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Abstract
The goal of the paper is to develop and propose a general model of the state space of 
AI. Given the breathtaking progress in AI research and technologies in recent years, 
such conceptual work is of substantial theoretical interest. The present AI hype is 
mainly driven by the triumph of deep learning neural networks. As the distinguish-
ing feature of such networks is the ability to self-learn, self-learning is identified as 
one important dimension of the AI state space. Another dimension is recognized 
as generalization, the possibility to go over from specific to more general types of 
problems. A third dimension is semantic grounding. Our overall analysis connects 
to a number of known foundational issues in the philosophy of mind and cognition: 
the blockhead objection, the Turing test, the symbol grounding problem, the Chi-
nese room argument, and use theories of meaning. It shall finally be argued that the 
dimension of grounding decomposes into three sub-dimensions. And the dimension 
of self-learning turns out as only one of a whole range of “self-x-capacities” (based 
on ideas of organic computing) that span the self-x-subspace of the full AI state 
space.

Keywords  Artificial intelligence · Deep learning · Self-learning · Semantic 
grounding · State space of AI · Self-x-property · Self-x-capacity

1  Introduction

There is much to suggest that 15 March 2016 should be regarded as a historical 
date. On this day Lee Sedol, one of the strongest Go players in the world, lost the 
last game of a tournament lasting several days against the “AlphaGo” AI system of 
the development company Google DeepMind. AlphaGo defeated the South Korean 
champion, 4 games to 1. The event attracted worldwide attention and brought back 
memories of the victory of IBM’s “Deep Blue” against the then reigning world 
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chess champion Garri Kasparov some 20 years earlier. And yet the similarity of both 
events is rather superficial. DeepBlue owed its success to pre-implemented heuristic 
search combined with brute computational power, a strategy that is impossible for 
Go due to its sheer complexity. It is said that Go is to chess as chess is to checkers. 
Consequently, AlphaGo is based on a deep learning neural network (DL network), 
while DeepBlue was a classic rule-based and symbolic AI system.

DL networks belong to the latest development in neural network research. They 
are called “deep” as they consist of more than just two or three, sometimes even 
hundreds of layers. DL networks comprise various types of architectures such as 
feedforward, recurrent and convolutional neural networks (cf. Goodfellow et  al. 
2016, LeCun et al. 2015). The breathtaking successes of DL applications in the last 
10 years have led to what Sejnowski (2018) calls the “deep learning revolution”. 
What makes these systems special and what in fact distinguishes virtually all neural 
networks since the perceptron in the late 1950s is their ability to learn or, in view 
of more recent developments, to self-learn by actively exploiting or exploring big 
training data or by self-interaction with virtual or real environments. The deep learn-
ing revolution has led to a new hype in AI over the recent 10 years, be it in science, 
industry, economy or the media. These developments provide a strong motivation to 
rethink the question of what constrains the evolution of AI understood as the general 
quest to develop thinking machines or artificial minds. This is the motivation for the 
paper. And as we shall see, we come across various foundational issues in the phi-
losophy of mind and cognition.1

The goal of the paper is to develop and propose a general model of the state space 
of AI.2 It proceeds as follows. In Sect. 2, the notion of self-learning will be identified 
as a first dimension of the AI state space. We touch upon philosophy of mind issues, 
as the discussion leads to the blockhead objection and the black box problem. The 
second dimension, generalization, will be the topic of Sect. 3, where we also address 
the Turing test and its generalization. The central claim of Sect.  4 is that a third 
dimension consists in semantic grounding. The analysis is partly guided by three 
well-known philosophical issues: the symbol grounding problem, the Chinese room 
argument, and use-theoretic considerations of meaning. In Sect. 5, the full model of 
the state space of AI will be developed and explored. It shall be argued that not only 
grounding decomposes into three sub-dimensions, but that self-learning is in fact 
only one of a whole range of here so called self-x-capacities. They span the self-
x-subspace of the AI state space, which, according to our analysis, turns out to be 
six-dimensional. The notion of self-x-capacity is related to the program of organic 
computing, where the notion of self-x-property is standardly used (self-repairing 

1  The recent developments in AI only start to get the full attention from philosophy of science and phi-
losophy of mind and cognition that they deserve: cf. Buckner (2018, 2019), López-Rubio (2018), Páez 
(2019), Schubbach and Arno (2019), and Zednik (2019).
2  I chose the term “AI state space”, or sometimes just “AI space” for short. Indeed, “state space” might 
be misleading to readers who insist to restrict this term to the states of one system (one AI system, for 
instance) whereas the way it is used here considers the whole field of AI as one mega system, as it were, 
with concrete AI systems as states. Other, less catchy but substantially appropriate terms would be 
“space of possible developments” or “possibility space of AI”.
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and self-replicating, for instance, count as characteristic self-x-properties). Finally, 
a 10-dimensional state space of AI with main dimensions generalization, grounding 
and self-x-capacity will be defended.

2 � Self‑Learning as a Dimension of the Space of AI

AlphaGo and DeepBlue use radically different architectures. In contrast to Deep-
Blue, AlphaGo is based on a DL network (see LeCun et al. 2015 and Schmidhuber 
2015a, b for overviews). The learning-based training of the network proceeded in 
two steps. In its initial phase, AlphaGo first learned patterns and moves of human 
Go players from a database of millions of moves. It was then able to give move 
recommendations similar to those of experts. In a second training phase, the system 
learned by self-play on the basis of reinforcement learning. This second phase dem-
onstrates the crucial qualitative difference from AlphaGo to DeepBlue: the ability to 
self-learn.

2.1 � The Notion of Self‑Learning

Classical GOFAI (“Good Old Fashioned AI”) builds on the assumption that intel-
ligence and cognition consist of rule-based manipulations of symbols. In this regard, 
DeepBlue is a classic AI system par excellence. To calculate the evaluation function 
of millions of possible positions based on a given starting position (on average more 
than 100 million positions per second) DeepBlue relied on the expert knowledge of 
numerous chess grandmasters implemented in the calculation algorithms. As a non-
learning system it was only able to operate within the framework of the given imple-
mentation. Such a limitation is typical for a classical GOFAI architecture: DeepBlue 
was designed for one special purpose, and was therefore unable to perform any other 
task than playing chess. It is a specialized or „narrow“AI (ANI: artificial narrow 
intelligence).

The more recent AI development almost reverses the original GOFAI doctrine. 
The ability to self-learn is precisely what opens up the field of flexible general intel-
ligence. In retrospect, it seems hard to understand how the importance of learning 
could have been downplayed in the early stages of AI. Paradigmatic for this latter 
view is the position of Noam Chomsky (1980), according to which the human lan-
guage ability is not otherwise understandable than under the assumption of a pre-
supposed, allegedly innate deep grammar, i.e. a deeply anchored rule competence 
that is universal to humans. Chomsky considered it out of the question that such 
an ability could have arisen through imitation or reinforcement learning. Terrence 
Sejnowski comments on this very clearly:

What is innate is not grammar, but the ability to learn language from expe-
rience and to absorb the higher-order statistical properties of utterances in 
a rich cognitive context. What Chomsky could not imagine was that, when 
coupled with deep learning of the environment and a deeply learned value 
function honed by a lifetime of experience, a weak learning system like rein-
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forcement learning can indeed give rise to cognitive behaviors, including lan-
guage….it follows logically from Orgel’s second rule: evolution is cleverer 
than you are, and that includes experts like Chomsky. (Sejnowski 2018, S. 
251).

A few more distinctions about the notion of learning are in order. Machine learn-
ing (ML) in general is about developing algorithms to extract regularities or pat-
terns from training data. This leads to learning a function that maps an input to an 
output. Learning can be either supervised, unsupervised or consist of elements of 
both. Reinforcement learning is the standard example for an in-between case. Learn-
ing algorithms are said to be supervised if both the input and the desired output are 
given. Backpropagation is probably the most well-known type of a neural network 
algorithm for supervised learning. The idea is that the difference between the net-
work output and the supervisory teaching signal is used to backpropagate a rule for 
adjusting the weights of the network. Learning is unsupervised when only the inputs 
are given. In this case the system has to learn to extract regularities or patterns from 
the input data in a self-organized manner. Main methods in ML are principle compo-
nent analysis and cluster analysis. Important types of unsupervised neural networks 
are self-organizing maps such as Kohonen networks or the Willshaw-Malsburg 
model. Reinforcement learning is typically considered as a third type of learning 
besides supervised and unsupervised learning. Here, learning improves on the basis 
of feedback in terms of reward for good performance (see the standard textbook by 
Sutton et al. 2018 for an overview).

A notion of special interest that somewhat crosscuts the above distinctions is the 
notion of self-learning. As Demis Hassabis, co-founder and CEO of DeepMind, 
emphasizes, self-learning systems learn directly either from first principles or from 
raw data. And they learn for themselves rather than being pre-programed.3 While 
the notion of self-learning is sometimes used as synonymous to unsupervised learn-
ing, self-learning in the more general and broad sense as it is used here should be 
understood as the system’s ability to exploit or explore the training data by itself, 
or, as in the case of AlphaGo’s self-play, to even generate them. This would also 
include most cases of reinforcement learning, as the learning reward presupposes 
that such systems actively interact with their environments (whether artificial or 
real). And it also includes the important aspect of meta-learning, the ability of 
learning to learn (Botvinick et al. 2019, Schaul & Schmidhuber 2010). Moreover, 
some recent publications suggest improving AI systems by using more elaborate 
and biologically more plausible self-learning models inspired by neuroscience and 
the brain (cf. Bengio et al. 2016, Hassabis et al. 2017, Ullman 2019). Yann LeCun, 
one of the pioneers of the DL revolution, recently proposed to distinguish the cat-
egory of self-supervised learning from the weaker unsupervised learning and the 
even weaker reinforcement learning: “in self-supervised learning, the system learns 

3  Demis Hassabis: The Power of Self-Learning Systems. Talk at MIT Center for Brains, Minds, and 
Machines, March 20, 2019. URL: https​://cbmm.mit.edu/news-event​s/event​s/cbmm-speci​al-semin​ar-self-
learn​ing-syste​ms.

https://cbmm.mit.edu/news-events/events/cbmm-special-seminar-self-learning-systems
https://cbmm.mit.edu/news-events/events/cbmm-special-seminar-self-learning-systems
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to predict parts of its input from other parts of its input”.4 Self-supervised learning is 
thus largely congruent with the general concept of self-learning introduced here (the 
latter comprising not only self-generated but also self-explored inputs).

2.2 � Self‑Learning, Blockhead, and the Black Box Problem

Self-learning systems show an obvious family resemblance to the human model. 
Unlike classic hand-crafted and rule-based GOFAI systems, they can therefore bet-
ter counter Ned Block’s (1981) famous objection against Turing machine function-
alism, known as the “blockhead” objection. It aims at the fact that an AI program 
can very well show intelligent behavior without being truly intelligent. Note, for 
instance, that the number of sentences in a natural-language conversation is limited 
and shows various logical interrelationships. It is therefore in principle always possi-
ble that a machine system, the blockhead program, might successfully master a con-
versation by simply retrieving a pre-programmed look-up table of sentences. Block’s 
objection touches on two aspects. First, a critique of a purely behaviorist under-
standing of intelligence and cognition. Second, the question of what role the internal 
structure of an intelligent system plays. Both aspects are interrelated. According to 
Block, a test of cognitive abilities and intelligence based solely on external behavior, 
such as the Turing test (see Sect. 3.2), is inadequate. There are obviously internal 
structures that do not produce intelligence.

It is rather evident that the blockhead objection can be directly applied to any 
system that uses a look-up tree algorithm. But many GOFAI systems are of course 
more sophisticated than that. DeepBlue, for instance, was partly based on built-in 
heuristic principles guided by human expert knowledge and a grandmaster game 
database. This allowed for a complex evaluation function to assess the quality of 
the positions reached and to explore the search space far more efficiently than by 
mere brute-force (Hsu 2002). Does DeepBlue really play chess then? The blockhead 
objection may not apply in a straightforward manner, but still the question can be 
denied. DeepBlue is merely manipulating internal symbols based on rules. And even 
if such rules include built-in chess knowledge, the system just relies on combinato-
rics and prediction on the basis of computational power. It does nothing to explore 
or to encounter chess in a self-driven or self-exploratory way. Human chess players, 
who cannot rely on such computational power, have to invoke self-learned and self-
trained intuition and knowledge. These considerations will be taken up in Sect. 4, 
where they will be connected to the issue of grounding.

Applied to a self-learning, flexible system like AlphaGo, which is in part also 
capable of creativity, the blockhead objection seems implausible. It is, in fact, inap-
propriate precisely to the extent that the system fulfills the condition of self-learning. 
DL systems in general are largely free of programmed specifications. But what inter-
nal structures, logics or heuristics do these systems use? At this point a novel prob-
lem arises that affects much of the developments of the new wave of connectionism. 

4  Yann LeCun, April 30, 2019, on Twitter https​://twitt​er.com/ylecu​n/statu​s/11232​35709​80290​5600 and 
Facebookhttps​://www.faceb​ook.com/72267​7142/posts​/10155​93400​42621​43/.

https://twitter.com/ylecun/status/1123235709802905600
https://www.facebook.com/722677142/posts/10155934004262143/
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The internal structure of AlphaGo and related DL systems is only known in outline. 
This is a consequence of the deep structure and complexity of these systems as well 
as their ability to self-learn. This is known as the problem of opacity or the black 
box problem of deep neural networks.

The black box problem has led to Explainable AI (XAI) as a unique and novel 
sub-discipline in machine learning. It is driven by two motivations: on the one hand, 
the developers want to understand their own systems, on the other hand, the use of 
DL systems is in many areas–particularly obvious in the case of AI-based decision 
aids in medicine or self-driving cars–sensitive to whether and to what extent one is 
able to account for the question of how the systems do what they do. XAI therefore 
focuses, for example, on the development of tools of visualization and analysis that 
allow to open the black box and to understand the internal mechanisms of DL or 
related machine learning systems step-by-step and by means of reverse engineer-
ing (cf. Zednik 2019). In computer science, a remarkable interest has emerged to 
explore the methodology in the field of machine learning and thus to practice a kind 
of philosophy of science.

2.3 � The Dimension of Self‑Learning

The discussion so far should have made clear that the ability to self-learn must count 
as the first dimension of the state space of AI. This dimension unfolds the spectrum 
from non-learning, rigid rule-based systems over supervised to unsupervised learn-
ing and, finally, self-learning systems. The DL revolution has brought about systems, 
such as AlphaGo, that acquire significant values along this dimension, while classic 
GOFAI systems achieve low values at best (if at all). Neural networks from the first 
and second wave of connectionism may be ordered along in-between values.5

5  The history of neural networks or connectionism may be divided into three historical phases or waves, 
each interrupted by a characteristic phase of stagnation. The 1st wave (1950–early 1960s) consisted of 
simple feedforward networks, especially the perceptron. After the first „neural winter" during which 
the GOFAI paradigm was dominant, the 2nd wave (1980–early 1990s) represented a powerful return of 
(neo-) connectionism with a flood of novel neural network models (e.g. Hopfield nets, Boltzmann nets, 
backpropagation, self-organizing feature maps, recurrent nets, spiking nets etc.). The renewed decline of 
connectionism in the 1990s during the 2nd neural winter (1990–early 2000s) can largely be attributed 
to a kind of „scaling problem“: neuronal models designed for a manageable number of neurons (about 
10-100) cannot so easily be scaled up to millions or billions of neurons without running into divergence 
problems. From 2010 onwards, the 3rd wave or DL revolution set in – mainly due to three factors: first, 
various achievements at the end of the 2000s and beginning of the 2010s made DL networks mathemati-
cally controllable and feasible (cf. Hinton & Salakhutdinov 2006, Krizhevsky et al. 2012), second, the 
rapid development of computing power (such as the development of fast GPUs, i.e. graphics processors) 
and, third, the huge amount of available training data only made possible by the Internet.
  Regarding the usage of the term “neural winter” it should be added that there are in fact different 
notions of “winter” periods in the history of AI. The term “AI winter”, for instance, is often used by 
GOFAI proponents to indicate the decline of research funding in the second half of the 1980s, while 
AI had been rather strong before. Almost the reverse is true for connectionism: while neural network 
research was down in the 1970s, the 1980s brought PDP and neo-connectionism back on stage. For our 
usage of the term “neural winter” compare Sejnowski (2018, pp. 1,35) for the first neural winter and 
Bengio (in: Ford et al. 2018, p. 25) for the second.



331

1 3

The State Space of Artificial Intelligence﻿	

The self-learning dimension is potentially unlimited and infinite, much as any of 
the other dimensions that will be proposed here. It is of course also open for the 
evaluation of non-artificial, natural intelligent systems. Higher animal species, for 
instance, acquire higher values in terms of their self-learn capacities than today’s 
DL systems (see Sect. 5.3). Humans still perform best, but future AI systems may 
outweigh natural intelligent systems in this regard.

3 � Generalization as an AI Space Dimension

3.1 � AGI and the Generalization Dimension

While AlphaGo still relied on human expert knowledge during its initial training 
phase, DeepMind was able to overcome this weakness just 1 year later with the 
development of AlphaGoZero. AlphaGoZero defeated AlphaGo in 2017 with an 
overwhelming 100:0. The accompanying Nature paper speaks of “Mastering the 
game of Go without human knowledge” (Silver et al. 2017), because AlphaGoZero 
is a self-learning system from scratch. Not only was it possible, for the first time 
ever, to create a machine that masters a cognitive task as complex as Go through 
self-learning alone. AlphaGoZero also masters Go on a super-human level that 
leaves behind the best human experts by orders of magnitude. A further outstanding 
feature of AlphaGoZero is that it is able to acquire additional skills through self-
learning without any change in the basic architecture. Unlike DeepBlue, an ANI sys-
tem, AlphaGoZero’s capabilities are potentially generalizable within a large domain 
of tasks. In December 2017, DeepMind introduced the further developed system 
AlphaZero (Silver et  al. 2017). It masters Go, Chess and Shogi on a superhuman 
level after only a one-day training phase. Other recent developments in the Alpha 
series include AlphaFold, a system for predicting the 3D structure of proteins, and 
AlphaStar, a system mastering StarCraft II, one of the most challenging real-time 
strategy games in e-sports (see deepmind.com, August 2019 release). StarCraft II is 
even more complex than Go. It demands dealing with incomplete information, and 
here again human top players have meanwhile been beaten. These are remarkable 
steps towards so-called General AI (AGI: artificial general intelligence)–the level of 
machine intelligence that is equal to human intelligence with regard to any task. AGI 
is thus very often considered as the equivalent to human-level AI (HAI).

Of course, AlphaZero is still a long way from real AGI. The specification of a 
special target function, with respect to which the system then allows generalization, 
is still a clear limitation. Nevertheless, DeepMind’s developments showed from the 
outset a remarkable potential for generating creative solutions and not just short-
term success-oriented strategies. For example, the 37th move in the second game 
by AlphaGo against Lee Sedol, in which the system violated a millennium-old Go 
wisdom, was seen by the experts as spectacular. It not only confused the grandmas-
ter, but also soon proved to be crucial for AlphaGo to win the game. A creative solu-
tion that is easier to understand but no less original is already evident in one of the 
predecessor systems. DeepMind’s first AI, a reinforcement learning based system 
called Deep Q-Network (DQN), successfully learned to play various classic Atari 
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computer games (Mnih et  al. 2013). The game “breakout”, for example, is about 
hitting a virtual stone wall in a kind of 2D-squash-court-setting with racket and ball, 
and to remove a stone with every wall hit and score points, until finally the whole 
wall disappears. DQN independently learned the tricky strategy of drilling a tunnel 
through the wall and pushing the ball into the back of the wall, causing it to remove 
large amounts of stones (as DeepMind founder Demis Hassabis reports, the develop-
ers did not know this trick, which is well-known among Atari gamers; cf. Tegmark 
2017, p. 122).

As the examples show and as already implicit in the section before, self-learning 
systems have the decisive potential to generalize to new tasks and to come up with 
novel solutions. They may even solve things we don’t know how to solve at all. Gen-
eralization thus counts as another important dimension that spans the state space 
of AI. It was a big step in the history of computing to go over from special purpose 
machines (e.g. a mechanical device for calculating the four arithmetic operations) to 
general purpose Turing machines (as foreseen by Charles Babbage in his Analyti-
cal Engine). It is likewise a big step to go over from ANI to AGI. Needless to say, 
this “step” corresponds to a gradual development, a continuous increase in terms of 
the capability of AI systems to master more and more general types of problems. 
As this development is potentially open-ended, the often found equalization of AGI 
and HAI is pretty misleading. Future AI systems may easily outweigh human intel-
ligence in terms of their generalization capabilities.

3.2 � Turing Test and Generalization

According to Turing (1950), if a machine succeeds in being indistinguishable from 
a human being in its response to arbitrary questions, then intelligence and higher 
cognitive abilities should be attributed to it. Numerous examples of Turing-like sce-
narios indicate the weakness and limitations of this test procedure. Weizenbaum’s 
(1976) early experiences with his well-known imitation program ELIZA, which was 
able to conduct a psychotherapeutic dialogue, are telling (and were frightening for 
Weizenbaum): ELIZA was based on comparatively simple scripts and structured 
dictionaries, yet some test persons could not escape the impression of a conversa-
tion with a real psychotherapist. A more recent example is the Goostman chatbot. 
It scored a surprisingly good pass on several Turing test contests in the early 2000s. 
The bot simulates a 13-year-old Ukrainian boy, taking advantage of the fact that 
people more easily concede grammatical mistakes and lack of general knowledge to 
such a personality. These examples show that the Turing test offers no sufficient cri-
terion for meaningful cognition, since it can be passed with too simple and possibly 
also “dishonest” means (as, for instance, in the form of a blockhead).

Assistance systems such as Siri, Cortana or Google Assist provide the contempo-
rary variant of Turing-like scenarios. At its annual developer conference I/O 2018, 
Google surprised the general public with presenting Google Duplex, a system cur-
rently under development. It is meant to support everyday life, for example by mak-
ing appointments for the user. Google had tested its system in real life by schedul-
ing a restaurant reservation or calling a hairdresser to book an appointment. The 
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natural-language performance of the system is shockingly good: the called persons 
could not have guessed that they actually spoke to a machine. The phone calls were 
fluent and spontaneous including prosodic and non-verbal elements such as “hmm” 
and “uh” together with natural intonation and breaks. This provides another example 
of successfully passing the Turing test, this time by a DL-based AI.

It makes sense to try to generalize the Turing test along the axis of the generaliza-
tion capabilities of an AI system. A Turing test for AGI should also require the sys-
tem to have practical skills such as active navigation through natural environments, 
producing or repairing things, or social interaction and activities (cf. also Sect. 5). 
Nevertheless, any Turing test remains on the level of purely external functional-
ity, an insight into the internal goings-on of the black box is against the behaviorist 
spirit of the test. This, however, is in strong contrast to the intuition of the blockhead 
objection (Sect. 2.2) according to which an understanding of the internal structure 
and mechanisms of an AI system is indispensable to assign cognitive or intelligent 
properties to it. Therefore, the Turing test should not be regarded as a sufficient cri-
terion for intelligence. It may still be regarded as a necessary criterion: AI systems 
should perform functionally and behaviorally equivalent to humans in order to be 
regarded as cognitive. Sufficient for this attribution, however, is an understanding of 
the relevant internal structure of the system. At least insofar as it becomes possible 
to open the black box in part. It should further on be possible to provide information 
about the system’s grounding, a feature that we consider in the next section.

4 � Semantic Grounding as an AI Space Dimension

What’s wrong with blockhead? After all, the system is able to master a conversation. 
But it seems clear that it has no understanding of what it is talking about. It cannot 
grasp the meaning of the words. In fact, it can’t possibly talk about the world. It 
doesn’t refer to the world, as it never had any contact with the world. In short: it has 
no semantic grounding. Genuine intelligence, however, needs at some point some 
sort of grounding. Semantic grounding will be our third candidate for an AI state 
space dimension.

4.1 � The Symbol Grounding Problem and the Dimension of Functional Role 
Grounding

As argued in Sect.  2.2, DeepBlue doesn’t really play chess as it essentially won 
by basic symbol manipulation and calculation without any self-driven exploration 
of chess. Conversely, how about a rigorous self-learning system like AlphaGo (or 
AlphaGoZero)? Does AlphaGo actually play Go? As an easier to grasp example, let 
us consider DQN as already briefly described in Sect. 3.1. It plays Atari breakout at 
a super-human level. As typical for DL systems, DQN draws on a gigantic number 
of training examples. In fact, the number of training games exceeds human train-
ing and, thus, the experience of human Atari gamers by orders of magnitude. This 
already suggests that the DL algorithms and network architectures do not strictly 
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correspond to those that play a role in humans. But this makes them no less suc-
cessful with regard to certain capabilities. And they can nevertheless be regarded as 
a “proof of principle” for a biologically inspired connectionism (cf. Hassabis et al. 
2017 for faster deep reinforcement learning models inspired by neuroscience).

Consider the training data of DQN. How can they be understood from the per-
spective of the system? For a human player, breakout’s block-like pixel world, despite 
its minimalism, looks like a world of rackets, balls, walls and stones. There is noth-
ing to suggest that this is the case for DQN. The system never had contact with real 
rackets, balls, walls or stones. From DQN’s perspective, the only things that exist, as 
it were, are tons of pure pixel distributions. With this in mind, the system’s superhu-
man playing abilities, and especially its additional ability to develop creative long-
term solution strategies (like digging a tunnel), seem almost scary. At least it might 
seem that way. And the same seems to apply to AlphaGo or AlphaGoZero.

The problem can be seen as an instance of the symbol grounding problem, 
although this problem, in its original form, is aimed at classical symbolism (cf. Tad-
deo and Floridi 2005 for a review). A symbol is a physical token that is individuated 
based on its physical form and that can be linked to other symbols according to syn-
tactic rules. Symbols are therefore elements of symbol systems. Symbolism regards 
the manipulation of physical symbols as necessary and sufficient for intelligence 
and cognition. This is compatible with a computational theory of mind according to 
which the brain as the vehicle of cognition is to be regarded as a computing device 
or Turing machine. According to Stevan Harnad the symbol grounding problem now 
consists in the following: „Suppose you had to learn Chinese as a first language 
and the only source… you had was a Chinese/Chinese dictionary! … How is symbol 
meaning to be grounded in something other than just more meaningless symbols? 
This is the symbol grounding problem“(Harnad 1990, p. 339–340).

In contrast to symbolism, connectionism emphasizes not only the network archi-
tecture of cognitive systems, but also a “subsymbolism” instead of symbol-based 
information processing. Superficially, neural networks do not operate on symbols 
but on inputs that represent (micro) features. In the case of DQN or AlphaGo, these 
are pixels with different gray or color values. However, since it can be shown that 
important classes of neural networks such as recurrent networks are Turing complete 
(cf. Siegelmann and Sontag 1995), these systems ultimately also operate symboli-
cally insofar as they can be mapped to the symbolic operations of Turing machines. 
The question of whether and how the input pixel distributions are meaningful for 
DQN or AlphaGo amounts to the question as to what extent these distributions have 
a grounding or anchoring in the world. And superficially, it seems as if they do not 
have any such grounding. Therefore, neither DQN nor AlphaGo operate meaning-
fully, they do not understand what they are doing.

But this conclusion falls short because it overlooks an important distinc-
tion regarding meaning. Consider chess. How do the chess pieces get their mean-
ing? What makes a knight a knight? Well, two things. First, it must be different in 
shape from all other types of pieces, such as rook or bishop. Second, it acquires its 
meaning in the game through exactly the role it plays in the game, which in turn is 
clearly assigned to it by the rules of the game. The knight (or any other chess piece) 
works like a physical symbol that is manipulated according to rules (in other words, 
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according to a syntax). And the semantics of the physical symbols, the chess pieces, 
originates from this syntax. In contrast, consider the words of a spoken language. 
They allow for sequences according to grammatical rules to form sentences. How-
ever, the question of what a particular word, such as the word “tree,” refers to, is in 
no way determined by the grammar. Semantics in the sense of reference does not 
originate from syntax. We must therefore distinguish between meaning as functional 
role, which is determined by internal rules, and meaning in the sense of external 
reference. The symbol grounding problem primarily asks for meaning in the second 
sense: how can system-internal symbols be grounded in the external world so that 
they acquire a meaning in the sense of reference?

Consider again the example of Atari breakout. DQN seems not to dispose of the 
meaning of the terms racket, ball, etc. in the sense of reference. However, it is by no 
means excluded that the learning performance of DQN consists essentially in the 
fact that it recognizes certain stable and recurring patterns in pixel distributions and 
links them to regular behavior. A sufficient XAI analysis could provide exactly this 
kind of information, as it could show that DQN represents stable pixel configura-
tions in higher layers and thus achieves the concepts racket, ball etc. in the sense of 
a functional role semantics (FRS). It is, moreover, reasonable to assume that, for the 
purposes of significance in the game, everything essential has been achieved by an 
FRS framework. For if we look for instance at AlphaGo, the question of semantics 
in the sense of reference does not arise at all, since Go pieces just like chess pieces 
do not refer to things or states of affairs in the world, but only possess an internal 
functional role within the system, i.e. a meaning in the game.

To conclude: we must expect the dimension of semantic grounding to decom-
pose in at least two parts. Grounding on the basis of meaning as functional role, call 
it functional role grounding, and a more genuine form of grounding by means of 
reference-to-world. The latter will be our concern in the following two sections. The 
former is now identified as the FRS grounding dimension of the AI state space.6

4.2 � The Chinese Room and the Dimension of Causal Grounding

Harnad’s symbol grounding problem was inspired by Searle’s related and well-
known Chinese room argument (Searle 1980, 1990, cf. Harnad 1989, 2001). In 
a way, Harnad’s argument makes the deeper core of the Chinese room argument 
explicit. The latter argument aims to show that syntax is not sufficient for semantics, 
and that the human brain is not a computer in the sense of symbolism. To this end, 
Searle conceives the Chinese room as the caricature of a Turing machine, where he 
himself takes over the role of a tape head for reading and writing by sitting in an 
otherwise empty room and by using a set of rules (the machine table) provided to 

6  One might complain that “FRS grounding” is a misnomer. Doesn’t functional role always amount to 
internal functional role, while grounding has to be external reference-to-world? However, as we shall 
see, knowledge about functional role structure can have a bearing on grounding if this internal structure 
somehow mirrors external world structure (for whatever reasons). The example of Google translate in 
Sect. 4.2 will be a case in point.
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him and allowing him to manipulate Chinese characters that he obtains in the room 
as input and that he reaches out as output. Since Searle doesn’t understand Chinese 
and since for him Chinese symbols look like “meaningless squiggles”, he insists that 
he can never attain the meaning of Chinese symbols in this way, i.e. by pure syntac-
tic symbol manipulation.

In the 1980s, the Chinese room argument triggered a flood of reactions and dis-
cussions. Among the most common objections to the argument are the connectionist 
critique (Searle 1990) and the criticisms referred to by Searle as systems reply and 
robot reply (Searle 1980). Searle basically counters all objections according to the 
same strategy by showing that they just provide “more of the same”. According to 
the systems reply the whole room rather than the internal operator is proficient in 
Chinese. Searle, however, argues that he could just as well internalize the whole 
room (particularly by learning the rule book) and still do nothing but mere syntactic 
symbol manipulation. According to the connectionist variant of the systems reply 
we are asked to consider an entire network of operators rather than a single operator. 
Searle, again, argues that we can as well imagine a “Chinese gym” with lots of oper-
ators manipulating symbols according to rules, but that still neither any of the opera-
tors nor the whole gym would thereby acquire the meaning of Chinese symbols.

Of particular importance is the robot reply. Would not a robot equipped with the 
rules of Chinese and operating in the Beijing marketplace gain the meaning of the 
previously merely syntactic symbols? Wouldn’t a system in this way establish the 
necessary reference-to-world grounding? According to Searle, this is not the case, 
since the “computer inside the robot” (Searle 1980, 420) is still an analogue of the 
Chinese room. Be it that the input stems from an external camera and the output is 
used to control the arms, on the level of the internal computer that controls the robot 
both input and output still consist of nothing but mere meaningless symbols. This 
answer is reminiscent of a strange homunculus conception, and the question also 
arises as to whether a combination of systems and robot reply cannot be reinforced 
by further arguments from the areas of embodied and situated cognition (cf. Rob-
bins & Aydede 2009). But we do not need to pursue this further here. Since Sear-
le’s argument is an argument against GOFAI’s symbolism (for Searle: “strong AI”), 
it merely aims to show that meaningful thinking goes beyond algorithmic symbol 
manipulation. But if, in order to attain semantics, embodiment, social interaction 
and situatedness are crucial, this even ultimately strengthens the argument. And it 
shows, in essence, that the Chinese room argument boils down to the problem of 
grounding in the sense of reference.

Strangely, the DL technologies now available in the area of machine translation 
seem to realize the Chinese room scenario, at least in part. Freely available systems 
such as Google Translate or DeepL have shown a breathtaking improvement in their 
translation performance in recent years. And yet: one would hardly want to assume 
that any of these systems truly understand the texts they translate (sometimes in 
excellent quality). The new systems go beyond earlier forms of either rule-based or 
statistics-based machine translation. They extract rules of word selection, word order 
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etc. by self-learning on the basis of voluminous bilingual text corpora.7 All this sug-
gests the following: syntax is ‘almost sufficient’ to produce the linguistic behavior 
that corresponds to the behavior of speakers who are truly semantically grounded. 
Although syntax is not completely sufficient for semantics, syntax is ‘almost suf-
ficient’ in the sense that it is sufficient for all practical purposes (but still insufficient 
from a strict Searlean point of view). This means that, in effect, a syntactic machine 
can be indistinguishable in its translation performance from a human speaker.

In the light of the above considerations, it follows that DL translation systems 
do not appear to have any semantic grounding. Nevertheless, these systems acquire 
rule knowledge and meaning in an FRS sense through self-learning. This alone is 
remarkable. The crucial step, however, is yet to come. How can it even be possible 
that a mere symbol based FRS becomes effectively indistinguishable (regarding lan-
guage behavior) from a truly referential semantics? Should it be possible that, when 
it comes to semantics, we can do with a pure FRS alone and dismiss any appeal 
to reference? On the face of it, this amazing possibility seems to be suggested by 
the translation capabilities of systems such as Google Translate and DeepL. But on 
closer inspection, it is not. The systems do indeed go beyond a pure FRS. The text 
corpora used in learning allow for a kind of indirect reference-to-the-world. They 
were created by human speakers who dispose of a semantics in a full referential 
sense. Hence, Google Translate and DeepL have no direct but an indirect ground-
ing. They refer to the world indirectly. Regularities that can be extracted from text 
corpora comparisons go beyond grammatical regularities, they provide world regu-
larities as the texts deal with worldly circumstances. This allows to extract a decent 
amount of structural information about the world.8

All of this shows that semantic grounding in the sense of reference, even if in an 
indirect and tricky way as in our foregoing example, but most decisively in the direct 
variant of causal contact with the world, is of utmost importance to acquire mean-
ing. It is thus of utmost importance for intelligence, whether artificial or natural. 
Grounding in the sense of causal reference is a crucial dimension of the AI state 
space. Note that postulating this dimension means no commitment to any particular 
theory of meaning or mental representation. It also means neither a realist nor an 
anti-realist commitment to content or representation. The criterion of grounding in 
the sense of causal reference is equally fulfilled in programs of naturalized seman-
tics such as causal theories (Fodor 1987) or teleosemantics (Millikan 1984), as in 
recent accounts of structural representation (Cummins 1996, Ramsey 2007, Shea 
2018) that are more in tune with instrumentalism. All such accounts entail causal 
world connections as central elements, and this is what counts for grounding by 
causal reference-to-the-world.

7  A Google representative told George Dyson: "We are not scanning all those books to be read by peo-
ple… We are scanning them to be read by an AI" (interview in Brockman 2019, p. 64).
8  It may not allow to extract information about the intrinsicality of things in a rigorous ontological sense. 
According to the doctrine of structural realism, however, such a concept of intrinsicality is in conflict 
with our best knowledge about the bottom level and can therefore be regarded as doubtful anyway; cf. 
Lyre 2010.
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4.3 � Meaning as Use and the Dimension of Social Grounding

While causal grounding is certainly an element in almost all theories of mean-
ing and representation, there are, however, accounts that downplay the role of 
reference such as conventionalism and use theories of meaning. Core ideas of 
the latter have been introduced by Ludwig Wittgenstein (Wittgenstein 1953). The 
central idea is to trace meaning back to linguistic use and social practice. Accord-
ing to Wittgenstein, the diversity of language can be seen in the variety of ways 
in which it is used. The focus is on the concept of rules. A classical, rule-based 
conception of language sees language as regulated by some unambiguous syn-
tax. This applies all the more to formal languages or mathematics (and has tac-
itly been assumed in our considerations on the relationship between syntax and 
semantics). As Wittgenstein aims to show in his “rule following” considerations, 
such a strict Platonic conception of rules leads to an infinite regress. In order 
to set up the syntactic rules of, say, a certain Turing machine, other rules are 
required governing the former rules. But these too satisfy further rules–hence, 
regress.

According to Wittgenstein, language is governed by rules, but these rules presup-
pose a public practice and only become apparent in use. The rule following prob-
lem consists in the fact that language use and practice are always finite, but that no 
finite number of cases determines the “rules” of language use and thus the mean-
ing of linguistic expressions under all, hence infinitely many, circumstances. Lan-
guage rules are by no means rigid, but depend on the social context. Wittgenstein’s 
bizarre thought experiment of the two-minute man drastically demonstrates the con-
sequences of his conception:

Let us imagine a god creating a country instantaneously in the middle of the 
wilderness, which exists for two minutes and is an exact reproduction of a part 
of England, with everything that is going on there in two minutes. Just like 
those in England, the people are pursuing a variety of occupations. Children 
are in school. Some people are doing mathematics. Now let us contemplate the 
activity of some human beings during these two minutes. One of these people 
is doing exactly what a mathematician in England is doing, who is just doing a 
calculation. - Ought we to say that this two minute man is calculating? Could 
we for example not imagine a past and a continuation of these two minutes, 
which would make us call the process something quite different? (Wittgenstein 
1956, VI §34).

Wittgenstein’s answer is obvious: the two-minute man “does not calculate” 
because he is not embedded in the practice and context of mathematics. Against this 
backdrop, let us consider the question whether AlphaGo actually plays Go. Games, 
like language, are limited by rules. Wittgenstein suggests a tight analogy between 
games and language and between the corresponding roles of rules and rule use. 
Indeed, he speaks of language as a “language game”. Just as there is no mathematics 
or linguistic meaning without a social context, there are no games. Hence, from a 
Wittgensteinian understanding of use and practice, AlphaGo does not play Go since 
it lacks social context: the shared and public practice of the game of Go.
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In Sect.  4.1 our conclusion was that the functional roles comprise everything 
that’s essential in terms of meanings in the game. The main reason for this was that 
the meaning of moves and pieces is not referential, as for instance chess pieces do 
not refer to anything in the world. Following Wittgenstein, however, the meaning of 
games still has a kind of grounding, even if not in the referential sense. Instead, it is 
a kind of social grounding. Without public practice rules of games won’t be subject 
to external control and, therefore, are no rules at all.

Wittgenstein’s reflections on rule following are undoubtedly radical (and accord-
ingly controversial), as the two-minute man scenario drastically demonstrates. Saul 
Kripke saw himself prompted to a radical rule skepticism, which infects not only 
rules of games or language, but even the rules of mathematics and logic (Kripke 
1982). An in-depth discussion of these questions is far beyond the scope of the cur-
rent paper. We shall assume that, for all practical purposes, rule knowledge can be 
set up in an AI machine modulo “Kripkensteinian” doubts.

Thus, for each version of the Alpha series, from AlphaGo to AlphaZero, the 
respective rules of the games to be learned were unambiguously implemented (Sil-
ver et  al. 2017). The machine then develops a functional role semantics about the 
elements and overall setup of the game limited by these pre-determined rules. The 
systems of the Alpha series have no further grounding. Google Translate or DeepL, 
on the other hand, already have a rudimentary form of a socially anchored seman-
tics, because these systems acquire an indirect social grounding in the course of their 
translation learning. After all, the text corpora on the basis of which the systems learn 
were generated by socially situated speakers, and are therefore parasitic with regard 
to their social practices. A future AI that combines, for example, the external per-
formance of Google Duplex with the indirect grounding of world knowledge on the 
basis of Internet data could ultimately become a real part of our social practice of 
language and, hence, a real part of the language community. There is no convincing 
reason to assume that such systems would still lack a proper semantic grounding.

To conclude: social grounding is as important as causal grounding. To acquire 
meaning, intelligent systems must not only be coupled to the world, they must also 
share social practices. The debate about the ultimate theory of meaning and repre-
sentation is still open in philosophy of mind and language, but for the time being it 
seems reasonable to assume both types of grounding as independent dimensions of 
the AI state space.

5 � The State Space of AI

5.1 � A Simplified Model Space

As a first shot and according to the foregoing sections, the AI state space is to be 
conceived as a three-dimensional space spanned by the dimensions:

•	 Self-learning (from rule-based to learning-based),
•	 Generalization (from narrow to general AI),
•	 Grounding (the degree of semantic world anchoring).
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We already saw in Sect.  4 that the grounding dimension in fact decomposes 
into three sub-dimensions: functional role grounding, causal grounding and social 
grounding. Therefore, the full AI space has more than three dimensions. It is nev-
ertheless instructive to look at the simplified three-dimensional model for a first 
orientation and to locate the systems discussed in this paper in this space: A clas-
sic GOFAI system like DeepBlue is close to the origin (see Fig.  1). Such sys-
tems are rule-based rather than learn-based, and almost all of them are narrow 
AI systems (e.g. DeepBlue is confined to chess). At best, a typical GOFAI system 
has an internal FRS (as DeepBlue captures the functional roles of chess pieces). 
AlphaGo sits at a much higher position in the self-learning dimension. From 
there we reach AlphaGoZero and AlphaZero by successive shifts parallel to the 
generalization axis. But none of the mentioned systems has a semantic grounding 
beyond FRS. At best, AI assistance systems such as Google Duplex move into 
this dimension, albeit still weakly at present.

It would be desirable to proceed from the state space topology (dimensionality 
and neighborhood) to a metric space (to determine distances). Human-level AI is 
a point of orientation (see Sect. 3.1). HAI has values in all dimensions and can 
therefore be used to calibrate the coordinate axes. In addition, systems that lie on 
the extended radial connecting line between origin and HAI (or within a suitably 
chosen spatial angle range) mark the area of superintelligence or superhuman AI 
(SAI), as roughly outlined in Fig. 2.

A detailed determination of the metric goes beyond the scope of this paper 
and is a task of further investigations. Let us, instead, focus once again on the 

Fig. 1   Simplified AI state space
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dimensionality. As we already saw, the three-dimensional model offers a first ori-
entation only, but is strictly speaking an approximation. It amounts to a simplified 
dimensionality reduction. While the generalization dimension is already correctly 
identified, we saw that the grounding dimension in fact decomposes into three fur-
ther sub-dimensions. It could be dubbed a “main dimension” and actually represents 
a subspace of the AI state space. Let us first, however, consider self-learning.

5.2 � The Self‑x‑Capacity Subspace

The dimension of self-learning needs some unpacking. Self-learning determines as 
to what extent an AI system can change its own configuration by means of self-
organization. Surely there are further dimensions of self-organization that are cru-
cial for the development of intelligence and cognition. The comparison with bio-
logical intelligent systems immediately suggests self-repair and self-replication as 
additional dimensions. They are so-called self-x-properties, as is the property of 
self-learning. Self-x-properties are central elements of the program of organic com-
puting (cf. Würtz et al. 2008, Müller-Schloer et al. 2017). Here, the key idea is that 
self-organization or self-organized system configurations play a decisive role for 
intelligent systems. Depending on the author, the self-x-properties in organic com-
puting include self-learning, self-configuring, self-optimizing, self-healing and self-
protecting. Some of these properties are not quite distinct (e.g. self-healing and self-
protecting), others are vaguely subsumed under self-configuring, although strictly 
speaking all self-x-properties are properties of the configuration (from this perspec-
tive, self-configuring and self-organizing are, as it were, “meta self-x-properties”). It 
seems reasonable to denominate, as a first attempt, self-learning, self-repairing and 
self-replicating as AI space dimensions.

Fig. 2   Simplified AI state space with human-level and superhuman AI
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In view of such self-x-properties, the term self-x-capacity shall be introduced 
here. The simplified model of the AI state space is still three-dimensional, but it 
consists of generalization, grounding and self-x-capacity as its dimensions, where 
the latter two are main dimensions in the above sense representing subspaces of 
the full AI space. The dimension of self-x-capacity, in particular, decomposes into 
various sub-capacities represented by the relevant self-x-properties that span the 
self-x-subspace of the AI state space. An exhaustive identification of all relevant 
self-x-properties and the necessary analysis of the terms configuration and self-
organization goes beyond the scope of the current paper, but a somewhat anticipa-
tory consideration should nevertheless be given.

First, keep in mind that our concern is not just about organic self-organization, 
but about the most general self-x-properties of any intelligent systems, whether arti-
ficial or biological. In this sense, the concept of AI just includes natural and espe-
cially human intelligence as special cases. It is therefore much likely that further 
self-x-properties must be accounted for. Recall Sect. 3.2, where it was argued that a 
Turing test on AGI should include not only pure responsive but also practical skills, 
where the system is asked to actively explore its environment. This suggests to add 
self-exploratory to the list of self-x-capacities. But even for Turing tests on AGI the 
black box problem essentially remains. In contrast, a qualitatively new level would 
be reached if AI systems were able to provide explanations, self-descriptions and 
justifications of their own responses and actions. The ability of being self-explan-
atory would then add to the above as a further significant self-x-capacity. And this 
finally raises the question of whether AI systems should not also be self-conscious. 
Therefore, and as a first attempt, the self-x-subspace appears to be six-dimensional:

•	 Self-learning
•	 Self-repairing
•	 Self-replicating
•	 Self-exploratory
•	 Self-explanatory
•	 Self-conscious

It should be clear that a detailed analysis of the self-x-capacities leads to far-
reaching questions that go considerably beyond the scope of the current paper. For 
our purposes, the self-x-subspace of the AI state space is sufficiently characterized.

5.3 � The Grounding Subspace

Let us finally turn to the main dimension of grounding and the corresponding AI 
subspace. Grounding, as in Sect. 4, is to be understood in the general sense of bear-
ing semantics. We considered functional role grounding in Sect. 4.1, causal ground-
ing in Sect.  4.2, and social grounding in Sect.  4.3. Therefore, the AI subspace of 
grounding is three-dimensional.

Moreover, like any of the other dimensions, the grounding dimensions are under-
stood as continuous dimensions. This is a further important point that can only be 
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touched upon here. Semantic grounding isn’t on–off. Intelligent systems, whether 
biological or artificial, may be more or less grounded. The semantic skills of apes 
outweigh the skills of ravens, which in turn outweigh the skills of ants. The semantic 
skills pertain the way in which intelligent beings are grounded or anchored in the 
world in terms of their meaningful grasp and understanding of that world. Humans, 
in turn, trump the semantic skills of any known animal. But the gradual differences 
in terms of grounding exist of course also within a species. Healthy human adults 
exceed the semantic skills of newborns or patients with dementia. Moreover, seman-
tic grounding is open-ended. Future AI systems may likewise outweigh the semantic 
skills of humans. The consequences of this are largely unknown and speculative. 
This is one of the pressing questions and, presumably, big worries with the issues of 
singularity and superintelligence (Bostrom 2013, Tegmark 2017).

5.4 � Missing Dimensions?

Our analysis has led to a 10-dimensional AI state space that can be compactified by 
a three-dimensional model (see Fig. 3) consisting of: 

•	 Self-x-capacity (main dimension decomposing into 6 sub-capacities).
•	 Grounding (main dimension decomposing into 3 sub-variants of grounding).
•	 Generalization.

One could criticize that several important features of natural and artificial intelli-
gent systems do not count as dimensions. And again, while it might be the case that 
our model must be refined, it should be defended here against all too easy attacks. 

Fig. 3   The full AI state space with three main dimensions, two of which decomposing into sub-dimen-
sions
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A first complaint may be that features like computational power, speed, or accuracy 
are not captured by our model. To this the answer is that none of such quantita-
tive technical features appear to be important for intelligence, at least not as such. 
For instance, a simple pocket calculator is much faster and more accurate in doing 
arithmetic than any (typical) human agent. But this alone doesn’t make the technical 
device smarter or in any sense intelligent. In and of themselves, such quantitative 
capacities do not contribute to intelligence. Only insofar as such features help to 
elevate and promote the properties of self-x-capacity, grounding and generalization, 
are they relevant. And in this sense, they are covered in our model, if only indirectly.

What about core concepts in psychology and cognitive neuroscience such as 
attention, memory, control, decision-making and the like? As already pointed out in 
Sect. 2.1, many pioneering AI authors emphasize improving AI by using neurosci-
ence inspired models (cf. Bengio et al. 2016, Hassabis et al. 2017, Ullman 2019). 
Knowledge and insights from neuroscience about such mechanisms will for sure 
influence the developments of future AI. But while the insights into such mecha-
nisms may contribute to self-x-capacity, grounding and generalization, each of 
the mechanisms themselves are no fundamental dimensions of the AI space. This 
is even the case for such basic cognitive skills as perception, action and language. 
Ditto the modern concepts of embodiment and situatedness. The idea is that they 
are all covered indirectly by our more general dimensions. They may be central fea-
tures of human cognition, but we should not postulate them as fundamental for AI 
systems in general. For even if it turns out that, say, language is necessary for social 
grounding, then social grounding will be the more general concept covering lan-
guage and not vice versa. Or consider embodiment. It will most probably be entailed 
in the more advanced requirements of self-repair and self-replication. This is the 
rationale behind our dimensions.

6 � Conclusion

The goal of the present paper was to develop and propose a general model of the 
state space of AI. Our analysis has led to a 10-dimensional space that can be com-
pactified by a three-dimensional model consisting of self-x-capacity, grounding 
and generalization. These were dubbed as main dimensions, as self-x-capacity and 
grounding decompose into further sub-dimensions that span the corresponding sub-
spaces of the full, 10-dimensional state space. Incorporating self-x-capacity and 
grounding as explicit features to classify and analyze approaches of AI is a particu-
lar value of the present model. While the distinction between narrow and general 
AI and hence, in our terminology, the generalization dimension is often considered 
in AI debates, the two other main dimensions have not previously been discussed 
and considered to the extent to which they are considered here. Surely, semantic 
grounding typically plays a role when AI is discussed from the point of view of 
philosophy of mind and philosophy of language. But it has seldom be considered 
as a characteristic feature playing the role of a gradual dimension along which AI 
systems may be developed and classified. A real novelty of the present model is to 
consider the various self-x-capacities as crucial for a classification of AI approaches. 
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While our discussion started with self-learning as an important dimension, we later 
argued that further capacities such as self-repairing, self-replicating and self-explor-
atory and ultimately self-explanatory and self-conscious should count as additional 
dimensions.

The model of the state space of AI developed here is only a first draft. It remains 
a task for future investigations whether more dimensions should be added or 
whether postulated dimensions should be changed or deleted. This, however, affects 
less the main dimensions than the sub-dimensions of grounding and self-x-capacity. 
The analysis of our paper should above all have supported the claim that the num-
ber of main dimensions is actually three. Compared to this the six-dimensionality 
of the self-x-capacity subspace should rather be understood as a first proposal open 
to further examination. What has been argued for, however, is that the dimension 
of self-learning is one of the central self-x-capacities. Finally, regarding semantic 
grounding, one further remark should be made on the question of whether three sub-
dimensions do suffice. We made a distinction between FRS and social grounding as 
sub-dimensions. Yet, Block (Block & Ned 1998) has argued that we can distinguish 
between short-arm and long-arm versions of functional roles (cf. also Lyre 2016). 
While short-arm roles stop at the boundary of the system, long-arm functional roles 
extend beyond that boundary comprising social behavior, for instance. From this 
perspective, there is a gradual transition from a purely internal FRS to a socially 
anchored externalistic semantics. This then means that the two sub-dimensions 
above are far from orthogonal but merge into one. Obviously, a further discussion 
of these topics goes beyond the scope of the present paper. Whether the grounding 
subspace is truly three-dimensional remains to be seen, but it provides a reasonable 
working hypothesis.

To conclude, the usefulness of a general model of the state space of AI is obvi-
ous. AI developments can be better classified and related to one another by locating 
them in a state space. The future development could also be taken more clearly into 
account. Indeed, not only the occupied regions of the state space are of importance, 
but also those sectors that can possibly never be reached by any AI are of fundamen-
tal interest. For example, it could very well turn out that there are no AI systems 
that have a high degree of generalization but are at the same time not self-learning 
or grounded to a certain extent. These and many other considerations are the task of 
further research and exploration of the proposed state space of AI.
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