 
performance than each individual method, indicating 
the complementarity of the approaches and supporting 
the potential use of consensus fragmentation results as 
has been shown earlier for fragmenters [12, 52] and also 
recently for toxicity modeling using a more sophisticated 
weighting than that attempted here [53]. The role of the 
metadata and comparison with Category  1 shows that 
sample context cannot be ignored during identification.

In this contest, few participants used the CASMI train-
ing set provided, which was also a suggestion from Dag-
stuhl. In the end this was too “big” for pure parameter 
optimization (where a few spectra may suffice), but too 
small for serious method training. Team Brouard added 
it to their other training data in their original submis-
sions, while it was used to determine the score weights 
in the MetFrag entries. Team Vaniya did not use this 
for MS-FINDER to avoid over-training; Team Allen due 
to a lack of time. One conclusion from the post-contest 
evaluation is that future CASMIs could consider provid-
ing an extensive, open training dataset (e.g. the GNPS/
MassBank collection used by CSI:FID) and ensure 
all CASMI challenges are absent from this set. This 
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would, however, force all machine-learning approaches 
to retrain their methods prior to submission. Another 
option is that the organizers would have to ensure that 
all challenges are outside all available datasets—which 
is possible but also difficult with the number of private 
and closed collections available. A compromise could be 
to ensure that a sufficient majority of the candidates are 
outside the “major” mass spectral resources, with some 
overlap to ensure sufficient challenges are available (find-
ing data sources for CASMI is a challenging task!) and 
require participants to submit InChIKey lists of their 
training sets with their submissions; as done with Teams 
Allen, Brouard and Dührkop post-contest here.

Challenges for future contests remain true unknowns, 
i.e. substances that are not present in compound data-
bases. This would currently be feasible for manual 
approaches and was attempted already once in CASMI 
2014, Challenges 43–48 [54], albeit with limited success. 
Automated approaches would need either a metabolite 
database such as MINEs [50] or structure generation 
[55], but finding sufficient appropriate data for an auto-
mated category will also be a challenge for the contest 
organizers, let alone the participants! The ability to dis-
tinguish stereoisomers using MS/MS alone also remains 
a challenge for the future that is not yet ripe enough for 
a CASMI contest; distinguishing (positional) isomers is 
likely sufficient challenge for the next few years.

The huge improvements in machine learning 
approaches will continue as more training data becomes 
available—the more high quality data with likewise high 
quality annotations that becomes available in the open 
data domain will ensure that the best computational 
people can work on the best identification methods. The 
complementarity of the chemistry behind MS-FINDER 
and the machine learning behind CSI shows that devel-
opments in both directions will carry the field forward.

The “take home” messages of CASMI 2016 are:

  • The latest developments in the field, CSI:IOKR and 
MS-FINDER were well-deserved winners of Catego-
ries 2 and 3, respectively.

  • The complementarity of different approaches is clear; 
combining several in silico fragmentation approaches 
will improve annotation results further.

  • The best methods are able to achieve over 30% Top 1 
ranks and most methods have the correct candidate 
in the Top  10 for around 50% of cases using frag-
mentation information alone, such that the outlook 
for higher-throughput untargeted annotation for 
“known unknowns” is very positive.

  • This success rate rises to 70% Top  1 ranks (MS-
FINDER) and 87% Top 10 ranks (CFM) when includ-
ing metadata.

  • The machine learning approaches clearly improve 
with larger training data sets—the more high quality 
annotated, open data that is available, the better they 
will get.

  • Developments that focus on the chemistry such as 
MS-FINDER are also essential, especially to cover 
the cases where no training data is available.

  • Despite the above, several challenges remain where 
the simple combinatorial approach of MetFrag and 
MAGMa still performs best.

  • Improved incorporation of experimental “metadata” 
will increase annotation successes further, especially 
for large candidate sets.

  • Challenges for future contests remain true 
unknowns, assessing the ability of methods to distin-
guish positional isomers and eventually also stereoi-
somers.

Finally, a big thank you to all those who participated in 
CASMI 2016 in any way, shape or form and keep an eye 
on the CASMI website [1] for future editions.
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Data Sharing and Data Standards 99
My contributions in the area of Data Sharing in metabolomics include developer feedback and implementing
support for these formats in e.g. the metabolite profiling tools and MassBank [MCS10, HRS19], [DCN11,
CMB12, GJS14]. I implemented support for the formats in e.g. the metabolite profiling tools and worked on
the implementation of data models together with students [KN06, GN07, Neu07].

With Daniel Schober (PostDoc in my group) we contributed best practices in creation of ontologies [SMM13,
SWJ14] and coordinated the development of a data standard for NMR [SJW18].

In the area of experimental metadata, I contributed early feedback during the development of ISA-Tab with
example datasets, feedback and software patches [RSBM10, GBNM14] which is used in the MetaboLights
repository [HSC13], and since many years I am the most active submitter. I prepared and uploaded
MTBLS2, MTBLS10, MTBLS74, MTBLS160, MTBLS169, MTBLS188, MTBLS291, MTBLS297, MTBLS338,
MTBLS341, MTBLS381, MTBLS389, MTBLS441, MTBLS433, MTBLS544, MTBLS671, MTBLS687 and MT-
BLS1430. This expertise was important for leading work packages in the EU FP7 project COSMOS [SNS15]
and the H2020 project PhenoMeNal [PWW18]. For several years I am contributing to the development of
mzTab [GJS14, HRS19], a standard for reporting of results in proteomics and metabolomics. For reference
spectra, we co-developed the SPectraL haASH (SPLASH), a data-driven identifier for spectra [WMM16].

With this expertise, I was active in standards-developments and promotion [KFS10, SRSF12], and coordi-
nated a review paper on practical standards in metabolomics [RSSA16]. These efforts continue within the
German de.NBI network and the European ELIXIR infrastructure [vRBC17].
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mzML—a Community Standard for Mass
Spectrometry Data*
Lennart Martens‡§, Matthew Chambers¶, Marc Sturm�, Darren Kessner**,
Fredrik Levander‡‡, Jim Shofstahl§§, Wilfred H. Tang¶¶, Andreas Römpp��,
Steffen Neumann,a Angel D. Pizarro,b Luisa Montecchi-Palazzi,c Natalie Tasman,d
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Mass spectrometry is a fundamental tool for discovery
and analysis in the life sciences. With the rapid advances
in mass spectrometry technology and methods, it has
become imperative to provide a standard output format
for mass spectrometry data that will facilitate data shar-
ing and analysis. Initially, the efforts to develop a stand-
ard format for mass spectrometry data resulted in mul-
tiple formats, each designed with a different underlying
philosophy. To resolve the issues associated with hav-
ing multiple formats, vendors, researchers, and soft-
ware developers convened under the banner of the
HUPO PSI to develop a single standard. The new data
format incorporated many of the desirable technical at-
tributes from the previous data formats, while adding a
number of improvements, including features such as a
controlled vocabulary with validation tools to ensure con-
sistent usage of the format, improved support for selected
reaction monitoring data, and immediately available im-
plementations to facilitate rapid adoption by the commu-
nity. The resulting standard data format, mzML, is a well
tested open-source format for mass spectrometer output
files that can be readily utilized by the community and

easily adapted for incremental advances in mass spec-
trometry technology. Molecular & Cellular Proteomics
10: 10.1074/mcp.R110.000133, 1–7, 2011.

Mass spectrometry (MS)1 has recently emerged as a major
discovery tool in the life sciences (1). This analytical technique
is used to analyze the molecular composition of a biological
sample by ionizing the sample or analyte molecules and
then measuring the mass-to-charge ratios of the resulting
ions. The data from an MS experiment consist of mass
spectra that are used to identify, characterize, and quantify
the abundance of the molecules of interest. The resulting
MS spectra, along with their associated metadata (e.g. ex-
perimental protocol, MS instrumentation, operational pa-
rameters, etc.), are then semi-automatically processed by
specialized software packages to identify or quantify the sam-
pled ions. The inherent variability introduced by using different
instruments, instrument software, and experimental condi-
tions, however, affects the downstream ability to analyze,
integrate, and compare data sets originating from different
MS experiments.

Indeed, with the ever-increasing use of mass spectrom-
etry, two issues have arisen in terms of handling MS data: (i)
the necessity to share data throughout the scientific com-
munity in order to facilitate integration and comparison (2),
and (ii) the importance of utilizing open and readily acces-
sible standard formats that verifiably capture a consistent
amount of crucial information. The importance of address-
ing these issues has been further emphasized in prominent
journal editorials (3–4). Data repositories have since been
created to allow data to be shared, including Tranche (5),
GPMDB (6), PRIDE (7), and PeptideAtlas (8), among others
(9), and various proposed standard formats for MS data
(10–14) were developed. Other formats such as JCAMP-DX
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(http://www.acornnmr.com/JCAMP.htm; www.jcamp.org),
which was designed for IR spectrometry and adapted to
NMR and mass spectrometry, and NetCDF are quite vari-
ably implemented, difficult to validate, and cannot encode
extensive metadata in a standard fashion and therefore
have not gained much use for proteomics applications and
other complex MS analyses. Analytical Information Markup
Language (AnIML; http://animl.sourceforge.net/), which
aims to encompass several analytical platforms, including
eventually mass spectrometry, is still being designed. For
mass spectrometry-based proteomics workflows, mzXML
(13) and mzData (14) have been the most widely used open
formats for several years.

However, each of these initial efforts to develop an open,
vendor-neutral XML data format to store MS information was
undertaken with a different underlying purpose. One format,
mzData, was developed by HUPO-PSI as a data exchange
and archive standard (14, 15), and was implemented as such
in PRIDE (16). The other format, mzXML, was developed at
the Institute for Systems Biology in an effort to streamline their
data processing software (17), and became a popular de-
facto standard format. These two formats also differed in their
underlying philosophies regarding flexibility. mzData utilized a
controlled vocabulary that could be frequently updated as the
technology advanced. In contrast, mzXML had a strict
schema that used enumerated attributes to describe the aux-
iliary information, such that support for new annotations re-
quired revisions to the schema and software updates.

Although each of the proposed formats satisfied the re-
quirements of openness and accessibility, the multiplicity of
the formats proved to be confusing and distracting to scien-
tists and computer programmers alike. In order to resolve this
situation, the teams that developed mzData and mzXML,
along with many other researchers and developers from aca-
demia, industry, and vendors joined forces in the Human
Proteome Organization (HUPO) Proteomics Standards Initia-
tive working group for mass spectrometry standards (PSI-
MS), and set out to create a single MS data standard that
would build on the strengths of the previous efforts. The
challenge in creating the new unified output format, called
mzML, was therefore the resolution of the opposing philoso-
phies of mzXML and mzData, while retaining the best techni-
cal attributes of these two formats.

History—In 2006, the unification process was initiated at a
PSI workshop based on the guiding design principles deter-
mined by members representing instrument and software
vendors, data repositories, end users, and the teams that built
the mzXML and mzData standards. The designers of mzML
focused on four key objectives: (i) creation of a simple format,
(ii) elimination of alternate ways to encode the same informa-
tion, (iii) support for all the features of both mzXML and
mzData, and (iv) validation through implementation prior to
release. Taken together, these goals would lead to a single
unified format that could support the current capabilities of

mzXML and mzData and that could be easily supported by
vendors and current software, with further enhancements to
be considered in future releases. In order to facilitate swift
adoption and uniform implementation of the new standard
format, the participants of PSI-MS also created open source
tool sets that enabled developers as well as end users to
immediately pick up the format without having to write their
own software.

Progress on the format was made at regular PSI workshops
as well as special workshops dedicated to mzML. In June
2008, the mzML 1.0 standard format was released (18, 19).
However, despite the rather rigorous review process (20),
several shortcomings became apparent as vendors quickly
moved to implement the new format, most notably insuffi-
cient support for precursor ion scans and neutral loss
scans, and a severe file size inflation problem for Selected
Reaction Monitoring runs (all of which represented novel
features that had been absent from the precursor formats).
These deficiencies, along with several other minor issues,
were remedied by the PSI-MS working group in collabora-
tion with the implementers that had detected the issues. As
a result, mzML version 1.1.0 was released in June 2009,
with the expectation that this new version will remain stable
for quite some time.

Design—In addition to incorporating the best technical at-
tributes of the predecessor formats, several key innovations
were introduced in mzML. First, in order to support new
hybrid instruments such as the LTQ Orbitrap and LTQ FT,
mzML can specify multiple operational configurations for an
instrument, and link individual spectra to a specific configu-
ration. Another new feature is the ability to capture Selected
Reaction Monitoring data efficiently, through the newly intro-
duced chromatogram elements. More detailed improvements
are also found in mzML, such as the ability to encode isolation
window size, enabling gas phase fractionation/MSe data to be
correctly annotated, and accommodating the presence of
multiple precursor ions within a typical liquid chromatography
(LC)-MS/MS isolation window (21). Associated with mzML
comes a rich, schema-linked controlled vocabulary (CV) that
allows accurate and unambiguous annotation of metadata. In
addition, mzML comes with a set of semantic validation rules.
These rules are encoded in a mapping XML document ac-
cording to the PSI Validator framework (22)(see http://www.
psidev.info/validator) and have been implemented in two in-
dependent mzML validator applications (see http://www.
psidev.info/index.php?q�node/390).

The full technical details of the mzML standard are available
online, together with complete specification documentation,
graphical depictions of its structure, and various example files
at http://www.psidev.info/index.php?q�node/257. Next we
will highlight the primary technical aspects of the mzML
standard and discuss current implementations.

All of the information from a single MS run, including the
spectra and associated metadata, is contained within the
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mzML file. Like its predecessors, mzML is encoded in XML.
An XML schema definition defines the format structure, and
many industry-standard tools are readily available to validate
whether an XML document conforms to its XML schema
definition.

The overall mzML file structure (Fig. 1) is as follows (ele-
ments presented top-to-bottom): �cvList� contains infor-
mation about the controlled vocabularies referenced in the
rest of the mzML document; �fileDescription� contains
basic information on the type of spectra contained in the
file; �referenceableParamGroupList� is an optional element
that of groups of controlled vocabulary terms that can be
referenced as a unit throughout defines a list the document;
�sampleList� can contain information about samples that
are referenced in the file; �instrumentConfigurationList�
contains information about the instrument that generated the
run; �softwareList� and �dataProcessingList� provide a
history of data processing that occurred after the raw acqui-
sition; �acquisitionSettingsList� is an optional element that
stores special input parameters for the mass spectrometer,
such as inclusion lists. These elements are followed by the
acquired spectra and chromatograms. Both spectral and
chromatographic data are represented by binary format data
encoded into base 64 strings, rather than human-readable
ASCII text for enhanced fidelity and efficiency when dealing
with profile data. This design choice does not enjoy unani-
mous approval, but has been agreed upon by the majority of
designers.

In order to enable fast access to the file, mzML was de-
signed with a standardized but optional mechanism for ran-
dom access indexing, in the same way as mzXML. This en-
ables programs to directly locate a specific spectrum within
the file during processing, rather than having to read the file
sequentially. Although there is debate about whether to in-
clude a random access index because of the possibility of
index corruption, years of experience with mzXML have dem-
onstrated that these problems are rare and are outweighed by
the benefits of having an index. To compensate for the pos-
sibilities of an error in the index, reader software can easily be
written to verify the offsets and automatically rebuild the index
if there is an error. To make the index completely optional,
mzML was designed so that the primary document does not
have an index, but the document can still be enclosed in a
wrapper schema that has an index. Thus, an mzML file may
contain either a plain or indexed mzML document and reader
software is designed to handle either case transparently.

Finally, although the open and standardized XML formatting
provides clear advantages, it also implicitly requires a certain
verbosity that enlarges the size of the data files by as much as
a factor of 10 for profile-mode spectra without compression
when compared with the original raw files. However, enabling
in-line zlib compression typically reduces the files by a factor
of 2 below the uncompressed form. Further, because any
remaining size increase is primarily because of the presence
of XML tags, standard and commonly used compression tools
can be used to reduce this size overhead for storage and
transport of mzML files. Compression factors for mzML files
can vary by compression algorithm, but GZIP, zip, and 7zip
(all freely available compression algorithms, supported on
many platforms) provide size reductions of another factor of 2,
thus essentially offsetting the size increase initially seen in
uncompressed files. Profile mode spectra often undergo
peak picking (if desired by the user) during conversion to
mzML and therefore lead to smaller files than the original. A
typical ion trap file with already centroided peaks in the
original file becomes 1.8� larger with mzML without com-
pression, or just 1.3� larger when using in-line zlib com-
pression, and 0.5� (i.e. half as large as the original) when
using both in-line compression and total file compression
with the gzip algorithm. Some applications are able to work
directly with gzipped mzML files, thus providing an overall
savings in disk space, assuming the original files are ar-
chived elsewhere. Nonetheless, overall additional disk
space costs associated with using standard formats are
typically much lower than the human costs associated with
trying to work with multiple proprietary formats.

Controlled Vocabulary—In an effort to prevent encoding the
same information in slightly different ways and to provide
support for new technologies with mzML, we have designed
the format to encode most of the metadata in �cvParam�

elements, which provide a reference to a specific concept
within the PSI MS controlled vocabulary (CV). These CV terms

FIG. 1. A schematic representation of mzML, showing key ele-
ments of the format. Each rectangle represents an XML element.
See main text for a full description.
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have explicit and detailed definitions, including the data type
and type of units required. The controlled vocabulary is ad-
justable and new CV terms can be added without modification
of the mzML schema. Whenever an implementer requires a
new term to describe a new concept, the proposed term and
definition can be mailed to the PSI-MS vocabulary list (psidev-
ms-vocab@lists.sourceforge.net), where the addition can be
discussed and then added to the CV within hours or days.
Additionally, other CVs can also be used to annotate specific
elements; the NEWT ontology for species can for instance be
used to annotate the sample.

Semantic Validation—To enforce the use of CV terms, a
semantic validator was released with the data format. Seman-
tic validation provides a simple yet powerful means to assess
the completeness and semantic correctness of the metadata
in an mzML file, automatically spotting errors such as the
absence of a required binary array type annotation, the incor-
rect annotation of an ionization source with a detector-spe-
cific CV term, or the use of two conflicting CV terms where
only one can be valid at a time. We have made the validator
available as a webpage with file uploading, or as a standalone
tool for local validation. Furthermore, because the mzML for-
mat is designed to support full MIAPE (10, 23) compliance,
automated semantic analyses can be carried out a priori by
any consumer of an mzML data file to ascertain the presence
of the required minimal information. An additional benefit is
that the metadata can be customized for different types of
data, so that different types of spectra can be encoded using
the same tags, but with different metadata.

mzML Development Process—Development of the mzML
format has followed the overall HUPO PSI community stand-
ard development process, which in turn is largely based on
the highly successful open source software development
model. A centralized group of core volunteers takes care of
coordinating the efforts of the many enthusiastic community
members that contribute their time and expertise at different
times, and a full record of the entire process is maintained
through an online mailing list that is directly accessible to all.
This development model has been proven to be (perhaps
paradoxically) extremely robust as compared with more
tightly organized and coordinated projects. Indeed, even
though the core development team of mzML has changed
substantially over the years, this never impacted the develop-
ment of the standard proper.

The mzML standard is furthermore deemed quite future
proof as it has been developed with change in mind. The
required flexibility of the format comes primarily from its
mixed structure—certain aspects of the data are rather rigidly
defined in the XML format specification, such as the necessity
to include an instrument description. Yet the actual form that
this description takes is quite open, and not defined by the
XML schema. As an example, consider the “source” element
for an instrument. The different types of sources are defined
solely through controlled vocabulary parameters, and if a new

source is invented tomorrow, a simple update to the CV will
automatically enable mzML files to communicate the use of
this new source. Furthermore, because CV terms are linked
through defined relationships, this new source term will be
immediately recognizable to existing software as describing a
source, because it will have an “is a” relationship to the
metaterm “ion source.” This approach is employed in virtually
every element in mzML, making the format extremely flexible
without requiring any updates to either XML schema or soft-
ware parsers. Changes need thus only be made to the CV,
which is a simple text file that is made available in a version
control system online, and that can be updated and read
on-the-fly. Indeed, because the first public release of mzML,
numerous updates have already been introduced to the con-
trolled vocabulary without effecting any downstream changes
on the XML schema or the existing software.

Implementations—Because of the broad community partic-
ipation in PSI-MS, there are several implementations of the
mzML format in software tools, legacy data converters, and
programming libraries for a variety of languages (see http://
www.psidev.info/index.php?q�node/257 for a current sum-
mary). In fact, the wide variety of software that uses mzML
continues to grow and is one of the strengths of mzML. The
ProteoWizard software project (24–25) has provided the
framework for testing and reference implementation of mzML
in its final stages of development. It consists of a set of
open-source, cross-platform tools and libraries written in
C�� for proteomic data analyses. The libraries provide a
well-tested framework that unifies data file access and per-
forms standard chemistry and LCMS dataset computations,
making ProteoWizard an ideal library to include in any soft-
ware project that needs to add mzML read or write support.
ProteoWizard is available under a very permissive license,
which allows the library to be used in commercial software
without affecting the license terms of that software. The Pro-
teoWizard library is already used by several unrelated soft-
ware projects to provide mzML support. The Proteowizard
“msconvert” tool can convert many different vendor formats
to mzML, as well as convert mzXML files into mzML.

OpenMS (26), an open-source C�� library for mass spec-
trometry, also provides classes for reading and writing mzML
which can be easily integrated in other software tools. Addi-
tionally, it supports both XSD validation and semantic valida-
tion of mzML files. This functionality of OpenMS was used to
implement an off-line tool for validation of mzML files which is
part of TOPP - The OpenMS Proteomics Pipeline (27). Simi-
larly, the NCBI C�� toolkit and the jmzML Java toolkit (28)
provide libraries for reading and writing mzML. Because these
libraries are already available to simplify addition of mzML
support, several software applications are already being dis-
tributed with mzML 1.1 support. These include search en-
gines and postprocessing software such as X!Tandem (29),
Myrimatch (30), the Trans-Proteomic Pipeline (TPP) (31–33),
and the Proteios Software Environment (34). Most vendors
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have committed to provide mzML support in the next release
of their software.

The widespread support for mzML in existing, commercial
tools, along with the availability of several production-grade
open source software packages and libraries in a variety of
programming languages, ensures that data encoded in the
mzML format is readily accessible to any interested end user
or software developer.

Example Usages—Because the main advantages of open
data standards over closed, proprietary formats are interop-
erability and portability, we have chosen two corresponding
use cases in the field of mass spectrometry-based proteom-
ics to illustrate some of the usages of the mzML data stand-
ard. First, many laboratories employ multiple instruments
from different vendors for their analyses. Although this het-
erogeneity in instrumentation confers the important advan-
tage of providing complementary strengths of the different
machines, it also creates a logistical problem at the level of
data processing. The various proprietary data formats em-
ployed by each instrument to report its data, are essentially
tied to these specific instruments - even different models
from the same vendor can deliver incompatible output files.
As a result, the development of software that can operate on
data from any instrument, such as the tools in the Trans-
Proteomic Pipeline, becomes quite difficult indeed. This in
fact was one of the main reasons why the original mzXML
format was developed as part of the Trans-Proteomic Pipe-
line: to unify the various vendor formats in a common, open
data structure that maintains sufficient amounts of data to
reliably support various kinds of downstream processing,
including identification and quantification of proteins. As a
direct descendant from mzXML, mzML provides these same
benefits, allowing data from many instruments to be trans-
formed (using the freely available ProteoWizard or TPP
tools) into the common mzML format, which is in turn read
and interpreted homogenously by all downstream data
processing software applications.

A second important use case of standard data formats
concerns the dissemination of data to the wider scientific
community, an endeavor that is very deeply ingrained in the
life sciences (35). If data were disseminated in proprietary
formats, three problems would occur (discussed in detail in
(36)): (i) referees wishing to evaluate (privately) deposited data
during peer review would have difficulties accessing, inter-
preting, and validating the data and derived conclusions un-
less they happened to own the same instruments and soft-
ware compatible with the format, (ii) after publication of the
data, interested consumers would face similar difficulties in
accessing and processing the data, and (iii) over a relatively
short time span, all data would become unreadable, as the
required vendor-specific software will no longer be supported
or available. By employing an open, XML (and therefore ulti-
mately text-based) format such as mzML, these three key
issues are implicitly circumvented.

Both of these examples, of course, rely on the availability of
software supporting the format, but as can be seen from the
previous section, many actively supported free and open
source implementations in a variety of programming lan-
guages and for a variety of platforms are already available for
mzML today, and many other implementations are underway
or will be available with their next software release. Finally, it
should be noted that the two use cases are in fact connected:
by switching to mzML as the format for within-lab data proc-
essing and analysis, the step to disseminate in mzML be-
comes effectively trivial.

Integration with Other Standards in the Life Sciences—The
data accommodated by mzML will most likely not stand alone
in a modern-day workflow. Preceded by sample treatment
and sample separation (often through chromatography), mass
spectrometry data is then usually further processed to identify
or quantify the recorded signals. As such, it is important to
note that HUPO PSI has also released standards for protein
separation including gel based and column chromatography
based methods (http://www.psidev.info/index.php?q�node/
83), for identification of molecules from mass spectra (http://
www.psidev.info/index.php?q�node/319), and for the anno-
tation of modifications on proteins (http://www.psidev.info/
index.php?q�node/319). Furthermore, the overall inte-
gration of standardized data and metadata across domains in
the life sciences is being actively undertaken by the Reporting
Structure for Biological Investigations (RSBI) working group of
the MGED Society (http://www.mged.org), which has culmi-
nated in the ISA-TAB format (37). Minimal information assur-
ance in all the relevant formats on the other hand is coordi-
nated through the MIBBI project (38).

CONCLUSION

In 2009, three years after its conception, mzML 1.1 was
released and has proven to be a solid format that can easily
accommodate incremental advances in mass spectrometry
technology, while providing a good foundation for extension
to accommodate encoding of data from new technologies. An
existing set of software libraries that support mzML will en-
able quick adoption of the format. However, because the
precursor formats are also highly capable, the incentive to
migrate existing workflows is low, and the adoption of mzML
in practice will be gradual. An initial wave of implementations
necessitated a revision of 1.0 to 1.1, but since the release of
1.1, there have not been any significant changes necessary. It
is therefore expected that 1.1 will remain stable for quite some
time. The involvement of instrument vendors in PSI-MS fur-
ther ensures that mzML export will become available on in-
strument software by default.

Like all PSI standards, mzML 1.1 has gone through a formal
review process called the PSI document process (20), which
consists of three review periods managed by the PSI Editor:
an internal review, an external review by invited experts, and
a public review stage. As such, we believe that mzML 1.1 can
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now readily be utilized by the community at large, providing a
single, open, and accessible community standard format for
mass spectrometer output files. With CV annotations, seman-
tic validation, and MIAPE compliance as part of the design of
the standard, unambiguous reporting of metadata will thus
become standard practice, ensuring that mzML can be used
as a highly reliable data exchange format. The PSI-MS work-
ing group will meanwhile continue to refine the controlled
vocabulary and coordinate software development surround-
ing mzML to ensure that mzML stays up-to-date with the
progress of the field.
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Susanna-Assunta Sansone5, Julian L. Griffin2,3 and Christoph Steinbeck1,*

1European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD,
2MRC HNR, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL, 3Department of Biochemistry
and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK, 4Department of
Stress- and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
and 5Oxford e-Research Centre, University of Oxford, 7 Keble Road, Oxford OX1 3QG, UK

Received August 15, 2012; Revised September 22, 2012; Accepted October 1, 2012

ABSTRACT

MetaboLights (http://www.ebi.ac.uk/metabolights) is
the first general-purpose, open-access repository for
metabolomics studies, their raw experimental data
and associated metadata, maintained by one of
the major open-access data providers in molecular
biology. Metabolomic profiling is an important tool
for research into biological functioning and into the
systemic perturbations caused by diseases, diet and
the environment. The effectiveness of such methods
depends on the availability of public open data across
a broad range of experimental methods and condi-
tions. The MetaboLights repository, powered by the
open source ISA framework, is cross-species and
cross-technique. It will cover metabolite structures
and their reference spectra as well as their biological
roles, locations, concentrations and raw data
from metabolic experiments. Studies automatically
receive a stable unique accession number that can
be used as a publication reference (e.g. MTBLS1). At
present, the repository includes 15 submitted studies,
encompassing 93 protocols for 714 assays, and span
over 8 different species including human, Caenor-
habditis elegans, Mus musculus and Arabidopsis
thaliana. Eight hundred twenty-seven of the metabol-
ites identified in these studies have been mapped
to ChEBI. These studies cover a variety of techniques,
including NMR spectroscopy and mass spectrometry.

INTRODUCTION

Metabolomics is the systematic study of the small molecu-
lar metabolites in a cell, tissue, biofluid or cell culture
media that are the tangible result of cellular processes or
responses to an environmental stress (1,2). The identifica-
tion and quantification of such metabolites provide unique
insights into the metabolic processes that are taking place
in the cellular environment. Metabolic profiles taken from
body fluids have the potential to act as biomarkers for
many different diseases, an approach that has already
shown value in, for example, heart disease and diabetes
(3), the effects of diet (4) and interactions with the envir-
onment (5). Metabolomics technologies yield many
insights into basic biological research in areas such as
systems biology and metabolic modeling (6), pharmaceut-
ical research (7), nutrition (8) and toxicology (9).
However, to harness the full potential of metabolomics,
researchers needs access to data and knowledge to
compare, contrast and make inferences from the results
they obtain in their experiments (10). The metabolome is
the total complement of metabolites present in a biological
sample under given genetic, nutritional or environmental
conditions. Since such conditions can vary dramatically, it
is clear that databases will need to collect numerous ex-
periments together for a given species to accurately reflect
the underlying diversity and complexity. In recent years,
several instrument or species-specific dedicated
metabolomics reference databases have been created.
Examples include the Human Metabolome Database
[HMDB, http://www.hmdb.ca, (11)], the Biological
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Magnetic Resonance Data Bank [BMRB, http://www.
bmrb.wisc.edu, (12)], METLIN [http://metlin.scripps.
edu, (13)], LIPIDMAPS [http://www.lipidmaps.org, (14)]
and more general databases such as KNApSAck (http://
kanaya.aist-nara.ac.jp/KNApSAcK/). However, the
various metabolomics communities worldwide have not
had a global open repository to share experimental data
and associated metadata across species and platforms.
MetaboLights will (i) provide a single point of access to
worldwide data and knowledge in metabolomics, (ii) fa-
cilitate the development and adoption of a common data
sharing format, (iii) ensure data traceability and reprodu-
cibility and (iv) progressively promote interoperability
across existing resources.
MetaboLights consists of two distinct layers: a reposi-

tory, enabling the metabolomics community to share
findings, data and protocols for any form of metabolomics
study, and a reference layer of curated knowledge about
metabolites (forthcoming). MetaboLights is not intended
to replace specialist resources but is specifically designed
to build on prior art and extensively collaborate with the
existing databases to ensure that data are exchanged and
that assimilation efforts target gaps in worldwide available
knowledge. We are dedicated to close collaboration with
all major parties involved in the creation of this prior art,
such as the Metabolomics Society, Metabomeeting and
the Metabolomics Standards Initiative (MSI) (15).
MetaboLights is working towards the setup of formal
data sharing agreements with major resources such as
the HMDB, the Golm Metabolome Database (16),
MetabolomeExpress (17) and the Riken Metabolomics
Platform (18). MetaboLights contains references to
identified metabolites in existing databases, such as
HMDB and ChEBI (19), and does not duplicate
compound information residing in these external data-
bases. Rather, it uses programmatic access to retrieve
relevant data to display a unified metabolite-centric view
to our users. In the future, such metabolite-centric views
will be extended to show metabolites in the context of
pathways, harnessing the Reactome database of biochem-
ical pathways (20). In this article, we report on the struc-
ture and content of the MetaboLights repository and
describe on-going work in the development of the refer-
ence layer.

DATABASE DESCRIPTION

The MetaboLights repository can be accessed at http://
www.ebi.ac.uk/metabolights and http://metabolights.org.

Database content

We store and display an extensive set of associated infor-
mation for studies in MetaboLights. This includes submit-
ter and author information, publication references, the
study design, protocols applied, names of data files
included, platform information and metabolite informa-
tion. The metabolite information includes a description,
external database identifiers, formula and intensity or con-
centration, and where the metabolite was identified in the
sample.

At present, the repository includes 15 submitted studies, of
which 10 are publicly visible. These studies encompass 93
protocols for 714 assays, and span over 8 different types of
organism including human, Caenorhabditis elegans, Mus
musculus and Arabidopsis thaliana. Eight hundred
twenty-seven of the metabolites identified in these studies
have been mapped to ChEBI and 136 to HMDB.
Thirty-eight users are currently registered.

Technical architecture

The MetaboLights repository is based on open source
freely available software and tools. The web application
runs on an Apache Tomcat server and the database
backend is an Oracle database, but other standard SQL
databases like MySQL and PostgreSQL can be used.

At the core of the database implementation is the ISA
framework (21). The main database schema is powered by
the ISA BioInvestigation Index (BII), which contains user
information and all searchable metadata for the studies.
Currently, there are 72 tables in this database schema.
Any data-files that are associated with a study are stored
on a traditional file system, and only their reference is
stored in the database. Each study has a separate folder
on the file systems containing the study metadata and
associated files. This ensures a relative small database
schema, but individual studies can be very large depending
on the size of attached data files.

Searching for data

The online search facility provides the ability to search
using free text through most of the underlying data
fields, including the study description, study title, proto-
cols, metabolites and authors. Currently, we support
free-text searching and you can combine multiple search
terms, for example ‘human urine’ will give you all studies
where you find the terms ‘human’ and ‘urine’ are used.
The search result page, as illustrated in Figure 1, shows
general study information like the submitter of the study,
the study title, public release date, organism(s), study
design and platform.

It is possible to further refine the search result using
‘search facets’. Search facets give the user the ability to
limit the search results to a selection of species, platform
and metabolite. For example, if you select a specific
organism from the filter, the search results are limited to
show only studies containing this organism. The search
mechanism in MetaboLights is implemented using a text
index (Lucene index) so no direct backend database
queries are performed during a general search. This
ensures a fast search facility.

Figure 1 shows the search results page when searching
for ‘human’ across all of MetaboLights. To see the details
of a study, the user can simply click on the study title.
Example of what is displayed in the study details are in
Supplementary Figures S1–S4. These images show screen-
shots of the web interface of MetaboLights with study
data loaded for an NMR-based metabolomics study,
MTBLS1. The Study details page consists of four tabs.
The first tab (Supplementary Figure S1) shows information
about the submitters, the relevant dates, study title and
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description, organisms, study design, publications and the
experimental factors. The next tab (Supplementary
Figure S2) details the protocols used during this study,
from how the sample was collected through to the metab-
olite identification. Next, we have the data tab
(Supplementary Figure S3). Here, we show data files for
this study, detailed for technology platform used and ex-
perimental factors. Finally, we have metabolite identifica-
tion (Supplementary Figure S4). Each identified metabolite
has an external database reference, for example a ChEBI or
HMDB identifier. Metabolites identified with a ChEBI ac-
cession show additional molecule description. The
identified metabolite tab details which sample the
compound was identified in. Unknown compounds are
listed without a database reference.

Browsing data

Users can browse studies in MetaboLights using the
‘browse’ link. This will give a complete list of all the
public studies currently available. If the user is registered
and currently logged in to MetaboLights, additional
private studies may be displayed. These private studies
are either under the users control or have been directly
shared from other users. To limit the number of studies
in the browsing list, the user can activate the same facets
available for a general search.

Downloads and programmatic access

MetaboLights software components are open source and
all data are free to download and use for any purpose. All
public studies are downloadable as ISA-Tab (22)
metadata files with associated data files directly from the
online study details page, and from the MetaboLights
download page http://www.ebi.ac.uk/metabolights/
download. A direct bulk download using ftp is available
from ftp://ftp.ebi.ac.uk/pub/databases/metabolights/,
organized into sub-folders for public studies. There are
no web services for programmatic access available at
present. However, this functionality is scheduled for a
future release of the repository.

Submitting data

MetaboLights accepts experimental descriptions in ISA-
Tab format, which can be created by the ISAcreator editor
tool. MetaboLights also offers different templates for the
ISAcreator tool to accommodate the description of differ-
ent types of metabolomics experiments. ISAcreator is a
standalone Java desktop application that enables re-
searchers to report experimental information, associate
raw and processed data files, and submit the collated in-
formation to the MetaboLights database. Building on the
OSGI plugin architecture, the ISAcreator has been

Figure 1. Searching for ‘human’ in the MetaboLights web application.
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extended to create a ‘Metabolite Identification’ add-on to
capture relevant information for all small molecules
identified in a study, with a link to a relevant chemical
database (Figure 2). MetaboLights also accepts studies
that have unknown or incomplete metabolite identifica-
tion. This information has the potential to facilitate the
identification of unknown metabolites in the future.
Currently, we accept all data formats for ‘raw’ instru-

mental data, converted open source file formats and any
processed data, but we strongly recommend that pro-
cessed data should be made available in open formats,
such as mzML (23) for MS data.
MetaboLights implementsmetadataguidelinesaccording

to the recommendations of the Metabolomics Standards
Initiative (MSI). TheMSI defined a set of metabolomics re-
portingstandardsbyharnessingandcoordinatingtheefforts
of several pre-existing international initiatives. MSI de-
veloped checklists and standards that have subsequently
been adopted by the community, including minimum
metadata reporting recommendations (24).
To facilitate high quality data submissions for NMR

or MS experiments, there is a guided submission process
to help meet MSI recommendations and extensively use
community-developed controlled vocabularies and
ontologies. ISAcreator also provides advanced mechan-
isms for mapping to and uploading information from
existing spreadsheets. Figure 3 illustrates the ISA compo-
nents in a typical data creation scenario.
An R package has been developed to facilitate data ana-

lysis (Supplementary Method). The Risa module, available
in the next BioConductor release, includes functionality
to process mass spectrometry data relying on the xcms
package (25), and to save analysis results back to ISA
archives.

Installing a local copy of the MetaboLights repository

To install MetaboLights locally, you require a SQL
database (MySQL, PostgreSQL or Oracle), a subversion
client (svn) and an Apache Tomcat server. The
MetaboLights Repository source code can be found at
http://sourceforge.net/projects/metabolomes, here you will
also find more details regarding how to install
MetaboLights locally. The ISAcreator Metabolite
Identification plugin can be found at: https://github.com/
EBI-Metabolights/ISAcreatorPlugins. The ISA framework
is also open source and is available at: https://github.com/
ISA-tools. Figure 4 shows the principal components of a
local MetaboLights repository installation.

Access and privacy policy

MetaboLights grants free access and reuse of the public
data it stores to everyone. Only registered users can
upload and share study data. To facilitate deposition of
research data not yet publicly visible, the submitter can set
a data embargo for a period of up to 60 months, which
can be lifted on results publication or extended upon
request. Submitters can also request for access to their
private data to be granted to specific other registered
users. This feature may be particularly useful in
facilitating collaborations and the peer review process.

Feedback

To facilitate user feedback, we have created a SourceForge
tracker for logging issues, available at http://sourceforge
.net/projects/metabolomes. There is also an online contact
form, http://www.ebi.ac.uk/metabolights/contact, and
contact email address, metabolights-help@ebi.ac.uk.

Figure 2. Part of Study MTBLS1 in ISAcreator with the Metabolite Identification Plugin active.
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DISCUSSION

The MetaboLights repository was launched on the 28
June 2012 at the 8th International Conference of the
Metabolomics Society in Washington, DC, USA. The re-
pository is now accepting study submissions from a
growing number of active users worldwide with submis-
sion privileges. For the latest statistics on current studies
and submitters, please see http://www.ebi.ac.uk/
metabolights/stats.

The requirement by a growing number of publishers
and funding agencies to deposit data associated with
journal publications to public repositories is expected
to motivate a substantial number of future submissions.
As more datasets become available, Metabolights will
become an invaluable resource for those wishing to
develop new algorithms for the processing of metabolomic
data. The creation of a long-term institution-backed, as
it will be maintained by EBI after the grant ends, pub-
lic repository such as MetaboLights at EMBL-EBI
allows laboratories across the globe to collaborate on
projects through data sharing, and thereby to begin to
collaboratively generate the large datasets needed to
address how the environment, genome and diet influence
the metabolome of a species.

Future work

The MetaboLights team is now actively specifying the
MetaboLights Reference Layer, which will be launched
in Summer 2013. The Reference Layer will be a compre-
hensive knowledge base organized around a metabolite-
centric view, and will include elements such as reference
spectra of various types, biological reference data, proto-
cols, cross-references to other resources and advanced
search and download functionality. There will be compre-
hensive manually curated data, including chemical struc-
tures and characteristics from ChEBI, metabolic
pathways, reference spectroscopy and chromatography.
Furthermore, there will be information about the refer-
ence biology, metabolites and their occurrence and con-
centration in species, organs, tissues and cellular
compartments in various conditions, both healthy and
diseased. Publication references and protocols will also
be available. This will enable experimentalists to get a
comprehensive Metabolomic view on known metabolites.
We are also substantially enhancing our online help

capabilities with online video instructions as well as
detailed scenarios for completing new studies for submis-
sion. A new section with ‘Gold Standard Studies’ will be
included for easy reference. These studies can be used as
templates for similar experiments.
In October 2012, the European COordination of

Standards in MetabOlomicS (COSMOS) consortium,
comprising 14 European partners, will start its work on
Metabolomics data standardization, publication and dis-
semination workflows. The MetaboLights database is a
key component in this effort. It is the aim of the
COSMOS project to develop efficient policies to ensure
that Metabolomics data are encoded in open standards,
tagged with a community-agreed and complete set of
metadata, supported by a communally developed set of
open source data management and capturing tools,
disseminated in open-access databases adhering to these
standards, supported by vendors and publishers, who
require deposition upon publication, and properly
interfaced with data in other biomedical and life science

Figure 3. A typical workflow, using the ISA framework, for reporting information and submitting it to the MetaboLights database.

Figure 4. Simple technical architecture of a local MetaboLights reposi-
tory, including web (http) and ftp access.
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e-infrastructures [such as ELIXIR (26), BioMedBridges
(http://www.biomedbridges.eu), EU-OPENSCREEN
(http://www.eu-openscreen.de) and BBMRI (http://
bbmri.eu)].

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–4 and Supplementary Methods.
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To the editor:

Over the past few years, as the use of mass spectrometry (MS) has increased, multiple spectral 
libraries, databases and software frameworks have been created to enable sharing and searching 
of MS data. However, finding all the spectra that correspond to a specific compound or peptide 
across different databases continues to be a challenge. A spectral identifier that improves the 
searchability and exchange of mass spectra, as well as provenance and duplicate detection, would 
address these issues and enhance searchability.

MassBank2 has been the source of data for other open libraries such as the Global Natural Products
Social Molecular Networking3 (GNPS) and Human Metabolome Database4 (HMDB) libraries and the
MetaboLights reference layer5. In turn, HMDB and community-contributed spectra from GNPS have 
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also been imported into MassBank of North America2c (MoNA), while GNPS searches public MS 
data against the above-mentioned libraries as well as the NIST spectral library6. The mzCloud7 
library contains some spectra generated from the same raw data that was used to create MassBank
records. As these examples show, the complexity and the cross-import of data is increasing, 
together with the number of mass spectra, such that these different resources can now contain 
identical or near identical spectra under different accession numbers. For example, the library 
entries PR100026 (MassBank, MoNA), 5464 (HMDB), and CCMSLIB00000222858 (GNPS) all refer
to exactly the same mass spectrum of caffeine, originally sourced from MassBank. As the different 
libraries focus on different compound domains1, complete coverage of substances requires the use 
of several resources, some of which are commercial (e.g., NIST and mzCloud).Mass spectra are 
highly variable, with one to potentially thousands of mass-to-charge (m/z) and intensity entries per 
spectrum, presenting a challenge in the design of an optimal identifier. However, other life science 
databases have faced a similar need. For databases with chemical structures, the InChI code and 
the hashed InChIKey8,9 of fixed length, which have been broadly adopted as chemical identifiers, 
can be easily stored in databases, compared across resources and, for InChIKeys, searched on 
general-purpose search engines10. A hash is a one-directional mapping between a long, potentially 
complex object and a typically much shorter hash string with a fixed length of characters and 
numbers. For chemicals, the InChIKey is much easier to search than the (generally) much longer 
InChI, which contains special characters. While it is not possible to obtain the original object back 
purely from the hash value, hash keys provide easy access to the original data within a data 
collection. 

We designed the SPLASH (SPectraL hASH) as an unambiguous, database-independent spectrum 
identifier that fulfills the criteria outlined above and offers some additional functionality. Inspired by 
the broad applicability of the InChIKey across cheminformatics and like the InChIKey (which 
encodes skeleton, stereochemistry, and charge), SPLASH contains separate blocks that define 
different layers of information, separated by dashes. As an example, the full SPLASH of the caffeine
spectrum above is “splash10-0002-0900000000-b112e4e059e1ecf98c5f”. The first block is 

the SPLASH identifier, the second and third are summary blocks, while the fourth is the hash block. 

To calculate a SPLASH, spectra are converted into a canonical text representation: the intensities 
are normalized to an integer value between 0 and 100, with m/z values given in exactly 6 decimal 
places. To ensure consistent handling between different software and implementations, entries with 
zero intensities are included, but empty (“N/A”) values are eliminated prior to creating the SPLASH. 
The first block (“splash10”) encodes the SPLASH identifier, starting with letters for semantic web 

compatibility, followed by a number representing the measurement type (1 for MS, 2 and above for 
other data types to be included in the future) and the version, starting at 0, to allow for future 
specification updates. Thus, splash10 is a SPLASH identifier for MS, version 0. 

Both the second and third blocks are spectral summaries, which serve to prefilter and restrict 
searches. In the second and third blocks, intensities are summed over fixed (but different) bin sizes 
and wrapped over 10 bins. The wrapped bin (zero-based) index for a given ion is computed as floor 

(m/z ÷ BinSize) modulo 10. This wrapping allows accommodation of all mass spectral ranges. The 
second block (e.g., “0002” for caffeine) is formed using a reduced spectrum (the top 10 or fewer 

ions greater than 10% of the base peak). This reduced spectrum is summed over bins of 5 Da. 
Each bin is then scaled to a single-digit integral value in base 3 (0-2), and the resulting length 10 
histogram is converted to a base 36 number, resulting in a 4-digit block. In the third block (e.g., 
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“0900000000”) the intensities are summed over 100 Da bin sizes, each bin is then scaled to a 

single-digit, integral base 10 digit (0-9). 

The fourth block (e.g., “b112e4e059e1ecf98c5f”) is a hash of the full spectrum in Secure Hash 

Algorithm11 SHA256 (numbers and lowercase letters only), calculated in hexadecimal notation and 
truncated to 20 characters. The full spectrum string of m/z and relative intensity pairs are sorted by 
ascending m/z and then by descending intensity. The m/z value is multiplied by 106, cast to a long 
(64-bit) integer, and joined with the normalized intensity as strings separated by a colon. The 
resulting ion pairs are then joined, delimited by a single space. Specification document and 
reference implementations have been created for several programming environments (Python, 
Scala, C++, C#, R, Ruby, and Java) under a BSD-3 license as well as a REST interface; additional 
information is available at http://splash.fiehnlab.ucdavis.edu/  .  

The SPLASH concept was developed and refined on a dataset of 563,902 mass spectra from 
MassBank2, GNPS3, HMDB4, ReSpect12, FiehnLib13 and NIST 146; all but the NIST spectra (which 
cannot be released publically) are available on MoNA (http://mona.fiehnlab.ucdavis.edu/). This 
dataset is a mix of many types of mass spectra and the SPLASH was designed to account for this, 
plus be easily searchable in general-purpose search engines, offer a unique identifier (through the 
hash) and basic pre-filter and similarity functionality (through the second and third blocks). 

Ensuring all these features are present in one short text string requires compromise; the SPLASH is
not intended to replace more sophisticated database-specific functions, but does offer simple cross-
database functionality. The second block was chosen from 136 different potential block formats as 
the best short, web search-compatible way to reduce the mass spectral search space. In order to 
determine the best performing second block, we queried a subset of 19,435 spectra against the full 
563,902 dataset. The second block that we selected for use reduced the search space by 94% or 
above (36,107 spectra or less) in all cases, while returning 87% of all spectra within a similarity 
score of 700 (using the NIST cosine similarity score6,14) of the queried spectra. In contrast, other 
tested formats for this block returned more spectra (maximum 93.4%), but too many spectra (up to 
100,000 or 1 in 5 spectra) remained in the search space so that the search space reduction was 
insufficient. The third block provides a visual summary (shown in Table 1 for selected compounds) 
and a simple text-based summary and basic similarity search, even in search engines or 
spreadsheets. More information on the most common second and third blocks, as well as the most 
common combinations and the approximate distribution of substances (not all spectra are annotated
with structures) is given in Table 2. 

While the mapping from object to hash should ideally be unique, hash collisions (where two totally 
different objects have the same hash, or fourth block of the SPLASH) may occur, depending on the 
hash algorithm and length of the hash string. Testing the fourth block for hash collisions on the full 
dataset of 563,902 spectra revealed that identical SPLASHes only arose from mass spectra 
containing a single ion of the same mass, where the SPLASH is identical by definition due to 
intensity normalization. The theoretical probability for a collision15 with any given hash is 
approximately 10-31 for a database containing 109 spectra and is further reduced by the presence of 
two preceding spectral summary blocks. Thus, the SPLASH fulfills its role as a unique identifier 
while offering simple summary and searching functionality. 
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Table 1: SPLASH statistics for selected compounds. Data for alanine shows how derivative spectra and 
suspicious database entries can be detected with the third block (see bold, italic entries), the lower two rows 
show the variety of different spectra per compound. The combination of second and third blocks is selective, 
e.g. 0a41-1940000000 and 01ea-1940000000 for alanine and codeine.

Table 2: The number of spectra and substances (estimated by first block of the InChIKey) with the “most 
common” second, third and second+third SPLASH blocks, calculated on a de-duplicated dataset of 532,675 
spectra. The number of structures is an estimate; missing structure information was filled in automatically 
using the Chemical Translation Service (http://cts.fiehnlab.ucdavis.edu/). The place indicates how common 
the combination is (1 = most common, 200 = 200th most common)

The SPLASH has already been implemented in MassBank2, MoNA2c, GNPS3, HMDB4, 
MetaboLights5 and mzCloud6, as well as software tools including MZmine16, MS-DIAL17, 
RMassBank18, BinBase19, Bioclipse20 and the Mass Spectrometry Development Kit (MSDK)21.

The format of the SPLASH allows direct access to spectra on database websites and searching 
using general purpose search engines. Spectral libraries with more restrictive licenses (e.g. 
mzCloud and possibly NIST) could also use the SPLASH to provide summarized information about 
their spectra. SPLASH enables an easier calculation of spectral overlap between libraries, to detect 
and remove exact duplicate spectra and perform provenance operations. Through the second and 
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third blocks, SPLASH empowers quick searches for similar spectra within or between libraries, 
using a variety of search methods. The SPLASH algorithm has been kept independent of metadata,
similar to the InChIKey, because an extension to include and distinguish metadata (such as 
analytical conditions or chemical information)  would rapidly become complex and reduce the 
applicability of the identifier. Instead, the SPLASH is designed to facilitate quick queries and 
subsequent metadata retrieval. 

The widespread adoption of the SPLASH as a standard spectral identifier could impact spectral 
exchange and searchability and enables enhanced searchability and data processing across mass 
spectrometry platforms.
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ABSTRACT: NMR is a widely used analytical technique with a growing number of repositories available. As a result, demands
for a vendor-agnostic, open data format for long-term archiving of NMR data have emerged with the aim to ease and encourage
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Nuclear magnetic resonance (NMR) spectroscopy is an
important analytical tool in organic chemistry, biochem-

istry, natural products research, structural biology, and meta-
bolomics. Recently the need for an open NMR data standard
covering the free induction decay (FID) to support data
reproducibility has been acknowledged.1 As instrument vendors
typically provide the data processing software and produce
evolving data formats together with the instrument hardware,
developers of third party NMR analysis software often need to
devote considerable effort into reading and writing these vendor-
specific formats. This applies both to commercial software and to
community developed open-source tools such as the BATMAN
R package,2 Bayesil,3 NMRProcFlow,4 rNMR5 and MetaboLab.6

With the recent termination of the Agilent/Varian NMR
spectrometer range, the question of long-term readability of
discontinued vendor formats has become paramount for a
growing NMR community. Data in proprietary formats can age
quickly, and NMR data stored in such formats can become
obsolete, making valuable results inaccessible and irreproducible
in the long term. Also, spectra processing and quantification tools
would benefit from a standardized storage format for processed
NMR data, i.e., serving workflow systems. For NMR data
repositories such as MetaboLights,7 Metabolomics WorkBench,8

HumanMetabolome Database HMDB,9 and BioMagResBank,10

key questions regarding long-term data persistence, i.e., on sus-
tainability, usability, and accessibility are arising.
Currently, themost widely used open data exchange format for

NMR data is JCAMP-DX version 6.0,11 but due to the broad
scope and complexity of this format, many different vendor-
dependent variants exist. Coordinated updating for all variants,
in order to reflect the state of the art in NMR methodology, is
rarely seen in this 30 year old format. This variability can lead to
incompatibilities between different software packages, and as a
result no content-based (semantic) validation of JCAMP-DX is
available. While JCAMP-DX is likely to remain in use for NMR
data capture for many years, it is clear that alternative approaches,
such as XML or JavaScript Object Notation (JSON) with peer-
maintained ontologies, would be beneficial.
The first efforts toward establishing an XML-based openNMR

standard and controlled vocabulary were discussed in 2007 by
the ontology working group12 of the Metabolomics Standards
Initiative (MSI)13 and a consortium of U.K. universities dis-
cussing minimal reporting guidelines.14 In 2011, a series of initia-
tives by members of the NMR-based metabolomics and bio-
molecular NMR communities were launched to explore the
creation of a new community standard for NMR data exchange
and storage. This included meetings attended by NMR stake-
holders including metabolomics database representatives and
vendors. This initiative and subsequent meetings were then
taken over by the COSMOS (COordination of Standards in

MetabOlomicS) EU FP7 consortium,15 aiming to coordinate the
establishment of a persistent NMR data format and open source
data analysis tools for the NMR community. The main goals
were
(1) Data sharing in an open vendor-agnostic manner, so that

users, tool developers, and public repositories can import or
export data to support integrated (meta-)analysis and secondary
data usage.
(2) Search and retrieval of relevant results, minimizing alternate

ways of encoding the same information, so that data sets with a
similar setup can be identified and compared.
(3) Spreading best practices and evaluation of the results, whereby

the data quality can be assessed in light of intelligibility and
completeness along minimum information standards supported
by automatic validation aids.
(4) Improved data persistence and traceability over time,

delivering a self-describing easy-to-use yet robust raw data
storage format to support long-term archiving.
From such efforts, it was decided that the new data format

would be called nmrML (for NMR Markup Language) and it
should
(1) Be compatible with existing vendor formats (Varian/

Agilent, Bruker, JEOL) and partially compatible with certain
variants of JCAMP-DX.
(2) Be XML-based, so as to be similar to established XML

formats by the Proteomics Standard Initiatives (PSI), i.e., mzML
for mass spectrometry.16

(3) Support the use of controlled vocabularies/ontologies to
annotate spectral data and metadata with standardized com-
munity descriptors, which can be maintained in a decentralized
peer production manner.
(4) Initially focus on the capture of small molecule NMR data

with macromolecular NMR data being addressed in succession;
but be flexible enough to be expanded in scope.
(5) Be easy to understand and integrate into existing open

analysis and processing software.
(6) Contain sufficient spectrometer data, acquisition, and pro-

cessing metadata to permit the reconstruction of the NMR
spectrum and experiment.
(7) Capture coarse-grained spectral assignment data for

molecule identification and quantification in chemical mixtures.
Capture fine-grained assignment and chemical structure data of
pure-compound spectra for use in organic synthesis and natural
product studies, medicinal chemistry, and reference NMR spec-
tral libraries.
Under these development constraints, members of the

nmrML COSMOS team created the nmrML data standard, the
necessary software support, and fostered support from databases
to both accept and display nmrML data. Figure 1 summarizes
available nmrML compliant tools and functionalities in support

sharing, comparison, and reuse of NMR data. Here we present nmrML, an open XML-based exchange and storage format for NMR
spectral data. The nmrML format is intended to be fully compatible with existing NMR data for chemical, biochemical, and
metabolomics experiments. nmrML can capture raw NMR data, spectral data acquisition parameters, and where available spectral
metadata, such as chemical structures associated with spectral assignments. The nmrML format is compatible with pure-compound
NMR data for reference spectral libraries as well as NMR data from complex biomixtures, i.e., metabolomics experiments. To
facilitate format conversions, we provide nmrML converters for Bruker, JEOL and Agilent/Varian vendor formats. In addition, easy-
to-use Web-based spectral viewing, processing, and spectral assignment tools that read and write nmrML have been developed.
Software libraries and Web services for data validation are available for tool developers and end-users. The nmrML format has
already been adopted for capturing and disseminating NMR data for small molecules by several open source data processing tools
andmetabolomics reference spectral libraries, e.g., serving as storage format for theMetaboLights data repository. The nmrML open
access data standard has been endorsed by the Metabolomics Standards Initiative (MSI), and we here encourage user participation
and feedback to increase usability and make it a successful standard.
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of a typical NMR data handling workflow for a metabolomics or
similar experiment.

■ MATERIALS AND METHODS

The nmrML format specification is composed of an XML
Schema Definition (XSD) and an accompanying controlled vocab-
ulary called nmrCV. Leveraging on existing efforts, the nmrML
development started by updating a predecessor XSD developed
at The Metabolomics Innovation Centre (TMIC, http://www.
metabolomicscentre.ca/exchangeformats.htm) in Edmonton,
Canada, with additional elements and structures from a
BML-NMR XSD developed at the University of Birmingham.17

Both of these efforts were integrated, expanding the TMIC prede-
cessor, as it was already capturing the basic raw data and had
the controlled vocabulary (CV) reference mechanism in place.
The nmrMLCV referencingmechanism and basic XMLarchitecture
was inspired by mass spectrometry markup language (mzML),
the PSI standard mass spectrometry data format used in
proteomics and metabolomics.16 The mzML community
standard captures raw MS spectral data, instrument parameters,
experiment metadata, and peak assignment, as well as compound
quantitation data. Given the similarity in data capture, storage,
and retrieval between modern MS and NMR experiments, many
of the successful features found in mzML were transferred and
adapted to nmrML. The NMR.owl CV by the MSI,12 and a
parallel TMIC effort NMR CV, developed to serve the TMIC
XSD, were integrated. The merged nmrCV organizes common
and essential NMR terms into a simple is-a class hierarchy
(taxonomy). The nmrML 1.0.0 format presented here is the
outcome of these integration efforts and will serve as the MSI
recommended common data standard and terminology for
open access NMR data. While the nmrML.xsd mostly covers
raw data, it also provides for someNMRdata elements computed
by open access NMR processing and quantification tools.

Development was coordinated via mailing lists, video conferences,
and during multiple workshops and hackathons. The choice of
XML was motivated by technical maturity, flexibility and univer-
sality of XML in both capturing and presenting scientific data.
There is an abundant XML expertise to leverage on, as XML
resides at the base of the semantic Web stack. The appearance of
all knowledge capture XML elements can be controlled via the
XSD (mandatory vs optional) and hence allows for content
completeness checks. We implemented converter Web services
to generate valid nmrML from vendor raw data files. Links to
nmrML compliant databases as well as NMR processing and
spectrum visualization software are provided in Table 1. Format
parsers, application program interfaces (APIs), and validation
Web services have been set up. All code libraries, an issue tracker
as well as a file versioning and release policy are available on the
developer’s GitHub pages at https://github.com/nmrML/
nmrML.

■ RESULTS

The nmrML core specification, including the XSD and nmrCV,
can be found at http://nmrml.org. The referenced nmrCV.owl
currently contains over 600 terms and is indexed under the
National Center for Biomedical Ontology (NCBO) Bioportal
ontology library.18 Our documentation Web site (http://nmrml.
org/examples) provides tutorial material and videos, code
examples for single compound reference spectra, as well as
mixed-compound 1D and 2D NMR spectra.

nmrML Architecture. The nmrML XSD element hierarchy
contains multiple sections that organize the information that can
appear in an nmrML XML data file in a community-agreed and
self-explanatory way. This facilitates understanding of the format
by both humans and by data processing software alike. The
current top level XSD structure provides high-level base ele-
ments for the grouping and capture of NMR data, describing the

Figure 1.A prototypical metabolomics workflow for NMR data processing and storage is shown and nmrML-aware tools supporting each workflow step
are illustrated. Vendor to nmrML converters, NMR data processing, and visualization tools as well as public repositories that accept nmrML as standard
data format are highlighted. Parsers for MATLAB and R, which make nmrML data accessible to statistics tools, and content validators that assist in data
quality control and workflow reproducibility are shown. Many of our tools already run in Galaxy-based workflow management environments. Bruker
logo reprinted with kind permission from Bruker BioSpin Group, Copyright 2017. JEOL logo reprinted with kind permission from JEOL (Germany)
GmbH, Copyright 2017. Agilent Technologies Corporate Signature Copyright 1999 Agilent Technologies, Inc. Reproduced with permission, Courtesy
of Agilent Technologies, Inc. MATLAB is a registered trademark and reprinted with kind permission from The MathWorks, Inc.
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nmrML version, the sources of the controlled vocabularies or
ontologies used for metadata annotation, the data depositor
contact, source files/formats, software lists, the instrument
configuration, sample information (e.g., solvent and reference
standards), acquisition settings, and data processing information.
This is followed by the spectral FID raw data, as a base64-
encoded binary. In addition to such a “minimal” nmrML data file,
additional information such as molecule identification/spectral
assignment metadata and quantification data can also be
included. For example, if the NMR data is for a pure reference
compound or a newly isolated/synthesized single chemical, the
nmrML file can include data on the chemical structure and cor-
responding atom-specific peak feature assignments (see example
generated by nmrML-Assign in Figure 2 or http://nmrml.org/
examples/3). If the NMR data is for a complex mixture, con-
sisting of many different compounds from an analytical setting,
the nmrML file can include data on peak positions, integrated
peak areas, and putative peak assignments, together with relative
or absolute concentrations of some or all of the compounds but
no annotation of individual peak features to atom environments
(see http://nmrml.org/examples/4). Code examples of a mini-
mal nmrML data XML file as well as for the expanded metadata
case are provided on the examples page (http://nmrml.org/
examples).
The nmrML structure consists of an XSD that allows it to

reference a dedicated NMR controlled vocabulary (nmrCV).
The XSD defines the allowed XML structure, whereas the
controlled vocabulary provides the terminology to describe the
NMR data in detail using standardized textual values for
XML-defined tags. In areas where the terminology is likely to
change faster than the nmrML XSD can be updated, the repre-
sentation is branched out from XSD to CV-usage. This approach
can accommodate rapid technology/terminology changes in a
flexible way, as the CV can be maintained externally by a larger
NMR user peer group: for example, terms for new NMR probes

can be represented in a nmrML file by requesting the addition of
corresponding new CV terms in the nmrCV, without the need for
a full XSD and any subsequent software revisions. The combined
usage of XML and a separate CV also allows multiple validation
levels to be established (see below). The CV referencing
mechanism is explained in detail on the documentation pages.

Tools Compatible with nmrML. We have created Web-
based easy-to-use tools to make nmrML more accessible to the
broader organic chemistry and metabolomics communities.
To ensure that nmrML will be broadly adopted by life sciences
and chemical researchers, these tools cover a large fraction of a
typical NMR data acquisition, processing and storage workflow
to generate, convert, process, validate, and publish nmrML files
(Figure 1). Additionally, we have worked closely with open
source and commercial tool developers to encourage nmrML
format support and adoption. We have summarized efforts already
leveraging on the nmrML format in Table 1.

nmrML Converters, Parsers, and Validators. Format
converters translate the exchange syntax from vendor raw data
formats into XSD-compliant nmrML by means of mappings
from Bruker “acqus” or Varian “procpar” raw files to nmrML ele-
ments and CV terms. An extensive parameter mapping table is
available in the documentation pages. A comprehensive JAVA-
based converter automatically generates valid nmrML files from
Bruker, Agilent/Varian, and JEOL raw files. It is also available as
a Web service (http://nmrml.org/converter) and Docker con-
tainer. It can be run in batch mode for high-throughput batch
conversion of multiple zipped raw data. A Python-based con-
verter that uses the nmrGlue API19 to access the vendor param-
eters is also available. Also an nmrML2ISA parser,20 written in
Python, has the ability to read experimental NMR data and meta-
data fromnmrMLdata files and passing it over to an autogenerated
ISA-Tab21 assay file, i.e., defining a basic metadata backbone
ISA-Tab format, i.e., for submission to theMetaboLights repository.7

In addition, nmrML bindings for multiple programming languages

Figure 2. Assignment of an identified molecule in a single compound spectrum, generated in nmrML-Assign and displayed using the JSpectraViewer
(JSV). An uploaded raw FID for the 2-oxobutanoic acid reference compound was automatically processed with Bayesil. The resulting interactive JSV
spectrum then allows the assignment of peaks to specific atoms, using the nmrML-Assign tool. The assignment metadata is then saved in the nmrML
format (see https://github.com/nmrML/nmrML/tree/master/examples/reference_spectra_examples/hmdb). An excerpt view of the corresponding
nmrML code (blue code inset) is shown for the quadruplet assignment (Multiplet no. 1) of the second peak (bold code). The corresponding
HMDB entry is available from http://www.hmdb.ca/metabolites/HMDB00005, with the 1H spectrum found at http://www.hmdb.ca/spectra/nmr_
one_d/1024.
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(Java, Python, Ruby) as well as for widespread data analysis tools
like the R statistics package, MATLAB, and open source NMR
tools exist. A parser called nmRIO makes nmrML content avail-
able to R-based tools such as Batman and rNMR for higher level
analysis. AMATLAB parser renders nmrML data available to the
MATLAB tool for further statistical processing. An nmrML
semantic validator allows the revisal of the correct implementa-
tion of manually populated or enriched nmrML files, with regard
to XML schema compliance, CV term usage, and allowed term
cardinalities. At the core, the XML syntax and structural validity
of nmrML XML instances, such as XML element and attribute
position, order, and cardinality, can be checked by any validating
XML parser against the nmrML.xsd, which defines these allowed
elements and their expected characteristics. On the next higher
layer, so-called mapping rules can enforce semantic validity22 of
the ontological descriptions used, by testing which CV terms are
allowed in which elements. The elements with their allowed CV
descriptor hierarchies are outlined in a mapping rule file. The
OpenMS/Topp-based23 nmrML validator (http://nmrml.org/
validator) checks that these higher level semantic criteria are
being met in a given XML instance. For example, a validation
rule file can enforce minimal reporting guidelines such as the
MSI-sanctioned Core Information for Metabolomics Reporting
(CIMR; http://mibbi.sourceforge.net/projects/CIMR.shtml,
accessed November 27, 2017). These validation scenarios
make nmrML more easily accessible to quality assurance than
JCAMP-DX or other more verbose and equivocal formats that
do not rely on controlled vocabularies.
nmrMLData Processors andViewers.The following tools

facilitate NMR data processing and compound identification.
nmrML-Assign (http://nmrml.bayesil.ca) is a JavaScript Web
application based on Bayesil that allows users to upload vendor
formatted 1DNMR raw data or nmrML and to then interactively
add compound identification metadata (see Figure 2, Example 3).
The Bayesil-generated interactive spectrum allows assigning peaks
to specific atoms in a proposed molecule after the Bayesil Web
service3 was used to upload a chemical structure and perform
a spectral prediction to help with the assignment process.
The assigned atoms are displayed on both the spectrum and the
molecule image. Once the assignment process is complete, the
annotated file can be saved as enriched nmrML file, which can
then be reloaded and interactively viewed and edited or
submitted to HMDB. nmrML-Assign works both with 1H and
13C NMR spectra in Bruker or Agilent/Varian format. Bayesil
also allows users to upload 1D spectra of biological mixtures (e.g.,
serum, plasma, cerebrospinal fluid) as shown in Example 4 on our
Web site and to perform an automated assignment and quanti-
fication of all visible peaks.
The Batman R package estimates metabolite relative concen-

trations from spectral data and automatically assigns them to
metabolites from a target list. Batman can access nmrML data
and is using the nmRIO parser. rNMR5 is a region-of-interest
rather than peak-list-based software for visualizing, assigning, and
quantifying metabolites in complex 1D and 2D NMR data. The
upcoming version of rNMR will read nmrML files directly and
can convert them into its native data format. NMRProcFlow is a
pipeline tool for the reproducible processing and visualization of
1DNMRdata inmetabolomics. It allows to pipe processed NMR
data as tabular data matrix to statistics workflow tools like bio-
statflow.org. It relies on theNMR spectra viewer (https://github.
com/nmrML/nmrML/tree/master/tools/Visualizers/PMB_
NMRviewer), as its design acknowledges iterative parameter
adjustments by means of repeated visual inspection by the user.

nmrML Compatible Databases. A principal objective
behind the establishment of nmrML is to ensure data continuity
and persistence in NMR repositories and reference libraries.
Several key NMR experiment and reference databases now
support the upload, storage, display, and download of nmrML
data. HMDB, with more than 1500 1D 1H and 13C NMR spectra
collected at 500 and 600 MHz (“Human Metabolome Database:
Database Statistics”, http://www.hmdb.ca/statistics, accessed May
15, 2017), describes more than 1000 reference spectra for pure
compounds in the Human Metabolome Library (HML, http://
www.hmdb.ca/hml). More than 600 metabolites in HMDB now
include NMR reference spectra with complete spectral assign-
ments. These metabolites have 1D NMR annotated spectra
available and are downloadable in the nmrML format. Other
databases such as DrugBank,24 YMDB25 and ECMDB26 plan to
support nmrML compatible reference spectra in the future.
BMRB entries are available in XML and RDF, as common open
representations of NMR-STAR data format.27 BMRB has
archives of time-domain data and fully assigned nmrML files
are accessible, which were generated from BMRB/XML files via
the BMSxNmrML converter (see Table 1). In addition to the
growing collection of reference spectral libraries, the open access
NMR data repository MetaboLights7 has experimental NMR
data archival, which now accepts nmrML data from depositors
and allows one to extract basic ISA-Tab metadata from it (see
above). It now handles nmrML data from biological mixtures as
well as from pure reference compounds. The MeRy-B28 plant
metabolomics NMR knowledge base accepts both JCAMP-DX
and nmrML format with the plan to fully adopt nmrML in order
to leverage ontological spectra preprocessing terms embedded
within nmrML. Work is underway to have the Metabolomics
WorkBench8 accept nmrML data as part of the international
MetabolomeXchange initiative (metabolomexchange.org/).

Pipelines andWorkflow Support.With the recent push to
standardize and facilitate the access to data processing work-
flows,29 devoted workflow environments such as Galaxy30 have
gained more weight, the intent here being transparency, trace-
ability, and reproducibility of pipeline-generated data and audit.
Galaxy-based metabolomics analysis pipelines are emerging31 and
some are in development for NMR data, such as W4M-NMR31

(http://workflow4metabolomics.org/the-nmr-workflow) and
SOMA:tameNMR (https://github.com/pgb-liv/tameNMR).
The NMR processing tool NMRProcFlow4 uses nmrML as its
native spectral data format and containerization of modules for
workflow integration is progressing. To foster nmrML as input
format for Galaxy workflow pipelines, the PhenoMeNal projects
App library portal (http://portal.phenomenal-h2020.eu/app-
library already provides nmrML-aware tools (like the nmrML
converter) as containers for NMR workflow integration.

■ DISCUSSION
This Perspective describes the first iteration of nmrML
(version 1.0.0). We have designed and developed a flexible,
open standard data format called the NMR Markup Language
(nmrML) for capturing and disseminating NMR data for small
molecules. This represents a community-driven effort that involved
extensive consultations and many metabolomics, NMR spec-
troscopy, chemoinformatics, and computing science laboratories
from across Europe and North America. Further enhancements
are planned for nmrML, and these will include extensions to
nD NMR data and the inclusion of macromolecular data in the
XML and additional terms in nmrCV. Currently, only basic
processed data is captured, e.g., for molecule identification and
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quantification, and the latter is equivalent to what mzTab stores
for MS data and what is captured in mzIdentML32 and
mzQuantML.33 The introduction of nmrML hence brings NMR
spectroscopy in alignment with existing data standardization
efforts in metabolomics, such as mzML for mass spectrometry
and will ultimately contribute to cross-technology and multiple
omics data comparison. We hope further tools like XEASY34 for
macromolecular NMR analysis and NMRPipe35 for nD NMR
will leverage on nmrML in the future. MetaboLab6 provides
high-throughput preprocessing for MATLAB driven NMR
statistics and is currently implementing an nmrML parser for
standardized data import. In addition, further metadata will be
added to nmrML, i.e., as required to store nD spectra. In addition
to the persistent data storage/exchange standard and CV, we
have also described and developed database support and software
tools that make use of nmrML. These tools include nmrML
viewers, nmrML data converters, processors, and annotators, and
these will facilitate the widespread adoption of nmrML and
permit the facile generation of nmrML data from proprietary
vendor formats. Bruker Corp. indicated willingness to incorpo-
rate the nmrML converter into their TopSpin software as nmrML
file format export option. Although the benefits to individual
users will become more evident as more software supports this
open standard, users can already store and archive their NMR
data in a persistent format, which stays readable in the long term.
Users can extract NMRmetadata into the ISA Tab format,20 e.g.,
easing submissions to public databases such as MetaboLights.
Data in local institutional repositories will gain value through
eased reanalysis of old data with future state-of-the-art tools.
Furthermore, users can integrate their data into workflow
management systems, which eases repetitive processing tasks.
Reproducibility and trustability of data is further increased by
community data validation, e.g., in terms of minimal information
coverage, and will result in increased data quality. The use of
nmrML validators will allow users to check nmrML files with
regard to consistency and content completeness. Together with
ISA-Tab metadata validation, this will greatly contribute to
overall quality assurance and traceability ofNMRdata.The nmrML
standard also enables easier multicenter collaborations, e.g.,
allowing for an interoperable data exchange format when com-
municating with a regional NMR metabolomics center. It also
eases comparison of results among different laboratories, e.g., for
the purpose of standardization or SOP development. On the tool
developers side, nmrML can save programmers’ time and effort
to write multiple parsers for all vendor formats. Given cross-
communication between theMSI, PSI, and other standardization
governance bodies, harmonized data standards will ease
community integration, i.e., bridging over different technologies,
e.g., by allowing MS and NMR data comparisons or even
multiple omics investigations. This would pave the way for more
integrative systems biology approaches.
Overall the nmrML specification and the expandable nmrCV

will allow for a detailed standardized description of NMR work-
flow functionalities. The use of nmrML in workflow tools like
tameNMR and the reuse of containerized workflow components
in recombinable app libraries will allow NMR data processing to
be more traceable and rerunnable in different (local or cloud)
environments. The capture of selected basic metadata within the
same nmrML file as the data eases pipeline development as it
reduces the complexity of file tracking in Galaxy, as data moves
between modules.
A recent survey (http://phenomenal-h2020.eu/home/wp-

content/uploads/2016/09/Deliverable8.1.pdf) on data standards

usage among the metabolomics community indicated that 13.5%
of NMR practitioners are already using nmrML, about the same
number of people indicating that they use JCAMP.
Further testing of the current XSD with diverse experimental

configurations is required to increase coverage, fitness of purpose,
and future flexibility. We hence welcome any community feedback
and engagement via our email list at https://groups.google.com/
forum/?hl=en#!forum/nmrml/join to improve and evaluate this
first nmrML release. Remarks, suggested changes, and exten-
sion requests should be sent to info@nmrml.org or via our Git
issue tracker. By standardizing data descriptions, nmrML and
its accompanying nmrCV will help make NMR data Findable,
Accessible, Interoperable, and Reusable, FAIR.36 This is particularly
relevant in light of the recent push by funding bodies to have
scientists conduct and publish more reproducible research.
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ABSTRACT: Mass spectrometry (MS) is one of the primary
techniques used for large-scale analysis of small molecules in
metabolomics studies. To date, there has been little data
format standardization in this field, as different software
packages export results in different formats represented in
XML or plain text, making data sharing, database deposition,
and reanalysis highly challenging. Working within the
consortia of the Metabolomics Standards Initiative, Proteo-
mics Standards Initiative, and the Metabolomics Society, we
have created mzTab-M to act as a common output format
from analytical approaches using MS on small molecules. The
format has been developed over several years, with input from
a wide range of stakeholders. mzTab-M is a simple tab-separated text format, but importantly, the structure is highly
standardized through the design of a detailed specification document, tightly coupled to validation software, and a mandatory
controlled vocabulary of terms to populate it. The format is able to represent final quantification values from analyses, as well as
the evidence trail in terms of features measured directly from MS (e.g., LC-MS, GC-MS, DIMS, etc.) and different types of
approaches used to identify molecules. mzTab-M allows for ambiguity in the identification of molecules to be communicated
clearly to readers of the files (both people and software). There are several implementations of the format available, and we
anticipate widespread adoption in the field.

■ INTRODUCTION
It is now commonplace for high-throughput quantitative
technologies to be used for analysis of biological, biomedical,
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and environmental samples. Technologies include those for
measurements of gene expression using microarrays or RNA
sequencing (transcriptomics), proteins by mass spectrometry
(MS, proteomics), and MS or nuclear magnetic resonance
(NMR) spectroscopy for measuring small molecules/metabo-
lites (metabolomics) and lipids (lipidomics). These methods
can provide the source data for systems biology/medicine
investigations into the complex network of interactions that
reflect both their functional and dysfunctional states, as well as
reflect nutritional and environmental impacts. There is now an
accepted principle in scientific research that data should bemade
openly and easily accessible to allow groups other than the initial
data generators to verify the findings or search for new
interpretations. Such guidelines are now commonly referred to
as the “FAIR” principles, data being findable, accessible,
interoperable, and reusable.1 Furthermore, data from omics
experiments are typically expensive to generate and often have
potential uses beyond their initial purpose, including in meta-
analyses, in data integration, or for testing and assisting in the
development of new software. In omics research, there is always
some heterogeneity in the approaches taken in different
laboratories, such as different instrument platforms or analysis
software, which usually have their own file formats. To allow
data sets to be open for reuse generally requires the formulation
of nonproprietary data formats, or more ideally, agreed data
standards to which different producers of data must adhere.
Without agreed standards (or ubiquitous formats originating
from one package), data reuse is highly challenging, since
informatics groups would need to write file format converters for
every possible source of data, as well as keep these converters
updated whenever data-producing software makes a format
change. This scenario makes development of analysis software
or a specific usage of public databases very challenging.
In a typical MS-based metabolomics/lipidomics pipeline,

samples are analyzed by liquid or gas chromatography, coupled
to MS (LC-MS/GC-MS), or by direct infusion (DIMS).
Measurement of molecular intensity is typically done via
software that detects features formed from isotopic patterns
(or single peaks) along the time axis. For LC-MS, ionization can
be performed in either positive or negative mode to produce
protonated or deprotonated ions. It is also common for ion
adducts to be formed, including metal adducts (Na+, K+), which
have the same time elution profile but different m/z values.
Many software packages perform adduct grouping, such that
quantification values are reported both for individual features, as
well as for the summed abundance across different adduct forms
assumed to have come from the same starting molecule. For
quantification across different samples, software may perform
retention time alignment to ensure that the same features are
quantified in each sample. In GC-MS, analysis is performed on
volatile molecules and, in some cases, a derivatization step is
applied to increase the volatility of compounds of interest.
Molecular identification remains challenging in metabolo-

mics. Typically, some combination of the following steps can
assist with identification via searching a pre-existing library or
database: accurate neutral mass, the relative abundance of
isotopomers, the retention time, masses of fragmentation
products (MS/MS and MSn spectra), collisional cross section
for platforms with ion mobility, etc. (see the reviews in refs 2−4
for more details). In the case ofMS/MS andMSn fragmentation,
the spectra can be compared against an in-house spectral library
or databases storing reference spectra for molecules including
Metlin,5 The Human Metabolome Database,6 Global Natural

Products Social Molecular Networking7 (GNPS), MassBank,8

and others (see ref 9 for a review) or analyzed by in silico
identification software.10

It is common in all approaches for many molecules to remain
unannotated or for ambiguity to remain: i.e., software provides a
list of possible molecules for each MS feature. Reporting
standards and guidelines on these certainties have been
developed in several communities.11,12 Following quantification
(and identification), statistical analysis usually proceeds via
univariate approaches, e.g. to find differentially expressed
molecules between conditions, or multivariate/machine learn-
ing approaches to explore structure within the data and find
molecules that can separate sample groups and thus act as
potential biomarkers.
There exists a wide range of software, both free and

commercial, for processing MS data for metabolomics/
lipidomics.13,14 Most software produces output data in a unique
file format, annotated to different levels of detail, often with the
description of preprocessing procedures followed implicit rather
than specified, making it highly challenging to compare or
integrate the results of different pipelines. For public data
sharing, there are several databases that host data sets in support
of publications or community data sets, including the European
Bioinformatics Institute (EMBL-EBI) MetaboLights database15

and the NIH Metabolomics Workbench.16

In this work, we describe a data standard for MS-based
metabolomics analytical pipelines, called mzTab-M, which
captures the downstream results of analysis (i.e., excluding raw
data), suitable for statistical analysis, result visualization, or
submission to a public repository in support of a publication.
The standard has been developed in a joint and open process
between members of the Metabolomics Standards Initiative
(MSI),17 the Metabolomics Society Data Standards Task
Group, and the Proteomics Standards Initiative (PSI), which
had originally developed the mzTab format on which it is
based.18 There are several related and complementary efforts,
which include efforts to defineminimum reporting requirements
for different aspects of metabolomics.11,19 There is also general
agreement among standards groups (MSI, Metabolomics
Society) to promote the use of the PSI’s mzML format for raw
data storage.20 mzML is an XML-based standard for MS data,
either for profile data as recorded directly from the instrument or
for centroided data (peak picked in them/z domain). The freely
available ProteoWizard software embeds software libraries from
several vendors of MS instruments, enabling the conversion of
vendor raw files into mzML.21 For NMR metabolomics, the
recently released nmrML standard follows a design principle
similar to that of mzML, capturing NMR spectra and some
metadata within an XML-based standard.22 For the description
of study design, experimental metadata, and sample processing
parameters, the ISA framework,23 while generally applicable to
all types of experimental design, has been particularly taken up
by the metabolomics field. The PSI previously developed the
mzTab format (version 1.0) to act as a simple format for
quantified and/or identified peptides and proteins in MS
workflows.18 mzTab version 1.0 also has a section to allow small-
molecule data to be captured. However, the data model was
rather simple and did not cover some important use cases for
metabolomics/lipidomics and, as a result, it has not been
extensively used for small molecules or lipids. The development
of mzTab-M has thus branched off from the original mzTab
format development, and we report it here as a new standard for
metabolomics called mzTab-M (“version 2.0” to differentiate it

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.8b04310
Anal. Chem. 2019, 91, 3302−3310

3303

DOI:10.1021/acs.analchem.8b04310

https://doi.org/10.1021/acs.analchem.8b04310


from mzTab version 1.0). It follows design principles similar to
those of mzTab 1.0, but it is not backward compatible.

■ METHODS

The mzTab-M format was designed in a process that was open
to any interested parties. All associated materials and code for

processing and validating files are fully open source and are
hosted on GitHub (https://github.com/HUPO-PSI/mzTab).
mzTab-M started from the design of mzTab version 1.0 format
but was further developed to support the specific needs of
metabolomics (see the Supporting Information for more details
on the relationship). The development took place via face-to-

Figure 1.Overall structure of an mzTab-M file. (A)Metadata about the experiment, describing experimental design (study variables and assays), links
to other files, etc.. (B) The small molecule (SML) table, capturing “final” results table: i.e., overall calculated quantification value (and identity where
known) of a metabolite. (C) Quantification value in each (aligned) MS run for MS1 features: e.g., mapped to individual adducts or charge states of a
molecule. (D) Evidence supporting identification (with ambiguity if needed) for molecules, using CV terms for scores/statistics where available.
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face workshops and regular conference calls. The specifications
have been submitted to a formal document process for
anonymous review, overseen by an editor commissioned jointly
between the PSI and the Metabolomics Society. The mzTab-M
format is defined by the specification document and example
files that demonstrate how to encode certain features (see the
GitHub repository). The specification document describes the
overall structure of the format: what tables must be present, what
columns and rows must be present in those tables, and what
terminology is allowed as data values. For various aspects of
metadata, the standard enforces (and can be checked by
validation software) that controlled vocabulary (CV) terms are
used (e.g. for names of software, databases, parameters, statistics,
etc.), which can be sourced from the PSI-MS CV26 (https://
www.ebi.ac.uk/ols/ontologies/ms), as well as other CVs where
appropriate.

■ RESULTS AND DISCUSSION

mzTab-M has been designed to act as a single data format for
metabolomics and lipidomics, including an appropriate level of
detail about the “final” results: i.e., molecules quantified across
samples. The format also contains the ability to represent
“intermediate” or supporting data, including the evidence trail
for identifications from software (scores or statistics), as well as
the quantification values derived directly from MS: i.e., prior to
any adduct grouping or summarization steps. The format is
represented as tab-separated text, meaning that it can be loaded

directly into a spreadsheet editor or into statistical software such
as R or SPSS for downstream analysis and visualization, without
any need for coding, and can thus replace the use of tables (e.g.,
in pdf or Excel format) of supplementary data in support of
publications. It is also relatively straightforward for informatics
groups to develop software to add support for the standard to
existing software.
The mzTab-M format consists of four cross-referenced data

tables (Figure 1): metadata (MTD), small molecule (SML),
small molecule feature (SMF) and the small molecule evidence
(SME). The MTD and SML tables are mandatory, and for a file
to contain any evidence about howmolecules were quantified or
identified by software, all four tables must be present. The tables
must follow the order MTD, SML, SMF, and SME, with a blank
line separating each table. The structure of each table, in terms of
the rows and columns thatmust be present, is tightly specified, as
explained in the following sections and formally in the mzTab-M
specification document.

Metadata (MTD) Table. The metadata table has multiple
rows and exactly three columns (Figure 1A). Each row must
contain (1) “MTD”, (2) a parameter name, and (3) the
parameter value. The types of parameters that must or may be
present are described in the specification document, and allowed
values from CVs are defined in a mapping file. The MTD table
must report at least a simple specification of the experimental
design, in terms of the number of different measurements (i.e.,
usually the count of MS runs) and the groupings of those MS

Figure 2. Simple experimental designs in mzTab-M can be represented using a combination of the elements study_variable (SV), assay, ms_run, and
sample. Quantitative values can be reported in files for SVs and assays. (A) SV is intended to capture different groups of replicates, which might have
resulted from different levels of a given variable: e.g. control versus treated (represented as 2 SVs) and n time points over a treatment course (as n SVs).
(B) assay captures ameasurement made about amolecule (small molecule/lipid) wheremultiple assays within the same SV are taken to be replicates of
some kind (biological or technical). (C)ms_run captures a single run on anMS instrument. (D) Samples are optional in mzTab, since the quantitative
software may often be unaware of the biological samples that have been analyzed. If that information is available, references from assay to the same
(technical, upper half) or different (biological, bottom half) samples are used to describe the type of replication performed.
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runs (i.e., experimental factors or groups) over which statistical
analysis may be done. These values then inform the number of
columns present in SML and SMF tables for which (relative or
absolute) quantitative values are reported. The following
concepts are specified in the MTD table so that they can be
referenced and reused elsewhere in the file:

• Assay: the application of a measurement about the sample
(in this case through MS), producing values about small
molecules or lipids. One assay is typically mapped to one
ms_run element (see below), although the differentiation
between assay and ms_run is present to provide a
mechanism for grouping multiple MS runs together if the
sample has been fractionated and different fractions run
on the instrument to increase coverage. The MTD table
gives the count of assays with locally unique identifiers, so
that they can be referenced by other elements.

• ms_run: an MS run is effectively one run on an MS
instrument (e.g., by LC-MS, GC-MS, DIMS, etc.) and can
be referenced from assay elements in different contexts.
When an ISA-Tab document from mzTab-M is
referenced, ms_run should be matched with the ISA
“Assay Name” values found in an ISA “Assay Table” file
(https://isa-specs.readthedocs.io/en/latest/isatab.html).

• Sample: a biological material that has been analyzed, to
which descriptors of species, cell/tissue type, etc. can be
attached. Samples are not mandatory, since some software
packages that will produce mzTab-M files cannot
determine what type of sample was analyzed (e.g.,
whether biological or technical replication was per-
formed), although it is noted that, without such
annotations, downstream statistical analysis of the results
will often not be possible.

• study_variable: a “study_variable” (SV) element repre-
sents a grouping of replicates for which a quantitative
value can be reported, for example following averaging of
values from individual assays. More accurately, a “study_-
variable” element usually represents a level of some
particular experimental variable, such as the value of time
within a time course, dose of a drug, intervention
performed on samples, etc. In other contexts, this concept
is named differently: e.g., “Factor Value” in ISA format.

Clear definitions of biological and technical replicates are
difficult to provide, as the commonly used terminologies are
somewhat dependent upon the biological domain. However, we
use the following general definitions in mzTab-M: biological
replicates represent cases when different samples are analyzed by
MS, and technical replicates represent cases where the same
samples are analyzed multiple times by MS. As illustrated in
Figure 2, a simple form of the experimental design can be
captured in mzTab-M using a combination of assay, “study_-
variable”, and “sample”. In a complex, nested design, linkages
between different study variables are not explicitly modeled but
captured through the annotated values, as shown in the
Supporting Information.
The MTD table also has the (optional) capability to capture

additional metadata that can be useful to interpret the study,
such as limited details about the sample processing steps
performed, the MS instrument, software and parameters,
contact details for the study producers, etc. However, it is
acknowledged that other formats may capture such details, such
as referenced mzML (including instrument information and
parameters), other MS data file formats, or ISA-Tab files

(containing experimental design and sample processing), which
may be more appropriate locations for such information.

Small Molecule (SML) Table. The small molecule (SML)
table (Figure 1B) is intended to capture the “final” results of the
study in terms of molecules that have been quantified (with
identification data, where available). If different adduct forms or
fragments of a molecule have been observed as different MS
features, it is common that feature grouping is performed, and
the SML table should contain the final quantitative values after
summarization. Thus, SML could be viewed as the equivalent of
tabular results presented in a paper for the molecules quantified
in different samples. For survey-type data, it is also possible to
report quantities as “null”, while still reporting identification
evidence, as supported by the SME table.
The header row has “SMH” in the first column, followed by an

ordered set of column headers. After the header row, each row
reports one molecule, with the first cell containing “SML”,
followed by the data values for each specified column. The
columns include a unique local identifier for the molecule
(SML_ID), followed by a cell (SMF_ID_REFS) containing
references to features in the SMF table. The referenced features
are the different adduct forms or in-source fragments of the
molecular features actually detected by MS. The next set of
columns provides different ways to identify the molecule
(database_identifer, chemical_formula, smiles, inchi, chemical_-
name, uri, theoretical_neutral_mass; see section Identif ication
evidence and ambiguity below).
The following columns report quantitative data for the n

assays (in n columns, where n is the count of assays reported in
MTD) and the m study_variable groups (in m columns) e.g. as
an average (e.g., mean) across assay values within that
study_variable. A value can also be provided for the variability
in the study_variable quantification value reported e.g. a
standard error value. A parameter in MTD specifies how to
interpret the quantitative values in these columns in terms of a
data type exported from a specific piece of software or where
appropriate, absolute values with units.
At the right-hand end of the SML table (and SMF and SME

tables), it is possible to include user-specified (optional)
columns, with a method for annotating that the columns refer
to the entire molecule, or the measurement of the molecule in
particular assays or study_variables. The user-specified columns
thus make mzTab-M extensible to support custom data types
not covered in the core model.

Small Molecule Feature (SMF) Table. The SMF table
contains data on what features were actually measured by the
instrument and quantified by software (Figure 1C). The header
row of the table has “SFH” in the first cell, followed by a set of
columns. Each row of the table is one MS feature recorded
across different runs, starting with the code “SMF”. It is assumed
that an alignment process has taken place so that the same
feature has been seen across different runs, with missing values
handled as appropriate (see specification document for guidance
on encoding nonaligned workflows). The next column
(SME_ID_REFS) is for referencing down to the final table:
Small Molecule Evidence (SME) via a set of identifier
references, as well as a code telling the file reader how to
interpret multiple references (SME_ID_REF_ambiguity_code),
explained in Identification Evidence and Ambiguity.
The SMF table next contains information about the type of

adduct and charge state observed, the experimental m/z value,
the retention time of the feature (in a master or averaged run),
and a method for optionally specifying if a given isotopomer has
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been quantified (+1 or +2 peak, 13C peak, etc.) as used in some
isotopic labeling/flux studies. The following columns represent
the quantitative data within each of the n assays recorded in the
MTD section. For SML, a parameter inMTD also describes how
to interpret the quantitative values recorded.
Small Molecule Evidence (SME) Table. The SME table

represents strands of potentially heterogeneous types of
evidence supporting the identification of a molecule (Figure
1D). Each row contains the result of one identification process
(library search, pattern match, manual curation, etc.). The
header of the table starts with “SEH” followed by a set of
columns. The second column is a local identifier for a row of
evidence (SME_ID), followed by a local identifier for the input
data to the process (evidence_input_id). evidence_input_id is
needed for the cases where different rows of evidence are
reported for the same input data (MS2 spectrum, accurate mass
+ retention time, isotope pattern, etc.). They can be linked by
sharing the same value for evidence_input_id. As in the SML
table, a set of columns exists to specify the molecular identity
from a variety of sources or identifier types (database_identifer,
chemical_formula, smiles, inchi, chemical_name, uri). The
experimental m/z value of the feature, the charge, and the
theoretical m/z value (e.g., from a database) can be recorded,
along with scores or confidence measures coming from the
software used to support the identification. If a fragmentation
spectrum has been used, there is a mechanism for referencing
the exact spectrum in the source file (e.g., mzML file) and the
MS level of the input data to the identification process.
Identification Evidence and Ambiguity. Small-molecule

identification is a well-known challenge in MS metabolomics,
and even more so in MS lipidomics, where complete structural
elucidation of molecules is often not possible. Different levels of
“identification” might be possible, ranging from having the
accurate mass only, the chemical formula, a list of possible
identifiers to molecules in a database (with the same or different

formula), or a complete molecular structure resolved: e.g., if a
complementary technique such as NMR has been used. mzTab-
M has been designed to accommodate all the different
possibilities in a simple yet flexible structure (Figure 3). For
further details on how identifications of lipids and other
compound classes can be represented see the Supporting
Information.
In a row of the final results (SML table), the export software

can include one or more identifiers from external databases: e.g.,
“CHEBI:16811” where the prefix is defined in MTD as
referencing the ChEBI database24 (with a URL) and the
identifier is the ChEBI unique identifier (in this case for
methionine). Similarly, the specification allows for the chemical
formula in standard notation, simplified molecular-input line-
entry system (SMILES25), or InChi26 to be provided. In all
cases, if ambiguity has not been resolved, then a Pipe “|”
separated list of identifiers can be provided in the same cell.
There are several measures for describing the confidence of
identification, including the use of reliability codes such as those
developed by theMSI11,12 and the score or confidence measures
from identification software where available.
To trace the evidence source, references via the features (SMF

table) and on to the SME table should be provided. In the case
that adduct grouping (i.e., multiple SMF rows) has been
performed prior to identification, then the different SMF rows
will reference the same SME rows. At the SME level, if there are
different rows from the same input data (e.g., different database
matches), then it is expected that the SMF element(s) references
multiple SME elements that share the same value for
evidence_input_id. It is also possible to report different evidence
streams to support identification, such as searches in different
libraries. As such, SMF rows can reference multiple SME
elements carrying different values of evidence_input_id. Given
that these two cases would both result in multiple SME
identifiers referenced from an SMF row, an extra code can be

Figure 3. (A) The summary level (SML) reports the final assumed identifications, allowing for ambiguity by including “|” separated results in the
relevant columns. (B) The feature level (SMF) does not explicitly report identifications but references down to the SME level. Ambiguity is propagated
via referencing multiple SME rows with different identification results. (C) One SME row represents a single possible identification from some input
evidence. Multiple identifications from the same input data share the same value for evidence_input_id. Ambiguity can be captured by different rows for
the same input data.
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provided at the SMF level (SME_ID_REF_ambiguity_code)
containing values to differentiate whether ambiguity has been
resolved or still remains (see the specification document for a
full description).
Using CVs and File Validation.mzTab-M extensively uses

CVs to provide unambiguous terms for annotation. For
parameters relating to MS and associated processing, CV
terms should generally be sourced from the PSI MS CV.27

Several other CVs are recommended for describing details about
sample types, species taxonomy, sample preparation, etc. (see
the specification document). To ensure that valid CV terms are
used, we have extended the concept of the PSI semantic
validation framework.28 The framework includes a mapping file
that states the groups of CV terms allowed at each position in
mzTab-M, enabling the list of terms to expand over time,
without changes in the standard or software. New terms can be
added straightforwardly by making a request on a mailing list:
e.g., for a term describing new software, scores, or statistics. A
crucial part of the standard is therefore a validator to ensure that
files exported from different packages fulfill the rules defined in
the specification, so that they can be read without error by other
software. We have developed validation software for mzTab-M,
available from jmzTab (project: https://github.com/lifs-tools/
jmzTab-m), which checks not only that the structure of the file is
correct but also that valid and correct CV terms have been used
throughout.
Implementation in Software and Databases. The

specifications have been verified by both PSI and MSI formal
review processes, from which the stable version (mzTab-M 2.0)
has been released. It is not expected that there will be changes to
the format for several years to allow implementations to be
developed. A reference implementation with parser, writer, and
validator (in jmzTab-m) has been developed in Java (as for
mzTab 1.029). jmzTab-m provides an OpenAPI 2.0 compatible
API model that serves as the basis for automatic model
generation in a wide number of programming languages (C++,
JavaScript, R, Python), reducing the burden of implementation.
The library provides parsing, validation, and writing of mzTab-
M files and object models. A web-based application (https://
apps.lifs.isas.de/mztabvalidator/) provides a user-friendly user
interface to perform standard and semantic validation and to
display validation results. Additional implementations are under
development in software including XCMS,30 Progenesis QI
(Waters), Lipid Data Analyzer,31 OpenMS,32 and Metabo-
Lights.15 Over the coming years, we will be promoting the
implementation of the standard in a wide variety of both open-
source and commercial software to act as a universal standard for
metabolomics and lipidomics.

■ CONCLUSIONS
We have developed mzTab-M for metabolomics data
representation and sharing. The standard has been developed
in an open process with widespread consultation of different
approaches taken in the field and involvement of software teams
from academic research groups as well as industry. The standard
has undergone a rigorous peer review process by both the MSI
and PSI to ensure that the resulting standard is of high quality
and is stable. The standard is expected to remain stable for
several years, except for improvements to documentation and
extensions to the CV, allowing research groups and commercial
developers to invest time in the implementation. We also
encourage other groups interested in standardizing omics data,
particularly those using MS (e.g. glycomics), to adopt the

mzTab model/design, CV infrastructure, and associated
software.
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Software environments
and biological applications 1010
All the previously mentioned developments can advance biomedical research, allowing more efficient data
processing, but also to answer novel questions that were not possible before. My contributions in the area
of experimental metabolomics started with data processing of Arabidopsis metabolite profiles in [BvRLS08],
and network based data analysis in Nicotiana with Emmanuel Gaquerel [GKN13]. An integrated pipeline of
our metabolite profiling and identification tools [SGDN13] was implemented by Jan Stanstrup during his
stay in my group.

Together with Ivo Grosse I supervised the PhD student Diana Trutschel, who analysed and simulated
implications of sources of variances and statistical power [TSGN14] on experimental design. My PhD
student Susann Mönchgesang combined different types of -omics data for improved biological interpretation,
e.g. transcriptomics and proteomics in [HMN16]. The combination of metabolomics data with SNP variants
in a natural variation population of Arabidopsis which helped to identify metabolic pathways and link several
metabolites and biosynthetic enzymes [MSS16], [MST16].

In the rather recent field of applying metabolomics in ecology, I am working withing the iDiv and with my
PostDoc Kristian Peters on this topic [PWW18]. The conducted studies [PGBN18a, PGBN18b], [PTD19]
included fully reproducible workflows from raw data to statistical analysis and chemical classification.
These analyses were performed using the cloud and workflow technologies developed in the scope of the
PhenoMeNal project [PBB19].

The application of computational mass spectrometry tools is not limited to biomedical research, but has also
in several cases been applied in environmental research in the FP7 project SOLUTIONS [BAS15, AAAA15]
coordinated by Werner Brack (UFZ, Leipzig), where my group is one of the smaller project partners and
closely collaborating with Emma L. Schymanski and Juliane Hollender (Eawag, CH).
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Abstract Mass spectrometry (MS) has become the analyt-

ical method of choice in plant metabolomics. Nevertheless,

metabolite annotation remains a major challenge and implies

the integration of structural searches in compound libraries

with biological knowledge inferred from metabolite regula-

tion studies. Here we propose a novel integrative approach to

process and exploit the rich structural information contained

in in-source fragmentation patterns of high-resolution LC–

MS profiles. In this approach, a correlation matrix is first

calculated from individual mass features extracted by xcms

processing. Mass feature co-regulation patterns correspond-

ing to metabolite in-source fragmentation are then detected

and assembled into compound spectra using the R package

CAMERA and processed for in silico fragment-based struc-

ture elucidation using MetFrag. We validate the performance

of this approach for the rapid annotation of the twelve largest

compound spectra, including four O-acyl sugars and six

17-hydroxygeranyllinalool diterpene glycosides in metabolic

profiles of insect-attacked Nicotiana attenuata leaves. Addi-

tionally, we demonstrate the power of refining MetFrag

metabolite annotations based on co-regulation patterns

between known and unknown compounds in the correlation

matrix and proposed structural annotations on two previously

un-characterized O-acyl sugars. In summary, this novel

approach facilitates compound annotation from in-source

fragmentation patterns using correlation between intensities

of mass features of one or several metabolites. Additionally,

this analysis provides further support that insect herbivory

activates major metabolic reconfigurations in N. attenuata

leaves.

Keywords Nicotiana � Metabolomics � Mass

spectrometry � Network analysis � Metabolite annotation

1 Introduction

Plants continuously adjust their metabolism to cope with

environmental stresses. In the case of plant responses to

insect herbivory, investigations have traditionally been

dominated by the analysis of single metabolites or meta-

bolic routes that are thought by researchers to be relevant

for resistance. In recent years, significant instrumental and

conceptual improvements in mass spectrometry (MS) and

nuclear magnetic resonance (NMR) have led to advances in

untargeted metabolomics and allowed researchers to obtain

a broader view of the changes in the small molecule sig-

nature induced by different stresses, including the attack of

insects by (Macel et al. 2010).

Nicotiana attenuata, a wild tobacco native species from

the Great Basin desert in the USA, is one of the few non-

model plant for which such metabolomics approaches have

been combined to different system-level analyses in order to
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understand the mechanisms of anti-herbivore defense acti-

vation and efficiency under natural conditions (Halitschke

et al. 2003; Giri et al. 2006; Gaquerel et al. 2009; 2010; Kim

et al. 2011). Several major metabolic shifts detectable by

MS based metabolomics are induced in this plant following

the attack of herbivores, including those connected with the

biosynthesis of the neurotoxin nicotine (Steppuhn et al.

2004), which functions synergistically with anti-digestive

plant proteins (Steppuhn and Baldwin, 2007). Herbivore

feeding also activates the de novo production of 17-hy-

droxygeranyllinalool (HGL) diterpene glycosides (Heiling

et al. 2010) and of phenolic derivatives (Onkokesung et al.

2012). O-acyl sugars produced in trichomes are defensive

metabolites constitutively present on the leaf surface and

have been analyzed by MS approaches (Weinhold and

Baldwin 2011).

Non-targeted MS-based metabolomic experiments

involve the automated extraction of mass features (distinct

m/z values measured at a given retention time) and the

statistical interpretation of the influence of experimental

conditions on the relative intensity of these features. This

task can be performed by multiple vendor softwares or

Open Source systems such as xcms (Smith et al. 2006),

turning MS into the method of choice for the rapid dis-

covery of stress biomarkers (reviewed in Allwood and

Goodacre, 2010). Nevertheless, in spite of its high resolu-

tion and large range of applications, modern MS based

metabolomics still suffers from a lack of comprehensive

databases and efficient workflows for the annotation and

identification of the compound structures corresponding to

mass features of interest (Neumann and Bocker, 2010). For

this reason, structure identification represents the key bot-

tleneck in untargeted metabolomics studies, as discussed in

the review on metabolite identification in mass spectrom-

etry-focused metabolomics (Dunn et al. 2012).

In N. attenuata, only 15 % of the m/z features differ-

entially regulated after simulating insect feeding could be

assigned to structural elements of previously known and

putative metabolites using a comprehensive strategy com-

bining N atom labeling and MS2 experiments (Gaquerel

et al. 2010). A recent development to circumvent the

limitations of LC–MS databases available for compound

annotation consists in searching broad or targeted com-

pound libraries not only with the predicted exact mass and

molecular formula of one compound, but also with frag-

ment information from in-source fragments or targeted

MS2 measurements (Hill et al. 2008; Wolf et al. 2010).

MetFrag is an application that performs in silico frag-

mentation and ranks the candidate based on the molecular

fragments that best explain the measured fragment peaks

(Wolf et al. 2010). In silico structure analysis, which also

includes predicting metabolite fragmentation trees from

MS2 data (Rasche et al. 2011; 2012), represents, in

addition with expert knowledge, a promising strategy to

speed up the interpretation of MS data. However, these

different computational approaches do not take biological

and biochemical knowledge into account to provide con-

straints and narrow down the number of candidates.

The study of correlation relationships among metabo-

lite levels has been used to facilitate the survey of me-

tabolome organization and hypothesis generation on both

pathway and metabolite identity. Typical metabolite pro-

filing studies show a few but significantly high correlation

values when measurements are repeated across samples

harvested in a time course manner (Allen et al. 2010).

Correlations between metabolites can inform about met-

abolic links between pairs or groups of metabolites but are

not necessarily in agreement with known or postulated

biochemical pathways. Small fluctuations in the level of

one metabolite may translate into significant modifications

of an organism’s metabolic network (Szymanski et al.

2009). By contrast, strong and perturbation-persistent

correlations between metabolite levels can originate from

direct enzymatic conversions and from indirect tran-

scriptional controls. Metabolic network neighborhood

provides powerful hints towards the annotation of an

unknown metabolite when few of the correlating metab-

olites share significant structural similarities. For instance,

Hirai et al. (2004, 2005) detected shared regulation among

precursors and glucosinolate metabolites after nitrogen

and sulfur deficiency and integrated these co-expression

data with gene expression profiles to predict novel gluc-

osinolates biosynthetic genes using self-organizing maps

(SOM). However, no study has tested how such concep-

tual ‘guilt-by-association’ approaches could help priori-

tizing structure elucidation of unknown metabolites based

on their co-regulation with known pathways or sets of

metabolites. Most of the procedures developed for gene-

to-gene co-expression networks can be transposed to the

analysis of metabolite expression data (Breitling et al.

2006; Jourdan et al. 2008), but in the case of MS-based

metabolite profiling, each metabolite is often represented

by more than one m/z feature—including isotopic peaks,

different adducts and fragments generated during in-

source fragmentation—which complicates network com-

putation and interpretation. An intermediate processing

step is required to combine metabolite-derived m/z fea-

tures into clusters, defined by m/z feature co-occurrence,

isotopic relationships and chromatographic correlations.

CAMERA is a recently developed MS interpretation

program that performs both reconstruction of metabolite-

specific in-source compound spectra and their annotation

(Kuhl et al. 2012).

In this study, we propose a novel integrative approach to

combine the interpretation of feature correlation relation-

ships visualized using network representations with the rich
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structural information provided by in-source fragmentation

patterns in order to refine in silico metabolite annotation.

We tested the efficiency of this work-flow for the annota-

tion of metabolic responses activated by mechanically

wounding N. attenuata leaves and applying Manduca sexta

larva oral secretions, a treatment known to recapitulate

most of the large-scale changes occurring in the secondary

metabolic network of this plant during the feeding of this

insect. To this end, we constructed a correlation matrix

based on temporal changes in the intensity of individual

mass features as extracted by xcms and then integrated co-

regulation information inferred from the list of correlating

metabolites and CAMERA annotations as constraints dur-

ing MetFrag metabolite annotation. Today, compound

annotation is often performed on accurate mass MS1 data,

or requires the additional acquisition of MS2 fragmentation

spectra. Our annotation is based on deconvoluted MS1

compound spectra with in-source fragment ions, but where

isotopic and multi-charged ions are removed (hereafter

referred to as MS1.5 data) workflow facilitates the inter-

pretation of biologically meaningful clusters of molecular

fragments in co-regulation networks, and speeds up initial

compound annotation or class assignment based on initial

MS profiling data.

2 Materials and methods

2.1 Plant growth and treatment

We used an isogenic line of Nicotiana attenuata obtained

after 30 generations of inbreeding from field-collected seeds.

Seeds were germinated as described in Gaquerel et al. (2010).

All plants were grown in the glasshouse in 1 L individual pots

at 26–28 �C under 16 h of light supplied by Philips Sun-T

Agro 400- or 600 W sodium lights (Philips, Turnhout,

Belgium).

Metabolic changes induced during Manduca sexta feed-

ing were reproduced by producing with a fabric pattern

wheel three rows of punctures onto each side of the midvein

of five fully expanded leaves per plant (5 biological repli-

cates) and directly applying 1:1 diluted M. sexta oral secre-

tions. Treated leaves from the same plant were harvested and

flash frozen 0, 1, 2, 4, 14 and 24 h after elicitation. 100 mg of

ground leaf tissue was weighed and transferred to a Fast Prep

tube containing 0.9 g of Fast Prep matrix (BIO 101, Vista,

USA). 1 mL extraction buffer per 100 mg tissue [50 mM

acetate buffer, pH 4.8, containing 40 % methanol spiked

with reserpine (600 ng/mL), atropine (200 ng/mL)] was

added and samples were homogenized. After centrifugation

(13,200 rpm, 20 min, 4 �C) the supernatant was collected in

a fresh 1.5 mL Eppendorf tube, centrifuged again and 100 lL

of the supernatant was transferred to a HPLC vial.

2.2 Metabolite profiling by HPLC-ESI/TOF–MS

Two microliters of the leaf extract were separated using a

HPLC 1,100 Series system (Agilent, Palo Alto, USA). The

column used was a 150 mm 9 2 mm i.d., 3 lm, Phe-

nomenex Gemini NX RP-18 column with a 2 mm 9 4 mm

i.d. guard column of the same material. The following

binary gradient was applied: 0 to 2 min isocratic 95 % A

(deionized water, 0.1 % [v/v] acetonitrile [Baker, HPLC

grade] and 0.05 % formic acid), 5 % B (acetonitrile,

0.05 % formic acid); 2 to 30 min linear gradient to 80 %

B; isocratic for 5 min. Flow rate was 200 lL/min.

Eluted compounds were detected by a micrOTOF mass

spectrometer (Bruker Daltonics, Bremen, Germany) equip-

ped with an electrospray ionization source in positive and

negative ion mode. Typical instrument settings were as fol-

lows: capillary voltage 4,500 V, capillary exit 130 V, dry

gas temperature 200 �C, dry gas flow of 8 L/min. Ions were

detected from m/z 200 to 1,400 at a scan rate of 1 Hz. Mass

calibration was performed using sodium formate clusters

(10 mM solution of NaOH in 50/50 % v/v isopropanol/water

containing 0.2 % formic acid).

2.3 Mass spectrometry data processing

Raw data were exported as netCDF files and processed

with the m/z feature detection and retention time alignment

BioConductor package xcms (v1.30, http://www.biocon

ductor.org/packages/release/bioc/html/xcms.html), using

following parameters for feature detection: method =

’’centWave’’, ppm = 20, snthresh = 10, peakwidth =

(20,50). For alignment, we repeated the xcms group

method twice and performed a retention time correction in

between with the following parameters: minfrac = 0.5,

bw1 = 60, bw2 = 25, mzwid1 = 0.05, mzwid2 = 0.02,

span = 1, extra = 0, missing = 0. Areas of missing fea-

tures were estimated using the fillPeaks method.

Annotation of compound spectra and corresponding ion

species was performed with the BioConductor package

CAMERA (v1.9.8, http://www.bioconductor.org/packages/

release/bioc/html/CAMERA.html). Compound spectra were

built with CAMERA according to the retention time similarity,

the presence of detected isotopic patterns and to the strength of

the correlation values among extracted ion chromatograms

(EICs) of co-eluting m/z features. CAMERA grouping and

correlation methods were used with default parameters except

the threshold for EIC correlation (cor_eic_th) that was

increased to 0.85. Clustered features were annotated based on

the match (±5 ppm) of calculated m/z differences versus an

ion species and neutral loss transitions rule set. Mass differ-

ences corresponding to NH3CH2, NH3CH3H2 and NH3C2H4

neutral losses were added to the default rule set of CAMERA.
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If one or more mass differences can be assigned to a compound

spectrum, CAMERA will also deduce the neutral exact mass

[M] of the underlying compound.

To facilitate sharing and re-analysis of the metabolite

profiling data presented in this study, the raw data netCDF

files and metadata annotation in the ISAtab format (Sansone

et al. 2012) were submitted to the EBI’s MetaboLights

repository (Haug et al. in press) with the accession

MTBLS10 (http://www.ebi.ac.uk/metabolights/MTBLS10).

2.4 Correlation analysis, network visualization

and interpretation

Combined xcms and CAMERA output matrix was expor-

ted into Excel (v14.1). Based on the ion species annotation,

?1, ?2 and ?3 isotopic peaks were excluded to reduce

information redundancy. Zero values remaining after the

estimation of missing features’ peak areas were replaced by

1/5 of the minimum area measured for a given median m/z

feature and data were normalized sample-wise using the

75-percentile procedure. Only m/z features detected in at

least 4 out of 5 biological replicates in at least one time

point group were retained for univariate statistics and

ab initio correlation weighted network reconstruction.

Networks were visualized using the correlation-weighted

layout algorithm in Cytoscape (v2.8.2, http://www.

cytoscape.org/; Shannon et al. 2003), a software for visuali-

zation of biochemical networks. The Cytoscape plugin

MetaNetter (v2.1) was used for inference and visualization of

networks from high-resolution mass spectrometry metabolo-

mic data (Jourdan et al. 2008). This open source plugin has

been designed to interpret metabolomics experiments by

allowing user-friendly correlation matrix computation and m/

z feature annotation using a list of m/z values calculated for

candidate metabolites. MetaNetter requires a list of masses

(one mass per line) followed by tabulated quantitative data for

each mass (m/z x area matrices) that was extracted from the

xcms/CAMERA report table. In this study, we evaluated the

influence of data reduction on the interpretation of network

topology by comparing networks obtained for (i) the full m/z

peak list information and (ii) only a subset of CAMERA-

annotated pseudo-molecular ions. Network edges were

created using the zero-order Pearson correlation values cal-

culated within MetaNetter using r = 0.75 as threshold.

Similarly to the CAMERA annotation tool, the ab initio

mapping function of MetaNetter detects feature pairs with

an m/z distance corresponding to known mass differences

(called transformation in the MetaNetter nomenclature)

within 5 ppm mass accuracy. We used the Cytoscape VizM-

apper tools to define node colors according to CAMERA

grouping, manual compound class annotation, and

assigned node shapes according to adduct annotation and

edges line styles according to specific neutral losses within

CAMERA compound spectra or inter-metabolite m/z

differences.

2.5 Metabolite annotation

2.5.1 In silico metabolite annotation with batch queries

The in silico metabolite annotation tool MetFrag is available

both as web application (http://msbi.ipb-halle.de/MetFrag)

and as a local application that processes text-based query files

and saves results as an SD file of ranked candidate structures.

A MetFrag MS1.5 query file was created for every CAMERA-

deduced molecular mass hypothesis [M] if the associated

compound spectrum contained at least one fragment peak, i.e. a

m/z feature with a lower m/z value than [M]. Annotated iso-

topic peaks and multiply-charged ions such as [M?2H]2?

were excluded. The functionality to create MetFrag batch

query files is now available in the CAMERA package, starting

with version 1.5.2. Extracted MS1.5 compound spectra usually

contain a subset of the information that can be expected in a full

tandem mass spectrum, but may also include false positives,

i.e. unrelated features. Compounds within the injection peak

were not considered for in silico analysis.

An example query file is included in the supporting infor-

mation. Candidate metabolite structures were obtained from a

local PubChem mirror (dated 2010-09-06) and an in-house

compound structure database (Gaquerel et al. 2010). The

combined database was searched using the estimated com-

pound mass [M] within the default 10 ppm error of MetFrag

(Wolf et al. 2010). Molecular structures of candidate metab-

olites and corresponding query files were processed with a

locally installed MetFrag (v1.1) using the following parame-

ters: mzabs = 0.01, mzppm = 10, TreeDepth = 2, char-

ge = positive, bio = true (only CHNOPS atoms). Especially

within the large lists of ranked candidate structures proposed

by MetFrag, the correct solution is not always ranked first. We

therefore performed a structural clustering to derive consensus

structures among high-scoring candidates, see below.

The SmartFormula 3D algorithm, which verifies that

elemental formulas of fragment ions are subsets of the pre-

cursor elemental composition, was used to support the

annotation of sodium containing fragments within MS1.5

and MS2 spectra of unknown metabolites. For the processing

of the MS1.5 and MS2 spectra of two previously unknown

O-acyl sugar metabolites with MetFrag, we adjusted the m/z

values of sodium containing fragments to their correspond-

ing protonated forms (subtraction of 21.9825 Da). This step

is necessary since MetFrag assumes protonated spectra.

2.5.2 Relative ranking position

For several previously known compounds we report the

performance of the MS1.5 based annotation, giving both
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the absolute and a relative rank. The relative ranking

position (RRP) among MetFrag candidates was calculated

to compare the ranking independently from the length of

the candidate lists. A score of 0 corresponds to the correct

compound on first rank, whereas a score of 1 correspond to

the last rank position.

RRP ¼ 1

2
� 1þ BC �WC

TC � 1

� �

where TC is the number of total candidates, BC is the

number of better candidates with a higher MetFrag score,

WC is the number of worse candidates with a lower Met-

Frag score.

2.5.3 Candidate structure clustering

For each MetFrag result, we performed a chemical struc-

ture clustering analysis. As preprocessing we pruned the

MetFrag result list, by filter out non-explaining candidates.

For result lists with hundreds of candidates, we retained

only the best candidates according to the 90th percentile of

explained peaks. After filtering a MetFrag result, we cal-

culated for all structures with the R package rcdk (Guha,

2007) an extended binary fingerprint, which encodes 1,024

different chemical properties like a C–C Bond. A property

is set to 1, when a structure contains it, otherwise set to 0.

Afterwards we calculated the Tanimoto similarity between

each fingerprint. The Tanimoto similarity between a fin-

gerprint a and b is defined as C/(A?B–C), where A is the

number of 1 in structure a, B is the number of 1 in structure

b and C is the number of 1, which both fingerprints have at

the same positions. Afterwards we perform a hierarchical

clustering using the Tanimoto similarity as distance

between two structures (Supplementary Fig. 2). The

resulting dendrogram tree was cut at a height of 0.2 (cor-

responding to a chemical similarity of 80 %), and for each

of the resulting clusters, the maximum common substruc-

ture was calculated. All calculations were performed in R

v2.14 using package rcdk (v3.1.4, http://www.jstatsoft.

org/v18/i05/) (Steinbeck et al. 2003). Complete chemical

clustering results are presented as Supplementary material.

2.5.4 Metabolite annotation nomenclature

Metabolite identifiers are presented in Supplementary File

5. Targeted analyses on metabolites presented in Table 1

have previously been published (Gaquerel et al. 2010;

Heiling et al. 2010; Weinhold and Baldwin 2011). Anno-

tation/identification level for each of these metabolites

according to the four levels of the metabolite annotation

nomenclature proposed by the Metabolome Standard Ini-

tiative (Sansone et al. (2007) and employed as described in

Matsuda et al. (2010) are summarized in Gaquerel et al.

(2010). Briefly, each HGL-diterpene glycosides reported in

Table 1—nicotianosides I, II, III, IV, lyciumoside IV, at-

tenoside—was purified, analyzed by MS2 high resolution

HPLC-ESI/TOF–MS and its structure identified—identi-

fied/level 1—by NMR (Heiling et al. 2010). In Gaquerel

Table 1 Evaluation of the MetFrag annotation process with MS1.5 compound spectra for 12 previously identified Nicotiana attenuata
metabolites

Annotation m/z Rt [s] Database hits MetFrag RRP

O-acyl sugars

AS #1 594.2889 636.4219 514/2 33/298 0.1077

AS #2 608.3046 657.654 432/3 71/256 0.2745

AS #3 622.3203 680.7421 300/3 5/178 0.0226

AS #4 678.3464 774.2913 237/2 4/129 0.0234

HGL-DTGs

Nicotianoside I 862.4213 586.2605 83/1 13/55 0.2222

Nicotianoside II 948.4227 599.4421 46/1 1/31 0

Nicotianoside III 922.4766 574.3238 56/3 7/43 0.1429

Nicotianoside IV 1024.474 565.2787 27/3 2/20 0.0526

Attenoside 938.4729 557.0429 63/1 5/42 0.0976

Lyciumoside IV 776.419 574.3238 109/2 1/63 0

Others

Nicotine (CHEBI:18723) 162.1144 51.33913 862/5 253/685 0.3684

Rutin (CHEBI:28527) 610.1535 492.6253 648/6 1/344 0

Overall Median: 5/96 Mean: 0.1394

Database: PubChem plus in-house; MetFrag results: Cluster rank/total cluster number

17-HGL-DTGs 17-hydroxygeranyllinalool-diterpene glycosides, AS O-acyl sugars
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et al. (2010), the well-established identity of rutin and

nicotine—identified/level 1—was further supported by

MS1 and MS2 UHPLC-ESI/TOF–MS of authentic com-

pounds. In Matsuda et al. (2010), level 3 of identification

corresponding to ‘characterized’ compounds is defined as

‘based upon characteristic physicochemical properties of a

chemical class of compounds or by spectral similarity to

known compounds of a chemical class’. Fragmentation

patterns of O-acyl sugars characterized in N. attenuata

exhibit typical losses of acetylated and non-acetylated

fructose, previously observed for O-acyl sugars described

in other Solanaceae. Short fatty acid chains involved in

N. attenuata O-acyl sugars were identified, after trans-

methylation, by GC–MS and comparison with authentic

compounds (Weinhold and Baldwin 2011). However, the

position of these acyl moieties could not be inferred from

the MS2 analyses conducted on O-acyl sugars (Weinhold

and Baldwin 2011), which justifies the classification of

these compounds as level 3 of annotation.

3 Results and discussion

3.1 Nicotiana attenuata responses to herbivory as case

study for network-assisted computational

annotation

The methodology (Fig. 1) presented in this article is based

on a combination of mass spectrometry data processing

tools, correlation analysis and representation as networks,

and in silico metabolite annotation. Significant patterns of

biological co-regulation between metabolites as those used

in this analysis can more easily be inferred when metabolic

systems are subjected to intense perturbations. We used as

case study co-expression networks constructed from time-

course metabolomics analysis of N. attenuata, an ecologi-

cal model plant. Rosette stage N. attenuata plants mount a

strong and specific metabolic counter-response when

attacked by insects or treated with insect-derived elicitors

(Keinanen et al. 2001; Gaquerel et al. 2010). In order to

survey the temporal nature of these metabolic changes,

mechanically wounded leaves of N. attenuata were treated

with Manduca sexta oral secretions, harvested over a 72 h

time period and profiled by HPLC-ESI/TOF–MS in posi-

tive ionization mode. In agreement with previous analyses

performed using the same experimental design (Gaquerel

et al. 2010), pronounced alterations of total ion chro-

matogram profiles were observed post-elicitation. Non-

targeted processing of the raw data files and subsequent

pairwise statistical analysis showed that a cumulative

proportion of 40.6 % of total reproducibly detected m/z

features were more than 1.5-fold differentially regulated

(P \ 0.05, for details see Supplementary File 1) for at least

one of the harvesting time points compared to untreated

leaf samples harvested at the initial stage of the time-

course experiment. Changes with the greatest amplitude

were detected 14 and 72 h post-elicitation. Supplementary

File 1 summarizes the regulation and CAMERA-based

annotation of reproducibly detected m/z features along the

time-course analysis.

One of the central goals of this study was to demonstrate

the value of rapid and proper annotation of in-source

fragmentation clusters from profiling data to make sense of

a metabolomics data set. We first manually annotated

major in-source compound spectra using both CAMERA

and knowledge from previous studies on this model sys-

tem. Consistently, m/z features associated with previously

identified and predicted 17-hydroxygeranyllinalool (HGL)

diterpene glycosides, phenolic derivatives and O-acyl

sugars accounted for a large proportion of the variance

within the data-set and their intensity was differentially

affected by the herbivory-mimicking treatment (Supple-

mentary File 1). Many of these metabolites are only present

in few plant relatives and some have been recently struc-

turally elucidated and therefore are not present in com-

pound databases. The sparsity of compound databases for

such secondary metabolites represents an ideal platform to

prove the value of fragment computational analysis (Fig. 1)

as presented in this article to annotate some of these

metabolites or formulate hypothesis on some of their

structural features.

3.2 Network visualization of mass feature correlation

supports CAMERA-reconstruction of in-source

fragmentation clusters and informs on metabolite

links

Correlations between metabolite levels calculated from

time series represent a well-recognized source of infor-

mation that can be used to assess the modularity of a

metabolic system (e.g. Fukushima et al. 2011). In the case

of MS-based metabolic profiling, in addition to the links

between metabolites originating from connected metabolic

pathways, strong and persistent correlations are observed

among m/z signals derived from the same molecule

(Breitling et al. 2006; Draper et al. 2009; Gaquerel et al.

2010). The degree and intensity of correlation-based con-

nectivities among m/z features of a data-set can therefore

be used, in addition to the chromatography-based cluster-

ing performed by CAMERA, to distinguish features

derived from a specific compound spectrum from those

corresponding to differentially regulated co-eluting com-

pounds. To that end, correlations above 0.85 were visual-

ized using the correlation-weighted network layout in

Cytoscape (Fig. 2a). In this layout, network edges are

inversely proportional to the strength of the correlation
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between mass features. This allows localizing groups of

m/z features sharing high correlation within the network

representation. Main modules overlapped with sets of m/z

features differentially regulated over the time series, rein-

forcing the value of using network representations to

uncover hidden patterns of independent regulation struc-

turing this large data-set.

The interpretation of groups of highly correlated m/z

features—densely connected modules of the network—is

more intuitive when meta-information is mapped onto nodes

and edges of the network. Mapping compound spectra

information obtained from CAMERA onto the network

using the VizMapper tool from Cytoscape supported that in

most cases densely connected clusters represented in-source

fragments. Most intra-compound spectrum m/z pairs shared a

correlation coefficient above 0.85 (data not shown). We

accordingly observed that nodes with highest connectivity

indexes were located among features within a compound

spectrum (data not shown). As expected, partial networks

representing correlations between m/z features of a given

compound spectrum show high connectivity. Thus, Fig. 2c

shows the partial network for co-expressed m/z features

within the compound spectrum extracted and annotated by

CAMERA for rutin.

The visualization of CAMERA annotations onto the net-

work also allowed the rapid assessment of the performance of

CAMERA chromatographic peak grouping, based on the

inspection of the densely connected modules. For example, the

Fig. 1 Workflow for combined network and fragment analysis. Non-

targeted processing (‘MS DATA PROCESSING’) of mass spectrom-

etry data by xcms and CAMERA generates isotopic/adduct/neutral

loss-annotated m/z feature x intensity matrices that are used for

correlation-weighted network visualization using Cytoscape (‘NET-

WORK ANALYSIS’). Annotated compound spectra (MS1.5) corre-

sponding to each neutral mass hypothesis [M] proposed by CAMERA

and containing more than molecular fragment (MF) are extracted

using a custom R script and analyzed for in silico structural annotation

in MetFrag using public and in-house library (‘IN SILICO STRUC-

TURAL ANNOTATION’). Combining these two approaches facil-

itates the survey of metabolite co-regulation (e.g. m1 to m4),

including known-to-unknown metabolite correlation. The immediate

metabolic neighborhood of unknown metabolites is included to

increase the coverage of potentially structurally related metabolites

during fragment analysis by MetFrag
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compound spectrum #14 shown in Fig. 2b, which includes a

total of 80 features eluting within a retention time window of

6 s, appeared to be composed of two distinct HGL-diterpene

glycosides, namely nicotianoside III and lyciumoside IV. This

shows the value of combining chromatography- and regula-

tion-based information to facilitate the deconvolution of

spectra especially in dense regions of a chromatogram. This

evaluation was extended to each spectrum retrieved by

CAMERA prior to performing metabolite annotation searches.

3.3 In silico annotation of compound spectra

As a next step, we tentatively annotated compound spectra

in the network. CAMERA has been shown to facilitate the

rapid annotation of molecular masses [M] based on adduct

mass differences and isotopic cluster relationships. We

therefore used CAMERA annotations as primary data for

metabolite identity searches. However, as already shown

by multiple other studies (Kind and Fiehn 2006), querying

compound databases like PubChem solely with the

molecular mass or even elemental compositions usually

returned too many candidate structures (ranging typically

from dozens to thousands, Table 1). We developed a novel

workflow for compound annotation that exploits the rich

fragment information contained in each compound spec-

trum. To this end, we extracted for each [M] hypothesis,

based on CAMERA and network clustering results, the in-

source fragments as additional structural hints from the

corresponding compound spectrum, and removed uninfor-

mative m/z signals like adducts and isotopic peaks.

Resulting deconvoluted compound spectra derived from in-

source ionization, hereafter referred to as MS1.5 data, were

used for in silico structural searches with MetFrag using a

custom R script. The functionality to create MS1.5 Met-

Frag batch query files is now available in the CAMERA

package, starting with version 1.5.2. MetFrag allows

Fig. 2 m/z feature-based correlation analysis and network represen-

tation of N. attenuata induced responses. a Correlation coefficients

calculated between xcms/CAMERA-processed m/z features were

visualized using the correlation-weighted network layout of Cyto-

scape. Only correlation coefficients r [ 0.85 were visualized as

edges. Densely connected regions of the network overlapped with sets

of m/z features differentially regulated over the time series (Supple-

mentary File 1 and Fig. 1). The network representation, when colored

according to CAMERA’s clustering, allows distinguishing among

correlation modules between intra-metabolite spectra and inter-

metabolite links. The 25 largest compound spectra constructed by

CAMERA are mapped onto the network using different node colors.

Compound spectra 1 and 18 corresponding respectively to nicotine

and nicotianoside II in-source fragmentation patterns are annotated.

b Magnification on compound spectrum #14. This module, which

includes a total of 80 features eluting within a retention time window

of 6s, appears to be composed of two distinct 17-hydroxygeranylli-

nalool diterpene glycosides (HGL-DTG), namely nicotianosides III

and lyciumoside IV. c Network constructed for the rutin compound

spectrum using Cytoscape circular network layout. Edge length is not

weighted with this layout. Edge thickness denote for the correlation

strength
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comparing observed peaks with fragments generated in

silico from candidate compound structures retrieved from

public databases, according to the molecular mass [M] or

elemental composition of a given unknown metabolite

(Wolf et al. 2010).

In-source fragmentation depends heavily on compound

structure and instrumental settings; the performance of

MetFrag for this type of data had not been thoroughly

tested before. We therefore conducted an evaluation of the

improvement of using MS1.5 data compared with searches

in compound libraries solely based on [M] or elemental

composition (Table 1). Several N. attenuata metabolites

previously identified to the Metabolome Standard Initiative

annotation levels one or three (Gaquerel et al. 2010;

Heiling et al. 2010; Weinhold and Baldwin 2011) were

used for the validation of this pipeline. From 43 non-trivial

compound spectra that contained at least one fragment

peak after filtering annotated isotopic and adduct peaks, we

obtained 81 MS1.5 batch query files (due to the different

[M] hypotheses formulated by CAMERA). Noteworthy,

abundant and well characterized herbivory-inducible

N. attenuata metabolites, such as most phenolic derivatives

(Gaquerel et al. 2010; Onkokesung et al. 2012), whose

compound spectra, obtained in positive ionization mode,

did not contain other fragment peaks than isotopic and

multi-charge ion peaks were not included in this analysis.

Each MS1.5 query file was processed by MetFrag against a

mirror of the PubChem library, which was supplemented

with entries of an in-house database (Gaquerel et al. 2010)

to raise the coverage of plant metabolites.

Table 1 summarizes the MetFrag results for MS1.5 data

of previously identified N. attenuata metabolites. The

complete result list for all 43 compound spectra is included

as Supporting Information to this article. In this proof-of-

concept study, the rank of the correct compound among the

MetFrag candidates ranged from 1 (nicotianoside II,

lyciumoside IV and rutin) to 253 (nicotine). To take into

account the different number of candidates retrieved by

MetFrag when interpreting rank positions, we calculated

the relative ranking positions (RRP, see Methods) of each

identified metabolite. The RRP of the correct structure

among MetFrag results ranged from 0 (correct candidate

ranked first) to 0.369 for nicotine and 0.1394 on average.

These results indicate the superiority of our approach,

compared with searches solely based on [M] and elemental

formula, for fast metabolite re-annotation.

In the case of nicotine, the rank of the correct compound

was beyond 250, which is a very poor result. The nicotine

MS1.5 spectrum with six fragment peaks is presented as

Supplemental information (Supplementary Note 1, ‘‘Query

Spectrum for nicotine’’ and Supplementary Fig. 1). Met-

Frag explained only two of them, and those were also

present in more than half of the other candidate structures,

indicating that these in-source fragments were too unspe-

cific. Consistent with this explanation, we observed that

performing MetFrag processing on high quality MS2 data

measured for nicotine improved neither the absolute

(rank = 253) nor the relative rank positions

(RRP = 0.375) of nicotine. By clear contrast, MS1.5

spectra were sufficient to identify and even discriminate

among HGL-diterpene glycoside molecules: the median

absolute rank for HGL-diterpene glycosides was 3.5, the

mean relative rank position 0.086 and fragment elemental

formulae proposed by MetFrag were in perfect agreement

with those published in Gaquerel et al. (2010) and Heiling

et al. (2010). HGL-diterpene glycoside compound spectra

all share diagnostic fragments at m/z 271.24 and 289.25

that correspond to the aglycone after successive glucose

and rhamnose losses. Correct structural annotations were

obtained for these m/z signals by MetFrag.

Typically, there are dozens to hundreds of structure

candidates for each query compound. In order to condense

these result-lists and to highlight the maximum common

substructures (or consensus motifs) among high-scoring

candidates, we performed a structural clustering for each

MS1.5 result list. Structural clustering based on molecule

fingerprints is also a convenient means of identifying

backbones shared by different molecules (Schymanski

et al. 2012) (Supplementary Fig. 2). The correct metabolite

is not guaranteed to be ranked on the first place after

MetFrag processing, but the top candidates typically

include multiple structurally-related metabolites. We

therefore postulate that this clustering analysis provides

important hints for structural motifs when interpreting

MetFrag results, even in the case of unknowns not present

in the compound database. Figure 3 presents predictions

and consensus structure reconstructions obtained using

MetFrag followed by structural clustering for the MS1.5

spectra corresponding to rutin, the major flavonoid glyco-

sides in N. attenuata leaves. After filtering fingerprints of

the best 66 candidate structures from MetFrag were

grouped as two main clusters and three singletons, with a

Tanimoto distance above 0.2. Both clusters exhibit the

flavone backbone of rutin. It is also noteworthy that the

rutinose (6-O-L-rhamnosyl-D-glucose) moiety of rutin was

contained in numerous of MetFrag candidates, although not

consistently well positioned. Structural clustering results

for each of Table 1 entries are available as Supplemental

information (Supplementary File 2).

3.4 Metabolite co-regulation informs compound class

prediction of unknown structures during in silico

fragment analysis

The annotation strategy explained above solely depends on

the interpretation of individual compound spectra, where
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no a priori knowledge about the potential compound class

is available. We next analyzed whether metabolite links in

the network provide additional information to improve the

annotation. Considering the clear compound-class-based

cluster demarcation achieved by the correlation analysis,

our assumption is that metabolite co-regulation reflects to a

large extent compound class membership (Fig. 4) and in

turn that unknown metabolites sharing tight co-regulation

with known metabolites might be biosynthetically related.

Two unknown metabolites sharing high correlation with

several characterized metabolites leaped out as interesting

candidates (Fig. 4). In the network visualization, the m/z

signals derived from those metabolites were located in the

O-acyl sugars enriched sub-network and annotated by

Fig. 3 Chemical similarity clustering annotates the flavone backbone

of rutin, Nicotiana attenuata’s major leaf flavonoid. a Dendrogram

representation of the chemical similarity between 66 top-scoring

MetFrag candidates retrieved from the processing of rutin MS1.5

spectrum. Chemical similarity clustering analyzes the chemical

resemblance, calculated as Tanimoto similarity between binary

fingerprints of metabolite structures. b Maximum common substruc-

tures extracted for the two clusters (1 and 2) and three singletons (3, 4

and 5) separated by a Tanimoto distance of 0.2 (corresponding to a

chemical similarity of 80 %). Both clusters (1 and 2) exhibit the

flavone backbone of rutin (highlighted in red) (Color figure online)
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Fig. 4 Metabolite co-regulation informs compound class prediction

of unknown pseudo-molecular ions. a To direct and prioritize the

annotation process of unknown neighbors of known metabolites, we

computed a new correlation (r [ 0.75, correlation-weighted layout)

network solely based on precursor m/z signals identified for each of

the compound spectra processed with MetFrag. Taking benefit of the

reduced chemical redundancy, adduct mass differences or specific

neutral losses were identified by implementing CAMERA rules into

the MetaNetter plugin of Cytoscape and mapped as waved edges onto

the network. Different adduct types are depicted as different node

shapes. Node colors correspond to different compound classes.

Considering the clear compound-class-based cluster demarcation

within the correlation network, we assumed that m/z features derived

from unknown metabolites and sharing a high connectivity index with

previously characterized metabolites likely belong to the same

compound class as known metabolites. Such phenomenon was

especially observed for the subnetwork enriched in O-acyl sugar

(AS)-derived pseudo-molecular m/z features. b, c Networks built for

the first neighbors of m/z 603.264 (AS 603) (b) and m/z 673.305 (AS

673) c predicted as sodium adducts of non-previously reported O-acyl

sugars spectrum using Cytoscape circular network layout. Edge

length is not weighted with this layout. Edge thickness denote for the

correlation strength. Structural predictions for AS 603 MS 1.5 and AS

673 MS2 are presented in Fig. 5
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CAMERA as sodium adducts with m/z 673.3031 and

603.2639 (Supplementary Fig. 3). Mapping known mass

differences/biochemical transformations between both

candidates and neighboring, known O-acyl sugar com-

pounds showed that these metabolites share known neutral

mass shifts (CH2, C2H4, C6H10O4, …) and also high cor-

relation, two indicators for both biosynthetic relationships

and co-regulation (Supplementary File 3). Hence, we pre-

dict that both correspond to two not previously reported O-

acyl sugars and therefore named them accordingly AS 673

and AS 603. Network visualizations only provide graphic

representations of particular relationships calculated for

features of interest and their topology is per se strongly

influenced by the type of layout used for their representa-

tion. To detect molecular fragments corresponding to these

two unknown metabolites and co-regulated compound

spectra, we listed m/z features correlated (Pearson corre-

lation r [ 0.75) with the pseudo-molecular ions of AS 673

and AS 603 and called each set of correlated m/z features

the immediate metabolic neighborhood of these two

metabolites (Supplementary File 3).

The MS1.5 spectrum of AS 603 contains 9 query peaks

(Supplementary File 2). PubChem returned more than 600

candidates matching within 10 ppm the [M] hypothesis for

AS 603, but we had previously observed that O-acyl sugars

are practically absent from this database (Table 1). Our in-

house library contained only one compound with a corre-

sponding mass. To confirm our O-acyl sugar working

hypothesis for AS 603, we merged all 2,122 candidates of the

10 connected metabolites (Supplementary File 3) and pro-

cessed them with MetFrag (Supplementary Fig. 4). Inclusion

of candidates from the immediate neighborhood provides

potentially related structures, which is especially helpful

when compound databases have only limited coverage for

the required compound class. Obviously, the inclusion of

compound spectra corresponding to correlated m/z features

Fig. 5 Examples of maximum common substructures generated for

AS 603 MS1.5 and AS 673 MS2. AS 603 and AS 673 correspond to

two unknown metabolites predicted to belong to the O-acyl sugar

compound class based on the high co-regulation shared with known

AS (Fig. 4). An MS1.5 extracted for AS 603 and an MS2 spectrum

measured for AS 673 precursor were processed in MetFrag after

merging candidate structures sharing a Pearson correlation r [ 075

with AS 603 and AS 673—immediate network neighborhood—in

order to enrich MetFrag fragment analysis with compound features

structurally-related to AS. Maximum common substructures retrieved

for each cluster and singleton separated by a Tanimoto distance of 0.2

(corresponding to a chemical similarity of 80 %, Supplementary

Figs 4, 5 and 6) were manually inspected. Based on elemental

composition analyses presented in Supplementary Fig. 3, nitrogen-

containing candidate structures can easily be ruled out during manual

inspection of the consensus structure list. MetFrag retrieves per

default structures containing only CHNOPS atoms. In both cases

(MS1.5 and MS2 spectra), consensus structures exhibiting the O-acyl

sugar backbone (bold) appear among top-ranking candidates with

three to five peaks explained at a 10 ppm threshold and a median

score greater than 0.8
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increased the number of candidates by five-fold, but more

than two-thirds of those had a MetFrag score of zero. Again,

we performed a chemical clustering of the high-scoring

candidates (Supplementary File 4 and Supplementary

Fig. 5). The reduced list of 20 candidate structures obtained

after consensus structure generation can be more easily

screened manually for particular structural motifs. The first

candidate structure supporting the O-acyl sugar hypothesis

appears at rank #10 (Fig. 5). Several of the other high-scor-

ing structures returned from this analysis could potentially be

ruled out based on their elemental composition, on their plant

metabolite likeness or after expert analysis of their frag-

mentation pattern. The O-acyl sugar consensus candidate

structure deduced by this analysis should represent the

starting point for additional O-acyl sugar targeted studies

involving expert knowledge and established analytics such

as NMR for final structure identification.

The second unknown compound of interest was named as

putative AS 673. No in-source fragments were detected for

this metabolite, likely due to its relatively low abundance.

We therefore applied the strategy described above to the

targeted tandem mass spectrum (Supplementary Fig. 3).

Here, MetFrag retrieved several O-acyl sugar compounds

with very good scores among the 2,414 candidates of the 11

merged immediate neighbors (Supplementary Files 3 and 4).

The maximum common substructure of the corresponding

cluster (cluster #2) contains the O-acyl sugar backbone

(Fig. 5), reinforcing the prediction that AS 673 is an O-acyl

sugar (Supplementary Fig. 6). Individual members of this

cluster have their short chain fatty acid residues located on

different positions (Supplementary File 4). As for AS 603,

candidate consensus structures provide initial hypotheses to

be tested in further analytical experiments. Pubchem, the

compound library used in this study, is extremely large (more

than 30 million entries) but its coverage of plant metabolites

is rather limited. Plant-specific public or in-house libraries

may alternatively be used as upstream databases for MetFrag

analysis. We notably tested KNApSAcK, a database of

species-metabolite relationships, for structure annotation.

However, the number of candidates retrieved from KNAp-

SAcK via the MS1.5 MetFrag approach was too low and did

not provide enough resolution to perform chemical similarity

analysis (data not shown). Several attempts have been car-

ried out in recent years to evaluate the likeness of a structure

to be a metabolite. Classifiers and molecular representations

used to build metabolite likeness models could for instance

be integrated to our pipeline to discriminate metabolite from

non-metabolite structures among MetFrag candidates. For

the two unknown compound spectra analyzed, approxi-

mately one-fourth of the structural hypotheses inferred from

the clustering analysis can be falsified based on the presence

of halogen elements (Figs. 4, 5). This proportion increased

up to 85 % if nitrogen-containing structures are filtered out

as well, knowing that AS 603 and AS 673 likely do not

contain nitrogen elements. Nevertheless, filtering-out nitro-

gen containing structures may also significantly affect the

structural resolution required for consensus backbone pre-

diction during chemical similarity clustering.

4 Concluding remarks

Correlation analysis from high-resolution MS metabolic

profiles is an extremely powerful approach to analyze

dependencies in the response of metabolites to stress con-

ditions. Our study suggests that intra- and inter-compound

spectra correlations that can be graphically distinguished

by mapping CAMERA annotations onto network repre-

sentations can additionally be used for evaluating in silico

metabolite annotation. The MS1.5 MetFrag approach

introduces an additional level of confidence compared to

simple accurate mass searches for metabolite annotation,

because additional molecule fragmentation is included for

comparison of compound spectra. This scoring strategy

allows the annotation of known metabolites with a median

relative rank of 5 and a RRP of 0.1394. Additionally, we

discuss the value of extending MetFrag analyses to highly

correlated compound spectra—represented as immediate

neighbors in the network—to circumvent the limited met-

abolic coverage of many chemical database and to develop

initial hypotheses on unknown metabolites (here two pre-

viously uncharacterized O-acyl sugars).

The pipeline on MS1.5 data presented here is per se

restricted to the analysis of metabolites exhibiting suffi-

cient in-source fragmentation for the ionization and

extraction conditions tested and therefore many previously

characterized N. attenuata metabolites not fulfilling this

condition were not included in this analysis. Non-common

secondary metabolites strongly induced in N. atttenuata

leaves during insect herbivory such as HGL-diterpene

glycosides are here valuable examples for demonstrating

the performance of our approach for the annotation of

compounds not included in conventional databases.

Importantly, this pipeline solely based on open-access

programs is equally applicable to high-resolution MS

metabolic profiles obtained from other experimental sys-

tems, including human metabolome data. For these rea-

sons, the performance of MS1.5 for compound annotation

and class prediction based on metabolite co-regulation

speaks for the value of combining hints derived from dif-

ferent resources for structure elucidation.
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Abstract Univariate hypotheses tests such as Student’s

t test or variance analysis (ANOVA) can help to answer a

variety of questions in metabolomics data analysis. The

statistical power of these tests depends on the setup of the

experiment, the experimental design and the analytical var-

iance of the actual observations. In this paper, we demon-

strate how a well-designed pilot study prior to an experiment

with the aim to find differences between e.g. several geno-

types, can help to determine the variance at multiple levels

ranging from biological variance, sample preparation to

instrumental variances. Next, we illustrate how these vari-

ances can be used to obtain several parameters (e.g. mini-

mum statistically significant effect, number of required

replicates and error probabilities) which influence the design

of the actual study. In particular, we are going to sketch how

technical replicates can improve the performance of a test,

when they are correctly used in the statistical analysis, e.g.

with a hierarchical model. Finally, we demonstrate the pro-

cess of evaluating the trade-off between different experi-

mental designs with different replication strategies. The

choice of an experimental design beyond the gut feeling can

be influenced by factors such as costs, sample availability

and the accuracy of of the tests. We use metabolite profiles of

the model plantArabidopsis thalianameasured on an UPLC-

ESI/QqTOF-MS as real-world dataset, but the approach is

equally applicable to other sample types and measurement

methods like NMR based metabolomics.

Keywords Metabolomics � Statistics � Variances �
Hierarchical experiment design

1 Introduction

The aim of metabolomics is to obtain a snapshot of

metabolite levels in biological samples. Identification and

quantification of metabolites help to understand the meta-

bolic state and metabolic changes e.g. in response to

environmental stimuli. Mass spectrometry (MS) is an

important analytical method in metabolomics experiments

(Dunn 2008), which provides high level of sensitivity for

quantification as well as structural hints towards identifi-

cation (Dunn et al. 2013).

One aim of metabolomics is to detect differences

between sample classes, e.g. the comparison of different

genotypes (Broadhurst and Kell 2006). Commonly, Stu-

dent’s t test (Student 1908) is used as univariate hypothesis

test in order to detect significant changes in measured data

and to check whether different sample classes have the
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same mean of feature intensities l1 ¼ l2 or whether they

differ significantly. ANOVA (Tutz et al. 1996) is used to

compare the intensities among more than two sample

classes. Another level of generalisation are multilevel

mixed models, where observed data is approximated by

linear regression models and thus both fixed and random

effects can be modelled (Pinheiro and Bates 2014).

Recent papers have described the appropriate design of

experiments in order to optimize the sample processing

steps and metabolomics protocols (Danielsson et al. 2012;

Eliasson et al. 2012). However, they did not reflect on the

design of experiment in relation to biological questions.

The Metabolomics Standards Initiative (MSI) has pub-

lished recommendations for reporting statistical analyses of

metabolite data (Goodacre et al. 2007) because the fact has

been criticized that ‘‘only a small percentage of papers in

metabolomics make much of importance of statistics’’

(Broadhurst and Kell 2006), especially concerning the

appropriate experimental design for addressing biological

questions. The main differences between univariate and

multivariate statistical methods are discussed in Saccenti

et al. (2013). The tools and challenges in metabolomics

data analysis are reviewed in Hendriks et al. (2011),

while Vinaixa et al. (2012) is focused on a workflow to

apply univariate statistical methods. Here, we highlight the

use of univariate methods in metabolomics experiments

with a focus on replication types, to design a multi-level

study as suggested in Hendriks et al. (2011). For both the

Student’s t test and ANOVA it is important to accurately

estimate the mean and variance of the intensities. The

uncertainty when determining these values directly influ-

ences experimental design decisions for a study, such as the

number of samples, whether or not and how many technical

replicates are required to assure the study‘s statistical

validity. The choice of an experimental setup is also

influenced by considering costs and experimental

constraints.

In microarray analysis, suggestions for specific tests to

cope with small sample sizes have been published for a

long time, see e.g. (Baldi and Long 2001; Lönnstedt and

Speed 2001). Moreover, the use of different replication

types as well as the amount of samples in relation to sta-

tistical validity has been discussed for epidemiology stud-

ies (Donner and Klar 1996; Dreyhaupt et al. 2013).

However, little attention has been paid to these issues in the

field of metabolomics.

Depending on the experimental design, several sources

of variance are present in metabolomics data that influence

type and result of the hypothesis tests. Previous studies

have analysed the total of variances observed for technical,

preparation and biological replicates (Roepenack-Lahaye

et al. 2004).

Here we present a detailed analysis of all variance lev-

els. We suggest a pilot study with a hierarchical experiment

design, which allows the usage of a nested linear regression

model to obtain exact and unbiased estimates of individual

variances at different levels using random effects on dif-

ferent levels. The metabolite intensities include the fixed

effect we are interested in for the detection of biomarkers,

and random effects that occur at different steps or levels

during the experiment. Multilevel mixed models can cap-

ture both types of effects and their hierarchical structure

(Davis 2002). In addition, mixed models can cope with

uneven sample numbers, inhomogeneous variances, miss-

ing values and the structure of dependent observations.

However, in this paper we restrict the discussion to the case

of equal sample numbers and homogeneous variances, and

focus on the effect from not-independent measurements

resulting from the experimental design. We describe how

these dependencies can be handled using the commonly

used t test statistics. We are going to illustrate that a

hierarchical t test correctly includes both biological and

technical replicates without distorting the results. We also

provide the information of the implementation for the

general case, a hierarchical ANOVA, which is a restricted

mixed model, to analyse such datasets from hierarchical

experiments.

Additionally, we consider the impact of the respective

number of replicates on the statistical power of the tests,

which indicates statistical validity. Moreover, we provide

functions to calculate quantities like the resulting power,

required number of replicates or the minimal statistically

significant effect for different combinations of replicates.

We can associate costs related to different levels of repli-

cation which are not limited to actual expenses, but also

human efforts, availability of samples or time constraints.

The overall aim is to find a compromise between expenses

and the quality of inference possible in a particular

experiment. In addition to general information, we present

an example with real-world data from metabolite profiles

of Arabidopsis thaliana.

2 Materials and methods

In this section, we explain the hierarchical experiment

design for our pilot study. Furthermore, we mention

methods for calculating statistical power and confidence

interval of means as indicators of expected quality of

hypothesis testing.

The measured MS data are first preprocessed with fea-

ture detection algorithms to reduce the raw data to feature

lists resembling metabolite abundances, and then with

alignment algorithms to produce a single M � S matrix of

D. Trutschel et al.

123

DOI:10.1007/s11306-014-0742-y Reprinted with permission. © 2015 Springer Science+Business Media

https://doi.org/10.1007/s11306-014-0742-y


mass features observed across the samples. This matrix is

the basis of the subsequent statistical analysis.

2.1 Pilot study to identify sources of variation in MS

experiments

The hierarchical experiment design is the precondition to

quantify sources of variation separately using a linear

hierarchical regression model, which is a special case of a

linear mixed model. We then perform a simulation to

determine the number of observations in each level of the

hierarchical experiment.

2.1.1 Hierarchical experimental design

A hierarchical experiment design, shown in Fig. 1, was

used to quantify variation at different levels of the exper-

iment. Three sources of variation in MS experiments have

been considered: (i) instrumental variation, (ii) preparation

variation (both will later be combined into technical vari-

ation) and (iii) biological variation, which in this case is

variation between plants. On top of these, other levels like

e.g. experimental design factors or environmental variation

could be introduced, but this was not examined in this

paper. For the quantification we prepared a hierarchical set

of samples at different levels of variation. The total vari-

ation is the sum of all three variations.

2.1.2 Sample preparation

Arabidopsis thaliana Col-0 was used as plant material. The

plants were grown on soil in a growth chamber under

controlled conditions. In the following, we refer to indi-

vidual plants (grown at the same time and under the same

conditions) as biological replicates. The frozen leaf mate-

rial of each plant was ground and weighed into two sam-

ples (preparation replicates) using a cryogenics robot1 with

a weighing error � 5 %. Each extract was measured twice

(instrument replicates) under identical conditions. Overall

N ¼ 27 plants, E ¼ 2 preparations, and I ¼ 2 LC-MS runs

resulted in N � E � I = 108 LC/MS runs. Full details are

available in supplemental material S1.

2.1.3 Mass spectrometry analysis and data processing

Metabolite intensities were recorded according to Böttcher

et al. (2009). In brief, the chromatographic separation was

performed on a Waters Acquity UPLC system coupled to a

Bruker micrOTOF-Q mass spectrometer. Mass spectra

were recorded in positive ion centroid mode with a scan

rate of 3 Hz and a mass range of 100–1000 m/z. Full

details are available in supplemental material S1. This

experimental setup can routinely detect semi-polar plant

metabolites from major biosynthetic classes including

glucosinolates, indolic compounds, phenylpropanoids,

benzenoids, flavonoids, terpenes and fatty acid derivatives

(Böttcher et al. 2011). Processing of MS raw data,

including peak picking and retention time correction, was

performed with XCMS (Smith et al. 2006). All statistical

calculations were performed in R (http://www.r-project.

org/). An underlying assumption of the original Student’s

t test (and also ANOVA) is that the mean intensities are

normally distributed. To transform the data towards more

normally distributed values, all gathered metabolite inten-

sities were logarithmized. The raw data files, the prepro-

cessed peak matrix and the protocol descriptions have been

submitted to the Metabolights repository (Haug et al.

2013), and are available under the accession number

MTBLS742.

2.1.4 Variance estimation

Only the overall variance r2
tot, i.e. the sum of technical and

biological variances, can be estimated directly from the

dataset. To obtain an unbiased estimation at individual

hierarchical levels (Fig. 1), we model the instrumental

r2
instr , preparation r2

prep and biological variances r2
biol as

random effects with a three-level linear regression model

for each detected feature:

Ynei ¼ lþ bn þ cne þ dnei ð1Þ

where Ynei is the observed measurement of injection i of

extraction e of plant n; l the overall mean of population, bn

Fig. 1 Hierarchical experiment design. At all levels of variation

replicates were prepared: to extract biological variation several plants

were grown. From each plant, several extractions were performed, to

assess the preparation variation. To identify the instrumental variation

each extract was measured several times. The number of LC-MS

datasets is the product of the number of plants N, extracts E per plant

and injections I per extract

1 http://www.labman.co.uk/portfolio-type/ipb-cryogenic-grinder-and-fee

der-system.
2 http://www.ebi.ac.uk/metabolights/MTBLS74.
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the independent random biological effect on plant n; cne the

independent random preparation effect on preparation e in

plant n and dnei the independent random instrumental effect

on injection i in preparation e in plant n. The random

effects bn; cne; dnei are independent between each other.

The unbiased estimator is explained in supplemental

information S2. We used the data of the pilot study and the

preprocessing as described in 2.1.1 and 2.1.3. In general,

we report the average across all features, but in 3.1.1 we

also discuss the proportion of biological variance to total

variance
r2
biol

r2
tot

, also known as intra-class correlation (ICC).

2.1.5 Confidence of variance estimation

With the multilevel linear regression model and hierar-

chical experiment design we can estimate the variances of

different levels, but we also want to ensure estimation with

a sufficiently small error. Therefore, we need a certain

number of observations in each variance level. We per-

formed a repeated simulation of observations of hierar-

chical experiments to obtain the minimal number of

observations to estimate variances in Algorithm 1, more

details are provided in supplemental section S3. The better

the estimation of a parameter, the more closer the estimator

is to the true value. With this simulation we can calculate

the variation of the estimated variances. We determine the

95 % -quantile of estimated variances in each level. The

smaller the quantile, the better the estimation. Hence, the

number of plants N, the number of preparations E, and the

number of measurements I can be determined with Algo-

rithm 1 if the maximal size of the 95 % -quantile of esti-

mated variances in each level is given.

2.2 Hypotheses tests for differential metabolites

and biomarker detection

Biomarker detection and the analysis for differential

metabolites requires to detect intensity differences between

classes of samples. We give a short explanation of

hypothesis tests used here and the concept of power and the

impact of the degrees of freedom on test statistics to assess

their reliability.

2.2.1 Hierarchical and non-hierarchical hypotheses tests

If there are only two sample classes to compare, then the

Student’s t test can be used to find differences in means of

observed intensities. For more than two sample classes, the

ANalysis Of VAriances, short ANOVA, is used. This

method produces an F-statistic to test the class means for

equality using the ratio of the variance calculated among

the means to the variance within the samples, shown in

Table S1 in the supplemental section S6. Both tests are

non-hierarchical models, and can not be applied directly to

multilevel observations.

The hierarchical version of ANOVA, nested ANOVA,

implicitly averages the technical replicates and can thus be

applied to multiple levels with biological and technical

replicates. For just two sample classes, a hierarchical Stu-

dent’s t test can also be derived as shown in Table S1 in the

supplemental section S6. Both are special cases of multilevel

linear mixed models (Raudenbush and Bryk 2002). Note

that, if the technical replicates of each biological observation

are averaged beforehand, the level of technical replicates is

eliminated and the non-hierarchical test can be used.

2.2.2 Statistical power and confidence interval of means

The statistical power of a test is a measure of the expected

quality of an experimental design (Snijders 2001). The a
cut-off in hypotheses tests defines the maximum allowed

probability of Type I errors, i.e. false positives, where a

non-differential feature is incorrectly determined as dif-

ferential. The statistical power is defined as 1 � b, where b
is the probability of errors of type II, and hence 1 � b is the

minimum desired probability to detect the true positives

among all differential features.

The power can be visualised as the area under the curve

of the alternative hypothesis H1 in a range between ½ta;1Þ
using a right-tailed test and ta as the critical t value given

the threshold a. The graphical representation of the statis-

tical power calculation is shown in supplemental material

S4. The power can also be calculated if both the distribu-

tion under the null hypothesis and under the alternative

hypothesis are known.

In the case of the Student’s t test, the shape of the dis-

tribution of both the null and the alternative hypothesis

depends on the number of observations in the test, in our

example the number of plants N in each sample class. The

location of the distribution of the alternative hypothesis

depends on variance r2 and the effect size d, which is

denoted by the difference in means jl1 � l2j, and also on

the number of observations N in the sample classes.

Another way to assess the test quality is the standard error

of the difference in means (Holmes 2004). Under the

assumption that the effect size is normally distributed with

jl1 � l2j and standard deviation r, then the standard error

of difference in means is denoted as SE ¼ r
ffiffiffiffiffiffi

2�N
p . The

standard error, and thus the variance and the number of

observations, determine the size of the 95% confidence

interval soc ¼ 2 � ta¼0:5;DoF¼2�ðN�1Þ � SE within the true

value of difference in means is. The smaller the size of

confidence interval the more likely the more precise the

estimates accuracy.
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If four of the five parameters (i) power 1 � b, where b is

the probability of error type II, (ii) number of samples N,

(iii) effect d between two groups, and (iv)variance r2 are

given, the missing parameter can be calculated (Broadhurst

and Kell 2006). The R package stats provides the

function power.t.test for the Student’s t test.

In both the hierarchical and the non-hierarchical case,

the distribution under the null hypothesis l1 ¼ l2 is t-

distributed with DoF ¼ 2 � ðN � 1Þ degrees of freedom.

The distribution of the alternative is a non-central t-dis-

tribution with the same number of DoF and the non-cen-

trality-parameter ncp ¼
ffiffiffi

N
2

q

l1�l2

r . So via ncp the

distribution of the alternative hypothesis depends on the

three parameters N,d; r2, which determine the position of

the non-central t-distribution.

Here, we are interested in the influence of different

sources of variation, replication strategies and sample sizes

have on the statistical power in multilevel models (Snijders

2005).

In the case of non-hierarchical experiments the variance

is r2 ¼ r2
bio þ r2tech, while in the case of hierarchical

experiments with different levels of variances r2 ¼ r2
bio þ

r2tech
T : T is the number of technical replicates for each bio-

logical sample and the technical variance is

r2
tech ¼ r2

prep þ r2
instr, where each preparation is a technical

replicate which is measured once.

Thus the distribution of the alternative hypothesis

between hierarchical and non-hierarchical models are dif-

ferent because r2
tech [

r2
tech

T
, or in other words the 95%

confidence interval of true difference in means is smaller

when calculated via a hierarchical model compared to a

non-hierarchical model.

We have implemented power calculation for the hier-

archical case in the R-function power.hier-

arch.ttest(). The example in the supplemental

material vignette shows the usage. The function is analo-

gous to power.t.test, but requires the individual

variances r2
tech and r2

bio and the number of technical rep-

licates T .

3 Results and discussions

In this section we quantify the variance levels of our study.

We also investigate the quality of variance estimation to

guide the choice of required observations in each variance

level. Knowing the variances we can calculate the loss of

power using the total variance instead of biological vari-

ance in Student’s t test and discuss the precision of tests

with regard to the confidence interval of the mean effect

size. Furthermore, we give some advice on using technical

replicates or not, and how to include them in the analysis.

3.1 Sources of variation in MS experiments

3.1.1 Quantify sources of variation

We have implemented the variance estimation for pilot

studies following a hierarchical design as introduced in

Sect. 2.1.4 in R. The user needs to supply the preprocessed

mass feature intensity matrix, which can be obtained with

XCMS as described in Sect. 2.1.3, together with a

description matrix that assigns the individual samples and

the corresponding replication level. A detailed example is

available as supplemental vignette.

We have performed the pilot study for a typical

A. thaliana metabolomics experiment, as described in

Sect. 2.1.2. After the data preprocessing of the 108 sam-

ples, we obtained a 108 � 642 intensity matrix. The actual

identity of our 642 features is for the remainder of this

paper not relevant.

Using the methods implemented in R we determined the

individual variances in the dataset. Figure 2 shows the

estimated variances for all S ¼ 642 features both at the

individual levels and the total variance. Negative variances

can occur in a few cases in the upper levels because the

estimator is unbiased.

The mean values of all feature variances are

r2
instr ¼ 0:043; r2

prep ¼ 0:076; r2
biol ¼ 0:172. The level

increases from technical to biological variation

r2
instr \ r2

prep \ r2
biol and the mean total variance r2

tot ¼
0:291 is the sum of these individual contributions.

These values will vary according to the actual pilot

study. If the samples are obtained from a homogeneous

culture of e.g. bacteria, the biological variance might be

lower, while a more complex sample processing (including

e.g. solid phase SPME cartridges, vacuum concentration

and re-solving) could increase the preparation variation.

We can also derive the proportion of each variance

source of the total variance, analogous to the intra-class

correlation (ICC) definitions in Sampson et al. (2013). For

example the mean proportion of plant variance on total

variance is the average proportion across all S features in

the data matrix. It is calculated as ICCmean ¼ 1
S

PS
i ICCi

with ICCi ¼ ir2
biol

ir2
tot

for each feature i. In relative numbers the

average instrumental variance is 16.7 %, preparation vari-

ance is 29.1 %, and plant variance is 54.2 % of the total.

We can also use the distribution of ICCi of the individual

features to illustrate the amount of features with a mini-

mum ICC, as shown in the second graph in Fig. 2. In our

case, half of the features have in ICC above 0:58.
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In our pilot study we performed 108 LC/MS measure-

ments altogether, but we will describe in the next subsec-

tion whether also a lower number of plants N\27 would

lead to sufficiently reliable variance estimates.

3.1.2 Influence of replicate numbers on variance

estimation quality

The variation of an estimated parameter can be used as a

measure of the quality of the estimation, because the less

the estimator varies, the more accurate the estimator is. The

estimation of variances described above results from the

hierarchical design of the pilot study. We now determine

how confident these estimates are, using the variance of the

variance estimation depending on the number of replicates.

We simulate measurements in our hierarchical experi-

ment design, drawing the intensities of one feature from a

normal distribution with the mean and variance of our

actual setup determined from the pilot study. With this

simulated data, we can estimate the variances in each level.

This simulation is repeated a large number of times, to

determine the 95 % confidence interval of the variance

estimation as a measurement of quality of estimation, see

Algorithm 1 in supplemental section S3.

In Fig. 3 we show the width of the 95 %-confidence

interval of estimated variances for a combination of sim-

ulated numbers of replicates in several levels. From the

figure we can determine whether an increase in the number

of preparations or in the number of biological replicates

results in a more reliable variance estimation.

For the topmost level of biological variation r2
biol, we

observe that the quality of the estimation depends almost

Fig. 2 The distribution of estimated variances of all measured

features in leaf samples. a from left to right the estimated variances of

all measured features S ¼ 642 in leaf samples for r2
instr; r

2
prep;r

2
biol,

and r2
tot are plotted. Each dot represents the estimated variance of one

feature in the sample. The mean of all estimated feature variances for

each variance level is given below and shown as black bar. b The

cumulative distribution of ICCi for all features i. E.g. 80 % of the

features have an ICC above 0:31, half of the features have an ICC

above 0:58, and even 20 % are above 0:8. The higher the proportion

of features with a large ICC, the more important is a hierarchical

experiment

Fig. 3 95 %-confidence interval of estimated plant (upper) and

preparation variance (lower). Using Algorithm 1 in supplementary

material, we simulated data for N ¼ 2; 3; :::; 30 plants and

E ¼ 2; 3; :::; 12. The quality of the estimation of plant variance in

the upper plot is (mostly) independent of the number of extractions

and only depends on N, while the estimation of preparation variance

improves with both higher E and N. Generally, the quality of

estimation is related to the product of observation numbers in the

current level of preparations and the level of plants above
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exclusively on the number of plant replicates (see top of

Fig. 3). Because of the hierarchical design of the pilot

study, we do not need a large number of preparation rep-

licates from a single plant to reliably preparation variation

estimate r2
prep.

We recommend to not acquire more than two technical

(preparation or injection) replicates, and instead focus on

the biological replicates, because the quality of preparation

variance estimation is related to the product of the number

of plant and preparation replicates. More generally, the

quality of the variance estimation on any level is related to

the product of observations in this level and the levels

above.

In our case, if we want to estimate a plant variance with

�0:15 and preparation variance with �0:075 confidence of

95 % it is sufficient to use N ¼ 18 biological and E ¼ 2

preparation replicates in the pilot study.

3.2 Hypotheses tests for differential metabolites

and biomarker detection

3.2.1 Treating with different types of replications

In a typical metabolomics experiment, we need to detect

statistically significant features. In the simplest case, we

use a Student’s t test between two sample classes, while

ANOVA is used for more than two sample classes.

Because we are interested in the biological effects, a

large number of biological replicates might be needed to

accurately detect significant features. However, in reality

several constraints might apply which limit the number of

biological replicates, for example if only a finite number of

samples is available. In that case, technical replicates can

improve the accuracy of statistical tests.

The detection of differential features with the Student’s

t test has to be performed based on the biological replicates,

rather than using technical replicates, or even worse, com-

bining and treating technical and biological replicates as the

same (Pavlidis et al. 2003; Johnson et al. 2007). Therefore,

the measured biological and technical replicates must be

treated separately in the hypothesis test: the Student’s t test

assumes that all samples are independent observations.

Technical replicates of a sample are not independent from

each other. This would violate the most important

assumption and overestimates the degrees of freedom of the

underlying hypothesis distribution. In general this lead to

more false positives (Broadhurst and Kell 2006; Karp et al.

2005), as shown in Figure S3 in supplemental section S5.

Considering the problem of non-independent observations

scientists have to apply the correct analysis approach.

If a Student’s t test is used for the statistics, the correct

approach is to average the technical replicates (Broadhurst

and Kell 2006; Horgan 2007). Averaging technical repli-

cates will decrease the technical variance r2
tech. If technical

replicates are measured from several preparations, then the

technical variance decreases to
r2
prepþr2

instr

E
. If technical rep-

licates are injection replicates from the same preparation,

then the technical variance decreases to
r2
instr

I
þ r2

prep. Thus,

the observed total variance will be closer to the biological

variance.

But are the technical replicates required in first place?

The answer depends both on the achievable improvements

in statistical power, but also on the actual costs and

required efforts. If the estimated biological variance r2
biol is

much greater than the technical variances r2
prep and r2

instr,

doubling (or even tripling) the number of measurements

will only gain little power, but significantly increase the

effort required for data analysis and storage, while the

same increase in power could also be achieved by

increasing the number of biological replicates by some

percentage.

If the technical variance r2
tech is too high, or if additional

power resulting from technical replicates is required, they

can be incorporated explicitly into a hierarchical type of

ANOVA, also called nested variance analysis (Karp et al.

2005), or even more general, a multilevel mixed model,

rather than using the simple averaging approach described

above. In fact, the Student’s t test can be interpreted as a

special case of the general ANOVA, and this in turn as a

special case of the the nested or hierarchical ANOVA

(Ahrens 1967), which allows to explicitly consider differ-

ent levels of replicates and thus variances, as described in

Table 1 in supplemental section 6.

The R code in the supplemental information vignette

provides the method diffAnovData() to detect sig-

nificant features in experiments with both technical and

biological replicates, using nested ANOVA. The usage is

described in detail in the vignette itself.

3.2.2 Example for experimental design and trade-off

decisions

Here we provide a discussion of the trade-off decisions

using the variance levels we obtained for our analytical

platform from the pilot study similar to the discussion of

the influence of different sources of variability on the

power of a test in Sampson et al. (2013). We use the fol-

lowing simple design as an example: two different sample

classes, such as genotype wild-type (WT) and mutant (MT)

are used. Using the variance estimation above, we obtain

for our analytical setup r2
biol ¼ 0:172 and r2

tech ¼ r2
instr þ

r2
prep ¼ 0:119 as the mean biological and technical vari-

ances of all features in our sample study.
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Because the hierarchical t test separates the technical

and biological variances, we implemented the new method

power.hierarch.ttest() in the R code in supple-

mental information vignette for power analysis. Therefore

we need the technical variance r2
techn, the biological vari-

ance r2
bio and number of technical replicates T of each

biological replicate, in addition to the parameters of the

Student’s t test power analysis.

With the functions in our implementation, four ques-

tions relevant to the experimental design decision can be

answered based on the variance estimation obtained in the

pilot study. First, we are interested in the minimal number

of biological replicates N required to detect differential

features with a statistically significant effect of d and at

least a power of 1 � b. Often, a power of more than 0:8 is

deemed to be sufficient. If we want to be able to detect an

effect of d ¼ 1 with M ¼ 4 measurements (technical

replicates of each biological sample) and the observed

variances r2
biol ¼ 0:172 and r2

tech ¼ 0:119 determined

above in 3.1.1, a minimal number of N ¼ 5 plants from MT

and WT each is needed.

The effect d (also called log fold-change) is the differ-

ence between the mean values d ¼ jl1 � l2j with l being

the arithmetic mean of the logarithmic data.

Secondly, we want to know how many measurements M

of each biological replicate are required to detect differ-

ential features with a hierarchical t test if only a given

number of biological samples are available. For example,

M ¼ 27 technical replicates are needed if we limit the

number of biological replicates to N ¼ 4, and leave the

other parameters a; power; d; r2
biol and r2

tech as in the pre-

vious example. If the number of technical replicates is set

to one, then the hierarchical test will reduce to the com-

monly used non-hierarchical Student’s t test.

Thirdly, we determine the achievable power for a given

number of samples N and measurements M. Common

metabolomics experiment designs use e.g. four replicates

per population (Böttcher et al. 2009), and two technical

replicates are performed. For a given setup, a power of

1 � b ¼ 0:69 can be achieved for N ¼ 4 and M ¼ 2, so

that 69 % of all differential features with a mean difference

of d ¼ 1 can be detected.

Finally, the question arises, which mean differences can

be detected if at least 80 % true positive features are

demanded. In this example of N ¼ 4 samples and M ¼ 2

measurements per sample, the real effect d ¼ 1:15 is sta-

tistically significant.

Figure 4 provides a combined global view of the influ-

ence of replication on the achievable confidence interval of

the mean difference. The smaller the confidence interval,

the less uncertainty is in the results. We calculate the size

of the confidence interval of mean differences, for each

number of biological replicates N ¼ 2; :::; 100 and techni-

cal replicates M ¼ 1; 2; 5; 10; 100 per biological replicate

for the type I error probability of a ¼ 0:05. The figure

shows that the size of confidence interval decreases with

increasing number of biological replicates, and also that

additional technical replicates improve the results. But the

gain from additional technical replicates are much smaller,

and the practical effort for large numbers of technical

replicates is in general not justified by the increase in

detection ability. If the proportion of biological variation

on total
r2
bio

r2
tot

, decreases, technical replicates will be more

beneficial.

The experimentalists will have to decide whether the

increased quality of the test justifies the added costs and the

experimental effort when using more replicates. The costs

can be interpreted as both actual costs, or as relative costs

between biological and technical replicates.

We provide two further methods in the R code in sup-

plemental information vignette to support this decision.

First, supportMat() can be used to find all possible

combinations of biological and technical replicates in a

two-level hierarchical experiment design, given the

parameters a; 1 � b; d; r2
biol and r2

tech and a maximum of

possible number of biological and technical replicates.

Given a ratio of the costs between biological and technical

replicates, the second method minCostPoss() chooses

the combination which has the lowest costs. This

Fig. 4 Comparison of confidence interval sizes of fixed effect for

different numbers of biological replicates (x-axis) and technical

replicates (different line styles). The size of the 95 % confidence

interval of the fixed effect (corresponding to a ¼ 0:05) is shown on

the y-axis, assuming the variances obtained in the pilot study

(r2
biol ¼ 0:172 and r2

tech ¼ 0:119)
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comparison of costs can help to choose an efficient

experimental design.

For a given setup with a ¼ 0:05; 1 � b ¼ 0:8, esti-

mated variances r2
biol ¼ 0:172; r2

tech ¼ 0:119 and maxi-

mal possible number of N ¼ 100 biological and M ¼ 100

technical replicates, two examples are given in Table 1:

(a) for a minimum effect of d � 1:00 and different cost

relations, (b) for a fixed cost relation of 9 : 1, but various

minimum effects d. The table shows the ‘‘cheapest’’ pos-

sibility of replicates for each cost ratio between biological

and technical replicates and a given d ¼ 1:00 in rows 1, 2,

3 and 6. Biological replicates will be more expensive than

technical replicates until a ratio of 7:3, while at 8:2 the two

choices 5 biological and 2 technical replicates or 6 bio-

logical replicates without technical replication deliver the

same test quality at the same costs. For a fixed cost ratio,

the dependency between different effect sizes and repli-

cates can be compared. Table 1 shows for several effects

the number of technical and biological replicates required

to expect 80 % true differential features and only 5 % false

positives at a cost ratio of 9 : 1 in rows 4–10. For a real

effect of d ¼ 1:5 or below, technical replicates and the

hierarchical t test are superior (i.e. cheaper) than a normal

t test without technical replication.

4 Conclusion

In mass spectrometry-based metabolomics there are several

sources of variance. Based on a pilot study, we have shown

that the hierarchical variance analysis is a method to

quantify and separate these additive sources of variances.

Such a pilot study is also a tool to determine the different

sources of variance relative to the overall observed vari-

ance in an MS experiment and should be performed for

each analytical setup and each organism or tissue type. Our

proposed pilot study design is the most efficient to deter-

mine these variances. In our setup we found that the bio-

logical variance is larger than both the instrumental and

preparation variance combined.

The statistical power depends on (1) the observed vari-

ance, and (2) the number of biological replicates and

(3) the real effect that is relevant for the biological question

and which is desired to be statistically significant. To

decrease the influence of non-biological variance, technical

replicates can be acquired and analysed with a hierarchical

type of Student’s t test, or having more than two classes

with nested ANOVA, or in general with multilevel mixed

models. In the supplemental material we have shown that

the naı̈ve use of a Student’s t test for both technical and

biological replicates yields false positives due to an over-

estimation of the degrees of freedom. In scientific publi-

cations it is thus very important to clearly report the

structure of the experiment, and whether samples are

independent. This includes the types of replicates, to avoid

that ‘‘pseudo replicates’’ are used. Only with such infor-

mation it is possible to select the appropriate test statistics.

For large studies following the pilot experiment, an

optimal experiment design is highly desired to save costs

and effort, while maintaining a desired level of statistical

power. We have shown how different cost ratios between

technical and biological replicates can affect the overall

design. It should be noted that costs reflect both the mon-

etary as well as human and infrastructure resources

required to perform the experiment.

We provide the R code for the estimation of variances

and the calculation of costs and benefit (in terms of sta-

tistical power) under the GPL license to support research-

ers in the design of experiments.
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Natural variation of root exudates 
in Arabidopsis thaliana-linking 
metabolomic and genomic data
Susann Mönchgesang*, Nadine Strehmel*, Stephan Schmidt*, Lore Westphal, 
Franziska Taruttis†, Erik Müller, Siska Herklotz, Steffen Neumann & Dierk Scheel

Many metabolomics studies focus on aboveground parts of the plant, while metabolism within 
roots and the chemical composition of the rhizosphere, as influenced by exudation, are not deeply 
investigated. In this study, we analysed exudate metabolic patterns of Arabidopsis thaliana and their 
variation in genetically diverse accessions. For this project, we used the 19 parental accessions of 
the Arabidopsis MAGIC collection. Plants were grown in a hydroponic system, their exudates were 
harvested before bolting and subjected to UPLC/ESI-QTOF-MS analysis. Metabolite profiles were 
analysed together with the genome sequence information. Our study uncovered distinct metabolite 
profiles for root exudates of the 19 accessions. Hierarchical clustering revealed similarities in the 
exudate metabolite profiles, which were partly reflected by the genetic distances. An association 
of metabolite absence with nonsense mutations was detected for the biosynthetic pathways of an 
indolic glucosinolate hydrolysis product, a hydroxycinnamic acid amine and a flavonoid triglycoside. 
Consequently, a direct link between metabolic phenotype and genotype was detected without 
using segregating populations. Moreover, genomics can help to identify biosynthetic enzymes in 
metabolomics experiments. Our study elucidates the chemical composition of the rhizosphere and 
its natural variation in A. thaliana, which is important for the attraction and shaping of microbial 
communities.

In Arabidopsis thaliana (A. thaliana), natural genetic variation has been intensively exploited to study a variety of 
traits related to plant development, stress response and nutrient content (for review, see Weigel1). Several publi-
cations have demonstrated that natural variation is a suitable basis for dissecting secondary metabolite pathways 
by using genetic mapping analyses. The genetics of glucosinolates and its link to pathogen and herbivore resist-
ance have been investigated thoroughly2–5. A large variation of glucosinolates in leaves and seeds was observed 
for 39 genetically diverse Arabidopsis accessions6. Houshyani et al.7 found that natural variation of the general 
metabolic response to different environmental conditions is not necessarily associated with the genetic similarity 
between nine accessions.

Many metabolomics studies focus on aboveground plant tissues. As a result, only limited information is avail-
able with regard to the metabolism of belowground parts of the plant.

Roots are crucial for the uptake of water and nutrients. For example, Agrawal et al.8 utilized natural variation 
of A. thaliana to identify malic acid as a key mediator for nickel tolerance. To communicate with the belowground 
environment, plant roots also exude metabolites such as flavonoids, phenylpropanoids and glucosinolates9, which 
can attract microorganisms or increase the resistance against pathogens9–11. These interactions take place in the 
rhizosphere, which is regarded as the space adjacent to roots12. As the properties of the rhizosphere differ strongly 
from the bulk soil in terms of microorganism abundance13, as well as the qualitative and quantitative metabolic 
composition14,15, investigations on root exudates are needed to assess the role of this microenvironment. Micallef 
et al.16 demonstrated that the rhizobacterial community composition is influenced by varying exudation profiles.

Non-targeted metabolite profiling of secondary metabolites by liquid chromatography coupled to mass spec-
trometry (LC/MS) is an ideal analytical platform to link natural metabolite variation to biosynthetic pathways. 
It allows for the detection and quantification of semipolar compounds17, when the resulting three-dimensional 
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signals with a specific mass-to-charge (m/z) ratio, retention time (RT) and intensity, so-called features, can be 
annotated. Depending on the nature of the compound, they are more likely to be detected upon electrospray 
ionization in the positive (ESI(+)) or negative mode (ESI(−)).

Our approach to investigate natural genetic variation of secondary metabolism in root exudates focuses on 
19 A. thaliana accessions, which show a large degree of geographic and phenotypic diversity (Supplementary 
Table S1) and were used to generate the Multiparent Advanced Generation Inter-Cross (MAGIC) lines18. Whole 
genome sequencing revealed that the parental accessions and the MAGIC lines represent most of genetic variabil-
ity of A. thaliana and therefore provide a valuable resource for genetic and metabolic studies19,20.

The aim of this study is to find out if the root exudate composition in A. thaliana is genetically determined. 
For this purpose, we analysed which metabolites show natural variation, if similar metabolic phenotypes share a 
genetic base, in particular, if certain characteristics can be traced back to single nucleotide polymorphisms and 
hence, directly link phenotype and genotype.

Results
Non-targeted metabolite profiling of root exudates reveals distinct metabolic phenotypes for 
19 Arabidopsis accessions. A clustering analysis was performed to find similarities between the metabolic 
profiles and sequence polymorphisms of the 19 founder accessions of the MAGIC population of A. thaliana. The 
dendrograms calculated from the metabolic features show a clear separation of accessions in Fig. 1a for exudates 
measured in ESI(−) and Fig. 1b in ESI(+). At a correlation threshold of 0.95 (dashed line), seven and five clusters, 
respectively, were observed.

No-0 and Po-0 (blue) were found in the same cluster (cluster 1, ESI(−); cluster 5 ESI(+)) in both ion modes. 
Ct-1 and Edi-0 (purple) also displayed high similarity in their metabolic profiles. Sf-2 and Kn-0 (green) were in 
close proximity and would have been in the same clade when cutting the ESI(+) dendrogram at a different thresh-
old. Similar metabolic phenotypes were also detected in the exudation patterns of Wu-0 and Tsu-0, and addition-
ally Mt-0 (orange). These three accessions either clustered in dendrogram branch 2 (ESI(−)) or 3 (ESI(+)).

In both metabolic dendrograms, one Oy-0 sample was observed as an outlier, which did not cluster with the 
other replicates of Oy-0. For Hi-0 and Ws-0, mixed clusters were observed. The positive ion mode generally 
harboured more outliers. As obvious from the quality control plots in Supplementary Fig. S1, the outlying sam-
ples did not show any extreme deviations on the technical side and were therefore not excluded from further 
analysis21.

For the analysis of genetic diversity, sequence polymorphisms in coding sequences (CDS) extracted from the 
19 genomes project22 were used for a genetic clustering (Fig. 1c). One large dendrogram branch (Ler-0, Kn-0, 
Wil-2; Ws-0, Ct-1, No-0; Hi-0, Tsu-0, Mt-0, Wu-0, Col-0, Rsch-4) had less than 825,000 mismatches (dashed line) 
while the outliers Bur-0, Sf-2, and Can-0 had increasing numbers of polymorphisms. Oy-0 and Po-0 formed a 
small cluster and were found in proximity to Edi-0, Zu-0 and the large dendrogram branch.

The metabolic analysis was based on a non-targeted metabolite profiling approach considering metabolic 
features characterised only by their m/z ratios, RTs and intensities. These characteristics are not sufficient to inves-
tigate the underlying molecules, its biosynthetic pathway and its potential in plant signaling. Annotations and 
identifications of metabolites, as shown in the next paragraph, are required to interpret non-targeted metabolic 
profiles in the biological context.

Semipolar secondary metabolites are the major components of the exudation patterns. Only 
25 and 22 of the metabolic signals (455 (ESI(−)), 475 (ESI(+), respectively) could be assigned to metabolites 
which have been previously described as exudate-characteristic for Col-015. Differential metabolites were detected 
by a generalized Welch-test between the 19 accessions; their colour-coded intensity map is shown in Fig. 2. 
Chemically related compounds were placed in groups separated by horizontal spacing.

Among the differential metabolites, there were several compounds with an aromatic moiety, such as the nucle-
oside thymidine and the amino acids Phe and Tyr. The amino acid derivative hexahomo-Met S-oxide had low 
abundance in the exudates of Sf-2 and was enriched in Mt-0.

A range of glucosinolate degradation products was characteristic for the exudates of some accessions. 
Edi-0 had rather low levels of indolic compounds and the isothiocyanate hydrolysis product of 8-MeSO-Octyl 
glucosinolate. Wu-0 showed a clear absence of the neoglucobrassicin (1-MeO-I3M) hydrolysis product 
1-methoxy-indole-3-ylmethylamine (1-MeO-I3CH2NH2), while Sf-2 was missing the malonyl-glucoside 
of 6-hydroxyindole-3-carboxylic acid (6-(Malonyl-GlcO)-I3CH2CO2H). An unknown indole derivative 
(C10H9NO3) was highly abundant in the exudates of Ct-1 and Wil-2, and lowly abundant in Sf-2. Generally, large 
amounts of the glucosinolate precursor and hydrolysis products were detected in the exudates of Ler-0, Mt-0 and 
Wil-2.

Plant hormone-derived metabolites also differed between the 19 accessions. Two salicylic acid (SA) catabo-
lites, 2,3 and 2,5-dihydroxybenzoic acid (DHBA) pentosides, were highly abundant in Col-0, Kn-0, Ler-0, Mt-0, 
Wil-2, Ws-0 and Wu-0. No preference for the 3′ or 5′ hydroxylated variant of DHBA was noticed, and both iso-
mers correlated positively with a Pearson correlation of 0.91. 9,10-dihydrohydroxy jasmonic acid (JA) O-sulfate 
was another differential plant hormone catabolite in A. thaliana exudates with low levels in Bur-0, Can-0 and 
Zu-0 and high levels in Col-0, Kn-0, Po-0, Rsch-4 and Wu-0.

Among the phenylpropanoids, the coumarin scopoletin and its glycosides differed in the exudates of the 19 
accessions. A hexose-pentose conjugate of scopoletin as well as three other glycosides (C4H10O Hex-DeoxyHex, 
C12H16O5 Hex, C7H14O4 Malonyl-Hex) were among the differentially abundant metabolites which were described 
for Col-0 exudates15.
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Other differential phenylpropanoids include the monolignol glucoside syringin as well as both isomers of the 
sulfated dilignol G(8-O-4)FA O-sulfate consisting of coniferyl alcohol (G) and ferulic acid (FA): it was present 
at high levels in Kn-0 and Wil-2 exudates. Two hydroxylated fatty acids also showed natural variation and were 
highly abundant in Mt-0.

Several isoforms of known glycosylated metabolites (e.g. kaempferol triglycosides with m/z 739.21) were 
detected at different RTs indicating differences in sugar conjugation. The investigation of these putatively anno-
tated metabolites can be facilitated by exploring polymorphisms in genes encoding their biosynthetic enzymes.

Figure 1. Hierarchical clustering of metabolic features from (a) exudates ESI(−), (b) ESI(+) and of (c) genetic 
distances. (a+b) Features were obtained by UPLC/ESI(−)-QTOF-MS (a) or UPLC/ESI(+)-QTOF-MS (b) from 
exudate samples and differed from the blank (Welch test, p < 0.05). Intensities were corrected for batch effects 
using SVA and subjected to average linkage clustering with correlation as a distance measure. (c) Variant tables 
of the 19 genomes project were reduced to coding regions, as annotated by TAIR. The sum of all mismatches 
was used as a distance matrix for average linkage clustering. Dendrograms were cut at a correlation threshold of 
0.95 (dashed line). As cluster numbers were not comparable, consistent clusters were coloured across ion modes 
as a visual guidance.
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The absence of an indolic glucosinolate hydrolysis product and a hydroxycinnamic acid 
conjugate is genetically determined. Wiesner et al.23 reported that the accession Wu-0 lacks the 
1′-methoxylated indolic glucosinolate due to a premature stop codon in the CYP81F4 gene24. Its frameshift muta-
tion leads to a loss of function and subsequently to the absence of 1-MeO-I3M in roots and leaves23, and also its 
amine, 1-MeO-I3CH2NH2, in the exudates of our hydroponic system.

To elucidate if further metabolite absences in the exudates like 1-MeO-I3CH2NH2 in Wu-0 can be traced 
back to a single gene, we developed a workflow to link genomic and metabolic patterns (Fig. 3). Features with the 
same absence pattern could be different molecular species of the same compound (adducts, isotopes, fragment 
or cluster ions). Alternatively, they may be different isomers from the same biosynthetic pathway with a common 
precursor.

Among the seven metabolic features with absence in two accessions, three were characteristic for Can-0 and 
Ler-0. The hydroxycinnamic acid polyamine derivative cyclic didehydro-di(coumaroyl)spermidine sulfate pre-
viously identified in Col-015 and also detected in other accessions was clearly absent in Can-0 and Ler-0 (Fig. 2). 
This compound with RT = 3.6 min was absent in the negative ion mode as [M-H]− adduct with m/z = 514.17 and 
[M-2H + Na + CH2O2]− adduct with m/z = 582.15. Another compound with m/z = 514.17 eluting at 4.2 min was 
also absent in Can-0 and Ler-0. Tandem mass spectrometry (MS/MS) analysis revealed a sulfur trioxide loss in 
the fragmentation pattern similar to the sulfated cyclic didehydro-di(coumaroyl)spermidine conjugate. Can-0 
carries a premature stop codon in the gene AT2G25150 encoding spermidine dicoumaroyl transferase (SCT), 
whereas in Ler-0, a large deletion is present in the CDS of this gene22. Both accessions have no detectable levels of 
SCT transcript in their roots (Fig. 4a).

Thus, neither Can-0 nor Ler-0 possess SCT activity to most likely produce cyclic didehydro-di(coumaroyl)
spermidine sulfate and its isomer. To further support the data observed with these two accessions, we analysed the 
exudates of the homozygous knockout line SALK_098927C (Col-0 background), which indeed did not display 
any peaks with m/z 514.17 ESI(−) at 3.6 min, as shown in Fig. 4b, and thus confirm our hypothesis.

The above results for the Wu-0 and Can-0/Ler-0 pattern showed the feasibility of such an association analysis 
to link compounds to their biosynthetic pathways. In specific cases, there is a direct connection between meta-
bolic phenotype and genotype. Therein, metabolite variation among Arabidopsis accessions can be traced back to 
individual SNPs without trait segregation and QTL mapping.

Matching metabolic and genetic patterns can indicate compound class. Genetic alterations may 
be exploited to characterise so far unknown compounds which are part of related biosynthetic pathways25. MS/MS  
fragmentation facilitates the annotation of chemical substructures, which are often characteristic for a certain 
class of compounds. Knowledge about biosynthetic pathways can further support the assignment of unknown 
features to compound classes.

For the annotation of metabolites, collision-induced dissociation (CID-) MS was performed for 17 selected 
MS1 ESI(−) features obtained by the above described screening.

With the help of MS/MS spectra, nine out of 17 features were annotated and for five further features, the 
elemental composition was determined. An overview of compounds, fragment spectra and matching enzymes is 
given in Supplementary Table S5.

A compound (m/z 739.21, RT = 4.3 min) that was not found in the exudates of Wu-0 (Fig. 5a) was iden-
tified as a flavonoid with the same elemental composition (C33H40H19) and fragment spectrum as kaempferol 
3-O-Rha(1→2)Glc 7-O-Rha15. The RT shift indicates different glycosidic conjugation. This compound was iden-
tified as robinin (kaempferol 3-O-Rha-Gal 7-O-Rha) by an authentic standard having a galactose moiety instead 
of glucose in the diglycoside at the 3′ position (Fig. 5b). One out of the 16 premature stop codons characteristic 
for Wu-0 was present in AT2G22590.1, which encodes the UDP-glycosyltransferase (UGT) superfamily protein 

Figure 2. Colour-coded intensity matrix of differential metabolites occurring in exudates. Integrated peak 
areas were log-transformed and scaled to zero mean and standard variance. A Welch-test was used to find 
differentially abundant metabolites between the 19 accessions.
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UGT91A1. This gene is coexpressed with the flavonol synthase 1 (FLS1, AT5G08640) and chalcone flavanone 
isomerase (TT5, AT3G55120) encoding genes that are annotated with the “flavonoid biosynthetic process” by 
Gene Ontology26. The exudates of the homozygous knockout line SALK_088702C (Col-0 background) were 
missing robinin and its UGT91A1 transcript levels in roots were diminished (Fig. 5c–e).

The hydroxylated fatty acid 9,12,13-trihydroxyoctadec-10-enoic acid (9,12,13-TriHOME, KEGG C14833) was 
not present in the exudates of Edi-0 and Zu-0 (Fig. 2). Its lack corresponds to a SNP pattern introducing a stop 
codon into a long-chain-alcohol O-fatty-acyltransferase gene (AT5G55360.1). The unsaturated variant 9,12,13-tri
hydroxyoctadec-10(E),15(Z)-enoic acid, however, could be detected in Edi-0 and Zu-0 exudates, but not in the 
Ct-1 accession, and accordingly, pointed to different polymorphism patterns. Besides, similar intensity distribu-
tions of both hydroxylated fatty acids were found across the exudates of the 19 accessions (Fig. 2).

These examples show that the direct search for a metabolite-enzyme-connection can provide valuable insights 
into biosynthetic pathways but require careful examination of the resulting candidate genes.

Figure 3. Workflow for matching metabolic patterns of absence with stop codons in genes annotated 
as AraCyc enzymes. For the metabolic data, 384 out of 455 metabolic features from the ESI(−) data set 
were absent in at least one accession. 38 of them were annotated as monoisotopic peak [M] by CAMERA. 
Approximately 32,000 stop codons were detected. 1,588 of AraCyc enzyme-encoding genes displayed a 
prematurely ended amino acid sequence possibly representing non-functional enzymes that can be causative for 
metabolite absence.
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Discussion
This study showed how the exudation pattern of A. thaliana accessions is reflected by a genetic clustering of pol-
ymorphisms in their CDS. The previously reported similarity of the German and Norwegian accession Po-0 and 
Oy-022 was only observable at metabolic level in the ESI(−) dendrogram. The close relation was confirmed by the 
genetic clustering. However, we also observed closely related metabolic profiles of Po-0 with No-0 (blue), which 
has not been described before. Neither the metabolic proximity of Sf-2 and Kn-0 (green) nor of Ct-1 and Edi-0 
(purple) were reflected by small genetic distances.

The similarity of the Wu-0, Tsu-0 and Mt-0 was present in both ESI dendrograms of the exudate analysis and 
seems to be genetically determined. The close genetic relation between the Japanese accession Tsu-0 and Mt-0 
from Libya has already been reported by Nordborg et al.19 as well as by De Pessemier et al.27, and was confirmed 
for metabolic exudate and the CDS profiles (orange).

The clustering of metabolic profiles demonstrated that genetic variation between the 19 founder accessions 
of the Arabidopsis MAGIC population is indeed reflected in the exudate metabolome. This is in contrast to the 
previously reported only minor correlation between shoot metabolic and genetic similarity7 of nine accessions, 
partially overlapping with the MAGIC founder lines. Compared to 149 SNPs that were used to estimate a genetic 
distance by Houshyani et al.7, our analysis included 640,066 polymorphisms that were exclusively within CDS. 
The usage of SNPs in CDS ensures a comprehensive, but most direct genotype-phenotype-association, disre-
garding regulatory sequences. From hierarchical clustering, we can conclude that the three dendrograms reflect 
the genetic determination of the exudation profile of several Arabidopsis accessions. Both, the genetic and thus 
the metabolic profiles, may have been affected by selection processes at the collection sites25. Information on 

Figure 4. Natural and T-DNA insertion knockouts of SCT. (a) Relative transcript levels of SCT in root tissue 
as determined by qPCR, PP2A as reference, normalized to Rsch-4, mean ± s.e.m., n = 3. (b) Peak area counts of 
cyclic didehydro-di(coumaroyl)spermidine sulfate in exudates, mean ± s.e.m., n = 3.

Figure 5. Robinin absence is linked to a stop codon in the UGT91A1 encoding gene. (a) Peak area counts, 
mean ± s.e.m. (n = 3) with absence in Wu-0 (highlighted in red) (b) MS/MS spectrum of robinin, 30 eV, (c) 
extracted ion chromatogram at m/z 739.21 with kaempferol 3-O-Rha(1→2)Glc 7-O-Rha eluting at 3.9 min and 
the galactose-conjugated robinin eluting at 4.3 min not detected in the natural knockout Wu-0 and T-DNA 
insertion line SALK_088702C, (d) relative transcript levels of UGT91A1 in roots as determined by qPCR, PP2A 
as reference, normalized to Col-0, mean ± s.e.m., n = 4, (e) schematic representation of the UGT91A1 gene (one 
exon) and the loss-of-function mutations in Wu-0 and SALK_088702C.
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environmental conditions, especially characteristic rhizosphere data of the original locations, would be of great 
interest, but unfortunately, these are not well documented28.

In our study, a variety of glycosylated and sulfated compounds are the key metabolites that underlie nat-
ural variation in the exudates of the MAGIC parental lines. Scopoletin was found both as an aglycone and 
hexose-pentose conjugate. However, glucosinolates were only detected as degradation products (amines, carbal-
dehydes, isothiocyanates). Currently, we cannot elucidate whether glucosinolate exudation is initiated by myrosi-
nase activation or if hydrolysis was caused by the sample preparation procedure.

Previously, hormones were described as constituents of root exudates29. Despite that, plant hormones were 
difficult to detect with the analytical method due to their low abundance. Plant hormone-derived metabolites 
were detected as glycosylated and sulfated in case of SA and JA, respectively. Natural variation is reflected by 
a great spectrum of glycosidic conjugation. This was shown for SA catabolites. SA was present in the exudates 
of Col-0 in the study of Strehmel et al.15 but did not pass their stringent filtering criteria to be included in their 
exudate compound collection, while SA derivatives with 2,3 or 2,5- dihydroxy-substituted benzoic acid pen-
tose conjugates passed the filter. As shown in Supplementary Fig. S2, high amounts of SA were found in Kn-0, 
Wil-2 and Wu-0, the lowest amount was present in Sf-2 exudates, one of the accessions with also low DHBA 
pentoside levels. Interestingly, solely pentosides but no hexosides of DHBA were detected in the root exudates 
of Col-015. Li et al.30 investigated the discrimination of hexose and pentose conjugation in 96 A. thaliana acces-
sions. Combined QTL and association mapping pointed to a locus on chromosome 5 within proximity of a gene 
encoding a putative UGT with pentose specificity. The findings of this study support the previously reported low 
ratio of pentose-hexose conjugates for Edi-030. Sf-2 was the accession with the lowest DHBA pentoside-hexoside 
ratio, which may be caused by a non-functional pentose-conjugating UGT and a background hexose-transferase 
activity that leads to a DHBA hexoside phenotype.

Chemically related compounds often derive from the same biosynthetic pathway. The characterisation of these 
metabolites might be facilitated by combining metabolic patterns with genomic data. Thus, an analysis workflow 
was developed which compares metabolite and sequence polymorphism patterns. In order to reduce the com-
plexity, qualitative metabolic patterns were extracted and compared with the presence of premature stop codons 
in enzyme-encoding genes. The absence of a sulfated cyclic di(dehydrocoumaroyl)-spermidine was traced back 
to a single genomic alteration diminishing SCT activity in Can-0 and Ler-0. These data support the hypothesis 
postulated by Strehmel et al.15 that the cyclic conjugate is derived from di(coumaroyl)spermidine synthesized 
from spermidine and coumaroyl-CoA by SCT as illustrated in Fig. 6. A subsequent oxidative ring formation and 
sulfonylation led to sulfated cyclic di(dehydrocoumaryol)-spermidine31. Nevertheless, the coumaroyl spermidine 
transferase activity can hardly be inferred from the gene annotation as “HXXD-type acyl transferase family pro-
tein”. This workflow furthermore pointed towards the substrate specificity of UGT91A1. Previous studies have 
shown that UGT91A1 is regulated by MYB transcription factors and speculated about its involvement in glyco-
sylation of flavonols or flavonol glycosides32. We could show that in the absence of UGT91A1 enzymatic activity 
no galactose transfer to kaempferol 3-O-Rha 7-O-Rha (kaempferitrin) is catalysed to produce robinin. However, 
the presence of the glucose-substituted isomer kaempferol 3-O-Rha(1→2)Glc 7-O-Rha implies the involvement 
of a different UGT not accepting galactose but rather glucose as a substrate. We hereby found that UGT91A1 
might have similar flavonoid substrate specificity as UGT73C6 and UGT78D133. However, the patterns of two 
closely related hydroxylated fatty acids did not show mutual absences. Their intensity distributions were similar 
and point out the threshold issue in the absence definition. The SNP in AT5G55360 is likely to be a false positive 
candidate that needs to be excluded by a careful interpretation.

Future investigations will focus on the refinement of our approach by addressing the following points: i) When 
is a peak defined as absent? We relied on the decision of the peak-picking method centWave34 in the xcms pack-
age35. If the algorithm found a peak at a particular m/z and RT in one accession but could erroneously not match 
its peak criterion in any replicates of another accession, the peak was defined as absent. ii) For a proof of concept, 
our workflow only included nonsense mutations in CDS of single genes. More complex studies would include 
amino acid exchanges in CDS, alterations in promoter regions as well as cases of gene function redundancies.

Linking stop codons with metabolite absences helps with the elucidation of secondary metabolite pathways 
but still requires fragment spectra to be interpreted manually and gene annotations have to be carefully checked 
for a possible involvement within the biosynthetic pathway of the metabolite. The connection has to be validated 
by knockout lines of the respective candidate genes.

Our study revealed natural variation in the root exudate composition of 19 genetically diverse accessions of 
A. thaliana. Combining nonsense mutations with metabolic patterns of the exudates facilitated to determine the 
genetic base of specific metabolite absences. Furthermore, the integration of sequence data can help to identify 
compound classes in metabolomics experiments. Our study can aid to further unravel biochemical and molecular 
processes in the rhizosphere by providing a metabolomics resource of root exudates (MetaboLights, accession 
number MTBLS160, http://www.ebi.ac.uk/metabolights/MTBLS160). Future investigations should aim at corre-
lating metagenomics with exudation profiles in order to deduce characteristics that can be exploited to circum-
vent limiting abiotic factors and decrease the susceptibility towards biotic stresses.

Methods
Plant material. Seeds of the accessions Bur-0, Col-0, Can-0, Ct-1, Edi-0, Hi-0, Kn-0, Ler-0, Mt-0, No-0, 
Oy-0, Po-0, Rsch-4, Sf-2, Tsu-0, Wil-2, Ws-0, Wu-0, and Zu-0 of A. thaliana (Supplementary Table S1) were 
obtained from the European Arabidopsis Stock Centre. The T-DNA insertion lines SALK_098927C and 
SALK_088702C were obtained from the SALK institute and Dr. Ralf Stracke (Bielefeld), respectively, and charac-
terised as elaborated in the Supplementary Methods.
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Plant cultivation. All seeds were surface-sterilized prior to plant cultivation. Then, all lines were cultivated 
in a hydroponic system with three independent biological experiments as previously described15 and in the 
Supplement. Culture medium was used as a blank. Medium was collected after one-week-exudation (week 5–6) 
and resulted in 57 pooled root exudates (of four plants each).

Figure 6. Biosynthetic pathway of cyclic didehydro-di(coumaroyl) spermidine sulfate. Di(coumaroyl)
spermidine is synthesized by SCT47 and subsequent oxidative ring closure and sulfonylation leads to cyclic 
didehydro-di(coumaroyl) spermidine sulfate, PAPS = 3′-phosphoadenosine-5′-phosphosulfate.
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Sample preparation. Root exudates were prepared according to Strehmel et al.15 and as described in 
Supplementary Methods.

Non-targeted metabolite profiling analysis. Changes in metabolism were analysed by 
ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time–of–flight mass 
spectrometry (UPLC/ESI-QTOF-MS) according to Böttcher et al.36.

All mass spectra were acquired in centroid mode and recalibrated on the basis of lithium formate cluster ions.
A detailed description of plant cultivation, sample preparation and metabolite profiling can be found in 

Supplementary Methods.

Data analysis. Raw data files were converted to mzData using CompassXPort version 1.3.10 (Bruker 
Daltonics 4.0). Subsequently, the R package xcms version 1.41.035 was used for feature detection, alignment 
and filling of missing values. On this account, features were detected with the help of the centWave algo-
rithm according to Tautenhahn et al.34 (snthr = 5, scanrange = c(1,3060), ppm = 20, peak width = c(5,12)), 
matched across samples (xcms function group, minfrac = 0.75, bw = 2, mzwid = 0.05, max = 50), corrected 
for retention time shifts (method = “loess”) and grouped again. Missing values were imputed with the xcms 
function fillPeaks which integrates raw chromatographic data. The data matrix was extracted using the dif-
freport function.

DataAnalysis 4.0 (Bruker Daltonics) was used for generation of extracted ion chromatograms, deconvolu-
tion of compound mass spectra and calculation of elemental compositions. For relative quantification of com-
pounds extracted ion chromatograms from the non-targeted analysis were integrated with QuantAnalysis 2.0 
(Bruker Daltonics) using the quantifier ions as listed in Supplementary Table S3. Peak areas were log-transformed 
and z-scaled to achieve normal distribution. Differential metabolites were detected by a generalized Welch-test 
between the 19 accessions (unequal variances, one-way layout, p < 0.05, corrected for multiple testing by 
Benjamini-Hochberg’s method37).

All statistical procedures were performed with the R statistical language version 3.0.038 and the Bioconductor 
environment39. All data are available from the MetaboLights repository under the accession number MTBLS160 
(see Supplementary Methods).

Hierarchical clustering. Before hierarchical clustering, remaining missing values were replaced with half of 
the minimum feature intensity. Feature intensities were logarithmized, z-transformed and checked for normality 
with a Kolmogorov-Smirnow test. Non-biological sources of variation were removed by surrogate variable anal-
ysis from the SVA package version 3.8.040. In order to discriminate between experimental artifacts and metabolic 
features in the non-targeted analysis, a generalized Welch test (unequal variances, one-way layout) was applied to 
find differential features (p < 0.05, corrected for multiple testing by Benjamini-Hochberg’s method37) between the 
19 accessions and blank. As a post-hoc test, 2-sample Welch tests were used to find features that were differential 
(p < 0.05) from the blank in at least one accession. This resulted in 455 out of 1950 ESI(−) and 475 out of 3738 
ESI(+) metabolic features used for hierarchical clustering. Hierarchical clustering was performed via multiscale 
bootstrap resampling with the R package pvclust version 1.2–241, which improves robustness by providing an 
approximately unbiased p-value (AU, red number in Fig. 1). Pearson correlation was used as distance measure 
and average linkage as a linkage method. Since the combination of both ion modes results in redundancy by 
compounds giving rise to several features, each mode was processed separately. Consistent clusters between the 
ESI(−) and ESI(+) mode were coloured.

Unspecific signals were more pronounced (87% vs. 75%) in ESI(+) vs. ESI(−). This had led to us to focus on 
ESI(−) in subsequent analyses.

Sequence analysis. Genetic distances were estimated from the variant tables available from the 19 genomes 
project22. Loci were reduced to CDS as annotated by the R packages Bsgenome.Athaliana.TAIR.TAIR942 and 
Genomic Ranges version 1.14.443. For each variant locus, 19 × 19 comparisons were conducted. In order to con-
struct a distance matrix, mismatches were penalized by increasing the distance by 1. The sum of matrices over all 
6,400,466 loci was used as a distance matrix (Supplementary Table S2) for hierarchical clustering via the hclust 
package with average linkage.

Predicted amino acid sequences were processed with BioPerl (Bio::Tools::Run::Alignment::Clustalw, 
Bio::SeqIO, Bio::Seq, and Bio::AlignIO) and aligned with the Clustalw algorithm with ktuple = 2 and a BLOSUM 
scoring matrix. Multiple sequence alignments were evaluated for premature ending with the R packages 
Biostrings version 2.30.1 and plyr version 1.8.1.

Combination of metabolic and genetic patterns. A metabolic feature was defined as absent when 
below the limit of detection in all replicates of an accession. Applying this stringent definition, the peak list cre-
ated from aligning all spectra from ESI(−) was screened for metabolic features with absence, thus reducing the 
number of features by 25% for exudates ESI(−). The distribution of absence across the 19 accessions is referred 
to as a pattern. The length of a pattern is the number of accessions that lack the same feature, i.e. a feature absent 
in Can-0 und Zu-0 is a pattern of length two. Out of the 455 metabolic features in the exudate data set (ESI(−)), 
384 were missing in at least one accession. 46 were missing in exactly one accession (length = 1), 52 were absent 
in two accessions (length = 2) (see Supplementary Table S4). The R package CAMERA version 1.23.244 was used 
for annotation of adduct species and isotope information. In order to find an association between metabolic 
patterns of absence and its genetic background, features with a pattern of absence, a monoisotopic annotation by 
CAMERA and a minimal median intensity of 10,000 were evaluated. 31 features that passed the intensity thresh-
old were matched with stop codon patterns resulting in 9/7/1 features of absence with length 1/2/3.
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These matching features or their corresponding quasi-molecular ion were subjected to fragmentation by 
MS/MS with 10, 20 and 30 eV. Stop codon patterns were derived from multiple sequence alignments of AraCyc 
enzyme genes45 (ftp.plantcyc.org/Pathways/BLAST_sets/aracyc_enzymes.fasta, Dec 2015) as annotated by 
TAIR10_functional annotations from TAIR.org46.
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Data Descriptor: Computational
workflow to study the seasonal
variation of secondary metabolites
in nine different bryophytes
Kristian Peters1, Karin Gorzolka1, Helge Bruelheide2,3 & Steffen Neumann1,3

In Eco-Metabolomics interactions are studied of non-model organisms in their natural environment and
relations are made between biochemistry and ecological function. Current challenges when processing such
metabolomics data involve complex experiment designs which are often carried out in large field
campaigns involving multiple study factors, peak detection parameter settings, the high variation of
metabolite profiles and the analysis of non-model species with scarcely characterised metabolomes. Here,
we present a dataset generated from 108 samples of nine bryophyte species obtained in four seasons using
an untargeted liquid chromatography coupled with mass spectrometry acquisition method (LC/MS). Using
this dataset we address the current challenges when processing Eco-Metabolomics data. Here, we also
present a reproducible and reusable computational workflow implemented in Galaxy focusing on standard
formats, data import, technical validation, feature detection, diversity analysis and multivariate statistics.
We expect that the representative dataset and the reusable processing pipeline will facilitate future studies
in the research field of Eco-Metabolomics.

Design Type(s)
time series design • database creation objective • process-based data
analysis objective

Measurement Type(s) metabolite profiling

Technology Type(s) Ultra High-performance Liquid Chromatography/Tandem Mass Spectrometry

Factor Type(s)
Spatial Orientation • wetness of soil • degree of illumination • substrate
type • season • scan polarity

Sample Characteristic(s)

Fissidens taxifolius • shoot system • Polytrichum strictum • Hypnum
cupressiforme • Grimmia pulvinata • Plagiomnium undulatum •
Rhytidiadelphus squarrosus • Calliergonella cuspidata • Brachythecium
rutabulum • Marchantia polymorpha
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Background & Summary
In Ecological Metabolomics (or short “Eco-Metabolomics”), metabolite profiles of organisms are studied
in order to describe ecological processes such as biotic interactions or the impact of environmental
changes on various biological species1–3. In contrast to biochemistry, wild non-model species are typically
studied in their natural environment in ecology. This often involves different individuals of one or more
species from populations growing under quite heterogeneous conditions when compared to the
controlled conditions in greenhouses or growth chambers. As a result, metabolite profiles are highly
variable when compared to each other. Moreover, profiles of non-model species contain a large number
of novel compounds (so called “unknown unknowns”) that are difficult to identify because of lacking
reference compounds, which have so far been mostly elucidated in model organisms3,4. Furthermore,
designing ecological experiments is often complex and involves multiple factors5. Thus, the metabolomics
data processing pipeline needs to be adapted in order to deal with the particular hypotheses and
idiosyncrasies of ecological experiments.

Here, we present a descriptor for a dataset that we consider representative for the research field of Eco-
Metabolomics. Our study makes use of a field campaign with a two-factorial design (seasons and species),
which includes (except Marchantia polymorpha) non-model species of bryophytes. In order to facilitate
subsequent analysis, we kept the experiment design as simple as possible. The sampling was conducted
on-site at the Botanical Garden of Martin Luther University Halle-Wittenberg once in each season over a
period of one year (see below). Metabolite profiles were acquired using untargeted liquid chromatography
coupled with mass spectrometry (LC/MS). Raw metabolite profiles are available in the metabolomics data
repository MetaboLights6 (Data Citation 1).

In biochemistry there are strict laboratory protocols that ensure reproducibility of the analytical
methods, while in bioinformatics this function is accomplished by implementing reusable computational
workflows7,8. Thus, in addition to the dataset we also address the typical bioinformatic challenges that
come with Eco-Metabolomics experiments by implementing a reproducible and reusable computational
workflow (Fig. 1). While the analysis and ecological interpretation of the study is described in
Peters et al.9, here we focus on the analytical and bioinformatic work that is required to create a
computational processing pipeline that is reproducible and that can be reused by other subsequent
studies.

We describe in detail the experimental methodology that was used to create the dataset as well as the
methodology to make the computational workflow reproducible (to give identical results in different
computational environments). By formalizing and validating the processes that led to the results10,11,
we expect that this approach can serve as a model for subsequent studies. We further expect that
Eco-Metabolomics studies use our dataset and the computational workflow to foster reuse and improve
future data processing pipelines.

Methods
These methods describe in detail the steps in producing the data, including full descriptions of the
experimental design in our related work9, data acquisition, computational processing, diversity analysis,
biostatistics and bioinformatics procedures.

Sampling campaign
Samples of the nine moss species Brachythecium rutabulum (Hedw.) Schimp., Calliergonella cuspidata
(Hedw.) Loeske, Fissidens taxifolius Hedw., Grimmia pulvinata (Hedw.) Sm., Hypnum cupressiforme
Hedw. (H. lacunosum was not differentiated), Marchantia polymorpha L., Plagiomnium undulatum
(Hedw.) T.J. Kop., Polytrichum strictum Menzies ex Brid. and Rhytidiadelphus squarrosus (Hedw.)
Warnst. were collected in the Botanical Gardens of the Martin-Luther-University Halle-Wittenberg,
Germany. Sampling was performed in summer (2016/08/08), autumn (2016/11/09), winter (2017/01/27)
and spring (2017/05/11) at relatively stable weather conditions as it is known that short-term climatic
fluctuations and rainfall can influence secondary metabolite content and ammonium uptake of
bryophytes12. Thus, the bryophytes were only collected when there was sunshine at least two days prior to
and during sampling. Furthermore, sampling was performed after mid-day between 13:00 and 15:00.

Sampling protocol
In each season, three composite samples of different individuals of each species were taken, leading to a
total of 3 * 9 * 4= 108 samples. Only above-ground parts of the moss gametophytes such as leaves,
branches, stems or thalloid parts were taken for sampling. From dioecious species such asM. polymorpha,
P. strictum and P. undulatum female, male and sterile gametophytes were collected in a composite
sample. Before sampling, visible archegonial and antheridial heads and any belowground parts such as
rhizoids and rooting stems were removed with a sterile tweezer. The gametophytic moss parts were put in
Eppendorf tubes and were frozen instantly on dry ice and later in the lab in liquid nitrogen.

Collecting ecological characteristics
In order to relate metabolomes of the bryophytes to ecology, several ecological characteristics were
recorded on-site and compiled from literature. The on-site characteristics type of substrate with the
nominal/categorical levels “soil”, “rock with lean soil cover” and “rock”; light conditions with the ordinal
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levels “sunny”, “half-shade” and “shade”; moisture of the substrate with the ordinal levels “dry”, “fresh”,
“damp” and wet; and exposition with the nominal levels “North”, “East”, “South”, “West”, “Northeast”,
“Northwest”, “Southeast” and “Southwest” were recorded when taking the samples in the field.

The nominal characteristics growth form, habitat type, substrate and life strategy, the ordinal life-
history characteristics spore size, gametangia distribution and sexual reproduction frequency, as well as the
ordinal Ellenberg indicator values (indices for light, temperature, continentality, moisture, reaction,
nitrogen and life-form) were collected from the literature13–17. For an overview, please refer Table 1
(available online only) in Peters et al.9 or the file m_characteristics.csv in the dataset (see Data Citation 1,
and Table 1 (available online only)).

Extraction protocol and LC/MS analysis
Frozen moss samples were homogenized by adding 200 mg ceramic beads (0.5 mm diameter, Roth) and
ribolysing (Precellys 24, 2 × 20 s at 6500 r.p.m., 5 min pause in liquid nitrogen). 1 ml ice-cold 80/20 (v/v)
methanol/water spiked with internal standards 5 μM biochanin A (Sigma-Aldrich), 5 μM kinetin (Sigma-
Aldrich) and 5 μM N-(3-indolylacetyl)-l-valine (Sigma-Aldrich) were added. Samples were vortexed and
thawed while shaking for 15 min at 1,000 r.p.m. at room temperature followed by ultrasonification for
15 min and again 15 min shaking. After 15 min centrifugation at 13,000 r.p.m. 500 μl of supernatant were
dried in a vacuum centrifuge at 40 °C and reconstituted in 80/20 (v/v) methanol/water with the volume
adjusted to the initial fresh weight of the sample to a final concentration of 10 mg fresh weight per 100 μl
extract.

Chromatographic separations were performed at 40 °C on an Acquity UPLC system (Waters)
equipped with an HSS T3 column (100 × 1 mm, particle size 1.8 μm; Waters) applying the following
binary gradient at a flow rate of 150 μL min− 1: 0 to 1 min, isocratic 95% A (water:formic acid: 99.9:0.1 [v/
v]), 5% B (acetonitrile:formic acid: 99.9:0.1 [v/v]); 1 to 18 min, linear from 5 to 95% B; 18 to 20 min,
isocratic 95% B. The injection volume was 2.0 μL (full loop injection).

Ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-
flight mass spectrometry (UPLC/ESI-QTOF-MS) was performed using a high resolution MicrOTOF-Q II
hybrid quadrupole time-of-flight mass spectrometer18. Data were acquired with the following MS
instrument settings: nebulizer gas: nitrogen, 1.4 bar; dry gas: nitrogen, 6 L min− 1, 190 °C; capillary: 5000
V (+4000 V for negative mode); end plate offset: −500 V; funnel 1 radio frequency (RF): 200 Volts peak-
to-peak (Vpp); funnel 2 RF: 200 Vpp; in-source collision-induced dissociation (CID) energy: 10 eV;
hexapole RF: 100 Vpp; quadrupole ion energy: 3 eV (−5 eV for neg-mode); collision gas: nitrogen;
collision energy: 7 eV (−7 eV for negative mode); collision cell RF: 250 Vpp (150 Vpp for negative mode);
transfer time: 70 μs; prepulse storage: 5 μs; pulser frequency: 10 kHz; and spectra rate: 3 Hz. Mass spectra

Figure 1. Computational workflow of the whole study (Data Citation 1) running in the Galaxy Workflow

Management system. Each of the modules represent a particular step in the study of Peters et al.9. The

modules have defined inputs, outputs and sets of parameters. The modules are connected to each other to give

the resulting workflow. The function of the modules is explained in Table 1 (available online only).
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were acquired in centroid mode. Calibration of the m/z scale was performed for individual raw data files
on lithium formate cluster ions obtained by automatic infusion of 20 μL of 10 mM lithium hydroxide in
isopropanol:water:formic acid, 49.9:49.9:0.2 (v/v/v) at the end of the gradient.

Quality control
In order to validate the instrument performance and to detect batch effects between the instrument runs,
the following quality control (QC) protocol was realized. Samples with a lab-internal standard mix
(MM8) were interspersed before and after 7 bryophyte samples in the MicrOTOF18. The following
substances were used in the MM8: 2-Phenylglycine (Fluka), Kinetin (Roth), Rutin (Acros Organics),
O-Methylsalicylic acid (Sigma), Phlorizin dihydrate (Sigma), N-(3-Indolyacetyl)-L-valine (Sigma), 3-
Indolylacetonitrile (Fluka) and Biochanin A (Sigma). Substances in the MM8 were selected based on their
ionization properties (ionization in both positive and negative mode and the differential adduct
formation) and a wide coverage of known retention times throughout the gradient with our instrumental
setup. Known ionization properties were used to detect shifts and effects in mass-to-charge ratios (m/z)
and retention times (RT) of the respective batches and to validate RT correction made by XCMS (see
below).

Raw data acquisition
Raw LC/MS data were converted to the open data format mzML19 with the software CompassXPort 3.0.9
from Bruker Daltonics (available at http://www.bruker.com/service/support-upgrades/software-down-
loads.html). In compliance with the minimum information guidelines for Metabolomics studies20,
metadata were recorded to ISA-Tab format21 using ISAcreator 1.7.10 (ref. 22) (available at https://github.
com/ISA-tools/ISAcreator/releases) and uploaded together with the raw data to the metabolomics
repository MetaboLights6 (Data Citation 1). Profiles of positive mode were used for the data analyses as
many important and known secondary metabolites classes in bryophytes such as flavonoids,
phenylpropanoids, anthocyans, glycosides and previously characterized compounds such as Marchantins,
Communins and Ohioensins ionize well in positive mode with our instrumental setup.

Peak detection
Chromatographic peak picking was performed in R 3.4.2 (available at https://cran.r-project.org) with the
package XCMS 1.52.0 (ref. 23) using the centWave algorithm and the following parameters: ppm= 35,
peakwidth= 4,21, snthresh= 10, prefilter= 5–50, fitgauss=TRUE, verbose.columns=TRUE. Grouping
of chromatographic peaks was performed with two factors (in XCMS called “phenoData”): seasons with
the levels summer, autumn, winter and spring; and species with the levels Brarut, Calcus, Fistax, Gripul,
Hypcup, Marpol, Plaund, Polstr and Rhysqu. The following parameters were used for grouping:
mzwid= 0.01, minfrac= 0.5, bw= 4. To improve subsequent data analyses, intensities in the peak table
were log transformed before grouping. For further analysis, only features between the retention times 20 s
and 1020 s were kept. Retention time correction was performed using the function retcor in XCMS using
the parameters method= loess, family= gaussian, missing= 10, extra= 1, span= 2. The parameters were
additionally optimized using the R package IPO 1.3.3 (ref. 24), but better alignment precision was
achieved with manual control and knowledge of instrument settings25.

Figure 2. Plots of sets of the MM8 profiles to assess the performance of the technical setup. Green= spring,

yellow= summer, red= autumn, blue=winter. n= 28. (a) Plot of the four sets of MM8 profiles against each

other. X axis: Retention time [s]. Y axis: Logarithmic total ion current. (b) Stacked plot of the sets of MM8

profiles next to each other. X axis: Retention time [s]. Y axis: Logarithmic total ion current. (c) Density plot

(histogram) of log intensities of the sets of MM8 profiles. X axis: Sample size. Y axis: Estimated kernel density.
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Peak annotation
Adduct annotation was performed with the R package CAMERA 1.33.3 (ref. 26) by using the following
functions: xsAnnotate, groupFWHM, findIsotopes, groupCorr, findAdducts; with the following
parameters: perfwhm= 0.6, ppm= 5, mzabs= 0.005, calcIso=TRUE, calcCiS=TRUE, calcCaS=TRUE,
graphMethod= lpc, pval= 0.05, cor_eic_th= 0.75. In order to improve subsequent statistical analyses
instead of the CAMERA function getPeaklist the function getReducedPeaklist was written that aggregates
the adducts of putative compounds into a feature list with singular components (see pull request in
GitHub: https://github.com/sneumann/CAMERA/pull/16). Since version 1.33.3 the function getRedu-
cedPeaklist is officially part of CAMERA. The parameter method=median was chosen for the study.

Figure 3. Quality control plots to assess shifts in retention time (RT) and mass-to-charge ratio (m/z) in the

four sets of MM8 profiles. Green= spring, yellow= summer, red= autumn, blue=winter. n= 28. (a) Median

retention time deviation for the sets of MM8 profiles. X axis: Name of MM8 profile. Y axis: Retention time

deviation [s]. (b) Retention time deviation plotted against retention time. X axis: Retention time [s]. Y axis:

Retention time deviation [s] per profile. (c) Median mass-to-charge deviation for each profile. X axis: MM8

profile. Y axis: m/z deviation. (d) Mass-to-charge deviation plotted against retention time. X axis: Retention

time [s]. Y axis: m/z deviation per profile.
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Exemplary compound annotation
Compounds were putatively annotated for the follow-up validation and biochemical interpretation with
the software Bruker Compass IsotopePattern 4.4. Annotation was performed by calculating accurate
masses (mass-to-charge values) from known compounds inM. polymorpha and other liverworts found in
PubChem, the KNApSAcK database and Asakawa et al.27,28. In the software Bruker Compass
DataAnalysis 4.4 the mass-to-charge was matched to device-specific retention times in the metabolite
profile. To validate whether the known compound was present in the profile, Extracted Ion
Chromatograms (EIC) and area-under-curve (integrated intensities) were checked manually.

Diversity analysis
Statistical analyses were performed using the additional R packages: multtest, RColorBrewer, vegan,
multcomp, multtest, nlme, ape, pvclust, dendextend, phangorn, Hmisc, gplots and VennDiagram. A
presence-absence matrix was generated from the feature matrix to determine the differences in metabolite
features between the experimental factors species and season. In accordance with the minfrac parameter
in the alignment step in XCMS (see above), a feature was considered present when it was detected at least
in two out of three replicates. The presence-absence matrix was used for measuring the metabolite
richness for each species and season by calculating the Shannon diversity index (H’) for each sample i
using the function diversity in vegan with the parameter index= shannon29. The following equation was
used for calculation:

H0 ¼
Xt

i¼1

pi In pið Þ

where t represents the number of samples in the particular group.
The total number of features and the number of unique features were calculated from the presence-

absence matrix accordingly. To test factor levels for significant differences, the Tukey HSD on a one-way
ANOVA was performed post-hoc using the multcomp package.

Variability was calculated with the Pearson Correlation Coefficient (PCC, Pearson’s r) using the
function rcorr in the package Hmisc. Venn diagrams were created for each species separately using the
package VennDiagram. Each set in the Venn diagram represents one season and shows distinct and
shared features in all possible combinations between the sets.

Multivariate statistical analysis
Variation partitioning was performed using the function varpart in the package vegan to analyze the
influence of the factors species and seasons on the metabolite profiles. Distance-based redundancy
analysis (dbRDA) using the function capscale with Bray-Curtis distance and multidimensional scaling in

Figure 4. The eight compounds used for the internal lab standard mix (MM8) plotted next to each other.

Shown are the regions of the respective compounds in the raw chromatograms before the alignment of XCMS.

Green= spring, yellow= summer, red= autumn, blue=winter. X axis: Retention time [s]. Y axis: Logarithmic

total ion current. n= 28.
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the package vegan was chosen to analyse the relation of the ecological characteristics with the species
metabolite profiles30,31. Ordinal and categorical ecological characteristics were transformed to presence-
absence matrices for the ordination. The optimal model for the dbRDA was chosen with forward and
backward selection using the function ordistep in the package vegan. Ecological characteristics were
added to the plots as post-hoc variables using the function envfit in the package vegan.

Chemotaxonomic comparison to phylogeny
Relationships between metabolite profiles and phylogeny were analysed by calculating dissimilarities for
phylogeny and the feature matrix using Bray-Curtis distance (function vegdist in vegan) followed by
hierarchical clustering using the function hclust and the complete linkage method. In order to improve
the visual comparison between the two trees, the chemotaxonomic plot was reordered using the function
order.optimal (package cba) and leaves of Polstr and Plaund were swapped using the function reorder in
vegan. The similarity of the two trees was determined with the normalized Robinson-Foulds metric
(function RF.dist in package phangorn). The similarity of the distance matrices was determined with the
Mantel statistics (function mantel in vegan).

Computational workflow
For the computational workflow, the required software tools, their dependencies, as well as software
libraries and R packages were containerized using Docker technology32. The container was based on
Linux and Ubuntu 16.04 and included R version 3.4.2 from the R apt repository. The commands for
building the container can be found in the Dockerfile (Table 1 (available online only)). The resulting
container image was made available at DockerHub (https://hub.docker.com/r/korseby/mtbls520/).

The computational workflow was constructed with the Galaxy workflow management system33. It
consists of 20 modules and each individual module represents one or more dedicated steps in the Peters
et al. study9, e.g. data retrieval, feature detection, alignment or statistical analysis (Fig. 1). For the
workflow, individual Galaxy modules were written in XML format. Each Galaxy module executes a shell
or R script with defined inputs and outputs. Scripts are only executed inside the software container. Thus,
code execution is encapsulated and all required software dependencies were resolved in the software
container. In order to comply with the Interoperability criterion in the FAIR guidelines34, the
PhenoMeNal cloud e-infrastructure was used to test the workflow in different computational
environments (https://phenomenal-h2020.eu). To ensure that the workflow generates the same results
in different computational environments, continuous automatic workflow testing was implemented with
wft4galaxy35.

Data Records
The primary access site for the dataset is MetaboLights (Data Citation 1), which includes the 108
metabolite profles of the bryophytes in positive and negative mode, QC profiles, ecological data and
meta-data (see Table 2 (available online only) for an overview of sample names and associated factor

Figure 5. Boxplots of the variation in the intensities of the eight compounds used in the internal lab

standard mix of all the MM8 profiles. X axis: Compound. Y axis: Logarithmic total ion current. n= 28 for

each box.
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levels). Table 1 (available online only) provides an overview of data files, formats and functions in the
computational workflow.

Code Availability
The source code (also deposited at https://github.com/korseby/container-mtbls520/) was published36 and
made available under the terms of APACHE license 2.0. Please refer Table 1 (available online only) for an
overview of the function of each file of the source code.

Code for building the software container image and the workflow including Galaxy modules and
scripts that are executed inside the container were published under Open Access36. A pre-built binary
software container image was made available at DockerHub (retrievable at https://hub.docker.com/r/
korseby/mtbls520/).

Technical Validation
Quality control
Four sets of 27 bryophyte samples were generated in the experiment. One set for each season was
analyzed with UPLC/ESI-QTOF-MS (see methods below) which resulted in a total of 108 bryophyte
metabolite profiles. In order to validate the instrument performance and to detect batch effects between
the four instrument runs, a quality control (QC) protocol was implemented. Sets of 27 species samples
were interspersed by samples of a lab-internal standard mix (MM8) before and after 7 bryophyte samples.
Peak detection in these MM8 profiles was performed with the identical parameters as for the bryophyte
samples.

The four sets containing the MM8 metabolite profiles were checked visually for differences by plotting
them against each other (Fig. 2a) and stacked next to each other (Fig. 2b). The density distribution of the
intensities within the sets of MM8 profiles were also checked and compared to each other with a density
plot (histogram) (Fig. 2c).

Mass-to-charge ratio and retention time deviation (in seconds) and correction made by XCMS were
checked with diagnostic plots made by XCMS (Fig. 3). We found maximum retention time deviations
within 2 s (Fig. 3a and b) which are in the expected range of the analytical setup18. The determined mass-
to-charge deviations (Fig. 3c and d) are within instrument specification as well18.

The variation in the intensities of the internal lab standards was also checked for each reference
compound individually as shown in Figs. 4 and 5. In general, the variation for each reference compound
and the deviations between MM8 profiles are both well within the typical range of 10 to 15% (ref. 18).

We conclude that there are no significant batch effects in the technical replicates to overlap with the
factor seasons of the experiment. Thus, the automatic retention time correction made by XCMS is
validated for the parameters used in the peak detection process.

Figure 6. Total Ion Count (TIC) chromatogram obtained from the extracts of Marchantia polymorpha.

This exemplary chromatogram was obtained from the third sample of summer. Values of the retention times

(RT values), accurate masses and sum formulas are available in Table 3 (available online only).
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Exemplary annotation of Marchantia polymorpha profile
With known accurate masses (m/z values) and calculated retention time values (see methods), we
confirm the annotation of many known compounds which are described in literature for the model
species Marchantia polymorpha27,28 (Fig. 6). Many of these known compounds also constitute the most
abundant features in the profile of M. polymorpha (Fig. 6).

Computational workflow
We have implemented the computational workflow in the Galaxy workflow management system33 and
have made the workflow and underlying code available as Open Source36. The Galaxy workflow
represents the entire computational processing pipeline that is used in the Peters et al. study9 (Fig. 1).
Each of the individual modules represents a particular step in the workflow and has defined inputs (e.g.
pre-processed peak table data matrix) and outputs (e.g. PDF containing the plot of a particular statistical
method) (Fig. 1). We used data standards and minimum information criteria for constructing the
modules of the workflow20,22. Continuous automatic testing of the workflow was performed with
wft4galaxy35 in the PhenoMeNal e-infrastructure (https://phenomenal-h2020.eu) to ensure that the
workflow generates the same results in different computational environments.

We proceeded according to the FAIR guiding principles34 in order to implement a reusable
computational workflow. The acronym FAIR stands for Findable, Accessible, Interoperable and Reusable
and encompasses several criteria to support the reuse of scholarly data. So far, the FAIR guidelines have
only been aspired to make data reusable. However, as the conceptual formulation within FAIR are quite
generalized37, these principles can also be applied to computational workflows. Nonetheless, there are
some computational challenges involved. For example, software runs in different software environments
and software dependencies need to be resolved. We tackle this by creating software containers which can
be run on multiple systems and contain the software tools, all required libraries and R packages32,38. As
dependencies in the container have already been resolved, sharing the container image greatly facilitates
to allow the software to be run in multiple environments.

We have chosen the Galaxy Workflow Management system33,39 to implement the whole data
processing pipeline (Fig. 1) as it is already known to facilitate reproducible results40. Several processing
modules were constructed that represent the individual steps of the Peters et al. study9. Software tools are
invoked from the Galaxy modules and are executed inside the container, thus, adding a level of
encapsulation and eliminating the need for the user to install additional software41. Galaxy has a
graphical user interface that hides the technical complexity from the end user and does not need intensive
bioinformatic background knowledge to run the particular modules and workflows. This greatly
contributes to the adoption by the end users (biochemists and ecologists) and facilitates future studies in
the research field of Eco-Metabolomics.

Statistical analyses
With untargeted metabolomics analysis in ecology, diversity analysis is typically used to characterize the
richness and the abundance of biochemical features in the metabolite profiles of biological species42. Metabolite
richness is a simple measure that counts the individual biochemical features in the metabolite profiles of the
species43. The abundance of features in the metabolite profiles is usually calculated by diversity indices such as
the Shannon diversity index (H’) in order to characterize simple relationships with regard to the study factors44.

Ordination methods such as Redundancy Analysis (RDA) and distance-based Redundancy Analysis
(dbRDA) are frequently used in Ecology30. They allow to derive correlations of specific variables between
the matrix of predictors containing the measurements (X matrix) and the response matrix with the
ecological traits (Y matrix)30,45. These methods are also suitable for Eco-Metabolomics data as they allow
the use of multiple (non-categorial) variables in a single model and allow to calculate the amount of
explained variance of the model. We have chosen the dbRDA, which can also be regarded as a
constrained version of metric scaling (MDS)46,47. We have implemented dedicated modules for these
statistical operations in our computational workflow (see Methods section and Fig. 1).

Usage Notes
Building the container image
Following are instructions to manually build the container image. The file Dockerfile in Table 1 (available
online only) contains the ruleset. The container has been built using Docker version 17.05-ce under Linux
Ubuntu 16.04. The following commands were run to generate the image:

sudo apt-get install apt-transport-https ca-certificates git
sudo echo deb http://apt.dockerproject.org/repo ubuntu-xenial main
>>/etc/apt/sources.list
sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80
--recv-keys 58118E89F3A912897C070ADBF76221572C52609D
sudo apt-get update && sudo apt-get install docker
git clone https://github.com/korseby/container-mtbls520
cd container-mtbls520
docker build -t korseby/mtbls520.
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Installing and using Galaxy to run the workflow
The workflow was tested with Galaxy version 17.09. Instructions how to install Galaxy can be found in the
training material of the Galaxy project (accessible at https://galaxyproject.github.io/training-material/).
However, it is recommended that an official Galaxy server is used, such as those from the PhenoMeNal
infrastructure (available at https://public.phenomenal-h2020.eu/).

After being logged into Galaxy, a click on “Workflow” in the menu bar on the top and then a
click on the “Upload” button opens up a new page. In the field “Galaxy workflow URL:” enter
the following address “https://raw.githubusercontent.com/korseby/container-mtbls520/develop/galaxy/
mtbls520_workflow.ga” or upload the .ga file from the GitHub repository (Table 1 (available online only))
and then clicking on the button “Import”. This will import the workflow of the study into Galaxy. The
workflow will now be available in Galaxy under Workflows as “Metabolights 520 Eco-Metabolomics
Workflow”. From there, clicking on the drop-down menu there are options to “Edit” (visually view the
complete workflow in the Galaxy workflow editor) or to “Run” the workflow. Required data can be
downloaded from MetaboLights with the Galaxy module “mtbls520_01_mtbls_download” (Table 1
(available online only)). Once the download has been completed, data can be extracted with the Galaxy
module “mtbls520_02_extract” (Table 1 (available online only)). The workflow can be directly run once
the inputs have been assigned to the extracted data files. Processing will take approx. 40 min depending
on the work load of the computational infrastructure.
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1  | INTRODUC TION

There are approx. 20,000 bryophyte species known to science. 
Bryophytes are classified into three major groups: liverworts (“he-
patics”, Marchantiophyta), mosses s. str. (“musci”, Bryophyta), and 
hornworts (Anthocerophyta) (Bowman et al., 2017; Goffinet & Shaw, 

2009; Qiu et al., 2006; Shaw, Szovenyi, & Shaw, 2011). They occur 
in nearly every land ecosystem (Vanderpoorten & Goffinet, 2009).

Bryophytes contain many unique chemical compounds with 
high biological and ecological relevance (Asakawa, Ludwiczuk, & 
Nagashima, 2013a). Due to unique oil bodies, liverworts are biochem-
ically very distinctive from other mosses. Secondary metabolites in 
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Abstract
Bryophytes occur in almost all land ecosystems and contribute to global biogeo-
chemical cycles, ecosystem functioning, and influence vegetation dynamics. As 
growth and biochemistry of bryophytes are strongly dependent on the season, we 
analyzed metabolic variation across seasons with regard to ecological characteristics 
and phylogeny. Using bioinformatics methods, we present an integrative and repro-
ducible approach to connect ecology with biochemistry. Nine different bryophyte 
species were collected in three composite samples in four seasons. Untargeted liquid 
chromatography coupled with mass spectrometry (LC/MS) was performed to obtain 
metabolite profiles. Redundancy analysis, Pearson’s correlation, Shannon diversity, 
and hierarchical clustering were used to determine relationships among species, sea-
sons, ecological characteristics, and hierarchical clustering. Metabolite profiles of 
Marchantia polymorpha and Fissidens taxifolius which are species with ruderal life 
strategy (R- selected) showed low seasonal variability, while the profiles of the pleu-
rocarpous mosses and Grimmia pulvinata which have characteristics of a competitive 
strategy (C- selected) were more variable. Polytrichum strictum and Plagiomnium undu-
latum had intermediary life strategies. Our study revealed strong species- specific dif-
ferences in metabolite profiles between the seasons. Life strategies, growth forms, 
and indicator values for light and soil were among the most important ecological 
predictors.	We	demonstrate	that	untargeted	Eco-	Metabolomics	provide	useful	bio-
chemical insight that improves our understanding of fundamental ecological 
strategies.
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oil bodies are mostly composed of lipophilic terpenoids, abundant 
(bis- )bibenzyls, and small aromatic compounds (Asakawa et al., 
2013a). Liverworts represent a phylogenetic group of plants that 
were the first colonizers of land; thus, they share many biochemical 
features of both algae and land plants (Bowman et al., 2017). It has 
been acknowledged that there must have been many biochemical 
innovations involved during evolution from water to land (He, Sun, & 
Zhu, 2013; Suire et al., 2000). Even though oil bodies in M. polymor-
pha are usually restricted to only few vegetative cells of the thallus, 
relative number of oil bodies has been correlated to growth condi-
tions, availability of nutrients, level of plant- herbivory, and biodiver-
sity (Tanaka et al., 2016). The compounds unique to liverworts are 
involved in many biotic interactions and act as defense to herbivory 
(Asakawa, Ludwiczuk, & Nagashima, 2013b).

Despite the fact that the majority of bryophytes (approx. 
14,000 species) belong to the group of mosses (Bryophyta), fewer 
compounds have been characterized in mosses than in liverworts. 
Mosses contain terpenoids; benzoic, cinnamic, and phthalic acid de-
rivatives; coumarins; and some nitrogen- containing aromatic com-
pounds, which sometimes are structurally similar to those found in 
vascular plants (Asakawa et al., 2013a).

As secondary metabolite profiles are similar among phylogeneti-
cally closely related species (Maksimova, Klavina, Bikovens, Zicmanis, 
&	Purmalis,	2013;	Wink,	2003;	Wu,	1992),	metabolomics	can	also	be	
used to support phylogenies based on genetic markers, for example, 
to find marker compounds to assist current phylogenetic classifi-
cations, to discriminate several ecotypes of bryophyte species, or 
even to propose new chemical taxonomic markers (Heinrichs, Anton, 
Gradstein, & Mues, 2000; Pejin et al., 2010; Rycroft, Heinrichs, Cole, 
& Anton, 2001).

Several hundred new compounds have been isolated from bryo-
phytes in recent years. Species produce secondary metabolites as 
a defense against mechanical damage, environmental stress, herbi-
vores, and pathogens, as well as to capture and conserve resources 
(Cornelissen, Lang, Soudzilovskaia, & During, 2007). However, there 
is still a knowledge gap with regard to the ecological relevance of 
compounds (Asakawa et al., 2013b).

Bryophytes exhibit allelopathic interactions with other organ-
isms by releasing allelochemicals. For example, as some slugs feed on 
bryophytes, mosses such as Dicranum scoparium have evolved acetylic 
oxylipins that act as a defense against herbivorous slugs (Boch, Prati, 
& Fischer, 2016; Rempt & Pohnert, 2010). Other oxylipins or related 
compound classes have also been found to induce defense reactions 
in vascular plants. In this context, several studies found both inhibi-
tion and facilitation effects of bryophytes on seed germination and 
seedling growth of vascular plants (Donath & Eckstein, 2010; Michel, 
Burritt, & Lee, 2011; Zamfir, 2000). In addition, positive and negative 
effects of bryophytes on species diversity have been described. As a 
result, the effect of bryophytes on diversity cannot be generalized as 
it has been found to depend on the type of habitat and environmen-
tal	conditions	(Ehlers,	Damgaard,	&	Laroche,	2016;	Gornall,	Woodin,	
Jónsdóttir,	&	van	der	Wal,	2011;	Hüllbusch,	Brandt,	Ende,	&	Dengler,	
2016;	Jeschke	&	Kiehl,	2008;	Müller	et	al.,	2012).

Despite their small size, bryophytes show remarkable biochem-
ical adjustments to environmental changes (During, 1992; Klavina, 
2015). For example, bryophyte species that occur as colonizers in 
early successional stages collect debris, store water, and deposit and 
solidify soil. Thus, bryophytes can reduce erosion and often act as 
prerequisite for establishing vascular plants by creating microhabi-
tats (Streitberger, Schmidt, & Fartmann, 2017; Zamfir, 2000). In late 
successional stages in grasslands, even low bryophyte abundances 
can facilitate the regeneration of vascular plants by influencing nu-
trient retention and water cycling (Virtanen, Eskelinen, & Harrison, 
2017). However, the net outcome is often depending on environ-
mental conditions (Doxford, Ooi, & Freckleton, 2013).

There are many studies that link the abundance and the distribu-
tion of bryophytes with the environment (Aranda et al., 2014; Smith, 
1982). Altitudinal gradients were often used to study the effects of 
seasons and environments in combination (Mateo et al., 2016; Sun 
et	al.,	2013;	Wagner,	Zotz,	Salazar	Allen,	&	Bader,	2013).	However,	
there are only few studies that analyzed the biochemical responses 
of bryophytes to different environments or seasons. For example, 
studies with the liverwort Conocephalum conicum revealed largely 
different metabolite profiles of morphologically mostly indistin-
guishable specimen that were collected in contrasting environments 
(Ghani, Ludwiczuk, Ismail, & Asakawa, 2016; Ludwiczuk, Odrzykoski, 
& Asakawa, 2013). A different study analyzed three leafy liverwort 
species and found seasonal variation in antioxidant and polyphenol 
oxidase enzymes, as well as in the flavonoid and phenolic content 
(Thakur & Kapila, 2017).

Bryophytes have adopted different types of ecological strategies 
(During, 1992; Frisvoll, 1997) (Table 1). Grime (1977) described three 
basic types of life strategies for plants (the so- called CSR triangle). 
Competitive species (C- selected) show high nutrient turnover, large 
relative growth rates, morphological plasticity, a long life span, and 
usually low reproduction (During, 1992). They are typically found in 
late successional habitats. The S- selected group consists of stress- 
tolerant species that are slowly growing, have a conservative nutrient 
uptake, and are usually found in habitats that have abiotic constraints, 
for example, limited resource availability. Many ruderal species are 
R- selected and have traits related to fast growth, rapid nutrient up-
take,	 high	 reproduction,	 and	 a	 short	 life	 span	 (Ayres,	 van	der	Wal,	
Sommerkorn, & Bardgett, 2006). They are usually found in early suc-
cessional habitats and are quickly overgrown by competitors. There 
are also many species with intermediary strategies, especially epi-
phytic and epilithic bryophytes (During, 1992; Frisvoll, 1997).

Many morphological and physiological relationships have been 
described to be correlated with these plant strategy types (e.g., leaf 
area, growth, and photosynthesis), including the capabilities of bryo-
phytes that drive biogeochemical processes (Caccianiga, Luzzaro, 
Pierce, Ceriani, & Cerabolini, 2006; Cornelissen et al., 2007; Grime, 
Rincon,	&	Wickerson,	1990).	Linking	metabolites	 to	plant	 strategy	
theory contributes to a mechanistic understanding of how bryo-
phytes are able to, for example, tolerate desiccation biochemically 
and are still able to grow under dry and cool conditions (Grime et al., 
1990).
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Recent advances in analytical methods (e.g., liquid chromatogra-
phy coupled with mass spectrometry—LC/MS) allow to simultane-
ously measure most semipolar metabolites of an organism at once in 
an untargeted way (without specifically targeting some known com-
pounds). In an ecological context, this is known as Eco- Metabolomics 
(Hall,	2006;	Sardans,	Peñuelas,	&	Rivas-	Ubach,	2011).	When	com-
pared to typical biochemical experiments, where plants are usually 
grown under controlled conditions in glasshouses or growth cham-
bers, in Eco- Metabolomics, metabolite profiles are typically acquired 
from wild plant species in their natural environment (van Dam & van 
der Meijden, 2011; Rivas- Ubach et al., 2016; Sardans et al., 2011). 
As a result, experiment designs are more complex and metabolite 
profiles are expected to be highly variable.

Discovering patterns in the metabolite profiles can reveal new 
ecological and biogeochemical relationships as the biochemistry of 
bryophytes is related to the environment, climate, and biotic inter-
actions (Sardans et al., 2011). For example, metabolite profiling of 
higher plants grown in field plots showed that resource limitation 
results in decreased performance of small- statured herbs with in-
creasing species diversity (Scherling, Roscher, Giavalisco, Schulze, & 
Weckwerth,	2010).	Multivariate	statistical	methods	such	as	principal	
components analysis (PCA) allow to discriminate species based on 
their metabolite profiles. Furthermore, profiles can also be used to 
discriminate species that were grown in different environments or 
had a history of different ecological interactions (van Dam & van der 
Meijden,	2011;	Hall,	2006;	Jones	et	al.,	2013).

Studying the biochemistry of bryophytes is often targeting the 
discovery of novel potentially active compounds and natural product 
chemistry	(Asakawa	et	al.,	2013a).	We	have	found	only	a	few	studies	
in the literature that performed untargeted metabolomics analyses 
(LC/MS, GC/MS, NMR) with bryophytes, and none that were per-
formed in an ecological context (e.g., Erxleben, Gessler, Vervliet- 
Scheebaum, & Reski, 2012; Klavina, 2015; Pejin et al., 2010; Rycroft 
et al., 2001).

In this study, we introduce an integrative Eco- Metabolomics ap-
proach to connect biochemistry with ecology using bioinformatics 
methods (Hall, 2006; Sardans et al., 2011). The aims of this study are 
as follows: (a) to investigate metabolic differences between species 
as explained by ecological characteristics, in particular, with regard 
to the CSR life strategy types; (b) to determine biochemical differ-
ences in species profiles with regard to the seasons; (c) to find out 
how the metabolomes of the bryophytes reflect their phylogeny; 
and (d) to present a reproducible bioinformatic workflow that can be 
reused by other subsequent Eco- Metabolomics studies.

2  | MATERIAL S AND METHODS

2.1 | Field campaign and sampling

Samples of the nine moss species, Brachythecium rutabulum (Hedw.) 
Schimp., Calliergonella cuspidata (Hedw.) Loeske, Fissidens taxifolius 
Hedw., Grimmia pulvinata (Hedw.) Sm., Hypnum cupressiforme Hedw. 

s.l., Marchantia polymorpha L., Plagiomnium undulatum	 (Hedw.)	 T.J.	
Kop., Polytrichum strictum Menzies ex Brid., and Rhytidiadelphus 
squarrosus	(Hedw.)	Warnst.,	were	collected	in	the	Botanical	Garden	
of	 Martin	 Luther	 University	 Halle-	Wittenberg,	 Germany	 (see	
Supporting Information Figure S4 for photographs of the spe-
cies). Sampling was performed in summer (2016/08/08), autumn 
(2016/11/09), winter (2017/01/27), and spring (2017/05/11) under 
stable weather conditions with sunshine at least 2 days prior to sam-
pling and during sampling. Sampling was conducted between 13:00 
and 15:00.

Three composite samples of different individuals of each species 
were taken in each season, leading to a total of 3 × 9 × 4 = 108 sam-
ples. Only aboveground parts of the moss gametophytes were taken 
for sampling. Visible archegonia or antheridia, sporophytes, and any 
belowground parts were removed with a sterile tweezer before sam-
pling. The gametophytic moss parts were put in Eppendorf tubes 
and were frozen instantly on dry ice. Life strategies and other life 
characteristics were collected from the literature (Table 1).

2.2 | Biochemical protocol

Frozen moss samples were extracted according to Böttcher et al. 
(2009) with the following modifications: After adding 200 mg of 
ceramic beads (0.5 mm diameter, Roth), samples were homogenized 
with a tissue homogenizer (2 × 20 at 6,500 rpm; Precellys® 24, 
Bertin Technologies, Montigny- le- Bretonneux, France). 1 ml ice- cold 
80/20 (v/v) methanol/water was added. Metabolites were extracted 
by shaking/ultrasonification/shaking for 15 min at 1000 rpm. After 
15 min centrifugation at 15,000 g (rcf), 500 μl of supernatant was 
dried in a vacuum centrifuge at 40°C and reconstituted in 80/20 
(v/v) methanol/water with the volume adjusted to the initial fresh 
weight of the sample to a final concentration of 10 mg fresh weight 
per 100 μl extract.

Ultra-	performance	 liquid	 chromatography	 (Waters	 Acquity	
UPLC equipped with a HSS T3 column (100 × 1.0 mm)) coupled to 
electrospray ionization quadrupole time- of- flight mass spectrom-
etry (UPLC/ESI- QToF- MS) was performed using a high- resolution 
MicrOTOF- Q II hybrid quadrupole time- of- flight mass spectrometer 
(Bruker Daltonics), as described in Böttcher et al. (2009). Data were 
acquired in centroid mode with the following MS instrument settings 
for positive mode: nebulizer gas: nitrogen, 1.4 bar; dry gas: nitrogen, 
6	L/min,	 190°C;	 capillary:,	 5,000	V;	 end	plate	offset:	 −500	V;	 fun-
nel 1 radio frequency (RF): 200 Volts peak- to- peak (Vpp); funnel 2 
RF: 200 Vpp; in- source collision- induced dissociation (CID) energy: 
10 eV; hexapole RF: 100 Vpp; quadrupole ion energy: 3 eV; collision 
gas: nitrogen; collision energy: 7 eV; collision cell RF: 250 Vpp; trans-
fer time: 70 μs; prepulse storage: 5 μs; pulser frequency: 10 kHz; and 
spectra rate: 3 Hz.

2.3 | Data analyses

Raw LC/MS data were converted to the open data format mzML with 
the software Bruker CompassXPort 3.0.9. Raw data and metadata 
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were published in the metabolomics repository MetaboLights as 
MTBLS520 (Haug et al., 2013; Peters, Gorzolka, Bruelheide, & 
Neumann, 2018). A computational workflow was constructed in the 
Galaxy workflow management system for the entire data processing 
pipeline of this study (Supporting information Figure S3). Required 
software tools, their dependencies, as well as software libraries and 
R packages were containerized using Docker technology to facilitate 
reusability on different computational environments. Source code 
was made publicly available on GitHub (Peters et al., 2018).

Profiles of positive mode were used for the data analyses as 
many important and known secondary metabolites classes in bryo-
phytes such as flavonoids, phenylpropanoids, anthocyanins, glyco-
sides, and previously characterized compounds such as marchantins, 
communins, and ohioensins ionize well in positive mode with our 
instrumental setup.

Detection of chromatographic peaks was performed in R with 
the package XCMS 1.52.0 (Tautenhahn, Bottcher, & Neumann, 
2008) with two grouping factors in “phenoData”: seasons (summer, 
autumn, winter, spring) and species (Brarut, Calcus, Fistax, Gripul, 
Hypcup, Marpol, Plaund, Polstr, Rhysqu). Quality control was per-
formed with a laboratory internal standard mix (Peters et al., 2018). 
As the quality control revealed no significant differences between 
batches, no additional corrections on the peak detection with XCMS 
were performed. Intensities in the peak table were log transformed 
before grouping. For further analysis, only features between the re-
tention times 20 and 1,020 were kept.

Adduct annotation was performed with the package CAMERA 
1.33.3 (Kuhl, Tautenhahn, Böttcher, Larson, & Neumann, 2012). A 
specific function getReducedPeaklist was written (method = me-
dian) that aggregates the adducts of putative compounds into a 
feature matrix with singular components in order to improve subse-
quent statistical analyses (Peters et al., 2018).

Statistical analyses were performed in R 3.4.2 using the addi-
tional packages: multtest, RColorBrewer, vegan, multcomp, multtest, 
nlme, ape, pvclust, dendextend, phangorn, Hmisc, gplots, and 
VennDiagram. A presence–absence matrix was generated from the 
feature matrix to determine the differences in metabolite features 
between the experimental factors species and season. In concor-
dance with the “minfrac” parameter in the alignment step in XCMS, a 
feature was considered present if it was detected in two out of three 
replicates. The presence–absence matrix was used for measuring 
the biochemical diversity by calculating the Shannon index for each 
sample using the function “diversity” in vegan (Li, Heiling, Baldwin, 
& Gaquerel, 2016). The total number of features and the number of 
unique features were calculated from the presence–absence matrix 
accordingly.

To test factor levels for significant differences, the Tukey HSD 
on a one- way ANOVA was performed post hoc using the multcomp 
package. Intraspecific variability of species profiles in response to 
the seasons was calculated with the Pearson correlation coefficient 
(Pearson’s r) on the presence–absence matrix using the function 
“rcorr” in the package Hmisc. Venn diagrams were created for each 
species separately using the package VennDiagram.

Variation partitioning was performed using the function “var-
part” in the package vegan to analyze the influence of the factors 
species and seasons on the metabolite profiles. Distance- based 
redundancy analysis (dbRDA) using the function “capscale” with 
Bray–Curtis distance and multidimensional scaling in the pack-
age vegan was chosen to analyze the relation of the ecological 
characteristics with the species metabolite profiles (Legendre & 
Anderson, 1999). Ordinal and categorical ecological characteris-
tics were transformed to the presence–absence matrices for the 
ordination. The model for the dbRDA was chosen with forward 
and backward selection using the function “ordistep” in the pack-
age vegan. Ecological characteristics were added to the plots 
as post hoc variables using the function “envfit” in the package 
vegan.

Relationships between metabolite profiles and phylogeny were 
analyzed by calculating Bray–Curtis distances for phylogeny and the 
feature matrix (function “vegdist” in vegan) followed by hierarchi-
cal clustering (function “hclust) with the complete linkage method. 
The chemotaxonomic plot was reordered using the function “order.
optimal” (package cba), and branches of P. strictum and P. undulatum 
were swapped using the function “reorder” in vegan. The similarity 
of the two trees was determined with the normalized Robinson–
Foulds metric (function “RF.dist” in package phangorn). The similar-
ity of the distance matrices was determined with the Mantel statistic 
(function “mantel” in vegan).

More detailed methods and further information on the computa-
tional workflow are described in Peters et al. (2018).

3  | RESULTS

Preprocessing of the LC/MS raw data with XCMS and CAMERA (see 
Materials and Methods) resulted in a feature matrix with 108 sam-
ples and 4,032 features. The corresponding data table is available in 
MetaboLights and was also used for biostatistics and for the com-
ponents of the entire computational workflow (Peters et al., 2018).

3.1 | Diversity of metabolite features 
between the species

Marchantia polymorpha had significantly more biochemical fea-
tures than the other species with our analytical setup (Supporting 
Information Table S1). In general, we observed fewer features in pleu-
rocarpous than in acrocarpous species (Figure 1a and b, Supporting 
information Table S1). The relationships were also reflected in the 
Shannon index for the species (Figure 1a). Further, M. polymorpha was 
the species in which significantly more unique features were detected 
(131 ± 18) (Figure 1b). The pleurocarpous species had fewer unique 
features (25 ± 14) than the acrocarpous species (59 ± 17) (indicated 
green vs. red colors in Figure 1b; Supporting information Table S1). 
M. polymorpha and P. undulatum had significantly higher metabolic 
content per extracted gram fresh weight than the other species 
(Figure 1c).
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3.2 | Metabolic differences between species related 
to ecological characteristics

Variation partitioning revealed that species identity accounted for 
33% of the variation in the feature matrix and seasonal effects for 
9% (Supporting Information Figure S1). Distance- based redundancy 
analysis (dbRDA) was performed to assess the relation between 

ecological characteristics (Table 1) and the metabolite features of 
the species (Figure 2). Model selection resulted in a model of eight 
characteristics which explained 48.7% of the variation in the species 
metabolite profiles (Figure 2).

Habitat type “ruderal, banks” was responsible for the separa-
tion of M. polymorpha in the plot. The substrate “turf” (turfs and 
soils characterized by low pH) was the most powerful predictor 

F IGURE  2 dbRDA plot of species 
samples (colored scores) and ecological 
characteristics (arrows). The length of the 
arrows represents the explanation power 
of the characteristics for the features 
in the matrix of metabolite profiles. 
The relative position of the samples 
to the direction of the axis describes 
the relationship of the sample with the 
characteristic. The two axes of the plot 
explain a total variation of 48.7% in the 
feature matrix. n = 108 samples
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with performing post hoc Tukey HSD on a 
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for P. strictum (Figure 2). The dbRDA suggested nonlinear relation-
ships of several indicator values with the metabolite profiles of 
the species. Model selection included light and nitrogen index in 
the model (Table 1). Profiles of F. taxifolius and G. pulvinata were 
correlated to the “nitrogen” indicator value. Habitat type “ex-
posed rocks” was a powerful predictor for the epilithic G. pulvi-
nata, whereas profiles of P. undulatum were correlated to the life 
strategy “long- lived shuttle”. Growth form “mat” was the main 
predictor for the pleurocarpous mosses (green colored scores in 
Figure 2).

3.3 | Biochemical differences in species profiles 
with regard to the seasons

The total number of features present in summer (856 ± 48) was sig-
nificantly higher in all species than in the seasons autumn (748 ± 108), 
winter (738 ± 98), and spring (762 ± 42). This was reflected by the 
Shannon index (Figure 3a), but not by the number of unique features 
in the seasons (Figure 3b). The Venn diagrams break down the pro-
portions for each species separately (Supporting Information Figure 

S2). Total metabolic extracts (TIC) were also significantly higher in 
summer than in the other seasons (Figure 3c).

The dbRDA using seasons as constrained variables explained 14.8% 
of the variation present in the feature matrix. Seasons were clearly dis-
tinct from each other (Figure 4). The dbRDA shows that metabolite pro-
files from autumn and winter were more similar than those from spring 
and summer (Figure 4). The pleurocarpous species (filled symbols in 
Figure 4) were less separated than the acrocarpous species. These re-
sults are in line with the number of unique features in the different spe-
cies per season (Venn diagrams in Supporting Information Figure S2).

The metabolite profiles of M. polymorpha, F. taxifolius, and P. stric-
tum had significantly larger Pearson Correlation Coefficients. This 
means that the profiles with regard to the number of features were less 
variable among seasons than those of the other species (Figure 3d). 
This lower variation among seasons is also seen in the Venn diagrams, 
which show the number of features that are distinct and shared be-
tween all possible combinations of the seasons and for each species 
separately (Supporting Information Figure S2). In contrast to the acro-
carpous species, the pleurocarpous species had more distinct features 
between the seasons, but less shared features across the seasons.

F IGURE  3 The diversity of biochemical features in the four seasons. (a) Shannon diversity indices (H’) for the total number of features 
present in the seasons. (b) Number of unique features that were exclusively present in one of the four seasons. (c) Total intensities of 
features (= sum of total ion current, TIC) per season. (d) Pearson’s correlation coefficients (PCC) that show the intraspecific variability of the 
profiles of the species in response to the seasons. The lower the PCC values are, the more dissimilar they are, meaning higher difference 
in the number of features between the seasons. Groups were calculated with performing the Tukey HSD post hoc on a one- way ANOVA. 
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3.4 | Relationships of metabolite 
profiles and phylogeny

In accordance with the phylogenetic tree (Figure 5a), M. polymor-
pha and P. strictum were identified by clustering based on metabo-
lite features as the two most basal species with largest distances 
(Figure 5b). In contrast to the phylogeny, where P. undulatum was 
closer related to the group of pleurocarps than to G. pulvinata and 
F. taxifolius, P. undulatum was more dissimilar with regard to metabo-
lite features than the other species in this clade (Figure 5b). This re-
sulted in a higher intergroup dissimilarity of the clade.

The pleurocarpous species also formed a clade in the che-
motaxonomic tree, but with different distances as in the phy-
logenetic tree. Comparing the two trees showed a normalized 

Robinson–Foulds similarity of 0.57 (where a value of 0 means total 
similarity and 1 means no similarity) and comparing the distance 
matrices of the two trees resulted in a Mantel statistics of 0.39 
(Figure 5a and b).

4  | DISCUSSION

A bioinformatic workflow was created that can be run to reproduce 
the results from this study (Supporting Information Figure S3). It 
can be reused by Eco- Metabolomics studies with a comparable ap-
proach and with different data. Overall, our analyses revealed strong 
species- specific differences in the metabolite profiles between the 
seasons, which could be related to the ecology of the bryophytes.

F IGURE  5 Hierarchical clustering of 
the bryophyte species. (a) Phylogenetic 
tree constructed from the phylogenetic 
distances of the species showing 
the taxonomic relationships of the 
bryophytes. (b) Chemotaxonomic tree 
resulting from hierarchical clustering of 
the species metabolite profiles. Height 
specifies the distances between the nodesMarpol
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F IGURE  4 Constrained dbRDA plot of samples (colored scores) to the seasons (arrows). The length of the arrows represents the 
explanatory power of the season for the metabolite features. The position of the samples relative to the direction of the arrow represents 
the relationship of the sample with the season. The first two axes of the plot explain a total variation of 14.8% in the feature matrix. n = 108 
samples
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4.1 | Bioinformatic workflow

The Galaxy workflow management provides an easy to use graphi-
cal user interface which runs in different software environments 
and can be operated via a web browser (Afgan et al., 2016). Our 
computational workflow implements the entire data processing 
pipeline ranging from preprocessing the metabolite profile data to 
multivariate statistics (Figure S3) (Peters et al., 2018). Each analy-
sis is represented by a dedicated module in Galaxy and can be run 
independently to give identical results in different software en-
vironments. More importantly, modules can be adapted to other 
use- cases and reused with other metabolomics data by utilizing the 
code which has been made available as open source (Peters et al., 
2018).

Most Eco- Metabolomics studies relate metabolite profiles 
to growth, stress, environment, diversity, interactions, and even 
geographical regions (e.g., van Dam & van der Meijden, 2011; 
Fester, 2015; Sardans et al., 2011; Scherling et al., 2010; Szakiel, 
Pączkowski,	 &	 Henry,	 2011).	 However,	 comparative	 studies	 that	
link ecological characteristics with metabolomics are still widely 
missing. A comparable methodological approach was made by 
Frisvad, Andersen, and Thrane (2008) who related diversity in 
 secondary metabolite profiles of filamentous fungi to life strate-
gies.	Ivanišević,	Thomas,	Lejeusne,	Chevaldonné,	and	Pérez	(2011)	
analyzed metabolic fingerprints of sponges and linked them to me-
tabolite diversity.

With	our	computational	workflow,	we	address	typical	challenges	
in Eco- Metabolomics by analyzing data tables (one for the metab-
olite feature matrix and one data matrix for the ecological charac-
teristics) conjointly with suitable statistical methods commonly used 
in ecology (Legendre & Legendre, 2012). As our approach follows 
the FAIR guiding principles for data management and stewardship 
(Wilkinson	et	al.,	2016),	we	facilitate	the	reuse	of	our	workflow	by	
other subsequent Eco- Metabolomics studies.

4.2 | Relationships of metabolite 
diversity and phylogeny

The liverwort Marchantia polymorpha had significantly higher 
diversity of metabolite features than the other mosses with our 
analytical setup. This can be explained by oil bodies which are 
unique to liverworts and are known to contain many specialized 
secondary metabolites such as flavonoids, phenylpropanoids, an-
thocyanins, and glycosides that deter pathogens and herbivores 
(Bowman et al., 2017; Suire et al., 2000; Tanaka et al., 2016). In 
the metabolite profiles of M. polymorpha, we annotated many 
known compounds which are described as unique to liverworts 
in the literature (Asakawa et al., 2013a; Peters et al., 2018). The 
distant metabolite profiles explain also the most basal position 
and the largest distance of M. polymorpha in chemotaxonomic 
clustering.

The chemotaxonomic distance of P. strictum may be related 
to recent evolutionary developments such as secondary cell 

structures (Ligrone, Carafa, Duckett, Renzaglia, & Ruel, 2008). 
For example, although lignin is already present in M. polymorpha, 
its function as desiccation protective substance is less effective 
than in mosses where it is embedded in secondary cell structures 
(Ligrone et al., 2008).

In general, the dissimilarities between the phylogenetic and the 
chemotaxonomic tree were likely the result of different life strat-
egies and biochemical responses of the bryophytes to the specific 
conditions prevalent in the habitat and may ultimately result from 
the	 differential	 expression	 of	 corresponding	 genes	 (Wink,	 2003).	
This was especially evident for P. undulatum and could further be 
explained by the large separation in the dbRDA. The branch with 
pleurocarpous mosses represents a relatively young phylogenetic 
clade which can, in part, explain the weak biochemical separation 
of the pleurocarpous species from the others (Shaw, Cox, Goffinet, 
Buck, & Boles, 2003).

4.3 | Metabolic differences between species as 
explained by ecological characteristics

We	identified	two	groups	of	bryophytes	whose	metabolite	profiles	
were either R-  or C- selected (During, 1992; Grime, 1977).

The R- selected group was composed of M. polymorpha and 
F. taxifolius. These species had significantly more features and were 
significantly less variable across seasons than the other bryophyte 
species. These results suggest that these species rely on only a few 
metabolic adjustments with regard to the seasons. The two species 
also have ruderal characteristics such as being adaptive to the condi-
tions in disturbed areas, fast growth and loosely growth forms, high 
reproduction, and being quickly overgrown by other plants with pro-
gressing succession (Frisvoll, 1997; Grime, 1977; Hedwall, Skoglund, 
& Linder, 2015).

Furthermore, in ruderal habitats, there could be fewer mycor-
rhizal associations of bryophytes and fungi as in late successional 
habitats	 (Chapin,	Walker,	 Fastie,	&	 Sharman,	 1994).	Accordingly,	
for the genome of M. polymorpha it was found that some gene 
families were missing that were described to be required for suc-
cessful mycorrhizal associations (Bowman et al., 2017). These 
findings could partly explain the relatively large inventory of dif-
ferent metabolites that is expressed consistently throughout the 
whole year.

The C- selected group included all tested pleurocarpous spe-
cies B. rutabulum, C. cuspidata, H. cupresiforme, R. squarrosus, and 
the epilithic species G. pulvinata. They had low metabolite diver-
sity, but—more significantly—showed a high seasonal variability of 
metabolites and, thus, produced many different features only sea-
sonally. Except the epilithic G. pulvinata, species in this group were 
categorized as competitive (C- selected) in the literature (Frisvoll, 
1997).

Our results suggest that species in this group are specialized to 
the conditions in late successional stages with regard to their bio-
chemistry, as well as to grow in mats or cushions and to have high 
relative growth rates in order to withstand the competition from 

DOI:10.1002/ece3.4361

https://doi.org/10.1002/ece3.4361


9114  |     PETERS ET al.

vascular plants (During, 1992; Hedwall et al., 2015; Virtanen et al., 
2017). Producing metabolites only on demand seems to be favorable 
for bryophyte species in late successional stages.

Grimmia pulvinata was categorized as pioneer by Frisvoll (1997), 
and as such, it should be R- selected. However, our metabolomic data 
suggest	that	it	realizes	a	C-	selected	strategy.	When	only	considering	
rocks or stones as immediate habitat, the species is very competitive 
to other species as it usually grows solitary.

The metabolite profiles of Polytrichum strictum showed an in-
termediary R-  and S- selected strategy, whereas the profiles of 
Plagiomnium undulatum showed evidence for C-  and S- selection. 
Profiles of P. strictum had relatively low total number of metabolite 
features but a high number of unique features and made little met-
abolic adaptations across the seasons. By contrast, profiles of P. un-
dulatum had many unique and relatively high numbers of metabolites 
that did change considerably between the seasons. This is in accor-
dance with the plant strategy theory which explicitly describes tran-
sitions between the different life strategies (During, 1992; Grime, 
1977).	According	to	results	of	Wang,	Bader,	Liu,	Zhu,	and	Bao	(2017),	
the intermediary life strategies of Polytrichum and Plagiomnium may 
be explained by specialized traits related to photosynthesis and 
growth forms.

4.4 | Biochemical differences in species profiles 
with regard to the seasons

The total number of features present in summer was significantly 
higher than in the other seasons in any species. This can gener-
ally be explained by biological activities that are more intense dur-
ing summer (Doxford et al., 2013; Lambers, Chapin, & Pons, 2008; 
Rousk, Pedersen, Dyrnum, & Michelsen, 2017; Thakur & Kapila, 
2017).	With	our	experimental	setup,	we	could	not	measure	 inter-
actions with other organisms. However, in the literature, it is also 
described that ecological interactions are also more manifold in the 
summer season in temperate regions (Grime, 1977; Lambers et al., 
2008).

Bryophytes often respond sensitively to sudden climatic 
changes. Hence, they are considered good indicators for environ-
mental changes (Gignac, 2001; Gilbert, 1968). It is likely that the pro-
files of the bryophytes we measured during summer contained also 
many protective substances such as sugars or polyphenols to tol-
erate desiccation (Erxleben et al., 2012; Garcia, Rosenstiel, Graves, 
Shortlidge, & Eppley, 2016; He et al., 2013; Proctor et al., 2007). 
However, we suggest to use additional LC/MS- MS or NMR to iden-
tify significant metabolite features in order to make conclusions at 
the mechanistic level (Sardans et al., 2011).

Our results suggest that bryophytes respond species- specifically 
to different seasonal conditions. The responses of bryophytes to 
seasons are not only depending on their ecology and the type of 
life strategy (see above). They are also seemed to be determined by 
their phylogenetic history, as metabolite profiles of pleurocarpous 
species were less well distinguished from those of phylogenetically 
more distant acrocarpous species.

5  | CONCLUSION

We	 found	 that	 seasonal	 changes	 have	 great	 impact	 on	 the	 bio-
chemistry of bryophytes and that the tested bryophytes realize 
common as well as species- specific biochemical adjustments to 
the	 different	 conditions	 prevalent	 in	 the	 seasons.	 We	 further	
found that metabolite profiles were driven by the particular eco-
logical characteristics and life strategies such as growth form, light 
availability,	nutrient	supply,	and	pH	soil	value.	With	regard	to	sea-
sonal changes, the biochemistry of bryophytes is still largely un-
explored. Our results warrant further biochemical investigation of 
bryophytes and to study relationships with ecological character-
istics,	 life	strategies,	and	phylogeny.	With	this	study,	we	present	
first evidence that bryophytes realize life strategies that follow 
plant strategy theory by Grime (1977) at the biochemical scale. 
Our results demonstrate that untargeted Eco- Metabolomics are 
useful to answer fundamental questions in ecology and that the 
ecological strategy concepts also apply to biochemical scales.
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Abstract

Background: Metabolomics is the comprehensive study of a multitude of small molecules to gain insight into an organism’s
metabolism. The research field is dynamic and expanding with applications across biomedical, biotechnological, and many
other applied biological domains. Its computationally intensive nature has driven requirements for open data formats, data
repositories, and data analysis tools. However, the rapid progress has resulted in a mosaic of independent, and sometimes
incompatible, analysis methods that are difficult to connect into a useful and complete data analysis solution. Findings:
PhenoMeNal (Phenome and Metabolome aNalysis) is an advanced and complete solution to set up
Infrastructure-as-a-Service (IaaS) that brings workflow-oriented, interoperable metabolomics data analysis platforms into
the cloud. PhenoMeNal seamlessly integrates a wide array of existing open-source tools that are tested and packaged as
Docker containers through the project’s continuous integration process and deployed based on a kubernetes orchestration
framework. It also provides a number of standardized, automated, and published analysis workflows in the user interfaces
Galaxy, Jupyter, Luigi, and Pachyderm. Conclusions: PhenoMeNal constitutes a keystone solution in cloud e-infrastructures
available for metabolomics. PhenoMeNal is a unique and complete solution for setting up cloud e-infrastructures through
easy-to-use web interfaces that can be scaled to any custom public and private cloud environment. By harmonizing and
automating software installation and configuration and through ready-to-use scientific workflow user interfaces,
PhenoMeNal has succeeded in providing scientists with workflow-driven, reproducible, and shareable metabolomics data
analysis platforms that are interfaced through standard data formats, representative datasets, versioned, and have been
tested for reproducibility and interoperability. The elastic implementation of PhenoMeNal further allows easy adaptation of
the infrastructure to other application areas and ‘omics research domains.

Keywords: metabolomics; data analysis; e-infrastructures; NMR; mass spectrometry; computational workflows; galaxy; cloud
computing; standardization; statistics
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Findings
Background

The field of metabolomics has seen remarkable progress over
the last decade and has enabled fascinating discoveries in
many different research areas. Metabolomics is the study of
small molecules in organisms that can reveal detailed insights
into metabolic biochemistry, e.g., changes in concentrations
of specific molecules, metabolic fluxes between cells or com-
partments, identification of molecules that are involved in the
pathogenesis of a disease, and the study of the biochemical phe-
notype of animals, plants, and even soil microorganisms [1–3].

The principal metabolomics technologies of mass spectrom-
etry (MS) and nuclear magnetic resonance spectroscopy (NMR)
typically generate large datasets that require computationally
intensive analyses [4]. Biomedical investigations can involve
large cohorts with many thousands of metabolite profiles and
can produce hundreds of gigabytes of data [5–8]. With such large
datasets, processing becomes impracticable and unmanageable
on commodity hardware. Cloud computing can offer a solution
by enabling the outsourcing of calculations from local worksta-
tions to scalable cloud data centers, with the possibility to allo-
cate thousands of central processing unit (CPU) cores simulta-
neously. Furthermore, cloud computing allows for resources to
be instantiated on-demand (CPUs, random access memory, net-
work, storage) and allows access to computational tools in the
form of microservices that can dynamically grow or shrink.

MS and NMR data processing usually involves selection of
parameters (that are often specific to the analytical instrumen-
tation), algorithmic peak detection, peak alignment and group-
ing, annotation of putative compounds, and extensive statistical
analyses [9, 10]. Many open-source tools have been developed
that address these different steps in data processing and analy-
sis. These tools, however, usually come with their own software
dependencies, resource requirements, and scripting languages.
As a consequence, configuring and running them is often com-
plicated, especially for researchers who are untrained in com-
puter science [4]. Furthermore, many tools require users to in-
put parameters that can significantly affect results and perfor-
mance, and reporting of these parameters is not always clear
[11].

A number of infrastructures and integration efforts have
been initiated in the past five years, including metabolomics
data repositories with a global scope [6, 12], platforms for re-
producible workflow analysis [13, 14], as well as initiatives to
integrate and coordinate data standards [15]. Simultaneously,
multiple networks of service centers such as the international
Phenome Centers [16] and MetaboHub [17] have formed with
the goal to facilitate the acquisition, processing, and analysis of
metabolomics data [6–8] at ever increasing scales.

Currently, several web-based metabolomics data processing
platforms are available. XCMSOnline provides a platform based
on XCMS for downstream data analysis, visualization, data shar-
ing, and access to Metlin to facilitate metabolite identification
and pathway analysis [18]. MetaboAnalyst presents a wide va-
riety of data processing and analysis tools including statistical
analysis, time-series analysis, functional analysis, and pathway
analysis [19]. Workflow4Metabolomics is based on Galaxy and
provides various metabolomics processing workflows, including
NMR [13, 20]. These common tools for analyzing metabolomics
data provide web-based graphical user interfaces (GUIs) with dif-
ferent functionality.

Here, we present PhenoMeNal (Phenome and Metabolome
aNalysis), a unique, easy-to-use, complete, robust, and per-

CloudComputer

Public DataSoftware tools

ScientistsAnalysisPrivate Data

Figure 1: Conceptual design of the PhenoMeNal cloud e-infrastructure, which
brings compute to the data for any large number of data scientists.

formant cloud e-infrastructure that provides a large suite of
standardized and interoperable metabolomics data processing
tools as a complete data analysis solution. In contrast to cur-
rent metabolomics processing platforms, PhenoMeNal provides
Infrastructure-as-a-Service (IaaS) and seamlessly integrates a
wide array of existing open-source tools.

A major advantage over other platforms is that PhenoMe-
Nal make it possible to instantiate many different services in
the cloud and provides a number of standardized, automated,
and published analysis workflows in the user interfaces Galaxy,
Jupyter, Luigi, and Pachyderm (Fig. 1). Moreover, the PhenoMe-
Nal e-infrastructure can be easily deployed onto public and pri-
vate cloud environments and can be configured elastically to fit
into any cloud-based environment, thus enabling scalable and
cost-effective high-performance metabolomics data analysis in
a way that hides the technical complexity from the user. Phe-
noMeNal further facilitates reproducible analyses through auto-
mated, sharable, and citable workflows.

Overview

The features of the PhenoMeNal e-infrastructure are encapsu-
lated as a cloud research environment (CRE). The PhenoMe-
Nal CRE can be instantiated on major commercial public cloud
providers, including Amazon web services (AWS) and Google
cloud platform (GCP), as well as OpenStack-based private clouds
and in custom environments. Technical complexity is hidden
from the users, simplifying setting up the cloud infrastructure
for administrators (Fig. 2).

From a web-based portal, users can deploy the CRE, which in-
cludes several web services and software tools (Fig. 2). Data can
be processed directly in the e-infrastructure without the need to
install additional software. Scientific workflows can be executed
via user-friendly web-based platforms such as Galaxy, as well as
programmatic interfaces and notebooks. Each service has been
supplied with a rich source of documentation and training ma-
terial to assist researchers.

The PhenoMeNal Portal
The PhenoMeNal Portal [21] allows users to deploy, manage, and
delete PhenoMeNal CREs simply through a web interface. De-
ployments to major commercial cloud platforms (AWS and GCP)
as well as OpenStack, an open-source cloud platform, can be
made using an easy-to-follow wizard (Fig. 2). OpenStack deploy-
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Figure 2: Screenshots of creating and using the PhenoMeNal cloud e-infrastructure. First, log in with ELIXIR to the cloud research environment (CRE) portal. Second,

select a public or private cloud provider. After entering cloud credentials and setting up parameters in the dedicated portal, the deployment of the PhenoMeNal e-
infrastructure into the cloud environment can be made. Third, in the PhenoMeNal Portal app library there are several services ready to be deployed and used in the
set-up infrastructure. Fourth, dedicated web services such as Galaxy are readily available in the cloud e-infrastructure. All steps can be operated from an easy-to-use
web interface that is accessible from any standard web browser.

ments can be deployed behind clinical firewalls, which is espe-
cially pertinent when dealing with sensitive (i.e., patient) data.

The PhenoMeNal public instance allows users to test-run
a CRE without the need to deploy on a cloud platform. It can
be deployed and accessed through the portal. Once credentials
for users have been generated, analyses can be run through a
Galaxy instance containing the tools and workflows present in
any deployed CRE. The portal also includes user and developer
documentation, workflow tutorials, and links to training videos.

Scientific workflows
A scientific workflow is a set of computational steps that are car-
ried out to process and analyze data [22]. Usually, a workflow
is comprised of several linked software tools that are each exe-
cuted during a particular step of the workflow. In order to man-
age and automate scientific workflows, in PhenoMeNal the well-
established dedicated workflow management system Galaxy

can be deployed, which presents the user with an easy-to-use
graphical user interface as well as providing a programmatic in-
terface [20, 23]. Galaxy facilitates collaborative exchange, repro-
ducibility, and traceability of data analysis by enabling users to
share entire workflows and analysis histories [24]. In addition
to Galaxy, programmatic executable notebooks (Jupyter) and the
workflow tools exposed as programmatic interfaces Luigi and
Pachyderm are also supported [25].

In order to cover typical use cases in metabolomics and to il-
lustrate the usage and applicability of given analytical pipelines
and software tools, five representative scientific workflows are
available in the PhenoMeNal Galaxy (Table 1), each having dif-
ferent computational demands and purposes. More than 250 in-
dividual modules have been integrated in Galaxy (see the sub-
section Scientific Workflows in the Methods section).
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Table 1: List of workflows that are representative for their respective metabolomics domains (identification in NMR, Fluxomics, Annotation,
and identification in MS and eco-metabolomics)

Workflow name Description Reference

1D NMR Processes 1D NMR experiments from raw data to a data matrix required for
visualization and statistical analysis, building on nmrML and NMRProcFlow. The
automatic workflow is based on the MTBLS1 dataset, describing urinary changes in
type 2 diabetes in humans.

[26, 27, 28]

Fluxomics Quantifies steady-state fluxes following 13C metabolic flux analysis. The workflow was
first based on the analysis of the MTBLS412 dataset with 13C tracer data of human
umbilical vein endothelial cells under hypoxia.

[29, 30]

LC-MS/MS Processes, quantifies, and annotates/identifies features in mass spectra using MetFrag
— a tool that annotates molecules from compound databases of tandem mass
spectrometry (MS/MS) spectra. The workflow is based on MTBLS558.

[31, 32, 33]

Univariate and Multivariate
Statistics

Applies univariate and multivariate statistical analysis and illustrates how datasets
may be explored, enabling the identification of variables of interest and the
construction of predictive models. The workflow is based on MTBLS404.

[13, 34]

Eco-Metabolomics Implementation of a resource demanding metabolomics use case in ecology, used in
large field experiments to describe interactions between different species of organisms
in remarkable detail. The workflow is based on MTBLS520.

[35]

ISA-Create-Validate-Upload A workflow to create Investigation, Study, and Assay data model framework-compliant
metadata files based on study design information, augmented with semantic markup
as source, implementing UK Phenome center naming conventions. Following
validation, the workflow also allows visualization of overall study design and
deposition to EMBL-EBI.

Software tools
The Portal App Library [36] shows the software tools packaged
in PhenoMeNal that are available through the CRE deployment
(Fig. 2). The range of software tools available covers several
metabolomics domains, making PhenoMeNal relevant for use in
a wide range of data analysis scenarios. The domains covered
include clinical metabolomics, plant metabolomics, fluxomics,
and eco-metabolomics. Data from both targeted and untargeted
analysis can be analyzed for metabolite profiling and finger-
printing approaches [1, 2]. NMR and MS (liquid chromatogra-
phy coupled with mass spectrometry, gas chromatography cou-
pled with mass spectrometry, direct infusion mass spectrome-
try) data can be processed.

PhenoMeNal also provides tools for data management (e.g.,
via the Investigation, Study, and Assay data model frame-
work [ISA] format and application programming interface
[API]), metabolite feature detection (e.g., XCMS, CAMERA, nmr-
ProcFlow), metabolite identification (MetFrag, BATMAN, Metabo-
Matching), and (bio)statistics (e.g., univariate, multivariate, and
power analyses) (Supplementary Table S1). Tools can be filtered
for functionality, approaches, and instrument (data) types to
readily find the most appropriate software tools. Some tools that
implement specific functionality (e.g., Rnmr1D, which performs
baseline correction of NMR spectra as part of nmrProcFlow) are
available through dedicated Galaxy modules or through soft-
ware containers (Supplementary Table S1).

Study design
PhenoMeNal was designed to use standardized protocols and
software tools and to comply with state-of-the-art dedicated
specifications and data formats across the entire project. De-
velopment was geared toward implementation of open stan-
dards for tracking provenance of both data and metadata gen-
erated by clinical phenotyping projects. In PhenoMeNal, the ISA
model and specifications were implemented using the ISA for-
mat to generate, annotate, validate, and deposit experimental
metadata information of datasets and studies to public reposi-

tories such as MetaboLights [37, 38]. ISA-based metadata track-
ing is used for the different analysis pipelines that are specific
to the distinct metabolomics domains. PhenoMeNal reached na-
tive support for the ISA format by developing a dedicated Galaxy
composite data type. Such component affords direct recogni-
tion of the ISA format by the Galaxy environment, thus ensur-
ing seamless integration with the downstream workflow com-
ponent.

Data deposition
PhenoMeNal encourages the metabolomics data repository
MetaboLights as a primary source of data deposition [39]. Pri-
vate and public datasets are supported, as are download and up-
load to MetaboLights. If the storage in a data repository such as
MetaboLights is not possible, data can be stored locally or in the
cloud e-infrastructure. Access to the data is strictly controlled
and secured. To support data deposition, ISA-based Galaxy mod-
ules are available making it possible to publish and disseminate
scientific results in standard compliant ways.

Reproducibility
One of the challenges of cloud computing is that analyses need
to be run continuously and successfully in different environ-
ments [40]. Specifically, it has to be ensured that, given the same
input, workflows and tools produce identical results regardless
of the underlying environment [4, 40]. When these requirements
are fulfilled, end users can be confident that their data will be
analyzed correctly. PhenoMeNal has implemented three major
testing strategies to ensure technical reproducibility using a con-
tinuous integration framework [41]. Tests were implemented for
the infrastructure components, individual software containers,
and data involved in computational workflows.

Sustainability
PhenoMeNal is part of a number of initiatives (BioMedBridges,
COSMOS, and ELIXIR) to foster the role of metabolomics and to
harmonize experimental data and metadata usage [15, 42]. Col-
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laborations were established with EGI [43] and Indigo Datacloud
[44] infrastructure providers and initiatives [45, 46] to ensure that
PhenoMeNal uses technologies that are well supported and en-
sure their widespread usage, continuity, and further develop-
ment. For example, the development of KubeNow and contribu-
tions to the Galaxy and Workflow4Metabolomics community are
essential for PhenoMeNal [47]. Core development will continue
on GitHub and is fostered by collaborations with tool developers.

Dependencies on specific technologies and frameworks were
avoided by focusing on open standards such as ISA-Tab/ISA-
JSON, mzML and nmrML, and widely accepted software [48]. By
being able to deploy PhenoMeNal on multiple types of cloud en-
vironments, lock-ins to specific computing resource providers
are avoided. PhenoMeNal implemented continuous integration
and delivery, validated by extensive testing and with clear main-
tenance responsibilities (see Methods section).

Privacy and security
With human or animal material, the collection, storage, and
analysis of metabolomics data introduce a number of con-
straints due to ethical, legal, and social implications (ELSI) [49].
In particular, data initially derived from human clinical studies
may be identifiable and will require consent for use, usually for
a defined objective, such as diagnosis, or be related to a particu-
lar disease study. Where data is identifiable or pseudonymized,
users can deploy PhenoMeNal on local secure resources, thus
avoiding the export of data. In this scenario, access to the e-
infrastructure should be strictly controlled through local access
and authorization. It is recommended that clinical data be fully
anonymized before analysis in PhenoMeNal [49, 50].

The PhenoMeNal portal provides substantial guidance to en-
able users to comply with ELSI and general data protection reg-
ulation (GDPR) requirements. Users must register in order to use
the individual parts of the e-infrastructure. PhenoMeNal was im-
plemented to use secured and encrypted transport and network
communications.

Documentation and training materials
Extensive user documentation and tutorials are provided via the
PhenoMeNal Wiki page [51]. The Wiki includes detailed devel-
oper resources including information about the PhenoMeNal re-
lease schedule; guidelines for tool, workflow, and portal devel-
opers; continuous integration; and testing. Further documen-
tation is also provided detailing, creating, and managing Phe-
noMeNal CREs and tutorials for the Galaxy modules and pre-
configured workflows, as well as Galaxy tours that provide step-
by-step guidance for inexperienced users.

Community engagement
The PhenoMeNal project is open source and is hosted on GitHub
[52]. Developers can contribute tools to PhenoMeNal and are en-
couraged to do so. To add a tool to PhenoMeNal, it must be con-
tainerized using Docker and then integrated into the build pro-
cess. Detailed documentation is available in the project’s Wiki
for developers who wish to add their tools to PhenoMeNal.

Collaborations with other projects have been actively encour-
aged during the development of PhenoMeNal, including Work-
flow4Metabolomics [13] and the developers of both nmrML and
nmrProcFlow [26]. These collaborations are essential to fostering
greater standardization within PhenoMeNal and to increasing
compatibility with other metabolomics data processing infras-
tructures.

Availability

Information on how to access PhenoMeNal can be found at the
project’s website [53]. The GitHub repository hosts the source
code of all development projects [52]. The project container-
galaxy-k8s-runtime contains all of the developments regarding
Galaxy. The Wiki containing documentation is also hosted on
GitHub [51]. The PhenoMeNal Portal can be reached at [21]. The
public instance of Galaxy is accessible at [54]. Source code and
documentation are available under the terms of the Apache 2.0
license. Integrated open-source projects are available under the
respective licensing terms.

Conclusions

PhenoMeNal has succeeded in increasing the robustness and
coverage of representative metabolomics data processing in
scientific cloud e-infrastructures. The presented cloud e-
infrastructure covers a wide range of analysis pipelines in-
cluding data generation and download, data pre- and post-
processing, (bio)statistics, and result deposition in data repos-
itories. A large effort has been made to introduce lower-
level changes to cloud e-infrastructures (e.g., the cloud de-
ployment software KubeNow) to meet the demands of the
biomedical domain. Furthermore, Galaxy has been enriched
with metabolomics data standards, in particular, the ISA for-
mat for study metadata and mzML and nmrML for acquired data
files, as well as support for Kubernetes. PhenoMeNal has fos-
tered the visibility of new metabolomics tools and has enabled
the development of more sophisticated data analysis workflows.
Our efforts were also guided by feedback from real-life test sce-
narios collected at workshops with users from the clinical do-
main.

PhenoMeNal constitutes a keystone solution in cloud plat-
forms available for metabolomics data analysis. The platform
was designed to deliver optimal performance and functional-
ity for typical use cases in the metabolomics domain. While the
needs of clinicians and researchers in the biomedical and bio-
chemical domains have been targeted, PhenoMeNal is not lim-
ited to a specific domain as the cloud infrastructure, tools, and
workflows can be adapted to other use cases as demonstrated
with the inclusion of the eco-metabolomics workflow. The tech-
nological advancements can be reused in other scientific cloud
environments and could be integrated with solutions from other
‘omics domains in the future.

Methods
Cloud e-infrastructure

The PhenoMeNal CRE is designed as a microservice architec-
ture, with services being implemented as virtual machine im-
ages and software containers. Containers are used to provide
microservices for metabolomics data analysis tools and also
long-running services such as workflow management systems.
A container orchestrator runs containers on top of the scalable
infrastructure. The orchestrator takes a group of machines that
act as a distributed cluster and receives requests for tools as well
as service executions. PhenoMeNal implements various layers
to providea container orchestrator on top of either bare metal
hardware or IaaS given by a cloud provider [55] (Supplementary
Fig. S1).

During the setup process and while PhenoMeNal is deployed,
data storage and CPU limits can be configured and dynamically
scaled to fit any cloud environment. Deployments can be made
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to GCE, AWS, and OpenStack-based private clouds from the Phe-
noMeNal portal. Deployments are also supported from the com-
mand line to Microsoft Azure [56], the European Science Cloud
[57], and local servers (bare metal) [58]; we provide step-by-step
instructions for these solutions.

PhenoMeNal provides IaaS for three different cloud environ-
ments:

“local cloud”: local workstations or bare metal clusters where
data are not allowed to leave the facility.

“public cloud”: the flexible use of commercial cloud providers
such as GCE and AWS.

“shared cloud”: using OpenStack—a free and open-source soft-
ware platform for cloud computing, ideal for custom environ-
ments and research networks.

Software tools

The PhenoMeNal portal has an application library that allows
users to deploy tools as microservices into the cloud infrastruc-
ture (Fig. 2, Supplementary Table S1). The portal is packaged into
frontend and backend engines on top of Kubernetes.

Most software tools in PhenoMeNal are compiled from source
code and use a variety of programming languages. Linux ver-
sions of software tools and user interfaces such as Galaxy are
supported in dedicated encapsulated Docker containers that
are implemented as minimum-sized microservices. PhenoMe-
Nal currently hosts 100 such projects in its GitHub repository
[59] (Supplementary Table S1). Projects are indicated by the trail-
ing Àcontainer-À name and include a ruleset to build and run
the containerized tools, as well as datasets for testing and other
necessary files.

PhenoMeNal provides tutorials for developers who want to
integrate their tools into our e-infrastructure [60].

Scientific workflows

In PhenoMeNal, a number of options are available for running
reproducible and standardized workflows (Table 1).

Galaxy
The Galaxy workflow management system is widely regarded
as one of the most popular scientific workflow platforms [20,
61]. It provides a user-friendly web-based GUI to make it easy
for the end user to configure and run individual modules and
entire workflows without programming experience. Command-
line tools and scripts are encapsulated into modules that are
launched via the web interface. Galaxy also supports more pow-
erful features such as programmatic access through a REST API
and helper libraries to access the running instance of Galaxy
[62].

PhenoMeNal has been able to adapt Galaxy for use with
a microservices-based architecture [31]. To this end, modules
are encapsulated into Docker containers that can be flexibly
launched within the cloud e-infrastructure. Galaxy is available
in all deployed PhenoMeNal CREs and contains more than 250
modules that have been implemented as part of PhenoMeNal.

Six representative metabolomics Galaxy workflows have
been fully integrated into PhenoMeNal (Table 1), and more work-
flows (mzQuality, NMR-BATMAN) are available for testing.

Jupyter
Jupyter, which started its history as the IPython notebook, is the
most popular among the tools commonly referred to as exe-

cutable notebooks or computational notebooks [63]. Jupyter lets
users combine executable code with results from code execu-
tions such as text, tables, and figures. Usually, Jupyter notebooks
are enriched with extended information that explains what the
code does. As a result, they are often used for training material
and for tutorials. Also, computational notebooks can, to some
extent, be used as a way to document code executions and to
make executions more reproducible [64].

Luigi and pachyderm
Luigi is a Python workflow programming library that was origi-
nally developed by the company Spotify. It manages pipelines of
computations primarily on ”big data” systems such as Hadoop
and Apache Spark but also supports local execution [63, 64].
Luigi is a very flexible library that facilitates building complex
pipelines of batch jobs handling dependency resolution, work-
flow management, and visualization.

Similarly, Pachyderm makes it possible to process distributed
data and to keep track of the data from every stage of the
analysis pipeline [25]. With Pachyderm, it is possible to track
the provenance of results and to accurately reproduce scien-
tific workflows. Luigi and Pachyderm are well suited for complex
scientific tasks and are easy to use from the python environ-
ment in Jupyter notebooks without additional integration tool-
ing needed.

In PhenoMeNal, we have extended Galaxy, Jupyter, Luigi, and
Pachyderm in such a way that they can be orchestrated through-
out the cloud infrastructure together with the data analysis
tools themselves [31]. Six important metabolomics workflows
have been fully integrated into PhenoMeNal (Table 1), and more
(mzQuality, NMR-BATMAN) are available for testing.

Reproducibility

Three strategies are realized to ensure technical reproducibility.
They are implemented in the continuous integration (CI) soft-
ware development framework Jenkins [41] which is accessible
at [65]. These strategies are implemented as tests in our Jenkins
and a tutorial guide is available at [66].� Infrastructure testing: Procedures were implemented to en-

sure that each individual component (e.g., the deploy-
ment process of software containers, resource management,
APIs/application binary interfaces [ABIs]) within the infras-
tructure is interacting correctly with the other components.� Container testing: Verification that tools, which are packaged
into software containers, build and run correctly in the in-
frastructure. Dependencies within one container and across
several interdependent containers are tested.� Data testing: The output of tools, which process demonstra-
tion data, is checked against a data set that is known to con-
tain the expected result. This is being done for both individ-
ual tools and for several tools running in a workflow using
the workflow testing tool for Galaxy called wft4galaxy [67].

Standardization

PhenoMeNal has implemented several dedicated Galaxy mod-
ules that directly retrieve and store ISA-Tab data set descriptors
from and to MetaboLights, and can convert between other for-
mats. Native Galaxy composite data types to support ISA-Tab
and ISA-JSON have also been integrated, building upon the ISA
API [38, 48]. The ISA data type allows for the upload of an ISA-
Tab archive (a zip file containing the ISA set of files and raw
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Table 2: Overview of the most important FAIR criteria and implementations suggested for PhenoMeNal data, tools and workflows

Data Tools Workflows

(F)indability Indexing in domain relevant
databases (e.g., MetaboLights)

Indexing in domain relevant
software repositories (e.g., the
PhenoMeNal App Library, GitHub)

Indexing in workflow management
systems such as Galaxy (e.g.,
PhenoMeNal, W4M), or libraries
such as [69]

Rich descriptions of metadata
(e.g., ISA-Tab)

Tool descriptions follow the
EDAM ontology

Persistent identifier (e.g., W4M ID,
DOI) and intuitive naming patterns

(A)ccessibility Data access and rights
management based on e.g., data
use ontology (DUO)

Accessible open-source licenses Access to workflow systems can be
configured to be shared or
restricted

(I)nteroperability Standard formats for
experimental metadata
(ISA-Tab/ISA-JSON)

Standardized tool descriptions Standardized workflow format
(e.g., Galaxy GA format, Common
Workflow Language CWL)

Domain specific standards for
raw data (e.g., mzML, nmrML)

Containerization of software
tools

Execution in various software
environments (e.g., through the
use of containers)

OboFoundry vocabularies and
established domain ontologies to
annotate data

EDAM ontology to annotate tools Workflow annotation ontologies
(e.g., Ontology of workflow motifs
for annotating workflow
specifications [70])

(R)eusability Deposition in data repositories
(e.g., MetaboLights) and data
indexing sites (e.g., OmicsDI)

Rich documentation and usage
guides

Rich documentation and tutorials
(e.g., Galaxy tours)

data when available), which is displayed to the users as a single
Galaxy history data set. The integrated Galaxy modules include
a MetaboLights downloader and uploader (for ingestion and sub-
mission), an ISAcreate module for the creation of ISA compliant
archives, modules to explore study metadata through queries on
study factors, ISA-Tab “slicing” where queries are used to select
subsets of data files of interest, as well as format conversion (ex-
port to ISA-JSON and Workflow4Metabolomics [W4M]) and study
metadata validation (Supplemental Table S1).

PhenoMeNal also advanced the specification of the nmrML
standard data format [27] and contributed a dedicated compos-
ite data type for nmrML to Galaxy. nmrML is used extensively
throughout the NMR 1D workflow and conversion from raw for-
mat into nmrML is supported via dedicated Galaxy modules (Ta-
ble 1).

Throughout the entire analysis pipeline, modules of compu-
tational workflows were designed to accept standard formats
such as mzML, XML or CSV whenever possible.

Standardized APIs/ABIs are being used for the programmatic
interfaces as well as for deploying services. To this end, modern
and standardized programming, scripting and meta languages
were selected such as Go, HCL, Python, Shell, XML and YAML
that are widely used in cloud computing.

Reusability

In an ongoing effort, PhenoMeNal is actively advancing the cri-
teria for good data management and stewardship based on find-
ability, accessibility, interoperability and reusability (FAIR) for
good data management and stewardship [68] to be applied not
only to data, but also to software tools and computational work-
flows (Table 2).

Privacy

PhenoMeNal supports fully anonymized data, which cannot
be traced back to individuals in any way [50] and treats

pseudonymized data as identifiable. As pseudonymized data are
anonymous to the investigator, third parties may be able to link
pseudonymized data back to identifiable individuals through
mappings such as a hash or code [49]. In these cases, e.g., in
a hospital environment, users must deploy PhenoMeNal within
a private cloud or bare metal cluster behind their institution’s
firewall.

PhenoMeNal provides guidance on ethical and technical
frameworks to regulate and secure the use of private or sensitive
data [49, 50]. It is possible to combine data and metadata within
an ELSI compliant framework [50] and in such cases users can
follow the example of the European Genome Phenome Archive
(EGA) [71]. In public installations of PhenoMeNal, the ELIXIR pol-
icy on privacy has been implemented within a technically secure
environment to process data [42].

Security

Open-source tools are used throughout the entire e-
infrastructure. This promotes community efforts to discover
and resolve bugs and security issues. The container build
process is steered by the continuous integration (CI) service
Jenkins, which continuously builds the containers and gener-
ates reports. On success and through authentication, container
images are pushed to the PhenoMeNal container registry, which
is publicly available but read-only. Cloud provider credentials
are not stored in the cloud but only on the deployer host. The
Kubernetes cluster running the Jenkins-CI and the container
registry, as well as the portal, runs on a CoreOS container, which
is a self-updatable, cluster-aware system with most portions
being read-only. It reboots nodes sequentially to avoid lack of
availability.

KubeNow is a key component that initializes the cloud in-
frastructure and configures access to it via Cloudflare [72], pro-
viding dynamic Domain Name Services (DNS) and encryption
for all network communication. The flexible implementation of
PhenoMeNal allows the user to decide to not use Cloudflare, in
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which case encryption is disabled. KubeAdm, which manages
the setup of Kubernetes, is not reachable at runtime by default.
The only way to access it is by having access to the private key
stored on the computer on which it was launched. PhenoMeNal
only allows access to standard ports (ssh, http, https, and port
44 for the Galaxy Downloader) and implements a cloud-specific
firewall for all supported cloud providers.

Microservices are designed to be launched on-demand and
terminated after completed analysis. If security issues are re-
ported for the microservices, tool, or dependencies or if incre-
mental security patches are available, new builds are automati-
cally triggered in the CI system and developers and the release
manager are notified to take additional actions if required. Im-
ages are built on a daily basis and tested for deployment to avoid
security patches from introducing any abnormality in the de-
ployment process.

User resources

There are many user resources for both PhenoMeNal users and
developers in the form of documentation, tutorials, and train-
ing videos. The PhenoMeNal Wiki [51] contains detailed doc-
umentation on all aspects of PhenoMeNal, including general
user guides, workflow and tool tutorials, developer documen-
tation, and general information on topics such as security and
the e-infrastructure landscape. The PhenoMeNal portal contains
help pages generated from the Wiki [73], which are categorized
as User Documentation, Developer Documentation, and Work-
flow Tutorials. Interactive Galaxy tours are directly integrated in
Galaxy [74]. Training videos are available at the project’s YouTube
page [75].

Availability of source code and requirements

Project name: PhenoMeNal,
Project home page: http://phenomenal-h2020.eu
Operating system(s): Platform independent
Programming language: Go, HCL, Java, JavaScript, Python, R,
Shell, XML, YAML
Other requirements: Linux, Docker, Kubernetes, Terraform, An-
sible, Helm
License: MIT license for all code written by the PhenoMeNal
project. Individual, Open Source Foundation approved licenses
for all containerized tools.
RRID:SCR 016605

Availability of supporting data

The following MetaboLights datasets are integrated into Phe-
noMeNal and are used to demonstrate the cloud integration
and reproducibility of Galaxy workflows: MTBLS1 (NMR1D), MT-
BLS404 (Uni- and multivariate statistics), MTBLS412 (Fluxomics),
MTBLS520 (Eco-Metabolomics), MTBLS558 (MetFrag). Datasets
are available at https://www.ebi.ac.uk/metabolights. Snapshots
of the code and additional supporting data are available in the
GigaScience repository, GigaDB [76].

Additional files

Supplemental Figure 1: PhenoMeNal implements various layers
to provision containers on top of the e-infrastructure.

Supplemental Table 1: List of external software tools that
were incorporated into PhenoMeNal.
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