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1. ABBREVIATIONS 

 

RNA ribonucleic acid 

miRNA microRNA 

mRNA messenger RNA 

RISC RNA-Induced Silencing Complex 

CoProHMM Conditional Profile Hidden Markov Model 

3’UTR 3’ untranslated region 

CDS coding sequence 

rRNA ribosomal RNA 

tRNA transfer RNA 

snRNA small nuclear RNA 

snoRNA small nucleolar RNA 

Ago Argonaute 

nt nucleotide 

endo-siRNA endogenous small interfering RNA 

esiRNA endogenous small interfering RNA 

piRNA Piwi interacting RNA 

pol II polymerase II 

H. sapiens Homo sapiens 

M. musculus Mus musculus 

D. melanogaster Drosophila melanogaster 

C. elegans Caenorhabditis elegans 
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2. SUMMARY 

2.1. English version 

From September 2007 to May 2011 I have been working on the field of computational microRNA 

(miRNA) biology with emphasis on the development of accurate miRNA target prediction 

algorithms and the bioinformatics analysis of miRNA function. Here, I present a brief summary of 

the thesis resulted from this work. 

miRNAs are small endogenous RNA molecules that play a key role in development and diseases 

through post-transcriptional regulation of gene expression. They are part of the RNA-Induced 

Silencing Complex (RISC) which they guide on the mRNA of target genes and induce translational 

repression and/or mRNA degradation (Ambros 2001; Bartel 2009). They have been found to confer 

a novel layer of genetic regulation in a wide range of biological processes and are involved in many 

stages of cancer progression by both promoting and/or suppressing oncogenesis (Joels, Matthews et 

al. 2005; Lee and Dutta 2007; Tagawa, Karube et al. 2007; Ivanovska, Ball et al. 2008). They are 

also involved in several biological functions and developmental stages and have been linked to 

several human pathologies such as cardiovascular and neurodegenerative diseases as well as human 

malignancies (Croce and Calin 2005; Esquela-Kerscher and Slack 2006; Garzon, Fabbri et al. 2006; 

Slack and Weidhaas 2006; Fabbri, Ivan et al. 2007; Gartel and Kandel 2008). 

miRNA biology is a newly evolved field and there is great need for programs to address the 

scientific questions raised. Arguably, the most important role of miRNAs in the living cell is their 

targeting of mRNA molecules. Even though experimental validation of miRNA targets has been 

progressing in bounds in the past few years, the larger part of targeted genes still remains 

unverified. Therefore, the understanding of miRNA function goes hand in hand with the 

development of computational target prediction programs. Since the initial discovery of miRNAs 

several algorithms for miRNA target prediction have been developed but all of them still lack in 

terms of specificity and sensitivity (Kiriakidou, Nelson et al. 2004; Selbach, Schwanhausser et al. 

2008).  Additionally, there is great need for tools which can assess miRNA function in biological 

experiments and allow users to extract relevant information from biological data and resources. 

In my work I have addressed miRNA target prediction by implementing two major releases of the 

microT program (papers 3, 10) and by contributing in the development of a novel alignment 

algorithm based on probabilistic models (paper 7). Also, I have contributed in a combined 

computational and experimental approach for assessing viral miRNA targeting against host genes 

(paper 8). I have participated in the development of two programs, one for the identification of 

miRNAs involved in the differential expression of genes (paper 5) and a second one for the 

assessment of miRNA involvement in biological pathways (paper 2). I have also developed a Web 

server which serves as an interface between bioinformatics tools and researchers and offers unique 

information regarding miRNA function (papers 1, 10). In addition, I have co-authored two reviews, 

one for evaluating available miRNA target prediction programs (paper 4) and the second for 

describing available online miRNA resources (paper 9).  Overall, my work has resulted in 11 

publications in international peer-reviewed journals. In the following I give an overview, in 

chronological order, of the scientific contributions of each of the papers. 
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In the miRNA field, information has been expanding in an increasing way in the last years. For this, 

the development of tools such as a target prediction program which provide primary data is not on 

its own sufficient and there is need for applications, primarily web based, which will serve as an 

interface between bioinformatics tools and researchers. These applications need to be able to 

organize the available information and present it in an intuitive and integrated way. To address this, 

I have developed a Web server which provides extensive information and wide connectivity to 

online biological resources in a user friendly interface. Target gene and miRNA functions are 

elucidated through automated bibliographic searches and functional information is extracted 

through KEGG (Kanehisa, Goto et al. 2004) pathways. Also, the server offers links to 

nomenclature, sequence and protein databases and users are facilitated by being able to search for 

targeted genes using different nomenclatures or functional features. Importantly, since miRNA 

target prediction is a computationally intensive task, I have developed an infrastructure in the 

computer cluster of the National Technical University of Athens to allow users to perform 

prediction for custom miRNA sequences, as part of the Web server. The work has been published in 

Maragkakis et al (Maragkakis, Reczko et al. 2009). 

In order to identify molecular pathways potentially affected by the expression of single or multiple 

miRNAs I have contributed in the development of DIANA-mirPath, a functional analysis tool 

incorporating miRNA targets in biological pathways. It is a Web based application whose algorithm 

consists of an enrichment analysis of miRNA target genes within manually designed biological 

pathways. The combinatorial effect of co-expressed miRNAs in the modulation of a given pathway 

is taken into account through the analysis of multiple miRNAs simultaneously. This work has been 

published in Papadopoulos et al (Papadopoulos, Alexiou et al. 2009). 

My work regarding miRNA target prediction resulted in a major release of the microT program, 

denoted as microT-v3.0. The program uses parameters which are calculated individually for each 

miRNA and computes a total score for predicted miRNA:target gene interactions as the weighted 

sum of scores for evolutionarily conserved and non-conserved binding sites. It is based on assessing 

whether in terms of evolutionary conservation a predicted miRNA binding site can be distinguished 

from a random background or not. The prediction performance of the program has been evaluated 

independently in a work published in Nature by Selbach et al (Selbach, Schwanhausser et al. 2008) 

and has been shown to be the most precise program available. The work has been published in 

Maragkakis et al (Maragkakis, Alexiou et al. 2009). 

High-throughput gene expression experiments are widely used to identify the role of genes involved 

in biological conditions of interest. Similarly, the identification of miRNAs and the genes they 

regulate may provide potential ways for diagnosis and therapy in human diseases. Although miRNA 

expression levels may not be routinely measured in high-throughput experiments, a possible 

involvement of miRNAs in the deregulation of gene expression can be computationally predicted 

and quantified through analysis of overrepresented motifs in the 3′UTR sequences of deregulated 

genes. For this, I have participated in the development of DIANA-mirExTra to allow the 

comparison of frequencies of miRNA associated motifs between sets of genes that can lead to the 

identification of miRNAs responsible for the deregulation of large numbers of genes. I have also 

customized this program to be able to run in the computer cluster mentioned earlier allowing users 

to run the program through a Web interface. This work has been published in Alexiou et al 

(Alexiou, Maragkakis et al. 2010).  
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One of the major steps in a miRNA target prediction program is the alignment of the miRNA 

sequence against the target mRNA sequence for the identification of putative binding sites. For this, 

several approaches have been suggested but most of them are based on heuristic assumptions driven 

only by a few experimental data. To address this issue, I have contributed in the development of a 

novel data driven method based on the notion of Profile Hidden Markov Models. This method has 

been denoted as Conditional Profile Hidden Markov Model (CoProHMM) and has been shown to 

outperform existing alignment methods. This work has been published in Grau et al (Grau, Arend et 

al. 2010). 

Usually, top performing target prediction programs exploit information regarding evolutionary 

conservation of predicted miRNA binding sites. However, this seemingly informative feature might 

as well decrease prediction performance in specific cases. This happens when miRNA targeting has 

a negative effect on the organism’s survival and therefore the organism tends to avoid it. This is the 

case regarding viral miRNA targeting against a host organism. Taking this into account, I have 

participated in a combined computational and experimental approach for viral miRNAs of Epstein-

Barr virus and found that ebv-miR-BART6-5p silence Dicer through multiple target sites located in 

the 3’UTR of Dicer mRNA and that mutation and A-to-I editing appear to be adaptive mechanisms 

that antagonize ebv-miR-BART6 activities that consequently affect viral latency. This work has 

been published in Iizasa et al (Iizasa, Wulff et al. 2010). 

To enhance the scientific significance of the DIANA Web server I updated it to support predictions 

for two widely studied species: Drosophila melanogaster and Caenorhabditis elegans. Most 

importantly, in the updated version, I have associated miRNAs to diseases through bibliographic 

analysis and therefore provide insights for the potential involvement of miRNAs in biological 

processes. Also, I have contributed in the analysis of the nomenclature used to describe mature 

miRNAs along different miRBase (Griffiths-Jones 2006) versions, and have extracted the naming 

history of each miRNA. This enables the identification of miRNA publications regardless of 

possible nomenclature changes. The work has been published in Maragkakis, Vergoulis et al 

(Maragkakis, Vergoulis et al. 2011). 

Chi et al (Chi, Zang et al. 2009) released a set of biological data which allowed the development of 

miRNA target prediction programs based on machine learning techniques. These data and the data 

of Hafner et al (Hafner, Landthaler et al. 2010) served as the base for the development of another 

release of microT denoted as microT-CDS which is a miRNA target prediction program that stands 

out not only because it is a purely data driven approach but also because it succeeds in assessing 

miRNA targeting both in the 3'UTR and the coding sequence of genes. Importantly, it is shown that 

targeting in the coding sequence is not only functional but also confers an important biological 

meaning. This is evident, since the inclusion of targets in the coding sequence increases prediction 

sensitivity by more than 10% and also increases prediction precision. The manuscript describing the 

work involved in the development of microT-CDS is currently under submission (Reczko, 

Maragkakis et al, under submission). 

Finally, I have co-authored two reviews for miRNAs. The first one discusses and evaluates 

available miRNA target prediction methods (Alexiou, Maragkakis et al. 2009). This is of great 

importance particularly because miRNAs is a rather new scientific topic and in the last years more 

than a dozen miRNA target prediction programs have been developed. Therefore the evaluation of 

the prediction performance is a very critical step is choosing which of the programs are best to be 
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used for experimental designs. The second review discusses available online resources for miRNA 

analysis in an attempt to assist biologist in acquainting themselves with available tools designed for 

miRNA analysis. 

My publications have been cited 92 times since my first publication in 2009, resulting in an h-index 

of 4. The DIANA Web server which may be accessed at www.microrna.gr has received more than 

697,931 page views by more than 110,016 users from more than 60 countries and it currently 

receives more than 30,000 page views by more than 5500 users per month. 

2.2. German version 
Seit September 2007 arbeite ich auf dem Gebiet der Bioinformatik an der Entwicklung neuer 

Algorithmen zur Vorhersage von Genen, die durch microRNAs (miRNAs) reguliert werden, sowie 

an der Funktionsaufklärung von miRNAs. Im Folgenden gebe ich eine kurze Zusammenfassung der 

daraus entstandenen Doktorarbeit. 

MiRNAs sind kleine endogene RNA-Moleküle, die eine Schlüsselrolle in der Entwicklung der Zelle 

sowie in verschiedenen Krankheiten durch post-transkriptionelle Regulation der Genexpression 

spielen. Sie sind Teil des "RNA-Induced Silencing Complex" (RISC), den sie zur mRNA des 

Zielgens führen. Sie sind damit verantwortlich für die Induktion von translationaler Repression 

und/oder mRNA-Abbau (Ambros 2001; Bartel 2009). Diese Induktion wurde als neuer 

Mechanismus der Genregulation in einer Vielzahl von biologischen Prozessen identifiziert, und 

miRNAs sind an vielen Stadien der Tumorprogression durch Unterstützung und/oder 

Unterdrückung der Onkogenese beteiligt (Joels, Matthews et al. 2005; Lee and Dutta 2007; Tagawa, 

Karube et al. 2007; Ivanovska, Ball et al. 2008). MiRNAs sind ebenfalls an einer Vielzahl von 

biologischen Funktionen und zellulären Entwicklungsstadien beteiligt und wurden  mit 

verschiedenen Erkrankungen wie beispielsweise Herz-Kreislauf- und neurodegenerativen 

Erkrankungen sowie Tumoren in Verbindung gebracht (Croce and Calin 2005; Esquela-Kerscher 

and Slack 2006; Garzon, Fabbri et al. 2006; Slack and Weidhaas 2006; Fabbri, Ivan et al. 2007; 

Gartel and Kandel 2008). 

Die molekulare Funktionsweise von miRNAs ist noch weitestgehend unverstanden, und das 

Forschungsgebiet der MiRNA-Biologie ist noch sehr jung. Daher besteht ein großer Bedarf an 

neuen Algorithmen zur Bewältigung der experimentellen Daten mit dem Ziel, wichtige 

wissenschaftliche Fragen auf diesem sich rasant entwickelnden Forschungsgebiet zu beantworten. 

Eine wichtige Funktion von miRNAs besteht in ihrer gezielten Interaktion mit mRNA-Molekülen in 

der lebenden Zelle. Obwohl die experimentelle Verifikation dieser MiRNA-Ziel-Interaktionen in 

den letzten Jahren Fortschritte machte, ist der größte Teil der Zielgene bislang nicht verifiziert. Dies 

wiederum limitiert unser Verständnis der Funktionen von miRNAs. Mit Hilfe von 

Computermodellen zur Vorhersage von MiRNA-Ziel-Interaktionen lässt sich diese Kluft jedoch 

teilweise schließen. Seit der Entdeckung von miRNAs wurden verschiedene Algorithmen zur 

Vorhersage von MiRNA-Ziel-Interaktionen entwickelt, die jedoch in Bezug auf ihre Sensitivität 

und Spezifität starke Defizite aufweisen (Kiriakidou, Nelson et al. 2004; Selbach, Schwanhausser et 

al. 2008). Darüber hinaus besteht ein großer Bedarf an Softwaresystemen, die die Funktion von 

miRNAs in biologischen Experimenten beurteilen können und den Nutzer bei der 

Zusammenstellung relevanter Informationen aus verschiedenen biologischen Datenquellen 

unterstützen. 

http://www.microrna.gr/
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In meiner Arbeit habe ich mich mit der Vorhersage von MiRNA-Ziel-Interaktionen befasst. 

Konkret habe ich zwei verschiedenen Varianten des DIANA-microT-Programms entwickelt (3, 11) 

und zur Entwicklung eines neuartigen, auf probabilistischen Modellen basierenden, Alignment-

Algorithmus beigetragen (7). Weiterhin habe ich eine Kombination aus experimentellen und 

computergestützten Methoden zur Analyse viraler MiRNA-Ziel-Interaktionen mit Genen des Wirtes 

des Virus entwickelt (8). Ich habe bei der Entwicklung eines Programms zur Identifikation von 

miRNAs, die an der differentiellen Expression von Genen  beteiligt sind (5), sowie eines 

Programms zur Beurteilung der Wirkung von miRNAs in  Signalwegen (2) mitgewirkt. Darüber 

hinaus habe ich einen Web-Server zur Funktionsaufklärung von miRNAs entwickelt (1, 10). Ich bin 

Koautor zweier Übersichtsartikel zur vergleichenden Bewertung von verfügbaren Programmen zur 

Vorhersage von MiRNA-Ziel-Interaktionen (4) sowie zur Beschreibung der auf dem Gebiet der  

MiRNA-Biologie verfügbaren Ressourcen (9). Zusammenfassend wurden meine Untersuchungen in 

11 Publikationen in internationalen und begutachteten Zeitschriften veröffentlicht. Im Folgenden 

gebe ich einen Überblick der wissenschaftlichen Beiträge jeder Veröffentlichung in chronologischer 

Reihenfolge. 

Die Menge verfügbarer Informationen auf dem Gebiet der MiRNA-Biologie ist in den letzten 

Jahren stark angewachsen. Unter diesem Gesichtspunkt ist die Entwicklung von einzelnen 

Werkzeugen wie beispielsweise eines Programms zur Vorhersage von MiRNA-Ziel-Interaktionen 

nicht ausreichend. Vielmehr werden vor allem Web-basierte Anwendungen benötigt, die 

experimentellen Forschern eine Schnittstelle zu Bioinformatik-Werkzeugen bieten. Diese 

Anwendungen müssen die verfügbare Information organisiert, intuitiv und als Integration 

verschiedener Quellen darstellen. Zu diesem Zweck habe ich einen benutzerfreundlichen Webserver 

entwickelt, der umfangreiche Informationen und eine Online-Anbindung an verschiedene 

biologische Ressourcen bietet. Die Funktion von Zielgenen und miRNAs wird durch automatische 

Literaturrecherchen aufgeklärt, und funktionelle Informationen werden aus der KEGG-Datenbank 

zu genetischen Signalwegen (Kanehisa, Goto et al. 2004) extrahiert. Der Webserver bietet ebenfalls 

Verweise zu Nomenklatur, Sequenz- und Protein-Datenbanken, und die Benutzer werden bei ihren 

Suchen durch die Verwendung unterschiedlicher Nomenklatur oder funktioneller Merkmale 

unterstützt. Da die Vorhersage der MiRNA-Ziel-Interaktionen sehr rechenintensiv ist, habe ich eine 

parallele Implementierung für den Rechen-Cluster der Nationalen Technischen Universität von 

Athen realisiert, die auch die Vorhersage benutzerdefinierter Sequenzen durch den Webserver 

erlaubt (Maragkakis, Reczko et al. 2009). 

Zur Identifizierung molekularer Signalwege, die durch die Expression einzelner miRNAs oder von 

Gruppen von miRNAs potentiell beeinflusst sind, habe ich an der Entwicklung von DIANA-

mirPath, einem funktionellen Analyse-Werkzeug, das MiRNA-Ziel-Interaktionen in biologische 

Signalwege einbezieht, mitgewirkt. DIANA-mirPath ist eine Web-basierte Anwendung, deren 

Algorithmus auf einer Anreicherungs-Analyse von MiRNA-Zielgenen innerhalb der durch 

Biologen annotierten Signalwege beruht. Die kombinatorische Wirkung von ko-exprimierten 

miRNAs bei der Modulation eines gegebenen Signalweges wird durch die parallele Analyse 

mehrerer miRNAs  berücksichtigt (Papadopoulos, Alexiou et al. 2009). 

Meine Arbeiten an der Vorhersage von MiRNA-Ziel-Interaktionen führten zur dritten Haupt-

Version des DIANA-microT-Programms. Dieses Programm verwendet  Parameter, die für jede 

miRNA individuell angepasst werden, und berechnet einen Gesamtscore für die vorhergesagten 

MiRNA-Zielgen-Interaktionen aus einer gewichteten Summe der Scores von evolutionär 
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konservierten und nicht-konservierten Bindungsstellen. Die Bewertung basiert auf der 

Wahrscheinlichkeit, mit der eine vorhergesagte MiRNA-Bindungsstelle im Hinblick auf die 

evolutionäre Konservierung von einer zufälligen Hintergrundverteitung unterschieden werden kann. 

Die Vorhersagegenauigkeit des Programms wurde in einer unabhängigen in Nature veröffentlichten 

Vergleichsstudie (Selbach, Schwanhausser et al. 2008) auf der Basis von experimentellen Daten 

ausgewertet und erwies sich unter den derzeit verfügbaren Programmen als das mit der höchsten 

Vorhersagegenauigkeit. Diese Arbeiten wurden in (Maragkakis, Alexiou et al. 2009) veröffentlicht. 

Genexpressions-Experimente mit hohem Durchsatz werden häufig zur Detektion von Genen 

verwendet, die unter wichtigen biologischen Bedingungen exprimiert werden. In ähnlicher Weise 

können auch miRNAs und die durch sie regulierten Gene identifiziert werden, was wiederum 

potentiell neue Wege zur Diagnose und Therapie verschiedener Krankheiten eröffnet. Obwohl die 

Expressionswerte von miRNAs nicht routinemäßig in Genexpressions-Experimenten gemessen 

werden, kann dennoch eine mögliche Beteiligung von miRNAs bei der Deregulierung der 

Genexpression computergestützt vorhergesagt und durch die Analyse von überrepräsentierten 

Sequenz-Motiven in den 3-'UTR-Sequenzen von deregulierten Genen quantifiziert werden. Zu 

diesem Zweck wurde das DIANA-mirExTra-Programm zum Vergleich der Häufigkeiten der mit 

miRNAs assoziierten Sequenzmotive in verschiedenen Gruppen von Genen entwickelt, um die für 

einen größeren Teil der deregulierten Gene verantwortlichen miRNAs zu identifizieren. Ich habe 

auch dieses Programm für den oben genannten Rechen-Cluster parallelisiert, um interaktive 

Analysen mit einer Web-Schnittstelle zu ermöglichen. Diese Arbeit wurde in (Alexiou, Maragkakis 

et al. 2010) veröffentlicht. 

Eine der wichtigsten Teilaufgaben bei der Vorhersage von MiRNA-Ziel-Interaktionen ist die 

Ausrichtung der miRNA-Sequenz entlang der mRNA-Sequenz zur Identifizierung von putativen 

Bindungsstellen. Zu diesem Zweck wurden verschiedene Ansätze vorgeschlagen, die jedoch 

meistens auf heuristischen Annahmen basieren, die nur durch wenige experimentelle Daten gestützt 

werden. In diesem Zusammenhang habe ich ein evidenzbasiertes Modell mitentwickelt, das auf 

Profile Hidden Markov Modellen aufbaut und Conditional Profile Hidden Markov Modell 

(CoProHMM) genannt wird.  Wir konnten zeigen, dass CoProHMMs anderen Sequenz-

Ausrichtingsmethoden überlegen sind und haben diese Arbeit in (Grau, Arend et al. 2010) 

veröffentlicht. 

In den meisten Fällen verwenden die leistungsfähigsten Programme zur Vorhersage von MiRNA-

Ziel-Interaktionen Informationen über evolutionäre Konservierung der vorhergesagten MiRNA-

Bindungsstellen. Interessanterweise kann dieses scheinbar informative Merkmal in bestimmten 

Fällen die Vorhersagegenauigkeit verringern. Einer dieser Fälle ergibt sich, wenn die Regulation 

durch eine miRNA eine negative Wirkung auf die Überlebenchancen des Organismus hat und der 

Organismus daher versucht, die Bindung der miRNA zu vermeiden. Dies ist beispielsweise bei auf 

den Wirtsorganismus gerichteten viralen miRNAs der Fall. Unter Berücksichtigung dieser Einflüsse 

führte ich eine kombinierte computergestützte und experimentelle Untersuchung für die viralen 

miRNAs des Epstein-Barr-Virus durch. Es wurde festgestellt, dass die virale miRNA EBV-miR-

BART6-5p das Dicer-Protein durch mehrere Bindungsstellen in der 3'-UTR der Dicer-mRNA 

unterdrückt und dass sowohl Mutationen als auch aktive Adenosine-zu-Inosine-RNA-Bearbeitung 

(A-to-I editing) als adaptive Mechanismen wirksam zu sein scheinen, die dem Einfluss von EBV-

miR-BART6 entgegenwirken und dadurch die virale Latenz beeinflussen. Diese Arbeit wurde in 

(Iizasa, Wulff et al. 2010) veröffentlicht. 
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Um die Funktionalität des DIANA-Webservers zu erhöhen, habe ich zwei weitere 

Modellorganismen, Drosophila melanogaster und Caenorhabditis elegans, aufgenommen. Im 

Rahmen dieser Aktualisierung wurde auch eine automatische Literaturanalyse zur Assoziation von 

miRNAs mit verschiedenen Krankheiten implementiert, die neue Einblicke in die mögliche 

Beteiligung von miRNAs an verschiedenen biologischen Prozessen ermöglicht. Weiterhin habe ich 

die Entwicklung der in verschiedenen Versionen der MiRBase-Datenbank (Griffiths-Jones 2006) 

verwendeten Nomenklatur analysiert und so eine Identifikator-Historie für jede miRNA extrahiert. 

Dies ermöglicht eine von Namensänderungen unabhängige Identifizierung von miRNAs in 

Publikationen. Diese Arbeit ist in (Maragkakis, Vergoulis et al. 2011) erschienen. 

(Chi, Zang et al. 2009) haben eine Reihe von biologischen Daten veröffentlicht, die die Anwendung 

von Methoden des Maschinellen Lernens zur Entwicklung von Programmen zur Vorhersage von  

MiRNA-Ziel-Interaktionen ermöglicht. Diese und die Daten von (Hafner, Landthaler et al. 2010) 

dienten als Grundlage für die Entwicklung einer weiteren Version von DIANA-microT. Das mit 

microT-CDS bezeichnete Programm zur Vorhersage von MiRNA-Ziel-Interaktionen zeichnet sich 

nicht nur durch seinen ausschließlich datengetriebenen Ansatz aus, sondern auch durch seine 

erfolgreiche Vorhersage von MiRNA-Bindungsstellen, die sowohl in der 3'-UTR als auch in der 

protein-kodierenden Sequenz von Genen auftauchen können. Wir konnten nachweisen, dass die 

MiRNA-Bindungen in den kodierenden Sequenzen funktional sind und dass die Berücksichtigung 

der Bindungsstellen in den kodierenden Sequenzen zu einer signifikanten Erhöhung der 

Vorhersagegenauigkeit führt. Das Manuskript zur Beschreibung dieser Untersuchung ist derzeit in 

Vorbereitung. 

Ich bin Mitautor zweier Übersichtsartikel im Bereich der computergestützten Analyse von miRNAs. 

Der erste präsentiert und vergleicht die derzeit verfügbaren Programme zur Vorhersage von 

MiRNA-Ziel-Interaktionen (Alexiou, Maragkakis et al. 2009). Ein solcher Vergleich ist  wichtig, da 

das Forschungsgebiet der MiRNA-Biologie relativ jung ist und in den letzten Jahren mehr als ein 

Dutzend Programme zur Vorhersage von MiRNA-Ziel-Interaktionen entwickelt wurden, ein 

objektiver Leistungsvergleich dieser Programme jedoch bislang fehlte. Ein solcher Vergleich aber 

ist ein notwendiger Schritt bei der Entscheidung, welches Programm am besten zum Entwurf von 

Experimenten zu verwenden ist. Der zweite Übersichtsartikel beschreibt verfügbare Online-

Ressourcen zur computergestützten Analyse von miRNAs und versucht, Biologen mit diesen 

Ressourcen vertraut  zu machen. 

Meine Publikationen sind seit meiner ersten Veröffentlichung im Jahr 2009 92 Mal zitiert worden, 

was einem h-Index von 4 entspricht. Der DIANA-Webserver, der unter www.microrna.gr 

aufgerufen werden kann, erhielt bislang mehr als 697.931 Seitenaufrufe von  mehr als 110.016 

Benutzern aus über 60 Ländern.  Er erhält derzeit monatlich mehr als 30.000 Seitenaufrufe von 

mehr als 5500 Nutzern. 

http://translate.google.com/translate?hl=en&prev=_t&sl=en&tl=de&u=http://www.microrna.gr/
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3. GENERAL INTRODUCTION 

The traditional notion until the end of the last century has been that the primary and almost 

exclusive role of RNA in cells is to carry genetic information for the translation of DNA into 

protein. However, the discovery of small non-coding RNAs and other non-coding RNAs has forced 

a paradigm shift on the perceived roles of RNA in the cell and gene regulation in general. 

Historically, the term “small RNA” has been used for a wide variety of RNAs which have short 

length. It has been used for ribosomal RNA (rRNA), transfer RNAs (tRNAs), small nuclear RNAs 

(snRNAs), small nucleolar RNAs (snoRNAs) and has also been largely associated with short 

regulatory RNAs. The later are largely implicated in eukaryotic cell silencing pathway and are 

distinguished primarily by their small size (~20–30 nucleotides) and their association with the 

Argonaute (Ago) family proteins. In humans there are at least three classes of small regulatory 

RNAs that are encoded. Based on their biogenesis mechanism and the type of the Ago protein that 

they are associated with, they are clustered into three distinct types: microRNAs (miRNAs), 

endogenous small interfering RNAs (endo-siRNAs or esiRNAs) and Piwi interacting RNAs 

(piRNAs).  

miRNAs are small; approximately 21 to 22 nucleotide long, single stranded non-coding regulatory 

RNAs which were first discovered in Caenorhabditis elegans for their role in regulating the 

expression of protein coding genes (Lee, Feinbaum et al. 1993).  However, although they were 

identified as early as 1993 it was not until 2001 that they were suggested to be widespread and 

abundant in cells (Lagos-Quintana, Rauhut et al. 2001; Lau, Lim et al. 2001; Lee and Ambros 

2001). Since then, hundreds of more miRNA molecules have been identified in an increasing 

number of species including viruses, plants, nematodes, mice, and humans, suggesting a deep and 

important role in gene regulation and cell biology in general (Bartel and Bartel 2003; Berezikov and 

Plasterk 2005).  

miRNAs have been found to confer a novel layer of genetic regulation in a wide range of biological 

processes. Their involvement in cellular commitment and cell cycle regulation gives them an 

important role in animal development and human diseases. Specifically, miRNAs have been linked 

to several human pathologies such as cardiovascular and neurodegenerative diseases (Hebert and 

De Strooper 2007; Hebert, Horre et al. 2008; Zhang 2008) as well as in human malignancies (Croce 

and Calin 2005; Esquela-Kerscher and Slack 2006; Garzon, Fabbri et al. 2006; Slack and Weidhaas 

2006; Fabbri, Ivan et al. 2007; Gartel and Kandel 2008). Also they have been found to regulate 

various developmental stages in animals such as Caenorhabditis elegans (Lee, Feinbaum et al. 

1993; Reinhart, Slack et al. 2000; Lau, Lim et al. 2001; Lee and Ambros 2001), Danio rerio 

(Wienholds, Kloosterman et al. 2005), Drosophila melanogaster (Aravin, Lagos-Quintana et al. 

2003), Mus musculus (Baroukh, Ravier et al. 2007), Homo sapiens (Chen, Li et al. 2004; Yi, 

O'Carroll et al. 2006; Lu, Thomson et al. 2007) and in plants (Kidner and Martienssen 2005). In 

particular, miRNAs are believed to be involved in many stages of cancer progression by both 

promoting and/or suppressing oncogenesis (He, Thomson et al. 2005; Lee and Dutta 2007; Tagawa, 

Karube et al. 2007; Ivanovska, Ball et al. 2008), tumor growth (Johnson, Esquela-Kerscher et al. 

2007; Si, Zhu et al. 2007), invasion and metastasis (Ma, Teruya-Feldstein et al. 2007; Asangani, 
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Rasheed et al. 2008; Huang, Gumireddy et al. 2008; Tavazoie, Alarcon et al. 2008; Zhu, Wu et al. 

2008). 

For many years, researchers have been analyzing microarray expression data of protein coding 

genes in different cancer types in order to identify specific expression signatures. The limited 

number of miRNAs makes them an ideal candidate for this type of analysis. Currently, there are 

approximately 700 human miRNAs registered in miRBase (Griffiths-Jones, Saini et al. 2008), and 

according to estimates their number may reach 1000. Analyzing their expression, several miRNA 

signatures have already been successfully associated with human cancers (Calin and Croce 2006) 

such as leukemia (Calin and Croce 2007; Landais, Landry et al. 2007), thyroid carcinomas (He, 

Jazdzewski et al. 2005), breast (Iorio, Ferracin et al. 2005), lung (Yanaihara, Caplen et al. 2006) and 

pancreatic cancer (Lee, Gusev et al. 2007).  

Most mammalian miRNAs are transcribed by RNA polymerase II (pol II) (Lee, Kim et al. 2004), 

the same polymerase that directs the transcription of protein coding genes. However there are some 

Alu repeat associated miRNAs which are known to be transcribed by RNA polymerase III (pol III) 

(Borchert, Lanier et al. 2006). miRNAs are encoded in sense or anti-sense orientation within introns 

of protein coding genes and in non-coding transcripts. Most mammalian miRNA genes have 

multiple isoforms (paralogues) that are probably the result of gene duplications. Approximately 

50% of mammalian miRNA loci are found in close proximity to other miRNAs. These clustered 

miRNAs are considered to be transcribed from a single polycistronic transcription unit (Lee, Jeon et 

al. 2002), although there may be exceptional cases in which individual nearby miRNAs are derived 

from separate gene promoters (Figure 1). 

 

Figure 1: A miRNA gene is controlled by several TFs whose binding sites (TFBSs) are located near the Transcription Start Site of 

this gene. When transcribed, the miRNA gene produces a long pri-miRNA molecule. The pri-miRNA molecule is cleaved by Drosha 

and yields the pre-miRNA stem-loop (hairpin) structure. The enzyme Dicer cleaves the loop of the hairpin and produces the miRNA-

miRNA* duplex. One chain of the miRNA duplex is incorporated into the RISC complex and can regulate mRNA translation. In this 

example, the miRNA regulates the translation of the promoter in a typical negative feedback control loop. Image taken from Alexiou 

et al (Alexiou, Vergoulis et al. 2010) 

The primary transcripts (pri-miRNAs) that are generated by Pol II are usually several kilobases long 

and contain local stem-loop structures. The first step of miRNA maturation is cleavage at the stem 

of the hairpin structure, which releases a small hairpin that is termed a pre-miRNA. This reaction 
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takes place in the nucleus by the nuclear RNase III type protein Drosha (Lee, Ahn et al. 2003). 

Drosha requires a cofactor, the DiGeorge syndrome critical region gene 8 (DGCR8) protein in 

humans (Pasha in Drosophila melanogaster and Caenorhabditis elegans) (Denli, Tops et al. 2004; 

Gregory, Yan et al. 2004; Han, Lee et al. 2004; Landthaler, Yalcin et al. 2004). Together with 

DGCR8 (or Pasha), Drosha forms a large complex known as the Microprocessor complex. 

Following nuclear processing, pre-miRNAs are exported to the cytoplasm where they are cleaved 

near the terminal loop by Dicer, releasing approximately 22 nucleotide long miRNA duplexes 

(Hutvagner, McLachlan et al. 2001). Thus the first end of the pre-miRNA is determined by Drosha 

through hairpin processing while the other end of the mature miRNAs is determined by Dicer.  

Following Dicer cleavage, the resulting approximately 22nt long RNA duplex is loaded onto an 

Ago protein and generates the effector complex, RISC. One strand of the ~22nt RNA duplex 

remains in Ago as a mature miRNA called the guide strand, whereas the other strand called the 

passenger strand is usually degraded. Studies on miRNA precursors suggest that it is common for 

the strand with relatively unstable base pairs at the 5′ end to typically survive and get incorporated 

to the Ago protein (Khvorova, Reynolds et al. 2003). Because strand selection is often not a 

stringent process, some hairpins produce miRNAs from both strands at similar frequencies.  

Gene regulation by miRNAs is mediated through the association of the miRNA-loaded RISC to 

complementary sequences in target mRNAs (Figure 2). It has been postulated that miRNAs can 

cause the premature removal of translating ribosomes from target mRNA (Petersen, Bordeleau et al. 

2006). However, the absence of truncated protein products from targeted mRNAs has resulted in 

speculation that miRNAs primarily direct degradation of target mRNAs (Eulalio, Huntzinger et al. 

2008; Guo, Ingolia et al. 2010). Other studies in mammalian systems have co-sedimented miRNAs 

with target mRNAs not associated with ribosomes (Pillai 2005), indicating that Ago2 may mediate 

miRNA translation repression by blocking access of translation initiating factors to the 5’ cap of 

target mRNA. 

 

Figure 2: miRNAs mediate gene regulation in the cell by binding on complementary regions of target mRNA molecules. Multiple 

miRNAs may bind on the same mRNA molecule. Image taken from Alexiou et al. (Alexiou, Maragkakis et al. 2009) 

Arguably, the most important role of miRNAs in the living cell is targeting of mRNA molecules 

and several factors have been postulated to have an effect on this mechanism. Even though 

experimental validation of miRNA targets has been progressing in bounds in the past few years, a 

large portion of targeted genes still remains unverified. For this, deciphering miRNA function goes 

hand in hand with the development of computational target prediction programs. Since the initial 
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discovery of miRNAs several algorithms for miRNA target prediction have been developed. 

However all of them lack both in terms of specificity and sensitivity (Kiriakidou, Nelson et al. 

2004; Selbach, Schwanhausser et al. 2008). Most target prediction algorithms to date are biased 

towards heuristic assumptions regarding miRNA targeting such as the existence of a seed 

(nucleotides 2-7 of the miRNA) match between the miRNA and the target gene. However, recently 

it has been shown that such heuristics although informative are not always required and other types 

of binding are also possible (Shin, Nam et al. 2010). 

In order to increase specificity, most target prediction programs use several features such as 

evolutionary conservation, structural accessibility (Kertesz, Iovino et al. 2007), nucleotide 

composition (Grimson, Farh et al. 2007) and localization within the gene (Gaidatzis, van Nimwegen 

et al. 2007; Grimson, Farh et al. 2007). The limitation regarding most of these features is that they 

have been heuristically defined based on only a few data and therefore the contained information is 

not always fully assessed. 

In addition, traditionally, predictions for miRNA binding sites have been limited to the 3'UTR of 

mRNAs with only few exceptions which have nevertheless been shown (Kiriakidou, Nelson et al. 

2004; Selbach, Schwanhausser et al. 2008) to perform poorly on experimental data. Interestingly, 

the advent of high throughput sequencing data (Chi, Zang et al. 2009; Hafner, Landthaler et al. 

2010) has revealed that miRNAs tend to bind in approximately equal proportion on the 3'UTR and 

the coding sequence (CDS) of target mRNAs. Hafner et al. using microarrays suggested that 

miRNA targeting in the CDS usually infers little but measurable effect on miRNA mediated mRNA 

degradation. Also, analysis on the proteomics data of Selbach et al (Selbach, Schwanhausser et al. 

2008) reveals that approximately half of the targeted genes, following miRNA transfection, carry 

not a single corresponding miRNA seed match on their 3'UTR sequence indicating that alternative 

targeting mechanisms may be at play. 

Since miRNA biology constitutes a newly evolved scientific field, the related information has been 

expanding in an increasing way in the last years. For this, the development of tools that provide 

primary data is not on its own sufficient and there is need for applications, primarily web based, 

which will organize the available information and serve as an interface between bioinformatics 

tools and researchers. These applications need to be able to optimally organize the available data 

and present it in an intuitive and integrated way. 
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4. RESEARCH OBJECTIVES 

In this thesis there are two primary objectives which have been addressed. The first objective is the 

development of advanced miRNA target prediction programs capable of identifying the underlying 

nature of miRNA targeting and the second is the development of integrated tools which will reveal 

aspects regarding miRNA function. Both of these objectives aim in understanding the role of 

miRNAs in the cell and deciphering their function. The overall perspective is to provide researchers 

with integrated tools which they may use to design and analyze biological experiments. 

The former objective has several important aspects that need to be addressed starting from the 

design of the algorithm and ending to the evaluation of the prediction performance. The first step is 

to search and collect available data which confer information for miRNA targeting. Such a dataset 

might be the one of experimentally verified miRNA targets stored in TarBase (Sethupathy, Corda et 

al. 2006; Papadopoulos, Reczko et al. 2009). The next step would be the analysis of the available 

datasets and the decision on which of these may be used for developing the algorithm and which 

may be used for evaluating its performance. Next, the design of the algorithm needs to be addressed 

and a decision needs to be made on whether it would be a pure data driven approach or it would 

implement heuristic parameters introduced through the analysis of the biological data. Finally, the 

most important step is the evaluation of the prediction performance on several different datasets to 

verify that the algorithm can generalize on different kinds of datasets. 

The later objective also includes several steps that need to be addressed. One of the most important 

is the need to integrate available information from several primary resources such as for example a 

target prediction program, a gene expression experiment or a database for gene annotation. 

Specifically, the tools which have been developed as part of this thesis and which are described in 

the following have been designed to offer high interconnection with each other and with external 

databases and resources. Also one of the goals that has been set and which is usually set aside by 

many bioinformatics applications is the ease in using the tools by an average researcher. For this, all 

of the tools have been implemented as Web applications and are supported by an intuitive graphical 

interface. 





Page | 17  

 

5. microRNA TARGET PREDICTION 

Arguably, the most important role of miRNAs in the cell is the regulation of gene expression 

through post transcriptional targeting of mRNA molecules. Several factors have been postulated to 

confer information regarding this mechanism such as evolutionary conservation, structural 

accessibility (Kertesz, Iovino et al. 2007), nucleotide composition (Grimson, Farh et al. 2007) and 

localization within the gene (Gaidatzis, van Nimwegen et al. 2007; Grimson, Farh et al. 2007). In 

this chapter I describe all my related published work regarding miRNA target prediction. In 

chronological order, the work consists of a major release of the microT program called microT-

v3.0, a novel probabilistic approach for miRNA binding site identification called CoProHMM, a 

combined computational and experimental approach for the identification of viral miRNA targets 

and finally another major release of the microT program denoted as microT-CDS which addresses 

the identification of predicted miRNA targets within the coding sequence of genes. 
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5.1. Accurate miRNA target prediction correlates with protein repression 

levels. 
In the following publication we describe the program denoted as microT-v3.0. In short it is a 

program that uses parameters which are calculated individually for each miRNA and that computes 

a total score for predicted miRNA:target gene interactions as the weighted sum of scores for 

evolutionarily conserved and non-conserved binding sites. Primarily, the program assesses whether, 

in terms of evolutionary conservation, a predicted miRNA binding site can be distinguished from a 

random background or not. Also it is shown that the prediction score of the program correlates with 

protein repression levels. The prediction performance of the program has been evaluated 

independently in a work published in Nature by Selbach et al (Selbach, Schwanhausser et al. 2008) 

and has been shown to be the most precise program available. The work was published in 

Maragkakis et al (Maragkakis, Alexiou et al. 2009). 
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Abstract
Background: MicroRNAs are small endogenously expressed non-coding RNA molecules that regulate target gene expression
through translation repression or messenger RNA degradation. MicroRNA regulation is performed through pairing of the
microRNA to sites in the messenger RNA of protein coding genes. Since experimental identification of miRNA target genes
poses difficulties, computational microRNA target prediction is one of the key means in deciphering the role of microRNAs in
development and disease.

Results: DIANA-microT 3.0 is an algorithm for microRNA target prediction which is based on several parameters calculated
individually for each microRNA and combines conserved and non-conserved microRNA recognition elements into a final
prediction score, which correlates with protein production fold change. Specifically, for each predicted interaction the program
reports a signal to noise ratio and a precision score which can be used as an indication of the false positive rate of the prediction.

Conclusion: Recently, several computational target prediction programs were benchmarked based on a set of microRNA
target genes identified by the pSILAC method. In this assessment DIANA-microT 3.0 was found to achieve the highest precision
among the most widely used microRNA target prediction programs reaching approximately 66%. The DIANA-microT 3.0
prediction results are available online in a user friendly web server at http://www.microrna.gr/microT
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Background
MicroRNAs (miRNAs) are short, endogenously expressed
RNA molecules that regulate gene expression by binding
directly and preferably to the 3' untranslated region
(3'UTR) of protein coding genes [1]. Each miRNA is 19-24
nucleotides in length and is processed from a longer tran-
script which is referred to as the primary transcript (pri-
miRNA). These transcripts are processed in the cell
nucleus to short, 70-nucleotide stem-loop structures
known as pre-miRNAs. Pre-miRNAs are processed to
mature miRNAs in the cytoplasm by interaction with the
endonuclease Dicer which cleaves the pre-miRNA stem-
loop into two complementary short RNA molecules. One
of these molecules is integrated into the RISC (RNA
induced silencing complex) complex and guides the
whole complex to the mRNA, thus inhibiting translation
or inducing mRNA degradation [2]. Since their initial
identification, miRNAs have been found to confer a novel
layer of genetic regulation in a wide range of biological
processes. miRNAs were first identified in 1993 [3] via
classical genetic techniques in C. elegans, but it was not
until 2001 that they were found to be widespread and
abundant in cells [4-6]. This finding served as the primary
impetus for the development of the first computational
miRNA target prediction programs. DIANA-microT [7]
and TargetScan [8] were the first algorithms to predict
miRNA targets in humans, and led to the identification of
an initial set of experimentally supported mammalian tar-
gets. Such targets are now collected and reported in Tar-
Base [9] which contains more than one thousand entries
for human and mouse miRNAs.

In the last years several groups suggested that the first
nucleotides of a miRNA sequence are crucial for recogniz-
ing and binding to the messenger of a protein. Kiriakidou
et al. [7] showed the need for a nearly consecutive binding
of the first 9 miRNA nucleotides (driver sequence) (figure
1b) to the 3'UTR of protein coding genes in order to
repress translation. A statistical approach by Lewis et al.
[10] revealed that complementary motifs to nucleotides 2-
7 of the miRNA driver sequence (miRNA seed region)
remain preferentially conserved in several species. Typi-
cally, it is believed that a binding of at least 7 consecutive
Watson-Crick (WC) base pairing nucleotides between the
miRNA driver sequence and the miRNA Recognition Ele-
ment (MRE) is required for sufficient repression of protein
production. However, experimental evidence [11] show
that weaker bindings, involving only six consecutively
paired nucleotides or including imperfect bindings (e.g.
G:U wobble, bulge) may also confer protein repression
although they might generally be less effective [12]. For
this reason, miRNA target prediction programs mostly
rely on sequence alignment of the miRNA seed region to
the 3'UTR sequences of candidate target genes in order to

identify putative miRNA binding sites. Their specificity is
usually increased by additionally assessing the commonly
observed binding site evolutionary conservation or by
using additional features such as binding site structural
accessibility [13,14], nucleotide composition flanking the
binding sites [15] or proximity of one binding site to
another within the same 3' UTR [12,15,16].

DIANA-microT 3.0, the algorithm described here, utilizes
the above mentioned features and categorizes as putative
MREs those sites that have seven, eight or nine nucleotide
long consecutive WC base pairing with the miRNA driver
sequence, starting from position 1 or 2 of the 5'end of the
miRNA. For sites with additional base pairing involving
the 3'end of the miRNA, a single G:U wobble pair or bind-
ing of only 6 consecutive nucleotides to the driver
sequence are allowed. Briefly, the DIANA-microT 3.0
algorithm consists of (figure 1a): a) alignment of the
miRNA driver sequence on the 3'UTR of a protein coding
gene, b) identification of putative MREs based on specific
binding rules, c) scoring of individual MREs according to
their binding type and conservation profile, d) calculation
of an overall miRNA target gene (miTG) score through the
weighted sum of all MRE scores lying on the 3'UTR. The
program is designed to use up to 27 different species to
estimate MRE conservation scores and combines both
conserved and non-conserved MREs in a final miTG score
(figure 1c). The miTG score correlates with fold changes in
protein expression. Additionally, since the algorithm cal-
culates all weights and scores independently for each
miRNA it allows for the calculation of signal to noise ratio
(SNR) at different miTG score cut-offs providing precision
scores which serve as an indication of the false positive
rate of the predicted interactions.

Generally, miRNAs can repress the expression of proteins
in two ways: via mRNA degradation or via repression of
mRNA translation. Until recently, high throughput exper-
iments were only able to measure miRNA-mediated
changes at the mRNA level (degradation), allowing the
characterization of only a subset of direct miRNA targets
[17,18]. However, recently two groups [12,19] have inde-
pendently developed methods to characterize miRNA-
mediated gene expression changes at both the mRNA and
the protein level. Selbach et al. [19] used microarrays and
pulsed stable isotope labeling with amino acids in cell cul-
ture (pSILAC) assays to determine the genes targeted by
each of five over-expressed miRNAs in HeLa cells. Using
this set of experimentally supported targets the authors
performed a comparative assessment of several target pre-
diction programs. The benchmark revealed that the sim-
plest prediction method involving the search for
complementary sequences of the miRNA seed region on
the 3'UTR of genes achieved a precision (the fraction of
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the predicted targets that were actually downregulated) of
44% while only three of the prediction programs (includ-
ing an initial version of DIANA-microT 3.0) achieved sig-
nificantly higher precision. PicTar [20] and TargetScanS
[10] achieved approximately 62% precision compared to
DIANA-microT 3.0 with approximately 66%.

Methods
Identification of putative miRNA binding sites through 
sequence alignment
The program identifies the highest scoring alignment
between every nine nucleotide long window of the 3'UTR
with the miRNA driver sequence using a dynamic pro-
gramming algorithm. The alignment is based on the fol-
lowing binding rules. Firstly, a minimum of six

consecutive matches (Watson-Crick (W-C) or G:U) is
required. If the six matches are W-C and the binding starts
at position 1 or 2 of the miRNA driver sequence, then the
MRE is considered a 6mer. A 7mer (8mer, 9mer) has seven
(eight, nine) consecutive W-C matches starting at position
1 or 2 of the miRNA driver. A single G:U wobble pair is
allowed as long as there are at least six W-C pairs, yielding
7mers, 8mers and 9mers, each with a wobble base pair.

Filter of putative miRNA binding sites depending on 
binding energy
For sites with less than 7 consecutive W-C matches (6mer,
7mer with wobble, 8mer with wobble, 9mer with wob-
ble) an additional energy filter is applied. Using RNAhy-
brid [21] the algorithm estimates the free binding energy

The DIANA-microT 3.0 algorithmFigure 1
The DIANA-microT 3.0 algorithm. (a) A schematic overview of the algorithm. The miRNA driver sequence is mapped 
onto a 9 nt length window that slides along the 3'UTR sequence. The binding category of the driver:MRE interaction is defined 
by the number of binding nucleotides between the two sequences. G:U wobble pairs or less than 7 consecutive WC matches 
are only allowed if the free binding energy of the miRNA:MRE heteroduplex is under a binding category specific threshold 
(lower free binding energy corresponds to stronger binding). MREs are scored according to their binding category and degree 
of conservation in other species. The final miTG score is the weighted sum of all MREs on the miTG. (b) The top sequence 
(MRE) is part of the 3'UTR of a gene. The nine nucleotide region near the 5'end of the miRNA is called the driver sequence of 
the miRNA (shown in red). Sequences on the MRE, corresponding to positions 1-6, 2-7 and 3-8 from the miRNA 5'end are 
called anti-seed 1, anti-seed 2 and anti-seed 3 respectively. (c) An example of the miTG score calculation. The top line repre-
sents the 3'UTR sequence of a human gene containing three MREs with different conservation levels. Individual MRE scores are 
calculated depending on the degree of conservation of the MRE, and multiplied by a weight depending on the MRE binding cat-
egory. The sum of all weighted MRE scores defines the final miTG score.
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between the miRNA sequence and the 3'UTR sequence
flanking the identified putative binding site and compares
it to the perfect complement energy of the miRNA. As
"perfect complement energy" we denote the hypothetical
energy of the perfect binding between the miRNA
sequence and its reverse complement sequence. Therefore
an imperfect site, in terms of alignment, is considered as
MRE only if the ratio of the free binding energy to the per-
fect complement energy is higher than a binding-category
specific threshold. A threshold of 0.6 is used for 9mers
and 8mers containing a G:U wobble pair, and a threshold
of 0.74 is used for 7mers with a G:U wobble pair and
6mers. The energy thresholds have been calculated by
comparing the predicted binding sites of the real miRNA
sequence versus the predicted binding sites of several
shuffled miRNA sequences. The shuffled miRNA
sequences are designed to have the same driver as the real
miRNA but a shuffled 3' end with the same nucleotide
composition as the real miRNA. The free binding energy
ratio ei is defined as the ratio of the free binding energy
between the miRNA sequence and the 3'UTR sequence
flanking the identified putative binding site over the
miRNA perfect complement energy. Additionally, Nr(ei) is
defined as the number of binding sites of the real miRNAs
that have energy ratios greater than ei and as NS(ei) the
number of binding sites of the shuffled miRNAs that have
energy ratios greater than ei. The ratio R(ei) = Nr(ei)/NS(ei)
indicates how much more prevalent the free binding
energy eifor real binding sites compared to the shuffled
ones is. An example of the way this ratio R(ei) fluctuates is
provided in figure 2. For each binding category the energy
thresholds have been chosen at the point where the ratio

R(ei) becomes greater than 2 indicating that at this energy
value one can generally find two times more real binding
sites than random binding sites.

Mock miRNAs
Mock miRNAs are artificially produced miRNA sequences
which are independently created for each real miRNA.
These artificial miRNA sequences are designed to have
approximately the same number of predicted MREs as the
corresponding real miRNA and are generated through the
following procedure. Initially, all 3'UTR sequences are
scanned for sites perfectly complementary to each possi-
ble 6 nucleotide long motif (hexamer) excluding those
motifs corresponding to positions 1-6, 2-7 and 3-8 of real
miRNAs. The 60 hexamers having the closest number of
complementary sites to those of the seed of the real
miRNA are chosen. These hexamers are then used as the
seed of each artificially created mock miRNA. The remain-
ing sequence of the mock miRNAs is then produced by
randomly shuffling the remaining nucleotides of the real
miRNA.

miRNA Recognition Elements score (MRE score)

The identified MREs are checked for sequence conserva-
tion in several species based on the sequence alignment of
ortholog UTRs. An MRE X is considered conserved in spe-
cies A if X can also be identified at the exact same position
on the ortholog 3'UTR sequence of species A. The conser-
vation score cof an MRE is defined as the number of spe-
cies in which the MRE is conserved. The MRE score is
calculated individually for each real miRNA r, each bind-
ing category b and each conservation score c. Analytically,
for each binding category the number of MREs Nr, b(c) of

the real miRNA and the number of MREs Mr, m, b(c) of the

corresponding mock miRNAs with conservation score
equal or greater than c are counted and the ratio of the two
defines the MRE score (of binding category b at conserva-
tion score c). The equation defining this procedure is

 in which r is the

index of the real miRNA, b corresponds to the binding cat-
egory, c defines the conservation score and m defines the
index of the mock miRNA from the set of mock miRNAs
corresponding to the real miRNA r. In the described pro-
cedure the ratio is kept constant if Nrb(c) or Mr, m, b(c)/60

become less than 20. Figure 3 shows an example of Rrb for

2 binding categories at different MRE conservation scores.

miRNA target gene score

The scores of the MREs identified on the same 3'UTR are
combined through a weighted sum to produce the final

R c = N c M cr,b r,b r,m,b
m=

( ) ⋅ ( ) ( )∑60
1

60
/

Hybridization energy ratioFigure 2
Hybridization energy ratio. Ratio R(ei) (vertical axis) is 
plotted against the energy ratio ei (horizontal axis). The curve 
corresponds to the binding category which consists of seven 
WC pairs and a single G:U wobble pair.
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miTG score. The weights wb for each binding category b are

calculated using 75 miRNAs conserved in human, chim-
panzee, mouse, rat, dog and chicken, by comparing them
to 375 mock sequences (5 mock miRNAs for each
miRNA). The analysis is similar to the calculation of the
MRE score explained previously but in this case the 75
miRNAs are not treated independently but as a total. The

ratio  for binding category b and conservation score

c is calculated as

 where Nrb(c) is

the number of MREs of the r real miRNA categorized to
binding category b and having a conservation score greater
than c, Mr, m, b(c) represents the number of MREs of the m

mock miRNA categorized to binding category b succeed-
ing a conservation score greater than c and corresponding
to real miRNA r. As shown in figure 4 the weights for each
binding category are estimated based on the slope of a fit-

ted line. Fitting is performed based on linear least squares
approximation. For each binding category the weight is
defined as w(bindingcategory) = slope(bindingcategory)/
slope(9mer). For example, the weight for category "8mer"
would be w8mer = 0.31/0.39 = 0.79. Except for "9mer",

"8mer" and "7mer" the remaining categories do not differ
significantly from the mock background and conse-
quently in this analysis no specific weights are calculated
for these categories. In order to approximate the estimated
weights Dwb based on the above analysis, each MRE score

is multiplied by a specific weight mwb which depends on

the binding category of the MRE (table 1).

miTG score threshold assessment
A common challenge among miRNA target prediction
programs is the decision on a score threshold that will
reduce the number of misclassifications. Here a set of 100
experimentally supported targets for 43 different human
miRNAs, provided by TarBase 5.0 [9], has been used in
order to determine a biologically meaningful score thresh-
old. Based on this dataset, an analysis was performed to
test the capability of the algorithm to identify supported
targets when increasing the miTG score threshold. As
expected, the algorithm's capability reduces as the miTG
score increases (figure 5). However, there are two distinct
miTG scores (7.3 and 19.0) with significantly higher per-
formance reduction. For this reason, these miTG score val-
ues have been chosen as a loose and strict miTG score
threshold respectively. However, users are still allowed to
adjust the threshold at will to exchange between specifi-
city and sensitivity levels.

Precision

The precision of a prediction is defined as the ratio of cor-
rect positive predictions over all positive predictions [pre-
cision = truepositive /(truepositive + falsepositive)]. In the case
of DIANA-microT 3.0, the average number of miTGs for
mock miRNAs provides an estimation of the number of
false positive targets predicted. Therefore, the number of

′ ( )R cb

′ ( ) ⋅ ( ) ( )∑ ∑∑R c = N c M cb r,b
r=

r=

r,m,b
m=r=

5
0

75

1

5

1

75
/

miRNA recognition element scoreFigure 3
miRNA recognition element score. The MRE score 
(vertical axis) is plotted against the MRE conservation score 
(horizontal axis) for two different binding categories.

Table 1: Binding category weights

Category Estimated Weights (wb) Multiplication weights (mwb) Overall Diana weights Dwb = mwb/mw9mer

9mer 1 4 1.00 = 4/4

8mer 0.79 3 0.75 = 3/4

7mer 0.41 2 0.50 = 2/4

other - 1 0.25 = 1/4

The binding weights estimated for each binding category and the weights used in DIANA-microT 3.0.
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true positive predicted miTGs can be calculated by sub-
tracting the average number of predicted miTGs for the
mock miRNAs from the total number of predicted miTGs
for the real miRNA. In detail, the precision for miRNA r at
miTG score s is calculated by

 where Wr is

the number of miTGs of the r real miRNA having miTG

scores from s to s + Δs,  is the average number of

miTGs of the mock miRNAs corresponding to miRNA r

having miTG scores from s to s + Δs and Δs is a specified

miTG score window (Δs = 3).

miRNA sequences
The human and mouse miRNA sequences used by
DIANA-microT 3.0 have been downloaded from miRBase
Build 10.0 [22].

3'UTR sequences
The gene 3'UTR sequences have been downloaded from
Ensembl, release 48 [23]. Those 3'UTR sequences that cor-
respond to the same gene but to different gene transcripts

have been filtered to keep only the longest 3'UTR
sequence.

Multiple Alignment Files (MAFs)
The multiple genome alignment files have been down-
loaded from the UCSC Genome Browser [24]. The file
used for human (hg18) is the alignment to 16 vertebrate
genomes while for mouse (mm9) 29 vertebrate genomes
are used.

Results
Signal to Noise Ratio (SNR) assessment

The signal to noise ratio for a prediction algorithm is typ-
ically used for the evaluation of its specificity. For DIANA-
microT 3.0 the overall SNR is defined as the average signal
to noise ratio calculated individually for each miRNA. The
individual miRNA signal to noise ratio calculation is per-
formed by dividing the number of predicted miTGs of a

precision s = W s W s W sr r r,m r( ) ( ) − ( )⎡⎣ ⎤⎦ ( )/

Wr,m

Binding categories differ from the mock backgroundFigure 4
Binding categories differ from the mock background. 
Ratio  (vertical axis) versus the conservation score (hori-

zontal axis) for the set consisting of 75 miRNAs conserved in 
human, chimp, mouse, rat, dog, chicken. This diagram indi-
cates how each binding category may be differentiated as the 
conservation score increases (more conserved MREs). It may 
be seen that 9mers tend to differentiate more than 8mers 
and 8mers more than 7mers. Except for categories "9mer", 
"8mer" and "7mer" the remaining categories do not seem to 
differ significantly from the background.

′Rb

Define biologically meaningful score thresholdFigure 5
Define biologically meaningful score threshold. Exper-
imentally validated targets correctly predicted by DIANA-
microT 3.0 versus the average number of predicted miTGs 
per miRNA. The slope of this curve corresponds to the rate 
in which correct validated targets are discovered as more 
miTGs are predicted. There are two distinct points in which 
the slope changes. These points correspond to miTG score 
values of 19 and 7.3 which are proposed as the strict and 
loose miTG score thresholds respectively. As a control, the 
order of miTGs with scores lower than each threshold was 
shuffled. The discovery rate of these controls is shown with 
dotted lines. The red line shows all miTGs in random order, 
the blue line those with miTG score under 19 and the green 
line those with miTG score under 7.3. The difference in 
slope between the solid line and each dotted line shows the 
improvement on the discovery rate achieved by the DIANA-
microT scoring scheme. Two other target prediction pro-
grams (Pictar and TargetScan 4.2) have been compared to 
DIANA-microT 3.0 on the same dataset achieving similar 
precision levels (figure 9).
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real miRNA by the number of predicted miTGs for the set
of corresponding mock miRNAs. It is assumed that the
predicted miTGs for the mock miRNA sequences provide
an unbiased estimate of the number of miTGs predicted
by chance alone. Analytically, the SNR value of miRNA r
at miTG score s is calculated as

. In this formula

NGr(s) refers to the number of miTGs of the real miRNA r

having miTG scores greater than s while MGr, m(s) refers to

the number of miTGs of the mock miRNA m correspond-
ing to the real miRNA r having miTG score greater than s.
Figure 6 presents a graph of the SNR for seven different
miRNAs. The overall SNR calculation for DIANA-microT
3.0 is performed on two different sets of miRNAs. The first
set consists of 75 miRNAs conserved in 6 vertebrate spe-
cies while the second set consists of 227 unique miRNAs
each one representing a miRNA family with varying con-
servation levels. Figure 7 shows the diagram for the
number of predicted miTGs versus the miTG score. For an
miTG score threshold that yields an average of approxi-
mately 100 predicted target genes per miRNA, DIANA-
microT 3.0 achieves an overall SNR of 3.9 for the first
dataset and an overall SNR of 2.2 for the second dataset
which indicates that conserved miRNAs tend to achieve
higher SNR values.

Receiver Operating Characteristics (ROC) analysis on 
proteomics data
Until recently a common difficulty in assessing the per-
formance of a prediction algorithm was that the available
experimental data could not easily distinguish between
true and false targets. However, the recent study of Sel-
bach et al. provides both classes of targets allowing for the
estimation of both the true positive rate as well as the false
positive rate of a prediction. Using a log2 fold change cut-
off of -0.2 to distinguish between targeted and non-tar-
geted genes, the performance of DIANA-microT 3.0 is
assessed and presented as a ROC curve (figure 8).

Correlation of miTG score to the repression of protein 
production
In the study by Selbach et al[19], it was observed that there
is a correlation between the log2-fold change of protein
production with the number of occurrences of the hex-
amer corresponding to the seed of a miRNA in the 3'UTR

SNR s = NG s MG sr r r,m( ) ⋅ ( ) ( )∑60
1

60
/

Signal to noise ratio for 7 miRNAsFigure 6
Signal to noise ratio for 7 miRNAs. Curves showing the 
number of predicted miTGs versus the SNR for 7 miRNAs. 
The loose and strict thresholds have been marked in the fig-
ure with the symbols "N" and "S" respectively.

Overall signal to noise ratioFigure 7
Overall signal to noise ratio. The mean number of pre-
dicted miTGs per miRNA for different miTG score cutoffs. 
The red curve corresponds to a set of 75 miRNAs conserved 
in at least six species (human, chimp, mouse, rat, dog, 
chicken), whereas the blue curve corresponds to a set of 227 
miRNAs which represent the miRNA families (with varying 
conservation levels). The values next to the curves indicate 
the overall SNR. Higher miTG score leads to fewer pre-
dicted miTGs with higher overall SNR, which suggests a 
lower number of false positive predicted miTGs. The sug-
gested strict (red bars) and loose (green bar) miTG score 
thresholds are marked on the curves. For the strict miTG 
score threshold (miTG score = 19), the estimated overall 
SNR for the set of 227 miRNAs (blue line) is 3, meaning that 
approximately one in three predicted miTGs might be a false 
positive. In comparison, at the loose suggested threshold 
(miTG score = 7.3), approximately one in two predicted 
miTGs might be a false positive.
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of downregulated genes. When investigating the same
data using DIANA-microT 3.0, a similar correlation
between the level of protein down-regulation and the pre-
dicted miTG scores, SNR, and precision values is observed
(figure 9a). Interestingly, a linear regression analysis
shows that the combination of miTG score, precision,
SNR, and the number of anti-seeds (regions on the gene
3'UTR complementary to the motifs 1-6, 2-7, 3-8 of the
miRNA) as regressors provides the best accuracy in
attempting to predict such fold changes in protein expres-
sion. Figure 9b demonstrates the relationship between the
protein expression fold change versus the number of
occurrences of the miRNA anti-seed 2 (adjusted R2 = 0.12)
as well as the protein expression fold change versus the
combined regressor (adjusted R2 = 0.15).

Discussion and conclusion
In the last five years more than two dozen miRNA target
prediction programs for mammalian genomes have been
published [25]. Using data from a high throughput exper-
iment on five miRNAs [19] as a true-positive set of targets,
it has been shown that DIANA-microT 3.0 achieves com-
parable precision to two other leading target prediction
programs, TargetScanS [8] and PicTar [20]. Additionally,
DIANA-microT 3.0 provides prediction scores which cor-

DIANA-microT 3.0 ROC curveFigure 8
DIANA-microT 3.0 ROC curve. The ROC curve for 
DIANA-microT 3.0 calculated on the pSILAC data [19]. The 
suggested loose threshold of DIANA-microT 3.0 has been 
marked on the diagram with a red dot.

Correlation of DIANA-microT 3.0 prediction measures to protein repressionFigure 9
Correlation of DIANA-microT 3.0 prediction measures to protein repression. Fold changes are calculated for 
approximately 5,000 proteins after overexpression of a miRNA. The results for five miRNAs, as provided by Selbach et al., are 
used. The fold change and the miTG score is averaged in groups of 150 proteins sorted by fold change. (a) The correlation of 
several miRNA target prediction measures with protein production fold change induced by the same miRNAs. It may be 
observed that there is a trend for values of all the measures to increase as the level of downregulation increases. (b) The red 
line indicates the correlation between the anti-seed 2 occurrences on the 3'UTRs of downregulated genes with the protein 
production fold change of the corresponding genes using a linear regression. The blue line shows the corresponding correla-
tion for a linear regressor based on a combination of the miTG score, the precision, the SNR and the anti-seed 2 frequency. 
The combined linear regressor correlates better with the protein production fold change than the regressor based solely on 
the anti-seed 2 frequency.
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relate with protein production fold change and may be
used as an indication of the expected fold change in pro-
tein production. The performance of the algorithm has
been analyzed further by using a different set of supported
miRNA targets which has been extracted by the database
of experimentally supported targets [9]. The results also
indicate that the three programs (DIANA-microT 3.0, Pic-
Tar and TargetScan 4.2) achieve similar precision levels
(figure 10). However, as shown in table 2 and 3 there are
significant differences among the miTGs predicted by
DIANA-microT 3.0 and those predicted by each of the
other programs. Table 3 indicates that only 40% of the
miTGs predicted by DIANA-microT 3.0 are also predicted
by PicTar, and only 48% are predicted by TargetScan 4.2.
This leaves in either case approximately 50% of the targets
predicted only by DIANA-microT 3.0.

Recently, the rapid growth in the discovery rate of novel
miRNA sequences due to extensive usage of deep sequenc-
ing technology [14], and the fact that miRNAs have been
shown to undergo A-to-I RNA editing [15] have under-
lined the need for a web based program which would
allow for miRNA target predictions based on user defined
miRNA sequences. DIANA-microT 3.0 is one of the few
programs offering such a service, supporting the scientific

community with a tool which in total can be extensively
used for the analysis of miRNA dependent processes. This
tool can be accessed thought the DIANA-microT [26] web
server at http://www.microrna.gr/microT which includes
an optimized prediction algorithm that provides several
features, combined with a user friendly interface which
assists in the identification of interactions of interest.

As already mentioned, DIANA-microT 3.0 takes into
account both conserved and not conserved MREs. This
attribute provides the algorithm with a highly important
capability to predict targets of viral miRNA sequences.
Generally, targets of viral miRNAs are not expected to be
conserved and this limits the ability of algorithms
dependent on conservation to identify them. However,
since DIANA-microT 3.0 algorithm accepts non conserved
MREs it can successfully cope with viral miRNA
sequences.

Authors' contributions
MM and PA designed and developed the algorithm, per-
formed the statistical analysis and drafted the paper. GLP
contributed in the algorithm's implementation. MR par-
ticipated in the algorithm's design and drafted the paper.
TD, GG (Giannopoulos G.), TV and TS participated in the

Comparison on experimentally supported targetsFigure 10
Comparison on experimentally supported targets. 
Comparison of three target prediction programs (DIANA-
microT 3.0, Pictar and TargetScan 4.2) on the experimentally 
supported dataset. The average number of predicted miTGs 
per miRNA is presented on the horizontal axis. The total 
number of correctly predicted experimentally validated tar-
gets is shown on the vertical axis. All three programs tested 
perform similarly.

Table 2: Number of miTGs predicted in common by programs

Diana-microT PicTar TargetScan 4.2

Diana-microT 22391 8882 10651

PicTar 17135 12902

TargetScan 4.2 19299

The table diagonal corresponds to the total number of miTGs 
predicted by each program for all the miRNAs which are included in 
the set of experimentally verified targets. The number of miTGs 
predicted in common by each two target prediction programs is 
shown in the table. For example, TargetScan and PicTar have 12902 
predicted targets in common while DIANA-microT and PicTar have 
8882.

Table 3: Percentage of common predictions among programs

Diana-microT PicTar TargetScan 4.2

Diana-microT 100% 39.67% 47.57%

PicTar 51.84% 100% 75.30%

TargetScan 4.2 55.19% 66.85% 100%

The percentage of each program's predicted targets (rows) which are 
also predicted by another program (columns) for all the miRNAs 
which are included in the set of experimentally verified targets. For 
example, from the miTGs predicted by DIANA-microT 3.0, 39.67% 
are also predicted by PicTar and 47.57% by TargetScan 4.2.



Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2009, 10:295 http://www.biomedcentral.com/1471-2105/10/295

Page 10 of 10

(page number not for citation purposes)

design and implementation of the web server database.
GG (Goumas G.), EK, KK, NK, PT participated in the
implementation of the algorithm's parallelization and
contributed in the development of the online execution of
the algorithm. VAS contributed in the web server design
and development. PS helped to draft the paper and partic-
ipated in the early development of the algorithm. AGH
conceived of the study, and participated in its design and
coordination and helped to draft the manuscript. All
authors read and approved the final manuscript.

Acknowledgements
Funding: Aristeia Award from General Secretary Research and Technology, 
Greece

References
1. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism,

and function.  Cell 2004, 116(2):281-297.
2. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Ham-

mond SM, Joshua-Tor L, Hannon GJ: Argonaute2 is the catalytic
engine of mammalian RNAi.  Science 2004,
305(5689):1437-1441.

3. Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic
gene lin-4 encodes small RNAs with antisense complemen-
tarity to lin-14.  Cell 1993, 75(5):843-854.

4. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T: Identification
of novel genes coding for small expressed RNAs.  Science 2001,
294(5543):853-858.

5. Lau NC, Lim LP, Weinstein EG, Bartel DP: An abundant class of
tiny RNAs with probable regulatory roles in Caenorhabditis
elegans.  Science 2001, 294(5543):858-862.

6. Lee RC, Ambros V: An extensive class of small RNAs in
Caenorhabditis elegans.  Science 2001, 294(5543):862-864.

7. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C,
Mourelatos Z, Hatzigeorgiou A: A combined computational-
experimental approach predicts human microRNA targets.
Genes Dev 2004, 18(10):1165-1178.

8. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Predic-
tion of mammalian microRNA targets.  Cell 2003,
115(7):787-798.

9. Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, Hatzigeor-
giou AG: The database of experimentally supported targets:
a functional update of TarBase.  Nucleic Acids Res 2009:D155-158.

10. Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often
flanked by adenosines, indicates that thousands of human
genes are microRNA targets.  Cell 2005, 120(1):15-20.

11. Brennecke J, Stark A, Russell RB, Cohen SM: Principles of micro-
RNA-target recognition.  PLoS Biol 2005, 3(3):e85.

12. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP: The
impact of microRNAs on protein output.  Nature 2008,
455(7209):64-71.

13. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E: The role of site
accessibility in microRNA target recognition.  Nat Genet 2007,
39(10):1278-1284.

14. Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y: Potent
effect of target structure on microRNA function.  Nat Struct
Mol Biol 2007, 14(4):287-294.

15. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel
DP: MicroRNA targeting specificity in mammals: determi-
nants beyond seed pairing.  Mol Cell 2007, 27(1):91-105.

16. Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M: Inference of
miRNA targets using evolutionary conservation and path-
way analysis.  BMC Bioinformatics 2007, 8:69.

17. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J,
Bartel DP, Linsley PS, Johnson JM: Microarray analysis shows that
some microRNAs downregulate large numbers of target
mRNAs.  Nature 2005, 433(7027):769-773.

18. Sood P, Krek A, Zavolan M, Macino G, Rajewsky N: Cell-type-spe-
cific signatures of microRNAs on target mRNA expression.
Proc Natl Acad Sci USA 2006, 103(8):2746-2751.

19. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajew-
sky N: Widespread changes in protein synthesis induced by
microRNAs.  Nature 2008, 455(7209):58-63.

20. Lall S, Grun D, Krek A, Chen K, Wang YL, Dewey CN, Sood P,
Colombo T, Bray N, Macmenamin P, et al.: A genome-wide map of
conserved microRNA targets in C. elegans.  Curr Biol 2006,
16(5):460-471.

21. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R: Fast and
effective prediction of microRNA/target duplexes.  Rna 2004,
10(10):1507-1517.

22. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase:
tools for microRNA genomics.  Nucleic Acids Res 2008:D154-158.

23. Flicek P, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, Clarke L,
Coates G, Cunningham F, Cutts T, et al.: Ensembl 2008.  Nucleic
Acids Res 2008:D707-714.

24. Karolchik D, Hinrichs AS, Kent WJ: The UCSC Genome
Browser.  Curr Protoc Bioinformatics 2007, Chapter 1(Unit 1):4.

25. Sethupathy P, Megraw M, Hatzigeorgiou AG: A guide through
present computational approaches for the identification of
mammalian microRNA targets.  Nat Methods 2006,
3(11):881-886.

26. Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL,
Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, et al.:
DIANA-microT web server: elucidating microRNA func-
tions through target prediction.  Nucleic Acids Res
2009:W273-276.



Page | 29  

 

5.2. Predicting miRNA targets utilizing an extended profile HMM 

In the following publication we describe a data driven alignment method for miRNA targeting. One 

of the most critical steps in a miRNA target prediction program is the alignment of the miRNA 

sequence against the target mRNA sequence for the identification of putative miRNA binding sites. 

For this, several approaches have been suggested but most of them are based on heuristic 

assumptions guided by a few experimental data. To address this issue, we have developed a novel 

data driven method based on Profile Hidden Markov Models. This method has been denoted as 

Conditional Profile Hidden Markov Model (CoProHMM) and is shown to outperform existing 

alignment methods. This work was published in Grau et al (Grau, Arend et al. 2010). 

 



Predicting miRNA targets utilizing an
extended profile HMM

Jan Grau1,∗, Daniel Arend1, Ivo Grosse1, Artemis G. Hatzigeorgiou2, Jens Keilwagen3,
Manolis Maragkakis1,2, Claus Weinholdt1, and Stefan Posch1

1 Institute of Computer Science, Martin Luther University Halle–Wittenberg, Germany
2 Institute of Molecular Oncology, Biomedical Sciences Research Center ’Alexander Fleming’, Vari, Greece

3 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany

Abstract: The regulation of many cellular processes is influenced by miRNAs, and
bioinformatics approaches for predicting miRNA targets evolve rapidly. Here, we
propose conditional profile HMMs that learn rules of miRNA-target site interaction
automatically from data. We demonstrate that conditional profile HMMs detect the
rules implemented into existing approaches from their predictions. And we show that
a simple UTR model utilizing conditional profile HMMs predicts target genes of miR-
NAs with a precision that is competitive compared to leading approaches, although it
does not exploit cross-species conservation.

1 Introduction

miRNAs are short (∼ 22 nt) endogeneous RNAs that bind to partially complementary
sites on mRNA target sequences. They induce cleavage of the miRNA-mRNA duplex
or repress translation of the bound mRNA [BSRC05]. Hence, miRNAs influence gene
expression and introduce a novel level of gene regulation. For instance, several miRNA
signatures have already been successfully associated with human cancers. In animals,
miRNAs preferentially bind to the 3’ untranslated region (UTR) of the mRNA, and for
binding a high complementarity between miRNA and target is required only at the 5’ end
of the miRNA. Computational miRNA target prediction plays a key role in deciphering
the functional role of miRNAs. Several dozen programs have been therefore developed in
the last years, and in the following, we describe the main idea behind some of the most
widely used programs.

[LSJR+03] propose an algorithm for the prediction of targets of vertebrate miRNAs called
TargetScan. TargetScan requires perfect complementarity between positions 2 and 8 at the
5’-end of the miRNA and a potential target, and the free energy of binding between miRNA
and target is computed. Predictions are verified using orthologous UTR sequences from
other organisms. [LBB05] propose a refined version called TargetScanS, which demands
a shorter region of the target to be complementary to nucleotides 2 − 7 of the miRNA.
TargetScan 5.0 [FFBB09] additionally considers the distance from the 3’ UTR and AU
content.



In contrast to TargetScan, miRanda [EJG+03] does not require perfect complementarity
at the seed region, but uses an algorithm similar to Smith-Waterman sequence alignment
with similarity scores of +5 for G:C and A:U basepairs, +2 for G:U basepairs, and −3
for mismatches, and the scores for the first 11 positions of the alignment are weighted by
a factor of 2. Potential target sites (TSs) are filtered for a minimum similarity score and a
minimum free energy.

PicTar [KGP+05] searches for perfectly complementary seed regions of 7 nt starting from
position 1 or 2 of the miRNA. Mismatches in the seed region are allowed if these do
not increase the free energy. Additionally, a filter with respect to the free energy of the
complete miRNA-mRNA duplex is applied.

DIANA-microT [MRS+09] prefers perfect complementarity of 7 to 9 nt starting from
position 1 or 2 of the miRNA. However, if the considered TS shows good complementarity
to the 3’ end of the miRNA, the length of this seed region may be reduced to 6 nt, and
single G:U basepairs are allowed. DIANA-microT uses orthologous UTRs from up to 27
organisms for assessing the conservation of TSs. Finally, the score of a potential UTR
target is computed as a weighted average of all predicted TSs.

In contrast to previous approaches, we propose a fully statistical approach for predicting
TSs of given miRNAs that is capable of learning rules of miRNA-TS binding from data
sets comprising pairs of miRNAs and associated TSs. This approach employs an extension
of profile hidden Markov models (HMMs) [KBM+94], which we call conditional profile
HMM (CoProHMM), and learns parameters by the discriminative maximum supervised
posterior (MSP) principle [CdM05, GKK+07]. Since all parameters of CoProHMMs are
learned from training data, this approach is not biased towards heuristic assumptions about
miRNA-TS interaction like the existence or length of a seed region, unless the training data
are.

2 Methods

In the following, we introduce CoProHMMs for modeling the binding between miRNA
and TS. We describe how we learn CoProHMMs from data, and we explain how we com-
bine several predictions of a learned CoProHMM to finally predict target genes of a given
miRNA.

2.1 Conditional profile HMMs

At the basis of the CoProHMM modeling miRNA TSs, we use a standard profile HMM
architecture [KBM+94], which is illustrated in Fig. 1. This architecture is also referred
to as “plan9” due to its 9 transitions at each layer of the model. We define a total of K
match states Mk, which emit a nucleotide of the TS with a probability that is conditional
on the nucleotide at position k of the miRNA. Here, we use K = 22, since this is the
length of a typical miRNA and, hence, the model covers all positions of the miRNA that



are potentially interacting with the TS. If a TS and the associated miRNA are perfectly
complementary, we anticipate that only match states are visited for emitting the complete
sequence of the TS. Otherwise, silent delete states Dk allow for the insertion of gaps into
the TS, insert states Ik allow for including gaps in the miRNA, and match states also
allow to replace nucleotides. In Fig. 1, edges represent transition probabilities not fixed

I1I0 IKI2 IK+1

MK+1M1M0 MKM2

DK+1D2 DKD0 D1

Figure 1: Plan9 architecture of the proposed CoProHMMs. Circles represent silent delete states that
do not emit nucleotides of the TS, diamonds represent insert states that emit nucleotides of the TS
without considering the nucleotides of the miRNA, and rectangles represent match states that emit
nucleotides of the TS with probabilities conditional on the nucleotides of the miRNA. Admissible
paths start at D0 and end at DK+1. States with dashed borders are not visited in admissible paths.

to 0. From each node of column k, we can reach node Ik in the same column, and nodes
Mk+1 and Dk+1 in the next column. Each admissible path starts at D0 and ends at DK+1.
Hence, the states M0, IK+1, and MK+1 are never visited in admissible paths, and are only
included to simplify recursive definitions in the following.

We parameterize the transition probabilities and the emission probabilities by normalized
exponentials [Mac98, BB01] using real-valued parameters, since this allows for an uncon-
strained numerical optimization of the parameters with respect to the discriminative MSP
principle.

According to the plan9 architecture, we define the transition probability PT (V |Sk,βT,Sk
)

of going from node Sk ∈ {Ik,Mk, Dk} to node V given parameters βT,Sk
as

PT (V |Sk,βT,Sk
) =

{
exp(βV |Sk

)P
Ṽ ∈{Ik,Mk+1,Dk+1}

exp(βṼ |Sk
) if V ∈ {Ik,Mk+1, Dk+1}

0 otherwise
,

where βT,Sk
= (βIk|Sk

, βMk+1|Sk
, βDk+1|Sk

), βV |Sk
∈ R.

In contrast to standard profile HMMs, we use conditional probabilities depending on the
nucleotides of the miRNA for the emissions of the match states. For match state Mk, we
define the conditional emission probability PMk

(a|rk,βMk
) of symbol a in the TS given

the k-th symbol rk of the miRNA and parameters βMk
as

PMk
(a|rk,βMk

) =
exp(βa|rk,Mk

)∑
ã∈Σ exp(βã|rk,Mk

)
, (1)

where βMk
= (βA|A,Mk

, βC|A,Mk
, . . . , βU |U,Mk

), βa|b,Mk
∈ R.

Finally, we parameterize the emission probability PIk
(a|βIk

) of symbol a at insert state
Ik given parameters βIk

in analogy to equation (1).



We define forward variables FSk
(`,x|r,β) as the probability of observing the first ` sym-

bols of the TS sequence x and visiting node Sk in state interval s(`,x|r) given parameters
β and the sequence r of the miRNA, i.e.,

FSk
(`,x|r,β) = P (x1, . . . , x`, Sk ∈ s(`,x|r)|r,β) . (2)

A node Sk is visited in state interval s(`,x|r) if it is contained in a path from D0 to DK+1,
and the symbols x1 to x` have been emitted either by predecessors of Sk in the path or by
Sk itself, whereas x`+1 is emitted by a successor of Sk in this path.

We use these forward variables for defining the likelihood P (x|ts, r,βts) of TS x given
the class ts of TS, the sequence of the miRNA r, and parameters βts , i.e.

P (x|ts, r,βts) = FDK+1(L,x|r,βts). (3)

Using this definition, the likelihood P (x|ts, r,βts) is not necessarily normalized over all
possible sequences x ∈ ΣL of given length L.

Similar to original profile HMMs, we recursively derive the forward variables of match
state Mk using its predecessors Sk−1 ∈ {Ik−1, Dk−1,Mk−1} from the previous column
of the plan9 architecture (cf. Fig. 1) as

FMk
(`,x|r,β) = PMk

(x`|rk,βMk
)∑

Sk−1

FSk−1(`− 1,x|r,β) PT (Mk|Sk−1,βT,Sk−1). (4)

In analogy, we derive the forward variables of insert states and delete states.

We initialize the forward variables as follows: We can observe D0 only before the emission
of the first symbol. Hence, we set FD0(`,x|r,β) to 1 if ` = 0 and to 0 otherwise. We
cannot reach M0 in any admissible path and, thus, FM0(`,x|r,β) = 0. Finally, we set
FSk

(0,x|r,β) = 0 for all emitting states Sk.

2.2 Discriminative training

For learning the parameters of the CoProHMM discriminatively, we need an additional
background model. Here, we use a homogeneous Markov model of order 1 with parame-
ters βbg that do not depend on the miRNA r, i.e.,

P (x|bg , r,βbg) = PhMM(1)(x|βbg). (5)

We derive the class posterior of class c ∈ {ts, bg} using the likelihoods P (x|c, r,βc) of
equations (3) and (5) as

P (c |x, r,β) =
P (c|β)P (x|c, r,βc)∑
c̃ P (c̃|β)P (x|c̃, r,βc̃)

, (6)

where P (c|β) denotes the a-priori probability of class c, which we parameterize in analogy
to equation (1).



For Bayesian inference, we define a prior on the parameters β. For the homogeneous
Markov model of class bg , we use a transformed product-Dirichlet prior [Mac98] with
equivalent sample size (ESS) [HGC95] αbg ·K. We define another transformed product-
Dirichlet prior with ESS αts for the parameters of the CoProHMM, which is the product of
independent transformed Dirichlet priors for each set of transition parameters and each set
of emission parameters. We use Dirichlet priors, since these are conjugate to the likelihood
of the homogeneous Markov model and to the distribution of transitions and (conditional)
emissions. Hence, their hyper-parameters can be intuitively interpreted as pseudo counts.
In the following studies, we use αbg = αts = 4.

We learn all parameters β on a set of labelled training data (x1, r1, c1), . . . , (xN , rn, cN ).
These training data comprise a sufficient number of TSs, i.e. cn = ts , and non-TSs of
several miRNAs. Learning the parameters on the TSs of multiple miRNAs conjointly is
motivated by the expectation that by this means, CoProHMM may detect general rules
of miRNA-TS binding, that could not be detected if we, for instance, learned a standard
profile HMM on the TSs of a single miRNA.

We optimize the parameters with respect to the discriminative MSP principle [CdM05,
GKK+07], i.e.,

β∗ = argmax
β

[
N∏

n=1

P (cn |xn, rn,β)

]
q (β |αbg , αts) , (7)

where q (β |αbg , αts) denotes the product-Dirichlet priors on the parameters β. This opti-
mization must be carried out numerically, which we accomplish by a quasi-Newton second
order method.

2.3 Predicting target genes

In the following, we describe how we utilize a CoProHMM for predicting target genes of a
miRNA r. We assume that the CoProHMM has already been trained on a set of miRNAs –
not necessarily including r – and associated TSs and non-TSs. To this end, we extract the
UTR yn of each gene n. Using a sliding window of width |r|, we apply the CoProHMM
to each sub-sequence of yn and compute the log-likelihood according to equation (3)
given miRNA r. For each UTR, we consider the I sub-sequences yielding the largest
log-likelihoods sn,i, which end at positions qn,i. Let dn = qn,1 and d′n = |yn| − qn,1

be the distance of the sub-sequence with the largest log-likelihood to the 3’ and 5’ end
of the UTR, respectively. Let (pn,1, . . . , pn,I) denote the positions (qn,1, . . . , qn,I) sorted
ascendingly. Let zn = (sn,1, . . . , sn,I , dn, d′n, pn,1, . . . , pn,I) denote the vector of these
features representing UTR yn.

By inspecting histograms of the scores sn,i, we find that these may be modeled by a
mixture of two Gaussian densities, i.e.,

P (sn,i|βs
c,i) = P (us = 1|βs,m

c,i ) N (si|µ1,i,c, κ1,i,c) + P (us = 2|βs,m
c,i ) N (si|µ2,i,c, κ2,i,c),

where βs
c,i = (βs,m

c,i , µ1,i,c, κ1,i,c, µ2,i,c, κ2,i,c), µk,i,c and κk,i,c denote the mean and



the log-precision of Gaussian density k, respectively, and the component probabilities
P (us = u|βs,m

c,i ) are parameterized in analogy to equation (1).
To allow for variability in TS positioning, we model dn and d′n each by a mixture of two
gamma densities, i.e.,

P (dn|βd
c ) = P (ud = 1|βd,m

c ) G(dn|αd
1,c, β

d
1,c) + P (ud = 2|βd,m

c,i ) G(dn|αd
2,c, β

d
2,c),

where βd
c = (βd,m

c , αd
1,c, β

d
1,c, α

d
2,c, β

d
2,c), and αd

k,c and βd
k,c denote the log-shape and

log-rate of gamma density k, respectively. We define the density P (d′n|βd′

c ) in analogy.

We model the distances pn,i+1 − pn,i by another gamma density, i.e.,

P (pn,i+1 − pn,i|βp
c ) = G(pn,i+1 − pn,i|αp

c , β
p
c ),

where βp
c = (αp

c , β
p
c ).

The complete likelihood of zn representing UTR yn of gene n employing convenient
independence assumptions amounts to

P (zn|c,βc) ∝
I∏

i=1

P (sn,i|βs
c,i) P (dn|βd

c ) P (d′n|βd′

c )
I−1∏
i=1

P (pn,i+1 − pn,i|βp
c ). (8)

In the following studies, we use I = 5.

In analogy to equation (6), we define the class posterior in terms of likelihoods P (zn|c,βc)
and a-priori class probabilities P (c|β). As for the training of the TS model, we optimize
the parameters with respect to the discriminative MSP principle (cf. equation (7)) using
a training data set of target and non-target genes. In this case, we use beta priors on the
parameters of the component probabilities, normal-gamma priors on the parameters of the
Gaussian densities, and the conjugate prior according to the definition of the exponential
family for the gamma densities. Again, we use an ESS of 4 for both classes. We finally
predict target genes based on the class posterior.

3 Results & Discussion

In the following, we first investigate if CoProHMMs can learn characteristics of TSs from
data. To this end, we use TSs predicted by existing approaches. Second, we evaluate the
utility of CoProHMMs for the prediction of target genes of miRNAs on a benchmark data
set.

3.1 Pilot study: Learning CoProHMMs from predictions

We learn CoProHMMs on the predictions of miRanda and TargetScan to investigate if
CoProHMMs can learn the rules implemented into these approaches from their predic-
tions. We choose miRanda and TargetScan, because their approaches differ notably. If



CoProHMMs can detect such characteristics from predictions, we might expect that they
are also capable of learning novel or refined rules of miRNA-TS binding from experimen-
tally verified TS.

We extract all human TSs and associated miRNAs predicted by TargetScan and miRanda
from miRNAMap1 [HCT+08]. For TargetScan, we use all 244,389 TSs, while we ran-
domly sample 500,000 TSs from the predictions of miRanda. We generate a non-target
data set by randomly selecting miRNAs from the mature human miRNAs listed at miR-
Base2 [GJSvDE08]. As non-TSs of these miRNAs, we randomly draw 500,000 sub-
sequences of length |r| ± 3 from 3’-UTRs of human genes according to NCBI Genbank3

human genome build 37.1.

We present a graphical representation of the CoProHMMs learned on the miRanda data
set and the TargetScan data set in Fig. 2. Here, we depict only the most interesting region
around the seed, while the complete CoProHMMs for miRanda and TargetScan as well as
other approaches are available online4. For the states, we use the same shapes as in Fig. 1.
The thickness of outgoing edges represents the transition probabilities to the successors
of a node. We illustrate the emission probabilities of insert states by a row of grayscale
boxes, where the first box corresponds to A, the second box corresponds to C, the third
box corresponds to G, and the fourth box corresponds to U. The darker a box, the higher is
the corresponding emission probability. In analogy, the conditional emission probabilities
of match states are represented by a matrix comprising such rows, where each row corre-
sponds to the conditional probability distribution given one nucleotide of the miRNA. The
probabilities of visiting a state are visualized by the darkness of the background of each
node. The darker the background of a node the higher the probability of visiting this node.

Considering the CoProHMM learned on the miRanda data set, we recover many rules built
into miRanda. From the conditional emission probabilities of the match states, we observe
a general tendency to complementary base pairings between the TS and the miRNA. This
tendency is especially pronounced for the match states in the seed region, but can also be
observed for the match states at position 1 and positions 9 to 11. We also detect a slight
preference for G:U wobble basepairs. These observations are most likely a result of the
Smith-Waterman like alignment employed by miRanda. Additionally, miRanda assigns a
weight of 2 to the first 11 positions of the alignment, which is reflected by the increased
probabilities of visiting match states in the seed region, although this preference already
begins to decline at position 8 of the learned CoProHMM.

As a second example, we consider the CoProHMM learned on the TargetScan data set in
Fig. 2(b). Notable differences between the CoProHMM for the TargetScan data set and the
miRanda data set can be observed for the conditional emission probabilities at the match
states. At positions 2 to 8 of Fig. 2(b), we find complementary basepairs almost exclu-
sively, while a slight preference for complementary basepairs is present at the bordering

1ftp://mirnamap.mbc.nctu.edu.tw/miRNAMap2/miRNA Targets/Homo sapiens/
miRNA targets hsa.txt.tar.gz

2http://www.mirbase.org
3http://www.ncbi.nlm.nih.gov
4http://www.jstacs.de/index.php/MiRNAs
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Figure 2: CoProHMMs learned on the miRanda data set (a) and TargetScan data set (b).

positions 1 and 9. In contrast, the remaining positions exhibit only very slight preferences
for specific basepairs. Again, these findings are closely related to the main characteristics
built into TargetScan. The perfect complementarity at positions 2 to 8 of the CoProHMM
reflects the requirements of TargetScan. We also observe a preference for complementary
basepairs at positions 1 and 9, which most likely can be attributed to the fact that initial
perfect matches in the seed region may be elongated to either side in TargetScan.

These findings suggest that CoProHMMs are indeed capable of recovering the rules built
into miRanda and TargetScan from prediction and, hence, may also be capable of inferring
the rules underlying miRNA-TS binding from experimentally verified TSs, once these
become available in sufficient quantity.

3.2 Benchmark study: Predicting miRNA target genes

We investigate the utility of CoProHMMs for the prediction of miRNA target genes using
the pSILAC data of Selbach et al., which have also been used in recent benchmark studies
[SST+08, AMP+09]. To this end, we learn a CoProHMM using a foreground data set
that comprises 12 verified TSs and 667 predicted TSs within UTRs of verified target genes
extracted from mirecords5 v. 1 [XZC+09]. As these TSs are too few to reliably learn the
models, we also include the TargetScan data set and 405,569 TSs predicted by DIANA-
microT. We use predictions of these two approaches, since they yield reasonable precisions
in the benchmark studies. We use the same background data set as in the pilot study. We
assign a weight of 500 to all verified TSs and a weight of 50 to all predicted TSs in verified
target genes to reflect our increased confidence in these data, while we assign a weight of

5http://mirecords.biolead.org/download data.php?v=1
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Figure 3: ROC curve (a) and precision-recall curve (b) of the classifier using the UTR model (solid
black line) and the classifier using the best score of the CoProHMM within each UTR sequence
(dotted black line) compared to other approaches.

1 to all other TSs. All TSs of miRNAs contained in the Selbach benchmark data set are
excluded when training the CoProHMM to allow for unbiased evaluation.

We extract the UTRs of all genes considered in [SST+08] according to [AMP+09]. For
these genes, Selbach et al. measured the influence of overexpression or underexpression
of a miRNA on the abundance of the corresponding proteins for 5 different miRNAs. For
each of these miRNAs, we partition the UTRs into target and non-target UTRs using a
threshold of −0.2 on the protein log-fold changes. We assess the performance of the
UTR model using the predictions of the CoProHMM in a 5-fold cross validation. In each
iteration of the cross validation, we train the parameters of the UTR model on the numeric
vectors zn obtained for 4 of the 5 miRNAs, and we compute the log-likelihood ratios
using this trained UTR model for the numeric vectors obtained for the remaining miRNA.
In analogy to [AMP+09], we finally use all log-likelihood ratios to compute sensitivity,
precision, and false positive rate for different thresholds.

In Fig. 3, we compare the performance of the classifier using the UTR model (solid black
line) to other approaches by means of the precision-recall curve and the ROC curve. As
a reference, we also include the performance of a classifier that only uses the best score
of the CoProHMM over each UTR sequence, i.e., sn,1, (dotted black line). Considering
Fig. 3(a), we find that even this classifier using only the best score yields a substantially
higher sensitivity than miRanda and Seed for a broad range of false positive rates. Sur-
prisingly, the classifier using the simple UTR model, which does not exploit conservation
across species, achieves comparable or slightly improved sensitivities compared to mi-
Randa, Seed, PicTar, and microT, while it performs only slightly worse than TargetScan
5.0 for false positive rates below 0.06.

Turning to the precision-recall curve in Fig. 3(b), we find a similar picture. Notably, the
classifier using the UTR model again achieves comparable or even higher precisions than



miRanda, Seed, PicTar, and microT. However, it can outperform TargetScan 5.0 only for
very low sensitivities and yields lower precisions for sensitivities between 0.03 and 0.28.

The performance of both classifiers using CoProHMMs is astonishing, because, in con-
trast to most of the other approaches, they do not exploit conservation across different
species. Hence, the inclusion of cross-species conservation into CoProHMMs and the
proposed UTR model, and the integration of CoProHMMs into other approaches might be
a worthwhile direction of future research.

4 Conclusions

miRNAs are involved in the regulation of many cellular processes, and the prediction of
miRNA targets is one of the most active fields of bioinformatics. Here, we propose a novel
statistical model called conditional profile HMM (CoProHMM) for learning the rules of
miRNA-TS interaction from data. We demonstrate that CoProHMMs are capable of re-
constructing patterns of miRNA-TS binding built into existing programs from predictions
of these approaches.

Conservation is key feature of most miRNA target prediction approaches leading to higher
precision at the expense of sensitivity. Interestingly, we find in a benchmark study that
a simple UTR model utilizing CoProHMMs yields a competitive precision compared to
leading approaches for predicting target genes, although it does not exploit conservation
across species.

We anticipate that the number of experimentally verified TSs will rapidly increase in the
next years. Only recently, [CZMD09, HLB+10] have independently published novel bio-
logical data that shed light on miRNA targeting. Briefly, the two experimental approaches
use in-vivo crosslinking, Ago2 immunoprecipitation and cDNA sequencing, and have been
able to determine TSs of several miRNAs with high accuracy. Since the power of statis-
tical approaches like CoProHMMs highly depends on the quality of the training data, we
might speculate that the performance of CoProHMMs will even increase using these data.
Additionally, CoProHMMs might be a suitable approach to extract new and refined rules
of miRNA-TS binding from such verified TSs.

We make an implementation of the CoProHMMs and the UTR model available to the
scientific community with the next release of the open source Java library Jstacs6.
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[CdM05] Jesús Cerquides and Ramon López de Mántaras. Robust Bayesian Linear Classifier
Ensembles. In Proceedings of the 16th European Conference on Machine Learning,
volume 3720 of Lecture Notes in Computer Science, pages 72–83. Springer, 2005.

[CZMD09] Sung Wook Chi, Julie B. Zang, Aldo Mele, and Robert B. Darnell. Argonaute HITS-
CLIP decodes microRNA-mRNA interaction maps. Nature, 460(7254):479–486, 07
2009.

[EJG+03] Anton Enright, Bino John, Ulrike Gaul, Thomas Tuschl, Chris Sander, and Debora
Marks. MicroRNA targets in Drosophila. Genome Biology, 5(1):R1, 2003.

[FFBB09] Robin C. Friedman, Kyle Kai-How Farh, Christopher B. Burge, and David P. Bartel.
Most mammalian mRNAs are conserved targets of microRNAs. Genome Research,
19(1):92–105, 2009.

[GJSvDE08] Sam Griffiths-Jones, Harpreet Kaur Saini, Stijn van Dongen, and Anton J. Enright.
miRBase: tools for microRNA genomics. Nucleic Acids Research, 36(suppl 1):D154–
158, 2008.

[GKK+07] Jan Grau, Jens Keilwagen, Alexander Kel, Ivo Grosse, and Stefan Posch. Super-
vised posteriors for DNA-motif classification. In Claudia Falter, Alexander Schliep,
Joachim Selbig, Martin Vingron, and Dirk Walther, editors, German Conference on
Bioinformatics, volume 115 of Lecture Notes in Informatics (LNI) - Proceedings,
Bonn, 2007. Gesellschaft für Informatik.

[HCT+08] Sheng-Da Hsu, Chia-Huei Chu, Ann-Ping Tsou, Shu-Jen Chen, Hua-Chien Chen,
Paul Wei-Che Hsu, Yung-Hao Wong, Yi-Hsuan Chen, Gian-Hung Chen, and Hsien-
Da Huang. miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes.
Nucleic Acids Research, 36(suppl 1):D165–169, 2008.

[HGC95] David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian net-
works: The combination of knowledge and statistical data. In Machine Learning,
pages 197–243, 1995.

[HLB+10] Markus Hafner, Markus Landthaler, Lukas Burger, Mohsen Khorshid, Jean Hausser,
Philipp Berninger, Andrea Rothballer, Manuel Ascano, Anna-Carina Jungkamp,
Mathias Munschauer, Alexander Ulrich, Greg S. Wardle, Scott Dewell, Mihaela Za-
volan, and Thomas Tuschl. Transcriptome-wide Identification of RNA-Binding Pro-
tein and MicroRNA Target Sites by PAR-CLIP. 141(1):129–141, 04 2010.

[KBM+94] Anders Krogh, Michael Brown, I. Saira Mian, Kimmen Sjölander, and David Haus-
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5.3. Editing of Epstein-Barr virus-encoded BART6 miRNAs controls their dicer 

targeting and consequently affects viral latency 
Usually, top performing target prediction programs exploit information regarding evolutionary 

conservation of predicted miRNA binding sites. However, this informative feature might as well 

decrease prediction performance in specific cases. This for example might happen when miRNA 

targeting has a negative effect on the organism’s survival and consequently the organism tends to 

avoid it. This is the case regarding viral miRNA targeting against a host organism. Taking this into 

account, in the following publication we describe a combined computational and experimental 

approach for viral miRNAs of Epstein-Barr virus where we found that ebv-miR-BART6-5p silence 

Dicer through multiple non conserved target sites located in the 3’UTR of Dicer mRNA and that 

mutation and A-to-I editing appear to be adaptive mechanisms that antagonize ebv-miR-BART6 

activities consequently affecting viral latency. This work was published in Iizasa et al (Iizasa, Wulff 

et al. 2010). 
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Certain primary transcripts of miRNA (pri-microRNAs) un-
dergo RNA editing that converts adenosine to inosine. The
Epstein-Barr virus (EBV) genome encodes multiple microRNA
genes of its own. Here we report that primary transcripts of
ebv-miR-BART6 (pri-miR-BART6) are edited in latently
EBV-infected cells. Editing of wild-type pri-miR-BART6 RNAs
dramatically reduced loading ofmiR-BART6-5p RNAs onto the
microRNA-induced silencing complex. Editing of a mutation-
containing pri-miR-BART6 found in Daudi Burkitt lymphoma
and nasopharyngeal carcinoma C666-1 cell lines suppressed
processing of miR-BART6 RNAs. Most importantly, miR-
BART6-5p RNAs silence Dicer through multiple target sites
located in the 3�-UTR of Dicer mRNA. The significance of miR-
BART6 was further investigated in cells in various stages of
latency. We found that miR-BART6-5p RNAs suppress the
EBNA2 viral oncogene required for transition from immuno-
logically less responsive type I and type II latency to the more
immunoreactive type III latency as well as Zta and Rta viral pro-
teins essential for lytic replication, revealing the regulatory
function ofmiR-BART6 in EBV infection and latency.Mutation
andA-to-I editing appear tobe adaptivemechanisms that antag-
onize miR-BART6 activities.

MicroRNAs (miRNAs)2 play important roles in many pro-
cesses including development, differentiation, proliferation,
and apoptosis (1, 2). Certain miRNAs act as tumor suppressors
or oncogenes and are associatedwithmany cancers (3). Primary
transcripts of miRNA genes (pri-miRNAs) are processed se-
quentially by Drosha and Dicer (4, 5). Nuclear Drosha (6)

together with its partner DGCR8 (7, 8) cleaves pri-miRNAs,
releasing 60–70-nucleotide pre-miRNAs. Recognition of cor-
rectly processed pre-miRNAs and their nuclear export is
carried out by exportin-5 and RanGTP (9). Cytoplasmic
Dicer together with the double-stranded RNA (dsRNA)-bind-
ing protein TRBP then cleaves pre-miRNAs into 20–22-nucle-
otide siRNA-like duplexes (10, 11). In most cases one strand of
the duplex (called the effective strand) serves as the mature
miRNA, whereas the other strand (called passenger strand) is
eliminated. After integration into the miRNA-induced silenc-
ing complex (miRISC), miRNAs block translation via partially
complementary binding sites located in the 3�-UTRs of tar-
geted mRNAs or guide the degradation of target mRNAs after
binding, mainly via the 5� half of the miRNA sequence, called
the “seed sequence” (1, 4, 5).
Epstein-Barr Virus (EBV) causes mononucleosis during

acute and lytic infection and also establishes a persistent and
latent infection in the human host. Latently infected EBV has
been demonstrated to be associated with a variety of human
cancers such as Burkitt lymphoma, Hodgkin disease, and
nasopharyngeal carcinoma (12, 13). Lytic infection and tran-
sition to distinctive states of latency (type I-III) are regulated
by select viral genes and their interaction with the host im-
mune system (12, 13). Virus genomes encode miRNAs of their
own, and the first viral miRNA was identified in human B cells
infected with EBV (14). A total of 23 EBV miRNA genes are
known and located in the BHRF1 and BART (Bam H1 A right-
ward transcript) regions of the genome (15–17). These EBV
miRNAs have been implicated in regulating the transition
from lytic replication to latent infection and in attenuating
antiviral immune responses (18). However, only a limited
number of their targets have been identified so far. The viral
miRNAs seem to target both viral and host cell genes (18). For
instance, miR-BART2 targets the EBV DNA polymerase, BALF5,
perhaps promoting entry of the virus to latency by slowing
down viral replication at the transition point from lytic to latent
infection (19). Down-regulation of the EBV protein LMP1 by
three EBV miRNAs, miR-BART1–5p, miR-BART16, and miR-
BART17–5p, has been reported (20). LMP1 produced during
the EBV type II and III latency controls the NF-�� signaling
pathway and growth and apoptosis of host cells. Targeting of
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host cell genes PUMA (p53-up-regulatedmodulator of apopto-
sis) by miR-BART5 (21) and CXC-chemokine ligand 11
(CXCL11) by miR-BHRF1–3 (22) have been reported. Down-
regulation of PUMA may suppress apoptosis of virus-infected
host cells (21), whereas suppression of CXCL11 may shield
EBV-infected B cells from cytotoxic T cells (22).
One type of RNA editing involves the conversion of adeno-

sine residues into inosine (A-to-I editing) in dsRNA through
the action of adenosine deaminase acting on RNA (ADAR).
Three ADAR gene family members (ADAR1–3) have been
identified in humans and rodents (23, 24). The translation
machinery reads an inosine as if it were guanosine, which could
lead to codon changes (25). Thus, when A-to-I RNA editing
occurs within a coding sequence, synthesis of proteins not
directly encoded by the genome can result, as demonstrated
with transcripts of glutamate receptor ion channels and 5-
HT2C serotonin receptors (26). However, the most common
targets for A-to-I editing are non-coding RNAs that contain
inverted repeats of repetitive elements such as Alu elements
and LINEs located within introns and 3�-UTRs (27–30). The
biological significance of non-coding, repetitive RNA editing is
largely unknown. Furthermore, editing of certain pri-miRNAs
has been reported (31, 32). A recent survey has revealed that
�20% of human pri-miRNAs are subject to A-to-I RNA editing
catalyzed by ADAR1 and ADAR2 (33). Editing of pri-miRNAs
modulates expression and function of miRNAs (33). For in-
stance, A-to-I editing of several adenosine residues located near
the Drosha cleavage sites of pri-miRNA-142 results in inhibi-
tion of the processing by Drosha and consequent down-regula-
tion ofmaturemiR-142 RNAs (34), whereas editing of two sites
identified near the end loop of the pri-miR-151 hairpin struc-
ture inhibits the Dicer cleavage step (35). By contrast, editing of
primary transcripts of the miR-376 cluster at two sites located
within the seed sequence does not affect their processing but
results in expression of mature-edited miR-376 RNAs with
altered seed sequences and consequent silencing of a set of
genes different from those targeted by uneditedmiR-376 RNAs
(36).
In this studywe set out to examine editing of EBVmiRNAs in

EBV-transformed lymphoblastoid GM607 cells, Burkitt lym-
phoma Daudi cells, and nasopharyngeal carcinoma C666-1
cells. Human lymphoblastoid cells such as GM607 cells in type
III latency express a set of genes essential for this specific state
of latency, such as EBNA2 and LMP1. By contrast, Daudi Bur-
kitt lymphoma cells in the restricted sub-type of type III latency
do not express EBNA2 due to the genomic deletion (37, 38).
Viral infection in C666-1 nasopharyngeal carcinoma cells is
associated with more restricted forms of type II latency, which
expresses only a limited number of viral genes, representing a
less immune-responsive state (38).We have found that primary
transcripts of four EBV miRNAs, including miR-BART6, are
subject to A-to-I editing. Moreover, we demonstrate that edit-
ing of pri-miR BART6 RNAs as well as mutations of miR-
BART6 RNAs found in latently EBV-infected cells inhibits
expression or their loading onto the functionally activemiRISC.
Most significantly, we found that miR-BART6 targets Dicer
and affects the latent state of EBV viral infection. Regulation of
the miR-BART6 expression and function through A-to-I edit-

ing andmutationmay be critical for the establishment ormain-
tenance of latent EBV infection.

EXPERIMENTAL PROCEDURES

Cell Culture—EBV-transformed lymphoblastoid cell line GM607
(GM00607) was obtained from Coriell Institute for Medical
Research (Camden, NJ). Burkitt lymphoma cell line Daudi was
obtained from American Type Culture Collection (Manassas,
VA). Burkitt lymphoma Mutu I and Mutu III and nasopharyn-
geal carcinoma line C666-1 were used in our previous studies
(39–41). These cell lines were cultured in RPMI1640 (Media-
tech Inc.,Manassas, VA), supplementedwith 100 units/ml ben-
zylpenicillin, 100 �g/ml of streptomycin sulfate (both from
Invitrogen) and 10% fetal calf serum (FCS) (Tissue Culture Bio-
logical, Tulare, CA). HeLa and HEK293T cells were cultured in
Dulbecco’s modified Eagle’s medium (Invitrogen) supple-
mented with 10% FCS.
Analysis of in Vitro Processed Pri-miRNA Products by North-

ern Blotting—Nonradioactive pri-miR-BART6 RNAs (10
fmol) were synthesized by in vitro transcription and pro-
cessed by Drosha-DGCR8 (20 ng) and/or Dicer-TRBP com-
plexes (20 ng) as described previously (34). Processed RNAs
were electrophoresed on a 15% polyacrylamide, 8 M urea
gel and transferred to a Hybond XL membrane (GE Health-
care) by electroblotting. Membranes were UV-cross-linked
(StrataLinker; Stratagene, La Jolla, CA), and hybridized with
5�-32P-labeled miRCURY locked nucleic acid probes (Exiqon
Inc., Woburn, MA) and analyzed by Northern blotting. The
hybridization buffer contained 50% formamide, 0.5% SDS, 5�
saline/sodium phosphate/EDTA, 5� Denhardt’s solution, and
20 �g/ml sheared, denatured, salmon sperm DNA. Hybridiza-
tion was conducted at 34 °C. Membranes were washed by 2�
SSC/0.1% SDS, and hybridized signals were quantified by a
Typhoon Imager System.
Luciferase Reporter Constructs—The human Dicer 3�-UTR

(1498 bp), which contains four miR-BART6-5p binding sites
(supplemental Experimental Procedures), were amplified us-
ing human genomic DNA extracted from GM607 cells and
specific primers hDicerFW (5�-GCTACTAGTGATCTTT-
GGCTAAACACCCCAT-3�) and hDicerRV (5�-GCTGTT-
TAAACCTCCAACAAAAAGTGAAACGGC-3�). The PCR
products were inserted into a luciferase reporter vector
(pMIR-REPORTTM Luciferase; Ambion) after digestion with
Spe1 and Pml1.
Transfections of miR-BART6 RNAs—miR-BART6-5p and

unedited miR-BART6–3p RNA duplexes were synthesized at
Ambion (Pre-miRTM miRNA). All transfections were carried
out in triplicate as described previously (42). Briefly, HeLa
cells were pre-plated in 24-well tissue culture plates. 200 ng of
luciferase reporter plasmid and 200 ng of control vector pMIR-
REPORTTM �-galactosidase Control Plasmid (Ambion) were
diluted into 50�l of Opti-MEM (Invitrogen) with or without 10
pmol of miR-BART6 duplex or sequence unrelated control
miRNA, cel-miR-67, or miR-376a followed by the addition of 3
�l of Lipofectamine 2000 (Invitrogen). The transfection mix-
ture was incubated at room temperature for 5 min followed by
the addition of DNA/miR-BART6 and further incubated at
room temperature for 20min. Then 100 �l of transfectionmix-
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ture was added to the HeLa cells in 500 �l of the growth
medium. Transfection efficiency monitored by using 5-car-
boxylfluorescein-labeled control siRNA (Ambion) was more
than 80%. Forty-eight hours after transfection, the luciferase
activity was measured using the Luciferase Assay System (Pro-
mega, Madison, WI) together with �-galactosidase activity by
reading the absorbance at 415 nm in a plate reader with the
�-Galactosidase EnzymeAssay System (Promega). Normalized
luciferase values divided by the �-galactosidase activity were
statistically compared among each group by Mann-WhitneyU
test.
Transfections of the miR-BART6-5p Antagomir—C666.1

or Mutu I cells (1.5 � 105 cells) were cultured in 24-well
plates. The next day cells were transfected with 50 pmol of
inhibitor of miR-BART6-5p (miScript miRNA inhibitor,
Qiagen) or AllStars Negative Control siRNA (Qiagen) using 3
�l of Hiperfect Transfection reagent (Qiagen). After 72 h, total
RNA was extracted and treated with DNase I. First-strand
cDNA was synthesized using 1 �g of total RNA using miScript
Reverse transcription kit (Qiagen) or Superscript III with ran-
dom primer.
Transfections of theDicer Targeting shRNAExpressionVector—

To suppressDicer expression, a short hairpin expression vector
was used.UsingBLOCK-iTRNAiDesigner (Invitrogen), com-
plementary DNA oligos were designed. For construction of
Dicer shRNA plasmids, sense (5�-CACCGCAGCTCTGGA-
TCATAATACCCGAAGGTATTATGATCCAGAGCTGC-
3�) and antisense (5�-AAAAGCAGCTCTGGATCATAATA-
CCTTCGGGTATTATGATCCAGAGCTGC-3�) strand oligos
were synthesized. For construction of LacZ2.1 Control, sense
(5�-CACCAAATCGCTGATTTGTGTAGTCGGAGACGAC-
TACACAAATCAGCGA-3�) and antisense (5�-AAAATCGC-
TGATTTGTGTAGTCGTCTCCGACTACACAAATCAGC-
GATTT-3�) strand oligos were synthesized. To generate a
double-stranded DNA, these oligos were annealed and cloned
into pENTER/H1/TO vector (Invitrogen). C666.1 or Mutu III
cells (1 � 106) were transfected with 1 �g of vector DNA using
CUY21Pro-Vitro (NEPA GENE., Co Ltd, Ichikawa, Japan).
After 48 h, total RNA was extracted and treated with DNase I.
First-strand cDNA was synthesized using 1 �g of total RNA
using the miScript reverse transcription kit (Qiagen) or Super-
script III with random primers. Transfection efficacy moni-
tored by co-transfection of ptdTomato-C1 vector (Clontech)
was �70–80%.
Induction of Viral miRNA Expression in HEK293T Cells—

The pri-miR-BART6 sequences were PCR-amplified using
genomicDNAextracted fromGM607 cells and a set of primers,
LentiBART6FW (5�-GCCTCGAGTGACCTTGTTGGTACT-
TTAAGGTTG-3�) and LentiBART6-UneditedRV (5�-GCGA-
ATTCTGGCCTTGAGTTACTCTAAGGCTA-3�) containing
a thymidine residue at the �20 site or LentiBART6-Edited RV
(5�-GCGAATTCTGGCCTTGAGTTACTCCAAGGCTA-3�)
containing a cytidine residue (edited) at the �20 site. These
PCR products were digested with XhoI and EcoRI (New Eng-
land Biolabs, Ipswich, MA) and ligated into pTRIPZ vector
(Open Biosystems, Huntsville, AL). pTRIPZ-derived lentivi-
ruses were transfected into HEK293T in the presence of puro-
mycin (Sigma). Permanently transfected cell lineswere induced

for pri-miR-BART6 expression with 2 �g/ml doxycycline
(Sigma). Transfection efficiency and expression of pri-miRNA
were determined by turboRFP expression. Protein and total
RNA were extracted 48 h after DOX induction. Levels of
mature miR-BART6-5p were examined by dideoxyoligonucle-
otide/primer-extension assay.
miRISC Loading Assay—The target probes were 5�-end 32P-

labeled with T4 polynucleotide kinase (New England Biolabs)
and [�-32P]ATP. 5 fmol of 32P-labeled miR-BART6-5p target
RNA (5�-AACCUACUAUGGAUUGGACCAACCUUACCA-
AG-3�), BART6–3P-unedited target (5�-AACCUAAGCUAA-
GGCUAGUCCGAUCCCGCCAAG-3�), BART6–3P-edited
target (5�-AACCUAGCCAAGGCUAGUCCGAUCCCCGCC-
AAG-3�), and pre-miR-BART6 RNAs, which had been cleaved
from pri-miR-BART6 RNAs with Drosha-DGCR8 and gel-
purified, were incubated with FLAG-tagged Ago2-complex
made from permanently transfected HEK293 cells in a reac-
tion buffer containing 1 unit/�l RNasin, 20 mM Tris-HCl
(pH 7.6), 0.1 M NaCl, 10% glycerol, 2 mM DTT, 0.2 mM PMSF,
1 mM �-mercaptoethanol, 3.2 mM MgCl2, 1 mM ATP, 20 mM

creatine phosphate, and 1 units/�l creatine kinase at 37 °C for
90 min as described previously (43, 44). miRISC loading prod-
ucts (32P-labeled cleaved target RNAs) were electrophoresed
on a 15% polyacrylamide, 8 M urea gel, and quantified by
Typhoon Imager.

RESULTS

A-to-I Editing Sites and Mutations Found in EBV Pri-
miRNAs—We examined the primary transcripts of all 23
EBV miRNAs for A-to-I RNA editing in latently EBV-infected
human lymphoblastoid GM607, Daudi Burkitt lymphoma,
and C666-1 nasopharyngeal carcinoma cells. We found that
pri-miR-BHRF1–1, pri-miR-BART6, pri-miR-BART8, and
pri-miR-BART16 are edited at specific sites (Fig. 1A and
supplemental Fig. 1A). Although the editing frequencies of pri-
miR-BHRF1–1, pri-miR-BART8, and pri-miR-BART16 were
relatively low (supplemental Fig. 1B), editing of pri-miR-
BART6 in Daudi and GM607 cells at the �20 site reached 50
and 70%, respectively (Fig. 1B). Low levels of editing of pri-miR-
BART6 RNAs were also detected in C666-1 cells (Fig. 1B). We
found that the size of the end loop and the terminal stem of the
pri-miR-BART6 of Daudi is smaller than that of GM607 cells
(wild-type) due to deletion of three uridine nucleotides (Fig.
1A). The same deletion was detected in C666-1 cells, as re-
ported previously (16).
Because involvement of enzymatically active ADAR1 and

ADAR2 in the RNA editing mechanism has been established (23,
24, 45), we examined the expression of ADAR1 and ADAR2 in
GM607, Daudi, and C666-1 cells by Western blotting analysis.
Although no ADAR2 was detected, abundant expression of
ADAR1 (both interferon-inducible p150 and constitutive p110
isoforms) (46)was found inall threecell lines (supplementalFig.2),
indicating that ADAR1 is likely to be responsible for editing of
pri-miR-BART6. However, we cannot exclude the possibility that
ADAR2may be also able to edit this site.
Processing of Pri-miR-BART6 Is Affected by Editing and Mu-

tation—Many single nucleotide polymorphisms (SNPs) found in
humanmiRNAgenes affect biogenesis and function, suggesting
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that theymay be associated with diseases (47). Sequence vari-
ations in several EBV pri-miRNAs have also been reported
(16), but the significance of most of these mutations has not
been evaluated. We reasoned that editing at the �20 site and
the mutations found in Daudi and C666-1 cells may affect the
biogenesis of pri-miR-BART6 RNAs. An in vitro pri-miRNA
processing assay using recombinant Drosha-DGCR8 and
Dicer-TRBP complexes (33, 34, 36) was conducted with uni-
formly 32P-labeled unedited and “edited” wild-type and Daudi
(C666-1) pri-miR-BART6 RNAs, which were prepared by in
vitro transcription. The edited pri-miRNAs had anA-to-G sub-
stitution at the �20 site. We had previously shown that the
miRNA processingmachinery recognizes A-to-G substitutions
of pri-miRNAs as if they were A-to-I changes (34). The radio-
active pri-, pre-, and mature miRNA products were quantita-
tively analyzed after fractionation on a polyacrylamide gel (Fig.
2, A and B). In addition, nonradioactive pri-miRNAs and their

in vitro Dicer and/or Drosha cleav-
age assay products were also ana-
lyzed by Northern blotting using
5p- or 3p strand-specific oligonu-
cleotide probes (Fig. 2C). The effi-
cient conversion of both unedited
and edited wild-type (GM607) pri-
miR-BART6 to pre-miR-BART6
and mature miR-BART6 was de-
tected, indicating that the editing
of wild-type pri-miR-BART6 at
the �20 site has no inhibitory
effect on Drosha and Dicer cleav-
age (Fig. 2, A and B). Generation of
both 5p and 3p mature miRNAs
from unedited and edited wild-type
pri-miR-BART6 was confirmed by
Northern blotting analysis using
strand-specific probes (Fig. 2C).
Similarly, unedited Daudi (C666-1)
pri-miR-BART6 RNAs were pro-
cessed to pre- and mature miRNAs,
although Dicer cleavage efficiency
was reduced to �70% of the uned-
ited wild-type level, likely due to the
deletion of three U residues (Fig. 2,
B andC). However, Drosha cleavage
of edited Daudi (C666-1) pri-miR-
BART6 was completely blocked
(Fig. 2,A andC). Binding of DGCR8
to Daudi (C666-1) pre-miR-BART6
seemed to be unaffected by editing,
as seen from a set of electrophoresis
mobility shift assay (EMSA) gels
(supplemental Fig. 3). The nearly
identical Kd values (�5 nM) for
binding to unedited and edited pri-
miR-BART6 RNAs were estimated
from analysis of several EMSA gels.
Thus, a combination of the deletion
of three U residues and editing at

the �20 site appears to inhibit Drosha cleavage of pri-miR-
BART6 RNAs.
Targeting of Dicer by miR-BART6—The inhibitory effects of

mutation and A-to-I editing on processing of pri-miR-BART6
RNAs intomature miRNAsmay indicate that this viral miRNA
plays a role in regulating EBV infection state in Daudi
and C666-1 cells. For instance, suppression of miR-BART6
RNAs may be necessary for EBV to remain at a specific state
of latency. Certain viral miRNAs have been shown to target
genes of the host cell as well as genes of the virus itself (18).
Using the DIANA-microT program (48) we, therefore, pre-
dicted in silico human and EBV target genes for miR-
BART6-5p andmiR-BART6–3p (both unedited and edited iso-
forms). The candidate target genes were pruned by a species
conservation filter and also by accepting only genes that have
multiple target sites within the 3�-UTRs. We found no strong
target gene candidates containing multiple binding sites for

FIGURE 1. A-to-I RNA editing of pri-miR-BART6 RNAs. A, shown are hairpin structures of pri-miR-BART6. Two
different hairpin structures of pri-miR-BART6 (partial), the wild-type from GM607 cells and a mutant found in
Daudi Burkitt and C666-1 cells, are shown. The editing site adenosine (�20 site), highlighted in red, is indicated
by a number with the 5� end of the mature miR-BART6 –3p sequence counted as �1. The regions to be pro-
cessed into the mature miRNAs (5p sense and 3p antisense strands) are highlighted in green. Mature miR-
BART6-5p and both unedited and edited -3p RNAs are also shown. Three deleted U nucleotides are indicated
in black boxes within the wild-type hairpin structure. B, DNA sequencing chromatograms of RT-PCR products
derived from GM607, Daudi, and C666-1 pri-miR-BART6 RNAs are shown. The RNA editing site (�20) is detected
as an A-to-G change in the cDNA sequencing chromatogram as indicated by red arrows. Three T nucleotides,
deleted in pri-miR-BART6 from Daudi and C666-1 cells, are indicated. Editing frequency was estimated as a
percentage estimated from the ratio of G peak over the sum of G and A peaks of the sequencing chromato-
gram. Two separate measurements were done, and identical results were obtained.
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miR-BART6-5p or -3p RNAs in the EBV genome. By contrast,
the screening identified 14 human strong candidates for miR-
BART6-5p and 3 human targets formiR-BART6–3p regardless
of whether miR-BART6–3p RNAs were edited or unedited
(supplemental Table 1). Because the �20 editing site of miR-
BART6–3p is located outside of the seed sequence (Fig. 1A), it
was anticipated that editing should not severely affect the selec-
tion of target genes.
Most interestingly, Dicer was one of the high-score targets

for miR-BART6-5p (supplemental Table 1). Because of its
importance and global effects on many genes via RNAi, we
decided to further investigate the targeting of Dicer by miR-
BART6-5p RNAs. Four target binding sites were identified
within the�1.5-kb region of humanDicermRNA 3�-UTR (Fig.

3, A and B, and supplemental Experimental Procedures).
Although a limited conservation of some 5p sites for elephant
(site 1 and site 4) or armadillo (site 1 and site 2) was found, all
four sites identified were otherwise unique to the human Dicer
3�-UTR and not evolutionarily conserved even for the chim-
panzeeDicer 3�-UTR (data not shown). This is unusual for high
score targets, which often have better species conservation,
supporting their biological significance. In light of the fact
that EBV specifically infects human, it is possible that miR-
BART6-5p evolved to target Dicer specifically in human during
the establishment of the EBV-host relationship.
In vitro validation experiments were conducted in HeLa

cells (these cells are EBV-negative and, thus, lack pre-exist-
ing miR-BART6 RNAs) cotransfected with a luciferase

FIGURE 2. In vitro processing of pri-miR-BART6 RNAs by miRNA processor complexes. A, effect of editing on Drosha cleavage of wild-type and mutant
pri-miR-BART6 RNAs was tested with uniformly 32P-labeled pri-miR-BART6 RNAs. The mutant pri-miR-BART6 sequences of Daudi and C666-1 are identical. Thus,
it is indicated as Daudi or C666-1. Unedited or edited pri-miR-BART6 RNAs (i.e. containing an A-to-G substitution at the �20 site) was subjected to the Drosha
cleavage reaction using Drosha-DGCR8 complex. B, effect of editing on Dicer cleavage is shown. The Drosha-DGCR8 reaction products were subjected to the
Dicer cleavage reaction using the Dicer-TRBP complex. A and B, three independent assays were done. Differences analyzed by Mann-Whitney U test: **, p �
0.005; ***, p � 0.001. Error bars, S.E. (n � 3). C, Northern blotting analysis of in vitro processed miR-BART6 RNAs is shown. Nonradioactive pri-miR-BART6 RNAs
processed in vitro by Drosha-DGCR8 and/or Dicer-TRBP complexes were analyzed by Northern blotting using a 32P-labeled 5p- or 3p-strand specific oligo
probe. Representative results for unedited and edited pri-miR-BART6 RNAs of wild-type (GM607) and mutant (Daudi) are shown.
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reporter construct containing the Dicer 3�-UTR including
the four target sites of miR-BART6-5p (reporter-4� 5p) (Fig.
3C). The luciferase expression levels were clearly suppressed by
miR-BART6-5p (4-fold) but not by miR-BART6–3p in HeLa
cells that were cotransfected with the 4 � 5p vector (Fig. 3D).
For an unknown reason, our negative control Caenorhabditis
elegans miR-67 RNAs unexpectedly increased the luciferase
expression (Fig. 3D). This is not due to nonspecific exhaustion
of the miRNA-mediated silencing machinery by this control
miRNA, as the other sequence-unrelated control miRNA,
humanmiR-376a-5p, had no effect on the luciferase expression
(data not shown). The results strongly indicate that the four

Dicer mRNA 3�-UTR sites are in-
deed target sites of miR-BART6-5p
RNAs. To validate the targeting of
the Dicer mRNA by miR-BART6
RNAs in vivo, we then measured
endogenous expression levels of Dicer
in HeLa cells. We found a substan-
tial reduction in the Dicer levels
(3.5-fold) in HeLa cells transfected
with miR-BART6-5p but not with
control cel-miR-67 (Fig. 4A), con-
firming in vivo targeting of Dicer by
miR-BART6-5p RNAs.
Suppression of miRISC Loading of

miR-BART6-5p RNAs by Editing—
To further confirm the in vivo silenc-
ing of Dicer by miR-BART6 RNAs,
we prepared two tetracycline-in-
ducible pri-miR-BART6 RNA ex-
pression constructs in a lentivirus
vector system; one expressing un-
editedwild-typepri-miR-BART6and
the other expressing the edited pri-
miR-BART6 containing an A-to-G
substitution at the �20 editing site.
HEK293 cells (also EBV-negative
and, thus, lacking pre-existing miR-
BART6-5p RNAs) were infected
with the lentiviral constructs and
subjected to conditional induction
of pri-miR-BART6 and consequent
mature miR-BART6 RNAs. Very
low editing activities have been
reported in HEK293 cells (49), and
we confirmed that the pri-miR-
BART6 RNAs derived from the un-
edited pri-miRNA expression con-
struct were barely edited (�5%, data
not shown). Dicer levels were re-
duced by 70% in HEK293 cells
infected with the unedited pri-miR-
BART6 construct compared with
the vector control (Fig. 4B). The
reduction in the Dicer levels was
also detected in HEK293 cells in-
fected with the edited pri-miR-

BART6 construct. However, the extent of suppression was
much less, by 25%. This may indicate that editing of the wild-
type pri-miR-BART6 RNA has negative effects on the in vivo
expression or functions of miR-BART6-5p RNAs, although no
difference was noted between unedited and edited pri-miR-
BART6 of wild-type (GM607) in in vitro pri-miRNA process-
ing (Fig. 2). No significant difference inmiR-BART6-5p RNA
levels was detected between HEK293 cells infected with the
unedited and edited pri-miR-BART6 expression constructs
(supplemental Fig. 4), indicating that the stability and/or
turnover of the mature miR-BART6-5p RNAs is unlikely to
be affected by editing.

FIGURE 3. Target sites for miR-BART6-5p RNAs identified in the 3�-UTR of human Dicer mRNA. A, the
locations of four miR-BART6-5p target sites located within the 3�-UTR of human Dicer mRNA are schematically
presented. B, RNA duplex formation between the Dicer 3�-UTR target sites and miR-BART6-5p RNAs are dia-
grammed. C, shown is a diagram of the luciferase reporter plasmid containing the four 5p strand target sites.
D, relative luciferase activities in HeLa cells cotransfected with the reporter vector containing 4 � 5p sites are
shown. Two controls, the vector-only transfection, and cotransfection with the unrelated sequence C. elegans
miR-67 were conducted. Expression levels of the luciferase reporter gene were normalized by expression levels
of a cotransfected �-galactosidase reporter gene. Three independent assays were conducted. The luciferase
activities were compared statistically by Mann-Whitney U tests. Significant differences between vector only
and miR-BART6-5p or -3p cotransfected experiments are indicated by asterisks; ***, p � 0.001. Error bars, S.E.
(n � 3).
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As one of the remaining possibilities, we thought that edit-
ing might affect the selection and loading of the “effective”
strand onto the miRISC complex (50). We, therefore, exam-
ined the assembly of functional miRISC from recombinant
FLAG-tagged Ago-2 complexed with Dicer and TRBP and
either unedited or edited wild-type pre-miR-BART6 RNAs
(Fig. 5A) as described previously (43, 44).We found that forma-
tion of the functional miRISC and consequent silencing (cleav-
age) of the 5p target RNAwas indeedmuchmore efficient with
unedited pre-miR-BART6 than with edited pre-miR-BART6
(Fig. 5, B and C). Loading of miR-BART6–3p strand RNAs and
consequent cleavage of their target RNA were extremely in-
efficient (Fig. 5, B and C), indicating that miR-BART6-5p is
the major effective strand. The cloning frequency for miR-
BART6-5p and -3p RNAs in GM607 cells also confirmed that
the 5p strand is the effective strand. No sequence variations in
the 5� end sequence of the 5p strand was noted among miR-
BART6 clones, indicating that editing at the �20 site does not
affect the Drosha cleavage site (data not shown). Together our
results clearly demonstrate that editing of the wild-type pri-
miR-BART6, although not affecting the processing to pre- and
mature miRNAs, inhibits the overall silencing effects of miR-

BART6 RNAs. This is the first
example of A-to-I editing of a pri-
miRNA affecting miRISC loading.
Suppression of Many miRNAs by

miR-BART6-5p—The dramatic re-
duction in the Dicer expression
mediated by miR-BART6-5p (Fig.
4) suggests that it may affect the
biogenesis of miRNAs globally. We,
therefore, examined the effects
of Dicer suppression on expression
of other miRNAs by miRNA array
analysis. The miRNA levels were
examined in HeLa cells with sub-
stantially reduced Dicer levels after
transfection with miR-BART6-5p
RNAs (Fig. 4A). Once again, HeLa
cells were used because of the ab-
sence of preexisting miR-BART6
RNAs. This study revealed that lev-
els of at least 69 miRNAs were sig-
nificantly reduced, and 14 of these
miRNAs showed more than 2-fold
suppression (supplemental Fig. 5A).
Synthesis of these miRNAs may
be particularly sensitive to the Dicer
concentration. Interestingly, the ex-
pression of three miRNAs, miR-
196b-5p, miR-205–5p, and miR-
624–5p (supplemental Fig. 5B), was
increased. Although we do not have
a confirmed explanation for up-reg-
ulation of these three miRNAs, one
possibility is that the genes regulat-
ing the expression of these miRNAs
may be controlled negatively by

other miRNAs whose levels are reduced. Our results demon-
strate that suppression of Dicer mediated by miR-BART6-5p
RNAs affects the expression of a large number of miRNAs.
Modulation of the EBV Latency State by miR-BART6-

5p RNAs—We then asked whether Dicer silencing by miR-
BART6-5p RNAs could control the EBV infection state. To
examine this possibility, we first examined the relative expres-
sion levels of miR-BART6-5p strand RNAs and Dicer among
GM607, Daudi, and C666-1 cells by qRT-PCR. Much higher
levels of miR-BART6-5p were detected in C666-1 cells, which
have much less editing than GM607 and Daudi cells (Fig. 6A).
The low levels ofmiR-BART6-5p inGM607 andDaudi cells are
consistent with the high editing rate of pri-miR-BART6 RNAs
in these cells (Fig. 1B), which affects their processing (Fig. 2),
miRISC formation (Fig. 5C), and consequently the levels of
mature miR-BART6-5p RNA. As expected, Dicer levels were
lowest inC666-1 cells, in inverse relation to themiR-BART6-5p
levels (Fig. 6B). Accordingly, we decided to explore the signifi-
cance of Dicer repression by miR-BART6-5p RNAs in C666-1
cells. We first attempted to antagonize the miR-BART6-5p
RNAs expressed in C666-1 cells by transfection of a miR-
BART6-5p antagomir. As expected, the miR-BART6-5p

FIGURE 4. Repression of Dicer by miR-BART6-5p RNAs. A, Western blot analysis of Dicer expression levels in
HeLa cells transfected with miR-BART6-5p RNAs is shown. Two control experiments were conducted; HeLa cells
without transfection or transfected with a sequence-unrelated C. elegans miR-67. As a normalization control,
�-actin levels were also monitored. A summary graph of normalized Dicer expression levels is also presented.
B, shown is a Western blot analysis of Dicer expression in HEK293T cells infected with inducible lentivirus
vectors for expression of unedited or edited (A-to-G substitution at the �20 site) pri-miR-BART6 RNAs. Expres-
sion of pri-miR-BART6 RNAs was induced with 2 �g/ml doxycycline (DOX). In the presence of doxycycline, the
control vector directs the expression of non-silencing verified negative siRNAs (Open Biosystems). A summary
graph of normalized Dicer expression levels is also shown. A and B, significant differences were analyzed by
Mann-Whitney U tests: *, p � 0.05; **, p � 0.005; ***, p � 0.001. Error bars, S.E. (n � 3).
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antagomir substantially decreased the miR-BART6-5p level
(�20-fold) with a concomitant increase in theDicer levels (�2-
fold), indicating that miR-BART6-5p RNAs constantly sup-
press and maintain Dicer at the reduced levels in C666-1 cells
(Fig. 7A). We then examined the relative expression levels of

several genes known to be impor-
tant for either lytic infection or the
state of latency: EBNA1, EBNA2,
LMP1, Zta, and Rta (12, 13). EBNA1
is detected in type I, II, and III
latency, whereas EBNA2 and LMP1
are usually detected in type III la-
tency (12, 13). EBNA2 is essential
for the transformation of B lympho-
cytes and plays a central role in type
III latency by up-regulating promot-
ers of all latent EBV genes. Defi-
ciency of the EBNA2 expression is
known in type I and II latency (12,
13). A weak expression of LMP1 in
type II latency and its deficiency in
type I latency have been reported
(12, 13). By contrast, Zta and Rta are
essential for the initiation of the
lytic EBV infection cycle (12, 13).
By antagonizing miR-BART6-5p,
Zta and Rta increased by 2–3-fold,
indicating thatmiR-BART6-5p keeps
these gene products under control.
Furthermore, we noticed substan-
tial up-regulation of EBNA2 onco-
gene expression (�5-fold) and
LMP1 (�2-fold) by suppression of
miR-BART6-5p RNAs, whereas no
effects on EBNA1 were observed
(Fig. 7A).
The activities of the three viral

promoters Cp, Wp, and Qp were
alsomonitored (Fig. 7B). Transcrip-
tion fromCp andWp is characteris-
tic of type III latency (51), whereas
the Qp promoter is used in EBV-
infected cells undergoing type I
or II latency (52, 53). We used
qRT-PCR primers specific for
RNAs initiating at Wp, Cp, or Qp
(54). Significant up-regulation of
type III latency-specific Cp and
Wp promoter activities (5.4- and
11-fold, respectively) were detected
in C666-1 cells transfected with
miR-BART6-5p antagomir. On the
other hand, Qp promoter activities
associated with type I and type II
latency were completely abolished;
that is, not detectable in comparison
to control.
We then attempted to silence

Dicerdirectlyby transfectingaDicer targeting short hairpinRNA
(shRNA) expression vector in C666-1 cells (Fig. 7C). This
reduced Dicer levels by �70%, indicating the efficiency of this
Dicer targeting siRNA expression vector. As expected, changes
in themarker genes were completely opposite to those noted in

FIGURE 5. Assembly of functional miRISCs with FLAG-Ago2 and pre-miR-BART6 RNAs. A, a miRISC loading
assay of pre-miR-BART6 is shown. Cleavage of the cognate target for miR-BART6-5p or -3p RNAs is schemati-
cally shown. The target RNA was 5� 32P-labeled. B, cleavage of the cognate target product (17 nucleotides)
guided by miR-BART6-5p was substantially more efficient with unedited pre-miR-BART6 RNAs than with edited
pre-miR-BART6 RNAs (left panel). Cleavage, although very inefficient, of both unedited and edited 3p target
was detected only with unedited pre-miR-BART6 (middle and right panels). C, quantitative summary of miRISC
loading experiments is presented. The cleavage efficiency was estimated by the ratio of the radioactivity of the
correctly cleaved band over that of the uncleaved control band. Significant differences were analyzed by
Mann-Whitney U tests: ***, p � 0.001. Error bars, S.E. (n � 3).
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C666-1 cells transfected with the miR-BART6-5p antagomir;
that is, an�7-fold reduction in the EBNA2 expression aswell as
substantial down-regulation for LMP1, Zta, and Rta (Fig. 7C),
further confirming that control of these critical viral genes by
miR-BART6-5p is mediated directly via its silencing effects on
Dicer.
Finally, we examined genetically identical pairs of Burkitt

lymphoma Mutu I and Mutu III cell lines, which are in type I
and type III latency, respectively, to assess the function of
miR-BART6-5p and Dicer silencing in B lymphoma cells
(non- nasopharyngeal carcinoma cell lines). We found that
the miR-BART6-5p level is higher in Mutu I than in Mutu III
(supplemental Fig. 6A). By contrast, the Dicer level was lower
inMutuI than inMutuIII asexpected (supplementalFig. 6B). Low
level A-to-I editing of pri-miR-BART6 RNAswas detected only
in Mutu III cells, and no mutations were found in the miR-
BART6 gene of Mutu I and Mutu III cells (data not shown).
Thus, it is currently unknown why higher miR-BART6-5p
expression is detected in Mutu I cells as compared with Mutu
III cells. We first transfected Mutu I cells with miR-BART6-5p
antagomir. Aswe observed inC666-1 cells, the antagomir effec-
tively reduced miR-BART6-5p levels (�10-fold) and increased
Dicer levels (1.9-fold). Furthermore, significant up-regulation
of EBNA2, LMP1, Zta, andRta, aswell asWp andCp activation,
was detected (Fig. 8, A and B). We then transfected Mutu III
cells with the Dicer shRNA expression plasmid, which success-
fully repressed Dicer levels (�5-fold). Opposite effects of the
miR-BART6-5p antagomir were detected; this, is, suppression
of EBNA2, LMP1, Zta, and Rta (Fig. 8C). Up-regulation of Qp
activities and down-regulation of Cp and Wp activities were
also observed (Fig. 8D).
Together, these results suggest that Dicer suppressionmedi-

ated via miR-BART6-5p RNAs maintains not only the type II

latency of C666-1 cells but also the type I latency ofMutu I cells
by suppressing lytic replication and also inhibiting transition of
these cell lines to type III latency, a more immunoresponse-
prone state of the viral infection cycle.

DISCUSSION

Editing Frequency of EBV miRNAs—A-to-I editing of a viral
miRNA, KSHV-miR-K12-10 was first implicated because of
identification of many cDNA clones corresponding to KSHV-
miR-K12-10 RNAs containing an A-to-G substitution com-
pared with the genomic sequence (55). Additional studies
conducted more recently confirmed that this is indeed due
to A-to-I editing at this site of the viral transcript harboring
KSHV-miR-K12-10 by ADAR1 (56). Interestingly, the tran-
script could be processed into the viral miRNA as well as the
mRNA coding for Kaposin A. A-to-I editing and consequent
recoding of Kaposin A reduced its transforming activity (56).
However, the significance of A-to-I editing of KSHV-miR-
K12-10 RNAs remains unknown.
Apart from these reports on KSHV-miR-K12-10 RNAs,

there has been no additional report on A-to-I editing of viral
miRNAs. In this study we examined EBV miRNAs for A-to-I
RNA editing in GM607 B lymphoblastoid cells, Daudi Burkitt
lymphoma cells, and C666-1 nasopharyngeal carcinoma cells.
We found that primary transcripts of four miRNAs, miR-
BHRF1-I, miR-BART6, miR-BART8, andmiR-BART16, undergo
editing at specific sites. In view of �20% of human miRNAs
being subject to A-to-I editing (33), our findings of editing of 4
of 23 EBVmiRNAs indicate that both cellular and viralmiRNAs
are subject to editing at about the same frequency. Among four
EBV pri-miRNAs, we focused on pri-miR-BART6, which is
highly edited at the �20 site of the 3p strand side of the hairpin
dsRNA structure.
Suppression ofmiR-BART6 Expression andmiRISCAssembly

by A-to-I Editing—We have shown previously that A-to-I
editing of pri-miRNAs can suppress their processing to pre-
miRNAs by inhibiting Drosha cleavage in the nucleus (34) or
suppress processing of pre-miRNAs to mature miRNAs by
inhibitingDicer cleavage in the cytoplasm (35). Furthermore, in
some cases A-to-I editing of pri-miRNAs resulted in expression
of miRNAs with an altered (edited) seed sequence and conse-
quent silencing of a set of genes different from those targeted by
the unedited version miRNAs (36).
In vitro pri-miR-BART6 processing studies revealed that a

combination of A-to-I editing at the �20 site, and the three-U-
residue deletion mutation, as observed in Daudi Burkitt lym-
phoma and C666-1 nasopharyngeal carcinoma cells, blocks the
Drosha cleavage step completely. Editing of wild-type pri-miR-
BART6 RNAs did not affect their processing. However, loading
of miR-BART6-5p onto the functionally active miRISC was
substantially inhibited by A-to-I editing at the�20 site. Editing
of pri-miR-BART6 RNAs reported in this study is the first
example in which editing suppresses loading of miRNA onto
miRISC.
Selection of miR-BART6-5p as an Effective Strand—It has

been reported that the relative stabilities of the base pairs at the
5� ends of the duplex consisting of two miRNA strands deter-
mine the selection of the effective strand, which is loaded onto

FIGURE 6. Relative expression levels of miR-BART6-5p and Dicer in differ-
ent cell lines. A, miR-BART6-5p RNA levels were examined by qRT-PCR and
normalized to �-actin mRNA level. Three independent assays were done. Sig-
nificant differences were analyzed by Mann-Whitney U tests. *, p � 0.05. Error
bars, S.E. (n � 3). B, Dicer mRNA levels were monitored by qRT-PCR and nor-
malized to �-actin mRNA levels. Three independent assays were performed.
Significant differences were analyzed by Mann-Whitney U tests. *, p � 0.05.
Error bars, S.E. (n � 3).
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miRISC and acts as the functional miRNA (50, 57). According
to these studies, the strand whose 5� end of the sense-antisense
strand duplex is less stable is more frequently selected as the
effective strand (50, 57). Interestingly, the miR-BART6 duplex
consisting of 5p and 3p strands generated by Dicer cleavage
predicts the selection of the 3p strand as the effective strand
because of a relatively long fray present in the 5� end of the 3p
strand duplex (Fig. 5A). However, we noted that the 5p strand

with the more stable 5� end of the
duplex was much more effectively
loaded onto miRISC (Fig. 5B). More
recently, major roles played by
internal mismatched pairs in the
selection of the effective strand for
loading onto miRISC and also for
unwinding of the duplex and conse-
quent formation of the functional
miRISC have been reported (58).
According to the studies, central
mismatches including G�U wobble
pairs at positions 7–11 increase the
formation of the miRNA duplex-
miRISC, whereas the presence of
an additional mismatch within the
seed sequence and/or 3�-mid re-
gions at positions 12–15 promotes
unwinding of the duplex and forma-
tion of themature functionalmiRISC
containing the single-stranded effec-
tive miRNA (58). Interestingly, the
miR-BART6-5p effective strand du-
plex contains these central (G�U at
position 8), seed (G�U at position 6),
and 3�-mid region (A�C at position
13) mismatched pairs (Fig. 5A), per-
haps explaining at least partly why
the 5p strand is more effective than
the 3p strand.
Although the presence of an in-

ternal U�G or U�I wobble pair in
place of a U�A Watson-Crick pair
decreases the stability of the RNA
duplex structure, a terminal U�G or
U�I pair confers more stability,
although subtle, to the RNA duplex
than a U�A pair (59). Thus, replace-
ment of a U�A base pair with U�I
(U�G) wobble pair at the 5� end of
the 5p and 3p strand duplex due to
editing at the �20 site is likely to
increase the stability of the duplex,
consistentwith our observation that
loading of miR-BART6-5p is much
more efficient with unedited pre-
miR-BART6 than with edited pre-
miR-BART6RNAs. Taken together,
A-to-I editing at the �20 site sup-
presses the miRISC loading due to

increased stability of the 5� end of the 5p strand of the duplex.
Significance of Dicer Repression by miR-BART6 for the Viral

Life Cycle—Most significantly, we provided evidence that miR-
BART6-5p suppresses Dicer expression through binding to
four target sites present within the 3�-UTR of the human Dicer
mRNA. Interestingly, these four target sites are not conserved
in the mouse or even chimpanzee Dicer mRNA, revealing that
miR-BART6-5p RNAs target only human Dicer. In view of the

FIGURE 7. Control of viral genes critical for the state of latency and lytic viral replication. A,up-regulationofEBV
genes critical for latency and viral replication by the miR-BART6-5p antagomir is shown. Expression of select viral
genes including miR-BART6-5p in C666-1 cells transfected with the miR-BART6-5p antagomir or control (sequence
unrelated Qiagen AllStars Negative Control siRNA) was examined by qRT-PCR. Three independent assays were
done. Significant differences were analyzed by Mann-Whitney U tests. *, p � 0.01; **, p � 0.005; ***, p � 0.001. Error
bars, S.E. (n � 3). B, shown are changes induced by the miR-BART6-5p antagomir in the viral promoters Qp,
specific for the type I and type II latency, and Cp and Wp, specific for the type III latency. Transcripts initiated
from Qp, Cp, and Wp were determined by qRT-PCR and compared with �-actin transcripts. Three independent
assays were done. Significant differences were analyzed by Mann-Whitney U tests. **, p � 0.005; ***, p � 0.001.
Error bars, S.E. (n � 3). C, repression of EBV genes after Dicer knock-down by shRNA. Expression of viral genes in
C666-1 cells transfected with the Dicer targeting shRNA expression plasmid or control vector containing
shRNA against LacZ was monitored by qRT-PCR. Three independent assays were conducted. Significant differ-
ences were analyzed by the Mann-Whitney U test. *, p � 0.01; ***, p � 0.001. Error bars, S.E. (n � 3).
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EBV host specificity, i.e. EBV infections occur only in human,
silencing of Dicer by miR-BART6-5p might have been estab-
lished during the course of EBV evolution into a human-spe-
cific virus. It may be prudent to discount species conservation,
usually used as one of the important parameters for target pre-
diction programs, when target genes of a miRNA from a virus
with narrow host range are screened.

Our miRNA array analysis re-
vealed that Dicer suppression by
miR-BART6-5p RNAs leads to sup-
pression of many miRNAs. Because
Dicer is required for processing of
miR-BART6 itself, it is anticipated
that a negative feedback loop may
bemade to tightly control Dicer and
miR-BART6 as well as other viral
and host cell miRNA levels. It has
been reported that EBV infection
of primary B cells results in a dra-
matic down-regulation of host cell
miRNA expression, implying the
presence of a suppressor of miRNA
expression encoded by the virus
(60). It was proposed that EBV
may manipulate the expression of
miRNAs as a major regulatory step
in the viral life cycle, whereas host
cells may potentially use miRNAs in
response to EBV (18, 60). It appears
that miR-BART6-5p likely is this
viral miRNA suppressor and plays a
critical role in the EBV virus life
cycle by silencing Dicer and regulat-
ing the expression of miRNAs.
A global reduction in miRNA ex-

pression has been seen in many
cancer cells (61). Suppression of
Dicer by let-7 as well as by miR-
103/107 and the consequent global
reduction of miRNA synthesis have
been reported (62–65). The cell
proliferation rate is repressed by
let-7, and it is proposed that let-7
acts as a master regulator of cell
proliferation (66). Promotion of
epithelial-to-mesenchymal transi-
tion and metastasis is controlled by
miR-103/107 that down-regulates
Dicer and consequently miR-200 (65).
It appears that EBV has acquired
miR-BART6 to mimic the powerful
strategy of let-7 or miR-103/107 to
down-regulate host cell miRNA
production,whichmay be necessary
to respond to host immune re-
sponse and help EBV to stay in a
specific state of latency and not ini-
tiate lytic viral replication. Suppres-

sion of miR-BART6-5p by antagomir indeed resulted in activa-
tion of EBNA2, LMP1, Zta, and Rta genes, critical for transition
to type III latency or lytic replication, inMutu I andC666-1 cells
usually remaining in the less immune reactive type I and type II
latency, respectively. In addition, the type III latency-specific
Cp and Wp promoter activities were dramatically activated by
miR-BART6-5p antagomir, whereas the type I and type II

FIGURE 8. The effects of miR-BART6-5p and Dicer silencing in B lymphoma cells. A, shown is up-regulation
of EBV genes critical for latency III and lytic replication in Mutu I cells transfected with the miR-BART6-5p
antagomir or control siRNA. Dicer and miR-BART6-5p levels were also monitored. Three independent qRT-PCR
assays were performed. Significant differences were analyzed by Mann-Whitney U tests. **, p � 0.005; ***, p �
0.001. Error bars, S.E. (n � 3). B, changes in viral promoter activities were induced in Mutu I cells by the miR-
BART6-5p antagomir. Three independent qRT-PCR assays were done. Significant differences were analyzed by
Mann-Whitney U tests. ***, p � 0.001. Error bars, S.E. (n � 3). C, down-regulation of EBV genes critical for latency
III and lytic replication was detected in Mutu III cells transfected with the Dicer targeting shRNA expression
plasmid or control vector containing shRNA against LacZ. Three independent qRT-PCR assays were done.
Significant differences were analyzed by Mann-Whitney U tests. *, p � 0.05; **, �0.005; ***, p � 0.001. Error bars,
S.E. (n � 3). D, changes in viral promoter activities were induced in Mutu III cells by Dicer knockdown. Three
independent qRT-PCR assays were performed. Significant differences were analyzed by Mann-Whitney U tests.
**, p � 0.005; ***, p � 0.001. Error bars, S.E. (n � 3).
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latency-specific Qp promoter activities were suppressed by the
antagomir. We currently have no explanation how these pro-
moter activities are up- or down-regulated. Involvement of
B-cell-specific factors that activate the Wp promoter has been
reported (67). On the other hand, many factors including E2F1,
Rb, and LSD1 histone demethylase have been suggested to con-
trol the Cp promoter activities (68). Reduction of Dicer and
consequent suppression of specific miRNAs that control these
factors may be one possible mechanism to affect different viral
promoter activities.
In conclusion, our results suggest the important roles played

by EBVmiR-BART6 RNAs in the regulation of viral replication
and latency.Naturally occurring pri-miR-BART6mutation and
editing may be an adaptive selection to counteract the miR-
BART6 function.
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5.4. microRNA targeting in coding regions: a computational and experimental 

study of functionality 
In the following manuscript we present the work regarding miRNA targeting in the CDS. Chi et al 

(Chi, Zang et al. 2009) released a set of biological data which allowed the development of a miRNA 

target prediction program based on machine learning techniques. We used these data and the data of 

Hafner et al (Hafner, Landthaler et al. 2010) for the development of another release of microT 

denoted as microT-CDS. It is a miRNA target prediction program that stands out not only because it 

is a purely data driven approach but also because it succeeds in assessing miRNA targeting both in 

the 3'UTR and the coding sequence of genes. Importantly, we show that targeting in the coding 

sequence is not only functional but also confers an important biological meaning since evolutionary 

pressure might enforce the presence of sites on the CDS in cases when there is restricted targeting 

space in the 3'UTR. Also we show that inclusion of targets in the coding sequence increases 

prediction sensitivity by more than 10% while also increasing prediction precision. 
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Abstract 
Experimental evidence has accumulated showing that microRNA binding sites within protein coding 

sequences are functional in controlling gene expression. Here we report a computational analysis of such 

miRNA target sites, based on features extracted from existing high throughput immunoprecipitation and 

sequencing data. The analysis is performed independently for the coding sequence and the 3’UTR and 

reveals different sets of features and models for the two regions. The two models are combined into a novel 

computational model for microRNA target genes, DIANA microT-CDS, which achieves significantly higher 

sensitivity at a similar precision level compared to other widely used programs and a model that implements 

target sites only in the 3’UTR. Importantly, further analysis indicates that genes with shorter 3’UTRs are 

preferentially targeted in the coding sequence. 

Introduction 
MicroRNAs (miRNAs) are small endogenous RNA molecules that play a key role in development and 

diseases through post-transcriptional regulation of gene expression. They are part of the RNA-Induced 

Silencing Complex (RISC) and guide it to specific miRNA Recognition Elements (MREs) on the mRNA 

molecules of target genes and lead either to translational repression and/or messenger RNA (mRNA) 

degradation (1).  

Although most of the MREs have been found in the 3' Untranslated Region (3'UTR) of protein coding genes, 

there are individual reports of MREs located in the coding sequence (CDS) of target genes with evidence for 

their relation to important biological functions (2). In Duursma et al. (3) it is shown that miR-148 represses 

specific splice variants of DNA methyltransferase 3b (Dnmt3b) gene expression by targeting its coding 

sequence reporting that this mechanism might play a role in determining the relative abundance of different 

splice variants. Forman et al. (4) suggest that four let-7 miRNA target sites within the coding sequence of the 

miRNA-processing enzyme Dicer establish a mechanism for a miRNA/Dicer auto-regulatory feedback loop. 

In Elcheva et al. (5) it is shown that the coding region of beta-transducin repeat containing protein 1 is 
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regulated by miR-183. Takagi et al. (6) showed that Hepatocyte Nuclear Factor 4 alpha (HNF4a) is down-

regulated by miR-24 targeting its coding region. The expression of miR-24 is regulated by cellular stress, 

thus affecting the metabolism and cellular biology. Finally, Abdelmohsen et al. (7) showed that miR-519 

represses the translation of the RNA-binding protein Hu antigen R (HuR) which in turn reduces HuR-

regulated gene expression and cell division.   

Also recently, high throughput data allowed for the direct identification of MREs on the target genes (8-9). 

In Hafner et al. through immunoprecipitation of the miRNA containing ribonucleoprotein complexes and 

sequencing of the associated RNA fragments (PAR-CLIP), it is shown that miRNAs tend to bind in 

approximately equal proportions on the 3'UTR as well as on the CDS of target mRNAs. The authors also 

suggest that miRNA targeting in the CDS has indeed a measurable effect on miRNA mediated mRNA 

degradation.   

Up to now, most miRNA target prediction programs limit their search for MREs only within the 3'UTR (10).  

Here we present a novel approach that allows us for the first time to refine miRNA targeting both on the 

3'UTR and the CDS by modeling the potential interaction between these two targeting mechanisms. The 

method is based on the analysis of a verified set of MREs against a negative set of MREs as defined through 

the PAR-CLIP data from Hafner et al. and introduces several novel features that have an effect on miRNA 

targeting mechanism. 

The analysis is performed independently for the MREs on the two gene regions (3’UTR and CDS) to account 

both for the possibility of differing targeting mechanisms as well as for the possibility of differing MRE 

functionality (Figure 1). 

 

Figure 1: Flowchart of the analysis on the PAR-CLIP data. The MREs specified by the PAR-CLIP data are divided in two categories 

according to the genomic region in which they lie on (A). For these two sets several features are extracted and the most informative 

of them are selected by comparing true MREs with false MREs (B). The selection is performed through a three-fold crossvalidation 

model optimization (C). For each identified miRNA MRE the selected features (depending on the gene region it lies on) are 

combined into a MRE score through generalized linear models (D). For each gene we define the CDS score and the 3’UTR score 

which are calculated by summing the MRE scores that lie on each genomic region respectively. These two scores are linearly 

combined into a final score (E). To test for the overall performance of this scoring approach we performed a completely independent 

test on the high- throughput proteomics data of Selbach et al. (F). 
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Results 

Target sites in coding regions result in significantly more sensitive target prediction. 

The overall performance of the developed algorithm is tested on a data set completely independent from the 

PAR-CLIP training data. The test set is derived from the measurements of protein level changes after the 

transfection of five miRNAs in HeLa cells as provided by Selbach et al. (11). All genes with a logarithmic 

protein downregulation exceeding 0.2 are considered as targeted. Approximately half of these genes do not 

carry a single corresponding miRNA seed (nucleotides 2-7 from the 5’end of the miRNA) match in their 

3’UTR sequences and are consequently not recognized by any computational miRNA target prediction 

program currently available. The combined (CDS & 3'UTR) model presented here increases sensitivity more 

than 12% from 52% to 65% in comparison to the 3'UTR region model, keeping specificity at the same level 

of 32% (see supplementary Fig. S1).  To test the significance of the additional CDS model we compared the 

predicted results with a partly random predictor where for each miRNA, the scores of the two models are 

shuffled by combining the 3'UTR score of each gene with a randomly selected CDS score from a target gene 

of the same miRNA. The performance of this partly randomized predictor is significantly lower than the 

combined model (supplementary Fig. S1). 

 The combined model is additionally compared to other widely used miRNA target prediction programs such 

as TargetScan 5.0 (12), PicTar (13) and RNA22 (14) as well as a seed measure, whose predictions are 

defined through miRNA seed matches on the 3'UTR of genes and has been shown to be more sensitive than 

any other published prediction program (10) (see Materials and Methods). The seed predictions are scored 

based on the number of seed matches identified on each gene. Figure 2 reports the performance of the above 

mentioned programs at different levels of sensitivity. At lower specificity values a high sensitivity increase is 

observed, outperforming also the seed measure. 

 

Figure 2: Precision of the predictions for different target prediction methods for increasing sensitivities (pROC analysis), tested on 

the data set from (Selbach et al., 2008) 

In order to investigate the significance of the improvement of DIANA-microT-CDS to the next best 

performing program (TargetScan 5.0) we sample out of the 16164 measured miRNA:gene interactions in the 
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Selbach et al. data a random subsets of 8000 interactions each. A statistically significant improvement of 

prediction precision (p-value < 10
-11

, Wilcoxon test) is found for the combined model in comparison to 

TargetScan on these 100 randomly collected gene sets. Measuring the area under the receiver operating 

curve (AUC), a significantly better average AUC value of 0.668 for microT in comparison to 0.615 for 

TargetScan is observed (p-value < 10
-15

, Wilcoxon test). Evaluating in the same way the average protein 

downregulation of the predicted targets, we find a significantly higher downregulation for the predictions of 

microT-CDS compared to TargetScan 5.0 (p-value < 10
-12

, Wilcoxon test). 

The overlap between the targets predicted by the two programs on the same dataset (Selbach et al.) is ranging 

between 50% and 70% at a specific precision level (Figure 3), which implies that large number of correct 

targets is predicted only by microT-CDS. Particularly at lower precision levels the number of correct 

predictions is almost doubled using microT-CDS. A test of the microT-CDS algorithm on the five mentioned 

individual cases of experimentally verified CDS targeting returns three positive cases (for the genes: 

Dnmt3b,Dicer and HNF4a). This is in agreement with our estimated sensitivity and is currently the only 

available computational prediction for this type of sites. 

 

Figure 3: Comparison of the number of targets correctly predicted for the 3 sets: predicted only by microT-CDS, predicted only by 

TargetScan 5.0 and predicted by both programs. The comparison evaluates the 2447 known targets in the Selbach et al. dataset at 

specific score thresholds corresponding to different prediction precision levels. 

Another independent test to evaluate the performance of our program in the detection of CDS target sites is 

performed on the high-throughput HITS-CLIP dataset of (Chi et al., 2009). The Argonaute-mRNA binding 

sites corresponding to mouse microRNA targets are used here. Of the top 20 expressed microRNAs in this 

experiment, 12 are not in the set of microRNAs used for the development of our algorithm. Of the genes 

targeted by these 12 microRNAs, 2156 have HITS-CLIP clusters only in the CDS and are not targeted in the 

3'UTR. The seed location of 645 of these 2156 sites is correctly predicted by DIANA-microT-CDS. After 

multiple randomizations of the locations of the predicted sites, only 23.6 match to real binding sites. The 

ratio of true over randomly predicted sites is thus estimated as larger than 27.  

Genes with shorter 3'UTR have significantly more targets in coding regions 

To gain more insight into the mechanism underlying CDS targeting we investigated relations between CDS 

and 3'UTR targeting in the above mentioned dataset. Therefore we compared the CDS target scores with the 
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3' UTR length of the same target protein coding genes and could observe a significant preferred occurrence 

of MREs in the coding sequence for genes with 3'UTR sequences shorter than 500 nucleotides long 

(Wilcoxon test, p-value < 0.05) (Figure 4). 

Such preference could not be observed for the group of genes that are measured as not targeted by miRNAs 

in the same proteomics experiment. We further tested the evidence of our observation by randomly 

combining the CDS scores of targeted and non targeted genes with the 3’UTR scores of the same group of 

genes respectively. We could again for both cases not observe a preference for CDS targeting in genes with 

short 3’UTRs as seen in the real genes score measurements (Figure 4). Similarly when analyzing the miRNA 

target genes as observed from 13 microarray experiments (see Materials and Methods) we observed that 

genes identified as targeted only on the CDS have significantly shorter 3'UTR sequences than genes targeted 

only on the 3'UTR (p-value < 10
-13

, Wilcoxon test). These findings suggest that evolutionary pressure might 

enforce the presence of additional sites on the CDS in cases where there is restricted space on the 3'UTR. 

 

Figure 4: Preferential occurrence of MREs in coding sequence for short 3’UTRs. Comparing the sum of the predicted site scores in 

coding sequence (CDS score) against various 3’UTR sizes of targeted (green line) and non-targeted (blue line) genes on an 

independent test set reveals a significantly higher number of sites in coding regions for genes with 3’UTR lengths shorter than 500 nt 

(red box, Wilcoxon test, p-value < 0.05). 

Discussion 
High throughput proteomics experiments (11,15) that measure changes for thousands of genes both on the 

mRNA and the protein level reveal that approximately half of the genes whose expression is 

increased/decreased after miRNA transfection/knockout do not carry a single corresponding miRNA seed 

match in their 3'UTR sequence. The program introduced here enables the recognition of 12% of these down 

regulated genes as additional targets of miRNAs, having their targets in coding regions. The contribution of 

additional target sites located in the CDS is further verified in additional tests on the microarray experiments 

measuring the effect of over- or under expression of 6 miRNAs not contained in the training set. Comparing 

our algorithm when using only target sites in the 3'UTR with the algorithm using all sites on this data, the 

sensitivity of detecting verified targeted genes when using the same score cut-off is increased from 42.7% to 

46.8% by more than 4%, while the false positive predictions and the precision of the predictions remains at 

the same level. This corresponds to 25 correctly predicted additional targets in this set of 600 verified targets. 
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The analysis of the recent data for miRNA associated protein immunoprecipitation and the subsequent RNA 

sequencing has been the base for the development of a program that uses several features which differ from 

those used by other miRNA target prediction programs.  Generally, evolutionary conservation is a strong 

indication for MRE functionality (12,16-17). However, the coding sequences of genes usually have a 

significantly higher background conservation level than 3'UTR sequences due to their underlying amino acid 

content. We incorporate therefore a specific feature for conservation of MREs in coding regions, exploiting 

the conservation of synonymous codons. 

The analysis described here reveals also that functional MREs in the CDS preferentially require a stronger 

binding than MREs in the 3'UTR. MREs in coding regions require a perfect binding along the miRNA seed 

region and mismatches disrupt their functionality. A feature analysis for MREs in 3'UTRs reveals a number 

of novel significant features, such as the requirement for increased accessibility in the mRNA secondary 

structure at the beginning of an MRE. 

In several cases the synergistic effect of two features is shown to be more informative than the two features 

used independently. For example the higher mRNA AU content in the region surrounding an MRE (18) 

when combined with the free energy of the binding complex (p-value < 10-15, Wald test) gains higher 

significance than any of these features alone. Interestingly, this gain suffices to eliminate this AU content as 

an independent feature. 

Also, it is shown that evolutionary pressure might enforce the presence of sites on the CDS in cases when 

there is restricted available space for targeting in the 3'UTR. All prediction results of microT-CDS are 

available through the DIANA web server (19) at www.microrna.gr/microT-CDS. 

Methods 

Datasets 

PAR-CLIP data 

The PAR-CLIP data (Figure 1A) is downloaded from the supplementary material of Hafner et al.. 

Microarray data 

Microarray data are downloaded from ArrayExpress (http://www.ebi.ac.uk/microarray-as/ae) and from Gene 

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo). The data sets used are E-GEOD-12091 (20) (mir-

26b), E-GEOD-12092 (20) (mir-98), E-GEOD-6207 (21) (miR-124), E-GEOD-958618 (miR-335), 

GSM155604 (22) (miR-106b), GSM210897 (18) (miR-7), GSM210898 (18) (miR-9), GSM210901 (18) 

(miR-122a), GSM210903 (18) (miR-128a), GSM210904 (18) (miR-132), GSM210909 (18) (miR-142), 

GSM210911 (18) (miR-148b), GSM210913 (18) (miR-181a). 

Proteomics data 

Changes in protein levels resulting from overexpressing miRNAs hsa-mir-1, hsa-mir16, hsa-mir30a, hsa-

mir155 and hsa-let-7b (as estimated in Selbach et al.) are downloaded from http://psilac.mdc-berlin.de. 

RefSeq protein IDs are converted to corresponding Ensembl Gene IDs (Ensembl release 54). There are only 

120 RefSeq protein IDs that corresponded to multiple Ensembl IDs, and of these 20 corresponded to multiple 

Ensembl IDs with different 3'UTR lengths. For these cases, the Ensembl ID corresponding to the longest 

3'UTR is used. In total 16164 measurements for potential miRNA:mRNA interactions are identified, of 

which 2447 have a logarithmic protein downregulation exceeding 0.2 and are considered true targets and 

13717 are considered false targets. 
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HITS-CLIP data 

The HITS-CLIP data is downloaded from the supplementary material of Chi et al (9). 

miRNA sequences 

The miRNA sequences used are downloaded from miRBase Build 13.  

Gene sequences 

The CDS and 3'UTR sequences are the longest annotated transcript for each gene and are downloaded from 

Ensembl build 54. 

Multiple Alignments 

Multiple genome alignments are downloaded from UCSC Genome Browser. Human (hg18) alignment to the 

following 16 vertebrate genomes are used: panTro1, rheMac2, rn4, mm8, oryCun1, bosTau2, canFam2, 

dasNov1, loxAfr1, echTel1, monDom4, galGal2, xenTro1, tetNig1, fr1, danRer3 and Mouse (mm9) 

alignment to the following 16 vertebrate genomes are used: rn4, oryCun1, hg18, panTro2, rheMac, canFam, 

bosTau3, dasNov1, loxAfr1, echTel, monDom4, galGal3, xenTro2, tetNig, fr2, danRer5.  

miRNA target prediction of other programs 

For TargetScan we download the source code from http://www.targetscan.org/vert_50 and execute it for all 

human miRNAs against all 3'UTR sequences also used by microT to provide an accurate comparison with 

this program. The results obtained for TargetScan on our 3'UTR set perform slightly better than the results 

downloaded from the TargetScan server. The predictions for all other programs are derived from Alexiou et 

al. (10). 

Feature Extraction 

Alignment for putative MRE identification 

A dynamic programming algorithm identifies the best alignment between the miRNA extended seed 

sequence and every 9 nucleotide window on the 3'UTR. The alignment is initially restricted so as the pairing 

of the miRNA extended seed with the 9 nt window begins at position 1 or 2 of the miRNA extended seed. A 

minimum of four consecutive Watson-Crick (WC) binding nucleotides is required starting at position 1 or 2 

of the miRNA extended seed. A single G:U wobble pair is allowed for binding sites with more than 6 

consecutive WC binding nucleotides. A single bulge or mismatch is allowed for binding sites with eight WC 

binding nucleotides. 

Primary analysis of PAR-CLIP data and training set construction 

The PAR-CLIP data produced in Hafner et al. consists of genomic coordinates specifying potential positions 

of MREs (8). Each putative MRE position is further refined through the existence of a T to C mutation in the 

sequenced tags as reported in the Hafner et al. To identify the miRNA involved in each MRE, the sequences 

of all identified genomic locations of the PAR-CLIP data are aligned against the miRNA sequence of the top 

100 expressed miRNAs. These aligned locations are putative MREs and are further filtered to keep only 

those that are located closer than 5 nucleotides to the T to C mutation. In case there are more than one 

putative miRNA bindings in the same region then only the MRE with the higher number of binding 

nucleotides is retained. This set of MREs is defined as the true set. On the other hand, the false set consists of 

all aligned locations which do not overlap with the PAR-CLIP data. To take into account the probability part 

of the false set to correspond to miRNAs or genes which are indeed functional but are not expressed in the 

particular tissue of the PAR-CLIP experiment we have only retained aligned locations for the top 100 
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expressed miRNAs in the experiment and genes that already contained at least one true MRE. Overall, out of 

the 17310 PAR-CLIP peaks throughout the genome, 5075 overlap with an MRE in the 3'UTR and 6057 

overlap with an MRE in the CDS. 

Detection of binding categories with significant PAR CLIP reads enrichment 

The binding category of a putative MRE is determined through the alignment procedures described above. 

All binding categories are then separated based on whether the mRNA nucleotide opposite the first 

nucleotide of the miRNA is an A or not and whether it is a matching nucleotide or not. This procedure 

defines 64 different binding categories which are then compared between the true and false set of MREs as 

defined in the PAR-CLIP data set (Figure 1B). This comparison is performed through a logistic regression 

between the binding categories and the presence or absence of the corresponding MRE in the true or false set 

of the PAR-CLIP data. The estimated regression coefficient (values in supplementary table S1) is thereafter 

used as a feature in the generalized linear models to characterize the overall efficiency of each MRE and is 

denoted as the "binding category weight" feature. An example category is labeled "8mer+3'pairing 

1st:mismatch+NotA" and corresponds to 8 matches between the miRNA extended seed and the mRNA plus 

additional bindings in the 3'end and the first nucleotide opposite the 5' end of the mRNA is not a match nor is 

an Adenosine.  

Conservation measure of the MRE sequence in CDS 

The CDS conservation scoring method is based on a recently proposed approach (4) of calculating excess 

sequence conservation above the one required for amino acid conservation. The underlying concept is that 

functional MREs in the CDS are expected to preferentially conserve those nucleotides that would have no 

effect on the amino acid outcome, but would interfere with miRNA targeting (see Methods). The 30-way 

genomic alignments (UCSC) for the coding regions for all mRNAs have been downloaded and for each 

pairwise alignment of the reference species to any other species, we calculate the probabilities that the 

sequence of a triplet (or partial triplet) is conserved, given that the amino acid it codes for is or is not 

conserved. Each predicted MRE is scored by adding these probabilities from all pairwise alignments of the 

triplets (partial or full) that cover the MRE, normalized by the maximum score that could have been achieved 

by this same MRE. This feature is denoted as "CDS conservation".  

Conservation measure of the MRE sequence in 3'UTRs 

The algorithm assesses the evolutionary conservation of a MRE in the 3'UTR by calculating a conservation 

score based on 16 species. To compensate for the overall degree of conservation in the whole 3'UTR, the 

conservation score for each MRE is defined as the ratio of the number of species in which the binding 

positions of the extended seed region are conserved versus the respective number using the maximal number 

of species having any conservation in the whole 3'UTR region. This feature is denoted as "conservation". 

Detection of significantly accessible locations within MREs 

A logistic regression between the presence or absence of reads in the PAR-CLIP data and the accessibility of 

the 3'UTR sequence as calculated with the Sfold algorithm (23) using each of the 40 nucleotides upstream 

and 10 nucleotide downstream of the start of each MRE as a feature is performed to identify any significant 

targeting feature related to accessibility. The largest region with a reasonably significant contribution (p-

value < 0.1, Wald test) and consistent direction of the contribution at all positions ranges across positions -1, 

1 and 2. The sum of accessibilities in this region, denoted as "MRE accessibility (-1 to 2)", is used as a 

feature in the following. 
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Other MRE features 

Two of the three features identified in Grimson et al. (18), the MRE flanking AU content denoted as 

"flanking AU content" and the distance of the MRE to the closest 3'UTR end denoted as "distance to closest 

3'UTR end" are used. Additionally, the distance between adjacent MREs denoted as "adjacent MRE 

distance", the free energy of binding as calculated with RNAhybrid (24) denoted as "free energy" and the 

resulting binding pattern of the 29 nucleotides of the 3'UTR along the MRE denoted as "bnt1" to "bnt29", are 

also evaluated as features. All second order interactions between all features are automatically generated and 

selected using F-tests. 

Feature selection 

To determine an optimal feature set using crossvalidation, the PAR-CLIP data set is split into 3 disjoint 

subsets, stratified for positive and negative sites. On each subset a logistic regression using the features 

described above is performed and a feature selection procedure minimizing the Akaike information criterion 

(AIC) using the stepAIC implementation in the MASS (25) package for R determines an optimal set of 

features. For this initial set of features, the capability of each single feature to separate the complete PAR-

CLIP data into sites with reads and sites without reads is tested using a Wilcoxon test and only features 

showing significant (p-value < 0.05) separation are retained. This feature selection procedure is performed 

independently for sites in the CDS and sites in the 3'UTR (Figure 1C). The full list of selected CDS and 

3'UTR features is provided in supplementary table S2. 

Training and scoring 

Using the identified significant features, different machine learning methods like support vector machines, 

neural networks, random forests and generalized linear models (GLM) (25) are compared for the calculation 

of an MRE score. The best performance in crossvalidation is obtained using GLMs. Each gene region (CDS 

or 3'UTR) has a separate model. The regression coefficients for all features and their significances are in 

supplementary table S2. The scores for all MREs identified on a region are summed into a region score 

(Figure 1D). 

Combining CDS and 3'UTR targeting 

For the optimal combination of the two region scores we train another generalized linear model using data 

from the 13 different microarray experiments measuring mRNA expression changes when a miRNA is either 

transfected or knocked out (defined in the data section). The genes in each data set are sorted according to 

expression fold change compared to the control and the top and bottom 100 genes from each experiment are 

used as the true and false examples for training the generalized linear model (Figure 1E). 
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Supplementary Material 
 

Supplementary Table 1: Significant miRNA recognition element (MRE) binding categories.  A 

logistic regression between the binding categories of the aligned MREs and the presence or absence of the 

corresponding MRE in the true or false set of the PAR-CLIP data reveals 21 binding categories with a 

significant association for MREs in the 3'UTR and 10 binding categories for MREs in the CDS (p-value < 

0.05, Wald test). 

Binding category 3’UTR CDS 

Regession 

coefficient
*
 

p-value Regession 

coefficient 

p-value 

9mer 1st:match+notA 1.9533 2.00
-16

 1.08279 1.19
-10

 

8mer 1st:match+notA 1.9555 2.00
-16

 0.98775 2.00
-16

 

7mer 1st:match+notA 1.1084 2.00
-16

   

6mer 1st:match+notA 0.7788 2.00
-16

   

8mer 1st:mismatch+A 2.2699 2.00
-16

   

7mer 1st:mismatch+A 1.9852 2.00
-16

 0.68969 7.27
-9

 

6mer 1st:mismatch+A 1.0179 2.00
-16

   

9mer 1st:match+A 3.08 2.00
-16

   

8mer 1st:match+A 2.7861 2.00
-16

 1.26186 2.00
-16

 

7mer 1st:match+A 1.7453 2.00
-16

 0.76037 2.00
-16

 

8mer 1st:mismatch+NotA 2.0928 2.00
-16

 1.08677 2.00
-16

 

7mer 1st:mismatch+NotA 1.4572 2.00
-16

 0.3905 3.60
-9

 

6mer 1st:mismatch+NotA 0.7199 2.00
-16

   

6mer 1st:match+A 0.484 8.67
-10

   

9mer+3'pairing 

1st:match+A 

  2.33208 2.47
-2

 

7mer+3'pairing 

1st:mismatch+A 

5.1386 2.78
-5

   

7mer+3'pairing 

1st:match+A 

4.4454 7.16
-5

   

8mer+wobble 

1st:mismatch+NotA 

1.1752 1.37
-4

   

8mer+wobble 1st:match+A 1.425 1.68
-3

 0.71923 3.33
-2

 

8mer+mismatch 

1st:match+A 

1.3601 7.19
-3

   

8mer+mismatch 

1st:match+NotA 

1.4836 1.10
-2

   

8mer+3'pairing 

1st:mismatch+NotA 

2.3352 2.16
-2

 2.12444 3.60
-3

 

*
3'UTR binding category also used in TargetScan are in bold. 
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Supplementary Table 2. The final set of features with their regression coefficients and significances. 

 features for CDS binding coefficient Wald test
*
 Wilcoxon test

**
 

 

distance to closest CDS end -5.496 *10
-4

 3.4581 *10
-11

 2.45 *10
-9

 

CDS conservation 0.1628 6.8078 *10
-5

 9.28 *10
-11

 

binding category weight 0.5055 0.0388447 2.22 *10
-17

 

adjacent MRE distance -0.003369 0.004249 0.00449 

free energy 0.09122 1.53 *10
-8

 8.23 *10
-6

 

 

synergistic features for CDS binding 

bnt11*bnt1 -0.3861 0.0198 4.62 *10
-4

 

flanking AU content.free energy -0.2837 <2 *10
-16

 5.68 *10
-29

 

 

features for 3'UTR binding 

distance to closest 3'UTR end -0.00148 1.65 *10
-12

 5.7 *10
-98

 

binding category weight 0.385 0.00221 2.49 *10
-196

 

free energy 0.0698 3.66 *10
-9

 3.4 *10
-10

 

MRE accessibility (-1 to 2) 0.1395 1.64 *10
-4

 4.85 *10
-19

 

conservation 1.801 4.53 *10
-7

 1.46 *10
-129

 

 

synergistic features for 3'UTR binding 

flanking AU content*free energy -0.322 <2.0 *10
-16

 4.31 *10
-210

 

binding category weight*conservation 0.672 0.00713 1.06 *10
-244

 

distance to closest 3'UTR end * 

adjacent MRE distance 

3.52 *10
-6

 6.85 *10
-4

 7.96 *10
-63

 

*
 significance of the feature in the regression obtained from a Wald test is shown as averages after threefold 

crossvalidation on the PAR-CLIP training data
 

** two-tailed Wilcoxon test for training data discrimination of the feature. Note that this test evaluates each 

feature independently, while the Wald-test evaluates whether the feature adds a significant contribution to 

the regression using all features. 

 

 

 

 

 

 

 

 

 

 



13 

 

 

Supplementary Figure 1: Precision of the predictions for the combined CDS and 3'UTR prediction ("microT"), the prediction using 

the 3'UTR only ("microT (UTR only)") and the randomization between the CDS and 3'UTR predictions ("microT (UTR with CDS 

randomization)"). 
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6. microRNA FUNCTIONAL ANALYSIS 

The goal of most miRNA analyses is to associate particular miRNAs to certain functions in a 

biological context. The identification of such associations may provide potential targets for 

diagnosis and therapy in human diseases. In this chapter I present four bioinformatics tools 

designed for the analysis of miRNA related biological data and produce results that will assist in 

understanding miRNA function. Presented in chronological order these tools consist of a Web 

server with extensive information, wide connectivity to biological resources and functional analysis 

through automated bibliographic searches, a Web application for the assessment of miRNA 

involvement in biological pathways denoted as DIANA-mirPath, a Web application for the 

identification of miRNAs involved in the differential expression of genes denoted as DIANA-

mirExTra and an updated Web server with predictions for two widely studied species: D. 

melanogaster and C. elegans as well as associations of miRNAs to publications related to diseases. 
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6.1. DIANA-microT web server: elucidating miRNA functions through target 

prediction 
In the miRNA field, information has been expanding in an increasing way in the last years. For this, 

the development of tools such as a target prediction program which provide primary data is not on 

its own sufficient and there is need for applications, primarily web based, which will serve as an 

interface between bioinformatics tools and researchers. These applications need to be able to 

organize the available information and present it in an intuitive and integrated way. In the following 

publication I present a Web server which provides extensive information and wide connectivity to 

online biological resources in a user friendly interface. Target gene and miRNA functions are 

elucidated through automated bibliographic searches and functional information is extracted 

through KEGG (Kanehisa, Goto et al. 2004) pathways. Also, the server offers links to 

nomenclature, sequence and protein databases and users are facilitated by being able to search for 

targeted genes using different nomenclatures or functional features. Additionally, since miRNA 

target prediction is a computationally intensive task, I developed an infrastructure in the computer 

cluster of the National Technical University of Athens to enable users to execute prediction for 

custom miRNA sequences, as part of the Web server. The work was published in Maragkakis et al 

(Maragkakis, Reczko et al. 2009) 
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ABSTRACT

Computational microRNA (miRNA) target prediction
is one of the key means for deciphering the role
of miRNAs in development and disease. Here, we
present the DIANA-microT web server as the user
interface to the DIANA-microT 3.0 miRNA target
prediction algorithm. The web server provides
extensive information for predicted miRNA:target
gene interactions with a user-friendly interface, pro-
viding extensive connectivity to online biological
resources. Target gene and miRNA functions may
be elucidated through automated bibliographic
searches and functional information is accessible
through Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways. The web server offers
links to nomenclature, sequence and protein data-
bases, and users are facilitated by being able to
search for targeted genes using different nomencla-
tures or functional features, such as the genes pos-
sible involvement in biological pathways. The target
prediction algorithm supports parameters calcu-
lated individually for each miRNA:target gene inter-
action and provides a signal-to-noise ratio and a
precision score that helps in the evaluation of the
significance of the predicted results. Using a set of
miRNA targets recently identified through the
pSILAC method, the performance of several compu-
tational target prediction programs was assessed.
DIANA-microT 3.0 achieved there with 66% the
highest ratio of correctly predicted targets over all

predicted targets. The DIANA-microT web server is
freely available at www.microrna.gr/microT.

INTRODUCTION

MicroRNAs (miRNAs) are approximately 22-nt long
endogenously expressed RNA molecules which regulate
gene expression, preferentially by binding to the 30-
untranslated region (30-UTR) of protein coding genes (1)
and have been found to confer a novel layer of genetic
regulation in a wide range of biological processes. Since
their initial identification in 1993 (2), there have been sev-
eral efforts for the identification of miRNA targeted genes
(miTGs), but biological experiments have uncovered only
a small fraction of all miTGs. Due to this, computational
target prediction remains one of the key means to analyze
the role of miRNAs in biological processes.
In the last 5 years, more than two dozen miRNA target

prediction programs have been published (3). Most of
these programs are mainly based on sequence alignment
of the miRNA seed region (nucleotides 2–7 from the
50-end of the miRNA) to the 30-UTR of candidate target
genes leading to the identification of putative binding sites.
Their specificity is usually increased by exploiting the com-
monly observed evolutionary conservation of the binding
sites or by using additional features such as structural
accessibility (4,5), nucleotide composition (6) as well as
location of the binding sites within the 30-UTR (7).
Recently, Selbach et al. (12) determined the comple-
ment of all the genes targeted by five miRNAs induced
independently in HeLa cells using microarrays and
pulsed stable isotope labeling with amino acids in cell
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culture (pSILAC). Based on this dataset, they performed a
comparative assessment of several commonly used target
prediction programs which showed that only three
[DIANA-microT 3.0, PicTar (9) and TargetScanS (13)]
achieved precision levels (the fraction of the predicted tar-
gets that were actually downregulated) >60%. DIANA-
microT 3.0 predicted 294 targets total out of which 194
were correct and thus reached a precision of 66%.
The DIANA-microT 3.0 algorithm is based on para-

meters that are calculated individually for each miRNA,
and for each miRNA recognition element (MRE),
depending on binding and conservation levels. The total
predicted score of a miRNA:target gene interaction is the
weighted sum of conserved and unconserved MREs of a
gene. We also provide a signal-to-noise ratio (SNR) and a
precision score specific for each interaction that can be
used as a helpful confidence estimation of the ‘correctness’
and the false positive rate of each predicted miTG. This
information can be easily looked up on the user-friendly
DIANA microT web server where prediction results are
organized in expandable tabs to group the available infor-
mation, reduce the presentation complexity and show
additional prediction details only on demand. Cases
where a predicted interaction is registered as experimen-
tally supported or predicted by other programs are also
noted. The server offers an efficient search engine allowing
multiple gene nomenclatures or queries based on gene
involvement in specific biological pathways. The analysis
of predicted interactions is supported by significance eval-
uation measures, extensive linkage to several online bio-
logical resources and automated bibliographic searches in
PubMed. The server also supports prediction requests
based on user-defined miRNA sequences and is integrated
in a platform with two further miRNA functional analysis
tools: mirPath, a pathway analysis tool of predicted tar-
gets and mirExTra, a miRNA analysis based on differen-
tial expressed mRNA profiles.

METHODS AND RESULTS

The DIANA microT web server

The web server may be accessed through a search engine
with several options. The upper search box is used for
browsing target genes predicted for a single miRNA. In
this field, the miRNA name may be provided explicitly or
partially. The second search box is used for identifying
miRNAs which might be targeting a specific gene. In
this case, the gene may be provided either based on
Ensembl gene ID, RefSeq gene ID, common name or as
part of the Ensembl description. If the search criteria cor-
respond to more than one possible match, a list of alter-
natives is presented to the user to choose from. The lower
search box combines the two search criteria offering the
capability to identify if a specified miRNA targets a spe-
cified gene. For presenting the results, the web server
results page (Figure 1) is divided in two parts. In the
upper region, the user may find information concerning
the provided search term; whereas, the prediction results
are presented in the lower part.

Figure 1 presents a typical results page based on a com-
bined search for a miRNA and a gene. To assess the sig-
nificance of the predicted interactions, the web server
offers evaluation measures such as the precision score
and the SNR. The information for each MRE score
including conservation and binding structure of the
MRE:mRNA interaction is also provided. Cases where
an interaction is registered in the database of experimen-
tally supported miRNA targets [TarBase, (8)] are high-
lighted with a link to the database. Moreover, all the
interactions which are also predicted by PicTar (9) or
TargetScan 4.2 (6) are noted in the web page. For each
predicted interaction, the results page offers extensive link-
age to multiple online biological resources [UniProt,
Ensembl, miRBase, iHOP and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways (11)] as well as
automated bibliographic searches in PubMed for the
miRNA, the target gene or the combination of the two.

DIANA-microT 3.0 algorithm description

A typical miRNA is approximately 22-nt long, but the
nucleotides close to the 50-end of the miRNA are crucial
for recognizing a target sequence and binding to it.
Usually, a strong binding [at least seven consecutive
Watson–Crick (WC) base pairing nucleotides] between
the first 9 nt from the 50-end of the miRNA sequence
(here called as the miRNA driver sequence) and the
target gene is required for sufficient repression of protein
production. However, there is experimental (10) evidence
that a weaker binding, involving only six consecutively
paired nucleotides or including G:U wobble pairs, can
also repress protein production if there is additional bind-
ing between the miRNA 30-end and the target gene.

The DIANA-microT 3.0 algorithm considers as MREs,
those UTR sites that have 7-, 8- or 9-nt long consecutive
WC base pairing with the miRNA, starting from position
1 or 2 from the 50end of the miRNA. For sites with addi-
tional base pairing involving the 30-end of the miRNA, a
single G:U wobble pair or binding of only six consecutive
nucleotides to the driver sequence are also allowed. Using
as features the MRE binding type and the MRE conser-
vation profile, all identified MREs are scored through
comparative analysis versus a set of MREs identified
based on mock miRNA sequences. The overall miTG
score is calculated as the weighted sum of the scores of
all identified MREs on the 30-UTR. The algorithm uses up
to 27 species to assess the MRE conservation profile
taking into account both conserved and nonconserved
MREs for the estimation of the final miTG score.

For the evaluation of each miRNAs predicted interac-
tions, the program compares them to those predicted for a
set of mock miRNAs. Mock miRNAs are independently
created for each real miRNA and are designed to have
approximately the same number of predicted targets as
the real miRNA. This allows for the calculation of
miRNA-specific SNR at different miTG score cut-offs as
well as for the estimation of a precision score that provides
an indication of the false positive rate of a particular
miTG interaction.
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Figure 1. DIANA-microT web server results page. The key features have been marked in the figure and are explained below. (1) Gene names and
corresponding links to UniProt (protein information) and iHOP (functional and bibliographic information). (2) KEGG pathways in which the gene
of interest is involved. (3) MiRNA names and corresponding links to miRBase (sequence information) and iHOP. (4) A graph showing the SNR of
the miRNA. The SNR is calculated by the DIANA-microT algorithm and is based on a comparative analysis of the real miRNA versus a set of
mock miRNAs. (5) The prediction score. Higher miTG scores correspond to higher possibility of correct prediction. (6) SNR score of the interaction.
Greater values correspond to better distinction from the mock background. This attribute must be examined in combination with the SNR diagram
provided for each miRNA. (7) The precision score of the interaction. This score ranges from 0 to 1, and it estimates the significance of the prediction.
(8) Literature links that perform an automated search in PubMed for the gene, the miRNA or for the combination of the two. (9) Binding site info:
(a) binding type indicates the number of the binding nucleotides in the 50-end of the miRNA; (b) UTR position indicates the position of the binding
site on the 30-UTR; (c) score indicates the contribution of each binding site to the overall miTG score; and (d) conservation indicates the number of
species in which the binding site is conserved. (10) This field indicates if the interaction may be found in the database of experimentally supported
targets (TarBase) or if it has additionally been predicted by another target prediction program (TargetScan or Pictar). (11) Additional binding site
info: (a) position on chromosome shows the position of the binding site on the chromosome; (b) conservation info indicates the species in which the
binding site is conserved; and (c) graphic representation of the miRNA binding on the 30-UTR.
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Target prediction support for novel miRNA sequences

The DIANA-microT server also supports prediction
requests for user-defined miRNA sequences. The results
of the de novo predictions are stored in a database from
which they can later be retrieved and presented to the
user who is provided with a unique key via email notifica-
tion. Support for target prediction based on user-defined
sequences remains a computationally intensive task even
though the DIANA-microT 3.0 prediction algorithm is
mainly based on dynamic programming routines. For
this reason, all miRNA target prediction requests are sup-
ported by a 256 core cluster consisting of 32 nodes which
succeeds close to linear speedup and is hosted at the
National Technical University of Athens (NTUA).

Integration of further analysis tools mirPath and mirExTra

In a typical case, the miRNA involved in a biological pro-
cess is known and there is a need to predict its targets.
However, the reverse search may also be relevant in some
cases where, for instance, high-throughput data from
cDNA arrays indicating changes in the expression of pro-
tein coding genes is available. In this case, the putative
targets are known whereas the miRNA targeting them is
unknown. To this end, an additional pre-processing tool
for target prediction (mirExTra) is also available that is
able to uncover miRNAs that may be involved in the
changes of the transcriptome by processing a list of differ-
entially expressed protein coding genes and a list of genes
whose expression is unchanged. The program identifies
hexamers that correspond to the driver region of a
miRNA starting at position 1 and 2, which are signifi-
cantly overrepresented in the input list of the overex-
pressed genes relative to those whose expression levels
are constant under the same conditions. The web server
is also combined with a post-processing analysis tool of
predicted targets (mirPath) regarding their role in biolog-
ical pathways. To this end, KEGG pathways that are
enriched in a group of miTGs are identified and the results
are visualized by highlighting the miTGs in the pathway.

CONCLUSION

The miRNA target prediction experiment by Selbach et al.
(12) revealed the problem of the large fraction of under
predicted or falsely predicted target genes. With lower
score thresholds sensitivity can be increased, while trading
off specificity and variable score thresholds can help to
find best combination of these two measures. It is there-
fore crucial to give the user the possibility to modify this
threshold and simultaneously present all relevant informa-
tion facilitating the interpretation, the evaluation or even
the experimental verification of predicted interactions. We
found that most miRNA target prediction programs are
insufficient in this respect, even when providing a

graphical user interface for their results. Additionally,
the search and identification of interactions of interest is
complicated by the existence of different gene nomencla-
tures and may discourage researchers from trying to fur-
ther elucidate the effects of miRNAs in biological
processes. New miRNAs are identified nearly every
month and this rate is increasing through the use of the
new deep sequencing technologies. MiRNAs may also
undergo editing and change the majority of their targets
(14). Our approach, the DIANA-microT web server, has
been designed with these challenges in mind and provides
a user-friendly interface also for unannotated miRNAs by
a precise target prediction algorithm.
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6.2. DIANA-mirPath: Integrating human and mouse miRNAs in pathways 

In the following publication we present a tool to identify molecular pathways potentially affected by 

the expression of single or multiple miRNAs. This tool, named DIANA-mirPath, is a functional 

analysis tool incorporating miRNA targets in biological pathways. It is a Web based application 

whose algorithm consists of an enrichment analysis of miRNA target genes within manually 

designed biological pathways. The combinatorial effect of co-expressed miRNAs in the modulation 

of a given pathway is taken into account through the analysis of multiple miRNAs simultaneously. 

This work was published in Papadopoulos et al (Papadopoulos, Alexiou et al. 2009). 
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ABSTRACT

Summary: DIANA-mirPath is a web-based computational tool
developed to identify molecular pathways potentially altered by
the expression of single or multiple microRNAs. The software
performs an enrichment analysis of multiple microRNA target genes
comparing each set of microRNA targets to all known KEGG
pathways. The combinatorial effect of co-expressed microRNAs
in the modulation of a given pathway is taken into account by
the simultaneous analysis of multiple microRNAs. The graphical
output of the program provides an overview of the parts of the
pathway modulated by microRNAs, facilitating the interpretation and
presentation of the analysis results.
Availability: The software is available at http://microrna.gr/mirpath
and is free for all users with no login or download requirement.
Contact: papadopoulos@fleming.gr or hatzigeorgiou@fleming.gr

1 INTRODUCTION
Post-transcriptional regulation of protein coding genes is emerging
as one of the new frontiers in modern cellular biology. MicroRNAs
(miRNAs) are ∼22-nt long non-coding RNAs that play an important
role as fine regulators of cellular processes through specific post-
transcriptional repression of protein coding genes (Filipowicz
et al., 2008). MiRNAs have been shown to factor into several
physiological and pathological human conditions such as stem
cell differentiation (Li and Gregory, 2008), immune response
(Bi et al., 2009), blood lineage and transformation (Garzon and
Croce, 2008), tumor development (Esquela-Kerscher and Slack,
2006) and metastasis (Lujambio et al., 2008).

MiRNAs are functionally related with both signaling (Cui et al.,
2006) and metabolic (Tibiche and Wang, 2008) networks and also
extensively interact with transcription factors (Yu et al., 2008)
through distinct topological patterns, integrating transcriptional and
post-transcriptional mechanisms in biological regulatory networks.
Despite the growing evidence for miRNA involvement in central
biological processes (Zhang and Su, 2009), the systematic
integration of miRNAs in biological pathways remains rather
incomplete. Currently there are only two miRNA-specific functional
analysis tools available. MiRGator (Nam et al., 2008) performs

∗To whom correspondence should be addressed.

a miRNA functional analysis by mapping the predicted targets
of a single miRNA in pathways. The source of miRNA target
genes used in the analysis may be any of three target prediction
programs [TargetScanS (Lewis et al., 2005), PicTar (Krek et al.,
2005) and miRanda (John et al., 2004)]. Results are presented in a
tabular format sorted by the enrichment P-value of each pathway.
MiRDB (Wang, 2008) is a miRNA target prediction program which
additionally offers precompiled information regarding miRNAs
enrichment in a single pathway.

Here we introduce DIANA-mirPath, a web-based application
that performs an enrichment analysis of predicted target genes of
one or more miRNAs in biological pathways. It is known that
miRNAs have multiple target genes and there is strong evidence
that some miRNAs can act in concert with each other in order to
modulate a molecular pathway (Ivanovska and Cleary, 2008). The
combinatorial effect of co-expressed miRNAs in the modulation of
a given pathway is addressed by our tool through the simultaneous
analysis of multiple miRNAs. MiRNA target genes implicated
in a given pathway are graphically annotated on the pathway
map providing a direct overview of the miRNA modulated parts,
facilitating the interpretation and presentation of miRNA-dependent
regulation of biological pathways.

2 METHODS
The input of DIANA-mirPath is a list of miRNAtarget genes, defined
in a user-friendly web interface by simply selecting the miRNAname
and the target prediction software of preference. Retrieval of miRNA
target genes is automated for the three miRNA target prediction
programs that achieved precision levels higher than 60% in a recent
comparison (Selbach et al., 2008): DIANA-microT (Maragkakis
et al., 2009), PicTar (Krek et al., 2005) and TargetScan (Lewis
et al., 2005). Alternatively any list of human or mouse miRNA
target genes compiled by the user can be used as input by the
application. DIANA-mirPath performs an enrichment analysis of
the input datasets by comparing each set of genes to all available
biological pathways provided by the Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Kanehisa and Goto, 2000). KEGG is a
database resource that provides knowledge about several genomes
as well as their relationships to biological systems and has been
utilized as a systematic knowledge base for molecular and network

© The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 1991
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Fig. 1. DIANA-mirPath analysis, based on DIANA-microT 3.0 predictions, applied to explore altered biological processes by the epigenetically mediated
silencing of miR-148a, miR-34b and miR-9, associated with human cancer metastasis. (A) The combinatorial effect of the miRNA signature is visible in
the bar plot graph of the –ln P values. The Union dataset –ln Ps (red bars) are higher than the –ln P values obtained for each single miRNA (yellow, green
and blue bars) in most of the top targeted pathways. (B) The graphical annotation of the MAPK pathway produced by DIANA-mirPath. Targets of different
miRNAs are differentiated by a coloured dot in the top of the highlight rectangle for a maximum of three miRNAs, in case of larger input datasets a mouse
over option displays the names of miRNAs targeting the selected gene.

biology. Particularly the KEGG PATHWAY Database provides
wiring diagrams of interaction and reaction networks between genes.
The input dataset enrichment analysis is performed by a Pearson’s
chi-squared test {χ2 = �[(O – E)2/E]}, where O (Observed) is
the number of genes in the input dataset found to participate in a
given pathway and E (Expected) is the number of genes expected by
chance, given the pathway and input list size, to be member of that
pathway. The input dataset enrichment in each KEGG Pathway is
represented by the negative natural logarithm of the P-value (–ln P).
The algorithm also performs an enrichment analysis of the Union
and Intersection sets.

The enrichment P-value of the Union dataset in a specific pathway
will reflect the coordinated downregulation of the pathway by all
co-expressed miRNAs whereas the Intersection dataset gives an
overview of the cooperative downregulation of single genes by all
of the expressed miRNAs. A bar plot graph of the enrichment –ln P

values is produced to facilitate the comparison of each pathway
enrichment in different datasets (Fig. 1A). In the DIANA-mirPath
output page all pathways are sorted according to a descending
enrichment statistical score (–ln P) along with the number and names
of each miRNAs target genes involved in each KEGG Pathway.
MiRNA target genes found to be implicated in a given pathway are
graphically annotated as an overlay of the pathway wiring diagram
provided by the KEGG database and single genes or datasets can be
independently highlighted by the user to facilitate the identification
of genes or datasets of interest directly on the pathway map.

3 CONCLUSION
DIANA-mirPath is developed in order to estimate the impact of
co-expressed miRNAs in biological pathways. As a representative
scenario we apply DIANA-mirPath in the functional analysis of
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miRNAs associated with human metastatic cancer cells. In Lujambio
et al. (2008), a DNA methylation-associated silencing of tumor
suppressor miRNAs (miR-148a, miR-34b/c and miR-9) was found
to contribute to the development of human cancer metastasis. In
the same study, transfection of these miRNAs into the metastatic
cell lines resulted in a lower capability of migration and less tumor
growth. A functional analysis of this miRNA signature performed
with DIANA-mirPath identifies both mitogenic and motility
pathways to be extensively downregulated by the combined action of
these three miRNAs. Top rated pathways involved cell–matrix and
cell–cell adhesions, are known to play essential roles in cell motility,
invasion and proliferation. Furthermore, the MAPK cascade (Fig.
1B), a highly conserved module that is involved in cell proliferation,
differentiation and migration is also found to be significantly
modulated by the presence or absence of these miRNAs. In the
aforementioned case DIANA-mirPath is able to give a systemic
explanation of the two observed phenotypes. In accordance with
the particular emphasis given to the analysis of the coordinated
modulation of a biological process by co-regulated microRNAs in
the development of this tool, the example indicates that the global
effect of the downregulated miRNAs might not only depend on
single central target genes (i.e. well characterized oncogenes or
tumor suppressor genes) but also through modulation of multiple
components of proliferative and motility related pathways resulting
on a more extended and coordinated downregulation. Given the
lack of systematic integration of miRNAs in biological pathways
we believe that the development of a tool like DIANA-mirPath
can be a substantial aid in the planning and the interpretation of
wet lab experiments aiming to infer systemic functions in miRNA
expression signatures.

Funding: Aristeia Award from General Secretary Research and
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6.3. The DIANA-mirExTra web server: from gene expression data to miRNA 

function 
High-throughput gene expression experiments are widely used to identify the role of genes involved 

in biological conditions of interest. Similarly, the identification of miRNAs and the genes they 

regulate may provide potential ways for diagnosis and therapy in human diseases. Although miRNA 

expression levels may not be routinely measured in high-throughput experiments, a possible 

involvement of miRNAs in the deregulation of gene expression can be computationally predicted 

and quantified through analysis of overrepresented motifs in the 3′UTR sequences of deregulated 

genes. For this, in the following publication we present DIANA-mirExTra which allows the 

comparison of frequencies of miRNA associated motifs between sets of genes that can lead to the 

identification of miRNAs responsible for the deregulation of large numbers of genes. I have also 

customized this program to be able to run in the computer cluster mentioned earlier allowing users 

to run the program through a Web interface. This work was published in Alexiou et al (Alexiou, 

Maragkakis et al. 2010). 
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Background: High-throughput gene expression experiments are widely used to identify the role of genes involved in
biological conditions of interest. MicroRNAs (miRNA) are regulatory molecules that have been functionally associated with
several developmental programs and their deregulation with diverse diseases including cancer.

Methodology/Principal Findings: Although miRNA expression levels may not be routinely measured in high-throughput
experiments, a possible involvement of miRNAs in the deregulation of gene expression can be computationally predicted
and quantified through analysis of overrepresented motifs in the deregulated genes 39 untranslated region (39UTR)
sequences. Here, we introduce a user-friendly web-server, DIANA-mirExTra (www.microrna.gr/mirextra) that allows the
comparison of frequencies of miRNA associated motifs between sets of genes that can lead to the identification of miRNAs
responsible for the deregulation of large numbers of genes. To this end, we have investigated different approaches and
measures, and have practically implemented them on experimental data.

Conclusions/Significance: On several datasets of miRNA overexpression and repression experiments, our proposed
approaches have successfully identified the deregulated miRNA. Beyond the prediction of miRNAs responsible for the
deregulation of transcripts, the web-server provides extensive links to DIANA-mirPath, a functional analysis tool
incorporating miRNA targets in biological pathways. Additionally, in case information about miRNA expression changes is
provided, the results can be filtered to display the analysis for miRNAs of interest only.
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Introduction

MicroRNAs (miRNA) are short, approximately 22 nucleotides

long, endogenously expressed RNA molecules that regulate gene

expression by binding, in a sequence specific manner, to the 39

UnTranslated Region (39UTR) of messenger RNA (mRNA)

molecules [1]. MiRNAs are not only present but can also be

abundant in eukaryotic cells, controlling a wide variety of target

genes [2]. In the past few years, miRNAs have been associated to

the regulation of a wide range of biological processes [3].

High-throughput methods for gene expression profiling are being

massively used in recent years. Such methods strive to describe

specific transcriptomic states of a cell and can identify changes in

expression levels between cell states of interest. Since miRNAs often

regulate large numbers of mRNAs [4], there are cases where

deregulated miRNAs are responsible for a large part of gene

expression changes. MicroRNA expression levels may or may not be

experimentally measured in such experiments. However even if

miRNAs that are down- or upregulated are known, there is always

the possibility that only a subgroup of those miRNAs would be

responsible for the changes in the transcriptome.

Such miRNAs may be identified via computational analysis,

based on the fact that miRNAs target mRNA transcripts in a

sequence dependent manner (Figure 1). Although it is known

that miRNAs usually bind to specific sites in the 39UTR region

of targeted mRNA transcripts, the accurate identification of all

miRNA target genes has not been possible yet. MiRNA

binding sequences often tend to be overrepresented in sets of

miRNA regulated genes compared to a random selection of

genes [4,5]. Different methods have been previously used to

identify over- or under- expressed miRNAs through changes in

the levels of their target genes. Essentially, the procedure

followed by all such approaches is to identify differentially

expressed genes, identify motifs that are overrepresented in

these genes and then connect these motifs back to miRNAs. In

an analysis performed by Lim et al [4] a motif discovery tool,

MEME (Multiple Em for Motif Elicitation)[6], was used in

order to identify motifs of six or more nucleotides in length
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that were significantly overrepresented in 39UTR sequences of

genes downregulated after hsa-miR-1 overexpression, com-

pared to random 39UTR sequences. The hexamer correspond-

ing to position 2–7 of hsa-miR-1 was identified as the most

significantly overrepresented motif.

In a similar experiment, Krutzfeld and colleagues [5] investigated

the role of miRNA mmu-miR-122a in gene expression by

neutralizing the miRNA through antagomirs and measuring the

gene expression in wild type and knockdown cells. In a more

sophisticated approach, they used the Wilcoxon Rank Sum test to

compare hexamer frequencies between deregulated and unchanged

genes between the two conditions. This analysis revealed that the

frequency of the motif corresponding to the seed of mmu-miR-122

was significantly overrepresented in the 39UTRs of upregulated genes

and underrepresented in the 39UTRs of downregulated genes.

Following this discovery, two freely available programs have been

developed that perform similar computational analyses. MiReduce

[7,8], uses the correlation of the genome wide mRNA log fold

changes of genes against the motif content of their 39UTRs. Each

motif contained in the 39UTR contributes linearly to the fold change

prediction. The method iteratively calculates which motifs contribute

most to the level of change of genes. Sylamer [9] is another software

package that identifies overrepresented occurrences of sequences in a

ranked list of genes using the hypergeometric p-value distribution.

This approach calculates frequencies for hexamers 1, 2 and 3 as well

as 7mers (positions 1–7, 2–8) and 8mers (positions 1–8, 2–9) and

involves corrections for nucleotide biases. The p-values of each motif

are compared to all other motifs. From the user point both programs

have to be downloaded and compiled and include a limited data

format as input. MiReduce outputs text files whereas Sylamer

includes a java based graphical interface.

Given the broad impact of miRNAs in different development

stages and diseases we have felt the emerging need for a tool that

provides such investigations in a fast and user-friendly way. We

believe that it is imperative that such a resource be platform

independent and easy to use. A web-based implementation seems

as the obvious choice. In this light, we have developed DIANA-

mirExTra, an interactive and fully web based application that can

be easily used by non-experts. Besides a motif analysis, the web

server offers the option to use evolutionary information in order to

refine results. Additionally, it allows the use of different

nomenclatures for gene names as input and provides direct links

to miRNA target prediction and functional analysis applications.

Results

The basic analysis flow of DIANA-mirExTra (www.microrna.

gr/mirextra) is outlined in Figure 2. In the following section we

will discuss each step of the algorithm in detail

Input Data
The input to the web-server is two sets of genes (changed and

unchanged genes). The user is given the options to use a form in the

webpage or to upload a file with the relative gene names. Gene

names can be provided in any of a wide range of commonly used

Figure 1. A miRNA molecule binds to a miRNA target gene (miTG).
Hexamers 1,2 and 3 correspond to six nucleotide long sequences on the
39UTR complementary to the first nucleotides of the miRNA . Hexamer 2 is
the sequence complementary to the ‘seed’ of the miRNA, which has been
suggested as the most important region for miRNA:miTG binding.
doi:10.1371/journal.pone.0009171.g001

Figure 2. Overview of the algorithm. For each possible hexamer,
the occurrences on the 39UTRs of changed and unchanged genes are
counted. The counts are compared using the Wilcoxon Rank Sum Test
and a p-value produced. The distribution of p-values is plotted in a
histogram. Hexamers are mapped back to known miRNA sequences
(see Figure 1). When DIANA-microT target prediction scores are used,
the Wilcoxon Rank Sum Test is performed between scores of changed
and unchanged genes. A p-value is calculated for each miRNA and a
corresponding histogram is produced. The histogram and sorted p-
values are returned to the user in the Results page (see Figure 4).
doi:10.1371/journal.pone.0009171.g002

DIANA-mirExTra
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nomenclatures (Ensemble gene and transcript IDs, RefSeq IDs,

HUGO, Affymetrix probe codes) and are automatically translated to

Ensemble Gene IDs. The Ensemble database is the base for the

sequences and gene names used by the program. The first list

contains genes whose expression levels have been found to be

significantly changed in a high-throughput experiment. The second

list consists of background genes, which are usually genes that did

not significantly change their expression levels. Optionally, an

unchanged list may not be provided, and all genes not present in the

first list will serve as the background set. Instead of a gene list the

user may provide a list of genes with associated fold change values

(or any other metric used in high-throughput experiments) be

provided instead. In the latter case the changed and unchanged

gene lists are produced by sorting all genes according to the metric

provided and using a user-defined number of genes as ‘‘changed’’.

Optionally, the user may use a miRNA filter, using a list of miRNAs

of interest to calculate results only for hexamers corresponding to

these miRNAs. This option simplifies the results page, and is

especially useful when a miRNA expression measurement has been

performed along the gene expression experiment.

AU Normalization on Microarray Data
When the input data is provided as microarray fold change

levels, a single nucleotide composition bias may arise [10]. Single

nucleotide AU normalization has been shown to improve the

identification of miRNA signatures from microarray data.

DIANA-mirExTra optionally provides such normalization as

shown in Figure 3. When a bias is present the AU normalization

option will diminish the correlation between AU composition and

gene expression changes (Figure 3a, 3b). Moreover, when a bias is

not present, the AU correction step will not significantly affect

input values (Figure 3c, 3d).

Wilcoxon Test
After the input gene lists have been determined, we proceed to

compare the distributions of all possible hexamers on the 39UTR

sequences between them. A one-sided Wilcoxon Rank Sum test is

used in order to identify hexamers that are present significantly

more often in the set of changed genes compared to the

background of unchanged genes, as has been previously proposed

[5]. A probability value (p-value) for each motif is calculated

Figure 3. Results of AU correction. For 1000 genes, out of which 100 are upregulated (red points) and 900 are stable (blue points) the log2(fold
change) is plotted against the percentage of As or Us in the 39UTRs of genes. The top panels (A,B) show data with a linear AU bias and the bottom
panels (C,D) show data with no AU bias. The left panels (A,C) show original data and the right panels (B,D) show data after AU correction. An optimal
linear fit (black line) passes through the data with a correlation coefficient (R2) denoted for each panel. A dotted red line denotes the 100 genes with
the highest log2(fold change) values.
doi:10.1371/journal.pone.0009171.g003

DIANA-mirExTra

PLoS ONE | www.plosone.org 3 February 2010 | Volume 5 | Issue 2 | e9171



signifying the probability that the changed and unchanged sets are

produced by the same distribution and the differences between

them are due to chance alone. As a more intuitive measure, the

equivalent negative natural logarithm of the p-value (-lnp) is

generally used. A histogram of the distribution of -lnp values of all

motifs is provided in the results page so that the user may visually

evaluate the significance of the results for a motif or miRNA of

interest (Figure 4). Hexamers are mapped back onto the first 8

nucleotides of a miRNA (Figure 1), known to be the most

important for the miRNA:mRNA binding [11,12].

Combination of Hexamers
The hexamer starting at position 2 of the miRNA, frequently

called the ‘seed’ hexamer (Figure 1), can be used for an

approximate identification of miRNA binding sites, with identi-

fication precision similar to some dedicated target prediction

algorithms (Selbach et al. 2008). However, more than one

miRNAs may share the same seed hexamer. We investigated

whether it is possible to distinguish between similar miRNAs by

using the p-values of flanking hexamers 1 and 3. Weighted -lnp

values of three hexamers corresponding to each miRNA were

summed using different weights to produce a total hexamer score

(Figure 5). As a result, DIANA-mirExTra provides a combinatorial

hexamer score in which the -lnp value of hexamer 1 is multiplied

by a weight of 0.6 and added to the -lnp value of hexamer 2, and

hexamer 3 is not taken This approach allows a single score per

miRNA that takes into account the whole active region of the 8

first nucleotides of the miRNA.

Conserved Hexamers
Hexamers corresponding to miRNAs represent an extremely

loose definition of miRNA target sites. Arguably most of the

hexamers present on the 39UTR of a gene will not be parts of

active miRNA target sites. Interspecies conservation has been

extensively used by miRNA target prediction programs in order to

refine predictions of putative miRNA target sites. Conservation of

hexamers between human and mouse sequences can be optionally

used in DIANA-mirExTra for a stricter and more precise

definition of miRNA target sites. This option prevents a part of

randomly occurring hexamers from being counted as miRNA

targets, but will be intrinsically biased towards miRNAs strongly

conserved between the human and murine genomes.

Use of Target Prediction
Another option provided by DIANA-mirExTra is the use of

miRNA target prediction scores instead of hexamer frequencies on

a 39UTR. A one-sided Wilcoxon Rank Sum test is performed for

each miRNA, between the target prediction scores of the list of

‘changed’ genes versus the target prediction scores of the list of

‘unchanged’ genes. Target prediction scores are calculated by

DIANA-microT [13,14], an advanced miRNA target prediction

program that takes into account diverse features such as

evolutionary conservation in several species and weights for

different types of binding sites.

Meta-Analysis: Integration with DIANA-mirPath
After results are produced, a link to the results page is returned to

the user via email. Runs typically take approximately 10 minutes.

The main DIANA-mirExTra Results Page (Figure 4a) shows p-

values associated with each hexamer sorted in order of significance.

A histogram of the -lnp values of all possible hexamers allows the

user to evaluate the significance of the p-values of a given motif.

Links to Results pages for combined motifs and target prediction

score results allow the user to navigate to these pages (Figure 4b,4d).

For the targets of each miRNA belonging to the set of ‘changed’

genes a link to functional analysis using DIANA-mirPath [15] is

provided (Figure 4c). DIANA-mirPath is a tool that identifies

KEGG pathways [16,17] enriched in the genes of interest. Such

functional analysis may help to elucidate the biological function of a

miRNA implicated in the condition of interest.

Evaluation
DIANA-mirExTra was tested on several experimental datasets in

which a single miRNA has been artificially deregulated, and mRNA

levels measured using microarrays. In such a high throughput

experiment [4], human miRNA hsa-miR-1 was overexpressed in

HeLa cells and the mRNA levels of protein coding genes were

measured by microarray before and after the introduction of the

miRNA. Using a set of 82 genes identified as downregulated in the

original paper, we have identified the three hexamers associated

with hsa-miR-1 as the most significantly overrepresented hexamers

and the combined score of hsa-miR-1 as the top ranking score. In

the same paper a similar experiment was performed with the

overexpression of hsa-miR-124 in HeLa cells. All three hexamers

corresponding to hsa-miR-124 achieved the maximum -lnp value

and consequently the combined score of hsa-miR-124 was also the

top-ranking one. In other experiments involving the repression of

miRNA functionality using ‘antagomirs’ [5] and miR-155 deficient

mice, DIANA-mirExTra has correctly identified the repressed

murine miRNA in both occasions (mmu-miR-122a and mmu-miR-

155) using microarray data. For both experiments the miRNA in

question is found as top of the combined scores list, with a large

difference in combined score to the second miRNA.

Beyond expression microarray data, DIANA-mirExTra was

also tested on high-throughput protein data. In a recent set of

experiments [18], a large number of proteins were identified as

downregulated after overexpression of each of five miRNAs (let-

7b, miR-155, miR-16, miR-1, miR-30a) and pulsed stable isotope

labeling with amino acids in cell culture (pSILAC) assays. DIANA-

mirExTra was used to identify the implicated miRNA in each of

these cases. The hexamer in position 2 has been found as the

top ranking hexamer with the maximum possible -lnp value in

all datasets. All results pages for datasets mentioned above can

be openly accessed online at http://diana.cslab.ece.ntua.gr/

hexamers/prec_results.php.

An early version of DIANA-mirExTra has been used in order to

identify multiple miRNAs involved in the progression from early

to late stage Epithelial Ovarian Cancer (EOC) [19]. Among other

experiments, 76 EOC specimens (8 early and 68 late stage EOC)

were analyzed using microarrays and 948 genes were identified as

significantly upregulated in late stage EOC. A further 15212 genes

were considered as unchanged between the two cancer stages.

Using this data, the DIANA-mirExTra algorithm was effectively

used to predict twelve miRNAs as significant candidates possibly

contributing to late-stage EOC. Five of these twelve miRNAs were

located on a specific miRNA gene cluster (Dlk1 – Gtl2 domain on

chr14) suggesting that this miRNA cluster could possibly be

involved with EOC progression to the late stage. Further

experiments showed that the miRNA gene cluster identified by

DIANA-mirExTra is commonly altered in EOC and possibly

other human epithelial tumors, thus validating the involvement of

these miRNAs in EOC progression. Additionally, a link was

established between down-regulation of the expression of miRNAs

encoded in the Dlk1 – Gtl2 cluster and higher tumor proliferation

leading to shorter patient survival times. The functional analysis of

predicted target genes for the top microRNAs responsible for the

transition identified the ‘‘Cell Cycle’’pathway as significantly

DIANA-mirExTra
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Figure 4. Results Page and links (Epithelial Ovarian Cancer). Genes upregulated and miRNAs downregulated in late stage Epithelial Ovarian
Cancer (EOC) compared to early stage EOC were run through DIANA-mirExTra. The main results page (A) consists of two parts. At the top of the page
is the histogram of the distribution of –lnp values for all possible hexamers and at the bottom, the sorted list of hexamers that can be mapped on
deregulated miRNAs with corresponding p-values. The same hexamer can be shown multiple times if it can be mapped on more than one miRNAs.
Hexamers are sorted according to p-value and negative natural logarithm (-lnp value). Following the link ‘‘View Results per microRNA’’ the user is
taken to a page (B) showing miRNAs sorted according to a combinatorial score produced by the values of hexamers 1 and 2. The link ‘‘View Results
per microRNA based on DIANA-microT target prediction scores’’ leads to a similar results page (C) that uses as a measure the scores of each gene
according to miRNA target prediction program DIANA-microT. (D) Genes that contain at least one of the top ten hexamers are marked in the results
page of DIANA-microT. The DIANA-microT results page for each miRNA can be found following the link on the miRNA name from the first results
page. Additionally, links to DIANA-mirPath lead to a page (E) showing functional analysis results using this program. Genes containing the hexamer of
interest (A), or targeted by the miRNA of interest (C) are mapped on KEGG pathways and the most significantly overrepresented pathways can be
identified by their corresponding p-values.
doi:10.1371/journal.pone.0009171.g004

DIANA-mirExTra
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related with these genes. Other cancer related pathways were

strongly related to the sets of genes suggesting ways in which

miRNAs may affect EOC.

Discussion

The identification of miRNAs affecting the deregulation of

genes is the primary objective of DIANA-mirExTra. Once

miRNAs of interest are identified, the user can directly view

predicted targets for these miRNAs as produced by DIANA-

microT 3.0 [13,14]. However, the way in which this deregulation

may contribute to disease development or other processes of

interest can be elucidated through functional analysis of the results.

DIANA-mirExTra moves towards this direction through its direct

integration with a functional analysis tool, DIANA-mirPath,

suggesting biological pathways in which targets of a miRNA of

interest are more probable to be involved.

With our implementation of the algorithms proposed here in a

user-friendly web server we strive to allow users without expertise in

data analysis to use our algorithms easily and effectively. In other

relevant available software packages, that first need to be downloaded

and installed locally, 39UTR and miRNA sequences have to be

provided by the user in a program-specific format. In DIANA-

mirExTra sequences are automatically downloaded by the Ensembl

database [20] and linked to several widely used nomenclatures. This

allows the direct use of the program without the prior download of

bulky sequence files and without the need to process such files to fit a

predetermined format. Additionally, the program is run in a web

browser, without the need for download and compilation of source

code. Results are stored in an online server and are accessible from

anywhere and at all times. All submitted jobs are run remotely on a

dedicated computational cluster, and allow users with low computa-

tional power to use the program without experiencing long running

times or memory problems

Using the simplest hexamers, the user opts for a loose definition

of a miRNA target gene and may be able to identify processes not

deeply conserved in other species. The option to use hexamers

conserved between human and mouse provides a refinement of

results for processes and miRNAs that are conserved between the

two species. The stricter approach of using predicted microRNA

targets as motifs takes into account conservation in several species

as well as miRNA specific characteristics and could be biased

towards more deeply conserved miRNAs.

Given the important role that miRNA regulation plays in

several cell processes, a routine check of miRNA involvement

should be encouraged even if there is no reason for it to be

suspected. A simple and intuitive online tool such as DIANA-

mirExTra is the obvious choice for such routine checks as it does

not need complicated installation, processing of external datasets

or high computational power on the user end.

Materials and Methods

MicroRNA and 39UTR Sequences
MicroRNA sequences used in all predictions for DIANA-

microT [13,14] are taken from miRBase Build 10.0 [21]. 39UTR

sequences used are the longest annotated 39UTRs from Ensembl

48 [20]. Name conversions to Ensemble gene names are done

based on alternative names provided from Ensembl 48. Multiple

genome alignments are downloaded from UCSC Genome

Browser [22]. Human (hg18) alignment to 16 vertebrate

genomes and Mouse (mm9) alignment to 29 vertebrate genomes

are used.

Hexamers
Non-overlapping six nucleotide long motifs (hexamers) are

counted on the 39UTR sequence of protein coding genes

provided by Ensembl. The count of hexamers is divided by the

length of the 39UTR sequence to calculate normalized counts

(hexamers/nt).

Combination of Hexamers
The difference between the score of the ‘correct’ miRNA and

the next best miRNA that did not have all three same hexamers

was calculated and divided by the score of the ‘correct’ miRNA.

The sum of these differences for five protein data sets [18] was

maximized. The sum was calculated for all combinations of

weights for hexamer 1 and 3 in 0.01 intervals for values between 0

and 1 (Figure 5). Keeping the weight for the ‘seed’ hexamer

constant at 1, we have determined that for a weight of hexamer 1

set to 0.6, no value of hexamer 3 will improve the identification of

the correct miRNA. Therefore DIANA-mirExTra provides a

combinatorial hexamer score in which the -lnp value of hexamer 1

is multiplied by a weight of 0.6 and added to the -lnp value of

hexamer 2. Hexamer 3 is not taken into account for the

calculation of the combinatorial hexamer score.

Conservation
There is the option to use only hexamers perfectly conserved on

the 39UTRs of human and mouse based on multiple species

alignments downloaded from UCSC Genome Browser.

Wilcoxon Rank Sum Test
The statistical package R is used to perform the Wilcoxon Rank

Sum Test between counts or scores of ‘changed’ and ‘unchanged’

Figure 5. Combination of weighted -lnp values of the three
hexamers. The weight for hexamer 1 is on the Y axis, for hexamer 2 is
held constant at a value of 1, and for hexamer 3 is on the X axis. The
mean normalized difference of the correct miRNA versus the next
highest miRNA was maximized for 5 datasets of knocked out miRNAs
(see Methods). The optimal weights combination for hexamers 1 and 3
were identified as 0.6 and 0 respectively. The value for hexamer 3 is still
given in the Results page (see Figure 4) although it is not used for the
combined score calculation.
doi:10.1371/journal.pone.0009171.g005

DIANA-mirExTra
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genes. The function wilcox.exact(exactranktests) is used for the

one-sided test. The maximum p-value that this method may

produce is 10219 which is equal to -lnp = 43.74

AU Bias Correction
When microarray data with fold change values are used as

input, an optional AU content intensity bias removal step is

allowed as described by Elkon and Agami [10]. The statistical

package R is used for the correction, and specifically the scatter

plot smoothing function lowess using default parameters. Artificial

data plotted in Figure 3 consists of 1000 values with a linear

correlation to AU composition (Figure 3a, Figure 3b) or no

correlation to AU composition (Figure 3c, Figure 3d). The

difference of the means between the 100 ‘‘upregulated’’ genes

(red spots) and the 900 ‘‘unchanged’’ genes (blue spots) is the same

between Figure 3a and Figure 3c. Normally distributed noise has

been added to both sets. Several other artificially produced

examples with varying differences and levels of AU bias were

produced (data not shown) with similar results.
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6.4. DIANA-microT Web server upgrade supports Fly and Worm miRNA target 

prediction and bibliographic miRNA to disease association 
In the following publication we present an important update of the DIANA Web server which we 

performed in order to further enhance its scientific significance. The Web server has been updated 

to support predictions for two additional to H. sapiens and M. musculus widely studied species: D 

melanogaster and C elegans. Most importantly, in the updated version, we have associated 

miRNAs to diseases through bibliographic analysis and therefore provide insights for the potential 

involvement of miRNAs in biological processes. Also, we have analyzed the nomenclature used to 

describe mature miRNAs along different miRBase (Griffiths-Jones 2006) versions, and have 

extracted the naming history of each miRNA. This enables the identification of miRNA 

publications regardless of possible nomenclature changes. The work was published in Maragkakis, 

Vergoulis et al (Maragkakis, Vergoulis et al. 2011). 
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ABSTRACT

microRNAs (miRNAs) are small endogenous RNA
molecules that are implicated in many biological
processes through post-transcriptional regulation
of gene expression. The DIANA-microT Web server
provides a user-friendly interface for comprehensive
computational analysis of miRNA targets in human
and mouse. The server has now been extended to
support predictions for two widely studied species:
Drosophila melanogaster and Caenorhabditis
elegans. In the updated version, the Web server
enables the association of miRNAs to diseases
through bibliographic analysis and provides
insights for the potential involvement of miRNAs in
biological processes. The nomenclature used to
describe mature miRNAs along different miRBase
versions has been extensively analyzed, and the
naming history of each miRNA has been extracted.
This enables the identification of miRNA
publications regardless of possible nomenclature
changes. User interaction has been further refined
allowing users to save results that they wish to
analyze further. A connection to the UCSC genome
browser is now provided, enabling users to easily
preview predicted binding sites in comparison to a

wide array of genomic tracks, such as single
nucleotide polymorphisms. The Web server is
publicly accessible in www.microrna.gr/microT-v4.

INTRODUCTION

microRNAs are small endogenous RNA molecules that
affect many biological processes by regulating gene
expression in a post-transcriptional way. They are
�21–22 nt in length whose primary role is to regulate
gene expression through translational repression and/or
mRNA degradation (1). The first miRNA molecules and
miRNA targets were identified in 1993 via classical genetic
techniques in Caenorhabditis elegans (2). Since then, there
has been a dramatic increase in the number of miRNAs
registered in miRBase (3). In parallel, the development of
the first computational target prediction programs (4–7)
led to the experimental identification of dozens of miRNA
targets (8), and emphasized the need to provide miRNA
target predictions in an efficient way to assist biologists in
experimental design.
The previous version of the DIANA-microT Web server

(9) presented extensive information for predicted miRNA
target gene interactions in a user-friendly interface. It
offers links to nomenclature, sequence and protein
databases, information for experimentally verified targets
through TarBase (8) and targets predicted by PicTar (6) or
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TargetScan (10). Also, users are facilitated by being able
to search for targeted genes using different names or
functional features.
Here, we describe an extensive update of this Web

server with several important improvements: (i) an
advanced bibliographic analysis which correlates
miRNAs to diseases, (ii) support for two additional
species, (iii) a graphical display with all relevant functional
information from the UCSC genome browser, (iv)
tracking of changes in miRNA nomenclature and (v)
user personalized sessions allowing personal query
history and bookmarks.

METHODS AND RESULTS

Relation of miRNAs to functional features, diseases and
medical descriptors

DIANA microT Web server provides functional analysis
of miRNAs that reaches beyond a simple listing of
miRNA targets through integration of knowledge
extracted from bibliography and known biological
pathways. In the previous version of the Web server,
bibliographic integration considered automated searches
in PubMed providing publications related to a miRNA,
each target gene or combination of the two. Now, an
additional feature noted as ‘Related diseases’ has been
added that directly associates a miRNA to publications
connected to one or several diseases. This feature is
based on information included in the title or the abstract
of publications found in PubMed. All abstracts associated
with a miRNA are retrieved from PubMed, based on the
presence of the name of the miRNA or a member of its
family, as defined by miRBase, in the title or abstract of
the publication. The retrieved publications are associated
with Medical Subject Headings (MeSH), the National
Library of Medicine’s controlled vocabulary thesaurus,
through their metadata. All disease associated MeSH
terms for a miRNA are counted and visualized through
a tag cloud (Figure 1), where MeSH terms appear in a size
proportional to the number of publications reporting this
miRNA-disease association. The MeSH terms of the tag
cloud also serve as hyperlinks to the relevant publications.
For example, in Figure 2 miR-455-star (miR-455*) has
been associated with a publication indicating that lower
expression of this miRNA correlates with poor overall
survival in endometrial serous adenocarcinoma (11).
The feature that allowed the user to filter the targets of a

miRNA based on KEGG pathways (12) is now integrated
in the initial input query form. The user has now the
option to enter a miRNA together with names of
pathways of interest and provided immediately with only
the miRNA target genes found in the pathways of interest.
For example, a query for hsa-miR-221 would return 113
predicted targets at a score threshold of 0.5 while the
combined search of the miRNA with the term ‘MAPK-
signaling-pathway’ would filter the results to 21 relevant
targets.
In addition, the positions of the binding sites on the

mRNA of the target gene are graphically presented
through the UCSC genome browser. This automatic

upload can be used to provide information in comparison
to other tracks of interest such as single nucleotide
polymorphisms (SNPs), repeat elements and alternative
30-UTR splice forms.

Extraction of miRNA history from miRBase

The relation of miRNAs to function and diseases
described above is based on miRNA nomenclature.
Since miRNA biology is still a field in flux, it can occur
that a miRNA may change name between two successive
versions of miRBase. Due to such changes, researchers
may lose track of a miRNA full history and related
literature searches will remain incomplete. To address
this issue, an extended analysis on 13 versions of
miRBase (versions 7.1. to 14) is performed, and the
nomenclature history of each miRNA is extracted. The
analysis uses version 13 of miRBase as the reference
database. This version includes 1884 mature miRNAs
for the four species supported in the Web server. Each
miRNA is assigned a unique identification number
denoted as ‘MIMAT id’ and one associated miRNA
specific name. Among versions, changes are found in 77
MIMAT ids (38 in human, 37 in mouse and 2 in
Drosophila) and 151 miRNA names (76 in human, 71 in
mouse and 4 in Drosophila). This indicates that name
changes are more frequent than changes in MIMAT ids.
To keep track of these changes, a history index is
integrated in the Web server. This index information is
made available to the user through a specific feature
called ‘miRNA history’ which is also used for miRNA
related bibliography searches. For example, mmu-miR-
455 first appeared in miRBase v8.1. Its name was later
changed to mmu-miR-455-5 p in version 8.2 and later
appeared as mmu-miR-455* in version 10.0 (Figure 3).
This information can be retrieved from the miRNA
history, but is also used to extend the association of
mmu-mir-455* with endometrial serous adenocarcinoma
in the publication where it is referred to as miR-455-5 p
(Figure 2).

Figure 1. An example of a tag cloud for hsa-miR-1 showing relevant
disease associated MeSH terms.
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Target prediction and supported miRNAs

The first version of DIANA-microT Web server was
designed to support the functional analysis of human
and mouse miRNAs. Now the server has been updated
with predictions for two additional species and newer
versions of miRBase (miRBase 13) and Ensembl
(Ensembl 54) (13). In total predictions for 723 new
miRNAs have been added, out of which 147 correspond
to Drosophila melanogaster, 154 to C. elegans and the rest
being new Homo sapiens and Mus musculus miRNAs. This
results in an approximately doubled number of predicted
targets in comparison to the previous version, totaling to
more than six million predicted target genes. The Web
server can support different prediction algorithms and
currently provides the targets of an updated version of
the previously used algorithm (14). While microT-v3.0 is
based on features separating real and mock (shuffled)

Figure 2. Example of a DIANA-microT Web server results page. Balloons indicate and explain important features of the results page. ‘Related
diseases’ tag cloud contains links to PubMed and specifies all papers which associate the particular disease with the corresponding miRNA. The
field ‘PubMed links’ provides automated bibliography searches based only on the name of miRNAs, protein coding genes or the combination of
both. The ‘UCSC graphic’ link presents the predicted binding sites in a UCSC genome browser window along with tracks such as SNPs
and repeat elements. The left side of the page is devoted to the administration of the user personal space and reports their latest searches and
bookmarks.

Figure 3. Graphic presentation of the changes involved in the history
of miRNA mmu-miR-455. Initially, MIMAT0003485 was presented in
version 8.1 as mmu-miR-455 but its name changed consecutively to
mmu-miR-455-5 p in version 8.2 and mmu-miR-455-star (mmu-miR-
455*) in version 10.0. Similarly, MIMAT0003742 was first presented
in version 8.2 as mmu-miR-455-3 p, while in version 10.0, its sequence
changed and it was renamed to mmu-miR-455.
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miRNAs the current version, microT-v4.0, uses high
throughput experimental data for the same purpose (15).

Personalized user sessions

To allow users to take full advantage of the Web server’s
functions, several functional improvements have been
implemented (Figure 2). The most important is an
integrated personal user space in which users can easily
save important searches and results that they wish to keep
for future analysis. In particular, the system keeps the
most recent user searches, giving the opportunity to
repeat searches. A bookmarking mechanism provides the
opportunity to save interesting results along with user
comments. The personal space provides usage statistics
regarding the most recent searches, thus, enabling them
to keep track of their latest findings. It is noted that
researchers may use any feature of the Web server
irrespectively of the personal user space feature. Finally,
special attention has been given to the Web Server
documentation introducing hovering help notes for
important fields.

CONCLUSION

In recent years it has become apparent that Web
applications are an essential tool for researchers to
decipher complex biological processes. As one of these,
the DIANA microT Web server has been updated to
integrate different additional resources in order to offer
insight for putative miRNA involvement in biological
processes, and to allow researchers to supplement their
knowledge with already published scientific material.
Performing an extended analysis on the versioning
pattern of miRBase the history of each miRNA has
been extracted, offering a unique feature in computational
miRNA analysis. We believe that the current Web server
update provides important tools for biological analysis
and improves interaction with the complicated
interconnections regarding miRNA functionality.
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7. REVIEWS 

Since miRNA biology is a rather a new scientific topic, reviews are particularly important for 

organizing available knowledge and highlighting open issues in the field. In this chapter, I present 

two reviews that I have co-authored regarding miRNAs. The first one is a review for available 

miRNA target prediction programs while the second one discusses online tools and resources which 

may be used for miRNA analysis in general. 
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7.1. Lost in translation: an assessment and perspective for computational 

miRNA target identification 
In the following review we discuss and evaluate available miRNA target prediction methods. In the 

last years more than a dozen miRNA target prediction programs have been developed but not all of 

them perform equally well. Therefore the evaluation of prediction performance is a critical step for 

choosing which of these programs are best to be used for experimental design. The review was 

published in Alexiou et al (Alexiou, Maragkakis et al. 2009). 
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ABSTRACT

MicroRNAs (miRNAs) are a class of short endogenously expressed
RNA molecules that regulate gene expression by binding directly
to the messenger RNA of protein coding genes. They have been
found to confer a novel layer of genetic regulation in a wide range
of biological processes. Computational miRNA target prediction
remains one of the key means used to decipher the role of miRNAs in
development and disease. Here we introduce the basic idea behind
the experimental identification of miRNA targets and present some
of the most widely used computational miRNA target identification
programs. The review includes an assessment of the prediction
quality of these programs and their combinations.
Contact: p.alexiou@fleming.gr
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
It was only recently that the term microRNA (miRNA) was
introduced to describe short RNA molecules that regulate gene
expression by binding preferably to the 3′ untranslated region
(3′UTR) of protein coding genes (Bartel, 2004). Although miRNAs
were first identified in 1993 (Lee et al., 1993) via classical genetic
techniques in Caenorhabditis elegans, in 2001 it was suggested that
they are widespread and abundant in cells (Lagos-Quintana et al.,
2001; Lau et al., 2001; Lee and Ambros, 2001). Each miRNA
is 19–24 nucleotides in length and is processed from a longer
transcript, referred to as the primary transcript (pri-miRNA), which
can be up to thousands of nucleotides long. Primary transcripts are
processed in the cell nucleus to short, ∼70 nucleotide long stem-
loop structures known as pre-miRNAs. In animals, this processing
is performed by a protein complex known as the Microprocessor
complex, consisting of the nuclease Drosha and the double-stranded
RNA binding protein Pasha (Denli et al., 2004). Pre-miRNAs
are processed to mature miRNAs in the cytoplasm by interaction
with the endonuclease Dicer which cleaves the pre-miRNA stem-
loop into two complementary short RNA molecules. One of these
molecules is integrated into the RNA-induced silencing complex

∗To whom correspondence should be addressed.

(RISC) and guides it to the mRNA where it can inhibit translation
or induce mRNA degradation (Fig. 1) (Liu et al., 2004). Generally,
miRNA transcripts may be located within the introns of protein-
coding genes, entirely outside of protein-coding genes (‘intergenic’)
or more rarely in coding exons, untranslated regions (UTRs) or
exons of non-coding transcripts. Frequently, pri-miRNA transcripts
code for more than one miRNAs which are transcribed together and
are referred to as a miRNA cluster.

Since their initial identification, miRNAs have been found to
confer a novel layer of genetic regulation in a wide range of
biological processes. Their involvement in cellular commitment
and cell cycle regulation gives an important role to the miRNA
class of regulatory modules in animal development and human
diseases. Specifically, miRNAs have been found to regulate various
developmental stages in animals such as C.elegans (Lau et al., 2001;
Lee andAmbros, 2001; Lee et al., 1993; Reinhart et al., 2000), Danio
Rerio (Wienholds et al., 2005), Drosophila melanogaster (Aravin
et al., 2003), Mus musculus (Baroukh et al., 2007), Homo sapiens
(Chen et al., 2004; Lu et al., 2007; Yi et al., 2006) and in plants
(Kidner and Martienssen, 2005). miRNA-mediated regulation of
pathways involved in human disease is currently a very active field
and miRNAs have been linked to several human pathologies such

Fig. 1. The binding of a miRNA to a miTG. Multiple miRNAs may bind on
the 3′UTR of a miTG. The seed sequence corresponds to six nucleotides at
positions 2–7 of the miRNA sequence. The position where a miRNA binds
to a miTG is called the MRE. miRNAs are transcribed mostly through Pol
II from DNA. Protein coding genes are transcribed into mRNA molecules
which then are translated to proteins. miRNAs integrate into the RISC
complex and by binding to mRNA molecules they inhibit translation or
induce mRNA degradation.
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as cardiovascular and neurodegenerative diseases (Hebert and De
Strooper, 2007; Hebert et al., 2008; Zhang, 2008) as well as in
human malignancies (Croce and Calin, 2005; Esquela-Kerscher and
Slack, 2006; Fabbri et al., 2007; Gartel and Kandel, 2008; Garzon
et al., 2006; Slack and Weidhaas, 2006). In particular, miRNAs are
believed to be involved in many stages of cancer progression by
both promoting and/or suppressing oncogenesis (He et al., 2005;
Ivanovska et al., 2008; Lee and Dutta, 2007; Tagawa et al., 2007),
tumor growth (Johnson et al., 2007; Si et al., 2007), invasion and
metastasis (Asangani et al., 2008; Huang et al., 2008; Ma et al.,
2007; Tavazoie et al., 2008; Zhu et al., 2008).

For many years, researchers have been analyzing microarray
expression data of protein coding genes in different cancer types
in order to identify specific expression signatures. The limited
number of miRNAs, makes them an ideal candidate for this type
of analysis. Currently, there are ∼700 human miRNAs registered in
miRBase (Griffiths-Jones et al., 2008), and according to estimates
their number may reach 1000 (Fig. 2). Analyzing their expression,
several miRNA signatures have already been successfully associated
with human cancers (Calin and Croce, 2006) such as leukemias
(Calin and Croce, 2007; Landais et al., 2007), thyroid carcinomas
(He et al., 2005), breast (Iorio et al., 2005), lung (Yanaihara et al.,
2006) and pancreatic cancer (Lee et al., 2007).

2 EXPERIMENTAL IDENTIFICATION OF miRNA
TARGETS

In order to analyze miRNA function, a large number of studies have
been published that attempt to validate miRNA:mRNA interactions,
using direct and indirect experimental methods. Direct methods
allow the validation of specific miRNA:mRNA interactions, while
indirect methods, based on high-throughput experiments such as
microarrays and protein quantification experiments, provide an
overview of changes in a larger number of gene products.

Direct validation of miRNA target genes is often based on the
quantification of a reporter construct [e.g. Luciferase or Green
Fluorescent Protein (GFP)] carrying the 3′UTR of the putative target
gene after the introduction of a miRNA to the cell (Kiriakidou et al.,
2004). Alternatively, quantitative RT–PCR can be used to monitor
changes in mRNA levels after a miRNA has been introduced in a
cell. Even though such methods can validate the miRNA:mRNA
interaction, they fail to identify the specific miRNA recognition
elements (MREs) responsible for the interaction. Such MREs can
be identified using an integration of the reporter gene assay with
site directed mutagenesis and/or by restoring the complementarity
by mutating the miRNA sequence.

High-throughput techniques can provide information about global
miRNA effects in cells and are based on measuring differential gene
expression in the presence or absence of a miRNA in the cell. For the
overexpression of a miRNA (Lim et al., 2005), expression constructs
can be engineered using the mature miRNA, the precursor (hairpin)
miRNA, or the pre-miRNA sequence for transfection in vitro or
in vivo. Silencing of a miRNA can be accomplished by introducing
chemically modified oligonucleotides perfectly complementary to
the mature miRNA (Krutzfeldt et al., 2005) or by knocking
down a miRNA gene. Until recently such gene expression levels
changes have been monitored through gene expression microarrays
(Krutzfeldt et al., 2005; Lim et al., 2005). These methods give
significant information for miRNA targets where gene expression

repression is caused by mRNA degradation (see also Supplementary
Material), but is missing the targets where expression repression is
caused by translation repression. Such targets were only recently
identified using high-throughput proteomics methods (Baek et al.,
2008; Selbach et al., 2008). In these studies, stable isotope labeling
with amino acids in cell culture (SILAC) was applied and the
protein expression levels for thousands of genes were measured.
It should be noted that both methods provide indirect validation
of targets. Recently, immunoprecipitation of RISC components has
been used to identify mRNAs targeted by miRNAs (Beitzinger
et al., 2007; Easow et al., 2007; Zhang et al., 2007). Moreover,
high-throughput sequencing of RNAs isolated by crosslinking
immunoprecipitation (HITS-CLIP) has been used (Chi et al., 2009)
in order to identify and sequence specific miRNA binding sites on
targeted mRNAs. Methods based on the measurement of differential
expression of genes (microarrays, pSILAC), may contain many
secondary and nonspecific effects and therefore the identified group
of target genes does not constitute a comprehensive list of miRNA
targets. Such results should be rather treated as enriched in direct
miRNA targets of a specific miRNA. HITS-CLIP on the other
hand might also identify non-functional binding sites of RISC.
Summarizing, high-throughput methods can provide a broad set
of miRNA targets in a cell that are hard to identify using direct
verification methods but are not as specific as direct validation
methods.

The rapid development in the methods of the experimental
validation of miRNA targets and the increased interest of many
labs for the function of miRNAs has caused a dramatic increase of
miRNA target genes (miTGs) with experimental evidence (Fig. 2).
An up to date collection of such targets including information
for both the validated interaction and the methods used can be
found in TarBase (Papadopoulos et al., 2009), a manually curated
database with currently more than 1300 miRNA:mRNA interactions
in several species.

Fig. 2. The growth of known miRNA genes in miRBase database (black
bars), the growth of miRNA related publications in PubMed (dark-gray
bars) and the growth of the human experimentally determined miRNA target
interactions in TarBase (light-gray bars).
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3 OVERVIEW OF miRNA TARGET PREDICTION
PROGRAMS

Despite the significant increase of experimentally validated miTGs
the majority of miRNA targeted genes still remains unknown and
computational target prediction programs remain the only source
for a rapid identification of a putative miRNA target. Therefore,
the development of computational target prediction programs goes
hand in hand with the understanding of miRNA function. The first
programs were developed back in 2003 shortly after it became
evident that miRNAs are abundant in cells. Although a typical
miRNA is ∼22 nucleotides (nt) long, several groups (Doench and
Sharp, 2004; Kiriakidou et al., 2004) have shown experimentally
that the nucleotides close to the 5′end of the miRNA are the
most crucial for recognizing and binding to a target sequence.
Additionally, a statistical analysis by Lewis et al. (2005) revealed
that motifs in the 3′UTR of protein coding genes corresponding
to nucleotides 2–7 of the miRNA are preferentially conserved in
several species. These six nucleotides have been denoted as the
‘seed’ sequence of the miRNA (Fig. 1). However, later Krek et al.
(2005) used seven nucleotides starting at position 1 or 2 of a miRNA
to locate potential targets on the 3′UTR.

In the last years, several miRNA target prediction programs
have been published (Sethupathy et al., 2006). The main prediction
feature used in most of these programs is the sequence alignment
of the miRNA seed to the 3′UTR of candidate target genes.
Their specificity is usually increased by exploiting the evolutionary
conservation of binding sites or by using additional features such
as structural accessibility (Kertesz et al., 2007; Long et al., 2007),
nucleotide composition (Grimson et al., 2007) or location of the
binding sites within the 3′UTR (Baek et al., 2008; Gaidatzis et al.,
2007; Grimson et al., 2007).

Here we summarize, in alphabetical order, eight of the most
commonly used algorithms for miRNA target prediction for the
human and mouse genome.

3.1 DIANA-microT 3.0
The DIANA-microT 3.0 (Maragkakis et al., 2009) algorithm is
based on parameters calculated individually for each miRNA and
each MRE depending on binding and conservation features. The
prediction score of a miTG interaction is the weighted sum of the
scores of conserved and non-conserved MREs on a gene. A signal
to noise ratio (SNR) and a precision score are calculated for each
interaction to provide an estimate of the false positive rate of each
predicted miTG. Prediction data is available at http://microrna.gr/
microT.

3.2 ElMMo
ElMMo (Gaidatzis et al., 2007) uses a general Bayesian
method that scores the conservation of miRNA binding
sites according to an evolutionary model that utilizes the
assumed phylogenetic relationship among several species. Flat
files of ElMMo target prediction data (v2, January 2008)
are downloaded from http://www.mirz.unibas.ch/Computational
_prediction_of_microRNA_targets_BULK.shtml. As suggested by
the authors, a score threshold of 0.8 is used for high confidence in
the comparisons.

3.3 miRanda
miRanda (John et al., 2004) uses a two-step approach for the
identification of miRNA targets. First, the whole length of the
miRNA is aligned against the 3′UTR sequence. Alignments that
contain G:U wobble pairs are down-weighted accordingly. Second,
for the highest scoring alignments, the thermodynamic stability of
the complex is calculated and reported. Flat files of miRanda target
prediction data are downloaded (January 2008) from: http://www.
microrna.org/microrna/getDownloads.do.

3.4 miRBase
miRBase (Griffiths-Jones et al., 2008) uses the miRanda algorithm
to identify potential binding sites for a given miRNA. Dynamic
programming alignment is used to identify highly complementary
sites. Strict complementarity at the 5′ seed region is demanded.
Thermodynamic stability is estimated for each target site. For
inclusion in the database, conservation of the target site at the exact
same position in at least two species is needed. miRBase target
prediction data is downloaded from http://microrna.sanger.ac.uk/
cgi-bin/targets/v4/download.pl.

3.5 Pictar
Pictar (Lall et al., 2006) identifies two types of miRNA:target
interactions: (i) those with perfect complementarity between the
seed region of the miRNA (7 nt starting at position 1 or 2 of the
miRNA’s 5′end) and the 3′UTR target site and (ii) those for which
the perfect complementarity is interrupted by at most one nucleotide
bulge, mismatch, or G:U wobble. In both instances, the algorithm
requires that the binding stability of the putative miRNA:target
interaction, as measured by thermodynamic binding energy, exceeds
a specified threshold. Once individual miRNA:target interactions
are identified, the algorithm labels highly conserved (among 4 or 5
species) target sites as ‘anchors’ and filters out those 3′UTRs that do
not harbor a specified number of anchors. A hidden Markov model
is then used to score the likelihood of a 3′UTR being targeted by
miRNAs in a combinatorial manner. These scores are computed for
a set of species and combined to compute the final score. Since
the bulk download files for Pictar on the UCSC Genome Browser
are outdated, the target results are downloaded from the Pictar
web page (http://pictar.org/) following the link for ‘Predictions in
vertebrates, flies and nematodes’ (Lall et al., 2006). The four species
conservation is used.

3.6 PITA
PITA (Kertesz et al., 2007) considers the effect of target site
accessibility on the strength of miRNA repression. Essentially,
for each target site, an energy-based measure that represents
the difference between the free energy gained by the binding of the
miRNA to the target and the free energy lost by unpairing the
nucleotides within the target site itself is calculated. The energy used
to unpair additional nucleotides flanking the target sites is also taken
into account. A flat file with target prediction data is downloaded
from http://genie.weizmann.ac.il/pubs/mir07/mir07_data.html. The
‘no 3_15’ option in the PITA Targets Catalog version 5 (November
20, 2007) is used with the top targets identified as those with a score
lower than −5.
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Fig. 3. Comparison of nine miRNA target prediction programs and the seed measure on the results provided by Selbach et al. (http://psilac.mdc-berlin.de).
(A) The gray columns indicate precision (correctly predicted/total predicted) while the black columns show sensitivity (correctly predicted/total correct). The
graph shows all targets above the score threshold of each program. A scatterplot of the same results is available in the Supplementary Materials. (B) A precision-
receiver operating characteristic pROC (curve) showing the precision against the sensitivity of the miRNA target prediction programs. The seed measure has
distinct values denoted as purple squares connected by a dotted line, where the numbers on the squares denote the minimum number of seeds per gene at each
threshold. We annotate the four points having one to four seed matches.

3.7 RNA22
RNA22 (Miranda et al., 2006) is a miRNA target prediction
program that incorporates identifying redundant patterns in
mature miRNA sequences. A second-order Markov chain is
implemented to estimate the statistical significance of the identified
patterns. The reverse complement of all miRNA patterns are
then identified within 3′UTR sequences. A ‘Target Island’ is
an area where many such reverse complement hits accumulate.
miRNAs are paired to target islands and the strength of the
pairing is calculated based on the free energy and the number
of nucleotides involved. The target prediction data is downloaded
from http://cbcsrv.watson.ibm.com/rna22_download_content.html.
The date of the precompiled predictions is November 11, 2006.

3.8 TargetScan 5.0
TargetScan (Friedman et al., 2009) predicts miRNA targets based on
the identification of aligned seed matches and their conservation in
several species. The overall scoring of a miRNA target site depends
on the level of conservation, whether it binds to the miRNA on
position 8 and/or whether it has an A at position 1, the distance of the
target from the 3′UTR end and the AU composition of the flanking
area. Data was downloaded from http://www.targetscan.org/cgi-
bin/targetscan/data_download.cgi?db=vert_50.

3.9 Simple seed measure
In this approach, genes are identified and sorted according to the
number of occurrences of the hexamer complementary to the seed
(nucleotides 2–7) of the miRNA in the 3′UTR sequence. Unless
stated otherwise, all genes containing at least one instance of the
seed were used in comparisons. When multiple annotated 3′UTR
sequences were available for a gene, the longest one was used.

The user interfaces of the miRNA target prediction programs
described above offer a variety of options to the user and are

summarized in the Supplementary Material. We would like to
mention here that only a few programs (DIANA-microT 3.0,
TargetScan 5.0) offer the option to predict targets for user
defined novel miRNAs, and some programs offer the option of a
meta analysis through information regarding miRNA and mRNA
expression or/and Gene Ontology (ElMMo, miRBase). At this point,
we would like to point out that programs are not always up-to-date
regarding the number of miRNAs and genes used. This number
ranges currently from 178 to 675. A table with the number of
miRNAs for which each program gives predictions can be found
in the Supplementary Materials.

4 COMPARISON OF miRNA TARGET
PREDICTION PROGRAMS

In the two recently published works (Baek et al., 2008; Selbach et al.,
2008) that measured changes of protein levels after overexpression
or underexpression of a miRNA, several miRNA target prediction
programs are evaluated. Similarly, we tested here all miRNA
target prediction programs mentioned above against genes proposed
as targeted in Selbach et al. (Material and Methods section in
Supplementary Material) In Figure 3, the results for 5 miRNAs are
summarized. Nearly half of the down-regulated genes contain at
least one occurrence of a miRNA specific seed sequence (Fig. 3A).
We notice that a group of five programs (DIANA-microT 3.0,
TargetScan 5.0, TargetScanS, Pictar and ElMMo) has a precision
of ∼50% with a sensitivity that ranges from 6 to 12%. All these
programs rely heavily on the evolutionary conservation of the seed
region or some small extensions of this region, and combine this
information with other features that characterize miTGs.

Such features are detailed phylogenetic models to assess
conservation, a miRNA specific SNR or a hidden Markov model
to combine different MRE scores into a total miTG score (Fig. 1).
Other programs include promising features like accessibility of the
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Fig. 4. Comparison of the miRNA target prediction programs on an
experimentally supported miRNA target dataset. The number of correctly
predicted targets is shown by different scores for increasing numbers of
predicted targets per miRNA.

binding site region, local concentration of redundant patterns of
miRNA sequences, or thermodynamic stability but at the current
stage they show lower predictive power. It has to be explored if
these features in combination with other predictive methods can
enhance target prediction.

We also investigate the very simple measure of counting the
number of seed regions per gene. Nearly half of the down-
regulated genes contain at least one occurrence of a miRNA specific
seed sequence (Fig. 3A). Comparing the more sensitive prediction
methods it can be noticed that the simple seed measure [Seed(1+) and
Seed(2+)] outperforms other more complex computational methods,
but fail when higher specificity is required [Seed(3+) and Seed(4+)].
Figure 3B presents the sensitivity and precision using different
score cutoffs for all programs and the simple seed measure (see
Supplementary Methods). The performance of the seed measure
divides consistently the programs in two groups.

Further, we test the same programs with results obtained from
overepxression of 2 miRNAs (hsa-mir-1 and hsa-mir-124) in HeLa
cells and the subsequent measurement of mRNA levels using
microarrays (Lim et al., 2005) (see Supplementary Figs S3 and S4).
For these data we compute the sensitivity measure at different levels
for all programs. The results give a similar picture as discussed above
(Supplementary Figs S3a and b, S4a and b).

A different test was performed for the same programs on a
dataset of experimentally supported targets derived from TarBase
(Papadopoulos et al., 2009). This set includes 150 targets of
61 different miRNAs that were verified with direct experimental
methods (available as Supplementary Material). The ranking of
the prediction power of the tested programs shows the same order
(Fig. 4).

To the non-expert, the choice of miRNA targets based on
predictions by algorithms may seem like a daunting task. A natural
inclination of a researcher is to assume that targets predicted by more
than one algorithm are more accurate than other targets and thus
leading to higher prediction precision. In a similar fashion, the union

Fig. 5. Comparison of the combinations of several miRNA target prediction
programs on the results provided by Selbach et al. The sensitivity of the
prediction versus the number of predicted targets per miRNA is plotted.
A larger version of this figure and an excel file with all sensitivity and
specificity numbers can be found in the Supplementary Material.

of different programs might improve the sensitivity. We test this by
calculating all possible union and intersection combinations of the
programs mentioned above (Fig. 5) for the high-throughput data
provided for five miRNAs by Selbach et al. It can be observed that
in most cases an accurate algorithm is better than a combination
of predictions. Many of the combinations perform worse than
the prediction of a single algorithm. The reason is that better
specificity of a combination is achieved by a higher price for the
sensitivity. Similar results are obtained using pairwise combinations
of programs on the expression array data set (see Supplementary
Fig. S3c).

5 FUTURE CHALLENGES OF miRNA TARGET
IDENTIFICATION

The arrival of high-throughput proteomics analysis allows
researchers to obtain a wider view of miRNA function in cells.
Such data may help in the identification of new rules that govern
miRNA function and also serve as training sets for applications
based on machine learning approaches. As expression data is
becoming increasingly available, it will be soon possible to train
adaptive algorithms that will highlight additional rules for miRNA
interactions with targeted genes. This notion is in line with the
results provided in a recent publication that describes a miRNA
target prediction method in C.elegans, mirWIP (Hammell et al.,
2008), which uses experimental data to define miTG prediction rules.
Specifically, data from an immunoprecipitation experiment which
identifies mRNAs targeted by the RISC were used and filters based
on the structural accessibility of the target site, total energy of the
miRNA-target hybridization as well as base pairing of the driver
sequence were combined for the prediction of miTGs.

Another interesting field opening in miRNA target prediction,
is the elucidation of the combinatorial effect of miRNAs. It is
widely accepted that several miRNAs are co-regulated in miRNA
gene clusters and are transcribed together. Additionally, levels of
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several miRNAs may be correlated as markers for disease, indicating
a co-regulation by more than one miRNAs. Therefore, two main
questions may be asked: how do multiple miRNAs affect a single
gene, and how do multiple miRNAs regulate a biological pathway
or disease. High-throughput experiments involving the knock-out
or overexpression of several miRNAs simultaneously as well as
independently, could produce the data needed in order to tackle
the first question. The second question requires more complex
computational approaches that will precisely identify and predict
miRNA regulatory networks and will model the interplay between
miRNAs (Ivanovska and Cleary, 2008).

Traditionally, the 3′UTR has been thought of as the main region
of miRNA binding. However, from as early as 2004 (Kloosterman
et al., 2004), there have been reports that miRNA-binding sites
could be functional even when artificially placed inside coding
regions. In an important article laying basic rules for miRNA
binding (Lewis et al., 2005), miRNA targeting was also detected
in open reading frames of protein coding genes. More recently,
the effect of introducing miRNA target sites into the 5′UTR of
luciferase reporter mRNAs was extensively studied (Lytle et al.,
2007) and naturally occurring miRNA targets in the amino acid
coding sequence of mouse genes were experimentally identified
(Tay et al., 2008). These findings indicate that miRNAs could target
mRNAs by binding to positions outside the 3′UTR but it is still
believed that these binding sites are scarce (Baek et al., 2008).
However, it is possible that miRNAs act in these regions by different
mechanisms and/or binding rules and therefore are hard to identify.
Specifically, miRNA target prediction in coding regions would pose
the difficulty of high background conservation and biased nucleotide
composition.

6 CONCLUSION
Results produced by recently developed high throughput
experimental techniques suggest that miRNAs have a broad
impact on cellular processes. Moreover, the availability of such data
allows for extensive benchmarking of existing target prediction
algorithms. These benchmarks reveal that even the most sensitive
programs fail to identify a large part of the targeted genes.

We believe that the dramatic progress in high throughput
experimental methods will soon lead to significant qualitative
and quantitative improvements in the characterization of miRNA
regulation.

This will allow the development of more powerful algorithms
from the statistical or machine learning field trained on such high
throughput data. These methods will likely identify novel prediction
rules and optimize those currently used, to create more accurate
models of the underlying biological phenomena.

Closing we would like to apologize to the large number of groups
working in this field whose work is not included in this review due
to size limitations.

Conflict of Interest: none declared.
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7.2. Online resources for miRNA analysis 

In the following review we discuss available online resources for miRNA genomics, gene finding, 

target prediction and functional analysis in an attempt to assist researchers who wish to acquaint 

themselves with miRNA biology and the available online tools specifically designed for miRNA 

analysis. The review was published in Alexiou et al. (Alexiou, Maragkakis et al. 2011) 
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Abstract 

The use of online tools for bioinformatics
analyses is becoming increasingly widespread.
Resources specific to the field of microRNAs
are available, varying in scope and usability.
Online tools are the most useful for casual as
well as power users since they need no instal-
lation, are hardware independent and are used
mostly through graphic user interfaces and
links to external sources. Here, we present an
overview of useful online resources that have
to do with microRNA genomics, gene finding,
target prediction and functional analysis.

Introduction

microRNAs are post-transcriptional regula-
tory molecules which belong in a recently iden-
tified group of short, 20-25 nucleotides long
sequences of single-stranded, non-coding
RNAs. microRNAs are produced by longer RNA
precursors (pre-microRNA) whose length
reaches approximately 100 nt. These precur-
sors usually form an imperfect stem-loop struc-
ture (hairpin) and are in turn derived from
longer primary RNA transcripts which can be
thousands of nucleotides long and can contain
several hairpins in transcriptional clusters.1

Generally, microRNA functionality derives
from their base pairing on expressed mRNA
molecules, usually on the 3’UTR but also on
the coding sequence. This pairing, for animal
microRNA in contrast to plant microRNAs, is
rarely complete along the full length of the
microRNA and can lead to degradation of the
corresponding mRNA or to its translational
repression.2

The discovery of microRNAs in the early 90s3

and their subsequent connection with a wide
array of developmental programs and disease,
has come in a time when bioinformatic tech-
niques are becoming widespread, and the web
all pervasive. Resources used by microRNA
researchers on the web are numerous and con-
tinuously in flux. Here we present some of the
most commonly used online resources in four
categories sorted in alphabetical order per cat-
egory (Figure 1, Table 1).

Genomics

This category contains resources concern-
ing genomic locations of microRNA primary
transcripts, microRNA transcriptional clusters
and genomic features associated with
microRNAs such as transcription start sites
and transcription factor binding sites near
microRNA transcripts.

MiRBase 16.0 
MiRBase 16.04 is a repository where newly

discovered microRNAs are deposited and
unique identification numbers are given. The
basic unit of the database is the microRNA
hairpin, with genomic location, sequence, ref-
erences provided for hairpins in several
species. The location and sequence of mature
microRNAs on each hairpin is also provided.
The database is searchable via an online inter-
face, or can be downloaded as flat files and
accessed offline. 

miRGen 2.0 
miRGen 2.05 is a database that provides

information on the genomic position and near-
by features of human and mouse microRNA
transcripts and cotranscribed microRNA clus-
ters. Experimentally predicted transcription
start sites and nearby predicted transcription
factor binding sites are provided. Additionally,
expression profiles of microRNAs in several
tissues and cell lines, single nucleotide poly-
morphism locations, microRNA target predic-
tion on protein coding genes and mapping of
microRNA targets of co-regulated microRNAs
on biological pathways are also integrated into
the database and user interface.

microRNA Genes

The identification of novel microRNA
genes,6 generally starts from the discovery of
the distinctive hairpin structures that pre-
microRNAs produce. With the onset of high-
throughput experimental methods for the dis-
covery of microRNA genes, the rate of identifi-
cation of putative hairpin structures is ever
increasing (Figure 2). There is a variety of
online and offline tools for the prediction of
the location of pre-microRNA hairpins in given
sequences or genomic locations.
Among the on-line tools: miRNASVM7 is a

machine learning classifier that predicts the
processing sites for Drosha, the Class 2 RNase
III enzyme that processes pre-microRNAs. The
classifier attempts to find 5′ Drosha process-
ing sites in hairpins that are candidate
microRNAs thus attempting to separate true
from false microRNA hairpin predictions.

ProMiR II8 is a web-server that identifies
microRNA hairpin structures in given
sequences. It consists of three distinct pro-
grams. One searches for novel microRNA hair-
pins near known microRNAs, one predicts
hairpins near a candidate sequence, and the
last one is more general, using a moving win-
dow approach to scan larger sequences.
Several parameters and thresholds can be set
by the user.

Targeting

Resources for validated microRNA
targets
Experimental validation of microRNA tar-

gets has been progressing in bounds in the
past few years. Besides the more direct meth-
ods of target validation employing luciferase
constructs and other traditional molecular
biology methods, a great increase in high-
throughput validation methods has been evi-
dent in the past few years. 

miRecords
miRecords9 is an integrated resource for

animal microRNA-target interactions. The
Validated Targets component of this resource
hosts a manually curated database of experi-
mentally validated microRNA-target interac-
tions with systematic documentation of exper-
imental support for each interaction. The cur-
rent release of this database includes 1135
records of validated microRNA-target interac-
tions between 301 microRNAs and 902 target
genes in seven animal species. The Predicted
Targets component of miRecords stores pre-
dicted microRNA targets produced by 11 estab-
lished microRNA target prediction programs. 
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Tarbase
Tarbase10 is a database which houses a man-

ually curated collection of experimentally sup-
ported microRNA targets in several species.
The current version includes more than 1300
experimentally supported targets. Each target
site is described by the microRNA that binds it,
the gene in which it occurs, the nature of the
experiments that were conducted to test it and
other factors. The whole database can be
accessed online or downloaded.

Resources for microRNA target
prediction
Although it is becoming increasingly easier

to experimentally validate microRNA targets of
interest, the computational prediction of
microRNA targets is still relevant. The use of
novel high-throughput experimental methods
allows researchers to obtain a wider range of
known microRNA targets. Such data will prob-
ably help in the identification of new rules that
govern microRNA function and also serve as
training sets for applications based on
machine learning approaches. As expression
data is becoming increasingly available, it will
be soon possible to train adaptive algorithms
that will highlight additional rules for miRNA
interactions with targeted genes. However, to
date, most microRNA target prediction pro-
grams are based on fixed rules. Since the field
of microRNA target prediction is very fast
changing and competitive with large differ-

Review

Table 1. The web address of each of the online resources discussed here.

Genomics
miRBase www.mirbase.org Griffiths-Jones, 2006
MiRGen 2.0 www.microrna.gr/mirgen Alexiou et al., 2010
Pre-miRNA Prediction
ProMiR II cbit.snu.ac.kr/~ProMiR2 Nam et al., 2006
miRNASVM demo1.interagon.com/miRNA/cgi-bin/MiRNASVM.cgi Helvik et al., 2006
Targeting (validated)
Tarbase www.microrna.gr/tarbase Papadopoulos et al., 2009
miRecords miRecords.umn.edu/miRecords Xiao et al., 2009
Targeting (predicted)
DIANA-microT 3.0 www.microrna.gr/microT Maragkakis et al., 2009
miRanda-mirSVR www.microrna.org/microrna Betel et al., 2010
MicroCosm www.ebi.ac.uk/enright-srv/microcosm Griffiths-Jones et al., 2008
Pictar pictar.mdc-berlin.de Lall et al., 2006
PITA genie.weizmann.ac.il/pubs/mir07 Kertesz et al., 2008
TargetScan 5 www.targetscan.org Friedman et al., 2009
Function (miRNA process)
miR2Disease www.mir2disease.org Jiang et al., 2009
DIANA-mirPath microrna.gr/mirpath Papadopoulos et al., 2009
miReg www.iioab.webs.com/mireg.htm Bahr et al., 2010
Function (genelist miRNA)
DIANA-mirExTra www.microrna.gr/mirextra Alexiou et al., 2010
MiRonTop www.microarray.fr:8080/miRonTop/index Le Brigand et al., 2010
Sylarray www.ebi.ac.uk/enright/sylarray Bartonicek et al., 2010

Figure 1. Online resources for microRNA analysis can be roughly divided in four cate-
gories. Genomic resources have to do with the genomic location and transcriptional inter-
play of microRNA genes. microRNA gene resources predict the hairpin structures associ-
ated with microRNAs. Targeting resources store experimentally validated or computation-
ally predicted targets. Function resources show association of microRNAs with disease or
function in general and of experimental results with microRNA deregulation.
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ences in performance among programs. An
overview of the performance of microRNA tar-
get prediction programs on high-throughput
experimental data shows great discrepancies
in the predictive strengths of each method.11

Here we provide a brief overview of the most
accurate and widely used microRNA target pre-
diction programs.

DIANA-microT
DIANA-microT 3.012 is an algorithm based

on several parameters calculated individually
for each microRNA and it combines conserved
and non-conserved microRNA recognition ele-
ments into a final prediction score. The pro-
gram reports a signal to noise ratio and a pre-
cision score which help in the evaluation of
the significance of the predicted results. The
web server provides extensive information for
predicted microRNA:target gene interactions
providing extensive connectivity to online bio-
logical resources. Target gene and microRNA
functions may be elucidated through automat-
ed bibliographic searches and functional infor-
mation is accessible through KEGG pathways.
The web server offers links to nomenclature,
sequence and protein databases and users are
facilitated by being able to search for targeted
genes using different nomenclatures or func-
tional features, such as the genes possible
involvement in biological pathways. 

MicroCosm 
MicroCosm13 (formely known as miRBase

Targets) uses the miRanda algorithm to ini-
tially identify potential binding sites for a
given microRNA. Dynamic programming align-
ment is used to identify highly complementary
sites. Strict complementarity at the microRNA
seed region is demanded. Thermodynamic sta-
bility is estimated for each target site. For
inclusion in the database, conservation of the
target site at the exact same position in at
least two species is required.

miRanda - mirSVR 
miRanda - mirSVR14 mirSVR is a new

machine learning method for ranking
microRNA target sites by a down-regulation
score. The algorithm trains a regression model
on sequence and contextual features extracted
from miRanda-predicted target sites. In a
large-scale evaluation, miRanda-mirSVR is
competitive with other target prediction meth-
ods in identifying target genes and predicting
the extent of their downregulation at the
mRNA or protein levels. Importantly, the
method identifies a significant number of
experimentally determined non-canonical and
non-conserved sites.

PicTar 
PicTar15 identifies microRNA targets with

perfect or imperfect complementarity in a 7nt

seed region. Conservation is taken into
account, and an HMM approach provides the
final score by combining the multiple
microRNA targets identified on the same gene.
Although PicTar is still relatively accurate11

when compared to other microRNA prediction
algorithms, it has not been updated to the lat-
est identified microRNAs since its initial
release, thus missing hundreds of newly iden-
tified microRNAs.

PITA
PITA16 incorporates binding site structural

accessibility as a feature and does not take
into account the evolutionary conservation of
the binding site. Although, it is not among the
best performing programs11,17 it remains an
interesting approach that shows high potential
of being used along with other prediction pro-
grams that are more dependent to the evolu-
tionary conservation of binding sites.

TargetScan 5.1
TargetScan 5.118 is one of the most widely

used microRNA target prediction programs. In
TargetScan, microRNA binding sites are pre-
dicted through the identification of seed
matches on the 3’UTR of mRNAs and the
assessment of their evolutionary conservation
across several species. The overall scoring of a
microRNA binding site denoted as context
score depends on binding features such as
whether the identified match involves binding
on position 8 and/or whether it has an A at
position 1, the localization of the binding site
within the 3’UTR and the AU content of the
area flanking the binding site. The final pre-
diction score indicating whether a microRNA
target a particular gene is calculated by sum-
ming the context scores of all corresponding
binding sites identified on that gene 3’UTR. 

Function

Association of microRNA with
processes 
A field of interest for many researchers is

the function of microRNAs. When a list of
microRNAs or a list of known or putative
microRNA targets is given, a researcher would
be interested to find out whether they are
associated with any diseases or physiological
processes. 

DIANA-mirPath 
DIANA-mirPath19 is a web-based computa-

tional tool developed to identify molecular
pathways potentially altered by the expression
of single or multiple microRNAs. The software
performs an enrichment analysis of multiple
microRNA target genes comparing each set of
microRNA targets to all known KEGG path-
ways. The combinatorial effect of co-expressed
microRNAs in the modulation of a given path-
way is taken into account by the simultaneous
analysis of multiple microRNAs. The graphical
output of the program provides an overview of
the parts of the pathway modulated by
microRNAs, facilitating the interpretation and
presentation of the analysis results.

miR2Disease 
miR2Disease20 is a manually curated data-

base which aims at providing a comprehensive
resource of microRNA deregulation in various
human diseases mined from published data.
Users can also suggest associations based on
publications. 

miReg 
miReg21 is a manually curated microRNA

Review

Figure 2. The growth of the number of microRNA sequences deposited in miRBase in the
past decade.
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Regulation Resource that represents regulato-
ry relationships between TFs, microRNAs and
other regulators. The information is based on
published resources.

Association of gene lists with
microRNAs
Although microRNA expression levels may

not be routinely measured in high-throughput
experiments, a possible involvement of
microRNAs in the deregulation of gene expres-
sion can be computationally predicted.
Especially with the increasing use of high-
throughput expression arrays and sequencing
to measure deregulation in mRNA and even
protein levels, these techniques for the compu-
tational prediction of the possible involvement
of microRNAs are becoming more relevant.

DIANA-mirExTra 
DIANA-mirExTra22 allows the comparison of

frequencies of microRNA associated motifs
between sets of genes that can lead to the
identification of microRNAs responsible for
the deregulation of large numbers of genes.

MiRonTop 
MiRonTop23 is an online java web tool that

integrates DNA microarrays or high-through-
put sequencing data to identify the potential
implication of microRNAs on a specific biolog-
ical system. It also provides useful representa-
tions of the enrichment scores according to
the position of the target site along the 3’-UTR,
where the contribution of the sites located in
the vicinity of the stop codon and of the polyA
tail can be clearly highlighted. It provides dif-
ferent graphs of microRNA enrichment associ-
ated with up- or down-regulated transcripts
and different summary tables about selections
of mRNA targets and their functional annota-
tions by Gene Ontology.

SylArray 
SylArray24 is a web-based analysis resource

designed to examine influence of small RNAs
on expression profiles. It can be used to find
significant enrichment or depletion of
microRNA or siRNA seed sequences from
microarray expression data.

Conclusions

As an increasing number of resources in the
fields related to microRNAs are becoming

available it is of the greatest importance for
users to know which resources are available in
order to be able to choose which one to use for
a specific task. The onset of the sequencing
era in genomics brings great expectations for
all the sub-fields of microRNA analysis.
Databases will need to scale accordingly to
increasing data loads and user requests,
machine learning approaches will be used
more often and in wider scopes and possibly
user generated content could start being used.
In closing, we would like to apologize to the
large number of groups that work in this field
whose work was impossible to be included in
this review.
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8. GENERAL DISCUSSION AND 
CONCLUSION 

In this thesis the first objective regarding miRNA target prediction has been addressed by two major 

releases of the microT program. Overall the second release denoted as microT-CDS introduces 

several important modifications which have resulted in an improved prediction performance over 

microT-v3.0. In addition, I participated in the development of a novel alignment algorithm for 

identification of putative miRNA binding sites. The algorithm is called CoProHMM and has been 

shown to perform more accurately than other alignment methods. Importantly, since it is a data 

driven approach its performance is expected to improve as new biological data become available. 

Finally, using target prediction for viral miRNAs it has become possible to identify that ebv-miR-

BART6-5p regulates Dicer through multiple target sites in its 3’UTR. The predictions were 

experimentally verified and it has been suggested that mutation and A-to-I editing of viral miRNAs 

appear to be adaptive mechanisms that antagonize ebv-miR-BART6 activities and consequently 

affect viral latency. This work shows how computational tools can directly help in experimental 

design and thus provide valuable biological conclusions. 

The second objective regarding miRNA functional analysis has been addressed by developing a 

Web server which offers an interface between bioinformatics tools and researchers. Also it offers 

unique information regarding miRNA function and provides extensive information and wide 

connectivity to online biological resources in a user friendly interface. Later, following user 

requests I updated the server to support predictions for two additional widely studied species: D. 

melanogaster and C. elegans. Also, through bibliographic analysis we associated miRNAs to 

diseases providing important insights for the potential involvement of miRNAs in biological 

processes. Additionally, I participated in the extensive analysis of the nomenclature used to describe 

mature miRNAs along different miRBase versions and the extraction of the naming history of each 

miRNA. Using this information within the bibliographic searches it is possible to identify related 

publications regardless of possible nomenclature changes. 

Also, in terms of the second objective, I contributed in the development of two additional programs. 

The first one, DIANA-mirExTra, aims in the identification of miRNAs involved in the differential 

expression of genes. The second one, DIANA-mirPath, aims in the assessment of miRNA 

involvement in biological pathways. Both of these tools are widely used by researchers. As an 

example, an early version of DIANA-mirExTra was used in a publication by Zhang et al. (Zhang, 

Volinia et al. 2008) where hsa-miR-495 was successfully identified as an important regulator in 

human epithelial ovarian cancer.  

Overall the publications contained in this thesis have been cited 92 times since the first publication 

in 2009. This citation rate results in an h-index of 4. Additionally, the DIANA Web server which is 

accessible at www.microrna.gr has received more than 697,931 page views by more than 110,016 

users from more than 60 countries (Figure 3) and it currently receives more than 30,000 page views 

by more than 5500 users per month. 

http://www.microrna.gr/
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Figure 3: Graphical representation of the DIANA Web server usage statistics. Color darkness corresponds to the number of visits 

received from a particular region. 
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