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Introduction

Motivation

Photovoltaics (PV) is one major pillar in the renewable energy portfolio of wind, water, biomass,
solar thermal and geothermal power. Driven by the urgent necessity to reduce CO2 emissions [84]
global energy supply has to be shifted from fossil sources to sustainable energy sources. Political
instruments such as feed-in tariffs have been invented and stimulated a vast growth of photovoltaic
installations over the past decade, starting from 1.4 GW of world-wide installed power in 2000 to
22.9 GW in 2009 [3].
In order to be able to compete with today’s energy production cost there is an ongoing effort in
the PV community to reduce the cost per kWh of PV power. The cost of a kWh generated by
PV is mainly given by the investment cost of the PV system, its efficiency and its lifetime. As a
consequence, the cost may be lowered by reducing the module production cost, by increasing the
efficiency of the module and by extending the operational lifetime of the module. Regarding the
production on the module level, neither the choice of materials nor the general module concept,
which has been developed in the Flat-Plate Solar Array Project [28] in the 1970s and 1980s, has
changed since then. However, the cell and the module sizes have grown and the production has
reached a high level of automation. The improvement in efficiency is mainly due to the effort
made on the cell level. Some manufacturers have also improved the optical properties of the front
glass in order to obtain higher conversion levels [13, 86, 88]. The indicator for the lifetime are
the warranties that are given by the module manufacturer. They have now reached 25 years on
80% of the module’s nominal power (see p.8). This large number is mainly due to continuing
reliability studies beginning with modules from early commercial production in the 1980s [132].
As the module design has not significantly changed since then the aging mechanisms are expected
to be identical for today’s modules. Accelerated aging tests are believed to detect known failures
so that manufacturers give promising warranties for their products that passed the qualification
testing [7].
Nowadays module manufacturers are confronted with thinner solar cells [133], cells with both con-
tacts at the rear side [23, 69] and the task to further reduce the module cost. In order to face these
challenges and maintaining the demanding module warranties at the same time, solutions beyond
the conventional module designs have to be explored [12, 33, 45, 46]. In order to assure similar
lifetimes for new designs every step in the development process has to be checked with the already
existing accelerated aging tests. These tests have emerged from previously observed failures in
the field and imitate certain aspects of outdoor exposure [97, 131]. The most critical among these
tests are thermal cycling between -40°C and 85°C, mechanical load tests, hail tests and tests in-
volving humidity. Thermal cycling, hail and mechanical load tests adress the thermomechanical
stability of the module. It is therefore essential to understand the thermomechanical issues when
developing new module concepts or when preparing existing concepts for novel and potentially
more fragile cell structures. The mechanical failure of materials is related to mechanical stress or
strain, so in order to improve the module design the stress and strain distribution is of primary
interest. Even in conventional crystalline modules high mechanical stress may cause cracks in the
solar cells or interconnect failures.
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INTRODUCTION

Figure 1: Monocrystalline photovoltaic modules.

In microelectronic packaging, a sector where similar materials (silicon, polymers, metals, solders)
are used and where challenging mechanical reliability requirements exist (thermal stability, impact
resistance, vibration), the experimental and numerical analysis of the thermomechanical behaviour
is an integral part in the development process of new products [115, 124, 138]. Although these
methods have played a fundamental role in the Flat Plate Solar Array Project between 1976 and
1986 [20, 26, 27, 28], only very recent publications demonstrate their use in the field of PV module
engineering. Eikelboom [36] modeled the mechanical behaviour of conductive adhesives for back-
contact module concepts. Dietrich [34] set up Finite-Element-models from the cell to the module
level in order to identify critical mechanical parameters and to simulate the stress distribution in
solar cells after paste firing. We optimized interconnectors for soldered back-contact cells with the
help of Finite-Element-simulations [37]. Wiese [128] and Meier [81] focused on the mechanics of
copper ribbons by developing a bilinear mechanical material model for the ribbon and simulating
it in a laminated module structure. In the development process of back contact modules Gee [47]
regards Finite-Element-simulations with appropriate material models as an integral part for the
confidence in the reliability of the concept and the ability to maintain the process in production. In
general, the quality of the simulation results is highly dependent on an accurate choice of material
models and parameters. It is thus necessary to have experimental methods available that verify
the simulated data. In the case of thermally induced deformations we successfully applied the tech-
nique of digital image correlation [118] to PV module technology [38, 39] where we measured the
displacement of the gap between two adjacent solar cells. The same technique was used by Meier
[80] to predict the lifetime of a copper ribbon in a PV module. However, there is, to the best of our
knowledge, no literature available where the thermal stress and strain distribution is outlined in
detail for every material in the module and where reliable and approved material models are used.

This work addresses the determination of thermomechanical stress and strain in the solar mod-
ule that result from thermal cycling between -40°C and 85°C. Therefore, we rely on the theory
of solid mechanics. We model the PV module structure and subject it to a homogeneous tem-
perature profile that corresponds to the thermal cycling norm test. The underlying equations of
solid mechanics form a set of partial differential equations that can in general not be solved an-
alytically. We numerically solve our model with the Finite-Element-Method (FEM) which is the
state-of-the-art technique in engineering applications for computational mechanical analyses. The
simulation model requires the input of material parameters for the front glass, the silicon solar
cells, the interconnectors, the back sheet and the polymeric encapsulation material. Furthermore,
we perform experiments on specially designed laminates and compare them to simulation data in
order to evaluate the quality of the simulation model.
Several questions have to be answered along the path of our solution strategy. What mechanical
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tests are convenient to determine the material properties of the polymeric sheets in the module?
Do the elastic material properties of crystalline silicon solar cells match the literature data for
monocrystalline bulk silicon? Is it sufficient to model all module materials by linear elasticity or
do they exhibit dependencies on temperature or on time? Is there an accurate and contactless
experimental method to measure the thermal displacements or strains of a solar cell in a lami-
nate? And finally, how stressed are the module materials in a thermal cyling test and is there a
dependence on the position in the module?
The principles of photovoltaic energy conversion are considered outside the scope of this work as
well as the electrical interconnection concepts for PV modules. This work was carried out at the
Institute for Solar Energy Research Hamelin (ISFH) in Emmerthal, Germany.

Structure of the work

Chapter 1 describes a standard crystalline silicon photovoltaic module. The different materi-
als and their function in the module is explained. In addition, we draw special attention to the
lamination process. It plays a key role in the mechanical investigation as we use it to define the
initial unloaded state of the material assembly. The third section of Chapter 1 gives an insight
into commonly reported reliability issues of PV modules. The significance of thermomechanical
investigation within the field of reliability issues is given. The accelerated aging tests in the IEC
61215 norm, i.e. thermal cycling, mechanical load test and the hail test, are briefly outlined. We
take the thermal cycling test to motivate the detailed analysis of the thermomechanical investiga-
tion down to -40°C that follows in the subsequent chapters.
Chapter 2 gives an introduction to the theory of solid mechanics that is necessary to understand
the terminology of stress, strain, displacement and temperature. In this chapter the theory is
limited to linear elastic material behavior. The basic equations of solid mechanics, i.e. the bal-
ance of moment of momentum, the constitutive equations and the compatibility equations, are
presented. As the FEM-simulations play a key role in our thermomechanical analysis we illustrate
the basic ideas of this powerful numerical tool. For glass, copper and silicon we review linear
elastic material data from the literature. A limited number of RISE-EWT solar cells is subjected
to 3-point bending experiments to compare the results with silicon literature data. In case of the
polymeric materials, i.e. the encapsulant EVA and a PVF-based back sheet, tensile tests at room
temperature, 80°C and -40°C (-35°C) are performed. For EVA, the testing results require a further
investigation so that a dynamic mechanical analysis (DMA) is carried out over the temperature
range from -60°C to 100°C.
Chapter 3 deals with the concept of time-dependent material behavior, so-called viscoelastic
materials. It is demonstrated that EVA shows these viscoelastic properties so that relaxation
and creep tests at different isothermal temperatures are performed as an experimental basis for a
viscoelastic modeling procedure. The viscoelastic concept is introduced step by step leading to a
linear viscoelastic constitutive equation which takes an integral form over time. The mechanical
parameter relaxation modulus is now a function of time which we approximate by a generalized
Maxwell model. However, as the model requires the relaxation modulus in shear, we discuss the
concept of interconversion from tensile relaxation and creep data to shear data. This calculation
involves an ill-posed formulation, where we propose a regularization method to reduce pertur-
bation. The obtained shear relaxation data are then shifted according to the time-temperature
superposition with a Williams-Landel-Ferry (WLF) equation. We determine the parameters Gi

and τi of the generalized Maxwell model by fitting the model to the shifted mastercurve. To
check the accuracy of this time- and temperature-dependent material model for EVA the original
relaxation tests are simulated with FEM-software and are compared to the experimental data.
Chapter 4 addresses the thermomechanics of laminated structures and modules. First, the ex-
perimental technique of digital image correlation in conjunction with a stereo camera system
is introduced to measure the distance of two adjacent laminated solar cells. The experiments
include several laminates, all containing 3 solar cells with different interconnection techniques.

3
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Figure 2: Different types of experiment categories in the context of the simulation.

Furthermore, we measure the gap displacement in a laminate where the float glass is replaced by
borosilicate glass. We use the mechanical material parameters determined in Chapters 2 and 3
to simulate the gap displacement experiments with a two-dimensional plane-stress model. The
complexity of the material models for silicon and EVA is varied and compared to the experimental
results. Furthermore, we determine the impact of a variation of the input parameters by ±10% on
the simulation results. The material model that agrees best with the experimental data of the gap
displacement measurements is used to simulate the thermomechanics of a frameless PV module
without interconnectors. Finally, we discuss the determined stress and strain distributions in the
different modules layers.
In Summary and outlook we list the key results of this work and propose topics for further
investigation.

Context of simulation and experiment

The equations of solid mechanics form a set of partial differential equations on a given subdomain
with unique boundary conditions. This class of problems can only be solved analytically for special
topologies of the subdomain. Whenever non-trivial subdomain shapes or boundary conditions are
given, this set of equations has to be solved numerically. For this reason the FEM analysis is
utilized which is implemented in commercial software packages and which is intensively used by
engineers throughout all application fields of mechanics. When different material models for EVA
are discussed in this work, they affect only one part of the subdomain. Furthermore, the material
model is not simulated itself but is part of the set of equations from solid mechanics which is
numerically solved as a whole.
The experiments in this work can be divided into two categories of the three categories shown
in Fig. 2. The first category (A) contains experiments that determine mechanical properties of
individual materials (Chapters 2 and 3). These properties are part of the equations of solid me-
chanics and have to be be seen as input parameters to the FEM-simulation. The experiments in
the second class (B) are used to check the simulated results (Chapter 4). These experiments help
to evaluate the accuracy and correctness of the simulation and the underlying material models and
parameters. The third category (C) is outside the scope of this work where experiments determine
design limits and failure modes.
As mechanical failure is related to stress in the material, and stress cannot be measured directly
by the experimental technique presented in Chapter 4, a purely experimental investigation of
laminates is not sufficient. The combination of both simulation and experiment is qualified to
determine accurate stress values.
The simulations are carried out with the commercially available software packages Comsol Multi-
physics and Abaqus. Unless indicated elsewise the mechanical experiments are performed at the
facilities of the Institute for Solar Energy Research Hamelin (ISFH).
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Chapter 1

Photovoltaic modules

Following the definition given in [119], a photovoltaic (PV) module is the bulding unit for solar
generators, which makes a module the PV product that can be purchased in the market. From a
technical point of view a solar module is defined as a collection of individual solar cells integrated
into a package for environmental protection [59, 97].
PV modules for terrestrial applications are commonly classified in two major groups: crystalline
silicon modules and thin film modules. In 2009, the fraction of crystalline silicon modules of the
annual production was 78% while thin film modules made 22% of a total module production of 24
GW [3]. Crystalline silicon solar modules are thus the dominating module type and in this work
the mechanical investigations are limited to this kind of modules.
The operating principles of solar cells and the photovoltaic conversion of sunlight into electricity
are considered outside the scope of this work. The reader is referred to standard text books such
as [48, 49, 50, 76]. A detailed description of the electrical principles on the module level is given
in [59].

1.1 Structure

Crystalline silicon solar cells are the core of a PV module. These energy conversion units are
electrically connected in series with copper ribbons to form so-called strings. The strings are
embedded in the encapsulating polymer sheets which bond the strings to a glass superstrate. The
rear side of the crystalline silicon modules consists of a polymeric backsheet or, alternatively, of
a second glass plate. This general lay-up is illustrated in Fig. 1.1. The focus of this work is on
modules with a polymeric back sheet.

Crystalline silicon solar cells

Crystalline silicon solar cells are processed from crystalline silicon wafers with thicknesses be-
tween nowadays 140 µm and 240 µm. The processing steps include etching, doping, texturing,
screen-printing and firing. A standard solar cell contains a 150 to 350 nm-deep diffusion layer of
phosphorus-doped silicon, a passivation layer of silicon nitride of approximately 80 nm thickness,
a front surface of 2 to 15 µm-high pyramids, a metalization grid of 15 to 25 µm-thick silver paste
at the front and a 25 to 50 µm-thick metallization of aluminum at the back. The thicknesses of
these layers are all small compared to the cell thickness, so that from a mechanical point of view
monocrystalline cells are here treated as continua whose mechanical properties are expected to
match those of monocrystalline silicon. Detailed overviews of solar cell technologies are given in
[66, 65].
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CHAPTER 1. PHOTOVOLTAIC MODULES

Figure 1.1: Layer structure of a standard PV module

Interconnectors

The interconnectors are copper ribbons that are completely covered with solder material. The
ribbons are approximately 130 µm thick and 2 mm wide. The solder coating has a thickness of
around 20 µm. Mostly tin-lead solders are used, however legislative restrictions are expected to
ban lead in PV modules in the near future so that alternatives such as tin-silver coated copper
ribbons have been successfully tested. Depending on the cell design two or three interconnectors
are soldered to the front side busbars of the solar cell. These interconnectors lead the electrical
current to the back side of the neighboring solar cell. An alternative to soldering is the use of
conductive adhesives which has been evaluated by research groups to lower the interconnection
temperatures and thereby the thermal stress [12, 36, 33].

Encapsulant

The encapsulation material bonds the different layers of a PV module together. It must provide
high optical transmittance, good adhesion to different module materials, adequate mechanical com-
pliance to accomodate stresses induced by differences in thermal expansion coefficients between
glass and cells, and electrical insulation [71]. The most commonly used encapsulation sheets are
based on ethylene vinyl acetate (EVA) [29, 68]. After lamination EVA is considered an elastomeric
material and exhibits the typical material properties of low mechanical stiffness at room temper-
ature and of high yield strain. It features the states of the glassy region at low temperatures and
the rubber elastic region at medium to high temperatures. Other materials used for encapsulation
are polyvinyl butyral (PVB) or silicone rubbers.

Glass

The glass used for PV modules is typically tempered and has a low iron content with a standard
thicknesses of 3.2 mm or 4 mm. The glass provides mechanical rigidity, impact resistance (hail),
optical transparency, electrical insulation of the solar cell circuit and outdoor weatherability [71].
The low iron content results in a higher transmittance of sunlight. On the other hand, the passing
of ultraviolet sunlight is undesirable as it damages the underlying polymeric encapsulant and
thereby leads to increased degradation of the module. The absorption of the short wavelengths
is facilitated by doping the glass with cerium [71]. A number of module manufacturers uses glass
with a special surface treatment to enhance the optical properties. Similar to the concepts on the
cell level, the module glass is either textured [13] or coated with an anti-reflection layer [86, 88]. In
this work these treatments are regarded as minor changes in the elastic properties of glass, so that
the elasticity of glass as it is discussed in the following chapters remains valid for these structures
as well.
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1.2. LAMINATION

Figure 1.2: Configuration of a laminator for PV module production.

Back sheet

The back sheet is a multilayered polymeric material that has the function to protect the cells and
the encapsulant from detrimental environmental influences and to provide electrical insulation and
structural support [67]. Moisture permeability is an issue that is highly dependent on the cells’
sensitivity to corrosion and the encapsulant’s stability under humid conditions at varying temper-
atures. Therefore, different types of back sheets are available containing polyvinyl fluoride (PVF)
layers or a diffusion blocking layer of aluminum. The adhesion to the encapsulating material is
important as well as the stability over the PV module’s lifetime of the back sheet itself. Compared
to a glass cover on the rear side, PVF back sheets are permeable but have the advantage of a
much lower weight and can provide a more durable mechanical package as glass-glass modules are
susceptible to glass breakage due to edge pinching [63].

1.2 Lamination

The manufacturing of crystalline silicon solar modules consists of two major and critical process
steps: stringing and lamination. The other minor steps are cell control and sorting, glass cleaning,
framing, junction box mounting, module power inspection and packing [59].
In conventional automated PV module production lines the soldering process is performed by the
stringer machine that delivers interconnected solar cell strings [93]. The cells are rigidly coupled
to the copper ribbons at elevated temperatures that depend on the soldering temperature (183°C
for lead solder Sn63Pb37, 221°C for lead free solders Sn95.5Ag3.8Cu0.7). The different coefficients
of thermal expansion of copper and silicon create significant amounts of stress when cooling back
to room temperature.
In a subsequent vacuum lamination step the lay-up of glass, encapsulant, solar cell strings, en-
capsulant and back sheet is bonded together by the curing of EVA at 150°C [94, 95]. Figure 1.2
illustrates the design of a standard laminator for PV modules. During the heating stage the as-
sembly is evacuated in order to press the material layers together and to prevent the formation of
voids. At lamination temperature the EVA begins to react from a thermoplastic to an elastomer,
i.e. it crosslinks its formerly unconnected polymeric chains to form a wide-meshed network struc-
ture [29, 136]. It adheres to the surfaces of the glass, the solar cells and the back sheet. Depending
on the particular EVA product it usually takes 7 to 15 min at 150°C to reach a sufficient degree
of cure. When the module leaves the laminator it cools down to room temperature building up
thermal stresses caused by the discrepancy of the thermal expansion coefficients of the different
material layers.
Whenever a module is exposed to mechanical or thermal loads either during qualification testing
or under operating conditions in the field the initial state at room temperature is not stress free
but charged with intrinsic stress which results from the lamination process. For investigations of
mechanical stress and strain it is therefore adequate to set the initial stress-free condition to the
lamination temperature. Throughout this work the stress-free initial state is always set to 150°C.
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CHAPTER 1. PHOTOVOLTAIC MODULES

1.3 Reliability and aging effects

Today’s crystalline PV modules are sold with warranties that guarantee a power loss of less than
10% after 10 or 12 years and at most 20% loss in power after 20 or 25 years of operation in the
field1. Module manufacturers and researchers work towards the goal of even higher lifetimes to
make PV power more cost efficient. The longer a module produces electricity in the field the lower
becomes the cost per generated kWh as the cost of a PV system is mainly given by the inital
prize of the PV system. As modules cannot be tested under real conditions for 25 years until they
enter the market, a number of accelerated aging tests were designed since the late 1970’s [97] that
have lead to today’s qualification test standard IEC 61215 [1]. A module can either ’pass’ or ’fail’
the qualification tests but the result only accesses the manufacturing quality and the intial per-
formance of a product [131]. The passing of the qualification does not predict a module’s lifetime
nor does it identify the weak points in the modules design, for example the failure mode at the
end of its lifetime. However, the tests have been invented to reproduce module failure previously
observed in the field so that negative results reveal a high probability of failure due to a known
mechanism [133]. On the other hand it is probable that modules with standard design and a
positive qualification test result will perform well in the field. With changing module design due
to cost reduction the qualification sequence needs to be continuously adapted. However, for a first
evaluation of new ideas in the process of module research the standard tests can already give a
first insight into possible weak points of the tested concepts.

Accelerated aging tests

The accelerated aging tests in the IEC 61215 qualification test sequence [1] comprise a hot-spot
enduring test, a UV-preconditioning test, thermal cycling, humidity freeze, damp heat, a mechan-
ical load test and a hail test to imitate long-term outdoor exposure [7] in various climates. The
tests that address mechanical issues are the mechanical load test, the thermal cycling test and the
hail test.
The idea of the mechanical load test is to determine the module’s ability to withstand wind, snow,
static or ice loads. The module is first loaded with 2400 Pa for 1 h on the front glass and afterwards
for 1 h from the rear side. The loading is repeated 3 times. Alternatively, the module is loaded
with 5400 Pa at the last pressure load cycle to be then qualified for harsh snow and ice conditions.
In the temperature cycling test a module is exposed to temperatures between 85°C and -40°C
as shown in Fig. 1.3. During temperatures above 25°C the maximum current flows through the
module. The temperature cycle is repeated for 200 cycles.
The hail test is performed with ice balls of specified diameters between 12.5 mm to 75 mm that are
shot onto several positions of the module glass surface with velocities between 16 m/s to 39.5 m/s.
The positions are close to the module edges, module corners and cell edges near an electrical joint.
The tests are ’passed’ if the module remaines operational during the tests, the degradation after
the tests is less than 5% power loss, the module does not exhibit visible damage and the electrical
insulation remains unaffected.

Mechanical failure

The harmful influences that are responsible for failure of PV modules are corrosion of materials
(especially metals), water-vapor intrusion, delamination of encapsulant materials, physical damage

1Warranties retrieved from websites of selected manufacturers (November 22, 2010):
10%/10yrs, 20%/20yrs: Sanyo, Kyocera
10%/10yrs, 20%/25yrs: Bosch Solar, aleo, Solon, Trina Solar, Qcells, Yingli

10%/12yrs, 20%/25yrs: Solarwatt, Sunpower, Suntech, Solarworld
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1.3. RELIABILITY AND AGING EFFECTS
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Figure 1.3: One cycle of the temperature cy-
cling test according to IEC 61215

from wind, hail and installation, thermal excursions due to thermal expansion mismatches, ultra-
violet radiation and deterioration of or damage to external components such as junction boxes,
wiring and frames [97]. While the problems of corrosion, water intrusion, delamination and UV
damage can be eliminated or reduced with a proper choice of metallization layers, polymer mate-
rials and glass additives, the thermal mismatch problems and the physical damage factors remain
a problem of the combination of materials with different mechanical properties. The mechanical
stability of the whole package can only be maintained if the stress due to thermal changes and
mechanical loads remains under the limits of the materials’ strengths. The magnitude of those
stresses derives from the geometrical design of the module, the rigidity of the layers in the mod-
ule and the interconnection technique. The module designer must therefore carefully address the
mechanical issues and needs to know how the stress levels change when layer thicknesses or sizes
are modified.
Recent developments lead to thinner cells that must be embedded in modules without increasing
the risk of cracks in the cells [133]. Another type of back contact cells, the metal-wrap-though
(MWT) cells [23, 69], are about to enter mass production and conformable module concepts are
under investigation [33, 46]. The pressure of cost reduction questions the use the well-established
encapsulation [68] and back sheet materials [67]. The desire to reduce weight may lead to thinner
glass [125]. The expensive aluminum frame may be omitted or replaced by a plastic support con-
struction [2].
All these examples demonstrate that a detailed analysis of the thermomechanical stability and
the understanding of stress build up is highly relevant for the module design and the module
manufacturing process.
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Chapter 2

Linear elastic thermomechanics

2.1 Theoretical basics

The theory of solid mechanics relates displacements, mechanical stresses and strains of a de-
formable body. Almost every basic textbook in the field of mechanics contains a detailed de-
scription of these relations, for example the books from Altenbach [4, 5], Balke [9], Bower [14],
Castro [32], Greve [53], Gross [54, 55, 56], Noda [91], Słuzalec [111, 112] or Wriggers [134]. This
section consists of a condensed version of the discussion given in [6]. Vectors and tensors are
written in bold type.

2.1.1 Displacement and deformation gradient

The deformation of a body is illustrated in Fig. 2.1. In the unloaded reference configuration the
position vector r to a material point p in the body is given by

r(x1, x2, x3) = x1 e1 + x2 e2 + x3 e3

in the cartesian coordinate system e1, e2, e3. In a deformed state the point p is translated to p′.
The new position is expressed by the vector R so that the displacement vector u becomes

u(x1, x2, x3) = R(x1, x2, x3) − r(x1, x2, x3).

A small line element dr in the initial configuration is written as

dr = dx1 e1 + dx2 e2 + dx3 e3

and is transformed to dR in the deformed configuration. Since

dR =
∂R

∂x1

dx1 +
∂R

∂x2

dx2 +
∂R

∂x3

dx3

and
dx1 = dr · e1, dx2 = dr · e2, dx3 = dr · e3,

we obtain

dR = dr · e1

∂R

∂x1

+ dr · e2

∂R

∂x2

+ dr · e3

∂R

∂x3

(2.1)

= dr ·

[

e1 ⊗
∂R

∂x1

+ e2 ⊗
∂R

∂x2

+ e3 ⊗
∂R

∂x3

]

. (2.2)

11
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Figure 2.1: Deformation of a body. Figure 2.2: Derivation of the stress tensor in the ma-
terial point p′ of a deformed body.

The tensor

F :=

[

e1 ⊗
∂R

∂x1

+ e2 ⊗
∂R

∂x2

+ e3 ⊗
∂R

∂x3

]T

= (∇R)T

is called deformation gradient and relates dR to dr, i.e.

dR = F · dr.

From the definition of displacement (Eq. (2.1.1), Fig. 2.1) follows

F = I + (∇u)T ,

where I denotes the unit tensor. The deformation gradient is used to define the strain in a body.

2.1.2 Stress and strain

The strain tensor

Different definitions for the strain tensors exist, here we introduce the Green-Lagrangian strain
tensor G, which is defined as

G =
1

2

(

F T · F − I
)

=
1

2

(

∇u + (∇u)T + (∇u)T · (∇u)
)

.

For infinitesimal deformations, i.e. ‖u‖ ≪ 1 and ‖∇u‖ ≪ 1, we can neglect the quadratic term in
G and obtain the infinitesimal strain tensor ε,

ε =
1

2

(

∇u + (∇u)T
)

. (2.3)

The strain tensor consists of 3 × 3 components and is symmetric, ε = εT . The components on
the diagonal of ε are called normal strains, the non-diagonal elements are called shear strains.
Positive normal strain values indicate a stretching of the body in that direction, negative strains
describe compression. Strains are dimensionless quantities.
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The stress tensor

Fig. 2.2 shows a free cut through a deformed body. The force df imitates the mechanical effect
of the counterpart acting on the infinitesimal area dA of the cutting plane. The orientation of dA
is characterized by the normal vector n. The mechanical stress σn on dA is defined as

σn =
df

dA

and is assumed to be constant over dA. The stress tensor σ is introduced by

σn = n · σ

and it holds

σ = e1 ⊗ σe1
+ e2 ⊗ σe2

+ e3 ⊗ σe3
.

The stress in p′ on an infinitesimal surface with arbitrary orientation can now be computed from the
stress tensor for p′. Identical to the strain tensor, the stress tensor consists of 3×3 components and
is symmetric. The components on the diagonal of σ are called normal stresses, the non-diagonal
elements are called shear stresses. Positive normal stress values indicate a loading of the body
in tension in that direction, negative stresses describe compression. Stress has the unit Pascal,
Pa=N/m2.

Principal stresses and strains

For every stress tensor there exists a set of normal vectors n so that the corresponding stresses
σn point in the n-direction. For such a vector n, it holds

λn = n · σ. (2.4)

λ is the value of the corresponding normal stress. There exist three perpendicular solutions
nI , nII , nIII . The corresponding normal stress values σI , σII , σIII are named principal stresses
with the convention σI ≥ σII ≥ σIII .
Equation (2.4) belongs to the class of eigenvalue problems and can be solved by satisfying

det (σ − λI) = 0 (2.5)

or the equivalent formulation

λ3 − I1λ2 + I2λ − I3 = 0.

The tensor invariants I1, I2 and I3 are given by

I1 = tr(σ) = σ11 + σ22 + σ33

= σI + σII + σIII ,

I2 = det

[

σ11 σ12

σ12 σ22

]

+ det

[

σ22 σ23

σ23 σ33

]

+ det

[

σ11 σ13

σ13 σ33

]

= σI σII + σII σIII + σI σIII ,

I3 = det(σ)

= σI σII σIII .
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Figure 2.3: Illustration of the Cauchy stress tensor (left) and the principal stresses (right).

Once the principal stresses σI , σII and σIII are determined, the principal directions are calculated
by solving the linear systems

(σ − σII) · nI = 0,

nI · nI = 1,

(σ − σIII) · nII = 0,

nII · nII = 1,

(σ − σIIII) · nIII = 0,

nIII · nIII = 1.

The additional normalizing equations are necessary to obtain unique solutions for nI , nII and nIII

as eq. (2.5) implies non-uniqueness of (σ − λI) · n = 0 [6, 70]. The procedure applies equivalently
for the principal strains εI , εII and εIII .

2.1.3 Temperature

Materials expand when they are heated and contract when being cooled. The material parameter
that describes this behavior is the coefficient of thermal expansion α (CTE, unit 1/K). The un-
constrained purely thermal deformation of a body over a temperature range ∆T = T −Tref affects
only the normal strains and is given by

εth = α ∆T I.

If a body is mechanically deformed and heated, the resulting strain tensor consists of the purely
mechanical and the purely thermal fraction and it holds

ε = εmech + εth = εmech + α ∆T I.

2.1.4 Governing equations of solid mechanics

The equations of solid mechanics consist of the kinematic compatibility equation, the balance of
moment of momentum and the constitutive equation.
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The kinematic compatibility equation

The kinematic compatibility equation relates displacement to strain. It has already been intro-
duced by the definition of the infinitesimal strain tensor in Eq. (2.3),

ε =
1

2

(

∇u + (∇u)T
)

.

Balance of moment of momentum

The balance of moment of momentum implies that the time derivative of the moment of momentum
equals the sum of volumetric and external forces on an arbitrary subdomain of a deformed body.
Let Ω denote the subdomain, ∂Ω the surface of the subdomain, ρ the density, v the velocity field
(v = du/dt), ρb the internal forces acting on Ω and σn the external forces acting on ∂Ω. Then,
the balance of moment of momentum becomes

d

dt

∫

Ω

ρv dΩ =

∫

Ω

ρb dΩ +

∫

∂Ω

σn dA. (2.6)

With the Gaussian integral theorem and the definition of the stress tensor, σn = n · σ, Eq. (2.6)
becomes

d

dt

∫

Ω

ρv dΩ =

∫

Ω

(ρb + ∇ · σ) dΩ. (2.7)

The balance of moment of momentum is valid for any volumetric subset Ω of the deformed body
which is only possible if the integrand vanishes, i.e.

ρv̇ = ∇ · σ + ρb.

Constitutive equations

The constitutive equations describe the relations between stresses and strains. They characterize
the mechanical stiffness of a material. For linear elastic materials they are

σ = C ε. (2.8)

C is the fourth order stiffness tensor. It consists of 81 elastic coefficients, associating 9 stress
components with 9 strain components. Due to the symmetry of the strain and the stress tensor only
21 components are independent. If the material is isotropic, C depends on only two parameters
and Eq. (2.8) can be reduced to the Hooke’s law,

σ = λ tr(ε) I + 2µ ε. (2.9)

The operator tr(·) is the trace of a tensor, i.e. the sum of the diagonal elements. The two coef-
ficients λ and µ are called Lamé constants. Alternative sets of two parameters are equivalently
used to describe isotropic linear elasticity, for example Young’s modulus (elastic modulus) and
Poisson’s ratio (E, ν) or shear and bulk modulus (G, K). Table 2.1 shows how to convert these
quantities.

The Hooke’s law only converts mechanical strain εmech into stress, which implies that pure thermal
strain does not cause any stresses. Including the strains εth that result from a temperature change
α∆T , Eq. (2.9) becomes

σ = λ (tr(ε) − 3α∆T ) I + 2µ (ε − α∆T I).
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Table 2.1: Conversion between elastic constants [123].

Elastic Expressed as function of:
constant λ, µ E, ν G, K

λ
Eν

(1 + ν)(1 − 2ν)
K −

2

3
G

µ
E

2(1 + ν)
G

E µ
3λ + 2µ

λ + µ

9KG

3K + G

ν
λ

2(λ + µ)

3K − 2G

6K + 2G

G µ
E

2(1 + ν)

K λ +
2

3
µ

E

3(1 − 2ν)

If a material does not belong to the class of linear elastic materials, different constitutive equations
have to be used that adequately model the observed material behavior. Constitutive equations for
viscoelastic materials are discussed in Chapter 3.

Final set of governing equations, boundary and initial conditions

With the three sets of equations derived above the governing equations of a solid mechanical
problem are now complete,

ε =
1

2

(

∇u + (∇u)T
)

, (2.10)

ρv̇ = ∇ · σ + ρb, (2.11)

σ = λ (tr(ε) − 3α∆T ) I + 2µ (ε − α∆T I). (2.12)

The equation system consists of 15 scalar equations, i.e. 6 compatibility equations, 3 balances of
moment of momentum and 6 constitutive equations. The 15 unknowns are u (3 components), σ

(6) and ε (6). For static problems, the left hand side in the balance of moment of momentum
vanishes, ρv̇ = 0. Additional conditions are needed to obtain a uniquely defined mathematical
problem. In case of static problems, boundary conditions are needed and in case of time-dependent
problems, boundary and initial conditions must be given,

u|Γ1
= g(x, t), x ∈ Γ1, (2.13)

σ · n|Γ2
= f(x, t), x ∈ Γ2, (2.14)

u(x, t0) = h1(x), (2.15)

u̇(x, t0) = h2(x). (2.16)

The boundary Γ1 denotes the part of the body’s surface where displacements are given and Γ2

the surface part where stresses are applied. In general, solid mechanical problems as presented
above form a set of partial differential equations, which cannot be solved analytically. Only for
special cases, such as simple geometries, the solutions can be derived analytically. In most cases,
the Finite-Element-Method (FEM) is used to solve the system of partial differential equations
numerically.
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2.2 Finite-Element-Method

The Finite-Element-Method is the commonly used numerical technique to solve continuum me-
chanical problems or partial differential equations in general. In mechanical applications, commer-
cial software packages like Ansys [105], Abaqus [30], MSCMarc [87], Comsol Multiphysics [24] and a
variety of other programs are available. The software requires the input of geometry, material con-
stants and loading conditions while the mathematical procedures of the Finite-Element-Analysis
are often not visible for the user. However, it is essential for the user to understand the funda-
mental ideas and concepts of the method to assure an appropriate operation of these powerful
computational instruments.
Different discretization methods of continuum problems were developed independently by mathe-
maticians and mechanical engineers in the early twentieth century. Later, in the 1960’s, the term
Finite-Element-Method was used to decribe a general discretization procedure of continuum prob-
lems [139]. There is a variety of textbooks that discuss the method from different perspectives,
for example Braess [17], Klein [72], Merkel and Öchsner [83], Słuzalec [111], Wriggers [134] or
Zienkiewicz [139, 140]. Here, only the basic ideas of FEM shall be explained that are given in
more detail in [72] and [83].

2.2.1 Matrix-vector-formulation of the governing equations

As the stress and the strain tensors are symmetric, it is in this context convenient to write them
as vectors of 6 independent components. In this so-called Voigt notation the stress and strain are
written as

σ =

















σ11

σ22

σ33

σ23

σ13

σ12

















and ε =

















ε11

ε22

ε33

2ε23

2ε13

2ε12

















.

Now, the governing equations of solid mechanics can be reformulated. The compatibility equa-
tion (2.10) becomes

















ε11

ε22

ε33

2ε23

2ε13

2ε12

















=

















∂/∂x1 0 0
0 ∂/∂x2 0
0 0 ∂/∂x3

0 ∂/∂x3 ∂/∂x2

∂/∂x3 0 ∂/∂x1

∂/∂x2 ∂/∂x1 0

















·





u1

u2

u3



 ,

or

ε = D · u

respectively. In this section the Finite-Element-Method is explained for a static problem. Then,
the left hand side of the balance of moment of momentum, given by Eq. (2.11), is equal to zero.
The balance of moment of momentum in matrix-vector notation becomes





0
0
0



 =





∂/∂x1 0 0 0 ∂/∂x3 ∂/∂x2

0 ∂/∂x2 0 ∂/∂x3 0 ∂/∂x1

0 0 ∂/∂x3 ∂/∂x2 ∂/∂x1 0



 ·

















σ11

σ22

σ33

σ23

σ13

σ12

















+





ρb1

ρb2

ρb3



 .
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The matrix above is identical to the transpose of the matrix D so that we can write the balance
of moment of momentum in short form

0 = DT · σ + p.

The linear elastic constitutive equation (2.9) is written in terms of the Lamé constants. Replacing
these constants by E and ν according to Table 2.1 we obtain the constitutive equation in the form

















σxx

σyy

σzz

τyz

τxz

τxy

















=
E

(1 + ν)(1 − 2ν)

















1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1−2ν

2
0 0

0 0 0 0 1−2ν
2

0
0 0 0 0 0 1−2ν

2

















·

















εxx

εyy

εzz

2εyz

2εxz

2εxy

















which can also be written as
σ = C · ε.

The tensor C from Eq. (2.8) has now become a 6×6 matrix. In summary, the governing equations
of solid mechanics for a static problem in matrix-vector notation are

ε = D · u (2.17)

0 = DT · σ + p (2.18)

σ = C · ε. (2.19)

2.2.2 Principle of virtual work

There are different but equivalent approaches to derive the formalism of the Finite-Element-
Method for static problems, such as the principle of virtual work or the method of Galerkin. Both
approaches lead to a linear system k · up = F with a stiffness matrix k, a known vector F on the
right hand side and the unknown vector up that contains displacement parameters. Solving for
up does then provide the displacements in the deformed body so that the strains and the stresses
can be directly calculated from the displacement solution, using Eqs. (2.17) and (2.19).
Within the principle of virtual work the balance equation (2.18) is replaced by the postulation
that the internal virtual work equals the external virtual work,

δΠint = δΠext.

The virtual work is generated by small compatible displacements δu in the body B, so that we
write

δΠint =

∫

B

δεT · σ dV

and

δΠext = δuT · f +

∫

B

δuT · p dV +

∫

∂B

δuT · q dA,

where f are concentrated loads on the boundary ∂B, q are distributed loads on ∂B and p are
volume forces in B. It follows from Eqs. (2.17) and (2.19)

δεT = δuT · DT

and
σ = C · D · u

so that the equality of the internal and external virtual work becomes
∫

B

δuT · DT · C · D · u dV = δuT · f +

∫

B

δuT · p dV +

∫

∂B

δuT · q dA.
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So far, the formalism is exact and corresponds to Eqs. (2.17) - (2.19). Now, we approximate the
vector field u = u(x) by the product of a matrix G that is a known function of x and a finite
vector with coefficients up,

u ≈ G · up.

The choice of G and up is explained in the following Section 2.2.3. Now, we obtain
∫

B

δuT
p · GT · DT · C · D · G · up dV = δuT

p · GT · f +

∫

B

δuT
p · GT · p dV +

∫

∂B

δuT
p · GT · q dA

with the only unknown variable up. Since the equation above has to be fulfilled for all virtual
displacements and since up is by definition not dependent on x, it follows

∫

B

(D · G)T · C · (D · G) · dV up = GT · f +

∫

B

GT · p dV +

∫

∂B

GT · q dA.

By assigning to F the right hand side that consists of the external forces,

F = GT · f +

∫

B

GT · p dV +

∫

∂B

GT · q dA,

and setting

k =

∫

B

(D · G)T · C · (D · G) · dV =

∫

B

BT · E · B dV

we obtain the linear system
k · up = F .

Commercial FEM-programs offer a number of choices for the functions in G. For these functions
the derivatives needed for D · G are implemented in the software as well so that the matrix
k is automatically assembled without adding computational errors. For the right hand side F

numerical quadrature formulas are used to compute the solution of the integrals so that F contains
potential numerical errors.
The time-consuming part in a FEM-simulation is solving the linear system k · up = F . There are
two strategies to solve the linear system, either by direct solvers or by iterative solvers. The direct
solvers are modified versions of the Gaussian elimination method. They are robust but demand a
high computational effort so that they take generally more time to find a solution and need more
storage capacity than the iterative solvers. The iterative solvers are modified versions of Newton’s
method. There, the real solution is successively approximated starting from a first guess for up.
They are faster than direct solvers and needs less storage capacities during the solving process.
However, they are less stable than direct solvers as the solution process must converge towards the
real solution which is not always the case. The standard recommendation is to use direct solvers
for small and nonlinear problems while the iterative solvers are generally better suited for large
problems.

2.2.3 Element shape functions

The main idea to approximate the real solution u by G · up is to subdivide the body B in small
elements and to postulate a polynomial shape of u within every element. As an example, such
a subdivision, also called mesh, into triangular elements of a two-dimensional problem is shown
in Fig. 4.15. If we choose a linear shape for the approximative solution û in such a triangle, the
displacements can be expressed by

û =

[

û1(x1, x2)
û2(x1, x2)

]

=

[

α00 + α10x1 + α01x2

β00 + β10x1 + β01x2

]

.

The six unknown coefficients α00, α10, α01, β00, β10 and β01 are uniquely determined if we know
the values of û1 and û2 in three points in the triangle, for example in the corners as shown in
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Figure 2.4: Nodes for linear (a), quadratic (b) and cubic (c) shape functions for a triangular
2d-element.

Figure 2.5: Hexahedral 3d-element with linear shape function (a), hexahedral 3d-element with
quadratic shape function (b) and tetrahedral 3d-element with quadratic shape function (c).

Fig. 2.4 a). Now the polynomial functions can be grouped in G and the coefficients α and β
of all elements in up. The interpolation points are called nodes. Mathematically speaking, the
number of nodes corresponds to the dimension of the polynomial space. Positioning the nodes
in the corners has the advantage to automatically create a continuous solution û in B because
each node is used for interpolation in the adjacent element as well. The approximation of the real
solution u can be improved by choosing higher polynomial degrees for the shape functions. Then,
the number of nodes increases accordingly as shown for quadratic and cubic shape functions in
Fig. 2.4 b and 2.4 c.
In general, a scalar polynomial function p(x) can be constructed according to Table 2.2 for an
element of a one-, two- or three-dimensional deformable body. Furthermore, there are alternatives
for the geometric form of an element, for example quadrangles in 2d or prisms and hexahedrons
in 3d.
If the user is not satisfied with the level of detail of a numerical solution obtained from a FEM-
simulation, there are two strategies to improve the accuracy of the numerical solution. It is either
possible to generate a better approximation of the solution in every element by increasing the
polynomial degree of the shape functions or to refine the mesh by decreasing the size of each
element. Both options lead to higher computational effort because the size of up, k and F

increases. The key is to assure a high accuracy in regions where the solution changes considerably
and to keep the level of detail low where the solution is smooth.

Table 2.2: Overview of shape functions with polynomial degree k for different geometrical dimen-
sions and element types.

Dimen- Element Shape Number
sion form function of nodes

1 line p(x) =
∑

0≤i≤k αi xi k + 1

2 triangle p(x1, x2) =
∑

0≤i+j≤k αij xi
1xj

2
1
2
(k + 1)(k + 2)

2 quadrangle p(x1, x2) =
∑

0≤i,j≤k αij xi
1xj

2 (k + 1)2

3 tetrahedron p(x1, x2, x3) =
∑

0≤i+j+l≤k αijl xi
1xj

2xl
3

1
6
(k + 1)(k + 2)(k + 3)

3 hexahedron p(x1, x2, x3) =
∑

0≤i,j,l≤k αijl xi
1xj

2xl
3 (k + 1)3
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Table 2.3: Mechanical properties of standard float glass (soda-lime) and borosilicate glass (∗: con-
verted from psi-units).

Glass type and reference E [GPa] ν [-] α [10−6 1/K] ρ [g/cm3]

float glass [18] 73 8.96 2.495
soda-lime [101] 68.95∗ 0.24 9.2
soda-lime [104] 69.1 9
soda-lime [108] 74 9.5 2.53
soda-lime [127] 73.4
soda-lime [135] 70 9 2.5
borosilicate [18] 59 3.25 2.226
borosilicate [104] 63.7
borosilicate [101] 65.5∗ 0.20 3.25
borosilicate [127] 63.7

2.3 Materials

The materials used in a photovoltaic module must be mechanically characterized in order to
accurately simulate the deformation of a module. In this section, the materials are described
by linear elastic models, that require two material parameters (see Table 2.1). In the following
paragraphs the Young’s modulus E and Poisson’s ratio ν are used as a pair of elastic constants.
The values are either taken from literature data or are determined by mechanical testing. The
testing procedures are described in detail below.

2.3.1 Glass

Glass is formed by amorphous soldification from a molten mass that contains silica and, depending
on the sort of glass, other constituents like sodium carbonate, all kinds of oxides, boron or lead.
The glass used for photovoltaic modules or windows is float glass. This name refers to the float
process where the molten glass is continuously led from the cast over a tin bath where it soldifies
[19, 62]. The float process provides low stress glass panes with very planar surfaces and no air
inclusions. Almost all float glasses are soda-lime glasses which implies that their chemical structure
is made of silica, sodium carbonate, calcium oxide, aluminum oxide and magnesium oxide. Float
glass used in solar applications often exhibits a lower content of iron impurities in order to ensure
a better transmission of sunlight compared to standard float glass. Additional treatment of float
glass also allows to freeze stress in the glass which changes the fracture properties. These types of
glass are found under the names of prestressed or toughened safety glass. While conventional float
glass has a bending strength of 45 MPa, the value for prestressed glass is 70 MPa and for toughened
safety glass it is 120 MPa [85]. Typical photovoltaic glasses are toughened or prestressed.
Here the focus lies on standard float glass as it is used in the thermomechanical experiments, that
are discussed in Chapter 4.

Mechanical properties

After soldification the formerly liquid glass has a very high viscosity (η ≈ 1014 Pa·s at T ≈ 600◦C
[104], η ≈ 1012 Pa·s at T ≈ 530◦C [10]). It can thus be considered as purely elastic below the
soldification point which is referred to as the glass transition temperature TG. For float glass TG

is around 550◦C [18]. Stress-strain curves of glass show linear elastic material behaviour until
fracture. The mechanical material properties of conventional float glass used in this study are
taken from the literature and are shown in Table 2.3. The general testing procedures of how to
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Figure 2.6: Measured thermal expansion of
soda-lime glass with linear regression Temperature T [◦C]
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obtain the mechanical parameters of glass can be found in [21]. The mechanical parameters of
borosilicate glass are also shown in Table 2.3 because we use this low-CTE-glass for a laminate
experiment in Chapter 4.

Measurement of coefficient of thermal expansion

The coefficient of thermal expansion of glass is considered a critical quantity for the thermome-
chanical investigation of solar modules. An experiment is conducted to check the value of 9×10−6

1/K. The experiment uses a stereo camera system of a digital image correlation system to perform
two 2d-displacement measurements with simultaneous data capturing. The details of the system
are explained in Subsection 4.1.1.
A glass plate of 45 cm × 15 cm × 4 mm is positioned in a climate chamber behind a window
and is equipped with a temperature sensor. Two cameras of a digital image correlation system,
that are in parallel orientation to each other, view the regions near the glass edges. Each camera
faces the glass surface in a rectangular manner. The inspected regions near the edges of the glass
have been coloured with a random speckle pattern of black and white spray paint. A mark is set
in both speckled regions creating a precise distance of 38.75 cm from mark to mark. From the
experimental setup follows that the cameras should have the same distance. The calibration of
each camera that enables the computation of displacement in millimeters from displacement in
pixels is made with the help of graph paper. At room temperature the paper is held on the glass
surface before the experiment. First, the temperature is ramped up to 140◦C followed by cooling
down to −30◦C and is finally heated up to room temperature again. The change in length of the
glass is plotted in Fig. 2.6. As ε = ∆l/l, these total elongation data have to be related to the
initial distance of l = 387.5 mm of the measurement points to obtain the CTE. The straight line
represents the linear regression and is used to calculate the CTE value of the experiment which is
given in Table 2.4.
The measured value is around 1 × 10−6 1/K lower than the literature data. Two reasons may

Table 2.4: Measured CTE of soda-lime glass with upper and lower confidence bound of regression.

CTE α Confidence bounds
[10−6 1/K] lower 95% upper 95%

7.806 7.747 7.866
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Figure 2.7: Tin-plated copper ribbons. Standard 2 mm wide copper ribbon, 12 mm wide copper
ribbon and two shapes of interconnectors made from wide copper ribbon (top to bottom).

explain the deviation. First, systematic errors in the experiment and second the assumption that
the composition of the measured glass does not exactly correspond to soda-lime glass. For the
simulations in Chapter 4 we use the value of 8 × 10−6 1/K. There, we also vary the CTE value
by ± 10% (7.2 × 10−6 1/K, 8.8 × 10−6 1/K) in order to check the sensitivity of this parameter
for the simulation results.

2.3.2 Copper ribbons

Copper is a metallic material, whose properties are well known. It is chosen for the electrical
interconnection between the solar cells because of its excellent electrical conductivity of around
58 m/Ω mm2 which is, after silver, the highest value of all metals [103]. The copper ribbons that
are used in solar modules are typically 130 µm thick and 2 mm wide. The copper ribbon is plated
with a 20 µm thick layer of solder material which increases the total thickness up to about 170 µm.
The plating allows a direct soldering of the ribbon to the solar cell by softly pressing the plated
ribbon to the metallized surface of the solar cell and simultaneous heating of the contact area.

Mechanical properties

In this study the plating is assumed to be negligible for the mechanical material properties of the
ribbon so only the values of copper are assigned to the interconnector. Table 2.5 lists the values for
copper in general. A recent study by Wiese [128] on the mechanical properties of copper ribbons
used in solar modules finds the Young’s modulus E of plated copper ribbons to be significantly
lower than those of pure copper, see Table 2.5. He also determines the temperature dependence
of the Young’s modulus (dE/dT = −0.056 GPa/K for T = {40, . . . , 120◦C}) and constructs a
bilinear model to include plastic deformation. He finds linear elastic deformation for strain values
below 1%. For higher strains the Hooke’s law (Eq. (2.9)) is not applicable.
In this work we focus on the thermomechanics of non-interconnected cells in modules and the
mechanical parameters of copper ribbons are not used as input parameters for FEM-simulations
in subsequent sections. However, we measure the displacement of the gap between two solar cells
in interconnected and non-interconnected laminates in Section 4.2. From the simulations of the
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Table 2.5: Mechanical properties of copper.

Copper and reference E [GPa] ν [-] α [10−6 1/K] ρ [g/cm3]

copper [16] 117 17 8.907
copper, hard drawn [16] 124.1
copper, soft wrought [16] 103.4

copper [60] 120 0.34
copper [85] 100 - 130 16.8 8.93
copper [99] 125 0.34 17.7 8.93

pure copper [109] 16.5 8.96
copper ribbon (type 1) [128] 86.1

gap displacements in Sections 4.3 and 4.4 we conclude how much thermal deformation the copper
ribbons have to compensate between two cells during thermal cycling.

2.3.3 Crystalline silicon solar cells

Crystalline silicon solar cells are made from mono- or multicrystalline silicon wafers. The thick-
nesses of the wafers are nowadays typically between 140 µm and 200 µm, the standard sizes are
125 mm × 125 mm or 156 × 156 mm. Multicrystalline cells are usually full squared (Fig. 2.8) as
multicrystalline blocks of silicon are cut into columns with a squared base area. Each column is
then cut into wafers by wire-sawing. Monocrystalline wafers are cut in thin slices out of a round
shaped monocrystalline ingot. As the diameter of the ingot is smaller than the diagonal of a full
squared cell, the monocristalline wafers have round shaped corners (Fig. 2.8). The shape is referred
to as pseudo-square. The monocrystalline cells and wafers that are investigated in this study are
(100) oriented which means that the normal of the wafer surface points in the crystallographic
direction of <100>. The edges of the wafers are usually parallel to the [100]-direction (Fig. 2.10).
As the processing of a wafer to a solar cell mainly results in modifications of the wafer surfaces or
structures thin compared to the wafer thickness, the elastic properties of a monocrystalline solar
cells are assumed to correspond well to those of the original wafer.

Mechanical properties

Silicon is a brittle material that shows basically no ductile effects. The stress strain curve is linear
until fracture. Linear elasticity is thus the correct model to describe the mechanics of monocrys-
talline silicon. However, it has anisotropic material properties that are due to the crystallographic
structure. We thus obtain different values of the elastic constants for different loading directions.
For a wafer that is cut out of a monocrystalline ingot with surface normal in <100>-direction
and edges along the <010>- and <001>-direction, the wafer coordinate system matches the ma-
terials coordinate system. Then the matrix C of the constitutive equation written in the form of
Eq. (2.19) becomes, according to [51],

C =

















C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

















(2.20)

with the values for C11, C12 and C44 from Table 2.6. The structure of the matrix C in Eq. (2.20)
is generally valid for any material with a cubic symmetry [14]. To calculate the Young’s modulus
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Figure 2.8: 125 × 125 mm2 pseudo-squared monocrystalline solar cell (left), 156 × 156 mm2

full-squared multicrystalline solar cell (center) and 100 × 100 mm2 full-squared RISE-EWT solar
cell(right), where the alignment of the laser drilled EWT holes is visible.

in x-direction, C is inverted and it then holds for a uniaxial stress state

ε11 =
C11 + C12

C2
11 + C11C12 − 2C2

12

σ11, (2.21)

so that

Ex = C11 − 2
C2

12

C11 + C12

.

Due to the cubic symmetry it holds
Ex = Ey = Ez

and as the material’s coordinate system equals the wafer’s coordinate system we find

E<100> = E<010> = E<001> = Ex = Ey = Ez.

For materials with a cubic symmetry the coefficient of thermal expansion must be isotropic [14].
Table 2.6 also gives temperature dependencies of the elastic parameters.

Bending tests of solar cells

Bending tests are conducted in order to check how well the silicon values from the literature agree
with experiments on solar cells. The cells tested are RISE-EWT solar cells [43, 42, 41]. The
reason for the choice of this special cell type are research activities at the ISFH that focused on
the industrial implementation of the RISE cell concept. Within these activities the mechanical
strength of the RISE cell was adressed by 4-point bending tests [11, 106]. Two types of these cell
structures are tested, first Czochralski-grown(CZ) silicon solar cells with a thickness of 200 µm
and second cells processed on 250 µm thick float-zone(FZ) silicon. The CZ-cells are 125 mm ×
125 mm pseudo-square while the FZ-samples are quadratic with an edge length of 100 mm. Typ-
ical characteristics of this cell type, that are mechanically relevant, are the laser ablated grooves
at the rear side of the cell with a depth of about 20 to 25 µm and around 20 000 laser drilled holes
that are oriented in lines in parallel to the grooves (Figs. 2.8 and 2.11).

In a 3-point bending test a solar cell is placed on two rolls with a distance of 80 mm. A third roll
presses from the top in the center between the two bottom rolls. The force F and the deflection
w under the centered roll are monitored (Fig. 2.9). Classical beam theory is used to calculate
elastic constants from the experimental force and deflection values. The concept of beam theory
is explained in many textbooks, for example [9, 55]. When the sample is loaded, the top surface
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Figure 2.9: 3-point bending: relevant parameters and measured quantities

undergoes compression and the bottom surface tension. The stress along the bending direction
(in-plane, rectangular to the rolls) is linear over the thickness and the height of the beam remains
unchanged under bending. With these assumptions the stress and strain take their maxima on
the sample surfaces. The formula for 3-point bending is given in [55],

EIw =
l3

48
F,

with the Young’s modulus E, the moment of inertia of area I and the distance l between the lower
two rolls. For a rectangular cross-section of the beam, the moment of inertia of area is [55]

I =
bh3

12
, (2.22)

where h is the thickness and b the width.
For the CZ samples the parameters are b = 125 mm, l = 80 mm and h = 190 µm. The second
series of tests is conducted on a number of FZ cells with b = 100 mm, l = 80 mm and h = 240 µm.
The measured force-deflection curves of both series are shown in Figs. 2.12 and 2.13. We set

Ep = F/w

and determine one constant value for Ep for every measurement curve by a linear regression
between w = 0.3 mm and w = 2.3 mm, except for sample 1 of the CZ cells (between 1.25 mm and
2.49 mm). The Young’s modulus is then calculated by

E =
l3

48I
Ep

Table 2.6: Mechanical properties of silicon.

Quantity Unit Value Reference

C11 164.8
C12 [GPa] 63.5 [51]
C44 79.0

(dC11/dT)/C11 -122
(dC12/dT)/C12 [10−6 1/K] -162 [51]
(dC44/dT)/C44 -97

E<100> 129.5
E<110> [GPa] 168.0 [51]
E<111> 186.5

(dE<100>/dT)/E<100> -63
(dE<110>/dT)/E<110> [10−6 1/K] -80.3 [51]
(dE<111>/dT)/E<111> -45.6

α(T =220K) 1.717 [77]
α(T =260K) 2.225 [77]
α(T =300K) [10−6 1/K] 2.614 [102]
α(T =340K) 2.915 [102]
α(T =420K) 3.342 [102]
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Figure 2.10: Crystallographic orientation
of a solar cell

Figure 2.11: SEM image of a RISE-EWT solar cell
with structure of grooves and holes (taken from [41]).

and is shown in Figs. 2.14 and 2.15. The filled circles stand for bending with rolls parallel to the
grooves and the open squares for a perpendicular configuration of rolls and grooves.

As the structure of the RISE-EWT solar cells features grooves with a height of 20-25 µm, the
experimental values can either be regarded as effective material constants of this special solar cell
type or, for a comparison with silicon material properties, the values for I must be adjusted. Thus,
a higher and a lower moment of inertia of area I1,2 are calculated with h1,2 = h ± 10 µm. The
resulting values for E are represented by the errorbars in Figs. 2.14 and 2.15.

The elastic moduli E are found to depend on the orientation of the samples in the test. The spec-
imens that are tested in parallel orientation of grooves and rolls always show lower stiffnesses than
in perpendicular orientation. As assumed before, this fact is related to the geometrical structure
of the cells. The lines act as perforations and thus lower the resistance of the material against the
applied load. The grooves lead to a lower bending resistance when they are parallel to the loading
axis. The measured values of E are compared to the Young’s modulus of monocrystalline silicon
in the <100>-direction (Table 2.6) which is shown by the straight lines in Figs. 2.14 and 2.15. The
deviation of thickness has a strong impact on the measurement results which becomes obvious by
the exponent of 3 in Eq. (2.22) and thus the large errorbars in the plot. The adjustment of I with
h1,2 = h ± 10 µm, that accounts for the lowered stiffness of the samples along grooves, gives values
of E that enclose the silicon value.

We conclude from this experiment with a limited number of samples that the measured data agree
reasonably with the material properties of bulk silicon. The deviation from sample to sample and
the uncertainty in the thickness of the specimens is too large to construct an effective Young’s
modulus for RISE-EWT cells that differs significantly from the silicon data. We therefore assume
silicon solar cells to exhibit the same mechanical properties as monocrystalline silicon wafers and
simulate them in Sections 4.3 and 4.4 according to the values in Table 2.6.

2.3.4 Back sheet

The back sheet protects the solar cells and the lamination sheets from external influences such
as humidity, atmospheric exposure, aggressive substances or scratches. It also provides electric
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Figure 2.12: Force-deflection curves for 2 CZ-
samples. Straight lines indicate grooves and
hole lines parallel to rolls, dashed lines indicate
grooves and hole lines perpendicular to rolls.
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Figure 2.13: Force-deflection curves for 6 FZ-
samples. Straight lines indicate grooves and
hole lines parallel to rolls, dashed lines indicate
grooves and hole lines perpendicular to rolls.
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Figure 2.14: Extracted Young’s moduli for CZ-
samples with sample structure in parallel orien-
tation (•) and perpendicular orientation (�) to
rolls. The error bars indicate varied thicknesses
by ±10 µm. The straight line corresponds to
E<100> from Table 2.6.
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Figure 2.15: Extracted Young’s moduli for FZ-
samples with sample structure in parallel orien-
tation (•) and perpendicular orientation (�) to
rolls. The error bars indicate varied thicknesses
by ±10 µm. The straight line corresponds to
E<100> from Table 2.6.
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Figure 2.16: View of sample with
grippers from within the tempera-
ture chamber. The stereo camera
system is placed behind the window.

insulation. For crystalline wafer based modules back sheets made of plastic materials are commonly
used. Back sheets are available in different colors but only white (higher reflexion and thus
better optical performance) and black (attractive visual appearance) are often used. Different
compositions of back sheets are available and the PV manufacturer’s material choice is largely
influenced by the lamination material and the sensitivity of the solar cells to corrosion. In this
work the widely-used back sheets with PVF(polyvinyl fluoride), also known as Tedlar from DuPont,
and PET-layers is investigated. Here the product Isovolta Icosolar 2442 is tensile tested to extract
its mechanical properties.

Mechanical properties

Tensile test sample are measured at three different temperatures (20◦C, 80◦C and -35◦C). The
specimens are cut out of a 0.35 mm thick sheet. For testing temperatures of -35◦C the shape of
the samples is chosen in accordance to the ASTM D638 TYPE IV standard with a width of the
narrow section of 6 mm. For the other temperatures the larger ASTM D638 TYPE I specimen
form with a width of 13 mm is used. In order to check a possible anisotropy of the material, 5
samples are cut under an angle of 90◦ to the rolling direction of the sheet and are tested at room
temperature (20◦C transverse). The testing setup consists of a tensile testing machine that is
mounted on top of a climate chamber. The specimen holders reach into the chamber and a digital
image correlation system records the strain from outside the chamber (Fig. 2.16). This test setup
enables the monitoring of force F , temperature T , elongational strain εl and transverse strain εt.
The elongational velocity is 1 mm/min for the smaller samples (TYPE IV, -35◦C) and 2 mm/min
for the other samples (20◦C, 80◦C, TYPE I).
The Young’s modulus is calculated by linear regression of the stress-strain curves in Fig. 2.17 within
the strain intervall of 0.001 to 0.020 (-35◦C), 0.001 to 0.025 (20◦C) and 0.001 to 0.015 (80◦C).
Poisson’s ratio ν is determined in these intervals as the slope of the εl-εt-curves in Fig. 2.18.
The values of the elastic parameters E and ν are summarized in Table 2.7 and plotted versus
temperature in Figs. 2.19 and 2.20.
The values in each of the three temperature regions are very reproducible. The small differences in
the Young’s modulus and Poisson’s ratio of the samples in rectangular material orientation indicate
a slight anisotropy at room temperature which we do not account for in the FEM-simulations in
Section 4.4. We use the values of 3.5 GPa for E and 0.29 for ν.
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Figure 2.17: Stress-strain-curves of Isovolta
Icosolar 2442 at different temperatures: 20°C
(5 samples), 80°C (4), -35°C (3) and 20°C
transverse (gray, 5) with a different material
orientation.
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Figure 2.18: Strain in tensile direction versus
transverse direction of all 17 samples. The 3
curves at -35◦C exhibit noise due to a poor cal-
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Figure 2.19: Young’s moduli determined from
Fig. 2.17: 20°C (5 samples), 20°C transverse (5,
gray symbols), 80°C (4), -35°C (3).
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Figure 2.20: Poisson’s ratio determined from
Fig. 2.18: 20°C (5 samples), 20°C transverse
(5, gray symbols), 80°C (4), -35°C (3).

Table 2.7: Elastic properties of Isovolta Icosolar 2442 from tensile testing with mean value and
largest distance to minimum or maximum value.

−35◦C 20◦C 80◦C 20◦C transverse
3 samples 5 samples 4 samples 5 samples

E [MPa] 4015.0 ± 21.81 3584.5 ± 53.2 1966.9 ± 123.4 3790.4 ± 43.2
ν [-] 0.289 ± 0.007 0.271 ± 0.002 0.295 ± 0.009 0.301 ± 0.007
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Figure 2.21: Young’s modulus of Etimex Vis-
tasolar 496.10 at different temperatures. The
logarithmic y-axis reveals the strong time-
dependence.
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Figure 2.22: Dynamic mechanical analysis of
Etimex Vistasolar 496.10 at 1 Hz. The elastic
part G′ of the shear modulus is shown.

2.3.5 Lamination sheets

EVA (ethylene vinyl acetate) is today’s most used lamination material for photovoltaic modules.
Here the commercially available product Etimex Vistasolar 496.10 is investigated. Like all other
EVA-based products for photovoltaic encapsulation it contains additional substances, such as
peroxides, UV-stabilizers and antioxidants. In this context the name EVA is used for the product,
not for the bare polymer. The material is delivered in form of a rolled 0.5 mm thick sheet. Before
lamination EVA is a thermoset in solid form. It consists of long polymer chain molecules of
polyethylene and vinyl acetate. During lamination the material first softens and begins then to
crosslink. During this process the carbon atoms of different chains are chemically bonded together
so that a network structure forms. The laminated material can then be regarded as one large
molecule. When the network structure forms the mechanical stiffness increases. After lamination
the EVA is classified as an elastomer. Crosslinking is an irreversible process which means that
a laminated EVA sheet cannot soften again without a destruction of the covalent atomic bonds.
Unlike thermosets it can thus not be reshaped.

Mechanical properties

We determine the elastic properties of the laminated EVA. Two layers of 0.5 mm thick EVA are
laminated together under standard lamination conditions (holding 150◦C laminator temperature
for 11 min) and are then tensile tested. The testing procedure is the same as for the back sheet
described in Section 2.3.4. An examination for anisotropy is not carried out in detail as prelimi-
nary tension tests at room temperatures give no relevant anisotropic effects. The experiments at
different temperatures are conducted at the Fraunhofer Institute for Mechanics of Materials (FhG
IWMH) in Halle(Saale), Germany.
The resulting values of the Young’s modulus, that are depicted in Fig. 2.21 and given in Table 2.8,
reveal a strong temperature dependence of the mechanical material behavior. Unphysically high
values above 0.5 are measured for the Poisson’s ratio. The only reasonable explanation is a
measurement inaccuracy. Otherwise the volume of the material has to expand under tensile de-
formation. In contrast to the E-values for the back sheet material, the Young’s modulus of the
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Figure 2.23: Interconverted curve for the
Young’s modulus E from G′. The black
curve uses ν = 0.4 for interconversion, the
gray symbols show the interconverion with
ν = 0.35 (lower) and ν = 0.45 (upper).
The values from tensile testing (Fig. 2.21) are
shown for comparison. Temperature T [◦C]
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measured EVA changes by several orders of magnitude, so the question arises in what form of
curve these three points have to be linked to adequately describe the material’s behavior over
temperature. A measurement that provides additional experimental values in between is neces-
sary.
Therefore, a second experiment is conducted to obtain a curve for the material’s stiffness. A com-
monly used technique for polymeric materials is the dynamic mechanical analysis (DMA). This
DMA-experiment has been conducted at the German Institute of Rubber Technology (DIK) in
Hanover. An exact description of the experimental method is given in the book from Grellmann
[52]. A strip of laminated EVA is clamped in a tensile configuration. The sample is held under
constant tension of 1 N while the upper sample holder dynamically rotates around the tensile axis.
The material is thus strained periodically up to 1.5 %. The loading frequency is 1 Hz and the
moment that is needed to deform the sample in torsion is monitored. In addition, the experiment
is started at -60◦C and the temperature is slowly raised (1◦C/min) until 100◦C.
The experimental result is shown in Fig. 2.22. The depicted quantity, the storage modulus in shear
G′, is the proportionality constant between implied shear strain and the material’s instantaneous
response in shear stress due to periodic loading. It is obvious from the curve of G′ that the EVA
crosses its glass transition region around -30◦C as the modulus rises by orders of magnitude. The
exact determination of the glass transition temperature, that is according to Ehrenstein [35] the
inflection point of the linearly plotted G′-curve, gives TG = −35.16◦C. Under the assumption of
linear elasticity the transformation of the G′-curve to an E-curve is realized by using the inter-
conversion formula E(T ) = 2G′(T )(1 + ν) from Table 2.1. Poisson’s ratio is set constant over
temperature, i.e. ν = 0.4. When using higher and lower values for Poisson’s ratio in the inter-
conversion, no significant change in E is found, as ν = 0.35 and ν = 0.45 lead to the gray points
in Fig. 2.23. The depicted values for E from shear and tension do not match exactly on the log-
arithmic scale. Reasons could be the usual discrepancy for results in different loading conditions
(tension and torsion) or the fact that the EVA samples for the DMA are laminated in a different
run than the samples for tensile testing.

Table 2.8: Elastic properties of Etimex Vistasolar 496.10 from tensile testing with standard devi-
ation.

−40◦C 23◦C 80◦C

E [MPa] 1019.04 ± 279.57 7.90 ± 0.35 0.52 ± 0.06
ν [-] 0.716 ± 0.116 0.411 ± 0.016 0.509 ± 0.036
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For the linear elastic simulations in Section 4.3 we use the minimal and maximal value for E from
Fig. 2.23 which is 6.5 MPa at 100◦C and 2.1 GPa at -60◦C. Poisson’s ratio is set to 0.4. For the
temperature-dependent linear elastic material model in Section 4.3 we use the information of the
complete curve in Fig. 2.23 for the Young’s modulus E while ν remains at 0.4.
In the DMA experiment it is found that the material exhibits a delay in response to the implied
strain, which is expressed by the loss modulus G′′. This time-dependent material behaviour cannot
be modeled within the frame of linear elasticity, as the time is not incorporated in the constitu-
tive equation. Therefore, a viscoelastic material description of EVA is needed that is thoroughly
discussed in Chapter 3.

33





Chapter 3

Viscoelastic modeling of

lamination sheets

The encapsulation material EVA(Ethylene-Vinyl-Acetate) is a polymeric material whose mechan-
ical behaviour cannot be entirely described by a single stress-strain-curve. This fact is illustrated
in Fig. 3.1 where a linear elastic analysis of two curves with different loading velocities would lead
to two different elastic moduli for the same material.
The stress-strain-relation of such materials is thus dependent on time. Another aspect of polymeric
materials such as EVA is a strong dependance of the mechanical material properties on temper-
ature as shown in Fig. 3.2. The corresponding material theory that accounts for the time- and
temperature-dependent behavior is called viscoelasticity. Many textbooks contain introductions
to the principles of viscoelasticity, such as [22, 35, 56, 73, 82, 100, 138]. Textbooks that exclusively
adress the topic of viscoelasticity have been published by Ferry [44], Macosko [78], Nielsen [89],
Shaw [110], Tschoegl [123] or Wineman [130] among others.
Typical tests to determine the viscoelastic properties are retardation and relaxation tests or dy-
namic mechanical analyses (DMA) [74]. In retardation tests, also called creep tests, the material is
exposed to a step in stress and the relaxing strain response is monitored over time. In a relaxation
test, a step in strain is applied and the transient decay in stress is monitored. During a dynamic
mechanical analysis the material is periodically loaded and the response signal is separated in the
instantaneous in-phase part and the delayed out-of-phase part. The in-phase signal corresponds
to the elastic behavior and the out-of-phase signal to the viscous behavior of the material. During
a viscoelastic experiment with a DMA usually the frequency or temperature is varied to cover a
wide range of the viscoelastic material behavior in one test. Figure 3.2 is the result of a DMA
with a temperature sweep from -60°C to 150°C. The storage modulus G′ represents the material
parameter for the instantaneous elastic response.

3.1 Linear viscoelasticity

Applying a uniaxial tensile step strain ε0 to a viscoelastic material (relaxation test) leads to a
step in stress followed by a stress decay σ(t) over time. The tensile relaxation modulus E is then
defined as

E(t) =
σ(t)

ε0

.

If E(t) is known, the stress response to a given constant strain ε0 that is instantaneous applied at
time t0 can be determined by

σ(t) = E(t − t0) ε0.

35



CHAPTER 3. VISCOELASTIC MODELING OF LAMINATION SHEETS

Tensile strain ε [-]

T
en

si
le

st
re

ss
σ

[N
/m

m
2
]

100 mm/min

5 mm/min

0 0.1 0.2 0.3 0.4

0

0.5

1

1.5
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Figure 3.2: Elastic response of cured EVA in a
dynamical mechanical analysis with a temper-
ature sweep

In a retardation test, where a constant stress σ0 is applied, the corresponding material parameter
is the tensile creep compliance D, defined as

D(t) =
ε(t)

σ0

,

and it holds analogously
ε(t) = D(t − t0) σ0.

The linear elastic relationship E = 1/D does not hold true in viscoelasticity, i.e. E(t) 6= 1/D(t).
A material is called linear viscoelastic as long as the stress and strain functions are linear,

σ(αε1(t) + βε2(t)) = ασ(ε1(t)) + βσ(ε2(t))

and
ε(ασ1(t) + βσ2(t)) = αε(σ1(t)) + βε(σ2(t)).

The linearity is used to derive viscoelastic constitutive equations which account for arbitrary stress
and strain signals. Let us approximate a continuous strain function ε(t) up to time t by a series of
small strain steps ε(t) =

∑n
i=0 ∆εi with a corresponding discretization of time t0 = 0, . . . , tn = t.

The stress at time t which is induced by the single strain step ∆εi at time ti is

σi(t) = E(t − ti)∆εi.

According to linearity, the total stress at time t resulting from all strain steps can be expressed as

σ(t) =
n

∑

i=0

σi(t) =
n

∑

i=0

E(t − ti) ∆εi.

For n → ∞ the discretization converges to the original strain function and the expression for the
stress approaches the integral

σ(t) =

∫ t

0

E(t − u) ε̇(u) du (3.1)

which represents the viscoelastic constitutive equation. The same holds true for the calculation of
strain from a stress input,

ε(t) =

∫ t

0

D(t − u) σ̇(u) du.
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In three dimensions, the stress tensor σ(t) can be expressed by the viscoelastic tensor C(t) and
the strain tensor ε(t) by

σ(t) =

∫ t

0

C(t − u) ε̇(u) du.

For isotropic viscoelastic materials the constitutive equation can be formulated in terms of the
shear relaxation modulus G(t) and bulk relaxation modulus K(t),

σ(t) = 2

∫ t

0

G(t − u) ε̇(u) du +

∫ t

0

(

K(t − u) −
2

3
G(t − u)

)

tr(ε̇(u)) du. (3.2)

Both G(t) and K(t) are then scalar functions of time. In general, the assumption of linearity
is valid for polymers up to small strains in the range of a few percent. Above that level non-
linear viscoelastic behavior starts. The viscoelastic modeling techniques used in this work are all
restricted to linear viscoelasticity.

3.2 Constitutive models

A linear viscoelastic material is fully described, if the material functions in C(t) are known.
Regarding the relaxation modulus in 1D, a set of parameters is needed that characterizes E(t).
Usually a combination of elastic and viscous elements are used to create E(t). In elasticity, a
Hookean solid obeys

σe(t) = E εe(t) (3.3)

where a constant E symbolizes a spring, while a viscous fluid is described by

σv(t) = η ε̇v(t) (3.4)

with the parameter η for the corresponding dashpot.

3.2.1 Maxwell model

Setting a spring and a dashpot in series [100],

σ(t) = σe(t) = σv(t),

ε(t) = εe(t) + εv(t),

and using Eqs. (3.3) and (3.4) leads to

ε̇(t) = ε̇e(t) + ε̇v(t) =
σ̇(t)

E
+

σ(t)

η
,

ηε̇(t) = σ(t) + τ σ̇(t), τ := η/E.

If this model is subjected to a step in strain ε0 at t = 0 the differential equation above becomes

σ(t) + τ σ̇(t) = 0, σ(t = 0) = Eε0.

The resulting relaxation modulus is

E(t) =
σ(t)

ε0

= E exp

(

−
t

τ

)

.
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Figure 3.3: Spring-dashpot models: Maxwell model (a), 3-parameter solid (b) and generalized
Maxwell model (c)

This so-called Maxwell model consists of the two parameters E and τ to characterize the material
function E(t). The creep compliance of the Maxwell model is

D(t) =
t

τE
+

1

E
.

It holds limt→∞ E(t) = 0 and it can thus not describe materials that converge to a stress value
above 0 in a relaxation experiment. As D(t) is a straight line it is not well suited to describe
materials with a curve-shaped strain response in a creep test.

3.2.2 3-parameter solid

Adding a spring in parallel to the Maxwell model as shown in Fig. 3.3 leads to the model equations

E(t) = E0 + E1 exp

(

−
t

τ1

)

,

D(t) =
1

E0

+

(

1

E0 + E1

−
1

E1

)

exp

(

−
t

τ1

E0

E0 + E1

)

,

which is known as the 3-parameter solid [123]. It is able to reproduce the stress relaxation to
a positive value as limt→∞ E(t) = E0 and D(t) shows a curve-shaped behavior. However, the
double logarithmic plot of E(t) reveals the steep slope in the transition region (Fig. 3.4) and thus
the poor ability to reproduce experimental curves of polymers for E(t).

3.2.3 Generalized Maxwell model

The generalized Maxwell model is an extension of the 3-parameter solid by addition of supple-
mentary Maxwell elements [123]. Each Maxwell element is called a Maxwell arm in the model.
The number of Maxwell arms defines the structure of this parametrization of E(t). For n arms,
one obtains the expression

E(t) = E0 +
n

∑

i=1

Ei exp

(

−
t

τi

)

,

which is referred to as a Prony series [123]. An explicit analogical expression for D(t) in terms of
Ei and τi does not exist. It is possible to obtain D(t) from E(t) by so-called interconversion which
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Figure 3.5: Measured E(t) at 20°C and fits
with a 3-arm and a 10-arm generalized Maxwell
model

involves numerical methods. In practice, the values for τi are chosen, for example one per decade,
and the n + 1 unknown values Ei are obtained from fitting the Prony series to the experimental
curve of E(t). Every Maxwell arm has a local impact on the shape of E(t). τi defines the range of
that impact within t and Ei sets the height of the model curve. If the distance between the τi is too
large the curve takes a wave-like shape as shown in Fig. 3.5. A large number of Maxwell arms, such
as 1 or 2 per decade, does thus not overfit the experimental data provided that enough data are
present per decade. The Prony series for E(t) can be regarded as an approximative discretization
of the experimental curve. A possible interpretation of the model for polymeric materials is that
each Maxwell arm corresponds to the mechanical behavior of all molecular chains with a certain
length.
It has to be pointed out that fitting an experimental curve with a Prony series is not a straight
forward task. First, as the curves are usually drawn on a double logarithmic scale, a simple least
squares fit approximates the experimental data on a non-logarithmic scale and small values do
not contribute to the fit. Second, all Prony coefficients have to be positive. The fitting algorithm
becomes thus a constrained least squares problem. Several methods to find the Prony coefficients
are presented in the literature, such as the Procedure X [123], the Collocation Method [123], the
Multidata Method [123], the algorithm of Emri and Tschoegl [120], [121], [40], the method by
Bradshaw and Brinson [15] and the method by Sorvari and Malinen [114].
The reason for the common use of the generalized Maxwell model over model functions for E(t)
with less fit parameters is the fact that the form of the Prony series is very convenient for Finite-
Element-Simulations. For modeling isotropic viscoelastic materials in 3D, FEM programs like
Comsol Multiphysics require the input of the shear relaxation modulus G(t) in terms of (τi, Gi)
and a constant bulk modulus K 6= K(t). The respective assumption is that K does not depend
on time and that K(t) ≫ G(t), so that the viscoelastic constitutive equation (3.2) becomes

σ(t) = 2

∫ t

0

G(t − u) ε̇(u) du + K tr(ε(t)).

This assumption has been found to be quite reasonable for most viscoelastic materials. In fact,
the differences between polymers and solids are not so striking in compression as in shear [44].
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3.3 Relaxation and retardation experiments of EVA

Relaxation and retardation measurements of EVA are conducted at different constant temperatures
to determine its viscoelastic properties. The preparation of the EVA specimens includes the
lamination of several layers of uncured EVA to a sheet with a thickness of approximately 1.6 mm,
followed by cutting out the single specimens with the help of a cutting template which has the
form of the tensile testing standard ASTM D638 Type I. The thickness of each piece is measured at
three points of the narrow section. Afterwards the speckle pattern is sprayed onto the specimens,
first a thin white layer and the speckles in black on top.
The experimental setup is shown in Fig. 2.16. A specimen is clamped in the top holder of the
tensile testing machine so that the force can then be set to zero thus eliminating the weight of
the specimen in the force signal. When both clamps are closed the upper clamp is moved down
to reduce the clamp distance. That avoids a loading of the specimen due to contraction when the
chamber is cooled down to low testing temperatures. The climate chamber is piloted to the desired
temperature and the experiment starts as soon as a the temperature reaches a stable plateau which
is measured at the specimen directly. The tensile test machine stretches the specimen up to a
small specified pre-load. The calibrated stereo-camera system is then toggled to start recording
the strain, first at time intervals of 200 ms which are in the course of the experiment stepwise
increased up to 10 min. The user’s input starts the experiment and the tensile tester ramps up to
the specified force or elongation within 2 s. The force resp. the elongation is then held constant.
During the experiment the temperature T , the time t, the force F and the traverse path s are
recorded. The stereo images from the digital image correlation system are postprocessed after the
experiment to create the longitudinal and transverse strain values εl and εt. The strain signals
are shifted in time until the longitudinal strain matches the course of the traverse path s during
the short loading period. As the density in the force data is much higher than the strain data,
the force and the temperature are interpolated in the times of the strain data. This set of data
(t, T (t), F (t), εl(t), εt(t)) represents the experimental data.
It has to be pointed out that neither the above described procedure of a relaxation test nor of
a retardation test are in exact accordance with the theoretical test conditions. First, the ramp
differs from a step loading. Second, during the relaxation test not the strain but the traverse
path is held constant and during the retardation test the testing machine tries to keep the force
constant instead of the stress. However, the experimental data (t, T (t), F (t), εl(t), εt(t)) are all
directly measured and contain thus only the measurement errors. Within these errors the stress
can be calculated from the initial thickness and width (cross-section A0), the force F (t) and the
transverse strain εt(t),

σ(t) =
F (t)

A0(εt + 1)2
.

Due to the reasons outlined above the moduli from these experiments are defined as

Ê(t) =
σ(t)

εl(t)
and D̂(t) =

εl(t)

σ(t)

and their shape is shown in Figs. 3.6 and 3.7 for the different temperatures. The ramp of 2 s is
cut.

3.4 Interconversion between different deformation modes

The measured data from relaxation and creep experiments as described in Section 3.3 are de-
termined from a tensile deformation mode. In the FEM-programs like Comsol Multiphysics or
Abaqus the input of an isotropic viscoelastic material is required in terms of the shear modulus
G(t) and the bulk modulus K. Therefore, the tensile data have to be interconverted to data in a
shear deformation mode before they can be fitted to the generalized Maxwell model. Furthermore,
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Figure 3.6: Tensile relaxation moduli for lami-
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to use the retardation test data for the construction of a model for the shear relaxation modulus,
an interconversion from creep data to relaxation data is required.

3.4.1 Use of the elastic-viscoelastic correspondence principle

In linear elasticity, a pair of elastic parameters such as (E, ν), (G, K) or (µ, λ) uniquely defines
the mechanical behavior of an isotropic material in three dimensions, see Table 2.1. In a uniaxial
tensile test (Fig. 3.8), like the EVA relaxation and creep tests described above, it holds

σ =





σ11 0 0
0 0 0
0 0 0



 and ε =





ε11 0 0
0 ε22 0
0 0 ε22





and thus the universal linear elastic equation written for every component

σij = 2 Gεij + (K − 2/3 G)(ε11 + ε22 + ε33)δij

takes the forms

0 6= σ11 = (K + 4/3 G)ε11 + (2K − 4/3 G)ε22,

0 = σ22 = (K − 2/3 G)ε11 + (2 K + 2/3 G)ε22.

According to the elastic-viscoelastic correspondence principle the viscoelastic stress-strain relations
can be brought to the same form as the elastic forms by the use of Laplace transforms [22, 123],
so that it holds

σ̄11(s) = s
(

K̄(s) + 4/3 Ḡ(s)
)

ε̄11(s) + s
(

2K̄(s) − 4/3 Ḡ(s)
)

ε̄22(s),

0 = s
(

K̄(s) − 2/3 Ḡ(s)
)

ε̄11(s) + s
(

2 K̄(s) + 2/3 Ḡ(s)
)

ε̄22(s),

where the bar denotes the Laplace transform

L(f) = f̄(s) =

∫ ∞

0

f(t) exp(−st) dt.
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Figure 3.8: Tensile test of an isotropic material.

Rearranging the above equations leads to expressions of the bulk and shear moduli

σ̄11(s) = 2s Ḡ(s) (ε̄11(s) − ε̄22(s)) , (3.5)

σ̄11(s) = s K̄(s) (3ε̄11(s) + 6ε̄22(s)) , (3.6)

which can then be inverse Laplace transformed via

L−1(sḡ(s)f̄(s)) = g(t)f(0) +

∫ t

0

g(u)
df(t − u)

d(t − u)
du

resulting in expressions for the unknowns G(t) and K(t),

σ11(t) = 2 G(t) (ε11(0) − ε22(0)) − 2

∫ t

0

G(u)
d (ε11(t − u) − ε22(t − u))

du
du, (3.7)

σ11(t) = K(t) (3ε11(0) + 6ε22(0)) −

∫ t

0

K(u)
d (3ε11(t − u) + 6ε22(t − u))

du
du. (3.8)

From the relaxation and creep tests the values for ε11(t), ε22(t) and σ11(t) are known. However,
Eqs. (3.7) and (3.8) cannot be rearranged for a direct determination of G(t) and K(t).

3.4.2 Recursive interconversion formula

Numerical interconversion formulas are needed to solve Eqs. (3.7) and (3.8) which calculate the
values of G and K from discrete test data [123]. We examine a general form of Eqs. (3.7) and
(3.8), i.e.

σ(t) = c A(t)f(0) − c

∫ t

0

A(u)
df(t − u)

du
du. (3.9)

In case of Eq. (3.7), we assign

A(t) = G(t), c = 2, f(t) = ε11(t) − ε22(t),

and in case of Eq. (3.8)

A(t) = K(t), c = 1, f(t) = 3ε11(t) + 6ε22(t).

Now, let {t1 = 0, t2, . . . , tN = t} be a discretization of time where the values of A and f are given.
If we numerically approximate the integral term in Eq.(3.9) with the trapezoidal rule we obtain
the recurrence formula

A(tn) =
σ(tn) + 1/2 c A(t1) [f(tn − t2) − f(tn)] + 1/2 c

∑

1/2 c f(0) + 1/2 c f(tn − tn−1)
, (3.10)

∑

=
n−1
∑

i=2

A(ti) [f(tn − ti+1) − f(tn − ti−1)] , A(t1) =
σ(t1)

c f(0)
,
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Figure 3.10: L-curve method to determine the
regularization parameter µ.

which has to be evaluated for all tn (1 < n ≤ N) to determine A(t). In the experiments, the
points in time tn are not equally spaced because a viscoelastic analysis involves logarithmic time
scales. As a consequence, values in between two points in time, for example f(tn − ti+1), have to
be interpolated within the numerical interconversion procedure.
However, as reported in the literature [79, 90, 114, 113] and shown in Fig. 3.9, these intercon-
version techniques imply solving ill-posed problems. Sorvari [114, 113] proposes to use Tikhonov
regularization to stabilize the conversion of experimental viscoelastic data. The suggested pro-
cedure cannot be used in this case because in contrast to Sorvari the experimental data are not
given in equidistant times. Here, an interconversion formulation is developed that transforms
the recurrence formula to a matrix-vector expression where the Tikhonov regularization is then
applied. Writing Eqs. (3.10) in matrix form Cx = b results in

Ckl =
1

2
c























0, l > k
2f11, l = k = 1
fk1 − fk2, l = 1, k 6= 1
fk,k−1 + fkk, l = k 6= 1
fk,l−1 − fk,l+1, 2 ≤ l < k

with fij = f(ti − tj),

and the vectors x and b become
bk = σ(tk)

and
xk = A(tk).

Instead of solving Cx = b directly for the unknowns xk = A(tk), which is the same as solving the
recurrence formula (3.10), the linear system is regularized by the help of the (N − 1) × N -matrix

L =







−1 1 0
. . .

. . .
0 −1 1







so that the regularized problem formulation becomes

min
xµ

{

‖Cxµ − b‖
2 + µ ‖Lxµ‖

2
}

.
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This is equivalent to

xµ =
(

µLT L + AT A
)−1

AT b. (3.11)

The regularization parameter µ is chosen with the help of the L-curve method. For different µ,
Eqs. (3.11) is solved and the norm ‖Lxµ‖ is plotted versus ‖Cxµ − b‖ on a loglog-scale (Fig. 3.10).
The value of µ that corresponds to the lower left hand corner of the curve is chosen as the
regularization parameter. While this interconversion procedure works well for the determination
of the shear relaxation modulus G(t) from the data shown in Section 3.3, the interconversion from
the same tensile experimental data to the bulk modulus K(t) fails. It is clear from the deduction of
the interconversion Eqs. (3.7) that the interconverted G is, within the range of numerical errors,
the real shear relaxation modulus. The fact, that the experiments from Section 3.3 are not in
exact accordance with theoretical testing procedure does not affect the determination of G(t) as
measured εl(t), εt(t), σ(t) are used.

3.5 Time-temperature superposition

In the previous sections the discussed modeling techniques involved only the time-dependence of
the viscoelastic material parameters. As depicted in Figs. 3.2, 3.6 and 3.7 EVA also exhibits a
strong sensitivity to temperature. The moduli between 130°C and -30°C differ by about 2 to 3
decades. It is therefore necessary to include the temperature T in the viscoelastic equations, so
that Eqs. (3.1) becomes

σ(t, T ) =

∫ t

0

E(t − u, T ) ε̇(u)du.

3.5.1 Mastercurve

In 1951 Andrews and Tobolsky [8] published relaxation curves which they combined by using the
concept of reduced times. The observation is that by shifting a polymeric relaxation curve along
the logarthmic time axis to another curve from a slightly different temperature results in an over-
lap of both curves. The new curve then coveres a larger time domain at the constant temperature
of the unshifted curve. This empirical method is called time-temperature-superposition [130] and
has by now become the standard procedure to include temperature in the characterization of poly-
mers [122]. Applying this procedure to several relaxation curves then allows the experimentalist to
create a relaxation curve that stretches over a time domain that can practically not be included in
one experiment. This new curve is known as a mastercurve. Material where the shifting results in
a satisfactory mastercurve is called thermorheologically simple. For thermorheologically complex
material this horizontal shifting does not result in a satisfactory overlap.
By assuming EVA to be thermorheologically simple, the shifting to -20°C results in mastercurves
that are illustrated in Fig. 3.11 for the tensile relaxation modulus Ê and Fig. 3.12 for the tensile
creep compliance D̂. This assumption is found to be unsatisfactory fulfilled as the overlap is not
in excellent agreement. The interruptions in the curves are due to a lack of certain testing temper-
atures and the shifting is there done by eye. As EVA is a copolymer and contains semicrystalline
parts [57] the superposition is, according to Tschoegl [122], not applicable. However, in the mod-
eling procedure of the viscoelastic behavior of EVA presented here we accept these approximative
errors.

3.5.2 Shift factor

Shifting data along the logarithmically scaled time axis corresponds to selecting the modulus value
at a different time when the temperature has changed. For two isothermal relaxation curves at
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Figure 3.11: Mastercurve of EVA for tensile
relaxation modulus Ê by shifting to -20°C
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Figure 3.12: Mastercurve of EVA for tensile
creep compliance D̂ by shifting to -20°C

Tref and T1 the shifting is expressed by

E(t, T1) = E(t/ αTref
(T1), Tref) = E(tred, Tref).

How far the relaxation curve at T1 has to be shifted to reach the curve at Tref is expressed in the
shift factor αTref

(T ). The shifted time scale is often called reduced time. For non-isothermal data
T (t) the reduced time tred is

tred = ξ(t) =

∫ t

0

1

αTref
(T (u))

du

and thus by knowing αTref
(T ) arbitrary temperature profiles can be included in a viscoelastic

FEM-simulation.
However, the implementation of the reduced time concept into the viscoelastic constitutive equa-
tion is not straight forward. The following derivation of the temperature-dependent viscoelastic
constitutive equation is taken from [130]. Let us consider a relaxation test with a step in strain ε0

applied at t0 = 0 and a subsequent step in temperature applied at time t1 as shown in Fig. 3.13.
The reduced time for t > t1 becomes

ξ(t) =

∫ t1

0

1

αTref
(Tref)

du +

∫ t

t1

1

αTref
(T1)

du = t1 +
t − t1

αTref
(T1)

.

It follows

E(t, T (t)) = E

(

t1 +
t − t1

αTref
(T1)

, Tref

)

,

which is shown in Fig. 3.14. In analogy to Section 3.1 where the viscoelastic constitutive equation
is deduced from a series of relaxation steps, we write the contribution of such a small strain
increment ∆εi applied at time ti < t to the stress at time t as

σi(t, T (t)) = E

(∫ t

ti

1

αTref
(T (u))

du, Tref

)

∆εi = E(ξ(t) − ξ(ti), Tref) ∆εi.

Splitting an arbitrary strain history ε(t) with a temperature history T (t) into n small strain steps
∆εi lets us write the stress σ(t, T (t)) as

σ (t, T (t)) =
n

∑

i=0

σi(t) =
n

∑

i=0

E(ξ(t) − ξ(ti), Tref) ∆εi.
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Figure 3.13: Relaxation test with temperature
step at time t1.
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Figure 3.14: Resulting relaxation modulus E(t)
for relaxation with temperature step.

For the limit case n → ∞ we obtain the temperature-dependent viscoelastic constitutive equation

σ(t, T (t)) =

∫ t

0

E(ξ(t) − ξ(u), Tref) ε̇(u) du.

The shift factor is a material property and should thus be the same for relaxation data, creep data
and other deformation modes [44]. Different semi-empirical models are available to approximate
the shift factor as a funtion of temperature. Below the glass transition temperature TG of the
polymer the Arrhenius model

log10 αTref
(T ) =

EA

2.303R

(

1

T
−

1

Tref

)

is often chosen. EA is an activation energy and R is the universal gas constant. For temperatures
between TG − 10 and TG + 100 the Williams-Landel-Ferry equation [129] is widely used,

log10 αTref
(T ) =

−C1(T − Tref)

C2 + T − Tref

.

Williams, Landel and Ferry determined C1 = 17.44 and C2 = 51.6°C as universal parameters if
the glass transition temperature is chosen as the reference temperature. In practice C1 and C2

are usually treated as fit parameters. For EVA the WLF fit parameters from Fig. 3.15 are given
in table 3.1.
Now the temperature dependency of EVA is included in the viscoelastic modeling procedure, so
that the viscoelastic model of EVA can be completed by fitting a generalized Maxwell model to
the mastercurve depicted in Fig. 3.16. A Prony series with 25 Maxwell arms is chosen in order to
cover the reduced time domain up to 1022.

Table 3.1: WLF parameters for EVA.

Tref [◦C] C1 [-] C2 [◦C]

-20 48.44 172.55
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Figure 3.16: Mastercurve and Prony fit of
shear modulus G of EVA. Data are intercon-
verted from relaxation and creep experiments
and then shifted using the WLF equation.

3.6 Verification of viscoelastic model for EVA

The derivation of a viscoelastic model for EVA as described in the previous sections contains sev-
eral steps, each of them contributing possible errors to the final model:

1. Determination of relaxation modulus and creep compliance:
t, σ, εl → Ê, D̂

2. Time-temperature superposition of relaxation and creep functions:
t, T, Ê, D̂ → α−20, C1, C2

3. Interconversion of tensile data to shear relaxation modulus:
t, σ, εl, εt → G

4. Fitting generalized Maxwell model to mastercurve:
t, G, C1, C2 → Gi, τi

This section is intended to compare the derived model to the original creep measurement data.
Two methods are used to validate the model. First, a FEM-simulation of the tensile experiments
and second, an analytical formula similar to (3.7) which is solved numerically.

3.6.1 FEM-simulation

The specimen form ASTM D638 Type I is geometrically modeled in 2D. For each simulation the
measured thickness of the specimen and the measured force F (t) is fed to the FEM-program. The
discretization of time is chosen to match the experimental points in time. The simulated material
is modeled as viscoelastic by using the Prony parameters associated with the curve shown in
Fig. 3.16 and the WLF parameters according to table 3.1. The whole experiment is simulated,
which means that the complete ramp is included. The results of the simulation are the stress and
strain values in the narrow section of the geometry.
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Figure 3.17: Simulation of EVA creep experiment at -30°C, tensile strain at different points in
time.

Time t [s]

S
tr

ai
n

d
iff

er
en

ce
ε l

−
ε t

[-
]

-30◦C

-39◦C

10−2 100 102 104 106
0

0.05

0.1

0.15

0.2

Time t [s]

S
tr

ai
n

d
iff

er
en

ce
ε l

−
ε t

[-
]

-19◦C

40◦C

80◦C

10−2 100 102 104 106
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
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simulation (−) and analytical formula (· · · ) for different creep experiments
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3.6.2 Analytical formula

If the relaxation shear modulus G(t) and the tensile stress σ(t) are given, the interconversion
procedure from Section 3.4 can be used to determine εl(t) − εt(t). Equation (3.5) which is inverse
Laplace transformed to provide formula (3.7) can also be inverse laplace transformed to give

σ11(t) = 2 G(0) (ε11(t) − ε22(t)) − 2

∫ t

0

dG(t − u)

d(t − u)
(ε11(u) − ε22(u)) du. (3.12)

This expression is then solved for εl(t) − εt(t) by using the regularized formulation (3.11).
The results illustrated in Fig. 3.18 indicate that the analytical formula agrees reasonably with the
simulation which thus correctly interprets the viscoelastic model. Two reasons can explain the
fact that simulation and analytical formula are not in exact agreement. First, the simulation uses
a constant bulk modulus and second the approximative solution of Eq. (3.12) is again prone to
numerical error. The difference between the experimental data and simulated/analytically deter-
mined data reveals that the modeling cannot reproduce the material behavior of EVA completely.
One possible reason is already explained in Subsection 3.5.1 which is the thermorheologically com-
plex behavior of EVA. Another cause could be errors due to non-perfect testing or preparation
conditions such as clamping, thickness measurements or non-homogeneous lamination conditions.
These errors are contained in the experimental data and can only explain why certain experimen-
tal curves deviate significantly from the mastercurve. However, it is obvious that the viscoelastic
model can reflect thermomechanical properties of EVA over a large temperature and time range
that a simple linear elastic material model cannot.
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Chapter 4

Thermomechanical deformation of

PV laminates

4.1 Experimental technique for deformation measurements

Standard techniques to measure the mechanical behavior of laminates are strain gauges, which
are still the most used experimental method [61], optical (interferometric) methods, photoelastic-
ity (Fiber Bragg Gratings [64, 107]) or, on a microscopic scale, Raman spectroscopy and X-ray
diffraction [31]. Both latter techniques are able to measure structure and stress, and for the XRD
technique measurements through thin non-transparent laminate layers are possible. However, such
methods are very complex, time-consuming and restricted to small measurement regions.
Laminating strain gauges into a PV module has several disadvantages, such as adhesion of the
gauge to the lamination sheet over the whole gauge length, a thermal sensitivity of the sensor
and only local strain information between two material points. Furthermore, the insertion of
strain gauges into the laminate including the necessary wire connections is likely to influence the
thermomechanical properties of the laminate itself. The preparation of such test laminates is
time-consuming and elaborate.
The optical methods such as interferometry [138, 58] (laser profile interferometry, Moire inter-
ferometry, holographic interferometry, speckle interferometry) and digital image correlation [118]
have the advantage to measure contactless, non-destructive and to provide full field data. We find
the digital image correlation technique with a stereo camera system (3D-DIC or DISC) to be a well
suited tool for deformation measurements of in-laminate components because the displacements
and strains of the solar cells becomes accessible by viewing through the transparent back sheet
and one layer of EVA. Additionally the method is not restricted to special sizes of measurement
regions as it only records relative extents and is thus applicable to samples of different scales in
size. A disadvantage of the DIC method in combination with a stereo camera system is the limit
of strain resolution. That limit is set by the resolution of the cameras. The system that we use
here consists of two 5 Mega Pixel CCD cameras which leads to a strain resolution of approxi-
mately 100 microstrains. With other methods such as strain gauges, fiber Bragg gratings or laser
interferometry much higher resolutions are possible.

4.1.1 Digital image correlation

The method of digital image correlation technique was developed during the 1980’s when the
progress in computer technology enabled the computation of large data volumes, so that the
efficient evaluation of image data became possible [96]. The use of this measurement technique
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Figure 4.1: Pinhole model for the calculation of
the object surface S in three dimensions from
two-dimensional camera images PA and PB.

Figure 4.2: Calibration of the DIC-system. The
computer detects the pattern in both images
and then determines the camera parameters
that are needed for the correlation.

has increased over the last years and is applied in various fields such as microelectronic packaging
[75, 98, 116, 138], automotive, biomechanics [137] or geological engineering [25]. Various systems
and software are commercially available. In this study we use a system by isi-sys with two 5 Mega
pixel CCD cameras and the vic3D-software by Correlated Solutions. In 2009, we first demonstrated
the benefits of this contactless measurement method for photovoltaic modules [39, 38]. In the mean
time Meier [80] successfully managed to inspect the thermal displacement of complete solar cells
in a PV module by viewing through the module glass.

Measurement principle

The principle is only presented in short form here, very detailed descriptions of the method are
given in the books and articles of Sutton and Orteu [92, 117, 118]. Two CCD cameras mounted
on a rigid rig take simultaneously pictures of the speckled surface of the inspected object. With
the use of a pinhole model, that is illustrated in Fig. 4.1, both camera images PA and PB are
correlated by a computer algorithm to obtain the shape of the surface S in three dimensions.
Displacement and strain are measured by comparing the computed 3D-surface to the correlated
surface of a reference state. In order to correlate the stereo images the correlation algorithm
needs information about the orientation and position parameters of the cameras as well as the
intrinsic parameters of each camera. These parameters are determined prior to each experiment
by a calibration, which is performed by taking a number of images of a calibration target, that is
held in different orientations in front of the cameras, as shown in Fig. 4.2. The exact point pattern
on the target must, of course, be provided to the software.

4.1.2 Measurement errors

The examination of the measurement accuracy focuses on the use of the DIC-system as described
in detail in Section 4.2. Figures 4.3 and 4.4 illustrate the experimental setup. Two regions on two
adjacent solar cells near the gap between the cells are speckled and chosen as areas of interest
(AOI) where the displacement is analyzed. The average displacement values of both AOIs are
subtracted to determine the change of the gap width. Three possible sources of error contribute
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Figure 4.3: Scheme of mea-
surement and position of
AOIs.

Figure 4.4: Experimental setup for measurement of gap dis-
placement between two solar cells in the laminate.

to the global error of this measurement procedure. First, the strain and displacement resolution of
the system, second the impact of the 10 cm thick window of the climate chamber that the cameras
have to look through and third the influence of optical refraction of the transparent laminate layers
on top of the inspected surface. These errors are estimated for one typical measurement setup
with one corresponding calibration. The accuracy cannot by guaranteed for all measurements in
this work as the system has been set up and removed several times, has thus been re-calibrated,
has been used for various laminates and with different climate chambers. The discussion of the
errors thus gives only an estimation of the accuracy that we believe not to deviate significantly
for the different laminate experiments in Section 4.2.

Resolution of strain and displacement

The digital image correlation is a relative measurement method. In general, DIC-systems are
calibrated with an accuracy of up to e = 0.01 pixels [117]. For the laminate measurements in
Section 4.2 we calibrate the system through the window of the climate chamber thus reaching a
calibration factor of e = 0.05 pixels. To determine the resolution in displacement ∆u the mapping
ratio in the focal plane array M , i.e. the number of micrometers per pixel, has to be taken into
account,

∆u = e · M.

We work with a mapping ratio of M = 60 µm/pixel, resulting in a displacement resolution of 3 µm
as marked in Fig. 4.5.

Averaging over regions

For the determination of the gap change the resolution in displacement can be improved by
averaging over measurement regions where the displacement values do not depend on their spatial
coordinates. By taking into account approximately 1000 spatially resolved data points (number
of pixels in one AOI shown in Fig. 4.3) to determine a single displacement value for one complete
AOI the statistical error is lowered by the square root of 1000. For the gap measurement shown
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Figure 4.5: Resolution in displacement depend-
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Figure 4.6: Measurement of AOI displacements
on copper (points) and line calculated with
CTE from literature [126]. Additional lines
show reference state and 1 µm envelope.

in Fig. 4.7, this assumption of homogeneous displacement leads to an accuracy of ∆u = 0.1 µm.
However, the AOIs are stripes on the solar cells with a height h of approximately 8 mm and
therefore the thermal deformation of the underlying silicon has to be taken into account. Then,
the bottom of the stripe that is close to the gap moves away from the top of the stripe that is
closer to the middle of the cell when the temperature rises. We calculate an upper limit of this
difference ∆h per ◦C by assuming a free thermal expansion of silicon, so that

∆h = h αSi.

Then, the average values of one AOI in Fig. 4.7 contain a maximum error of 1.14 µm at -35.1◦C
and 1.33 µm at 89.7◦C. Still, the technique of working with averaged data lowers the error in
displacement to 1.3 µm for ‖T − Tref‖ ≤ 67◦C compared to the resolution accuracy of 3 µm for raw
displacement data that we obtain from our calibration with e = 0.05 pixels.

Reference measurement with copper

We perform a reference experiment in order to verify the error that we calculated from the cali-
bration and the averaging technique. We compare the measured free expansion of a copper sample
with literature data for copper. A 3 cm x 10 cm copper strip with a thickness of 2 mm is placed
in the climate chamber and is subjected to temperatures in the range of 150◦C to -40◦C. Pieces
of polytetrafluoroethylene (PTFE), a material of low thermal conductance, hold the strip in an
upward position similar to the laminate measurements. Still the strip remains unsupported and
may thus freely expand. A temperature sensor is attached to the rear side of the sample. We
record the displacement v in vertical direction every 10◦C for every pixel. For each temperature
5 stereo-images are taken.
For an accurate comparison to the gap displacement measurements, we calculate the displacement
values on the copper strip in the exact same manner, i.e. choosing the identical pixel coordinates
for the lower AOI in Fig. 4.7. The y-displacement values in that AOI are averaged leading to
one displacement value per stereo-image. These values are plotted in Fig. 4.6. The black line
represents the displacement calculated from the CTE α = 16.4 × 10−6 1/K of copper which is
taken from White [126]. The exact procedure of how to calculate the displacement from the CTE
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is given in [39]. We find all measured data points in Fig. 4.6 to lie less than 1 µm away from
the literature data. We thus conclude from the reference measurement that the maximal error of
the averaging technique for a thermal measurement through the window is less than 1 µm. How-
ever, the procedure of calculating the displacement from a given CTE in [39] does not assume the
displacement to be constant over the AOI. Therefore, the maximum error for the experiments in
Section 4.2 remains at the limits of 1.3 µm.
The discussion of the third source of error, which is due to the optical refraction at the two mate-
rial layers on top of the solar cell that the cameras have to look through, is carried out in detail in
[39]. There, the relative error in strain is found to be negligible as it is in the range of 1 × 10−6

for one camera.
To conclude the discussion of the accuracy, error contributions from the refraction of the trans-
parent layers and the limits in displacement resolution are negligible for the presented laminate
deformation experiment. The error determined with the copper reference measurement is less
than 1 µm. The maximum error, however, originates from the violation of the assumption that
the displacement is constant over one AOI at one temperature. We find this maximum error to
be less than 1.4 µm which we regard as the measurement accuracy for the laminate experiments.

4.2 Measurement of gap displacement

The displacement of the gap between two adjacent solar cells in a PV laminate is determined on
test structures that contain 3 solar cells in a row.

4.2.1 Sample preparation

The application of the DIC method requires a random speckle pattern on the surface of the
measured object (Fig. 4.3). As the deformation of the solar cells in the laminate is of interest, a
speckle pattern is applied onto the rear side of the cells before lamination. Temperature resistant
spray paint is used to cover the rear surface completely white. When dry a black pattern is
sprayed on the white background. The thickness of the paint layer is measured between 20 and
40 µm. For the test laminate three speckled solar cells with a size of 125 × 125 mm2 are placed
between two transparent sheets of uncured ethylene vinyl acetate (EVA, etimex vistasolar 486.00)
that are laid on top of a 4 mm thick glass plate. The distance between the cells is chosen to
match 2 mm. The glass plate, and thus the laminate, is 45 cm by 15 cm in size. The rear side
of the assembly is covered with a transparent back sheet (Isovolta Icosolar T 2754) which is a
composite material with a thickness of 100 µm consisting of polyethylene terephthalate (PET) and
an ethylene tetrafluoroethylene (ETFE) core. The test sample is laminated after the paint has
completely dried to avoid the formation of bubbles and the smearing of the paint. The lamination
temperature is 150°C for 13 min. The EVA cures by crosslinking its molecular chains and adheres
to the cells, the glass and the back sheet. After lamination the sample has a thickness between
5.0 and 5.2 mm. It is important to assure that the surface of the back sheet is completely flat
and parallel to the speckled rear side of the cells after lamination. If the surface of the back sheet
contains some sort of structure, for example in form of little lenses, the optical path from the
speckled and buried surface to the camera would be disturbed. Then the assumptions made in
the theoretical approach for the determination of the third source of error [39], i.e. the optical
refraction at the laminate surface, are no longer valid.

4.2.2 Measurement

The laminate is placed in a climate chamber (CTS-40/350/S) in an upright position parallel to
the window as it is shown in Fig. 4.4. The rear side of the sample faces the window so that the
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Figure 4.7: Inspected AOIs of the laminate
with three non-interconnected solar cells.
Colours indicate the displacement at three
different temperatures. White lines highlight
the edges of the solar cells.
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Figure 4.8: The change of the gap width between
two laminated solar cells for different tempera-
tures. The stress- and displacement-free refer-
ence state is at 23.1◦C.

speckled surfaces are visible from outside the chamber. One thermocouple is attached to the front
and another to the rear side of the PV laminate. The window consists of 4 glass panes and is
approximately 10 cm thick. An LED source illuminates the measurement region on the speckled
surface from outside the chamber. Both cameras are mounted on a rigid rig in front of the window
with a stereo angle of approximately 30◦. The system is calibrated by placing the calibration tar-
get inside the chamber, so that the cameras view the target through the window of the chamber
eliminating the influence of the window.
One stereo image is recorded at room temperature before the experiment in order to define the
reference state of the object. While monitoring the temperature sensors on the sample the lam-
inate is heated up to 85°C. Afterwards the sample is cooled down to -40◦C, imaging the surface
approximately every 10◦C.

4.2.3 Results

After the measurement an area of interest (AOI) is defined on the recorded images of the inspected
surface, where the strain and the displacement are computed relatively to the reference state at
23.1°C. The AOIs are chosen directly adjacent to the gap between two solar cells. As the thermal
deformation of the sample holder and of the interior of the climate chamber causes the AOI to
move on the images of two different temperatures, the rigid body displacement and rotation has to
be removed. This is done by an average transformation. Figure 4.7 shows these areas of interest
and the color coded displacement values v in vertical direction for three different temperatures.
Compared to room temperature, the regions near the cell gap move 20 µm up and down in vertical
direction at 84.8◦C. The opening and closing of the gap between two cells is computed from the
displacement data of both AOIs by first averaging the vertical displacement over each AOI and
second by then subtracting these average values. This difference is referred to as the change of
solar cell gap width or simply gap displacement. The gap is found to widen when the temperature
rises and to shrink when the temperature decreases. Figure 4.8 shows the change of the cell gap
width as a function of the temperature. The graph has a linear behaviour for temperatures above
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Figure 4.9: Test laminates: no interconnec-
tion(A), standard interconnection (B) and back-
contact interconnection (C).

Figure 4.10: Laminate C: experimental deter-
mination of gap displacement of 30.14 µm at
90.1°C.

0◦C and a less steep slope below 0◦C. A change of cell gap is found to be around 0.5 µm/◦C as
plotted in Fig. 4.8.

4.2.4 Varying materials and interconnection techniques

The experiment described above is repeated with a number of modified laminates. Two charac-
teristics are changed compared to the laminate from Subsections 4.2.1 - 4.2.3 which is now named
’laminate A’. First, different interconnection techniques are investigated and second borosilicate
glass is used instead of the soda-lime glass substrate.

Different interconnection techniques

Figure 4.9 shows three similar laminates that differ only in their interconnection method. The
cells in laminate A are not connected while laminate B contains standard interconnected cells.
There, the copper ribbons reach from the cell’s top surface to the bottom face of the neighboring
cell. In between the cells the interconnect resembles a stretched S-shape seen from a side-view. In
laminate C a plane back-contact interconnector is soldered to 6 points on the rear sides of back-
contact cells. It creates a direct link between the solder joint pairs along the cell gap. For the
latter two laminates the soldering is done prior to the application of the spray paint. Apart from
that the preparation steps are identical to those of laminate A as described in Subsection 4.2.1.
The plot in Fig. 4.11 displays the temperature for laminate A during the experiments. The tem-
perature is read from the thermocouples which are attached to the front and back of the laminates.
We chose the average of both values to define the actual sample temperature. Figure 4.12 shows
the measured changes of the cell gap width over temperature. The data for laminate B and C are
displayed along with the data for A from Fig. 4.8. A detail of the experiment with laminate C at
90.1°C is given in Fig. 4.10. The slope of the data points of laminate B (standard interconnection)
is slightly higher than laminate A while laminate C exhibits a smaller slope. We believe the latter
observation to be due to the presence of the back-contact interconnector shown in Figs. 4.9 (C)
and 2.7 (second from bottom) which creates a stiff mechanical connection between the cells and
thus constrains the gap displacement.
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Figure 4.11: The temperature curve during
laminate A experiment. The average of both
temperature sensors is shown.
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Figure 4.12: Measured changes in the cell
gap width for laminates A(black), B(red) and
C(green).

Borosilicate glass

An additional laminate is prepared where the soda-lime glass is replaced by borosilicate glass. The
cells are not interconnected in order to compare the measurement to the laminate A data from
the soda-lime glass experiments. The dimensions of the borosilicate glass are equal to those of the
soda-lime glass. Thereby, the geometric properties of the laminates are identical but the CTE of
the glass, that is believed to have a strong impact on the gap displacement, is now significantly
lower. As described in Section 2.3.1 the CTE of borosilicate glass (3.25 × 10−6 1/K) is between
one half and one third the value of soda-lime glass (7.8−9.4×10−6 1/K) and hence much closer to
the CTE of silicon (approx. 2.5×10−6 1/K). Consequently, less change of the cell gap is expected.
The temperature curve during the experiment with the borosilicate laminate, that is plotted in
Fig. 4.13, is different to the one of the soda-lime glass laminate (Fig. 4.11) because here the lam-
inate is given approximately one hour to reach a homogeneous and stable temperature before an
image is recorded. The image capturing is symbolized by the points in Fig. 4.13.
Similar to the soda-lime glass experiments described above, the change of cell gap width is de-
termined and added to the measured values of the non-interconnected soda-lime glass laminate
in Fig. 4.14. No significant change of the cell gap is detected as the data are in the range of the
measurement accuracy of 1.4 µm which is discussed in Section 4.1.2. It implies that the adaption
of the CTE of glass close to silicon eliminates the temperature related gap displacement.

4.3 Simulation of gap displacement in 2D

Thermomechanical simulations are able to provide the full range of mechanical quantities for ev-
ery material point such as displacements, stresses and strains if the real material properties and
the correct loading conditions are properly reproduced by the computational model. Experiments
can only deliver information from a few material points, for example strain from strain gages or
displacements from digital image correlation. It is thus the combination of experiments and simu-
lations that permits a thorough study of a device’s deformation. In this section the experimental
results from the gap measurements are taken as references to check how well the computational
models forecast the mechanical behaviour of PV laminates. Therefore, a two dimensional geome-
try with dimensions equal to the test laminates in Section 4.2 is composed and shown in Fig. 4.15.
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Figure 4.13: Temperature over time for the ex-
periments with borosilicate laminates. Marks
indicate the times when the deformation is
recorded.
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Figure 4.14: Measured changes in the cell gap
width for non interconnected cells. Comparison
between float glass experiment(·) from Fig. 4.8
and borosilicate experiment(×).

Although the geometry demands a plane strain simulation, plane stress is favored over plane strain.
The reason is that in the plane strain mode the thermal strain in the out-of-plane direction can
only remain zero, if very high out-of-plane stresses occur which implies a non-physical state in
this context. The out-of-plane thickness is set to 125 mm to match the cell width. We choose
quadratic shape functions on a triangular mesh. The element type is shown in Fig. 2.4 b). The
symmetry of the test samples allows to model only one half of the laminate by applying symmet-
ric boundary conditions to the left boundary displayed in Fig. 4.15. The lower left hand point is
fixed in order to avoid rigid body displacements. The simulation is conducted with both isotropic
and anisotropic silicon values as well as purely linear elastic, temperature-dependent elastic and
viscoelastic material models for EVA. The other constant material parameters are varied by ±10%
in order to evaluate the sensitivity of the values, that were introduced in Section 2.3, to the com-
putational results.
The purely linear elastic and temperature-dependent linear elastic models are simulated with
Comsol Multiphysics. For the viscoelastic material model the software Abaqus is used.

4.3.1 Use of linear elastic models

Linear elasticity (for isotropic materials) requires a pair of constant values, for example the Young’s
modulus E and Poisson’s ratio ν. It is not dependent on time, so that only the temperature range
from the experiments needs to be fed to the simulation instead of the complete temperature his-
tory from Fig. 4.11. Consequently, a parametric model with temperature T as a parameter is
sufficient to simulate the gap-experiments. The reference temperature, where no initial stress or
strain is present, is set to the lamination temperature of 150◦C. The values for parameter T range
from 150◦C in steps of 10◦C down to -40◦C. As it is demonstrated in Subsection 2.3.5 and in
Chapter 3 it is impossible to pick the ’correct’ value for the Young’s modulus of EVA as is not a
constant value but dependent on time and temperature. In this simulation context with a linear
elastic model, where only constant material values can be taken into account, the value of E for
EVA is set to the highest and lowest value from Fig. 2.23. We thus expect to obtain from this
simulation a higher and lower bound for the gap displacement. The parameters used in the linear
elastic simulations are given in Tables 4.1 and 4.2. The values for the EVA and the back sheet
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Figure 4.15: Geometry of the 2-dimensional FEM-model in the simulations with Comsol Multi-
physics.

are varied by ±10% while for silicon and glass the data from literature are believed to be correct.
For silicon, E is set to the in-plane value of anisotropic silicon E<100>. For glass only the value
of α is varied because the testing that is documented in Section 2.3.1 reveals a slight discrepancy
to the literature data.

Laminates with float glass

The simulated gap displacement, where all materials are modeled with constant linear elastic
parameters, is shown in Fig. 4.16. The values are obtained from inspecting the difference in the
x-displacements at the two points on the cell edges. In the unstressed initial state at 150◦C the
width of the cell gap is 2 mm. When the temperature decreases the simulation shows a shrinkage
of the cell gap which is found in the experiments as well. Furthermore, three main observations
can be made from the simulation results:
First, the two different values for E of EVA have a large impact on the gap displacement as they
give two different black lines shown in Fig. 4.16. The simulations with a stiff EVA (high value for
E) exhibit a lower gap displacement than those with a compliant EVA (low value for E). A stiffer
EVA implies a stronger adhesion of the solar cells to the glass so that the thermal displacement
of the glass forces the silicon to deform accordingly. A compliant EVA describes a weaker bond
between the glass and the solar cells so that the silicon is able to deform more independently
following its pure thermal contraction. In this case, the silicon contracts less than the glass below
the cell and thus the gap displacement is larger.
Second, varying the coefficient of thermal expansion of the glass α by ±10% results in significant
deviations from the gap displacement curves indicated by gray lines in Fig. 4.16. A higher α
implies a larger difference of the CTEs of glass and silicon and thus a larger gap displacement.
When the CTE approaches the CTE of silicon the gap displacement is expected to be lower. It
has to be pointed out that the two values for EVA are motivated by the experimental observations
from Subsection 2.3.5 and differ by 2 to 3 orders of magnitude instead of only ±10%.
Third, the variation in all other parameters has no influence on the gap displacement results as
the black curves from simulations 1 - 7 coincide in the plot as well as the curves from simulations
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Figure 4.16: Simulated changes in the cell gap
width for non-interconnected float glass lami-
nates. The linear elastic parameters are given
in Tables 4.1 and 4.2.
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Figure 4.17: Simulated changes in the cell gap
width for anisotropic silicon (points) compared
to isotropic silicon (lines) from Fig. 4.16 for
simulations 1-18.

10 - 16 (Tables 4.1 and 4.2).
Including the full anisotropy of silicon in the simulation model does not change the simulated gap
displacement result. This can be seen from Fig. 4.17 where the anisotropic data (points) coincide
with the isotropic data (lines). The anisotropic model for silicon is thus not further considered in
the subsequent two-dimensional simulations of the gap displacement.
In order to compare the simulation data directly with the experimental data, the simulation curves
have to be shifted. In the experiments the reference temperature is set to room temperature
while the simulation assumes its stress free initial state at lamination temperature. However, as
the experimental samples are laminated at 150◦C and cool down to the experimental reference
temperature the laminate is at the beginning of the experiment already in a deformed state. The
simulation curves must therefore be shifted along the y-axis until the gap displacement at room
temperature is equal to zero. As plotted in Fig. 4.18 the simulation curves then create a corridor
with an upper and lower bound which results from the minimum and maximum values for the
Young’s modulus of EVA. The experimental data are found to fit well in that corridor. However,
it is noticable that the simulated gap displacement does not agree with the experimental data
nor is it able to reproduce the laminates’ curve-shaped deformation behaviour as it always forms
virtually straight lines over temperature.

Laminates with borosilicate glass

Simulations of the borosilicate laminate are carried out in the same manner as for the float glass
laminates. The CTE of glass is changed to 3.25 × 10−6 1/K, which is taken from literature for
borosilicate glass according to Subsection 2.3.1, and is also varied by ±10%. The corresponding
modifications in the list of parameters is given in Table 4.3. The simulation results are plotted in
Fig. 4.19. The change of the cell gap is less which supports the thesis that the gap displacement
diminishes as the CTEs of glass and silicon converge.
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Figure 4.18: Comparison of linear elastic simu-
lations and experiment for non-interconnected
float glass laminate (laminate A in Fig. 4.12).
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Figure 4.19: Simulated changes in the cell gap
width for non-interconnected borosilicate glass
(black) compared to float glass (gray).
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Figure 4.20: Simulated changes in the cell gap
width for non-interconnected float glass lam-
inates. The Young’s modulus of EVA is a
function of temperature E(T ) as plotted in
Fig. 2.23. Gray lines are the linear elastic sim-
ulations for float glass from Fig. 4.16.
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Figure 4.21: Simulated changes in the cell gap
width for borosilicate glass laminate A with T -
dependent E of EVA. The lower black lines cor-
respond to the float glass results from Fig. 4.20.
Gray lines are linear elastic simulations for
borosilicate glass from Fig. 4.19.
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Table 4.1: Mechanical material parameters for linear elastic simulations.

Sim.- Glass EVA Back sheet
No. α E E ν α

[10−6 1
K

] [MPa] [GPa] [-] [10−6 1
K

]

1 8 2100 2.80 0.4 50.4
2 8 2100 2.52 0.4 50.4
3 8 2100 3.08 0.4 50.4
4 8 2100 2.80 0.4 45.4
5 8 2100 2.80 0.4 55.4
6 8 2100 2.80 0.36 50.4
7 8 2100 2.80 0.44 50.4
8 7.2 2100 2.80 0.4 50.4
9 8.8 2100 2.80 0.4 50.4
10 8 6.5 2.80 0.4 50.4
11 8 6.5 2.52 0.4 50.4
12 8 6.5 3.08 0.4 50.4
13 8 6.5 2.80 0.4 45.4
14 8 6.5 2.80 0.4 55.4
15 8 6.5 2.80 0.36 50.4
16 8 6.5 2.80 0.44 50.4
17 7.2 6.5 2.80 0.4 50.4
18 8.8 6.5 2.80 0.4 50.4

Table 4.2: Mechanical material parameters for linear elastic simulations which are kept constant.

Sim.- Glass Silicon EVA
No. E ν E ν α ν α

[GPa] [-] [GPa] [-] [10−6 1
K

] [-] [10−6 1
K

]

1-18 73 0.23 130 0.28 2.49 0.4 270

Table 4.3: Modified parameters in Tables 4.1 and 4.2 for the borosilicate simulations.

Sim.- Glass
No. α [10−6 1

K
]

1-7, 10-16 3.25
8, 17 2.93
9, 18 3.58
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Figure 4.22: Comparison of laminate A float
glass measurement and T -dependent linear elas-
tic simulation. Temperature T [◦C]
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4.3.2 Use of temperature-dependent linear elastic models

From the experimental determination of the mechanical properties of EVA in Subsection 2.3.5 a
strong dependence of the Young’s modulus E on temperature is found (Fig. 2.23), i.e. between
2.1 GPa and 6.5 MPa. So far, this information has only been used to motivate an upper and lower
limit for the Young’s modulus E of EVA in the purely linear elastic simulations above. Here, the
T -dependent mechanical stiffness is modeled over the temperature range as E(T ), that is given in
Fig. 2.23. The variations of the elastic material parameters are the same as for the linear elastic
simulations and are given as simulation numbers 1-9 in Tables 4.1 and 4.2 neglecting column ’EVA
E’.
The results of the gap displacement simulations are plotted in Fig. 4.20. The change of the gap
width is now not monotonic so that a reduction of the cell distance is found for temperatures
under 0°C from the T -dependent linear elastic simulation. In fact, the curve contains similar
characteristics compared to the E(T )-curve for EVA shown in Fig. 2.23: the bump at 30°C and
the strong increase between 0°C and -30°C. Again, only the variation of the CTE of glass has an
impact on the simulation results as shown in Fig. 4.20. The linear elastic simulation results are
plotted to allow a direct comparison to the previous simulation and seem to take the role of limits
for the T -dependent curve.
The results for the borosilicate glass in Fig. 4.21 show that the shape of the T -dependent simu-
lation curve is the compressed version of the float glass simulation. Similar to the linear elastic
simulations, the gap displacement for borosilicate glass is significantly less than for float glass and
its shape is bounded between the two linear elastic simulations for borosilicate glass (gray lines in
Fig. 4.21).

Shifting the simulation curve to zero displacement at 20°C (Fig. 4.22) reveals that the step from
pure linear elasticity to T -dependent elasticity for EVA does not improve the replication of the
experimental data. Neither the actual values nor the shape of the curve agree well with the
experimental values. The T -dependent simulation does thus not help to better understand the
thermomechanical characteristics of the laminate although the mechanical characteristics of the
bulk material EVA are more adequatly taken into account compared to pure linear elastic models.

4.3.3 Use of viscoelastic models

In Chapter 3 a viscoelastic model has been constructed for EVA. This model includes a time and
temperature dependency. When simulating the experiments from Section 4.2 the whole temper-
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4.3. SIMULATION OF GAP DISPLACEMENT IN 2D

Figure 4.23: Detail of the FEM-model for the viscoelastic gap simulation with Abaqus. The
plotted variable udiff is the x-displacement subtracted by the x-displacement value in the gap
center. The deformation is scaled.

ature history of the laminate has to be considered, starting from the stress-free initial state of
150°C. Therefore, the temperature history that is fed as input data to the viscoelastic simulation
consists of a cooling stage accounting for the time directly after lamination, a time of storage
accounting for the time between lamination and experiment and the actual temperature curve
during the experiment as plotted in Fig. 4.24. The cooling stage is shown in detail in Fig. 4.25.
The data are measured by a thermocouple from a similar sample where the temperature evolution
during and after lamination was monitored until the sample temperature reached approximately
20°C again. The time of storage is set to 24 h because the experiment was performed the day
after the lamination. The data used for the actual experiment are identical to the temperatures
shown in Fig. 4.11 but shifted in time to fit after the ’store’-stage. The viscoelastic simulation is
performed with Abaqus. Figure 4.23 shows the region around the cell gap. The displacement is
shown in a scaled view.

Selection of the generalized Maxwell model

The viscoelastic model for EVA from Chapter 3 is given in form of a generalized Maxwell model
that describes the shear relaxation modulus Grel as a function of the reduced time tred. The
reduced time tred is the quantity that contains the information of temperature and relaxation
time according to the time-temperature-superposition explained in Section 3.5. The generalized
Maxwell model from Chapter 3 covers the complete range of the mastercurve that was constructed
from all performed relaxation and creep measurements, beginning with reduced times at τ1 =
10−4 s and ending at τ25 = 1020 s. The question arises whether it is necessary to feed the
complete model with 25 Maxwell arms to the simulation or whether a subset of the model is
sufficient to simulate the gap displacement. This question can be answered prior to the simulation
by inspecting the range of the reduced time that will be crossed during the simulation. The input
data of the temperature history shown in Fig. 4.24 determine the range of the reduced time. In
the T -dependent viscoelastic constitutive equation

σ(t, T ) =

∫ t

0

E(t − s, Tref) ε̇(s)ds =

∫ t

0

E(ξ(t) − ξ(s)) ε̇(s)ds
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Figure 4.24: Full temperature history of mea-
sured laminate A. ’Cool’ is the cooling stage af-
ter lamination, ’store’ the time of 24 h between
lamination and experiment and ’measure’ are
the time-temperature data from Fig. 4.11.
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Figure 4.25: Time-temperature curve of the
cooling stage from Fig. 4.24 in more detail. The
data are read from a thermocouple which has
monitored the sample temperature during and
after lamination.
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Figure 4.26: Reduced times calculated from
time-temperature curve of the cooling stage
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Table 4.4: Viscoelastic material model for EVA with 26 Maxwell arms.

Maxwell parameters
τi Gi

[s] [MPa]

0 0.24
1 10−3 90
2 10−2 40
3 10−1 19
4 100 11
5 101 7
6 102 4
7 103 2.5
8 104 1.4
9 105 1
10 106 0.8
11 107 0.6
12 108 0.7
13 109 0.8
14 1010 0.8
15 1011 0.7
16 1012 0.6
17 1013 0.56
18 1014 0.48
19 1015 0.5
20 1016 0.3
21 1017 0.25
22 1018 0.12
23 1019 0.07
24 1020 0.03
25 1021 0.02
26 1022 0.02

the argument for the relaxation modulus is

ξ(t) − ξ(s) =

∫ t

0

1

αTref
(T (u))

du −

∫ s

0

1

αTref
(T (u))

du

and can be computed as a function of s ∈ [0, t] for every t in Fig. 4.24. In order to visualize this
function, a number of experimental times ti ≤ t is chosen and a family of functions ξ(ti) − ξ(s)
is plotted in Figs. 4.26 and 4.27. As s runs from 0 to ti, each curve ends at s = ti, leading to
ξ(ti) − ξ(s = ti) = 0. The times ti can thus be read from the graphs as the intersections of the
x-axis. The left graph shows the calculated reduced times of the cooling stage and the right graph
the reduced times of the measurement.
It is found that the reduced time for the complete temperature history ranges from 10−3 to 1025.
For this gap displacement simulation the generalized Maxwell model can thus not be significantly
reduced. The model used here consists of 26 Maxwell arms, setting the values for τ to one per
decade between 10−3 and 1022, and is shown in Fig. 4.28. The parameters of the generalized
Maxwell model are given in Table 4.4.
The viscoelastic simulation of the gap displacement is shown in Fig. 4.29. The results from pre-
vious simulations, using linear elasticity and T -dependent linear elasticity, are plotted in gray.
The viscoelastic curve is monotonically decreasing when moving from hot to cold temperatures.
During the 24 h of storage at 20°C the gap width remains almost constant so no major creep

67



CHAPTER 4. THERMOMECHANICAL DEFORMATION OF PV LAMINATES

Reduced time tred [s]

S
h
ea

r
re

la
xa

ti
on

m
od

u
lu

s
G

−
2

0
[N

/m
m

2
]

creep data

relaxation data

Maxwell model
for gap

simulation

10−1010−5 100 105 1010 1015 1020 1025 1030
10−1

100

101

102

103

Figure 4.28: Generalized Maxwell model with
26 arms used for viscoelastic gap simulation.
The shear relaxation data at reduced times less
than 10−3 are not modeled.

Temperature T [◦C]

C
h
an

ge
of

ga
p

w
id

th
∆

v
[µ

m
]

T -dep. lin. el.

viscoelastic

lin. el.

lin. el.

-50 0 50 100 150
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Figure 4.29: Viscoelastic gap simulation in
comparison to linear elastic and T -dependent
linear elastic simulations from Figs. 4.16 and
4.20.
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Figure 4.30: Comparison of laminate A float
glass measurement and viscoelastic simulation.
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Figure 4.31: Comparison of all three simulation
models to experimental gap displacement data.
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processes are found. When the laminate is then heated to 90°C and cooled down to -35°C in the
simulation, the slope of the curve diminishes at cold temperatures.
When comparing the simulation to the experiment in Fig. 4.30 it is found that the viscoelastic
simulation data agree quite well with the measured data. Again, the simulation results were
shifted along the y-axis until the gap equals zero at room temperature in order to allow a di-
rect comparison. At temperatures above 20°C the simulation curve reproduces the measurement
data particularly well while at cold temperatures the simulated and experimental data exhibit
a very similar shape of a decreasing slope. However, the global slope of the simulation curve is
slightly higher than the one of the measurement data. Compared to the other simulation results
in Figs. 4.18 and 4.22 the viscoelastic model gives by far the most consistent results with the
experiment, see Fig. 4.31.

4.4 Simulation of a PV module in 3D

In Chapters 2 and 3 the mechanical material properties of the module materials are determined.
In the previous section we find the viscoelastic material model for EVA to give the best agreement
with experimental data. We now use the results of these preliminary steps to approach the
central part of this work which is to characterize the thermomechanics of a PV module. In the
3-dimensional simulation model we subject an unframed module to one temperature cycle of the
IEC 61215 test and inspect the stresses and strains in the different module materials. The initial
stress free state is again set to lamination temperature so that prior to the temperature cycle the
module cools down to room temperature and is then held at 21◦C for 24 h. The solar cells in the
module are not interconnected. The three-dimensional FEM-simulation is carried out with the
software package Abaqus.

4.4.1 Geometry, boundary conditions and material properties

The module contains 60 solar cells grouped in 6 lines made of 10 cells. The cell size is 125 mm ×
125 mm pseudo-square. The gap between two cells is 2 mm and the outer cells have a distance
of 20 mm to the module edges. We use a 4 mm thick float glass and choose the 350 µm thick
Isovolta Icosolar 2442 for the back sheet. We regard it as a widely used standard material whose
mechanical stiffness is measured in Subsection 2.3.4. We do not measure the module with the DIC
sytem so that we are no longer restricted to use a transparent back sheet. The symmetry of the
module is exploited by modeling only the lower left hand quarter of the complete module and by
applying symmetric boundary conditions to the top and right hand faces as shown in Fig. 4.33.
The outer surface of the glass is constrained to zero out-of-plane-displacement, thereby preventing
possible bending of the module. The material layers have constant initial thicknesses over the
module length and width. In the layer of the solar cells the space between the cells is filled with
EVA. The thickness of each layer at 150◦C is given in Table 4.5.

Table 4.5: Material properties used for the 3D-simulation of a PV module

Thickness Density El. modulus Poisson’s ratio CTE
d ρ E ν α

[ µm ] [g/cm3] [GPa] [-] [10−6 1
K

]

Float glass 4000 2.5 73 0.23 8
Back sheet 350 2.52 3.5 0.29 50.4

EVA 500 0.96 viscoelastic model (Table 4.4) 270
Solar cells 200 2.329 anisotr. stiffness matrix (Eq. (2.20)) T -dep. (Table 2.6)
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Figure 4.32: Temperature profile for the mod-
ule simulation

Figure 4.33: Simulation model of a 60 cell mod-
ule with symmetric boundary conditions. Let-
ters indicate the gaps between cells.

As in the viscoelastic gap simulation, the properties of the float glass and the back sheet are
set to isotropic linear elastic and are listed in Table 4.5. For EVA, the viscoelastic model from
Table 4.4 with WLF parameters from Table 3.1 is chosen. In order to model standard oriented
monocrystalline solar cells (cf. Section 2.3.3) we use the stiffness matrix C from eq. (2.20) with
constant values for C11, C12 and C44 from Table 2.6. Here the coefficient of thermal expansion of
silicon is made temperature-dependent with the values given in Table 2.6.
The PV module is exposed to a homogeneous temperature profile that consists of a cooling stage
from lamination temperature of 150◦C down to 21◦C, a 24 h storing time at room temperature
and a subsequent temperature cycle according to IEC 61215. The cooling profile is identical to
the one used for the viscoelastic gap simulation in Fig. 4.25. The complete profile is plotted in
Fig. 4.32. The module is stress free at the inital temperature of 150◦C.

4.4.2 Simulated stresses and strains

Numerical results

When the module cools down from the initial stress free state at 150◦C the material assembly
contracts. At -40◦C we find the stresses in the mid-plane of the glass to be compressive with the
third principal stress σIII between -4.2 MPa and -0.003 MPa. In contrast, the back sheet on the
other outer face is in high tension. Over large regions the first principal stress σI reaches values
of up to 41.7 MPa (Fig. 4.35). The embedded solar cells are under high compressive stress which
is visualized in Fig. 4.37 by the third principal stress σIII ranging from -84.4 MPa to -14.5 MPa.
Inspecting the different components of the stress tensor reveals that the in-plane stresses are one
to two orders higher than the out-of-plane stress components which are thus not shown here.
Figures 4.38(σ11) and 4.39(σ22) illustrate the compressive character of the normal stresses σ11 (-
76.4 MPa to -3.8 MPa) and σ22 (-84.4 MPa to -3.9 MPa). In Fig. 4.40 we find the shear stress σ12

in the cells to range from -14.3 MPa to 13.9 MPa. In the mid-planes of the EVA layers the absolute
values of the stresses are very low. However, large strains are present in the EVA at -40◦C as is
shown in Figs. 4.43, 4.42 and 4.41 where the first principal strain εI is shown. The highest values
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Figure 4.34: Third principal stress σIII in the
mid-plane of the glass at -40◦C.

Figure 4.35: First principal stress σI in the
mid-plane of the back sheet at -40◦C.

Figure 4.36: First principal strain εI at -40◦C. The structure is scaled in z-direction and glass on
top is hidden. The front surface is a yz-cutting plane through the centers of the solar cells in the
left column of module.
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are found in the layer between the cells and the back sheet exceeding 18% tensile strain (Fig. 4.43).
The strain in the EVA between the glass and the solar cells is significantly lower, reaching 7%
strain (Fig. 4.43). In each of the mentioned figures the local influence of the solar cells is visible.
The maximum compressive stress in the glass arises at the gap between the cells whereas under
the cells that are close the module edges the stress is close to zero (σIII = −0.003 MPa, Fig. 4.34).
In the back sheet, the tensile stress increases when moving to the center of the module (Fig. 4.35).
Additionally this increase is superimposed by a stress increase in the back sheet towards the center
of each solar cell. In the solar cells themselves the stress distribution is similar for all cells as it
increases towards the center of each cell but the stress amplitudes decrease when moving from the
module edges to the module center (Figs. 4.37-4.40). The position of a solar cell in the module is
thus relevant for the level of stress in the cell. In the strain distribution of the EVA the footprint
of the solar cells is clearly visible as well (Fig. 4.41 and 4.43).
For the other temperatures 25◦C and 85◦C the distributions of stresses and strains in the material
layers exhibit similar characteristics but are significantly lower in their absolute values. For theses
temperatures the difference to the stress free state at 150◦C is still negative but smaller than to
the state of -40◦C so that the compressive character of the cell stresses remains as well as the
tensile character of the stresses in the back sheet.

Discussion

The glass, which makes 72% of the module thickness and which has a high mechanical stiffness of
73 GPa, dominates the contraction of the module. Thereby it forces the laminated layers to follow
the pure thermal shrinkage of the glass. The back sheet on the rear side can thus not contract as
much as its high CTE (αback sheet ≫ αglass) demands, thereby leading to the large tensile stress.
We discuss this fact in more detail with the help of the definitions given in Subsections 2.1.3 and
2.1.4 and keep in mind that the total strain ε is continuous in the complete module structure due
to continuous displacements u while the stress σ is not. The absolute value of the pure thermal
strain |εth| is higher than the total strain |ε| in the back sheet by which it actually contracts.
Both strains are negative, which leads to a positive mechanical strain εmech = ε − εth. It is the
mechanical strain that determines the stress, i.e. σ = E εmech, so that we obtain tensile stress
σ > 0 in the linear elastic back sheet. The tensile stress in the back sheet becomes lower at the
module edges because the back sheet is in these regions only held by 1.2 mm thick EVA to the
glass. There, the large strain of the compliant EVA allows a larger contraction of the back sheet
and thus less mechanical strain.
The tensile character of the back sheet sets the glass under slight compression because the boundary
condition forces the glass to remain planar and prohibits possible bending. The compression in
the glass is extremal at the cell edges because there the tensile strain of the back sheet and the
closing of the gap have a very local effect on the glass. The solar cells contract much less than
the back sheet and, from a glass persective, they thereby buffer the higher compressive strains
that originate from the back sheet. In between the cells this buffer layer is interrupted so that the
compressive strains reach into the glass.
The solar cells exhibit the lowest CTE of the module materials. The cells contract thus less than
the glass on top and less than the back sheet under the cells. The cells are forced to shrinks more
than the pure thermal strain (|ε| > |εth|) which leads to negative mechanical strain. As silicon is
a stiff material we obtain high compressive stress in the solar cells.
The EVA takes the function of a compliant buffer layer. The consequence is the large strain in
the EVA layers.

4.4.3 Gap displacements

In the previous subsection we found the stresses and strains in the module to depend on their local
position in xy-plane. It is thus not possible to reproduce the results above by a ’unit module’, i.e.
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Figure 4.37: Third principal stress σIII in the
mid-plane of the solar cells at -40◦C.

Figure 4.38: Normal stress in x-direction σ11 in
the mid-plane of the solar cells at -40◦C.

Figure 4.39: Normal stress in y-direction σ22 in
the mid-plane of the solar cells at -40◦C.

Figure 4.40: Shear stress in the xy-plane σ12 in
the mid-plane of the solar cells at -40◦C.
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Figure 4.41: First principal strain εI in the
EVA between the glass and the cells at -40◦C.

Figure 4.42: First principal strain εI in the
EVA in the layer of the cells at -40◦C.

Figure 4.43: First principal strain εI in the
EVA between the back sheet and the cells at
-40◦C.
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Figure 4.44: Change of the cell gaps at posi-
tions A to E from Fig. 4.33 during the temper-
ature cycle shown in Fig. 4.32.
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Figure 4.45: Change of the cell gaps at posi-
tions F to H (black) compared to positions A
to E (gray) during the temperature cycle.

a geometrical subset of a complete module that should give universally valid results. Consequently,
the question arises whether the gap displacement is also dependent on the position of the gap in
the module. We therefore inspect the gap displacement along the left column and the bottom
row of cells indicated by the 8 positions from A to H in Fig. 4.33. Figure 4.44 shows these gap
displacements for the positions A to E during temperature cycling. Not all curves coincide so
that we find a significant dependence of the gap displacement on the position of the gap in the
module. The gap in positions A and B shrinks by 180 µm at -40◦C compared to the initial gap
length of 2 mm and zero gap displacement at 150◦C. The further the gap position is away from the
central axis of the module the larger is the change of the gap during the thermal cycle. The gap E
exhibits the largest change which reaches 180 µm at -40°C compared to 150◦C. Furthermore, we
find an offset in the curves for the temperature of 25◦C which is highest for the gap E with 5 µm.
In Fig. 4.45 we compare these results to the gap displacements at positions F to H. It is found
that the 3 curves are in the same region than the 5 curves A to E so that H coincides with A and
B while F coincides with E.
These results clarify that the position of the cell gap in the module is highly relevant for the
gap displacement meaning less activities in the cell gaps which are closest to the central axes of
the module and a higher gap displacement for the cell in the corner. For standard modules we
may thus expect that the interconnectors are most stressed at the top and bottom cells of the
module. The offset in the gap displacement curves is due to the viscoelasticity of the EVA as all
other materials are modeled by fully reversible elasticity. It is thus the viscoelasticity of the EVA
that causes one temperature cycle to slightly shift the cells apart from each other. This effect is
obviously more relevant for the cells at the module edges.
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In this work the thermomechanics of crystalline PV modules are investigated. We therefore set up
mechanical material models for every module component and evaluate the quality of the model
by comparing the FEM-simulations to experiments performed with specially designed laminate
structures. We then use the material model with best agreement to the experimental data to
calculate the stress and strain distribution in a 60 cell module with non-interconnected solar cells.

We use linear elastic material models for the substrate glass, the solar cells and the back sheet.
For glass, we rely on literature data except for the CTE which we measure to be 7.8 × 10−6 1/K.
The 3-point bending test is used to compare the Young’s modulus of RISE-EWT solar cells to
bulk silicon. We find a reasonable agreement between the experimentally determined values for E
and the literature data. The groove structure of the RISE-EWT cells features a nonhomogeneous
thickness that varies by ±10 µm. Including this thickness range in the experimental analysis leads
to a 30 GPa-wide range for the Young’s modulus that includes the theoretical value of 130 GPa in
14 out of 15 tests. We thus decide to model monocrystalline silicon solar cells with an anisotropic
stiffness matrix for bulk silicon. The back sheet and the EVA are tensile tested at -40◦C, 20◦C and
80◦C thus measuring the Young’s modulus and Poisson’s ratio. In particular the EVA exhibits a
vast dependency of the Young’s modulus on temperature, which is between 6.5 MPa and 2.1 GPa.
The dynamic mechanical analysis is a well suited technique to determine the Young’s modulus or
the shear modulus as a function of the temperature.

In addition, we find the EVA to depend on time so that we set up a viscoelastic material
model consisting of a generalized Maxwell model with WLF parameters for the time-temperature-
superposition. The model is constructed from a series of tensile relaxation and creep tests where
we monitor the force, the temperature, the tensile and the transverse strain. In order to obtain
shear relaxation data we apply an interconversion technique where we use Tikhonov’s regulariza-
tion. We first demonstrate that this regularization is applicable for non-equidistant points in time.
The viscoelastic model consists of 26 Maxwell arms with relaxation times between 10−3 and 1022.

With a first demonstration of the digital image correlation technique in the field of PV module
technology we prove this contactless method to measure the gap displacement between laminated
cells with an accuracy of 1.4 µm as we reported in [39]. In the laminate experiments with three
solar cells we determine the gap displacement to be approximately 0.5 µm/◦C. A first investigation
of borosilicate glass on the gap displacement reveals that the gap reduction may be eliminated by
matching the CTE of the glass and the solar cells.

This experimental observation is confirmed by simulations where a variation of the CTE of glass
has the largest impact on the gap displacement. However, to reproduce the experimental data of
the gap displacement, an accurate mechanical model for EVA is essential. We find the viscoelastic
model for EVA to give the best agreement with the measured data (±12 µm) while the linear
elastic and the temperature-dependent linear elastic model do not reproduce the shape of the
experimental data.

In a 3-dimensional FEM-simulation of a 60 cell module without interconnects over one temperature
cycle we identify the stresses in the solar cells to be compressive with σIII between -84.4 MPa and
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-14.4 MPa at -40◦C. The back sheet is under tension with σI reaching 41.7 MPa. The EVA takes
the function of a compliant buffer layer with large strains that exceed 18%. All module materials
experience higher stress and strain values at the edges of the module. The footprint of the solar
cells is visible in the stress and strain distribution of all material layers. In the investigation of the
simulated gap displacements we find a dependency on the position of the gap in the module. The
further the gap is located from the mid-axis of the module, the higher are the gap displacements.
The gap next to the cell in the corner shrinks by 180 µm (-40◦C) compared to zero displacement
at lamination temperature of 150◦C while the gap displacement in the mid-axis of the module is
-130 µm at -40◦C. Furthermore, the offset in the gap displacement at 25◦C which is 5 µm for the
gap in the corner of the module originates from the viscoelastic material behaviour of EVA. For
an optimal interconnection design these different gap displacements have to be taken into account,
i.e. maintaining purely elastic strains of the copper ribbon when the gap decreases by 180 µm.

In future research the impact of the standard interconnection technique may be included in the
simulation models to determine the stresses that are generated by the standard concept. There-
fore the simulation has to be split into two parts. First, a modeling of the soldering process
with subsequent cooling and second the simulation of the lamination step with the prestressed
interconnected cell strings as initial configuration. It would be a large step towards a complete
understanding of the complex mechanical behavior of a PV module if the simulation includes the
creation of stresses that start to build up in the soldering process. With the material models
and parameters provided in this work the impact of thinner cells or other material choices can
already be studied in more detail aiming to develop mechanically stable future module concepts.
By simply modifying the boundary conditions the FEM-model presented in this work can also be
used to simulate module bending and oscillation. The material model for EVA can be improved
by measuring at intermediate temperatures to create a denser mastercurve. The dynamic me-
chanical analysis is a well suited tool to efficiently measure such viscoelastic material parameters
and reduces the experimental effort in comparison to the relaxation and creep tests performed in
this work. More attention has to be drawn to the specific material properties of the solar cells to
improve the comparison with bulk silicon data, for example taking into account the cell bow after
firing, a multicrystalline structure instead of the monocrystalline structure or the impact of the
front grid. In all these suggested topics the productive combination of experiment and simulation
has to be preserved.
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