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1 Introduction

The tremendous development of electronics and semiconductor industries has been
amazingly governed by Moore’s law, which states that the number of transistors that
could be incorporated in a single integrated circuit was rising at a very swift rate.
Nowadays, the silicon-based devices are close to insurmountable barriers related to
strong influence of quantum effects in forthcoming miniaturization of transistors. One
of the ways to overcome this problem is the use of single molecule-based devices, or
single molecular wires, to perform signal and information processing. For example, a
classical illustration for the possibility of making molecular components with the same
functionality as semiconductor devices is the donor-insulator-acceptor molecular diode
proposed by Aviram and Ratner in 1974 [1]. On the other hand, the small size of the
molecules and the involved quantum effects allows also to think of new logic elements
with unforeseen properties.
Therefore, the investigations of electronic transport through nanoscale devices con-
taining only several atoms are becoming one of the most fascinating branches of
modern solid state physics. This direction was initialized after the development of the
scanning tunnelling microscope (STM) [2] technique, and at present comprises a multi-
tude of applications in physics, chemistry and biology. The theoretical description of
the electronic transport in nanoscale systems starts from the famous Kubo [3, 4, 5],
Keldysh [6, 7] and Landauer [8, 9] publications. Now, the electronic transport can
be successfully described in the framework of the non-equilibrium Green’s function
(NEGF) method which is based on both the Keldysh [7] and the Landauer-Büttiker
[8] formalisms.
The efficient combination of NEGF and density functional theory (DFT) methods
is specially designed to simulate the transport characteristics of systems with small
numbers of atoms. First principles investigations become very important in physics,
chemistry, materials science and biology. The quantum-chemical simulations of molec-
ular and solid systems allow not only to perform a clear interpretation of experimental
results, but also help to understand the underlying physical phenomena. In addition,
the great theoretical experience in molecular and solid state physics gives the oppor-
tunity to search for new phenomena and properties. For example, de Groot et al. [10]
introduced the concept of half-metallicity on the basis of band structure calculations in
NiMnSb and PtMnSb semi-Heusler phases. Where, due to the ferromagnetic decoup-
ling, one of the spin subbands is metallic, whereas the Fermi level falls into a gap of
the other subband. Therefore, it is not surprising that the NEGF+DFT combination
shows also amazing result related to simulations of tunnel junctions [11, 12], STM [13]
and electron-phonon interactions in molecules and atomic wires [14, 15].
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1 Introduction

Nowadays, the theoretical and experimental communities pay enormous attention to
the fascinating possibility to control the electrical current through manipulation of
the spin of the electrons. This spintronic direction in combination with molecular elec-
tronics has recently shown spin valves effect in carbon nanotubes [16], large magneto-
resistance of octane and tricene molecules [17], molecular spintronic switching [18]
and spin-filtering [19, 20]. Nevertheless, it also opens some new questions. In order to
manipulate the electron spin in magnetic molecular materials, one has to determine
non-collinear magnetic ground states experimentally or theoretically. Moreover, the
simulations of the electronic transport characteristics of non-collinear systems need
additional resources and techniques.
The ab initio calculations of electronic and magnetic properties of non-collinear sys-
tems are based on a fully unconstrained approach implemented via the full-potential
linearized augmented plane-wave (FLAPW) method [21] or the projector augmented-
wave (PAW) method [22] or the linear combination of atomic orbitals (LCAO) method
[23]. Unconstrained and constrained non-collinear calculations are also performed
within the atomic sphere approximation (ASA) by using a real-space linearized muffin-
tin orbital (LMTO) method [24, 25, 26] and the Korringa-Kohn-Rostoker (KKR)
method [27, 28, 29]. The last two methods are also successfully applied for electronic
transport calculations [30, 31]. Nevertheless, the plane wave (PW) or LCAO based
methods have no considerable success in this field. The problem is strongly connected
to the absence of the constrained non-collinear procedure which allows to define the
direction of the magnetic moment on a given atom. Furthermore, the NEGF method
is not generalized for a non-orthogonal basis set and a non-collinear systems with
translation invariance.
In this thesis we combine the theoretical development of non-collinear magnetism for
the LCAO scheme and NEGF method, and apply the theory to realistic systems. Here
we mainly concentrate on organometallic molecules which could be considered as key
constituents of molecular spintronics. Namely, we investigate metal-benzene sandwich
structures and metallophthalocyanines. Metallophthalocyanines can be successfully
grown as ordered films on various substrates and are promising materials for techno-
logical applications. The sandwich molecules, in turn, show ferromagnetism and half-
metallicity which is extremely interesting from fundamental point of view.
The thesis is divided into two parts. The first one is organized in the second chapter
and contains a short introduction to the ab initio simulations, explains the main
theoretical tools used by the physical and chemical communities. The second part
collects our results and is split into four chapters.
In the third chapter, we discuss the fully unconstrained non-collinear LCAO method
and introduce a novel on-site constraint method for the nonorthogonal basis set. Our
method allows to fix the direction of the magnetic moment on any atom and accelerates
the self-consistent field procedure drastically. The theory was successfully implemented
in the SIESTA [32, 33, 34] code and applied for investigations of different magnetic
configurations in monoatomic Mn and Fe chains and in a Mn3 molecular cluster.
The fourth chapter is devoted to the extensive study of electronic and magnetic proper-
ties of metallophthalocyanines (MetPc, Met=Co,Cu) and metal-benzene (MetBz,
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1 Introduction

Met=Sc-Co, Bz=C6H6) molecules and wires that have potential for applications in
the field of spintronics.
In the fifth chapter, we restate and generalize the non-equilibrium Green’s function
method for non-collinear systems with translation invariance. Additionally, we show
the unique procedure how to obtain the components of the transmission spectra for
non-collinear systems with arbitrary magnetized electrodes. The generalized NEGF
method was applied to perfect and defected graphene layers and monoatomic Fe wire
with different magnetization in electrodes.
Finally, the sixth chapter shows transport properties investigation of the organo-
metallic wires. We concentrate on VnBzn+1, n = 1 − 4 chains connected to Co(001)
electrodes. And we show that the VnBzn+1, n ≥3 chains can work like spin-filters
with 80% polarization of the spin-current. In the end, we analyze the formation of
the domain walls in the V4Bz5 molecule coupled to cobalt electrodes with antiparallel
magnetization.
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2 Fundamentals

2.1 Many-body problem

Many problems of condensed matter physics can be solved if the electronic structure of
atoms, molecules and solids is determined exactly. The starting point of investigating
the electronic properties of the system is to solve the Schrödinger equation.
So, if a quantum system has n electrons and N nuclei with spatial coordinates r⃗ and
R⃗, respectively, we can write the Schrödinger equation:

ℋΦ(r⃗1, ..., r⃗n, R⃗1, ..., R⃗N) = EΦ(r⃗1, ..., r⃗n, R⃗1, ..., R⃗N), (2.1)

where the ℋ is the Hamiltonian, Ψ is the many-body wave-function and E is a total
energy.
The Hamiltonian for the solid system is given by

ℋ = Tion + Tel + Vion−ion + Vel−el + Vel−ion

= −
N∑
I=1

ℏ2

2MI

∇2
R⃗I
−

n∑
i=1

ℏ2

2m
∇2
r⃗i

+
1

4��0

N∑
I=1

N∑
I>I′

ZIZI′

∣R⃗I − R⃗I′∣

+
1

4��0

n∑
i=1

n∑
i′>i

e2

∣r⃗i − r⃗i′∣
− 1

4��0

N∑
I=1

n∑
i=1

ZIe

∣r⃗i − R⃗I ∣
, (2.2)

where �0 is the dielectric constant, n, m, e and r⃗i represent the number, mass, charge
and position of an electron and N , MI , ZI and R⃗I are the number, mass, charge and
position of the nuclei.
The first two terms are the kinetic energy contributions from the nuclei (Tion) and the
electrons (Tel). The last three terms are Coulombic potential energy arising from the
ion-ion (Vion−ion) and electron-electron (Vel−el) repulsions and ion-electron attraction
(Vel−ion).
Due to a huge number of the particles (about 1023 in one cm3) involved in the interac-
tion, equation (2.1) can not be solved analytically nor numerically up to now. To
overcome this problem, different levels of approximations are used. The first one
allows to investigate the motion of the electrons independent of that of the nuclei
(Born-Oppenheimer approximation). The next is related to the exchange-correlation
energy functional representation.
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2.2 Born-Oppenheimer approximation

2.2 Born-Oppenheimer approximation

First attempts to introduce simplifications where suggested in 1927. Born and
Oppenheimer’s mathematical treatment indicated that the true molecular wave func-
tion is adequately approximated as Φ(r⃗i, R⃗I) = Ψel(r⃗i, R⃗I)Λion(R⃗I). The concept
behind comes from the fact that the mass of a nucleus is much larger than the mass
of an electron (M ∼ 103 ×m) and one can neglect all the quantum effects due to the
motion of the nuclei. This assumption breaks the Schrödinger equation down into two
sub-equations, one for the electrons and one for the nuclei:

[Tel + Vel−el + Vel−ion] Ψel = "elΨel (2.3)[
Tion + Vion−ion + "el({R⃗i})

]
Λion = EΛion, (2.4)

where "el({R⃗I}) is the ground state energy of the electronic cloud for a given nuclear

configuration {R⃗I}. The electronic properties of the system are found by solving the

first Schrödinger equation (2.3), where atomic coordinated R⃗I , I = 1, N are involved
as parameters. Once it’s done, the second equation (2.4) can be used to describe the
motion of the nuclei.
However, solving the Schrödinger equation (2.3) is still quite complicated since the
many-electron wave-function contains 3n variables - r⃗i, i = 1, n.

2.3 Density functional theory

In the late 1920s, Thomas and Fermi [35, 36] suggested to use the electron density as
the central unknown variable instead of the many-electron wave-function. Nevertheless,
due to certain shortcomings their method cannot describe the properties of molecules
or solids quantitatively. It was only almost forty years later that Hohenberg and
Kohn proposed a powerful theory [37] which is based on the original idea of Thomas
and Fermi and made a significant progress in the electronic structure theory. They
developed a method to determine the ground state density exactly which in turn
determines the many body Hamiltonian and therefore all properties of the system.
This method is now usually called density functional theory (DFT) and is based on
two famous theorems:

1st Hohenberg-Kohn theorem states that a given ground-state electron density can-
not arise from two different external potentials, unless the two differ by a con-
stant.

2nd Hohenberg-Kohn theorem states that the ground-state energy can be obtained
variationally, the density that minimizes the total energy is than the exact
ground-state density.
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2.3 Density functional theory

The density, here, can be defined as:

�(r⃗) =
〈

Ψ
∣∣∣ n∑
i=1

�(r⃗ − r⃗i)
∣∣∣Ψ〉, (2.5)

where Ψ is a many-body wave function. Based on this, the ground state energy is
obtained as a functional of the density

E[�(r⃗)] =
〈

Ψ
∣∣∣ℋ[�(r⃗)]

∣∣∣Ψ〉 =
〈

Ψ
∣∣∣Tel[�(r⃗)] + Vel−el[�(r⃗)] + Vext[�(r⃗)]

∣∣∣Ψ〉. (2.6)

F [�] = Tel[�] + Vel−el[�] is an universal functional of the electron density. It is the
same expression for all systems and independent from the external potential Vext which
combines the ion-electron attraction potential Vel−ion and the potentials due to external
electric and magnetic fields.
The second theorem is of great importance because it leads to a variational principle,
which can be used to minimize the energy functional:

E[�0(r⃗)] = min
�(r⃗)

(E[�(r⃗)]) ≤ E[�(r⃗)], (2.7)

Therefore, the ground state energy can be obtained as follows:

�E[�(r⃗)]

��(r⃗)
− �

�
(∫

�(r⃗)dr⃗ −N
)

��(r⃗)
= 0, (2.8)

where � is a Lagrange multiplier taking care of the particle conservation in the system
and usually is referred to as a chemical potential. The important physical conditions
which have to be satisfied here are that

∫
�(r⃗)dr⃗ = N and that the electron density is

positive �(r⃗) ≥ 0.
Solving Eq.(2.8) leads to the following Euler-Lagrange equation:

� =
�E[�(r⃗)]

��(r⃗)
= Vext +

�T [�(r⃗)]

��(r⃗)
+
�Vel−el[�(r⃗)]

��(r⃗)
, (2.9)

where the last two terms are the variation of the universal functional with respect to
the density �(r⃗).
The practical application of the density functional theory started after the publication
of the Kohn and Sham paper in 1965 [38] by mapping the full interacting system onto
a virtual non-interacting system. For this, the kinetic energy functional T [�(r⃗)] is
split into a term T reflecting the kinetic energy of noninteracting particles (which is
known) and Ec which stands for the rest. A similar procedure applies for the potential
energy which contains two terms: the classic part or Coulomb interaction, VH , and
the unknown quantum part Ex. Therefore, the functional E[�(r⃗)] is a sum of known
quantities, the kinetic energy T and Coulomb (Hartree) energy EH , and the unknown
Ec and Ex functionals which incorporate all the many-body effects of the original
system:
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2.3 Density functional theory

E[�(r⃗)] = T [�(r⃗)] + EH [�(r⃗)] +

∫
Vext[�(r⃗)]dr⃗ + Exc[�(r⃗)], (2.10)

where Exc = Ec + Ex.
Based on this, the Hamiltonian of the real system is usually termed Kohn-Sham Hamil-
tonian and is of the form:

ℋKS = − ℏ
2m
∇2︸ ︷︷ ︸

T

+
e2

2�"0

∫
�(r⃗′)dr⃗′

∣r⃗ − r⃗′∣︸ ︷︷ ︸
VH

+Vxc + Vext (2.11)

where Vxc = �Exc[�(r⃗)]/��(r⃗) is the exchange-correlation potential.
The Schrödinger equation is then replaced by the Kohn-Sham equation:

ℋKSΨi(r⃗) = "iΨi(r⃗), (2.12)

�(r⃗) =
n∑
i=1

Ψi(r⃗)Ψ
∗
i (r⃗). (2.13)

Here, Ψi(r⃗) is a single particle wave function and "i the corresponding energy eigen-
value.
Since the Kohn-Sham Hamiltonian depends on the density �(r⃗) an iterative procedure
can be used

�initial(r⃗)→ ℋKS → {Ψi(r⃗)} → �(r⃗)→ ℋKS → ... (2.14)

to obtain a density which is consistent with the Hamiltonian.
In the case of spin-polarized systems, the original derivation of the Hohenberg-Kohn
theorem leads to analytical problems. Von Barth and Hedin [39] showed that the
uniqueness of the potential for the same ground state density �(r⃗) is not guaranteed.
Capelle and Vignale [40], and Eschrig and Pickett [41] found this nonuniqueness much
“richer” than the “rivial” additive constant. Nevertheless, Kohn et al. [42] estimated
that the practical consequences for spin-density-functional calculations are not signi-
ficant. Surprisingly, the Hohenberg-Kohn theorem of unpolarized (charge-only) DFT
is thus considerably stronger than its counterpart in spin-DFT.
The generalization of the single-particle equations to spin systems or/and an external
magnetic field requires the consideration of the magnetization density as fundamental
variable in addition to the electron density:

E[�0(r⃗),m0(r⃗)] = min
�(r⃗),m(r⃗)

(E[�(r⃗),m(r⃗)]) ≤ E[�(r⃗, m(r⃗))], (2.15)

The formulation suggested by von Barth and Hedin [39] based on the analogy with
the true four component local spin-density matrix:

���
′
(r⃗) =

n∑
i=1

Ψ�
i (r⃗)Ψ�′

i

∗
(r⃗), (2.16)
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2.3 Density functional theory

where � or �′ are the indices that define the mixture of the spins in the two component
Pauli wave functions Ψ̂i(r⃗). Applying this ansatz to the variational principle yields
the following Kohn-Sham equations:

∑
�′

(
ℏ

2m
∇2���

′
+

e2

2�"0

∫
�(r⃗′)dr⃗′

∣r⃗ − r⃗′∣
���

′
+ V ��′

ext +
�Exc

����′(r⃗)

)
Ψ�′

i (r⃗) = "iΨ
�
i (r⃗), (2.17)

where V ��′
ext is an external potential including the external magnetic field B⃗(r⃗), ���

′
is

a �-function and the the exchange-correlation potential �Exc
����′ (r⃗)

contains the functional

dependence on the magnetization density.

2.3.1 Local density approximation

A first suggestion about the exchange-correlation energy was made by Kohn and Sham
in their original paper [38] which than was generalized for spin-polarized systems by
von Barth and Hedin [39]. The idea is to approximate Exc by the exchange-correlation
energy of a homogeneous electron gas with the same electron and magnetization den-
sity:

ELDA
xc [n(r⃗), ∣m⃗(r⃗)∣] =

∫
n(r⃗)�xc

(
n(r⃗), ∣m⃗(r⃗)∣

)
dr⃗, (2.18)

where �xc is the exchange-correlation energy per particle of a homogeneous spin-
polarized electron gas and is a function of n(r⃗) and m⃗(r⃗) at a particular point of
space. This means that �xc depends only on the magnitude of the magnetization
∣m⃗(r⃗)∣ in every point of space. Therefore, V⃗xc(r⃗) and m⃗(r⃗) are always collinear.
�xc can be obtained by a fitting procedure of data derived from quantum-mechanical
many-body calculations. Most commonly used approximations are von Barth and
Hedin (VBH) [39], Vosko-Wilk-Nusair (VWN) [43], Ceperley and Alder (CA) [44] and
Perdew and Zunger (PZ) [45] parametrizations. Despite its simplicity, LDA provides
an accurate enough description, but there are also cases where it fails or shows large
discrepancies.

2.3.2 Generalized gradient approximation

It was found that LDA is valid only for systems with density slowly varying in space
and fails when the density varies sharply. An improvement to this can be made by
considering the gradient of the electron density, the so-called Generalized Gradient
Approximation (GGA). Symbolically it can be written as:

EGGA
xc [n(r⃗), m⃗(r⃗)] =

∫
n(r⃗)�xc

(
n(r⃗), m⃗(r⃗),∇n(r⃗),∇m⃗(r⃗)

)
dr⃗. (2.19)

Many forms of such functionals have been suggested [46, 47, 48, 49, 50, 51, 52]. Practi-
cally in all cases, GGA leads to improved bond angles, lengths, and energies but the
self-consistent valence electron density in an atom is still too diffuse.
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2.4 Linear combination of the atomic orbitals

The question of how to improve the exchange-correlation approximation led to two
points of view. The first approach retains the correct features of LDA and combines
them with the most energetically important features of a gradient-corrected nonlocality.
The Perdew, Burke, and Ernzerhof (PBE) functionals [52] are of this type. The
second direction assumes that density functional theory is of “semi-empirical” nature.
Therefore, a reasonable form of the functional can be developed and the parameters
can be fitted to known experimental data. For example, 15 adjustable parameters
were refined against data from a test set containing 407 atomic and molecular systems
[53]. Another way within this point of view is the construction of hybrid exchange-
correlation functionals which are a superposition of different exchange and correlation
functionals.

2.3.3 Hybrid schemes

The way to combine different exchange and correlation functionals starts from combina-
tion of Becke exchange [50] and Lee-Yang-Parr correlation [51]. It surprised many that
this coupling outperformed correlated ab initio methods in calculations of atomization
energies [54]. In 1992, Becke suggested [55] to construct an exchange-correlation func-
tional as a combination of the Hartree-Fock exchange and DFT-based exchange and
correlation functionals by using 3 parameters:

Exc = (1− a)(EVWN
x + bEBecke

x ) + aEHF
x + (1− c)EVWN

c + cELY P
c , (2.20)

where a, b and c are semi-empirical coefficients to be determined by an appropriate fit
to experimental data, EHF

x is a Hartree-Fock exact exchange and EVWN
x and EVWN

c

are a Vosko-Wilk-Nusair exchange and correlation functional, respectivelly. After
several years it became one of the most popular semi-empirical hybrid functionals.
Notwithstanding enormous criticism [56], it is now widely used for investigations of
organic and organometallic compounds.
Since the construction of the hybrid exchange-correlation functional is just an approx-
imation, one must in the end compare the results of calculations for realistic systems
with experimental data.

2.4 Linear combination of the atomic orbitals

One way to solve the Kohn-Sham equations (2.12) is to find a suitable basis set for
the expansion of the wave function. In 1928, Finkelstein and Holowitz suggested to
describe the molecular orbital of the H+

2 ion as a linear combination of atomic orbitals.
Then, in 1929, Sir John Lennard-Jones used the same technique for the valence-shells
of diatomic molecules of the first main row of the periodic table [57]. A generalization
of LCAO for spin-polarised many-electron systems was introduced by Roothaan in
1951 [58]. He represented the many-electron wave-function as a linear combination of

9



2.4 Linear combination of the atomic orbitals

a complete set of unknown functions, called basis functions. Thus, for every system
we can write:

Ψ(r⃗) =
∑

ci�i(r⃗), (2.21)

where {�i(r⃗)} is a complete set of functions and the ci’s are the expansion coefficients
that are to be found by the self-consistent field (SCF) procedure. Since the {�i(r⃗)}
form a complete set, this expansion is valid. In principle, the expansion of the wave
functions should be infinite, but in practice it is truncated.

2.4.1 Slater type of the basis set

One of the first sets of basis functions was introduced by John C. Slater in 1930 [59].
Slater-type orbitals (STO) are of the form:

gSTO(r) =
(2�/a0)n+1/2

[(2n)!]1/2
rn−1e−�r/a0Ylm(Θ, �), (2.22)

where the n, m and l are the quantum numbers, Ylm(Θ, �) are real spherical harmonics,
r is the distance of the electron from the atomic nucleus. The parameter � is called
orbital exponent and is related to the effective charge of the nucleus.
Slater-type orbitals are the most natural basis functions in atomic structure computa-
tions because of the hydrogen-like exponentials. Nevertheless, from a computational
point of view the STOs have the severe shortcoming that most of the required integ-
rals needed in the course of the SCF procedure must be calculated numerically which
drastically decreases the speed of a computation.

2.4.2 Gaussian basis set

Therefore, Boys proposed in 1950 [60] the use of Gaussian-type orbitals (GTO). A
cartesian Gaussian orbital centered on an atom � is defined as:

gGTO(r) = Nxi�y
j
�z

k
�e
−�r2� with N =

(2�

�

)3/4[(8�)i+j+ki!j!k!

(2i)!(2j)!(2k)!

]
, (2.23)

where i, j and k are non-negative integers and � is a positive orbital exponent. Note,
a cartesian GTO has no principal quantum number n. Any orbital (whether 1s or
2s or ...) is represented by a linear combination of several Gaussians with different
orbital exponent.
An alternative to the cartesian Gaussians are spherical Gaussians, which are of the
form:

gGTO(r) = Nrn−1
� e−�r

2
�

1√
2

(Y m∗
l ± Y m

l ), (2.24)

where the Y m
l are complex spherical harmonics.

In comparison to a Slater orbital, a Gaussian function gives a poor representation
of atomic orbitals for small values r�, therefore it is very important to use a linear

10



2.4 Linear combination of the atomic orbitals

combination of several functions. Consequently, in calculations with GTO’s, many
more integrals are involved than in a corresponding STO calculation, however evalua-
tion of integrals takes much less computation time. Their essential feature is the fact
that a product of two three-dimensional Gaussian functions equals another Gaussian
around a shifted center. Thus all three- and four-center two-electron integrals are
always reduced to two-center integrals.

2.4.3 Numerical basis set and pseudopotential

Very often, systems with a large number of atoms or electrons have to be treated. In
such a case the calculations of the electronic properties takes a lot of time. Sometimes
it is reasonable to separate the electrons on every atom into core electrons and valence
electrons. Thus, it is possible to evaluate the total energy as the sum of core- and
valence-electron energies. This approach, introduced in 1930s, is called the valence-
electron approximation.
In the so-called pseudopotential approach the core electrons are decoupled from the
rest of the system and substituted by an effective potential, which reproduces the
same valence states. The pseudopotential (VpsI) for every atom I can be generated
individually and then stored and used during the calculations. Consider a system
comprising a set of nuclei N . The Kohn-Sham equation (2.17) can be rewritten as:

∑
�′

[( ℏ
2m
∇2 +

e2

2�"0

∫
�̃(r⃗′)dr⃗′

∣r⃗ − r⃗′∣
+

N∑
I=1

VpsI

)
���

′
+ V ��′

ext + V ��′

xc (r⃗)
]
Ψ̃�′

i (r⃗) = "̃iΨ̃
�
i (r⃗),

(2.25)
the wave function with a tilde have been introduced to indicate that the SCF solution
of these equations is limited to valence electrons.
A very useful approximation is used in the SIESTA [32, 33, 34] package. A combina-
tion of norm-conserving pseudopotentials [61] and a numerical basis set allows one to
work with huge systems and predict their electronic properties in a very fast way. In
comparison to Slater (2.22) and Gaussian (2.23) orbitals, the numerical basis set is
extended only up to certain cutoff radii [62] which can be unique for every shell. In
this case, the matrices are sparse and small in size, and therefore decrease the time
of the calculations. These numerical orbitals, known as pseudo-atomic orbitals, are
eigenfunctions of the atomic pseudo-Hamiltonian in a spherical box [62, 63]. Within
the so-called “split-valence” method [64], the basis set can be constructed in such ways
that one (single-�), two (double-�) and more orbitals per l quantum channel are used
.
The norm-conserving pseudopotentials are of semi-local form (a different radial poten-
tial VIl(r) for each angular momentum l of the atom I). For every atom I potential is
transformed into the fully nonlocal form as proposed by Kleinman and Bylander [65]:

11



2.4 Linear combination of the atomic orbitals

VpsI(r) = V local
I (r) + V KB

I (r) (2.26)

V KB
I (r) =

lKBmax∑
l=0

l∑
m=−l

NKB
l∑
n=1

∣�KBIlnm⟩�KBIln ⟨�KBIlnm∣ (2.27)

�KBIln = ⟨'Iln∣VIl − V local
I ∣'Iln⟩−1, (2.28)

where V local
I (r) and V KB

I (r) are local and non-local potentials, the �KBIlnm are the
Kleinman-Bylander projectors, which obey the relation

�KBIlnm(r) = [VIl(r)− V local
I (r)] Ilnm(r). (2.29)

Atomic pseudo-orbitals  Ilnm(r) are the solutions of the radial Schrödinger equation
for the potentials VIl(r). Since, VIl(r) − V local

I (r) is zero outside a pseudopotential
radius rcoreI , the functions �KBIlnm(r) are also zero there. The V local

I (r) can be arbitrary,
but must join the semi-local potential VIl(r) beyond the pseudopotential core radius
rcoreI . In the SIESTA package, the local part of the pseudopotential is optimized for
matter of transferability with the scheme suggested by Vanderbilt [66].
It should be noted that the choice of the core radii for the pseudopotential and the
cut-off radii for the basis set depend on the system.
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3 Non-collinear magnetism in LCAO
methods

In magnetically non-collinear system, the direction of the spin is not uniform along
an artificially given z axis in spin-space. The Hamiltonian and the density matrix
can not be separated into two independent spin-up and spin-down matrices like for a
collinear system. In this chapter we derive the Hamiltonian, the overlap matrix and
the density matrix for a non-collinear system. We also show the features of a fully
unconstrained non-collinear LCAO method and introduce a novel procedure enabling
to fix the direction of the magnetic moment on an atom which was implemented in
the SIESTA [32, 33, 34] code. However, for our implementation based on the density
functional theory, there is no restriction on its usage of our constraint method with
the Hartree-Fock level simulation as well. It is known that the density functional and
Hartree-Fock schemes are different approaches from the theoretical point of view. But,
in practical applications they are profoundly similar. The theory below is written in
the general case and is valid for any non-orthogonal basis set.

3.1 Wave function

In non-collinear representation the wave function of the system Ψ̂nq⃗(r⃗) for state n and
q-point q⃗ is a two-component (Ψ�

nq⃗(r⃗), � = {+,−}) spinor [39] and can be written as
a linear combination of atomic orbitals or basis functions ��I� centered on the atomic
positions d�

Ψ̂nq⃗(r⃗) =

[
Ψ+
nq⃗(r⃗)

Ψ−nq⃗(r⃗)

]
=

1√
Nu

∑
u

∑
�,I�

eiq⃗(r⃗−R⃗u−d⃗�)ĉnq⃗�I���I�(r⃗ − R⃗u − d⃗�), (3.1)

where R⃗u is the vector between the first unit cell and unit cell u, Nu is the number of
unit cells which are taken into account, � is the index of the atom within one unit cell
and I� is the index of the basis function situated on an atom �. The two-component
spinors ĉnq⃗�I� = {c+

nq⃗�I�
, c−nq⃗�I�} are the expansion coefficients. In the collinear case

this spinor can have only two representations

ĉ+
nq⃗�I�

=

(
c+
nq⃗�I�

0

)
or ĉ−nq⃗�I� =

(
0

c−nq⃗�I�

)
. (3.2)

And, as one can see later, the wave function Ψ̂nq⃗(r⃗) is related to the spin-up state if
ĉnq⃗�I� = ĉ+

nq⃗�I�
, and to the spin-down state if ĉnq⃗�I� = ĉ−nq⃗�I� for all basis functions �I�.
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3.2 Density and density matrix

3.2 Density and density matrix

Since each one-electron state in a non-collinear magnet is described with two-component
spinor function, the density in every point r⃗ can be expressed by a 2×2 local spin-
density matrix [39]:

�̂(r⃗) =
∑
n,q⃗

fnq⃗Ψ̂nq⃗(r⃗)⊗ Ψ̂†nq⃗(r⃗) =

(
�11(r⃗) �12(r⃗)
�21(r⃗) �22(r⃗)

)
, (3.3)

where fnq⃗ = f("nq⃗ − "F ) is the Fermi-Dirac distribution function, which gives the
occupation of each state nq⃗ ("F is the Fermi energy), and translational symmetry [34]
was taken into account.
The basic difference between collinear and non-collinear magnets is the absence in the
non-collinear case of a natural spin-quantization axis common for the whole system.
Nevertheless, we can assume that in every point r⃗ a unitary transformation, Û(r⃗),
exist, which diagonalize the density matrix locally, i.e.,(

�̃1(r⃗) 0
0 �̃2(r⃗)

)
= Û(r⃗)

(
�11(r⃗) �12(r⃗)
�21(r⃗) �22(r⃗)

)
Û†(r⃗) = Û(r⃗)�̂(r⃗)Û†(r⃗). (3.4)

The explicit form of the density matrix can be obtained, if we combine Eq. (3.1) and
Eq. (3.3)

�̂(r⃗) =
∑
�I�

∑
�I�

∑
u

�I�(r⃗ − d⃗�)�I� (r⃗ − R⃗u − d⃗�)

×
∑
n,q⃗

e−iq⃗⋅(d⃗�−R⃗u−d⃗�)fnq⃗

[
ĉnq⃗�I� ⊗ ĉ

†
nq⃗�I�

]
=

∑
�,I�

∑
�,I�

∑
u

P̂�I�,u�I��I�(r⃗ − d⃗�)�I� (r⃗ − R⃗u − d⃗�), (3.5)

where P̂�I�,u�I� is the element �I�, u�I� of the density matrix:

P̂�I�,u�I� =
∑
q⃗

D̂q⃗�I��I�e
−iq⃗⋅(d⃗�−R⃗u−d⃗�), with (3.6)

D̂q⃗�I��I� =
∑
n

fnq⃗ ĉnq⃗�I� ⊗ ĉ
†
nq⃗�I�

=
∑
n

fnq⃗

(
c+
nq⃗�I�

(c+
nq⃗�I�

)∗ c+
nq⃗�I�

(c−nq⃗�I� )
∗

c−nq⃗�I�(c+
nq⃗�I�

)∗ c−nq⃗�I�(c−nq⃗�I� )
∗

)
. (3.7)

Here we introduce a q⃗-dependent density matrix D̂q⃗ which does not depend on the

phase shift and is quadratic. In case of a molecule calculation P̂�I��I� = D̂�I��I� .
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3.3 Schrödinger equation

From Eqs. (3.6) and (3.7), one can see that the q⃗-dependent density matrix D̂q⃗ is a

Hermitian matrix, but the spin-block D̂q⃗�I��I� and, consequently, P̂q⃗�I�,u�I� are non-
Hermitian quantities with respect to the spin-indices (� and �′ = {+,−}):

D��′

q⃗�I��I� =
(
D�′�
q⃗�I��I�

)∗
(3.8)

D��′

q⃗�I��I� ∕=
(
D�′�
q⃗�I��I�

)∗
⇒ P��′

q⃗�I�,u�I� ∕=
(
P�′�
q⃗�I�,u�I�

)∗
. (3.9)

3.3 Schrödinger equation

The expectation value of non-relativistic and time-independent Schrödinger operator
can be expressed as:

⟨Ψ̂nq⃗∣ℋ̂∣Ψ̂nq⃗⟩ = "nq⃗⟨Ψ̂nq⃗∣Ψ̂nq⃗⟩, (3.10)

where
ℋ̂ = T̂ + V̂H + V̂xc + V̂ext = (T + VH)Î + V̂xc + V̂ext (3.11)

is the Hamiltonian of the system, which includes the kinetic energy operator (T =
−1

2
∇2), the Hartree (VH), exchange-correlation (V̂xc) and the external (V̂ext) potentials,

and Î is the unit matrix.
Here it should be noted that, in general, we can use the hybrid exchange-correlation
potential which contains the mixture of the Hartree-Fock exact exchange with the
DFT exchange and correlation potentials. Also, the equation (3.11) can be extended
with extra corrections like SIC [67] or LDA+U [68, 69] for strongly correlated electrons
or with the spin-orbit interaction [70] term etc. But in all these cases, the potential
in every point of the space is a 2×2 matrix and a construction of the non-collinear
potential from the local spin-density matrix or from the electron wave functions is an
independent problem. In the present work, we consider only the local density and the
generalized gradient approximations.

3.3.1 Exchange-correlation potential

It is well known that LDA and GGA functionals do well describe collinear systems, in
which the system has a common spin-quantization axis. However, a special procedure
is needed for non-collinear exchange-correlation potential calculations.
The LDA functional only needs local information to calculate the exchange and correla-
tion potential. Therefore, at any point we can determine the unitary transformation
Û(r⃗) and transform the local spin-density matrix (using the Eq. (3.4)) to the diago-
nal form where the exchange-correlation potential can be expressed in terms �Exc/��̃

i,
i = 1, 2 and follow the standard scheme. Then, we transform the potential back to
the global frame. So, in total, the procedure looks like:

�̂(r⃗)
Û(r⃗)−−→ �̃1(r⃗), �̃2(r⃗)→ diag{Ṽxc[�̃1(r⃗), �̃2(r⃗)]} Û†(r⃗)−−−→ V̂xc(r⃗). (3.12)
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3.3 Schrödinger equation

In case of GGA the procedure is slightly complicated due to the functional dependence
on the gradient of the electron spin-density ∇�̂(r⃗). In our case, we use the procedure
suggested by Garćıa-Suárez and co-workers [73]. Here, we have to mention, that it
is equivalent to the Knöpfle and co-workers’ implementation [74]. So, the local spin-

density at a given r⃗ and r⃗ + d⃗r points are transformed to the local diagonal form by
using the same transformation matrix Û(r⃗). Here, the assumption was made that the
transformation matrices which diagonalize the local spin-density at point r⃗ and all
points around are very similar. Then, we compute the gradients ∇�̃1(r⃗) and ∇�̃2(r⃗)
and the collinear exchange-correlation potential Ṽ 1

xc and Ṽ 2
xc. And, finally, we transform

the potential back to the global frame. In general, we can present the procedure as:

�̂(r⃗), �̂(r⃗ + d⃗r)
Û(r⃗)−−→ �̃1(r⃗), �̃2(r⃗), �̃1(r⃗ + d⃗r), �̃2(r⃗ + d⃗r)

→ �̃1(r⃗), �̃2(r⃗),∇�̃1(r⃗),∇�̃2(r⃗)

→ diag{V̂xc[�̃1(r⃗), �̃2(r⃗),∇�̃1(r⃗),∇�̃2(r⃗)]}
Û†(r⃗)−−−→ V̂xc(r⃗). (3.13)

Alternatively, following the Kübler et al. [71, 72] notations, we can identify Û with
the spin-1

2
rotation matrix

Û(r⃗) = Û(�(r⃗), '(r⃗)) =

(
cos( �(r⃗)

2
) exp( i'(r⃗)

2
) sin( �(r⃗)

2
) exp(− i'(r⃗)

2
)

− sin( �(r⃗)
2

) exp( i'(r⃗)
2

) cos( �(r⃗)
2

) exp(− i'(r⃗)
2

)

)
. (3.14)

In such case, using Eq. (3.4), the local spin-density matrix is equal

�̂(r⃗) =
[
�̃1(r⃗) + �̃2(r⃗)

]
Î +

[
�̃1(r⃗)− �̃2(r⃗)

]
�̂′z(r⃗) (3.15)

and the single-particle exchange-correlation potential matrix can be written in the
form

V̂xc(r⃗) = V 0
xc(r⃗)Î + ΔV 0

xc(r⃗)�̂
′
z(r⃗), (3.16)

where �̂′z(r⃗) is the z-component of the Pauli spin matrix in a coordinate system which
is rotated by the polar angles �(r⃗) and '(r⃗) with respect to the global coordinate
system

�̂′z(r⃗) =

(
cos[�(r⃗)] sin[�(r⃗)]e−i'(r⃗)

sin[�(r⃗)]ei'(r⃗) − cos[�(r⃗)]

)
. (3.17)

Î is a unit 2×2 matrix and the potentials V 0
xc(r⃗) and ΔV 0

xc(r⃗) are given as

V 0
xc(r⃗) =

1

2

[
�Exc
��̃1

+
�Exc
��̃2

]
and ΔV 0

xc(r⃗) =
1

2

[
�Exc
��̃1
− �Exc

��̃2

]
. (3.18)

Now, taking into account that the sum in the first brackets of the Eq.(3.15) is a
local charge density n(r⃗) and the difference in the second brackets corresponds to
the magnetization density m(r⃗), in the local coordinate system we can rewrite the
expression for the spin-density matrix by using the Pauli spin matrices �̂i, i = x, y, z
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3.3 Schrödinger equation

Figure 3.1: The local magnetic density vector m⃗(r⃗) can be defined in terms of � = �(r⃗)
and ' = '(r⃗) polar angles and its Cartesian components mx(r⃗), my(r⃗) and
mz(r⃗).

�(r⃗) =
1

2
Î ⋅n(r⃗)+

1

2

∑
k=x,y,z

�⃗k⋅m⃗(r⃗) =
1

2

(
n(r⃗) +mz(r⃗) mx(r⃗)− imy(r⃗)
mx(r⃗) + imy(r⃗) n(r⃗)−mz(r⃗)

)
. (3.19)

Here, we introduced the Cartesian components (see Fig. 3.1) mx(r⃗), my(r⃗) and mz(r⃗)
of the local magnetization density vector m⃗(r⃗) in the global coordinate system:

mx(r⃗) = m(r⃗) sin[�(r⃗)] cos['(r⃗)] (3.20)

my(r⃗) = m(r⃗) sin[�(r⃗)] sin['(r⃗)] (3.21)

mz(r⃗) = m(r⃗) cos[�(r⃗)]. (3.22)

3.3.2 Hamilton and overlap matrices

The Hamilton Ĥq⃗ and the overlap Ŝq⃗ matrices can be obtained from Eq.(3.10) if we
rewrite it by using the wave function expression (3.1):

∑
�I��I�

ĉ†nq⃗�I�Ĥq⃗�I��I� ĉnq⃗�I� = "nq⃗
∑
�I��I�

ĉ†nq⃗�I�Ŝq⃗�I��I� ĉnq⃗�I� , or (3.23)

∑
�I�

ĉ†nq⃗�I�

[∑
�I�

(
Ĥq⃗�I��I� − "nq⃗Ŝq⃗�I��I�

)
ĉnq⃗�I�

]
= 0. (3.24)
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3.4 Fully unconstrained non-collinear magnetism in the LCAO method

Here

Ĥq⃗�I��I� =
∑
u

e−iq⃗(d⃗�−R⃗u−d⃗�)Ĥ�I�,u�I� , (3.25)

Ŝq⃗�I��I� =
∑
u

e−iq⃗(d⃗�−R⃗u−d⃗�)Ŝ�I�,u�I� , with (3.26)

H��′

�I�,u�I� = ⟨��I�∣(T + VH + Vext)�
��′ + V ��′

xc ∣�u�I� ⟩, (3.27)

S��
′

�I�,u�I� = ⟨��I�∣���
′∣�u�I� ⟩, (3.28)

where ���
′

is the Kronecker’s delta and

��I� = ��I�(r⃗ − d⃗�), �u�I� = ��I� (r⃗ − R⃗u − d⃗�). (3.29)

Finally, for every q⃗ point we have a set of equations:

∑
�I�

(
Ĥq⃗�I��I� − "nq⃗Ŝq⃗�I��I�

)
ĉnq⃗�I� = 0. (3.30)

Note, that if the exchange-correlation potential V̂xc is spin-diagonal in every point
of space (i.e. the system has a common spin-quantization axis), the solution of the
Schödinger equation (3.30) can be found from two independent equations∑

�I�

(
H�
q⃗�I��I� − "

�
nq⃗S

�
q⃗�I��I�

)
c�nq⃗�I� = 0 (3.31)

which describe “spin-up” electrons with � = + and “spin-down” electrons with
� = −. Here, the eigenvalues "�nq⃗ and eigenvectors c�nq⃗�I� are related only to the certain
spin-direction � = {+,−}.

3.4 Fully unconstrained non-collinear magnetism in the
LCAO method

Up to this point, no approximations were made. The local spin-density and the poten-
tial of the system have spatial variation of spin directions, and we have imposed no
constraints like in those methods based on an atomic sphere approximation for the
crystal potential [24, 25, 29]. Taking into account that the non-collinear LCAO is a
full-potential method, we can easily combine it with the relaxation or ab initio molec-
ular dynamics tasks, making it a promising tool for investigations of magnetic systems
from first principles.
An extra feature of the unconstrained non-collinear LCAO method, which was not
mentioned in literature before, is related to the spin orientational degree of freedom
for every atomic orbital. The atomic orbitals in the collinear system have one common
magnetization direction, and they can look either “up” or “down”. In the non-collinear
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3.4 Fully unconstrained non-collinear magnetism in the LCAO method

Figure 3.2: Fully unconstrained LCAO method allows to have different magnetization
axis for every atomic orbital.

case, every atomic orbital can have an arbitrary magnetization direction (see Fig. 3.2).
Moreover, there is no restriction to have different quantization axes for different basis
functions �I� for every nq⃗ state, because the expansion coefficients ĉnq⃗�I� are, in

general, arbitrary spinors, and their product ĉnq⃗�I� ⊗ ĉ†nq⃗�I� can yield an arbitrary
magnetization direction. The physical meaning of the off-diagonal element of the
density matrix P̂u�I��I� is not clear. In a collinear system they are responsible for the
charge and magnetic moment situated in the overlap region between basis functions
�I�(r⃗ − d⃗�) and �I� (r⃗ − R⃗u − d⃗�). But for a non-collinear system, P̂u�I��I� is not a
Hermitian quantity [see Eqs. (3.7) and (3.9)], therefore it cannot correspond to the
charge and magnetic moment in the same manner.
Finally, despite the absence of approximations, the method has restrictions related
to the impossibility to fix the direction of the magnetic moment per atom. More-
over, the definition of magnetic moments on the atom is not clear, in comparison to
LMTO or KKR methods. Therefore, we can summarize the main problems of the fully
unconstrained non-colliner LCAO method

a) the magnetic moment on the atom is ambiguous;

b) as a consequence, it is impossible to fix the direction of the magnetic moment
per atom;

c) therefore, it is not clear how to use the method for the treatment of spin excita-
tions;

d) the method is very time consuming.

The last problem is related to a lack of efficient mixing scheme during the self-consistent
procedure. The local spin-density matrix at every point r⃗ of the SCF step N is mixed
with the density matrices from the previous steps N − 1, N − 2,... with very small
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3.5 On-site constraint for the non-collinear LCAO method

mixing weight (which is standart for magnetic systems). This, as a result, implies
a small variation of the direction of the local magnetic moment m⃗(r⃗) from one SCF
iteration to another, and consequently very many iterations are needed to rotate the
local density in the spin space toward the converged result.

3.5 On-site constraint for the non-collinear LCAO
method

There is no unique definition of “atomic charge” or “atomic magnetic moment” in a
molecule or in a solid, even when the accurate wave functions are obtained. Many
numerous schemes were proposed to attribute a part of the electron density to indi-
vidual atoms, but none of them can satisfy the wide class of systems. Formally, we
can separate these schemes into two groups: (a) partitioning of the space around the
atomic sites and analysis of the electron distribution over these finite volumes, and
(b) manipulations with basis functions or density matrices.
To the first set belong the approximations based on a spherical potential [26, 27, 28]
and Bader partitioning scheme [83, 84]. In both cases the volume of the atom is
defined in an individual way (depends on the scheme), and the charge or magnetic
moment of the atom results from integration of the electronic spin-density over this
volume. Despite the simplicity of the approach, a problem arises of ambiguous volume
definition. The second group contains different types of orbital population analyses.
The one of the first population analyses was developed by Mulliken [85, 86]. It uses the
fact that the basis functions that span the one-electron orbital space are normally atom
centered functions, which enable the assignment of electrons to atoms. According to
Mulliken’s formulation, the charge related to the basis function � can be defined in
terms of the density matrix D�� and the overlap matrix S�� as

Q� = D��S�� +
1

2

∑
� ∕=�

(D��S�� +D��S��) . (3.32)

It is the so-called gross Mulliken population which means that every basis function �
gives the charge that equals the net population (first term) plus one-half of the overlap
populations between this function and all other basis functions (second term). The sim-
ple formulation and easy application for molecules and crystals maked it widespread.
Unfortunately, as has been repeatedly mentioned in the literature [86], the Mulliken
analysis varies drastically with the basis set and shows no convergence as the size of
the basis set is increased. The reason of these problems stems from different parti-
tioning of the space because of the modified overlap matrix when using different basis
functions. Nevertheless, up to now, no better scheme for the systems with translation
invariance has been found. If one wants to use the Löwdin [87] scheme or natural
atomic populations [88], etc, one has to take into account the q⃗ dependence of the
density and overlap matrices which makes the application of these methods very dif-
ficult and computationally expensive. Therefore, we will concentrate on the Mulliken
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3.5 On-site constraint for the non-collinear LCAO method

population analysis, assuming that deficiency of the non-orthogonality of the basis set
could be solved in an other way, for example with the LoProp [89] method or with
Distributed Multipole Analysis [90].
First, we rewrite Eq. (3.32) for periodic systems with non-collinear magnetization by
using the q⃗-dependent density matrix (3.7) and overlap matrix (3.26):

Q̂�I� =
∑
q⃗

⎡⎣D̂q⃗�I��I�Ŝq⃗�I��I� +
1

2

∑
�I� ∕=�I�

(
D̂q⃗�I��I� Ŝq⃗�I��I� + D̂q⃗�I��I�Ŝq⃗�I��I�

)⎤⎦ .
One can see that Q̂�I� is a Hermitian matrix, and we always can assume that there is

a unitary transformation Û�I� which can diagonalize it. Therefore, in analogy to the
local spin-density matrix �̂(r⃗) we can write

Q̂�I� = Û†�I�

(
n+m 0

0 n−m

)
�I�

Û�I� =

(
n+mz mx − imy

mx + imy n−mz

)
�I�

, (3.33)

where n and m are the charge and magnetization density related to the basis function
�I� in the local coordinate system and mx, my and mz are the components of the
magnetization density vector m⃗ of the same basis function in the global coordinate
system.
It is reasonable to be closer to the Mulliken formulation and construct the density
matrix in the way that every element describes the electronic charge and the magnetiza-
tion vector related to the overlap region between the basis functions �I� and u�I� .

Thus, taking into account that the overlap matrix element Ŝ�I�,u�I� is equal to Ŝ�I� ,u�I�
(equivalence by translation [34] must be considered) we can define the new density
matrix in the way that

Q̂�I� =
∑
u

∑
�I�

ˆ̃P�I�,u�I� Ŝ�I�,u�I� , where (3.34)

ˆ̃P�I�,u�I� =
1

2

∑
q⃗

[
D̂q⃗�I��I�e

−iq⃗⋅(d⃗�−R⃗u−d⃗�) + D̂q⃗�I��I�e
−iq⃗⋅(d⃗�+R⃗u−d⃗�)

]
, (3.35)

and taking into account that D̂q⃗ of Eq. (3.8) is hermitian,

P̃��′

�I�,u�I� =
1

2

∑
q⃗

[
D��′

q⃗�I��I�e
−iq⃗⋅(d⃗�−R⃗u−d⃗�) +

(
D�′�
q⃗�I��I�e

−iq⃗⋅(d⃗�−R⃗u−d⃗�)
)∗]

=
1

2

[
P��′

�I�,u�I� +
(
P�′�
�I�,u�I�

)∗]
=
(
P̃�′�
�I�,u�I�

)∗
. (3.36)

In this case, the local spin-density �̂(r⃗) can be determined via the new density matrix

21



3.5 On-site constraint for the non-collinear LCAO method

�̂(r⃗) =
∑
�I�

∑
�I�

∑
u

ˆ̃P�I�,u�I��I�(r⃗ − d⃗�)�I� (r⃗ − R⃗u − d⃗�),

=
∑
�I�

∑
�I�

∑
u

�̂�I�,u�I� (r⃗), (3.37)

where �̂�I�,u�I� (r⃗) is the local spin-density related to the overlap between basis func-
tions �I� and u�I�
Up to now, no assumption was made and we are still working on the level of the fully un-
constrained non-collinear LCAO. The magnetization direction of the local spin-density
matrix �̂(r⃗) can be different in every point of space and defined by the superposition
of the local spin-densities �̂�I�,u�I� (r⃗), which, individually, have a magnetization axis

defined by the ˆ̃P�I�,u�I� .
Now, taking into account that the main contribution to the charge and magnetic
moment of the atom � stems from the atomic block of the density matrix, we can
define our on-site constraint for the non-collinear LCAO method. It is based on two
assumptions:

1) all elements of the density matrix ˆ̃P�I�,u�I� related to the site � and all its
transitionary invariant replicas have a common magnetization direction;

2) off-diagonal elements of the density matrix related to the overlap between sites
� and � (� ∕= �) have a magnetization direction which is in the plane created by
the magnetic moments related to atomic blocks � and �.

The first statement is very close to the constraint in methods with spherical potential
where the magnetization direction is common for the whole sphere [26, 29]. So, we
can find the magnetic moment m⃗�′ = (mx,my,mz)�′ and its direction (Θ�′ , '�′) for
atomic blocks related to the site � including all equivalent atoms due to translations:

Q̂�′ =

(
n+mz mx − imy

mx + imy n−mz

)
�′

=
∑
u

∑
�I��I�
�=�

ˆ̃P�I�,u�I� Ŝ�I�,u�I� (3.38)

cos(Θ�′) =
mz√

m2
x +m2

y +m2
z

(3.39)

cos('�′) =
mx√

m2
x +m2

y

. (3.40)

Note, we use the prime in order to distinguish among the matrix Q̂�′ related to the

atomic block of the atom � and matrix Q̂� describing the electronic charge and the
magnetic moment related to the atom �

Q̂� =
∑
u

∑
�I��I�

ˆ̃P�I�,u�I� Ŝ�I�,u�I� . (3.41)
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Then, we can transform every element of the density matrix related to the site �
(� = �) to the local frame and drop off-diagonal elements:

ˆ̃P�I�,u�I� = Û†(��′ , '�′)

(
P̃+
�I�,u�I�

�

�† P̃−�I�,u�I�

)
Û(��′ , '�′) (3.42)

= Û†(��′ , '�′)

(
P̃+
�I�,u�I�

0

0 P̃−�I�,u�I�

)
Û(��′ , '�′). (3.43)

With the second assumption, we try to avoid the “memory” effect in the density matrix.
It doesn’t make sense for small systems, like two atomic molecule. But, for systems
where the spiral state is the ground state and for large systems it could be important.

3.6 Application of the on-site constraint non-collinear
LCAO method

The on-site constraint was successfully implemented in the SIESTA code. Optionally,
we allow

∙ to switch between fully unconstrained and constrained non-collinear calculations;

∙ to fix the direction of the magnetic moment for any site �;

∙ to have different mixing weights wdensity for the density matrix in the local frame
and wangles for the angles (Θ�, '�) determining the magnetization directions on
every site �;

∙ to have different convergence criteria for the density matrix elements ( ˆ̃P�I�,u�I� )
and for the angles (Θ�, '�).

After the implementations, comprehensive tests were performed. The first verification
criteria was based on the reproduction of any spin-polarized calculations for different
systems (clusters, surfaces and bulks). Then, we proved that the system is invariant
with respect to rotations in spin space. Here, identical results where obtained for any
uniform rotation Û applied to the system with arbitrary angles Θ and '. Technically,
every step of the SCF procedure was verified along the path

Û�̂(r⃗)Û†
Eqs.(3.25),(3.27)−−−−−−−−−→ {ÛĤq⃗�I��I�Û

†} Eq.(3.24)−−−−−→ {"nq⃗}, {Û†ĉnq⃗�I�}
Eqs.(3.7),(3.36)−−−−−−−−→ {Û ˆ̃P�I�,u�I�Û

†} Eq.(3.37)−−−−−→ Û�̂(r⃗)Û†, (3.44)

where "nq⃗ and ĉnq⃗�I� are the eigenvalues and eigenvectors of the initial system.
In the end, we use our on-site constraint method for monoatomic Fe and Mn nanowires
and three-atomic Mn cluster.
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3.6 Application of the on-site constraint non-collinear LCAO method

Figure 3.3: (a) Total energy of the monoatomic Fe chain as a function of the Fe-Fe
interatomic distance. The red line corresponds to the FM phase and the
black line refers to the AFM phase. (b) Dependence of the iron atom
magnetic moment from the Fe-Fe bond length for FM and AFM phases.
CRYSTAL (FM - line with open circles and AFM - line with open squares)
and SIESTA (FM - line with solid circles and AFM - line with solid squares)
calculations.

3.6.1 1D chains

The choice of iron and manganese chains was based on their different phases in the
ground state. As you can see later, the iron nanowire is a one-dimensional ferromagnet
(FM) and the manganese wire is an antiferromagnet (AFM).
The investigation of infinite ideal monoatomic chains were performed by using the
LDA scheme with Ceperley-Alder [44] parametrization for electron exchange and
correlation. The pseudopotentials for atomic elements were generated according to
the procedure of Troullier and Martins [75] with 3p semicore states. The electronic
configurations and the cutoff radii (in a.u.), in the s/p/d/f order are 3p64s13d74f 0

and 1.62/1.64/1.50/1.70 for Fe, 3p64s13d74f 0 and 1.68/1.90/1.66/1.80 for Mn. The
non-linear exchange-correlation correction [76] was included. The core-correction radii
are 0.8 and 1.0 a.u for Fe and Mn, respectively. We have found that the basis sets
with double-� for 3p/4s/4p shells and triple-� for 3d give reasonable results for both
materials. For the real space grid, we set a uniform mesh corresponding to an energy
cutoff of 400 Ry.
Two atoms in the unit cell were considered for both wires to describe the ferromagnetic
and antiferromagnetic phases with the same cell. We chose 25 Å for the spacing
between chains along x and y axes. One q point in the plane perpendicular to the wire
and 96 q points along the wire were used for all calculations. All spin-polarized data
obtained with the SIESTA code were compared with all-electron LCAO calculations
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3.6 Application of the on-site constraint non-collinear LCAO method

Figure 3.4: (a) Dependence of the total energy of the Mn chain from the Mn-Mn
bond length for FM (red line) and AFM (black line) phases. (b) Magnetic
moment of the manganese atom for FM and AFM pases as a function of
the bond length obtained with SIESTA and CRYSTAL codes. FM - red
line (open squares - CRYSTAL, solid squares - SIESTA), AFM - black line
(open circles - CRYSTAL, solid circles - SIESTA).

using the CRYSTAL package [77] with the polarized valence triple-� (TZVP) basis set
for Fe and Mn atoms [78].
The dependence of the total energy of the iron chain from the interatomic distance
is shown in Fig. 3.3(a) for ferromagnetic (red line) and antiferromagnetic (black line)
phases. As one can see, the wire is a one-dimensional ferromagnet and the energetically
preferable structure corresponds to the bond distance dFe−Fe=2.2 Å, which agrees well
with other theoretical calculations, for example 2.28 Å (Ref. [79]) and 2.25 Å (Refs. [80,
81]). The AFM phase is energetically less preferable within the whole bond length
range. The magnetic moment of the iron atom is 3.27 �B in the FM ground state. It
is increasing with stretching of the wire (see Fig. 3.3(b)). The AFM phase has smaller
magnetic moment 2.86 �B at dFe−Fe=2.2 Å. The jump of the value of the Fe magnetic
moment about dFe−Fe=2.05 Å is related to a low-spin/high-spin transition and agrees
with data obtained in Ref. [82]. As one can see in Fig. 3.3(b), the SIESTA results and
all electron calculations (CRYSTAL codes) agree well. They give practically the same
magnetic moments on the iron atoms for both phases. The maximal difference between
these methods is for the AFM phase and is equal to 0.16 �B at dFe−Fe=2.00 Å.
In contrast to the iron chain, the manganese wire is a 1D antiferromagnet. The
dependence of the FM, AFM phases and the magnetic moment on the manganese
atom from the Mn-Mn bond distance is shown in Fig. 3.4. The ferromagnetic phase
shows a low-spin/high-spin transition. There is a jump of the value of the Mn magnetic
moment from 3.1 �B at dMn−Mn=2.1 Å to 4.4 �B at dMn−Mn=2.3 Å. The magnetic
moment increases monotonically with increasing Mn-Mn distances and is going to be
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3.6 Application of the on-site constraint non-collinear LCAO method

Figure 3.5: The binding energy of the one-dimensional Fe wire as a function of the
direction of the magnetic moment on the second atom defined with polar
angle Θ for the different interatomic distances (black line with squares -
dFe−Fe=2.2 Å, black line with down-triangles - dFe−Fe=2.5 Å). Black lines
- calculations, red lines - Model 1 and blue lines - Model 2 (see details in
the text).

very close to the free atomic configuration (5�B). It is also observed that SIESTA and
CRYSTAL results are very similar (see Fig. 3.4(b)).
The transition between FM and AFM phases was investigated by varying only the
direction of the magnetic moment of the second atom from 0∘ (FM phase) to 180∘

(AFM phase). The procedure was applied for both wires with different interatomic
distances which are marked with dash lines in Fig. 3.3(a) and 3.4(a). The ab initio
data are shown in Fig. 3.5 for the Fe wire and in Fig. 3.6 for the Mn wire. The binding
energy of the wire was obtained as a difference between its total energy and two total
energies of the free standing 3d atoms.
The orientational energy dependence (Figs. 3.5 and 3.6) can be interpreted in terms of
a classical spin-system with an effective Hamiltonian. The magnetic state of N atoms
can be characterized by the array of vectors S⃗ = {S⃗i}i=1,...,N , where S⃗i = Sie⃗i is the
magnetic moment of a particular atom labeled by index i. Si is the magnitude of the
magnetic moment and e⃗i is the unit vector defining its direction. The energy of a
classical spin-system can be described within the framework of a model Hamiltonian,
the simplest of which is the classical Heisenberg model

Heff ({S⃗i}) = H(0) +H(2)({S⃗i}), (3.45)

which takes only the pairwise (H(2)({S⃗i})) interaction between spins at lattice sites i
and j into account. However, the second order approximation is not always sufficient
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Figure 3.6: The binding energy of the Mn wire as a function of the polar angle Θ
which defines the magnetic moment direction on the second atom for the
different interatomic distances (black line with squares - dMn−Mn=2.2 Å,
black line with down-triangles - dMn−Mn=2.5 Å). Black lines - calculations,
red lines - Model 1, blue lines - Model 2 and green lines - Model 3 (see
details in the text).

to describe the energy of a magnetic system [21]. Therefore, the Heisenberg model can

be extended with a fourth order spin-interaction H(4)({S⃗i}) [91, 92] term which can
improve the quality of the mapping of the energy from the first principles calculations
to the spin-model. We can rewrite the Eq. (3.45) as

Heff ({S⃗i}) = H(0) +H(2)({S⃗i}) +H(4)({S⃗i}), (3.46)

with

H(2)({S⃗i}) = −2 ⋅
∑
ij,i>j

Jij(S⃗i ⋅ S⃗j) (3.47)

H(4)({S⃗i}) = −4 ⋅
∑
ijkl

i>j,k>l

Qijkl(S⃗i ⋅ S⃗j)(S⃗k ⋅ S⃗l), (3.48)

where Jij are a exchange coefficients between atoms labeled by i and j, and the
parameters Qijkl are related to a four-spin exchange interaction between atoms i, j, k
and l.
Three models with different effective Hamiltonians for the description of the mono-
atomic chains were used. The first one is the classical Heisenberg model. The next
model assumes, that the longitudinal fluctuations of the moments can not be neglected,
i.e., the magnitudes of the moments, Mi, can not be considered independent of the
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orientational state, {ei}i=1,...,N . And the third model extends the second one with
the fourth order spin-interaction terms. Taking into account that the value of the
magnetic moment and its direction on the atoms i, (i = 1, 2) is the same as on the
atoms i′, i′′, ... (see insets in Fig. 3.5 and Fig. 3.6) we can write the following effective
Hamiltonians:

Model 1: Heff
I = H0 − 2J12(e⃗1 ⋅ e⃗2); (3.49)

Model 2: Heff
II = H0 − 2J12(S⃗1 ⋅ S⃗2)− 4J11(S⃗1 ⋅ S⃗1); (3.50)

Model 3: Heff
III = Heff

II − 4K11(S⃗1 ⋅ S⃗1)2 − 2K12(S⃗1 ⋅ S⃗2)2

−4Q1112(S⃗1 ⋅ S⃗1)(S⃗1 ⋅ S⃗2). (3.51)

Here, we use a simplified notation for the biquadratic terms K11 = Q1111 and K12 =
Q1212. Also, we have to note, that because of the choice of the cell the parameters J11,
J12, K11, K12 and Q1112 combine all long range interactions between correspondent
atoms. Namely, J12 ≡ J12 + J12′ + J12′′ + ... + J1′2 + J1′′2 + ..., where the primes are
related to the number of the cell.
The unknown parameters for different wires and different bond length were determined
by fitting the binding energy of the orientational states obtained from first principles

Table 3.1: Calculated exchange interaction parameters of three different effective
Hamiltonians (Heff

I , Heff
II and Heff

III ) for Fe and Mn monoatomic wires
and two interatomic distances 2.2 Å and 2.5 Å. All data are given in units
of meV.

Parameter H0 J11 J12 K11 K12 Q1112

dFe−Fe = 2.2 Å

Heff
I -4604.47 191.88

Heff
II , Heff

III -4525.94 -0.06 19.73

dFe−Fe = 2.5 Å

Heff
I -4060.33 193.78

Heff
II , Heff

III -2624.69 61.72 14.32

dMn−Mn = 2.2 Å

Heff
I -1857.87 -180.46

Heff
II -1592.10 4.63 -12.24

Heff
III -1034.66 14.79 -12.04 0.00 0.09 0.00

dMn−Mn = 2.5 Å

Heff
I -1963.55 -45.29

Heff
II -6864.82 -60.39 -0.68

Heff
III -5605.08 -44.95 -1.08 0.00 0.01 0.00
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calculations to the Eqs. (3.49)-(3.51). The fitting procedure is based on the least square
method with the help of the CERN library subroutine FUMILI [93]. The results are
shown in Figs. 3.5 and 3.6 and the exchange interaction parameters are collected in
Table 3.1.
As one can see, the Heisenberg model (Heff

I ) gives quite satisfactory results for the
relaxed Fe and Mn wires (d=2.2 Å) and fails for the elongated chains (d=2.5 Å). A
better description can be obtained if one uses the extended Heisenberg model (Heff

II ),
where the magnitude of the magnetic moment is taken into account. In this case, we
can describe the intermediate region between FM and AFM phases for both wires
in the correct way. In addition Model 2 describes the local minimum at Θ = 0∘ for
the Mn wire with dMn−Mn = 2.5 Å (see Fig. 3.6). It is based on the changes of the
magnituge of the magnetic moment, which is practically constant in the range from
Θ = 0∘ to Θ = 60∘ and equals 4.49 �B. Then the value decreases to 4.47 �B. So small
changes of the magnetic moment are important because of the small energy difference
between the FM and the AFM phases (0.08 eV) and the small curvature of the curve
around Θ = 0∘. The use of the fourth order spin-interaction terms in Eq. (3.51) is not
improving the fit of the ab initio data. Moreover, the two parameters K11 and Q1112

are not sensitive during the fitting procedure.

3.6.2 Molecular trimer

The next application of our on-site constraint non-collinear LCAO method was the
Mn3 cluster. The investigations were performed with the same basis set and pseudo-
potential as for Mn monoatomic wire. We have used both LDA and GGA exchange-
correlation potentials.
The previous GGA based theoretical works [94, 95, 96, 97, 98] show that the ferro-
magnetic ordering is energetically preferable for the Mn3 cluster. On the other hand,
the LDA [98, 99] calculations give antiferromagnetic ordering in the ground state with
a total magnetic moment of 5 �B. Our calculations give good agreement with previous
theoretical works.
We found that the FM structure is more stable then the AFM one with the a total
magnetic moment of 15.0 �B for GGA with PBE [52] parametrization and LDA cal-
culations with CA [44] parametrization. The AFM phase is more preferable for the
VBH [39] exchange-correlation potential (LDA). The dependence of the Mn3 binding
energy on the Mn-Mn bond distance is shown in Fig. 3.7 for calculations with CA
exchange-correlation potential. We consider the equilateral triangle of Mn atoms. We
found two phases with ferromagnetic ordering and one with antiferromagnetic order-
ing. The FM phase at small Mn-Mn distances has a small magnetic moment (3 �B
on each atom). Then, there is a phase transition from low-spin to high-spin phase at
dMn−Mn = 2.45 Å. The high-spin phase is characterized by a total magnetic moment
15 �B. The energy minimum corresponds to the bond distance 2.77 Å and agrees well
with 2.8 Å [96], 2.9 Å [95] and 2.82 Å [94]. The full relaxation of the cluster destroys
the equilateral triangle, like in [98], and conserves the same magnetic moments but
different Mn-Mn bond distances (one 2.76 Å and two 2.77 Å).
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Figure 3.7: The dependence of the binding energy of the Mn3 cluster from the Mn-
Mn bond length. Red curve (FM1) - hight-spin ferromagnetic phase, black
curve (FM2) - low-spin ferromagnetic phase and blue curve (AFM) - anti-
ferromagnetic phase.

The antiferromagnetic phase has a minimum at 2.5 Å. The same Mn-Mn distance was
obtained in [96], where the AFM phase is dominating. In our case, the AFM state
is 0.07 eV higher in energy then the FM phase. The relaxation also decreases the
symmetry of the cluster. The use of the PBE and PZ exchange-correlation potentials
changes the position of the AFM curve (see Fig. 3.7). The PBE calculations shift
it to the higher energies. For the PZ results, the AFM ordering is by 0.03 eV more
preferable than the FM one. Thus, we confirm a strong sensitivity of the ground state
to the exchange-correlation potential.
The transition from the FM to the AFM phase were investigated at dMn−Mn=2.77 Å
(the dash line in Fig. 3.7). We consider the equilateral triangle, because of the small
changes of the Mn-Mn bond length after the relaxation. In this case, we fix the
magnetization direction on one atom and vary Θ1 and Θ2, as shown in Fig. 3.8.
The dependence of the binding energy on Θ1 and Θ2 is shown in Fig. 3.9(a). There is
one global minimum at Θ1 = Θ2 = 0∘ and two local minima at (Θ1 = 90∘, Θ2 = 180∘)
and (Θ1 = 180∘, Θ2 = 90∘). Here we have to mention that the adsorption of the Mn3

molecule on the Cu(111) and Ni(111) surfaces changes the magnetic structure and the
ground state corresponds to a non-collinear configuration [100, 101]. At Θ1 = 120∘,
Θ2 = 120∘ one can see a maximum, which is related to the state with compressed
value of the magnetic moment 3.41 �B on each Mn atoms.
In order to understand the magnetic interaction in the cluster we mapped the potential
energy surface (Fig. 3.9(a)) to the effective Hamiltonians similarly to the Mn wire. In

30



3.6 Application of the on-site constraint non-collinear LCAO method

Figure 3.8: Schematic presentation of the non-collinear structure in the Mn3 cluster.
The magnetization direction on one atom is fixed. Θ1 and Θ2 define the
direction of the magnetic moment on the two other atoms.

case of the Mn3 cluster, the full Hamiltonian H = H(2) +H(4) consists of nine different
terms:

H = H0 +H1 +H2 +H3, with (3.52)

H1 = −2 ⋅ [J12(e⃗1e⃗2) + J13(e⃗1e⃗3) + J23(e⃗2e⃗3)]

H2 = −4 ⋅
[
K12(e⃗1e⃗2)2 +K13(e⃗1e⃗3)2 +K23(e⃗2e⃗3)2

]
H3 = −8 ⋅ [Q1213(e⃗1e⃗2)(e⃗1e⃗3) +Q1223(e⃗1e⃗2)(e⃗2e⃗3) +Q1323(e⃗1e⃗3)(e⃗2e⃗3)] .

Here, we use a simplified notation: K12 = Q1212, K13 = Q1313 and K23 = Q2323. Note,
that during this investigation we also apply the model which takes the magnitude of
the magnetic moment into account and obtain practically the same results.

Table 3.2: The interaction parameters in meV for three effective Hamiltonians (Heff
I ,

Heff
II and Heff

III ).

Parameter H0 J12 J13 J23 K12 K13 K23 Q1213 Q1223 Q1323

Heff
I -2076.0 36.3 36.3 30.4

Heff
II -2103.5 36.3 36.3 30.1 -3.9 -3.9 -5.5

Heff
III -2134.6 39.2 39.2 47.8 -9.0 -9.0 -3.9 -4.5 -2.5 -2.5

31



3.6 Application of the on-site constraint non-collinear LCAO method

Figure 3.9: Binding energy (eV) of the Mn3 cluster as a function of the magnetization
angles Θ1 and Θ2. (a) - ab initio calculations, (b) - fit with Heisenberg
model Eq. (3.53), (c) - fit with Heisenberg model extended with the bi-
quadratic terms and (d) - fit with full effective Hamiltonian (Eq. (3.52)).
See details in the text.

We split Eq. (3.52) into three models which include different types of interactions.
Namely, the classical Heisenberg model (HI), the Heisenberg model with biquadratic
terms (HII) and the model (HIII) which combines all interactions:

Heff
I = H0 +H1; (3.53)

Heff
II = H0 +H1 +H2; (3.54)

Heff
III = H0 +H1 +H2 +H3. (3.55)

The parameters Jij, Kij and Qijkl were determined by least square fitting the binding
energy of the orientational states obtained from calculations to Eqs. (3.53), (3.54)
and (3.55) with FUMILI [93] program. The exchange interaction parameters are
presented in Table 3.2. And the potential energy surfaces for theoretical models are
shown in Figs. 3.9(b)-3.9(d).
First of all, all models are giving good prediction of the main features (minimum and
maximum). The other two local minima can be obtained only if some or all four-spin
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3.6 Application of the on-site constraint non-collinear LCAO method

interaction terms are taken into account. The analysis of the exchange interaction
parameters perfectly shows that two atoms in the cluster are equivalent. Finally, the
full model provides the best fit of the ab initio data. Therefore, we can conclude that
for a precise description of the real system with an effective Hamiltonian, the four-spin
interaction terms have to be taken into account.
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4 Electronic structure of MetPc and
MetBz molecules and 1D wires

During the last years, molecular magnets have been attracting enormous attention,
because they are considered as potential candidates for future applications in high-
density information storage and quantum computing. Among such novel systems,
we are focusing on metallophthalocyanines (MetPc, Met=Co,Cu) and metal-benzene
(MetBz, Met=Sc-Co, Bz=C6H6) molecules and wires.
The family of the MetPc have been intensively studied due to their potential appli-
cations in various devices such as organic light-emitting diodes [102], organic field
effect transistors [103, 104] and organic photovoltaic cells [105]. They have attracted
considerable interest because of their biological significance, catalytic properties and
potential technological applications [106]. In addition, MetPc are magnetic materials.
Moreover they demonstrate a good compatibility with ultra-high vacuum (UHV) and
can be successfully grown as thin, ultra-clean, well ordered films on various substrates
which increases the interest in them as promising materials for future spintronic appli-
cations. Despite the large number of studies, the question of the electronic structure
of the CuPc and CoPc systems is still open.
The metal-benzene clusters MetnBzm can be synthesized in a gas phase reaction of
laser-vaporized metal atoms with benzene in a He atmosphere [107, 108, 109, 110].
According to Ref. [107], the structures with early transition metals Sc, Ti, V and
Mn can be organized in multidecker chains and the late transition metal-benzene
complexes of Fe, Co and Ni have rise-ball structures where benzene molecules coat the
metal atoms. Recently, Stern-Gerlach-type magnetic deflection experiments [109, 110,
111] suggested monotonic increase of the magnetic moment for VnBzn+1 (n = 1 − 4)
and ScnBzn+1 (n = 1 − 2), indicating that the magnetic moments of the V and Sc
atoms couple ferromagnetically. Then, the theoretical investigations [112, 19] show
that the infinite vanadium benzene chains are half-metals and can be used as a nearly
perfect spin-filter when the VBz cluster is placed between magnetic electrodes.

4.1 Metallophtalocenes

The molecular structure of the MetPc, Met=Co,Cu molecules is shown in Fig. 4.1.
They have a planar structure with D4ℎ point symmetry. Each molecule consists of
the central 3d atom, which is surrounded by four nitrogen atoms - pyrrole (N1); four
other nitrogen atoms - bridging aza (N2); 32 carbon atoms - the pyrrole (C1) and the
benzene ones (C2, C3 and C4).
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4.1 Metallophtalocenes

Figure 4.1: Schematic representation of the molecular structure of the MetPc,
Met=Co,Cu molecules. The arrows are indicating high-symmetry
directions.

Calculations were performed using the linear combination of atomic orbitals (LCAO)
formalism based on density-functional theory and realized in the CRYSTAL code [113].
The three-parametric Becke+Lee-Yang-Parr (B3LYP) exchange-correlation functional
[55] was applied for the calculations. It partly corrects the self-interaction error
inherent in local density (LDA) and generalized gradient approximations (GGA) by
mixing the exact Hartree-Fock exchange with the GGA exchange functional. The
electronic wave functions were described by 6-311+G** basis sets for C, N and H
atoms [114] and the TZVP [115] basis set for copper and cobalt. In addition, we
have examined and obtained the same electronic structure with 6-31+G* [116] and
Ahlrich PVTZ [117] basis sets for light elements and Ahlrich PVTZ [117] and frozen-
core SBKJC [118] basis sets for Cu. The atomic coordinates of the CuPc molecule
were optimized by means of a modified conjugate gradient algorithm [119].
The theoretical data were used for analyzing the photoemission (PES), resonant pho-
toemission (RPES) and near-edge x-ray absorption (NEXAFS) spectra [120, 122, 122,
123]. The experiments were performed at the Berliner Speicherring für Synchrotron-
strahlung (BESSY) using the soft-x-ray synchrotron light emitted by the Russian-
German high energy resolution dipole beam line [124]. The CuPc/CoPc films were
evaporated on the Au(100) surface and deposited in a sample preparation chamber
(base pressure of 2.5×10−10 Torr) directly connected to the analyzer chamber. The
core level photoemission spectra showed that CuPc films were grown without traces
of contamination. The CuPc and CoPc films were about 70 Å thick, which is large
enough to minimize contributions from the gold substrate in the photoemission spectra,
and small enough to avoid charging effects. Other details of the sample preparation
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4.1 Metallophtalocenes

Figure 4.2: (a): Thick/thin line: calculated valence band density of states of isolated
CuPc molecules. The DOS is smeared with a Gaussian functions FWHM =
0.8/0.01 eV and it is the sum of the density of states for both spin-channels.
Filled circles correspond to PES of the VB of the CuPc film (7 nm) (normal
emission, h� = 110 eV). Open circles are from Ref [129]. Zero corresponds
to the Fermi level of a clean gold foil (b): CuPc molecules and calculated
charge distribution (red) contributing to the corresponding peaks of the
valence bands (as labeled).

procedure as well as of the experimental measurements can be found elsewhere (see
e.g. [125]).

4.1.1 CuPc systems

Fig. 4.2(a) shows the photoemission valence band (VB) spectrum taken at normal
emission from a thin (7 nm) CuPc film (circles) together with the calculated density
of states (DOS) of CuPc molecules (thick and thin lines). In order to align the spectra,
the theoretical first occupied peak was shifted to the binding energy position of the
experimental peak arising from the highest occupied molecular orbital (HOMO). To
ease the comparison, a broadening of the calculated VB states has been carried out by
application of a Gaussian function to each calculated state (FWHM = 0.8 eV for the
thick line). This procedure takes life time broadening due to defects and instrumental
broadening into account. Note, the calculated DOS is the sum of the density of states
for both spin-channels.
The experimental photoemission spectrum is in good agreement with previous data
of the same system taken at different [127] as well as at similar [128, 129] photon
energies. In addition, the photoemission spectra are almost identical for different
CuPc film preparations: grown on Au(100) surfaces or on Si surfaces (� and � phase)
[129]. For example, Fig. 4.2(a) shows excellent agreement between our PES and one
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4.1 Metallophtalocenes

Figure 4.3: (a) Binding energy between two CuPc molecules as a function of displace-
ment of the second one along the a and x axes for two angles ' = 0∘ and
' = 45∘. Angle ' and a, x axes are shown as inset.

taken from Ref. [129] for the �-phase of CuPc. Such agreement of the experimental
results proves weak intermolecular bonding in different phases of CuPc films.
In order to perform a generalized investigation, different structures, a free standing
molecule and a 1D CuPc wire, were investigated theoretically. The CuPc chains were
chosen to simulate different CuPc (�[130], �′[131], �[130], "[132], [132]) phases and
the CuPc layer. In addition we investigate the interaction between one CuPc molecule
for different positions of the second CuPc. The calculated binding energy between the
molecules is shown in Fig. 4.3(a). At the beginning, the Cu atoms sit on top of each
other and the distance between the molecular planes was 4 Å, then the second CuPc
molecule was shifted along the x or a axes (see Fig. 4.3(b)).
Four energy minima were found. A global minimum, labelled A, corresponds to the
shift along the x axis at 4.25 Å. The second minimum B related to geometry occurs
when the molecules sit on top of each other and second molecule is rotated by 45∘

with respect to the previous one. It can correspond to a new high-pressure phase
of CuPc. Two other minima can describe metastable states C and D. We have to
mention that for all structures the binding energy is quite small and has a maximum
value of 0.138 eV for A. The feature C is energetically less preferable by 0.014 eV.
The small energy difference between these two structures and the broad shape of
feature A allows the coexistence of these two phases at high temperature. Therefore,
the annealing like in Ref. [133] provides highly ordered CuPc molecules on the gold
surface. The analysis of the structural data of different CuPc phases shows that they
correspond to the feature A with some deviations from the minimum. In this case
we can assume that weak interaction between CuPc chains is responsible for different
arrangements (Herringbone interaction in the �-CuPc or parallel stacking like in the
�′-phase etc.) of the molecules.
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4.1 Metallophtalocenes

The calculations show practically the same electronic structure for all CuPc chains.
The difference stems only from the relative positions of the band related to the mixture
of Cu (dx2−y2) and N (px, py) orbitals. It is well separated and situated in the gap
between the highly occupied band and the � bands of the benzene and pyrrole rings for
the chains related to the �-, the "-phases and the minimum B. While, it is mixed with �
bands of aromatic rings for wires from the �, �′, -phases and A geometry. Therefore,
the shoulder at 2.5 eV is well distinguishable for the �-phase (see Fig. 4.2(a)) and badly
visible for our CuPc films. In addition, the Cu (dx2−y2) and N (px, py) orbitals are
responsible for the magnetic moment in the CuPc molecule, they are occupied for one
spin channel (situated ∼1.5 eV below the top of the valentce band) and unoccupied
of other one (situated ∼0.5 eV above the bottom of the conduction band).
There is a small dispersion of the HOMO (0.55 eV) and the LUMO (0.27 eV) bands. It
is due to the interaction of � or �∗ orbitals of the aromatic rings which are responsible
for the bonding between CuPc molecules. All other bands have smaller or no dispersion
(states corresponding to Cu atoms). The HOMO-LUMO gap of the CuPc molecule
(2.2 eV) agrees well with measured transport gaps, 2.1 eV [134] and 2.3 eV [135]. It is
slightly larger than the calculated gap of a CuPc wires (1.6 eV for the �-, -phases and
A-structure, 1.8 eV for the �′-phase, 1.3 eV for the �-phase and 1.5 eV for the "-phase
and B-geometry) which compares favorably with experimental values obtained from
optical or electron energy-loss spectroscopy, 1.5 eV [134].
Figure 4.2 shows very good agreement between experiment and theory. The total
DOS of the CuPc wire is broadened by a Gaussian function with FWHM=0.8 eV.
Note, the DOS of the CuPc wire (created from the structure related to minimum
A) in both magnetic configurations (AFM and FM) and of the CuPc molecule are
very similar (Fig. 4.2). Differences disappear under application of a Gaussian function
with FWHM=0.8 eV. The HOMO (labeled with A) is mainly formed by the spectral
weight of the wave functions of carbon pyrrole (C1) atoms. Additional contributions
to the HOMO stem from the benzene atoms C3 and C4. The second feature (peak
B) has a more complicated structure. The analysis of molecular orbitals allows to
separate them into three independent groups. The first two groups situated in the
same energy range from -2.55 to -3.77 eV, marked as B1, reflect contributions from
hybrid Cu (dx2−y2) and N1 (px, py) orbitals, and benzene and pyrrole � states. Note
that the hybrid Cu(dx2−y2)/N(px, py) state is occupied for the spin-up channel and
unoccupied for the spin-down one. We should emphasize that the position of the d
orbital is in contradiction with other theoretical results at LDA level [129, 136], where
the HOMO is formed by the Cu (dx2−y2) state. We have reproduced these results by
means of the same local-density exchange-correlation functional. Since it is known
that LDA has deficiencies in the description of localized highly correlated electronic
states, particularly for 3d transition metals, we conclude that the obtained spectra
based on LDA are an artifact. We have to mention that even GGA improves the
position of the hybrid Cu(dx2−y2)/N(px, py) state. According to our calculation, it is
0.10 eV below the HOMO and is in good agreement with Ref. [137]. With B3LYP we
observe a pronounced charge transfer (0.7e−) from Cu to the pyrrole N and a strong
hybridization between the d orbitals of Cu and p orbitals of N. Therefore, every state

38



4.1 Metallophtalocenes

Figure 4.4: (Left upper panel): Circles: PES of the VB of the CoPc film (7 nm,
normal emission, ℎ� = 110 eV). Thick/thin line: calculated DOS of isolated
CoPc molecules, after application of a Gaussian function to each calculated
state with a FWHM=1.0/0.01 eV. (Left lower panel): the density of states
projected onto various atomic species. The DOS is the sum of the density
of states for both spin-channels. (Right panel): the charge distribution
(orange) contributing to the corresponding peaks of the CoPc valence band
(see text for the details).

with predominant N1 p character induces density on the Cu atom and vice versa. The
calculated magnetic moment of Cu is 0.57 �B, and on every N1 atom it is 0.1 �B.
Similar results were obtained in a previous paper [129]. The third group (Fig. 4.2
- region B2) arises from �-bonding orbitals between bridging aza N2 and pyrrole C1,
with main contributions from the nitrogen atoms. Moreover, these �-bonding states
are also present in the peak C1 with an energy around -5 eV. In conclusions, �-bonding
orbitals of benzene and 3d orbitals (dz2 , dxz, dyz, dxy) of Cu determine the structure C
(C2 and C3 regions in Fig. 4.2). There, like for higher energy features, the d orbitals are
hybridized with the p orbitals of the N1 atoms. The charge distribution contributing
to the corresponding peaks of the valence band (A, B and C) is shown in Fig. 4.2(b).
The densities are normalized to the number of states in the corresponding region. The
figures show surfaces of equal charge density (5 ⋅ 10−5 e/Bohr3).

4.1.2 CoPc molecule

Fig. 4.4 shows the photoemission VB spectrum taken at normal emission from a thin
(7 nm) CoPc film (circles) together with the calculated valence band structure of
CoPc molecules (thick and thin lines). The theoretical and experimental spectra were
aligned to the position of the first occupied peak. The DOS of the CoPc molecule was
broadened with Gaussian functions (FWHM = 1.0 eV). This procedure takes solid
state effects and instrumental broadening into account.
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4.2 MetBz molecules and one-dimensional wires

The CoPc films prepared are characterized as highly ordered, and the CoPc molecule
lies on the single crystalline substrate, id est the organic molecular plane is parallel to
the substrate surface [139]. Since, according to our results and Ref. [140], there is a
week molecule-molecule interaction in the molecular crystals, the electronic structure
of the molecular solid state crystals is mainly formed by the electronic structure of the
single MetPc molecule.
One can see reasonable agreement between experimental and theoretical data. The
features of the experimental spectrum are reflected in the theoretical curve. Here,
we have to note, that we perform spin-polarized calculations, but only the sum of
spin-up and spin-down densities is shown. For better understanding of the nature of
the occupied states, the isodensity surfaces for the HOMO-0, HOMO-1 and HOMO-2
features were plotted and shown in Fig. 4.4. The first feature (HOMO-0) includes
�-states situated on both aromatic rings. The analysis of the projected DOS on the
atomic species (Fig. 4.4, lower left panel) shows, that mostly the states from pyrolle
carbon dominate here. We note that the present calculations do not reproduce the
double peak near the Fermi level as seen in the photoemission spectra. This aspect
has to be clarified in the future. The CoPc molecule HOMO-LUMO gap is equal to
2.02 eV. We are expecting the smaller bang gap for the CoPc molecular crystals.
The second feature (labeled as HOMO-1) has contributions from � states localized on
benzene and hybrid Co-N states. The analysis of the molecular orbitals allows to sepa-
rate the HOMO-1 region into three independent contributions. The first (HOMO-1a)
has contributions from � states localized on benzene and hybrid Co(dxz,dyz)/N(px/y)
orbitals, where the dxz, dyz states are occupied for both spin channels. Here, the
density of the N(px/y) orbitals predominates over Co(dxz, dyz). The second part
(HOMO-1b) consists of � states with equally distributed density on benzene and on
hybrid Co(dxy)/N(px/y) states which are occupied for the spin-down electrons. The
spin-up Co(dxy)/N(px/y) orbitals form the last part (HOMO-1c) of this series. Both
spin components of the cobalt DOS are completely asymmetric. The spin-down states
are shifted towards EF in comparison with the spin-up states. The Co(dxy)/N(px/y),
Co(dz2) spin-up densities and Co(dxz, dyz)/N(px/y), Co(dx2−y2) states are related to
the third group (HOMO-1c). The magnetic moment of the Co atom is 1.15 �B. Other
atoms in the molecule are weakly polarized and they share together -0.15 �B (up to
0.02 �B on N1 atoms). The third feature (labelled as HOMO-2) consists of � states
of benzene and pyrolle like states in the CuPc molecule [141]. The contribution of
the d orbitals of the Co atom to this feature is small, and a separation into individual
components is shown in Fig. 4.4 as HOMO-2a to HOMO-2c.

4.2 MetBz molecules and one-dimensional wires

The schematic structures of the MetBz systems are shown in Fig. 4.5. One can see
that they have C6v symmetry and can have a half-sandwich (Fig. 4.5(a)), a sandwich
(Fig. 4.5(b)) or a chain (Fig. 4.5(c)) structure. Note that here we do not consider
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4.2 MetBz molecules and one-dimensional wires

Figure 4.5: The schematic structure of the MetBz clusters. (a) half-sandwich; (b)
sandwich; (c) chain.

the MetBz systems with rice-ball structure. Nevertheless, we will analyze why such
structures are preferable for MetBz, Met=Fe-Ni compounds.
The theoretical investigation were performed using the LCAO method implemented
in the CRYSTAL code [113]. The GGA exchange-correlation functional with Perdew-
Wang [48] parametrization was employed. The electronic subsystem was described
by Gaussian type basis sets, where a 6-311+G** basis was used for C and H atoms
[114] and a frozen-core SBKJC [118] basis was applied for the whole row of transition
metals (from Sc to Cu). The influence of the choice of the basis set on the MetBz
properties were also investigated. We use different combinations of the 6-31+G* [116]
and Ahlrich PVTZ [117] basis sets for light elements and Ahlrich PVTZ [117] and
TZVP [115] basis sets for transition metals. We found that the choice of the basis set
does not change significantly the ground state of the MetPc systems or their properties
within the same exchange-correlation potential. In order to omit the problem of the
electron-correlation effects, we additionally use the Vosko-Wilk-Nusair LDA [43] and
hybrid B3LYP [55] potentials. We also verify our data of the electronic structure with
the local density approximation LDA+U scheme [142] using the projector augmented
wave method [143] implemented in the VASP [144] package.

4.2.1 MetBz half-sandwiches

The previous studies [145, 146, 147, 148, 149, 150, 151] have found that the transition
metal-benzene complexes have a half-sandwich type structure in which the metal atom
is located above the benzene plane on the C6v axis. In our case, we have got the same
result. The full relaxation of the MetBz clusters maintain the C6v symmetry. We also
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4.2 MetBz molecules and one-dimensional wires

Figure 4.6: The binding energy of the MetBz, Met=Sc-Cu half-sandwiches as a func-
tion of the Met-Bz distance for the different magnetic states. The energe-
tically preferred state for each cluster is marked in red.

found that the planes created from hydrogen atoms are shifted away from the carbon
atoms less then 0.02 Å in direction of the metal atom. There is a small distortion of
the C-C (∼0.02 Å) and C-H (∼0.01 Å) bonds in comparison to the isolated benzene.
Nevertheless, all benzene ring deformations are negligible for the binding energy and
the electronic structure calculations. Moreover, the local relaxation of the benzene
ring during the change of the Met-Bz distance is also not significant.
In the next step of our investigations, we analyze the dependence of the binding
energy of the MetBz compounds from the distance between 3d atom and the center of
gravity of the benzene ring. In the present study, each of the transition metal atoms
was shifted along the C6v axis of the fixed benzene molecule. The binging energy is
defined as the energy required to dissociate the molecule into the individual metal
atom and the benzene ring:

EMetBz
BE = EMetBz − EMet − EBz, (4.1)

where EMetBz, EMet and EBz are the total energies of the MetBz molecule, metal atom
and benzene ring, respectively.
The final data are shown in Fig. 4.6. One can see, a variety of the magnetic configura-
tions within a narrow energy and Met-Bz distance ranges. Despite the large number
of studies [145, 146, 152, 153], the contradictory results concerning both the geome-
try and the magnetic moment of the ground state were obtained. Our data are in
good agreement with the DFT-level studies of Pandey and co-workers [145, 146] and
also agree well with the multireference configuration interaction method data [153]
for the ScBz and the NiBz short-range state. In Table 4.1 the results of the calcula-
tions of the optimized Met-Bz distance (dMet−Bz), binding energy (EMetBz

BE ), magnetic
moments per molecule �total and transition metal atom �Met for the first-row MetBz
compounds are summarized.
ScBz: The ScBz molecule can be in low-spin and high-spin states. The second one is
energetically preferable. The molecule in the high-spin state has a magnetic moment
of 3 �B. The scandium atom has a magnetic moments of 2.13 �B. The ring has a quite
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4.2 MetBz molecules and one-dimensional wires

Table 4.1: The Met-Bz distance (dMet−Bz), binding energy (EMetBz
BE ) and magnetic

moments of the 3d atom (�Met) and the whole MetBz, Met=Sc-Cu molecule
(�total) in the ground state.

Method ScBz TiBz VBz CrBz MnBz FeBz CoBz NiBz CuBz

dMet−Bz (Å) 1.96 1.93 1.55 2.27 1.50 1.46 1.47 1.51 2.40
EMetBz
BE (eV) -1.56 -1.65 -1.85 -0.25 -0.32 -1.32 -1.07 -1.48 -0.18

�Met (�B) 2.13 3.38 1.21 5.82 3.46 2.23 1.05 0 1
�total (�B) 3 4 1 6 3 2 1 0 1

large induced magnetic moment 0.87 �B. Moreover, the carbon atoms have positive
magnetic moments of 0.161 �B, while the hydrogen atoms have a small negative mo-
ments of -0.016 �B. There is a small charge transfer of 0.16e from Sc to Bz. Here, we
obtain good agreement with DFT data [145] and MP2-level results [154] concerning
the geometry, magnetic configurations and the binding energy. The multireference con-
figuration interaction study [153] defines our ground state as a metastable short-range
state, which is about 1.6 eV higher in energy than the long-range state (dScBz=4.96 Å).
Such large energy difference between short- and long-range states suppress the forma-
tions of the ScBz sandwiches or chains. On the one hand, the Sc atom is situated quite
far from the benzene ring and on the other hand the mass-spectrometry data show
the presence of ScnBzn+1 molecules [107, 108]. Therefore, we assume that one needs
more detailed correlation-like multireference perturbation studies, which can clarify
the formation of the multidecker structures.
TiBz: The ground state of the TiBz half-sandwich is at distance dT iBz=1.93 Å. Here,
three magnetic states can be realized: singlet (�total=0 �B), triplet (�total=2 �B) and
quintet (�total=4 �B). The ground state is related to the quintet one with �T i=3.38 �B.
Here, the induced magnetic moment on the aromatic ring is also positive (like in ScBz)
and equal to 0.62 �B. The same magnetic configuration and geometry was obtained
in Refs. [145, 155, 151]. In addition, our binding energy for the TiBz molecule
(-1.65 eV) is in good agreement with other theoretical -1.71 eV [145] and experimental
-1.76 eV [107] results. It is larger then -1.06 eV in [151] and -1.20 eV in [155]. There
is also a local minimum related to the triplet state. According to our data, it is only
0.07 eV less preferable then the global minimum.
VBz: The investigation of the VBz molecule has a long history. The electron paramag-
netic resonance (ESR) and electron spin resonance (ESR) measurements [156, 157, 158]
define a doublet electronic ground state. The theoretical investigations show contra-
dictory results. The LCAO-DFT level calculations define the basis dependence of the
ground state, namely the LANL2DZ basis prefers the quartet multiplicity [145], while
the doublet ground state was obtained with the 6-311G** basis set [146]. The mul-
tireference configuration interaction calculations [153] have found that at short-range,
the VBz ground state has a quartet multiplicity and it is metastable with respect to
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4.2 MetBz molecules and one-dimensional wires

the dissociation into V and Bz. Our data are closer to the EPR or ESR measurements
and theoretical investigations with the 6-311G** basis set, where the doublet ground
state was obtained. The potential surface of the VBz molecule (see Fig. 4.6) shows
also the quintet state, which is at dV Bz=2.04 Å and ∼0.45 eV higher in energy. The
vanadium atom has a magnetic moment 1.21 �B and the ring is negatively magnetized
(�ring=-0.21 �B). The binding energy is -1.85 eV agrees well with -2.09 eV [146] and
is larger than the experimental values -1.14 eV [159] and -0.79 eV [146]. Note, the
experimental binding energies are empirical data, which are evaluated from

EMetBz
BE = IV Bz + EV +Bz

BE − IV , (4.2)

where IV Bz and IV are the ionization potentials of the VBz molecule and the V atom,
respectively, and EV +Bz

BE is the binding energy of the V+Bz cation.
CrBz: Four magnetic configuration can be realized in CrBz system. As one can see
from Fig. 4.6, the energetically preferable state is the septet (�total=6 �B). The local
magnetic moment of the Cr atom is 5.82 �B. Here, like in ScBz and TiBz complexes,
the carbon atoms of the ring have also a positive induced magnetic moment. The same
state was obtained with the valence configurational interaction method [152]. There,
it is defined as a long-range state. The previous DFT level calculations [145] also
found the same magnetic moment in the ground state. The binding energy between
the Cr atom and the aromatic ring is -0.25 eV, which agrees well with a theoretical
value of -0.09 eV and an experimental value of -0.12 eV [145].
MnBz and FeBz: In the ground state, the MnBz molecule has a total magnetic moment
of 3 �B and its binding energy is -0.32 eV at dCoBz=1.50 Å. Other magnetic states
can also be realized, but they are energetically not preferable. The Mn atom induces
a negative magnetic moment of -0.46 �B on the benzene ring. The FeBz aromatic
subsystem has also an induced magnetic moment in the ground state. The optimized
structure of FeBz has a Fe-Bz distance of dFeBz=1.46 Å. The binding energy between
the Fe atom and the ring is -1.32 eV. In general, our MnBz and FeBz relaxed coor-
dinates and the binding energy data are in good agreement with previous theoretical
data from Ref. [145].
CoBz: The lowest-energy structure of the CoBz molecule is found to be doublet
(�total=1 �B) and corresponds to dCoBz=1.47 Å. The next magnetic state is quar-
tet (�total=3 �B). It is only 35 meV higher in energy with an optimized distance
dCoBz=1.66 Å. The same elongation of the Co-Bz distance for the doublet-quartet
transition was found in Ref. [147]. The organic part of the molecule has an induced
magnetic moment for both magnetic states. Namely, the doublet state is characterized
by an induced moment of �Bz=0.05 �B, while the high-spin structure has a two times
large moment �Bz=0.1 �B. Our binding energy of the Co atom to the benzene molecule
in the ground state structure is -1.07 eV, which is close to the experimental value of
-0.64 eV [160]. Other theoretical investigations report smaller (-0.22 eV [147, 148])
and larger (-1.83 eV [145]) binding energies.
NiBz and CuBz: The optimized distance of NiBz is dNiBz=1.51 Å. The molecule is
nonmagnetic and its binding energy is -1.48 eV. In general, our data are in good agree-
ment with [149, 145]. In contrary to NiBz, CuBz is magnetic with a total magnetic
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4.2 MetBz molecules and one-dimensional wires

Table 4.2: The Met-Bz distance (dMet−Bz), the displacement of the H atoms plane
from the C atoms plane (dCC−HH), binding energy (EMetBz2

BE ) and mag-
netic moments of the 3d atom (�Met) and the whole MetBz2, Met=Sc-Mn
molecule (�total) in the ground state.

Method ScBz TiBz VBz CrBz MnBz

dMet−Bz (Å) 1.95 1.73 1.65 1.58 1.64
dCC−HH (Å) -0.005 0.037 0.045 0.053 0.029

EMetBz2
BE (eV) -2.26 -3.30 -3.58 -3.07 -1.38

�Met (�B) 0.46 0 1.21 0 1.05
�total (�B) 1 0 1 0 1

moment of 1 �B, but there in no induced magnetic moment on the ring and the s-
orbitals of the Cu atom are responsible for the magnetism in the molecule. In the
ground state, the CuBz molecule has quite large metal-benzene distance dCuBz=2.4 Å.
And the potential profile of CuBz (see Fig. 4.6) is very flat around the minimum and
allows to assume a very high reactivity of these system. In addition, the complex
has a small binding energy -0.18 eV, which agrees well with the experimental value
-0.17 eV [107].

4.2.2 Stability of the MetBz2 sandwiches

As was mention before, only some of the transition metal atoms can form the mul-
tidecker structures. The mass spectrometry and reactivity experiments [107, 108]
showed that the structure of neutral complexes depends on the metal and can be
observed in sandwich structure for the early transition metals (Sc, Ti, V, Cr and
Mn) and in rice-ball structure for the late transition metals (Fe, Co, and Ni). The
theoretical investigations [146, 147, 148, 149, 150, 161] also confirm these results.
Here we extend the previous theoretical investigations and perform extensive and
systematic analysis of the stability of the MetBz2 molecules. We concentrated our
attention on the interaction of the MetBz half-sandwich with the benzene ring which
was placed in different positions. In order to choose the correct magnetic configuration
we relaxed the structures of each MetBz2 molecule by using the D6ℎ symmetry. Then,
we fix the MetBz structures and move the benzene ring. Two degrees of freedom
were considered. The first one is a displacement of the second benzene ring over the
MetBz complex keeping it parallel to the first benzene. The second rotational degree
of freedom is realized by rotation of the second benzene ring around the transition
metal atom with fixed Met-Bz distance. During the investigations we use the same
exchange-correlation potentials and the basis sets as for MetBz complexes.
Displacement: The schematic structure of the MetBz molecule and the starting config-
uration of the aromatic ring are shown in the left-upper corner of Fig. 4.7. The center
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4.2 MetBz molecules and one-dimensional wires

of gravity of the benzene was changed in the positive quarter of the xy plane. A grid
of 6×6 points with steps of 0.5 Å for each axis was chosen for the potential energy
surface calculations. The total energy of the MetBz2 was transformed to the binding
energy, which is defined as the energy required to dissociate the MetBz2 molecule into
individual benzene and MetBz complex:

EMetBz2
BE = EMetBz2 − EMetBz − EBz, (4.3)

where EBz, EMetBz2 and EMetBz are the total energies of the benzene ring, MetBz2

and MetBz molecules, respectively.
Because of the similar potential energy surfaces, we can combine MetBz2 molecules in
the following three groups: (G1) - early transition metal-benzene complexes of Sc, Ti,

Figure 4.7: Potential energy surfaces of the MetBz2, Met=V, Mn and Co, molecules
as a function of the displacement of the second benzene ring in the XY-
plane. The schematic structure of the MetBz2 molecule and the position
of the X and Y axes are shown in the left-upper corner. Each XY point of
the potential surfaces is related to the position of the center of gravity of
the second ring. See details in the text.
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4.2 MetBz molecules and one-dimensional wires

Figure 4.8: Potential energy surfaces of the MetBz2, Met=V, Mn and Co, molecules
as a function of the rotation of the second benzene ring by Θ and Φ around
the Met atom. Θ and � are shown with respect to the schematic structure
of the MetBz2 molecule on the left side. See details in the text.

V and Cr, (G2) - MnBz2 molecule and (G3) - late transition metal-benzene complexes
of Fe, Co, and Ni. Fig. 4.7 shows the dependence of the binding energy of the MetBz2

complexes as a function of the position of the second benzene ring for one element of
each group, namely V, Mn and Co. One can see that the late transition metal-benzene
structures prefer a tilted sandwich structure, in which the transition metal atom is
situating below of the C=C bond of the second benzene ring. There is a small energy
barrier (>0.2 eV) between two minima related to the nearest Met-C=C structures.
The high symmetrical CoBz2 sandwich structure is found to be a transition state. It
is 0.57 eV higher in energy then the tilted structure. The ground state of the CoBz2 is
a doublet with a binding energy of -1.75 eV that agrees well with previous theoretical
results (-1.83 eV [145] and -1.67 eV [147]).
The potential energy surfaces related to the early transition metal-benzene molecules
(G1 and G2 groups) have only one energy minimum, which correspond to the sandwich
type structure with D6ℎ symmetry (see Fig. 4.7). We present the binding energies,
geometrical and magnetic properties of the stable MetBz2, Met=Sc-Mn sandwiches
after full optimization in Table 4.2. In general, our data are in good agreement with
previous results [145].
The MetBz2, Met=Sc-Mn molecules prefer the magnetic configurations with smallest
multiplicity. Namely, the ground state of TiBz and CrBz is singlet and doublet for
ScBz2, VBz2 and MnBz2 complexes. The last three systems have induced magnetic
moment on the benzene ring. It is negative for VBz2 (-0.21 �B) and MnBz2 (-0.05 �B)
and positive for ScBz2 (0.54 �B). Only the VBz2 molecule keeps the magnetic state dur-
ing the interaction of the VBz half-sandwich with the benzene ring. While, the other
MetBz2 molecules change the magnetic configuration. The largest change occurs for
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4.2 MetBz molecules and one-dimensional wires

the CrBz2 system, where the Cr atom had a moment of 5.82 �B in the CrBz molecule
and no magnetization in the sandwich structure. And, as a result, the geometry is
also changing drastically. Namely, the Cr-Bz distance is changing from 2.27 Å (for
CrBz) to 1.58 Å (for CrBz2). The full relaxation shows that the hydrogen atoms form
a plane which is slightly shifted from the plane formed by the carbon atoms. For all
MetBz2 molecules (excluding ScBz2), the H plane is closer to the Met atom, which is
a result of an attraction between Met and H atoms. Following the same idea, the Sc
H interaction is repulsive.
The potential energy surfaces of the early transition metal sandwiches are very similar.
Every plot (see Fig. 4.7 ) has one well pronounced energy minimum and six energy
maxima related to the structure, when the carbon atom of the second ring is situated
above the Met atom. The main difference between the MnBz2 molecule and other early
transition metal-benzene structures is the ground state binding energy (see Fig. 4.7
and Table 4.2). The MnBz2 sandwich has the smallest binding energy of -1.38 eV,
which is about 2 eV smaller than for TiBz2, VBz2 and CrBz2 molecules and about
1 eV smaller than for ScBz2.
Rotation: The rotational degree of freedom of the second benzene molecule were inves-
tigated in the following way: the second ring was rotated with fixed Met-Bz distance
around the high symmetry axis (angles �) and around the axis which cross the op-
posite C-C bonds (angles Θ) as shown in the left part of Fig. 4.8. The potential
energy surfaces are shown in the right part of Fig. 4.8 for VBz2, MnBz2 and CoBz2

molecules as representatives of the groups G1, G2 and G3, respectively. Interestingly,
for all transition metal-benzene complexes the potential surfaces are very flat. More-
over, the rotation around the high symmetry axis costs little energy of 50 meV for all
complexes. The variation of the Θ angle costs more energy (about 30 meV for each
of the 6 degrees for Met=Sc-Mn). Nevertheless, it is still small in comparison to the
energy losses via displacement of the benzene ring. Therefore, we can assume, that
the rotational degree of freedom is responsible for the limitation of the length of the
MetnBzn+1 multidecker sandwich structures.

4.2.3 One-dimensional VBz and MnBz wires

In the next step of our investigation, we analyze the electronic properties of the infi-
nite MetBz wires. We consider only early transition metal complexes with Met=Sc-
Mn, which can potentially form multidecker structures. The Perdew-Wang [48] GGA
exchange-correlation functional was used. In Table 4.3 the calculated data of the
magnetic moment per unit cell (mCell) and the magnetic moment on the Met atom
(mCell), the Met-Bz distance (dMet−Bz), the magnetic phase and character of the band
structure, band gap (Eg) and spin-flip gap (Δs) for the relaxed MetBz wires are sum-
marized. First of all, our optimized structures of the infinite MetBz chains are in good
agreement with other studies [112, 162]. One can see that practically all magnetic
phases can be realized in these systems. Namely, TiBz is a metallic antiferromagnet,
ScBz and CrBz are nonmagnetic materials with metallic and semiconductor type band
structure, respectively, and VBz together with MnBz are ferromagnetic half-metals.
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4.2 MetBz molecules and one-dimensional wires

Table 4.3: The phase and character of the band structure, distance between transition
metal atom and benzene ring (dMet−Bz), magnetic moment per unit cell
(mCell) and magnetic moment on the Met atom (mMet), band gap (Eg) and
spin-flip gap (Δs) for the MetBz, Met=Sc-Mn infinite wires.

Method ScBz TiBz VBz CrBz MnBz

phase NM AFM FM NM FM
metal metal half-metal semiconductor half-metal

dMet−Bz (Å) 1.91 1.80 1.69 1.65 1.68
mCell (�B) 0 1 1
mMet (�B) 1.21 1.28 1.25
Eg (eV) 1.18 (majority) 0.96 1.16 (minority)
Δs (eV) 0.12 0.17

The last two chains are very interesting since they can be used as spin-filters. The elec-
tronic structure of these systems has metallic behavior for one spin channel and a band
gap for the other spin channel. Therefore, only electrons with one spin-polarization
are transmitted through the wire. The VBz and MnBz chains have 1.28 eV majority
gap and 1.25 eV minority gap, respectively. The spin-flip gaps, which are defined as
the energy difference between the Fermi level and the top of the valence band of the
spin-channel with semiconducting behavior, are similar for both wires.
The longitudinal compressing and stretching of the MetBz wires was also investigated.
The dependence of the binding energy from the unit cell length is shown in Fig. 4.9
for all early transition metal-benzene chains. Note, the unit cell length is equal to two
Met-Bz distances. The ScBz and CrBz have one well pronounced minimum related
to the non-magnetic state. While the TiBz, VBz and MnBz have several phases

Figure 4.9: Binding energy of the transition metal atom and the benzene ring as a
function of the unit cell length for MetBz, Met=Sc-Mn wires. Red and
green lines correspond to the low- and high-spin FM states, respectively.
The black line refers to the nonmagnetic state. The AFM state is shown
by a blue line.
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4.2 MetBz molecules and one-dimensional wires

Figure 4.10: The total density of states of the infinite VBz (a) and MnBz (b) chains
calculated with different exchange-correlation potentials.

with small differences in energy. The ground state of the TiBz is related to the
antiferromagnetic phase, which is only 0.02 eV more preferable than the ferromagnetic
one. VBz and MnBz have low-spin and high-spin ferromagnetic phases. The low-
spin phase corresponds to the ground state for both VBz and MnBz wires. The
antiferromagnetic phase of VBz is about 0.06 eV higher in energy scale for both wires.
The MnBz energy minima related to FM and AFM phases are shifted with respect to
each other, which allows to expect a magnetoelastic effect.
Taking into account the increasing interest in half-metallic materials, we performed a
detailed analysis of the electronic structure of the VBz and MnBz wires. First, in order
to verify the validity of the obtained result with respect to a more careful treatment
of the on-site correlation effects between d electrons of vanadium and manganese, we
performed additional calculations within the LDA and LDA+U scheme, as well as with
the hybrid B3LYP exchange-correlation functional. The total density of states (DOS)
of the VBz and MnBz wires are shown in Fig. 4.10. One can see that the half-metallic
behavior is robust against details of the calculations only for the VBz wire. While the

Table 4.4: Band structure parameters (spin-flip gap Δs, direct gap Eg) of the VBz
wire together with the lattice constant obtained by different methods.

Method Δs, eV Eg, eV dV Bz, Å

GGA 0.12 1.18 1.695
LDA+U (2 eV) 0.22 1.04 1.663
LDA+U (3 eV) 0.57 1.25 1.676
LDA+U (4 eV) 1.04 1.58 1.696
LDA+U (5 eV) 1.64 2.06 1.720
B3LYP 1.22 2.52 1.760
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Figure 4.11: The spin-resolved band structure (left plot). The labels at the band
structure refer to crystalline orbitals of the wire calculated for the Γ point.
These functions are shown in the center. The corresponding majority
and minority spin orbitals have practically the same shape. The right
panel shows values of the HOMO-LUMO gap in two spin channels for
Vn(C6H6)n+1 clusters as a function of n.

hybrid B3LYP calculations support the metallic behavior for both spin-channels of the
MnBz. The LDA+U calculations with U=1,2,3,4,5 eV shows the same trend as the
B3LYP calculations for both wires. Namely, for all U the MnBz wire is metallic and
VBz is half-metallic. In Table 4.4, we present the band structure parameters (spin-flip
gap Δs, direct gap Eg) for the VBz wire together with the optimized lattice constant
for different methods. The inclusion of a Hubbard U term results in an increase of
the direct band and spin-flip gaps, while the minority bands crossing the Fermi level
are unaffected. The B3LYP functional pulls the majority spin bands even stronger
away from EF . In addition, the antiferromagnetic state of the wire was found to be
energetically less preferable as compared with the ferromagnetic configuration.
The band structure of the VBz wire and the crystalline orbitals evaluated at the
Γ point are shown in Fig. 4.11. The analysis of the bands leads to the following
picture of the formation of the ground state. The fully occupied bands below −6 eV
with respect to EF arise from the benzene orbitals which are not spin-split and thus
play no role in the formation of the magnetic state. For energies above −6 eV the
wire bands are formed from the hybridized states of vanadium and benzene, i.e. from
molecular orbitals of the V-Bz cluster. The strong crystalline field splits the vanadium
3d states to the singlet A1 state (d3z2−r2) and two doublets, of E1 (dxz, dyz) and E2

(dxy, dx2−y2) symmetry. The doubly degenerate E1 band just above −6 eV is formed

51



4.2 MetBz molecules and one-dimensional wires

Figure 4.12: Total valence charge-density (a) and spin-density (b) maps for the VBz
wire. Local magnetic moments are 1.28 �B at V atom, and -0.047 �B at
each C atom.

mainly from the HOMO and HOMO−1 �-type orbitals of benzene with an admixture
of dxz, dyz vanadium states. Due to the strong hybridization effect between the states
of the same symmetry, the vanadium dxz, dyz levels are pushed well above the Fermi
energy where they are coupled with antibonding benzene LUMO and LUMO−1 states
leading to the formation of the two different bands of E1 symmetry, marked by (f)
and (g) in Fig. 4.11. The remaining d3z2−r2 and dxy, dx2−y2 vanadium states form two
bands nearby the Fermi level, of A1 and E2 symmetry, respectively [they are marked
by (b) and (c)]. These bands are spin-split. The vanadium atom itself has three 3d
electrons. It turns out that in the wire the vanadium s states are shifted above EF
and are responsible for the formation of the A1 band labelled as (e) in Fig. 4.11. Thus,
two electrons from s orbitals of vanadium move to the 3d shell and five electrons in
total wish to occupy three levels (A1 and E2) which are available per spin. Finally,
the majority spin electrons fill two bands of A1 and E2 symmetry completely which
therefore are placed below EF . The remaining two electrons of each unit cell are
redistributed among the minority spin A1 and E2 bands both of which are crossing
the Fermi level. The semiconductor gap in the majority spin channel is formed between
two different E2 bands one of which originates mainly from dxy, dx2−y2 vanadium states
while the upper one comes from the LUMO and LUMO−1 antibonding �∗ states of
benzene.
We show in Fig. 4.12 the total valence charge density (�↑ + �↓) and the spin-density
(�↑ − �↓) contour plots for the ferromagnetic V-Bz wire. The density plots are given
for two planes: along the wire and perpendicular to it. The electronic charge density
in the V-Bz bond critical point is 0.132 e/a3

0. According to the Bader analysis [163] of
the topology of the charge density, the covalent type of bonding is predominant. The
vanadium atom is charged negatively (−0.22e) due to a charge transfer to benzene
that agrees with the findings of Ref. [164], which indicates the presence of an ionic
type of bonding. The magnetic density map (Fig. 4.12(b)) shows a quite localized
positive magnetic moment at the V atom (+1.28 �B) and a small negative magnetic
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moment (−0.28 �B) redistributed over six carbon atoms. Our value of the magnetic
moment at the V atom agrees well with the theoretical data of Ref. [164] obtained
for finite VnBzn+1 complexes where these values varied from 1.15 �B up to 1.36 �B
depending on the complex size and the vanadium position in the system. The total
magnetic moment of the wire unit cell is equal to 1.0 �B. The same integer value of
the total magnetic moment was obtained in EPR measurements [156, 157] as well as
in the calculations performed for the single V-Bz and multidecker VnBzn+1 clusters
with n ≤ 6 [164, 165] and VBz infinite wires [166].
Finally, we have found that the half-metallic electronic behavior of the infinite 1D
VBz wire is conserved in the VnBzn+1 molecules of finite length with n≤6. One can
see in the right panel of Fig. 4.11, that the HOMO-LUMO gap for the minority spin
channel is 1 order of magnitude smaller than the gap in the majority spin channel for
clusters with n ≥3. Therefore, we can suggest, that these molecular wires, which have
already been synthesized [110, 111], act as highly effective spin filters.
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5 Electronic transport in non-collinear
magnetic systems with translation
invariance

The investigation of the electronic transport through a nanoscale device is a challeng-
ing problem. The size of the system is comparable to the Fermi wavelength of the
conduction electrons so that the effective-mass approximation is no longer valid. The
electrons are scattered by only a few atoms, therefore their arrangement and the elec-
tronic structure of the system must be taken into account. As was shown in previous
sections, DFT based methods are quite successful for molecules or periodic systems.
But, if the system becomes open and an external bias is applied, a more sophisticated
ab initio treatment is required.
Presently three conceptually quite different schemes of describing electric transport
in terms of ab initio like methods are available, namely those based on the linearized
Boltzmann equation [167, 168], the Kubo-Greenwood equation [3] and the Landauer-
type approach [8, 9]. The use of the Boltzmann approach is based on the assumption
that the conduction electrons are scattered incoherently at the defects in the sample.
The mean free path is short with respect to the characteristic size of the sample.
Phase information is lost. Using the Kubo formalism the conductivity is evaluated
fully quantum mechanically by the current-current correlation function for the ground
state. The formalism gives the transport coefficient in the linear response regime
and there are no restrictions concerning the strength of the scattering occurring in
the system. Nevertheless, the Kubo formalism cannot be applied when one analyzes
non-linear responses, which is beyond its scope [4]. The Landauer-type approaches
describe systems in which the nanoscopic conductor acts as a quantum mechanical
scatterer for the electrons coming in from one lead and moving out at another. For
open systems, the Keldysh formalism [7] is combined with the Landauer-Büttiker
formalism [8] by imposing a certain boundary condition. This combination is very
often called non-equilibrium Green’s function (NEGF) method.
In this chapter, we will concentrate our attention on the last transport scheme. We
restate and generalize the non-equilibrium Green’s function method for non-collinear
magnetic systems with translation invariance. In spite of the large number of papers
and implementations of the NEGF method [169, 170, 171, 172, 173, 174, 175, 176]
in existing LCAO codes, the last two problems were omitted. Within the chapter,
we will mainly follow the arguments presented by M. Branbyge and co-authors in
Ref. [170] and M. Paulsson in his introductory paper on the NEGF [177]. In the end
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Figure 5.1: Schematic illustration of incoming Ψ̂L
n,qn , outgoing reflected Ψ̂L

n′′,−qn′′
and

transmitted Ψ̂R
n′,qn′

wavefunctions scattered at the mesoscopic sample. The
system consists of three regions: mesoscopic sample and two reservoirs
with different chemical potentials �L and �R for left and right reservoirs,
respectively. For the meaning of n, n′, n′′, q, rnn′′ and tnn′ , see text.

of the chapter, we are going to apply our method to a perfect graphene sheet and to
a one-dimensional iron wire.

5.1 Landauer approach

The Landauer-type formalism considers a mesoscopic sample connected to two electron
reservoirs in the form of macroscopic metal contacts (see Fig. 5.1). Here, ”mesoscopic”
means that the size l of the sample region between the two reservoirs is much smaller
than the electron relaxation length lr (l ≪ lr). This implies that we can consider
elastic scattering in the sample region. Furthermore, since the metal contact is a
macroscopic conductor, we can assume that the electrons inside the contacts can move
reflectionless. It can be thermalized at the temperature and chemical potential of every
contact. Thus, all electrons entering from the contacts are distributed according to
the Fermi- Dirac distribution f(") of the given reservoirs.
Since the scattering is elastic, an incoming wave at some energy " from the left lead will
give rise to a coherent superposition with outgoing reflected and transmitted states of
the same energy ":

Ψ̂L
n,qn −

∑
n′′

rnn′′(")Ψ̂
L
n′′,−qn′′ +

∑
n′

tnn′(")Ψ̂
R
n′,qn′

. (5.1)

Here rnn′′(") is the reflection coefficient between state n with wave vector qn of an
incoming electron and state n′′ with wave vector qn′′ of a reflected electron at energy
", and tnn′(") is a transmission coefficient between the incoming state nqn and the
transmitted state n′qn′ at the same energy.
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Thus, the transmitted current density at energy " and state nqn is given by:

jtn,qn(") =
∑
n′

∥tnn′(")∥2jn′,qn′ ("), (5.2)

where jn′,qn′ (") is a current density for the state n′ in the right lead.
It’s known that a uniform electron gas with N electrons per unit length moving with
velocity v carries a current eNv. In such case, the current propagating in a particular
mode n per unit of length is given by the group velocity which in turn is given by the
derivative of the dispersion relation for band n

jn,qn(") = evqn("n)f("n) =
e

ℏ
∂"n
∂q

f("n), (5.3)

where f("n) is the Fermi-Dirac distribution function, defined as

f("n) =
1

1 + e("n−"F )/kT
, (5.4)

here "F is the Fermi energy and T is the temperature.
Therefore, the total current from the left to the right reservoirs is

I tL→R =

∫
dq
∑
n

jtn,qn(") =

∫
dq
∑
n,n′

∥tnn′(")∥2jn′,qn′ (")

=
e

ℏ

∫
dq
∑
n,n′

∥tnn′(")∥2∂"n′

∂q
f("n′ − �L). (5.5)

Now, we are converting the integral over q into an energy integration using the density

of states �(") and taking into account that for one-dimensional systems �(") =
(
∂"
∂q

)−1

we get

I tL→R =
e

ℏ

∫ ∞
−∞

d"�(")
∂"

∂q
f("− �L)

∑
n,n′

∥tnn′(")∥2 (5.6)

=
e

ℏ

∫ ∞
−∞

d"

(
∂"

∂q

)−1
∂"

∂q
f("− �L)

∑
n,n′

∥tnn′(")∥2 (5.7)

=
e

ℎ

∫ ∞
−∞

d"f("− �L)
∑
n,n′

∥tnn′(")∥2 (5.8)

=
e

ℎ

∫ ∞
−∞

d"f("− �L)
∑
n

Tn("), (5.9)

here, we define the transmission per conduction channel n as Tn(") and the Fermi-
Dirac distribution function f(" − �L) implies that the left electron reservoir injects
electrons into the right-moving modes of the left lead up to the chemical potential �L.
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In the same way, we can find the total current from the right to the left contact:

I tR→L =
e

ℎ

∫ ∞
−∞

d"f("− �R)
∑
n′,n

∥tn′n(")∥2 =
e

ℎ

∫ ∞
−∞

d"f("− �R)
∑
n′

Tn′("), (5.10)

where Tn′(") is the transmission probability of channel n′ of the right lead.
Because of time inversion symmetry, the transmission probability from the left to the
right contact, tnn′ is equal to the amplitude tn′n from right to left reservoir. Thus, the
relation between the total transmission probabilities from the left and right leads is
given by: ∑

n

Tn(") =
∑
n,n′

∥tnn′(")∥2 =
∑
n,n′

∥tn′n(")∥2 =
∑
n′

Tn′("). (5.11)

Finally, the total current is given as the difference between the current due to all
electrons traveling from L to R and the current due to the electrons traveling vice
versa. So, using Eq. (5.6) and (5.10) we obtain

Itot = I tL→R − I tR−→L =
e

ℎ

∫ ∞
−∞

d"

[∑
n

Tn(")

]
(f("− �L)− f("− �R)) . (5.12)

Identifying the Fermi-Dirac distribution as a step-function and the difference in the
chemical potentials as the applied voltage eV = �L − �R, one obtains the following
relation for the conductance

G =
e2

ℎ

∑
n

Tn(eV ). (5.13)

The last equation is usually called the Landauer formula [178] for the conductance, the
coefficient, however, is only half of the fundamental conductance quantum G0 = 2e2/ℎ.
In the case of a spin-degenerate system the transmission for both spin-channels are
equal, so that a factor of two appears.

5.2 Non-equilibrium Green’s function formalism

The formalism we have discussed so far left out the problem of how to find the trans-
mission Tn matrix for each channel n of a realistic system and how this transmission de-
pends on the applied bias. A solution can be found if we combine the non-equilibrium
Green’s function approach with the Kohn-Sham single-particle description.

5.2.1 Hamiltonian, overlap matrix and Green’s function of the
system

The system under consideration consists of three parts (see Fig. 5.2), namely two
semi-infinite electrodes (left and right) and the central region. We assume that the
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5.2 Non-equilibrium Green’s function formalism

central region is large enough to avoid interactions between the left and right leads.
It includes parts from the leads with bulk properties and the scattering region.
When the system is translationally invariant in the planes perpendicular to the trans-
port direction, for the perpendicular components of any q⃗ point the Hamiltonian is
assumed to be given by the matrix:

Ĥq⃗ =

⎡⎣ ĤL,q⃗ V̂L,q⃗ 0

V̂ †L,q⃗ ĤC,q⃗ V̂ †R,q⃗
0 V̂R,q⃗ ĤR,q⃗

⎤⎦ , (5.14)

where for matter of simplicity the notation q⃗ = q⃗⊥ is used. ĤC,q⃗ is a Hamiltonian of

the central region, V̂L/R,q⃗ describes the interaction between the central region and the

left/right contact and ĤL,q⃗ and ĤR,q⃗ are the Hamiltonians of the semi-infinite left and
right electrodes, respectively. If we partition the leads into planes of unit cells and
assume that every plane is interacting only with the nearest neighbor plane (as shown
in Fig. 5.2), the Hamiltonian of the electrodes will look like:

ĤL
q⃗ =

⎡⎢⎢⎢⎢⎣
. . . . . . 0
. . . Ĥl,q⃗ Ĥll,q⃗

Ĥ†ll,q⃗ Ĥl,q⃗ Ĥll,q⃗

0 Ĥ†ll,q⃗ Ĥl,q⃗

⎤⎥⎥⎥⎥⎦ and ĤR
q⃗ =

⎡⎢⎢⎢⎢⎣
Ĥr,q⃗ Ĥ†rr,q⃗ 0

Ĥrr,q⃗ Ĥr,q⃗ Ĥ†rr,q⃗

Ĥrr,q⃗ Ĥr,q⃗
. . .

0
. . . . . .

⎤⎥⎥⎥⎥⎦ . (5.15)

The wave function ∣Ψ̂q⃗⟩ of the system can also be positioned into a left (∣Ψ̂L,q⃗⟩), a

central (∣Ψ̂C,q⃗⟩) and a right (∣Ψ̂R,q⃗⟩) block such that the Schrödinger equation is of the
form: ⎡⎣ ĤL,q⃗ V̂L,q⃗ 0

V̂ †L,q⃗ ĤC,q⃗ V̂ †R,q⃗
0 V̂R,q⃗ ĤR,q⃗

⎤⎦⎛⎝ ∣Ψ̂L,q⃗⟩
∣Ψ̂C,q⃗⟩
∣Ψ̂R,q⃗⟩

⎞⎠ = "q⃗

⎛⎝ ∣Ψ̂L,q⃗⟩
∣Ψ̂C,q⃗⟩
∣Ψ̂R,q⃗⟩

⎞⎠ . (5.16)

Now, we can find the relations between the wave functions of the central region and
the leads. From the first and third rows of Eq. (5.16) we can obtain

ĤL,q⃗∣Ψ̂L,q⃗⟩+ V̂L,q⃗∣Ψ̂C,q⃗⟩ = "q⃗∣Ψ̂L,q⃗⟩ −→

∣Ψ̂L,q⃗⟩ =
[
zq⃗ − ĤL,q⃗

]−1

V̂L,q⃗∣Ψ̂C,q⃗⟩, (5.17)

V̂R,q⃗∣Ψ̂C,q⃗⟩+ ĤR,q⃗∣Ψ̂R,q⃗⟩ = "q⃗∣Ψ̂R,q⃗⟩ −→

∣Ψ̂R,q⃗⟩ =
[
zq⃗ − ĤR,q⃗

]−1

V̂R,q⃗∣Ψ̂C,q⃗⟩, (5.18)

zq⃗ = "q⃗ + i�. (5.19)

At this stage, we can introduce the Green’s function (GF) as a solution of the inho-
mogeneous Schrödinger equation
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5.2 Non-equilibrium Green’s function formalism

Figure 5.2: Schematic drawing of a system composed of two left and right semi-infinite
leads and a central region. The central region includes the interface region
so that the left and right leads have bulk properties.

(z −H)G(z) = I, z = "+ i�. (5.20)

Depending on the sign of � we get two different side limits, related to outgoing and
incoming waves in the contacts, which usually are called the retarded (� > 0) and the
advanced (� < 0) Green’s function.
Therefore, we can rewrite the Eqs. (5.17) and (5.18) in terms of the unperturbed
Green’s function of the left/right semi-infinite electrode

∣Ψ̂L,q⃗⟩ = ĝL,q⃗V̂L,q⃗∣Ψ̂C,q⃗⟩ (5.21)

∣Ψ̂R,q⃗⟩ = ĝR,q⃗V̂R,q⃗∣Ψ̂C,q⃗⟩, (5.22)

where

ĝL/R,q⃗ =
(
z − ĤL/R,q⃗

)−1

. (5.23)

The retarded (Ĝ+
q⃗ ) and the advanced (Ĝ−q⃗ ) Green’s function can be defined in terms

of wave functions (Eq. (3.1)) by using the so-called spectral resolution

Ĝ±q⃗ (r⃗, ") =
∑
n

fnq⃗
Ψ̂nq(r⃗)⊗ Ψ̂†nq(r⃗)

"− "n ± i�
=

∑
u,�I��I�

[∑
n

fnq⃗
ĉnq⃗�I� ⊗ ĉ

†
nq⃗�I�

"− "n ± i�

]
× �I�(r⃗ − d⃗�)�I� (r⃗ − R⃗u − d⃗�)e−iq⃗⋅(d⃗�−R⃗u−d⃗�)

=
∑

u�I��I�

Ĝ±q⃗�I��I� (")�I�(r⃗ − d⃗�)�I� (r⃗ − R⃗u − d⃗�)e−iq⃗⋅(d⃗�−R⃗u−d⃗�),(5.24)
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where the Ĝ±q⃗�I��I� (") is an energy dependent matrix element, fnq⃗ = f("nq⃗ − "F ) is

the Fermi-Dirac distribution function and the {ĉnq⃗�I�} are the expansion coefficients,
introduced in Eq. (3.1) of the Chapter 3.
From Eq. (5.24), the relation between the matrix elements of the retarded and ad-
vanced Green’s functions is(

Ĝ+
q⃗

)†
= Ĝ−q⃗ or equivalently

(
Ĝ+
q⃗�I��I�

)∗
= Ĝ−q⃗�I��I� . (5.25)

Special care has to be taken if the basis set is non-orthogonal. In this particular case
we have to introduce the Hamiltonian and overlap matrices

Ĥq⃗ =

⎡⎢⎣ ĤL,q⃗ V̂L,q⃗ 0

V̂
†
L,q⃗ ĤC,q⃗ V̂

†
R,q⃗

0 V̂R,q⃗ ĤR,q⃗

⎤⎥⎦ , and Ŝq⃗ =

⎡⎢⎣ ŜL,q⃗ ŜLC,q⃗ 0

Ŝ
†
LC,q⃗ ŜC,q⃗ Ŝ

†
RC,q⃗

0 ŜRC,q⃗ ŜR,q⃗

⎤⎥⎦ , (5.26)

where

Ĥi,q⃗ = ⟨Ψ̂i,q⃗∣Ĥi,q⃗∣Ψ̂i,q⃗⟩, i = {L,C,R};
V̂L,q⃗ = ⟨Ψ̂L,q⃗∣V̂L,q⃗∣Ψ̂C,q⃗⟩;
V̂R,q⃗ = ⟨Ψ̂R,q⃗∣V̂R,q⃗∣Ψ̂C,q⃗⟩;

Ŝi,q⃗ = ⟨Ψ̂i,q⃗∣Ψ̂i,q⃗⟩, i = {L,C,R};
ŜLC,q⃗ = ⟨Ψ̂L,q⃗∣Ψ̂C,q⃗⟩;
ŜRC,q⃗ = ⟨Ψ̂R,q⃗∣Ψ̂C,q⃗⟩.

The Schrödinger equation in matrix form is then given by[
"q⃗Ŝq⃗ − Ĥq⃗

]
Ĉq⃗ = 0, (5.27)

where Ĉq⃗ =
{
ĉnq⃗�I�

}
is the vector of wave function expansion coefficients which is

different for each q⃗ state. The matrix elements of the Green’s function can be obtained
from the equation [

zŜq⃗ − Ĥq⃗

]
Ĝq⃗ = I. (5.28)

If the Green’s function of the whole system is given by

Ĝq⃗ =

⎡⎣ ĜL,q⃗ ĜLC,q⃗ ĜLR,q⃗

ĜCL,q⃗ ĜC,q⃗ ĜCR,q⃗

ĜRL,q⃗ ĜRC,q⃗ ĜR,q⃗

⎤⎦ (5.29)

using Eqs. (5.14), (5.26) and (5.28) the GF for the central region is equal to

ĜC,q⃗(z) =
[
zŜC,q⃗ − ĤC,q⃗ − Σ̂L,q⃗(z)− Σ̂R,q⃗(z)

]−1

, (5.30)
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where

Σ̂L,q⃗(z) =
[
zŜL,q⃗ − V̂L,q⃗

]†
ĝL,q⃗(z)

[
zŜL,q⃗ − V̂L,q⃗

]
, (5.31)

Σ̂R,q⃗(z) =
[
zŜR,q⃗ − V̂R,q⃗

]†
ĝR,q⃗(z)

[
zŜR,q⃗ − V̂R,q⃗

]
, (5.32)

can formally be interpreted as the self-energies of the left and right electrodes, respec-
tively, and

ĝ
L/R
q⃗ (z) = (zŜ

L/R
q⃗ − Ĥ

L/R
q⃗ )−1 (5.33)

is the unperturbed Green’s function of the semi-infinite left/right electrode in matrix
form.

5.2.2 Response to an incoming wave

If each electrode has a different chemical potential, the response (∣Φ̂nq⃗⟩) on the incom-

ing wave (∣Ψ̂nq⃗⟩) of state n from the lead can be obtained from the equation

Ĥq⃗

(
∣Φ̂nq⃗⟩+ ∣Ψ̂nq⃗⟩

)
= "q⃗

(
∣Φ̂nq⃗⟩+ ∣Ψ̂nq⃗⟩

)
. (5.34)

For the injection of the electron from the left electrode the incoming wave and the
response are defined as

∣Ψ̂nq⃗⟩ =

⎛⎝ ∣Ψ̂L,nq⃗⟩
0
0

⎞⎠ and ∣Φ̂nq⃗⟩ =

⎛⎝ ∣Ψ̂LL,nq⃗⟩
∣Ψ̂CL,nq⃗⟩
∣Ψ̂RL,nq⃗⟩

⎞⎠ (5.35)

Thus, the response from the central part can be found from Eqs. (5.14) and (5.34)

(
Ĥq⃗ − "q⃗

)
∣Φ̂nq⃗⟩ =

(
"q⃗ − Ĥq⃗

)
∣Ψ̂nq⃗⟩

∣Φ̂nq⃗⟩ = −Ĝq⃗

⎛⎝ "q⃗ − ĤL,q⃗

−V̂ †L,q⃗
0

⎞⎠ ∣Ψ̂L,nq⃗⟩ = Ĝq⃗

⎛⎝ 0

V̂ †L,q⃗
0

⎞⎠ ∣Ψ̂L,nq⃗⟩

⇒ ∣Ψ̂CL,nq⃗⟩ = ĜC,q⃗V̂
†
L,q⃗∣Ψ̂L,nq⃗⟩, (5.36)

here we take into account that ∣Ψ̂L,nq⃗⟩ is a solution for the Schrödinger equation of

the left electrode ("q⃗ − ĤL,q⃗)∣Ψ̂L,nq⃗⟩ = 0. Similarly the response on the m state of the
incoming wave from the right lead is

∣Ψ̂CR,mq⃗⟩ = ĜC,q⃗V̂
†
R,q⃗∣Ψ̂R,mq⃗⟩ (5.37)
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The wave function in the right electrode ∣Ψ̂R,q⃗⟩ (Eq. (5.22)) can therefore be expressed

in terms of the left lead incoming wave ∣Ψ̂L,q⃗⟩:

∣Ψ̂R,q⃗⟩ = ĝR,q⃗V̂R,q⃗∣Ψ̂CL,q⃗⟩ = ĝR,q⃗V̂R,q⃗ĜC,q⃗V̂
†
L,q⃗∣Ψ̂L,q⃗⟩. (5.38)

5.2.3 Density matrix

The basic task in the self-consistent DFT cycle for the system under bias is the calcu-
lation of the non-equilibrium charge density in the device region. This charge density
can be constructed from the wave functions in the device region by the incoming states
of the left and right leads:

�̂ = �̂L + �̂R (5.39)

where

�̂L =
∑
n,q⃗

∣Ψ̂CL,nq⃗⟩⟨Ψ̂CL,nq⃗∣f("nq⃗ − �L) (5.40)

�̂R =
∑
m,q⃗

∣Ψ̂CR,mq⃗⟩⟨Ψ̂CR,mq⃗∣f("mq⃗ − �R). (5.41)

Now, combining the Eqs. (5.36) and (5.40) we obtain

�̂L =
∑
n⃗q

ĜC,q⃗V̂
†
L,q⃗

[
∣Ψ̂L,nq⃗⟩⟨Ψ̂L,nq⃗∣

]
V̂L,q⃗Ĝ

†
C,q⃗f("nq⃗ − �L)

=
∑
q⃗

∫
d"f("− �L)ĜC,q⃗V̂

†
L,q⃗

[
∣Ψ̂L,nq⃗⟩⟨Ψ̂L,nq⃗∣�("− "nq⃗)

]
V̂L,q⃗Ĝ

†
C,q⃗

=
i

2�

∑
q⃗

∫
d"f("− �L)ĜC,q⃗V̂

†
L,q⃗

[
ĝL,q⃗ − ĝ†L,q⃗

]
V̂L,q⃗Ĝ

†
C,q⃗, (5.42)

where ĝL,q⃗ is the spectral resolution of the unperturbed retarded Green’s function of
the left electrode

ĝL,q⃗ ≡ ĝ+
L,q⃗ =

∑
n

∣Ψ̂L,nq⃗⟩⟨Ψ̂L,nq⃗∣
"− "l + i�

and (5.43)

ĝ+
L,q⃗ −

(
ĝ+
L,q⃗

)†
= ĝ+

L,q⃗ − ĝ
−
L,q⃗ = 2�i

∑
l

ĉ0
lq⃗�I� ⊗ ĉ

0†
lq⃗�I�

�("− "l). (5.44)

The proof of the last equation is based on the properties of the retarded and advanced
Green’s functions G("−) = G†("+), see Eq. (5.25), and on the Sokhotsky’s formula
[179]:

lim
�→+0

1

x± i�
= ∓i��(x) + P

(
1

x

)
. (5.45)

62



5.2 Non-equilibrium Green’s function formalism

Here, we can introduce a new quantity which describes the coupling between left
electrode and device region

Γ̂L,q⃗ = iV̂ †L,q⃗

[
ĝL,q⃗ − ĝ†L,q⃗

]
V̂L,q⃗ = i

[
Σ̂L,q⃗ − Σ̂†L,q⃗

]
, (5.46)

where Σ̂L,q⃗ is the self-energy of the left electrode (Eq. (5.31)).
In the case that the basis set is non-orthogonal we can use the q⃗-dependent density
matrix (3.7) instead of the density and consider that Eqs. (5.28), (5.31) define the
Green’s function and self-energy of the left lead in matrix form.
Finally, repeating the same procedure for density coming from the right electrode, the
q⃗-dependent non-equilibrium density matrix has the form:

D̂q⃗ =
1

�

∫ ∞
−∞

d"
[
Ĝq⃗Γ̂

L
q⃗ Ĝ†q⃗f("− �L) + Ĝq⃗Γ̂

R
q⃗ Ĝ†q⃗f("− �R)

]
. (5.47)

Formally, we can split the D̂q⃗ in an “equilibrium” and a “non-equilibrium” part:

D̂q⃗ = D̂L
q⃗ + Δ̂RL

q⃗ (5.48)

=
1

�

∫ ∞
−∞

d"Ĝq⃗

(
Γ̂L
q⃗ + Γ̂R

q⃗

)
Ĝ†q⃗f("− �L) (5.49)

+
1

�

∫ ∞
−∞

d"Ĝq⃗Γ̂
R
q⃗ Ĝ†q⃗ (f("− �R)− f("− �L)) , (5.50)

or, equivalently,

D̂q⃗ = D̂R
q⃗ + Δ̂LR

q⃗ (5.51)

=
1

�

∫ ∞
−∞

d"Ĝq⃗

(
Γ̂L
q⃗ + Γ̂R

q⃗

)
Ĝ†q⃗f("− �R) (5.52)

+
1

�

∫ ∞
−∞

d"Ĝq⃗Γ̂
L
q⃗ Ĝ†q⃗ (f("− �L)− f("− �R)) , (5.53)

The equilibrium part of the density matrix

In equilibrium, it is possible to combine the density coming from the left and the right
lead. Assuming that there are no states that couple the electrodes via the central
region we can write

Ĝq⃗

(
Γ̂L
q⃗ + Γ̂R

q⃗

)
Ĝ†q⃗ = iĜq⃗

((
Σ̂L
q⃗ + Σ̂R

q⃗

)
−
(
Σ̂L
q⃗ + Σ̂R

q⃗

)†)
Ĝ†q⃗

= iĜq⃗

((
Ĝ†q⃗

)−1

−
(
Ĝq⃗

)−1
)

Ĝ†q⃗

= i
(
Ĝq⃗ − Ĝ†q⃗

)
. (5.54)
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Figure 5.3: Schematic view of the integration contours for the retarded (black color)
and the advanced (red color) Green’s functions used to calculate the equi-
librium part of the q⃗-dependent density matrix. EB and EF are indicating
the bottom of the valence band and the Fermi energy respectively. Open
circles are related to the Matsubara poles of the Green’s functions. Arrows
show the direction for integration.

At this stage, it should be noted, that it is impossible to define the density as an
imaginary part of the retarded Green’s function for a non-collinear magnetic systems.
The imaginary part of any complex number is always a real quantity but the matrix
element of the density matrix can be complex. Thus, if we take only the imaginary
part of the retarded GF we can lose some information about the magnetic properties
of the system. One can easily see this from Eq. (3.7).
It is also impossible in the LCAO method to use the way suggested in methods based
on spherical approximation of the atom, where the density always can be kept in the
local frame for non-colliner magnetic systems.
In the present work, we suggest the way how to overcome this problem. First of all,
we divide the integral over energy for the difference of the Green’s functions (5.54)
into two integrals, one for the retarded GF and one for the advanced GF

D̂
L/R
q⃗ =

i

�

∫ ∞
−∞

d"
[
Ĝq⃗("

+)− Ĝ†q⃗("
+)
]
f("− �L/R)

=
i

2�

∫ ∞
−∞

d"
[
Ĝq⃗("

+)− Ĝq⃗("
−)
]
f("− �L/R)

=
i

2�

∫ ∞
−∞

d"Ĝq⃗("
+)f("− �)− 1

�

∫ ∞
−∞

d"Ĝq⃗("
−)f("− �L/R), (5.55)

taking into account, that the retarded GF is analytical in the upper half of the complex
plane and the advanced one in the lower half. According to the residue theorem, for
the complex contour,∮

dzĜ(z)f("− �) = −2�ikT
∑
zp

Ĝ(zp), (5.56)
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where T is the temperature and the Matsubara poles are located at energy zp =
i(2m + 1)�kT , m=1, 2, ... we can perform the integral over the complex contour for
every type of Green’s function according to equations∫ ∞

EB

d"Ĝq⃗("
+)f("− �) = −

∫
C++L+

dz+Ĝq⃗(z
+)f(z+ − �)− 2�ikT

∑
z+p

Ĝ(z+
p ) (5.57)

∫ ∞
EB

d"Ĝq⃗("
−)f("− �) = −

∫
C−+L−

dz−Ĝq⃗(z
−)f(z− − �) + 2�ikT

∑
z−p

Ĝ(z−p ) (5.58)

Now, taking into account that we have a finite number of poles and also a finite number
of points on the contours C+ + L+ and C− + L− and assuming the relation between
the contours is z− = (z+)∗, where z− ∈ (C− +L−) and z+ ∈ (C+ +L+) (see Fig. 5.3),
we finally obtain for the density

D̂
L/R
q⃗ =

i

2�

∑
i

[
w∗i Ĝ

†
q⃗(z

+
i )− wiĜq⃗(z

+
i )
]
, where (5.59)

wi = (z+
i − z+

i−1) ⋅ f(z+ − �L/R) for z+
i ∈ C+ + L+

wi = 2�ikT for z+
i = z+

p

A similar technique is used for the calculation of the optical conductivity tensor [180].

The non-equilibrium part of the density matrix

The densities Δ̂RL
q⃗ and Δ̂LR

q⃗ are non-analytical quantities, since they are related to
two different Fermi functions, see e.g. Eq. (5.50). Therefore they must be evaluated
by integration close to the real axis using a very fine energy mesh.
Furthermore, because of numerical errors, the results from Eqs. (5.48) and (5.51) are
not equivalent. It is therefore reasonable to use a weighted sum,

D̂q⃗�I��I� =
(
D̂L
q⃗�I��I� + Δ̂RL

q⃗�I��I�

)
wq⃗�I��I�

+
(
D̂R
q⃗�I��I� + Δ̂LR

q⃗�I��I�

) (
1− wq⃗�I��I� ,

)
(5.60)

in order to reduce integration error. Taking into account that the trace of the density
matrix D̂q⃗�I��I� can be interpreted as a q⃗-resolved charge, we can define the weight as

wq⃗�I��I� =
(TrΔ̂LR

q⃗�I��I�
)2

(TrΔ̂RL
q⃗�I��I�

)2 + (TrΔ̂RL
q⃗�I��I�

)2
. (5.61)

In the case of spin-polarized calculations, the weight for every spin channel has to be
calculated independently.
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5.2 Non-equilibrium Green’s function formalism

5.2.4 Current and transmission

The current in a system is described by a charge flow. Therefore, we can find the
probability current as time derivative of the density in the central region:

j =
∂�̂

∂t
=
∑
iq⃗

∂⟨Ψ̂q⃗∣i⟩⟨i∣Ψ̂q⃗⟩
∂t

. (5.62)

By taking into account that iℏ∂∣Ψ̂q⃗⟩
∂t

= Ĥq⃗∣Ψ̂q⃗⟩ and by grouping together the terms
involving the hopping from the left electrode to the central region and the terms
involving hopping between the right electrode and the device, we obtain

j = jL + jR, where

jL/R =
i

ℏ
∑
q⃗

(
⟨Ψ̂L/R,q⃗∣V̂L/R q⃗∣Ψ̂C,q⃗⟩ − ⟨Ψ̂C,q⃗∣V̂ †L/R,q⃗∣Ψ̂L/R,q⃗⟩

)
. (5.63)

The more detailed derivation of all equation of this section can be found in the work
of M. Paulsson [177].
The charge current i(") (at a particular energy point) is the current which can transfer
the electron (-e) with the probability equal to the probability current. Therefore, by
using Eqs. (5.21), (5.22) and (5.38) we can get the electric current iR(") flowing from
the left electrode to the right,

iR(") = −ie
ℏ
∑
q⃗

(
⟨Ψ̂R,q⃗∣V̂R,q⃗∣Ψ̂C,q⃗⟩ − ⟨Ψ̂C,q⃗∣V̂ †R,q⃗∣Ψ̂R,q⃗⟩

)
=

e

ℏ
∑
nq⃗

⟨Ψ̂L,nq⃗∣V̂L,q⃗Ĝ†C,q⃗Γ̂R,q⃗ĜC,q⃗V̂
†
L,q⃗∣Ψ̂L,nq⃗⟩, (5.64)

while the total current from the left to the right electrode is given by

IR =
e

ℏ
∑
q⃗

∫ ∞
−∞

d"f("− �L)
∑
n

�("− "n)⟨Ψ̂L,nq⃗∣V̂L,q⃗Ĝ†C,q⃗Γ̂R,q⃗ĜC,q⃗V̂
†
L,q⃗∣Ψ̂L,nq⃗⟩

=
e

ℎ

∑
q⃗

∫ ∞
−∞

d"f("− �L)Tr
(
Ĝ†C,q⃗Γ̂R,q⃗ĜC,q⃗Γ̂L,q⃗

)
. (5.65)

Thus, the total current is defined as

I =
e

ℎ

∑
q⃗

∫ ∞
−∞

d"Tr
[
Γ̂L,q⃗Ĝ

†
C,q⃗Γ̂R,q⃗ĜC,q⃗

]
(f("− �L)− f("− �R)) , (5.66)

which is exactly the Landauer formula, however now q⃗-resolved:

Tq⃗(") = Tr
[
Γ̂L,q⃗(")Ĝ

†
C,q⃗(")Γ̂R,q⃗(")ĜC,q⃗(")

]
. (5.67)
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5.3 The application of the NEGF formalism

5.2.5 Spin transport

In matrix representation, the transmission for any energy point is given by

T (") = Tr
[
(Γ̂L(")ĜC("))†Γ̂R(")ĜC(")

]
, (5.68)

where for matter of simplicity the q⃗-index was dropped.
Let’s consider a particular system where the central region has arbitrary spin polariza-
tion and the electrodes have spin polarization along z axis. In such case, the matrices
Γ̂L and Γ̂R are spin-block diagonal and the Green’s function of the central region ĜC

is a full matrix:

Γ̂L,R =

[
Γ↑L,R 0

0 Γ↓L,R

]
and ĜC =

[
G↑↑C G↑↓C
G↓↑C G↓↓c

]
(5.69)

Based on this equation, we can obtain four independent transmission probabilities
describing the transport of the electron from one electrode with spin direction ±z⃗ to
another with spin direction ±z⃗. They contribute to the total transmission additively

T = T ↑↑ + T ↑↓ + T ↓↑ + T ↓↓. (5.70)

In this case the spin-resolved transmission is given by

T ��
′
(") = Tr

[
(Γ�

L(")G��′

C (")†Γ�′

R (")G��′

C (")
]
. (5.71)

The terms T ↑↓ and T ↓↑ are called adiabatic spin-flip transmissions. They are equal to
zero if the spin polarization in the central region is also along z axis.

5.3 The application of the NEGF formalism

The theory described above was implemented in the TranSIESTA code [170]. In order
to check our implementation we apply the NEGF method to a graphene sheet and to
the one-dimensional iron wire.

5.3.1 Graphene sheet

Graphene is a one atom thick plane of carbon atoms which create a honeycomb crystal
lattice. The structural setup of the graphene is shown in Fig. 5.4(a). On the other hand,
it is the starting point for all calculations on graphite, carbon nanotubes, and fullerenes.
In addition, graphene is a perfect system for the verification of our implementation
of the translational invariance. Here, we investigate the transport through ideal and
defect graphene sheets. Defect in our case means that one carbon layer (in the middle
of the scattering region) was replaced by ghost atoms. Such atoms are interpreted as a
chemical species with orbitals, but neither pseudopotential nor charge are considered
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5.3 The application of the NEGF formalism

Figure 5.4: The structural setup of the graphene sheet and the qx- and energy-resolved
transmission spectra related to it. (a) - the ideal graphene sheet, (b) -
graphene with defect in the middle. The carbon atoms in the electrodes
are indicated with slightly larger spheres. Zero corresponds to the Fermi
level.

for them. Alternatively, the defect graphene can be considered as a tunnel junction
between two semi-infinite graphene electrodes.
Both structural setups of the graphene are shown in Fig. 5.4. The system consists of
left and right electrodes and the scattering region in the middle. During the calcu-
lation we use the generalized gradient approximation with PBE [52] parametrization
for the exchange-correlation potential and double-� polarized basis set. The pseudo-
potential was generated with cut-off radii (in a.u.) 1.2/1.2/1.8/1.9 for s/p/d/f shells,
respectively.
The qx- and energy-resolved transmission spectra for both setups are shown in Fig. 5.4.
The transmission probability of the ideal graphene is simply given by the number of
electronic states at point (qx, "). The zero-bias conductance is equal to 4 G0, because
the double-degenerate band is crossing the Fermi level for each spin channel. The
defect graphene has about one order smaller (0.41) transmission probability at the
Fermi level. In addition, we have found that the absence of the ghost atoms decreases
the conductivity by 7%. That allows us to assume that the use of ghost atoms is
important for the correct description of the tunnel junction. The further increase
of the numbers of ghost layers leads to an exponential decay of the transmission
probability at the Fermi level with a decay length of 1.86 Å.
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5.3 The application of the NEGF formalism

5.3.2 Magnetic 1D iron wire

The investigation of the transport properties of the monoatomic wire allows us, first,
to verify our implementation of the NEGF method for the non-collinear magnetic
systems and then opens the question of domain wall (DW) formation in nanoscale
systems and the opportunity to analyze their properties. It has been shown that DWs
can be quite thin due to the enhanced effective anisotropy of the constricted geometry
in nanosystems [181]. In addition, it was observed experimentally that Fe nanowires
which grow on W(110) [182], and Mo(110) [183] can have extremely narrow DWs with
a width of several lattice constants.
The theoretical investigation was performed using the local density approximation
with CA [44] parametrization for the exchange-correlation potential. The pseudo-
potential and basis set are described in the Chapter 3. The schematic structure of
the monoatomic iron chain is shown in Fig. 5.5. We consider 23 iron atoms, where 9
atoms are related to the scattering region and 2×7 atoms correspond to the left and
right electrodes. During the calculations we use the optimized interatomic distance
dFe−Fe = 2.2 Å.
First of all, we analyze transport through the wire with parallel magnetization direc-
tion of the electrodes. Such setup corresponds to the ground state of the wire, the band
structure is shown in the left side of Fig. 5.6. Due to the linear chain symmetry, there
are three sets of bands present, namely, the nondegenerate s- and dz2-dominated bands
and doubly degenerate dxz, dyz and dx2−y2 , dxy dominated bands. The dz2-dominated
bands have a contribution from s-orbitals and they are dispersive since both dz2 and
s orbitals form strong � bonds along the chain. We have a perfect agreement with
PWscf calculations from Ref. [184]. Other theoretical work Ref. [81] also agrees well
with our data. There is only a small difference in the position of the dz2-dominated
band, which in our case is about 0.15 eV lower in energy. The reason for this are
different interatomic distances in our (2.2 Å) and their (2.25 Å) calculations.
The transmission probability through the ferromagnetic Fe chain for the spin-polarized
and non-collinear calculation is shown in Fig. 5.6. As it was expected, for the perfect
wire, each channel has a transmission probability equal to unity and the total trans-
mission is simply given by the number of electronic states at energy ". If we use the
non-collinear description, the total transmission T is equal to the sum of spin-up T ↑

and spin-down T ↓ transmissions of the spin-polarised calculations (see right panel in

Figure 5.5: Schematic structure diagram for the transport calculation through the
monoatomic iron chain.
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5.3 The application of the NEGF formalism

Figure 5.6: Band structure of the monoatomic iron chain and the transmission proba-
bilities through it for the spin-polarized and non-collinear calculaions. The
Fermi level is at zero energy.

Fig. 5.6). We, also, have to check that any arbitrary rotation applied for the whole
system does not change the results.
Then, we investigate the influence of the domain wall width on the transport properties
of the wires. We consider antiparallel magnetization of the electrodes and 1-, 3- and
5-atoms wide domain walls. The atoms which are not related to the domain wall
have fixed direction of the magnetic moment via our on-site constrain method. The
spin-density and the direction of the magnetic moment of the atoms related to the
DW were converged self-consistently.
The different domain wall structures and the magnetization direction of the iron atom
magnetic moment in the chain are shown in Fig. 5.7. In our case, the angle ' is
varying along the chain (from 0∘ to 180∘) and the Θ angle is fixed to 90∘. As one can
see, the domain wall is a symmetrical spin spiral with finite width. In general, the
magnetization directions in the DW fulfil the rules:

for the atom in the middle − ' = Φ/2

for other atoms − 'i + 'n−i+1 = Φ,

where n is a width of the DW, i is an arbitrary atom index in the first half of the DW
and Φ is the magnetization direction in the right electrode (in our case Φ = 180∘).
Note that the rule for the central atom is only correct for DW with odd number of
atoms.
The DW structure can be described on the level of a Heisenberg model Eq. (3.45). We
take into account only the nearest neighbor (NN) and next nearest neighbor (NNN)
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5.3 The application of the NEGF formalism

interactions and assume that all other types of interactions can be neglected. In such
case the model Hamiltonian is given as

H = J0 − JNN
∑
i

e⃗i ⋅ e⃗i+1 − JNNN
∑
i

e⃗i ⋅ e⃗i+2, (5.72)

where JNN and JNNN are the exchange interaction parameters for NN and NNN,
respectively, and i is an atomic index. In Chapter 3, we investigated the exchange
interaction between Fe atoms in the infinite wire. Assuming that J12 = 191.88 meV
(see Eq. (3.49) and Table 3.1) describes the NN interaction (JNN = J12) only, we
found the JNNN = −79.17 meV by using a least-squares fit.
The magnetic moment profile for 1-, 3- and 5-atom wide domain walls is shown in
Fig. 5.8(a). The magnitude of the moment is smaller in the inner part of the DW then
in the electrodes. The largest reduction or softening in the magnetic moment is nearly
10% for the one-atomic DW. Then, with increasing of the DW width, the softening
decreases because of the reduction of the angle between the nearest-neighbor magnetic
moments. The same trend was obtained by Burton et al. [186] for Ni monoatomic
and 5×4 wires. Taking into account that the AFM phase has the largest degree of
canting between neighboring moments and the value of the magnetic moment in the
AFM phase is 2.86 �B (see Fig. 3.3(b)), we assume that the magnetic moment in the
AFM phase is strongly related to the softening of the moment in the DW. Following
the same idea, one can expect an enhancement of the value of the magnetic moments
in the DW for the systems with larger moment in the AFM phase.
The transmission spectra of the perfect wire and the 1-, 3- and 5-atom wide domain
walls are presented in Fig. 5.8(b). One can see that the transmission probability is
increasing with increasing width of the DW. The reason for this is based on the fact
that the canting angle between nearest Fe atoms is decreasing with increasing width

Figure 5.7: (a) Domain wall structures. Atoms related to the domain wall are indi-
cated with red color. (b) The self-consistent magnetization direction of
the iron magnetic moment in 1-, 3- and 5-atoms wide domain walls.
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5.3 The application of the NEGF formalism

Figure 5.8: (a) - Size of the magnetic moment (in �B) of the iron atoms in the 1-, 3- and
5-atom wide domain walls. (b) - Energy dependence of the transmission
probability for different domain wall width. The Fermi level is at zero
energy.

of the DW. And therefore, the propagating wave can be transmitted through the DW
with smaller losses. Here, we have the same trend as in the Ref. [185], were the
tight-binding method was used for transport property calculations of a Fe-chain. It is
hard to compare the absolute values, because the tight-binding model has a slightly
different band structure than PWscf calculations (see Ref. [184]).
As was mentioned before, the transmission spectra can be decomposed in four spin-
resolved components (T ��

′
, where �,�′ = ↑ or ↓) for systems with either parallel or

antiparallel alignment of the lead magnetization. Using Eq. (5.71) we get the individ-
ual spin-channel transmission for the 5-atom wide DW. They are shown in Fig. 5.9.
In addition, we compare each spin-channel transmission probability T ��

′
through the

chain with a maximal transmission through it. The understanding of the maximal
transmission probability stems from Fig. 5.10, where the schematic presentation of

Table 5.1: The maximal spin-resolved transmission probability through systems with
different (CL, cL and CR, cR) and the same (C=CL=CR and c=cL=cR)
number of channels in the leads with antiparallel magnetization. For the
meaning of CL, cL and CR, cR, see Fig. 5.10 and text.

components different electrodes the same electrodes
T ↑↑ min(CL,cR) min(C,c)
T ↑↓ min(CL,CR) C
T ↓↑ min(cL,cR) c
T ↓↓ min(cL,CR) min(c,C)
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5.3 The application of the NEGF formalism

Figure 5.9: The total transmission (a) probability and its individual spin-channel
components ((b) - T ↑↑ or T ↓↓, (c) - T ↑↓ and (d) - T ↓↑) for the iron wire
with a 5-atom wide domain wall in comparison with maximal transmission
through them. See details in the text.

the scattering processes in the magnetic system with parallel (Fig. 5.10(a)) and an-
tiparallel (Fig. 5.10(b)) magnetization in the electrodes is shown. Note we consider a
general case, where the system could have a different number of channels for the left
(L) and the right (R) lead, each of which can be decomposed in two spin-channels,
namely CL/R for spin-up and cL/R for spin-down. The spin-directions correspond to
the global coordinate system are related to the left electrode (see Fig. 5.10). Here, we
have to remember that the number of channels is generally energy dependent.
It is known that the maximal spin-up/spin-down transmission for the spin-polarized
system with different electrodes and parallel magnetization is a minimum value over
CL/cL and CR/cR. Now, following the same idea, we assert that the maximal value
of the spin-resolved transmission probability T ��

′
is the minimum over the number of

channels in the left lead, with spin-direction �, and in the right lead, with spin-direction
�′. We combine the maximal spin-resolved transmission probabilities for systems with
different and the same number of channels and antiparallelly magnetized electrodes in
Table 5.1.
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Figure 5.10: The schematic presentation of the electron scattering in the magnetic
system with parallel (a) and antiparallel (b) magnetization in the elec-
trodes. The system with parallel alignment of the lead magnetization is
spin-polarized. See details in the text.

Now, we can return to the analysis of the spin-polarized transport through the Fe chain.
One can see that the direct components of the transmission T ↑↑ and T ↓↓ [Fig. 5.9(a)]
are identical. They are very close to the maximal transmission probability which
is equal to min(T ↑, T ↓), where T ↑/T ↓ is the spin-up/spin-down transmission for the
ferromagnetic chain (see Fig. 5.6). The main contribution to T ↑↑ or T ↓↓ stems from the
channel related to the s- and dz2-orbitals. In the ferromagnetic Fe wire, these orbitals
create the dz2-dominant bands which give the smallest contribution (∼10 %) to the
total magnetic moments of the Fe atoms. Therefore, the electron with s/dz2-symmetry
can be transmitted through the DW without scattering or with small scattering.
As illustrated in Fig. 5.10, the spin-flip transmission T ↑↓ (or T ↓↑) gives the probability
of spin-up (or spin-down) electrons coming from the left electrode and being trans-
mitted to the right electrode with opposite spin direction. In our case, the electrons
with dxz-, dyz- and dx2−y2-, dxy-symmetries are dominating in both T ↑↓ and T ↓↑. The
maximal transmission probability for these transmissions are T ↑ and T ↓, respectively.
At this stage it is reasonable to make some remarks. First of all, the standard approach
of Eqs. (5.69)-(5.71) for the investigation of the individual spin-channel components of
the transmission probability can be applied only for non-collinear system with either
parallel or antiparallel magnetization in the leads. Moreover, the magnetization in
the electrodes must be directed along the z axis. Then, we always have to choose the
spin-quantization axis which is common for both electrodes and must be coupled to
one of them. Taking into account that the choice of this electrode is arbitrary, one
can have problems with the data interpretation or with comparison.
In order to omit these problems, we suggest a new procedure to obtain the components
of the transmission spectra for non-collinear systems with arbitrarily magnetized elec-
trodes. Note that the q⃗-index is dropped for matter of simplicity. First, the system
must satisfy two conditions:
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5.3 The application of the NEGF formalism

1) the leads have to be materials with well defined spin-quantization axes via two
polar angles (ΘL, 'L) for the left electrode and (ΘR, 'R) for the right one;

2) the central region of the scattering setup (Fig. 5.2) has to include a sufficient
number of surface layers with the same spin-quantization axes as the electrodes.

Now, we can assume that there is a unitary transformation with matrix ÛL/R which

can diagonalize the Γ̂L/R in spin-space:

Γ̂L = Û†LΓ̂d
LÛL = Û†L

[
Γ↑L 0

0 Γ↓L

]
ÛL; (5.73)

Γ̂R = Û†RΓ̂d
RÛR = Û†R

[
Γ↑R 0

0 Γ↓R

]
ÛR. (5.74)

If ÛL/R is a spin-1
2

rotation matrix for the left/right electrode so that ÛL/R =

Û(ΘL/R, 'L/R), then Γ↑L/R and Γ↓L/R are spin-up and spin-down components, respec-

tively, in the local coordinate system of the left/right electrode defined with ΘL/R, 'L/R
angles.
The proof of our assumption is as follows (for matter of simplicity the L and R indices
were dropped):

Γ̂d = ÛΓ̂Û†
Eq.(5.46)−−−−−→ i

[
ÛΣ̂Û† −

(
ÛΣ̂Û†

)†]
, (5.75)

ÛΣ̂(z)Û†
Eq.(5.31)−−−−−→ Û

(
zŜ− V̂

)†
ĝ(z)

(
zŜ− V̂

)
Û†

=
(
zŜ− ÛV̂Û†

)†
Ûĝ(z)Û†

(
zŜ− ÛV̂Û†

)
, (5.76)

here we use the fact that the overlap matrix Ŝ is diagonal in spin-space (see Eq. (3.28)).
Now, using the first of the above two conditions and taking into account that Û is
a spin-1

2
rotation matrix, we can write for the unperturbed Green’s function of the

semi-infinite electrode:

Ûĝ(z)Û†
Eq.(5.33)−−−−−→

(
zŜ− ÛĤÛ†

)
Û=Û(Θ,')−−−−−−→

(
zŜ− Ĥd

)
= ĝd(z), (5.77)

where the index d means diagonal in spin-space.
Our second condition allows to diagonalize the overlap matrix V̂

ÛV̂Û†
Û=Û(Θ,')−−−−−−→ V̂d. (5.78)

Finally, the multiplication of the spin-diagonal matrices, see Eqs. (5.75) and (5.76),
gives the spin-diagonal matrix Γ̂d.
Now, taking into account that we can define the spin-up and spin-down components
of Γ̂L and Γ̂R, the individual spin-resolved component of the transmission is given by:

T ��
′
(") = Tr

[
(Γ̂�

L(")ĜC(")†Γ̂�′

R (")ĜC(")
]
, (5.79)
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where the spin indices � and �′ define the spin components (↑, ↓) in the local coordinate
system of each electrode and

Γ̂↑L/R = Û†(ΘL/R, 'L/R)

[
Γ↑L/R 0

0 0

]
Û(ΘL/R, 'L/R); (5.80)

Γ̂↓L/R = Û†(ΘL/R, 'L/R)

[
0 0

0 Γ↓L/R

]
Û(ΘL/R, 'L/R). (5.81)

In some cases, it is difficult to include a large number of surface layers in the central
part of the scattering region. Therefore, the VL or VR matrices are not diagonal in the
local coordinate system of each electrode. And, in turn, we can not get the spin-up
and spin-down components of Γ̂ for the left and right leads. Nevertheless, we still can
use the equations (5.79), (5.80) and (5.81) for T ��

′
calculations and then estimate the

error

Δ = T −
(
T ↑↑ + T ↑↓ + T ↓↑ + T ↓↓

)
, (5.82)

where T is the total transmission. If Δ is much less then any of the components at
the Fermi energy or in the bias window, we assume that it is not necessary to enlarge
the scattering region.
In addition, our procedure allows to calculate the spin-current components for non-
collinear systems with arbitrary magnetized electrodes. Using Eqs. (5.66) and (5.79),
the up and down components of the current flowing from the left electrode to the right
in the local coordinate system of the right electrode can be given by

I�
′

LR =
e

ℎ

∫ ∞
−∞

d"

[∑
�

T ��
′

]
(f("− �L)− f("− �R)) , where �′ =↑, ↓ . (5.83)

Then, following the ideas of P. Levy and A. Fert [187, 188], we can construct the spin
current matrix in the global coordinate system

ÎLR =
1

2

[
I↑↑LR I↑↓LR
I↓↑LR I↓↓LR

]
= Û†(ΘR, 'R)

1

2

[
I↑LR 0

0 I↓LR

]
Û(ΘR, 'R), (5.84)

which, in analogy to the spin-density matrix, see Eq. (3.19), can be characterized via
the charge current (IcLR) and the components of the spin current (IxLR, IyLR and IzLR)

IcLR =
1

2
Tr
(
ÎLR

)
; I iLR =

1

2
Tr
(
�̂iÎLR

)
, i = x, y, z; (5.85)

ÎLR =
1

2

[
IcLR + IzLR IxLR − iI

y
LR

IxLR + iIyLR IcLR − IzLR

]
, (5.86)

where (�̂i, i = x, y, z) are the Pauli spin matrices.
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6 Electronic transport through
organometallic VnBzn+1 wires

The investigation of the electronic transport through devices with small amount of
atoms is becoming one of the most fascinating branches of modern solid state physics.
The transport through organometallic molecules already shows new phenomena like
single-molecule switching [18]. Here we continue the work in direction of molecular
spintronics and suggest a molecular spin filter based on VBz wires.
In this chapter, we combine our theoretical development and knowledge about VBz
sandwich structures in order to investigate their electronic transport properties. The
VnBzn+1, n = 1, ..., 4 molecules are placed between Co(100) electrodes with face cen-
tered cubic (fcc) symmetry. We consider electrodes with both parallel and antiparallel
magnetic configurations. Our simulations are performed on the level of GGA with
Perdew-Burke-Ernzerhof [52] parametrization for electron exchange and correlation.
We have found that a TZP basis set for vanadium and DZP basis set for Co, C and H
gives reasonable results, which are in good agreement with our all electron calculations
based on the CRYSTAL [77] code. For the calculation of the transport properties, we
use 28 energy points for the complex contour integration and 25 points for the bias
window. We have to mention that the increase of the number of energy points does
not affect the electronic and transport properties of the Co-VBz-Co systems.
The schematic structure of the VnBzn+1 wires suspended between Co electrodes is
shown in Fig. 6.1. The VBz molecules are attached at the hollow site position of
the surface, and two C-H bonds oriented along (100) direction. The aromatic rings
remain parallel to the surface. Then, we have found a small buckling of the surface
of about 0.04 Å for all wires. After adsorption, the structure of the benzene next to
the electrodes is deformed, while the structure of the second benzene ring remains
unchanged. Here we have to note that all benzene rings of the VnBzn+1, n = 1, ..., 4
wires next to the surface change their structure in the same way. There are two
inequivalent positions for the carbon atoms in the first benzene: four C atoms are
close to the substrate atoms at distance of 1.72 Å; the remaining two are located over
the bridge positions 0.2 Å lower than the four carbon atoms. The hydrogen atoms
have the same trend as the carbons, only that they are shifted about 0.2 Å away form
the surface in direction of vanadium. Because of the adsorption, the first aromatic ring
is expanded. Namely, two carbon bonds parallel to the substrate rows are stretched to
about 1.51 Å and the other four bonds are stretched to about 1.56 Å. In general, the
adsorbed VBz molecules on Co(100) have a similar structure as the adsorbed benzene
on the Ni(100) surface [189].
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6.1 Electrodes with parallel magnetic configuration

Figure 6.1: Schematic structure of the VnBzn+1 wires suspended between Co(001)
electrodes.

6.1 Electrodes with parallel magnetic configuration

The calculated transmission spectra for both spin-channels of the VnBzn+1 wires with
n = 1, ..., 4 are presented in Fig. 6.2. Here we consider the electrodes with parallel
magnetization. In Table 6.1 we show the spin polarized conductance and its spin
polarization at the Fermi energy. The spin polarization of the conductance (SPC) is
defined as

SPC =
∣Gup −Gdown∣
Gup +Gdown

, (6.1)

where Gup and Gdown are conductances for the spin-up and the spin-down channel,
respectively.
One can see that the VBz chains with n = 3, 4 show strong spin-polarization at the
Fermi energy, which is about 80% for both wires. Therefore, we can expect that
these wires will work as highly effective spin filters under applied bias. The shorter
chains show smaller spin-polarization. The large transmission probabilities and spin-
polarization of 50% for the VBz2 molecule can be explained by the large spin-polarized

Table 6.1: Zero bias spin-polarized conductance (in G0) and spin-polarization of the
conductance of the VnBzn+1 wires.

n=1 n=2 n=3 n=4

Gup 0.67 0.12 0.07 0.07
Gdown 0.27 0.17 0.62 0.76
Gtot 0.94 0.29 0.69 0.83
SPC(%) 42.6 17.2 79.7 83.1
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6.1 Electrodes with parallel magnetic configuration

Figure 6.2: Transmission spectra of the VnBzn+1, n = 1, ..., 4 molecules suspended
between Co electrodes.

tunneling from one electrode to another. This agrees with the fact that, if we increase
the number of VBz units by one, the transmission decreases for both spin-channels
(see Table 6.1). The difference between the transmission probabilities of the first two
(n = 1, 2) and the second two (n = 3, 4) molecules can be explained with the strong
influence of the electrodes on the VBz units next to the surface. The analysis of the
vanadium magnetic moments confirms this explanation and shows their increase at
both ends of the wire (2.3 �B for VBz2, 1.8 �B for V2Bz3 and about 1.7 �B for V3Bz4

and V4Bz5) with respect to the moments of the free standing molecules (about 1.2 �B).
The magnetic moments of the vanadium atoms in the central part of the chains (for
n = 3, 4) are decreasing with increasing number of VBz units, which is clear since
they have a smaller interaction with the electrodes. The analysis of the spin- and
space-resolved local density of states calculated around the Fermi level (±0.05 eV)
for the four molecules also confirms the strong influence of the electrodes on the VBz
units next to the surface. In Fig. 6.3, one can see a strong reconfiguration of the local
density around the VBz in the electrode regions in comparison to the density in the
middle of the V4Bz5 molecule which is nearly the same as the density of the molecule
in the vacuum.
In order to understand the influence of the half-metallic character on the transport
properties, we performed a transmission eigenchannel analysis [20, 190] for the V4Bz5
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6.1 Electrodes with parallel magnetic configuration

Figure 6.3: The spin- and space-resolved local density of states calculated around the
Fermi level (±0.05 eV) for the VnBzn+1, n = 1, ..., 4 molecules suspended
between Co electrodes. The isodensity surfaces are defined by the values
of 0.0005/0.005 e/Bohr3 for majority/minority spins.

molecule. In Fig. 6.4 we present the eigenchannels of the transmission and their three
scattering states with highest transmittion probability at the Fermi level for each of the
two spin components. The corresponding transmission eigenvalues are T updx2−y2

=0.06,

T updxy=0.02, T updxz=10−5 and T downdz2−r
=0.35, T downdx2−y2

=0.40, T downdxy
=0.01 for the majority

and minority spin components, respectively. One can see that all majority-spin wave
functions have a decaying behavior through the cluster. The decaying behavior is also
observed for the minority-spin scattering states with dxy symmetry. We have to note
that the dx2−y2 and dxy vanadium states correspond to the same symmetry group E2

Figure 6.4: (Left side) The transmission eigenchannels of the V4Bz5 wire. (Right side)
The real part of the scattering states of the Co-V4Bz5-Co system for the
three high-conducting channels at the Fermi energy.
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6.1 Electrodes with parallel magnetic configuration

Figure 6.5: The bias dependence of the transmission probability for both spin-channels
of the V4Bz5 wire suspended between Co electrodes. The part of the
transmission related to the bias window is marked with red. Left side -
spin-up channel, right side - spin-down channel.

Figure 6.6: The current-voltage characteristics through the V4Bz5 molecule .

in the infinite VBz wire (see Ref. [20] and Chapter 4). After the adsorption of the VBz
molecules on the Co(100) surfaces, these states become nonequivalent and related to
different symmetry groups. Finally, the transmission eigenchannel analysis shows that
the scattering states with dz2−r and dx2−y2 character have the highest contribution
to the transmission and are responsible for the strong spin-polarization at the Fermi
energy.
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6.2 Electrodes with antiparallel magnetic configuration

In Fig. 6.5 we show the calculated spin-polarized transmission spectra of the V4Bz5

molecule as functions of electron energy and bias voltage. The related I-V curve is
presented in Fig. 6.6. We observe a linear current-voltage characteristics and the
conservation of the high spin-polarization of the current for the whole voltage region.
The evolution of the transmission probability with the bias shows that resonant peaks
closely follow the chemical potentials of either left or right leads. The reason for
this becomes clear from the analysis of the non-equilibrium density. Because of the
symmetry of the V4Bz5 molecule, each electronic state is dominating in the left (�L)
or in the right (�R) non-equilibrium densities. Therefore, if the bias is applied, these
states are moved together with the corresponding chemical potential what also leads
to the shift of the resonant peaks in the transmission spectra. Thus, following this
idea, we can assume that the high spin-polarization of the current will be conserved
while the bias window is smaller then the majority band gap (∼1 eV).

6.2 Electrodes with antiparallel magnetic configuration

In order to investigate the electronic transport through the VBz wire suspended be-
tween the Co(100) leads with antiparallel magnetic configuration, we consider three
types of domain walls (DWs): two symmetric and asymmetric collinear abrupt DWs
and one non-collinear DW. The calculations were performed for the V4Bz5 molecule,

Figure 6.7: Left side: The transmission spectra of the V4Bz5 with symmetric and
asymmetric collinear abrupt DWs in comparison to the transmission
through the wire coupled to the leads with parallel magnetic configura-
tion (P). Right side: The isosurface of the spin-density for three different
magnetic configuration in the V4Bz5 molecule. The isodensity value is
0.003 e/Bohr3. The numbers correspond to the magnitude of the magnetic
moments at the vanadium atoms.
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6.2 Electrodes with antiparallel magnetic configuration

Figure 6.8: (a) The magnetization direction of the magnetic moments of V in the
V4Bz5 molecule coupled to the electrodes with antiparallel magnetization.
(b) The non-collinear domain wall structure in the V4Bz5 wire. The num-
bers correspond to the magnitude of the magnetic moments of vanadium.

which shows the strongest spin-polarization of the conductance at zero bias for the
electrodes with parallel magnetization.
In the left side of Fig. 6.7 the transmission spectra of V4Bz5 with two collinear abrupt
DWs are shown. We compare these transmissions with the spectra related to the wire
without DW (electrodes with parallel magnetization). First of all, we observe that
the half-metallic behavior in the transmission is destroyed. The ’optimistic’ magneto-
resistance ratio is 152% for the symmetric DW and 80% for asymmetric one. The
symmetric DW shows total absence of spin polarization and identical transmissions
Tup = Tdown=0.23 for both spin channels, while the asymmetric DW has a spin-
polarization of 11% with Tup=0.18 and Tdown=0.15. The magnetic moments at the
V atoms in the middle of the DW are decreased (see right side of Fig. 6.7). For the
symmetric DW they become very close to the values of the infinite VBz wire with
antiferromagnetic ordering (0.62�B). The asymmetric DW shows the influence of the
electrodes much stronger. For the vanadium next to the electrodes the magnitude
of the magnetic moment remains, while for the second vanadium the value of the
moment drastically decreases to 0.31 �B. The spin-density redistribution is reflected
on the transmission spectra where the resonant peaks are shifted above the Fermi
energy. From energetic point of view the asymmetric DW is more preferable than the
symmetric one. The energy difference between these two magnetic configurations is
0.15 eV.
The non-collinear DW in the VBz chain was investigated by using our on-site constraint
method and our generalization of the NEGF method for the non-collinear systems. The
magnetization in the left lead was turned by 180∘ and the local magnetization along
the wire rotates between the lead magnetizations in constant steps of 180∘/(N + 1),
where N is the number of vanadium atoms. We fix the magnetization direction in the
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6.2 Electrodes with antiparallel magnetic configuration

bulk part of the system. All other moments were free with respect to the variation of
the direction of the magnetic moment during the self-consistent procedure.
The final structure of the domain wall is shown in Fig. 6.8. For the angular dependence
we obtain similar behavior as for the monoatomic Fe chain (see Chapter 5). The
vanadium magnetization directions in the DW confirm the rules:

Θ1 + Θ4 = 180∘

Θ2 + Θ3 = 180∘,

where Θi, i = 1, 2, 3, 4 are the polar angles responsible for the direction of the magnetic
moment of the V atoms. The total induced moment on the benzene rings is negative
with the main contribution from the carbon subsystem. In general, the direction of
the induced magnetic moment on the C and H is close to the average of the moment
directions of the nearest vanadium atoms. The magnitude of the V magnetic moments
in the middle of the non-collinear DW is about 0.15�B larger then for symmetric
configuration of the abrupt DW. As was shown in the in Chapter 5 and in Ref. [186],
this increase of the magnetic moments is a result of their softening with an increase
of the width of the DW.
The transmission probability for the non-collinear DW is 0.58. This value is about two
times large then for collinear DWs. Therefore, the ‘optimistic’ magnetoresistance ratio
is decreased to 33%. The increase of the transmission and decrease of the magneto-
resistance was also observed in Ref. [31], where the Ni, Co, and Fe nanowires were
investigated.
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7 Conclusions

The LCAO method is one of the most precise computational schemes regularly applied
in biology, chemistry and physics. It is applicable to all elements of the periodic table
and to molecules and solids with low symmetry, structural and chemical complexity.
In this thesis we have suggested an extension of the LCAO method for non-collinear
magnetic systems by introducing the novel on-site constraint approach which allows to
fix the direction of the magnetic moments on any atom and to investigate not only the
ground state of the non-collinear systems but also their spin excitations. Furthermore,
we have presented a generalization of the NEGF method for non-collinear systems
with translational invariance based on the LCAO method which gives the opportunity
to investigate the non-equilibrium transport in non-collinear systems. Finally, our
ideas were implemented in the DFT based SIESTA and TranSIESTA codes and were
applied for the investigation of the electronic, magnetic and transport properties of
realistic magnetic molecules and wires. Within our investigations, priority was given
to organometallic molecules and wires.
The possibility to fix the direction of the magnetic moment at any atom opens a
new way to investigate non-collinear systems, like complex magnetic molecules, do-
main walls, magnetic surfaces etc. In combination with theory of spin-dynamics, it
also allows to analyze time-dependent processes. The problem to fix the direction of
the magnetic moment in the LCAO method is strongly related to the definition of
the atom. In our case we are not analyzing the atomic volume, but we manipulate
with the density matrix which defines the charge and magnetization for any species.
Since some elements of the density matrix are only related to one site, we can average
the direction of the magnetic moment and fix it for these elements, assuming that
the magnetization is the same for all orbitals related to the same atom. Because of
the site-dependent nature of the constraint, we call our procedure ”on-site constraint
method”. In addition, our method allows to drastically accelerate the self-consistent
field procedure by defining different convergence criteria for the density matrix ele-
ments in the local coordinate system and for the polar angles (Θ�, '�, where � is
atomic index) related to the magnetization of the atoms.
The accuracy, precision and correctness of the code was validated by the Mn and Fe
monoatomic wires and the Mn3 molecular cluster. We have shown that the systems are
invariant with respect to rotations in spin space. Excellent agreement was obtained
between our results and all electron calculations with the CRYSTAL code for spin-
polarized solutions. We have also investigated the ferromagnetic-antiferromagnetic
transition in the wires and the Mn3 molecule by varying the direction of the magnetic
moment on the atoms. We map the orientational energy dependence to the effective
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spin-Hamiltonians and show that the four-spin interaction terms have to be taken into
account in order to have a precise description of realistic magnetic systems.
The second theoretical part of the thesis is related to the simulation of the elec-
tronic, magnetic and transport properties of non-collinear systems with translation
invariance in non-equilibrium. For this, we have restated and generalized the NEGF
method. We have derived the equations for the equilibrium and non-equilibrium parts
of the density matrix and for the current and transmission. In addition, we have
suggested the straightforward procedure for the calculation of the four spin-resolved
components of the transmission for the system with arbitrary magnetization in the
electrodes. Following the ideas of P. Levy and A. Fert, we have introduced the spin-
current matrix.
The verification of the implementation was performed for the perfect and defect
graphene sheet and monoatomic Fe wire. We have shown that the transmission spec-
tra of the perfect graphene reproduce the q-resolved band structure and the defected
graphene has about one order smaller transmission probability at the Fermi level than
the ideal one. With the monoatomic iron wire we have analyzed the narrow domain
wall (DW) formation. We have calculated the self-consistent domain wall structures
for 1-, 3- and 5-atoms wide domain walls. We have found that the largest reduction in
the magnetic moment is for the one-atomic DW, and it decreases with the increase of
its width. We have also shown that the transmission probability is increasing with the
increasing width of the DW. The reason for this is based on the fact that the canting
angle between nearest Fe atoms is decreasing. Therefore, the propagating wave can
be transmitted through the DW with smaller losses.
Next, we presented a detailed picture of the electronic and magnetic properties of the
metallophthalocyanines (MetPc, Met=Co,Cu) and multidecker metal-benzene (MetBz,
Met=Sc-Co, Bz=C6H6) half-sandwiches, sandwiches and wires. The CoPc and CuPc
molecules correspond to the doublet electronic ground state with magnetic moments
1.15 �B on Co and 0.58 �B on Cu. Our results show that the interaction between two
MetPc molecules is rather weak. We also have shown that the electronic structures
of the molecules and molecular wires are very similar. Our density of states of the
CuPc and CoPc molecules are in very good agreement with experimentally obtained
electronic valence band structures. This agreement allowed to resolve the nature of
the main features observed in the experimental spectra. Also, we have performed a
systematic analysis of the electronic structure of CuPc-polymorphs and have suggested
a new CuPc-phase.
Then, we have analyzed the stability of the half-sandwich MetBz and the sandwich
MetBz2 structures. High concentration of the MetBz magnetic states in small intervals
of Met-Bz distances was obtained. In the case of MetBz2 molecules, the magnetic
configuration in the ground state have the smallest multiplicity. The displacement
of the second aromatic ring out of the symmetry axis shows that the complexes with
late-transition metals (Met=Fe,Co,Ni) prefer a tilted sandwich structure, in which the
transition metal atom is situating below the C-C bond of the benzene. Then, we have
found that the rotation of the benzene around high symmetry axis costs a little energy
(less then 50 meV for all complexes), while the rotation of the ring around the metal
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atom needs more energy (about 30 meV per each 6 degree for Met=Sc-Mn), but it is
still small in comparison to the Bz displacement. Therefore, we have assumed that
the rotational degree of freedom is responsible for the limitation of the length of the
MetnBzn+1 multi-decker sandwich structures. Practically all magnetic phases can be
realized in the early-transition metal benzene wires. We reveal that the organometallic
VBz wire is half-metalic. We have found that the electronic structure is robust against
details of the calculations. Moreover, the unusual electronic properties of the infinite
1D wire remain in the VnBzn+1 molecules of finite length. We also have found that
the LDA- and GGA-based half-metallic electronic structure of the infinite MnBz wire
is an artifact related to the deficiencies in the description of localized highly correlated
electronic states.
In the end of the work, we combine all our previous theoretical development and
knowledge about vanadium-benzene multidecker structures. We have studied the elec-
tronic transport properties of the VnBzn+1 chains suspended between Co(001). We
have shown that these systems with n ≥ 3 can work as highly effective spin filters
under applied bias. The analysis of the local density of states of the Co-VnBzn+1-Co
systems around the Fermi level shows the strong influence of the electrodes on the
nearest VBz units of the chains. According to the transmission eigenchannel analysis,
the eigenchannels related to the dz2−r and dx2−y2 orbital of V make the main contri-
bution to the transmission. In the case of electrodes with antiparallel magnetization,
the VBz wire has non-collinear magnetic structure with larger magnetic moments on
the V atoms in comparison to the collinear solution. We have also found that the zero
bias conductance for the non-collinear domain wall in the V4Bz5 chain is about 1.5
times larger then for the collinear one.
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[17] A.R. Rocha, V.M. Garćıa-Suárez, S.W. Bailey, C.J. Lambert, J. Ferrer and S.
Sanvito, Nature Materials, 4, 335 (2005).

[18] R. Liu, S.-H. Ke, H.U. Baranger, and W. Yang, NanoLetters, 5, 1959 (2005).

[19] V.V. Maslyuk, A. Bagrets, V. Meded, A. Arnold, F. Evers, M. Brandbyge, T.
Bredow, I. Mertig, Phys. Rev. Lett., 97, 097201 (2006).

[20] M. Koleini, M. Paulsson, and M. Brandbyge, Phys. Rev. Lett. 98, 197202 (2007).

[21] Ph. Kurz, G. Bihlmayer, K. Hirai, and S. Blügel, Phys. Rev. Lett.86, 1106 (2001).
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