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Abstract
In this paper we provide new examples of hyperbolic but nonsystolic groups by

showing that the triangle groups (2, 4, 5) and (2, 5, 5) are not systolic. Along the way

we prove some results about subsets of systolic complexes stable under involutions.

Keywords Systolic complexes � Coxeter groups � Fixed point theorem

1 Introduction

Systolicity of simplicial complexes is a combinatorial notion of nonpositive

curvature which is different in nature than the more widely studied notions of

CAT(0) or hyperbolic spaces. It was first introduced by Januszkiewicz and

Świątkowski [5] as well as Haglund [4]. Recall that a group is systolic if it admits a

geometric action on a systolic complex.

It was shown by Przytycki and the second author in [7] that almost all triangle

groups are systolic. They construct an explicit systolic complex on which the

triangle groups act geometrically by embedding their Davis complex in a larger,

systolic complex to which the geometric action extends. This process of systolizing

forced them to exclude the triangle groups (2, 4, 4), (2, 4, 5) and (2, 5, 5). In the

same paper it was shown that the group (2, 4, 4) is not systolic and that hence such a

construction will never exist for that group. Whether or not the remaining two

groups are systolic remained open.
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1.1 Main Results and Key Ideas

In the present paper we close this gap and prove that the two hyperbolic triangle

groups (2, 4, 5) and (2, 5, 5) are also not systolic. In hindsight this shows that the

systolization procedure of [7] was best possible within the class of triangle groups.

Recall that a cycle of length n in a flag simplicial complex X is a set of n edges in

X which topologically forms a sphere. We say that the complex X is k-large for

some k� 4 if every cycle C of length strictly less than k has a diagonal, that is an
edge in X connecting two nonconsecutive vertices on C. If a complex X is

connected, simply connected, and all its vertex links are 6-large we will say X is

systolic. Note that every 6-large, connected and simply connected complex is

systolic.

Our main result is the following.

Theorem 1.1 The triangle groups (2, 4, 5) and (2, 5, 5) are not systolic.

This theorem in particular implies that these two groups are nonsystolic while

being hyperbolic groups. To our knowledge they are thus the first 2-dimensional

examples of groups with these two properties. In higher dimensions examples of

nonsystolic hyperbolic groups had been constructed by Januszkiewicz and

Swiatkowski in their work on filling invariants [6]. However, their methods do

not apply in our situation as the tools they use only work in dimensions greater than

2.

In order to show that a given group is not systolic one needs to proof that it

cannot act geometrically on a systolic complex. We will obtain Theorem 1.1 as a

consequence of the following fixed point theorem for actions of these groups on

systolic complexes.

Theorem 1.2 Suppose C is one of the groups (2, 4, 5) and (2, 5, 5). For every

simplicial action of C on a systolic complex X there exists a C-invariant simplex in
X. In particular, every such action on the geometric realization of X has a global
fixed point.

We close this section with two final remarks.

It is worth noting that the two groups in question seem to share a property with

finite groups here as those also satisfy an analogous fixed point theorem

Theorem 2.2 that can be obtained from results of Chepoi and Osajda [1].

Nonsystolicity of the triangle group (2, 4, 5) has previously been addressed by

Andrew Wilks in his unpublished manuscript [8]. His methods would probably

extend with some additional work to the other case as well. We have included some

remarks comparing both manuscripts in appropriate places. Compare in particular

Remarks 4.3 and 3.12.

1.2 Strategy of Proof

In this section we provide further details on the strategy of the proof of

Theorem 1.2.
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Let in the following C be either the triangle group (2, 4, 5) or (2, 5, 5), i.e. C has

the following presentation

C ¼
�
fr; s; tg j x2 8 x 2 fr; s; tg; ðrsÞ2; ðstÞj; ðrtÞ5

�
where j ¼ 4 or 5:

We wish to show that every simplicial action of C on a systolic complex X has a C-
invariant simplex. Throughout this paper we will assume that every action of C on a

complex X is simplicial.

At first we start by examining subsets of X that are stable under one of the

standard generators r, s or t. More precisely, for a given u 2 fr; s; tg we examine in

Sect. 3 the structure of the subcomplex Xu, called invariance set, spanned by those

vertices in X that are either fixed by u or mapped to an adjacent vertex. We prove in

Proposition 3.6 that the complex Xu is a systolic, isometrically embedded, full

subcomplex of X and that its maximal simplices are stabilized by u. From Chepoi

and Osajda’s fixed point theorem for simplicial actions of finite groups on systolic

complexes, which we restate in Theorem 2.2, one can deduce that the set Xu \ Xv is

nonempty for any pair of generators u 6¼ v 2 fr; s; tg.
Another key ingredient is Proposition 3.9 which shows that the orbit structure for

the dihedral subgroups of (2, 4, 5) or (2, 5, 5) under a geometric action has a very

specific bicycle-like shape as illustrated in Fig. 1. There are three cases for a given

a 2 Xu \ Xv: either all vertices in ahu;vi are connected to a common vertex (see the

left ‘‘wheel’’ of the bicycle in Fig. 1) or form a bipartite graph with a clique of the

same size (see the right hand side ‘‘wheel’’ in Fig. 1) or they form a clique

themselves (illustrated by the bicycle’s saddle in Fig. 1). This structure of orbits of

vertices in intersections of invariance sets breaks down for dihedral groups of order

a

ar

at

as

Fig. 1 We illustrate Proposition 3.9 in this figure which explains the structure of the orbits of vertices a in
pairwise intersections Xu \ Xv of invariance sets
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12 and larger which is also the reason why the proof of Theorem 1.2 only can work

for small triangle groups. Compare also Remark 3.10 and Example 3.11.

As a next step we construct in Sect. 4 a minimal surface spanned by a triangle

whose sides are geodesics in the invariance sets Xr;Xs;Xt. From the fact that the

pairwise intersections of two of these sets are nonempty we obtain three vertices

a, b and c in the complex X each contained in an intersection of a pair of the

invariance sets. Any such three vertices a, b, c hence span a geodesic triangle in X
which is fully contained in the set

S
u2fr;s;tg Xu which in turn supports a minimal,

systolic surface S by a Lemma of Elsner [2, Le. 4.2] which we have restated here as

Lemma 2.5.

The proof of the Theorem 1.2 is carried out in Sect. 8 and is done by

contradiction. So we suppose that C acts without stabilizing a simplex on a systolic

complex X. We then choose vertices x, y, z, with x 2 Xr \ Xs, y 2 Xs \ Xt and

z 2 Xt \ Xr, and the surface S minimally with respect to length of the bounding

geodesics as well as surface area. Proposition 4.4 then implies that one can choose

x, y and z to be pairwise distinct.

Tedious examination of the surface’s properties (in Sects. 4 and 5) and detailed

study of the defects at corners in Sect. 6 and along the sides of S in Sect. 7 will lead

us to narrow down the possible structure of the surface to a small list of cases

presented in Fig. 16. Working through those cases one by one we arrive at a

contradiction in each of them which implies that the action cannot be fixed point

free. Hence Theorem 1.2 follows.

1.3 Organization of the Paper

Section 2 contains basic definitions and known properties of systolic complexes,

which we use throughout the paper. For a larger class of groups generated by

involutions we study the invariance sets Xu in Sect. 3 and prove properties which

might be of independent interest. The specific construction of the minimal surface

S is carried out in Sect. 4. By Proposition 4.4 S is not degenerate if the considered

action does not fix a simplex. The fact that S does not just consist of a single

2-simplex is then shown in Sect. 5 that S is not a single 2-simplex. The defects of

the corners and those along the sides of S are then studied in Sects. 6 and 7. The

proof of the fixed point theorem is finally carried out in Sect. 8. Note, that we deal

with the two groups simultaneously in most places and that we will say so explicitly,

when we don’t. Moreover all actions are assumed to be simplicial.

2 Preliminaries

The main purpose of this section is to fix notation and to summarize properties of

systolic complexes and minimal surfaces therein.
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2.1 Systolicity

In this subsection we quickly recall some basic definitions and properties of systolic

complexes.

Let X be a simplicial complex. We call the elements of the 0-skeleton Xð0Þ of X
vertices and its 1-simplices edges. So an edge (a, b) is an unordered pair of vertices

a and b. A path of length n in X is a sequence ðv0; v1; v2. . .vnÞ of vertices of X where

ðvi; viþ1Þ is an edge of X for all i 2 f0; 1; . . .; n� 1g. A closed path in X is a path

where the first and the last vertex coincide. A closed path of length at least three

with vi 6¼ vj for all i; j 2 f1; . . .; ng is called a cycle. The distance d(x, y) of two
vertices is the length of a shortest path from x to y. We write a� b for vertices a and

b that are connected by an edge and will say that a and b are adjacent.
We say that a complex X is k-large for some k� 4 if every cycle C of length

strictly less than k has a diagonal, that is an edge in X connecting two

nonconsecutive vertices on C. A complex X is systolic if it is connected, simply

connected, and all its vertex links are 6-large. Note that every 6-large, connected

and simply connected complex is systolic.

We will make repeated use of the combinatorial Gauss-Bonnet Theorem and

hence recall its statement from [2, Le 3.2].

Proposition 2.1 (Combinatorial Gauss-Bonnet) Suppose D is a simplicial disc,
then

X

v2Dð0Þ

defðvÞ ¼ 6:

If in addition D is systolic, then the sum of the defects of its boundary vertices is at

least 6, with equality if and only if D has no inner vertices with negative defects.

As already noticed by Wilks [8, Thm. 2.7] the following is a consequence of

Theorem C in work of Chepoi and Osajda [1].

Theorem 2.2 (Little fixed point theorem) For every simplicial action of a finite
group G on a systolic complex X there exists a simplex r in X which is invariant
under G.

2.2 Minimal Surfaces

In this section we define minimal surfaces and collect some of their properties.

Definition 2.3 (Surfaces) A subcomplex S � X which is isomorphic (as a simplicial

complex) to a triangulated 2-disc is called a surface. The boundary of the surface is
the cycle C corresponding to the boundary of the 2-disc. We say that S is spanned by
C. The area A ¼ AðSÞ of a surface (or 2-disc) S is the number of triangles in S. We

say that S is minimal if there is no other surface spanned by C that has smaller area.

We compare our notion of a surface with Elsner’s definition in [2] in the

following remark.
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Remark 2.4 (Comparison of definitions) Elsner defines in [2] a surface spanning a
cycle c as a simplicial map S from a triangulated 2-disc D to X such that S maps oD
isomorphically onto c. Furthermore Elsner calls a surface S : D ! X in a systolic

complex X minimal if D has minimal area among all surfaces extending SjoD.
Translated in the language of Elsner, Januszkiewicz and Świątkowski show in [5, Le

1.6] that for every cycle in a systolic complex X there exists a surface which is

injective on each simplex of the triangulation of D. Elsner also proves existence of

minimal surfaces and shows that their pre-images are systolic disks, compare [2, Le.

4.2]. It is not hard to see that minimality of the map combined with injectivity on the

simplices imply that a minimal surface (in the sense of Elsner) is an injective map.

Hence it makes sense to define surfaces as subcomplexes of a complex itself.

In the following we always work with Definition 2.3. The following is a

reformulation of [2, Le. 4.2] to our statement and holds with almost the same proof.

Lemma 2.5 (Systolicity of minimal surfaces) Every cycle C in a systolic complex
spans a minimal surface which will necessarily be systolic.

2.3 Defect

A big technical piece of work in the proof of Theorem 1.2 is the study of defects of

vertices and sums of defects of vertices along bounding geodesics of the constructed

minimal surface. It is defined as follows.

Definition 2.6 (Defect of vertices in a disc) Let D be a simplicial 2-disc. For any

vertex v 2 D the defect of v is defined by the following formula:

defðvÞ ¼
6� jftriangles in D containing vgj if v 62 oD;

3� jftriangles in D containing vgj if v 2 oD:

�

One may think of the defect as a local way to measure how far a complex is from

being systolic. Note that each inner vertex of a systolic disc D has nonpositive

defect.

Definition 2.7 (Defect along a geodesic) Let D be a simplicial 2-disc and c a path in
the boundary of D. The defect along c, denoted by defðcÞ, is defined to be the sum

of the defects of all of its inner vertices, i.e. all vertices on c different from its

endpoints. If a path has no inner vertices its defect is defined to be 0.

The following lemma is an immediate consequence of [2, Fact 3.1] and its proof.

Lemma 2.8 (Defects along geodesics in the boundary) Let D be a systolic disc and
c a geodesic in D which is contained in oD. Then:

(1) defðvÞ� 1 for any inner vertex v of c.
(2) for all inner vertices vi and vk of c with defðviÞ ¼ defðvkÞ ¼ 1 there exists

i\j\k such that defðvjÞ\0.

(3) defðcÞ� 1.
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Item two in the lemma says that if there are two inner vertices of defect one on a

geodesic c, then they are separated by an inner vertex of negative defect.

3 Invariance Sets: Subcomplexes Stable Under Involutions

In this section we investigate the behavior of certain subcomplexes that are almost

fixed by an involution. The main result in this section which plays a crucial role in

the proof of Theorem 1.2 is the bicycle property stated in Proposition 3.9.

3.1 Invariance Sets

We define here for arbitrary simplicial involutions their invariance sets and discuss

some of their general properties. We emphasize that all results in the present section

hold true for arbitrary simplicial involutions of a systolic complex X.
Here and in the following we denote the image of a simplex R 2 X under a

simplicial automorphism u by Ru and the image under the product u � v 2 C by Rvu.

Note that simplices which are (setwise) fixed under u are contained in Xu.

Definition 3.1 (Invariance sets) For a simplicial involution u on a systolic complex

X we define its invariance set Xu to be the flag simplicial complex in X spanned by

those vertices x in Xð0Þ for which either xu ¼ x or xu � x.

Lemma 3.2 (u-invariant simplices) Let u be a simplicial involution of a systolic
complex X. Suppose a1; . . .; ak is a clique in Xu. Then ai � auj for all 1� i; j� k. In

other words, the vertices a1; . . .; ak; a
u
1; . . .; a

u
kspan a u-invariant simplex in X. In

particular, for any pair of adjacent vertices a� b in Xu one has au � b and a� bu.

Proof Recall that either aui ¼ ai or a
u
i � ai by definition of Xu. Suppose first that

k ¼ 2. We want to conclude that then a1 � au2. This is clear if one of the vertices

a1; a2 is fixed by u, as the action of u on X is simplicial. We assume for a

contradiction that ai 6¼ aui for both i ¼ 1 and 2. Then ða1; au1; au2; a2Þ is a 4-cycle

which has a diagonal as X is systolic. Since u acts simplicially on X, the existence of
one of the diagonals implies the existence of the other. Therefore both diagonals are

contained in X and the vertices a1; a2; a
u
1; a

u
2 span a u-invariant simplex in X. The

rest of the statement follows by induction on k and the fact that we can apply the

first induction step to any pair ai; aj. h

The next lemma shows that commuting involutions give rise to a simplex that is

stable under their span.

Lemma 3.3 (hu; vi-invariant simplices) Suppose u, v are commuting involutions on

X. Then for any x 2 Xu \ Xv the set xhu;vi spans a simplex that is invariant under u
and v.

Proof It is clear that if they span a simplex it must be stable under both u and v. As
x 2 Xu \ Xv we have that x� xu and x� xv. As the action is simplicial we also have
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that xuv � xv and that xvu � xu. But then from the fact that u and v commute we

obtain xuv ¼ xvu and the vertices in the orbit xhu;vi either form an edge, a triangle or a

4-cycle. In case they form a 4-cycle there must exist at least one and hence both

diagonals. h

Lemma 3.4 (u-invariant mid-simplex) Let u be a simplicial involution on X. For

any x 2 Xð0Þ with dðx; xuÞ ¼ 2 the vertices adjacent to both x and xu span a
u-invariant simplex.

Proof Let a and b two vertices which are simultaneously adjacent to x and xu. Then
ða; x; b; xuÞ is a 4-cycle which has a diagonal by 6-largeness. As x 6 � xu, the vertices
a and b are connected by an edge. Since X is flag, (a, b, x) and ða; b; xuÞ span a

simplex. With the same argument all the common neighbors of x and xu span a

simplex. It is stabilized by u since u preserves distances. h

Proposition 3.5 (Geodesics in Xu) Any two vertices x and y in Xu are connected by
a (1-skeleton) geodesic in X which is contained in Xu.

Proof The proof is by induction on the distance n of x and y. The statement is clear

if n ¼ 0 or 1.

Let x, y in Xu be at distance n in X. As X is connected there exists a geodesic

c ¼ ðx0; x1; . . .; xnÞ from x ¼ x0 to y ¼ xn in X. We want to show that c can be

chosen in Xu.

If xi ¼ xui or xi � xui for some i 2 f1; . . .; n� 1g, then xi 2 Xu and we can find via

the induction hypothesis a geodesic in Xu connecting x and y. Hence we assume that

no xi is contained in Xu for all i 2 f1; . . .; n� 1g. Let S be a minimal surface

spanned on the two geodesics c and cu. We choose x, y and the geodesic c
connecting them in such a way that the area of S is minimal.

By Lemma 2.5 the surface S is systolic and hence the sum of the defects at its

boundary vertices is � 6 by Proposition 2.1. Lemma 2.8 then implies that

defðcÞ� 1 and defðcuÞ� 1. Let D :¼
P

v2fx;xu;y;yug defðvÞ be the sum of the defects

of x; xu; y; yu in S, where we omit possible repetition. From what we have argued

D� 4.

Case 1: x 6¼ xu and defðxÞ þ defðxuÞ� 3.

In this case defðxÞ þ defðxuÞ ¼ 3 as otherwise x1 ¼ xu1 which contradicts the

assumption that xi 62 Xu for all i. Therefore one of the vertices x; x
u has defect 1 and

the other defect 2. Hence x1 � xu1, i.e. x1 2 Xu, which is a contradiction.

Case 2: x 6¼ xu and defðxÞ þ defðxuÞ ¼ 2.

We will obtain that dðx1; xu1Þ ¼ 2 and that there exists some x0 in S adjacent to x,
x1 and xu1. This is clearly fulfilled if x has defect 0 and xu has defect 2 or in case that

x and xu have both defect 1. In the remaining case, vertex x has defect 2 and xu has
defect 0. Then xu is adjacent to x, x1 and xu1. We illustrate these situations in Fig. 2.

By Lemma 3.4 the vertices adjacent to both x1 and x
u
1 span a u-stabilized simplex.

In particular x0 is contained in Xu. If dðx0; yÞ\n, we could find by induction

hypothesis a geodesic in Xu connecting x and y via x0 which contradicts minimality

of S. Thus dðx0; yÞ ¼ n. Then c0 :¼ ðx0; x1; . . .; xn :¼ yÞ is a geodesic connecting x0
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and y and the minimal surface spanned by c0 and c0u does not contain vertex x, i.e. is
properly contained in S. Replacing x by x0, we obtain a minimal surface with a

smaller area than S, contradicting the way we have chosen S.
Case 3: x ¼ xu.
In this case x has defect at most one, as otherwise x1 � xu1 or x1 ¼ xu1 contradicting

the fact that x1 62 Xu. So the defects at y and y
u sum up to at least three and since any

vertex on the boundary of S has defect at most two, the vertices y and yu are distinct.
Thus, switching the roles of x and y, we are in case 1.

Case 4: x 6¼ xu and defðxÞ þ defðxuÞ� 2.

This case is covered by cases (1)–(3) by switching the roles of x and y.
Summarizing the observation of the four cases we obtain that all of the xi must be

contained in Xu and the assertion follows. h

Proposition 3.6 (Properties of Xu) For any u 2 fr; s; tg the complex Xu is a
systolic, isometrically embedded, full subcomplex of X and its maximal simplices
are stabilized by u.

Proof The complex Xu is stable under u and by Proposition 3.5 its 1-skeleton is

isometrically embedded into X. The fact that Xu is a full subcomplex of X is clear by

x y

xu = x′ yu

x1

xu
1

γ

γu

def(x) = 2,def(xu) = 0

x y

xu yu

x1
γ

γu

x′

def(x) = 1,def(xu) = 1

x y

xu yu

x1
γ

γu

x′

def(x) = 0,def(xu) = 2

xu
1

xu
1

Fig. 2 This illustrates Case 2 of the proof of Proposition 3.5
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definition. Now [3] [Prop. 3.4] implies that Xu is systolic. The fact that maximal

simplices are u-stable directly follows from Lemma 3.2. h

3.2 The Bicycle Property

In this section we examine the shape of the orbits of vertices in a systolic complex

under the action of a small dihedral group. The main result is Proposition 3.9 which

explains the occurring dichotomy and will be referred to as the bicycle property.

The reason why we chose this name is illustrated in Fig. 1.

We first prove a technical lemma.

Denote by H the dihedral group of order 2n. Write u and v for the two involutions
that generate H and suppose that H acts geometrically on a systolic complex X. Let
a be a vertex in Xu \ Xv.

Lemma 3.7 Denote by H be a dihedral group of order 2n with n� 5 generated by
two involutions u and v and suppose H acts on a systolic complex X. For any vertex

a in Xu \ Xv the orbit aH either spans a simplex or the 1-skeleton of X contains a

Hamiltonian cycle of aH , i.e. a cycle whose vertex set is aH , of length 2n without a
diagonal.

Proof Since a 2 Xu \ Xv, the complex X contains the closed path

P ¼ ða; au; avu; auvu; . . .; aðvuÞ
n

¼ aÞ:

This closed path contains all elements of aH . Note that a might be fixed by u or v or
both. Hence, two consecutive vertices in P might coincide. Let C be the graph

whose vertex set consists of all the vertices that occur in P and whose edge set

consists of all edges that occur in P. Then C is either a single vertex or a single edge

or a Hamiltonian cycle of aH . We have to study the case that C is a Hamiltonian

cycle of aH . By Burnside’s lemma, 2n is divisible by the length of the cycle C.

If jaH j\jHj then jaH j 2 f1; 2; 4; 5g again using Burnside’s lemma. By 6-large-

ness the cycle C then has at least one diagonal d connecting a pair of vertices at

distance m[ 1 on C. Using the group action we may conclude that any pair of

vertices at distance m on C is connected by an edge. Using 6-largeness again we

conclude that C has all possible diagonals and hence its vertices span a simplex.

Suppose now that jaH j ¼ jHj. If there is no diagonal on C then we are done. Now

let d be a diagonal connecting two vertices of distance 1\m� n on C. By the same

argument as above any pair ov vertices at distance m is connected by an edge. Since

2n\10 this implies the existence of cycles of length 4 or 5 each of which has one

and hence all diagonals by 6-largeness and using the group action. Thus C spans a

simplex. h

The following example illustrates that Lemma 3.7 is not satisfied by dihedral

groups of order larger than 10.

Example 3.8 Fix a natural number n and construct as follows a simplicial complex

which admits a natural action of the dihedral group of order 2n. Let C be a cycle of

length 2n. Add to C an edge between every pair of vertices at distance two and let Z
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be the flag simplicial complex on the cone over the resulting graph. Figure 3 shows

the complex one obtains for n ¼ 6. The action of the dihedral group of order 2n on

C extends to an action on Z having the conepoint as a fixed point. Examining the

links of all vertices one can verify that the complex Z is systolic if and only if n is at

least 6.

We now prove one of the main properties needed for the proof of Theorem 1.2.

Proposition 3.9 (bicycle property) Fix n� 5 and let H be the dihedral group of
order 2n generated by involutions u and v. Suppose further that H acts on a systolic
complex X and let a be a vertex in Xu \ Xv. Then one of the following two
statements is true:

(1) The orbit aH spans a simplex.

(2) The orbit aH forms an jHj-cycle C without diagonals and there exists a

vertex b in X such that bH supports an H-stabilized simplex R and such that
the vertices of C and the vertices of R span a complete bipartite graph.
Moreover, each vertex of R is contained in Xu \ Xv.

If n 2 f1; 2g, only the first case occurs.

Remark 3.10 Proposition 3.9 plays a crucial role in the proof of our main result.

The key features we need there is on one hand the property that two of the three

standard Coxeter generators commute and on the other hand that any pair of

generators generates a dihedral group with the properties listed in Proposition 3.9.

Note that the groups (2,3,3), (2,3,4) and (2,3,5) also show this behavior. But in

contrast to (2,4,4) (2,4,5) and (2,5,5) they are finite. We deal with larger n in

Example 3.11 below.

We are now ready to prove Proposition 3.9.

Proof Let C be the Hamiltonian cycle on aH as obtained in Lemma 3.7 and S a

minimal surface spanned by C. We aim to prove existence of a vertex b with the

following three properties:

(1) b 2 Xu \ Xv

(2) b is adjacent to three consecutive vertices on C

aav au
auv

auvu

auvuv

avu

avuv

Fig. 3 An example that not all
dihedral groups satisfy
Lemma 3.7. The dihedral group
of order 12 acts on the pictured
systolic complex
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(3) bH spans a simplex.

It then remains to prove that the vertices of C and those of bH span a complete

bipartite graph. We obtain this from the 6-largeness of X and the way in which the

dihedral group acts. Assume without loss of generality that b is adjacent to a, au and

av. Using the group action we obtain that a is connected to every vertex of bH . But
then X contains the closed path ða; av; buv; buÞ and 6-largeness implies that a� buv.
Analogously we obtain that a� bvu and also that av � bvuv. We then conclude that X
contains the closed path ða; av; bvuv; bvuÞ. Using 6-largeness again we obtain that

a� bvuv and with similar arguments that b� buvu. Repeating these steps we can

show that a is adjacent to every element of bH .
It thus remains to prove that we have a vertex b satisfying the listed properties.

This is done by an examination of the defects of vertices on the boundary of

S. There are two cases. We study two cases.

Case 1: The boundary of S contains three consecutive vertices of defect 1
Using the group action we may assume that these vertices are a, au and av. Let b

the neighbor of a in the interior of S. Since au and av have defect 1 we obtain that

b� au, b� av, b� avu and b� auv. Therefore all these 5 consecutive vertices on C

are adjacent to b. We show that bH spans the simplex we are looking for.

Using the group action we have that bu � av and au � bv. As X contains the cycles

ðb; au; bu; avÞ and ðb; au; bv; avÞ and as C does not have diagonals, b has to be either

equal or adjacent to bu and bv, i.e. b 2 Xv \ Xu. Furthermore X contains the cycle

ðau; bu; av; bvÞ and since C does not have diagonals, bu is adjacent to bv. Thus the

natural Hamiltonian cycle of bH has a diagonal. We apply Lemma 3.7 to conclude

that bH is a simplex.

Case 2: The boundary of S does not contain three consecutive vertices of defect 1

As a first step we will show that S is isometric to the surface pictured in Fig. 4.

The vertex b pictured in Fig. 4 is adjacent to a, au, av and avu. We will prove that

b 2 Xu \ Xv and that bH spans a simplex.

In order to prove that S is isometric to the surface shown in Fig. 4observe that C
has length 10: Because C does not contain diagonals, each vertex on the boundary of

S has a defect of at most 1. By Proposition 2.1 the defects along the boundary of S
sum up to at least 6. If 2n\10 and oS does not contain three consecutive vertices of

defect 1, the sum of defects has to be less than 6 which is a contradiction. Hence the

b
c

d

avuv

a

au

av

auv auvuv

auvuvu

avuvu

auvuavu

= avuvuv

Fig. 4 This surface is a special
case appearing in the proof of
Proposition 3.9
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length of C is at least 10.

We show as a next step that S contains exactly four inner vertices. Using the

isoperimetrical inequalities of Lemma 3.4 in [2] we obtain that any systolic disc D
of perimeter l has A� 1

6
l2. Hence S contains at most 16 2-simplices. Picks Formula,

see [2, Le 3.3], implies that S has at most four inner vertices. If oS contains at most

three inner vertices, the interior of S contains at most one 2-simplex. This implies

that the boundary of S contains at most three vertices of defect 0 and thus three

consecutive vertices of defect 1 which contradicts our assumptions. Therefore,

S contains four inner vertices. Because these 4 vertices span a subcomplex

consisting of two 2-simplices, exactly four vertices on the boundary of S have defect
0 and 6 vertices on the boundary of S have defect 1. The surface shown in Fig. 4 is

the only systolic complex satisfying these conditions which implies that S is

isometric to this surface.

The vertex b in Fig. 4 is adjacent to a, au, av and avu. We will prove that

b 2 Xu \ Xv and that bH spans a simplex.

First we prove that b 2 Xu \ Xv. As X contains the closed 4-path ðb; a; bv; auvÞ we
obtain that b� bv or b ¼ bv by 6-largeness. It remains to prove that b ¼ bu or that

b� bu. If b ¼ bu, we are done. Hence we assume that b 6¼ bu.
Since C does not contain a diagonal one has that a 6 � avu. If b� avu we can

exchange S with a surface whose boundary contains three consecutive vertices of

defect 1. Then b� bu by Case 1. Hence we suppose that b 6 � avu. Furthermore,

a 6 � d. Otherwise ða; av; auv; c; dÞ is a 5-cycle and by 6-largeness it can be

triangulated to a surface containing three 2-simplices. These three 2-simplices then

lead to the existence of a surface with boundary C that has less triangles than S
which contradicts minimality. Thus, a 6 � d. By 6-largeness, the cycle

ða; b; d; avu; buÞ contains the remaining two diagonals, i.e. we have b� bu and

bu � d. It follows that b 2 Xu \ Xv.

It remains to prove that bH spans a simplex. By Lemma 3.7, bH spans a simplex if

the Hamiltonian cycle of bH contains a diagonal. We prove this by showing that

bv � bu. This follows from the existence of a certain 5-cycle. To form this 5-cycle,

we need that cv � d. To prove this we consider the closed path ðbv; b; cv; avu; dÞ. If
b� avu or bv � avu, we can exchange S with a surface whose boundary contains three
consecutive vertices of defect 1. Hence we suppose that b 6 � avu and bv 6 � avu.
Then cv � d, because otherwise there is a 4- or 5-cycle without a diagonal. Recall

that we have seen already that bu � d. Hence, X contains the closed path

ða; bv; cv; d; buÞ. We show that this closed path contains the desired diagonal

connecting bv and bu. Recall that we have proven that a 6 � d. Analogously we see

that a 6 � vc. Hence bv � bu because otherwise X contains a 4- or 5-cycle without a

diagonal. h

Proposition 3.9 is not true for dihedral groups of order larger than 10 as

illustrated in the next example.

Example 3.11 Consider the flag simplicial complex whose 1-skeleton is obtained as

follows. We take the 1-skeleton of the simplicial complex of Example 3.8. This 1-

skeleton consists of a vertex v and a cycle C ¼ ðx1; x2; . . .; x2n�1Þ. We add a further
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cycle C0 ¼ ðy1; y2; . . .; y2n�1Þ of length 2n. We connect each vertex yi on C0 with the

vertices xmði�1Þ, xmðiÞ and xmðiþ1Þ, where m(i) denotes i mod 2n, i 2 f1; . . .; 2n� 1g.
The example is illustrated in Fig. 5 for n ¼ 6 . The obtained simplicial complex is

systolic if and only if n is at least 6. Accordingly, a vertex a on the cycle C0 does not
satisfy the properties of the last proposition if and only if n is at least 6.

Remark 3.12 The bicycle property discussed in Proposition 3.9 is related to

properties Wilks proves in Lemmas 4.2, 4.6 and 4.8 of [8]. In addition what we

prove in Lemma 3.7 is similar to what is done in Lemmas 4.3 and 4.4 in [8].

4 Construction of a Minimal Surface S

The aim of the present section is to show existence of a very specific minimal

surface in X. We start by fixing the following notation for the entire section.

4.1 The Setup

We begin with fixing some notation.

Notation 4.1 Suppose C is either (2, 4, 5) or (2, 5, 5), that is C admits one of the

two following presentations:

�
r; s; t; jr2 ¼ s2 ¼ t2 ¼ ðrsÞ2 ¼ ðstÞj ¼ ðrtÞ5

�
where j ¼ 4 or 5:

Let X be a systolic complex and suppose that C acts on X.

Using the notation we just introduced we obtain by Theorem 2.2 that the

intersection Xu \ Xv of the respective stabilized subcomplexes of X is nonempty for

any choice of u 6¼ v with fu; vg � S.
We then choose vertices x 2 Xs \ Xr, y 2 Xs \ Xt, and z 2 Xr \ Xt and three

geodesics connecting them, i.e. cs : x y in Xs, ct : y z in Xt, and cr : z x in Xr in

such a way that the resulting cycle is minimal in length.

a
au

auv

auvu

auvuv

av

avu

avuv

Fig. 5 The dihedral group of
order 12 acts on the pictured
systolic complex and does hence
not satisfy the assertion of
Proposition 3.9. Compare also
Example 3.11
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Note that if Xr \ Xs \ Xt 6¼ ; this means that x ¼ y ¼ z, all the geodesics are

trivial and the cycle formed by the three geodesics consist of a single vertex.

In case that Xr \ Xs \ Xt ¼ ; the three vertices will be pairwise different and

each geodesic is of length at least one. Let C be the cycle formed by the

concatenation of the three geodesics, i.e. C ¼ crHctHcs and choose a surface

S spanned by C that is minimal in area. By Lemma 2.5, such a surface S exists. We

will refer to the vertices x, y, z as the corners and call the three geodesics sides of
S. We illustrate this situaiton in Fig. 6.

In the next lemma we prove that in case the intersection of the invariance sets is

nonempty there exits a global fixed point.

Lemma 4.2 (Existence of a fixed point) If C acts on a systolic complex X with
Xr \ Xs \ Xt 6¼ ; then there exists a C-invariant simplex in X. In particular, every
such action on the geometric realization of X has a global fixed point.

Proof First observe that we may assume that xhu;wi spans a simplex for all u;w 2 S.

If xhu;wi does not span a simplex for some u;w 2 fr; s; tg there exists another vertex

with the desired properties by Proposition 3.9 and 6-largeness.

LetM ¼ xhr;si [ xhr;ti [ xhs;ti and let X0 be the simplicial subcomplex of X spanned

by M [Mt [Ms [Mr. We aim to show that X0 is a simplex stabilized by C.
Figure 7 serves as an illustration of the situation.

Proposition 3.9 implies that the orbit xhu;wi contains at most 5 elements for

arbitrary u;w 2 fr; s; tg. Using the C-action we conclude that then either xuw ¼ xwu

or xuw ¼ xuwu. Hence the set of vertices in xhs;ti [ xhr;ti is contained in Xt and spans a

simplex s by Lemma 3.2. Using 6-largeness one can see that the union ss [ sr [ ssr

of these simplices also forms a simplex and therefore X0 is a simplex.

It remains to prove that X0 is stable under C. Fix a vertex a 2 X0. We need to

show that au 2 X0 for all u 2 fr; s; tg. In case a 2 M this is clear by construction. In

case a is contained in Mw, w 2 fr; s; tg we proceed as follows. If u ¼ w, the claim

follows directly. Otherwise a ¼ vuw:x ¼ xwuv or a ¼ vwu:x ¼ xuwv. So u appears as

the second or third letter in the element that is acting. By Proposition 3.9 the orbit

xhu;wi contains at most 5 elements for any choice of u;w 2 fr; s; tg.
We had observed earlier that either xuw ¼ xwu or xuw ¼ xuwu. By Proposition 3.9,

the orbit uxhv;wi spans a simplex with at most 5 vertices. The same is true for wxhu;vi.

Fig. 6 The surface S with
corners x, y and z and sides cs, ct
and cr
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Hence ðuxÞvw ¼ ðuxÞwv or ðuxÞvw ¼ ðuxÞvwv and ðwxÞvu ¼ ðwxÞuv or ðwxÞvu ¼ uxvuv

which implies that au is contained in X0. Therefore CX0 ¼ X0 and we are done. h

Remark 4.3 Lemma 4.2 is closely related to [8, Thm 1.2] which implies that for the

group (2, 4, 5) the intersection Xr \ Xs \ Xt is always nonempty. Note that the proof

of Theorem 1.2 in [8] is quite involved.

We will now show that in case the given action does not fix a simplex the

minimal surface we have constructed will not be degenerate.

Proposition 4.4 (Existence of a nondegenerate minimal surface) Suppose C acts on
a systolic complexX without fixing a simplex. Then S contains at least one 2-simplex.

Proof Suppose for a contradiction that S does not contain a 2-simplex and thus is

either a single vertex or an edge. In this case, at least two of the three corners of S
agree and we have that Xs \ Xt \ Xr 6¼ ;. But then Lemma 4.2 implies that the

action stabilizes a simplex which is a contradiction. Hence S contains at least one 2-

simplex. h

xr

xrs

x

xrt = xrtr

xt

xst = xsts

xrst = xsrt

xstrxrts

xtr = xtrt

xtrs

xts = xtst xs

= xstrt

Fig. 7 X0 as described in the proof of Lemma 4.2. The complex spanned by M is shown in dark gray
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4.2 The Nondegenerate Case

Under the assumption that C acts without stabilizing a simplex on a systolic

complex X - and thus that S is nondegenerate - we prove two lemmata. While

Lemma 4.5 will only be used once in the proof of Lemma 6.6 the second

Lemma 4.6 will be crucial in numerous proofs throughout the paper to show

nonexistence of certain diagonals.

Lemma 4.5 (Adjacency) Suppose C acts without stabilizing a simplex on a systolic
complex X. Let S be the surface constructed in Sect. 4.1. Fix u 2 fr; s; tg and
suppose that a is an inner vertex of the side cu of defect 1. Then the unique neighbor
of a in the interior of S is adjacent to au.

Proof If a ¼ au, then there is nothing to prove, so suppose otherwise. Let b and c
be the neighbors of a on cu. By Lemma 3.2 we have that b� au � c. As a has defect

1 it has a unique neighbor d in the interior of S and b� d� c. But then there is a 4–

cycle on the vertices ðb; d; c; auÞ which has to have a diagonal. However, b and c are
not adjacent, as cu is a geodesic. But then au must be adjacent to d. h

Lemma 4.6 (nonadjacency) Suppose C acts without stabilizing a simplex on a
systolic complex X. Let S be the surface constructed in Sect. 4.1. Fix a vertex
u 2 fr; s; tg and suppose there exist two adjacent vertices and suppose there exist
two adjacent vertices a and b on cu, where a is an inner vertex of defect 1. Let c be
the unique neighbor of a in S not contained in cu. Then b is not adjacent to cu and c
is not adjacent to bu. In particular b 6¼ bu.

Proof Note first that c is not adjacent to cu by minimality of the area of S. Let d be

the neighbor of a other than b on cu (which exists as a is an inner vertex), and

assume that c is adjacent to bu. As the action is simplicial this is equivalent to the

case where b is adjacent to cu. Then the path ðd; c; b; cu; duÞ forms a 4- or a 5-cycle

(depending on whether d ¼ du or not). In each case, b is adjacent with neither d by

minimality of the length of cu and also not adjacent to du by Lemma 3.2. Hence it

would follow that c is adjacent with cu, which is a contradiction. h

5 The Surface S is Not a 2-Simplex

In this section we will show, see Proposition 5.6, that for an action without a C-
invariant simplex the surface S will not consist of a single simplex.

For the rest of this section suppose that C acts without stabilizing a simplex. Thus

Proposition 4.4 implies that there is a nondegenerate surface S satisfying the

properties of Sect. 4.1. We will use the Notation as introduced in Notation 4.1 in

particular.

Lemma 5.1 (Existence of many edges) If S is a 2-simplex, then a� b for all

vertices a 2 xhr;si and b 2 yhr;si [ zhr;si.
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Proof By Lemma 3.2, z� xr and y� xs and, since r and s commute, xhr;si spans a
simplex which is stabilized by r and s according to Lemma 3.3. Thus X contains the

closed path ðz; xr; xs; yÞ. Then either z� xs or y� xr by 6-largeness. Without loss of

generality we assume that z� xs. Then X contains the closed path C0 ¼ ðzr; z; xs; xsrÞ
and hence xs � zr and z� xrs ¼ xsr . Therefore z� a for all a 2 xhr;si. The action of C
is simplicial which implies that a� b for all a 2 xhr;si and b 2 zhr;si.

The closed path C ¼ ðy; z; xrs; zs; ysÞ in X is either a 4– or a 5–cycle depending on

whether y ¼ ys or not. We show that it has the diagonal ðys; xrsÞ. Note that z 6 � zs

since otherwise z would be contained in Xs \ Xt \ Xr and S would not be minimal. If

C has length 4 it follows by 6-largeness that y ¼ ys � xrs. If C has length 5 and

ðys; xrsÞ is not in X, then C has the diagonal ðys; zÞ, as otherwise ðys; z; xrs; zsÞ would
form a 4-cycle without diagonals. nonexistence of ðys; zÞ implies nonexistence of the

diagonal ðy; zsÞ. Thus C would contains at most one diagonal which contradicts

6-largeness.

We conclude that X contains the closed path ðys; xrs; xr; yÞ and by 6-largeness

follows that ys � xr and y� xrs. Furthermore y� xs by Lemma 3.2. Hence y� a

where a 2 xhr;si. Since r and s commute, xhr;si spans a simplex stabilized by r and s

by Lemma 3.3. The action of C is simplicial, therefore a� b for all a 2 xhr;si and

b 2 yhr;si. h

We show that we can reduce the considerations to the case in which yhs;ti and zhr;ti

span a simplex.

Lemma 5.2 (Existence of a simplex) If S is a 2-simplex, then we may assume that

yhs;ti and zhr;ti span a simplex.

Proof We assume that zhr;ti does not span a simplex. Then there exists by

Proposition 3.9 a vertex �z 2 Xr \ Xt which is adjacent to z so that �zhr;ti spans a

simplex. We will show that x and y are adjacent to �z. Then x, y and �z span a surface

S0 with the same minimality properties as S and �zhr;ti spans a simplex. If yhr;ti spans a
simplex, S0 is a surface we are looking for. Otherwise repeat the arguments after

replacing z with y and r with s. We then obtain a surface S00 spanned by x, �y and �z

with the same minimality properties as S0 in which �yhr;ti spans a simplex. As the

vertex �z does not change, also �zhr;ti spans a simplex in S00 and S00 is a surface we are
looking for.

First we will show that x� �z. Suppose that x is not adjacent to �z.
Lemma 3.2 implies that y� zt and from Proposition 3.9 one can conclude that �z

is adjacent to zt and zr. Hence X contains the 5-cycle C :¼ ðx; y; zt; �z; zrÞ. By

Proposition 3.9, zr and zt are not adjacent. As x 6 � �z, x is not adjacent to zt as
otherwise ðx; zt; �z; zrÞ would be an 4-cycle without diagonals. Hence the remaining

diagonals ðy; zrÞ and ðy; �zÞ of C are contained in X.
We now construct a 5–cycle C0. We have shown that y� �z. By Proposition 3.9,

�z� ztr. We have seen that y� zt and hence ztr � yr. Lemma 5.1 implies that x� yr.
One may then conclude that the complex X contains the 5-cycle

C0 :¼ ðx; y; �z; ztr; yrÞ. Recall that y 6 � yr and x 6 � �z by assumption. Hence �z 6 � yr
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as otherwise ðyr; x; y; �zÞ would form a 4-cycle without diagonals. The remaining two

diagonals ðx; ztrÞ and ðy; ztrÞ of C0 are contained in X. Then zt � yr and ðx; y; zt; ryÞ
forms a 4-cycle without diagonals which is a contradiction. Therefore x� �z.

It now remains to show that y� �z. Lemma 3.2 implies y� zt and by

Proposition 3.9 one has �z� zt and z� zr. As x� �z, X contains the 4-cycle

ðx; y; zt; �zÞ. If it contains the diagonal ðy; �zÞ, we are done. Otherwise it contains

the diagonal ðx; ztÞ by 6-largeness. Then ðx; zt; �zt; zrÞ forms a 4-cycle. By Lemma 3.2

the vertex x is adjacent to zr and zt � �zt. By Proposition 3.9 we have �zt � zr.
Furthermore Proposition 3.9 implies that this cycle does not contain the diagonal

ðzr 6 � ztÞ. Hence x� �zt and also xt � �z.
Then X contains the closed path ðx; y; yt; xt; �zÞ which does not contain the

diagonal ðx; xtÞ as otherwise x 2 Xt. If x 6 � yt the 5–cycle ðx; y; yt; xt; �zÞ has to have

the diagonals ðy; �zÞ and ðyt; �zÞ. If x� yt the complex X contains the 4-cycle

ðx; y; xt; �zÞ and again y is adjacent to �z. h

Lemma 5.3 (Existence of edges) If S is a 2-simplex and X contains the edge ðys; zÞ
then ys � zt.

Proof Observe that by Lemma 5.2 the orbit yhs;ti spans a simplex. Since ys � z in X,
there exists the closed path ðz; ys; yst; ztÞ. If this path is not a 4-cycle, we are done.

Otherwise it contains one of the two possible diagonals by 6-largeness. But then

ys � zt. h

Lemma 5.4 (Existence of more edges) If S is a 2-simplex and X contains the edge
ðx; zrtÞ, then y� zr.

Proof Let ðx; zrtÞ be contained in X. First we consider the case where x 6 � yt. By
Lemma 3.2, x� zr and thus xt � zrt. Hence X contains the closed path

ðx; y; yt; xt; zrtÞ. It is a 4- or 5-cycle depending on whether y ¼ yt or not. We

consider the more difficult case where y 6¼ yt. Then x 6 � yt by assumption and

x 6 � xt since otherwise x 2 Xr \ Xs \ Xt. But this contradicts minimality of S. By 6-

largeness the cycle has the two diagonals ðy; zrtÞ and ðyt; zrtÞ which implies y� zr

using the C-action.
Consider now the remaining case where x� yt. Recall that xt � zrt by Lemma 3.2.

Hence X contains the 4-cycle ðx; yt; xt; zrtÞ. Since x 6 � xt it contains by 6-largeness

the diagonal ðyt; zrtÞ and hence y� zr. h

Lemma 5.5 (nonexistence of edges) If S is a 2-simplex and X does not contain the
edge ðy; zrÞ, then x 6 � yt.

Proof Observe that by Lemma 5.2 the orbit zhr;ti spans a simplex. Suppose for a

contradiction that x� yt. By Lemma 3.2 the vertex x� zr and thus xt � zrt. The
complex X then contains the closed path C ¼ ðx; yt; xt; zrt; zrÞ. It is a 4- or 5-cycle

depending on whether zr ¼ zrt or not. We consider the most difficult case in which it

is a 5-cycle. Clearly it does not contain the diagonal ðx; xtÞ since otherwise

x 2 Xs \ Xt \ Xr. It is y
t 6 � zrt by assumption. Furthermore it does not contain the

diagonal ðx; zrtÞ because otherwise ðx; zrt; xt; ytÞ would form a 4-cycle without
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diagonals. Using the C-action we conclude that xt 6 � zr. But then C contains at most

1 diagonal which contradicts 6-largeness. h

We are now ready to prove the main result in this section saying that S contains

more than just a single 2-simplex.

Proposition 5.6 (S is not a 2-simplex) If C acts without stabilizing a simplex on a
systolic complex X the surface S is not a 2-simplex.

Proof Recall that in the given situation Xr \ Xs \ Xt ¼ ;. We prove the proposition

by contradiction arriving at statements that either contradict 6-largeness or the fact

that Xr \ Xs \ Xt 6¼ ;. So suppose that S is a 2-simplex.

By Lemma 5.2 we know that yhs;ti and zhr;ti span a simplex. First we show that X
contains at least one of the two edges ðy; zrÞ and ðy; zsÞ. Second, we show that

X contains exactly one of these two edges.

We assume that one of the two edges exists and arrive at a contradiction to

6-largeness. Hence S is not a single 2-simplex.

Claim 1: X contains either ðy; zsÞ or ðy; zrÞ.
Suppose for a contradiction that X does neither contain ðy; zsÞ nor ðy; zrÞ. Then the

4-cycle ðx; zr; zt; yÞ has the diagonal ðx� ztÞ by 6-largeness. Then X contains the

closed path ðx; ys; yst; xt; ztÞ. Lemma 3.2 implies that x� ys and that ys � yst as yhs;ti

spans a simplex. Using the action we see that yst � xt and xt � zt. By assumption

x 6 � xt and z 6 � ys and we obtain that zt 6 � yst. Then x 6 � yst as otherwise

ðx; zt; xt; ystÞ would form an 4-cycle without diagonals. Hence the remaining two

diagonals are contained in X by 6-largeness. In particular xt � ys. But then

ðx; ys; xt; zÞ forms a 4-cycle without diagonals. This is a contradiction. Hence X
contains either ðy; zsÞ or ðy; zrÞ.

Claim 2: X contains exactly one of the two edges ðy; zsÞ and ðy; zrÞ.
We have proven already that at least one of both edges is contained in X. Hence it

remains to prove that both edges are not contained simultaneously. Assume that X
contains both edges ðy; zsÞ and ðy; zrÞ. The existence of ðy; zsÞ and ðy; zrÞ implies the

existence of the edges ðzs; yrsÞ and ðyrs; zrÞ as r and s commute. Hence X contains the

closed path ðy; zs; yrs; zrÞ which is a 4-cycle. By 6-largeness it contains a diagonal. If

y� yrs then ys � yr and X contains the 4-cycle ðysr; y; ys; yrÞ. Since s and r commute

both diagonals exists which implies that y� yr. But this is impossible since then S
would not be minimal. Thus the cycle has no diagonals which contradicts 6-

largeness. Analogously if zs � zr then X contains the 4-cycle ðzrs; z; zr; zsÞ without

diagonals an we have arrived at contradiction.

We are now ready to prove the main assertion.

By Claim 2, the complex X contains exactly one of the two edges ðy; zsÞ and

ðy; zrÞ. For symmetrical reasons we may assume that X contains the edge ðy; zsÞ, but
not the edge ðy; zrÞ. As zhr;ti and yhs;ti span a simplex, ys ¼ ytst or ys � ytst. By
Lemma 5.1, X contains the edge ðx; zsÞ and by Lemma 5.3, X contains the edge

ðys; ztÞ. Furthermore z� yt by Lemma 3.2. Thus X contains the closed path

C1 ¼ ðys; zt; xt; zst; ytstÞ. A case by case analysis shows that C1 is a cycle of length 4

or 5 depending on whether ys ¼ ytst or not. First we show that C1 does not contain

the diagonal ðys; xtÞ. To arrive a contradiction we assume that C1 contains the
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diagonal ðys; xtÞ. Then X contains the closed path C2 ¼ ðx; ys; xt; zrt; zrÞ, because of

Lemma 5.1 and as zhr;ti is a simplex. Observe that it is a 5-cycle.

We show that C2 contains the diagonal ðys; zrÞ. Assume that this is not the case.

By assumption C2 does not contain the diagonal ðx; xtÞ. Thus it does not contain the

diagonal ðzr; xtÞ since otherwise ðx; zr; xt; ysÞ would be a 4-cycle without a diagonal.

So C2 contains the remaining two diagonals. In particular x� zrt. This contradicts
Lemma 5.4. Hence C2 contains the diagonal ðys; zrÞ. But then X contains the closed

path C3 ¼ ðys; zs; zrs; yrs; zrÞ, as s and r commute and X contains the edge ðz; ysÞ.
A case analysis shows that the length of C3 is 4 or 5 depending on whether z ¼ zr

or not. If the length is only 4, there exists the diagonal ðys; yrsÞ or ðzr; zrsÞ which both
leads to a contradiction. Thus the cycle has length 5. By assumption it does not

contain the diagonals ðzr; zrsÞ, ðys; yrsÞ and ðzs; yrsÞ. Thus it contains the remaining

diagonals. In particular ys � zrs. But then ðys; zr; yrs; zrsÞ forms a 4-cycle without a

diagonal. This contradicts 6-largeness.

We have now shown that C1 does not contain the diagonal ðys; xtÞ. Since z 62 Xs

the cycle C1 does not contain ðzt; zstÞ. Then ys 6 � zst since otherwise ðys; zst; xt; ztÞ
would be a cycle of length 4 without a diagonal. So C1 has the two diagonals

ðzt; ytstÞ and ðytst; xtÞ. In particular y� zst. Then X contains the 4-cycle ðy; zst; xt; ztÞ
by Lemmas 5.1 and 3.2. The diagonal ðzt; zstÞ does not exist by construction and by

Lemma 5.5 one has y 6 � xt. But then it is a 4-cycle without diagonals which

contradicts 6-largeness. h

6 Defects at Corners of S

In this section we study the defects on the corners of the minimal surface S. Notation
is as in Sect. 4. Note that not all the sides of S need to contain inner vertices. There

exists however, by Proposition 5.6 at least one side with at least one inner vertex.

We assume that C acts without stabilizing a simplex on a systolic complex

X. Proposition 4.4 implies then the existence of a nondegenerate minimal surface

S satisfying the hypotheses of Sect. 4.

6.1 Defects at Any Corner

The statements of this first subsection hold for arbitrary sides and corners of S. We

use the following notation.

Notation 6.1 Let a, b and c denote the three corners of S and u, v and w the tree

involutions generating C. Here we suppose that

• a is the vertex in Xu \ Xw,

• b the vertex in Xu \ Xv and

• c the vertex in Xv \ Xw.

We denote the geodesic sides of S by cu � Xu, cv � Xv and cw � Xw. So fa; b; cg ¼
fx; y; zg and fu; v;wg ¼ fr; s; tg, but we do not specify the pairwise orders of the

generators. Furthermore denote by
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• au, respectively bu, be the neighbors of a, respectively b, on cu,
• bv, respectively cv, be the neighbors of b, respectively c, on cv and let

• cw, respectively aw, be the neighbors of c, respectively a, on cw,

in case the respective sides have interior vertices. Note that it is possible that

au ¼ bu, bv ¼ cv and cw ¼ aw.
Figure 8 summarizes these choices and should serve as a quick reminder for how

we named the various vertices.

We may directly establish some upper bounds on defects.

Lemma 6.2 (Defect bounded by 2) With notation as in 6.1 we have:

(1) The defect of any of the corners of S is at most 2.
(2) Suppose that both cu and cw have at least one inner vertex and that

defðauÞ ¼ defðawÞ ¼ 1. Then defðaÞ� 1.

Proof The first item follows from the minimality of the circumference of S. To see

the second item suppose that a has defect two. Then au and aw are connected by an

edge. In addition the defect of both au and aw equals one, hence they are connected

to a common vertex d 6¼ a. We may conclude that then the vertex d is in Xu \ Xw

and may then replace a by d and shorten cu and cw contradicting the minimality

of S. h

The next two lemmata may seem a bit random. However, these situations will

arise naturally in later proofs.

Lemma 6.3 (Defect bounded by 1) Suppose ahu;wi spans a simplex and cu has at
least one inner vertex. If in addition one of the following two conditions holds, then
defðaÞ� 1.

(1) cw has at least one inner vertex, awu � aw and au 6� aw.
(2) cw has no inner vertices, awu � c and au 6� c.

Proof Observe that in the second case, where cw does not contain inner vertices,

one has aw ¼ c. We handle both cases simultaneously. Suppose for a contradiction

a

au

bu b

bv

cv

cw

aw

c

γv

γu

γw

Fig. 8 Notation for the surface
S in this section
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that a has defect 2. The orbit ahu;wi spans a simplex, by assumption awu � aw, and by

Lemma 3.2 we have that ðau; auw; awu ; aw; auÞ forms a cycle. Note that this cycle has

at least length 4 as awu 6¼ aw 6¼ au by assumption and au 6¼ au since otherwise

au ¼ au � aw. Minimality of S implies that au 6 � aw and au 6 � awu . Hence au � auw

by 6-largeness. But then ðau; auw; awu ; awwÞ forms a 4-cycle, so either au � awu or

auw � aww which both lead to contradictions. h

Lemma 6.4 (Spanned simplex) Suppose we have au � aww in S and that one of the
following two conditions holds:

(1) defðaÞ ¼ 2, defðauÞ ¼ 1 and defðawÞ ¼ 0 and both cu and cw have at least
one inner vertex.

(2) S consists of two 2-simplices, the only inner vertex on cu is au and X contains
the edge cw � b.

Assume further that S contains the edge ðaw; awu Þ, where c ¼ aw in the second case.

Then S can be chosen so that ahu;wi spans a simplex.

Note that the second case of Lemma 6.4 implies that aw ¼ c.

Proof We handle both cases simultaneously. The surface S as in item 1 of the

lemma is illustrated in Fig. 9a. Suppose that ahu;wi does not span a simplex. In

particular this implies that jahu;wij 6¼ 4 by 6-largeness. Then Proposition 3.9 implies

that the orbit aH forms a cycle without diagonals and that there is a common

neighbor f 2 Xu \ Xw of a, aw and au such that f hu;wi is a simplex. Then X contains

the cycle ðf ; au; au; aw; awÞ by Lemma 3.2 which has diagonals. Lemma 4.6 implies

aw

a

au γu

γw

(a)

aw

a

au γu

γw

f

aw

au

(b)

aw

a

au γu

γw

f

fw

aw
u

(c)

Fig. 9 A situation in the proof of Lemma 6.4
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that aw is not adjacent to au and since the orbit aH forms a cycle without diagonals

au 6¼ aw. So the cycle contains two of the three diagonals ðau; awÞ, ðf ; auÞ and

ðf ; awÞ. If it contains the two diagonals ðf ; auÞ and ðf ; awÞ, we obtain a new surface

S0 with the same minimality properties as S by replacing a with f. Continue with this

surface in place of S.
In the two remaining cases au � aw. Then X contains the cycle ðf ; au; au; awÞ as

illustrated in Fig. 9b. This cycle has to contain a diagonal and since the orbit aH

forms a cycle without diagonals, X contains the diagonal ðf ; auÞ. In particular

f w � awu . By assumption aw � awu . Thus X contains the cycle ðf w; awu ; aw; au; f Þ as

illustrated in Fig. 9c. This cycle has to have diagonals and awu 6 � au by the

minimality of S. Hence either aw � f w, au � f wð, f � awu Þ or aw � f . If aw � f , X
contains the two diagonals ðf ; auÞ and ðf ; awÞ and we obtain a new surface S0 with
the same minimality properties as S by replacing a with f like above. h

The remaining case is that awu � f . By assumption, aw � awu which implies that

aww � au and X contains the cycle ðawu ; f ; au; awwÞ as illustrated in Fig. 10a. This cycle

has to contain a diagonal. Minimality of the surface implies that au 6� awu and that X
contains the diagonal ðf ; awwÞ. In the second case aw ¼ c and by assumption cw � b.
We then obtain a surface S0 with the same minimality properties as S by exchanging

a with f and c with cw. Otherwise S satisfies the properties of the first item and cu
and cw contain at least one inner vertex. Let a0u and a0w be the neighbors of au and aw
different from a on the boundary of S . Using the assumption on the defects of a; au

aw
a

au

aww

γu

γw

f

aw
u

(a)

a

au a′
u

a′
w

aww

γu

γw

f

aw
u

aw

(b)

au a′
u

a′
w

aww

γu

γw

f

(c)

au a′
u

a′
w

aww

γu

γw

f

(d)

Fig. 10 This figure illustrates the proof of Lemma 6.4
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and aw we obtain that a0u � a0w. Moreover aww � a0w by Lemma 3.2. Hence X contains

the cycle ðau; aww; a0w; a0uÞ as illustrated in Fig. 10b. Then 6-largeness implies that one

of the diagonals ðau; a0wÞ and ðaww; a0uÞ exists. In both cases we obtain a surface S0

with the same minimality properties as S by exchanging a with f and aw with aww as

illustrated in Fig. 10c and d. h

Lemma 6.5 (Bounding defects at a corner) Assume that both cu and cw have at
least one inner vertex. If au has defect 1 and aw has defect 0, then a has defect at
most 1.

Proof We prove the claim by contradiction. Assume that a has defect 2. Let a0u and
a0w be the neighbors of au and aw different from a on cu and cw respectively.

If au is not adjacent to aww, then the sequence ða; aww; a0w; a0u; auÞ forms a 5-cycle by

Lemma 3.2. As a is not adjacent to either a0u or a0w for minimality reasons, this 5-

cycle contains at least one of the two diagonals ðau; a0wÞ and ðaww; a0uÞ. In either case

there occurs a 4-cycle without a diagonal which is a contradiction. So au is adjacent
to aww.

By Lemma 6.4 we may assume that ahu;wi spans a simplex. Then Lemma 4.6

implies that au is not adjacent to awu . But then a has defect at most 1 by Lemma 6.3

and we have reached a contradiction. h

6.2 Defects at the Corner of S Whose Involutions Commute

This subsection concerns the corner of S whose involutions commute. Here we use

the notation as in Sect. 4.

Note that the considered triangle groups contain two involutions which commute

and recall from Notation 4.1 that we denoted them by r and s. They correspond to

two sides of S which we denote by cs and cr with common corner x. Let xs be the

neighbor of x on cs and xr be the neighbor of xr on cr . Notice that xr � xs by

6-largeness. The next three lemmas consider configurations at this special corner.

Lemma 6.6 (Defects provided inner vertices) With With r and s the commuting
involutions assume that both cr and cs have at least one inner vertex. If defðxrÞ ¼
defðxsÞ ¼ 1 then defðxÞ� 0.

Proof Suppose that defðxrÞ ¼ defðxsÞ ¼ 1 and let d be the unique neighbor of x in
the interior of S.

By Lemma 4.6 we have that d is neither adjacent to xs nor to xr. Examining the 5-

cycle ðxs; xr; xr; d; xsÞ we obtain that xs � xr.
We repeat the same argument using Lemma 4.5 with xs replaced by xss or with xr

replaced by xrr and obtain that xs � xr � xrs � xsr � xs (as xss � xrr implies

xrs ¼ ðxssÞ
sr �ðxrrÞ

sr ¼ xsr). This yields a 4-cycle which cannot have a diagonal as

xs is not adjacent with xrs and xr is not adjacent with xsr . Otherwise xs or xr would be

contained in Xs \ Xr, contradicting the minimality of S. This proves the lemma. h

Lemma 6.7 (Bounding defect) Assume that both cr and cs have at least one inner
vertex. If defðxsÞ ¼ 1 and defðxrÞ ¼ �1 then defðxÞ� 1.
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Proof A surface satisfying the conditions of the lemma is illustrated in Fig. 11a.

We assume that x has defect 2 and show that this implies that xss � xrs or x
r
r � xsr. If

xss � xrs, we conclude that X contains the cycle ðxs; xss; xrs; xsrs Þ using the action of C.
This cycle is illustrated in Fig. 11b. By 6-largeness this cycle has a diagonal. Since r
and s commute, the existence of any diagonal implies that xs � xrs. But then xs is
contained in Xs and Xr and we can choose xs as corner of S instead of x yielding a

surface with smaller area than S which contradicts minimality of S. If xrr � xsr, we
obtain by similar arguments that xr � xsr, contradicting again minimality of S.

So it remains to show that xss � xrs or x
r
r � xsr. Let d be the neighbor of xs different

from x on cs. Notice that xhr;si has 4 elements since r and s commute. Using 6-

largeness and the fact that x 2 Xs \ Xr we obtain that x
hr;si is a simplex. Thus xr � xs.

By Lemma 3.2 the vertex xr � xr and xs � xs. Since x has defect 2 the complex X
contains the cycle ðxs; xr; xr; xsÞ. By Lemma 4.6 this cycle does not have the

diagonal ðxr; xsÞ. Thus xs � xr which implies that x� xrs.
Since defðxrÞ ¼ �1 and defðxsÞ ¼ 1 we obtain that xr � d. Since xs and xr are

both contained in Xs, Lemma 3.2 implies that d� xss and xss � x. Thus X contains the

cycle x� xr � d� xss. Since cs is a geodesic, this cycle does not have the diagonal

(x, d). Thus xr � xss.
We obtain moreover that xrs � xrsr , x

s
r � xrsr and xsr � xss from the fact that xs � xss,

xr � xrr and xr � xs. Since x 2 Xs we also conclude using Lemma 3.2 that x� xss and
that X contains the cycle ðxrsr ; xsr; xss; x; xrsÞ. This cycle has to have diagonals. By

Lemma 4.6 we obtain that xr 6 � xs and thus this cycle does not contain the diagonal

ðx; xsrÞ. There are thus four remaining possibilities for the diagonal. If xss � xrs, we are
done. If xsr � xrs, X contains the cycle ðxsr; xrs; x; xssÞ and since x 6 � xsr it follows x

r
s � xss

and we are done. In the remaining two cases xs � xrr. If x
s
s � xrsr , then xs � xrr since C

operates simplicial. If x� xrsr , then X contains the cycle ðxrsr ; xsr; xss; xÞ and since

x 6 � xsr we conclude that xrsr � xss and thus xs � xrr.
Using the C-action and the fact that xs � xrr we obtain a cycle ðxs; xrr; xsrs ; xsr; xsÞ.

But then xrs � xss or x
r
r � xsr and we are done. h

xs

xr

γs

γr

x

d

(a)

xs

xr

γs

γr

x

d

xr

xsr
s

xs
s

xr
r

xr
s

(b)

Fig. 11 This illustrated the situation of Lemma 6.7. The 4-cycle in b induces the existence of the dashed
diagonal
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7 Defects Along the Sides of S

We assume in this section that C acts without stabilizing a simplex on a systolic

complex X and study defects along the sides of a nondegenerate minimal surface S
as constructed in Sect. 4. In the following we use notation as in 6.1. In particular, cu
denotes an arbitrary side of S. We will show that one can choose S in such a way

that the defect along any side is nonnegative.

We summarize some first observations about the defects along a side obtained

from simple counting arguments.

Lemma 7.1 (Counting defects) The defect along any side cu satisfies the following
properties.

(1) If defðauÞ\0, then defðcuÞ� 0.

(2) If defðauÞ ¼ �1 and defðcuÞ ¼ 0, then the vertex closest to b on cu with
nonzero defect has defect 1.

(3) If defðauÞ ¼ �1 and defðcuÞ ¼ �1, then the vertex closest to bu on cu with
nonzero defect has defect �1.

(4) If defðauÞ� � 2, then defðcuÞ� � 1.

(5) If defðauÞ ¼ �2 and defðcuÞ ¼ �1, then the vertex closest to b on cu with
nonzero defect has defect 1.

(6) If defðauÞ\0 and defðbuÞ\0 and one of them has defect at most �2, then
defðcuÞ� � 2.

(7) If defðcuÞ ¼ 1, the vertex on cu closest to either end of cu with nonzero
defect has defect 1.

Proof By Lemma 2.8, any vertex on cu has defect at most 1. Furthermore two

vertices of positive defect on cu are separated by a vertex of negative defect. The

claim follows by counting. h

The key tool of this section is an edge swap, made precise in Definition 7.2,

which allows us to vary the surface S by replacing two triangles forming a square

that touches the boundary by a square on the same four vertices but with the other

possible diagonal. Such a move will keep minimality of the surface intact while

altering its defects on the boundary. The main goal is to prove that there always

exists a sequence of edge-swaps such that the resulting surface only contains sides

of nonnegative defect.

Definition 7.2 (Edge-swaps and swap surfaces) Let S be a surface and cu one of its
sides. Let p and q be two adjacent inner vertices in cu. Let m and m0 be two distinct

vertices in S n cu. Suppose that ðp;m;m0; qÞ forms a 4-cycle with diagonal (m, q). If
a surface S0 differs from another surface S by replacing the two simplices on p, q, m
and on q;m;m0 by the simplices on p;m;m0 and p;m0; q, i.e. swapping the edge

(q, m) by ðp;m0Þ, we say S0 is obtained by an edge-swap along cu from S. We call S0

a swap-surface of S (along cu) if S
0 is obtained from S by a sequence of edge-swaps

along (the same) cu. A repeated swap-surface S0 of S is the end result of a sequence

of swap-surfaces of S (along several sides), i.e. obtained by a sequence of edge-

swaps which might be along changing sides.
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Note that if a corner has defect 2 it may happen that an edge-swap along one of

its incident sides simultaneously is an edge swap along the other incident side.

The following lemma shows the existence of a swap-surface if two adjacent inner

vertices of a side cu have defect 1 and defect 0 respectively.

Lemma 7.3 (Existence of edge-swaps) Let p and q be adjacent inner vertices on cu
of defect 1 and 0 respectively. Let m be the unique neighbor of p in S not contained
in cu and let m0 be the neighbor of q other than m not contained in cu. Then there
exists a surface S0 obtained by an edge-swap along cu. In particular, the 1-skeleton
of S0 contains the edge ðp;m0Þ and S the edges (q, m).

Proof Let d 6¼ p be the neighbor of q on cu. Then ðp;m;m0; d; quÞ forms a 5-cycle

(by Lemma 3.2) and hence has two diagonals. As p is not adjacent to d (as otherwise
cu would not be a geodesic), and m not adjacent to qu by Lemma 4.6, the only

remaining possibility is that qu and p are both adjacent to m0. Thus the vertices

p, q, m and m0 span a 3-simplex D. Two of the faces of this 3-simplex are triangles

in S, namely (p, q, m) and ðm; q;m0Þ which can be replaced by the triangles

ðp; q;m0Þ and ðp;m;m0Þ to obtain the desired surface S0. h

Note that the following lemma in particular applies to the case where the defect

along cu is 1. It will be used numerous times throughout the remainder of this

section.

Lemma 7.4 (Moving defects with swaps) If the vertex closest to a on cu with
nonzero defect has defect 1, one can replace the surface S by a surface S0 obtained
by an edge-swap along cu such that au has defect 1 in S0.

Proof Let a0u be the vertex closest to a on cu with nonzero defect and n its distance

to au. if n ¼ 0, we are done. Suppose that n[ 0. Let �au be the vertex on cu that has
distance n� 1 to au. By assumption, the defect of au is zero and the defect of �au is
one. We apply Lemma 7.3 to these two vertices. This way, we obtain a new surface

whose 1-skeleton differs from S by swapping two edges incident to �au and a0u. By
construction, a0u has defect 0 and �au has defect 1 in the new surface. By repeating

this procedure n times, we obtain a swap surface where all the swaps happened

along cu and in which au has defect 1. Each edge-swap exchanges an edge ei for an
edge e0i in X such that the four endvertices of ei and e0i are contained in a 4-cycle in

the 1-skeleton of S. Furthermore, either ei or e
0
i is contained in S. Hence, we can

apply the n-th edge-swap to S. The resulting surface S0 is obtained by an edge-swap

along cu and au has defect 1. Hence S0 is the desired surface. h

Lemma 7.5 (Effect of swaps on defects of edges) If S0 is a surface obtained from S
by an edge-swap along cu, then the following is true.

(1) The defect of cu in S is the same as the defect of cu in S0.
(2) The defects of cw and cv in S0 differ from their defects in S by at most 1.

Proof Every edge-swap as in Lemma 7.3 changes the defects of the vertices of the

involved edges on the boundary curve of S. Clearly the two vertices of the edge in cu
are not contained in cv [ cw. If the other two vertices are contained in the boundary
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of S, the defect of one of them increases and the defect of the other decreases by 1.

Thus the defect of cw remains the same if it contains both vertices or none of them.

It changes by 1, if it contains one vertex. The same holds for cv. h

Lemma 7.6 (Effects of swaps on defects of corners) Suppose S0 is a swap-surface of
S along cu. Then the defects of the corners a, b on cu in S0 are the same as in S.
Corner c has defect 2 in S if and only if it has defect 2 in S0.

Proof Every edge-swap obtained by Lemma 7.3 changes the defects of the vertices

of the swapped edges if they are on the boundary of S. By construction these

vertices are not the corners associated with cu. In particular the defects of the

corners incident to cu do not change. If one of them correspond to the remaining

corner not incident to cu, this corner has defect at most 1. h

Lemma 7.7 (Preserving defects) If v is an inner vertex of cv or cw of defect 1, then
its defect stays the same under any edge-swap along cu if v is not adjacent to a
vertex w of cu with the following properties:

(1) w has defect 0
(2) w is a neighbor of one of the corners incident to cu and this corner has defect

2.

Proof Let v be an inner vertex of defect 1 not contained in cu such that its defect

changes by an edge-swap along cu. Then the defect of v is contained in one of the

swapped edges. Let w be the second vertex of this edge. By definition it is contained

in cu and has defect 1 or 0. It has not defect 1 as otherwise w would be a corner of

defect 1 and would not be contained in an edge of the swap. Hence w has defect 0.

Then w is incident to exactly three 2-simplices, the vertex v is incident to exactly

two 2-simplices and v and w are adjacent. Then w is adjacent to a corner incident to

cu having defect 2. h

Lemma 7.8 (Noncommuting involutions) If defðcÞ ¼ 1 and both vertices on the
boundary of S closest to c with nonzero defect have defect 1, then the involutions
corresponding to c do not commute. In particular, if a corner and its incident sides
have defect 1 the corresponding involutions do not commute.

Proof Let cw and cv denote the sides incident with c. Then Lemma 7.4 implies that

there exists a surface S0 obtained from S via an edge-swap along cw in which

defðcwÞ ¼ 1. By Lemma 7.6 the defect of c does not change. We apply Lemma 7.4

again to cv and obtain a surface Ŝ in which cv has defect 1 by applying an edge-swap
to S0 along cv. Using Lemmas 7.6 and 7.7 the defects of c and cw do not change. The

fact that the involutions do not commute is then obtained from Lemma 6.6. h

Lemma 7.9 (Bounding defects of vertices) Suppose that defðcuÞ ¼ 1 and that cu
has exactly 2 inner vertices. Then minðdefðaÞ; defðbÞÞ� 1.
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Proof We assume for a contradiction that the defect along cu is 1, cu has exactly

two inner vertices and that both incident corners a and b have defect 2. Then cu
contains just the vertices au and bu. One of them, say au, has defect 0 and the other

vertex bu has defect 1.

By Lemma 7.3, we can replace S by a surface in which defðauÞ ¼ 1 and

defðbuÞ ¼ 0 by swapping the edges ðau; buuÞ and ðbu; auuÞ. In particular, both edges

are contained in X. Hence we are in the situation as illustrated in Fig. 12a. Note that

X contains the two 4-cycles ðau; au; buu; auwÞ and ðau; au; buu; auwÞ which are marked by

thick edges in Fig. 12b By 6-largeness, they contain a diagonal each. The edges

ðau; buuÞ and ðauu; buÞ are not contained in X as otherwise a� bu or au � b using the

simplicial action and this then implies that cu is not a geodesic. Hence X contains the

edges ðau; auwÞ and ðbu; auwÞ which are drawn in gray in Fig. 12b. We conclude that X

contains the 4-cycle ðau; bu; buv ; auwÞ (as illustrated in Fig. 12c) which, by 6-

largeness, contains a diagonal. For symmetrical reasons we may assume that the

same 4-cycle also has the diagonal ðauw; buÞ. But then X contains the closed path

C :¼ ða; au; auw; bu; awÞ which is shown in Fig. 12d. It is a 4-cycle or 5-cycle

depending on whether a ¼ au or not. This cycle does not contain the diagonal

ða; buÞ as otherwise cu would not be a geodesic. The vertices aw and auw are not

adjacent as otherwise aw would be contained in Xw and Xu and S would not have

minimal area. Hence edge ða; auwÞ is not contained in X as otherwise ða; auw; bu; awÞ
would be a 4-cycle without diagonals. In particular a 6¼ au. We conclude that C is a

5-cycle that does not contain the diagonals ða; auwÞ, ða; buÞ and ðauw; awÞ. By 6-
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auu buu

buau

(a)

au

a

auw buv

bu

b

bvaw

auu buu

buau

(b)

au

a

auw buv

bu

b

bvaw

auu buu

buau

(c)

au

a

auw

aw

bu

(d)

au

a

auw buv

bu

b

bvaw

auu buu

buau

(e)

Fig. 12 This illustrates the proof of Lemma 7.9. The last picture on the bottom shows the constructed
4-cycle which does not have a diagonal
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largeness C contains the remaining two diagonals ðau; buÞ and ðau; awÞ. The edge

ðau; buÞ is shown in Fig. 12d. We observe that X contains the closed path

ða; au; bu; buuÞ which is pictured in Fig. 12e. Hence, a� bu. This contradicts the fact
that cu is a geodesic. h

Lemma 7.10 (Number of inner vertices) If every side of S contains at least one
inner vertex and defðaÞ ¼ defðbÞ ¼ 2, then cu contains at least three inner
vertices.

Proof Suppose for a contradiction that cu contains exactly two inner vertices. The

defects of a and b are at most 1 by Lemma 7.9. If cu contains exactly one inner

vertex x we obtain that x� a and x� b. As defðaÞ ¼ defðbÞ ¼ 2 both a and b are

contained in a single 2-simplex each both of which contain x. As every side of S
contains at least one inner vertex these two 2-simplices then can not be glued

together along an edge. Hence x cannot be incident to at least three 2-simplices and

x cannot habe defect 1 which contradicts what we have observed earlier. h

The following lemma gives conditions for when one can shift two vertices of

defect 1 to the ends of the considered side via edge-swaps.

Lemma 7.11 (Existence of swap surfaces) Suppose that defðcuÞ ¼ 1 in S and that
cu contains at least 3 inner vertices. Then there exists a swap surface S0 of S along
cu such that defðauÞ ¼ defðbuÞ ¼ 1. Moreover, defðcuÞ ¼ 1 in S0.

Proof Let a0u be the vertex closest to a on cu that is not 0. As the defect along cu is
1, a0u has defect 1 by Lemma 7.1 (7). Hence we can apply an edge-swap and

exchange the surface S for a surface S0 via Lemma 7.4. As cu has at least 2 inner

vertices, none of the swapped edges is incident to bu. Hence we can repeat the

argument for the other corner of cu and obtain the desired swap-surface. h

Using these lemmas we are able to prove the following proposition.

Proposition 7.12 (Nonnegative defect on sides) Given a nondegenerate minimal
surface S as constructed in Sect. 4 there exists a surface S0 with the same
minimality properties such that the defect along any side of S0 is 1 or 0.

Proof Let cu be a side of S. By Lemma 2.8 the defect along cu is at most 1. It

remains to show that it is at least zero. Assume that the defect along cu is less than 0.
By definition, any corner has defect at most 2. Proposition 2.1 implies that the sum

of the defects along the boundary of S is at least 6. Thus there are only three cases

we need to consider which we have illustrated in Fig. 13. We use notation as in 6.1.

h h

Case (1): defðcuÞ ¼ �2 and defðcvÞ ¼ defðcwÞ ¼ 1.

In this case all corners of S have to have defect 2 as otherwise the defects along

the boundary of S sum up to at most 5 which contradicts the combinatorial Gauss-

Bonnet Lemma 2.1. By Lemma 7.4, there is surface S0 obtained from S by an edge-

swap along cw such that cw has defect 1 in S0. By Lemma 7.6 the defects of the
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corners a, b, c do not change. The vertex cv has negative defect by Lemmas 6.5 and

6.2. We conclude with help of Lemma 7.1(1), that the defect cv in S
0 is at most 0. By

Lemma 7.5, the defect along cv in S0 is 1 or 0. Hence it is equal to 0. Furthermore

the defect along cw is 1 in S0 and the defect along cu is �3;�2 or �1 in S0 by
Lemma 7.5. As the defects along the boundary of S sum up to at least 6 by the

combinatorial Gauss-Bonnet Lemma 2.1, the defect along cu is �1 in S0. We will be

dealing with the surface S0 in case (3).

Case (2): defðcuÞ ¼ �1 and defðcvÞ ¼ defðcwÞ ¼ 1.

Suppose first that c has defect 2. As in case (1) we may argue that there is a

surface S0 obtained from S via an edge-swap along cw such that defðcwÞ ¼ 1 and

defðcvÞ ¼ �1 and where defðcwÞ ¼ 1. The defect along cv is at most 0 by

Lemma 7.1(1) and at least 0 by Lemma 7.5. Thus defðcvÞ ¼ 0. Lemma 7.5 then

implies that the defect along the third side in S0 is in f�2;�1; 0g. If the defect along
cu is 0 we have found a desired surface. If it is �1 we have reduced the situation to

the third case. If it is �2 the defects along the boundary of S sum up to at most 5

which contradicts Proposition 2.1.

Suppose now that defðcÞ ¼ 1 in S. Then a and b have both defect 2 and the

involutions corresponding to c do not commute by Lemma 7.8 as otherwise the

defects along the boundary of S sum up to at most 5. Hence the involutions

corresponding to a or b commute. We will show that this leads to a contradiction.

Recall that defðcwÞ ¼ 1 in S. By Lemma 7.4 there exists surface S0 obtained from

S via an edge-swap along cw such that aw has defect 1 in S0 and a another surface Ŝ
obtained from S0 by an edge-swap along cv such that bv has defect 1. By Lemma 7.6

and 7.7 the defect of the corners do not change and aw and bv have defect 1 in Ŝ. The

defects of both au and bu are negative in Ŝ as otherwise the defect of the

corresponding corners would be at most 1 by Lemmas 6.5 and 6.2. If either defðauÞ
or defðbuÞ is \� 1 the defect along cu is at most �2 by Lemma 7.1(6). Then the

defects along the boundary of S sum up to at most 5 which contradicts

Proposition 2.1. Hence au and bu have both defect �1 in Ŝ. In particular, a and b
are both adjacent to a vertex of defect 1 and a vertex of defect �1. But then neither

the involutions corresponding to a nor those corresponding to b commute as

2

2

2

2

1 or 2

2

2

2

2

−2

1

1 1

−1

1

−1

1

0

γu γu γu

c c c
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bbb

Case (1) Case (2) Case (3)

a

Fig. 13 The three cases appearing in the proof of Proposition 7.12 of surfaces with one side of negative
defect. The numbers are the defects of the sides and corners they label
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otherwise the defect of a, respectively b, would be at most 1 by Lemma 6.7. And we

have arrived at a contradiction.

Case (3): defðcuÞ ¼ �1, defðcwÞ ¼ 0 and defðcvÞ ¼ 1.

Suppose S is a surface with the listed properties. Then each corner of S has defect

2, as otherwise the defects along the boundary of S sum up to less then 6. This

implies that each side of S, also cw, has at least one inner vertex. If cw does not

contain an inner vertex S is a single 2-simplex. Then the defect along no side would

be negative.

By Corollary 7.10 the side cv contains at least 3 inner vertices. Hence there exists

a swap-surface S0 of S along cv such that bv and cv have defect 1 and such that the

defect along cv is 1 in S0 by Lemma 7.11. Every corner of S0 has defect 2 by

Lemma 7.6. Thus the vertices bu and cw have both negative defect by Lemmas 6.5

and 6.2. By Lemma 7.1(1), the defect along cu and cw is at most 0. If both defects

are 0, we have found a desired surface.

In the remaining case one geodesic has defect 0 and the other �1 as otherwise the

sum of the defects along the boundary of S is less than 6. Potentially switching the

roles of u and v we may assume that cu has defect �1 and cw has defect 0.

Recall that cw has negative defect. By Lemma 2.8, any vertex on cu has defect at
most 1. Furthermore two vertices of positive defect on cu are separated by a vertex

of negative defect. Hence the vertex closest to aw on cw with nonzero defect has

defect 1. By Lemma 7.4 there exists a surface S00 obtained from S0 by an edge-swap

along cw such that aw has defect 1 in S0. From Lemma 7.6 we obtain that each corner

of S00 has defect 2. And Lemma 7.7 implies that the vertices bv and cv have defect 1
in S00. It follows from Lemma 2.8, that defðcvÞ ¼ 1 in S00.

Using Lemmas 6.5 and 6.2 we may argue as above and obtain that the vertices bu
and cw have both negative defect. By Lemma 7.1(1), the defect along cu and cw is at

most 0. If both defects are 0, we have found a desired surface. Otherwise, defðcwÞ ¼
0 in S00 by Lemma 7.5 and the defect along cu is �1 because otherwise the defects

along the boundary of S00 would not sum up to at least 6. It follows from

Lemma 7.1(1) that the vertex cw has defect �1. By Lemmas 6.5 and 6.2 the defect

of au is negative. Recall that cu has negative defect and that cu has defect �1. Hence

2.8 implies that the defect of bu is �1. All in all, S00 is a surface in which each corner
is adjacent to a vertex of defect �1 and to a vertex of defect 1. But then also the

corner whose corresponding involutions commute is adjacent to a vertex of defect 1

and to a vertex of defect �1. This contradicts Lemma 6.7. h

We have shown that S can be chosen such that no side has negative defect. The

next proposition and the lemma afterwards establish further properties of such

surfaces.

Proposition 7.13 (Bounding defects at corners) With notation as in 6.1 suppose the
defect along all sides of S is nonnegative and that cu has defect one. Then
defðaÞ� 1 and defðbÞ� 1.

Proof We suppose that the defect along all sides of S is nonnegative and that cu has
defect one. We distinguish three cases.

Case (1): There are no inner vertices in the sides cv and cw.
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In this case, two corners have defect 2 and the third corner has defect at least 1

because the sum of the defects along the boundary of S is at least 6 by

Proposition 2.1. Because cv and cw don’t have inner vertices and since cu has at least
one inner vertex, the corner c does not have defect two. Hence, the corners a and b
have defect two and c has defect one. It follows that the corner c is contained in

exactly two 2-simplices of S and that a and b are contained in exactly one 2-simplex

respectively. As cv and cw don’t have inner vertices, the sides cv and cw are

contained in these two 2-simplices respectively and we are in the special case

illustrated in Fig. 14.

We prove that this special case pictured in Fig. 14 does not occur. Recall that one

of the corners of S correspond to two commuting involutions and that the orbit of

this corner under the group generated by these two involutions spans a simplex by

6-largeness. First we will show that neither the involutions corresponding to a nor

the involutions corresponding to b commute. Therefore the commuting involutions

have to correspond to c. We will see that this implies the existence of a 4-cycle or a

5-cycle without diagonals which contradicts 6-largeness.

Claim 1: The involutions u, wcorresponding to aand bdo not commute.
Assume otherwise. Then C ¼ ðau; au; c; awÞ forms a closed path by Lemma 3.2.

By Lemma 4.6 the complex X does not contain the edge ðau; cÞ. So C is a cycle of

length 4 containing the diagonal ðau; awÞ by 6-largeness. Hence a� awu . Since u and

w commute, awu 2 Xu ðuðawu Þ ¼ wðauuÞ� awu because auu � au) and a 2 Xu by

definition. Thus au � awu by Lemma 3.2. Applying Lemma 3.2 again and using that

the group action is simplicial we conclude that ðau; awu ; cw; c; auÞ forms a closed

path. If c ¼ cw it is a cycle of length 4 and contains ðau; awu Þ or ðau; cÞ which both

lead to a contradiction by the minimality of S or Lemma 4.6. If c 6¼ cw, the cycle has
length 5 and the same argumentation yields that au 6 � awu and au 6 � c. Then the

existence of the diagonal ðc; awu Þ would lead to a 4-cycle without diagonals. Hence X
does not contain ðc; awu Þ and hence also not ðcw; auÞ. But then the described 5-cycle

has at most one diagonal which contradicts 6-largeness. Thus u and w have to

commute. Similarly one shows that the involutions corresponding to b do not

commute. h claim 1.

It remains to consider the subcase that the involutions v, w corresponding to

corner c commute. We will use the following observation.

Claim 2: If the involutions v and w corresponding to corner c commute then X
contains the two diagonals ðau; cvÞ and ðau; cwÞ but not the diagonal ðb; cwÞ.

Since v and w commute, X contains the closed path ða; au; b; cv; cwÞ. Using again

that v and w commute, a case by case analysis shows that it is a cycle of length 4 or

5 depending on whether cv ¼ cw or not. By minimality of cu, a is not incident to b.
Thus either au � cw or au � cv since otherwise X contains a 4-cycle without a

au

b

c

a

Fig. 14 A special case of the
surface S
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diagonal. This argument is symmetric hence we may assume that au � cw. To arrive

a contradiction assume further that b� cw. Apply Lemma 6.4 and reduce the

situation to the case that ahu;wi spans a simplex as au � cw, awu � c. By Lemma 4.6

the complex X does not contain the edge ðau; cÞ. Hence a has defect at most 1 by

Lemma 6.3 which has us arrived at a contradiction. Thus it remains to consider the

case where b 6 � cw. Then ðau; cw; cv; bÞ forms a 4-cycle containing the diagonal

ðau; cvÞ by 6-largeness. We have shown that one can reduce the situation to the case

where X contains the two diagonals ðau; cvÞ and ðau; cwÞ but not the diagonals

ðb; cwÞ. This proves the claim. h claim 2.

Recall that it remains to consider the subcase that the involutions v, w
corresponding to corner c commute. By Lemma 4.6, the complex X does not

contain the edges ðau; cÞ and ðbu; cÞ. Hence we may apply Lemma 6.3 to the corners

a and b and conclude that neither ahu;wi nor bhu;vi span a simplex. By Proposition 3.9

there exists a vertex x 2 Xv \ Xu which is connected to bu, b and bv and X contains

the closed path ðau; bu; x; bv; cÞ. It is not hard to see that this is a cycle of length 5.

By Proposition 3.9 the orbit of b under hu; vi spans a cycle without diagonals. Thus
bu 6 � bv. By Lemma 4.6, c 6 � bu. Hence there are only two possible configurations:

either x is adjacent to au and c or au � x and au � bv. In the former case we obtain a

new surface S0 with the same minimality properties like S by exchanging b with x.

By Proposition 3.9 we can choose x so that xhu;vi spans a simplex and we arrive a

contradiction by applying Lemma 6.3 as above. In the second case X contains the

closed path C ¼ ðcw; au; b; avu; cvwÞ which is a 4- or 5-cycle depending on whether

c ¼ cv or not. By assumption it does not contain the diagonal ðb; cwÞ and it does not

contain ðau; avuÞ for minimality reasons. Notice that bw 2 Xv since vðbwÞ ¼
wðbvÞ� bw as b� bv. Thus C does not contain ðb; cvwÞ as diagonal. Otherwise

bw � cv which leads to the existence of ðc; bwÞ by applying Lemma 3.2. This

contradicts Claim 2. Regardless of whether X contains the remaining diagonals of

C or not, X contains a 4- or a 5-cycle without a diagonal which contradicts

6-largeness.

Case (2): Exactly one of the two sides cv and cw does not have inner vertices

Potentially switching the roles of v and w we may assume that cw has no inner

vertices. Suppose for a contradiction that one of the corners a and b, say a, has
defect two. Lemmas 7.1 and 7.4 imply the existence of a surface S0 obtained from S
by an edge-swap along cu such that the defect of au is 1. By Lemmas 7.6 and 7.5,

the defect along cu in S0 is 1 and the defect of a in S0 is 2. Then au and its neighbor

a0u 6¼ a on cu are both connected to c in S0. If a0u ¼ b the geodesic cv does not contain
inner vertices. Then S0 is a surface as in case (1) and we have proven already that

such a surface does not exist. Hence we assume that a0u 6¼ b. Then a0u is an inner

vertex of cu that is connected to c and cv contains a further vertex adjacent to c that
neither coincides with a nor with a0. Hence, the degree of c in the 1-skeleton of S is

at least 4 and defðcÞ� 0. As the sum of the defects along the boundary of S is at

least 6 by Proposition 2.1, the defect along cv is 1 and defðbÞ ¼ 2. We replace the

surface S0 with a surface S00 that is obtained from S0 by an edge-swap along cv such
that bv has defect 1 in S

00 by means of Lemma 7.4. By Lemma 7.6, the defects of the

corners of S0 stay the same. Then the defect of bu on cu is negative in S00 by
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Lemmas 6.5 and 6.2. Hence cu has defect at most 0 in S00 by Lemma 7.1(1). But

then the sum of the defects along the boundary of S00 is at most 5 which contradicts

Proposition 2.1.

Case (3): Every side of S has inner vertices.

The proof in this case has to steps. In the first step we prove the claim that either

a or b has defect at most 1. In the second step we conclude that both corners have

defect at most 1.

Claim 3: One corner incident to cu has defect at most 1.
To arrive a contradiction we assume that a and b have defect 2 and show the

existence of a repeated swap surfaces of S which do not satisfy all necessary

properties.

The side cu contains at least 3 inner vertices by Corollary 7.10. Lemma 7.11

implies that there exists a swap surface S0 of S along cu such that au and bu have

defect 1 and such that the defect along cu is 1 in S0. Then the vertices aw and bv have
negative defect in S0 as otherwise the corresponding corners would have defect at

most 1 by Lemmas 6.5 and 6.2. By Lemma 7.1(1), the defect along cw and cv is at
most 0 in S0. At least one of them has defect 0 as otherwise the sum of the defects

along the boundary of S is less than 6. By symmetrical reasons we can assume

without loss of generality that the defect along cw is 0. By Lemmas 7.1(4) and

7.1(2), aw has defect �1 and the vertex closest to c on cw has defect 1. By

Lemma 7.4, there exists a surface Ŝ that is obtained from S0 by an edge-swap along

cw such that cw has defect 1 in Ŝ. By Lemmas 7.6 and 7.7, the defect of the corners

and the defects of au and bu do not change. As before we observe that aw and bv
have negative defect in Ŝ and that the defect along cw and cv in Ŝ is at most 0.

If corner c has defect 2 in Ŝ , cv has negative defect by Lemmas 6.5 and 6.2. Then

bv and cv have both negative defect. If one of these defects would be less than �1,

the sum of the defects along the boundary of S would be less than 6. Hence any

corner is adjacent to a vertex of defect 1 and a vertex of defect �1. In particular, the

corner whose corresponding involutions commute satisfies this property. This

contradicts Lemma 6.7.

If corner c has defect 1, the defect along cw and cv it 0 as otherwise the sum of the

defects along the boundary of S is less than 6. By Lemmas 7.1(4) and 7.1(2), aw and

bv have defect �1 and the vertex closest to c on cv with nonzero defect has defect 1.

Recall that cw has defect 1. By Lemma 7.8, the involutions corresponding to c do

not commute. Hence the involutions corresponding to a or b commute. But this

contradicts Lemma 6.7. We have now shown that a or b has defect at most

1. h claim 3.

Recall that we suppose that the defect along all sides of S is nonnegative and that

cu has defect one. We are now well-prepared to prove that both corners incident to

cu have defect at most 1. We assume for a contradiction that one of the corners a and
b, say a, has defect 2. By claim 4 we may assume that b has defect at most 1. We

show the existence of a repeated swap surfaces of S which do not satisfy all

necessary properties.

By Lemmas 7.1(7) and 7.4, there exists a surface S0 obtained from S by an edge-

swap along cu in which au has defect 1. By Lemma 7.5, the defect along cu in S
0 is 1.
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By Lemma 7.6, a has defect 2 in S0 and the defect of b is at most 1 in S0. As above
we conclude that aw has negative defect in S0 and that the defect along cw is at most

0.

First we consider the case that cw has negative defect in S0. Then the defect along

cu and cv is 1, b has defect 1 and c has defect 2 as otherwise the sum of the defects

along the boundary of S0 is less than 6. We apply Lemma 7.4 and conclude that

there is a surface Ŝ that is obtained from S0 by an edge-swap along cv such that cv has
defect 1 in Ŝ. By Lemmas 7.6 and 7.7, the defects of the corners of S0 and the defect

of au do not change. By Lemmas 6.5 and 6.2, vertices aw and cw have negative

defect. If one of them would be smaller than �1, the defect along the side cw would

be at most �2 because of Lemma 2.8 and the sum of the defects along the boundary

of Ŝ would be less than 6. Hence a and c are adjacent to a vertex of defect 1 and a

vertex of defect �1. Hence the corresponding involutions do not commute by

Lemma 6.7. But then the involutions corresponding to b commute which contradicts

Lemma 7.8.

It remains to consider the case where the side cw in the surface S0 has defect 0.
Then aw has defect �1 and the vertex closest to c on cw with nonzero defect has

defect 1 by Lemmas 7.1(4) and 7.1(2). We apply Lemma 7.4 and obtain a surface Ŝ

that is obtained from S0 by an edge-swap along cw such that cw has defect 1 in Ŝ. By
Lemmas 7.6 and 7.7, the defects of the corner a and the defect of au do not change.

Hence, defðauÞ ¼ 1 and defðaÞ ¼ 2 in Ŝ. By Lemma 7.5, defðcwÞ ¼ 0. As above

follows that defðawÞ ¼ �1 in Ŝ. By Lemma 7.6, the defect of b is at most 1 in Ŝ.

If the defect of c in Ŝ is 1, the defect along cu and cv in Ŝ is 1 as otherwise the sum
of the defects along the boundary of S is less then 6. Then the involutions

corresponding to b and c do not commute by Lemma 7.8. Hence the involutions

corresponding to a commute which contradicts Lemma 6.7.

If c has defect 2 in Ŝ , we argue like before that cv has defect �1. Because cv has
defect �1, defðcvÞ� 0 because of Lemma 2.8. Recall that the defects along the

boundary of Ŝ sum up to 6. Hence defðcvÞ ¼ 0. By Lemma 7.1(4), the vertex closest

to b on cv with nonzero defect has defect 1. As defðaÞ ¼ 2, defðcÞ ¼ 2, defðbÞ� 1,

defðcwÞ ¼ defðcvÞ ¼ 0 in Ŝ, the defect along cu is 1 by Proposition 2.1. By

Lemma 7.1(7), the vertex on cu closest to b with nonzero defect has defect 1. Then

the involutions corresponding to b do not commute by Lemma 7.8. Note that the

corners a and c are adjacent to a vertex of defect 1 and to a vertex of defect �1.

Hence the involutions corresponding to a and c do not commute by Lemma 6.7. All

in all neither a nor b nor c is the corner of Ŝ whose corresponding involution

commute which is a contradiction. h

Lemma 7.14 If every side of S has at least one inner vertex, the defect along at
least one side of S is nonzero.

Proof Assume for a contradiction that the defect along all sides is 0. If one corner

would have a defect smaller than 2, the sum of the defect along the boundary of S
would be at most 5 which contradicts Proposition 2.1. Thus every corner has defect

2. We will show that at least one corner of S, say a, is adjacent to a vertex of
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nonzero defect. As the defect along every side is 0, the neighbors of a on the

boundary of S have defect at least �1 by Lemma 7.1(4). By Lemma 6.2 it is

impossible that both neighbors have defect 1. By Lemma 6.5 it is impossible that

one neighbor has defect 1 and the other has defect 0. We conclude that at least one

of the two neighbors of a has defect �1.

Without loss of generality we assume that the neighbor aw of a on cw has defect

�1. Then the vertex on cw which is closest to c having nonzero defect, has defect 1

by Lemma 7.1(2). We apply Lemma 7.4 to cw and obtain a surface S0 where the

defect of cw is 1. Then the neighbor of c on cv in S0 has negative defect by

Lemmas 6.2 and 6.5. As before we observe that its defect is �1. Furthermore the

defects of a, au and aw in S0 are the same like before. Any edge-swap does not

change the defects of a by Lemma 7.6. As au has defect 1 in S, it is not contained in

one of the swapped edges and hence its defect does not change. The defect aw does

not change by the definition of the edge-swap. We repeat the same argumentation

for the side cv and obtain a repeated swap-surface Ŝ of S where every corner is

adjacent to a vertex of defect 1 and a vertex of defect �1. In particular the corner

whose corresponding involutions commute has this property. By Lemma 6.7 this

corner has defect at most 1 which is a contradiction.

It remains to show that one corner of S is adjacent to a vertex of nonzero defect.

We show that the corner whose involutions commute has this property. Let a be this

corner. We assume for a contradiction that au and aw have defect 0. Let a0u be the

vertex on cu adjacent to au different from a. Let aw be the vertex on cw adjacent to

aw on cr other than a. Let d be the unique inner vertex of S which is connected to au,
a0u, aw and a0w. We obtain that S contains the subcomplex shown in (a).

By studying cycles of length 4 and 5 we will proof that X contains the black

thickened cycle pictured in Fig. 15b and that this cycle does not have diagonals

which contradicts 6-largeness of X.
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Fig. 15 A surface S studied in the proof of Lemma 7.14. If S has a corner a that is incident to two vertices
of defect 0 then X contains the subcomplex illustrated in a. The cycle in b is contained in X and has no
diagonal which contradicts 6-largeness
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First we show that X does not contain the edge (a, d). To arrive a contradiction

we assume that X contains the edge (a, d). Then the vertices a, au, aw and d form a

simplex in X. We exchange the edge ðau; avÞ with the edge (a, d) in the 1-skeleton of
S and obtain a new surface S0 with the same minimality properties like S where a, au
and aw have defect 1. This configuration contradicts Lemma 6.6.

We show that X does not contain the edge ðau; a0wÞ. To arrive a contradiction we

assume that X contains the edge ðau; a0wÞ. Then the vertices au, aw, a
0
w and d form a

simplex in X. We exchange the edge ðaw; dÞ with the edge ðau; a0wÞ in the 1-skeleton

of S and obtain a new surface S0 with the same minimality properties like S where aw
has defect 1 and au has defect �1. As the involutions corresponding to a commute,

this contradicts Lemma 6.7.

Similarly one can conclude that X does not contain the edge ðaw; a0uÞ.
But then the edges ða; a0wÞ and ða; a0uÞ are not contained in X as otherwise

ða; au; d; a0wÞ and ða; aw; d; a0uÞ would form 4-cycles without diagonals.

Observe that X contains the 5-cycle ða; au; d; a0w; awwÞ. As X does not contain

(a, d), ðau; a0wÞ and ða; a0wÞ, X contains the edges ðau; awwÞ and ðd; awwÞ, as otherwise
X would contain a 4- or 5-cycle without diagonals.

The complex X contains the 5-cycle ðdu; a0uu ; au; au; auwÞ. We have that au � auw,
auw � du and du � a0uu as the group action is simplicial and a0uu � au and au � au by

Lemma 3.2. auw 6 � a0uu as otherwise aw � a0u. d
u 6 � au as otherwise d� a. au 6 � a0uu

as otherwise a� a0u. Hence X contains the diagonals ðau; auwÞ and ðau; duÞ as

otherwise X contains a 4- or a 5-cycle without diagonals.

As au � auw and au � aww the complex X contains the edges ðauu; awÞ and ðawu ; awÞ
and the 5-cycle ðauw; auu; aw; aww; auwu Þ. However, X does not contain ðauw; awÞ and the

edge ðauu; auwu Þ as otherwise aw would be contained in Xu and S would not be

minimal. Moreover, X does not contain the edge ðaw; auwu Þ as otherwise

ðauw; auu; aw; auwu Þ would form a 4-cycle without diagonals. Hence X contains both

diagonals ðauw; awwÞ and ðaww; auuÞ.
As X contains the edges ðauu; awÞ , ðaww; auuÞ and ðawu ; awÞ and because the action of

C is simplicial there exists the 4-cycle ðauw; auu; aw; auwu Þ. Observe that auwu 6 � auu and
auw 6 � aw as otherwise au or aw would be contained in Xu and Xw and S would not be

minimal. Hence we have found a 4-cycle without a diagonal which contradicts 6-

largeness. h

8 Proof of the Fixedpoint Theorem

This section contains the proof of Theorem 1.2 which we restate below for ease of

reference.

Theorem 1.2 Suppose C is one of the groups (2, 4, 5) and (2, 5, 5). For every

simplicial action of C on a systolic complex X there exists a C-invariant simplex in
X. In particular, every such action on the geometric realization of X has a global
fixed point.
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Proof Let in the following S be a surface as constructed in Sect. 4. Recall that S
was chosen minimally with respect to both perimeter and area. We will prove the

assertion by contradiction and hence assume that the action of C does not stabilize a

simplex. Propositions 4.4 and 5.6 imply that S is larger than a single 2-simplex. We

consider a series of cases for the defects of the sides of S. In each of these cases we

will either arrive at a situation that contradicts minimality or contradicting one of

the numerous counting statements that hold for S and the (sums of) defects of its

vertices.

Systolicity of S and the combinatorial Gauss-Bonnet Lemma 2.1 imply that the

sum of the defects along the boundary curve C of S has to be at least 6. Further

recall that the defect along any side of S was defined as the sum of the defects of all

of its inner vertices, i.e. all vertices different from its endpoints. The two main

ingredients are Propositions 7.12 and 7.13. One states that we can assume without

loss of generality that the defect along any one of the sides equals 1 or zero. The

other says that two corners incident to a side have defect at most 1, if the defect

along the side is 1. By definition, any corner has defect at most 2. By

Proposition 7.12 we may assume that the defect along any one of the sides is

either one or zero.

We are thus in one of the following remaining cases which are illustrated (from

left to right) in Fig. 16. The defects of the sides of S are

(a) 1 on one side and 0 on the two other sides.

(b) 1 on two sides and 0 on the third side.

(c) 1 on each side.

(d) 0 on each side and each side has inner vertices.

(e) 0 on each side and one of the sides has no inner vertices.

Proposition 7.13 implies that in case (a) two corners have defect 1 and in all other

cases all corners have defect 1. We deal with all the cases individually and will

arrive at a contradiction in each of them.

Case (a): Two corners of S have defect at most 1. So the sum of the defects along

the boundary of S is at most 1þ 0þ 0þ 1þ 1þ 2 ¼ 5 which contradicts

Proposition 2.1.

Case (b): Proposition 7.13 implies that any corner of S has defect at most 1. So

the sum of the defects along the boundary of S is at most 1þ 1þ 0þ 1þ 1þ 1 ¼ 5

which contradicts Proposition 2.1.

Case (c): Again by Proposition 7.13 we obtain that the defects of corners is at

most 1. If only one corner has defect 0, the sum of defects along the boundary of S is

0

0 1

1

0

1

1

1

1 0

0

0
0

0

0

Fig. 16 Cases a–e shown from left to right
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at most 5. Hence every corner has defect 1. Because every vertex with nonzero

defect on the boundary of S closest to any corner of S has defect 1 by Lemma 7.17,

we obtain by Lemma 7.8 that there cannot be a coner for which the involutions

commute which contradicts the shape of C.
Case (d): This case does not occur by Lemma 7.14.

Case (e): If one corner has defect at most 1, then the sum of the defects along the

boundary of S is at most 2þ 2þ 1 ¼ 5 which contradicts Proposition 2.1.

Therefore the defect of every corner is 2. If no side of S has inner vertices, S is

just a 2-simplex which contradicts the result in Sect. 5 Hence, there is one side c of
S that contains an inner vertex. As one side of S does not have inner vertices, one

corner a of c coincides with a corner of a side c0 of S without inner vertices. Let c be
the corner of c0 other than a. Since a has defect 2, corner c is connected to an inner

vertex of c. As this vertex is an inner vertex, c is connected to at least one other

vertex contained in S. But then c has degree at least three and hence defect at most 1

and we arrive at a contradiction.

We have now proven that each case leads to a contradiction. Hence Theorem 1.2

follows. h

Theorem 1.1 is now an easy consequence of Theorem 1.2 as if the groups in

question were systolic they would admit a geometric action on a systolic complex.

However we have just seen that every (simplicial) action admits a fixed point and

hence cannot be geometric.
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