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Chapter 1

Introduction

This thesis consists of two parts, devoted to geometrical properties of discrete and smooth
integrable systems. The property of being integrable is used only in Part I to derive the
defining equations for discrete versions of holomorphic maps zc. The underling geometry is
that of circle patterns, the governing equations are discrete versions of Painlevé and Riccati
equations.

Part II deals with integrable conservation law systems, the geometric objects behind them
are projective line congruences, Veronese variety and Dupin isoparametric hypersurfaces.

In the detailed Introduction all the definitions are given, the posed problems discussed and
the main results formulated. The proofs and technicalities are provided in Parts I and II.

1.1 Discrete Zc

The first part is devoted to a very interesting and rich object: circle patterns mimicking the
holomorphic maps zc and log(z). It has its roots in such different areas of mathematics as
complex analysis, discrete geometry and the theory of integrable systems. The idea to use circles
to model conformal maps stems from the property of analytic functions to map ”infinitesimal
circles” to ”infinitesimal circles”. This suggests constructing ”discrete analytic function theory”
on the basis of ”finite” circles. It was Thurston who proposed this approach for approximating
the Riemann mapping by circle packings (see [97]). Namely, one considers a finite part of a
regular, say hexagonal, circle packing, which covers a given domain. Then Andreev’s Theorem
(see [69]) claims: one can change the radii of this finite packing, keeping the combinatorics
of circle mutual tangency in such a way, that the ”deformed” finite circle packing packs the
unit circle. One is tempted to consider Andreevs’ Theorem as a finite version of the Riemann
mapping theorem.

The striking analogy between circle patterns and holomorphic maps resulted in the devel-
opment of discrete analytic function theory (for a good survey see [42]). Discrete versions of
uniformization theorem, maximum principle, Schwarz’s lemma, rigidity properties and Dirich-
let principle were established ([21, 61, 69, 84, 87]). Fast development of this rich fascinating
area in recent years is caused by mutual influence and interplay of ideas and concepts from dis-
crete geometry, complex analysis and the theory of integrable systems. Classical circle packings
comprised of disjoint open disks were later generalized to circle patterns where the disks may
overlap. This class opens a new page in the classical theory: it turned out that these circle
patterns are governed by discrete integrable equation (the stationary Hirota equation [100]),
thus providing one with the whole machinery of the integrable system theory [28]. Schramm’s
circle patterns can be also retrieved by imposing a certain symmetry (or degeneracy) condi-
tion on Clifford lattice studied in [67] in the framework of Schwarzien Kadomtsev-Petviashvili
hierarchy.
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Different underlying combinatorics were considered: Schramm introduced square grid circle
patterns, generalized by Bobenko and Hoffmann to hexagonal patterns with constant inter-
section angles in [25], hexagonal circle patterns with constant multi-ratios were studied by
Bobenko, Hoffman and Suris in [23].

A very natural theme in this theory is the difficult and subtle question on convergence of
properly normalized sequences of circles patterns to their smooth counterparts. It was settled
by Rodin and Sullivan [85] for general circle packings, He and Schramm [62] showed that
the convergence is C∞ for hexagonal packings, the uniform convergence for square grid circle
patterns was established by Schramm [87].

On the other hand not very many explicit examples of analogs of standard holomorphic
functions are known: for circle packings with the hexagonal combinatorics the only explicitly
described examples are Doyle spirals [20], which are discrete analogues of exponential maps
[36], and conformally symmetric packings, which are analogues of a quotient of Airy functions
[22]. For patterns with overlapping circles more examples are constructed: discrete versions of
exp(z), erf(z) ([87]), zc, log(z) ([2]) are constructed for patterns with underlying combinatorics
of the square grid; zc, log(z) are also described for hexagonal patterns with both multi-ratio
([23]) and constant angle ([25]) properties.

Discrete zc is not only a very interesting example in discrete conformal geometry. It has
mysterious relationships to other fields. It is constructed via some discrete isomonodromic
problem and is governed by discrete Painlevé II equation (see [77]), thus giving geometrical
interpretation thereof. Its linearization defines Green’s function on critical graphs (see [29])
found in [66] in the theory of Dirac operator. It seems to be an important tool for investigation
of more general circle patterns and discrete minimal surfaces (see [26] for a brief survey and
[24, 35] for more details).

∙ Schramm’s circle patterns

The original Schramm’s definition for square grid circle patterns is as follows.

Definition 1 [87] Let G be a subgraph of the 1-skeleton of the cell complex with vertices ℤ+iℤ =
ℤ2. A square grid circle pattern for G is an indexed collection of circles on the complex plane

{Cz : z ∈ V (G), Cz ⊂ ℂ}

that satisfy:
1) if z, z + i ∈ V (G) then the intersection angle of Cz and Cz+i is �/2 ,
2) if z, z + 1 ∈ V (G) then the intersection angle of Cz and Cz+1 is �/2,
3) if z, z + 1+ i ∈ V (G) (or z, z − 1 + i ∈ V (G)) then the disks, defined by Cz and Cz+1+i (Cz

and Cz−1+i respectively) are tangent and disjoint,
4) if z, z1, z2 ∈ V (G), ∣z1 − z2∣ =

√
2, ∣z − z1∣ = ∣z − z2∣ = 1 (i.e. Cz1 ,Cz2 are tangent and Cz

intersects Cz1 and Cz2) and z2 = z + i(z1 − z) (i.e. z2 is one step counterclockwise from z1),
then the circular order of the triplet of points Cz ∩ Cz1 − Cz2 ,Cz1 ∩ Cz2 ,Cz ∩ Cz2 − Cz1 agrees
with the orientation of Cz.

To visualize the analogy between Schramm’s circle patterns and conformal maps, consider
regular pattern composed of unit circles and suppose that the radii are being deformed in a
way to preserve the orthogonality of neighboring circles and the tangency of half-neighboring
ones. Discrete maps taking circle centers of the unit circles of the standard regular pattern to
the circle centers of the deformed pattern mimic classical holomorphic functions, the deformed
radii being analogous to ∣f ′(z)∣ (see Fig. 1.1). Now let us consider the lattice composed of the
centers of circles of Schramm’s pattern and of circle intersection points. It is straightforward to
check that the elementary quadrilaterals of this new refined lattice are of kite form and Möbius
equivalent to squares. This property can be reformulated in terms of the cross-ratios of the
vertices.
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Figure 1.1: Schramm’s circle patterns as discrete conformal map. Shown is the discrete version
of the holomorphic mapping z3/2.

Definition 2 A map f : ℤ2 → ℝ2 = ℂ is called a discrete conformal map if all its elementary
quadrilaterals are conformal squares, i.e., their cross-ratios are equal to -1:

q(fn,m, fn+1,m, fn+1,m+1, fn,m+1) :=

(fn,m − fn+1,m)(fn+1,m+1 − fn,m+1)

(fn+1,m − fn+1,m+1)(fn,m+1 − fn,m)
= −1. (1.1)

Thus Schramm’s circle patterns is a special case of discrete conformal mapping. The definition
above was introduced in [27] in the framework of discrete integrable geometry, originally without
any relation to circle patterns. For some examples see also [63].

This definition is motivated by the following properties:
1) it is Möbius invariant,
2) a smooth map f : D ⊂ ℂ → ℂ is conformal (holomorphic or antiholomorphic) if and only
if

lim
�→0

q(f(x, y), f(x+ �, y)f(x+ �, y + �)f(x, y + �)) = −1

for all (x, y) ∈ D.

In other words equation (1.1) for complex f is a discrete analog of Cauchy-Riemann equa-
tions. The essential difference to the smooth case is that most of the solutions to (1.1) have a
behavior, which is far from that of the usual holomorphic maps: namely, interiors of neighbor-
ing elementary quadrilaterals can intersect. This is illustrated by the following naive method
to construct a discrete analogue of the function f(z) = zc: let us start with fn,0 = nc, n ≥ 0,
f0,m = (im)c, m ≥ 0, and then compute fn,m for each n,m > 0 using equation (1.1). The
result is the left lattice in Fig. 1.2. Therefore it would be more consistent to define discrete
conformal map as an cross-ratio preserving immersion on the vertices of cell decomposition of
ℂ. To avoid confusion we will follow the already established terminology.

Definition 3 A discrete conformal map fn,m is called an immersion if interiors of adjacent
elementary quadrilaterals (fn,m, fn+1,m, fn+1,m+1, fn,m+1) are disjoint.

We also will be interested in more subtle global properties of discrete conformal maps.

Definition 4 A discrete conformal map fn,m is called embedded if interiors of different ele-
mentary quadrilaterals (fn,m, fn+1,m, fn+1,m+1, fn,m+1) do not intersect.
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Figure 1.2: Two discrete conformal maps with close initial data for n = 0 and m = 0. The
second lattice describes a discrete version of the holomorphic mapping z2/3.

To illustrate the difference between the immersed and embedded discrete conformal maps
f : ℤ2

+ → ℂ, where ℤ2
+ = {(n,m) ∈ ℤ2 : n,m ≥ 0} let us imagine that the elementary

quadrilaterals of the map are made of elastic inextensible material and are glued along the
corresponding edges to form a surface with border. If this surface is immersed then it is lo-
cally flat. Being dropped down it will not have folds. At first sight it seems to be sufficient
to guarantee embeddedness, provided fn,0 → ∞ and f0,m → ∞ as n → ∞. But a surface
with such properties still may have some limit curve with self-intersections giving overlapping
quadrilaterals. Hypothetical example of such a surface is shown in Fig. 1.3.

Figure 1.3: Surface glued of quadrilaterals of immersed but non-embedded discrete map.

To construct discrete analogue of zc, which is the right lattice presented in Fig. 1.2, a more
complicated approach is needed. The crucial step is supplementing equation (1.1) with the
following non-autonomous constraint:

cfn,m = 2n
(fn+1,m − fn,m)(fn,m − fn−1,m)

(fn+1,m − fn−1,m)
+ 2m

(fn,m+1 − fn,m)(fn,m − fn,m−1)

(fn,m+1 − fn,m−1)
. (1.2)

This constraint, as well as its compatibility with (1.1), is derived from some monodromy problem
in Chapter 2. For c = 1 it appeared in [78].

Let us assume 0 < c < 2. Motivated by the asymptotics of constraint (1.2) at n,m → ∞
and the properties

zc(ℝ+) ∈ ℝ+, zc(iℝ+) ∈ ec�i/2ℝ+

of the holomorphic mapping zc we use the following definition [28] of the ”discrete” zc.
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Definition 5 The discrete conformal map Zc : ℤ2
+ → ℂ, 0 < c < 2 is the solution of

(1.1),(1.2) with the initial conditions

Zc(0, 0) = 0, Zc(1, 0) = 1, Zc(0, 1) = ec�i/2. (1.3)

Obviously, Zc(n, 0) ∈ ℝ+ and Zc(0,m) ∈ ec�i/2(ℝ+) for each n,m ∈ ℕ .

Given initial data f0,0 = 0, f1,0 = 1, f0,1 = ei� with � ∈ ℝ, constraint (1.2) allows one to
compute fn,0 and f0,m for all n,m ≥ 1. Now using equation (1.1) one can successively compute
fn,m for each n,m ∈ ℕ. It turned out that all edges at the vertex fn,m with n+m = 0 (mod 2)
are of the same length

∣fn±1,m − fn,m∣ = ∣fn,m±1 − fn,m∣ (1.4)

and all angles between the neighboring edges at the vertex fn,m with n +m = 1 (mod 2) are
equal to �/2. Thus for any n,m : n+m = 0 (mod 2) the points fn+1,m, fn,m+1, fn−1,m, fn,m−1

lie on the circle with the center fn,m. All such circles form a circle pattern of Schramm type
(see [87]), i.e. the circles of neighboring quadrilaterals intersect orthogonally and the circles
of half-neighboring quadrilaterals with common vertex are tangent. Consider the sublattice
{n,m : n+m = 0 (mod 2)} and denote by V its quadrant

V = {z = N + iM : N,M ∈ ℤ
2,M ≥ ∣N ∣}, (1.5)

where
N = (n−m)/2, M = (n+m)/2.

We will use complex labels z = N + iM for this sublattice. Denote by C(z) the circle of radius

R(z) = ∣fn,m − fn±1,m∣ = ∣fn,m − fn,m±1∣

with the center at fN+M,M−N = fn,m.
The proof of the geometrical and asymptotic properties of discrete Zc, formulated below,

is based on the analysis of equations for R(z). For instance, a square grid circle pattern is
immersed if and only if the corresponding radius function R(z) satisfies the following equation

R(z)2 =

(
1

R(z+1) +
1

R(z+i) +
1

R(z−1) +
1

R(z−i)

)
R(z + 1)R(z + i)R(z − 1)R(z − i)

R(z + 1) + R(z + i) +R(z − 1) +R(z − i) , (1.6)

which is a discrete analogue of the equation Δ log(R) = 0. (Recall that R(z) is an analog of
∣f ′(z)∣ and for an analytic function f the equation Δ log(∣f ′(z)∣) = 0 holds.)

∙ Circle patterns with prescribed intersection angles

It turns out that Schramm’s circle patterns is a special case of a more general scheme, giving
circle patterns with more flexible combinatorics. The simplest generalization is square grid
circle patterns with prescribed intersection angles giving Schramm’s patterns as a special case.

Definition 6 Let G be a subgraph of the 1-skeleton of the cell complex with vertices ℤ+iℤ = ℤ
2

and 0 < � < �. A square grid circle pattern for G with intersection angles � is an indexed
collection of circles on the complex plane

{Cz : z ∈ V (G), Cz ⊂ ℂ}

that satisfy:
1) if z, z + i ∈ V (G) then the intersection angle of Cz and Cz+i is � ,

8



2) if z, z + 1 ∈ V (G) then the intersection angle of Cz and Cz+1 is � − �,
3) if z, z + 1+ i ∈ V (G) (or z, z − 1 + i ∈ V (G)) then the disks, defined by Cz and Cz+1+i (Cz

and Cz−1+i respectively) are tangent and disjoint,
4) if z, z1, z2 ∈ V (G), ∣z1 − z2∣ =

√
2, ∣z − z1∣ = ∣z − z2∣ = 1 (i.e. Cz1 ,Cz2 are tangent and Cz

intersects Cz1 and Cz2) and z2 = z + i(z1 − z) (i.e. z2 is one step counterclockwise from z1),
then the circular order of the triplet of points Cz ∩ Cz1 − Cz2 ,Cz1 ∩ Cz2 ,Cz ∩ Cz2 − Cz1 agrees
with the orientation of Cz.

The intersection angle is the angle at the corner of the disc intersection domain (Fig. 1.4). In
what follows we call circle patterns with � = �/2 orthogonal.

α

Figure 1.4: Circles intersection angle.

As above let us refine the lattice by circle intersection points. Then all the elementary
quadrilaterals are conformal rhombi, i.e. equation (1.1) in Definition 2 generalizes to the fol-
lowing equation:

q(fn,m, fn+1,m, fn+1,m+1, fn,m+1) = e−2i�, (1.7)

and the definitions of discrete conformal map and that of discrete Zc are modified in a straight-
forward way.

Definition 7 A map f : ℤ2 → ℝ2 = ℂ is called a discrete conformal map if it satisfies
equation (1.7).

-

f

Figure 1.5: Schramm’s type circle patterns with prescribed intersection angles as a discrete
conformal map. The discrete version of the holomorphic mapping z3/2. The case tan� = 3.

Definition 8 The discrete conformal map Zc : ℤ2
+ → ℂ, 0 < c < 2 is the solution of

(1.7),(1.2) with the initial conditions

Zc(0, 0) = 0, Zc(1, 0) = 1, Zc(0, 1) = eci�. (1.8)
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∙ Hexagonal circle patterns

Equation (1.7) allows one also to define discrete Zc with hexagonal combinatorics. The crucial
step is to extend cross-ration equation (1.7) on ℤ3, to generalize constraint (1.2) and then
restrict solutions on some regular sublattice of ℤ3 equations for the radii of the studied circle
patterns in the whole Q-sublattice with even k+ l+m. Hexagonal combinatorics are obtained
on a sub-lattice of ℤ3 as follows: consider the subset

H = {(k, l,m) ∈ ℤ
3 : ∣k + l +m∣ ≤ 1}

and join by edges those vertices of H whose (k, l,m)-labels differ by 1 only in one component.
The obtained quadrilateral lattice QL has two types of vertices: for k + l + m = 0 the cor-
responding vertices have 6 adjacent edges, while the vertices with k + l +m = ±1 have only
3. Suppose that the vertices with 6 neighbors correspond to centers of circles in the complex
plane ℂ and the vertices with 3 neighbors correspond to intersection points of circles with the
centers in neighboring vertices. Thus we obtain a circle pattern with hexagonal combinatorics.

Circle patterns where the intersection angles are constant for each of 3 types of quadrilateral
faces (see Fig.1.6) were introduced in [25]. A special case of such circle patterns mimicking

-

Z3/2

Figure 1.6: Hexagonal circle patterns as a discrete conformal map.

holomorphic map zc and log(z) is given by the restriction to an H-sublattice of a special
isomonodromic solution of some integrable system on the lattice ℤ3. Equations for the field
variable f : ℤ3 → ℂ of this system are:

q(fk,l,m, fk,l+1,m, fk−1,l+1,m, fk−1,l,m) = e−2i�1 ,

q(fk,l,m, fk,l,m−1, fk,l+1,m−1, fk,l+1,m) = e−2i�2 , (1.9)

q(fk,l,m, fk+1,l,m, fk+1,l,m−1, fk,l,m−1) = e−2i�3 ,

where �i > 0 satisfy �1 +�2 +�3 = �. Equations (1.9) mean that the cross-ratios of images of
faces of elementary cubes are constant for each type of faces, while the restriction �1+�2+�3 =
� ensures their compatibility.

The isomonodromic problem for this system (see section 2.2 for the details, where we present
the necessary results from [25] ) specifies the non-autonomous constraint

cfk,l,m = 2k
(fk+1,l,m − fk,l,m)(fk,l,m − fk−1,l,m)

fk+1,l,m − fk−1,l,m
+

2l
(fk,l+1,m − fk,l,m)(fk,l,m − fk,l−1,m)

fk,l+1,m − fk,l−1,m
+ (1.10)
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2m
(fk,l,m+1 − fk,l,m)(fk,l,m − fk,l,m−1)

fk,l,m+1 − fk,l,m−1
.

Constraint (1.10) is compatible with (1.9) (see [25]). Compatibility is understood as a solvability
of some Cauchy problem. Obviously that implies compatibility of (1.7) and (1.2) for ℤ2-lattice.

In particular, a solution to (1.9),(1.10) in the subset

Q = {(k, l,m) ∈ ℤ
3∣ k ≥ 0, l ≥ 0, m ≤ 0} (1.11)

is uniquely determined by its values

f1,0,0, f0,1,0, f0,0,−1.

Indeed, the constraint (1.10) gives f0,0,0 = 0 and defines f along the coordinate axis (n, 0, 0),
(0, n, 0), (0, 0,−n). Then all other fk,l,m with (k, l,m) ∈ Q are calculated through the cross-
ratios (1.9).

Proposition 1 [25] The solution f : Q→ ℂ of the system (1.9),(1.10) with the initial data

f1,0,0 = 1, f0,1,0 = ei�, f0,0,−1 = ei (1.12)

determines a circle pattern. For all (k, l,m) ∈ Q with even k + l + m the points fk±1,l,m,
fk,l±1,m, fk,l,m±1 lie on a circle with the center fk,l,m, i.e. all elementary quadrilaterals of the
image of Q are of kite form.

Moreover, equations (1.9) ensure that for the points zk,l,m with k + l +m = ±1, where 3
circles meet, the intersection angles are �i or �− �i, i = 1, 2, 3 (see Fig.1.6 where the isotropic
case �i = �/3 of regular and Z3/2-pattern is shown).

According to Proposition 1, the discrete map zk,l,m, restricted to H , defines a circle pattern
with circle centers zk,l,m for k + l +m = 0, each circle intersecting 6 neighboring circles. At
each intersection points three circles meet.

However, for most initial data �,  ∈ ℝ, the behavior of the obtained circle pattern is quite
irregular: interiors of different elementary quadrilaterals intersect. Define QH = Q ∩H .

Definition 9 [25] The hexagonal circle patterns Zc, 0 < c < 2 with intersection angles
�1, �2, �3, �i > 0, �1 + �2 + �3 = � is the solution Zc : Q→ ℂ of (1.9) subject to (1.10) and
with the initial data

Zc1,0,0 = 1, Zc0,1,0 = eic(�2+�3), Zc0,0,−1 = eic�3 (1.13)

restricted to QH .

Definition 10 A discrete map f : QH → ℂ is called an immersion if interiors of adjacent
elementary quadrilaterals are disjoint.

It is interesting to note that the square grid circle pattern Zc can be obtained from hexagonal
one by limit procedure �3 → +0 and by �1 → � − �2. These limit circle patterns still can be
defined by (1.9), (1.10) by imposing the self-similarity condition that fk,l,m depends only on l
and k −m.

∙ Circle patterns of discrete z2 and log(z)

Definition 8 was given for 0 < c < 2. For c < 0 or c > 2 the radius R(1 + i) = c/(2 − c) of
the corresponding circle pattern found as a solution to equations for R(z) becomes negative
and some elementary quadrilaterals around f0,0 intersect. But for c = 2, one can renormalize
the initial values of f so that the corresponding map remains an immersion. Let us consider
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orthogonal Zc, with 0 < c < 2, and make the following renormalization for the corresponding
radii: R→ 2−c

c R. Then as c→ 2− 0 we have

R(0) =
2− c
c
→ +0, R(1 + i) = 1, R(i) =

2− c
c

tan
c�

4
→ 2

�
.

Definition 11 ([2]) Orthogonal Z2 : ℤ2
+ → ℝ2 = ℂ is the solution of (1.7), (1.2) with c = 2

and the initial conditions

Z2(0, 0) = Z2(1, 0) = Z2(0, 1) = 0,

Z2(2, 0) = 1, Z2(0, 2) = −1, Z2(1, 1) = i
2

�
.

Figure 1.7: Discrete Z2.

In this definition, equations (1.7),(1.2) are understood to be regularized through multiplica-
tion by their denominators. Note that for the radii on the border one has R(N + iN) = N , i.e.
R is linear in agreement with

∣∣ d
dz (z

2)
∣∣ = ∣z∣. If R(z) is a solution to (1.6) and therefore defines

some immersed circle patterns, then R̃(z) = 1
R(z) also solves (1.6). This reflects the fact that

for any discrete conformal map f there is dual discrete conformal map f∗ defined by (see [28])

f∗
n+1,m − f∗

n,m = − 1

fn+1,m − fn,m
, f∗

n,m+1 − f∗
n,m =

1

fn,m+1 − fn,m
.

The smooth limit of the duality is

df∗(z)

dz

df(z)

dz
= −1.

The dual of f(z) = z2 is, up to a constant, f∗(z) = log z. Motivated by this observation, we
define the discrete logarithm as the discrete map dual to Z2, i.e. the map corresponding to the
circle pattern with radii

RLog(z) =
1

RZ2(z)
,
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where RZ2 are the radii of the circles for Z2. Here one has RLog(0) =∞, i.e. the corresponding
circle is a straight line. The corresponding constraint (1.2) can be also derived as a limit.
Indeed, consider the map g = 2−c

c Zc − 2−c
c . This map satisfies (1.7) and the constraint

c

(
gn,m +

2− c
c

)
= 2n

(gn+1,m − gn,m)(gn,m − gn−1,m)

(gn+1,m − gn−1,m)
+ 2m

(gn,m+1 − gn,m)(gn,m − gn,m−1)

(gn,m+1 − gn,m−1)
.

Keeping in mind the limit procedure used to determine Z2, it is natural to define the discrete
analogue of log(z) as the limit of g as c→ +0. The corresponding constraint becomes

1 = n
(gn+1,m − gn,m)(gn,m − gn−1,m)

(gn+1,m − gn−1,m)
+m

(gn,m+1 − gn,m)(gn,m − gn,m−1)

(gn,m+1 − gn,m−1)
. (1.14)

Figure 1.8: Discrete Log.

Definition 12 ([2]) Log is the map Log : ℤ
2
+ → ℝ

2 = ℂ̄ satisfying (1.7) and (1.14) with the
initial conditions

Log(0, 0) =∞, Log(1, 0) = 0, Log(0, 1) = i�,

Log(2, 0) = 1, Log(0, 2) = 1 + i�, Log(1, 1) = i
�

2
.

It is interesting that the circle patterns for discrete z2 and log(z) were originally guessed by
Schramm and Kenyon without any connection to the theory of integrable systems and isomon-
odromy problem. Moreover, it was not proved that they are immersed.

The definitions of discrete z2 and log(z) for hexagonal combinatorics and for square grid
combinatorics with prescribed intersection angles are given in Section 6. The idea again is the
re-normalization of initial data.

∙ Asymptotic behavior of discrete zc and log(z)

An effective approach to the description of circle patterns is given by the theory of integrable
systems (see [23, 25, 28]). For example, Schramm’s circle patterns are governed by a difference
equation which is the stationary Hirota equation (see [87]). This approach proved to be espe-
cially useful for the construction of discrete zc and log(z) in [2, 23, 25, 28] with the aid of some
isomonodromy problem. Another connection with the theory of discrete integrable equations
was revealed in [2, 3, 4]: embedded circle patterns are described by special solutions of discrete
Painlevé II and discrete Riccati equations, thus giving geometrical interpretation thereof.
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Figure 1.9: Hexagonal Z2 and Log.

The main tool to establish all the above mentioned properties of R(z) was a special case of
discrete Painlevé-II equation:

(n+ 1)(x2n − 1)

(
xn+1 + xn/"

"+ xnxn+1

)
− n(1− x2n/"2)

(
xn−1 + "xn
"+ xn−1xn

)
= cxn

"2 − 1

2"2
.

The embedded Zc corresponds to the unitary solution xn = ei�n of this equation with x0 =
eic�/2 0 < �n < �. Here �n is define by fn,n+1 − fn,n = e2i�n(fn+1,n − fn,n).

As discrete Painlevé was used to prove the existence of discrete Zc with regular behaviour,
discrete Riccati equation is the tool to find the corresponding inital conditions for equations for
R(z). For R(z) to be positive it is necessary that some discrete Riccati equation has positive
solution. This leads to assymptotical analysis of solutions to discrete Riccati equations.

As the Riccati differential equation possesses the Panlevé property we are tempted to con-
clude that circle patterns Zc and Log are described by discrete equations with Painlevé property
though there is no satisfactory generalization thereof to discrete equations.

One of the principal questions in modelling standard holomorhic maps by infinite circle
patterns is the asymptotics of their discrete analogs. The asymptotical behavior of discrete zc

and log(z) are exactly that of their smooth counterparts. Bearing in mind the highly non-trivial
origin of the governing discrete equations this fact is really astonishing. The tool to prove the
asymptotics is again some discrete Painleve equation, whose special reduction is the equation
above.

For smooth Painlevé equations similar asymptotic problems have been studied in the frames
of the isomonodromic deformation method [41, 56, 64]. In particular, connection formulas were
derived. These formulas describe the asymptotics of solutions for n → ∞ as a function of
initial conditions. Some discrete Painlevé equations were studied in this framework in [55]).
The geometric origin of our equations permits us to prove asymptotics by studying linearized
equations and using the found geometric properties of the solutions without using the heavy
isomonodromic technique. Moreover, isomonodromic methods seem to be insufficient for our
purposes since we need to control xn for finite n’s as well.

∙ Main results

Now we give the plan of the Part I and formulate the main results. In Chapter 2 the defining
equations (1.7),(1.2) are derived from some isomonodromic problem. In Chapter 3 the equations
for radius function R(z) are derived and the geometric properties of the circle patterns Zc and
Log are reformulated in terms of the solutions. In Chapter 4 we study discrete Riccati equations
and prove that the above given initial conditions for Zc and Log must be necessarily satisfied
for immersed solutions. It is interesting that it was possible to find the general solution of this
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Riccati equation and to express it through the hypergeometric function. In Chapter 5 we prove
the existence of immersed hexagonal Zc and of embedded square grid Zc, which follows from
the existence of the special separatrix solution of the corresponding discrete Painlevé equation.
Chapter 6 extends these results for Z2 and Log. Thus, the geometric properties are formulated
as follows.

Theorem 1 Square grid Zc with 0 < c ≤ 2 and Log are embedded. Hexagonal Zc with 0 <
c ≤ 2 and Log are immersions.

In Chapter 7 we prove the following asymptotical results.

Theorem 2 The radius function R(N + iM) of the orthogonal square grid Zc satisfies:

R(N0 + iM) ≃ K(c)M c−1 as M →∞,

with constant K(c) independent of N0. For the orthogonal square grid Log the corresponding
asymptotics is

R(N0 + iM) ≃ K(0)M−1 as M →∞.
Moreover,

Zc(n0 + n,m0 + n) ≃ ec�i/4K(c)nc as n→∞.

Finally, in Chapter 8 we discuss the uniqueness of discrete Zc, some other examples and gen-
eralizations.

1.2 Geometry of integrable conservation laws

The second Part is devoted to geometric properties of integrable systems of hydrodynamic type,
namely to conservation law systems. Hyperbolic systems of conservation laws

uit = f i(u)x = vij(u)u
j
x, vij =

∂f i

∂uj
, i = 1, ..., n, (1.15)

naturally arise in a variety of physical applications and are known to possess a rich mathematical
and geometric structure (see [44, 65, 68, 91, 99]). It was observed that many constructions of
the theory of systems of conservation laws (1.15) are parallel to that of the projective theory of
congruences.

∙ Hyperbolic systems of conservation laws and congruences of lines

The correspondence proposed in [7] (see also [9] and [10]) associates with any system (1.15) an
n-parameter family of lines

yi = ui y0 − f i(u), i = 1, ..., n (1.16)

in (n+ 1)-dimensional projective space ℙn+1 with affine coordinates y0, ..., yn. (Here y0 is not
one of homogeneous coordinates!) In the case n = 2 we obtain a two-parameter family or a con-
gruence of lines in ℙ3. In the 19th century the theory of congruences was one of the most popular
chapters of classical differential geometry (see, e.g., [54]). We keep the name“congruence” for
any n-parameter family of lines (1.16) in ℙn+1.

It turns out that the basic concepts of the theory of systems of conservation laws, such as
shock and rarefaction curves, Riemann invariants, reciprocal transformations, linearly degener-
ate systems and systems of Temple class [95] acquire a clear and simple projective interpretation
when reformulated in the language of the theory of congruences. For instance, this correspon-
dence enabled the classification of systems of Temple class to be reduced to a much simpler
geometric problem of the classification of congruences with either planar or conical developable
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surfaces. In particular, the results of [95] became intuitive geometric statements about families
of lines in projective space. Another application of the proposed correspondence was the con-
struction of the Laplace and Lévy transformations of hydrodynamic type systems in Riemann
invariants [45, 47], which, on the geometric level, have been a subject of extensive research in
projective differential geometry.

Remark. It should be emphasized that the correspondence between systems (1.15) and con-
gruences in ℙn+1 is not one-to-one: “degenerate” congruences are to be excluded. Indeed,
let

yi = gi(u)y0 − f i(u), u = (u1, ..., un) (1.17)

be an arbitrary n-parameter family of lines in ℙn+1; notice that gi(u), as well as f i(u), may
happen to be not functionally independent. Associated with such a congruence is a system of
conservation laws

gi(u)t = f i(u)x, i = 1, ..., n, (1.18)

which, for functionally dependent gi(u), is not in Cauchy normal form. System (1.18) can be
transformed to the Cauchy normal form provided the characteristic polynomial

det

(
�
∂gi

∂uj
− ∂f i

∂uj

)
(1.19)

is not identically zero, which is equivalent to the requirement that the lines (1.17) do not belong
to a hypersurface in ℙ

n+1. Hypersurfaces in ℙ
n+1 carrying n-parameter families of lines are

interesting in their own. For n = 2 these are planes. In the case n = 3 these are either
one-parameter families of planes or three-dimensional quadrics [89]. For n = 4 among obvious
examples are two-parameter families of planes or one-parameter families of three-dimensional
quadrics. (See [86, 98] for the classification results.) In what follows we consider nondegenerate
hyperbolic congruences only, which means that the characteristic polynomial (1.19) is not zero
identically and its roots are real and pairwise distinct. Any such congruence can be locally
parametrized in the form (1.16).

∙ Rarefaction curves

Let �i(u) be the eigenvalues of the matrix vij of system (1.15), assumed real and pairwise

distinct. Let �i(u) be the corresponding eigenvectors: v �i = �i �i. Rarefaction curves, defined
as the integral curves of the eigenvectors �i, play a crucial role in the theory of hydrodynamic
type systems. Thus, there are n families of rarefaction curves, and for any point in u-space there
is exactly one rarefaction curve from each family passing through it. Due to the correspondence
(1.16), a curve in u−space defines a ruled surface, i.e., a one-parameter family of lines in ℙn+1.
In [7] (see also [9]) the following important property was established.

Theorem 3 [7, 9] Ruled surfaces defined by rarefaction curves of the i-th family are devel-
opable, i.e., their rectilinear generators are tangential to a curve. This curve can be parametrized
in the form

y0 = �i, y1 = u1�i − f1(u), ..., yn = un�i − fn(u), (1.20)

where u varies along the rarefaction curve.

The curve (1.20) constitutes a singular locus of the developable surface called its cuspidal edge.

∙ Focal hypersurfaces
The focal hypersurfaceMi ⊂ ℙn+1 is a collection of cuspidal edges corresponding to rarefaction
curves of the i-th family. Therefore parametric equations of Mi coincide with (1.20), where u is
now allowed to take all possible values. By the construction each line of the congruence (1.16)
is tangential toMi. The idea of focal hypersurfaces is obviously borrowed from optics: thinking
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of the congruence lines as the rays of light, one can intuitively imagine focal hypersurfaces as
the locus in ℙn+1, where the light concentrates (the German literature uses the more suggestive
term ‘Brennflächen’, i.e. ‘burning surfaces’). Since the system of conservation laws (1.15) is
strictly hyperbolic, there are precisely n developable surfaces passing through a line of the
congruence (1.16), and each line is tangential to n focal hypersurfaces.

∙ Shock curves

Shock curves play a fundamental role in the theory of weak solutions of systems (1.15). A shock
curve with the vertex at u0 is the set of points in u-space such that

�(ui − ui0) + f i(u)− f i(u0) = 0, i = 1, ..., n, (1.21)

for some function �(u, u0). For any u on the shock curve the discontinuous function

u(x, t) = u0, x ≤ �t,
u(x, t) = u, x ≥ �t,

is a weak solution of (1.15). Notice that (1.21) implies that the lines lu and lu0 , corresponding to
the points u and u0, intersect in ℙ

n+1. This implies that the shock curve with the vertex at u0
defines a special ruled surface of the congruence (1.16) consisting of the lines of the congruence
intersecting lu0 ([7, 9]). Lax showed that a shock curve with the vertex at a generic point u0
splits into n branches, the i-th branch being C2−tangent of the associated rarefaction curve of
the i-th family passing through u0. As pointed out by a number of authors, there are situations
when shock curves coincide with their associated rarefaction curves. Systems with coinciding
shock and rarefaction curves were studied by Temple [95]. His main theorem can be formulated
as follows.

Theorem 4 [95] Rarefaction curves of the i-th family coincide with the associated branches of
the shock curve if and only if either
1) every rarefaction curve of the i-th family is a straight line in the u−space
or
2) the characteristic speed �i is constant along rarefaction curves of the i-th family,

Li(�
i) = 0,

where Li = �ki
∂
∂uk is the Lie derivative in the direction of �i.

Both these condition have a very natural geometric interpretation.

Theorem 5 [7, 9] Rarefaction curves of the ith family are straight lines if and only if the
associated developable surfaces are planar, that is, their cuspidal edges are plane curves.

Theorem 6 [7, 9] The characteristic speed �i is linearly degenerate if and only if the associated
developable surfaces are conical, that is, their generators meet at a point. The corresponding
focal hypersurface Mi degenerates into a submanifold of codimension two.

Recall that systems satisfying condition 2) are known as linearly degenerate.
This theorem introduces the following two natural classes of systems.

Systems with linear rarefaction curves, geometrically characterized by the planarity of
cusp-edges (or, equivalently, planarity of developable surfaces) of the associated congruence
(1.15) (see [7, 9]).

Linearly degenerate systems, characterized by condition 2) being satisfied for all i = 1, ..., n.
Geometrically this condition means that developable surfaces of the congruence (1.15) are con-
ical, and therefore all focal hypersurfaces Mi degenerate into submanifolds of codimension two
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([7, 9]). This geometric result allows one to write down a general implicit formula for the
fluxes fi(u) of linearly degenerate systems. (These formulae were previously known for n = 2
only). As demonstrated in [7], (see also [9] and [10]) the properties formulated above provide
an intuitive geometric proof of Temple’s Theorem.

∙ T-systems

In the second Part we investigate and classify systems of conservation laws which simultaneously
satisfy both conditions of Temple’s Theorem:

(a) The rarefaction curves of system (1.15)) are straight lines in coordinates u1, ..., un.
(b) The eigenvalues �i are linearly degenerate, i.e. constant along rarefaction curves of the

i-th family.
Systems (1.15) satisfying both these conditions will be called T-systems for short. Systems

of this type naturally arise in the theory of equations of associativity of 2D topological field
theory [43]. In view of the results formulated above, developable surfaces of the corresponding
congruence (1.16) must be planar and conical simultaneously, and therefore are planar pencils of
lines. The corresponding focal hypersurfacesMi degenerate into n submanifolds of codimension
2. In all examples discussed further the focal submanifolds Mi are glued together to form an
algebraic variety V n−1 ⊂ ℙ

n+1 of codimension 2, so that the lines of the congruence (1.16)
can be characterized as n-secants of V n−1. We propose a complete description of T-systems for
n = 3, which is a generalization to the smooth setting of the classical result of Castelnuovo [37]
classifying linear congruences in ℙ4 in the algebraic-geometrical case. For n = 2 the reader can
easily derive it by elementary geometric considerations.

∙ Riemann invariants

It may happen that the (n− 1)-dimensional submanifold Mi degenerates into a linear subspace
of codimension 2. This is closely related to the property for system (1.15) to possess Riemann
invariants.

Definition. The Riemann invariant for ith characteristic speed �i is a function R(u) such that

Rt = �iRx

by virtue of (1.15).
If system (1.15) possesses a Riemann invariant for each characteristic speed one can find new
dependent variables Ri(u) such that equations (1.15) take the diagonal form

Rit = �iRix, i = 1, ..., n

(no summation). As shown in [10], the existence of Riemann invariants implies that the focal
nets (i.e., nets cut out by developable surfaces on each of the focal submanifolds Mi) are
conjugate and holonomic. Congruences of this type and their transformations have been a
subject of extensive research in projective differential geometry. Among others, the Laplace and
Lévy transformations play fundamental roles. Being translated into the language of systems of
conservation laws, these constructions lead to nontrivial transformations of semi-Hamiltonian
systems of hydrodynamic type, which were investigated recently in [45] and [47].

∙ Reciprocal transformations

Let B(u)dx+A(u)dt and N(u)dx+M(u)dt be two conservation laws of system (1.15), under-
stood as one-forms closed by virtue of (1.15). In the new independent variables X,T defined
by

dX = B(u)dx+A(u)dt, dT = N(u)dx+M(u)dt, (1.22)

system (1.15) takes the form

U iT = F i(U)X , i = 1, ..., n,
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where

U i =
uiM − f iN
BM −AN , F i =

f iB − uiA
BM −AN ,

or, if one prefers to work with old field variables,

uiT = V ij (u)u
j
X , i = 1, ..., n,

where V = (Bv −AE)(ME −Nv)−1, E = id. The new characteristic speeds Λk are

Λk =
�kB −A
M − �kN . (1.23)

Transformations (1.22) are called reciprocal. Reciprocal transformations are known to preserve
linear degeneracy (see [46]). Moreover, particular reciprocal transformations (1.22), with both
integrals being linear combinations of the ”canonical” integrals uidx+ f idt of system (1.15),

dX = (�iu
i + �)dx+ (�if

i + �̃)dt,

dT = (�iu
i + �)dx + (�if

i + �̃)dt,
(1.24)

(here �i, �, �̃, �i, �, �̃ are arbitrary constants), are known to preserve the class of T-systems
([7, 9]).

Furthermore, affine transformations

U i = Ciju
j +Di, Cij = const, Di = const, det Ci

j ∕= 0, (1.25)

obviously transform T-systems to T-systems.

Theorem 7 [7, 9] The transformation group generated by reciprocal transformations (1.24)
and affine transformations (1.25) is isomorphic to the group of projective transformations of
ℙn+1.

Thus, the classification of systems of conservation laws up to transformations (1.24) and (1.25)
is equivalent to the classification of the corresponding congruences up to projective equivalence.
This observation was the main reason for introducing the geometric correspondence between
conservation law systems and line congruences.

One can readily establish that for n = 2 the congruences corresponding to T-systems are
linear (that is, defined by two linear equations in Plücker coordinates) and consist of all lines
intersecting two fixed skew lines in ℙ3. Since any two linear congruences in ℙ3 are projectively
equivalent, there exists essentially a unique two-component T-system.

Example 1 Consider the wave equation

ftt − fxx = 0. (1.26)

Introducing the variables a = fxx, b = fxt, we readily rewrite (1.26) as a linear two-component
system of conservation laws

at = bx, bt = ax, (1.27)

which is obviously a T-system (any linear system of conservation laws is a T-system since its
eigenvalues and eigenvectors are constant). The corresponding congruence (1.16)

y1 = ay0 − b, y2 = by0 − a (1.28)

consists of all lines intersecting the two skew lines y0 = 1, y1 = −y2 and y0 = −1, y1 = y2.
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Example 2 Consider the Monge-Ampère equation

f2
xt − fxxftt = 1. (1.29)

Introducing the variables a = fxx, b = fxt (see [73]), we readily rewrite (1.29) as a two-
component system of conservation laws

at = bx, bt =

(
b2 − 1

a

)

x

, (1.30)

which proves to be a T-system. The corresponding congruence

y1 = ay0 − b, y2 = by0 − b2 − 1

a
(1.31)

consists of all lines intersecting the two skew lines y1 = 1, y0 = y2 and y1 = −1, y0 = −y2.

Since congruences (1.28) and (1.31) are projectively equivalent, the corresponding systems
(1.27) and (1.30) are reciprocally related, thus providing a linearization of the nonlinear Monge-
Ampère equation (1.29) (which, of course, is not a new result).

The main result of Chapter 9 is the classification of three-component T-systems or, in
geometric language, congruences in ℙ4 whose developable surfaces are planar pencils of lines.
The example that motivated this research comes from the theory of equations of associativity
of two-dimensional topological field theory.

Example 3 Let us consider the Monge-Ampère type equation

fttt = f2
xxt − fxxxfxtt, (1.32)

known as the WDVV or the associativity equation, which was thoroughly investigated by
Dubrovin in [43]. Introducing the variables

a = fxxx, b = fxxt, c = fxtt, (1.33)

we readily rewrite (1.32) as a three-component system of conservation laws [72]

at = bx, bt = cx, ct = (b2 − ac)x (1.34)

which was observed to be a T-system in [7] (also [9]). The corresponding congruence in ℙ
4

y1 = ay0 − b, y2 = by0 − c, y3 = cy0 − b2 + ac (1.35)

coincides with the set of trisecant lines of the Veronese variety projected from ℙ
5 into ℙ

4 (see
section 9.1). The projected Veronese variety is the focal variety of the congruence (1.35). As
follows from the classification result presented below, this example is generic.

We prove that congruences in ℙ4, whose developable surfaces are planar pencils of lines are
necessarily linear (that is, defined by three linear equations in the Plücker coordinates). In the
parametrisation (1.16) the Plücker coordinates of a congruence in ℙ4 are

u1, u2, u3, f1, f2, f3, u1f2 − u2f1, u1f3 − u3f1, u2f3 − u3f2.

Linear congruences are characterized by three linear relations among them

�+ �iu
i + �if

i + �ij(u
if j − ujf i) = 0,
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where �, �i, �i, �ij are arbitrary constants. Solving these equations for f1, f2, f3, we arrive
at the general formula for the fluxes of three-component T-systems. Notice that the congruence
(1.35) is linear.

Unlike the case of ℙ3, the proof of the linearity of these congruences in ℙ4 requires a long
computation bringing a certain exterior differential system into involutive form (notice that
the linearity does not necessarily hold in ℙ5 as simple examples from section 9.4 show). Once
the linearity is established, one can make use of the results of Castelnuovo [37] who classified
linear congruences in ℙ

4. He found six projectively different types, thus providing a list of
six three-component T-systems which are not reciprocally related. Below we list them as
scalar third-order Monge-Ampère type equations. They assume the form (1.15) in the variables
a = fxxx, b = fxxt, c = fxtt. As systems of conservation laws they differ, in particular, by a
number of Riemann invariants they possess. Recall that the existence of a Riemann invariant
implies the reducibility of the focal variety of the corresponding congruence: if a T-system
possesses k Riemann invariants, the focal variety contains k linear subspaces of codimension
two.

Theorem 8 Any strictly hyperbolic T-system of 3 conservation laws can be reduced by a recip-
rocal transformation to one from the following list.

I. T-systems, which possess no Riemann invariants:

fxxxfttt − fxxtfttx = 1 (1.36)

and

f2
xxt + f2

xtt − fxxxfxtt − ftttfxxt = 1. (1.37)

The focal varieties of the corresponding congruences are non-singular projections of the Veronesé
variety into ℙ4. The congruences consist of the trisecant lines of these projections. (Notice that
there are two essentially different projections which are not equivalent over the reals.)

II T-systems, which possess one Riemann invariant:

fxxxfttt − fxxtfttx = 0 (1.38)

and

f2
xxt + f2

xtt − fxxxfxtt − ftttfxxt = 0. (1.39)

The corresponding focal varieties are reducible and consist of a cubic scroll and a plane which
intersects the cubic scroll along its directrix. (Notice that equations (1.36) and (1.38) are related
to (1.37) and (1.39) by a complex change of variables x→ (x + t)/

√
2, t→ i(x− t)/

√
2.)

III T-system with two Riemann invariants:

f2
xtt − fxxtfttt = 1. (1.40)

(This reduces to the Monge-Ampère equation (1.29) for f̃ = ft.) The corresponding focal
variety consists of a two-dimensional quadric and two planes which intersect the quadric along
rectilinear generators of different families.

IV T-system with three Riemann invariants:

fttt − fxxt = 0. (1.41)

The corresponding focal variety consists of three planes.
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We discuss the geometry of these examples in more detail in Chapter 9.

Remark. Equation (1.36) was discussed by Dubrovin in [43]. As shown in [49], after the
transformation x̃ = t, t̃ = fxx, f̃x̃x̃ = −fxt, f̃x̃t̃ = x, f̃t̃t̃ = ftt equation (1.36) takes the form
(1.32): f̃t̃t̃t̃ = f̃2

x̃x̃t̃
− f̃x̃x̃x̃f̃x̃t̃t̃. (Notice that this is not a contact transformation.) Geometrically

equations (1.32) and (1.36) correspond to projectively equivalent congruences. Equation (1.38)
was discussed before in [50] and [92]. The classification of third order equations of Monge-
Amperé type was given in [8].

∙ Reducible systems of conservation laws

Note that all the 3-component T-systems are reducible to a single third order (generically
nonlinear) differential equations. These systems, which have been a subject of research in [8]
and [30], are investigated and characterized geometrically in section 9.5. They can be defined
as systems transformable to an n-th order scalar PDE

f

(
∂nu

∂xn
,

∂nu

∂xn−1∂t
, ...,

∂nu

∂tn

)
= 0

by a transformation of type (1.33). In geometric language, the reducibility of system (1.15)
implies that the associated congruence (1.16) belongs to the intersection of linear complexes of
rank 4.

∙ Isoparametric hypersurfaces and linear congruences

On T-systems of 4 conservation laws we impose the following condition

(�1 − �2)(�3 − �4)
(�2 − �3)(�4 − �1) = −1, (1.42)

i.e., characteristic speeds �i form a harmonic quadruplet. This condition comes from the the-
ory of integrable systems and is necessary for the integrability. Consideration is restricted to
nondiagonalizable systems without Riemann invariants. For T-systems condition (1.42) is very
restrictive: it turns out that up to reciprocal transformations there are only 2 such systems over
the reals, the corresponding congruences being linear. The geometry of the focal surfaces can
be described in terms of isoparametric hypersurfaces in Euclidean (pseudo-Euclidean) space.
Namely the Cartan isoparametric hypersurface M4 ⊂ S5 ⊂ E6, represented as the intersection
of the unit sphere with the zero level P = 0 of a fourth order homogeneous polynomial, is a
non-singular 4-dimensional hypersurface. Through each point m ∈ M4 passes a unique great
circle S1(m) in S5 that is orthogonal to M4. Thus a 4-parameter family of such circles is ob-
tained. Each great normal circle intersects the focal surface, consisting of two components, at
four points forming a harmonic quadruplet on S1(m). Regarding affine coordinates in E6 as
homogeneous coordinates in ℙ5, one arrives at a 4-parameter family of lines l(m) ⊂ ℙ5, each
line being defined by the 2-dimensional plane of the great circle S

1(m). This congruence and
its pseudo-Euclidean counterpart are the normal forms of the classification obtained in Chapter
10 (see [13]).

∙ Geometry of solutions for n = 3

Consider the Plücker image of congruence (1.35), which is a three-dimensional submanifold M3

of the Grassmanian G(1, 4) ⊂ ℙ9. Since congruence (1.35) is linear, M3 is an intersection of
G(1, 4) with ℙ6. Moreover,M3 is covered by a two-parameter family of lines (images of planar
pencils) so that there are three lines passing through each point of M3. Let M2 be a surface
in M3, p ∈ M2 be a point, and TpM

2 a tangent plane to M2 at p. Intersecting TpM
2 with

the three planes spanned by each pair of the three lines of M3 passing through p, we obtain
three characteristic directions in TpM

2. The integral trajectories thereof foliate M2 by three
1-parameter families of curves. Therefore, there is a characteristic 3-web invariantly defined
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on each surface M2 in M3. One can show that solutions of the system (1.32) are those M2

for which the characteristic 3-web is hexagonal (has zero curvature). We refer to [18] for the
necessary definitions and to [51, 53] for the proof of above statement.

∙ Implicit ODEs with hexagonal web of solutions

The hexagonal 3-web described above is the image of the characteristic web on solutions in
(t, x)-plane understood as in the theory of PDE. It is determined by some implicit ordinary
differential equation. This ODE for quasi-linear nonlinear PDEs depends on the particular
solution. In Chapter 11 we study implicit ODEs with hexagonal web of solutions. (And we will
use x, y instead of t, x to be consistent with the notations in the theory of ODE.) For regular
points, where all curves intersects transversally, there is no local invariants. Thus non trivial
information is encoded in singularities of solution webs of implicit characteristic equations.

Consider an implicit ordinary differential equation

F (x, y, p) = 0 (1.43)

with a smooth or real analytic F . This ODE defines a surface M :

M := {(x, y, p) ∈ ℝ
2 × ℙ

1
(ℝ) : F (x, y, p) = 0}, (1.44)

where (x, y, p) are coordinates in the jet space J1(ℝ,ℝ) with p = dy
dx . Generically the condition

grad(F )∣F (x,y,p)=0 ∕= 0 holds true for any point m = (x, y, p) ∈ M , i.e. M is smooth. If the

projection � : M → ℝ2, (x, y, p) 7→ (x, y) is a local diffeomorphism at a point m ∈ M then
this point is called regular. In some neighborhood of the projection �(m) of a regular point m
equation (1.43) can be solved for p thus defining an explicit ODE.

If the projection � is not a local diffeomorphism at m, then the point m is called a singular
point of implicit ODE (1.43). The set of all singular points is called the criminant of equation
(1.43) or the apparent contour of the surface M and will be denoted by C:

C := {(x, y, p) ∈ ℝ
2 × ℙ

1(ℝ) : F (x, y, p) = Fp(x, y, z) = 0},

where the low subscript denotes a partial derivative: Fp =
∂F
∂p .

Studying of generic singular points of implicit ODEs was initiated by Thom in [96]. Due to
Whitney’s Theorem such points are folds and cusps of the projection �. Local normal forms
for generic singularities were conjectured by Dara in [39] and for a generic fold point were
established by Davydov in [40]. The classification list for a generic fold point of the projection
� is exhausted by a well folded saddle point, a well folded node point, a well folded focus point
and a regular singular point, where the contact plane is transverse to the criminant. Cusp points
were studied by Dara [39], Bruce [32] and Hayakawa, Ishikawa, Izumiya, Yamaguchi [60].
Usually the following regularity condition is imposed at each point of the criminant:

rank((x, y, p) 7→ (F, Fp)) = 2. (1.45)

This regularity condition implies that the criminant is a smooth curve. At each point m outside
the criminant C the contact plane dy− pdx = 0 cuts the tangent plane TmM along a line thus
giving a direction field, which takes the form:

� = [Fp : pFp : −(Fx + pFy)], (1.46)

in the coordinates (x, y, p). This direction field is called the characteristic field of M . The
projection �(
) of an integral curve 
 ⊂ M of the characteristic field � is called a solution of
ODE (1.43). If Fpp ∕= 0 at a point m ∈ C on the criminant then (1.43) reduces locally to an
ODE quadratic in p. Such equations were the subject of intensive study. See, for example,
[33, 34, 38, 59].
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Suppose equation (1.43) has a triple root p0 at (x0, y0) then the equation F = 0 can be
written locally as a cubic equation

p3 + a(x, y)p2 + b(x, y)p+ c(x, y) = 0, (1.47)

as follows from the Division Theorem. Thus, if in a domain U ⊂ ℝ
2 outside the discriminant

curve Δ := �(C) this cubic equation has 3 real roots p1, p2, p3, we have 3-web formed by
solutions of (1.43). A generic 3-web has a nontrivial invariant. In the differential-geometric
context this invariant is the curvature form of the web. Therefore any general local classification
of cubic implicit ODEs (1.47) necessarily has functional moduli (cf. [40]). Moreover, this
invariant is topological in nature hence even the topological classification will have functional
moduli if no restriction is imposed on the class of ODE’s. (See also [74] and [75], where web
structure was used for studying geometric properties of differential equations.)

In Chapter 11 we consider cubic ODEs (1.47) with a hexagonal web of solutions. Equations
of this type describe, for example, webs of characteristics on solutions of integrable systems of
three PDEs of hydrodynamic type, considered in Chapter 9 (see also [52]), or characteristic web
of WDVV associativity equation (see Example 5 below).

Definition 13 Let U ⊂ ℝ2 be the open set, where (1.47) has 3 real roots p1, p2, p3 and suppose
U ∕= ∅. We say that (1.47) has a hexagonal 3-web of solutions if for the projection �(m) of
each regular point m ∈M with �(m) ∈ U there is a local diffeomorphism at �(m) mapping the
solutions of (1.47) to three families of parallel lines.

The case of hexagonal web of solutions is also the most symmetric, i.e. the Lie symmetry
pseudogroup of (1.43) at a regular point has the largest possible dimension 3. The list of
normal forms turnes out to be finite provided regularity condition (1.45) is satisfied. These
forms are given by the following examples.

Example 4 The classical Graf and Sauer theorem [58] states that a 3-web of straight lines is
hexagonal iff the web lines are tangents to an algebraic curve of class 3, i.e. the dual curve
is cubic. This implies immediately that the following cubic Clairaut equation has a hexagonal
3-web of solutions:

p3 + px− y = 0.

The solutions are the lines p = const enveloping a semicubic parabola. (See Fig. 1.10) Note
that the contact plane is tangent to M along the criminant, i.e. the criminant is a Legendrian
curve.

Example 5 Consider an associativity equation

uxxx = u2xyy − uxxyuyyy,

describing 3-dimensional Frobenius manifolds (see [43] and Chapter 9). Each of its solutions
u(x, y) defines a characteristic web in the plane, which is hexagonal as was shown in [8]. Char-
acteristics are integral curves of the vector field

∂x − �(x, y)∂y ,

where � satisfy the characteristic equation

�3 + uyyy�
2 − 2uxyy�+ uxxy = 0.

For the solution u = x2y2

4 + x5

60 the characteristic equation becomes

p3 + 2xp+ y = 0

24



Figure 1.10: Solutions of p3 + px − y = 0 (left) and p3 + 2xp + y = 0 (right) with horizontal
y-axis.

after the substitution x→ −x, y → −y, �→ −p. The criminant of this ODE is not Legendrian
and its solutions have ordinary cusps on the discriminant (see Fig. 1.10). The discriminant is
also a solution. In the analytic setting the above two normal forms were conjectured by Nakai
in [76].

We find also local normal forms at points, where the projection � has a fold, i.e. the cubic ODE
factors into a quadratic and a linear term.

Example 6 Suppose the criminant of a quadratic ODE is Legendrian, then this ODE is locally
equivalent to

p2 = y. (1.48)

Solutions of this ODE together with the lines dx = 0 form a hexagonal 3-web (see Fig. 1.11).
In fact, both the lines dy = 0 or the parabolas 2dy − xdx = 0 also supplement the 2-web of
solutions of (1.48) to a hexagonal 3-web, but the surfaces of the corresponding cubic equations
p(p2−y) = 0 and (2p−x)(p2−y) = 0 are not smooth at m = (0, 0, 0). If we agree to consider a
quadratic equation as a cubic with one root at infinity, then equation (1.48) is the third normal

form in our list. The following coordinate change y = ỹ + x̃2

4 , x = x̃ straightens the solutions,
transforming ODE (1.48) to a quadratic Clairaut equation

p̃2 + p̃x̃− ỹ = 0.

As the the lines dx = 0 are preserved this example is also a special case of the Graf and Sauer
Theorem.

Example 7 Suppose the criminant of a quadratic ODE is not Legendrian, then this ODE is
locally equivalent to

p2 = x. (1.49)

Solutions of this ODE together with the lines dx = 0 form a hexagonal web (See Fig. 1.11).
The lines dy = 0 also complete the 2-web of solutions of (1.49) to a hexagonal 3-web, but again
the surface M of the corresponding cubic equation p(p2−x) = 0 is not smooth at m = (0, 0, 0).

Example 8 For completeness let us mention the case of a regular point of an implicit cubic
ODE. If its 3-web of solutions is hexagonal, then it can be mapped to the web of 3 families of
parallel lines dx = 0, dy = 0 and dx+ dy = 0. This gives

p(p+ 1) = 0.
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Figure 1.11: Solutions of p2 = y and the lines dx = 0 (left). Solutions of p2 = x and the lines
dx = 0 with horizontal y-axis (right).

Now we can formulate our classification theorem.

Theorem 9 Suppose functions a, b, c are real analytic and the following conditions hold for an
implicit cubic ODE

F (x, y, p) := p3 + a(x, y)p2 + b(x, y)p+ c(x, y) = 0

at a point m = (x0, y0, p0) ∈M := {(x, y, p) ∈ ℝ2 × ℙ
1
(ℝ) : F (x, y, p) = 0}:

1) this equation has a hexagonal 3-web of solutions,
2) dF ∣m ∕= 0,
3) rank((x, y, p) 7→ (F, Fp))∣m = 2 if m lies on the criminant C.
Then this ODE is equivalent to one of the following five forms with respect to some local real
analytic isomorphism:

i) p3 + 2xp+ y = 0, if p0 is triple and the criminant is transverse to the
contact field in a punctured neighborhood of m,

ii) p3 + px− y = 0, if p0 is triple and the criminant is Legendrian,
iii) p2 = y, if p0 is double and the criminant is Legendrian,
iv) p2 = x, if p0 is double and the criminant is transverse

to the contact plane at m,
v) p(p+ 1) = 0, if the roots are pairwise distinct at �(m) = (x0, y0).

(1.50)

If the functions a, b, c are smooth and conditions 1),2),3) are satisfied, then there is a diffeomor-
phism of a neighborhood of the point (x0, y0) onto a neighborhood of the point (0, 0) reducing
the above cubic ODE either to one of the four equations ii)-v) or to an equation that coincides
with i) within the domain, where i) has three real roots.

The main difficulty in proving the above classification theorem brings the case of irreducible
cubic ODE. The idea is to lift its 3-web of solutions toM and then to the plane E : p1+p2+p3 =
0 in space of roots of the cubic equation p3 + A(x, y)p + B(x, y) = 0. (Note that the general
case reduces to this cubic.) Then this 3-web at the plane E has D3-symmetry permuting the
roots. Using the regularity condition we construct a D3-equivariant diffeomorphism ”upstairs”,
matching the web to that of a corresponding normal form. Due to the D3-symmetry the
constructed diffeomorphism is lowerable to some diffeomorphism ”downstairs”, i.e. to a point
transformation in the plane of solutions. Most of the claims and the proofs below are given for
the smooth case and for some neighborhood of the projection �(m) of m ∈M , if it is not stated
explicitly. In section 11.3 we discuss how to get rid of the annoying stipulation in Theorem 9
for the smooth case i) by replacing Definition 13 with a less geometric one.
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Part I

Discrete Zc
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Chapter 2

Discrete Zc via a monodromy

problem

2.1 Square grid combinatorics

In this section we derive equation (1.1) as the compatibility condition (see [2]) of the Lax pair

Ψn+1,m = Un,mΨn,m Ψn,m+1 = Vn,mΨn,m (2.1)

found by Nijhoff and Capel [78]:

Un,m =

(
1 −un,m
�

un,m
1

)
Vn,m =

(
1 −vn,m

− �
vn,m

1

)
, (2.2)

where � is the spectral parameter and

un,m = fn+1,m − fn,m, vn,m = fn,m+1 − fn,m.

Whereas equation (1.1) is invariant with respect to fractional linear transformations fn,m →
(pfn,m+q)/(rfn,m+s), the constraint (1.2) is not. By applying a fractional linear transformation
and shifts of n and m, (1.2) is generalized to the following form:

�f2
n,m + 
fn,m + � = 2(n− �) (fn+1,m − fn,m)(fn,m − fn−1,m)

(fn+1,m − fn−1,m)
+

2(m−  ) (fn,m+1 − fn,m)(fn,m − fn,m−1)

(fn,m+1 − fn,m−1)
, (2.3)

where �, 
, �, �,  are arbitrary constants.

Theorem 10 f : ℤ2 → ℂ is a solution to the system (1.1, 2.3) if and only if there exists a
solution Ψn,m to (2.1, 2.2) satisfying the following differential equation in �:

d

d�
Ψn,m = An,mΨn,m, An,m = −Bn,m

1 + �
+
Cn,m
1− � +

Dn,m

�
, (2.4)

with �−independent matrices Bn,m, Cn,m, Dn,m. The matrices Bn,m, Cn,m, Dn,m in (2.4)
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are of the following structure:

Bn,m = − n− �
un,m + un−1,m

(
un,m un,mun−1,m

1 un−1,m

)
− �

2
I

Cn,m = − m−  
vn,m + vn,m−1

(
vn,m vn,mvn,m−1

1 vn,m−1

)
−  

2
I

Dn,m =

(
− 
4 −

�
2 fn,m −�2 f2

n,m − 

2 fn,m − �

2

−�2


4 + �

2 fn,m

)
.

The constraint (2.3) is compatible with (1.1).

Proof: Compatibility. Direct but rather long computation shows that if the constraint (2.3)
holds for 3 vertices of an elementary quadrilateral it holds for the fourth vertex. A map
f : ℤ2 → ℂ satisfying equation (1.1) and the constraint (2.3) is uniquely determined by its
values at four vertices, for example, fn0,m0 , fn0,m0±1, fn0+1,m0 . Indeed starting with these
data and consequently applying (2.3) and (1.1) one determines fn,m0 , fn,m0±1 for all n. Now,
applying (2.3) we get the values fn,m0±2, ∀n. Note that, due to the observation above, equation
(1.1) is automatically satisfied for all obtained elementary quadrilaterals. Proceeding further
as above one determines fn,m0±3, fn,m0±4, . . . and thus fn,m for all n,m.

Necessity. Now let fn,m be a solution to the system (1.1),(2.3). Define Ψ0,0(�) as a nontrivial
solution of linear equation (2.4) with A(�) given by Theorem 10. Equations (2.1) determine
Ψn,m(�) for any n,m. By direct computation, one can check that the compatibility conditions
of (2.4) and (2.1)

Un,m+1Vn,m = Vn+1,mUn,m,

d

d�
Un,m = An+1,mUn,m − Un,mAn,m, (2.5)

d

d�
Vn,m = An,m+1Vn,m − Vn,mAn,m,

are equivalent to (1.1, 2.3).

Sufficiency. Conversely, let Ψn,m(�) satisfy (2.4) and (2.1) with some �−independent matrices
Bn,m, Cn,m, Dn,m. Note that the identity

detΨn,m(�) = (1 + �)n(1− �)m detΨ0,0(�)

for determinants implies

trAn,m(�) =
n

1 + �
− m

1− � + a(�), (2.6)

where a(�) is independent of n and m. (Thus, up to the term Dn,m/�, equation (2.4) is the
simplest one possible.) From (2.6) it follows that trBn,m = −n, trCn,m = −m. Equations
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(2.5) are equivalent to equations for their principal parts at � = 0, � = −1, � = 1, � =∞:

Dn+1,m

(
1 −un,m
0 1

)
=

(
1 −un,m
0 1

)
Dn,m, (2.7)

Dn,m+1

(
1 −vn,m
0 1

)
=

(
1 −vn,m
0 1

)
Dn,m, (2.8)

Bn+1,m

(
1 −un,m

− 1
un,m

1

)
=

(
1 −un,m

− 1
un,m

1

)
Bn,m, (2.9)

Bn,m+1

(
1 −vn,m
1

vn,m
1

)
=

(
1 −v
1
v 1

)
Bn,m, (2.10)

Cn+1,m

(
1 −un,m
1

un,m
1

)
=

(
1 −un,m
1

un,m
1

)
Cn,m, (2.11)

Cn,m+1

(
1 −vn,m

− 1
vn,m

1

)
=

(
1 −vn,m

− 1
vn,m

1

)
Cn,m, (2.12)

(Dn+1,m −Bn+1,m − Cn+1,m)E2,1 − E2,1(Dn,m −Bn,m − Cn,m) = E2,1, (2.13)

(Dn,m+1 −Bn,m+1 − Cn,m+1)E2,1 − E2,1(Dn,m −Bn,m − Cn,m) = E2,1. (2.14)

Here

E2,1 =

(
0 0
1 0

)
. (2.15)

From (2.9, 2.10) and trBn,m = −n, it follows that

Bn,m = − n− �
un,m + un−1,m

(
un,m un,mun−1,m

1 un−1,m

)
− �

2
I.

Similarly, (2.11, 2.12) and trCn,m = −m imply

Cn,m = − m−  
vn,m + vn,m−1

(
vn,m vn,mvn,m−1

1 vn,m−1

)
−  

2
I.

Here, � and  are constants independent of n,m. The function a(�) in (2.6), independent of n
and m, can be normalized to vanish identically, i.e. trDn,m = 0. Substitution of

D =

(
a b
c −a

)

into equations (2.7, 2.8) yields

cn+1,m = cn,m, cn,m+1 = cn,m, (2.16)

an+1,m = an,m − un,mcn,m, an,m+1 = an,m − vn,mcn,m, (2.17)

bn+1,m = bn,m + un,m(an,m + an+1,m), bn,m+1 = bn,m + vn,m(an,m + an,m+1). (2.18)

Thus c is a constant independent of n,m. Equations (2.17) can be easily integrated

an,m = −cfn,m + �

where � is independent of n,m (recall that un,m = fn+1,m − fn,m, vn,m = fn,m+1 − fn,m).
Substituting this expression into (2.18) and integrating we get

bn,m = −cf2
n,m + 2�fn,m + �,
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for some constant �. Now (2.13) and (2.14) imply

bn,m = − n− �
un,m + un−1,m

un,mun−1,m −
m−  

vn,m + vn,m−1
vn,mvn,m−1,

which is equivalent to constraint (2.3) after identifying c = �
2 , � = −



4 , � = − �2 . □

Further, we will deal with the special case in (2.3) where � = � = � =  = 0, leading to the
discrete Z
 . Constraint (1.2) and the corresponding monodromy problem were obtained in [77]
for the case 
 = 1, and generalized to the case of arbitrary 
 in [28]. One can derive equation
(1.7) in the same way as above. We get it as a consequence of the results form [25] (see next
section).

2.2 Hexagonal combinatorics

Equations (1.9) have the Lax representation [25]:

Ψk+1,l,m(�) = L(1)(e, �)Ψk,l,m(�),

Ψk,l+1,m(�) = L(2)(e, �)Ψk,l,m(�), (2.19)

Ψk,l,m+1(�) = L(3)(e, �)Ψk,l,m(�),

where � is the spectral parameter and Ψ(�) : ℤ
3 → GL(2,ℂ) is the wave function. The

matrices L(n) are defined on the edges e = (pout, pin) of ℤ
3 connecting two neighboring vertices

and oriented in the direction of increasing k + l +m:

L(n)(e, �) =

(
1 fin − fout

� Δn

fin−fout
1

)
, (2.20)

with parameters Δn fixed for each type of edges. The zero-curvature condition on the faces
of elementary cubes of ℤ3 is equivalent to equations (1.9) with Δn = ei�n for properly chosen
�n. Indeed, each elementary quadrilateral of ℤ3 has two consecutive positively oriented pairs of
edges e1, e2 and e3, e4. Then the compatibility condition

L(n1)(e2)L
(n2)(e1) = L(n2)(e4)L

(n1)(e3)

is exactly one of the equations (1.9). This Lax representation is a generalization of the one
found in [78] for the square lattice.

A solution f : ℤ3 → ℂ of equations (1.9) is called isomonodromic if there exists a wave
function Ψ(�) : ℤ3 → GL(2,ℂ) satisfying (2.19) and the following linear differential equation
in �:

d

d�
Ψk,l,m(�) = Ak,l,m(�)Ψk,l,m(�), (2.21)

where Ak,l,m(�) are some 2× 2 matrices meromorphic in � with the order and position of their
poles being independent of k, l,m. Isomonodromic solutions are important in many applications.
In particular, for the first time the isomonodromy method was used to solve a discrete equation
appearing in quantum gravity [55].

The simplest non-trivial isomonodromic solutions satisfy the constraint:

bf2
k,l,m + cfk,l,m + d = 2(k − a1)

(fk+1,l,m − fk,l,m)(fk,l,m − fk−1,l,m)

fk+1,l,m − fk−1,l,m
+

2(l − a2)
(fk,l+1,m − fk,l,m)(fk,l,m − fk,l−1,m)

fk,l+1,m − fk,l−1,m
+ (2.22)

2(m− a3)
(fk,l,m+1 − fk,l,m)(fk,l,m − fk,l,m−1)

fk,l,m+1 − fk,l,m−1
.
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Theorem 11 [25] Let f : ℤ3 → ℂ be an isomonodromic solution to (1.9) with the matrix
Ak,l,m in (2.21) of the form

Ak,l,m(�) =
Ck,l,m
�

+

3∑

n=1

B
(n)
k,l,m

�− 1
Δn

(2.23)

with �-independent matrices Ck,l,m, B
(n)
k,l,m and normalized by tr A0,0,0(�) = 0. Then these

matrices have the following form:

Ck,l,m =
1

2

( −bfk,l,m − c/2 bf2
k,l,m + cfk,l,m + d

b bfk,l,m + c/2

)

B
(1)
k,l,m =

k − a1
fk+1,l,m − fk−1,l,m

(
fk+1,l,m − fk,l,m (fk+1,l,m − fk,l,m)(fk,l,m − fk−1,l,m)

1 fk,l,m − fk−1,l,m

)
+
a1
2
I

B
(2)
k,l,m =

l − a2
fk,l+1,m − fk,l−1,m

(
fk,l+1,m − fk,l,m (fk,l+1,m − fk,l,m)(fk,l,m − fk,l−1,m)

1 fk,l,m − fk,l−1,m

)
+
a2
2
I

B
(3)
k,l,m =

m− a3
fk,l,m+1 − fk,l,m−1

(
fk,l,m+1 − fk,l,m (fk,l,m+1 − fk,l,m)(fk,l,m − fk,l,m−1)

1 fk,l,m − fk,l,m−1

)
+
a3
2
I

and fk,l,m satisfies (2.22).
Conversely, any solution f : ℤ

3 → ℂ to the system (1.9),(2.22) is isomonodromic with
Ak,l,m(�) given by the formulas above.

The special case b = a1 = a2 = a3 = 0 with shift z → z − d/c implies (1.10).
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Chapter 3

Circle patterns

3.1 Schramm’s square grid circle patterns.

In this section we show that Zc of Definition 8 is a special case of circle patterns with the
combinatorics of the square grid with prescribed angle intersection. Here more general initial
conditions are considered:

f1,0 = 1, f0,1 = ei� (3.1)

with real �.
In what follows we say that the triangle (f1, f2, f3) has positive (negative) orientation if

f3 − f1
f2 − f1

=

∣∣∣∣
f3 − f1
f2 − f1

∣∣∣∣ e
i� with 0 ≤ � ≤ � (−� < � < 0).

Lemma 1 Let q(f1, f2, f3, f4) = e−2i�, 0 < � < �.

∙ If ∣f1−f2∣ = ∣f1−f4∣ and the triangle (f1, f2, f4) has positive orientation then ∣f3−f2∣ =
∣f3 − f4∣ and the angle between [f1, f2] and [f2, f3] is (� − �).

∙ If ∣f1−f2∣ = ∣f1−f4∣ and the triangle (f1, f2, f4) has negative orientation then ∣f3−f2∣ =
∣f3 − f4∣ and the angle between [f1, f2] and [f2, f3] is �.

∙ If the angle between [f1, f2] and [f1, f4] is � and the triangle (f1, f2, f4) has positive ori-
entation then ∣f3 − f2∣ = ∣f1 − f2∣ and ∣f3 − f4∣ = ∣f4 − f1∣.

∙ If the angle between [f1, f2] and [f1, f4] is (�−�) and the triangle (f1, f2, f4) has negative
orientation then ∣f3 − f2∣ = ∣f1 − f2∣ and ∣f3 − f4∣ = ∣f4 − f1∣.

Proof: straightforward. □

Proposition 2 All the elementary quadrilaterals (fn,m, fn+1,m, fn+1,m+1, fn,m+1) for the so-
lution of (1.7),(1.2) with initial (3.1) are of kite form: all edges at the vertex fn,m with
n + m = 0 (mod 2) are of the same length. Moreover, each elementary quadrilateral has
one of the forms enumerated in Lemma 1.

Proof: Given initial f0,1 and f1,0 constraint (1.2) allows one to compute fn,0 and f0,m for all
n,m ≥ 1. Induction gives the following equidistant property:

f2n,0 − f2n−1,0 = f2n+1,0 − f2n,0, f0,2m − f0,2m−1 = f0,2m+1 − f0,2m (3.2)

for every n ≥ 1, m ≥ 1. Now using (1.7) one can successively compute fn,m for each n,m ∈ ℕ.
Lemma 1 completes the proof by induction. □
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Corollary 1 The circumscribed circles of the quadrilaterals (fn−1,m, fn,m−1, fn+1,m, fn,m+1)
with n + m = 0 (mod 2) form a circle pattern of Schramm type (see [87]) with prescribed
intersection angles (see Fig. 3.1).

In fact, Proposition 2 implies that for n+m = 0 (mod 2) the points fn±1,m,fn,m±1 lie on the
circle with the center at fn,m. For the most � (namely for � ∕= �) this discrete conformal map
is not an immersion.

fn,m−1
fn+1,m−1

fn+1,m

fn+2,m

fn+1,m+1

fn−1,m

fn,m

fn,m+1

Figure 3.1: Discrete conformal maps of Schramm‘s type: kite-quadrilaterals, n+m = 0 (mod 2)

Consider the sublattice {n,m : n+m = 0 (mod 2)} and denote by V its quadrant

V = {z = N + iM : N,M ∈ ℤ
2,M ≥ ∣N ∣},

where
N = (n−m)/2, M = (n+m)/2.

We use complex labels z = N + iM for this sublattice. Denote by C(z) the circle of the radius

Rz = ∣fn,m − fn±1,m∣ = ∣fn,m − fn,m±1∣ (3.3)

with the center at fN+M,M−N = fn,m.
Let {C(z)}, z ∈ V be a square grid circle pattern on the complex plane. Define fn,m : ℤ2

+ →
ℂ as follows:
a) if n+m = 0 (mod 2) then fn,m is the center of C(n−m2 + in+m2 ),
b) if n+m = 1 (mod 2) then fn,m := C(n−m−1

2 +in+m−1
2 )∩C(n−m+1

2 +in+m+1
2 ) = C(n−m+1

2 +
in+m−1

2 ) ∩ C(n−m−1
2 + in+m+1

2 ). Since all elementary quadrilaterals (fn,m, fn+1,m, fn+1,m+1,
fn,m+1) are of kite form equation (1.7) is satisfied automatically. In what follows the function
fn,m, defined as above by a) and b) is called a discrete map corresponding to the circle pattern
{C(z)} .

Proposition 3 Let the solution of (1.7),(1.2) with initial (3.1) be an immersion, then R(z)
defined by (3.3) satisfies the following equations:

−MRzRz+1 + (N + 1)Rz+1Rz+1+i + (M + 1)Rz+1+iRz+i −NRz+iRz =
c

2
(Rz +Rz+1+i)(Rz+1 +Rz+i) (3.4)

for z ∈ Vl := V ∪ {−N + i(N − 1)∣N ∈ ℕ} and
(N +M)(Rz+i +Rz+1)(R

2
z −Rz+1Rz−i + cos�Rz(Rz−i −Rz+1))+ (3.5)

(M −N)(Rz−i +Rz+1)(R
2
z −Rz+1Rz+i + cos�Rz(Rz+i −Rz+1)) = 0,
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for z ∈ Vrint := V∖{±N + iN ∣N ∈ N}.
Conversely let R(z) : V→ ℝ+ satisfy (3.4) for z ∈ Vl and (3.5) for z ∈ Vrint. Then R(z) define
a square grid circle patterns with intersection angles �, the corresponding discrete map fn,m is
an immersion and satisfies (1.7),(1.2).

Proof: Circle pattern is immersed iff all triangles (fn,m, fn+1,m, fn,m+1) of elementary quadrilat-
erals of the map fn,m have the same orientation (for brevity we call it orientation of quadrilater-
als). Suppose that the quadrilateral (f0,0, f1,0, f1,1, f0,1) has positive orientation. Let the circle
pattern fn,m be an immersion. For n+m ≡ 1 (mod 2) points fn,m, fn−1,m+1, fn−2,m, fn−1,m−1

lie on circle with the center at fn−1,m and radius Rz , where z = (n−m− 1)/2+ i(n+m− 1)/2
(See the left part of Fig. 3.2). Using equation (1.7) one can compute fn,m+1 and fn,m−1.
Lemma 1 and Proposition 2 imply that the points fn−1,m, fn,m, fn+1,m are collinear. Sim-
ilarly the points fn,m+1, fn,m, fn,m−1 are also collinear. Denote by Rz+1, Rz+i the radii of

the circle at fn,m−1 and fn,m+1 respectively and by Rz+1+i := Rz
(fn+1,m−fn,m)
(fn,m−fn−1,m) . Let (1.2) is

satisfied at (n − 1,m). Then (1.2) at (n,m) is equivalent to (3.4), Rz+1+i being positive iff
the quadrilaterals (fn,m, fn+1,m, fn+1,m+1, fn,m+1) and (fn,m−1, fn+1,m−1, fn+1,m, fn,m) have
positive orientation.

Similarly starting with (1.2) at (n,m − 1), where n +m ≡ 0 (mod 2) (see the right part
of Fig. 3.2) one can determine evolution of the cross-like figure formed by fn,m−1, fn+1,m−1,
fn,m, fn−1,m−1, fn,m−2 into fn+1,m, fn+2,m, fn+1,m+1, fn,m, fn+1,m−1. Equation (1.2) at (n+
1,m) is equivalent to (3.4) and (3.5) at z = (n−m)/2 + i(n+m)/2. Rz+1 is positive only for
immersed circle pattern.

Rz+1+i

Rz+1

fn,m

fn+1,m

Rz

Rz+i

fn,m+1

fn-1,m

fn-1,m-1
fn-2,m

fn-1,m+1

fn,m-1

fn,m

fn+1,m

fn+1,m-1

fn-1,m-1

fn,m-1

fn,m-2

fn+2,m
fn+1,m+1

Rz-i

Rz

Rz+i

Rz+1

Figure 3.2: Kite-quadrilaterals of circle pattern.

Now let Rz be some positive solution to (3.4),(3.5). We rescale it so that R0 = 1. This
solution is completely determined by R0, Ri. Consider solution fn,m of (1.7),(1.2) with ini-
tial data (3.1), where � is chosen so that the quadrilateral (f0,0, f1,0, f1,1, f0,1) has positive
orientation and satisfies the conditions R0 = 1 = ∣f0,0 − f1,0∣ and Ri = ∣f1,1 − f1,0∣. The
map fn,m defines circle pattern due to Proposition 2. It is uniquely computed from these
equations. To this end one have to resolve (3.4) with respect to Rz+i+1 and use it to find

fn+1,m from Rz+1+i =
Rz(fn+1,m−fn,m)
(fn,m−fn−1,m

) and to resolve (3.5) for Rz+i to find fn+1,m+1 from

Rz+i = Rz+1
(fn+1,m+1−fn+1,m)
(fn+1,m−fn+1,m−1)

. Now one reverses the argument used in derivation of (3.4),(3.5)
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to show that f satisfies (1.7),(1.2). Moreover, since Rz is positive, at each step we get positively
orientated quadrilaterals. □

Remark. One easily derives from equations (3.4),(3.5) the following equation

R2
z(Rz+1 +Rz+i +Rz−1 +Rz−i)−

(Rz+iRz−1Rz−i +Rz+1Rz−1Rz−i +Rz+1Rz+iRz−i +Rz+1Rz+iRz−1)+

2Rz cos�(Rz+1Rz−1 −Rz+iRz−i) = 0, (3.6)

governing general square grid circle patterns with prescribed angles. For � = �/2 it becomes

R(z)2 =

(
1

R(z+1) +
1

R(z+i) +
1

R(z−1) +
1

R(z−i)

)
R(z + 1)R(z + i)R(z − 1)R(z − i)

R(z + 1) +R(z + i) +R(z − 1) +R(z − i) .

This equation is a discrete analogue of the equation Δ log(R) = 0 in the smooth case. Similarly
equation (3.5) is a discrete version of the equation xRy − yRx = 0, and equation (3.4) is a
discrete analogue of the equation xRx + yRy = (c− 1)R.

Note that initial data (3.1) for fn,m imply initial data for Rz:

R0 = 1, Ri =
sin �

2

sin(�− �
2 )
. (3.7)

Theorem 12 If for the solution Rz of (3.4),(3.5) with c ∕= 1 and initial conditions (3.7) holds
that

Rz > 0, (c− 1)(R2
z −Rz+1Rz−i + cos�Rz(Rz−i −Rz+1)) ≥ 0 (3.8)

in Vint, then the corresponding discrete map is embedded.

Proof: To simplify computations we give the proof of this theorem for the case � = �
2 . For

generic � it is the same with obvious modifications.

Since R(z) > 0 the corresponding discrete map is an immersion due to Proposition 3.
Consider piecewise linear curve Γn formed by segments [fn,m, fn,m+1] where n > 0 and 0 ≤
m ≤ n − 1 and the vector vn(m) = (fn,mfn,m+1) along this curve. Due to Proposition 2
this vector rotates only in vertices with n + m = 0 (mod 2) as m increases along the curve.
The sign of the rotation angle �n(m), where −� < �n(m) < �, 0 < m < n is defined by the
sign of expression R(z)2 − R(z + i)R(z + 1) (note that there is no rotation if this expression
vanishes), where z = (n−m)/2 + i(n+m)/2 is the label for the circle with the center in fn,m.
If n+m = 1 (mod 2) define �n(m) = 0.

Now the theorem hypothesis and equation (3.5) imply that the vector vn(m) rotates with in-
creasingm in the same direction for all n, and namely, clockwise for c < 1 and counterclockwise
for c > 1.

Consider the sector B := {z = rei' : r ≥ 0, 0 ≤ ' ≤ c�/4}. The terminal points of the
curves Γn lie on the sector border.

Lemma 2 For the curve Γn holds:

∣∣∣∣∣

n−1∑

m=1

�n(m)

∣∣∣∣∣ <
�

4
(1 + ∣1− c∣) (3.9)
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Proof of Lemma 2: Let us prove the inequality (3.9) for 1 < c < 2 by induction for n. For n = 1
the inequality is obviously true since the curve Γ1 is a segment perpendicular to ℝ+. Define the
angle �n(m) between iℝ+ and the vector vn(m) by fn,m+1 − fn,m = ei(�n(m)+�/2)∣fn,m+1 −
fn,m∣, where 0 ≤ �n(m) < 2�, 0 ≤ m < n. Then

∑l
m=1 �n(m) = �n(l) − �n(0) + 2�kn(l) for

some positive integer kn(l) increasing with l. Note that �n(0) < �/2, which easily follows from
Propositon 2, and �n(n − 1) < ( c�4 + �

2 ) − �
2 = c�

4 since for immersed Zc the angle between

the vector vn(n− 1) and eic�/4ℝ+ is less then �
2 . Let (3.9) holds for n > 1:

∣∣∣
∑n−1
m=1 �n(m)

∣∣∣ =
∑n−1

m=1 �n(m) < c�
4 (all �n(m) are positive for 1 < c < 2). That implies kn(l)=0, since kn(l) =

(
∑l

m=1 �n(m) − �n(l) + �n(0))/2� ≤ (
∑l

m=1 �n(m) + ∣�n(l)∣ + ∣�n(0)∣)/2� < (c�/4 + c�/4 +
�/2)/2� < 1 and kn(l) is integer. Let �n+1(l) = �n(l) + �n(l). All elementary quadrilaterals
are of the kite form therefore ∣�n(l)∣ < �/2.

Let us prove, that kn+1(m) = 0 for 0 ≤ m ≤ n + 1. Obviously kn+1(0) = 0. Assume
kn+1(l) = 0 but kn+1(l + 1) > 0. The increment of l.h.s. of

l∑

m=1

�n+1(m) = �n+1(l)− �n+1(0) + 2�kn+1(l)

as l→ l+1 is �n+1(l+1) < �. The increment of r.h.s. is no less than 2�+�n+1(l+1)−�n+1(l) ≥
2� − �n+1(l) ≥ 2� − �n(l)− ∣�n(l)∣ > 2� − c�/4− �/2 > �. The obtained contradiction gives
kn+1(l) = 0 and

∑n
m=1 �n+1(m) = �n+1(n)−�n+1(0) ≤ �n+1(n) <

c�
4 . Lemma 2 is proved. □

The obvious corollary of Lemma 2 is that the curve Γn has no self-intersection and lies in the
sector B since the rotation of the vector vn(m) along the curve is less then c�/4 < �/2. Each
such curve cuts the sector B into a finite part and an infinite part. Since the curve Γn is convex
and the borders of all elementary quadrilaterals (fn,m, fn+1,m, fn+1,m+1, fn,m+1) for imbedded
Zc have the positive orientation the segments of the curve Γn+1 lie in the infinite part. Now
the induction in n completes the proof of Theorem 12 for 1 < c < 2. The proof for 0 < c < 1
is similar. The differences are that �n(m) is not positive, the angle � is naturally defined as
negative: −2� < �n(m) < 0, so that −�/2 < �n(0) ≤ 0 and c�

4 (2− c) < �n(n− 1) < 0. Details
are left to the reader. □

3.2 Hexagonal circle patterns with constant intersection

angles.

In this section, like as in the previous one, we describe the hexagonal circle pattern correspond-
ing to Zc in terms of the radii of the circles.

Lemma 1 and Proposition 1 imply that each elementary quadrilateral of the studied circle
pattern has one of the forms enumerated in Lemma 1. Proposition 1 allows us to introduce the
radius function

r(K,L,M) = ∣fk,l,m − fk±1,l,m∣ = ∣fk,l±1,m − fk,l,m∣ = ∣fk,l,m − fk,l,m±1∣, (3.10)

where (k, l,m) belongs to the sublattice of Q with even k + l + m and (K,L,M) label this
sublattice:

K = k − k + l +m

2
, L = l − k + l +m

2
, M = m− k + l +m

2
. (3.11)

The function r is defined on the sublattice

Q̃ = {(K,L,M) ∈ ℤ
3∣L+M ≤ 0, M +K ≤ 0, K + L ≥ 0)}

corresponding to Q. Consider this function on

Q̃H = {(K,L,M) ∈ ℤ
3∣K ≥ 0, L ≥ 0, M ≤ 0, K + L+M = 0,+1}.
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Theorem 13 Let the solution f : QH → ℂ of the system (1.9),(1.10) with initial data (1.12)
be an immersion. Then function r(K,L,M) : Q̃H → ℝ+, defined by (3.10), satisfies the following
equations:

(r1 + r2)(r
2 − r2r3 + r(r3 − r2) cos�i)+

(r3 + r2)(r
2 − r2r1 + r(r1 − r2) cos�i) = 0 (3.12)

on the patterns of type I and II as in Fig.3.3, with i = 3 and i = 2 respectively,

(L+M+1)
r4 − r1
r4 + r1

+ (M+K+1)
r6 − r3
r6 + r3

+ (K+L+1)
r2 − r5
r2 + r5

= c− 1 (3.13)

on the patterns of type III and

r(r1 sin�3 + r2 sin�1 + r3 sin�2) = r1r2 sin�2 + r2r3 sin�3 + r3r1 sin�1 (3.14)

on the patterns of type IV. Conversely, r(K,L,M) : Q̃H → ℝ+ satisfying equations (3.12),(3.13),
(3.14) is the radius function of an immersed hexagonal circle pattern with constant intersection
angles (i.e. corresponding to some immersed solution f : QH → ℂ of (1.9),(1.10)), which is
determined by r uniquely.

r1
r2

r3

(K,0,-K) (K+1,0,-K)

(K,0,-K-1)

(K,1,-K)

Pattern I

r

r

r1

r3

r2

Pattern II

(0,L,-L) (1,L,-L)

(0,L,-L-1)(0,L+1,-L)

(K,L,M)

(K,L,M+1)

(K+1,L,M)

(K,L+1,M)

r6

r1

r2r3

r4

r5

Pattern III

r

r1

r2

r3

(K,L,M)

(K,L-1,M)

(K,L,M-1)

(K-1,L,M)

Pattern IV

Figure 3.3: Equation patterns.

Proof: The map fk,l,m is an immersion iff the triangles (fk,l,m, fk+1,l,m, fk,l,m−1), (fk,l,m,
fk,l,m−1, fk,l+1,m) and (fk,l,m, fk+1,l,m, fk,l+1,m) of elementary quadrilaterals of the map fk,l,m
have the same orientation (for brevity we call it the orientation of the quadrilaterals).

Necessity: To get equation (3.13) consider the configuration of two star-like figures with centers
at fk,l,m with k+ l+m = 1 (mod 2) and at fk+1,l,m, connected by five edges in the k-direction
as shown on the left part of Fig.3.4. Let ri, i = 1, ..., 6 be the radii of the circles with the centers
at the vertices neighboring fk,l,m as in Fig.3.4. As follows from Lemma 1, the vertices fk,l,m,
fk+1,l,m and fk−1,l,m are collinear. For immersed f the vertex fk,l,m lies between fk+1,l,m and
fk−1,l,m. Similar facts are true also for the l- and m-directions. Moreover, the orientations
of elementary quadrilaterals with the vertex fk,l,m coincides with one of the standard lattice.
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r1

fk,l,m

r2r3

r4

r5 r6

fk+1,l,m

fk,l,m-1fk,l+1,m

fk-1,l,m

fk,l,m+1

fk+1,l+1,m fk+1,l,m-1

fk+1,l,m+1 fk+1,l-1,m

fk+2,l,mfk,l-1,m

fk,l,m fk+1,l,m

fk,l+1,m

fk,l,m-1

fk+1,l+1,m-1

r1

r

r3

r2

Figure 3.4: Circles.

Lemma 1 defines all angles at fk,l,m of these quadrilaterals. Equation (1.10) at (k, l,m) gives
fk,l,m:

fk,l,m =
2eis

c

(
k
r1r4
r1 + r4

+ l
r3r6
r3 + r6

ei(�2+�3) +m
r2r5
r2 + r5

ei(�1+�2+2�3)

)
,

where eis = (fk+1,l,m − fk,l,m)/r1. Lemma 1 allows one to compute fk+1,l,m−1, fk+1,l+1,m,
fk+1,l,m+1 and fk+1,l−1,m using the form of quadrilaterals (they are shown in Fig. 3.4). Now
equation (1.10) at (k + 1, l,m) defines fk+2,l,m. Condition ∣fk+2,l,m − fk+1,l,m∣ = r1 with the
labels (3.11) yields equation (3.13).

For l = 0 values fk+1,0,m, fk+2,0,m, fk+1,0,m−1 and the equation for the cross-ratio with
�3 give the radius r with the center at fk+2,0,m−1. Note that for l = 0 the term with r6 and
r5 drops out of equation (3.13). Using this equation and the permutation R → r1, r1 → r,
r2 → r2, r5 → r3, one gets equation (3.12) with i = 3. The equation for pattern II is derived
similarly.

To derive (3.14) consider the figure on the right part of Fig.3.4 where k+ l+m = 1 (mod 2)
and r1, r2, r3 and r are the radii of the circles with the centers at fk+1,l,m, fk+1,l+1,m−1, fk,l+1,m

and fk,l,m−1, respectively. Elementary geometrical considerations and Lemma 1 applied to the
forms of the shown quadrilaterals give equation (3.14).

Remark. Equation (3.14) is derived for r = r(K,L,M), r1 = r(K,L,M−1), r2 = r(K−1,L,M), r3 =
r(K,L−1,M+1). However it holds true also for r1 = r(K,L,M+1), r2 = r(K+1,L,M), r3 = r(K,L+1,M+1)
since it gives the radius of the circle through the three intersection points of the circles with
radii r1, r2, r3 intersecting at prescribed angles as shown in the right part of Fig.3.4. Later, we
refer to this equation also for this pattern.

Sufficiency: Now let r(K,L,M) : Q̃H → ℝ+ be some positive solution to (3.12),(3.13),(3.14). We
can re-scale it so that r(0, 0, 0) = 1. Starting with r(1, 0,−1) and r(0, 1,−1) one can compute r
everywhere in Q̃H : r in a ”black” vertex (see Fig.3.5) is computed from (3.13). (Note that only
r at ”circled” vertices is used: so to compute r1,1,−1 one needs r(1, 0,−1) and r(0, 1,−1).) The

function r in ”white” vertices on the border ∂Q̃H = {(K, 0,−K)∣K ∈ N}∪ {(0, L,−L)∣L ∈ N}
is given by (3.12). Finally, r in ”white” vertices in QintH = QH ∖ ∂Q̃H is computed from (3.14).
In Fig.3.5 labels show the order of computing r.

Lemma 3 Any solution r(K,L,M) : Q̃H → ℝ to (3.12),(3.13),(3.14) with 0 ≤ c ≤ 2, which
is positive for inner vertices of Q̃H defines some fk,l,m satisfying (1.9) in Q. Moreover, all
the triangles (fk,l,m, fk+1,l,m, fk,l,m−1), (fk,l,m, fk,l,m−1, fk,l+1,m) and (fk,l,m, fk+1,l,m, fk,l+1,m)
have positive orientation.
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Figure 3.5: Computing r in Q̃H .

Proof of the lemma: One can place the circles with radii r(K,L,M) into the complex plane ℂ in the
way prescribed by the hexagonal combinatorics and the intersection angles. Taking the circle
centers and the intersection points of neighboring circles, one recovers fk,l,m for k+l+m = 0,±1
up to translation and rotation. This procedure is an analog of analytical continuation of holo-
morphic function. Reversing the arguments used in the derivation of (3.12),(3.13),(3.14), one
observes from the forms of the quadrilaterals that equations (1.9) are satisfied. Now using
(1.9), one recovers z in the whole Q. Equation (3.14) ensures that the radii r remain pos-
itive, which implies the positive orientations of the triangles (fk,l,m, fk+1,l,m, fk,l,m−1) and
(fk,l,m, fk,l,m−1, fk,l+1,m), (fk,l,m, fk+1,l,m, fk,l+1,m). The Lemma is proved.

Consider a solution z : Q → ℂ of the system (1.9),(1.10) with initial data (1.12), where
� and  are chosen so that the triangles (f0,0,0), f1,0,0, f0,0,−1) and (f0,0,0), f0,0,−1, f0,1,0)
have positive orientations and satisfy conditions r(1, 0,−1) = ∣f1,0,−1− f1,0,0∣ and r(0, 1,−1) =
∣f0,1,−1−f0,0,−1∣. The map fk,l,m defines circle pattern due to Proposition 1 and coincides with
the map defined by Lemma 3 due to the uniqueness of the solution. □

Since the cross-ratio equations and the constraint are compatible, the equations for the radii are
also compatible. Starting with r(0, 0, 0), r(1, 0,−1) and r(0, 1,−1), one can compute r(K,L,M)
everywhere in Q̃.

Lemma 4 Let a solution r(K,L,M) : Q̃ → ℝ of (3.12),(3.13),(3.14) be positive in the planes
given by equations K +M = 0 and L+M = 0 then it is positive everywhere in Q̃.

Proof: As follows from equation (3.14), r is positive for positive ri, i = 1, 2, 3. As r at
(K,K,−K), (K + 1,K,−K − 1) and (K,K + 1,−K − 1) is positive, r at (K,K,K − 1) is
also positive. Now starting from r at (K,K,−K − 1) and having r > 0 at (N,K + 1,−K − 1)
and (N,K,−K), one obtains positive r at (N,K,−K − 1) for 0 ≤ N < K by the same reason.
Similarly, r at (K,N,−K − 1) is positive. Thus from positive r at the planes K +M = 0 and
L+M = 0, we get positive r at the planes K+M = −1 and L+M = −1. Induction completes
the proof. □
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Lemma 5 Let a solution r(K,L,M) : Q̃ → ℝ of (3.12),(3.13),(3.14) be positive in the lines
parameterized by n as (n, 0,−n) and (0, n,−n). Then it is positive in the border planes of Q̃
specified by K +M = 0 and L+M = 0.

Proof: We prove this lemma for K +M = 0. For the other border plane the proof is proved
similar. Equation (3.13) for (K,L,−K − 1) gives

r2 = r5
(2L+ c)r1 + (2K + c)r4

(2K + 2− c)r1 + (2L+ 2− c)r4
(3.15)

therefore r2 is positive provided r1, r5 and r4 are positive. For K = L it reads as

r2 = r5
(2K + c)

(2K + 2− c) . (3.16)

It allows us to compute recursively r at (K,K,−K) starting with r at (0, 0, 0). Obviously,
r > 0 for (K,K,−K) if r > 0 at (0, 0, 0). This property together with the condition r > 0
at (n, 0,−n) imply the conclusion of the lemma since equation (3.4) gives r everywhere in the
border plane of Q̃ specified by K +M = 0. □

Lemmas 4 and 5 imply that the hexagonal circle pattern Zc is an immersion if r > 0 at
(N, 0,−N) and (0, N,−N).
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Chapter 4

Discrete Riccati equation and

hypergeometric functions

In this chapter we show that the initial condition for radius function is uniquely determined for
the solution to be positive.

Let rn and Rn be radii of the circles with the centers at f2n,0, f2n+1,1 respectively (see
Fig.4.1).

f2n,0 f2n+2,0

f2n+1,1

Rn

rn+1

rn

Figure 4.1: Circles on the border.

Constraint (1.2) and property (3.2) gives

rn+1 =
2n+ c

2(n+ 1)− crn.

From elementary geometric considerations one gets

Rn+1 =
rn+1 −Rn cos�
Rn − rn+1 cos�

rn+1

Define

pn =
Rn
rn
, gn(c) =

2n+ c

2(n+ 1)− c
and denote t = cos� for brevity. Now the equation for radii R, r takes the form:

pn+1 =
gn(c)− tpn
pn − tgn(c)

. (4.1)
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Remark. Equation (4.1) is a discrete version of Riccati equation. This title is motivated by
the following properties:

∙ cross-ratio of each four-tuple of its solutions is constant since pn+1 is Möbius transform
of pn,

∙ general solution is expressed in terms of solution of some linear equation (see below this
linearisation).

Below we call (4.1) d-Riccati equation.

Theorem 14 Solution of discrete Riccati equation (4.1) with � ∕= �/2 is positive for n ≥ 0 iff

p0 =
sin c�

2

sin (2−c)�
2

(4.2)

The proof is based on the closed form of the general solution of d-Riccati linearisation. It is
linearised by the standard Ansatz

pn =
yn+1

yn
+ tgn(c) (4.3)

which transforms it into

yn+2 + t(gn+1(c) + 1)yn+1 + (t2 − 1)gn(c)yn = 0 (4.4)

One can guess that there is only one initial value p0 giving positive d-Riccati solution from the
following consideration: gn(c) → 1 as n → ∞, and the general solution of equation (4.4) with
limit values of coefficients is yn = c1(−1)n(1+ t)n+ c2(1− t)n. So pn = yn+1

yn
+ tgn(c)→ −1 for

c1 ∕= 0. However c1, c2 defines only asymptotics of a solution. To relate it to initial values one
needs some kind of connection formulas. Fortunately it is possible to find the general solution
to (4.4).

Proposition 4 The general solution to (4.4) is

yn =
Γ(n+ 1

2 )

Γ(n+ 1− c
2 )

(
c1�

n+1−c/2
1 F

(
3− c
2

,
c− 1

2
,
1

2
− n, z1

)
+ (4.5)

+c2�
n+1−c/2
2 F

(
3− c
2

,
c− 1

2
,
1

2
− n, z2

))

where �1 = −t − 1, �2 = 1 − t, z1 = (t − 1)/2, z2 = −(1 + t)/2 and F stands for the
hypergeometric function.

Proof: Solutions were found by slightly modified symbolic method (see [31] for method descrip-
tion). Substitution

yn = ux�
x, x = n+ 1− c/2 (4.6)

transforms (4.4) into

�2(x+ 1)xux+2 + 2t(x+
c+ 1

2
)xux+1 + (t2 − 1)(x+ c− 1)(x+ 1)ux = 0. (4.7)

We are looking for solution in the form

ux =

∞∑

m=−∞
amvx,m (4.8)
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where vx,m satisfies

(x+m)vx,m = vx,m+1, xvx+1,m = vx,m+1. (4.9)

Remark. Note that the label m in (4.8) is running by step 1 but is not necessary integer
therefore vx,m is a straightforward generalization of x(m) = (x +m− 1)(x +m− 2)...(x + 1)x
playing the role of xm in the calculus of finite differences. General solution to (4.9) is expressed
in terms of Γ-function:

vx,m = c
Γ(x+m)

Γ(x)
(4.10)

Stirling formula [17] for large x

Γ(x) =

√
2�

x

(x
e

)x (
1 +

1

12x
+O

(
1

x2

) )
(4.11)

gives the asymptotics for vx,m :

vx,m ≃ cxm for x→∞. (4.12)

Substituting (4.8) into (4.7), using of (4.9) and collecting similar terms one gets the following
equation for the coefficients:

(�2 + 2t�+ t2 − 1)am−2 + 2

(
1 + c

2
−m

)
(t�+ t2 − 1)am−1+

(t2 − 1)(1−m)(c− 1−m)am = 0 (4.13)

Choosing �1 = −t− 1 or �2 = 1− t kills the term with am−2. To make series (4.8) convergent
we can use the freedom in m to truncate (4.8) on one side. The choice m ∈ ℤ or m ∈ c + ℤ

leads to divergent series. For m ∈ c+1
2 +ℤ equation (4.13) gives a c+1

2 +k = 0 for all non-negative

integer k and

a c+1
2 −k−1 =

1− t2
t�+ t2 − 1

(k − c−1
2 )(k − 1 + c−1

2 )

2k
a c+1

2 −k (4.14)

where � = �1, �2. Substitution of solution of this recurrent relation in terms of the Γ-functions
and (4.10) yields

yx = �x
∞∑

k=1

(
1− t2

2(t�+ t2 − 1)

)k
Γ(k − c−1

2 )Γ(k − 1 + c−1
2 )Γ(x + c+1

2 − k)
Γ(k)Γ(x)

(4.15)

Lemma 6 For both � = −t− 1, 1− t series (4.15) converges for all x.

Proof of Lemma 6: Since z = 1−t2
2(t�+t2−1) = (t − 1)/2,−(1 + t)/2 for �1, �2 respectively and

t = cos� < 1 the convergence of (4.15) depends on the behavior of

Γ(k − c−1
2 )Γ(k − 1 + c−1

2 )Γ(x + c+1
2 − k)

Γ(k)
.

Stirling formula (4.11) ensures that this expression is bounded by ck�(x,c) for some c an �(x, c)
which gives convergence.

Series (4.15) is expressed in terms of hypergeometric functions:

yx = �x
Γ(x+ c−1

2 )Γ(1 − c−1
2 )Γ( c−1

2 )

Γ(x)
F (1− c− 1

2
,
c− 1

2
, 1−

(
x+

c− 1

2

)
, z)
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where

F (1− c− 1

2
,
c− 1

2
, 1−

(
x+

c− 1

2

)
, z) = 1 + z

(1− c−1
2 )( c−1

2 )

(1− (x+ c−1
2 ))

+ ...+ (4.16)

zk
[
(1 − c−1

2 )(2 − c−1
2 )...(k − c−1

2 )
] [
( c−1

2 )(1 + c−1
2 )...(k − 1 c−1

2 )
]

(1 − (x c−1
2 ))...(k − (x + c−1

2 ))
+ ...

Here the standard designation F (a, b, c, z) for hypergeometric function as a holomorphic at
z = 0 solution for equation

z(1− z)Fzz + [c− (a+ b+ 1)z]Fz − abF = 0 (4.17)

is used. □

Now we can complete the proof of Proposition 4. Due to linearity the general solution of
(4.4) is given by superposition of any two linear independent solutions. As was shown each
summond in (4.5) satisfies the equation (4.4). To finish the proof of Proposition 4 one has
to show that the particular solutions with c1 = 0, c2 ∕= 0 and c1 ∕= 0, c2 = 0 are linearly
independent, which follows from the following Lemma.

Lemma 7 As n→∞ solution(4.5) has the asymtotics

yn ≃ (n+ 1− c/2) c−1
2 (c1�

n+1−c/2
1 + c2�

n+1−c/2
2 ) (4.18)

Proof: For n→∞ series representation (4.16) gives F (3−c2 , c−1
2 , 12 −n, z1) ≃ 1. Stirling formula

(4.11) defines asymptotics of the factor
Γ(n+ 1

2 )

Γ(n+1− c
2 )

(compare with (4.12) ). □

Proof of Theorem 14: For positive pn it is necessary that c1 = 0: it follows from asymptotics
(4.18) substituted into (4.3). Let us define

s(z) = 1 + z
(1− c−1

2 )( c−1
2 )

1
2

+ ...+ zk
(k − c−1

2 )...(1 − c−1
2 )( c−1

2 )(k − 1 + c−1
2 )

k!(k − 1
2 )...

1
2

... (4.19)

It is the hypergeometric function F (3−c2 , c−1
2 , 12 − n, z) with n = 0. A straightforward manipu-

lation with series shows that

p0 = 1 +
2(c− 1)

2− c z +
4z(z − 1)

2− c
s′(z)

s(z)
(4.20)

where z = 1+t
2 . Note that p0 as a function of z satisies some ordinary differential equation of

first order since s′(z)
s(z) satisfies Riccati equation obtained by reduction of (4.17). Computation

shows that
sin c�

2

sin (2−c)�
2

satisfies the same ODE. Since both expression (4.20) and (4.2) are equal

to 1 for z = 0 they coincide everywhere. □

Proposition 5 If there exists immersed fn,m satisfying (1.7),(1.2),(3.1) it is defined by initial
data (1.8).

Proof: For � ∕= �/2 the claim follows from Theorem 14. For the case � = �/2, any solution
for (4.1) with p0 > 0 is positive. Nevertheless x0 is in this case also unique and is specified by
(4.2). For orthogonal square grid circle patterns (i.e. � = �/2) the analysis is as follows. One
has

R(±(N + 1) + i(N + 1)) =
2N + c

2(N + 1)− cR(±N + iN), (4.21)

R(N − 1 + iN)R(N + i(N + 1)) = R2(N + iN). (4.22)

45



R(N − 1 + iN)
R(N + i(N + 1))

R(N + iN)

BOA

Figure 4.2: Points fn,0 are collinear.

These equations again make it possible to find R(N + iN) and R(N + i(N + 1)) in a closed
form. From the initial condition (1.8) we have

R(0) = 1, R(i) = tan
c�

4
. (4.23)

Equation (4.21) implies

R(±N + iN) =
c(2 + c)...(2(N − 1) + c)

(2− c)(4 − c)...(2N − c) . (4.24)

We now show that substituting the asymptotics of R(z) for immersed fn,m, one necessarily gets
R(i) = tan c�

4 .
Indeed, formula (4.24) yields the following representation in terms of the Γ- function:

R(N + iN) = H(c)
Γ(N + c/2)

Γ(N + 1− c/2) ,

where

H(c) =
cΓ(1− c/2)
2Γ(1 + c/2)

. (4.25)

From the Stirling formula (4.11) one obtains

R(N + iN) = H(c)N c−1

(
1 +O

(
1

N

))
. (4.26)

Now let R(i) = a tan c�
4 where a is a positive constant. Equation (4.22) (again equivalent to

the fact that the centers of all the circles C(N + iN) lie on a straight line) yields

R(N + i(N + 1)) =
(
a tan

c�

4

)(−1)N
(
(2(N − 1) + c)(2(N − 3) + c)(2(N − 5) + c)...

(2N − c)(2(N − 2)− c)(2(N − 4)− c)...

)2

.

Using the product representation for tanx,

tanx =
sinx

cosx
=

x
(
1− x2

�2

)
...
(
1− x2

(k�)2

)
...

(
1− 4x2

�2

) (
1− 4x2

(3�)2

)
...
(
1− 4x2

((2k−1)�)2

)
...

one arrives at

R(N + i(N + 1)) = a(−1)NH(c)N (c−1)

(
1 +O

(
1

N

))
. (4.27)

Solving equation (3.5) with respect to R2(z) we get

R2(z) = G(N,M,R(z + i), R(z + 1), R(z − i)) :=
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R(z + i)R(z + 1)R(z − i) +R2(z + 1)
(
M+N
2M R(z − i) + M−N

2M R(z + i)
)

R(z + 1) + M+N
2M R(z + i) + M−N

2M R(z − i) . (4.28)

For z ∈ V, R(z + i) ≥ 0, R(z + 1) ≥ 0, R(z − i) ≥ 0, the function G is monotonic:

∂G

∂R(z + i)
≥ 0,

∂G

∂R(z + 1)
≥ 0,

∂G

∂R(z − i) ≥ 0.

Thus, any positive solution R(z) with z ∈ V must satisfy

R2(z) ≥ G(N,M, 0, R(z + 1), R(z − i)).

Substituting asymptotics (4.26) and (4.27) ofR into this inequality and taking the limitK →∞,
for N = 2K, we get a2 ≥ 1. Similarly, for N = 2K+1 one obtains 1

a2 ≥ 1, which implies a = 1.
□

Proposition 6 If there is an immersed hexagonal Zc it satisfies initial data 1.13

Proof: Let rn and Rn be the radii of the circles of the circle pattern defined by zk,l,m with the
centers at z2n,0,0 and z2n+1,0,−1 respectively. Again one has

rn+1 =
2n+ c

2(n+ 1)− crn

and

Rn+1 =
rn+1 −Rn cos�
Rn − rn+1 cos�

rn+1

Now the claim follows from Theorem 14 and Proposition 5. □
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Chapter 5

Discrete Painlevé equations

Let Rz be a solution of (3.4) and (3.5) with initial condition (4.23). For z ∈ Vint define

PN,M = Pz =
Rz+1

Rz−i
, QN,M = Qz =

Rz

Rz−i
. Then (3.5) and (3.4) are rewritten as follows

QN,M+1 =
(N −M)QN,M(1 + PN,M )(QN,M − PN,M cos�)− (M +N)PN,MSN,M
QN,M [(M +N)SN,M − (M −N)(1 + PN,M )(PN,M −QN,M cos�)]

, (5.1)

PN,M+1 =
(2M + c)PN,M + (2N + c)QN,MQN,M+1

(2(N + 1)− c)PN,M + (2(M + 1)− c)QN,MQN,M+1
, (5.2)

where
SN,M = Q2

N,M − PN,M +QN,M(1− PN,M ) cos�.

Property (3.8) for (5.1),(5.2) reads as

(c− 1)SN,M ≥ 0, QN,M > 0, PN,M > 0. (5.3)

Equations (5.1),(5.2) can be considered as a dynamical system for variable M .

Theorem 15 There exists such a > 0 that (3.8) holds for the solution Rz of (3.4),(3.5) with
initial conditions

R0 = 1, Ri = a. (5.4)

Proof: Due to the following Lemma it is sufficient to prove (3.8) only for 0 < c < 1.

Lemma 8 If Rz is a solution of (3.4),(3.5) for c then 1/Rz is a solution of (3.4),(3.5) for
c̃ = 2− c.

Lemma is proved by straightforward computation.

Let 0 < c < 1 and (PN,M , QN,M ) correspond to the solution of (3.4),(3.5) with initial
conditions (5.4). Define real function F (P ) on ℝ+ implicitly by F 2 − P + F (1 − P ) cos� = 0
for 0 ≤ P ≤ 1 and by F (P ) ≡ 1 for 1 ≤ P.

Designate

Du := {(P,Q) : P > 0, Q > F (P )}, Dd := {(P,Q) : Q < 0},

D0 := {(P,Q) : P > 0, 0 ≤ Q ≤ F (P )}, Df := {(P,Q) : P ≤ 0, Q ≥ 0}
as in Fig. 5.1. Now define the infinite sequences {qn}, {pn}, n ∈ ℕ as follows:

{qn(a)} := {Q0,1, Q0,2, Q1,2, Q0,3, Q1,3, Q2,3, ..., Q0,M , Q1,M , ..., QM−1,M , ...},

48



–1

–0.5

0

0.5

1

–1 –0.5 0.5 1 1.5 2

P

D0

Du

Df

Q

Dd

Figure 5.1: The case cos� = −1/2.

{pn(a)} := {P0,1, P0,2, P1,2, P0,3, P1,3, P2,3, ..., P0,M , P1,M , ..., PM−1,M , ...}.
and the sets

Au(n) := {a ∈ ℝ+ : (pn(a), qn(a)) ∈ Du, (pk(a), qk(a)) ∈ D0 ∀ 0 < k < n},

Ad(n) := {a ∈ ℝ+ : (pn(a), qn(a)) ∈ Dd, (pk(a), qk(a)) ∈ D0 ∀ 0 < k < n}.
Au(n) and Ad(n) are open sets since the denominators of (5.1),(5.2) do not vanish in D0.
Moreover, direct computation shows that Au(1) ∕= ∅ and Ad(2) ∕= ∅, therefore the sets

Au := ∪Au(k), Ad := ∪Ad(k)

are not empty. Finally, define

A0 := {a ∈ ℝ+ : (pn(a), qn(a)) ∈ D0, ∀ n ∈ ℕ}.

Note that A0, Au, Ad are mutually disjoint and the sequences {pn}, {qn} is so constructed that

ℝ+ = A0 ∪ Au ∪ Ad. (5.5)

Indeed (PN,M , QN,M) can not jump from D0 into Df in one step M → M + 1 since PN,M+1

is positive for positive PN,M , QN,M , QN,M+1. Relation (5.5) would be impossible for A0 = ∅,
since the connected set ℝ+ can not be covered by two open disjoint nonempty subsets Au and
Ad, therefore A0 ∕= ∅. □

Now we are ready to prove the following geometrical property of square grid circle patterns Zc.

Theorem 16 The square grid discrete map Zc with 0 < c < 2 is embedded.

Proof: Theorems 15 and 12 ensure that there is imbedded Zc for each a ∈ A0. Proposition 5

implies that the set A0 consists of only one element, namely, A0 = {sin 
�
2 /sin

(2−
)�
2 }. □

Proposition 7 For N = 0 system (5.1),(5.2) for QN,M , PN,M reduces to the special case of
discrete Painlevé equation:

(n+ 1)(x2n − 1)

(
xn+1 + xn/"

"+ xnxn+1

)
− n(1− x2n/"2)

(
xn−1 + "xn
"+ xn−1xn

)
= cxn

"2 − 1

2"2
, (5.6)

where " = ei�. Namely, the map f : ℤ2
+ → ℂ satisfying (1.7) and (1.2) with initial data

f0,0 = 0, f0,1 = 1, f0,1 = ei� is an immersion if and only if the solution xn of the equation
(5.6) with x0 = ei�/2, is of the form xn = ei�n, where �n ∈ (0, �).
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Figure 5.2: Diagonal circles

Proof: To simplify computations let us prove the claim for � = �/2. Define Rn := R(in) > 0,
and define �n ∈ (0, �/2) through fn,n+1 − fn,n = e2i�n(fn+1,n − fn,n). By symmetry, all the
points fn,n lie on the diagonal arg fn,n = �/2.

Taking into account that all elementary quadrilaterals are of the kite form, one obtains

fn+2,n+1 = ei�/2(gn+1 +Rn+1e
−i�n+1), fn+1,n+2 = ei�/2(gn+1 +Rn+1e

i�n+1),

fn+1,n = ei�/2(gn+1 − iRn+1e
−i�n), fn,n+1 = ei�/2(gn+1 + iRn+1e

i�n),

and
Rn+1 = Rn tan�n, (5.7)

where gn+1 = ∣fn+1,n+1∣ (see Fig. 5.2). Now the constraint (1.2) for (n+1, n+1) is equivalent
to

cgn+1 = 2(n+ 1)Rn+1

(
ei�n + iei�n+1

i+ ei(�n+�n+1)

)
.

Similarly,

cgn = 2nRn

(
ei�n−1 + iei�n

i+ ei(�n−1+�n)

)
.

Putting these expressions into the equality

gn+1 = gn + e−i�n(Rn + iRn+1)

and using (5.7) one obtains (5.6) with xn = ei�n . This proves the necessity part.

Now let us suppose that there is a solution xn = ei�n of (5.6) with �n ∈ (0, �/2). This solution
determines a sequence of orthogonal circles along the diagonal ei�/2ℝ+, and thus the points
fn,n, fn±1,n, fn,n±1, for n ≥ 1. Now equation (1.1) determines fn,m in ℤ2

+. Since �n ∈ (0, �/2),
the interiors of the quadrilaterals (fn,n, fn+1,n, fn+1,n+1, fn,n+1) on the diagonal, and of the
quadrilaterals (fn,n−1, fn+1,n−1, fn+1,n, fn,n) are disjoint. That means that we have positive
solution R(z) of (3.4),(3.5) for z = iM, z = 1 + iM, N ∈ ℕ. Given R(iM) > 0, equation (3.4)
determines R(z) for all z ∈ V. Moreover, R(z) is positive, as follows from equation (3.4) by
induction. (Compare with Lemma 5.) □

Remark. Equation (5.6) is a special case of discrete Painlevé equation that has appeared in
the literature in a completely different context. Namely, it is related to the following discrete
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Painlevé equation

2�n+1

1−Xn+1Xn
+

2�n
1−XnXn−1

= �+ � + �n+1 + �n+

(�− �)(r2 − 1)Xn + r(1 −X2
n)[

1
2 (�n + �n+1) + (−1)n(�n − �n+1 − 2m)]

(r +Xn)(1 + rXn)
,

which was considered in [79], and is called the generalized d-PII equation. The corresponding
transformation for � = �/2 is

X =
(1 + i)(x− i)√

2(x+ 1)

with �n = n, r = −
√
2, � = 0, (�n− �n+1−2m) = 0, 
 = (2�− �n+ �n+1). For a more general

reduction of cross-ratio equation see [77].

Now consider hexagonal Zc. We prove the existence of an initial value f0,0,−1 such that
r(n, 0,−n) > 0, ∀n ∈ ℕ. (We have already shown that this value, if there is any, is unique and
is f0,0,−1 = ec�3 .)

Proposition 8 Suppose equation (5.6), where " = ei�3 , has a unitary solution xn = ei�n in
the sector 0 < �n < �3. Then r(n, 0,−n), n ≥ 0 is positive.

Proof: The proof follows from Proposition 7, as hexagonal Zc defines also square grid Zc for
constant intersection angles �3. For f1,0,0 = 1 and unitary f1,0,−1, the equations for the cross-
ratio with �3 and (1.10) again reduce to (5.6) with unitary x2n = (fn,0,−n−1−fn,0,n)/(fn+1,0,−n−
fn,0,n). Note that for n = 0 the term with x−1 drops out of (5.6); therefore the solution
for n > 0 is determined by x0 only. The condition 0 < �n < �3 means that all triangles
(zn,0,−n, zn+1,0,n, zn,0,−n−1) have positive orientation. Hence r(n, 0,−n) are all positive. □

Below we omit the index of � so that " = ei�.

Theorem 17 A unitary solution xn = ei�n to (5.6) exists in the sector 0 < �n < �.

Proof: Equation (5.6) allows us to represent xn+1 as a function of n, xn−1 and xn in a recurrent
form: xn+1 = Φ(n, xn−1, xn). Say, for orthogonal Z

c

xn+1 = Φ(n, xn−1, xn) :=

−xn−1

nx−2
n + i(
 − 1)x−1

n−1x
−1
n + (
 − 1) + i(2n+ 1)x−1

n−1xn + (n+ 1)x2n

nx2n − i(
 − 1)xn−1xn + (
 − 1)− i(2n+ 1)xn−1x
−1
n + (n+ 1)x−2

n

. (5.8)

Obviously, this equation possesses unitary solutions.
Φ(n, u, v) maps the torus T 2 = S1 × S1 = {(u, v) ∈ ℂ : ∣u∣ = ∣v∣ = 1} into S1 and has the

following properties:

∙ For all n ∈ ℕ it is a continuous map on AI × ĀI where AI = {ei� : � ∈ (0, �)} and ĀI
is the closure of AI . Values of Φ on the border of AI × ĀI are defined by continuity:
Φ(n, u, ") = −1, Φ(n, u, 1) = −".

∙ For (u, v) ∈ AI ×AI one has Φ(n, u, v) ∈ AI ∪AII ∪AIV , where AII = {ei� : � ∈ (�, �]}
and AIV = {ei� : � ∈ [� − �, 0)}. That means that x cannot jump in one step from AI
into AIII = {ei� : � ∈ (−�, �− �)}.

Let x0 = ei�0 . Note that although (5.6) is a difference equation of the second order its solution
xn for n ≥ 0 is determined by its value x0. Then xn = xn(�0). Define Sn = {�0 : xk(�0) ∈
ĀI ∀ 0 ≤ k ≤ n}. Then Sn is a closed set since Φ is continuous on AI × ĀI . As a closed subset
of a segment it is a collection of disjoint segments Sln.
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Lemma 9 There exists sequence {Sl(n)n } such that:

∙ Sl(n)n is mapped by xn(�0) onto ĀI ,

∙ Sl(n+1)
n+1 ⊂ Sl(n)n .

The lemma is proved by induction. For n = 0 it is trivial. Suppose it holds for n. As S
l(n)
n is

mapped by xn(�0) onto ĀI , continuity considerations and

Φ(n, u, ") = −1, Φ(n, u, 1) = −" (5.9)

imply: xn+1(�0) maps S
l(n)
n onto AI ∪AII ∪AIV and at least one of the segments Sln+1 ⊂ Sl(n)n

is mapped into ĀI . This proves the lemma. □

Since the segments of {Sl(n)n } constructed in lemma 9 are nonempty, there exists �̄0 ∈ Sn
for all n ≥ 0. For this �̄0, the value xn(�̄0) is not on the border of Ā0 since then xn+1(�0)
would jump out of ĀI . □

Finally we can prove the following geometrical property of hexagonal Zc.

Theorem 18 The hexagonal Zc with constant intersection angles and 0 < c < 2 is an immer-
sion.

Proof: Theorem 17 and Proposition 8 imply that there exits an immersed hexagonal Zc. Now
Proposition 6 gives the initial data for that immersion. □

Remark. Condition (3.8) does not imply that �n is monotonous. For orthogonal circle pattern
the angle �m is related to radii by tan�m = R(i(m+1))/R(im), in terms of radii the condition
(3.8) is reformulated as

(c− 1)(R(i(m+ 1))−R(i(m− 1))) ≥ 0.
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Chapter 6

Circle patterns Z2 and Log

∙ Square grid circle patterns Z2 and Log

The definitions of discrete z2 and log(z) for orthogonal square grid circle patterns were given
in the Introduction. In this section we define them also for hexagonal and square grid circle
patterns with prescribed intersection angles. Let us again consider square grid Zc, with 0 <
c < 2, and make the following renormalization for the corresponding radii: R → 2−c

c R. Then
as c approaches 2 from below, i.e. c→ 2− 0, from (3.7) with � = c� we have

R(0) =
2− c
c
→ +0, R(1 + i) = 1, R(i) =

2− c
c

sin(c�/2)

sin(�− c�/2) →
sin�

�
.

Definition 14 Z2 : ℤ2
+ → ℝ2 = ℂ is the solution of (1.7), (1.2) with c = 2 and the initial

conditions
Z2(0, 0) = Z2(1, 0) = Z2(0, 1) = 0, Z2(2, 0) = 1,

Z2(0, 2) = e2i�, Z2(1, 1) =
sin�

�
ei�.

In this definition equations (1.7) and (1.2) are again understood to be regularized through mul-
tiplication by their denominators. To define discrete log(z) we use again the obvious symmetry
R→ 1

R of equations for radius function R.

Proposition 9 Let R(z) be a solution of the system (3.4),(3.5) for some c. Then R̃(z) = 1
R(z)

is a solution of (3.4),(3.5) with c̃ = 2− c.

This proposition reflects the fact that for any discrete conformal map f there is dual discrete
conformal map f∗ defined by (see [28])

f∗
n+1,m − f∗

n,m = − 1

fn+1,m − fn,m
, f∗

n,m+1 − f∗
n,m =

1

fn,m+1 − fn,m
.

Obviously this transformation preserves the kite form of elementary quadrilaterals and therefore
is well-defined for Schramm’s circle patterns. The smooth limit of the duality is

(f∗)′ = − 1

f ′ .

The dual of f(z) = z2 is, up to a constant, f∗(z) = log(z). Motivated by this observation, we
define the discrete logarithm as the discrete map dual to Z2, i.e. the map corresponding to the
circle pattern with radii

RLog(z) = 1/RZ2(z),
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where RZ2 are the radii of the circles for Z2. Here one has RLog(0) =∞, i.e. the corresponding
circle is a straight line. The corresponding constraint (1.2) becomes (1.14). As shown in the
Introduction it can be also derived as a limit.

Definition 15 Log : ℤ2
+ → ℝ2 = ℂ is the map satisfying (1.7) and (1.14) with the initial

conditions
Log(0, 0) =∞, Log(1, 0) = 0, Log(0, 1) = 2i�,

Log(2, 0) = 1, Log(0, 2) = 1 + 2i�, Log(1, 1) =
�

sin�
ei�.

Proposition 10 Square grid discrete maps Z2 and Log are immersions.

Proof: To simplify the calculations assume � = �/2. Consider the discrete conformal map
2−c
c Zc with 0 < c < 2. The corresponding solution xn of (5.6) is a continuous function of c. So

there is a limit as c → 2 − 0, of this solution with xn ∈ AI , x0 = i, and x1 = −1+i�/2
1+i�/2 ∈ AI .

The solution xn of (5.6) with the property xn ∈ AI satisfies xn ∕= 1, xn ∕= i for n > 0 (see
(5.9)). Now, reasoning as in the proof of Proposition 7, we get that Z2 is an immersion. The
only difference is that R(0) = 0. The circle C(0) lies on the border of V, so Schramm’s result
(see [87]) claiming that corresponding circle pattern is immersed is true. Log corresponds to
the dual circle pattern, with RLog(z) = 1/RZ2(z), which implies that Log is also an immersion.
□

Theorem 19 Discrete conformal maps Z2 and Log are embedded.

Proof: The circle radii for Z2 and Log are subject to equations (3.4),(3.5) with c = 2 and
c = 0 respectively. For these values of c Theorem 12 is true: the proof is the same since Z2

and Log are immersed. Due to Lemma 8 it is suffices to prove the property (3.8) only for Z2.
Consider the discrete conformal map 2−c

c Zc with 0 < c < 2. The corresponding solution R(z)
of (3.4),(3.5) is a continuous function of c. So there is a limit as c→ 2− 0, of this solution with
the property (3.8), which is violated only for z = 0 since R(0) = 0. □

∙ Hexagonal circle patterns Z2 and Log

For hexagonal case we can also define discrete z2 and log(z) as discrete conformal maps satisfying
the corresponding constraint and initial conditions. To avoid the renormalization of initial
conditions we rather define discrete z2 and log(z) by their radius functions. Formula (3.16)
with c = 2 gives also infinite r(1, 1,−1). The way around this difficulty is again renormalization
z → (2 − c)z/c and a limit procedure c → 2 − 0, which leads to the re-normalization of initial
data (see [25]). As follows from (4.2), this renormalization implies:

r(0, 0, 0) = 0, r(1, 1,−1) = 1,

r(1, 0,−1) = sin�3

�3
, r(0, 1,−1) = sin�2

�2
. (6.1)

Proposition 11 The solution to (3.12),(3.13),(3.14) with c = 2 and initial data (6.1) is posi-
tive.

Proof: This follows from Lemmas 4 and 5 since Theorem 17 is true also for the case c = 2.
Indeed, solution xn is a continuous function of c. Therefore it has a limit value as c → 2 − 0
and it lies in the sector AI . □

Lemma 3 implies that there exists a hexagonal circle pattern with radius function r.

Definition 16 The hexagonal circle pattern Z2 has a radius function specified by Proposition
11.
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Equations (3.12),(3.13),(3.14) have the symmetry

r → 1

r
, c→ 2− c, (6.2)

which is again the duality transformation (see [28]).

Definition 17 [25] The hexagonal circle pattern Log is a circle pattern dual to Z2.

Discrete Z2 and Log are shown in Fig. 1.9.

Theorem 20 The hexagonal circle patterns Z2 and Log are immersions.

Proof: For Z2 this follows from Proposition 11. Hence the values of 1/r, where r is radius
function for Z2, are positive except for r(0, 0, 0) =∞. Lemma 3 completes the proof. □
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Chapter 7

Asymptotics of Zc and Log

Here we restrict our discussions to orthogonal square grid Zc. Equation (4.26) gives the asymp-
totical behavior of the radius function on the border of V. Due to constraint (1.2) this asymp-
totic gives also asymptotical behavior of fn,0 and f0,m. Taking further terms from the Stirling
formula (4.11), one gets the following asymptotics for Zc

Z
n,k =
2H(c)

c

(
n+ ik

2

)c (
1 +O

(
1

n2

))
, n→∞, k = 0, 1, (7.1)

having a proper smooth limit. Here the constant H(c) is given by (4.25).

Conjecture 1 The discrete conformal map Zc has the following asymptotic behavior

Zcn,m =
2H(c)

c

(
n+ im

2

)c (
1 + o

(
1√

n2 +m2

))
.

Due to representation (2.4) the discrete conformal map Zc can be studied by the isomonodromic
deformation method. One can probably prove the above Conjecture by applying a technique
similar to the one used in [55] for an equation, which is continuous in the first and discrete in
the second variable.

Another result on behavior of discrete Zc at infinity follows from its geometrical properties:

lim
n→∞

Z
n,m =∞, lim
m→∞

Z
n,m =∞.

In fact, since the terminal points of the curves Γn (see Theorem 12 for the definition of the curve)
lie on the sector border the proof easily follows from convexity of the curves Γn, inequality (3.9)
and asymptotics of (4.26).

We will prove the asymptotics of R(z) (and therefore for Zc) for Im(z) → ∞. Let us
formulate the following statement.

Proposition 12 The radius function R(z) of orthogonal square grid Zc satisfy the following
equations

R(z)2 =

(
1

R(z+1) +
1

R(z+i) +
1

R(z−1) +
1

R(z−i)

)
R(z + 1)R(z + i)R(z − 1)R(z − i)

R(z + 1) +R(z + i) +R(z − 1) +R(z − i) (7.2)
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(N +M)(R(z)2 −R(z + 1)R(z − i))(R(z + i) +R(z + 1))

+(M −N)(R(z)2 −R(z + i)R(z + 1))(R(z + 1) +R(z − i)) = 0, (7.3)

(N +M)(R(z)2 −R(z + i)R(z − 1))(R(z − 1) +R(z − i))
+(M −N)(R(z)2 −R(z − 1)R(z − i))(R(z + i) +R(z − 1)) = 0, (7.4)

(N +M)(R(z)2 −R(z + i)R(z − 1))(R(z + 1) +R(z + i))

+(N −M)(R(z)2 −R(z + 1)R(z + i))(R(z + i) +R(z − 1)) = 0. (7.5)

Proof: Equations (7.3) is just (3.5) for � = �/2. Further one derives equations (7.2), (7.4),
(7.5) from (3.5) and (3.4) by direct computation. □

To treat Zc and Log on equal footing we agree that the case c = 0 in equations corresponds
to discrete log(z). For the edges of unit squares with the vertices in V defined by (1.5) we
introduce X and Y via the radius ratios:

1 +XN,M

1−XN,M
=
RN+1,M

RN,M
,

1 + YN,M
1− YN,M

=
RN,M
RN,M−1

. (7.6)

In these variables equations (3.5) and (3.4) read as:

(M −N)
XN,M + YN,M+1

1−XN,MYN,M+1
+ (M +N)

XN,M − YN,M
1 +XN,MYN,M

= 0, (7.7)

(M −N)
YN,M+1 −XN,M

1−XN,MYN,M+1
+ (M +N + 1)

XN,M+1 + YN,M+1

1 +XN,M+1YN,M+1
= c− 1. (7.8)

Moreover, X and Y satisfy

XN,M + YN,M+1

1−XN,MYN,M+1
=

XN−1,M + YN,M
1−XN−1,MYN,M

, (7.9)

XN,M + YN+1,M+1

1 +XN,MYN+1,M+1
=

XN,M+1 + YN,M+1

1 +XN,M+1YN,M+1
, (7.10)

where (7.9) is equivalent to (7.2) and (7.10) is the compatibility condition.
Conditions (3.8), which hold for discrete zc and log(z), turn out to be so restrictive for

the corresponding solutions XN,M , YN,M of (7.7), (7.8), that they allow one to compute their
asymptotic behavior. For definiteness we consider the case c > 1.

Lemma 10 For the solution XN,M , YN,M of (7.7),(7.8) corresponding to Zc in V with c > 1
holds true:

− c− 1

M −N ≤ XN,M ≤
c− 1

M +N
, 0 ≤ YN,M+1 ≤

c− 1

M +N
+

2(c− 1)

M −N . (7.11)

Proof: Note that for the studied solutions R ≥ 0 and therefore −1 ≤ XN,M ≤ 1 and −1 ≤
YN,M ≤ 1. Let us denote for brevity XN,M by X , XN,M+1 by X̄ , YN,M by Y , YN,M+1 by Ȳ ,
and RN,M by R1, RN+1,M by R2, RN+1,M+1 by R3, RN,M+1 by R4, RN,M−1 by R5. Then
(3.8) together with (3.5),(7.4),(7.5) imply

R2
1 ≤ R2R4, R2

1 ≥ R2R5, R2
3 ≥ R2R4, R2

4 ≥ R1R3, R2
2 ≤ R1R3. (7.12)

Rewriting the first inequality as R1

R2
≤ R4

R1
and taking into account 1 +X ≥ 0 we have

X + Ȳ ≥ 0. (7.13)
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Similarly the second inequality of (7.12) infers Y −X ≥ 0 or after shifting

Ȳ ≥ X̄. (7.14)

Combining the first and the third inequalities of (7.12) one gets R3 ≥ R1 or

X̄ + Ȳ ≥ 0, (7.15)

which is equivalent to
X + ȲN+1,M+1 ≥ 0 (7.16)

due to (7.10). Similarly the forth and the fifth imply R4 ≥ R2 or

Ȳ ≥ X. (7.17)

Comparing (7.15) with (7.14) one gets Ȳ ≥ 0. Rewriting (3.4) as

R3

R1
=

(2N + c)R4 + (2M + c)R2

(2(M + 1)− c)R4 + (2(N + 1)− c)R2

and taking into account R3

R1
≥ 1 and c ≤ 2 we can estimate R2

R4
in V:

R2

R4
≥

1− c−1
M−N

1 + c−1
M−N

which reads as

Ȳ −X ≤ (1− Ȳ X)�N,M , �N,M =
c− 1

M −N .

As (1− Ȳ X) ≤ 2 we have
Ȳ −X ≤ 2�N,M. (7.18)

Similarly we can solve (3.4) with respect to R4

R2
:

R4

R2
=

(2M + c)R1 + (−2(N + 1) + c)R3

(−2N − c)R1 + (2(M + 1)− c)R3
.

Note that for M > N holds (−2N − c)R1 + (2(M +1)− c)R3 ≥ 0 as R3 ≥ R1, and c ≤ 2. This
together with R4 ≥ R2 and (1− Ȳ X̄) ≤ 2 gives after some calculations

X̄ + Ȳ ≤ 2�N,M , (7.19)

with �N,M = c−1
M+N+1 . Now inequalities (7.13),(7.17),(7.18) yield

−�N,M ≤ X

and (7.14),(7.15),(7.19) imply
X̄ ≤ �N,M ,

which gives the first inequality of (7.11) after shifting backwards from M + 1 to M . Using
(7.18) we easily get the second one. □

The estimations obtained allow one to find asymptotic behavior for the radius-function in
M−direction.
Theorem 21 For the solution RN,M of (3.5),(3.4) corresponding to discrete Zc and Log in V

holds true:
RN0,M ≃ K(c)M c−1 as M →∞, (7.20)

with constant K(c) independent of N0.
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Proof: Because of the duality

Rz2−c =
1

Rzc

it is enough to consider the case c > 1. Let us introduce n =M−N0, xn = XN0,M , yn = YN0,M .
Then for large n Lemma 10 allows one to rewrite equations (7.7),(7.8) as

xn+1 = 5xn − 2yn + c−1
n + UN0(n),

yn+1 = −2xn + yn + VN0(n),
(7.21)

where UN0(n) and VN0(n) are defined by discrete Zc and satisfy

UN0(n) < C1
1

n2
, VN0(n) < C2

1

n2
, (7.22)

for natural n and some constants C1, C2 (depending on N0). Thus the solution (xn, yn), corre-
sponding to discrete Zc is a special solution of linear non-homogeneous system (7.21) having the
order 1

n for large n. The eigenvalues of the system matrix are positive numbers �1 = 3−2
√
2 < 1

and �2 = 3 + 2
√
2 > 1. In the diagonal form system (7.21) takes the form:

'n+1 = A'n + sn + rn (7.23)

with

'n =

(
1, 1

1 +
√
2, 1−

√
2

)−1(
xn
yn

)
,

A =

(
�1 0
0 �2

)
, sn =

(
2−
√
2

2 +
√
2

)
c− 1

4n
,

and ∣rn∣ ≤ G
n2 for some G. Looking for the solution in the form

'n = Ancn

we have the following recurrent formula for cn:

cn+1 = A−n(sn + rn) + cn.

Integrating one gets

cn+1 = c1 +A−2(s1 + r1) +A−3(s2 + r2) + ...+A−1−n(sn + rn).

For components of 'n = (an, bn)
T this implies

an = �n1

(
a1 +

(2−
√
2)(c−1)
4

(
1
�2
1
+ ...+ 1

(n−1)�n
1

)
+
(
G1

�2
1
+ ...+ Gn−1

(n−1)2�n
1

))
=

= a1�
n
1 + (2−

√
2)(c−1)
4

(
1

n−1 + �1

(n−2) + ...+ �n−2
1

)
+
(
G1

�2
1
+ G2

22�3
1
+ ...+ Gn−1

(n−1)2�n
1

)

with some bounded sequence Gn: ∣Gn∣ ≤ G. The first sum, corresponding to sn, is estimated
as follows:

1
n−1

(
1 + n−1

n−2�1 +
n−1
n−3�

2
1...+ (n− 1)�n−2

1

)
=

= 1
n−1

(
1 + �1 + �21...+ �n−2

1

)
+ �1

n−1

(
1

n−2 + 2
n−3�1...+ (n− 2)�n−3

1

)
=

= 1
n−1

1−�n−1
1

1−�1
+ �1

(n−1)(n−2)

(
1 + 2(n−2)

n−3 �1 +
3(n−2)
n−4 �21...+ (n− 2)2�n−3

1

)
=

= 1
n−1

1−�n−1
1

1−�1
+ �1

(n−1)(n−2)F1(n, �1)
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where

F1(n, �1) < (1 + 2× 3�1 + 3× 4�21 + ...) =
2

(1− �1)3
− 1,

as ∣�1∣ < 1 and (n− 2)/(n− k) < k for k ≤ n− 1. The second sum is estimated by

G
(n−1)2

(
1 + (n−1)2

(n−2)2 �1 +
(n−1)2

(n−3)2�
2
1 + ...+ (n−1)2

(n−k)2 �
k−1
1 + ...+ (n− 1)2�n−2

1

)
=

G
(n−1)2 (1 + �1 + �21 + ...+ �n−2

1 +
(n−1)2−(n−2)2

(n−2)2 �1 + ...+ (n−1)2−(n−k)2
(n−k)2 �k−1

1 + ...+ ((n− 1)2 − 1)�n−2
1 ) =

= G
(n−1)2

1−�n−1
1

1−�1
+

G
(n−1)2

(
(2(n−2)+1
(n−2)2 �1 + ...+ (2(n−k)(k−1)+(k−1)2

(n−k)2 �k−1
1 + ...+ (2(n− 2) + (n− 2)2)�n−2

1

)
≤

G
(n−1)2

(
1

1−�1
+ 2�1(1 + 2�1 + 3�21 + ...) + �1(1 + 22�1 + 32�21 + ...)

)
= G

(n−1)2F2(�1).

Summing up we conclude:

an =
(2−

√
2)(c− 1)

4(1− �1)
1

n
+O

(
1

n2

)
. (7.24)

For the second component bn one has

bn = b1�
n
2+

(2 +
√
2)(c− 1)

4
�n2

(
1

�22
+

1

2�32
+ ...+

1

(n− 1)�n2

)
+�n2

(
H1

�22
+

H2

22�32
+ ...+

Hn−1

(n− 1)2�n2

)

with some bounded sequence Hn: ∣Hn∣ ≤ H . The first sum in the previous formula is estimated
as

�n−1
2

∫ 1
�2
0 (1 + x+ x2...+ xn−2)dx = �n−1

2

∫ 1
�2
0

1−xn−1

1−x dx =

�n−1
2

(∫ 1
�2
0

1
1−xdx−

∫ 1
�2
0 (xn−1 + xn + ...)dx

)
=

�n−1
2

(
− ln(1− x) ∣

1
�2
0 − 1

�n
2

(
1
n + 1

(n+1)�2
+ 1

((n+2)�2
2
...
))

=

�n−1
2 ln �2

�2−1 − 1
n�2

(
1 + n

(n+1)�2
+ n

((n+2)�2
2
...
)
=

�n−1
2 ln �2

�2−1 − 1
n�2

((
1 + 1

�2
+ 1

�2
2
+ ...

)
− 1

�2

(
1

(n+1) +
2

(n+2)�2
+ ...+ k

(n+k)�k−1
2

+ ...
))

=

�n2
1
�2

ln �2

�2−1 − 1
n(�2−1) +

Sn(�2)
n(n+1)�2

2
,

Where

Sn(�2) =
(
1 + 2(n+1)

(n+2)�2
+ 3(n+1)

(n+3)�2
2
+ ...+ k(n+1)

(n+k)�k−1
2

+ ...
)
<(

1 + 2
�2

+ 3
�2
2
+ ...+ k

�k−1
2

+ ...
)
=

�2
2

(�2−1)2 .

For the second sum in the formula for bn one has

1
�2
2

(
H1 +

H2

22�2
+ ...+ Hn−1

(n−1)2�n−2
2

)
=

F3(�2)− 1
�2
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2
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2
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+ ...
)

where
F3(�2) =

1
�2
2

(
H1 +

H2

22�2
+ ...+

Hk−1

(k−1)2�k−2
2

+ ...
)

and the second sum is estimated from above as

H
�n+1
2 n2

(
1 + n2

(n+1)2�2
+ n2

(n+2)2�2
2
+ ...+ n2

(n+k)2�k
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+ ...

)
<

H
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+ 1

�2
2
+ 1

�2
2
+ ...
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Finally

bn = �n2

(
b1 +

(2 +
√
2)(c− 1)

4�2
ln

�2
�2 − 1

+ F3(�2)

)
− (2 +

√
2)(c− 1)

4(�2 − 1)

1

n
+O

(
1

n2

)
. (7.25)

As bn → 0 with n→∞ and �2 > 1 one deduces that the coefficient by �n2 vanishes. For original
variables xn, yn the found asymptotics (7.24),(7.25) have especially simple form:

(
xn
yn

)
=
c− 1

2n

(
0
1

)
+O

(
1

n2

)
. (7.26)

Asymptotic (7.26), the second equation (7.6) and

RN0,N0+n = RN0,N0

n∏

k=1

2k + (c− 1)

2k − (c− 1)

imply (7.20). The independence of K(c) on N0 easily follows from the first equation (7.6) and
xn → 0. □

The found asymptotics implies

tan�n ≃
(
1 +

1

n

)c−1

as n→∞ (7.27)

for the corresponding solution un = ei�n of (5.6). Further, equation (1.2) allows one to ”inte-
grate” asymptototics (7.20) to get

Zc(n0 + n,m0 + n) ≃ ec�i/4K(c)nc as n→∞. (7.28)

Thus the circles of Zc not only cover the whole infinite sector with the angle c�/2 but the circle
centers and intersection points mimic smooth map z → zc also asymptotically. Morover, R(z),
being analogous to ∣f ′(z)∣ of the corresponding smooth map, has the ”right” asymptotics as
well.

61



Chapter 8

Remarks on discrete Zc

8.1 Discrete Zc is unique

Discrete map Zc is defined via constraint (1.2), which is an isomonodromy condition for some
linear equation. This seems to be rather far-fetched approach. It would be more naturally
to define Zc via circle patterns in a pure geometrical way: square grid Zc, 0 < c < 2 with
prescribed intersection angles � is an embedded infinite Schramm’s type square grid circle
pattern with prescribed intersection angles, the circles C(z) being labeled by

V = {z = N + iM : N,M ∈ ℤ
2,M ≥ ∣N ∣},

satisfying the following conditions:
1) the circles cover the infinite sector with the angle c�,
2) the centers of the border circles C(N+ iN) and C(−N+ iN) lie on the borders of this sector.

Conjecture 2 Up to re-scaling there is unique square grid Zc with prescribed intersection
angles.

A naive method to look for so defined orthogonal circle pattern Zc is to start with some
equidistant fn,0 ∈ ℝ, f0,m ∈ icℝ:

∣f2n,0 − f2n±1,0∣ = ∣f0,2n − f0,2n±1∣
and then compute fn,m for any n,m > 0 using equation (1.7). Such fn,m determines some circle
pattern. But so determined map has a not very nice behavior (see an example in Fig. 8.1).

For c = 2/k, k ∈ ℕ the proof of Theorem 2 easily follows from the rigidity results obtained
in [61]. (See an example of such Zc at Fig. 8.2.)

Infinite embedded circle patterns define some (infinite) convex ideal polyhedron in ℍ3 and
the group generated by inversions in its faces. The known results (see for example [93]) imply the
conjecture claim for rational c, but seem to be inapplicable for irrational as the group, generated
by reflections in the circles and the sector borders, is not discrete any more. Unfortunately,
the rigidity results for finite polyhedra [83] does not seem to be carried over to infinite case by
induction.

For othogonal Zc Conjecture 2 was recently proved by Bücking in her PhD [35] thesis by
adapting result from the theory of random walks.

One can also consider solutions of (1.7) subjected to (1.2) where n and m are not integer.
It turned out that there exist initial data, so that the corresponding solution define immersed
circle patterns. (The equations for radii are the same and therefore compatible. Existence of
positive solution is provable by the same arguments for the corresponding discrete Painlevé
equation.) It is natural to call such circle patterns discrete map z → (z + z0)

c. In this case it
can not be defined pure geometrically as the centers of border circles are not collinear.
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Figure 8.1: Non-immersed discrete conformal map

Figure 8.2: Schramm’s circle pattern corresponding to Z2/3

8.2 Discrete maps Zc with c ∕∈ [0, 2]

Starting with Zc, c ∈ [0, 2] one can easily define Zc for arbitrary c by applying some simple
transformations of discrete conformal maps and Schramm’s circle patterns. Denote by Sc the
Schramm’s circle pattern associated to Zc, c ∈ (0, 2]. Applying the inversion of the complex
plane z 7→ �(z) = 1/z to Sc one obtains a circle pattern �Sc, which is also of Schramm’s type.
It is natural to define the discrete conformal map Z−c, c ∈ (0, 2], through the centers and
intersection points of circles of �Sc. On the other hand, constructing the dual Schramm’s circle
pattern (see Proposition 9) for Z−c we arrive at a natural definition of Z2+c. Intertwining the
inversion and the dualization described above, one constructs circle patterns corresponding to
Zc for any c. To define immersed Zc one should discard some points (and some circles) near
(n,m) = (0, 0) from the definition domain.

To give a precise description of the corresponding discrete conformal maps in terms of the
constraint (1.2) and initial data for arbitrarily large c a more detailed consideration is required.
To any Schramm circle pattern S there corresponds a one-parameter family of discrete conformal
maps described in [28]. Take an arbitrary point P∞ ∈ ℂ∪∞. Reflect it through all the circles of

63



S. The resulting extended lattice is a discrete conformal map and is called a central extension
of S. As a special case, choosing P∞ = ∞, one obtains the centers of the circles, and thus,
the discrete conformal map considered here. Composing the discrete map Zc : ℤ2

+ → ℂ

with the inversion �(z) = 1/z of the complex plane one obtains the discrete conformal map
g(n,m) = �(Zc(n,m)) satisfying the constraint (1.2) with the parameter cg = −c. This map
is the central extension of �Sc corresponding to P∞ = 0. Let us define Z−c as the central
extension of �Sc corresponding to P∞ =∞. The map Z−c defined in this way also satisfies the
constraint (1.2) due to the following

Lemma 11 Let S be a Schramm’s circle pattern and f∞ : ℤ2
+ → ℂ and f0 : ℤ2

+ → ℂ be its
two central extensions corresponding to P∞ = ∞ and P∞ = 0, respectively. Then f∞ satisfies
(1.2) if and only if f0 satisfies (1.2).

Proof: If f∞ (or f0) satisfies (1.2), then f∞
n,0 (respectively f0

n,0) lie on a straight line, and so do
f∞
0,m (respectively f0

0,m). A straightforward computation shows that f∞
n,0 and f0

n,0 satisfy (1.2)
simultaneously, and the same statement holds for f∞

0,m and f0
0,m. Since (1.7) is compatible with

(1.2) f0 (respectively f∞) satisfy (1.2) for any n,m ≥ 0. □

Let us now describe ZK for K ∈ ℕ as a special solutions of (1.7),(1.2).

Definition 18 ZK : ℤ2
+ → ℝ2 = ℂ, where K ∈ ℕ, is the solution of (1.7, 1.2) with c = K

and the initial conditions

ZK(n,m) = 0 for n+m ≤ K − 1, (n,m) ∈ ℤ
2
+. (8.1)

ZK(K, 0) = 1, (8.2)

ZK(K − 1, 1) = i
2K−1Γ2(K/2)

�Γ(K)
. (8.3)

Figure 8.3: Discrete Z3.

The initial condition (8.1) corresponds to the identity

dkzK

dzk
(z = 0) = 0, k < K,

in the smooth case. For odd K = 2N + 1, condition (8.3) reads

Z2N+1(2N, 1) = i
(2N − 1)!!

(2N)!!
,

64



and follows from constraint (1.2). For even K = 2N , any value of ZK(K − 1, 1) is compatible
with (1.2). In this case formula (8.3) can be derived from the asymptotics

lim
N→∞

R(N + iN)

R(N + i(N + 1))
= 1

and reads

Z2N (2N − 1, 1) = i
2

�

(2N − 2)!!

(2N − 1)!!
.

We conjecture that so defined ZK are immersed.

Note that for odd integer K = 2N + 1, discrete Z2N+1 in Definition 18 is slightly different
from the one previously discussed in this section. Indeed, by intertwining the dualization and
the inversion (as described above) one can define two different versions of Z2N+1. One is
obtained from the circle pattern corresponding to discrete Z(n,m) = n + im with centers in
n+ im, n+m = 0 (mod 2). The second one comes from Definition 18 and is obtained by the
same procedure from Z(n,m) = n+ im, but in this case the centers of the circles of the pattern
are chosen in n + im, n +m = 1 (mod 2). These two versions of Z3 are presented in Figure
8.3. The left figure shows Z3 obtaied through Definition 18. Note that this map is immersed,
in contrast to the right lattice of Figure 8.3 which has overlapping quadrilaterals at the origin
(see Figure 8.4). All the asymptotic results obtained so far can be carried over on this case as

Figure 8.4: Detail view of two versions of discrete Z3.

well as on hexagonal Zc with constant intersection angles defined in [25] since the governing
equations are essentially the same ([5]).

8.3 Circle patterns with quasi-regular combinatorics.

One can deregularize the prescribed combinatorics by a projection of ℤn into a plane as follows
(see [94]). Consider ℤn+ ⊂ ℝn. For each coordinate vector ei = (e1i , ..., e

n
i ), where e

j
i = �ji define

a unit vector �i in ℂ = ℝ2 so that for any pair of indices i, j, vectors �i, �j form a basis in ℝ2.
Let Ω ∈ ℝn be some 2-dimensional simply connected cell complex with vertices in ℤn+. Choose
some x0 ∈ Ω. Define the map P : Ω→ ℂ by the following conditions:

∙ P (x0) = P0,

∙ if x, y are vertices of Ω and y = x+ ei then P (y) = P (x) + �i.
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It is easy to see that P is correctly defined and unique.
We call Ω a projectable cell complex if its image ! = P (Ω) is embedded, i.e. intersections of
images of different cells of Ω do not have inner parts. Using projectable cell complexes one can
obtain combinatorics of Penrose tilings.

It is natural to define “discrete conformal map on !” as a discrete complex immersion function
f on vertices of ! preserving the cross-ratios of the !-cells. The argument of f can be labeled
by the vertices x of Ω. Hence for any cell of Ω, constructed on ek, ej, the function f satisfies
the following equation for the cross-ratios:

q(fx, fx+ek
, fx+ek+ej

, fx+ej
) = e−2i�k,j , (8.4)

where �k,j is the angle between �k and �j , taken positively if (�k, �j) has positive orientation
and taken negatively otherwise.

Now suppose that f is a solution to (8.4) defined on the whole ℤn+. Equation (8.4) is
compatible with the constraint

cfx =

n∑

s=1

2xs
(fx+es

− fx)(fx − fx−es
)

fx+es
− fx−es

. (8.5)

This constraint could be derived from some discrete isomonodromy problem ( for n = 3 see
[25]) which ensures the compatibility.

Now we can define discrete Zc : ! → ℂ for projectable Ω as solution to (8.4),(8.5) restricted
on Ω. Initial conditions for this solution are of the form (1.8) so that the restrictions of f on
each two-dimensional coordinate lattices is an immersion defining circle pattern with prescribed
intersection angles. This definition naturally generalizes the definition of discrete square grid
and hexagonal Zc considered above. For the latter one chooses Ω = {(k, l,m) : k + l + m =
0,±1}.

Conjecture 3 The discrete zc : ! → ℂ is an immersion.

8.4 Square grid circle patterns Erf

For square grid combinatorics and � = �/2, Schramm [87] constructed circle pattern mimicking

holomorphic function erf(z) = (2/�)
∫
e−z

2

dz by giving the radius function explicitly. Namely,
let n,m label the circle centers so that the pairs of circles C(N,M), C(N+1,M) and C(N,M),
C(N,M + 1) are orthogonal and the pairs C(N,M), C(N + 1,M + 1) and C(N,M + 1),
C(N + 1,M) are tangent. Then

R(N + iM) = eNM (8.6)

satisfies the equation for a radius function:

R2(r1 + r2 + r3 + r4)− (r2r3r4 + r1r3r4 + r1r2r4 + r1r2r3) = 0, (8.7)

where R = R(N + iM), r1 = R(N + 1 + iM), r2 = R(N + i(M + 1)), r3 = R(N − 1 + iM),
r4 = R(N + i(M − 1)). For square grid circle patterns with intersection angles � for c(n,m),
C(N + 1,M) and � − � for C(N,M), C(N,M + 1) governing equation (8.7) becomes

R2(r1 + r2 + r3 + r4)− (r2r3r4 + r1r3r4 + r1r2r4 + r1r2r3) + 2R cos�(r1r3 − r2r4) = 0.

It is easy to see that it has the same solution (8.6) and therefore it defines a square grid circle
pattern, which is a discrete Erf. A hexagonal analog of Erf is not known.

Schramm [87] showed that the above circle pattern actually is a discrete analog of erf(
√
iz)

but an exact analog of erf(z) does not exist. The obstacle is purely combinatorial. There is
a hope that combinatorics of projectable cells can give more examples of discrete analogs of
classical functions.
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8.5 Discrete Zc and Log without circles

Further generalizations of discrete Zc and Log are possible. One can relax the unitary condition
for cross-ratios and consider solutions to

q(fn,m, fn+1,m, fn+1,m+1, fn,m+1) = �2e−2i� (8.8)

subjected to the same constraint (1.2) with the initial data

f1,0 = 1, f0,1 =
eic�

�
. (8.9)

This solution is a discrete analog of Zc defined on the vertices of regular parallelogram lattice
(see Fig. 8.5). However, thus obtained mappings are deprived of geometrical flavor as they do

Figure 8.5: Discrete Z1/2, � = 2, � = �/2.

not define circle patterns.
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Part II

Integrable conservation law

systems
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Chapter 9

Integrable systems of three

conservation laws and linear

congruences

9.1 Geometry of focal varieties

To start discussing geometry of the examples mentioned in the Introduction, let us prove the
translation of the property of having Riemann invariants into geometric language of line con-
gruences. It is convenient to introduce the expansions

[Li, Lj] = ckijLk, ckij = −ckji. (9.1)

(Recall that Li is Lie derivative in the flow of i-th eigenvector.) There is a simple criterion for
the existence of Riemann invariants in terms of the coefficients cijk defined by (9.1).

Proposition 13 The characteristic speed �i possesses a Riemann invariant if and only if cijk =
0 for any (j, k) ∕= i.

Theorem 22 If the characteristic speed �i of a T-system (1.15) possesses a Riemann invariant,
then the corresponding focal submanifold Mi is a linear subspace of codimension 2.

Proof: Let us consider, for definiteness, the focal hypersurface M1 with the radius vector

r1 = (�1, u1�1 − f1, ..., un�1 − fn),

corresponding to the characteristic speed �1. We will need the following relations between the
densities u and the fluxes f of conservation laws of system (1.15):

Li(f) = �iLi(u) for any i = 1, ..., n, (9.2)

LiLj(u) =
Lj(�

i)

�j − �iLi(u) +
Li(�

j)

�i − �j Lj(u) +
�j − �k
�i − �j c

k
ijLk(u), i ∕= j, (9.3)

(see e.g. [91], [99]). In particular, f = f s and u = us satisfy (9.2) and (9.3) for any s = 1, ..., n.
Introducing l = (1, u1, ..., un) and applying L1, ..., Ln to the radius vector r1, one readily obtains
L1(r1) = L1(�

1)l = 0 as L1(�
1) = 0 by linear degeneracy. Thus, the condition L1(r1) = 0

implies that M1 is independent of R1, where R1 is the Riemann invariant corresponding to �1.
Since

Li(r1) = Li(�
1)l+ (�1 − �i)Li(l),
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the tangent space TM1 is spanned by n−1 vectors Li(�1)l+(�1−�i)Li(l), (i ∕= 1). This tangent
space belongs to the hyperplane H1 spanned by n vectors l, Li(l), (i ∕= 1) which depends only
on the variable R1 since Lk(H1) ∈ H1 for any k ∕= 1. This follows from the relations

Lk(l) ∈ H1, L2
k(l) = pkLk(l) ∈ H1, LkLjH1 ∈ H1 (k, j ∕= 1).

Here L2
k(l) = pkLk(l) due to the linearity of rarefaction curves, and LkLjH1 ∈ H1 by virtue

of (9.3) and the condition c1kj = 0 (Proposition 13). On the other hand, M1 (and hence TM1)

does not depend on R1 due to linear degeneracy. Consequently, the tangent space of M1 is
the intersection of any two hyperplanes H1 which correspond to the two different values of R1.
Therefore, it is stationary and coincides with the focal submanifold M1. □

∙ Veronesé variety

Let us first recall some of the well-known properties of the Veronesé variety V 2 ⊂ ℙ5 realising ℙ5

as the space of 3× 3 symmetric matrices Zij , i, j = 0, 1, 2. Veronesé variety V 2 is a subvariety
of matrices of rank 1

Z =

⎛
⎝

Z00 Z01 Z02

Z10 Z11 Z12

Z20 Z21 Z22

⎞
⎠ .

It can be viewed as the canonical embedding F : ℙ2 → V 2 ⊂ ℙ5 defined by

Zij = X iXj, i = 0, 1, 2, (9.4)

where [X0 : X1 : X2] are homogeneous coordinates in ℙ2. Veronesé variety coincides with the
singular locus of the cubic symmetroid defined by the equation

detZij = 0,

which is also the bisecant variety S(V 2) of V 2 consisting of symmetric matrices of rank two.
Under the embedding (9.4) each line in ℙ2 is mapped onto a conic on V 2, therefore, Veronesé
variety carries a 2-parameter family of conics. The projective automorphism group of V 2

coincides with the natural action of PSL3 on ℙ5

Z → gTZg, g ∈ PSL3, (9.5)

which obviously preserves V 2.

Below we discuss in some more detail the geometry of congruences associated with the
equations (1.32), (1.36) – (1.41).

∙ Equations without Riemann invariants

In this subsection we discuss equations (1.32), (1.36) and (1.37). Rewritten as systems of
conservation laws, they do not possess Riemann invariants, so that the corresponding focal
varieties will be irreducible. We explicitly demonstrate that they concide with different non-
singular projections of the Veronesé variety.

Equation (1.32). The focal variety of the corresponding congruence (1.35) is defined by (1.20)

y0 = �, y1 = a�− b, y2 = b�− c, y3 = c�− b2 + ac, (9.6)

where � satisfies the characteristic equation

�3 + a�2 − 2b�+ c = 0. (9.7)
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One can verify that the three focal surfaces (9.6) corresponding to the three different values of
� are, in fact, ”glued” together to form the algebraic variety defined in this affine chart by a
system of seven cubics

(y0)3 + y0y1 − y2 = 0, (y2)2 + y3(y0)2 = 0, y1y2y3 + y0(y3)2 − (y2)3 = 0,

y2(y0)2 + y1y2 + y0y3 = 0, (y3)2 − y1(y2)2 + y0y2y3 + y3(y1)2 = 0,

y0y1y3 − y0(y2)2 − y2y3 = 0, y0y2 + y1(y0)2 + (y1)2 + y3 = 0.

(9.8)

Variety (9.8) coincides with the projection of the Veronesé variety V 2 ⊂ ℙ5

y0 =
Z02

Z22
, y1 =

Z12 − Z00

Z22
, y2 =

Z01

Z22
, y3 = −Z

11

Z22

from the point ⎛
⎝

Z00 0 0
0 0 Z00

0 Z00 0

⎞
⎠ (9.9)

into ℙ4. Notice that this point does not belong to the bisecant variety S(V 2) and hence the
projection is non-singular. Here we list some of the main properties of this projection which
are, of course, well-known.

1. The manifold of trisecant lines of the focal variety (9.8), which we denote byM3 ⊂ G(1, 4),
is three-dimensional.

2. For each point p on the focal variety the set of trisecants passing through p forms a planar
pencil with the vertex p.

3. The intersection of the abovementioned planar pencil with the focal variety consists of
the point p and a conic. Let us demonstrate this by a direct calculation. Since (1, �, �2)T is
the eigenvector of the system (1.34) corresponding to the eigenvalue �, the rarefaction curve
passing through p is given parametrically by

(a, b, c) + s(1, �, �2) = (a+ s, b+ s�, c+ s�2),

s being the parameter (recall that rarefaction curves are lines). The corresponding one-parameter
pencil of lines

y1 = (a+ s)y0 − (b+ s�),
y2 = (b+ s�)y0 − (c+ s�2),
y3 = (c+ s�2)y0 − (b+ s�)2 + (a+ s)(c+ s�2)

belongs to the plane with parametric equations

y0 = X,
y1 = aX − b+ Y,
y2 = bX − c+ �Y,
y3 = cX − b2 + ac+ �2Y.

It can be readily verified that the intersection of this plane with the focal variety consists of
the point X = �, Y = 0 and the parabola Y +X2 + (a+ �)X + �2 + a�− 2b = 0.

Remark. The submanifold M3 ⊂ G(1, 4) can be equivalently described as the image of the
mapping ℙ4 → ℙ6 defined by the system of cubics (9.8): this mapping blows down the lines of
the congruence (1.35), so that the image is indeed three-dimensional.

Equation (1.36). Rewritten as a system of conservation laws

at = bx, bt = cx, ct = ((1 + bc)/a)x, (9.10)
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this equation is associated with the congruence

y1 = ay0 − b, y2 = by0 − c, y3 = cy0 − (1 + bc)/a (9.11)

the focal variety of which is defined by (1.20)

y0 = �, y1 = a�− b, y2 = b�− c, y3 = c�− (1 + bc)/a (9.12)

where � satisfies the characteristic equation

�3 − b

a
�2 − c

a
�+

1 + bc

a2
= 0. (9.13)

One can verify that the three focal surfaces (9.12) corresponding to the three different values
of � are glued together to form the algebraic variety defined in this affine chart by a system of
cubics

1 + y0(y1)2 + y1y2 = 0, y1(y0)2 − y3 = 0, (y0)3 + y0y2y3 + (y3)2 = 0,

y0 + y0y1y2 + y1y3 = 0, y0y3 − y2(y0)2 + y1(y3)2 − y3(y2)2 = 0,

(y0)2 + y0y1y3 + y2y3 = 0, y0y1 + (y1)2y3 − y2 − y1(y2)2 = 0.

(9.14)

This algebraic variety is the projection of the Veronesé variety

y0 = −Z
02

Z12
, y1 = −Z

11

Z12
, y2 =

Z22 − Z01

Z12
, y3 = −Z

00

Z12

from the point ⎛
⎝

0 Z01 0
Z01 0 0
0 0 Z01

⎞
⎠ (9.15)

into ℙ4. Notice that the two points (9.9) and (9.15) are equivalent under the action of the group
(9.5) preserving the Veronesé variety (indeed, both matrices have the same Lorentzian signa-
ture). Hence, both projections and the corresponding congruences of trisecants are projectively
equivalent. To be explicit, the projective transformation

y0 = − 1

Y 1
, y1 =

Y 2

Y 1
, y2 =

Y 0

Y 1
, y3 = −Y

3

Y 1
(9.16)

identifies the systems of cubics (9.8) and (9.14). Applying this transformation to the congruence
(1.35) and introducing the new parametersA = −1/c, B = b/c, C = a−b2/c, we readily rewrite
(1.35) in the form

Y 1 = AY 0 −B, Y 2 = BY 0 − C, Y 3 = CY 0 − (1 +BC)/A

which coincides with (9.11). This gives geometric explanation of the transformation between
equations (1.32) and (1.36) mentioned in the Introduction. On the level of systems of conser-
vation laws (1.34) and (9.10), this transformation is a reciprocal equivalence.

Equation (1.37). Rewritten as a system of conservation laws

at = bx, bt = cx, ct = ((c2 + b2 − ac− 1)/b)x, (9.17)

this equation is associated with the congruence

y1 = ay0 − b, y2 = by0 − c, y3 = cy0 − ((c2 + b2 − ac− 1)/b), (9.18)
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whose focal surfaces are glued together to form the algebraic variety that is the projection of
the Veronesé variety:

y0 = −Z
02

Z12
, y1 =

Z00 − Z22

Z12
, y2 =

Z01

Z12
, y3 =

Z11 − Z22

Z12
,

from the point ⎛
⎝

Z00 0 0
0 Z00 0
0 0 Z00

⎞
⎠ (9.19)

into ℙ4. Notice that this point is not equivalent (over the reals) to the points (9.9) and (9.15)
under the action of the group (9.5) (indeed, the signature of (9.19) is Euclidean). Hence, the
congruence (9.18) is not projectively equivalent to any of the congruences (1.35) or (9.11). The
corresponding systems of conservation laws are not reciprocally related.

We point out that the Veronesé variety V 2 ⊂ ℙ5, being the intersection of quadrics, does
not possess trisecant lines. Trisecants appear only after we project V 2 into ℙ4. Indeed, let P0

be a point in ℙ5 not on the bisecant variety S(V 2). Viewed as a 3 × 3 symmetric matrix, P0

defines a non-degenerate conic in ℙ
2

2∑

i,j=0

(P−1
0 )ijX iXj = 0 (9.20)

where [X0 : X1 : X2] are homogeneous coordinates. If a plane passes through P0 and cuts
V 2 in three points, then pre-images of these points under the embedding (9.4) are pairwise
conjugate with respect to the conic (9.20). Conversely, P0 lies in the plane spanned by the
images under (9.4) of any three points in ℙ2 that are pairwise conjugate with respect to (9.20).
Thus, there is a three-parameter family of planes passing through P0 and cutting V 2 in three
points. Projecting this family from the point P0 into ℙ4, we arrive at the congruence of lines
in ℙ4. By the construction, its lines are trisecants of the projection �P0 (V

2), which is the focal
surface of our congruence. To see that developable surfaces of the congruence are planar pencils
of lines, we consider a line L in ℙ2 defined by equation L0X

0 + L1X
1 + L2X

2 = 0. Under the
embedding (9.4), this line corresponds to a conic on V 2 lying in the so called conisecant plane
of V 2. In matrix form equations of this plane are LZ = 0. The three-dimensional subspace Λ
spanned by P0 and the conisecant plane consists of all Z such that the vectors LZ and LP0

are collinear. In addition to the conic in the conisecant plane, Λ intersects V 2 in the point
PL0 whose pre-image in ℙ2 under (9.4) has homogeneous coordinates P0L

T . Consider now the
one-parameter family of planes in ℙ5 lying in Λ and passing through the line joining P0 and
PL0 . Clearly, each of these planes intersects V 2 in three points, and the projection of this
one-parameter family of planes into ℙ4 will be a planar pencil of lines. This gives developable
surfaces of our congruence.

∙ Equations with one Riemann invariant

Now let us discuss equations (1.38) and (1.39). Since both equations possess only one Riemann
invariant, the corresponding focal varieties will be reducible, consisting of a cubic scroll and a
plane intersecting the cubic scroll along its directrix.

Equation (1.38) can be rewritten as a system of conservation laws

at = bx,
bt = cx,
ct = (bc/a)x,

(9.21)
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the characteristic speeds of which are �1 = b/a and �2, �3 = ±
√
c/a. The only Riemann

invariant R1 = c/a corresponds to �1. The focal surface corresponding to �1 is the plane

y1 = y3 = 0, (9.22)

while the focal surfaces corresponding to �2 and �3 are glued together to form the cubic scroll
defined by a system of quadrics

y0y1 + y2 = 0, y0y2 + y3 = 0, y1y3 − (y2)2 = 0. (9.23)

The plane (9.22) intersects the cubic scroll along its directix

y1 = y2 = y3 = 0. (9.24)

The cubic scroll (9.23) can be obtained by projecting the Veronesé variety

y0 =
Z02

Z12
, y1 =

Z11

Z12
, y2 = −Z

01

Z12
, y3 =

Z00

Z12
,

from the point ⎛
⎝

0 0 0
0 0 0
0 0 Z22

⎞
⎠ .

Notice that the center of this projection lies on the Veronesé variety. The directrix (9.24) is
the image of the tangent plane Z00 = Z01 = Z11 = 0 to the Veronesé variety in the centre of
projection, and the plane (9.22) is the projection of the three-dimensional linear subspace in
ℙ5 spanned by the tangent plane and the point

⎛
⎝

0 Z01 0
Z01 0 0
0 0 0

⎞
⎠ (9.25)

on the bisecant variety. Thus, the focal variety of our congruence is reducible and consists
of the plane (9.22) and the cubic scroll (9.23). Like in the case of systems without Riemann
invariants, holds true

1. the manifold of trisecants of the focal variety is three-dimensional, and
2. for a fixed point p on the focal variety the set of trisecants passing through p forms

a planar pencil with the vertex p. If p belongs to the plane (9.22), the corresponding planar
pencil cuts the focal variety in the point p and a conic. If p belongs to the cubic scroll, it cuts
the focal variety in the point p and a pair of lines.

Equation (1.39) can be rewritten as a system of conservation laws

at = bx,
bt = cx,
ct = ((c2 + b2 − ac)/b)x,

(9.26)

the characteristic speeds of which are �1 = c/b and �2, �3 = (c− a±
√
4b2 + (c− a)2)/2b. The

only Riemann invariant R1 = (c− a)/b corresponds to �1. The focal surface corresponding to
�1 is the plane

y1 = y3, y2 = 0, (9.27)

while the focal surfaces corresponding to �2 and �3 are glued together to form the cubic scroll
defined by a system of quadrics

y0y3 + y2 = 0, y0y2 + y1 = 0, y1y3 − (y2)2 = 0. (9.28)
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The plane (9.27) intersects the cubic scroll (9.28) along its directrix

y1 = y2 = y3 = 0. (9.29)

The cubic scroll (9.28) can be obtained by projecting V 2

y0 =
Z02

Z12
, y1 =

Z00

Z12
, y2 = −Z

01

Z12
, y3 =

Z11

Z12
,

from the point ⎛
⎝

0 0 0
0 0 0
0 0 Z22

⎞
⎠

on V 2. The directrix (9.29) is the image of the tangent plane Z00 = Z01 = Z11 = 0 to V 2 in the
centre of projection, and the plane (9.27) is the image of the three-dimensional linear subspace
spanned by the tangent plane and the point

⎛
⎝

Z00 0 0
0 Z00 0
0 0 0

⎞
⎠ (9.30)

on the bisecant variety.
A coordinate-free construction of the congruences discussed above can be described as fol-

lows. Take a point P0 ∈ S(V 2) which is represented by a symmetric matrix of rank two. Then
there is a nonzero vector X ∈ ℙ2 such that P0X = 0. Consider the tangent plane to V 2 at the
point F (X) (recall that F is the canonocal embedding of Veronesé variety). The projection of
V 2 into ℙ

4 from the point F (x) is a cubic scroll. The projection of the tangent plane is the
directrix. The projection of the three-space spanned by the tangent plane and P0 is the plane
intersecting the cubic scroll along its directrix.

Although the last two examples look pretty similar, they are not projectively equivalent.
Indeed, the points (9.25) and (9.30) have different signatures.

∙ Equations with two Riemann invariants.

Here we discuss equation (1.40). Due to the existence of two Riemann invariants, the corre-
sponding focal variety will be reducible consisting of two planes and a two-dimensional quadric.

Equation (1.40) can be rewritten as a system of conservation laws

at = bx,
bt = cx,
ct = ((c2 − 1)/b)x

(9.31)

with the characteristic speeds �1 = 0 and �2, �3 = (c ∓ 1)/b. The system has two Riemann
invariants (c±1)/b corresponding to �2 and �3, respectively. The focal surfaces of the associated
congruence corresponding to �2 and �3 are the planes

y2 = ∓1,
y0 = ∓y3, (9.32)

while the third focal surface, corresponding to �1, is the quadric

y0 = 0, y1y3 − (y2)2 + 1 = 0. (9.33)

The planes (9.32) intersect the quadric (9.33) along the rectilinear generators

y0 = 0, y2 = ∓1, y3 = 0

75



which belong to different families and meet at infinity.
One can describe this congruence in a coordinate-free form as follows. Consider a quadric

Q in a hyperplane Λ ⊂ ℙ4. Choose a point p ∈ Q and draw two rectilinear generators l1, l2 of Q
through p. Choose two planes �1 and �2 which are not in Λ such that li ⊂ �i and �1 ∩ �2 = p.
The union of �1, �2 and Q is the focal variety in question. Its trisecants define a congruence
in ℙ4.

∙ Equations with three Riemann invariants.

As follows from Theorem 22, focal varieties of congruences corresponding to diagonalizable n-
component T-systems are collections of n linear subspaces of codimension two in ℙ

n+1. For
n = 4 we have 3 planes in ℙ4. To ensure the nondegeneracy, we require that the points of their
pairwise intersections are distinct.

Equation (1.41) can be rewritten as a linear system of conservation laws

at = bx,
bt = cx,
ct = bx

(9.34)

with the characteristic speeds �1 = 0, �2 = 1, �3 = −1. Being linear, this system has 3
Riemann invariants. The focal surfaces of the associated conruence are the planes

y1 = y3, y0 = 0 for �1 = 0,

y3 = −y2, y0 = 1 for �2 = 1

and
y3 = y2, y0 = −1 for �1 = 0,

respectively.

9.2 Linear congruences.

Definition 19 The congruence (1.16) is called linear (or general linear) if its Plücker coordi-
nates

ui, f i, uif j − ujf i

satisfy n linear equations of the form

�+ �iu
i + �if

i + �ij(u
if j − ujf i) = 0 (9.35)

where �, �i, �i, �ij are arbitrary constants.

Notice that equations (9.35), being linear in f , define f i as explicit functions of u. We emphasize
that all examples discussed above belong to this class.

Proposition 14 To each linear congruence corresponds a T -system of conservation laws.

Proof: Let q be any fixed point in Pn+1. For the lines passing through q we have f i = uiq0−qi,
which, upon the substitution into (9.35), implies a linear system for u. In general, this system
possesses a unique solution, so that there exists a unique line of our congruence passing through
q (such congruences are said to be of order one). The focal variety V (also called the jump
locus) consists of those q for which the corresponding linear system is not uniquely solvable
for u. One can easily see that V has codimension at least two, and in the case it equals two,
the developable surfaces are planar pencils of lines. Moreover, the intersection of any of these
planes with the focal variety V consists of a point and a plane curve of the order n− 1. Thus,
there is a T-system associated with any linear congruence in ℙn+1. □
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Theorem 23 A congruence, corresponding to a three-component T-system is linear.

Proof is given in the next section.

In the case n = 4 the geometry of focal varieties of general linear congruences, known as
the Palatini scrolls, was investigated in [82] (see also [70] and [81] for further properties of the
Palatini scrolls). ( It is a great pleasure to thank F. Zak for providing these references.)

There are at least two different ways one could approach the classification of three-component
T-systems or, equivalently, the line congruences in ℙ4, whose developable surfaces are planar
pencils of lines. The first way is to establish their linearity. In the parametrization (1.16)
this means that the three-dimensional surface with the radius-vector (u, f, u ∧ f) representing
our congruence in the Grassmanian Gr(1,ℙ4) lies in a linear subspace of codimension three.
After the linearity is established, the results of Castelnuovo [37], who demonstrated that the
corresponding focal varieties are projections into ℙ4 of the Veronesé variety in ℙ5, complete the
classification and imply Theorem 8.

Another way makes use of the Theorem of Segre [90] saying that a surface in projective space
carrying a two-parameter family of plane curves (not lines) is either a cone or the surface of
Veronesé V 2 or its projection into ℙ4. Moreover, the corresponding plane curves are conics. This
theorem is intimately related to our problem. Indeed, let M1,M2,M3 be three focal surfaces
of our congruence in ℙ4. Take a point p ∈ M1 and consider the planar pencil of lines passing
through it. This plane intersects M2 and M3 in the curves 
2 and 
3, respectively. Varying p,
we conclude that both M2 and M3 contain two-parameter families of plane curves and hence
are projections of the Veronesé variety (the case of a cone can be easily ruled out). Moreover,
the curves 
2 and 
3 are conics. To show that both M2 and M3 are actually parts of one and
the same Veronesé variety, it is sufficient to demonstrate that 
2 amd 
3 are parts of one and
the same plane conic. This can be done as follows: intersect 
2 and 
3 by a line passing through
p and construct the tangent lines to 
2 and 
3 through the points of intersection. These lines
meet in a point q lying in the same plane. Doing this for all lines of the pencil with vertex p
we arrive at the curve q, which clearly must be a line (called the polar of p) in case 
2 and 
3
are parts of one and the same conic.

Unfortunately, both proofs require differential identities, which do not immediately follow
from the geometric data given. Thus, it proves necessary to directly investigate the exterior
differential system governing three-component T-systems, transforming it into the involutive
form. Once it has been done, both properties mentioned above reduce to simple calculation.

9.3 Structure equations

∙ Exterior representation

Studying nondiagonalizable systems (1.15) it is convenient to use the following exterior notation:
let li = (li1(u), l

i
2(u), ..., l

i
n(u)) be left eigenvectors of the matrix vij(u) corresponding to the

eigenvalues �i(u), i.e. lijv
j
k = �ilik.With the eigenforms !i = lijdu

j the system (1.15) is rewritten
in the following exterior form:

!i ∧ (dx+ �idt) = 0, i = 1, ..., n. (9.36)

The differentiation of !i and �i gives the structure equations

d!i = c̃ijk!
j ∧ !k (c̃ijk = −c̃ikj), d�i = �ij!

j, (9.37)

that contain all the necessary information about the system under study. If !i are normalized
in such a way that !i(�j) = �ij then the structure coefficients c̃ijk are related to the structure

coefficients cijk of (9.1) by c̃ijk = −cijk.
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∙ Structure equations for nondiagonalizable systems.

The next three theorems claim that for nondiagonalizable systems the structure equations for
!i take surprisingly simple forms. We give the detailed proof only for the first theorem and less
detailed plans of proof for the others. Notice that !i are defined up to nonzero normalization
!i → pi!i, pi ∕= 0.

Theorem 24 The eigenforms of a 3× 3 T-system without Riemann invariants can be normal-
ized so that the structure equations take the form

d!1 = !2 ∧ !3, d!2 = �!3 ∧ !1, d!3 = !1 ∧ !2, where � = ±1. (9.38)

Proof: For a system without Riemann invariants the forms !i can be normalized in such a way,
that the structure equations assume the form:

d!1 = a!1 ∧ !2 + b!1 ∧ !3 + !2 ∧ !3,
d!2 = p!2 ∧ !1 + q!2 ∧ !3 + �!3 ∧ !1,

d!3 = r!3 ∧ !1 + s!3 ∧ !2 + !1 ∧ !2, where � = ±1.
(9.39)

Below we assume that � = 1, since the complex normalization

!1 → i!1, !2 → !2, !3 → i!3

reduces the case � = −1 to the case � = 1, which allows to treat both cases on the equal footing.
Since the systems under consideration are strictly hyperbolic the eigenforms !i constitute a
basis so that the differential of any function u(w) can be decomposed by !i: du = ui!

i,
where for brevity we use the notation ui = Li(u). Let ui(w) be the densities of conservation
laws, which provide the variables rectifying rarefaction curves. Differentiating the relations
du = ui!

i, df = �iui!
i (compare with (9.2)) and equating to zero the coefficients in !i ∧ !j ,

one obtains

u12 = u2
�2
1

�1−�2 + u1
�1
2

�2−�1 + u1a+ u3
�3−�2

�1−�2 ,

u21 = u2
�2
1

�1−�2 + u1
�1
2

�2−�1 + u2p+ u3
�3−�1

�1−�2 ,

u31 = u3
�3
1

�1−�3 + u1
�1
3

�3−�1 + u3r + u2
�1−�2

�1−�3 ,

u13 = u3
�3
1

�1−�3 + u1
�1
3

�3−�1 + u1b+ u2
�3−�2

�1−�3 ,

u32 = u3
�3
2

�2−�3 + u2
�2
3

�3−�2 + u3s+ u1
�1−�2

�2−�3 ,

u23 = u3
�3
2

�2−�3 + u2
�2
3

�3−�2 + u2q + u1
�1−�3

�2−�3 ,

where uij are defined as dui = uij!
j. Let

→
u= (u1, u2, u3) be functionally independent densities

of three conservation laws; then
→
ui is the i-th right-hand eigenvector in these variables. Since

the rarefaction curves are straight lines there exist scalars A,B,C such that

→
u11= A

→
u1,

→
u22= B

→
u2,

→
u33= C

→
u3 .

Taking into account the known expressions for
→
uij when i ∕= j, one obtains the following

expressions for d
→
ui:

d
→
u1= A

→
u1 !

1 +

(
→
u1

(
a+

�1
2

�2−�1

)
+

→

u2 �
2
1

�1−�2 +
→

u3 (�3−�2)
�1−�2

)
!2

+

(
→
u1

(
b+

�1
3

�3−�1

)
+

→

u2 (�3−�2)
�1−�3 +

→

u3 �
3
1

�1−�3

)
!3

d
→
u2=

(
→
u2

(
p+

�2
1

�1−�2

)
+

→

u1 �
1
2

�2−�1 +
→

u3 (�3−�1)
�1−�2

)
!1 +B

→
u2 !

2

+

(
→
u2

(
q +

�2
3

�3−�2

)
+

→

u1 (�1−�3)
�2−�3 +

→

u3 �
3
2

�2−�3

)
!3

(9.40)

78



d
→
u3=

(
→
u3

(
r +

�3
1

�1−�3

)
+

→

u1 �
1
3

�3−�1 +
→

u2 (�1−�2)
�1−�3

)
!1

+

(
→
u3

(
s+

�3
2

�2−�3

)
+

→

u1 (�1−�2)
�2−�3 +

→

u2 �
2
3

�3−�2

)
!2 + C

→
u3 !

3

where
→
ui= (u1i , u

2
i , u

3
i ).

Differentiating these equations and equating to zero the coefficients in !i ∧ !j , one obtains
9 equations linear with respect to

→
uj . Since the required ui are functionally independent, these

equations split with respect to
→
uj. As a result one gets 27 equations for derivatives of �k, of

the coefficients A,B,C, and of the coefficients of the structure equations a, b, p, q, r, s. The
coefficients in

→
u3 !

1 ∧!2 and in
→
u2 !

3 ∧!1 of the differentiation of the first eaquation of (9.40)

allows to find A and �11, the coefficients in
→
u3 !

1 ∧ !2 and in
→
u1 !

2 ∧ !3 of the differentiation

of the second equation of (9.40) gives B and �22, and, finally, the coefficients in
→
u1 !

2 ∧ !3 and
→
u2 !

3 ∧ !1 of the differentiation of the third equation of (9.40) gives C and �33:

�11 =
(2 p− 2 r)

(
�1 − �3

) (
�2 − �1

)

�2 − �3 , (9.41)

�22 =
(2 a− 2 s)

(
�2 − �3

) (
�1 − �2

)

�1 − �3 , (9.42)

�33 =
(2 q − 2 b)

(
�2 − �3

) (
�1 − �3

)

�1 − �2 , (9.43)

A =
(r − p)

(
�2 − 2�1 + �3

)

�2 − �3 +
2�31

(
�2 − �1

)

(�1 − �3) (�2 − �3) +
2�21

(
�3 − �1

)

(�2 − �3) (�2 − �1) , (9.44)

B =
(s− a)

(
�1 − 2�2 + �3

)

�1 − �3 +
2�32

(
�1 − �2

)

(�1 − �3) (�2 − �3) +
2�12

(
�3 − �2

)

(�1 − �3) (�1 − �2) , (9.45)

C =
(q − b)

(
�1 − 2�3 + �2

)

�1 − �2 +
2�13

(
�2 − �3

)

(�1 − �3) (�1 − �2) +
2�23

(
�3 − �1

)

(�2 − �3) (�1 − �2) . (9.46)

For linear degenerate systems the first three of these equations imply

r = p, s = a, q = b. (9.47)

For eigenvalues of linear degenerate systems and their first derivatives holds

d�1 = �12!
2 + �13!

3

d�2 = �21!
1 + �23!

3

d�3 = �31!
1 + �32!

2
(9.48)

d�12 = (p�12 − �13)!1 + �122!
2 + �123!

3

d�13 = (r�13 + �12)!
1 + (�123 − q�12 + s�13)!

2 + �133!
3

d�21 = �211!
1 + (a�21 + �23)!

2 + (�231 + b�21 − r�23)!3

d�23 = �231!
1 + (s�23 − �21)!2 + �233!

3

d�31 = �311!
1 + �312!

2 + (b�31 − �32)!3

d�32 = (�312 − a�31 + p�32)!
1 + �322!

2 + (q�32 + �31)!
3

(9.49)

Taking into account (9.47) and substituting the expressins for A,B,C into relations (9.40), one

obtains a closed system with respect to
→
ℎ1,

→
ℎ2,

→
ℎ3. Differentiating this system and spliting with

respect to
→
ui !

j∧!k one gets 27 equations for the second derivatives of �i and first derivatives of
a, b, p. These equations allow to find all second derivatives of �i. Morover, from these equation
it followes that a = b = p = 0.
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Indeed, the coefficients in
→
u1 !

1 ∧ !2,
→
u2 !

1 ∧ !2,
→
u1 !

2 ∧ !3,
→
u2 !

2 ∧ !3,
→
u3 !

3 ∧ !1 of
the derivative of the first equation (9.40) define �312, �

2
11, �

1
23, �

2
31, �

3
11 respectively. (We do

not write down these intermediate expression for nonzero a, b, p.) Substituting these derivatives

into the coefficients in
→
u3 !

2 ∧ !3 and
→
u1 !

3 ∧ !1 one gets the equations

pa− 5b− a1 = 0
bp+ 5a− b1 = 0

which determines a1 and b1. It is remarkable that these equations for structure coefficients do
not include the eigenvalues and their derivatives.

Similarly, differentiation of the second equation (9.40) defines �122, �
3
22, from the coefficients

in
→
u1 !

1 ∧ !2,
→
u3 !

2 ∧ !3 respectively and gives the equations

pa+ 5b− p2 = 0
ab− 5p− b2 = 0
bp+ 3a− p3 = 0
ab− 2a3 + b2 − p = 0

for p2, a3, b2, p3 from the coefficients in
→
u2 !1 ∧ !2,

→
u1 !3 ∧ !1,

→
u2 !3 ∧ !1,

→
u2 !2 ∧ !3

respectively.
Finally, differentiation of the third equation (9.40) defines �233, �

1
33, from the coefficients in

→
u2 !

2 ∧ !3,
→
u1 !

3 ∧ !1 respectively and the equations b = 0, p = 0, a = 0 from the coefficients
in

→
u3 !

1 ∧ !2,
→
u3 !

2 ∧ !3,
→
u3 !

3 ∧ !1 respectively.
For a = b = p = 0 not only system (9.40) but also the system (9.49) is in involution. The

second derivatives �ijk and �ijj can be obtained by cyclic permutation from

�312 = �31�
3
2

(
1

�3−�1 + 1
�3−�2

)
+ �32�

2
1

(
1

�1−�2 + 1
�2−�3

)
− �31�12

(
1

�3−�1 + 1
�1−�2

)
+

+�23

(
�1−�3

�1−�2

)2
− �13

(
�2−�3

�2−�1

)2 (9.50)

�211 = −2�21�31
(

1
�2−�3 + 1

�3−�1

)
+ 2

(�2
1)

2

�2−�3 + 2 (�2−�3)(�2−�1)
�3−�1 (9.51)

□

Differential form !i is proportional to the total differential of a certain function !i = pidRi

if and only if d!i ∧ !i = 0 (this is a special case of the Frobenius theorem). Recall that the
function Ri is called Riemann invariant.

Theorem 25 The eigenforms of a 3× 3 T-system with one Riemann invariant can be normal-
ized so that the structural equations take the form

d!1 = �!2 ∧ !3, d!2 = !3 ∧ !1, !3 = dR3, where � = ±1. (9.52)

Proof: Let the system have only one Riemann invariant R3: dR3 = !3. Then the structure
equations can be normalized as follows:

d!1 = a!1 ∧ !2 + b!1 ∧ dR3 + c!2 ∧ dR3,
d!2 = p!2 ∧ !1 + q!2 ∧ dR3 + dR3 ∧ !1.

(9.53)

As in the case without Riemann invariants, differentiation d(df⃗) = 0 allows to find u⃗ij =

U⃗ij(�
l, �lm, u⃗n, a, b, c, p, q), i ∕= j, l,m, n = 1, 2, 3. Now the linear degeneracy �ii = 0, i =

1, ..., 3 and the compatibility conditions for

du⃗1 = A1u⃗1!
1 + U⃗12!

2 + U⃗13!
3,

du⃗2 = U⃗21!
1 +A2u⃗2!

2 + U⃗23!
3,

du⃗3 = U⃗31!
1 + U⃗32!

2 +A3u⃗3!
3

(9.54)
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imply
a1 = p2, q1 = b1, q2 = b2, a3 − b2 = pc+ aq,

b1 − p3 = a− pb, c1 = 0, c2 = 0, c3 = 2c(q − b). (9.55)

The first five formulae (9.55) are equivalent to d(p !1+a !2+b dR3) = 0 and d((q−b) dR3) = 0.
Define the functions � and  by

−d�
�

= p !1 + a !2 + b !3,
d 

 
= (q − b)dR3.

It is clear that  depends only on R3. Renormalize the forms and introduce the new Riemann
invariant R̂3 as follows:

!̂1 =
!1

�
, !̂2 =

 

�
!2, dR̂3 =  (R3)dR3.

Thus renormalized forms satisfy

d!̂1 =
c

 2
!̂2 ∧ !̂3, d!̂2 = dR̂3 ∧ !̂1.

The last three equations (9.55) give d(c/ 2) = 0, so c/ 2 is constant. One can always choose
 to guarantee c/ 2 = ±1. With structure equation (9.52) system (9.54) is involutive. □

Theorem 26 The eigenforms of a 3 × 3 T-system with two Riemann invariants can be nor-
malized so that the structure equations take the form

d!1 = !2 ∧ !3, !2 = dR2, !3 = dR3. (9.56)

Proof: One can normalize !1 so that

d!1 = a !1 ∧ dR2 + b !1 ∧ dR3 + dR2 ∧ dR3. (9.57)

Now the compatibility conditions for (9.54) with �ii = 0, i = 1, ..., 3 imply

a1 = a3 = b1 = b2 = 0,

which means that a is a function only of R2 and b depends only on R3.
Define dR̂2 = exp

(∫
a(R2)dR2

)
dR2, dR̂3 = exp

(∫
b(R3)dR3

)
dR3,

!̂1 = exp
(∫
a(R2)dR2 +

∫
b(R3)dR3

)
!1. The so renormalized form and so redifined Riemann

invariants satisfy d!̂1 = dR̂2 ∧ dR̂3. As before, with structure equation (9.56) system (9.54) is
involutive. □

Remark. Equation (1.36) has structure equations (9.38) with � = −1, for equation (1.37)
� = 1. Equations (1.38) and (1.39) have structure equations (9.52) with � = −1 and with � = 1
respectively.

∙ Proof of Theorem 23

In the parametrization (1.16) linearity of the congruence means that the three-dimensional
surface with the radius-vector q = (1,u, f ,u∧f) representing the congruence in the Grassmanian
G(1, 4), where u = (u1, u2, u3), f = (f1, f2, f3), lies in a linear subspace of codimension 3. The
osculating space of this surface is spanned by

qi = Li(q), qii = L2
i (q), qij = LjLi(q).

Conditions �ii = 0, uii = piui and fi = �iui imply

ui = (0,ui, �
iui,ui ∧ (f − �iu))
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and
qii = piqi ≡ 0 mod(q1,q2,q3).

Using the first equation of (9.40) one has

q12 = L2(q1) =

�21
�1 − �2q2 + �21(0, 0,u2,u ∧ u2) +

�12
�2 − �1q1 +

(�3 − �2)(�1 − �3)
�1 − �2 (q3 + (0, 0,u3,u ∧ u3))+

�12(0, 0,u1,u ∧ u1) + (�2 − �1)(0, 0, 0,u1 ∧ u2) ≡ �21(0, 0,u2,u ∧ u2)+

(�3 − �2)(�1 − �3)
�1 − �2 (0, 0,u3,u ∧ u3) + �12(0, 0,u1,u ∧ u1)+

(�2 − �1)(0, 0, 0,u1 ∧ u2) mod(q1,q2,q3).

Deenote r.h.s. by q̃12 and define q̃23 and q̃31 in a similar way. Thus the osculating space
is spanned by 6 vectors q1,q2,q3, q̃12, q̃23, q̃31. Using formula (9.50) and these ones ob-
tained from (9.50) by cyclic permutation one gets by direct computation that L3(q̃12) ≡
0 mod(q̃12, q̃23, q̃31). This relation along with qii ≡ 0 mod(q1,q2,q3) implies that the os-
culating space is stationary so the three-dimensional surface representing the congruence lies in
6 dimensional linear subspace, which has codimension 3. For the cases with Riemann invariants
the proof is essentially the same. □

9.4 Completely exeptional Monge-Ampére type equations.

Another important class of examples of T-systems is provided by completely exceptional Monge-
Ampére equations studied in [30]. Equations of this type are defined as follows. Introduce the
Hankel matrix

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2mu
∂x2m

∂2mu
∂x2m−1∂t

∂2mu
∂x2m−2∂t2 ... ∂2mu

∂xm∂tm

∂2mu
∂x2m−1∂t

∂2mu
∂x2m−2∂t2

∂2mu
∂x2m−3∂t3 ... ∂2mu

∂xm−1∂tm+1

... ... ... ... ...

∂2mu
∂xm∂tm

∂2mu
∂xm−1∂tm+1

∂2mu
∂xm−2∂tm+2 ... ∂2mu

∂t2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(9.58)

and denote by MJ,K(u) its minor of order l whose rows and columns are encoded in the multi-
indices J = (j1, ..., jl) and K = (k1, ..., kl), respectively. PDE’s in question are defined by linear
combinations of these minors: ∑

AJ,KMJ,K = 0, (9.59)

where the summation is over all possible l, J,K, and AJ,K are arbitrary constants. Any such
equation can be rewritten as

∂2mu

∂t2m
= f(

∂2mu

∂x2m
,

∂2mu

∂x2m−1∂t
, ...,

∂2mu

∂x1∂t2m−1
),

and after the introduction of a1 = ∂2mu
∂x2m , a

2 = ∂2mu
∂x2m−1∂t , ..., a

2m = ∂2mu
∂x1∂t2m−1 , assumes the

conservative form
a1t = a2x, a2t = a3x, ..., a2mt = f(a1, a2, ..., a2m)x. (9.60)

One can show that this is always a T-system (in fact, its linear degeneracy was demonstrated
in [30]), and the corresponding congruence (1.16) has the following properties:
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– its developable surfaces are planar pencils of lines,
– its focal variety has codimension at least 2,
– each developable surface intersects the focal variety in a point, which is the vertex of the
pencil, and a plane curve of degree n− 1.

To obtain systems of this type for odd n, one should consider equations (9.59) which are

independent of ∂
2mu
∂t2m . Introducing v = ∂u

∂x and rewriting the resulting equation for v (which is
of order 2m − 1) as a system of conservation laws, one arrives at congruence (1.16) with the
properties as formulated above. When n ≥ 4 these congruences are not necessarily linear. In
this case the focal varieties will necessarily be singular, as follows from [70].

9.5 Reducible systems and linear complexes

Let us consider a PDE of the form

∂nu

∂tn
= f

(
∂nu

∂xn
,

∂nu

∂xn−1∂t
, ...,

∂nu

∂x∂tn−1

)
.

Introducing the variables a1 = ∂nu
∂xn , a

2 = ∂nu
∂xn−1∂t , ..., a

n = ∂nu
∂x∂tn−1 , we can rewrite it as a

system of conservation laws

a1t = a2x, a2t = a3x, ..., a
n
t = f(a1, a2, ..., an)x. (9.61)

Definition 20 A system of conservation laws is said to be reducible if it can be cast into the
form (9.61) by an appropriate reciprocal transformation (1.24) together with an affine change
of dependent variables.

Notice that all examples discussed so far are reducible by construction. There exists a simple
geometric criterion for a system of conservation laws to be reducible.

Definition 21 A linear complex in ℙn+1 is a family of lines, whose Plücker coordinates P ij

are subject to a linear constraint AjiP
ij = 0, where Aij = −Aji = const.

Recall that to the line in ℙn+1 passing through the points with homogeneous coordinates X =
[X0 : X1 : ... : Xn+1] and Y = [Y 0 : Y 1 : ... : Y n+1] there corresponds a point in the
Grassmanian G(1, n+ 1) with Plücker coordinates P ij = X iY j −XjY i, i, j = 0, ..., n+ 1. If
one considers Plücker coordinates as an (n + 2) × (n + 2) skew-symmetric matrix P of rank
2, any linear constraint can be rewritten in the form trAP = 0, where A is a skew-symmetric
matrix. Intersection of n− 1 linear complexes is given by n− 1 linear equations

trA�P = 0, � = 1, ..., n− 1, (9.62)

where the matrices A� are linearly independent.

Remark. Linear congruence is determined by n such equations. The focal variety of linear
congruence is the determinantal variety

M = {X ∈ ℙ
n+1 : rk{A�ijX i} < n}, (9.63)

� = 0, ..., n− 1, i, j = 0, ..., n+1. The lines of the congruence are n-secants of the focal variety
M .

Define the map A(�) by

ℂℙ
n−2 ∋ (�1 : �2 : ...�n−1)→ A(�) =

∑

�

��A
�.
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Theorem 27 System of conservation laws (1.15) is reducible iff the corresponding congruence
(1.16) lies in the intersection of n-1 linear complexes (9.62) such that
1) rankA(�) = 4 for all � ∈ ℂℙn−2,
2) there exists an n-dimensional linear subspace L ⊂ V n+2, which is Lagrangian with respect
to all skew-symmetric scalar products {X,Y }� := XTA(�)Y .

Recall that the subspace of a linear space with a skew-symmetric scalar product {, } is called
Lagrangian if {X,Y } = 0 for all X,Y ∈ L. In parametrization (1.16), the Plücker coordinates
of a congruence in ℙn+1 are

1, u, f, u ∧ f,
so that the corresponding matrix P is

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1
−1 0

u1 . . . un

f1 . . . fn

−u1 −f1

...
...

−un −fn
uif j − ujf i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Equations (9.61) imply that the basis of matrices A� can be choosen in the form

A� =

(
0 D�

−(D�)T 0

)

where D� are 2× n matrices with only two nonzero entries:

D1 =

(
0 1 0 . . . 0
−1 0 0 . . . 0

)
, ..., Dn−1 =

(
0 . . . 0 0 1
0 . . . 0 −1 0

)
.

Notice that the condition trA�P = 0 is equivalent to f� = u�+1. It is easy to see that both
conditions 1) and 2) are fulfilled. To prove that these conditions are also sufficient is a bit more
difficult. Let us restrict our consideration to the cases n = 2, n = 3 and give a full proof of the
theorem in the end of this section.

In the case n = 2 conditions 1) and 2) imply that the 4 × 4 matrix A determining the linear
complex in question, is nondegenerate. Any such matrix can be transformed into the form

⎛
⎜⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠

with the corresponding congruence in ℙ3

Y 1 = aY 0 − bY n+1, Y 2 = bY 0 − f(a, b)Y n+1,

giving rise to a reducible 2-component system.
Now let the congruence in ℙ

4 associated with a 3-component system lie in the intersection
of 2 general linear complexes. If the matrix A(�) has rank 4 for any � ∈ ℂℙ2, the kernel �(�)
of {, }� is one-dimensional. So the map �(�) : ℂℙ1 ∋ � → ℙ4 is correctly defined, the image
of ℙ1 being a plane conic (see [37]). Condition 1) guarantees that this conic is nondegenerate.
As follows from the results of Castelnuovo [37], the intersection of 2 general linear complexes
in P 3 is projectively equivalent to

y1 = ay0 − b, y2 = by0 − c, y3 = cy0 − f. (9.64)
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Congruences belonging to the complex (9.64) are specified by one extra relation of the form
f = f(a, b, c), thus giving rise to reducible systems.

Remark. The Lagrangian subspace L in Theorem 27 can be described constructively as a
linear span of �(�), the �(�) ∈ V n+2 being the (n-2)-dimensional kernel of {X,Y }�, so that the
criterion given by Theorem 27 is effective. One has to construct the linear span L of �(�) and
verify two conditions: dimL = n and {X,Y }� = 0 for all X,Y ∈ L, � ∈ ℂℙn−2.

We emphasize that for n = 2, 3 condition 2) follows from condition 1).
We need the following Lemma to prove Theorem 27.

Lemma 12 Let B(�) be 2 ×m matrix, whose entries are linear forms in [�1 : �2 : ... : �m] ∈
ℂℙ

m−1, i.e., bij(�) = bkij�k. Then there exists �̃ ∈ ℂℙ
m−1 such that rankB(�̃) = 1.

Proof: Equation det∣�1bi1k−�2bi2k∣ = 0 has at least one root [�̃1 : �̃2] ∈ ℂℙ
1. Therefore, the sys-

tem of linear equations
∑

i(�̃1b
i
1k− �̃2bi2k)�i = 0 has a nontrivial solution �̃ = (�1(�̃), ..., �m(�̃)).

□

∙ Proof of Theorem 27

We only need to prove that conditions 1) and 2) are sufficient (the necessity follows from the
discussion above. Let L ⊂ V n+2 be an n-dimensional subspace which is Lagrangian for all {, }�.
Choose a basis e1, e2, ..., en+2 in V n+2 such that the last n vectors e3, ..., en constitute a basis
of L. In this basis,

A� =

(
C� B�

−(B�)T 0

)
(9.65)

where B� is a 2× n matrix and C� is a skew-symmetric 2× 2 matrix.
Consider n− 1 linear equations for � ∈ L:

{e1, �}� = 0, (9.66)

where {, }� is the skew-symmetric scalar product defined by A�. There exists a nonzero solution
of this system. Choose this solution to be the basis vector e3. In this basis A�1,3 = 0. There
must exist � for which A�2,3 ∕= 0. Otherwise Lemma 12 implies that there is � such that
rankB(�) = 1, which means rankA(�) = 2. Choose the matrix A� for which A�2,3 ∕= 0 to be A1.
Normalize A1 so that A1

2,3 = −1 and for � = 2, ..., n− 1 replace A� by A� + A�2,3A
1. Now all

matrices A� with � = 2, ..., n− 1 have zero first column in B�. Applying the same procedure
to the linear span of {e4, ..., en+2} with � = 2, ..., n− 1, one ends up with B2 of the form

(
0 0 ...
0 −1 ...

)

and A� for � = 3, ..., n− 1 having two first zero columns in B�. After n-1 steps, matrices A�

will have the following form: �−1 first columns of B� are zero and the �th column is (0,−1)T .
In particular, Bn−1 is of the form

(
0 ... 0 0 bn−1

0 ... 0 −1 c

)

with bn−1 ∕= 0. Note that up to now only e3, ..., en+1 were fixed. Replacing en+2 by en+2+cen+1,
one gets c̃ = 0 and b̃n−1 = bn−1 ∕= 0.

After replacing An−2 by An−2 − An−2
1,n+2

bn−1
An−1, it takes the form

(
0 ... 0 0 bn−2 0
0 ... 0 −1 c r

)
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Replacing en+2 → en+2 + ren, en+1 → en+1 + cen does not change Bn−1 and kills c and r.
Repeating this ”backward” procedure one transforms all matrices A� to the following form: all
columns of B� are zero except for �th, which is (0,−1)T , and (�+ 1)st, which is (b�, 0)T with
b� ∕= 0.

The above transformations of V n+2 induce reciprocal transformations of the associated
system of conservation laws. As a result, the r.h.s. of the system assume the form

f1 = b1u2 + c1, f2 = b2u3 + c2, ..., fn−1 = bn−1un−2 + cn−1,

where the constants c� are the nonzero elements of the corresponding 2 × 2 matrices C� in

(9.65). Finally, the renormalization ui → diui with di =
n−1∏
i

bk completes the proof, since the

constants ck do not effect (1.15). □
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Chapter 10

Integrable systems of four

conservation laws and

isoparametric hypersurfaces

10.1 Isoparametric hypersurfaces and linear congruences

in ℙ
5

In this chapter we describe an explicit geometric construction of the linear congruence corre-
sponding to a four-component T-system without Riemann invariants and harmonic cross-ratio
of characteristic speeds in more detail. It is associated with the Cartan isoparametric hyper-
surface M4 ⊂ S5 ⊂ E6, which can be represented as the intersection of the unit sphere

(U1)2 + (U2)2 + (U3)2 + (U4)2 + (U5)2 + (U6)2 = 1 (10.1)

with the zero level P = 0 of the fourth order polynomial

P (U) = −((U1)2 + (U2)2 + (U3)2 + (U4)2 + (U5)2 + (U6)2)2+ (10.2)

2((U1)2 + (U2)2 + (U3)2 − (U4)2 − (U5)2 − (U6)2)2 + 8(U1U4 + U2U5 + U3U6)2.

Since M4 is a non-singular 4-dimensional hypersurface, with each point m ∈ M4 one can
associate a unique great circle S

1(m) in S
5 which is orthogonal to M4, so that a 4-parameter

family of such circles is obtained. Each great normal circle intersects the ”focal” surfaces
M± ⊂ S5, determined by the equations

P (U) = ±1, (10.3)

at four points forming a harmonic quadruplet on S1(M). The focal surfaces M± ⊂ S5 are
3-dimensional, M− being the Stiefel manifold

∣p∣2 = ∣q∣2, (p, q) = 0, (10.4)

here p = (U1, U2, U3)T , q = (U4, U5, U6)T , whereas M+ is the cubic scroll

p ∧ q = 0. (10.5)

Regarding U i, i = 1, ..., 6, as homogeneous coordinates in ℙ5, one arrives at a 4-parameter
family of lines l(m) ⊂ ℙ5, each line being defined by the 2-dimensional plane of the great circle
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S1(m). Moreover, equations (10.4) and (10.5), without the original restriction ∣p∣2 + ∣q∣2 =
1, specify two components of the focal variety F 3 of the congruence {l(m)∣m ∈ M4}, the
cross-ratios of intersection points {l(m) ∩ F 3} being equal to -1. Since the focal surface F 3

is 3-dimensional, the corresponding system (1.15) is linearly degenerate. In the affine chart
U6 ∕= 0 with coordinates yi = U i/U6, i = 1, ..., 5, this congruence can be parametrized by the
parameters a, b, c, d as follows:

y1 = ay3 + c,
y2 = by3 + d,

y4 = cy3 + abd+c3+cd2−cb2−c
ac+bd ,

y5 = dy3 + bac+d3+dc2−da2−d
ac+bd .

(10.6)

One can check by direct computation that the congruence under consideration is linear. In the
coordinates X0 = U1, X1 = U2, X2 = U3, X3 = U4, X4 = U5, X5 = U6 the matrices A�

have block forms,

A0 =

(
0 E
−E 0

)
, Ai =

(
Gi 0
0 Gi

)
, i = 1, 2, 3, (10.7)

where E = diag{1, 1, 1}, and the matrices Gi are defined as follows:

G1 =

⎛
⎝

0 −1 0
1 0 0
0 0 0

⎞
⎠ , G2 =

⎛
⎝

0 0 −1
0 0 0
1 0 0

⎞
⎠ , G3 =

⎛
⎝

0 0 0
0 0 −1
0 1 0

⎞
⎠ .

Since the congruence (10.6) is linear, the corresponding system (1.15) has rectilinear rarefaction
curves. Its focal variety does not content linear subspaces of codimension 2, therefore, the
system does not possess Riemann invariants.

Developable surfaces of the congruence (which are planar pencils of lines) intersects the
focal variety at a point, which is the vertex of the pencil, and a reducible plane cubic, which is
a union of a straight line and a conic. The line and the point are conjugate with respect to the
conic and lie on the same component of the focal variety.

Remark. Condition (1.42) is easily verified: if the characteristic polynomial of (1.15) is

a4(u)�
4 + 4a3(u)�

3 + 6a2(u)�
2 + 4a1(u)�+ a0(u),

then (1.42) is equivalent to

det

∣∣∣∣∣∣

a4 a3 a2
a3 a2 a1
a2 a1 a0

∣∣∣∣∣∣
= 0, (10.8)

see, e.g., [80].

Remark. Consider a pencil of lines and a cubic curve in ℙ2. Each line cuts the cubic at 3
points. If the vertex of the pencil and these 3 points form an harmonic quadruplet for each
line of the pencil, then the cubic must necessarily be reducible (a union of a straight line and
a conic), moreover, the line and the vertex are conjugate with respect to the conic. This fact
seems to be classical, however, we are unable to provide the reader with an exact reference.

Proposition 15 The system (1.15) corresponding to the congruence (10.6) is integrable.

Proof: In the homogeneous coordinates U i, the lines {l(m) : m ∈ M4} of the congruence can
be parametrized by s1, s2 as follows:

U⃗ = r⃗(m)s1 + n⃗(m)s2,
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where r⃗(m) is the position vector of the Cartan isoparametric hypersurfaceM4 ⊂ S5 ⊂ E6, and
n⃗(m) ∈ TmS5 is the unit normal. The reparametrization of this congruence in terms of U3, U6

shows that the corresponding system (1.15) is a reciprocal transform of the following system
on M4 (see [48]),

r⃗t = n⃗x, (10.9)

which has the exterior representation

Ω1 ∧ (dx+ �1dt) = 0,
Ω2 ∧ (dx+ �2dt) = 0,

(Ω3 + �) ∧ (dx+ �3dt) = 0,
(Ω1 − �) ∧ (dx+ �4dt) = 0;

(10.10)

here Ωi satisfy the SO(3) Maurer-Cartan equations, d� = 0 and all �i are constant. This
system is equivalent to the system describing a resonant 4-wave interaction and, therefore, is
integrable (see [48] for details). □

Remark. General linear congruences in ℙ4 are obtained from the Cartan isoparametric hy-
persurface M3 ⊂ S4 ⊂ E5 by similar construction. The essential difference is that the ”focal”
submanifolds M± are antipodal in S4 so that the focal variety of the congruence is irreducible.

Remark. The proof of Proposition 15 implies that the system (1.15) corresponding to the
congruence (10.6) has the exterior representation (10.10), however, �i are no longer constant.

Introducing potentials u, v by

uxx = a, uxt = −c, vxx = b, vxt = −d,

one can rewrite this hydrodynamic type system as a pair of two second order equations

uxt = −det

⎛
⎝

utt uxt vxt
uxt uxx vxx
vxx −vxt uxt

⎞
⎠ , vxt = −det

⎛
⎝

vtt vxt uxt
vxt vxx uxx
uxx −uxt vxt

⎞
⎠ .

Recall that three-component T-systems can be cast into the form

at = bx, bt = cx, ct = f(a, b, c)x (10.11)

by an appropriate reciprocal transformation (1.24) combined with an affine change of dependent
variables. System (9.61) can be rewritten as a single third order PDE

∂3u

∂t3
= f

(
∂3u

∂x3
,
∂3u

∂x2∂t
,
∂3u

∂x∂t2

)

after the substitution a = ∂3u
∂x3 , b =

∂3u
∂x2∂t , c =

∂3u
∂x∂t2 . According to Theorem 27 the analogous

change of variables for the four-component system (1.15) corresponding to the congruence (10.6)
does not exist.

10.2 Symmetry properties

Consider a linear congruence in ℙ
n+1 specified by a collection of n skew-symmetric matrices

A� as in (9.62). By abuse of notation we use the same symbol A also for the following map:

ℙ
n−1 ∋ (�0 : �1 : ...�n−1)→ A(�) =

∑

�

��A
�.

89



For even n, to each � such that

Pf(A(�)) ≡
√
detA(�) = 0 (10.12)

there corresponds a line l(�) ∈M ∈ ℙn+1 that belongs to the kernel of A(�). Conversely, there
exists a map f : X ∈ M → � ∈ VA, where VA ∈ ℙn−1 is defined by (10.12). Hence, this map
defines the structure of a ℙ1-bundle over VA on the jump locus (9.63).

For any G ∈ GL(n+ 2, R), the Pfaffian of A(�) transforms as

Pf(GTA(�)G) = ∣detG∣Pf(A(�)).
Hence, all projectively equivalent congruences have the same variety VA ⊂ ℙn−1 defined by
(10.12). Notice that the matrices A� chosen as in (10.7) form a basis of the Lie algebra
so(3)× so(2) represented in so(6):

[A0, Ai] = 0, i = 1, 2, 3, [A1, A2] = A3, [A2, A3] = A1, [A3, A1] = A2.

Therefore, the corresponding Lie group SO(3) × SO(2) ⊂ SO(6) leaves the congruence under
consideration invariant:

GTA(�)GT = ��G
−1A�G = ��C

�
�A

� = �̃�A
� = A(�̃),

where C�� is the adjoint representation of SO(3)× SO(2), and
�̃� = ��C

�
� . (10.13)

On the other hand,

Pf(GTA(�)G) = ∣detG∣Pf(A(�)) = Pf(A(�)) = Pf(A(�̃)),

so that (10.13) gives a symmetry of VA. Since the kernel of the adjoint representation is SO(2),
this symmetry group is SO(3). The Pfaffian of the congruence is factorized as

Pf(A(�)) = �0(�
2
0 − �2

1 − �2
2 − �2

3)

so that the cubic surface VA degenerates into a union of the plane

�0 = 0 (10.14)

and the quadric
�2
1 + �2

2 + �2
3 = �2

0. (10.15)

The cubic scroll (10.5) and the intersection of quadrics (10.4) are ℙ1-bundles over the plane
(10.14) and the quadric (10.15), respectively. Considering (10.14) as an infinite plane in ℙ

3,
one can look at transformations (10.13) as the SO(3) symmetry of the quadric (10.15).

Remark. The proposed interpretation of the SO(3) × SO(2) symmetry of the congruence as
the orthogonal group, is only valid under a special choice of the basis (10.7). The general pro-
jective transformation destroys it, but retains the symmetry group. Therefore, any congruence
projectively equivalent to (10.6) has a symmetry group isomorphic to SO(3)×SO(2). In terms
of the system (1.15), this symmetry is interpreted as an autoreciprocal transformation, i.e., as
a reciprocal transformation which, after being combined with a local change of field variables,
leaves the equation (1.15) invariant.

Remark. This symmetry can also be read off the focal varieties (10.4) and (10.5). Indeed, if
one represents the coordinates U in the form of a 3× 2 matrix r = (p, q), then (10.4) and (10.5)
become manifestly invariant under the linear transformations

r → g1rg2, g1 ∈ SO(3), g2 ∈ SO(2) (10.16)

Here g1 is a simultaneous rotation of p and q, Ai being infinitesimal generators of such rotations.
The transformation g2 can be interpreted as a rotation in the 2-dimensional plane spanned by
p and q, represented by the matrix A0 in the basis (10.7).
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10.3 Isoparametric hypersurfaces in a pseudoeuclidean space

and linear congruences in ℙ
5

The congruence (10.6) has a pseudoeuclidean counterpart. One can start with the same focal
varieties (10.4) and (10.5), where now (p, q) is a scalar product of the signature (2,1) defined
by the matrix

H =

⎛
⎝

0 0 1
0 1 0
1 0 0

⎞
⎠ ,

and consider a linear congruence formed by its four-secants. The basis of linear constraints A�

can be chosen as

A0 =

(
0 H
−H 0

)
(10.17)

and A1, A2, A3 as in (10.7). For this congruence the Pfaffian reads:

Pf(A(�)) = �0(�
2
0 + 2�1�3 + �2

2).

In the affine chart U2 ∕= 0 with coordinates yi = U i/U2, i = 1, 3, 4, 5, 6, this congruence is
parametrized by a, b, c, d as follows:

y1 = ay5 + 2a2b−acd−a+bc2
ad+bc ,

y3 = by5 + 2ab2−bcd−b+ad2
ad+bc ,

y4 = cy5 + a,
y5 = dy5 + b.

(10.18)

Remark. This congruence has a symmetry group isomorphic to SO(2, 1)×SO(2), which is also
the symmetry group of the focal variety. This symmetry is interpreted similarly to (10.16), with
the only difference that g1 ∈ SO(2, 1), whereas g2 ∈ SO(2) leaves (10.4) invariant regardless of
the signature.

With the potentials u, v defined by

uxx = −c, uxt = a, vxx = −d, vxt = b,

the corresponding system (1.15) takes the form:

uxt = det

⎛
⎝

utt uxt vxt
uxt uxx vxx
−uxx uxt −vxt

⎞
⎠ , vxt = det

⎛
⎝

vtt vxt uxt
vxt vxx uxx
−vxx vxt −uxt

⎞
⎠ .

10.4 Classification

In this section we formulate the main result of classification of four-component non-diagonalizable
T-systems having harmonic cross-ratio of characteristic speeds. This result is differential-
geometric, as we do not assume the linearity of the corresponding congruence.

Theorem 28 Let a congruence in ℙ5 has the following properties:

∙ its Plücker image in G(1, 5) is connected,

∙ its focal variety has codimension 2 and does not contain linear subspaces of codimension
2,
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∙ its developable surfaces are planar pencils of lines, transversal to the focal varieties,

∙ each line cuts the focal surface at four points forming an harmonic quadruplet, each pair
of these points not coinciding identically.

Then this congruence is projectively equivalent over the reals to either (10.6) or (10.18).

The most difficult part of the theorem is the following lemma.

Lemma 13 If (1.15) is the system corresponding to a congruence with the properties as in
Theorem 28, then its eigenforms can be normalized so that the exterior representation takes the
form (10.10) where Ωi satisfy the Maurer-Cartan equations of the SO(3) or SO(2, 1) groups.

Proof: The proof requires a long computation bringing a certain exterior differential system
into involutive form. To derive and analyze these equations we used computer algebra system
MAPLE 7. We do not present all intermediate formulas as they are extremely awkward. Let
us only sketch the proof and final formulas.

Since the system under study does not possess Riemann invariants, at least one of the
coefficients c̃ijk with j, k ∕= i in (9.37) does not vanish for each i = 1, ..., 4. By an appropriate

normalization !i → ri!i, ri ∕= 0, one can make them constant. (We allow ri to be complex
to treat all cases on equal footing). Thus, there are 34 = 81 possibilities to consider. As the
equation (1.42) is invariant under the permutations {(1, 2, 3, 4), (2, 1, 3, 4), (1, 2, 4, 3), (2, 1, 4, 3),
(3, 4, 1, 2), (4, 3, 2, 1), (4, 3, 1, 2), (3, 4, 2, 1)}, only 15 of these possibilities are essentially different.
They are presented in the following table, where i, j, k are the indices of non-zero c̃ijk.

Different cases
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i j,k j,k j,k j,k j,k j,k j,k j,k j,k j,k j,k j,k j,k j,k j,k
1 2,3 2,3 3,4 3,4 3,4 2,3 2,3 3,4 2,3 2,3 2,3 2,3 2,3 3,4 2,3
2 4,1 1,3 3,1 3,4 3,1 1,3 4,1 3,1 4,1 1,3 1,3 4,1 4,1 3,1 4,1
3 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 4,1 4,1 4,1 4,1 2,4 2,4
4 1,2 1,2 1,2 1,2 3,1 3,1 3,1 3,2 3,2 1,2 1,3 1,3 2,3 1,2 3,1

The eigenforms !i constitute a basis, therefore the differential of any function u can be decom-

posed as du = ui!
i, where, for brevity, we use the notation ui = Li(u). Let

→
u= (u1, u2, u3, u4)

be the densities of conservation laws for which rarefaction curves are linear. Then there exist
scalars pi such that

→
uii= pi

→
ui.

Differentiating the relations duj = uji!
i, df j = �iuji!

i and equating to zero coefficients at

!i ∧ !j , one obtains all mixed second derivatives ujik, i ∕= k. Thus, one has

d
→
ui=

→
Uij (�

k, �kl , pn, c̃
s
qr,

→
um)!j . (10.19)

Note that Fij are linear in
→
um. Differentiating these equations and equating to zero coefficients

at !i ∧ !j , one obtains 4 × C2
4 = 24 equations which are linear with respect to

→
uj. Since ui

are functionally independent, these equations split with respect to
→
uj . As a result, one gets

24× 4 = 96 differential equations for �k, pi and the structure coefficients c̃sqr . The analysis of
these equations along with (1.42), the linear degeneracy conditions

�ii = 0, i = 1, ..., 4, (10.20)
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and the equations d(d(!i)) = 0, d(d(�i)) = 0, shows that the structure equations for the system
under study are

d!1 = 1
2!

2 ∧ !3 + 1
2!

2 ∧ !4,
d!2 = 1

2!
3 ∧ !1 + 1

2!
4 ∧ !1,

d!3 = !1 ∧ !2, d!4 = !1 ∧ !2.
(10.21)

These equations imply that Ω1 = !1, Ω2 = !2, Ω3 = (!3+!4)/2 satisfy the structure equations
of the SO(3)-group, and d� = d(!3 − !4)/2 = 0. The complex normalization

!1 = iΩ1, !2 = Ω2, !3 = iΩ3 + �, !4 = iΩ4 − �

gives the structure equations

d!1 = 1
2!

2 ∧ !3 + 1
2!

2 ∧ !4,
d!2 = − 1

2!
3 ∧ !1 − 1

2!
4 ∧ !1,

d!3 = !1 ∧ !2, d!4 = !1 ∧ !2
(10.22)

for the pseudo-Euclidean counterpart. □

Remark. Given the structure equations (10.21), one can compute pi,

p1 =
2�2

1(�
3−�1)

(�2−�1)(�2−�3) +
2�3

1(�
2−�1)

(�3−�1)(�3−�2) ,

p2 =
2�1

2(�
3−�2)

(�1−�2)(�1−�3) +
2�3

2(�
1−�2)

(�3−�1)(�3−�2) ,

p3 =
2�1

3(�
2−�3)

(�1−�2)(�1−�3) +
2�2

3(�
1−�3)

(�2−�1)(�2−�3) ,

p4 =
2�2

4(�
1−�3)

(�2−�3)(�1−�2) +
2�1

4(�
2−�3)

(�1−�2)(�3−�1) ,

as well as all second derivatives of �1, �2 and �3, as functions Lijk(�
m, �nl ) of �

1, �2, �3 and first

derivatives thereof. These satisfy the above mentioned 96 equations along with d(d(�i)) = 0,
equations (10.20), (1.42) and their differentials. Moreover, the system

d�1 = �12!
2 + �13!

3 + �14!
4

d�2 = �21!
1 + �23!

3 + �24!
4

d�3 = �31!
1 + �32!

2 +
(
2�24

(�3−�1)2

(�2−�1)2 + 2�14
(�2−�3)2

(�2−�1)2

)
!4,

(10.23)

for �1, �2, �3 (here �34 is found from (1.42) and �44 = 0) along with the equations

d�ij = Lijk(�
m, �nl )!

k (10.24)

for the 8 first derivatives �12, �
1
3, �

1
4, �

2
1, �

2
3, �

2
4, �

3
1, �

3
2, turns out to be in involution. For the

case SO(3)× SO(2) the exact formulas for Lijk are given below.

∙ Proof of Theorem 28

Let �i and !i be characteristic speeds and the eigenforms of the system corresponding to
(10.6). Then there exist 4 conservation laws with functionally independent densities ui rectifying
rarefaction curves. One can consider ui as local coordinates parametrizing the congruence. Let
�̃i and !̃i be the characteristic speeds and the eigenforms of the system corresponding to
a congruence G which satisfies the hypothesis of the theorem. According to lemma 13, the
structure equations for !̃i are either as for (10.6) or (10.18). Suppose they are as for (10.6).
(The proof for the case (10.18) is the same). Then one can take !̃ = ! and consider ui as
local coordinates for the congruence G as well. Then �i and �̃i satisfy the same system (10.23),
(10.24). We show that there exist such constants �i, �, �̃, �i, �, �̃ that, locally,

�̃k = Λk ≡ �k(�iu
i + �)− (�if

i + �̃)

(�if i + �̃)− �k(�iui + �)
≡ �kB −A
M − �kN , i = 1, 2, 3. (10.25)
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To this end it suffices to find the constants which satisfy (10.25) and �̃ij = Λij only at one point
→
u0 since system (10.23), (10.24) is completely integrable as a Pfaffian system. Let us fix some
→
u0. Then (10.25) defines A,B,M,N at

→
u0 up to a common factor. Moreover, BM −AN ∕= 0

since �i are distinct (as well as �̃i). A direct computation yields

Λ1
2 = �12

(BM −AN)

(M − �1N)2
+

(�1 − �2)
(M − �1N)2

{B2(M − �1N) +N2(�
1B −A)}, (10.26)

where we have used fi = �iui. Similarly,

Λ3
2 = �32

(BM −AN)

(M − �3N)2
+

(�3 − �2)
(M − �3N)2

{B2(M − �3N) +N2(�
3B −A)}. (10.27)

The linear system

�̃12 = Λ1
2, �̃

3
2 = Λ3

2

defines B2, N2 uniquely since the determinant of this system is

(�1−�2)(�3−�2)(�1−�3)(AN−MB)
(M−�1N)2(M−�3N)2 ∕= 0.

Similarly, the equations

�̃21 = Λ2
1, �̃

3
1 = Λ3

1

give B1, N1. Finally, B3, N3 and B4, N4 are determined from

�̃13 = Λ1
3, �̃

2
3 = Λ2

3

and

�̃14 = Λ1
4, �̃

2
4 = Λ2

4,

respectively. Thus obtained A,B,N,M and Bi, Ni define �i, �, �̃, �i, �, �̃, which means that
the system corresponding to G is a reciprocal transform of the system corresponding to (10.6).
Thus, we have also proved that ui are not just local coordinates for G, but also the ”rectifying”
densities of conservation laws of the corresponding system (1.15). Since the congruences under
consideration define connected manifolds in G(1, 5), this local equivalence is extended globally.□

Finally, we present formulas for Lijk(�
m, �nl ) of (10.24). As �4 is found from (1.42) and �34 is

obtained from �44 = 0, the permutation symmetry used in Lemma 13 is lost. Therefore, we give
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all necessary expressions without referring to index permutations.

�121 = −�13 − �14, �122 =
2�1

2�
3
2(�

1−�2)
(�2−�3)(�1−�3) +

2(�1
2)

2

�1−�3 , �131 = 1
2�

1
2, �132 = �123, �141 = 1

2�
1
2,

�123 =
(2�1−�2−�3)�1

2�
1
3

(�3−�1)(�2−�1) +
(�1−�3)�1

2�
2
3

(�2−�1)(�2−�3) +
(�2−�1)�1

3�
3
2

(�2−�3)(�3−�1) −
(�1−�3)2�2

1

2(�2−�3)2 +
(�1−�2)2�3

1

2(�2−�3)2 ,

�124 =
(2�1−�2−�3)�1

2�
1
4

(�3−�1)(�2−�1) +
(�3−�1)�1

2�
2
4

(�2−�1)(�2−�3) +
(�2−�1)�1

4�
3
2

(�2−�3)(�3−�1) +
(�1−�3)2�2

1

2(�2−�3)2 −
(�1−�2)2�3

1

2(�2−�3)2 ,

�133 =
2(�1

3)
2

�1−�2 +
2(�1−�3)�1

3�
2
3

(�2−�1)(�2−�3) +
(�3−�1)(�2−�1)

2(�2−�3) , �142 = �124, �143 = �134, �212 = �23 + �24,

�134 =
(�1−�3)�1

4�
2
3

(�2−�1)(�2−�3) +
(�3−�1)�1

3�
2
4

(�2−�1)(�2−�3) +
2(�3−�2)�1

3�
1
4

(�2−�1)(�2−�3) , �213 = �231, �232 = − 1
2�

2
1,

�144 =
2(�3−�2)(�1

4)
2

(�2−�1)(�2−�3) +
2(�3−�1)�1

4�
2
4

(�2−�1)(�2−�3) +
(�3−�1)(�2−�1)

2(�3−�2) , �241 = �214, �242 = − 1
2�

2
1,

�211 =
2(�2

1)
2

�2−�3 +
2(�1−�2)�2

1�
3
1

(�3−�1)(�2−�3) , �233 =
2(�3−�1)(�2

3)
2

(�1−�2)(�1−�3) +
2(�2−�3)�1

3�
2
3

(�1−�2)(�1−�3) +
(�2−�1)(�2−�3)

2(�1−�3) ,

�214 =
(2�2−�1−�3)�2

1�
2
4

(�2−�1)(�2−�3) +
(�3−�2)�1

4�
2
1

(�3−�1)(�2−�1) +
(�2−�1)�2

4�
3
1

(�3−�2)(�3−�1) −
(�2−�3)2�1

2

2(�3−�1)2 +
(�1−�2)2�3

2

2(�1−�3)2 ,

�231 =
(2�2−�1−�3)�2

1�
2
3

(�2−�1)(�2−�3) +
(�2−�3)�1

3�
2
1

(�3−�1)(�2−�1) +
(�2−�1)�2

3�
3
1

(�3−�2)(�3−�1) −
(�2−�1)2�3

2

2(�3−�1)2 +
(�2−�3)2�1

2

2(�1−�3)2 ,

�234 =
2(�3−�1)�2

3�
2
4

(�3−�1)(�2−�1) +
(�3−�2)�2

3�
1
4

(�3−�1)(�2−�1) +
(�2−�3)�1

3�
2
4

(�3−�1)(�2−�1) , �243 = �234, �313 = − 1
2�

3
2, �323 = 1

2�
3
1,

�244 =
2(�2

4)
2

�2−�1 +
2(�3−�2)�1

4�
2
4

(�2−�1)(�3−�1) +
(�2−�1)(�2−�3)

2(�3−�1) , �321 = �312 − 2
(

(�3−�1)2�2
4

(�2−�1)2 +
(�2−�3)2�1

4

(�2−�1)2

)
,

�311 =
2(�3

1)
2

�3−�2 +
2(�3−�1)�2

1�
3
1

(�2−�1)(�2−�3) +
(�3−�1)(�3−�2)

�2−�1 , �322 =
2(�3

2)
2

�3−�1 +
2(�3−�2)�1

2�
3
2

(�2−�1)(�3−�1) +
(�3−�1)(�2−�3)

(�2−�1) ,

�312 =
(2�3−�1−�2)�3

1�
3
2

(�1−�3)(�2−�3) +
(�3−�2)�1

2�
3
1

(�3−�1)(�2−�1) +
(�3−�1)�3

2�
2
1

(�2−�1)(�2−�3) −
(�2−�3)2�1

3

(�2−�1)2 +
(�2−�3)2�1

4

(�1−�2)2 +

+
(�3−�1)2�2

3

(�1−�2)2 +
(�1−�3)2�2

4

(�1−�2)2

�314 =
2(2�3−�1−�2)(�1−�3)�3

1�
2
4

(�1−�2)2(�2−�3) +
2(�1−�3)(�2−�3)�1

4�
2
1

(�1−�2)3 +
4(�3−�2)�1

4�
3
1

(�1−�2)2 +
2(�3−�1)3�2

1�
2
4

(�2−�3)(�2−�1)3 +
�3
2

2 ,

�324 =
2(2�3−�1−�2)(�3−�2)�3

2�
1
4

(�1−�2)2(�3−�1) +
2(�1−�3)(�2−�3)�1

2�
2
4

(�2−�1)3 +
4(�3−�1)�2

4�
3
2

(�1−�2)2 +
2(�3−�2)3�1

2�
1
4

(�3−�1)(�2−�1)3 −
�3
1

2 .

10.5 Concluding remarks on integrable systems of conser-

vation laws

The obtained results suggest two conjectures on the structure of congruences in ℙ
n+1 whose

developable surfaces are planar pencils of lines.

Conjecture 4 The focal varieties of such congruences are algebraic (possibly, reducible and
singular).

Conjecture 5 The intersection of the focal variety with a developable surface (which is a planar
pencil of lines) consists of a point (the vertex of the pencil) and a plane curve of degree n− 1.

For n = 2 this is obvious. For n = 3 it follows from the results presented above. Both
conjectures are true for general linear congruences in ℙn+1 (see Section 9.2) and congruences
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arising from the completely exceptional Monge-Ampère type equations (see Section 9.4). As
readily follows from the discussion in these Sections focal varieties have codimension two and
contain n-parameter families of plane curves (which are conics for n = 3). This shows that the
problem in question is actually algebro-geometric.
Another obvious hypothesis concerns 4-component systems that are allowed to have Riemann
invariants.

Conjecture 6 The congruence, corresponding to a four-component T-system (1.15) with har-
monic cross-ratio of characteristic speeds, is linear.
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Chapter 11

Implicit ODEs with hexagonal

web of solutions

11.1 Normal forms for a fold point

In this section we establish normal forms for the case, when the projection � has a fold point
at m. If cubic equation (1.47) has two coinciding roots, then the third root corresponds to a
regular point of the projection � and the equation factors to a quadratic equation and a linear
one. Regularity condition (1.45) for the double root p0 implies immediately that the projection
� has a fold point at m. First we find a normal form for fold points and the symmetries of
this normal form. Further we look for the linear in p (i.e. explicit) equations whose solutions
complete the 2-web of solutions of the quadratic normal form to a hexagonal 3-web. Finally, we
bring these linear terms to some normal forms using the symmetries of the quadratic equation.
We start with a Legendrian criminant, then consider non-Legendrian criminant and finally show
that the case of an isolated point of tangency of the criminant and the contact plane is excluded
by the regularity conditions.

∙ The case of Legendrian criminant

Proposition 16 Consider implicit ODE (1.43) with a smooth Legendrian criminant and a
smooth surface (1.44). Then characteristic field (1.46) can be smoothly extended to the crimi-
nant. Moreover, the extended characteristic field is transverse to the criminant.

Proof: Let m be a point on the criminant. A suitable contactomorphism ' mapsM toM ′ with
the following properties:
a) the criminant of M is mapped to the line x = y = 0,
b) '(m) = (0, 0, 0),
c) the tangent plane TmM is mapped to the plane y = 0.
It suffices to prove the proposition for the transformed surface M ′ := {(x, y, p) ∈ ℝ2 × ℙ1(ℝ) :
G(x, y, p) = 0} with the Legendrian line x = y = 0. Condition c) allows to rewrite G(x, y, p) = 0
as

y = g(x, p),

while condition a) implies g(x, p) = xf(x, p). Now gp(0, 0) = gx(0, 0) = 0 implies f(0, 0) = 0, so
that f(x, p) = pu(x, p)+xv(x, p) by the Hadamard lemma. As the line x = y = 0 is Legendrian,
the form dy − pdx must vanish on it:

{d(xpu(x, p) + x2v(x, p))− pdx}
∣∣
x=0

= {(pu(x, p)dx− pdx}∣x=0 = 0
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or u(0, p) ≡ 1. Again by the Hadamard lemma one gets u(x, p) = 1 + xw(x, p) and

y = xp+ x2ℎ(x, p)

with ℎ(x, p) = pw(x, p) + v(x, p). Now the characteristic field � is defined by restriction of the
equation dy − pdx = 0 to M ′, i.e. by {d(xp+ x2ℎ(x, p))− pdx}

∣∣
M ′

= x{(1 + xℎp(x, p))dp +
(2ℎ(x, p) + xℎx(x, p))dx} = 0. This implies that the characteristic field on M ′ in coordinates
(x, p) is generated by the vector field (1+xℎp(x, p))∂x−(2ℎ(x, p)+xℎx(x, p))∂p, which is clearly
smooth and transverse to the line x = y = 0 on M ′. □

Theorem 29 Let (1.43) be an implicit ODE such that corresponding surface (1.44) is smooth.
Suppose its criminant C is a smooth Legendrian curve and the projection � : (x, y, p)→ (x, y)
has a fold singularity at m ∈ C. Then (1.43) is locally equivalent to

p2 = y (11.1)

with respect to some diffeomorphism ' : Ũ → U , where Ũ , U ∈ ℝ2 are neighborhoods of (0, 0),
�(m) and '(0, 0) = �(m).

Proof: Due to Proposition 16 the direction field � on M is smooth. Its integral curves define
a foliation ℱ of a neighborhood of m. Since the projection � has a fold on the criminant, the
discriminant curve Δ = �(C) ∈ ℝ2 is smooth. Let us choose new coordinates on (U, �(m))
such that the discriminant curve turns to the line y = 0. Then equation (1.43) is equivalent to
y = g(x, p). The discriminant curve is a solution therefore g(x, p) = pf(x, p) by the Hadamard
lemma. The criminant y = p = 0 is Legendrian hence {d(pf(x, p)) − pdx}p=0 = f(x, 0)dp = 0
or f(x, 0) ≡ 0. Now f(x, p) = pℎ(x, p) and y = p2ℎ(x, p). As the projection � has a fold at
m ∈M holds true ∂2p(p

2ℎ(x, p))
∣∣
x=p=0

= 2ℎ(0, 0) ∕= 0. Consequently characteristic field (1.46)

on M with F (x, y, p) = p2ℎ(x, p)− y is generated by the vector field

(2pℎ(x, p)+p2ℎp(x, p))∂x− (p2ℎx(x, p)−p)∂p = p{(2ℎ(x, p)+pℎp(x, p))∂x+(1−pℎx(x, p))∂p}.

Due to ℎ(0, 0) ∕= 0 it is transverse to the kernel of d� onM . Hence the projection of each integral
curve crossing the criminant C is smooth and tangent to the discriminant curve. Locally the
equation p2ℎ(x, p)− y = 0 can be rewritten as a quadratic equation

p2 + a(x, y)p+ b(x, y) = 0.

This easily follows from the Division Theorem since ℎ(0, 0) ∕= 0. Moreover, as the criminant
y = p = 0 is a Legendrian curve holds true b(x, 0) = a(x, 0) = 0. Thus one gets a(x, y) =
y�(x, y) and b(x, y) = y�(x, y) with �(0, 0) ∕= 0 since M is smooth at m = (0, 0, 0). Consider
(x, p) as local coordinates on M and define the map i :M →M by

i(x, p) = (x,−p− p2ℎ(x, p)�(x, p2ℎ(x, p))).

This map is the involution that permutes the roots p1, p2 of our quadratic ODE. Let the foliation
ℱ onM be defined locally by I(x, p) = const with grad(I)∣x=p=0 ∕= 0, where I is a first integral
of the characteristic field � . Then the functions I and J := i∗(I) are functionally independent
as di(�) and � are transverse to each other. Since � is transverse also to the criminant the
partial derivative Ix∣x=p=0 does not vanish. Hence one can chose I so that I(x, 0) = x which
implies J(x, 0) = x. Let us take thus normalized functions I, J as local coordinates onM . Note
that the following relation holds true

�(I, J) = �(J, I), (11.2)

since i(I, J) = (J, I). For the ODE p̃2 = ỹ the above defined objects are as follows: Ĩ(x̃, p̃) =
x̃−2p̃, ĩ(x̃, p̃) = (x̃,−p̃), J̃(x̃, p̃) = x̃+2p̃. Now define the diffeomorphism germ  : M̃, 0→M, 0
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by  (Ĩ , J̃) = (Ĩ , J̃). By (11.2) there exists a map germ ' : ℝ2, 0→ ℝ2, 0 such that the following
diagram commutes:

M, 0
 ←− M̃, 0

↓ � ↓ �̃
ℝ2, 0

'←− ℝ2, 0

We claim that the map germ ' is the required diffeomorphism. By construction it maps solutions
to solutions. To show that ' is differentiable consider the map germ � ∘  : M̃, 0 → ℝ2, 0.
Applying Malgrange’s Preparation Theorem to this map germ in coordinates (x̃, p̃) on M̃, 0
and (x, y) on ℝ2, 0 one gets

x = X0(x̃, p̃
2) + p̃X1(x̃, p̃

2), y = Y0(x̃, p̃
2) + p̃Y1(x̃, p̃

2),

where the functions X0, X1, Y0, Y1 are smooth. Since � ∘  (x̃, p̃) = � ∘  (x̃,−p̃) = (x, y) holds
true X1(x̃, p̃

2) = Y1(x̃, p̃
2) = 0. With p̃2 = ỹ the above formulas take the form

x = X0(x̃, ỹ), y = Y0(x̃, ỹ),

and therefore define a smooth map germ '. Applying the same considerations to the map germ
�̃ ∘  −1 we see that  has an inverse for y ≥ 0. Therefore  is invertible. □

Remark. Note that equation (11.1) has a nontrivial symmetry group. For example, the scaling
x → �x, y → �2y leaves it invariant. Therefore the diffeomorphism ' in Theorem 29 is not
unique.

Proposition 17 Equation (11.1) has an infinite symmetry pseudogroup. Its transformations
are given by

x̃ = F (x+ 2
√
y) + F (x− 2

√
y), ỹ =

1

4
[F (x+ 2

√
y)− F (x− 2

√
y)]2. (11.3)

Here F is a smooth function subjected to F ′(u)∣u=0 ∕= 0. Infinitesimal generators of this
pseudogroup have the form

{f(x+ 2
√
y) + f(x− 2

√
y)}∂x +

√
y{f(x+ 2

√
y)− f(x− 2

√
y)}∂y, (11.4)

where f is an arbitrary smooth function.

Proof: Consider the action of symmetry group transformation onM in coordinates (u, v), where

u = x− 2p, v = x+ 2p.

To preserve the foliations ℱ and i(ℱ) determined by the direction fields � and di(�) it must have
the following form ū = 2F (u), v̄ = 2G(v). This transformation is a symmetry if it commutes
with i. Note that i permutes u and v and sends ∂p to −∂p. Hence F = G. Now substitutions
x̄ = 1

2 (F (v) + F (u)) and ȳ = p̄2 = 1
4 (F (v) + F (u))2 gives (11.3). Condition F ′(u)∣u=0 ∕= 0 is

equivalent to non-vanishing of the Jacobian: ∂(x̃,ỹ)
∂(x,y)

∣∣∣
x=y=0

∕= 0.

Now consider infinitesimal symmetries of (11.1). They are defined by operators �(x, y)∂x +
�(x, y)∂y . These operators must be liftable to M . On M the lifted vector field must be a
symmetry of foliations ℱ and i(ℱ). In coordinates (u, v) any infinitesimal symmetry X of
foliations ℱ and i(ℱ) is easy to write down:

X = f(u)∂u + g(v)∂v.

In coordinates (x, p) on M this operator X takes the form

X =
1

2
(g(v) + f(u))∂x +

1

4
(g(v)− f(u))∂p.
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X is lowerable iif di(X) = X . Now lowerability condition amounts to f(u)+ g(v) = f(v)+ g(u)
and g(v)− f(u) = f(v)− g(u). Thus, the first equation gives f(u)− g(u) = c = const and the
second implies c = 0. Substitution u = x − 2

√
y, v = x+ 2

√
y, p =

√
y into X gives (11.4) for

y > 0. The obtained transformations are well defined for y > 0 and are smoothly (analytically)
extendable for y ≥ 0. The possibility to extend them for y ≤ 0 easily follows from Malgranges’s
Preparation Theorem: one considers the projection � :M → ℝ2, (x, p) 7→ (x, p2) in coordinates
x, p on M and x, y on ℝ2 and observes that F (x + 2p) + F (x − 2p) is an even function and
F (x+ 2p)− F (x− 2p) is an odd function with respect to p. □

To use the above symmetries we need the following lemma.

Lemma 14 If a smooth (analytic) function germ f : ℝ, 0 → ℝ, 0 is not flat, then the vector
field germ f(u)∂u on ℝ, 0 is equivalent to uk∂u with respect to a suitable smooth (analytic)

coordinate transformation ū = F (u), where k ∈ ℕ is such that dkf(u)

duk

∣∣∣
u=0

is the first non-

vanishing derivative at 0 .

Proof: F (u) must satisfy ODE f(u)F ′(u) = (F (u))k. The existence of F (u) with F ′(u)∣u=0 ∕= 0
is easily verified in both smooth and analytic cases. □

Theorem 30 Suppose solutions of (11.1) and those of

�(x, y)dx + �(x, y)dy = 0, (11.5)

where �(x, y), �(x, y) are non-flat functions at (0, 0), form together a hexagonal 3-web. Then
there is a local symmetry of (11.1) at (0, 0) that maps equation (11.5) to one of the two following
forms for y ≥ 0:

[(x + 2
√
y)k + (x− 2

√
y)k]dx− 1√

y [(x+ 2
√
y)k − (x− 2

√
y)k]dy = 0, or

√
y[(x+ 2

√
y)k − (x− 2

√
y)k]dx− [(x+ 2

√
y)k + (x− 2

√
y)k]dy = 0,

(11.6)

where k is a non-negative integer. In particular, if �(x, y), �(x, y) are non-flat functions with
(�(0, 0), �(0, 0)) ∕= (0, 0), then one gets three normal forms:

a) dx = 0, b) dy = 0, c) 2dy − xdx = 0. (11.7)

Moreover, if equation (11.5) for y ≥ 0 is equivalent to (11.7) item a) or (11.7) item b), then it
can be reduced to (11.7) item a), respectively (11.7) item b) by a suitable symmetry of (11.1)
in some neighborhood of the point (0, 0)

Proof: Let us introduce operators U, V of differentiation along the curves of the foliations ℱ
and i(ℱ) on M :

U = ∂p + 2∂x, V = ∂p − 2∂x. (11.8)

Then these operators commute and satisfy the following relations:

U(u) = 0, U(v) = 4, V (u) = −4, V (v) = 0.

Consequently a direction field on M whose integral curves form a hexagonal 3-web together
with ℱ and i(ℱ) must be generated by a vector field commuting with U and V (for the detail
see [18], p.17). Such a vector field has the form

Y = f(v)U + g(u)V.

The direction field generated by Y is the lift to M of the direction field induced by (11.5) iff
Y ∧ di(Y ) = 0. This gives g = ±f . Projecting from M to the plane one obtains

1√
y
[f(x+ 2

√
y)− f(x− 2

√
y)]∂x + [f(x+ 2

√
y) + f(x− 2

√
y)]∂y
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for g = f and

[f(x+ 2
√
y) + f(x− 2

√
y)]∂x +

√
y[f(x+ 2

√
y)− f(x− 2

√
y)]∂y,

for g = −f . Now applying symmetry (11.3) with F satisfying f(u)F ′(u) = (F (u))k (see Lemma
14) we reduce (11.5) to one of the forms (11.6) for y ≥ 0. If the found symmetry maps (11.5) to
(11.7) item a), than we can construct a diffeomorphism ' such that it is the identity for y ≥ 0
and maps integral curves of (11.5) to the lines x = const as follows. As equation (11.5) is not
singular at (0, 0) it has a smooth first integral I(x, y) coinciding with x for y ≥ 0. Then � is
defined by (x, y) 7→ (I(x, y), y). Similarly, for (11.7) item b) we define � by (x, y) 7→ (x, I(x, y),
where I(x, y) is the first integral of (11.5), coinciding with y for y ≥ 0. □

∙ The case of non-Legendrian criminant

Theorem 31 Let (1.43) be an implicit ODE such that the corresponding surface M is smooth.
Suppose its criminant C is a smooth curve, the projection � : (x, y, p) → (x, y) has a fold
singularity at m ∈ C, and the contact plane is not tangent to M at m. Then (1.43) is locally
equivalent to

p2 = x (11.9)

with respect to some diffeomorphism ' : Ũ → U , where Ũ , U ∈ ℝ2 are neighborhoods of (0, 0),
�(m) and '(0, 0) = �(m).

The proof is given in [15], p.27. Similar to the case of Legendrian criminant, the diffeomorphism
' is not unique.

Proposition 18 Equation (11.9) has an infinite symmetry pseudogroup. Its transformations
are given by

x̃ =
3

√
1

16
[F (3y + 2x

√
x)− F (3y − 2x

√
x)]2, ỹ =

1

6
(F (3y+2x

√
x)+F (3y− 2x

√
x)). (11.10)

Here F is a smooth function subjected to F ′(u)∣u=0 ∕= 0. Infinitesimal generators of this
pseudogroup have the form

1√
x
{f(3y + 2x

√
x)− f(3y − 2x

√
x)}∂x + {f(3y + 2x

√
x) + f(3y − 2x

√
x)}∂y, (11.11)

where f is an arbitrary smooth function.

Proof: On the surface M defined by (1.44) we choose (y, p) as local coordinates. Solutions of
(11.9) define foliations ℱ and i(ℱ) by

u := 3y − 2p3 = const, v := 3y + 2p3 = const,

where i is the involution i : M →M, (x, y, p)→ (x, y,−p).
To prove the finite transformation formulas observe that the symmetry group transformation

(x, y) 7→ (x̃, ỹ) lifted to M must satisfy

3ỹ + 2p̃3 = F (3y + 2p3), 3ỹ − 2p̃3 = F (3y − 2p3).

In fact, to preserve the foliations ℱ and i(ℱ) it is necessary that 3ỹ+2p̃3 = F (3y+2p3), 3ỹ−
2p̃3 = G(3y − 2p3). On the line p = 0 one has F (3y) = G(3y) = 3ỹ. This implies (11.10). The
condition F ′(u)∣u=0 ∕= 0 is equivalent to non-degeneracy of the Jacobian of the transformation.

Consider now an infinitesimal symmetry �(x, y)∂x + �(x, y)∂y . Lifted on M it turns to

X = �(p2, y)∂y + g(y, p)∂p.
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(On can write down an explicit expression for g, but we do not need it.) Since X is a symmetry
of (11.9) it must satisfy

X(u) = 3f(u) = 3f(3y − 2p3), X(v) = 3k(v) = 3k(3y + 2p3),

for some smooth functions f, k. This is equivalent to

�(p2, y) = 2p2g(y, p) + f(3y − 2p3), �(p2, y) = −2p2g(y, p) + k(3y + 2p3).

Substituting p = 0 into the difference of the above equations

4p2g(y, p) = k(3y + 2p3)− f(3y − 2p3)

one gets k = f . Hence the functions � and g are well defined by

�(p2, y) =
1

2
(f(3y + 2p3) + f(3y − 2p3)), g(y, p) =

1

4p2
(f(3y + 2p3)− f(3y − 2p3)).

Note that g(y, 0) = 0, hence X is tangent to the criminant and therefore lowerable (see [16]). Up
to scaling the lowered operatorX becomes (11.11). The extension of the defined transformation
for x ≤ 0 is again justified by Malgrange’s Preparation Theorem. (See the detail in the proof
of Theorem 17.) □

Theorem 32 Suppose the solutions of (11.9) and those of

�(x, y)dx + �(x, y)dy, (11.12)

where �(x, y), �(x, y) are non-flat functions at (0, 0), form together a hexagonal 3-web. Then
there is a local symmetry of (11.9) that maps equation (11.12) to one of the two following forms
for x ≥ 0:

1√
x
[(3y + 2x

√
x)k − (3y − 2x

√
x)k]dx− 3

√
16[(3y + 2x

√
x)k + (3y − 2x

√
x)k]dy = 0 or

[(3y + 2x
√
x)k + (3y − 2x

√
x)k]dx− 3

√
16
√
x[(3y + 2x

√
x)k − (3y − 2x

√
x)k]dy = 0,

where k is non-negative integer. In particular, if �(x, y), �(x, y) are non-flat functions with
(�(0, 0), �(0, 0)) ∕= (0, 0), then equation (11.12) can be reduced to one of the following two
normal forms in some neighborhood of the point (0, 0):

a) dx = 0, b) dy = 0.

Proof: Let us introduce operators U, V of differentiation along the curves of the foliations ℱ
and i(ℱ):

U = ∂p + 2p2∂y, V = ∂p − 2p2∂y.

Then the operators 1
p2U and 1

p2V commute and satisfy the following relations:

1

p2
U(u) = 0,

1

p2
U(v) = 12,

1

p2
V (u) = −12, 1

p2
V (v) = 0.

A direction field on M , whose integral curves form a hexagonal 3-web together with ℱ and
i(ℱ), must be generated by the vector field, commuting with 1

p2U and 1
p2 V . Such a vector field

has the form

Y = f(v)
1

p2
U + g(u)

1

p2
V.
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The direction field generated by Y is the lift to M of the direction field induced by (11.12) iff
Y ∧ di(Y ) = 0. This gives g = ±f (compare with the proof of Theorem 30). Projecting from
M to (x, y)-plane one obtains

[f(3y + 2x
√
x) + f(3y − 2x

√
x)]∂x +

√
x[f(3y + 2x

√
x)− f(3y − 2x

√
x)]∂y

for g = f and

1√
x
[f(3y + 2x

√
x)− f(3y − 2x

√
x)]∂x + [f(3y + 2x

√
x) + f(3y − 2x

√
x)]∂y

for for g = −f . Now applying symmetry (11.10) with F satisfying f(u)F ′(u) = (F (u))k (see
Lemma 14) we complete the proof. The details can be found in the proof of Theorem 30. □

Remark. Real analytic versions of Theorems 30 and 32 are true without the stipulations y ≥ 0
and x ≥ 0 respectively.

Remark. One can not extend the claim of Theorem 30 for y < 0 in the smooth case for
equation (11.7) item c). Its solutions are parabolas y = x2/4 + C. They cross the line y = 0
in two points if C < 0. If one smoothly deforms equation (11.7) in the domain y < 0 then
the solution of the deformed equation starting from some point (x0, 0) with x0 < 0 will not
necessarily pass through (−x0, 0), i.e. this solution returns to a ”wrong parabola”.

Corollary 2 If the following conditions hold for implicit ODE (1.47) at a pointm = (x0, y0, p0) ∈
M :
1) ODE (1.43) has a hexagonal 3-web of solutions,
2) p0 is a double root of (1.43) at �(m) = (x0, y0),
3) regularity condition (1.45) is satisfied, i.e. rank((x, y, p) 7→ (F, Fp))∣m = 2,
then its criminant is either Legendrian or transverse to the contact plane field in some neigh-
borhood of m

Proof: Denote by Ct the closed set of points on the criminant C, where the contact plane is
tangent to C. Suppose m is not a point of C ∖ Ct and not an interior point of Ct. Then m
is a boundary point of Ct. Now Theorem 32 implies that for each point m′ sufficiently close
to m and such that m′ ∕= m, m′ /∈ Ct equation (1.43) is locally equivalent to the product of
the explicit ODE dx = 0 and quadratic equation (11.9), i.e. the solutions of the linear factor
are tangent to the discriminant curve at �(m′) and therefore at �(m). Further, Theorem 30
implies that for each point m′ sufficiently close to m and such that m′ ∕= m, m′ ∈ Ct equation
(1.43) is locally equivalent to the product of the explicit ODE dx = 0 and quadratic equation
(11.1), i.e. the solutions of the quadratic factor are tangent to the discriminant curve at �(m′)
and therefore at �(m). But that means that the root p0 is triple. Thus our assumption is false
and the corollary is proved. □

Remark. As follows from the above proof the hypothesis of Corollary 2 also implies that there
is no isolated points of tangency of the contact plane and the criminant.

11.2 Normal form for an ordinary cusp point

In this section we use the results of the previous one to establish normal forms for the case of
a cusp singularity of the projection � on M. Regularity condition (1.45) for a triple root p0
implies immediately that the projection � has a cusp point at m = (x0, y0, p0) ∈ M . We start
with Legendrian criminant, then consider non-Legendrian criminant and finally show that one
can not ”glue” Legendrian criminant with non-Legendrian one at the cusp point.
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Lemma 15 If the following conditions hold for implicit ODE (1.43) at a pointm = (x0, y0, p0) ∈
M :
1) ODE (1.43) has a hexagonal 3-web of solutions,
2) p0 is the triple root of (1.43) at �(m) = (x0, y0),
3) regularity condition (1.45) is satisfied, i.e. rank((x, y, p) 7→ (F, Fp))∣m = 2,
then it is locally equivalent to

p3 +A(x, y)p+B(x, y) = 0, (11.13)

where
1) the projection � has an ordinary cusp singularity at (0, 0, 0) with A(0, 0) = B(0, 0) = 0,

2) A,B are local coordinates at (0, 0), i.e. ∂(A,B)
∂(x,y)

∣∣∣
x=y=0

∕= 0

3) Bx(0, 0) = 0.

Proof: Since equation (1.43) has the triple root p0 at �(m) it is locally equivalent to some cubic
equation (1.47). Further, the coefficient by p2 in this cubic equation is killed by a coordinate
transform of the form y = f(x̃, ỹ), x = x̃, satisfying

3fx(x, y) + a(x, y) = 0.

This transform respects the regularity condition. Thus, our implicit equation F = 0 becomes

F (x, y, p) = p3 +A(x, y)p+B(x, y) = 0.

Without loss of generality it can be assumed that (x0, y0) = (0, 0). As the equation p30 +
A(0, 0)p0 + B(0, 0) = 0 has a triple root holds p0 = 0. Therefore the functions A,B must also
vanish at (0, 0). Now regularity condition (1.45) at m = (0, 0, 0) ∈ C reads as

rank

(
Axp+Bx Ayp+By 3p2 +A

Ax Ay 6p

)∣∣∣∣
x=y=p=0

=

(
Bx By 0
Ax Ay 0

)∣∣∣∣
x=y=p=0

= 2.

Thus claims 1) and 2) are proved. Moreover, the discriminant curve

Δ = �({(x, y, p) : p3 +A(x, y)p+B(x, y) = 3p2 +A(x, y) = 0})

has an ordinary cusp at �(m) = (x0, y0).
If the solutions of equation (11.13) form a hexagonal 3-web the curvature of this 3-web must

vanish identically. This is equivalent to the following cumbersome partial differential equation
for the functions A,B:

(4A3 + 27B2)(9BAxx − 2A2Axy + 6ABAyy − 6ABxx − 9BBxy − 4A2Byy)+
+108A2BAxBy − 108AB2AxAy + 162B3A2

y + 40A4AyBy − 108A2BA2
x+

+216A2BB2
y − 36A3BxBy + 108A2BAyBx − 378AB2AyBy − 405B2AxBx+

−48A3BA2
y + 8A4AxAy + 243B2BxBy + 84A3AxBx + 324ABB2

x = 0.

(11.14)

This equation is obtained by direct lengthy but straightforward computation. (Expressions for
the corresponding web curvature for a cubic ODE can be also found in [71] and [76]). As was
shown above the functions A,B can be taken as local coordinates around (0, 0). Then all partial
derivatives of A,B with respect to x and y are smooth functions of A,B. The homogeneous
part of second order of Taylor expansion of l.h.s. of (11.14) around (0, 0) is

−405B2Ax(0, 0)Bx(0, 0) + 243B2Bx(0, 0)By(0, 0) + 324AB(Bx(0, 0))
2.

It must vanish. In particular, Bx(0, 0)
2 = 0 as the coefficient by AB. □
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∙ The case of Legendrian criminant

Theorem 33 If the following conditions hold for implicit ODE (1.43) at a point m = (x0, y0, p0) ∈
M :
1) ODE (1.43) has a hexagonal 3-web of solutions,
2) p0 is the triple root of (1.43) at �(m) = (x0, y0),
3) its criminant C is a Legendrian curve with rank((x, y, p) 7→ (F, Fp))∣C = 2,
then it is locally equivalent to the following Clairaut equation

P 3 + PX − Y = 0. (11.15)

Proof: Lemma 15 reduces equation (1.43) to (11.13) with A(0, 0) = B(0, 0) = Bx(0, 0) = 0

and ∂(A,B)
∂(x,y)

∣∣∣
x=y=0

∕= 0. Thus, the tangent plane TmM to the surface M at m = (0, 0, 0)

is the plane y = 0 and the tangent line to the discriminant curve at (0, 0) is y = 0. (The
condition Bx(0, 0) = 0 for the case of Legendrian criminant can be obtain also by the following
geometrical consideration. By Proposition 16 the characteristic field � given by (1.46) can be
smoothly extended to the criminant C. As � is transverse to C, the projection of the integral
curves of � are smooth curves in ℝ2 tangent to the discriminant curve Δ at the origin (0, 0).
As p0 = 0 this implies the claim.) With Bx(0, 0) = 0 one gets from the regularity condition

Ax(0, 0) ∕= 0, By(0, 0) ∕= 0.

Therefore one can choose p,A as local coordinates on the surface M at m = (0, 0, 0) and A,B
as local coordinates on ℝ2, 0. In these coordinates the projection � is the Whitney map. The
criminant is parameterized by p as follows

A = −3p2, B = 2p3.

Its projection is the discriminant curve Δ := {(A,B) : 27B2 + 4A3 = 0}. The set of points
projected to the discriminant curve is the criminant itself and the following curve

D := {(p,A) ∈M : A = −3

4
p2}. (11.16)

This follows from the observation that the value −2p is the third root of (11.13) at the discrimi-
nant point, where the double root is p. The curve D is tangent to C at 0, thus the characteristic
field � is transverse also to D.

Consider the following map

f : (ℝ2, 0)→ (M, 0), (p, q) 7→ (p,A) = (p,−q2 − pq − p2). (11.17)

This map has a fold singularity on the line L1 := {(p, q) : p+ 2q = 0}. This line is mapped by

f to the curve D since −q2 − pq − p2 = −
(
q + p

2

)2 − 3
4p

2. Note that if f(p, q) = (p,A), then
f−1(p,A) = {(p, q)∪ (p,−p− q)}. The pull back �̃ of the characteristic field � by f∗ from M, 0
to ℝ

2, 0 must be tangent to the kernel of df , i.e. to the vector field ∂q, since � is transverse
to D. Moreover, the foliation ℱ1 by the integral curves of �̃ is invariant with respect to the
following linear involution

g1 : ℝ
2 → ℝ

2, (p, q) 7→ (p,−p− q).

Consider also the following two linear involutions

g2 : ℝ2 → ℝ
2, (p, q) 7→ (−p− q, q), g3 : ℝ2 → ℝ

2, (p, q) 7→ (q, p). (11.18)

The linear maps g1, g2, g3 generate the group D3, the symmetry group of equilateral triangle,
which can be viewed as the group of linear transformations of the plane p + q + r = 0 in ℝ3,
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generated by permutations of the coordinates (p, q, r) in ℝ3. The orbit of a point (p, q) under
this group action is the inverse image of the point (A,B) = �(f(p, q)) ∈ ℝ2 under the Vieta
map V := � ∘ f . Therefore the three foliations ℱ1, ℱ2 := g2(ℱ1) and ℱ3 := g3(ℱ1) form a
hexagonal 3-web. Moreover, this 3-web is not singular at (0, 0) and has the symmetry group
D3 generated by {g1, g2, g3}. Note that for Clairaut equation (11.15) the above defined three
foliations are p = const, p+ q = const and q = const respectively.

Now we are ready to construct the diffeomorphism ' that transforms the given ODE to
normal form (11.15). Consider a domain U, 0 ⊂ ℝ2, 0 such that the 3-web formed by the
foliations ℱ1, ℱ2 and ℱ3 is regular in U . Let 
1 be the integral curve of �̃ that passes through
the origin. Pick up a point u = (p1, q1) ∈ 
1 on this curve and draw the Briançon hexagon
around 0 through u. (Let us recall the construction of the Briançon hexagon: one draws three
curves 
i, i = 1, 2, 3 of the foliations ℱi, i = 1, 2, 3 through the origin, picks up a point on one
of this curves, say 
1, and then goes around the origin along the foliation curves, swapping the
family whenever one meets one of the fixed curves 
i. The web is hexagonal iff one gets a closed
hexagonal figure for any choice of the central ”origin” point and u. See Fig. 11.1 on the left.)
Let us choose u so that the following conditions hold:
1) q1 > 0,
2) the Briançon hexagon around 0 through u is contained in U .

o

o

u

g
3
(u)

L
3

o

o

L3

v

g3(v)

Figure 11.1: Briançon’s hexagons and their inverse images under the diffeomorphism  with
u =  (v).

Then there is a unique local homeomorphism  : ℝ2, 0→ ℝ2, 0 such that
1)  (0, 1) = u,
2)  (1, 0) = g3(u),
3) it maps the foliations p = const, p + q = const and q = const to the foliations ℱ1, ℱ2

and ℱ3 respectively. (See Fig. 11.1). In fact, the points u and g3(u) lies on the same curve
of the foliation ℱ2 since the involution g3 is a symmetry of ℱ2. Further, there is a unique
diffeomorphism, mapping the triangle (0, 0), (0, 1), (1, 0) to the ”triangle” (0, 0), u, g3(u) formed
by the curves of the foliations ℱ1, ℱ2 and ℱ3 (see [18] p.15). This map is uniquely extended to
the whole hexagon. Moreover, the constructed homeomorphism  is equivariant with respect
to the action of D3 defined above. The map  is smooth (analytic) if the foliations ℱ1,ℱ2,ℱ3

are smooth (analytic). Indeed, according to [18] p.155, there exists a smooth (analytic) map,
taking the foliations p = const, p + q = const and q = const to ℱ1, ℱ2 and ℱ3 respectively,
and this map is uniquely defined by specifying the inverse image of u. Thus, this map should
coincide with the above homeomorphism  .
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Now consider the map:

� ∘ f ∘  : ℝ2, 0→ ℝ
2, 0, (P,Q) 7→ (A,B) = �(f( (P,Q))).

In coordinates it reads as

A = �(P,Q), B = �(P,Q).

Observe that the above map is symmetric with respect to the action of D3. Then by the results
on smooth functions, invariant with respect to finite group action, the functions � and � must
depend only on the basic invariants of the above D3 group action (see [57]) and [88]):

A = �̃(X,Y ), B = �̃(X,Y ),

where

X = −P 2 − PQ−Q2, Y = PQ(P +Q). (11.19)

We claim that �̃, �̃ are the components of required diffeomorphism '. To prove that consider
the following commutative diagram:

ℝ2, 0
 −→ ℝ2, 0

↓ V ↓ � ∘ f
ℝ2, 0

'−→ ℝ2, 0

(11.20)

where V is Vieta’s map (11.19). Applying the same results on symmetric functions to � :=
V ∘  −1 we see that the differentiable map � is inverse to ' inside the ”cusped” domain where
our ODE has 3 distinct real solutions. This completes the proof in the real analytic case.
For the smooth case we apply ' and for the reduced equation we consider the first integral
of the direction field � that coincides with p on the part M3 of M that is projected to the
domain with three real roots. Further, it is easy to construct through homotopy the �-lowerable
diffeomorphism '′ of M that is identity on M3 and moves the integral curves of � to that of
(11.15). The searched for diffeomorphism is '′ ∘ '. □

∙ The case of non-Legendrian criminant

Theorem 34 If the following conditions hold for implicit ODE (1.43) at a point m = (x0, y0, p0) ∈
M :
1) ODE (1.43) has a hexagonal 3-web of solutions,
2) p0 is the triple root of (1.43) at �(m) = (x0, y0),
3) the criminant C is transverse to the contact plane field in some punctured neighborhood of
m and rank((x, y, p) 7→ (F, Fp))∣C = 2,
then it is locally equivalent to

P 3 + 2PX + Y = 0, (11.21)

within the domain, where (11.21) has three real roots, if F is smooth,
and in some neighborhood of (0, 0), if F is real analytic.

Proof: We follow the proof scheme of Theorem 33. Namely we consider the pull-back of the
form dy − pdx to ℝ2, 0 by the Vieta map � ∘ f , where f is defined by (11.17), duplicate this
pull-back form by linear involutions (11.18) and find a local diffeomorphism of ℝ2, 0 matching
”lifted” 3-web of our equation and that of (11.21). The difference to the previous case of
Legendrian criminant is that now the web is singular; each foliation ℱi has a saddle singular
point at f−1(m). Therefore the classical results on hexagonal 3-web are not of much use to
find the diffeomorphism ”upstairs”. We construct it through a homotopy of the first integrals
of the corresponding foliations.
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∙Differential forms of the foliations.
By Lemma 15 equation (1.43) is equivalent to (11.13) with

A(0, 0) = B(0, 0) = Bx(0, 0) = 0,
∂(A,B)

∂(x, y)

∣∣∣∣
0

∕= 0, Ax(0, 0) ∕= 0, By(0, 0) ∕= 0.

Thus, the tangent plane TmM to the surface M at m = (0, 0, 0) is the plane y = 0 and the
tangent line to the discriminant curve at (0, 0) is y = 0. Therefore one can choose p,A as
local coordinates on the surface M,m and A,B as local coordinates on ℝ2, 0. Thus, one has
x = X(A,B), y = Y (A,B), where A = −p2− q2− pq and p, q, r = −p− q are roots of (11.13).
As easily follows from Theorem 32, the kernel of the pull-back form �∗(dy− pdx) is tangent to
the curve D defined by (11.16). That means that the kernel of the form

f∗(�∗(dy−pdx)) = (2p+q)(−YA+pXA+qYB−pqXB)dp+(2q+p)(−YA+p(XA+YB)−p2Xb)dq

is tangent to the line L1 := {(p, q) : p + 2q = 0}. Writing the above form as !1 := (2p +
q)P (p, q)dp+ (2q + p)Q(p, q)dq with suitable P,Q and passing to the coordinates (q, s), where
s := 2q + p, one gets

!1 = (2s− 3q)Pds+ (sQ− 2(2s− 3q)P )dq.

Hence the tangency condition implies P ∣s=0 = 0. By the Hadamard lemma P = sP̃ hence one
obtains

!1 = s{(2s− 3q)P̃ ds+ (Q− 2(2s− 3q)P̃ )dq}.
Now consider the expression for P = −YA+(s− 2q)XA+ qYB − (s− 2q)qXB. One has YA = 0,
XA ∕= 0 from AxBy ∕= 0, Bx = 0. Since A is quadratic and B is cubic in p, q, the term YA does

not have linear terms in p, q. This implies P̃ (0, 0) ∕= 0. Using again the condition on L1 one
obtains

Q− 2(2s− 3q)P̃ = sQ̃.

Let as normalize forms vanishing each on its own family of solutions to satisfy �1+�2+�3 =
0:

�1 = (q − r)(dy − pdx), �2 = (r − p)(dy − qdx), �3 = (p− q)(dy − rdx). (11.22)

As shown above the pull-back of �1 is

�̃1 = (2q + p)2{(2p+ q)P̃ dp+ (2(2p+ q)P̃ + (2q + p)Q̃)dq} (11.23)

∙Connection form.
Following [19] consider the area form

Ω := �̃1 ∧ �̃2 = �̃2 ∧ �̃3 = �̃3 ∧ �̃1 = (YAXB − YBXA)(p− q)2(2p+ q)2(2q + p)2dp ∧ dq

and the connection form


 := ℎ2�̃1 − ℎ1�̃2 = ℎ3�̃2 − ℎ2�̃3 = ℎ1�̃3 − ℎ3�̃1,

where ℎi are defined by
d�̃i = ℎiΩ.

Using (11.23) on obtains by direct calculation that

ℎ1 =
R1

(2p+ q)2(p− q)2 ,

where R1 is a smooth function of p, q. Applying the cyclic permutation p → q, q → r, r → p,
one gets: �̃2 = (2p+ q)2�̄2, ℎ2 = R2

(2q+p)2(p−q)2 , where R2 and �̄2 are smooth. Therefore


 =

̄

(p− q)2 ,
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with a smooth form 
̄. Observe that the connection form 
 is symmetric with respect to the
linear transformation group D3, generated by g1, g2, g3. Therefore 
 is smooth, i.e. (p − q)2
divides 
̄.

∙Existence of first integrals.
As the web is hexagonal the connection form 
 is closed. Therefore there exists a unique
D3-symmetric function �, satisfying

d� = �
, �(0, 0) = 1.

Further, the forms ��̃i are also closed. Thus, we can locally define functions ui by

d(ui) = ��̃i, ui(0, 0) = 0,

satisfying the following equation, which is equivalent to the hexagonality of the web:

u1 + u2 + u3 ≡ 0. (11.24)

Observe that the function u1 is skew-symmetric with respect to g1:

g∗1(u1) = −u1. (11.25)

This follows from (11.22) and from the invariance of �. Applying Hadamard’s trick one estimates
u1 as follows:

u1(p, q) =

∫ 1

0

d

dt
u1(tp, tq)dt =

∫ 1

0

(
p
∂

∂p
u1(tp, tq) + q

∂

∂q
u1(tp, tq)

)
dt =

= (2q + p)2
∫ 1

0

�(tp, tq)
(
p(2p+ q)P̃ (tp, tq) + q(2(2p+ q)P̃ (tp, tq) + (2q + p)Q̃(tp, tq))

)
t3dt.

Collecting similar terms, using P̃ (0, 0) ∕= 0 and integrating, one has

u1(p, q) = (2q + p)3((2p+ q)P̂ (p, q) + qQ̂(p, q)), where P̂ (0, 0) ∕= 0. (11.26)

∙Properties of the first integrals.
It follows from Malgrange’s Preparation Theorem that any smooth function F of (p, q) can be
represented in the form

F (p, q) = F0(A,B) + pF1(A,B) + qF2(A,B)+

pqF3(A,B) + q2F4(A,B) + pq2F5(A,B), (11.27)

with smooth functions Fi. In fact, the identities p2 = −pq−q2−A, p3 = −pA−B, p2q = −pq2+
B, q3 = −qA−B imply ⟨p, q⟩4 ⊂ ⟨A,B⟩ and ℰ(ℝ2)/⟨A,B⟩ = ℝ{1, p, q, pq, q2, pq2}. (Here ℰ(ℝ2)
is the local algebra of smooth function germs at (0, 0); ⟨p, q⟩ its maximal ideal, generated by the
coordinate functions p and q; the maps A,B are defined as follows: A : (p, q) 7→ −p2− pq− q2,
B : (p, q) 7→ p2q + q2p, and ℝ{1, p, q, pq, q2, pq2} is the real vector subspace of ℰ(ℝ2), spanned
by 1, p, q, pq, q2, pq2.) Moreover, inside the ”cusped” domain with 3 real distinct solutions of
our ODE the functions Fi are uniquely determined by F . For F = u1 property (11.25) implies
F4 = −F3, F2 = 2F1 − AF5, F0 = −AF3 − BF5/2. Applying −g∗2 and −g∗3 to u1 one gets the
other two first integrals u2 and u3, whose representations in form (11.27) are easily read from
the representation of u1. Now identity (11.24) implies F5 = 0. Thus,

u1(p, q) = (2q + p)(F1(A,B) + pF3(A,B)).

Using (11.26) one can write

F1(A,B) + pF3(A,B) = (2q + p)2G(p, q).
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Representing the function G as

G(p, q) = G0(A,B) + pG1(A,B) + qG2(A,B) + pqG3(A,B) + q2G4(A,B) + pq2G5(A,B)

and substituting this representation into the above equation, one obtains

G(p, q) =
4

3
AG4(A,B) + pG1(A,B) + pqG4(A,B) + q2G4(A,B). (11.28)

∙Equivariant homotopy.
For equation (11.21) the first integral u1 is u0(p, q) := p(2q + p)3. Let us scale u1 so that
P̂ (0, 0) = 1

2 in (11.26). We claim that the family of functions

ut(p, q) := u0(p, q) + t(u1(p, q)− u0(p, q))

is equivariantly ℛ-trivial, i.e. for any t ∈ [0, 1] there is a diffeomorphism  t equivariant with
respect to the above defined D3 group action such that

ut ∘  t = u0.

To prove this it is enough to find D3-equivariant vector field �(p, q, t)∂p + �(p, q, t)∂q satisfying
the following homotopy equation:

�(p, q, t)
∂ut(p, q)

∂p
+ �(p, q, t)

∂ut(p, q)

∂q
+
∂ut(p, q)

∂t
= 0, �(0, 0, t) = �(0, 0, t) = 0.

A general form of a D3-equivariant vector field is given by

� = p�(A,B) +

(
A

3
+ pq + q2

)
�(A,B), � = q�(A,B) −

(
2

3
A+ q2

)
�(A,B), (11.29)

(see [16] or derive it from the representations of �, � in form (11.27)). Observe that the difference

(u1(p, q)− u0(p, q)) = ∂ut(p,q)
∂t also has form (11.28):

u1(p, q)− u0(p, q) =
4

3
AL(A,B) + pK(A,B) + pqL(A,B) + q2L(A,B)

with K(0, 0) = 0 due to the chosen scaling of u1. Solving the homotopy equation yields the
following expressions for � and �:

� =
6K + (6K2 + 2A2(KBL−KLB) + 9B(KLA −KAL) + 10AL2)t

M
,

� =
−12L+ (6A(KLA −KAL) + 9B(KLB −KBL) + 3KL)t

M
,

where
M = −24 + [−48K − 12AKA − 18B(KB + 2LA) + 8A2LB]t+

+[−24K2 − 2A(6KKA + 25L2) + 3B(15KAL− 6KKB − 12KLA)+

+2A2(4KLB − 10LLA − 5KBL)− 30ABLLB + (27B2 + 4A3)(KALB −KBLA)]t
2.

M does not vanish at (0, 0) since K(0, 0) = 0. The claim on ℛ-triviality of the family ut(p, q)
is proved.

∙Diffeomorphism.
We have proved that the diffeomorphism

 :=  1
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maps the fibres of u0, i.e. the curves {(p, q) : u0(p, q) = const} to those of u1. Therefore, being
equivariant, ' maps the foliations ℱi of (11.21) to that of our equation (11.13). Now diagram
(11.20) defines again the desired diffeomorpfism '. □

Remark. A picture of the D3-symmetric hexagonal 3-web, defined by the solutions of (11.21)
and lifted to the plane p + q + r = 0, is presented in Fig. 11.2 on the left. It consists of 3
foliations, one of them is shown in Fig. 11.2 in the center. On the right is the fundamental
domain of D3-group (compare with Fig. 1.10 on the right). The flower-like form on the left
suggests that the web is actually symmetric with respect to the symmetry group D6 of regular
hexagon. In fact, it is the case since the fibers of the first integrals are permuted by the following
symmetry g4 : ℝ2 → ℝ2, (p, q) 7→ (−p,−q).

Figure 11.2: D3-symmetric hexagonal web of 3 foliations with saddle singularities (left), one of
the foliations (center), and the fundamental domain of D3 (right).

11.3 Proof of the classification theorem

Now we can prove Theorem 9. If a point m = (x0, y0, p0) ∈ M is regular then our equation is
locally equivalent to (1.50) case v) by definition. If p0 is a double root then the regularity con-
dition (1.45) implies that m is a fold point of the projection �. Futher, Corollary 2 implies that
the criminant is either Legendrian or transverse to the contact plane field in some neighborhood
of m. Thus by Theorems 30 and 32 the equation is locally equivalent either to (1.50) case iii)
or to (1.50) case iv). Finally if p0 is a triple root and the criminant is either Legendrian or
transverse to the contact plane field in some punctured neighborhood of m then by Theorems
33 and 34 the equation is locally equivalent either to (1.50) case i) or to (1.50) case ii). To
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complete the proof we show that Legendrian and non-Legendrian parts of the criminant can
not be glued together at a cusp point. By Lemma 15 our equation is equivalent to (11.13) with
(x0, y0, p0) = (0, 0, 0), Bx(0, 0) = 0. Suppose the criminant is transverse to the contact plane
field for p > 0 and Legemdrian for p ≤ 0. For any point m′ ∕= m with p > 0 on the curve D
defined by (11.16) the direction field � is tangent to D by theorem 32. This condition reads as

(
d(A+

3

4
p2) ∧ (dy − pdx)

)∣∣∣∣
D

= 0.

In coordinates p, x on M it can be rewritten as follows

(
(dA+

3

2
pdp) ∧ ((3p2 +A)dp+ (Bx + (Ax +By)p+Ayp

2)dx)

)∣∣∣∣
D

= 0.

Substituting A = − 3
4p

2 and

dA = Axdx+Aydy = Axdx−
Ay

By +Ayp
((3p2 +A)dp+ (Bx +Axp)dx)

into this equation one gets

3

2
p2(AxBy +Ay(Ax +By)p+A2

yp
2)− p(Bx + (Ax +By)p+Ayp

2)(By +Ayp)

∣∣∣∣
D

= 0.

Parameterizing the curve D by p, expanding the above equation by Tailor’s formula at p = 0
and equating the coefficient by p2 to 0 one obtains

By(
3

2
Ax − (Ax +By))

∣∣∣∣
x=y=0

= 0,

which implies
2By(0, 0)−Ax(0, 0) = 0,

sinceBy(0, 0) ∕= 0. (We have used the Taylor formulaBx = BxAA+BxBB+... = BxA(−3/4p2)+
BxB(−1/4p3) + ....)

On the other hand, for any point m′ ∕= m with p ≤ 0 the contact form vanishes on the
criminant:

dy − pdx∣C = 0.

In coordinates p, x on M it can be rewritten as follows

(Bx + (Ax +By)p+Ayp
2)
∣∣
C
= 0.

Now the Tailor expansion at p = 0 for C parameterized by p gives Ax + By = 0 (Bx does not
have linear in p terms). Comparing with the condition above on the non-Legendrian part one
gets Ax(0, 0) = 0 and therefore By(0, 0) = 0, which contradicts Lemma 15. □

Remark. Unfortunately, the annoying stipulation in Theorem 9 for the smooth case (1.50) i)
can not be omitted to guarantee the existence of the diffeomorphism ' reducing ODE under
consideration to (1.50) i) in some neighborhood of m if one stays within the framework of
geometric Definition 13. A necessary condition for that is the existence of the first integral of
� in the form f(p, x)2g(p, q)3 = '̃∗(p2(x + 3p2/8)3). Here '̃ is the lift to M of the searched
for diffeomorphism and p2(x + 3p2/8)3 is the first integral of � for (1.50) i). It is not hard to
find a counterexample which does not have such an integral in the form f(p, x)2g(p, q)3 with
non-vanishing df, dg at (0, 0). This drawback is repaired as follows. One replace definition 13
with a less geometric one.
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Definition 22 We say that implicit ODE (11.13) has a hexagonal 3-web of solutions if A,B
satisfy PDE (11.14) and the domain, where (11.13) has 3 real roots p1, p2, p3 is not empty.

The proof of Theorem 34 is easily modified for the case of one real root p1 = p and two
complex conjugated roots p2,3 = −p/2 ± iz. The form �1 turns out to be pure imaginary
but the connection form 
 is real. All analytical properties being the same, one finds the
diffeomorpfism ' similarly through homotopy.

11.4 Concluding remarks on implicit ODEs with hexago-

nal web of solutions

∙ Symmetries of the normal forms. The solutions of equation (1.50) case v) are the lines
dx = 0, dy = 0 and dx+ dy = 0. Its symmetry group is generated by the following operators:

X1 = ∂x, X2 = ∂y, X3 = x∂x + y∂y.

Thus the symmetry pseudogroup of a cubic implicit ODE with hexagonal 3-web of solutions
is at most 3-dimensional. In a neighborhood of the projection of a regular point m ∈ M it
is generated by the above three operators Xi in suitable coordinates. The coordinate change
becomes singular on the discriminant curve and not all symmetry operators ”survive” at �(m) ∈
Δ. The symmetry pseudogroups of equations (1.50) case iii) and (1.50) case iv) at a fold point
are generated by

Y1 = x∂x + 2y∂y, Y2 = ∂x

and

Y1 = 2x∂x + 3y∂y, Y2 = ∂y,

respectively. This easily follows from Propositions 17 and 18. Irreducible equations (1.50) case
i) and (1.50) case ii) have only one-dimensional symmetry pseudogroup at (0, 0):

Z = 2x∂x + 3y∂y.

∙ Analytic properties. All equations in the given normal forms are integrable in elementary
functions.

∙ Implicit cubic ODEs with singular surfaces M . Suppose our cubic ODE factors out
to 3 linear in p terms p − fi(x, y) such that 2 of 3 smooth surfaces Mi := {(x, y, p) : p =
fi(x, y)} intersect transversally along a non-singular curve, the solutions of these 2 factors
being transverse to the curve projection into the plane. Then one can bring these two factors
to the forms p = 0 and p = 2x respectively. The symmetry pseudogroup of the quadratic ODE
p(p−2x) = 0 is ỹ = F (y), x̃ =

√
F (y)− F (y − x2). If our cubic equation has a hexagonal 3-web

of solutions, then its third factor is generated by the vector field (�(y−x2)+�(y))∂x+2x�(y)∂y.
As the functions �, � are arbitrary we can hope to ”kill” only one of them by the above
mentioned symmetry. Thus, a general classification of all cubic ODEs will have functional
moduli even if one impose hexagonality condition. (Note that if the third family of solutions in
this example is transverse to the first two, we have � = −� and one gets a finite classification
list.)
∙ Other examples. The proof of Theorem 34 suggests the following procedure to generate
cubic ODEs with a hexagonal 3-web of solutions: start with a function F (p, q) written in form
(11.27) with A = p2 + pq + q2, B = pq(p + q), define G(p, q) := F (q,−p − q), H(p, q) :=
F (−p− q, p) and solve the following equations for Fi:

g∗3(F ) = ±F, F +G+H ≡ 0. (11.30)
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This gives four of six coefficients Fi as linear combinations of the remaining two ”free” functions
of A,B. Then the fibers of F,G,H define a hexagonal 3-web, symmetric with respect to D3-
group action, generated by the involutions g1, g2, g3. The image of this web under Vieta map
(p, q) 7→ (p2 + pq+ q2, pq(p+ q)) is a hexagonal 3-web of solutions of some implicit cubic ODE.
For example, starting with F = p− q one gets the following equation:

yp3 − 2

3
x2p2 + xyp+

1

27
(2x3 − 27y2) = 0.

The solution 3-web of this equation is dual to that of (1.50) case i) (see [76]). Its surface M is
not smooth at (0, 0, 0). Note that one can also start with F such that the ”free” coefficients Fi
have poles at 0. This approach linearizes the problem of finding local solutions of nonlinear PDE
(11.14). In the space of functions F satisfying (11.30) acts the pseudogroup of D3-equivariant
transformations with the tangent space generated by vector fields defined by (11.29). General
classification of such functions with this equivalence group seems rather unpromising since the
orbit codimension quickly becomes infinite.
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