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1. Introduction

“...and the army ants - they leave nothing but the bones.”

Tom Waits, “Earth died screaming”



Introduction

Molecular ecology of social insects

Population genetics, the study of allele frequency distribution and change in time and space, provides
the fundamental theoretical tools to understand evolutionary and ecological processes in natural
poplations. Since Sewall Wright's and Ronald A Fisher’s pioneering work (e.g. Fisher 1930, 1941,
1958; Wright 1921a, b, 1931, 1940, 1943, 1946, 1949, 1965), genetic variability in populations is
broken down and partitioned into subunits to reflect population sub-structuring, assuming ideal
populations with panmictic mating structure and infinite size. These conditions are however rarely met
in natural populations. It is the social structure, mating biology and dispersal behaviour, which shape
and influence the genetic population structure and ultimately the evolutionary potential of a given
species. Thus behavioural ecology complements population genetics, since only if we understand
social biology and behaviour we are able to correctly interpret any given genetic pattern found on the
population level. With the rise of advance DNA analytical tools, Wright's theories could be tested at an
ever increasing detail, and it is the combination of these tools with behavioural ecology and population
genetic theory that eventually established the field of molecular ecology (Hadrys et al. 1992;
Purugganan & Gibson 2003).

Whenever sociality occurs in a given species it is an essential element to population structure. It adds
an additional level of complexity. With increasing coherence of the social groups, the society becomes
an extra level of selection in addition to the individual (Pamilo et al. 1997; Ross 2001). To study the
relevance of sociality on natural selection, social insects provide a unique test system in the animal
kingdom because they evolved the most extreme form of sociality, with thousands of individuals living
together in colonies. They are characterized by reproductive division of labor, where reproduction is
monopolized by few, and in many cases even a single individual, the queen. This highly derived
eusocial lifestyle and the division of labor has enabled social insects to dominate nearly all terrestrial
eco-systems with the only exception being the Polar Regions (Wilson & Hélldobler 2005). One third of
the total biomass in the tropical rainforest stems from social hymenoptera. Besides their ecological
dominance, the eusocial lifestyle of ants, bees, and wasps result in population genetic structures
which deviate fundamentally from the classical population structure of non-social species. The
absolute number of individuals is rather meaningless from a population genetic point of view. The
number of individuals in a population of social hymenoptera can be literally legion, the population
effective size is however ultimately dependent on the number of colonies, reducing overall genetic
variability (Pamilo & Crozier 1997; Chapman & Bourke 2001). Thus one might say that the price of
eusociality is a permanent genetic bottleneck, through which populations of eusocial hymenoptera
have to pass generation after generation. The bottleneck is determined by the number of queens
produced and the males they are mated with. The effective population size and thus overall genetic
variability is addtionally restricted by male haploidy, which further reduces the genetic effective size
compared with a dilplo-diploid population structure.

The eusocial hymenoptera have evolved a wide array of mating systems and different modes of
colony foundation (Wilson 1971). The most ancestral type is considered to be the independent colony
foundation by a single singly mated queen often combined with balanced sex ratio of the males and
queens, a system which is found in many ant species, wasps and the bumblebees. On the other end

of the evolutionary scale and thus being highly derived, there are the completely dependent colony



Introduction

foundations of often multiply mated single queens and highly skewed sex ratios, a combination which
can be found in some ant species, the stingless bees and the honeybees (Bourke & Franks 1995;
Bourke 1999). These different mating and dispersal systems directly feed back to the population
structure, facilitating or hindering gene flow, promoting outbreeding or leading to fragmented

populations with increased genetic drift and loss off genetic diversity.

Complementary sex determination

While the males in hymenoptera are haploid and females are diploid (Heimpel & de Boer 2008), male
haploidy itself is not the causative mechanism for the development of a given individual into a male or
female. The underlying mechanism for sex determination in many hymenoptera is the so called
complementary sex determination (csd) (Whiting 1943; Beye et al. 2003). In the csd system all
individuals which carry only one allele of the single sex determining locus develop into males whereas
those that carry two alleles develop into females. As a consequence all haploid individuals are males,
since they carry only one allele at any given locus. However, also diploid individuals which happen to
be homozygous at the sex determining locus will develop into males. In the case of the eusocial
hymenoptera such diploid males are often infertile or unviable, constituting a considerable genetic
load, since such males severely reduce the colony fitness. The number and frequency of sex alleles in
a given population determines the frequency of diploid drones. At equilibrium, the sex alleles in a
population must have equal frequencies due to the strong frequency dependant selection (Crozier &
Pamilo 1996). Any rare sex allele will be strongly favoured by selection because it will rarely become
homozygous and not produce any diploid drone offspring for any female carrying this rare allele. In
contrast frequent alleles will be selected against, because they increase the chances of diploid drone

offspring, thus reducing overall fitness of any individual carrying it.

Conservation genetics and the extinction vortex

While the occurrence of diploid drones was already known for decades from beekeeping, the potential
role of the csd system for conservation genetics was only recently discussed in more detail. Zayed
(2004) pointed out that that the csd system and the occurrence of diploid males could further reduce
the effective population size of hymenoptera even more than based on haplo/diploidy alone. This
might lead to a so called extinction vortex (Zayed & Packer 2005) in which small or declining
populations would be trapped and dragged to inevitable extinction, once they crossed a certain
minimum threshold of allelic diversity at the csd locus. Small or fragmented populations in eusocial
hymenoptera are thus expected to be especially prone to extinction since they combine the negative
aspects of the the csd system with their eusocial lifestyle, which a priori reduces effective population
size.

Despite these potential problems resulting from the eusocial lifestyle and the csd system, eusocial
hymenoptera still merrily roam all ecosystems and prosper, indicating that they evolved effective
behavioural mechanisms to counteract these evolutionary constraints. Also a simulation study by Hein
et al. (2009) shows that the diploid male extinction vortex might be easily avoided by adjusting critical
life history strategies of a given species. Studying the mating biology of eusocial hymenopteran
species in its many facets thus helps understand how sexual selection is shaping these life history

adjustments in different species.
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Tropical eusocial insects

Due to their overwhelming biodiversity and abundance of plant and animal life, the tropics have been
the focus of biologists for many centuries (e.g. Humboldt & Bonpland 1860; Wallace 1891). Within this
tremendous diversity of animal life, the eusocial insects can claim a dominant role in all tropical
terrestrial ecosystems and their sheer biomass often exceed those of mammals and other animal
groups in Tropical rainforests by far (Wilson 1987). But it is not only the biomass but also the species
diversity which is highest in tropical regions for eusocial hymenoptera.

This Tropical diversity covers all levels of eusociality from quite basic forms as found in bumblebees or
Polistes wasps, up to highly derived species in the honeybees, stingless bees and ants. Nevertheless,
and in stark contrast to this high biodiversity, our knowledge on tropical species is incipient at best.
Yet, the huge biological diversity in tropical regions provides an ideal setting to study the adaptations
and evolutionary responses across a broad range of species, allowing a comparative approach
between the different phyla of eusocial hymenoptera.

Tropical eusocial hymenoptera show a large diversity in life history strategies. Their colonies can
reach enormous sizes with up to several million individuals like the African army ant Dorylus molestus
or the Neotropical Leafcutter ant Atta sexdens (Holldobler & Wilson 1990). Even taxonomic groups like
the eusocial wasps and bumblebees, where temperate species form relatively small annual colonies,
can have considerably larger, perennial colonies in the Tropics (Wilson 1971; Michener 1974).
Important behavioural traits which directly influence genetic colony structure, like the number queens
in a colony and the number of males they are mated to, show their highest variation in tropical regions
(Roubik 1989). In fact most of the polyandrous species can be found in the Tropics, together with the
most extreme examples of polyandry: the army ants and honeybees. Also many highly derived
symbioses between eusocial hymenoptera and other groups of organisms have evolved there, like the
ant-plant symbiosis between Atzteca ants and Cecropia trees in the Neotropics (Huxley & Cutler
1991).

Tropical eusocial hymenoptera are therefore the study object of the key publications united in this
thesis. This focus on the Tropics resulted from more than three years of field work in tropical Mexico
and Borneo as well as subtropical South Africa, all major biodiversity hot-spots of the world. This
thesis will focus on four major genera: the honeybees, the stingless bees, the bumble bees and army

ants.

The Honeybees

The region of origin of the honeybees (genus Apis), are the South-East Asian tropical regions, where
also the vast majority of Apis species occur. Nine species of honeybees have been described so far
and only Apis mellifera, the western honeybee has a worldwide distribution today, due to its use in
apiculture (Ruttner 1988). All honeybee species are highly eusocial and can be considered as a high-
end product of the evolution of sociality. Honeybee colonies are large and perennial, reproduce via
colony fission and have a single, multiply mated queen. The polyandry of the honeybee queens is
outstanding with queens of the giant Asian honeybee Apis dorsata mating with up to 100 males on just
a few mating flights at the beginning of their lives (Wattanachaiyingcharoen et al. 2003). This “curious
promiscuity” of the honeybee queens, as Tarpy & Page (2001) put it, has attracted the attention of
many researchers and today several mutually non-exclusive hypotheses have been formulated to
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explain this rather unusual mating behaviour. Most of them are based on the increased within genetic
variability resulting from the queens polyandry, which is thought to lead to an increased parasite
resistance or increased efficiency of division of labour (Crozier & Fjerdingstad 2001). The problem of
all “genetic variance” hypotheses for the evolution of extreme polyandry is that they fail to explain the
evolution of polyandry with more than ten matings. This is because the benefit, in terms of increased
within colony genetic variability, for each additional mating is rapidly decreasing above ten, while the
costs of mating (time, energy, predation risk and diseases) increase constantly for each mating (Kraus
& Moritz 2010). An alternative explanation for the evolution of polyandry is the sperm limitation
hypothesis (Cole 1983; Kraus et al. 2004), which states that queens with large colonies need to
ensure mating with a sufficiently high number of males to secure a lifelong capacity of producing
fertilized eggs. However the sperm limitation hypothesis is often rejected since the sperm of a single or
just several males should be sufficient (Tarpy & Page 2001).

Another feature of mating biology which is shared by all honeybee species is the formation of so called
drone congregation areas (DCA), where hundreds of drones gather in mid-air to wait for virgin queens.
Also mating itself takes place in mid-air, and arriving queens are immediately followed by a swarm of
drones trying to mate with her (Ruttner & Ruttner 1972; Koeniger & Koeniger 2000). This peculiar form
of mating behaviour with drones from many colonies of the population gathering at a particular place

for mating is thought to have evolved to achieve a highly promiscuous, almost panmictic population

structure probably as a mechanism to reduce the risk of inbreeding and the production of diploid
drones (Baudry et al. 1998).

Figure 1.1 Africanized Honey-
bees (A. mellifera) on brood comb.
These highly invasive honeybees
have colonized the tropical and
subtropical Americas within just a
few decades starting from the
initial introduction of just 26 hives
of African A. m. scutellata to Brasil
in 1957 (Kerr 1967).

Besides behavioural studies also the phylogeny of honeybees and especially the Western honeybee
A. mellifera has been a popular research field for decades. Traditionally such studies have been
conducted based on morphological characteristics splitting up A. mellifera into dozens of subspecies
over its large distribution area (Ruttner 1988). With the development of molecular markers, as a
complement to the already existing extensive studies on morphological variation, this research field
gained an additional boost. Most studies were and are still being conducted based on mtDNA
markers, since these are often sufficient to investigate the large scale phylogenetic relationships
between the different evolutionary lineages of A. mellifera (e.g. Garnery et al. 1992; de la Rua et al
1998). However to disentangle more subtle population genetic aspects and to monitor nuclear gene

flow, the development and usage of microsatellites became necessary (Franck et al. 2001). More
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recently with the availability of the honeybee genome, also studies implementing a large number of
nuclear markers became feasible and large scale studies also employed SNPs to unravel the
evolutionary history and worldwide population structure of the honeybee (Whitfield et al. 2006).
Microsatellite analyses proved especially useful in the understanding of the so called Africanization of
the honeybees in the Americas (Figure 1.1). The Africanization process is a very successful biological
invasion, which started in 1957 in Brasil with the introduction of 26 African queens of the subspecies
A. m. scutellata. The accidental release of theses colonies then triggered hybridisation and spread of
the African honeybees over the Americas (Kerr 1967).

The Africanization process is still ongoing and seems only to be stopped by temperate climate
conditions. The population genetic processes driving the Africanisation of the honeybees in the
Americas is a quite complex, because nearly all European mitotypes get replaced by African ones,
whereas on the nuclear level African and European genes seem to be at an equilibrium (Scheider et
al. 2004).

The Stingless bees

The Stingless bees (Tribe Meliponini) are the largest group of eusocial bees with a worldwide
distribution and several hundred species described so far (Rasmussen & Cameron 2010). Their
distribution is mainly tropical, but also reaches into southern subtropical regions in Latin America and
Africa. As their name implies they have lost the capacity to use their stinging apparatus for defensive
behaviour. Nevertheless, they have evolved several other sophisticated defensive mechanisms
ranging from fortress-like constructed nests to biting behaviour and secretion of deterrent gland
substances. Like the honeybees they are highly eusocial and live in permanent, perennial colonies,
composed of up to several thousand individuals and their degree of sociality is comparable to that of
the honeybees (Michener 1974; Wille 1983; Roubik 1989).

In relation to their high number of species, the stingless bees are much less studied than the
honeybee, probably due to their tropical distribution, which makes them less accessible for molecular
ecological studies. Concerning their economic importance, stingless bees have been the only source
of honey in pre-Columbian times in Latin America and were cultivated to a large extend by many pre-
Columbian cultures, like e.g. the Mayans in Central America. In fact one of the four written Mayan
books which survived destruction by the Spanish conquistadores and priests is the Madrid Codex,
which also includes an extensive description of Mayan meliponiculture with Melipona beecheii (Lopez-
Maldonado 2010). Stingless bees have been replaced as the prime source for honey by the Western
honeybee Apis mellifera which has been introduced by the European settlers to the Americas.
However, today stingless bees are still kept in Latin America even though on a much smaller scale
and mostly for local markets, for keeping up cultural traditions or conservation reasons. More recently
stingless bees are also being used and tested as pollinators for commercially grown crops like
Rambutan (Nephelium lappaceum) (Slaa et al. 2006). Even though they lack the spectacular dance
language of the honeybees, stingless bees have evolved others means of precise food source
communication often involving pheromone marking or piloting (Biesmeijer & Slaa 2004; Nieh 2004).
Also their nest architecture (Figure 1.2) is complex and shows a remarkably diversity across species
ranging from cluster type nests, which appear rather irregular in their arrangement of brood cells, up to

nest with neatly arranged horizontal combs in several layers (Wille 1983; Roubik 2006).
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Figure 1.2 Melipona beecheii nest
The photo shows an opened nest
of M. beecheii, exposing the
horizontal brood combs and honey
pots typical for many stingless bee
species. The nest itself is
constructed inside a hollow tree
trunk and here opened for
beekeeping purposes.

Stingless bees have queens that are often single mated or only exhibit a low degree of polyandry (up
to 6 matings) depending on species and environmental context (Paxton et al. 1999a; Palmer et al.
2002). New colonies are founded by colony fission by a daughter queen and her sister workers in
close proximity to the mother nest, often being supported by the mother colony for some time. Thus
the dispersal capacity and maternal gene flow are limited to the distance between mother and
daughter colony (in contrast honeybee colonies can have large range migratory swarms). The low
mobility results from the permanent physogastry of the stingless bee queens, which renders them
unable to fly once they have started egg laying (Wille 1983).

One especially interesting behavioural feature of many stingless bee species is the formation of drone
aggregations, where hundreds of drones gather to wait for arriving virgin queens to mate with. In
contrast to the honeybees, these drone aggregation are not airborne, but substrate based, often
directly outside of conspecific colonies (Engels & Engels 1984). Similar to the honeybees the prime
hypothesis for the formation of drone aggregations in stingless bees is once again inbreeding
avoidance, since they are also affected by the csd system and the production of diploid drones
(Paxton 2002; Cameron et al. 2004). However empirical studies on this behavioural phenomenon are
scarce and the proximate and ultimate mechanisms involved in the formation of drone aggregations
are not well studied yet. The publications on stingless bees included in this Habilitation thesis, are
among the few studies which address the ultimate causes for this lek-like mating system of stingless

bees.

The Bumblebees

In contrast to the two previously described groups of eusocial bees, the bumblebees (Bombini) are
primitively eusocial and many aspects of their life history are phylogenetically ancestral to the
honeybees and stingless bees (Goulson 2003a). Another difference to their two sister groups is, that
the evolutionary origin of bumblebees is thought to be in the temperate zone of the Northern
hemisphere, possibly the Mountainous regions of Asia (Willams 1985; Hines 2008), where the

majority of species can be found, rather than in the tropics. Hence, tropical bumblebees constitute the
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exception rather than the rule in the tribe of Bombini and tropical species probably only secondarily
evolved adaptations to tropical regions.

So far the majority of the roughly 250 know bumblebee species seem to have an annual lifecycle with
independent colony foundation and a single, singly mated queen. The size of the colonies ranges from
several hundred individuals (Figure 1.3) down to very small colonies like in Bombus polaris, where

only one clutch of worker eggs is laid by the queen before the production of sexuals as an adaptation

to the short season in arctic regions.

Figure 1.3 Bombus wilmattae nest
The photo shows an opened nest of
the tropical bumblebee B. wilmattae.
The brood and honey pots form the
center of the nest; the involucrum is
constructed out of wax and remains of
the nest of the former inhabitants
(often mice). The nest was excavated
following a 1m long entrance tunnel,
approx. 70cm under-ground.

In contrast to the honeybees and the stingless bees, the males of the bumblebees do not form lek-like
structures but instead establish patrol route in search on young queens (Darwin 1886; Haas 1949). In
some species these patrol territories are even defended and rivalling males are being chased off. Due
to the annual colony cycle and the small colony size, conflicts between the queen and workers over
male production are often well pronounced at the end of the season leading to frequent matricide in
some species (Goulson 2003a).

In the wake of the concern for the worldwide pollinator decline and the usage of bumblebees for
greenhouse crop pollination, bumblebees received considerable increased attention by researchers,
investigating their role in pollination, their population genetics and vulnerability towards extinction and
many other aspects of their biology (Colla et al. 2006; Velthuis & van Doorn 2006; Potts et al. 2010;
Whitehorn et al. 2011). Several studies indicate that bumblebee species are in decline at least in
Europe and North America, presumably due to changes in land use patterns and fragmentation of
populations. Even though several bumblebee species seem to be affected by pollinator decline,
species like B. terrestris are themselves invasive species e.g. in New Zealand or Japan, where they
are considered as a threat to native pollinator species (Buttermore 1997; Nagamitsu & Yamagishi
2009; Williams & Osborne 2009). B. terrestris is also the bumblebee species which is most commonly
used for large scale greenhouse pollination and individuals escaping can either spread diseases and
parasites or establish themselves in the surrounding area, or interbreed with local populations, thus

altering their genetic structure and composition (Colla et al. 2006; Velthuis & van Doorn 2006).
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Compared to the growing literature on temperate bumblebee species, the knowledge on tropical
species is still minute and molecular studies are virtually non-existent. However, since tropical
bumblebees are only secondarily adapted to the tropics, their mating behaviour and colony structure
are of special interest. Comparisons with temperate species have the potential to elucidate the

adaptive significance of polyandry and genetic colony structure.

The Army ants

When it comes to colony complexity, clearly the ants out-compete the bees as a study system. They
can establish colonies orders of magnitude larger and in addition can have much more morphological
variance among the females in the colony including multiple worker castes (Hélldobler & Wilson 1990).
The fourth group included in this thesis is a group of extremely derived ants, namely the army ants of
the Old and New World Tropics. Although army ants represent a completely independent evolutionary
branch within the hymenoptera, army ants, as highly specialized nhomadic predators, have some key
life history features in common with the most advanced eusocial bees - the honeybees. Both genera
are characterized by the extreme polyandry of the queens and the completely dependent colony
foundation (Denny et al. 2004b; Kronauer et al. 2004). As such they offer the unique opportunity to
analyse and understand the evolutionary processes which have led to these convergent adaptations
on the highest level of sociality (Kronauer et al. 2007a; Kronauer 2009).

Army ants are often referred to as the ultimate social predators and their colonies are indeed the top
predators of arthropods and other small animals in the Tropics (Schneirla 1971; Gotwald 1995). The
term army ant in its broader sense refers to all ant species showing the so called army ant adaptive
syndrome, which is a combination of evolutionary interrelated traits: nomadism of the whole colony,
obligatory group predation and highly specialized queens (Gotwald 1995; Kronauer 2009). In its
narrow sense it refers to the “true” army ants of a monophyletic clade compromising the subfamilies of
the Ecitoninae, Dorylninae and Aenictinae (Brady 2003; Kronauer et al. 2007b). The colonies of these
ants do not have a permanent nest site and are regularly on the move. In case of the New World army
ants of the genus Eciton these migrations follow a regular pattern and the temporal nest are
constructed out of the ants themselves. The ants form so called bivouacs out of their bodies, with the
brood and queen at the centre (Figure 1.4).

The permanently wingless queens of the army ants never leave their colonies and also mate there
with males from other colonies. These males are excellent flyers and must be capable of finding
conspecific nest and be granted access to these colonies by the foreign workers. Army ant colonies
are monogynous, reproduce via colony fission and their queens are highly polyandric, mating with 10
to 20 males (Denny et al. 2004b). The only known exception from this pattern is the polygynous
species Neivamyrmex carolinensis, where queens have an effective mating frequency of less than 1.5
(Kronauer et al. 2007c¢). Thus the army ants have evolved a mating system with extreme polyandry of
the queens and large monogynous colony which can only propagate via colony fission (convergent to
the honeybees). Also similar to honeybees there is a distinctive division of labour among the workers

of an army ant colony.
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“ : ¢ = oy - The photo shows a close up of a
' bivouac of the Neotropical army ant
E. burchelli. As it can be seen the
workers of various castes form the
bivouac with their bodies, clinging to
each other and attaching it to a log.

ré’}: gﬁ:"i:’“’ ol 3 ! " : Figure 1.4 Eciton burchelli bivouac
] ",.4 {*

However, unlike in the honeybees this division of labour is not a temporal one and division of labour is
manifested in physical worker castes. These castes range from minute “minor” workers participating in
brood care up to the large “soldier” caste (Figure 1.5) which mainly is for the purpose of defence of the
colonies and the foraging trails (Schneirla 1971; Gotwald 1995). The division of labour in physical
castes and the highly complex genetic colony structure resulting from the high queen mating

frequency are the topic of one publication included in this thesis.

Figure 1.5 E. burchelli major worker
The photo shows the impressive
mandibles of a major worker (soldier)
of E. burchelli demonstrating the
phenotypic plasticity within a colony of
army ants where workers differ
considerably in size and body
proportions.

Based on the limited dispersal ability of the queens, army ant population are expected to be subject to
strong population fragmentation and isolation. In combination with the above described general
restrictions in population size in social hymenoptera, this raises the question which behavioural
mechanism army ants have evolved (if any) to counteract this inevitable fragmentation. The males of
the army ant are in fact the prime candidates for counteracting this population fragmentation, since
they are the only individuals in army ants which potentially could cover larger distances. A study by
Berghoff et al. (2008) indicate that mitochondrial gene flow by the queen is indeed easily hindered by
obstacles like rivers wheras the nuclear gene flow was unhindered over short geographical distances
and driven by the males. Two additional chapters in this thesis deal with the topic of the flight capacity

of males in Army ants and large scale population structure in an African Army ant.
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Aims and scope of the Habilitation Thesis

The fourteen chapters united in this cumulative thesis are centred on the molecular ecology of mostly
tropical species of eusocial hymenoptera and is sub-divided in three sections. The studies the
chapters are based upon explore the causes and consequences of mating systems from the
behavioural level to colony and population genetic structure. Section one deals with multiple mating of
females and its consequences for colony genetic structure, Section two covers the male mating
strategies and their impact on population subdivision. The third section aims at analysing colony

based gene flow and overall population genetic structure.

The first section “Polyandrous queens and colony organization” unites four chapters starting with two
chapters on the tropical Bumblebee B. wilmattae (Huth-Schwarz et al. 2011 a, b). They describe for
the first time the mating frequency of a tropical bumblebee species with molecular tools and explore
the consequences of the mating biology of the queens for intra-colonial queen-worker conflict. The
third and the fourth chapter of the first section are on the Western honeybee A. mellifera and the
Neotropical Army ant E. burchellii, with both species showing an extreme degree of polyandry. These
two chapters study the impact of extreme polyandry on one of the most important aspects of colony
organisation and structure: the division of labour among the workers (Jaffé et al. 2007; Kraus et al.
2010).

The second section “Male mating strategies and gene flow” includes six chapters all exploring male
mating strategy, its possible ultimate and proximate causes, as well as its consequences for
population genetic structure and connectivity. The first three chapters presented are on the
Neotropical stingless bee Scaptotrigona mexicana and cover both behavioural and population genetic
aspects of the formation of the male aggregations in this species (Kraus et al. 2008; Lopez & Kraus
2009; Muller et al. 2012). The fourth chapter is also on male aggregations, but this time on the drone
congregation areas of the Giant Asian honeybee A. dorsata, where the temporal genetic composition
of one such congregation and its implications for drone behaviour are explored (Kraus et al. 2005a).
The fifth chapter again has the Neotropical Army ant E. burchellii as study organisms and investigates
the role of the males of this species as carriers of nuclear gene flow (Jaffé et al. 2009). The sixth and
last chapter of the second section gives an estimate of the flight distances of male bumblebees in the

temperate species B. terrestris and their impact on population sub-structuring (Kraus et al. 2009).

The third section “Colony density and population structure” unites chapters on population genetics of
eusocial hymenoptera without an explicit focus on either sex. The first two chapters focus on
Africanized honeybees in Mexico and describe in detail the genetic aspects of the Africanization
process in Veracruz (Mexico) and explore colony densities and population genetic aspects with
respect to the presence or absence of beekeeping in Chiapas and Yucatan (Kraus et al. 2007; Moritz
et al. 2012). The third chapter for the first time shows that the bumblebee B. terrestris, which is bred

and used for greenhouse pollination on a large scale indeed spreads its gene from greenhouse
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populations into feral populations, indicating a potential hazard for biological conservation (Kraus et al.
2010). The fourth and last chapter provides a large scale population genetic study of the African Army
ant Dorylus fulvus and disentangles the contribution of both the queens and males to gene flow

among even distant populations (Barth et al. 2012).
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Polyandrous queens and colony organization

2.1 Mating frequency and genetic colony structure of the Neotropical

bumblebee Bombus wilmattae (Hymenoptera: Apidae)

(Published in: Apidologie (2011) 42: 519-525)

A Huth-Schwarz', A Leon?, R Vandame®, RFA Moritz', FB Kraus'

"Institut far Biologie, Martin-Luther-Universitat Halle-Wittenberg, Hoher Weg 4, 06099 Halle/Saale, Germany
Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico
®El Colegio de la Frontera Sur, San Cristobal de las Casas, Chiapas, Mexico

Contribution FB Kraus: study design/supervisor, sampling, manuscript preparation

Abstract

So far, nearly all studies concerning the mating frequency of bumblebees have been conducted with
temperate species, showing that single mating seems to be the predominant pattern in bumblebees.
Studies involving tropical species, however, are still scarce. Here, we determined the mating
frequency of queens of the tropical bumblebee species, Bombus wilmattae by using microsatellite
genotyping based on a sample of nine colonies from Chiapas, Southern Mexico. A total of 204
workers were genotyped with microsatellite markers to infer the queen genotype and the number of
males with which each queen had mated. Two of the nine queens were doubly mated and seven
singly mated. In the colonies with the double-mated queens, the distribution of the patrilines was not
even, resulting in effective mating frequencies of 1.34 and 1.70, respectively, and an average
relatedness of g = 0.58 + 0.06.

14



Polyandrous queens and colony organization

2.2 Workers dominate male production in the Neotropical bumblebee

Bombus wilmattae (Hymenoptera: Apidae)

(Published in: Frontiers in Zoology (2011) 8: 13)
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5Department of Zoology and Entomology, University of Pretoria, South Africa.
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Abstract

Background: Cooperation and conflict in social insects are closely linked to the genetic structure of
the colony. Kin selection theory predicts conflict over the production of males between the workers
and the queen and between the workers themselves, depending on intra-colonial relatedness but also
on other factors like colony efficiency, sex ratios, cost of worker reproduction and worker dominance
behaviour. In most bumblebee (Bombus) species the queen wins this conflict and often dominates
male production. However, most studies in bumblebees have been conducted with only a few
selected, mostly single mated species from temperate climate regions. Here we study the genetic
colony composition of the facultative polyandrous Neotropical bumblebee Bombus wilmattae, to
assess the outcome of the queen-worker conflict over male production and to detect potential worker
policing.

Results: A total of 120 males from five colonies were genotyped with up to nine microsatellite markers
to infer their parentage. Four of the five colonies were queen right at point of time of male sampling,
while one had an uncertain queen status. The workers clearly dominated production of males with an
average of 84.9% * 14.3% of males being worker sons. In the two doubly mated colonies 62.5% and
96.7% of the male offspring originated from workers and both patrilines participated in male
production. Inferring the mother genotypes from the male offspring, between four to eight workers
participated in the production of males.

Conclusions: In this study we show that the workers clearly win the queen-worker conflict over male
production in B. wilmattae, which sets them apart from the temperate bumblebee species studied so
far. Workers clearly dominated male production in the singly as well the doubly mated colonies, with
up to eight workers producing male offspring in a single colony. Moreover no monopolization of

reproduction by single workers occurred.
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2.3 Shift work has a genetic basis in honeybee pollen foragers (Apis

mellifera L.)

(Published in: Behavior Genetics (2010) 41:323-328)

FB Kraus, E Gerecke, RFA Moritz

Institut fur Biologie, Molecular Ecology Work Group, Martin Luther University Halle-Wittenberg, Hoher Weg 4,
06122 Halle (Saale), Germany

Contribution FB Kraus: study design/supervision, data analysis, manuscript writing

Abstract

Division of labour is a fundamental property of any social system. The specialization of different
individuals in different tasks increases the overall work performance and efficiency. Specialization is
thought to be the very foundation of the success of human societies but also in complex colonies of
social insects. In human societies an advanced form of division of labour, especially since the
industrialisation, is shift work, where individuals perform the same task but in subsequent cohorts in
time. Although social insects can measure and are aware of time, shift work has not been documented
in colonies of social insects so far. We observed foragers of two honeybee (Apis mellifera) colonies
(approx. 140 workers each) and genotyped them with microsatellite DNA markers. We determined
paternity and assigned them to the various subfamilies in the colony to test whether there is genetic
variance for shift work in foraging honeybees. We could show that the patriline identity of the foragers
had a significant effect on foraging either in the morning or evening. Individual foragers differed in their

preference for the “early” or “late” shift, and shift work indeed existed in the colony.
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2.4 Worker caste determination in the army ant Eciton burchellii

(Published in: Biology Letters (2007) 3: 513-516)
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Mexico

Contribution FB Kraus: study design/supervisor, sampling, manuscript preparation

Abstract

Elaborate division of labour has contributed significantly to the ecological success of social insects.
Division of labour is achieved either by behavioural task specialization or by morphological
specialization of colony members. In physical caste systems, the diet and rearing environment of
developing larvae is known to determine the phenotype of adult individuals, but recent studies have
shown that genetic components also contribute to the determination of worker caste. One of the most
extreme cases of worker caste differentiation occurs in the army ant genus Eciton, where queens
mate with many males and colonies are therefore composed of numerous full-sister subfamilies. This
high intracolonial genetic diversity, in combination with the extreme caste polymorphism, provides an
excellent test system for studying the extent to which caste determination is genetically controlled.
Here we show that genetic effects contribute significantly to worker caste fate in Eciton burchellii. We
conclude that the combination of polyandry and genetic variation for caste determination may have

facilitated the evolution of worker caste diversity in some lineages of social insects.

17



18



3. Male mating strategies and gene flow

19



Male mating strategies and gene flow

3.1 Cherchez la femme? - Site choice of drone congregations in the

stingless bee Scaptotrigona mexicana

(Published in: Animal Behaviour (2009) 77: 1247-1252)
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Contribution FB Kraus: study design/supervisor, data analysis, manuscript writing

Abstract

Drone congregations are a widespread phenomenon among stingless bee species. Such
congregations can consist of more than 1000 individuals and persist for several days or even weeks.
Because congregations often form directly outside of conspecific colonies, it has been hypothesized
that the presence of a virgin queen inside the colony triggers the aggregation of the drones. Here we
use drone congregations of the Neotropical stingless bee Scaptotfrigona mexicana to test this
hypothesis. We performed behavioral experiments where the drones of a given congregation could
decide between a previously chosen colony and a new unknown one as site for the formation of a
congregation. Our results show that drone congregations are not associated with a particular colony
(and its content) but rather with specific sites at the test location. Thus the content of a colony (e.g. the
presence of a virgin queen) is unlikely to be the trigger for the formation of a congregation. Further we
could show that pheromonal markings are used in the short distance orientation of drones towards a
given site. Choice experiments of individual drones in the laboratory showed that drones are attracted
to groups of other drones while they do not react to groups of workers. These results imply that once a
given site was chosen by some drones they will attract more drones via positive feedback from the

visual presence and odors of increasing numbers of drones.
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3.2 Genetic structure of drone congregations of the stingless bee
Scaptotrigona mexicana

(Published in: Insctes Sociaux (2008) 55: 22-27)
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Abstract

Drones of stingless bee species often form distinctive congregations of up to several hundred
individuals which can persist over considerable periods of time. Here we analyse the genetic structure
of three drone congregations of the Neotropical stingless bee Scaptotrigona mexicana employing eight
microsatellite markers. Two congregations were close to each other (50m), the third one was located
more than 10km away from them. This spatial pattern was also reflected on the genetic level: the two
close congregations did not show any population sub-structuring, whereas the more distant
congregation showed a significant population differentiation to both of them. Population
subdifferentiation was however low with Fg values (Fg = 0.020 and 0.014) between the distant
congregations, suggesting gene flow over larger distances mediated by the drones of S. mexicana.
Based on the genotypic data we also estimated the number of colonies contributing drones to the
congregations.The two joint congregations consisted of drones originating from 39.6 colonies, while
the third congregation was composed of drones from 21.8 colonies, thus proving that congregations of

S. mexicana are constituted of unrelated drones of multi-colonial origin.
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3.3 Outbreeding and lack of temporal genetic structure in a drone con-

gregation of the Neotropical stingless bee Scaptofrigona mexicana

(Published in: Ecology & Evolution (2012) in print)
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06122 Halle (Saale), Germany

Contribution FB Kraus: study design/supervisor, sampling, manuscript preparation

Abstract

Drone aggregations are a widespread phenomenon in many stingless bee species (Meliponini), but
the ultimate and proximate causes for their formation are still not well understood. One adaptive
explanation for this phenomenon is the avoidance of inbreeding, which is especially detrimental for
stingless bees due to the combined effects of the complementary sex-determining system and the
small effective population size caused by eusociality and monandry. We analyzed the temporal
genetic dynamics of a drone aggregation of the stingless bee Scaptotrigona mexicana with
microsatellite markers over a time window of four weeks. We estimated the drones of the aggregation
to originate from a total of 55 colonies using sibship reconstruction. There was no detectable temporal
genetic differentiation or sub structuring in the aggregation. Most important, we could exclude all
colonies in close proximity of the aggregation as origin of the drones in the aggregation, implicating
that they originate from more distant colonies. We conclude that the diverse genetic composition and
the distant origin of the drones of the S. mexicana drone congregation provides an effective

mechanism to avoid mating among close relatives.
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3.4 Temporal genetic structure of a drone congregation area of the giant

Asian honeybee (Apis dorsata)
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Abstract

The giant Asian honeybee (Apis dorsata), like all other members of the genus Apis, has a complex
mating system in which the queens and males (drones) mate at spatially defined drone congregation
areas (DCAs). Here, we studied the temporal genetic structure of a DCA of A. dorsata over an 8-day
time window by the genotyping of sampled drones with microsatellite markers. Analysis of the
genotypic data revealed a significant genetic differentiation between 3 sampling days and indicated
that the DCA was used by at least two subpopulations at all days in varying proportions. The
estimation of the number of colonies which used the DCA ranged between 20 and 40 colonies per
subpopulation, depending on the estimation procedure and population. The overall effective
population size was estimated as high as Ne = 140. The DCA seems to counteract known tendencies
of A. dorsata for inbreeding within colony aggregations by facilitating gene flow among subpopulations

and increasing the effective population size.
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Abstract

The combination of haplodiploidy, complementary sex determination and eusociality constrains the
effective population size (N,) of social Hymenoptera far more than in any other insect group. Additional
limitations on N, occur in army ants since they have wingless queens and colony fission, both of which
are factors causing restricted maternal gene flow and high population viscosity. Therefore, winged
army ant males gain a particular significance to ensure dispersal, facilitate gene flow and avoid
inbreeding. Based on population genetic analyses with microsatellite markers, we studied a population
of the Neotropical army ant Eciton burchellii, finding a high level of heterozygosity, weak population
differentiation and no evidence for inbreeding. Moreover, by using sibship reconstruction analyses, we
quantified the actual number of male contributing colonies represented in a queen’s mate sample,
demonstrating that, through extreme multiple mating, the queens are able to sample the genes of
males from up to ten different colonies, usually located within an approximate radius of 1km. We finally
correlated the individual mating success of each male contributing colony with the relative siring
success of individual males and found a significant colony-dependent male fitness component. Our
results imply that the dispersal and mating system of these army ants seem to enhance gene flow and

minimise the deleterious effects associated with small effective population size.
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Summary

1. Bumblebees are important pollinators in natural as well as agricultural ecosystems. Estimates of
foraging range, population size and genetic population structure so far have been based on worker
samples alone. Here we include both males and workers in a population genetic analysis to infer the
contribution of males to these important ecological parameters.

2. The population genetic (microsatellite) analyses of Bombus terrestris L. populations on the island of
Cabrera (Spain) and Halle (Germany) revealed high heterozygosities (0.60 £ 0.08 to 0.77 + 0.13) and
neither a deviation from Hardy—Weinberg equilibrium nor linkage disequilibrium.

3. We detected five colonies (census population size) for the island population and 27 to 68 for the
German mainland population. The genetic effective population sizes were N, = 7.5 for the island and
40.5 to 102 for the mainland population respectively.

4. There was a significant genetic subdifferentiation between the male and the worker population
samples, suggesting that males originated from different and/or more distant colonies than workers.

5. Based on the colony numbers, we estimated the flight range of males, which ranged from 2.6km to
9.9km, much further than worker flight ranges. Bumblebee-mediated pollen flow will therefore be much
further than expected based on the foraging range of workers alone if males also contribute to

pollination.
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4.1 Asymetric introgression of African genes in honeybee populations

(Apis mellifera L.) in Central Mexico
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Abstract

The Africanization of the honeybee (Apis mellifera) in South America is one of the most spectacular
examples of biological invasions. In this study, we analyzed the Africanization process in Central
Mexico along an altitudinal transect from 72 to 2800m, using both mitochondrial and nuclear DNA
markers. The mitochondrial analysis revealed that the two high-altitude populations had a significantly
greater percentage of African mitotypes (95%) than the three lowland populations (67%), indicating
successful spreading of Africanized swarms to these altitudes. All populations (highland and lowland)
had a similar overall proportion of African alleles at nuclear loci (58%). Thus, all populations showed
an asymmetric introgression of African nuclear and mtDNA. Colonies with African mitotypes had, on
average, significantly more African nuclear alleles (60%) than those with European mitotypes (51%).
Furthermore, the three lowland populations showed clear signs of linkage disequilibrium, while the two
high-altitude populations did not, indicating recent genetic introgression events into the lowland

populations.
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Abstract

The density of feral and managed honeybee populations (Apis mellifera) was determined for various
sampling locations in Chiapas and Yucatan (Mexico) to asses the impact of apiculture on populations
in the wild. We used a paired sampling approach determining colony densities in similar habitats and
landscapes but with different intensity of beekeeping. Sampling sites included nature reserves,
mango, and shaded coffee plantations. The agricultural sites were all set in high diversity landscapes
with plenty of surrounding secondary forest. Colony density was determined by genotyping drones
caught on drone congregation areas and assigning the drone genotypes to mother queens each
heading a colony. We use three sets of linked markers each to achieve sufficient resolution for a
precise colony assignment. The estimated colony densities ranged from 13.6 col/km? to 21.6 col/km?2.
We found no significant difference in colony densities between the sites with and without beekeeping
suggesting the managed honeybee populations do not substantially add to the overall number of
honeybee colonies supported in the wild. This indicates that restrictions on apicultural activities to
prevent any potential conservation conflict with native pollinators might not be useful, since honeybee
colonies are very abundant in many different landscapes in Southern Mexico independent of

apiculture.
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Abstract

Bumblebees (Bombus spp.) are commonly used for greenhouse pollination of tomatoes and other
crop plants. The colonies used for this purpose are provided by commercial bumblebee breeders,
which by now operate at a professional company level. As a result of this practice commercially bred
bumblebee colonies are transported and used over large distances and national borders, introducing
subspecies into non-endemic regions. The question whether and to what extends gene flow between
such managed greenhouse and wild bumblebee populations exists, so far has not been addressed.
Here we used samples from three greenhouses in Poland and the surrounding populations to address
this question. Using microsatellite DNA data we found strong genetic introgression from the sampled
greenhouse populations into the adjacent populations. Depending on the analysed population the
number of individuals assigned to the greenhouse populations ranged from 0.08 up to 0.47. We also
found that more distant populations were much less affected by genetic introgression from the

greenhouses.
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Abstract

Sex-biased dispersal is a widespread phenomenon in the animal kingdom, which strongly influences
gene flow and population structure. Particularly army ants, important key-stone predators in tropical
ecosystems, are prone to population fragmentation and isolation due to their extraordinary mating
system with permanently wingless queens and therefore male dependent dispersal and gene flow.
Here we report on sex-biased dispersal and the genetic population structure of an African
subterranean army ant, Dorylus (Typhlopone) fulvus. Colony and queen dispersal is confined
underground in this species, and only the male sex disperses in mating flights. Using maternally
inherited mitochondrial markers (mtDNA) and bi-parentally inherited nuclear microsatellite markers we
found strong geographical structuring of mtDNA haplotypes, whereas the nuclear genetic population
structure was less pronounced, with no indications of inbreeding within populations. Strong mtDNA
(®st = 0.85), but far lower nuclear (Fst = 0.23) genetic differentiation translated to a more than an
order of magnitude larger male migration rate compared to that of queens, reflecting the low motility of
queens but a large scale promiscuous gene flow by males. Thus, the well flying D. fulvus males
appear to counteract limited queen dispersal at the nuclear but not at the mitochondrial level. With this
study we aim to achieve a better understanding of how sex specific dispersal patterns and mating

systems affect the population structure and phylogeography of species.

31



Colony density and population structure

32



5. Summary and Conclusions

33



Summary and Conclusions

E pluribus unum

The 14 chapters united in this thesis focus on seven, mainly tropical species, from four taxonomic
groups of the eusocial hymenoptera: the honeybees, the stingless bees, the bumblebees, and the
army ants. By applying molecular ecological tools, these chapters explore the causes and
consequences of mating strategies for both sexes and their impact on colony and population genetic
structure. This cross taxa perspective takes a bottom up approach to detect consistent patterns in the
different groups of eusocial hymenoptera to allow for a more meaningful and general inferences of the
adaptive significance of mating strategies and colony organization for natural selection and the

population structure.

Polyandrous queens and colony organization

The first section provides the female perspective of mating biology in eusocial hymenoptera and its
implications for colony genetic structure and organization. The first two chapters (Huth-Schwarz et al
2011a, b) deal with the tropical bumblebee B. wilmattae. For the first time reliable data on the mating
frequency of a tropical bumblebee is provided, showing that B. willmattae queens are facultatively
polyandrous, albeit at a low level and with a maximum of two matings. While this is not unusual for
Bumblebees, B. wilmattae strongly deviates from temperate species in terms of worker reproduction
with an average of 84.9 % of all males being offspring of workers. Thus the workers dominate and
clearly win the queen-worker conflict in this tropical Bumblebee. Given that Bumblebees only
secondarily adapted to the tropics, it remains to be answered whether this high level of worker
reproduction is a general pattern and adaptation of tropical bumblebees or rather a particularity of B.
wilmattae (Jenny 1974; El-Niweiri & Moritz 2011).

The two following chapters (Kraus et al 2011, Jaffé et al 2007) switch from the more primitively
eusocial bumblebees to two highly derived eusocial hymenopteran species: the honeybee A. mellifera
and the army ant Eciton burchellii. The queens of these two species are highly polyandrous and thus
their colonies are genetically complex entities, with workers originating from dozens of subfamilies. In
both chapters we could show that this high genetic variability is directly linked to colony organization in
form of division of labor between the workers. In case of the honeybee this division of labor is a
temporal one, with foragers of different subfamilies having different preferences for flight times, thus
engaging in shift work and a temporal division of labor. In the Army ant E. burchellii division of labor is
manifested in morphological castes, where workers can be minors, medias or majors. The siring father
and hence the subfamily identity of a worker determines the probability of a given individual to develop
into one of the several castes. So both honeybees and army ants, despite their phylogenetic distance,
congruently provide evidence that within-colony genetic variability is tightly linked with the organization
of task assignment in the colony. It becomes very clear that the combination of polyandry and genetic
variation for caste determination is a major force in driving colony organization in highly eusocial

hymenoptera in general.

Generally, as shown by the four chapters in this first part, the mating behavior of the queens has a
strong impact on colony level selection, with the degree of polyandry (or monandry respectively)

directly influencing both within-colony genetic variability and colony fitness. In the more primitively
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eusocial bumblebees the number of matings influences the inter-individual conflict potential over
reproduction. Here the reproductive division of labor itself is not as strict as in more derived species,
as shown by the queen worker conflict over male production. In highly derived eusocial species,
polyandry is associated with further colony level traits, where the increased genetic variability
enhances colony efficiency in form of improved division of labor either in physical castes or shift work,

as shown by the chapters on army ants and honeybees.

Male mating strategies and gene flow

In contrast to female mating strategies the males have long been the neglected gender in research on
eusocial hymenoptera (Koeniger 2005). The second section of this thesis compromises six chapters
on male mating strategies of four species from four different taxa, as an effort to put a certain

emphasis on the male perspective, which is of course equally important than female mating strategies.

The first three chapters explore the phenomena of male aggregations in the stingless bee
Scaptotrigona mexicana (Kraus et al. 2008, Lopez & Kraus 2009, Miller et al. 2012). Males of this
species establish daily aggregations next to the flight entrance of specific coloniesduring mati8ng
season. Surprisingly, S. mexicana male aggregations are not associated with a particular conspecific
colony they are positioned upon, but rather with specific locations. Also the males are attracted to the
aggregations by the scent of other males, triggering a snow ball effect once an aggregation starts to
cluster. Furthermore, the genetic analysis of aggregations showed that the males participating in it
come from dozens of colonies, but not a single male originated from colonies in the immediate vicinity
of the aggregation. Also no temporal or spatial sub-structuring was found among the analyzed
aggregations on subsequent days. Taken together, these results indicate that male aggregations in
this stingless bee are very effective in avoiding any inbreeding tendencies and promote gene flow via
the males counteracting the limited mobility of the females and their colonies. The fourth chapter deals
with a quite similar phenomenon the drone congregations of the Giant Asian honeybee A. dorsata
(Kraus et al. 2005a). Here the drones do not aggregate in front of a colony but fly to drone
congregation areas at the level of the high canopy in the rainforest. In our study a single drone
congregation was visited by drones of a high number of colonies from two distinct sub populations in
varying proportions over several sampling days. However also here, like in S. mexicana, the very

existence of such congregations is curcial for the promotion of gene flow among subpopulations.

Also in the fifth chapter, which deals with the role of male E. burchellii army ants for gene flow (Jaffé et
al. 2009), we could show that the males are the prime agents for connectivity and gene flow among
populations. In case of army ants this is probably even more important, since the colonies and queens
are restricted to “walking distance” without the possibility to cross even medium sized creeks or water

bodies.

The last chapter of the second section switches from the highly eusocial taxa back to the more
primitively eusocial Bumblebees (Kraus et al. 2009), where both males and females are produced at
the end of the colony cycle, and both sexes in principle have equal chances to migrate away from their

mother colonies. Here we analyzed a population of the bumblebee B. terrestris and could show that
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the males have a larger flight radius than the females indicating that also in this species males cover

lager distances after leaving the nest than the queens do.

As outlined before, eusocial hymnoptera are particularly affected by various genetic and life history
factors which potentially restrict their effective population sizes and gene flow. These include their
haplo/diploidy, the genetic load resulting from complementary sex determination and in general their
eusocial life style which inevitably restricts the number of reproductive females to the number of
colonies. However, all studies in this section show that the analyzed species and taxa have evolved
mating strategies to efficiently counteract inbreeding. In all studied cases it is the male sex which is

adapted to be the prime carrier for long distance gene flow.

Colony density and population structure

While the two previous sections focused on one of the two sexes each, the third and last section
unites four chapters on the more general colony level and population perspective, thus including the
impact of both sexes. The first two chapters of this part both deal with the Africanized honeybee in
Central America. In the first chapter (Kraus et al. 2007), we analyzed the Africanization process in
Central Mexico, along an altitudinal transect from 72 to 2800 m, using both mitochondrial and nuclear
DNA markers. The two high-altitude populations had a significantly greater percentage of African
mitotypes (95%) than the three lowland populations (67%), indicating successful spreading of
Africanized swarms to these altitudes. Moreover, all populations had a similar overall proportion of
African alleles at nuclear loci, thus showing an asymmetric introgression of African nuclear and
miDNA. The second chapter on Africanized honeybees (Moritz et al. submitted) addresses the
influence of beekeeping on the density of honeybee colonies using three sets of linked microsatellite
markers. We found no significant difference in colony densities between the sites with and without
beekeeping suggesting the managed honeybee populations do not substantially add to the overall
number of honeybee colonies supported in the wild. Both studies show that the honeybee A. mellifera,
as an invasive species in America, has successfully established itself firmly in most terrestrial
ecosystems in Central America and restrictions on beekeeping (for conservation of native pollinators)

are unlikely to significantly reduce overall high colony densities in the feral population.

The third chapter (Kraus et al. 2010) also deals with a potentially invasive species, the bumblebee B.
terrestris. Here we describe for the first time strong genetic introgression from the sampled
greenhouse populations into the adjacent wild populations. Depending on the analyzed population, the
number of individuals assigned to the greenhouse populations ranged from 8% to 47 %. This implies
that greenhouses bumblebees are capable of changing the genetic structure of conspecific endemic
subspecies. Since the consequences of this genetic spillover are hard to predict and potentially have
negative effects, it seems advisable to handle and manage bumblebee imports with caution also in

regions where B. terrestris is endemic.

The last chapter in this part is a phylo-geographic study on the African subterranean army ant Dorylus
fulvus applying both mitochondrial and nuclear markers (Barth et al. submitted). The tested D. fulvus
populations show a strong bio-geographical structure concerning their mitochondrial genetic variation,

whereas the nuclear genetic population structure is less clearly pronounced. Moreover, the relative
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intensity of male gene flow is an order of magnitude higher than that of the females. Our results
indicate low motility of queens but a large scale promiscuous gene flow by males. Thus, the well flying
D. fulvus males appear to efficiently counteract the extremely limited queen dispersal at the nuclear

but not at the mitochondrial level.

The last section thus nicely shows that despite all potential population-level restrictions resulting from
eusociality, haplo/diploidy and csd system, many eusocial hymenoptera are very effective in seizing
new habitats and in the maintenance of long distance gene flow. Sociality and the colony based life
history does not exclude them from becoming invasive species, which is not only impressively
documented by the astounding spread of the Africanized honeybees over the Americas in just a few

decades but also by other invasive wasp, ant, and bee species all over the globe

Outlook

The publications united in this thesis comprise results from many years of field work in the Tropics of
Latin America, Africa and Asia and the subsequent laboratory work applying molecular ecology tools.
Even though the majority of species in this thesis are not model organisms, and the molecular
microsatellite markers were often obtained by cross species amplification, the knowledge gain on the
biology of these species has already been remarkable. The insights on the mating biology, genetic
colony and population structure would have been hard, if not impossible to achieve without molecular
markers. With the current advances in next generation sequencing technology and bioinformatics, new
approaches like population genomic studies will be feasible also for non-model organisms in the near
future. The rise of these new sequencing techniques will clearly further accelerate the knowledge gain
on the biology of eusocial hymenoptera, which will in fact grow over-proportional compared to the
advances in molecular ecology over the last 20 years. Still, the classical studies as presented here will
be the very and essential foundation for the next step in research. Irrespective of novel techniques and
methods used, it is equally clear that research on eusocial insects will remain one of the most
challenging and exciting fields of research in modern biology. We are still far from understanding how
a colony of social insects functions, yet this may be essential when we address the more ultimate
question of why it functions in the first place. Equally important will also be what we can learn from
social insect colonies for the understanding of our own societies. As Karl von Frisch stated: “The bee's
life is like a magic well: the more you draw from it, the more it fills with water” (von Frisch 1950). This is

true for research on social insects in general and the well is already deep indeed with floods to expect.
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