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1 Introduction

Text is one of most prevalent forms of data that is directly accessible to humans. The
availability of huge electronic document collections and the increasing growth rate of
these databases created the demand for automatic processing of natural language in
text form. The long list of technologies that were developed in response includes web
search engines (information retrieval) and email spam �lters (text mining) at the �rst
ranking positions. The preprocessing of many concepts to handle text documents
in automatic ways �rst breaks the text of each document into words, reduces the
words to normal forms by heuristically stripping grammatical modi�cations, and
last represents the documents as bags of words. Experiments demonstrated that the
bag of words representation, which neglects all information about the order of the
words in the original documents, is su�cient for satisfactory completion of most of
the automated tasks [94]. Thus, we observe that most techniques for information
retrieval and text mining see documents as sets of words that are accompanied only
by word frequencies as additional information.

Text Mining, which in this work is mainly data mining and machine learning of text
data, includes models for standard analyses such as classi�cation and clustering and
additionally a unique kind of models, namely topic models. Topic models belong to
the class of unsupervised learning techniques that learn a function without the help
of given examples of the form: function input , function output. Topic models learn
a representation of the documents as mixtures of topics. A set of topics is learned
during the training process using statical correlations between co-occurring words. A
topic is a probability distribution over the vocabulary. Words that belong to the same
topic are given high probability by the respective distribution. Therefore, topics are
easily interpretable: In most cases one can get a rough idea of the semantic meaning
of a topic by looking at the top words with the largest probabilities. The output of
a topic model can serve as an overview about a document collection because of the
ease of interpretation of the results. The example in table 1.1, which is reproduced
from [74], shows the respective top ten words of four topics that are part of a topic
model with 128 topics in total. The model is learned for the TDT1 benchmark
collection1, which consists of news stories from Reuters and CNN taken between
7/1994 and 6/1995. Topic models can re�ect many properties of natural language,
e.g. words that are used with several meanings (polysemy) as well as synonyms,
which are di�erent words used for the same meaning. Furthermore, the usefulness
of document representations learned by topic models has been shown to improve
retrieval quality of text search [74,75] and text classi�cations [18].

1http://projects.ldc.upenn.edu/TDT/
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1 Introduction

Table 1.1: Top 10 words of four topics of a topic model (PLSA) with 128 topics
trained on the TDT1 benchmark collection [74].

Topic 1 Topic 2 Topic 3 Topic 4

plane space home �lm
airport shuttle family movie
crash mission like music
�ight astronauts love new
safety launch kids best
aircraft station mother hollywood
air crew life love

passenger nasa happy actor
board satellite friends entertainment
airline earth cnn star

Our initial motivation was to study whether and how statistical text mining meth-
ods could be transferred to applications in life sciences. The demands for such meth-
ods in life science have several reasons. First, the advent of high throughput tech-
nology for screening bio-assays produced large data volumes that reach the critical
mass to allow more sophisticated statistical methods than simple variance analysis
and con�dence tests. Second, public collections of data from such experiments al-
lowed the comparison between di�erent experiments that lead to a kind of content
based similarity search in those databases. Furthermore, new types of experiments
became more widely used that output a whole set of inter-dependent measurements
per experiment. Thus, the result of such an experiment could be seen as an abstract
compound data object. Those data exhibit close analogies to the structure of the
bag of words representation for documents. Last, the analogy to text data provides
useful ways to show to non-experts in data analysis that such analysis methods work
in principle and to explain the basic concepts behind the used models.

In this work, we study three di�erent application domains in the life sciences,
namely two-dimensional nuclear resonance (2D-NMR) spectography (chapter 2 and
chapter 3.2), proteomics experiments (chapter 3.3) and protein precursor sequences
that function as transit peptides for mitochondria (chapter 5.2). All these kinds of
data can be transformed to a compound data representation that is analogous to
the bag of words representation of documents. One general question is, whether
the bag of words representation and the subsequently used text mining methods
are applicable in these scenarios. The corresponding studies have the character
of pilot analyses that help to decide what methods are suitable for the mentioned
applications domains. Furthermore, the usefulness of the outcomes of the studies
help to decide whether a large collecting of results of many biological experiments
is an interesting investment of resources or not. Showing such a usefulness would
provide an important stimulus for the e�orts of collecting such experimental data in
the life sciences.
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1.1 Text Mining

The text mining methods we concentrate on are probabilistic latent semantic anal-
ysis and its applications to similarity search (chapter 3.2 and chapter 3.3), near-
duplicate detection of documents based on locality sensitive hashing (chapter 2),
and cluster analysis based on fractal dimension (chapter 5). Text Mining models
base on probabilistic models. Our contribution to text mining is a new connection
between kernel density estimation (KDE) and the expectation maximization (EM)
algorithm. We introduce the new technique in a simple setting of cluster analysis
(chapter 4.2) and demonstrate the applicability to text mining by using KDE as prior
distribution for probabilistic latent semantic analysis (chapter 4.3). The clustering
by fractal dimension (chapter 5) uses a distance or similarity matrix of a data set
as input. The methods estimates for each data objects a local fractal dimension and
a local density. Objects are assigned to the same cluster if they have similar local
dimension and density. The method can be used to �nd subsets in the data that
di�er in the degrees of freedom.

1.1 Text Mining

In this section, we give a brief introduction into the relevant subjects of text min-
ing. The term was coined in an article by Feldman and Dagan [49] presented at
the First International Conference on Knowledge Discovery, 1995. It describes now
interdisciplinary research with contributions from many �elds including linguistics,
information retrieval, databases, machine learning, statistics, and data mining. The
subject is the automatic extraction of hidden knowledge from unstructured text doc-
ument collections. In contrast to data mining, which works on structured data, text
documents are much less structured. Therefore, the preprocessing steps bring the
documents into the bag of words model, which represents each document as a high-
dimensional vector that stores for each word in the vocabulary how often it occurs
in the respective document. The heuristics used for that reduction are mainly devel-
oped in computational linguistics and involve the use of general and domain speci�c
dictionaries as well as parsers that tag words with their grammatical functions.

The machine learning and data mining part of text mining is mainly concerned
with the analysis of documents represented as bag of words. A typical text mining
methodology is document clustering that analyzes the relations among documents.
The goal is to group the total set of documents into clusters of similar documents.
A special case of document clustering is near-document duplicate detection [21, 64].
A cluster is in this case a set of duplicate documents that di�er only in minor parts.
An application of this type of clustering is the detection of mirror web pages, which
helps to improve web search by reporting duplicate content only once in the result
list. The application of clustering at the scale of the web is only possible due to the
use of approximation techniques such as locality sensitive hashing (LSH) [24].

A major problem that appears during the analysis of text is caused by the enor-
mous �exibility of natural language. Well known phenomenons such as polysemy
and synonyms are di�cult to handle by algorithms. Polysemy denotes words with
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1 Introduction

ambiguous meanings, e.g. �gure means the shape or stature of a person but it is also
used to talk about digits or numbers. Synonyms are words with the same or similar
meaning like car and automobile. Machine learning methods that can handle these
phenomena are topic models like probabilistic latent semantic analysis PLSA [74],
because they can learn correlations among words from word co-occurrences.

Mathematically, topic models have close connections to matrix factorizations like
singular value decomposition (SVD) [59]. The idea is to concatenate the vector
representations of documents of a whole collection to a term document matrix. SVD
can be used to �nd a low rank approximation of such a matrix, which can be written
as the product of two much smaller matrices. Because the word count vectors of
documents can be normalized to describe multinomial distributions, probabilistic
methods to approximate the term document matrix are more successful than SVD-
based approximations [74].

Probabilistic topic models are mixture models that model the probability distri-
bution over the vocabulary as a mixture of simple probability distributions such as
multinomial distributions. Probabilistic topic models represent documents by docu-
ment speci�c topic mixture proportions. Topics are multinomial distributions over
the vocabulary. A word may have high probability in the distributions of several
topics. This may happen, when it is just a frequently used word, however, this pat-
tern is also typical for words exhibiting polysemy. Words that have high probability
in a single topic distribution may be just frequently used together, however, syn-
onyms are also modeled this way. Thus, words that are di�cult to handle can be
represented in a topic model in a natural way.

Topics in topic models do not correspond to clusters in probabilistic document
clustering models. A document belongs to a cluster as a whole object even when
the assignment is done probabilistically. In contrast, documents do not necessarily
belong to a topic as a whole object but a subset of the words in a document may
belong to a particular topic. Other subsets of words of the same document may
belong to a second topic. This is re�ected in the document speci�c topic mixture
proportions. Therefore, topic models are more �exible than clustering models. The
result of a clustering could occur as a special case in a topic model, namely when
all documents have only a single dominant topic in the respective topic mixture
proportions.

Probabilistic modeling is a mathematically rigorous framework that rely on a small
set of rules for working with probabilities, which can be found in the appendix. The
mathematical framework eases the transfer of probabilistic topic models to other
application domains.

1.2 Applications in Life Sciences

We give a short overview about the application domains where we apply text mining
models. We discuss the analogies to the bag of word representation of documents.
Furthermore, we discuss how phenomena in natural language like polysemy and
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1.2 Applications in Life Sciences

synonyms could be related to the application domains.

1.2.1 2D-NMR-Spectography

We describe the basics of NMR spectrography according to [81]. Nuclear magnetic
resonance spectography is a method to analyse organic molecules. Some atom nuclei
have a small magnetic �eld called spin. Among those nuclei are the isotopes 1H and
13C. When placed in a magnetic �eld the atoms of a particular isotope type resonate
at a characteristic frequency. However, when such an atom takes part in a chemical
bond its resonate frequency is slightly distorted. That distortion can be measured
and is called chemical shift. Chemical shifts are very small, e.g. the characteristic
resonance frequency of 1H is 42.58 MHz and the deviation may be 100 Hz. Therefore,
the chemical shift is measured in parts per million (ppm). Typical chemical shifts
for 1H are in the range of 1 to 8 ppm and those of 13C are from 10 to 200. Chemical
shifts are characteristically distorted depending on the chemical environment inside
the respective molecule, e.g. 1H-NMR spectrum for ethanol (CH3-CH2-OH) has
three shifts, one shift for CH3, one for CH2 and one for the OH group. When plotted
these shifts constitute a one-dimensional NMR spectrum.

A series of one-dimensional NMR measurements with respect to 1H and 13C iso-
topes can be performed over time. Combining these measurements by Fourier trans-
formation, correlations between the shifts of 1H and 13C can be found that corre-
spond to chemical bonds between 1H and 13C atoms. The result is a speci�c type of
a 2D-NMR spectrum.

A 2D-NMR-spectrum of a molecule consists of a set of two-dimensional chemical
shifts, called peaks, which represent local parts of the respective molecule. Peaks
are in this setting analogous to words in documents and the spectra take the place
of documents. Organic molecules are complex structures, which are composed of
elementary building blocks. A single chemical shift (peak) does no uniquely identify
such a building block in general. Thus, the same peak could be produced in di�erent
chemical contexts. This is a kind of polysemy of chemical shifts (peaks) in 2D-NMR
spectra.

Similarity search in large spectra databases would be a valuable tool for the eluci-
dation of the chemical structure of an unknown molecule. Similar NMR-spectra with
known chemical structure could give hints about the chemical family the unknown
molecule might belong to.

1.2.2 Proteomics

A proteomics experiment aims at identifying all proteins that are present in a certain
tissue sample. There are many di�erent experimental approaches known to this end
that di�er in preprocessing steps to separate the proteins in the complex mixture
obtained from the given sample. The last steps, however, are common practice. Af-
ter separation, the intact protein strings are chopped at speci�c positions into small
fragments called peptides. The mixture of peptides is analyzed by mass spectrom-
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1 Introduction

etry. As small peptides have unique characteristic masses, the individual peptides
present in the mixture can be identi�ed by this experiment. The original proteins are
identi�ed by looking up the peptides in protein sequence databases. When a small
peptide sequence fragment that was identi�ed in the experiment is found to be part
of a larger protein sequence in the databases of known proteins, the presences of this
protein in the sample can be conjectured. However, the whole process is subject to
many errors. The major problem is the mass spectrometry, which usually identi�es
only a fraction of the present peptide sequences.

A proteomics experiment generates a set of peptide sequences that are identi�ed
by mass spectrometry. Thus, peptides take the role of words and proteomics exper-
iments with a particular tissue sample act as documents. Peptides do not uniquely
identify proteins, thus, the presence of a peptide could indicate the presence of two
or more di�erent proteins. This is a case of polysemy on the level of peptides. On
the other hand several peptide sequence fragments of the same protein could be iden-
ti�ed in the mass spectrometry step. These peptide fragments would be synonyms.
Similarity search in large collections of proteomics experiments, such as the PRIDE
database2, could reveal connections between the tissue samples.

1.2.3 Transit Peptides

The endosymbiotic theory [95, 96] describes the origins of mitochondria and chloro-
plasts in eukaryotic cells as the result of endosymbiotic events. Animals and fungi
have only mitochondria, plants have both mitochondria and chloroplasts.

In the �rst endosymbiotic event, a host cell without mitochondria engulfed an
α-proteobacterium that became a symbiont in the cell and developed into mitochon-
dria. Genes originally possessed by mitochondria were transferred into the host cells
nucleus. The proteins coded by the transferred genes are synthesized in the cytosol
and than transported into the mitochondria. That transport is triggered by transit
peptides. Transit peptides are short protein sequences of about 30 to 80 amino acid
residues located at the N-terminus of the protein. After the transport of the protein
through the membrane of the mitochondrion the transit peptide is cut away.

In the second endosymbiotic event, a host cell that already possessed mitochondria
engulfed a cyanobacterium that became the origin of chloroplasts. Also many genes
of chloroplasts are transferred to the nucleus. The reimport of the corresponding
proteins into the chloroplasts is also mediated by transit peptides. Transit peptides
are of very divers nature. There are no patterns of transit peptides known that
encode the target of transit peptides, mitochondria or chloroplasts. However, mis-
targeting of proteins above a tolerance level would disturb the cells integrity. Thus,
we must assume that targeting information is coded in transit peptides of plants to
di�erentiate between mitochondria and chloroplasts.

An interesting question is whether the mitochondrial transit peptides in plants
adapted after the appearance of a second target, the chloroplasts, to avoid mistar-

2http://www.ebi.ac.uk/pride
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1.3 Contributions

geting. If that is the case, mitochondrial transit peptides in plants would have less
degrees of freedom than mitochondrial transit peptides in animals or fungi that have
no chloroplasts. The question is tackled by analyzing the similarities among mito-
chondrial transit peptides in plants on the one hand and those in animals and fungi
on the other hand.

1.3 Contributions

We contributed to both the development of new techniques to transfer text mining
methods to application domains in life sciences as well as research on new methods
in text and data mining. In detail, the contributions of this work are:

• We develop new transformation techniques for 2D-NMR spectra that allow
the application of text mining methods like duplicate detection and similarity
search based on probabilistic latent semantic analysis.

• We show the improvements of computing similarity between proteomics exper-
iments by using probabilistic latent semantic analysis.

• We developed a new technique to cast hill climbing on a kernel density estimate
as an expectation maximization algorithm and demonstrated the improvements
by the new technique in density based clustering and probabilistic latent se-
mantic analysis.

• We developed new methods for data analysis based on fractal dimension and
used those methods to analyze mitochondrial transit peptide sequences.

Acknowledgements

This work has cumulative character. Most parts are published as peer reviewed
papers in journals or conferences proceedings that result from collaborations with
students in their diploma theses supervised by the author or/and with collaborators
from life science research institutes. In detail, the results described in chapter 2 on
duplicate search in 2D-NMR spectra are published in [43, 69] in collaboration with
researchers from the Leibniz Institute of Plant Biochemistry (IPB). The �ndings
about the applications of similarity search based on latent semantic analysis to 2D-
NMR spectra (chapter chapter 3.2) and proteomics data (chapter 3.3) are published
in [73, 82, 83, 137] in collaboration with my diploma students Karina Wolfram and
Sebastian Klie and collaborators from the IPB and the European Bioinformatics In-
stitute (EBI). The new connection between KDE and EM theories and the use of
KDE priors in PLSA, which is described in chapter 4, is published in [70,71] in collab-
oration with my diploma student Hans-Henning Gabriel and my PhD. student Andre
Gohr. Cluster analysis based on fractal dimension [56], chapter 5.3, was developed
during my work in Finland in collaboration with Aris Gionis, Spiros Papadimitriou
and Panaiotis Tsaparas. The application of data analysis based on fractal dimension

11



1 Introduction

to mitochondrial transit peptides, chapter 5.2, was published in [128] in collaboration
with my diploma student Christine Staiger and Ralf Bernd Klösgen of the Institute
of Biology, Martin-Luther University Halle-Wittenberg.
I am thankful for the productive collaborations with all these people. Furthermore,

I want to thank my colleagues in the database research group and especially Prof.
Dr. Stefan Brass for his steady support of my work and the research atmosphere
of freedom he provided in the last years. I want thank the people at the Institute
of Informatics of the Martin-Luther University Halle-Wittenberg for their support.
Finally, I am thankful for the love and encouragement of my wife, my daughter and
the people of the house community I am living in.

12



2 Duplicate Detection

Duplicates are redundant data representations of the same semantic entity. Typical
examples include multiple versions of the same address in a database, which slightly
di�er in spelling or punctuation, and multiple, scaled and di�erently compressed ver-
sions of the same photo in an image collection. We do not consider exact duplicates
that share the same data representation. Finding exact duplicates is another prob-
lem of its own. We are dealing with duplicates, the data representations of which
may vary among the instances. Detecting those kinds of duplicates is not merely an
e�ciency problem but requires �rst and foremost a robust de�nition of what is con-
sidered a duplicate. The material presented in this section is a revised combination
of [43,69].

The tradeo� between e�ciency (meaning runtime) of the duplicate detection algo-
rithm and e�ectiveness of the conceptual de�nition of duplicates is chosen depending
on application scenario. Finding duplicates in large address databases requires fast
algorithms while it is su�cient to �nd the majority of the duplicates. The de�nition
of address duplicates is mainly straight forward and found by domain experts in
heuristical ways. Thus, in this application domain, speed of algorithms is the main
concern while the duplicate de�nition should su�ce for most common cases.

On the other hand, �nding duplicates in photo image collections requires very
sophisticated de�nitions of what is considered a duplicate. While runtime may be
important for special cases of large image databases, the e�ectiveness of the duplicate
de�nition is here a major concern. Most duplicate de�nition base on some de�nition
of similarity between images. For moderate sized image collections, algorithms with
quadratic runtime in the size of the collection may be acceptable as long as the
e�ectiveness of the duplicate detection is guarantied.

An interesting intermediate case is the text mining problem of �nding near-document-
duplicates. A motivating example is �nding near-duplicates in very large collections
of web pages. Duplicate detection is used to improve the quality of web search by
eliminating mirror pages from the result lists. The tasks is demanding as mirror
pages are often not identical with the original but di�er in very various ways. This
domain combines both requirements, a non-straight forward, robust de�nition of du-
plicates and the need for sub-quadratic algorithms that scale to very large collections.
Like in the case of image duplicates, similarity between documents is the basis for
near-document duplicates.

Finding near-document-duplicates lead to the development of an important the-
oretical framework called locality sensitive hashing (LSH), that allows to �nd very
similar documents in an approximative, but very fast way. The framework applies to
several de�nitions of similarity mostly from information retrieval. The main idea is
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2 Duplicate Detection

to apply randomly chosen hash functions to the documents. The hash functions are
from a proper family of hash functions that ful�lls the LSH property. The framework
guaranties that hash collisions between two documents happen with a probability
equal to the similarity the two documents. Thus, very similar documents, which
are candidates for �nding near-document-duplicates, have hash collisions with high
probability. Finding documents with equal hash values (hash collision) can be done
with sub-quadratic algorithms based on sorting.

We use LSH-based solutions for �nding near-document-duplicates as a guide to
develop methods to �nd duplicates in large collections of 2D-NMR spectra. 2D-
nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical method
to elucidate the chemical structure of organic molecules. In contrast to standard
one-dimensional NMR spectroscopy, advanced two-dimensional NMR spectroscopy
is able to capture the in�uences of two di�erent atom types at the same time, e.g.
1H (hydrogen) and 13C (carbon).

The result of a 2D-NMR measurement can be seen as an intensity function mea-
sured over two independent variables1. Regions of the plane with high intensity
are called peaks that contain the real information about the underlying molecular
structure. A usual visualization of 2D-NMR spectra are contour plots as shown in
�gure 2.1 (1H,13C-HSQC NMR spectrum)2. Contour lines in low intensity regions are
clipped away, because they are produced by not reproducible �uctuations. An ideal
peak would register as small dot. In the biochemical literature, peaks are noted by
their two-dimensional positions. Thus, 2D-NMR spectra are much like documents,
peaks take the role of words and spectra can be seen as documents.

However, due to the limited resolution of the devices available (depending on
the strength of the magnetic �eld) multiple peaks may appear as a single merged
object with non-convex shape, and after thresholding two di�erent peaks that are
close together may be merged and so both are represented by a single point. This
is usually accepted. The pattern of peaks is very characteristic and speci�c for a
particular substance.

As modern NMR devices allow the automatic analysis of many samples per day,
the number of spectra in a database can be up to several thousands per laboratory.
Yet, a lot of manual work is needed to deduce the chemical structure of a complex
organic substance from the spectrum. Thus, most of the NMR data is unpublished
but contains a lot of experimental knowledge. Duplicate detection is needed for a
use case where two or more libraries are merged, and the experimental knowledge for
a pair of duplicates needs to be manually merged and curated. The matching of two
spectra has to be robust against merged peaks and measurement deviations. The
problem is, given an automatically measured spectrum �nd all matching spectra on
the basis of their peaks with annotations. We cast the speci�c problem in a more
general setting: given a set of spectra �nd all pairs which are near-duplicates.

After brie�y reviewing the relevant literature about detecting duplicates (Section

1The measurements are in parts per million (ppm).
2HSQC: Heteronuclear Single Quantum Coherence
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Figure 2.1: 2D-NMR (HSQC) spectrum of Quercetrin, the one-dimensional plots at
the axes are projections of the original two-dimensional intensity func-
tion including the respective signal intensities. Each peak captures char-
acteristic 13C,1H- atomic resonance interactions present in the speci�c
molecule.

2.1), we give an short overview about locality sensitive hashing in Section 2.2. Fuzzy
duplicates of 2D-NMR spectra are de�ned in Section 2.3. Based on the de�nition
we propose exact methods to �nd the fuzzy duplicates in Section 2.4. In Section
2.5 we propose approximate methods based on LSH techniques. All methods are
experimentally analysed in Section 2.6.

2.1 Applications of Duplicate Detection

2.1.1 Duplicate Detection in Databases

Duplicate detection in databases is mainly known under record linkage. Record
linkage and especially the sorted neighborhood method [67] is also related to our
approach. Sorted neighborhood determines for every object a key by which the
objects are ordered. A sliding window is moved over the sorted sequence and objects
within a window are checked for duplicates. The assumption behind the method is
that duplicates have keys that are close in the sorted sequence of objects. Therefore,
key selection is crucial for the method and is often manually done by domain experts.
The sorted neighborhood method has been successfully used for identifying duplicates
in customer databases with data objects consisting mainly of discrete attributes. The
process of key generation consists primarily of selecting a proper subset of the discrete
attributes.
The detection of duplicate records in data streams [37] or click streams [102] are

new variants of the problem. Again, duplicates in this context have simple de�nitions
and the records have �xed length. The approaches use Bloom �lters, a methods also
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based on hashing. The �lter is applied to each record and can e�ciently answer
the question whether the record has no duplicates by using only constant amount of
space. The alternative answer of a Bloom �lter is: May be the record has a duplicate,
in which case the record has to be further processed. As most records does not have
duplicates, a Bloom �lter can signi�cantly reduce the runtime. The need for constant
space makes Bloom �lters a well suited technique in streaming scenarios with the
requirement that a record cannot be processed multiple times.

While the techniques are useful in database scenarios with simply structured
records of �xed length that consists mainly of discrete attributes, they are of lim-
ited use for 2D-NMR spectra. As 2D-NMR spectra do not have discrete attributes,
the construction of a key as required for record linkage is much more di�cult. So
far no promising technique is known for multiple numeric attributes. NMR spectra
have not �xed size, e.g. the number of peaks may di�er between spectra (due to the
experimental setup even for chemical duplicates). Also the streaming scenario does
not appear naturally for 2D-NMR spectra.

2.1.2 Content-based Duplicate Detection

Duplicate detection can be seen as a special case of content-based similarity search,
where pairs of spectra are considered duplicates if their similarity exceeds a certain
cuto� value. While content-based similarity search is already in use for 1D-NMR
spectra [1,10,85,91,129], to the best of our knowledge, no e�ective similarity search
method is known for 2D-NMR-spectra. Besides technical details (like how to choose
the particular cuto� values for similarity) the problem of an approach purely based
on similarity is that the similarities between all pairs of spectra have to be computed.
This leads to quadratic run time in the number of spectra, which is prohibitive for
large spectra databases.

Duplicates are often found by using a similarity measure. Such measures can be
manually de�ned, but in case of strings suitable similarity measures can be learned
automatically using a support vector machine [14], which improves the detection
accuracy. Another example of very di�cult duplicates are those found in the WHO
drug safety database [107]. In this case, a classi�cation problem was solved in order
to �nd a measure for comparison of the records. As those duplicates themselves are
very di�cult to detect, it seems unlikely to �nd subquadratic algorithms for this
problem class.

The detection of duplicates in images [80] is slightly related to our research, as
2D-NMR spectra could be thought as images as well. However, the used techniques
in [80] ensure invariance wrt. scaling, shifting and rotation, which is not meaningful
in case of 2D-NMR spectra.

The detection of duplicates is slightly related to collision detection in computer
graphics [30]. The problem in this concern is to �nd 2D or 3D objects with over-
lapping boundaries in real time. The algorithms make the assumption, that only a
few bounding boxes of the objects are overlapping. However, in our setting almost
all bounding boxes of the spectra overlap. So, collision detection is not applicable to
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our problem.

2.1.3 Near-duplicates of Documents

Various aspects of detecting duplicates have received a lot of attention in database
and information retrieval research. The closest type of approaches is near-duplicate
detection of documents. The e�cient detection of near-duplicate documents has
been studied by several authors [25, 139]. In particular, near-duplicate detection of
web documents is a quite active research area [31, 60, 64]. The di�erence between
near-duplicate documents and fuzzy duplicates of 2D-NMR spectra is that docu-
ments are composed of discrete entities, namely words or index terms, but 2D-NMR
spectra consists of continuous 2D points. The crucial di�erence is that the match-
ing operation is transitive for words but not for 2D points. That mean if word A
matches word B and word B matches C then A matches also C. This does not hold
for two-dimensional points, when matching means that two points are closer than a
�xed threshold. An extension of near-duplicate documents are duplicates in XML
documents [135], where the set of terms is organized as tree.

2.2 Locality Sensitive Hashing

A general approximation scheme is locality sensitive hashing (LSH) [76], which is a
distribution on a family of hash functions F on a collection of objects, such that for
two objects x, y

Prh∈F [h(x) = h(y)] = sim(x, y) (2.1)

The idea is to construct k hash functions h on the set of objects according to the
family F . The percentage of collisions among the k pairs of hash values for two
objects estimates the probability of a collision and gives an approximative similarity
score. In general, the outcome of a hash function can be thought of as an integer.
So, the LSH-scheme maps each object to a k-dimensional integer vector.

In case, two objects x, y are very similar, their integer vectors agree on all k
coordinates with high probability. Let be s = sim(x, y), s ∈ [0, 1] the similarity
between x, y, then the probability is sk that hi(x) = hi(y) agree for all 1 ≤ i ≤ k.
To amplify that probability, the sampling process is repeated L times [55]. So, after
L repetitions the probability that their integer vectors agree on all k coordinates at
least once is

Pr[1 ≤ i ≤ k : hi(x) = hi(y) at least once] = 1− (1− sk)L (2.2)

Thus, the duplicate detection consist of �nding L times the duplicates among integer
vectors and union the results. Finding groups of equal integer vectors can be done
by sorting, which has lower run time complexity than the naive algorithm.

There are locality sensitive hashing schemes known for the following similarity
functions, Manhattan distance between �xed length integer vectors [57], approx-
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imative cosine similarity between discrete sets [24], and Jaccard coe�cient for set
similarity [21,29]. We brie�y review the hashing schemes for the similarity measures.

2.2.1 Manhattan Distance

Given a set of d-dimensional integer vectors with coordinates in the set {1, . . . , C},
the Manhattan distance between two vectors is x, y ∈ X, d1(x, y) =

∑d
i=1 |xi − yi|.

Let be x = (x1, . . . , xd) a vector from X and u(x) = UnaryC(x1) . . .UnaryC(xd) a
transformation of x into a bit string, where UnaryC(a) is the unary representation of
a with C bits, i.e. a sequence of a ones followed by C − a zeros. For any two vectors
x, y ∈ X there is da(x, y) = dH(u(x), u(y)) with dH is the Hamming distance, which
gives the number of di�erent bits between bit strings. An appropriate family of hash
functions with the LSH property consists of hi(b), 1 ≤ i ≤ length(b), where hi(b)
returns the ith bit from b.

Sampling uniformly from those hash functions and testing for collisions reduces to
probabilistically counting the number of equal bits:

d1(x, y) = dH(u(x), u(y)) = dC(1− Pr[hi(u(x)) = hi(u(y))]) (2.3)

with random hi, 1 ≤ i ≤ dC.
For the implementation of this LSH scheme, k random indices i1, . . . ik are picked.

The transformation into the Hamming space, which can be quite large, is in practice
not necessary. In order to �nd the value of hi(u(x)) we have to look to which
coordinate of the integer vector the index i belongs and if (i − 1 mod C) + 1 is
larger than the integer value of that coordinate. So the hash function for index i is

hi(u(x)) =

{
1 if (i− 1 mod C) + 1 ≤ xb i

C
c+1

0 else
(2.4)

2.2.2 Approximate Cosine Similarity

Cosine similarity is used in information retrieval to compare documents which are
represented by term frequency vectors. Given a subset A ⊂ U of a universe U
the term frequency vector ~tA has |U | components, each representing the number of
occurrences of a particular element in A. The cosine similarity of A,B is

simC(A,B) =
~tA · ~tB
‖~tA‖ · ‖~tB‖

(2.5)

The hash functions are constructed by randomly mapping each element of U to
{−1, 1}. Lets represent such a mapping m : U → {−1, 1}|U | as a vector ~m, then the
hash function induced by m is

h~m(A) =

{
1 if ~m · ~tA ≥ 0

0 if ~m · ~tA < 0
(2.6)
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The LSH scheme is then

Pr[h~m(A) = h~m(B)] = 1− θ(~ta,~tb)

π
≈ simc(A,B) (2.7)

with θ(~ta,~tb) is the angle between ~ta and ~tb. The probability is estimated by sampling
from the set of possible mappings ~m.

2.2.3 Jaccard Coe�cient

Given two subsets A,B ⊂ U of a universe U the Jaccard coe�cient is

simJ(A,B) =
|A ∩B|
|A ∪B|

(2.8)

The hash functions for the LSH scheme are constructed by random orderings of the
universe U . Such a random ordering can by viewed as a random permutation π of
the elements of U , where π(·) delivers the position of an element according to π.
The hash function hπ(A) = min{π(x) : x ∈ A} returns the smallest position of an
element of A with respect to the ordering π. Then for two sets A,B :

Pr[hπ(A) = hπ(B)] = simJ(A,B) (2.9)

The probability is estimated by sampling from the set of possible permutations.

2.2.4 Theoretical Conditions

A LSH-scheme is an attractive tool for similarity-based duplicate detection. Thus, it
natural to ask, whether there might exists a LSH-scheme for any similarity function.
This is not the case. General conditions for the existence of a LSH-scheme for a
given similarity function are proofed in [24].

Lemma 1 For any similarity function sim(x, y) that admits a locality sensitive hash
scheme as de�ned by equation 2.1, the distance function 1−sim(x, y) satis�es triangle
inequality, that is for all x, y, z:

1− sim(x, z) + 1− sim(z, y) ≥ 1− sim(x, y) (2.10)

The proof is given in [24].

As the Jaccard coe�cient admits a LSH-scheme it follows from Lemma 1 that
the corresponding distance obeys the triangle equation. This was independently
proofed in [88, 90] using direct techniques. An example of a commonly used set
similarity function with a corresponding distance function that does not obey triangle
inequality is the dice coe�cient [24]:

simD(A,B) =
2|A ∩B|
|A|+ |B|

(2.11)
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This is shown by the following counter example: Let the sets A = {a}, B = {b}
and C = {a, b}. Then simD(A,C) = 2/3, simD(C,B) = 2/3 and simD(A,B) = 0
and consequently 1− simD(A,C) + 1− simD(C,B) < 1− simD(A,B). Thus, using
lemma 1 shows that there exists no LSH-scheme for the dice coe�cient.
In case, similarity-based duplicates are de�ned by sim(x, y) = 1, we can derive

from lemma 1 the following corollary:

Corollary 1 For any similarity function sim(x, y) that admits a locality sensitive

hash scheme as de�ned by equation 2.1 and that de�nes similarity-based duplicates

by sim(x, y) = 1, the duplicate relation must be transitive, that is for all x, y, z: if x
and z are duplicates and z and y are duplicates, then x and y are duplicates.

Proof: Let the pairs x and z, and z and y are duplicates. By de�nition of similarity-
based duplicates we have 1 − sim(x, z) + 1 − sim(z, y) = 0. Since due to lemma 1
triangle inequality holds, we have 0 ≥ 1− sim(x, y) and because sim(x, y) ∈ [0, 1] it
follows sim(x, y) = 1. Thus, x and y are duplicates. 2

This tools are helpful, when de�ning duplicates for two-dimensional NMR-spectra.

2.3 Duplicate Detection of 2D-NMR-Spectra

In this section, we de�ne 2D-NMR spectra and fuzzy duplicates of 2D-NMR spectra
in a formal way. Furthermore, based on the properties of the duplicate de�nition,
we discuss the complexity of the problem of detecting all fuzzy duplicates in a given
database.

2.3.1 De�nition of Fuzzy Duplicates of 2D-NMR Spectra

A 2D-NMR spectrum of an organic compound captures characteristics of the chemi-
cal structure like rings and chains. As the shape of the measured peaks varies between
experiments (even with the same substance!), we use centroid peak positions for the
representation of the spectra. So, we de�ne a spectrum as a set of two-dimensional
points:

De�nition 1 A 2D-NMR spectrum A is de�ned as a set of points {x1, . . . , xn} ⊂ R2.

The | · | function denotes the size of the spectrum |A| = n.

The number of peaks per spectrum is typically between 4 and 60. Our de�nition of
duplicates is based on the idea that peaks can be matched. As spectra are measured
experimentally, peak positions can di�er even between technical replicates3. For
that reason, peaks cannot be matched by their exact positions, but rather some
slight deviations have to be allowed. A simple but e�ective approach is to match
peaks only within a small spatial neighborhood, The neighborhood is de�ned by the
ranges α and β:

3A technical replicate is the same substance/molecule under the same experimental conditions
subjected to the measurement device at least twice.
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De�nition 2 A peak x from spectrum A matches a peak y from spectrum B, i�
|x.c− y.c| < α and |x.h− y.h| < β, where .c and .h denote the NMR measurements

for carbon and hydrogen respectively.

Based on the notion of matching peaks, we are ready to de�ne a set-oriented simi-
larity measure, from which in turn we derive the de�nition of duplicates as a special
case. Note, that a single peak of a spectrum can match several peaks from another
spectrum. Given two spectra A and B, the subset of peaks from A which �nd match-
ing partners in B is denoted as matches(A,B) = {x : x ∈ A,∃y ∈ B : x matches y}.
The function matches is not symmetric, but helps to de�ne a symmetric similarity
measure

De�nition 3 Let be A and B two spectra and A′ = matches(A,B) and B′ =
matches(B,A), so similarity is de�ned as

sim(A,B) =
|A′|+ |B′|
|A|+ |B|

The measure is close to one if most peaks of both spectra are matching peaks.
Otherwise, the similarity drops towards zero.
An important special case of similarity search is the detection of duplicates to

increase the data quality of a collection of 2D-NMR-spectra. In addition to the
measurement inaccuracies, in case a substance is measured twice with a high and
low resolution, it may happen that neighboring peaks are merged to a single one. A
restriction to one-to-one relationships between matching peaks can not handle such
cases. This means that a single peak from spectrum A can be matching partner for
two close peaks from spectrum B.
We propose a de�nition of fuzzy duplicates based on the similarity measure which

can deal with the problems mentioned, namely deviances in peak measurements as
well as splitted/merged peaks.

De�nition 4 A pair of 2D-NMR-spectra A and B are fuzzy duplicates, i� sim(A,B) =
1.

By that de�nition it is only required that every peak of a spectrum �nds at least
one matching peak in the other spectrum. The parameters α and β can be set with
the application knowledge of typical variances of single peak measurements. For our
application, we chose α = 3 ppm (13C coordinate) and β = 0.3 ppm (1H coordinate)
if not stated otherwise.

2.3.2 Complexity of the Problem

The duplicate de�nition 3 is not transitive, that means if A is duplicate of B and B
is duplicate of C then A is not necessarily duplicate of C. An example for this fact
is sketched in �gure 2.2. The reason is the nature of continuous measurements of the
peak coordinates. Transitivity of the duplicate relation is in case of similarity-based
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c
b

a

Figure 2.2: The peak a from spectrum A matches peak b from spectrum B and b
matches c from spectrum C. However a and c are not matching.

duplicates a necessary condition for the existence of an LSH-scheme. Thus, we can
conclude that the similarity function as de�ned in De�nition 3 does not admit an
LSH-scheme.

Intuitively, the lack of transitivity has the consequence that a set of duplicate
spectra (where all spectra are pairwise duplicates) cannot be represented by a single
spectrum. Such a representative would ease the detection of duplicates, since all
duplicates of the representative are also pairwise duplicates. Because fuzzy duplicates
of 2D-NMR spectra do not have this property, all pairs of the set have to be checked
in order to calculate a set of duplicates. Thus, the complexity of an algorithm
that �nds all duplicates in a set of spectra has a quadratic worst case runtime in
the number of spectra. Therefore, we have to resort to heuristics which reduce the
experimental runtime on typical data sets.

2.4 Exact Methods for Fuzzy Duplicates

The straight forward implementation of the duplicate de�nition is to check every
pair of spectra, whether the pair is covered by the duplicate de�nition.

To reduce the complexity of the straightforward method, we need to develop heuris-
tics which (i) quickly check necessary conditions of a pair of spectra to be a duplicate
and (ii) avoid false negatives so that no duplicate pairs are missed. A single heuristic
may not reduce the number of candidate pairs signi�cantly. Thus, several heuristics
can be combined by requiring that all heuristic �lter tests are true.

In general, the output of a heuristic is a set of candidate pairs which passed the test
of some necessary condition for duplicates. Given the set of spectra S containing m
spectra, such an output can be represented by a bit matrix F ∈ {0, 1}m×m. In order
to reduce the number of candidate pairs several heuristics can be combined. The
result of a combination of several heuristics with the respective outputs F 1, . . . F k is a
bit matrix F with the elements Fij = F 1

ij∧. . .∧F kij . Such a bit matrix usually contains
many zeros and a few ones, so it can be stored as a sparse matrix. Intermediate
results during the combination of outputs of several heuristics should be kept small.
Therefore, the processing order should go from the matrix with the smallest number
of ones to the matrix with the largest number of ones.

How to �nd heuristics that implement necessary conditions for a pair being a
duplicate in a systematic way? A simple strategy to generate such heuristics is to
select a peak x from a spectrum A and search for neighboring peaks of the selected
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peak. The spectra that have a peak in the neighborhood of x are candidates for
being a duplicate of A. All other spectra cannot be duplicates for A and are therefore
excluded from further examination. We call such heuristics peak selecting heuristics.

Our de�nition of duplicates is symmetric, that means when A is duplicate of B then
B is also a duplicate of A. In general, the output of a peak selecting heuristic is not
symmetric, because the peak selected from A is not necessarily in the neighborhood
of the peak selected from B. There are two options to deal with symmetry. First,
symmetry can be used as additional �lter. In case, Fij = 1 and Fji = 0 the bit of Fij
can be zeroed. The second option is to ignore symmetry and compute only one half
of the bit matrix, such as the upper triangle. The questions is whether the costs to
check the additional candidates being generated by ignoring symmetry is lower than
the costs to compute the lower triangle bit matrix. We argue that it is bene�cial to
check a few more candidates to save the costs for the lower triangle bit matrix.

If half of the bit matrix is not computed, the question arises whether we can
decrease the number of ones in the upper triangle matrix by selecting a special
permutation of rows and columns. The costs to �nd such a permutation should
be small, as it is only bene�cial, if those costs pay o� by the costs for the saved
candidates. Two permutations are interesting candidates: the �rst option is to sort
the spectra by the number of peaks in increasing order. Thus, rows corresponding
to spectra with many peaks are at the bottom of the matrix and do not contribute
much to the upper triangle of the matrix. The second option is to sort the spectra
by the sum of the densities of their peaks in increasing order: rows corresponding
to spectra with peaks in high density regions in the peak space are at the bottom
of the matrix and do not contribute much to the upper triangle of the matrix. The
density in the peak space can be estimated by a two-dimensional histogram.

In case of peak selecting heuristics, the optimal peak that we could select for a
spectrum is the peak with the minimal number of matching peaks from other spectra.
The set of spectra having a matching peak for the peak x ∈ A is denoted by

N(x) = {B ∈ S : A 6= B, ∃x′ ∈ B with |x′.c− x.c| ≤ α and|x′.h− x.h| ≤ β} (2.12)

An optimal peak x ∈ A has the property |N(x)| = minx′∈A{|N(x′)|}. Thus, in
order to be able to select an optimal peak, it is required to know the total set of
spectra S. In contrast to the optimal peak selecting heuristic, the simplest peak
selecting heuristic is to select a peak at random from each spectrum. This heuristic
will serve as baseline. Other possible heuristics include

Minimal C-Shift Select the peak x ∈ A with x.c = minx′∈A{x′.c}

Minimal H-Shift Select the peak x ∈ A with x.h = minx′∈A{x′.h}

Maximal C-Shift Select the peak x ∈ A with x.c = maxx′∈A{x′.c}

Maximal H-Shift Select the peak x ∈ A with x.h = maxx′∈A{x′.h}
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2.5 Approximate Methods for Fuzzy Duplicates

The exact methods [69], which are guaranteed to have no false negatives, do not
scale to very large data sets, even when using peak selecting heuristics. Therefore,
we investigate methods which have signi�cantly lower run time. The price for the
lower runtime is the possibility of false negatives, that means some duplicate pairs
could be missed.

The problem of �nding fuzzy duplicates of 2D-NMR spectra is, that the duplicate
relation lacks transitivity. The reason is the continuous nature of the peak measure-
ments. So, the idea is to map the peaks to some discrete objects. Among the many
possibilities to do that, we will explore two principal alternatives of those mappings.
First, the peak coordinates are discretized and then those integers are concatenated
to a �xed length vector. Second, the peaks of a spectrum are mapped to discrete
objects so that a spectrum is represented by a set of those objects.

The task of �nding duplicate spectra is then reduced to �nding duplicates of
integer vectors and duplicate sets of discrete objects respectively. Both of the latter
duplicate relations are transitive, so that a set of duplicates can be speci�ed by
a single representative vector or set. In order to check whether a new mapped
spectrum belongs to a set of duplicates, it su�ces to test the duplicate relation with
the representative of the set.

False negatives occur in this approach, when duplicate spectra are mapped to
di�erent discrete objects. We propose mappings which map duplicate spectra to
discrete objects which are � if not identical � at least very similar.

2.5.1 LSH with Manhattan Distance

The �rst proposed mapping of 2D-NMR spectra maps transformed peaks to coordi-
nates of the discrete integer vectors. This allows to �nd identical and similar integer
vectors using the LSH-scheme for Manhattan distance. Such a mapping involves
three issues, namely (1) how to handle possible splits/merges of peaks, (2) how to
order the transformed peaks to a vector, and (3) how to chose the overall dimension-
ality of the vectors.

Robusti�cation: In order to handle the problem of peak splitting, a peak x
of a spectrum is selected and those peaks y are deleted from the same spectrum
that are in the neighborhood of x. The neighborhood is given by N(x) = {y : y 6=
x, |x.c− y.c| ≤ α and |x.c− y.c| ≤ β}. The peaks are selected in decreasing order of
|N(x)|, so that the peak with the largest number of neighbors is selected �rst. The
iteration stops when each peak in the spectrum is a singleton, i.e. the neighborhoods
of the remaining peaks are empty. The remaining peaks are called the representative
peak set of a spectrum. After this step, we assume a one to one relation between
between peaks of duplicate spectra. Except a few pathological cases the assumption
typically holds.

Peak Ordering: The coordinates of the representative peaks of a spectrum are
discretized by binning. The question remains how to order the discretized peak
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Figure 2.3: Mapping of peaks from a spectrum to integer vectors for w = 2. The
blocks of the peaks are indicated by rectangles. The resulting integer
vector of the discretized spectrum is shown in the table underneath (last
row). The windows and C and H blocks within a window are shown in
the second and third row respectively.

coordinates to form a vector, so that the order is not a�ected by small measurement
errors. The most robust order is to sort 13C- and 1H-coordinates independently
and discretize afterwards. Then, the vector consists of a block of 13C-coordinates
followed by a block of 1H-coordinates. However, this procedure would entirely ignore
the joint distribution of 13C- and 1H-measurements but representing the marginal
distributions only. So, quite di�erent spectra could be mapped to the same integer
vector.

The other extreme is to sort the peaks by a single coordinate � say 13C � and form
a vector of alternating discretized 13C- and 1H-coordinates. The information of the
joint distribution of 13C- and 1H- coordinates is retained in this mapping. In case
of two peaks with close 13C-coordinates but di�erent 1H-coordinates, measurement
errors in the 13C-coordinate of a duplicate spectrum could result in swaped order
of the two peaks, which in e�ect also swaps the positions of the 1H-coordinates. In
case of two spectra being duplicates their integer vectors could be quite dissimilar,
because of the di�erence in the swaped 1H-coordinates.

We propose an intermediate approach that combines the robustness of the �rst
with the discrimination power of the second. The representative peaks of a spectrum
are sorted by one coordinate, say 13C. Starting with the peak of the largest 13C-
coordinate, we use a jumping window of w consecutive peaks. We sort the 13C- and
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1H- coordinates independently for the w peaks inside a window, and arrange them
in blocks as in the �rst approach. The last window might contain less than w peaks
if #peaks mod w 6= 0. The important aspect of this technique is, that close peaks
from di�erent spectra are mapped to the same sorted block, regardless of their order
in the 13C- axis. The problem of the second extreme approach can only occur at
the jump positions of the window. Thus, by choosing w we can search for a tradeo�
between robustness and retained information. The process is illustrated in �gure 2.3.

Although some peaks of duplicate spectra might map to di�erent integer vectors
due to the binning process, i.e. close peaks coordinates are mapped to di�erent bins,
the di�erence is at most one bin per coordinate. Those duplicates can still be found
by lowering the required similarity threshold for the integer vectors below one.

Overall dimensionality: The overall dimensionality D of the set of resulting spec-
tra vectors S is determined by the spectrum having the largest set of representative
peaks D = max(#peaks(Si)). Since the spectra have di�erent numbers of represen-
tative peaks, we need to pad their integer vectors up to the �xed dimensionality D.
Padding the vectors with zeroes increases their overall similarity, whereas padding
by random values would decrease their overall similarity. Therefore we pad a vector
by repeating the vector itself until the the length of the maximal vector is reached,
thereby retaining the similarity of the original vectors.

2.5.2 LSH with Jaccard Coe�cient

We introduce grid-based mappings to transform a spectrum to a set of discrete
objects. Duplicates can be e�ciently found in the set of the transformed spectra can
using the LSH-scheme for set similarity (Jaccard coe�cient).

Simple Grids A simple grid-based method is to partition each of the both axis of
the two-dimensional peak space into intervals of same size. Thus, an equidistant
grid is induced in the two-dimensional peak space and a peak is mapped to exactly
one grid cell it belongs to. When a grid cell is identi�ed by a discrete integer vector
consisting of the cells coordinates the mapping of a peak x ∈ R2 is formalized as

g(x) = (gc(x.c), gh(x.h)) with gc(x.c) =

⌊
x.c

α

⌋
, gh(x.h) =

⌊
x.h

β

⌋
The quantities α and β are the extensions of a cell in the respective dimensions. The
grid is centered at the origin of the peak space. The cells of the grid act as words.
The vocabulary generated by the mapped peaks consists of those grid cells which
contain at least one peak. Empty grid cells are not included in the vocabulary. A
word consists of a two-dimensional discrete integer vector.

Shifted Grids A problem of the simple grid-based method is that peaks which are
very close in the peak space may be mapped to di�erent grid cells, because a cell
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o1

o o

o2

3
4

Figure 2.4: The four grids are marked as follows: base grid is bold, (1, 0), (0, 1) are
dashed and (1, 1) is normal.

border is between them. So proximity of peaks does not guaranty that they are
mapped to the same discrete cell.

Instead of mapping a peak to a single grid cell, we propose to map it to a set of
overlapping grid cells. This is achieved by several shifted grids of the same granular-
ity. In addition to the base grid additional grids are used each of them is shifted into
one of the three directions (1, 0)(0, 1)(1, 1). An illustration of the idea is sketched
in �gure 2.4. In �gure 2.4, one grid is shifted in each of the directions by half
of the extent of a cell. In general, there may be s − 1 grids shifted by fractions of
1/s, 2/s, . . . , s−1/s of the extent of a cell in each direction respectively. For the mapping
of the peaks to words which consist of cells from the di�erent grids, two additional
dimensions are needed to distinguish (a) the s−1 grids in each direction and (b) the
directions themselves. The third coordinate represents the fraction by which a cell
is shifted and the fourth one represents the directions by the following coding: value
0 is (0,0), 1 is (1,0), 2 is (0,1) and 3 is (1,1). So, each peak is mapped to a �nite set
of four-dimensional integer vectors. A nice property of the mapping is that for two
matching peaks there exists at least one grid cell in one of the four grids both peaks
are mapped to.

2.6 Experiments

In this section we evaluate the proposed de�nition of duplicates and conduct ex-
periments to investigate the tradeo� between costs for candidate �ltering of the
approximative methods and candidate checking of the exact methods.

2.6.1 2D-NMR Database

The substances included in the database are mostly secondary metabolites of plants
and fungi. They cover a representative area of naturally occurring compounds and
originate either from experiments or from simulations4 based on the known structure
of the compound. The database includes 1524 spectra with 2 to 60 peaks each, for
a total of about 20,000 peaks. The density in the peak space for all peaks in the

4ACD/2D NMR predictor, version 7.08, http://www.acdlabs.com/
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Figure 2.5: Density of the peaks of all spectra. Light gray means higher density.
Note that when plotting a spectrum with 13C as x-axis (0-220)ppm and
1H as y-axis (0-12)ppm, aromatic structures are located in the upper
right region and aliphatic structures are located in lower left region.

database is shown in �gure 2.5. The database is a preliminary sample of a much
larger database of 2D-NMR spectra that is currently build by our collaborators at
the Leibniz Institute of Plant Biochemistry.

We generated larger data sets based on the real 2D-NMR data set while keeping the
overall distribution of peaks. First, we estimated the mean of a Poisson distribution
from the number of peaks per spectrum. The average number of peaks per spectrum
is 12.3. The size of a newly generated spectrum is a random integer drawn from
the Poisson distribution. In order to generate a new spectrum, we select a real
spectrum at random and copy a �xed percentage p of randomly selected peaks from
that spectrum into the new one. This step is repeated until the spectrum has reached
the predetermined size. In order to avoid identical peaks, Gaussian noise is added to
the copied peaks. In the experiments we have set the percentage p to di�erent values
10, 20, 40, 60 without obtaining signi�cant di�erences in the results. Therefore, we
excluded this variable from our analysis.

2.6.2 Performance of Exact Methods

We conducted experiments with arti�cially generated data of sizes 1000, 1500, 2000,
2500, and 5000 spectra. All data sets include the set of real spectra as well as
generated spectra. The set of duplicates was the same as for the real data in all cases,
because it is unlikely that a duplicate is generated at random by our procedure.

First, we investigate how the number of candidate pairs found by a heuristic grows
with the size of the data set. The results are shown in �gure 2.6 (left). The simple
straightforward method checks all n(n−1)/2 pairs, where n is the number of spectra.
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Figure 2.6: Number of candidate pairs versus number of spectra (left), percentage of
candidate pairs versus number of spectra (right).

The optimal peak selecting heuristic minNN generates the smallest set of candidates.
Because the shift-C and the shift-H coordinates are strongly correlated, the minC
and minH as well as maxC and maxH respectively produce very similar results.
Therefore, we present only the results for minC and maxC. The maxC heuristic
produces only slightly more candidates as minNN. Random and minC are similar but
have considerably more candidates than the optimal minNN heuristic. The better
performance of maxC compared to minC and rand can be explained by the fact that
the point density in the upper right corner of the peak space is lower than in the rest of
the space (see �gure 2.5). We normalized the number of candidates by the heuristics
to be precentages of the number of pairs checked by the straightforward method,
shown in �gure 2.6 (right). The �gure shows that the fractions stays constants as
the data set grows. This indicates that the advantage of the heuristics will not
degrade as the peak space becomes more and more densely populated with peaks.

In �gure 2.7 we report the total run times of the heuristics. As the costs to �nd
the candidates are di�erent for the heuristics, we cannot expect that the situation for
the plot with the number of candidates directly carries over to the run times. The
�gure shows that the optimal heuristic has a larger runtime than the other three
heuristics, because the costs to generate the candidates are much higher. The maxC
shows the best run time results because the number of generated candidates is low
and the costs to generate those candidate are comparable to minC and rand. So,
maxC with the given SQL implementation (see [69] for details) is the best choice to
�nd duplicates in 2D-NMR data.

2.6.3 Performance of Approximate Methods

We implemented the approximate methods as SQL statements using the SQL 1999
standard (see [43] for details). The used data are the 1524 original spectra, which
contain 118 fuzzy duplicates. The run times of the approximate methods are below
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Figure 2.7: Total run time in minutes versus number of spectra.

20 seconds for all methods. That is a large speedup with respect to the exact methods
as well as the heuristics proposed in [69], since those methods run several minutes
on that data. The actual speedup depends on the size of the used data set, since the
methods of the two classes have di�erent runtime complexities (n2 versus n log n).

For the approximate methods, we investigate the number of false positives and false
negatives for di�erent numbers k of sampled hash functions. First, the parameter
L = 5 is �xed. For small k more spectra are likely to be reported as similar. The
larger k, the more the reported integer vectors as well as the discrete sets have to be
identical. Since our mapping to discrete integer vectors and discrete sets respectively
may cause false negatives, we want to allow a some variability of the detected spectra.

A relevant performance measure is the number of false positives for very small
false negatives. At this point, the reported similar spectra can be subsequently
checked with the naive exact method to exclude the false positives. In that respect,
the approximate method acts as a strong �lter while only few true duplicates are
missed. The results for Manhattan distance with LSH are shown in �gure 2.8. Here
the number of false positives is about 390 without any false negative. For Jaccard
coe�cient with Minhashing we tested the mapping to simple grids and shifted grids.
The number of false positives are about 900 and 500 respectively, as shown in �gure
2.9.

As Jaccard coe�cient with Minhashing gives more false negatives than the Man-
hattan distance, additionally, we experimented with di�erent values for L. The
results are shown in table 2.1. The table shows (especially in the two blocks at the
bottom) that increasing L produces more false positives while the number of false
negatives is reduced at the same time.

All reported measurements are averages of �ve runs. The main point is that
merely several hundreds of spectra must be explicitly checked as putative duplicates
compared to two millions (1524 ·(1524−1)/2) for the naive method. For comparison,
the best exact heuristic reported in [69] still needs to check about 30,000 duplicate
pairs with the naive method. So, approximate methods have a huge performance
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Figure 2.9: Number of false positives and false negatives for Jaccard coe�cient with
Minhashing (L = 5), simple grids (left) and shifted grids (right).
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Table 2.1: Number of false positives and false negatives for Jaccard coe�cient with
Minhashing for di�erent setting for L and k.

k L Minhashing Minhashing+Shift
FN FP FN FP

2 1 42 9352 46 2918
3 1 59 252 55 558
4 1 67 170 57 168
5 1 69 57 66 47

2 5 19 15167 11 13828
3 5 32 2626 31 1540
4 5 39 514 36 547
5 5 46 199 47 183

5 10 35 444 31 285
5 15 26 654 17 481
5 20 25 836 16 584
5 50 20 1445 12 1119

gain.

In conclusion, the mapping to integer vector in combination with Manhattan dis-
tance and LSH turned out to be the best method, delivering the least number of
false positives and no false negatives. The mapping to shifted grids is better than
the mapping to simple grids, but the number of false positives is higher. However,
the minhashing method has a slight runtime advantage, since less hash functions
need to be sampled. This might be useful in case of very large data sets.

2.6.4 Detected Duplicates

There were no duplicates intentionally included in the database. With a setting
of α = 3ppm and β = 0.3ppm, which are reasonable tolerances, 118 of 2,322,576
possible pairs are reported as fuzzy duplicates.

The found duplicate pairs revealed the following types of classes of duplicates oc-
curring in practice: (i) accidental entry of the same spectra/substance with di�erent
names, (ii) spectra prediction software ignoring stereochemical quaternary carbon
con�gurations, (iii) some pairs consist of an experimental and a simulated spectrum
(see �gure 2.10) of the same substance (which speaks for both our duplicate de�nition
and the simulation software), (iv) same chemical compound in di�erent measurement
conditions (measurement frequency, solvent).

The results included also a surprise, namely the pair Thalictrifoline/Cavidine.
Both structures di�er only in the stereochemical orientation of one methyl group.
Evidently, in this case the commercial software package used in the simulation is
unable to re�ect the di�erent stereochemistry in calculated spectra. In the future,
fuzzy duplicates will be used to improve the quality of collections of 2D-NMR spectra.
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2.7 Summary

We proposed a simple and robust de�nition for fuzzy duplicates of 2D-NMR spectra
on the basis of co-matching peaks. Considering peak splitting as well as inherent
measurement errors is crucial to �nd duplicates in 2D-NMR spectra collections. We
described ideas and heuristics to embed 2D-NMR spectra data into vector spaces and
discrete objects to suitably interface NMR-data to text mining algorithms. A scale
up to large data volumes is achieved by applying approximate and fast algorithms
as preliminary �lters prior to the computation of the exact duplicates, avoiding
the quadratic nature of searching for duplicates in sets of spectra. The developed
methods are the foundation to start and manage a large collection of NMR spectra,
which is part of an ongoing metabolomics project at the IPB in Halle (Saale).
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3 Similarity Search and Latent

Semantic Analysis

Information retrieval and similarity search has been applied to �nd relevant doc-
uments in large document collections. The e�ectiveness of the retrieval approach
mainly depend on the representation of the documents in the collection. The domi-
nant approach is to model documents as bag of words. This model does not represent
the order of words in a document nor are any substructures such as sections and para-
graphs retained. The vector space model for documents, which is the mainly used
one among the instances of the bag-of-word-model, represents only the frequency of
a term (word) in a document. The material presented in this section are revised ver-
sions of our publications on 2D-NMR similarity search [73, 137] and those on latent
semantic analysis of proteomics experiments [82, 83].

A document collection can be thought of as a term-document matrix. Each doc-
ument is a column vector with a dimensionality of the size of the vocabulary. An
entry in a document vector is the word frequency of the term in the respective doc-
ument. Thus, the matrix has as many rows as there are words in the vocabulary
and as many columns as there are documents in the collection. Such a matrix is
only sparsely populated with non-zero entries, e.g. assume there are one million
documents each having about thousand di�erent words out of a vocabulary o �ve
hundred thousand words. The total number of matrix entries is 0.5 · 1012, however,
the number of non-zero entries is about 109, which is three magnitudes smaller than
the total number of entries. Typically a document collection is stored as sparse
matrix. i.e. only the non-zero elements are represented.

Documents are compared by similarity functions among which the cosine similar-
ity is a prominent one. Cosine similarity compares two documents by multiplying
element-wise the respective document vectors and summing up all products to a
score that is normalized by the sizes of the documents. In order to get a large sim-
ilarity score, the documents need to have many words in common that is in many
element-wise products of the respective term frequencies both factors need to be
non-zero.

Because the use of language in documents is divers and governed by many factors,
the words used to express the same or similar facts di�er from document to document.
As a consequence, similar documents may appear to be not similar according to cosine
similarity just because they use di�erent words.

One approach to remedy this e�ect is to represent documents by topics instead
by words. The presence of a topic in a document implies the presences of a set of
words that belong to a speci�c semantic context. Topics are similarly represented as
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documents in the vector space model, namely by a vector with a dimensionality of
the size of the vocabulary. The topic representation of a document is also a vector
but now the number of dimensions is given by the number of topics. Such a document
speci�c vector is a list coe�cients that govern how the underlying topics vectors are
combined to approximate the original document vector of word frequencies. When
comparing documents by measuring cosine similarity of document speci�c vectors of
topic coe�cients, the diversity of word usage in natural language is hidden behind
the topics. Similar documents appear similar according to this new measure, when
they are similarly represented by the topics. The particular choices of words used in
the documents to indicate a topic have not any longer a direct e�ect on the similarity
measure. By this way, noise contained in the documents is reduced.

An open question is, how to �nd the topics. There are several theories used to
this e�ect that give rise to methods to automatically determine topics from a given
collection. Early methods base on the theory of matrix factorization. The goal is to
approximate the term document matrix by a product of two much smaller matrices.
The computed topics, the columns of one of the two matrices, are termed latent
factors, therefore, the method is called latent semantic analysis (LSA). Despite the
method is based on basic theory of linear algebra, which introduces its own restric-
tions like orthogonality of the latent factors (topics) and gives certain theoretical
guaranties for the optimality of the result, it can be di�cult to interpret the found
topics in a semantic way.

Alternatively, �nding topics from a given document collection can be formulated
as a problem of learning a probabilistic mixture model. Mixture models have been
used to cluster multi-dimensional data. In this context, topics are seen as clusters to
which pairs consisting of identi�ers of both documents and words are probabilistically
assigned. The model learns topics as multinomial distributions over the vocabulary.
A topic covers semantically related words by assigning them high probability, while
words that are semantically unrelated to the topic should get low probability. From
the view of machine learning, the model captures correlations between words that
often occur together in documents. The interpretation of topics as probability dis-
tributions over words can help to �nd a semantic interpretation of a topic.

The abstract view on documents as bags of words in addition to the developed
methods to search large collections of documents in that kind of representation makes
the methodology an attractive framework for other types of data. In this chapter,
we analyze the application of methods for information retrieval and latent semantic
analysis to search 2D-NMR spectra as well as to analyze proteomics experiments.

Nuclear magnetic resonance (NMR)-spectra are an important �ngerprinting method
to investigate the chemical structure of organic compounds from plants or other tis-
sues. Two-dimensional-NMR spectroscopy is able to capture the in�uences of two
di�erent atom types at the same time (e.g. 1H, hydrogen and 13C carbon). The
result of an 2D-NMR experiment can be seen as an intensity function measured over
two variables1. Regions of high intensity are called peaks, which contain the real

1The measurements are in parts per million (ppm).
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information about the underlying molecular structure. The usual visualizations of
2D-NMR spectra are contour plots as shown in �gure 2.1. An ideal peak would regis-
ter as a small dot, however, due to the limited resolution available (dependent on the
strength of the magnetic �eld) multiple peaks may appear as a single merged object
with non-convex shape. In the literature peaks are noted by their two-dimensional
positions without any information about the shapes of the peaks. Content-based
similarity search of 2D-NMR spectra would be a valuable tool for structure inves-
tigation by comparing spectra of unknown compounds with a set of spectra, for
which the structures are known. While the principle is already in use for 1D-NMR
spectra [1,10,85,91,129], to the best of our knowledge, no e�ective similarity search
method is known for 2D-NMR-spectra.
Simpli�ed, a 2D-NMR spectrum is a set of two-dimensional points. There is an

analogy to text retrieval, where documents are usually represented as sets of words.
Latent space models [18, 75, 113] were successfully used to model documents and
thus improved the quality of text retrieval. Recently, a diversity of text mining
approaches for di�erent problems [22,100,131] have been proposed, which make use
of probabilistic latent space models. The goal of this work is to show by example
how to apply text retrieval and mining methods to biological data originating from
experiments.
The contribution of this work are methods to map 2D-NMR spectra to discrete

text-like data, which can be analyzed and searched by any text retrieval method.
We evaluate on real data the performance of two text retrieval methods, namely
the standard vector space model [117] and probabilistic latent semantic analysis
[75] in combination with our mapping methods for 2D-NMR spectra. Additionally,
we investigate a simple similarity function proposed for duplicate detection, which
operates directly on the peaks of the spectra and serves as bottom line benchmark in
the experimental evaluation. Our results indicate at a larger scope that text retrieval
and mining methods, designed for text data created by humans, in combination
with appropriate mapping functions may yield the potential to be also successful
for experimental data from naturally occurring objects. In this paper we consider
exemplarily 1H, 13C one-bond heteronuclear shift correlation 2D-NMR spectra.
Our second application is similarity search in proteomics experiments. The �eld

of proteomics has undergone several dramatic changes over the past few years. Ad-
vances in instrumentation and separation technologies [2,39] have enabled the advent
of high-throughput analysis methods that generate large amounts of proteomics iden-
ti�cations per experiment. Many of these datasets were initially only published as
supplementary information in PDF format and, while available, were not readily ac-
cessible to the community. Obviously, this situation led to large-scale data loss and
was perceived as a major problem in the �eld [66,114].
Several public proteomics data repositories, including the Global Proteome Ma-

chine (GPM) [33], the Proteomics Identi�cations Database (PRIDE) [78, 97] and
PeptideAtlas [38] were constructed to turn the available data into accessible data,
thereby reversing the trend of increasing data loss.
As a case in point, several large-scale proteomics projects that have recently been
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undertaken by the Human Proteome Organization (HUPO), including the Plasma
Proteome Project (PPP) [109] and the Brain Proteome Project (BPP) [62], have
published all of their assembled data in one or more of these repositories. As a
result, their �ndings are readily accessible to interested researchers. It is therefore
remarkable to see that very little additional information has so far been extracted
from the available data. One of the rare examples where the analysis of large pro-
teomics datasets resulted in a practical application is the recent e�ort by Mallick and
co-workers in which several properties of a large amount of identi�ed peptides were
used to �ne-tune an algorithm that can predict proteotypic peptides from sequence
databases [92].

We here present a novel way to reveal the information that lies hidden in large
bodies of proteomics data, by analyzing them for latent semantic patterns. We used
the original peptide sequences to evaluate experiment similarity by performing a
latent semantic analysis. Our results suggest that LSA as well as the probabilistic
variant PLSA can be considered useful analysis tools of such data yielding results
which cannot easily be obtained by conventional means.

3.1 Information Retrieval and Latent Semantic Analysis

3.1.1 Vector Space Model

We brie�y introduce the essentials of the vector space model [94]. In the vector space
model, documents are represented by vectors which have as many dimensions as
there are words in the used vocabulary of the document collection. Each component
of a document vector re�ects the importance of the corresponding word for the
document. The typical quantity used is the raw term frequency (tf) of that word for
the document, say the number of occurrences of that word in a document d.

Words are not equally selective. Some words appear in nearly every document,
others are quite rare. In order to improve the retrieval quality, the weights of the
words are reweighed by multiplying the term frequency with the inverse document
frequency (idf) of a word. The inverse document frequency measure is large, if a word
is used in a small percentage of the documents in the collection. This is implemented
by the following formula:

idf(w) = log
N

Nw
(3.1)

The quantityN is the total number of documents andNw is the number of documents
that contain the word w. The e�ect of idf-weighting is that poorly di�erentiating,
often-occurring terms will have a much lower weight than highly speci�c, rare terms.

Formally, we denote the set of documents by D = {d1, ..., dN} and the vocabulary
by W = {w1, ..., wM}. The term frequency of a word w ∈ W in a document d ∈ D
is denoted as nd,w and the reweighed quantity is n̂d,w = nd,w · idf(w). The similarity
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between a query document q and a document d from the collection is

sim(d, q) =

∑
w∈W n̂d,w · n̂q,w√∑

w∈W n̂2d,w ·
√∑

w∈W n̂2q,w

(3.2)

This can be interpreted as the cosine of the angles between the two vectors.

The vector space model has several drawbacks. First, it relies on exact term
matching (because of the scalar product in (3.2)), thus making it impossible for
the model to detect and use similarity information expressed by synonyms. Second,
correlations between words are neglected. Two documents appear dissimilar, if they
have only a few words in common, even when many words in one document are
strongly correlated to respective words in the other document.

3.1.2 Latent Semantic Analysis

Let A be the term document matrix, where each document is represented as a col-
umn. In order to reduce the sparseness of the term document matrix and to detect
hidden (latent) term relations, LSA projects the original documents vectors into
a lower dimensional semantic space where documents that contain repeatedly co-
occurring terms will have a similar vector representation. This e�ectively overcomes
the fundamental de�ciencies of the exact term-matching employed in a VSM [87]. As
such, LSA might predict that a given term should be associated with a document,
even though no such association was observed in the original matrix [35]. The core
principle for achieving this is the application of singular value decomposition (SVD),
a type of matrix factorization that can be applied to any rectangular matrix in the
form of:

A = UΣV T (3.3)

where U ∈ RM×M and V ∈ RN×N are orthogonal matrices (i.e. UUT = I and
V V T = I) and Σ = diag(σ1, . . . , σr) is a diagonal matrix with σ1 ≥ σ2 ≥ . . . σr ≥ 0
and r = min(M,N). LSA makes use of the matrix approximation theorem, which
states that

argmin
Ak has rank k

‖A−Ak‖F = UkΣkV
T
k (3.4)

with Uk and Vk consist of the �rst k columns of U and V respectively and Σk =
diag(σ1, . . . , σk). Thus, for k ≤ r, Ak is the best rank k approximation of A in the
sense of the Forbenius norm. The approximation error is bounded with respect to
the Frobenius norm by ‖A − Ak‖F ≤ σk+1. The column vectors of (ΣkV

T
k ) are the

new document vectors in the latent space. The mapping of some original document
vector ~d into the latent space is described by U t~d.

The SVD alters the original values in the matrix A by new estimates, based on
the observed co-occurrences of terms and their 'true semantic meaning' within the
whole corpus of documents [53]. The latter is achieved because terms with a common
meaning are roughly mapped to the same direction in the latent space. By leaving

39



3 Similarity Search and Latent Semantic Analysis

out the smallest singular values, 'weak patterns' or noise are �ltered out. The choice
of k determines the degree of reduction, and it is therefore important to note that a
high k value (corresponding to a weak reduction) might not be able to �lter out noise
or unimportant �uctuations in the source data, while a very small k value (strong
reduction) will retain too little information from the original data structure [40].

3.1.3 Probabilistic Latent Semantic Analysis

Probabilistic latent semantic analysis (PLSA) introduced in [75] extends the vector
space model by learning topics hidden in the data. The training data consists of
a set of document-word pairs (d(i), w(i))i=1,...,N with w(i) ∈ W and d(i) ∈ D. The
joint probability of such a pair is modeled according to the employed aspect model.
The model introduces the hidden variable ~z ∈ {0, 1}K , which is a K-dimensional bit
vector. The variable follows an 1-out-of-K scheme that means only one of the K bits
is set, i.e.

∑K
k=1 zk = 1. In the context of text retrieval ~z = (z1, . . . , zK) is interpreted

as an indicator for a topic. Two assumptions are made by the aspect model. First, it
assumes that document word pairs (d,w) are statistically independent and identically
distributed. Second, conditional independence between w and d is assumed for a
given value of ~z.

p(d,w) =
∑
~z

p(d,w, ~z) (3.5)

=
∑
~z

p(d,w|~z)p(~z) (3.6)

=
∑
~z

p(d|~z)p(w|~z)p(~z) (3.7)

= p(d)
∑
~z

p(~z|d)p(w|~z) (3.8)

= p(d)

K∑
k=1

p(zk = 1|d) · p(w|zk = 1) (3.9)

The second step applies the conditional independence assumption and the third step
transforms the symmetric form of the aspect model into the asymmetric, document-
centric form, which is the commonly used one.

The probabilities necessary to compute the joint probability p(d,w), namely p(d),
p(w|~z) and p(~z|d), are all multinomial distributions. The parameter of those distri-
bution can be thought of as matrices, i.e. p(d) has a N -dimensional parameter vector
~δ, p(w|~z) and p(~z|d) have (M ×K)- and (K × N)-dimensional parameter matrices
~ω and ~θ respectively. Those parameter matrices are estimated by an expectation
maximization (EM) algorithm. The idea is to �nd values for unknown parameters
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3.1 Information Retrieval and Latent Semantic Analysis

that maximize the log-likelihood

log p(D,W ) =
∑
d∈D

∑
w∈W

nd,w ·
[
log p(d) + log

K∑
k=1

p(~zk = 1|d) · p(w|~zk = 1)

]
(3.10)

=
∑
d∈D

∑
w∈W

nd,w ·
[
log δd + log

K∑
k=1

θkd · ωwk
]

(3.11)

The latter form writes the log-likelihood in term of the parameter matrices. Because
of the sum inside the logarithm, no closed form for the maximum con�guration of
the parameter matrices can be found. In contrast, the complete data log-likelihood,
which additionally depends on the particular allocation of the hidden variables ~z,
does not have this di�cult form. Let be ~Z = {~zdw|d ∈ D,w ∈W} a bit-matrix that
describes particular states of the hidden variables for all |D| · |W | possible document-
word pairs. The complete data log-likelihood is

log p(D,W,Z) =
∑
d∈D

∑
w∈W

K∑
k=1

nd,w ·
[
log p(d) + zdwk

(
log p(~zk = 1|d) + log p(w|~zk = 1)

)]
(3.12)

=
∑
d∈D

∑
w∈W

K∑
k=1

nd,w ·
[
log δd + zdwk

(
log θkd + logωwk

)]
(3.13)

The variable zdwk is the k-th component of the bit-vector ~zdw for the document-
word pair (d,w). Following the EM-framework [36, 99], maximizing the expectation
of the complete log-likelihood is equivalent to maximizing the data log-likelihood
(3.11). The expectation of the function (3.13) is taken over the posterior distribution
p(~Z|D,W ), thus, we are maximizing

E~Z [log p(D,W,Z)] =
∑
~Z

p(~Z|D,W ) · log p(D,W,Z) (3.14)

=
∑
d∈D

∑
w∈W

K∑
k=1

nd,w ·
[
log δd + E[zdwk]

(
log θkd + logωwk

)]
(3.15)

=
∑
d∈D

∑
w∈W

K∑
k=1

nd,w ·
[
log δd + p(zk = 1|d,w)

(
log θkd + logωwk

)]
(3.16)

This is a function depending only on the parameters ~δ, ~θ and ~ω. The expectation
(3.15) is over a sum of random variables, namely the zdwk. Thus, it can be broken
down into a sum of individual expectations of the zdwk. Because, the zdwk are bit
variables, the expectations are the posteriors.
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3 Similarity Search and Latent Semantic Analysis

The idea of the EM-algorithm is to maximize (3.16) iteratively with two steps per
iteration. After initialization of the parameters, in the �rst step, the expectations
of the indicator variables zdwk, the posteriors, are computed with respect to �xed
parameter values (E-step). In the second step, the posteriors are �xed and (3.16) is
maximized with respect to the parameters (M-step). The two steps are iterated until
convergence. Starting from a random initialization, the EM-algorithm is guarantied
to reach a local maximum of (3.16).

In detail, the E-step computes the individual expectations of the zdwk, the poste-
riors, given ~θ and ~ω:

E[zdwk] = p(zk = 1|d,w) =
p(zk = 1|d) · p(w|zk = 1)∑K

k′=1 p(zk′ = 1|d) · p(w|zk′ = 1)
(3.17)

=
θkd · ωwk∑K

k′=1 θk′d · ωwk′
= γdwk (3.18)

The posteriors γdwk are used to update the parameters in the M-step. The update
equations are derived by maximizing (3.16) with respect to θkd and ωwk:

θkd =

∑
w∈W nd,wγdwk∑
w∈W nd,w

(3.19)

ωwk =

∑
d∈D nd,wγdwk∑

d∈D
∑

w′∈W nd,w′γdw′k
(3.20)

The parameter vector ~δ for p(d) has a maximum likelihood estimator, which is inde-
pendent of the hidden variables, namely

δd =

∑
w∈W nd,w∑

d′∈D
∑

w∈W nd′,w
(3.21)

There are serval ways to answer similarity queries using the trained model. Because
of its simplicity, we adopt the PLSA-U variant from [75]. The idea is to extend
the cosine similarity measure from the tf-idf vector space model. The extension
by Hofmann treats the learned multinomials p(w|d) as term frequencies (tf). Note
that p(w|d) = p(d,w)/p(d). The multinomials p(w|d) are smoothed variants of the
original term frequencies p̃(w|d) = nd,w/(

∑
w′∈W nd,w′). The proposed tf-weights

are linear combinations of the multinomials p(w|d) and p̃(w|d). Thus, the new tf-idf
weights used for the documents within the similarity calculation (3.2) are

n̂d,w = (λ · p(w|d) + (1− λ) · p̃(w|d)) · idf(w)

with λ ∈ [0, 1]. Hofmann suggests in [75] to set λ = 0.5. The tf-idf weights for
the query are determined as in the standard vector space model. The smoothed
tf-weight for a word, which actually does not appear in a document, may be still
non-zero when the word belongs to a topic that is active in the particular document.
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3.2 Similarity Search of 2D-NMR Spectra

In that way a more abstract similarity search becomes possible.

3.2 Similarity Search of 2D-NMR Spectra

Searching and mining nuclear magnetic resonance (NMR)-spectra of naturally oc-
curring substances is an important task to investigate new potentially useful chem-
ical compounds. Multi-dimensional NMR-spectra are objects like documents, but
consists of continuous multi-dimensional points called peaks instead of words. We
develop several mappings from continuous NMR-spectra to discrete text-like data.
With the help of those mappings any text retrieval method can be applied. We eval-
uate the performance of two retrieval methods, namely the standard vector space
model and probabilistic latent semantic analysis (PLSA). PLSA learns hidden topics
in the data, which is in case of 2D-NMR data interesting in its owns rights. Our ex-
periments show that the vector space model as well as PLSA, which are both designed
for text data created by humans, can e�ectively handle the mapped NMR-data origi-
nating from natural products. Additionally, PLSA is able to �nd meaningful "topics"
in the NMR-data.
In section 2.3, we introduced a method to directly compute similarity between

pairs of 2D-NMR spectra. This method will be used in the experiments as a bottom
line benchmark. The matching criterion used 2.3 in checks only local properties
of the spectra. Therefore, the direct similarity function cannot account for typical
chemical substructures described by typical constellations of multiple peaks. For
that it would be necessary to check if several peaks are present at the same time. To
capture those more abstract properties more sophisticated methods are needed.

3.2.1 Mapping

In this section, we propose di�erent methods to map the peaks of an 2D-NMR
spectrum from the continuous space of measurements to a discrete space of words.
With the help of such a mapping, methods for text retrieval like PLSA can be directly
applied. However, the quality of the similarity search depend on how the peaks are
mapped to discrete words.
Like a 2D-NMR spectrum consists of a set of peaks, a document consists of many

words. Typically, a document is modeled as a bag of words. Assuming a 2D-NMR
spectrum can be transformed into a text-like object by mapping the continuous
2D peaks to discrete variables, a variety of text retrieval models can be applied.
However, it is an open question, whether models designed for quite di�erent data,
namely texts created by humans, are e�ective on data that comes from naturally
occurring compounds and thus does not exhibit human design patterns. For 2D-
NMR spectra similarity search, it is not clear, what is the best way to map the
peaks of a spectrum to discrete words. We develop methods for this task in the next
subsections. That will enable us to tackle the question, whether methods like the
vector space model or PLSA, which are designed for text data, remain e�ective for
experimental data from natural products.
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3 Similarity Search and Latent Semantic Analysis

3.2.1.1 Grid-based Mapping

We introduce a simple grid-based method, on which we will build more sophisticated
methods. A simple grid-based method is to partition each of the both axes of the
two-dimensional peak space into intervals of same size. Thus, an equidistant grid is
induced in the two-dimensional peak space and a peak is mapped to exactly one grid
cell it belongs to. When a grid cell is identi�ed by a discrete integer vector consisting
of the cells coordinates, the mapping of a peak x ∈ R2 is formalized as

g(x) = (gc(x.c), gh(x.h)) with gc(x.c) =

⌊
x.c

wc

⌋
, gh(x.h) =

⌊
x.h

wh

⌋
The quantities wc and wh are the extensions of a cell in the respective dimensions,
which are parameters of the mapping. The grid is centered at the origin of the peak
space. The cells of the grid act as words. The vocabulary generated by the mapped
peaks consists of those grid cells that contain at least one peak. Empty grid cells
are not included in the vocabulary. A word consists of a two-dimensional discrete
integer vector.

Unfortunately, the grid-based mapping has two disadvantages. First, close peaks
may be mapped to di�erent grid cells. This may lead to poor matching of related
peaks in the discrete word space. Second, peaks of new query spectra would be
ignored when they are mapped to grid cells not included in the vocabulary. Thus,
some information from the query would not be used for the similarity search, which
may weaken the performance.

3.2.1.2 Redundant Mappings

We propose three mappings which introduce certain redundancies by mapping a sin-
gle peak to a set of grid cells. The redundancy in the new mappings shall compensate
for the drawbacks of the simple grid-based mapping.

3.2.1.2.1 Shifted Grids The �rst disadvantage of the simple grid-based method
is that peaks which are very close in the peak space may be mapped to di�erent
grid cells, because a cell border is between them. So proximity of peaks does not
guaranty that they are mapped to the same discrete cell. We draw on the idea of
average shifted histograms [121] to propose a new mapping method to overcome the
disadvantage.

Instead of mapping a peak to a single grid cell, we propose to map it to a set of
overlapping grid cells. This is achieved by several shifted grids of the same granu-
larity. In addition to the base grid some grids are shifted into the three directions
(1, 0)(0, 1)(1, 1). An illustration of the idea is sketched in �gure 3.1. In �gure 3.1,
one grid is shifted in each of the directions by half of the extent of a cell. In general,
there may be k − 1 grids shifted by fractions of 1/k, 2/k, . . . , k−1/k of the extent of
a cell in each direction respectively. For the mapping of the peaks to words which
consist of cells from the di�erent grids, two additional dimensions are needed to dis-
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o1

o o

o2

3
4

Figure 3.1: The four grids are marked as follows: base grid is bold, (1, 0), (0, 1) are
dashed and (1, 1) is normal.

tinguish (a) the k− 1 grids in each direction and (b) the directions themselves. The
third coordinate represents the fraction by which a cell is shifted and the fourth one
represents the directions by the following coding: value 0 is (0,0), 1 is (1,0), 2 is (0,1)
and 3 is (1,1). So each peak is mapped to a �nite set of four-dimensional integer
vectors. The mapping of a peak x ∈ R2 is

s(x) = {(gc(x.c), gh(x.h), 0, 0)} ∪
k−1⋃
i=1

{
(gc(x.c+ i/k · wc), gh(x.h), i, 1),

(gc(x.c), gh(x.h+ i/k · wh), i, 2),

(gc(x.c+ i/k · wc), gh(x.h+ i/k · wh), i, 3)

}
Thus, a single peak is mapped to 3(k−1)+1 words. A nice property of the mapping
is that there exists at least one grid cell for every pair of matching peaks both peaks
are mapped to.

3.2.1.2.2 Di�erent Resolutions The second disadvantage of the simple grid-based
mapping comes from the fact that empty grid cells (not occupied by at least one
peak from the set of training spectra) do not contribute to the representation to
be learned for similarity search. Therefore, peaks of new query spectra mapped to
those empty cells are ignored. That e�ect can be diminished by making the grid cells
larger. However, this is counterproductive for the precision of the similarity search
due to the coarser resolution. Thus, there are two contradicting goals, namely (a)
to have a �ne resolution to handle subtle aspects in the data and (b) to cover at the
same time the whole peak space by a coarse resolution grid so that no peaks of a
new query spectrum have to be ignored.

Instead of �nding a tradeo� for a single grid, both goals can be served by combining
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simple grids with di�erent resolutions. Given l di�erent resolutions {(w(1)
c , w

(1)
h ), . . . , (w

(l)
c , w

(l)
h )}

a peak is mapped to l grid cells of di�erent sizes. In order to distinguish between the
di�erent grids, an additional discrete dimension is needed. So the mapping function
is

r(x) =

l⋃
i=1

{(g(i)c (x), g
(i)
h (x), i)}

with g
(i)
c and g

(i)
h use w

(i)
c and w

(i)
h respectively. Note that a hierarchical quad-tree like

partitioning is a special case of the proposed mapping function with w
(i)
c = 2i−1wc

and w
(i)
h = 2i−1wh.

3.2.1.2.3 Combining shifted Grids with di�erent Resolutions Both methods are
designed to compensate for di�erent drawbacks of the simple grid mapping. Thus,
it is natural to combine both mappings. The parameters of such a mapping are
the number of shifts k, the number of di�erent grid cell sizes l and the actual sizes

{(w(1)
c , w

(1)
h ), . . . , (w

(l)
c , w

(l)
h )}. Beside the two coordinates for the grid cells, addi-

tional discrete dimensions are needed for the shift, the direction and the grid res-
olution. Using the de�nitions from above the mapping function of the combined
mapping of a peak is

c(x) =

l⋃
i=1

{(
g(i)c (x.c), g

(i)
h (x.h), 0, 0, i

)}
∪

k−1⋃
j=1

{(
g(i)c (x.c+ j/k · w(i)

c ), g
(i)
h (x.h), j, 1, i

)
,

(
g(i)c (x.c), g

(i)
h (x.h+ j/k · w(i)

h ), j, 2, i
)
,(

g(i)c (x.c+ j/k · w(i)
c

)
, g

(i)
h (x.h+ j/k · w(i)

h ), j, 3, i
)}

Thus, a single peak is mapped to l(3(k − 1) + 1) words.

3.2.2 Experiments

In this section we present the results of a comparison of the e�ectiveness of the
mappings for similarity search, and mining aspects of 2D-NMR-data.

3.2.2.1 2D-NMR-Data

The substances included in the database are mostly secondary metabolites of plants
and fungi. They cover a representative area of naturally occurring compounds and
originate either from experiments or from simulations2 based on the known structure

2ACD/2D NMR predictor, version 7.08, http://www.acdlabs.com/
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Group #Spectra #Peaks

Pregnans 11 17�26
Anthrquinones 8 3�6
Aconitanes 8 22�26
Triterpenes 17 24�31
Flavonoids 18 5�8
Iso�avonoids 16 5�7
A�atoxins 8 8�10
Steroids 12 16�23
Cardenolides 15 18�25
Coumarins 19 3�8

Table 3.1: Groups with number of spectra and range of peaks

of the compound. The database includes about 587 spectra, each has about 3 to 35
peaks. The total number of peaks is 7029. Ten small groups of chemically similar
compounds are included in the database for controlled experiments. The groups
with the number of spectra and number of peaks are listed in table 3.1. The peak
space with all peaks in the database is shown in �gure 3.2. Two groups, steroids and
�avonoids, are selected as examples and shown with their peak distribution within
�gure 3.2.
Natural steroids occur in animals, plants and fungi. They are vitamins, hormones

or cardioactive poisons like digitalis or oleander. The steroids in the database ar
mostly hormones like androgens and estrogens. Flavonoids are aromatic substances
(rings). Some �avonoids decrease vascular permeability or possess antioxidant activ-
ity which can have an anticarcinogenic e�ect.

3.2.2.2 Performance Evaluation

The di�erent methods for similarity search of 2D-NMR-spectra are compared using
recall-precision curves [94]. The search quality is high, when both � recall and
precision � are high. Therefore, the upper curves are the best.
First, a series of experiments is conducted using our proposed mapping functions

in combination with the vector space model. Each spectrum from the ten groups is
used as a query while the rest of the respective group should be found as answers.
The plots in �gure 3.3 and 3.4 show averages over all queries. The results for the
simple grid-based mapping are shown in �gure 3.3a. The sizes of the grid cells are
varied over wc = 4, 6, 8, 10 and wh = 0.4, 0.6, 0.8, 1.0 respectively. Small sizes give
the best results.
The use of shifted grids improves the performance substantially over simple grids,

as shown in �gure 3.3b,c. The plots show the experiments for k = 2, 3. The results
for k = 2 and k = 3 are almost identical. However, the vocabulary for k = 2 is much
smaller. In practise, the smaller model with k = 2 shifts is favored.
Also, the mapping based on grids with di�erent grid cell sizes are assessed. Due to
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Figure 3.2: Distribution of the peaks of all spectra with the distribution within the
groups of �avonoids and steroids.

lack of space, only the results from combinations of w
(1)
c = 4, w

(1)
h = 0.4 with other

sizes are reported, because those performed best among all combinations. Figure
3.3d shows that also the mapping based on di�erent grid cell sizes outperforms the
simple grid-based mapping. But the improvement is not as much as for shifted grids.

The set of resolutions {(w(1)
c = 4, w

(1)
h = 0.4), (w

(2)
c = 10, w

(2)
h = 1.0)} performs best.

Further, experiments are performed with the combination of the previous two
mappings, namely a combination of shifted grids with those of di�erent resolutions.
The performance results are shown in �gure 3.3e which indicates that the best com-

bination, namely the resolution set {(w(1)
c = 4, w

(1)
h = 0.4), (w

(2)
c = 10, w

(2)
h = 1.0)}

with k = 2 shifts, outperforms both previous mappings. This is more clearly seen in
�gure 3.3f that compares the best performing settings from the above experiments.

Next, a series of similar experiments is conducted using our proposed mapping
functions in combination with PLSA. Random initialization is used for the EM train-
ing algorithm. All curves are averages from cross validation over all groups. As PLSA
is trained on the data beforehand, we used cross validation where the current query
is not included in the training data. As the groups are very small, the leave-one-out
cross validation scheme is employed. The results for PLSA are shown in �gure 3.4a-f.
PLSA requires to chose the number of hidden aspects. For the experiments reported
so far, the PLSA model is used with 20 hidden aspects. Furthermore, di�erent num-
bers of aspects are tested using the best combination of mappings. Figure 3.4g shows
that the performance with 10 aspects drops a bit. The increase in the numbers of
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aspects from 20 to 32 is only marginally re�ected in increase of search performance.
Therefore, K = 20 is a reasonable number of aspects for the given data.

In summery, the experiments with both text retrieval methods show, that the
mappings based on shifted grids and those with di�erent resolutions perform signif-
icantly better than the simple grid-based mapping. In both cases, the combination
of shifted grids and grids with di�erent resolutions is even better than the individual
mappings. The comparison between PLSA and the vector space model (�gure 3.4h)
shows that both have similar performance for small recall but for large recall PLSA
has a better precision.

Last, the direct similarity function is tested (�gure 3.4i). The size of the matching
neighborhood is varied over α = 4, 6, 8, 10 and β = 0.4, 0.6, 0.8, 1.0 respectively. The
search quality is quite low. In fact on average, it fails to deliver a spectrum from the
answer set in the top ranks, which is indicated by the hill-like shape of the curves.

In conclusion, the results prove experimentally that the vector space model as well
as the PLSA model, which are designed for text retrieval, are indeed e�ective for
similarity search of 2D-NMR spectra from naturally occurring products.

3.2.2.3 Analysis of the latent Aspects

We analyzed the latent aspects learned by the PLSA model using the mapping based
on the combination of shifted grids with di�erent resolutions. The grid cells (words)
with high probability for a given aspect are plotted together to describe the aspects
meaning. Some aspects specialized in certain regions in the peak space that are typ-
ical for distinct molecule fragments like aromatic rings or alkane skeletons. However,
also more subtle details of the data are captured by the model. For example, the
main aspect for the group of �avonoids specializes not only in the region for aromatic
rings that are the main part of �avonoids. It also includes a smaller region that indi-
cates oxygen substitution. A closer inspection of the database revealed that indeed
many of the included �avonoids do have several oxygen substitutes. The main aspect
for �avonoids with the respective peak distribution of the �avonoid group is shown
in �gure 3.5a. We believe a detailed analysis of the aspects found by the model may
help to investigate unknown structures of new substances when their NMR-spectra
are included in the training set.

3.2.3 Summary

We proposed redundant mappings from continuous 2D-NMR spectra to discrete text-
like data that can be processed by any text retrieval method. We demonstrated
experimentally the e�ectiveness of the our mappings in combination with the vector
space model and PLSA. Further analysis revealed that the aspects found by PLSA
are chemically relevant. The study is a preliminary step towards analyzing large sets
of 2D-NMR spectra that are currently collected by our collaboration partners at the
Leibniz institute of plant biochemistry.
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Figure 3.3: Average recall-precision curves using the vector space model
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Figure 3.5: (a) Main aspect of the �avonoid group which includes the region of aro-
matic rings (upper right cluster) and the region for oxygen substituents
(lower left cluster). The gray shades indicate the strength of the asso-
ciation between grid cell and aspect. (b) An example of an �avonoid
(3'-Hydroxy-5,7,4'-trimethoxy�avone) where the aromatic rings and the
oxygen substituents (methoxy groups in this case) are marked.

3.3 Latent Semantic Analysis of Proteomics Experiments

In order to assess inter-experiment similarity in an all-against-all comparison, la-
tent semantic analysis (LSA; also referred to as latent semantic indexing, LSI) is
employed. The main task is, to reduce the documents from a word-based represen-
tation to a topic-based representation, which reduces the in�uence of noise (random
words) during the similarity computation between pairs of documents. Applied to
the context of proteomics, experiments take the role of documents while peptides
identi�ed in one experiment (more precisely their amino acid sequence) act as terms.
The algorithm reports a similarity score for each pair of experiments, based on the
latent topics in peptide representation of the experiments.

3.3.1 Data Preparation

The HUPO PPP dataset was obtained from the PRIDE database3, under accession
numbers 4 to 98. These data sets are also accessible as PRIDE XML �les via FTP4.

All 95 Hupo PPP experiments and their corresponding sets of peptides are directly
taken from the PRIDE database and give a term-document matrix with dimensions
25, 052×95. Entries of the term-document matrix are weighted using idf . In contrast
to IR-applications on natural language, no further pruning of unique terms was per-
formed. A close look at the term-document matrix reveals the following di�erences
compared to natural language datasets: while in a corpus of natural language text
documents (for example the TREC Spanish AFP collection or the TREC Volume

3http://www.ebi.ac.uk/pride
4ftp://ftp.ebi.ac.uk/pub/databases/pride
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3 corpus) the amount of unique words is below 2% [34], the Hupo PPP data set
has 14, 808 unique peptides (59%). This �nding seems to contradict the intuitive
assumption that proteomics experiments from the same tissue should yield highly
similar results. The lack of reproducibility across proteomics experiments plays a
considerable role in this divergence of the results [116]. This is illustrated for the
HUPO PPP data by the fact that not even a single peptide is seen in every exper-
iment. Moreover, only 37 peptides out of the 25, 052 peptides are found in at least
half of the experiments. In contrast, more than 70% of the reported proteins are only
found in one or two experiments. This e�ect can be further explained by the wide
array of techniques applied by the HUPO PPP contributors, with the purpose of
enhancing coverage and allowing subsequent method evaluation [109]. Furthermore,
a shotgun proteomics approach to analyze a complex mixture typically results in
approximately 30% of all proteins identi�ed by only a single peptide [106].

As a result, non-zero entries constitute less than 4% of the term-document ma-
trix, which, although better than a typical natural language set, is still quite poor,
especially considering the fact that we analyzed a small experiment corpus and that
this data set describes the proteome of a single tissue, namely plasma. In order to
analyze the ability of LSA to compensate for this sparseness of the term-document
matrix, the similarity of pair of the 95 experiments is computed using di�erent values
for K and the standard cosine measure, which gives 95(95− 1)/2 = 4, 465 similarity
scores. The choice of K depends on the distribution of the singular values of the
original document/term matrix. A rapid drop of the values in the sorted sequence
of singular values (i.e. σl − σl+1 is large and σl+1 is small) indicates that Al is good
approximation with low error. In our case, we used K = 75 for small degree of
compression and K = 15 for high compression. For comparison, similarity scores are
also directly computed from the vector space representation.

3.3.2 Application of LSA and PLSA to Proteomics Data

As expected, the distribution of the similarity scores obtained for the HUPO PPP ex-
periments with the vector space model (VSM) shows a low overall similarity (93.5%
pairs of experiments have a similarity less or equal than 0.1). Since the VSM ap-
proach to calculate experiment similarity su�ers from the limitations of the exact
term matching employed, the sparseness of the term-document matrix cannot be
compensated.

Even the similarities for K = 75 show no drastic improvements; the similarity
scores rise only slightly (88.5% pairs of experiments have a similarity less or equal
than 0.1). However, with a strong dimensionality reduction (K = 15) of the HUPO
PPP data, latent semantic relationships between terms as well as co-occurrences of
peptides within the replicate experiments are ampli�ed. Consequently, the inter-
experiment similarities rise, resulting in the fact that now only 35% (in contrast
to 93.5% for the VSM) of the experiments pairs have a similarity of 0.1 or less.
This e�ectively compensates for the sparseness of the term-document matrix with
all entries are non-zero. To validate the results and show that LSA indeed resulted
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Figure 3.6: A visualization of the inter-experiment HUPO PPP similarity matrix,
obtained from an LSA with K = 15. Dark indicates high similarity. The
95 experiments have been grouped by depletion technique, search engine,
separation method and mass spectrometer (annotated above, to the left
and below).

in meaningful experiment similarity, the obtained scores were visualized in a gray-
scale map with white representing a score of 0, black a score of 1. The experiments
are grouped by metadata, i.e. used technology (depletion step(s) applied; protein
fractionation technique; search engine and �nally mass spectrometer type). Since
all 95 experiments originate from the same tissue, it is reasonable to expect LSA to
amplify the intra-similarities within the same technology group.

3.3.2.1 In�uence of Proteomics Technologies in the Hupo PPP dataset

A gray-scale map of the similarity scores between all 95 experiments, obtained af-
ter LSA with K = 15, is shown in �gure 3.6. The experiments have been grouped
according to four technologies that have been annotated above, below and to the
left-hand side of the �gure. Obviously, an experiment is identical to itself, which
is why the top-left to lower-right diagonal is black. A great amount of experiments
have a high similarity (dark areas) as expected when looking on one single tissue and
using a low K, although some experiments are less similar to the other experiments
than expected. Those experiments form distinct clusters, each with high internal
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Figure 3.7: A visualization of the inter-experiment HUPO PPP similarity matrix,
obtained from an PLSA with K = 5. Dark indicates high similarity. The
95 experiments have been grouped by depletion technique, search engine,
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similarity (I, II and IV). The �rst cluster (I) represents only ESI FT-ICR5 experi-
ments. This uniqueness in the instrument used, together with the use of proprietary
Viper search engine most probably contributes to the dissimilarity from the rest
of the experiments. Cluster (II) is derived from a set of 2D-PAGE experiments,
and these can be compared to cluster (IV), because both represent experiments per-
formed by the same lab with the same technology. The only di�erence is the use
of the top-6 protein depletion6 on the biological sample in cluster (IV), while no
depletion was employed in cluster (II). The very low similarity between these two
clusters (nearly white overlap regions) shows that removal of the six most abundant
proteins in plasma resulted in the detection of an almost completely di�erent part
of the plasma proteome. Three experiments (III) have very low similarity with the
other experiments combined with a low similarity between each other. The reason
for this could be the combination of a CHO-a�nity (aldehyde a�nity) fractiona-
tion and the Sequest search engine which no other experiment employed. As all
three experiments are from the same laboratory (which only contributed these three
experiments) and they have a rather low similarity among themselves, it seems plau-
sible that these experiments are outliers and even might indicate suspect results.
Another group of experiments also sticks out (band V). This group comprises ex-
periments that employed a peptide shotgun approach (with no protein separation
technique) on top-6 depleted samples. The shotgun experiments thus reveal very lit-
tle similarity, both within the repeated experiments as well as compared to the rest
of the experiments. The low similarities of the three clusters (I,II,IV) and the shot-
gun experiments (none for separation technique) with all other experiments indicates
that they contribute unique peptide identi�cations (i.e.: they cannot be semantically
connected to other peptide identi�cations). However, in contrast to the shotgun ex-
periments, the 2D-PAGE cluster (II,IV) are strongly internally consistent, hinting
at a high reproducibility of the method. The total number of peptide identi�cations
for the HUPO PPP data set reveal that shotgun experiments contributed a major
part of the overall unique peptide identi�cations. Finally, all observed clusters in
this analysis derive from di�erences introduced by the various methodologies and
technology platforms employed, rather than from di�erences between the samples
which shows that a strong bias is introduced.

3.3.2.2 Sample Analysis

A second experimental setup was used to evaluate the performance of LSA to com-
pute meaningful similarities on proteomics data: instead of the natural grouping of
peptides by experiment, all peptides found by any number of experiments of the same
biological sample (plasma or serum) and anticoagulation treatment (EDTA, citrate
or heparin) where selected and grouped, which resulted in a 5 × 25, 052 document
term matrix. Again, a VSM approach is not able to produce meaningful similarities,
whereas LSA with K = 2 (we would expect the term-document matrix to capture

5EletroSpray Ionization Fourier-Transform Ion Cyclotron Resonance instrument
6The six most frequent, known proteins are removed.
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Figure 3.8: : HUPO sample similarity matrices, for the VSM on the left and LSA
with K = 2 on the right. This grayscale map visualizes the di�erences
in similarities resulting from a VSM and LSA (k = 2) analysis on all
peptides from the HUPO PPP dataset. Peptides found by any of the 95
experiments are grouped by the biological sample type (plasma or serum)
- annotated above - and the anticoagulation method used - annotated to
the left.

two semantic topics: plasma and serum) yields easily interpretable results. Those
similarity scores are visualized and annotated in �gure 3.8: VSM (on the left) only
shows the (trivial) high similarities of one sample/anticoagulation group with itself,
whereas LSA is able to resolve the similarity of the 4 groups of peptides originating
from the plasma samples. Obviously the very low similarity between plasma and
serum is caused by the fact that the serum samples do not contain any proteins (and
therefore peptides) associated with clotting, such as Fibrin.

3.3.2.3 Interpretation of the peptide-based LSA

Literature suggests that a comparison based on exact matching of peptide sequences
dramatically underestimates the overlap between experiments [98]. Therefore, it is
particularly interesting to see how LSA groups peptides to latent topics, which are
the dimensions of the latent space.

This analysis can be carried out by studying the term representation UKΣK . A
k-means clustering [126, 130] performed on the rows of UKΣK allows detection of
these related terms. Upon analysis of the resulting groups, two distinct patterns
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emerge. First of all, LSA resolves peptides distinguished only by the occurrence of
isobaric amino acids (e.g.: isoleucine/leucine). Since these amino acids are indistin-
guishable to the mass spectrometer, their substitution does not a�ect the semantic
representation of the containing peptide sequence. Second, peptides that repre-
sent subsequences of longer peptides, either through missed cleavages (e.g.: YL-
GNATAIFFLPDEGK and YLGNATAIFFLPDEGKLQHLENELT), in-source decay
or in vivo proteolytic degradation (e.g.: YLGNATAIFFLPDEGKLQHLENELT and
YLGNATAIFFLPDEGKLQHLENELTHD) are all grouped together with the longer
sequence. These two e�ects can be compared to synonyms in natural language.

3.3.2.4 Comparison with PLSA

We used also PLSA to determine the inter-experiment similarities of the Hupo PPP
data set. This allows to validate the results obtained by LSA as well as to compare
the performance of di�erent models. Since PLSA cannot bene�t from terms that
appear only in a single document (unique peptides), the data set was reduced to
peptides which occur at least in two experiments.

The number of latent topics for PLSA is set to K = 5, because the results of LSA
showed 5 strong semantic topics, namely the two 2D-Page experiment-clusters, the
Viper-search engine results, the shotgun-experiments, and the rest of the data set.
The similarities between all pairs of experiments are visualized in a greyscale map in
�gure 3.7. The observed similarities cluster in an analogous way compared to LSA �
the 2D-Page, viper search engine and shotgun experiments are dissimilar while the
rest of the experiments have a high similarity among each other. This con�rms the
LSA results. A major improvement of PLSA is the clearer distinction between the
clusters of experiments. Additionally, experiments within a cluster have a very high
similarity in common (illustrated by the dark black coloring of the corresponding
areas and absence of grey areas in �gure 3.7). This is due to the facts that PLSA is
more �exible in associating experiments with topics.

On the plasma proteome data, this results in a clear association of an experiment
to exactly one latent topic. Thus, an experiment has a high probability (> 0.9) to
belong to one of the �ve topics, while the probability for other topics (other entries
in p(z|d)) is very low. Note, that this clear association to a single topic is generally
not the case for PLSA. Usually, an experiment is represented by a speci�c mixture
of topics. The observed clear distinction between clusters of experiments once more
illustrates the complementary nature of the proteomics technologies employed.

The second di�erence between PLSA and LSA is shown by the results concerning
the misclassi�ed experiment annotated as III in �gure 1: PLSA associates those
experiments to the remainder of the other experiments. This might disprove the
previously assumption made after LSA that these experiments could be outliers.
Also, the pruning of unique peptides could be responsible for the high similarity
of the previously misclassi�ed experiments to the rest. Interestingly, in repeated
experiments with di�erent starting con�gurations for the EM-algorithm, those 3
experiments where sometimes separated. This leaves the issue as an open question.
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The third di�erence is constituted by the shotgun experiments: with LSA those
experiments had a low similarity between each other, resulting from the fact that
each of those experiments contributed a substantial high amount of new peptide iden-
ti�cations compared to other experiments while having only a small set of peptides
in common. The unique peptides lead to a low similarity between the shotgun exper-
iments, but now with PLSA those experiments show high similarity. The reasons are
two-fold. The �rst is that unique peptides were pruned. This lead to a shortened vec-
tor space representation with regards to the number of rows of the document term
matrix resulting in a higher percentage of peptides the experiments have in com-
mon. The second cause is again based on the nature of the PLSA method. Those
experiments are represented by similar mixture proportions of the latent topics, even
though their representation in vector space di�ers.

Interestingly two shotgun experiments (annotated as V*) are not similar to the
other shotgun experiments, in contrast they are similar to the majority of the re-
maining Hupo PPP experiments. There are several explanations for this �nding.
Most likely this is caused by the underlying separation technique employed in these
two experiments. While all experiments from the shotgun-experiments cluster (anno-
tated as V) employed an additional scx-separation step on the peptides after tryptic
digestion, the two dissimilar experiments just relied on RP-HPLC as a protein sep-
aration method. This �ndings correlate to the results in [89]. However, another
explanation could be the fact that those two experiments originate from a di�erent
lab than the rest of the shotgun experiments. Therefore it seems plausible, that in-
ternal lab-speci�c optimisations/variations of protocol-steps which are not annotated
or even falsely annotated in the source database yielded di�erent results.

The comparison of LSA and PLSA illustrates the advantages of PLSA on pro-
teomics data. The more principled approach of PLSA based on the statistical latent
class model has a sound statistical foundation. The higher �exibility allows PLSA
to generate more realistic association of experiments to topics. Furthermore, the
choice of an appropriate value for K, the number of latent space dimension, directly
correlates to the semantic topics captured by PLSA, whereas with LSA the choice
of K was based more or less on trial and error and ad hoc heuristics.

However, PLSA also has some disadvantages. Namely the training procedure of
the EM-Step could get stuck in a local optimum of the likelihood function which
leads to distributions for p(z|d), p(d) and p(w|z) with less quality and therefore
a model of low accuracy. In our experiments, the EM-step of PLSA had major
di�culties on the peptide-experiment matrix without pruning the unique peptides.
In combination with LSA nevertheless, PLSA can be an important tool for analyzing
proteomics data.

3.3.3 Discussion and Conclusion

We have demonstrated a novel application of LSA by comparing peptide lists de-
rived from many di�erent proteomics experiments performed on the same tissue. By
applying LSA to the data from the Hupo PPP study, we were able to show that this
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method can handle the very diverse and heterogeneous data arising from proteomics
experiments and compute meaningful similarities.

A large amount of experiments have a high similarity after LSA, which shows the
strength of the method. However, some experimental setups, namely 2D-PAGE and
shotgun approaches, strongly bias the set of observed peptides, which LSA cannot
compensate for. Our results con�rm visually, that if the goal of a project is to achieve
maximal proteome coverage for a particular sample, shotgun proteomics experiments,
repeated over multiple replicates achieve the most gain. 2D-PAGE analysis should
not be disregarded as an analytical tool however, since it can complement a sub-
stantial fraction of unique identi�cations. Due to the high internal reproducibility of
2D-PAGE analyses as performed in the HUPO PPP, it seems that carrying out many
replicates of this technology does not necessarily lead to a proportional increase in
novel peptide identi�cations. In the speci�c case of plasma, the in�uence of various
depletion techniques is also of interest. While methods employing top-6 depletion
contributed more than 50% of the identi�cations, about 10% of all proteins were only
found when no depletion was used at all.

The relatively simple task of comparing di�erent sample types demonstrates that
the fundamental di�culties arising from the origin of the data could be overcome
through the utilization of an LSA analysis and its key principle of peptide/experiment
association data representation in a lower dimensional 'latent space'. It is important
to consider that the latent semantic analysis employed here greatly bene�ts from the
large number of varying experimental repetitions on the same sample.

3.3.3.1 Interpretation of the semantic associations

An interesting �nding is the ability of LSA to detect semantic relationships between
apparently unrelated sets of peptide sequences, based solely on co-occurrences within
experiments. We have found that at least some of these semantic links can be
explained by underlying methodological or biological concepts and can be compared
to synonyms found in natural language. The application of LSA to replicated shotgun
experiments might help to alleviate one of the primary caveats of peptide-centric
proteomics: the protein inference problem.

Since the semantic structures underlying protein lists (at least in part) represent
entities of biological interest, the nature of the semantic relationships that occur
at that level are also of considerable interest. Potential candidates of biological
importance include protein complexes or protein components of the same pathway.

3.3.3.2 Future perspectives

It is clear from these �ndings that large collections of heterogeneous proteomics
datasets can be mined relatively easily to obtain valuable information with LSA.
The analysis carried out opens many paths for further investigations. By extending
the analysis to include other tissue data sets (for instance the HUPO Brain Pro-
teome Project (HUPO BPP) [62], and eventually any available proteomics data) and
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by carefully choosing an appropriate value for k, the focus of investigation could be
shifted from the �ne-grained e�ects resulting from the application of di�erent tech-
nology platforms, to the coarse-grained distinctions derived from di�erences in tissue
type, disease state or developmental stage.
It is of signi�cant interest to get a better understanding of the semantic similarities

peptide share in the latent semantic space resulting from singular value decompo-
sition. Other methods, especially probabilistic latent semantic analysis described
in [75] that has a solid statistical foundation should be examined.

3.4 Summary

We presented new methods to transform 2D-NMR spectra into a bag of words repre-
sentation consisting of discrete words. PLSA has been shown to improve the search
quality on this data. Furthermore, topics found by PLSA have meaningful interpre-
tations and reveal interesting statistical properties of the data. The result of this
pilot study were encouraging. Subsequently, the compilation of a large collection of
over 100.000 2D-NMR spectra of natural products was started. The collection was
�nished by the end of 2009 and is currently subject to initial analyses.
The latent semantic analysis of proteomics experiments also brought fruitful re-

sults. The analysis of relevant parts of the PRIDE database showed that LSA and
PLSA can be used to de�ne a meaningful similarity measure between proteomics ex-
periments on the peptide level. Our �rst analysis shows a new and valuable way [32]
to use data collections of proteomics experiments like PRIDE.

61





4 Probabilistic Modelling and Kernel

Density Estimation

Many text-mining methods rely on probabilistic models, e.g. the multinomial mix-
ture model, the Bernoulli Mixture model, probabilistic latent semantic analysis
(PLSA) [75] and latent Dirichlet allocation (LDA) [18]. A probabilistic model de-
�nes a probability distribution p(~x|~θ) that assigns a probability, a non-negative real
number, to a given data object ~x by using values of a parameter vector ~θ. A typical
way to learn the parameters of probabilistic models (parameter inference) is to �nd
a parameter setting that maximizes some joint probability that is de�ned in terms
of a set of observed data objects ~X = {~x1, . . . , ~xN}, e.g. the likelihood p( ~X|~θ) or
the posterior p(~θ| ~X). The material presented in this chapter is a revised version of
our publication on kernel density based clustering [70] and Bayesian folding-in for
PLSA [71].

All of the mentioned probabilistic text-mining models use hidden variables to rep-
resent internal model assumptions. Hidden variables can be seen as non-observable
virtual data that help to rewrite the optimization function used for parameter learn-
ing in a simpler, mathematically equivalent form. The expectation maximization
algorithm [36, 99] provides a general framework for this simpli�cation of the opti-
mization procedure and many inference methods for the mentioned models rely on
it.

Another method to estimate a probability density from a set of data objects is
kernel density estimation (KDE). KDE works when a data object is described by one
or multiple continuous attributes that constitute a data point in a multi-dimensional
space. KDE places a kernel function, which is a unimodal function with a unique
maximum, at each data point. The estimated probability density is the normalized
sum of all kernel functions and is de�ned over the whole multi-dimensional space
that covers the data points. Such a probability density has in general more than
one local maximum. A useful task is to compute all local maxima of the estimated
density. A data point ~x is assigned to the local maximum to that a hill climbing
procedure started at ~x does converge. This concept is used for cluster analysis: The
local maxima de�ne clusters to which data points are assigned by a hill climbing
procedure.

A novel result presented in this chapter is a new, faster and more accurate hill
climbing procedure. We derive this procedure by casting the task of hill climbing
a kernel density estimate as an EM algorithm. Beside the newly found theoretical
connection between KDE and EM theory, the new method o�ers dramatic speed-
up for cluster analysis due to faster convergence of the hill climbing. Furthermore,
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4 Probabilistic Modelling and Kernel Density Estimation

the connection to the EM algorithm breaks the way to apply a wealth of general
optimization strategies for the EM algorithm to the speci�c problem setting of kernel
density based clustering.

The use of the EM algorithm for hill climbing a kernel density estimate is not
limited to cluster analysis only. The technique can be combined with probabilistic
models for text mining. We present a novel use of a kernel density estimate as a
prior distribution for the parameters that govern the hidden variables in the PLSA
model. The use of prior distributions for parameters helps to avoid over�tting the
model to the training data. The general idea is that the prior distribution penalizes
parameter settings of the model that correspond to known pathological cases. On the
mathematical side, the EM procedure for hill climbing the kernel density estimate is
seamlessly combined with the EM algorithm to learn parameters of the PLSA model.
This example shows how a new general class of prior distributions, namely kernel
density estimates, can be used in probabilistic models.

In the remainder of the chapter, we �rst give a brief overview about the basics of
the EM algorithm and kernel density estimation. In Section 4.2, we develop our new
technique in the context of kernel density based clustering, show the new connection
between KDE and EM theory and demonstrate experimentally the advantages of the
new method. The usage of the new technique as a prior distribution in a text mining
model is described in Section 4.3.

4.1 Underpinnings of Expectation Maximization

Algorithm and Kernel Density Estimation

We give a brief overview about the expectation maximization algorithm and kernel
density estimation. As our proof to show the convergence of the new hill climbing
method for kernel density estimation relies on the reduction to an EM algorithm,
we sketch here the idea of the proof of the EM algorithms convergence to a local
maximum. We follow the proof described in [15], pages 450-455.

We assume that the goal of the EM algorithm is to �nd a parameter setting ~θ
that maximizes the likelihood p( ~X|~θ) for given training data ~X = {~x1, . . . , ~xN}. It
is often more convenient to maximize the log-likelihood instead of the likelihood.
In case of mixture models with a set of hidden variables ~Z, the log-likelihood takes
the form ln p( ~X|~θ) = ln

∑
~Z p(

~X, ~Z|~θ). The mixture models we a dealing with have
only discrete hidden variables, therefore the likelihood can be written as a sum over
all possible instances of ~Z. Argumentation in case of continuous hidden variables
is analogous with the sum replaced by integrals. Because of the sum inside the
logarithm there is no closed-form solution to this maximization problem.

The idea of the EM algorithm is to rewrite the log-likelihood with respect to an
arbitrary probability distribution q(~Z). We do not need to require q(~Z) to have a
speci�c form, we just need that q is a probability distribution with

∑
~Z q(

~Z) = 1.
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Then the log-likelihood can be rewritten as

ln p( ~X|~θ) = L(q, ~θ) + KL(q||p) with (4.1)

L(q, ~θ) =
∑
~Z

q(~Z) ln
p( ~X, ~Z|~θ)
q(~Z)

(4.2)

KL(q||p) = −
∑
~Z

q(~Z) ln
p(~Z| ~X, ~θ)
q(~Z)

(4.3)

The �rst term L(q, ~θ) is a functional depending on the distribution q(~Z) and the pa-
rameter vector ~θ. The second term is the Kullback-Leibler (KL)-divergence between
the distributions q(~Z) and the posterior distribution p(~Z| ~X, ~θ). The decomposition
can be veri�ed as follows:

ln p( ~X|~θ) =
∑
~Z

q(Z) ln p( ~X|~θ) (4.4)

=
∑
~Z

q(Z) ln p( ~X|~θ) +
∑
~Z

q(~Z) ln
p(~Z| ~X, ~θ)
q(~Z)

−
∑
~Z

q(~Z) ln
p(~Z| ~X, ~θ)
q(~Z)

(4.5)

=
∑
~Z

q(Z)

[
ln p( ~X|~θ) + ln

p(~Z| ~X, ~θ)
q(~Z)

]
+ KL(q||p) (4.6)

=
∑
~Z

q(Z) ln
p(~Z| ~X, ~θ) · p( ~X|~θ)

q(~Z)
+ KL(q||p) (4.7)

=
∑
~Z

q(Z) ln
p( ~X, ~Z|~θ)
q(~Z)

+ KL(q||p) (4.8)

= L(q, ~θ) + KL(q||p) (4.9)

The decomposition (4.2) is important because the KL-divergence has the property
that it is always non-negative KL(q||p) ≥ 0. The equality to zero is realized if and
only if the two distributions q and p are identical. Therefore, L(q, ~θ) is a lower bound
of the log-likelihood ln p( ~X|~θ).

L(q, ~θ) ≤ ln p( ~X|~θ) (4.10)

The key idea of the EM algorithm is to maximize the lower bound instead of the
log-likelihood. The maximization of L(q, ~θ) is the iterative two step procedure. After
initialization of ~θ, the lower bound is maximized with respect to q in the �rst step.
Second, the lower bound is maximized with respect to ~θ. The iteration runs until
convergence. As the lower bound is increased in each step and the log-likelihood is
a �nite function, the procedure converges in a �nite number of steps.

65



4 Probabilistic Modelling and Kernel Density Estimation

The maximization of L(q, ~θ) with respect to q is done by minimizing the KL-
divergence KL(q||p). For �xed parameters ~θold, the KL-divergence KL(q||p) takes its
minimum, namely zero, when q(~Z) = p(~Z| ~X, ~θold). In the second step, the lower
bound is maximized with respect ~θ while �xing q(~Z) to the posterior distribution
derived in the previous step. Note that when assigning the posterior p(~Z| ~X, ~θold) to
q(~Z) the lower bound can be simpli�ed as follows:

L(q, ~θ) =
∑
~Z

p(~Z| ~X, ~θold) ln p( ~X, ~Z|~θ)−
∑
~Z

p(~Z| ~X, ~θold) ln p(~Z| ~X, ~θold) (4.11)

= E~Z [ln p( ~X, ~Z|~θ)] + const (4.12)

The second term is constant with respect to ~θ because it depend only on the previous
parameter setting ~θold through the posterior. The expectation of the complete data
log-likelihood E~Z [ln p( ~X, ~Z|~θ)] with respect to the posterior p(~Z| ~X, ~θold) is exactly
the quantity we maximized in the M-step in the derivation of the EM-algorithm for
PLSA in chapter 3.1.3.

So far, we concentrated on maximizing the log-likelihood ln p( ~X|~θ) using the
EM algorithm. The EM algorithm can be also used to maximize the log-posterior
ln p(~θ| ~X), which will be helpful when we show the use of KDE-priors in probabilis-
tic text-mining models. Note that the posterior can be rewritten in terms of the
likelihood p(~θ| ~X) = p( ~X|~θ) · p(~θ)/p( ~X) using the Bayesian rule. Therefore, the
log-posterior can be written in terms of the lower bound and the KL-divergence:

ln p(~θ| ~X) = ln p( ~X|~θ) + ln p(~θ)− ln p( ~X) (4.13)

= L(q, ~θ) + KL(q||p) + ln p(~θ)− ln p( ~X) (4.14)

≥ L(q, ~θ) + ln p(~θ)− ln p( ~X) (4.15)

The optimization of the lower bound 4.15 of the log-posterior gives the same E-step as
for the log-likelihood, because the terms ln p(~θ) and ln p( ~X) do not depend on q(~Z).
The M-step is modi�ed by the term of the prior ln p(~θ), which in case of a conjugated
prior distribution is only a minor change in the mathematical formula. The term
ln p( ~X) is constant with respect to both q(~Z) and ~θ and therefore does not in�uence
the maximization procedure. Thus, the EM-algorithm for �nding parameters ~θ of a
probabilistic model by maximizing the posterior ln p(~θ| ~X) di�ers not much from the
EM-algorithm for maximizing the likelihood.

The kernel density framework estimates the probability density in a data space as
a function of all data instances ~xn ∈ ~X with n = 1, . . . , N . Now ~X is a �nite subset
of Rd, d ∈ N of a d-dimensional continuous vector space. The in�uences of the data
instances in the continuous data space are modeled via a simple kernel function, e.g.
the Gaussian kernel

K(~u) = (2π)−
d
2 · exp

(
−~u

2

2

)
(4.16)

The sum of all kernels (with suitable normalization) gives an estimate of the proba-
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Figure 4.1: Kernel density estimate for one-dimensional data and di�erent values for
the smoothing parameter h.

bility density at any point ~x in the data space

p̂(~x) =
1

(Nhd)

N∑
t=1

K
(
~x−~xt/h

)
(4.17)

The estimate p̂(~x) enjoys all properties as the original kernel function, e.g. di�eren-
tiability. The quantity h > 0 speci�es to what degree the in�uence of a data point is
smoothed over data space. When h is large, an instance stretches its in�uence up to
more distant regions. When h is small, an instance e�ects only the local neighbor-
hood. We illustrate the idea of kernel density estimation of one-dimensional data in
�gure 4.1.
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4 Probabilistic Modelling and Kernel Density Estimation

4.2 KDE-Clustering as EM-Algorithm

Clustering can be formulated in many di�erent ways. Non-parametric methods are
well suited for exploring clusters, because no generative probabilistic model of the
data needs to be assumed. Instead, the probability density in the data space is
directly estimated from data instances. Kernel density estimation [122, 124] is a
principled way of doing that task. There are several clustering algorithms, which
exploit the adaptive nature of a kernel density estimate. Examples are the algorithms
by Schnell [120] and Fukunaga [52] which use the gradient of the estimated density
function. The algorithms are also described in the books by Bock [20] and Fukunaga
[51] respectively. TheDenclue framework for clustering [68,72] builds upon Schnells
algorithm. There, clusters are de�ned by local maxima of the density estimate. Data
points are assigned to local maxima by hill climbing. Those points which are assigned
to the same local maximum are put into a single cluster.

However, the algorithms use directional information of the gradient only. The step
size remains �xed throughout the hill climbing. This implies certain disadvantages,
namely the hill climbing does not converges towards the local maximum, it just comes
close, and the number of iteration steps may be large due to many unnecessary small
steps in the beginning. The step size could be heuristically adjusted by probing
the density function at several positions in the direction of the gradient. As the
computation of the density function is relatively costly, such a method involves extra
costs for step size adjustment, which are not guaranteed to be compensated by less
iterations.

Our contribution is a new hill climbing method for kernel density estimates that
bases on the EM algorithm. We develop it here in the context of Gaussian kernels as
this is one of the most relevant kernels in the context of cluster analysis. However, our
method is not limited to the use of this speci�c kernel as we demonstrate in section 4.3
The new hill climbing method adjusts the step size automatically at no additional
costs and converges towards a local maximum. We prove this by casting the hill
climbing as a special case of the expectation maximization algorithm. Depending
on the convergence criterium, the new method needs less iterations as �xed step
size methods. Since the new hill climbing can be seen as an EM algorithm, general
acceleration methods for EM, like sparse EM [105] can be used as well. We also
explore acceleration by sampling. Fast Density estimation [141] can be combined
with our method as well but is not tested in this �rst study.

Other density based clustering methods beside Denclue, which would bene�t
from the new hill climbing, have been proposed by Herbin et al [65]. Variants of
density based clustering are Dbscan [118], Optics [7], and followup versions, which,
however, do not use a probabilistic framework. This lack of foundation prevents the
direct application of our new method there.

Related approaches include fuzzy c-means [13], which optimized the location of
cluster centers and uses membership functions in a similar way as kernel functions
are used by Denclue. A subtle di�erence between fuzzy c-means and Denclue is,
that in c-means the membership grades of a point belonging to a cluster are nor-
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4.2 KDE-Clustering as EM-Algorithm

malized, s.t. the weights of a single data point for all clusters sum to one. This
additional restriction makes the clusters competing for data points. Denclue does
not have such restriction. The mountain method [138] also uses similar member-
ship grades as c-means. It �nds clusters by �rst discretizing the data space into a
grid, calculates for all grid vertices the mountain function (which is comparable to
the density up to normalization) and determines the grid vertex with the maximal
mountain function as the center of the dominant cluster. After e�ects of the domi-
nant cluster on the mountain function are removed, the second dominant cluster is
found. The method iterates until the heights of the clusters drop below a prede�ned
percentage of the dominant cluster. As the number of grid vertices grow exponen-
tially in high dimensional data spaces, the method is limited to low dimensional data.
Niche clustering [104] uses a non-normalized density function as �tness function for
prototype-based clustering in a genetic algorithm. Data points with high density
(larger than a threshold) are seen as core points, which are used to estimate scale
parameters similar to the smoothing parameter h introduced in the next section.

The rest of the section is structured as follows. In section 4.2.1, we brie�y introduce
the old Denclue framework and in section 4.2.2 we propose our new improvements
for that framework. In section 4.2.3, we compare the old and the new hill climbing
experimentally.

4.2.1 DENCLUE 1.0 framework for clustering

The Denclue framework [72] builds on non-parametric methods, namely kernel
density estimation. Non-parametric methods are not looking for optimal parameters
of some model, but estimate desired quantities like the probability density of the data
directly from the data instances. This allows a more direct de�nition of a clustering
in contrast to parametric methods, where a clustering corresponds to an optimal
parameter setting of some high-dimensional function. In the Denclue framework,
the probability density in the data space is estimated as a kernel density estimate p̂(~x)
(see 4.1). A clustering in the Denclue framework is de�ned by the local maxima of
the estimated kernel density function. Data points are assigned to local maxima by
a hill climbing function. A hill-climbing procedure is started for each data instance.
After the procedure found a local maximum, the instance is assigned to this local
maximum. In case of Gaussian kernels, the hill climbing is guided by the gradient of
p̂(~x), which takes the form

∇p̂(~x) =
1

hd+2N

N∑
t=1

K

(
~x− ~xt
h

)
· (~xt − ~x). (4.18)

The hill climbing procedure starts at a data point and iterates until the density does
not grow anymore. The update formula of the iteration to proceed from ~x(l) to ~x(l+1)

is

~x(l+1) = ~x(l) + δ
∇p̂(~x(l))
‖∇p̂(~x(l))‖2

. (4.19)
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Figure 4.2: Example of a Denclue clustering based on a kernel density estimate
and a noise threshold ξ.

The step size δ is a small positive number. In the end, those end points of the hill
climbing iteration, which are closer than 2δ are considered, to belong to the same
local maximum. Instances, which are assigned to the same local maximum, are put
into the same cluster.

A practical problem of gradient based hill climbing in general is the adaptation of
the step size. In other words, how far to follow the direction of the gradient? There
are several general heuristics for this problem. All of them need to calculate p̂(~x)
several times to decide a suitable step size.

In the presence of random noise in the data, the Denclue framework provides an
additional parameter ξ > 0 that de�nes all points assigned to local maxima ~̂x with
p̂(~̂x) < ξ as outliers. Figure 4.2 sketches the idea of a Denclue clustering.

4.2.2 DENCLUE 2.0

In this section, we propose signi�cant improvements of the Denclue 1.0 framework
for Gaussian kernels. Since the choice of the kernel type does not have large e�ects
on the results in the typical case, the restriction on Gaussian kernels is not very
serious. First, we introduce a new hill climbing procedure for Gaussian kernels,
which adjust the step size automatically at no extra costs. The new method does
really converge towards a local maximum. We prove this property by casting the
hill climbing procedure as an instance of the expectation maximization algorithm.
Last, we propose sampling based methods to accelerate the computation of the kernel
density estimate.
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4.2 KDE-Clustering as EM-Algorithm

4.2.2.1 Fast Hill Climbing

The goal of a hill climbing procedure is to maximize the density p̂(~x). An alternative
approach to gradient based hill climbing is to set the �rst derivative of p̂(~x) to zero
and solve for ~x. Setting (4.18) to zero and rearranging we get

~x =

∑N
t=1K

(
~x−~xt
h

)
~xt∑N

t=1K
(
~x−~xt
h

) (4.20)

Obviously, this is not a solution for ~x, since the vector is still involved into the
righthand side. Since ~x in�uences the righthand side only through the kernel, the
idea is to compute the kernel for some �xed ~x and update the vector on the lefthand
side according to formula (4.20). This give a new iterative procedure with the update
formula

~x(l+1) =

∑N
t=1K

(
~x(l)−~xt

h

)
~xt∑N

t=1K
(
~x(l)−~xt

h

) (4.21)

The update formula can be interpreted as a normalized and weighted average of
the data points and the weights of the data points depend on the in�uence of their
kernels on the current ~x(l). In order to see that the new update formula makes sense
it is interesting to look at the special case N = 1. In that case, the estimated density
function consists just of a single kernel and the iteration jumps after one step to ~x1,
which is the maximum.

The behavior of Denclues 1.0 hill climbing and the new hill climbing procedure
is illustrated in �gure 4.3. The �gure shows that the step size of the new procedure is
adjusted to the shape of the density function. On the other hand, an iteration of the
new procedure has the same computational costs as one of the old gradient based
hill climbing. So, adjusting the step size comes at no additional costs. Another
di�erence is, that the hill climbing of the new method really converges towards a
local maximum, while the old method just comes close.

Since the new method does not need the step size parameter δ, the assignment of
the instances to clusters is done in a new way. The problem is to de�ne a heuristic,
which automatically adjusts to the scale of distance between the converged points.

A hill climbing is started at each data point ~xt ∈ X and iterates until the density
does not change much, i.e. [f̂(~x

(l)
t )−f̂(~x(l−1)

t )]/f̂(~x(l)t ) ≤ ε. An end point reached by

the hill climbing is denoted by ~x∗t = ~x
(l)
t and the sum of the k last step sizes is

st =
∑k

i=1 ‖~x
(l−i+1)
t − ~x

(l−i)
t ‖2. The integer k is parameter of the heuristic. We

found that k = 2 worked well for all experiments. Note that the number of iterations
may vary between the data points, however, we restricted the number of iterations to
be larger than k. For appropriate ε > 0, it is safe to assume that the end points ~x∗t are
close to the respective local maxima. Typically, the step sizes are strongly shrinking
before the convergence criterium is met. Therefore, we assume that the true local
maximum is within a ball around ~x∗t of radius st. Thus, the points belonging to
the same local maximum have end points ~x∗t and ~x

∗
t′ , which are closer than st + st′ .
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Figure 4.3: (top) Gradient hill climbing as used by Denclue 1.0, (bottom) Step size
adjusting hill climbing used by Denclue 2.0.
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Figure 4.4: Assignment to a local maximum.

Figure 4.4 illustrates that case.

However, there might exists rare cases, when such an assignment is not unique.
This happens when the following conditions hold for three end points ~x∗t , ~x

∗
t′ and ~x

∗
t′′

‖~x∗t − ~x∗t′‖ ≤ st + st′ and (4.22)

‖~x∗t − ~x∗t′′‖ ≤ st + st′′ but not (4.23)

‖~x∗t′ − ~x∗t′′‖ ≤ st′ + st′′ (4.24)

In order to solve the problem, the hill climbing is continued for all points, which are
involved in such situations, until the convergence criterium is met for some smaller ε
(a simple way to reduce ε is multiply it with a constant between zero and one). After
convergence is reached again, the ambiguous cases are rechecked. The hill climbing
is continued until all such cases are solved. Since further iterations causes the step
sizes to shrink the procedure will stop at some point. The idea is illustrated in �gure
4.5.

However, until now it is not clear why the new hill climbing procedure converges
towards a local maximum. In the next section, we prove this claim.

4.2.2.2 Reduction to Expectation Maximization

We prove the convergence of the new hill climbing method by casting the maxi-
mization of the density function as a special case of the expectation maximization
framework [36,99]. When using the Gaussian kernel we can rewrite the kernel density
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Figure 4.5: Ambiguous assignment: The points M and M ′ denote the true but un-
known local maxima.

estimate p̂(~x) in the form of a constrained mixture model with Gaussian components

p(~x|~µ, σ) =
N∑
n=1

πnN (~x|~µn, σ) (4.25)

and the constraints πn = 1/N, ~µn = ~xt (~µ denotes a vector consisting of all concate-
nated ~µn), and σ = h. We can think of p(~x|~µ, σ) as a likelihood of a single data point
~x given the model de�ned by ~µ and σ. Maximizing the log-likelihood ln p(~x|~µ, σ)
with respect to ~x is not possible in a direct way, because of the sum inside the loga-
rithm. Therefore, we resort to the EM framework by introducing a hidden variable
~z ∈ {0, 1}N , a N -dimensional bit vector, with the constraints

∑N
n=1 zn = 1 and

zt =

{
1 if the density at ~x is explained by N (~x|~µt, σ) only

0 else
. (4.26)

The complete log-likelihood is

ln p(~x, ~z|~µ, σ) = ln p(~x|~z, ~µ, σ)p(~z) with (4.27)

p(~z) =
N∏
n=1

πznt and (4.28)

p(~x|~z, ~µ, σ) =
N∏
n=1

N (~x|~µn, σ)zn (4.29)

In contrast to generative models, which use EM to determine parameters of the
model, we maximize the complete likelihood with respect to the vector ~x. The
EM-framework ensures that maximizing the expectation of complete log-likelihood
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maximizes the original log-likelihood as well. Therefore, we de�ne the quantity

Q(~x|~x(l)) = E~z[log p(~x, ~z|~µ, σ)|~µ, σ, ~x(l)] (4.30)

In the E-step the expectation Q(~x|~x(l)) is computed with respect to the posterior
distribution of p(~z|~x(l), ~µ, σ). In the subsequent M-step the posterior distribution
is �xed and Q(~x|~x(l)) is taken as a function of ~x and maximized. The E-step boils
down to compute the posterior probability for the individuals components zn:

E[zn|~µ, σ, ~x(l)] = p(zn = 1|~x(l), ~µ, σ) (4.31)

=
p(~x(l)|zn = 1, ~µ, σ)p(zn = 1|~µ, σ)∑N

n′=1 p(~x
(l)|zn′ = 1, ~µ, σ)p(zn′ = 1|~µ, σ)

(4.32)

=
1/N · N (~x(l)|~µn, σ)∑N

n′=1
1/N · N (~x(l)|~µn′ , σ)

(4.33)

=
1/N ·K(~x

(l)−~xn
h )

p̂(~x(l))
=: θn (4.34)

In the M-step, the posterior θt is held �xed, which yields

Q(~x|~x(l)) =

N∑
n=1

θn[ln 1/N + lnN (~x|~µn, σ)] (4.35)

Computing the derivative with respect to ~x and setting it to zero yields
∑N

n=1 θnσ
−2(~x−

~µn) = 0 and thus

~x(l+1) =

∑N
n=1 θnµn∑N
n=1 θn

=

∑N
n=1K(~x

(l)−~xn
h )~xn∑N

n=1K(~x
(l)−~xn
h )

(4.36)

By starting the EM algorithm with ~x(0) = ~xn the method performs an iterative hill
climbing starting at data point ~xn.

4.2.2.3 Sampling based Acceleration

As the hill climbing procedure is a special case of the expectation maximization
algorithm, we can employ di�erent general acceleration techniques known for EM to
speed up the the Denclue clustering algorithm.

Known methods for the EM algorithm try to reduce the number of iterations
needed until convergence [99]. Since the number of iterations is typically quite low
that kind of techniques yield no signi�cant reduction for the clustering algorithm.

In order to speed up the clustering algorithm, the costs for the iterations itself
should be reduced. One option is sparse EM [105], which still converges to the true
local maxima. The idea is to freeze small posteriors for several iterations, so only the
p% largest posteriors are updated in each iteration. As the hill climbing typically
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needs only a few iterations we modify the hill climbing starting at the single point

~x(0) as follows. All kernels K(~x
(0)−~xn
h ) are determined in the initial iteration and ~x(1)

is determined as before. Let be U the index set of the p% largest kernels and L the
complement. Then, in the next iterations the update formula is modi�ed to

~x(l+1) =

∑
n∈U K(~x

(l)−~xn
h )~xn +

∑
n∈LK(~x

(0)−~xn
h )~xn∑

n∈U K(~x
(l)−~xn
h ) +

∑
n∈LK(~x

(0)−~xn
h )

(4.37)

The index set U and L can be computed by sorting. The disadvantage of the method
is, that the �rst iteration is still the same as in the original EM.

The original hill climbing converges towards a true local maximum of the density
function. However, we does not need the exact position of such a maximum. It
is su�cient for the clustering algorithm, that all points of a cluster converge to the
same local maximum, regardless where that location might be. In that light, it makes
sense to simplify the original density function by reducing the data set to a set of
p% representative points. That reduction can be done in many ways. We consider
here random sampling and k-means. Thus, the number of points N is reduced to a
much smaller number of representative points N ′, which are used to construct the
density estimate.

Note that random sampling has much smaller costs as k-means. We investigate
in the experimental section, whether the additional costs by k-means pay o� by less
needed iterations or by cluster quality.

4.2.3 Experimental Evaluation

We compared the new step size adjusting (SSA) hill climbing method with the old
�xed step size hill climbing. We used synthetic data with normally distributed 16-
dimensional clusters with uniformly distributed centers and approximately same size.
Both methods are tuned to �nd the perfect clustering in the most e�cient way.
The total sum of numbers of iterations for the hill climbings of all data points is
plotted versus the number of data points. SSA was run with di�erent values for ε,
which controls the convergence criterium of SSA. Figure 4.6 clearly shows that SSA
(ε = 0.01) needs only a fraction of the number of iterations of FS to achieve the same
results. The costs per iterations are the same for both methods.

Next, we tested the in�uence of di�erent sampling methods on the computational
costs. Since the costs per iteration di�er for sparse EM, we measure the costs in
number of kernel computations versus sample size. Figure 4.7(left) shows that sparse
EM is more expensive than random sampling and k-means based data reduction. The
di�erence between the two latter methods is negligible, so the additional e�ort of k-
means during the data reduction does not pay o� in less computational costs during
the hill climbing. For sample size 100% the methods converge to the original SSA
hill climbing.

For random sampling, we tested sample size versus cluster quality measured by
normalized mutual information (NMI is one if the perfect clustering is found). Figure

76



4.2 KDE-Clustering as EM-Algorithm

50 100 150 200

10
00

20
00

30
00

40
00

Num Points

S
um

 N
um

 It
er

at
io

ns

FS
SSA e=0
SSA e=1E−10
SSA e=1E−5
SSA e=1E−2

Figure 4.6: Number of data points versus the total sum of numbers of iterations.

4.7(right) shows that the decrease of cluster quality is not linear in sample size. So,
a sample of 20% is still su�cient for a good clustering when the dimensionality is
d = 16. Larger dimensionality requires larger samples as well as more smoothing
(larger h), but the clustering can still be found.

In the last experiment, we compared SSA, its sampling variants, and k-means with
the optimal k on various real data sets from the machine learning repository wrt.
cluster quality. Table 4.1 shows average values of NMI with standard deviation for
k-means and sampling, but not for SSA which is a deterministic algorithm.

SSA has better or comparable cluster quality as k-means. The sampling variants
degrade with smaller sample sizes (0.8, 0.4, 0.2), but k-means based data reduction

Table 4.1: NMI values for di�erent data and methods, the �rst number in the three
rightmost columns shows the sample size.

k-means SSA Random Sampling Sparse EM k-means Sampling

iris 0.69±0.10 0.72 0.8: 0.66±0.05 0.8: 0.68±0.06 0.8: 0.67±0.06
0.4: 0.63±0.05 0.4: 0.60±0.06 0.4: 0.65±0.07
0.2: 0.63±0.06 0.2: 0.50±0.04 0.2: 0.64±0.07

ecoli 0.56±0.05 0.67 0.8: 0.65±0.02 0.8: 0.66±0.00 0.8: 0.65±0.02
0.4: 0.62±0.06 0.4: 0.61±0.00 0.4: 0.65±0.04
0.2: 0.59±0.06 0.2: 0.40±0.00 0.2: 0.65±0.03

wine 0.82±0.14 0.80 0.8: 0.71±0.06 0.8: 0.72±0.07 0.8: 0.70±0.11
0.4: 0.63±0.10 0.4: 0.63±0.00 0.4: 0.70±0.05
0.2: 0.55±0.15 0.2: 0.41±0.00 0.2: 0.58±0.21
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Figure 4.7: (left) Sample size versus number of kernel computations, (right) sample
size versus cluster quality (normalized mutual information, NMI).

su�ers much less from that e�ect. So, the additional e�ort of k-means based data
reduction pays o� in cluster quality.

In all experiments, the smoothing parameter h was tuned manually. Currently, we
are working on methods to determine that parameter automatically. In conclusion,
we proposed a new hill climbing method for kernel density functions, which really
converges towards a local maximum and adjusts the step size automatically. Fur-
thermore, our new technique can be combined with general probabilistic models as
we show in the next section.

4.3 Bayesian Folding-In with KDE-Prior for PLSA

Probabilistic latent semantic analysis (PLSA) represents documents of a collection
as mixture proportions of latent topics, which are learned from the collection by an
expectation maximization (EM) algorithm. New documents or queries need to be
folded into the latent topic space by a simpli�ed version of the EM algorithm. During
PLSA-Folding-in of a new document, the topic mixtures of the known documents
are ignored. This may lead to a suboptimal model of the extended collection.

Our new approach incorporates the topic mixtures of the known documents in a
Bayesian way during folding-in. That knowledge is modeled as prior distribution over
the topic simplex using a kernel density estimate of Dirichlet kernels. We demonstrate
the advantages of the new Bayesian folding-in in two scenarios using real text data.

The representation of documents as mixture proportions of latent topics is proven
to be a useful tool for text mining. PLSA [74, 75] opened the way for probabilistic
modeling of such representations. Applications and extensions of the PLSA model in
the �eld of data mining include author-topic identi�cation [131], document category
detection [133], comparative and contextual textmining [101, 140], and web usage
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mining [77].

A major drawback is, that PLSA is susceptible to over�tting [113]. The following
research explored di�erent Bayesian extensions of the PLSA model itself as well as
alternative undirected models to overcome di�erent drawbacks.

Bayesian extensions include latent Dirichlet allocation (LDA) [18], which models
the topic mixture proportions of a document as hidden variables drawn from a single
Dirichlet distribution, rather than as parameters of the model. PLSA has been
shown to be a special case of LDA [58], when it uses an uninformative �at Dirichlet
as prior. A more sophisticated variant are Dirichlet process priors [19]. Another
Bayesian extension of PLSA are correlated topic models [16], which use a log-normal
prior distribution. Such a distribution can capture correlations between topics, which
cannot be expressed by a single Dirichlet. Dynamic topic models [17] extent this
framework to model temporal changes in the latent topic space.

Alternative models from the class of undirected graphical models are undirected
PLSA [136] and the Rate Adapting Poisson (RAP) model [54]. Those models are
trained using contrastive divergence and avoid drawbacks of Bayesian directed models
like the explaining away e�ect.

A general drawback of the proposed extensions and alternatives to PLSA is that
the improvements come at the price of increased runtime costs for the inference
algorithms, which hinders an applications to large data.

PLSA is not a fully generative model, so a special procedure called folding-in has
to be used to determine topic mixture proportions of new documents or queries.
Our approach extends PLSAs folding-in in a Bayesian way instead of extending the
PLSA model itself. Instead of using a maximum likelihood estimator for folding-in,
a maximum a posteriori estimator is employed, which uses a kernel density estimate
as prior. The used kernel is a Dirichlet density. The advantage of a kernel density
estimate as prior is, that only a very few model assumptions are made. Furthermore,
such a prior can express correlations between topics similar to the correlated topic
model.

Our contributions are

• we propose a new Bayesian model for folding-in

• a new inference technique is introduced which uses EM to maximize the pos-
terior consisting of the word likelihood and a kernel density prior

• we propose new application scenarios for Bayesian folding-in

The reminder of the section is structured as follows, in section 4.3.1 we elaborate on
the problems of PLSIs folding-in. In section 4.3.2, we introduce the new Bayesian
model for folding-in and prove the convergence of the folding-in algorithm. Next,
we present in section 4.3.3 two applications of how to use our new model. Last, we
describe our experiments on real text data in section 4.3.4.
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4 Probabilistic Modelling and Kernel Density Estimation

4.3.1 Problems of PLSIs Folding-In

Let D be a collection of documents, and each document is represented by a bag-
of-words, which is a subset of the vocabulary W . The data set D modeled by
PLSA [74, 75] is a set of pairs that consists of document- and word-identi�ers:
D ⊆ D × W . PLSA models the probability distribution of those pairs as a mix-
ture of K latent classes p(d,w) = p(d)

∑K
k=1 p(w|zk = 1)p(zk = 1|d). All probability

distributions are multinomial distributions. The parameters of the model are the
topic-word associations ~ω = {ωwk = p(w|zk = 1): w ∈ W and k = 1, . . . ,K} and
the document-topic mixtures ~θ = {θkd = p(zk = 1|d) : d ∈ D and k = 1, . . . ,K},
which are estimated by an EM-algorithm. A K-dimensional column ~θd of the latter
matrix denotes the mixture of topics for document d.

PLSA is not a generative model, thus the topic mixture proportions p(~z|dq) are not
known for a new query document dq that comes with its own set of document-word
pairs Q ⊆ {dq} × W . The proposed folding-in procedure [74, 75] estimates those
topic mixtures by running the original EM with �xed word-topic associations. Thus,
the folding-in procedure reduces to (only the underlined probabilities are allowed to
change during the algorithm):

E-step: p(zk = 1|w, dq) =
p(w|zk = 1)p(zk = 1|dq)∑K

k′=1 p(w|zk′ = 1)p(zk′ = 1|dq)
(4.38)

M-step: p(zk|dq) =

∑
w∈W n(dq, w)p(zk = 1|w, dq)

n(dq)
(4.39)

The quantities n(dq, w) and n(dq) are the number of occurrences of word w in dq
and the total number of words in dq respectively.

Note, that the topic mixture for dq is found independently from the mixtures of
the other documents in the collection. The only in�uence comes through the �xed
word-topic associations p(w|~z), which are involved in the righthand side of the E-step.
This can lead to problems in case of short queries, which do not contain a rich

vocabulary as the documents in the collection. Since those queries have much fewer
words with non-zero frequencies as the documents and the raw frequency counts
are one in most cases, PLSAs folding-in tends to produce topic mixtures which are
dominated by a single latent aspect.

The following example demonstrates this behavior. The data consists of 28 + 28 +
28 = 84 documents, which are randomly sampled from three di�erent newsgroups of
the 20newsgroups collection. Stopwords as well as infrequent words are eliminated
and the other words are reduced to their stemmed form by Porters stemmer. PLSA
run with K = 3 latent aspects maps the documents of the three di�erent newsgroups
(small circles, squares and triangles) into the latent space shown by the simplex in
�gure 4.8(a). The six big �lled icons represent topic mixtures of documents from
the respective groups found by PLSAs folding-in. The other six big empty icons
simulate short queries each consists of four words sampled from one of the folded-in
documents. Figures 4.8(b) and (c) show the likelihoods induced by the �lled big
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4.3 Bayesian Folding-In with KDE-Prior for PLSA

triangle nearest to the left margin and the big empty triangle nearest to the top
margin respectively. While the long document induces a likelihood with a clear local
maximum, the likelihood of the short version of that query has its maximum close
to the upper corner of the simplex. Only the tempered version of EM [75] used for
folding prevents that the short query is mapped to that border position. However,
note the empty big circles and squares representing the other short queries in the
left and right corners of the simplex in �gure 4.8(a), where the tempered EM could
not help. Such a corner position indicates that only a single latent aspect is present
in such a query, which, however, in case of short queries is mainly caused by the
small sample of words in the query. Therefore, PLSAs folding-in cannot account for
alternative mappings of such a query, which might correspond to alternative semantic
interpretations of the query.

4.3.2 Bayesian Folding-In

We present a new Bayesian way to estimate the mixture proportions of topics ~θq for
a new (query) document dq with the document word pairs Q ⊆ {dq} ×W . Instead

of maximizing the likelihood p(Q|~θq, ~θ, ~ω) of the set of query speci�c document-word

pairs with respect to ~θq, the posterior p(~θq|Q, ~θ, ~ω) is maximized. This maximum
a posteriori (MAP) approach requires the de�nition of a prior distribution for the
mixture of topics ~θq of the new (query) document.

Because the topic mixtures of the documents in the collection shall have some
in�uence on the topic mixture of the query, the prior is modeled as kernel density
estimate using a Dirichlet distribution as kernel function. Kernel density estimation
is a quite �exible method, which does not make strong assumptions about the dis-
tribution of the topic mixtures of the documents in the collections. Note that while
the Dirichlet is a unimodal distribution, which assumes independence between the
topics, a kernel density estimate using Dirichlet kernels can be multimodal and is
able to capture correlations between topics.

In next the subsections, the details of the new folding-in procedure are explained
and we prove the convergence of the method by casting the problem as a special case
of the EM-algorithm.

4.3.2.1 Model

We propose to derive the unknown topic mixture ~θq of a new document using a MAP
estimator. The following quantities are given for the MAP estimator, namely the set
of query speci�c document-word pairs Q of the new document dq, the topic mixtures

of the documents in the training set ~θ, and the word topic associations ~ω.

The maximum a posteriori estimator for Q is the topic mixture ~θMAP
q that maxi-

mizes
p(~θq|Q, ~θ, ~ω) ∝ p(Q|~θq, ~θ, ~ω)p(~θq|~θ, ~ω). (4.40)

where p(Q|~θq, ~θ, ~ω) is the likelihood of Q and p(~θq|~θ, ~ω) is the topic mixture prior. We
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(a)

(b)

(c)

Figure 4.8: (a) topic mixtures (small icons) for documents learned by PLSA and for
queries of di�erent sizes (short: big empty icons, long: big �lled icons)
generated by PLSA folding-in, (b) typical likelihood in the topic simplex
for a long query, (c) short query.
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assume the query words to be independent, so the likelihood of Q can be decomposed
as follows

p(Q|~θq, ~ω) =
∏
w∈W

p(w|~θq, ~ω)n(dq ,w) (4.41)

=
∏
w∈W

( K∑
k=1

p(w|zk = 1)p(zk = 1|dq)
)n(dq ,w)

(4.42)

=
∏
w∈W

( K∑
k=1

ωwkθkq

)n(dq ,w)
(4.43)

Since the likelihood of the query words does not depend on ~θ, for ease of writing that
parameter is neglected in the list of given variables in p(Q|~θq, ~ω).

The prior is modeled by a kernel density estimate based on ~θ using Dirichlet
kernels. The topic mixtures are vectors, which have non-negative components and
all components sum to one, ∀d ∈ D :

∑K
k=1 θkd = 1. That means those vectors

reside in a K−1-simplex which is embedded in the RK . The Dirichlet distribution is
suitable for such data since the density function integrates to one over the simplex.
The density of a Dirichlet is given by

Dir(~x|~α) =
Γ(
∑K

k=1 αj)∏K
k=1 Γ(αj)

·
K∏
k=1

xαk−1
k (4.44)

The kthe coordinate of the mode of a Dirichlet is αk−1
(
∑K

k′=1 αk′ )−K
with αk > 1. The

parameter vector ~α controls both the location of the mode in the simplex and the
sharpness of the mode. Examples of Dirichlet distributions with di�erent parameter
settings are shown in �gure 4.9. Note that multiplying the parameter vector with a
scalar larger one means to increase the sharpness of the mode but it does not change
the location of the mode.

A kernel density estimate sums over the given data that are in our case the topic
mixtures of the documents in the collection. The in�uence of each topic mixture θd
is modeled by a single Dirichlet distribution, which has the mode located at θd. In
order to control the sharpness of such a Dirichlet kernel the smoothing parameter h is
introduced. Further, the function α(~θ) = 1/h ·~θ+~1 is introduced, which takes a topic
mixture vector and outputs the corresponding parameter vector of the Dirichlet, so
that the mode is exactly at ~θ. Large h makes the kernels �at and stretches the
in�uences of the individual topic mixtures over the simplex, whereas small values for
h make the kernels like sharp peaks. Modeling the prior as kernel density estimate
based on the topic mixtures of the documents in the collection gives the following
formula:

p(~θq|~θ) =
1

|D|
∑
d∈D

Dir(~θq|α(~θd)) (4.45)
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(a) (b)

Figure 4.9: (a) Example of a Dirichlet distribution over an (3 − 1)-simplex with
~α = (4, 6, 3), (b) Another example with the same mode but di�erent
sharpness, ~α = (8, 12, 6).

Since the prior does not depend on ~ω, for ease of writing that parameter is neglected
in the list of given variables in p(~θq|~θ). Examples for priors in a (3− 1)-simplex with
di�erent values for h are shown in �gure 4.10.

The direct maximization of logarithm of the righthand side of (4.40) with respect
to ~θq is di�cult due to the sums inside the logarithms. Therefore, hidden variables
are introduced for both, the likelihood of Q and the prior distribution to make the
maximization tractable with an EM algorithm. First, the likelihood of a single word
p(w|~θq, ~ω) can be seen as a mixture model of K topics. Thus, a hidden binary
variable ~yw ∈ {0, 1}K following a 1-out-of-K scheme is introduced that indicates the
particular topic zk that is responsible for word w ∈W . Second, the prior p(~θq|~θ) (eq.
4.45) also can be seen as a mixture model of |D| Dirichlet components and equal
component priors. Again, a hidden binary variable ~x ∈ {0, 1}|D| following a 1-out-
of-|D| scheme is introduced, which indicates the particular Dirichlet component that
is responsible for a speci�c setting of the topic mixture of the query document. All
hidden variables are concatenated to the vectors ~y and ~x respectively. The details
about the de�nitions of the hidden variables are explained in the next subsection.
Instead of maximizing the posterior shown in (4.40), the expectation of logarithm of
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h=0.07 h=0.02

(a) (b)

Figure 4.10: Examples of density estimates with Dirichlet kernels, (a) h = 0.07, (b)
h = 0.02.

the posterior of the extended model is maximized.

E~y,~x[ln(p(~θq|Q, ~y, ~x, ~ω))] ∝E~y,~x
[
ln(p(Q, ~y|~θq, ~ω)p(~θq, ~x|~θ, ~ω))

]
=E~y

[∑
w∈W

n(dq, w)

K∑
k=1

ywk
[
lnωwk + ln θkq

]]
+

E~x
[∑
d∈D

xd
[
ln

1

|D|
+ lnDir(~θq|~α(~θd))

]]
+ c

=

[∑
w∈W

n(dq, w)
K∑
k=1

E[ywk]
[
lnωwk + ln θkq

]]
+[∑

d∈D
E[xd]

[
ln

1

|D|
+ lnDir(~θq|~α(~θd))

]]
+ c (4.46)

The constant c comes from the normalization constant in equation (4.40). The
maximization is done by an EM-algorithm, which starts with some settings for the

wanted topic mixture of the query document ~θ
(0)
q and iteratively computes posteriors

for the hidden variables in the E-step and updates the topic mixture of the query
document in the M-step. The posteriors for the hidden variables computed in the
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E-step are given by the following formulas

E[ywk] = p(ywk = 1|w, ~θ(s)q , ~ω) =
ωwk · θ

(s)
kq∑K

k′=1 ωwk′ · θ
(s)
k′q

= gwk (4.47)

E[xd] = p(zd = 1|~θ(s)q , ~θ) =
Dir

(
~θ
(s)
q |α(~θd)

)∑
d′∈DDir

(
~θ
(s)
q |α(~θd′)

) = hd (4.48)

In the M-step, the posteriors of the hidden variables are held �xed and plugged
into (4.46). That equation is maximized with respect to ~θq under the condition∑K

k=1 θkq = 1, which give the following update formula for the wanted topic mixture

θ
(s+1)
kq =

∑
w∈W n(dq, w)gwk + 1/h

∑
d∈D hdθkd

n(dq) + 1/h
(4.49)

Note that Bayesian folding-in includes PLSAs folding-in as a special case, namely
when h = ∞. In that case, the Dirichlet kernels become �at and the posteriors hd
of the prior vanish in the update formula 4.49. Therefore, the posteriors of the prior
become irrelevant and the formulas (4.47) and (4.49) reduce to the equations (4.38)
and (4.39) of PLSA folding-in respectively.

Figure 4.11 continues the small example from the previous section and shows the
results for Bayesian folding-in using the same data as before. The contour lines
in �gure 4.11(a) show the prior, which is the same for all queries. Also note the
multimodal posterior (�gure 4.11c) for the short query (big empty triangle in the
upper corner). The other less likely modes of that posterior may correspond to
alternative semantic interpretations.

4.3.2.2 Convergence of Bayesian Folding-In

It is not straightforward to see that the alternating application of the formulas (4.47),
(4.48) and (4.49) converges towards a local maximum of the posterior (4.40) used for
the MAP estimator. The claim is proved in this subsection by casting the maximiza-
tion procedure as a special case of the EM algorithm. This is not the typical use of
the EM-algorithm. EM is often used to compute a maximum-likelihood estimation
of parameters of some mixture model. In contrast, we used it here as a tool for hill
climbing on a modi�ed kernel density function. This kind of application of the EM
technique is interesting in its own right, therefore we report it here in more detail.

Hidden variables ~y, ~x are introduced for both, the likelihood of Q and the prior
distribution to make the maximization of the posterior (4.40) tractable with an EM
algorithm. First, the likelihood of a single word p(w|~θq, ~ω) is seen as a mixture model
of K topics. A hidden binary vector ~yw ∈ {0, 1}K is introduced for each word w ∈W
that appears in the new document dq. We do not need to introduce hidden variables
for words that do not appear in the new document because those terms gets zeroed
by n(dq, w) in eq.(4.46). The vector ~yw follows a 1-out-of-K representation that
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(a)

(b)

(c)

Figure 4.11: (a) topic mixtures for documents learned by PLSI and for queries of
di�erent sizes (short, long) generated by Bayesian folding-in, (b) typical
posterior in the topic simplex for a long query, (c) short query.
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means all components of ~yw are zero except the one that indicates the topic zk that
explains word w. Thus, the complete likelihood of word w is

p(w, ~yw|~θq, ~ω) = p(w|~yw, ~θq, ~ω)p(~yw|~θq, ~ω) (4.50)

and can be decomposed into the factors

p(w|~yw, ~ω) =

K∏
k=1

ωywk
wk =

K∏
k=1

p(w|zk = 1)ywk and (4.51)

p(~yw|~θq) =
K∏
k=1

θywk
kq =

K∏
k=1

p(zk = 1|dq)ywk (4.52)

This is still the standard method, where the use of hidden variables lead to equa-
tions, which allow tractable inference of unknown parameters, in this case ~θq. For
convenient syntax, the vectors ~yw for all words are concatenated to the vector ~y.

Second, the prior p(~θq|~θ) (eq. 4.45) also can be seen as a mixture model with |D|
Dirichlet components and equal component priors. Again, a hidden binary vector
~x ∈ {0, 1}|D| is introduced. The vector follows a 1-out-of-|D| representation, thus
all components are zero except the one that indicates the Dirichlet component that
explains a speci�c setting of the topic mixture ~θq of the query document. Thus, the
prior of the queries topic mixture is expanded to

p(~θq, ~x|~θ) = p(~θq|~x, ~θ)p(~x|~θ) (4.53)

with the factors

p(~θq|~x, ~θ) =
∏
d∈D

Dir
(
~θq|α(~θd)

)xd and (4.54)

p(~x) =
∏
d∈D

(1/|D|)xd (4.55)

Note that in contrast to the likelihood of Q, the quantity in question ~θq does not
appear in the list of the conditions of the prior distribution (4.45). Now, the EM can
be interpreted as hill climbing on the posterior (4.40).

Putting it all together, the logarithm of the complete posterior of the whole model
(eq. 4.40) is

ln(p(~θq|Q, ~y, ~x, ~ω)) ∝ ln(p(Q, ~y|~θq, ~ω)p(~θq, ~x|~θ, ~ω))

=

[∑
w∈W

n(dq, w)
K∑
k=1

ywk
[
lnωwk + ln θkq

]]
+[∑

d∈D
xd
[
ln

1

|D|
+ lnDir(~θq|~α(~θd))

]]
+ c (4.56)
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Following the EM framework, the function to be optimized is the expectation of
(4.56) as shown in eq. (4.46). Thus, in the E-step we get the posteriors for both, the
indicator of the PLSA mixture model

E[ywk|w, ~θ(s)q , ~ω] = p(ywk = 1|w, ~θ(s)q , ~ω) (4.57)

=
p(w|ywk = 1, ~θ

(s)
q , ~ω)p(ywk = 1|~θ(s)q )∑K

k′=1 p(w|ywk′ = 1, ~θ
(s)
q , ~ω)p(ywk′ = 1|~θ(s)q )

= gwk

and the indicator of the prior modeled by kernel density estimation

E[xd|~θ(s)q ] = p(xd = 1|~θ(s)q ) (4.58)

=
p(~θ

(s)
q |xd = 1)p(xd)∑

d′∈D p(
~θ
(s)
q |xd′ = 1)p(xd′)

= hd

The �nal equations (4.47) and (4.48) for the E-step are derived by substitution and

simpli�cation using the following identities p(w|ywk = 1, ~θ
(s)
q , ~ω) =

∏K
k′=1 ω

ywk′
wk′ =

ωwk, p(ywk = 1|~θ(s)q ) =
∏K
k′=1 θ

ywk′
k′q = θ

(s)
kq , p(

~θ
(s)
q |xd = 1) =

∏
d′∈D Dir

(
~θq|α(~θd′)

)xd′ =

Dir
(
~θ
(s)
q |α(~θd)

)
, and p(xd) =

∏
d′∈D(1/|D|)xd′ = 1/|D|.

In the M-step, the expectation of (4.56) is maximized with respect to ~θq under the

condition
∑K

k=1 θkq = 1. Equation (4.46) is extended by a Lagrange multiplier and
the Dirchlet is expanded.

L(~θq) =

[∑
w∈W

n(dq, w)
K∑
k=1

gwk
[
lnωwk + ln θkq

]]

+
∑
d∈D

hd

[
ln

1

|D|
+ ln

1

B(~α(~θd)
+

K∑
k=1

(
α(θkd)− 1

)
ln θkq

]

+ λ

[ K∑
k=1

θkq − 1

]
+ c (4.59)

The �rst derivative of eq. 4.59 is set to zero

∂L(~θq)

∂θkq
=
∑
w∈W

n(dq, w)gwk
1

θkq
+
∑
d∈D

hd(α(θkd)− 1)
1

θkq
+ λ = 0 (4.60)

Solving for θkq and substituting into the side condition yields the update equation

(4.49) for the kth component of the new topic mixture ~θ
(s+1)
q of the query document.
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4.3.3 Applications of Bayesian Folding-In

Two applications of Bayesian folding-in are studied in the sequel. First, in order
to determine the latent topic mixtures for the documents of a large collection, the
original PLSA is applied to a subset of documents of the collection, while the rest
of the documents are folded in using Bayesian folding-in. The rationale behind the
idea is to avoid over�tting of PLSA by keeping the number of parameters small. As
the number of PLSA's parameters grows linearly with the training set of documents,
that set is kept small as possible. Bayesian folding-in for the rest of the documents
makes use of both the learned word topic associations as well as the learned latent
topic mixtures of the training documents.

The second application of Bayesian folding-in is information retrieval. A document
collection is processed by PLSA and then queries are folded into the latent document
space by Bayesian folding-in. Di�erent strategies of folding in are discussed.

4.3.3.1 PLSA with Bayesian Folding-In

The representation of documents as vectors of mixture proportions of latent topics
is useful in several situations. The straightforward way to get those vectors for
the documents of a collection is to apply PLSA to the whole collection. However,
this way has several drawbacks, namely (i) over�tting due to the large number of
parameters of PLSA which is linear in the size of the document collection, (ii) skewed
topic occurrences present in the whole collection may distort the latent documents
representations to be learned, and (iii) large computational costs.

Therefore, we propose to apply PLSA to a representative subset of documents
only, while the rest of the documents is folded into the latent subspace by Bayesian
folding-in. This strategy reduces the number of parameters for PLSA and therefore
the load of the tempered EM algorithm to get stuck in a suboptimal local maximum
of the likelihood. The output of PLSA consists of the word topic association matrix
and the latent topic representations of the document in the subset. In order to
get a model which is equivalent to the case when PLSA is applied to the whole
collection, the representative subset of document has to cover the vocabulary of the
whole collection. Furthermore, since PLSA cannot bene�t from words which appear
in only a single document each word has to occur in at least two documents of the
representative subset. So, the �rst problem to solve is how to select a representative
subset of documents.

The second problem is concerned with Bayesian folding-in. As shown in the ex-
amples in the previous section, Bayesian folding-in can be seen as hill climbing on
a multimodal function. The goal is to �nd the global maximum among the local
maxima. This depends on the start point of Bayesian folding-in. Thus, the second
problem consists in selecting a set of suitable start points, so that Bayesian folding-in
converges to the global maximum in at least one case. Both problems are discussed
in the next two paragraphs.
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Algorithm 1 Greedy Algorithm

1: D = {d1, . . . , dN}
2: V =vocabulary(D)
3: V ′ = V
4: D′ = ∅
5: while exists a w ∈ V which occurs in less than two documents in D′ do
6: d = pick the document in D which has the largest intersection with V ′

7: D = D \ {d}
8: D′ = D′ ∪ {d}
9: V ′ = words in V which occur in less than two documents in D′

10: end while

11: return D′

4.3.3.1.1 Representative Subset of Documents Given a collection of documents
D, the selection of a representative subset of documents D′ ⊂ D is crucial for a
good overall model of the collection. One important criterium for the subset D′ is
to cover the whole vocabulary of D. The problem is an instance of the minimal set
cover problem, where given a universe U and a collection C of subsets of U , the
minimal subset of the collection C is wanted, whose union equals the universe U .
The greedy algorithm is the algorithm with polynomial runtime which gives the best
approximation [48].

In order to run PLSA e�ectively, the additional requirement is made, that each
word of the vocabulary appears in at least two documents of the subset. The greedy
algorithm for that problem is given by algorithm 1. The greedy algorithm which
gives the best approximation of the set cover problem, is compared to the algorithm
which selects documents randomly in line 6.

Note, that for a good model of the document collection an optimal solution of
the set cover problem is not necessarily needed. The representative subset D′ just
has to be small enough to avoid over�tting during PLSA learning of the word topic
associations and initial topic mixtures for the kernel density based prior.

4.3.3.1.2 Starting Points for Bayesian Folding-In Bayesian folding-in of a new
document is a deterministic process, which starts with an initial topic mixture for
that document and iteratively performs hill climbing on the posterior density (4.40)
until it converges towards a local maximum. However, as the posterior may have
multiple local maxima it depends on the starting point of the hill climbing to which
of the local maxima Bayesian folding-in converges in the end. From a data modeling
perspective, the local maximum with the largest posterior, i.e. the global maximum,
is preferred since we are doing maximum a posteriori estimation. The posterior
consists of two factors, one which depends on the given new document or query
at hand, i.e. called likelihood, while the other factor, called prior, is independent
of the documents to be folded in. From practical experience the prior itself has
typically multiple modes and is mainly responsible for the multimodal structure of
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4 Probabilistic Modelling and Kernel Density Estimation

the posterior. The likelihood has usually a single mode only. In order to �nd a
small and general set of starting points, which is independent from the document to
be folded in, the prior is analyzed only. Note that the prior is independent of the
document to be folded in, therefore, the following analysis has to be done only once
as a preprocessing step.

The idea to get the set of starting points is to determine the local maxima of the
prior. This can be done by hill climbing as well. Note that this maximization is
a special case of the maximization of the posterior (4.40), just that the likelihood
becomes a constant. Thus, the hill climbing on the prior can be formulated as EM
algorithm as well with the following modi�cations. The posterior for the hidden
variable ~y eq. (4.47) is not necessary anymore and can be neglected. The E-step
consists only of eq. (4.48). The update formulae (4.49) of the M-step reduces to

θ
(s+1)
kq =

∑
d∈D

hdθkl (4.61)

A hill climbing on the prior distribution is started at the topic mixture vector of each
document in D′ and iterated until convergence. As a result the end points of the hill
climbing are determined for all documents in D′. Documents which belong to the
same local maximum of the prior, have very close end points. Those end points are
reduced to a set of representative end points by k-means. The number of clusters k
is heuristically chosen between 4 and 10.

For a new document, those representative end points are used as starting points
for Bayesian folding-in, i.e. for each representative end point a Bayesian folding-in
hill climbing on the posterior is started. This gives k possible topic mixtures for the
new document. Among those the topic mixture is chosen with the highest posterior
value.

4.3.3.2 Bayesian Folding-In and Information Retrieval

Bayesian folding-in determines for a query or a new document mixture proportions
of latent topics, which can be seen as a K-dimensional vector. The found vector can
be used to determine similarities to the documents of a given collection, for which
such latent representations have been determined before. Usually the similarities
are calculated by cosine similarity. Hofmann proposed model averaging [75], which
linearly combines for a particular query document pair the similarities determined
on di�erent latent representations (for which usually the number of aspect varies) as
well as the similarity determined on the original term representations.

Bayesian folding opens two new degrees of freedom to tune a ranking, namely
(i) the choice of the starting point for folding-in and (ii) varying the smoothing
parameter h. The answer to the choice of the starting point is a di�erent one from
the information retrieval perspective as before from the data modeling perspective.
For data modeling it is �ne to select the start point, for which Bayesian folding-in
converges to the global maximum of the posterior. However, information retrieval
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has the more informal goal to �nd documents relevant to the query. As especially
short queries may have ambiguous meanings, the most appropriate representation of
the query in the latent space may not necessarily correspond to the global maximum
of the posterior. Alternative meanings correspond to the set of local maxima of
the posterior. Using relevance feedback, an information retrieval system may learn,
which local maximum is most appropriate for the user and the retrieval task at hand.
If no additional information (e.g. from relevance feedback) is available, the global
maximum of the posterior gives the most plausible query representation.

The second new degree of freedom is the smoothing parameter h. The larger h the
more the prior changes towards a �at distribution. The kernel density-based prior
helps to focus onto the relevant part of the latent space during folding-in. A very large
value for h e�ectively removes this focus and allows all possible mixture proportions
of the latent topics for the query representation. In terms of information retrieval,
the parameter h can be seen as a quantity, which speci�es how general the query can
be interpreted to match documents in the returned ranking. Large h means more
general, since the latent query representation is allowed to take mixture proportions
that are quite distant from the rest of the documents in the collection. The discussion
shows the potential of Bayesian folding-in for improvements in information retrieval.

4.3.4 Experiments

Two experiments are performed to study the performance of Bayesian folding-in re-
garding the following questions: (i) does Bayesian folding-in improve the model of a
document collection based on the output of PLSA trained on a subset of the docu-
ments, and (ii) does Bayesian folding-in improve the retrieval of relevant documents
for a given query.

The lemur package1 is used for preprocessing the text data as well as training
PLSA on a collection of documents. Additionally the trec_eval2 tool (version 8.1)
is used to assist the evaluation of the information retrieval experiments.

4.3.4.1 Data and Preprocessing

The proposed applications of Bayesian folding-in are evaluated on public benchmark
text corpora. The evaluation of Bayesian folding-in in combination with PLSA can
be done on text documents only. For the application to information retrieval, queries
with known relevant documents are additionally needed as ground truth to estimate
precision and recall. Five document collections are used in this study, namely CISI
(1460 document, 112 queries), CRAN (1400 documents, 225 queries) and MED (1030
documents, 30 queries) 3 as well as CARS (1000 documents) and BASEball (1000
documents), which are part of the 20newsgroups collection 4. Queries only are avail-

1lemurproject.org
2trec.nist.gov/trec_eval
3ir.dcs.gla.ac.uk/resources/test_collections/
4people.csail.mit.edu/jrennie/20Newsgroups/

93



4 Probabilistic Modelling and Kernel Density Estimation

able for CISI, CRAN and MED.

Preprocessing of documents and queries includes elimination of stop words using
the list from the SMART project5 as well as the elimination of infrequent words.
Infrequent words are those that occur in less than δ documents and hence are assumed
to convey only minor information. In the �rst experiment, δ is chosen to be 10, and
in the second experiment δ is chosen to be 5, which guarantees that no query becomes
empty. Documents containing less than 5 words are neglected. All terms are reduced
to word stems using Porters stemmer. Additionally, the headers of the documents
of CARS and BASEBALL are removed. Those headers include email addresses and
subject lines, which include often very noisy textual information, e.g. the subject
lines include all type of pre�xes from email clients in random order.

4.3.4.2 Likelihood Experiment

The aim of this experiment is to determine the capability of the approaches to model
a document collection. In detail, Bayesian folding-in (BFI) is compared to two
PLSAs folding-in (PFI), and (iii) PLSA performed on the entire collection (PLSA).
Additionally, the two approaches to select a representative subset of documents are
compared, namely random selection and the greedy algorithm.

The overall experimental set-up used to assess the modeling capability of the three
approaches is shown in �gure 4.12.

Given a collection of documents, the set of document-word pairs does not include
stopwords as well as infrequent words. The hold out data, on which the predictive
likelihood is determined, is randomly sampled and consists of 10% of those document
word pairs. The other 90% of the document word pairs are used as training data.
Although the document word pairs are randomly sampled it is guaranteed, that (i)
each document occurs in the remaining training data and consists of at least �ve
words, and (ii) each word occurs at least in two di�erent documents in the training
data.

Step two consists of selecting a representative subset of documents from the train-
ing data. PLSA determines on the representative subset an incomplete model, which
consists of the word topic associations of the whole vocabulary and the topic mixtures
for the representative subset of documents. The information of the incomplete model
is used to fold-in the rest of the documents in training data to determine complete
models, which now include the topic mixtures for all documents. The folding-in is
done using Bayesian folding-in as well as using PLSAs folding-in. A third complete
model is determined by training PLSA on the whole training data. The number of
latent topics is always set to K = 32.

The complete models are used to determine the predictive likelihood on the hold
out data:

L =
∑

(d,w)∈hold out data

n(d,w)p(d,w) (4.62)

5http://ir.dcs.gla.ac.uk/resources/ir_sys
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Figure 4.12: Experimental set-up to compare predictive likelihoods of the three stud-
ied model variants.
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PLSA PLSA-FI BFI

BASE −107868 −100776 −99741
CARS −83939 −83975 −83340
CISI −104319 −97584 −97306
CRAN −155344 −144479 −143336
MED −80868 −82903 −82116

PLSA PLSA-FI BFI

BASE −108316 −102543 −101333
CARS −84010 −85474 −85124
CISI −104121 −98634 −98460
CRAN −155230 −146866 −146088
MED −81569 −84343 −83488

Table 4.2: Results of the �rst experiment. Shown are the predictive log-likelihoods
of the test data given the three variants of the compared trained co-
occurrence data models. The upper table shows results for random se-
lection, the lower table for greedy selection.

CISI CRAN MED CARS BASE

rand. sampl. 0.611 0.597 0.577 0.635 0.63
set cov. alg. 0.113 0.105 0.147 0.131 0.133

Table 4.3: Shown are the percentages of all training documents that are selected by the two

algorithms used to select representative subsets.

This procedure is repeated 20 times and the averaged likelihoods are reported.

4.3.4.2.1 Results The results of the experiments on the benchmark collections are
reported in table 4.2.
The higher the predictive log-likelihoods the better the model has learned the

data. Using random selection for the representative subset of documents, Bayesian
folding-in gives for all collections but MED the model with the highest predictive
likelihood. Additionally, the PLSA-FI model has a better or comparable predictive
likelihood then the standard PLSA model.
A second run is performed using the greedy algorithm to select a representative

subset of the training documents. Again the results show that for BASEball, CISI,
and CRAN Bayesian folding-in is advantageous in terms of predictive likelihood. Fur-
thermore, PLSA folding-in performs better than the standard PLSA model trained
on the entire training data. Again, in case of the MED collection but also in case of
the CARS collection the standard PLSA model performs best.
One reason explaining this observation may be the fact that the standard PLSA

model has to learn parameters proportional to the number of di�erent words and
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documents. After preprocessing, CARS and MED consist of the smallest set of
di�erent words and documents. MED consists of 1033 documents and 1489 words,
CARS consists of 1000 documents and 1236 but e.g. CISI consists of 1460 documents
and 1188 words. Additionally, the di�erences of the number of words and documents
is multiplied by the number of chosen topics. Hence, the PLSA models for MED
and CARS are the most simple ones and may be not prone to over�tting as strong
as this leads to outperforming by PLSA-FI or BFI models. As before one observes
in all cases, that Bayesian folding-in always gives better predictive likelihoods than
PLSA folding-in does.

The approaches for selection of representative subsets are compared by the mean
percentage of the size of the selected subset relative to the set of all training doc-
uments. Results are reported in table 4.3. In all cases the representative subset is
signi�cant smaller, when using the greedy algorithm. A smaller representative sub-
set makes it harder to learn the topic mixtures of the data collection and thus one
may expect the predictive likelihoods to decrease. Indeed the results show, that the
PLSA-FI and BFI models using random sampling reach better predictive likelihoods
as those using the greedy algorithm.

These results indicate: (i) in agreement with [113] that the PLSA model is prone to
over�tting, (ii) that PLSA-FI and BFI may help to reduce the tendency of over�tting,
and (iii) that Bayesian folding-in is more robust than PLSA folding-in.

4.3.4.3 Recall Precision Experiment

The second experiment aims at assessing the capability of Bayesian folding-in in
comparison to PLSA folding-in to be of use for information retrieval. In detail, the
task is to retrieve a set of documents as the answers to a query with high precision and
recall. For a given document collection and a query, recall is de�ned as:|a∩b|/|a| with
the de�ned sets of relevant documents a and the retrieved documents b respectively.
Whereas precision is de�ned as: |a ∩ b|/|b|. Due to the need of a list of relevant
documents for the queries, this experiment is only done for the data sets CISI,
CRAN, and MED.

First, PLSA is performed on the entire document collections for 32 topics resulting
in a co-occurrence data model for each of them. As discussed in section 4.3.1 this
model estimates for each document a vector in the latent topic space consisting
of the learned document-topic mixtures. Afterwards, the queries are folded into
the previously obtained co-occurrence data model using (i) PLSA folding-in, and
(ii) Bayesian folding-in. The similarity between each query and all documents of the
collection is computed and postprocessed to give interpolated recall-precision graphs.
Similarities are de�ned as a weighted sum of similarities in the latent semantic space
which are in�uenced by either PLSA-FI or B-FI, and in the original vector space
spanned by the words. This strategy was proposed by Hofmann [75].

4.3.4.3.1 Results The results of the second experiment are shown in �gure 4.13. In
general, the more the graph approaches the upper right corner the better the retrieval
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Figure 4.13: Interpolated recall-precision graphs of (i) PLSA folding-in, and (ii)
Bayesian folding-in.

performance. In case of CISI and MED, one observes that for all recall values, the
obtained precisions using Bayesian folding-in are above those using PLSA folding-
in. In case of CRAN, the performances of both methods are comparable. These
results indicate that (i) the B-FI bene�t using a prior distribution over document-
topic mixtures, and (ii) the B-FI is advantageous in information retrieval tasks. The
results are in agreement with the results of the predictive likelihood experiment
showing that B-FI models always reach higher predictive likelihoods then PLSA-FI
models.

The smoothing parameter h = 0.02 has been kept constant during all experiments.
This value gives a reasonable small set of di�erent starting points for Bayesian
folding-in. In general, that parameter should be estimated using cross-validation,
which is a general approach to �nd setting for hyper-parameters of Bayesian meth-
ods.

4.4 Summary

We propose a new method for hill climbing a kernel density estimate. The hill
climbing procedure is devised as a special case of the expectation maximization
algorithm. This shows a new connection between the theories of kernel density
estimation and expectation maximization. We demonstrated the usefulness of the
new hill climbing for density based clustering. The new connection allows the use of
several approximation methods used for the EM algorithm in general in the context
of density based clustering.

Furthermore, we demonstrate the application of the new method for combining ker-
nel density priors with standard probabilistic models. In our case, a new Bayesian
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method for folding new documents into the latent space determined by PLSA is pro-
posed. Additionally to PLSAs folding-in, a prior based on kernel density estimation
with Dirichlet kernels is used. Two application scenarios for Bayesian folding-in are
proposed and its superior performance in both scenarios has been demonstrated on
real document collections.
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Real datasets exhibit patterns and regularities. A main consequence is that in case of
high-dimensional vector data the points typically lie on low-dimensional manifolds,
rather than being evenly spread out. A similar fact is observed for non-vector data,
e.g. text strings, for which only the pairwise distances or similarities between the
data objects are known. Real data of that kind never use all degrees of freedom, that
are permitted by the formal data representation, e.g. in English words letter 'q' is
rarely followed, if at all, by letter 'w'. Both phenomena, low-intrinsic dimensionality
and few degrees of freedom, are rooted in hidden regularities in data. Detecting that
known data subsets signi�cantly di�er in the used degrees of freedom or even �nd
the subsets themselves that have low intrinsic dimensionality is useful in tasks such
as indexing and classi�cation. The material presented in this chapter is a revised
version of our publications on dimension induced clustering [56] and the application
of fractal data analysis to study the degrees of freedom of mitochondrial transit
peptides [128].

It has recently been proved [84] that the well-known �curse of dimensionality�
translates essentially to a �curse of intrinsic dimensionality,� in terms of �nding ef-
�cient approximations to nearest-neighbor queries. Thus, knowing that a certain
subset of data has small intrinsic dimensionality helps to build a more e�cient in-
dex for this part of the data. Furthermore, separating points based on some notion
of �local dimensionality� is helpful in identifying subsets of points that are quali-
tatively di�erent. For example assuming a geographical setting, locations along a
river belong to a 1-D manifold, whereas locations on a lake would belong to a 2-D
manifold (for example Figure 5.1). Similarly, road intersections along a highway are
on a 1-D manifold, while intersections within a city belong to a 2-D manifold. Thus,
discovering low-dimensional manifolds is also useful in its own right.

However, we are faced with three main challenges. The �rst question that natu-
rally arises is what �dimension� exactly means. Data patterns may be fairly com-
plicated. Assuming that text data follow rules based on regular expressions or that
high-dimensional points follow linear trends and always lie on hyper-planes is fairly
restrictive. For example, in a more abstract setting the lake and river may lie on
the same 2-D plane, but they still di�er in dimension. Second, to complicate mat-
ters even further, the observations may not even belong to a vector space. Yet, we
should be still able to de�ne the dimension of the data. Finally, in practical applica-
tions, the dimension of the embedding space is large, in the order of thousands. Any
method of practical interest should be able to deal with spaces of arbitrarily high
dimension and still successfully estimate the intrinsic dimensionality and if necessary
�nd low-dimensional subsets embedded in the original space. It is thus desirable to
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Figure 5.1: A dataset that contains two subsets of di�erent intrinsic dimensionality

characterize data following complex patterns embedded in spaces of any type, vector
and non-vector spaces, and devise algorithms for estimating intrinsic dimensionality
as well as identifying subsets of data with low dimensionality. As we shall see, it is
possible to intuitively de�ne a notion of dimension, which does not depend on the
notion of a linear subspace. Furthermore, the algorithms for estimating intrinsic di-
mension and identifying low-dimensional manifolds are not sensitive to the dimension
of the original space and, thus, do not su�er from the �curse of dimensionality�.

In order to argue about and detect the existence of a low-dimensional manifold
in our data, there must exist a su�ciently large number of points that are densely
packed on this manifold. Therefore, it seems reasonable, that the concept of point
density captures the low intrinsic dimensionality and using density based methods
would be able to detect such subspaces. However, we argue that density alone is
not su�cient. For the sake of example consider city locations interspersed among
highway intersections. The cities, lying on a 2-D surface, form a distinct data subset.
The road intersections form another subset, as a complex network of denser 1-D lines
which occupies the same space as the cities. Density-based clustering approaches
have a limited ability to detect clusters-within-clusters. In this simple example, they
would typically produce either a large number of separate city clusters (one for each
group of cities enclosed by roads), or one single cluster containing both intersections
and cities, depending on the density thresholds.

Consider also the example in Figure 5.1. In this case we have three qualitatively
di�erent types of points. The set of points that lie on the curved 1-D line, the set of
points that lie on the 2-D cloud, and the noise points that are scattered in the 2-D
plane. If the line and the square have the same density, it is impossible to detect
that they di�er in dimensionality. If the subset are not known in advance (all points
have same color), using a density based method is not possible to detect all three
of these subsets. Any density threshold will just separate the noise points from the
rest. Note also that dimensionality by itself would not be able to separate the square
from the noise points, since the noise points are also 2-dimensional. The synergy
of density and intrinsic dimensionality gives a clear separation of the three distinct
datasets, as it is shown in the �gure.

In the reminder of the chapter we �rst review a suitable de�nition of intrinsic
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dimensionality, which can be applied to vector and non-vector data (Section 5.1).
Second, we introduce a simple test procedure to verify that known subsets of the
data signi�cantly di�er in intrinsic dimensionality (Section 5.2). Furthermore, we
present an application of this procedure to biological problem, namely to verify the
reduced number of degrees of freedom in mitochondrial transit peptides in plants in
contrast to those in animals and fungi. The third subsection, Section 5.3, deals with
the problem, that the subsets are not known beforehand but shall be detected in an
unsupervised manner. Last, Section 5.4 summarizes the approaches presented and
discusses extensions of both approaches, which are subject to ongoing research.

5.1 Correlation Dimension

We draw upon the concept of correlation dimension which is one of several de�nitions
of fractal dimension. The concept of fractal dimension [46,93] has di�erent theoretical
de�nitions, among which Hausdor� dimension is a prominent one. The general idea
is to cover the data space by a number of non-empty balls. Hausdor� dimension is
de�ned as the ratio between the logarithm of the minimal number of balls of same
size needed to cover the whole data in the space and the logarithm of the balls
size. The practical estimation of the Hausdor� dimension requires a solution to the
di�cult problem of covering the data by a minimal number of balls.
For practical estimation tasks on real data, other de�nitions of fractal dimension,

namely correlation dimension and box-counting dimension, have been used. Because
the de�nition of box-counting dimension is applicable only to vector data, we focus
in our discussion on correlation dimension.
First, we introduce the original de�nition of correlation dimension in terms of

distances. Second, we review practical ways to estimate the dimensionality and last,
we give illustrative examples that demonstrate the estimation procedures.

5.1.1 De�nition

Let X = {x1, x2, . . .} be a set of objects and δij be the distance between xi and xj .
The correlation integral C(r) for a given radius r is

C(r) = lim sup
N→∞

1

N2

N∑
i=1

N∑
j=1

Θ(r − δij) (5.1)

The speci�c use of the Heaviside function

Θ(b) =

{
0 , if b ≤ 0

1 , else
(5.2)

indicates whether two objects have a distance smaller than r. So, the inner sum
over j counts how many objects are in a ball of radius r centered at xi. The term
after the limit denotes the fraction of pairs of objects with an index smaller N that
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are closer than r. The limit is derived by assuming an in�nite set of objects with
respective distances. The correlation dimension d is the rate at which the logarithm
of the correlation integral decreases, when r is shrinking.

d = lim
r→0

logC(r)

log r
(5.3)

5.1.2 Practical Estimation

In practice, only �nite data sets are available. There are several heuristic methods to
estimate correlation dimension from �nite data, namely Grassberger-Procaccia [61]
and sandbox [86]. We review them brie�y and discuss them in the context of non-
vector spaces that have some additional restrictions than the usual setting of vector
spaces. Here, a non-vector space consists of a set of objects and the pairwise distances
between them are known. In the vector space setting, the objects are embedded into
a multi-dimensional vector space and the distance is some vector distance measure.
Note that in a vector space the distances to arbitrary points can be calculated, also
to those points that do not belong to the given data. This is not possible in the
setting of a non-vector space.

When dealing with �nite data, the original de�nition of the correlation integral
eq. (5.1) cannot be used due to the limit N → ∞. Note that the equation can be
seen as an average (outer sum with an factor of 1/N) of N fractions each giving the
fraction of objects contained in a ball (inner sum with an factor of 1/N). A standard
heuristic explained in [127], which is used to get more robust estimates of the fraction
of data contained in a ball, is to leave out the center point which induces the ball.
The removal of the center points by the mentioned standard heuristic for correlation
dimension avoids that all balls would be trivially non-empty by de�nition, because
without the heuristic always the center point would be part of the ball. The empty
balls must be �ltered before the computation of the correlation integral, in order to
avoid distortions of the estimate of the correlation dimension.

We denote by p̂i the estimate of the fraction of data contained in the ith ball of
radius r:

p̂i(r) =
1

N − 1

N∑
j=1,i 6=j

Θ(r − δij) (5.4)

In order to avoid empty balls in the following formulas, we denote by N̂(r) the
number of non-empty balls, which is basically the number of p̂is that are larger zero.
Note that N̂(r) ≤ N . Additionally, let be Î(r) ⊆ {1, . . . , N} the index set of those
non-zero p̂i(r)s.

The Grassberger-Procaccia algorithm [61] estimates the correlation dimension by
computing an estimate of the correlation integral for several representative values
r1, r2, . . . for radius r. In order to estimate the correlation integral for a speci�c r,
the algorithm computes the arithmetic mean of the N̂(r) non-zero fraction estimates
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p̂i(r).

Ĉ(r) =
1

N̂(r)

N̂(r)∑
ij∈Î(r)

p̂ij (r) (5.5)

Then, log Ĉ(r) is plotted versus log r in the so called log-log plot and a line is �tted
to the points of the linear part of that curve. Correlation dimension is estimated as
the slope of the line �tted to the linear part of the curve in the log-log plot.
An alternative to the Grassberger-Procaccia algorithm is the sandbox method.

The di�erence is that the arithmetic mean of the p̂is is replaced by the harmonic
mean of those N̂(r) quantities.

C̃(r) = N̂(r)

[ N̂(r)∑
ij∈Î(r)

p̂ij (r)
−1
]−1

(5.6)

The rest is the same as for the Grassberger-Procaccia algorithm.
An open question is how to �nd the linear part of the correlation integral in the

log-log plot? The question is di�cult to answer automatically, because there are
datasets that do not induce a linear part in the log-log plot. Such cases include
(a) there is no linear part at all, and (b) there are multiple linear parts of di�erent
slopes. Correlation dimension is not de�ned in these cases. Therefore, all known
estimation procedures require some kind to manual tuning �rst, to decide whether a
single linear part of the correlation integral in the log-log plot does exist and second,
to determine the particular interval in the domain of the possible radii that is used
for �tting the line. In the next sections, we manually inspected a representative
number of log-log plots for each type of data set to decide whether there is a single
linear part and to determine an interval in the radius domain that is used for line
�tting.

5.1.3 Examples

We illustrate the idea behind correlation dimension by two simple examples (see
�gure 5.2(a) and (b)). Assume the given data set is a �nite sample of two-dimensional
points, which are uniformly distributed. The number of points in a ball of radius r
around a particular point xi is approximately proportional to the area covered by
the ball, which is πr2. Thus, the correlation integral grows nearly quadratically for
medium values of r. Figure 5.2 (c) and (d) show the log-log plot for Grassberger-
Procaccia and sandbox method respectively. In the log-log plots, the linear part of
the lower curve has a slope close to two. This agrees with the intuition that the
dimension of the data should be two. The slope is estimated by �tting a line to the
marked points. The tail for small values for r should be ignored as the correlation
integral depends here on balls, which include very few points. The part for very
large radii is not informative, as here the balls include all points and therefore the
correlation integral is not growing anymore.
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Figure 5.2: Example data with N = 200 points uniformly sampled from a plane (a)
and from a line (b). Correlation integral versus radius for both data sets
and the slopes of the �tted lines, which estimate correlation dimensions
using Grassberger-Procaccia (c) and Sandbox (d). The lines are �tted to
the marked points.

In the second example, points are sampled from an line, which is arbitrarily em-
bedded in the two-dimensional space. The number of points in a ball of radius r
around a particular point xi is approximately proportional to the length of the part
of the line, which is covered by the ball. Thus, the correlation integral grows only
linearly. In the log-log plot, the linear part of the upper curve has a slope close to
one which also con�rms the intuition.

In a further experiment, we demonstrate the dependency of the estimates on the
sample size N ∈ {50, 100, 200, 400, 800} of the data. Figure 5.3 shows the results for
simulations of uniformly distributed, d ∈ {1, 2, 5, 10} dimensional data. The error-
bars show the median with 5% and 95% quantiles of 50 repeated simulations. The
parameter N in�uences both the standard deviation of the estimates as well as the
absolute value of the estimates. Small sample size N gives larger standard deviation
while large N leads to smaller standard deviation. The �gure shows that it is not
possible to estimate true dimensionality for high dimensional data, which is mainly
due to small sample sizes. Theoretically, the sample size needed grows exponen-
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Figure 5.3: Example of estimates of correlation dimension from uniform d-
dimensional data using Grassberger-Procaccia (GP) and sandbox (S) de-
pending on sample size. The errorbars show the median with 5% and
95% quantil of 50 repeated simulations.

tially with the number of dimensions. Such very large samples are not available in
real settings. However, the estimates of di�erent dimensionalities still become signi�-
cantly di�erent for su�ciently large samples. The �gure also shows that the sandbox
method is less sensitive to sample size then the Grassberger-Procaccia algorithm.

5.2 Testing known Classes for di�erent Dimensionality

The typical solution to a classi�cation problem is to �nd a well working classi�er,
which can be some model with decision rules. Classi�ers are well working, if they can
associate new objects with the correct class. A commonly used type of classi�ers,
generative probabilistic models, are not a single big model, but have a separate
model for the data of each class. Models always have parameters that determine the
model complexity, e.g. the number of components in a mixture model or the allowed
depth in a decision tree. For the task of deciding the model complexities of the class
models, it would be bene�cial to know that some classes are less complex than others
meaning that the data subsets of those classes have smaller intrinsic dimension than
the rest of the data.

A classi�er is not always build to automate a classi�cation task. It is also used
to learn hidden knowledge about the classes from an analysis of the classi�er itself,
e.g. inspecting a decision tree can reveal interesting properties of the data. Thus,
comparing the intrinsic dimensionality of known classes as a hidden property of the
data can be useful in its own right.

Comparing the estimates of the intrinsic dimensionalities of di�erent subsets of
the data is not just comparing two numbers. The estimates can be biased by the
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di�erent sizes of the subsets, the choice of the parameters for line �tting in the log-log
plots, and the composition of the particular dataset at hand. Thus, a test procedure
is needed to quantify the in�uences of the randomness inherent in the estimation
procedure.

First, we propose a simple test procedure to check, whether the correlation dimen-
sions of two subset are signi�cantly di�erent. Second, we describe an application
of the procedure to the analysis of the degrees of freedom of mitochondrial transit
peptides in plants, animals and fungi.

5.2.1 Testing by Bootstrap

Let X = {x1, . . . , xN} be a dataset of n objects; the �rst m objects {x1, . . . , xm}
belong to class A and the remaining n = N −m objects {xm+1, . . . , xN} belong to
class B. Let be n ≤ m. The question is whether the correlation dimension of the
subset belonging to class A is signi�cantly lower than the correlation dimension of
the subset belonging to class B.

Why is estimating the correlation dimensions dA and dB for the respective classes
and comparing the two numbers not satisfactory? The �rst answer is, we have no
idea about the variability of the two estimates, so the result of the comparison may
be purely driven by randomness. The second answer points out that each estimate
is distorted in a di�erent way, if subset size n is very di�erent from m. This leaves
us with two tasks, (i) a reasonable comparison method has to estimate beside the
correlation dimensions also the variability of these estimates and (ii) it has to correct
the di�erent distortions of the estimates caused by di�erent subset sizes.

We propose to use bootstrap sampling [42] to estimate the variability of the es-
timate of the correlation dimension. The general idea of bootstrap is to construct
a bootstrap sample from a given original dataset of size n by randomly sampling n
objects with replacement. Since sampling with replacement may chose some data
objects more than once, a bootstrap sample may include duplicates. Assuming the
original data does not include any duplicates, choosing the objects uniformly with re-
placement puts on average about 63% unique objects into a bootstrap sample, while
the rest are duplicates. The bootstrap sampling method allows to build random
samples as large as the original dataset.

To construct comparable bootstrap samples for each of the two data subsets, the
larger one needs to be downsampled to the size of the smaller one. In our setting, we
assumed that the subset belonging to class A is smaller than the subset belonging to
class B, n ≤ m. In order to construct a bootstrap sample of size m from the subset
with the larger size m, the �rst step is to draw n objects from the subset belonging
to B without replacement. The actual bootstrap sample for the class B is generated
in a second step by sampling n objects with replacement from the objects drawn in
the �rst step. Both steps are repeated to generate the next bootstrap sample for
class B. Using such a two step procedure instead of directly sampling n objects with
replacement from the larger subset keeps the percentage of unique objects in the
bootstrap samples at about 63% of the sample size n across both subsets.
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A number of L bootstrap samples are computed for both subsets. Correlation
dimension is estimated for each of the bootstrap samples. That is the correlation
integral is computed for several radii and the logarithm of the radius is plotted
versus the logarithm of the correlation integral. A line is �tted to the linear part of
that curve and the slope serves as an estimate of correlation dimension. The result
consists of two sets of dimensionality estimates, each set having size L.

Last, it is veri�ed by t-tests, whether the correlation dimension of the �rst subset
is smaller than the correlation dimension of the second subset and vice versa. In
general, a statistical test like the t-test consists of a null-hypothesis, which states
the opposite of the observation. Loosely spoken, it plays the role of the "devil's
advocate". In our case, the null-hypothesis is that the mean of the correlation
dimension estimated of the bootstrap samples of the subset belonging to class A is
equal to the mean of the correlation dimension of the bootstrap samples derived from
the subset belonging to class B. The t-test de�nes a formula to derive an p-values.
The null-hypothesis is rejected if the p-value is below a prede�ned signi�cance level.
In case, the null-hypothesis is rejected, we conclude the the correlation dimension of
the �rst subset is signi�cantly smaller than the correlation dimension of the second
subset.

5.2.2 Application to mitochondrial Transit Peptides

We applied the task of testing and comparing the correlation dimension of di�erent
classes to precursor sequences of mitochondrial proteins [128]. Most mitochondrial
proteins are synthesized in the cytosol of eukaryotic cells as precursor proteins car-
rying N-terminal extensions called transit peptides or presequences which mediate
their speci�c transport into mitochondria. However, plant cells possess a second po-
tential target organelle for such transit peptides, the chloroplast. It can therefore be
assumed that mitochondrial transit peptides in plants are exposed to an increased
demand of speci�city, which in turn leads to reduced degrees of freedom in these
transit peptides compared to those of non-plant organisms. We investigates this
hypothesis using fractal dimension, namely correlation dimension. Statistical anal-
ysis of sequence data shows that the correlation dimension of mitochondrial transit
peptides in plants is indeed signi�cantly lower than that from non-plant organisms.

5.2.2.1 Biological Background

Mitochondria are of endosymbiotic origin, i.e. they are derived from the engulfment
of a bacterium into a hitherto unknown host cell, an event which �nally resulted in the
development of eukaryotic cells. In the course of evolution, most of the mitochondrial
genes were transferred to the nucleus. As a consequence, most mitochondrial proteins
are synthesized in the cytosol of the cell as precursor polypeptides carrying cleavable
amino-terminal extensions, named presequences or transit peptides, that mediate
transport of the protein 'back' into the organelle.

Comparison of such mitochondrial transit peptides has demonstrated that they
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(i) can be quite variable in size, (ii) contain many positively charged, hydrophobic
and hydroxylated amino-acid residues, and (iii) have a high tendency to form an
amphipathic α-helix [112,134]. However, since most of these comparisons are based
on mitochondrial transit peptides from fungi and mammals (see for example [134]),
these conclusions might well be biased and must not necessarily hold true for all
species. This is particularly obvious for plants, because plant cells harbor an addi-
tional class of organelles of endosymbiotic origin, notably chloroplasts (or generally
speaking, plastids). These organelles originate from a second endosymbiotic event
in which a cyanobacterium was engulfed by a eukaryotic host cell possessing already
mitochondria. It can be assumed that the evolutionary establishment of chloroplasts
had an e�ect also on the selection pressure operating on mitochondrial transit pep-
tides, because these transport signals were suddenly exposed to the situation that a
second potential target organelle was present within the same cell. The situation was
further complicated by the fact that also most chloroplast genes were phylogeneti-
cally transferred to the nucleus. Again, cleavable transit peptides for the transport
of the corresponding proteins 'back' into the organelles were developed, which show
remarkable similarity to mitochondrial transport signals in terms of N-terminal po-
sition and amino acid composition. Considering this scenario, one could predict that
mitochondrial transit peptides of plant cells must have adapted to this new situation
by developing a higher degree of specialization, in order to prevent permanent trans-
port into the wrong organelle. Supporting evidence for this assumption comes from
the observation that several nuclear encoded proteins show dual targeting into both
mitochondria and chloroplasts, because they carry transit peptides with ambiguous
organelle speci�city (for a recent review see [23]). The number of proteins identi�ed
with such targeting properties has signi�cantly increased in the past years suggesting
that this is a much more common phenomenon than originally anticipated. Still, it
can be assumed that mistargeting is only to some degree tolerable for the cell and
will probably disturb its integrity and the division of labor between the organelles if
it exceeds a certain level.

These considerations led us to the following working hypothesis: while mitochon-
drial transit peptides in general are characterized by high degrees of freedom in
terms of amino acid sequence and composition, plant mitochondrial transit peptides
should be signi�cantly less variable in this respect. In order to examine this hypoth-
esis experimentally, mitochondrial transit peptides from one model species each of
plants (Arabidopsis thaliana), mammalia (Mus musculus) and fungi (Saccharomyces
cerevisiae) were compared by a bioinformatic approach. We used for this purpose
correlation dimension, which is a measure of complexity of sequence information
within a group of sequences.

5.2.2.2 Methods and Materials

The estimation of the degrees of freedom of a set of protein sequences is a non-trivial
task. We interpret the degrees of freedom as the number of independent dimensions,
which are necessary to span the data space. In our case, the data space is embedded
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into the space of all sequences of length m over the alphabet of the 20 amino acids
Σ = {A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y }. The m dimensions
correspond to the sequence positions 1, . . . ,m, which can take either of the di�erent
amino acids as values.

In our case, the sequences to be analyzed are transit peptides, which are repre-
sented by the 50 N-terminal amino acids of the mitochondrial precursor proteins. In
order to constitute a functional transit peptide, not all 50 positions can be �lled arbi-
trarily with amino acids. Instead, some restrictions do apply which are, however, not
yet explicitly known. Thus, not each of the positions is counting as an independent
dimension and the true dimensionality, which also accounts for the unknown restric-
tions, is probably less than 50. We avoid the explicit estimation of those restrictions
from sequence data, which demands large datasets. Instead, the true dimensionality
is directly estimated from sequence similarities.

A common method to compare biological sequences is to align two sequences and
compute a similarity score from such alignments. Therefore, we have �rst computed
a similarity score based on alignments for each pair of transit peptides sequences.
Then, the correlation dimension was calculated from these similarity scores.

Alignments help to detect biologically relevant similarities between protein se-
quences. The basic idea behind an alignment between two sequences A and B is to
�nd a transformation from A to B with maximal similarity score in terms of sim-
ple edit operations like insert, delete, match, and mismatch. In order to compute
an alignment with maximal similarity score, parameters are needed to specify the
scores of basic transformation operations. As we are comparing whole transit peptide
sequences, we perform global alignments instead of local ones. For the computation
of pairwise alignments, we have applied the standard algorithm ClustalW [132].

In our work, we chose the Blosum62 matrix as score matrix for matches and
mismatches. Furthermore, gaps are penalized with negative scores for gap opening
and gap extension. We used a standard parameter combination for gap opening
and gap extension, namely −10 and −0.1 respectively, which represents the default
setting in ClustalW.

The direct output of such an alignment is the maximal similarity score of the
whole transformation. However, those direct outputs are not comparable for di�erent
pairs of sequences. As the computation of the correlation integral averages over
the number of objects within balls of the same radii but di�erent centers, such a
comparison of similarity scores is implicitly assumed. Pairwise alignment in ClustalW
already does such a normalization [132], namely by dividing the number of identical
sequence positions in the alignment by the number of matched residues. This de�nes
a similarity functions which ranges from 0 to 1.

Correlation dimension is de�ned in terms of distances instead of similarities. When
distances are small, the corresponding similarities are large. Therefore, the de�nition
of correlation integral needs to be adapted to handle similarities. We adapt p̂i(r) that
was previously de�ned in equation (5.4) by �ipping the di�erence in the argument
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of the Heaviside function:

p̂i(r) =
1

N − 1

N∑
j=1,i 6=j

Θ(sij − r) (5.7)

All other equations remain unchanged.

The datasets used were retrieved from the SwissProt/UNIProt database, release
14.11. All entries from mouse (Mus musculus), yeast (Saccharomyces cerevisiae),
and Arabidopsis (Arabidopsis thaliana) which have a location attribute containing
�mitochondrion� and a topic attribute containing �transit peptide� were collected.
Note that the data also include proteins that are only predicted to be mitochondrial
proteins. However, SwissProt/UNIProt is quite conservative with those annotations.
We obtained 319 entries for yeast, 427 entries for mouse and 224 for Arabidopsis.
Since the lengths of the transit peptides were often not known, the 50 N-terminal
amino acids of each protein sequence were taken as putative transit peptides.

For each dataset of transit peptides we computed all normalised pairwise alignment
scores by ClustalW (version 1.7) using the slow and more accurate alignment method.
Note, that the slow alignment methods implemented in ClustalW are essentially the
basic methods known as Needleman-Wunsch alignments. As we did not use multiple
alignments but pair-wise alignments only, ClustalW is su�cient. New alignment
tools like T-COFFEE [108] or MUSCLE [41] o�er faster approximations of pairwise
alignments or more accurate multiple alignments. Both features are not needed in
this project.

Thus, in total a quadratic matrix with normalized pairwise similarities was derived
for each set of transit peptides.

5.2.2.3 Results

In the �rst experiment, the correlation dimension of each of the three datasets of
transit peptides is calculated by the Grassberger-Procaccia algorithm. The sandbox
method gave comparable results and is therefore neglected. In order to avoid any
bias from the di�erent sizes of the datasets, correlation dimension is not calculated
on the full datasets but on bootstrap samples of identical size.

For each estimation of the correlation dimension of a dataset, a random bootstrap
sample is computed from the original data as described above. The correlation
integral is computed for several radii and the logarithm of the similarity radius is
plotted versus the logarithm of the correlation integral. A line is �tted to the linear
part of that curve and the slope serves as an estimate of correlation dimension.

Figure 5.4 shows for each of the three datasets the results derived from only �ve
random bootstrap samples. The absolute values of the slopes are shown in the insets
of the �gures. Since visual comparison across the �gures is di�cult, representative
log-log plots of each dataset are combined in �gure 5.5. The values of the slopes

1http://www.uniprot.org, 9/12/2008
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Figure 5.4: Log-log plots and calculated values of correlation dimension (slope) for all
datasets (A: Mus musculus, B: Saccharomyces cerevisiae, C: Arabidopsis
thaliana) using ClustalW with 10, 0.1 as gap opening and gap extension
parameters, respectively. In each case, �ve examples are shown. The
calculated slopes of the �tted lines in those examples are shown in the
insets.
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Figure 5.5: Comparison of log-log plots and calculated values of correlation dimen-
sion (slope) for all datasets. For further details see the legend to �gure
5.4.

calculated for each sample suggest that the transit peptides of Arabidopsis thaliana
have a lower correlation dimension than those of Saccharomyces cerevisiae and Mus

musculus.

In order to substantiate the results, the calculation was repeated with 1000 ran-
dom bootstrap samples each of the transit peptides of Saccharomyces cerevisiae, Mus

musculus and Arabidopsis thaliana, respectively. The means of the calculated corre-
lation dimensions including error bars showing the standard deviations derived from
the results of the 1000 random bootstrap samples is depicted in �gure 5.6. Again,
it becomes obvious that the mitochondrial transit peptides of Arabidopsis thaliana
have a lower correlation dimension than those of Saccharomyces cerevisiae and Mus

musculus.

In order to examine to what extent the results of the calculated correlation dimen-
sions are sensitive to the size of the bootstrap samples used, we varied the sample
size N ∈ {75, 100, 125, 150, 200, 224}. The maximal sample size is determined by the
smallest dataset, which in our case is that of Arabidopsis thaliana. We generated for
each dataset and sample size L = 1000 bootstrap samples and estimated the corre-
lation dimension for each bootstrap sample. Subsequently, we derived the mean and
standard deviation from the 1000 bootstrap samples generated for each particular
sample size. Figure 5.7A shows that with growing sample size the calculated corre-
lation dimension of the transit peptides of Arabidopsis thaliana on the one hand and
those of Saccharomyces cerevisiae and Mus musculus on the other hand drift apart.

The visual impression that the transit peptides of Arabidopsis thaliana have a
lower correlation dimension than those of Saccharomyces cerevisiae and Mus mus-

culus is veri�ed by t-tests. In our case, the null-hypotheses are that the means of
the correlation dimension of the transit peptides of Saccharomyces cerevisiae and
Arabidopsis thaliana as well as those of Mus musculus and Arabidopsis thaliana are
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Figure 5.6: Means of the calculated correlation dimensions of Mus musculus (Mus),
Saccharomyces cerevisiae (Saccharomyces) and Arabidopsis thaliana

(Arabidopsis) taken from 1000 random bootstrap samples each (N =
224). The error bars show the respective standard deviation.

equal. Both null-hypotheses can safely be rejected considering that the respective
p-values become numerically zero, which is obviously lower than any reasonable stan-
dard signi�cance level. This demonstrates the signi�cance of the observation that
the correlation dimension of the transit peptides of Arabidopsis thaliana is smaller
than those of Saccharomyces cerevisiae and Mus musculus. As a kind of control, the
null-hypothesis that the means of the correlation dimension of the transit peptides
of Saccharomyces cerevisiae and Mus musculus are equal, is analogously tested. Re-
markably, the resulting p-value is 0.1075 in this instance, which does not even allow
to reject the null-hypothesis at a signi�cance level of only 10%. Thus, our anal-
ysis based on correlation dimension does not reveal signi�cant di�erences between
Saccharomyces cerevisiae and Mus musculus.

E�ect of data set variation

In order to examine if the results described so far have been biased by certain param-
eters of the data examined, the analysis was repeated with modi�ed data sets. The
�rst modi�cation concerns the size of the selected transit peptides. In the original
analysis, we have taken the N-terminal 50 amino acid residues of each protein as
the mitochondrial targeting signal, because the exact size of the transit peptides was
only in few cases experimentally determined. Several transit peptides are, however,
shorter than 50 residues and it must therefore be assumed that the data sets in-
clude also signi�cant amounts of mature protein sequences. This might in�uence the
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Figure 5.7: Dependency of correlation dimension on the sample size. The data shown
are means and standard deviation calculated from 1000 bootstrap sam-
ples each. A: Original data set with the 50 N-terminal amino acid residues
taken as transit peptides. B: Data entries as in (A), but taking only the
40 N-terminal residues as transit peptides. C: Data set as in (A), but
devoid of homologous proteins.
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outcome, because mature protein sequences are presumably exposed to completely
di�erent selective pressure than transit peptides. In order to reduce the potential
e�ect of such mature sequences, we have performed the analysis also with data sets
containing the N-terminal 40 residues of each protein only. Though it will lead to C-
terminal truncation of those transit peptides that exceed 40 residues, it will �rst and
foremost reduce the contamination with mature protein sequences. Bootstrap anal-
ysis performed with these new data sets yields essentially similar results as described
above: the transit peptides of Arabidopsis thaliana have a signi�cantly lower corre-
lation dimension than those of Saccharomyces cerevisiae and Mus musculus (�gure
5.7B). Please note that the absolute values of the correlation dimension for transit
peptides of length 40 are lower than for those of length 50, because shortening of the
assumed transit peptides unevitably decreases the variability in the data, which in
turn leads to lower absolute values of the correlation dimension.

A second parameter, which might in�uence the degree of correlation dimension in
a given data set are homologous proteins, which are generally the result of gene du-
plication and therefore bound to be quite closely related, even in their transit peptide
sequences. If the number of homologous proteins within one data set di�ers signi�-
cantly from those of the other data sets, it might well have a strong in�uence on the
calculated correlation dimension. In order to take this possibility into account, we
have strived to eliminate homologous proteins from all three data sets. For this pur-
pose, we computed alignment scores between the full protein sequences within each
data set and built groups using the single linkage algorithm [123]. The groups are
built such that no sequence entry from two di�erent groups exceeds the low sequence
similarity score of 302. Thus, elements of di�erent groups have quite divergent se-
quences and are considered to be non-homologous. For the subsequent bootstrap
experiments in which N groups are picked randomly, only one representant from
each group is randomly chosen. Thus, each bootstrap sample contains at most one
entry from a given group which prevents that homologous entries are present when
computing the correlation dimension of a bootstrap sample. Using the cut o� value
of 30 for sequence similarity, 154 groups are de�ned for the smallest data set (Ara-
bidopsis), which in turn also limits the maximal sample size for this experiment to
154. The results show that even after elimination of duplicates the transit peptides of
Arabidopsis thaliana have a lower correlation dimension than those of Saccharomyces
cerevisiae and Mus musculus (�gure 5.7C). Due to the smaller maximal sample size
of 154, the di�erence is not as pronounced as with the maximal sample size of 224
of the original experiment (�gure 5.7A) but it is still statistically signi�cant with
numerically zero p-values. Actually, if identical sample sizes are compared between
the di�erent experiments, the di�erences in variability between the transit peptides
of Arabidopsis, mouse and yeast are comparable in the two experiments (compare
�gures 5.7A and C). The absolute values of the correlation dimensions in the data
sets devoid of homologous proteins are slightly increased as compared to the corre-
sponding values in the original experiments though, due to the lack of redundancy

2ClustalW assigns to each pair of sequences a score between 100 (very similar) and 0 (not similar).
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Table 5.1: Normalized usage frequencies of amino acids in the total mitochondrial
protein sequences.

AS Arabidopsis thaliana Mus musculus Saccharomyces cerevisiae

A 0.0764 0.0833 0.0635
C 0.0174 0.0176 0.0107
D 0.0528 0.0462 0.0520
E 0.0670 0.0639 0.0619
F 0.0407 0.0371 0.0424
G 0.0711 0.0721 0.0577
H 0.0209 0.0255 0.0213
I 0.0564 0.0476 0.0644
K 0.0665 0.0577 0.0814
L 0.0947 0.1030 0.0985
M 0.0304 0.0241 0.0219
N 0.0398 0.0316 0.0534
P 0.0421 0.0544 0.0453
Q 0.0289 0.0424 0.0380
R 0.0545 0.0628 0.0505
S 0.0788 0.0677 0.0775
T 0.0504 0.0519 0.0572
V 0.0725 0.0707 0.0602
W 0.0096 0.0131 0.0104
Y 0.0291 0.0273 0.0319

in the data sets, which slightly increases the variability and, in turn, the correlation
dimension.

Finally, the usage of amino acid residues in total protein sequences (transit peptide
plus passenger protein) is analyzed to ensure that the observed e�ect is not caused
by di�erent amino acid preferences in the three organisms. The normalized usage
frequencies are computed from pooled sequences, that is, all sequences are concate-
nated and the normalized frequencies are computed as the number of occurrences of
a particular amino acid divided by the total length of the concatenated sequence.

The normalized usage frequencies are shown in Table 5.1. Except for Q and W,
which are both quite rare amino acids in proteins and can thus not be responsible
for the observed di�erences in correlation dimension, the normalized usage frequency
of amino acid in Arabidopsis thaliana is close to those of Saccharomyces cerevisiae
and Mus musculus. This is in line with the assumption that the overall usage of
amino acids is similar in all three organisms and con�rms that Arabidopsis thaliana
has no general bias in the amino acid usage. Thus, it must be concluded that
the signi�cantly lower correlation dimension of mitochondrial transit peptides of
Arabidopsis thaliana is a consequence of reduced degree of freedom in the composition
of these protein transport signals.
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5.2.2.4 Discussion

During the last decade, several algorithms were developed to predict the subcellular
localization of proteins by examining their N-terminal targeting sequences. Exam-
ples are the neural network-based approaches TargetP [44] and Predotar [125]. Both
examine the N-terminal 100 amino acids and learn from training examples to dis-
criminate between mitochondrial transit peptides, chloroplast transit peptides and
other transport signals. TargetP predicts a score for each of the �rst 100 amino acids
giving a likelihood whether it represents a transport signal, and classi�es on that ba-
sis the target organelle of the protein. Predotar uses information on net charge,
hydrophobicity and amino acid distribution to predict the target organelle. Other
approaches classifying proteins according to their targeting sequence are PSORT and
MitoProtII. PSORT [103] is a rule-based expert system and computes the likelihood
that a given protein belongs to a speci�c target. MitoProt II [27] can only distinguish
between mitochondrial and non-mitochondrial transport signals.

Neither of these analyses has considered the particularities of plant transit pep-
tides. Instead, the training data used by the described algorithms collect mitochon-
drial transit peptides from plants, animals and fungi within a single group. Thus, the
potential di�erences between mitochondrial transit peptides of plants and animals
or fungi are neglected. This position is supported in [44] by citing a cluster analy-
sis [119], which found no species-correlated di�erences between mitochondrial transit
peptides. However, the data basis of that study used only 14 transit peptides from
plants among 144 transit peptides in total, which does not allow any statistical con-
clusions. In contrast, our results strongly suggest that there are species-dependent
di�erences among mitochondrial transit peptides. Thus, the predictions obtained
by TargetP and Predotar have to be reconsidered when analyzing sequences from
plants. It is furthermore remarkable that both programs are used to annotate the
transit peptides in the Uniprot/Swissprot database.

Information theoretic methods have already been used before to analyze biological
phenomena. However, while those analyses often try to �nd commonalities between
di�erent sequences or regions of sequences using mutual information, e.g. to describe
molecular coevolution [28], our approach is based on fractal dimension which detects
complexity di�erences between data sets.

To our knowledge, our study is the �rst one investigating the hypothesis that mi-
tochondrial transit peptides of plants are more specialized and consequently have
less degrees of freedom than those of animals or fungi. This hypothesis is tested
by estimating correlation dimension of sets of transit peptides from three example
organisms. Our results show that the correlation dimension of transit peptides from
Arabidopsis thaliana is signi�cantly lower than that from Mus musculus and Sac-

charomyces cerevisiae, in line with the assumption that plant mitochondrial transit
peptides are exposed to increased selective pressure concerning organelle speci�city.
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5.3 Clustering by fractal Dimension

Real data follow hidden patterns. In many cases, the subset of the data objects
is not known that is associated with a speci�c pattern. Clustering is the task to
�nd subsets in the data, the clusters, that have high intra-clusters similarity and
low similarity between objects from di�erent clusters. We extend the clustering
concept from �nding clustering with low intra-similarity to �nding clusters with low
correlation dimension.
Correlation dimension is complexity measure which depends on the growth of

the correlation integral. The correlation integral is an average of the covered data
proportions over many balls each centered at a particular data object. Thus, the
correlation dimension captures only average growth behavior over these balls.
Here, we propose the idea of creating a local-growth model for each data ob-

ject. This growth model depends, in principle, only on pairwise object distances and
captures how each object �views� its local neighborhood. Using this model we can
characterize each object xi with two variables (di, ci), where di is the local dimen-

sionality of the object xi, and ci is the local density. Intuitively, di depends on the
growth rate of the number of objects in the neighborhood of xi, while ci depends on
the density of objects in the neighborhood of xi.
Both variables are estimated from local growth curves. Local growth curves can

be computed directly from the data. Our algorithms require only a limited num-
ber of nearest-neighbor (NN) queries. These are well-studied and several e�cient
algorithms exist to answer them. For each point xi, the local growth curve of xi is
computed, and a line is �tted on a subset of the points of the curve that corresponds
to a local neighborhood of xi. Then, the local dimensionality di is de�ned as the
slope of the �tted line, while the local density ci is de�ned as the value of the �tted
line for a speci�c radius r∗. We choose r∗ so as to maximize the information captured
by the set of feature pairs (di, ci), in the sense of minimizing the correlation between
di and ci.
Using the local density and local dimensionality, each object xi is represented by

the feature pair (di, ci). Therefore, we map our dataset in a two dimensional space.
This has the following advantages. First, we can easily cluster the dataset using an
o�-the-shelf, two-dimensional clustering algorithm, like EM with a Gaussian mixture
model. Second, in an interactive system, the number of clusters and the correct
partition can be identi�ed through visual inspection.
Our main contributions are the following:

• Drawing upon ideas from fractals, we propose a general way to characterize the
local dimensionality of objects. Our de�nitions are topological and independent
of the notion of a linear subspace. Our methods can be applied to datasets of
arbitrary dimensionality and non-vector data. Our algorithms are independent
of the number of dimensions in the original dataset.

• Our method maps the dataset into a 2-dimensional space. We show how to
chose the feature pairs (di, ci), so as to maximize the information they retain

120



5.3 Clustering by fractal Dimension

about the dataset, and enhance the visual representation of the dataset.

• We demonstrate how local dimensionality and local density can be used to
detect low dimensional m-�ats and low-rank sub-matrices. Our algorithms can
successfully detect low-dimensional manifolds embedded in high-dimensional
spaces, even when they are spatially overlapping.

Additionally, our method does not assume that the objects lie in a vector space and
can be also applied to non-vector data, when dimensionality is not directly obtainable
from the data representation itself.
First, we brie�y discuss related work, broadly divided in two categories: methods

that use some notion of density, and methods based on intrinsic dimensionality.
Similar to our method, density-based clustering approaches also rely on local den-

sity information in order to partition the dataset.
Hierarchical single linkage is a well-known method to �nd clusters with respect

to density. To overcome problems in cases, when clusters are connected by small
chains, popular variants like DBSCAN [45] and OPTICS [7] use a modi�ed linkage
hierarchy, where points within a cluster have to be reachable via core points (points
having a certain minimum number of neighbors). DBSCAN computes a clustering
corresponding to a cut in the linkage hierarchy, while OPTICS �nds an ordering of
the points from which a lower part of the linkage hierarchy can be deduced. Both
algorithms fall short in case of clusters within clusters and the true hierarchy contains
nodes with degree one. However, as our approach does not rely on spatial separation
of the clusters, but focuses on detecting subsets with low intrinsic dimensionality, it
can also deal with those cases.
Another density-based clustering method is DenClue [72], which employs kernel

density estimation and uses density thresholds to de�ne the clusters to be found.
CLIQUE [6] is a density-based method that can also detect subspaces such that
high-density clusters exist in them. However, it is grid-based and thus assumes that
points lie in vector space. Furthermore, CLIQUE considers only hyper-rectangular
clusters and projections parallel to the axes.
In projective clustering, one tries to �nd dense clusters in a projection of the

original data space. Proclus [4] and DOC [115] search the space of axes-parallel
projections to �nd good clusterings of the data. More advanced techniques like
Orclus [5] and projective k-means [3] analyze eigenvalues of subsets of the data and
can �nd arbitrary linear projections, in which points are clustered.
Concepts of intrinsic dimensionality from fractals have been successfully used in

the database �eld for numerous problems, such as nearest-neighbor queries [110]
and spatial query selectivity estimation [11,47]. Recent results [84] discuss doubling
dimension as measure for intrinsic dimensionality. The proposed algorithm works
e�ciently, when the intrinsic dimensionality is bounded.
Barbará et al. [9] propose a clustering approach that uses the fractal dimension

(box-counting). It computes the fractal dimension of each individual cluster X and
of X \ xi and puts xi into the cluster for which the change is minimal. This requires
some initial seed clusters, which may be di�cult to guess.
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Figure 5.8: A dataset that contains two subsets of di�erent intrinsic dimensionality

Finally, LOCI [111] is an outlier detection method based on the local distribution
of pairwise distances at multiple scales. Although the key concepts are related, LOCI
focuses on an entirely di�erent application and does not use the concept of intrinsic
dimensionality in any way.

5.3.1 Clustering by Local Correlation Dimension

In this section we give an overview of our new clustering method. As we discussed
before, the method draws upon and extends previous density-based algorithms, as
well as concepts of intrinsic dimensionality. The two key measures it uses are local
density and local dimensionality. Both are obtained by �tting a line on a subset of
points of the local growth curve.
We describe local growth curves, and we explain how local density and local di-

mensionality are computed, and how they are used for clustering the dataset.

5.3.1.1 Local Correlation Dimension

The function Ĉ(r) as de�ned in Equation (5.5) computes the average fraction of
neighbors of an object within distance r, where the average is taken over all non-
empty balls induced by the objects in the dataset. However, due to averaging, if
the dataset is non-homogeneous, the estimated correlation dimension will not re�ect
the �true� dimensionality of the data. Figure 5.8 illustrates this point. Figure 5.8(a)
shows a dataset with two distinct subsets of points: in the �rst subset the points
lie on a 1-D curve, while the second subset consists of a cloud of 2-D points. As
a consequence of taking averages, the correlation dimension of the whole dataset is
somewhere between one and two. Figure 5.8(b) shows the line �tted to the C(r)
curve and, for comparison, lines with slopes one and two.
Therefore, in the case that a dataset consists of subsets with di�erent intrinsic

dimensionality, the correlation dimension of a dataset does not correctly characterize
the dimensionality of the dataset. To overcome this problem we extend the de�nition
of correlation dimension for each point in the dataset.

122



5.3 Clustering by fractal Dimension

De�nition 5 (Local-Growth Curve) For each object xi ∈ X = {x1, x2, . . .} and
δij is the distance between xi and xj, we de�ne the local-growth curve, to be the

function of r, Gi : R → N that computes the fraction of neighbors of xi in a ball of

radius r,

Gi(r) = lim
N→∞

1

N

N∑
j=1

Θ(r − δij).

The local growth curve Gi describes the density of the local neighborhood of xi for
all distances r. In addition, the Gi curve contains information about the growth rate
of the number of neighbors of xi. We can now de�ne the local-correlation dimension

(or local dimension) of point xi.

De�nition 6 (Local-Correlation Dimension) We de�ne the local-correlation di-
mension di of object xi, as

di = lim
r,r′→0

log[Gi(r)/Gi(r
′)]

log[r/r′]
. (5.8)

As in the case of correlation dimension, when dealing with �nite sets, we de�ne
the local growth curve to be Gi(r) = 1

N

∑N
j=1 Θ(r − δij), and we compute the local-

correlation dimension di of an object xi by the slope of Gi curve in log-log scale.
Notice that for �nite sets the Gi curve is step-wise � its value chances only when the
radius grows to include the next neighbor of an object. As a result, the local-growth
curve can be represented without loss of information by specifying its value on a
�nite set of radii Di ⊂ R, which we call the domain of Gi.

5.3.1.2 Local representation

We now describe how to use the local growth curves and the local-correlation dimen-
sion in order to represent the dataset.
Let X = {x1, . . . , xN} be a �nite dataset of N objects for which the distances δij

are known. For each object xi we de�ne its domain Di, and we compute the local
growth curve Gi. We then take the Gi curve in log-log scale, and we �nd the line
that �ts it best, in a least squares sense. We use Li to denote this line, and we call
it the linear growth model for object xi.

De�nition 7 (Linear Growth Model) We refer to the line

Li(log r) = di log r + bi

as the Linear Growth Model for the object xi.

The slope di of the line Li is an estimate of the local-correlation dimension of
object xi. The value bi is the coe�cient computed by the line �tting. Using the
linear growth model, we can now represent the object xi using just two numbers.
The �rst number is the value di, the local dimension of the object xi. The second
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number is denoted by ci = Li(log r∗), and it corresponds to the density of the dataset
in a ball of radius r∗, centered on xi as it is estimated by the linear growth model
Li for object xi. For example, for r∗ = 1, ci = bi. We defer the discussion about the
choice of value for r∗ to Section 5.3.2, Lemma 2. We call ci the local density of the
object xi. We write l(i) = (di, ci) to denote the representation of xi by these two
parameters.

De�nition 8 (Local representation) The mapping l(i) = (di, ci) is called the lo-
cal representation of xi, where ci = Li(log r∗).

To illustrate the intuition behind local representation, consider two speci�c points
A and B that come from the two di�erent subsets in the example of Figure 5.8.
Panel 5.8(c) shows Gi(r) for xi = A and xi = B together with the �tted lines.
In our example, the local dimensionality of point A is 1.20 and that of point B
is 1.98. Therefore, we are able to distinguish the subsets with di�erent intrinsic
dimensionality using the local dimensionality di.
As we will explain in the next section, it is meaningful to ignore the parts of the

local growth curve that correspond to very small and very large radii. The reason is
that, for small r, the value of Gi(r) is sensitive to local noise e�ects. Thus, ignoring
small radii improves the robustness of the estimated dimension. On the other hand,
for large r too many points contribute to the value of Gi(r). Therefore, Gi does not
capture local-neighborhood structure around xi any more; most curves look identical.
For these reasons we restrict the domain Di of Gi(r) to a smaller subset Fi ⊆ Di,
which we call the �tting set of Gi(r), and it is precisely the range over which we
�t the linear-growth model Li. The details of how the �tting set is determined are
discussed in Section 5.3.2.2.

5.3.1.3 Overall clustering

The �nal step of our method is to detect clusters of points that form low-dimensional
manifolds in the ambient space of the dataset. Taking advantage of the simplicity
of the local representation l(xi) = (di, ci), we can perform this step using a stan-
dard clustering algorithm. Assuming that the local representation maintains well
the information about the local density and the local dimensionality of the -s, the
clustering process is relatively easy since it is an operation on two-dimensional data.
For our experiments we used the standard EM algorithm with full covariance ma-
trices. Furthermore, the 2-D representation o�ers an informative visualization of
the dataset. In an interactive system it is usually easy to determine the underlying
clusters in the dataset.
Finally, we note that the output of our algorithm can be further processed to dis-

cover dimensions of interest. First, in case that the algorithm places two manifolds
of same dimension and density into one cluster, but the two manifolds do not inter-
sect, then they can be separated by the single-linkage clustering. Second, in case of
axis aligned subspaces, we can easily discover the attributes of interest by measuring
the variance along each dimension. Finally, in case that we are interested in linear
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subspaces, running PCA will reveal the directions of interest. All of these three tasks
become signi�cantly easier once the appropriate subset of objects has been identi�ed
by our method.

5.3.2 Analysis

In this section we discuss the properties of our de�nitions, and their implications in
the overall approach. As our guide in this discussion we consider the simple cases of
points lying on a 2-D grid and on a 1-D line.

5.3.2.1 Discussion and Examples

The de�nition of correlation dimension in Section 5.1.1 assumes that the size of the
set X is in�nite. For an in�nite real line and an in�nite real plane the dimensions
are precisely 1 and 2, respectively. In practice, however, we deal with �nite sets
with �nite extent, so we can only compute an estimate of the actual dimension. We
will now study the e�ect of �niteness on the local representation of the objects by
investigating two simple cases. The �rst dataset L consists of N one-dimensional
points equally spaced on a line. The second dataset G consists of N two-dimensional
points arranged on a grid. Ideally, the intrinsic dimensionality of the line should be
one, and the dimensionality of the grid should be two. However, due to the �nite
size of the datasets, the estimated dimensionalities are di�erent.

Consider the points in the set L and assume that the point xi is located at position i
of the real line. Consider one of the endpoints of the line, e.g., the leftmost point x1 of
the line. The local growth curve of x1 isG1(r) = r

N (when computing
∑N

j=2 Θ(r−δ1j)
we do not count the point itself). For the point xm in the middle of the linem = N/2,
the local growth curve is Gm(r) = 2r

N . In both of these cases, the local dimensionality
of points x1 and xm is one, as expected. However, consider the point xp that lies in
position p = N/4. For radii r = 1 . . . N4 , Gp(r) = 2r

N , while for radii r = N
4 . . .

3N
4 ,

Gp(r) = r
N . Due to this change in the local growth curve, when �tting a line, the

local dimensionality of the point xp is underestimated. For example, for a line with
500 points, the local dimensionality is estimated to be around 0.87. The di values
for all points are shown in Figure 5.9.

Determining the correct slope is even harder for the two-dimensional grid. Con-
sider the point xm in the middle of the grid. For simplicity we will assume that the
distance between points is measured using the L∞ norm. It is not hard to see that the
local growth curve for this point is Gm(r) = 1

N ((2r+1)2−1) = 1
n(4r2+4r) (again, the

point xm is not counted in the computation). Due to the additive term 4r we need to
have r →∞ in order for the local dimension dm of xm to tend to 2. In practice, this
results in underestimating the dimension of the point. For a 50 × 50 grid the local
dimension of the middle points is estimated to be close to 1.8. Furthermore, simple
computations show that for a point xs on the side of the grid, Gs(r) = 1

N (2r2 + 3r),
while for a point xc on the corner of the grid, Gc(r) = 1

n(r2 + 2r). Again, the lo-
cal growth curve on the boundary of the grid is di�erent from that inside the grid.
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Figure 5.9: Boundary e�ects on the estimation of the correlation dimension.

Therefore, when the curve hits the boundary there is a change in the local growth
curve, which results in further underestimation of the local dimension. An example
with a 50 × 50 grid is shown in Figure 5.9. The contour lines show how the local
dimension changes for di�erent points of the grid. The maximum and minimum
values are shown on the plot.

We next consider the case of a dataset consisting of a line embedded in a grid.
We assume that the line consists of grid points which are replicated µ times. The
value µ is the density of the line. For simplicity, assume that the line lies in the
middle of the grid and it is parallel to one axis of the grid. Furthermore, in order to
avoid dealing with boundary points, assume that the grid extends to in�nity in all
directions. For a point on the line x` it is not hard to show that the local growth
curve is G`(r) = 1

N ((2r + 1)2 + µ(2r + 1) − 1). When the value µ is large enough
compared to r the growth of G`(r) is dominated by the linear term. Of course as
r → ∞, the quadratic part becomes dominant. For a grid point, the growth is the
same as before as long as the ball around the point has not reached the line. When
the line is reached, the local growth curve becomes the same as for a line point (this
is also due to the fact that we consider the L∞ distance, and the line is parallel to
the axis).

In the next subsection we will see how to address the issues raised by the previous
examples. The idea is to compute the local dimensionality di of each object xi by
�tting a line not to the entire local growth curve Gi, but only on the �tting set Fi.
We discuss how to determine Fi next.

5.3.2.2 Determining the �tting set

An important issue in the de�nition of local growth curves is the domain of radii over
which they are de�ned. An immediate idea is to de�ne the curves over the interval
ranging from the minimal pairwise distance up to the diameter of the dataset. Let
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R denote this interval. This is the maximal interval over which the local growth
curves can be de�ned. However, this approach is extreme, since for most points, the
low part of the curve will be zero (balls with small radius contain no points), while
the upper part of the curve will be one (balls with large radius contain the whole
dataset). This will result in poor estimates for the local dimension of these points.

One approach for dealing with this problem is to restrict the de�nition of the
local growth curves over an interval [rmin, rmax] ⊂ R, which one might believe that
captures the useful information of the local growth curve. However, this approach
is also problematic when the density of the dataset di�ers in di�erent regions of the
space. Furthermore, for points that lie in large dimensional spaces, the minimum
and maximum distances converge, so it is challenging to �nd a meaningful interval.

To address these issues, we choose to de�ne a di�erent domain Di for each object
xi in the dataset. This domain is de�ned by growing a ball around xi such that at
each step we extend the ball to include (at least) one more neighbor. In other words,
the domain Di is precisely the set of radii {r1, r2, ..., rn}, where rk is the distance of
xi to its k-th nearest neighbor.

Following the discussion in Section 5.3.2.1, it becomes clear that it is bene�cial to
restrict the domain Di by considering the distances only up to some kmax -th nearest
neighbor, instead of all possible neighbors. This has the following advantages. First,
it captures best the idea of locality upon which our approach is based. As it was
demonstrated in the case of the line embedded in the grid, this can help discriminate
between points that lie on di�erent manifolds. Second, it helps in avoiding strong
boundary e�ects, since less points hit the boundaries, and thus we can better estimate
their �real� dimension. This is shown in Figures 5.10 (a), (b), and (c), where by
restricting the interval from above, we obtain a better estimation of the dimension
for more points of the line and the grid.

We further restrict the object speci�c interval Ri from below, by considering only
the neighbors that are no closer than the kmin-th nearest neighbor. As discussed
in Section 5.3.2.1, in the case of the grid this helps obtain a better estimate of the
dimension. This becomes obvious when comparing the the �gures (b) and (c) in
Figure 5.10. Figure (c) is obtained by restricting the interval Ri from below, where
we obtain an estimate of the dimension closer to 2.

Furthermore, for small values of k (i.e., for the very �rst nearest neighbors) the
radius rk might be a�ected by small local variations of the density of the points.
Such density variations might include isolated points or unusually dense areas. Our
point is illustrated in Figure 5.10(d). We generated 100 points uniformly at random
in a d-dimensional hypercube, for d = 2, 5, and 10. By repeating the process of
random point generation 1000 times, we estimate the expected distance and the
variance of the k-th nearest neighbor from a randomly selected point as a function
of k. Figure 5.10(d) shows that the variance of the distances of the very �rst nearest
neighbors is large. Therefore, by ignoring the k-th nearest neighbors for k < kmin

we obtain a more robust estimation of the local dimension. We are now ready to
summarize our observations with the following simple de�nition.
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Figure 5.10: Restricting the �tting interval

128



5.3 Clustering by fractal Dimension

De�nition 9 (Fitting set) The set of radii Fi = {rk ∈ Di | r
(xi)
kmin
≤ rk ≤ r

(xi)
kmax
},

where r
(xi)
kmin

and r
(xi)
kmax

are the distances of the kmin-th and kmax-th nearest neighbors

of xi is called the �tting set.

In our experiments, we have found that the algorithm is not particularly sensitive in
the choice of kmin and kmax. For example, the values kmin = 0.01·N and kmax = 0.1·N
give good quality of results in a wide variety of datasets.

5.3.2.3 Estimating local density

In this paragraph we derive an estimation for the radius r∗, which is used for comput-
ing the local density ci = Li(log r∗) for each xi. For simplicity of notation we rewrite
Equation (7) as Y = diX + bi. We also write X∗ = log r∗ and Y ∗ = diX

∗ + bi = ci.
Notice that by �tting a line to the curve Gi we obtain the parameters di and bi.
The goal is to compute the �best� choice of parameter log r∗ that achieves the local
representation l(i) = (di, ci) for each xi.

The main observation is that by setting log r∗ = +∞ in Equation (7), the resulting
values ci of local densities are perfectly positively correlated with the values di of local
dimensions. The reason is that for log r∗ = +∞ the ordering of ci's is completely
determined by the ordering of di's. Similarly, for log r∗ → −∞, the ci's are perfectly
negatively correlated with di's. Since our goal is to use the pair (di, ci) that captures
as much information for each xi as possible, we would like to choose r∗ such that the
parameters di and ci are uncorrelated. Based on this idea we can estimate the optimal
radius r∗ for the local representation l(i). Note that it makes a considerable di�erence
for the visualization as well as for automated clustering algorithms, whether the two-
dimensional data (di, ci) are correlated or not.

Lemma 2 The value of r∗ for which di and ci are uncorrelated is given by

log r∗ = −
∑

(di − d̄)(bi − b̄)∑
(di − d̄)2

Proof: The correlation between the variables di and ci can be estimated by the
coe�cient

rdc =

∑
i(di − d̄)(ci − c̄)√∑

i(di − d̄)2
∑

i(ci − c̄)2
,

where d̄ = E[di] and c̄ = E[ci] are the expectations of di's and ci's, respectively. To
make the correlation zero we need to choose r∗ such that the numerator of rdc is
equal to zero. Let b̄ = E[bi] be the expectation of bi's. Since ci = diX

∗ + di, by
linearity of expectation we get c̄ = E[ci] = E[bi +X∗di] = b̄+X∗d̄. The numerator
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of the correlation coe�cient can now be written as∑
(di − d̄)(ci − c̄)

=
∑

(di − d̄)(bi +X∗di − b̄−X∗d̄)

=
∑

(di − d̄)(X∗(di − d̄) + (bi − b̄))

= X∗
∑

(di − d̄)2 +
∑

(di − d̄)(bi − b̄).

Setting rdc = 0 gives the optimal value of log r∗. �

5.3.3 Dimension-Induced-Clustering

We now present the Dimension Induced Clustering (DIC) algorithm. The objective
of the algorithm is to partition points so that points in the same cluster lie on dense
manifolds of the same dimension.

5.3.3.1 The DIC algorithm

The outline of the DIC algorithm is shown in Algorithm 2. The input to the algo-
rithm is a set X of N elements, that we want to cluster in b clusters. In �rst step,
the algorithm computes for each element xi, the distance of xi to its k-th nearest
neighbor for all k = kmin, . . . , kmax. The distances of the nearest neighbors of xi
specify completely the local growth curve Gi. By �tting the linear growth model
Li on Gi and by estimating the local density, as in Section 5.3.2.3, we compute the
local representation l(i) = (di, ci) for each xi. Thus, we map the set X into a two
dimensional set XLR that contains the local representation of all objects. The task
now becomes to cluster the two-dimensional points in XLR. Clustering in two di-
mensions is conceptually much simpler than clustering in high-dimensional spaces.
The correct clustering can often be determined even by simple visual inspection. In
the automated case applying an EM (Expectation Maximization) algorithm [63] for
�tting a mixture of b Gaussian distributions on the data works well in most cases.
If the set X consists of b su�ciently dense subsets that lie on manifolds of di�erent
dimension, which are su�ciently separated, the algorithm will be able to separate
these subsets.

Algorithm 2 The DIC algorithm. Input: Dataset X of N objects, number of
clusters b, Output: Clustering of X into b clusters.

1: for i ∈ {1, . . . , N} do
2: Compute k-th NN of xi, for k = kmin . . . kmax

3: Compute the local representation (di, ci) of xi.
4: end for

5: XLR = {(d1, c1), . . . , (dN , cN )}
6: Cluster the set XLR into b clusters.
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5.3.3.2 E�ciency of the DIC algorithm

The complexity of the DIC algorithm is dominated by the complexity of computing
for every object xi the distance to the kmin to kmax neighbors of the object xi. The
simple solution to this problem is to compute the distances between all objects in
the set X, and for each object xi sort the objects with respect to their distance
from object xi, and retrieve the necessary information. The time for computing all
pairwise distances is O(N2).
A di�erent approach is to construct an index for the elements in X that supports

fast execution of k-nearest neighbor queries. In case that X consists of vector data,
spatial index structures can be used for the e�cient calculation such as [8, 12, 79].
In case of metric data the OMNI framework [50], or data structures like the M-
tree [26] can be used. Since the computation of the local representation is inherently
approximate, the use of approximative methods for k-nearest neighbor queries such
as locality-sensitive hashing [76], is also possible.
Investigating the construction of the appropriate nearest neighbor index is beyond

the scope of this study. We assume that such an index exists, and we use it as a
black box for obtaining the distances of the k-th nearest-neighbor queries for k =
kmin, . . . , kmax. The e�ciency of the DIC algorithm is determined by the e�ciency
of this index.

5.3.4 Experiments

In this section we study experimentally the properties and the performance of the
DIC algorithm.

5.3.4.1 Applications and Datasets

We apply our algorithms on the following types of datasets.

Embedded m-�ats: Consider a set X of n points in Rd that can be decomposed in
two subsets U , and F , of size s and f respectively, where N = s+f . The points in U
are distributed uniformly at random in (0, 1)d. The points in F take values normally
distributed around 0.5, with variance 0.01 in the �rst d−m coordinates. In the last
m coordinates, they take values uniformly distributed in (0, 1). As s, f → ∞ the
intrinsic dimensionality of the sets U and F approaches d and m respectively. We
call the set F an m-�at. The value m is the dimension of the m-�at. The set U can
be thought of as an m-�at of dimension d, so we say that U has full dimension.
The objective of the algorithms is to partition the set X into sets U and F . We

apply the DIC algorithm on X, requesting 2 clusters. We will demonstrate that the
DIC algorithm, is able to return the sets F and U as the clusters even when m and d
are relatively close. The �at F is the set of points with the smaller average intrinsic
dimensionality.

Manifolds within manifolds: The setting is similar to the previous one, only this
time the set X contains more than one m-�ats of di�erent dimensions. Namely, the
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set X can be decomposed into sets U , F1, . . . , Fp, where U has full dimension d,
and F1, F2, . . . , Fp are m-�ats with dimensions m1 < m2 < . . . < mp respectively.
The m-�ats are constructed as described above. Note that since for every �at Fi
we always ��x� the �rst d − mi coordinates, the m-�ats with lower dimension are
embedded within the m-�ats of higher dimensions. This results in creating a chain
hierarchy of manifolds where every manifold is embedded in all the preceding ones
in the chain. Again, we apply the DIC algorithm, requesting p + 1 clusters. When
the dimensionalities of the m-�ats are su�ciently separated, the algorithm returns
as clusters that p �ats and the set U . The average estimated dimension values for
each set are ordered according to the actual dimension of the �ats.

Low Rank Sub-Matrices: The input is an n × m matrix that takes values in
[0, 1]. Within the matrix there is a collection of k rows and ` columns, such that the
combinatorial k × ` sub-matrix has low rank. The objective is to identify the rows
and columns of this sub-matrix.

We generate such datasets as follows. First we generate a k × ` matrix S of rank
exactly r, where r � min{n,m}. We then plant it in the matrix M . The remaining
elements of M are generated uniformly at random, scaled so that the mean is zero
and the standard deviation is one. Therefore, if we remove either the k rows, or
the ` columns of matrix S from M , we obtain a matrix of rank min{n − k,m} and
min{n,m − `} respectively. To this matrix we add a �noise� matrix X with entries
distributed normally around 0, with variance 0.05.

In order to extract S from matrix M we apply the DIC algorithm in two steps.
First we perform a clustering of the rows, and we identify the rows of the matrix S.
The dimension of these rows is m− `+ r, as opposed to m for the rest of the rows,
so the DIC algorithm can easily identify them. We then cluster the columns of M .
The dimension of the columns in S is n − k + r as opposed to n for the rest of the
columns, so again DIC manages to partition the rows. Given the rows and columns
we can extract matrix S.

5.3.4.2 Experiments with the DIC algorithm

In this section we present experiments with the DIC algorithm on various datasets.
In all runs of the algorithm, we set kmin = 10, and kmax = 100, two values that we
observed that they work well in practice.

We start by experimenting with datasets that contain a single m-�at F , embedded
in a space of higher dimension d, together with a set U of noise points distributed
uniformly at random. The datasets are constructed as described in Section 5.3.4.1.
Since the objective is to separate the sets F and U , we evaluate our algorithm by
looking into the total classi�cation error of the algorithm. The total classi�cation
error Etot is computed as follows: We �rst compute the confusion matrix C whose
Cij entry contains the number of overlapping points between the i-th cluster of the
ground truth and the j-th cluster of the clustering found by the algorithm. Then
Etot = 1− (

∑
i maxj Cij)/n.
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Figure 5.11: Discovering m-�ats with DIC, (x: dimensionality, y: density)

Our experiments indicate that the DIC algorithm performs exceptionally well in
this setting, even in the case that the dimension of the host space and the m-�at are
very close, or if the m-�at is embedded in a high-dimensional space. Figure 5.11(a)
plots the local representation of the data points when d = 3 and m = 2, and their
clustering. Figure 5.11(b) shows the case where d = 50 and m = 40. In both
cases, the size of the dataset is 1,000 points, of which 500 belong to the m-�at. We
observe that the algorithm manages to identify the m-�ats successfully. The total
classi�cation error is 8.1% in the �rst case, and 1.2% in the second case.

In order to better understand the performance of DIC, we performed a more de-
tailed experiment, generating datasets with the dimension of the host space being
d = 2 . . . 10, and the dimension of the m-�at ranging from 1 to d − 1. In all cases,
the dataset consists of 1,500 points, 500 of which belong to the m-�at. Table 5.2
reports the average classi�cation error for 20 runs of the algorithm (the numbers are
percentages). We observe that the classi�cation error is never more than 39%, and
this occurs in the case that the dimension of the host space and that of the m-�at
di�er by just one.

We now turn our attention to cases where there are more than one m-�ats in the
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Table 5.2: Classi�cation error of discovering m-�at clusters
1 2 3 4 5 6 7 8 9

2 9.2
3 13.0 20.14
4 14.9 1.53 29.28
5 16.1 0.26 6.74 26.42
6 15.4 0.08 0.68 6.99 31.1
7 7.1 0.02 0.17 1.25 13.7 33.4
8 10.5 0.00 0.02 0.41 2.1 14.6 36.3
9 1.4 0 0.01 0.08 0.6 2.9 18.7 37.9
10 7.4 0.01 0.01 0.04 0.2 0.9 4.2 20.7 38.3

Figure 5.12: Discovering low rank matrices

dataset. Figures 5.11(c) and (d) show the plots of the local representations of two
datasets that contain �ats of di�erent dimension. In the �rst case the dimension
of the host space is d = 10 and the two manifolds have dimension m1 = 3, and
m2 = 6. In the second case we have (m1,m2, d) = (10, 20, 30), In both cases all three
sets of points F1, F2, U contain 500 points each. We observe that the DIC algorithm
manages to discriminate the three sets. The average classi�cation error is 1.53% for
the �rst case, and 0.51% for the second case, where the average is taken over 20 runs.
Datasets with more than three �ats are examined in the full version of the paper.

We also experiment with low rank matrices, trying to detect a (combinatorial)
100× 100 submatrix of rank 2, within a 1000× 1000 matrix. The algorithm proves
to be quite successful, obtaining classi�cation error just 0.16%, where the average is
taken over 10 runs. In this case the large dimension of the matrix works in favor
of our algorithm. The algorithm often achieves a perfect partition of the matrix (4
out of the 10 runs). A case where we obtain a perfect partition of the matrix is
shown in Figure 5.12. The blue part of the �gure shows the correctly found low rank
submatrix, the red and yellow areas correspond to the attached random columns and
rows and the green part totally belongs to the random matrix.
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5.3.4.3 Comparison with OPTICS

In this subsection we compare our algorithm with OPTICS on the task of �nding m-
�ats within noise. OPTICS takes as input the parameter εmax which is the maximum
linkage distance, and it produces an ordered visualization of the points in the dataset
from which the lower part of a cluster hierarchy can be derived. In order to get rid
of the dependency from εmax we set it in all cases to the maximum distance in the
particular data set, so that OPTICS computes the whole hierarchy.

The primary output of the OPTICS algorithm is a plot. The x axis of the plot
shows the indices of the data points in the ordering produced by OPTICS. The y axis
in the visualization is reachability distance, which is small if the density at that point
is high. The computed hierarchy by OPTICS is similar to a single linkage hierarchy.
The plot produced by OPTICS de�nes clusters as valleys. A valley is de�ned by a
horizontal cutting line, which is chosen by the user. In case of sub-clusters within
larger clusters, the plot by OPTICS consists of a large valley, which includes at the
bottom smaller valleys divided by small hills.

The OPTICS algorithm assumes that each cluster in the true hierarchy consists
of at least two sub-clusters. However, in case of m-�ats embedded in other m-�ats
of higher dimension, this is not true. But one can still look for knees at the right
side of a valley in the visualization plot of OPTICS, as it is shown in Figure 5.13(a).
This allows to specify a cuto� value for the hierarchical algorithm. The cutting line
should be set to the beginning of the knee. Note that in case that we have multiple
m-�ats, one embedded within the other it is not possible for OPTICS to identify all
m-�ats using a single cuto� value.

In our comparison with OPTICS we consider datasets where a single m-�at is
embedded in a higher dimensional space. The datasets contain 1,000 points, while
both the m-�at, as well as the noise set (containing points, uniformly distributed in
the full-dimensional space) consists of 500 points each. The following data sets are
generated: 2D-�at in 3D, 3D-�at in 5D, 5D-�at in 8D, 6D-�at in 10D, 40D-�at in
50D, and 90D-�at in 100D.

Figure 5.13(a) shows the plot generated by OPTICS for the 2D-�at in 3D. The
knee at the right side of the lowest valley is clearly visible and so we choose the
cutting value to be 0.09. However, for data with dimension larger than 10, although
the algorithm produces the correct ordering with most of the points of the m-�at
being in the beginning of the ordering, the knee is not longer visible. An example is
shown in �gure 5.13(b). Therefore, we could not compute a clustering with OPTICS
for the last two high-dimensional data set. Any value seems equally good, resulting
in arbitrarily good, or bad results. The same problem arises when trying to use
OPTICS for identifying low-rank sub-matrices.

In Table 5.3 we compare the classi�cation error of the clusterings found by OPTICS
and the DIC algorithm. The classi�cation errors are similar, with DIC being a little
more accurate. The main conclusion from this experiment is that the density-based
clustering method OPTICS fails for high-dimensional data. In such cases density
alone is not sensitive enough to reveal the structure of the data. Furthermore, the

135



5 Data Analysis by Fractal Dimension

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  200  400  600  800  1000

R
ea

ch
ab

ili
ty

 d
is

ta
nc

e

Ordering of the data points

OPTICS -- 2D in 3D

0.09

 0

 0.5

 1

 1.5

 2

 2.5

 0  200  400  600  800  1000

R
ea

ch
ab

ili
ty

 d
is

ta
nc

e

Ordering of the data points

OPTICS -- 40D in 50D

(a) (b)

Figure 5.13: OPTICS plots for (a) 2D-�at within 3D noise (b) 40D-�at within 50D
noise

Table 5.3: Classi�cation Error of OPTICS and DIC

Data Etot(OPTICS) Etot(DIC)
2D in 3D 0.115 0.077

3D in 5D 0.045 0.029

5D in 8D 0.087 0.024

6D in 10D 0.045 0.010

40D in 50D n.a. 0.010

90D in 100D n.a. 0.072

OPTICS algorithm requires careful �ne-tuning of the parameters in order to produce
a meaningful clustering, as opposed to the DIC algorithm which has only few, easy
to set parameters. Finally, we note that the DIC algorithm is order independent, as
opposed to OPTICS which is sensitive to the order in which the points are visited.

The case of multiple m-�ats is considerably more di�cult for OPTICS. Multiple
m-�ats will appear as a single valley since they di�er only by density and not by
location, which means that one has to �nd multiple knees. However, the visibility of
the knees degrades as the dimensionality of the m-�ats increases.

5.4 Summary

We proposed solutions for two problems in data analysis: (i) testing given subsets of
data, whether they di�er signi�cantly in correlation dimension and (ii) �nding clus-
ters in the dataset such that the objects in the same cluster have similar correlation
dimension and data density. Correlation dimension is widely applicable, because
only distances or similarities between the data objects are needed. This allows the
application of data analysis by fractal dimension to both data described by feature
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vectors as well as non-vector data.
An application corresponding to the �rst problem setting is the analysis of mito-

chondrial transit peptides. The biological research question was whether mitochon-
drial transit peptides in plants are due to a second target organelle, the chloroplasts,
more specialized and consequently have less degrees of freedom than the mitochon-
drial transit peptides in animal or fungi. We computed correlation dimension of
both datasets from the pairwise sequence similarities and observed that mitochon-
drial transit peptides in plants have signi�cantly lower correlation dimension than
mitochondrial transit peptides in animals or fungi.
Cluster analysis by fractal dimension computes a local correlation integral for each

data object. The local correlation integral is a function that counts the number of
other objects from the data set in a ball of a given radius. The growth rate of the local
correlation integral in the log-log space (logarithm of radius versus logarithm of local
correlation integral) is the local correlation dimension of a data object. Furthermore,
local density is measured as well. Objects with similar local correlation dimension
and local density are assigned to the same cluster. The method can successfully
distinguish clouds of points randomly spread on hyperplanes in with di�erent di-
mensionality. The hyperplanes can be arbitrarily arranged in a high-dimensional
data space.
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6 Appendix

Probabilistic models use standard probability distributions as building blocks. Text
modeling mainly deals with discrete distributions, which we describe here according
to [15]. A probability distribution assigns a non-negative number between zero and
one to every value x that a discrete random variable X may take. This is written
as p(X = x). To avoid cumbersome notation we write p(X) to denote the distri-
bution and p(x) when the distribution is evaluated at x. Every discrete probability
distribution obeys the following constraints p(X) ≥ 0 and

∑
X p(X) = 1. The sum

goes over all possible values X may take. The two fundamental rules of probability
theory are the

sum rule p(X) =
∑

Y p(X,Y )

product rule p(X,Y ) = p(X|Y )p(Y )

Here p(X,Y ) denote the joint distribution of X and Y . The quantity p(X|Y ) is
the conditional distribution of X given Y and p(X) is the marginal distribution of
p(X,Y ). In case, two random variables are independent we have

p(X,Y ) = p(X)p(Y ) (6.1)

The expectation of some function f(X) under a probability distribution p(X) is a
weighted average of the function values

E[f ] =
∑
X

p(X)f(X) (6.2)

The expectation of a function f(X,Y ) with respect to a distribution of X

EX [f(X,Y )] =
∑
X

p(X)f(X,Y ) (6.3)

is still a function with respect to Y . The expectation of a sum of arbitrary random
variables decomposed into

E[X + Y ] = E[X] + E[Y ] (6.4)
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6 Appendix

From the product rule together with the symmetry p(X,Y ) = p(Y,X) the Bayesian
rule of probabilities is obtained:

p(Y |X) =
p(X|Y )p(Y )

p(X)
(6.5)

=
p(X|Y )p(Y )∑
Y p(X|Y )p(Y )

(6.6)

152


