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Abstract
Wepresent an algorithm for the classification of triples of lattice polytopeswith a given
mixed volume m in dimension 3. It is known that the classification can be reduced
to the enumeration of so-called irreducible triples, the number of which is finite for
fixed m. Following this algorithm, we enumerate all irreducible triples of normalized
mixed volume up to 4 that are inclusion-maximal. This produces a classification of
generic trivariate sparse polynomial systems with up to 4 solutions in the complex
torus, up to monomial changes of variables. By a recent result of Esterov, this leads to
a description of all generic trivariate sparse polynomial systems that are solvable by
radicals.
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1 Introduction

1.1 Formulation of the Problem and Previous Results

In the last decade, there has been an increased interest in the algorithmic theory of
lattice polytopes, which is motivated by applications in algebra, algebraic geometry,
combinatorics, and optimization (see, for example, [3,4,6,8–12,19–21,23]). So far, a
special emphasis has been put on computer-assisted enumeration results, which are
important from different perspectives. On the one hand, one can carry out enumer-
ation to gather concrete data and then make and verify hypotheses based on these
data. On the other hand, proving results on lattice polytopes frequently requires to
handle special cases, which are only finitely many but are hard to determine without
algorithmic assistance. Most notably, some structural classification results for lattice
polytopes hold up to finitely many exceptional situations and, in this case, one is
interested in describing the exceptional situations by means of enumeration in order
to accomplish a classification. Thus, the structural and algorithmic theory are inter-
twined and constantly influence each other. Evaluation of new data established using
a computer-assisted search leads to new theoretical questions, while new theoretical
results (in particular, finiteness results) suggest new enumeration tasks.

Our point of departure is the classical Bernstein–Khovanskii–Kouchnirenko the-
orem which determines the number of solutions of a generic system of Laurent
polynomial equations:

Theorem 1.1 ([7]) Let A1, . . . , Ad be non-empty finite subsets of Zd and consider
the system of d equations f1 = · · · = fd = 0 where each fi is a Laurent polynomial
of the form

fi (x1, . . . , xd) =
∑

(a1,...,ad )∈Ai

ci,(a1,...,ad )x
a1
1 · · · xadd .

Then, for a generic choice of the coefficients ci,a ∈ C, 1 ≤ i ≤ d, a ∈ Ai , the number
of solutions of the system f1 = · · · = fd = 0 in the complex torus (C \ {0})d is
equal to the normalized mixed volume V (P1, . . . , Pd) of the lattice polytopes P1 =
conv A1, . . . , Pd = conv Ad.

The subset Ai is called the support of fi and the polytope Pi = conv Ai is the
Newton polytope of fi . Systems with generic coefficients and prescribed supports are
often called sparse as they may have much fewer monomials than generic systems
with prescribed degrees of the polynomials. By generic choice of the coefficients we
mean that the vector of all coefficients of the system is chosen outside an appropriate
proper algebraic subset ofC|A1|+···+|Ad |. There is extensive literature on sparse systems
covering both computational and theoretical points of view. For example, the reader
may consult [13, Chap. 7] for a list of references.

Example 1.2 Consider general equations f1 = 0 and f2 = 0 of vertically and hori-
zontally aligned parabolas given by polynomials

f1(x, y) = c1,(0,0) + c1,(1,0)x + c1,(2,0)x
2 + c1,(0,1)y,
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f 1 = 0

f 2 = 0
P1 = conv (0, 2e1 , e2) P2 = conv (0, e1 , 2e2)

Fig. 1 The system f1 = f2 = 0, where f1 = 0 is a generic vertical parabola and f2 = 0 is a generic
horizontal parabola, has four solutions in (C \ {0})2, because the normalized mixed volume of P1 and P2
is 4

f2(x, y) = c2,(0,0) + c2,(1,0)x + c2,(0,1)y + c2,(0,2)y
2.

In this case the supports A1 and A2 are

A1 = {(0, 0), (1, 0), (2, 0), (0, 1)}, A2 = {(0, 0), (1, 0), (0, 1), (0, 2)}

and the Newton polytopes P1 and P2 are triangles

P1 = conv A1 = conv ((0, 0), (2, 0), (1, 0)),

P2 = conv A2 = conv ((0, 0), (1, 0), (0, 2)).

By Theorem 1.1, if the vector

(c1,(0,0), c1,(1,0), c1,(2,0), c1,(0,1), c2,(0,0), c2,(1,0), c2,(0,1), c2,(0,2)) ∈ C8

of all coefficients of the polynomials f1 and f2 is generic, then the system f1 =
f2 = 0 has exactly four solutions in (C\ {0})2, because the normalized mixed volume
V (P1, P2) of P1 and P2 equals 4. The value V (P1, P2) can be determined from the
inclusion–exclusion type formula

V (P1, P2) = Vol (P1 + P2) − Vol P1 − Vol P2
2

.

Here Vol P denotes the normalized 2-dimensional volume of a polytope P , which is
twice the Euclidean area of P , and P1+ P2 is the Minkowski sum of the two triangles.
See also Fig. 1.

In the notation of Theorem 1.1, we call (A1, . . . , Ad) the (total) support of the
system f1 = · · · = fd = 0. Theorem 1.1 determines the number of solutions of a
generic sparse system with a given support. Recently, a reverse research direction was
suggested by Esterov and Gusev [15,16]: One can fix the number of solutions m and
try to classify all supports (A1, . . . , Ad) of generic systems with exactly m solutions.
By Theorem 1.1, it suffices to use the convex hulls of the sets A1, . . . , Ad in such a
classification. This leads to the following problem.
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Classification Problem 1.3 Given d,m ∈ N, describe all d-tuples (P1, . . . , Pd) of lat-
tice polytopes whose normalized mixed volume equals m.

The solution of this problem has been known only in the following cases:

• The trivial case d = 1.
• The case m = 1, for which a solution is provided by a result of Esterov and
Gusev [15].

• The case d = 2, m ≤ 4, for which a solution is described by Esterov and Gusev
in [16].

Classification Problem 1.3 is of particular interest for m ≤ 4, since by a result of
Esterov [14], it allows to describe all generic systems f1 = · · · = fd = 0 as in
Theorem 1.1 that are solvable by radicals.

The family of d-tuples of lattice polytopes with mixed volume m is invariant under
application of a common unimodular transformation to all polytopes of the tuple,
independent translations of the polytopes by lattice vectors, and permutations of the
polytopes of the d-tuple. We call d-tuples equivalent if they coincide up to the above
transformations.

Note that, even modulo the above equivalence relation, the set of such d-tuples is
not finite. Nevertheless, the classification can be reduced to the enumeration of so-
called irreducible tuples. Recall that a tuple (P1, . . . , Pd) of polytopes in Rd is called
irreducible if the Minkowski sum of any k polytopes in the tuple is at least (k + 1)-
dimensional for every 1 ≤ k ≤ d − 1. In [14] Esterov showed that the number of
irreducible d-tuples of lattice polytopes is finite up to equivalence for a fixed mixed
volume and dimension (see Theorem 2.4 below).

There is a natural partial ordering on the set of equivalence classes of d-tuples
of lattice polytopes with a given mixed volume m, induced by inclusion. Maximal
elements with respect to this order are called maximal d-tuples with a given mixed
volume. Theorem 2.4 implies that every irreducible d-tuple of lattice polytopes is
contained in a maximal irreducible d-tuple of lattice polytopes. As a consequence,
enumeration of irreducible d-tuples amounts to enumeration of maximal irreducible
d-tuples. In Example 1.2, the irreducible pair (P1, P2) with the normalized mixed
volume 4 can be embedded into a maximal irreducible pair (P1, 2P1) with the same
normalized mixed volume (see Fig. 2). We refer to Sect. 3 for more details.

Example 1.4 Consider the triple (P1, P2, P3) of lattice polytopes in R3, where P1, P2
are 2-dimensional polytopes P1 = conv (0, 2e1, e2), P2 = conv (0, e1, 2e2) in R

2 ×
{0}, and P3 is a 3-dimensional lattice polytope that has width 1 in the direction e3 and
is contained in the slabR2×[0, 1] of width 1. The triple (P1, P2, P3) is not irreducible
since the sum P1+P2 is 2-dimensional. The normalizedmixed volume of (P1, P2, P3)
is the product of the normalized mixed volume of the pair (P1, P2), which is equal to
4 (see Example 1.2), multiplied by the width 1 of the polytope P3. See also Fig. 3.

This calculation can also be interpreted in light of Theorem 1.1. The triple
(P1, P2, P3) corresponds to a generic system f1(x, y) = f2(x, y) = f3(x, y, z) = 0
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P1 = conv (0, 2e1 , e2) P2 = conv (0, e1 , 2e2) 2P1

Fig. 2 Embedding the pair (P1, P2) from Example 1.2 into a maximal pair by enlarging P2 to 2P1. Since
V (P1, 2P1) = 2V (P1, P1) = 2Vol P1 = 4, the normalized mixed volume remains unchanged

x

y

z

x

y

z

x

y

z

Fig. 3 An example of a non-irreducible triple in dimension three

in three unknowns x, y, z, where f1(x, y) = f2(x, y) = 0 is a sub-system depend-
ing only on x and y, with f1 and f2 chosen as in Example 1.2. Since the equation
f3(x, y, z) = 0 is linear in z, it can written as

f3(x, y, z) := a(x, y)z + b(x, y) = 0

for some a, b ∈ C[x, x−1, y, y−1]. As explained in Example 1.2, the generic system
f1(x, y) = f2(x, y) = 0 has four solutions in (C \ {0})2. If a(x, y) and b(x, y) are
generic, then by plugging these four solutions into f3(x, y, z) = 0 we arrive at linear
equations in z, each having exactly one solution z ∈ C \ {0}. Thus, the generic system
f1(x, y) = f2(x, y) = f3(x, y, z) = 0 has four solutions in total.

1.2 Our Contribution

In this paper we present an algorithmic approach to Classification Problem 1.3 when
m and d are given and d ≤ 3. Our algorithm has produced all maximal irreducible
pairs of lattice polytopes in R2 of mixed volume up to 10 and all maximal irreducible
triples of lattice polytopes in R

3 of mixed volume up to 4.
Esterov and Gusev’s approach for showing finiteness of irreducible d-tuples

(P1, . . . , Pd) with mixed volume m is to provide a bound on the volume of the
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Minkowski sum P1 + · · · + Pd in terms of m,

Vol (P1 + · · · + Pd) ≤ bd(m).

This yields a naive algorithm as, by a well-known result of Lagarias and Ziegler [22,
Thm. 2], there exists a bounding box containing, up to lattice equivalence, all lattice
polytopes of volume at most bd(m) in dimension d. Consequently, one may assume
that P1 +· · ·+ Pd and, hence, each Pi for i ∈ [d] is contained in such a bounding box
and carry out an exhaustive search for d-tuples that actually have normalized mixed
volumem.While a sharp upper bound bd(m) is not known in general, it has to be at least
(m+d−1)d , as this value is realized by the d-tuple (�d , . . . ,�d ,m�d) of normalized
mixed volumem, where�d denotes the standard d-dimensional simplex. In particular,
b3(4) ≥ 63 = 216. Clearly, the above approach of showing the finiteness does not
lead to a computationally feasible algorithm. Already the task of enumeration of all
3-dimensional lattice polytopes with normalized volume at most b3(4) is hopelessly
hard, as the number of such polytopes is tremendous.

In order to obtain a feasible algorithm, we make an extensive use of the theory of
mixed volumes and mixed surface area measures. In particular we use Aleksandrov–
Fenchel inequality to produce upper bounds for the normalized mixed volumes
V (Pi , Pj , Pk) for all choices i, j, k ∈ [3] and the normalized volumes of the Pi .
Our algorithm is recursive inm. It has been crucial to find an appropriate case distinc-
tion that would allow to keep the enumeration procedure computationally tractable.
At the highest level, we distinguish between the full-dimensional case, in which all
Pi are three-dimensional, and the non-full-dimensional case, in which some of the Pi
are two-dimensional.

We remark that we have been able to prove that the sharp upper bound bd(m) is, in
fact, (m + d − 1)d for d = 2, 3 in the case of full-dimensional polytopes. In addition,
our enumeration verifies that b3(m) = (m + 2)3 for 1 ≤ m ≤ 4 for all irreducible
triples. (For d = 2 the notions of irreducible and full-dimensional coincide.) Based
on this evidence we conjecture that bd(m) = (m + d − 1)d for all irreducible d-tuples
in an arbitrary dimension. More results on this conjecture can be found in [2].

The following result produced by our algorithm provides the answer to Classifi-
cation Problem 1.3 for d = 3 and 1 ≤ m ≤ 4. Parts (i) and (ii) of Theorem 1.5
and Corollary 1.6 reduce the problem to the case of d = 2 and have already been
obtained in [16]. There we use projections π1,2 : R3 → R

2 and π3 : R3 → R
1 given

by π1,2(x1, x2, x3) = (x1, x2) and π3(x1, x2, x3) = x3, respectively.

Theorem 1.5 (Classification of triples of normalized mixed volume at most 4) Let
m ∈ {1, 2, 3, 4}. Then (P1, P2, P3) is a triple of lattice polytopes in R3 of normalized
mixed volume m if and only if, up to equivalence of triples, it satisfies one of the
following conditions.

(i) For some m1,m2 ∈ {1, 2, 3, 4} satisfying m = m1m2, P3 is a lattice segment
{0}2 × [0,m1], while π1,2(P1) ⊆ Q1 and π1,2(P2) ⊆ Q2 for some pair (Q1, Q2)

appearing in the list of pairs of lattice polytopes of normalized mixed volume m2
given in [1].
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(ii) For some m1,m2 ∈ {1, 2, 3, 4} satisfying m = m1m2, π3(P3) = [0,m1], while
P1 ⊆ Q1 × {0}, P2 ⊆ Q2 × {0} for some pair (Q1, Q2) appearing in the list of
pairs of lattice polytopes of normalized mixed volume m2 given in [1].

(iii) P1 ⊆ Q1, P2 ⊆ Q2, and P3 ⊆ Q3 for some triple (Q1, Q2, Q3) appearing in the
list of triples of lattice polytopes of normalized mixed volume m given in [1].

Recall that a monomial change of variables for Laurent polynomials is given by
(x1, . . . , xd) �→ (xu1 , . . . , xud ), where xui = xu1i1 · · · xudid for some unimodular
matrix U = (ui j ) ∈ GL(d,Z). We call two systems f1 = · · · = fd = 0 and
f ′
1 = · · · = f ′

d = 0 monomially equivalent if after a possible permutation of the
fi there is a monomial change of variables which transforms fi to xai f ′

i for some
monomial xai for every 1 ≤ i ≤ d. Note that monomially equivalent systems have the
same number of solutions in (C \ {0})d . As an immediate consequence of Theorems
1.5 and 1.1 we obtain the following result about generic Laurent polynomial systems
in three variables.

Corollary 1.6 (Classification of trivariate Laurent polynomial systems with at most
4 solutions) Let m ∈ {1, 2, 3, 4}. Then f1 = f2 = f3 = 0 is a generic system of
Laurent polynomials with support (A1, A2, A3) ⊂ (Z3)3 and which has m solutions
in (C\{0})3 if and only if, up to monomial equivalence, it satisfies one of the following
conditions.

(i) For some m1,m2 ∈ {1, 2, 3, 4} satisfying m = m1m2, A3 ⊆ {0}2 × {0, . . . ,m1},
while π1,2(A1) ⊆ Q1 and π1,2(A2) ⊆ Q2 for some pair (Q1, Q2) appearing in
the list of pairs of lattice polytopes of normalized mixed volume m2 given in [1].

(ii) For some m1,m2 ∈ {1, 2, 3, 4} satisfying m = m1m2, π3(A3) ⊆ {0, . . . ,m1},
while A1 ⊆ Q1 × {0}, A2 ⊆ Q2 × {0} for some pair (Q1, Q2) appearing in the
list of pairs of lattice polytopes of normalized mixed volume m2 given in [1].

(iii) A1 ⊆ Q1, A2 ⊆ Q2, and A3 ⊆ Q3 for some triple (Q1, Q2, Q3) appearing in
the list of triples of lattice polytopes of normalized mixed volume m given in [1].

Examples 1.2 and 1.4 provide an illustration to Theorem 1.5 and Corollary 1.6.
The triple (P1, P2, P3) from Example 1.4 is classified by case (i) of our result
with m1 = 1, m2 = 4, and the pair (Q1, Q2) coinciding with the pair
(conv (0, 2e1, e2), 2 conv (0, 2e1, e2)) up to equivalence. One of the outcomes of our
algorithm is the following quantitative result.

Theorem 1.7 Let N3(m) (resp. N ′
3(m)) be the number of equivalence classes of triples

of all (resp. 3-dimensional) lattice polytopes in R
3 of mixed volume m that are irre-

ducible and maximal. We have the following table of values for 1 ≤ m ≤ 4:

m N3(m) N ′
3(m)

1 1 1
2 7 4
3 21 10
4 92 30
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In particular, our enumeration verifies the list of maximal irreducible triples of
lattice polytopes with mixed volume 2 proposed in [15].

For triples of 3-dimensional lattice polytopes our enumeration produces the follow-
ing structural result. We have four general constructions that produce maximal triples
for an arbitrary value of the mixed volume m (see also Propositions 3.7 and 3.8). Our
enumeration shows that for m ≤ 4 all, but three exceptional triples, are covered by
these constructions. Recall that a polytope P is a combinatorial pyramid if P has a
facet containing all but one vertex of P .

Theorem 1.8 Let (P1, P2, P3) be a maximal triple of 3-dimensional lattice polytopes
in R3 with V (P1, P2, P3) ≤ 4. Then, up to equivalence of triples, either

(0) P1, P2, P3 are all equal to a lattice polytope P;
(1) there exists a lattice polytope P such that P1 = αP, P2 = βP, P3 = γ P for some

integers α, β, γ ≥ 1, not all the same;
(2) there exists a lattice polytope P and a lattice segment I in R3, as well as integers

α, β ≥ 1 and γ ≥ 0 such that

P1 = P + α I , P2 = P + β I , and P3 = P + γ I ;

(3) there exists a lattice segment I and a lattice polytope P, which is a combinatorial
pyramid with base having two edges parallel to I , such that

P1 = P2 = P and P3 = P + α I ,

for some integer α ≥ 1;
(4) (P1, P2, P3) is one of the following exceptional triples given by

(i) P1 = P2 = conv (0, 2e1, e2, e3), P3 = P1 + [0, e1],
(ii) P1 = P2 = conv (0, 3e1, e2, e3), P3 = P1 + [0, e1],
(iii) P1 = P2 = conv (0, e1, e2, e1 + e2 + 2e3), P3 = P1 + [0, e1 + e3].

The numbers of equivalence classes corresponding to the above five types are presented
in the following table:

m type (0) type (1) type (2) type (3) type (4)

1 1 0 0 0 0
2 3 1 0 0 0
3 6 1 1 1 1
4 17 5 3 3 2

Examples of triples of polytopes of types (1)–(3) are presented in Fig. 4. We refer
to [1] for a complete list with both pictures and coordinate representation. Note that
we can compute the mixed volume m of the triples in each of the types (0)–(3) by the
following general formulas. For the triples of types (0) and (1) we have m = Vol P
and m = αβγ Vol P , respectively. For the triples of type (2) we have m = Vol P +
(α +β +γ )VolπI P , where VolπI denotes the 2-dimensional volume of the projection
along the direction of I . Finally, for type (3) triples, we have m = Vol P + αVolπI P .
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Fig. 4 Examples of triples of each of the types (1)–(3) of mixed volume 4

Parts of our algorithm also provide a direct way to carry out enumeration of pairs
of polygons of given mixed volume. We have carried out this enumeration for mixed
volume up to 10 and obtained the following result.

Theorem 1.9 Let N2(m) be the number of equivalence classes of pairs of 2-
dimensional lattice polytopes in R2 of mixed volume m that are maximal. We have the
following table of values for 1 ≤ m ≤ 10.

m N2(m)

1 1
2 3
3 6
4 13
5 18
6 38
7 46
8 87
9 118
10 202
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Our computations have been carried out using Sagemath [28] and an implemen-
tation of our enumeration algorithm as well as data files containing the enumer-
ation results can be found at https://github.com/christopherborger/mixed_volume_
classification.

The approach presented in this paper also admits a natural extension to higher
dimensions.However, such an extensionwill be computationallymuchmore expensive
already in dimension 4.

As auxiliary tools, we have also developed equivalence tests for configurations of
lattice polytopes in Sect. 4 as well as an algorithm for enumeration of d-dimensional
lattice polytopes with a given volume in Sect. 7.3. The algorithmic problem of enu-
meration of lattice polytopes with a given volume is also interesting in its own right.
Independently, another algorithm for solving this problem has recently been developed
by Gabriele Balletti [5]. One of the nice features of our approach to enumeration by
volume is its simplicity. Furthermore, the general template of our volume enumera-
tion algorithm can be modified to solve further enumeration problems in the theory of
lattice polytopes that are similar in nature. All in all, we hope that the technical parts
will also be useful in other contexts and will help advance the algorithmic theory of
lattice polytopes, which has been emerging in the last decade.

2 Basic Notions and Background Results

2.1 Basic Notation

LetN be the set of positive integers. For k ∈ Z≥0 we use [k] to denote the set {1, . . . , k}
with [0] being the empty set. Throughout, d ∈ N denotes the dimension of the ambient
space Rd . We use ⊆ and ⊂ for inclusion and strict inclusion, respectively.

The problems that we consider involve a choice of a real d-dimensional Euclidean
space E together with a lattice� ⊂ E of full rank. This choice is not important for our
results, somost of the timeweworkwith the integer latticeZd inRd .We let e1, . . . , ed
denote the standard basis vectors in Rd which also form a basis of the lattice Zd . The
notation Idk stands for the k×k identitymatrix. If X ,Y are subsets of a vector space E ,
then their Minkowski sum X + Y is given by X + Y = {x + y : x ∈ X , y ∈ Y }.
Furthermore, for λ ∈ R and X ⊆ E , we use the notation λX = {λx : x ∈ X}.

2.2 Groups of Unimodular Transformations and Their Action

Let � ⊂ E be as above. We denote by GL(�) the group of all linear transformations
φ on E that satisfy φ(�) = �. We call elements of GL(�) linear unimodular trans-
formations. By choosing a basis in � we can identify GL(�) with the group of d × d
unimodular matrices, which are the matrices U ∈ Z

d×d with |detU | = 1.
On several occasions, we use the group of linear unimodular transformations

φ ∈ GL(�) that act identically on a (d − 1)-dimensional linear subspace H of E
spanned by d − 1 linearly independent lattice vectors. We call such transformations
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unimodular shearings along H . In particular, for � = Z
d unimodular shearings

φ ∈ GL(�) along the coordinate hyperplane H = R
d−1 × {0} have the form

φ(x) = Ux with

U =
(
Idd−1 t
0 1

)

and t ∈ Z
d−1.

By Aff(�) we denote the group of affine transformations φ on E satisfying
φ(�) = �. These are transformations φ of the form φ(x) = ψ(x) + v, where ψ

is a linear unimodular transformation and v ∈ � is a lattice vector. We call ele-
ments of Aff(�) affine unimodular transformations. Clearly, GL(�) is a subgroup
of Aff(�) and Aff(�) acts on subsets of E so that φ ∈ Aff(�) sends X ⊆ E to its
image φ(X). With this in mind, we introduce equivalences of subsets of E modulo
subgroups of Aff(�). If X and Y are subsets of E and G is a subgroup of Aff(�),
we say that X and Y coincide modulo G if φ(X) = Y for some φ ∈ G. In this
case, we write X ≡ Y mod G. We also let Aff(�) act on k-tuples (X1, . . . , Xk)

of subsets of E by φ(X1, . . . , Xk) = (φ(X1), . . . , φ(Xk)). Thus, analogously, we
say that two such k-tuples (X1, . . . , Xk) and (Y1, . . . ,Yk) coincide modulo G if
(φ(X1), . . . , φ(Xk)) = (Y1, . . . ,Yk) holds for some φ ∈ G.

There is yet another group, which we denote by Gd,k , that we let act on k-tuples
(X1, . . . , Xk). An element of Gd,k is determined by a linear unimodular transfor-
mation φ ∈ GL(�), k lattice vectors v1, . . . , vk ∈ �, and a permutation σ on [k].
Elements ofGd,k are transformations of (Rd)k of the form (x1, . . . , xk) �→ (φ(xσ(1))+
vσ(1), . . . , φ(xσ(k))+vσ(k)). We say that two k-tuples (X1, . . . , Xk) and (Y1, . . . ,Yk)
of subsets of Rd coincide up to Gd,k-equivalence, if ψ(X1, . . . , Xk) = (Y1, . . . ,Yk)
holds for someψ ∈ Gd,k . We write (X1, . . . , Xk) ≡ (Y1, . . . ,Yk)modGd,k to denote
this equivalence relation.

2.3 Lattice Polytopes

Let E be ad-dimensional Euclidean spacewith a full-rank lattice�. By convwedenote
the convex hull operation on E . A polytope in E is the convex hull of finitely many
points in E . For a polytope P ⊂ E we use aff(P) to denote the affine span of P , that
is the smallest affine subspace of E containing P . By definition, dim P = dim aff(P).
Given a polytope P ⊂ E , its support function hP : Rd → R is defined by

hP (ξ) = max {〈ξ, x〉 : x ∈ K }.

Here 〈ξ, x〉 denotes the inner product in E which in the case of E = R
d is the standard

inner product. Given ξ ∈ R
d we use Pξ to denote the face of P corresponding to ξ

defined by

Pξ = {x ∈ P : 〈ξ, x〉 = hP (ξ)}.

123



176 Discrete & Computational Geometry (2021) 66:165–202

Clearly, when ξ = 0 we get Pξ = P . For ξ not equal to zero, Pξ depends only on the
direction of ξ . Faces of dimension dim P − 1 are called facets and faces of dimension
0 are called vertices of P . We let vert(P) denote the vertex set of P . When ξ has
Euclidean length 1 and Pξ is a facet, ξ is uniquely determined by Pξ and is called the
unit outer facet normal of Pξ .

Given X ⊆ E , we denote by P(X) the family of all non-empty polytopes P
with vert(P) ⊆ X . For k ∈ [d], we use Pk(X) to denote the family of k-dimensional
polytopes belonging toP(X). In this paper, we address enumeration and classification
problems within the family P(�) of lattice polytopes.

Let {v1, . . . , vd} be a lattice basis for �. We call the simplex conv (0, v1, . . . , vd)
and any of its lattice translates a unimodular simplex. In particular, when � = Z

d

and {e1, . . . , ed} is the standard basis for Zd , we call �d := conv (0, e1, . . . , ed)
the standard simplex. Note that a simplex in R

d is unimodular (with respect to the
lattice Zd ) if and only if it is Aff(Zd)-equivalent to �d .

For lattice polytopes P ∈ P(Zd) it is more convenient to consider the support
function on the set Sd−1 ⊂ Z

d of primitive vectors. Recall that an integer vector
u ∈ Z

d is primitive if its entries do not have a common divisor greater than 1. Then
the support function hP (u) = max {〈u, x〉 : x ∈ P} takes integer values for all
u ∈ Sd−1. As before, we will speak about faces Pu of P . In the case when Pu is a
facet, u is called the primitive outer facet normal of Pu .

One of the central functionals that we want to consider on P(�) is the Euclidean
volume (i.e., the d-dimensional Lebesgue measure restricted to P(�)). Working with
lattice polytopes, along with the Euclidean volume vol, one also considers the so-
called normalized volumeVol relative to�, scaled so that the volume of a unimodular
simplex equals one. The advantage of the scaling is that Vol P ∈ Z for each P ∈ P(�).
For P ∈ P(Zd) we have Vol P = d! vol P as vol�d = 1/d!

2.4 MixedVolumes

Let E be a d-dimensional Euclidean space. There exists a uniquely defined functional

v : P(E) × · · · × P(E)︸ ︷︷ ︸
d

→ R,

with v(P1, . . . , Pd) being invariant under permutations of P1, . . . , Pd ∈ P(E), such
that the equality

vol (λ1P1 + · · · + λk Pk) =
k∑

i1=1

· · ·
k∑

id=1

λi1 · · · λid v(Pi1 , . . . , Pid )

holds for all P1, . . . , Pk ∈ P(E), non-negative scalars λ1, . . . , λk ≥ 0, and k ∈ N

(see [25, Thm. and Defn. 5.1.7]). One can extend v to the set of d-tuples of non-empty
compact convex sets, but for the purposes of this paper, it will be enough to consider
the case of polytopes. The value v(P1, . . . , Pd) is called the Euclidean mixed volume
of the d-tuple (P1, . . . , Pd). Replacing the Euclidean volume in the above definition
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with the normalized volume relative to some lattice � ⊂ E , we obtain the normalized
mixed volume V (P1, . . . , Pd) relative to �. In what follows when we say “volume”
or “mixed volume” we always assume “normalized volume” or “normalized mixed
volume” relative to some lattice. When the lattice is not specified it is meant to be
Z
d ⊂ R

d for appropriate d ∈ N.
The mixed volume satisfies a number of properties that will be useful for our

considerations. Their proofs can be found in [25, Sects. 5.1, 7.3] and [17, p. 120].

Proposition 2.1 For P1, . . . , Pd , Q1, . . . , Qd ∈ P(Rd) and non-negative λ,μ ∈ R,
we have:

1. V (P1, . . . , Pd) ≥ 0.
2. V (P1, . . . , Pd) = V (Q1, . . . , Qd) if (P1, . . . , Pd) ≡ (Q1, . . . , Qd) mod Gd,d .
3. V (λP1 + μQ1, P2, . . . , Pd) = λV (P1, P2, . . . , Pd) + μV (Q1, P2, . . . , Pd).
4. V (P1, . . . , Pd) ∈ Z, whenever P1, . . . , Pd ∈ P(Zd).
5. Inclusion–exclusion formula

V (P1, . . . , Pd) = 1

d!
d∑

k=1

(−1)d+k
∑

i1<...<ik

Vol (Pi1 + · · · + Pik ). (2.1)

6. Aleksandrov–Fenchel Inequality

V (P1, P2, P3 . . . , Pd)
2 ≥ V (P1, P1, P3, . . . , Pd)V (P2, P2, P3, . . . , Pd).

7. Monotonicity

V (P1, . . . , Pd) ≤ V (Q1, . . . , Qd) if P1 ⊆ Q1, . . . , Pd ⊆ Qd . (2.2)

Definition 2.2 We say that a d-tuple (P1, . . . , Pd) ∈ P(E)d is non-degenerate if for
every I ⊆ [d] with 1 ≤ |I | ≤ d the dimension of

∑
i∈I Pi is at least |I |. We say that

a d-tuple (P1, . . . , Pd) ∈ P(E)d is irreducible if for every I ⊆ [d] with 1 ≤ |I | < d
the dimension of

∑
i∈I Pi is at least |I | + 1.

It has been observed byMinkowski [25, Thm. 5.1.8] that V (P1, . . . , Pd) is positive
if and only if the d-tuple (P1, . . . , Pd) is non-degenerate. The notion of irreducible
d-tuples is related to the following decomposition property of the mixed volume.

Proposition 2.3 ([25, Thm. 5.3.1]) Let P1, . . . , Pd ∈ P(Rd) be such that, for some
k ∈ [d], P1, . . . , Pk are contained in a rational linear subspace L ⊂ R

d of dimension
k, and let πL : Rd → R

d/L be the projection along L. Then

V (P1, . . . , Pk, Pk+1, . . . , Pd) = V (P1, . . . , Pk)V (πL(Pk+1), . . . , πL(Pd)).

In the equality above, V (P1, . . . , Pk) is themixed volume of (P1, . . . , Pk) ∈ P(L)k

relative to the sublattice L ∩ Z
d , while V (πL(Pk+1), . . . , πL(Pd)) is the mixed

volume of (πL(Pk+1), . . . , πL(Pd)) ∈ P(Rd/L)d−k relative to the quotient lat-
tice Z

d/(L ∩ Z
d). Proposition 2.3 allows one to reduce the problem of classifying
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all d-tuples (P1, . . . , Pd) ∈ P(Zd)d with given mixed volume to classifying such
irreducible tuples. The following result by Esterov paves the way for solving Classi-
fication Problem 1.3 via enumeration.

Theorem 2.4 ([14, Thm. 1.7]) Given m ∈ N there exist finitely many irreducible
d-tuples (P1, . . . , Pd) ∈ P(Zd)d with V (P1, . . . , Pd) = m, up to Gd,d -equivalence.

Note that this statement fails for non-irreducible tuples. For a simple example
one can take A = conv (0, e2) and Bn = conv (0, e1, ne2) for n ∈ N. Then, by
Proposition 2.3, V (A, Bn) = 1 regardless of n.

2.5 Surface AreaMeasure andMixed AreaMeasure

Let P ⊂ R
d be a polytope with unit outer facet normals ξ1, . . . , ξN and support

function hP . We have

vol P = 1

d

N∑

i=1

hP (ξi ) vol P
ξi . (2.3)

Indeed, assuming 0 lies in the interior of P , the above sum represents the volume
of P as the sum of the volumes of pyramids over the facets of P . This motivates
the notion of the Euclidean surface area measure sP on the sphere Sd−1 with finite
support {ξ1, . . . , ξN } ⊂ S

d−1 and values sP (ξi ) = vol Pξi , the (d − 1)-dimensional
Euclidean volume of the facet Pξi , for 1 ≤ i ≤ N . Thus, (2.3) can be written as

vol P = 1

d

∫

Sd−1
hP (ξ) dsP (ξ). (2.4)

We refer to [25, Sect. 5.1] for details. For lattice polytopes P ∈ P(Zd) one modifies
the definition as follows. Let {u1, . . . , uN } be primitive outer facet normals of P . Then
we have

Vol P =
N∑

i=1

hP (ui )Vol P
ui , (2.5)

where Vol Pui is the (d − 1)-dimensional volume relative to the lattice aff(Pui )∩Z
d .

The advantage of (2.5) is that all the terms in the sum are non-negative integers. For this
reason we introduce the (normalized) surface area measure SP on the set of primitive
vectors Sd−1 with support supp SP = {u1, . . . , uN } and values SP (u) = Vol Pu .
Then (2.5) can be written as

Vol P =
∫

Sd−1
hP (u) dSP (u). (2.6)

See also Fig. 5 for an illustration.
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P

sP (1/
√
2, 1/

√
2) = 2

√
2

sP (0, − 1) = 2

sP (− 1, 0) = 2

SP (1, 1) = 2

SP (0, − 1) = 2

SP (− 1, 0) = 2

Fig. 5 Surface area measure sP and the normalized surface area measure SP of the triangle P =
conv (0, 2e1, 2e2). While sP provides the Euclidean edge length for each outer unit edge normal vector,
SP provides the lattice length for each outer primitive edge normal vector

Let P1, . . . , Pd−1 be polytopes inRd . TheEuclideanmixed areameasure sP1,...,Pd−1

is defined by the inclusion–exclusion formula [25, p. 281]:

sP1,...,Pd−1 = 1

(d − 1)!
d−1∑

k=1

(−1)d−1−k
∑

i1<...<ik

sPi1+···+Pik
.

Then, by (2.1) in Proposition 2.1, we have

sP1,...,Pd−1(ξ) = v(Pξ
1 , . . . , Pξ

d−1) (2.7)

for any ξ ∈ S
d−1. This implies that sP1,...,Pd−1 has support consisting of vectors ξ ∈

S
d−1 such that (Pξ

1 , . . . , Pξ
d−1) is non-degenerate (see the remark after Definition 2.2).

Note that the support is contained in the set of outer facet normals of P1 +· · ·+ Pd−1,
and hence is finite. Furthermore, let supp sK1,...,Kd−1 = {ξ1, . . . , ξN }. We have mixed
analogs of (2.3) and (2.4) (see [25, Thm. 5.1.7]):

v(P1, . . . , Pd−1, P) = 1

d

N∑

i=1

hP (ξi )v(Pξi
1 , . . . , Pξi

d−1), (2.8)

v(P1, . . . , Pd−1, P) = 1

d

∫

Sd−1
hP (ξ) dsP1,...,Pd−1(ξ), (2.9)

for any polytope P ⊂ R
d . Now let ui be the primitive vector in the direction of ξi , for

1 ≤ i ≤ N . Normalizing (2.8) we obtain

V (P1, . . . , Pd−1, P) =
N∑

i=1

hP (ui )V (Pui
1 , . . . , Pui

d−1). (2.10)
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Similarly to the unmixed case we define the (normalized) mixed area measure
SP1,...,Pd−1 on the set of primitive vectorsSd−1 with support supp SP1,...,Pd−1 and values
SP1,...,Pd−1(u) = V (Pu

1 , . . . , Pu
d−1). As before, the terms in (2.10) are non-negative

integers whenever P is also a lattice polytope. We write (2.10) as

V (P1, . . . , Pd−1, P) =
∫

Sd−1
hP (u) dSP1,...,Pd−1(u). (2.11)

Note that, similarly to the mixed volume, the mixed area measure is Minkowski linear
in each of its arguments.

The following proposition relates the notions of irreducible tuples and mixed area
measure.

Proposition 2.5 A tuple (P1, . . . , Pd−1) ∈ P(Rd)d−1 can be extended to an irre-
ducible d-tuple if and only if supp sP1,...,Pd−1 positively spans R

d .

Proof Let s denote the measure sP1,...,Pd−1 . First note that

∑

ξ∈supp s
ξs(ξ) = 0. (2.12)

Indeed, by (2.9) for any x ∈ R
d and a polytope P we have

0 = v(P1, . . . , Pd−1, P + x) − v(P1, . . . , Pd−1, P) = 1

d

∫

Sd−1
〈ξ, x〉 ds(ξ).

Since x is arbitrary we obtain (2.12). Therefore, supp s positively spansRd if and only
if supp s linearly spans Rd .

Now suppose supp s is contained in S
d−1 ∩ H for some (d − 1)-dimensional

linear subspace H . Then, by (2.9), for any segment I orthogonal to H we have
v(P1, . . . , Pd−1, I ) = 0 since hI (ξ) = 0 for any ξ ∈ supp s. This means that the
d-tuple (P1, . . . , Pd−1, I ) is degenerate, which is impossible if (P1, . . . , Pd−1) can
be extended to an irreducible d-tuple.

Conversely, suppose (P1, . . . , Pd−1) cannot be extended to an irreducible d-tuple.
Without loss of generality we may assume that P1 + · · · + Pk is contained in a k-
dimensional subspace L for some 1 ≤ k ≤ d − 1. For any ξ ∈ supp s,

sP1,...,Pd−1(ξ) = v(Pξ
1 , . . . , Pξ

d−1) > 0,

and so (Pξ
1 , . . . , Pξ

d−1) is non-degenerate. In particular,

k ≤ dim (Pξ
1 + · · · + Pξ

k ) = dim (P1 + · · · + Pk)
ξ ≤ dim (P1 + · · · + Pk) = k.

Therefore, P1 + · · · + Pk = (P1 + · · · + Pk)ξ which implies ξ ∈ L⊥. Thus, supp s is
a subset of Sd−1 ∩ L⊥. ��
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A = conv (0, 2e1 , e2) B = conv (0, 3e1 , e1 + e2 , e2)

Fig. 6 A pair (A, B) of lattice polygons, which is R-maximal in A and Z-maximal but not R-maximal in
B. The dashed line depicts how B can be enlarged to a non-lattice polygon B′ = conv (0, 3e1, (3/2)e2)
such that the pair (A, B′) has the same mixed volume as (A, B)

A = conv (0, 4e1 , 3e1 + e2 , 3e2) B = conv (0, 4e1 , e1 + 2e2 , 2e2)

Fig. 7 A Z-maximal pair (A, B) of lattice polygons for which both A and B can be enlarged to non-lattice
polygons A′ and B′ such that (A′, B′) has the same mixed volume as (A, B)

Remark 2.6 One readily sees that, for tuples of lattice polytopes, the above proposition
can be restated as follows: A tuple (P1, . . . , Pd−1) ∈ P(Zd)d−1 can be extended to
an irreducible d-tuple if and only if supp SP1,...,Pd−1 positively spans Rd .

3 Z-Maximal andR-Maximal Tuples

Recall that the mixed volume V (P1, . . . , Pd) is monotonic with respect to inclusion,
see (2.2). This motivates the notion of Z-maximal and R-maximal d-tuples of poly-
topes. In the definition below R denotes either Z or R.

Definition 3.1 Let i ∈ [d]. A d-tuple (P1, . . . , Pd) ∈ P(Rd)d is called R-maximal in
Pi , if for all Qi ∈ P(Rd) with Pi ⊆ Qi the equality

V (P1, . . . , Pi−1, Pi , Pi+1, . . . , Pd) = V (P1, . . . , Pi−1, Qi , Pi+1, . . . , Pd) (3.1)

implies Pi = Qi . We call (P1, . . . , Pd) R-maximal if it is R-maximal in each of the
polytopes P1, . . . , Pd .

In view of the inclusion Z ⊂ R, if a d-tuple of lattice polytopes isR-maximal, then
it is also Z-maximal. The converse is not true in general as Figs. 6 and 7 illustrate.

Remark 3.2 There is a natural poset structure on the set P(Zd)d/Gd,d of Gd,d -
equivalence classes of d-tuples of polytopes in P(Zd). Let P and Q be classes
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containing (P1, . . . , Pd) and (Q1, . . . , Qd), respectively. We say that P ≤ Q if
and only if ψ(P1, . . . , Pd) is contained in (Q1, . . . , Qd) component-wise for some
ψ ∈ Gd,d . One can directly verify that this relation defines a partial order on
P(Zd)d/Gd,d . Given m ∈ N, one may restrict this poset to the sub-poset of Gd,d -
equivalence classes of d-tuples (P1, . . . , Pd) of normalizedmixed volumem.Maximal
elements of this poset correspond to Z-maximal d-tuples of polytopes in the sense of
Definition 3.1. Note that if (P1, . . . , Pd) is not irreducible then the corresponding
class is not a maximal element of the poset. Indeed, suppose P1, . . . , Pk lie in a k-
dimensional subspace L , for some 1 ≤ k < d. Then, by Proposition 2.3, adding
any segment whose direction vector lies in L⊥ to Pk+1, . . . , Pd does not change the
mixed volume of (P1, . . . , Pd) and, hence, the class of (P1, . . . , Pd) lies in an infinite
chain in the poset. This shows that maximal elements are, in particular, irreducible. In
what follows, however, we will always write “maximal irreducible tuples” for clarity.
Theorem 2.4 asserts that the subposet of classes of irreducible d-tuples of lattice poly-
topes with fixed mixed volume is finite and, in particular, has finitely many maximal
elements.

The following proposition describes irreducible d-tuples (P1, . . . , Pd) that are Z-
maximal in Pd . In particular, it provides an algorithmic way of finding all possible
Pd ∈ P(Zd) such that V (P1, . . . , Pd) = m and (P1, . . . , Pd) is Z-maximal in Pd ,
given a value of m and a (d − 1)-tuple (P1, . . . , Pd−1) ∈ (P(Zd))d−1 such that
supp sP1,...,Pd−1 positively spans Rd (see Algorithm 7.2).

Proposition 3.3 Let (P1, . . . , Pd) ∈ (P(Zd))d be an irreducible tuple which is Z-
maximal in Pd . Let {u1, . . . , ur } be the support of the mixed area measure SP1,...,Pd−1 .
Then

Pd = conv {x ∈ Z
d : 〈ui , x〉 ≤ hi , i ∈ [r ]} (3.2)

for some h1, . . . , hr ∈ Z≥0 satisfying

r∑

i=1

hi SP1,...,Pd−1(ui ) = V (P1, . . . , Pd). (3.3)

Proof Let hi = hPd (ui ), the value of the support function of Pd at ui . Then (3.3)
follows directly from (2.11). Consider

Q = {x ∈ R
d : 〈ui , x〉 ≤ hi for all i ∈ [r ]}.

This is a rational polytope. (Its boundedness follows from Proposition 2.5.) Clearly,
Pd ⊆ Q and hPd coincides with hQ on the support of SP1,...,Pd−1 . Therefore, by (2.11)
and (3.3),

V (P1, . . . , Pd−1, Q) =
r∑

i=1

hi SP1,...,Pd−1(ui ) = V (P1, . . . , Pd).

Now the Z-maximality in Pd and the monotonicity of the mixed volume imply that
Pd must contain all lattice points of Q, i.e., (3.2) holds. ��
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Remark 3.4 Note that the values for the hi in Proposition 3.3 are given by hPd (ui ),
that is the values of the support function of Pd at the support vector ui of the mixed
area measure SP1,...,Pd−1 . This fact can be used to determine whether a given d-tuple
(P1, . . . , Pd) ∈ (P(Zd))d is Z-maximal in Pd by checking whether the equality
Pd = conv {x ∈ Z

d : 〈ui , x〉 ≤ hPd (ui ), i ∈ [r ]} holds.
A similar argument provides the corresponding statement for tuples (P1, . . . , Pd) ∈

(P(Rd))d that are R-maximal in Pd .

Proposition 3.5 Let (P1, . . . , Pd) ∈ (P(Rd))d be an irreducible tuple that is R-
maximal in Pd . Let {ξ1, . . . , ξr } be the support of the mixed area measure sP1,...,Pd−1 .
Then

Pd = {x ∈ R
d : 〈ξi , x〉 ≤ hi for all i ∈ [r ]}

for some h1, . . . , hr ∈ R≥0 satisfying

r∑

i=1

hi sP1,...,Pd−1(ξi ) = v(P1, . . . , Pd).

For R-maximality we also have the following simple criterion based on comparing
the mixed area measures. Since the mixed area measures of d-tuples of polytopes can
be computed using (2.7), Proposition 3.6 gives a computational test for R-maximality
of d-tuples which we utilize in our algorithms.

Proposition 3.6 Let (P1, . . . , Pd) ∈ P(Rd)d be an irreducible tuple and assume that
Pd is d-dimensional. Then (P1, . . . , Pd) is R-maximal in Pd if and only if supp sPd ⊆
supp sP1,...,Pd−1 .

Proof To simplify notation, let s1 = supp sPd and s2 = supp sP1,...,Pd−1 . Suppose
s1 ⊆ s2. Consider a polytope Qd ∈ Pd(R

d) such that Pd ⊆ Qd and

v(P1, . . . , Pd−1, Pd) = v(P1, . . . , Pd−1, Qd).

By (2.8) we have hPd (ξ) = hQd (ξ) for every ξ ∈ s2. Then

Qd ⊆
⋂

ξ∈s2
{x ∈ R

d : 〈ξ, x〉 ≤ hPd (ξ)} ⊆
⋂

ξ∈s1
{x ∈ R

d : 〈ξ, x〉 ≤ hPd (ξ)} = Pd ,

since s1 coincideswith the set of outer facet normals of Pd . (Hereweuse the assumption
that Pd is d-dimensional.) Therefore Qd = Pd .

Conversely, let (P1, . . . , Pd) be R-maximal in Pd . Consider

Qd =
⋂

ξ∈s2
{x ∈ R

d : 〈ξ, x〉 ≤ hPd (ξ)}.
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Since (P1, . . . , Pd) is irreducible, by Proposition 2.5, s2 positively spans Rd , hence,
Qd defines a polytope. Clearly, Pd ⊆ Qd and hPd (ξ) = hQd (ξ) for every ξ ∈ s2.
Therefore, by (2.8), we have

v(P1, . . . , Pd−1, Pd) = v(P1, . . . , Pd−1, Qd).

This implies that Pd = Qd , and, hence, the set s1 of primitive facet normals of Pd is
contained in s2. ��

In the remainder of the section we show that the two constructions appearing in
parts (2) and (3) of Theorem 1.8 produce R-maximal triples. Clearly, the triples in
part (1) are also R-maximal, and one can use Propositions 3.3 and 3.5 to see that the
triples in part (4) are Z-maximal, but not R-maximal.

Proposition 3.7 Consider polytopes P1, P2, P3 ∈ P3(R
3) such that P1 = P + α I ,

P2 = P + β I , and P3 = P + γ I , where P ∈ P(R3), dim P ≥ 2, I ∈ P1(R
3),

and α, β, γ are non-negative real numbers at most one of which is 0. Then the triple
(P1, P2, P3) is R-maximal.

Proof We verify that the triple (P1, P2, P3) isR-maximal in P3 using Proposition 3.6.
One has

sP1,P2 = sP+α I ,P+β I = sP + (α + β)sP,I ,

using the linearity, sP,P = sP , and the fact that the measure sI = sI ,I is zero.
Furthermore, one similarly obtains

sP3 = sP3,P3 = sP + 2γ sP,I .

As α, β, γ are nonnegative integers at most one of which can be 0, this shows
supp sP3 ⊆ supp sP1,P2 . Showing R-maximality in P1 and P2 is completely analo-
gous. ��

Proposition 3.8 Let P ′ ∈ P3(R
3) be a combinatorial pyramid with base P and let I

be a segment parallel to two edges of P. Then the triple (P ′, P ′, P ′+ I ) isR-maximal.

Proof We are going to show that P ′ and P ′ + I have the same sets of facet normals
and, hence, the conditions of Proposition 3.6 are satisfied. Let P ′ = conv (P ∪ {v}) for
some v ∈ R

3 and assume I = [0, w] for some w ∈ R
3. Let J1 and J2 be two edges of

P parallel to I . Note that each edge of P+ I is equal to either an edge of P , or the sum
of w and an edge of P , or Ji + I for i = 1, 2. Similarly, each facet of P ′ + I is equal
to either a facet of P ′, or the sum of w and a facet of P , or conv ((Ji + I ) ∪ (v + I )),
for i = 1, 2. This implies P ′ and P ′ + I have the same facet normals. ��

123



Discrete & Computational Geometry (2021) 66:165–202 185

4 Tests for Equivalence of Tuples of Polytopes Modulo Group Actions

As we deal with enumeration up to equivalences with respect to action of various
groups as described in Sect. 2.2, we need to be able to decide algorithmically whether
two lattice polytopes are equivalent with respect to a given group action. More gener-
ally, we need tests for equivalence of tuples of lattice polytopes modulo group actions.
In this section we present such tests for the groups of linear and affine unimodular
transformations and the group Gd,k .

4.1 Equivalence of Polytopes Modulo GL(Zd)

The literature contains several algorithms that test equivalence of two lattice polytopes
P, Q ∈ Pd(Z

d)moduloGL(Zd). See, for example, [21] and [18], where the latter also
provides an overview of existing techniques. The algorithm of Kreuzer and Skarke
from [21], relying on the so-called normal form of a lattice polytope, was implemented
in Sagemath. The normal form of a lattice polytope P is uniquely determined by P .
It encodes a sequence of vertices (v1, . . . , vt ) of a polytope conv (v1, . . . , vt ) that
coincides with P up to GL(Zd). Two polytopes P, Q ∈ Pd(Z

d) coincide up to
GL(Zd) if and only if their normal forms are the same. See also [18, Exam. 3.4].
Using the normal form, each polytope inPd(Z

d) can be brought into anormalGL(Zd)-
position. In other words, in each equivalence class from Pd(Z

d)/GL(Zd) a unique
representative is chosen. Using such a normal position in enumeration algorithms is
convenient because, for avoiding repetitions modulo GL(Zd), it suffices to bring each
newly found polytope into its normal position.

4.2 Equivalence of Polytopes Modulo Aff(Zd)

Testing equivalence of two polytopes P, Q ∈ Pd(Z
d)moduloAff(Zd) can be reduced

to testing equivalence modulo GL(Zd+1). Indeed, P, Q ∈ Pd(Z
d) are equivalent

modulo Aff(Zd) if and only if the respective pyramids conv ({0d+1} ∪ (P × {1})),
conv ({0d+1} ∪ (Q × {1})) ∈ Pd+1(Z

d+1) are equivalent modulo GL(Zd+1). This
approach works well in many cases, but for the purpose of implementation it is more
convenient to introduce a normal Aff(Zd)-position of polytopes in Pd(Z

d) by choos-
ing a representative in each of the equivalence classes modulo Aff(Zd).

Our construction is as follows. For a polytope P ∈ Pd(R
d), consider

cP := 1

|vert(P)|
∑

v∈vert(P)

v,

which is the barycenter of the set of vertices of P . Furthermore, we can order points
of Rd lexicographically: x = (x1, . . . , xd) is lexicographically smaller than y =
(y1, . . . , yd) if, for the smallest i ∈ [d] with xi �= yi , one has xi < yi . For a compact
subset X of Rd , let lexmin(X) denote the lexicographic minimum of the set X . It is
not hard to see that for a polytope P ∈ P(Rd) one has lexmin(P) ∈ vert(P). This
can be shown by observing that (in notation of Sect. 2.3) lexmin(P) is obtained by
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first taking the face Pe1 of P , then the face (Pe1)e2 of Pe1 , and so on. Continuing this
iteration we eventually arrive at the unique point ( . . .(Pe1)e2 . . . )ed = lexmin(P). In
particular, if P ∈ P(Zd) is a lattice polytope then lexmin(P) is a lattice point. Based
on these notions we can now introduce a normal Aff(Zd)-position.

Proposition 4.1 Let P ∈ Pd(Z
d) be a polytope with N vertices and let P ′ be the

normalGL(Zd)-position of the lattice polytope N (P − cP ). Then the lattice polytope

P ′′ := 1

N
(P ′ − lexmin(P ′))

is Aff(Zd)-equivalent to P.

Proof Let φ ∈ GL(Zd) be a linear unimodular transformation sending P ′ to N (P −
cP ). Using the fact that, for any compact set X ⊂ R

d , one has lexmin (X − x) =
lexmin(X) − x and lexmin(kX) = k lexmin(X) for all x ∈ R

d and k ∈ R≥0, one
obtains:

φ(P ′′) = 1

N
φ(P ′) − 1

N
φ(lexmin(P ′))

= P − cP − φ(lexmin(φ−1(P − cP ))) = P − φ(lexmin(φ−1(P))).

As φ(lexmin (φ−1(P))) is a lattice point, this proves the claim. ��
The polytope P ′′ in Proposition 4.1 is uniquely determined by P . We call P ′′ the

normal Aff(Zd)-position of P . Note that two lattice polytopes are equivalent modulo
Aff(Zd) if and only if their normal Aff(Zd)-positions coincide.

Remark 4.2 Grinis and Kasprzyk [18, Sect. 3.3] suggest to use an affine normal form,
obtained by slightly modifying the definition of a normal form of a lattice polytope.
They also observe in [18, Sect. 2.4] that P, Q ∈ Pd(Z

d) coincide modulo Aff(Zd) if
and only if cP − cQ ∈ Z

d and P − cP and Q − cQ are equivalent modulo GL(Zd).
This observation is related to our Proposition 4.1.

4.3 Equivalence of k-Tuples of d-Dimensional Polytopes ModuloGd,k

To test equivalence of k-tuples (P1, . . . , Pk) of lattice polytopes moduloGd,k , we use
the so-called Cayley polytope of (P1, . . . , Pk), which is defined as

Cay (P1, . . . , Pk) := conv (P1 × {e1} ∪ . . . ∪ Pk × {ek}) ∈ P(Zd × Z
k).

The following statement shows how equivalence of tuples of lattice polytopes modulo
Gd,k can be checked using the Cayley polytope construction.

Proposition 4.3 Let (P1, . . . , Pk), (Q1, . . . , Qk) ∈ P(Zd)k be k-tuples of non-empty
lattice polytopes such that dim (P1 + · · · + Pk) = d. Then the following conditions
are equivalent:
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(i) (P1, . . . , Pk) ≡ (Q1, . . . , Qk) mod Gd,k ,
(ii) Cay (2P1, . . . , 2Pk) ≡ Cay (2Q1, . . . , 2Qk) mod GL(Zd+k).

Proof Let P := Cay (2P1, . . . , 2Pk) and Q := Cay (2Q1, . . . , 2Qk). The implication
(i) ⇒ (ii) is straightforward as translating one of the polytopes Pi corresponds to
unimodular shearing the Cayley polytope along a coordinate hyperplane and applying
a common linear unimodular transformation φ : Rd → R

d to each Pi corresponds
to applying the linear unimodular transformation φ × Idk : Rd × R

k → R
d × R

k

to the Cayley polytope. Finally, applying a permutation σ to the Pi corresponds to
permuting the last k coordinates of the Cayley polytope. All of these transformations
are in GL(Zd+k).

Let us show the converse implication (ii) ⇒ (i). For a lattice polytope F , consider
the following property (∗): for all a, b ∈ vert(F), the point (a + b)/2 is a lattice
point. This property is invariant under affine unimodular transformations. It is easy
to see that a face F of P has property (∗) if and only if F ⊆ (2Pi ) × {ei } for some
i ∈ [k]. In particular, (2Pi )×{ei } are inclusion-maximal faces of P that have property
(∗). Similarly, (2Qi ) × {ei } are inclusion-maximal faces of Q that have property (∗).
We thus see that a linear unimodular transformation φ that sends P to Q sends each
(2Pi )×{ei }, with i ∈ [k], to some (2Qσ(i))×{eσ(i)}, where σ is a permutation on [k].
Let φ : Rd ×R

k → R
d ×R

k be a linear unimodular transformation mapping P to Q.
Without loss of generalitywemay assume that (2Pi )×{ei } ismapped onto (2Qi )×{ei }
and that 0 ∈ 2Pi (in particular, φ(0, ei ) = (ti , ei ) for some ti ∈ R

d ) for all i ∈ [k]. As
φ maps (2P1+· · ·+2Pk)×{e1+· · ·+ek} onto (2Q1+· · ·+2Qk)×{e1+· · ·+ek} and
dim (2P1 + · · · + 2Pk) = d by assumption, the map φ preserves the affine subspace
R
d × {e1 + · · · + ek} ⊂ R

d × R
k . One easily verifies that this implies that the linear

subspace Rd × {0} ⊂ R
d × R

k is also preserved. Hence, with respect to the standard
basis of Rd+k , the map φ has the form

(
U T
0 Idk

)
∈ GL(Zd+k)

for a unimodular matrix U ∈ GL(Zd) and a matrix T ∈ Z
d×k whose i-th column

equals ti for i ∈ [k]. In particular, for any i ∈ [k], the map x �→ Ux + ti is an affine
unimodular transformation mapping Pi onto Qi , which proves the claim. ��

Remark 4.4 Considering the Cayley polytopes of the second dilates of P1, . . . , Pk ∈
P(Zd) is crucial. Consider for example the polygons �2 and �2 = [0, 1]2. Based
on these polygons we construct two pairs of 3-dimensional polytopes P1 = P2 =
conv ((�2 × {0}) ∪ (�2 × {1})) and Q1 = �2 × [0, 1], Q2 = �2 × [0, 1]. The
pairs (P1, P2) and (Q1, Q2) are clearly not G3,2-equivalent but Cay (P1, P2) and
Cay (Q1, Q2) are equivalent.
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5 The Enumeration Algorithm for Full-Dimensional Polytopes in
Dimension Three

In this sectionwe present an algorithm for solving the following enumeration problem.
Throughout this and subsequent sections theword “maximal”willmean “Z-maximal”.

Enumeration Problem 5.1 Givenm ∈ N, enumerate, up toG3,3-equivalence, all max-
imal triples (P1, P2, P3) ∈ P3(Z

3)3 of full-dimensional lattice polytopes satisfying
V (P1, P2, P3) = m.

As we mentioned in the introduction, the main idea for solving Enumeration Prob-
lem 5.1 is to produce upper bounds for the mixed volumes V (Pi , Pj , Pk) for all
choices i, j, k ∈ [3] instead of an upper bound for the volume of the Minkowski sum
P1 + P2 + P3. As an illustration, consider the triple (P1, P2, P3) = (�3,�3,m�3)

which has mixed volume m. While the volumes of P3 and the Minkowski sum
P1 + P2 + P3 are large, one has V (P1, P1, P2) = 1, i.e., some of the mixed volumes
V (Pi , Pj , Pk) are small. Such relations are enforced by the Aleksandrov–Fenchel
inequality. Proposition 5.2 below characterizes this phenomenon in general.

Proposition 5.2 Let (P1, P2, P3) ∈ P3(Z
3)3 satisfy V (P1, P2, P3) = m for a given

m ∈ N. Then, up to relabeling, either V (P1, P1, P2) < m or V (Pi , Pi , Pj ) = m for
all i, j ∈ [3] with i �= j . In the latter case Vol Pi ≤ m for all i ∈ [3].
Proof Suppose there are i, j ∈ [3] with i �= j such that V (Pi , Pi , Pj ) �= m. After
possibly reordering we may assume V (P1, P1, P2) �= m. If V (P1, P1, P2) is strictly
smaller than m, we have proven the claim. So let us assume V (P1, P1, P2) > m. In
this case, by the Aleksandrov–Fenchel inequality V (P1, P2, P3)2 ≥ V (P1, P1, P2)
V (P3, P3, P2), we have V (P2, P3, P3) < m so that the claim holds for the ordering
(P3, P2, P1). It is left to prove that, if V (Pi , Pi , Pj ) = m for all i, j ∈ [3] with i �= j ,
then Vol Pi ≤ m for all i ∈ [3]. This is a direct consequence of the Aleksandrov–
Fenchel inequality, as V (Pi , Pi , Pj )

2 ≥ V (Pi , Pj , Pj )Vol Pi holds for any i, j ∈ [3]
with i �= j . ��
Remark 5.3 Note that in the case V (Pi , Pi , Pj ) = m for all i, j ∈ [3] with i �= j and
Vol Pi = m for all i ∈ [3], the Aleksandrov–Fenchel inequalities V (Pi , Pi , Pj ) ≥
V (Pi , Pj , Pj )Vol Pi become equalities, which implies that P1 = P2 = P3. This is
due to the characterization of the equality case in Minkowski’s inequality, see [25,
Thm. 7.2.1].

Let us now present an algorithm to solve Enumeration Problem 5.1. Note that
Proposition 5.2 justifies the restriction in Step 2 to a case a. relying on an inductive
enumeration of maximal triples of lower mixed volume (see Step 1) and a very specific
case b.

Algorithm 5.4 (Enumeration of full-dimensional triples)

Input: m ∈ N.
Output:A list of all maximal triples of full-dimensional polytopes (P1, P2, P3) ∈
P3(Z

3)3 with V (P1, P2, P3) = m, up to G3,3-equivalence.
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Step 1: If m = 1, return the triple (�3,�3,�3). Else, recursively run Algo-
rithm 5.4 for all input valuesm′ < m in order to obtain a list of all maximal triples
of full-dimensional polytopes (P1, P2, P3) ∈ P3(Z

3)3 with V (P1, P2, P3) < m,
up to G3,3-equivalence.
Step 2:

a. Enumerate, up to G3,2-equivalence, all pairs (P1, P2) ∈ P3(Z
3)2 such that

V (P1, P1, P2) < m (see Remark 5.5).
b. Enumerate, up to G3,2-equivalence, all pairs (P1, P2) ∈ P3(Z

3)2 such that
V (P1, P1, P2) = V (P2, P2, P1) = m (see Algorithm 5.6).

Step 3: For a given pair (P1, P2) ∈ P3(Z
3)2 as in Step 2a enumerate, up to

translations, all P3 ∈ P3(Z
3) such that V (P1, P2, P3) = m and such that the triple

(P1, P2, P3) is maximal in P3 (see Algorithm 7.2).
Step 4: Given a triple (P1, P2, P3) ∈ P3(Z

3)3 as in Step 2b check whether it is
maximal in P1 and P2 and, if so, add it modulo G3,3-equivalence to the final list
of maximal triples of mixed volume m.

Remark 5.5 (De-maximization procedure) Wemayobtain the pairs of Step 2a from the
list of all maximal triples of full-dimensional lattice polytopes (P1, P2, P3) ∈ P3(Z

3)3

with V (P1, P2, P3) < m, as recursively obtained in Step 1. Note that we need to
consider not only those pairs (P1, P2) ∈ P3(Z

3)2 for which the triple (P1, P1, P2)
is maximal, but all pairs such that V (P1, P1, P2) = m′ < m. These can be obtained
by iteratively pealing off vertices of the maximal triples of mixed volume less than m
and searching among them for triples of the form (P1, P1, P2) up to permutations and
translations. The running time of this task is very reasonable for values m′ ∈ {1, 2, 3}
but is growing very fast in m′ and would also be growing extensively if we were to
consider higher dimensions.

Dealing with Step 2b is more involved and, hence, we employ the following algo-
rithm:

Algorithm 5.6 (Step 2b of Algorithm 5.4)

Input: m ∈ N.
Output: A list of all pairs (P1, P2) ∈ P3(Z

3)2 such that V (P1, P1, P2) =
V (P1, P2, P2) = m, up to G3,2-equivalence.
Step 1: Enumerate, up to Aff(Z3)-equivalence, all P1 ∈ P3(Z

3) with Vol P1 ≤ m
(Enumeration Problem 7.7).
Step 2: Given P1 ∈ P3(Z

3) with Vol P1 ≤ m, determine, up to translations, all
Q ∈ P3(Z

3) such that V (P1, P1, Q) = m and the triple (P1, P1, Q) is maximal
in Q (see Algorithm 7.2).
Step 3: Given a pair (P1, Q) ∈ P3(Z

3)2 as in Step 2, determine all subpolytopes
P2 ⊆ Q such that Vol P2 ≤ m and V (P1, P1, P2) = V (P2, P2, P1) = m (see
Sect. 7.4).
Step 4: Given a pair (P1, P2) ∈ P3(Z

3)2 with P2 ⊆ Q as above, add it modulo
G3,2-equivalence to the final list.
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6 Extension to the General Case in Dimension Three

In this section we present an extension of Algorithm 5.4 allowing us to enumerate
general maximal irreducible triples (P1, P2, P3) ∈ P(Z3)3 without assuming that all
Pi are full-dimensional, thus solving the following enumeration problem.

Enumeration Problem 6.1 Givenm ∈ N, enumerate, up toG3,3-equivalence, all max-
imal irreducible triples (P1, P2, P3) ∈ P(Z3)3 satisfying V (P1, P2, P3) = m.

Whilewemay still formulate a statement analogous to Proposition 5.2, the existence
of i, j ∈ [3] with i �= j such that V (Pi , Pi , Pj ) < m does not necessarily allow us
to build upon the enumeration for lower mixed volumes as in Remark 5.5. The reason
is that, if one has dim Pi = 2, the triple (Pi , Pi , Pj ) is not irreducible anymore and
therefore may not be contained in one of the maximal irreducible triples of lower
mixed volume. Hence, we carry out a different case distinction for triples that contain
at least one polytope of dimension 2. For a 2-dimensional lattice polytope P ∈ P(Z3),
let Vol2 P denote the normalized 2-dimensional volume relative to the affine lattice
aff(P) ∩ Z

3.

Proposition 6.2 Let (P1, P2, P3) ∈ P(Z3)3 be irreducible, V (P1, P2, P3) = m, and
at least one of the Pi be 2-dimensional. Then there exist distinct indices i, j ∈ [3]
such that one of the following holds:

(a) (Pi , Pi , Pj ) is irreducible and satisfies V (Pi , Pi , Pj ) < m,
(b) dim Pi = 2, dim Pj = 3, V (Pi , Pi , Pj ) ≤ m, and V (Pj , Pj , Pi ) = m,
(c) dim Pi = dim Pj = 2, V (Pi , Pi , Pj ) ≤ m, and V (Pj , Pj , Pi ) ≤ m2.

Proof Without loss of generality we may assume dim P1 ≤ dim P2 ≤ dim P3. We
distinguish cases based on the dimensions of the polytopes in the triple. Assume first
dim P1 = 2 and dim P2 = dim P3 = 3. Consider the Aleksandrov–Fenchel inequality
m2 = V (P1, P2, P3)2 ≥ V (P2, P2, P1)V (P3, P3, P1). If V (P2, P2, P1) < m or
V (P3, P3, P1) < m, one has (a) for (i, j) = (2, 1) or (i, j) = (3, 1), respectively.
Otherwise, one has V (P2, P2, P1) = V (P3, P3, P1) = m. Now, if (a) does not hold
for (i, j) = (2, 3) then V (P2, P2, P3) ≥ m and the Aleksandrov–Fenchel inequality
m2 ≥ V (P1, P1, P3)V (P2, P2, P3) implies V (P1, P1, P3) ≤ m, i.e., (b) holds for
(i, j) = (1, 3). Similarly, we show that either (a) holds for (i, j) = (3, 2) or (b) holds
for (i, j) = (1, 2).

Assume now that dim P1=dim P2=2 and dim P3=3. Consider the Aleksandrov–
Fenchel inequality m2 ≥ V (P2, P2, P1)V (P3, P3, P1). If V (P3, P3, P1) < m, then
(a) holds for (i, j) = (3, 1). Otherwise, one has V (P2, P2, P1) ≤ m. As, additionally,
V (P1, P1, P2)V (P3, P3, P2) ≤ m2, in this case (c) holds for (i, j) = (2, 1).

Let us finally assume that dim P1 = dim P2 = dim P3 = 2. Then the inequal-
ity m2 ≥ V (P1, P1, P2)V (P3, P3, P2) yields that either V (P1, P1, P2) ≤ m or
V (P3, P3, P2) ≤ m. Analogously to the above, one also has V (P2, P2, P1) ≤ m2 and
V (P2, P2, P3) ≤ m2. Therefore, case (c) holds for (i, j) = (1, 2) or (i, j) = (3, 2).

��
Let us now present an extension of Algorithm 5.4 that allows us to solve Enu-

meration Problem 6.1. In particular, Algorithm 6.3 is used to enumerate maximal
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irreducible triples of a given mixed volume containing at least one 2-dimensional lat-
tice polytope. Note that Proposition 6.2 justifies the restriction to the three cases a.,
b., and c. in Step 2.

Algorithm 6.3 (Extension of Algorithm 5.4 to general maximal irreducible triples)

Input: m ∈ N.
Output: A list of all maximal irreducible triples (P1, P2, P3) ∈ P(Z3)3 with
V (P1, P2, P3) = m anddim Pi = 2 for at least one i ∈ [3], up toG3,3-equivalence.
Step 1: If m = 1, return an empty list (as the only maximal irreducible triple of
mixed volume 1 is (�3,�3,�3) and therefore full-dimensional). Else, recursively
run Algorithms 5.4 and 6.3 for input values m′ < m in order to obtain a list of all
maximal irreducible triples (P1, P2, P3) ∈ P(Z3)3 with V (P1, P2, P3) < m, up
to G3,3-equivalence.
Step 2:

a. Enumerate, up to G3,2-equivalence, all pairs (P1, P2) ∈ P(Z3)2 such that
the triple (P1, P1, P2) is irreduciblewithV (P1, P1, P2) < m (seeRemark 6.4).
b. Enumerate, up to G3,2-equivalence, all pairs (P1, P2) ∈ P(Z3)2 with
dim P1 = 2, dim P2 = 3, V (P1, P1, P2) ≤ m, and V (P2, P2, P1) = m
(see Algorithm 6.5).
c. Enumerate, up to G3,2-equivalence, all pairs (P1, P2) ∈ P(Z3)2 where
dim P1 = dim P2 = 2, V (P1, P1, P2) ≤ m, and V (P1, P2, P2) ≤ m2 (see
Algorithm 6.5).

Step 3: For a given pair (P1, P2) ∈ P(Z3)2 as in Step 2, enumerate, up to transla-
tions, all P3 ∈ P(Z3) such that V (P1, P2, P3) = m and the triple (P1, P2, P3) is
irreducible and maximal in P3 (see Algorithm 7.2).
Step 4: Given an irreducible triple (P1, P2, P3) ∈ P(Z3)3 as in Step 3, check
whether it is also maximal in P1 and P2 and, if so, add it moduloG3,3-equivalence
to the final list of maximal triples of mixed volume m.

Remark 6.4 The enumeration in Step 2a can be obtained from the list of maximal
triples of mixed volume m′ < m of Step 1 analogously to the procedure described in
Remark 5.5.

In order to treat Steps 2b and 2c of Algorithm 6.3 we apply the following algorithm.
While we treat both cases in a similar way, the separation in some of the steps has
an important computational advantage. This is because it allows us to have relatively
small bounding boxes in which one has to perform a rather expensive search for full-
dimensional subpolytopes (Step 2b), while we may restrict the search inside larger
bounding boxes to lower-dimensional subpolytopes (Step 2c).

Algorithm 6.5 (Steps 2b and 2c of Algorithm 6.3)

Input: m ∈ N.
Output:

for b: A list of all pairs (P1, P2) ∈ P(Z3)2, up to G3,2-equivalence, with
dim P1 = 2, dim P2 = 3, V (P1, P1, P2) ≤ m, and V (P2, P2, P1) = m.
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for c: A list of all pairs (P1, P2) ∈ P(Z3)2, up to G3,2-equivalence, with
dim P1 = dim P2 = 2, V (P1, P1, P2) ≤ m, and V (P2, P2, P1) ≤ m2.

Step 1: Enumerate all P1 := P ′
1×{0} ∈ P(Z3) for P ′

1 ∈ P2(Z
2)withVol2 P1 ≤ m

up to equivalence (Enumeration Problem 7.7).
Step 2:

for b: Given P1 as above determine bounding boxes Q1, . . . , Qr ∈ P3(Z
3)

containing, up to shearing along the affine span of P1 and translations, all P2
that satisfy V (P1, P1, P2) ≤ m and V (P1, P2, P2) = m (see Lemma 7.5).
for c: Given P1 as above determine bounding boxes R1, . . . , Rs ∈ P3(Z

3)

containing, up to shearing along the affine span of P1 and translations, all P2
satisfying V (P1, P1, P2) ≤ m and V (P1, P2, P2) ≤ m2 (see Lemma 7.5).

Step 3:

for b: Determine all subpolytopes P2 ∈ P3(Z
3) of the bounding boxes

Q1, . . . , Qr that satisfy V (P1, P1, P2) ≤ m and V (P1, P2, P2) = m (see
Remark 7.6 and Algorithm 7.12).
for c: Determine all subpolytopes P2 ∈ P2(Z

3) of the bounding boxes
R1, . . . , Rs that satisfy V (P1, P1, P2) ≤ m and V (P1, P2, P2) ≤ m2 (see
Remark 7.6 and Algorithm 7.12).

Step 4: Given P1 and P2 as above add the pair (P1, P2) ∈ P(Z3)2 modulo G3,2-
equivalence to the final list.

7 Details of the Enumeration Algorithms

In this section we provide further details of the enumeration algorithms presented in
the previous sections.

7.1 FindingMaximal P3

A problem that we have to solve in various steps of the enumeration algorithm is the
following.

Enumeration Problem 7.1 Let m ∈ N and let (P1, P2) ∈ P(Z3)2 be a pair of lattice
polytopes satisfying dim P1, dim P2 ≥ 2, and dim (P1 + P2) = 3. Enumerate, up to
translations, all lattice polytopes P3 ∈ P(Z3) such that V (P1, P2, P3) = m and such
that the triple (P1, P2, P3) is irreducible and Z-maximal in P3.

We solve this enumeration problem by making use of Proposition 3.3.

Algorithm 7.2 (Finding maximal P3)

Input:A pair (P1, P2) ∈ P(Z3)2 with dim P1, dim P2 ≥ 2, and dim (P1 + P2) =
3, and a number m ∈ N.
Output: A list of all lattice polytopes P3 ∈ P(Z3), up to translations, such that
V (P1, P2, P3) = m and the triple (P1, P2, P3) is Z-maximal in P3.
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Step 1: Compute the mixed area measure of P1 and P2. That is, compute the
normalized mixed areas V (Pu

1 , Pu
2 ) for all u ∈ Z

3 that are primitive outer
normal vectors of a facet of the Minkowski sum P1 + P2. Obtain a vector
a = (a1, . . . , ar ) ∈ N

r of the mixed areas of P1, P2 with respect to those primitive
normal vectors u1, . . . , ur ∈ Z

3 that yield a positive mixed area.
Step 2: Determine all vectors h = (h1, . . . , hr ) ∈ (Z≥0)

r with
∑r

i=1 hiai = m.
Step 3:Given a vector h ∈ (Z≥0)

r as above, compute P3 := conv{x ∈ Z
3 : 〈ui , x〉

≤ hi for all i ∈ [r ]} and check whether the triple (P1, P2, P3) is irreducible and
satisfies V (P1, P2, P3) = m. If it does, append P3 modulo translations to the final
list.

Remark 7.3 Algorithm 7.2 allows us to profit from the restriction to maximal triples
(or triples that are maximal in at least one polytope) in our enumeration. For exam-
ple, fixing the pair (�3,�3) ∈ P3(Z

3)2 and mixed volume m = 4, Algorithm 7.2
directly determines Q = 4�3 as the unique maximal lattice polytope such that
V (�3,�3, Q) = 4.

Remark 7.4 A slight modification of Algorithm 7.2 can be used in order to enumerate
maximal pairs of polygons (P1, P2) ∈ P2(Z

2) of a given mixed volume m. By the
Aleksandrov–Fenchel inequality in the two-dimensional case onemay assumewithout
loss of generality that Vol P1 ≤ m. For any fixed P1 ∈ P2(Z

2) one may compute the
area measure and, analogously to Steps 2 and 3 of Algorithm 7.2, determine a list of
all P2 ∈ P2(Z

2) such that (P1, P2) is Z-maximal in P2 and V (P1, P2) = m.

7.2 Bounding P2 Given a Lower-Dimensional P1

In the lemma below A−A denotes the difference set A+(−A) of a convex set A ⊂ R
d

and A∗ = {y ∈ R
d : 〈x, y〉 ≤ 1 for all x ∈ A} denotes the polar dual convex set.

Lemma 7.5 Let (P1, P2) ∈ P(Z3)2 be a pair of lattice polytopes such that P1 is
2-dimensional of the form P1 = P ′ × {0} ⊂ R

2 × {0}, and P2 has dimension at
least 2 and positive width w in the direction of e3. Assume V (P1, P1, P2) = m1 and
V (P2, P2, P1) ≤ m2 for some m1,m2 ∈ N. Then, up to a shearing along R

2 × {0}
and a lattice translation, P2 is contained in the bounding polytope

Rq1,q2 := conv

⎛

⎝

⎧
⎨

⎩

⎛

⎝
x1
x2
x3

⎞

⎠ ∈ Z
2 × {0, . . . , w − 1} :

(
x1
x2

)
∈ Q′ + 1

w

(
q1x3
q2x3

)⎫
⎬

⎭

⎞

⎠ ,

where q1, q2 ∈ {0, . . . , w − 1} and

Q′ :=
(

0 m2/w

−m2/w 0

)
(P ′ − P ′)∗.

Proof We may assume 0 ∈ P2 and hP2(−e3) = 0, and therefore Proposition 2.3
yields m1 = V (P1, P1, P2) = hP2(e3)Vol2 P

′. Then P2 contains a lattice point
(q1, q2, w) at heightw and, up to shearing,wemay assume that q1, q2∈{0, . . . , w−1}.
Let x = (x1, x2, x3) ∈ P2 ∩ Z

3 be another lattice point of P2 and consider the
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triangle Tx := conv ((0, 0, 0), (q1, q2, w), (x1, x2, x3)) ⊆ P2. Let (n1, n2, n3) =
(q1, q2, w) × (x1, x2, x3) be the normal vector to aff(Tx ) with lattice length equal to
Vol2 Tx . Then (2.10) yields

V (Tx , Tx , P1) = hP1((n1, n2, n3)) + hP1(−(n1, n2, n3))

= hP ′((n1, n2)) + hP ′(−(n1, n2)) = hP ′−P ′((n1, n2)).

Explicit computation of the cross product yields (n1, n2) = (−wx2, wx1) +
(q2x3,−q1x3). By themonotonicity of themixedvolumewehavem2 ≥ V (P2, P2, P1)
≥ V (Tx , Tx , P1) and, hence,

(−wx2, wx1) + (q2x3,−q1x3) = (n1, n2) ∈ m2(P
′ − P ′)∗.

This is equivalent to
(
x1
x2

)
∈

(
0 m2/w

−m2/w 0

)
(P ′ − P ′)∗ + 1

w

(
q1x3
q2x3

)
,

which shows the assertion. ��
Remark 7.6 Note that, in the setting of Lemma 7.5, the bounding box Rq1,q2 is
actually constructed under the assumption that P2 contains the segment Iq1,q2 =
conv ((0, 0, 0), (q1, q2, w)). Therefore in order to enumerate the set of all suitable
P2 we may restrict to searching for all q1, q2 ∈ {0, . . . , w − 1} for lattice polytopes
inside Rq1,q2 that contain Iq1,q2 . We use this fact when we apply Algorithm 7.12.
Also note that any lattice polytope P ∈ P(Z3) with Iq1,q2 ⊂ P ⊆ Rq1,q2 satis-
fies V (P1, P1, P) = m1 by construction of Rq1,q2 , while the upper bound of m2 on
V (P, P, P1) may in general not be satisfied for some subpolytope P ⊆ Rq1,q2 .

7.3 Enumeration of Lattice Polytopes byVolume Using Sandwich Factory
Algorithm

Enumeration Problem 7.7 Given m ∈ N and d ∈ N, enumerate up to affine unimod-
ular transformations all polytopes P ∈ Pd(Z

d) with 1 ≤ Vol P ≤ m.

7.3.1 Sandwich-Factory Based Approach

We present a relatively simple algorithm to Enumeration Problem 7.7 which we also
found to lead to very reasonable running times. The running time of the Sagemath
[28] implementation of our algorithm on a regular desktop computer was just a few
minutes for d = 3 andm = 4. For d = 3,m = 6 our implementation terminateswithin
an hour. For d = 2, much larger values of m can be handled with an hour time limit.
Even more important in the context of our original enumeration problem about mixed
volumes is the fact that we use our algorithm for solving Enumeration Problem 7.7 as a
template for solving further similar enumeration problems by appropriatelymodifying
the basic steps of the algorithm.
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We also refer to [5] for an alternative approach to enumeration of lattice polytopes
by their volume.Note also that [16] provides an explicit description of lattice polytopes
of arbitrary dimension d with the normalized volume at most 4.

We call a pair (A, B) of polytopes A, B ∈ Pd(Z
d) a sandwich if A is a subset of

B. The basic principle of our algorithm is to capture all possible polytopes in a set of
sandwiches (A, B). If for P ∈ Pd(Z

d) the inclusion A ⊆ P ⊆ B holds, we say that
P occurs in the sandwich (A, B). The algorithm maintains a sandwich factory, which
is a set of sandwiches with the property that each P in question occurs in some of the
sandwiches from the set. We call the difference Vol B − Vol A the volume gap of a
sandwich (A, B). The algorithm starts with a sandwich factory containing sandwiches
with a large volume gap. In themain part, the algorithm iteratively replaces sandwiches
with a large volume gap by sandwiches with a smaller volume gap. Eventually, only
sandwiches with volume gap 0 remain; such sandwiches correspond to polytopes P
with Vol P ≤ m. Thus, as soon as there are no sandwiches with positive volume gap,
the enumeration task is completed.

7.3.2 Initialization of the Sandwich Factory

It is clear that every lattice polytope P ∈ Pd(Z
d) contains an empty lattice simplex

A, that is a simplex with exactly d + 1 lattice points. Also, if Vol P ≤ m then,
clearly, Vol A ≤ m. Thus, we start with a set of sandwiches (A, B) which involves
all possible empty simplices A with 1 ≤ Vol A ≤ m. In dimension d = 2 there is
only one empty simplex up to Aff(Z2)-equivalence, namely, the triangle A = �2.
In dimension d = 3, by White’s classification (see [27] or [24, Thm. 5]), every
empty 3-dimensional simplex is Aff(Z3)-equivalent to either the standard simplex
�3 or conv (0, e1, e3, e3 + ae1 + be2) with a, b ∈ N, a < b, and gcd(a, b) = 1.
Thus, it suffices to determine such simplices A with 1 ≤ Vol A ≤ m. To complete
the initialization of the sandwich factory, one needs to choose an appropriate B for
each A so that (A, B) is a sandwich, which contains all lattice polytopes P with
1 ≤ Vol P ≤ m and the property A ⊆ P . It is intuitively clear that if a point x is
far away from A, then the volume conv (A ∪ {x}) must be large. This informal idea is
expressed explicitly in the following lemma.

Lemma 7.8 Let A be a d-dimensional simplex and let m ≥ Vol A. Then

{x ∈ R
d : Vol (conv (A ∪ {x})) ≤ m} ⊆ λA + (1 − λ)cA,

where cA is the barycenter of A and λ = (d + 1)(m/(Vol A) − 1) + 1.

Proof The proof for d = 3 can be found in [3, Lem. 13]. The proof extends directly
to the case of an arbitrary dimension d ∈ N. ��
In view of Lemma 7.8, one can fix B to be the integral hull of λA+ (1−λ)cA, that is

B = conv ((λA + (1 − λ)cA) ∩ Z
d).

It may still be the case that B is chosen too large in the sense that B may contain
vertices v with the property that Vol (conv(A ∪ {v})) > m. Clearly, if a polytope
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Fig. 8 Replacing a sandwich by two other sandwiches with a smaller volume gap

P ∈ Pd(Z
d) occurs in (A, B) and has the property Vol P ≤ m then P cannot contain

v as above. This means that one can iteratively make B smaller by removing vertices
v as above, as long as such vertices exist. More precisely, while v as above exists, one
iteratively replaces B by conv ((B ∩ Z

d) \ {v}). We call this procedure the reduction
of B relative to A. Having carried out the above reduction of B for each A, we complete
the initialization of the sandwich factory.

7.3.3 Iterative Updates of Sandwich Factory

The purpose of the iterative procedure is to reduce themaximumvolume gap occurring
in a sandwich factory. That is, as long as there are sandwiches with positive volume
gap, one considers those sandwiches (A, B) in the sandwich factory, for which the
volume gap Vol B − Vol A is maximized. For each such sandwich (A, B) one picks
a vertex v of B not belonging to A. Every polytope P ∈ Pd(Z

d) with Vol P ≤ m
occurring in (A, B) may or may not contain v. If P contains v, we can enclose P into
the sandwich (conv(A ∪ {v}), B) with a smaller volume gap. If P does not contain v,
we can enclose P into the sandwich (A, conv((B ∩Z

d) \ {v})), whose volume gap is
also smaller. Thus, we can remove the sandwich (A, B) from the factory and replace
it by two other sandwiches (see also Fig. 8).

Here it should also be noticed that, when we let A grow, by considering (conv(A∪
{v}), B), we can make B smaller. Indeed, B may contain vertices w with the property
that Vol (conv(A ∪ {v,w})) > m. Then rather than adding the sandwich (conv(A ∪
{v}), B), we first reduce B relative to conv(A∪ {v}), to a potentially smaller polytope
B ′ and then add (conv(A ∪ {v}), B ′) to the sandwich factory.

7.3.4 Equivalent Sandwiches

While the above algorithmic steps can already be used for finding all polytopes P ∈
Pd(Z

d) with Vol P ≤ m, its efficiency would not be very good as one would generate
many polytopes that are equivalent up to affine unimodular transformation. When for
two sandwiches (A, B) and (A′, B ′) there exists an affine unimodular transformation
φ with φ(A) = A′ and φ(B) = B ′, then, up to affine unimodular transformations,
the lattice polytopes occurring in (A, B) also occur in (A′, B ′) and vice versa. We
call such sandwiches (A, B) and (A′, B ′) equivalent. Thus, if a sandwich (A, B) is
already present in the sandwich factory, there is no need to add (A′, B ′). Based on
this idea, we add a new sandwich (A, B) to the sandwich factory only if the factory
does not already contain a sandwich equivalent to (A, B). The test for equivalence of
sandwiches can be reduced to the test for equivalence of lattice polytopes as follows.
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x

y

z

Fig. 9 An example of a sandwich (A, B) in dimension two (left) and the three-dimensional lattice polytope
PA,B assigned to this sandwich (right), whose affine normal form is used to distinguish sandwiches up to
affine unimodular transformations

If (A, B) is a sandwich then, by embedding 3A into Rd × R at heights 1 and −1 and
3B at height 0, we obtain the polytope

PA,B := conv
(
(3A) × {1}︸ ︷︷ ︸

height 1

∪ (3B) × {0}︸ ︷︷ ︸
height 0

∪ (3A) × {−1}︸ ︷︷ ︸
height −1

) ∈ Pd+1(Z
d × Z),

see also Fig. 9.

Lemma 7.9 Two sandwiches (A, B) and (A′, B ′) are equivalent if and only if the
polytopes PA,B and PA′,B′ are equivalent up to affine unimodular transformations.

Proof The first implication is direct. If (A, B) and (A′, B ′) are equivalent, then there
exists an affine unimodular transformation φ ∈ Aff(Zd) such that φ(A) = A′ and
φ(B) = B ′. Themapφ×Id ∈ Aff (Zd × Z) then satisfies (φ×Id)(PA,B) = PA′,B′ . In
order to show the reverse implication assume that PA,B and PA′,B′ are equivalent and
let ψ ∈ Aff (Zd × Z) be an affine unimodular transformation such that ψ(PA,B) =
PA′,B′ . Note that for both P = PA,B and P = PA′,B′ the vector v = ed+1 is the unique
direction such that |hP (v)−hP(−v)| = 2. Thereforeψ maps the intersection of PA,B

with any of the hyperplanes Rd × {−1}, Rd × {0}, and R
d × {1} to the intersection

of PA′,B′ with the respective hyperplane. Here we use that, as PA,B is symmetric with
respect to the hyperplane R

d × {0}, we may assume that the intersections with the
hyperplanes Rd × {−1} and R

d × {1} are not permuted by ψ . In particular, ψ(3B ×
{0}) = 3B ′ × {0} and, as B is full-dimensional, ψ(Rd × {h}) = R

d × {h} for any
h ∈ R. Furthermore, we may assume that ψ is linear and, hence, with respect to the
standard basis of Rd+1 to be of the form

(
U t
0 1

)
∈ GL(Zd+1),
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for a unimodular matrix U ∈ GL(Zd) and an integer vector t ∈ Z
d . Denote by

φ ∈ GL(Zd) the linear unimodular transformation corresponding toU . Thenψ(3A×
{−1}) = (φ(3A) − t) × {−1} and ψ(3A × {1}) = (φ(3A) + t) × {1}. In particular,
φ(3A) − t = 3A′ = φ(3A) + t and therefore one has t = 0. So φ is a unimodular
transformation such thatφ(A) = A′ andφ(B) = B ′, and hence the sandwiches (A, B)

and (A′, B ′) are equivalent. ��

7.3.5 Summary of the Sandwich-Factory Algorithm

We give a complete description of the algorithm we have developed above.

Algorithm 7.10 (Sandwich-factory algorithm)

Input: Dimension d ∈ N and volume bound m ∈ N.
Output:A list of all full-dimensional lattice polytopes P ∈ Pd(Z

d)with Vol P ≤
m, up to affine unimodular transformations.
Step 1: Enumerate, up to affine unimodular transformations, all empty lattice
simplices A with Vol A ≤ m.

• For each A as above, choose B to be the integral hull conv((λA + (1− λ)cA)

∩ Z
d), where cA is the barycenter of A and

λ = (d + 1)

(
m

Vol A
− 1

)
+ 1

and then reduce B relative to A.
• Initialize the sandwich factory F with all pairs (A, B) obtained as above.

Step 2: While F contains sandwiches with a positive volume gap, carry out the
following steps for sandwiches (A, B) whose volume gap is maximized:

• pick a vertex v of B, not contained in A,
• fix A′ := conv (A ∪ {v}),
• compute the reduction B ′ of B relative to A′,
• fix B ′′ := conv ((B ∩ Z

d) \ {v}),
• add (A′, B ′) toF , unlessF already contains a sandwich equivalent to (A′, B ′),
• add (A, B ′′) toF , unlessF already contains a sandwich equivalent to (A, B ′′).

Step 3: In this step, all sandwiches (A, B) in F have the form A = B. Return the
set of all A with (A, B) ∈ F . Up to affine unimodular transformations, this is the
set of all polytopes P ∈ Pd(Z

d) with 1 ≤ Vol P ≤ m.

Remark 7.11 In Sect. 7.3.2 we described an efficient implementation of Step 1 for
dimension two and three (the dimensions we are interested in, in the context of this
paper). For higher dimensions we do not specify how to implement Step 1 and only
notice that it can be implemented algorithmically. We also note that rather than using
empty lattice simplices of normalized volume at most m, one can start with all lattice
simplices of normalized volume at most m. Such simplices can be enumerated using
the Hermitian normal form (see [26, Sect. 4.1]) rather easily.
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7.4 Sandwich-Type Search for Subpolytopes

In this section we describe our approach towards the task of finding all subpolytopes
fulfilling certain conditions inside a given bounding polytope. For our purposes we
found it computationally efficient to employ an algorithm similar to the one presented
in Sect. 7.3. Our enumeration employs three different variations of this task that we
solve using three different variations a., b., and c. of Algorithm 7.12. In particular,
variation a. is employed for the search for full-dimensional subpolytopes inside of a
maximal polytope as obtained using Algorithm 7.2, while variations b. and c. deal with
the search for full-dimensional or 2-dimensional subpolytopes of a bounding polytope
as in Lemma 7.5. Note that a sandwich-type search seems particularly natural for the
search inside bounding polytopes as in Lemma 7.5, as by Remark 7.6 it suffices
to search for those subpolytopes that contain a given segment I depending on the
bounding polytope.

For a sandwich (A, B) ∈ P(Z3)2 we call the number |B ∩Z
3| − |A ∩Z

3| ≥ 0 the
lattice point gap of (A, B). Furthermore, for a lattice polytope P ∈ P(Z3) let Volr P
denote the normalized k-dimensional volume relative to the affine lattice aff(P) ∩Z

3

where k ∈ [3] is the dimension of P . Generalizing the concept of the reduction of a
lattice polytope B ⊇ A relative to A used in Algorithm 7.10, we define the reduction
of B relative to A with respect to the conditions Volr ≤ m1 and V ( · , · , P1) ≤ m2 to
be the polytope

B ′ = conv
{
x ∈ B ∩ Z

3 : Ax := conv (A ∪ {x}) satisfies
Volr Ax ≤ m1, V (Ax , Ax , P1) ≤ m2

}
.

Algorithm 7.12 (Sandwich approach to subpolytopes)

Input:

for a: A bounding box M ∈ P3(Z
3), a lattice polytope P1 ∈ P(Z3), and a

bound m ∈ N.
for b/c: A bounding box M ∈ P3(Z

3), a segment I ⊂ M , a lattice polytope
P1 ∈ P(Z3), and bounds m1,m2 ∈ N.

Output:

for a: A list of all full-dimensional lattice polytopes P2, up to translations,
with P2 ⊆ M such that Vol P2 ≤ m and V (P2, P2, P1) ≤ m.
for b: A list of all full-dimensional lattice polytopes P2, up to translations,
with I ⊂ P2 ⊆ M such that Vol P2 ≤ m1 and V (P2, P2, P1) ≤ m2.
for c: A list of all 2-dimensional lattice polytopes P2, up to translations, with
I ⊂ P2 ⊂ M such that Vol2 P2 ≤ m1 and V (P2, P2, P1) ≤ m2.

Step 1:

for a: Initialize the sandwich factoryF with pairs (S, M)where S ranges over
all empty simplices in M satisfying the bounding conditions (in particular,
V (S, S, P1) ≤ m). Set m1 = m2 = m.
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for b/c: Initialize the sandwich factory F with the pair (I , M ′), where M ′ is
the reduction of M relative to I with respect to the conditions Volr ≤ m1 and
V ( · , · , P1) ≤ m2.

Step 2: While F contains sandwiches with positive lattice point gap, carry out
the following steps for sandwiches (A, B) having the maximal lattice point gap
among the sandwiches in F :

• pick a vertex v of B, not contained in A,
• fix A′ := conv (A ∪ {v}) (note that, as B is reduced relative to A with respect

to the conditions Volr ≤ m1 and V ( · , · , P1) ≤ m2, the polytope A′ is ensured
to satisfy the bounding conditions),

• (for c:) if dim A′ = 2 and dim B = 3, set B := B ∩ aff(A′),
• compute the reduction B ′ of B relative to A with respect to the conditions
Volr ≤ m1 and V ( · , · , P) ≤ m2,

• fix B ′′ := conv ((B ∩ Z
d) \ {v}),

• add (A′, B ′) to F , unless F already contains a translate of (A′, B ′),
• add (A, B ′′) to F , unless F already contains a translate of (A, B ′′),
• remove (A, B) from F .

Step 3: In this step all sandwiches (A, B) have lattice point gap 0 and therefore
fulfill A = B. Return a list of A for all sandwiches (A, B) ∈ F .

Remark 7.13 While the overall structure of Algorithm 7.12 above is very similar to
Algorithm 7.10, there are some differences. In Algorithm 7.12 we also work with
sandwiches (A, B) for which dim A < dim B and therefore the volume gap is not
necessarily strictly decreasing in our iterative steps. We deal with this by considering
the lattice point gap of a sandwich instead. Furthermore, we identify two sandwiches
(A, B) and (A′, B ′) only if there is a translation vector t ∈ Z

3 such that (A′, B ′) =
(A + t, B + t). Also note that, in addition to a volume bound for P2, we also have a
bound for the mixed volume V (P2, P2, P1) and therefore perform a slightly different
reduction step.
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