Identification of regulatory factors in the signal transduction pathway in herbivore-induced maize

Dissertation

zur Erlangung des akademischen Grades -doctor rerum naturalium (Dr. rer. nat.)-

> vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften

der Martin Luther Universität Halle-Wittenberg

von

Frau Claudia Lenk

geboren am 17.05.1982 in Gera

Halle (Saale), 20.02.2012

1.Gutachter: Prof. Jörg Degenhardt
 2.Gutachter: Prof. Dierk Scheel
 3.Gutachter: Prof. Jonathan Gershenzon

Tag der öffentlichen Verteidigung: 30.05.2012

Summary

In order to survive in a changing environment, plants are able to communicate with other organisms. One aspect of chemical communication is the production of complex mixtures of volatile organic compounds (VOC) after the plants are attacked by an herbivore enemy. Those volatiles can be used as cues by parasitic wasps to locate their hosts. Therefore, this tritrophic interaction has been termed "indirect defense".

The ecological aspects of the indirect defense and the biosynthesis of the terpene volatiles are well studied in maize (*Zea mays*). Two terpene synthases, TPS10 and TPS23, are responsible for the biosynthesis of the major sesquiterpene volatiles produced after attack by the larvae of the lepidopteran herbivore *Spodoptera littoralis*. TPS10 converts the precursor farnesyl diphosphate (FPP) into the sesquiterpenes (*E*)- β -farnesene and (*E*)- α -bergamotene. The enzyme TPS23 synthesizes (*E*)- β -caryophyllene from the same substrate. The signal transduction pathways responsible for the regulation of volatile induced defenses remain mostly unclear. However, damage by different types of herbivores results in specific volatile signals, which suggests a complex regulatory network.

This work focused on the identification of transcription factors involved in the signaling cascade between herbivore damage and volatile emission. Microarray hybridization identified several transcription factors affected by herbivory, mechanical damage, and mechanical damage plus caterpillar regurgitate. Also, the effects of herbivore-damaged roots upon leaves and vice versa (systemic effects) were assayed. The majority of transcription factors reacted in a similar fashion to several types of induction which included caterpillar feeding and mechanical damage. Nevertheless, maize plants responded to mechanical damage by emitting only ~50 % of sesquiterpenes found in herbivore-induced plants, indicating a separate recognition of caterpillar regurgitate.

The analysis of plant hormones after herbivore damage confirmed their roles in specific signal transduction pathways. While an increase of jasmonic acid (JA) concentration was observed after all types of mechanical damage to the plant, salicylic acid (SA) concentrations were only increased when plants were treated with caterpillar regurgitate. Therefore, SA might have a role in maize herbivore signal transduction pathways that is different from its role in signal transduction after pathogen attack.

The expression patterns and product formation of the terpene synthases TPS10 and TPS23 were investigated in response to herbivory. Transgenic Arabidopsis plants with promoter::reporter gene constructs of both terpene synthases displayed an herbivore-regulated activity similar to the expression patterns in maize. This heterologous expression system was utilized to further characterize the promoters of both genes. The promoter of tps10 was only induced when plants were treated with both mechanical damage and JA. The promoter of tps23 was induced by either treatment alone. A promoter deletion analysis revealed an essential area with a WUN-motif in the promoter of tps10. An area with the same motif in the promoter of tps23 was not crucial for gene expression. Overall, this study indicated that maize is able to respond to a variety of cues of herbivory and contribute to the formation of herbivore-specific volatile signals via several signal transduction pathways. The exact components involved in each of the signal transduction cascades and their functions still need to be determined.

Zusammenfassung

Um in einer sich veränderten Umwelt zu überleben, nutzen Pflanzen unterschiedliche Arten der Kommunikation. Die Produktion von komplexen Gemischen volatiler organischer Verbindungen ist ein Aspekt der chemischen Kommunikation. Diese flüchtigen Substanzen werden von Pflanzen nach Fraßbefall abgegeben und können als Lockstoffe für parasitäre Schädlinge der Fraßfeinde genutzt werden. Diese tritrophische Interaktion kann der indirekten Verteidigung der Pflanze dienen.

Die ökologischen Gesichtspunkte der indirekten Verteidigung und die Biosynthese der flüchtigen Terpene sind in Mais (Zea mays) gut untersucht. Zwei Terpensynthasen synthetisieren die Mehrheit der Sesquiterpene, die durch den Befall mit der Larve eines Eulenfalters (Spodoptera littoralis) gebildet werden. Die Terpensynthase TPS10 katalysiert die Umsetzung des Substrates Farnesyldiphosphat (FPP) zu den Sesquiterpenen (E)-ß-Farnesen und (*E*)-α-Bergamoten. (*E*)-β-Caryophyllen wird aus dem gleichen Ausgangsprodukt von der Terpensynthase TPS23 gebildet. Die Signalkaskade, die nach der Verletzung der Pflanze zur Bildung der flüchtigen Terpene führt, ist weitgehend unbekannt. Die Abhängigkeit der Zusammensetzung der volatilen Signale vom Typ des angreifenden Herbivoren deutet auf ein komplexes regulatorisches Netzwerk hin.

Der Fokus dieser Arbeit lag in der Identifizierung von Transkriptionsfaktoren, die an diesen Signalwegen beteiligt sein könnten. Durch die Hybridisierung von Microarrays wurden mehrere Transkriptionsfaktoren gefunden, deren Genexpression durch Raupenfraß, mechanische Verwundung und Elizitoren differenziell reguliert wurde. Der systemische Effekt eines Herbivorenbefalls der Wurzeln auf die Genexpression der Blätter und umgekehrt wurde ebenfalls untersucht. Die Mehrzahl der Transkriptionsfaktoren zeigte eine ähnliche Genexpression nach unterschiedlichen Induktionsmethoden. Dennoch wurden aber nur etwa 50 % der Sesquiterpene von der Maispflanze abgegeben, nachdem diese nur mechanisch verwundet wurde. Das deutet auf separate Signalwege für die mechanische Verwundung und für die Reaktion auf Elizitoren von Insekten hin. Eine Analyse der Pflanzenhormone bestätigte deren Rolle bei der Signaltransduktion nach Herbivorie. Während Jasmonsäure auch in mechanisch verwundeten Pflanzen gefunden wurde, war Salicylsäure nur nach Zugabe von Elizitoren aus dem Regurgitat von *S. littoralis* messbar. Daher scheint sich die

Funktion der Salicylsäure in Mais nach Herbivorenbefall von der Funktion bei der Pathogenabwehr, die in anderen Pflanzen charakterisiert wurde, zu unterscheiden.

Die Genexpression und die Synthese der volatilen Produkte von TPS10 und TPS23 nach Insektenfraß wurden ebenfalls untersucht. Transgene Arabidopsispflanzen mit Promotor::Reportergenkonstrukten beider Terpensynthasen zeigten dieselbe herbivorieregulierte Aktivität wie in Mais. Dieses heterologe Expressionssystem wurde zur weiteren Charakterisierung der Promotoren genutzt. Während der Promotor von tps10 sowohl die mechanische Verwundung als auch Jasmonsäure für die Aktivierung benötigte, konnte der Promotor von tps23 jeweils einzeln durch mechanische Verwundung und Jasmonsäure aktiviert werden. Promoter-Deletionsstudien von tps10 deuteten auf einen essentiellen Promotorbereich hin, der ein WUN-Motiv enthält. Das WUN-Motiv ist ebenfalls im Promotor von tps23 vorhanden, allerdings scheint dieser Bereich hier keine exklusive Rolle bei der Genexpression zu spielen. Insgesamt zeigen die Ergebnisse, dass die Verletzung der Maispflanze durch Herbivoren verschiedene fraßbedingte Signale erzeugt, die durch mehrere Signalkaskaden zur Bildung von herbivor-spezifischen Volatilen führt. Die Funktion der identifizierten Komponenten in den jeweiligen herbivor-spezifischen Signalkaskaden benötigt eine weitere Aufklärung.

Abbreviations

amino acid
abscic acid
abscic acid responsive element
destilled water
ampicillin resistance
atomic mass unit
apetala2/ethylene responsive element binding protein
ammonium persulfate
auxin responsive factor
5-bromo-4-chloro-3-indolyl phosphate
basic helix loop helix
basic local alignment search tool
bovine serum albumin
CCR4-associated factor 1
N-cyclohexyl-3-aminopropansulfonacid
carbon catabolite repressor 4
copy DNA
chloramphenicol resistance
coenzyme A
counts per minute
counts per second
constitutive triple response 1
4',6-diamidino-2-phenylindol
(3, <i>E</i>)-4,8-dimethyl-1,3,7-nonatrien
deoxyribonucleic acid
deoxynucleotide triphosphate
dimethylallyl pyrophosphate
drought responsive element
double stranded DNA

DTT	dithiothreitol
EDTA	ethylene diamine tetraactic acid
EIN	ethylene insensitive
EMSA	electrophoretic mobility shift assay
ERE	ethylene responsive element
ERF	ethylene response factor
FPLC	fast protein liquid chromatography
FPP	farnesyl diphosphate
GC-MS	gas chromatography-mass spectrometry
Gent ^r	gentamycin resistance
GGPP	geranylgeranyl diphosphate
GLV	green leaf volatiles
GO	Gene Ontology
GPP	geranyl diphosphate
GUS	ß-glucuronidase
IPP	isopentenyl diphosphate
IPTG	isopropyl-1-thio-β-D-galactoside
JA	jasmonic acid
JAI3	jasmonate insensitive 3
JA-Ile	jasmonic acid isoleucin
JAR	JA amino acid conjugate synthase
JAZ	jasmonate-ZIM-domain proteins
JERE	JA- and elicitor responsive element
k _{cat}	turn over number
kDa	kilodalton
Km ^r	kanamycin resistance
LB	Luria-Bertani
LHY	late elongated hypocotyl
LTR	long terminal repeat
MeJA	methyl jasmonate
MEP	2C-methyl-D-erythritol-4-phosphate

MES	(2-N-morpholino)ethanesulphonic acid
MeSA	methyl salicylate
MPK	mitogen-activated protein kinase
mRNA	messenger RNA
MTTF	membrane-tethered transcription factor
MU	4-methylumbelliferone
MUG	4-methylumbelliferyl-beta-D-glucuronide
NAC	no apical meristem (NAM), ATAF1,2 and cup-shaped cotyledon
	(CUC2)
NBT	nitro-blue tetrazolium
NLS	nuclear localization signal
NPR1	nonexpressor of pathogenesis-related genes 1
Nt	nucleotide
NTA	nitrilotriacetic acid
OD	optical density
ORF	open reading frame
PAGE	polyacrylamide gel electrophoresis
PCR	polymerase chain reaction
PEG	polyethylenglycol
phi	phosphate induced
RACE	rapid amplification of cDNA ends
RNA	ribonucleic acid
rRNA	ribosomal RNA
SA	salicylic acid
SAR	systemic acquired resistance
SARE	salicylic acid responsive element
SCF ^{COI1}	skip-cullin-F-box
SDS	sodium dodecyl sulfate
Sm/Sp ^r	streptomycin/spectinomycin resistance
SPME	solid phase micro extraction
TAE	tris-acetate-EDTA

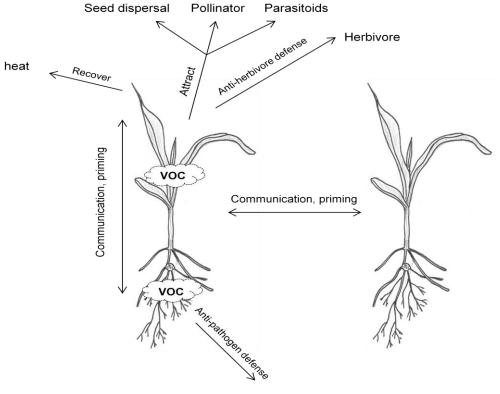
TF	transcription factor
TEMED	N,N,N',N'-tetramethylethylenediamine
TIC	total ion chromatogram
TMV	tobacco mosaic virus
TPS	terpene synthase
Tris	tris(hydroxymethyl)aminomethane
UV	ultra-violet
VOC	volatile organic compound

Tabel of contents

Summary	I
Zusammenfassung	III
1. Introduction	1
1.1 The role of volatiles in plant defense	1
1.2 The indirect defense in Zea mays	3
1.3 Plant signal transduction in response to herbivory	6
1.3.1 The function of plant hormones in signal transduction after herbivore attack	6
1.3.2 Components of the signaling transduction pathways of plant defenses	9
1.4 Regulatory elements of wound-inducible promoters	
1.5 Transcription factors involved in the regulation of plant defense	13
1.6 Objectives of this work	17
2. Materials and methods	
2.1 Cultivation and treatment of Zea mays L.	
2.2 Cultivation of Spodoptera littoralis (Boisd.) [Lepidoptera: Noctuidae]	19
2.3 Cultivation, treatment and transformation of Arabidopsis thaliana L.	19
2.4 Microbiological methods	21
2.4.1 Bacterial strains and cultivation	21
2.4.2 Antibiotics	22
2.4.3 Transformation of Escherichia coli	22
2.4.4 Transformation of Agrobacterium tumefaciens	23
2.5 Nucleic acid techniques	23
2.5.1 Isolation of total RNA from maize	23
2.5.2 Isolation of genomic DNA from plant material	24
2.5.3 Isolation of plasmid DNA from bacteria	24
2.5.4 DNA Digestion	24
2.5.5 Oligonucleotides	24
2.5.6 Amplification of DNA	

2.5.7 RACE-PCR
2.5.8 cDNA synthesis
2.5.9 Quantitative RT-PCR
2.5.10 Restriction of DNA, plasmids and PCR products
2.5.11 Isolation of DNA fragments from agarose gels and PCR reactions
2.5.12 Ligation of DNA fragments
2.5.13 Cloning and transformation of DNA fragments
2.5.14 Sequencing and sequence analysis
2.5.15 Gateway Cloning System
2.5.16 Microarray hybridization
2.6 Electrophoresis and transfer techniques
2.6.1 Electrophoresis
2.6.2 SDS-PAGE
2.6.3 Western-Blot
2.6.3.1 Transfer of proteins
2.6.3.2 Protein detection
2.6.4 Band shift assays (EMSA)
2.7 Protein techniques
2.7.1 Heterologous expression of transcription factors in E. coli and purification of
recombinant protein
2.7.2 Protein quantification
2.8 Chromatographic analysis
2.8.1 Volatile collection
2.8.2 Gas chromatography – mass spectrometry (GC-MS)
2.8.3 Identification of plant hormones
2.9 Histochemical methods
2.9.1 GUS staining
2.9.2 Quantitative GUS assay
2.10 Statistical analyses
3. Results

3.1 Identification of genes regulated by herbivore treatment
3.2 The induction of transcription factors depends on environmental cues54
3.2.1 The transcript patterns of transcription factors respond to herbivore feeding54
3.2.2 Transcript accumulation is affected by the duration of caterpillar feeding56
3.2.3 The transcript patterns of transcription factors are similar in Delprim and B73
despite differences in volatile production
3.2.4 The application of jasmonic acid causes transcriptional changes
3.3 Plant responses to mechanical damage – The Mecworm
3.3.1 The influence of mechanical damage on the transcript accumulation of
transcription factors
3.3.2 The type of damage affects the amount of terpene production
3.3.3 The induction of plant hormones is dependent on the type of induction
3.4 Promoter analysis of the terpene synthases <i>tps10</i> and <i>tps23</i>
3.4.1 Promoters of <i>tps10</i> and <i>tps23</i> are dissimilar among maize lines
3.4.2 Analysis of the promoters of tps10 and tps23 for binding activity to TF1, TF8,
TF20 and TF2274
3.4.3 Analysis of <i>tps10</i> and <i>tps23</i> promoter constructs in Arabidopsis76
3.5. Identification of transcription factors induced by local, systemical and mechanical
wounding in roots and leaves
4. Discussion91
4.1 Microarray analysis as a tool to find genes in the plant responses against herbivore
damage
4.2 The regulation of herbivore-induced transcription factors
4.2.1 Herbivore feeding influences the expression of transcription factors
4.2.2 Specific induction stimuli lead to explicit expression patterns
4.2.3 Herbivore-induced transcription factors are localized throughout the genome98
4.3 The plant hormonal response is specific for the induction stimuli
4.4 The transcription factors TF23 and TF30 are differentially regulated101
4.5 Identification of regulatory sequences in the promoters of <i>tps10</i> and <i>tps23</i> 103


4.5.1 The binding ability of TF1, TF8, TF20, and TF22 to the promoters of tps10 and	d
<i>tps23</i>	3
4.5.2 The promoters of tps10 and tps23 possess similar regulatory cis-acting element	s
	4
4.5.3 The promoters of tps10 and tps23 respond to mechanical damage and herbivor	e
attack	8
5. Outlook	0
6. References	1
7. Appendix	7
7.1 QRT-PCR of the plant material treated with 30 min herbivore feeding	7
7.2 QRT-PCR of plant material treated with continuous feeding 129	9
7.3 QRT-PCR of plant material induced with jasmonic acid	2
7.4 QRT-PCR of mechanical treated plant material (Mecworm) 132	3
7.5 DNA sequences of expressed transcription factors	4
7.6 Maize genes involved in the metabolism regulated by herbivory	6
7.7 Transcription factors regulated by herbivory, mechanical damage, and systemic induction	1
in leaves and roots of maize	1
7.8 Regulatory cis-elements of the 1.5 kb promoter fragment of <i>tps23</i> in Zea mays var.	
Delprim	1
7.9 Regulatory cis-elements in the 1.5 kb promoter fragment of tps10 of Zea mays var.	
Delprim	8

1. Introduction

1.1 The role of volatiles in plant defense

Organisms have evolved a way of communication with other organisms in order to survive in their environment. The chemical nature of plant communication has recently developed into a subject for intense research.

Plants are able to produce a complex mixture of volatile organic compounds (VOC) which are means to exchange information with its environment. These VOCs can be grouped into several chemical families: phenylpropanoid/benzenoids, fatty acid derivatives, amino acid derivates, sulfur-containing compounds, and terpenes (Dudareva et al. 2006). Most volatile terpenes belong to mono- (C_{10}) and sesqui- (C_{15}) terpenes and can be released from flowers and vegetative organs. Since the production of volatiles is cost-intensive for plants (Wright et al. 1979), these compounds were suspected to play an important role. Volatile compounds that are emitted from flowers can attract pollinators and seed dispersers to provide a reproductive advantage (Raguso and Pichersky 1995; Pichersky and Gershenzon 2002; Reinhard et al. 2004). Also, vegetative organs can emit volatiles. Sharkey and coworkers showed that isoprene, a simple C_5 - terpene volatile, is released from the foliage of many tree species. Isoprene facilitates the photosynthetic apparatus to recover from brief episodes of temperatures over 40°C (Sharkey et al. 2001). The function of volatiles emitted from herbivore-attacked plants, has been well studied. Sometimes, these compounds are released when feeding ruptures pre-existing internal or external secretory structures in which the volatiles are synthesized and stored (Franceschi et al. 2005). In this case, the volatiles can directly repel or otherwise kill the invader (microbes, animals) due to their toxic nature (De Moraes et al. 2001; Kessler and Baldwin 2001; Vancanneyt et al. 2001). In other cases, airborne volatiles are produced from herbivore-damaged plants several hours after plant damage (Paré and Tumlinson 1997). Here, the volatiles serve as a chemical signal that attracts the enemies of the herbivore (Dicke 1994; Degenhardt et al. 2003; Howe and Jander 2008), thereby reducing the number of attacking herbivores (Kessler and Baldwin 2001). Belowground, the volatiles released from roots can act as antimicrobial and antiherbivore substances. They can also recruit enemies of root-feeding herbivores (Rasmann et al. 2005). Interestingly, plant volatiles do not only have the potential to affect animals but also other plants in the direct proximity (Pichersky and Gershenzon 2002). It was shown that tobacco (*Nicotiana attenuata*) plants growing next to wounded sagebrush (*Artemisia tridentata*) suffered reduced levels of herbivore damage and exhibited increased levels of transcriptional responses (Kessler *et al.* 2006). In a different experiment, undamaged bean plants (*Phaseolus vulgaris*) exposed to volatiles from herbivore-infested neighbors showed an elevated expression of several genes involved in defense metabolism (Arimura *et al.* 2000). This so called "priming" was also found in poplar (Frost *et al.* 2008) and maize (Engelberth *et al.* 2004) when plants were exposed to green leaf volatiles, methyl jasmonate (MeJA), or volatile terpenes. An overview of the functional aspects of plant volatiles is depicted in Fig.1.1.

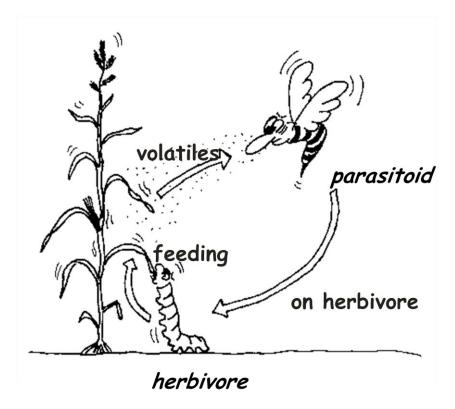
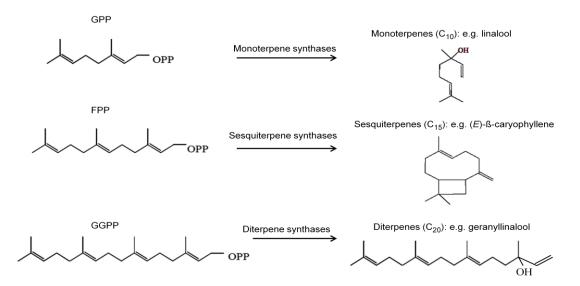

Pathogen

Fig.1.1: Volatile-mediated plant interactions with its environment. VOCs emitted from the plant can attract pollinators, seed disseminators, and parasitoids. Defense against herbivore attackers takes place above- and belowground. Communication between different organs of the plant and in between plants (priming, allelopathy) can be mediated by VOCs. The volatile terpene isoprene has a function in photoprotection and thermotolerance.

Systemic signaling has been described in several plant species (Howe and Jander 2008). Within hours, inducible defenses are found in undamaged parts of herbivore-attacked plant, providing a better resistance to future insect attacks (Karban and Baldwin 1997; Bostock 2005). These defenses include increased leaf concentration of terpenoids in cotton (*Gossypium herbaceum*) and *Zea mays* (Bezemer *et al.* 2003; Bezemer *et al.* 2004; Rasmann *et al.* 2005), certain glucosinolates in *Brassica spp.* (Van Dam et al. 2004; Van Dam and Raaijmakers 2006), and phytoectosteroids in *Spinacia oleracea* (Schmelz *et al.* 1998) upon root attack. Also, increased defenses in roots have been observed after leaf herbivory (Baldwin *et al.* 1994; Van Dam *et al.* 2001). These interactions indicate a possible effect of root herbivory upon defenses in the leaves by changing the performance of leaf herbivores (Wäckers and Bezemer 2003; Van Dam *et al.* 2005).


1.2 The indirect defense in Zea mays

Maize is one of the major crop plants, a nutrition base for many cultures and used as a source for bioethanol (Wheals et al. 1999). Therefore, pests damaging maize fields can cause major economical losses. Consequently, many researchers investigated the natural defense mechanisms in Zea mays. It was found that maize is able to defend itself by releasing a complex mixture of volatiles after herbivore damage through the larvae of the Egyptian cotton leaf worm (Spodoptera littoralis, (Turlings et al. 1990)). These volatiles can be used as cues by the parasitic wasp Cotesia marginiventris to locate its host for oviposition (Turlings et al. 1990; Turlings et al. 2005). Upon parasitization, the lepidopteran larvae feed less and die eventually due to the growing parasitic larvae within. This can result in a significant reduction in the damage to the plant (Hoballah et al. 2002; Hoballah et al. 2004). This tritrophic interaction, termed "indirect defense", was recognized in the 1980s and studied since (Fig 1.2). Similar interactions were also found belowground. Parasitic nematodes locate their host through the volatiles released by herbivore-damaged maize roots (Rasmann et al. 2005). Maize volatiles consist mainly of terpenoids and products of the lipoxygenase pathway as well as some minor aromatic compounds (Turlings et al. 1990; Degen et al. 2004; Köllner et al. 2004).

Fig 1.2: Schematic overview of the tritrophic interaction in maize. When maize is fed upon by the larvae of *S. littoralis,* it releases a complex mixture of volatiles which act as cues for the parasitic wasp *C. marginiventris* to locate its host (picture by Tobias Köllner).

Overall, there are more than 100 terpene synthase genes identified today (Tholl 2006; Degenhardt *et al.* 2009). All of them appear to have evolved from an ancestral diterpene synthase (Trapp and Croteau 2001; Martin *et al.* 2004). Furthermore, hemi-, mono-, sesqui-, and diterpene synthases from plants are more related to each other than to tri-, and tetraterpene synthases (Wu *et al.* 2005). All terpenoids originate from the precursor isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP, (Dudareva *et al.* 2006). Synthesis of these compounds occurs via the MEP pathway in plastids or the mevalonate pathway in the cytosol and mitochondria (Gershenzon and Croteau 1993; Rodríguez-Concepción and Boronat 2002). The enzymes responsible for the production of the maize terpenes, especially (*E*)- β -caryophyllene, (*E*)- α -bergamotene, and (*E*)- β -farnesene, have been identified and characterized. The terpene synthase TPS23 uses the substrate farnesyl diphosphate (FPP) to produce (*E*)- β -caryophyllene as major product, and δ -elemene and α -humulene as minor products (Fig.1.3, (Köllner *et al.* 2008)).

Fig.1.3: The production of terpenes is mediated by different kinds of terpene synthases. Monoterpene synthases use the substrate GPP to produce monoterpenes. The substrate FPP is the starting point for the synthesis of sesquiterpenes and is converted by sesquiterpene synthases. Diterpenes are produced by diterpene synthases using the precursor GGPP.

The terpene synthase TPS23 is induced after damage by the larvae of *S. littoralis* in the leaves and attack by larvae of the Western corn rootworm (*Diabrotica virgifera virgifera*) at the roots. The terpene synthase TPS10 which converts FPP into (*E*)- α -bergamotene and (*E*)- β -farnesene (Schnee *et al.* 2006) is only induced after aboveground herbivory. In herbivore-induced roots, the terpenes specific for TPS10 were not found. This observation suggested differences in the signaling pathways that regulate the activity of both terpene synthases.

The composition of emitted volatiles differs between organs, developmental stages, and maize lines (Köllner *et al.* 2004). While the maize variety Delprim produces not only the sesquiterpenes (*E*)- α -bergamotene and (*E*)- β -farnesene, but also (*E*)- β -caryophyllene, the maize cultivar B73 does not produce (*E*)- β -caryophyllene. This behavior is not only present in the leaves but also in infested roots (Rasmann *et al.* 2005). Roots of the maize line Delprim produce (*E*)- β -caryophyllene after root attack by the larvae *D. virgifera*, but B73 does not. Since (*E*)- β -caryophyllene can act belowground as a signal for pathogenic nematodes which feed upon the *D. virgifera* larvae, the production of (*E*)- β -caryophyllene might be an important defense mechanism (Degenhardt *et al.* 2009).

1.3 Plant signal transduction in response to herbivory

1.3.1 The function of plant hormones in signal transduction after herbivore attack

Plant hormones such as jasmonic acid (JA), salicylic acid (SA), ethylene, and abscisic acid (ABA) not only regulate plant growth and development, but the responses to abiotic and biotic stresses with considerable signaling cross talk (Walley et al. 2007). ABA, a sesquiterpenoid with one asymmetric carbon at C-1 (Rock and Zeevaart 1991), is known for the control of germination, seedling growth and development (Fig.1.4). It plays a key role in the adaptive responses to abiotic stresses such as drought (Davies and Zhang 1991), high salinity, and cold. It also mediates adaptive responses like stomata closure (Tardieu and Davies 1992). The functional aspects of ABA, calcium, and the signaling cascade leading to the closing of the guard cells have been studied intensively. There are two signaling cascades leading to stomata closure, one via Ca^{2+} and one via ABA which are both interconnected. Both cascades lead to the activation of anion channels and thereby reduce the osmotic potential of the cell (Marten et al. 2007). ABA might also play a role in herbivore defense (Anderson et al. 2004). ABA deficiency in tomato (Solanum lycopersicum) and Arabidopsis thaliana leads to an enhanced performance of larvae of the beat armyworm (Spodoptera exigua) and the Egyptian cotton leaf worm (Spodoptera littoralis, (Thaler and Bostock 2004; Bodenhausen and Reymond 2007). However, upon root attack ABA and ABA-induced signaling do not play an exclusive role in leaf defense. It is rather the ABA-independent hydraulic changes upon herbivory that induces plant defenses. Overall, the increase of ABA concentration after belowground attack might be a plant response to reduce the negative effects of water loss (Erb et al. 2011).

Ethylene, the only volatile phytohormone, has many biological functions (Fig.1.4). It triggers fruit ripening, influences senescence and the abscission of plant organs, plays a role in seed germination, root formation, pollination, cell elongation, sex determination, and flowering (Abeles *et al.* 1992). It also regulates responses to biotic and abiotic stresses. The importance of ethylene to biotic stress on aboveground parts of the plants after attack by arthropod herbivores has also been demonstrated (Kendall and Bjostad 1990; von Dahl and Baldwin 2007). Because of its volatility, ethylene is highly transportable by either direct diffusion

through the vascular tissue or diffusion from the rhizosphere to the phyllosphere (Jackson and Campbell 1975). Ethylene might also be involved in volatile defense signaling within and between plants (Ruther and Kleier 2005).

The plant hormone most strongly associated with defense against pathogen attack is salicylic acid (SA, Fig.1.4). This hormone modulates plant responses to pathogen infection and regulates responses to abiotic stresses through signaling crosstalk with other plant hormones (Achard *et al.* 2006; Horváth *et al.* 2007; Spoel and Dong 2008; Vlot *et al.* 2009). Additionally, SA plays a role in plant adaptive responses to osmotic stress (Singh and Usha 2003), chilling, drought (Senaratna *et al.* 2000), heat stress (Clarke *et al.* 2004), and salt stress (Khodary 2004). Through the interactions with gibberellins, ABA, JA, and ethylene, SA exerts a role in a variety of plant development processes (Yasuda *et al.* 2008; Alonso-Ramírez *et al.* 2009; Leon-Reyes *et al.* 2009). The importance of SA for the induction of systemic acquired resistance (SAR) has been well studied (Ross 1961; Kuc 1982). However, SA-responsive genes were also found to be up-regulated after herbivore attack (Zarate *et al.* 2007). The methylated form of salicylic acid, methyl salicylate (MeSA) is released after pathogen infection and might be a potential signal for the induction of defense-related genes in neighboring plants (Shulaev *et al.* 1997).

Jasmonic acid is synthesized via the octadecanoid pathway (Vick and Zimmerman 1984; Feussner and Wasternack 2002) from α -linolenic acid or hexadecatrieonic acid (Ishiguro *et al.* 2001; Hyun *et al.* 2008). This hormone is a key regulator for stress-induced genes in all plants (Reymond and Farmer 1998; Schaller 2001). It is implicated in systemic plant responses against herbivory aboveground (Farmer and Ryan 1992; Howe *et al.* 1996) and likely also belowground (Schmelz *et al.* 1999; Puthoff and Smigocki 2007). Jasmonic acid is also induced in the tissue surrounding the site of wounding (Felix and Boller 1995; O'Donnell *et al.* 1996) and is actively transported or diffuses from its site of synthesis (Farmer *et al.* 1992). Its role in long-distance wound signaling (Stratmann 2003; Wasternack *et al.* 2006) is supported by the fact that exogenous JA moves easily through the phloem (Zhang and Baldwin 1997). Experiments in tomato showed that jasmonate signaling is required for the generation of such a long distance wound signal (Li *et al.* 2002). Thus, Li and coworkers demonstrated that jasmonate is a essential component of the transmissible wound signal and may act as intercellular signal or trigger for the production of such signal (Li *et al.* 2002). An overview of structures of the major hormones found in plants is shown in Fig.1.4.

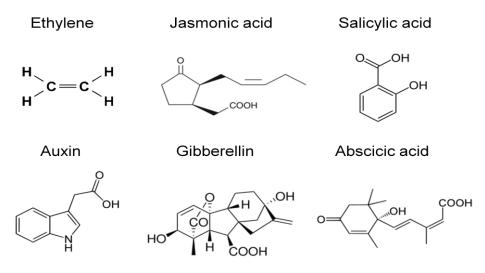
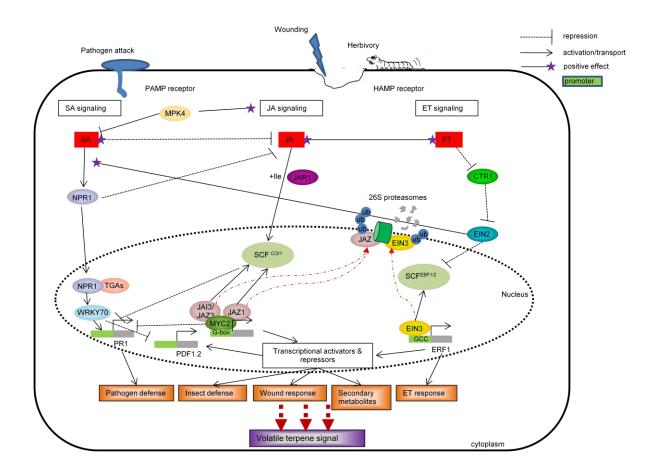



Fig.1.4: Overview of major plant hormones: ethylene, jasmonic acid, salicylic acid, auxin, gibberellins, and abscisic acid with the regarding chemical structure, respectively.

The production of plant hormones varies greatly depending on the nature of the attacking pathogen or insect (Mur *et al.* 2006). In addition to JA, SA, ET, and ABA, further plant hormones seem to have a function in the immune response of plants. Unfortunately, the role of brassinosteroids (Nakashita *et al.* 2003), gibberellins (Navarro *et al.* 2008) and auxin (Navarro *et al.* 2006; Wang *et al.* 2007) in plant defense is less studied. Since hormone-dependent pathways are differentially effective against specific types of attackers (Thomma *et al.* 2001; Glazebrook 2005; Thatcher *et al.* 2005), there has to be a cross talk between the signaling pathways that induces plant defense (Reymond and Farmer 1998; Koornneef and Pieterse 2008; Spoel and Dong 2008). This cross talk can be either antagonistic or synergistic in order to fine tune the response to the invading attacker (Reymond and Farmer 1998; Pieterse *et al.* 2001; Kunkel and Brooks 2002; Bostock 2005). JA and ethylene are both required for the activation of wound responses and induce each other's synthesis (Ross 1961), while SA inhibits the synthesis and the signaling pathway of JA and ET (Dong 1998).

1.3.2 Components of the signaling transduction pathways of plant defenses The signal transduction pathway from herbivore attack to the production of volatile terpenes is mostly unknown. It is evident that a defense response depends on the developmental stage of a plant as well as on the strategy of the invading attacker (De Vos et al. 2005). Also, the quantity, composition and timing of a phytohormonal blend produced by the plant varies among different attackers (De Vos et al. 2005). For the primary defense response to a pathogen, plants must be able to recognize common features of microbial pathogens, such as flagellin, chitin, glycoproteins and lipopolysaccharides, so-called PAMPs (Göhre and Robatzek 2008; Nürnberger and Kemmerling 2009). The positive outcome of a immune reaction to pathogen invasion results in a hypersensitive response (De Wit 1995; De Wit 1997) and leads to a SAR which is dependent on a SA signaling (Durner et al. 1997). This SAR is induced throughout the plant and is relevant for an enhanced and long-lasting resistance to secondary challenges by the same or unrelated pathogen (Wobbe and Klessig 1996). While the receptor type for SA is unknown (Santner and Estelle 2009), one key regulator of SA-mediated signaling has been characterized. NPR1 (nonexpressor of pathogenesis-related genes 1) is an ankyrin repeat-containing protein (Cao et al. 1997) that interacts with TGA transcription factors to activate pathogen-related gene expression (Fan and Dong 2002; Després et al. 2003). Its nuclear localization has been implicated in the activation of SA-responsive genes (Kinkema et al. 2000; Dong 2004). For the antagonistic effect of SA on the JA-signaling pathway, NPR1 has to be localized in the cytosol (Spoel et al. 2003; Yuan et al. 2007). The picture becomes even more complicated since the cytosolic function of NPR1 can be bypassed by ethylene (Leon-Reyes et al. 2009).

Fig.1.5: Overview of the jasmonate signaling pathway and the connection to salicylic acid and ethylene in Arabidopsis. Several stress signals can activate a phosphorylation cascade that induces jasmonate signaling. Jasmonic acid is further modified in the cytosol to produce several jasmonic acid derivates (MeJA, JA-Ile). In the presence of JA, the JAZ protein that acts as transcriptional regulator of MYC2 is degraded via SCF^{COII} and releases MYC2 from repression. The transcription factor MYC2 probably binds to the conserved G-box elements in the promoters of other transcriptional activators and repressors from AP2/ERF, WRKY, and MYBs, which modulate distinct JA-dependent functions. There are several factors that act as a signaling cross point between different pathways. NPR1, MPK4, WRKY70, SCF^{COII}, and MYC2 are involved in the interactions between SA and JA. It is also known that SA and JA act antagonistically and synergistically in a dose-dependent manner. The JA and ET pathways positively influence each other, but ET also has a positive effect on SA. The negative role of CTR1 is suppressed upon perception of ET. Downstream signaling through EIN2 is mediated by repression the E3 ubiquitin ligase SCFEBF1/2-dependent 26S proteasome degradation of EIN3. EIN3-like transcription factors activate transcription factors such as ERF1, resulting in the expression of downstream ET-responsive genes. Only major key players are shown. Altered after Kazan and Pieterse (Kazan and Manners 2008; Pieterse *et al.* 2009).

The jasmonate signaling pathway has been investigated intensively and some of the key elements are known. Jasmonic acid is induced after wounding or herbivore feeding (Farmer and Ryan 1992). After JA formation, the JAR1 (JA amino acid conjugate synthase) protein binds isoleucin to jasmonic acid (Staswick and Tiryaki 2004), which represents the biologically active signal. In the presence of jasmonic-isoleucin (JA-Ile), the SCF^{COII} (skipcullin-F-box) complex promotes the ubiquitination of JAI3 (jasmonate insensitive3) and JAZ (jasmonate-ZIM-domain proteins) which leads to their degradation by the 26S proteasome (Chini et al. 2007; Thines et al. 2007). Without the JAZ3 protein, the transcription factor MYC2 is de-repressed and can activate the transcription of jasmonate-responding genes including JAZ3 (Lorenzo et al. 2004). Therefore, jasmonic acid signaling contains a negative self-regulation. Jasmonate-inducible genes include proteinase inhibitors such as insect antifeedants (Ryan 1990), antifungal proteins like Thi (thionins), and PDF1.2 (defensin) (Penninckx et al. 1998; Vignutelli et al. 1998) that is often used as molecular marker for herbivory. Interestingly, the signaling pathways of ethylene, gibberellin, and auxin are also mediated via SCF complexes (Devoto and Turner 2005). An overview of the signaling pathway of JA and the crosstalk with SA and ET is depicted in Fig.1.5.

1.4 Regulatory elements of wound-inducible promoters

Promoters contain sequence elements that regulate gene activity in response to environmental cues. Those regulatory elements are bound by transcription factors which control the activation of gene expression. Several *cis*-acting elements have been identified in connection with the regulation of defense genes. A methyl jasmonate-responsive element was identified in the promoter of lipoxygenase in barley with the sequence TGACT (Rouster *et al.* 1997). Table 1.1 gives some examples of further *cis*-elements involved in plant defense.

Name	Sequence	Response to	Reference
ABRE	ACGTG	ABA	(Hattori <i>et al.</i> 1995)
as-1	TGACG	SA/pathogen	(Strompen et al. 1998)
ATMYC2	CAYRTG	ABA	(Abe <i>et al.</i> 2003)
ERE	ATTTCAAA	Ethylene	(Itzhaki et al. 1994)
G-box	CACGTG	JA	(Chini et al. 2007)
G-box	AGCCGCC	Ethylene	(Ohme-Takagi and Shinshi 1995)
GT-1 motif	GAAAAA	Pathogen/salt	(Park et al. 2004)
JERE	GCC core	JA/MeJA	(Menke et al. 1999)
MYBR	TGGTTAG	ABA	(Abe <i>et al.</i> 2003)
MYCR	CACATG	ABA	(Abe <i>et al.</i> 2003)
S-box	AGCCACC	Fungal elicitor	(Kirsch <i>et al.</i> 2000)
W-box	TGACY	Wound	(Nishiuchi et al. 2004)
WUN-box	TCATTACGAA	Wound	(Matton et al. 1993; Pastuglia et al. 1997)
SARE	TTCGATC	SA	(Hayashi et al. 2003)

Tab.1.1: Examples of identified regulatory elements induced by hormones or wounding.

In addition, Hayashi and colleagues presented several inducible elements found in the promoters of *ngr1* and *ngr3*, two enzymes encoding S-like ribonucleases. Here, a tobacco mosaic virus (TMV)-responsible element, the GT1 binding site, is described. The same promoter also contains many elicitor-responsive elements like ERE, TC-rich repeats, an ELI-box, and an EIR-element (Hayashi *et al.* 2003).

Two additionally jasmonate-responsive elements, JASE1 and JASE2, have been reported. Both elements have been found in the promoter of the *opr1* gene in Arabidopsis (He and Gan 2001). The LTR (long terminal repeat) promoter of the tobacco retrotransposon element *Tto1* contains a L/AC-I or H-box-like motif, which is responsive to MeJA (Takeda *et al.* 1999). Overall, a number of jasmonate-responsive elements exist. Well-studied promoter elements are the G-box and motifs with a GCC-core. Promoters containing a G-box (e.g. *PDF1* (Lorenzo *et al.* 2003)) respond to jasmonates while they are negatively influenced by ethylene. On the other hand, promoters with a GCC-motif (e.g. vegetative storage protein (Benedetti *et al.* 1995)) are activated by JA with a synergistic effect of ET (Memelink 2009). In several studies, inducible promoters have been used to generate transgenic plants that are more resistant to various diseases. Moreno and colleagues used the promoter of a fungal-induced class II chitinase fused to the antifungal protein of *Aspergillus giganteus* to create rice plants with resistance to the blast fungus *Magnaporthe grisea* (Moreno *et al.* 2005).

1.5 Transcription factors involved in the regulation of plant defense

An important part of plant stress responses is the regulation of specific stress genes that primarily occurs at the level of transcription (Rushton and Somssich 1998). Transcription factors regulate early steps of gene expression. They are defined as proteins that contain a specific DNA-binding domain (Mitsuda and Ohme-Takagi 2009). A genome-wide analysis identified over 2000 putative transcription factors in the Arabidopsis genome (Davuluri *et al.* 2003; Mitsuda and Ohme-Takagi 2009) while the fruit fly (*Drosophila melanogaster*) only contained 600 transcription factors. This suggests that transcriptional regulation plays a more important role in plants than in animals (Riechmann *et al.* 2000). Even between different organs of the same plant, there are differences in the activation of transcription factors. Roots of Arabidopsis express more stress-related transcription factor genes than leaves (Chen *et al.* 2002).

Different families of transcription factors have been identified in Arabidopsis: AP2/EREBP, bZIP/HD-ZIP, MYB, and zinc finger domain proteins. The expression of these factors is often induced or repressed under stress conditions and therefore has most likely a role in plant stress responses (Shinozaki and Yamaguchi-Shinozaki 2000). Transcription factors can activate or repress gene expression depending on the structure of their activation domain (Mitsuda and Ohme-Takagi 2009). Members of the AP2/EREBP (apetala2/ethylene

responsive element binding protein) family are induced after abiotic stress, bacterial infection, infection with different pathogens including bacteria, fungi, oomycetes, and viruses (Chen *et al.* 2002). BZIP/HD-ZIP transcription factors are induced after abiotic stress like cold, salt, osmoticum, and JA, and abiotic stress plus bacterial infection (Chen *et al.* 2002). These basic leucine zipper proteins play a role in phytomorphogenic development and hormone signaling (Jakoby *et al.* 2002) and show similar features to other bZIP proteins of plants (Cheong *et al.* 1998). The bZIP transcription factors recognize C-boxes and C/T or C/A-boxes over G-boxes in the promoters of their target genes (Song *et al.* 2008).

The expression of MYB transcription factors can be up-regulated after abiotic stress, abiotic stress plus bacterial infection, bacterial infection, as well as infection with different pathogens (e.g. fungi, oomycetes, viruses) (Chen *et al.* 2002). Also, MYB transcription factors were implicated as key regulators in aliphatic glucosinolate biosynthesis in Arabidopsis (Hirai *et al.* 2007). Since the MYB domain consists of up to 3 imperfect repeats forming a helix-turn-helix structure (Frampton *et al.* 1991), it is thought that MYB proteins interact with basic helix loop helix proteins (bHLH) to form complexes through the conserved amino acid sequence [DE]Lx₂[RK]x₃Lx₆Lx₃R (Zimmermann *et al.* 2004). In maize, two R2R3-MYB proteins interact with bHLH transcriptions factors that are required for the production of the purple anthocyanin pigments (Petroni *et al.* 2000). bHLH proteins form a ubiquitous family of regulators in eukaryotes. Functional analyses predicted different roles in plant cell, tissue development, and plant metabolism (Heim *et al.* 2003).

Transcription factors that have a strictly conserved amino acid sequence and bind to the Wbox motif belong to the group of WRKY transcription factors (Eulgem *et al.* 1999). They contribute to the control of some of the stress responses and are up-regulated after pathogen infection or wounding (Eulgem *et al.* 2000). Several studies indicate a role of WRKY factors from *Arabidopsis thaliana* during senescence (Eulgem *et al.* 2000). Interestingly, all WRKY factors contain an intron within the region encoding the C-terminal region, and share a zincfinger-like motif (Eulgem *et al.* 2000). In tobacco plants, WRKY transcription factors are involved in the early events of the hypersensitive response against tobacco mosaic virus (Yoda *et al.* 2002). Members of the WRKY group III transcription factors in Arabidopsis are induced after salicylic acid treatment (Kalde *et al.* 2003) and have a functional role in the cross talk between SA and JA pathway (Li *et al.* 2004). In this regard, it was published that NPR1 is controlled by WRKY factors (Yu *et al.* 2001) and that those transcription factors are downstream components of the MAPK pathway (Petersen *et al.* 2000; Miao *et al.* 2007). WKRY transcription factors are the substrates for MAP kinases, which can regulate activation of SA-dependent resistance as well as block the induction of PDF1.2 by JA (Petersen *et al.* 2000). A further example of WRKY factors is OsWRKY from rice that is regulated by multiple factors to achieve disease resistance (Cai *et al.* 2008).

Another group of transcription factors are zinc-finger transcription proteins which are implicated after abiotic stress, bacterial infection, and infection with pathogens (Chen *et al.* 2002). An important example for this group is the CaZFP, an Cys₂/His₂-type zinc-finger transcription factor suggested in early defense of pepper plants against pathogens and abiotic stress (Kim *et al.* 2004). It binds to two *cis*-acting elements, AGT core motifs, separated by 13 bp (Takatsuji and Matsumoto 1996).

Transcription factors with an implicated role in the JA-ET crosstalk are AtMYC2, a helixloop-helix-leucine zipper, and the ERF1 ethylene responsive factor (Felton and Korth 2000; Lorenzo *et al.* 2004). ERF1 binds to GCC-box in the promoter of target genes (Fujimoto *et al.* 2000) and is induced after infection with pathogens (Solano *et al.* 1998). An essential transcription factor in the signaling pathway of JA and ET that can activate PDF1.2 gene expression is ORA59 which belongs to the AP2/ERF domain transcription factors (Pré *et al.* 2008).

SA biosynthesis is influenced by the transcription factor NtWIF (Waller *et al.* 2006) that is activated upon phosphorylation by wound-induced protein kinase (WIPK) in tobacco (Maffei *et al.* 2007). Also, the CaRAV1 transcription factor from pepper (*Capsicum annum* L.) is involved in the SA-dependent signaling pathway (Sohn *et al.* 2006) and contains two or more distinct types of DNA-binding domains (Kagaya *et al.* 1999). This transcription factor belongs also to the family of AP2/EREBP. In pepper, the important transcription factor CaATL1 was found. CaATL1 contains an AT-hook motif and increases in response to SA and/or ethephone treatment. Therefore, it has been implicated in the response against pathogen attack (Kim *et al.* 2007). GBF3 (G-box factor 3) belongs to the family of bZIP transcription factors and functions downstream of SA and NPR1 in the SA dependent signaling pathway (Chen *et al.* 2002). Additionally, NPR1 is known to respond to ABA (Lu

et al. 1996). Therefore, it was thought that the signaling pathway activated by senescence may overlap with stress signaling pathway (Chen *et al.* 2002).

The activity of transcriptions factors is not only regulated at the level of transcription but by proteolytic activation. Some transcription factors were found to be anchored in the ER or golgi membranes in a dormant state and are activated upon proteolysis (Chen *et al.* 2008). This group of MTTFs (membrane-tethered transcription factors) contains some bZIP and NAC transcription factor, but only one was found in response to ABA (Chen *et al.* 2008).

Introduction

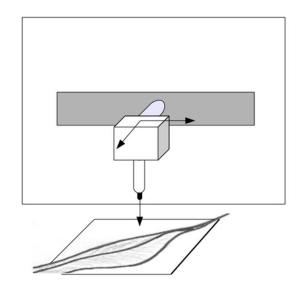
1.6 Objectives of this work

The crop plant *Zea mays* is known to respond to herbivore attack with the emission of terpene volatiles. The composition of the volatile blend is specific for the type of herbivore and the site of attack, suggesting a complex signal transduction network that is involved in the formation of the volatile signal. Since terpene biosynthesis and its key enzymes, the terpene synthases, have already been investigated in maize, we chose this plant as a model system to investigate the signal transduction pathway for herbivore-induced genes and elucidate their temporal and spatial patterns. The project starts with a transcriptome analysis to identify genes that are altered in their expression patterns after herbivore attack. The analysis focuses on transcription factors which may play an important role in the regulation of plant defense genes. An investigation of the spatial and temporal expression pattern in response to several herbivore-related stimuli provides insight into the major cues and nature of the plant regulatory networks for volatile terpene biosynthesis.

A second approach to elucidate the regulation of volatile terpene biosynthesis focuses on the regulation of the terpene synthases *tps10* and *tps23*. A promoter deletion analysis will be performed to identify important regulatory *cis*-elements for both genes. Heterologous expression of promoter::reporter gene constructs in *Arabidopsis thaliana* provides a method to overcome the limitations of maize transformation.

2. Materials and methods

2.1 Cultivation and treatment of Zea mays L.


Seeds of the four maize lines B73, Delprim, W22, and UFMu-02709 were grown in climatecontrolled chambers (York Int., York, USA) under the following conditions: 16 h photoperiod, 1 mmol m⁻² s⁻¹ of photosynthetic active radiation, a temperature cycle of $22^{\circ}C/18^{\circ}C$ (day/night), and 65 % relative humidity (Tab.2.1). Clay substrate potting soil (Klasmann, Gross-Hesepe, Germany) with Osmocote fertilizer (Scotts, Nordhorn, Germany) in seed flats (400x600x60 mm) or pots (160 mm in diameter) were used to cultivate plants.

Name	Description	Origin
B73	Inbred line [Reid Yellow Dent]	KWS (Einbeck, Germany)
Delprim	Hybrid line ([DSP1387C[Dent] x DSP1743A[Flint])	DSP AG (Delley, Switzerland)
W22	NSL 30053 - NC7, inbred line	US National Plant Germplasm System (Beltsville, USA)
UFMu-02709	Mu transposon insertion line with W22 as background	US National Plant Germplasm System (Urbana, USA)

Tab.2.1: Description of maize lines used in this work

Twelve to fourteen day-old plants with 3 to 4 expanded leaves were used in all experiments. For herbivore treatment, three third instar larvae (*Spodoptera littoralis*) were enclosed in the lower part of the middle leaf of each plant in a clipped cage. The larvae were able to feed at least 12 h or according to the time course experiment: 0.5 h, 1 h, 2 h, and 4 h, respectively. For mechanical damage, the upper side of 2 young leaves was scraped with a razor blade on each side of the midvein in an area of about 5x10 mm. For elicitor treatment, 10 μ l of *S. littoralis* regurgitate (1:2 diluted with sterile water and boiled for 5 min at 95°C) or jasmonic acid (in 0.05 % DMSO) as an aqueous solution was applied to the wounded area. Additionally, plants were damaged with the mechanical caterpillar Mecworm (MPI for Chemical Ecology, Jena, Germany) for the same time points and induced again with 10 μ l

regurgitate (Fig.2.1). The metal punch (\emptyset =0.5 mm) of this unit was programmed to damage 30 mm² of the leaf material (Mithöfer *et al.* 2005).

Fig.2.1: Schematic design of the Mecworm. The punching unit can be moved in two dimensions and results in a damaged area according to the programmed instructions.

2.2 Cultivation of *Spodoptera littoralis* (Boisd.) [Lepidoptera: Noctuidae] Eggs of the Egyptian cotton worm (*Spodoptera littoralis*) were obtained from Syngenta (Basel, Switzerland) and raised on an artificial wheat germ diet (Heliothis mix, Stonefly Industries, Bryan, USA) for about 10-15 days at 22°C under an illumination of 750 μ mol m⁻² s⁻¹. Third instar larvae were used for herbivore induction experiments.

2.3 Cultivation, treatment and transformation of Arabidopsis thaliana L.

Arabidopsis thaliana variety Columbia was used for all experiments. Transformed Arabidopsis plants were used in the T2 generation and were grown like wild type plants under standard conditions, including a 3 day cold period to obtain a simultaneous germination of the seeds. Plants were sown in a 100x100x110 mm pots in clay substrate potting soil (Klasmann, Gross-Hesepe, Germany) with Osmocote fertilizer (Scotts, Nordhorn,

Germany) in a climate controlled room at 150 μ mol (m²)⁻¹ s⁻¹ of photosynthetic active radiation at 22°C and 65 % relative humidity at long-day conditions (16 h light). After starting to develop basal leaves, plants were separated into 60x60x80 mm pots.

Five week-old plants were induced by scratching the upper leaf with a razor blade and application of 10 μ l 250 μ M jasmonic acid (in 0.05 % DMSO) or by adding 2 ml 250 μ M jasmonic acid to the plant soil over 3 days.

Arabidopsis was transformed using the floral dip method (Clough and Bent 1998; Zhang *et al.* 2006). The transformed *Agrobacterium tumefaciens* (2.4.4) were inoculated in a LB medium with spectinomycin, gentamycin and rifampicin for 48 h at 25°C. 25 ml of the precultures cells were shaken in 500 ml LB medium containing the three antibiotics for 24 h at 27°C ($OD_{600}=0.9$). After centrifugation at 5500 g for 20 min at room temperature, the pellet was redisolved in 400 ml infiltration medium and OD_{600} was adjusted to around 9.0 by adding infiltration medium.

The inflorescence of *A. thaliana* variety Columbia was transformed by dipping the whole upper parts of the plants for 10 s into the infiltration suspension. Plants were then wrapped in blue plastic hoods and kept overnight without direct sunlight. The transformed seeds were harvested and dried for several days. Positive transformed seeds were selected using a 1:3000 dilution of Basta® herbicide (Bayer Cropscience, Monheim am Rhein, Germany). The herbicide was applied every second day after the plants had reached a size of about 5 mm.

Infiltration medium:

5 % [w/v] sucrose 0.005 % [v/v] Silwet L-77

2.4 Microbiological methods

2.4.1 Bacterial strains and cultivation

Escherichia coli and *Agrobacterium tumefaciens* were cultured in LB medium in a shaker or grown on LB-agar plates in an incubator at 37°C, unless noted otherwise (Tab.2.2). Stock cultures were obtained by adding 300 μ l 100 % sterile glycerol to 1 ml liquid culture and frozen at -80°C.

Strains	Genotype	Application
<i>E. coli</i> Bl21 (DE3) (Novagen, Madison, USA)	F^{-} ompT gal dcm lon hsdS _B (r _B ⁻ m _B ⁻) (DE3)	protein overexpression in pHIS8-3 (T7 promoter)
<i>E. coli</i> TOP10 (Invitrogen, Carlsbad, USA)	F^- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 deoR recA1 araD139 Δ (ara-leu)7697 galU galK rpsL (Str ^R) endA1 nupG	general cloning of PCR products for sequencing and subcloning
<i>A. tumefaciens</i> GV3101 (van Larebeke et al., 1974)	with nopaline vir helper plasmid pMP90	introduction of <i>tps</i> promoter constructs into <i>Arabidopsis</i> <i>thaliana</i>

Tab.2.2: Bacterial strains and their application

LB culture:	25 g LB medium (AppliChem, Darmstadt, Germany) in 1 l a.dest.
LB agar:	32 g LB-medium (AppliChem, Darmstadt, Germany) in 1 l a.dest.

2.4.2 Antibiotics

Antibiotic	Stock solution (mg ml ⁻¹ in <i>a.dest</i>)	End concentration (µg ml ⁻¹ media)
Kanamycin	50	50
Ampicillin	100	100
Gentamycin	50	50
Rifampicin	30 (in methanol)	30
Spectinomycin	100	100

Tab.2.3: Concentrations of applied antibiotics

2.4.3 Transformation of Escherichia coli

50 μ l of chemically competent *E. coli* cells were thawed on ice and mixed with 3 μ l ligation solution. After 30 min incubation on ice, the transformation mixture was heat-shocked for 45 s at 42°C and transferred to ice again for 1 min. Subsequently, 150 ml SOC medium was added and the cultures were shaken for 1 h at 37°C. Half of the transformed culture was spread on a prewarmed agar plate with the corresponding antibiotic and incubated at 37°C over night (B6120 Kendro, Heraeus). Colonies where picked and checked for successful transformation with vector or insert specific PCR primers.

SOC-medium:	2 % Trypton [g/v] (Sigma-Aldrich, St. Louis, USA)
	0.5 % yeast extract [g/v] (Sigma-Aldrich, Munich, Germany)
	0.5 % glucose [g/v]
	10 mM NaCl
	2.55 mM KCl
	21.6 mM MgCl ₂
	20 mM Mg2SO4
LB-agar:	32 g LB-medium (AppliChem, Darmstadt, Germany) in 1 l a.dest.

2.4.4 Transformation of Agrobacterium tumefaciens

The freeze-thaw method (Hofgen and Willmitzer 1988) was used to transform *Agrobacterium tumefaciens* with the destination vector containing the reporter gene GUS and a promoter fragment of *tps10* and *tps23*. 200 μ l chemo-competent cells were thawed on ice and incubated with 0.5-1 μ g plasmid DNA for 5 min on ice, in liquid nitrogen, and at 37°C, respectively. One ml LB medium was added, the reaction incubated for 30 min on ice, and then transferred to 28°C and shaken for 3 h. After centrifugation for 1 min at 7000 g, the cells were resuspended in 100 μ l LB medium and 30 or 70 μ l were plated on an agar plate containing spectinomycin, gentamycin and rifampicin. The agar plates were incubated at 28°C for 3 days.

LB-agar: 32 g LB-Agar (AppliChem, Darmstadt, Germany) in 1 l a.dest.

2.5 Nucleic acid techniques

2.5.1 Isolation of total RNA from maize

RNA for cDNA synthesis and QRT-PCR was extracted from leaves and roots with the RNeasy Plant Mini kit from Qiagen (Hilden, Germany) according to the manufacturer's protocol. Tissue was disrupted in liquid nitrogen, lysed in the presence of a denaturing guanidine isothiocyanate containing buffer and homogenized by centrifugation through a shredder column. Ethanol was added and samples were applied to silica-gel membrane columns which selectively bind the RNA. After several washing steps with ethanol-containing buffers, total RNA was eluted in 40 μ l nuclease free water. Quantification of the total RNA was measured by UV spectrophotometers Ultrospec 2100pro (Amersham Biosciences, Uppsala, Sweden) and Infinite 200 Nano Quant (Tecan Group Ldt, Männedorf, Switzerland) and on an agarose gel.

RNA extraction for microarray experiments was also performed using the RNeasy Plant Mini kit from Qiagen with the following protocol. 50-80 mg frozen plant material was mixed with 450 µl RLT buffer, vortexed vigorously for 5 min and incubated at 21°C for 15 min in an Eppendorf Thermomixer (Eppendorf, Hamburg, Germany) at 1400 rpm. The extract was

transferred to a QiaShredder Column and centrifuged for 2 min at 16000 g. The supernatant was mixed with 225 μ l 100 % ethanol, transferred to the RNeasy mini Column and centrifuged for 25 s at 8000 g. Flow through was discarded, 350 μ l RW1 buffer was added to the column and again centrifuged for 15 s at 8000 g. DNA digestion was performed on column by adding 90 μ l DNase buffer (Promega, Madison, USA) and 10 μ l DNase (Promega, Madison, USA). After the incubation of 15 min at room temperature, 350 μ l RW1 buffer was added and centrifuged for 15 s at 11000 g. The flow-through was discarded and 500 μ l RPE buffer was added. After the centrifugation (15 s at 11000 g) the flow through was discarded and the washing step was repeated. The column was dried for 2 min at 11000 g and RNA was eluted with 40 μ l 70°C preheated nuclease free water and centrifuged at 9000 g for 1 min.

2.5.2 Isolation of genomic DNA from plant material

Plant material was frozen in liquid nitrogen and ground into a fine powder. Genomic DNA was isolated with the DNeasy Plant kit from Qiagen (Hilden, Germany) according to the manufacturer's instruction.

2.5.3 Isolation of plasmid DNA from bacteria

For the isolation of plasmid DNA from bacteria, the Nucleo Spin Plasmid kit from Macherey&Nagel (Düren, Germany) was used following manufacturer's instruction.

2.5.4 DNA Digestion

DNA was digested using Promega DNase (Promega, USA) according to the manufacturer's protocol unless noted otherwise. 2.75 μ g RNA was incubated for 30 min at 37°C with the appropriate buffer and DNase. The reaction was stopped by adding 1 μ l stop solution and incubation for 10 min at 65°C.

2.5.5 Oligonucleotides

Oligonucleotide primers used in this work were purchased from MWG-Biotech (Ebersbach, Germany) and are listed in Tab.2.4.

Name	Sequence	Application
HG 3	GGTCAGGATAGAGAAGGGAGAGC	Housekeeping gene: RNA polymerase II large subunit fwd
HG 4	GAAGAAGCCAGTAGTTTACAAGCC	Housekeeping gene: RNA polymerase II large subunit rev
HG 5	AGGCGTTCCGTGACACCATC	Housekeeping gene: putative APT1A fwd
HG 6	CTGGCAACTTCTTCGGCTTCC	Housekeeping gene: putative APT1A rev
S53	CCGGGTCGAGATCACCAAGATA	TPS2 QRT-PCR
S54	GGGAAGTGAATCAGCAGCCA	TPS2 QRT-PCR
S57	GGCAGCACTCCAAGGATCTTCT	TPS3 QRT-PCR
S58	TGGGAAGTGAATCAGCAGCCG	TPS3 QRT-PCR
AM120	AGGGAACTTCGTGGTGGATGATAC	TPS10 QRT-PCR fwd
AM121	TGGCGTCTGGTGAAGGTAATGG	TPS10 QRT-PCR rev
BH51	TCTGGATGATGGGAGTCTTCTTTG	TPS23 QRT-PCR fwd
BH52	GCGTTGCCTTCCTCTGTGG	TPS23 QRT-PCR rev
SF9	CCGACTTAGGCTGCTCATCA	ZmOMT1 QRT-PCR fwd
SF10	GCTGCATCTCCCTTGTGTGTC	ZmOMT1 QRT-PCR rev
SK10	GATGTTGTGCATAACAGTATTAGGAGC	ZmOMT3 QRT-PCR fwd
SK11	ATGCCAAGCGAGATAGTGAGAAAC	ZmOMT3 QRT-PCR rev
SM1	CCGACTTAGGCTGCTCATCG	ZmOMT4 QRT-PCR fwd
SM2	GCCTCACCCTTGTGGTTTCTT	ZmOMT4 QRT-PCR rev
TF3	CCACAGGACAGGACACACAGAG	TF1 QRT-PCR fwd
TF4	CTGGATTGCTGGCGATGAACC	TF1 QRT-PCR rev
TF5	TGAGCGTGGAGTGGTGGAC GGGAGGGTGGTGGATGACG	TF2 QRT-PCR fwd
TF7 TF13	AGATGAACAGGAAGCCAGGAGAC	TF2 QRT-PCR rev TF4 QRT-PCR fwd
TF15 TF14	AAGCCACCGCCGAAGGAG	TF4 QRT-PCR rev
<u>1F14</u> TF17	ACACCCGCCAGATTTGAAGTAAG	TF5 QRT-PCR fwd
TF17 TF18	CAGTGGAGTGGATACAGTGATGAG	TF5 QRT-PCR rev
TF23	CTACCGCCGCCGTTGTTC	TF7 QRT-PCR fwd
TF23	TGCCTTCCTGCTTGC	TF7 QRT-PCR rev
TF25	ATGGAGTTTGACCTGCTGAATTAC	TF8 QRT-PCR fwd
TF26	CGGCGTGTACTGCTCTGG	TF8 QRT-PCR rev
TF31	CACTACCCGCCCGTCCTC	TF9 QRT-PCR fwd
TF32	TGCCGTCGCCCAGAATCG	TF9 QRT-PCR rev
TF40	TTCACAGAGGAGGAAGAAGAGC	TF12 QRT-PCR fwd
TF41	TGGACGGCGAGGAGGATG	TF12 QRT-PCR rev
TF42	ACAGCGATACAAGATTAGCATACG	TF13 QRT-PCR fwd
TF43	CAACTACACAAGCAGCGATGG	TF13 QRT-PCR rev
TF46	TGCGGTTGGTGGCTCATAAG	TF14 QRT-PCR fwd
TF47	AAGGTTCTCAGGCTTCAAGTCC	TF14 QRT-PCR rev
TF50	GAAGGGCAAGAAGAAGAAGAAGTC	TF15 QRT-PCR fwd
TF51	GGTGAAGCAGGCGGATGG	TF15 QRT_PCR rev
TF53	ACTGCTCTGTCCTACTTGGC	TF16 QRT-PCR fwd
TF54	AGTCCTCTCGGTCCTTGGC	TF16 QRT-PCR rev
TF55	GGAAGCCTTAGTGGAAGCAGTAG	TF17 QRT-PCR fwd
TF56	CGTAGTTGATGGAAGCAAGTTGTG	TF17 QRT-PCR rev
TF65	GCAGTCTGTCCCATTTGATAGGC	TF20 QRT-PCR fwd
TF66	ACTCAGGCTCATAGGTCACTTCC	TF20 QRT-PCR rev
TF70	CTCTGGATGATGGATGGCGAAGG	TF21 QRT_PCR fwd
TF71	ACAAGGGAAGCACGGCACTG	TF21 QRT-PCR rev
TF72	ACTCCCACTCCCAATCACACTC	TF22 QRT-PCR fwd
TF73	GCCGTCCACCTGCTCCTC	TF22 QRT-PCR rev
TF78	TGGACGGAGATGAATGTGGAGAC	TF23 QRT-PCR fwd
TF79	CCCAGGACGACAAGAGGAACC	TF23 QRT-PCR rev
TF94	GCCTCGTCTCGTCTCGTCTTC	TF28 QRT-PCR fwd
TF95	GGTCAGCCTTCGTCCTCTTCC	TF28 QRT-PCR rev
TF96	GCAGAGCAGAAGCCCAGCAG	TF29 QRT-PCR fwd
TF97	GGTGGAGATGGTGAGGAGGAAC	TF29 QRT-PCR rev
TF100	GACGCTTCCTCACGCCTCTG	TF30 QRT-PCR rev
TF101	CCACACCACCTCGCTGAACC	TF30 QRT-PCR fwd
TF104	GGCAGCGGTGGAGGAGAC	TF31 QRT-PCR fwd

Tab.2.4: Oligonucleotide Primers used in this work

TE105	ТСАСААСТТСАСААСАССАСААСС	TE21 ODT DCD row
TF105 TF108	TCACAAGTTCAGAAGAGCAGAAGC CATCTGCTCCAACCTCTCCTTCTC	TF31 QRT-PCR rev TF32 QRT-PCR fwd
TF108	GCTGCCCGTCTCCTGAACC	TF32 QRT-PCR rev
TF109 TF118	CACGCCGCCGGAGGAGTTG	TF34 QRT-PCR rev
TF118 TF119	GCGCAAGTACGGGCAGAAGCAGG	TF34 QRT-PCR fwd
TF122	CGGTGGGCTCAAGACAAAACA	TF35 QRT-PCR rev
TF122 TF123	TTCCAAAGCAAACAGGCAGAT	TF35 QRT-PCR fwd
TF141	TCACTGGGGCAAGTGGGTGG	TF40 QRT-PCR fwd
TF142	TTGGCATCGCCTTGCTCTTGG	TF40 QRT-PCR rev
TF142	GATGTTGATCACCATGCCGTCC	TF42 QRT-PCR fwd
TF148	CAACTCCGCCTCGCAGTGCC	TF42 QRT- PCR rev
TF161	TCAAGCTGCCGACCCCTCC	TF46 QRT-PCR fwd
TF162	CGCCTCCGTCATAGTGCTTCC	TF46 QRT-PCR rev
TF169	ATGACGCCCGGGAACTCCGT	TF2 RACE rev
TF170	ACCGCCACCACCACCATCCC	TF2 RACE fwd
TF171	GCATACTCCGATCCACGCAGG	TF35 RACE fwd
TF172	AAGCATGGGAGTTGGGCATC	TF35 RACE rev
TF173	GCTTGAGCTGATGACCACGATG	TF8 RACE fwd
TF174	GTACCCGGTGGTGGTGGTCGT	TF8 RACE rev
TF175	GGAAGACCCGCACACACACGC	TF30 RACE fwd
TF176	CCCATGCCCACGCCTCCGAC	TF30 RACE rev
TF177	CAGGTTAAGGGGAGCGAGAAC	TF34 RACE fwd
TF178	GGCGCGTGGACAGCGGCTTGG	TF34 RACE rev
TF179	ACGGTGAGCAGCACTCTCGCC	TF23 RACE fwd
TF180	CCGCGTGGTTTAGCTCCAGTGTTG	TF23 RACE rev
TF181	CAGCTGAGCTGATAGTGACCC	TF29 RACE fwd
TF182	GGAACCAAAAAAGAAAAGAAAAAC	TF29 RACE rev
TG1	GTCGACGCATGGGTCCTGAA	TF1 cloning fwd
TG2	TCAATGACAGCGCAGAACC	TF1 cloning fwd
TG3	CTAAAAATTCCTCGTTCA	TF1 cloning rev
TG4	TGAGCTCACTCAGAAGGG	TF1 cloning rev
TG5	AGAAGAATTCAGTTTGGGAG	TF2 cloning rev TF2 cloning rev
TG6 TG7	TATTCTTGATCATCTCAGCA TCGCGTTACATGTCGCCGT	TF8 cloning rev
TG7 TG8	ATGAGTTTTAGGACTCGTC	TF20 cloning fwd
TG9	AAGTAGCATCACATTCCAA	TF20 cloning rw
TG10	ATGCAGCTGGGGAAGACCGC	TF22 cloning fev
TG10 TG11	CCTCGCCTCAGCTCAGAACT	TF22 cloning rwd
TG12	GACCTCCCGCCTGGCTGCTCC	TF34 cloning fwd
TG13	AGCAGCGGACATGGTAGGAG	TF34 cloning fwd
TG14	ATGTCGCCCTCCTCCTACTTCT	TF34 cloning fwd
TG15	AGTAGCTGACAGTGGTCGT	TF34 cloning fwd
TG16	AGATTGGGTGCGTGCGTCA	TF34 cloning rev
TG17	TCGCCAGCTCTAGCAGAGGA	TF34 cloning rev
TG18	AAATGCAGATGGACTCCTA	TF23 cloning fwd
TG19	ATGCCGGCCTCGTTCCAG	TF23 cloning fwd
TG20	GAAGTGGATCAGTCATTGTCA	TF23 cloning rev
TG21	TTGTTTGAGTCGACGGGCAT	TF35 cloning fwd
TG22	CCTGCCTAGTTCTCTGCC	TF30 cloning rev
TG23	CGATCATGCGCTAGCTAGTTCAC	TF8 cloning rev
TG24	ATGGGACAGCCGGTGACGAG	TF1 cloning fwd
TG25	TCAGAAGGGGCCCAACCCC	TF1 cloning rev
TG26	ATGGGTCTGCCGATGAGGAG	TF1 cloning fwd
TG27	TCAGAACTGTCCCAACCCG	TF1 cloning rev
TG28	ATGCCTTCAGTCGAGGTCG	TF2 cloning fwd
TG29	TCAGTTTGGGAGCTCGAGG	TF2 cloning rev
TG30	ATGGAGTTTGACCTGCTG	TF8 cloning fwd
TG31 TC32	TTACATGTCGCCGTGGGG	TF8 cloning rev TF20 cloning fwd
TG32	ATGTTCCAAGGAATGATGT	
TG33 TG34	TCACATTCCAAAGGGGGCA ATGGGTCTGCCGATGAGGA	TF20 cloning rev TF22 cloning fwd
TG34 TG35		TF22 cloning two TF22 cloning rev
TG35 TG36	TCAGAACTGTCCCAACCC ATGCAGATGGACTCCTAC	TF23 cloning fwd
TG30 TG37	GGAGGATCGCGTGTCAAAAC	TF23 cloning fwd
TG37 TG38	TCAGTCATTGTCAGCAAAG	TF23 cloning rev
TG39	ATGGCGCCCCGGGTGGCGGA	TF30 cloning fwd
1007	moococcooonocoon	11 50 cronning twu

TG40 CTACTTCCTGCGCCGG TG41 ATGGCTGCCGGGGCAG TG42 ATGGCTGCCGGGGCAG TG43 CTAGGCGACCGGGCCAGT TG44 ATGGCTGCTGACGGGGGCAGT TG45 CTAGGCGACCGGGGCCAGT TG46 ATGGCGTCCTGACGGGGGCC TG46 ATGGCGTCCTGACGGGCGCC TG46 ATGGCGTCATGATGAGCAGCGC TG47 CTAAGGGGGGGGAGCACGCGCAG TG48 GTGCAAGGGAGGAGCACGCGCAC TG49 GGCCAAGGGGAAGCACGCGCCAC TB1 TCGGAAATCAGAAACGACGCGCGCA TB1 TCGGAAATCAGAACGACGCGCCACC TB2 CGGGCCGCTAGAAAAAATTCCTGGTCCACCC TB3 AGCTTGCGGCCGCCAAGAACGCCGCCTC TCGAAATTCATGCAGCGGGGAAGACCGCCGCCTC TT22 sepresion fvd TB4 TCGGAAATCAGAACGACGCCGCCCC TT22 sepresion fvd TB4 TCGGAATTCATGATGAACGACGCGCCCCC TT22 sepresion fvd TB4 TCGGAATTCAGATGACGAACGCGCGCCC TT22 sepresion fvd TB4 TCGGAATTCAGATGACGAATGCACTCCCAAGGG TT22 sepresion fvd TB4 TCGGAACTCAGAGCAGCGCGCGAGT TT22 sepresion fvd TB4 TCGGAATTCAGAGCGCGAAGTGCCGTCGT TT22 sepresion fvd	
TG42 ATGGTCCACGACCGCGC TF32 cloning fewd TG43 CTAGGCCACCGGCCGCGC TF32 cloning rev TG44 ATGGCGTCCTCCACGGGCGC TF34 cloning rev TG45 TACCGGTAGAGGGCGCC TF34 cloning rev TG46 ATGCACTTCCACCACACA TF35 cloning rev TG47 TCAAGGGGTCGTGGTGTGTC TF35 cloning rev TG48 ATGGGTCATGATGAAGCCGCGCAC TF21 cloning rev TG49 GGCACAAGGCACCGCACC TF21 cloning rev TH1 TCCAAGGATGTAGACCACGGCACC TF1 expression rev TH2 CCGGACCCCCAAAAAATTCCTCGTTCACC TF1 expression rev TH3 AGCTTGCGGCCCCCAAAAAATTCCTCGGTCAACCC TF2 expression rev TH4 TCCGAATTCATGCAGCTGGGAAAGCCGCCCGTC TF2 expression rev TH4 TCCGAATTCATGCAGCACTCAACCC TF2 expression rev TH4 TCCGAATTCATGATGCACTCAACCC TF2 expression rev TH4 TCCGAATTCATGAGCTCAACCACCC TF2 expression rev TH4 TCCGAATTCATGAGCTCACACCCAACCC TF2 expression rev TH4 TCCGAATTCATGAGCTCACACCCAACCC TF2 expression rev TH10 AGCTTGCGGCCCCCAAGACCCACCACCCACTTCCAACCC TF2 expression rev	
TG44 TF34 cloning rev TG44 TRGCGTCCTCGACGGGGA TF34 cloning fed TG45 TRGCGTCTCCGACGGGGA TF34 cloning fed TG46 TRGCGACTCGACCGACAC TF35 cloning fed TG47 TCAAGGGGTGGTGATGTC TF35 cloning fed TG48 ATGGGGTCATGATGACCTGTAG TF21 cloning fed TG49 GGCACAAGGGAAGCACGGAC TF21 cloning fed TG49 GGCACCAGGGAAGCCCGAAACCC TF1 expression fed TT11 TCCGAAATTCATGCAGCCGGGAAGCCCCCCT TF1 expression rev TT18 AGCTTGCGGCCGCCTAAAAAATTCCTGTTCCACC TF2 expression fed TT18 TCCGAAATTCATGCAGCTGGGAAGCCCCCCTT TF2 expression rev TT18 TCCGAAATTCATGCAGCTGGGAAGCCCCCCCT TF2 expression fed TT18 TCCGAATTCATGCAGCTGTGCTCCAACCC TF2 expression fed TT19 AGCTTGCGGCCCCAATGACATTCCAAAGGG TF2 expression fed TT19 AGCTTGCGGCCCCAATGACATTCCAAAGGG TF2 expression fed TT19 AGCTTGCGGCCCCAATGACCTTCCAATGTCCAACGC TF2 expression fed TT19 AGCTTGCGGCCCCAATGACCTTCCAATGTCCAACGC TF2 expression fed TT19 AGCTTGCGGCCCCAATGACCTTCCAATGTCCAATGTC TF2 expression fed <th></th>	
TG45 TCACCGGTAGAGGGGCCC TF34 cloning rev TG46 ATGACTTCCACCACACACA TF35 cloning rev TG47 TCACGGTAGAGGGGCCC TF35 cloning rev TG48 ATGGGTCATGATGAAGCTGTAG TF35 cloning rev TG49 TCAAGGGGTGATGTC TF21 cloning rev TG49 GCCAAGGGAAGCACGCAC TF21 cloning rev TH1 TCCGAATTCATGCACCGCACAACCC TF1 expression fwd TH2 GCGGCCCCCCCCTAAAAATTCCTCGTTCACC TF1 expression rev TH3 AGCTTCCGGCCCCCCAAAAAATTCCTCGTTCACC TF2 expression fwd TH4 TCCGAATTCATGCAGCTGGGGAAGACCCCCCTC TF2 expression fwd TH5 TCCGAATTCATGCCACCGGGAAGACCCCCCTC TF2 expression fwd TH6 GCGGCCCCAAGTAGCATTCCAACCC TF2 expression rev TH4 TCCGAATTCATGACTACACTTCCAAAGGG TF2 expression rev TH4 TCCGAATTCATGACTGACCTACCATTCCCAACCG TF2 expression rev TH10 AGCTTGCGGCCCCCAAGCACTACACTATCCCAACGG TF2 expression rev TH114 TCCGAATTCATGAGCTACCATTACCAAAGGG TF2 expression rev TH115 TCCGAATTCATGAGCACCGCCCCGGGGCCAG TF3 expression rev TH114 TCCGAATTCATGAGCACCGCCGCGGGCCAG TF3	
TG45 TCACCGGTAGAGGGCCCC TF35 cloning rev TG46 ATGGACTTCACCACACA TF35 cloning fvd TG47 TCAAGGGGTGATGATGTC TF35 cloning rev TG48 ATGGACTCACACACAC TF21 cloning fvd TG49 GGCACAAGGGAAGCCCGCAGACCC TF21 cloning rev TH1 TCCGAAATTCATGACAGCGCAGAACCC TF1 expression rev TH2 GGCGCCCCTAAAAAATTCCTCGTTCACC TF1 expression rev TH3 AGCTTGCGGCCGCCAAAAAATTCCTCGTTCACC TF2 expression fvd TH4 TCCGAAATTCATGCAGCTGGGGAAGACCCCCCT TF2 expression fvd TH5 TCCGAAATTCATGCAGCTGGGAAGACCGCCCTC TF2 expression fvd TH6 GCGGCCCCCAAGTCAGAATGCAATTCCAAAGGG TF20 expression fvd TH9 CGCGACCCCCCAAGTAGCATCACATTCCAAAGGG TF20 expression fvd TH11 TCCGAATTCATGAGCATGCACTCACATTCCAAAGGG TF32 expression fvd TH11 TCCGAATTCATGAGCCCCCAGGGCCAG TF32 expression fvd TH11 TCCGAATTCATGAGCCCCCGCGGGCCAG TF32 expression fvd TH12 TCCGAATTCATGGGCCCTGGGGCCAG TF32 expression fvd TH14 TCCGAATTCATGGCCCTGGGGCCAG TF32 expression fvd TH12 TCCGAATTCATGGGCCCCTGGGCCAG	
TG47 TCAAGGGTCATGATGAAGCTTC TT35 cloning rev TG48 ATGGGTCATGATGAAGCTGTAG TT21 cloning rev TG49 GCCACAAGGAGAAGCACCGCACA TT21 cloning rev TH1 TCCGAATTCATGACAGCGCAGAACCC TT21 cloning rev TH2 GCGGCCCCCAAAAAAATTCCTCGTTCACC TF1 expression rev TH3 AGCTTGCGGCCGCTAAAAAATTCCTCGTTCACC TF1 expression rev TH4 TCCGAAATTCATGCAGCTGGGGAAGACCCGCCGTC TF22 expression fwd TH5 TCCGAATTCATGCAGCTGGGGAAGACCCGCCGTC TF22 expression rev TH4 TCCGAATTCATGCAGCTGGGGAAGACCGCCGTC TF22 expression rev TH7 AGCTTGCGGCCGCAGATGACTCACATTCCAAAGGG TF20 expression rev TH8 TCCGAATTCATGAGTTTGAGACTGTCCAACTGTCCAACGG TF20 expression rev TH8 AGCTTGCGGCCGCCGCGCGCGCGCGCCGCCGCGCGCGGGGGG	
TG47 TCAAGGGCTGGTGATGATCTC TF35 cloning rev TG48 ATGGGTCATGATGAAGCTGTAG TF21 cloning fwd TG49 GCCACAGGGAAGCACGGCAC TF21 cloning fwd TH1 TCCGAATTCAGCACGCGCAGAACCC TF11 expression rev TH3 AGCTTGCGGCCGCTAAAAAATTCCTCGTTCACC TF1 expression rev TH4 TCCGAATTCAGCACCGGGGGAAGACCGCCGTC TF22 expression fwd TH5 TCCGAATTCAGCAGCTGGGAAGACCGCCGTC TF22 expression rev TH6 GCGGCCGCAAGATGAGATGAGTGT TF20 expression rev TH7 AGCTTGCGGCCGCAAGATGAGATGTGT TF20 expression rev TH8 TCCGAATTCATGAGATGACACACTCCAATGCCAAGGG TF20 expression rev TH10 AGCTTGCGCGCGCAAGTAAGCACCACCACTCCATGTCC TF20 expression rev TH11 TCCGAATTCATGAGCTGCGGGGGCAG TF32 expression rev TH11 TCCGAATTCATGAGCTGCGCGGGGCAG TF32 expression rev TH11 AGCTTGCCGCGCCCTAGGCCGCGCCAGT TF32 expression rev TH12 AGCTTGCGGCGCCCTAGTAGACGCTGCGGGGGCAG TF32 expression rev TH14 TCCGAATTCATGAGCTGCGCGGCGCAGT TF32 expression rev TH14 TCCGAATTCATGAGCTGCGCGGGCAGG TF32 expression rev TH14 T	
TG49 GGCACAGGGAAGCACGGCAC TF21 cloning rev TH1 TCCGAATTCATGACAGCGCAGAACCC TF1 expression rev TH2 GCGGCCGCCTAAAAAATTCCTCGTTCACC TF1 expression rev TH3 ACCTTGCGGCGCGCAAAAAATTCCTCGTTCACC TF1 expression rev TH4 TCCGAAATCATGCACGCGGGGAAGACCGCCCGT TF22 expression fwd TH5 TCCGAATGCAGACGGACGACCGCCCGT TF22 expression rev TH6 GCGCCCGCAGATGCAGATGATGT TF20 expression rev TH7 AGCTTGCGGCCGCAGATGCATGTCCAAAGGG TF20 expression rev TH8 TCCGAATTCATGGACGTGCGCGGGGCAG TF22 expression fwd TH11 TCCGAATTCATGAGTTTAGACTGCTCAATGTCCAAAGGG TF20 expression rev TH11 ACCTGCGCCGCCGCGGCGCCGCGGCCAGT TF32 expression fwd TH13 ACCTTGCGCCCCGCGGGCGCCGCGGCCAGT TF32 expression rev TH14 TCCGAATTCATGAGTTTGACCTGCTGGGG TF82 expression rev TH13 ACCTTGCGCCCCGCGCGCCCGTGCGGGCCAGT TF82 expression rev TH14 TCCGAATTCATGAGTTGTCCCCGCGGGCCAGT TF82 expression rev TH14 TCCGAATCATGGCCCGTGTGCCTGGGG TF82 expression rev TP14 CATGGCCCCGCGCGCGCGCGCGCCGCGGCCAGT TF82 expression rev <t< th=""><th></th></t<>	
TH1 TCCGAATTCATGACAGCCAGAACCC TFI espression Fwd TH2 GCGGCCGCCTAAAAAATTCCTCGTTCACC TFI expression rev TH3 AGCTTGCGGCCGCCTAAAAAATTCCTCGTTCACC TFI expression rev TH4 TCCGAAATTCATGCAGCTGGGGAAGACCGCCGTC TF22 expression fwd TH5 TCCGAATTCATGCAGCTGGGGAAGACCGCCGTC TF22 expression fwd TH6 GCCGACCGCAGTAGATCGACACACCC TF22 expression rev TH7 AGCTTGCGGCCGCCAAGTAGCATCCAAACGG TF20 expression fwd TH9 GCGGCCGCAAGTAGCATCACATTCCAAAGGG TF20 expression fwd TH11 TCCGAATTCATGAGCTTCACATTCCAAAGGG TF32 expression fwd TH12 TCCGAATTCATGAGCTTAGGACTCGCGGGGCAG TF32 expression fwd TH13 AGCTTGCGGCCCCAAGTAGCATCACATTCCCAAGGG TF32 expression fwd TH14 TCCGAATTCATGAGATTATAGGACTCGCCGGCGCCAGT TF32 expression fwd TH13 AGCTTGCGCCCCATGAGAGTATA TF23 promoter studies 1651-1800 rev TP1 CGTGGCGCACAGGCAGTAGTAT TF23 promoter studies 1651-1800 rev TP1 GCTGGCGCACAGGCAGTAGGT TF23 promoter studies 1651-1800 rev TP2 GCTGGCGCACAGGCCCTTACGGGT TF232 promoter studies 151-1800 rev <th></th>	
TH2 GCGGCCCCTAAAAAATTCCTCGTTCACC TFI expression rev TH3 AGCTTGCGGCCCCCTAAAAATTCCTCGTTCACC TFI expression rev TH4 TCCGAAATTCATGCAGCTGGGGAAGACCGCCGTC TF22 expression fwd TH5 TCCGAAATTCATGCAGCTGGGGAAGACCGCCGTC TF22 expression fwd TH6 GCGGCCCCTAGATCGACACACTGTCCCAACCC TF22 expression fwd TH7 AGCTTGCCGACGCTAGATCGACATCCAATGCC TF22 expression fwd TH9 GCGGCCCCCAAGTAGCATCCACTTCCCAAAGGG TF20 expression fwd TH10 AGCTTGCGGCCCCCAAGGAGCATCCACTTCCAAAGGG TF20 expression fwd TH11 TCCGAATTCATGAGAGTTTAAGAACTGTCCCATCGATGTTCC TF22 expression fwd TH12 TCCGAATTCATGAGAGTTTGACCTGCTGCATGTTCCC TF23 expression fwd TH13 AGCTTGCGCGCCCCATCAGCATGCCCCTGCGGG TF8 expression fwd TH14 TCCGAATTCATGGAGTTGACCTGCGGGG TF8 expression fwd TH13 AGCTGCGCCCCATAGATGACACTGTCCCACCGGGGGGGG TF8 expression fwd TH14 TCCGAATTCAAGAGACATGTGCCGTGGGGGGGG TF8 expression fwd TH14 TCCGAATTCAGCGCCCTATAGTAGCAC TF823 promoter studies 1511-1693 rev TP12 CATGCATCCATATGTAAGAACA TF823 promoter	
TH3 AGCTTGCGGCCGCTAAAAAATTCCTCGTTCACC TF12 expression rev TH4 TCCGAAATTCATGCAGCTGGGGAAGACCGCCGTC TF22 expression rev TH5 TCCGAAATTCATGCAGCTGGGGAAGACCGCCGTC TF22 expression rev TH6 GCGCCCCCTAGATCAGAACTGTCCCCAACCC TF22 expression rev TH7 AGCTTGCGGCCCCTAGATCAGAACTGTCCCCAACCC TF22 expression rev TH8 TCCGAAATTCATGTTCCACATCCAAAGGG TF20 expression fwd TH10 AGCTTGCGGCCCCAAGTAGCATCACATTCCAAAGGG TF20 expression fwd TH11 TCCGAATTCATGAGCTTCACGTCGACGCGGGGCAG TF32 expression fwd TH13 AGCTTGCGGCCCCATGGCGGGCGCGGGGGGG TF32 expression fwd TH14 TCCGAATTCATGAGCTTGCGGGGGGGGG TF32 expression fwd TH13 AGCTTGCGGCGCCCATACAAGTATA TF23 promoter studies 1651-1800 rev TP12 CGTGGCTACCATATATGACGCGTGGGG TF82 spression rev TP2 GCTGGCTACCATATATAGAAC TF23 promoter studies 151-1800 rev TP14 CGTGACCACCTGGGGTCG TF823 promoter studies 1651-1800 rev TP4 TGTGTGCACACTGCTGTGG TF823 promoter studies 151-1800 rev TP4 TGTGTGCACACTGCTGTGG TF823 promoter studies 151-1800 rev TP4 TGTGTGCACACTGCCTGTGG	
TH4 TCCGAATTCATGCAGCTGGGAAGACCGCCGTC TP22 expression fwd TH5 TCCGAATTCATGCAGCTGGGGAAGACCGCCGTC TP22 expression fwd TH6 GCGGCCGCTAGATCAGAACTGTCCCAACCC TP22 expression rev TH7 AGCTTGCGGCCGCAGATGAGATGATGT TP20 expression rev TH8 TCCGAATTCATGTCCCAAGGCATCCATTCCAAAGGG TP20 expression rev TH10 AGCTTGCGGCCGCAAGTAGCATCCATTCCAAAGGG TP20 expression fwd TH11 TCCGAATTCATGAGCTGCGCGGGCGCAG TP32 expression fwd TH12 TCCGAATTCATGAGCTGCGCGGCGCAG TP32 expression fwd TH13 AGCTTGCGGCCCCTAAGCTGCGCGGGCCAG TP32 expression fwd TH14 TCCGAATTCATGCACCTGCGCG TP82 expression fwd TP1 CATGACGCCCCTATACTAAGAC TP32 apromoter studies 151-1800 rev TP2 GCTGGCTACCTATGTGCACTGCGCGGGCCAG TP32 apromoter studies 151-1800 rev TP3 CAAGCACCTGGAAGCATGTGG TP32 apromoter studies 151-1800 rev TP4 TGTGTGCACCACAGCCATGTGG TP32 apromoter studies 151-1800 rev TP4 GATGTGCCCGAAGGCATGTG TP32 apromoter studies 151-1800 rev TP4 GATGTGCCGCAAGCCATGTGG TP32 apromoter studies 1378-1537 red<	
THE TCCGAATTCATGCAGCTGGGGAAGACCCGCCGTC TE22 expression rev TH6 GCGGCCGCTAGATCAGAACTGTCCCAACCC TF22 expression rev TH8 TCCGAATTCATGTTCCAAGAACTGTCCCAACCC TF22 expression rev TH9 GCGGCCGCAAGTAGCATCACATTCCAAAGGG TF20 expression rev TH10 AGCTTGCGGCCGCCAGTAGCATCACATTCCAAAGGG TF20 expression rev TH11 TCCGAATTCATGAGCTGCCGCGCGCCAGT TF32 expression rev TH11 TCCGAATTCATGAGCTGCCGCGCGCCGGC TF32 expression rev TH11 TCCGAATTCATGAGCTGCCGCCGCCGGCCAGT TF32 expression rev TH14 TCCGAATTCATGGAGTTGACCTGCCTG TF8 expression rev TH14 TCCGAATTCACGGCGCCTTACATGTCCCCTGGGG TF8 expression rev TP1 CATCACGTGGACGCCTAAGAGTATA TF923 promoter studies 1651-1800 rev TP2 GCTGGCTACCATATATAAGAAC TF923 promoter studies 1651-1800 rev TP3 CAAAGCACTGGGACGCCTGTGG TF823 promoter studies 1511-1693 rev TP4 GCTGTGCCCAGCAAGCATGGT TF923 promoter studies 1511-1693 rev TP4 GGTGTGCACACCGGGCGCC TF923 promoter studies 1378-1537 rev TP5 GAACATTGACGGGGTGCCTGTGT TF923 promoter studies	
TH6 GCGGCCGCTAGATCAGAACTGTCCCAACCC TE22 expression rev TH7 AGCTTGCGGCCGCAGATAGCATCAGAACTGTCCCAACCC TF22 expression rev TH8 TCCGAATTCATGTCCAAGGAATGATGT TF20 expression rev TH10 AGCTTGCGGCCCCAAGTAGCATCACAATCCAAAGGG TF20 expression rev TH11 TCCGAATTCATGAGCTTCACAATCCAAAGGG TF20 expression rev TH11 TCCGAATTCATGAGCTTGCACTGCATGTCC TF20 expression rev TH11 AGCTTGCGGCCGCCCACAGGCGCCAGT TF32 expression rev TH11 AGCTTGCGGCCGCCCACGCGCGCCAGT TF32 expression rev TH11 AGCTTGCGGCCGCCCCCCAGGCCAGGC TF32 expression rev TH11 AGCTGCGCGCGCCCCCCCAGGCCAGT TF32 expression rev TH12 AGCTGCGCGCGCCCCCCCCGGCGCAGT TF32 expression rev TH13 AGCTGCGCGCCGCCCCCCGCGCGCGCGGGGGGGGT TF32 expression rev TP1 CATCAGCGCGCCGCCCCCCGGGGGGGGGGGGGT TF32 expression rev TP2 GCTGGCCGCCCTAAGATGTGCCCCTGGGG TF823 promoter studies 1511-1609 rev TP2 GCTGCGCACGCAGGCAGGCAGGGGGGGG TF823 promoter studies 1511-1693 rev TP4 TGTGTGCACATGCGTGTGGGGGGGGG TF823 promoter studies 1378-1537 rev TP4 GCTGTGCACAGGCAGGCAGGGGGGGGGGGGGGGG	
TH7 AGCTTGCGGCCGCAGAACGACTGCCCAACCC TF22 expression rev TH8 TCCGAATTCATGTTCCAAGGAATGATGT TF20 expression rev TH10 AGCTTGCGGCGCAATCACATTCCAAAGGG TF20 expression rev TH11 TCCGAATTCATGAGCTTCCCATTCCAAAGGG TF20 expression rev TH11 TCCGAATTCATGAGCTTCGCGCGCCACT TF20 expression rev TH12 TCCGAATTCATGAGCTTGCCGCGCCACGT TF32 expression rev TH14 TCCGAATTCATGAGCTTGCCCGCGCGCAGT TF32 expression rev TH14 TCCGAATTCATGGAGTTGACCTGCCG TF8 expression rev TP1 CATCAGCTGCCATGCAAGATAAGTATA TF923 promoter studies 1651-1800 rev TP2 GCTGGCTACCTATATTAAGAAC TF823 promoter studies 1651-1800 rev TP4 TGTGTTGCACCATGCATGTGG TF823 promoter studies 1651-1800 rev TP4 TGTGTTGCACCATGCATGTGG TF823 promoter studies 1511-1693 rev TP4 TGTGTGCACCATGCATGTGGGTGGG TF823 promoter studies 1511-1693 rev TP5 GATCTGCCCGCACATGACACC TF823 promoter studies 1511-1693 rev TP6 AACATTGACGGGTGATGGGGTG TF823 promoter studies 136-1296 rev TP7 GCATTTCATGCATAGAACACC TF823 promoter studies 1	
THBTCCGAATTCATGTTCCAAGGATGATGTTE20 expression fwdTH9GCGGCCGCAAGTAGCATCACATTCCAAAGGGTE20 expression revTH11TCCGAATTCATGAGTTTAGGACTCGTCATGTTCCTE20 expression revTH11TCCGAATTCATGAGCTGCGCGGCCAGGTE32 expression fwdTH12TCCGAATTCATGAGCTGCGCGGCCAGGTE32 expression fwdTH13AGCTTGCGGCCGCCGCTAGCGGCGCAGGTE32 expression fwdTH14TCCGAATTCATGAGTGTGACTGTGGTR8 expression fwdTH15AGCTTGCGGCCGCCGCTACATGTCGCGGTR8 expression fwdTP1CATCAGCTGCCATGAAGTATATP523 promoter studies 1651-1800 revTP2GCTGGCTACATGTCAAGTGTTP523 promoter studies 1651-1800 revTP4TGTGTTGCACATGCATGGGTTP523 promoter studies 1651-1800 revTP4TGTGTTGCACATGCATGGGTTP523 promoter studies 1511-1693 revTP4GATCTGCCGCACAGCCATGTGTP523 promoter studies 1511-1693 revTP5GATCTGCCGCACAGCCATGTGTP523 promoter studies 1378-1537 revTP6AACATCTGGATCATGGTTGTP523 promoter studies 1378-1537 revTP7CATCGATCTGCATTGGAACCTP523 promoter studies 1260-1413 revTP8ACGAGCACCGGGGGCGGGCTP523 promoter studies 1260-1413 revTP8ACGAGTCCAGGGGGGGGGGGGCGCTP523 promoter studies 1260-1413 revTP10CATATGCATGACATTGAACCATP523 promoter studies 1136-1296 fwdTP11CTATACATGGATCATAAGGGCTP523 promoter studies 1136-1296 fwdTP12CAAAGGTCCAAAAGGGCTP523 promoter studies 116-1296 fwdTP13GAGTACAAAAGGATCAAAAGGGCTP523 promoter studies 112-126 fwd<	
TH9GCGCCGCAAGTAGCATCACATTCCAAAGGGTF20 expression revTH10AGCTTGCGGCCGCAAGTAGCATCACATTCCAAAGGGTF20 expression fwdTH11TCCGAATTCATGAGCTTCGCGCGTCATGTTCCTF20 expression fwdTH12TCCGAATTCATGAGCTGCCGCGGCGCAGTF32 expression revTH13AGCTTGCGGCCGCCTAGGGCGACCGGGGGGGTF8 expression revTH14TCCGAATTCATGGGAGTTGACCTGCGGTF8 expression revTH15AGCTTGCGGCCGCCTACAAGTATATF823 promoter studies 1651-1800 revTP1CATCAGCTGCCATGAAGTATATF823 promoter studies 1651-1800 revTP2GCTGGCTACCTATATAAGAACTP823 promoter studies 1511-1693 revTP3CAAGCACTGGATCCTATGGTTF823 promoter studies 1511-1693 revTP4TGTGTGCACAGCCATGTGTF823 promoter studies 1378-1537 revTP5GATCTCCCGACAGGCATGTGTF823 promoter studies 1260-1413 revTP6AACATTCAGGGTGACGGTCTF823 promoter studies 1260-1413 revTP7GCATTCATCATGCATACAACCTF823 promoter studies 1260-1413 revTP8ACGAGTCACCGGGTGCGGGTCTF823 promoter studies 1260-1413 revTP8ACGATCCTGCGTTAGGACCTF823 promoter studies 1260-1413 revTP10CTATACATGTGATCTTTGAGAGCTF823 promoter studies 1260-1413 revTP11CTCTAAAATGTGAACATATGTACTF823 promoter studies 1260-1413 revTP12CAAAGGTTGTATGCACAAAAGGCTF823 promoter studies 1136-1296 revTP14CTAACATGTGATCGTTAGACCTF823 promoter studies 1136-1296 revTP12CAAAGGTTGTATGCACAAAAGGCTF823 promoter studies 1136-1296 revTP14CTAACATGCGGACAATATGTACTF8	
THI0AGCTTGCGGCCGCAAGTAGCATCACATTCCAAAGGGTF20 expression revTH11TCCGAATTCATGAGGTTTAGGACTCGTCATGTTCCTF20 expression fwdTH12TCCGAATTCATGAGCGCGCGCGCAGTF32 expression fwdTH13AGCTTGCGGCCGCCTAGGCGACCGGCGCCAGTTF32 expression revTH14TCCGAATTCATGGAGTTGACCGGGGGGTF8 expression revTH15AGCTTGCGCCGCCTACATGGCCGCGGCGGGTF8 expression revTP1CATCAGCTGCCATGAAGTATATF823 promoter studies 151-1800 revTP2GCTGGCTACCTATATAAGAACTF823 promoter studies 151-1800 revTP3CAAGCACCTGGATCCTATGGTTF823 promoter studies 151-1693 revTP4TGTGTGCAACAGCATGTGGTF823 promoter studies 151-1693 revTP5GATCTGCCGACAGCACTGGTF823 promoter studies 1378-1537 revTP6AACATTTGAGGTGATGGTTGTF823 promoter studies 1260-1413 revTP7GCATTTCAGGGTGATAGACCTF823 promoter studies 1260-1413 revTP8ACGAGTCACGGGTGGCGGTCTF823 promoter studies 1260-1413 revTP8CTATACATGGATCATAGACCTF823 promoter studies 1260-1413 revTP10CTATACATGGATCAAAATGGACACATAGTACTF823 promoter studies 1260-1180 revTP11CAAAGGTTGTATGGATTAATTCTF823 promoter studies 1260-1180 revTP12CAAAGGTTGATGATGATTAATTCTF810A promoter studies 115-291 revTP14CAAATGCCGGTGGCGTTAATGGTF810A promoter studies 115-291 revTP15AAACAATACCCGGTGACACACACCTF810A promoter studies 271-421 revTP16CAATGAACAACGGTGAACACACCTF810A promoter studies 395-566 revTP22GTACTGCCAGGGTGGCGTTCTT	
TH11TCCGAATTCATGAGTTTAGGACTCGTCATGTTCCTF20 expression fwdTH12TCCGAATTCATGAGCTGCCGGGGCGGGCAGTF32 expression fwdTH13ACCTTGCGCCCCTAGCGCGGCCGCGCCAGTTF32 expression revTH14TCCGAATTCATGGAGTTGACCTGCCGTF8 expression revTP1CATCAGCGCCCCTACAATCATGTCGCCGTGGGGTF8 expression revTP2GCTGGCTACCTATATTAAGAACTP233 promoter studies 1651-1800 revTP3CAACACCTGGATCCTATATAAGAACTP233 promoter studies 1511-1693 revTP4TGTGTGCCACCTGCTGTGGTP233 promoter studies 1511-1693 revTP4TGTGTGCCACATGCCTGTCGTP233 promoter studies 1511-1693 revTP4TGTGTGCCACATGCCTGTGGTP233 promoter studies 1518-1537 redTP5GATCTGCCGACAGCGGTGTTP233 promoter studies 1378-1537 redTP6AACATTTCAGCGATACAACCTP233 promoter studies 1260-1413 revTP7GCATTTCACGCGGTGCGCGGTCTP233 promoter studies 1260-1413 revTP8ACCAGTCCACGGGTGCGCGGGTCTP233 promoter studies 1136-1296 revTP10CTATACATGTGATCTATAGACCTP233 promoter studies 1136-1296 revTP11CTAACATGTGATCGATAAAGCCTP233 promoter studies 1136-1296 revTP12CAAAGGTTGTATGCACAAAAGGCTP233 promoter studies 1136-1296 fwdTP13GAGTATCAAAATGTGACATATGTACTP233 promoter studies 1136-1296 fwdTP14CTGTGTGATCGATAAGTGACATATGTCTP510A promoter studies 1136-1296 fwdTP14CAAATGCTGATCGACAAAAGGCTP233 promoter studies 1136-1296 fwdTP14CAAATGCTGATCGACAAAAGGCGTTAATGTP510A promoter studies 152-291 revTP14CAAAG	
TH12TCCGAATTCATGAGCTGCGCGGGGCAGTF32 expression fwdTH13AGCTTGCGGCCGCCTAGGCGACCGGCGGCAGTTF32 expression fwdTH14TCCGAATTCATGGAGTTGACCTGCTGTF8 expression fwdTP1CATCAGCTGCCATGAAAGTATATP523 promoter studies 1651-1800 revTP2GCTGGCTACCTATATTAAGAACTP523 promoter studies 1651-1800 revTP3CAAGCACCTGGAATCCTATGAGTTP523 promoter studies 1651-1800 revTP4TGTGTTGCACATGCCTGTGGTP523 promoter studies 151-1693 revTP4TGTGTTGCACATGCCTGTGGTP523 promoter studies 1378-1537 revTP6GAACCTTGACGTGTATGGTTGTP523 promoter studies 1378-1537 revTP6AACATTGACGTGTATGGTTGTP523 promoter studies 1378-1537 revTP8ACGAGTCACGGGTGCGGTCTP523 promoter studies 1378-1537 revTP8ACGAGTCACGGGTGCGGTCTP523 promoter studies 1260-1413 rwdTP9CATCGATCCTTGCATTAGACCTP523 promoter studies 1260-1413 rwdTP10CTATACATGTGATCAGACCTP523 promoter studies 1260-1418 rwdTP11CTCTAAAATGTGACAATATGTACTP523 promoter studies 1260-1180 revTP12CAAAGGTTGTATGACAAAAGGCTP523 promoter studies 1026-1180 revTP13GAGTATCAAAATGGAACAATATGTACTP532 promoter studies 1026-1180 revTP14CCAAAGGTTGATCGATTAATGTCTP510A promoter studies 1026-1180 revTP13GAGTATCAAAACCGATTAGCATCTP510A promoter studies 1026-1180 revTP14CAAAGGTCGATCACACACCCTP510A promoter studies 15-291 rwdTP15AACCAACCCGGTTAGCATCTP510A promoter studies 59-718 rwdTP14CAAAGGTCGAAAAGGAGCG	
TH13AGCTTGCGGCCGCTAGGCGACCGGCGCAGTTF32 expression revTH14TCCGAATTCATGGAGTTTGACCTGCTGTF8 expression revTH15AGCTTGCGGCCGCTTACATGTCACTGTCGCGTGGGGTF8 expression revTP1CATCAGCTGCCCATGAAAGTATATP523 promoter studies 1651-1800 revTP2GCTGGCTACCTATATTAAGAACTP523 promoter studies 151-1693 revTP3CAAGCACCTGATCCTATGGTTP523 promoter studies 1511-1693 revTP4TGTGTTGCACATGCCTGTCGTP523 promoter studies 1511-1693 revTP5GATCTGCCGACAGGCATGTGTP523 promoter studies 1378-1537 revTP6AACATTTGAGTGTTAGGTTGTP523 promoter studies 1378-1537 revTP7GCATTTCATGCATACAACCTP523 promoter studies 1378-1537 revTP8ACGAGTCACGGGTGCGGTCTP523 promoter studies 1378-1537 revTP8ACGAGTCATGGATGTTAGACCTP523 promoter studies 136-1296 revTP10CTATACATGTGAACAATATGACCTP523 promoter studies 136-1296 fwdTP11CTATACATGTGAACAATATGTACTP523 promoter studies 1026-1180 revTP12CAAAGGTTGTAGCACAAAAGGCTP510A promoter studies 1026-1180 revTP13GAGTATCAAAATCTGATCATATTCTP510A promoter studies 8-161 revTP14CTGTGTGATGCAGCAAAACGGCTP510A promoter studies 115-291 revTP15AACATACACCGCGTACACACCCTP510A promoter studies 115-291 revTP16TGTGTGTGTGTGTTTGTCTTGTP510A promoter studies 115-291 revTP13GAGATAAACAAACGATCAACACCTP510A promoter studies 15-291 revTP14CAAAGAGACAAAACGATCAACACCTP510A promoter studies 295-566 revTP21GTCTCAACAAAGG	
TH14TCCGAATTCATGGAGTTTGACCTGCTGTF8 expression fwdTH15AGCTTGCGGCCGCTTACATGTCGCCGTGGGGTF8 expression revTP1CATCAGCTGCCATGAAAGTATATP523 promoter studies 1651-1800 revTP2GCTGGCTACCTATATTAGAAAGTATATP523 promoter studies 1651-1800 revTP2GCTGGCTACCTATATTAGAAACTP523 promoter studies 1651-1800 revTP3CAAGCACCTGGCATCTATGGTTP523 promoter studies 151-1693 fwdTP4GTGTTGCACATGCCTGTCGTP523 promoter studies 1378-1537 revTP6AACATTTGAGGTGTATGGTTGTP523 promoter studies 1260-1413 fwdTP7GCATTTTCATGCATACAACCTP523 promoter studies 1260-1413 fwdTP8ACGAGTCACGGGTGCGGTGCTP523 promoter studies 136-1296 fwdTP10CTATACATGTGATCAGAGCTP523 promoter studies 1260-1413 fwdTP11CTCTAAAATGTGAACAATATGTACTP523 promoter studies 1260-1410 fwdTP12CAAAGGTTGTATGCACAAAAGGCTP523 promoter studies 1260-1410 fwdTP13GAGTATCAAAATGTGAACAATATGTACTP523 promoter studies 1260-1410 fwdTP14CTAAAATGTGAACAAATATGTACTP523 promoter studies 1260-1410 fwdTP13GAGTATCAAAATCTGAACAACACACACTP510A promoter studies 1260-1410 fwdTP14CTAAACTGTGAACAACATATGTACTP523 promoter studies 1260-1410 fwdTP13GAGTATCAAAATCTGATAATTTCTP510A promoter studies 1260-1410 fwdTP14CAAATGCACAACCACAAAAGGCTP523 promoter studies 1260-1410 fwdTP14CAAATGCACAACCACATCGGGTTACATTACTP510A promoter studies 1260-1410 fwdTP14CAAATGCACACCACATTGGATCAAAATGTGATGATTACTTCTP510A promoter stu	
TH15AGCTTGCGGCCGCTTACATGTCGCCGTGGGGTF8 expression revTP1CATCAGCTGCCATGAAAGTATATP523 promoter studies 1651-1800 revTP2GCTGGCTACCTATATTAAGAACTP523 promoter studies 1651-1800 fwdTP3CAAGCACCTGGATCCTATGGTTP523 promoter studies 1511-1693 revTP4TGTGTCGCAACAGCCTGTGGTP523 promoter studies 1511-1693 fwdTP5GAACTGCGGACAGGCATGTGTP523 promoter studies 1378-1537 revTP6AACATTTGAGGTATGGTTGTP523 promoter studies 1378-1537 fwdTP7GCATTTCATGCATACAACCTP523 promoter studies 1260-1413 fwdTP9CATCGATCCTGCATTAGAGCTP523 promoter studies 1260-1413 fwdTP9CATCGATCCTGCATTAGAGCTP523 promoter studies 1260-1413 fwdTP10CTATACATGTGAACAATATGTACTP523 promoter studies 1260-1418 fwdTP11CTATAAAATGTGAACAATATGTACTP523 promoter studies 1260-1418 fwdTP12CAAAGGTTGTATGCACAAAAGGCTP523 promoter studies 1260-1418 fwdTP13GAGTATCAAAATGTAACATATGTACTP523 promoter studies 1026-1180 fwdTP14CTGTGAAAATGGATTAATTCTP510A promoter studies 1026-1180 fwdTP15AACATACACCAGCGTTAGCATCTP510A promoter studies 115-291 fwdTP14TGTGTGACGGTTAGCGATCACCCTP510A promoter studies 271-421 fwdTP15AACATACACCAGCGTAACACACCTP510A promoter studies 271-421 fwdTP16TGTCTGAGAAAACGATCAACACCTP510A promoter studies 271-421 fwdTP14CATATCCCGAAAACGATCAACACCTP510A promoter studies 271-421 fwdTP15AACATACACCAACCATTGGGGTP510A promoter studies 271-421 fwdT	
TP1CATCAGCTGCCATGAAAGTATATPS23 promoter studies 1651-1800 revTP2GCTGGCTACCTATATTAAGAACTPS23 promoter studies 1651-1800 fwdTP3CAAGCACCTGGATCCTATGGTTPS23 promoter studies 1511-1693 revTP4TGTGTTGCCAACGCCTGTCGTPS23 promoter studies 1511-1693 revTP5GATCTGCCGACAGCCTGTGTPS23 promoter studies 1378-1537 revTP6AACATTTGAGGTGTATGGTTGTPS23 promoter studies 1378-1537 revTP7GCATTTTCAGGGTATAGGTTGTPS23 promoter studies 1378-1537 revTP8ACGAGTCACGGGTGCGGGTCTPS23 promoter studies 136-1296 revTP9CATCGATCCTTGCATTAGACCTPS23 promoter studies 1136-1296 revTP10CTATACATGTGATCAAAATGTACTPS23 promoter studies 1026-1180 revTP11CTATACATGTGATCGATAAAGCTPS23 promoter studies 1026-1180 revTP12CAAAGGTTGTATGCACAAAAGCTPS10A promoter studies 8-161 revTP13GAGTATCAAAATCTGATTAATGTPS10A promoter studies 8-161 revTP14CAAAGCGCCGTTAGCATCTPS10A promoter studies 115-291 fwdTP15AACATCACACCGCGTAGCATCTPS10A promoter studies 271-421 revTP17CAAGCAAAACGATCAACACCCTPS10A promoter studies 271-421 revTP18ATGCAATGAACAACACTCGGGTPS10A promoter studies 395-566 revTP21GTACTCACTGGAACGATGTGTTPS10A promoter studies 559-718 fwdTP23GAAGAAAACGAACAACATTCCACATTCCTPS10A promoter studies 597-18 fwdTP24CTTCGGTGGGAGGGGGGGGGAGAGTACCATPS10A promoter studies 395-566 revTP21GACACAACTCAAAAGGCTGTGGGTPS10A promoter studies 597-18 fwdTP	
TP2GCTGGCTACCTATATTAGAACTPS23 promoter studies 1651-1800fwdTP3CAAGCACCTGGATCCTATGGTTPS23 promoter studies 1511-1693 fwdTP4TGTGTTGCACATGCCTGTCGTPS23 promoter studies 1511-1693 fwdTP5GATCTGCCGACAGGCATGTGTPS23 promoter studies 1378-1537 revTP6AACATTTGAGGTGTATCATCATPS23 promoter studies 1378-1537 revTP8ACGAGTCATGCATACAACCTPS23 promoter studies 1378-1537 fwdTP8ACGAGTCACGGGTGGCGGTCTPS23 promoter studies 1260-1413 revTP8ACGAGTCATGGGTGGCGGTCTPS23 promoter studies 1260-1413 revTP9CATCGATCCTTGCATTAGAACTPS23 promoter studies 136-1296 revTP10CTATACATGTGATCTTTTAGAGGTTPS23 promoter studies 136-1296 fwdTP11CTCTAAAATGTGAACAATATGTACTPS23 promoter studies 1026-1180 revTP12CAAAGGTTGTATGCACAAAAGGCTPS23 promoter studies 1026-1180 revTP13AACATCAACGCGTTAATGTPS10A promoter studies 8-161 revTP14CAAATGGACCAAAAGGCTTAATGTPS10A promoter studies 115-291 fwdTP15AACATCACCGCGTTAATGTPS10A promoter studies 271-421 revTP17CAAGACAAAACGACTCAACACACCTPS10A promoter studies 271-421 revTP18ATGCAATGAACAACACACTCGGGTPS10A promoter studies 395-566 revTP21GTAGTACATAGGAGGAGAGTACATPS10A promoter studies 599-718 revTP23GAACATACGGAGGAGTAAATACTGGTPS10A promoter studies 591-218 fwdTP24CTTCTGATGATAGATGAGGAGTGAGGAGTCCCTPS10A promoter studies 59-718 revTP23GAACAATAGTTGAGAGAAGATACCACTPS10A promoter studies 599-718 rev	
TP3CAAGCACCTGGATCCTATGGTTPS23 promoter studies 1511-1693 revTP4TGTGTTGCACAGCCTGTCGTPS23 promoter studies 1378-1537 revTP5GATCTGCCGACAGGCATGTGTPS23 promoter studies 1378-1537 revTP6AACATTTGAGGTGTATGGTTGTPS23 promoter studies 1378-1537 fwdTP7GCATTTTCATGCATACAACCTPS23 promoter studies 1260-1413 fwdTP8ACGAGTCACGGGTGGCGGTCTPS23 promoter studies 1136-1296 revTP10CTATACATGTGAACATATGTACACCTPS23 promoter studies 1136-1296 fwdTP11CTCTAAAATGTGAACATATGTACTPS23 promoter studies 1026-1180 revTP12CAACGGTTGTATGCACAAAAGGCTPS23 promoter studies 1026-1180 fwdTP13GAGTATCAAAATCTGATTAATTTCTPS10A promoter studies 1026-1180 fwdTP14CAAATGGTCTGATCGGTTAATGTPS10A promoter studies 8-161 fwdTP14CAAATGGTCTGATCGGTTAATGTPS10A promoter studies 115-291 fwdTP16TGTGTGTGATCGTTTGTCTTGTPS10A promoter studies 115-291 revTP17CAAGACAAAACGATCAACACCCTPS10A promoter studies 271-421 fwdTP18ATGCAAAACGACCATCCGGGTPS10A promoter studies 395-566 fwdTP20GCTGAGACAAAACGACCATCCGGTPS10A promoter studies 395-566 fwdTP23GAAGTAATAGTGAGAGAAGTACCATPS10A promoter studies 559-718 fwdTP24CTTCTGCTACAATATATACTGGTPS10A promoter studies 595-718 fwdTP23GAAGAACAACAACCATCCGTPS10A promoter studies 595-718 fwdTP24CTTCCGAATGGTGAGGGGGGGCATTPS10A promoter studies 595-718 fwdTP24CTTCCGAATCTGTAGAAGCAGCGCTTCCTPS10A promoter studies 595-718 fwd </th <th></th>	
TP4TGTGTTGCACATGCCTGTCGTPS23 promoter studies 1511-1693 fwdTP5GATCTGCCGACAGCCATGTGTPS23 promoter studies 1378-1537 revTP6AACATTTGAGGTGTATGGTTGTPS23 promoter studies 1378-1537 fwdTP7GCATTTCATGCATACAACCTPS23 promoter studies 1260-1413 revTP8ACGAGTCACGGGTGGCGGTCTPS23 promoter studies 1260-1413 fwdTP9CATCGATCCTTGCATTAGAGCTPS23 promoter studies 1136-1296 fwdTP10CTATACATGTGATCTTTAGAGGTTPS23 promoter studies 1136-1296 fwdTP11CTCTAAAATGTGAACAATATGTACTPS23 promoter studies 1026-1180 fwdTP12CAAAGGTTGATCGATCAAAAGGCTPS13 promoter studies 1026-1180 fwdTP13GAGTATCAAAATCTGATTAATTCTPS10A promoter studies 1026-1180 fwdTP14CAAATGGTCTGATCGGTTAATGTPS10A promoter studies 115-291 fwdTP15AACATACACCGCGTTAGCATCTPS10A promoter studies 115-291 fwdTP16TGTGTTGATCGTTTGTCTTGTPS10A promoter studies 15-291 revTP19CATATCCCGAATGAACAACCACCTPS10A promoter studies 395-566 fwdTP20GCTGAGACAAAATGGAGTTGCTPS10A promoter studies 59-718 fwdTP23GAAGTAATAGTGAGAGAGTGCGTPS10A promoter studies 559-718 revTP24GTACTCCTGAATGAGAGAGGAGAGTGCATPS10A promoter studies 59-718 fwdTP23GAAGTAATAGTGAGAGGAGGCGTGGCATTPS10A promoter studies 59-718 fwdTP24GTACTCAGCTAGAAGCGGTGGCGATTPS10A promoter studies 59-718 fwdTP25GAAACAAATCAGAAGCAGCGTGTGGGTPS10A promoter studies 842-1005 fwdTP26CTTGGGTGGAAGCGGGGGGCGCGTPS10B promoter studies 1-74 fwd </th <th></th>	
TPSGATCTGCCGACAGGCATGTGTPS23 promoter studies 1378-1537 revTP6AACATTTGAGGTGTATGGTTGTPS23 promoter studies 1378-1537 fredTP7GCATTTTCATGCATACAACCTPS23 promoter studies 1260-1413 fwdTP9CATCGATCCTGCATTAGACCTPS23 promoter studies 1260-1413 fwdTP9CATGATCCTTGCATTAGAGCTPS23 promoter studies 1136-1296 revTP10CTATACATGTGATCATTAGAGCTPS23 promoter studies 1136-1296 fwdTP11CTCTAAAATGTGAACATATGTACTPS23 promoter studies 1026-1180 revTP12CAAAGGTTGATCAAAAATGTACTPS132 promoter studies 1026-1180 fwdTP13GAGTATCAAAATCTGATCAATAATGTTPS10A promoter studies 8-161 revTP14CAAATGGTCTGATCGGTTAAATGTPS10A promoter studies 115-291 revTP15AACATACACCGCGTTAGCATCTPS10A promoter studies 115-291 revTP16TGTGTGTGATCGATCAGCACCTPS10A promoter studies 271-421 fwdTP17CAAGACAAAACGATCAACACACCTPS10A promoter studies 395-566 fwdTP20GCTGAGACAAATGGTGTGTCTPS10A promoter studies 395-566 fwdTP21GTCCCGCTAGCATAATACTGGTPS10A promoter studies 271-821 revTP19CATATCCCGAATGGAGAGTTGCTPS10A promoter studies 359-718 fwdTP23GAACTAATAGTTGAGAGGAGATCACCATPS10A promoter studies 359-718 revTP23GAACTAATAGTTGAGAGGAGGCGTGTGGTPS10A promoter studies 11-2855 revTP24CTTCCGAGTAGATGAGAGAGCAGCACACCTPS10A promoter studies 12-855 fwdTP30APCACAATCAGAACCATATAATACTGGTPS10A promoter studies 12-855 revTP24GAACAAATCAGAAGCTGTAGAACCATPS10A promoter studies 12	
TP6AACATTTGAGGTGTATGGTTGTPS23 promoter studies 1378-1537 fwdTP7GCATTTTCATGCATACAACCTPS23 promoter studies 1260-1413 revTP8ACGAGTCACGGGTGGCGGTCTPS23 promoter studies 1136-1296 revTP10CTATACATGTGATCTTAGAGGTTPS23 promoter studies 1136-1296 revTP11CTCTAAAATGTGAACAATATGTACTPS23 promoter studies 1026-1180 revTP12CAACGAGTTGTATGCACAAAAGGCTPS23 promoter studies 1026-1180 revTP13GAGTATCAAAATGTGACAAAAGGCTPS23 promoter studies 1026-1180 fwdTP14CAAATGGTCTGATCGTTAATGTPS10A promoter studies 1026-1180 fwdTP15AACATACACCGCGTTAGCATCTPS10A promoter studies 115-291 fwdTP16TGTGTTGATCGTTTGTGTGTGTPS10A promoter studies 115-291 fwdTP17CAAGACAAAACGATCAACAACCACCTPS10A promoter studies 115-291 revTP18ATGCAATGAACAACCATTCGGGTPS10A promoter studies 271-421 fwdTP18ATGCAATGAACAACCATTCGGGTPS10A promoter studies 395-566 fwdTP22GTCTCAGCTAGGATAAATGGAGTTGCTPS10A promoter studies 395-566 fwdTP21GTCTCCAGCTAGGATAATACTGGTPS10A promoter studies 559-718 fwdTP22GTACTTCCTCAACTATTACTTCTPS10A promoter studies 559-718 fwdTP23GAACAATCAGAAGCGGTGGAGATCATPS10A promoter studies 112-855 fwdTP24CTTCGATGGTGAAGAGCGTGTAGACGTPS10A promoter studies 712-855 fwdTP25GAAACAATCAGAAGCGGGGGGGCATTPS10A promoter studies 1-174 fwdTP29AACCATATATATACGGAGGGGGGGCGTTCTAAAATATATTPS23 promoter studies 1-174 revTP29AACCATTATATATATACGGAGGGTPS10A prom	
TP7GCATTTTCATGCATACAACCTPS23 promoter studies 1260-1413 revTP8ACGAGTCACGGGGGGGGGGCTPS23 promoter studies 1260-1413 fwdTP9CATCGATCCTTGCATTAGACCTPS23 promoter studies 1136-1296 fwdTP10CTATACATGTGATCTTTAGAGGTTPS23 promoter studies 1136-1296 fwdTP11CTCTAAAATGTGAACAATATGTACTPS23 promoter studies 1026-1180 revTP12CAAAGGTTGTATGCACAAAAGGCTPS23 promoter studies 1026-1180 fwdTP13GAGTATCAAAATCTGATTAATTTCTPS10A promoter studies 8-161 fwdTP14CAAATGGTCTGATCGGTTAATGTPS10A promoter studies 115-291 fwdTP15AACATACACCGCGTTAGCATCTPS10A promoter studies 115-291 fwdTP16TGTGTTGATCGATCAACACACCTPS10A promoter studies 271-421 fwdTP17CAAGACAAAACGATCAACACACCTPS10A promoter studies 271-421 fwdTP18ATGCCAATGAACAACCATCGGGTPS10A promoter studies 395-566 fwdTP20GCTGCAGCAAAATGGAGTTGCTPS10A promoter studies 559-718 fwdTP23GAAGTAATAGTTGAGTGTGACGTPS10A promoter studies 712-855 fwdTP24CTTCTGATTGTTCAGAGGGGAAGAACCATPS10A promoter studies 712-855 fwdTP25GAAACAATCAGAAGCGGTGTGAGCATTPS10A promoter studies 1-174 fwdTP28AGAAATCACAACCTTAATTAACACCTPS10A promoter studies 1-174 fwdTP29AACCATATATATAACGAGGGGTGGGATTPS10A promoter studies 1-174 fwdTP26GGGACAAACTTAATTAATTACGGGGGTTCCAAAATTAATTPS10A promoter studies 1-174 fwdTP29AACCATATATATAACGAGGGGTTCTAAAAAAGCAGGCTTCTAAAATTAATTPS23 promoter Gateway cloning 600 bpAACCAGCAACTTGTACAAAAAAGCAGGCTTCT	
TP8ACGAGTCACGGGTGGCGGTCTPS23 promoter studies 1260-1413 fwdTP9CATCGATCCTTGCATTAGACCTPS23 promoter studies 1136-1296 revTP10CTATACATGTGATCTTAGAGGTTPS23 promoter studies 1136-1296 fwdTP11CTCTAAAATGTGAACAATATGTACTPS23 promoter studies 1026-1180 revTP12CAAAGGTTGTATGCACAAAAGGCTPS23 promoter studies 1026-1180 fwdTP13GAGTATCAAAATCTGATTAATTTCTPS10A promoter studies 1026-1180 fwdTP14CAAATGGTCGATCAGTTAATTCTPS10A promoter studies 8-161 revTP15AACATACACCGCGTTAGCATCTPS10A promoter studies 115-291 fwdTP16TGTGTTGATCGTTTGTCTTGTPS10A promoter studies 115-291 revTP17CAAGACAAAACGATCAACACACCTPS10A promoter studies 271-421 fwdTP18ATGCAATGAACAACCATTCGGGTPS10A promoter studies 271-421 fwdTP20GCTGAGACAAAATGGAGTTGCTPS10A promoter studies 395-566 fwdTP21GTCTCACCTAGGATAAATACTGGTPS10A promoter studies 599-718 fwdTP22GAAGTAATAGTTGAGGAGTAGCATPS10A promoter studies 579-718 fwdTP23GAAGTAATAGTTGAGAGGAGTACCATPS10A promoter studies 599-718 fwdTP24CTTCTGATTGTTCAGTGTGTGTPS10A promoter studies 599-718 fwdTP25GAAACAATCAGAGCGTGGGCATTPS10A promoter studies 842-1005 fwdTP24CTTGGGTGGAAGCGGTGGCATTPS10A promoter studies 842-1005 fwdTP25GAAACAATCAGAAGCTGTAGACTGTGTGGTPS10B promoter studies 842-1005 fwdTP24CTTGGGGAAAGCGGGGGGCGCTTPS10B promoter studies 458- fwdTP24CTTGGGGGAAACCAACCTTAGACGGTPS10B promoter studies 842-100	
TP10CTATACATGTGATCTTTAGAGGTTPS23 promoter studies 1136-1296 fwdTP11CTCTAAAATGTGAACAATATGTACTPS23 promoter studies 1026-1180 revTP12CAAAGGTTGTATGCACAAAAGGCTPS23 promoter studies 1026-1180 fwdTP13GAGTATCAAAATCTGATTAATTTCTPS10A promoter studies 8-161 fwdTP14CAAATGGTCTGATCGGTTAATGTPS10A promoter studies 8-161 revTP15AACATACACCGCGTTAGCATCTPS10A promoter studies 115-291 fwdTP16TGTGTTGATCGTTTTGTCTTGTPS10A promoter studies 271-421 fwdTP17CAAGACAAAACGATCAACACACTPS10A promoter studies 271-421 revTP18ATGCAATGAACAACCATTCGGGTPS10A promoter studies 395-566 fwdTP20GCTGAGACAAAATGGAGTTGCTPS10A promoter studies 395-566 fevdTP21GTCTCAGCTAGGATAAATACTGGTPS10A promoter studies 559-718 fwdTP22GTACTTCCTCTAACTATACTTCTPS10A promoter studies 559-718 fwdTP23GAAGTAATAGTTGAGAGAAGTACCATPS10A promoter studies 712-855 fwdTP24CTTCTGATTGTTCAGTGTGTGTPS10A promoter studies 712-855 fwdTP25GAAACAATCAGAAGCTGTAGACGTPS10A promoter studies 842-1005 fwdTP26CTTGGGTGGAAGGCGGTGGCATTPS10A promoter studies 1-174 revTP27ACCACAACCTTATATATATACACCTPS10B promoter studies 1-174 revTP28AGAATCTCTTAGGAGCTGTGTGGTPS10B promoter studies 1-174 revTP29AACCATATATATACGGAGCGGGGGGCTTCTAAAATTATTPS23 promoter Gateway cloning 1.8 kbACTGGGACAAGTTTGTACAAAAAAGCAGGCTTCTGAGAGGGTPS23 promoter Gateway cloning 600 bpAAGAAACACAACTPS23 promoter Gateway cloning 1.2 kb<	
TP11CTCTAAAATGTGAACAATATGTACTPS23 promoter studies 1026-1180 revTP12CAAAGGTTGTATGCACAAAAGGCTPS23 promoter studies 1026-1180 fwdTP13GAGTATCAAAATCTGATTAATTCTPS10A promoter studies 8-161 fwdTP14CAAATGGTCTGATCGGTTAATGTPS10A promoter studies 8-161 revTP15AACATACACCGCGTTAGCATCTPS10A promoter studies 115-291 fwdTP16TGTGTTGATCGTTTGTCTTGTPS10A promoter studies 115-291 revTP17CAAGACAAACGATCAACACACCTPS10A promoter studies 271-421 fwdTP18ATGCAATGAACAACCATCGGGTPS10A promoter studies 271-421 fwdTP19CATATCCCGAATGGTTGTTCTPS10A promoter studies 395-566 fwdTP20GCTGAGACAAATGGAGTTGCTPS10A promoter studies 559-718 fwdTP21GTCTCAGCTAGGATAAATACTGGTPS10A promoter studies 559-718 revTP23GAAGTAATAGTTGAGAGGAAGTACCATPS10A promoter studies 712-855 fwdTP24CTTCTGATTGTTCAGTGTGTGTPS10A promoter studies 712-855 fwdTP25GAAACAATCAGAAGCTGTAGACGTPS10A promoter studies 842-1005 fwdTP26CTTGGGTGGAAGGCGGTGGCATTPS10A promoter studies 1-174 fwdTP28AGAATCTCTTAGGAAGCTGTAGACGTPS10B promoter studies 1-174 fwdTP29AACCATATATATACGGAGCGGTPS10B promoter studies 1-174 fwdTP29AACCATATATATACGGAGCTGTGGGTPS10B promoter studies 1-174 fwdTP28AGGAGACAAGTTTGTACAAAAAGCAGGCTTCTGCAGATGGTPS23 promoter Gateway cloning 1.8 kbACTGGGACAAGTTTGTACAAAAAAGCAGGCTTCTGAGAGGGTTPS23 promoter Gateway cloning 600 bpAAGAAACACAACTPG3GGGGACAAGTTTGTACAAAAAAGCAGGCTT	ev
TP12CAAAGGTTGTATGCACAAAAGGCTPS23 promoter studies 1026-1180 fwdTP13GAGTATCAAAATCTGATTAATTTCTPS10A promoter studies 8-161 fwdTP14CAAATGGTCTGATCGGTTAATGTPS10A promoter studies 8-161 revTP15AACATACACCGCGTTAGCATCTPS10A promoter studies 115-291 fwdTP16TGTGTGTGATCGTTTGTGTCTGTPS10A promoter studies 271-421 fwdTP17CAAGACAAAACGATCAACACACCTPS10A promoter studies 271-421 fwdTP18ATGCAATGAACAACCATTCGGGTPS10A promoter studies 271-421 revTP19CATATCCCGAATGGTTGTCTPS10A promoter studies 395-566 fwdTP20GCTGAGACAAAATGGAGTTGCTPS10A promoter studies 595-718 fwdTP22GTACTTCCTCTCAACTAATACTGGTPS10A promoter studies 559-718 fwdTP23GAAGTAATAGTTGAGAGGAAGTACCATPS10A promoter studies 59-718 fwdTP24CTTCTGATTGTTCAGGTGGTGGTPS10A promoter studies 712-855 fwdTP25GAAACAATCAGAAGCTGTAGACGTPS10A promoter studies 712-855 fwdTP26CTTGGGTGGAAGGCGGTGGCATTPS10A promoter studies 42-1005 fwdTP27ACCACAACCTTAATTAATACACCTPS10B promoter studies 1-174 fwdTP28AGAACTTCTTAGGAAGCTGTGGGGTPS10B promoter studies 42-1005 fwdTP30ATTACCAGACTTGTGACAAAAAGCAGGCTTCTAAAATTAATTPS23 promoter studies 42-100 fwdTP30ATTACCAGACTTGTGACAAAAAGCAGGCTTCAAAAATAATTPS23 promoter studies 42-100 fwdTP30ATTACCAGACTTGTACAAAAAAGCAGGCTTCTGCAGATGGTPS23 promoter Gateway cloning 600 bpACAGAAACACCAACTPS30 promoter Gateway cloning 600 bpAAGAAAACACAACTPG3GGGGACAAGTTTGTACAA	wd
TP13GAGTATCAAAATCTGATTAATTTCTPS10A promoter studies 8-161 fwdTP14CAAATGGTCTGATCGGTTAATGTPS10A promoter studies 8-161 revTP15AACATACACCGCGTTAGCATCTPS10A promoter studies 115-291 fwdTP16TGTGTTGATCGTTTGTCTTGTPS10A promoter studies 115-291 fwdTP17CAAGACAAAACGATCAACACCACCTPS10A promoter studies 271-421 fwdTP18ATGCAATGAACAACCATTCGGGTPS10A promoter studies 271-421 revTP19CATATCCCGAATGGTTGTCTPS10A promoter studies 395-566 fwdTP20GCTGAGACAAAATGGAGTTGCTPS10A promoter studies 395-566 fwdTP21GTCTCAGCTAGGATAAATACTGGTPS10A promoter studies 559-718 fwdTP22GTACTCCTCTCAACATTACTTCTPS10A promoter studies 559-718 fwdTP23GAAGTAATAGTTGAGAGGAGAACTACCATPS10A promoter studies 559-718 fwdTP24CTTCTGATTGTTCAGTGTGTGTPS10A promoter studies 712-855 fwdTP25GAAACAATCAGAAGCTGTAGACGTPS10A promoter studies 842-1005 fwdTP26CTTGGGTGGAAGGCGGTGGCATTPS10B promoter studies 842-1005 fwdTP28AGAATCTCTTAGGAATCAACTACCTPS10B promoter studies 842-1005 revTP29AACCATATATTAGGAACTACTTCTPS10B promoter studies 1-174 fwdTP28AGAATCTCTTAGGAATCACTACTTCTPS10B promoter studies 622 fwdTP20GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTGCAGATGGTPS23 promoter Gateway cloning 1.8 kbACTGGGAAAAGGTTGTGACAAAAAAAAGCAGGCTTCTGAAGAGGTPS23 promoter Gateway cloning 1.2 kb	ev
TP14CAAATGGTCTGATCGGTTAATGTPS10A promoter studies 8-161 revTP15AACATACACCGCGTTAGCATCTPS10A promoter studies 115-291 fwdTP16TGTGTTGATCGTTTGGTCTTGTPS10A promoter studies 115-291 revTP17CAAGACAAAACGATCAACACCCTPS10A promoter studies 271-421 fwdTP18ATGCAATGAACAACCATTCGGGTPS10A promoter studies 271-421 revTP19CATATCCCGAATGGTTGTTCTPS10A promoter studies 395-566 fwdTP20GCTGAGACAAAATGGAGTTGCTPS10A promoter studies 395-566 fwdTP21GTCTCAGCTAGGATAAATACTGGTPS10A promoter studies 559-718 fwdTP22GTACTTCCTCTCAACTATTACTTCTPS10A promoter studies 559-718 fwdTP23GAAGTAATAGTGGAGGAAGTACCATPS10A promoter studies 712-855 fwdTP24CTTCTGGTTGTTCAGTGTGTTGTPS10A promoter studies 712-855 fwdTP25GAAACAATCAGAAGCTGTAGACGTPS10A promoter studies 842-1005 fwdTP26CTTGGGTGGAAGGCGGTGGCATTPS10A promoter studies 1-174 fwdTP28AGAATCTCTTAGGAGGAGCGGGGCATTPS10B promoter studies 1-174 fwdTP29AACCATATATATACACCTPS10B promoter studies 458- fwdTP30ATTACCAGAACTTGTGAGCTTGTGGTPS10A promoter studies 622 fwdTP30ATTACCAGAACTTGTACAAAAAGCAGGCTTCAAAATTAATTPS23 promoter Gateway cloning 600 bpAGGGGACAAGTTTGTACAAAAAAGCAGGCTTCTGCAGATGGTPS23 promoter Gateway cloning 1.2 kb	мd
TP15AACATACACCGCGTTAGCATCTPS10A promoter studies 115-291 fwdTP16TGTGTTGATCGTTTGTCTTGTPS10A promoter studies 115-291 revTP17CAAGACAAAACGATCAACACACCTPS10A promoter studies 271-421 fwdTP18ATGCAATGAACAACACTTCGGGTPS10A promoter studies 271-421 revTP19CATATCCCGAATGGTTGTTCTPS10A promoter studies 395-566 fwdTP20GCTGAGACAAAATGGAGTTGCTPS10A promoter studies 395-566 revTP21GTCTCAGCTAGGATAAATGGAGTTGCTPS10A promoter studies 559-718 fwdTP22GTACTTCCTCAAGTATAATACTGGTPS10A promoter studies 559-718 fwdTP23GAAGTAATAGTTGAGAGGAAGTACCATPS10A promoter studies 712-855 fwdTP24CTTCTGGATGAACAGCGTGTGTGTPS10A promoter studies 712-855 fwdTP25GAAACAATCAGAAGCTGTAGACGTPS10A promoter studies 842-1005 fwdTP26CTTGGGTGGAAAGCGGTGGCATTPS10A promoter studies 842-1005 fwdTP27ACCACAACCTTAATTAATAACACCTPS10B promoter studies 1-174 fwdTP28AGAATCTCTTAGGAATCTACTTCTPS10B promoter studies 2-1074 fwdTP30ATTACCAGACTTGTAGAGCGGGGGTPS10A promoter studies 2-1074 fwdTP30ATTACCAGACTTGTAGAAGCAGGCTTCAAAATTAATTPS23 promoter studies 622 fwdTP61GGGGACAAAGTTTGTACAAAAAAGCAGGCTTCTGCAGATGGTPS23 promoter Gateway cloning 600 bpAAGAAACAAACAGGGGACAAGTTTGTACAAAAAGCAGGCTTCTTAAGCTTGTPS23 promoter Gateway cloning 1.2 kb	
TP16TGTGTTGATCGTTTGTCTTGTPS10A promoter studies 115-291 revTP17CAAGACAAAACGATCAACACACCTPS10A promoter studies 271-421 fwdTP18ATGCAATGAACAACCATTCGGGTPS10A promoter studies 271-421 revTP19CATATCCCGAATGGTTGTTCTPS10A promoter studies 395-566 fwdTP20GCTGAGGACAAAATGGAGTTGCTPS10A promoter studies 395-566 revTP21GTCTCAGCTAGGATAAATACTGGTPS10A promoter studies 395-566 revTP22GTACTTCCTCAAGAAAATGGAGTTGCTPS10A promoter studies 559-718 fwdTP23GAAGTAATAGTTGAGAGGAAGTACCATPS10A promoter studies 712-855 fwdTP24CTTCTGATTGTTCAGTGTGTTGTPS10A promoter studies 712-855 fwdTP25GAAACAATCAGAAGCTGTAGACGTPS10A promoter studies 842-1005 fwdTP26CTTGGGTGGAAAGGCGGTGGCATTPS10A promoter studies 842-1005 fwdTP27ACCACAACCTTAATTAATACACCTPS10B promoter studies 1-174 fwdTP28AGAATCTCTTAGGAATCTACTTCTPS10B promoter studies 428-1005 revTP29AACCATATATATACGGAGCGGTPS10B promoter studies 458- fwdTP30ATTACCAGACTTGTGAGCTTGTGGGTPS10B promoter studies 458- fwdTP30ATTACCAGACTTGTACAAAAAAGCAGGCTTCAAAATTAAT ACTGGGAAAAGGTPS23 promoter Gateway cloning 1.8 kbTPG2GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTGTPS23 promoter Gateway cloning 600 bp AAGAAACACAACTPG3GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTGTPS23 promoter Gateway cloning 1.2 kb	
TP17CAAGACAAAACGATCAACACACCTPS10A promoter studies 271-421 fwdTP18ATGCAATGAACAACCATTCGGGTPS10A promoter studies 271-421 revTP19CATATCCCGAATGGTTGTCTPS10A promoter studies 395-566 fwdTP20GCTGAGACAAAATGGAGTTGCTPS10A promoter studies 395-566 revTP21GTCTCAGCTAGGATAAATACTGGTPS10A promoter studies 559-718 fwdTP22GTACTTCCTCTCAACTATTACTTCTPS10A promoter studies 559-718 fwdTP23GAAGTAATAGTTGAGAGGAAGTACCATPS10A promoter studies 712-855 fwdTP24CTTCTGATTGTTCAGTGTGTGGTPS10A promoter studies 712-855 revTP25GAAACAATCAGAAGCTGTAGACGTPS10A promoter studies 842-1005 fwdTP26CTTGGGTGGAAGGCGGTGGCATTPS10A promoter studies 842-1005 fwdTP27ACCACAACCTTAATTAATACACCTPS10B promoter studies 1-174 fwdTP28AGAATCTCTAGGAGCGGTPS10B promoter studies 21-174 revTP29AACCATATATATACGGAGCTGGGGTPS10B promoter studies 622 fwdTP30ATTACCAGACTTGTGAGACTTGTGGGTPS10A promoter studies 622 fwdTP30ATTACCAGACTTGTACAAAAAAGCAGGCTTCAAAATTAATTPS23 promoter Gateway cloning 1.8 kbACTGGGAAAAGGTPS23 promoter Gateway cloning 600 bpAAGAAACACAACTPG3GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTGTPS23 promoter Gateway cloning 1.2 kb	
TP18ATGCAATGAACAACCATTCGGGTPS10A promoter studies 271-421 revTP19CATATCCCGAATGGTTGTTCTPS10A promoter studies 395-566 fwdTP20GCTGAGACAAAATGGAGTTGCTPS10A promoter studies 395-566 revTP21GTCTCAGCTAGGATAAATACTGGTPS10A promoter studies 559-718 fwdTP22GTACTTCCTCTCAACTATTACTTCTPS10A promoter studies 559-718 fwdTP23GAAGTAATAGTTGAGAGGAAGTACCATPS10A promoter studies 712-855 fwdTP24CTTCTGATTGTTTCAGTGTGTTGTPS10A promoter studies 712-855 revTP25GAAACAATCAGAAGCGGTGGCATTPS10A promoter studies 842-1005 fwdTP26CTTGGGTGGAAGGCGGTGGCATTPS10A promoter studies 842-1005 revTP27ACCACAACCTTAATAATATACACCTPS10B promoter studies 1-174 fwdTP28AGAATCTCTTAGGAATCTACTTCTPS10B promoter studies 1-174 fwdTP29AACCATATATATACGGAGCGGTPS10A promoter studies 622 fwdTP30ATTACCAGACTTGTGACAAAAAAGCAGGCTTCAAAATTAATTPS23 promoter Gateway cloning 1.8 kbACTGGGAAAAGGTPS10A promoter Gateway cloning 1.2 kbTPG2GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTGTPS23 promoter Gateway cloning 1.2 kb	
TP19CATATCCCGAATGGTTGTTCTPS10A promoter studies 395-566 fwdTP20GCTGAGACAAAATGGAGTTGCTPS10A promoter studies 395-566 revTP21GTCTCAGCTAGGATAAATACTGGTPS10A promoter studies 559-718 fwdTP22GTACTTCCTCTCAACTATTACTTCTPS10A promoter studies 559-718 revTP23GAAGTAATAGTTGAGAGGAAGTACCATPS10A promoter studies 712-855 fwdTP24CTTCTGATTGTTCAGTGTGTGTPS10A promoter studies 712-855 revTP25GAAACAATCAGAAGCTGTAGACGTPS10A promoter studies 842-1005 fwdTP26CTTGGGTGGAAAGCGGGTGGCATTPS10A promoter studies 842-1005 revTP27ACCACAACCTTAATTAATAACACCTPS10B promoter studies 1-174 fwdTP28AGAATCTCTTAGGAATCTACTTCTPS10B promoter studies 1-174 fwdTP29AACCATATATATACGGAGCGGTPS10B promoter studies 428- fwdTP30ATTACCAGACTTGTGAGCTTGTGGGTPS10A promoter studies 622 fwdTPG1GGGGACAAGTTTGTACAAAAAGCAGGCTTCAAAATAAT ACTGGGAAAAGGTPS23 promoter Gateway cloning 1.8 kbAGAAACACAACTPS23Promoter Gateway cloning 600 bpAAGAAACACAACTPS3GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTGTPG3GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTGTPS23 promoter Gateway cloning 1.2 kb	
TP20GCTGAGACAAAATGGAGTTGCTPS10A promoter studies 395-566 revTP21GTCTCAGCTAGGATAAATACTGGTPS10A promoter studies 559-718 fwdTP22GTACTTCCTCTCAACTATTACTTCTPS10A promoter studies 559-718 revTP23GAAGTAATAGTTGAGAGGAAGTACCATPS10A promoter studies 712-855 fwdTP24CTTCTGATTGTTTCAGTGTGTGTPS10A promoter studies 842-1005 fwdTP25GAAACAATCAGAAGCTGTAGACGTPS10A promoter studies 842-1005 fwdTP26CTTGGGTGGAAGCGGTGGCATTPS10B promoter studies 842-1005 revTP27ACCACAACCTTAATTAATATACACCTPS10B promoter studies 1-174 fwdTP28AGAATCTCTTAGGAATCTACTTCTPS10B promoter studies 1-174 revTP29AACCATATATATACGGAGCGGTPS10B promoter studies 622 fwdTPG1GGGGACAAGTTTGTACAAAAAGCAGGCTTCAAAATTAAT ACTGGGAAAAGGTPS23 promoter Gateway cloning 1.8 kbTPG2GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCATGG AAGAAACACAACTPS23 promoter Gateway cloning 600 bpAGGAGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTGTPS23 promoter Gateway cloning 1.2 kb	
TP21GTCTCAGCTAGGATAAATACTGGTPS10A promoter studies 559-718 fwdTP22GTACTTCCTCTCAACTATTACTTCTPS10A promoter studies 559-718 revTP23GAAGTAATAGTTGAGAGGAAGTACCATPS10A promoter studies 712-855 fwdTP24CTTCTGATTGTTTCAGTGTGTGTPS10A promoter studies 712-855 revTP25GAAACAATCAGAAGCTGTAGACGTPS10A promoter studies 842-1005 fwdTP26CTTGGGTGGAAGCGGTGGCATTPS10A promoter studies 842-1005 revTP27ACCACAACCTTAATTAATAACACCTPS10B promoter studies 1-174 fwdTP28AGAATCTCTTAGGAATCTACTTCTPS10B promoter studies 1-174 fwdTP29AACCATATATATAACGGAGCGGTPS10B promoter studies 428- fwdTP30ATTACCAGACTTGTGACATGTGGTPS10A promoter studies 622 fwdTPG1GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAAAATTAAT ACTGGGAAAAGGTPS23 promoter Gateway cloning 1.8 kbTPG2GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCATGG AAGAAACACAACTPS23 promoter Gateway cloning 600 bpAGGAGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTGTPS23 promoter Gateway cloning 1.2 kb	
TP22GTACTTCCTCTCAACTATTACTTCTPS10A promoter studies 559-718 revTP23GAAGTAATAGTTGAGAGGAAGTACCATPS10A promoter studies 712-855 fwdTP24CTTCTGATTGTTTCAGTGTGTGTPS10A promoter studies 712-855 revTP25GAAACAATCAGAAGCTGTAGACGTPS10A promoter studies 842-1005 fwdTP26CTTGGGTGGAAGCGGTGGCATTPS10A promoter studies 842-1005 revTP27ACCACAACCTTAATTAATATACACCTPS10B promoter studies 1-174 fwdTP28AGAATCTCTTAGGAATCTACTTCTPS10B promoter studies 1-174 revTP29AACCATATATATAACGGAGCGGTPS10B promoter studies 622 fwdTPG1GGGGACAAGTTTGTACAAAAAGCAGGCTTCAAAATTAAT ACTGGGAAAAGGTPS23 promoter Gateway cloning 1.8 kbTPG2GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCATGG AAGAAACACAACTPS23 promoter Gateway cloning 600 bpTPG3GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTGTPS23 promoter Gateway cloning 1.2 kb	
TP23GAAGTAATAGTTGAGAGGAAGTACCATPS10A promoter studies 712-855 fwdTP24CTTCTGATTGTTTCAGTGTGTTGTPS10A promoter studies 712-855 revTP25GAAACAATCAGAAGCTGTAGACGTPS10A promoter studies 842-1005 fwdTP26CTTGGGTGGAAGGCGGTGGCATTPS10A promoter studies 842-1005 revTP27ACCACAACCTTAATTAATATACACCTPS10B promoter studies 1-174 fwdTP28AGAATCTCTTAGGAATCTACTTCTPS10B promoter studies 1-174 revTP29AACCATATATATATAGGAGCGGTPS10B promoter studies 458- fwdTP30ATTACCAGACTTGTGAGCTTGTGGTPS10A promoter studies 622 fwdTPG1GGGGACAAGTTTGTACAAAAAGCAGGCTTCTAAAATTPS23 promoter Gateway cloning 1.8 kbACTGGGAAAAGGTPS23 promoter Gateway cloning 1.2 kb	
TP24CTTCTGATTGTTTCAGTGTGTTGTPS10A promoter studies 712-855 revTP25GAAACAATCAGAAGCTGTAGACGTPS10A promoter studies 842-1005 fwdTP26CTTGGGTGGAAGGCGGTGGCATTPS10A promoter studies 842-1005 revTP27ACCACAACCTTAATTAATATACACCTPS10B promoter studies 1-174 fwdTP28AGAATCTCTTAGGAATCTACTTCTPS10B promoter studies 1-174 revTP29AACCATATATATATAGGAGCGGTPS10B promoter studies 458- fwdTP30ATTACCAGACTTGTGAGCTTGTGGTPS10A promoter studies 622 fwdTPG1GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAAAATTAAT ACTGGGAAAAGGTPS23 promoter Gateway cloning 1.8 kbTPG2GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTGCAGATGG AAGAAACACAACTPS23 promoter Gateway cloning 1.2 kb	
TP25GAAACAATCAGAAGCTGTAGACGTPS10A promoter studies 842-1005 fwdTP26CTTGGGTGGAAGGCGGTGGCATTPS10A promoter studies 842-1005 revTP27ACCACAACCTTAATTAATATACACCTPS10B promoter studies 1-174 fwdTP28AGAATCTCTTAGGAATCTACTTCTPS10B promoter studies 1-174 revTP29AACCATATATATAACGGAGCGGTPS10B promoter studies 458- fwdTP30ATTACCAGACTTGTGAGCTTGTGGTPS10A promoter studies 622 fwdTPG1GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAAAATTAAT ACTGGGAAAAGGTPS23 promoter Gateway cloning 1.8 kbTPG2GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTGCAGATGG AAGAAACACAACTPS23 promoter Gateway cloning 600 bpTPG3GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTGTPS23 promoter Gateway cloning 1.2 kb	
TP26CTTGGGTGGAAGGCGGTGGCATTPS10A promoter studies 842-1005 revTP27ACCACAACCTTAATTAATATACACCTPS10B promoter studies 1-174 fwdTP28AGAATCTCTTAGGAATCTACTTCTPS10B promoter studies 1-174 revTP29AACCATATATATATACGGAGCGGTPS10B promoter studies 458- fwdTP30ATTACCAGACTTGTGAGCTTGTGGTPS10A promoter studies 622 fwdTPG1GGGGACAAGTTTGTACAAAAAGCAGGCTTCAAAATTAAT ACTGGGAAAAGGTPS23 promoter Gateway cloning 1.8 kbTPG2GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTGCAGATGG AAGAAACACAACTPS23 promoter Gateway cloning 600 bpTPG3GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTGTPS23 promoter Gateway cloning 1.2 kb	
TP27ACCACAACCTTAATTAATATACACCTPS10B promoter studies 1-174 fwdTP28AGAATCTCTTAGGAATCTACTTCTPS10B promoter studies 1-174 revTP29AACCATATATATACGGAGCGGTPS10B promoter studies 458- fwdTP30ATTACCAGACTTGTGAGCTTGTGGTPS10A promoter studies 622 fwdTPG1GGGGACAAGTTTGTACAAAAAGCAGGCTTCAAAATTAAT ACTGGGAAAAGGTPS23 promoter Gateway cloning 1.8 kbTPG2GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTGCAGATGG AAGAAACACAACTPS23 promoter Gateway cloning 600 bpTPG3GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTGTPS23 promoter Gateway cloning 1.2 kb	
TP28AGAATCTCTTAGGAATCTACTTCTPS10B promoter studies 1-174 revTP29AACCATATATATACGGAGCGGTPS10B promoter studies 458- fwdTP30ATTACCAGACTTGTGAGCTTGTGGTPS10A promoter studies 622 fwdTPG1GGGGACAAGTTTGTACAAAAAGCAGGCTTCAAAATTAAT ACTGGGAAAAGGTPS23 promoter Gateway cloning 1.8 kbTPG2GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTGCAGATGG AAGAAACACAACTPS23 promoter Gateway cloning 600 bpTPG3GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTGTPS23 promoter Gateway cloning 1.2 kb	
TP29AACCATATATATACGGAGCGGTPS10B promoter studies 458- fwdTP30ATTACCAGACTTGTGAGCTTGTGGTPS10A promoter studies 622 fwdTPG1GGGGACAAGTTTGTACAAAAAGCAGGCTTCAAAATTAAT ACTGGGAAAAGGTPS23 promoter Gateway cloning 1.8 kbTPG2GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTGCAGATGG AAGAAACACAACTPS23 promoter Gateway cloning 600 bpTPG3GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTGTPS23 promoter Gateway cloning 1.2 kb	
TPG1 GGGGACAAGTTTGTACAAAAAGCAGGCTTCAAAATTAAT ACTGGGAAAAGG TPS23 promoter Gateway cloning1.8 kb TPG2 GGGGACAAGTTTGTACAAAAAGCAGGCTTCTGCAGATGG AAGAAACACAAC TPS23 promoter Gateway cloning 600 bp TPG3 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTG TPS23 promoter Gateway cloning 1.2 kb	·
ACTGGGAAAAGG 1 TPG2 GGGGACAAGTTTGTACAAAAAGCAGGCTTCTGCAGATGG TPS23 promoter Gateway cloning 600 bp AAGAAACACAAC TPG3 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTG TPS23 promoter Gateway cloning 1.2 kb	
TPG2 GGGGACAAGTTTGTACAAAAAGCAGGCTTCTGCAGATGG TPS23 promoter Gateway cloning 600 bp AAGAAACACAAC TPG3 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTG TPS23 promoter Gateway cloning 1.2 kb	kb
AAGAAACACAAC TPG3 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTG TPS23 promoter Gateway cloning 1.2 kb	
TPG3 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTAAGCTTG TPS23 promoter Gateway cloning 1.2 kb) bp
1	1.1.
IAUAAIUUUAU	. KD
	,
TPG4 GGGGACCACTTTGTACAAGAAAGCTGGGTCGAAAGTATAG TPS23 promoter Gateway cloning rev TATACTAGCTA TPS23 promoter Gateway cloning rev	
TPG5 GGGGACAAGTTTGTACAAAAAGCAGGCTTCCTTTGCCTA TPS10 promoter Gateway cloning 1.5 kb	i kh
GTGTCAAAAAAAAAACACTC	
TPG6 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCCTAGTGTCA TPS10 promoter Gateway cloning 1.5 kb-	i kb-b

	AAAAAAACACTCGGC	
TPG7	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAAAGAAGCT	TPS10 promoter Gateway cloning 1.5 kb-c
IPG/		1PS10 promoter Gateway cloning 1.5 kb-c
	CTTTGGCGAGTG	
TPG8	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAGTATCAA	TPS10 promoter Gateway cloning 800 bp
	AATCTGATTAATTTC	
TPG9	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCCATTGCATA	TPS10 promoter Gateway cloning 500 bp
	ATGTGACTCC	
TPG10	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGTAATA	TPS10 promoter Gateway cloning 200 bp
	GTTGAGAGGAAGTACCA	
TPG11	GGGGACCACTTTGTACAAGAAAGCTGGGTCTTGCAGCAGC	TPS10 promoter Gateway cloning rev
	CCCTGCACATC	
TPG12	GGGGACAAGTTTGTACAAAAAGCAGGCTTCTGCACGCAG	TPS10 promoter Gateway cloning 200 bp new
	AAGTAATAGTTGAGAG	
TPG13	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGGATGATGT	TPS23 promoter Gateway cloning 400 bp
	AACATTTGAGGTG	
TPG14	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAATATAATG	TPS23 promoter Gateway cloning 200 bp
	CAAATTGAGTAC	

2.5.6 Amplification of DNA

DNA was amplified by "polymerase chain reaction" (PCR) in a thermocycler Primus 96 (MWG Biotech, Ebersberg, Germany) or Peclab (Peclab, Germany). Standard PCR was performed using Go Taq-DNA polymerase (Promega, Madison, USA). Amplification reactions of inserts for cloning experiments were carried out with Advantage2 Polymerase Mix (BD Biosciences Clontech, Palo Alto, USA) or with *Pfu*Turbo DNA Polymerase (Stratagene, La Jolla, USA). A 50 µl standard PCR mix contained 1 µl primer 1, 1 µl primer 2 (10 pmol μ l⁻¹ each), 1 µl dNTP (10 mM), 5 µl reaction buffer, 0.5 µl polymerase (0.1-2.5 U) and 5-200 ng DNA template. Cycling conditions were as follows:

Denaturation conditions remained constant in all PCRs, however annealing temperatures and extension times were adapted depending on the melting temperatures of primers (annealing temperature = melting temperature of primers minus 2-5 °C) and the expected fragment sizes (extension time = 1 min per 1 kb).

2.5.7 RACE-PCR

A 5'- and 3'-RACE cDNA library were constructed from mRNA using the SMARTer RACE cDNA amplification kit (BD Biosciences Clontech, Palo Alto, USA) according to the instructions provided by the manufacturer. The procedure forms first-strand cDNA with specific adaptor sequences either at the 5'- or at the 3'-end of the cDNA that allows for RACE- (rapid amplification of cDNA-ends) PCR. Following RACE PCR, nested PCR was conducted to obtain specific single bands using inner primers.

2.5.8 cDNA synthesis

cDNA for applications in QRT-PCR reactions was synthesized with the reverse transcriptase Superscript III (Invitrogen, Carlsbad, USA). 0.75 μ g of DNA digested RNA (2.5.4) was mixed with 4 μ l dNTPs, 0.5 μ l oligo(dT)primers and 0.5 μ l random primers, and filled to a volume of 13 μ l with *a. dest*. The reaction was incubated for 5 min at 65°C and shortly cooled down on ice. Four μ l reaction buffer, 1 μ l DTT, as well as, 1 μ l RNase and 1 μ l SuperscriptIII was added to the sample and incubated at room temperature for 5 min and afterwards transferred to 50°C for 1 h. Reverse transcription was terminated by an 70°C incubation period of 15 min and the cDNA was stored in aliquots at -20°C.

2.5.9 Quantitative RT-PCR

Quantitative real time PCR was performed to analyze transcript accumulation of specific genes in different samples. In order to observe the accumulation of our DNA fragments, 10 μ l Brilliant Sybr Green QPCR Master Mix (Stratagene, La Jolla, USA) was added to 1 μ l cDNA and 0.5 μ l of each primer (0.25 mM). Since Sybr Green is a chemical compound that fluoresces when unspecifically bound into the minor groove of double-stranded DNA, it can be measured by its fluorescence after excitation at 497 nm. The signal intensity depends on the initial concentration of target present in the PCR reaction and is therefore a tool to calculate the present mRNA amount of one specific gene.

QRT-PCR reactions were carried out in an Mx3000P (Stratagene, La Jolla, USA) or the CFX96 (Bio-Rad, Munich, Germany) with the following reaction scheme:

	95°C for 10 min	
Denaturation	95°C for 30 s)
Annealing	56-68°C for 30 s	\rightarrow 40 cycles
Extension	72°C for 1 min	J
Melting Curve:	95°C for 1 min	
	56°C to 95°C for 3	30 s each

Gene expression levels were quantified using the standard curve method. The standard curve for each gene was generated using pooled cDNA in equal amounts from all samples. Two reference genes, a putative adenine phosphoribosyltransferase 1 (TA172777_4577) and a maize RNA polymerase II largest subunit (AF519538), were used to quantify the cDNA in each sample. The expression level of both genes was similar in control and herbivore-induced plants, with a cycle threshold value difference from 1 to 2. Using the automated threshold determination given by the Mx3000P software, the starting amount of cDNA was calculated for each sample. Relative expression levels were calculated as the expression level of the respective gene divided by the geometric mean of the expression levels of the two reference genes.

2.5.10 Restriction of DNA, plasmids and PCR products

Restriction of DNA with restriction endonucleases was applied to produce compatible inserts and vectors for ligation and to screen vectors for successful insertion of PCR products. Enzymes and the appropriate buffers (10x) were purchased from NEB (Schwalbach, Germany) or Fermentas (St. Leon-Rot, Germany). Reactions were carried out with 2-20 U enzyme and 0.5-3 μ g DNA with the suitable amount of buffer in reaction volumes of 20 to 60 μ l and incubated for 1-2 h at 37°C.

2.5.11 Isolation of DNA fragments from agarose gels and PCR reactions

The DNA fragments of interest were cut under UV illumination (260 nm) and extracted with the NucleoSpin Extract kit from Macherey&Nagel (Düren, Germany). The pieces of agarose were dissolved in a buffer containing chaotropic salts which promotes the binding of DNA to the silica membrane of a column. After washing the column with ethanol-containing buffers,

purified DNA was eluted with 35 μ l 5 mM Tris-HCl (pH8.5). The same kit was used to purify PCR products from reaction solutions.

2.5.12 Ligation of DNA fragments

DNA fragments with compatible or blunt ends were ligated using 1 U T4-DNA-Ligase from Fermentas (St. Leon-Rot, Germany) with the provided 10x ligase buffer. Vector and inserts were mixed in an estimated molecule ratio of 1:5 and incubated at 37°C for 1 h or at 16°C over night.

2.5.13 Cloning and transformation of DNA fragments

DNA fragments were cloned with the TOPO TA Cloning[®] kit from Invitrogen (Carlsbad, USA) or the CloneJETTM PCR Cloning kit from Fermentas (St. Leon-Rot, Germany) according to the manufacturer's instructions. For expression analysis, DNA fragments and corresponding vectors (Tab.2.5) were digested with the specific restriction enzyme to produce compatible overhangs (2.5.10), and ligated as described above.

Vector	Characteristics	Application
pHIS8-3 (Joseph P.Noel, The	Bacterial expression vector with	Overexpression of His-tagged
Salk Institute, La Jolla, USA)	N-terminal His(8)-tag, Km ^r , T7-	proteins in E. coli
	promoter	
pJet1.2/blunt (Fermentas, St.	Bacterial cloning vector, 2974 bp,	Cloning of PCR products
Leon-Rot, Germany)	Amp ^r , P _{lac} -promoter, T7 RNA-	
	promoter	
pCR®4-TOPO® (Invitrogen,	Bacterial cloning vector, 3900 bp,	Cloning of PCR products
Carlsbad, USA)	Amp ^r , Km ^r , P _{lac} -promoter, T7	
	RNA-promoter	
pDONR TM vector 207	Transformation vector, 5585 bp,	Donor vector for Gateway cloning
(Invitrogen, Carlsbad, USA)	Gent ^r , Cm ^r , pUC origin	system
pBGWFS7.0 (Invitrogen,	Transformation vector, 12451 bp,	Destination vector for Gateway
Carlsbad, USA)	GUS gene, GFP gene, Sm/Sp ^r ,	cloning system (Karimi et al.
	CoIE1, pVS1	2002)

Tab.2.5: Vectors and their application in this work

2.5.14 Sequencing and sequence analysis

Sequencing of plasmids and DNA fragments was performed by either Eurofins MWG (Ebersberg, Germany) or GATC (Konstanz, Germany). Samples were diluted to the concentrations and volumes specified by these companies and send via mail.

DNA and protein sequence data were evaluated with the software DNAStar (Madison, USA) and the web-based software Multalin at http://multalin.toulouse.inra.fr/multalin/multalin.html. Data bank searches were performed using BLAST (basic local alignment search tool) at <u>http://www.ncbi.nlm.nih.gov/,</u> maizesequence database at <u>http://www.maizesequence.org/index.html</u> and TIGR at <u>http://www.tigr.org/</u> as well as the plantGDB database at <u>http://www.plantgdb.org/</u>. Analysis of regulatory elements was performed using PLACE (<u>http://www.dna.affrc.go.jp/PLACE/</u>) and plant CARE (<u>http://bioinformatics.psb.ugent.be/webtools/plantcare/html/</u>).

2.5.15 Gateway Cloning System

The Gateway® Technology is a universal cloning method based on the site-specific recombination properties of bacteriophage lambda (Invitrogen, <u>http://www.invitrogen.com</u>, (Landy 1989)). This method was used to clone the promoter fragments of *tps10* and *tps23* fused to the GUS gene into the destination vector in order to transform the resulting vector into *Agrobacterium tumefaciens*.

The promoter fragments were cut into sizes starting from 1.5 kb for *tps10* and 1.8 kb for *tps23* using PCR (Tab.2.6) and cloned according to the manufacturer's instructions via BP reaction into the donor vector pDONRTM vector 207. After selection on a kanamycin containing LB plate and colony PCR, the resulting entry clone was cloned using the LR reaction in the destination vector pBGWFS7.0. This destination vector contained the reporter gene β -glucuronidase. The resulting expression clone was used for transformation into *A*. *tumefaciens*.

The promoter constructs were cloned and transformed with support by Kurt Stampniok and Ulschan Scheler (AG Degenhardt).

Name of the construct	Size in [nt]	Primers used
tps10 1.5 kb::GUS	1297	TPG5, 6, 7; TPG11
tps10 800 bp::GUS	965	TPG8; TPG11
tps10 500 bp::GUS	559	TPG9; TPG11
tps10 200 bp::GUS	293	TPG10, 12 ; TPG11
tps23 1.8 kb::GUS	1779	TPG1; TPG4
tps23 1.2 kb::GUS	1186	TPG2; TPG4
tps23 600 bp::GUS	602	TPG3; TPG4
tps23 400 bp::GUS	397	TPG13, TPG4
tps23 200 bp::GUS	172	TPG14, TPG4

Tab.2.6: Overview of the promoter sizes of tps10 and tps23 used for the Gateway cloning system.

2.5.16 Microarray hybridization

The Maize Long Oligonucleotide 46k Array (version 1) provided by the University of Arizona was used for global expression profiling.

Material from plants treated according to the time course experiment (2.1) was ground in liquid nitrogen into a fine powder and total RNA was extracted as described above. A DNA digestion using Promega DNase (Promega, Madison, USA) was performed on-column according to the manufacturer's instructions.

Utilizing the Amino Allyl MessageAmpTMII aRNA Amplification Kit (Ambion, Carlsbad, USA), amplified RNA was produced and labeled with Cy3/Cy5 Mono-Reactive Dye Pack (GE Healthcare, Freiburg, Germany) according to the instruction of the manufacturer's. The labeled RNA probes were purified (RNeasy MinElute Cleanup, Qiagen, Hilden, Germany), mixed and hybridized with the Long Oligonucleotide Microarray with the protocols provided by the University of Arizona (http://ag.arizona.edu/microarray/methods.html). Reverse labeling experiments were performed to eliminate dye-specific bias. For each treatment, the RNA was labeled with Cy3 and Cy5 in the reverse experiment. Considering the reverse labeling experiments, a total of 4 biological replicates and 2 technical replicates were included. After hybridization, the microarray slides were washed and scanned immediately with the DNA microarray scanner (system: G2565AA/BA from Agilent, Santa Clara, USA).

The R-based open source software Bioconducter (<u>http://www.bioconductor.org</u>) was used to analyze the resulting data files. Local background subtraction and Lowess normalization was applied for each microarray slide (Yang 2002). The p-values and log₂-ration between arrays were calculated using the linear model and empirical Bayes methods from the limma package of Bioconductor. Genes with a ratio cut-off of two and a p-value <0.05 were used for further analysis.

2.6 Electrophoresis and transfer techniques

2.6.1 Electrophoresis

DNA fragments were separated by electrophoresis in 1.5x TAE agarose gels (1.5 % agarose [g/v]; Bio-Rad Laboratories, Hercules, USA, 1 µg ml⁻¹ ethidium bromide). DNA probes were mixed with 1/4 volume loading buffer and separated at a constant voltage of 100 V in an *i*-Mupid mini electrophoresis unit (Helixx, Ontario, Canada) containing 0.5x TAE buffer. Nucleic acid was visualized under UV-light due to the intercalation of ethidium bromide into the DNA. To characterize the fragment sizes, an additional 3 µl of a 1 kb or 100 bp marker was applied to the gel (Invitrogen, Carlsbad, USA).

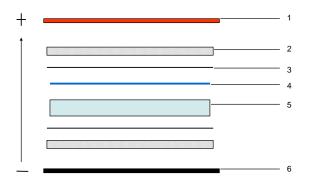
- Loading buffer: 50 % glycerin [v/v] 0.05 % bromphenol blue [g/v] 100 mM EDTA
- 0.5x TAE-Puffer: 40 mM Tris-acetate pH8.0 20 mM sodium acetate 1 ml EDTA

2.6.2 SDS-PAGE

Proteins were separated under denaturing conditions using the polyacrylamide electrophoresis with sodium dodecyl sulfate (SDS) on 12 % polyacrylamide gels. The production of the gels was carried out after Laemmli (1970).

Protein probes were mixed with 2x buffer and denaturated for 10 min at 90°C and concentrated in the stacking gel at a constant voltage of 100 V. In the separation gel, protein samples were separated at 200 V. Following electrophoresis, proteins were either blotted on a nitrocellulose membrane (Western blot 2.6.3) or directly stained for 30 min with Coomassie Brilliant Blue solution. Destaining of the gel was obtained by incubation with destaining solution for several hours. For the estimation of the protein sizes fragments were compared to the "Pre-Stained" protein marker (Invitrogen, Carlsbad, USA).

2x buffer:	100 mM Tris-HCl pH6.0
	4 % SDS [g/v]
	10 % 2-mercaptoethanol [v/v]
	20 % glycerol [v/v]
	0.1 % bromphenol blue [g/v]
Stacking gel 4 %:	0.125 M Tris-HCl pH6.8
	4 % acrylamide/bisacrylamide (29:1) Roth (Karlsruhe)
	0.1 % SDS [g/v]
	0.075 % APS [g/v]
	0.05 % TEMED [v/v]
Separation gel 12 %:	0.375 M Tris-HCl pH8.8
	12 % acrylamide/bisacrylamide (29:1)
	0.1 % SDS [g/v]
	0.075 % APS [g/v]
	0.05 % TEMED [v/v]
10x SDS-buffer:	200 mM Tris
	1.9 M glycine
	10 % SDS [g/v]


Coomassie Brilliant

Blue solution:	45 % methanol [v/v]		
	7 % acetic acid [v/v]		
	0.1% Coomassie Brilliant Blue R250® [g/v] (Sigma-Aldrich, St.		
	Louise, USA)		
Destaining solution:	5 % methanol [v/v]		
	7 % acetic acid [v/v]		

2.6.3 Western-Blot

2.6.3.1 Transfer of proteins

Proteins were transferred from the polyacrylamide gels onto nitrocellulose membranes (Millipore Corporation, Bedford, USA) using a tank blotting system ("Mini Trans-Blot Cell", Bio-Rad Laboratories, Hercules, USA). Therefore, membranes were washed with ethanol and equilibrated for 15 min in blotting buffer with filter paper and pads. The setup is shown in Fig.2.2. The transfer was carried out by constant voltage of 100 V for 3 h.

Fig.2.2: Western-Blot setup. 1: cathode; 2: pads; 3: filter paper; 4: nitrocellulose membrane; 5: SDS-Gel; 6: anode.

Blot-buffer: 25 mM Tris

192 mM glycine20 % methanol [v/v]

2.6.3.2 Protein detection

To block unspecific binding of the antibody, the nitrocellulose membrane was incubated with the protein-side facing up for 30 min at room temperature in blocking solution.

A specific monoclonal anti-polyhistidine antibody from mouse (Sigma-Aldrich, St. Louis, USA) was used as primary antibody in a dilution 1:6000 in blocking solution. The membrane was incubated over night with constant shaking and then rinsed 3 times 5 min each in TBST-buffer. The secondary antibody anti-mouse IgG from goat which is conjugated to alkaline phosphatase (Sigma-Aldrich, St. Louis, USA) was added to the membrane with a working dilution of 1:30000. After an incubation of 1 h, the membrane was washed 3 times for 5 min in TBST-buffer. The colored precipitate was obtained by adding NBT/BCIP solution ("BCIP/NBT Liquid Substrate System", Sigma-Aldrich, St. Louis, USA). This reaction, where the alkaline phosphatase converts the NBT/BCIP solution into a blue pigment, was carried out in darkness and was stopped by adding H₂O.

Blocking solution: 2 % BSA [g/v] in TBST-Puffer

 TBST-Puffer:
 10 mM Tris-HCl pH8.0

 150 mM NaCl

 0.05 % Tween 20 [v/v]

2.6.4 Band shift assays (EMSA)

EMSA was performed using the Gel Shift Assay System from Promega (Madison, USA) according to the manufacturer's instruction. Ten mCi ml⁻¹ [γ^{32} -P] ATP was attached to 1.75 pmol μ l⁻¹ of the truncated promoter fragments during incubation with the T4 Polynucleotide Kinase 10x buffer and T4 polynucleotide kinase for 10 min at 37°C. The specific concentration of the oligonucleotide-fragments was calculated after this formula:

$$c(pmol) = \frac{c(\frac{ng}{ml}) * 10^6}{MW}$$

$$MW \text{ of } dsDNA = (length in nt * 667.4) + 157.9$$

c(pmol)	= concentration of the oligofragment in pmol
c(ng/ml)	= concentration of the oligofragment in mg/ml
MW	= molecular weight of the oligofragment

The reaction was stopped by adding 1 μ l of 0.5 M EDTA. To remove unincorporated label from the oligonucleotide, 89 μ l of TE buffer was added to the sample and purified using a G-25 spin column (GE Healthcare, Buckinghamshire, UK) according to the manufacturer's instructions. One μ l of the purified oligofragments was measured using a scintillation counter. A binding reaction was set up using 250 ng of the purified transcription factor (2.7.1) and 2 μ l Gel Shift Binding 5x buffer. After 10 min incubation at room temperature, 2 μ l of the labeled promoter fragment were added and incubated again for 20 min at room temperature. One μ l gel loading buffer was added to the negative control only because this buffer might inhibit the *in vitro* binding ability between DNA and proteins. Before loading 10 μ l of each probe, the 3.8 % 0.5x TBE nondenaturating polyacrylamide gel was pre-run for 10 min at 250 V. The gel was run at 200 V for 20 min, removed from the cassette, placed on a filter paper, sealed in a plastic film and exposed to a phosphor sensitive screen for 90 min. Pictures were developed using a phosphor imager. Unlabeled promoter fragments were used as specific competitor and SP1 consensus oligo, provided from the kit, as unspecific competitor.

TE buffer:	10 mM Tris-HCl pH8.0	
	1 mM EDTA	
10x TBE buffer:	0.9 M Tris base	
	0.9 M boric acid	
	0.02 M disodium EDTA·2H ₂ O	
	pH8.3	
3.8 % gel:	1x TBE buffer	
	3.8 % acrylamide/bisacrylamide (19:1)	
	3 % glycerin	
	0.005 % TEMED [g/v]	
	0.075 % APS [v/v]	

2.7 Protein techniques

2.7.1 Heterologous expression of transcription factors in *E. coli* and purification of recombinant protein

The open reading frames (ORFs) of the identified transcription factors were cloned into the bacterial expression vector pHIS8-3 with an N-terminal His-tag (Tab.2.5) and expressed in E. coli BL21 (DE3). 400 ml LB-medium were inoculated with a 3 ml overnight culture of E. *coli* containing the expression constructs and incubated at 37° C with constant shaking to an OD_{600} of 0.7. The vector-mediated expression was induced by adding IPTG to a final concentration of 2 mM to the medium. Cultures were shaken for 3 h at 37°C and harvested by centrifugation (20 min at 5000 g, 4°C). The pellet was resuspended in 10 ml chilled lysis buffer and disrupted by a 5 x 30 s treatment with a sonicator (Branson sonifier 250, Schwäbisch Gmünd). 15 mg lysozyme (Appli Chem, Darmstadt) was added and incubated for 1 h at 4°C. The *E. coli* cell fragments were removed by centrifugation at 14000 g for 20 min, 4°C, 1 ml Ni-NTA-Agarose (50 %, Qiagen, Hilden) was added to the supernatant and shaken for 2 h at 4°C. The supernatant was added to an equilibrated column (Poly-Prep® Chromatography column, BioRad (Munich) and washed twice with 3 ml washing buffer. His-tagged proteins bound to the Ni-NTA-matrix were eluted with 3 ml elution buffer. One ml fractions were collected. The protein-containing elution fractions were combined after the protein quantification (2.7.2) and used as probes in the band shift assays (2.6.4).

LB-culture:	25 g LB -medium (AppliChem, Darmstadt) in 1 l a.dest.	
Lysis buffer in PBS:	: 500 mM NaCl	
	2.7 mM KCl	
	1.7 mM KH ₂ PO ₄	
	$10.1 \text{ mM Na}_2\text{HPO}_4$	
	20 mM imidazol	
	1 % Tween 20	
	10 % glycerol	
	10 mM β-mercaptoethanol	

Washing buffer	
in PBS:	500 mM NaCl
	2.7 mM KCl
	1.7 mM KH ₂ PO ₄
	10.1 mM Na ₂ HPO ₄
	20 mM imidazol
	10 % glycerol
	10 mM β-mercaptoethanol
Elution buffer in PBS	5:500 mM NaCl
	2.7 mM KCl
	1.7 mM KH ₂ PO ₄
	10.1 mM Na ₂ HPO ₄
	250 mM imidazol
	10 % glycerol
	10 mM β-mercaptoethanol
PBS-buffer:	137 mM NaCl
	2.7 mM KCl
	7 mM Na2HPO4 2 H2O
	1.5 mM KH2PO4
	pH7.4 with HCl

2.7.2 Protein quantification

Purified protein was quantified according to Bradford (1976). Protein samples were diluted 1:20 and added with 200 μ l 1.8x Roti®-Quant (Roth, Karlsruhe) to 250 μ l and incubated for 5 min at room temperature. OD was measured at 590 nm (NanoQuant, Tecan, Crailsheim) and compared with the standard curve prepared with 0, 20, 30, 40, 50, 60, 80 and 100 μ g ml⁻¹ bovine serum albumin (Sigma-Aldrich, St. Louis, USA), respectively.

2.8 Chromatographic analysis

2.8.1 Volatile collection

For the analysis of volatile terpenes, plant material was frozen in liquid nitrogen and ground into a fine powder using a mortar and pistil. 200 mg of the ground material was transferred to a glass vial with a septum in the lid. A 100 μ m PDMS SPME fiber was inserted through the

septum and incubated for 30 min at 40°C. The volatile spectrum was analyzed by gas chromatography-mass spectrometry.

2.8.2 Gas chromatography – mass spectrometry (GC-MS)

GC-MS was performed on a Shimatsu GC-MS2010Plus gas chromatograph (Duisburg, Germany) with H₂ as carrier gas at 1 ml min⁻¹. The injection temperature was set to 220°C and samples were added directly using a SPME fiber without split. The temperature on the column was raised from 60°C (constant for 3 min) to 200°C with a rate of 7°C per minute and then finally raised to 300°C with a rate of 100°C per minute. The mass spectrometer was run with the following settings: interface temperature: 250°C, ion source temperature: 200°C, ionization potential: 70 V, and a scan range of 46-350 amu. An EC-5 column (length: 30.0 m, diameter: 0.25 mm and film thickness: 0.25 μ m (Grace, Deerfield, USA)) was used as chromatographic column.

The data were analyzed with Shimatsu Labsolution software and the mass spectrum libraries "Wiley8" (Hewlett-Packard) and "Shim2205" (Shimatsu).

2.8.3 Identification of plant hormones

Approximately 200 mg of leaf material was used for hormone extraction and mixed with 1 ml ethyl acetate spiked with 40 ng ml⁻¹ labeled phytohormones, D₆-abscisic acid (ABA), D₄-salicylic acid (SA), jasmonic acid-¹³C₆ isoleucin (JA-IIe) and 200 ng ml⁻¹ D₂-jasmonic acid (JA), respectively. The mixture was vortexed for 10 min and then centrifuged at 4°C for 20 min at 16000 g. Extraction was repeated with 500 µl ethyl acetate without internal standard and supernatants were combined and dried in the speedvac at 30°C. The pellet was dissolved in 500 µl 70 % methanol and centrifuged at 16000 g to remove precipitates. Ten µl supernatant was used for the analysis on the Varian 1200L Triple-Quadrupol-MS (Palo Alto, USA). Hormones were separated on a ProntoSil C18-ace-EPS column (50x2 mm, 5 µm, 120 Å) with 0.05 % formic acid and methanol as solvent solutions with a flow rate of 0.4 ml/min in a gradient mode. The compounds were detected in the ESI negative mode. Molecular ions (M-H) with *m*/z 137, 209, 263 and 322 for SA, JA, ABA and JA-IIe and 141, 213, 269 and 328 for the respective internal standards were fragmented. Daughter ions 93, 59, 153 and 130 for the compounds and 97, 59, 159 and 136 for the internal standards were recorded for

quantification. Collision energy was 15 V for SA, 12 V for JA, 9 V for ABA and 19 V for JA-Ile. Needle, shield and detector were set at 4500 V, 600 V and 1800 V, respectively.

2.9 Histochemical methods

2.9.1 GUS staining

GUS staining was used to analyze the activity of promoter fragments of *tps10* and *tps23*. The ß-glucuronidase gene was fused to the promoter fragments using the Gateway cloning system (2.5.15) into an expression vector. The promoter containing plasmid was stable transformed into *Arabidopsis thaliana* using Agrobacterium (2.4.4).

The GUS enzyme converts its substrate, X-Gluc (5-bromo-4-chloro-3-indolyl-beta-D-glucononic acid, cyclohexylammonium salt), into glucuronic acid and the colorless 5-bromo-4-chloro-indoxyl intermediate which spontaneously undergoes an oxidative dimerization to from the insoluble and highly colored indigo dye (5,5'-dibromo-4,4'-dicholor-indigo).

Arabidopsis material was harvested after different induction treatments (2.3) and transferred to glass tubes containing sufficient GUS-staining solution to cover the whole leaf. Vacuum was applied to the vials to ensure complete exposure of the plant cells to the X-Gluc substrate. Leaves were incubated in this solution at 37°C over night.

To remove the chorophyll from the plant material, the leaves were transferred to 80 % ethanol for several hours at 37°C until all chlorophyll was extracted. Leaves were than washed and scanned.

GUS-staining solution:	50 mM sodium dihydrogene phosphate (pH7.0)
	10 mM EDTA
	0.1 % Triton [v/v]
	0.1 % N-lauryl-sarcosine [g/v]
	0.7 μg ml ⁻¹ β-mercaptoethanol
	1 mg ml ⁻¹ X-Gluc (added freshly)

2.9.2 Quantitative GUS assay

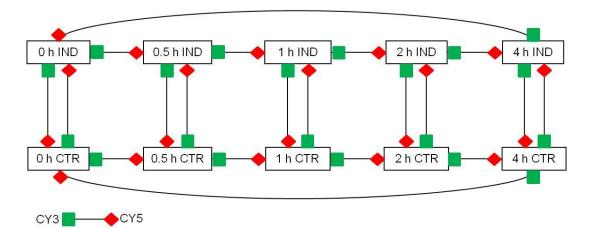
The β -glucuronidase activity was measured quantitatively using 4-methylumbelliferyl-beta-D-glucuronide (MUG) as its substrate (Kay *et al.* 2007). MUG is converted by the β glucuronidase to 4-methylumbelliferone (4-MU) which has an excitation wavelength at 365 nm and an emission wavelength at 345 nm and can therefore be used in fluorescence measurements.

20 mg of frozen plant material was ground in liquid nitrogen, placed in 300 μ l GUSextraction buffer, and redissolved. After centrifugation for 5 min at 20000 g at 4°C, 200 μ l of the supernatant was transferred to a 96-well plate and centrifuged again for 10 min at 1610 g and 4°C. 100 μ l of the supernatant were kept for a Bradford assay (2.7.2). Another 20 μ l were transferred to a new 96-well plate and 180 μ l 5 mM MUG (dissolved in fresh GUSextraction buffer) was added and incubated in the dark for 90 min at 37°C. 20 μ l of this reaction was transferred to a black 96-well PCR plate (Greiner, Frickenhausen, Germany) and stopped by adding 180 μ l 0.2 M sodium carbonate. The fluorometric endpoint measurement was conducted using the infinite 200 Pro (Tecan, Crailsheim, Germany).

For each measurement, a standard curve with 4-MU with the concentrations of: 0.1 μ M; 1 μ M; 10 μ M and 100 μ M was prepared. GUS activity was calculated in pmol MU μ g protein⁻¹ min⁻¹ according to the formula below (Boch *et al.* 2009).

A	$SUS\left[\frac{pmol\ MU}{\mu g\ protein*\ min}\right] = -$	F* dF* 2000 pmol MU	
A_{GUS}		90 min* protein $[\mu g]$ * $F_{2000 pmol MU}$	

A _{GUS}	GUS activity	
F	fluorescence of sample	
dF	dilution factor of sample	
$F_{2000 \; pmol \; MU}$	fluorescence of standard	
GUS extraction buffer:	50 mM sodium dihydrogene phosphate (pH7.0)	
	10 mM EDTA	
	0.1 % SDS [g/v]	
	0.1 % Triton [v/v]	
	10 mM MUG (added freshly)	


2.10 Statistical analyses

To calculate the statistical relevance of the given data, the appropriate statistical methods were used dependent on the experimental setup. In most cases, a two way ANOVA was performed and Post-Hoc tests were conducted with the Holm-Sidak method to calculate pairwise comparisons. Normal distribution of the data and equality of variances was verified. In case of no normality, data were transformed if possible or analyzed by an ANOVA based on ranks. Significant differences of the data are indicated for p<0.05. The respective method for each experiment is provided in the text.

3. Results

3.1 Identification of genes regulated by herbivore treatment

Maize plants produce a complex mixture of terpene volatiles upon herbivory (Turlings *et al.* 1990; De Moraes *et al.* 1998), but the regulatory mechanisms and signaling cascade leading to the production of volatile terpenes is mainly unknown. In this work, the identification of essential signaling compounds involved in defense responses in *Zea mays* was one main focus.

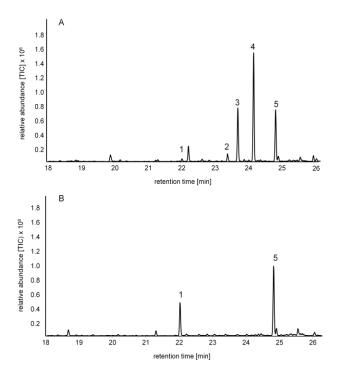


Fig.3.1: Experimental setup for the microarray hybridization experiment used in this work. Maize plants were left unharmed (CTR) or treated for 30 min with larvae of *S. littoralis* (IND). Leaves were harvested after 0.5 h, 1 h, 2 h, and 4 h. Additionally, a 0 h time point was included. Four biological replicates were included for each measurement. RNA was obtained from all plants and for all time points and labeled with the fluorescent dyes CY3 and CY5 according to the setup. Each line represents one microarray hybridization experiment using two RNA probes. Thereby, one probe was labeled with CY3 and one with CY5. Dye swaps were performed to guarantee minimal effects of different dye incorporations.

To detect genes regulated by herbivore feeding, we conducted a microarray hybridization experiment with a 46k oligo microarray from the University of Arizona. This microarray was printed by the Maize Oligonucleotide Project Team (<u>http://www.maizearray.org/</u>) on a glass slide and contains 46128 70mer oligos based on cDNA and EST sequence information from *Zea mays* var. B73. Therefore, the chip represents a large fraction of the transcriptome of the maize line B73. The experimental design chosen, described as "loop-design", included 4

biological replicates and dye swaps for each sample (Fig.3.1). Dye swaps minimize the effect of different incorporations of fluorescent molecules into RNA, whereas the loop design provides a higher statistical power than a simple reference design (Churchill 2002).

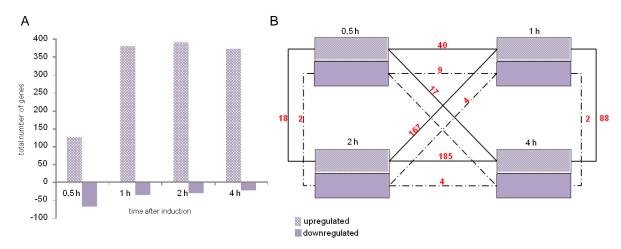

To induce Zea mays var. Delprim, two second instar larvae of *S. littoralis* were placed on the lower part of maize leaves for 30 min. Both the herbivore-damaged and the undamaged plants were harvested after 0 h, 0.5 h, 1 h, 2 h, and 4 h to determine the transcriptional changes. The undamaged plants were harvested at each time point to account for circadian changes and other factors that might affect plant gene expression throughout the 4 h experiment. A reliable test for the successful herbivore induction of the plant material is the expression of the terpene synthases TPS10 and TPS23, since those enzymes produce the main volatiles released after herbivore attack in maize (Köllner *et al.* 2004). To check for efficient herbivore induction in damaged plants, terpene production was determined by GC-MS in induced leaf material at 4 h after induction (Fig.3.2).

Fig.3.2: Gas chromatographic analysis of herbivore-damaged and undamaged maize leaves. (A) Maize leaves were induced by herbivore feeding for 30 min and material was harvested after 4 h or (B) undamaged material harvested after 4 h. Plant material was ground into a fine powder and 200 mg were incubated for 30 min with a SPME fiber. Peaks were identified as 1: unknown, 2: (*E*)- β -caryophyllene, 3: (*E*)- α -bergamotene, 4: (*E*)- β -farnesene and 5: β -Ionone, respectively.

The sesquiterpenes (*E*)- β -caryophyllene, (*E*)- α -bergamotene and (*E*)- β -farnesene were emitted after the herbivore induction period while no sesquiterpenes were visible in the control plants. This result confirmed the induction of the maize plants was appropriate for microarray analysis.

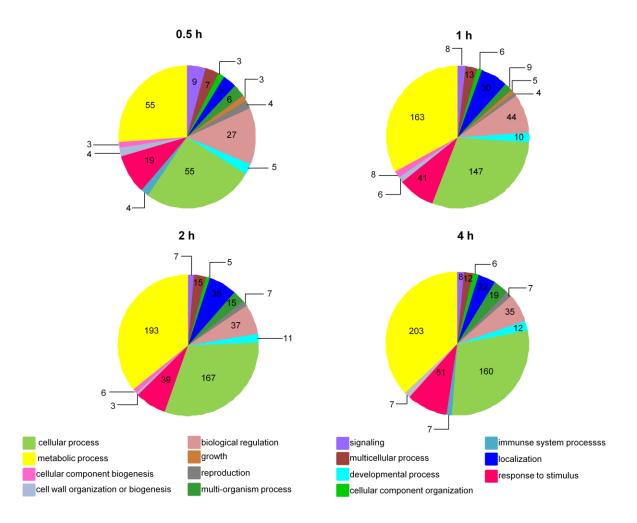

To evaluate the up- and down-regulated genes, the raw data from the microarray were analyzed using the statistical program R as described in section 2.5.16. Only genes with a relative induction higher than 2-fold were chosen for further analysis. Induced oligo fragments were run through different databases to find a putative gene function. A list of all genes differentially regulated after herbivory can be found in the appendix (7.6). To generate a simple overview of the molecular function and cell processes the affected genes were involved in, the program Blast2GO (Conesa *et al.* 2005) was used.

Fig.3.3: Overview of all differential regulated genes by herbivory. Plants were treated with *S. littoralis* for 30 min and harvested at 0.5 h, 1 h, 2h, and 4 h. A: The total number of genes that showed a differential fold of ≥ 2 are displayed. B: The number of genes that shared a same regulation pattern is displayed.

An overview of all positive- and negative-regulated genes found after herbivore treatment is shown in Fig.3.3. Half an hour after the caterpillar treatment, 125 transcripts displayed increased expression within the leaves while 68 genes showed a reduced expression. After one hour, the number of up-regulated genes increased to 381 and did not drop dramatically at 2 h and 4 h. Overall, the majority of differentially regulated genes showed an increased expression level. Only 12% of the genes displayed a decreased expression. For better

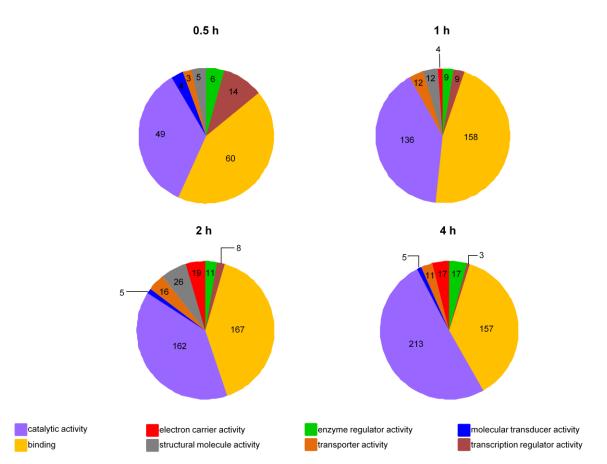

visualization, identified genes were displayed regarding their biological process (Fig.3.4). The functional annotation of the sequences was given by Gene Ontology.

Fig.3.4: Classification of herbivore-regulated genes in regard to the biological processes of the plant. Genes regulated by herbivory and identified with the Long Oligo Microarray, were mapped and associated with their biological role within the plant using Blast2Go (sequence filter = 2; level = 2). Plants were treated with *S. littoralis* for 30 min and harvested at 0.5 h, 1 h, 2 h, and 4 h. The numbers indicate the number of associated sequences.

At the four time points, the majority of the identified genes belonged to the group of "metabolic and cellular processes". The genes belonging to the group "response to stimulus" increased over the 4 h period from 19 to 51 sequences, while genes with a function in plant growth were completely missing after 1 h.

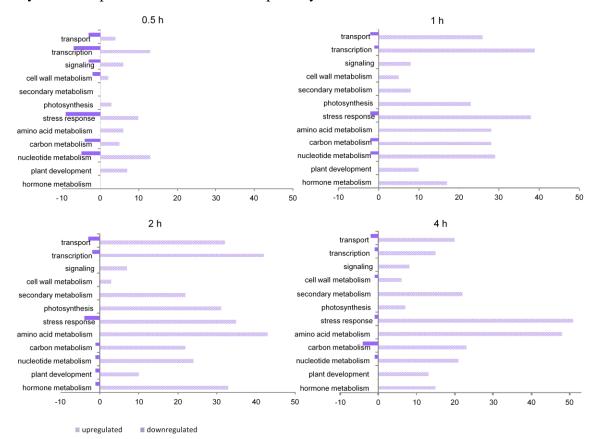

Next to the biological function, the identified transcripts were compared regarding their molecular function. Within this analysis, the sequences could be grouped into: binding activity, enzyme regulator activity, transporter activity, transcription regulator activity, etc. Fig.3.5 shows an overview of the genes which were differentially regulated within the microarray hybridization experiment. The graphs were obtained from Blast2Go with a sequence filter setting of 2, level 2. At the four time points, genes belonging to the group of "catalytic activity" and "binding" took up the major portion. It is noteworthy that genes can belong to more than one functional group, depending on the Gene Ontology numbers provided by Blast2Go. The figure shows that genes having a binding function were doubled from 0.5 h to one hour after herbivore attack. Genes mapped to "transcription regulator activity" showed the highest amount after 0.5 h after the treatment and were then limited to 3 genes. This suggests that the plant was able to respond very quickly to the herbivore damage by activating a specific set of transcription factors.

Fig.3.5: Classification of herbivore-regulated genes in regard to the molecular function of the plant. Plant material was harvested at 0.5 h, 1 h, 2 h, and 4 h after a 30 min treatment with *S. littoralis.* Transcripts with concentration differences (>2 fold) were detected after herbivory and assembled into molecular functional groups. Figures were obtained from Blast2GO (Sequence filter = 2, level = 2). The numbers indicate the number of associated sequences.

To analyze the functional distribution of the herbivore-induced genes more specifically, several biological processes were investigated for positive and negative-regulated genes. The functional classifications chosen were transport, transcription, signaling, cell wall metabolism, secondary metabolism, photosynthesis, stress response, amino acid metabolism, carbon metabolism, nucleotide metabolism, plant development, and hormone metabolism (Fig.3.6). While the total numbers of herbivore-regulated genes increased strongly between the 0.5 h and 1 h time points, the highest number of negatively regulated genes were present at 0.5 h. Nine transcripts with a putative function in stress response were negatively regulated and ten transcripts were up-regulated. Among the genes with putative functions in gene

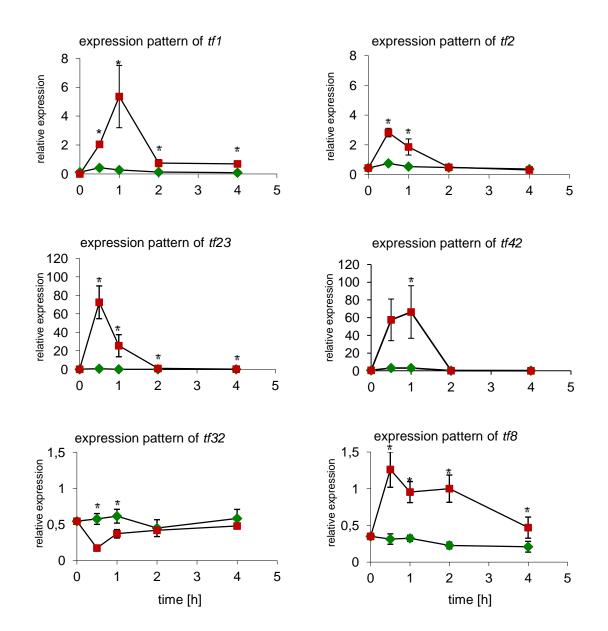
transcription, seven transcripts were down-regulated and 13 were up-regulated. One hour after herbivore induction, the total number of genes induced by herbivory increased dramatically, while only few genes were still reduced. 39 genes functioning as regulatory factors showed an increased transcript accumulation, also 17 genes of hormone metabolism were differentially expressed. Genes of this group were not involved 0.5 h after induction. There are only few changes between 1 h and 2 h after herbivore induction, mainly the number of transcripts involved in the amino acid metabolism rose. This could be explained with the need of amino acids for the translation of proteins necessary for defense. The main difference between 2 and 4 h after the herbivore treatment was the suppression of genes having a role in transcriptional activity and the negative-regulation of transcripts playing a role in the photosynthesis of the plant. While a plant is attacked by an herbivore, resources may rather be put into defense than into photosynthesis.

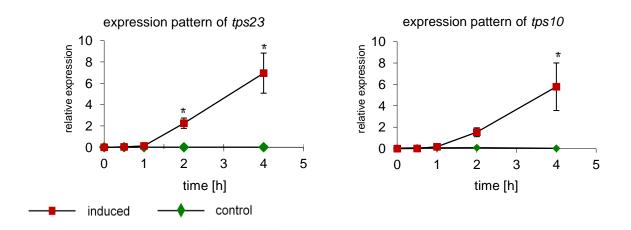
Fig.3.6: Functional classification of genes with herbivore-regulated transcript levels. Plants were treated with *S. littoralis* for 30 min and harvested at 0.5 h, 1 h, 2 h, and 4 h. Total numbers of genes with enhanced and repressed transcript accumulation were distributed into functional groups.

Transcription factors affected by herbivore treatment were the main focus of this study, assuming that those play a critical role in the induction of plant defense. Transcription factors are small proteins which regulate the gene expression through binding of the promoter of specific target genes, either by itself or in co-operation with other regulatory proteins. The Long Oligonucleotide chip was based on the ESTs of the maize inbred line B73 for which the genome sequence is available in genomic databases like TIGR, PlantGDB, NCBI and Maizesequence. Oligofragments of putative transcription factors on the microarray chip were aligned to the genomic sequence in the databases to obtain the full length sequences. Unfortunately, this method was not successful for all putative transcription factors. Thus, RACE PCR had to be performed where the information from those databases could not solve the genomic sequence of the transcription factors of interest. Table 3.1 gives an overview of annotated transcription factors identified by the Long Oligonucleotide Microarray, their accession number and their putative genomic annotation.

Synonyms	Accession number	Annotation
TF1	MZ00026661 / TC280937	putative NAC-domain protein
TF2	MZ00031423 / TC314449	CAF1 like protein
TF3	MZ00044429 / TC326357	MYB-like DNA binding
TF4	MZ00006968 / TC297179	Zn-finger protein
TF5	MZ00014652 / TC284178	CHY Zn-finger protein
TF6	MZ00017631 / TC298582	putative transcription factor
TF7	MZ00018761/ AZM5_85107	MYB-like DNA binding protein
TF8	MZ00017826/ AZM5_89531	bHLH-like protein
TF12	MZ00056923/ AZM5_18508	MYB-like protein
TF15	MZ00031032/ AZM5_10006	putative PRLI-interacting factor
TF18	MZ00029591/ AZM5_14769	DNA binding protein
TF19	MZ00024627/AZM5_32315	ETTIN-like auxin response factor
TF20	MZ00024626/ AZM5_31563	ETTIN-like auxin response factor
TF21	MZ00049092 /AZM5_95253	G-Box binding protein
TF22	MZ00035947/ AZM5_27326	NAC-domain protein
TF23	MZ00005265/ AZM5_98744	helix-loop-helix DNA-binding
		protein

Tab.3.1: Putative transcription factors (TF) and their annotation.


TF24	MZ00003819/ AZM5_142343	ethylene responsive transcriptional
		coactivator
TF25	MZ00035924/ AZM5_43253_1	response regulator Cip1
TF26	MZ00042739/ AZM5_152884,	WRKY transcription factor
	AZM5_108687	
TF27	MZ00017310/ AZM5_31855,	Zn-finger protein
	AZM5_24906	
TF28	MZ00048444/ AZM5_15878	MYB factor protein
TF29	MZ00041804/ AZM5_5103	ZN-finger protein
TF30	MZ00026596/ AZM5_13093	ethylene responsive element
		binding factor3
TF31	MZ00025601/ AZM5_10813	putative leucine zipper protein
TF32	MZ00025832/ AZM5_7677	bHLH transcription factor
TF33	MZ00025058/ AZM5_85092	transcription factor like protein
TF34	MZ00020619/ AZM5_6856	transcription factor WRKY12
TF35	MZ00023008/ AZM5_416	putative I-box binding factor
TF36	MZ00028957/ AZM5_14321	calmodulin-binding protein-like
TF37	MZ00041802/ AZM5_5103	Zn-finger protein
TF38	MZ00018541/ AZM5_87053	Putative EREBP-like protein
TF39	MZ00032877/ AZM5_50726	putative phi-1
TF40	MZ00015673/ AZM5_90421	DRE binding factor 1
TF41	MZ00001133/ AZM5_93171	putative LHY-protein
TF42	MZ00056523/ AZM5_37193	putative phi-1
TF43	MZ00029551/ AZM5_16115	Zn-finger protein 1
TF44	MZ00004193/ AZM5_107126	putative bZIP protein HY5
TF45	MZ00014137/ AZM5_98313	transcription factor-like
TF46	MZ00056566/ AZM5_16172	Zn-finger transcription factor ZF1
TF47	MZ00035095/ AZM5_18076	putative nucleoid DNA-binding
		protein cnd41
TF48	MZ00037615/TC329977	putative NLI interacting factor
TF49	MZ00016101/TC295701	putative RAB7A protein
TF50	MZ00000664/TC308252	RING finger-like protein
TF51	MZ00036019/TC280937	putative NAC-domain protein


3.2 The induction of transcription factors depends on environmental cues

3.2.1 The transcript patterns of transcription factors respond to herbivore feeding

To confirm the expression patterns of the identified transcription factors and investigate their spatial distribution, primers for the chosen transcription factors were designed from the oligonucleotide fragments given by the microarray and the genome databases. Results from the microarray experiment were verified with QRT-PCR using plant material that was also harvested at 0 h, 0.5 h, 1 h, 2 h, and 4 h after herbivore damage. Verification of this data was important due to the low threshold of 2 used for statistical analysis. This low threshold was necessary to identify a large fraction of the transcription factors involved in plant defenses. Compared to enzymes, transcription factors are usually present in a low amount to regulate gene expression and therefore do not rise that strongly. On the other hand, the chance of false positives rises. Only for 18 of the selected transcription factors, the microarray results could be affirmed. To test for successful induction of the plant material, five additional herbivore-regulated genes, the terpene synthases tps10 and tps23, and the O-methyl transferases: omt1, omt3 and omt4 were analyzed with QRT-PCR.

Transcription factors of several classes were affected by herbivore feeding in the leaf: MYBlike binding proteins, WRKY binding proteins, I-Box binding proteins, G-Box binding proteins, zinc-finger protein, bHLH binding proteins and bZIP binding proteins. Most of the herbivore-induced transcription factors exhibited a transient increase in transcript levels. The kinetics of this increase differed between the factors and was used to classify them into early and late responding factors. The transcript accumulation profiles of six transcription factors and two terpene synthases are shown in Fig.3.7. Transcription factors tf1, tf2, tf8 and tf23showed a significant expression maximum already after half an hour of induction, indicating a fast response after herbivory. Tf42 also had a highly induced expression at 30 min after induction but reached its maximum at 1 h after the onset of treatment. In contrast, tf32demonstrated a negative regulation pattern. In this case, the expression level between control plants and induced plants showed a significant down-regulation of gene expression for the time points half an hour and 1 h after treatment. Overall, transcription factors were induced from half an hour to two hours after the treatment, while the expression of the terpene synthases started at around 2 h after herbivore feeding and then slowly increased. This correlated with the volatile measurement which was detected at 4 h after herbivore treatment (Fig.3.2). The results for all further investigated transcription factors are in the appendix (7.1).

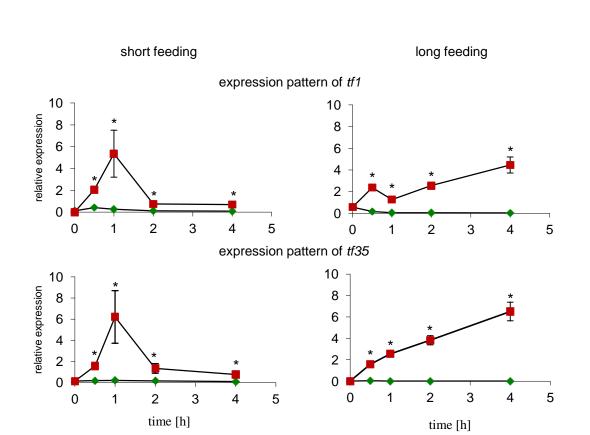


Fig.3.7: Relative expression pattern of selected transcription factors and terpene synthases. Plants were treated with *S. littoralis* caged for 30 min on a single leaf. Material was harvested after: 0 h, 0.5 h, 1 h, 2 h, and 4 h. Means and standard error are shown (n=4). The relative expression levels were calculated as described in 2.4.9. Two-Way ANOVA was used to calculate statistical differences with time as factor one and treatment as second variable. * indicate significant differences between treatments within time points (p<0.05).

3.2.2 Transcript accumulation is affected by the duration of caterpillar feeding

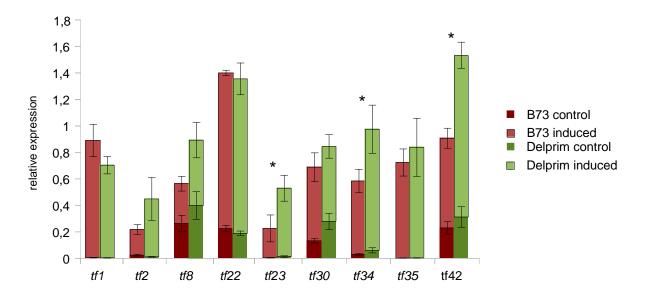
After testing the induction kinetics of transcription factors in response to an herbivore attack of 0.5 h, we investigated the effect of different durations of herbivore feeding. In the following experiments, the caterpillar larvae were caged on a single leaf and were allowed to feed until the plant material was harvested. To obtain a good feeding performance, caterpillar larvae were not able to feed the night before. Leaf material was harvested after 0 h, 0.5 h, 1 h, 2 h, and 4 h and ground in liquid nitrogen. cDNA was obtained and used to test the expression level of several transcription factors by QRT-PCR. The relative expression was calculated against the expression of the housekeeping genes.

The transcript levels of the transcription factors tf1 and tf35 in response to different lengths of feeding time are shown in Fig.3.8. The expression kinetics of further factors can be found in the appendix (7.2). While the expression level for tf1 increased to its maximum at 1 h after a feeding time of 30 min, the expression pattern with the continuous feeding showed significant differences. Here, transcript accumulated within 0.5 h, but then dropped and

increased again for the remaining time points. The same pattern could be observed for the transcription factor *tf35*.

Fig.3.8: Relative expression pattern of *tf1* and *tf35* after short and long term feeding. Delprim maize leaves were treated either for half an hour with the caterpillar larvae *S. littoralis* (short feeding) or continuous feeding until plant material was harvested (long feeding). The expression patterns are shown over a 4 h interval. Induced expression pattern is marked with a red square, control points with a green diamond. Expression was calculated against the housekeeping genes. Standard error (n=4 for short term feeding, n=3 for long term feeding) is shown for each measurement. Two-Way ANOVA was used to test significant differences with p<0.05 defined as significant for the treatment within the time points (*).

control

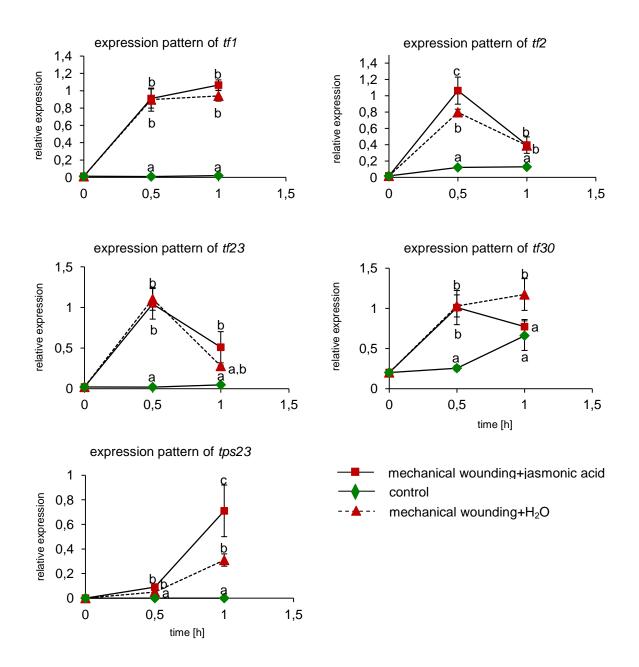

induced

3.2.3 The transcript patterns of transcription factors are similar in Delprim and B73 despite differences in volatile production

While most European maize lines have the ability to produce (E)- β -caryophyllene after root damage, most American maize lines have lost the ability to do so (Köllner *et al.* 2008).

In our study, we used the maize variety Delprim as an example for an European, (E)- β caryophyllene-producing maize line and B73 as an American, non-producing maize line. Both maize lines are able to produce the sesquiterpenes (E)- β -farnesene and (E)- α bergamotene which are formed by the sesquiterpene synthase TPS10 (Bohlmann *et al.* 1998; Schnee *et al.* 2006). (E)- β -caryophyllene is produced by the terpene synthase TPS23 (Köllner et al., 2008). Although the maize line B73 contains a functional *tps23* structural gene, the gene is not transcribed in B73. This suggests that some components in the signaling cascade for the expression of *tps23* are missing in B73.

To study the molecular base of *tps23* regulation, the transcript accumulation of nine of the herbivore-induced transcription factors was tested in both maize lines using QRT-PCR. The plants were induced using 3rd instar larvae. The results are shown in Fig.3.9 with the stacked columns of the control and the induced expression levels for each plant cultivar.


Fig.3.9: Relative expression levels of transcription factors after herbivore damage in the maize varieties B73 and Delprim. Four biological replicates were used for each control and induced sample. Plants were treated in the afternoon with the caterpillar larvae and harvested the next morning. The relative expression level was calculated against the two housekeeping genes as described in 2.5.9. Means and standard error bars are shown. Two-Way ANOVA was used to calculate statistical significance between B73 and Delprim. P-values <0.05 are highlighted with (*).

The transcript levels of the transcription factors were always induced after herbivory. Only transcription factors tf23, tf34, and tf42 showed a significant difference between the two maize cultivars, but were still expressed in the B73 cultivar after herbivory. Therefore, none of the factors seems to be directly associated with the loss of the (*E*)- β -caryophyllene signal in B73.

3.2.4 The application of jasmonic acid causes transcriptional changes

JA is one of the major plant hormones formed in response to many abiotic and biotic stresses (Turner *et al.* 2002). To test whether the herbivore-regulated transcription factors are located upstream or downstream of JA in the signal transduction cascade, we measured the effect of JA on those transcription factors. Plants were induced with jasmonic acid by cutting young maize plants and transferring them into glass vials containing either water or a 250 μ mol jasmonic acid solution. Since cutting of maize plants also induces low levels of JA formation (Engelberth *et al.* 2004), a second control group with undamaged plants was added. In these experiments, transcript levels were only studied after 0.5 h and 1 h induction. This is the time window in which JA is known to influence the signaling cascade (Mandaokar *et al.* 2006) that leads to the production of volatile terpenes.

Plant material was harvested and QRT analysis was performed. In addition to the transcription factors, the expression profile of tps23 was measured to determine the effect on the TPS target gene as well. The JA-induced expression profile of four transcription factors (tf1, tf2, tf23, and tf30) and tps23 are shown in Fig.3.10. The relative expression was calculated against the housekeeping gene HG2 (Phillips *et al.* 2009). After jasmonic acid treatment, cDNA accumulation of the four transcription factors as well as tps23 was found. Surprisingly, the transcript levels were similarly induced in mechanically treated plants where only water was added to the wounding site. This indicates that the cutting the maize plant already results in activation of JA-mediated plant defenses. The presence of jasmonic acid in the aqueous solution did not seem to have a strong impact on the expression kinetics of these transcription factors.

Fig.3.10: Expression profile of transcription factors *tf1*, *tf2*, *tf23*, *tf30*, and *tps23* after induction with jasmonic acid. Plants were cut and put into water or water containing jasmonic acid, to analyze early transcriptional changes of transcriptions factors during the first hour by QRT-PCR. The relative expression was calculated as the expression of the housekeeping gene HG2. Means and standard errors are shown (n=3). Two-Way ANOVA was performed with time as the first variable and treatment as second factor. Different letters indicate significant differences between treatments within time points (p<0.05).

In all cases, the transcript levels rose significantly after half an hour of induction. No increase was detected in the undamaged control plants. While *tf1* transcript levels did not change between 0.5 h and 1 h, transcript levels of tf2 and tf23 decreased somewhat after 1 h. For tf23, the treatment with jasmonic acid displayed a tendency to retain a higher expression level when compared to the mechanically wounded plants. In the case of tf30 however, the cutting of the leaf alone seemed to have a higher impact on the expression level than JA treatment. After one hour, the relative expression of *tf30* decreased only when plants were treated with jasmonic acid. The behavior of all transcription factors was very specific upon mechanical wounding and only few transcription factors responded to the additional JA treatment (see appendix 7.3). The transcript levels of terpene synthase tps23 responded much more slowly to the induction treatment than the transcription factors. Still, a significant amount of transcript was already visible after half an hour of induction and increased after one hour of induction. Only the expression level of tps23 increased significantly in response to JA. Still, a conclusion cannot be drawn whether the identified transcription factors responded to internal or externally applied JA. To elucidate the specific function of transcription factors, further experiments have to be conducted.

3.3 Plant responses to mechanical damage – The Mecworm

The induction experiments with jasmonic acid (3.2.4) indicated the importance of leaf mechanical damage in the regulation of gene expression in maize. In lima bean, mechanical damage alone was shown to induce volatile production (Mithöfer *et al.* 2005). Since there is no comparable study in maize, an experiment was set up to differentiate between the effects of mechanical treatment, mechanical treatment plus application of caterpillar regurgitate, and completely unharmed plants. The time course was similar to that of the microarray hybridization experiment to obtain comparable results.

Mechanical treatment was performed with the Mecworm, an instrument which imitates caterpillar feeding by damaging the plant surface with a metallic pin. In addition to the mechanical damage, plants were also treated with 10 μ l caterpillar regurgitate per leaf to imitate both induction mechanisms of herbivore feeding. Plant material was analyzed for

transcript accumulation of the transcription factors, the production of volatiles and the induction of several plant hormones.

3.3.1 The influence of mechanical damage on the transcript accumulation of transcription factors

The expression patterns of the transcription factors were tested after the Mecworm treatment and compared to those of undamaged controls. Relative expression was calculated as the expression of the housekeeping genes HG1 and HG2 (Tab.2.4) to exclude changes in the expression patterns due to diurnal rhythms.

Most of the transcription factors showed similar expression levels after mechanical damage with and without regurgitate (Fig.3.11). The transcript levels rose after the induction stimulus within the first hour and then decreased to the control level. The expression patterns of tf1 and tf2 demonstrated a very short response to the induction. Also tf34, tf42 and tf46 showed a similar expression pattern (figures in the appendix 7.4). Overall, the mechanical wounding seemed to induce the expression of the transcription factors by itself.

Tf23 and *tf30* were the only factors that displayed a difference between mechanical damage and the treatment with caterpillar regurgitate. The transcript level of *tf23* was highly induced after application of oral secretion, while the transcript accumulation of *tf30* showed a higher induction after mechanical wounding alone. In both cases, expression levels of the two induction types converged after 2 h and showed an expression pattern similar to most of the other transcription factors. A factor in the oral secretion of caterpillars must be responsible for the differential expression of those transcription factors.

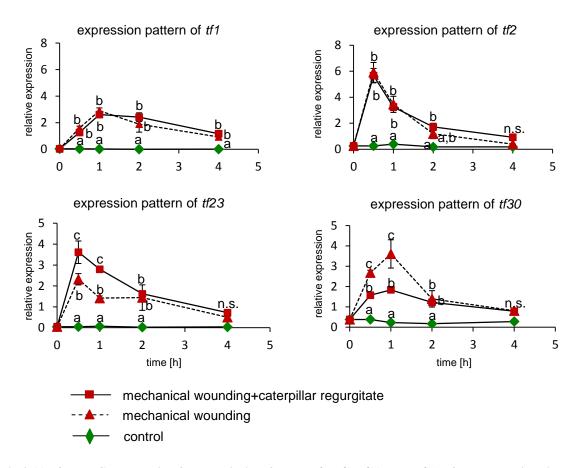


Fig.3.11: QRT-PCR analysis of transcription factors tf1, tf2, tf23, and tf30 after mechanical induction with and without caterpillar regurgitate. Plants were treated with mechanical damage and mechanical damage plus the application of caterpillar regurgitate and harvested after 0 h, 0.5 h, 1 h, 2 h, and 4 h. Means and standard errors are shown (n=4). The relative expression was calculated as described in 2.5.9. Two-Way ANOVA was performed with time as the first variable and different induction types as second factor. Different letters indicate significant differences between treatments within time points (p<0.05).

3.3.2 The type of damage affects the amount of terpene production

Next, it was studied whether the constant mechanical damage of the caterpillar, simulated by the Mecworm, is sufficient not only for transcription factor induction but also for volatile terpene emission. To confirm the induction of plant material, the transcript level of *tps23* was measured. The expression profile showed a significant increase of cDNA for the time points 1 and 2 hours after the induction and accumulated consistently up to 4 hours after induction (Fig.3.12). Interestingly, there is no difference in the amount of *tps23* cDNA measured after

mechanical damage and mechanical damage + caterpillar regurgitate, matching the transcription profile of most transcription factors measured. Still, this result was in contrast to the transcript expression profile where plants had been treated with jasmonic acid (3.2.4). The differences could result from the different types of induction. While JA-treated plants were cut before the treatment, the Mecworm-experiment simulated a more natural herbivore attack.

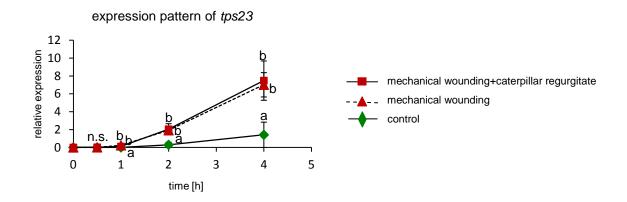
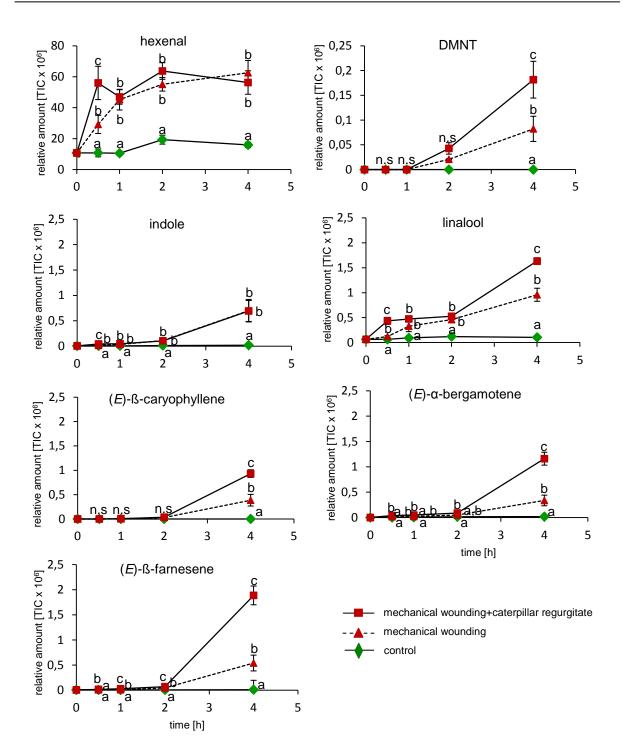
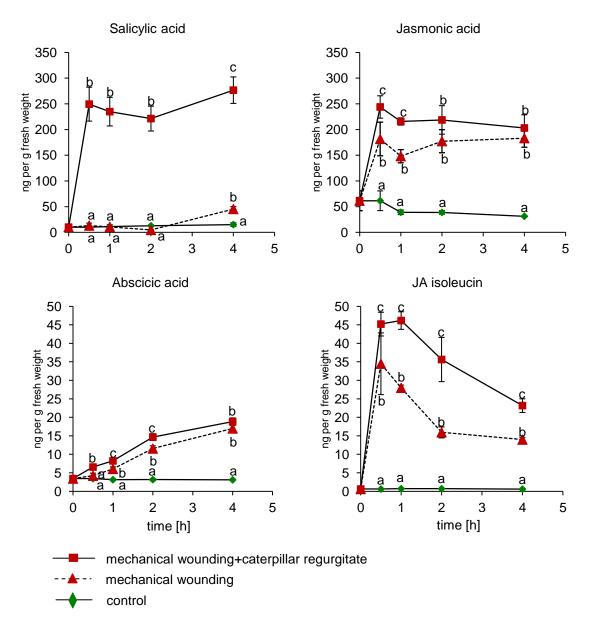



Fig.3.12: Expression pattern of *tps23* after mechanical damage, mechanical damage plus caterpillar regurgitate and in control plants. Leaves were treated with the Mecworm and plant material was harvested after the given time points. Means and standard errors are shown (n=4). Two-way ANOVA was performed with time as the first variable and treatment types as second factor. Different letters indicate significant differences between treatments within time points (p<0.05).

The same plant material was also analyzed for terpene volatiles by a GC-MS (Fig.3.13). The plant material was incubated with a SPME fiber which has the advantage of a high sensitivity compared to hexane extracts.

Fig.3.13: Relative amount of volatile emission after treatment of seedlings with Mecworm and regurgitate. Leaves of maize plants var. Delprim were treated with mechanical damage (Mecworm), mechanical damage+caterpillar regurgitate and control, respectively, and analyzed after 0 h , 0.5 h , 1 h , 2 h , and 4 h. Plant material was ground and 200 mg were measured for volatile production using SPME. Means (n=4) and standard error is shown. Two-Way ANOVA was performed with time as the first variable and treatment types as second factor. Different letters indicate significant differences between treatments within time points (p<0.05).


Looking at the volatile sesquiterpene (*E*)- β -caryophyllene, the induction profile showed a picture different from the *tps23* transcript levels. While the transcript levels were detectable after 0.5 h, the corresponding volatile of *tps23*, (*E*)- β -caryophyllene, was observed after 2 h. The amount of (*E*)- β -caryophyllene increased between 2 h and 4 h after induction. At 4 h, plants treated with mechanical damage emitted only ~50 % (*E*)- β -caryophyllene compared to plants treated with caterpillar regurgitate.

The sesquiterpenes (*E*)- α -bergamotene and (*E*)- β -farnesene illustrated a similar behavior. In both cases, the terpene production was induced at 4 h but more volatiles were emitted after application of regurgitate than mechanical damage alone. The same pattern was observed for the homoterpene DMNT. The monoterpene linalool was also emitted in a significant higher amount in plants treated with caterpillar regurgitate, but could already be measured after half an hour of induction. The leaf aldehyde hexenal showed the highest production, of all VOCs measured, but with only small differences between the two treatments. This profile matched that of the heterocyclic compound indole which was released after 1 h of induction independently from the induction type. This indicated that mechanical wounding alone was sufficient to induce the production of these volatile compounds and was not elevated by the application of caterpillar regurgitate. This is in contrast to the other volatiles where extra treatment with regurgitate "boosted" the production of those volatiles.

3.3.3 The induction of plant hormones is dependent on the type of induction

Plant hormones play an important role in the regulation of plant growth, development, and in the response to biotic stresses (Davies 2010). In order to investigate the effect of herbivory on the induction of the plant hormones ABA, JA, JA-Ile, and SA, the hormone concentrations were measured after mechanical damage and application of caterpillar regurgitate. Previous unpublished experiments by Tobias Köllner showed that JA, JA-Ile and ABA were induced around and above the wounding site when caterpillars were able to feed on maize plants (Tobias Köllner, paper in progress). SA, on the other hand, showed increased levels towards the base of the injured leaf and was repressed in the tip of the leaf.

In the following experiments, the Mecworm was used as a method to mimic herbivore damage. The wounded area was restricted to the base of the leaves and the whole leaf was collected for analysis. The hormone analysis of the leaf is shown in Fig.3.14.

Fig.3.14: Phytohormone concentration in damaged maize leaves. The concentration of phytohormones were measured in ng per g fresh weight after mechanical damage, damage and caterpillar regurgitate and the controls. Leaf material was harvested at 0 h, 0.5 h, 1 h, 2 h, and 4 h after the treatment. Means and standard errors are shown (n=4). Two-way ANOVA was performed with time as the first variable and treatment as second factor. Different letters indicate significant differences between treatments within time points (p<0.05).

The levels of JA as well as JA-Ile increased significantly after the treatment. While the amount of JA rose to 250 ng per g fresh weight, only up to 50 ng per g fresh weight of the JA-Ile conjugate was found in leaves. Both plant hormones showed a similar pattern for the two treatments. The addition of regurgitate to the damage seemed to enhance the production of JA and JA-Ile. The increase of JA and JA-Ile after mechanical damage suggested that the damaged leaf was sufficient to induce the hormone levels.

Upon wounding, plants contained up to 20 ng per g fresh weight of ABA. The concentration of ABA is not further increased after application of regurgitate. In contrast to the hormones JA and JA-IIe, it is worth to notice that the concentration of ABA rose constitutively after wounding while the level of JA and JA-IIe already reached their maximum level after 0.5 h and then started to decline.

For JA, JA-Ile and ABA, the pattern of hormone induction was similar with the addition of regurgitate, yet the differences in the concentrations for each time point was mostly significant (p<0.05). In the case of SA, the hormone level after mechanical wounding was close to the hormone level of the control plants with only a slight increase at the 4 h time point. In contrast, the hormone concentration increased significantly to 300 ng per g fresh weight when the plants were wounded and regurgitate was applied. Like jasmonic acid, SA concentrations stayed elevated upon treatment with caterpillar regurgitate. SA is a signaling molecule commonly associated with pathogen attack and is often down-regulated upon herbivory in *Arabidopsis thaliana* (Lee et al. 2010). In maize, SA also seemed to play a role in the defense against herbivores and it is selectively induced by caterpillar regurgitate.

3.4 Promoter analysis of the terpene synthases tps10 and tps23

3.4.1 Promoters of *tps10* and *tps23* are dissimilar among maize lines

The promoters of *tps10* and *tps23* of several maize lines were sequenced and analyzed for putative regulatory sequences. Promoter sequences were obtained by PCR or with the help of the Institute of Genomic Diversity from Cornell University. The maize lines selected for sequence analysis differed in (*E*)- β -caryophyllene production. The lines Delprim, NC358, Du101, and F476 possess an active TPS23 enzyme and produced herbivore-induced (*E*)- β -

caryophyllene. In the lines B73, CML247, OH7B, and MS71, on the other hand, transcript of *tps23* could not be detected (Degen *et al.* 2004; Köllner *et al.* 2008). Sequence analysis of ~800 bp revealed only minor nucleotide exchanges among the *tps23* promoter of all lines (Fig.3.15).

	-766						-697
Du101	CAAAGGTTGT	at <mark>-</mark> gcac <mark>a</mark> aa	AGGCTGCTTC	TTT <mark>G</mark> T <mark>G</mark> G <mark>T</mark> GT	AGC <mark>A</mark> GCTTTG	TTT <mark>-</mark> GGTCGA	TTTGGCTTTG
NC358	CAAAGGTTGT	at <mark>-</mark> gcac <mark>a</mark> aa	AGGCTGCTTC	TTT <mark>G</mark> T <mark>G</mark> G <mark>T</mark> GT	agc <mark>a</mark> gctttg	TTT <mark>-</mark> GGTCGA	TTTGGCTTTG
F476	CAAAGGTTGT	AT <mark>T</mark> GCAC <mark>N</mark> AA	AGGCTGCTTC	TTT <mark>C</mark> T <mark>A</mark> GCGT	TGC <mark>G</mark> GCTTTG	TTT <mark>T</mark> GGTCGA	TTTGGCTTTG
OH7B	CAAAGGTTGT	at <mark>-</mark> gcac <mark>a</mark> aa	NGGCTGCTTC	TTT <mark>C</mark> T <mark>A</mark> GCGT	TGC <mark>G</mark> GCTTTG	TTT <mark>T</mark> GGTCGA	TTTGGCTTTG
Delprim	CAAAGGTTGT	at <mark>-</mark> gcac <mark>a</mark> aa	AGGCTGCTTC	TTT <mark>C</mark> T <mark>A</mark> GCGT	TGC <mark>G</mark> GCTTTG	TTT <mark>T</mark> GGTCGA	TTTGGCTTTG
В73	CAAAGGTTGT	at <mark>-</mark> gcac <mark>a</mark> aa	AGGCTGCTTC	TTT <mark>C</mark> T <mark>A</mark> GCGT	TGC <mark>G</mark> GCTTTG	TTT <mark>T</mark> GGTCGA	TTTGGCTTTG
MS71	CAAAGGTTGT	at <mark>-</mark> gcac <mark>a</mark> aa	NGGCTGCTTC	TTT <mark>C</mark> T <mark>A</mark> GCGT	TGC <mark>G</mark> GCTTTG	TTT <mark>T</mark> GGTCGA	TTTGGCTTTG
CML247	CAAAGGTTGT	at <mark>-</mark> gcac <mark>a</mark> aa	AGGCTGCTTC	TTT <mark>C</mark> T <mark>A</mark> GCGT	TGC <mark>G</mark> GCTTTG	TTT <mark>T</mark> GGTCGA	TTTGGCTTTG
			-			_	
	-696						-627
Du101	CCGTAATGAT	GTGGT <mark>C</mark> TTTA	ATCATAACCA	TATATCGTCA	A <mark>T</mark> TATACA <mark>G</mark> G	TGATCTTTAG	AG <mark>A</mark> TACATAT
NC358		GTGGT <mark>C</mark> TTTA					
F476	TCGTAATGAT	GTGGT <mark>G</mark> TTTA	ATCATAACCA	TATA <mark>C</mark> CGTCA	a <mark>c</mark> tataca <mark>t</mark> g	TGATCTTTAG	AG <mark>G</mark> TACATAT
OH7B	TCGTAATGAT	GTGGT <mark>G</mark> TTTA	ATCATAACCA	TATA <mark>C</mark> CGTCA	a <mark>c</mark> tataca <mark>t</mark> g	TGATCTTTAG	AG <mark>G</mark> TACATAT
Delprim	TCGTAATGAT	GTGGT <mark>G</mark> TTTA	ATCATAACCA	TATA <mark>C</mark> CGTCA	a <mark>c</mark> tataca <mark>t</mark> g	TGATCTTTAG	AG <mark>G</mark> TACATAT
в73	TCGTAATGAT	GTGGT <mark>G</mark> TTTA	ATCATAACCA	TATA <mark>C</mark> CGTCA	a <mark>c</mark> tataca <mark>t</mark> g	TGATCTTTAG	AG <mark>G</mark> TACATAT
MS71		GTGGT <mark>G</mark> TTTA					
CML247	TCGTAATGAT	GTGGT <mark>G</mark> TTTA	ATCATAACCA	tata <mark>c</mark> cgtca	a <mark>c</mark> tataca <mark>t</mark> g	TGATCTTTAG	AG <mark>G</mark> TACATAT
	_	_					_
	-626						-557
Du101		TTT <mark>GGGG</mark> ACT			a <mark>g</mark> cagcaaat	C <mark>C</mark> TAGTCGTG	TATCA <mark>T</mark> ACTT
NC358	TG <mark>G</mark> TTCA <mark>G</mark> AT	TTT <mark>GGGG</mark> ACT	CCTGCAGA <mark>A</mark> G	GAAGAAACA <mark>T</mark>	a <mark>g</mark> cagcaaat	C <mark>C</mark> TAGTCGTG	TATCA <mark>T</mark> ACTT
F476		TTT <mark>AGAG</mark> ACT			a <mark>a</mark> cagcaaat	CTTAGTCGTG	tatca <mark>g</mark> actt
OH7B	tg <mark>-</mark> ttca <mark>c</mark> at	TTT <mark>AGAG</mark> ACT	CCTGCAGA <mark>T</mark> G	gaagaaaca <mark>c</mark>		CTTAGTCGTG	
Delprim		TTT <mark>AGAG</mark> ACT			a <mark>a</mark> cagcaaat	CTTAGTCGTG	TATCA <mark>G</mark> ACTT
В73		TTT <mark>AGAG</mark> ACT			a <mark>a</mark> cagcaaat	CTTAGTCGTG	tatca <mark>g</mark> actt
MS71		TTT <mark>AGAG</mark> ACT				CTTAGTCGTG	
CML247	TG <mark>-</mark> TTCA <mark>C</mark> AT	TTT <mark>AGAG</mark> ACT	CCTGCAGA <mark>T</mark> G	GAAGAAACA <mark>C</mark>	a <mark>a</mark> cagcaaat	C <mark>T</mark> TAGTCGTG	TATCA <mark>G</mark> ACTT
	-556		_				-487
Du101	TGGAGGT <mark>G</mark> AT	GGCCATGGAG					ATG <mark>TG</mark> GTTTA
NC358	TGGAGGT <mark>G</mark> AT TGGAGGT <mark>G</mark> AT	GGCCATGGAG	TTCTTC <mark>G</mark> CGA	GTCA <mark>C</mark> GGG <mark>T</mark> G	GCGGTCTAAT	GCAAGGATCG	ATG <mark>IG</mark> GTTTA ATG <mark>TG</mark> GTTTA
NC358 F476	TGGAGGT <mark>G</mark> AT TGGAGGTGAT TGGAGGT <mark>T</mark> AT	GGCCATGGAG GGCCATGGAG	TTCTTC <mark>G</mark> CGA TTCTTC <mark>A</mark> CGA	GTCA <mark>C</mark> GGG <mark>T</mark> G GTCACGGGCG	GCGGTCTAAT GCGGTCTAAT	GCAAGGATCG GCAAGGATCG	ATG <mark>TG</mark> GTTTA ATG <mark>TG</mark> GTTTA ATG <mark>CC</mark> GTTTA
NC358 F476 OH7B	TGGAGGT <mark>G</mark> AT TGGAGGTGAT TGGAGGTTAT TGGAGGT <mark>T</mark> AT	GGCCATGGAG GGCCATGGAG GGCCATGGAG	TTCTTC <mark>G</mark> CGA TTCTTCACGA TTCTTC <mark>A</mark> CGA	GTCACGGGTG GTCACGGGCG GTCACGGG <mark>T</mark> G	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT	GCAAGGATCG GCAAGGATCG GCAAGGATCG	ATG <mark>TG</mark> GTTTA ATGTGGTTTA ATGCCGTTTA ATG <mark>CC</mark> GTTTA
NC358 F476 OH7B Delprim	TGGAGGTGAT TGGAGGTGAT TGGAGGTTAT TGGAGGTTAT TGGAGGTTAT	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG	TTCTTC <mark>C</mark> CGA TTCTTCACGA TTCTTCACGA TTCTTC <mark>A</mark> CGA	GTCACGGGTG GTCACGGGCG GTCACGGGTG GTCACGGGTG	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG	ATG <mark>TG</mark> GTTTA ATG <mark>TG</mark> GTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA
NC358 F476 OH7B Delprim B73	TGGAGGTGAT TGGAGGTGAT TGGAGGTTAT TGGAGGTTAT TGGAGGTTAT	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA	GTCACGGGGG GTCACGGGGG GTCACGGGGG GTCACGGGGG GTCACGGGGGG	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG	ATG <mark>TG</mark> GTTTA ATGTGGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA
NC358 F476 OH7B Delprim B73 MS71	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA	GTCACGGGGG GTCACGGGGG GTCACGGGGG GTCACGGGGG GTCACGGGGGG GTCACGGGGGGGGGG	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG	ATG <mark>TO</mark> GTTTA ATGTOGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA
NC358 F476 OH7B Delprim B73	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA	GTCACGGGGG GTCACGGGGG GTCACGGGGG GTCACGGGGG GTCACGGGGGG GTCACGGGGGGGGGG	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG	ATG <mark>TO</mark> GTTTA ATGTOGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA
NC358 F476 OH7B Delprim B73 MS71	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA	GTCACGGGGG GTCACGGGGG GTCACGGGGG GTCACGGGGG GTCACGGGGGG GTCACGGGGGGGGGG	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG	ATG <mark>TO</mark> GTTTA ATGTOGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA
NC358 F476 OH7B Delprim B73 MS71	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA	GTCACGGGGG GTCACGGGGG GTCACGGGGG GTCACGGGGG GTCACGGGGGG GTCACGGGGGGGGGG	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG	ATG <mark>TC</mark> GTTTA ATGTCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA
NC358 F476 OH7B Delprim B73 MS71 CML247	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG	TTCTTC <mark>C</mark> CGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA	GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG	ATG ^{TC} GTTTA ATGCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA
NC358 F476 OH7B Delprim B73 MS71 CML247 Du101	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG	TTCTTCCCGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA CATATCATGT	GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G TTTAAGTTGA	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG	ATGTCGTTTA ATGCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA TGCTTGGGATG
NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT -486 GTGTTTATGG	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG TCTTCTATTC	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA CATATCATGT CATATCATGT	GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G TTTAAGTTGA	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT AGTTTGTTTG AGTTTGTTTG	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG ATCCACAAAT ATCCACAAAT	ATGTCGTTTA ATGCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA TCTTGGGATG TTTGGGGATG
NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT -486 GTGTTTATG GTGTTTATG GTGTTTATG	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG TCTTCTATTC TCTTCTATTC TCTTCTATTC	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA CATATCATGT CATATCATGT CATATCATGT	GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G TTTAAGTTGA TTTAAGTTGA	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT AGTTTGTTTG AGTTTGTTTG AGTTTGTTTG	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG ATCCACAAAT ATCCACAAAT ATCCACAAAT	ATGTCGTTTA ATGCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA TCTTGGGATG TCTTGGGATG TCTTGGGATG
NC358 F476 OH7B Delprim MS71 CML247 Du101 NC358 F476 OH7B	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT -486 GTGTTTATGG GTGTTTATGG GTGTTTATGA	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG TCTTCTATTC TCTTCTATTC TCTTCTATTC TCTTTTATTC	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA CATATCATGT CATATCATGT CATATCATGT CATATCATGT	GTCACGGGIG GTCACGGGIG GTCACGGGIG GTCACGGGIG GTCACGGGIG GTCACGGGIG GTCACGGGIG TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT AGTTTGTTTG AGTTTGTTTG AGTTTGTTTG AGTTTGTTT	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG ATCCACAAAT ATCCACAAAT ATCCACAAAT ATCCATGAAT	ATGTCGTTTA ATGCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTA TTTGGGATG TCTTGGGATG TCCTGGGATG
NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476 OH7B Delprim	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT -486 GTGTTTATGG GTGTTTATGG GTGTTTATGA GTGTTTATGA	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG TCTTCTATTC TCTTCTATTC TCTTCTATTC TCTTTTATTC TCTTTTATTC	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA CATATCATGT CATATCATGT CATATCATGT CATATCATGT	GTCACGGGIG GTCACGGGIG GTCACGGGIG GTCACGGGIG GTCACGGGIG GTCACGGGIG GTCACGGGIG TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT AGTTTGTTTG AGTTTGTTTG AGTTTGTTTG AGTTTGTTT	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG ATCCACAAAT ATCCACAAAT ATCCACAAAT ATCCATGAAT ATCCATGAAT	ATGTCGTTTA ATGCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTA ATGCCGTTA TCTTGGGATG TCTTGGGATG TCCTGGGATG TCCTGGGATG
NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476 OH7B Delprim B73	TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT AT -486 GTGTTTATGG GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG TCTTCTATTC TCTTCTATTC TCTTTTATTC TCTTTTATTC	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT	GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGTTTGTTG AGTTTGTTTG AGTTTGTTTG AGTTTGTTT	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG ATCCACAAAT ATCCACAAAT ATCCACAAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT	ATGTCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA TCTTGGGATG TCTTGGGATG TCCTGGGATG TCCTGGGATG TCCTGGGATG TCCTGGGATG
NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476 OH7B Delprim B73 MS71	TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT GTGTTTATGG GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG TCTTCTATTC TCTTCTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT	GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT AGTTTGTTTG AGTTTGTTTG AGTTTGTTTG AGTTTGTTT	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG ATCCACAAAT ATCCACAAAT ATCCACAAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT	ATGTCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA TCTGGGATG TCTGGGATG TCTGGGATG TCCTGGGATG TCCTGGGATG TCCTGGGATG
NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476 OH7B Delprim B73 MS71	TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT TGGAGGTGAT GTGTTTATGG GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG TCTTCTATTC TCTTCTATTC TCTTTTATTC TCTTTTATTC	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT	GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT AGTTTGTTTG AGTTTGTTTG AGTTTGTTTG AGTTTGTTT	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG ATCCACAAAT ATCCACAAAT ATCCACAAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT	ATGTCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA TCTGGGATG TCTGGGATG TCTGGGATG TCCTGGGATG TCCTGGGATG TCCTGGGATG
NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476 OH7B Delprim B73 MS71	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT GGGTTATGG GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG TCTTCTATTC TCTTCTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT	GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT AGTTTGTTTG AGTTTGTTTG AGTTTGTTTG AGTTTGTTT	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG ATCCACAAAT ATCCACAAAT ATCCACAAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT	ATGTCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTTA ATGCCGTTA ATGCCGTTA TCTTGGGATG TCTTGGGATG TCCTGGGATG TCCTGGGATG TCCTGGGATG
NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476 OH7B Delprim B73 MS71 CML247	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG TCTTCTATTC TCTTCTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT	GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGTTTGTTG AGTTTGTTTG AGTTTGTTTG AGTTTGTTT	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG ATCCACAAAT ATCCACAAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT	ATGTC GTTTA ATGC GTTA TCT TGGGATG TCT TGGGATG TCT TGGGATG TCT TGGGATG TCT TGGGATG TCT TGGGATG TCT TGGGATG TCT TGGGATG TCT TGGGATG
NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476 OH7B Delprim B73 MS71 CML247 Du101	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT -486 GTGTTTATGG GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG TCTTCTATTC TCTTCTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT	GTCALGGG G GTCALGGG G GTCALGG GTCALGGG G GTC	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGTTTGTTG AGTTTGTTTG AGTTTGTTTG AGTTTGTTT	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG ATCCACAAAT ATCCACAAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT	ATGTCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTA TCTTGGGATG TCTTGGGATG TCTTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG
NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT -486 GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG TCTTCTATTC TCTTCTATTC TCTTCTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT	GTCALGGG G GTCALGGG G GTCALGG G GTCALGG G GTCALGG G GTC	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGTTGTTG AGTTTGTTTG AGTTTGTTTG AGTTTGTTTG	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG ATCCACAAAT ATCCACAAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT	ATGTCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA TCTTGGGATG TCTTGGGATG TCTTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG
NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT -486 GTGTTTATG GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA ATGT ATATT ATGT A ATT	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG CTTTTATC TCTTCTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT	GTCALGGGIG GTCALGGGIG GTCALGGGIG GTCALGGGIG GTCALGGGIG GTCALGGGIG TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA TTTAAGTTGA ATGAAAATGC ATGAAAATGC	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTGTTG AGTTGTTG AGTTGTTG	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG ATCCACAAAT ATCCACAAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT	ATGTCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA TGTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG
NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476 OH7B	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT -486 GTGTTTATGG GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA ATGT A ATT ATGT A ATT	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG CCCTCTATC TCTTCTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT	GTCACGGG G GTCACGGG G GTCACGG G GTCAC	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTGTTG AGTTGTTG AGTTGTTG AGTTGTTG AGTTGTTG	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG ATCCACAAAT ATCCACAAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT	ATGTCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTA ATGCGTTA ATGCGTTA ATGCGGTTA TCTTGGGATG TCTTGGGATG TCTGGGATG
NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476 OH7B Delprim NC358 F476 OH7B Du101 NC358	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT -486 GTGTTTATGG GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA ATT ATGT A ATT ATGT A ATT	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG TCTTCTATTC TCTTCTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC	TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT CATATCATGT	GTCACGGG G GTCACGGG G GTCACGG G GTCAC	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTGTTG AGTTGTTG AGTTGTTG AGTTGTTG AGTTGTTG AGTTGTTG AGTTGTTG AGTTGTTG AGTTGTTG AGTTGTTG	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG ATCCACAAAT ATCCACAAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT	ATGTCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA TCTGGGATG TCTGGGATG TCTGGGATG TCTGGGATG TCCTGGGATG
NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476 OH7B Delprim F476 OH7B Delprim B73	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT -486 GTGTTTATGG GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA ATGT AA ATT ATGT AA ATT ATGT AA ATT ATGT AA ATT	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG TCTTCTATTC TCTTCTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC	TTCTTCCCGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA CATATCATGT	GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGGG G GTCACGG G GTCACG	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTGTTG AGTTGTTG AGTTGGTG AAAAGTCGG AAAAGTCGG AAAAGTCGG AAAAGTCGG	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG ATCCACAAAT ATCCACAAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT	ATGTCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTA ATGCGTTA ATGCGTTA TCTGGGATG
NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476 OH7B Delprim B73 MS71 CML247 Du101 NC358 F476 OH7B Delprim B73 MS71	TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT TGGAGGT AT -486 GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA GTGTTTATGA ATGT A ATT ATGT A ATT ATGT A ATT ATGT A ATT	GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG GGCCATGGAG TCTTCTATTC TCTTCTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC TCTTTTATTC	TTCTTCCCGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA TTCTTCACGA CATATCATGT	GTCALGGG G GTCALGGG G GTCALGGG G GTCALGGG G GTCALGGG G GTCALGGG G GTCALGGG G GTCALGGG G GTCALGGG G GTCALGGG G GTCALGG G GTCALG	GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGGTCTAAT GCGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTTGTTG AGTTGTTG AGTTGGTG AAAAGTCGG AAAAGTCCGG AAAAGTCCGG AAAAGTCCGG	GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG GCAAGGATCG ATCCACAAAT ATCCACAAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT ATCCATGAAT	ATGTCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA ATGCGTTTA TCTGGGATG TCTGGGATG TCTGGGATG TCCTGGGATG

	-346						-277
Du101	AAAAGTCTAC	TGGACGGCCA	AACCAACATT	GTTGAGTGGA	CGACCTACGA	TATTATTAAC	AATTCCA <mark>T</mark> GT
NC358		TGGACGGCCA					
F476	AAAAGTCTAC	TGGACGGCCA	AACCAACATT	GTTGAGTGGA	CGACCTACGA	TATTATTAAC	aattcca <mark>t</mark> gt
OH7B	AAAAGTCTAC	TGGACGGCCA	AACCAACATT	GTTGAGTGGA	CGAC <mark>C</mark> TACGA	TATTATTAAC	aattcca <mark>t</mark> gt
Delprim	AAAAGTCTAC	TGGACGGCCA	AACCAACATT	GTTGAGTGGA	CGAC <mark>C</mark> TACGA	TATTATTAAC	aattcca <mark>t</mark> gt
в73	AAAAGTCTAC	TGGACGGCCA	AACCAACATT	GTTGAGTGGA	CGACCTACGA	TATTATTAAC	aattcca <mark>t</mark> gt
MS71	AAAAGTCTAC	TGGACGGCCA	AACCAACATT	GTTGAGTGGA	CGAC <mark>C</mark> TACGA	TATTATTAAC	aattcca <mark>t</mark> gt
CML247		TGGACGGCCA					
					_		
	-276			_			-207
Du101		CCTGTCGGCA					
NC358		CCTGTCGGCA				TACGACGCTC	
F476		CCTGTCGGCA				TACGACGCTC	
OH7B		CCTGTCGGCA					
Delprim		CCTGTCGGCA					
В73		CCTGTCGGCA					
MS71	GTTGCACATG	CCTGTCGGCA	GATCTATATT	ТААААААА	-C <mark>G</mark> AGTGGAC	TACGACGCTC	AGATCCTTCC
CML247	GTTGCACATG	CCTGTCGGCA	GATCTATATT	ТАААААААА <mark>А</mark>	-C <mark>G</mark> AGTGGAC	TACGACGCTC	AGATCCTTCC
	0.0.0						105
- 404	-206	-			-		-137
Du101		A <mark>-</mark> CAATATAA					
NC358		A <mark>A</mark> CAATATAA					
F476		a <mark>-</mark> caatataa					
OH7B		a <mark>-</mark> caatataa					
Delprim		A <mark>-</mark> CAATATAA					
В73		A <mark>-</mark> CAATATAA					
MS71		A <mark>A</mark> CAATATAA					
CML247	AGGAAAAAAA	a <mark>-</mark> caatataa	'I'GCAAA'I''I'GA	GTACGTACGT	GYCCACGTGC	ATCACGAGTA	CCACTCCACG
	-136						-67
Du101		ATATTAAGAA	CACCATAGGA	TCCAGGTGCT	TGCCAGTGCA	TGCATTGTAT	
NC358		ATATTAAGAA					
F476		ATATTAAGAA					
OH7B		ATATTAAGAA					
Delprim		ATATTAAGAA					
B73		ATATTAAGAA					
MS71		ATATTAAGAA					
CML247		ATATTAAGAA					
							-
	-66						-1
Du101		GGGCACGTAC					
NC358		GGGCACGTAC					
F476		GGGCACGTAC					
OH7B		GGGCACGTAC					
Delprim		GGGCACGTAC					
в73		GGGCACGTAC					
MS71		GGGCACGTAC					
CML247	CTACGCCGGT	GGGCACGTAC	G'IGCAACAGG	CAGCAGGAGA	GTAGCTAGCT	AGTATACTAT	ACTTTC <u>ATG</u>

Fig.3.15: Sequence comparison of the promoter of *tps23* from (*E*)-β-caryophyllene producing and nonproducing maize lines. Start codon is underlined. Nucleotide differences are highlighted in red.

Nucleotide changes were present between the promoters of caryophyllene-producing and non-producing maize lines, as well as within both groups. Therefore, predictions regarding the ability to transcribe *tps23* cannot be made from the promoter nucleotide sequences.


Only the lines B73, OH7B, MS71, Delprim, NC358, and CML 247 could be used for the comparison of the *tps10* promoter. Sequences from NC358, CML247, and OH7B were obtained from the HAPMAP2 database from Cornell University because PCR on genomic

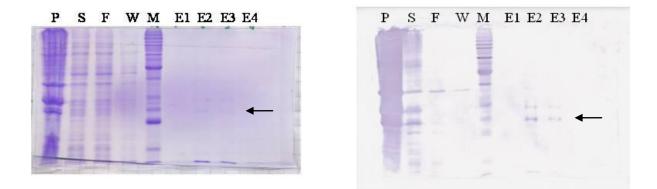
DNA was not successful (data provided by Jeff Glaubitz and Edward Buckler). Unfortunately, data from that database did not cover promoter fragments long enough for useful comparisons (Fig.3.16).

	I ······	8					
B73 OH7B MS71 Delprim NC358 CML247	-1491 GGCAAAGAGC GGCAAAGAGC GGCAAAGAGC	tcctttac <mark>c</mark> a	AAT <mark>G</mark> TTTTAT	TTTAC <mark>C</mark> GAGG	GTTTTTTT <mark></mark>	-gcttagc <mark>ac</mark> c <mark>cg</mark>	TC <mark>GG</mark> C <mark>AAA</mark> GA CCCCCCAAAA
	-1421 GTTT <mark>AT</mark> TTAC GTTTATTTCC GTTTTTAC GTTTATTTCC	CGAGTGT <mark>C</mark> CG CGAGTGT <mark>C</mark> CG	ААААААААСАС ААААААААСАС	TCGGCAAAA <mark>C</mark> TCGGCAAAA <mark>A</mark>	ATTTGGCACT AATTCGT		-1352 CCGAAATCCG CCGAAATCCG TTCAAATTTA CGGTAATSCG
В73 ОН7В MS71	-1351 GTAATGTTTA GTAATGTTTA GTAATGTTTA GTAATGTTTA	GTATTAATAT GTATTAATAT	TAACATTTAG TAACATTTAG	GAATCTTCGT GAATCTTCGT	ATTGAATATT ATTGAATATT	TTAGCTCCC <mark>-</mark> TTAGCTCCC <mark>G</mark>	-AAGATCTCA CAAGATCTCA
OH7B MS71	-1281 AATGATAACT AATGATAACT AATGATAACT AATGATAACT	АТТТТААСТА АТТТТААСТА	TAGAGTTTTA TAGAGTTTTA	GATCGATCTT GATCGATCTT GATCGATCTT	ATCAA <mark>A</mark> GCAC ATCAA-GCAC ATCAA <mark>A</mark> GCAC	TA <mark>C</mark> ATTTTTT TACATTTTTT TACATTTTTT	GACATAAGTA GACATAAGTA GACATAAGTA GACATAAGTA
MS71	-1211 TGTCTCATCC TGTCTCATCC TGTCTCATCC TGTCTCATCC TGTCTCATCC	<mark>A</mark> AGATAATTT GAGATAATTT <mark>A</mark> AGATAATTT	TAAATTTTGA TAAATTTTGA TAAATTTTGA TAAATTTTGA	GTAT <mark>G</mark> AAAAT ATATCAAAAT GTATCAAAAT GTAT <mark>C</mark> AAAAT	CTG <mark>A</mark> TTAATT CTGATTAATT CTG <mark>A</mark> TTAATT CTG <mark>A</mark> TTAATT	ТСАТААТТАА ТСАТААТТАА ТСАТААТТАА ТСАТААТТАА	TATTTAGGAC TATTTAGGAC TATTTAGGAC TATTTAGGAC
MS71 Delprim NC358	-1141 TAAATGATTT TAAATGATTT TAAATGATTT TAAATGATTT TAAATGATTT TAAATGATTT	CAGATGAA <mark>A</mark> A CAGATGAAAA CAGATGAATA CAGATGAA <mark>A</mark> A	GCTTACCAAT GCTTATCAAT GCTTACCAAT GCTTACCAAT	TATAATGCGA TATAATGCGA -ATAATGCGA TATAATGCGA	TAAATCACGT TAGATCACGT TAGATCACGT TAAATCACGT	TGAATACCAC TGAATACCAC TGAATACCAC TGAATACCAC	АА <mark>С</mark> СТТААТА АА <mark>А</mark> СТТААТА АА <mark>С</mark> СТТААТА АА <mark>С</mark> СТТААТА
OH7B MS71 Delprim NC358	-1071 TACACCGCGT TACACCGCGT TACACCGCGT TACACCGCGT TACACCGCGT	TAGCATCTGG TAGCATCTGG TAGCATCTGG TAGCATCTGG	GCATTAACCG GCATTAACCG GCATTAACCG GCATTAACCG	ATCAGACCAT ATCAGACCAT ATCAGACCAT ATCAGACCAT	TTGAAGGTGG TTGAAGGTGG TTGAAGGTGG TTGAAGGTGG	TGGCCAGGCT TGGCCAGGCT TGGCCAGGCT TGGCCAGGCT	GCCTCTАААА GCCTCTАААА GCCTCTАААА GCCTCTАААА
OH7B MS71 Delprim NC358	-1001 ATGAGTTTTG ATGAGTTTTG ATGAGTTTTG ATGAGTTTTG ATGAGTTTTG	TAATAGTAGA TAATAGTAGA TAATAGTAGA TAATAGTAGA	TTAGTAGCGT TTAGTAGCGT TTAGTAGCGT TTAGTAGCGT	AAGG <mark>AACCCT</mark> AAGG <mark>AACCCT</mark> AAGG <mark></mark> AAGG <mark>AACCCT</mark>	AAACCATATA AAACCATATA CGTTTG AAACCATATA	TATATA <mark>TATA</mark> TATATATATA TATATA <mark>TAAA</mark> TATATA <mark>TATA</mark>	TA TATATATATA
	-931						-862

-931

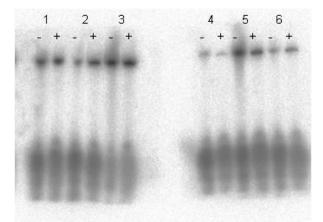
-862

B73 OH7B MS71 Delprim NC358 CML247	-301 AACGTTTTGC AACGTTTTGC AACGTTTTGC AACGTTTTGC AACGTTTTGC	ACGCAGA <mark>A</mark> GT CAGACGT ACGCAGACGT ACGCAGACGT	AATAGTTGAG AATAGTTGAG AATAGTTGAG AATAGTTGAG	AGGAAGTACC AGGAAGTACC AGGAAGTACC AGGAAGTACC	AGACTTGTGT AGACTTGTGT AGACTTGTGT AGACTTGTGT	ACATCAGCCG ACATCAGCCG ACATCAGCCG ACATCAGCCG ACATCAGCCG ACATCAGCCG	TCTCTATCTT TCTCTATCTT TCTCTATCTT TCTCTATCTT
B73 OH7B MS71 Delprim NC358	-231 CTGCATGCAT CTGCATGCAT CTGCATGCAT CTGCATGCAT CTGCATGCAT CTGCATGCAT	CATGCATCA <mark>T</mark> CATGCATCAC CATGCATCAC CATGCATCA <mark>T</mark>	TATTT <mark>-</mark> GACT TATTTTGACT TATTTTGACT TATTT <mark>-</mark> GACT	GCTGGTCTCT GCTGGTCTCT GCTGGTCTCT GCTGGTCTCT	GCTGCTTCAT GCTGCTTCAT GCTGCTTCAT GCTGCTTCAT	TGTGCACAGC TGTGCACAGC TGTGCACAGC TGTGCACAGC	GCCCTATAAG GCCCTATAAG GCCCTATAAG GCCCTATAAG
B73 OH7B MS71		aat <mark>g</mark> caacac aat <mark>g</mark> caacac	АСТБАААСАА АСТБАААСАА АСТБАААСАА АСТБАААСАА	TCAGAAGCTG TCAGAAGCTG TCAGAAGCTG TCAGAAGCTG	TAG <mark>A</mark> CGTACT TAGACGTACT TAGACGTACT TAG <mark>A</mark> CGTACT	ACCAAAGATC ACCAAAGATC ACCAAAGATC ACCAAAGATC	GATCTCAAAA GATCTCAAAA GATCTCAAAA GATCTCAAAA
OH7B MS71	-91 CAAA <mark>-C</mark> GGTA CAAAACGGTA CAAAAACGGTA CAAAACGGTA CAAAACGGTA CAAA <mark>AC</mark> GGTA	ATACCA ATACCA ATATATACCA ATAC <mark>C</mark> A	T <mark>TA</mark> C <mark>CA</mark> GCTA	GAAGATGT <mark>C</mark> C GAAGATGTCC GAAGATGT <mark>C</mark> C	CTG CTG <mark>AC</mark> GAC <mark>GC</mark> CTG <mark>AC</mark> GA <mark>CGC</mark>	CTGCA <mark>A</mark> TTTG CTGCA <mark>S</mark> TTTG CTGCASTTTG CTGCA <mark>S</mark> TTTG	CTCCGTCAAC CTCCGTCAAC
B73 OH7B MS71 Delprim NC358 CML247	<mark>G</mark> ATGTGCAGG -ATGTGCAGG	GGCTGCTGCA GGCTGCTGCA	AATG AATG				


Fig.3.16: Sequence comparison of the promoter fragment of *tps10* in different maize lines. Start codon is underlined. Differences in the sequences are marked in red.

Interestingly, far more nucleotide changes could be observed in the *tps10* promoter than in the promoter of *tps23*. While line MS71 and CML247 are not able to produce TPS10-specific sesquiterpenes, all other lines have an active TPS10 enzyme. Looking at the raw promoter sequence, an essential difference between TPS10-producing and non-producing cannot be predicted. In a next step, both promoter fragments from line Delprim were analyzed for regulatory sequences. Database analysis was conducted using either PLACE (plant *cis*-acting regulatory DNA elements) or PlantCARE (*cis*-acting regulatory element). 530 potential boxes were revealed in the promoter of *tps23* and 379 in the promoter of *tps10*. An overview of all identified regulatory elements is attached in the appendix (7.8, 7.9). Several core promoter elements were identified in both promoters as well as stress- and defense-related

cis-acting elements. Truncation experiments were conducted to isolate essential regulatory elements involved in the herbivore-induced responses (3.4.3).


3.4.2 Analysis of the promoters of *tps10* and tps23 for binding activity to TF1, TF8, TF20 and TF22

To investigate whether the transcription factors TF1, TF8, TF20, and TF22 bind to the promoters of tps10 and tps23, 1 kb sequence upstream of the start codon of both genes from the maize line Delprim was cut into ~200 bp fragments and used as targets for band shift assays. This technique serves to identify *cis*-acting promoter elements involved in the regulation of tps10 or tps23 after herbivore attack. Herbivore-regulated transcription factors with a transcript accumulation between 1 and 2 hours (Tab.3.1) were selected for analysis. The full length sequences for TF1, TF8, TF20, and TF22 were obtained by PCR or RACE and can be found in the appendix (7.5). The sequences were cloned into a pHIS vector containing the codons for 8 histidine residues at the N-terminal end of the inserted sequence. The constructs were transformed into the *E. coli* strain BL21 which allowed the IPTG-induced overexpression of the transcription factor genes. The expressed and partially purified transcription factors were analyzed using SDS-PAGE and Western Blot with His-tag specific antibodies.

Fig.3.17: SDS-Page and Western blot of transcription factor TF1. Protein was overexpressed in BL21 cells and purified using a Ni-NTA-column. 4 elution fractions were collected for analysis. The left picture displays the SDS-gel, the right picture shows the western blot. M = Bench Mark from Invitrogen, P = pellet, S = supernatant, F = flow through, W = washing step, E1-E4 = elution fraction 1-4.

In Fig.3.17, the Western blot and SDS-PAGE of transcription factor TF1 are shown. A distinct band in elution fraction 3 and 4 with the approximate size of the protein (28 kDa with 239 aa) was observed. TF22 consisted of 162 amino acids and was calculated to a protein size of 17.4 kDa including the HIS-tag. TF20 has a molecular weight of 28.7 kDa with HIS-tag (266 aa), and TF8 runs at 13.9 kDa including the HIS-tag and 129 aa (data not shown). After expression and purification of the protein, 250 ng of the purified transcription factors were added to isotope-labeled promoter fragments. Binding results were evaluated on a non-denaturating polyacrylamide gel and visualized with a phosphor imager. Theoretically, DNA fragments bound to a specific protein would travel at a lower speed through the acrylamide gel while unbound DNA would move faster through the matrix. The transcription factor TF1 was analyzed for the binding ability to the promoter fragments of tps23 (Fig.3.18). The promoter fragments were designed with overlapping ends to each other, so that the chance of cutting an important region site of recognition would be limited.

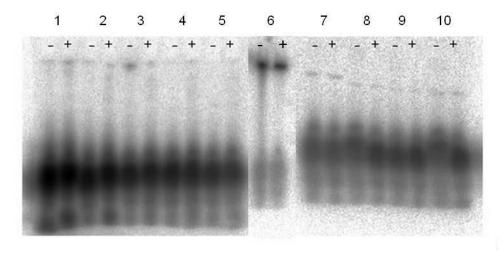


Fig.3.18: Band shift assay of transcription factor TF1 with the promoter fragments of *tps23*. Binding reaction was analyzed on a nondenaturating acrylamide gel and a phosphor imager. For each promoter fragment, a positive and a negative (no labeled fragment was added) probe was run. Fragments represent the complete *tps23* promoter from nucleotide 1:-762- (-607), 2: -675- (-491), 3: -528- (-374), 4: -410- (-250), 5: - 277- (-115), 6: -137- (+13).

The unbound promoter fragments appeared at the bottom of the gel as a smeared band. A shifted band could be observed in each lane. Because this particular band appeared in each

lane, it was probably not a specific shift of bound promoter-protein complex. It is possible that the band consisted of probe artefacts of the rather long oligonucleotides.

The results for the promoter fragments of *tps10* with the transcription factor TF1 showed a similar picture (Fig.3.19). Each promoter of both alleles of *tps10* was cut into several fragments. Promoter A was divided into 8 fragments while only 2 fragments represent promoter B due to the high similarity between the two alleles. The unbound, labeled fragments could be seen at the base of the gel, while the previously observed unspecific band ran at the top of the gel. All tested transcription factors showed similar results (data not shown), so that a specific binding between the transcription factors and promoters could not be shown.

Fig.3.19: Band shift assay of promoter fragments of *tps10* with the transcription factor TF1. Labeled fragments were added to 250 ng of purified protein. Binding reaction was analyzed on a 32 P sensitive screen and a phosphor imager. For each fragment, a positive (with protein) and a negative (without protein) sample was run. Overlapping fragments run from nucleotide 1: -976- (-822), 2:-869- (-692), 3: -713- (-592), 4: -589- (-417), 5: -362- (-127), 6:-424- (-264), 7: -289- (-127), 8: -142- (+22) of promoter A and 9: -817- (-643), 10: -360- (-127) of promoter B.

3.4.3 Analysis of *tps10* and *tps23* promoter constructs in Arabidopsis

To gather information as to how the promoters of *tps10* and *tps23* are regulated and to narrow down important regulatory elements, promoter deletion analysis was performed. In this set of experiments, Arabidopsis was chosen as a heterologous system because it is an

easy transformable plant with a shorter reproduction time compared to maize. Several plasmid constructs were produced containing different promoter fragments fused to the reporter gene ß-glucuronidase (GUS). This reporter gene enabled us to observe whether the promoter fragments are active after different types of treatment in the Arabidopsis-system. The resulting plasmids were cloned using the Gateway cloning system into the destination vector pBGWFS7.0. These constructs were then transferred into *Arabidopsis thaliana* using *A. tumefaciens* as a vector system. Transformed plants were cultivated to the T2 generation. For induction experiments, the leaves of the plants were induced by scratching with a razor blade with or without addition of jasmonic acid to the wounded area. This type of induction was used to mimic mechanical damage as well as local herbivore damage. Promoter activity was tested using GUS-staining and GUS-assay. As a negative control, wild-type plants (var. Columbia) were used and induced analogous to the transformed plants.

The longest promoter fragment of both terpene synthases *tps10* and *tps23* was inactive in undamaged plants, but displayed activity when plants were treated with mechanical damage and jasmonic acid. This indicated that the herbivore-induced signal transduction pathway between the evolutionary distinct plants maize and Arabidopsis are somewhat conserved. Consequently, we investigated the promoters of *tps10* and *tps23* using promoter::reporter gene constructs in the Arabidopsis-system.

In the first set of experiments, the transformed plants were treated with mechanical damage alone. Deletion analysis revealed an active, damage-regulated *tps23* promoter in the longer promoter fragments 1.8 kb, 1.2 kb and 600 bp (Fig.3.20). Here, GUS-staining was distributed throughout the whole leaf. Unwounded leaves of damaged plants (systemic leaves) and control leaves showed a weak staining in the midvein of the leaf. The promoter constructs *tps23* 400 bp::GUS and *tps23* 200 bp::GUS showed no visible promoter activity in the undamaged and control leaves. Systemic leaves and the controls displayed a slight GUS-staining along the midvein only with the 1.8 kb, 1.2 kb, and 600 bp promoter constructs. This could be a response to the wounding that resulted from the cutting of the leaf. Plant material incubated with GUS-staining solution was not frozen in liquid nitrogen and therefore was still able to respond to environmental cues while it was stained.

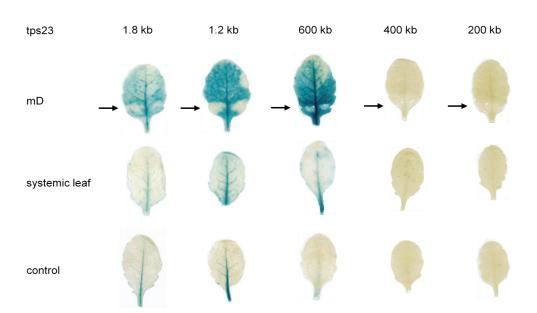
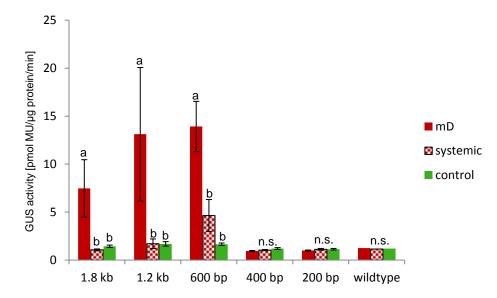



Fig.3.20: Gus-staining of *tps23* promoter constructs after mechanical damage. Arabidopsis plants containing a *tps23* promoter fragment fused to the β -glucuronidase were induced by scratching the leaf with a razor blade (mD). A leaf of an induced plant was taken as reference (systemic) as well as a transformed plant without treatment as control. Arrows indicate the wounding site.

Fig.3.21: Promoter activity of the *tps23* constructs 1.8 kb, 1.2 kb, 600 bp, 400 bp, 200 bp, and Columbia wild-type, respectively, after mechanical treatment. Arabidopsis plants (n=4) were treated with mechanical damage (mD) by scratching the leaves with a razor blade. Undamaged leaves were taken as well as not treated plants as control. Means and standard error are shown. Statistical analysis was performed using t-test for the treatment mD and control and a paired t-test for mD and undamaged treatment. Undamaged and control were tested using a t-test. Different letters indicate significant activity (p<0.05) between the treatments.

There was a significant difference in the activity of the promoter constructs after mechanical damage (Fig.3.21). The three longest promoter fragments, 1.8 kb, 1.2 kb, and 600 bp, were able to induce the reporter gene β -glucuronidase, while the shorter fragments of the *tps23* promoter and control plants didn't show reporter gene activity. In systemic leaves and control plants, the promoters were not active.

After testing the effect of mechanical damage, the role of jasmonic acid on the promoter activity was investigated. Plants were damaged according to the previous experiment but jasmonic acid was added. The *tps23* promoter was active in the constructs with 1.8 kb, 1.2 kb and 600 bp in the wounded leaves of transformed Arabidopsis plants (Fig.3.22). The shorter constructs with only 400 bp or 200 bp of the *tps23* promoter displayed no GUS staining and were therefore considered to be too short to induce expression. In treated plants, the longer fragments showed promoter activity along the veins of the leaves as well as in the surrounding cells. The activity decreased towards the top of the leaf. Interestingly, the promoter was active not only around and above the wounding site but below as well. Here, the promoter activity of *tps23* might correspond to the distribution of the jasmonic acid in the leaf. Jasmonic acid is transported via the phloem (Li *et al.* 2002) and could therefore act as an activator on the *tps23* promoter.

The promoter activity of *tps23* was confirmed with the GUS-assay. A significant difference in activity was found between treated and control plants in the constructs *tps23* 1.8 kb::GUS, 1.2 kb::GUS, and 600 bp::GUS (Fig.3.23). Systemic leaves of plants treated with damage and JA showed no significant induction of promoter activity, similar to those treated with mechanical damage only.

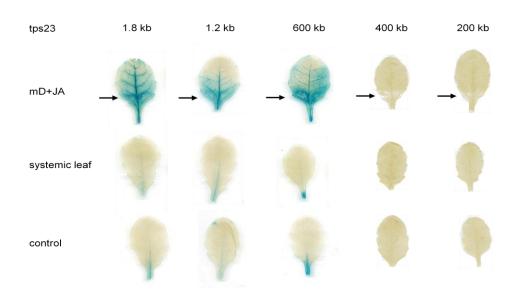
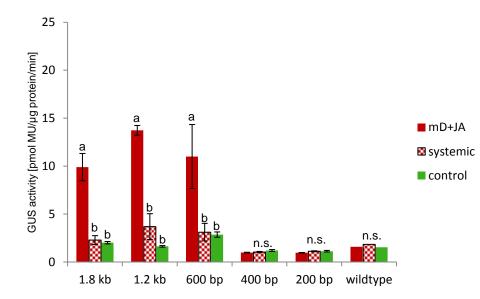
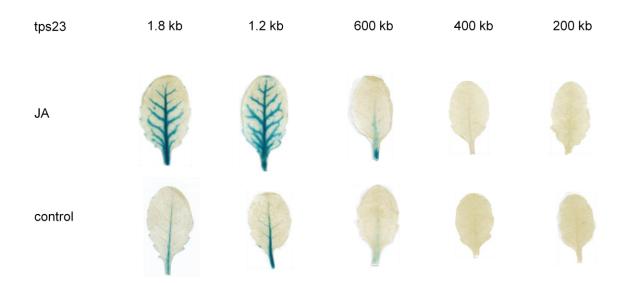
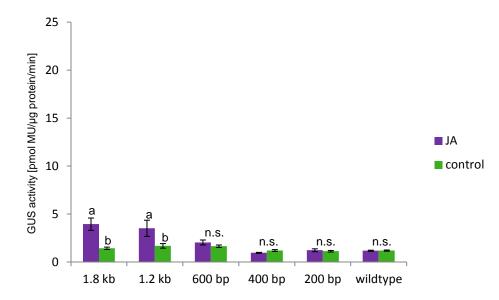
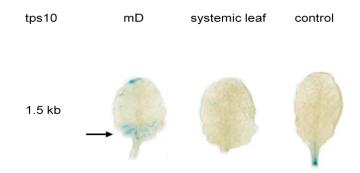


Fig.3.22: Gus-staining of *tps23* promoter constructs after mechanical damage and application of jasmonic acid. Arabidopsis plants containing a *tps23* promoter fragment fused to the β -glucuronidase were induced by scratching the leaf with a razor blade and adding 250 μ M jasmonic acid (mD+JA). A leaf of an induced plant was taken as reference (systemic) as well as a transformed plant without treatment as control. Arrows indicate the wounding site.


Fig.3.23: Quantitative GUS-activity in leaves of Arabidopsis transformed with *tps23* promoter constructs and Columbia wild-type. Arabidopsis plants were induced by mechanical damage plus the application of jasmonic acid (mD+JA). Undamaged leaves were taken from damaged plants to reflect systemical damage. Standard error and means are shown (n=4). Statistical analysis was performed using t-test for the treatment mD+JA and control and a paired t-test for mD+JA and undamaged treatment. Undamaged and control were tested using a t-test. Different letters indicate significant activity (p<0.05) between the treatments.

To analyze the effect of JA to the promoter activity, plants were induced without mechanical damage. Because the induction methods of plants without harming the leaves were not successful, plants were watered with a jasmonic acid-containing solution. After 3 days of watering with a JA-solution, the leaves were harvested and treated as described above. Here, the promoter activity (Fig.3.24) was limited to the veins of the leaf, corresponding to the transport of jasmonic acid. Unlike the damaged leaves, treatment with jasmonic acid induced the 1.8 kb and 1.2 kb promoter fragments. The 600 bp promoter constructs displayed some minor staining along the mid vein while the 400 bp and 200 bp promoter fragments were completely inactive.


Fig.3.24: GUS-staining of transformed Arabidopsis leaves treated with jasmonic acid over 3 days (JA). Transformed Arabidopsis plants containing the *tps23* promoter constructs were induced by watering with a jasmonic acid containing solution over 3 days.

Additionally, the activity of the *tps23* promoter was tested using a quantitative GUS-assay (Fig.3.25). The behavior of the promoter activity was similar in both analysis methods.

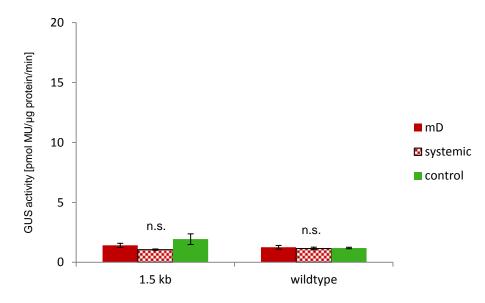


Fig.3.25: Quantitative GUS-assay in Arabidopsis plants transformed with different *tps23* promoter::GUS constructs after induction with jasmonic acid. Plants (n=4) were watered with jasmonic acid for 3 days. Means and standard errors are shown. To calculate the statistical relevance, One-Way ANOVA was performed for the different treatment within the constructs. Undamaged leaves were left out in this analysis because material is not independently from the mechanical damage treatment. Different letters indicate significant activity (p<0.05) between the treatments.

In a next step, the promoter constructs of *tps10*::GUS were tested. Analog to the experiments with *tps23*, promoter fragment lengths of 1.5 kb, 800 bp, 500 bp and 200 bp were fused to the β-glucuronidase gene and treated with mechanical damage with or without addition of jasmonic acid. In the first round of experiments, transformed Arabidopsis plants were mechanical damaged with a razor blade. The longest *tps10* promoter fragment of 1.5 kb::GUS showed minor GUS staining around the wounded area (Fig.3.26). Promoter activity was not found in systemic leaves and only slightly present at the cutting site in control plants. The more reliable, quantitative GUS assay revealed no promoter activity in the 1.5 kb construct, indicating that the longest promoter construct cannot be induced after mechanical damage (Fig.3.27). Therefore, smaller fragments were not included in this experiment.

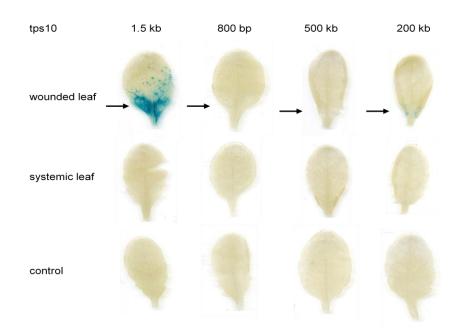


Fig.3.26: GUS-staining of Arabidopsis plants transformed with the construct *tps10* **1.5 kb::GUS.** Plants were induced by scratching the leaf with a razor blade (mD). Systemic leaves of induced plants and uninduced plants were taken as controls. Arrows indicate the wounding site.

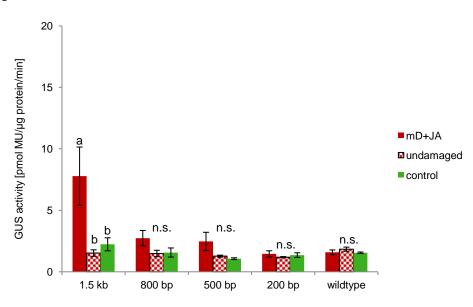


Fig.3.27: Promoter activity *tps10* **1.5kb::GUS after mechanical damage.** Wounding of the leaves resulted from scratching the leaves with a razor blade (mD). Systemical induced leaves from the mechanical wounded plants and untreated plants were taken as controls (control). Means (n=4) and standard errors are shown. One-Way ANOVA was performed for statistical analysis.

Different results were obtained when transformed Arabidopsis plants were treated with mechanical damage and jasmonic acid. In these experiments, all *tps10* promoter constructs were included. However, the 1.5 kb promoter construct was the only one exhibiting a promoter activity above and around the wounding site in the cells next to the harmed area (Fig.3.28). GUS staining was slightly distributed along the veins, without spreading to the top of the leaf. The 800 bp and 500 bp fragments showed no promoter activity, while the 200 bp fragment of the *tps10* promoter displayed a very weak promoter activity next to the wounding site. The systemic leaves as well as the control plants showed no promoter activity.

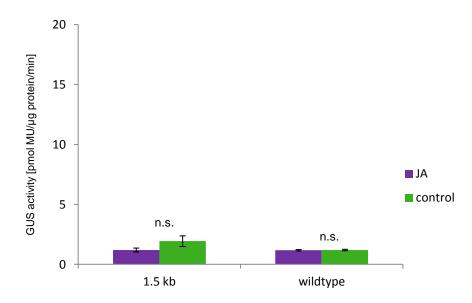

Fig.3.28: Gus-staining of *tps10* promoter constructs after mechanical damage and application of jasmonic acid. Arabidopsis plants containing a *tps23* promoter fragment fused to the β-glucuronidase were induced by scratching the leaf with a razor blade and adding 250 μ M jasmonic acid (mD+JA). A leaf of an induced plant was taken as reference (systemic) as well as a transformed plant without treatment as control. Arrows indicate the wounding site.

Fig.3.29: Quantitative analysis of GUS-activity in the different *tps10***::GUS constructs.** Arabidopsis plants were induced with mechanical damage by scratching the leaf and adding jasmonic acid. Systemic leaves were taken from induced plants. The control plants were left unharmed. Means (n=4) and standard errors are shown with the statistical differences indicated by different letters between the treatments for each construct (p<0.05). Analysis was performed using a regular t-test for the damaged plants versus the control plants. The significance between damaged and undamaged leaves was calculated using a paired t-test.

Analog to the GUS-staining, the quantitative analysis (Fig.3.29) showed a significant promoter activity with the induced *tps10* 1.5 kb::GUS construct after treating the plants with mechanical damage plus application of JA. Shorter promoter fragments were not active. Systemic leaves and control plants didn't show a significant promoter activity between the treatments.

Arabidopsis plants transformed with the construct *tps10* 1.5 kb::GUS were induced with jasmonic acid by watering over 3 days analog to the former experiment. Similar to the results of the GUS-staining method (data not shown), this promoter construct showed no significant induction of reporter gene activity after the treatment with jasmonic acid (Fig.3.30). These results indicate that the *tps10* promoter cannot be induced by mechanical damage or jasmonic acid alone, but needs the combination of both stimuli.

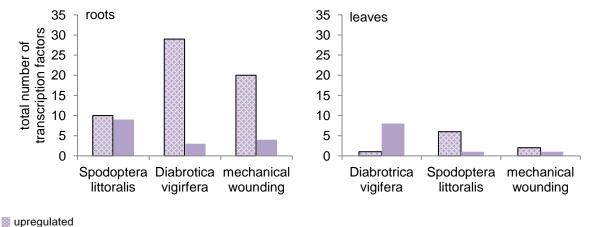
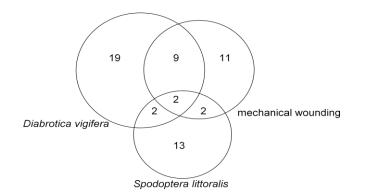


Fig.3.30: GUS-analysis of *tps10* **1.5 kb::GUS and wild-type plants after jasmonic acid treatment.** Plants were watered with jasmonic acid over 3 days. Control plants were left untreated. Means and standard error are shown (n=4). One-Way ANOVA was performed for statistical analysis.

3.5. Identification of transcription factors induced by local, systemical and mechanical wounding in roots and leaves

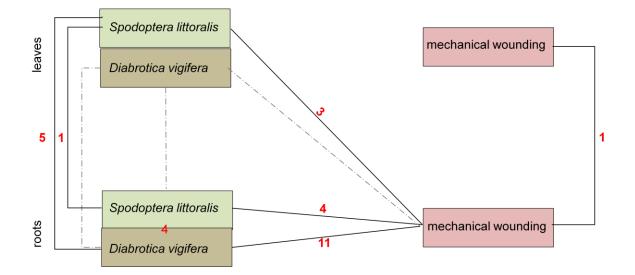
In order to respond to an herbivore threat, plants react to herbivore damage in their nondamaged parts (Erb *et al.* 2009). Therefore, we wanted to investigate the cross talk between plant organs after herbivory and mechanical damage. Using the Long Oligo Microarray, the interaction between roots and shoots were analyzed. In particular, the influence of *D. virgifera* infested roots upon uninfested leaves (systemic induction) and the influence of *S. littoralis* infested leaves upon uninfested roots was tested. To investigate whether the transcriptional changes caused by *D. virgifera* attack are a general wound response or a specific reaction of the plant, roots were also damaged mechanically. Plant material was harvested 18 h after the treatment. Infested or mechanically damaged roots and herbivoreinduced leaves as well as the systemically induced material were provided by Matthias Erb and analyzed with the Long Oligo Microarray for differences in gene expression. Since the main focus of this work were herbivore-regulated transcription factors, only the differentially expressed transcription factors will be presented here. The analysis comprised all proteins annotated as transcription factors although some might not be functional. The total number of differentially regulated transcription factors is displayed in Fig.3.31.


After treatment with the *D. virgifera* larvae, 29 putative transcription factors showed a higher expression in roots while only 3 genes were suppressed. Systemic induction by *S. littoralis* larvae resulted in an induced expression of 10 transcription factors while 9 showed a decreased expression. After roots were treated with mechanical damage, 20 transcription factors were up-regulated while 4 transcription factors were down-regulated. Overall, the roots of *Zea mays* react to local herbivory by altering the expression of more transcription factors than upon systemic induced leaves. Leaves on the other hand, showed far less differentially expressed transcription factors. Eight putative transcription factors were repressed in the leaves when roots were infested with *D. virgifera* while only one factors in the damaged leaf showed a transcript accumulation while one gene was negatively regulated. After mechanical damage in roots, only 2 induced and 1 suppressed transcription factors were found in leaves.

downregulated

Fig.3.31: Overview of transcriptional changes of transcription factors in herbivore-infested plants. *S. littoralis* feeding upon the leaves resembles the systemical wounding to the roots, while *D. virgifera* feeding upon the roots displays the local wounding on the roots and vice versa. Mechanical wounding was performed by stabbing the roots several times with a scalpel.

A closer analysis of differentially regulated transcription factors in roots revealed some similarities between the treatments (Fig.3.32). A total number of 32 transcription factors showed changes in gene expression. Nine of them were also affected after mechanical damage to the roots while 2 transcription factors showed different transcript levels after *S. littoralis* attack. Only 2 transcription factors displayed a difference in gene expression after all three treatments. Eleven and 13 transcription factors were regulated in response to mechanical wounding or feeding of *S. littoralis*, respectively. Their corresponding MZ-numbers are listed in Tab.3.2. Annotation of these accession numbers can be found in the appendix (7.7).


Fig.3.32: Venn-diagram of transcription factors with herbivore-regulated expression in root material after local damage by *D. virgifera*, damage in the leaves by *S. littoralis* larvae, and mechanical damage. Numbers in the circles represent the numbers of equal MZ-numbers between the treatments. Diagram was constructed using <u>http://bioinforx.com</u>.

S. littoralis-D. virgifera	S. littoralis-D. virgifera	S. littoralis-mechanical	D. virgifera-mechanical
	-mechanical damage	damage	damage
MZ00004381	MZ00004381	MZ00004381	MZ00004381
MZ00017495	1/12/00/04/301	11200004301	MZ00020499
MZ00026127	MZ00026127	MZ00026127	MZ00026127
MZ00036067		MZ00028351	MZ00026538
		MZ00054846	MZ00026661
			MZ00028044
			MZ00035959
			MZ00036019
			MZ00041768
			MZ00042353
-			MZ00046918

Tab.3.2: List of shared MZ-numbers from the roots after different treatments.

Two transcription factors, MZ00004381 and MZ00026127 were expressed after local, systemical and mechanical wounding. MZ0004381 is a putative bZIP transcription factor and MZ00026127 is only annotated as development regulation gene. Interestingly, there were no overlapping transcription factors within the leaf material, while there were several shared transcription factors between root and leaf material. The graphical outline can be viewed in

Fig.3.33 and annotation is presented in Tab.3.3. After local damage in leaves and local damage in roots, five transcription factors showed the same transcriptional changes. Local herbivory in shoots and systemic herbivory in roots had only one transcription factor in common. Also one transcription factor with the same transcriptional change was found in leaves and roots after mechanical root-damage.

Fig.3.33: Similarities in gene expression patterns of transcription factors between leaves and roots after different types of induction. Leaves were investigated after attack of *S. littoralis*, infestation of roots by *D. virgifera* or mechanical damage. Root material was harvested after local damage by *D. virgifera*, mechanical damage and after *S. littoralis* herbivory upon the leaves (systemical damage). Bold lines indicate equal MZ-number between two treatments with the total number in red. Dashed lines indicate no similarity.

Tab.3.3: List of shared transcription factors between leaves and roots at	fter different induction treatment.
---	-------------------------------------

S. littoralis: leaf-root	S. littoralis: leaf-D.	leaf- mechanical	S. littoralis: leaf-
	virgifera: root	damage: root	mechanical
			wounding:root
	MZ00012674	MZ00028419	
MZ00017495	MZ00017495		
	MZ00026538		MZ00026538
	MZ00036019		MZ00036019
	MZ00041768		MZ00041768

While MZ00017495 was induced in both roots and leaves after different induction stimuli, the ZIM-motif family protein MZ00026538 was also found in roots and leaves after mechanical damage in roots, as well as in earlier time course experiments. The putative zinc finger protein MZ00041768 was highly induced after local wounding and mechanical damage of the roots and was also found after 2 h after herbivore induction by *S. littoralis* in the leaves. The data f this microarray experiment were only evaluated using the program R. Validation of these results by QRT-PCR is necessary to verify the complex regulatory patterns of these transcription factors.

An overview of all other differentially regulated genes of this experiments can be found in Erb *et al.* (Erb *et al.* 2009).

4. Discussion

4.1 Microarray analysis as a tool to find genes in the plant responses against herbivore damage

Plants and insects have been coexisting for over 350 million years and therefore evolved a diversity of complex interactions (Gatehouse 2002). When plants recognize herbivore-associated molecular patterns (HAMPs; (Mithöfer and Boland 2008)), several reactions take place in plant cells, including changes in the ion flux, protein phosphorylation, formation of ROS and oxylipins, and initiation of various defense reactions (Kessler and Baldwin 2002; Maffei *et al.* 2007). The defense reactions include the generation of the phytohormones JA, SA, and ET (Pieterse and van Loon 1999; Glazebrook 2001; Dicke and Van Poecke 2002), as well as the synthesis of secondary compounds (Baldwin and Callahan 1993; De Moraes *et al.* 1998), among them volatile terpenes (Turlings *et al.* 1990; Kessler and Baldwin 2001).

Microarray hybridization has been used to study the transcriptome in several plant species. The transcript profiles responding to insect feeding, mechanical wounding, JA, H_2O_2 , and herbivore-induced volatiles were investigated using microarray technology in lima beans, *Arabidopsis thaliana*, and *Nicotiana attenuata*, (Arimura *et al.* 2000; Reymond *et al.* 2000; Halitschke *et al.* 2003; Reymond *et al.* 2004). In Rice, more than half of the genes identified in insect-induced indirect defense belonged to the category "involved in secondary metabolism". The genes included terpene synthases, P450 enzymes, methyltransferases, and BAHD acyltransferases (Yuan *et al.* 2008). Transcription factors were the second largest group of genes influenced by herbivory. Temporal changes in expression patterns were only conducted in tobacco and Arabidopsis (Durrant *et al.* 2000; Reymond *et al.* 2000).

One aim of this work was the identification of early transcriptional changes in maize after herbivore induction. With a large fraction of the transcriptome of the maize line B73, the microarray chip from the University of Arizona enabled us to investigate gene expression after herbivory. The results of the microarray experiment were verified by QRT-PCR which confirmed the microarray data in most cases. Limitations to this method are present because only genes showing a differential regulation after herbivore attack could be identified. Constitutively expressed proteins were not detectable. The genome-wide mapping of a maize population would be the method of choice to detect genes that do not undergo changes in gene expression. Although, the microarray was generated from sequences of the maize line B73, Delprim was chosen as target maize line because of its ability to produce high levels of volatiles including (E)- β -caryophyllene. Still, only slight limitation should result from this due to the high genetic similarity between Delprim and B73. B73 is a homozygous inbred line while Delprim is a heterozygous hybrid line. Considering an allelic polymorphism of about 3 % between maize lines in general, there is a high probability that at least one of the alleles from Delprim can hybridize with the allele of B73. The herbivore-induced genes of Delprim belonged to many classes including transcription factors, kinases and phosphates, metabolic enzymes, developments genes, and several more. Several genes, including FPP synthases, terpene synthases, and methyl transferases, have also been found in other plant species after herbivory (Yuan *et al.* 2008). Thus, this method was appropriate to identify temporal changes in herbivore-induced maize.

4.2 The regulation of herbivore-induced transcription factors

4.2.1 Herbivore feeding influences the expression of transcription factors Transcription factors act as switches of regulatory cascades (Scott 2000) and a combination of *cis*-acting elements are needed for the appropriate responses to stimuli (El-Shehawi *et al.* 2011). In Arabidopsis, up-regulation of transcriptions factors was demonstrated to cause a general shift in transcriptional regulation in response to insect damage (Reymond *et al.* 2004). In maize, we found a total number of 90 differentially regulated transcription factors in the leaves of herbivore-induced maize within 0.5 h and 4 h after damage. Out of that number, 12 genes had multiple hits. The majority of herbivore-regulated transcription factors were found at 0.5 h and 1 h while the number of differentially regulated metabolic enzymes started to increase after 1 h.

After an 18 h treatment with *S. littoralis*, only 7 transcription factors were identified in the leaves. The discrepancies in these observations are due to the sustained time of damage by the herbivore. Some of the early induced transcription factors were already down-regulated after 18 h. A distinct picture was observed in roots of maize. Many transcription factors

displayed a differential regulation pattern independently of the induction type (*D. virgifera* herbivory, mechanical damage, and systemic induction). A difference in the total number of transcription factors could be observed between *D. virgifera* feeding and mechanical damage in roots, indicating that some transcription factors function in an herbivore-specific pathway. Transcription factors induced by herbivory and mechanical damage might mediate a general wound-response of the roots. Roots of maize react strongly in response to above-ground herbivory. Still, the function and relevance of this type of response remains to be resolved. The results from these data implicate that there are similarities as well as differences in the signal transduction pathways between a systemic and a local damage reaction to herbivore attack (Erb *et al.* 2009).

The transcription factors identified in this study belong to several classes that are linked to plant stress responses. These include AP2/EREBP transcription factors, WRKY transcription factors, MYB transcription factors, and bZIP factors (Stracke et al. 2001; Singh et al. 2002). AP2/EREBPs, for example, were found in insect-induced defense in poplar (Ralph et al. 2006). In *Catharanthus roseus*, members of the AP2/EREBP family responded to jasmonic acid (Menke et al. 1999). A homolog of the maize transcription factor, tf1, was first identified in Arabidopsis (ATAF1/2). It shares a 74 % homology (amino acid level) to the ARAF1/2 in Arabidopsis and 94 % homology to rice. Both proteins were found to be expressed after herbivore attack (Delessert et al. 2005; Yuan et al. 2008). A similar expression pattern for tf1 and its homologs was found in herbivore-challenged species like Arabidopsis (Reymond et al. 2004) and poplar (Ralph et al. 2006). Binding to a drought-responsive element, the DRE transcription factors were first related to the response to cold stress and salt stress (Zhao et al. 2006). Newer studies placed the DRE transcription factors into the group of AP2/EREB proteins, connecting them to the ethylene-dependent signaling pathway (Sun et al. 2008). One DRE transcription factor found in this study is tf40 which showed a strong early induction after continuous herbivore feeding. A 53 % homolog from Aloe vera was found to be induced 12 h after cold stress (Wang and He 2007). It is therefore unlikely that the Aloe DREB1 and maize *tf40* have similar functions.

Also, maize CAF1-like protein *tf2*, is involved in defense responses in Arabidopsis and rice (Walley *et al.* 2007; Yuan *et al.* 2008). The AtCAF1a/b factor responds to wounding and biotic stresses within 5 min after induction stimuli and is under a circadian control (Walley *et*

al. 2007; Walley *et al.* 2010). The homology to *tf2* is 51 % based on amino acid level. The family of CCR4 associated factors (CAF) are factors involved in the post transcriptional regulation of genes. In yeast, they are part of the major cytoplasmic deadenylase, initiating mRNA turnover by removing the poly(A)-tail (Tucker *et al.* 2001). Recent studies indicate that CAF1 proteins might degrade repressors of the pathogen-related genes PR1 and PR2, assuming that this factor plays a role in the plant defense response (Liang *et al.* 2009). In this work, *tf2* showed an early induction in response to herbivore feeding and mechanical damage, suggesting a general role in maize defense responses.

MYB-transcription factors are involved in several developmental steps of the plant. It has been demonstrated that the transcription factor ODORANT1, a R2R3 MYB-transcription factor, controls the synthesis of volatile benzenoids present in the floral scent of petunia (Verdonk *et al.* 2005). We also identified two MYB-(like) factors in maize, *tf12* and *tf28*. While *tf12* was suppressed after herbivore feeding, *tf28* showed an induced expression. A 48 % amino acid identity was found between *tf12* and the R2R3 MYB-transcription factors that play a role in abiotic stress responses in *Triticum aestivum* (Zhang *et al.* 2011). But the low amino acid identity to bread wheat raises the question about the specific function of *tf12* in maize. Only 17 % sequence similarity of the maize *tf28* and TaMYB13 of *Triticum aestivum* was predicted by NCBI. TaMYB13 functions as an activator of fructosyltransferase genes (Xue *et al.* 2011), but due to the low similarity a functional consensus can not be assumed.

An I-box binding factor has first been described in tomato and was associated to the class of MYB-like proteins (Rose *et al.* 1999). The transcription factor tf35 from maize was annotated as putative I-box binding factor and can therefore be grouped to the class of MYB transcription factors. Tf35 was highly induced by herbivory and its homolog in bread wheat is implicated in abiotic stress responses (Zhang *et al.* 2011). Due to the low amino acid sequence similarity of 24 %, a prediction about the specific role of tf35 in maize cannot be made.

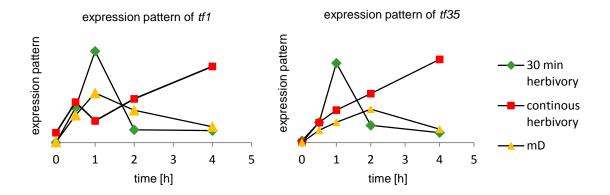
One zinc-finger transcription factor of maize, *tf29*, showed a negative regulation of gene expression after herbivore attack. This factor shares a 95% amino acid sequence identity to OsLDS1 from *Oryza sativa*. Here, it has been described as a negative regulator of programmed cell death in plants (Wang *et al.* 2005). Programmed cell death is often associated with a hypersensitive response of plants to pathogen attack (Greenberg *et al.*

1994). The down-regulation of *tf29* after herbivory could be a precautious step to increase resistance towards a subsequent pathogen attack.

The class of bHLH proteins is represented by *tf*8 in maize. This transcription factor is strongly induced after herbivore attack, but no homolog of *tf*8 has been described in other plant species yet.

An example of WRKY transcription factors induced by herbivory is the maize transcription factor *tf34*. WRKY transcription factors are unique to the plant kingdom (Eulgem *et al.* 1999) and have been identified to bind to W-boxes (Chen *et al.* 2002) which are found in the promoters of many plant defense genes (Kalde *et al.* 2003). A homolog of maize *tf34*, OsWRKY71 (90 % amino acid identity), encodes a transcriptional repressor of the gibberellin signaling pathway in rice (Zhang *et al.* 2004).

Further factors include an ETTIN-like auxin response factor (maize tf20) and putative phi-1proteins (maize tf42) which respond both with an induced expression after herbivore attack. Characterization of tf20 or putative homologs has not been conducted so far. As a homolog to the transcription factor tf42, phi-1 has only be implemented in the process of phosphorylation (Sano *et al.* 1999).


Although the maize transcription factors found in this study are regulated by herbivory on the level of expression, they might not necessarily be directly involved in terpene production or plant defenses. Generally, specific functions or putative targets cannot be predicted based on the low sequence similarities to other species. To unravel the functionality of these factors, further studies have to be conducted.

4.2.2 Specific induction stimuli lead to explicit expression patterns

Production of defense compounds like volatiles is cost-intensive and therefore often activated when needed (Wright *et al.* 1979). To orchestrate these specific responses, multiple signaling pathways regulate the stress response of plants (Glazebrook 2001; Knight and Knight 2001). However, gene expression patterns share significant similarities after different abiotic or biotic stresses (Durrant *et al.* 2000; Schenk *et al.* 2000; Seki *et al.* 2001; Chen *et al.* 2002; Erb *et al.* 2009).

The results in this work showed that maize discriminates between a short herbivore attack, long damage by herbivore feeding, and mechanical wounding by itself. *Tf1* and *tf35* are

maize transcription factors which are specifically induced in response to these different cues (Fig.4.1).

Fig.4.1: *Tf1* and *tf35* have a different expression pattern after diverse induction types. Maize plants were either treated with 30 min herbivore feeding, continuous feeding until harvesting, and continuous mechanical damage until harvesting (mD). Induction patterns are combined from independent experiments which were all standardized by the housekeeping genes. Therefore only the expression patterns are displayed without a relative expression fold.

The NAC-like transcription factor tf1 reached maximum expression within an hour in mechanically damaged plants and in plants treated with 30 min of herbivory. The continuous herbivory of *S. littoralis* resulted in a steady increase of expression after 1 h of treatment. This indicated that maize plants recognize the different types of wounding. The same induction pattern could be observed for transcription factor tf35, a putative I-box binding factor.

In order to elucidate the function of transcription factors, maize plants with transposon knockouts were investigated. There was only one transposon-insertion line available for all of the identified transcription factors, with the transposon inserted in the 3' region of tf1. Unfortunately, this line could not be used to investigate the role of tf1 since the background line, W22, is unable to produce herbivore-induced VOCs.

To be a reliable cue for herbivore enemies, the volatile signals emitted by the plant need to start quickly after the onset of feeding and stop when the herbivore moves on. Specific volatile profiles and kinetics were found for tps23. Gene expression was significantly upregulated at 2 h and 4 h after mechanical damage with and without addition of caterpillar

regurgitate. Both kinds of treatments induced the transcript level of tps23 to an equal amount. This suggests that wounding already fully induces tps23 expression and regurgitate application does not provide a further increase. The emission of (*E*)- β -caryophyllene, formed by TPS23, was detected at 4 h after induction but a significant difference was found between the treatments. The volatile sesquiterpene was emitted after plants were treated with mechanical damage. However, addition of caterpillar regurgitate enhanced the level of this volatile compound significantly.

The difference in time lag between induction of transcript accumulation and volatile production can be explained by the period it takes to translate *tps23* mRNA into a sufficient amount of TPS23 enzyme. An adequate amount of TPS23 must be present to produce enough volatiles that can be measured by SPME. Still, this does not explain the discrepancy in the concentration of (*E*)-β-caryophyllene measured after mechanical damage and damage with regurgitate. The results indicate a posttranslational control point for TPS23 expression or product formation. Another regulatory step responsible for the increase of terpene production after regurgitate application could be the expression of FPP-synthases which synthesize the substrate for terpene synthases (Köllner *et al.* 2008). Putative FPP-synthases were identified with the microarray and showed an increased expression level at 2 h and 4 h after herbivore attack. Unfortunately, the influence of mechanical damage on the expression pattern of FPP-synthases has not been investigated yet. A similar mechanism of regurgitate-specific regulation might also control the emission of the volatile compounds (*E*)-β-farnesene, (*E*)-α-bergamotene, linalool, and DMNT. The responsible terpene synthases have not been investigated in this study, but the same explanation could apply.

On the other hand, the aromatic heterocyclic compound indole and the green leaf volatile hexenal were emitted in similar amounts after mechanical damage with and without caterpillar regurgitate. Putative indole synthases were found induced in the microarray data at 2 h after herbivore induction and have also been described to be induced after volicitin treatment (Frey *et al.* 2000). However, the data in this study indicate that mechanical damage is sufficient for the induced emission of indole and hexenal and does not require an additional elicitor.

Differential expression patterns of transcription factors can not only be found after different induction stimuli, but they also vary between maize lines. The variety Delprim is able to

produce (*E*)- β -caryophyllene above- and belowground after herbivore attack (Rasmann *et al.* 2005). The American inbred line B73 lost this ability and lacks a potential resistance mechanism against herbivore attackers (Köllner *et al.* 2008). Both maize lines express TPS10 after leaf attack by *S. littoralis*, which forms the major sesquiterpenes (*E*)- β -farnesene and (*E*)- α -bergamotene (Schnee *et al.* 2006). The *tps23* structural gene is intact in several American maize lines, but it is not transcribed after herbivore treatment (Köllner *et al.* 2008). The loss of *tps23* transcript accumulation might be the result of a disruption in the signaling cascade. To test the involvement of nine transcription factors into the regulation of TPS23, we tested their expression in B73 and Delprim. All factors were induced after herbivory in B73 and Delprim than in B73. Most likely, the difference in TPS23 volatile production cannot be explained by those factors.

4.2.3 Herbivore-induced transcription factors are localized throughout the genome

Transcription factors with altered expression level after herbivore feeding were mapped against the genome of *Zea mays* variety B73 in order to investigate their spatial distribution. The sesquiterpene synthases *tps10* and *tps23* were also added to this map (Fig.4.2). The differentially expressed transcription factors were evenly distributed among the chromosomes in maize and no clear pattern could be observed. Also, the transcription factors did not seem to cluster specifically to one region.

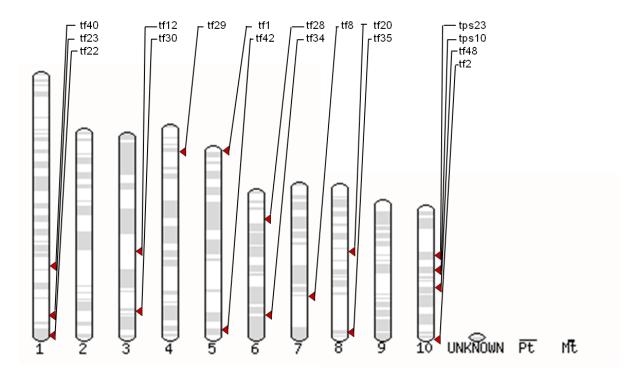


Fig.4.2: Approximate localization of the differentially expressed transcription factors among the maize genome. Sequences of transcription factors were blasted using maizesequence.org. In addition *tps10* and *tps23* are displayed. (maizesequence.org)

An operon-like gene cluster required for the triterpene synthesis (thalianol pathway) was reported for *Arabidopsis thaliana* (Field and Osbourn 2008). Also a cluster for the synthesis of antimicrobial terpenes (avenacins) was identified in oat (*Avena strigosa*). Avenacins accumulate in roots after the attack of pathogens (Wegel *et al.* 2009). However, results from this work indicate that herbivore-induced genes and their regulators are not organized in such a way.

4.3 The plant hormonal response is specific for the induction stimuli

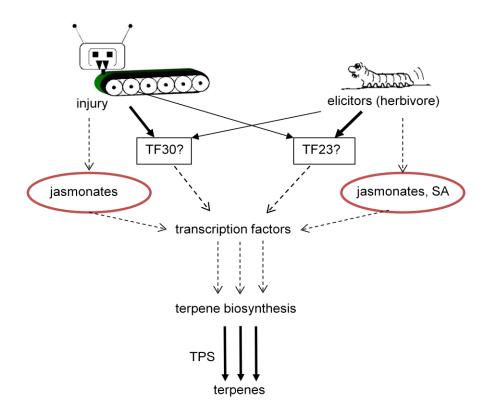
The phytohormones JA, SA, and ET play an essential role in the regulation of induced defenses which are specific for the attacker (Reymond and Farmer 1998; Pieterse and van Loon 1999; Glazebrook 2001). Biotrophic pathogens are sensitive to SA-dependent responses, whereas JA/ET-dependent mechanisms are more effective against herbivore insects and necrotrophic pathogens (Thomma *et al.* 2001; Glazebrook 2005). De Vos and coworkers showed that herbivore feeding can induce cross-resistance against several

microbial pathogens. Also, ET can act synergistically on SA-inducible defenses and might therefore be responsible for an enhanced resistance against the biotrophic pathogen *Turnip crinkle virus* (De Vos *et al.* 2006).

In this work, the hormone level after mechanical wounding with or without the application of caterpillar regurgitate was investigated. Addition of caterpillar regurgitate to the mechanically damaged area imitated herbivore feeding. The results demonstrated that all measured phytohormones, JA, SA, JA-IIe, and ABA take part in the formation of the anti-herbivore responses. While jasmonic acid is highly induced when plants experience mechanical damage in connection with caterpillar regurgitate, the jasmonic acid-isoleucin derivate was increased only after half an hour to one hour after regurgitate treatment and declined afterwards. The level of both hormones was also significantly increased after mechanical damage only, but not as high.

Abscic acid, an indicator for plant stress (Davies and Zhang 1991), was present at all times during the experiments. The levels of this hormone were significantly higher after induction with regurgitate compared to mechanical damage only. Since ABA is also involved in the regulation of stomata closure and water stress (Tardieu and Davies 1992), it is likely that this hormone is produced when the plants suffer from leaf damage connected with water loss (Erb *et al.* 2011).

The most intriguing observation was made for the plant hormone salicylic acid. SA is known to be induced after pathogen attack (Glazebrook 2005) and recent studies showed that there is synergistic cross talk between SA and JA, depending on the dose of SA (Mur *et al.* 2006). This is in contrast to observations where SA and JA acted antagonistically (Kazan and Manners 2008). To make the situation even more complex, SA was also found to be involved in plant defenses against herbivore attack (Zarate *et al.* 2007).


We observed that the level of SA increased similar to the level of JA after mechanical damage and caterpillar regurgitate. Mechanically damaged plants did not show an induction of SA level, except for the 4 h time point measurement. This indicates that the induction stimulus for SA is not mechanical damage by itself but rather the combination of damage and regurgitate. It was not possible to test whether this effect was due to regurgitate alone, since the development of induction methods of plants without harming the leaf surface were not successful. It is possible that maize reacts to herbivory with the production of SA to be

prepared for a subsequent pathogen attack at the site of herbivore damage. Herbivory does not alter SA level in infested maize roots (Erb *et al.* 2010), indicating that roots and leaves act differently upon attack. Caution has to be taken with this assumption, since the data from this work resemble time points within four hours after treatment. This differs from the *D. virgifera* infested roots used by Erb *et al* (Erb *et al.* 2009) which were induced for 18 h. Also, the concentration of JA and JA-IIe in herbivore-induced roots differ from those of induced leaf material (Erb *et al.* 2009), indicating that hormone production is regulated differently in roots and leaves.

4.4 The transcription factors TF23 and TF30 are differentially regulated

Only two transcription factors, tf23 and tf30, displayed an expression pattern specific for mechanical damage and caterpillar regurgitate, respectively. Tf30, annotated as ethylene responsive element, belongs to the class of AP2/EREBP transcription factors. This class of transcription factors is unique to plants (Riechmann et al. 2000) and binds two similar regulatory elements: the GCC-box and dehydration-responsive element (Singh et al. 2002). The large group of ethylene responsive factors has been implicated in regulating gene expression after several stresses like cold, drought, and pathogen attack, as well as responses to the hormones ET, SA, and JA (Onate-Sánchez and Singh 2002; Singh et al. 2002). Ethylene-responsive transcription factors that interact with the GCC-box were characterized in tobacco and Arabidopsis (Ohme-Takagi and Shinshi 1995; Solano et al. 1998; Fujimoto et al. 2000). Other studies showed that ERF are able to bind to the APETALA2 domain in the ORCA proteins (octadecanoid-responsive Catheranthus APETALA2) and therefore provide a link between jasmonic acid and the accumulation of terponoid indole alkaloids (van der Fits and Memelink 2000; Memelink et al. 2001). An 84 % amino acid similarity was found between TF30 and the AP2/ERF9 protein in Arabidopsis. This gene was found induced after root colonization with the endophytic fungus Piriformospora indica (Camehl and Oelmüller 2010). Interestingly, homologes of tf30 in tobacco and rice are known to induce hypersensitive response-like cell death after induction with Tobacco mosaic virus (Ogata et al. 2012) and are therefore implicated in defenses against pathogens.

Tf23 is a member of the bHLH transcription factor family. Only a weak similarity was found to a basic helix-loop-helix protein in *Arabidopsis lyrata* which has not been characterized yet. In tobacco, the homolog NtWIN4 is implicated in the hypersensitive defense and induced after wounding and pathogen attack (Kodama and Sano 2006). In maize, tf23 seems to be involved in other plant responses. While tf23 is expressed at a higher level after mechanical wounding and caterpillar regurgitate after half an hour and one hour, tf30 showed an inverted expression pattern. This transcription factor reacted more strongly upon mechanical damage alone, indicating that there might be two different signaling pathways present (Fig.4.3).

Fig.4.3: Schematical overview of the two hypothetical induction pathways in maize. Maize responds to mechanical damage and elicitors. The transcription factor TF30 is highly induced after mechanical damage, but only slightly after application of elicitors (caterpillar regurgitate). TF23, on the other hand, shows a higher expression level after induction with elicitors. The plant hormones react differently upon the two induction modes. While salicylate is only induced after elicitor treatment, jasmonates (JA and JA-Ile) are induced after both induction types. These hormones might act upon the regulation of transcription factors which in turn are responsible for the activation of terpene synthases (TPS). Dashed arrows represent multiple steps, bold arrows indicate a strong induction, and thin arrows indicate a weak induction.

In maize, it might be possible that transcription factor TF30 activates target genes after mechanical damage while TF23 is responsible for induction of target genes after herbivore attack. Still, it is possible that *tf23* might also reduce responses to herbivory, working in favor of the herbivore. This has been shown for *Nicotiana tabacum* and the herbivore *Helicoverpa zea*. In this example, the glucose oxidase in the caterpillar salvia suppresses the production of nicotine induced by caterpillar feeding (Musser *et al.* 2002).

Another indication for two different signaling cascades is the induction of SA after elicitor treatment only. The plant hormone jasmonic acid appears in both pathways.

4.5 Identification of regulatory sequences in the promoters of *tps10* and *tps23*

4.5.1 The binding ability of TF1, TF8, TF20, and TF22 to the promoters of *tps10* and *tps23*

In order to find transcription factors that bind to the promoter of tps10 or tps23, four transcription factors were chosen for analysis. The transcription factors (TF1, TF8, TF20, and TF22) were selected because of their early induction after herbivore attack which was in contrast to the slower induction of tps10 and tps23. The transcription factors tf1 and tf8 showed an increased expression level within half an hour after herbivore treatment. The remaining factors tf20 and tf22 displayed a negative regulation within the first half an hour. Both induction types were included in the band shift assays because it is not known whether tps10 and tps23 are subject to activation or de-repression.

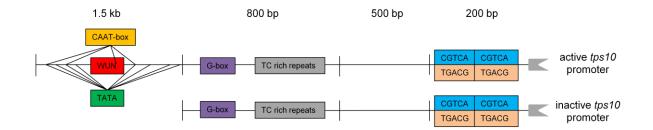
Transcription factors TF1 and TF22 are annotated as NAC transcription factor (NO APICAL MERISTEM (NAM), ATAF1, 2 and CUP-SHAPED COTYLEDON (CUC2)) and have been described first by Aida *et al* (Aida *et al.* 1997). More than 90 putative NAC-domain proteins in Arabidopsis and rice are implicated in plant development (Delessert *et al.* 2005) and some are induced by pathogen infection and/or mechanical wounding (Hegedus *et al.* 2003). With a domain similar to MYB-like transcription factors (Tran et al. 2004) and a binding overlapping the site of bZIP transcription factors (Duval et al. 2002), those factors seem to be a good candidate for binding studies. Nevertheless, the NAC transcription factors bind to the

CATGTG motif (Tran *et al.* 2004) that is present in the *tps10* and *tps23* promoters. In both promoters, this motif is found twice in the maize line Delprim. In the *tps10* promoter the binding motif is found at -22 bp and -488 bp upstream of the start codon, in the *tps23* promoter at -281 bp and -649 bp.

As member of the bHLH transcription factors, TF8 was chosen for analysis. This class of transcription factors recognizes G-box motifs in the promoter of target genes (Atchley and Fitch 1997). Analysis of the promoter sequences of *tps10* and *tps23* revealed several putative G-boxes over the whole promoter region.

Transcription factor TF20 was annotated as ETTIN-like auxin response factor. Auxin response factors were found to be induced in poplar after herbivore attack (Ralph *et al.* 2006). Those auxin response factors bind to a TGTCTC motif (Tiwari *et al.* 2003). This sequence motif was only found in the promoter of *tps10* at the locations -424 bp, -634 bp, and -1211 bp upstream of the start codon. Auxin levels were not investigated in this study, but this factor was included in the analysis because of three putative binding sites.

Unfortunately, no binding could be observed between the promoter fragments and the expressed transcription factors in EMSA experiments (3.3.1). Besides the absence of the proper binding site, lack of interaction could be due to improper assembly of the ORF of the factors or secondary structures of the promoter fragments used in the EMSA.


4.5.2 The promoters of *tps10* and *tps23* possess similar regulatory *cis*-acting elements

Each promoter has an exclusive organization of *cis*-acting sequences and therefore a unique platform for the binding of *trans*-acting factors. This arrangement is determined by the number of *cis*-acting elements, their distance to each other, their orientation, and their super-hierarchical order (Arguello-Astorga and Herrera-Estrella 1996; Acevedo-Hernéndez *et al.* 2005; Cazzonelli and Velten 2008).

Only small nucleotide differences were observed in the *tps23* promoter sequences of several maize lines and no clear pattern of differences was observed between a functional and a non-functional promoter. This suggests that the differences between the lines are due to *trans*-acting components in the signaling cascade (transcription factors, kinases, etc.). Still, the crucial regulatory elements could be located upstream of the assayed promoter sequences.

The promoter sequences of *tps10* differed more among (*E*)-β-farnesene-producing lines than those of *tps23*.

TPS10 and TPS23 are expressed in different organs (Köllner *et al.* 2004) and displayed varied terpene emission after herbivore feeding. Therefore, both promoter sequences were investigated to find specific elements that are responsible for the distinctive expression patterns. Truncation experiments with GUS-fusion constructs revealed an active 1.5 kb *tps10* promoter. The activity was lost in the 800 bp promoter fragment. In between those two fragments, only few *cis*-acting regulatory elements were identified: a WUN motif, 10 TATA-boxes, and four CAAT-boxes. TATA-boxes are common core promoter elements (Timko *et al.* 1985) while CAAT-boxes are common *cis*-acting elements and enhancer regions (Dorn *et al.* 1987). They respond to light, cytokinin and the functional development of plastids (Kusnetsov *et al.* 1999). Both types of regulatory sequences could be essential for *tps10* promoter activity, but are present throughout the whole promoter. The same was observed for G-boxes which are implicated in JA responsiveness and wounding (Menke et al. 1999; Delessert et al. 2004) and are distributed evenly in the promoter of *tps10*. An overview of the *cis*-acting elements that might be involved in the transcriptional regulation of *tps10* is shown in Fig.4.4.

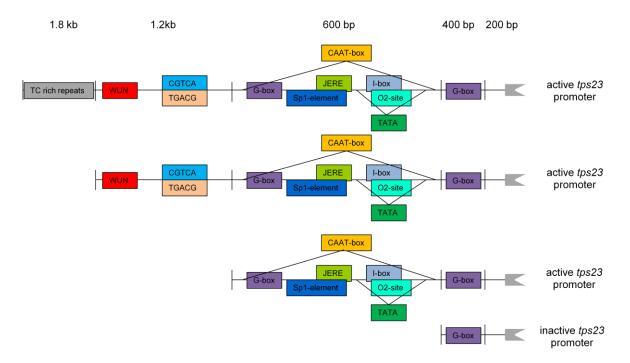


Fig.4.4: Schematical view of the *tps10* **promoter.** Truncation experiments were conducted using a 1.5 kb, 800 bp, 500 bp, and 200 bp fragment, respectively. Some elements with potential importance for regulation are displayed. Removal of the first fragment results in the loss of *tps10* promoter activity.

The results of the induction experiments revealed that *tps10* can only be activated when two induction stimuli are combined. Activity was only detected when Arabidopsis plants were induced by scratching the leaf and addition of jasmonic acid to the wounded site. Wounding

or jasmonic acid by itself were not able to induce *tps10* promoter activity. In order to get a more detailed view of the regulatory sequences of *tps10*, a promoter fragment 5' upstream of the 1.5 kb fragment should be investigated for additional elements.

For *tps23*, the mode of induction is different. While the 1.8 kb and 1.2 kb fragments were active upon JA treatment, the 600 bp fragment was active by mechanical wounding alone. The 400 bp fragment showed no promoter activity. Hence, the essential regulatory elements for *tps23* are between the 600 bp and the 400 bp fragment. Sequence analysis using PLACE and PlantCare showed several hypothetical regulatory elements (Fig.4.5).

Fig.4.5: Analysis of hypothetical regulatory sequences in fragments of the *tps23* promoter. Deletion analysis was performed using promoter::ß-glucuronidase reporter gene constructs with promoter sizes 1.8 kb, 1.2 kb, 600 bp, 400 bp, and 200 bp. Potential regulatory elements are displayed. The 400 bp and 200 bp long promoter fragments were found to be inactive.

CAAT-boxes were also found throughout the *tps23* promoter. The Sp1 element resembles a GC box bound by the SP1 transcription factor (Letovsky and Dynan 1989). Also regulated by light and the circadian clock is the I-box element. This element was found in several promoters of cab-genes, encoding light-harvesting chlorophyll a/b binding proteins (Borello *et al.* 1993). Another potential regulatory element, the O2-site, plays a role in the zein

metabolism (Kemper *et al.* 1999) and therefore is unlikely to be involved in the regulation of *tps23*. TATA-boxes are also found in 600 bp fragment of the promoter. It has been reported that TATA-boxes are essential for transcription at positions up to -1598 bp from the start codon (Keddie *et al.* 1992) to -30 bp of the transcription start in tomato (*Lycopersicon esculentum*, (Cordes *et al.* 1989)). It is therefore not possible to say which TATA-box plays a crucial role for the regulation of *tps23*. The JERE motif responds to JA and MeJA (Menke *et al.* 1999; Chini *et al.* 2007) but cannot be an essential element regulating JA responses because the 600 bp promoter fragment containing the JERE is not active after JA treatment, but only inducible through mechanical damage. The other interesting *cis*-acting element is the G-box. Mainly involved in JA responses (Menke *et al.* 1999), it has also been found in large proportions of wound-inducible promoters (Delessert *et al.* 2004). This could be an indication for the essential role of the G-box in the *tps23* 600 bp::GUS promoter fragment. The class of basic Helix Loop Helix transcription factors are known to bind G-boxes (Toledo-Ortiz *et al.* 2003), whereas the JERE motif is recognized by AP2/ERF domain transcription factors (Menke *et al.* 1999).

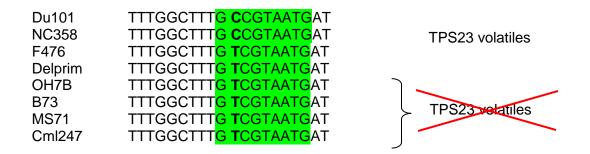
Sequence analysis of the *tps23* promoter revealed two additional MeJA responsive elements in the 1.2 kb promoter fragment. The CGTCA motif is localized at -658 bp before the start codon, and the TGACG element (Rouster *et al.* 1997) is complementary to the first one, but localized in opposite direction on the minus strand. This sequence motif is missing in the 600 bp promoter fragment and could explain the loss of promoter activity after jasmonic acid treatment. Thus, there might be two distinct induction pathways for TPS23. The first pathway regulates via the induction of jasmonic acid and the second through mechanical wounding. This second pathway might be independent from JA. Nevertheless, it is still possible that the endogenous jasmonic acid induced in response to mechanical wounding of the plants activates the promoter of *tps23*. In addition, TPS10 is only found in induced leaves of *Zea mays* (Köllner *et al.* 2004) while TPS23 is synthesized in both herbivore-induced shoots and roots (Rasmann *et al.* 2005). The results confirm the idea of distinct signaling transduction pathways for *tps10* and *tps23* which utilize different cues for induction.

With the identification of crucial promoter elements, more transcription factor candidates could be tested in binding assays. So far, band shift assays revealed no binding of the G-box binding factor TF8 to the promoters of *tps10* and *tps23*. The transcription factor *tf23* is also

annotated as bHLH and is highly induced after herbivore attack. This factor would be an interesting candidate for further binging analysis because several G-boxes are present throughout the promoters of both terpene synthases. Annotated as an ethylene responsive element, the transcription factor tf30 might serve as a binding protein for the JERE motif localized in the promoter of tps23. Although deletion analysis indicated that this element is not crucial for tps23 expression, secondary effects with other binding factors or secondary structures cannot be excluded.

One has to keep in mind that the promoter deletion analyses were conducted with maize promoters in Arabidopsis plants. Conclusions have to be drawn carefully, because differences in the defense regulation of the two plant species cannot be ruled out.

4.5.3 The promoters of *tps10* and *tps23* respond to mechanical damage and herbivore attack


The sequence analysis revealed a WUN-motif in the promoter of tps10 (-1097 bp and -1088 bp) and in the promoter of tps23 (-692 – -684 bp). Deletion of a fragment containing the WUN-motif resulted in an inactive promoter of tps10. Because this motif was found to regulate the signaling pathway after wounding (Matton *et al.* 1993), the promoter sequences for this motif were compared between different maize lines.

The promoter sequences of *tps10* were compared between the maize lines Delprim, OH7B, MS71, and B73 (Fig.4.6). The lines Delprim, OH7B and B73 are able to produce TPS10 specific volatiles after herbivore damage, while MS71 does not. The WUN motif is present in all four lines regardless of the ability to produce TPS10-specific volatiles. Overall, the results suggest that the WUN motif is an important regulatory sequence in the promoter of *tps10* but not responsible for the ability to express TPS10 in the lines investigated here.

Fig.4.6: Sequence analysis of the WUN motif of *tps10* promoter in different maize lines. Sequence is shown from -1304 to -1296 upstream of the start codon. The WUN motif is highlighted in green. Maize line MS71 is not able to produce TPS10 specific volatile, although it possesses a complete WUN motif in its *tps10* promoter.

Promoter fragments of *tps23* are active up to -400 bp, indicating that the WUN-motif is not crucial for this promoter. It rather seems that the WUN-motif has a general activating role for *tps23*. The WUN-motif was compared between the maize lines to investigate potential correlations between the motif and gene activity (Fig.4.7). These maize lines were selected because they differ in their ability to produce (*E*)- β -caryophyllene. The European maize line Delprim is able to produce this volatile terpene, while the American maize line B73 seems to have lost this ability (Köllner *et al.* 2008). The lines NC358, Du101, and F476 possess a functional TPS23 enzyme while CML247, OH7B, and MS71 are not able to produce (*E*)- β -caryophyllene after herbivore attack (Degen *et al.* 2004). With the exception of Du101 and NC358, no differences in the WUN-motif between these maize lines were found. The single nucleotide exchange in those two lines does not seem to affect caryophyllene biosynthesis.

Fig.4.7: Sequence analysis of the *tps23* promoter of different maize lines. Promoter sequences were amplified from genomic DNA, cloned and sequenced. The sequence comparison from -697 to -689 upstream of the start codon is shown. The WUN motif is marked in green, bold letters indicate a nucleotide exchange.

Sequence comparisons among the promoters of the lines also revealed the presence of the JERE, G-box, CGTCA, and CAAT-boxes in the same position range (data not shown). Therefore, loss of (E)- β -caryophyllene production is not likely due to differences in the *cis*-elements of this promoter fragment, but probably due to the loss of other factors in the signaling cascade.

5. Outlook

The aim of this project was to identify herbivore-regulated components of the cellular signal transduction network by microarray hybridization. This technique successfully identified a group of transcription factors with herbivore- induced alterations in gene expression. There are, however, some limitations associated with this technique since it does not identify constitutively expressed genes or factors that are activated or de-activated by mechanisms other than gene expression. An alternative approach is the identification of signal transduction components by molecular mapping. While these methods provide additional information about the function of the signal transduction components, they will not identify factors with redundant function. The combination of both methods might generate a complete overview of the plant responses after herbivory.

In continuation of this project, the investigation of transcription factors with overexpressing lines and knockout maize lines might elucidate their functions. Due to the apparent conservation of these pathways between maize and other plants, homologous transcription factors in *Arabidopsis thaliana* or *Nicotiana tabacum* could provide further information while making use of more accessible transformation systems. Another valuable resource are maize transposon knockout plants that are currently developed by several public outlets. We are constantly checking these resources for knockouts of the candidate genes identified in this study.

Further promoter deletion analysis will clarify the role of the *cis*-acting elements identified in the promoters of *tps10* and *tps23*. In the background of an Arabidopsis COI1 mutant, the effects of JA-mediated pathways can be evaluated. A transient expression system of transcription factors and promoter fragments which was established in tobacco could serve as an alternative method to identify potential targets (Van Der Linde *et al.* 2011).

6. References

- Abe, H., T. Urao, et al. (2003). "Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling." <u>The Plant Cell Online</u> **15**(1): 63-78.
- Abeles, F. B., P. W. Morgan, et al. (1992). Ethylene in plant biology, Academic press.
- Acevedo-Hernéndez, G. J., P. León, et al. (2005). "Sugar and ABA responsiveness of a minimal RBCS light-responsive unit is mediated by direct binding of ABI4." <u>The Plant Journal</u> **43**(4): 506-519.
- Achard, P., H. Cheng, et al. (2006). "Integration of plant responses to environmentally activated phytohormonal signals." <u>Science</u> **311**(5757): 91.
- Aida, M., T. Ishida, et al. (1997). "Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant." <u>The Plant Cell Online</u> 9(6): 841-857.
- Alonso-Ramírez, A., D. Rodríguez, et al. (2009). "Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds." <u>Plant Physiology</u> 150(3): 1335-1344.
- Anderson, J. P., E. Badruzsaufari, et al. (2004). "Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis." <u>The Plant Cell</u> **16**(12): 3460-3479.
- Arguello-Astorga, G. R. and L. R. Herrera-Estrella (1996). "Ancestral multipartite units in light-responsive plant promoters have structural features correlating with specific phototransduction pathways." <u>Plant Physiology</u> 112(3): 1151-1166.
- Arimura, G., R. Ozawa, et al. (2000). "Herbivory-induced volatiles elicit defence genes in lima bean leaves." <u>Nature</u> 406(6795): 512-515.
- Arimura, G., K. Tashiro, et al. (2000). "Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles." <u>Biochemical and Biophysical</u> <u>Research Communications</u> 277(2): 305-310.
- Atchley, W. R. and W. M. Fitch (1997). "A natural classification of the basic helix-loophelix class of transcription factors." <u>Proceedings of the National Academy of Sciences</u> 94(10): 5172.
- Baldwin, I. T. and P. Callahan (1993). "Autotoxicity and chemical defense: nicotine accumulation and carbon gain in solanaceous plants." <u>Oecologia</u> 94(4): 534-541.
- Baldwin, I. T., E. A. Schmelz, et al. (1994). "Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris Spegazzini and Comes." Journal of Chemical Ecology **20**(8): 2139-2157.
- Benedetti, C. E., D. Xie, et al. (1995). "COI1-dependent expression of an Arabidopsis vegetative storage protein in flowers and siliques and in response to coronatine or methyl jasmonate." Plant Physiology 109(2): 567-572.
- **Bezemer, T., R. Wagenaar, et al.** (2004). "Above-and below-ground terpenoid aldehyde induction in cotton, Gossypium herbaceum, following root and leaf injury." Journal of <u>Chemical Ecology</u> **30**(1): 53-67.
- Bezemer, T., R. Wagenaar, et al. (2003). "Interactions between above-and belowground insect herbivores as mediated by the plant defense system." <u>Oikos</u> 101(3): 555-562.

- Boch, J., H. Scholze, et al. (2009). "Breaking the code of DNA binding specificity of TALtype III effectors." <u>Science</u> **326**(5959): 1509.
- Bodenhausen, N. and P. Reymond (2007). "Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis." <u>Molecular Plant-Microbe Interactions</u> 20(11): 1406-1420.
- Bohlmann, J., G. Meyer-Gauen, et al. (1998). "Plant terpenoid synthases: Molecular biology and phylogenetic analysis." <u>Proceedings of the National Academy of</u> Sciences of the United States of America **95**(8): 4126-4133.
- **Borello, U., E. Ceccarelli, et al.** (1993). "Constitutive, light-responsive and circadian clock-responsive factors compete for the different I box elements in plant light-regulated promoters." <u>The Plant Journal</u> **4**(4): 611-619.
- Bostock, R. M. (2005). "Signal crosstalk and induced resistance: straddling the line between cost and benefit." <u>Annu. Rev. Phytopathol.</u> **43**: 545-580.
- Cai, M., D. Qiu, et al. (2008). "Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance." <u>Plant, Cell & Environment</u> 31(1): 86-96.
- **Camehl, I. and R. Oelmüller** (2010). "Do ethylene response factors-9 and-14 repress PR gene expression in the interaction between Piriformospora indica and Arabidopsis?" Plant Signaling & Behavior 5(8): 932.
- Cao, H., J. Glazebrook, et al. (1997). "The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats." <u>Cell</u> 88(1): 57-63.
- **Cazzonelli, C. I. and J. Velten** (2008). "In vivo characterization of plant promoter element interaction using synthetic promoters." <u>Transgenic Research</u> **17**(3): 437-457.
- **Chen, W., N. J. Provart, et al.** (2002). "Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses." <u>The Plant Cell Online</u> **14**(3): 559.
- Chen, Y. N., E. Slabaugh, et al. (2008). "Membrane-tethered transcription factors in Arabidopsis thaliana: novel regulators in stress response and development." <u>Current Opinion in Plant Biology</u> 11(6): 695-701.
- **Cheong, Y. H., C. M. Yoo, et al.** (1998). "STF1 is a novel TGACG-binding factor with a zinc-finger motif and a bZIP domain which heterodimerizes with GBF proteins." <u>The Plant Journal</u> **15**(2): 199-209.
- Chini, A., S. Fonseca, et al. (2007). "The JAZ family of repressors is the missing link in jasmonate signalling." <u>Nature</u> **448**(7154): 666-671.
- Churchill, G. A. (2002). "Fundamentals of experimental design for cDNA microarrays." <u>Nature Genetics</u> 32(supp): 490-495.
- Clarke, S. M., L. A. J. Mur, et al. (2004). "Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana." <u>The Plant Journal</u> **38**(3): 432-447.
- Clough, S. J. and A. F. Bent (1998). "Floral dip: a simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana." <u>Plant Journal</u> 16(6): 735-743.
- **Conesa, A., S. Götz, et al.** (2005). "Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research." <u>Bioinformatics</u> **21**(18): 3674.

- **Cordes, S., J. Deikman, et al.** (1989). "Interaction of a developmentally regulated DNAbinding factor with sites flanking two different fruit-ripening genes from tomato." <u>The Plant Cell Online</u> **1**(10): 1025-1034.
- **Davies, P. J.** (2010). The Plant Hormones: Their Nature, Occurrence, and Functions. <u>Plant</u> <u>Hormones</u>, Springer Netherlands: 1-15.
- **Davies, W. J. and J. Zhang** (1991). "Root signals and the regulation of growth and development of plants in drying soil." <u>Annual Review of Plant Biology</u> **42**(1): 55-76.
- **Davuluri, R., H. Sun, et al.** (2003). "AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors." <u>Bmc Bioinformatics</u> 4(1): 25.
- De Moraes, C., W. Lewis, et al. (1998). "Herbivore-infested plants selectively attract parasitoids."
- De Moraes, C. M., W. J. Lewis, et al. (1998). "Herbivore-infested plants selectively attract parasitoids." <u>Nature</u> **393**(6685): 570-573.
- De Moraes, C. M., M. C. Mescher, et al. (2001). "Caterpillar-induced nocturnal plant volatiles repel conspecific females." <u>Nature</u> **410**(6828): 577-580.
- **De Vos, M., V. R. Van Oosten, et al.** (2005). "Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack." <u>Molecular Plant-Microbe</u> Interactions **18**(9): 923-937.
- **De Vos, M., W. Van Zaanen, et al.** (2006). "Herbivore-induced resistance against microbial pathogens in Arabidopsis." <u>Plant Physiology</u> **142**(1): 352.
- De Wit, P. J. G. M. (1995). "Fungal avirulence genes and plant resistance genes: Unraveling the molecular basis of gene-for-gene interactions." <u>Advances in Botanical Research</u> 21: 147-185.
- **De Wit, P. J. G. M.** (1997). "Pathogen avirulence and plant resistance: a key role for recognition." <u>Trends in Plant Science</u> **2**(12): 452-458.
- Degen, T., C. Dillmann, et al. (2004). "High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines." <u>Plant Physiology</u> 135(4): 1928-1938.
- **Degenhardt, J., J. Gershenzon, et al.** (2003). "Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies." Current Opinion in Biotechnology **14**(2): 169-176.
- Degenhardt, J., I. Hiltpold, et al. (2009). "Restoring a maize root signal that attracts insectkilling nematodes to control a major pest." <u>Proceedings of the National Academy of</u> <u>Sciences</u> 106(32): 13213-13218.
- **Delessert, C., K. Kazan, et al.** (2005). "The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis." <u>The Plant Journal</u> **43**(5): 745-757.
- Delessert, C., I. Wilson, et al. (2004). "Spatial and temporal analysis of the local response to wounding." <u>Plant Molecular Biology</u> 55(2): 165-181.
- **Després, C., C. Chubak, et al.** (2003). "The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1." <u>The Plant Cell Online</u> **15**(9): 2181-2191.
- Devoto, A. and J. G. Turner (2005). "Jasmonate-regulated Arabidopsis stress signalling network." <u>Physiologia Plantarum</u> 123(2): 161-172.

- **Dicke, M.** (1994). "Local and systemic production of volatile herbivore-induced terpenoids: their role in plant-carnivore mutualism." Journal of Plant Physiology **143**(4-5): 465-472.
- **Dicke, M. and R. Van Poecke** (2002). "Signaling in plant-insect interactions: signal transduction in direct and indirect plant defence." <u>Plant signal transduction. Oxford</u> <u>University Press, Oxford</u>: 289-316.
- **Dong, X.** (1998). "SA, JA, ethylene, and disease resistance in plants." <u>Current Opinion in</u> <u>Plant Biology</u> **1**(4): 316-323.
- **Dong, X.** (2004). "NPR1, all things considered." <u>Current Opinion in Plant Biology</u> **7**(5): 547-552.
- Dorn, A., J. Bollekens, et al. (1987). "A multiplicity of CCAAT box-binding proteins." <u>Cell</u> 50(6): 863-872.
- **Dudareva, N., F. Negre, et al.** (2006). "Plant volatiles: recent advances and future perspectives." <u>Critical Reviews in Plant Sciences</u> **25**(5): 417-440.
- **Durner, J., J. Shah, et al.** (1997). "Salicylic acid and disease resistance in plants." <u>Trends in</u> <u>Plant Science</u> **2**(7): 266-274.
- **Durrant, W. E., O. Rowland, et al.** (2000). "cDNA-AFLP reveals a striking overlap in racespecific resistance and wound response gene expression profiles." <u>The Plant Cell</u> <u>Online</u> **12**(6): 963-977.
- **Duval, M., T. F. Hsieh, et al.** (2002). "Molecular characterization of AtNAM: a member of theArabidopsis NAC domain superfamily." <u>Plant Molecular Biology</u> **50**(2): 237-248.
- El-Shehawi, A. M., M. M. Elseehy, et al. (2011). "Isolation and sequence analysis of wheat tissue-specific cDNAs by differential display." <u>Plant Molecular Biology Reporter</u> 29(1): 135-148.
- Engelberth, J., H. T. Alborn, et al. (2004). "Airborne signals prime plants against insect herbivore attack." <u>Proceedings of the National Academy of Sciences of the United States of America</u> 101(6): 1781.
- Erb, M., T. G. Köllner, et al. (2010). "The role of abscisic acid and water stress in root herbivore-induced leaf resistance." <u>New Phytologist</u> 189(1): 308-320.
- Erb, M., T. G. Köllner, et al. (2011). "The role of abscisic acid and water stress in root herbivore-induced leaf resistance." <u>New Phytologist</u> **189**(1): 308-320.
- Erb, M., C. Lenk, et al. (2009). "The underestimated role of roots in defense against leaf attackers." <u>Trends in Plant Science</u> 14(12): 653-659.
- **Eulgem, T., P. J. Rushton, et al.** (2000). "The WRKY superfamily of plant transcription factors." Trends in Plant Science **5**(5): 199-205.
- **Eulgem, T., P. J. Rushton, et al.** (1999). "Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors." <u>The EMBO journal</u> **18**(17): 4689-4699.
- Fan, W. and X. Dong (2002). "In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid–mediated gene activation in Arabidopsis." <u>The Plant</u> <u>Cell Online</u> 14(6): 1377-1389.
- Farmer, E. E., R. R. Johnson, et al. (1992). "Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid." <u>Plant Physiology</u> **98**(3): 995.
- Farmer, E. E. and C. A. Ryan (1992). "Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors." <u>The Plant Cell Online</u> 4(2): 129-134.

- Felix, G. and T. Boller (1995). "Systemin induces rapid ion fluxes and ethylene biosynthesis in Lycopersicon peruvianum cells." <u>The Plant Journal</u> **7**(3): 381-389.
- Felton, G. W. and K. L. Korth (2000). "Trade-offs between pathogen and herbivore resistance." Current Opinion in Plant Biology **3**(4): 309-314.
- Feussner, I. and C. Wasternack (2002). "The lipoxygenase pathway." <u>Annual Review of</u> <u>Plant Biology</u> **53**(1): 275-297.
- Field, B. and A. E. Osbourn (2008). "Metabolic diversification independent assembly of operon-like gene clusters in different plants." <u>Science</u> **320**(5875): 543.
- Frampton, J., T. Gibson, et al. (1991). "Proposed structure for the DNA-binding domain of the Myb oncoprotein based on model building and mutational analysis." <u>Protein</u> <u>Engineering</u> 4(8): 891.
- Franceschi, V. R., P. Krokene, et al. (2005). "Anatomical and chemical defenses of conifer bark against bark beetles and other pests." <u>New Phytologist</u> 167(2): 353-376.
- Frey, M., C. Stettner, et al. (2000). "An herbivore elicitor activates the gene for indole emission in maize." Proceedings of the National Academy of Sciences 97(26): 14801.
- **Fujimoto, S. Y., M. Ohta, et al.** (2000). "Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression." <u>The Plant Cell Online</u> **12**(3): 393-404.
- Gatehouse, J. A. (2002). "Plant resistance towards insect herbivores: a dynamic interaction." <u>New Phytologist</u> 156(2): 145-169.
- Gershenzon, J. and R. Croteau (1993). "Terpenoid biosynthesis: the basic pathway and formation of monoterpenes, sesquiterpenes and diterpenes." <u>Lipid Metabolism in Plants. CRC Press, Boca Raton, FL</u>: 339-388.
- **Glazebrook, J.** (2001). "Genes controlling expression of defense responses in Arabidopsis-2001 status." <u>Current Opinion in Plant Biology</u> **4**(4): 301-308.
- Glazebrook, J. (2005). "Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens." <u>Annu. Rev. Phytopathol.</u> 43: 205-227.
- Göhre, V. and S. Robatzek (2008). "Breaking the barriers: microbial effector molecules subvert plant immunity." <u>Annu. Rev. Phytopathol.</u> **46**: 189-215.
- Greenberg, J. T., A. Guo, et al. (1994). "Programmed cell death in plants: A pathogentriggered response activated coordinately with multiple defense functions." <u>Cell</u> 77(4): 551-563.
- Halitschke, R., K. Gase, et al. (2003). "Molecular Interactions between the Specialist HerbivoreManduca sexta (Lepidoptera, Sphingidae) and Its Natural Host Nicotiana attenuata. VI. Microarray Analysis Reveals That Most Herbivore-Specific Transcriptional Changes Are Mediated by Fatty Acid-Amino Acid Conjugates." <u>Plant Physiology</u> 131(4): 1894-1902.
- Hattori, T., T. Terada, et al. (1995). "Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: Analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1." <u>The Plant Journal</u> 7(6): 913-925.
- Hayashi, T., D. Kobayashi, et al. (2003). "Genomic cloning of ribonucleases in Nicotiana glutinosa leaves, as induced in response to wounding or to TMV-infection, and characterization of their promoters." <u>Bioscience, biotechnology, and biochemistry</u> 67(12): 2574-2583.

- He, Y. and S. Gan (2001). "Identical promoter elements are involved in regulation of the OPR1 gene by senescence and jasmonic acid in Arabidopsis." <u>Plant Molecular</u> <u>Biology</u> 47(5): 595-605.
- Hegedus, D., M. Yu, et al. (2003). "Molecular characterization of Brassicanapus NAC domain transcriptional activators induced in response to biotic and abiotic stress." <u>Plant Molecular Biology</u> 53(3): 383-397.
- Heim, M. A., M. Jakoby, et al. (2003). "The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity." Molecular Biology and Evolution **20**(5): 735-747.
- Hirai, M. Y., K. Sugiyama, et al. (2007). "Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis." <u>Proceedings of the National Academy of Sciences</u> **104**(15): 6478.
- Hoballah, M. E., T. G. Kollner, et al. (2004). "Costs of induced volatile production in maize." <u>Oikos</u> 105(1): 168-180.
- Hoballah, M. E. F., C. Tamo, et al. (2002). "Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid Cotesia marginiventris: Is quality or quantity important?" Journal of Chemical Ecology **28**(5): 951-968.
- Hofgen, R. and L. Willmitzer (1988). "Storage of competent cells for Agrobacterium transformation." <u>Nucleic Acids Research</u> 16(20): 9877.
- Horváth, E., G. Szalai, et al. (2007). "Induction of abiotic stress tolerance by salicylic acid signaling." Journal of Plant Growth Regulation **26**(3): 290-300.
- Howe, G. A. and G. Jander (2008). "Plant immunity to insect herbivores." <u>Annual Review</u> of Plant Biology **59**: 41.
- Howe, G. A., J. Lightner, et al. (1996). "An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack." <u>The Plant Cell 8(11)</u>: 2067-2077.
- **Hyun, Y., S. Choi, et al.** (2008). "Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis." <u>Developmental cell</u> **14**(2): 183-192.
- **Ishiguro, S., A. Kawai-Oda, et al.** (2001). "The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis." <u>The Plant Cell Online</u> **13**(10): 2191-2209.
- Itzhaki, H., J. M. Maxson, et al. (1994). "An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene." Proceedings of the National Academy of Sciences **91**(19): 8925.
- Jackson, M. B. and D. Campbell (1975). "Movement of ethylene from roots to shoots, a factor in the responses of tomato plants to waterlogged soil conditions." <u>New</u> Phytologist **74**(3): 397-406.
- Jakoby, M., B. Weisshaar, et al. (2002). "bZIP transcription factors in Arabidopsis." <u>Trends</u> <u>in Plant Science</u> 7(3): 106-111.
- Kagaya, Y., K. Ohmiya, et al. (1999). "RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants." <u>Nucleic Acids Research</u> 27(2): 470-478.

- Kalde, M., M. Barth, et al. (2003). "Members of the Arabidopsis WRKY Group III Transcription Factors Are Part of Different Plant Defense Signaling Pathways." <u>Molecular Plant-Microbe Interactions</u> 16(4): 295-305.
- Karban, R. and I. T. Baldwin (1997). Induced responses to herbivory, University of Chicago Press.
- Karimi, M., D. Inzé, et al. (2002). "GATEWAY (TM) vectors for Agrobacterium-mediated plant transformation." <u>Trends in Plant Science</u> **7**(5): 193-195.
- Kay, S., S. Hahn, et al. (2007). "A bacterial effector acts as a plant transcription factor and induces a cell size regulator." <u>Science</u> 318(5850): 648.
- Kazan, K. and J. M. Manners (2008). "Jasmonate signaling: toward an integrated view." <u>Plant Physiology</u> **146**(4): 1459-1468.
- Keddie, J. S., G. Hübner, et al. (1992). "Cloning and characterisation of an oleosin gene from Brassica napus." <u>Plant Molecular Biology</u> **19**(3): 443-453.
- Kemper, E. L., G. C. Neto, et al. (1999). "The role of Opaque2 in the control of lysinedegrading activities in developing maize endosperm." <u>The Plant Cell Online</u> **11**(10): 1981-1994.
- Kendall, D. M. and L. B. Bjostad (1990). "Phytohormone ecology." Journal of Chemical Ecology 16(3): 981-991.
- Kessler, A. and I. T. Baldwin (2001). "Defensive function of herbivore-induced plant volatile emissions in nature." <u>Science</u> 291(5511): 2141.
- Kessler, A. and I. T. Baldwin (2002). "Plant responses to insect herbivory: the emerging molecular analysis." <u>Annual Review of Plant Biology</u> **53**(1): 299-328.
- Kessler, A., R. Halitschke, et al. (2006). "Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata." <u>Oecologia</u> 148(2): 280-292.
- **Khodary, S.** (2004). "Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants." Int. J. Agric. Biol **6**(1): 5-8.
- Kim, S. H., J. K. Hong, et al. (2004). "CAZFP1, Cys 2/His 2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in Capsicum annuum." Plant Molecular Biology 55(6): 883-904.
- Kim, S. Y., Y. C. Kim, et al. (2007). "The chili pepper CaATL1: an AT-hook motifcontaining transcription factor implicated in defence responses against pathogens." <u>Molecular Plant Pathology</u> 8(6): 761-771.
- Kinkema, M., W. Fan, et al. (2000). "Nuclear localization of NPR1 is required for activation of PR gene expression." <u>The Plant Cell Online</u> **12**(12): 2339-2350.
- **Kirsch, C., M. Takamiya-Wik, et al.** (2000). "A novel regulatory element involved in rapid activation of parsley ELI7 gene family members by fungal elicitor or pathogen infection." <u>Molecular Plant Pathology</u> **1**(4): 243-251.
- Knight, H. and M. R. Knight (2001). "Abiotic stress signalling pathways: specificity and cross-talk." <u>Trends in Plant Science</u> 6(6): 262-267.
- Kodama, Y. and H. Sano (2006). "Evolution of a basic helix-loop-helix protein from a transcriptional repressor to a plastid-resident regulatory factor." Journal of Biological Chemistry 281(46): 35369.
- Köllner, T. G., M. Held, et al. (2008). "A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties." <u>Plant Cell</u> 20(2): 482-494.

- Köllner, T. G., C. Schnee, et al. (2004). "The sesquiterpene hydrocarbons of maize (Zea mays) form five groups with distinct developmental and organ-specific distribution." <u>Phytochemistry</u> **65**(13): 1895-1902.
- Koornneef, A. and C. M. J. Pieterse (2008). "Cross talk in defense signaling." <u>Plant</u> <u>Physiology</u> **146**(3): 839-844.
- Kuc, J. (1982). "Induced immunity to plant disease." Bioscience 32: 854-860.
- Kunkel, B. N. and D. M. Brooks (2002). "Cross talk between signaling pathways in pathogen defense." <u>Current Opinion in Plant Biology</u> 5(4): 325-331.
- Kusnetsov, V., M. Landsberger, et al. (1999). "The assembly of the CAAT-box binding complex at a photosynthesis gene promoter is regulated by light, cytokinin, and the stage of the plastids." Journal of Biological Chemistry **274**(50): 36009-36014.
- Landy, A. (1989). "Dynamic, structural, and regulatory aspects of LAMBDA-site-specific recombination." <u>Annual Review of Biochemistry</u> **58**: 913-949.
- Lee, S., S. G. Kim, et al. (2010). "Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis." <u>New Phytologist</u> 189(2): 644-644.
- Leon-Reyes, A., S. H. Spoel, et al. (2009). "Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling." <u>Plant Physiology</u> **149**(4): 1797.
- Letovsky, J. and W. S. Dynan (1989). "Measurement of the binding of transcription factor Sp1 to a single GC box recognition sequence." <u>Nucleic Acids Research</u> 17(7): 2639-2653.
- Li, J., G. Brader, et al. (2004). "The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense." <u>The Plant</u> <u>Cell Online</u> 16(2): 319-331.
- Li, L., C. Li, et al. (2002). "Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato." <u>Proceedings of the National Academy of Sciences</u> 99(9): 6416.
- Liang, W., C. Li, et al. (2009). "The Arabidopsis homologs of CCR4-associated factor 1 show mRNA deadenylation activity and play a role in plant defence responses." <u>Cell</u> research 19(3): 307-316.
- Lorenzo, O., J. M. Chico, et al. (2004). "JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis." <u>The Plant Cell Online</u> **16**(7): 1938-1950.
- Lorenzo, O., R. Piqueras, et al. (2003). "ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense." <u>The Plant Cell</u> <u>Online</u> 15(1): 165-178.
- Lu, G., A. L. Paul, et al. (1996). "Transcription factor veracity: is GBF3 responsible for ABA-regulated expression of Arabidopsis Adh?" <u>The Plant Cell Online</u> 8(5): 847-857.
- Maffei, M. E., A. Mithöfer, et al. (2007). "Before gene expression: early events in plantinsect interaction." <u>Trends in Plant Science</u> 12(7): 310-316.
- Mandaokar, A., B. Thines, et al. (2006). "Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling." <u>The Plant Journal</u> **46**(6): 984-1008.

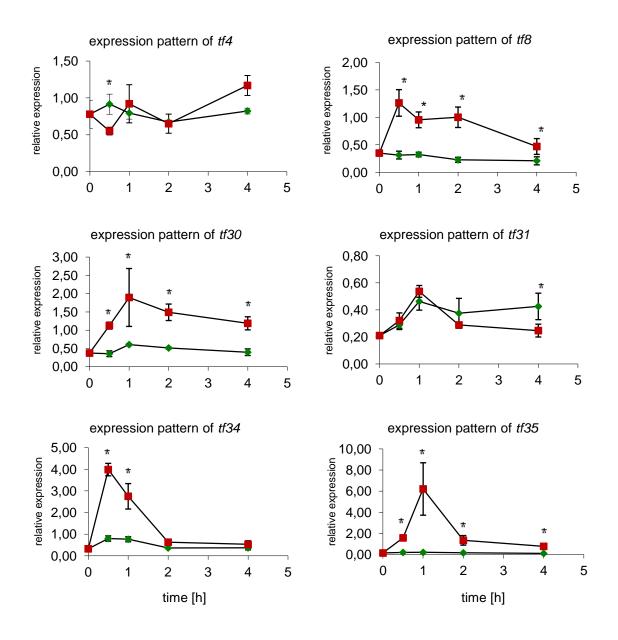
- Marten, H., K. R. Konrad, et al. (2007). "Ca2+-dependent and-independent abscisic acid activation of plasma membrane anion channels in guard cells of Nicotiana tabacum." Plant Physiology **143**(1): 28-37.
- Martin, D. M., J. Fäldt, et al. (2004). "Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily." <u>Plant Physiology</u> 135(4): 1908-1927.
- Matton, D. P., G. Prescott, et al. (1993). "Identification of cis-acting elements involved in the regulation of the pathogenesis-related gene STH-2 in potato." <u>Plant Molecular</u> <u>Biology</u> 22(2): 279-291.
- Memelink, J. (2009). "Regulation of gene expression by jasmonate hormones." <u>Phytochemistry</u> **70**(13-14): 1560-1570.
- Memelink, J., R. Verpoorte, et al. (2001). "ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism." <u>Trends in Plant Science</u> 6(5): 212-219.
- Menke, F. L. H., A. Champion, et al. (1999). "A novel jasmonate-and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate-and elicitor-inducible AP2-domain transcription factor, ORCA2." <u>The EMBO journal</u> 18(16): 4455-4463.
- Miao, Y., T. M. Laun, et al. (2007). "Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter." <u>Plant Molecular Biology</u> **65**(1): 63-76.
- Mithöfer, A. and W. Boland (2008). "Recognition of herbivory-associated molecular patterns." <u>Plant Physiology</u> 146(3): 825-831.
- Mithöfer, A., G. Wanner, et al. (2005). "Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission." <u>Plant Physiology</u> 137(3): 1160-1168.
- Mitsuda, N. and M. Ohme-Takagi (2009). "Functional analysis of transcription factors in Arabidopsis." <u>Plant and Cell Physiology</u> 50(7): 1232.
- Moreno, A. B., G. Peñas, et al. (2005). "Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice." <u>Molecular Plant-Microbe Interactions</u> **18**(9): 960-972.
- Mur, L. A. J., P. Kenton, et al. (2006). "The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death." <u>Plant Physiology</u> 140(1): 249.
- Musser, R. O., S. M. Hum-Musser, et al. (2002). "Herbivory: Caterpillar saliva beats plant defences." <u>Nature</u> 416(6881): 599-600.
- Nakashita, H., M. Yasuda, et al. (2003). "Brassinosteroid functions in a broad range of disease resistance in tobacco and rice." <u>The Plant Journal</u> **33**(5): 887-898.
- Navarro, L., R. Bari, et al. (2008). "DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling." <u>Current Biology</u> 18(9): 650-655.
- Navarro, L., P. Dunoyer, et al. (2006). "A plant miRNA contributes to antibacterial resistance by repressing auxin signaling." <u>Science</u> **312**(5772): 436.

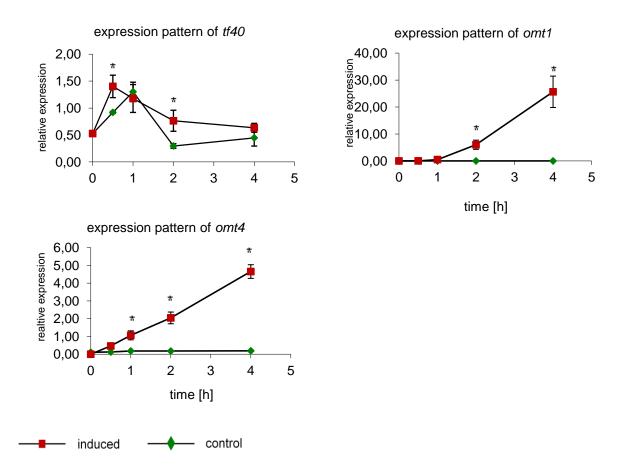
- Nishiuchi, T., H. Shinshi, et al. (2004). "Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves." Journal of Biological Chemistry 279(53): 55355.
- Nürnberger, T. and B. Kemmerling (2009). "Pathogen-Associated Molecular Patterns (PAMP) and PAMP-Triggered Immunity." <u>Annual Plant Reviews Volume 34:</u> <u>Molecular Aspects of Plant Disease Resistance</u>: 16-47.
- **O'Donnell, P., C. Calvert, et al.** (1996). "Ethylene as a signal mediating the wound response of tomato plants." <u>Science</u> **274**(5294): 1914.
- Ogata, T., Y. Kida, et al. (2012). "Overexpression of tobacco ethylene response factor *NtERF3* gene and its homologues from tobacco and rice induces hypersensitive response-like cell death in tobacco." Journal of General Plant Pathology **78**(1): 8-17.
- **Ohme-Takagi, M. and H. Shinshi** (1995). "Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element." <u>The Plant Cell Online</u> **7**(2): 173-182.
- **Onate-Sánchez, L. and K. B. Singh** (2002). "Identification of Arabidopsis ethyleneresponsive element binding factors with distinct induction kinetics after pathogen infection." <u>Plant Physiology</u> **128**(4): 1313-1322.
- Paré, P. W. and J. H. Tumlinson (1997). "De novo biosynthesis of volatiles induced by insect herbivory in cotton plants." <u>Plant Physiology</u> 114(4): 1161.
- Park, H. C., M. L. Kim, et al. (2004). "Pathogen-and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor." <u>Plant Physiology</u> 135(4): 2150-2161.
- **Pastuglia, M., D. Roby, et al.** (1997). "Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea." <u>The Plant Cell Online 9(1)</u>: 49-60.
- Penninckx, I. A. M. A., B. P. H. J. Thomma, et al. (1998). "Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensingene in Arabidopsis." <u>The Plant Cell Online</u> 10(12): 2103-2114.
- Petersen, M., P. Brodersen, et al. (2000). "Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance." <u>Cell</u> **103**(7): 1111-1120.
- Petersen, M., P. Brodersen, et al. (2000). "Arabidopsis MAP Kinase 4 Negatively Regulates Systemic Acquired Resistance." Cell **103**(7): 1111-1120.
- **Petroni, K., E. Cominelli, et al.** (2000). "The developmental expression of the maize regulatory gene Hopi determines germination-dependent anthocyanin accumulation." Genetics **155**(1): 323-336.
- Phillips, M., J. D'Auria, et al. (2009). "Evaluation of Candidate Reference Genes for Real-Time Quantitative PCR of Plant Samples Using Purified cDNA as Template." <u>Plant</u> <u>Molecular Biology Reporter</u> 27(3): 407-416.
- **Pichersky, E. and J. Gershenzon** (2002). "The formation and function of plant volatiles: perfumes for pollinator attraction and defense." <u>Current Opinion in Plant Biology</u> **5**(3): 237-243.
- Pieterse, C. M. J., A. Leon-Reyes, et al. (2009). "Networking by small-molecule hormones in plant immunity." <u>Nature Chemical Biology</u> **5**(5): 308-316.
- Pieterse, C. M. J., J. Ton, et al. (2001). "Cross-talk between plant defence signalling pathways: boost or burden?" <u>AgBiotechNet</u> 3(june): 1-8.
- Pieterse, C. M. J. and L. C. van Loon (1999). "Salicylic acid-independent plant defence pathways." <u>Trends in Plant Science</u> 4(2): 52-58.

- Pré, M., M. Atallah, et al. (2008). "The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense." <u>Plant Physiology</u> 147(3): 1347.
- Puthoff, D. P. and A. C. Smigocki (2007). "Insect feeding-induced differential expression of Beta vulgaris root genes and their regulation by defense-associated signals." <u>Plant</u> <u>Cell Reports</u> 26(1): 71-84.
- **Raguso, R. A. and E. Pichersky** (1995). "Floral volatiles fromClarkia breweri andC. concinna (Onagraceae): Recent evolution of floral scent and moth pollination." <u>Plant</u> <u>Systematics and Evolution</u> **194**(1): 55-67.
- **Ralph, S., C. Oddy, et al.** (2006). "Genomics of hybrid poplar (Populus trichocarpa× deltoides) interacting with forest tent caterpillars (Malacosoma disstria): normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences in poplar." Molecular Ecology **15**(5): 1275-1297.
- Rasmann, S., T. G. Köllner, et al. (2005). "Recruitment of entomopathogenic nematodes by insect-damaged maize roots." <u>Nature</u> **434**(7034): 732-737.
- Reinhard, J., M. V. Srinivasan, et al. (2004). "Olfaction: Scent-triggered navigation in honeybees." <u>Nature</u> 427(6973): 411-411.
- **Reymond, P., N. Bodenhausen, et al.** (2004). "A Conserved Transcript Pattern in Response to a Specialist and a Generalist Herbivore." <u>The Plant Cell Online</u> **16**(11): 3132-3147.
- **Reymond, P. and E. E. Farmer** (1998). "Jasmonate and salicylate as global signals for defense gene expression." Current Opinion in Plant Biology 1(5): 404-411.
- **Reymond, P., H. Weber, et al.** (2000). "Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis." <u>The Plant Cell Online</u> **12**(5): 707-720.
- Riechmann, J. L., J. Heard, et al. (2000). "Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes." <u>Science</u> **290**(5499): 2105.
- Rock, C. D. and J. Zeevaart (1991). "The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis." <u>Proceedings of the National Academy of Sciences</u> 88(17): 7496-7499.
- Rodríguez-Concepción, M. and A. Boronat (2002). "Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics." Plant Physiology **130**(3): 1079-1089.
- Rose, A., I. Meier, et al. (1999). "The tomato I-box binding factor LeMYBI is a member of a novel class of Myb-like proteins." <u>The Plant Journal</u> **20**(6): 641-652.
- **Ross, A. F.** (1961). "Systemic acquired resistance induced by localized virus infections in plants." <u>Virology</u> **14**(3): 340-358.
- Rouster, J., R. Leah, et al. (1997). "Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain." <u>The Plant</u> <u>Journal</u> 11(3): 513-523.
- Rushton, P. J. and I. E. Somssich (1998). "Transcriptional control of plant genes responsive to pathogens." <u>Current Opinion in Plant Biology</u> 1(4): 311-315.
- Ruther, J. and S. Kleier (2005). "Plant-plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol." Journal of Chemical Ecology **31**(9): 2217-2222.
- Ryan, C. A. (1990). "Protease inhibitors in plants: genes for improving defenses against insects and pathogens." <u>Annual Review of Phytopathology</u> **28**(1): 425-449.

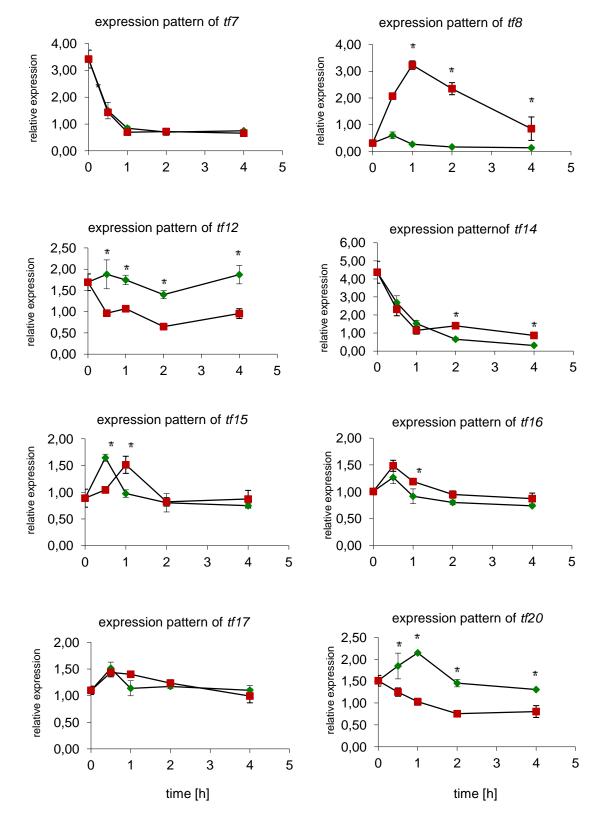
- Sano, T., Y. Kuraya, et al. (1999). "Phosphate as a limiting factor for the cell division of tobacco BY-2 cells." <u>Plant and Cell Physiology</u> 40(1): 1.
- Santner, A. and M. Estelle (2009). "Recent advances and emerging trends in plant hormone signalling." Nature **459**(7250): 1071-1078.
- Schaller, F. (2001). "Enzymes of the biosynthesis of octadecanoid-derived signalling molecules." Journal of Experimental Botany 52(354): 11-23.
- Schenk, P. M., K. Kazan, et al. (2000). "Coordinated plant defense responses in Arabidopsis revealed by microarray analysis." <u>Proceedings of the National Academy</u> of Sciences 97(21): 11655.
- Schmelz, E. A., R. J. Grebenok, et al. (1998). "Damage-induced accumulation of phytoecdysteroids in spinach: a rapid root response involving the octadecanoic acid pathway." Journal of Chemical Ecology 24(2): 339-360.
- Schmelz, E. A., R. J. Grebenok, et al. (1999). "Insect-induced synthesis of phytoecdysteroids in spinach, Spinacia oleracea." Journal of Chemical Ecology 25(8): 1739-1757.
- Schnee, C., T. G. Köllner, et al. (2006). "The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores." <u>Proceedings of the National Academy of Sciences of the United States of</u> America **103**(4): 1129-1134.
- Scott, M. P. (2000). "Development: The Natural History of Genes Review." Cell 100: 27-40.
- Seki, M., M. Narusaka, et al. (2001). "Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray." <u>The Plant Cell Online</u> **13**(1): 61-72.
- Senaratna, T., D. Touchell, et al. (2000). "Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants." <u>Plant Growth Regulation</u> 30(2): 157-161.
- Sharkey, T. D., X. Chen, et al. (2001). "Isoprene increases thermotolerance of fosmidomycin-fed leaves." <u>Plant Physiology</u> 125(4).
- Shinozaki, K. and K. Yamaguchi-Shinozaki (2000). "Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways." <u>Current Opinion in Plant Biology</u> **3**(3): 217-223.
- Shulaev, V., P. Silverman, et al. (1997). "Airborne signalling by methyl salicylate in plant pathogen resistance."
- Singh, B. and K. Usha (2003). "Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress." <u>Plant Growth Regulation</u> **39**(2): 137-141.
- Singh, K. B., R. C. Foley, et al. (2002). "Transcription factors in plant defense and stress responses." <u>Current Opinion in Plant Biology</u> 5(5): 430-436.
- Sohn, K., S. Lee, et al. (2006). "Overexpression of the pepper CARAV1 pathogen-induced gene encoding a RAV transcription factor induces pathogenesis-related genes and enhances resistance to bacterial pathogen in Arabidopsis." <u>Plant Mol Biol</u> 61: 897-915.
- Solano, R., A. Stepanova, et al. (1998). "Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1." <u>Genes & Development</u> 12(23): 3703.

- Song, Y. H., C. M. Yoo, et al. (2008). "DNA-Binding Study Identifies C-Box and Hybrid C/G-Box or C/A-Box Motifs as High-Affinity Binding Sites for STF1 and LONG HYPOCOTYL5 Proteins." <u>Plant Physiology</u> 146(4): 1862-1877.
- Spoel, S. H. and X. Dong (2008). "Making sense of hormone crosstalk during plant immune responses." <u>Cell host & microbe</u> 3(6): 348-351.
- Spoel, S. H., A. Koornneef, et al. (2003). "NPR1 modulates cross-talk between salicylateand jasmonate-dependent defense pathways through a novel function in the cytosol." <u>The Plant Cell Online</u> 15(3): 760-770.
- **Staswick, P. E. and I. Tiryaki** (2004). "The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis." <u>The Plant Cell</u> **16**(8): 2117.
- Stracke, R., M. Werber, et al. (2001). "The R2R3-MYB gene family in Arabidopsis thaliana." <u>Current Opinion in Plant Biology</u> 4(5): 447-456.
- Stratmann, J. W. (2003). "Long distance run in the wound response-jasmonic acid is pulling ahead." <u>Trends in Plant Science</u> 8(6): 247-250.
- Strompen, G., R. Grüner, et al. (1998). "An as-1-like motif controls the level of expression of the gene for the pathogenesis-related protein 1a from tobacco." <u>Plant Molecular</u> <u>Biology</u> 37(5): 871-883.
- Sun, S., J. P. Yu, et al. (2008). "TINY, a dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE-and ethylene-responsive element-mediated signaling pathways in Arabidopsis." <u>Journal of Biological</u> <u>Chemistry 283(10)</u>: 6261.
- **Takatsuji, H. and T. Matsumoto** (1996). "Target-sequence recognition by separate-type Cys2/His2 zinc finger proteins in plants." Journal of Biological Chemistry **271**(38): 23368.
- Takeda, S., K. Sugimoto, et al. (1999). "A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors." <u>The Plant Journal</u> 18(4): 383-393.
- Tardieu, F. and W. J. Davies (1992). "Stomatal response to abscisic acid is a function of current plant water status." <u>Plant Physiology</u> 98(2): 540.
- **Thaler, J. S. and R. M. Bostock** (2004). "Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects." <u>Ecology</u> **85**(1): 48-58.
- Thatcher, L. F., J. P. Anderson, et al. (2005). "Plant defence responses: what have we learnt from Arabidopsis?" <u>Functional Plant Biology</u> **32**(1): 1-19.
- Thines, B., L. Katsir, et al. (2007). "JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling." <u>Nature</u> **448**(7154): 661-665.
- **Tholl, D.** (2006). "Terpene synthases and the regulation, diversity and biological roles of terpene metabolism." <u>Current Opinion in Plant Biology</u> **9**(3): 297-304.
- Thomma, B. P. H. J., I. A. M. A. Penninckx, et al. (2001). "The complexity of disease signaling in Arabidopsis." <u>Current Opinion in Immunology</u> **13**(1): 63-68.
- Timko, M. P., A. P. Kausch, et al. (1985). "Light regulation of plant gene expression by an upstream enhancer-like element." <u>Nature</u> **318**(6046): 579-582.
- Tiwari, S. B., G. Hagen, et al. (2003). "The roles of auxin response factor domains in auxinresponsive transcription." <u>The Plant Cell Online</u> **15**(2): 533-543.
- Toledo-Ortiz, G., E. Huq, et al. (2003). "The Arabidopsis basic/helix-loop-helix transcription factor family." <u>The Plant Cell Online</u> **15**(8): 1749-1770.

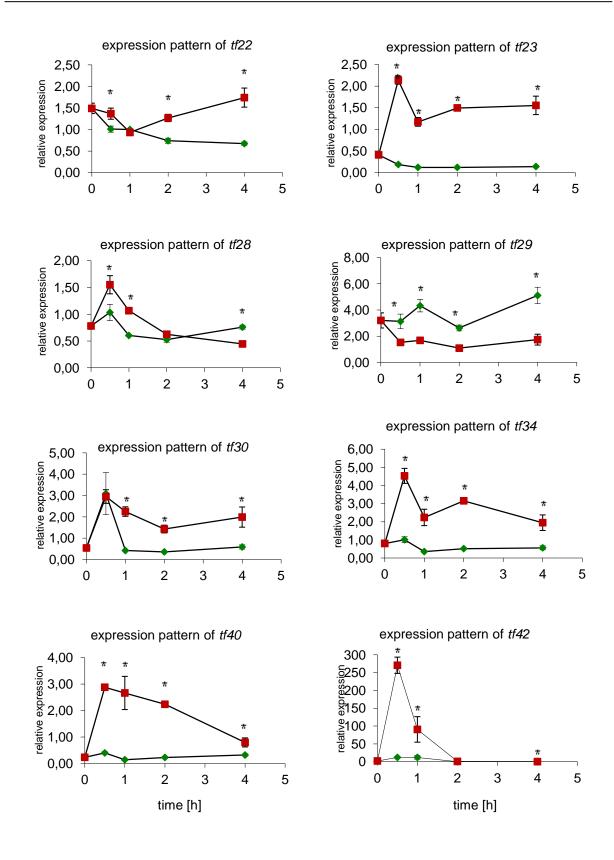

- **Tran, L. S. P., K. Nakashima, et al.** (2004). "Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter." <u>The</u> Plant Cell Online **16**(9): 2481-2498.
- Trapp, S. C. and R. B. Croteau (2001). "Genomic organization of plant terpene synthases and molecular evolutionary implications." <u>Genetics</u> **158**(2): 811.
- **Tucker, M., M. A. Valencia-Sanchez, et al.** (2001). "The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae." <u>Cell</u> **104**(3): 377-386.
- Turlings, T. C. J., P. M. Jeanbourquin, et al. (2005). "Evaluating the induced-odour emission of a Bt maize and its attractiveness to parasitic wasps." <u>Transgenic Research</u> 14(6): 807-816.
- Turlings, T. C. J., J. H. Tumlinson, et al. (1990). "Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps." <u>Science</u> **250**(4985): 1251-1253.
- Turner, J. G., C. Ellis, et al. (2002). "The jasmonate signal pathway." <u>The Plant Cell Online</u> 14(suppl 1): S153-S164.
- Van Dam, N. M., M. Horn, et al. (2001). "Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuata." Journal of Chemical Ecology 27(3): 547-568.
- Van Dam, N. M. and C. E. Raaijmakers (2006). "Local and systemic induced responses to cabbage root fly larvae (Delia radicum) in Brassica nigra and B. oleracea." <u>Chemoecology</u> 16(1): 17-24.
- Van Dam, N. M., C. E. Raaijmakers, et al. (2005). "Root herbivory reduces growth and survival of the shoot feeding specialist Pieris rapae on Brassica nigra." <u>Entomologia</u> <u>Experimentalis Et Applicata</u> 115(1): 161-170.
- Van Dam, N. M., L. Witjes, et al. (2004). "Interactions between aboveground and belowground induction of glucosinolates in two wild Brassica species." <u>New</u> <u>Phytologist</u> 161(3): 801-810.
- van der Fits, L. and J. Memelink (2000). "ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism." <u>Science</u> **289**(5477): 295.
- Van Der Linde, K., C. Kastner, et al. (2011). "Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis." <u>New Phytologist(189)</u>: 471-483.
- Vancanneyt, G., C. Sanz, et al. (2001). "Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance." <u>Proceedings of the National</u> <u>Academy of Sciences</u> 98(14): 8139-8144.
- Verdonk, J. C., M. A. Haring, et al. (2005). "ODORANT1 Regulates Fragrance Biosynthesis in Petunia Flowers." <u>The Plant Cell Online</u> **17**(5): 1612-1624.
- Vick, B. A. and D. C. Zimmerman (1984). "Biosynthesis of jasmonic acid by several plant species." <u>Plant Physiology</u> **75**(2): 458.
- Vignutelli, A., C. Wasternack, et al. (1998). "Systemic and local induction of an Arabidopsis thionin gene by wounding and pathogens." <u>The Plant Journal</u> 14(3): 285-295.
- Vlot, A. C., D. M. A. Dempsey, et al. (2009). "Salicylic acid, a multifaceted hormone to combat disease." <u>Annual Review of Phytopathology</u> 47: 177-206.
- von Dahl, C. C. and I. T. Baldwin (2007). "Deciphering the role of ethylene in plantherbivore interactions." Journal of Plant Growth Regulation 26(2): 201-209.


- Wäckers, F. L. and T. M. Bezemer (2003). "Root herbivory induces an above-ground indirect defence." Ecology Letters 6(1): 9-12.
- Waller, F., A. Müller, et al. (2006). "Expression of a WIPK-activated transcription factor results in increase of endogenous salicylic acid and pathogen resistance in tobacco plants." <u>Plant and Cell Physiology</u> 47(8): 1169.
- Walley, J. W., S. Coughlan, et al. (2007). "Mechanical stress induces biotic and abiotic stress responses via a novel cis-element." <u>Plos Genetics</u> **3**(10): e172.
- Walley, J. W., D. R. Kelley, et al. (2010). "Arabidopsis deadenylases AtCAF1a and AtCAF1b play overlapping and distinct roles in mediating environmental stress responses." <u>Plant Physiology</u> 152(2): 866-875.
- Wang, D., K. Pajerowska-Mukhtar, et al. (2007). "Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway." <u>Current Biology</u> **17**(20): 1784-1790.
- Wang, L., Z. Pei, et al. (2005). "OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation." <u>Molecular Plant-Microbe Interactions</u> 18(5): 375-384.
- Wang, Y. M. and C. F. He (2007). "Isolation and Characterization of a Cold-Induced DREB Gene from Aloe Vera L." <u>Plant Molecular Biology Reporter</u> **25**(3): 121-132.
- Wasternack, C., I. Stenzel, et al. (2006). "The wound response in tomato-role of jasmonic acid." Journal of Plant Physiology 163(3): 297-306.
- Wegel, E., R. Koumproglou, et al. (2009). "Cell Type-Specific Chromatin Decondensation of a Metabolic Gene Cluster in Oats." <u>The Plant Cell Online</u> **21**(12): 3926-3936.
- Wheals, A. E., L. C. Basso, et al. (1999). "Fuel ethanol after 25 years." <u>Trends in Biotechnology</u> 17(12): 482-487.
- Wobbe, K. and D. Klessig (1996). "Salicylic acid-an important signal in plants." <u>Plant Gene</u> <u>Research</u>: 167-196.
- Wright, L. C., A. A. Berryman, et al. (1979). "Host-resistance to the fir engraver beetle, *Scolytus ventralis* (Coleoptera, Scolytidae). 4. Effect of defoliation on wound monoterpene and inner bark carbohydrate concentrations." <u>Canadian Entomologist</u> 111(11): 1255-1262.
- Wu, S., M. A. Schoenbeck, et al. (2005). "Surrogate splicing for functional analysis of sesquiterpene synthase genes." <u>Plant Physiology</u> 138(3): 1322-1333.
- Xue, G. P., M. Kooiker, et al. (2011). "TaMYB13 is a transcriptional activator of fructosyltransferase genes involved in β-2, 6-linked fructan synthesis in wheat." <u>The Plant Journal</u> 68(5): 857-870.
- Yasuda, M., A. Ishikawa, et al. (2008). "Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis." <u>The Plant Cell Online</u> **20**(6): 1678-1692.
- Yoda, H., M. Ogawa, et al. (2002). "Identification of early-responsive genes associated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKYtype transcription factor in tobacco plants." <u>Molecular Genetics and Genomics</u> 267(2): 154-161.
- Yu, D., C. Chen, et al. (2001). "Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression." <u>The Plant Cell Online</u> 13(7): 1527-1540.

- Yuan, J. S., T. G. Köllner, et al. (2008). "Molecular and genomic basis of volatile-mediated indirect defense against insects in rice." <u>The Plant Journal</u> 55(3): 491-503.
- Yuan, Y., S. Zhong, et al. (2007). "Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility "<u>Plant Biotechnology Journal</u> 5(2): 313-324.
- Zarate, S. I., L. A. Kempema, et al. (2007). "Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses." <u>Plant Physiology</u> 143(2): 866-875.
- **Zhang, L., G. Zhao, et al.** (2011). "Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress." Journal of Experimental Botany.
- **Zhang, X., R. Henriques, et al.** (2006). "Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method." <u>Nature Protocols</u> **1**(2): 641-646.
- Zhang, Z. L., Z. Xie, et al. (2004). "A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells." <u>Plant Physiology</u> 134(4): 1500-1513.
- Zhang, Z. P. and I. T. Baldwin (1997). "Transport of [2-14 C] jasmonic acid from leaves to roots mimics wound-induced changes in endogenous jasmonic acid pools in Nicotiana sylvestris." <u>Planta</u> 203(4): 436-441.
- Zhao, T. J., S. Sun, et al. (2006). "Regulating the drought-responsive element (DRE)mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus." Journal of Biological Chemistry 281(16): 10752.
- Zimmermann, I. M., M. A. Heim, et al. (2004). "Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins." <u>The Plant Journal</u> **40**(1): 22-34.

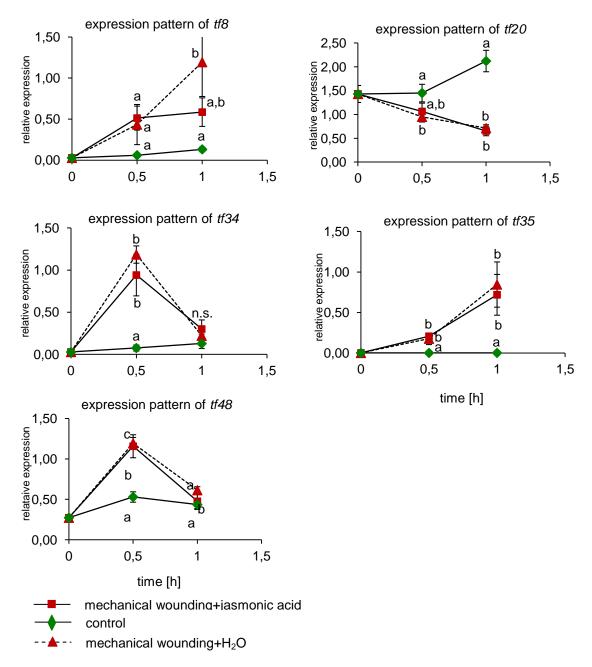

7. Appendix

7.1 QRT-PCR of the plant material treated with 30 min herbivore feeding

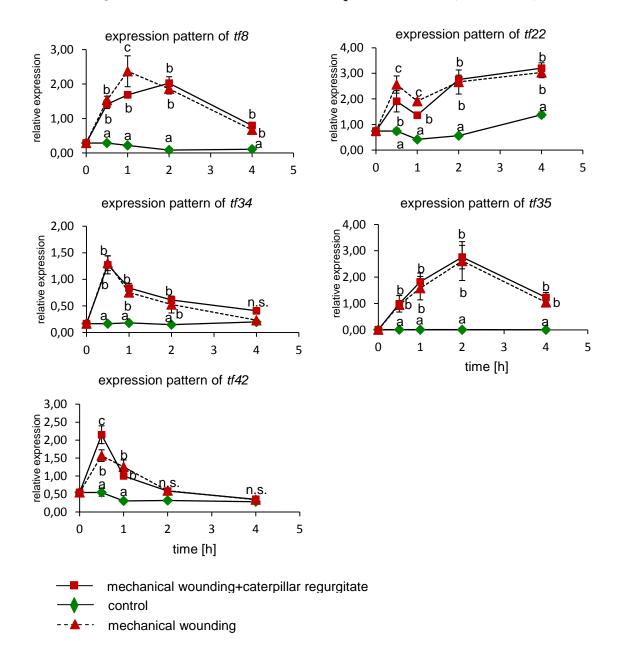




Relative expression pattern of further transcription factors and terpene synthases tested after 30 min herbivore feeding. Plants were treated with *S. littoralis* caged for 30 min on a single leaf. Material was harvested after: 0 h,0.5 h, 1 h, 2 h, and 4 h. Means and standard error are shown (n=4). The relative expression levels were calculated as described in 2.4.9. Two-Way ANOVA was used to calculate statistical differences with time as factor one and treatment as second variable. * indicate significant differences between treatments within time points (p<0.05).



7.2 QRT-PCR of plant material treated with continuous feeding



Relative expression pattern of further genes tested after continuous herbivore feeding. Expression pattern is shown over a time period of 4 h. Delprim maize leaves were treated with the caterpillar larvae *S. littoralis* until leaf material was harvested. Induced expression pattern is marked with a red square, control points with a green diamond. Expression was calculated against the housekeeping genes. Standard error (n=3) is shown for each measurement. Two-Way ANOVA was used to test significant differences with p<0.05 defined as significant for the treatment within the time points (*).

7.3 QRT-PCR of plant material induced with jasmonic acid

Expression profile of further transcription factors and *tps23* after induction with jasmonic acid. Plants were cut and put into water or water containing jasmonic acid, respectively. The induction time was set to 1 hour to analyze early transcriptional changes. The relative expression was calculated as the expression of the housekeeping gene HG2. Means and standard errors are shown (n=3). Two-Way ANOVA was performed with time as the first variable and treatment as second factor. Different letters indicate significant differences between treatments within time points (p<0.05).

7.4 QRT-PCR of mechanical treated plant material (Mecworm)

QRT-PCR analysis of further transcription factors after mechanical induction with and without caterpillar regurgitate. Plants were treated with mechanical damage and mechanical damage plus the addition of caterpillar regurgitate. Means and standard errors are shown (n=4). The relative expression was calculated as described in 2.5.9. Two-Way ANOVA was performed with time as the first variable and treatment as second factor. Different letters indicate significant differences between treatments within time points (p<0.05).

7.5 DNA sequences of expressed transcription factors

>tf1- Delprim

>tf8- Delprim

ATGAAACACCACCACCACCACCACCACGGTGGTCTGGTTCCGCGTGGTTCCCATGGC GGATCCGAATTCATGGAGTTTGACCTGCTGAATTACAGCCCGGAAGCGCAGCTTGAGCT GATGACCACGATGCTCCAGCTGGAGCAGCTAACTGCGCTCGACGGCCATCAGTTTCCGA CGATGGCGCCTGTCTCGCCGCCGATATCCCCGATGCAAACCCATCATGCAGGTCACAGCT TGTCGCCTCCGCCACACATGTCGGCGACGACGACGACCACCACCACCACCGGGTACCCAGAG CAGTACACGCCGGCGGCGGCCGTGTACGGCGCCACCGCTACCGGCCTCGAGCACCTCCA GGACTACGCGCTGCCCCACGGCGACATGTAA

>tf20 - Delprim

ATGAAACACCACCACCACCACCACCACCACGGTGGTCTGGTTCCGCGTGGTTCCCATGGC GGATCCGAATTCATGAGTTTTAGGACTCGTCATGTTCCGTCTGCTCCTCAAACTGTTGAG GCTGCAAAACTTCAATCTTCTGGTGCTAGCTTCAATGAATCTATTGGATTCTCAGAGGTC TTGCAAGGTCAAGAAATTTCTCGGGCAGTTCCTATGTTCCAAGGAATGATGTCTGAGGGCT TGTTCACTAAAAGGAGGATATGGGCTGCATAGTTATATGCGTACCCCAGTTGCTGTTACT GGATTGTCAGCCACAACTCAAGAGTGTTCTCTCACACTATCTACTCCGCCAGGAGCACAA GTTCCTTCTGTCTACCCTGATAATATTTTTAACCGAACTGTGGTTCGACAGCTTGGACTGG CAAGCAAGTTTGATGGTGGAGCTACAAATGCCCAGCAGTCTGTCCCATTTGATAGGCCG AGGGAAATTTGGAGCAAGCCACAGCATGAAATATCTGATCAAACGAAAATGGATCACTT TGAGACTAGAAGAGCTTCAGCACCTGGAGATGATGCTGCTAGGCATGGGTCTGGTGGAG AGGTGGTTCGCAAAACTAGCTGCAGACTTTTTGGTTTCTCGTTGACTGAGAAGATCTTGC CAGCAGATGATGATGGCATCAAGGAAGTGACCTATGAGCCTGAGTGCCAGAATCCACGG ATGCTGGACCTGTTCGGGTACAACTGCTCAGCCCCAAGTGCTGCTCTTCCAGCTCTGTGT GCTGCCCCCTTTGGAATGTGA

>tf22- Delprim

7.6 Maize genes involved in the metabolism regulated by herbivory

	itter feeding induction	fold		
MZ-number	Annotation	expression	p-value	Abbreviation
		(log10)		
MZ00000384	NA	1.002215099	0.01782142	
MZ00000817	hypothetical protein {Arabidopsis thaliana}	1.225074771	0.01970904	
MZ00001133	putative LHY protein {Oryza sativa}	-1.138721789	0.00983245	TF41
MZ00001172	protein kinase domain containing protein {Zea mays}	1.750609659	0.0082661	
MZ00003452	putative glutathione transporter {Zea mays}	1.3412105	9.98E-06	
MZ00003946	Putative cytochrome P450 {Oryza sativa}	1.092928293	0.02645534	
MZ00004193	putative bZIP protein HY5 {Oryza sativa}	-1.058351385	0.0153649	TF44
MZ00004233	frataxin {Zea mays}	1.008195964	0.03720526	
MZ00004875	NA	1.432468124	0.00013116	
MZ00005052	hypothetical protein {Zea mays}	1.317170145	0.00350547	
MZ00005095	hypothetical protein {Zea mays}	1.125868895	0.00406344	
MZ00005101	PRAS-rich protein {Zea mays}	1.638643656	1.78E-06	
MZ00005245	NPK1-related protein kinase-like protein {Oryza sativa}	1.861273913	1.93E-07	TF9
MZ00005265	putative helix-loop-helix DNA-binding protein {Oryza sativa}	1.85600835	1.17E-05	TF23
MZ00006071	auxin Efflux Carrier family protein {Zea mays}	-1.020020493	0.00161051	
MZ00007257	OSJNBa0088A01.13 {Oryza sativa}	-1.15282516	0.00105839	
MZ00007425	unknown protein {Oryza sativa}	-1.076852341	0.00016534	
MZ00012919	bZIP transcription factor family protein {Zea mays}	1.34531873	0.00470068	
MZ00013307	hypothetical protein {Zea mays}	-1.427738471	0.00554345	
MZ00013411	ADP-ribosylation factor-like protein 8B {Zea mays}	1.821458597	6.69E-05	
MZ00014137	transcription factor-like {Oryza sativa}	1.066733794	0.02577085	TF45
MZ00014229	pathogenesis-related protein 10 {Zea mays}	-1.887100155	0.00376567	
MZ00014822	ribulosebisphosphate carboxylase {Zea	1.473387654	0.00313702	

Tab.7. 1	1: 0.5	h after	feeding	induction
140.7.1		II alter	iccumg	maachon

	mays}			
MZ00015015	putative heat-shock protein {Oryza sativa}	1.38318122	0.00812735	
MZ00015033	senescence-associated protein DH {Zea mays}	1.103383772	0.00027801	
MZ00015377	beta-amylase {Zea mays}	1.244890875	0.01641968	
MZ00015673	DRE binding factor 1 {Zea mays}	1.015806977	0.0073984	TF40
MZ00015910	glycine-rich protein1 {Zea mays}	-1.026106562	0.01411353	
MZ00016732	plasma membrane intrinsic protein ZmPIP2-6 {Zea mays}	-1.623668308	1.57E-05	
MZ00016805	uroporphyrin-III C-methyltransferase {Zea mays}	-1.159692634	0.04434959	
MZ00016998	EF-hand Ca2+-binding protein CCD1 {Zea mays}	1.896118036	9.47E-06	
MZ00017211	hypothetical protein {Zea mays}	1.483682576	0.0250197	
MZ00017335	glutamine-fructose-6-phosphate transaminase 2 {Arabidopsis thaliana}	1.194048277	0.00062369	
MZ00017518	polcalcin Jun o 2 {Zea mays}	1.393254036	0.01588083	
MZ00018052	putative adenosine monophosphate binding protein 1 AMPBP1 {Oryza sativa}	1.101526338	0.00050198	
MZ00018113	protein kinase domain containing protein {Zea mays}	1.60640663	0.01505394	
MZ00018291	hypothetical protein {Zea mays}	-1.221127323	0.00023375	
MZ00018541	Putative EREBP-like protein {Oryza sativa}	-1.149462727	0.00017592	TF38
MZ00018568	hypothetical protein {Zea mays}	1.267529382	0.00927323	
MZ00018761	putative Myb-like DNA-binding protein {Oryza sativa}	-1.485146512	4.54E-06	TF7
MZ00018836	hypothetical protein {Zea mays}	1.126756936	0.00206509	
MZ00018917	iron-phytosiderophore transporter protein yellow stripe 1 {Zea mays}	3.392152206	0.00409997	
MZ00019090	aquaporin {Zea mays}	-1.023032661	0.00042113	
MZ00019110	hypothetical protein {Zea mays}	-1.221032441	2.69E-05	
MZ00019303	pyrimidine-specific ribonucleoside hydrolase {Zea mays}	-1.34740209	0.00665309	
MZ00019321	hypothetical protein {Sorghum bicolor}	-1.237836533	0.00245584	
MZ00019475	anthranilate N-benzoyltransferase protein 1	-1.042018924	0.04482982	

MZ00020525 hypothetical protein {Zea mays} 1.212590669 0.0083607 MZ00020536 LHY protein {Zea mays} -1.021075306 5.31E-06 MZ00020610 transcription factor WRKY12 {Oryza sativa} 1.561235153 0.00013374 TF34 MZ00020668 hypothetical protein {Zea mays} 1.007334146 0.00577678 MZ00020958 NA 1.585036469 0.01654144 MZ0002133 trithorax-like {Oryza sativa} -1.250706715 0.0105825 MZ0002133 NA 1.020539002 0.00251806 MZ00021743 hypothetical protein {Sorghum bicolor} 1.027060954 0.00435665 MZ00021951 adenosine 5'-phosphosulfate reductase- like2 (Zea mays) -1.29807553 0.00647109 MZ00021963 lethal(2)denticleless-like protein {Oryza sativa} -1.03714112 0.00079035 MZ00022160 putative 10-deacetylbaccatin III-10-O- acetyl transferase {Oryza sativa} 1.654173807 0.04682672 MZ00022180 hypothetical protein [Zea mays] 1.768363096 8.24E-06 MZ00022180 hypothetical protein [Zea mays] 1.0271769412 9.46E-06		{Zea mays}			
transferase {Oryza sativa}		putative 0-deacetylbaccatin III-10-O-acetyl			
MZ200019908 {Oryza sativa} -1.530816677 0.00931408 MZ00019970 unknown protein {Zea mays} 1.257489938 3.62E-05 MZ00020525 hypothetical protein {Zea mays} 1.212590669 0.0083607 MZ00020536 LHY protein {Zea mays} -1.021075306 5.31E-06 MZ00020619 transcription factor WRKY12 {Oryza sativa} 1.561235153 0.00013374 TF34 MZ00020568 hypothetical protein {Zea mays} 1.007334146 0.00577678 MZ00020589 NA 1.585036469 0.01654144 MZ00021033 trithorax-like {Oryza sativa} -1.250706715 0.0105825 MZ00021339 NA 1.020539002 0.00251806 MZ0002134 hypothetical protein {Sorghum bicolor} 1.027060954 0.00435665 MZ00021951 adenosine 5-phosphosulfate reductase- likc2 {Zea mays} -1.03714112 0.00079035 MZ00021963 putative 10-deacetylbaccatin III-10-O acetyl transferase {Oryza sativa} 1.654173807 0.04682672 MZ00022160 hypothetical protein {Zea mays} 1.768363096 8.24E-06 MZ00022249 putative esterase {Oryza sativa} 1.051719312 9.00169022 <th>MZ00019555</th> <td>transferase {Oryza sativa}</td> <td>1.261594002</td> <td>0.00010906</td> <td></td>	MZ00019555	transferase {Oryza sativa}	1.261594002	0.00010906	
(Oryza sativa)(Oryza sativa)(Oryza sativa)MZ00019970unknown protein [Zea mays)1.2574899383.62E-05MZ00020525hypothetical protein [Zea mays)1.2125906690.0083607MZ00020536LHY protein [Zea mays)-1.0210753065.31E-06MZ00020619transcription factor WRKY12 [Oryza sativa)1.5612351530.00013374MZ0002068hypothetical protein [Zea mays]1.0073341460.00577678MZ00020958NA1.5850364690.01654144MZ0002133trithorax-like [Oryza sativa]-1.2507067150.0105825MZ0002133NA1.0205390020.00251806MZ00021951adenosine 5'-phosphosulfate reductase- like2 (Zea mays)-1.298075530.00647109MZ0002163lethal(2)denticleless-like protein [Oryza sativa}-1.037141120.00079035MZ00022163putative IO-deacetylbaccatin III-IO-O- acetyl transferase [Oryza sativa]1.6541738070.04682672MZ00022294putative esterase [Oryza sativa]1.66541738070.04682672MZ00022294putative sterase [Oryza sativa]1.6691002680.00137146MZ00022294putative sterase [Oryza sativa]1.027790846.31E-05MZ00022328hypothetical protein [Zea mays]1.257185120.001613443MZ00022335calmodulin-related protein 2 (Zea mays]1.057193120.000137146MZ0002338fobornal protein [L2a (mays)1.2377854730.000613443MZ00022355unkown protein [Oryza sativa]1.357854730.000613443 <tr<< th=""><th>M700010008</th><th>putative acid phosphatase unknown protein</th><th>1 520916677</th><th>0.00021408</th><th></th></tr<<>	M700010008	putative acid phosphatase unknown protein	1 520916677	0.00021408	
MZ00020525 hypothetical protein {Zea mays} 1.212590669 0.0083607 MZ00020536 LHY protein {Zea mays} -1.021075306 5.31E-06 MZ00020618 transcription factor WRKY12 {Oryza sativa} 1.561235153 0.00013374 TF34 MZ00020668 hypothetical protein {Zea mays} 1.007334146 0.000577678 MZ0002058 NA 1.585036469 0.01654144 MZ00021033 trithorax-like {Oryza sativa} -1.250706715 0.0105825 MZ0002139 NA 1.020539002 0.00251806 MZ00021743 hypothetical protein {Sorghum bicolor} 1.027060954 0.00435665 MZ00021951 adenosine S'-phosphosulfate reductasc- like2 (Zea mays) -1.29807553 0.00647109 MZ00022163 tethal(2)denticleless-like protein {Oryza sativa} -1.03714112 0.00079035 MZ00022180 pputative 10-deacetylbaccatin III-10-O- acetyl transferase {Oryza sativa} 1.654173807 0.04682672 MZ00022180 hypothetical protein {Zea mays} 1.768363096 8.24E-06 MZ00022284 putative esterase {Oryza sativa} 1.06790428 0.00137146 <	W1Z00019908	{Oryza sativa}	-1.330810077	0.00931408	
MZ00020536 LHY protein {Zea mays} -1.021075306 5.31E-06 MZ00020610 transcription factor WRKY12 {Orya 1.561235153 0.00013374 TF34 MZ00020668 hypothetical protein {Zea mays} 1.007334146 0.00577678 MZ00020958 NA 1.585036469 0.01654144 MZ00021033 trithorax-like {Oryza sativa} -1.250706715 0.0105825 MZ00021743 hypothetical protein {Sorghum bicolor} 1.027060954 0.00435665 MZ00021951 adenosine 5'-phosphosulfate reductase- like2 (Zea mays) -1.29807553 0.00647109 MZ00021963 lethal(2)denticleless-like protein {Oryza sativa} -1.03714112 0.00079035 MZ00021963 putative 10-deacetylbaccatin III-10-0- acetyl transferase {Oryza sativa} 1.654173807 0.04682672 MZ00022160 putative esterase {Oryza sativa} 1.069100268 0.00137146 MZ00022284 putative sterase {Oryza sativa} 1.027169412 9.46E-06 MZ00022297 NA 1.02779948 6.31E-05 MZ00022388 hypothetical protein {Zea mays} 1.05719312 0.00169022	MZ00019970	unknown protein {Zea mays}	1.257489938	3.62E-05	
MZ00020619 transcription factor WRKY12 (Oryza sativa) 1.561235153 0.00013374 TF34 MZ00020668 hypothetical protein {Zea mays} 1.007334146 0.00577678 MZ00020958 NA 1.585036469 0.01654144 MZ00021033 trithorax-like {Oryza sativa} -1.250706715 0.0105825 MZ00021743 hypothetical protein {Sorghum bicolor} 1.027060954 0.00435665 MZ00021951 adenosine 5'-phosphosulfate reductase- like2 {Zea mays} -1.29807553 0.00647109 MZ00021963 lethal(2)denticleless-like protein {Oryza sativa} -1.03714112 0.00079035 MZ00022163 putative 10-deacetylbaccatin III-10-O- acetyl transferase {Oryza sativa} 1.654173807 0.04682672 MZ00022180 hypothetical protein {Zea mays} 1.768363096 8.24E-06 MZ00022294 putative esterase {Oryza sativa} 1.0271799084 6.31E-05 MZ00023353 calmoulin-related protein 2 {Zea mays} 1.261401763 4.88E-06 MZ00023354 60S ribosomal protein L23 {Zea mays} 1.271769112 0.00169022 MZ00023355 unknown	MZ00020525	hypothetical protein {Zea mays}	1.212590669	0.0083607	
MZ200020619 sativa } 1.561235153 0.00013374 TF34 MZ00020668 hypothetical protein {Zea mays} 1.007334146 0.00577678 MZ00020958 NA 1.585036469 0.01654144 MZ00021033 trithorax-like {Oryza sativa} -1.250706715 0.0105825 MZ00021743 hypothetical protein {Sorghum bicolor} 1.027060954 0.00435665 MZ00021951 adenosine 5'-phosphosulfate reductase-like2 {Zea mays} -1.29807553 0.00647109 MZ00021963 lethal(2)denticleless-like protein {Oryza sativa} -1.03714112 0.00079035 MZ00022163 putative 10-deacetylbaccatin III-10-O-acetyl transferase {Oryza sativa} 1.654173807 0.04682672 MZ00022180 hypothetical protein (Zea mays) 1.654173807 0.04682672 MZ00022194 putative esterase {Oryza sativa} 1.069100268 0.00137146 MZ00022394 putative esterase {Oryza sativa} 1.027079084 6.31E-05 MZ00023353 calmodulin-related protein 2 {Zea mays} 1.055719312 0.00169022 MZ00023354 calmodulin-related protein 2 {Zea mays} 1.05719312 0.00169022 MZ00023355 calmodulin-related protein 2 {Zea	MZ00020536	LHY protein {Zea mays}	-1.021075306	5.31E-06	
sativa} Image: stativa intermediate in the second sec	MZ00020619	transcription factor WRKY12 {Oryza	1 561235153	0.00013374	TF34
MZ00020958 NA 1.585036469 0.01654144 MZ0021033 trithorax-like {Oryza sativa} -1.250706715 0.0105825 MZ0021339 NA 1.020539002 0.00251806 MZ00021743 hypothetical protein {Sorghum bicolor} 1.027060954 0.00435665 MZ00021951 adenosine 5'-phosphosulfate reductase- like2 {Zea mays} -1.29807553 0.00647109 MZ00021963 lethal(2)denticleless-like protein {Oryza sativa} -1.03714112 0.00079035 MZ00022163 putative 10-deacetylbaccatin III-10-O- acetyl transferase {Oryza sativa} 1.654173807 0.04682672 MZ00022294 putative esterase {Oryza sativa} 1.069100268 0.00137146 MZ00022197 NA 1.027799084 6.31E-05 MZ00022398 hypothetical protein {Zea mays} 1.2561401763 4.88E-06 MZ00023353 calmodulin-related protein 2 {Zea mays} 1.292527637 0.00613443 MZ00023375 unknown protein {Oryza sativa} 1.375785473 0.0028056 MZ00023383 ribonuclease S homolog {Zea mays} 1.026059166 0.02300198 MZ00023975 u	11200020017	sativa}	1.501255155	0.00013374	11.54
MZ00021033 trithorax-like {Oryza sativa} -1.250706715 0.0105825 MZ00021339 NA 1.020539002 0.00251806 MZ00021743 hypothetical protein {Sorghum bicolor} 1.027060954 0.00435665 MZ00021951 adenosine 5'-phosphosulfate reductase- like2 {Zea mays} -1.29807553 0.00647109 MZ00021963 lethal(2)denticleless-like protein {Oryza sativa} -1.03714112 0.00079035 MZ00022163 putative 10-deacetylbaccatin III-10-O- acetyl transferase {Oryza sativa} 1.654173807 0.04682672 MZ00022180 hypothetical protein {Zea mays} 1.768363096 8.24E-06 MZ00022194 putative esterase {Oryza sativa} 1.069100268 0.00137146 MZ00022195 hypothetical protein {Zea mays} 1.261401763 4.88E-06 MZ00022197 NA 1.027799084 6.31E-05 MZ00023386 60S ribosomal protein L23 {Zea mays} 1.292527637 0.00613443 MZ00023386 folS ribosomal protein L23 {Zea mays} 1.026059166 0.020865 MZ00023383 ribonuclease S homolog {Zea mays} 1.026059166 0.020865 MZ00023384 hypothetical protein {Zea mays} 1.026059166	MZ00020668	hypothetical protein {Zea mays}	1.007334146	0.00577678	
MZ00021339 NA 1.020539002 0.00251806 MZ00021743 hypothetical protein {Sorghum bicolor} 1.027060954 0.00435665 MZ00021951 adenosine 5'-phosphosulfate reductase- like2 {Zea mays} -1.29807553 0.00647109 MZ00021963 lethal(2)denticleless-like protein {Oryza sativa} -1.03714112 0.00079035 MZ00022163 putative 10-deacetylbaccatin III-10-O acetyl transferase {Oryza sativa} 1.654173807 0.04682672 MZ00022180 hypothetical protein {Zea mays} 1.768363096 8.24E-06 MZ00022194 putative esterase {Oryza sativa} 1.069100268 0.00137146 MZ00022294 putative esterase {Oryza sativa} 1.021709084 6.31E-05 MZ00023976 NA 1.02779084 6.31E-05 MZ00023986 hypothetical protein {Zea mays} 1.261401763 4.88E-06 MZ00023375 unknown protein L23 {Zea mays} 1.027579084 0.00137146 MZ00023975 unknown protein {Oryza sativa} 1.02757037 0.00621716 MZ00023386 f00S ribosomal protein 123 {Zea mays} 1.029527637 0.00021716 MZ00023	MZ00020958	NA	1.585036469	0.01654144	
MZ00021743hypothetical protein {Sorghum bicolor}1.0270609540.00435665MZ00021951adenosine 5'-phosphosulfate reductase- like2 {Zea mays}-1.298075530.00647109MZ00021963lethal(2)denticleless-like protein {Oryza sativa}-1.037141120.00079035MZ00022163putative 10-deacetylbaccatin III-10-O- acetyl transferase {Oryza sativa}1.6541738070.04682672MZ00022180hypothetical protein {Zea mays}1.7683630968.24E-06MZ00022194putative esterase {Oryza sativa}1.0691002680.00137146MZ00022194putative esterase {Oryza sativa}1.2717694129.46E-06MZ00022195NA1.2077990846.31E-05MZ00023298hypothetical protein {Zea mays}1.2614017634.88E-06MZ0002335calmodulin-related protein 2 {Zea mays}0.0061716MZ0002335ribonuclease S homolog {Zea mays}1.0275765770.00613443MZ0002398ribonuclease S homolog {Zea mays}1.0916996640.0020865MZ00024196hypothetical protein {Zea mays}1.01688570890.00031705MZ0002415unknown protein {Oryza sativa}1.1688570890.00031705MZ0002506O-methyltransferase BX7 {Zea mays}1.4189205370.00028954MZ0002555unknown protein {Oryza sativa}1.104826340.00815805	MZ00021033	trithorax-like {Oryza sativa}	-1.250706715	0.0105825	
MZ00021951 adenosine 5'-phosphosulfate reductase- like2 {Zea mays} -1.29807553 0.00647109 MZ00021963 lethal(2)denticleless-like protein {Oryza sativa} -1.03714112 0.00079035 MZ00022163 putative 10-deacetylbaccatin III-10-O- acetyl transferase {Oryza sativa} 1.654173807 0.04682672 MZ00022180 hypothetical protein {Zea mays} 1.768363096 8.24E-06 MZ00022180 hypothetical protein {Zea mays} 1.069100268 0.00137146 MZ00022194 putative esterase {Oryza sativa} 1.027799084 6.31E-05 MZ00022398 hypothetical protein {Zea mays} 1.221401763 4.88E-06 MZ00023353 calmodulin-related protein 2 {Zea mays} 1.025719312 0.00613443 MZ00023386 60S ribosomal protein L23 {Zea mays} -1.292527637 0.00613443 MZ00023975 unknown protein {Oryza sativa} 1.375785473 0.00021716 MZ00023406 hypothetical protein {Zea mays} 1.026059166 0.02300198 MZ00023975 unknown protein {Oryza sativa} 1.026059166 0.02300198 MZ00023983 ribonuclease S homolog {Zea mays} 1.026059166 0.02300198 MZ0002415 unknown prote	MZ00021339	NA	1.020539002	0.00251806	
MZ00021951 like2 {Zea mays} -1.29807553 0.00647109 MZ00021963 lethal(2)denticleless-like protein {Oryza sativa} -1.03714112 0.00079035 MZ00022163 putative 10-deacetylbaccatin III-10-O- acetyl transferase {Oryza sativa} 1.654173807 0.04682672 MZ00022180 hypothetical protein {Zea mays} 1.768363096 8.24E-06 MZ00022294 putative esterase {Oryza sativa} 1.069100268 0.00137146 MZ00022294 putative esterase {Oryza sativa} 1.271769412 9.46E-06 MZ00022296 OSJNBa0088H09.11 {Oryza sativa} 1.271769412 9.46E-06 MZ00023298 hypothetical protein {Zea mays} 1.261401763 4.88E-06 MZ00023353 calmodulin-related protein 2 {Zea mays} 1.055719312 0.00169022 MZ00023386 60S ribosomal protein L23 {Zea mays} 1.1292527637 0.00613443 MZ00023975 unknown protein {Oryza sativa} 1.375785473 0.002865 MZ00023983 ribonuclease S homolog {Zea mays} 1.026059166 0.02300198 MZ00024416 hypothetical protein {Zea mays} 1.026059166 0.002301705 MZ00025206 O-methyltransferase BX7 {Zea mays} 1.	MZ00021743		1.027060954	0.00435665	
like2 {Zea mays}Image: static like of the like of the like like of the like like like like like like like lik	MZ00021951	adenosine 5'-phosphosulfate reductase-	-1.29807553	0.00647109	
MZ00021963 sativa} -1.03714112 0.00079035 MZ00022163 putative 10-deacetylbaccatin III-10-O-acetyl transferase {Oryza sativa} 1.654173807 0.04682672 MZ00022180 hypothetical protein {Zea mays} 1.768363096 8.24E-06 MZ00022294 putative esterase {Oryza sativa} 1.069100268 0.00137146 MZ00022294 putative esterase {Oryza sativa} 1.271769412 9.46E-06 MZ00022797 NA 1.027799084 6.31E-05 MZ00023298 hypothetical protein {Zea mays} 1.261401763 4.88E-06 MZ00023353 calmodulin-related protein 2 {Zea mays} 1.055719312 0.00613443 MZ00023975 unknown protein {Oryza sativa} 1.375785473 0.00621716 MZ00023983 ribonuclease S homolog {Zea mays} 1.026059166 0.02300198 MZ00024496 hypothetical protein {Zea mays} 1.026059166 0.02300198 MZ00022506 O-methyltransferase BX7 {Zea mays} 1.418920537 0.00028954 MZ00025556 unknown protein {Oryza sativa} -1.067536688 0.00704987		like2 {Zea mays}			
sativa number of the sativa <th>MZ00021963</th> <th>lethal(2)denticleless-like protein {Oryza</th> <th>-1.03714112</th> <th>0.00079035</th> <th></th>	MZ00021963	lethal(2)denticleless-like protein {Oryza	-1.03714112	0.00079035	
MZ00022163 acetyl transferase {Oryza sativa} 1.654173807 0.04682672 MZ00022180 hypothetical protein {Zea mays} 1.768363096 8.24E-06 MZ00022294 putative esterase {Oryza sativa} 1.069100268 0.00137146 MZ00022466 OSJNBa0088H09.11 {Oryza sativa} 1.271769412 9.46E-06 MZ00022797 NA 1.027799084 6.31E-05 MZ00023398 hypothetical protein {Zea mays} 1.261401763 4.88E-06 MZ00023353 calmodulin-related protein 2 {Zea mays} 1.055719312 0.00169022 MZ00023386 60S ribosomal protein L23 {Zea mays} 1.271769413 0.0021716 MZ00023975 unknown protein {Oryza sativa} 1.375785473 0.00613443 MZ00024496 hypothetical protein {Zea mays} 1.026059166 0.02300198 MZ00024496 hypothetical protein {Zea mays} 1.026059166 0.02300198 MZ00025206 O-methyltransferase BX7 {Zea mays} 1.418920537 0.00028954 MZ00025556 unknown protein {Oryza sativa} 1.418920537 0.00028954 MZ00025514 hypothetical protein {Zea mays} 1.0482634 0.00815805					
MZ00022180 hypothetical protein {Zea mays} 1.768363096 8.24E-06 MZ00022294 putative esterase {Oryza sativa} 1.069100268 0.00137146 MZ00022466 OSJNBa0088H09.11 {Oryza sativa} 1.271769412 9.46E-06 MZ00022797 NA 1.027799084 6.31E-05 MZ00023298 hypothetical protein {Zea mays} 1.261401763 4.88E-06 MZ00023353 calmodulin-related protein 2 {Zea mays} 1.055719312 0.00169022 MZ00023386 60S ribosomal protein L23 {Zea mays} -1.292527637 0.00613443 MZ00023975 unknown protein {Oryza sativa} 1.375785473 0.00621716 MZ00023983 ribonuclease S homolog {Zea mays} 1.026059166 0.02300198 MZ00024615 unknown protein {Oryza sativa} -1.168857089 0.00031705 MZ00025206 O-methyltransferase BX7 {Zea mays} 1.418920537 0.00028954 MZ00025556 unknown protein {Oryza sativa} -1.067536688 0.00704987 MZ00025614 hypothetical protein {Zea mays} 1.10482634 0.00815805	MZ00022163	· ·	1.654173807	0.04682672	
MZ00022294 putative esterase {Oryza sativa} 1.069100268 0.00137146 MZ00022466 OSJNBa0088H09.11 {Oryza sativa} 1.271769412 9.46E-06 MZ00022797 NA 1.027799084 6.31E-05 MZ00023298 hypothetical protein {Zea mays} 1.261401763 4.88E-06 MZ00023353 calmodulin-related protein 2 {Zea mays} 1.055719312 0.00169022 MZ00023386 60S ribosomal protein L23 {Zea mays} -1.292527637 0.00613443 MZ00023975 unknown protein {Oryza sativa} 1.375785473 0.0020865 MZ00023983 ribonuclease S homolog {Zea mays} 1.026059166 0.02300198 MZ00024615 unknown protein {Oryza sativa} -1.168857089 0.00031705 MZ00025206 O-methyltransferase BX7 {Zea mays} 1.418920537 0.0028954 MZ00025556 unknown protein {Oryza sativa} -1.067536688 0.00704987 MZ00025514 hypothetical protein {Zea mays} 1.10482634 0.00815805		• • • •			
MZ00022466 OSJNBa0088H09.11 {Oryza sativa} 1.271769412 9.46E-06 MZ00022797 NA 1.027799084 6.31E-05 MZ00023298 hypothetical protein {Zea mays} 1.261401763 4.88E-06 MZ00023353 calmodulin-related protein 2 {Zea mays} 1.055719312 0.00169022 MZ00023386 60S ribosomal protein L23 {Zea mays} -1.292527637 0.00613443 MZ00023975 unknown protein {Oryza sativa} 1.375785473 0.00621716 MZ00023983 ribonuclease S homolog {Zea mays} 1.091699664 0.0020865 MZ00024496 hypothetical protein {Zea mays} 1.026059166 0.02300198 MZ00025206 O-methyltransferase BX7 {Zea mays} 1.418920537 0.00028954 MZ00025556 unknown protein {Oryza sativa} -1.067536688 0.00704987 MZ00025564 hypothetical protein {Zea mays} 1.10482634 0.00815805					
MZ00022797NA1.0277990846.31E-05MZ00023298hypothetical protein {Zea mays}1.2614017634.88E-06MZ00023353calmodulin-related protein 2 {Zea mays}1.0557193120.00169022MZ0002338660S ribosomal protein L23 {Zea mays}-1.2925276370.00613443MZ00023975unknown protein {Oryza sativa}1.3757854730.00621716MZ00023983ribonuclease S homolog {Zea mays}1.0916996640.0020865MZ00024496hypothetical protein {Zea mays}1.0260591660.02300198MZ00025206O-methyltransferase BX7 {Zea mays}1.4189205370.00028954MZ00025556unknown protein {Oryza sativa}1.104826340.00815805		• · · · ·			
MZ00023298 hypothetical protein {Zea mays} 1.261401763 4.88E-06 MZ00023353 calmodulin-related protein 2 {Zea mays} 1.055719312 0.00169022 MZ00023386 60S ribosomal protein L23 {Zea mays} -1.292527637 0.00613443 MZ00023975 unknown protein {Oryza sativa} 1.375785473 0.00621716 MZ00023983 ribonuclease S homolog {Zea mays} 1.091699664 0.0020865 MZ00024496 hypothetical protein {Zea mays} 1.026059166 0.02300198 MZ00025206 O-methyltransferase BX7 {Zea mays} 1.418920537 0.00028954 MZ00025566 unknown protein {Oryza sativa} -1.067536688 0.00704987 MZ00025614 hypothetical protein {Zea mays} 1.10482634 0.00815805					
MZ00023353 calmodulin-related protein 2 {Zea mays} 1.055719312 0.00169022 MZ00023386 60S ribosomal protein L23 {Zea mays} -1.292527637 0.00613443 MZ00023975 unknown protein {Oryza sativa} 1.375785473 0.00621716 MZ00023983 ribonuclease S homolog {Zea mays} 1.091699664 0.0020865 MZ00024496 hypothetical protein {Zea mays} 1.026059166 0.02300198 MZ00025206 O-methyltransferase BX7 {Zea mays} 1.418920537 0.00028954 MZ00025566 unknown protein {Oryza sativa} -1.067536688 0.00704987 MZ00025614 hypothetical protein {Zea mays} 1.10482634 0.00815805					
MZ00023386 60S ribosomal protein L23 {Zea mays} -1.292527637 0.00613443 MZ00023975 unknown protein {Oryza sativa} 1.375785473 0.00621716 MZ00023983 ribonuclease S homolog {Zea mays} 1.091699664 0.0020865 MZ00024496 hypothetical protein {Zea mays} 1.026059166 0.02300198 MZ00024615 unknown protein {Oryza sativa} -1.168857089 0.00031705 MZ00025206 O-methyltransferase BX7 {Zea mays} 1.418920537 0.00028954 MZ00025556 unknown protein {Oryza sativa} -1.067536688 0.00704987 MZ00025614 hypothetical protein {Zea mays} 1.10482634 0.00815805					
MZ00023975 unknown protein {Oryza sativa} 1.375785473 0.00621716 MZ00023983 ribonuclease S homolog {Zea mays} 1.091699664 0.0020865 MZ00024496 hypothetical protein {Zea mays} 1.026059166 0.02300198 MZ00024615 unknown protein {Oryza sativa} -1.168857089 0.00031705 MZ00025206 O-methyltransferase BX7 {Zea mays} 1.418920537 0.00028954 MZ00025556 unknown protein {Oryza sativa} -1.067536688 0.00704987 MZ00025614 hypothetical protein {Zea mays} 1.10482634 0.00815805	MZ00023353		1.055719312		
MZ00023983 ribonuclease S homolog {Zea mays} 1.091699664 0.0020865 MZ00024496 hypothetical protein {Zea mays} 1.026059166 0.02300198 MZ00024615 unknown protein {Oryza sativa} -1.168857089 0.00031705 MZ00025206 O-methyltransferase BX7 {Zea mays} 1.418920537 0.00028954 MZ00025556 unknown protein {Oryza sativa} -1.067536688 0.00704987 MZ00025614 hypothetical protein {Zea mays} 1.10482634 0.00815805	MZ00023386		-1.292527637		
MZ00024496 hypothetical protein {Zea mays} 1.026059166 0.02300198 MZ00024615 unknown protein {Oryza sativa} -1.168857089 0.00031705 MZ00025206 O-methyltransferase BX7 {Zea mays} 1.418920537 0.00028954 MZ00025556 unknown protein {Oryza sativa} -1.067536688 0.00704987 MZ00025614 hypothetical protein {Zea mays} 1.10482634 0.00815805	MZ00023975		1.375785473	0.00621716	
MZ00024615 unknown protein {Oryza sativa} -1.168857089 0.00031705 MZ00025206 O-methyltransferase BX7 {Zea mays} 1.418920537 0.00028954 MZ00025556 unknown protein {Oryza sativa} -1.067536688 0.00704987 MZ00025614 hypothetical protein {Zea mays} 1.10482634 0.00815805	MZ00023983				
MZ00025206 O-methyltransferase BX7 {Zea mays} 1.418920537 0.00028954 MZ00025556 unknown protein {Oryza sativa} -1.067536688 0.00704987 MZ00025614 hypothetical protein {Zea mays} 1.10482634 0.00815805	MZ00024496	hypothetical protein {Zea mays}	1.026059166	0.02300198	
MZ00025556 unknown protein {Oryza sativa} -1.067536688 0.00704987 MZ00025614 hypothetical protein {Zea mays} 1.10482634 0.00815805	MZ00024615		-1.168857089	0.00031705	
MZ00025614 hypothetical protein {Zea mays} 1.10482634 0.00815805	MZ00025206	O-methyltransferase BX7 {Zea mays}	1.418920537	0.00028954	
	MZ00025556	unknown protein {Oryza sativa}	-1.067536688	0.00704987	
MZ00025768 glutathione S-transferase GST 20 {Zea 1.384472158 0.02387482	MZ00025614	hypothetical protein {Zea mays}	1.10482634	0.00815805	
	MZ00025768	glutathione S-transferase GST 20 {Zea	1.384472158	0.02387482	

	mays}			
	putative bHLH transcription factor			
MZ00025832	{Arabidopsis thaliana}	-1.341431929	0.00089563	TF32
MZ00025850	putative protein kinase {Oryza sativa}	1.016202897	0.03443971	
MZ00025868	putative katanin {Oryza sativa}	1.126236573	0.04800696	
MZ00026418	putative neutral invertase {Oryza sativa}	1.219947423	0.00180269	
MZ00026538	ZIM-motif family protein {Zea mays}	1.917098985	0.002039	
MZ00026596	ethylene responsive element binding factor3 {Oryza sativa}	1.15306929	8.59E-05	TF30
MZ0002666	putative NAC-domain protein {Oryza sativa}	1.155732123	0.02909881	TF1
MZ00026682	putative alkaline/neutral invertase {Oryza sativa}	1.091851629	0.00755716	
MZ00027468	DNA binding protein {Zea mays}	1.048388472	0.01397215	
MZ00027872	proline oxidase {Zea mays}	1.806996704	0.00015112	
MZ00028262	NA	1.633725077	0.00983358	
MZ00028561	hypothetical protein {Zea mays}	-1.146562714	0.00532343	
MZ00028681	alcohol dehydrogenase 1 {Zea mays}	1.570977449	0.01461834	
MZ00029025	hypothetical protein {Zea mays}	1.203301308	0.00884145	
MZ00029057	FIERG2 protein {Oryza sativa}	1.131378278	0.00321772	
MZ00029180	OSJNBa0088A01.13 {Oryza sativa}	-1.23416586	0.00046556	
MZ00029487	hypothetical protein {Zea mays}	1.161214665	6.01E-05	
MZ00029551	Zinc-finger protein 1 (WZF1) {Triticum aestivum}	1.052090047	0.01293518	TF43
MZ00029722	physical impedance induced protein2 {Zea mays}	1.315623111	0.00248652	
MZ00029740	hypothetical protein {Arabidopsis thaliana}	1.152982708	0.00308533	
MZ00029892	putative MtN21 {Oryza sativa}	-1.31039007	0.00015174	
MZ00030027	putative trehalose-6-phosphate synthase {Oryza sativa}	1.028281634	0.00231345	
MZ00030030	3-oxoacyl-synthase III {Zea mays}	1.015110039	0.04052413	
MZ00030212	kinesin like protein {Zea mays}	-1.174172327	0.00042761	
MZ00030358	hypothetical protein {Oryza sativa}	-1.167560121	0.00247419	
MZ00030756	Centromere/kinetochore protein zw10 homolog {Arabidopsis thaliana}	-1.581729142	0.00048224	
MZ00031007	NA	1.69416465	1.78E-08	

MZ00031212 unknown protein {Oryza sativa} 1.119784234 0.00265804 MZ00031407 hypothetical protein {Sorghum bicolor} -1.822478579 0.00420278 MZ00031793 AP2 domain containing protein {Zea mays} 1.230839803 5.86E-06 MZ00031823 NPK1-related protein kinase-like protein {Zea mays} 1.086242091 1.81E-05 MZ00031906 calmodulin-related protein 2 {Zea mays} 1.33262819 0.00210969 MZ00032136 1-deoxy-D-xylulose 5-phosphate synthase 2 (dxs2) {Zea mays} 1.119784234 0.00263036 MZ000322666 OSJNBa0088A01.13 {Oryza sativa} -1.305099542 0.01337902 MZ00032877 putative phi-1 {Oryza sativa} 1.159345203 0.0026771 TF39 MZ00033435 putative ethylene-responsive elongation factor EF-Ts precursor {Oryza sativa} 1.418271131 0.01793575 MZ00033470 hypothetical protein {Zea mays} 1.154101928 0.00466612	
MZ00031793AP2 domain containing protein {Zea mays}1.2308398035.86E-06MZ00031823NPK1-related protein kinase-like protein {Zea mays}1.0862420911.81E-05MZ00031906calmodulin-related protein 2 {Zea mays}1.332628190.00210969MZ000321361-deoxy-D-xylulose 5-phosphate synthase 2 (dxs2) {Zea mays}1.1319184660.00263036MZ00032666OSJNBa0088A01.13 {Oryza sativa}-1.3050995420.01337902MZ00032725hypothetical protein {Zea mays}-1.1031840190.00729237MZ00033310MPI {Tripsacum dactyloides}1.1001591650.04799923MZ00033435putative ethylene-responsive elongation factor EF-Ts precursor {Oryza sativa}1.4182711310.01793575	
MZ00031823 NPK1-related protein kinase-like protein {Zea mays} 1.086242091 1.81E-05 MZ00031906 calmodulin-related protein 2 {Zea mays} 1.33262819 0.00210969 MZ00032136 1-deoxy-D-xylulose 5-phosphate synthase 2 (dxs2) {Zea mays} 1.131918466 0.00263036 MZ000322725 Nypothetical protein {Zea mays} -1.305099542 0.01337902 MZ00032877 putative phi-1 {Oryza sativa} -1.103184019 0.0026771 MZ00033310 MPI {Tripsacum dactyloides} 1.100159165 0.04799923 MZ00033435 putative ethylene-responsive elongation factor EF-Ts precursor {Oryza sativa} 1.418271131 0.01793575	
MZ00031823 Zea mays} 1.086242091 1.81E-05 MZ00031906 calmodulin-related protein 2 {Zea mays} 1.33262819 0.00210969 MZ00032136 1-deoxy-D-xylulose 5-phosphate synthase 2 (dxs2) {Zea mays} 1.131918466 0.00263036 MZ00032666 OSJNBa0088A01.13 {Oryza sativa} -1.305099542 0.01337902 MZ00032725 hypothetical protein {Zea mays} -1.103184019 0.0026771 TF39 MZ00033310 MPI {Tripsacum dactyloides} 1.100159165 0.04799923 TF39 MZ00033435 putative ethylene-responsive elongation factor EF-Ts precursor {Oryza sativa} 1.418271131 0.01793575	
MZ00032136 1-deoxy-D-xylulose 5-phosphate synthase 2 (dxs2) {Zea mays} 1.131918466 0.00263036 MZ00032666 OSJNBa0088A01.13 {Oryza sativa} -1.305099542 0.01337902 MZ00032725 hypothetical protein {Zea mays} -1.103184019 0.0026771 MZ00032877 putative phi-1 {Oryza sativa} 1.159345203 0.0026771 MZ00033310 MPI {Tripsacum dactyloides} 1.100159165 0.047999233 MZ00033435 putative ethylene-responsive elongation factor EF-Ts precursor {Oryza sativa} 1.418271131 0.01793575	
MZ00032136 Image: Additional and the second sec	
MZ00032725 hypothetical protein {Zea mays} -1.103184019 0.00729237 MZ00032877 putative phi-1 {Oryza sativa} 1.159345203 0.0026771 TF39 MZ00033310 MPI {Tripsacum dactyloides} 1.100159165 0.04799923 MZ00033435 putative ethylene-responsive elongation factor EF-Ts precursor {Oryza sativa} 1.418271131 0.01793575	
MZ00032877 putative phi-1 {Oryza sativa} 1.159345203 0.0026771 TF39 MZ00033310 MPI {Tripsacum dactyloides} 1.100159165 0.04799923 MZ00033435 putative ethylene-responsive elongation factor EF-Ts precursor {Oryza sativa} 1.418271131 0.01793575	
MZ00033310MPI {Tripsacum dactyloides}1.1001591650.04799923MZ00033435putative ethylene-responsive elongation factor EF-Ts precursor {Oryza sativa}1.4182711310.01793575	
MZ00033435 putative ethylene-responsive elongation factor EF-Ts precursor {Oryza sativa} 1.418271131 0.01793575	
MZ00033435 factor EF-Ts precursor {Oryza sativa} 1.418271131 0.01793575	
MZ00033470 hypothetical protein {Zea mays} 1.154101928 0.00466612	
MZ00033517 putative progesterone 5-beta-reductase {Oryza sativa} 1.176457328 0.04221815	
MZ00033521 hypothetical protein {Zea mays} 1.002698778 0.0032547	
MZ00033715 ZIM-motif family protein {Zea mays} 2.156032 2.92E-05	
MZ00034421 Glucan endo-1,3-beta-glucosidase {Zea -1.136946409 0.0177255	
MZ00035024 hypothetical protein {Zea mays} -1.079513099 0.04420718	
MZ00035095 putative nucleoid DNA-binding protein cnd41 {Oryza sativa} 1.078103935 0.04323517 TF47	
MZ00035642 alcohol dehydrogenase 1 {Zea mays} -1.119794958 0.01046085	
MZ00035750 adhesive/proline-rich protein {Zea mays} 1.026133492 0.00095019	
MZ00036129 NA -1.028370541 0.0104233	
MZ00036398 xyloglucan endotransglycosylase homolog {Zea mays} 0.00052941	
MZ00036475 secondary cell wall-related glycosyltransferase {Zea mays} 1.051556788 0.02014676	
MZ00036572 NA 1.354812122 0.03661717	
MZ00036593 putative Formate dehydrogenase {Oryza sativa} -1.445495348 0.00308184	
MZ00036791 hypothetical protein {Zea mays} 1.562801382 0.00374966	
MZ00036920 hypothetical protein {Zea mays} 1.249703526 0.00021124	

MZ00036928	hypothetical protein {Zea mays}	1.195779048	0.019425	
MZ00036929	hypothetical protein {Zea mays}	1.223658453	0.0245274	
	putative Bowman-Birk serine protease	1.223030133	0.0210271	
MZ00037013	inhibitor {Zea mays}	-1.841815786	0.00037619	
MZ00037020	NA	1.864973044	0.03151926	
MZ00037034	hypothetical protein {Oryza sativa}	1.229175526	4.45E-05	
MZ00037045	NA	-1.25345424	0.00528173	
MZ00037085	Bowman-Birk type wound-induced proteinase inhibitor WIP1 {Zea mays}	1.005014501	0.01083856	
MZ00037126	ZIM-motif family protein {Zea mays}	1.493327424	0.02917107	
MZ00037480	putative acid phosphatase unknown protein {Oryza sativa}	-1.641308245	0.00428676	
MZ00037820	NA	-1.198127036	0.00342806	
MZ00038115	INDETERMINATE-related protein {Zea mays}	-1.220321247	0.00148355	
MZ00038372	fatty acid desaturase {Zea mays}	1.081983612	0.04941197	
MZ00038498	NA	1.086691517	0.04581955	
MZ00038664	histone H1-like protein {Zea mays}	-1.243520794	0.00520754	
MZ00039123	hypothetical protein {Zea mays}	-1.093423245	0.00270615	
MZ00039124	hypothetical protein {Zea mays}	-1.0824228	0.00356507	
MZ00039194	hypothetical protein {Zea mays}	-1.060646094	0.00979065	
MZ00039195	40S ribosomal protein S4 {Zea mays}	-1.124162616	0.00763094	
MZ00039280	cytokinin oxidase 3 {Zea mays}	1.011312915	0.02978865	
MZ00039375	NA	-1.02744543	0.00097929	
MZ00040302	B73 pathogenesis-related protein 2 and GASA-like protein {Zea mays}	1.084389599	0.03956753	
MZ00040935	hypothetical protein {Zea mays}	-1.147147725	0.03264779	
MZ00040938	hypothetical protein {Zea mays}	-1.147922347	0.01300695	
MZ00041038	histone H1-like protein {Zea mays}	-1.014901845	0.01065092	
MZ00041326	putative Bowman-Birk serine protease inhibitor {Oryza sativa}	-1.919720012	0.00482553	
MZ00041327	putative Bowman-Birk serine protease inhibitor {Zea mays}	-2.468488509	0.00039523	
MZ00041500	water stress inducible protein {Oryza sativa}	-1.108968869	5.15E-05	
MZ00041802	zinc finger protein {Oryza sativa}	-2.032905738	0.0001848	TF37

MZ00041804	zinc finger protein {Oryza sativa}	-1.389607547	2.05E-05	TF29
	adenosine 5'-phosphosulfate reductase-			-
MZ00042096	like1 {Zea mays}	-1.011458317	0.01433219	
MZ00042109	O-methyltransferase BX7 {Zea mays}	1.167581162	0.03113949	
MZ00042137	phi-1-like phosphate-induced protein {Zea mays}	1.244230396	7.09E-05	
MZ00042142	NA	1.582124932	0.00388343	
MZ00042242	adhesive/proline-rich protein {Zea mays}	1.41680588	0.00142954	
MZ00042304	protein kinase domain containing protein {Zea mays}	1.096680047	0.0186087	
MZ00042553	N-acetyltransferase {Zea mays}	1.202222391	0.01039437	
MZ00042739	WRKY transcription factor {Oryza sativa}	1.015746416	0.00129574	TF26
MZ00042797	putative glutathione transporter {Zea mays}	1.413729425	0.00476571	
MZ00042953	chlorophyll a/b binding protein {Oryza sativa}	1.428389379	0.0358288	
MZ00043103	IAA24 - auxin-responsive Aux/IAA family member {Zea mays}	1.365004205	6.46E-06	
MZ00043117	adhesive/proline-rich protein {Zea mays}	1.098964733	0.00040617	
MZ00043359	hypothetical protein {Zea mays}	1.239677815	0.04264502	
MZ00043640	cytochrome b561 {Zea mays}	-1.083928526	0.03009207	
MZ00043658	pathogenesis-related protein 4 {Triticum monococcum}	-1.345400846	0.00200967	
MZ00043659	defence-related protein {Zea mays}	-1.516810411	0.01026011	
MZ00043777	hypothetical protein {Oryza sativa}	-1.279854642	0.0031413	
MZ00043886	chitinase {Zea mays}	-1.222589817	0.00363474	
MZ00044190	allene oxide synthase 1 {Zea mays}	1.613732798	0.00444464	
MZ00044271	proline oxidase {Zea mays}	1.596989502	0.00111567	
MZ00044780	NA	-1.140434047	0.02047268	
MZ00045574	NA	1.140244664	0.02483458	
MZ00048730	putative immediate-early fungal elicitor protein {Oryza sativa}	1.10710032	0.0101808	
MZ00052490	pathogenesis-related protein 10 {Zea mays}	-1.259092359	0.00355347	
MZ00054907	putative cytochrome P450 {Oryza sativa}	1.173847891	0.00965439	
MZ00055183	alpha-expansin {Oryza sativa}	1.176149036	0.01950251	
MZ00055932	Bowman-Birk type trypsin inhibitor {Zea mays}	1.095542955	0.00885029	

MZ00056440	hypothetical protein {Zea mays}	1.125029317	0.00991602	
MZ00056523	putative phi-1 {Oryza sativa}	1.370339469	0.01270272	TF42
MZ00056629	OSJNBa0088A01.13 {Oryza sativa}	-1.247555126	0.04295964	
MZ00056647	hypothetical protein {Zea mays}	2.082786391	3.15E-05	
MZ00056690	glucan endo-1,3-beta-glucosidase homolog1 {Zea mays}	-1.565978075	0.00243899	
MZ00056902	unknown protein {Oryza sativa}	1.311417811	0.03255265	
MZ00056923	myb-like protein {Oryza sativa}	-1.08667495	0.01856965	TF12
MZ00057095	putative UVB-resistance protein UVR8 {Oryza sativa}	-1.299218025	0.01303813	
MZ00057372	hypothetical protein {Sorghum bicolor}	2.21483029	0.01145302	
MZ00057436	putative ZEITLUPE {Oryza sativa}	1.870414143	0.00705078	

Tab.7. 2: 1 h after feeding induction

		fold		
MZ-number	Annotation	expression	p-value	Abbrevation
		(log10)		
MZ00000390	NA	1.283945388	0.02054797	
MZ00000666	lipoxygenase (LOX4) {Zea mays}	1.371594955	7.07E-05	
MZ00001172	protein kinase domain containing protein {Zea mays}	1.612111385	0.00795182	
MZ00001288	unknown protein {Oryza sativa}	1.034227483	2.61E-05	
MZ00001464	NA	1.577397957	0.00642841	
MZ00003802	FIP1 {Zea mays}	1.124553927	0.00063602	
MZ00003819	putative ethylene-responsive transcriptional coactivator {Oryza sativa}	-1.217149183	6.06E-05	TF24
MZ00003857	splicing factor U2af 38 kDa subunit {Zea mays}	1.030400938	0.00290021	
MZ00003861	hypothetical protein {Zea mays}	1.345203399	0.03933033	
MZ00003912	OSJNBa0008M17.5 {Oryza sativa}	1.909888997	0.0031783	
MZ00003954	probable senescence-related protein {Arabidopsis thaliana}	1.185543681	0.01077074	
MZ00003984	POZ domain protein family-like {Oryza sativa}	1.036304983	0.02070894	
MZ00004356	metal ion binding protein {Zea mays}	1.058634555	0.00601811	
MZ00004452	NA	1.967087637	1.55E-05	

MZ00005052	hypothetical protein {Zea mays}	1.373818608	0.00135476	
MZ00005095	hypothetical protein {Zea mays}	1.672661508	7.66E-05	
MZ00005245	NPK1-related protein kinase-like protein {Oryza sativa}	1.308123996	3.86E-06	TF9
MZ00005265	putative helix-loop-helix DNA-binding protein {Oryza sativa}	1.559098533	2.82E-05	TF23
MZ00005899	terpene synthase 2 {Zea mays}	1.108941326	0.00158642	
MZ00006068	glucose-6-phosphate/phosphate translocator 2 {Zea mays}	1.200192939	0.03239775	
MZ00007376	CSLC9 {Oryza sativa}	1.024910794	0.02431587	
MZ00012674	zinc finger protein 3 {Zea mays}	2.082671995	2.25E-06	
MZ00012715	OSJNBa0016O02.24 {Oryza sativa}	1.192491009	8.16E-06	
MZ00013127	putative polyprenyl diphosphate synthase {Oryza sativa}	1.425803569	0.02905149	
MZ00013368	OSJNBb0059K02.3 {Oryza sativa}	-1.004493294	0.01509806	
MZ00013411	ADP-ribosylation factor-like protein 8B {Zea mays}	2.452564965	1.15E-06	
MZ00013555	hypothetical protein {Zea mays}	1.113295208	0.02862942	
MZ00013669	hypothetical protein {Zea mays}	1.121622079	0.01288449	
MZ00013836	S-adenosylmethionine decarboxylase {Oryza sativa}	2.823038792	1.28E-05	
MZ00014129	annexin P35 {Zea mays}	1.112943221	0.00303161	
MZ00014229	pathogenesis-related protein 10 {Zea mays}	-1.384732145	0.01446172	
MZ00014287	hypothetical protein {Zea mays}	1.206862355	0.00013999	
MZ00014350	pnFL-2 {Zea mays}	1.062725415	0.00298286	
MZ00014372	MTN 3 {Zea mays}	1.976927034	0.00690417	
MZ00014377	nodulation homolog 1 {Zea mays}	-1.261717145	0.01724428	
MZ00014737	UDP-glucose-4-epimerase {Zea mays}	1.22993013	0.00029907	
MZ00014772	alcohol dehydrogenase 1 {Zea mays}	2.037565425	2.49E-06	
MZ00014943	anthranilate synthase alpha 2 subunit {Oryza sativa}	1.234507649	0.00923884	
MZ00015033	senescence-associated protein DH {Zea mays}	1.152786027	8.22E-05	
MZ00015176	unknown protein {Oryza sativa}	1.434562773	1.72E-05	
MZ00015354	putative protein kinase {Oryza sativa}	1.266495161	0.04028384	
MZ00015377	beta-amylase {Zea mays}	1.262178892	0.00925194	

	putative chloroplast-targeted beta-amylase			
MZ00015378	{Oryza sativa}	1.132113694	0.03585699	
MZ00015582	NA	-1.092305784	0.01211844	
MZ00015918	MTD1 {Zea mays}	1.607148225	9.52E-06	
MZ00016344	membrane related protein {Oryza sativa}	1.166804609	0.00378905	
MZ00016498	disease resistance response protein-like {Oryza sativa}	-1.384778856	0.00944444	
MZ00016555	unknown {Arabidopsis thaliana}	-1.401387587	0.03947377	
MZ00016666	hypothetical protein {Zea mays}	1.90760065	2.94E-05	
MZ00016732	plasma membrane intrinsic protein 2 ZmPIP2- 6 {Zea mays}	-1.180412691	0.00014935	
MZ00016998	EF-hand Ca2+-binding protein CCD1 {Zea mays}	1.262560009	0.00021398	
MZ00017265	MtN3-like protein {Arabidopsis thaliana}	1.221856304	0.00151593	
MZ00017300	hypothetical protein {Zea mays}	1.752330241	1.09E-05	
MZ00017310	zinc finger protein-like {Oryza sativa}	1.028489903	0.00021037	TF27
MZ00017335	glutamine-fructose-6-phosphate transaminase 2 {Arabidopsis thaliana}	1.475060334	4.04E-05	
MZ00017432	ULT transcription factor {Zea mays}	1.195600214	1.14E-06	
MZ00017456	CBL-interacting protein kinase {Zea mays}	1.46120518	7.19E-06	
MZ00017547	putative HAK2 {Oryza sativa}	1.017351697	0.00783223	
MZ00017664	putativeheterogeneousnuclearribonucleoprotein A1 {Oryza sativa}	1.085573828	0.04407853	
MZ00017966	hypothetical protein {Zea mays}	1.045616267	0.0392025	
MZ00018113	protein kinase domain containing protein {Zea mays}	1.315325787	0.02639512	
MZ00018241	ribosome-inactivating protein {Zea mays}	1.469590655	0.01597708	
MZ00018300	OJ990528_30.9 {Oryza sativa}	-1.217754385	9.31E-05	
MZ00018541	Putative EREBP-like protein {Oryza sativa}	1.311906007	2.07E-05	TF38
MZ00018568	hypothetical protein {Zea mays}	2.057352534	0.00011444	
MZ00018741	putative cytochrome P450 reductase {Oryza sativa}	1.500747678	0.03564088	
MZ00018761	putative Myb-like DNA-binding protein {Oryza sativa}	1.04066563	7.01E-05	TF7
MZ00018825	putative transcription factor {Oryza sativa}	1.186320278	0.0136534	
MZ00018836	hypothetical protein {Zea mays}	2.717729317	1.42E-07	

MZ00018837	MAPK6 {Oryza sativa}	1.236381319	0.01265904
WI200010057	deoxyribodipyrimidine photolyase family	1.250501517	0.01203304
MZ00019122	protein-like {Oryza sativa}	1.007329577	0.01298166
MZ00019182	hypothetical protein {Oryza sativa}	1.175688268	8.60E-05
MZ00019244	putative l-asparaginase {Oryza sativa}	-1.64736429	0.0425309
MZ00019278	hypothetical protein {Zea mays}	1.281599732	0.00042927
MZ00019292	hypothetical protein {Zea mays}	1.222861576	0.00041217
MZ00019416	hypothetical protein {Zea mays}	-1.126745108	0.04888914
MZ00019442	riboflavin biosynthesis protein ribAB {Zea mays}	1.364170942	0.00525107
MZ00019616	FIP1 {Zea mays}	1.119114173	0.00024829
MZ00019632	calmodulin-like protein {Pennisetum ciliare}	1.483912516	0.00038138
MZ00019729	terpene synthase 2 {Zea mays}	2.110081091	0.00039675
MZ00019752	hypothetical protein {Zea mays}	-1.012347052	0.00919395
MZ00019821	long cell-linked locus protein {Zea mays}	1.10562925	0.00960834
MZ00019869	putative phospholipid cytidylyltransferase {Oryza sativa}	1.102652854	0.00316015
MZ00019880	NA	-1.365101661	0.00882452
MZ00019894	stem 28 kDa glycoprotein {Zea mays}	2.152361363	0.00252506
MZ00019908	unknown protein {Oryza sativa}	-1.14481807	0.02708139
MZ00019970	hypothetical protein {Zea mays}	1.643084916	7.92E-07
MZ00020105	hypothetical protein {Zea mays}	1.280143412	0.00370592
MZ00020210	hypothetical protein {Zea mays}	1.972645072	3.63E-05
MZ00020230	epoxide hydrolase 2 {Zea mays}	1.804424994	0.00386692
MZ00020243	AT3g52870/F8J2_40 {Arabidopsis thaliana}	1.035209885	0.0334502
MZ00020448	OSJNBa0072K14.9 {Oryza sativa}	1.403011903	0.01409396
MZ00020466	ATSWI3A {Zea mays}	1.108646789	0.00938197
MZ00020525	hypothetical protein {Zea mays}	1.400286469	0.00174502
MZ00020668	hypothetical protein {Zea mays}	1.496873511	0.00012698
MZ00020968	putative lipase class 3 family protein {Oryza sativa}	1.508826516	0.00343915
MZ00021254	OSJNBa0065B15.8 {Oryza sativa}	1.510637757	0.04090632
MZ00021379	putative centromere protein {Oryza sativa}	1.214169153	9.16E-05
MZ00021385	putative cytochrome P450 reductase {Oryza sativa}	1.287843366	0.00198669
MZ00021537	hypothetical protein {Zea mays}	1.063738542	0.00974371

MZ00021587	cell wall invertase {Zea mays}	1.512509917	0.01280814	
	•••			
MZ00021860	hypothetical protein {Zea mays}	1.047594001	0.00651296	
MZ00021878	putative transposase {Zea mays}	1.102355582	0.00892014	
MZ00022163	putative 10-deacetylbaccatin III-10-O-acetyl	2.718399527	0.00164784	
	transferase {Oryza sativa}			
MZ00022294	putative esterase {Oryza sativa}	1.152777866	0.00035921	
MZ00022380	unknown protein {Oryza sativa}	1.56001253	0.03149321	
MZ00022582	peroxidase 1 {Zea mays}	1.115187766	0.00077015	
MZ00022690	hypothetical protein {Zea mays}	1.195249585	0.00263689	
MZ00022994	allene oxide synthase 1{Zea mays}	1.403238039	3.53E-06	
MZ00023013	unknown protein {Oryza sativa}	1.042821796	0.00490058	
MZ00023027	starch phosphorylase 2 precursor {Zea mays}	1.108487039	0.01001447	
MZ00023228	dihydroflavonol-4-reductase {Zea mays}	1.088088549	0.01178162	
MZ00023318	putative prephenate dehydratase {Oryza	1.438070495	6.39E-06	
WIZ00023318	sativa}	1.436070495	0.39E-00	
MZ00023327	putative sialin {Oryza sativa}	1.643781238	0.04215142	
MZ00023353	calmodulin-related protein 2 {Zea mays}	1.054071243	0.0008588	
MZ00023367	Metallothionein-like protein type 2 {Zea	-1.154877051	0.00818746	
WIZ00025507	mays}			
M700022404	S-adenosylmethionine decarboxylase	1 620622025	0.04374811	
MZ00023404	proenzyme {Zea mays}	1.629622925	0.04374011	
N/700022441	S-adenosylmethionine synthetase 1 {Zea	1.270714834	0.00636249	
MZ00023441	mays}	1.270714834	0.00030249	
MZ00023501	pnFL-2 {Zea mays}	1.222604249	0.02241659	
MZ00023529	hypothetical protein {Zea mays}	-1.011090527	0.0291208	
MZ00023975	unknown protein {Oryza sativa}	1.357257807	0.00380023	
MZ00023983	ribonuclease S homolog {Zea mays}	1.348549183	0.00017676	
MZ00024219	expressed protein {Oryza sativa}	1.217143239	0.01751258	
MZ00024302	hypothetical protein {Asparagus officinalis}	1.994609619	0.00186067	
N/700004/04	ETTIN-like auxin response factor {Triticum	1 072105701	7.675.06	TE20
MZ00024626	aestivum}	1.273105681	7.67E-06	TF20
MZ00024934	beta-glucosidase {Musa acuminata}	1.281155629	0.0285818	
MZ00025068	hypothetical protein {Zea mays}	1.036389328	0.01519457	
MZ00025407	polyamine oxidase1 {Zea mays}	1.287782744	0.00324827	
MZ00025614	hypothetical protein {Zea mays}	2.226268668	1.07E-05	
MZ00025698	MATE family protein {Zea mays}	1.143548408	0.0066219	
L		l		

MZ00025768	glutathione S-transferase GST 20 {Zea mays}	1.835870959	0.00260985	
MZ00025872	hypothetical protein {Zea mays}	1.461184682	0.00127812	
MZ00026064	hypothetical protein {Zea mays}	1.33130622	0.00212193	
MZ00026277	hypothetical protein {Zea mays}	1.137972273	0.00147281	
W1200020277	anthranilate synthase alpha 1 subunit {Oryza	1.137972273	0.00147201	
MZ00026471	sativa}	2.021441239	0.00038029	
MZ00026538	ZIM-motif family protein {Zea mays}	2.940955093	2.11E-05	
MZ00026661	putative NAC-domain protein {Oryza sativa}	1.388006535	0.00667882	TF1
WI200020001	kelch repeat-containing F-box-like {Oryza	1.500000555	0.00007002	
MZ00026936		1.843083594	0.00010782	
	sativa}			
MZ00027105	putative Bowman-Birk serine protease	2.417900238	9.50E-07	
	inhibitor {Oryza sativa}			
MZ00027775	putative branched-chain alpha-keto acid	1.482827774	0.00065103	
	decarboxylase E1 beta subunit {Oryza sativa}			
MZ00028024	phosphatase subunit g4-1 {Zea mays}	1.0955425	0.04574018	
MZ00028203	hypothetical protein {Zea mays}	1.267265703	0.00069567	
MZ00028357	CBL-interacting protein kinase{Zea mays}	1.92912251	1.96E-07	TF14
MZ00028712	putative thioredoxin {Oryza sativa}	1.145237639	2.24E-05	
MZ00028745	surfeit locus protein 2 containing protein {Zea	1.041294892	0.00316561	
11200020745	mays}	1.011291092	0.00510501	
MZ00028821	putative plastidic phosphoglucomutase	1.366750839	0.03769162	
11200020021	{Oryza sativa}	1.500750057	0.03707102	
MZ00028873	putative mitochondrial carrier protein {Oryza	1.036433503	3.19E-06	
WIZ00020075	sativa}	1.050455505	5.191-00	
MZ00028934	heavy-metal associated domain containing	-1.125135879	0.0002(72)	
WIZ00028934	protein {Zea mays}	-1.125155875	0.00036736	
MZ00029020	aldose reductase {Zea mays}	1.00128915	0.01748418	
MZ00029084	hypothetical protein {Zea mays}	-1.454682251	0.01461623	
MZ00029120	hypothetical protein {Zea mays}	-1.223869948	0.03174235	
MZ00029180	OSJNBa0088A01.13 {Oryza sativa}	2.055566334	1.16E-06	
M700000105	putative phosphoribosyl pyrophosphate	1 10100500	0.00927507	
MZ00029195	synthase {Oryza sativa}	1.121328523	0.00837507	
MZAAAAAAA	putative molybdenum cofactor biosynthesis	1.060262721	0.02204676	
MZ00029209	protein A {Oryza sativa}	1.069362721	0.03204676	
MZ00029217	hypothetical protein {Zea mays}	1.205969411	0.00166739	
MZ00029560	phytocystatin {Actinidia deliciosa;}	2.15324457	0.00082834	
		l		

MZ00029568	ZIM-motif family protein {Zea mays}	1.236126614	0.00034215
MZ00029614	NA	1.1828159	0.00033281
MZ00030493	ethylene-responsive transcription factor 3 {Zea mays}	1.0290928	0.00055539
MZ00030505	putative GTP-binding protein ERG {Oryza sativa}	1.522171526	0.00361779
MZ00030552	catalytic/hydrolase {Zea mays}	1.58166467	0.0038112
MZ00030705	putative protein {Arabidopsis thaliana}	-1.060547377	0.01990202
MZ00030776	calcium binding EF-hand protein {Zea mays}	-1.005686155	0.02811677
MZ00030874	receptor-like kinase {Zea mays}	1.118536292	0.0030828
MZ00030879	chaperone protein dnaJ 11 {Zea mays}	1.993290211	7.95E-05
MZ00030891	VQ motif family protein {Zea mays}	-1.15284514	0.03456738
MZ00030973	putative NAC-domain protein {Oryza sativa}	1.228642896	0.00054843
MZ00031002	NA	1.081530113	0.00127147
MZ00031039	hypothetical protein {Zea mays}	1.031826621	0.00112108
MZ00031103	probable integral membrane protein {Oryza sativa}	1.014615406	0.02251413
MZ00031189	putative genetic modifier {Oryza sativa}	1.208632916	0.00664902
MZ00031225	At3g54650/T5N23_10 {Arabidopsis thaliana}	1.204296929	0.00773626
MZ00031356	unknown protein {Oryza sativa}	1.658705941	7.41E-05
MZ00031823	NPK1-related protein kinase-like protein {Zea mays}	1.361725316	5.83E-07
MZ00031832	glutathione transferase {Hordeum vulgare subsp. vulgare}	1.680984351	4.92E-05
MZ00031906	calmodulin-related protein 2 {Zea mays}	1.550046777	0.0003066
MZ00032043	anthranilic acid methyltransferase 3 {Zea mays}	1.32976498	0.00210084
MZ00032061	ADP-glucose pyrophosphorylase large subunit {Zea mays}	1.465354027	0.00175227
MZ00032136	1-deoxy-D-xylulose 5-phosphate synthase 2 (dxs2) {Zea mays}	2.440654849	7.70E-07
MZ00032170	putative centromere protein {Oryza sativa}	1.985916131	0.00130496
MZ00032240	indole-3-glycerol phosphate synthase {Zea mays}	1.672229808	0.00023867
MZ00032294	transferase, tranferring glykosyl groups {Zea mays }	1.043999485	5.68E-05

MZ00032358	hypothetical protein {Zea mays}	1.222266689	0.01935675
MZ00032391	putative tocopherol polyprenyltransferase {Oryza sativa}	1.329069463	0.00689361
MZ00032415	putative RNA recognition motif (RRM)- containing protein {Oryza sativa}	1.073694857	0.00030667
MZ00032666	OSJNBa0088A01.13 {Oryza sativa}	2.047911387	0.00027915
MZ00032709	hydrolase, alpha/beta fold family-like {Oryza sativa}	1.499271698	0.03191198
MZ00032756	DEAD/DEAH box helicase-like {Oryza sativa}	1.164009341	0.01197905
MZ00032999	indole-3-glycerol phosphate lyase {Zea mays}	1.215371277	0.01163255
MZ00033042	hypothetical protein {Zea mays}	1.38304137	0.00011616
MZ00033225	hypothetical protein {Zea mays}	-1.047186897	0.03503323
MZ00033310	MPI {Tripsacum dactyloides}	2.352504023	0.00019555
MZ00033313	histone H2A {Saccharomyces cerevisiae}	-1.145249522	0.01776911
MZ00033383	hypothetical protein {Zea mays}	1.075793107	0.0040306
MZ00033390	DNA binding protein {Zea mays}	1.96697149	1.57E-07
MZ00033551	Chloroplast 30S ribosomal protein S12 {Zea mays}	1.510108354	0.0229258
MZ00033552	psaC gene {Zea mays}	1.175663107	0.00223934
MZ00033637	3-N-debenzoyl-2-deoxytaxol N- benzoyltransferase {Zea mays}	2.037004599	0.00012992
MZ00033715	hypothetical protein {Oryza sativa}	2.525061974	2.14E-06
MZ00034220	p53 binding protein-like {Oryza sativa}	1.053557067	0.00381158
MZ00034292	S-adenosylmethionine synthetase 1 {Oryza sativa}	1.171875086	0.03257128
MZ00034308	natterin 3 precursor {Thalassophryne nattereri}	1.788825543	0.00369945
MZ00034328	putative branched-chain alpha keto-acid dehydrogenase E1 alpha subunit {Arabidopsis thaliana}	1.453173361	0.00088584
MZ00034331	2-oxoglutarate-dependent oxygenase {Zea mays}	1.039943233	0.00087375
MZ00034354	putative RNA-binding protein {Oryza sativa}	1.237627075	0.0198947
MZ00034379	unknown protein {Oryza sativa}	1.228736771	0.03987185
MZ00034402	allene oxide synthase 1{Zea mays}	1.517704882	9.24E-05

	xyloglucan endotransglycosylase homolog		
MZ00034412	{Zea mays}	1.314451747	0.01393762
MZ00034828	NAD(P)H-quinone oxidoreductase chain 5	1.440580128	0.00391932
	{Zea mays}	1.110500120	0.00391932
MZ00034831	NAD(P)H-quinone oxidoreductase chain I	1.474552195	0.00813793
11200034031	{Zea mays}	1.17 1552175	0.00013775
MZ00034833	NAD(P)H-quinone oxidoreductase chain K	1.424660392	0.02963362
1120000-1000	{Zea mays}	1.121000092	0.02903302
	Apocytochrome f precursor {Zea mays}		
MZ00034834	^ ^GB CAA60298.1 902234 ZMA86563 cyt-	1.67830938	0.00412018
	TRUNCATED-		
MZ00034838	PSI P700 apoprotein A1 {Zea mays}	1.107333632	0.00408091
MZ00034839	Photosystem I P700 chlorophyll A apoprotein	1.293290796	0.00485007
11200057057	A2 (PsaB) (PSI-B) {Zea mays}	1.275270170	
MZ00034840	psaC gene {Zea mays}	1.055290493	0.00423838
MZ00034841	psaI gene {Zea mays}	1.722333399	0.0009648
MZ00034843	Photosystem Q(B) protein {Zea mays}	1.311383428	0.02994731
MZ00034845	Photosystem II 44 kDa reaction center protein	2.698661677	9.57E-06
1120000-1010	{Zea mays}	2.070001077	5.57E 00
MZ00034846	Photosystem II D2 protein {Zea mays}	1.011636158	0.00437641
MZ00034847	cytochrome b559 alpha chain {Oryza sativa}	1.161035732	0.031754
MZ00034848	cytochrome b559 beta chain {Oryza sativa}	1.388158936	0.00833179
MZ00034849	photosystem II phosphoprotein psbH {Zea	1.313356163	0.03218212
1120002-1042	mays}	1.515550105	0.00210212
MZ00034851	Photosystem II reaction center J protein {Zea	1.790096826	0.00083462
	mays}	11770070020	
MZ00034856	Ribulose bisphosphate carboxylase large	2.873669082	0.00012187
1120002-1020	chain precursor {Zea mays}	2.075007002	0.00012107
MZ00034865	ribosomal protein L33 {Zea mays}	1.145953078	0.02387387
MZ00034866	ribosomal protein L36 {Oryza sativa}	1.187284713	0.0102146
MZ00034867	DNA-directed RNA polymerase alpha chain	1.672580203	0.00543532
11200034007	{Zea mays}	1.072500205	0.00343332
MZ00034871	Chloroplast 30S ribosomal protein S11 {Zea	1.78226719	0.00127735
112/000340/1	mays}	1.10220117	0.00121133
MZ00034872	photosystem II subunit T {Narcissus elegans}	2.262354172	0.0002624
MZ00034873	chloroplast 30S ribosomal protein S14 {Zea	1.1616309	0.00066217

	mays}		
MZ00034874	ribosomal protein S15 {Saccharum officinarum}	1.285204464	0.00033142
MZ00034881	Chloroplast 30S ribosomal protein S4 {Zea mays}	1.313624596	0.00896407
MZ00034884	NA	1.158495359	0.01454772
MZ00035054	putative zinc finger protein {Oryza sativa}	1.48720279	0.03209545
MZ00035057	NA	1.133754204	0.00435236
MZ00035071	NA	1.050473757	0.01624994
MZ00035114	phospho-2-dehydro-3-deoxyheptonate aldolase 1 {Zea mays}	1.16485242	0.00012713
MZ00035366	Alanine aminotransferase 2 {Panicum miliaceum}	1.087174227	0.03855972
MZ00035453	hypothetical protein {Zea mays}	1.257113946	0.00022239
MZ00035506	hypothetical protein {Zea mays}	2.400747194	0.00109718
MZ00035543	hypothetical protein {Zea mays}	-1.49922424	0.02218476
MZ00035555	putative senescence-associated protein {Pisum sativum}	1.564696139	0.00468348
MZ00035606	phosphoglycerate mutase {Zea mays}	1.21897855	0.01659736
MZ00035637	NA	1.515364506	0.03228395
MZ00035640	non-photosynthetic NADP-malic enzyme {Zea mays}	1.440170074	0.01796981
MZ00035685	NA	1.015336271	0.04670126
MZ00035703	BLE1 protein {Oryza sativa}	-2.299274466	0.01335693
MZ00035708	putative senescence-associated protein {Pisum sativum}	1.752899753	0.02869505
MZ00035715	putative senescence-associated protein {Pisum sativum}	1.248414714	0.02925646
MZ00035731	putative senescence-associated protein {Pisum sativum}	2.117231965	0.00162205
MZ00035752	probable cytochrome P450 monooxygenase {Zea mays}	1.106080406	0.03558492
MZ00035753	hypothetical protein {Zea mays}	2.44659364	0.00022346
MZ00035770	putative senescence-associated protein {Pisum sativum}	1.58566971	0.019657
MZ00035787	unnamed protein product {Kluyveromyces	2.344711357	0.01282742

	lactis NRRL Y-1140}			
MZ00035813	putative zinc finger protein	1.053917829	0.02734094	
MZ00035825	unnamed protein product	2.112581184	0.01905008	
MZ00035833	unnamed protein product	1.972376292	0.00081464	
MZ00035834	unnamed protein product	1.942359748	0.00364203	
11200032034	putative senescence-associated protein	1.942559740	0.00304203	
MZ00035840	{Pisum sativum}	1.662696715	0.01051349	
MZ00035844	unnamed protein product	2.238306542	0.00061687	
MZ00035848	hypothetical protein {Oryza sativa}	1.395434545	0.00154134	
MZ00035860	GRAB1 protein {Triticum sp.}	1.024494015	0.01022381	
MZ00035947	putative NAC-domain protein {Oryza sativa}	1.60998083	9.97E-06	TF22
MZ00035980	NAC-like protein {Zea mays}	1.135388343	0.00118448	
MZ00036019	putative NAC-domain protein {Oryza sativa}	1.595205937	5.76E-07	TF51
MZ00036046	triacylglycerol lipase like protein {Zea mays}	1.113995786	0.00047973	
MZ00036073	lichenase-2 {Zea mays}	1.174966934	0.01802089	
	mitochondrial 2-oxoglutarate/malate carrier			
MZ00036084	{Zea mays}	1.052232967	0.01485252	
MZ00036109	VTC2 {Zea mays}	1.273763672	0.01041465	
MZ00036162	rRNA promoter binding protein {Rattus	1.46208632	0.01325462	
W1Z00050102	norvegicus}	1.40208032	0.01323402	
MZ00036167	hypothetical protein {Sorghum bicolor}	1.375199353	0.03189078	
MZ00036200	NA	1.050032387	0.04696438	
MZ00036203	histone one (H1) 101 {Zea mays}	2.081158338	0.00056666	
MZ00036205	putative senescence-associated protein	1.656698754	0.00773435	
11200030203	{Pisum sativum}	1.050050751	0.00775155	
MZ00036243	granule bound starch synthase 2a precursor	1.496744711	0.00659298	
11200000210	{Zea mays}	1.190711711	0.000009290	
MZ00036263	ribosomal protein L3 {Triticum aestivum}	1.08633943	0.00230476	
MZ00036264	putative senescence-associated protein	1.822211512	0.00884855	
11200050204	{Pisum sativum}	1.022211012	0.00001000	
MZ00036265	unnamed protein product	2.057588987	0.04180248	
MZ00036295	unnamed protein product	2.731276682	0.00017084	
MZ00036308	unnamed protein product	2.067413012	0.02079413	
MZ00036332	Sucrose-Phosphate Synthase {Zea mays}	-1.071567807	0.03737248	
MZ00036448	NA	1.0929174	0.00495925	
MZ00036449	S-adenosylmethionine decarboxylase 2 {Zea	1.979322835	0.00638583	

	mays}		
M700026454	putative auxin efflux carrier (PIN1c) {Zea	2.045271(90	0.0014525
MZ00036454	mays}	2.045271689	0.0014535
MZ00036455	hypothetical protein {Zea mays}	1.97766129	0.01019146
MZ00036457	alanine aminotransferase 2 {Zea mays}	1.197484877	0.04131038
MZ00036460	LOL3 {Zea mays}	1.972315037	0.00538262
MZ00036485	nicotianamine synthase 3 {Zea mays}	2.123606012	0.00044426
MZ00036498	hypothetical protein {Sorghum bicolor}	1.522914588	0.0259925
MZ00036513	putative senescence-associated protein	1.862190258	0.00706775
11200000010	{Pisum sativum}	1.002170250	0.00700775
MZ00036519	putative fructose-bisphosphate aldolase	1.751127213	0.04497906
	{Oryza sativa}	11/0112/210	
MZ00036530	unnamed protein product	1.571360192	0.04585194
MZ00036531	hypothetical protein {Oryza sativa}	1.032160685	0.00956812
MZ00036584	NA	2.337368374	1.31E-07
MZ00036593	putative Formate dehydrogenase,	-1.760714531	0.00032591
	mitochondrial precursor {Oryza sativa}		
MZ00036758	hypothetical protein {Zea mays}	1.365868883	1.79E-05
MZ00036778	putative chloroplast-targeted beta-amylase	2.200249039	0.0002554
	{Oryza sativa}		
MZ00036791	OSJNBa0079A21.19 {Oryza sativa}	2.023074532	0.00024511
MZ00036819	putative senescence-associated protein	1.816533685	0.00371414
	{Pisum sativum}		
MZ00036829	putative senescence-associated protein	1.448834749	0.01487503
	{Pisum sativum}		
MZ00036845	unnamed protein product	1.718543049	0.02186395
MZ00036847	Ac1147 {Rattus norvegicus}	1.589239801	0.01601009
MZ00036849	zinc finger protein 7 {Zea mays}	1.074150196	0.03513485
MZ00036918	CDH1-D {Gallus gallus}	1.837356235	0.02726923
MZ00036934	unnamed protein product	2.551219889	0.00051638
MZ00037011	NA	1.009418981	0.01122824
MZ00037037	unnamed protein product	1.586973978	0.02819656
MZ00037085	Bowman-Birk type wound-induced proteinase	2.449247951	2.32E-06
	inhibitor WIP1 {Zea mays}		
MZ00037115	OSJNBb0059K02.4 {Oryza sativa}	1.016379381	3.52E-05
MZ00037253	subtilisin/chymotrypsin inhibitor {Zea mays}	1.002151325	0.04928815

MZ00037304terpene sMZ00037403alanine aMZ00037469dehydrinMZ00037470glutathioMZ00037600hypothetic	2 {Zea mays} ynthase 2 {Zea mays} minotransferase {Zea mays} {Zea mays} ne S-transferase:ISOTYPE=IV {Zea ical protein {Zea mays} cose-4-epimerase {Zea mays}	1.071845496 2.047985944 1.17656431 1.173895068 -1.013658351 2.958693279	0.02822171 7.84E-05 0.04541594 0.00718839 0.01327121	
MZ00037403alanine aMZ00037469dehydrinMZ00037470glutathioMZ00037600hypotheti	minotransferase {Zea mays} {Zea mays} ne S-transferase:ISOTYPE=IV {Zea ical protein {Zea mays}	1.17656431 1.173895068 -1.013658351	0.04541594 0.00718839	
MZ00037469dehydrinMZ00037470glutathioMZ00037600hypotheti	{Zea mays} ne S-transferase:ISOTYPE=IV {Zea ical protein {Zea mays}	1.173895068 -1.013658351	0.00718839	
MZ00037470 glutathio mays} MZ00037600 hypotheti	ne S-transferase:ISOTYPE=IV {Zea	-1.013658351		
MZ00037470 mays} MZ00037600 hypothetic	ical protein {Zea mays}		0.01327121	
•••	• • •	2.958693279	1	
MZ00037902 UDP-glu	cose-4-epimerase {Zea mays}		1.37E-07	
		1.00335287	0.00679671	
MZ00038047 adenine r	nucleotide translocator {Zea mays}	1.215160816	0.04819532	
MZ00038068 plasma mays}	membrane intrinsic protein2 {Zea	1.520175078	0.01824837	
MZ00038276 catalytic/	hydrolase {Zea mays}	1.23163918	0.00024122	
MZ00038457 ferredoxi	n-1 {Zea mays}	-1.106050548	0.03001737	
MZ00038646 ubiquitin	-like protein 5 {Zea mays}	1.189879144	0.03871616	
MZ00038776 hypotheti	ical protein {Zea mays}	1.024193973	0.01034773	
MZ00038794 elongatio	n factor 1alpha {Zea mays}	1.183934964	0.0020084	
MZ00039156 hypotheti	ical protein {Zea mays}	1.053561032	0.01248237	
MZ00039234 glycerald {Zea may	ehyde-3-phosphate dehydrogenase ys}	1.0047173	0.0240705	
MZ00039285 alpha-zei	n protein {Zea mays}	2.081110772	0.00350721	
MZ00039367 hypotheti	ical protein {Zea mays}	1.379724837	0.0495681	
MZ00039711 phosphog	glucomutase 2 {Zea mays}	1.714834307	0.03606689	
MZ00039722 hypotheti	ical protein {Zea mays}	1.071785258	0.01239221	
MZ00039734 beta-gluc	cosidase {Zea mays}	1.161789806	0.0019116	
MZ00039764	-Birk type wound-induced proteinase WIP1 {Zea mays}	1.689514344	0.00071951	
MZ00039805 hypotheti	ical protein {Zea mays}	1.648433435	0.00014518	
MZ00039846 NAC1 tra	anscription factor {Zea mays}	1.4951973	0.00021314	
MZ00040036 pyruvate,	orthophosphate dikinase {Zea mays}	1.121827126	0.03904921	
MZ00040075 Granule- {Zea mag		1.418209135	0.03455696	
MZ00040271 S-adenos mays}	ylmethionine decarboxylase 2 {Zea	1.756260576	0.02526966	
MZ00040277 putative of	cytochrome B5 {Oryza sativa}	1.500549536	3.95E-05	
MZ00040289 putative of	casein kinase I {Oryza sativa}	1.146119451	0.02344848	
MZ00040294 alcohol d	ehydrogenase 1 (adh1) {Zea mays}	-1.256672256	0.01302296	

MZ00040327	amino acid carrier {Zea mays}	1.052384531	0.03160973	
MZ00040437	MYB transcription factor {Zea mays}	1.076011466	0.00349677	
MZ00040479	ATP synthase beta subunit {Saccharum officinarum}	4.544642147	1.53E-05	
MZ00040486	Ribulose bisphosphate carboxylase large chain precursor {Zea mays}	1.908224477	0.00157497	
MZ00040525	putative ATP synthase beta chain {Oryza sativa}	3.993841648	4.35E-05	
MZ00040654	glutathione S-transferase GST 25 {Zea mays}	1.133561637	0.00079982	
MZ00040799	psaI gene {Zea mays}	1.691581287	0.01875791	
MZ00040800	Photosystem II reaction center I protein {Triticum aestivum}	1.275611	0.04520172	
MZ00040806	Chloroplast 50S ribosomal protein L23 {Zea mays}	2.540319317	0.04844961	
MZ00040807	ribosomal protein L33 {Zea mays}	1.033648273	0.02523624	
MZ00040842	strongly similar to NP_195589.2 splicing factor	1.673406712	0.02429822	
MZ00041005	subtilisin-chymotrypsin inhibitor homolog1 {Zea mays}	1.071580564	0.03621874	
MZ00041163	hypothetical protein {Zea mays}	1.037888725	3.28E-05	
MZ00041326	putative Bowman-Birk serine protease inhibitor {Zea mays}	-1.494711493	0.01281047	
MZ00041327	putative Bowman-Birk serine protease inhibitor {Zea mays}	-1.835149134	0.00206329	
MZ00041372	xyloglucan endo-transglycosylase/hydrolase (xth1) {Zea mays}	1.395480882	0.00184888	
MZ00041665	UDP-glucose-4-epimerase {Zea mays}	1.227136386	0.00259668	
MZ00041671	60S ribosomal protein L13a {Zea mays}	1.553188404	3.60E-05	
MZ00041708	unknown protein {Oryza sativa}	-1.298762583	0.0041991	
MZ00041802	zinc finger protein {Oryza sativa}	-1.388768717	0.00204068	TF37
MZ00041945	translational initiation factor eIF-4A {Zea mays}	1.476509001	0.00859072	
MZ00042040	small multi-drug export protein {Zea mays}	1.42644296	3.00E-05	
MZ00042137	phi-1-like phosphate-induced protein {Zea mays}	1.431577512	6.89E-06	
MZ00042324	ribosome-inactivating protein {Zea mays}	1.314396472	0.00546222	

3 477000 40 480		1 001514000	0.00540207	
MZ00042472	unknown protein {Oryza sativa}	1.231514922	0.00542327	
MZ00042545	amino acid transport protein {Zea mays}	1.257388074	0.00221837	
MZ00042564	transducin {Oryza sativa}	1.209766028	0.0414948	
MZ00042678	ribosome-inactivating protein {Zea mays}	1.687783842	0.01531937	
MZ00042739	WRKY transcription factor {Oryza sativa}	1.287648034	7.67E-05	TF26
MZ00042841	Histone H2A {Zea mays}	1.752637372	0.01824991	
MZ00042953	chlorophyll a/b binding protein {Oryza sativa}	1.474493885	0.02031815	
MZ00043103	IAA24 - auxin-responsive Aux/IAA family member {Zea mays}	1.346996393	2.84E-06	
MZ00043393	2-oxoglutarate-dependent oxygenase {Zea mays}	1.639466238	1.45E-05	
MZ00043400	hypothetical protein {Asparagus officinalis}	1.857301079	2.63E-05	
MZ00043484	cysteine protease 1 {Zea mays}	1.19870677	0.03749325	
MZ00043526	unknown protein {Oryza sativa}	1.459866856	0.00030876	
MZ00043539	transmembrane 9 superfamily protein member 4 {Zea mays}	2.012963009	0.00048569	
MZ00043988	hypothetical protein {Zea mays}	-1.330528902	0.00185394	
MZ00044104	unknown protein {Oryza sativa}	1.393725382	0.00053211	
MZ00044126	hypothetical protein {Zea mays}	1.861114031	0.00038173	
MZ00044135	hypothetical protein {Zea mays}	1.106562177	1.63E-05	
MZ00044190	allene oxide synthase 1 {Zea mays}	2.40482948	8.46E-05	
MZ00044413	benzoxazinone synthesis BX9 {Zea mays}	1.084818665	0.04468022	
MZ00044555	putative phosphoribosyl pyrophosphate synthase {Oryza sativa}	1.273373219	0.00105759	
MZ00046581	beta-amylase {Zea mays}	1.172624746	6.33E-06	
MZ00046685	unknown protein {Oryza sativa}	1.200878543	0.00058811	
MZ00046697	putative peptidyl-prolycis-trans isomerase protein {Oryza sativa}	1.07355831	0.0056298	
MZ00046814	zeaxanthin epoxidase {Zea mays}	1.160342049	0.006663	
MZ00046924	mitochondrial transcription termination factor-like {Oryza sativa}	1.06888442	0.04287812	
MZ00046986	unknown protein {Oryza sativa}	1.256543668	0.00076368	
MZ00047586	putative root hairless 1 {Oryza sativa}	1.589256026	0.00272862	
MZ00047697	unknown protein {Oryza sativa}	1.098830369	0.0001109	
MZ00047756	IrgB-like family protein {Zea mays}	1.87547375	0.03497623	

		1.015055501	0.00040455	1
MZ00047903	hypothetical protein {Zea mays}	1.017055501	0.00240156	
MZ00048363	putative sialin {Oryza sativa}	1.424518949	0.00333418	
MZ00048364	beta-amylase {Zea mays}	2.077666631	2.88E-05	
MZ00048444	Myb factor protein {Oryza sativa}	1.931871565	0.00022486	TF28
MZ00048483	ZIM-motif family protein {Zea mays}	2.028045873	0.00082304	
MZ00048497	putative ATP synthase gamma chain 1, chloroplast (H(+)-transporting two-sector ATPase/F(1)-ATPase/ATPC1) {Oryza sativa}	1.104324531	0.02589263	
MZ00048814	putative nucleoid DNA-binding protein cnd41 {Oryza sativa}	1.630870608	0.00547833	
MZ00049082	von Willebrand factor type A domain containing protein {Zea mays}	1.081249464	0.00012647	
MZ00050411	LOB domain protein 11 {Zea mays}	1.202533332	0.00274949	
MZ00052267	putative senescence-associated protein {Pisum sativum}	2.305749457	0.00274858	
MZ00052283	hypothetical protein {Zea mays}	1.664694247	0.00076009	
MZ00054822	phospho-2-dehydro-3-deoxyheptonate aldolase 1 {Zea mays}	1.037114826	0.00034495	
MZ00054907	putative cytochrome P450 {Oryza sativa}	1.444210825	0.00129733	
MZ00054995	hypothetical protein {Zea mays}	1.129921377	0.00028563	
MZ00055184	putative senescence-associated protein {Pisum sativum}	1.370242333	0.00824871	
MZ00055463	esterase {Zea mays}	1.874727155	4.29E-07	
MZ00055884	hypothetical protein {Zea mays}	1.314444877	7.05E-08	
MZ00055932	Bowman-Birk type trypsin inhibitor {Zea mays}	1.232359054	0.00226953	
MZ00056629	OSJNBa0088A01.13 {Oryza sativa}	1.871600301	0.00274666	
MZ00056644	disease resistance response protein-like {Oryza sativa}	-1.10469911	0.00763107	
MZ00056647	hypothetical protein {Zea mays}	2.395220087	2.83E-06	
MZ00056690	glucan endo-1,3-beta-glucosidase homolog1 {Zea mays}	-1.020114018	0.01949473	
MZ00056859	myb-related protein-like {Oryza sativa}	1.01087786	0.02310255	
MZ00057095	putative UVB-resistance protein UVR8 {Oryza sativa}	-1.057543077	0.02392993	
	{Oryza sativa}			

MZ00057252	probable ring finger protein - barley {Hordeum vulgare}	1.180631224	0.02183747
MZ00057436	putative ZEITLUPE {Oryza sativa}	3.060342811	6.89E-05

Tab.7. 3: 2 h after feeding induction

		fold		
MZ-number	Annotation	expression	p-value	Abbrevation
		(log10)		
MZ00000390	NA	1.03023686	0.04988142	
MZ00000418	transferase {Zea mays}	1.373511474	0.00068188	
MZ00001464	NA	2.361058379	0.0002537	
MZ00003912	OSJNBa0008M17.5 {Oryza sativa}	1.858015327	0.00329458	
MZ00003937	putative UOS1 {Oryza sativa}	1.286657337	0.03894326	
MZ00004418	TGF-beta receptor-interacting protein 1 {Phaseolus vulgaris}	1.091491534	0.16466971	
MZ00004465	anthranilic acid methyltransferase 1 {Zea mays}	1.953334566	0.09519435	
MZ00004614	glucose-6-phosphate/phosphate translocator 2 {Zea mays}	1.014436622	0.00134676	
MZ00005352	NA	1.023726633	0.06403457	
MZ00005405	farnesyl pyrophosphate synthase1 {Zea mays}	1.87367602	0.00037421	
MZ00005471	putative tyrosine/dopa decarboxylase {Oryza sativa}	1.277068191	0.00077685	
MZ00005511	hypothetical protein {Zea mays}	1.19741694	0.00066932	
MZ00005899	terpene synthase 2 {Zea mays}	2.445964131	5.77E-07	
MZ00005958	indole-3-glycerol phosphate lyase {Zea mays}	2.144543334	0.00237136	
MZ00012674	zinc finger protein 3 {Zea mays}	1.302183953	0.00020717	
MZ00012854	putative zinc transporter {Oryza sativa}	1.009181101	0.27292594	
MZ00013037	pyruvate,orthophosphate dikinase {Zea mays}	1.054684327	0.09088338	
MZ00013112	Phospholipid-transporting ATPase 1 {Arabidopsis thaliana}	1.066196225	0.00066572	
MZ00013321	hypothetical protein {Sorghum bicolor}	1.078840592	5.34E-05	
MZ00013411	ADP-ribosylation factor-like protein 8B {Zea mays}	1.772779	2.92E-05	
MZ00013555	hypothetical protein {Zea mays}	1.387785261	0.00782457	
MZ00013725	DRE-binding protein 4 {Zea mays}	1.431889465	0.00355558	

MZ00013773	UDP-glucose 6-dehydrogenase {Zea mays}	1.410818771	0.00070133
MZ00013836	S-adenosylmethionine decarboxylase {Oryza sativa}	2.668290682	1.82E-05
MZ00013840	phospho-2-dehydro-3-deoxyheptonate aldolase 1 {Zea mays}	1.798847947	0.00022038
MZ00013841	phospho-2-dehydro-3-deoxyheptonate aldolase 1 {Zea mays}	1.354861127	0.01272741
MZ00013846	lipoxygenase11 {Zea mays}	1.665138179	0.15612374
MZ00013941	profilin A {Zea mays}	-1.123587087	0.0146436
MZ00014008	Farnesyl pyrophosphate synthetase {Zea mays}	1.159666733	0.01844409
MZ00014027	glycine hydroxymethyltransferase {Arabidopsis thaliana}	1.374526933	0.00021777
MZ00014072	light-inducible protein ATLS1 {Arabidopsis thaliana}	-1.095767662	0.05327683
MZ00014307	Cytochrome P450 71C2 {Zea mays}	1.70239388	0.00474709
MZ00014377	nodulation homolog 1 {Zea mays}	-1.303107325	0.01284684
MZ00014943	anthranilate synthase alpha 2 subunit {Oryza sativa}	1.209071744	0.00915593
MZ00015021	polyphenol oxidase {Saccharum hybrid cultivar}	1.15465864	0.00250256
MZ00015105	indole synthase {Zea mays}	1.030830422	0.01214453
MZ00015138	UDP-glucuronic acid decarboxylase {Oryza sativa}	1.201321097	0.0011263
MZ00015154	cylicin-1 {Zea mays}	1.131634848	0.00588923
MZ00015218	hypothetical protein {Zea mays}	1.113226298	0.00315424
MZ00015279	macrophage migration inhibitory factor {Zea mays}	-1.013855835	0.14618563
MZ00015502	vacuolar sorting receptor homolog {Zea mays}	1.352260391	0.00260728
MZ00015504	blue fluorescent1 {Zea mays}	1.428410541	0.00079352
MZ00015505	putative fruit protein {Oryza sativa}	1.630659685	0.03466756
MZ00015701	lipoxygenase {Zea mays}	2.581695148	0.00051602
MZ00016249	probablehydroxymethylglutaryl-CoAreductase (NADPH2) {Oryza sativa}	1.539376405	0.00299231
MZ00016498	disease resistance response protein-like	-1.251673213	0.01472235

	{Oryza sativa}		
MZ00016835	nucleotide pyrophosphatase/phosphodiesterase		
	{Zea mays}	1.492979993	0.00034351
	putative cell division protein FtsH3 {Oryza	1.0(7799420	0.00005575
MZ00016876	sativa}	1.067788439	0.00805575
MZ00016940	unknown protein {Oryza sativa}	1.002783573	0.35891415
MZ00017092	hypothetical protein {Zea mays}	1.617888668	0.05015276
MZ00017211	hypothetical protein {Zea mays}	1.550151642	0.01108802
MZ00017245	ABC family1 {Zea mays}	1.230093808	0.17593178
MZ00017265	MtN3-like protein {Arabidopsis thaliana}	1.387075724	0.00045726
MZ00017300	hypothetical protein {Zea mays}	1.045359846	0.00106156
MZ00017335	glutamine-fructose-6-phosphate transaminase	1.106680174	0.00046455
11200017555	2 {Arabidopsis thaliana}	1.100000174	0.000+0+35
MZ00017386	hypothetical protein {Oryza sativa}	-1.127725041	0.00470713
MZ00017392	flavonoid 3-monooxygenase {Zea mays}	1.368355694	0.03466701
MZ00017522	Putative serine/threonine kinase {Oryza	1.131462373	0.12184173
	sativa}		
MZ00017601	hydroperoxide lyase {Zea mays}	1.215532646	2.08E-05
MZ00017814	putative alcohol dehydrogenase {Oryza	-1.017998925	0.03574206
	sativa}		
MZ00017989	hypothetical protein {Sorghum bicolor}	1.423193812	0.1475606
MZ00018016	Putative transporter {Oryza sativa}	1.008044236	0.01600165
MZ00018189	hypothetical protein {Zea mays}	1.060194828	0.22352922
MZ00018193	beta-expansin 1a {Zea mays}	-1.059161246	0.00060302
MZ00018234	OSJNBb0085F13.14 {Oryza sativa}	1.020119199	0.03142899
MZ00018241	ribosome-inactivating protein {Zea mays}	2.566665061	0.00026059
MZ00018258	hypothetical protein {Zea mays}	1.145522492	0.0719273
MZ00018280	OSJNBa0019K04.6 {Oryza sativa}	1.092957667	0.07619123
MZ00018568	hypothetical protein {Zea mays}	2.336558636	2.66E-05
MZ00018741	putative cytochrome P450 reductase {Oryza	2.154914042	0.00433498
	sativa}		
MZ00018836	hypothetical protein {Zea mays}	1.26210382	0.00034168
MZ00018952	hypothetical protein {Oryza sativa}	-1.108451485	0.01277162
MZ00019196	senescence-associated protein DH {Zea mays}	1.3692118	5.90E-05
MZ00019277	unknown protein {Oryza sativa}	-1.01309242	0.02812032
MZ00019475	anthranilate N-benzoyltransferase protein 1	1.307470694	0.00817859

	{Zea mays}		
MZ00019560	putative AMP deaminase {Oryza sativa}	1.843768023	7.88E-05
MZ00019300 MZ00019701	hypothetical protein {Oryza sativa}	2.278043903	0.0001613
MZ00019701 MZ00019729	terpene synthase 2 {Zea mays}	2.546889179	5.76E-05
MZ00019894	stem 28 kDa glycoprotein {Zea mays}	2.410031229	0.00090632
MZ00019908	hypothetical protein {Zea mays}	-1.045638506	0.03687567
MZ00020111	4-coumarateCoA ligase 4CL1 {Lolium perenne}	1.006469385	0.00983614
MZ00020230	epoxide hydrolase 2 {Zea mays}	1.715044275	0.0046751
MZ00020495	Probablediseaseresistanceprotein{Arabidopsisthaliana}^ ^GB CAB38788.1 4490297 ATF17M5putat-TRUNCATED-	1.026662725	0.00333622
MZ00020968	putative lipase class 3 family protein {Oryza sativa}	2.090846466	0.00021577
MZ00021254	OSJNBa0065B15.8 {Oryza sativa}	1.636843291	0.02582368
MZ00021385	putative cytochrome P450 reductase {Oryza sativa}	1.026286532	0.00784386
MZ00021997	putative auxin-regulated protein {Oryza sativa}	1.166719003	0.00416705
MZ00022163	putative 10-deacetylbaccatin III-10-O-acetyl transferase {Oryza sativa}	2.795284145	0.00112124
MZ00022180	hypothetical protein {Zea mays}	1.461594647	1.89E-05
MZ00022380	hypothetical protein {Sorghum bicolor}	1.66586002	0.02069314
MZ00022582	peroxidase 1 {Zea mays}	1.047218026	0.00106451
MZ00022994	allene oxide synthase 1 {Zea mays}	1.865077821	1.06E-07
MZ00023013	unknown protein {Oryza sativa}	1.171634486	0.00186209
MZ00023027	starch phosphorylase 2 precursor {Zea mays}	1.048303355	0.01212634
MZ00023087	hypothetical protein {Zea mays}	1.26569152	0.00012539
MZ00023228	dihydroflavonol-4-reductase {Zea mays}	1.056075907	0.01229024
MZ00023293	MCB2 protein {Hordeum vulgare subsp. vulgare}	-1.045847437	0.00349516
MZ00023318	putative prephenate dehydratase {Oryza sativa}	1.483733745	3.58E-06
MZ00023441	S-adenosylmethionine synthetase 1 {Zea mays}	1.567118066	0.00125196

MZ00023501	pnFL-2 {Zea mays}	1.33327923	0.01265398
MZ00023547	putative aminotransferase class-III {Oryza sativa}	1.742252391	0.0123728
MZ00023952	vacuolar proton pump homolog1 {Zea mays}	1.009359434	0.34530679
MZ00023983	ribonuclease S homolog {Zea mays}	1.145738995	0.00060099
MZ00024039	photosystem I reaction center subunit III {Zea mays}	1.616016643	0.22302104
MZ00024196	superoxide dismutase {Zea mays}	1.47353444	9.49E-05
MZ00024204	putative C-4 sterol methyl oxidase {Oryza sativa}	1.257850194	0.04459984
MZ00024350	anthranilate synthase component II {Zea mays}	2.327282998	0.00358114
MZ00024351	anthranilate synthase component II {Zea mays}	1.465293952	0.00089003
MZ00024600	S-like RNase {Triticum aestivum}	1.005051476	0.00013909
MZ00024662	putative indole-3-glycerol phosphate synthase {Oryza sativa}	1.176295043	0.00089011
MZ00024753	putative angio-associated migratory cell protein {Oryza sativa}	1.194788081	0.16552594
MZ00024904	OSJNBa0058K23.19 {Oryza sativa}	1.397660148	0.00151183
MZ00025169	DEAD box RNA helicase {Zea mays}	1.227198799	0.03618211
MZ00025171	DEAD box RNA helicase1 {Zea mays}	1.157403615	0.00051684
MZ00025289	cytidine deaminase2 {Zea mays}	1.790277357	0.02487384
MZ00025407	polyamine oxidase1 (pao1) {Zea mays}	1.664314353	0.00037069
MZ00025580	OSJNBa0058G03.5 {Oryza sativa}	1.080026156	0.07692816
MZ00025708	ZIM-motif family protein {Zea mays}	1.131402858	0.00286847
MZ00025768	glutathione S-transferase GST 20 {Zea mays}	2.1001018	0.00079211
MZ00025895	farnesyl-pyrophosphate synthetase {Oryza sativa}	1.906928244	0.00476959
MZ00025944	glutathione S-transferase GST 10 {Zea mays}	-1.008378342	0.07490153
MZ00026004	glucose-6-phosphate/phosphate translocator 2 {Zea mays}	1.042467121	0.23435668
MZ00026277	hypothetical protein {Zea mays}	1.519029522	0.00010354
MZ00026471	anthranilate synthase alpha 1 subunit {Oryza sativa}	2.859966877	1.10E-05
MZ00026538	ZIM-motif family protein {Zea mays}	1.380001549	0.00865806

MZ00026661	putative NAC-domain protein {Oryza sativa}	1.269517381	0.00999369	TF1
MZ00026684	hypothetical protein {Zea mays}	1.077745834	0.00159198	
MZ00026739	putative lipase {Arabidopsis thaliana}	2.26447486	0.03384457	
MZ00027030	12-oxo-phytodienoic acid reductase8 {Zea mays}	1.342701039	0.02357186	
MZ00027037	OSJNBa0008M17.5 {Oryza sativa}	2.694023971	0.01666961	
MZ00027073	hypothetical protein {Zea mays}	1.286337591	0.08322685	
MZ00027387	cinnamyl alcohol dehydrogenase1 {Zea mays}	1.543096669	0.00444697	
MZ00027416	autophagy-related 12 {Zea mays}	1.26397244	0.05916287	
MZ00027491	Cytochrome P450 71C4 {Zea mays}	1.234304683	0.02707684	
MZ00027637	chloride channel {Zea mays}	1.12853167	0.00081646	
MZ00028221	putative phosphoethanolamine methyltransferase {Oryza sativa}	1.114589694	0.02651546	
MZ00028790	hypothetical protein {Zea mays}	1.043993089	0.00318289	
MZ00028898	hypothetical protein {Zea mays}	1.391299979	0.0006231	
MZ00029195	putative phosphoribosyl pyrophosphate synthase {Oryza sativa}	2.560977534	6.02E-06	
MZ00029519	OSJNBa0008M17.5 {Oryza sativa}	1.558536958	0.00333745	
MZ00029560	phytocystatin {Actinidia deliciosa}	2.808226321	6.41E-05	
MZ00029584	arogenate dehydrogenase {Zea mays}	1.296479229	1.36E-05	
MZ00029594	sesquiterpene cyclase {Zea mays}	1.605835591	9.10E-06	
MZ00029629	histone deacetylase {Zea mays}	1.773627052	0.00677565	
MZ00029916	hypothetical protein {Zea mays}	1.119383857	0.00074939	
MZ00029921	anthranilic acid methyltransferase 1 {Zea mays}	1.27577375	0.07055959	
MZ00030298	sucrose-phosphatase {Zea mays}	1.285520188	2.22E-05	
MZ00030501	terpene synthase {Zea mays}	1.316340614	0.00018751	
MZ00030642	chemocyanin {Zea mays}	1.114132022	0.00269918	
MZ00030744	integral membrane protein DUF6 containing protein {Zea mays}	1.175017063	0.01859008	
MZ00030829	aldo-keto reductase/ oxidoreductase {Zea mays}	1.631060743	0.00398554	
MZ00031225	At3g54650/T5N23_10 {Arabidopsis thaliana}	1.130579468	0.00986646	
MZ00031356	unknown protein {Oryza sativa}	1.590638565	8.93E-05	
MZ00031477	hypothetical protein {Zea mays}	1.036987982	0.00035747	
MZ00031624	putative prephenate dehydratase {Oryza	1.124857295	0.00043053	

	sativa}		
MZ00031736	terpene synthase10 {Zea mays}	2.478956434	0.00139642
MZ00031748	hypothetical protein {Zea mays}	1.100082514	0.01356034
	glutathione transferase {Hordeum vulgare		
MZ00031832	subsp. vulgare}	1.578120101	7.31E-05
MZ00031957	unknown protein {Oryza sativa}	1.004907218	0.00168799
N/700022042	anthranilic acid methyltransferase 3 {Zea	1 22497522	0.00172149
MZ00032043	mays}	1.33487533	0.00173148
MZ00032136	1-deoxy-D-xylulose 5-phosphate synthase 2	3.227763457	2.18E-08
WIZ00032130	(dxs2) {Zea mays}	5.227705457	2.102-00
MZ00032170	putative centromere protein {Oryza sativa}	1.944509146	0.00129221
MZ00032240	indole-3-glycerol phosphate synthase {Zea	2.034400307	3.00E-05
11200032240	mays}	2.031100307	5.001 05
MZ00032999	indole-3-glycerol phosphate lyase {Zea mays}	1.563299031	0.0019546
MZ00033310	MPI {Tripsacum dactyloides}	3.01765026	1.39E-05
MZ00033551	Chloroplast 30S ribosomal protein S12 {Zea	2.293633708	0.00147481
	mays}		
MZ00033552	psaC gene {Zea mays}	1.427344874	0.00040398
MZ00033637	3-N-debenzoyl-2-deoxytaxol N-	1.974223767	0.00014116
	benzoyltransferase {Zea mays}		
MZ00033688	pyruvate,orthophosphate dikinase {Zea mays}	1.556751962	0.17929047
MZ00034236	vacuolar sorting receptor homolog1 {Zea	1.272306222	0.00144763
	mays}		
MZ00034292	S-adenosylmethionine synthetase 1 {Oryza	1.101136222	0.0387964
	sativa}		
MZ00034295	methionine synthase {Zea mays}	2.307220428	3.28E-06
MZ00034298	seed specific protein of balanced nutritional	1.362589081	0.00856829
	quality {Amaranthus hypochondriacus}		
MZ00034308	natterin 3 precursor {Thalassophryne	1.723248995	0.00409385
	nattereri}		
MZ00034331	2-oxoglutarate-dependent oxygenase {Zea	1.03500533	0.00075819
MZ00034402	mays} allene oxide synthase {Zea mays}	1.671836552	2.88E-05
101200034402	• • • •	1.0/1000002	2.00E-UJ
MZ00034828	NAD(P)H-quinone oxidoreductase chain 5	1.508385378	0.00243565
MZ00034831	{Zea mays} NAD(P)H-quinone oxidoreductase chain I	1.188448296	0.02334139
101200034831	MAD(r)n-quillone oxidoreduciase chain I	1.100440290	0.02334139

	{Zea mays}		
	NAD(P)H-quinone oxidoreductase chain J		
MZ00034832	{Zea mays}	1.312867972	0.02494666
MZ00034833	NAD(P)H-quinone oxidoreductase chain K {Zea mays}	2.179723534	0.00208898
MZ00034834	Apocytochrome f precursor {Zea mays}^ ^GB CAA60298.1 902234 ZMA86563 cyt-TRUNCATED-	1.704495188	0.00318348
MZ00034838	PSI P700 apoprotein A1 {Zea mays}	2.784546574	5.88E-07
MZ00034839	Photosystem I P700 chlorophyll A apoprotein A2 {Zea mays}	2.086225666	8.50E-05
MZ00034840	psaC gene {Zea mays}	1.48064752	0.00025438
MZ00034841	psaI gene {Zea mays}	2.201212435	9.34E-05
MZ00034842	photosystem I subunit IX {Oryza nivara}	2.27378194	0.00955403
MZ00034843	Photosystem Q(B) protein {Zea mays}	1.633766858	0.00832835
MZ00034845	Photosystem II 44 kDa reaction center protein {Zea mays}	2.854597088	4.13E-06
MZ00034846	Photosystem II D2 protein {Zea mays}	1.818045758	2.52E-05
MZ00034847	cytochrome b559 alpha chain {Oryza sativa}	1.775936741	0.00233617
MZ00034848	cytochrome b559 beta chain {Oryza sativa}	1.606566149	0.00277161
MZ00034849	photosystem II phosphoprotein psbH {Zea mays}	2.438270573	0.00052747
MZ00034850	Photosystem II reaction center I protein {Triticum aestivum}	2.054908102	0.00190159
MZ00034851	Photosystem II reaction center J protein {Zea mays}	2.142328229	0.00014564
MZ00034853	photosystem II L protein {Oryza sativa}	1.187725187	0.00697087
MZ00034854	NA	2.050272742	0.00272595
MZ00034855	photosystem II protein N {Oryza sativa}	2.02867509	0.00540431
MZ00034856	Ribulose bisphosphate carboxylase large chain precursor {Zea mays}	3.708092123	7.59E-06
MZ00034857	Chloroplast 30S ribosomal protein S12 {Zea mays}	2.38414342	0.00187299
MZ00034858	Chloroplast 50S ribosomal protein L14 {Zea mays}ribosomal protein L14 {Zea mays} ^- TRUNCATED-	1.865715686	0.02070231

	Chloroplast 50S ribosomal protein L16 {Zea		
MZ00034859	mays}	2.252885787	0.03994905
MZ00034860	ribosomal protein L2 {Zea mays}	2.099443546	0.11249719
MZ00034862	Chloroplast 50S ribosomal protein L22 {Zea mays}	2.981569473	0.0411925
MZ00034863	Chloroplast 50S ribosomal protein L23. {Zea mays} ^ ^PIR S01396 R5ZM23 ribosomal protein L23 - maize chloroplast {Zea mays} ^ ^GB BAD27383.1 49659602 AP006714 ribosomal protein L23 {Saccharum officinarum;}-TRUNCATED-	2.426050952	0.05597254
MZ00034865	ribosomal protein L33 {Zea mays}	1.326255597	0.00969839
MZ00034866	ribosomal protein L36 {Oryza sativa}	2.30907383	4.47E-05
MZ00034867	DNA-directed RNA polymerase alpha chain {Zea mays}	2.178472896	0.00066476
MZ00034871	Chloroplast 30S ribosomal protein S11 {Zea mays}	2.053424775	0.00033218
MZ00034872	photosystem II subunit T {Narcissus elegans}	2.705007934	3.96E-05
MZ00034873	Chloroplast 30S ribosomal protein S14 {Zea mays}	1.156380639	0.00057142
MZ00034874	ribosomal protein S15 {Saccharum officinarum}	2.058579357	2.42E-06
MZ00034877	Chloroplast 30S ribosomal protein S18 {Zea mays}	2.002648333	0.00181047
MZ00034878	ribosomal protein S19 {Zea mays}	1.988382211	0.03254884
MZ00034879	Chloroplast 30S ribosomal protein S2 {Zea mays}	1.997499065	0.01274782
MZ00034880	Chloroplast 30S ribosomal protein S3 {Zea mays}	2.834132874	0.00551188
MZ00034881	Chloroplast 30S ribosomal protein S4 {Zea mays}	2.792795774	1.45E-05
MZ00034882	Chloroplast 30S ribosomal protein S7 {Zea mays}	2.444999997	0.08955369
MZ00034883	Chloroplast 30S ribosomal protein S8 {Zea mays}	1.834970735	0.08675822
MZ00034895	hypothetical protein {Zea mays}	2.155866354	0.13762338

MZ00034901	NA	1.041764824	0.02735304
MZ00034902	NA	1.310040741	0.01478759
MZ00034904	NA	1.458630883	0.00261811
MZ00034910	NA	1.489061889	0.0431608
MZ00034930	lipoxygenase10 {Zea mays}	1.124129713	0.00242893
MZ00035055	lipoxygenase6 {Zea mays}	1.049963052	0.00588982
MZ00035057	hypothetical protein {Sorghum bicolor}	1.703244145	0.00014203
MZ00035114	phospho-2-dehydro-3-deoxyheptonate aldolase 1 {Zea mays}	1.112711835	0.00015787
MZ00035119	putative senescence-associated protein {Pisum sativum}	1.078421948	0.06953704
MZ00035213	prpol {Zea mays}	1.057014741	0.01829625
MZ00035259	putative senescence-associated protein {Pisum sativum}	1.506943662	0.00363069
MZ00035364	ABA- and ripening-inducible-like protein {Zea mays}	1.090715747	0.25096348
MZ00035373	AER {Zea mays}	1.296724162	0.00016459
MZ00035374	methionine synthase {Zea mays}	1.973657913	1.84E-06
MZ00035394	putative senescence-associated protein {Pisum sativum}	1.735292879	0.00095714
MZ00035414	<pre>synthase proteolipid subunit,ATP {Spinacia sp.}</pre>	2.105032338	0.2767487
MZ00035506	hypothetical protein {Zea mays}	2.610852895	0.00046109
MZ00035555	putative senescence-associated protein {Pisum sativum}	2.013258584	0.00060866
MZ00035616	pyruvate,orthophosphate dikinase {Zea mays}	1.105201782	0.55002025
MZ00035637	NA	2.674661284	0.00080415
MZ00035685	NA	2.082256523	0.00047532
MZ00035702	NA	1.927259588	0.00308432
MZ00035704	NA	1.093259361	0.01590859
MZ00035708	putative senescence-associated protein {Pisum sativum}	1.638762142	0.03516077
MZ00035715	putative senescence-associated protein {Pisum sativum}	2.149019892	0.00082668
MZ00035720	hypothetical protein {Zea mays}	1.550246251	0.00015237
MZ00035731	putative senescence-associated protein {Pisum	1.862421144	0.00347306

	sativum}		
	probable cytochrome P450 monooxygenase		
MZ00035752	{Zea mays}	1.776277849	0.00197458
MZ00035753	hypothetical protein {Zea mays}	2.362359758	0.00025024
MZ00035770	putative senescence-associated protein {Pisum sativum}	2.265850802	0.00184994
MZ00035787	unnamed protein product	2.602140335	0.00605042
MZ00035813	putative zinc finger protein	1.22852734	0.01096484
MZ00035825	unnamed protein product	2.523691105	0.00607011
MZ00035828	putative senescence-associated protein {Pisum sativum}	1.685101641	0.00102647
MZ00035833	unnamed protein product	2.277198937	0.00019668
MZ00035834	unnamed protein product	2.105099096	0.00174862
MZ00035835	unnamed protein product	1.466083263	0.00612952
MZ00035840	putative senescence-associated protein {Pisum sativum}	1.906894424	0.00387732
MZ00035842	carbonic anhydrase {Zea mays}	1.119621929	0.33733191
MZ00035844	unnamed protein product	2.010759187	0.00121774
MZ00035848	Hypothetical protein {Oryza sativa Zea mays}	1.183254307	0.00425262
MZ00035981	NAD-dependent epimerase/dehydratase family protein {Zea mays}	1.43966079	0.00323953
MZ00035987	hypothetical protein {Oryza sativa}	1.483413721	0.00506518
MZ00035997	lipoxygenase6 {Zea mays}	1.529627126	0.00345538
MZ00036078	hypothetical protein {Zea mays}	1.091621379	1.19E-05
MZ00036098	metallothionein-like protein {Zea mays}	-1.013899956	0.32926996
MZ00036151	putative senescence-associated protein {Pisum sativum}	1.254159615	0.00567947
MZ00036162	rRNA promoter binding protein {Rattus norvegicus}	1.843663789	0.00267149
MZ00036167	hypothetical protein {Sorghum bicolor}	2.258290515	0.00138824
MZ00036171	UDP-glucose 6-dehydrogenase {Zea mays}	1.363534355	0.00056812
MZ00036200	NA	1.835061841	0.0017198
MZ00036203	histone one (H1) 101 {Zea mays}	2.101125169	0.00043311
MZ00036205	putative senescence-associated protein {Pisum sativum}	1.89849751	0.00272458
MZ00036223	putative senescence-associated protein {Pisum	1.57220368	0.00046902

	sativum}		
MZ00036242	putative senescence-associated protein {Pisum sativum}	1.478318745	0.03563985
MZ00036243	granule bound starch synthase 2a precursor (GBSS2a) {Zea mays}	1.094694143	0.03137115
MZ00036244	unnamed protein product	1.004911815	0.00479287
MZ00036264	putative senescence-associated protein {Pisum sativum}	1.873646486	0.0065148
MZ00036265	unnamed protein product	1.966699518	0.04593108
MZ00036281	NA	1.506155728	0.00426289
MZ00036282	putative senescence-associated protein {Pisum sativum}	1.592934397	0.00868318
MZ00036291	putative senescence-associated protein {Pisum sativum}	1.586983509	8.55E-05
MZ00036295	unnamed protein product	2.422442263	0.00040533
MZ00036305	putative senescence-associated protein {Pisum sativum}	1.788881631	0.00604369
MZ00036306	putative senescence-associated protein {Pisum sativum}	1.179195899	0.01808718
MZ00036308	unnamed protein product	2.337353837	0.00944129
MZ00036310	putative senescence-associated protein {Pisum sativum}	1.524420782	0.00140849
MZ00036349	hypothetical protein {Zea mays}	-1.462407949	0.22449326
MZ00036382	putative senescence-associated protein {Pisum sativum}	1.641639011	0.01431298
MZ00036442	GR1a protein {Zea mays}	-1.136685438	0.04741771
MZ00036454	putative auxin efflux carrier (PIN1c) {Zea mays}	1.575126155	0.00748912
MZ00036455	hypothetical protein {Zea mays}	1.858269238	0.01278453
MZ00036485	nicotianamine synthase 3 {Zea mays}	1.840102697	0.00118929
MZ00036498	hypothetical protein {Sorghum bicolor}	1.675552124	0.01425941
MZ00036513	putative senescence-associated protein {Pisum sativum}	2.190952853	0.00202693
MZ00036530	unnamed protein product	2.901123628	0.00107926
MZ00036531	hypothetical protein {Oryza sativa}	1.008471784	0.00961719
MZ00036538	subtilisin/chymotrypsin inhibitor {Zea mays}	1.195270515	0.00786864

	probable cytochrome P450 monooxygenase		
MZ00036544	{Zea mays}	1.395566362	0.00077366
MZ00036635	hypothetical protein {Zea mays}	1.345974808	0.02378928
MZ00036754	hypothetical protein {Zea mays}	2.521828061	0.00346663
MZ00036758	hypothetical protein {Zea mays}	1.14114505	8.51E-05
MZ00036768	putative senescence-associated protein {Pisum sativum}	1.713283174	0.00029757
MZ00036791	hypothetical protein {Zea mays}	1.425780091	0.00328259
MZ00036819	putative senescence-associated protein {Pisum sativum}	1.76285171	0.00391167
MZ00036829	putative senescence-associated protein {Pisum sativum}	1.829644036	0.00306785
MZ00036845	unnamed protein product	2.677675051	0.00112489
MZ00036847	Ac1147 {Rattus norvegicus}	2.273354409	0.00136262
MZ00036916	NA	2.712528549	0.00075519
MZ00036918	CDH1-D {Gallus gallus}	2.635988843	0.00291371
MZ00036934	unnamed protein product	2.459725572	0.00058132
MZ00036948	NA	-1.092872771	0.10983161
MZ00036957	protein phosphatase 2C isoform gamma {Zea mays}	1.000833318	0.45243199
MZ00037011	hypothetical protein {Sorghum bicolor}	1.648072715	0.00026833
MZ00037032	beta-glucosidase aggregating factor precursor {Zea mays}	1.042936523	0.52779442
MZ00037037	unnamed protein product	2.508856965	0.00151149
MZ00037070	polyamine oxidase1 {Zea mays}	1.882864467	0.00893681
MZ00037083	metallothionein-like protein {Zea mays}	-1.30986033	0.26800897
MZ00037085	Bowman-Birk type wound-induced proteinase inhibitor WIP1 {Zea mays}	3.145357742	1.01E-07
MZ00037127	hypothetical protein {Zea mays}	1.283188616	0.00871686
MZ00037226	putative Regulatory protein NPR1 {Oryza sativa}	1.158551478	0.02019668
MZ00037253	subtilisin/chymotrypsin inhibitor {Zea mays}	1.341218552	0.01083495
MZ00037304	terpene synthase 2 {Zea mays}	2.478170865	9.15E-06
MZ00037445	NA	2.012765459	0.06455987
MZ00037482	putative senescence-associated protein {Pisum sativum}	1.196111214	0.03836735

	2 1		I I I I I I I I I I I I I I I I I I I
MZ00037636	2-oxoglutarate-dependent oxygenase {Zea mays}	1.300747818	0.05385622
MZ00038613	PseuodARR-B transcription factor {Zea mays}	1.010471674	0.00796261
MZ00038794	elongation factor 1alpha {Zea mays}	1.880044664	2.85E-05
MZ00038859	hypothetical protein {Zea mays}	1.393594349	0.00110408
MZ00039037	plastid-specific 30S ribosomal protein 3 {Zea mays}	-1.109421309	0.08519377
MZ00039051	putative potassium transporter {Oryza sativa}	1.141033632	0.10016461
MZ00039088	1,4-alpha-glucan branching enzyme {Zea mays}	1.272853793	0.00250618
MZ00039164	inositol phosphatase-like protein {Oryza sativa}	1.203209221	0.20528438
MZ00039285	alpha-zein protein {Zea mays}	2.06370811	0.00318572
MZ00039489	Bowman-Birk type wound-induced proteinase inhibitor {Zea mays}	1.171174207	0.07264903
MZ00039593	NA	1.299125433	0.19897827
MZ00039598	blue fluorescent1 {Zea mays}	1.02023615	0.00446823
MZ00039734	beta-glucosidase {Zea mays}	1.539320025	0.00015339
MZ00039764	Bowman-Birk type wound-induced proteinase inhibitor WIP1 {Zea mays}	2.785896639	4.82E-06
MZ00039805	hypothetical protein {Zea mays}	1.044672424	0.00455325
MZ00039806	anthranilate synthase component II {Zea mays}	1.372195418	0.10902343
MZ00039973	ribosomal protein L2 {Saccharum officinarum}	1.281628918	0.28746312
MZ00040003	NA	1.743584142	0.00545019
MZ00040009	W22 ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit {Zea mays}	1.17171518	0.33207763
MZ00040034	germin-like protein {Zea mays}	-1.11057651	0.12083606
MZ00040075	Granule-bound starch synthase precursor {Zea mays}	1.125875028	0.07774499
MZ00040188	photosystem II protein K {Oryza sativa}	1.188031134	0.18562822
MZ00040243	hypothetical protein {Zea mays}	1.106538341	0.14931719
MZ00040343	prephenate dehydratase {Ipomoea trifida}	1.112203562	0.00216773

	coupling factor beta-subunit and coupling		
MZ00040479	factor epsilon subunit {Zea mays}	3.822815669	6.92E-05
MZ00040486	Ribulose bisphosphate carboxylase large chain	2.733285584	5.74E-05
1012000404000	precursor {Zea mays}	2.755205504	5.74L-05
MZ00040508	NA	1.554799983	0.00531562
MZ00040525	coupling factor beta-subunit and coupling	3.671220342	7.94E-05
11200040323	factor epsilon subunit {Zea mays}	5.071220512	
MZ00040527	ribosomal protein L2 {Zea mays}	2.540899268	0.03867241
MZ00040628	myb-related gene Zm1 {Zea mays}	-1.27109151	0.01837966
MZ00040654	glutathione S-transferase GST 25 {Zea mays}	1.854784425	6.03E-06
MZ00040686	sesquiterpene cyclase {Zea mays}	1.145045375	0.00142632
MZ00040778	Late embryogenesis abundant protein {Zea	-1.139368541	0.01569762
11200040770	mays}	1.109000011	0.01007702
MZ00040799	psaI gene {Zea mays}	2.230967347	0.00308213
MZ00040800	Photosystem II reaction center I protein	1.942170688	0.00426513
11200010000	{Triticum aestivum}	1.9 1217 0000	0.00120313
MZ00040803	NA	1.964366004	0.00591802
MZ00040806	Chloroplast 50S ribosomal protein L23 {Zea	2.11583341	0.08656297
11200010000	mays}	2.11000011	0.0000297
MZ00040807	ribosomal protein L33, chloroplast {Zea	1.4412571	0.00317229
	mays}		
MZ00040840	hypothetical protein {Oryza sativa}	1.502598241	0.00429305
MZ00040842	strongly similar to NP_195589.2 splicing	2.401907649	0.00244596
	factor	,	
MZ00041005	subtilisin/chymotrypsin inhibitor {Zea mays}	1.923266389	0.00086624
MZ00041019	gibberellin responsive2 {Zea mays}	-1.838835982	0.08294999
MZ00041271	lipoxygenase {Zea mays}	2.505159931	1.66E-06
MZ00041304	glutaredoxin homolog1 {Zea mays}	2.024433968	0.15610566
MZ00041326	putative Bowman-Birk serine protease	-1.011123658	0.0677727
	inhibitor {Zea mays}	1011120000	
MZ00041462	putative LHY protein {Oryza sativa}	1.173702164	0.09398768
MZ00041612	Nonspecific lipid-transfer protein precursor	-1.010754305	0.12150455
	{Zea mays}	1.010101000	
MZ00041682	pyruvate, orthophosphate dikinase1 {Zea	1.461197038	0.00067066
	mays}	1.101177050	
MZ00041721	ADP-ribosylation factor GTPase-activating	1.021027131	0.00450159

	protein {Zea mays}		
MZ00041757	early light-induced protein {Zea mays}	-1.326550517	0.01909108
MZ00041768	putative zinc finger protein {Zea mays}	1.876859616	0.00674281
MZ00042158	ripening-related protein {Zea mays}	1.288863788	1.26E-05
MZ00042245	O-succinylhomoserine sulfhydrylase {Zea mays}	1.348953347	0.00021578
MZ00042324	ribosome-inactivating protein {Zea mays}	2.192584792	7.35E-05
MZ00042472	unknown protein {Oryza sativa}	1.399418899	0.00192199
MZ00042564	transducin {Oryza sativa}	1.243124141	0.03349451
MZ00042637	phosphoenolpyruvate carboxylase {Zea mays}	1.425763064	0.00813485
MZ00042678	ribosome-inactivating protein {Zea mays}	1.898939795	0.00680879
MZ00042841	Histone H2A {Zea mays}	2.564840296	0.00138606
MZ00042873	S-adenosylmethionine synthetase 1 {Zea mays}	1.229118789	0.01383571
MZ00042935	Bowman-Birk type wound-induced proteinase inhibitor {Zea mays}	1.693144719	0.00062321
MZ00042953	chlorophyll a/b binding protein {Oryza sativa}	2.437134414	0.00062186
MZ00042981	hypothetical protein {Zea mays}	1.210135134	0.06125176
MZ00043035	chitinase {Zea mays}	1.08489003	0.01839433
MZ00043120	glycogen synthase kinase-3 MsK-3 {Zea mays}	1.224967912	0.20131319
MZ00043160	hypothetical protein {Zea mays}	1.269621672	0.1367847
MZ00043232	putative glycine-rich protein {Oryza sativa}	1.290025949	0.00063507
MZ00043311	patatin-like protein {Sorghum bicolor}	1.006969191	0.05401471
MZ00043393	2-oxoglutarate-dependent oxygenase {Zea mays}	1.900113408	2.34E-06
MZ00043436	hypothetical protein {Zea mays}	-1.516879775	0.09696187
MZ00043437	36.4 kDa proline-rich protein {Zea mays}	-1.270344591	0.39887341
MZ00043517	allene oxide cyclase {Zea mays}	1.031104822	0.04933524
MZ00043695	hypothetical protein {Zea mays}	1.076869941	0.28161283
MZ00043885	farnesyl-pyrophosphate synthetase {Oryza sativa}	1.333004762	0.00146245
MZ00044190	allene oxide synthase {Zea mays}	2.077496591	0.00026439
MZ00044245	lipoxygenase6 {Zea mays}	1.112313827	0.00120756
MZ00044256	naringenin 3-dioxygenase {Zea mays}	-1.028395083	0.04002628
MZ00044555	putative phosphoribosyl pyrophosphate	2.84328689	2.73E-07

	synthase {Oryza sativa}			
	putative senescence-associated protein {Pisum			
MZ00045590	sativum}	1.764488313	0.00297732	
MZ00046685	unknown protein {Oryza sativa}	1.21984965	0.00042702	
MZ00046774	alpha expansin1 {Zea mays}	1.235942194	0.00035693	
MZ00046814	zeaxanthin epoxidase {Zea mays}	1.07631936	0.00918206	
MZ00047625	hypothetical protein {Arabidopsis thaliana}	1.027418035	0.33318035	
MZ00047697	unknown protein {Oryza sativa}	1.166447195	5.05E-05	
MZ00048483	ZIM-motif family protein {Zea mays}	1.160538777	0.0253863	
MZ00048932	putative PPR protein {Oryza sativa}	1.039192736	0.00870651	
MZ00049082	von Willebrand factor type A domain containing protein {Zea mays}	1.05442141	0.00012978	
MZ00049092	G-box binding protein {Oryza sativa}	1.030464571	2.35E-05	TF21
MZ00052267	putative senescence-associated protein {Pisum sativum}	2.69681953	0.00070173	
MZ00054821	putative cellulose synthase, catalytic subunit {Oryza sativa}	1.021784979	0.10730215	
MZ00054822	phospho-2-dehydro-3-deoxyheptonate aldolase 1 {Zea mays}	1.179987378	8.69E-05	
MZ00054897	glutathione S-transferase GST 25 {Zea mays}	1.022009763	0.0029306	
MZ00055184	putative senescence-associated protein {Pisum sativum}	1.627309067	0.00227724	
MZ00055270	ripening-related protein {Zea mays}	1.134046361	0.00333059	
MZ00055448	hypothetical protein {Zea mays}	1.429817444	0.00181569	
MZ00055463	esterase {Zea mays}	1.628271524	1.65E-06	
MZ00055632	NA	1.13429863	0.00111829	
MZ00055932	Bowman-Birk type trypsin inhibitor {Zea mays}	1.858499428	5.62E-05	
MZ00056320	NA	1.108260008	0.12288358	
MZ00056687	farnesyl pyrophosphate synthase1 {Zea mays}	1.368180368	0.00848017	
MZ00056914	lipid binding protein {Zea mays}	-1.396168321	0.00961975	
MZ00056987	acyl-desaturase {Zea mays}	1.49581173	0.0024615	
MZ00057163	putative dehydration-induced myb-related protein Cpm7 {Oryza sativa}	1.191934847	0.14664984	
MZ00057436	putative ZEITLUPE {Oryza sativa}	1.271767928	0.03065219	

		fold		
MZ-number	Annotation	expression	p-value	Abbrevation
		(log10)		
MZ00000418	transferase {Zea mays}	1.647718896	0.00010682	
MZ00000664	RING finger-like {Oryza sativa}	1.029575535	0.00119236	TF50
MZ00001096	putative multidrug resistance protein {Oryza	1.206465531	0.01457681	
11200001070	sativa}	1.200103331	0.01157001	
MZ00001464	NA	1.296340485	0.01500009	
MZ00003835	nonspecific lipid-transfer protein AKCS9	2.412798892	7.43E-06	
112000000000	{Zea mays}		1102 00	
MZ00004337	O-methyltransferase BX7 {Zea mays}	1.014204268	1.56E-05	
MZ00004436	acidic class I chitinase {Zea mays}	1.437908238	6.15E-07	
MZ00004614	glucose-6-phosphate/phosphate translocator 2	1.086569521	0.00062124	
	{Zea mays}			
MZ00005060	putative tyrosine/dopa decarboxylase {Oryza	1.060656784	8.12E-05	
	sativa}			
MZ00005219	Bowman-Birk type trypsin inhibitor {Zea	2.100082667	2.45E-08	
	mays}			
MZ00005242	4-methyl-5-thiazole monophosphate	1.085640116	0.00042067	
	biosynthesis protein {Zea mays}			
MZ00005352	NA	1.097040333	0.04385328	
MZ00005405	farnesyl pyrophosphate synthase1 {Zea	3.009614571	2.57E-06	
	mays}			
MZ00005471	putative tyrosine/dopa decarboxylase {Oryza	2.251851334	2.40E-06	
	sativa}	1 00 100 11 50		
MZ00005511	hypothetical protein {Zea mays}	1.894304158	6.41E-06	
MZ00005543	lingual lipase-like {Oryza sativa}	1.147904357	0.03654641	
MZ00005899	terpene synthase 2 {Zea mays}	3.07901935	2.72E-08	
MZ00005958	indole-3-glycerol phosphate lyase {Zea	2.278405955	0.00121973	
	mays}	0.010.1000.50	1.0 (7) 0.6	
MZ00012674	zinc finger protein 3{Zea mays}	2.013439353	1.86E-06	
MZ00012818	NA	1.087796896	5.94E-05	
MZ00013037	pyruvate,orthophosphate dikinase {Zea	1.244240049	0.04504177	
	mays}			
MZ00013321	hypothetical protein {Sorghum bicolor}	1.225292226	1.10E-05	

Tab.7. 4: 4 h after feeding induction

MZ00013555	hypothetical protein {Zea mays}	2.137020135	0.00024802
MZ00013773	UDP-glucose 6-dehydrogenase {Zea mays}	1.785566767	6.63E-05
MZ00013816	adenosine kinase {Zea mays}	1.476870418	1.23E-06
MZ00013836	S-adenosylmethionine decarboxylase {Oryza sativa}	1.090388287	0.01679961
MZ00013840	phospho-2-dehydro-3-deoxyheptonate aldolase 1 {Zea mays}	2.616442997	3.94E-06
MZ00013846	lipoxygenase11 {Zea mays}	2.774923944	0.02267559
MZ00013941	profilin A {Zea mays}	-1.040261611	0.01892245
MZ00014008	farnesyl pyrophosphate synthase1 {Zea mays}	1.416681809	0.00485544
MZ00014027	glycine hydroxymethyltransferase {Arabidopsis thaliana}	2.336426886	6.81E-07
MZ00014197	ribonucleoprotein A {Zea mays}	-1.773472715	0.03465986
MZ00014212	putative thioredoxin {Oryza sativa}	1.477468485	0.01147305
MZ00014229	pathogenesis-related protein 10 {Zea mays}	1.304638089	0.01517031
MZ00014307	Cytochrome P450 71C2 {Zea mays}^ ^GB CAA72208.1 1870201 ZMCI31 AC2 cytoc-TRUNCATED-	2.792136642	6.63E-05
MZ00014361	NADP-dependent malic enzyme {Zea mays}	1.02233304	0.02336121
MZ00014377	nodulation homolog 1 {Zea mays}	-1.379055539	0.00783907
MZ00014624	hypothetical protein {Zea mays}	1.480555719	1.71E-05
MZ00014883	beta-D-glucan exohydrolase {Zea mays}	-1.286702844	0.0052577
MZ00014943	anthranilate synthase alpha 2 subunit {Oryza sativa}	1.521101771	0.00161973
MZ00015021	polyphenol oxidase {Saccharum hybrid cultivar}	2.698095179	5.66E-07
MZ00015105	indole synthase {Zea mays}	2.898369593	1.16E-06
MZ00015138	UDP-glucuronic acid decarboxylase {Oryza sativa}	1.310454838	0.00043916
MZ00015154	cylicin-1 {Zea mays}	1.035090828	0.0085689
MZ00015227	putative Magnaporthe grisea pathogenicity protein {Oryza sativa}	1.048192452	0.00019924
MZ00015397	hypothetical protein {Oryza sativa}	-1.057378026	0.01781058
MZ00015502	vacuolar sorting receptor homolog {Zea mays}	2.340645738	1.61E-05

MZ00015504	blue fluorescent1 {Zea mays}	3.294858187	1.13E-07	
MZ00015505	putative fruit protein {Oryza sativa}	2.464343265	0.00280619	
MZ00015562	putative C-4 sterol methyl oxidase {Oryza sativa}	1.146349495	5.17E-05	
MZ00015582	NA	-1.382495022	0.0018843	
MZ00015701	lipoxygenase {Zea mays}	3.426651786	2.87E-05	
MZ00015910	glycine-rich protein1 {Zea mays}	1.608130556	0.0001958	
MZ00016101	putative RAB7A protein (GTP-binding protein) {Oryza sativa}	1.214100915	0.00070002	TF49
MZ00016102	UDP-glucosyltransferase BX8 {Zea mays}	1.217485779	0.00011047	
MZ00016249	probable hydroxymethylglutaryl-CoA reductase {Oryza sativa}	1.055182242	0.0236022	
MZ00016502	spermidine synthase {Zea mays}	1.244468942	6.64E-06	
MZ00016732	plasma membrane intrinsic protein ZmPIP2-6 {Zea mays}	1.462920291	1.09E-05	
MZ00016835	nucleotide pyrophosphatase/phosphodiesterase {Zea mays}	2.171743586	6.76E-06	
MZ00016891	desiccation-related protein {Zea mays}	1.00284981	0.01941399	
MZ00017092	hypothetical protein {Zea mays}	3.40528207	0.00042136	
MZ00017211	hypothetical protein {Zea mays}	2.041112354	0.00147243	
MZ00017265	MtN3-like protein {Arabidopsis thaliana}	1.787407692	3.35E-05	
MZ00017300	hypothetical protein {Zea mays}	1.519836765	2.81E-05	
MZ00017392	flavonoid 3-monooxygenase {Zea mays}	2.3033303	0.00126532	
MZ00017601	hydroperoxide lyase {Zea mays}	1.507149055	1.52E-06	
MZ00017669	ATP-dependent Clp protease ATP-binding subunit precursor {Oryza sativa}	1.023755915	0.00594516	
MZ00018225	branched-chain-amino-acid aminotransferase {Zea mays}	1.61386825	5.11E-05	
MZ00018234	OSJNBb0085F13.14 {Oryza sativa}	2.238448389	0.00010782	
MZ00018241	ribosome-inactivating protein {Zea mays}	4.00774054	2.22E-06	
MZ00018568	hypothetical protein {Zea mays}	4.382704752	1.57E-08	
MZ00018837	MAPK6 {Oryza sativa}	1.050730695	0.02275596	
MZ00019117	chitinase {Zea mays}	1.46420269	1.87E-09	
MZ00019196	senescence-associated protein DH {Zea mays}	1.46074733	2.34E-05	

MZ00019212	Cytochrome P450 98A1 {Sorghum bicolor}	1.271706542	5.22E-06
MZ00019387	unknown protein {Oryza sativa}	1.357516679	0.02117362
	anthranilate N-benzoyltransferase protein 1		
MZ00019475	{Zea mays}	2.448152777	4.23E-05
MZ00019533	putative class I chitinase {Cryptomeria japonica}	2.474647715	1.60E-05
MZ00019560	putative AMP deaminase {Oryza sativa}	1.853404456	5.69E-05
MZ00019701	hypothetical protein {Oryza sativa}	4.787255698	3.80E-08
MZ00019729	terpene synthase 2 {Zea mays}	3.979099203	3.50E-07
MZ00019785	hypothetical protein {Zea mays}	1.211209862	0.01378212
MZ00019894	stem 28 kDa glycoprotein {Zea mays}	3.881688222	7.90E-06
MZ00019895	putative casein kinase {Oryza sativa}	1.135924211	6.10E-06
MZ00020111	4-coumarateCoA ligase 4CL1 {Lolium perenne}	1.771570295	0.00010365
MZ00020230	epoxide hydrolase 2 {Zea mays}	2.455054342	0.00023007
MZ00020437	O-methyltransferase ZRP4 {Zea mays}	1.482863701	1.22E-05
MZ00020525	hypothetical protein {Zea mays}	1.156131212	0.00469091
MZ00020592	aluminum-induced protein {Zea mays}	1.09956014	0.01715516
MZ00020968	putative lipase class 3 family protein {Oryza sativa}	2.882426198	6.84E-06
MZ00021254	OSJNBa0065B15.8 {Oryza sativa}	2.323154923	0.0027783
MZ00021663	dehydration-responsive element-binding protein {Zea mays}	1.151011291	0.02685228
MZ00021682	unknown {Oryza sativa}	-1.381465127	0.02418672
MZ00021951	adenosine 5'-phosphosulfate reductase-like2 {Zea mays}	1.05629426	0.00968449
MZ00021997	putative auxin-regulated protein {Oryza sativa}	1.067903291	0.00615988
MZ00022083	1-deoxy-D-xylulose 5-phosphate synthase {Zea mays}	1.053043025	3.49E-05
MZ00022163	putative 10-deacetylbaccatin III-10-O-acetyl transferase {Oryza sativa}	4.899689512	4.25E-06
MZ00022180	hypothetical protein {Zea mays}	1.764031312	1.85E-06
MZ00022800	serine carboxypeptidase K10B2.2 {Zea mays}	2.031921506	6.62E-06
MZ00022994	allene oxide synthase {Zea mays}	2.643815963	1.04E-09

MZ00023013	unknown protein {Oryza sativa}	1.776995487	3.84E-05
MZ00023087	hypothetical protein {Zea mays}	1.027214959	0.00061337
		1.402008269	
MZ00023228	dihydroflavonol-4-reductase {Zea mays}	1.402008269	0.00158823
MZ00023318	putative prephenate dehydratase {Oryza sativa}	1.547390935	1.64E-06
MZ00023438	adenosylhomocysteinase {Zea mays}	2.425651631	4.44E-07
MZ00023441	S-adenosylmethionine synthetase 1 {Zea mays}	2.898485381	2.76E-06
MZ00023501	pnFL-2 {Zea mays}	1.734685259	0.00191934
MZ00023547	putative aminotransferase class-III {Oryza sativa}	1.647437738	0.01440386
MZ00023983	ribonuclease S homolog {Zea mays}	2.668811706	6.74E-08
MZ00024058	cortical cell-delineating protein {Zea mays}	1.350617385	5.68E-06
MZ00024099	hypothetical protein {Zea mays}	1.008994697	0.00604603
MZ00024166	Cytochrome P450 71C1 {Zea mays}	1.190936906	6.00E-05
MZ00024196	superoxide dismutase {Zea mays}	2.573824329	1.75E-07
MZ00024204	putative C-4 sterol methyl oxidase {Oryza sativa}	1.801911567	0.00596782
MZ00024232	vacuolar ATP synthase 16 kDa proteolipid subunit {Zea mays}	1.072665632	3.39E-05
MZ00024287	monodehydroascorbate reductase {Oryza sativa}	1.0840865	7.41E-05
MZ00024296	2-oxoglutarate-dependent oxygenase {Zea mays}	1.10563189	0.00255405
MZ00024350	anthranilate synthase component II {Zea mays}	2.409350416	0.00229962
MZ00024351	anthranilate synthase component II {Zea mays}	2.01451089	3.93E-05
MZ00024544	cold shock protein-1 {Triticum aestivum;}	1.499160326	5.69E-06
MZ00024574	NADH dependent Glutamate Synthase {Oryza sativa}	1.127233867	0.00792172
MZ00024618	putative chorismate mutase precursor {Oryza sativa}	1.29047541	0.00498575
MZ00024662	putative indole-3-glycerol phosphate synthase {Oryza sativa}	1.389109439	0.00016764
MZ00024672	methylenetetrahydrofolate reductase {Zea	1.728822638	7.12E-05

	mays}		
MZ00025068	hypothetical protein {Zea mays}	1.685936725	0.00034882
MZ00025169	DEAD box RNA helicase {Zea mays}	1.183698296	0.03741489
MZ00025206	O-methyltransferase BX7 {Zea mays}	2.134200036	1.11E-06
MZ00025407	polyamine oxidase1 (pao1) {Zea mays}	3.881562411	3.34E-08
MZ00025508	lipoxygenase {Zea mays}	1.010782356	0.00575184
MZ00025768	glutathione S-transferase GST 20 {Zea mays}	3.77124288	2.02E-06
MZ00025815	1,4-alpha-glucan branching enzyme {Zea mays}	1.036859589	0.0149282
MZ00025895	farnesyl-pyrophosphate synthetase {Oryza sativa}	2.579127864	0.00038868
MZ00026064	hypothetical protein {Zea mays}	1.184553754	0.00338943
MZ00026065	Uroporphyrinogen decarboxylase {Zea mays}	-1.106241231	0.03380446
MZ00026277	hypothetical protein {Zea mays}	1.286843129	0.00035883
MZ00026471	anthranilate synthase alpha 1 subunit {Oryza sativa}	4.106031991	1.38E-07
MZ00026538	ZIM-motif family protein {Zea mays}	1.577377563	0.00303287
MZ00026684	hypothetical protein {Zea mays}	1.017309026	0.00198065
MZ00026717	membrane protein-like {Oryza sativa}	1.309573377	2.98E-05
MZ00026739	putative lipase {Arabidopsis thaliana}	3.788609788	0.00127186
MZ00026889	unknown protein {Oryza sativa}	1.050254905	4.16E-05
MZ00027029	12-oxo-phytodienoic acid reductase8 {Zea mays}	1.760037257	2.78E-05
MZ00027030	12-oxo-phytodienoic acid reductase8 {Zea mays}	1.677728673	0.00575783
MZ00027105	putative Bowman-Birk serine protease inhibitor {Oryza sativa}	1.080427659	0.00141663
MZ00027113	cell death suppressor protein lls1 {Zea mays}	1.013428417	0.03161038
MZ00027387	cinnamyl alcohol dehydrogenase1 {Zea mays}	3.455374242	2.35E-06
MZ00027491	Cytochrome P450 71C4 {Zea mays}	3.489589549	6.03E-06
MZ00027637	chloride channel {Zea mays}	1.657696416	1.81E-05
MZ00028098	NADP-dependent oxidoreductase P1 {Zea mays}	1.104943201	0.0008107
MZ00028511	ferredoxin-1 {Zea mays}	1.777191667	0.00174606
MZ00028617	putative cytochrome P450 {Oryza sativa}	-1.069192553	0.03567487

MZ00028806	OSJNBb0039L24.4 {Oryza sativa}	1.008487868	0.00260146
MZ00028898	hypothetical protein {Zea mays}	1.162896807	0.00202356
	hypothetical protein {Zea mays}	1.492809751	0.0151496
MZ00029141		1.492809731	0.0131490
MZ00029195	putative phosphoribosyl pyrophosphate synthase {Oryza sativa}	2.45294004	7.05E-06
MZ00029386	glycoside hydrolase {Zea mays}	1.954809177	7.81E-06
MZ00029560	phytocystatin {Actinidia deliciosa}	5.654218225	1.95E-08
MZ00029584	arogenate dehydrogenase {Zea mays}	2.620787512	2.78E-09
MZ00029594	sesquiterpene cyclase {Zea mays}	2.273228904	1.33E-07
MZ00029921	anthranilic acid methyltransferase 1 {Zea mays}	1.812580743	0.0128333
MZ00030045	elicitor inducible beta-1,3-glucanase-like {Oryza sativa}	1.20452908	0.01864414
MZ00030298	sucrose-phosphatase {Zea mays}	2.016399959	1.09E-07
MZ00030501	terpene synthase {Zea mays}	1.104756847	0.00066751
MZ00030570	hypothetical protein {Zea mays}	1.123078132	0.00010771
MZ00030642	chemocyanin {Zea mays}	2.322197319	2.32E-06
MZ00030744	integral membrane protein DUF6 containing protein {Zea mays}	1.241663347	0.01185062
MZ00030829	aldo-keto reductase/ oxidoreductase {Zea mays}	2.130167564	0.00041614
MZ00031013	PDR-like ABC transporter {Oryza sativa}	1.035294458	0.00529047
MZ00031018	ethylene-responsive transcription factor 4 {Zea mays}	1.168680405	0.00140573
MZ00031067	RING zinc finger protein-like {Zea mays}	1.020444315	9.18E-05
MZ00031356	unknown protein {Oryza sativa}	1.843466329	1.55E-05
MZ00031407	hypothetical protein {Sorghum bicolor}	1.603643997	0.00388671
MZ00031476	putative oxysterol-binding protein {Zea mays}	1.263785725	0.00838334
MZ00031477	hypothetical protein {Zea mays}	1.328280615	2.67E-05
MZ00031481	NA	1.001796222	0.0002705
MZ00031624	putative prephenate dehydratase {Oryza sativa}	1.191331874	0.00020282
MZ00031651	hypothetical protein {Zea mays}	1.128068735	0.00060626
MZ00031721	hypothetical protein {Zea mays}	1.014749425	0.00123222
	terpene synthase10 {Zea mays}	4.13524189	9.78E-06

MZ00031957 unknown protein {Oryza sativa} MZ00031982 putative naphthoate synthase {Oryz anthranilic acid methyltransferase		2.794228564	3.87E-08	
MZ00031982 putative naphthoate synthase {Oryz	a sativa}			
	,	-1.157700769	0.0022313	
MZ00032043 mays}	e 3 {Zea	2.514674154	3.60E-06	
MZ00032136 1-deoxy-D-xylulose 5-phosphate s (dxs2) {Zea mays}	synthase 2	3.509334029	5.53E-09	
MZ00032240 indole-3-glycerol phosphate synth mays}	nase {Zea	2.924372824	4.27E-07	
MZ00032974 putative protein {Oryza sativa}		1.463064686	0.00012928	
MZ00032999 indole-3-glycerol phosphate lya mays}	ase {Zea	2.095648312	0.00013394	
MZ00033132 putative pirin {Oryza sativa}		1.766897353	0.00064096	
MZ00033298 OSJNBa0094O15.5 {Oryza sativa}		1.258139749	2.42E-05	
MZ00033310 MPI {Tripsacum dactyloides}		4.942795839	3.76E-08	
MZ00033339 Histidine-rich glycoprotein {Dictyostelium discoideum}	precursor	1.298137318	0.01295126	
MZ00033428 putative chitinase {Musa acuminata	l}	1.032715744	0.00026745	
MZ00033723 hypothetical protein {Zea mays}		1.277967278	4.51E-06	
MZ00034292 S-adenosylmethionine synthetase sativa}	1 {Oryza	1.731836302	0.00254092	
MZ00034295 methionine synthase {Zea mays}		3.685154095	9.85E-09	
MZ00034298 seed specific protein of balanced quality {Amaranthus hypochondriad		2.735807896	2.27E-05	
MZ00034300 chitinase {Zea mays}		1.672698603	0.01447863	
MZ00034308 natterin 3 precursor {Thala nattereri}	assophryne	2.736152141	7.31E-05	
putativebranched-chainalphaMZ00034328dehydrogenaseE1alpha{Arabidopsis thaliana}	keto-acid subunit	1.096548339	0.0047625	
MZ00034331 2-oxoglutarate-dependent oxygen mays}	ase {Zea	1.895001827	1.53E-06	
MZ00034402 allene oxide synthase 1 {Zea mays}		2.203460979	1.10E-06	
MZ00034408 UDP-glucosyltransferase BX8 {Zea	n mays}	1.770840426	3.67E-06	
MZ00034412 xyloglucan endotransglycosylase {Zea mays}	homolog	-1.079653967	0.02909091	

MZ00034841	psaI gene {Zea mays}	1.435163876	0.00260033
MZ00034843	Photosystem Q(B) protein {Zea mays}	1.299706548	0.02460417
MZ00034849	photosystem II phosphoprotein psbH {Zea mays}	1.359253167	0.02150718
MZ00034856	Ribulose bisphosphate carboxylase large chain precursor {Zea mays}	1.509317075	0.01083472
MZ00034872	photosystem II subunit T {Narcissus elegans}	1.066671967	0.02925808
MZ00034930	lipoxygenase10 {Zea mays}	1.821197884	2.86E-05
MZ00034968	hypothetical protein {Zea mays}	1.076881855	7.99E-05
MZ00035055	lipoxygenase6 {Zea mays}	1.975575199	2.36E-05
MZ00035114	phospho-2-dehydro-3-deoxyheptonate aldolase 1 {Zea mays}	1.53183477	4.80E-06
MZ00035120	adenosine kinase {Zea mays}	1.206479286	0.00125126
MZ00035243	adenosylhomocysteinase {Zea mays}	1.310404132	0.00024358
MZ00035273	nonspecific lipid-transfer protein AKCS9 {Zea mays}	1.5566982	0.00115757
MZ00035373	AER {Zea mays}	1.454416719	4.21E-05
MZ00035374	methionine synthase {Zea mays}	4.150849163	1.63E-10
MZ00035604	12-oxo-phytodienoic acid reductase8 {Zea mays}	1.552010275	5.98E-07
MZ00035632	adenosylhomocysteinase {Zea mays}	1.833118349	1.35E-05
MZ00035637	NA	1.38553636	0.03829489
MZ00035698	Thiazole biosynthetic enzyme 1-2 {Zea mays}	-1.238592469	0.00420821
MZ00035833	unnamed protein product	1.043803947	0.03181342
MZ00035997	lipoxygenase6 {Zea mays}	2.361100536	7.54E-05
MZ00036024	AER {Zea mays}	1.148408817	5.67E-05
MZ00036078	hypothetical protein {Zea mays}	1.924555595	1.29E-08
MZ00036171	UDP-glucose 6-dehydrogenase {Zea mays}	2.229600337	3.62E-06
MZ00036200	NA	1.771636514	0.00180923
MZ00036295	unnamed protein product	1.335942472	0.01941835
MZ00036303	beta-expansin 1 protein {Zea mays}	1.025577602	0.01427073
MZ00036398	xyloglucan endotransglycosylase homolog {Zea mays}	-1.106608878	0.00037272
MZ00036485	nicotianamine synthase 3 {Zea mays}	1.084554877	0.02674138
MZ00036530	unnamed protein product	1.813587954	0.01882393

M70002(529	subtilisin/chymotrypsin inhibitor {Zea mays}	3.650827443	1.89E-07
MZ00036538			
MZ00036614	methionine synthase {Coffea arabica}	3.005417872	3.22E-05
MZ00036626	Asr protein {Zea mays}	-1.051647385	0.00972258
MZ00036710	NA	1.412688237	0.00041375
MZ00036717	abscisic stress protein homolog {Zea mays}	1.020777793	0.02372581
MZ00036758	hypothetical protein {Zea mays}	1.425188233	6.72E-06
MZ00036774	O-succinylhomoserine sulfhydrylase {Zea mays}	1.703850736	4.54E-05
MZ00036847	Ac1147 {Rattus norvegicus}	1.258534232	0.03839008
MZ00036884	disease resistance-like protein {Arabidopsis thaliana}	1.235296364	0.00026378
MZ00036916	NA	1.423860238	0.03495645
MZ00036918	CDH1-D {Gallus gallus;}	1.539952036	0.0472115
MZ00036940	tonoplast water channel {Zea mays}	1.133447104	0.00061518
MZ00036975	Asr protein {Zea mays}	-1.186471142	0.01189242
MZ00037045	pathogenesis related protein-5 {Zea mays}	1.297543025	0.00155856
MZ00037070	polyamine oxidase1 {Zea mays}	3.088978537	0.00017111
MZ00037085	Bowman-Birktypewound-inducedproteinase inhibitorWIP1 {Zea mays}	5.65932748	4.83E-11
MZ00037092	homeobox transcription factor KNOTTED1 (kn1) {Zea mays}	1.29106848	0.00046329
MZ00037106	hypothetical protein {Zea mays}	-1.720936039	0.02571698
MZ00037127	hypothetical protein {Zea mays}	2.554537218	2.54E-05
MZ00037158	adenosylhomocysteinase {Zea mays}	1.639577332	6.10E-07
MZ00037240	putative phosphoethanolamine methyltransferase {Oryza sativa}	1.130183996	0.00849243
MZ00037253	subtilisin/chymotrypsin inhibitor {Zea mays}	3.467529924	2.36E-06
MZ00037256	cytochrome P450 monooxygenase CYP71C3v2 {Zea mays}	1.330953174	0.00484051
MZ00037263	annexin P35 {Zea mays}	1.02662211	0.00260273
MZ00037304	terpene synthase 2 {Zea mays}	3.84179118	4.51E-08
MZ00037357	safener induced1 {Zea mays}	1.560353844	0.00061984
MZ00037429	adenosine kinase {Zea mays}	1.237351476	0.00181642
MZ00037482	putative senescence-associated protein {Pisum sativum}	1.215580094	0.0315315

MZ00037615	putative NLI interacting factor {Oryza sativa}	1.736868267	7.84E-07	TF48
WIZ00037013		1.750808207	7.041-07	1140
MZ00037636	2-oxoglutarate-dependent oxygenase {Zea mays}	1.363467578	0.03965708	
MZ00037735	lipoxygenase11 {Zea mays}	1.302532528	0.00132902	
MZ00037858	UDP-glucuronic acid decarboxylase {Oryza sativa}	1.124100904	4.50E-05	
MZ00038365	beta-glucosidase aggregating factor precursor {Zea mays}	1.239380265	0.00036756	
MZ00038776	hypothetical protein {Zea mays}	1.302419117	0.00147753	
MZ00038794	elongation factor 1alpha {Zea mays}	3.339536678	3.30E-08	
MZ00038859	hypothetical protein {Zea mays}	2.213988295	1.19E-05	
MZ00039167	Putative C-4 sterol methyl oxidase {Oryza sativa}	2.164065924	0.00011494	
MZ00039459	putative thioredoxin {Oryza sativa}	1.213779261	2.82E-05	
MZ00039489	Bowman-Birk type wound-induced proteinase inhibitor {Zea mays}	3.342140742	6.52E-05	
MZ00039589	cytochrome b5 {Oryza sativa}	1.177676906	4.15E-05	
MZ00039598	blue fluorescent1 {Zea mays}	1.642364948	7.26E-05	
MZ00039734	beta-glucosidase {Zea mays}	2.191760902	3.21E-06	
MZ00039764	Bowman-Birk type wound-induced proteinase inhibitor WIP1 {Zea mays}	4.946218601	4.13E-09	
MZ00039782	cystatin II {Zea mays}	1.754947344	0.00388596	
MZ00039805	hypothetical protein {Zea mays}	1.460139962	0.0002745	
MZ00039806	anthranilate synthase component II {Zea mays}	1.924034011	0.0273911	
MZ00039818	cytochrome P450 monooxygenase CYP71C3v2 {Zea mays}	2.06096152	0.00574876	
MZ00040006	hypothetical protein {Zea mays}	1.377795851	0.01050715	
MZ00040123	HSP protein (HSP90-2) {Zea mays}	1.463121515	0.02353243	
MZ00040243	hypothetical protein {Zea mays}	2.677106357	0.00209871	
MZ00040386	Serine/threonine kinase protein	1.115811329	0.00495188	
MZ00040420	CSLE6 - cellulose synthase-like family E {Zea mays}	-1.000659501	0.00384163	
MZ00040469	hypothetical protein {Sorghum bicolor}	1.311579979	2.22E-05	
MZ00040479	coupling factor beta-subunit and coupling factor epsilon subunit {Zea mays}	1.764906451	0.01787083	

	Ribulose bisphosphate carboxylase large		
MZ00040486	chain precursor {Zea mays}	1.009652592	0.04574858
MZ00040525	coupling factor beta-subunit and coupling	1.759964033	0.01579834
	factor epsilon subunit {Zea mays}	1.70000000	0.01577001
MZ00040651	ribosome-inactivating protein {Zea mays}	1.16169119	0.00034695
MZ00040654	glutathione S-transferase GST 25 {Zea mays}	4.008690578	4.57E-10
MZ00040686	sesquiterpene cyclase {Zea mays}	1.185829618	0.00086881
MZ00040837	dnaK-type molecular chaperone hsc70-2 {Arabidopsis thaliana}	1.014991123	0.04735592
MZ00040937	hypothetical protein {Sorghum bicolor}	1.147020541	0.00025899
MZ00040980	dnaK-type molecular chaperone hsp70 {Oryza sativa}	1.375815251	0.01261521
MZ00041005	subtilisin-chymotrypsin inhibitor homolog1 {Zea mays}	3.959773934	4.86E-07
MZ00041019	gibberellin responsive2 {Zea mays}	-2.716600508	0.01344002
MZ00041129	tonoplast water channel {Zea mays}	1.381561891	0.00098186
MZ00041213	putative UDP-glucose dehydrogenase {Sorghum bicolor}	1.973709909	0.0001496
MZ00041214	UDP-glucose 6-dehydrogenase {Zea mays}	2.421688461	9.53E-07
MZ00041254	phospho-2-dehydro-3-deoxyheptonate aldolase 1 {Zea mays}	1.224644729	1.63E-05
MZ00041260	putative 70 kDa peptidylprolyl isomerase {Oryza sativa}	1.039472436	0.0113347
MZ00041271	lipoxygenase {Zea mays}	4.521047126	1.01E-09
MZ00041287	heat shock protein hsp70 {Zea mays}	1.465548359	0.00039756
MZ00041335	legumain-like protease {Zea mays}	-1.198148554	0.00116106
MZ00041405	putative phospho-2-dehydro-3- deoxyheptonate aldolase 1 {Oryza sativa}	1.595995236	0.00390226
MZ00041439	dehydrin (dhn2) {Zea mays}	1.002675913	0.0039044
MZ00041513	wound-induced protease inhibitor {Zea mays subsp. parviglumis}	1.665990925	8.15E-06
MZ00041530	IN2-1 protein {Zea mays}	1.034567658	0.04443869
MZ00041596	ZIM-motif family protein {Zea mays}	1.027619472	0.01852564
MZ00041601	beta-glucosidase aggregating factor precursor {Zea mays}	1.356055442	0.02873466
MZ00041768	putative zinc finger protein {Zea mays}	3.616692105	2.31E-05

MZ00042000	3-dehydroquinate synthase {Zea mays}	1.108372983	0.04699278
	A + F = 0.4000 (A mala dama in the line a)	1.725110889	0.00119655
	At5g04080 {Arabidopsis thaliana}		
	O-methyltransferase BX7 {Zea mays}	2.061277542	0.00027866
	ripening-related protein {Zea mays}	1.766710856	2.79E-07
	hypothetical protein {Zea mays}	1.017663782	0.00029728
MZ00042245	O-succinylhomoserine sulfhydrylase {Zea	1.975941173	3.55E-06
1	mays}		
MZ00042324	ribosome-inactivating protein. {Zea mays}	3.633688185	2.36E-07
MZ00042637	phosphoenolpyruvate carboxylase {Zea	1.272955991	0.01328751
11200012057	mays}	1.272/33//1	0.01520751
MZ00042678	ribosome-inactivating protein {Zea mays}	3.638665168	2.48E-05
MZ00042841	Histone H2A {Zea mays}	1.347556855	0.0481309
M700042972	S-adenosylmethionine synthetase 1 {Zea	2.254520198	0.00012398
MZ00042873	mays}	2.234320198	0.00012398
MZ00042904	HSP protein (HSP90-2) {Zea mays}	1.347214915	0.00085693
MZ00042921	methionine synthase {Zea mays}	1.942360533	7.22E-06
M700042025	Bowman-Birk type wound-induced	2.806477643	2.525.04
MZ00042935	proteinase inhibitor {Zea mays}		3.53E-06
MZ00042940	hypothetical protein {Zea mays}	-1.038946349	0.00095885
MZ00042953	chlorophyll a/b binding protein {Oryza	3.703542259	8.95E-06
W1200042755	sativa}	3.703342239	8.95E-00
MZ00042980	hypothetical protein {Zea mays}	2.718403746	0.00028633
MZ00042981	hypothetical protein {Zea mays}	2.869766039	0.00023453
MZ00043004	cystatin {Zea mays}	2.877029847	0.00272396
MZ00043035	chitinase {Zea mays}	2.304194705	5.10E-05
MZ00043160	hypothetical protein {Zea mays}	2.515494427	0.00645937
MZ00043179	subtilisin/chymotrypsin inhibitor {Zea mays}	1.389935228	8.58E-05
MZ00043232	putative glycine-rich protein {Oryza sativa}	2.724001999	2.33E-07
MZ00043240	ribonuclease S homolog {Zea mays}	1.936173351	0.00034383
MZ00043311	patatin-like protein {Sorghum bicolor}	1.086772039	0.03507248
MZ00043339	Thiazole biosynthetic enzyme 1-2 {Zea	-1.110096582	0.00364068
11200043339	mays}	-1.110090382	0.00304008
M700042202	2-oxoglutarate-dependent oxygenase {Zea	2 400265011	7.94E.09
MZ00043393	mays}	2.480265011	7.84E-08
MZ00043517	allene oxide cyclase {Zea mays}	1.61478242	0.00392188
MZ00043518	allene oxide cyclase {Zea mays}	1.276933426	0.000768

MZ00043781	lipoxygenase {Zea mays}	1.19008889	0.00380615	
MZ00043784	trans-cinnamate 4-monooxygenase {Zea mays}	1.042706134	0.00329744	
MZ00043885	farnesyl-pyrophosphate synthetase {Oryza sativa}	1.630982419	0.00021638	
MZ00044135	hypothetical protein {Zea mays}	1.187979142	4.50E-06	
MZ00044190	allene oxide synthase 1 {Zea mays}	4.078079317	1.65E-07	
MZ00044245	lipoxygenase6 {Zea mays}	2.141181888	1.68E-06	
MZ00044413	benzoxazinone synthesis BX9 {Zea mays}	1.235658497	0.01949316	
MZ00044555	putative phosphoribosyl pyrophosphate synthase {Oryza sativa}	3.80066505	5.90E-09	
MZ00044562	NA	1.490490377	3.22E-06	
MZ00044642	hypothetical protein {Oryza sativa}	2.051187735	5.80E-08	
MZ00046552	hypothetical protein {Zea mays}	1.026512391	0.00813629	
MZ00046592	glutathione transferase40 {Zea mays}	1.272607956	2.08E-05	
MZ00047034	putative arginine methyltransferase {Oryza sativa}	1.112998783	0.03587827	
MZ00047153	methylenetetrahydrofolate reductase {Zea mays}	1.718731981	2.64E-05	
MZ00048571	acc oxidase {Zea mays}	1.4146259	1.44E-05	
MZ00048905	hypothetical protein {Zea mays}	1.01234542	0.00030394	
MZ00049092	G-box binding protein {Oryza sativa}	1.200285945	3.47E-06	TF21
MZ00049506	hypothetical protein {Oryza sativa}	1.554045332	0.0130741	
MZ00052059	flowering promoting factor-like 1 {Zea mays}	1.211568258	0.00772696	
MZ00052490	pathogenesis-related protein 10 {Zea mays}	1.415478947	0.00050066	
MZ00054816	adenosylhomocysteinase {Zea mays}	1.650873179	1.74E-06	
MZ00054822	phospho-2-dehydro-3-deoxyheptonate aldolase 1 {Zea mays}	1.041476239	0.00021236	
MZ00054897	glutathione S-transferase GST 25 {Zea mays}	3.109945306	3.26E-08	
MZ00054995	hypothetical protein {Zea mays}	1.678339411	3.37E-06	
MZ00055013	methylenetetrahydrofolate reductase {Zea mays}	1.538239481	1.13E-06	
MZ00055270	ripening-related protein {Zea mays}	1.7991641	5.49E-05	
MZ00055448	hypothetical protein {Zea mays}	1.782120094	0.00023721	
MZ00055463	esterase {Zea mays}	1.661780979	9.55E-07	

MZ00055932	Bowman-Birk type trypsin inhibitor {Zea mays}	2.569479125	1.37E-06
MZ00056269	hypothetical protein {Sorghum bicolor}	1.004733332	2.81E-05
MZ00056664	hypothetical protein {Sorghum bicolor}	1.306314787	0.01244828
MZ00056687	farnesyl pyrophosphate synthase1 {Zea mays}	2.021782258	0.00039941
MZ00056765	prefoldin subunit 2 {Zea mays}	-1.179215429	0.01330582
MZ00056914	lipid binding protein {Zea mays}	-1.007349915	0.04252574
MZ00056987	acyl-desaturase {Zea mays}	1.264800142	0.00628795
MZ00057095	putative UVB-resistance protein UVR8 {Oryza sativa}	1.035194979	0.02070113
MZ00057294	putative dehydration-responsive protein RD22 precursor {Oryza sativa}	1.907172925	0.00151744
MZ00057421	Glyceraldehyde 3-phosphate dehydrogenase {Zea mays}	1.078073788	0.04255359
MZ00057436	putative ZEITLUPE {Oryza sativa}	1.740651364	0.0045763

7.7 Transcription factors regulated by herbivory, mechanical damage, and systemic induction in leaves and roots of maize

mechanical dam		fold expression		
MZ-number	Annotation	(log10)	p-value	Abbreviation
MZ00000664	RING finger-like {Oryza sativa}	-1.17311677	0.00256481	TF50
MZ00000942	putative Myb-related transcription factor {Oryza sativa}	-1.11768355	0.013915	
MZ00005189	RING-H2 zinc finger protein ATL6-like {Oryza sativa}	-1.08860955	0.0003481	
MZ00012674	zinc finger protein 3 {Zea mays}	-1.07583988	0.01514441	
MZ00013314	myb-related gene Zm1. {Zea mays}	-1.2089436	0.00156514	
MZ00013458	putative zinc finger protein ZmZf {Zea mays}	1.45477385	0.00073486	
MZ00015793	putative DNA-binding protein PD3 {Oryza sativa}	1.62217624	0.01486775	
MZ00018661	F-box protein family {Arabidopsis thaliana}	1.02444407	0.00162727	
MZ00018825	putative transcription factor {Oryza sativa}	1.12985982	0.00129396	
MZ00019229	twin LOV protein 1 {Arabidopsis thaliana}	1.0775719	0.00291805	
MZ00020499	development regulation gene OsNAC4 {Oryza sativa}	-1.22221271	0.01218443	
MZ00021114	putative F-box protein {Oryza sativa}	2.00276908	0.00586368	
MZ00022225	zinc finger (AN1-like)-like protein {Oryza sativa}	-1.19631869	0.04278423	
MZ00022460	putative Ras-GTPase-activating protein binding protein 1 {Oryza sativa}	-1.20398419	0.00162251	
MZ00024843	putative zinc finger transcription factor {Oryza sativa}	1.20573495	5.73E-05	
MZ00025533	myb-related transcription factor MYB59 {Arabidopsis thaliana}	1.03666135	0.00476553	
MZ00026127	development regulation gene OsNAC4	-1.02172616	0.02978254	

 Tab.7. 5: Transcription factors identified in roots. Comparison between systemic induction and mechanical damage

	{Oryza sativa}			
MZ00026538	ZIM-motif family protein {Zea mays}	-1.41036951	0.00419174	
MZ00026661	putative NAC-domain protein {Oryza sativa}	-2.38974895	0.00013525	TF1
MZ00028419	bZIP protein {Oryza sativa}	1.37423647	0.00066664	
MZ00028904	myb-related gene Zm38. {Zea mays}	1.02765764	0.00930875	
MZ00030906	transcription factor Rap212 {Oryza sativa}	-1.13699108	0.00591033	
MZ00030973	putative NAC-domain protein {Oryza sativa}	-1.289499	9.73E-05	
MZ00031271	transcription factor {Oryza sativa}	-1.04920935	0.03016695	
MZ00032440	putative leucine zipper-containing protein {Oryza sativa}	-1.03465161	0.04385328	
MZ00033157	Myb-related transcription factor-like protein {Oryza sativa}	1.00375338	0.00733829	
MZ00033341	transcription factor Myb3 {Triticum aestivum}	-1.19466639	0.00259737	
MZ00033711	putative NAC-domain protein {Oryza sativa}	-1.07117436	0.00300881	
MZ00033715	ZIM-motif family protein {Zea mays}	-1.39199293	0.03460359	
MZ00035860	GRAB1 protein {Triticum sp.}	-1.0185033	0.01178006	
MZ00035947	putative NAC-domain protein {Oryza sativa}	-1.01956023	0.00138845	TF22
MZ00036019	putative NAC-domain protein {Oryza sativa}	-2.44954618	0.00014679	TF51
MZ00037166	putative zinc finger transcription factor {Oryza sativa}	1.42192839	5.77E-05	
MZ00038922	WRKY transcription factor {Oryza sativa}	-1.01094044	0.00583476	
MZ00039225	putative zinc finger protein ZmZf {Zea mays}	1.3916815	0.00070862	
MZ00040842	strongly similar to NP_195589.2 splicing factor	-1.82242211	0.01655065	
MZ00041306	putative ASR2 {Oryza sativa}	-1.2099269	0.00401326	
MZ00041768	putative zinc finger protein {Zea mays}	-1.87712778	1.24E-05	
MZ00042353	R2R3 Myb transcription factor MYB-	-1.43425611	0.00450982	

	IF35 {Zea mays}			
MZ00042676	smr domain-containing protein –like {Oryza sativa}	-1.38823076	0.00880997	
MZ00042739	WRKY transcription factor {Oryza sativa}	-1.20980279	0.00117118	TF26
MZ00046918	putative homeodomain protein {Oryza sativa}	-1.05545756	0.00014435	
MZ00049598	putative bZIP protein {Oryza sativa}	1.17967009	0.00020976	
MZ00056649	putative SWIb domain-containing protein {Oryza sativa}	-1.04308183	0.01821648	
MZ00057150	putative FKBP12 interacting protein {Oryza sativa}	-1.02718293	0.00011043	
MZ00057284	zinc finger protein family-like {Oryza sativa}	1.01316243	0.03649266	

Tab.7. 6: Transcription factors identified in roots. Comparison between local herbivore damage and mechanical damage

MZ number	Annotation	fold expression (log10)	p-value	Abbrevation
MZ00000937	putative bHLH084 transcription factor {Arabidopsis thaliana}	-1.45459357	0.00104639	
MZ00000942	putative Myb-related transcription factor {Oryza sativa}	-1.23641091	0.00973813	
MZ00005265	<pre>putative helix-loop-helix DNA-binding protein {Oryza sativa (japonica cultivar- group);}</pre>	1.76936392	0.00118141	TF23
MZ00012587	putative ethylene response factor 1 {Oryza sativa}	-1.13552342	0.00507723	
MZ00012674	zinc finger protein 3 {Zea mays}	1.10422733	0.0154617	
MZ00013750	LIM transcription factor homolog {Zea mays}	-1.07140769	0.00381153	
MZ00015793	putative DNA-binding protein PD3 {Oryza sativa}	2.10213416	0.00439977	
MZ00018321	AP2 domain transcription factor EREBP {Oryza sativa}	2.03570049	0.03399623	
MZ00018515	putative zinc finger and C2 domain	-1.12721725	7.15E-05	

	protein {Oryza sativa}		
MZ00019724	zinc-finger protein S3574 {Oryza sativa}	1.06297339	0.00287096
MZ00022534	FKF1 {Mesembryanthemum crystallinum}	1.1901183	0.00033774
MZ00025599	<pre>putative zinc finger protein {Oryza sativa }</pre>	-1.15153203	4.81E-05
MZ00026726	similar to nucleoid DNA-binding-like protein {Oryza sativa}	-1.21283829	0.00106192
MZ00029568	ZIM-motif family protein {Zea mays}	1.07886517	0.00027794
MZ00031271	transcription factor {Oryza sativa}	2.30031778	0.00040686
MZ00033715	ZIM-motif family protein {Zea mays}	1.74012163	0.01462193
MZ00037906	Radc1 {Oryza sativa}	-1.23534247	0.0042087
MZ00040702	R2R3 Myb protein {Zea mays}	-1.54732424	0.00029875
MZ00041718	floral organ regulator 2 {Oryza sativa}	-1.07285153	0.00272305
MZ00043644	putative EREBP-type transcription factor {Oryza sativa}	2.02737794	0.00339868
MZ00043824	putative WD-40 repeat protein {Oryza sativa}	-1.04729989	0.00152939
MZ00044166	floral organ regulator 2 {Oryza sativa}	-1.20193017	0.0049003

Tab.7. 7: Transcription factors identified in systemic induced roots

MZ number	Annotation	fold expression (log10)	p-value	Abbrevation
MZ00004381	bZIP transcription factor-like protein {Arabidopsis thaliana}	-1.14356897	0.0116739	
MZ00014951	transcriptional activator DEMETER {Arabidopsis thaliana}	1.03194135	0.00033156	
MZ00017495	OSE3 {Oryza sativa}	1.35581577	0.00678932	
MZ00019076	Hox2b {Zea mays}	1.04260847	0.0003865	
MZ00021809	zwh21.1 {Oryza sativa}	-1.09485472	0.00644913	
MZ00022377	ZIGA2 protein-like {Oryza sativa}	-1.03227658	0.00182741	
MZ00022460	putative Ras-GTPase-activating protein binding protein 1 {Oryza sativa}	-1.34135467	0.0006585	
MZ00023293	MCB2 protein {Hordeum vulgare subsp.	1.1090304	0.0012409	

	Vulgare}		
MZ00026127	development regulation gene OsNAC4 {Oryza sativa}	1.11467291	0.01781558
MZ00026870	RISBZ5 {Oryza sativa}	1.10551394	0.02792086
MZ00027941	putative ATP-binding-cassette protein {Oryza sativa}	2.30432218	0.01084393
MZ00028351	zinc-finger protein S3574 {Oryza sativa}	-1.52392556	0.01036772
MZ00036053	SAR DNA binding protein {Oryza sativa}	-1.05992594	0.00028416
MZ00036067	OSE3 {Oryza sativa}	1.13275655	0.00188415
MZ00036162	rRNA promoter binding protein {Rattus norvegicus}	-1.87284556	0.00771251
MZ00039225	putative zinc finger protein ZmZf {Zea mays}	1.02017357	0.0042214
MZ00040842	strongly similar to NP_195589.2 splicing factor	-2.34866516	0.00367576
MZ00048943	putative transcription factor {Oryza sativa}	-1.11201395	0.00033161
MZ00054846	WRKY transcription factor 70 {Oryza sativa}	2.58060619	0.00271994

Tab.7. 8: Transcription factors identified in herbivore-attacked roots

MZ number	Annotation	fold expression (log10)	p-value	Abbrevation
MZ00000937	putative bHLH084 transcription factor {Arabidopsis thaliana}	-1.44819319	0.00132125	
MZ00001769	myb transcription factor {Hordeum vulgare subsp. Vulgare}	1.21169365	0.00085054	
MZ00004381	bZIP transcription factor-like protein {Arabidopsis thaliana}	-1.03848128	0.0278384	
MZ00005189	RING-H2 zinc finger protein ATL6-like {Oryza sativa}	1.05349043	0.00067154	
MZ00005265	putative helix-loop-helix DNA-binding protein {Oryza sativa}	1.61261607	0.00259158	TF23
MZ00012674	zinc finger protein 3 {Zea mays}	1.99250531	0.00056628	
MZ00015793	putative DNA-binding protein PD3	1.44270659	0.03312226	

	{Oryza sativa}			
MZ00017226	DNA-binding protein RAV2-like {Oryza sativa}	1.03257487	0.00075845	
MZ00017495	OSE3 {Oryza sativa}	1.60672272	0.00432566	
MZ00018321	AP2 domain transcription factor EREBP {Oryza sativa}	3.09154154	0.0051438	
MZ00019886	transcription factor MYC7E {Zea mays}	1.21347465	0.00012983	
MZ00020499	development regulation gene OsNAC4 {Oryza sativa}	1.67398892	0.00300613	
MZ00026127	development regulation gene OsNAC4 {Oryza sativa}	1.73215694	0.00266655	
MZ00026538	ZIM-motif family protein {Zea mays}	2.31151939	0.0002444	
MZ00026661	putative NAC-domain protein {Oryza sativa}	2.55609061	0.00012955	TF2
MZ00028044	WRKY-type DNA binding protein {Solanum tuberosum}	1.57561401	0.00536121	
MZ00028131	kelch repeat-containing F-box-like {Oryza sativa}	1.12681359	0.00016689	
MZ00028389	putative GAMYB-binding protein {Oryza sativa}	1.09379614	0.02579671	
MZ00031271	Transcription Factor {Oryza sativa}	3.21045114	4.31E-05	
MZ00033341	transcription factor Myb3 {Triticum aestivum}	1.23358786	0.00310482	
MZ00033715	ZIM-motif family protein {Zea mays}	2.66226357	0.00157363	
MZ00035959	putative homeodomain protein {Oryza sativa}	1.54528552	9.28E-05	
MZ00035991	putative chloroplast nucleoid DNA- binding protein cnd41 {Oryza sativa}	1.05895222	0.00751199	
MZ00036019	putative NAC-domain protein {Oryza sativa}	2.14675134	0.00058666	TF51
MZ00036067	OSE3 {Oryza sativa} leuzin zipper	1.49577716	0.00054186	
MZ00040702	R2R3 Myb protein {Zea mays}	-1.16150608	0.00249669	
MZ00041768	putative zinc finger protein {Zea mays}	2.29463039	4.00E-06	
MZ00042353	R2R3 Myb transcription factor MYB- IF35 {Zea mays}	1.88808181	0.00121086	
MZ00042739	WRKY transcription factor {Oryza	1.18263124	0.00201012	TF26

	sativa}			
MZ00043644	putative EREBP-type transcription factor {Oryza sativa;}	1.98563475	0.00460597	
MZ00046918	putative homeodomain protein {Oryza sativa}	1.19531442	9.01E-05	
MZ00056566	zinc finger transcription factor ZF1 {Oryza sativa}	1.42091009	0.00147646	TF46

Tab.7. 9: Transcription factors identified in mechanical wounded roots

MZ number	Annotation	fold expression (log10)	p-value	Abbrevation
MZ00000942	putative Myb-related transcription factor {Oryza sativa}	1.23401259	0.01833295	
MZ00004235	PRLI-interacting factor G-like protein {Oryza sativa }	1.01257862	0.02626641	
MZ00004381	bZIP transcription factor-like protein {Arabidopsis thaliana}	-1.52370818	0.00681936	
MZ00013767	initiation factor (iso)4f p82 subunit {Triticum aestivum}	1.14695383	0.00075967	
MZ00020499	development regulation gene OsNAC4 {Oryza sativ}	2.04519041	0.00156283	
MZ00021114	putative F-box protein {Oryza sativa}	-2.22404443	0.0077869	
MZ00023973	putative NAC-domain protein {Oryza sativa}	1.04455787	0.00244106	
MZ00026127	development regulation gene OsNAC4 {Oryza sativa}	2.13639907	0.00129392	
MZ00026538	ZIM-motif family protein {Zea mays}	1.38545928	0.01087381	
MZ00026661	putative NAC-domain protein {Oryza sativa}	2.48132865	0.00032211	TF1
MZ00028044	WRKY-type DNA binding protein {Solanum tuberosum}	1.46023276	0.01327617	
MZ00028351	zinc-finger protein S3574 {Oryza sativa}	-1.73644816	0.01363055	
MZ00028419	bZIP protein {Oryza sativa}	-1.65777426	0.00053869	
MZ00031018	ethylene-responsive transcription factor 4 {Zea mays}	1.00709987	0.02262177	
MZ00035959	putative homeodomain protein {Oryza	1.49720919	0.00023715	

	sativa}			
MZ00036019	putative NAC-domain protein {Oryza sativa}	1.93159471	0.00218935	TF51
MZ00041306	putative ASR2 {Oryza sativa}	1.38555034	0.00453449	
MZ00041768	putative zinc finger protein {Zea mays}	2.11656395	1.67E-05	
MZ00042353	R2R3 Myb transcription factor MYB- IF35 {Zea mays}	1.19742317	0.02499708	
MZ00046918	putative homeodomain protein {Oryza sativa}	1.38046222	6.20E-05	
MZ00054846	WRKY transcription factor 70 {Oryza sativa}	1.81331771	0.04033333	
MZ00055542	zinc-finger protein R2931 {Oryza sativa}	1.09809491	0.0006885	
MZ00056523	putative phi-1 {Oryza sativa}	1.49562379	0.01697013	TF42
MZ00057404	PHD finger protein-like {Oryza sativa}	1.02584234	0.01008488	

Tab.7. 10: Transcription factors in leaves. Comparison between systemic induction and mechanical
damage

MZ number	Annotation	fold expression (log10)	p-value	Abbrevation
MZ00000664	RING finger-like {Oryza sativa}	-1.17021127	0.00069659	TF50
MZ00001133	putative LHY protein {Oryza sativa}	-1.54479187	0.00029076	TF41
MZ00014272	putative LHY protein {Oryza sativa}	-2.08412602	0.02891213	
MZ00021611	NAM-like protein {Oryza sativa}	-1.19152825	0.0197212	
MZ00023293	MCB2 protein {Hordeum vulgare subsp. Vulgare}	-1.10641059	0.00319869	
MZ00030973	putative NAC-domain protein {Oryza sativa}	-1.14540025	0.00049405	
MZ00032849	putative phi-1 {Oryza sativa}	1.09935974	0.00190247	
MZ00041462	putative LHY protein {Oryza sativa}	-2.00264664	0.01398821	
MZ00056649	putative SWIb domain-containing protein {Oryza sativa}	-1.20443432	0.02147772	

Tab.7. 11: Transcription factors in leaves. Comparison between herbivore induction and mechanical damage

MZ number	Annotation	fold expression (log10)	p-value	Abbrevation
MZ00001821	zinc finger (C3HC4-type RING finger)	-1.0821601	0.02187925	

	protein-like {Oryza sativa}			
MZ00012674	zinc finger protein 3 {Zea mays}	2.32013829	4.13E-04	
MZ00017617	putative WD-repeat protein 12 {Oryza sativa}	-1.25582415	0.00183641	
MZ00017641	DNA binding protein-like {Oryza sativa}	-1.07749508	0.00586116	
MZ00018435	CDC5 protein {Zea mays}	2.03854817	0.00041144	
MZ00019167	DNA-binding protein-like {Oryza sativa}	-1.12845165	0.0162055	
MZ00020099	putative zinc finger (C3HC4-type RING finger) protein {Oryza sativa}	-1.20289123	0.00629871	
MZ00025599	putative zinc finger protein {Oryza sativa}	-1.06110654	0.03758546	
MZ00026538	ZIM-motif family protein {Zea mays}	1.80812953	0.01490771	
MZ00028904	myb-related gene Zm38. {Zea mays}	-1.14581193	0.01165362	
MZ00031176	DNA-binding protein-like protein {Oryza sativa}	-1.15092799	0.03580132	
MZ00031553	putative HAC13 protein {Oryza sativa}	-1.30267487	0.00238518	
MZ00032076	putative ZR1 protein {Oryza sativa}	-2.20207462	0.00859237	
MZ00035947	putative NAC-domain protein {Oryza sativa}	1.27497329	0.01101208	TF22
MZ00036019	putative NAC-domain protein {Oryza sativa}	1.22392712	0.00352567	TF51
MZ00037092	homeoboxtranscriptionfactorKNOTTED1 (kn1) {Zea mays}	2.54708663	0.01426112	
MZ00040600	SBP-domain protein 7 {Zea mays}	-1.00525421	0.02227148	
MZ00041768	putative zinc finger protein {Zea mays}	5.08405164	2.65E-03	
MZ00044274	putative finger transcription factor {Oryza sativa}	-1.25357837	0.03216688	
MZ00044596	R2R3MYB-domain protein {Zea mays}	-1.05460042	0.0039064	

Tab.7. 12: Transcription factors regulated in mechanical damaged leaves

MZ number	Annotation	fold expression (log10)	p-value	Abbrevation
MZ00021611	NAM-like protein {Oryza sativa}	1.18	0.03	
MZ00028419	bZIP protein {Oryza sativa}	-1.11	0.02	
MZ00028904	myb-related gene Zm38. {Zea mays}	1.15	0.02	

MZ number	Annotation	fold expression (log10)	p-value	Abbrevation
MZ00012674	zinc finger protein 3 {Zea mays}	2.23317188	0.00032993	
MZ00016101	putative RAB7A protein (GTP-binding protein) {Oryza sativa}	1.18925891	0.00021631	TF49
MZ00017495	OSE3 {Oryza sativa}	1.1681705	2.05E-02	
MZ00024412	EREBP-like protein {Oryza sativa}	-1.31531362	0.02761637	
MZ00026538	ZIM-motif family protein {Zea mays}	1.72623912	0.01317232	
MZ00036019	putative NAC-domain protein {Oryza sativa}	1.19363088	0.00269634	TF51
MZ00037092	homeoboxtranscriptionfactorKNOTTED1 (kn1) {Zea mays}	2.37885291	0.01395867	
MZ00041768	putative zinc finger protein {Zea mays}	5.04517754	0.0018165	

 Tab.7. 13: Transcription factors regulated in herbivore-damaged leaves

Tab.7. 14: Transcription factors in systemic induced leaves

MZ number	Annotation	fold expression (log10)	p-value	Abbrevation
MZ00001373	putative F-box protein Fb12 {Oryza sativa}	-1.93695949	0.03356703	
MZ00016166	putative transcription factor EREBP1 {Oryza sativa}	-1.0654935	0.02284059	
MZ00018541	Putative EREBP-like protein {Oryza sativa}	-1.6199081	0.03713096	TF38
MZ00020231	zinc finger protein family-like {Oryza sativa}	-1.12971082	0.03208903	
MZ00030973	putative NAC-domain protein {Oryza sativa}	-1.18177136	0.00056905	
MZ00032849	putative phi-1 {Oryza sativa}	1.30492278	0.00093883	
MZ00035947	putative NAC-domain protein {Oryza sativa}	-1.44313555	1.05E-02	TF22
MZ00036608	putative transcription factor EREBP1 {Oryza sativa}	-1.9900955	0.01739547	
MZ00056649	putative SWIb domain-containing protein {Oryza sativa}	-1.51655072	0.00947039	

7.8 Regulatory cis-elements of the 1.5 kb promoter fragment of *tps23* in Zea mays var. Delprim

tps23 1500 bp	0 1				
	Organism	Position	Strand	Sequence	Database
-300ELEMENT		377	-	TGHAAARK	PLACE
AACACOREOSGLUB1		443	+	AACAAAC	PLACE
AAGAA-motif	Avena sativa	729	-	GAAAGAA	PlantCARE
AAGAA-motif	Avena sativa	1205	-	GAAAGAA	PlantCARE
AAGAA-motif	Avena sativa	978	-	GAAAGAA	PlantCARE
A-box	Petroselinum	327	-	CCGTCC	PlantCARE
	crispum				
ABRE	Hordeum vulgare	41	+	CGTACGTGCA	PlantCARE
ABRE	Oryza sativa	44	+	GACACGTACGT	PlantCARE
ABRE	Hordeum vulgare	163	+	CGTACGTGCA	PlantCARE
ABRE	Arabidopsis thaliana	43	+	TACGTG	PlantCARE
ABRE	Arabidopsis thaliana	165	+	TACGTG	PlantCARE
ABRE	Arabidopsis thaliana	47	-	TACGTG	PlantCARE
ABRE	Arabidopsis thaliana	157	-	CACGTG	PlantCARE
ABRE	Hordeum vulgare	45	-	CGTACGTGCA	PlantCARE
ABRELATERD1		163	+	ACGTG	PLACE
ABRELATERD1		53	+	ACGTG	PLACE
ABRELATERD1		170	-	ACGTG	PLACE
ABRELATERD1		162	-	ACGTG	PLACE
ABRELATERD1		48	-	ACGTG	PLACE
ABREOSRAB21		166	+	ACGTSSSC	PLACE
ABREOSRAB21		56	+	ACGTSSSC	PLACE
ABREOSRAB21		170	-	ACGTSSSC	PLACE
ABRERATCAL		164	+	MACGYGB	PLACE
ABRERATCAL		163	-	MACGYGB	PLACE
ACA-motif	Arabidopsis	661	+	AATCACAACCA	PlantCARE

201

	thaliana			ТА	
ACGTABOX		175	+	TACGTA	PLACE
ACGTABOX		175	-	TACGTA	PLACE
ACGTATERD1		1488	+	ACGT	PLACE
ACGTATERD1		933	+	ACGT	PLACE
ACGTATERD1		174	+	ACGT	PLACE
ACGTATERD1		170	+	ACGT	PLACE
ACGTATERD1		162	+	ACGT	PLACE
ACGTATERD1		52	+	ACGT	PLACE
ACGTATERD1		48	+	ACGT	PLACE
ACGTATERD1		1488	-	ACGT	PLACE
ACGTATERD1		933	-	ACGT	PLACE
ACGTATERD1		174	-	ACGT	PLACE
ACGTATERD1		170	-	ACGT	PLACE
ACGTATERD1		162	-	ACGT	PLACE
ACGTATERD1		52	-	ACGT	PLACE
ACGTATERD1		48	-	ACGT	PLACE
ACGTOSGLUB1		53	+	GTACGTG	PLACE
ACGTOSGLUB1		172	-	GTACGTG	PLACE
ACGTOSGLUB1		50	-	GTACGTG	PLACE
ACGTTBOX		1489	+	AACGTT	PLACE
ACGTTBOX		1489	-	AACGTT	PLACE
AE-box	Arabidopsis	1470	+	AGAAACAA	PlantCARE
	thaliana				
ANAERO1CONSENSU		1543	+	AAACAAA	PLACE
S					
ANAERO1CONSENSU		717	+	AAACAAA	PLACE
S					
ANAERO1CONSENSU		442	+	AAACAAA	PLACE
8					
ANAERO1CONSENSU		1476	-	AAACAAA	PLACE
S					
ANAERO2CONSENSU		741	+	AGCAGC	PLACE
S	7				DI CLER
ARE	Zea mays	319	-	TGGTTT	PlantCARE
ARE	Zea mays	1427	-	TGGTTT	PlantCARE

ARR1AT		1704	+	NGATT	PLACE
ARR1AT		1562	+	NGATT	PLACE
ARR1AT		1456	+	NGATT	PLACE
ARRIAT		1223	+	NGATT	PLACE
ARRIAT ARRIAT		11223	+	NGATT	PLACE
ARRIAT ARRIAT		1037	+	NGATT	PLACE
ARRIAT		990		NGATT	PLACE
			+		
ARR1AT		896	+	NGATT	PLACE
ARR1AT		791	+	NGATT	PLACE
ARR1AT		769	+	NGATT	PLACE
ARR1AT		674	+	NGATT	PLACE
ARR1AT		577	+	NGATT	PLACE
ARR1AT		1661	-	NGATT	PLACE
ARR1AT		1337	-	NGATT	PLACE
ARR1AT		706	-	NGATT	PLACE
ARR1AT		777	-	NGATT	PLACE
ARR1AT		1425	-	NGATT	PLACE
ARR1AT		864	-	NGATT	PLACE
ASF1MOTIFCAMV		658	+	TGACG	PLACE
BIHD1OS		1557	+	TGTCA	PLACE
BIHD1OS		1440	-	TGTCA	PLACE
BIHD1OS		1234	-	TGTCA	PLACE
Box 4	Petroselinum	788	-	ATTAAT	PlantCARE
	crispum				
Box I	Pisum sativum	344	+	TTTCAAA	PlantCARE
CAAT-box	Brassica rapa	179	+	CAAAT	PlantCARE
CAAT-box	Hordeum vulgare	190	+	CAAT	PlantCARE
CAAT-box	Glycine max	280	+	CAATT	PlantCARE
CAAT-box	Hordeum vulgare	281	+	CAAT	PlantCARE
CAAT-box	Brassica rapa	574	+	CAAAT	PlantCARE
CAAT-box	Glycine max	940	+	CAATT	PlantCARE
CAAT-box	Hordeum vulgare	941	+	CAAT	PlantCARE
CAAT-box	Hordeum vulgare	1259	+	CAAT	PlantCARE
CAAT-box	Brassica rapa	1381	+	CAAAT	PlantCARE
CAAT-box	Brassica rapa	1468	+	CAAAT	PlantCARE
CAAT-box	Hordeum vulgare	79	-	CAAT	PlantCARE
	Ŭ	202			

CAAT-box	Glycine max	177	-	CAATT	PlantCARE
CAAT-box	Hordeum vulgare	313	-	CAAT	PlantCARE
CAAT-box	Brassica rapa	402	-	CAAAT	PlantCARE
CAAT-box	Hordeum vulgare	621	-	CAAT	PlantCARE
CAAT-box	Brassica rapa	699	-	CAAAT	PlantCARE
CAAT-box	Hordeum vulgare	771	-	CAAT	PlantCARE
CAAT-box	Glycine max	1010	-	CAATT	PlantCARE
CAATBOX1		1014	+	CAAT	PLACE
CAATBOX1		775	+	CAAT	PLACE
CAATBOX1		625	+	CAAT	PLACE
CAATBOX1		317	+	CAAT	PLACE
CAATBOX1		181	+	CAAT	PLACE
CAATBOX1		83	+	CAAT	PLACE
CAATBOX1		1509	-	CAAT	PLACE
CAATBOX1		1263	-	CAAT	PLACE
CAATBOX1		945	-	CAAT	PLACE
CAATBOX1		285	-	CAAT	PLACE
CAATBOX1		194	-	CAAT	PLACE
CACGTGMOTIF		163	+	CACGTG	PLACE
CACGTGMOTIF		163	-	CACGTG	PLACE
CACTFTPPCA1		1375	+	YACT	PLACE
CACTFTPPCA1		1294	+	YACT	PLACE
CACTFTPPCA1		1269	+	YACT	PLACE
CACTFTPPCA1		1239	+	YACT	PLACE
CACTFTPPCA1		1052	+	YACT	PLACE
CACTFTPPCA1		910	+	YACT	PLACE
CACTFTPPCA1		485	+	YACT	PLACE
CACTFTPPCA1		310	+	YACT	PLACE
CACTFTPPCA1		232	+	YACT	PLACE
CACTFTPPCA1		177	+	YACT	PLACE
CACTFTPPCA1		150	+	YACT	PLACE
CACTFTPPCA1		92	+	YACT	PLACE
CACTFTPPCA1		16	+	YACT	PLACE
CACTFTPPCA1		1157	-	YACT	PLACE
CACTFTPPCA1		1119	-	YACT	PLACE
CACTFTPPCA1		145	-	YACT	PLACE

CACTFTPPCA1		71	-	YACT	PLACE
CACTFTPPCA1		1772	-	YACT	PLACE
CACTFTPPCA1		1690	-	YACT	PLACE
CACTFTPPCA1		1537	-	YACT	PLACE
CACTFTPPCA1		1513	-	YACT	PLACE
CACTFTPPCA1		1469	-	YACT	PLACE
CACTFTPPCA1		1153	-	YACT	PLACE
CACTFTPPCA1		1067	-	YACT	PLACE
CACTFTPPCA1		860	-	YACT	PLACE
CACTFTPPCA1		822	-	YACT	PLACE
CACTFTPPCA1		337	-	YACT	PLACE
CACTFTPPCA1		12	-	YACT	PLACE
CACTFTPPCA1		7	-	YACT	PLACE
CANBNNAPA		1451	-	CNAACAC	PLACE
CARGCW8GAT		788	+	CWWWWWW	PLACE
				WG	
CARGCW8GAT		194	+	CWWWWWW	PLACE
				WG	
CARGCW8GAT		128	+	CWWWWWW	PLACE
				WG	
CARGCW8GAT		788	-	CWWWWWW	PLACE
				WG	
CARGCW8GAT		194	-	CWWWWWW	PLACE
				WG	
CARGCW8GAT		128	-	CWWWWWW	PLACE
				WG	
CBFHV		708	+	RYCGAC	PLACE
CBFHV		261	+	RYCGAC	PLACE
CCGTCC-box	Arabidopsis	327	-	CCGTCC	PlantCARE
	thaliana				
CGACGOSAMY3		223	-	CGACG	PLACE
CGTCA-motif	Hordeum vulgare	653	+	CGTCA	PlantCARE
CIACADIANLELHC		1660	+	CAANNNNATC	PLACE
CIACADIANLELHC		1081	-	CAANNNNATC	PLACE
circadian	Lycopersicon	1071	+	CAANNNNATC	PlantCARE
	esculentum				
l	<u> </u>		1	I	1

CMSRE1IBSPOA	334	-	TGGACGG	PLACE
CURECORECR	1691	+	GTAC	PLACE
CURECORECR	1068	+	GTAC	PLACE
CURECORECR	978	+	GTAC	PLACE
CURECORECR	631	+	GTAC	PLACE
CURECORECR	176	+	GTAC	PLACE
CURECORECR	172	+	GTAC	PLACE
CURECORECR	149	+	GTAC	PLACE
CURECORECR	50	+	GTAC	PLACE
CURECORECR	1691	-	GTAC	PLACE
CURECORECR	1068	-	GTAC	PLACE
CURECORECR	978	-	GTAC	PLACE
CURECORECR	631	-	GTAC	PLACE
CURECORECR	176	-	GTAC	PLACE
CURECORECR	172	-	GTAC	PLACE
CURECORECR	149	-	GTAC	PLACE
CURECORECR	50	-	GTAC	PLACE
DOFCOREZM	1745	+	AAAG	PLACE
DOFCOREZM	1656	+	AAAG	PLACE
DOFCOREZM	1523	+	AAAG	PLACE
DOFCOREZM	1280	+	AAAG	PLACE
DOFCOREZM	1214	+	AAAG	PLACE
DOFCOREZM	1210	+	AAAG	PLACE
DOFCOREZM	1117	+	AAAG	PLACE
DOFCOREZM	1087	+	AAAG	PLACE
DOFCOREZM	1022	+	AAAG	PLACE
DOFCOREZM	987	+	AAAG	PLACE
DOFCOREZM	983	+	AAAG	PLACE
DOFCOREZM	867	+	AAAG	PLACE
DOFCOREZM	820	+	AAAG	PLACE
DOFCOREZM	734	+	AAAG	PLACE
DOFCOREZM	718	+	AAAG	PLACE
DOFCOREZM	698	+	AAAG	PLACE
DOFCOREZM	639	+	AAAG	PLACE
DOFCOREZM	557	+	AAAG	PLACE
DOFCOREZM	473	+	AAAG	PLACE

DOFCOREZM	5	+	AAAG	PLACE
DOFCOREZM	1764	-	AAAG	PLACE
DOFCOREZM	1589	-	AAAG	PLACE
DOFCOREZM	1551	-	AAAG	PLACE
DOFCOREZM	950	-	AAAG	PLACE
DOFCOREZM	761	-	AAAG	PLACE
DOFCOREZM	745	-	AAAG	PLACE
DOFCOREZM	373	-	AAAG	PLACE
DPBFCOREDCDC3	279	+	ACACNNG	PLACE
DPBFCOREDCDC3	1448	-	ACACNNG	PLACE
DRECRTCOREAT	261	+	RCCGAC	PLACE
E2FCONSENSUS	330	+	WTTSSCSS	PLACE
EBOXBNNAPA	1614	+	CANNTG	PLACE
EBOXBNNAPA	1602	+	CANNTG	PLACE
EBOXBNNAPA	1545	+	CANNTG	PLACE
EBOXBNNAPA	1429	+	CANNTG	PLACE
EBOXBNNAPA	1377	+	CANNTG	PLACE
EBOXBNNAPA	1231	+	CANNTG	PLACE
EBOXBNNAPA	647	+	CANNTG	PLACE
EBOXBNNAPA	600	+	CANNTG	PLACE
EBOXBNNAPA	408	+	CANNTG	PLACE
EBOXBNNAPA	279	+	CANNTG	PLACE
EBOXBNNAPA	270	+	CANNTG	PLACE
EBOXBNNAPA	163	+	CANNTG	PLACE
EBOXBNNAPA	104	+	CANNTG	PLACE
EBOXBNNAPA	1614	-	CANNTG	PLACE
EBOXBNNAPA	1602	-	CANNTG	PLACE
EBOXBNNAPA	1545	-	CANNTG	PLACE
EBOXBNNAPA	1429	-	CANNTG	PLACE
EBOXBNNAPA	1377	-	CANNTG	PLACE
EBOXBNNAPA	1231	-	CANNTG	PLACE
EBOXBNNAPA	647	-	CANNTG	PLACE
EBOXBNNAPA	600	-	CANNTG	PLACE
EBOXBNNAPA	408	-	CANNTG	PLACE
EBOXBNNAPA	279	-	CANNTG	PLACE
EBOXBNNAPA	270	-	CANNTG	PLACE

EBOXBNNAPA		163	-	CANNTG	PLACE
EBOXBNNAPA		104	-	CANNTG	PLACE
EECCRCAH1		1608	+	GANTTNC	PLACE
EECCRCAH1		1293	+	GANTTNC	PLACE
EECCRCAH1		1226	+	GANTTNC	PLACE
EECCRCAH1		920	+	GANTTNC	PLACE
EECCRCAH1		580	+	GANTTNC	PLACE
EECCRCAH1		428	-	GANTTNC	PLACE
ERE	Dianthus	344	+	ATTTCAAA	PLACE;
	caryophyllus				PlantCARE
GAG-motif	Arabidopsis	1291	+	AGAGAGT	PlantCARE
	thaliana				
GATABOX		1421	+	GATA	PLACE
GATABOX		1050	+	GATA	PLACE
GATABOX		564	+	GATA	PLACE
GATABOX		462	+	GATA	PLACE
GATABOX		1369	-	GATA	PLACE
GATABOX		1325	-	GATA	PLACE
GATABOX		1161	-	GATA	PLACE
GATABOX		361	-	GATA	PLACE
GATABOX		296	-	GATA	PLACE
G-Box	Antirrhinum majus	47	+	CACGTA	PlantCARE
G-box	Daucus carota	43	+	TACGTG	PlantCARE
G-box	Daucus carota	165	+	TACGTG	PlantCARE
G-Box	Antirrhinum majus	43	-	CACGTA	PlantCARE
G-Box	Pisum sativum	271	-	CACACATGGAA	PlantCARE
G-Box	Pisum sativum	157	-	CACGTG	PlantCARE
G-Box	Antirrhinum majus	165	-	CACGTA	PlantCARE
G-box	Daucus carota	47	-	TACGTG	PlantCARE
G-box	Zea mays	564	-	CACGAC	PlantCARE
G-box	Oryza sativa	46	-	GTACGTG	PlantCARE
G-box	Solanum tuberosum	273	-	CACATGG	PlantCARE
GT1CONSENSUS		1751	+	GRWAAW	PLACE
GT1CONSENSUS		1727	+	GRWAAW	PLACE
GT1CONSENSUS		1423	+	GRWAAW	PLACE
GT1CONSENSUS		1008	+	GRWAAW	PLACE

GT1CONSENSUS		358	+	GRWAAW	PLACE
GT1CONSENSUS		872	+	GRWAAW	PLACE
GT1CONSENSUS		1767	-	GRWAAW	PLACE
GT1CONSENSUS		1325	-	GRWAAW	PLACE
GT1CONSENSUS		1226	-	GRWAAW	PLACE
GT1CONSENSUS		1018	-	GRWAAW	PLACE
GT1CONSENSUS		382	-	GRWAAW	PLACE
GT1CONSENSUS		204	-	GRWAAW	PLACE
GT1CONSENSUS		203	-	GRWAAW	PLACE
GT1CORE		1759	+	GGTTAA	PLACE
GT1CORE		1761	-	GGTTAA	PLACE
GT1CORE		1143	-	GGTTAA	PLACE
GT1GMSCAM4		872	+	GAAAAA	PLACE
GT1GMSCAM4		203	-	GAAAAA	PLACE
GT1-motif	Avena sativa	1136	+	GGTTAAT	PlantCARE
GT1-motif	Arabidopsis	1137	+	GGTTAA	PlantCARE
	thaliana				
GTGANTG10		1232	+	GTGA	PLACE
GTGANTG10		806	+	GTGA	PLACE
GTGANTG10		620	+	GTGA	PLACE
GTGANTG10		530	+	GTGA	PLACE
GTGANTG10		523	+	GTGA	PLACE
GTGANTG10		155	+	GTGA	PLACE
GTGANTG10		1426	-	GTGA	PLACE
GTGANTG10		1127	-	GTGA	PLACE
GTGANTG10		962	-	GTGA	PLACE
GTGANTG10		644	-	GTGA	PLACE
I-box	Flaveria trinervia	458	-	GATATGG	PlantCARE
IBOXCORE		1422	+	GATAA	PLACE
IBOXCORE		1325	-	GATAA	PLACE
INRNTPSADB		1016	+	YTCANTYY	PLACE
INRNTPSADB		183	+	YTCANTYY	PLACE
INRNTPSADB		777	+	YTCANTYY	PLACE
INTRONLOWER		604	+	TGCAGG	PLACE
IRO2OS		164	+	CACGTGG	PLACE
JERE	Arabidopsis	507	-	AGACCGCC	PlantCARE

	thaliana				
LECPLEACS2		1368	+	TAAAATAT	PLACE
LTRECOREATCOR15		261	+	CCGAC	PLACE
MNF1	Zea mays	160	+	GTGCCC(A/T)(A/	PlantCARE
				T)	
MNF1	Zea mays	50	-	GTGCCC(A/T)(A/	PlantCARE
				T)	
MYB1AT		1433	-	WAACCA	PLACE
MYB1AT		325	-	WAACCA	PLACE
MYB1AT		955	-	WAACCA	PLACE
MYB1AT		669	-	WAACCA	PLACE
MYB2CONSENSUSAT		802	+	YAACKG	PLACE
MYB2CONSENSUSAT		1032	-	YAACKG	PLACE
MYBATRD22		956	-	CTAACCA	PLACE
MYBCORE		585	+	CNGTTR	PLACE
MYBCORE		43	+	CNGTTR	PLACE
MYBCORE		1032	+	CNGTTR	PLACE
MYBCORE		1144	-	CNGTTR	PLACE
MYBCORE		802	-	CNGTTR	PLACE
MYBCOREATCYCB1		802	+	AACGG	PLACE
MYBCOREATCYCB1		491	+	AACGG	PLACE
MYBCOREATCYCB1		1352	-	AACGG	PLACE
MYBCOREATCYCB1		1031	-	AACGG	PLACE
MYBPZM		1194	+	CCWACC	PLACE
MYBST1		1050	+	GGATA	PLACE
MYCATERD1		1231	+	CATGTG	PLACE
MYCATERD1		270	+	CATGTG	PLACE
MYCATERD1		647	-	CATGTG	PLACE
MYCATERD1		279	-	CATGTG	PLACE
MYCATRD22		647	+	CACATG	PLACE
MYCATRD22		279	+	CACATG	PLACE
MYCATRD22		1231	-	CACATG	PLACE
MYCATRD22		270	-	CACATG	PLACE
MYCCONSENSUSAT		1614	+	CANNTG	PLACE
MYCCONSENSUSAT		1602	+	CANNTG	PLACE
MYCCONSENSUSAT		1545	+	CANNTG	PLACE

MYCCONSENSUSAT		1429	+	CANNTG	PLACE
MYCCONSENSUSAT		1377	+	CANNTG	PLACE
MYCCONSENSUSAT		1231	+	CANNTG	PLACE
MYCCONSENSUSAT		647	+	CANNTG	PLACE
MYCCONSENSUSAT		600	+	CANNTG	PLACE
MYCCONSENSUSAT		408	+	CANNTG	PLACE
MYCCONSENSUSAT		279	+	CANNTG	PLACE
MYCCONSENSUSAT		270	+	CANNTG	PLACE
MYCCONSENSUSAT		163	+	CANNTG	PLACE
MYCCONSENSUSAT		104	+	CANNTG	PLACE
MYCCONSENSUSAT		1614	-	CANNTG	PLACE
MYCCONSENSUSAT		1602	-	CANNTG	PLACE
MYCCONSENSUSAT		1545	-	CANNTG	PLACE
MYCCONSENSUSAT		1429	-	CANNTG	PLACE
MYCCONSENSUSAT		1377	-	CANNTG	PLACE
MYCCONSENSUSAT		1231	-	CANNTG	PLACE
MYCCONSENSUSAT		647	-	CANNTG	PLACE
MYCCONSENSUSAT		600	-	CANNTG	PLACE
MYCCONSENSUSAT		408	-	CANNTG	PLACE
MYCCONSENSUSAT		279	-	CANNTG	PLACE
MYCCONSENSUSAT		270	-	CANNTG	PLACE
MYCCONSENSUSAT		163	-	CANNTG	PLACE
MYCCONSENSUSAT		104	-	CANNTG	PLACE
NODCON1GM		989	+	AAAGAT	PLACE
NODCON1GM		641	+	AAAGAT	PLACE
NODCON1GM		475	+	AAAGAT	PLACE
NODCON2GM		1588	+	CTCTT	PLACE
NODCON2GM		1303	-	CTCTT	PLACE
NODCON2GM		1216	-	CTCTT	PLACE
NTBBF1ARROLB		821	-	ACTTTA	PLACE
O2-site	Zea mays	679	+	GATGATGTGG	PlantCARE
O2-site	Zea mays	455	-	GATGATATGG	PlantCARE
OSE1ROOTNODULE		989	+	AAAGAT	PLACE
OSE1ROOTNODULE		641	+	AAAGAT	PLACE
OSE1ROOTNODULE		475	+	AAAGAT	PLACE
OSE2ROOTNODULE		1588	+	СТСТТ	PLACE

OSE2ROOTNODULE		1303	-	CTCTT	PLACE
OSE2ROOTNODULE		1216	-	CTCTT	PLACE
PALBOXAPC		333	+	CCGTCC	PLACE
P-box	Oryza sativa	740	-	CCTTTTG	PlantCARE
POLASIG1		1485	+	AATAAA	PLACE
POLASIG1		829	+	AATAAA	PLACE
POLASIG1		471	+	AATAAA	PLACE
POLASIG1		1631	-	AATAAA	PLACE
POLASIG2		1059	+	AATTAAA	PLACE
POLASIG3		833	+	AATAAT	PLACE
POLASIG3		293	+	AATAAT	PLACE
POLASIG3		1313	-	AATAAT	PLACE
POLLEN1LELAT52		1416	+	AGAAA	PLACE
POLLEN1LELAT52		1213	+	AGAAA	PLACE
POLLEN1LELAT52		1086	+	AGAAA	PLACE
POLLEN1LELAT52		986	+	AGAAA	PLACE
POLLEN1LELAT52		870	+	AGAAA	PLACE
POLLEN1LELAT52		733	+	AGAAA	PLACE
POLLEN1LELAT52		1478	-	AGAAA	PLACE
POLLEN1LELAT52		1436	-	AGAAA	PLACE
POLLEN1LELAT52		592	-	AGAAA	PLACE
PREATPRODH		1605	-	ACTCAT	PLACE
PYRIMIDINEBOXHVE		204	+	TTTTTTCC	PLACE
PB1					
PYRIMIDINEBOXOSR		1765	+	CCTTTT	PLACE
AMY1A					
PYRIMIDINEBOXOSR		746	+	CCTTTT	PLACE
AMY1A					
PYRIMIDINEBOXOSR		1281	-	CCTTTT	PLACE
AMY1A					
RAV1AAT		315	+	CAACA	PLACE
RAV1AAT		1342	-	CAACA	PLACE
RAV1AAT		878	-	CAACA	PLACE
RAV1AAT		765	-	CAACA	PLACE
RAV1AAT		585	-	CAACA	PLACE
RAV1AAT		321	-	CAACA	PLACE

RAV1AAT	43	-	CAACA	PLACE
RAV1BAT	1429	+	CACCTG	PLACE
RAV1BAT	104	+	CACCTG	PLACE
RBCSCONSENSUS	769	-	AATCCAA	PLACE
REALPHALGLHCB21	954	-	AACCAA	PLACE
REALPHALGLHCB21	324	-	AACCAA	PLACE
RHERPATEXPA7	170	+	KCACGW	PLACE
RHERPATEXPA7	162	+	KCACGW	PLACE
RHERPATEXPA7	48	+	KCACGW	PLACE
RHERPATEXPA7	54	-	KCACGW	PLACE
RHERPATEXPA7	530	-	KCACGW	PLACE
RHERPATEXPA7	155	-	KCACGW	PLACE
ROOTMOTIFTAPOX1	1627	+	ATATT	PLACE
ROOTMOTIFTAPOX1	1274	+	ATATT	PLACE
ROOTMOTIFTAPOX1	998	+	ATATT	PLACE
ROOTMOTIFTAPOX1	797	+	ATATT	PLACE
ROOTMOTIFTAPOX1	193	+	ATATT	PLACE
ROOTMOTIFTAPOX1	1368	-	ATATT	PLACE
ROOTMOTIFTAPOX1	997	-	ATATT	PLACE
ROOTMOTIFTAPOX1	796	-	ATATT	PLACE
ROOTMOTIFTAPOX1	787	-	ATATT	PLACE
ROOTMOTIFTAPOX1	627	-	ATATT	PLACE
ROOTMOTIFTAPOX1	360	-	ATATT	PLACE
ROOTMOTIFTAPOX1	295	-	ATATT	PLACE
ROOTMOTIFTAPOX1	249	-	ATATT	PLACE
ROOTMOTIFTAPOX1	126	-	ATATT	PLACE
RYREPEATBNNAPA	387	+	CATGCA	PLACE
RYREPEATBNNAPA	90	+	CATGCA	PLACE
RYREPEATBNNAPA	88	-	CATGCA	PLACE
RYREPEATGMGY2	388	+	CATGCAT	PLACE
RYREPEATGMGY2	88	-	CATGCAT	PLACE
RYREPEATLEGUMIN	388	+	CATGCAY	PLACE
BOX				
RYREPEATLEGUMIN	91	+	CATGCAY	PLACE
BOX				
RYREPEATLEGUMIN	88	-	CATGCAY	PLACE

BOX					
SEBFCONSSTPR10A		1235	-	YTGTCWC	PLACE
SEF1MOTIF		1631	+	ATATTTAWW	PLACE
SEF1MOTIF		249	-	ATATTTAWW	PLACE
SEF4MOTIFGM7S		1635	+	RTTTTTR	PLACE
SEF4MOTIFGM7S		817	+	RTTTTTR	PLACE
SEF4MOTIFGM7S		904	-	RTTTTTR	PLACE
SITEIIATCYTC		1412	+	TGGGCY	PLACE
SITEIIATCYTC		1578	-	TGGGCY	PLACE
SORLIP1AT		1494	+	GCCAC	PLACE
SORLIP1AT		517	+	GCCAC	PLACE
Sp1	Zea mays	513	-	CC(G/A)CCC	PlantCARE
SURECOREATSULTR1		1462	-	GAGAC	PLACE
1					
SURECOREATSULTR1		610	-	GAGAC	PLACE
1					
TAAAGSTKST1		820	+	TAAAG	PLACE
TAAAGSTKST1		639	+	TAAAG	PLACE
TAAAGSTKST1		1590	-	TAAAG	PLACE
TAAAGSTKST1		1552	-	TAAAG	PLACE
TATA-box	Arabidopsis	186	+	ТАТАА	PlantCARE
	thaliana				
TATA-box	Zea mays	238	+	TTTAAAAA	PlantCARE
TATA-box	Arabidopsis	240	+	TATTTAAA	PlantCARE
	thaliana				
TATA-box	Lycopersicon	450	+	TTTTA	PlantCARE
	esculentum				
TATA-box	Lycopersicon	467	+	TTTTA	PlantCARE
	esculentum				
TATA-box	Lycopersicon	610	+	TTTTA	PlantCARE
	esculentum				
TATA-box	Helianthus annuus	645	+	TATACA	PlantCARE
TATA-box	Glycine max	793	+	TAATA	PlantCARE
TATA-box	Zea mays	811	+	TTTAAAAA	PlantCARE
TATA-box	Lycopersicon	820	+	TTTTA	PlantCARE
	esculentum				

TATA-box	Glycine max	994	+	ТААТА	PlantCARE
TATA-box	Arabidopsis thaliana	1035	+	ΤΑΤΑΑ	PlantCARE
TATA-box	Arabidopsis thaliana	1059	+	ТАТАА	PlantCARE
TATA-box	Glycine max	1270	+	ТААТА	PlantCARE
TATA-box	Lycopersicon esculentum	1273	+	TTTTA	PlantCARE
TATA-box	Glycine max	1309	+	ТААТА	PlantCARE
TATA-box	Lycopersicon esculentum	1360	+	TTTTA	PlantCARE
TATA-box	Arabidopsis thaliana	5	-	ΤΑΤΑ	PlantCARE
TATA-box	Arabidopsis thaliana	10	-	ΤΑΤΑ	PlantCARE
TATA-box	Arabidopsis thaliana	75	-	ΤΑΤΑ	PlantCARE
TATA-box	Glycine max	120	-	ТААТА	PlantCARE
TATA-box	Arabidopsis thaliana	123	-	ΤΑΤΑ	PlantCARE
TATA-box	Brassica napus	185	-	ATTATA	PlantCARE
TATA-box	Arabidopsis thaliana	187	-	ТАТА	PlantCARE
TATA-box	Lycopersicon esculentum	239	-	TTTTA	PlantCARE
TATA-box	Arabidopsis thaliana	246	-	ΤΑΤΑ	PlantCARE
TATA-box	Glycine max	286	-	ТААТА	PlantCARE
TATA-box	Glycine max	289	-	ТААТА	PlantCARE
TATA-box	Arabidopsis thaliana	647	-	ТАТА	PlantCARE
TATA-box	Arabidopsis thaliana	659	-	ΤΑΤΑ	PlantCARE
TATA-box	Arabidopsis thaliana	779	-	ΤΑΤΑ	PlantCARE
TATA-box	Glycine max	781	-	ТААТА	PlantCARE

TATA-box	Glycine max	790	-	TAATA	PlantCARE
TATA-box	Lycopersicon	812	-	TTTTA	PlantCARE
	esculentum				
TATA-box	Lycopersicon	844	-	TTTTA	PlantCARE
	esculentum				
TATA-box	Oryza sativa	895	-	TACAAAA	PlantCARE
TATA-box	Lycopersicon	988	-	TTTTA	PlantCARE
	esculentum				
TATA-box	Glycine max	991	-	ТААТА	PlantCARE
TATA-box	Brassica napus	1034	-	ΑΤΤΑΤΑ	PlantCARE
TATA-box	Ac	1036	-	TATAAAT	PlantCARE
TATA-box	Brassica napus	1058	-	ATTATA	PlantCARE
TATA-box	Arabidopsis	1060	-	ТАТА	PlantCARE
	thaliana				
TATA-box	Arabidopsis	1268	-	TATA	PlantCARE
	thaliana				
TATA-box	Glycine max	1478	-	TAATA	PlantCARE
TATABOX2		1043	+	TATAAAT	PLACE
ТАТАВОХЗ		1777	+	TATTAAT	PLACE
ТАТАВОХЗ		795	-	TATTAAT	PLACE
TATABOX5		1632	+	TTATTT	PLACE
TATABOX5		1753	-	TTATTT	PLACE
TATABOX5		832	-	TTATTT	PLACE
TATABOX5		828	-	TTATTT	PLACE
TATABOXOSPAL		248	-	ΤΑΤΤΤΑΑ	PLACE
TBOXATGAPB		558	-	ACTTTG	PLACE
TC-rich repeats	Nicotiana tabacum	1429	-	GTTTTCTTAC	PlantCARE
TGACG-motif	Hordeum vulgare	653	-	TGACG	PlantCARE
TGTCACACMCUCUM		1234	-	TGTCACA	PLACE
ISIN					
Unnamed1	Zea mays	136	-	CGTGG	PlantCARE
Unnamed1	Zea mays	159	-	CGTGG	PlantCARE
Unnamed4	Petroselinum	602	+	CTCC	PlantCARE
	hortense				
Unnamed4	Petroselinum	1302	+	CTCC	PlantCARE
	hortense				

Unnamed4	Petroselinum	1128	+	CTCC	PlantCARE
	hortense				
Unnamed4	Petroselinum	139	+	СТСС	PlantCARE
	hortense				
Unnamed4	Petroselinum	27	-	CTCC	PlantCARE
	hortense				
Unnamed4	Petroselinum	962	-	CTCC	PlantCARE
	hortense				
Unnamed4	Petroselinum	534	-	CTCC	PlantCARE
	hortense				
Unnamed4	Petroselinum	834	-	CTCC	PlantCARE
	hortense				
Unnamed4	Petroselinum	1459	-	CTCC	PlantCARE
	hortense				
Unnamed4	Petroselinum	1102	-	CTCC	PlantCARE
	hortense				
Unnamed4	Petroselinum	549	-	CTCC	PlantCARE
	hortense				
Unnamed4	Petroselinum	1200	-	CTCC	PlantCARE
	hortense				
WBOXATNPR1		657	+	TTGAC	PLACE
WBOXATNPR1		1558	-	TTGAC	PLACE
WBOXHVISO1		525	+	TGACT	PLACE
WBOXHVISO1		1135	-	TGACT	PLACE
WBOXNTCHN48		1136	-	CTGACY	PLACE
WBOXNTERF3		525	+	TGACY	PLACE
WBOXNTERF3		1135	-	TGACY	PLACE
WRKY71OS		1439	+	TGAC	PLACE
WRKY71OS		1233	+	TGAC	PLACE
WRKY71OS		657	+	TGAC	PLACE
WRKY71OS		524	+	TGAC	PLACE
WRKY71OS		1557	-	TGAC	PLACE
WRKY71OS		1135	-	TGAC	PLACE
WUN-motif	Brassica oleracea	684	-	TCATTACGAA	PlantCARE

7.9 Regulatory cis-elements in the 1.5 kb promoter fragment of *tps10* of *Zea mays* var. Delprim

Tab.7. 16				L	
tps10 1300 bp	Organism	Position	Strand	Sequence	Database
-10PEHVPSBD		635	+	TATTCT	PLACE
A-box	Petroselinum	303	-	CCGTCC	PlantCARE
	crispum				
ABRE	Oryza sativa	152	+	AGTACGTGGC	PlantCARE
ABRE	Arabidopsis	455	-	CACGTG	PlantCARE
	thaliana				
ABRELATERD1		456	+	ACGTG	PLACE
ABRELATERD1		457	-	ACGTG	PLACE
ABRELATERD1		875	-	ACGTG	PLACE
ABRERATCAL		455	+	MACGYGB	PLACE
ABRERATCAL		844	-	MACGYGB	PLACE
ACGTATERD1		114	+	ACGT	PLACE
ACGTATERD1		281	+	ACGT	PLACE
ACGTATERD1		296	+	ACGT	PLACE
ACGTATERD1		457	+	ACGT	PLACE
ACGTATERD1		875	+	ACGT	PLACE
ACGTATERD1		114	-	ACGT	PLACE
ACGTATERD1		281	-	ACGT	PLACE
ACGTATERD1		296	-	ACGT	PLACE
ACGTATERD1		457	-	ACGT	PLACE
ACGTATERD1		875	-	ACGT	PLACE
ACGTTBOX		295	+	AACGTT	PLACE
ACGTTBOX		295	-	AACGTT	PLACE
ANAERO1CONSENSU		87	+	AAACAAA	PLACE
S					
ANAERO2CONSENSU		5	-	AGCAGC	PLACE
S					
ANAERO2CONSENSU		185	-	AGCAGC	PLACE
S					
ARE	Zea mays	350	-	TGGTTT	PlantCARE

ARFAT		410	+	TGTCTC	PLACE
ARFAT		617	+	TGTCTC	PLACE
ARFAT		988	+	TGTCTC	PLACE
ARR1AT		434	+	NGATT	PLACE
ARR1AT		763	+	NGATT	PLACE
ARR1AT		915	+	NGATT	PLACE
ARR1AT		948	+	NGATT	PLACE
ARR1AT		493	-	NGATT	PLACE
ARR1AT		952	-	NGATT	PLACE
ARR1AT		1098	-	NGATT	PLACE
ARR1AT		1143	-	NGATT	PLACE
ARR1AT		128	-	NGATT	PLACE
ARR1AT		592	-	NGATT	PLACE
ARR1AT		701	-	NGATT	PLACE
ASF1MOTIFCAMV		45	+	TGACG	PLACE
ASF1MOTIFCAMV		23	-	TGACG	PLACE
BIHD1OS		577	+	TGTCA	PLACE
BIHD1OS		1000	-	TGTCA	PLACE
BIHD1OS		1263	-	TGTCA	PLACE
Box 4	Petroselinum	668	-	ATTAAT	PlantCARE
	crispum				
Box 4	Petroselinum	944	-	ATTAAT	PlantCARE
	crispum				
Box 4	Petroselinum	932	-	ATTAAT	PlantCARE
	crispum				
Box 4	Petroselinum	1115	-	ATTAAT	PlantCARE
	crispum				
BOXIINTPATPB		710	+	ATAGAA	PLACE
BP5OSWX		873	-	CAACGTG	PLACE
CAAT-box	Hordeum vulgare	129	+	CAAT	PLACE;
					PlantCARE
CAAT-box	Hordeum vulgare	147	+	CAAT	PLACE;
					PlantCARE
CAAT-box	Glycine max	319	+	CAATT	PlantCARE
CAAT-box	Arabidopsis	320	+	gGCAAT	PlantCARE
	thaliana				

CAAT-box	Hordeum vulgare	446	+	CAAT	PLACE;
					PlantCARE
CAAT-box	Hordeum vulgare	451	+	СААТ	PLACE;
					PlantCARE
CAAT-box	Glycine max	483	+	CAATT	PlantCARE
CAAT-box	Hordeum vulgare	484	+	CAAT	PLACE;
					PlantCARE
CAAT-box	Hordeum vulgare	494	+	CAAT	PLACE;
					PlantCARE
CAAT-box	Brassica rapa	724	+	CAAAT	PlantCARE
CAAT-box	Arabidopsis	893	+	CCAAT	PlantCARE
	thaliana				
CAAT-box	Brassica rapa	1060	+	CAAAT	PlantCARE
CAAT-box	Brassica rapa	1236	+	CAAAT	PlantCARE
CAAT-box	Hordeum vulgare	178	-	CAAT	PLACE;
					PlantCARE
CAAT-box	Hordeum vulgare	368	-	CAAT	PLACE;
					PlantCARE
CAAT-box	Brassica rapa	426	-	CAAAT	PlantCARE
CAAT-box	Hordeum vulgare	554	-	CAAT	PLACE;
					PlantCARE
CAAT-box	Brassica rapa	811	-	CAAAT	PlantCARE
CAAT-box	Hordeum vulgare	1089	-	CAAT	PLACE;
					PlantCARE
CAAT-box	Brassica rapa	1183	-	CAAAT	PlantCARE
CAATBOX1		321	+	CAAT	PLACE
CAATBOX1		894	+	CAAT	PLACE
CACGTGMOTIF		456	+	CACGTG	PLACE
CACGTGMOTIF		456	-	CACGTG	PLACE
CACTFTPPCA1		111	+	YACT	PLACE
CACTFTPPCA1		138	+	YACT	PLACE
CACTFTPPCA1		210	+	YACT	PLACE
CACTFTPPCA1		394	+	ҮАСТ	PLACE
CACTFTPPCA1		1013	+	ҮАСТ	PLACE
CACTFTPPCA1		1162	+	YACT	PLACE

CACTFTPPCA11261+YACTPLACECACTFTPPCA1359-YACTPLACECACTFTPPCA1732-YACTPLACECACTFTPPCA11177-YACTPLACECACTFTPPCA11277-YACTPLACECACTFTPPCA1159-YACTPLACECACTFTPPCA1263-YACTPLACECACTFTPPCA1652-YACTPLACECACTFTPPCA1652-YACTPLACECACTFTPPCA1720-YACTPLACECACTFTPPCA1759-YACTPLACECACTFTPPCA1767-YACTPLACECACTFTPPCA1961-YACTPLACECACTFTPPCA1994-YACTPLACECACTFTPPCA11121-YACTPLACECACTFTPPCA11173-CNAACACPLACECACTFTPPCA11173-CNAACACPLACECACTFTPPCA11173-CNAACACPLACECACTFTPPCA1888+CWWWWWPLACECAREOSREP1421+CAACTCPLACECARGCWSGAT888-CWWWWWPLACEWGCCAATBOX1894+CCAATPLACECEREGLUBOX2PSLE1054+TGAAAACTPLACE	CACTFTPPCA1		1224	+	YACT	PLACE
CACTFTPPCA1732-YACTPLACECACTFTPPCA11177-YACTPLACECACTFTPPCA11277-YACTPLACECACTFTPPCA1159-YACTPLACECACTFTPPCA1263-YACTPLACECACTFTPPCA1589-YACTPLACECACTFTPPCA1652-YACTPLACECACTFTPPCA1720-YACTPLACECACTFTPPCA1759-YACTPLACECACTFTPPCA1767-YACTPLACECACTFTPPCA1961-YACTPLACECACTFTPPCA1994-YACTPLACECACTFTPPCA11121-YACTPLACECACTFTPPCA11173-CNAACACPLACECACTFTPPCA11173-CNAACACPLACECACTFTPPCA11173-CNAACACPLACECACTFTPPCA1888+CWWWWWWPLACECARGCW8GAT888-CWWWWWWPLACECCAATBOX1894+CCAATPLACECCGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CACTFTPPCA1		1261	+	YACT	PLACE
CACTFTPPCA11177-YACTPLACECACTFTPPCA11277-YACTPLACECACTFTPPCA1159-YACTPLACECACTFTPPCA1263-YACTPLACECACTFTPPCA1652-YACTPLACECACTFTPPCA1652-YACTPLACECACTFTPPCA1720-YACTPLACECACTFTPPCA1759-YACTPLACECACTFTPPCA1767-YACTPLACECACTFTPPCA1961-YACTPLACECACTFTPPCA1994-YACTPLACECACTFTPPCA11121-YACTPLACECACTFTPPCA11173-CNAACACPLACECACTFTPPCA11173-CNAACACPLACECACTFTPPCA1888+CWWWWWPLACECARGCW8GAT888-CWWWWWWPLACECARGCW8GAT894+CCAATPLACECGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CACTFTPPCA1		359	-	YACT	PLACE
CACTFTPPCA11277-YACTPLACECACTFTPPCA1159-YACTPLACECACTFTPPCA1263-YACTPLACECACTFTPPCA1589-YACTPLACECACTFTPPCA1652-YACTPLACECACTFTPPCA1720-YACTPLACECACTFTPPCA1759-YACTPLACECACTFTPPCA1767-YACTPLACECACTFTPPCA1961-YACTPLACECACTFTPPCA1994-YACTPLACECACTFTPPCA11121-YACTPLACECACTFTPPCA11173-CNAACACPLACECACTFTPPCA11173-CNAACACPLACECAREOSREP1421+CAACTCPLACECARGCW8GAT888+CWWWWWPLACECCAATBOX1894+CCAATPLACECGGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CACTFTPPCA1		732	-	YACT	PLACE
CACTFTPPCA1159-YACTPLACECACTFTPPCA1263-YACTPLACECACTFTPPCA1589-YACTPLACECACTFTPPCA1652-YACTPLACECACTFTPPCA1720-YACTPLACECACTFTPPCA1759-YACTPLACECACTFTPPCA1767-YACTPLACECACTFTPPCA1961-YACTPLACECACTFTPPCA1994-YACTPLACECACTFTPPCA11121-YACTPLACECACTFTPPCA11173-CNAACACPLACECAREOSREP1421+CAACTCPLACECARGCW8GAT888+CWWWWWWPLACECCAATBOXI894+CCAATPLACECGGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CACTFTPPCA1		1177	-	ҮАСТ	PLACE
CACTFTPPCA1263-YACTPLACECACTFTPPCA1589-YACTPLACECACTFTPPCA1652-YACTPLACECACTFTPPCA1720-YACTPLACECACTFTPPCA1759-YACTPLACECACTFTPPCA1767-YACTPLACECACTFTPPCA1961-YACTPLACECACTFTPPCA1994-YACTPLACECACTFTPPCA11121-YACTPLACECACTFTPPCA11173-CNAACACPLACECAREOSREP1421+CAACTCPLACECARGCW8GAT888+CWWWWWPLACECAATBOX1894+CCAATPLACECGGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CACTFTPPCA1		1277	-	ҮАСТ	PLACE
CACTFTPPCA1589-YACTPLACECACTFTPPCA1652-YACTPLACECACTFTPPCA1720-YACTPLACECACTFTPPCA1759-YACTPLACECACTFTPPCA1767-YACTPLACECACTFTPPCA1961-YACTPLACECACTFTPPCA1994-YACTPLACECACTFTPPCA11121-YACTPLACECACTFTPPCA11173-CNAACACPLACECAREOSREP1421+CAACTCPLACECARGCW8GAT888+CWWWWWWPLACECCAATBOX1894+CCAATPLACECCGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CACTFTPPCA1		159	-	YACT	PLACE
CACTFTPPCA1652-YACTPLACECACTFTPPCA1720-YACTPLACECACTFTPPCA1759-YACTPLACECACTFTPPCA1767-YACTPLACECACTFTPPCA1961-YACTPLACECACTFTPPCA1994-YACTPLACECACTFTPPCA11121-YACTPLACECACTFTPPCA11121-YACTPLACECACTFTPPCA11173-CNAACACPLACECAREOSREP1421+CAACTCPLACECARGCW8GAT888+CWWWWWWPLACECARGCW8GAT888-CWWWWWWPLACECCAATBOX1894+CCAATPLACECCGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CACTFTPPCA1		263	-	ҮАСТ	PLACE
CACTFTPPCA1720-YACTPLACECACTFTPPCA1759-YACTPLACECACTFTPPCA1767-YACTPLACECACTFTPPCA1961-YACTPLACECACTFTPPCA1994-YACTPLACECACTFTPPCA11121-YACTPLACECACTFTPPCA11173-CNAACACPLACECAREOSREP1421+CAACTCPLACECARGCW8GAT888+CWWWWWPLACECARGCW8GAT888-CWWWWWPLACECCAATBOX1894+CCAATPLACECCGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CACTFTPPCA1		589	-	ҮАСТ	PLACE
CACTFTPPCA1759-YACTPLACECACTFTPPCA1767-YACTPLACECACTFTPPCA1961-YACTPLACECACTFTPPCA1994-YACTPLACECACTFTPPCA11121-YACTPLACECACTFTPPCA11121-YACTPLACECANBNNAPA1173-CNAACACPLACECAREOSREP1421+CAACTCPLACECARGCW8GAT888+CWWWWWWPLACECARGCW8GAT888-CWWWWWWPLACECCAATBOX1Rabidopsis303-CCGTCCPlantCAREthaliana101010-PLACE	CACTFTPPCA1		652	-	ҮАСТ	PLACE
CACTFTPPCA1767-YACTPLACECACTFTPPCA1961-YACTPLACECACTFTPPCA1994-YACTPLACECACTFTPPCA11121-YACTPLACECANBNNAPA1173-CNAACACPLACECAREOSREP1421+CAACTCPLACECARGCW8GAT888+CWWWWWPLACECARGCW8GAT888-CWWWWWPLACECCAATBOX1894+CCAATPLACECCGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CACTFTPPCA1		720	-	ҮАСТ	PLACE
CACTFTPPCA1961-YACTPLACECACTFTPPCA1994-YACTPLACECACTFTPPCA11121-YACTPLACECANBNNAPA1173-CNAACACPLACECAREOSREP1421+CAACTCPLACECARGCW8GAT888+CWWWWWPLACECARGCW8GAT888-CWWWWWWPLACECARGCW8GAT888-CWWWWWWPLACECCAATBOX1894+CCAATPLACECCGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CACTFTPPCA1		759	-	ҮАСТ	PLACE
CACTFTPPCA1994-YACTPLACECACTFTPPCA11121-YACTPLACECANBNNAPA1173-CNAACACPLACECAREOSREP1421+CAACTCPLACECARGCW8GAT888+CWWWWWWPLACECARGCW8GAT888-CWWWWWWPLACECARGCW8GAT888-CWWWWWWPLACECARGCW8GAT888-CWWWWWWPLACECCAATBOX1894+CCAATPLACECCGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CACTFTPPCA1		767	-	YACT	PLACE
CACTFTPPCA11121-YACTPLACECANBNNAPA1173-CNAACACPLACECAREOSREP1421+CAACTCPLACECARGCW8GAT888+CWWWWWWPLACECARGCW8GAT888-CWWWWWWPLACECARGCW8GAT888-CWWWWWWPLACECCAATBOX1894+CCAATPLACECCGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CACTFTPPCA1		961	-	ҮАСТ	PLACE
CANBNNAPA1173-CNAACACPLACECAREOSREP1421+CAACTCPLACECARGCW8GAT888+CWWWWWWPLACECARGCW8GAT888-CWWWWWWPLACECARGCW8GAT888-CWWWWWWPLACECARGCW8GAT888-CWWWWWWPLACECCAATBOX1894+CCAATPLACECCGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CACTFTPPCA1		994	-	YACT	PLACE
CAREOSREP1421+CAACTCPLACECARGCW8GAT888+CWWWWWWPLACECARGCW8GAT888-CWWWWWWPLACECARGCW8GAT888-CWWWWWWPLACECCAATBOX1894+CCAATPLACECCGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CACTFTPPCA1		1121	-	YACT	PLACE
CARGCW8GAT888+CWWWWWW WGPLACECARGCW8GAT888-CWWWWWW WGPLACECARGCW8GAT888-CWWWWWW WGPLACECCAATBOX1894+CCAATPLACECCGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CANBNNAPA		1173	-	CNAACAC	PLACE
CARGCW8GAT888-CWWWWWPLACECCAATBOX1894+CCAATPLACECCGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CAREOSREP1		421	+	CAACTC	PLACE
CARGCW8GAT888-CWWWWWW WGPLACECCAATBOX1894+CCAATPLACECCGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CARGCW8GAT		888	+	CWWWWWW	PLACE
CCAATBOX1894+CCAATPLACECCGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE					WG	
CCAATBOX1894+CCAATPLACECCGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE	CARGCW8GAT		888	-	CWWWWWW	PLACE
CCGTCC-boxArabidopsis thaliana303-CCGTCCPlantCARE					WG	
thaliana	ССААТВОХ1		894	+	CCAAT	PLACE
	CCGTCC-box	Arabidopsis	303	-	CCGTCC	PlantCARE
CEREGLUBOX2PSLE1054+TGAAAACTPLACE		thaliana				
	CEREGLUBOX2PSLE		1054	+	TGAAAACT	PLACE
GA	GA					
CGACGOSAMY3 42 + CGACG PLACE	CGACGOSAMY3		42	+	CGACG	PLACE
CGCGBOXAT 845 + VCGCGB PLACE	CGCGBOXAT		845	+	VCGCGB	PLACE
CGCGBOXAT 845 - VCGCGB PLACE	CGCGBOXAT		845	-	VCGCGB	PLACE
CGTCA-motifHordeum vulgare22+CGTCAPlantCARE	CGTCA-motif	Hordeum vulgare	22	+	CGTCA	PlantCARE
CGTCA-motifHordeum vulgare44-CGTCAPlantCARE	CGTCA-motif	Hordeum vulgare	44	-	CGTCA	PlantCARE
circadian Lycopersicon 687 + CAANNNATC PlantCARE;	circadian	Lycopersicon	687	+	CAANNNATC	PlantCARE;
<i>esculentum</i> PLACE		esculentum				PLACE
circadian Lycopersicon 872 - CAANNNATC PlantCARE;	circadian	Lycopersicon	872	-	CAANNNNATC	PlantCARE;
<i>esculentum</i> PLACE		esculentum				PLACE

CMSRE1IBSPOA	304	+	TGGACGG	PLACE
CTRMCAMV35S	612	+	TCTCTCTCT	PLACE
CURECORECR	112	+	GTAC	PLACE
CURECORECR	158	+	GTAC	PLACE
CURECORECR	249	+	GTAC	PLACE
CURECORECR	262	+	GTAC	PLACE
CURECORECR	476	+	GTAC	PLACE
CURECORECR	112	-	GTAC	PLACE
CURECORECR	158	-	GTAC	PLACE
CURECORECR	249	-	GTAC	PLACE
CURECORECR	262	-	GTAC	PLACE
CURECORECR	476	-	GTAC	PLACE
DOFCOREZM	85	+	AAAG	PLACE
DOFCOREZM	104	+	AAAG	PLACE
DOFCOREZM	515	+	AAAG	PLACE
DOFCOREZM	734	+	AAAG	PLACE
DOFCOREZM	1017	+	AAAG	PLACE
DOFCOREZM	1152	+	AAAG	PLACE
DOFCOREZM	1194	+	AAAG	PLACE
DOFCOREZM	1253	+	AAAG	PLACE
DOFCOREZM	1294	+	AAAG	PLACE
DOFCOREZM	1244	-	AAAG	PLACE
DOFCOREZM	1285	-	AAAG	PLACE
DPBFCOREDCDC3	1160	+	ACACNNG	PLACE
DPBFCOREDCDC3	1259	+	ACACNNG	PLACE
DPBFCOREDCDC3	251	-	ACACNNG	PLACE
DPBFCOREDCDC3	1176	-	ACACNNG	PLACE
DPBFCOREDCDC3	1276	-	ACACNNG	PLACE
E2FCONSENSUS	321	-	WTTSSCSS	PLACE
EBOXBNNAPA	16	+	CANNTG	PLACE
EBOXBNNAPA	456	+	CANNTG	PLACE
EBOXBNNAPA	471	+	CANNTG	PLACE
EBOXBNNAPA	623	+	CANNTG	PLACE
EBOXBNNAPA	812	+	CANNTG	PLACE
EBOXBNNAPA	836	+	CANNTG	PLACE
EBOXBNNAPA	908	+	CANNTG	PLACE

EBOXBNNAPA		1060	+	CANNTG	PLACE
EBOXBNNAPA		1236	+	CANNTG	PLACE
EBOXBNNAPA		16	-	CANNTG	PLACE
EBOXBNNAPA		456	-	CANNTG	PLACE
EBOXBNNAPA		471	-	CANNTG	PLACE
EBOXBNNAPA		623	-	CANNTG	PLACE
EBOXBNNAPA		812	-	CANNTG	PLACE
EBOXBNNAPA		836	-	CANNTG	PLACE
EBOXBNNAPA		908	-	CANNTG	PLACE
EBOXBNNAPA		1060	-	CANNTG	PLACE
EBOXBNNAPA		1236	-	CANNTG	PLACE
EECCRCAH1		319	-	GANTTNC	PLACE
EECCRCAH1		421	-	GANTTNC	PLACE
Gap-box	Arabidopsis	1055	+	CAAATGAA(A/G)	PlantCARE
	thaliana			А	
GATABOX		400	+	GATA	PLACE
GATABOX		639	+	GATA	PLACE
GATABOX		659	+	GATA	PLACE
GATABOX		883	+	GATA	PLACE
GATABOX		978	+	GATA	PLACE
GATABOX		233	-	GATA	PLACE
GATABOX		573	-	GATA	PLACE
GATABOX		959	-	GATA	PLACE
GATABOX		1021	-	GATA	PLACE
G-Box	Pisum sativum	873	+	CACGTT	PlantCARE
G-box	Zea mays	873	+	CACGTT	PlantCARE
G-Box	Pisum sativum	455	-	CACGTG	PlantCARE
G-box	Arabidopsis	455	-	CACGTG	PlantCARE
	thaliana				
GCCCORE		324	-	GCCGCC	PLACE
GT1CONSENSUS		79	+	GRWAAW	PLACE
GT1CONSENSUS		976	+	GRWAAW	PLACE
GT1CONSENSUS		1129	+	GRWAAW	PLACE
GT1CONSENSUS		1137	+	GRWAAW	PLACE
GT1CONSENSUS		398	+	GRWAAW	PLACE
GT1CONSENSUS		707	+	GRWAAW	PLACE

GT1CONSENSUS		1168	+	GRWAAW	PLACE
GT1CONSENSUS		66	-	GRWAAW	PLACE
GT1CONSENSUS		346	-	GRWAAW	PLACE
GT1CONSENSUS		1241	-	GRWAAW	PLACE
GT1CORE		826	-	GGTTAA	PLACE
GT1GMSCAM4		707	+	GAAAAA	PLACE
GT1GMSCAM4		1168	+	GAAAAA	PLACE
GT1-motif	Avena sativa	825	-	GGTTAAT	PlantCARE
GTGANTG10		336	+	GTGA	PLACE
GTGANTG10		470	+	GTGA	PLACE
GTGANTG10		545	+	GTGA	PLACE
GTGANTG10		731	+	GTGA	PLACE
GTGANTG10		211	-	GTGA	PLACE
GTGANTG10		459	-	GTGA	PLACE
GTGANTG10		507	-	GTGA	PLACE
GTGANTG10		877	-	GTGA	PLACE
IBOX		1021	-	GATAAG	PLACE
IBOXCORE		399	+	GATAA	PLACE
IBOXCORE		977	+	GATAA	PLACE
IBOXCORE		1021	-	GATAA	PLACE
IBOXCORENT		1021	-	GATAAGR	PLACE
INRNTPSADB		780	-	YTCANTYY	PLACE
INRNTPSADB		730	-	YTCANTYY	PLACE
INTRONLOWER		12	+	TGCAGG	PLACE
INTRONLOWER		36	-	TGCAGG	PLACE
LECPLEACS2		1081	-	TAAAATAT	PLACE
MBS	Arabidopsis	622	+	CAACTG	PlantCARE
	thaliana				
MNF1	Zea mays	627	-	GTGCCC(A/T)(A/	PlantCARE
				T)	
MYB1AT		351	+	WAACCA	PLACE
MYB2CONSENSUSAT		623	+	YAACKG	PLACE
MYBCORE		623	-	CNGTTR	PLACE
MYBCORE		825	-	CNGTTR	PLACE
MYBST1		400	+	GGATA	PLACE
MYBST1		572	-	GGATA	PLACE

MYCATERD1		16	+	CATGTG	PLACE
MYCATERD1		471	+	CATGTG	PLACE
MYCATRD22		16	-	CACATG	PLACE
MYCATRD22		471	-	CACATG	PLACE
MYCCONSENSUSAT		16	+	CANNTG	PLACE
MYCCONSENSUSAT		456	+	CANNTG	PLACE
MYCCONSENSUSAT		471	+	CANNTG	PLACE
MYCCONSENSUSAT		623	+	CANNTG	PLACE
MYCCONSENSUSAT		812	+	CANNTG	PLACE
MYCCONSENSUSAT		836	+	CANNTG	PLACE
MYCCONSENSUSAT		908	+	CANNTG	PLACE
MYCCONSENSUSAT		1060	+	CANNTG	PLACE
MYCCONSENSUSAT		1236	+	CANNTG	PLACE
MYCCONSENSUSAT		16	-	CANNTG	PLACE
MYCCONSENSUSAT		456	-	CANNTG	PLACE
MYCCONSENSUSAT		471	-	CANNTG	PLACE
MYCCONSENSUSAT		623	-	CANNTG	PLACE
MYCCONSENSUSAT		812	-	CANNTG	PLACE
MYCCONSENSUSAT		836	-	CANNTG	PLACE
MYCCONSENSUSAT		908	-	CANNTG	PLACE
MYCCONSENSUSAT		1060	-	CANNTG	PLACE
MYCCONSENSUSAT		1236	-	CANNTG	PLACE
NODCON1GM		102	+	AAAGAT	PLACE
NODCON2GM		1286	+	CTCTT	PLACE
NODCON2GM		1192	-	CTCTT	PLACE
NODCON2GM		1251	-	CTCTT	PLACE
NTBBF1ARROLB		733	-	ACTTTA	PLACE
OSE1ROOTNODULE		102	+	AAAGAT	PLACE
OSE2ROOTNODULE		1286	+	СТСТТ	PLACE
OSE2ROOTNODULE		1192	-	СТСТТ	PLACE
OSE2ROOTNODULE		1251	-	CTCTT	PLACE
PALBOXAPC		304	-	CCGTCC	PLACE
P-box	Oryza sativa	83	-	CCTTTTG	PlantCARE
POLASIG1		1186	-	AATAAA	PLACE
POLASIG1		1229	-	AATAAA	PLACE

POLASIG2	429	-	AATTAAA	PLACE
POLASIG2	1269	-	AATTAAA	PLACE
POLLEN1LELAT52	709	+	AGAAA	PLACE
PREATPRODH	779	-	ACTCAT	PLACE
PYRIMIDINEBOXOSR	84	-	CCTTTT	PLACE
AMY1A				
RAV1AAT	20	+	CAACA	PLACE
RAV1AAT	142	+	CAACA	PLACE
RAV1AAT	684	+	CAACA	PLACE
REALPHALGLHCB21	532	+	AACCAA	PLACE
RGATAOS	228	-	CAGAAGATA	PLACE
RHERPATEXPA7	457	+	KCACGW	PLACE
RHERPATEXPA7	875	+	KCACGW	PLACE
RHERPATEXPA7	455	-	KCACGW	PLACE
ROOTMOTIFTAPOX1	637	+	ATATT	PLACE
ROOTMOTIFTAPOX1	930	+	ATATT	PLACE
ROOTMOTIFTAPOX1	1084	+	ATATT	PLACE
ROOTMOTIFTAPOX1	1113	+	ATATT	PLACE
ROOTMOTIFTAPOX1	77	-	ATATT	PLACE
ROOTMOTIFTAPOX1	854	-	ATATT	PLACE
ROOTMOTIFTAPOX1	892	-	ATATT	PLACE
ROOTMOTIFTAPOX1	931	-	ATATT	PLACE
ROOTMOTIFTAPOX1	1085	-	ATATT	PLACE
ROOTMOTIFTAPOX1	1114	-	ATATT	PLACE
RYREPEATBNNAPA	215	+	CATGCA	PLACE
RYREPEATBNNAPA	222	+	CATGCA	PLACE
RYREPEATBNNAPA	378	+	CATGCA	PLACE
RYREPEATBNNAPA	224	-	CATGCA	PLACE
RYREPEATGMGY2	214	+	CATGCAT	PLACE
RYREPEATGMGY2	221	+	CATGCAT	PLACE
RYREPEATGMGY2	377	+	CATGCAT	PLACE
RYREPEATLEGUMIN	214	+	CATGCAY	PLACE
BOX				
RYREPEATLEGUMIN	221	+	CATGCAY	PLACE
BOX				
RYREPEATLEGUMIN	377	+	CATGCAY	PLACE

BOX					
S1FBOXSORPS1L21		70	-	ATGGTA	PLACE
SEBFCONSSTPR10A		410	+	YTGTCWC	PLACE
SEF4MOTIFGM7S		783	-	RTTTTTR	PLACE
SEF4MOTIFGM7S		603	-	RTTTTTR	PLACE
ПАТСҮТС		300	-	TGGGCY	PLACE
ПАТСҮТС		382	-	TGGGCY	PLACE
Skn-1_motif	Oryza sativa	575	+	GTCAT	PlantCARE
SORLIP1AT		327	-	GCCAC	PLACE
SORLIP1AT		801	-	GCCAC	PLACE
SORLIP2AT		301	-	GGGCC	PLACE
SORLREP3AT		738	+	TGTATATAT	PLACE
SP8BFIBSP8BIB		767	-	TACTATT	PLACE
SREATMSD		399	-	TTATCC	PLACE
SURE1STPAT21		708	+	AATAGAAAA	PLACE
SURECOREATSULTR1		192	-	GAGAC	PLACE
1					
SURECOREATSULTR1		237	-	GAGAC	PLACE
1					
SURECOREATSULTR1		410	-	GAGAC	PLACE
1					
SURECOREATSULTR1		617	-	GAGAC	PLACE
1					
SURECOREATSULTR1		988	-	GAGAC	PLACE
1					
T/GBOXATPIN2		874	-	AACGTG	PLACE
TAAAGSTKST1		515	+	TAAAG	PLACE
TAAAGSTKST1		734	+	TAAAG	PLACE
TAAAGSTKST1		1243	-	TAAAG	PLACE
TATA-box	Glycine max	77	+	ΤΑΑΤΑ	PlantCARE
TATA-box	Arabidopsis	161	+	TATAA	PlantCARE
	thaliana				
TATA-box	Glycine max	276	+	ΤΑΑΤΑ	PlantCARE
TATA-box	Daucus carota	671	+	ccTATAAATT	PlantCARE
TATA-box	Arabidopsis	732	+	taTATAAAgg	PlantCARE
	thaliana				

TATA-box	Lycopersicon	733	+	taTATAAAg	PlantCARE
	esculentum				
TATA-box	Arabidopsis	734	+	ТАТААА	PlantCARE
	thaliana				
TATA-box	Arabidopsis	735	+	ТАТАТАА	PlantCARE
	thaliana				
TATA-box	Glycine max	769	+	ТААТА	PlantCARE
TATA-box	Arabidopsis	783	+	ccTATAAAaa	PlantCARE
	thaliana				
TATA-box	Helianthus annuus	850	+	TATACA	PlantCARE
TATA-box	Glycine max	854	+	ТААТА	PlantCARE
TATA-box	Arabidopsis	889	+	TATAA	PlantCARE
	thaliana				
TATA-box	Glycine max	931	+	ТААТА	PlantCARE
TATA-box	Lycopersicon	971	+	TTTTA	PlantCARE
	esculentum				
TATA-box	Lycopersicon	1033	+	TTTTA	PlantCARE
	esculentum				
TATA-box	Lycopersicon	1047	+	TTTTA	PlantCARE
	esculentum				
TATA-box	Lycopersicon	1080	+	TTTTA	PlantCARE
	esculentum				
TATA-box	Glycine max	1114	+	ΤΑΑΤΑ	PlantCARE
TATA-box	Lycopersicon	1225	+	TTTTA	PlantCARE
	esculentum				
TATA-box	Lycopersicon	1230	+	TTTTA	PlantCARE
	esculentum				
TATA-box	Lycopersicon	1271	+	TTTTA	PlantCARE
	esculentum				
TATA-box	Arabidopsis	73	-	TATA	PlantCARE
	thaliana				
TATA-box	Brassica napus	74	-	ATATAT	PlantCARE
TATA-box	Arabidopsis	75	-	TATA	PlantCARE
	thaliana				
TATA-box	Arabidopsis	162	-	ΤΑΤΑ	PlantCARE
	thaliana				

TATA-box	Arabidopsis	736	-	ΤΑΤΑΤΑΤΑ	PlantCARE
	thaliana				
TATA-box	Brassica napus	737	-	ATATAT	PlantCARE
TATA-box	Arabidopsis	738	-	TATA	PlantCARE
	thaliana				
TATA-box	Arabidopsis	740	-	TATA	PlantCARE
	thaliana				
TATA-box	Oryza sativa	772	-	TACAAAA	PlantCARE
TATA-box	Lycopersicon	784	-	TTTTA	PlantCARE
	esculentum				
TATA-box	Arabidopsis	852	-	TATA	PlantCARE
	thaliana				
TATA-box	Brassica napus	888	-	ATTATA	PlantCARE
TATA-box	Arabidopsis	890	-	TATA	PlantCARE
	thaliana				
TATA-box	Arabidopsis	1041	-	TATA	PlantCARE
	thaliana				
TATA-box	Glycine max	1111	-	TAATA	PlantCARE
TATA-box	Glycine max	1117	-	TAATA	PlantCARE
TATABOX3		1116	+	TATTAAT	PLACE
TATABOX3		932	-	TATTAAT	PLACE
ТАТАВОХЗ		1115	-	TATTAAT	PLACE
TATABOX4		736	+	TATATAA	PLACE
TATABOX5		1185	+	TTATTT	PLACE
TATABOX5		1228	+	TTATTT	PLACE
TATAPVTRNALEU		735	-	ΤΤΤΑΤΑΤΑ	PLACE
TC-rich repeats	Nicotiana tabacum	648	-	ATTTTCTTCA	PlantCARE
TGACG-motif	Hordeum vulgare	44	+	TGACG	PlantCARE
TGACG-motif	Hordeum vulgare	22	-	TGACG	PlantCARE
TRANSINITDICOTS		444	+	AMNAUGGC	PLACE
TRANSINITMONOCO		444	+	RMNAUGGC	PLACE
TS					
Unnamed4	Petroselinum	26	+	CTCC	PlantCARE
	hortense				
Unnamed4	Petroselinum	1075	+	CTCC	PlantCARE
	hortense				

Unnamed4	Petroselinum	419	+	CTCC	PlantCARE
	hortense				
Unnamed4	Petroselinum	1246	+	CTCC	PlantCARE
	hortense				
Unnamed4	Petroselinum	315	+	CTCC	PlantCARE
	hortense				
Unnamed4	Petroselinum	540	+	CTCC	PlantCARE
	hortense				
WBBOXPCWRKY1		201	+	TTTGACY	PLACE
WBOXATNPR1		202	+	TTGAC	PLACE
WBOXATNPR1		1001	+	TTGAC	PLACE
WBOXATNPR1		1264	+	TTGAC	PLACE
WBOXATNPR1		22	-	TTGAC	PLACE
WBOXHVISO1		201	+	TGACT	PLACE
WBOXHVISO1		543	+	TGACT	PLACE
WBOXNTERF3		201	+	TGACY	PLACE
WBOXNTERF3		543	+	TGACY	PLACE
WRKY71OS		46	+	TGAC	PLACE
WRKY71OS		202	+	TGAC	PLACE
WRKY71OS		544	+	TGAC	PLACE
WRKY71OS		1001	+	TGAC	PLACE
WRKY71OS		1264	+	TGAC	PLACE
WRKY71OS		23	-	TGAC	PLACE
WRKY710S		577	-	TGAC	PLACE
WUN-motif	Brassica oleracea	1088	-	TCATTACGAA	PlantCARE

Acknowledgements

The technical assistance and scientific advice of the following people is gratefully acknowledged:

Annett Richter	Marko Walkowiak
Axel Mithöfer	Matthias Erb
Heiko Vogel	Matthias Schöttner
Irmgard Seidl-Adams	Sandra Krause
Jette Schimmel	Sebastian Müller
Jonathan Gershenzon	Susanne Preiss
Jörg Degenhardt	Tobias Köllner
Kathrin Thomasch	Ulschan Scheler
Kurt Stampniok	

I want to thank all my colleagues for the good working atmosphere and the not scientific chats exhilarating the everyday lab-life. Special thanks go to my friends and family for their support and patience.

Contributions

Kurt Stampniok supported this work by contributing the Arabidopsis mutants *tps10* 1.5 kb::GUS, 800 bp::GUS, 500 bp::GUS, 200 bp::GUS; *tps23* 1.8 kb::GUS, 1.2 kb::Gus, and 600 bp::GUS, respectively. This work was done for his Diploma-thesis under my supervisions and instructions. Ulschan Scheler obtained the Arabidopsis mutants tps23 400 bp::GUS and 200 bp::GUS and did GUS-staining and –analysis during her Bachelor under my supervision and instructions.

Publications

- Erb, M., C. Lenk, et al. (2009). "The underestimated role of roots in defense against leaf attackers." <u>Trends in Plant Science</u> **14**(12): 653-659.
- Köllner, T. G., M. Held, et al. (2008). "A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties." <u>Plant Cell</u> **20**(2): 482-494.
- Köllner, T. G., C. Lenk, et al. (2010). "Herbivore-Induced SABATH Methyltransferases of Maize That Methylate Anthranilic Acid Using S-Adenosyl-L-Methionine." <u>Plant Physiology</u> 153(4): 1795-1807.
- Lenk, C., Köllner, T.G., et al. (2011). "Two enzymes responsible for the formation of herbivore-induced volatiles of maize (*Zea mays* L.), the methyltransferase AAMT1 and the terpene synthase TPS23, are regulated by a similar signal transduction pathway." <u>Entomologia in press</u>

Posters/Talks

Köllner, T.G., Lenk, C. et al. (2006). "A Maize (*E*)-ß-Caryophyllene Synthase Takes Part in Two Plant Defense Responses Which Are Directed Against Herbivores Above or Below Ground. " <u>MPI Fachbeirat</u>

Lenk, C., Köllner, T.G., et al. (2009). Identification of transcription factors involved in herbivore-induced terpene biosynthesis in leaves and roots of maize. <u>Terpnet</u> <u>Meeting</u>

Lenk, C. (2009). "The regulation of herbivore-induced terpene biosynthesis in maize." <u>SFB Meeting (Talk)</u>

Lenk, C., Köllner, T.G., et al. (2010). "Mechanical damage and insect elicitors induce maize volatiles by separate pathways" <u>Gordon Conference: Plant molecular biology</u>

Lenk, C. (2010). "The role of different stimuli for the induction of terpene biosynthesis." <u>SFB Meeting (Talk)</u>

Lenk, C., Assefa, C., et al. (2011). "Identification of promoter regulatory elements of *tps10* and *tps23* from *Zea mays* in *Arabidopsis thaliana.*" Maize Genetic Conference

Lenk, C. (2011). "Functional analysis of herbivore-induced promoters." <u>SFB Meeting</u> (Talk)

Lebenslauf

Persönliche Daten

Name	Claudia Lenk
Adresse	Große Brunnenstraße 22, 06114 Halle
Geburtsdaten	17.05.1982 in Gera
e-mail-Adresse	claudia.lenk@pharmazie.uni-halle.de
Familienstand	ledig
Staatsangehörigkeit	deutsch

Schulische Ausbildung/Studium

09/1988-07/1990	32. Polytechnische Oberschule Gera
09/1990-07/1991	Werner Seelenbinder Oberschule Gera
09/1991-07/1992	14. Grundschule Gera
09/1992-07/1998	Karl-Theodor-Liebe Gymnasium, Gera
08/1998-05/1999	Placer Highschool, Auburn, USA
09/1999-06/2001	Karl-Theodor-Liebe Gymnasium, Gera
	Abschluss: Abitur
10/2001-03/2007	Studium der Biologie an der Friedrich Schiller Universität,
	Jena
	Diplomarbeit zum Thema: Charakterisierung und
	Lokalisierung der ß-Caryophyllensynthase in Mais
	Abschluss: Diplom Biologe

Berufliche Tätigkeiten

03/2004-05/2005	studentische Hilfskraft bei Analytik Jena, Jena
06/2005-06/2006	studentische Hilfskraft am Max Planck Institut für chemische
	Ökologie, Jena
04/2007-05/2008	Stipendiat am Max Planck Institut für chemische Ökologie,
	Jena
06/2008-	wissenschaftliche Mitarbeiterin am Institut für Pharmazie,
	Martin-Luther-Universität, Halle
	Dissertation zum Thema: Identification of regulatory factors in
	the signal transduction pathway in herbivore-induced maize
Sprachkenntnisse	Englisch: fließend in Wort und Schrift
-	Japanisch, Russisch: Grundkenntnisse

Halle, den 20.02.2012

Selbstständigkeitserklärung

Hiermit versichere ich, dass diese Arbeit in gleicher oder ähnlicher Form bisher keiner anderen Prüfbehörde zur Erlangung des Doktorgrades vorgelegt wurde. Ferner erkläre ich, gemäß der Promotionsordnung der Naturwissenschaftlichen Fakultät I – Biowissenschaften der Martin-Luther-Universität, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen sind, habe ich als solche kenntlich gemacht.

Halle, den 20.02.2012

Claudia Lenk