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Abstract

Spin-polarisierte Oberflächenzustände, die auf den mit niederdimensionalen Strukturen deko-
rierten Oberflächen von edlen Metallen entstehen, werden mit Hilfe der ab-inito KKR
Methode untersucht. Diese Methode ist eine Umsetzung der Dichtefunktional-Theorie in
der Lokale-Spin-Dichte-Näherung (LSDA). Der Akzent der Arbeit liegt auf zwei unter-
schiedlichen Systemen: dekorierte gestufte Oberflächen und magnetische Co Nanoinseln
auf (111) Oberflächen der edlen Metalle. Für das erste System wird gezeigt, dass die Spin-
abhängige Streuung an monoatomaren magnetischen Ketten, die an den Stufenabsätzen
von vicinalen Oberflächen platziert sind, einen starken Einfluss auf die Oberflächenzustände
zeigt und zu dessen Polarisierung führt. Die änderungen der Bandstruktur werden ange-
sprochen. Wir schlagen einen Weg vor, wie man auf vicinalen Oberflächen niederdimen-
sionale magnetische Strukturen mit Hilfe der Atom-Atom und Atom-Stufe Wechselwirkun-
gen erzeugen kann. Bei dem zweiten System, den magnetischen Co Nanoinseln auf (111)
Oberflächen von edlen Metallen, sprechen wir gezielt die Herkunft der Spin-polarisierten
Oberflächenzuständen an und die Rolle, die die Unterlage bei dessen Entstehung spielt.
Das Zusammenspiel zwischen der energetischen Lage des Oberflächenzustandes und den
mesokopischen Relaxationen in magnetischen Nanoinseln wird erläutert.

Abstract (English)

Spin-polarized surface states arising on noble metal surfaces decorated with low-dimensional
magnetic nanostructures are studied by means of the ab initio Korringa-Kohn-Rostoker
Green’s function method based on the density functional theory in the local spin-density
approximation. We focus on two different systems: decorated stepped surfaces and magnetic
Co nanoislands grown on noble metal (111) substrates. It is demonstrated for the first
system that spin-dependent scattering at monatomic magnetic wires placed at step ledges
of vicinal surfaces significantly affect surface states and make them spin-polarized. Changes
in band structure are revealed. Then we present a way to create on vicinal surfaces at
low temperatures a low-dimensional magentic nanostructures stabilized by surface-state-
mediated adatom-step and adatom-adatom interactions. For the second studied system, i.e.
cobalt nanoislands on noble metal (111) substrates we specially focus on the origin of spin-
polarized surface states and on a role of substrate in their formation. The interplay between
energy positions of surface states and mesoscopic relaxation in magnetic nanoislands is
demonstrated.
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Introduction

The avalanche-like development of microelectronics, magnetoelectronics and spintronics pro-
duces more complicated devices of a smaller size. Nowadays the smallest device elements
are only several nanometers in size, so further downscaling turns them into purely quantum
systems obeying laws of quantum mechanics. Though the ultimate goal, the invention of
quantum computers, has been already announced, many practical and theoretical aspects
are still not clear even for rather simple atomic-scale systems, like thin films, nanoislands,
stripes, chains, small clusters and adatoms on surfaces. The main advantage of such nanos-
tructures, i.e. the possibility to tune their electronic and magnetic properties by adjusting
appropriate structure or environment, turns into a real problem, because the strong depen-
dency of properties on atomic species involved hinders relevant generalizations. That is why
a combined effort of experiment and theory is essential to reveal the detailed description of
atomic-scale systems.

This work is dedicated to the investigation of special electronic states arising at metal
surfaces. Despite the fact that first theoretical predictions and descriptions of these surface
states were made more than 70 years ago they are still in focus of modern solid state
science. Surface states on the one hand can be easily probed by various experimental
techniques and on the other hand they are found to be perfect sensors of such material
properties as a substrate structure, magnetism of thin films and adsorbates. Recent studies
have clearly demonstrated that surface states can govern self organization of atomic scale
ordered structures.

The most of systems we are dealing with in this work support spin polarized surface
states. Spin polarization is achieved by decoration of nonmagnetic noble metal substrate
with a low dimensional magnetic nanostructure. One dimensional magnetic nanostructures
are represented by the monatomic Fe rows decorating step ledges of Cu(111) vicinal surfaces.
We thoroughly trace how electronic states revealed on clean stepped Cu(111) substrates
become spin-polarized on decorated step surfaces. The next kind of system we study is a
small magnetic nanoisland on flat noble metal surfaces. We follow the evolution of spin-
polarized surface states above magnetic nanostructures depending on their size: from a
single magnetic adatom to infinite bilayers. In our work we specially focus on the origin of
spin-polarized surface states on bilayer Co films and a role of substrate in their formation.
Finally, the interplay between energy positions of surface states and mesoscopic relaxation
in magnetic nanoislands is studied. All the calculations are performed with the help of the
Korringa-Kohn-Rostoker Green’s function method exploiting the density functional theory
in the local density approximation.

The thesis is organized as follows.

The first chapter is an introduction to the surface state theory. We start from electronic
states in the infinite crystall and demonstrate how new electronic states appear on a surface.
We mention both mathematical and physical origins of Tamm and Shockley surface states.
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The chapter is finished by modern experimental results on the surface state on noble metals
{111} surfaces

In the second chapter we present the theory of scanning tunneling microscopy/ spec-
troscopy (STM/STS) by Tersoff and Hamann and demonstrate that STS data can be di-
rectly compared to the calculated density of states at the position of an STM tip. The
key experimental works reviewed in this chapter convince a reader that STM/STS experi-
ments on surface states can be supported by a simple but qualitatively correct theoretical
quantum-mechanical description which helps to understand observed phenomena.

The third chapter describes theoretical methods applied in this study. Basics of the
density functional theory are presented in the first section of the chapter. It is demonstrated
how a many-body quantum problem can be reduced to an equivalent single-particle one.
The second section contains the description of the Korringa-Kohn-Rostoker Green’s function
method. Theory underlying this method is presented. Basics of its applications to the
calculations of infinite periodic 3D and 2D structures and real-space atomic configurations
are demonstrated by example of Cu(111) surface and Fe adatom on Cu(111) surface. A
molecular dynamics approach based on the many-body interatomic potentials formulated
in the second moment of tight-binding approximation is mentioned as a rather simple way
to obtain relaxed atomic configurations in the last section of the chapter.

The fourth chapter of the work presents our results on electronic confinement on stepped
Cu(111) surfaces. We, at first, describe a modern view on the surface state on stepped
surfaces and report on our ab initio investigations of surface states on clean Cu(111) vicinals.
Then we proceed to the study of Cu(111) vicinals decorated with Fe wires and demonstrate
that localization of the minority surface-states electrons at Fe wires results in the formation
of spin-polarized surface states. At the end of the chapter we explain how a novel type of
1D magnetic Fe nanostructures can be grown on Cu(111) vicinal surface exploiting surface
state confinement.

The fifth chapter is devoted to the spin-polarized surface states on bilayer Co islands
grown on noble metal substrates. We focus on the influence of structural properties of
the Co nanoislands on the spin-polarized surface states. By means of ab-initio methods
we demonstrate the evolution of electronic states above Co nanoislands of various sizes
starting from a single Co adatom up to Co bilayers. We show the origins of majority and
minority surface states. We illustrate the effect of the stacking of Co bilayer on the spin-
polarized surface states. Finally, comparing surface states on Co nanoislands on Cu(111)
and Au(111) substrates we figure out the essential role of the substrate on the surface states
and demonstrate that variation of the substrate lattice constant permits to tune energies of
surface states.

In the last chapter, we demonstrate the interplay between strain-induced structural
relaxations and the surface states of Co nanoislands on Cu(111). Recent STS experiments
have established that the occupied surface states exhibit a size-dependent energy shift A
shift has been also observed at the corners and edges of the island with respect to the center
of the island. Our atomic-scale simulations and ab initio calculations demonstrate that the
energy positions of the occupied surface states are determined by mesoscopic relaxations
in the nanoislands. Our work suggests that surface states can be a sensitive probe for
variations of the atomic structure at the nanoscale.



Chapter 1

Surface states: introduction

It was revealed quite early that electronic states at surfaces differed from their bulk coun-
terparts. The first theoretical description of a new class of electronic states bounded to the
surface was made by I.E. Tamm in 1932 [1]. Since that time the theory of surface states
has been developed and extended; its prior conclusions and predictions were confirmed ex-
perimentally. This chapter provides basics of the surface state theory. We demonstrate
mathematical and physical origins of surface states and the chapter is finished by modern
experimental results on the surface state on {111} surfaces of noble metals.

1.1 Electrons in infinite crystals

The electronic structure of a solid having N nuclei of masses Mi with atomic numbers Zi

at positions Ri and n electrons can be described by solution of the quantum many body
problem [2, 3]

[

−
N
∑

i=1

~
2

2Mi

∇2
Ri

−
n
∑

k=1

~
2

2me

∇2
rk

+
1

4πε0

N
∑

j=1

N
∑

i>j

ZiZj

|Ri − Rj|
− (1.1)

− 1

4πε0

n
∑

k=1

N
∑

i=1

Zie

|rk − Ri|
+

1

4πε0

n
∑

k=1

n
∑

l>k

e2

|rk − rl|

]

ψ = Eψ,

where me and e are the mass and the charge of an electron, ε is the universal constant of
free space permittivity, ψ = ψ (r1, r2, . . . , rn) is the many body wavefunction and E is the
total energy of the system. Very often equation (1.1) is written in atomic units, whereby
~ = em = me = 4πε0 = 1. Both exact and numerical solutions of this problem formulated
for an infinite crystal are actually based on two main approximations. The first, adiabatic
approximation of Born and Oppenheimer, assumes that nuclei move much more slowly than
electrons, so nuclei and electronic motions can be separated. The second approximation,
one-electron approximation, permits to substitute the many-body electronic problem with
a single-particle, which describes an electron moving in effective potential v(r) consisting
of nuclei potentials and a potential all other electrons. This approximation is considered in
details in Section 3.1. Under these two assumptions equation (1.1) takes the form

{

− ~
2

2m
∇2 + v (r) +

∫

ρ (r′)

|r − r′|dr
′

}

ψk (r) = ǫkψk (r) , (1.2)
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4 Chapter 1. Surface states: introduction

Since any ideal crystal by definition has translational symmetries, effective atomic potential
v (r) is periodic and can be generally written as

v (r) = v (r + an) , (1.3)

where an are vectors of the crystall lattice. According to the Bloch-Floquet theorem [4, 5]
solutions ψ of equation (1.2) with periodic potential (1.3) may be written in the form:

ψk (r) = uk (r) · eik·r, (1.4)

where k is the wave vector and the function uk (r) has a three-dimensional periodicity of
the crystall lattice, i.e.:

uk (r) = uk (r + an) . (1.5)

Substituting solution of the form (1.4) into the Schrödinger equation (1.2) leads us after
simple transformations to

−∇2uk (r) + v (r) uk (r) − 2i (k · ∇uk (r)) =
(

Ek − k2
)

uk (r) . (1.6)

Since potential v (r) and wave function envelope uk (r) are periodic, they can be represented
as a Fourier series:

v (r) =
∑

g

Vge
2πi(bg·r), (1.7)

uk (r) =
∑

h

ahe
2πi(bh·r),

where bg and bh are reciprocal lattice vectors. Setting constant term V0 = 0 and substi-
tuting (1.7) into (1.6) we obtain an infinite linear homogeneous set of equations for the
coefficients ah

ah

[

Ek − (k + 2πbh)2]−
∑

g 6=0

Vgah−g = 0. (1.8)

Non-trivial solutions of (1.8) vanish the determinant, so exact values of the allowed energies
of the system can be found as solutions of an infinite order secular equation. A particular
solution depends on the form of the potential and is an object for various ab initio methods.
Nevertheless it is possible to demonstrate fundamental features of the band theory involving
into consideration even the simplest model in the framework of the nearly free electron
approximation.

1.2 Nearly free electron approximation

The nearly free electron approximation is based on the assumption that electrons move
in the weak periodic potential v(r). Mathematically potential weakness is determined by
the following statements: all the Fourier coefficients Vg in eq. (1.7) can be treated as first-
order corrections to the free-electron case; all ah in eq. (1.7) are small in comparison to a0

because uk is almost independent of r. Neglecting second-order terms (including products
Vg · ah−g, g 6= h) we come to the following approximation to (1.8)

ah

[

Ek − (k + 2πbh)2]− Vha0 = 0. (1.9)



1.2. Nearly free electron approximation 5

Figure 1.1: Dispersion relation E(k) (solid curve) of electrons propagating in the 1D weak peri-
odic potential is derived according to nearly free electron approximation. Free electron dispersion
relation E ∝ k2 is drawn by dashed line. Periodic potential opens up gaps in the continuous energy
spectra thus forming a set of bands.

Secular equation in this case takes the form
[

Ek − (k + 2πbh)2
] (

Ek − k2
)

− |Vg|2 = 0. (1.10)

The graph of E (k) obtained from this equation formulated for a one-dimensional (1D)
system where bg ≡ bg = ±g/a; k = ±πg/a, g = 1, 2, . . . is shown in Fig. 1.1 together with
the free-electron curve E0 (k) ∼ k2. Periodic potential opens up gaps in the continuous
free-electron curve, thus forming a series of allowed bands separated by gaps. The upper
and the lower gap edges are located at

E± =

(

πg

a

2
)

± |Vg|. (1.11)

Bloch wave functions Ψ± at the band edges can be derived from (1.4):

Ψ± = a0

(

eiπx/a ± V1

|V1|
e−iπx/a

)

. (1.12)

Symmetry of wave functions Ψ± bounding the gap depends on the sign of V1:

Ψ+ =

{

cos
(

πx
a

)

, V1 > 0
sin
(

πx
a

)

, V1 < 0
(1.13)

Ψ− =

{

sin
(

πx
a

)

, V1 > 0
cos
(

πx
a

)

, V1 < 0
(1.14)

For negative V1 the wave function for the lower band edge is even (s-type) and that for the
upper edge is odd (p-type). Such a gap is known as the direct gap. If the wave function of
the lower band edge is of p-type, the gap is called an inverted gap, in order to emphasize
the inverted order of isolated atomic levels. The type of the gap, as we show further, affects
electronic states rising at crystal surfaces.



6 Chapter 1. Surface states: introduction

1.3 Electrons at crystal surfaces

Real crystals are always limited by surfaces and thus are finite. It can be demonstrated that
in a finite crystal consisting of N atoms allowed bands split into a sequence of N discrete
levels. These levels lie in the bulk band gaps, i.e. in the regions inaccessible to electrons of
original bulk material. Modern solid state physics tends to distinguish between two types
of surface state: Tamm surface states [1] and Shockley surface states [6]. Below we briefly
describe the origin and differences of both types.

Tamm was the first who considered the changes in the band structure introduced by a
surface. In his original work [1] he considered a 1D crystall as an infinite array of δ-potentials
and introduced a surface by terminating the array from the one side. The key point of the
Tamm’s approach was to match wave functions and their derivatives in vacuum region to
those in the crystall. Wave function inside the crystal can be written as

Ψcrystal = A
(

eik1x + λe−ikx
)

. (1.15)

The wave function can be analytically continued to the band gap region, if a complex k of
the following form is introduced

k = ξ + iµ, µ ≥ 0. (1.16)

The real part ξ describes plane waves propagating in bulk crystal. Complex part iµ is
responsible for decay of surface related states inside the crystal. Wave functions Ψ± (1.12)
associated with the upper and the lower gap edges (1.11) are real but of different parity
(1.13), i.e. have the phase shift |δ±| = π/2. Continuous complex wave function Ψ can be
introduced in the gap region by means of the continuously varying phase shift δ, (|δ| < π/2).
Wave function (1.15) takes the form

Ψ (x) = eµx cos (πx/a + δ) , x ≤ 0 (1.17)

Cosine in (1.17) can be transformed into

cos (πx/a+ δ) =
1

2
eiδ
(

eiπx/a + e−2iδe−iπx/a
)

. (1.18)

Comparing (1.18) with (1.12) yields the link between δ and V1:

e2iδ =
E − k2

V1
. (1.19)

It is evident that the sign of V1 is important and actually defines the possible values of δ.
To demonstrate it explicitly one should substitute complex k (1.16) into (1.19) and equate
complex parts on both sides of transformed (1.19):

sin (2δ) = −2πµ

aV1
. (1.20)

Since µ ≥ 0 and |δ| < π/2, matching the signs of left and right sides of (1.20) gives the
following possible values of δ for direct and inverted gaps, respectively:

V1 < 0, 0 ≤ δ ≤ π/2 (1.21)

V1 > 0, −π/2 ≤ δ ≤ 0.
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The next step is to match the wave function (1.17) to the wave function outside the crystall.
If a vacuum of a constant potential V0 is present outside the crystall, the vacuum wave
function can be written as

Ψout = De−k0x, x ≥ 0, (1.22)

k0 =
√

V0 −E, E < V0. (1.23)

In general, the matching can be performed at arbitrary x = x0 (x0 < 0, where 0 is the
position of the surface). If logarithmic derivatives of Ψc and Ψout can be matched at x = x0,
the wave function of the system will decay in both directions from the surface. Electrons
of such a state will be localized at the surface and thus will be in a surface state. This
situation is sketched in Fig. 1.2. Equation for surface state energy can be obtained from
the matching procedure:

π

a
tan (πx0/a+ δ) = (µ+ k0) . (1.24)

For two special cases x0 = 0 and x0 = −a/2 equation (1.24) transforms into

x0 = 0,
π

a
tan (δ) = (µ+ k0) (1.25)

x0 = −a/2, π

a
cot (δ) = − (µ+ k0) . (1.26)

Since µ > 0 and k0 > 0 equations (1.25) and (1.26) can be satisfied only for 0 ≤ δ ≤ π/2 and
−π/2 ≤ δ ≤ 0, respectively. These conditions via (1.21) actually means that surface states
arising in direct and inverted gaps are localized at different positions near the surface.
Surface states appearing in the direct gap with the s-band at the bottom are called the
Tamm state [1]. Surface states arising in the inverted gap with the p-band at the bottom
are known as the Shockley surface state [6].

To understand the difference between these two states, one should analyze the behavior
of wave function (1.17). It gets the maximal value at xm = πx0/a + δ. For direct gap
(x0 = 0, 0 ≤ δ ≤ π/2) xm < 0; for inverted gaps (x0 = −a/2, −π/2 ≤ δ ≤ 0) xm > 0.
Since x = 0 is the position of the topmost atomic layer it is possible to conclude that the
Tamm surface state is localized at the surface atom and the Shockley surface state gets its
maximal density in the vacuum, as is demonstrated in Fig. 1.2.

1.4 Quasi-2D free electron-like electrons on the noble

metal surfaces

Noble metal surfaces supports on their {111} facets the Shockley-type surface state. Surface
state electrons are bound to the surface because surface state density decays exponentially
both into the vacuum and into the bulk (Fig. 1.2). As the simplest approximation the
motion of surface state electrons in the surface plane can be treated as free-electron one,
thus yielding the dispersion relation

E
(

k‖
)

= E0 +
~

2

2m∗
k2
‖, (1.27)

where E0 is the energy of the surface state band bottom, m∗ is the effective electron mass,
k‖ is the wave vector parallel to the surface. Strictly speaking, the model of nearly free
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0 x-a-2a-3a-4a

Crystal Vacuum

Shockley SS
Tamm SS

Potential

Figure 1.2: Sketch of the Shockley (solid blue line) and Tamm (dashed red curve) surface states
wave functions.

Table 1.1: The summary of the parabolic dispersion fits results from Ref.[7] The two parabolas
of the Au(111) surface state split due to spin-orbit coupling are centered at ±0.013 Å−1.

E0 (meV) m∗/me kF (Å−1)
Cu(111) 435 ± 1 0.412 0.215
Ag(111) 65 ± 1 0.397 0.080
Au(111) 487 ± 1 0.255 0.167/0.192

electrons propagating in the weak potential of surface atoms is more applicable, but, as
was revealed by a number of experiments, the corrections introduced are not principal. As
an example, the band structure of the surface states on Cu(111), Ag(111) and Au(111)
surfaces measured by means of angle-resolved photoemission spectroscopy (ARPES) are
demonstrated in Fig. 1.3 [7]. Shaded areas in the top panels correspond to the projected
bulk band. The circular shape of the surface state Fermi surface (FS) reflects the isotropic
dispersion parallel to the surface. Dispersion relation (1.27) fitted to the experimental data
is drawn in Fig. 1.3. Fitting parameters are listed in Table 1.1 as well as the value kF

equal to k‖ at the Fermi energy. In the case of Au(111), the spin-orbit coupling caused by
the structure inversion asymmetry (the Rashba effect [8]) results in a spin splitting of the
surface state band proportional to k, and equation (1.27) takes the form [9, 10]:

E±

(

k‖
)

= E0 +
~

2

2m∗
k2
‖ ± γSO|k‖|, (1.28)

where the positive parameter γSO controls the strength of the Rashba spin-orbit interaction,
The “+′′ solution gives rise to an ”inner” band of Au(111) surface state, the “−′′ solution
to an ”outer” one [10].

Up to 90th, surface states were probed mostly by various emission spectroscopy methods.
Reviews of the main results can be found in the book by Davison et al. [11] and in the review
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Figure 1.3: Surface state bands (top) and Fermi surface (bottom) of (a) Cu(111), (b) Au(111)
and (c) Ag(111). The shaded areas in the top panels correspond to the bulk band projections.
The circular shape of the FS reflects the isotropic dispersion parallel to the surface. In the case of
Au(111), the surface state band splits due to the spin-orbit coupling, which leads to two concentric
rings in the FS (The figure is adapted from [7]).
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by Memmel [12]. Surface states were found to be perfect sensors of material properties. In
particular, they can be exploited to control a surface structure: properties of surface states
change if the surface is reconstructed, or in presence of adsorbates [12]. Surface states were
found to contribute to thin film magnetism [12]. Since the early 90th, surface states are
widely investigated by scanning tunneling microscopy technique.



Chapter 2

Probing of surface states with
STM/STS

Scanning tunneling microscopy/spectroscopy (STM/STS) is one of the most advanced and
flexible experimental techniques. In this chapter we present a theory of STM/STS and
demonstrate that STS data can be directly compared to the calculated density of states
at the position of an STM tip. This fact permits, on the one hand, to support STM/STS
experiments by a simple but qualitatively correct theoretical description which helps to
understand laws of quantum mechanics underlying observed phenomena, and on the other
hand, provides a unique possibility to compare experimental results with density of states
calculated from the first principles. Here we focus on noble metal {111} surfaces, review key
experiments on surface state confinement to islands and vacancy craters, on surface state
interaction with adsorbates and on surface states on stepped surfaces. Finally we briefly
sketch the spin-polarized STS as a tool providing access to the information on spin channels
of surface states on magnetic nanostructures.

2.1 The theory of STM

STM is based upon the quantum tunneling effect. In classical mechanics a particle needs an
extra energy to overcome a potential barrier. In quantum mechanic when a particle faces
a potential barrier it possesses a nonzero probability to tunnel directly through it without
extra energy consumption. It can be easily demonstrated that for the simplest case of an
electron inciding a rectangular potential barrier of width d and height U , the tunneling
probability is [13]:

T (E) ∼ exp

[

−2d

~

√

2m (U −E)

]

. (2.1)

More general expression for an arbitrary form barrier can be obtained using perturbation
WKB theory [13]:

T (E) ∼ exp

[

−2

~

∫ z2

z1

√

2m (U(z) −E)dz

]

. (2.2)

In metals valence band lies at the Fermi level, so if a sharp tip is brought in the proximity
of a metal surface, electrons can tunnel from the tip to the surface or vice versa as sketched
in Fig. 2.1(a). The barrier heights are determined by the tip and the sample work functions
Φtip and Φsample. The relative positions of the tip and the sample Fermi levels can be tuned

11
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Figure 2.1: (a) The STM tunneling contact. See the text for details. (b) A spherical tip
approximation suggested by Tersoff and Hamann [14].

by the bias voltage Vb. Such a construction of the system permits to alter the tunneling
barrier by the variations of the tip-sample distance d and bias voltage Vb and, hence, affects
the tunneling current measured in STM/STS. But here arises a question how to interpret
measured data.

Tersoff and Haman suggested a simple theoretical approach to model the STM [14].
They considered an arbitrary surface and a spherical tip of radius R at the point r0. The
distance between the tip and the surface was d as sketched in Fig. 2.1(b). The Bardeen
formalism was used for the current calculations [15]. The assumption was that once electron
was injected into an unoccupied sample state (negative bias voltage) or removed away from a
sample state (positive bias) it never came back. Physically this means that injected electron
propagates far away from the tip before it can tunnel back and electrons removed from the
surface into the continuum of tip states also do not tunnel back. The current is

I =
2πe

~

∑

µ,ν

f(Eµ) (1 − f (Eν + eVb)) |Mµν |2 δ (Eµ − Eν) , (2.3)

where f(E) is the Fermi function and Mµν is the matrix element for tunneling between
the tip states Ψµ and the sample states Ψν . In the simplest approximation the tip can be
replaced with a point probe, which, following Tersoff and Haman [14], represents the ideal
case of a nonintrusive measurement. Matrix elements Mµν and tunneling current, hence,
are simply proportional to the surface local density of states (LDOS) at the position of the
tip.

A more detailed treatment of (2.3) requires calculation of Mµν [14]. Bardeen showed
[15] that

Mµν =
~

2m

∫

(

Ψ∗
µ∇Ψν − Ψ∗

ν∇Ψµ

)

ds, (2.4)

where the integration is taken over any surface lying entirely within the barrier region sep-
arating the sample and the tip. The quantity in parenthesis is simply the current operator.
Tersoff and Haman took the wave function of the tip in the asymptotic spherical form

Ψµ =
Φtip
√

Ωtip

R · eκR · 1

|r − r0|
· e−κ|r−r0|, (2.5)
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where Ωtip is the tip volume and κ = ~
−1
√

2mΦtip. Sample states can be represented in
general form by s-type Bloch functions exponentially decaying into the vacuum [14]:

Ψν =
Φsample
√

Ωsample

∑

G

ab · exp
[

i(G + k‖)ρ− z
√

κ2 + (G + k‖)2
]

. (2.6)

Tersoff and Haman obtained the following expression for the matrix elements:

Mµν =
~

2

2m
4πκ−1

√

ΩtipκR · eκRΨν(r0). (2.7)

And for the tunneling current:

I =
32π3e2

~
Ωtip

Φ2

κ4
ρtip(EF )R2 · e2κRρsample(r0, EF ) (2.8)

In the theory of Tersoff and Hamann the tunneling current is proportional to the surface
LDOS at the position of the tip. They claimed [14] that the made approximations appeared
to introduce relatively little inaccuracy, except that the tip was treated in a model way; but
even this approximation led to realistic and physically relevant picture.

2.2 Probing surface states with STM/STS

Davis et al. extended the Tersoff-Hamann theory to the case of surface state [16]. Surface
states decay in the vacuum region in a different way than 3D Bloch states do (see eq. (2.6)).
The surface states are localized in a wave function that decays into the vacuum as:

Ψk ∼ eik·ρ exp

(

−
∫ z

0

K(z)dz

)

(2.9)

K(z) =

√

2m

~2
[U(z) − E(k)] + k2,

where U(z) is the potential above the surface and ρ = {x, y, 0} is the 2D vector defined in
the surface plane. A new expression for Ψk results in a different expression for the matrix
elements Mµν [16]

M ∼ exp

[

−
∫ d

0

K(z)dz − Rk2

2κ̃

]

, (2.10)

κ̃ =

√

2m

~2
(−Eµ − eV/2), (2.11)

so a new equation for tunneling current can be derived from (2.3) [16]

I ∼
∫∞

0
F (E, V ) exp

(

−2
∫ d

0
K(z)dz − E

Ea

)

dE (2.12)

F (E, V ) = f(EF −E0 + E) − f(EF − E0 + E + eV )

E = ~
2k2

2m∗ ,

Ea = ~2κ
2am∗ .
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For a qualitative understanding
∫ d

0
K(z)dz can be expanded for small V and E [16], so we

obtain

I = G0e
V
V0

∞
∫

0

F (E, V ) exp

(

E0 −E

E1

)

dE, (2.13)

V0 =
2
√

~2Φ/2m

ed
,

E1 =
Ea

1 + d
a

(

1 − m
m∗

) ,

where G0 is the surface state conductance at zero bias and T = 0.
For low T the conductance dI/dV is proportional to the surface state density multiplied

by factor depending on V and E. At higher temperatures the discontinuous step-like onset
of the surface state density at E0 is smeared out giving the appearance of a peak-like feature
in the spectrum. This conclusion of Davis et al. was confirmed for the first time by Crommie
at al. [17]. Figure 2.2(a) demonstrates the dI/dV spectrum of flat Cu(111) surface measured
at 4 K with the help of polycrystalline tungsten tip. Acquired dI/dV spectrum is uneven
but surface state onset at −0.44 eV is clearly visible.

STM/STS probes a local density of the surface state at the tip position. On an ideal
surface the spatial-resolved density of surface-state electrons is flat and featureless. But if
any structural defect is introduced at the surface, one can expect from the basics of quantum
mechanics that surface state electrons incident on the defect and scattered back from it are
to interfere and form standing waves in the vicinity of the defect. These standing waves can
be observed by STM/STS at low temperatures. A constant current 500 × 500 Å2 image of
Cu(111) surface from the paper by Crommie at al. is shown in Fig. 2.2(b). Monoatomic
steps and a number of point defects are clearly visible. In addition STM revealed evident
static spacial oscillations decaying away from the steps and point defects.

A step on Cu(111) surface can be described by a simple 1D model of free electrons
inciding a step-like potential described by a Heaviside step function [13]. Local density of
states at separation x from the step at energy E relative to the surface state band bottom
is described by the following relation

ρ (x,E) =
2

π

√

2m∗

~2E

k⊥
∫

0

sin2(kx)
√

1 − k
k⊥

2
dk (2.14)

= ρ0
m∗

π~2

[

1 − J0 (2k⊥x)
]

,

k⊥ =

√

2m∗E

~
, (2.15)

where moment k⊥ is parallel to the surface plane and perpendicular to steps; J0 is oscillating
Bessel function. Since the character of the LDOS oscillations is determined by k⊥, it is pos-
sible to figure out the dispersion relation E(k⊥) from the energy dependent standing wave
maps. Figure 2.2c demonstrates spatial dependency of dI/dV spectra measured at different
energies by Crommie et al. [17]. The inset of Figure 2.2(c) shows the fitted dispersion rela-
tion. Crommie et al. [17] observed a parabolic surface state [eq. 1.27] with the band bottom
at ∼ 0.45 eV below EF and the wavelength at the Fermi energy was equal approximately
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Figure 2.2: a) dI/dV spectrum (normalized at V = 0) taken with a tip over a Cu(111) surface.
A surface state onset is situated at 0.44 eV below the Fermi level. b) Constant current 500×500Å2

image of Cu surface (V = 0.1 V, I = 1 nA). Three monoatomic steps and about 50 point defects
are visible. Spatial oscillations around steps and defects have a wavelength equal to ∼ 15 Å. c)
Solid lines: spatial dependence of dI/dV , measured as a function of distance from the step edge at
different bias voltages. Dashed lines: theoretical fits of (2.14) to experimental data. Inset shows
the surface state dispersion relation obtained from fits of (2.14) to dI/dV data. d) Solid line:
height of STM tip during linescan across the point defect (V = 0.02 V, I = 2.0 nA). Dashed line:
a theoretical fit of equation (2.16) to dataset. The figure is adopted from [17].
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to 30 Å. The corresponding wave vector equal to 2.09 Å−1 is in a good agreement with the
ARPES value from Table 1.1.

The LDOS oscillations around point defects on the Cu(111) surface can be similarly
analyzed using a simple model of 2D free electron gas. If a point defect is considered as
a cylindrically symmatric scattering potential, then the following expression for the LDOS
can be derived [17]

ρ (x,E) ∼ sin (δ0)

r
cos (2kr + δ0) , (2.16)

where δ0 is a phase shift. Figure 2.2(d) shows a comparison of the STM linescan over a
point defect with a theoretical curve. The best fit of the experimental data with (2.16) in
assumption that the surface state band bottom lies at −0.44 eV below the Fermi energy
gives the value of the phase shift δ0 equal to −66◦. Such a phase shift corresponds to a
scattering repulsive potential, in agreement with the appearance of point defects as dips on
the surface [Fig. 2.2(b)].

2.3 Surface states confinement: a quantum laboratory

The work by Crommie et al. [17] evidenced that scattered and confined surface state elec-
trons could be treated within simple models. Quantum confinement of surface state elec-
trons as studied by STM/STS is obviously a very good illustration of quantum mechanics
laws. Actually a number of research groups treated the systems they studied as a kind of a
quantum laboratory [18, 19, 20, 21, 22].

2.3.1 Particle in the box model

Results of STM/STS measurements on surface state electrons confined to an island [18], to
an vacancy hole [23, 20], to a step [19, 24] are often rationalized within one of the simplest
models for electron behavior, the 1D particle-in-a-box model. In this model, the role of
quantization becomes important in determining the energy eigenvalues of the electron. The
confining potential U(x) is finite only within a region 0 ≤ x ≤ L and is infinite outside

U(x) =







∞ , x < 0
0 0 ≤ x ≤ L
∞ , x > L.

(2.17)

Solution of the Schrödinger equation for such a system yields the following eigenfunctions
Ψn and eigenenergies En

Ψn(x) =

√

2

L
sin
(nπx

L

)

(2.18)

En =
1

2m

(

π~n

L

)2

(2.19)

The energy spectrum of the confined electron is quantized, only a discrete set of values is
allowed. As a consequence, electron wave vectors are also quantized:

kn =
√

2mEn/~2 = πn/L (2.20)
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Figure 2.3: Eigenstates and eigenfunction of a particle-in-a-box model. Wavefunction parity
depends on the energy level number n. Odd eigenfunctions are plotted with blue color, even –
with red.

The set of allowed energies is scaled with L proportionally to L−2. The parity of wave func-
tions Ψn is determined by n, i.e wave functions with even n are symmetric with respect to
the center (x = L/2) of the potential well, and wave functions with odd n are antisymmet-
ric. Four first energy levels En together with corresponding wave functions Ψn are plotted
in Fig. 2.3. Even and odd wave functions are drawn with blue and red colors respectively.

2.3.2 Confinement to islands

Li et al. [18] presented a quantitative STM/STS study of surface states on nanoscale Ag
islands on Ag(111). Such close-packed islands grown on an Ag(111) surface are very stable
structures, so standing waves can be observed over a wide range of voltages. Differential
conductance maps taken above individual islands exhibited strongly voltage-dependent fea-
tures. Figure 2.4 shows a typical series of differential conductance maps acquired above
an island. Standing wave patterns appear at energies higher than −65 meV (the Ag(111)
surface state band bottom energy). The standing waves may be identified as originating
from surface state electrons, confined by the rapidly rising potential at the edges of the
island. Simulated LDOS’s of the 2D electron gas confined to the hexagonal potential well
are demonstrated in the lower row of Fig. 2.4.

A typical STS spectrum taken with the STM tip positioned above the center of a hexag-
onal Ag island on Ag(111) with area 160 nm2 is demonstrated in Fig. 2.5(a). Five peaks
can be easily distinguished on the spectrum. The peaks correspond to energy levels of the
confined surface state electrons broadened into resonances by single-particle scattering pro-
cesses, many-body interactions, and instrumental effects such as thermal broadening [18].
The energy levels obtained in STS measurements were analyzed in terms of two-dimensional
free electron gas confined within a hexagonal domain of potential E0 bounded by infinitely
high barriers. Experimental data and multiple scattering results for energies of the low-
est two confined surface state levels at the center of variously sized hexagonal Ag islands
on Ag(111) were found to be in a prefect agreement with a particle-in-a-box model [Fig.
2.5(b)]. The peak energies were found to conform to the scaling behavior (2.19) down to
the smallest of island sizes.
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Figure 2.4: Upper row: topographic image of an approximately hexagonal Ag island on Ag(111)
(area ∼ 94 nm2), and a series of dI/dV maps recorded at various bias voltages (at T = 50 K).
Lower: geometry of a hexagonal box confining a two-dimensional electron gas, and the resulting
local density of states. Experimental values have been used for the surface state onset E0, electron
effective mass m∗ , and the island size. The calculations include a self-energy of Γ = 0.2(E −E0).
The figure is taken from [18].

Figure 2.5: a) dI/dV spectrum taken (at T = 50 K) with the STM tip positioned above the
center of a hexagonal Ag island on Ag(111), area 160 nm2. b) Energies of the lowest two confined
surface state levels at the center of variously sized hexagonal Ag islands on Ag(111) as a function
of renormalized inverse area. Comparison between measured energies (open symbols; error from
experimental determination of the island size is indicated when larger than a symbol size), ener-
gies predicted by multiplescattering calculations (filled symbols), and the behavior expected of a
perfectly confined two-dimensional electron gas (lines). Inset: measured topological cross section
of an Ag island, along with the position identified as the effective boundary confining surface state
electrons. The figure is adopted from [18].
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2.3.3 Counting states in confined geometry

Rodary et al. [20] have recently demonstrated by means of STM/STS the quantization
of the electron wave vector as it is stated by equation (2.20). This result was obtained
by the Fourier analysis of the complete 2D map of the spatial modulation of the surface
states confined to the vacancy craters on Cu(111) surface. A spatial modulation of the
LDOS in a hexagonal crater of 20.5 nm size measured by STS is demonstrated in Fig
2.6(a). Corresponding 2D Fourier transforms (FT) exhibit two distinctive eigenvectors for
the eigenstates at −0.206 V (n = 10) and −0.156 V (n = 11), which present simultaneously
at −0.176 V. Figure 2.6(b) reveals that in contrast to the dispersion relation obtained at
step edge [see, for instance, Fig. 2.2(c)], the dispersion relation of the confined system is a
discontinuous curve. Although measurements are performed in steps of 10 mV, the absence
of k values within certain k ranges was observed. Experimental data points were found
to be always clustered around discrete, quantized k values. The systematic analysis of
surface states confined to craters of various sized figured out that the quantization of k is
determined by the lateral size of the crater. The larger was the crater, the denser was the
spacing between the observed k values. Actually the size of the crater known from STM
images can be reinvented from the n-dependency of k. The inset of Fig. 2.6(b) shows k as
a function of n for 13.5 nm and 22.5 nm craters. The slope of each curve calculated from
(2.20) is exactly π/L, and it gives the crater sizes of 20.1 and 12.8 nm, respectively, in a
very good agreement with topological STM measurements.

Previous works have ascribed maxima of dI/dV spectra recorded at the center of the
nanostructure to eigenstates. For hexagonal systems, the labeling scheme of observed states
relies on an involved analysis [18]. These local dI/dV measurements detect only a subset of
eigenstates. Other eigenstates are accessible by measuring off center [25]. In contrast to the
previous local STS analysis, the FT-based analysis exploits the complete two-dimensional
LDOS modulation pattern within the nanostructure and, thus, reveals all eigenstates. These
results show that each step of the discontinuous dispersion curve of the confined system of
Fig. 2.6 gives rise to an extremum ( maximum or minimum ) of the density of states. This
means that it is possible to identify the parity of each eigenstate. An even states have local
dI/dV minimum at the center of the island, and the odd states, vice versa, have maximum.
This study offers a detailed understanding of the relation between quantized wave vectors,
LDOS, and eigenstates of confined surface state.

2.3.4 Quantum corrals

A particle-in-a-box model is simple and at the same time qualitatively correct approach.
But it can not account for the interaction between surface state electrons and impurity
atoms, however, it is reasonable to assume that surface state scatter into the to bulk states
at adatoms. In 1994 Heller et al. presented a combined theoretical and experimental
description of the surface-state confinement to the 141× 285 Å2 quantum corral built of 76
Fe atoms on Cu(111) surface [26]. Artificial quantum corrals are structures with prescribed
geometries, so they can be modeled in the experiment exactly one to one with minimal
approximation of their structure. Heller et al. used in their model precise position of Fe
atoms registered to the triangular grid of allowed binding sites of Cu(111) surface [26].
Experimental and theoretical LDOS near the Fermi energy in this corral are demonstrated
in Fig. 2.7. To achieve such an agreement they introduced a complex phase shift η = iµ+ δ0
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Figure 2.6: a) Spatial modulation of the LDOS in a hexagonal crater of 20.5 nm size, measured
by STS at the indicated gap voltage I = 1 nA. The LDOS patterns at −0.206 and −0.156 V
show different eigenstates. The central one is a superposition of these states. Central row: map
of the Fourier transformation of the top LDOS patterns (red, high intensity; green, low intensity).
Bottom row: Linescans through the FT maps along the red line. The linescan at the intermediate
gap voltage −0.176 V shows the simultaneous presence of the two wave numbers k = 0.51 nm−1,
0.56 nm−1 which characterizes two eigenstates at −0.206 and −0.156 V, respectively. b) Dispersion
relation obtained by the FT analysis of the LDOS of a 13.5 nm crater. Note the discontinuous
curves, where just discrete k values are observed. The inset of reflects the quantization rule
kn = n/L. The first eigenstates are enumerated according to this rule. The figure is adopted from
[20].

Figure 2.7: LDOS near EF for a 76 atom ’stadium’ of dimensions 141 × 285 Å a) Experiment,
bias voltage 0.01 V b) Theory The LDOS near the center of Fe adatoms is not accounted for in
the theory and appears black. The figure is taken from [26]
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in theoretical description and derived a new equation instead of (2.16)

ρ (x,E) ∼ Re

[

α0e
2iδ0 − 1

2i
· e

2ikr

r

]

, (2.21)

where α0 = e−µ. Equation (2.16) can be derived from (2.21) at α0 = 1. The ’black body’
case corresponds to α0 = 0. It is interesting to note that a standing wave pattern is created
even in this case. Fitting of the experimental data to model (2.21) revealed that the corral
walls transmit 25% of incident amplitude, reflect 25% and 50% is scattered into the bulk
states. Further theoretical investigations on surface states confined to quantum corrals
confirmed these experimental conclusions [27].

Manoharan et al. demonstrated that quantum corrals could be exploited to project
electronic structure of adatom onto remote location [28]. They assembled an elliptical Co
corral on Cu(111) surface and placed into one focus of the ellipse a magnetic Co atom.
It is well known that circular wave emitted from the one focus of an ellipse is focused in
the other one. Surface state of Cu(111) confined to elliptical quantum corral obey the same
rule, so electronic structure surrounding Co adatom was coherently refocused onto the empty
focus. A distinctive spectroscopical feature, known as many-particle Kondo resonance, was
used to probe this effect [29, 30, 31, 32, 28, 33, 34]. The Kondo resonance, a signature of
magnetic moment coupled to the sea of conduction electrons, was found in an empty focus
[see Fig. 2.8]. This finding led to the Patent on method and system for information transfer
and replication between spatially distinct points via engineered quantum states [US Patent
6441358].

Experiments of Manoharan et al. [28] on quantum mirages in quantum corrals inspired a
number of theoretical works. Ab initio calculations performed by means of the KKR method
for the elliptical corrals used by Manoharan et al. in their experiments unambiguously
demonstrated that the spin polarization of the surface-state electrons caused by magnetic
adatoms can be projected to a remote location and can be strongly enhanced in corrals,
compared to an open surface [see Fig. 2.9] [35].

Adjustable geometries of quantum corrals open up wide range of possible theoretical
treatments. In particular, it has been demonstrated that quantum corrals can permit to
tailor the exchange interaction between magnetic adatoms at large separations [35, 36].
Corrals provide a convenient way to engineer eigenstates of the system [37, 38, 39]. This
makes possible to create corrals with predefined electronic properties, for instance with
multiple mirages with predefined relative intensities at specific locations [37]. Corrals are
utilized to study surface state lifetimes [27, 21].
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Figure 2.8: a), b), Topographs showing the eccentricity e = 0.5 (a) and e = 0.786 (b) ellipse each
with a Co atom at the left focus. c), d), Associated dI/dV difference maps showing the Kondo
effect projected to the empty right focus, resulting in a Co atom mirage. The figure is adopted
from [28]

Figure 2.9: The LDOS at the Fermi energy on the Co adatom and the Co atoms of the corral
walls are shown. The spin polarization of surface-state electrons inside the Co corral is presented
in color: ∆N↓ and ∆N↑ are determined by the difference between LDOS near the Fermi energy
(+10 meV) of the Co corral with the Co adatom, the empty Co corral, and the single Co adatom
on the open Cu(111). The mirage in the empty focus is marked by the red arrow. The geometrical
parameters of the corral are the same as in the experimental setup of Ref.[28], i.e., ellipse semiaxis
a = 71.3 Å and eccentricity e = 0.5. The figure is taken from [35]
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2.4 Surface state localization at adsorbates

Scattering of surface state electrons at impurities actually describes the system at scales
comparable to the Fermi wave length of a surface state. The behavior of electrons at
smaller scales, for example in tiny systems like adatoms or small clusters on surfaces, is
determined by coupling between a surface state, bulk states and virtual bound states of
nanostructures. Whenever a free electron gas is perturbed by an attractive potential, a
bound state appears below the band bottom. The mathematical criterion of existence of
such a state in 1D, 2D and 3D systems was proved by Simon [40]. In this section we at
first illustrate the phenomenon by the basics of quantum mechanics and then proceed to a
realistic theoretical model which can be directly compared to STS experiments.

The simplest model describing the phenomenon is a 1D free electron gas scattered at
the attractive δ-potential U(x) = −aδ(x). To find the energy of the bound state, note that
for E < 0 momentum is purely complex [13]:

k =
i

~

√

2m|E|, (2.22)

and the solution of the Schrödinger equation gives the decaying wave functions of the fol-
lowing form

Ψ(x) =

√
ma

~
e−ma|x|/~2

. (2.23)

The only allowed bound state energy is situated below the band bottom:

Ebound = −ma
2

2~2
. (2.24)

Since surface state can be treated as a quasi-2D state, an atom adsorbed onto the surface
should provoke the appearance of a bound state similarly to 1D case. On the other hand,
for realistic description of the surface state localization at an adsorbate one should take
into account the coupling between the surface and bulk states. This can be done using
the extended Newns-Anderson model [41] describing a single adsorbate level of energy εa

interacting with the bulk Bloch states |q〉 and with the surface state |k〉. The Hamiltonian
of such a system can be represented as

Ĥ =





εa Vaq Ṽak

Ṽaq εq 0

Ṽ ∗
ak 0 ε̃k



 , (2.25)

where εq and ε̃k are submatrices of eigenenergies of the bulk and the surface states, respec-
tively, while Vaq and Ṽak are the elements of the coupling matrix. The LDOS na(E) at the
adsorbate atom can be expressed from the self-energy Σ(E) = Λ(E)+ i∆(E) of the system:

na(E) =
1

π

∆(E)

(E − ǫa − Λ(E))2 + ∆2(E)
(2.26)

The imaginary part i∆(E) of the self-energy Σ(E) consists of contributions from the coupling
of the adsorbate level to the bulk and the surface states. The bulk contribution ∆b(E) is
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Figure 2.10: dI/dV spectrums over flat Ag(111) surface (left panel) and Cu(111) (right panel)
and over adatoms on those surfaces. Inset shows the Kondo-Fano resonance of Co adatom near
Fermi level. Light-colored solid lines: ?fits to Newns-Anderson model described in the text. The
figure is adopted from [41].

taken to be constant, and the surface-state contribution ∆s(E) is governed by the step-like
density of surface state:

∆(E) = ∆b(E) + ∆s(E) (2.27)

∆b(E) = π
∑

q

|Vaq|2δ(E − εq) = δb (2.28)

∆s(E) = π
∑

k

|Vak|2δ(E − ε̃k) = δsΘ(E −E0) (2.29)

The real part Λ(E) of the self-energy Σ(E) can be expressed as a Hilbert transform of ∆(E)

Λ(E) =
∆s

π
ln |E − E0| + const (2.30)

Detailed experimental studies of the surface state localization at adatoms have been
conducted several years ago. Experiments by Limot et al. [41] and Olson et al.[42] revealed
the existence of a resonance below the surface state onset energy, which was attributed to the
split off bound state. dI/dV spectra acquired over bare Ag(111) and Cu(111) surfaces have
the only feature, the surface-state onset at −0.067(1) eV for Ag(111) and −0.445(1) eV
for Cu(111) [Fig. 2.10]. The spectra taken above the atoms adsorbed on these surfaces
significantly differ from cases of bare surfaces. The step-like feature at the surface state
band bottom disappears but a new resonance arises below the surface state band bottom
[Fig. 2.10]. Experiments demonstrated that this resonance was bound to adatoms and
vanished at ∼ 10 Å away from the adatom. The experimental data were modelled with
the Newns-Anderson model (2.26). The results of fit are demonstrated in Fig. 2.10 by solid
green lines. The agreement between the theory and the experiment is evident.

A number of theoretical methods were applied to study split-off bound state. Gauyacq
et al. used a wave-packet propagation approach [43]. The experimental data of Limot et al.
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were supported by the results of the extended Newns-Anderson model [44]. Several groups
studied impurity-induced surface state localization by means of the ab initio Korringa-Kohn-
Rostoker method [45, 46, 47]. The latter approach illustrated that magnetic impurities
caused spin polarization of the surfrace states in their vicinity. Calculations performed
for the Cu chains on Cu(111) surface resulted in the fact that increasing the size of the a
nanostructure leads to dependency of split-off bound states on the position in a chain [45].

2.5 Spin-polarized surface states

2.5.1 Theoretical predictions on spin-polarized surface states on

Co nanoislands on Cu(111)

In presence of magnetic thin films and/or nanoislands surface states on noble metal sub-
strates turn spin-polarized. Co nanostructures grown on noble metal substrates are model
system for studies of spin-polarized surface states [48, 49, 50, 51, 52, 53, 54, 55]. The first
low temperature STM/STS observations of Co islands grown on Cu(111) substrate revealed
two surface related electronic states [48]: a strong localized peak 0.31 eV below EF and a
mainly unoccupied dispersive state, giving rise to quantum interference patterns of standing
electron waves on the Co surface. Ab initio calculations revealed that the electronic states
were spin polarized, originating from d3z2−r2-minority and sp-majority bands, respectively
[see Fig. 2.11].

The dispersive majority surface state was found to have a profound effect on the spin-
polarization of the unoccupied states. Standing wave pattern shown in Fig. 2.11 were formed
only by majority electrons, so the areas of standing waves with the increased electronic den-
sity had larger contribution of the majority states [50]. Ab initio calculations for equilateral
triangular islands (Fig. 2.12(a) evidenced that the size of the island had a pronounced
influence on the spatial distribution of the spin polarization of the Co islands. Those the-
oretical findings pointed out the possibility of modulating the spin polarization locally and
energetically by engineering the shape and the size of the surface-deposited nanostructures.

Figure 2.11: (a) STS spectra on 2 ML high Co nanoislands and on the bare Cu(111) surface
taken with the same tip. (b) dI/dV map of 2 ML high Co nanoislands on Cu(111). The scan
range is 32 nm×41 nm and the tunneling parameters are V = 0.5 V, I = 1.8 nA. In the gray
scale, brighter areas correspond to higher topography and larger LDOS, respectively. (c) Fourier
spectrum of standing electron wave pattern on a Co island. The figure is adopted from [48]
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Figure 2.12: The spin polarization of surface-state electrons on triangular Co islands on Cu(111);
calculations are performed for E = 0.5 eV above the Fermi level. The figure is taken from [50]
.

2.5.2 Basics of Spin-polarized STM

The contrast got in conventional STM is determined by the dependence of a shape and a
strength of a tunneling barrier on the tip-sample distance and atomic species used. This
technique permits to probe in the STM mode the topology of the sample and its DOS in the
STS measurements. Suppose now that we probe a magnetic sample with a magentic tip.
The magnetic moment originates from the different occupations for electrons of different
spins. Imbalance in spin occupation is caused by the exchange interaction splitting up the
majority and the minority states. Julliére found for a pair of ferromagnetic electrodes, that
the tunneling current between them exhibited a significant dependence on the mutual orien-
tation of the electrodes magnetization directions [56]. If we neglect any spin-dependence in
the transmition through the barrier and assume that there is no spin-flip scattering during
the tunneling process, then for small bias voltages, the tunneling conductance of the junc-
tion is determined by the electrons near the Fermi energy [57]. Since the density of spin-up
and spin-down electrons are different, then the tunneling for parallel and antiparallel align-
ment of the electrodes magnetization are also different. Indeed, for the parallel orientation,
the majority/minority electrons of the first electrode tunnel into majority/minority states
of the second electrode, respectively. According to the Fermi golden rule, the conductance
is proportional to the density ρ of initial (i) and final (f) states at the Fermi level, and the
total conductance of both spin channels can be expressed as [57]:

G↑↑ = ρi
↑ρ

f
↑ + ρi

↓ρ
f
↓ . (2.31)

For the antiparallel orientation, majority electrons of the first electrode tunnel into the
minority channel of the second electrode, and minority electrons tunnel, viceversa, to the
majority channel:

G↑↓ = ρi
↑ρ

f
↓ + ρi

↓ρ
f
↑ . (2.32)

The difference between conductances G↑↑ and G↓↓ is proportional to

∆G = G↑↑ −G↓↓ ∼
(

ρi
↑ − ρi

↓

)

(

ρf
↑ − ρf

↓

)

. (2.33)

In general, for magnetic materials ρi
↑ 6= ρi

↓ and ρf
↑ 6= ρf

↓ , so ∆G 6= 0. Note, that paramag-
netic materials exhibit no splitting and no occupation imbalance for majority and minority
electrons, and therefore ∆G = 0.
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Slonczewski performed a detailed theoretical study of spin-polarized tunneling and de-
rived a general formula [58] for the current between two magnetic electrodes with arbitrary
aligned magnetizations:

I = I0
(

1 + P iP f cos (Θ)
)

, (2.34)

where Θ is the angle between magnetizations of two electrodes, P = (ρ↑ − ρ↓) / (ρ↑ + ρ↓)
is the spin polarization. Equation (2.34) can also be used in the case when a small bias
is applied and all the states between the two Fermi levels are involved in tunneling. Such
a system is more complex, because tunneling probability can depend on energy and other
parameters, but G anyway can be calculated by means of some effective polarizations.

The tunneling current I according to (2.34) increases if the second term in the brackets,
i.e. P iP f cos (Θ), is positive. It is the case for the tunneling between the states of the same
spin-character for a parallel-oriented tip and sample magnetizations. If the magnetization
alignment reverses, the cosine changes its sign and the tunneling current decreases. The
sample LDOS, as shown by Tersoff and Haman, is proportional to the differential conduc-
tance dI/dV . The changes, the tunneling current gets due to TMR, affects also dI/dV
spectra. Comparison of spectra acquired at different magnetization alignments of tip and
sample provides the access to the magnetic information.

2.5.3 SP-STM studies of Co nanoislands on Cu(111)

Pietzsch et al. studied by means of SP-STM Co nanoislands grown on Cu(111) [49, 51]. Co
islands exhibit significant out of plane magnetization, so a Cr coated magnetic tip sensitive to
the perpendicular component of the sample magnetization was used. Spectra were acquired
on faulted and unfaulted Co islands with different magnetizations. The results are displayed
in Fig. 2.13. Besides differences in spectra caused by islands stackings (red vs green curves
in Fig. 2.13), for each island stacking order two distinct curves were observed for Co islands
magnetized parallel and antiparallel to the tip magnetization direction (solid vs dotted
curves in Fig. 2.13). It had found that, the Cr is negatively polarized around the Fermi
level [59]. Taking the curves of higher intensities at the Co dz surface state as indicative
of a parallel magnetization alignment (solid curves in Fig. 2.13), Pietzsch et al. concluded
that that sample state was also negatively polarized [49], in agreement with theoretical
prediction [48]. Tunneling of the majority dispersive state was, on the contrary, the most
efficient for the antiparallel configuration. According to the theoretical description [50],
only free-like sample majority electrons took part in the LDOS oscillations while localized
minority d-like electrons did not. The effect of spin-polarization of the standing wave patters
on Co nanoislands is illustrated in Fig. 2.14(b) by the dI/dV profiles ( taken along lines
as indicated in Fig. 2.14(a) for bias voltages being representative for ranges of inverse,
balanced, and normal spin contrast. In each case the standing wave amplitude was found
significantly larger on the antiparallel island, regardless of the sign of the bias dependent
SP.
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Figure 2.13: a) Spin-resolved tunneling spectra. Arrows ↑↑ (↑↓) refer to parallel (antiparallel)
magnetization alignment of sample and tip. b) Asymmetries arising from different stacking [upper
panel; grey (black) spin averaged (spin polarized)], and from opposite magnetization (lower panel).
c-f) dI/dV maps at bias voltages as indicated. Stabilization parameters: I = 1 nA, V = 0.6 V.
The figure is adopted from [49].

Figure 2.14: 0.6 ML Co on Cu(111). a)dI/dV maps at sample bias voltages as indicated,
showing standing wave patterns on both Cu substrate and Co islands. Arrows indicate islands
being magnetized parallel (↑↑) or antiparallel (↑↓ ) to the tip magnetization. d) dI/dV profiles
taken along lines as indicated in a), at corresponding color coding. Regardless of the bias voltage,
the standing wave amplitude is larger on the antiparallel island. The figure is adopted from [51].



Goals of the work

Simple theoretical models presented in the introductory chapters can not provide a detailed,
fully theoretical description of real systems and always need fitted parameters for input.
Such kind of models practically can not help to study magnetic systems. In this work we
focus on noble metal substrates decorated with low dimensional magnetic nanostructures like
monatomic rows and thin films. We study such systems by means of ab initio calculations
and make several generalizations on the behavior of spin-polarized surface states.

The following problems are addressed in this work:

• Surface state confinement on clean Cu(111) stepped surfaces.

• Origins and electronic structure of spin-polarized surface states arising on Cu(111)
stepped surfaces decorated with 1D magnetic monatomic rows.

• Self organization of 1D nanostructures on Cu(111) stepped surfaces governed by sur-
face states electrons.

• Development of Cu(111) surace state above magnetic Co clusters of increasing size,
from a single adatom up to bilayer.

• Origin of spin-polarized surface states on Co bilayer on noble metal substrates.

• The impact of Co bilayer structure on spin-polarized surface states

• The role of substrate in the energetics of spin-polarized surface states on Co bilayer
on noble metal substrates.

• The interplay between size-dependent strain of Co nanoislands on Cu(111) and their
spin-polarized surface states.
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Chapter 3

Methods used in the work

The Kohn-Sham density functional theory discussed in the first section of this chapter
permits to substitute many-body problem with the single-particle one. The second section
gives an insight into the Korringa-Kohn-Rostoker Green’s function method for solution of
the single-particle Kohn-Sham problem. Finally, some aspects of the atomic relaxations and
structure optimizations are considered.

3.1 Density functional theory

The density functional theory (DFT) developed by Kohn and Hohenberg in 1964 [60] pro-
vides a way to treat ground state properties of a quantum many-body problem in terms of
a single particle density. Such an approach can handle infinite periodic systems and nonpe-
riodic systems consisting of about 103 atoms. The paramount advantage of the DFT is that
it is an ab-initio approach. Since its development, the DFT has been successfully applied
to investigations of atoms, molecules, bulk and surafaces of solids. The present work also
uses this approach within the framework of the Korringa-Kohn-Rostoker Green’s function
method.

3.1.1 Hohenberg - Kohn Theorems

The density functional theory rests on two theorems stating the possibility to completely
describe ground state of a many body system through a single-particle electronic density
[3, 60, 61, 62].

Theorem 1 For a nondegenerate ground state ψ, the external potential v (r) is (within an
additive constant) uniquely determined by the density distribution ρ (r).

The original theorem [60] was formulated for the one component, nondegenerate in the
ground state system of spinless particles in the scalar and nonrelatevistic external potential.
Later on, all these restrictions were relaxed and the theorem was considerably generalized.
We will not describe all these theorems here but only refer to the literature [61, 62, 3].

Theorem 2 For a given v (r) , the correct ρ (r) minimizes the (nondegenerate) ground state
energy, which is unique functional of ρ (r).

31
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E [ρ] =

∫

drv (r) ρ (r) + F [ρ] , (3.1)

where F [ρ] is the functional representing the sum of kinetic and Coulomb interaction ener-
gies. It can be written as

F [ρ] ≡ TS [ρ] +
1

2

∫

ρ (r) ρ (r′)

|r − r′| drdr′ + Exc [ρ] , (3.2)

where TS [ρ] is the kinetic energy of non-interacting electrons of density ρ, the second term
is the classical electron-electron interaction density. If the last term, Exc [ρ] is completely
neglected, one obtains the Hartree equations. The explicit many-body effects beyond the
Hartree mean field approximation are encapsulated in the exchange-correlation functional
Exc [ρ]. The ground state energy and corresponding electronic density can be determined
by minimizing (3.1) with respect to density.

3.1.2 Kohn-Sham equation

The minimization of the energy functional (3.1) can be performed by varying the density
with the constraint that the number of electrons N is fixed (i.e.

∫

ρ (r) dr = N [ρ]). The
variational procedure is

δ {E [ρ]} = 0 (3.3)

or
∫

drδρ (r)

[

δE [ρ]

δρ (r)

]

= 0. (3.4)

The constraint results in the condition
∫

drδρ (r) = 0, so the quantity in the square brackets
in eq. (3.4) is a constant independent of r. This gives the Euler-Lagrange equation:

δE [ρ]

δρ (r)
= µ, (3.5)

where µ is the chemical potential. Taking into account equations (3.1), (3.2):

δTs [ρ]

δρ (r)
+ veff (r) = µ, (3.6)

where veff (r) is an effective one-body potential:

veff (r) = v (r) +

∫

ρ (r′)

|r− r′|dr
′ + vxc [ρ (r)] , (3.7)

and the many body effect is accounted in a single-particle problem through the functional
derivative vxc:

vxc [ρ (r)] =
δExc [ρ]

δρ (r)
. (3.8)

Now the ground state electronic density can be determined as the self-consistent solution of
the Schrödinger-like equation for the motion of a particle in the effective potential veff (r).
This equation is called the Kohn-Sham equation:

{

− ~
2

2m
∇2 + v (r) +

∫

ρ (r′)

|r − r′|dr
′ + vxc (r)

}

ψk (r) = ǫkψk (r) , (3.9)
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where density is defined through the wave functions ψk (r) as

ρ (r) =

N
∑

k=1

|ψk (r) |2. (3.10)

Note, that, according to Hohenberg-Kohn theorems, only overall electronic density (3.10)
describes a real physical system. The standalone single-particle wave functions ψk (r) de-
scribe some quasiparticles without a direct physical meaning. The overall electronic density
(3.10), on the one hand, is defined by the solutions ψk (r) of the Kohn-Sham equation (3.9),
and on the other hand, it is included into the Kohn-Sham Hamiltonian. This means that
problem (3.9) must be solved self-consistently.

3.1.3 The local density approximation

Exc [ρ (r)] =

∫

ρ (r) εhom
xc (ρ (r)) dr. (3.11)

The exchange–correlation potential in local density approximation (LDA) is expressed as:

vexc(r) =
d

dρ
{εxc(ρ) · ρ(r)} ≡ vxc(ρ). (3.12)

Then the total energy in the LDA can be recast as:

E ≈
∑

i

εi −
1

2

∫

drdr′
ρ(r)ρ(r′)

|r − r′| +

∫

drρ(r) {εex(ρ) − vex(ρ)} . (3.13)

Thus by a local approximation the problem of exchange and correlation in an inhomoge-
neous system is reduced to calculating the exchange–correlation energy density ǫex(ρ) of a
homogeneous electron gas [3, 61, 62]. However, the LDA is assumed to be the most suitable
for systems with slowly varying density, it has been found to be surprisingly accurate in
description of other cases.

3.2 Green’s function KKR method

In the previous section the DFT has been proposed as a rather simple way to solve many-
body quantum problems. It has been shown that all exchange-correlation effects can be
encapsulated into the effective potential depending on the electronic density. The corre-
sponding self-consistent problem is described by the Kohn-Sham equation (3.9). In this
chapter we outline the possibility to solve this equation for an arbitrary case, including
infinite periodic lattices, surfaces and clusters. In this respect, two general approaches to
the solution of the Kohn-Sham equation can be distinguished.

The first approach is actually the frontal attack of the Kohn-Sham problem (3.9). The
electronic density is determined from the solutions ψk ((3.10)) of the Kohn-Sham equa-
tion (3.9). The usual mathematical technique applied to obtain ψk is to expand them on
some basis set φbasis

p and solve the obtained secular equation in order to get expansion co-
efficients. This technique is used in the following methods: local combination of atomic
orbitals (LCAO), pseudopotential method, the augmented plane wave (APW) method, the
linearized augmented plane wave method (LAPW ) and some others [2, 3].
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The second approach doesn’t deal with quasi-particle wave functions, but exploits the
properties of the Green’s function to find the electronic density. This technique was de-
veloped by Korringa [63], Kohn and Rostoker [64] and called the Korringa-Kohn-Rostoker
(KKR) Green’s function method. However this method is tangled from the mathematical
point of view, it allows to describe electronic properties of large and complicated systems.
In particular, this method successfully describes both surface states arising on metal surface
and their changes due to scattering at nanostructures on the surface.

This section is aimed to explain the basics of the KKR Green’s function method. For this
purpose the following sequence was decided upon: We start from the relation between the
Green’s function of the system and its electronic properties. Then we pass over to expressing
the Green’s function (and therefore electronic properties) of the perturbed system through
the unperturbed one. Further on, we consider the scattering of the electron at a single
spherical potential and multiple scattering at a collection of such potentials. And finally
the KKR method workflow closes the section.

3.2.1 Green’s function and its properties

Usually quantum systems are described by their Hamiltonians Ĥ. In our case we use Kohn-
Sham Hamiltonian ĤKS [see eq. (3.9)]. The Kohn-Sham Hamiltonian is a linear differential
operator and therefore its energy-dependent Green’s function can be defined in spectral
representation [62, 65, 66]:

(

ĤKS − E
)

Ĝ (E) = Î, (3.14)

where Î is a unitary operator, or in real-space representation:
(

ĤKS −E
)

G (r, r′, E) = δ (r − r′) , (3.15)

where δ is the Dirac delta function. The singularities of G (r, r′, E) determine the eigenvalue
spectrum. G (r, r′, E) has poles at the eigenenergies of the bound states and a brunch cut
along the energies of continuous spectrum. G (r, r′, E) is an analytical function of E if
ImE > 0. One should take it into account when choosing a contour for integration over
energies. If ψi (r) and ǫi are eigenvectors and eigenvalues of eigenvalue problem ĤKSψi (r) =
ǫiψi (r), then G (r, r′, E) can be constructed from the complete set of eigenvectors and
corresponding eigenvalues:

G (r, r′, E) = lim
γ→0

∞
∑

i=0

ψ (r)ψ∗ (r′)

E + iγ − ǫi
. (3.16)

The Green’s function contains all the information on the electronic density of states in the
system. Indeed, the local density of states ρ (r, E) can be expressed through the probability
density of all the states with energy E at the point r:

ρ (r, E) =
∞
∑

i=0

δ (ǫi − E)ψ (r)ψ∗ (r). (3.17)

With a help of the Dirac equality [65]

lim
γ→0

1

x± iy
= P

(

1

x

)

∓ iπδ (x) (3.18)
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the energy-resolved local density of states can be expressed from the Green’s function:
[62, 65, 66]

ρ (r, E) = −1

π
ImG (r, r, E) . (3.19)

It is necessary to recall here that the goal of the DFT framework is to find a ground state
electronic density ρ (r). It is clear that this density can be found as the imaginary part of
the Green’s function integrated over energy:

ρ (r) = −1

π
Im

∫ EF

−∞

G (r, r, E) dE. (3.20)

3.2.2 The Dyson equation

Solving the Kohn-Sham equation (3.9) one deals with the self-consistent problem, so the
Green’s function does not only define the electronic density but also depends on it. On the
other hand the only part of the Kohn-Sham Hamiltonian depending on ρ (r) is the effective
potential. This fact immediately leads us to the idea of representing a Hamiltonian Ĥ in
terms of an unperturbed part Ĥ0 and a Hermitian perturbation V̂:

Ĥ = Ĥ0 + V̂ . (3.21)

The Hamiltonian (3.21) describes, for instance, scattering of electrons at perturbing poten-
tial V . Applying equation (3.14) both to perturbed Ĥ and unperturbed Ĥ0 Hamiltonians
one obtains the Dyson equation linking the corresponding Green’s functions Ĝ (E) and
Ĝ0 (E):

Ĝ (E) = Ĝ0 (E) + Ĝ (E) V̂Ĝ0 (E)

= Ĝ0 (E) + Ĝ0 (E) V̂Ĝ (E) . (3.22)

3.2.3 Single site T-operator

The Dyson equation (3.22) can be reformulated in order to contain only the unperturbed
Green’s function Ĝ0 (E) on the right hand side

Ĝ (E) = Ĝ0 (E) + Ĝ0 (E)
{

V̂ + V̂Ĝ0V̂ + V̂Ĝ0V̂Ĝ0V̂ + . . .
}

Ĝ0 (E) . (3.23)

The term in the figure brackets is called T-operator.

T̂ = V̂ + V̂Ĝ0V̂ + V̂Ĝ0V̂Ĝ0V̂ + . . . . (3.24)

With the T-operator the Dyson equation takes on the following form

Ĝ = Ĝ0 + Ĝ0T̂ Ĝ0. (3.25)

If only a single perturbation V̂ is present in the system, the corresponding T-operator is
called single-site T-operator and usually denoted by t̂. The following equation for a single-
site T-operator can be easily derived from (3.24) [67, 62, 65, 66]:

t̂ = V̂ + V̂Ĝ0t̂

=
(

Î − V̂Ĝ0

)−1

V̂ (3.26)
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The T-operator can be used to express the eigenfunctions ψi of the perturbed Hamiltonian
Ĥ0 + V through the eigenfunctions φi of the ideal Hamiltonian Ĥ0. Indeed, if

(

ǫÎ − Ĥ0

)

φi = 0
(

ǫÎ − Ĥ0

)

ψi = V̂ψi,

then for ψi = φi + δψi the following expression can be derived:
(

ǫÎ − Ĥ0 − V̂
)

δψi = V̂φi. (3.27)

Applying the definition of the Green’s function (3.14) to the above equation immediately
yields

ψi = φi + ĜV̂φi (3.28)

or taking into account the definition of the T-operator (3.26)

ψi = φi + Ĝ0t̂φi. (3.29)

The last two equations are called the Lippmann-Schwinger equations [62, 65, 66].
The T-operator can be used to describe the change of integrated density of states ∆ρ (E)

between the perturbed and the unperturbed systems due to scattering of electrons at a
perturbing potential

∆ρ (E) =
1

π
ImTr

(

ln t̂ (E)
)

(3.30)

The above expression is usually referred to as the Lloyd’s formula [62, 65, 66].

3.2.4 Multiple-site T operator

In a general case of an ensemble of N scatterer the total potential V (r) can be considered
as a sum of individual potentials Vi (r) nonzero only in corresponding disjoint domains
DVi

∈ R
3:

V (r) =

N
∑

i=1

Vi (r) (3.31)

Vi (r) 6= 0, r ∈ DVi
, DVi

∩DVj
= δijDVi

The multiple-site T-operator Tms for the potential (3.31) can be introduced similar to the
single site t-operator (see equation (3.23) and (3.24)) [67, 62, 65, 66]. Taking into account
the expression (3.26) we obtain the following relation

T̂ms =
∑

i

t̂i +

+
∑

i,j

t̂iĜ0 (1 − δij) t̂j +

+
∑

i,j,k

t̂iĜ0 (1 − δij) t̂jĜ0 (1 − δjk) t̂k +

+
∑

i,j,k,n

t̂iĜ0 (1 − δij) t̂jĜ0 (1 − δjk) t̂kĜ0 (1 − δkn) t̂n +

+ . . . . (3.32)
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Figure 3.1: A sketch of a multiple scattering of an electron in a system of individual potentials
nonzero in corresponding space domains separated by the thin dashed borders. Only one multiple
scattering process is shown. The Green’s function of the system (and therefore its electronic
structure) is determined by all possible multiple scattering processes. Figure is inspired by [67].

The first sum corresponds to a single scattering at each potential Vi (r). The second sum
over i, j describes the double scattering at first at potential Vi and then at potential Vj .
The third sum accounts the triple scattering, the forth is used for the quatro-scattering and
so on. A multiple-scattering sequence is shown schematically in Figure 3.1. The Green’s
function of the system (and therefore its electronic structure) is determined by all possible
multiple scattering processes.

3.2.5 Structural Green’s function

Now let us assume that an electron gets to some space domain DVi
from another domain

DVj
. According to the equation (3.32) it can follow different paths crossing a number of

domains on its way. If all possible paths between domains DVi
and DVj

are considered,
the on-way perturbations are completely described. Mathematically it is defined by the
scattering-path operator (SPO) τ̂ ij [66]:

τ̂ ij = t̂iδij +

+ t̂iĜ0 (1 − δij) t̂j +

+
∑

k

t̂iĜ0 (1 − δik) t̂kĜ0 (1 − δkj) t̂k +

+
∑

k,n

t̂iĜ0 (1 − δik) t̂kĜ0 (1 − δkn) t̂nĜ0 (1 − δnj) t̂j +

+ . . . (3.33)

or

τ̂ ij = t̂iδij +
∑

k

t̂iĜ0 (1 − δik) τ̂
kj (3.34)

= t̂iδij +
∑

k

τ̂ ikĜ0 (1 − δkj) t̂j .
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The multiple scattering T-operator is equal to the sum of SPOs between all the domains in
the system

T̂ms =
∑

i,j

τ̂ ij , (3.35)

so the multiple-scattering Dyson equation (3.22) can be written in terms of SPOs

Ĝ = Ĝ0 +
∑

i,j

Ĝ0τ̂
ijĜ0 (3.36)

The first term in the equations (3.33) and (3.34) describes the single-site T-operator t̂i of
the domain DVi

. If we want to express the perturbation induced by the structure of our
system (which is described by spatial configuration of domains DVj

), the rest terms must
be considered. Thus equation (3.33) transforms into

τ̂ ij = t̂iδij + t̂iĜ
ij
t̂j , (3.37)

where Ĝij
is so-called structural Green’s function:

Ĝij
= Ĝ0 (1 − δij) +

∑

k,l

Ĝ0 (1 − δik) τ̂
klĜ0 (1 − δlj). (3.38)

The representation of the Green’s function Ĝ of the system with multiple perturbating
potentials follows from the equations (3.36) and (3.37):

Ĝ = Ĝiδij +
∑

i,j

Ĝ0t̂iĜ
ij
t̂jĜ0, (3.39)

where Ĝi are Green’s functions (3.25) of the single-site scattering problem for the domain
Vi. In such a formulation the properties of the individual scattering potentials described
by the single-site Green’s functions Ĝi are separated from their geometrical arrangement,

described by the structural Green’s function Ĝij
[62, 65, 66].

3.2.6 Fundamental KKR equation

Equations (3.34) and (3.36) can be reformulated in terms of supermatrices. If the following
supermatrices are defined [62, 66, 67]:

Ĝ =
{

Ĝij
}

,

t̂ =
{

t̂iδij
}

,

Ĝ0 =
{

Ĝ0 (1 − δij)
}

,

τ̂ =
{

τ̂ ij
}

, (3.40)

then equations (3.37) and (3.38) transform into:

τ̂ =
(

t̂−1 − Ĝ0

)−1

, (3.41)

Ĝ = Ĝ0

(

Î − t̂Ĝ0

)−1

. (3.42)
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Figure 3.2: Approximation of an spherically symmetric potential of finite radius rs. Outside the
radius rs the potential is zero.

Equations (3.41) and (3.42) are very often called the fundamental equations of the Multiple
Scattering Theory. The electronic eigenvalues are completely defined by the singularities
of the Green’s function of the perturbed system. To find them one has to find conditions
vanishing the determinant:

det
[

t̂−1 − Ĝ0

]

= 0. (3.43)

3.2.7 Scattering at a single spherical potential

We have not suggested the form of the perturbing effective potential Veff . Now we turn to
the description of the KKR representations of the Green’s function and the Dyson equation.

The potential of an ideal crystal is invariant to translations with arbitrary lattice vec-
tors Ri:

Veff (r + Ri) = Veff (r) . (3.44)

Defects in crystalls reduce this symmetry. Following equation (3.31) the crystal volume
can be divided into the disjoint space domains. Each space domain coinsides with the
corresponding Wigner-Seits cell and is associated with the charge-neutral atom situated at
this cell. In the simplest approximation, the potential inside each space domain can be
assumed to be spherically symmetric and nonzero only inside a sphere of some radius rs

[see Figure 3.2]:

Veff (r) =

{

Vi (r) , r ≤ rs

0, r > rs
(3.45)

There are two main approximations defining the radius rs: the Muffin-Tin (MT) and atomic
sphere (ASA) approximations. In the MT approximation radiuses are chosen to construct
a system of touching nonoverlapping spheres. In the ASA, the volume of each sphere is
chosen to be equal to the volume of the corresponding Wigner-Seits cell. In this case the
adjacent spheres overlap.

The Kohn-Sham equation (3.9) for a single spherical symmetric potential (3.45) trans-
forms into [68, 69, 67]:

[

− ∂2

∂r2
+
ℓ (ℓ+ 1)

r2
+ V (r) − ǫ

]

rFℓ (r, ǫ) = 0. (3.46)

The eigenfunctions of equation (3.46) can be represented by the product of spherical har-
monics Yℓm (θ, φ) ≡ YL (̂r) and radial wavefunctions Fℓ (r, ǫ) [68, 69, 67, 62, 65, 66]. For
each energy ǫ and angular momentum ℓ there are two linear independent solutions:
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• the regular physical solution

RL (r, ǫ) = Rℓ (r, ǫ) YL (r̂) , (3.47)

RL (r, ǫ) ∼ rℓ, r → 0;

• and the irregular solution diverging at the origin:

HL (r, ǫ) = Hℓ (r, ǫ) YL (r̂) , (3.48)

HL (r, ǫ) ∼ 1

rℓ+1
, r → 0.

For a vanishing potential (V (r) ≡ 0) the radial wavefunctions are:

Rℓ (r, ǫ) = jℓ
(√

ǫr
)

,

Hℓ (r, ǫ) = hℓ

(√
ǫr
)

, (3.49)

where hℓ (
√
ǫr) = nℓ (

√
ǫr) − ijℓ (

√
ǫr) is the spherical Hankel function, jℓ (

√
ǫr) is the

spherical Bessel function and nℓ (
√
ǫr) is the spherical Neumann function. Solutions outside

the sphere have to match the regular solutions inside the sphere. Therefore Rℓ (r, ǫ) for r > r0
can be expressed as a linear combination of the spherical Bessel and Hankel functions, being
the regular and irregular solutions of (3.46):

Rℓ (r, ǫ) = jℓ
(√

ǫr
)

+
√
ǫt (ǫ) hℓ

(√
ǫr
)

. (3.50)

It can be shown that the spherical Bessel function jℓ describes the propagation of the
inciding plane wave, and the spherical Hankel function hℓ corresponds to the spherical wave
backscattered at the perturbing potential V (r) [65]. Physically this fact should be described
by the Lippmann-Schwinger equation (3.28) [68, 69, 67, 62, 65, 66]:

Rℓ (r, ǫ) = jℓ
(√

ǫr
)

+

∫ rMT

0

g (r, r′, ǫ)V (r′)Rℓ (r′, ǫ) r′2dr′, (3.51)

where g (r, r′, ǫ) is the Green’s function of the free space [69, 70]:

g (r, r′, ǫ) =
√
ǫjℓ
(√

ǫr<

)

hℓ

(√
ǫr>

)

, (3.52)

r< ≡ min {r, r′} , r> ≡ max {r, r′} .
The equation (3.50) for the regular solution follows for r > rs from equations (3.51) and
(3.52). The irregular solution outside the rs can be described only by the Hankel function:

Hℓ (r, ǫ) = hℓ

(√
ǫr
)

, r > r0. (3.53)

The representation of T-operator can be obtained if the Lippmann-Schwinger equation
(3.28) is compared with eq. (3.51) using (3.52), [68, 69, 67, 62, 66]:

tℓ (ǫ) =

∫ rs

0

jℓ
(√

ǫr′
)

V (r′)Rℓ (r′, ǫ) r′2dr′ (3.54)
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Figure 3.3: A sketch of a crystal and cell-centered coordinates.

Finally the Green’s function of a spherically symmetric potential in the free space can be
constructed similar to (3.16) as the product of the regular and the irregular solutions (3.47)
(3.48) and the corresponding spherical harmonics [68, 69, 67, 62, 65, 66, 71, 72]:

Gs (r, r′, ǫ) =
∑

L

Gℓ (r, r′, ǫ) YL

(

ˆ̂
R
)

YL (r̂′)

=
√
ǫ
∑

L

Rℓ (r<, ǫ)Hℓ (r>, ǫ)YL

(

ˆ̂
R
)

YL

(

ˆ̂
R′
)

. (3.55)

The regular and irregular solutions must satisfy the Wronski relation:

[Hℓ (r, ǫ) , Rℓ (r, ǫ)] = (∂rHℓ (r, ǫ))Rℓ (r, ǫ) − (∂rRℓ (r, ǫ))Hℓ (r, ǫ) =
1

r2
√
ǫ
. (3.56)

3.2.8 Multiple scattering at single potentials: description of a

bulk crystal

Any solid body can be represented as a collection of single potentials. Equation (3.39)
demonstrates that the Green’s function of a system with multiple scattering centers situated
in the space domains DVi

can be represented as a sum of corresponding single-site scattering
Green’s functions Ĝi and the term describing all multiple scattering processes through the

structural Green’s function Ĝij
. This approach can be easily applied to a crystall if we

assume that a crystall can be determined as a periodic array of spherically symmetric
potentials with centers at the lattice sites Ri. It can be demonstrated that in cell-centered
coordinates [see Fig. 3.3]:

r → r + Rn

r′ → r′ + Rn′, r, r′ < rs, (3.57)

the solution of the Kohn-Sham equation
[

− ∂2

∂r2
+ +Vn (r) − ǫ

]

G (r + Rn, r
′ + Rn′, ǫ) = −δnn′δ (r− r′) (3.58)
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for the Green’s function with the spherical potential Vn (r) at the lattice site Rn can be
formulated as [62, 65, 66, 71, 72]:

G (r + Rn, r
′ + Rn′, ǫ) = δnn′Gn

s (r + Rn, r
′ + Rn, ǫ) +

+
∑

LL′

YL (r̂)Rn
ℓ (r, ǫ)Gnn′

LL′ (ǫ)Rn′

ℓ′ (r′, ǫ)YL′ (r̂′). (3.59)

Up to now we have counted the perturbation of the system as a deviation from the
propagation of electrons in free space. On the other hand the KKR approach is not restricted
to the choice of the unperturbed Green’s function Ĝ0 and therefore any system can be taken
as an unperturbed one [72, 73, 74]. For instance, a crystal with substitutional defects can
be described as a perturbation of the ideal crystal [68, 69, 75, 76]. The Green’s function

G (r, r′, E) for the crystal with point defects and that of the ideal crystal
o

G (r, r′, ǫ) are
related by the Dyson equation (3.22):

G (r + Rn, r
′ + Rn′, ǫ) =

o

G (r + Rn, r
′ + Rn′, ǫ) +

+
∑

n′′

∫

o

G (r + Rn, r
′′ + Rn′′, ǫ)△Vn′′ (r′′)G (r′′ + Rn′′, r′ + Rn′, ǫ)dr′′, (3.60)

where △Vn (r) ≡ Vn (r) − V (r) is the potential perturbation at the lattice site Rn caused
by impurities. The integration in (3.60) is performed only over the region that is assumed
to be perturbed. In metals, potential perturbation is effectively screened by the electron
gas and perturbation is different from zero only in the vicinity of defects. The algebraic
Dyson equation for the defect structural Green’s function Gnn′

LL′ (ǫ) can be obtained from the
equations (3.59) and (3.60):

Gnn′

LL′ (ǫ) =
o

G
nn′

LL′ (ǫ) +
∑

nn′LL′

o

G
nn′′

LL′′ (ǫ)△tnℓ′′ (ǫ)Gn′′n′

L′′L′ (ǫ), (3.61)

where △tnℓ′′ (ǫ) = tnℓ′′ (ǫ) −
o
t
n

ℓ′′ (ǫ) is the difference between the t-matrices of perturbed and
host potentials.

We consider the infinite bulk as the perturbation of the free space [71, 72, 73]. The

Dyson equation for the structural Green’s functions of the crystal
o

G
nn′

LL′′ (ǫ) and free space
gnn′

LL′ is the following:

o

G
nn′

LL′′ (ǫ) = gnn′

LL′ (ǫ) +
∑

n′′L′′

g
LL′′ (ǫ)

o
tℓ′′ (ǫ)

o

G
n′′n′

L′′L′ (ǫ). (3.62)

Due to translational invariance the host and perturbed structural Green’s functions
depend only on the difference Rn − Rn′ and the t-matrix is the same for each lattice site.
That makes it possible to solve the Dyson equation using the following Fourier transform:

o

GL′′L′ (k, ǫ) =
∑

n′

e−ik(R′′
n−Rn′ )

o

G
n′′−n′

L′′L′ (ǫ) . (3.63)

The Dyson equation (3.62) in this case is formulated in the momentum-space:

o

GLL′′ (k, ǫ) = g
LL′

(k, ǫ) +
∑

L′′

g
LL′′

(k, ǫ)
o
tℓ′′ (ǫ)

o

GL′′L′ (k, ǫ). (3.64)
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o

GLL′′ (k, ǫ) is obtained from (3.64) by a simple matrix inversion and the structural coeffi-

cients
o

G
nn′

LL′′ are calculated by the inverse Fourier transform:

o

G
nn′

LL′′ (ǫ) =
1

VB

∫

e−ik(Rn−Rn′)
o

GLL′ (k, ǫ)dk, (3.65)

where
o

GLL′ (k, ǫ) can be expressed through the g
LL′′

(k, ǫ) with the help of the fundamental
KKR equation (3.42):

o

G
nn′

LL′′ (ǫ) =
1

VB

∫

e−ik(Rn−Rn′)
∑

L′′

[(

Î − g (k, ǫ) t̂ (ǫ)
)]−1

LL′′
g

LL′′
(k, ǫ)dk. (3.66)

Integration is hold over the first Brillouin zone. The band structure according the equation
(3.43) is defined by the eigenvalues of the KKR matrix in the square brackets.

3.2.9 Surfaces and layered systems

Exactly the same scheme can be applied to surfaces. In this case a surface is viewed as
a planar perturbation of the infinite bulk [see Fig. 3.4] [71, 72, 73, 74]. Each layer of the
planar perturbation can be identified by the index i and equivalent atoms in the monolayer
i are enumerated by index ν. The lattice vector Rn can be unambiguously expressed by the
sum of the reference vector of the i-th layer and a lattice vector χν of the two-dimensional
Bravais lattice of the monolayer i [see Fig. 3.5]. The Dyson equation for the structural
Green’s functions in case of planar perturbation can be stated as [62, 66, 72, 73, 74]:

Gii′ νν′

LL′ (ǫ) =
o

G
ii′ νν′

LL′ (ǫ) +
∑

i′′,ν′′,L′′

o

G
ii′′ νν′′

LL′′ (ǫ)△ti′′ℓ′′ (ǫ)
o

G
i′′i′ ν′′ν′

L′′L′ (ǫ), (3.67)

where △tnℓ (ǫ) ≡ tnℓ (ǫ)−
o
t
n

ℓ (ǫ). Due to 2D translational symmetry both host and perturbed
Green’s functions depend only on the difference χν − χν′:

Gii′ νν′

LL′ (ǫ) = Gii′ ν−ν′

LL′ (ǫ)

o

G
ii′ νν′

LL′ (ǫ) =
o

G
ii′ ν−ν′

LL′ (ǫ) (3.68)

Similarly to (3.62) the Dyson equation (3.68) can be solved with the help of the 2D Fourier
transforms:

Gii′

L′′L′

(

q‖, ǫ
)

=
∑

ν′

e−iq‖(χν−χν′)Gii′ ν−ν′

L′′L′ (ǫ)

o

G
ii′

L′′L′

(

q‖, ǫ
)

=
∑

ν′

e−iq‖(χν−χν′)
o

G
ii′ ν−ν′

L′′L′ (ǫ) , (3.69)

so the 2D Dyson equation (3.68) is formulated as:

Gii′

LL′

(

q‖, ǫ
)

=
o

G
ii′

LL′

(

q‖, ǫ
)

+
∑

i′′,L′′

o

G
ii′′

LL′′

(

q‖, ǫ
)

△ti′′ℓ′′ (ǫ)G
i′′i′

L′′L′

(

q‖, ǫ
)

. (3.70)
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Figure 3.4: In KKR calculations a surface can be represented as a planar perturbation of the
infinite bulk.

Figure 3.5: Notation of the lattice vectors for the description of planar defects.
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The structural Green’s function Gii′ νν′

LL′ (ǫ) can be calculated by the integration of the
Gii′

LL′

(

q‖, ǫ
)

over the 2D Brillouin zone:

Gii′ ν−ν′

LL′ (ǫ) =
1

ΣBZ

∫

eiq‖(χν−χν′)Gii′

LL′

(

q‖, ǫ
)

dq‖, (3.71)

where ΣBZ is the area of 2D Brillouin zone. To solve the 2D Dyson equation (3.70) it is still

necessary to calculate the host real-space 2D structural Green’s function
o

G
ii′ ν−ν′

LL′ (ǫ). It can

be derived from the structural Green’s function
o

GLL′′ (k, ǫ) of an ideal bulk by means of a
Fourier integral over the first Brillouin zone of the 3D-lattice:

o

G
ii′ ν−ν′

LL′ (ǫ) =
1

V

∫

eik(Ri+χν−Ri′−χν′ )
o

GLL′′ (k, ǫ)dk. (3.72)

3.2.10 Screened KKR

A choice (3.62) of free space as a reference system for 3D bulk may seem to be the most
convenient, because the free space structural Green’s function matrix elements gnn′

LL′
are

analytically known [73, 72, 71]. However, such an approach applied to periodic systems has
a serious disadvantage. Fourier series (see (3.63))

g
LL′ (k, ǫ) =

∑

n′

e−ik(Rn−Rn′ )gn−n′

LL′ (ǫ) . (3.73)

converge only conditionally and require demanding Ewald procedures for their evaluation
[72]. This problem originates from the free-electron singularities for E = |k + Ga|2, where
k is the wave vector and Ga is a reciprocal lattice vector. Green’s function singularity
corresponds to the eigenstate of the potential-free space, so to avoid it one can start from
the reference system, which has no eigenstates in the energy range of valence electrons and
the reference Green’s function would then decay exponentially [73, 72]. The matrix elements
of the screened KKR (SKKR) structural Green’s function should be calculated numerically
according to the Dyson equation (3.62).

Any potential without eigenstates in the energy range of valence electrons can be used as
a new reference system. The simplest choice is an infinite array of finite repulsive potentials
VRn

(r) constant inside nonoverlapping spheres circumstained around each scattering center
Rn and a zero potential in the interstitial region between the spheres:

VRn
(r) =

{

VC , |r| ≤ Rn
s

0, otherwise
(3.74)

The value VC of constant potential is usually chosen to be a few Rydbergs. It was demon-
strated that eigenstates of such potentials fell above 0.7 Ry for potentials of 1 Ry height,
above 1.35 Ry for 2 Ry high potentials, 2.24 Ry for 4 Ry high potentials

The scheme described above is the exact mathematical treatment of the problem. The
resulting SKKR method does not rely upon the exponential decay of the density matrix
and therefore is suitable for particular materials and systems. SKKR works for metals,
semiconductors and insulators. We also use this method in the present work.
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3.2.11 Clusters on surfaces

The consideration of clusters on the surface destroys the translation symmetry. Therefore
the Green’s function of a cluster on a surface is calculated in a real space formulation. The
structural Green’s function of the ideal surface in real space representation is then used
as the reference Green’s function for the calculation of the cluster-surface system from an
algebraic Dyson equation:

Gnn′

LL′(E) =
o

G
nn′

LL′(E) +
∑

n′′L′′

o

G
nn′′

LL′′(E)∆tn
′′

L′′(E)Gn′′n′

L′′L′(E), (3.75)

where Gnn′

LL′(E) is the energy-dependent structural Green’s function matrix and
o

G
nn′′

LL′′(E)
– the corresponding matrix for the ideal surface, serving as a reference system. ∆tnL(E)
describes the difference in the scattering properties at site n induced by the existence of the
adsorbate atom.

For the first time self-consistent calculations of single Ni, Zn, Ga and Ge impurities in
Cu crystal were performed in 1979 by Zeller and Dederichs [68]. In a year, realistic self-
consistent electronic structures of 3d magnetic impurities embedded into bulk Cu and Ag
were presented [69]. Obtained results were in a qualitative agreement with the Anderson
model, but it was emphasized that modifications of the impurities’ electronic structures
due to host band structure were important. Local magnetic moments were in a reasonable
agreement with available experimental data. Further improvements of the method made
possible calculations of the exchange interaction of magnetic dimers in nonmagnetic hosts
like Cu or Ag [77].

Development of the KKR for layered systems open up a possibility to study clusters
on surfaces. Calculations performed for 4d transition-metal clusters on Ag(001) substrate,
contrary to nonmagnetic bulks of the species investigated, revealed strong tendency to
magnetism [74, 78]. Exact magnetic moments of 4d nanostructures were found to depend
strongly on geometries of clusters. Later on similar calculations were conducted for 3d, 4d
and 5d transition metals on Pd(001) and Pt(001) substrates [79].

3.3 Example KKR calculations: clean Cu(111) and

adsorbed Fe atom

The KKR Green’s function method is able to treat rather complex systems from the first
principles. “From the first principles“ means that a method can reproduce the properties
of a real system having on the input the information on atomic species and, may be, on the
system geometry. To illustrate how it works, we choose a Cu(111) surface, a system which
properties have already been examined both theoretically and experimentally. In this section
we demonstrate the Cu(111) surface state obtained by means of the KKR Green’s function
method, figure out surface state localization on Fe adatom and reveal spatial oscillations of
LDOS around adsorbed Fe atom.

3.3.1 The surface state on Cu(111)

The KKR calculations start from the infinite Cu fcc crystal, which is assumed to be a 3D
periodic perturbation of vacuum. The experimental lattice constant equal to 3.615 Å is used.
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The Dyson equation (3.64) is solved for a set of k points from the irreducible part of 3D
Brillouin Zone (BZ). In principle, various strategies for generation of k-set can be applied.
We use the Monkhorst-Pack method [80], which allows to generate sets of special points
in the Brillouin zone which provides an efficient means of integrating periodic functions of
the wave vector. Usually about 1000–10000 k-points in the irreducible part of 3D BZ are
used. The solution of the Dyson equation yields the Green’s function of the Cu crystal,
and, therefore, its electronic density. The ground state electronic density can be found by a
self-consistent cycle, when the electronic density is used to calculate a perturbing potential.
The perturbing potential, in turn, gives, through the solution of the Dyson equation, a new
electronic density. If densities calculated at several consequent steps of the self-consistent
cycle are the same within the predefined errorbar, one can use the obtained electronic density
as a ground state one. The Fermi level is defined in a usual way as the energy at which the
integrated density of states is equal to the number of valence electrons in a unit cell.

According to the approach explained in Section 3.2.9, a surface is treated as a 2D
perturbation of infinite bulk. Geometry used in calculations is illustrated in Fig. 3.4. We
use a perturbing slab consisting of 4 Cu layers 6 vacuum layers and again 4 layers of Cu.
Cu layers at each side are introduced to account for surface related charge redistribution.
Bulk electronic states are introduced in the system through the scattering matrix △t (ǫ)
imported from the bulk calculations. The Dyson equation (3.70) is now formulated in 2D
k‖ space. The Green’s function Gii′

LL′

(

k‖, ǫ
)

depends on energy ǫ and 2D momentum k‖,

so its imaginary part −1/πImGii′

LL′

(

k‖, ǫ
)

is the momentum and energy resolved density
of states, or the spectral density. Spectral density plotted for a plane or volume in (k‖, ǫ)
space give an insight into the band structure of the studied system. A momentum resolved
spectral density map (SDM) calculated at the Fermi energy for the interface Cu layer of
the Cu(111) surface is demonstrated in Fig. 3.6(a). The green hexagon depicts the 2D BZ
of the {111} fcc surface. Γ , M and K are high symmetry points. The black areas of the
SDM correspond to projected bulk band gaps. One gap is situated at the Γ -point, and six
gaps are around K-points. The blue and violet area correspond to projected bulk states
of Cu. Yellow circle centered at Γ -point represents a single isotropic band which can be
attributed to the surface state. To prove it we demonstrate in Fig. 3.6(b) the SDM calculated
along M − Γ −K line of the 2D BZ for energies from −1.0 to 0.2 eV. The surface state
band with parabolic dispersion is clearly visible. Fit to the parabolic dispersion law (1.27)
(depicted with solid black curve in Fig. 3.6(b) gives the following parameters: band bottom
E0 = −0.536 eV, meff = 0.38, kF = 0.235 Å−1. These values are in a good agreement with
parameters obtained by means of ARPES [see Table 1.1] and STS.

The surface state is bound to the surface, i.e. its density decays exponentially both
into the vacuum and into the crystal. To be sure that the state we obtain in the KKR
calculations is also bound to the surface region, in Fig. 3.7 we plot the spectral density
at the Γ -point at the surface state band bottom energy for different layers of our system.
It is evident that the density is maximal at the surface and rapidly decays in both sides.
Finally, it is reasonable to examine the vacuum LDOS at the surface state energies. LDOS
calculated in the first vacuum layer is demonstrated in Fig. 3.8. The surface state step-like
onset of LDOS appears at the band bottom energy. It is important to note that the surface
state is formed mostly by s and p electrons.
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Figure 3.6: a) The momentum resolved SDM calculated at Fermi energy for the interface Cu
layer. Blue and violet areas correspond to the projected bulk bands. Black regions are gaps of
the projected band structure. A bright circle around Γ -point is the surface state. b) The energy
resolved SDM calculated along M − Γ − K direction of the 2D BZ. The surface state band is
presented as a bright parabola with a band bottom at −0.536 eV. Parabolic fit is plotted with a
black line.
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Figure 3.7: The spectral density at the Γ -point at the surface state band bottom energy calcu-
lated for different layers.

Figure 3.8: Density of states calculated in the first vacuum layer The surface state step-like onset
is visible.

[ 2]11 [111]

[ 10]1 [ 10]1

LDOS

Figure 3.9: The atomic cluster used in the calculation of a single Fe adatom on Cu(111) surface.
Left panel demonstrates the top view on Cu(111) surface, cluster atomic spheres are marked with
black borders. A side view on the same cluster is shown on right panel. Green arrow points to the
atomic sphere where the LDOS presented in Fig. 3.10 was calculated.



50 Chapter 3. Methods used in the work

3.3.2 Iron adatom on Cu(111) surface

An adatom on a surface breaks the translational symmetry of the surface, so the Dyson
equation is formulated in the real space. Perturbed region is built from the atomic spheres
surrounding the adatom. Since potential perturbation in metals is effectively screened by the
conduction electrons and perturbation is different from zero only in the vicinity of defects,
it is enough to include in the perturbed cluster only surface and vacuum atomic spheres
closest to the adatom. Such a cluster is sketched in Fig. 3.9. In Section 2.4, we demonstrate
that an atom adsorbed onto the surface should provoke the appearance of a bound state. In
the STS experiments such a state was revealed as an asymmetric resonance arising below
the surface state band bottom [Fig. 2.10]. STS, according to the Tersoff-Haman theory
[see Section 2.1], is proportional to the vacuum LDOS at the tip position. This allows a
direct comparison of the calculated LDOS with the STS results. The spin-polarized LDOS
calculated at 4.02 Å above the Fe adatom is demonstrated in Fig. 3.10.

The surface state band bottom is marked with a vertical dashed line. Asymmetric
resonances attributed as split-off bound states similar to those observed experimentally
[Fig. 2.10] appear right below the band bottom in both spin channels. The same resonances
for Fe adatom have been recently obtained by Stepanyuk et al. [45], Lounis et al. [47] and
Lazarovits et al. [46].

The first LT STM/STS experiments revealed a spacial oscillations of the LDOS around
adsorbed atoms [17]. The KKR Green’s function method treats this phenomenon. The
spin-polarized LDOS around Fe adatom is plotted in Fig. 3.11 as a function of distance
from the impurity. Oscillations of the surface state density around adatom are evident
both for minority and majority electrons, but, due to different scattering phase shifts, the
minority and the majority densities are shifted with respect to each other. Nevertheless,
the half periods of minority and majority oscillations are the same and equal to ∼ 14 Å.

3.4 Atomic scale simulations

3.4.1 General Strategy

Fully ab initio structural relaxation of a system consisting of hundreds atoms become a chal-
lenging problem and very often demands too advanced computing facilities to be performed
in appropriate time. It is much more convenient to use some simplified model to obtain
relaxed atomic positions. Interatomic forces in such an approach are defined explicitly but
depend on a number of parameters which are to be somehow fitted in order to reproduce
a real system. Once forces acting on each atom are defined, it is possible to determine the
equilibrium structure at some temperature by integrating the newtonian motion equations

d2ri

dt2
=

Fi

mi
(3.76)

where r is the coordinate, mi is the mass and Fi is the force acting on the i-th atom. If
N is the total number of atoms in the system, then a system of N motion equations (3.76)
define coordinates and velocities of all the atoms. Numerical solution of the system (3.76)
is performed by means of the Euler’s method. The differential equations are replaced with
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Figure 3.10: The spin-polarized LDOS calculated at 4.02 Å above Fe adatom on Cu(111) surface.
The bound state split off the surface state band bottom (see Section 2.4 for details) is clearly visible
in both spin-channels.
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Figure 3.11: The spin-polarized standing wave pattern around a single Fe adatom on Cu(111)
surface calculated at Fermi level. Oscillations of the surface state density around adatom are
evident both for minority (blue, down triangles) and majority (red, up triangles) electrons, but,
due to different scattering phase shifts, the minority and the majority densities are shifted with
respect to each other. Nevertheless, the half periods of minority and majority oscillations are the
same and equal to ∼ 14 Å.
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finite differences:






v
n+1/2
i − v

n−1/2
i =

Fn
i

mi
∆t

rn+1
i − rn

i = v
n+1/2
i ∆t.

(3.77)

The first equation describes the momentum conservation law written for ith atom at nth

time step. The change of velocity ∆v = v
n+1/2
i − v

n−1/2
i is determined by the force Fn

i

acting on the atom i with mass mi during the unit time interval ∆t. The second equation
is the definition of the velocity formulated in finite differences.

Such a scheme can be applied to two major tasks: the first is the study of the time
evolution of the system at some nonzero temperature T and the second is investigation of
the relaxed geometries, where forces acting on all the atoms in the system are zero. The
latter case corresponds to the system at zero temperature when all the atoms are immobile.
Cooling to zero temperature is applied through the quenching procedure when the velocity
v

n+1/2
i is canceled if scalar product

(

rn+1
i − rn

i ,Fi

)

becomes negative. The scheme described
above can be, in principle, applied to any kind of system including ideal gases, van der Vaals
gases, liquids, solids. The behavior of each system is determined by the interaction E. Forces
acting on each atom of the system are then calculated as F = −∇E. The particular form
of E is derived from the physical properties of the system being investigated.

3.4.2 Interatomic potentials

The form of many-body interatomic potential E can be derived from simple assumptions
on the electronic structure of the materials studied. The LDOS of transition metals, we
are interested in, is characterized by the narrow partly filled d band and by broad band of
quasi-free s-p electrons. It is well known that the cohesive properties of transition metals
originate from the d-band density of states. The attractive bond energy describing many-
atom interactions due to bonding is obtained as a measure of d electrons energy with respect
to the band center of gravity Ed

EB =

∫ EF

(E −Ed)nd (E) dE, (3.78)

where nd (E) is d band density of states. The realistic density of states associated with atom
i can be replaced by a hypothetic gaussian centered at Ed with the dispersion (or second
moment) µ(i) [81, 82]:

n(i) (E) =
10

µ(i)

√
2π

exp

(

−(E −Ed)
2

2µ2
(i)

)

. (3.79)

Factor 10 appears from the normalization of the n(i) (E) to the total number of d electrons.
Substituting (3.79) to (3.78) one can easily obtain the expression for the bond energy

E
(i)
B = −5µ(i)√

2π
exp

(

−(EF −Ed)
2

2µ2
(i)

)

. (3.80)

Finally, µ(i) can be derived from the definition of the second moment of the density of states
of i-th atom [83, 82]:

µ2
(i) =

∫ ∞

−∞

(E − Ed)
2 n(i) (E −Ed) dE. (3.81)
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Integral (3.81) describes the hopping of the electrons from the atom i to all the neighbor
atoms j and therefore it can be rewritten by means of the effective hopping integral ξij
depending on the chemical species α(i) and β(j) of atoms at sites i and j:

µ2
(i) =

∑

j

ξ2
α(i)β(j). (3.82)

Taking into account a dependence of the hopping integral on the distance between inter-
acting atoms [84], the following general expression for the bond energy can be derived from
(3.80) and (3.82):

EB
(i) = −

√

√

√

√

∑

j 6=i, rij<rc

ξ2
α(i)β(j) exp

[

−2qα(i)β(j)

(

rij

r0α(i)β(j)

− 1

)]

, (3.83)

where qij characterizes the distance dependence of the hopping integral between atoms at
sites i and j; rij is the distance between sites and r0 is the first neighbor distance for the
given chemical species. Note, that starting from some interatomic separation rij = rc the
bond energy EB

(i)(rij) is close to zero, so it is reasonable to assumed that the interaction is
canceled beyond this cutoff radius rc.

The repulsive part E
(i)
R is introduced to stabilize the system as a sum of modified Born-

Mayer ion-ion repulsions:

ER
(i) =

∑

j 6=i rij<rc

[

A1
α(i)β(j)

(

rij

r0α(i)β(j)

− 1

)

A0
α(i)β(j)

]

exp

[

−pα(i)β(j)

(

|rij|
r0α(i)β(j)

− 1

)]

(3.84)

where pα(i)β(j) is related to the bulk modulus of the material. The term A1 introduced
into the repulsive term makes the potential more flexible in applications for surfaces and
nanoclusters. The relevance of this correction was proved by a number of works [85, 86, 87,
88, 89, 90, 91].

The energy E(i) of atom i is stated as the sum of an attractive band energy EB
(i) (3.83)

and a repulsive pair interaction ER
(i) (3.84):

Ei = EB
(i) + ER

(i) (3.85)

It was shown in many calculations that many-body interatomic potentials correctly describe
surface relaxations, reconstruction, and diffusion on surfaces of fcc transition metals [85, 86,
87, 88, 89, 90, 91].

3.4.3 Details of realization

To construct potentials for different systems the interaction parameters

̺αβ = {A1, A0, ξ, p, q, r0} (3.86)

are to be fitted to reproduce a set {P
0}i of experimental and theoretical values of the lattice

constant, cohesive energy, bulk modulus, binding energy of embedded and ad-clusters of
different sizes and geometry. Surface-related properties are taken into account for realistic
description of the atomic relaxations in supported clusters. For the same sake ab initio values
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of Helmann-Feynman forces acting on the adatom on the surface can be used. Potential
parameters (3.86) are fitted to minimize the functional

F [̺αβ ] =
∑

i

(Pi(̺αβ) − P
0
i )

2, (3.87)

Minimization is performed numerically by means of conjugate gradient method. Table 3.4.3
lists parameters of the Co-Cu potentials. These potentials have been recently used in a
number of works [86, 85, 88, 90, 92, 87].

Table 3.1: Parameters of interatomic potentials for Cu/Cu systems.

Parameter A1 (eV) A0 (eV) ξ (Å) p q r0 (Å)
Cu-Cu 0.0000 0.0854 1.2243 10.939 2.2799 2.5563
Co-Cu -1.5520 -0.0372 0.8522 7.6226 5.5177 2.4995
Co-Co 0.0000 0.1209 1.5789 11.3914 2.3496 2.4953

3.4.4 Example of MD relaxation: short Co chains on Cu(554)
surface

To illustrate the MD method we present here our recent results on the relaxation of short Co
chains placed at the step ledge of Cu(111) vicinal surface [90]. We calculated relaxations of
short Co2-Co7 chains at the step edge of Cu(554) vicinal surface. The coordinate frame used
is drawn in the insert of Fig. 3.12. The x-axis is parallel to the step, the z-axis direction
matches the surface terrace-normal and the y axis points from the step. Projections of
relaxed atomic positions of the Co chains and underlying substrate atoms on xz plane are
plotted respectively in upper and lower panels of Fig. 3.12(a-f). Vertical displacements
of Co atoms strongly depend on the chain length. To rationalize such a difference and to
find common features in Co chains relaxations, we should stress that the edge atoms of
Co chains due to a lower coordination number, exhibit the strongest relaxations towards
the substrate, towards the step and towards the adjacent Co atom. The positions of Cu
atoms in the step remain practically the same except Cu atoms at the chain edges (they
are marked with green arrows in the insert of Fig. 3.12). These atoms move out from the
step to the terrace. The picture described above remains valid for all the considered Co
chains (see upper panels of Fig. 3.12(a-f)). Such a displacement of the edge Co atoms
hinders the relaxation of the second atom in the chain towards the substrate. As a result,
the second Co atoms are situated remarkably higher than the edge ones. This ’edge effect’
completely explains the arched relaxations profiles of Co3 and Co4 chains. The longer Co5,
Co6 and Co7 chains have the ’letter M-like’ shape when three outermost Co atoms form
two arches at each edge of the chain and the rest Co atoms in the center exhibit similar
relaxations forming steady central region. The description of the atomic relaxations in the
Co chains can be summarized in the 3D illustration as is plotted in Fig. 3.13 for the Co7

chain. All the considered Co chains push underlying substrate atoms downwards, but the
outer substrate atoms exhibit upward vertical relaxations due to the shift of the edge Co
atoms towards the chain center. The relative changes of Co-Co and Co-Cu bonds in Co7
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Figure 3.12: Strain relaxations in short Co chains placed at the Cu(111) vicinal surface step
edge. The upper panels of all the figures demonstrate displacements of Co atoms in (a) Co2, (b)
Co3, (c) Co4, (d) Co5, (e) Co6, (f) Co7 chains. The corresponding relaxation profiles of underlying
substrate atoms are shown in lower panes. Coordinate origins coinside with the geometrical centers
of corresponding unrelaxed structures. The figure is published in [90].

Table 3.2: Effect of atomic relaxations on structural and magnetic properties of the Co7 chain.
Values of Co-Co and Co-Cu bonds length changes are listed in percentage relative to the the
unrelaxed bond length. Order of the Co atoms and bonds notation are illustrated in Fig. 3.14.
Magnetic moments are calculated by means of tight-binding method. The table is published in
[90].

Co atom
Bonds 1 2 3 4

1 - -6.2 -3.2 -2.3
2 -6.2 -3.2 -2.3 -2.3
3 0.3 0.6 -0.8 -1.5
4 -5.2 -2.6 -2.0 -1.5
5 -0.8 -0.4 -1.9 -2.6
6 -6.1 -3.8 -3.2 -2.6
7 -3.5 -3.3 -3.3 -3.3
Magnetic moments µB

ideal 1.71 1.68 1.64 1.66
relaxed 1.59 1.52 1.53 1.50

chain caused by relaxation are listed in Table 3.2. The Co atoms enumeration is explained
in Fig. 3.14. Because of the reflection symmetry x → −x only first four Co atoms are
considered in Table 3.2. The zoomed view in Fig. 3.14 elucidates the bonds notation. To
illustrate the effect of relaxations on the electronic structure of Co7 chain we also put in
Table 3.2 values of spin magnetic moments for ideal and relaxed configurations calculated
by means of tight-binding method [90]. In both cases edge Co atoms have the maximum
magnetic moment in the chain. Atomic relaxations reduce magnetic moments of all the
atoms.
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Figure 3.13: Three dimensional relaxation profile in the Co7 chain. Edge atoms are strongly
attracted to the step due to the lower coordination number. The next atoms from the edge are
shifted from the step. Atoms in the middle of the chain lie approximately at the straight line. The
figure is published in [90].

Figure 3.14: Sketch of the Cu(111) vicinal surface step with the Co7 chain. Substrate Cu atoms
are drawn with grey colour, Co chain is light blue. Top view illustrated Co atoms enumeration
order used in table 3.2. Bottom zoomed view is designed to clarify the bonds notation from table
3.2. The figure is published in [90].



Chapter 4

Electronic states on stepped Cu(111)
surfaces

Stepped or vicinals surfaces attract much attention of scientific community for more than
3 decades. Such regular or quasi-regular structures can be obtained if a crystal is cut along
some plane vicinal to a high-symmetry plane of the crystal [93]. The interest to vicinal
surfaces is not idle because such 1D-arranged structures are widely used as natural templates
for self-assembly of 1D and quasi-1D nanostructures: adsorbed atoms diffuse across terraces
and are trapped at steps [94, 95, 96, 97]. Below we describe a modern view on the surface
state on stepped surfaces and report on our ab initio investigations of surface states on clean
Cu(111) vicinals. Then we proceed to the study of Cu(111) vicinals decorated with Fe wires
and demonstrate that localization of minority electrons at Fe wires results in the formation
of spin-polarized surface states. At the end of the chapter we explain how a novel type of
1D magnetic Fe nanostructures can be grown on Cu(111) vicinal surface exploiting surface
state confinement.

4.1 Stepped surface as a planar perturbation:

the SKKR treatment

According to the KKR workflow any surface is to be treated as a planar perturbation of
an infinite bulk. It is rather simple to imagine the structure of such a perturbation for
high-symmetry planes of fcc crystal [see Fig. 3.4]. Any vicinal surfaces can be also treated
in the same manner [98]. As an example we demonstrate how a set of inequivalent atoms
is defined for Cu(332) surface. Every terrace of Cu(332) surface consists of atomic rows
aligned in Fig. 4.1 along z-axis. It is natural to assume that all the atoms in the atomic
row are equivalent. This yields us the first basis vector, pointing to the next atom in the
same row (vector number 1 in Fig. 4.2). All the terraces of a vicinal surface are equivalent,
or in another words, atoms of the row on one terrace are equivalent to all the atoms of the
same row on all other terraces. Thus the second basis vector points to the same row on
the adjacent terrace (vector number 2 in the Fig. 4.2). These two basis vectors define the
equivalent atoms in the {332} plane. The third vector should point to the next atomic row
in the terrace (vector number 3 in the Fig. 4.2). Atoms belonging to different atomic rows
are inequivalent. Position of any atom in the system can be determined by means of these
three vectors.

57
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Figure 4.1: Vicinal Cu(332) surface as a planar perturbation of bulk. {332} plane is depicted by
the red solid line. {111} terrace plane is sketched by dashed blue line. The angle Θ between these
two plains is called a miscut angle. Atoms in the same row are equivalent. Inequivalent atoms in
different rows are highlighted by numbering. The basis set for such a geometry is drawn in Fig. 4.2
.

Figure 4.2: Bravais vectors of vicinal surface. The first vector points to the equivalent atom in
the same atomic row. The second vector points to the equivalent atoms on the adjacent terrace.
The third vector introduces the adjacent inequivalent atomic row.
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The Dyson equation in the k‖ space is written for the layers parallel to the {332} plane,
sketched in Fig. 4.1 with the red line. This plane forms the miscut angle θ with the {111}
plane of the step terraces. Inequivalent atoms in Fig. 4.1 are enumerated according to their
z-coordinate, so each {111} terrace plane consists of atoms belonging to the layers with the
ascending numbers. In this way, the first N layers are Cu layers, the next M layers are
vacuum, and the last N layers are Cu again. Because the interlayer distance ∆z is small,
large N and M should be utilized to obtain a valid electronic states in the whole system.
Exact values of N and M depend on ∆z and vary from 10 to 100 for different surfaces.

Any vicinal surface can be defined and studied by ab initio methods according to the
described scheme. But it should be kept in mind that the total number of layers to be taken
into account increases proportionally to the [sin (θ)]−1. The wider terraces of vicinal surface
are, the smaller miscut angle θ is and it increases requirements to the essential computer
facilities and calculation time.

4.2 Results on clean Cu(111) vicinal surfaces

In our study we considered the following Cu(111) vicinals: Cu(332), Cu(775), Cu(443),
Cu(997), Cu(554) with the terrace width equal to 12, 14, 16, 18, 20 Å, respectively. We
have performed a systematic study of the surface states on these surfaces. We illustrate how
the LDOS is changed across a terrace and discuss features of the electronic structure typical
for vicinal surfaces. All data are also analyzed within the framework of 1D KP model.

4.2.1 LDOS on vicinal surfaces

At first we present our results on the LDOS calculated at centers of terraces of all the studied
stepped surfaces as it is sketched in Fig. 4.3(a). LDOSes calculated above the terrace center
of the considered vicinal surfaces are plotted in Fig. 4.3(b). They can be directly compared
with LDOS calculated on flat Cu(111) surface, which is marked in Fig. 4.3(b) by the shaded
area.

A brief analysis of Fig. 4.3(b) reveals that surface states of Cu(111) vicinal surfaces are
shifted towards higher energies in comparison to the flat Cu(111). The similar effect has
been observed in the STS experiments by Sánchez et al. [99] and Hansmann et al. [100].
The second remarkable feature of the LDOSes calculated on vicinal surfaces is a broad but
evident peak. In Fig. 4.3(b) these peaks are marked by arrows. Such peaks are not observed
in the LDOS of flat Cu(111). Position of the peak strongly depends on a terrace width. For
instance, the peak is unoccupied on Cu(332) (L=11.9 Å), but it shifts under the Fermi level
on Cu(775) (L= 14.1 Å). The peak position versus the terrace width is plotted in Fig. 4.3(c).

Our results are in a good agreement with the STS measurements of Hansmann et al.
[100]. They studied the electronic structure of Cu(111) vicinals by means of STS/STM at
low temperature [100]. This technique allows to locally acquire electronic structure data
on individual terraces and sites rather than averaging over the entire sample as in photoe-
mission. Figure 4.4(a) presents an atomistic structure of Cu(554) surface. Each terrace
consisting of 9 atoms is 21 Å wide and has {111} facet. In the STM image [Fig. 4.4(b)],
the Cu(554) surface consists of a fairly regular array of {111} terraces where the average
terrace width is in a good agreement with the ideal value of 21 Å . However, deviations
are observed and terrace widths are distributed around the expected value. Moreover, kink
sites are present, affecting the step superlattice geometry.
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Figure 4.3: (a) An atomistic sketch of a terrace of Cu(332) surface. Dyed circles correspond to
Cu atoms, empty circles stand for vacuum spheres. LDOS label points to the vacuum sphere at the
center of the terrace, where the LDOS presented in (b) is calculated. (b) The LDOSes calculated
at the center of terrace of Cu(111) vicinals. The onset of surface states on vicinal surfaces (color
curves) is shifted to the higher energies with respect to clean Cu(111) (gray area). The arrows
show positions of LDOS peaks. (c) The energy of peaks revealed in (b) is demonstrated as a
function of terrace width.
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Figure 4.4: a) An atomistic model of the Cu(554) surface. Every {111} oriented terrace is 21 Å
wide and consists of nine atomic rows. b) Topographic image of the Cu(554) surface. 810×810 Å2.
Vs = 400 mV, I = 0.6 nA. c) a dI/dV spectra taken on terraces of different widths as indicated
on the right-hand side. Straight lines denote the onset position taken from the numerical point of
inflexion. Peaklike features on narrower terraces are marked with an arrow. d) Energies of onsets
closed circles and peaks open circles taken from spectra similar to those in c . e) Peak energy
relative to their individual onsets in d plotted against the step width. The fit corresponds to a
finite 1D potential well with the barrier height as the fit parameter.

STS spectra taken on terraces of different widths by Hansmann et al. [100] are shown
in Fig. 4.4(c). The widest terrace actually can be treated as flat surface. Analysis of
spectra acquired over narrower terraces immediately yields two common features: (i) the
surface-states like onsets of the spectra preserve but they are shifted towards the higher
energies (onset positions are denoted in Fig. 4.4(c) with straight lines); (ii) a broad but
a very distinct peak appears at various energies above the band bottom depending on
the terrace width (peaks are marked in Fig. 4.4(c) with arrows). Energies of onsets and
peaks for terraces of various widths are plotted Fig. 4.4(d). The shifted surface-states-like
onset indicates that Cu(111) extended 2D surface states still exist on the considered vicinal
surfaces, only partially affected by the finite transparency of the step superlattice. This
observation actually supports the dispersion relation for collective superlattice states of 1D
KP model (4.4). The second feature, i.e. the peak, can originate either from (i) a collective
coupling of propagating states to barriers at all the steps, or (ii) from local confinement
of surface electrons to the terraces. The peak should appear at the same energy for all
terraces if the overall ”superlattice” effect dominates. Experiments, however, traced a clear
dependence of the peak position on the terrace width typical for particle-in-a-box model,
i.e. E ∝ L−2 [Fig. 4.4(e)], even if measurements were performed at adjacent terraces with
different width [100]. This assumes that the peak is formed by states which properties are
determined by local confinement on a single terrace.

It is important to note here, that our ab initio results are obtained for the infinite array
of the equivalent terraces separated by steps. Such a system actually should be treated
as a superlattice and hence the contribution to the peak of the overall effect of all the
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Figure 4.5: (a) The atomistic sketch of a terrace of Cu(554) surface. Each vacuum sphere on
the terrace is enumerated. The LDOSes calculated in all the terrace sites are demonstrated in (b).
The LDOS peak revealed at the terrace center is absent at the step ledge (position and curve 1 )
and at the terrace edge (position and curve 9). Such a spatial localization of the electronic states
gives an idea on the confinement of surface state electrons to the terrace similar to the 1D KP
model.

confining potentials is significant. Despite this fact we found a good agreement between
our ab initio and experimental peak positions. In particular, for Cu(443) and Cu(554) the
calculated peaks positions are equal respectively −0.17 eV and −0.3 eV , and corresponding
experimental values are approximately −0.15 eV and −0.25 eV . Further analysis revealed,
that the peak was the most pronounced at the canter of the terrace. To illustrate it we plot
in Fig. 4.5 the LDOSes taken at different sites along the terrace of Cu(554) surface. The
peak is absent at the step ledge (curve 1 in Fig. 4.5) and at the terrace edge (curve 9 in
Fig. 4.5). This spatial localization of the electronic states again leads us to an idea on the
confinement of surface state electrons to the terrace. The ratio of contributions to the LDOS
peak arising due to local confinement and overall superlattice effect can be rationalized in
terms of the strength of confining potential at the step edges. It can be done within the 1D
Kronig-Penney model (4.4) [16, 99].
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4.2.2 The Kronig-Penney model

An ideal stepped surface consists of an infinite number of terraces separated with monatomic
steps. Bürgi et al. [19] clearly demonstrated that each step could be modeled by a repulsive
potential with a finite transparency. Since the vicinal surface is periodic and one step is a
copy of another, the surface state wave function Ψ (x) must obey the Bloch’s theorem (1.4):

Ψ (x+ L) = Ψ (x) exp (ik⊥L) , (4.1)

, where L is the terrace width, x is defined on the axis parallel to the surface perpendicular to
the steps and k⊥ is the projection of the wave vector on this axis. Such a formulation recalls
the nearly free electron approximation (see section 1.2) for the electrons motion in the weak
periodic potential. The simplest model, suggested by Kronig and Penney in 1931 [101],
treats each step as δ-function potential of strength U0a. The wave function between two
adjacent steps can be written as

Ψ (x) = Aeiqx + A′e−iqx (4.2)

In any other region wave functions can be determined by (4.1). Matching wave functions
of reflected and transmitted electrons at each side of the barrier, one can derive for the KP
model the following dispersion relation:

cos (qL+ φ) = |T | cos (k⊥L) , (4.3)

or in terms of energy

E⊥ (k⊥) =
~

2

2m∗L2

[

cos−1 (|T | cos (k⊥L)) − φ
]2

+ E0, (4.4)

where m∗ is the effective mass of the surface states electrons, E0 is the bottom of the surface
state band on the flat surface. The module of energy-dependent transmission coefficient |T |
and phase shift φ can be obtained using the potential barrier strength U0a as:

|T |2 = 1/
(

1 + (q0/q)
2) , (4.5)

φ = − tan−1 (q0/q) , (4.6)

q =
√

(2m∗/~2) (E −E0) (4.7)

where q0 = (m∗/~2) · U0a. As it has been already demonstrated for NFE approximation
(Fig. 1.1), the 1D KP model results in the appearing of small gaps between two bands at
k⊥ = nπ/L, n ∈ N and the upward shift of the band bottom (see equation (4.4)). If the
effective mass m∗, the band bottom E0 and length of terrace L are defined, then unknown
potential barrier strength U0a can be fitted to experimental or ab initio data to reproduce
the observed shift of the surface state band bottom. Obtained values of the potential
barrier strength U0a can be then used in analysis and interpretation of the surface states
confinement on vicinal surfaces.

4.2.3 Surface states bands: spectral density maps

To obtain surface state band bottoms we plot SDMs calculated at the center of all the
considered terraces. Fig. 4.6(a) shows the SDM of the Cu(443) surface. The band is
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back folded exactly at the boundaries of the supperlattice Brillouin zone (reciprocal vectors
k⊥ = π/L) . Since the KKR Green’s function method does not operate with wave functions
and the bands can not be obtained explicitly, the surface state band bottom should be
extracted from the SDMs by the fitting procedure. Below we describe the fitting algorithm
we developed for this work.

Spectral density (SD) A(k, E) is a function of momentum k and energy E which has
local maxima at bands. It is possible to trace the band structure by finding maxima of
SD. In general such a procedure is not trivial because bands can cross each other or be
degenerate at some points. We have only one surface state band, so maxima tracing is
expected to yield reliable results.

The KKR code is tuned to output spectral densities as a 2D array, i.e. as a matrix
Aki,Ej

where row i corresponds to momentum ki and column j corresponds to energy Ej .
The band energies are, thereore, to be interpolated from these discrete data. Note, that it
is unnecessary to consider the whole band to obtain the surface state band bottom. Only a
part of SDM in the proximity of the band bottom should be considered. Such a part of the
Cu(443) SDM used is demonstrated in the bottom panel of Fig. 4.6.

At first, for a set of a fixed {ki} we determine a set of energies {Eki
} where SDM A(ki, Ej)

gets its local maxima (Fig. 4.6):

Eki
= max

E
{Aki

(E)} (4.8)

Because we use a rather dense energy mesh {Ej} maximum energies Eki
should not be bound

to discrete energy set Ej but can be found more accurately for all the κ ∈ {ki} by means of
parabolic interpolation of discrete SDM data Aκ,Ej

in the proximity of its maximum value.
Blue curve shown in Fig. 4.6 is a crossection Aκ(E) of the 2D SDM A(ki, Ej) at the fixed
moment κ ∈ {ki}. The set of maximal values of spectral density {ki, Eki

} is demonstrated in
the bottom panel of Fig. 4.6 by blue points. Now we have the surface state band described
by a set of points {ki, Eki

} in momentum-energy space. This set is fitted to the N-th order
polynomial function P{c}N

(k) =
∑N

l=0 clk
l in L2 space:

{c}N = min
{c}N

∥

∥

∥

∥

∥

Eki
−

N
∑

l=0

clk
l
i

∥

∥

∥

∥

∥

L2

(4.9)

The result of this fit for Cu(443) surface is demonstrated in the bottom panel of Fig. 4.6
with a green curve. The band bottom energy (shown with the red point in the bottom panel
of Fig. 4.6) is obtained as the minimum value of the polynomial P{c}N

(k). The resulting
error is estimated to be within several meV.

The potential barrier strength U0a calculated from (4.4) is plotted in Fig. 4.8a as a
function of the terrace width with solid circles. The values determined by Sánchez et al.
[99] and Hansmann et al. [100] are also shown in Fig. 4.8a. In agreement with available
experimental data the barrier strengths are around 1 eV Å and display a growth for smaller
terrace widths [103]. One can see that the barrier strength exhibits the minimum approx-
imately at the terrace width equal to 18 Å. The increase of the barrier strength at large
value of the terrace width assumes that surface states get more confined to the terrace,
and therefore, it can be treated as the evidence of the transition in the character of the
states. Corresponding barrier transparency (4.5) demonstrated in Fig. 4.8(b) also exhibits
an abrupt drop for terrace width 21 Å.
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Figure 4.6: SDM Aki,Ej
of Cu(443). Red rectangle marks the region used in the fitting procedure.

The SDM in this region is presented in the bottom panel of the figure. Blue curve is a crossection
Aκ(E) of the 2D SDM A(ki, E) at fixed moment κ ∈ {ki}. The set of maximal values of SD
{ki, Eki

} is demonstrated with blue points. Green curve drawn on (k,E) plane is the polynomial
interpolation of this set. The band bottom energy shown with the red point is obtained as the
minimum value of the polynomial.
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Figure 4.7: Spectral density maps of a) Cu(332), b) Cu(775), c) Cu(443), d) Cu(997), and e)
Cu(554) surfaces calculated using KKR Green’s function method. Bands are back folded exactly
at boundaries of superlattice Brillouin zone ( reciprocal vectors k = π/L are marked with the
vertical dashed white lines). The 1D KP model bands are drawn by lines at the top of the spectral
density maps: red solid curves correspond to the first band of 1D KP approximation, blue solid
curves correspond to the second one. The green arrows correspond to the energies of the LDOS
peaks. The figure is published in [102].
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Figure 4.8: a) The potential barrier strength U0a as a function of terrace width calculated from
the SKKR ab-initio input according to (4.4) (solid circles), determined experimentally by Sánchez
et al. [99] (open circles) and Hansmann et al. [100] (triangle). b) Barrier transparency as a
function of terrace width calculated from the SKKR ab-initio input.

The 1KP model in our case can be directly compared to ab initio results. The KP bands
constructed according to the dispersion relation (4.4) are visualized in Figs. 4.7(a-e) upon
the corresponding SDMs. The first KP bands fit the ab initio SDMs surprisingly well. On
the other hand, the 1D KP model unambiguously states the existence of gaps betwen bands.
These KP gaps are clearly visible at k⊥ = nπ/L for all examined stepped surfaces. SDMs
obtained from ab initio calculations, however, have no gaps at these points.

To explain this contradiction, let us consider several possible natures of the electronic
states on vicinal surfaces. The first assumption is that we deal with confined states. Con-
fined states should be nondispersive, which is not true in our case: the first bands are
parabolic-like. Such a band shape can be a signature of a superlattice electronic states.
But it also not the case because there are no gaps between the first and the second KP
bands. The gap is closed due to overlap of surface and bulk states at step edges predicted
by Ortega et al. [103]. Surface states on vicinal surfaces with narrow terraces should be
treated as surface resonances rather than confined states.

4.3 Decorated stepped surfaces

Let us now turn to the results on decorated Cu(111) vicinals. The main goal here is to study
by ab initio methods the effect of magnetic wire on the confined surface states . Although
DFT does not account for properties of dynamical origin, it is an accurate method to
determine static quantities. Thermal fluctuation may act to destroy a static magnetic order
in the absence of an external field. However, if fluctuations are rather slow, nanowires would
behave as magnetic ones for many practical purposes.
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4.3.1 Effect of decoration on electronic states of stepped surfaces

In the presence of adsorbates on stepped surfaces new interesting phenomena can occur.
Equidistant steps of vicinal surfaces provide a natural pattern for self-assembling of low di-
mensional nanostructures. In particular, Fe stripes were observed on Cu(111) [94]; Co wires
are reported to grow on Pt(997) [96]. Magnetic properties of such low dimensional nanos-
tructures significantly depend on various conditions and are the object of intensive research
[104, 105, 106]. On the other hand, such nanostructures may affect a confining potential at
steps of vicinal surface changing surface states. For instance, CO molecules adsorbed at step
edges significantly reduce confining potentials [107]. Shiraki and coworkers have recently
reported on the same effect of Fe adatoms on surface states of Au(111) vicinals. [97, 108].
They evaporated Fe adatoms on vicinal Au(111) surface and revealed the formation of Fe
nanowires at step ledges. Figure 4.9 shows an STM image taken on the Au(455) at the
Fe coverage of 0.04 ML. Atomically resolved Fe monatomic wires adsorbed at the lower
corners of the {111} steps are clearly observed [97]. Figures 4.10(a) and 4.10(b) show the
angular distributions of photoemission spectra measured in the direction perpendicular to
the steps before and after the step decoration with Fe, respectively. The emission angle Θ
was measured with respect to the surface normal direction. As marked with vertical bars
in Fig. 4.10(a), two peaks with only a little dispersion were clearly observed on the clean
Au surface. These discrete energy levels were described as the electronic states confined
in quantum wells between steps. They assumed that the step potential barrier could be
possibly modified by Fe adatoms and examined the surface electronic structure at room
temperature by means of ARPES.

At the Fe coverage of 0.04 ML, the spectra changed strikingly as shown in Fig. 4.10(b).
The peak near the Fermi level showed parabolic dispersion instead of the two peaks with
little dispersion. That indicated that the electron propagation across the decorated steps on
the vicinal surface was more free-electron-like and suggested that the step decoration with
Fe decreases the potential barrier leading to a breakdown of the electron confinement. Fig-
ure 4.10(b) also shows a downward energy shift of the surface state band bottom compared
to Fig. 4.10(a).

A further confinement of 1D quantum well states can be achieved on vicinal surfaces.
The general strategy is to place somehow the barriers across the terraces. This can be
done by STM manipulations [100], exploiting self-organization [109, 110] or even simply
taking the surfaces with uneven steps [111]. As a result surface state is confined or partially
confined in the direction parallel to steps. This allows to tune the electronic properties of
the surface.

4.3.2 Spin-polarized surface state on decorated stepped surfaces

We performed calculations for Cu(332), Cu(775), Cu(443), Cu(997), and Cu(554) surfaces
decorated with monatomic Fe wires. Figure 4.11(a) demonstrate the atomic sketch of the
decorated Cu(332) surface. Fe row is placed at the step ledge of clean surfaces. The total
LDOS calculated at the center of terraces are shown in Fig. 4.11(b). The peaks marked in
Fig. 4.11 by arrows are blurred but still visible and the LDOS onset is shifted downward,
i.e. in the opposite direction to the clean Cu(111) vicinals. The minority and majority
density of states are demonstrated in Fig. 4.11(c),(d). It is evident that the surface states
on decorated Cu(111) vicinals become spin polarized. The blurred peak in the total density
of states comes from the majority part, which seems to be not much affected by the presence
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Figure 4.9: One-dimensional Fe nanostructure grown on the Au(455) surface (0.04 ML). The
large arrow indicates the descending direction of the steps. The figure is taken from [97].

Figure 4.10: Angular distributions of photoemission spectra near the Fermi level measured in
the direction perpendicular to the step array: (a) Au(788) and (b) 0.04 ML Fe/Au(788). The
emission angle Θ is measured with respect to the surface normal. The figure is taken from [97].

of Fe wire. The minority density of states for all the examined vicinal surfaces has no such
peak, but a new one appears at -0.6 eV. To reveal the origin of the peak at -0.6 eV we
performed a systematical study of the spatially resolved density of states across terraces of
considered vicinal surfaces. The majority and the minority LDOSes calculated along the
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Figure 4.11: (a)The atomic sketch of the decorated Cu(332) surface. Fe atoms placed at the step
ledge of clean surface are colored red. The total LDOS’s calculated in the center of terraces are
shown in (b). The peaks marked in Fig. 4.3(b) by arrows are blurred but still visible and there is a
downward shift of the LDOS onset. The minority and majority density of states are demonstrated
in (c) and (d). The blurred peak in the total density of states comes from the majority part, which
seems not to be affected much by the presence of Fe wire. The minority density of states for all
the examined vicinal surfaces exhibits a new peak at -0.6 eV.
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Figure 4.12: (a) The atomistic sketch of a terrace of Cu(554) surface. Each vacuum sphere on
the terrace is enumerated. The minority and the majority LDOS’s calculated in all the terrace
sites are demonstrated in (b) and (c) respectively. The majority LDOS (red curves) is not affected
much in comparison with the case of clean Cu(554) surface (dashed gray curves). The minority
surface states hybridize with the quasi-atomic state of Fe wire (peak at -0.6 eV) and get localized
at the Fe wires, thus suppresing the confinement.
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Figure 4.13: The comparison of the majority and the minority SDMs calculated in the terrace
center of the decorated Cu(554) surface (shown in the upper panel) with the SDM of clean Cu(554)
surface. Blue strokes mark the energy of the Cu(554) surface state band bottom. The majority
states of the decorated surface are not affected much, while the minority exhibit downward shift
of the band and redistribution of the charge density along the band.

terrace of Cu(554) surface decorated with Fe rows are plotted in Fig. 4.12 as an example.
The majority LDOS [Fig. 4.12(c) red curves] is not affected much in comparison with the
case of clean Cu(554) surface (dashed gray curves in Fig. 4.12). The majority states at the
peak energy get the maximal density in the center of terrace. The minority states vice versa
exhibit the maximal density at the Fe wires. This immediately gives an idea of some kind of
localization of surface state electrons at Fe wires. To prove it we plot in Fig. 4.12 the density
of states at atom of Fe wire. One can observe at -0.6 eV the resonance of d character. Thus,
the localization of surface states at Fe wires is determined by the resonant scattering of the
s-p electrons at d-quasi-atomic states of Fe row. The d-derived surface state resonance at
−0.6 is not affected by the terrace width because terraces are wide enough to cancel direct
interaction between Fe rows, so this energy is determined by the interaction of Fe atoms
within the same row.

It is not clear yet if the onset of minority states is the evidence of a new modified
surface state, or is a kind of bound state. To clarify it we demonstrate the spin-polarized
SDMs of the decorated Cu(554) surface in Fig. 4.13. Dispersive bands preserves in both spin
channels, however, the minority surface state band bottom is shifted downwards with respect
to the position on flat Cu(111) surface. The density of minority electrons is significantly
redistributed in comparison to clean Cu(554) surface: the upper edge of the first band is
depopulated and the density of the lower edge of the second band is increased. A simple
analysis of the spatial distribution of these states within the 1D KP model [101] immediately
yields that populated states from the lower edge of the second band reach their maximal
density in the proximity of the barriers, while the states from the upper edge of the first
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band have maximal density in the center of the terrace and vanishes at the barriers. Thus,
decoration of the Cu(111) vicinal surfaces at step edge with Fe rows permits to control the
population of the minority surface states bands. Comparison of the majority SDM to the
SDM of clean Cu(554) surface confirms that the majority SDM is not affected much by the
Fe row: the shape of bands is the same but electronic density is slightly redistributed.

4.4 Self-organized long-period 1D nanostructures on

stepped metal surfaces

In the previous Section we demonstrate how decoration of stepped surfaces allow to tune
their electronic properties. Now we want to address the opposite situation when electronic
states on stepped surfaces promote the self organization of low dimensional nanostructures.

4.4.1 Substrate mediated long range adatom-adatom interaction

Monatomic rows and stripes grown at the step ledges of a vicinal surfaces [96, 112, 97, 108,
94, 95, 113, 89, 114] are stabilized by a direct bonding between the atoms of 1D nanostructure
and substrate. Usually, interatomic distances in such low-dimensional systems are close to
the intrinsic nearest-neighbor spacing. However, there could be substrate-mediated long-
range interactions between adatoms. These interactions are indirect and may be mediated
in three ways. The first is electrostatical dipole-dipole interaction. The second is elastic
deformation of substrate lattice. According to the third way the adatom-adatom interaction
is mediated by substrate electrons. Decay rates of all these interactions are different. First
two interactions decay with separation r as 1/r3 [115]. Decay rate of third strictly speaking
depends on the dimensionality of the system. Indeed, as was demonstrated by Friedel,
electronic density oscillations appeared around an impurity introduced into a metallic host.
The period of oscillations was shown to depend on the wave vector kF of the electrons at the
Fermi surface [84]. The same formalism can be applied to adatoms on surfaces. Oscillations
of the electronic density caused by one adsorbate can influence the binding energy of another
adsorbate. Lau and Kohn demonstrated that interaction between two adatoms mediated by
bulk electrons decayed as ∝ 1/r5 [116], they also predicted that in 2D systems interaction
fell off much more slowly, as ∝ 1/r2 [116, 117]. Hylgaard and Person examined the indirect
interaction mediated by a Shockley surface-state band between adsorbates on the (111) face
of noble metal surfaces in the presence of bulk electrons [118]. They stressed the importance
of screening by the finite density of the surrounding bulk (conduction-band) electrons. This
bulk screening permitted them to obtain a simple (but non-perturbative) description of the
adsorbate-induced scattering within the surface-state band. In the asymptotic region of
large adsorbate separations r they provided the analytical estimate:

Eint(r) = −εF

(

2 sin (δF )

π

)2
sin (2kF r + 2δF )

(kF r)
2 (4.10)

Oscillations of the surface state density can be detected by means of STM/STS measure-
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Figure 4.14: Constant current STM image of two Co adatoms on Cu(111), which interact via
the standing waves I = 2 nA, V = −50 mV, T = 6 K. The figure is adopted from [119].

Figure 4.15: Histogram of (a) Cu/Cu(111), (b) Co/Cu(111), and (c) Co/Ag(111) nearest neigh-
bor distances [ (a) coverage Θ = 1.4 · 10−3 ML, T = 15.6 K; (b) Θ = 2.0 · 10−3 ML, T = 10.2 K;
(c) Θ = 4.0 · 10−4 ML, T = 18.5 K] Fits of the data with the nonperturbative result of Ref. [118]
are shown as dashed lines. The figure is taken from [115].
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Figure 4.16: Experimental and calculated interaction energies between two Co adatoms on
Cu(111); a fit based on the model of Ref. [118] is presented and the first three theoretical points
have been rescaled. The figure is adopted from [119].

ments. Figure 4.14 demonstrates the STM image of standing wave pattern arising near
two Co adatoms on Cu(111) surface. Surface state mediated long range interaction (LRI)
should definitely influence the diffusion of adatoms on surfaces and may result in appear-
ing of a long range order. STM experiments of Repp et al. [120] and Knorr et al. [115]
clearly demonstrated the impact of the LRI on the adatom motion. Both scientific groups
evaporated small amount of adatoms on surfaces supporting surface state, like Cu(111),
Ag(111) and studied then the pairwise radial distribution function f(r), i.e. the proba-
bility to find to adatoms at separation r [115, 120]. The results were completely different
from the case of random site occupation fran(r)) [115, 120]. Histograms with the num-
ber of neighbors as a function of distance r and corresponding interaction energies are
shown in Fig. 4.15 for Cu/Cu(111), Co/Cu(111) and Co/Ag(111). Differences ∆Eint in
adatoms binding energies were calculated from f(r) by means of Boltzmann statistics as

∆Eint = kBT ln
(

f(r)
fran(r)

)

[115]. All the studied interactions exhibited oscillatory behavior

with the depth of the first minimum of order of one meV. To study the decay law, the ob-
tained ∆Eint(r) was then fitted to eq. (4.10). Resulting curves are also shown in Fig. 4.15.
The agreement between the experiment and the theory is evident.

Later on, LRI was studied by means of ab initio Green’s function method [119]. Fig-
ure 4.16 shows theoretical and experimental curves as well as fit to (4.10). Ab initio calcula-
tions are in a perfect agreement with the experimental data, and predict a first minimum of
the interaction energy at 1.5 meV. The theory could also provide the value of the repulsive
barrier, which actually prevents dimer formation. Despite the fact that the LRI are small,
they can affect atomic motion and growth processes resulting in the formation of fascinating
ordered nanostructures like adatom superlattices [121] and quantum onions [122, 36].

4.4.2 Long-range interactions on vicinal surfaces

We have calculated the interaction energy between an Fe adatom and the step on Cu(111)
for the adatom-step separation up to 4.0 nm [123]. We have considered both A-type and
B-type steps on Cu(111) and found that the substrate-mediated interaction energies are
essentially the same for both types of steps. Here we present only the results for B steps.
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Figure 4.17: The interaction energy between the Fe adatom and the Cu step on Cu(111): a) for
the lower terrace and b) for the upper terrace. The figure is published in [123].

We take into account the direct and substrate-mediated interactions of electronic origin.
Our studies have shown that while elastic interactions can have a significant impact on an
atomic motion near steps, they practically do not affect the main results presented here.

Results of our calculations for the interaction energy between the Fe adatom and the
Cu step on Cu(111) for the lower and upper terraces are presented in Fig. 4.17 [123]. One
can see that the interaction energy in both cases is oscillatory with a period of about
1.5 nm (half the Fermi wavelength of the surface state on Cu(111) [120, 115, 119]). The
first minimum of the interaction energy is found to be ∼ 0.9 nm on the lower terrace
and ∼ 0.8 nm for the upper terrace. But the depth of this minimum on the upper terrace
(∼ 8 meV) is more than twice larger compared to that on the lower terrace (∼ 4 meV) . Our
results reveal that the adatom moving towards a step is repelled by the repulsive potential
[Fig. 4.17]. For the lower and upper terraces, the first repulsive barrier occurs at distances
of about 0.4–0.5 nm from the step. However, the strength of this repulsive potential on the
upper terrace is significantly larger (173 meV) than that for the lower terrace (26 meV) .
The physics underlying the difference in the behavior of adatoms at the upper and lower
terraces seems to be related to a redistribution of the electron-charge density at step edges
as was suggested long ago by Smoluchowski [124]. The charge redistribution at step sites,
with a flow of electron density from the upper step edge to the step base, is the main factor
governing the differing properties between the adatom-step interaction on the upper and
lower terraces near the step edge. Our calculations reveal such charge redistribution and
show that the reduction of the electron density at the edge of the upper terrace reduces
the screening of the direct Coulomb repulsive interaction between the Fe adatom and the
step atoms. A repulsion between adatoms and the step could prevent an adatom diffusion
toward the step edge at low temperatures. Note, that, due to the oscillatory nature of the
adatom-step interaction, there are many different repulsive barriers for the adatom diffusion.
However, our calculations show [Fig. 4.17] that such barriers e.g., for distances between 1.5
and 2.0 nm from the step edge are significantly smaller ( < 2 meV) than the first repulsive
barrier. The above mentioned results imply that it could be possible to find a temperature at
which the adatoms are trapped in attractive potential wells near steps on the upper or/and
lower terraces. Fe adatoms become quite mobile on Cu(111) at temperatures larger than



4.4. Self-organized long-period 1D nanostructures on stepped metal surfaces 77

Figure 4.18: The potential-energy map for the Fe adatom to approach another Fe adatom trapped
in the potential well near the edge of the upper terrace. [123].

10–11 K due to a small barrier for the hopping diffusion equal to 25 meV [125]. At such
temperatures, adatoms can easily overcome small repulsive barriers. Using a Boltzmann
distribution, exp(−E1/kBT ), where T is the temperature of the substrate and E1 is the
depth of the first minimum of the interaction energy, one can find that the occupation
probability of surface sites in the potential well near the edge of the upper terrace is about
100 times larger than that on the lower terrace at 10–13 K. In other words, it seems likely
that the preferential adatom position at such temperatures is on the upper terrace at about
0.8 nm distance from the step edge. Moreover, our ab initio calculations predict that, in
this region, adatom aggregation is hindered. In Fig. 4.18, we depict the potential-energy
map for the Fe adatom to approach another Fe adatom trapped in the potential well near
the edge of the upper terrace. The repulsive area surrounding this adatom is well seen. It
is easier for the Fe adatom to approach the step edge within a distance of about 1.2 nm
from the first Fe adatom. Consequently, there could be many isolated Fe adatoms near
the step edge, forming an atomic string with large interatomic distances. Note that the
1.2 nm separation between adatoms is related to the first minimum of the surface-state-
mediated pair interaction potential on Cu(111) . This theoretical conclusion was tested
experimentally. The STM image of Fe adatoms evaporated on Cu(111) stepped surface at
12 K is demonstrated in Fig. 4.19(a). Fe atoms situated 0.8 nm away from the step edge
with interatomic separation equal to 1.2 nm form quasi 1D atomic strings at step edges.
Kinetic Monte Carlo simulations by Negulyaev [123] based on ab initio LRI interaction
potentials yield the same 1D structure [Fig. 4.19](b).

This finding demonstrates, that surface-state electrons on stepped metal surfaces can
be exploited to create a well-ordered array of atomic strings at low temperatures. Our
studies reveal that such 1D nanostructures are stabilized by surface-state-mediated long-
range interactions. The universal nature of the underlying physics suggests that this bottom-
up approach for an adatom self-organization may be of general importance for the growth
of 1D nanostructures on different metal substrates supporting an electronic surface state.
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Figure 4.19: a) The STM image of Fe atomic strings on a vicinal Cu(111) surface. The size
is 40 × 40 nm2 and the coverage is 0.008 ML. Imaging condition: −0.8 V and 1 nA. b) The
kMC simulations of the self-organization of Fe adatoms on a vicinal Cu(111) into atomic strings.
Calculations are performed according to the experiments. The figure is published in [123].



Chapter 5

Surface states on Co nanoislands on
noble metal substrates

Spin-polarized surface states arising on magnetic nanostructures supported on nonmagnetic
substrates (e.g. Co islands on Cu(111) or Au(111) ) have attracted much attention re-
cently [48, 49, 50, 51]. The main reason is that spin-polarized surface-state (SP-SS) may
act as spin-dependent channels for transport to or from another magnetic material [126]. In
Section 2.5, we described how the polarization of SP-SS can be controlled locally by an ap-
propriate choice of the shape of Co nanoislands [50]. Here we draw attention to the decisive
influence of structural properties of the Co nanoislands grown on noble metal substrates
on the spin-polarized surface states. By means of ab-initio methods we demonstrate the
evolution of electronic states above Co nanoislands of various sizes starting from a single Co
adatom up to Co bilayers. We show the origins of majority and minority surface states. We
illustrate the effect of the stacking of Co bilayer on the spin-polarized surface states. Finally,
comparing surface states on Co nanoislands on Cu(111) and Au(111) substrates we figure
out the essential role of the substrate in the formation of surface states and demonstrate
that variation of the substrate lattice constant permits to tune surface states energies.

5.1 Evolution of electronic states above Co nanostruc-

tures on Cu(111)

At first we consider a single Co adatom on Cu(111) surfaces. The spin-polarized LDOS
calculated 2.1 Å above an adatom is demonstrated in Fig. 5.1(a). Similarly to the case of
Fe adatom considered in Section 3.3, Co atom on Cu(111) surface provokes the appearance
of a bound state below the Cu(111) surface state band bottom, i.e. at energies around
−0.6 eV. This state is spin-polarized, with small splitting caused by different strength of
the majority and the minority effective potentials [47] Width of bound state resonances is
determined by the its coupling to the bulk states of Cu(111) substrate [41]. The minority
LDOS peak near the Fermi energy is determined by the hybridization of s-p states with the
quasi-atomic minority d state of Co adatom.

The next considered structure is a compact Co trimer [Fig. 5.1(b)] . Interaction between
Co atoms results in the splitting of quasi-atomic minority resonance of Co adatom: one
broad minority resonance appears at −0.45 eV, and two peaks are situated in the minority
channel above the Fermi level at 0.1 and 0.4 eV, respectively. Majority states above the

79
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Figure 5.1: The spin-polarized LDOS calculated above the Co nanostructures of different size,
starting from a single adatom and up to Co bilayer. The quasi-atomic minority resonance of Co
adatom splits into a sequence of peaks in nanoislands of larger sizes. The occupied minority peaks
appear along with the second layer of Co. The LDOS above the largest considered nanoisland
exhibits a minority peak right at the Fermi level. This feature is absent in the LDOS of Co
bilayer.
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compact Co trimer on Cu(111) surface exhibit no features, the majority bound state becomes
very broad and blurred.

The next considered structure is a pyramid built of four Co atoms, as it is shown in
the inset of Fig. 5.1(c). Unoccupied peaks situated at 0.1 eV splits up and moves to the
Fermi level. The further increase of the Co nanoisland size results in the appearance of the
complex sequence of minority resonances below the Fermi level and splitting and shifting of
the unoccupied minority LDOS peaks [see Figs. 5.1(d,e,f)]. All these resonances, thus, can
be assigned as the features of double-layered Co nanostructures.

The LDOS above the largest of the studied nanoislands can be compared to the LDOS
above an infinite Co bilayer shown in Fig. 5.1(g). The minority peaks visible in the LDOS
of the finite-size nanoisland in Fig. 5.1(g) at −0.8, −0.5 and −0.3 meV can be identified in
the LDOS of infinite Co bilayer at energies −0.8, −0.5 and −0.2 meV. The unoccupied peak
at +0.35 eV is also present in both plots. The only difference is the pronounced minority
resonance which falls in the LDOS of Co nanoisland right at the Fermi level.

A very similar feature at the Fermi level was found by Pietzsch et al in the islands’ rims
[51]. In constant current images rims exhibited an increased apparent height at small bias
voltages. STS investigations demonstrated that the tunneling current was increased due to
emerging of a new peak in the spectra. This peak is energetically located right at the Fermi
energy and is found neither on the inner Co island nor on Cu substrate. It is the hallmark of
the rim. SP-STM studies clarified that peak at the Fermi energy was of minority character.

5.2 Spin-polarized surface states on 2ML of Co on

Cu(111)

5.2.1 Origin of the surface states on Co bilayers on noble metal
substrates

To trace down the origin of the surface states peaks reveled in the calculations of vacuum
LDOS we plot a layer-resolved spectral density maps (SDM). SP SDM of the interface Cu
layer, two Co layers and three vacuum layers [see Fig. 5.2] calculated along Γ−M direction
of BZ are demonstrated in Figures 5.3 and 5.4. Corresponding LDOS’s calculated in the
vacuum are plotted aside the minority and the majority SDM’s to clarify the origin of peaks.
Each peak in Fig. 5.4 has its own label. The occupied minority peak at −0.3 is denoted as
p1, the peak at −0.45 eV is denoted as p2 and the unoccupied peak at +0.3 eV is denoted
p3. The majority dispersive surface state is labeled ss.

2ML Co

Cu(111) substrate

Co1

Co2

Vc1

Vc2

Cu

a) b)

Figure 5.2: Scheme of layers notations used in layer resolved spectral density maps plotted in
Figs. 5.3 and 5.4.
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Figure 5.3: Spectral density maps of the topmost Cu layer of Cu(111) substrate and two Co
overlayers [see Fig. 5.2]. The border of the projected gap of the Cu bulk states is marked with
dotted black curve. Solid yellow lines sketch Co dz2 minority bands, from which peaks p1,p2 and
p3 of vacuum LDOS originate. Bands bd

1 and bd
2 can be treated as the same band split at the

border of the bulk band gap. The majority band ss represents the majority dispersive Shockley
surface state.
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Figure 5.4: Spectral density maps of the topmost Co layer and two vacuum layers [see Fig. 5.2].
The boundary of the projected gap of the Cu bulk states is marked with dotted black curve. Solid
yellow lines point out Co d minority bands from which peaks p1, p2 and p3 of vacuum LDOS
originate. Bands bd

1 and bd
2 can be treated as the same band split at the border of the bulk band

gap. Dotted yellow curves demonstrate vacuum bands of s − p character. Band bsp
1 is situated in

the bulk band gap and therefore can be treated as a surface state. Band bsp
2 is a result of resonance

scattering of bulk Bloch states at a Co bilayer. Minority dispersive band bsp
3 is degenerated in the

topmost Co layer with the bd
3-band. The majority band ss represents the majority dispersive

Shockley surface state.
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Let us first pay attention to the impact of the substrate on the electronic structure of
the system. At the Fermi energy Cu(111) surface has the projected bulk band gap around
the Γ-point (see our results for clean Cu(111) in Fig. 3.6). Co bilayer does not influence
this feature and the gap is clearly visible in SDM of the topmost Cu layer as a dark area
surrounded by bulk states. The projected bulk band gap is emphasized in Figures 5.3
and 5.4 by dotted black curves. Several minority dispersive bands crossing the gap region
in SDM of the topmost Cu layer come from the electronic structure of the Co bilayer. We
are particularly interested in the minority d bands of dz2 symmetry, because s−p states can
hybridize with such bands. There are several minority d bands hybridized with s−p states:
two occupied bd1, b

d
2 and one unoccupied bd3. Such bands marked in Figures 5.3 and 5.4 by

yellow solid lines. The occupied bands bd1 and bd2 can be considered as originally the same
d band split at the intersection with Cu(111) bulk states: the upper part bd1 remains in the
gap and the rest bd2 overlaps with the bulk states. The occupied surface states peak p1 at
−0.3 originates from the s− p states hybridized with the d-band bd1. The resulting vacuum
s− p band is marked with a dotted yellow line bsp1 in Fig. 5.4. Note, that this state appears
in the Cu projected bulk band gap due to Co bilayer, but not because of termination of
the crystal. The minority peak p2 comes from the resonance scattering of bulk Bloch states
at band bd2 of Co bilayer. This resonance is pointed out with a yellow dotted curves bsp2 in
Fig. 5.4.

The unoccupied vacuum minority LDOS peak p3 at +0.3 eV is determined by dispersive
band bsp3 filled mostly by s and p electrons. It is interesting that the spectral density of
states vanishes at the bottom of this band. To clarify the reason one should take a look at
the SDM of the topmost Co layer. The s−p dispersive minority band is visible there but at
the bottom it degenerates with the nondispersive d-band bd3 of Co. Since d-band is spatially
localized and bound to the Co bilayer it decays into the vacuum much faster than the s− p
states, so electrons do not propagate far away into the vacuum region.

The majority states actually demonstrate some interesting feature, namely, the parabolic
band ss of free-like electrons. The majority d states of Co are situated far below the Fermi
energy and do not change the electronic structure of surface states significantly, so the
Shockley surface state preserves in the majority channel being shifted to the higher energy.

5.2.2 Impact of the Co bilayer stacking on the surface states

Let us now turn to the question on the structure of the Co bilayer. At room temperature,
evaporated Co adatoms form triangular islands two monolayers in height and oriented in
opposite directions on a Cu(111) substrate [88, 127, 128]. According to Negulyaev et al.
[88] triangles are formed due to the anisotropic diffusion barriers at island corners. At room
temperatures, adatoms jump easily from the A step ( the step with {100} facet) to B step
(the step with {111} facet). A reverse motion from B to A is less probable than a further
diffusion along the B step [88]. As a result, the length of the B steps decreases till a single
atom is left. Such a scenario suggests that the first layer of the Co triangular islands on
Cu(111) always forms the B step and therefore, different orientations of the Co islands are
a signature of a stacking fault. Here we assume that the second Co layer can grow both on
fcc and hcp sites simply filling the area of the first layer.

Differently stacked Co bilayer islands with respect to their orientations are sketched in
Fig. 5.5. A stacking order is noted by the letter sequence. The first 3 letters ABC stand for
the fcc stacking order of Cu(111) substrate. The last two letters show the stacking order of
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ABCAB

ABCBA

ABCAC

ABCBC

Figure 5.5: Sketch of four different stacking orders of Co bilayers on Cu(111) with respect to the
island orientation.

the Co layers. As it has been already mentioned, in our calculations we consider large Co
island as infinite layers stacked in an appropriate way. The LDOS calculated ∼ 4 Å above
the topmost Co layer is shown in Fig. 5.6 for all possible stacking orders. The main peak
p1 is clearly visible but its exact position depends on the Co layers stacking: ABCAB and
ABCBA stackings yield the peak p1 at −0.25 eV and ABCBC and ABCAC result in the
peak p1 at −0.22 eV [51] Figures 5.7 and 5.8 give an insight into the constitution of surface
states on unfaulted (ABCAB) and faulted (ABCBC) respectively. In both cases LDOS
peaks are determined by the minority s − p states hybridized with d states of Co bilayer.
The majority LDOS exhibits the onset of free-electron-like surface state (ss in Fig. 5.2) at
∼ −0.2 eV

For differently stacked Co bilayers Co-Cu hybridization occurs at different energies and
therefore the position of the surface-states minority peak also shifts. In principle, the peak
position should be different for all the stacking orders, even though in practice we observe
only two pronounced positions. This can be rationalized in the following way: one should
consider that only the coupling between Co layers and the interface Cu layer is important.
There are two general ways to attach a Co bilayer to the Cu(111) surface: (i) the interface
Cu and two Co layers form fcc-like layer sequences CAB and CBA; (ii) the topmost three
layers are stacked hcp-like (sequences CBC and CAC).

Our results can be compared with the STM/STS experiments by Pietzsch et al. [49].
They studied the spin-averaged and the spin-polarized electronic structure of nanometer-
scale Co islands on Cu(111). According to their results, two island types of different stacking
could be clearly recognized by their inequivalent spectra. They emphasize two main features:
(i) a strong and sharp occupied peak, and (ii) the second peak about 0.25 eV lower in energy.
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Figure 5.6: The minority a) and majority b) LDOS’s above differently stacked Co bilayers on
Cu(111) substrate. The black curves correspond to the unfaulted stackings, the blue curves to the
faulted ones. The minority peaks p1,p2 and p3 on faulted islands are shifted towards the Fermi
energy by 30, 60 and 15 meV respectively. The majority dispersive state band bottom on faulted
islands is also shifted by 15 meV towards the higher energies.
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Figure 5.7: a) Atomistic sketch of the unfaulted triangular Co nanoisland on Cu(111) surface.
b) The total LDOS 4 Å above the unfaulted Co bilayer. Three LDOS peaks originating in the
minority d-bands are clearly visible. c) Partial minority LDOS. All the minority peaks at 4 Å
consist mainly of s and p electrons with small d contribution d) Partial majority LDOS. The onset
at −0.24 eV corresponds to the nearly free-electron-like surface state band.
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Figure 5.8: Atomistic sketch of the faulted triangular Co nanoisland on Cu(111) surface. b)
The total LDOS 4 Å above the faulted Co bilayer. Three LDOS peaks originating in the minority
d-bands are clearly visible. c) Partial minority LDOS. All the minority peaks at 4 Å consist mainly
of s and p electrons with small d contribution d) Partial majority LDOS. The onset at −0.22 eV
corresponds to the nearly free-electron-like surface state band.
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Exact positions of this features depend on the stacking of the island. On fcc islands, the
peak (i) is centered at −0.35 eV while it is found at −0.28 eV on faulted islands. The
theory yields slightly higher energies of these peaks (−0.25 eV and −0.22 eV, respectively)
and smaller shift.

5.3 Spin-polarized surface states on 2ML Co on Au(111)

Bilayer Co nanoislands can also grow on the Au(111) substrate. The herringbone recon-
structed surface of Au(111) [129, 130] is ideal for self-organization of two-dimensional arrays
of Co-clusters [131]. Due to the particular topology of reconstructed Au(111) surface, Co
clusters grow on it at preferential nucleation sites pertaining to fcc and hcp zig-zag domains
of the topmost atomic layer. On these domains, Co was found to grow in stable atomic
bilayer clusters [131, 132, 133]. The STM topology of Co nanoislands on reconstructed
Au(111) surface is presented in Fig. 5.9(a) for two rows of Co-clusters, self-organized on fcc
sites and hcp sites respectively. If a lateral size of a cluster exceeds 3 nm it may also cover
parts of the discommensuration lines. Unlikely to Co nanoislands on Cu(111), the “nearly”
triangular clusters pointing at two opposite directions are observed on Au(111) [54]. As an
example, Fig. 5.9(a) shows an STM image, where such clusters were labelled 1 and 2. STS
measurements performed on these clusters are shown in Fig. 5.9(b). The spectrum acquired
on cluster 1 shows a pronounced peak at −0.15 eV, whereas in cluster 2 this peak appears
at −0.085 eV. The shift of this main peak can be the signature of different stacking orders,
similar to that found on Co/Cu(111) [49].

Figure 5.9: a) Constant current (320 × 320 Å2) STM image of self-organized bilayer Co clusters
on the herringbone reconstruction of Au(111). b) STS spectra measured on clusters noted 1 and
2. Each spectrum is an average of 4 single point spectra. Set-point parameters before feedback
opening were 530 pA and 0.095 V. The figure is published in [54].

Four possible stacking orders are possible for a bilayer cluster on fcc surface as shown in
Fig. 5.10(a)). The STM image of Fig. 5.9(a) alone does not allow identifying a priori which
stacking order corresponds to clusters 1 and 2. However, the clusters are limited by either
{111} or {100} steps. Due to the higher stability of the {111} steps with respect to {100}
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Figure 5.10: a) Four possible stacking orders for 2L Co islands on fcc Au(111) with opposite
islands orientation. The small black triangles show the (111) facets, while the black rectangles the
(100) ones. b),c) Calculated LDOS, 2.35 Å above the Co bilayer on the fcc Au(111) surface. The
LDOS’s have been paired to satisfy both, orientations and the main LDOS peak shift.
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ones [131], the clusters are expected to adopt the particular shapes shown in Fig. 5.10(a).
The small Co bilayer clusters on Au(111) are allowed to rearrange permanently during
growth as evidenced by the transition from monolayer to bilayer occurring at about 20
atoms [133] . This behavior is mainly due to the strong affinity of Co for Co and to the
large lattice mismatch of about 13% between Co and Au [54]. The shape of Co islands on
Au(111) is therefore defined primarily by the minimization of its edge energy, contrary to
Co islands on Cu(111) which shape is determined by kinetical processes [88].

In order to discuss the energy shift of the main peak, four possible cluster pairs with
opposite orientations were considered. Electronic structures of the various configurations
have been calculated by the SKKR Green’s function method. All stacking orders sketched in
Fig. 5.10(a) have been considered in the calculation. The calculated local densities of states
(LDOS) above the two cobalt layers on fcc-Au(111) are shown in Fig. 5.10(b). The calcu-
lations show that the pronounced peaks, below and above the Fermi energy, have minority
state character. Similarly to the case of Co bilayer on Cu(111) faulted and unfaulted bilayers
can be distinguished by the shift of the main LDOS peak. The main peak shift appears if
three topmost layers are stacked in a hcp manner [ABCAC and ABCBC in Fig. 5.10(b)] and
does not appear if these layers are stacked fcc-like [ABCAB and ABCBA in Fig. 5.10(b)].

5.4 Comparing surface states on Co bilayers on vari-

ous substrates

The pronounced peak in the density of surface states on Co clusters on Au(111) is of the same
origin like the one found in Co/Cu(111) [48, 49] but is situated at energy much closer to the
Fermi level than in the case of Co/Cu(111). Peak p1 originates from the d-band of Co bilayer,
therefore variations in its position should be related to the interaction between Co atoms
of the bilayer. Such an interaction should depend on the Co-Co interatomic separations,
which are determined by substrate lattice constant. Table 5.1 presents positions of the peak
measured for different substrates. The smaller is the lattice constant, the deeper in energy
peak p1 lies.

Table 5.1: Energy of the minority surface state peak on bilayered Co islands on different sub-
strates. The larger is the substrate lattice constant, the higher is the energy of the peak.

Au(111) Pt(111) Cu(111)
Mismatch (%) 13 9 2
Peak position (eV) -0.13 -0.23[53] -0.31

In order to get a better insight into the role of substrate, we have performed ab initio
calculations for Co bilayers on a Au(111) substrate compressed to the Cu lattice on the one
hand and on Cu(111) substrate expanded to the Au lattice on the other hand. As shown
in Fig. 5.11, in both cases a significant shift of surface states is revealed in the calculated
LDOS. A compressed Au(111) substrate results in a peak shifted by 0.35 eV to the lower
energies [Fig. 5.11(a)] while an expanded Cu substrate shifts the Co peak by approximately
0.25 eV to the higher energies [Fig. 5.11(b)].
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Figure 5.11: Minority component of the LDOS calculated 2.35 Å above the Co bilayers on normal
(solid line) and strained (dashed line) fcc Au(111) (a) and fcc Cu(111) (b) substrates. A large
shift of the main occupied peak towards the Fermi level occurs for substrates with large lattice
constants. The figure is published in [54].

To prove that the shifted and un-shifted peak arises from a change in energetic position
of the same state we plot spectral density maps of spin-polarized surface states above Co
bilayers on normal and compressed fcc Au(111) along Γ−M direction [Fig. 5.12]. For both
substrates the peak below the Fermi energy is determined by hybridization of s-p states
with the d states of Co bilayer [Fig. 5.12(a,c)] similar to the Co/Cu(111) system. The main
contribution to the LDOS calculated 2.35 Å above the surface is given by a region away
from the Γ-point, near 0.3 Å−1. Therefore, a compression of the substrate leads to the
shift of this state to lower energies but the contributing region seems to remain nearly the
same. As a result, the lateral compression or expansion of the Co layers is found to be the
driving force for the shifting of the minority peak below the Fermi level. Vertical relaxations
practically do not affect the character of surface states.

Analysis of spin-polarized surface states on Co bilayers on Cu(111) and Au(111) has
clearly demonstrated that a careful choice of the structure and the substrate for Co nanos-
tructures may lead to a variety of conditions influencing the energy of surface states electron.
In particular, a pronounced occupied states peak with minority character, has been found
on bilayer Co islands on Au(111) much closer to the Fermi energy than in the case of Co/
Cu(111) . The further possibility to tune the energy of the minority peak is to adjust a
stacking of Co bilayer. It has been revealed that faulted Co bilayers exhibit this state at
slightly higher energies. This finding opens the possibility to increase low bias spin trans-
mission in magnetic tunnel devices based on Co nanostructures and can be interesting for
practical applications.
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Figure 5.12: Spectral density maps of spin-polarized surface states calculated 2.35 Å above Co
bilayers on normal (a),(b) and compressed (c),(d) fcc Au(111) along the Γ − K direction. The
minority peak below the Fermi energy is determined by strongly hybridized s-p-d states. The
region away from the Γ-point where these states are located is marked in (a) and (c) by the dashed
white ovals. It is found that the compression results in the shift of the peak to the lower energies
while the contributing region remains nearly the same. Majority states have parabolic dispersion
relations (b),(d). The figure is published in [54].





Chapter 6

Size-dependent surface states on Co
islands on Cu(111)

Recent STS experiments have established that the occupied surface states exhibit a size-
dependent energy shift [134]. A shift has been also observed at the corners and edges of
islands with respect to their centers. In this chapter we demonstrate the interplay between
strain-induced structural relaxations and surface states of Co nanoislands on Cu(111). Our
atomic-scale simulations and ab initio calculations reveal [134] that the energy positions of
the occupied surface states are determined by mesoscopic relaxations in the nanoislands [87].
Our work suggests that surface states can be a sensitive probe for variations of the atomic
structure at the nanoscale.

6.1 Concept of mesoscopic relaxation

In the previous chapter we demonstrated that the position of the localized minority peak p1
[see Fig. 5.4] of surface states on bilayer Co films are very sensitive to the in-plane Co-Co
separations. Co atoms in bilayer film are situated exactly in the high-symmetry adsorption
sites so the in-plane Co-Co bond length is determined by the substrate lattice constant. In
the same time, it was theoretically predicted that bond length in small Co nanoislands on
Cu(111) substrate depend on the size of the island and can significantly alter from that in
a bilayer film [85].

Lengths of interatomic bonds in solid crystals are determined by the atomic species
and the structure of the material considered. Equilibrium lattice parameters usually are
determined by the minimization of the total energy of a crystal with respect to its structure.
A presence of a surface results in the redistribution of the electronic density near the crystal-
vacuum interface and, hence, a surface-related strain appears. To relieve the strain, a
number of surface layers shift from their ideal bulk positions. The magnitude and direction
of displacements is individual for every particular material. For instance, a Cu(111) surface
relaxes inwards and the topmost layer shifts by ∼ 2% of ideal interatomic distance [135].
Pt(111) surface on the contrary exhibits small (< 1%) outwards relaxations [135]. The
situation can be even more complicated because of strain induced surface reconstruction. A
classical example of such a system is herring-bone reconstruction of Au(111) surface [130].

Suppose now that we have a nanostructure of finite size epitaxially grown on some un-
reconstructed substrate. Similarly to the case of surface-induced relaxations one can expect
significant atomic displacements caused by the bonds broken at the borders of nanostruc-
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Figure 6.1: The average Co-Co bond length in two-dimensional compact Co islands on Cu(001)
. The figure is taken from [85]

ture. Strain-induced shape transitions in islands were predicted by Tersoff and Tromp [136].
At a glance, atomic displacements in the case of epitaxial growth can be expected to depend
on the macroscopic mismatch m between bulk lattice constants r0 and rb of the substrate
and nanostructure species:

M =
rb − r0
r0

(6.1)

If M is negative, then interatomic bonds in nanostructure should be smaller than those
of the substrate because nanoislands tend to adopt their native lattice constant. If M is
positive then interatomic bonds in the nanostructure are expected to be larger than those
of the substrate.

However, detailed investigations of the problem showed that the mesoscopic lattice miss-
match should depend on the size of nanostructures. Relaxations of atoms in islands can
lead to in-plane lattice spacing variations, which cannot be predicted using macroscopic
mismatch arguments [87, 86, 85]. In small islands of the mesoscopic scale the average bond
length < rCluster > can be significantly smaller than rb and a new characteristic, mesoscopic
mismatch, should be introduced:

m =
< rCluster > −r0

r0
. (6.2)

To illustrate the effect of mesoscopic mismatch we review the case of 2D compact square
Co islands on Cu(001) surface from the work by Stepanyuk et al. [85]. The macroscopic
mismatch mCu/Cobetween Cu and Co is ∼ 2%. Quantitatively atomic relaxation can be
characterized by the average bond length in islands. Results of atomic scale simulation are
presented in Fig. 6.1. One can see that average bonds in the islands are shorter than the bond
length in fcc Co and Cu bulk due to the strong relaxation of edge atoms. These relaxations
are smaller than in the free-standing Co clusters, because bonding of Co atoms to the Cu
substrate prevents shrinking. This would suggest a small tensile strain in Co nanostructures
on Cu(001). With increasing size of the cluster, the effect of edge atoms becomes less
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important and the average bond length increases. In small islands the relaxation of edge
atoms governs the bond length. Since the perimeter of square islands scales as

√
N (N is

the total number of atoms in the island) the estimated scaling law for the mesoscopic misfit
m should scale like [

√
N ]−1 [86]. Still in a Co island containing 100 atoms the average

bond length is smaller than that in fcc Co bulk. Recent surface X-Ray diffraction (SXRD)
experiments have provided a direct confirmation of the theory of mesoscopic relaxations [91].

6.2 Experimental motivation

The theory of mesoscopic relaxation predicts that bond lengths in nanostructures depend
on the size of nanostructure. The surface state on Co bilayer can be utilized as a probe of
the Co-Co in-plane bond length. Recent STM/STS experiments performed by the group of
Prof. J.-P. Bucher [134] have demonstrated the validity of such an approach. Figure 6.2(a)
demonstrates a set of spectra acquired on Co nanoislands of different size. Three peaks p1,
p2 and p3 are clearly visible. Peaks p1 and p2 shift downward in energy when the island
size decreases from 22.5 nm to 4.8 nm, with no appreciable changes in the shape and in
the amplitude of the line. On the contrary, the position of p3 is unchanged. Figure 6.2(b)
presents a quantitative evaluation of the size-dependent shift of peak p1. Presented data
figure out a monotonical peak shift over 0.09 V for unfaulted islands. The faulted ones show
a steeper increase of the shift with an asymptotic behavior appearing above an island larger
than 13 nm. Figure 6.2(b) is the result of a systematic study of STS data acquired in the
center of 230 islands of increasing island size – from 4.8 to 31.9 nm on unfaulted islands,
and from 6.7 to 32.9 nm on faulted ones.

In order to explore a possible involvement of edge effects, especially in the smallest
islands studied, spectra were acquired over the surface of faulted and unfaulted islands.
Figure 6.3(a) shows the typical spatial dependency of peak p1 when moving from a corner
of an island (here a faulted one), through the center, to the opposite edge. The peak po-
sitions extracted from all the spectra acquired along with the line profile of the island are
presented in Figs. 6.3(b,c) respectively. In the center of the island [spectra 5, 6, 7] peak p1
is shifted approximately to −0.36 V because of the small island size (7.1 nm). However,
within ≈ 1.0 nm from the edge peak p1 starts to move further downward in energy [spectrum
8 on Fig. 6.3(a)], reaching a displacement of −0.03 V [spectrum 9] relative to the center
position. A diminished amplitude of p1 is also observed, in agreement with [51]. Similarly,
at ≈ 2.5 nm from the corner, an additional displacement of −0.05 V progressively sets in
[spectra 2, 3, 4], the amplitude of the peak also decreases until disappearance at the corner
[spectrum 1]. This additional shift only occurs close to the edges and corners, and it has
a negligible influence on the shift in the center of the island, even in the smallest islands
investigated. In our previous work it was concluded that Co-Co bond lengths had to vary
with the lattice constant of a given substrate, affecting thereby the energy positions of the
occupied peaks [54]. This strongly hints to a size-dependent in-plane Co-Co bond variation
for Co nanoislands on Cu(111), i.e. to a mesoscopic relaxation, as we establish below.



98 Chapter 6. Size-dependent surface states on Co islands on Cu(111)

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
0

10

20

30

4.8 nm

5.5 nm

7.7 nm

9.5 nm

10.3 nm

12.1 nm

dI
/d

V
 (

nS
)

Sample bias (V)

22.5 nm

a)

0 10 20 30

-0.39

-0.36

-0.33

-0.30

-0.27

P
ea

k 
po

si
tio

n 
(V

)

Island size (nm)

faulted
unfaulted

b)

Figure 6.2: a) dI/dV spectra on unfaulted nanoislands of increasing size. Feedback loop opened
at 1.5 nA, 0.6 V. Spectra over islands sizes of 5.5, 7.7, 9.5, 10.3, 12.1, 22.5 nm are vertically shifted
upward by 3, 6, 9.2, 12, 16, 19 nS, respectively. The hatched areas delimit the range over which an
energy shift is observed for peak p1 and p2 in these spectra. The dashed line is positioned at peak
p3. b) Peak p1 position versus island size (up triangles: faulted, down triangles: unfaulted). Solid
lines are a guide to the eye. Data is binned by steps of 0.5 nm. Measurements were performed by
the group of Prof. J.-P. Bucher. The figure is published in [134].

6.3 Theoretical results

A set of calculations were conducted firstly to find the fully relaxed atomic configurations
and secondly to estimate the corresponding energy shift of surface states on Co bilayer. The
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Figure 6.3: a) dI/dV spectra acquired across a faulted 7 nm nanoisland. Feedback loop opened
at 1 nA, 0.5 V. Spectra 2–9 are shifted vertically by steps of 7 nS. The dashed line is centered at
the peak positions of spectra acquired in the island center of gravity (spectra 5–7). b) Energy shift
of peak p1, and c) Line profile across the island (from corner to edge as depicted by the dashed line
on the image). Numbers from 1 to 9 are the corresponding positions where the spectra noted 1 to
9 on panel a) were acquired. Measurements were performed by the group of Prof. J.-P. Bucher.
The figure is published in [134].

relaxed atomic configurations have been obtained by molecular dynamics method described
in Section 3.4. Perfectly triangular unfaulted bilayer Co islands with sizes ranging from
4 nm up to 30 nm were studied. The analysis has confirmed that both in-plane bond
length and interlayer distance depend on the island size and vary across the island. The
distribution of the topmost Co layer in-plane bond length over a 15 nm island is presented
as an example in Fig. 6.4(a). The distribution is inhomogeneous over the island. The Co
atoms at the edges/corners are relaxing in the direction of the center of the island and
take other equilibrium positions with shorter bonds with respect to Co atoms in the center.
The inner region around the gravity center of the island presents a nearly homogeneous
distribution of the bond lengths [inset of Fig. 6.4(a)], and thus an average in-plane bond
length r and interlayer distance z can be used to describe the structure of this region. Both
r [Fig. 6.5(b)] and z depend on the island size. With an increasing island size r increases
towards the ideal bond length of bulk Cu (r0 = 0.2556 nm). The mismatch (r0 − r)/r0
varies from 0.1% and approaches in the smallest islands the macroscopic mismatch of 2%.
Concomitantly, the interlayer distance decreases by about 1% with increasing island size.

To calculate the surface states LDOS above the Co islands the full potential (FP) ap-
proximation of the SKKR Green’s function method has been applied. To estimate the
surface states above the center of each island we have performed the calculations for the
infinite Co bilayers. The correct average in-plane Co-Co bond length r in the central region
of an island obtained from the MD simulations was introduced through the adjustment of
the substrate lattice constant. We found that such a shrinking of the substrate did not
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Figure 6.4: a) Variation of the in-plane bond length of the top Co layer across the island with
the edge length equal to 14 nm (dashed line: ideal bulk Cu bond). Inset: Spatial distribution of
in-plane Co-Co bonds. b) Average-bond length r, described in the text, for the top (solid circles)
and bottom (open squares) Co layers. c) Change of the average distance between Co layers (solid
circles) and the bottom Co layer and substrate (open squares) in percentage of the ideal Cu-Cu
interlayer distance as a function of island size. The figure is published in [134].
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affect the projected gap of the Cu bulk states, so shift of the peak positions really originate
from the changes of the Co d-bands. Vacuum LDOSes plotted for several values of in-plane
Co-Co bond lengths are shown in Fig. 6.5(a). The behavior of the peaks is the same as
that observed experimentally. The positions of peaks p1 and p2 depend on island size. The
calculated shift of peak p1 versus the island size is presented in Fig. 6.5(b) and is seen to
vary over 0.07 eV, in a good agreement with the experimental results. Peak p2 yields a
similar variation, also in agreement with the experimental results. In the previous chapter
we demonstrated that peaks p1 and p2 originate from the same occupied d-band of the Co
bilayer. The simultaneous shift of both peaks indicates that strain effects cause an energy
shift of this d band. The variation of the in-plane bond length is the driving force for the
shift observed.

The agreement between the experimental results and the theoretical results is evident,
however there is an underestimation of the theoretical shift for the small islands. The ap-
proximation of the relaxed Co islands with infinite Co bilayers does not take into account the
impact of strongly relaxed island edges on the surface states. Such an impact is comprised
of two contributions. The first is the purely structural effect caused by strongly inhomo-
geneous bond length distribution near the island edges [see Fig. 6.4(a)]. Bonds lengths
variations within a few percent of the ideal value alter the surface states but do not affect
their band structure. This effect plays a large role in small islands but counts a little in
large ones. The second contribution can arise from the fact that the electronic structure of
Co atoms at island edges differs significantly from that of the atoms in the center of the
islands [51]. This contribution is not taken into account in the present theoretical approxi-
mation. We performed calculations to estimate the impact of the structural relaxations at
the edges/corners of the island on the surface states. Despite the lower accuracy expected
due to the spatial averaging applied, a shifts of −0.03 eV and −0.06 eV estimated for peak
p1 at the edges and corners, respectively, are agreement with the experimental values of
Fig. 6.3(b).

The downward shift of peaks p1 and p2 for decreasing island size can be rationalized in
the framework of a tight binding model [11, 137]. Taking an infinite Co bilayer, the shift of

the band as a function of the Co-Co bond length is given by ∆E(
−→
k , r) = β(r)F (

−→
k , r), where

F (
−→
k , r) is a positive sum of k-dependent cosine functions (‖−→k ‖ < π/2r). Following [137],

we express the transfer integral as β = β0exp(−qr), where q is a positive material-dependent
constant, and neglect the crystal-field contribution. For occupied electronic states the trans-
fer integral is negative (β0 < 0), and in the limit of a small variation of the average bond
length (r = r0 − δr) as in Fig. 6.4(b), it follows that ∆E ∝ (1 + q δr) β0. Peak p1 and p2
both exhibit a negative shift close in amplitude, which decreases linearly with decreasing
Co-Co bond length [Fig. 6.4(b) and Fig. 6.5(b)]. On the contrary, the unoccupied minority
d band [peak p3 ] is unlikely to shift in energy. This follows from the flat nature of the
unoccupied minority band around the Γ-point, which then implies a narrow bandwidth (β0

is close to zero) and, hence, a negligible energy shift.[134]

The impact of atomic relaxations in Co nanoislands on the energy position of the occu-
pied surface revealed in this work confirms the predictions on mesoscopic relaxation [87, 86].
Our results give clear evidence that the surface-state electrons on nanoislands are signifi-
cantly affected by the local atomic structure. When the size of the island decreases, i.e.,
with increasing lateral strain, the occupied states move to lower energies. A variation of the
catalytic activity can then be expected with island size [138].
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Conclusions

In this work we present the results on studies of spin-polarized surface states arising on
noble metal substrates decorated with low-dimensional magnetic nanostructures.

By means of ab initio calculations we investigated surface states on clean Cu(111) stepped
surfaces. In agreement with previous experimental works electronic states significantly af-
fected by repulsive potential at steps have been found close to the Fermi energy. Our
calculations have demonstrated that the position of such states is strongly dependent on
the terrace width. The strength of the potential barrier at the step edges has been found
to be in good agreement with experimentally determined values.

It has been shown monatomic Fe rows placed at steps ledges can significantly affect surface
states on vicinal surfaces. Surface states become spin polarized due to spin-dependent scat-
tering of surface-state and bulk electrons at Fe wires: the majority surface states remain
unaffected; the minority states get localized at Fe wires. Such localization suppresses the
confinement-like features in surface states electronic structure.

Our ab initio calculations have revealed that the surface-state-mediated adatom-step and
adatom-adatom interactions can be exploited for the self-organization of Fe adatoms on
vicinal Cu(111) surfaces at low temperatures. The interatomic separation (1.2 nm) in such
kind of nanostructures is determined by the wavelength of the surface-state charge density
oscillations.

Development of Cu(111) surace state above magnetic Co clusters of an increasing size,
from a single adatom up to bilayer has been considered. It has been revealed that surface
states above small clusters strongly depend on a cluster size. Surface states of large clusters
are close to those of monolayers, with the exception to the minority resonance right at the
Fermi level.

Origins of spin-polarized surface states on Ci bilayer have been revealed. The interplay
between the Co bilayer stacking and spin-polarized surface states has been demonstrated.
The essential role of the substrate on the surface states energies has been shown.

The effect of the size-dependent mesoscopic relaxation of Co nanoislands on spin-polarized
surface states has been demonstrated by means of combined atomic scale simulations and
ab initio calculations. It has been shown that relaxation-driven Co-Co in-plane bond con-
traction governs the position of surface states on Co nanoislands.
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