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Abstract
Solving mixed-integer nonlinear optimization problems (MINLPs) to global optimality is
extremely challenging. An important step for enabling their solution consists in the design
of convex relaxations of the feasible set. Known solution approaches based on spatial
branch-and-bound become more effective the tighter the used relaxations are. Relaxations
are commonly established by convex underestimators, where each constraint function is
considered separately. Instead, a considerably tighter relaxation can be found via so-called
simultaneous convexification, where convex underestimators are derived for more than one
constraint function at a time. In this work, we present a global solution approach for solving
mixed-integer nonlinear problems that uses simultaneous convexification. We introduce a
separation method that relies on determining the convex envelope of linear combinations
of the constraint functions and on solving a nonsmooth convex problem. In particular, we
apply the method to quadratic absolute value functions and derive their convex envelopes.
The practicality of the proposed solution approach is demonstrated on several test instances
from gas network optimization, where the method outperforms standard approaches that use
separate convex relaxations.
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1 Introduction

In this work, we develop a global solution approach for solving mixed-integer nonlinear
Problems (MINLPs). Such optimization problems belong to the most challenging optimiza-
tion tasks, due to the fact that they combine integral decision variables as well as nonlinear
and nonconvex constraint functions. In this work, we focus on handling the latter property.
MINLPs abound in many real-world applications such as energy and distribution networks,
for example gas networks (e.g. [18]), and chemical process design (e.g. [9]). See [3] for a
detailed overview.

The most commonly used solution strategy for general MINLPs consists in a Branch and
Bound algorithm (see, e.g., the textbook [16]). It is implemented and enhanced in several
state-of-the-art software packages like Antigone [22], Baron [30] or SCIP [8]. We refer to
[5] for an extensive survey on MINLP solvers.

The main idea of the Branch and Bound algorithm is to generate a tree structure of
subproblems that arise from a subdivision of the feasible set. For each subproblem, a convex
relaxation of the feasible set is generated, providing lower bounds for the original subproblem,
where the quality of these bounds depends on the tightness of the relaxation.

As weak relaxations usually result in a huge number of subproblems and, hence, cre-
ate branch and bound trees of extremely large sizes, one is interested in constructing the
tightest possible convex relaxations leading to smaller branch and bound trees and allow-
ing to find faster good feasible solutions and appropriate branching rules. In a common
approach to derive convex relaxations for MINLPs, the nonlinear functions appearing in the
model description are replaced by convex under- and/or concave overestimators. Hence, a
broad field of research is devoted to finding the tightest possible convex under- and concave
overestimators (the so-called convex and concave envelopes) for different types of relevant
functions. A description of the convex envelope was obtained explicitly for several specific
classes of functions, e.g. for multilinear functions [23], for fractional terms [28] or for odd
monomials [15]. Further results handle functions with specific curvature properties such as
edge-convexity/concavity and indefiniteness [10,12,17,21]. See also [4] for a list of publica-
tions on this subject.

Most of these results have in common that they analyze the convex envelope of a sin-
gle real-valued function. However, the convex hull of a feasible set defined by multiple
constraint functions is not completely described by the convex envelope of every single con-
straint. As a consequence, the standard relaxation of the feasible set can be significantly
tightened by considering the interaction between multiple constraint functions. This inter-
action was already studied in [27]. In the following, we use the authors’ nomination and
refer to the convex hull of a set given by multiple constraints as simultaneous convexifica-
tion. The Reformulation-Linearization Technique (RLT, e. g. see [26]) and approaches based
on semidefinite programming (SDP) techniques, e.g. see [14], can be interpreted as early
results in this context. In particular, for the special case of quadratic bivariate functions, a
simultaneous convexification is derived in [1], combining RLT and SDP techniques. In [2] a
more general characterization is given. The convex hull of certain feasible sets defined by a
vector-valued function can be described by the convex envelopes of all linear combinations
of constraint functions.

In this work, we make use of that result to derive a refinement of the standard relaxation
of relatively general MINLPs. We present a global optimization method that includes the
refinement into an algorithmic framework by using a cutting plane approach. See [11] for an
early publication on this strategy, or [6] for an extension to the nonsmoothmixed-integer case.
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The solution of a relaxed problem is separated by a linear inequality in order to iteratively
converge to the optimumof the original problem. In our case,we separate from the convex hull
of the feasible set by solving a convex optimization problem. The problem is not continuously
differentiable. It relies on an algorithmically utilizable representation of the convex envelope
of linear combinations of the constraint functions.

The solution of general MINLPs is often beyond what is currently possible in practice
due to their computational difficulty. Therefore, the abstract framework presented here is
rolled out for a general class of bivariate quadratic absolute value functions. We first derive
the simultaneous convexifications and explain the details of the solution algorithm. We then
show experimental results for an application in the operation of gas networks. The results
indicate that the developed separation strategy is able to derive significantly tighter bounds
than the standard relaxation.

The remainder of this paper is structured as follows. In Sect. 2 we briefly discuss the
considered problem class and solution strategy. We motivate how standard relaxations of the
feasible set are obtained andwhy there is room for improvements. In Sect. 3we recap themain
result on simultaneous convexification and use it to derive a separation problem and cutting
planes for the convex envelope of the feasible set based on the solution of this problem. We
further present some definitions and basic results concerning the convex envelope, generating
sets and minimizing simplices. Section 4 introduces quadratic absolute value functions in
the way they are used in gas network optimization. For these specific functions, we derive
the convex envelopes of their linear combinations in order to apply our optimization method.
The practical impact of our work is exemplarily evaluated in Sect. 5.

The results presented in this paper are also given in the dissertation by Mertens [20].
Preliminary considerations and computations are already introduced in the dissertation by
Merkert [19].

2 Solvingmixed-integer nonlinear optimization problems

We assume mixed-integer nonlinear optimization problems (MINLPs) given in the form

min c�(x, z)

s.t. (x, z) ∈ X

X := {
(x, z) | z = g(x), x ∈ D

}
(OP)

with cost vector c ∈ R
n+m , set D ⊆ R

n and a continuous function g : D → R
m . In general,

the constraint function g is nonconvex, the feasible set X is nonconvex and Problem (OP)
has multiple locally optimal solutions. Potential integrality constraints on certain entries of
x are implied by D.

As this work aims on tackling the problems arising from nonlinearities in MINLPs, we
omit the integrality restrictions in the following and assume that D is compact and con-
vex. This assumption is usually satisfied by considering the continuous relaxation of a given
mixed-integer problem. However, even without the integrality constraints, not all MINLPs
can be formulated as Problem (OP). Only certain types of dependencies are allowed and
bounds on z are only given implicitly by x . This is a relevant restriction for general MINLPs.
Nevertheless, the proposed structure is well suited for demonstrating the effect of simulta-
neous convexification. Furthermore, at least a substructure of the form X is given in almost
anyMINLP. The developed strategies may therefore still be applied on more general feasible
sets.
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A common strategy for solving Problem (OP) is the so-called Spatial Branch and Bound
Method. Therein, a convex superset X̄ ⊇ X of the feasible set and the corresponding relaxed
problem

min c�(x, z)

s.t. (x, z) ∈ X̄
(RP)

are considered. Problem (RP) is convex and yields a lower bound for Problem (OP). It
may therefore be used as a tool to evaluate the quality of solutions and, by integrating this
approach into a branch and bound framework, to achieve convergence to global optimality
under certain assumptions. For a detailed introduction on global mixed-integer nonlinear
optimization, we refer to [16] and [3].

We briefly discuss different approaches of constructing a relaxed feasible set X̄ . Obviously,
the choice of X̄ is crucial for the quality of the resulting lower bound given by Problem (RP).
Problem (RP) gives the best lower bound of Problem (OP), if X̄ is chosen as small as possible.
The smallest possible convex superset of X is conv(X). In fact, the objective value of both
problems is equal in this case because of their identical linear objective function.

As conv(X) is hard to determine in general, it is common to make use of convex under-
estimators.

Definition 1 Let D ⊆ R
n convex and g : D → R

m continuous.

1. A convex function glo : D → R
m with glo(x) ≤ g(x) for all x ∈ D is called a convex

underestimator of g on D. Correspondingly, a concave function gup : D → R
m with

gup(x) ≥ g(x) for all x ∈ D is called a concave overestimator of g on D.
2. The convex envelope of g on D is defined by

vexD[g](x) := sup{h(x) | h(x̄) ≤ g(x̄) ∀ x̄ ∈ D, h convex}.
A standard approach is now given by X̄ = X0 with

X0 := {
(x, z) | glo(x) ≤ z ≤ gup(x), x ∈ D

}
,

a convex underestimator glo and a concave overestimator gup of g. Tighter estimators in
general lead to a tighter relaxed feasible set X0. The tightest possible estimators are the
convex/concave envelopes, so we define

X∗ := {
(x, z) | vexD[g](x) ≤ z ≤ − vexD[−g](x), x ∈ D

}
.

Note that conv(X) � X∗
� X0 holds in general. Hence, the resulting lower bound

obtained by the respective Problem (RP) with X̄ = X0, or even X̄ = X∗, is sub-optimal.
This observation motivates the remainder of this work. In the next section, we introduce

a strategy that generates additional constraints in order to tighten the relaxed feasible set X̄ ,
if it is not equal to conv(X). Afterwards, we exemplarily evaluate this strategy for a special
type of constraint functions.

3 A separationmethod using simultaneous convexification

Asmotivated above, the convex envelopes of the single constraint functions are not sufficient
to describe the convex hull of the feasible set of Problem (OP). Instead, a result in [2] gives
an exact characterization. We aim to integrate this result into an algorithmic framework by a
separation strategy.
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For a given point x ∈ X̄ , we either confirm that x ∈ conv(X) holds, or compute a linear
inequality that is valid for conv(X) but not for x . This allows us to design a cutting plane
method [11]. First, the relaxed Problem (RP) is solved with an arbitrary X̄ ⊇ conv(X).
Second, a linear inequality, that separates the optimal solution from conv(X), is added to the
description of X̄ . This procedure can be iterated in order to reduce the size of the relaxed
feasible set in every step. It can also be integrated into a Branch and Bound framework as an
additional step. This combination is often called Branch and Cut.

In the first part of this section, we present the result in [2] that characterizes the convex
hull of the feasible set as the intersection of inifinitely many sets. We further design an opti-
mization problem that identifies one of the infinitely many sets that is suitable for separating
a given point. Afterwards, we translate the solution of this problem into a linear inequality.
The problem relies on the availability of the convex envelope of linear combinations of the
constraint functions. We therefore discuss some well-known results on the structure of the
convex envelope in the last part of this section.

3.1 Separation problem

We aim to derive a separation problem for the convex hull of the feasible set of Problem (OP).
We denote it by

Yg := conv(X) = conv
({(x, g(x)) | x ∈ D}). (1)

A result in [2] states that the convex hull of a vector of continuous functions on a compact,
convex domain can be described using the convex envelopes of all possible linear combina-
tions of the components.

Proposition 1 (Ballerstein, 2013 [2]) Given a compact, convex domain D ⊆ R
n and a

continuous function g : D → R
m, x �→ g(x) := (

g1(x), . . . , gm(x)
)�

. Let Yg be as defined
in (1), i.e. the convex hull of the feasible set of Problem (OP). Then it is

Yg =
⋂

α∈Rm

Mg(α) (2)

with

Mg(α) := {(x, z) ∈ R
n+m | α�z ≥ vexD[α�g](x), x ∈ D}. (3)

In the following, we use this representation to derive a convex optimization problem
that provides suitable α for separating points from the convex hull of the feasible set of
Problem (OP). To be more precise, we derive an algorithmic framework for the following
separation task.

Separation Task 1 Input: A non-empty set D ⊆ R
n compact and convex, a continuous

function g : D → R
m and a point (x̄, z̄) ∈ D × R

m.
Task: Decide whether (x̄, z̄) ∈ Yg, and, if not, return a vector α ∈ R

m with

(x̄, z̄) /∈ Mg(α).

Let a point (x̄, z̄) ∈ D × R
m be given. According to Proposition 1, we have

(x̄, z̄) /∈ Yg ⇔ ∃ α ∈ R
m : (x̄, z̄) /∈ Mg(α)

⇔ ∃ α ∈ R
m : vexD[α�g](x̄) > α� z̄.

123



312 Journal of Global Optimization (2021) 80:307–340

Observe that due to scaling, it suffices to consider only linear multipliers α ∈ R
m from

the unit ball Bm := {α ∈ R
m | ||α||2 ≤ 1}. Thus, we can check whether the given point

(x̄, z̄) ∈ D × R
m is contained in Yg by solving the optimization problem

min
α∈Bm

h(α) := α� z̄ − vexD[α�g](x̄). (SP)

Problem (SP) has the following properties.

Proposition 2 1. For all α ∈ R
m, h(α) < 0 holds if and only if (x̄, z̄) /∈ Mg(α).

2. Problem (SP) is convex and h : R
m → R is continuous on Bm. In particular, there exists

an optimal solution to Problem (SP).
3. Let α� be an optimal solution to Problem (SP). Then h(α�) ≥ 0 holds if and only if

(x̄, z̄) ∈ Yg.

Proof 1/3. By construction and Proposition 1.
2. The feasible set Bm is non-empty, compact and convex, and α� z̄ is linear in α. We show

that vexD[α�g](x̄) is concave in α: Indeed, for arbitrary α, β ∈ R
m and λ ∈ [0, 1] we

obtain

λ vexD[α�g](x̄) + (1 − λ) vexD[β�g](x̄)
= vexD[λα�g](x̄) + vexD[(1 − λ)β�g](x̄)
≤ vexD[λα�g + (1 − λ)β�g](x̄)
= vexD[(λα + (1 − λ)β)�g](x̄)

The inequality holds, as vexD[ f1] + vexD[ f2] is a convex underestimator of f1 + f2
for arbitrary f1, f2 : D → R, which is a basic fact from convex analysis (see e.g. [16,
p.157]).
Thus, the objective function h of Problem (SP) is convex on any open superset of Bm

and therefore also continuous on Bm . ��
Note that, in the case of (x̄, z̄) /∈ Yg , it is not necessary to solve Problem (SP) to optimality

in order to fulfill Separation Task 1. In fact, it suffices to find a point α ∈ Bm with objective
value h(α) < 0 to derive (x̄, z̄) /∈ Yg .

From a practical point of view, it is important to mention that an efficient solvability of
Problem (SP) heavily relies on the availability of an algorithmically utilizable representa-
tion of the convex envelope of α�g for every α ∈ Bm . Moreover, note that the function
vexD[α�g](x) is in general not continuously differentiable in α.

3.2 Deriving linear inequalities

Weassume that a solution to Problem (SP) can be computed. In order to algorithmically utilize
this solution in a cutting plane approach, we construct a linear inequality that separates the
point (x̄, z̄) from Yg based on this solution. We establish the following notation for our
analysis.

Definition 2 Let Z ⊆ R
n be a closed convex set. Furthermore, for β ∈ R

n and β0 ∈ R, we
consider the linear inequality β�z ≤ β0 and the corresponding hyperplaneH(β, β0) := {z ∈
R
n | β�z = β0}.
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1. The inequality β�z ≤ β0 is called a valid inequality for Z , if β�z ≤ β0 holds for all
z ∈ Z .

2. Let z̄ ∈ Z . We call H(β, β0) a supporting hyperplane of Z at z̄, if β�z ≤ β0 is valid for
Z and z̄ ∈ H(β, β0).

3. Let z̄ /∈ Z . We callH(β, β0) a cutting plane of Z for z̄, if β�z ≤ β0 is valid for Z but not
valid for {z̄}.
The respective separation task using cutting planes is defined as

Separation Task 2 Input: A set D ⊆ R
n compact and convex, a continuous function

g : D → R
m and a point (x̄, z̄) ∈ D × R

m.
Task: Decide whether (x̄, z̄) ∈ Yg = conv

({(x, g(x)) | x ∈ D}), and, if not, return a
vector (b, a, b0) ∈ R

n+m+1, so that H(b, a, b0) = {(x, z) ∈ R
n+m | b�x + a�z = b0}

is a cutting plane of Yg for (x̄, z̄).

Our analysis and algorithmic results are summarized in the following proposition.

Proposition 3 Let D ⊆ R
n be compact and convex and g : D → R

m continuous.

1. Let α ∈ R
m and x̄ ∈ D be fixed. Let (β, β0) ∈ R

(n+1)+1 with βn+1 = −1 define a
supporting hyperplane H(β, β0) of the epigraph epi

(
vexD[α�g], D)

of the function
vexD[α�g] at the point

(
x̄, vexD[α�g](x̄)). Then, a valid linear inequality for Yg is

given by

(β1, . . . , βn,−α)�(x, z) ≤ β0 (4)

We denote Vα,x̄ [β, β0] := H(β1, . . . , βn,−α, β0).
2. Let (x̄, z̄) /∈ Yg and let α� be an optimal solution to Problem (SP). Let (β, β0) ∈ R

(n+1)+1

with βn+1 = −1 define a supporting hyperplaneH(β, β0) of epi
(
vexD[α��g], D)

at the

point
(
x̄, vexD[α��g](x̄)). Then Vα�,x̄ [β, β0] is a cutting plane of Yg for (x̄, z̄).

Proof 1. First, we define the half-space given by (4) intersected with box D as

Ng,x̄ (α, β, β0) := {
(x, z) ∈ R

n+m | (β1, . . . , βn,−α)�(x, z) ≤ β0, x ∈ D
}
.

H(β, β0) is a supporting hyperplane of epi
(
vexD[α�g]) at the point (x̄, vexD[α�g](x̄)).

For every (x, ẑ) ∈ H(β, β0) it follows

ẑ ≤ vexD[α�g](x)
and

ẑ = β0 − ∑n
i=1 βi xi

βn+1
=

n∑

i=1

βi xi − β0.

For any point (x, z) ∈ Mg(α) we have

−α�z + vexD[α�g](x) ≤ 0

⇔ −α�z +
n∑

i=1

βi xi − β0 ≤ 0

and therefore (x, z) ∈ Ng,x̄ (α, β, β0). This implies Mg(α) ⊆ Ng,x̄ (α, β, β0), and that the
linear inequality

(β1, . . . , βn,−α)�(x, z) ≤ β0

is valid for Yg .
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2. Let (x̄, z̄) /∈ Yg . Using Proposition 2 we obtain

α�� z̄ < vexD[α��g](x̄).

As H(β, β0) is a supporting hyperplane at
(
x̄, vexD[α��g](x̄)), we have

(
x̄, vexD[α��g](x̄)) ∈ H(β, β0).

We follow the proof of 1. and derive

n∑

i=1

βi x̄i − β0 = vexD[α��g](x̄).

Combining these equations, we have

α�� z̄ <

n∑

i=1

βi x̄i − β0.

This leads to (x̄, z̄) /∈ Ng,x̄ (α
�, β, β0) and to our statement.

��

A direct consequence of Proposition 3 is that we can find an exact representation of Yg
based on supporting hyperplanes of the epigraph of the convex envelopes for different α. For
this, let (β(x, α), β0(x, α)) ∈ R

(n+1)+1 with βn+1(x, α) < 0 define an arbitrary supporting
hyperplane H(β(x, α), β0(x, α)) of epi

(
vexD[α�g]) at (x, vexD[α�g](x)). Then it is

Yg =
⋂

α∈Rm

( ⋂

x∈D
Ng(α, β(x, α), β0(x, α))

)
.

Concluding these results, we are able to design cutting planes for the set Yg by solv-
ing a convex nonlinear optimization problem. We further need to effectively construct
vexD[α�g](x̄) as well as a supporting hyperplane at a given point x̄ for arbitrary α ∈ Bm .
The next subsection deals with the latter two parts.

3.3 Structure of the convex envelope

We present some well-known results concerning the structure of the convex envelope of a
given function (e.g., see [16]). They are used in Sect. 4 in order to exemplarily apply the
separation strategy developed above.
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The value of the convex envelope of g : R
n → R at a certain point x ∈ D ⊆ R

n can be
determined by the following nonconvex optimization problem.

vexD[g](x) = min
k∑

i=1

λi · g(xi )

s.t.
k∑

i=1

λi xi = x

k∑

i=1

λi = 1

λi ≥ 0, xi ∈ G, i = 1, . . . , k

k ∈ Z≥0

(EP)

with a suitably chosen G ⊆ D. Note that k is bounded by n + 1, which is a consequence
from Caratheodory’s theorem.

The most general choice for G in Problem (EP) is G = D. We will, however, discuss
some other valid choices that result in an equivalent problem in the following. For instance,
the setG can be chosen as a real subset of D by using the concept of generating sets. Thereby,
we can often strengthen the problem formulation significantly.

Definition 3 (Tawarmalani and Sahinidis, 2002 [29]) For a continuous function g : D → R

on a compact convex domain D ⊆ R
n , we denote the generating set of g on D by

G[g, D] := {
x ∈ D | (

x, g(x)
) ∈ extr

(
conv(epi(g, D))

)}
.

By definition of the generating set, we equivalently formulate Problem (EP) by setting
G = G[g, D]. Next, we provide a necessary condition that allows us to exclude feasible
points from the generating set.

Definition 4 Let a continuous function g : R
n → R be given. The set of concave directions

of g at x̄ ∈ R
n is given by

δ[g, x̄] := {d ∈ R
n | ∃ ε > 0 : hg,x̄,d(λ) := g(x̄ + λd) strictly concave on [−ε, ε]}.

In the case of g being twice continuously differentiable at x̄ , the set of concave directions
at x̄ ∈ R

n is given by δ[g, x̄] = {d ∈ R
n | d�Hg(x̄)d < 0}, where Hg(x) denotes the

Hessian Matrix of g at x .
A necessary condition for an interior point x of D to be an element of the generating

set is that the function g must be strictly locally convex at x . This leads to the following
observation.

Observation 1 (see [29, Cor. 5]) Let D ⊆ R
n be convex and g : D → R continuous.

Furthermore, let int(D) denote the interior of D. Then, for every x̄ ∈ int(D)with δ[g, x̄] �= ∅,
we have that x̄ /∈ G[g, D].

Throughout our analysis, it is often useful to not set G equal toG[g, D] in Problem (EP),
but to choose a supersetG ⊇ G[g, D]withG ⊆ D. In certain cases, this will especially allow
us to find an optimal solution {λ�; x�

1, . . . , x
�
n+1} of Problem (EP) with a reduced number of

nonzero components of the vector λ� ∈ R
n+1. To indicate nonzero components of vector λ�,

we define I (λ�) := {i ∈ {1, . . . , n + 1} | λ�
i > 0}.
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Definition 5 For D ⊆ R
n , g : D → R, x̄ ∈ D and some G ⊆ D, let {λ�; x�

1, . . . , x
�
n+1}

denote an optimal solution to Problem (EP) such that the cardinality |I (λ�)| is minimal. Then,
we call

Sg,G (x̄) := conv
({x�

i | i ∈ I (λ�)})

aminimizing simplex for x̄ w.r.t. g andG. If |I (λ�)| ≤ 2, thenwe also use the termminimizing
segment for Sg,G (x̄).

In order to determine the convex envelope of a specific function, it is advantageous to know
the dimension of the minimizing simplices beforehand. If there exists, for some G ⊆ D and
for every x ∈ D, a minimizing segment w.r.t. g and G, then we say that the convex envelope
of g (on D) consists of minimizing segments w.r.t. G. Note also that in this case the convex
envelope of g also consists of minimizing segments with respect to every superset Ḡ ⊇ G.

Furthermore, we can exclude points and pairs of points from being part of minimizing
simplices by again using the concept of concave directions.

Observation 2 Let D ⊆ R
n be convex and g : D → R be continuous. Let conv({xi | i ∈

{1, . . . ,m}}) be a minimizing simplex for a given x̄ w.r.t. g and D.

1. If xi ∈ int(D) holds for some i ∈ {1, . . . ,m}, then δ[g, xi ] = ∅
2. For every pair xi , x j , i �= j, i, j ∈ {1, . . . ,m} there exists x ′ ∈ conv

({xi , x j }) with
(xi − x j ) ∈ δ[g, x ′]

4 Convex envelope of quadratic absolute value functions

The proposed separation strategy relies on the availability of an algorithmic utilizable rep-
resentation of the convex envelope of linear combinations of the constraint functions. As
deriving the convex envelope of arbitrary functions is beyond the capability of the current
state of research, it is common to only consider a specific function class. In the following, we
exemplarily restrict ourselves to bivariate quadratic absolute value functions. We derive the
convex envelope for these kind of functions, which allows us to apply the separation strategy
on the corresponding constraint sets. As quadratic absolute value functions are used in the
challenging field of gas network operation, we are also able to evaluate the impact of our
strategy on a real world application. This is done in Sect. 5, where we derive stronger convex
relaxations for some small examples of gas network optimization problems.

In this section, we briefly describe the gas network setting and the resulting constraint
structure.We present some analytic tools and concepts that help to derive the convex envelope
in general, and apply them to the given function class. The concrete representation of the
envelopes is mostly moved to the appendix.

4.1 Constraint structure in gas networks

A gas network in its simplest form consists of a system of connected pipes. In our setting,
we neglect all other components like compressor stations or control valves. We consider
the stationary case without dependency on time. For more details on modeling optimization
problems on gas networks, the reader is referred to [13]. Gas flows through the pipes based on
the pressure differences at the respective endpoints. Mathematically, the network is modeled
as a graph with arcs representing pipes and nodes representing coupling points. We focus on
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Fig. 1 A single junction in a gas
network

π2

π3 π4

q1

q2

q3

analyzing a single junction in a gas network consisting of four nodes and three arcs. Every
node has a corresponding squared pressure variable πi (i = 1, 2, 3, 4) and every arc has a
corresponding flow variable q j ( j = 1, 2, 3). See Fig. 1 for a visualization. For a commonly
used algebraic approximation of the underlying physics, the relevant constraints connecting
these values are given by

c1 · |q1|q1 = π1 − π3

c2 · |q2|q2 = π2 − π3

c3 · |q3|q3 = π3 − π4

q3 = q1 + q2 (5)

with parameter c ∈ R
3, cf. [13].

Note that the direction of the flow is given by the sign of each flow variable. The respective
flow is directed as shown in Fig. 1 for a positive sign and the other way around for a negative
sign. We reformulate (5) into

ḡ1(q1, q2, π3) := π1 = c1 · |q1|q1 + π3

ḡ2(q1, q2, π3) := π2 = c2 · |q2|q2 + π3

ḡ3(q1, q2, π3) := π4 = −c3 · |q1 + q2|(q1 + q2) + π3. (6)

As motivated in Sect. 3, we derive the convex envelope of ᾱ�ḡ for arbitrary ᾱ ∈ B3. Note
that ḡ is separable and that parameter c is simply a scaling factor. Further, we identify
x1 = q1, x2 = q2 and reduce our analysis on the convex envelope of gα := α�g with

g1(x) := |x1|x1
g2(x) := |x1 + x2|(x1 + x2)

g3(x) := |x2|x2. (7)

Deriving vexD[gα] in the general case is a challenging task. We assume D = [l1, u1] ×
[l2, u2] and further reduce the complexity by fixing the direction of flow in the considered
junction.

When all flow directions are fixed, we can assume that the variables x1 and x2 are
nonnegative. This implies that the underlying functions reduce to quadratic ones and it is
Yg = conv({(x, x21 , x22 , (x1 + x2)2) | x ∈ [l1, u1] × [l2, u2]}). In this case, a complete
description of Yg is given in [1].

The first case not covered by the literature is therefore defined by two fixed flow directions
and one variable flow direction. Without loss of generality, the only variable with unfixed
sign is x1. We assume that x2 ≥ 0 and x1 + x2 ≥ 0 holds, i.e. the single terms reduce to
g1(x) = |x1|x1, g2(x) = (x1 + x2)2 and g3(x) = x22 . Thus, we are interested in determining
the convex envelope of
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Table 1 Conditions and properties for all nine (sub)cases

Case Conditions Curvature w.r.t. comp. 1 Curvature w.r.t. comp. 2 General curvature

1. −α2 ≥ 1 Concave

1.a α2 + α3 ≤ 0 Concave Concave Concave/indefinite

1.b α2 + α3 > 0 Concave Convex Indefinite

2. α2 ≥ 1 Convex

2.a α2 + α3 ≤ 0 Convex Concave Indefinite

2.b. α2 + α3 > 0 Convex Convex

2.b.i. H+ �� 0 Convex Convex Indefinite

2.b.ii. H− � 0 Convex Convex Convex

2.b.iii. H+ � 0, H− �� 0 Convex Convex Indefinite-convex

3. −1 < α2 < 1 Concave-convex

3.a α2 + α3 < 0 Concave-convex Concave Concave/indefinite

3.b. α2 + α3 ≥ 0 Concave-convex Convex

3.b.i H+ �� 0 Concave-convex Convex Indefinite

3.b.ii H+ � 0 Concave-convex Convex Indefinite-convex

gα(x, y) = α1|x1| x1 + α2(x1 + x2)
2 + α3x

2
2

on D = [l1, u1] × [l2, u2] with l2 ≥ 0 for all α ∈ R
3. Function gα is twice continuously

differentiable for x1 �= 0. The Hessian matrix of gα depends on the sign of x1 and is given
by

Hα =
{
H−

α , if x1 < 0,
H+

α , if x1 > 0

with

H−
α = 2

[−α1 + α2 α2

α2 α2 + α3

]
and H+

α = 2

[
α1 + α2 α2

α2 α2 + α3

]
.

Observe that due to scaling we can assume that α1 ∈ {−1, 0, 1}. In case of α1 = 0, gα

reduces to a quadratic function again. For the remainder of the section we restrict ourselves
to α1 = 1, as the case α1 = −1 is similar and can be obtained by symmetric considerations.

There are nine remaining cases that need to be discussed and that depend on the specific
values of the parameters α2 and α3. They define the curvature properties of gα . In order to
distinguish the different cases, we use the following definition.

Definition 6 Let g : R
n → R be continuous and D ⊆ R

n convex.

1. We call g direction-wise (strictly) convex/concave w.r.t. component i on D if, for every
fixed x̄ ∈ D, it is g (strictly) convex/concave on D̄(x̄, i) := {x ∈ D | x j = x̄ j ∀ i �= j}.

2. We call g indefinite on D, if, for every x̄ ∈ D, it is δ[g, x̄] �= ∅ and ξ [g, x̄] �= ∅, with
ξ [g, x̄] being the set of convex directions of g at x̄ , i.e.

ξ [g, x̄] := {d ∈ R
n | ∃ ε > 0 : hg,x̄,d(λ) := g(x̄ + λd) strictly convex on [−ε, ε]}.

Using this notation, the nine different cases can be distinguished as listed in Table 1. The first
column denotes the (sub)cases and the second one lists the conditions on α for the respective
case. Columns three to five give the curvature of gα with respect to both components and in
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general. Concave-convex means that gα is direction-wise concave for x < 0 and direction-
wise convex for x ≥ 0 and indefinite-convexmeans that gα is indefinite for x < 0 and convex
for x ≥ 0. Concave/indefinite indicates that gα is either concave or indefinite.

We do not elaborate on the analysis for all of these cases. Instead, we discuss interesting
results and properties exemplarily on the two most complicated (sub)cases. The remaining
ones are either trivial, are obtained by results in the literature, or can be derived using similar
arguments as presented. For the sake of completeness, they can still be found in the appendix.

Section 4.2 considers Case (2.b.iii) and uses the concept of (n − 1)-convex functions (see
[10]) in order to show that the convex envelope of gα consists of minimizing segments. In
Sect. 4.3, we introduce the direction-wise convex envelope and reduce Case (3) to Case (2).

4.2 Reduction onminimizing segments

We consider Case (2.b.iii). The function gα is direction-wise convex w.r.t. components 1 and
2. Furthermore, it is convex for x1 ≥ 0 and indefinite for x1 < 0. We show that the convex
envelope consists of minimizing segments and derive them for any given point x̄ ∈ D.

For this, we make use of the concept of (n − 1)-convex functions as introduced in [10].

Definition 7 Let g : R
n → R be a twice differentiable function. g is said to be (strictly)

(n − 1)-convex if the function g|xi=x̄i : R
n−1 → R is (strictly) convex for each fixed value

x̄i ∈ R and for all i = 1, . . . , n.

For indefinite functions with this property, the authors give a statement on the structure
of the concave directions.

Lemma 1 [10, Lemma 3.2] Let g : D = [l, u] ⊆ R
n → R be a twice differentiable function,

and let the collection {O1, . . . ,O2n } be the system of open orthants of the space R
n. Then,

the function g is (n − 1)-convex and indefinite if and only if δ[g, x] is nonempty for each
x ∈ D and there exists an index i ∈ {1, . . . , 2n}, such that

δ[g, x] ⊆ Oi ∪ (−Oi )

holds for all x ∈ D.

This statement can be extended to the function gα for Case (2.b.iii). gα can be divided
into an indefinite (n − 1)-convex function for negative x1 and a convex function for positive
x1. The property stated in Lemma 1 therefore also holds for gα as shown in the following
Corollary.

Corollary 1 Let α be as given in Case (2.b.iii). Then, there exists an index i ∈ {1, . . . , 2n}
such that

δ[gα, x] ⊆ Oi ∪ (−Oi )

holds for all x ∈ D.

Proof We divide function gα into two parts and formulate it as

gα(x) =
{
g−
α (x), if x1 < 0,
g+
α (x), if x1 ≥ 0
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with

g−
α (x) := −α1x

2
1 + α2(x1 + x2)

2 + α3x
2
2

and g+
α (x) := α1x

2
1 + α2(x1 + x2)

2 + α3x
2
2 .

The function g+
α is convex because of H+

α � 0, so we have

δ[gα, x] =
{

δ[g−
α , x], if x1 < 0,

∅, if x1 > 0.

The concave directions at a point x with x1 = 0 need to be discussed separately. We consider
the direction d = (d1, d2) and distinguish the two cases d1 = 0 and d1 �= 0. For d1 = 0, the
function

hg,x,d(λ) = gα(x + λd) see Definition 6

is convex in λ as gα is direction-wise convexw.r.t. component 2. Therefore, any d with d1 = 0
is not a concave direction. For d1 �= 0, the function hg,x,d(λ) with λ ∈ [−ε, ε] always has
a domain that includes points whose first component attains values strictly greater zero for
every ε > 0. As gα is convex for x1 > 0, d is again not a concave direction.

Summarizing these results, we obtain

δ[gα, x] =
{

δ[g−
α , x], if x1 < 0,

∅, if x1 ≥ 0

for every x ∈ D. As g−
α is an (n− 1)-convex and indefinite function, we can apply Lemma 1

to conclude that there exists an index i ∈ {1, 2, 3, 4}, such that for all x ∈ D the set of
concave direction of gα at x is a subset of Oi ∪ −Oi . ��

This structure of the concave directions can be used to show the existence of minimizing
segments for every point x̄ ∈ Dw.r.t. a setG (seeDefinition5).As the existence ofminimizing
segments depends on the choice of G, we first define G := G1 ∪ G2 ∪ G3 ∪ G4 with

G1 := {l1} × [l2, u2], G2 := [l1, 0] × {l2},
G3 := [l1, 0] × {u1}, G4 := [0, u1] × [l2, u2].

See Fig. 2a for a graphic representation of the subsets Gi . Using Observation 1, it is easy to
see that G[gα, D] ⊆ G holds.

The existence of minimizing segments is then given by the following Corollary. A similar
case and basic ideas of the proof are already provided in [10, Theorem 3.1].

Corollary 2 Let α be as given in Case (2.b.iii), D = [l, u] with l2 ≥ 0 and G as defined
above. Then the convex envelope of gα on D consists of minimizing segments w.r.t. G.

Proof Note the following preliminary considerations. Let

E := D \ G = {
x ∈ int(D) | x1 < 0

}
.

The proof of Corollary 1 already indicates that g−
α is indefinite. The set of concave directions

of gα at x ∈ E is therefore nonempty.
For the proof, we show that the convex envelope of g on D consists of minimizing

segments w.r.t. D. Using Observation 2, it is easy to see that there are no extreme points of
any minimizing segment inside E . We conclude that the convex envelope of g on D also
consists of minimizing segments w.r.t. G.
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(a) Visualization of the subdivision of G. (b) Visualization of L, p1 and p2.

Fig. 2 Case (2.b.iii)

Assume that there exists a point x̄ ∈ D with a minimizing simplex Sgα,D (x̄) consisting
of at least three different extreme points, i.e.,

x1, x2, x3 ∈ extr
(Sgα,D (x̄)

)
with x1 �= x2 �= x3 �= x1.

According to Observation 2, we have x1, x2, x3 /∈ E , as δ[gα, x] �= ∅ holds for all points
x ∈ E . We conclude that x1, x2, x3 ∈ G and we only need to distinguish two cases:

1. Two of the points x1, x2, x3 are elements of the same subset Gi for some i ∈ {1, . . . , 4}.
Function gα is convex on Gi for every i ∈ {1, . . . , 4}. This leads to a contradiction based
on Observation 2.

2. No two points are elements of the same subset Gi for all i ∈ {1, . . . , 4}. For all possible
combinations, one of the three vectors (x1 − x2), (x2 − x3) and (x3 − x1) is not an
element of the same pair of open orthants Oi ∪ (−Oi ) for all i = 1, . . . , 4. According to
Corollary 1, gα is convex on at least one of the three sets conv

({x1, x2}), conv ({x2, x3})
or conv

({x3, x1}). This contradicts Observation 2 again.
Hence, the convex envelope of g on D consists ofminimizing segments w.r.t. D.We conclude
our statement by using Observation 2 as described above. ��

Next, we construct a minimizing segment for any given point x̄ ∈ D w.r.t. gα and G. For
this, we first analyze the structure of concave directions in order to apply Observation 2.

1. For α2 > 1 we show for each x ∈ D with x1 < 0 that

(−α2, α2 − α1) ∈ δ[gα, x]
holds. In fact, we have

(−α2, α2 − α1) H
−
α (−α2, α2 − α1)

�

= α2
2(α2 − α1) − 2α2

2(α2 − α1) + (α2 − α1)
2(α2 + α3)

= (α2 − α1) det(H
−
α ).

With α2 > 1 = α1 and H−
α �� 0, we obtain det(H−

α ) < 0 and

(−α2, α2 − α1) ∈ δ[gα, x].
2. For α2 = 1, it is easy to see that

(−α2 + α3, 1) H
−
α (−α2 + α3, 1)

� < 0
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holds for all x ∈ D with x1 < 0. This leads to

(−α2 + α3, 1) ∈ δ[gα, x].
3. α2 < 1 does not occur in Case (2.b.iii).

Either way, there exists a vector v ∈ R− × R+ with v ∈ δ[gα, x]. Using Corollary 1, we
derive

δ[gα, x] ⊆ int(R+ × R−) ∪ int(R− × R+) (8)

for all x ∈ D. This property of the structure of concave directions will be used together with
Observation 2 in the following analysis.

By Corollary 2, there exists a minimizing segment Sgα,G (x̄) for any given point x̄ ∈ D.
We denote the two extreme points of Sgα,G (x̄) by p1 and p2, i.e.,

Sgα,G (x̄) = conv(p1, p2).

By definition of G, we have p1 ∈ Gi and p2 ∈ G j for some i, j ∈ {1, . . . , 4}. Next, we
classify possible minimizing segments for all combinations of i and j (exploiting symmetry).
For this, consider the following “easy” cases first.

i = j : As gα is convex on Gk for k = 1, . . . , 4, we have p1 = p2 = x̄ in this case.
(i, j) = (1, 3): Using (8) and Observation 2, we derive that there are no minimizing
segments with p1 ∈ G1 and p2 ∈ G3 except for p1 = p2 = x̄ = (l1, u2).
(i, j) = (2, 4): Using (8) and Observation 2 again, this leads to p1 = p2 = x̄ = (0, l2).
(i, j) = (2, 3): See Case (2.a) in Appendix 7.1.
(i, j) = (1, 2): See Case (2.b.i) in Appendix 7.1.

The first interesting combination is (i, j) = (1, 4). For every given point x̄ ∈ D and every
extreme point p1 := (l1, r) ∈ G1 of a possible minimizing segment of x̄ , we consider the
ray L starting at p1 into the direction of x̄ as

L := {
p1 + λ(x̄ − p1) | λ ≥ 0

}
.

We determine the convex envelope of gα restricted to L , and thereby detect the second
extreme point p2 := (s, t) ∈ G4 (See Fig. 2b). The point p2 is given as the point with a
directional derivative coinciding with the gradient of the line connecting

(
p1, gα(p1)

)
and(

p2, gα(p2)
)
, i.e.,

gα(p2) + ∇gα(p2)�(p1 − p2) = gα(p1).

Note that s ≥ 0 holds because of p2 ∈ G4. We further introduce a new variable μ and set

p2 = p1 + μ(x̄ − p1) ⇔
(
s
t

)
=

(
l1
r

)
+ μ

(
x̄1 − l1
x̄2 − r

)
.

Variable μ can be interpreted as the distance between p1 and p2 relatively to the distance
between p1 and x̄ . We combine the equations above and derive

μ = −√
2α1 l1√

(α1 + α2)(x̄1 − l1)2 + 2α2(x̄1 − l1)(x̄2 − r) + (α2 + α3)(x̄2 − r)2
.
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Each of the variables r , s, t and μ now depends on r . We insert this information into the
problem used to derive the value of the convex envelope at a given point x̄ (see (EP)). This
results in the one-dimensional optimization problem

min h(r) := 1

μ
gα(s, t) +

(
1 − 1

μ

)
gα(l1, r)

s.t. s = l1 + μ(x̄1 − l1) ≥ 0

t = r + μ(x̄2 − r)

μ = −√
2α1 l1√

(α1+α2)(x̄1−l1)2+2α2(x̄1−l1)(x̄2−r)+(α2+α3)(x̄2−r)2

r ∈ [l2, u2].

(9)

This problem has to be solved in order to determine the actual minimizing segment and
the value of the convex envelope at x̄ . Using basic transformation, we first reformulate the
objective function into

h(r) = r
(
2α2(x̄1 − l1) + 2(α2 + α3)x̄2

)
+ r2(α2 + α3) + 1

μ
(4α1l

2
1) + c

with a constant c not depending on r , that can be omitted for sake of optimization. We aim
to apply the first-order optimality condition and consider the derivative of h(r) (with μ also
depending on r ), which reads as

h′(r) =
(
2α2(x̄1 − l1) + 2(α2 + α3)(x̄2 − r)

)(
1 − μ

)
.

In order to determine the optimal solution, the root of (1−μ) does not have to be considered
as μ = 1 would result in p2 = x̄ . The remaining root of the derivative is given by

r1 = x̄2 + α2

α2 + α3
(x̄1 − l1).

Hence, the optimal value of (9) is attained at r1 or at the boundary of the interval [l2, u2],
which can be efficiently tested by comparing the functional values of h at these positions.
The minimum of (9) can not be attained at r = l2, because this would result in a minimizing
segment not including a concave direction (see (8) and Observation 2). The two remaining
possible optimal solutions are therefore r1 = x̄2 + α2

α2+α3
(x̄1 − l1) and r2 = u2, and their

respective minimizing segments.
For (i, j) = (3, 4), the resulting possible minimizing segment can be derived in a similar

way. Combining these results, we derive possible minimizing segments for several combina-
tions of i, j ∈ {1, . . . , 4}. As all combinations are considered, the actual minimizing segment
for x̄ has to be one of them. In order to determine it, we compute the values of the convex
combination induced by all different possible segments and take the lowest one.

Figure 3 exemplarily shows the resulting structure of theminimizing segments for different
x̄ ∈ D. We use green lines for segments with (i, j) = (1, 2), magenta and red lines for
segments with (i, j) = (1, 4) and blue lines for segments with (i, j) = (3, 4). Yellow
lines show intermediate segments with one extreme point at (l1, u2). Black dots indicate
minimizing segments of dimension zero inside set G4. This means that the function gα

coincides with its convex envelope.
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Fig. 3 Case (2.b.iii): Structure of
the minimizing segments

4.3 The direction-wise convex envelope

We consider Case (3) and all its subcases. In order to handle these cases, we introduce the
concept of direction-wise convex envelopes and show how it can be used to reduce Case (3)
on results from Case (2).

It is α2 ∈ (−1, 1), so that, w.r.t. component 1, gα is direction-wise concave for x ≤ 0
and direction-wise convex on x ≥ 0. For a function g that is not direction-wise convex w.r.t.
to a certain coordinate i ∈ {1, . . . , n} on the whole set D, we can design a function with
this property by computing the convex envelope of g restricted to a line segment defined by
fixing the value of x j for all j �= i , i ∈ {1, . . . , n}.
Definition 8 The direction-wise convex envelope of g on D w.r.t. component i is defined as

γD,i [g](x) := vexD̄(x,i)[g](x)
with D̄(x, i) = {x ′ ∈ D | x ′

j = x j ∀ j = 1, . . . , n j �= i}. (10)

In certain cases, this transformation preserves the direction-wise curvature with respect
to other coordinates. To be more precise, we require that the entries of coordinate i of the
generating set of vexD̄(x,i)[g](x) is the same for all x ∈ D. We denote the respective entries
by Xi in the following result. Note that the entries of the remaining coordinates are already
given by x .

Lemma 2 Let g : R
n → R continuous and direction-wise (strictly) convex/concave w.r.t.

component k ∈ {1, . . . n}. Let D ⊆ R
n be a compact convex set and let i ∈ {1, . . . , n}, i �= k

be given. If there is a set Xi ⊂ R such that for every x ∈ D it is

G[g, D̄(x, i)] = {y ∈ D | yi ∈ Xi , y j = x j ∀ j = 1, . . . , n, j �= i}, (11)

then it is γD,i [g] direction-wise (strictly) convex/concave w.r.t. component k.
Proof We discuss the proof only for the statement on direction-wise convexity. The results
for direction-wise concavity and strictness can be derived analogously.

Let λ ∈ [0, 1], x̄ ∈ D and two points x1, x2 with x1j = x2j = x̄ j for every

j = 1, . . . , n, j �= k be given. We denote xλ = λx1 + (1 − λ)x2. Due to (11), it is
either

x1 ∈ G[g, D̄(x1, i)], x2 ∈ G[g, D̄(x2, i)], xλ ∈ G[g, D̄(xλ, i)]
or

x1 /∈ G[g, D̄(x1, i)], x2 /∈ G[g, D̄(x2, i)], xλ /∈ G[g, D̄(xλ, i)].
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In the first case, it is γD,i [g](x) = g(x) for all x ∈ {x1, x2, xλ} and
λγD,i [g](x1) + (1 − λ)γD,i [g](x2) ≥ γD,i [g](xλ)

holds as g is direction-wise convex w.r.t. component k.
In the second case, the value γD,i [g](x) for x ∈ {x1, x2, xλ} is given as a convex combina-

tion of two points respectively. This holds as the set D̄ in the definition of the direction-wise
convex envelope is one-dimensional. Due to (11), the respective two points share the same
value for every component but component k for all x ∈ {x1, x2, xλ}. To be more spe-
cific, there exists some μ ∈ [0, 1], and points x1,1, x1,2, x2,1, x2,2, xλ,1, xλ,2 ∈ D with
x1,1j = x2,1j = xλ,1

j and x1,2j = x2,2j = xλ,2
j for every j = 1, . . . , n, j �= k, such that

γD,i [g](x1) = μg(x1,1) + (1 − μ)g(x1,2),

γD,i [g](x2) = μg(x2,1) + (1 − μ)g(x2,2),

γD,i [g](xλ) = μg(xλ,1) + (1 − μ)g(xλ,2).

As λg(x1,1)+ (1−λ)g(x2,1) ≥ g(xλ,1) and λg(x1,2)+ (1−λ)g(x2,2) ≥ g(xλ,2) holds due
to the direction-wise convexity of g, it is again

λγD,i [g](x1) + (1 − λ)γD,i [g](x2) ≥ γD,i [g](xλ).

��
Furthermore, the direction-wise convex envelope is a suitable intermediate step for deter-

mining the actual convex envelope.

Corollary 3 Let D ⊆ R
n and g : D → R. Let γD,i [g](x) be the direction-wise convex

envelope of g on D w.r.t. some component i ∈ {1, . . . , n}. Then it is

vexD[g](x) = vexD[γD,i [g]](x)
Proof The inequality vexD[g](x) ≥ vexD[γD,i [g]](x) holds trivially. The direction-wise con-
vex envelope is defined in a similar way as the actual convex envelope, using only a smaller
subset D̄(x, i) ⊆ D. Since the value of the convex envelope is given by a minimization
problem, this leads to

vexD[g](x) ≤ γD,i [g](x) ∀ x ∈ D.

With vexD[g] being convex and an underestimator of γD,i [g], we derive our statement. ��
In order to make use of this result, we first derive the direction-wise convex envelope of gα

w.r.t. component 1. It is

γD,1[gα](x) =
{
gα(l1, x2) + (x1 − l1)

gα(s,x2)−gα(l1,x2)
s−l1

, if x1 ≤ s,
gα(x), if x1 > s

with s := min

(
u1, l1

(
1 −

√
1 − α2−1

α2+1

) )
.

γD,1[gα](x) restricted to x1 < s is twice differentiable, so we can derive the Hessian
Matrix as

HγD,1[gα ](x)|x1<s = 2

[
0 α2(s − l1)

α2(s − l1) (α2 + α3)

]
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It is γD,1[gα] direction-wise convex w.r.t. component 1 and indefinite for x1 < s. Note that,
for all subcases, the direction-wise convexity/concavity w.r.t. component 2 is also preserved
as stated in Lemma 2. This holds, as the value of s in the definition of γD,1[gα] is independent
in x2.

By applying these results, the convex envelope of γD,1[gα] for all subcases of Case (3) can
be reduced to observations in previous cases. For Case (3.a), γD,1[gα] is indefinite, direction-
wise convex w.r.t. component 1 and direction-wise concave w.r.t. component 2 (see Case
(2.a)). For Case (3.b.i), γD,1[gα] is indefinite and direction-wise convex w.r.t. component 1
and 2 (see Case (2.b.i)). For Case (3.b.ii), γD,1[gα] is indefinite-convex and direction-wise
convex w.r.t. component 1 and 2 (see Case (2.b.iii)).

Using the convex envelope of γD,1[gα], the convex envelope of gα can also be easily
derived by translating the minimizing segments of γD,x [gα] into minimizing simplices of gα .
We refer to the appendix for more detailed information.

5 Computational results

In this section, we evaluate the proposed separation strategy from Sect. 3 exemplarily on the
feasible set arising from two test networks. We aim to show that the resulting cutting planes
are well suited to tighten the convex relaxation of the feasible set provided by state-of-the-art
software packages. Additionally, we show that the computation of cutting planes is not very
time consuming in comparison to their benefits. We present the test setting in Sect. 5.1, the
strategy of our implementation in Sect. 5.2, and discuss the computational results in Sect. 5.3.

5.1 Test setting

We consider two test networks. The first one is artificially designed and denoted by “Net1”
(see Fig. 4). It has 7 nodes, 4 of which are terminal nodes that may have nonzero demand.
Furthermore, it has 9 arcs and 3 interior junctions. The topology of the second one is taken
from a gas network library (GasLib-11, [25], see Fig. 5) and denoted by “Net2”. It has 11
nodes, 6 terminals, 11 arcs and 5 interior junctions.

For both networks we consider three different settings each, given by different bounds
(box constraints) on the involved variables, including the demands at the terminal nodes.
In order to work with reasonably tight variable bounds, all bounds have been tightened by
applying the preprocessing routines implemented in the Lamatto++ software framework for
gas network optimization, described in [7, Chapter 7].

In order to evaluate the relaxed feasible set in multiple “directions”, we further consider
ten different objective functions respectively, which are formally all to be minimized in our
computations. These objectives are given as linear combinations of the squared pressure and
flow variables in the network. They are mostly inspired by applications and include finding
minimum or maximum values for the demand of a specific terminal node (objectives 1, 2, 5
and 6), the (squared) pressure at a specific node (objectives 3 and 4), the squared pressure
difference between two specific nodes (objective 10) and sparse linear combinations of flow
variables (objectives 7, 8, and 9).

There are 30 different combinations of bound setting and objective function for both
networks. We call each combination a scenario and denote it by the identifier i- j , where i
specifies the bound setting and j the objective number.
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Fig. 5 Visualization of Net2

The formulation of every interior junction in the considered networks is adapted according
to Sect. 4.1, and has therefore the desired structure of Problem (OP). The bounds on the
variables have been chosen in such a way that several flow directions are fixed automatically
and at most one flow direction at every junction remains unfixed. This allows us to compute
the convex envelope of all linear combinations of the constraint functions for every junction
(see Sect. 4).

As a result, we are able to perform Separation Task 2 on the feasible set of every single
junction. Note that not the whole network has the desired structure of Problem (OP), as
additional constraints are needed to describe the coupling between the junctions. Therefore
we are not able to separate from the convex hull of the feasible set of the whole network, but
only from the convex hull of subsets. The design of the implementation is described in the
next section.

5.2 Implementation

The strategy of our computations is the following: We design and solve a linear relaxation
of the network. For each interior junction in the network, we perform Separation Task 2 by
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solving Separation Problem (SP). This way, we either confirm the solution of the relaxation
or derive a cutting plane that is added to the description of the relaxation. We iterate this
procedure until no further cutting planes are found, or until a maximum number of 100
iterations is reached.

The Separation Problem (SP) is implemented as a simple subgradient method. We use
an arbitrary value α from the unit sphere S2 ⊆ R

3 as a starting point and compute value
and subgradient according to Sect. 4. We make use of a diminishing step size and a stopping
criterion based on iteration count and improvement of the objective function. We also apply
several standard methods to avoid numerical issues, such as excluding cutting planes that are
approximate conic combinations of other cutting planes, or safe rounding of coefficients.Note
that this part of the implementation is not optimized in terms of computational efficiency, as
the focus lies on the quality of the resulting cutting planes. We refer to Appendix 7.2 and 7.3
for a pseudo code of the cutting plane generation and the subgradient method, respectively.

If we only consider the progress of the objective value in the iterative linear relaxation
outlined above, we simply confirm that the cutting planes hold additional information com-
pared to the linear relaxation. However, our aim is to show that the cutting planes also tighten
the “standard” relaxation provided by a state-of-the-art solver for MINLPs and are beneficial
for its overall solution process. We chose BARON 18.5.8 ([30]) for this comparison. BARON
does not allow the user to interfere with the solution process or to integrate custom optimiza-
tion techniques. Therefore, we add the precomputed cutting planes to the model description
and let BARON solve the problem with and without these additional constraints. We deacti-
vate presolving routines and primal heuristics, and directly provide an optimal solution to the
solver. This way, we are able to analyze the influence of our separation strategy on the quality
of the convex relaxation and the resulting lower bounds. However, we would like to remark
that in general also the primal bound may profit from the additional linear inequalities. It has
been observed that even adding redundant constraints can help primal solution finding for
nonconvex MINLPs, see e.g. [24].

We further deactivate the bound tightening strategies provided by BARON as they are also
not available for the iterative linear relaxations used to derive the cutting planes. Note that this
means slowing down the solver substantially, to the extend that very easy instances, solved
in less than a second by BARON with standard parameter settings, now become challenging.
Indeed, this is the case formost scenarios considered here.However,without thismodification
the cutting planes would be applied on a different relaxed feasible set than the one they were
constructed for.

Except for the points above, we choose the default options for BARON. All computations
are carried out on a 2.6GHz Intel Xeon E5-2670 Processor with a limit of 32GB memory
space for each run.

5.3 Results

We first discuss the results of the iterative linear relaxation for both networks. Note that the
iterative linear relaxation is in our setting only used to derive the cutting planes. We are not
interested in comparing the quality of the linear relaxation with BARON, but in analyzing the
influence of the generated cuts on the quality of the lower bounds obtained by BARON as a
stand-alone solver. Therefore, we omit any further information on the solution process of the
linear relaxation.

In a second step, we present the results obtained by BARON (see Tables 2 and 3). In column
2 and 3, we display the optimal value of the respective scenario and the lower bound at the
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Table 2 Improvement of the lower bound for Net1, comparing BARON alone and BARON with the use of
the cutting planes

Scenario (setting
- obj. function)

Optimal Value Root Node After 10min.
Lower Bound
by BARON

Gap closed
w/cuts (%)

Gap closed by
BARON (%)

Gap closed
w/cuts (%)

1–3 1050.60 45.51 58.5 7.1 65.6

1–4 − 2083.67 − 2500.00 6.2 0.0 64.1

1–5 1204.75 1000.00 0.0 1.0 20,1s

1–8 − 511.50 − 2206.04 53.0 26.0 62.6

1–9 1965.38 − 1393.99 0.0 7.1 7.7

1–10 401.63 − 2041.55 83.9 36.5 95.4

2–3 924.04 4.00 54.0 0.0 63.6

2–4 − 2042.62 − 2500.00 26.9 0.0 81.1

2–8 − 511.50 − 2167.41 45.8 32.0 81.8

2–9 2280.95 − 1190.30 0.0 17.7 17.7

2–10 441.17 − 2041.55 84.1 13.8 98.7

3–1 − 3298.98 − 3300.00 0.0 106,1s 5,9s

3–3 725.26 324.77 53.4 4.8 60.3

3–4 − 1405.56 − 1600.00 0.0 0.0 56.9

3–8 − 388.80 − 1747.57 47.5 22.1 68.0

3–9 2663.96 − 132.24 0.0 14.2 65.5

3–10 290.38 − 995.17 84.0 17.6 97.9

The more successful method is highlighted in bold

root node obtained by BARON alone. Their difference is denoted as the gap. For all further
settings, we display the respective lower bounds in terms of the percentage of this gap that
was closed by the solver. Column 4 gives the lower bound at the root node obtained by BARON

with the use of our cutting planes (w/ cuts). Column 5 and 6 show the lower bound after 10
minutes into the solving process. See column 5 for the results of BARON alone and column
6 for BARON with the additional use of our cutting planes. Percentages are rounded down
to the first decimal. Whenever 100% of the gap has been closed, the time until successful
termination is reported in the respective column instead. All cases in which using our cutting
planes led to a strict improvement compared to not applying them have been highlighted.

Note that several of our 30 scenarios are already solved in the root node. The solution
process of these scenarios does not offer any information in terms of improvement of lower
bounds. They are therefore excluded from the presentation.

We discuss the artificially designed network Net1 first. 13 of our 30 scenarios are already
solved in the root node and are not considered further. For the remaining scenarios our
recursive linear relaxation generates between 14 and 57 cutting planes, with an average of
32 cutting planes per scenario. This also implies that the iteration limit of 100 was never
hit for these instances. The computational effort needed for the construction of the cuts is
negligible: For every scenario, the computation of all cuts together is done in less than a
quarter of a second. The results obtained by BARON are given in Table 2. Our generated cuts
clearly improve the quality of the lower bounds at the root node for almost all instances (see
column 4). This improvement has a large range between 0 and 84%, and a mean value of
approximately 35%. After 10 minutes into the solution process, the lower bounds obtained
with the cuts are still significantly better than the ones obtained without them (see columns
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Table 3 Improvement of the lower bound for Net2, comparing BARON alone and BARON with the use of
the cutting planes

Scenario (setting
- obj. function)

Optimal Value Root Node After 10min.

Lower Bound
by BARON

Gap closed
w/cuts (%)

Gap closed by
BARON (%)

Gap closed
w/cuts (%)

1–3 2138.61 1811.94 82.0 5.5 83.9

1–4 −3837.02 −4397.65 52.0 14.0 83.6

1–7 −53.18 −360.00 25.1 0.0 91.5

1–8 −53.41 −200.00 15.3 0.0 30.6

1–9 460.23 0.00 25.1 0.0 82.6

1–10 530.59 −1999.87 98.4 70.1 98.6

2–3 1638.62 1634.69 0.0 30.0 30.0

2–4 −3852.70 −4430.42 49.9 0.0 70.4

2–7 −9.95 −210.00 0.0 0.0 0.1

2–8 −65.80 −160.00 0.0 0.0 4.2

2–9 −52.85 −150.00 0.0 0.0 0.0

2–10 18.55 −2169.71 91.7 2.9 95.7

3–2 −180.39 −300.00 99.8 60.1 99.9

3–3 2655.13 2072.36 84.5 52.6 96.9

3–4 −3573.10 −4414.14 72.5 9.4 89.0

3–7 21.30 −247.52 97.3 0.0 99.9

3–8 −76.16 −172.44 58.7 0.0 65.8

3–9 398.50 −31.28 72.5 4.0 86.8

3–10 937.85 −1489.68 95.0 79.1 99.7

The more successful method is highlighted in bold

5 and 6). The average values are 18% and 70% respectively, which is a difference of 52
percentage points. Note that Scenario 1-5 has been solved to optimality thanks to the cutting
planes. Scenario 3-1 is solved to optimality with as well as without cuts, while the former
version is significantly more efficient (5.87s vs. 106.14s until successful termination).

We also tested giving more time than 10 minutes to the solver. However, only extremely
slow progress can be observed afterwards and, consequently, the key figures after 1h are very
similar to the ones given in columns 5 and 6 of Table 2. In particular, the positive effect of
our cutting planes on the lower bounds obtained does not seem to diminish for larger time
limits.

Next, we discuss the library network Net2. 11 scenarios are already solved in the root
node. The number of generated cuts ranges from 13 to 52 with an average of 27 per scenario.
Furthermore, the construction of cuts is again performed in less than a quarter of a second.
The results obtained by BARON are given in Table 3. Our observations for Net2 are similar to
the ones for Net1. The improvement of the lower bounds at the root node has a large range
and a mean value of 54% (see column 4). After 10 minutes into the solution process, the
average amount of gap closed is 17% without the cuts and 69% with cuts (see columns 5 and
6). For three scenarios (3–2, 3–7 and 3–10) over 99% gap has been closed within 10 minutes
thanks to the cutting planes.
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Again, after more than 10 minutes very little solver progress can be observed and our
observations stay valid also when considering the results after one hour of computation time.
Is is worth noting, though, that the use of our cutting planes led to scenario 3-7 being solved
to optimality within 1h.

We conclude that our separation method for this special application can be performed
in a fraction of a second. This result is expected, as the value and a subgradient of our
Separation Problem (SP) can be derived “mostly” analytically (see Sect. 4). Additionally,
the designed cuts are well suited to improve the convex relaxation of the considered MINLP
and the resulting lower bound. Furthermore, the amount of gap closed after 10 minutes is
higher with the usage of the cuts for every single scenario. This indicates that the growth
of the model formulation caused by the additional constraints is not significant compared
to the provided benefits of the cuts. We assume that the separation strategy is even more
efficient if it is integrated into a MINLP solver. In such a setting, cutting planes can not only
be designed adaptively to cut off solutions of intermediate node relaxations, but can also
profit from tightened variable bounds becoming available during the solution process, and
be strengthened accordingly.

As argued above, our aim in this prototypical study cannot be to improve state-of-the-
art solvers in the field. Instead, we show that indeed the new cutting planes obtained from
simultaneous convexification help improving the quality of the bounds which is beneficial
in a global optimizer. However, it is still of interest to study their impact if the solver can
use its full potential, i.e., if default parameter settings are used. We thus include Table 4
in Appendix 7.4, showing corresponding results for the instances from Table 2. As already
mentioned above, the instances are not difficult and can be solved in less than a second. They
require up to 17 branch-and-bound nodes. Thus, the conclusions that can be derived from
these results are limited. Still, we observe some benefit from using our cutting planes in terms
of the number of explored branch-and-bound nodes. For such small total running times, the
time for generating the cutting planes beforehand becomes significant, and so the benefit is
not reflected in the total running times.

We want to point out that it is currently not possible to extend the computational results
to larger instances with using default parameters in order to show the full potential of the
novel methods. This is due to the fact that large passive gas networks essentially do not
exist in practice since the pressure drop along pipes in a large network necessarily needs
to be compensated by compressors. In addition, artificially created random instances are
usually infeasible. Therefore, meaningful data for larger passive networks unfortunately is
not available to us, and so we have to refrain from showing corresponding results for larger
networks.

We note that our results from Sect. 4 could also be applied to junctions of degree d > 3,
where d − 1 flow directions are fixed, by decomposing the junction into several auxiliary
junctions with 3 fixed flow directions and a single junction of degree 3 of the type discussed
in Sect. 4. This would, however, not be guaranteed to yield the simultaneous convex hull for
the original junction but just a relaxation. Since junctions of high degree are quite uncommon
in real-world gas networks, we did not include such cases in our test computations.

6 Conclusion

In this paper, we proposed an algorithmic framework for tightening convex relaxations of
MINLPs as they are routinely constructed by MINLP solvers. The method is based on sep-
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arating valid inequalities for the simultaneous convex hull of multiple constraint functions,
which generally is much tighter than standard relaxations that are only based on convexifying
individual constraint functions separately. A key ingredient for this strategy is having a suit-
able representation of the (lower-dimensional) convex hull of all linear combinations of the
considered constraint functions. Under this assumption, we show that one can solve Separa-
tion Tasks 1 and 2 efficiently and thus determine a supporting hyperplane of the simultaneous
convex hull cutting off any given point outside.

As an example application, we considered a constraint structure from gas network opti-
mization, which can be modeled using quadratic absolute value functions. For this special
case, we were able to determine the convex hull of arbitrary linear combinations of con-
straint functions belonging to a certain local substructure and successfully test the proposed
approach. Indeed, the computational results suggest that already a small number of cutting
planes derived from a standard relaxation can significantly improve the performance of a
state-of-the-art MINLP solver. The positive effect on the dual bound when using our cutting
planes also persists when looking deeper into the solution process. Furthermore, it clearly
outweighs the time needed for the separation. In our tests, the separation routine neither
had access to possible variable bound improvements after the root relaxation, nor was it
given the opportunity to cut off optimal solutions from node relaxations after branching.
We therefore expect that it would be even more effective when incorporated directly into a
branch-and-branch solver.

It would be interesting to see the presented approach being applied to other function classes
an/or application areas in the future. However, computing convex envelopes of arbitrary linear
combinations of constraint functions is very difficult and cannot be expected to be feasible
in each case. Therefore also techniques producing tight approximations that are consistent
in the sense that (SP) remains a convex problem would be of great interest from a practical
point of view.
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Fig. 6 Case (1.a): Triangulation
of D induced by T1

7 Appendix

7.1 Analysis of the remaining cases fromTable 1

Case (1.a)

In this case, gα is direction-wise concave w.r.t. components 1 and 2. As our domain D is
a box, gα(x) is also called edge-concave. Functions with this property and the respective
convex envelopes are for example studied in [21].

The generating set of gα is given by the four extreme points of the box, i.e.,

G[gα, D] = {
(l1, l2), (l1, u2), (u1, l2), (u1, u2)

}
.

The convex envelope is polyhedral and the minimizing simplices are induced by a certain
triangulation of the box D. As we deal with a bivariate function, D can be triangulated in
only two different ways:

1. Triangulation T1 is given by the sets G1 := {
(l1, u2), (l1, l2), (u1, u2)

}
and

G2 := {
(l1, l2), (u1, u2), (u1, l2)

}
.

2. Triangulation T2 is given by the sets G3 := {
(l1, l2), (l1, u2), (u1, l2)

}
and

G4 := {
(l1, u2), (u1, l2), (u1, u2)

}
.

In order to decidewhich of the two possible triangulations determines the convex envelope,
we need to compare the respective values at the center point 1

2 (l1 + u1, l2 + u2) of D (e.g.,
see [21]). The corresponding possible minimizing segments for the center point are given by

conv
({(l1, l2), (u1, u2)}

)
and conv

({(l1, u2), (u1, l2)}
)
.

It turns out that

1
2

(
gα(l1, l2) + gα(u1, u2)

) ≤ 1
2

(
gα(l1, u2) + gα(u1, l2)

)

holds for x2 ≥ 0 and that, hence, triangulation T1 determines the convex envelope. The
resulting minimizing simplices are given by conv(G1) (green region in Fig. 6), conv(G2)

(blue region in Fig. 6) and conv
({(l1, l2), (u1, u2)}

)
(red line in Fig. 6).

Case (1.b)

In this case, gα is direction-wise concave w.r.t. component 1 and direction-wise convex w.r.t.
component 2. The generating set of gα is given as

G[gα, D] = {l1, u1} × [l2, u2].
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Fig. 7 Case (1.b): Structure of
the minimizing segments

As gα(x) is convex on {l1}× [l2, u2] and {u1}× [l2, u2] respectively, no minimizing simplex
contains more than one point in each of both subsets. Hence, the convex envelope w.r.t.
G[gα, D] consists ofminimizing segments of the form conv

(
(l1, y1), (u1, y2)

)
, with y1, y2 ∈

[l2, u2]. Functions of this type are already studied in the literature (e.g., see [10,28]).
For a given point x̄ , the specific values of y1 and y2 are given as the unique minimizer of

a univariate optimization problem. They need to satisfy

∂gα

∂x2
(l1, y1) = ∂gα

∂x2
(u1, y2) (12)

or either y1 or y2 need to lie at the boundary of the interval [l2, u2].
Thus, a minimizing segment is either parallel to the vector v :=

(
1,− α2

α2+α3

)
(red lines

in Fig. 7), or is determined by y1 = l2 (blue lines in Fig. 7) or by y2 = u2 (green lines in
Fig. 7).

Case (2.a)

In this case, gα is direction-wise convex w.r.t. component 1 and direction-wise concave w.r.t.
component 2. The generating set of gα is given as

G[gα, D] = [l1, u1] × {l2, u2}.
In order to compute the minimizing segments, we use the same arguments as in Case (1.b)
with inverted roles of the two coordinates (e.g., see [10]).

As the second derivative of gα differs among the two half-spaces x1 ≤ 0 and x1 ≥ 0, we
additionally distinguish three possibilities defined by the position of theminimizing segments
with respect to these half-spaces. Minimizing segments containing only points with negative

values of x1 are parallel to the vector v1 :=
(

α2
α2−α1

,−1
)
(yellow lines in Fig. 8), or defined

by the extreme point (l1, u2) (green lines in Fig. 8). Segments containing only points with

a positive value of x1 are parallel to the vector v2 :=
(

α2
α2+α1

,−1
)
(red lines in Fig. 8) or

defined by the extreme point (u1, l2) (blue lines in Fig. 8). Minimizing segments containing
points from both half spaces are not parallel to each other. For one extreme points (y1, u2),

the second one is given by
(
y1 + α2(u2−l2)−2α1 y1

α1+α2
, l2

)
(magenta lines in Fig. 8).

Case (2.b.i)

In this case, gα is indefinite and direction-wise convex w.r.t. components 1 and 2. We derive
a similar result as in Sect. 4.2 for Case (2.b.iii).
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Fig. 8 Case (2.a): Structure of the
minimizing segments

Corollary 4 ([10]) Let α be as defined in Case (2.b.i) and let G = bd(D) be the boundary of
D. Then we haveG[gα, D] ⊆ G and the convex envelope of gα on D consists of minimizing
segments w.r.t. G.

Proof Analogous to Corollary 2. ��
We divide G into four sets given by

G1 := {l1} × [l2, u2], G2 := [l1, u1] × {l2},
G3 := [l1, u1] × {u2}, G4 := {u1} × [l2, u2].

Again, every minimizing segment Sgα,G (x̄) is defined by its two extreme points p1 and p2

with p1 ∈ Gi and p2 ∈ G j for some i, j ∈ {1, 2, 3, 4}. We classify the minimizing segments
for all possible combinations of i and j (with exploited symmetry). Similar to Sect. 4.2, we
can exclude the following “easy” cases.

i = j : As gα is convex on Gk for k = 1, . . . , 4, we obtain p1 = p2 = x̄ in this case.
(i, j) = (1, 3): Leads to p1 = p2 = (l1, u2) by considering the concave directions and
Observation 2.
(i, j) = (2, 4): Leads to p1 = p2 = (u1, l2) by considering the concave directions and
Observation 2.
(i, j) = (1, 4): See Case (1.b).
(i, j) = (2, 3): See Case (2.a).

We consider the combination (i, j) = (1, 2) in more detail. Every minimizing segment is
defined by two points p1 := (l1, t) and p2 := (q, l2). Furthermore, the following equation

(l1 − q)
∂gα

∂x1
(q, l2) + gα(q, l2) = (l2 − t)

∂gα

x2
(l1, t) + gα(l1, t)

must hold. For q < 0 we derive
√

α2 − α1 (q − l1) = √
α2 + α3 (t − l2),

and for q ≥ 0 we derive

(α1 + α2)(q − l1)
2 − 2α1l

2
1 = (α2 + α3)(t − l2)

2.

Minimizing segments with p1 ∈ G3 with p2 ∈ G4 are handled analogously. They are
not shown in the figures below in order to keep the presentation clean. Again, we derive a
possible minimizing segments for several combinations of i, j ∈ {1, . . . , 4} and choose the
one with the lowest induced value (see Sect. 4.2).

This results in two possible options for the structure of the convex envelope. The first one
consists of, roughly speaking, minimizing segments running from the left to the right side of
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Fig. 9 Case (2.b.i): Option 1 for
the structure of the segments

Fig. 10 Case (2.b.i): Option 2 for
the structure of the segments

Fig. 11 Case (3.a): Structure of
the minimizing segments

the box D (see Fig. 9). Red and blue lines indicate minimizing segments with extreme points
in G1 and G4, similar to Case (1.b). Green and magenta lines indicate minimizing segments
with extreme points in G1 and G2, as distinguished above.

The second option instead consists of, roughly speaking, minimizing segments running
from the top to the bottom side of the box (see Fig. 10). Magenta, red and blue lines indicate
minimizing segments with extreme points in G2 and G3, as described in Case (2.a). Green
lines again indicate minimizing segments with extreme points in G1 and G2.

Case (2.b.ii)

Function gα is convex on D. The convex envelope is given by gα itself.

Case (3.a)

As explained in Sect. 4.3, we first derive the convex envelope w.r.t. γD,1[gα]. In this case,
γD,1[gα] is direction-wise convex w.r.t. component 1 and direction-wise concave w.r.t. com-
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Fig. 12 Case (3.b.i): Structure of
the minimizing segments

ponent 2. We apply a similar approach as in Case (2.a). We again derive the structure of
minimizing segments by analyzing the derivatives of γD,1[gα].

As a second step, Fig. 11 displays the structure of the minimizing segments w.r.t.
vexD[γD,i [gα]]. Green, yellow and blue lines indicate minimizing segments that are deter-
mined by the extreme points (l1, u2), (q, l2) and (u1, l2) respectively. The red lines indicate
minimizing segments parallel to the vector v.

It is

v :=
(

α2
α1+α2

,−1
)

,

s := min

(
ux , lx

(
1 −

√
1 − α2−α1

α2+α1

) )
,

q := min

(
ux , lx

(
1 −

√
1 − α2−α1

α2+α1

)
+ α2

α1+α2
(uy − ly)

)
.

Note that the analysis and visualization only holds for α2 ≥ 0. However, the case of
α2 < 0 is mostly symmetric and can be handled analogously.

Case (3.b.i)

As explained in Sect. 4.3, we first derive the convex envelope w.r.t. γD,1[gα]. The function
γD,1[gα] is indefinite and direction-wise convex w.r.t. components 1 and 2. Hence, we can use
the same arguments as in Case (2.b.i) to derive the structure of the of minimizing segments.

As a second step, Fig. 12 displays the structure of the minimizing segments w.r.t.
vexD[γD,i [gα]]. Minimizing segments connecting opposite sides are colored in green, yellow
and red (similar to Case (3.a)). Magenta and blue lines indicate segments that connect adja-
cent sides. Note that the analysis and visualization only holds for α2 ≥ 0. However, the case
of α2 < 0 is mostly symmetric and can be handled analogously.

Case (3.b.ii)

As explained in Sect. 4.3, we first derive the convex envelope w.r.t. γD,1[gα]. The function
γD,1[gα] is direction-wise convex w.r.t. components 1 and 2. Furthermore, it is indefinite for
x < s as motivated in Sect. 4.3. We use the same strategy and the same subdivision of G as
in Case (2.b.iii).
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Fig. 13 Case (3.b.ii): Structure of
the minimizing segments

As a second step, Fig. 13 displays the structure of the minimizing segments w.r.t.
vexD[γD,i [gα]](x). Magenta and red lines show segments connecting G1 and G4 and yel-
low lines show segments defined by the extreme point (l1, u2). Black dots indicate that the
function gα coincides with its convex envelope. Note that the analysis and visualization only
holds for α2 ≥ 0. However, the case of α2 < 0 is mostly symmetric and can be handled
analogously.

7.2 Cutting planemethod

INPUT: Box D, Point x̄ ∈ D, Function g
1. Estimate Problem (SP) with Subgradient Method
2. If solution < 0 holds:

3. Derive a supporting hyperplane of epi
(
vexD[α�g], D)

at the
point

(
x̄, vexD[α�g](x̄)) (see Sect. 4)

4. Construct a cutting plane (see Proposition 3)
5. Numeric rounding

OUTPUT: Cutting Plane

7.3 Subgradient method

INPUT: Box D, Point x̄ ∈ D, Function g, Starting Point α0

1. k = 0, iterate until k = n or until no more improvement than μ for m iterations

2. Project αk onto the boundary of B3

3. Compute the convex envelope of gαk , given by some
∑

λi gαk (xi )
4. Derive a subgradient ∇gαk

∑
λi∇gαk (xi )

5. Make a step: αk+1 = αk + 1
k∇gαk

OUTPUT: Estimated solution of Problem (SP)
Parameters: n = 10000, μ = 0.01, m = 10/20 for negative/positive solutions of

Problem (SP)
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7.4 Computational results with BARON using default settings

Table 4 Solution times and
branch-and-bound nodes
explored for instances on Net1,
comparing BARON alone and
BARON with the use of the
cutting planes, using standard
parameter settings

Scenario (setting
- obj. function)

No cuts Solving Time [s]
w/ cuts (BARON +
cut gen.)

B&B Nodes

No cuts w/ cuts

1–3 0.14 0.15 + 0.22 3 3

1–4 0.15 0.11 + 0.19 3 1

1–5 0.07 0.07 + 0.23 3 1

1–8 0.09 0.12 + 0.12 1 1

1–9 0.11 0.13 + 0.07 1 1

1–10 0.26 0.15 + 0.12 17 1

2–3 0.13 0.17 + 0.09 3 3

2–4 0.08 0.07 + 0.16 3 1

2–8 0.10 0.08 + 0.17 1 1

2–9 0.09 0.10 + 0.07 1 1

2–10 0.11 0.08 + 0.15 3 1

3–1 0.08 0.07 + 0.20 3 1

3–3 0.17 0.06 + 0.13 15 1

3–4 0.06 0.06 + 0.08 1 1

3–8 0.10 0.09 + 0.09 3 1

3–9 0.06 0.07 + 0.11 1 1

3–10 0.08 0.08 + 0.09 3 1

The more successful method is highlighted in bold
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