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Abstract

This work presents algorithms for visualizing real algebraic plane and space curves as well as a
certain type of algebraic surface given by embedding blowups of the plane into affine space.

The curve tracing based rasterization of real algebraic plane curves is exact in the sense that
a pixel is painted if and only if it contains a point of the curve. The exactness is achieved by
symbolic and certified numerical methods, where the latter also help to reduce the computation
time. The efficiency of the new method is illustrated by means of complexity analysis and
practical experiments with curves that are especially difficult to process.

Real algebraic space curves are visualized by determining a line strip approximation to
their segments using a projection and lifting approach. Intentionally ignoring a finite set of
points of the curve allows to introduce a new notion of genericity. In combination with a novel
approach for lifting multiple components of the projection, this results in a robust and efficient
visualization algorithm.

A blowup of the plane in finitely many points yields a surface that can be embedded into
affine space using a rational parametrization. Since this parametrization has base points,
its direct visualization is time consuming and prone to numerical errors. An implicitization
technique is proposed and it is shown that the implicit definition removes the limitations related
to the parametrization. The result is an interactive visualization in real time.

In all three visualization algorithms, resultants serve as building blocks for achieving results of
high quality. In order to alleviate the cost of this symbolic operation, a parallel implementation
of bivariate polynomial resultants on graphics processing units is presented. It is based on the
parallel processing of homomorphic images of the input and shows high speedups compared to
the sequential approach.
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Zusammenfassung

In der vorliegenden Arbeit werden Algorithmen zur Visualisierung von reellen algebraischen
Kurven in der Ebene und im Raum, sowie von Flächen, welche bei der Einbettung von
Aufblasungen der Ebene in endlichen vielen Punkten in den affinen Raum entstehen, entwickelt.

Die Erzeugung von Rasterbildern ebener algebraischer Kurven durch einen Kurvenverfol-
gungsalgorithmus ist exakt in dem Sinne, dass ein Pixel genau dann gezeichnet wird, wenn es
einen Punkt der Kurve enthält. Die Exaktheit wird durch eine Kombination symbolischer und
selbstvalidierender numerischer Verfahren gewährleistet. Die Effizienz des neuen Verfahrens
wird anhand einer Komplexitätsanalyse sowie durch Experimente mit schwer visualisierbaren
Kurven demonstriert.

Reelle algebraische Raumkurven werden mit Hilfe einer Linienzugapproximation dargestellt.
Diese werden durch ein Verfahren erzeugt, welches die Kurve in die Ebene projiziert, dort
vorverarbeitet und anschließend in den Raum anhebt. Indem bewusst auf endlich viele Punkte
der Kurve verzichtet wird, kann ein neuer Generizitätsbegriff eingeführt werden. Zusammen
mit einem neuen Ansatz zur Anhebung mehrfacher Komponenten der Projektion führt dies zu
einem robusten und effizienten Visualisierungsalgorithmus.

Eine Aufblasung der Ebene in endlich vielen Punkten ergibt eine Fläche, welche durch eine
rationale Parametrisierung in den affinen Raum eingebettet werden kann. Da diese Parametri-
sierung Definitionslücken enthält, ist ihre direkte Visualisierung rechenintensiv und anfällig für
numerische Fehler. In dieser Arbeit wird eine Implizitisierungstechnik vorgeschlagen und es
wird gezeigt, dass die implizite Definition der Fläche die Einschränkungen der Parametrisierung
aufhebt. Im Ergebnis erhält man eine interaktive Visualisierung der Fläche in Echtzeit.

Alle drei Visualisierungsverfahren nutzen Resultanten als wichtiges Hilfsmittel zur Erzeugung
qualitativ hochwertiger Ergebnisse. Um die Kosten dieser symbolischen Operation abzumil-
dern, wird die Implementierung eines parallelen Algorithmus zur Berechnung von Resultanten
bivariater Polynome auf Grafikhardware vorgestellt. Diese basiert auf der gleichzeitigen Verar-
beitung mehrerer homomorpher Bilder der Eingabe. Dies führt zu hohen Beschleunigungsraten
gegenüber einer sequentiellen Implementierung.

v





Contents

1. Introduction 1
1.1. Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Foundations 7
2.1. Complexity of algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Basic geometric properties of algebraic curves and surfaces . . . . . . . . . . . . 8
2.3. Resultants, subresultants and the GCD of polynomials . . . . . . . . . . . . . . 10

2.3.1. Size of remainders and subresultants . . . . . . . . . . . . . . . . . . . . 17
2.3.2. Specialization properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3. Polynomial content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.4. Chain rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.5. Resultants and the extension theorem . . . . . . . . . . . . . . . . . . . 22

2.4. Polynomial real root counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1. Sturm chains and signed subresultant sequences . . . . . . . . . . . . . 24
2.4.2. Descartes’ rule of signs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5. Numerical filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.1. Interval arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.2. Choice of precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6. Summary of algorithm complexities . . . . . . . . . . . . . . . . . . . . . . . . . 32

3. Exact rasterization of real algebraic plane curves 35
3.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3. Algorithm outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4. Precomputations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1. Isolation of critical points . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2. Viewport specific precomputations . . . . . . . . . . . . . . . . . . . . . 41
3.4.3. Intersections with the viewport boundary . . . . . . . . . . . . . . . . . 42

3.5. Rasterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.1. Non-critical slices and boxes . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.2. Rows with critical points . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6. Numerical filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6.1. Numerical computation of signed subresultant quotient sequences . . . . 50
3.6.2. Numerical real root counting . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7. Analysis of the asymptotic complexity . . . . . . . . . . . . . . . . . . . . . . . 53
3.7.1. Analysis of the preprocessing stage . . . . . . . . . . . . . . . . . . . . . 53
3.7.2. Adjustment of the viewport . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7.3. Analysis of the rasterization stage . . . . . . . . . . . . . . . . . . . . . 56

vii



Contents

3.7.4. The improved trivial algorithm . . . . . . . . . . . . . . . . . . . . . . . 57
3.7.5. Summary and comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.8. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.9. Benchmarks of challenging curves . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.9.1. Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.9.2. Adjustment of the viewport . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.9.3. Rasterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.10. Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4. Robust graphical display of real algebraic space curves 71
4.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3. Algorithm outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4. Squarefree factorization of the projected curve . . . . . . . . . . . . . . . . . . . 74
4.5. Non-constant leading coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.1. The content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.2. Asymptotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.3. Curves at infinity of different multiplicity . . . . . . . . . . . . . . . . . 79

4.6. Simplification of the lifting surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6.1. Eliminating the content . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6.2. Rational parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6.3. Computing the squarefree part . . . . . . . . . . . . . . . . . . . . . . . 84
4.6.4. Syzygies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7. Numerical approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.7.1. Lines in the direction of projection . . . . . . . . . . . . . . . . . . . . . 87
4.7.2. Approximating the projections and lifting . . . . . . . . . . . . . . . . . 88

4.8. A note on asymptotic complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.9. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.10. Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.11. Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5. Interactive visualization of blowups of the plane 97
5.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.1. The definition of blowups . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.1.2. The embedding into a torus . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1.3. On the drawbacks of the parametrization . . . . . . . . . . . . . . . . . 100
5.1.4. Implicitization based real-time visualization . . . . . . . . . . . . . . . . 101

5.2. Derivation of the implicit form . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.1. Algebraic preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.2. Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.3. Resultants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.4. Degree bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2.5. A simplified geometric construction . . . . . . . . . . . . . . . . . . . . . 106
5.2.6. Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2.7. The degeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3. Visualization of the implicit form . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.1. Clipping V (F) to Tf,g . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

viii



Contents

5.3.2. Texturing the surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.3. Highlighting the exceptional fibers . . . . . . . . . . . . . . . . . . . . . 114

5.4. Implementation and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.1. RealSurf as a tool for visualizing toroidal blowups . . . . . . . . . . . . 114
5.4.2. Discussion of examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5. Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6. Parallel computation of resultants on graphics processing units 119
6.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3. Algorithm outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.4. Divide phase: applying homomorphisms . . . . . . . . . . . . . . . . . . . . . . 120

6.4.1. Reduction modulo a prime number . . . . . . . . . . . . . . . . . . . . . 121
6.4.2. Evaluating polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5. Conquer Phase: Calculating resultants of univariate polynomials . . . . . . . . 123
6.5.1. Parallelization on global memory . . . . . . . . . . . . . . . . . . . . . . 123
6.5.2. Parallelization on shared memory . . . . . . . . . . . . . . . . . . . . . . 124

6.6. Combine phase: reconstructing the integer resultant . . . . . . . . . . . . . . . 124
6.6.1. Polynomial interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.6.2. Lifting from prime fields to integers . . . . . . . . . . . . . . . . . . . . 126

6.7. Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.8. Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A. Description and rasterizations of challenging real algebraic plane curves 131
A.1. Solitary points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.2. Smooth curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
A.3. High tangencies of halfbranches . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.4. Many isolated singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.5. Singularities with more than four halfbranches . . . . . . . . . . . . . . . . . . 137
A.6. Discriminants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.7. Curves with several difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.8. Random polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B. Absolute running times of plane curve renderings 145

C. Defining polynomials of example curves 151
C.1. The real algebraic plane curve “Bundle” . . . . . . . . . . . . . . . . . . . . . . 151
C.2. Real algebraic space curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

D. Notations and abbreviations 153

Bibliography 155

List of figures 165

List of tables 167

List of algorithms 169

ix





1. Introduction

Visualizations are ubiquitous in science today and they always were. In past centuries, hand
drawings and plaster models have been used to teach students and to guide research. The
development of the field of computer graphics opened completely new possibilities, especially
in the presentation of abstract mathematical models. Usually, no direct counterpart in the
physical world exists. Even if one is able to build a physical model, it often provides only a
rather restricted insight.

Computer-based visualizations solve many problems of classic approaches, but, as it is often
the case, new challenges arise at the same time. While physical models are build on the basis of
known facts, users of computer-based visualization programs often have only little knowledge of
the properties of the object to visualize. This raises the question of exactness of a visualization.
Clearly, the notion of exactness highly depends on the purpose of the visualization. Consider
for example space curves: A mathematician might be interested in the topology of the curve.
Displaying a graph which is topologically equivalent to the curve suffices in this case. In contrast,
an engineer would probably require an accurate geometric image of the curve if it represents the
boundary of a workpiece which is the difference of two surfaces. Such constructions frequently
arise in computer aided geometric design (CAGD), where detailed geometric information is
crucial for further processing.

Designing robust visualization algorithms is often a challenge. From a theoretical point of
view, the basic operations are usually considered to be exact, but this is not the case on most
processor architectures in practice. Even the most simple geometric primitives can introduce
severe errors in subsequent computations. Consider for example the orientation of three points
in the plane. If these points are close to being collinear, numerical computations become
unstable. A solution is to switch to arbitrary precision arithmetic for integral and rational
numbers. However, this is not sufficient if one moves over from linear to non-linear geometry.
Handling points on circular arcs already requires square roots, and computations with general
algebraic objects introduce algebraic numbers of higher degree.

Dealing with non-linear objects is the concern of computer algebra. Instead of storing explicit
sets of points, geometric objects are represented and manipulated by algebraic expressions. This
usually ensures correctness at the expense of complicated implementations, high algorithmic
complexity and time-consuming computations. But correct results do not always require the
exact representation of all involved objects. In geometry, many computations can be reduced to
the determination of the signs of algebraic expressions evaluated at certain points. The exact
values of these expressions, like in the case of the orientation of three points, is of minor interest.
This is called the exact geometric computation (EGC) paradigm [YD95]: Use whatever method
is appropriate to speed up the computation in simple cases but never output a wrong sign,
even in degenerate situations.

Simple cases are often called generic and many algorithms try to transform non-generic
problems into generic ones in order to simplify subsequent computations. Unfortunately, such
transformations can increase the computation time significantly. Although generic cases are
the most common ones, degenerate cases prevent the correctness of the result. Therefore, it is

1



1. Introduction

inevitable in many applications to detect and to solve non-generic cases using more sophisticated
methods from computational geometry and computer algebra.

The geometric objects considered in this thesis are real algebraic curves and certain types of
real algebraic surfaces defined implicitly as the real zero set of polynomials in two respectively
three variables. The restriction to the real zero set makes it especially hard to work with
them since many statements from algebraic geometry about the connection between a zero
set (variety) and its algebraic representation (ideal) are only valid over an algebraically closed
field but not over real closed fields. A famous example is Hilbert’s Nullstellensatz. One of its
consequences is that every proper ideal over the complex numbers has a nonempty zero set.
The polynomial x2 + 1 has a complex root

√
−1 but no real root although it defines a proper

ideal. In the multivariate case, various additional problems related to the projection of varieties
arise and it is often hard to cope with them efficiently.

When it comes to the visualization of algebraic varieties, one has to decide what exactness
means and how much exactness is really necessary. First of all, the discrete raster images
displayed on a computer screen only provide a finite resolution. In contrast, algebraic varieties
are defined by the zero sets of continuous functions. They can have very small geometric
features which are likely to be overlooked during the rasterization process. Determining their
existence and approximating their position with the help of computer algebra and numerical
methods is often very time consuming. Therefore, one has to find a compromise between the
speed of the visualization and the correctness of the result. This often relates to the complexity
of the input. It is easier to deal with real algebraic plane curves than with algebraic space
curves and surfaces.

In this work, three approaches with different trade-offs between exactness and speed are
presented. First, real algebraic plane curves will be rasterized correctly up to pixel level at
the expense of performing a relatively costly precomputation in some situations. Secondly, the
visualization algorithm for real algebraic space curves approximates all one-dimensional segments
of the curve but intentionally ignores isolated points in order to speed up the computation.
Finally, the rendering of a real algebraic surface may show numerical errors in exchange for an
interactive visualization in real time. The latter is achieved by tailoring the implementation
directly to an architecture which is specifically designed for the data-parallel processing of
numerical algorithms: the graphics processing unit (GPU). Since the basic method has been
presented in previous works of the author, the focus in this work is on the rendering of a specific
type of algebraic surface which is particularly difficult to visualize. Recent developments also
opened the possibilities for performing exact symbolic computations on the GPU. This allows
to provide a prototypical parallel implementation of a specific symbolic method at the end of
this thesis, which may be of great use for the analysis and rendering of algebraic curves in the
future.

1.1. Main contributions
This section will be used to summarize the main contributions of this work. See also Figure 1.1
for some of the images that the newly developed algorithms are able to create.

Exact rasterization of real algebraic plane curves

Most previous approaches for visualizing algebraic plane curves rely entirely on numerical
methods. This often leads to wrong results. Computing certified solutions of bivariate

2



1.1. Main contributions

(a) (b) (c)

Figure 1.1.: Result of the visualization algorithms presented in this work: (a) An exact
rasterization of a real algebraic plane curve. Note the three isolated points. (b) A rendering of
a real algebraic space curve. (c) A visualization of a blowup of the plane in 3 double points
embedded into a torus.

polynomial systems has become feasible for moderate problem instances in recent years due to
various advances in the field. This applies to theoretical questions as well as to efficient and
widely available implementations.

For this reason, a new rasterization algorithm for real algebraic plane curves is proposed
which exploits global information of the curve in order to produce exact results in all cases. In
the new method, the so-called critical points of the curve are computed and used to decompose
the image plane into rectangular regions which contain only monotone curve segments. The
monotony and the knowledge of start and end points of the curve segments are exploited in
the rasterization in order to develop an efficient curve tracing method which never subdivides
the image plane below pixel level. It relies on a very simple test for a sign change of the
defining polynomial in simple cases and on a more sophisticated counting scheme for real
roots in case of a bad separation of the segments. The subresultant based real root counting
benefits from the symbolic precomputation used to determine the critical points. This allows
to apply numerical filtering techniques for increased efficiency, which would not have been
possible without having the global information at hand. For the first time, the asymptotic
binary complexity of curve rasterization algorithms is analyzed. The comparison of the new
method with a previously known one that also yields exact results confirms the efficiency of the
new one from a theoretical point of view. The new algorithm is implemented and compared
with two other exact methods by means of a large number of curves which are considered to
be challenging instances. Although the new algorithm requires additional precomputation in
order to gather more global information than others, the actual curve tracing is shown to be
faster in general. This often allows to interactively explore the curve geometry as soon as the
precomputation finishes.

A preliminary version of the new approach appeared in [Stu11]. It still lacks parts of the
implementation as well as the complexity analysis presented here.

3



1. Introduction

Robust graphical display of real algebraic space curves

The visualization of real algebraic space curves given as the intersection of two algebraic surfaces
has not attracted much attention so far. Known sampling techniques that are applicable for
rendering algebraic plane curves and algebraic surfaces are not easily extensible for visualizing
space curves since their codimension is two instead of one. In addition, many tangent based
curve tracing methods only work in special cases because the tangent planes of the surfaces
defining the curve might be coplanar.

Therefore, most algorithms for analyzing and visualizing algebraic space curves are based on
symbolic computations. In this work, a projection and lifting based method for computing the
topology of implicit algebraic space curves is adapted and turned into a rendering algorithm.
The space curve is projected onto the plane using resultants and decomposed into several
simpler curves with the help of subresultants. The previous method only works for curves in a
rather limiting generic position, i.e. the coordinate system is sheared if the defining surfaces
have asymptotes in the direction of projection or if two one-dimensional segments of the curve
have the same projection.

By dropping the requirement of correct topology, a new notion of genericity is introduced. The
new condition is easy to check and to ensure. The problem of asymptotes is solved by a simple
geometric transformation along the direction of projection. The geometric transformation to
ensure genericity is only needed during the analysis of the curve while the lifting procedure is
carried out in the original coordinate system. In addition, a new algorithm is proposed for lifting
curve segments that coincide in the projection. It is based on a symbolic computation combined
with a certified real root counting method for polynomials with approximate coefficients.
Provided that the resolution for rendering the projected curve has been chosen appropriately,
the result of the computation is an approximation of all one-dimensional components of the
space curve by line segments. A (partial) analysis of the new approach suggests that its
complexity is comparable to its predecessor. However, the experimental results confirm a
significant gain of performance when the new method is used.

Interactive visualization of blowups of the plane

A rather important geometric transformation in algebraic geometry is the so-called blowup.
Its main application is the resolution of singularities of algebraic varieties. The blowup of the
plane in a finite set of points X yields a surface with the so-called exceptional fiber over X. A
plane curve that is singular in X can become a smooth curve on the blowup surface. Since
these surfaces can not be visualized directly, one has to find an appropriate embedding into
affine space. Such an embedding is given by what we will call a toroidal blowup: The real
projective lines over a disc of the plane are mapped to circles within a torus. The embedding
is given by a parametric description of the surface, which is usually considered to be easy to
visualize. Unfortunately, the parametrization of the toroidal blowup is undefined over the points
in X, which leads to severe numerical instabilities in its neighborhood. Using triangulation
methods, such issues are difficult to resolve and known algorithms are quite slow. In addition,
the generated mesh is static, which leaves no room for interactive deformations of the blowup.

In order to solve this problem, a resultant based implicitization technique is proposed. In
general, the implicit equation has a much higher degree then the parametric one making its
visualization computationally intense and even more prone to errors. It is shown that this
is not the case for toroidal blowups. The degree increases only by a small constant factor,
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1.2. Outline

and the implicit surface is well defined even at the points which correspond to the exceptional
fiber. Furthermore, a linear time algorithm is described to compute the implicit equation. The
final rendering mechanism is implemented via raytracing on graphics hardware so that many
examples of blowups and their deformations can be visualized interactively and in real time.

The implementation has been carried out on the basis of prior work of the author published
in [Stu07; Stu09; SS10; SS11] and the overall result will appear in [SS13].

Parallel computation of resultants on graphics processing units

Resultants are a major tool when working with algebraic varieties as indicated above but their
computation can be costly. Porting algorithms to new platforms like graphics hardware has
become a new trend recently. Their enormous capacity for processing parallel tasks also attracts
researchers from the computer algebra community.

In this work, one of the first implementations of a symbolic operation on graphics processing
units is presented: the parallel computation of bivariate polynomial resultants over the integers.
The algorithm is based on a well-known divide-conquer-combine strategy, that is adapted to
harness much of the parallelism available on graphics hardware. First, the bivariate integer
polynomials are mapped homomorphically to univariate polynomials over finite fields. Then,
univariate resultants of these polynomials are computed and afterwards combined into the
bivariate resultant by interpolation techniques. All steps of the algorithm are parallelized. It
is also shown that the notion of unlucky homomorphisms is unnecessary in the context of
resultants and how this greatly simplifies the algorithm. A complete parallel implementation is
provided, which shows huge speedups over its sequential counterpart.

Most of the above results have been published in [SS12].

1.2. Outline
This thesis is structured as follows. Chapter 2 is dedicated to the algebraic, geometric and
algorithmic foundations that serve as a basis for the upcoming investigations. Most concepts
will also be examined with respect to their computational complexity. The notation introduced
there can also be found in summarized form in Appendix D.

In Chapter 3, we will look into the exact rasterization of real algebraic plane curves. First,
the notion of exactness of a rasterization is introduced and illustrated with some examples.
After providing an overview of the algorithm, it is explained which global information about
the curve is useful in a rasterization context and how it can be computed. Next, the actual
rasterization process is described. Since the algorithm is designed to yield exact results, it is
shown how numerical filtering techniques can be used to speed up the rendering in many cases
without violating the exactness constraint. Then, an analysis of the asymptotic complexity is
provided and backed up with benchmark results. The results are discussed and the chapter
concludes with a perspective on future work.

In Chapter 4, we will consider real algebraic space curves instead of plane curves. The
chapter is arranged similarly to Chapter 3 but this time we focus on the symbolic part of the
algorithm since the numeric part contains only few new results.

In Chapter 5, we introduce the notion of blowups of the plane and then investigate how they
can be visualized interactively with the help of an appropriate embedding into affine space.
The derivation of the implicit form of this embedding and of various of its properties is the aim
of Section 5.2. Next, important visualization issues like clipping and texturing are investigated.
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1. Introduction

In the subsequent part of this chapter, an implementation of the visualization algorithm is
presented. Several visualizations of blowups are provided and discussed. In the last section,
some approaches for future research are given.

In Chapter 6, we explore how to harness the parallel processing power of current graphics
hardware for algorithms from computer algebra by means of bivariate resultants. The chapter
is structured according to the different phases of the algorithm: First it is explained how the
input can be divided so that several parallel threads can work on the problem. The parallel
computation of univariate resultants is described in the second part. Then, we see how the
partial results can be combined to yield the bivariate resultant. Finally, the experimental
results for the implementation are presented.

Related work is discussed separately in Chapters 3 to 6 since the overlap is quite small.
Appendix A contains many of the curve rasterizations that have been produced for the

benchmarks in Chapter 3. In addition, the visualization challenges for plane curves are explained
in more detail. Plots of the absolute running time of the exact plane curve rasterization algorithm
are supplied in Appendix B. Furthermore, equations of curves that have been used in some of
the examples in the thesis are provided in Appendix C.
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2. Foundations
This chapter briefly explains common concepts, notations, algorithms and their complexities
that are used at several places later on. We assume the familiarity of the reader with basic
mathematical concepts from algebra, geometry and the analysis of the complexity of algorithms.
If not stated otherwise, we denote (commutative) rings with R, integral domains with D, fields
with K, ideals with I or J and varieties with V . In addition, we use the notation summarized
in Appendix D.

The main source for this chapter is standard literature like [CLO07; GCL92; BPR03]. In
most cases, we will only sketch proofs or omit them completely if there exists an appropriate
reference. However, there are some minor extensions and original results by the author (namely,
Lemmata 2.2.5, 2.4.11, 2.3.35 and 2.3.36 and Propositions 2.4.9 and 2.4.10).

2.1. Complexity of algorithms
In order to analyze the complexity of an algorithm, we have to define some kind of complexity
model: Given an algebraic structure (A, (fi)), we count the number of applications of the
operations fi that are necessary to obtain a certain result and the number of elements of A we
have to store during the computation. Since this disregards the size of the involved elements of
A, it does not give a precise estimation of the complexity. Depending on the algebraic structure,
different measures of the size of the objects have to be considered. For integral and rational
numbers we assume a binary representation and bound the number of bits necessary to store
a number while for polynomials it is convenient to additionally consider their degree. If the
bitsize of the involved numbers is taken into account, the complexity is usually referred to as
bit complexity or binary complexity.
Notation 2.1.1 (bitsize). In order to bound the bitsize, we will use bit(a) = 1 + dlog2 |a|e ∈
O(log |a|) resp. bit(a

b ) = bit(a) + bit(b) for a, b ∈ Z \ {0} and bit(0) = 1.
Notation 2.1.2 (degree). Given a polynomial A = ∑m

i=0 aix
i ∈ R[x], the degree is given

by deg(A) = m. For multivariate polynomials A ∈ R[x1, . . . , xk], we denote the total degree
of A using degtotal(A) or just deg(A). To consider only a subset of the variables, we use
degxi1 ···xil

(A) to denote the total degree of A when viewed in the ring R′[xi1 , . . . , xil
] where R′

is the polynomial ring over R in the variables {x1, . . . , xk} \ {xi1 , . . . , xil
}. If it is clear from

the context, we may omit the subscript of deg(·).
The degree(s) of a polynomial and the bitsize of its coefficients can be conveniently summarized

by the magnitude.
Definition 2.1.3 (magnitude). The magnitude of a polynomial A ∈ R[x1, . . . , xk], R ∈
{Z,Q} is defined as (τ, n1, . . . , nk) where τ is the bitsize of the coefficients of A and n1 =
degx1(A), . . . , nk = degxk

(A)). We also use (τ, n) to denote the magnitude of a polynomial with
respect to the total degree n of A. If we want to distinguish between the degree of the coefficient
polynomials d = degx1···xk−1(A) and the degree n = degxk

(A) when A is viewed recursively with
outermost variable xk, we use (τ, d, n).
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2. Foundations

During the analysis of algorithms, we will usually derive asymptotic bounds on their com-
plexity using the well known Landau symbols O, Ω and Θ (see e.g. [Knu97a, Section 1.2.11]). In
addition, it is often convenient to disregard (poly-)logarithmic factors and use f(n) ∈ Õ(g(n))
as a shorthand for f(n) ∈ O(g(n) logk g(n)) for some k ∈ N.

Good complexity bounds are frequently derived by multiplying the number of arithmetic
operations in the base ring with the maximal cost of one arithmetic operation. We abbreviate
this as follows.
Notation 2.1.4. We use M(τ) to bound the number of bit operations necessary to perform
arithmetic operations on integral number of bitsize τ .
Remark. Note that M is essentially the cost of multiplication, since addition and subtraction
are in O(τ) and division with remainder is possible in O(M(τ)) [BZ10, Theorem 1.4]. Clearly,
M(τ) ∈ Ω(τ) and M(τ) ∈ O(τ2) using the schoolbook method. These bounds are often
sufficient albeit much more sophisticated algorithms exist. Currently, the best bound is
M(τ) ∈ O(τ log τ2log∗ τ ) ⊂ Õ(τ) [Für07]. See also Table 2.3 for an overview.

Many of our algorithmic tools are defined in terms of determinants of certain matrices.
Although evaluating the determinant directly is typically not the most efficient implementation,
it often allows to find precise bounds on the size of the results easily. Such an analysis is usually
quite difficult for more sophisticated algorithms. We can utilize the following two results.
Lemma 2.1.5 (Hadamard’s inequality). Let M ∈ Zn×n with columns c1, . . . , cn and rows
r1, . . . , rn. Then det(M) ≤ ∏n

i=1 ||ci||2 and det(M) ≤ ∏n
i=1 ||ri||2.

Proof. See [BPR03, Proposition 8.22].

Corollary 2.1.6 (bitsize of determinants). Let M ∈ Zn×n with elements of bitsize at most
τ . Then bit(det(M)) ≤ n(τ + bit(n)/2).

Proof. Let us denote the elements of M with mij . It holds that

(
n∑

i=1
m2

ij

) 1
2

≤
(

n∑
i=1

22τ

) 1
2

=
√

n2τ ≤ 2τ+bit(n)/2. (2.1)

Using Lemma 2.1.5 this yields det(M) ≤ 2n(τ+bit(n)/2).

2.2. Basic geometric properties of algebraic curves and surfaces

A few related concepts need to be introduced to aid the visualization of real algebraic curves
and surfaces. Some of them can be stated for varieties of arbitrary ideals of K[x1, . . . , xn] and
we will do so in order to avoid the distinction between algebraic plane curves, space curves and
surfaces, if possible. In this section, we assume the field K to be of characteristic zero.

The following terms help to decompose algebraic curves and surfaces into (geometrically)
simpler objects.
Definition 2.2.1 ((algebraic) curve segment). A curve segment is the image of a contin-
uous function ϕ : I → Kn, n ≥ 2, where I is the open, half-open or closed unit interval. If C
is an algebraic curve, then ϕ : I → C is called an algebraic curve segment of C.
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2.2. Basic geometric properties of algebraic curves and surfaces

This naturally extends to (algebraic) surface patches by replacing ϕ : I → Kn resp. ϕ : I → C
with ϕ : I2 → Kn, n ≥ 3, resp. ϕ : I2 → S for an algebraic surface S.

Some points on algebraic varieties can be considered special. Singular points are well known
and also the more general concept of a critical point is useful.
Definition 2.2.2 (singular point). Let V = V (F1, . . . , Fk) with F1, . . . , Fk ∈ K[x1, . . . , xn].
A point p ∈ V is called singular if

rank(J(p)) < n− dim(V ), (2.2)

where J is the Jacobi matrix
(

∂Fi
∂xj

)
i=1,...,k;j=1...,n

. Otherwise p is called regular.

Clearly, it depends on the defining polynomials if a point of a variety is singular. Every point
on the circle V1 = V (x2 + y2 − 1, z2) is singular while all points of V2 = V (x2 + y2 − 1, z) are
regular although V1 = V2. Note that the Jacobi matrix of a single polynomial F is nothing but
the gradient vector ∇F . Hence, V (F ) is singular at P ∈ V (F ) if ∇F (P ) = ~0.
Definition 2.2.3 (critical point). A point p ∈ V (F ), F ∈ K[x1, . . . , xn], is called xi-critical
if ∂F

∂xj
(p) = 0 for all j 6= i.

The critical points of an algebraic variety carry crucial geometric information. In order to
proof a related fact, we need the following theorem which tells us that an algebraic variety can
be covered locally by the image of an explicit function.
Theorem 2.2.4 (implicit function theorem). Let F = (F1, . . . , Fm) : Rn+m → Rm be a
continuously differentiable function and let us denote the coordinates of Rn+m with (X, Y ) =
(x1, . . . , xn, y1, . . . , ym). Let further F (A, B) = C ∈ Rm for a point (A, B) ∈ Rn+m. If the
Jacobi matrix 

∂F1
∂y1

(A, B) ∂F1
∂y2

(A, B) . . . ∂F1
∂ym

(A, B)
...

... . . . ...
∂Fm
∂y1

(A, B) ∂Fm
∂y2

(A, B) . . . ∂Fm
∂ym

(A, B)

 (2.3)

is invertible, then there exist open neighborhoods U of A and V of B and a unique continuously
differentiable function G : U → V such that

{(X, G(X)) : X ∈ U} = {(X, Y ) ∈ U × V : F (X, Y ) = C}. (2.4)

Proof. See [Rud98, Theorem 9.28] or [KP02] for an in-depth discussion.

Lemma 2.2.5. Every bounded maximal∗ connected component C of VR(F ), F ∈ R[x1, . . . , xn],
has at least one xi-critical point.

Proof. W.l.o.g. we assume i = n. Let p = (p1, . . . , pn) ∈ C be a point with maximal xn

coordinate. Such a point always exists in C: If C contains only one point, then this point is p.
Otherwise, there is a continuous path in C with limit p. The limit is in VR(F ) since the roots
of a polynomial are continuous functions of its coefficients, which continuously change with the
location on the path. Now, p 6∈ C would contradict the maximality of C.

If p is a singular point of C, it is also critical. Otherwise, VR(F ) is locally the graph of a continu-
ously differentiable function xn = G(x1, . . . , xn−1) such that F (x1, . . . , xn−1, G(x1, . . . , xn−1)) =
0 due to Theorem 2.2.4. The chain rule for partial derivatives yields

∂F

∂xj
(p) = ∂F

∂G
(p) ∂G

∂xj
(p′) (2.5)

∗C is maximal connected in the sense that there is no point P ∈ VR(F ) \ C such that C ∪ P is still connected.
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for j = 1, . . . , n− 1 and p′ = (p1, . . . , pn−1). Since G has a local maximum at p′, it follows that
∂G
∂xj

(p′) = 0 and therefore ∂F
∂xj

(p) = 0 for j = 1, . . . , n− 1 proving that p is xn-critical.

The knowledge of a critical point for each such component is of great value for many geometric
algorithms, and visualization algorithms are no exception. Determining that no such component
is missing in the visualization is actually one of the major problems in the field. Note that points
on unbounded components of plane curves can easily be determined by sampling techniques.

The critical points can also be used to decompose plane curves into monotone segments.
Definition 2.2.6 (strictly monotone curve segment). A segment S ⊆ VR(F ), F ∈
R[x1, x2], is called strictly xi-monotone if S is free of xi-critical points of VR(F ).

The usual notion of increasing and decreasing monotony can also be applied by viewing the
strictly xi-monotone segment S locally as the graph of a function x1 = f(x2) (x1-monotone)
resp. x2 = f(x1) (x2-monotone), which is always possible due to the implicit function theorem
(Theorem 2.2.4). Obviously, strictly monotone segments do not have a local minimum or
maximum w.r.t. the specified variable between their endpoints. The next corollary follows
immediately.
Corollary 2.2.7. The segments of VR(F ), F ∈ K[x1, x2], are decomposed into strictly xi-mono-
tone segments by the xi-critical points of VR(F ).

Since we are usually working in affine space, we need to cover the concept of asymptotes.
We focus on asymptotes with respect to the coordinate axis.
Lemma 2.2.8. Let F ∈ R[x1, . . . , xn]. If VR(F ) has an asymptote over p = (p1, . . . , pn−1) ∈ Rn,
then lcoeffx(F )(p1, . . . , pn−1) = 0.

Proof. Assume that lcoeffx(F )(p1, . . . , pn−1) 6= 0. Then there is also a neighborhood U of p
where lcoeffx(F ) does not vanish. We can now apply a root bound like e.g. Lemma 2.4.3 to all
polynomials F (Q, x), q ∈ U , in order to find a maximal value for this bound. However, this
contradicts the fact that V (F ) diverges to infinity over U .

Finally, we want to bound the number of critical points of an algebraic plane curve. This
can be done by bounding the number of solution of the system F = ∂F

∂xi
= 0.

Theorem 2.2.9 (weak theorem of Bézout). Let F, G ∈ C[x1, x2] be polynomials of degrees
m and n without common factor. Then #VP2

C
(A, B) ≤ m · n.

Proof. See [Fis94, p. 25].

It is important to remark that the bound relates to solutions in P2
C. Hence, common

asymptotes are also covered since lcoeffxi(F ) and lcoeffxi( ∂F
∂xi

) have the same zero set.
Note that we call the above theorem weak because Bézout’s theorem is actually a more

precise statement that incorporates the multiplicity of the solutions which we don’t need.

2.3. Resultants, subresultants and the GCD of polynomials

In this section, we will introduce the reader to resultants, subresultants and their applications.
They are valuable tools in many of the algorithms developed in this thesis. First, consider
polynomials A, B ∈ C[x] with deg A = m and deg B = n. When do A and B have a common
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root in C? This question can be answered by stating the problem in terms of linear algebra
using the following system of linear equations in x0, . . . , xm+n−1:

0 = amxm+n−1 + am−1xm+n−2 + · · ·+ a0xn−1 = xn−1A(x)
0 = amxm+n−2 + · · ·+ a1xn−1 + a0xn−2 = xn−2A(x)

...
0 = amxm + am−1xm−1 + · · ·+ a0 = A(x)

0 = bnxm+n−1 + bn−1xm+n−2 + · · ·+ b0xm−1 = xm−1B(x)
0 = bmxm+n−2 + · · ·+ b1xm−1 + b0xm−2 = xm−2B(x)

...
0 = bnxn + bn−1xn−1 + · · ·+ b0 = B(x)

(2.6)

Written in matrix form Equation (2.6) gives

am am−1 · · · a0
am am−1 · · · a0

. . . . . .
am am−1 · · · a0

bn bn−1 · · · b0
bn bn−1 · · · b0

. . . . . .
bn bn−1 · · · b0


︸ ︷︷ ︸

Syl(A,B)

·


xm+n−1

...
x
1

 =



xn−1A(x)
...

A(x)
xm−1B(x)

...
B(x)


= 0 (2.7)

Clearly, if x0 is a common solution of A(x) = B(x) = 0, then (1, x0, . . . , xm+n−1
0 ) is also a

solution of Equation (2.7) and vice versa. We know from linear algebra that Equation (2.7)
has a non-trivial solution if and only if det(Syl(A, B)) = 0. The matrix Syl(A, B) is usually
referred to as the Sylvester matrix but this name is not undisputed (see [Akr93]). This leads to
the definition of resultants.
Definition 2.3.1 (resultant). The resultant of two polynomials A, B ∈ R[x] is the deter-
minant of their Sylvester matrix Syl(A, B), i.e. Res(A, B) = det(Syl(A, B)). If R is another
polynomial domain, we may write Resx(A, B) = det(Sylx(A, B)) in order to identify the
outermost variable if this is not clear from the context.
Lemma 2.3.2 (Sylvester’s criterion). Let A, B ∈ D[x], D a unique factorization domain
(UFD). Then A and B have a non-trivial common factor if and only if Res(A, B) = 0.

Proof. See [GCL92, p. 288].

Note that the formulation using the Sylvester matrix is not the only one for resultants. There
are several others, e.g. Bézout matrices. See [MS99] for a more general discussion.

For polynomials A, B over a ring R with roots in the algebraically closed field C ⊃ R, the
resultant can also be stated in terms of a symmetric function of the roots of A and B.
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Theorem 2.3.3. Let A = am
∏m

i=1(x− xi), B = bn
∏n

j=1(x− yj), then

Res(A, B) = an
mbm

n

m∏
i=1

n∏
j=1

(xi − yj). (2.8)

Furthermore,

Res(A, B) = an
m

m∏
i=1

B(xi) = bm
n

n∏
j=1

A(yi). (2.9)

Proof. See [BPR03, Theorem 4.26 and Lemma 4.27].

Using the definition Res(A, B) = det(Syl(A, B)), the remarkable property that Res(A, B) ∈
R is obvious. This is not clear from the above theorem since it suggests Res(A, B) ∈ C.
Nevertheless, Theorem 2.3.3 frequently appears in proofs related to resultants.

The resultant has many useful properties in addition to the above facts. Since most of them
can be stated similarly for the so-called subresultants, we will first generalize resultants to
subresultants to avoid repetitions. In the literature, subresultants have been approached from
various sides. The term signed subresultant is used in [BPR03], while subresultants are defined
in [GCL92] and [Yap00]. Furthermore, [GRL98] introduces Sturm-Habicht polynomials and in
[LR01] Sylvester-Habicht polynomials are described. Besides some minor differences regarding
some special cases, all definitions are equal up to sign. In this thesis, the signs are only relevant
in the context of real root counting of univariate polynomials (see Section 2.4.1). Therefore, we
will follow the unified approach of signed subresultants presented in [BPR03].
Definition 2.3.4 (signed subresultant). For 0 ≤ j ≤ n the j-th signed subresultant of
A = ∑m

i=0 aix
i ∈ R[x] and B = ∑n

i=0 bix
i ∈ R[x], n < m, is the polynomial

SResj(A, B) = det(Sj(A, B)), (2.10)

where

Sj(A, B) =





am bn

am−1
. . . ... bn−1

... . . . am bn
... ...

... am−1 bn−1
...

...
...

...
...

a2j−n+2 · · · aj+1 bj+1 · · · b2j−m+2

xn−j−1A · · · x0A x0B · · · xm−j−1B︸ ︷︷ ︸
n−j columns

︸ ︷︷ ︸
m−j columns

(2.11)

is a square matrix of size (m + n− 2j)× (m + n− 2j). All coefficients with negative subscripts
and the entries above am and bn are zero. For n < j ≤ m we define

SResm(A, B) = sign(am−n−1
m )A, (2.12)

SResm−1(A, B) = sign(am−n+1
m )B, (2.13)

SResj(A, B) = 0, n < j < m− 1, (2.14)
SRes−1(A, B) = 0. (2.15)

12



2.3. Resultants, subresultants and the GCD of polynomials

Note that SResn(A, B) = εm−nbm−n−1
m B where εm = (−1)

m(m−1)
2 . In case of m = n, we set

SResm(A, B) = B and SResj(A, B) = det(Sj(A, B)) for 0 ≤ j < n.
An alternative representation of signed subresultants, which allows to deduce the bound

deg(SResj) ≤ j, is the following.
Corollary 2.3.5. Let A, B ∈ R[x] be polynomials of degree m and n. Then for 0 ≤ j ≤ n

SResj(A, B) =
j∑

i=0
det(Sij(A, B))xi (2.16)

with

Sij(A, B) =



am bn

am−1
. . . ... bn−1

... . . . am bn
... ...

... am−1 bn−1
...

...
...

...
...

a2j−n+2 · · · aj+1 bj+1 · · · b2j−m+2
ai+j−n+1 · · · ai bi · · · bi+j−m+1


∈ R(m+n−2j)×(m+n−2j). (2.17)

Proof. Write the last row of the matrix Sj(A, B) as ∑n
i=0 vijxi using vij = (ai+j−n+1, . . . , ai,

bi, . . . , bi+j−m+1). Since the determinant is a linear function of the last (in fact, of every) row,
it follows that det(Sj(A, B)) = ∑n

i=0 xi det(Sij(A, B)) where Sij is equal to Sj with its last row
replaced by vij . In order to show that ∑n

i=0 xi det(Sij(A, B)) = ∑j
i=0 xi det(Sij(A, B)), note

that the last row of Sij(A, B) is equal to row (m + n− j− i− 1) for i ≥ j + 1 (the case i = j + 1
can easily be visualized in Equation (2.17)). Therefore, det(Sij) = 0 for i ≥ j + 1.

Since it is not completely obvious from the two definitions, we relate resultants to subresultants
in the following corollary.
Corollary 2.3.6. SRes0(A, B) = (−1)

(m−1)m
2 Res(A, B) is the resultant of A and B up to sign.

Proof. First, note that SRes0(A, B) = det(S00(A, B)). The matrices S00(A, B)T and Syl(A, B)
are equal up the reversed order of the rows in the block with coefficients of B. To reverse
the order of these m rows, we successively move each of the rows to its desired position by
swapping rows. This requires ∑m

i=1(i− 1) = m(m− 1)/2 swapping operations, which explains
the additional factor (−1)

(m−1)m
2 .

In addition to the signed subresultant, their cofactors SResU and SResV will also prove to
be very useful.
Definition 2.3.7 (signed subresultant cofactor). For 0 ≤ j ≤ n the j-th signed sub-
resultant cofactors of A = ∑m

i=0 aix
i ∈ R[x] and B = ∑n

i=0 bix
i ∈ R[x], n < m, are the

polynomials

SResUj(A, B) = det(Mj(A, B)), (2.18)
SResVj(A, B) = det(Nj(A, B)), (2.19)

where the matrices Mj(A, B) resp. Nj(A, B) are obtained from Sj(A, B) by replacing the last
row with (xn−j−1, . . . , x0, 0, . . . , 0) resp. (0, . . . , 0, x0, . . . , xm−j−1).

13



2. Foundations

Corollary 2.3.8. For 0 ≤ j ≤ n it holds that

SResj(A, B) = SResUj(A, B)A + SResVj(A, B)B (2.20)

with deg(SResUj(A, B)) ≤ n − j and deg(SResVj(A, B)) ≤ m − j. If SResj(A, B) 6≡ 0, the
representation in Equation (2.20) is unique, i.e. if SResj(A, B) = UA+V B with deg(U) ≤ n−j
and deg(V ) ≤ m− j, then U = SResUj(A, B) and V = SResVj(A, B).

Proof. Expanding the determinant det(Sj(A, B)) along the last row yields the result up to the
uniqueness of SResUj(A, B) and SResVj(A, B). For a proof of this fact we refer to [BPR03,
Proposition 8.58].

Definition 2.3.9. We will call SResj regular if deg(SResj) = j, and defective of degree k
if deg(SResj) = k < j. A signed subresultant sequence S = [SRes0(A, B), . . . , SResn(A, B)]
containing at least one defective subresultant is called defective or non-regular. Otherwise it is
called regular.
Notation 2.3.10. We denote by sresj(A, B) = coeffj(SResj(A, B)) the j-th principal signed
subresultant coefficient and by sresj(A, B) = lcoeff(SResj(A, B)) the leading coefficient of the
signed subresultant. Note that sresj(A, B) = sresj(A, B) in the regular case.
Notation 2.3.11. We will use the abbreviation SResj(A) = SResj(A, A′) as well as sresj(A) =
sresj(A, A′) and sresj(A) = sresj(A, A′). If the polynomials used to create the sequence are
clear from the context, we will omit them altogether.

The definition of the subresultants in terms of determinants has several useful properties
as we will see later. However, it is better to use the following theorem to compute the signed
subresultants.
Theorem 2.3.12 (structure theorem for signed subresultants). Let A, B ∈ D[x] and
0 ≤ j < i ≤ n. Suppose SResi−1 and SResj−1 are non-zero and deg(SResi−1) = j and
deg(SResj−1) = k, then

SResk−1 = −rem(sresk sresj−1 SResi−1, SResj−1)
sresj sresi−1

(2.21)

= −sresk sresj−1 SResi−1−SResQk−1 SResj−1
sresj sresi−1

, (2.22)

where the quotient SResQk−1 is in D[x] with deg(SResQk−1) = j − k. Additionally, if j ≤ n
and k < j − 1, the polynomials SResk and SResj−1 are proportional with

sresj−1 SResk = sresk SResj−1 (2.23)

sresk = (−1)
j(j−1)

2
sresj−k

j−1

sresj−k−1
j

(2.24)

and the polynomials SResj−2, . . . , SResk+1 are identically zero.

Proof. See [BPR03, Theorem 8.53].
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2.3. Resultants, subresultants and the GCD of polynomials

Corollary 2.3.13. If deg(SResj) = j, 0 < j ≤ n and deg(SResj−1) = k, k ≤ j − 1, then

SResk−1 = −rem(sresk sresj−1 SResj , SResj−1)
sres2

j

(2.25)

= −sresk sresj−1 SResj −SResQk−1 SResj−1
sres2

j

. (2.26)

Proof. Immediately, using i = j + 1 in Theorem 2.3.12.

In other words, a computation of the sequence of signed subresultants is possible as follows:
Successively apply Corollary 2.3.13 to already computed subresultants starting with SResn(A, B)
and SResn−1(A, B) (which needs to be computed elsewise since Corollary 2.3.13 cannot be
applied with j = m)†. As soon as deg(SResk−1(A, B)) = l < k − 1, we have a defective
sequence. Thus, we have to use the proportionality property stated in Theorem 2.3.12 to
determine SResl(A, B). The elements SResk−2(A, B), . . . , SResl+1(A, B) are identically zero.
Now, SResl(A, B) can again be used as a dividend in Corollary 2.3.13 since deg SResl(A, B) = l.

The signed subresultant cofactors SResU and SResV can be computed similarly by utilizing
the quotients SResQk−1. Again, all intermediate results are in D[x].
Lemma 2.3.14. If deg(SResj) = j, 0 < j ≤ n and deg(SResj−1) = k, k ≤ j − 1, then

SResUk−1 = −sresk sresj−1 SResUj −SResQk−1 SResUj−1
sresj sresi−1

, (2.27)

SResVk−1 = −sresk sresj−1 SResVj −SResQk−1 SResVj−1
sresj sresi−1

, (2.28)

where SResQk−1 = quot(sresk sresj−1 SResj , SResj−1).

Proof. It is easy to verify by induction that the polynomials SResUk−1 and SResVk−1 satisfy
the relation SResk−1 = SResUk−1 A + SResVk−1 B. This immediately implies the result due to
the uniqueness of this representation (see Corollary 2.3.8).

See also [BPR03, Algorithm 8.75] for the pseudocode of the algorithm for computing the
signed subresultants and their cofactors.
Remark. [Rei97] and [LR01] propose an asymptotically faster algorithm to compute a specific
subresultant and its cofactors. It only needs O(m log m) arithmetic operations in the coefficient
domain instead of the O(m2) operations imposed by Theorem 2.3.12. However, if the complete
sequence is needed, no improvement of the asymptotic complexity is possible since the number
of coefficients in the sequence is in Θ(n2).

The structure that arises in the sequence of signed subresultants is often called the gap
structure due to the gaps that occur in defective sequences. The corresponding diagrams
illustrating the sequence of degrees as shown in Figure 2.1 are also known as Habicht diagrams
due to their occurrence in [Hab48].

In order to better understand Theorem 2.3.12, we connect the signed subresultant sequence
to polynomial remainder sequences. We need a few definitions.

†Corollary 2.3.13 would be applicable to j = m if we would define SResm(A, B) = sign(am−n−1
m )a−1

m A for
A, B ∈ D[x]. In this case, it is possible that SResm(A, B) 6∈ D[x]. Therefore, we stay close to the definition in
[BPR03].
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2. Foundations

A ∼ SRes11
B ∼ SRes10

SRes90
B ∼ SRes8

SRes7
SRes6
SRes50
SRes40

SRes6 ∼ SRes3
SRes2
SRes1
SRes0

Figure 2.1.: A Habicht diagram illustrating a possible sequence of degrees in a particular
sequence of signed subresultants for polynomials A and B with degrees 11 and 8. The
length of the lines is chosen according to the number of coefficients, i.e. proportional to
deg(SResj(A, B)) + 1. Lines of equal length correspond to subresultants that are similar.

Definition 2.3.15 (similar polynomials). Two polynomials A, B ∈ R[x] are similar, denoted
A ∼ B, if there exist non-zero a, b ∈ R such that aA = bB.
Lemma 2.3.16 (pseudodivision). Let S be a commutative ring and A, B ∈ S[x] non-zero
polynomials of degree m, n. Then there exist Q, R ∈ S[x] such that

lcoeff(B)max(m−n+1,0)A = QB + R (2.29)

with deg R < n. They are unique if lcoeff(B) is not a zero divisor in S. We call pquot(A, B) =
Q the pseudoquotient and prem(A, B) = R the pseudoremainder of the pseudodivision of A
and B.

A proof for the existence and uniqueness of the pseudoquotient and -remainder can be found
in [Mis93, Theorem 5.2.1]. Note that pquot(A, B) = quot(lcoeff(B)max(m−n+1,0)A, B) and
prem(A, B) = rem(lcoeff(B)max(m−n+1,0)A, B).
Definition 2.3.17 (polynomial remainder sequence (PRS)). Let A0, A1 ∈ R[x]. Then
[Ak, . . . , A1, A0] is called a polynomial remainder sequence (PRS) of A0 and A1 if

Ai+1 ∼ prem(Ai−1, Ai), 1 ≤ i < k, (2.30)

such that prem(Ak−1, Ak) = 0.
An important and well known PRS is the so-called Euclidean PRS, which uses Ai+1 =

rem(Ai−1, Ai) and hence requires S to be a field. A variant of this PRS, which we will use
in some of our examples as well as for counting the real roots of polynomials, is the signed
Euclidean PRS where Ai+1 = − rem(Ai−1, Ai). In [BPR03], this PRS is also called signed
remainder sequence. The next corollary follows immediately from Theorem 2.3.12.
Corollary 2.3.18. Each polynomial in the signed subresultant sequence S = [SRes0(A, B), . . . ,
SResm(A, B)] is either similar to a polynomial in the signed remainder sequence of A and B
or identically zero.

The signed remainder sequence is, up to sign, equal to the classical Euclidean remainder
sequence, which is used in the Euclidean algorithm to compute greatest common divisors
(GCDs) of polynomials. Corollary 2.3.18 already suggests that there is a strong connection
between the GCD of polynomials and subresultants. This is indeed the case.
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2.3. Resultants, subresultants and the GCD of polynomials

Theorem 2.3.19. Let S = [SRes0(A, B), . . . , SResn(A, B)] be the sequence of signed sub-
resultants of A, B ∈ D[x], D a UFD. SResj(A, B) is a GCD of A and B if and only if
SResj(A, B) 6≡ 0 and SResi(A, B) ≡ 0 for 0 ≤ i < j. Furthermore, SResj(A, B) is non-
defective, i.e. deg SResj(A, B) = j.

Proof. See [BPR03, Corollary 4.45, Corollary 8.55].

Since gcd(A, B) divides A and B, it can be used to remove common factors from both
polynomials. This is especially useful if B = A′.
Definition 2.3.20 (squarefree polynomial). A polynomial A ∈ D[x], D a UFD, is called
squarefree if it has no repeated factors, i.e. if there exist no B ∈ D[x] with deg B ≥ 1 such that
B2|A. If aA = ∏n

i=0 Ami
i with squarefree polynomials Ai ∈ D[x] and a constant a ∈ D then∏n

i=0 Ai is called the squarefree part of A.
Several algorithms in this thesis require their input to be squarefree. Therefore, we need

to be able to compute the squarefree part of a polynomial. Note that the squarefree part is
unique up to some multiplicative constant in D.
Lemma 2.3.21. The polynomial A

gcd(A,A′) is squarefree.

Proof. See [BPR03, Lemma 10.12].

We can compute gcd(A, A′) using subresultants according to Theorem 2.3.19 and then
perform the division A

gcd(A,A′) . By utilizing the subresultant cofactors, the squarefree part can
also be expressed as a determinant. Thus, divisions are not necessary to compute the squarefree
part.
Lemma 2.3.22. If deg(gcd(A, A′)) = j, then SResVj−1(A, A′) is the squarefree part of A.

Proof. See [BPR03, Corollary 10.14].

If the coefficient ring is Z, Theorem 2.3.19 and Lemma 2.3.22 can be extended to further
reduce the size of the coefficients.
Lemma 2.3.23. Let SResj = SResj(A, A′) and SResVj−1 = SResVj−1(A, A′) for A ∈ Z[x]. If
deg(gcd(A, A′)) = j, then lcoeff(A) SResj

sresj
,

lcoeff(A) SResVj−1
lcoeff(SResVj−1) ∈ Z[x]. The bitsize of the coefficients

of lcoeff(A) SResj

sresj
and lcoeff(A) SResVj−1

lcoeff(SResVj−1) is n− j + τ + bit(n + 1).

Proof. See [BPR03, Algorithm 10.17].

2.3.1. Size of remainders and subresultants

The size of the remainders in a PRS is of major influence on the time spent in exact algorithms
and on the stability of numerical algorithms. Let us first consider the following example taken
from [BPR03, Example 8.44]. It illustrates the coefficient growth in the sequence of signed
remainders.
Example 2.3.24 (size of signed remainders). Let

A :=9x13 − 18x11 − 33x10 + 102x8 + 7x7 − 36x6

− 122x5 + 49x4 + 93x3 − 42x2 − 18x + 9.
(2.31)

17



2. Foundations

The GCD of A and A′ is of degree 5. The leading coefficients of the polynomials in the signed
remainder sequence of A and A′ are

36
13 ,

−10989
16 ,

−2228672
165649 ,

−900202097355
4850565316 ,

−3841677139249510908
543561530761725025 ,

−6648854900739944448789496725
676140352527579535315696712 ,

− 200117670554781699308164692478544184
1807309302290980501324553958871415645 .

(2.32)

It is also possible to give a bound on the size of the coefficients.
Lemma 2.3.25 (size of signed remainders). If A, B ∈ Z[x] are of degree m and n < m
and have coefficients of bitsize at most τ , then the numerators and denominators of the
coefficients of the polynomials in the signed remainder sequence of A and B have bitsizes at
most (m + n)(n + 1)(τ + bit(m + n)) + τ .

Proof. Determine the constants of proportionality of the signed remainders and the signed
subresultants. These constants are rational expressions in the subresultant coefficients. Derive
the upper bounds by applying Lemma 2.3.27. See [BPR03, Theorem 8.70] for the details.

According to [BPR03, Section 8.3.3], the quadratic growth (in n) of the size of the coefficients
is often observed in practice. Furthermore, the coefficients are in Q although A ∈ Z[x]. In
order to remove this limitation, one could apply pseudodivision instead of Euclidean division.
Unfortunately, this leads to an exponential growth of the bitsize of the coefficients in the
polynomial remainder sequence (see [GCL92, p. 282]). Applying this method to Example 2.3.24
yields a leading coefficients with 980 decimal digits in the last non-zero pseudoremainder. It
would be possible to take the primitive part of the pseudoremainder after each pseudodivision.
This method yields the primitive PRS. Although the primitive PRS is the PRS with the
smallest coefficients possible, it can be quite time consuming to determine the content of the
pseudoremainders, especially in the case of multivariate polynomials. Again, subresultants
give a nice solution to this problem. We will first revisit Example 2.3.24 and compute its
principal signed subresultant coefficients. Afterwards, we state an upper bound for the size of
the subresultant coefficients.
Example 2.3.26 (size of signed subresultants). Let A be defined as in Example 2.3.24. The
principal signed subresultant coefficients sres11, . . . , sres5 of A and A′ are

37908,

−72098829,

−666229317948,

−1663522740400320,

−2181968897553243072,

−151645911413926622112,

−165117711302736225120

(2.33)

and sres4, . . . , sres0 ≡ 0.
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2.3. Resultants, subresultants and the GCD of polynomials

Lemma 2.3.27 (size of signed subresultant coefficients). If A, B ∈ Z[x] are of degree m
and n < m and have coefficients of bitsizes at most τ , then the bitsize of the coefficients of
SResj(A, B), SResUj(A, B), SResVj(A, B) is at most (τ + bit(m + n− 2j))(m + n− 2j).

Proof. Apply Hadamard’s inequality (see Lemma 2.1.5 and Corollary 2.1.6) to the coefficients
of SResj(A, B) written in matrix form (see Corollary 2.3.5). See [BPR03, Proposition 8.67] for
the details.

The above result can be extended to multivariate polynomials.
Lemma 2.3.28 (degree of signed subresultant coefficients). If A and B have degrees
m and n and coefficients in R[y1, . . . , yl] of total degree d, then deg(coeffi(SResj(A, B))) ≤
d(m + n− 2j) for all 0 ≤ i ≤ j.

Proof. Using the Leibniz formula, the determinants det(Sij(A, B)) (see Corollary 2.3.5) can be
written as a sum of products of m + n− 2j polynomials having degree at most d.

Lemma 2.3.29 (magnitude of signed subresultant coefficients (multivariate case)).
If A and B have degrees m and n and coefficients in Z[y1, . . . , yl] of total degree d and bitsize
at most τ , then the coefficients of SResj(A, B) have bitsizes at most (τ + bit(m + n))(m + n−
2j) + l bit((m + n)d + 1).

Proof. See [BPR03, Proposition 8.69].

The above results show that the subresultant PRS gives a method to compute (up to a
constant) the GCD, the resultant and the squarefree part of polynomials that is superior to
the signed remainder sequence.

Given the size of the subresultant coefficients, it is not hard to derive a bound on the size of
the signed subresultant quotient. This bound will be useful in Section 2.4.1.1.
Corollary 2.3.30 (magnitude of signed subresultant quotient coefficients). Let A, B ∈
D[y1, . . . , yl][x] be defined as in Lemma 2.3.29 and let q ∈ D[y1, . . . , yl] be a coefficient of the
signed subresultant quotient SResQk−1 as defined in Theorem 2.3.12. Then

degy1,...,yk
(q) ≤ 3d′ (2.34)

bit(q) ≤ 3τ ′ (2.35)

where d′ = d(m + n− 2(k− 1)) and τ ′ = (τ + bit(m + n))(m + n− 2(k− 1)) + l bit((m + n)d + 1)
are the bounds on degy1,...,yl

(SResk−1(A, B)) and the bitsize of the coefficients of SResk−1(A, B).

Proof. By Theorem 2.3.12, it holds that

sresj sresi−1 SResk−1 + sresk sresj−1 SResi−1 = SResQk−1 SResj−1 . (2.36)

Each coefficient of the product SResQk−1 SResj−1 is the sum of the product of three coefficients
of SResl(A, B), l = k, j − 1, j, i − 1. Since d′ is also a bound on degy1,...,yl

(SResl(A, B)),
l = k, j−1, j, i−1, the first result follows. The statement on the bitsize follows by the same line
of arguments. We only have to note that the one additional bit caused by the sum can be ignored
since τ ′ overestimates the bitsize of the coefficients of SResl(A, B), l = k, j − 1, j, i− 1.
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2.3.2. Specialization properties

We will now examine the behavior of resultants and subresultants under specialization. The
term specialization arises from computations with polynomials with indeterminate coefficients.
The question to answer is the following: Can we interchange the order of specializing the
indeterminate coefficients of A and B to values from a concrete ring with the computation of
SResj(A, B)?

Most of the facts derived in this section originally appeared in [Gon+90; Gon+94]. Never-
theless, we refer to more recent literature where appropriate.

We first define homomorphisms in order to explore the concept of specialization in a more
general setting.
Definition 2.3.31 (homomorphism). Let (A, (fi)) and (B, (gi)) be two algebraic structures
and let σi be the arity of the operations fi and gi. A mapping ϕ : A → B is called a
homomorphism with respect to the algebraic structures (A, (fi)) and (B, (gi)) if

ϕ(fi(a1, . . . , aσi)) = gi(ϕ(a1), . . . , ϕ(aσi)) (2.37)

for all i and all a1, . . . , aσi ∈ A.
If ϕ : R→ R′ is a ring homomorphism, we will usually denote the induced homomorphism

between polynomials rings R[x] and R′[x] and between matrices over R and R′ by ϕ, too.
As an example, consider a multivariate polynomial A ∈ Z[y1, . . . , yk][x]. Computations

involving Ã(x) = A(p1, . . . , pk, x) with (p1, . . . , pk) ∈ (Q \ Q)k, i.e. with A evaluated a point
whose coordinates are not-rational algebraic numbers, are mostly extremely difficult. In
this case, it is often advantageous to perform the computations directly on the multivariate
polynomial A and evaluate the result at (y1, . . . , yk) = (p1, . . . , pk) afterwards. This type of
homomorphism is usually referred to as the evaluation homomorphism. Depending on the
concrete application, numerical methods can often be utilized in the evaluation step. Clearly,
not all computations involving multivariate polynomials can be carried out this way. We will
now study the limitations.
Lemma 2.3.32 (specialization property of subresultants). Let A, B ∈ R[x] and ϕ : R→
R′ a ring homomorphism. If deg(ϕ(A)) = deg(A) and deg(ϕ(B)) = deg(B), then

ϕ(SResj(A, B)) = SResj(ϕ(A), ϕ(B)). (2.38)

Proof. If the degrees of A and B do not change under ϕ, the matrices ϕ(Sj(A, B)) and
Sj(ϕ(A), ϕ(B)) are equal and so are their determinants.

In this thesis, we will often consider evaluation homomorphisms for multivariate polynomials
over Z resp. Q. In the bivariate case, a polynomial A = ∑n

i=0 ai(y)xi might be specialized by
the homomorphism ϕc : Q[y] → R given by ϕc(ai(y)) = ai(c) for some constant c ∈ R. It is
clear from the fundamental theorem of algebra (see Theorem 2.4.1) that an(y) has at most
n complex roots. Therefore, Lemma 2.3.32 is applicable for almost any c ∈ R. In general, if
A ∈ Q[y1, . . . , yk][x], then an(y1, . . . , yk) vanishes on a subset of Ck with codimension at most
1, i.e. the condition of Lemma 2.3.32 is fulfilled for almost any randomly chosen point c ∈ Ck.
However, in practice it is useful to specialize the subresultants also at a point where deg(A) or
deg(B) decreases under ϕ.
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2.3. Resultants, subresultants and the GCD of polynomials

Lemma 2.3.33. If deg(ϕ(A)) = m and deg(B)− deg(ϕ(B)) = k ≤ 0, then for 0 ≤ j ≤ n

ϕ(SRes(j, A, B)) =
{

ϕ(am)k SRes(j, ϕ(A), ϕ(B)) j ≤ deg(ϕ(B)),
0 otherwise.

(2.39)

Proof. The proof for the case of j ≤ deg(ϕ(B)) can be found in [BPR03, p. 278f and Lemma
8.50]. In the remaining case deg(ϕ(B)) < j, the columns n− j + 1 and n− j + 2 are zero up to
the last element. Thus, these columns are linearly dependent.

For brevity we skip the cases, where j > n. They can be derived directly from Definition 2.3.4.
Finally, we need to examine the case where deg(ϕ(A)) < deg(A) in addition to deg(ϕ(B)) <
deg(B).
Corollary 2.3.34. If deg(ϕ(A)) < deg(A) and deg(ϕ(B)) < deg(B), then ϕ(SResj(A, B)) = 0
for j < n.

Proof. Clearly, all elements in the first row of Sj(A, B) are mapped to zero by ϕ yielding
ϕ(det(Sj(A, B))) = det(ϕ(Sj(A, B))) = 0.

This last case is often missing in textbooks on computer algebra (e.g. in [BPR03; GCL92;
Yap00] while it is stated in [Mis93]). The corollary is not difficult to derive and it will be very
useful in Chapter 6.

2.3.3. Polynomial content

Consider subresultants that are computed over a multivariate polynomial ring. In this case, it
is often helpful to know their polynomial content or at least some factor of it a priori since
each subresultant vanishes completely on the zero set of its content. In the following, we show
how certain factors of the coefficients of A and B relate to the content of SResj(A, B).
Lemma 2.3.35. Let A = ∑m

i=0 aix
i, B = ∑n

i=0 bix
i ∈ D[x] and c, d ∈ D, D a UFD, with c | A

and d | B. Then cn−jdm−j | SResj(A, B) for 0 ≤ j < min(m, n).

Proof. The matrix Sj(A, B) has n−j columns with entries that are coefficients of A or multiples
of A (in the last row). Therefore, these columns are divisible by c and cn−j | det(Sj(A, B)) =
SResj(A, B). The same arguments hold for the m− j columns which are divisible by d.

The following result can be used if d = c and c does not divide all coefficients of A and B.
Lemma 2.3.36. Let A, B ∈ D[x] and c ∈ D as above. If c | am, . . . , c | am−k, c | bn, c |
. . . , bn−k for 0 ≤ k ≤ min(m, n) then cl | SResj(A, B) with l = min(k + 1, m + n− 2j − 1) for
0 ≤ j < min(m, n).

Proof. The entries of the first m + n− 2j − 1 rows of Sj(A, B) are built from the coefficients
ai, bi and the first min(k + 1, m + n − 2j − 1) of the rows are built from (a subset of) the
coefficients am, . . . , am−k, bn, . . . , bn−k which are divisible by c.
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2.3.4. Chain rule
Another important question is the behavior of subresultants under composition, i.e. how are the
subresultants of (A◦C)(x) = A(C(x)) and (B◦C)(x) = B(C(x)) connected to the subresultants
of A(x) and B(x).
Lemma 2.3.37. Let A, B, C ∈ D[x] with deg(A) = m, deg(B) = n and deg(C) = k and denote
SResj = SResj(A, B) and SRes∗

j = SResj(A ◦ C, B ◦ C). Then it holds that

SRes∗
jk = ± lcoeff(C)mnk−j2k−j sresk−1

j SResj ◦C (2.40)

and if k > 1

SRes∗
jk−1 = ± lcoeff(C)mnk−j2k+j sresk−1

j SResj−1 ◦C (2.41)
SRes∗

jk−2 = · · · = SRes∗
(j−1)k+1 = 0 (2.42)

for 0 ≤ j ≤ min(m, n).

Proof. See [Hon97; Che01].

In [Hon97; Che01], the chain rule has been derived for Sylvester-Habicht polynomials, which
are equal to signed subresultants up to sign. We restrain from the tedious derivation of actual
sign of the SRes∗ since we do not need it in our later considerations.

2.3.5. Resultants and the extension theorem
We have already seen in Section 2.3 that the resultant can be used to check if two univariate
polynomials have a common factor. We will now go one step further and have a look at the
multivariate case.
Definition 2.3.38 (elimination ideal). Given I = 〈f1, . . . , fs〉 ⊂ R[x1, . . . , xk] the l-th
elimination ideal Il is the ideal of R[xl+1, . . . , xk] defined by

Il = I ∩R[xl+1, . . . , xk]. (2.43)

A similar construction, which is geometric instead of algebraic, is the projection.
Definition 2.3.39 (projection). The projection of a set V ∈ Ak to an affine subspace Ak−l

with l < k is given by

πl : Ak → Ak−l, πl(V ) = {(al+1, . . . , ak) : (a1, . . . , ak) ∈ V }. (2.44)

In algebraic geometry, elimination and projection can be connected using the following
theorem.
Theorem 2.3.40 (closure theorem). Let V (f1, . . . , fs) ⊂ Ck and let Il be the l-th elimination
ideal of 〈f1, . . . , fs〉. Then V (Il) is the Zariski closure of πl(V (f1, . . . , fs)) ∈ Ck−l.

Proof. See [CLO07, Theorem 3.2.3].

Therefore, if we want to solve for f1 = · · · = fs = 0, we can compute V (I1) ∈ Ak−1, which is
a superset of the projection of V (I) to Ak−1, and then try to lift the partial solutions back to
Ak. The task of finding the first elimination ideal of an ideal 〈A, B〉 can be solved by resultants.
It will occur frequently in this thesis.
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Proposition 2.3.41. Let A, B ∈ R[x1, . . . , xk] have positive degrees in x1. Then Resx1(A, B)
is in the first elimination ideal 〈A, B〉 ∩R[x2, . . . , xk].

Proof. Obviously, Resx1(A, B) ∈ R[x2, . . . , xk] since it is an integer polynomial in the coefficients
of A and B which are elements of R[x2, . . . , xk]. Furthermore, we know by Corollary 2.3.8 that
Resx1(A, B) = UA + V B with U, V ∈ R[x1, . . . , xk]. Hence, UA + V B ∈ 〈A, B〉.

In order to compute higher elimination ideals of ideals generated by more than two poly-
nomials, more sophisticated methods like Gröbner bases or multipolynomial resultants have
to be considered, which is out of the scope of this thesis. The next result can be seen as a
generalization of the closure theorem since it gives a condition for x ∈ V (I1) ∩ π1(V ).
Theorem 2.3.42 (extension theorem). Let I = 〈f1, . . . , fs〉 ⊂ C[x1, . . . , xk] and let I1
be the first elimination ideal of I. Suppose that there is a partial solution (c2, . . . , ck) ∈
V (I1). If (c2, . . . , ck) 6∈ V (lcoeffx1(f1), . . . , lcoeff(fs)). Then there exists a c1 ∈ C such that
(c1, c2, . . . , ck) ∈ V (f1, . . . , fs).

Proof. See [CLO07, Theorem 3.6.4].

The extension theorem tells us that every partial solution of a polynomial system of equations
extends to a solution if we are working over Ck provided the leading coefficients of the defining
polynomials do not vanish at the partial solution. The latter restriction can be dropped if we
move over to the projective extension theorem and allow solutions from P1

C × Ck−1. Since we
are mainly interested in real solutions, we have to face the additional problem that a partial
solution from Rk−1 will not necessarily extend to a solution in Rk even if the condition on the
leading coefficients is met.

2.4. Polynomial real root counting

For polynomials with coefficients in the complex numbers, we have the following well known
statement about its roots.
Theorem 2.4.1 (Fundamental theorem of algebra). Every non-constant polynomial A ∈
C[x] has a root in C.

Proof. See e.g. [BPR03, Theorem 2.14 and Remark 2.21].

While the total number of complex roots of a real polynomial is, due to the fundamental
theorem of algebra, immediately clear by its degree, there is no such simple rule for its number
of real roots. Hence, counting the number of real roots of a real polynomial is one of the
fundamental problems in algorithmic real algebraic geometry. The known methods can be
roughly grouped into two categories: Algorithms that allow to directly retrieve the number of
real roots over any interval and methods that have to apply some kind of subdivision scheme
to find the exact number of real roots. For the first class, we will review Sturm chains and
its extension based on subresultants. As an instance of the second class, we will look at a
subdivision method that is based on Descartes’ rule of signs. We will introduce some useful
notation before going into the details.
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Definition 2.4.2 (number of real roots). We denote by

#rr(A, I) = |{x ∈ I : A(x) = 0}| (2.45)

the number of distinct real roots of A within I ⊆ R. We take multiplicities into account by
using

#rrm(A, I) =
∑

x∈I∧A(x)=0
m(A, x), (2.46)

where m(A, x) denotes the multiplicity of x as a root of A. The case I = R may be abbreviated
by #rr(A) = #rr(A,R) and #rrm(A) = #rrm(A,R).

In order to count the total number of real roots of a real polynomial, we can utilize the
following bound to find an interval containing all real roots. It is shown in [Slu70] that this
bound is nearly optimal.
Lemma 2.4.3 (Fujiwara root bound). Let A = ∑m

i=0 aix
i ∈ C and r ∈ C be a root of A.

Then

|r| < 2 max
(∣∣∣∣am−1

am

∣∣∣∣ , ∣∣∣∣am−2
am

∣∣∣∣ 1
2

, . . .

∣∣∣∣ a1
am

∣∣∣∣ 1
m−1

,

∣∣∣∣ a0
2am

∣∣∣∣ 1
m

)
. (2.47)

Proof. See [Fuj16].

Finally, two of the presented methods for real root counting rely on the counting scheme for
the number of sign variations in a sequence of numbers introduced below.
Definition 2.4.4 (number of sign variations). The number of sign variations, Var(A),
of a nonempty sequence A = [a0, a1, . . . , ak] of nonzero real numbers ai ∈ R \ {0} is defined
inductively by

Var(a0) = 0 (2.48)

Var(a0, a1, . . . , ak) = Var(a0, a1, . . . , ak−1) +
{

1 for ak−1ak < 0,

0 for ak−1ak > 0.
(2.49)

If A contains zeros, we set Var(A) = Var(Ã) where Ã is created from A by removing all zero
elements.

2.4.1. Sturm chains and signed subresultant sequences

Definition 2.4.5 (Sturm chain). Let A ∈ R[x] be a nonzero polynomial and let A =
[Ak, . . . , A1, A0] be a PRS of A0 = A and A1 = A′. A is called a Sturm chain (or Sturm
sequence) if for all i = 1, . . . , k − 1 it holds that

βiAi+1 = αiAi−1 + QiAi (2.50)

for αi, βi ∈ R, Qi ∈ R[x] such that αiβi < 0.
We have already encountered Sturm chains above: The signed Euclidean PRS of A and A′ is

a Sturm chain since Ai+1 = −(Ai−1 − quot(Ai−1, Ai)Ai) = −Ai−1 + QiAi. The famous result
by Sturm is the following.
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2.4. Polynomial real root counting

Theorem 2.4.6 (Sturm’s theorem). Let A(x) = [Ak(x), . . . , A1(x), A0(x)] be a Sturm se-
quence of A = A0 ∈ R[x] and let a < b be elements of R that are not roots of A. Then

#rr(A, [a, b]) = Var(A(a))−Var(A(b)). (2.51)

Proof. The original proof (in French) can be found in [Stu29]. For a proof in a more general
context consider [Mis93, Corollary 8.4.4] or [BPR03, Theorem 2.56].

We have already stated some drawbacks of the Euclidean PRS. The coefficient domain needs
to be a field and the coefficient growth is quadratically in the degree. In addition, the Euclidean
PRS does not behave well under specialization. Since each element in the signed subresultant
sequence is proportional to an element in the Sturm sequence, it seems natural that the same
information about the roots can be extracted from the sequence of signed subresultants. This
is indeed the case, as shown in [GRL98]. First, we need to define another function to count
sign variations in a sequence of real numbers.
Definition 2.4.7 (modified number of sign variations). Let P = [P0, P1, . . . , Pn], Pi ∈
R[x], be an arbitrary sequence of polynomials and a be an element of R. Then MVar(P, a), the
modified number of sign variations of P at a, is defined as follows:

1. Obtain a list Q = [Q0, Q1, . . . , Qm] from P by deleting all polynomials identically zero.

2. Obtain a list Q(a) = [Q0(a), Q1(a), . . . , Qm(a)] by evaluating the elements of Q at a.

3. Count sign variations in groups of consecutive elements of Q(a) using the following rules:
• Count 1 sign variation for the groups [−, +], [+,−], [−, 0, +], [+, 0,−], [−, 0, 0, +]

and [+, 0, 0,−].
• Count 2 sign variations for the groups [−, 0, 0,−] and [+, 0, 0, +].

We may write MVar(P) if P is already a sequence of numbers, and count the sign variations
using step 3.

Now we can state the result on real root counting using the signed subresultants.
Theorem 2.4.8 (Real root counting using signed subresultants). Let S = [SRes0, . . . ,
SResn] be the sequence of signed subresultants for A, A′ ∈ R[x] and a, b ∈ R with a < b and
A(a)A(b) 6= 0. Then

#rr(A, [a, b]) = MVar(S, a)−MVar(S, b). (2.52)

Sign combinations other than listed in Definition 2.4.7 can not occur.

Proof. See [GRL98] or [BPR03, Theorem 9.30]. In both references, the more general Cauchy
index is considered whereof real root counting is an application.

The above theorem tells us nothing if the interval endpoints are roots of the polynomial A.
The result can be extended in the following way.
Proposition 2.4.9. Let S = [SRes0(A), . . . , SResn(A)] be the sequence of signed subresultants
for A ∈ R[x] and a, b, ε ∈ R with a < b and ε > 0 such that [a−ε, a+ε]\{a} and [b−ε, b+ε]\{b}
do not contain real roots of A. Then

#rr(A, [a, b]) = MVar(S, a− ε)−MVar(S, b + ε), (2.53)
#rr(A, (a, b)) = MVar(S, a + ε)−MVar(S, b− ε). (2.54)
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Proof. Since #rr(A, [a− ε, a)) = #rr(A, [b, b + ε)) = 0, it is clear that

#rr(A, [a, b]) = #rr(A, [a− ε, a)) + #rr(A, [a, b]) + #rr(A, (b, b + ε]) (2.55)
= #rr(A, [a− ε, b + ε]) (2.56)
= MVar(S, a− ε)−MVar(S, b + ε). (2.57)

Similarly, we have #rr(A, (a, b)) = #rr(A, [a + ε, b− ε]).

Remark. The previous proposition is easily extended to half open intervals.
In practice, it is hard to find a suitable ε that allows the application of Proposition 2.4.9.

Therefore, we will use a sequence which is slightly different from the signed subresultant
sequence and which allows to retrieve MVar(S, a± ε) by evaluating it at a. To that end, we
need another proposition, which is an adaptation of [BPR03, Proof of Theorem 9.30].
Proposition 2.4.10. Let a ∈ R be a simple real root of A ∈ R[x] and ε > 0 such that [a−ε, a+
ε] \ {a} does not contain roots of the polynomials in S0,...,n−1 = [SRes0(A), . . . , SResn−1(A)].
Then

MVar(S0,...,n−1, a) = MVar(S0,...,n−1, a± ε). (2.58)

Proof. Assume that a is a root of SResj−1, j < n− 1. Since its multiplicity is one, it can not
be a root of A′ = SResn−1. Applying SResj−1(a) = 0 to Corollary 2.3.13 yields

sres2
j SResk−1(a) = − sresk sresj−1 SResj(a). (2.59)

Thus, SResk−1(a) and SResj(a) are both equal to zero or not equal to zero. If both are zero,
then all subresultant polynomials are zero at a. But since a is a simple root of A, it is not a
root of the greatest common divisor of A and A′, which is, due to Theorem 2.3.19, the last non
identically zero polynomial in the sequence. Thus, SResk−1(a) and SResj(a) are non-zero. For
the signs we get

sign(sresk sresj−1) = − sign(SResk−1(a) SResj(a))
= − sign(SResk−1(a± ε) SResj(a± ε)),

(2.60)

since SResk−1 and SResj have no roots in [a− ε, a + ε] \ {a}.
We will now examine the sign situation around SResj−1. If SResj−1 is non-defective, i.e.

k = j − 1, then

MVar([SResj−2, SResj−1, SResj ], a) = MVar([SResj−2, SResj−1, SResj ], a± ε) = 1, (2.61)

since SResj−2(a) SResj(a) < 0. If SResj−1 is defective of degree k, then

MVar([SResk−1, SResk, SResj−1, SResj ], a)
= MVar([SResk−1, SResk, SResj−1, SResj ], a± ε)

=
{

2 SResj(a) SResk−1(a) > 0,

1 SResj(a) SResk−1(a) < 0.

(2.62)

Note that SResj−1 and SResk are proportional and therefore zero at a. At a± ε, the propor-
tionality also gives

sign(sresj−1 sresk) = sign(SResj−1(a± ε) SResk(a± ε)) (2.63)
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at a at a± ε MVar
[+, 0, 0, +] [+, +,−, +], [+,−, +, +] 2
[+, 0, 0,−] [+, +, +,−], [+,−,−,−] 1
[−, 0, 0, +] [−, +, +, +], [−,−,−, +] 1
[−, 0, 0,−] [−, +,−,−], [−,−, +,−] 2

Table 2.1.: Possible signs occurring in Equation (2.62).

and therefore

sign(SResj−1(a± ε) SResk(a± ε)) = − sign(SResk−1(a± ε) SResj(a± ε)). (2.64)

Now, the relations between the [SResk−1, SResk, SResj−1, SResj ] at a and a± ε are clear and
Equation (2.62) (and with it the proposition) follows by examining MVar for all possible sign
combinations (see Table 2.1).

Lemma 2.4.11. Let a ∈ R be a simple real root of A ∈ R[x] and ε > 0, such that [a−ε, a+ε]\{a}
does not contain roots of polynomials in S = [SRes0(A), . . . , SResn(A)]. Further denote by
S± = [SRes0(A), . . . , SResn−1(A),±SResn−1(A)] sequences derived from S by replacing the
(n + 1)-th element by ±SResn−1(A). Then it holds that

MVar(S, a± ε) = MVar(S±, a). (2.65)

Proof. First, note that SResn(A) = A and SResn−1(A) = A′. Since a is a simple root of A,
we have A′(a) 6= 0. If A′(a) > 0, then A is monotone increasing at a and sign(A(a ± ε)) =
± sign(A′(a)). If A′(a) < 0, then A is monotone decreasing at a and sign(A(a ± ε)) =
± sign(A′(a)), too. Thus,

MVar([SResn−1, SResn], a± ε) = MVar([SResn−1,±SResn−1], a). (2.66)

The equality for the remaining sequence is evident by Proposition 2.4.10.

As soon as SResn(A)(a) = 0 and SResn−1(A)(a) 6= 0 is detected during the computation, the
element SResn can be replaced by + SResn−1 or −SResn−1, depending on whether the interval
endpoint a is included in the interval or not. Using Lemma 2.4.11, we are able to count the
number of real roots of a squarefree polynomial A ∈ R[x] on any open, half-open or closed
interval of R. Note that it is easy to include the interval endpoints ±∞ by employing that
limt→±∞ sign(SResj(t)) = (±1)j sresj .

2.4.1.1. Evaluation of signed resultant sequences

To count the number of real roots of a polynomials, we need to determine the signs of the signed
subresultants. We have already seen in Corollary 2.3.5 that deg(SResj(A, B)) ≤ j. Evaluating
each of the SResj(A, A′)(a) directly would result in O(deg(A)2) arithmetic operations in the
coefficient ring. Since this evaluation is likely to be performed at several positions along the
real line, it is desirable to reduce the cost of a single evaluation.

As a consequence of Corollary 2.3.13, the subresultant polynomials satisfy the division
relation

SResk−1 = −sresk sresj−1 SResj −SResQk−1 SResj−1
sres2

j

. (2.67)
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for deg(SResj) = j and deg(SResj−1) = k. If SResQk−1(a), all sresi, sresi and two elements
of {SResk−1(a), SResj−1(a), SResj(a)} are known, it is easy to determine the value of the
third element using the above formula. Instead of storing the elements of the PRS, we
store the quotients SResQi, the principal and leading signed subresultants coefficients and
{SResn, SResn−1, SResl}, such that SResl is the last non-zero element of the signed subresultant
sequence, i.e. SResk ≡ 0 for all k < l. We call this new sequence a polynomial quotient sequence
(PQS).

If j − 1 = l in Theorem 2.3.12, then SResk−1 ≡ 0 and Equation (2.67) simplifies to
sresk sresj−1 SResj = SResQk−1 SResj−1. This allows to evaluate all signed subresultants using
the quotient sequence, either in decreasing order using SResn and SResn−1 or in increasing
order starting with SResl.

We will now estimate the complexity of the evaluation of the signed subresultants using the
quotients.
Lemma 2.4.12. The sum of the degrees in the sequence of quotients is bounded by deg(A).

Proof. Let S = [SResi0 , . . . , SResik
], i0 < · · · < ik, be the sequence of signed subresultants

which are computed using the division rule in Equation (2.67) and SResik+1 = SResn−1 and
SResik+2 = SResn. Note that in this case SResi0 = SResl−1 ≡ 0 and SResi1 = SResl 6≡ 0. The
degree of SResQij

, 0 ≤ j ≤ k, is exactly deg(SResij+2)− deg(SResij+1). Finally,

k∑
i=0

deg(SResQij
) =

k∑
i=0

(
deg(SResij+2)− deg(SResij+1)

)
= deg(SResik+2)− deg(SResi1) (2.68)
= deg(A)− deg(SResi1) ≤ deg(A)

Lemma 2.4.13. Evaluating all signed subresultants of polynomials A, A′ ∈ Z[x] with magnitude
(τ, n) at a ∈ Z with bit(a) = ν using the sequence of quotients needs at most O(nM(n(τ +
bit(n)) + ν)) bit operations.

Proof. It is clear from Lemma 2.4.12 that we need O(n) arithmetic operations in Z involving
the coefficients of the quotients and a. The size of the subresultant and the quotient coefficients
is bounded by O(n(τ + bit(n))) according to Lemma 2.3.27 and Corollary 2.3.30. Evaluating a
subresultant directly using e.g. Horner’s scheme yields intermediate (and final) results of size
at most O(n(τ + bit(n)) + n + ν) = O(n(τ + bit(n)) + ν). Due to Equation (2.67), the same
must be true if the quotients are used since the results are identical.

2.4.2. Descartes’ rule of signs

Theorem 2.4.14 (Descartes’ rule of signs). Let A = ∑n
i=0 aix

i ∈ R[x] be a polynomial
with real coefficients. Then

#rrm(A, (0,∞)) = Var(a0, . . . , an)− 2m, (2.69)

for some m ∈ N ∪ {0}, i.e. Var(a0, . . . , an) exceeds the number of positive real roots of A
(counted with multiplicities) by a nonnegative even integer.

Proof. See [Obr63, §13].
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(a) The Obreshkov circle C0.
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(b) The Obreshkov circles C1 and C1.

Figure 2.2.: Given the interval (c, d) with midpoint m = (c + d)/2, consider open discs in
the complex plane bounded by the circles C0, C1 and C1. If the polynomial A ∈ R[x] has
no (complex) root in C0 then Var(A, (c, d)) = 0. If A has exactly one root in C1 ∪ C1 then
Var(A, (c, d)) = 1. Note that if a + ib ∈ (C1 ∪ C1) \ R is a root of A, then a− ib is a also root
of A since A ∈ R[x]. Therefore, Var(A, (c, d)) ≥ 2 in this case.

Clearly, if Var(a0, . . . , an) is odd, there is at least one positive real root. If Var(a0, . . . , an) = 0
or Var(a0, . . . , an) = 1, we even know that the exact number of positive real roots is zero or one.
The converse is not true in general but the following results due to Obreshkov give necessary
conditions which have to be satisfied as illustrated in Figure 2.2. In order to bound the number
of real roots in an arbitrary interval, we use the following transformation.
Proposition 2.4.15. Let A ∈ R[x] be a polynomial with real coefficients and

Tc,d(x) = (x + 1)deg(A)A

(
dx + c

x + 1

)
(2.70)

for c, d ∈ R. Then #rrm(Tc,d, (0,∞)) = #rrm(A, (c, d)).

Proof. The continuous mapping x 7→ dx+c
x+1 maps the interval (0,∞) in a bijective manner to

(c, d). Therefore, the rational function A(dx+c
x+1 ) has as many positive roots as the polynomial

A(x) has in (c, d). The factor (x + 1)deg(A) cancels out the denominators so that Tc,d(x) is a
polynomial. Since (x + 1) has no positive root, the result follows.

Notation 2.4.16. Let A = ∑n
i=0 aix

i ∈ R[x] be a real polynomial. Then we write Var(A) =
Var([a0, . . . , an]) and Var(A, (c, d)) = Var(Tc,d).

Theorem 2.4.17. Let A ∈ R[x] and I = (c, d) ∈ R an interval with midpoint m = (c + d)/2.

One circle theorem If the open disc in the complex plane, bounded by the circle C0 centered
at m and passing through c and d, contains no complex root of A, then Var(A, I) = 0.

Two circle theorem If the union of open discs in the complex plane, bounded by the circles C1
and C1 centered at m± d−c

2
√

3 i and passing through c and d, contains exactly one simple
complex root of A, then Var(A, I) = 1.

Proof. See [Ost50; Obr25].
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Now, we are able to isolate the real roots of a squarefree real polynomial A in an interval (c, d)
by repeated bisection. Usually, the polynomial Tc,d(x) is not computed by directly transforming
A in each step. Instead, one scales and shifts A so that the interval of interest is (0, 1) which
can be mapped to (0,∞) easily. The cost of all further transformations during the bisection
is dominated by the so-called Taylor shift x 7→ x + 1. The classical algorithm for the Taylor
shift finishes in T (τ, n) = O(n2M(τ + n)) [GG97; JKR05]. More sophisticated variants (also
known as asymptotically fast Taylor shifts) finish in T (τ, n) = O(M(n2 + nτ) log n) [GG97].
The overall termination of the isolation algorithm is ensured by Theorem 2.4.17 since one of
the base cases Var = 0 and Var = 1 occurs once the considered interval is small enough.

Several new bounds on the size of the recursion tree of the bisection process have been
established. This led to bounds on the complexity of the isolation of all real roots of integer
polynomials using Descartes’ rule of signs. [EMT08; ESY06] state a bound of O(n(τ +
log n)T (n2(τ + bit(n)), n)) for isolating the real roots of a polynomial A ∈ Z[x] of magnitude
(τ, n). This also includes the cost for determining the squarefree part of A. Most recently, this
bound has been improved in [Sag12] by employing the locally convergent Newton iteration in
order to achieve a higher order of convergence:
Lemma 2.4.18 (Bit complexity of polynomial real root isolation). Isolating the real
roots of a polynomial F (x) ∈ Z[x] of magnitude (τ, n) needs Õ(n3τ) bit operations.

Proof. See [Sag12].

Note that much more literature about various algorithmic aspects related to Descartes’ rule
of signs is available. See e.g. [CA76; Vin36; TE06] and others.

Despite the simplicity of Descartes’ rule of signs one has to keep in mind that the termination
of the algorithm can only be ensured for simple roots while Sturm’s theorem disregards the
multiplicities. This is of great importance if the coefficients of a polynomial are not known
exactly but only approximately (with arbitrary precision), i.e. if they arise by specialization of
a multivariate polynomial. If the gap structure of the signed subresultants is known in advance,
we may still be able to determine #rr(A, [c± ε1, d± ε2]) = MVar(S, c± ε1)−MVar(S, d± ε2)
for appropriately chosen ε1, ε2 where S is the sequence of signed subresultants of A and A′.
This seems to be more difficult for Descartes’ rule of signs. To the author’s knowledge, the
only solution is to determine the squarefree part of the polynomial which is computationally
intense since the coefficients are real algebraic numbers. However, the issue has been solved for
the case of a single multiple root in [Ker06] with the aid of signed subresultants.

2.5. Numerical filtering

Implementations of exact algorithms are often considered to be slow in practice. This is especially
true if one has to deal with real (algebraic) numbers but it also happens for computations over
Z and Q. A valuable technique to attenuate this issue is to use numerical filtering based on
fixed precision floating point computations where appropriate. Clearly, the reduced precision
can lead to wrong results. A possible solution is to use interval arithmetic to validate the
outcomes of a computation. In case of insufficient quality of the result, the precision is increased
or the algorithm switches to exact arithmetic. In this section, we will briefly introduce interval
arithmetic and demonstrate how to choose the precision for the interval computations.
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2.5. Numerical filtering

2.5.1. Interval arithmetic

The purpose of interval arithmetic is to perform self-validating numerical computations. Instead
of using exact numbers, one uses intervals that enclose the exact results. The interval endpoints
are usually fixed precision floating point numbers, but rational numbers are also possible. Note
that the interval representation of intermediate results is often sufficient to compute exact final
results like in the very important case of sign determination, e.g. sign([1, 2]) = +.

In order to employ interval arithmetic algorithmically, it is necessary to define the basic
arithmetic operations.
Definition 2.5.1. Given two closed intervals [a, b], [c, d] ⊆ R we define

[a, b] + [c, d] = [a + c, b + d], (2.71)
[a, b]− [c, d] = [a− d, b− c], (2.72)
[a, b] · [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)], (2.73)

[a, b]÷ [c, d] =
[
min

(
a
c , a

d , b
c , b

d

)
, max

(
a
c , a

d , b
c , b

d

)]
, (2.74)

where 0 6∈ [c, d] for the division.
It is easy to see that the intervals on the right-hand side include all possible outcomes of

arithmetic operations on numbers from the intervals on the left. Note that the addition and
multiplication operations are commutative, associative, but not distributive even if exact repre-
sentations for the interval endpoints are used. Instead, they are what is called sub-distributive:
For intervals A, B, C ⊂ R it holds that

A · (B + C) ⊆ A ·B + A · C. (2.75)

This also illustrates the so-called dependency problem of interval arithmetic. On the left-hand
side of Equation (2.75), the multiplication with A is performed only once while it is done
twice on the right-hand side. In practice, this increases the overestimation of the range of
a function. Note that rounding errors also contribute significantly when working with fixed
precision interval endpoints. It is important to take this into consideration when designing
algorithms based on interval arithmetic.

Definition 2.5.1 can easily be extended to allow for open and half-open intervals and to
cover elementary functions. In this treatment, we refrain from further discussing the various
properties and extensions of interval arithmetic such as affine arithmetic and refer the interested
reader to [Moo79; Kul08].

2.5.2. Choice of precision

There are various strategies for adjusting the precision of floating point interval endpoints. The
following works well if the result is in Z or Q and if we can bound its size. We start with a low
floating point precision, e.g. the size of a machine word, and then double the precision each time
the numerical filtering fails. As soon as we reach a mantissa length that is approximately equal
to the worst case bound on the result, we switch to exact computations in Z respectively Q. As
we will see next, this filtering strategy does not add significant overhead to the asymptotic cost
of an algorithm even if we always fall back to exact arithmetic. Hence, the cost only increases
by a constant factor.
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2. Foundations

Proposition 2.5.2. Let C(τ) : R→ R, C(τ) ∈ Ω(τ), be a monotonically increasing function.
Then there exists a τ0 > 0 such that

C(τ1) + C(τ2) ≤ C(τ1 + τ2) (2.76)

for all τ1, τ2 > τ0.

Proof. For τ larger than some τ0, we can write C(τ) = τ C̃(τ) with a monotonically increasing
function C̃. Therefore,

C(τ1) + C(τ2) = τ1C̃(τ1) + τ2C̃(τ2) ≤ τ1C̃(τ1 + τ2) + τ2C̃(τ1 + τ2) (2.77)
= (τ1 + τ2)C̃(τ1 + τ2) = C(τ1 + τ2) (2.78)

for all τ1, τ2 > τ0.

Lemma 2.5.3. Let C(τ) : R→ R, C(τ) ∈ Ω(τ)∩O(τ c) for some constant c, be a monotonically
increasing function. Then

dlog2 τe∑
i=0

C(2i) ∈ O(C(τ)). (2.79)

Proof. Applying Proposition 2.5.2 yields

dlog2 τe∑
i=0

C(2i) ≤
dlog2 τ0e∑

i=0
C(2i) + C

 dlog2 τe∑
i=dlog2 τ0e+1

2i

 ∈ O
C

 dlog2 τe∑
i=dlog2 τ0e

2i

 = O(C(2τ)).

(2.80)

Due to C(τ) ∈ O(τ c) it follows that O(C(2τ)) = O(C(τ)).

We can assume that the boundM(τ) for multiplying two τ bit numbers is such a monotonically
increasing function. Clearly, M(τ) ∈ Ω(τ) and M(τ) ∈ O(τ2). Furthermore, addition,
subtraction and integral division are in O(M(τ)) (cf. Table 2.3). This allows us to apply the
above result to all arithmetic operations we need. At least from the asymptotic point of view,
no cost is added by the numerical filtering if we repeatedly double the precision in case of a
failure and stop the iteration once the precision reaches the bound τ on the size of the exact
result.

2.6. Summary of algorithm complexities
In the following, we summarize the asymptotic complexities of some important algorithms
on integral numbers, matrices and polynomials. The size of the input to the algorithms is as
follows: a, b, c, d ∈ Z with bit(a), bit(b) ≤ τ and bit(c), bit(d) ≤ σ; M ∈ Zn×n with entries of
bitsize at most τ ; A, B ∈ Z[x] of magnitude (τ, n), F, G ∈ Z[y1, . . . , yk][x] of magnitude (τ, d, n).
Additionally, we use the shorthand ν = bit(n).
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2.6. Summary of algorithm complexities

Algorithm Bit complexity Reference

Z

Multiplication c · d M(τ) Õ(τ)
Naive O(τ2) Õ(τ2)
Toom-Cook O(τ1+ε) Õ(n1+ε) [Coo66]
Schönhage-Strassen O(τ log τ log log τ) Õ(τ) [SS71]
Fürer O(τ log τ 2O(log∗ τ)) Õ(τ) [Für07]

Division with remainder c = d · quot(c, d) + rem(c, d)
Naive O(τ2) Õ(τ2)
Newton-Raphson O(M(τ)) Õ(τ) [BZ10]

Zn
×

n Matrix determinant det(M)
Dogson-Jordan-Bareiss O(n3M(τn + ν)) Õ(τn4) [Dod66; BPR03]

Z[
x

]

Multiplication A ·B
Mapping to integers O(M(τn)) Õ(τn) [Sch82]

Evaluation dnA( c
d)

Horner / Naive O(nM(τ + nσ)) Õ(n2σ + nτ) [BPR03]
Translation bnA(x− a

b )
Naive O(n2M(nτ)) Õ(τn3) [BPR03]
Asymptotically fast O(M(n2 + nτ) log n) Õ(n2 + nτ) [GG97]

Signed subresultant sequence SResn(A, B), . . . , SRes0(A, B)
Matrix determinants O(n4M((τ + ν)n)) Õ(τn5)
SRes Structure Thm. O(n2M((τ + ν)n)) Õ(τn3) [BPR03]

Resultant Res(A, B), greatest common divisor gcd(A, B), GCD-free part† A/ gcd(A, B)
and signed subresultant quotients SResQn(A, B), . . . , SResQ0(A, B)

SRes Structure Thm. O(n2M((τ + ν)n)) Õ(τn3) [BPR03]
Half-GCD idea O(n log nM((τ + ν)n)) Õ(τn2) [Rei97; LR01]

Z[
y 1

,.
..

,y
k
][x

]

Multiplication F ·G
Mapping to Z[x] O(M(τndk)) Õ(τndk) [Pan94]

Signed subresultant sequence SResn(F, G), . . . , SRes0(F, G)
Matrix determinants O(n4M((τ + ν)nk+1dk)) Õ(τnk+5dk) [Dod66]
SRes Structure Thm. O(n2M((τ + ν)nk+1dk)) Õ(τnk+3dk) [Rei97; BPR03]

Resultant Res(F, G), greatest common divisor gcd(F, G) and GCD-free part F/ gcd(F, G)
SRes Structure Thm. O(n2M((τ + ν)nk+1dk)) Õ(τnk+3dk) [Rei97; BPR03]
Half-GCD idea O(n log nM((τ + ν)nk+1dk)) Õ(τnk+2dk) [Rei97]

†For B = A′ this becomes the squarefree part.

Table 2.3.: Summary of algorithm complexities.
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3. Exact rasterization of real algebraic plane
curves

3.1. Motivation

Rendering a curve defined implicitly by an equation F (x, y) = 0 is a frequently occurring task in
computer graphics and computer aided design. Curves of this type often arise from projections
of space curves such as silhouette curves or intersection curves of surfaces. An example is
given in Figure 3.1. Visualizations of implicit curves are also of great use in many fields of
mathematics as they can assist the process of understanding certain mathematical concepts.
Consequently, many computer algebra systems include routines for plotting implicit curves. In
general, a global rational parametrization of an algebraic curve only exists if its genus is zero
(see e.g. [SWP07] for an in-depth treatment of the subject). More sophisticated representations
like formal power series and Puiseux series allow to parametrize any real algebraic curve
locally. Unfortunately, such exact representations are hard to generate and to handle since
they involve costly computations with algebraic numbers (see e.g. [Fis94, Chapter 6 and 7] for
an introduction). Therefore, most visualization algorithms for implicit curves (including the
approach presented here) operate directly on the implicit form.

In what follows, we solve the task of rasterizing a real algebraic plane curve VR(F ) defined by
a polynomial F ∈ Z[x, y]. Although many algorithms exist for rendering such a curve, only a
few of them guarantee the correctness of the output. The term correctness is often interpreted
as topological correctness, i.e. the graph induced by the rendering is isotopic to VR(F ). When
rasterizations are considered, this definition is no longer applicable since the topology of the
curve cannot be recognized below pixel level. We follow the definition of [Lab10b].
Notation 3.1.1. A pixel with coordinates (x, y) ∈ Z2 is the subset [x, x + 1]× [y, y + 1] ⊂ R2.
We call (x, y) ∈ Z2 a raster position or pixel coordinate for (x0, y0) ∈ R2, if (x0, y0) ∈
[x, x + 1]× [y, y + 1]. We may also speak of raster positions referring only to one of the two
coordinates.

Definition 3.1.2 (exact rasterization). In an exact rasterization a pixel P is painted if and
only if V (F ) ∩ P 6= ∅.

In the above notion of correctness, it is important to note that adjacent pixels overlap at their
boundary. This is one way to ensure that an algorithm is able to produce symmetric images of
symmetric curves. It has to be remarked that other definitions of exact curve rasterizations
may be valid, too, due to the gap between the exact mathematical definition of the curve based
on the zero set of a continuous function and its mapping to a discrete raster display.

An example of a correctly rasterized curve is given in Figure 3.2. The figure also shows some
commonly occurring visualization errors of inexact algorithms. Knowing the pixels where the
curve has critical points provides a lot of useful information about the curve. Isolated points of
the curve are covered as well as real components smaller than one pixel. Those parts of the
curve are frequently overlooked by approaches that do not guarantee correctness (as illustrated
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3. Exact rasterization of real algebraic plane curves

(a) (b) (c)

Figure 3.1.: The silhouette curve of a surface is the intersection of the surface and its polar
surface with respect to the viewers position. In (a), a rendering of a Cayley surface is shown.
The surface is clipped to a sphere. In (b), the projection of its silhouette to the plane is rendered.
Note that the intersection of the Cayley surface and the clipping sphere have been included.
Also, the silhouette curve has been clipped to exclude parts outside of the sphere. Finally, (c)
shows an overlay of the surface rendering and its silhouette. Projections of silhouettes can
greatly assist surface rendering as they partition the image plane into regions where the surface
is smooth. In addition, the number of real points of the surface above a fiber in the direction
of projection does not change within such a region.

(a) (b) (c) (d)

Figure 3.2.: Correct and wrong rasterizations of the curve y2 + x2(x + 1) = 0 (scaled and
translated appropriately). (a) shows the grid of pixels and the curve to be rasterized. A correct
rasterization with respect to Definition 3.1.2 is shown in (b) while the rasterizations in (c) and
(d) feature missing respectively additional pixels, which are often observed in images rasterized
with inexact methods. The above illustrations are inspired by very similar ones presented in
[Lab10b].
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3.2. Related work

in Figure 3.2). Additionally, the direction of the curve segments between the critical pixels
is almost clear. We will see how the segments can be traced efficiently as soon as the raster
positions of their start and end points are known.

A preliminary version of the new approach has been published in [Stu11]. Before outlining
the method, we will discuss related work about implicit curve visualization. Although bivariate
polynomial systems have to be solved during the preprocessing of the curve, the vast amount of
literature related to this task will not be reviewed. The presented investigations only cover the
actual rendering and utilize polynomial system solving only as a tool. Therefore, we restrict to
the short overview given in Section 3.4.1.

3.2. Related work

The visualization of algebraic curves has been a field of active research for the last decades. Most
algorithms are based on (real) root approximation resp. isolation, space covering techniques or
continuation methods. Furthermore, exact methods often rely on a topological analysis of the
curve.

An exact but rather costly algorithm yielding exact rasterizations is proposed in [Lab10b]. It
can be summarized as follows.
Algorithm 3.1 (trivial exact plane curve rasterization). Determine the raster position
of all real solutions of F = ∂F

∂y = 0, thus, of the critical points of the curve. Then, compute the
intersections of VR(F ) with the boundary of each pixel.

Here, the term “trivial” refers to the trivial approach of checking each pixel. In contrast,
determining the raster positions of the critical points F = ∂F

∂y = 0 is more involved. Although
not explicitly stated, the computation of the intersection of VR(F ) with the boundary of each
pixel can be considered as a sampling technique combined with some form of real root isolation.
Examining each pixel during the rasterization seems to be rather wasteful. Therefore, we may
consider the following improved version.
Algorithm 3.2 (improved trivial exact plane curve rasterization). Determine the raster
position of all real solutions of F = ∂F

∂y = 0, thus, of the critical points of the curve. Then,
compute the raster positions of the intersections of VR(F ) with the boundary of each row and
column of the image.

A full implementation of the above algorithm is provided in this thesis and compared with the
new method. See Sections 3.7.5 and 3.9. An approach similar to Algorithm 3.2 has been used
in [Lip10]. Instead of trying to provide exact results its author aims for speed by implementing
the real root isolation on graphics processing hardware. Hence, the method may overlook small
components of the curve and is prone to numerical errors.

Space covering techniques recursively subdivide the initial region of interest into smaller cells
until a desired precision is reached. Cells that do not contain the curve need to be discarded
and this should happen as early as possible. One of the most commonly applied techniques is
range estimation of F over an interval. In [FS96], affine arithmetic, a special type of interval
arithmetic, is used for this task. [Dok+05] improves upon affine arithmetic by introducing the
so-called recursive Taylor method for algebraic curves and surfaces. There, the range of F is
estimated by bounding the range of a linear Taylor expansion of F . The approximation error is
bounded by recursively applying the Taylor method at most deg(F ) times. [LOF01] also uses
interval arithmetic but applies a heuristic and adaptive criterion based on curvature estimation
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3. Exact rasterization of real algebraic plane curves

in order to stop the subdivision at a reasonable level. In [OF00], interval arithmetic is also
used to visualize offsets to a curve. [Mar+02] gives a detailed survey on different forms of
interval arithmetic and discusses their application to the problem of plane curve visualization.
In [Tau94], the distance between the origin and the zeros of F is bounded from below in order to
exclude some of the cells during the subdivision. The used test is a simplified version of [Tau93]
that works equally well in the vicinity of singular points of the curve. All proposed tests only
work as an exclusion test: VR(F ) does not intersect any of the discarded cells. However, the
remaining cells do not necessarily contain any part of VR(F ). The quality of the approximation
usually improves with the level of subdivision. An exact visualization is reached in the limit
when the subdivision depth goes to infinity. In order to achieve a termination after a finite
number of steps, the above methods would have to be combined with an inclusion test: If VR(F )
intersects a cell, then the inclusion test would confirm this intersection after a certain number of
subdivisions. This is done in [PV04] in a completely numerical way for bounded, non-singular
curves (and surfaces). In [Bur+08], this approach is extended to unbounded curves with
isolated singularities. First, the singular points are computed using a homotopy method. Then,
the non-singular cells are subdivided using interval arithmetic as an exclusion and evaluation
bounds as an inclusion test. Using the intersections of the curve and the cells, they are able
to provide an arbitrary close approximation of the curve by line segments. Unfortunately, no
analysis of the worst case complexity is provided.

The class of continuation methods computes initial points on the curve and then gradually
determines new points on the curve based on the already known ones. In most cases, the points
on the curve are not represented exactly. A sufficiently good approximation is used instead.
[Cha88] traces the curve using the change of sign of F when VR(F ) crosses a pixel boundary.
Their algorithm can also produce correct results for some non algebraic curves but fails for
challenging curves like those with densely packed curve segments. [Bre65; Pra85] rasterize lines
and quadrics using a scheme of finite differences. This is extended to arbitrary real algebraic
plane curves in [Hob90]. In order to deal with the problem of undersampling of the curve a
theorem of Budan and Fourier is combined with a threshold. Unfortunately, the details for
the computation of an appropriate threshold are only worked out for cubic curves. Other
continuation methods are based on predictor and corrector steps. In [MY95; FYK97], the next
point on the curve is predicted by moving a predefined step size into the tangent direction of
the curve at the current point. The approximation (x′, y′) is then improved in the corrector
step by applying a multivariate Newton iteration that utilizes the gradient of F at (x′, y′). The
iteration terminates as soon as the absolute or relative error is below some predefined value. The
approach in [Baj+88] is similar but makes use of higher order approximations to the curve using
local curvature estimation in addition to the tangent. [MG04] avoids calculating derivatives by
using the so called angular false position method. It is an extension to the regula falsi method
for approximating the zeros of F (α) = F (x(α), y(α)), where (x(α), y(α)) is a parametrization
of a specific circle. [EBS09] present an exact curve tracing that rasterizes individual curve
segments. The direction of curve progression is computed by excluding directions using interval
arithmetic at pixel boundaries combined with pixel subdivision. The segments are determined
using a topological analysis of the curve. We will compare the herein presented algorithm to
[EBS09] in Section 3.9.

Some authors also propose hybrid techniques. [RR05] applies interval arithmetic and
subdivision first and switches to curve tracing as soon as a cell with a single smooth curve
segment is detected. In [AM07], the plane is first divided into cells without singular points
of the curve. This is either done numerically or using a rational univariate representation
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3.3. Algorithm outline

F (x, y)

Preprocessing
Õ(n8 + n7τ)

• make F squarefree
• separate content
• isolate critical points

Viewport adjustment
O(n2sM(n(τ + n log s)))

• coordinate change of F
• refine critical points
• intersect V (F ) with image

boundary

Rasterization
O(n2sM(n(τ + n log s)))

• draw vertical & horizontal
lines

• trace curve segments in
non-critical boxes

• paint critical pixels
• process critical rows

Raster image of V (F )

Rendering

repeat on viewport change

Figure 3.3.: Outline of the exact rasterization algorithm for real algebraic plane curves. The
shown complexities of the different stages assume an image of size s× s and the polynomial F
to be of magnitude (τ, n). Note that the result of the preprocessing can be reused for different
viewports.

of the critical points of F . Each cell is subdivided until all contained segments are x or y
monotone. Then, the intersections of each cell boundary and the curve are computed using
real root isolation. Intersections belonging to the same curve segment are connected by line
segments by taking their tangent directions into account.

Most modern exact methods utilize numerical range estimation and continuation methods
to improve speed. In contrast, the approach of [Arn83] relies almost entirely on symbolic
calculations. There, a topology graph is computed that identifies each node, edge and cell
using simultaneous polynomial inequalities. The graph already provides a coarse approximation
to the curve. In order to refine the approximation, the edges of the graph are successively
subdivided using computations with algebraic numbers.

As we will see next, the algorithm developed in this chapter can be classified as a continuation
or curve tracing method. Once a point on each real component of the curve has been identified,
such methods are considered to be quite efficient since they stay close to the curve instead of
spending much computation time on regions that do not contain real zeros of F .

3.3. Algorithm outline

As shown in Figure 3.3, the new algorithm consists of a preprocessing stage and a rendering
stage. In the first stage, which is detailed in Section 3.4, some symbolic computations are
performed. F is made squarefree and its content is separated from the primitive part in order
to cope with vertical and horizontal lines. Then, we determine the critical points of the curve,
which also include the singularities. It is enough to know their position up to pixel level. They
are used to divide the image plane into rows with critical points and blocks of rows without
critical points. To further simplify the structure of the non-critical blocks, the rows where the
curve intersects the image boundary are added to the rows of critical points.

In the second stage, a coordinate change is applied to the curve since the rendering is always
performed in the viewport [0, w]× [0, h]. In an implementation, it would also be possible to
choose a different default viewport and skip the change of coordinates but this would require a
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3. Exact rasterization of real algebraic plane curves

more complicated notation. The actual rasterization in the critical and non-critical rows is
described in detail in Section 3.5. The pixels of a critical row that contain a critical point are
known from the preprocessing. As we will see in Section 3.5.2, the connections between the
critical pixels in a critical row can be detected by a few simple tests.

Within the non-critical blocks, the curve has no self crossings and intersects the block
boundary only at the bottom and top. The monotony of each curve segment can easily be
calculated from these intersections. The non-critical blocks are now processed row by row.
Two kinds of tests are used to detect the pixels occupied by the curve within the current row.
In case of a good separation of the curve segments, a simple test for a sign change of F (x, y)
at the upper row boundary suffices. In difficult cases, real root counting is used to find the
number of segments that are leaving the row at a certain pixel. Utilizing the occupied pixels
of the previous row and the known monotony of the segments, the algorithm examines only
those pixels containing the curve, but not a single empty pixel. Tests are only performed at
the corners of the pixels. No pixel subdivision is necessary. An in-depth explanation is given in
Section 3.5.1 and Section 3.5.2.

3.4. Precomputations
In order to prepare for the rasterization stage, we need to compute the squarefree part of F
and the critical points of VR(F ). As we have already seen in Lemma 2.3.22, the first can be
done by computing the subresultant cofactor SResVj−1(F, F ′). Therefore, we will assume that
F is squarefree. To avoid the occurrence of some special cases we will also remove vertical and
horizontal segments from the curve and rasterize them separately.
Lemma 3.4.1. If the line segment α× [a, b] with α, a, b ∈ R, a < b, is contained in V (F ) then
the whole vertical line α× R is part of V (F ).

Proof. The polynomial Fα(y) = F (α, y) has infinitely many roots in [a, b]. Due to the Fun-
damental Theorem of Algebra this is only possible if Fα(y) ≡ 0 and thus F (α, y) = 0 for all
y ∈ R.

By a linear change of coordinates we can transform any direction into the vertical one.
Therefore, Lemma 3.4.1 can be extended to line segments of any direction.
Lemma 3.4.2. The vertical line V (x− α) is contained in V (F ) with deg(F ) > 0, if and only
if (x− α) divides conty(F ).

Proof. If x = α is a vertical line in V (F ), then Fβ(x) = F (x, β) has a root at x = α for all
β ∈ R and thus (x−α) divides every Fβ and consequently F . Since (x−α) is a polynomial in x,
it can only divide the coefficients of F ∈ R[x][y] and thus it divides conty(F ). If (x−α) divides
conty(F ), then x = α is a root of every coefficient of F ∈ R[x][y] and hence F (α, y) ≡ 0.

To remove the vertical and horizontal lines from V (F ), we compute conty(F ), contx(ppy(F ))
and proceed using the primitive part ppx(ppy(F )).

3.4.1. Isolation of critical points
Due to symmetry, we will focus on the computation of x-critical points of the curve VR(F ),
i.e. of the real solutions of the bivariate polynomial system F (x, y) = ∂F

∂y (x, y) = 0. Although
we are only interested in the raster positions of the solutions, there is (to the knowledge of
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the author) no algorithm that is able to compute them without isolating the solutions of
the system. For our purpose, any method that solves bivariate polynomial systems suffices,
but (sub-)resultant based methods are preferred, because the subresultant sequence is reused
frequently during the rasterization. Since the new algorithm currently builds upon the work of
[EKW07], this method will be explained in more detail. The algorithm presented therein is
based on projection techniques. The projections of the solutions of the system to the x axis are
obtained as the roots of the polynomial resultant Resy(F, ∂F

∂y ) ∈ Z[x]. The projected solutions
are isolated using polynomial real root finding and then lifted to solutions in the plane. The
latter relies on certified root isolation based of Descartes’ rule of signs for polynomials with
approximate coefficients (see Section 2.4.2 and [Eig08]), i.e. of arbitrary precise approximations
of F (α, y) where α ∈ R is a root of the resultant Resy(F, ∂F

∂y ). In order to cope with a single
multiple root along the fiber α× R, they take advantage of the GCD property of subresultants
(see Theorem 2.3.19). If the direction of projection was not sufficiently generic (i.e. a fiber over
a projection contains more than one critical point), the lifting phase fails and another direction
of projection is chosen by shearing F and ∂F

∂y . The process repeats until all solutions to the
systems have been found. Note that the main interest in [EKW07] is the computation of the
topology of an algebraic curve whereof the computation of critical points is just the first step.
The additional topology information is not necessary for the rasterization.

The cost of the symbolic precomputation is not negligible, but efficient parallelization of the
computation of bivariate resultants is possible in practice as shown in [Eme10a; Eme10b] and
[SS12] (see also Chapter 6). The latter one supplies a complete GPU based implementation
of the resultant computation by repeated polynomial division (of homomorphic univariate
modular images of the bivariate input polynomials). This parallel resultant computation can
easily be extended to output the subresultant polynomials or at least their degrees, which yield
sufficient additional information for the rasterization algorithm presented below.

3.4.2. Viewport specific precomputations

The symbolic precomputation as well as the isolating box representation of the critical points
can be reused for different viewports. In contrast, raster positions are only valid with respect to
a specific viewport. Therefore, the following calculations have to be redone when the viewport
changes. The complexity of this step is analyzed in Section 3.7.2.

3.4.2.1. Refinement of the critical points

For further processing, we need to know the positions of the critical points up to pixel level.
For each critical point, we refine its isolating box up to a side length smaller than the side
length of a pixel. If the isolating box B for a critical point C ∈ R2 is contained in a single
pixel, the refinement is completed. Otherwise, B overlaps with at most 4 pixels and we split
B along the sides of these pixels. It suffices to perform an additional refinement step for the
isolating box B of C using the raster positions as the splitting points. This does not involve
the computationally intense comparison of two algebraic numbers since the raster position is
an integer coordinate. The final number of pixel assigned to C might be 1, 2 or 4, depending
on whether C is located on a pixel boundary or corner as illustrated in Figure 3.4.

Several critical points may be contained in the same pixel. Once their raster positions are
computed, there is no further need to distinguish between them. Therefore, we will frequently
refer to critical pixels instead of critical points.
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3. Exact rasterization of real algebraic plane curves

(a) Isolating box B
refined below the size
of a pixel.

(b) Critical point
within pixel (not on
boundary): 1 pixel.

(c) Critical point on
pixel boundary (not
on corner): 2 pixels.

(d) Critical point on
pixel corner: 4 pix-
els.

Figure 3.4.: Possible configuration of pixels (up to symmetry) assigned to a critical point C
represented by an isolating box B. Pixels are shown as (unassigned) and (assigned), B is
shown as .

3.4.3. Intersections with the viewport boundary

The critical points allow us to partition the plane into subsets where the curve has no local
minimum or maximum with respect to the coordinate directions. Since we want to render the
curve within a specific viewport, we have to determine where the curve leaves the viewport to
the left and right. This is computed by real root counting of F specialized at the viewport
boundary, i.e. at x ∈ {0, w} and y ∈ {0, h}, using the signed subresultants (see Section 2.4.1).
Note that we do not need to isolate the roots. The real root counting can be combined with a
bisections scheme that uses only pixel coordinates as bisections points. The subdivision stops
as soon as it reaches the level of one pixel. No further refinement, e.g. down to the separation
bound of the roots, is necessary. The intersections with the viewport boundary can also be
treated as critical points since a curve segment starts resp. ends there with respect to the
viewport. This unification also simplifies the rasterization process since the viewport becomes
irrelevant once the start and end pixels of all curve segments are added to the set of critical
pixels.

3.5. Rasterization

By means of the precomputation, we assured that the curve polynomial F ∈ Z[x, y] is squarefree
and that V (F ) is free of vertical resp. horizontal lines. The raster positions of the critical
points in the viewport have been computed and the raster positions of the intersections of the
curve with the left and right viewport boundary have been added to the list of critical rows.

In what follows, we will focus on the rasterization of the curve in the non-critical slices of the
image (Section 3.5.1) and then proceed with the critical rows (Section 3.5.2). The rasterization
of vertical and horizontal lines is trivial. By Lemma 3.4.2, these lines correspond to the real
roots of contx(F ) resp. conty(F ), thus of univariate polynomials, which have been divided
out of F during the preprocessing. Determining their raster positions is equivalent to the
computation of the raster positions of the curve intersections with the viewport boundary (see
Section 3.4.3). Once the raster positions are known, all pixels in the respective columns or rows
of the image are painted.
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3.5. Rasterization

(a) Critical points and intersec-
tions with viewport boundary.

(b) Non-critical boxes. (c) Monotone non-critical boxes.

Figure 3.5.: Decomposition of the viewport into monotone non-critical boxes using x-critical
( ) and y-critical points ( ) (which can be singular ( )) as well as the intersections of the curve
with the viewport boundary ( ). Note that the non-critical boxes (separated by ) are built
on the basis of the y coordinates of the critical points. The additional decomposition into
monotone boxes (by ) happens by comparing the monotony of adjacent curve segments within
a non-critical box. Only raster positions are used for that purpose. Hence, the red and blue
lines in the illustrations correspond to critical rows and columns in the raster image.

3.5.1. Non-critical slices and boxes

We will start with the definition of the subject and then have a closer look at some of its
properties. See also Figure 3.5.
Definition 3.5.1. A slice S = R× [b, t], b, t ∈ R, is called a non-critical slice with respect to a
curve V (F ), F ∈ Z[x, y], if S does contain neither critical points nor horizontal asymptotes of
V (F ), i.e. S ∩ (V (F ) ∩ (V (∂F

∂x ) ∪ V (∂F
∂y )) = S ∩ V (lcoeffx(F )) = ∅.

Lemma 3.5.2. Let S = R × [b, t], b, t ∈ R, be a non-critical slice with respect to V (F ) and
fα(x) = F (x, α) for any fiber α ∈ [b, t]. Then

1. deg(fα) = degx(F ),

2. all real roots of fα are simple,

3. the number of distinct real roots of fα is independent of α, thus constant over [b, t].

Proof. 1. We have excluded horizontal asymptotes from non-critical slices. By Lemma 2.2.8,
lcoeffx(F ) has no real root in [b, t]. 2. Assume x = β would be multiple root of fα, then (β, α)
would be a critical point of V (F ). This violates the definition of a non-critical slice. 3. Due to
1, the number of complex roots of fα is constant for α ∈ [b, t]. Because complex roots appear
in conjugate pairs for polynomials with real coefficients and the roots are continuous functions
of the coefficients, a real root is only created if the imaginary part of two conjugate complex
roots vanishes for some α. A double real root is formed, which voilates 2.

The following is clear from the above lemma and from the definitions of non-critical slices
and strictly monotone curve segments.
Corollary 3.5.3. The number of strictly monotone curve segments of V (F ) in the non-critical
slice S is equal to the number of real roots of fα for any α ∈ [c, d].

We will now introduce the notion of non-critical boxes.
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3. Exact rasterization of real algebraic plane curves

Definition 3.5.4. A subset B = [l, r]× [b, t] ⊂ S, l, r ∈ R, of a non-critical slice S = R× [b, t],
b, t ∈ R, with respect to V (F ) is called a non-critical box if V (F ) does not intersect the left
and right box boundary, i.e. more precisely ((l ∪ r)× (b, t)) ∩ V (F ) = ∅ where (b, t) denotes the
open interval between b and t. A non-critical box is called monotone if all curve segments in
the box have the same monotony.

In the presented algorithm, non-critical boxes are obtained by restricting the non-critical
slices to the viewport [0, w] × [0, h] and dividing them along the raster positions of the real
roots of f0(y) = F (0, y) and fw(y) = F (w, y). See Figure 3.5c. Note that the curve may cut a
corner of a non-critical box.

To draw the curve within a non-critical box B = [l, r]× [b, t], we first determine the raster
positions of the start and end points of all segments in B. This is done by using real root
counting and pixel-based bisection applied to fb(x) = F (x, b) and ft(x) = F (x, t). Due to the
definition of B, all real roots of these polynomials are simple. The i-th real root at y = b and
the i-th real root at y = t belong to the same segment by Corollary 3.5.3.

Due to Corollary 2.2.7, the curve segments in a non-critical slice are strictly monotone
but they do not necessarily have the same monotony. Comparing the raster positions of the
start and end point of a segment suffices to identify its direction of monotony with respect
to the rasterization. If the raster positions have the same x coordinate, any monotony can
be assigned, because the slope of the curve is not recognizable at the chosen resolution so
that the segment will be rasterized as a vertical line segment. Adjacent segments of the same
monotony are grouped together into monotone non-critical boxes. W.l.o.g. we will only consider
the rasterization of monotone non-critical boxes with monotone increasing segments since the
coordinate transformation y 7→ −y suffices to turn the monotone decreasing segments into
monotone increasing ones.

3.5.1.1. Tracing the curve segments in a monotone non-critical box

The curve segments are now traced from row to row in increasing y-direction. From the previous
row (which may be critical, see Section 3.5.2), we know the painted pixels and how many
curve segments pass through each of them into the current row. We will now detect the pixels
where the segments leave the current row by examining the upper pixel boundaries. Due
to the monotony of the segments, the curve will only proceed in positive x- and y-direction.
Therefore, we do not need to look at pixels to the left (i.e. negative x-direction) of the occupied
pixels in the previous row. Hence, we gradually step pixel by pixel to the right. Let now the
y-coordinate of the upper boundary of the current row be rj ∈ Z and frj (x) = F (x, rj) be the
polynomial associated with the line y = rj . We will denote the x coordinates of the columns
by ci, ci+1, . . . ∈ Z. See Figure 3.6 for an illustration of what follows.

At each pixel, we test how many segments pass through it into the row above. We distinguish
two cases: Either, the segments are well separated and we know that exactly one segment is
contained in the current pixel, or the segments are densely packed and the pixel contains more
than one segment.

First, we have to remark that if a segment passes into the row at the point (ci, rj−1) ∈ Z2,
it will not escape through the point (ci, rj) ∈ Z2, because all segments are strictly monotone
and vertical lines have been removed. Note that frj (ci) = 0 means that a segment to the left
of the current one leaves the current row in (ci, rj), i.e. we have the case of densely packed
segments and cannot apply the following rule. If only one segment proceeds through the current
pixel [ci, ci+1]× [rj−1, rj ], then frj (x) has at most one simple real root in (ci, ci+1]. Due to the
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3.5. Rasterization

r0

r1

r2

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17

row 1

row 2

test for a sign change real root counting via signed subresultants

Figure 3.6.: Example of tracing two curve segments in a monotone, non-critical box. The
first segment enters the box in (c1, c2] of r0. We also know that the second segment starts in
(c9, c10] and that it is monotone increasing. Therefore, we can use the simple test for a sign
change of fr1(x) = F (x, r1) to find the raster position where the first segment leaves row 1
as long as we are below c9. The sign change of fr1(x) is found to be between c3 and c4. We
process the second segment in the same way and the sign change is found between c10 and c11.
In row 2, we can again start with the simple test for a sign change to trace the first segment.
But as soon as we reach c10, we know that there is a second segment in the pixel and we move
over to the real root counting via signed subresultant sequences. The first segment leaves the
row between (c12, c13] and we switch back to the simple test for a sign change for pixels to the
right of c13.

intermediate value theorem, this leads to

#rr(frj , (ci, ci+1]) =
{

1 frj (ci)frj (ci+1) ≤ 0,

0 otherwise.
(3.1)

The segment passes from pi,j−1 to pi,j if and only if #rr(frj , (ci, ci+1]) = 1, and this is easily
determined by checking for a sign change of frj in (ci, ci+1]. This simple test suffices for almost
all pixels of a large class of curves rasterizations and thus makes the rasterization algorithm
very efficient if the curve is sufficiently easy, i.e. the segments are not densely packed. It is
applied to all of the blue pixels in Figure 3.6. There, the polynomial fr1 has no sign change
in (c1, c2] and (c2, c3] but in (c3, c4]. Thus, the first segment escapes the current row through
(c3, c4] and we proceed by processing the next segment, which enters the current row in (c9, c10].

If the current pixel contains more than one segment, frj (ci)frj (ci+1) will be non-positive in
case of an even number of segments leaving the row in (ci, ci+1]. In this case, the simple test
gives no definitive answer about the exact number of escaping segments. If this happens as in
the red pixels in Figure 3.6, we obtain #rr(frj , (ci, ci+1]) by evaluating the signs of the signed
subresultant sequence S of frj at ci and ci+1. Note that due to the definition of non-critical
slices, all real roots of frj are simple. This allows to perform real root counting even in presence
of a root at ci or ci+1 by applying Lemma 2.4.11, i.e.

#rr(frj , (ci, ci+1]) =


MVar(S+, ci)−MVar(S, ci+1) for frj (ci) = 0, frj (ci+1) 6= 0,

MVar(S, ci)−MVar(S+, ci+1) for frj (ci) 6= 0, frj (ci+1) = 0,

MVar(S+, ci)−MVar(S+, ci+1) for frj (ci) = 0, frj (ci+1) = 0,

MVar(S, ci)−MVar(S, ci+1) otherwise.

(3.2)

Thus, we can determine #rr(frj , (ci, ci+1]) without subdividing (ci, ci+1] in any case.

45



3. Exact rasterization of real algebraic plane curves

non-critical box

critical row → critical row →

↑
first column in non-critical box

of monotone increasing segments

a0

a1 a4

monotone decreasing
←−

monotone increasing
−→

r0

r1

r2

r3

r4

c0 c1 c2 c3 c4 c5 c6

Figure 3.7.: If we build non-critical boxes based on the raster positions of the intersections of
monotone segments with the lower and upper boundary of their non-critical slice, the box will
not necessarily be monotone. This is due to the overlap of adjacent non-critical boxes if two
segments of different monotony start at the same raster position. In the above example, the
method for tracing curve segments in a monotone non-critical box assumes that there is only
one monotone increasing segment a1 entering into the non-critical box in its first (leftmost)
column. Therefore, it will apply the simple test for a sign change. This may fail since the
monotone decreasing segment a0 (which is attributed to the adjacent non-critical box to the
left) also enters the non-critical box for the monotone increasing segments at its first column.
In the example, no sign change is detected between (c1, r2) and (c2, r2) although the monotone
increasing segment a1 leaves the first row at the first column of the box. Computating a rational
coordinate ( ) that separates a0 and a1 involves repeated pixel subdivision and may be costly.

Since the number of segments in the current pixel is always known, the algorithm may switch
between both tests several times within one row, depending on the local segment separation.
This also happens in Figure 3.6, where the algorithm switches back to the simple test in the
columns to the right of c13 in row r2.

As soon as the rightmost pixel of the rightmost segment has been determined w.r.t. the
current row, the algorithm moves on to the next row with upper boundary rj+1. Note that
only those pixels are examined, that are covered by the curve and thus painted. Empty pixels
between the last pixel of the current segment and the start pixel of the next are safely discarded.
This desirable property of curve rendering algorithms is fulfilled by the presented method.

3.5.1.2. The first column in a non-critical box

Until now, we ignored a special case that can occur. The described algorithm only works
correctly if applied to a monotone non-critical box. However, the previous construction does
not yield monotone non-critical boxes in all cases. This is best explained using Figure 3.7. The
large gray box is a non-critical box. Its size has been computed by determining the raster
positions of the intersections of all segments in a group of adjacent segments with the same
monotony. In the example, the monotone increasing segments a1 and a4 start somewhere
within [c1, c2] × r1 and [c4, c5] × r1, respectively. The monotone decreasing segment a0 also
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non-critical box

a0

a1 a2 a3 a4

critical row → critical row →

↑
first column in non-critical box

of monotone increasing segments

monotone decreasing
←−

monotone increasing
−→

r0

r1

r2

r3

r4

c0 c1 c2 c3 c4 c5 c6

3
3 2
1 2
1 1

Figure 3.8.: Special treatment of the first column in a non-critical box that is monotone
increasing except for its first (leftmost) column. The figure is a continuation of Figure 3.7
with the two monotone increasing segments a2 and a3 added. In order to rasterize monotone
increasing segments, the algorithm needs to know the correct number of monotone increasing
segments in each pixel. We know that the three segments a1, a2 and a3 enter the non-critical
box in the first column. The segment a0 does not count since it is monotone decreasing. Thus,
t1,1 = 3 > 1 and we have to apply the real root counting ( ) in order to determine that a2 and
a3 leave the first column in (r1, r2). Then t2,1 = #rr(F (x, r1), [c2, c3))+#rr(F (c2, y), (r1, r2)) =
0 + 2 = 2 and t1,2 = t1,1 −#rr(F (c2, y), (r1, r2)) = 3− 2 = 1. The value of t1,2 is sufficient to
complete the rasterization of the current row while t2,1 will be used for the special treatment
of the first column in the next row below r3. Since t2,1 = 1, the algorithm can return to the
simple test for a sign change ( ).

starts in [c1, c2]× r1, i.e. there is a one column overlap of adjacent non-critical boxes. Therefore,
the non-critical box is not monotone due to its first column. It can not be processed by the
algorithm described so far.

To avoid these problems, one might compute a rational coordinate, that separates the groups.
This would involve the subdivision of the image below pixel level until the roots of fr1 in [c1, c2]
have been separated. The row below r1 is a critical one and the root separation near critical or
even singular points is likely to be bad. For this reason, we will avoid the subdivision.

During the construction of the non-critical box, we have determined the raster positions of
the start and end points of all of its segments. Thus, when we start to rasterize the curve in
the current (putative) monotone non-critical box, we are able to detect if there is an overlap
with an adjacent non-critical box which contains segments of different monotony. If this is the
case, we apply a special treatment. See Figure 3.8 for a continuation of the example given in
Figure 3.7. In what follows, we will investigate the special treatment in general.

Consider the rasterization of the curve in the row below rj . Let Pi,j−1 = [ci, ci+1]× [rj−1, rj ]
be the first pixel in the current row of a non-critical box which is monotone up to its first
column, Pi,j the pixel above Pi,j−1 and Pi+1,j−1 the pixel to the right of Pi,j−1. Furthermore,
let ti,j−1 be the total number of monotone increasing segments in P ◦

i,j−1 = Pi,j−1 \ (ci, rj)†.

†We have to ignore the upper left pixel corner (ci, rj) of Pi,j−1 since monotone increasing segments passing
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3. Exact rasterization of real algebraic plane curves

Figure 3.9.: In order to rasterize the curve in a critical row, we first paint all its critical points
( ) and intersections with the row boundaries ( ).

Now, the total number ti+1,j−1 of monotone increasing segments in P ◦
i+1,j−1 (the pixel to

the right of P ◦
i,j−1) is given by

ti+1,j−1 = #rr(F (x, rj), [ci+1, ci+2)) + #rr(F (ci+1, y), (rj−1, rj)). (3.3)

and the total number ti,j of monotone increasing segments in P ◦
i,j (the pixel above P ◦

i,j−1) is
given by

ti,j = ti,j−1 −#rr(F (ci+1, y), (rj−1, rj)). (3.4)

Having this information at hand, we can proceed with the tracing of the curve segments to
the right of P ◦

i,j−1 as normal, i.e. as presented in Section 3.5.1.1. Once we moved over to the
row above rj , we can use ti,j to start the same special treatment again until all segments of
increasing monotony left the first column.

Note that ti+1,j−1 and #rr(F (x, rj), [ci+1, ci+2)) are known a priori. They have been computed
when we determined the raster positions of the start and end points of the segments in a
non-critical box. It remains to calculate #rr(F (ci+1, y), (rj−1, rj)). Due to the monotony
property, we can reuse the techniques discussed above, i.e. we apply the test for a sign change
in simple and real root counting in difficult cases. The process is best illustrated in Figure 3.8.

3.5.2. Rows with critical points

Within a critical row, we first paint all the pixels, that contain critical points. They have
been isolated during the preprocessing, but may need refinement with respect ot the current
viewport. Then we paint the pixels containing intersections of the curve with the row boundary.
They have been determined during the creation of the non-critical slices. Having these pixels
painted, we obtain a situation like in Figure 3.9.

Let us now examine the blocks of pixels between two already painted pixels in a critical
row. Within these blocks, the curve does not have self crossings, local extreme values and
intersections with the row boundary. Thus, curve segments may only proceed from left to
right. Figure 3.10 shows the possible and impossible configurations of curve progression. It
suffices to test the left (or right) boundary of such a block for an intersections with the curve to
determine, whether to paint all pixels of the block or none. An odd number of intersections can
be detected by testing the left (or right) boundary for a sign change of F (x, y). For an even
number of intersections we use real root counting as described in Section 2.4.1. By construction,
the curve does not cross the corners of the blocks between the critical pixels of a critical row.
No special cases need to be considered.

through (ci, rj) are attributed to Pi−1,j−1. If we would not ignore (ci, rj), we would count such segments twice.
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±

±

(a) Loops are impossible since they con-
tain a critical point.

±

±

(b) Pixels where the curve leaves the
critical row have already been painted.

∓

±

(c) Sign change: Odd number of segments.

±

±

(d) No sign change: Even number of seg-
ments.

Figure 3.10.: Since critical points and intersections with the boundary of the critical row are
already painted, the configurations shown in (a) and (b) cannot occur between the already
painted pixels. All segments (if any) proceed from left to right through the remaining blocks
of pixels. Therefore, we can first perform the test for a sign change (see (c)) and in the case
of an even number of segments (see (d)) we move over to the real root counting via signed
subresultants. The test at the left boundary of each block suffices to determine if all or no
further pixels have to be painted.

3.6. Numerical filtering

The proposed curve rendering algorithm uses subresultant based real root counting of polyno-
mials to solve difficult cases. We have already discussed exact methods in Section 2.4.1. These
are often considered to be inefficient in practice because their bit complexity is quite high,
e.g. in the worst case O(nM(n(τ + bit(n)) + σ)) ⊂ Õ(n2τ + nσ) bit operations are needed to
determine the signs of the signed subresultants of a polynomial of magnitude (τ, n) at an integer
coordinate with σ bits using the sequence of quotients. Since only O(n) arithmetic operations
are performed, numerical filtering can give a speedup of up to two orders of magnitude in this
example. We will now investigate some techniques that often allow to work with approximate
rather than exact numbers.

First, it is important to note that exact results can often be obtained using numerical
approximations during the intermediate computations. In our case, the exact result is the sign
of a real number while the exact value of the number is not of interest. In order to validate the
exactness of the result, we use interval arithmetic as described in Section 2.5. If an exact result
could not be obtained due to round-off errors at a certain level of precision, we double the
precision and repeat the respective part of the computation. This numerical approach works
quite well if we use it to replace exact computations where only integers are involved since any
integer can also be represented as a binary floating point number. If we are going to replace
computations with rationals, this is not true (as in the case of 1

3) and the successive increase of
the precision might not terminate. Therefore, one has to fall back to rational arithmetic once
a certain level of precision is reached. In the above rasterization algorithm, there is no need
for rational numbers since the sampling points as well the coefficients of F (x, y) are integral
numbers.
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3. Exact rasterization of real algebraic plane curves

3.6.1. Numerical computation of signed subresultant quotient sequences

In general, the numerical computation of Sturm sequences for real root counting is quite
ill conditioned since the bitsize of the coefficients of the polynomials in the sequence grows
quadratically (see Lemma 2.3.25). Subresultants perform better due to the linear growth of
the coefficient size (see Lemma 2.3.27). However, additional aspects have to be considered.

During the numerical computation of the subresultant quotient sequence on the basis of
Corollary 2.3.13, one needs to know the exact degrees of the already known polynomials in
order to perform the polynomial division, since this relies on the leading coefficient of the
divisor. One possibility is to guess the degree of the remainder of a division by treating leading
coefficients smaller than some threshold as zero. Guessing a degree that is too small will render
the remainder useless. Guessing a degree that is too large might introduce severe numerical
errors in subsequent divisions, since they are performed with a divisor, whose leading coefficient
is likely to be almost as small as the threshold. Additionally, it is unclear if the resulting
sequence is still useful for real root counting.

In the proposed rasterization method, we can avoid such problems in most cases using the
specialization property of signed subresultants. During the preprocessing stage of the algorithm,
we computed the two signed subresultant sequences for the bivariate polynomial F ∈ Z[x, y]
and its partial derivatives. One sequence used x as the outermost variables, while the other
sequence used y. Due to Lemma 2.3.32, these sequences give a quite good upper bound on the
degrees of the polynomials in the signed subresultant sequences of F specialized at a certain
value of y or x (the respective innermost variable). The upper bound is met with probability
one since the degenerate case only occurs if we specialize at a root of one of the sresj(F, ∂F

∂x )
resp. sresj(F, ∂F

∂y ), which are univariate polynomials having only a finite number of roots. To
compute the quotients at one of these roots, one can simply switch to exact integer arithmetic.

This approach creates a numerical approximation of the quotient sequence or an exact
sequence in some rare cases. Since we will use this sequence for real root counting only,
numerical inexactness in the sequence does not cause trouble as long as it still allows to
determine the exact sign of the signed subresultants at a certain position.

3.6.2. Numerical real root counting

In this section, we assume that the sequence of quotients has been created successfully, e.g.
the degree of each signed subresultant polynomial is known. As mentioned earlier, real root
counting relies on sign determination. Due to the numerical evaluation, we might not be able
to detect all signs correctly. We denote the signs by ‘+’, ‘−’ and ‘0’ as usual and by ‘?’ in
the uncertain case. Because of Definition 2.4.7 and Theorem 2.4.8, we know that only the
subsequences [+, +], [+,−], [+, 0,−], [+, 0, 0, +], [+, 0, 0,−] and their symmetric counterparts
obtained by interchanging ‘+’ and ‘−’ can occur in a valid sign sequence of evaluated signed
subresultants. Thus, we can exploit some combinatorial arguments in uncertain cases to avoid
switching to a higher precision. The sign pattern [+, ?,−] may actually be [+, +,−], [+,−,−]
or [+, 0,−], all of which have MVar = 1. The exact sign of ‘?’ is not relevant to the real
root counting in this case. This technique can be applied to many sign patterns. Table 3.1
provides a complete list of all possible cases of uncertain sign patterns with a minimal length
of 3 elements that satisfy the following conditions. Let T be a sequence of signs, then

1. T starts with a ‘+’
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sign sequence S possible resolutions MVar(S)
[+, ?, +] [+, +, +], [+,−, +] 0, 2
[+, ?,−] [+, +,−], [+,−,−], [+, 0,−] 1
[+, 0, 0, ?] [+, 0, 0, +], [+, 0, 0,−] 2, 1
[+, 0, ?, +] [+, 0,−, +], [+, 0, 0, +] 2
[+, 0, ?,−] [+, 0,−,−], [+, 0, 0,−] 1
[+, ?, 0, +] [+,−, 0, +], [+, 0, 0, +] 2
[+, ?, 0,−] [+, +, 0,−], [+, 0, 0,−] 1
[+, 0, 0, ?, +] [+, 0, 0, +, +], [+, 0, 0,−, +] 2
[+, 0, 0, ?,−] [+, 0, 0, +,−], [+, 0, 0,−,−] 3, 1
[+, 0, ?, 0, +] [+, 0,−, 0, +] 2
[+, ?, 0, 0, +] [+, +, 0, 0, +], [+,−, 0, 0, +] 2
[+, ?, 0, 0,−] [+, +, 0, 0,−], [+,−, 0, 0,−] 1, 3
[+, 0, 0, ?, 0, +] [+, 0, 0,−, 0, +] 2
[+, 0, 0, ?, 0,−] [+, 0, 0, +, 0,−] 3
[+, 0, ?, 0, 0, +] [+, 0,−, 0, 0, +] 2
[+, 0, ?, 0, 0,−] [+, 0,−, 0, 0,−] 3
[+, 0, 0, ?, 0, 0, +] [+, 0, 0, +, 0, 0, +], [+, 0, 0,−, 0, 0, +] 4, 2
[+, 0, 0, ?, 0, 0,−] [+, 0, 0, +, 0, 0,−], [+, 0, 0,−, 0, 0,−] 3

Table 3.1.: Possible resolutions for all uncertain sign patterns with a length of 3 to 7 elements,
that start with a ‘+’ and contain a single ‘?’ inside the sequence (not at the beginning or
end). For many of them, the modified number of sign changes can be determined in spite of an
uncertain sign if MVar(S) is the same for all possible resolutions. Due to symmetry, the list of
sequences starting with ‘−’ is obtained by interchanging the roles of ‘+’ and ‘−’.

2. T contains a single ‘?’ inside the sequence but not at the beginning or end

3. T is not reducible, i.e. T does not contain the sign patterns [+, +], [−,−], [+,−], [−, +],
[+, 0,−], [−, 0, +], [+, 0, 0, +], [−, 0, 0,−], [+, 0, 0,−] and [−, 0, 0,−], which can be resolved
by Definition 2.4.7.

Note that a sequence T with a length greater than 7 can not occur. Since only one uncertain
sign is present, longer sequences contain at least one reducible subsequence and can be shortened
by applying the MVar(·) operator to the subsequence. To illustrate the reduction, an example
with fewer signs suffices:

MVar([+, ?,−, 0, +]) = MVar([+, ?,−]) + MVar([−, 0, +]) (3.5)
= 1 + 1 = 2. (3.6)

If a full sign sequence S = [SRes0(c), . . . , SResn−1(c), SResn(c)] for an evaluation point c ∈ Z
contains several uncertain signs, MVar(S) can still be calculated as long as S can be decomposed
into overlapping certain sign patterns and resolvable uncertain sign patterns, e.g. [+, ?,−, ?, +]
has two uncertain signs and can be resolved as

MVar([+, ?,−, ?, +]) = MVar([+, ?,−]) + MVar([−, ?, +]) (3.7)
= 1 + 1 = 2. (3.8)
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y signs in Q(y) ⇔ resolution of ? signs MVar(Q(y))
−0.12 +---+-++++-+---+-+-+-+-+-+- ⇐ no ‘?’ 19

0.24 -?+-+++-+++++-+------------ ⇐ MVar([−, ?, +]) = 1 8
0.36 ??+-+++-+++++-+------------ ⇐ evaluate ‘⇒’

--+-+++-+++++-+------------ ⇒ no ‘?’ 8
6.00 ??+-+++-++++-++------------ ⇐ evaluate ‘⇒’

+++-+++-++++-++------?????? ⇒ merge with result of ‘⇐’
+++-+++-++++-++------------ ⇔ no ‘?’ 7

Table 3.2.: Resolution of uncertain signs during the real root counting of the “Bundle” curve
B(x, y) = 0 at x = 0.01 using the signed subresultant PQS. The list of signs corresponds
to the evaluations of the sequence of signed subresultants Q(y) = [SResn(y), SResn−1(y), . . . ,
SRes0(y)] at the corresponding value for y at a floating point precision of 256 bit. The arrows
specify the direction of evaluation of the sequence of quotients. In case of ‘⇐’, the recursive
evaluation started from SRes0, while in case of ‘⇒’, the elements SResn and SResn−1 have
been used. ‘⇔’ marks the merged result of ‘⇐’ and ‘⇒’. Using combinatorial arguments
and recursive evaluation of the PQS in both directions often allows to determine MVar(Q(y))
in spite of uncertain signs. This effectively avoids the need to switch to a higher numerical
precision. Note that in practice we can even stop the evaluation of the ‘⇒’ direction as soon as
all signs have been resolved. In the case of y = 0.36 and y = 6.00, the evaluation of SResn(y)
and SResn−1(y) would be sufficient but we displayed the whole sequence for clarity.

In practice, the most frequent cases are [+, ?, +] and [+, ?,−] resp. [−, ?,−] and [−, ?, +], since
a ‘0’ only occurs at the finitely many zeros of the subresultant polynomials.

During the evaluation of the quotient sequence, round-off errors will usually accumulate and
reach their maximum value in the last element. To alleviate these effects, the evaluation can be
started from SResl, which in the squarefree case is SRes0, the resultant, and thus a constant
for all evaluations. As soon as an uncertain signs pattern cannot be resolved into a certain
number of sign changes, the evaluation is restarted from SResn and SResn−1 as explained
in Section 2.4.1.1. If the modified number of sign changes can still not be determined, the
numerical precision is increased until the final result is known.

The practical relevance of the above consideration is emphasized by the following example.

Example 3.6.1. Consider the curve B(x, y) = 0 of degree 26 defined by the polynomial shown
in Equation (C.1) (see Appendix C). For the purpose of illustration, the sequence of signed
subresultant quotients has been created for the specializations of B(x, y) at x = 0.01. The
signs of the signed subresultants have been determined at y ∈ {−0.12, 0.24, 0.36, 6.00} using a
floating point precision of 256 bit. Table 3.2 shows the results and the occurring problems due
to uncertain signs, which can be resolved by applying the techniques explained above. This
prevents the algorithm from switching to a higher numerical precision, e.g. 512 bit, which would
slow down the computations considerably.
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3.7. Analysis of the asymptotic complexity

The presented algorithm allows to compute exact rasterizations of real algebraic plane curves
using symbolical and exact computations combined with numerical filtering techniques. The
exactness is guaranteed for all inputs. The time needed for the computation splits up into the
precomputation and the actual rasterization, which can be repeated using different viewports.
As a consequence of the exactness criterion, the running time of the algorithm depends not
only on the number of arithmetic operations performed, but also on the size of the involved
numbers. Therefore, we will derive the worst case bounds on the bit complexity of all steps of
the new algorithm. A bound on the improved trivial algorithm (Algorithm 3.2) is provided in
Section 3.7.5, and it is shown how the new algorithm improves upon it.

During the analysis, we will work on a polynomial F (x, y) ∈ Z[x, y] of magnitude (τ, n) as
stated in Definition 2.1.3. For reasons of simplicity, we assume that the bound on the bitsize
does not change if the curve is considered within a different viewport, i.e. if T is a mapping
that transforms the coordinates to the new viewport, then we use τ as the maximum of the
bitsizes of the coefficients of F (x, y) and F (T (x, y)). Furthermore, the viewport is [0, 0]× [s, s]
for s ∈ Z. We assume s > n since s ≤ n does not provide reasonable rasterization detail for
many curves.

We already discussed that numerical filtering is of great importance in practice. Due to
Lemma 2.5.3, we can ignore its asymptotic cost if we choose the precisions as stated in
Section 2.5.

The results of the analysis can be summarized as follows:
Theorem 3.7.1 (bit complexity of the exact real algebraic curve rasterization). The
preprocessing of the curve has a bit complexity bounded by Õ(n8+n7τ). Afterwards, the algorithm
is able to compute a rasterization within a given viewport using O(n2sM(n(τ + n bit(s)))) ⊂
Õ(n3τs + n4s) bit operations.

3.7.1. Analysis of the preprocessing stage

First, the new algorithm requires the removal of vertical and horizontal lines, i.e. conty(F )
and contx(F ). A trivial implementation can compute each content using at most n GCD
computations of univariate polynomials of degree at most n and coefficients of bitsize at most τ .
Using the subresultant algorithm this, needs at most nO(n2M(nτ)) ⊆ Õ(n4τ) bit operations
(cf. Table 2.3) which is good enough for our purpose.

During the rasterization stage, we need to be able to compute the raster positions of the
critical points using their precomputed representation, which we assume to be as follows.
Assumption 3.7.2. The real solutions of a bivariate polynomial system F = G = 0 are represented
using three lists: disjoint isolating intervals for x0, . . . , xk, k ≤ n2, the real roots of Resy(F, G);
disjoint isolating intervals for y0, . . . , yl, l ≤ n2, the real roots of Resx(F, G); a list of pairs
(i, j), such that (xi, yj) is a solution of the system. The lists of isolating intervals are sorted.
Furthermore, the sign of the squarefree part of Resy(F, G) is known for each interval endpoint.
The same is assumed for the real roots y0, . . . , yl of Resx(F, G). Finally, we require the occurring
rational interval endpoints to be in reduced form, i.e. for m

n ∈ Q we require gcd(m, n) = ±1.
The authors of [DET09] presented a bound of Õ(n12 + n10τ) for the task of computing

the above mentioned interval representation of the real solutions of a bivariate polynomial
system. Most recently, this bound has been improved in [ES12] by four orders of magnitude

53



3. Exact rasterization of real algebraic plane curves

to Õ(n8 + n7τ). Both methods also compute the resultants with respect to x and y and the
squarefree part if necessary. Furthermore, the sequence of signed subresultant quotients and
therefore also its degrees appear as a byproduct of the resultant computation. The cost of
these symbolic computations is in Õ(n4τ) using the fast subresultant algorithm (see Table 2.3).
Implementations are usually based on Corollary 2.3.13, which yields a complexity of Õ(n5τ).
From a theoretical point of view, this in any case negligible compared to the total preprocessing
cost of Õ(n8 + n7τ). Note that the squarefree part of F has coefficients of bitsize at most
τ ′ ≤ τ + n + bit(n). We ignore that during the analysis since substituting τ by τ ′ ∈ O(τ + n)
does not change the final result.

3.7.2. Adjustment of the viewport

In order to perform the rasterization algorithm on a new viewport, we need to transform the
curve and determine the raster positions of the critical points. These processes can be done
one after another for both coordinate directions. In this section, we focus on the x direction
and derive the following bound:
Theorem 3.7.3 (bit complexity for the viewport adjustment). The total cost for trans-
forming F to a new viewport and for computing the raster positions of all critical points of the
curve within the viewport is bounded by O(sn2M(n(τ + n bit(s)))).

The coordinate transformation T is of type x 7→ x−a
b resp. x 7→ (x− a)b, i.e. a translation

about a followed by a scale about a factor b with a, b ∈ Z. Note that V (F (x
b , y)) = V (bnF (x

b , y)),
but bnF (x

b , y) ∈ Z[x, y].
Proposition 3.7.4. Applying the coordinate transformation T (x) = x−a

b to the curve V (F ),
i.e. determining the coefficients of the polynomial G(x, y) = bnF (T (x), y) ∈ Z[x, y], where
bit(T ) and the bitsize of the coefficients of F, G are in O(τ), is possible within O(n2sM(τ))
bit operations.

Proof. In order to apply the translation to F (x, y) = ∑n
i=0 fi(x)yi, we need to translate the

n + 1 coefficient polynomials fi(x) of degree at most n. Using the trivial algorithm (see
Table 2.3), this takes (n + 1)O(n2M(nτ)). But as stated in Section 3.7, we assume that the
bitsize of the result is also smaller than τ and that s > n. Therefore, the shift is possible in
(n + 1)O(n2M(τ)) ⊆ O(n2sM(τ)) bit operations. The cost of scaling F is in O(n2M(τ)) by
the same argument.

The next step is to bound the number of operations needed to determine the new raster
positions of the critical points. In practice, this relies heavily on the method used to isolate the
critical points. Since we have not fixed this algorithm, we state one (not necessarily optimal)
possibility that matches the final complexity bound of the rasterization stage.

The calculation of the raster positions is identical for both coordinate directions. Therefore,
we focus on the x coordinates again. In order to relate the isolating intervals to the raster
positions of the new viewport, one should not apply a coordinate transformation to the isolating
intervals. The bitsize of the interval endpoints is bounded by the bitsize of the separation
bound of the real roots, which is O(n2 · n(τ + bit(n))) for the resultant [EMT08]. Instead,
we transform the raster positions 0, . . . , s of the new viewport into the coordinate system
of the default viewport. The bitsize of the raster positions transformed by T −1 is at most
O(bit(s) + τ).
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The raster positions are now determined as follows: Let [a0, b0], . . . , [ak, bk] be the isolating
intervals for the roots of the resultant as stated in Assumption 3.7.2. First, we merge the
sorted list of intervals [a0, b0, . . . , ak, bk] and the sorted list of transformed raster positions
[T −1(0), . . . , T −1(s)] into a combined sorted list. Then, we determine which isolating intervals
contain which raster positions. This possibly requires to split isolating intervals at transformed
raster positions.
Lemma 3.7.5. Merging the sorted lists of intervals [a0, b0, . . . , ak, bk] and transformed raster
positions [T −1(0), . . . , T −1(s)] into one sorted list is possible using at most O((n2 +s)M(bit(s)+
τ)) bit operations.

Proof. Merging the two sorted lists requires O(n2 + s) comparisons since there are at most n2

isolating intervals and s + 1 raster positions. Let c
d ∈ Q, gcd(c, d) = 1, be an endpoint of an

isolating interval and let p
q ∈ Q be a transformed raster position.

The test for c
d = p

q reduces to the test for cp = dp. Since c
d is in reduced form, c

d 6=
p
q , if c

d

has a bitsize greater than p
q . Therefore, the products cp and dp are only computed if their

bitsize is in O(bit(s) + τ).
Assuming that c, d, p, q > 0, we can test for c

d < p
q by testing for c

dq < p. The result is
clear as soon as bit(p) ∈ O(bit(s) + τ) bits of c

dq are known. A sufficient approximation of the
quotient c

d can be computed in O(M(bit(s) + τ)) using only the necessary upper bits of c and
d. If c, d, p, q > 0 does not hold, we have to change the relation symbol appropriately.

Remark. Note that the above algorithm to compare c
dq and p is considerably faster than

computing all the O(n3(τ + bit(n)) + bit(s)) bits in the test for cq < dp.
The merging algorithm yields a sorted list and this allows to determine which isolating

intervals span which raster positions easily. Isolating intervals that are contained in the interval
(T −1(r), T −1(r + 1)) for some raster position r ∈ {0, . . . , s} can be immediately assigned to
raster position r. If an isolating interval [ai, bi] contains T −1(r), . . . , T −1(r + l), l ∈ N, then
[ai, bi] has to be split at some of the T −1(t + j), 0 ≤ j ≤ l, until it can be clearly assigned to
a raster position. The total number of interval splits for all isolating intervals is bounded by
s + 1 since they do not overlap. In practice, the number of splits can usually be reduced by
using some kind of bisection scheme on the raster positions.

In order to split an isolating interval at a transformed raster position T −1(r), r ∈ {0, . . . , s},
contained in an isolating interval [ai, bi] of a root xi ∈ R, we compare the signs of the squarefree
part of Resy(F, G) at the positions ai, bi and T (r). Note that the signs at ai and bi are known
from the precomputation. Therefore, the cost solely depends on the evaluations at T (r),
r ∈ {0, . . . , s}.
Lemma 3.7.6. An evaluation of the squarefree part of Resy(F, G)(x) at T −1(r) for some
r ∈ {0, . . . , s} is computable using O(n2M(n(τ + n bit(s))) bit operations.

Proof. The squarefree part of the resultant is of magnitude O(nτ + n bit(n) + n2, n2) (see
Lemma 2.3.23). Evaluating it at T −1(r), which has coefficients of bitsize O(bit(s) + τ), involves
numbers of bitsize O(τn + n2 bit(s)) (cf. Table 2.3). Since Resy(F, G) has at most O(n2)
coefficients, the evaluation needs no more than O(n2M(n(τ + n bit(s))) bit operations.

Lemma 3.7.6 has to be applied to at most s + 1 raster positions. This yields the total
complexity of O(sn2M(n(τ + n bit(s)))) for the adjustment of the viewport as stated in
Theorem 3.7.3.
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3.7.3. Analysis of the rasterization stage
In the worst case, the algorithm needs to perform the real root counting via the signed
subresultant sequence for all O(s) rows of the image. This happens for curves with many
densely packed segments. For example, V (F 2 − ε) shows two badly separated segments for
each segment of V (F ). The main result of the analysis is:
Theorem 3.7.7 (bit complexity for the rasterization stage). The bit complexity for the
rasterization of the curve in the non-critical slices and the critical columns is O(n2sM(n(τ +
n bit(s)))).

We will derive the theorem in what follows.
Lemma 3.7.8. The total cost to compute the quotients for the signed subresultant sequences for
all s+1 rows resp. columns of the image is bounded by O(n2sM(n(τ +n bit(s)))) bit operations
if the structure theorem for signed subresultants is applied, and by O(n log nsM(n(τ +n bit(s))))
bit operations if the asymptotically fast subresultant algorithm is used.

Proof. F (x, y) evaluated at x = r resp. y = r for r ∈ {0, . . . , s} has coefficients of bitsize
O(τ + n bit(s)) (cf. Table 2.3). The bitsize of the coefficients in the subresultant quotient
sequence is therefore bounded by O(n(τ + n bit(s))) due to Lemma 2.3.27 and Corollary 2.3.30.
The number of arithmetic operations is bounded by O(n2) using the structure theorem resp.
by O(n log n) using the asymptotically fast method. Therefore, computing the quotients for all
s + 1 rows resp. columns needs (s + 1)O(n2M(n(τ + n bit(s)))) resp. (s + 1)O(n log nM(n(τ +
n bit(s)))) bit operations.

In the worst case, we have to perform the real root counting for each pixel in the image
covered by the curve. If we derive a bound for a single row and multiply it by the number of
rows, the bound would be too weak since the curve may cover all pixels of a row. Thus, we
need to bound the total number of covered pixels in the image.
Proposition 3.7.9. A curve of total degree n covers at most O(ns) pixels of an image of size
s× s.

Proof. First, note that by Theorem 2.2.9, the curve has up to n2 x-critical and y-critical points,
which is in O(ns) using s > n. If these points are painted, all subpixel components of the
curve are covered, and it suffices to investigate the intersections of the curve at the boundary
of each pixel. A vertical or horizontal line with a x or y coordinate equal to a raster position
covers all 2s pixels in the respective adjacent columns or rows. Since there are at most n such
lines, this contributes at most O(ns) pixels. Let x = r be a raster position where F does
not have a vertical line. Then F (r, y) 6≡ 0 by Lemma 3.4.1. By the fundamental theorem of
algebra (Theorem 2.4.1), F (r, y) has at most n real roots. Applying this to the s + 1 raster
position with respect to rows and columns yields the result of O(ns) covered pixels that have
an intersection with V (F ) at their boundary.

Remark. A slightly closer look at the number of pixels contributed by each step of the algorithm
suggests that the tight upper bound is located between 3ns and 6ns painted pixels. In order
to find the true upper bound, one has to identify pixels, that are counted more than once.
However, the exact value is not of importance in this analysis.
Lemma 3.7.10. The number of bit operations necessary to perform real root counting for all
pixels in the rasterization of the curve, that do not have a multiple root at a pixel corner, is
bounded by O(n2sM(n(τ + n bit(s)))).
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Proof. By Lemma 2.4.13, the signed subresultant quotient sequence of a polynomial of mag-
nitude (τ ′, n) can be evaluated in O(nM(n(τ ′ + bit(n)) + σ)), where σ is the bitsize of the
evaluation point. In our case, τ ′ ∈ O(τ + n bit(s)) (cf. Lemma 3.7.8) and σ ∈ O(bit(s)). Since
the real root counting is never performed on an interval which has a multiple root at one or
both of its endpoints, we can always apply Lemma 2.4.11. Thus, no further cost arises from
interval subdivision or the computation of the squarefree part of the respective univariate
polynomials. The result follows by applying Proposition 3.7.9.

We can now complete Theorem 3.7.7.

Proof of Theorem 3.7.7. Lemma 3.7.8 and Lemma 3.7.10 can immediately be applied to the
non-critical slices as they do not contain multiple roots of the appearing univariate polynomials.
All pixels in a critical column that contain critical points are known after the viewport has been
adjusted (see Theorem 3.7.3). Thus, the remaining pixels do not have multiple roots at their
boundary. In order to find the pixels, where the curve escapes a critical row between critical
pixels, we can safely apply Lemma 2.4.11 and therefore also Lemma 3.7.8 and Lemma 3.7.10.
The same is true, when we want to resolve the connections between all the pixels in the critical
rows that have been painted so far (see Section 3.5.2). The number of pixels we have to check
does not exceed O(ns) by Proposition 3.7.9 and the complexity of O(ns · nM(n(τ + n bit(s))))
follows. Ignoring logarithmic factors yields the bound Õ(n3τs + n4s)

3.7.4. The improved trivial algorithm

To the knowledge of the author, there is no detailed analysis of other exact rasterization
algorithms for real algebraic plane curves. For comparison, we will derive the complexity of the
improved trivial algorithm (Algorithm 3.2). It is out of the scope of this work to derive bounds
for the yet unknown complexity of more sophisticated algorithms like [EBS09].

The trivial algorithms also compute the raster positions of the critical points. Therefore, we
can reuse the bounds on the preprocessing stage and the adjustment of the viewport. The only
interesting stage is the rasterization stage. The improved trivial algorithm isolates the real
roots of F along each row and column. This leads to the following lemma.
Lemma 3.7.11 (bit complexity of the rasterization stage using the improved trivial
algorithm). The rasterization needs no more than Õ(n3τs + n4s) bit operations.

Proof. By Lemma 2.4.18, the real root isolation of a polynomial of magnitude (τ ′, n) demands
for Õ(n3τ ′) bit operations. The bitsize of the coefficients of F evaluated at one of the raster
positions is τ ′ = τ + n bit(s). Hence, isolating the real roots of one such polynomial is in
Õ(n4τ). Applying this to all 2(s + 1) raster positions of the rows and columns in the viewport
results in a complexity of Õ(n3(τ + n bit(s))s) = Õ(n3τs + n4s).

3.7.5. Summary and comparison

We have seen that the precomputation takes at most Õ(n8 + n7τ) bit operations and that the
adjustment of the viewport and the rasterization need no more than O(n2sM(n(τ +n bit(s)))) ⊂
Õ(n3τs + n4s) bit operations. The bound on the precomputation clearly outweighs the rest of
the computation. As the rasterization is usually done repeatedly for different viewports, the
bound of Õ(n3τs + n4s) is still of major importance.
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This bound is equal to the bound given in Lemma 3.7.11 on the rasterization stage of
the improved trivial algorithm if logarithmic factors are ignored. Note that the bound of
Õ(n3τ) for the asymptotic complexity of exact polynomial real root isolation is a rather recent
one published in [Sag12]. The previous bound for this task using Descartes’ rule of signs or
signed subresultant sequences was, to the knowledge of the author, in Õ(n4τ2) (see [EMT08]).
Thus, the bit complexity of the rasterization stage of the improved trivial algorithm was
Õ(s(n4(τ + n bit(s))2)) = Õ(n4τ2s + n6s) prior to the results of [Sag12]. This is a difference
of 2 orders of magnitude. Furthermore, [Sag12] uses fast Taylor shifts in order to perform
the transformation x 7→ x + 1 during the real root isolation (see also Section 2.4.2). Ignoring
logarithmic factors, classical fast Taylor shifts are about O(n) slower than asymptotically fast
Taylor shifts, which are not used in practice for any reasonable size of the input. According to
[GG97], asymptotically fast Taylor shifts are worthwhile for polynomial degrees above some
threshold between 256 and 512. Due to the high cost of Õ(n8 + n7τ) for the preprocessing, the
exact rasterization of curves given by polynomial of similarly high degrees seem out of reach for
current implementations. Therefore, a worst case bound of Õ(n · (n3τs + n4s)) for the improved
trivial exact rasterization algorithm seems more realistic from a practical point of view.

A closer look at the fast real root isolation algorithm of [Sag12] reveals that O(n log(nτ ′))
Taylor shifts are necessary to isolate the real roots of a polynomial of magnitude (τ ′, n). This is
due to the size of the recursion tree of the interval subdivision process. The involved numbers
have a bitsize of O(nτ ′) as in the algorithm presented above (here τ ′ = τ + n bit(s)). Therefore,
the new rasterization method improves upon the improved trivial exact rasterization algorithm
by at least a factor of O(log(nτ ′)) = O(log(n(τ + n bit(s)))) even if the fast Taylor shift is used
in the new real root isolation algorithm of [Sag12]. Due to the Õ notation, this factor is not
obvious.

We have not discussed the unimproved trivial algorithm (Algorithm 3.1) yet. It repeats the
real root isolation resp. real root counting for each pixel. There are O(s2) pixels. Using signed
subresultants, each pixel demands for O(1) evaluations of the sequence. By Lemma 2.4.13 this
yields a bit complexity of O(ns2M(n(τ + n bit(s)))) ⊂ Õ(n2s2τ + n3s2), i.e. a factor of n is
replaced by s > n. In order to derive a bound on Algorithm 3.1 when the real root isolation of
[Sag12] is used, we would need further investigations since it is not obvious how the size of
the recurvsion tree changes if we apply the real root isolation to the boundary of the O(s2)
pixels. We skip this analysis since Algorithm 3.2 is preferable over Algorithm 3.1 in any case.
Furthermore, we have shown how the new rasterization algorithm improves upon Algorithm 3.2.

3.8. Implementation

The described approach has been implemented on top of the CGAL 3.7 library [CGAL12].
Besides various implemented algorithms related to linear computational geometry, it provides
methods for computing with (multivariate) polynomials over the integers and rationals and
for isolating the real zeros of univariate polynomials and systems of bivariate polynomials.
The implementation of the latter algorithm is based on [EKW07; EK08]. The computation of
signed subresultants subresultants has been extended to include the quotients and to allow for
numerical filtering as described in Section 3.6. The algorithm has been tested for its efficiency.
The results are shown in the Section 3.9.
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(a) f2
8,2,− (b) C2,8 (c) FTT 2

2,2,4,− (d) SAA3,2,10−2

Figure 3.11.: Rasterizations produced by the new algorithm. The equations of the shown
curves are taken from the list of challenging curves provided in [Lab10b]. More rasterized
curves can be found in Appendix A. Note that the curves have been rasterized exactly at a
high resolution in order to obtain a high detail. Afterwards each pixel is replaced by a circle of
width larger than one pixel. This yields a smooth visualization.

3.9. Benchmarks of challenging curves
In order to test the practical efficiency of the new algorithm, we use the list of real algebraic
plane curves presented in [Lab10b]. Its author emphasizes that the given curves are challenging
for rasterization algorithms. In Appendix A, we will briefly review and discuss each type of
challenging curve and show images of some of the curves created with the new algorithm. A
few of them are also shown in Figure 3.11. Here, we will restrict to compare the runtime of the
proposed algorithm to the runtime of the improved trivial algorithm (Algorithm 3.2) and to
the runtime of the algorithm introduced in [EBS09] by means of density and violin plots. For
brevity, the scatter plots of the absolute runtimes have been moved to Appendix B. In [Lab10b],
constructions for curves of arbitrary degree are provided. Since some of these construction
require more advanced computer algebra tools than available in the implementation of the new
algorithm, we use the list of precomputed polynomials supplied at [Lab10a].

For all tested algorithms, the time that is occupied by the precomputation becomes infeasible
for curves of high degree. Therefore, we restrict to curves V (F ) with deg(F ) ≤ 30. This still
includes 2696 curves from the list.

We will use the following abbreviations: ‘S’ for the new algorithm, ‘EBS’ for the algorithm of
[EBS09] and ‘T’ for the improved trivial algorithm. Note that ‘S’ and ‘EBS’ have been chosen
to reflect the initial letters of the authors of the respective algorithms.

3.9.1. Preprocessing

We first look at the time for the precomputation of the three algorithms. The speedup is
illustrated in summarized form in Figure 3.12 and separately for each challenge in Figure 3.13.
There are two noticeable peeks in the diagrams: one at a speedup of approximately 1

2 and
one at a speedup of approximately 1. The peek at 1

2 is due to the fact that algorithm S
computes both, the x critical and y critical points while the other two algorithm only need one
direction (which can be chosen arbitrarily). The peek at 1 and most of the speedups smaller
than 1

2 occur since for many curves the x critical points are easier to compute than y critical
points (or vice versa). For some curves the speedup is also greater than 1. The main reason is
that algorithm S removes vertical and horizontal lines and rasterizes them separately. See for
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Figure 3.12.: Density plot of the speedup with respect to the preprocessing. Since some
challenges contain much more curves than others, the densities are weighted by challenge
and by curve. In the case of equal weight of curves, all determined speedups contribute
equally to the density. In the case of equal weight of challenges, a curve contributes by the
reciprocal of the number of curves in its challenge. Thus, challenges with fewer curves are
not discriminated. Prominent peeks are marked with vertical lines.
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Figure 3.13.: Violin plot of the speedup with respect to the preprocessing. The “violins”
show how the speedups are distributed over the different challenges, i.e. the thickness of a
violin relates to the relative number of curves with that speedup. Note that the gray bars
enclosed in the violins illustrate the lower and upper quartile and the location of the median.
The prominent peeks of Figure 3.12 are also included in this diagram as vertical lines. This
allows to analyze the contribution of a specific challenge to the respective peek. Furthermore,
the approximation of the overall density summarized for all challenges is shown behind the
violins. More saturated colors imply higher density.
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Figure 3.14.: Density plot of the share of the bivariate signed subresultant computation on
the total precomputation time.

example Challenge 8. Removing the lines does not only simplify the curve but also reduces
its degree, which is an important factor in polynomial system solving. It is hard to clearly
analyze the remaining speedups. Two additional facts are probably related. First, the EBS
algorithm also computes the topology of the curve, which might add considerable overhead in
some cases. Secondly, the method for bivariate system solving [EK08] relies on the randomized
real root isolation of polynomials with approximate coefficients presented in [Eig08] to ensure
exact results. The randomization might only be of minor influence but it should not be ignored.

3.9.1.1. Share of the computation of bivariate signed subresultants

Multivariate signed subresultants are often considered to be a costly symbolic operation. In the
implementation, the signed subresultants are computed during the calculation of the critical
points. Afterwards, they are just queried from the underlying data structure. Their degrees
are used during the numerical computation of the univariate signed subresultant quotient
sequences (see Section 3.6). To determine the actual share of the computation of the bivariate
subresultants on the precomputation, they have been computed separately in the experiments.
The results are shown in Figures 3.14 and 3.15. For some curves the computation of the
subresultants takes almost as much time as the whole precomputation. This is especially true
for the curves of Challenges 4 and 13. Nevertheless, for many of the tested curves, the share is
around 5%. If we consider equal weight of challenges, then the share is even lower. Therefore,
we consider the cost of this symbolic computation to be negligible compared to the total time
spend for isolation of the critial points in most cases.
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Figure 3.15.: Violin plot of the share of the bivariate signed subresultant computation on
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Figure 3.16.: A plot of the number of curves for each total degree. The bars are partitioned
in order to illustrated the number of successful runs, timeouts and out of memory errors.

Remark. For some of the curves of Challenge 8, the share is above 100%. These curves are
not squarefree and they contain vertical and horizontal lines. This has not been taken into
account during the separate computation of the share of the subresultant computation i.e. the
subresultants have been determined for the unreduced curves.

3.9.1.2. Unsuccessful runs

For some curves, the precomputation did not finish within a reasonable amount of time. The
threshold was set to one hour. In some cases, the precomputation also allocated all the memory
available to the system so that the application crashed. Both problems also occurred for
curves of relatively low degree. The number of curves that could not be rendered properly is
illustrated in Figure 3.16. The rendering failed for 264 of the 2696 tested curves. The EBS
and T algorithms perform better as they only compute the critical points with respect to one
direction, i.e. 119 resp. 140 renderings failed. Note that the mentioned issues are related to the
algorithm for the analysis of real algebraic plane curves provided by the CGAL library which is
called by the author’s implementation.

3.9.2. Adjustment of the viewport
In Section 3.7.2, we detailed an algorithm for the adjustment of the viewport which has a good
worst case complexity. However, a simplified approach has been used in the implementation.
It is built on top of CGAL’s mechanism for comparing real algebraic numbers and rational
numbers (e.g. transformed raster position). Therefore, the algorithms used to compute the
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Figure 3.17.: Density plot of the speedup with respect to the adjustment of the viewport.

raster positions of the critical points are very similar in all three tested algorithms. The results
shown in Figures 3.17 and 3.18 are comparable to the results of the preprocessing, i.e. there is
one peek at a speedup of approximately 1

2 and one peek at a speedup of approximately 1 for the
same reasons presented in Section 3.9.1. The benchmarks only reflect the first adjustment of
the viewport after the critical points are isolated. Changing to a different viewport afterwards
did not take any considerable amount of time for most of the curves from the randomly chosen
subset it has been tested on. This might be due to the excellent caching mechanism in CGAL.
Therefore, no additional benchmark results are included for this task.

3.9.3. Rasterization

We now examine the speedups for the main contribution: the rasterization. The results are
illustrated in Figures 3.19 and 3.20 for two different resolutions of the viewport. Algorithm S
outperforms the EBS and T algorithms for most of the tested curves. The speedups are scattered
over the approximate range of [−1

2 , 100] (ignoring the small amount of outliers). The density
plot based on the equal weight of the challenges (which probably allows a fairer evaluation)
shows the highest density at the following approximate speedups: 13.6 (T,1024× 1024), 9.4
(T,512×512), 2 (EBS,1024×1024) and 1.5 (EBS, 512×512). Since the data for the rasterization
is scattered over a wide range, the numerical values of the quartiles are also supplied in Table 3.3.

The results emphasize that the more sophisticated algorithms S and EBS are usually preferable
over the improved trivial algorithm T. The speedup even increases from the 512×512 resolution
to the 1024× 1024 resolution. The EBS algorithm is also considerably slower than the new
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Figure 3.18.: Violin plot of the speedup with respect to the adjustment of the viewport.

512 1024
S vs. EBS S vs. T S vs. EBS S vs. T

Lower quartile 1.31 4.52 1.35 5.96
Median 2.00 8.16 2.01 11.82
Upper quartile 3.22 12.27 2.95 17.65

Table 3.3.: Lower quartile, upper quartile and median of the speedups with respect to the
rasterization. The lower and upper quartiles are also shown graphically in Figure 3.19.
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Figure 3.19.: Density plot of the speedup with respect to the rasterization. The colored
regions below the curves outline the speedups of 50% of the curves of which the first half is
below and the seond half is above the median.
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Figure 3.20.: Violin plot of the speedup with respect to the rasterization.
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3.10. Conclusions and future work

algorithm S although the difference is much smaller than in the case of algorithm T. The
speedup is approximately the same for both tested resolutions. There are no significant changes
in the speedup with respect to the individual challenges as illustrated in Figure 3.20. This
suggests that algorithm S and EBS exhibit a similiar complexity in practice. Clearly, this
statement cannot be verified given the speedups at only two different resolutions. Further tests
would be necessary. Due to the time consuming precomputation for curves of higher degree, a
repetition of the benchmarks is out of the scope of this thesis. Apart from that, the speedups
are hovering around the value two for both tested resolutions. A plausible explanation for
this behavior is the difference in the precomputation. While algorithm S computes critical
points with respect to both coordinate directions, the EBS algorithm uses only one direction.
Therefore, the EBS algorithm has to check more possible directions of curve progression during
the curve rasterization. It would be interesting to verify this assumption by modifying the EBS
algorithm to make use of the additional set of critical points we use in algorithm S.

3.10. Conclusions and future work

A new curve tracing based rasterization method for real algebraic plane curves has been
presented. With respect to the above mentioned definition of correctness, it yields exact results
in all cases. The algorithm gains its efficiency from a simple test for a sign change of the
defining polynomial between pixel corners. In tough cases, it uses real root counting based
on signed subresultants in order to avoid repeated subdivision of the image space below pixel
level. Numerical filtering for both, the test for a sign change and the real root counting,
additionally allows to avoid most of the exact computations without violating the exactness of
the rasterization.

We have shown that the new algorithm is superior to the trivial, real root isolation based
algorithms from a theoretical point of view (although the improvement is only small). If we
restrict the real root isolation methods to those actually used in practice, i.e. which do not use
asymptotically fast Taylor shifts, the complexity of the new algorithm is at least one order of
magnitude faster than the improved trivial one.

The practical efficiency of the new method, the improved trivial one and the method described
in [EBS09] has been tested by means of a large number of challenging curves. It has been
demonstrated that the new algorithm outperforms the other ones during the rasterization at
the cost of a more expensive precomputation. Therefore, the new method can be recommended
in cases where the curve is explored interactively, i.e. if the curve is rendered repeatedly
with different viewports. In such cases, the additional time spent for the precomputation
might not pose a limitation. Furthermore, for curves of sufficiently small degree (e.g. 10) the
precomputation usually finishes within a few seconds or even milliseconds.

Currently, the implementation of the rasterization stage uses the degrees of the bivariate
signed subresultants for numerical filtering which have been created during the precomputation.
Although it has been shown in Section 3.9.1.1 that this computation has only a small share
on total cost in the current implementation, future algorithms for solving bivariate systems
might not utilize the signed subresultants. In this case, computing the bivariate subresultant
sequence separately would impose an additional overhead.

As we are only interested in the degrees of the subresultants with respect to the outermost
variable, several different approaches could be investigated. Let us consider SResj(A, B) for
A, B ∈ Z[x][y] with degy(B) ≤ degy(A) = n. A specialization of SResj(A, B) will usually
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have the same degree of the outermost variable as SRes(A, B). The degree only decreases if
sresj(A, B)(x) = 0, which has only a finite number of roots. Hence, a specialization at a random
evaluation point will in most cases result in a univariate subresultant polynomial of correct de-
gree. However, it is hard to guarantee the correctness without testing a sufficiently large number
of random evaluation points, i.e. more than the maximum possible number of real roots of the
leading coefficient of the bivariate subresultant. A better approach might be to deterministically
choose an evaluation point which is definitely no real root. We can bound the bitsize of the coef-
ficients of sresj(A, B) by Lemma 2.3.29 and consequently also the absolute value of its roots (see
Lemma 2.4.3). Therefore, we choose an evaluation point a ∈ Z larger than the real root bound
for all sresj(A, B) and compute S = [SRes0(A(a, y), B(a, y)), . . . , SResn(A(a, y), B(a, y))]. The
univariate polynomials in S have the same y degree as the bivariate signed subresultants.
Computing the bivariate sequence is hence superfluous. This removes the limitation on the
choice of algorithms for bivariate system solving.
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4. Robust graphical display of real algebraic
space curves

4.1. Motivation
In this chapter, we will investigate the rendering of algebraic space curves given as the
intersection of two algebraic surfaces A = B = 0, A, B ∈ Q[x, y, z]. Such intersections are of
interest in Computer Aided Design and Geometric Modeling. Furthermore, rendering algebraic
space curves provides the link between the visualization of real algebraic plane curves and
real algebraic surfaces. The intersection of the surface and its so-called polar surface gives an
important curve on the surface called the silhouette curve or apparent contour. This space
curve contains all the singularities and consequently also all one dimensional real components
of the surface.

The herein proposed method for rendering real algebraic space curves is based on projection
and lifting. It partially builds upon the approach taken in [DMR08] for the computation of
the topology of real algebraic space curves. Although the newly presented method does not
compute the topology, it borrows a fast lifting method that can be applied in situations where
the curve is sufficiently generic, i.e. there is a birational map between V (A, B) and its projection
in the direction of the z axis for all but a finite number of points.

The main contribution presented in this chapter is the weakening of the genericity constraints.
Common one-dimensional asymptotes of V (A) and V (B) do not pose a problem anymore so
that the lifting method of [DMR08] can be applied. More tough violations of the genericity
condition of [DMR08] are solved by applying a different lifting method. The new method has
the advantage that the space curve is rendered in the exact same system as it is defined in.
The approach works for all but finitely many points on the space curve. Hence, it is possible to
create arbitrarily close approximations of any one dimensional component of the space curve.
Before introducing the new algorithm, we will review related work in the next section.

4.2. Related work
We will distinguish between algorithms which are designed for computing the topology and
algorithms which are used for rendering algebraic space curves in the first place.

Knowing the topological configuration of a space curve usually simplifies its graphical display.
This is especially the case if the topology information is coupled with geometric information
such as the location of critical and singular points as well as at least one point on each segment
in between. Often, the methods applied for computing such points can easily be extended
for rendering the space curve. Although this approach is not necessarily efficient, some good
examples such as [DMR08] exist. There, the curve is sheared into generic position so that
no two one-dimensional curve components have the same projection when mapped to the
x, y-plane. This allows to rationally parametrize the space curve points with respect to the
coordinates of their projection based on the coefficients of certain subresultant polynomials.
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The basis for [DMR08] is [GN02] where the computation of the topology of plane curves is
studied. In [AR05], the topology is determined using a symbolic-numeric algorithm that is
based on approximate GCDs of polynomials. The correctness of the result is not guaranteed in
all cases. The method of [Gat+05] recovers the topology of a reduced space curve in generic
position using two projections in different directions. [El 08] propose a method to analyze
algebraic space curves defined by polynomials A1, . . . , Ak ∈ Q[x, y, z]. Their method requires
the space curve to be in reduced form and therefore incorporates the computation of radical
ideals and Gröbner bases. The method described in [Mou+06] also assumes a reduced curve
but additionally restricts to curves defined by only two polynomials. This poses a problem in
practice if the basis of the computed radical ideal has more than two elements. Furthermore, it
is required that the space curve has no asymptote in the direction of projection and that no two
critical points of the space have the same projection. The method assumes exact arithmetic
and utilizes linear algebra tools similar to subresultants and Eigenvalue computations for the
lifting. It is left open how the Eigenvalues of fiber polynomials above a sampling point of
the projection can be computed efficiently in practice since these polynomials have algebraic
number coefficients.

In some cases, visualization methods for space curves can be derived from rendering methods
for plane curves. Some space covering approaches are especially easy to extend. Good examples
are [Tau94] and most of the algorithms mentioned in the survey [Mar+02]. The used tests for
excluding regions of the plane directly yield exclusion tests for regions of three-dimensional
space. Curve tracing algorithms like [MY95; FYK97], which utilize the tangents of the plane
curve, can be extended by using the tangents of the space curve given by the cross product
of the gradients of A and B. This simple approach breaks down if the two gradient vectors
are linearly dependent. Although this problem also occurs in [Baj+88], they are able to trace
curves which have a singularity at the origin. The approach in [GW89] is similar to the one in
[DMR08] in the sense that a rational map between a projection and the space curve is derived.
However, the change of coordinates required to ensure the genericity condition requires to move
over to projective space. Furthermore, no topology information is computed.

In contrast to space covering methods, sampling algorithms for plane curves are usually
not applicable for space curves since space curves have codimension two. Nevertheless, many
methods for the visualization of plane curves can serve as a basis for space curve visualization
algorithms that are based on projections of the space curve to the plane such as [GW89; Gat+05;
DMR08] as well as the approach presented here.

4.3. Algorithm outline

This section provides a brief overview of the new algorithm for rendering real algebraic space
curves implicitly defined by the common zero set of polynomials A = ∑m

i=0 ai(x, y)zi, B =∑n
i=0 bi(x, y)zi ∈ Q[x, y, z], m ≤ n. We assume that V (A, B) is of dimension one, i.e.

gcd(A, B) = 1. This overview is also summarized graphically in Figure 4.1.
The algorithm is based on the computation of the signed subresultant sequence of A and

B with respect to z. The projection of V (A, B) to the (x, y) plane is given by the resultant
SRes0(A, B). In order to lift the projection into three dimensional space, we search for
appropriate surfaces containing the space curve. To that end, we compute a squarefree
factorization ∏m

i=1 ∆i(x, y)i of the resultant, i.e. the ∆i(x, y) are squarefree polynomials. As
a result of the GCD property of subresultants (Theorem 2.3.19), a lifting surface for all but
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Figure 4.1.: Outline of the rendering algorithm for real algebraic space curves.

finitely many points of V (∆i) is given by SResi(A, B)(x, y, z). Unfortunately, this construction
breaks down if V (A) and V (B) have a common asymptote over V (c) where c is a factor of
Resz(A, B). In this case, c is also a factor of all SResi(A, B), 0 ≤ i ≤ n so that none of the
SResi(A, B) can be selected as a lifting surface. In order to solve this issue, we perform a
simple coordinate transformation of A and B which maps z = ±∞ onto a real value such that
the transformed varieties do not share a common one-dimensional asymptote in z direction.
The transformation is reverted after the lifting surfaces have been determined so that the final
lifting takes place in the original coordinate system.

Lifting a component V (c) of the projection is done using two different approaches: The first
one is applicable if the lifting surface V (L) has only a single (possibly multiple) root above
the plane curve V (c) except for the points in the finite set V (c, lcoeff(L)). In this case, the z
coordinate of a point p on the corresponding real component VR(c, L) \ (VR(lcoeff(L))× R) of
the space curve V (A, B) is obtained as a rational function of its projection. This is the lifting
method proposed in [DMR08]. If this approach fails, we use certified real root counting of
polynomials with approximate coefficients. The approximation is based on interval arithmetic
and is refined if the precision is not sufficient in order to determine exact isolating intervals
for the real roots. Since the known algorithms for this task only terminate if the underlying
real polynomial is squarefree, we need to compute its squarefree part. The exact coefficients
are real algebraic numbers so that it is costly to do this for each point on V (c). This is
solved by applying subresultants a second time: For a factor c of Res(A, B) and its associated
lifting polynomial L, we decompose c into factors cj such that SResVj−1(L, ∂

∂z L)(x, y, z) is a
lifting polynomial for V (cj) which is squarefree w.r.t the z direction for all but finitely many
specializations (x, y) ∈ V (cj). Hence, the certified numerical real root isolation method can be
applied for almost all points on the curve.

Although we have seen in Section 2.3.1 that the coefficients of subresultants have moderate
size compared to other methods, the coefficients are still quite large. In Section 4.6.4, we
will investigate heuristic methods for the reduction of the size of the coefficients by searching
for lifting polynomials of lower degree. These heuristics significantly speed up the symbolic
precomputation and the subsequent lifting process in some cases.

In the following sections, we will describe and discuss the above method in detail. The
different steps and approaches will be illustrated by means of several examples. Unfortunately,
it is not easy to find a single example which covers all cases, has moderate complexity and
yields nice and easy to comprehend visual results at the same time. The surface and plane curve
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4. Robust graphical display of real algebraic space curves

visualizations have been computed using the program surf [End+10] while the visualizations
containing only space curves have been created with the new algorithm. Since the space curves
are usually highlighted on the surfaces, it is important to stress that in most cases a-priori
knowledge of the geometry of the space curves was necessary to render correct images using
surf. In addition, several surface images have been edited manually since surf failed to
produce correct results. The images produced by the algorithms presented here do not require
any a-priori knowledge and have not been edited in any way.

4.4. Squarefree factorization of the projected curve
We already know from Section 2.3.5 that the projection of V (A, B) onto the (x, y) plane is
contained in the zero set of Resz(A, B). Since several components of V (A, B) may have the
same projection, it is possible that Resz(A, B) contains multiple factors. In addition, there
might be space curve components of higher multiplicity. Under some genericity assumptions, a
squarefree factorization of Resz(A, B) ∈ Q[x, y] can be stated easily in terms of the following
polynomials, which are determined on the basis of the sequence of principal signed subresultant
coefficients of A and B.
Definition 4.4.1. Consider the sequence S(A, B) = [SRes0(A, B), . . . , SResm(A, B)] of signed
subresultants and let h(x, y) be the squarefree part of SRes0(A, B). Then we define

Θ0(x, y) = h(x, y), (4.1)
∆0(x, y) = 1, (4.2)

and for 1 ≤ i ≤ m

Θi(x, y) = gcd(Θi−1(x, y), sresi(x, y)), (4.3)

∆i(x, y) = Θi−1(x, y)
Θi(x, y) . (4.4)

Theorem 4.4.2. If Θm(x, y) = 1, the sequence D = [∆1, . . . , ∆m] is a decomposition of h(x, y)
into factors such that

h(x, y) =
m∏

i=1
∆i(x, y) (4.5)

and

Resz(A, B) = c
m∏

i=1
∆i(x, y)i, (4.6)

for some constant c ∈ Q i.e. D provides a squarefree factorization of Resz(A, B).

Proof. Obviously, ∏m
i=1 ∆i = ∏m

i=1
Θi

Θi−1
= Θ0

Θm

∏m−1
i=1

Θi
Θi

= Θ0 = h. This proves the first result.
To prove the second part of the theorem, consider the GCD property shown in Theorem 2.3.19
and the specialization properties of Lemmata 2.3.32 and 2.3.33. By construction, ∆i | sresi′ for
0 ≤ i′ < i but ∆i - sresi. Therefore, the polynomial SResi is a GCD of degree i of A and B for
each specialization at a point in V (∆i) \ V (sresi), which means that A and B have i common
solutions over V (∆i) \ V (sresi). Since gcd(∆i, sresi) = 1, the polynomial ∆i occurs as a factor
of multiplicity i in Resz(A, B).

74



4.4. Squarefree factorization of the projected curve

(a) V (A1) (b) V (B1) (c) V (A1, B1) (d) V (A1, B1)

Figure 4.2.: Visualizations of the surfaces and intersection curves as defined in Example 4.4.3.
(c) and (d) show two different views of the intersection curve.

As outlined in the above proof, the surface V (SResi(A, B)) contains the common roots of A
and B over V (∆i) \ V (sresi). Thus, V (SResi(A, B)) can serve as a lifting surface for V (∆i)
except for the finite set of points V (∆i, sresi). Note that Theorem 4.4.2 is only applicable if
Θm(x, y) = 1. Unfortunately, this does not hold true if the GCD of lcoeff(A) and lcoeff(B) is
non-constant. This issue is addressed in the next section. Prior to that we will have a look at
an example.
Example 4.4.3. Consider the polynomials

A1 = z4 + (2x2 + 2y2 − 10)z2 + 8xyz + x4 + 2x2y2 − 10x2 + y4 − 10y2 + 25, (4.7)

B1 = ∂

∂z
A1 = 4z3 + (4x2 + 4y2 − 20)z + 8xy, (4.8)

whose vanishing sets and intersections are shown in Figures 4.2a and 4.2b. The subresultant
sequence of A1 and B1 is SRes4(A1, B1) = A1, SRes3(A1, B1) = B1 and

SRes2(A1, B1) = 16((x2 + y2 − 5)z2 + (6xy)z (4.9)
+ (x4 + 2x2y2 − 10x2 + y4− 10y2 + 25)), (4.10)

SRes1(A1, B1) = 256((9x2y2)z + (2x5y + 4x3y3 − 20x3y + 2xy5 − 20xy3 + 50xy)), (4.11)
SRes0(A1, B1) = 4096(4x8y2 + 12x6y4 + 12x4y6 + 4x2y8 − 60x6y2 − 147x4y4

− 60x2y6 + 300x4y2 + 300x2y4 − 500x2y2). (4.12)

The squarefree part of SRes0(A1, B1) is

h(x, y) = x7y + 3x5y3 + 3x3y5 + xy7 − 15x5y − 147
4 x3y3 (4.13)

− 15xy5 + 75x3y + 75xy3 − 125xy. (4.14)

Applying Definition 4.4.1 yields the following Θ and ∆ polynomials:

Θ4(A1, B1) = 1 ∆4(A1, B1) = 1 (4.15)
Θ3(A1, B1) = 1 ∆3(A1, B1) = 1 (4.16)
Θ2(A1, B1) = 1 ∆2(A1, B1) = xy (4.17)
Θ1(A1, B1) = xy ∆1(A1, B1) = x7y + 3x5y3 + 3x3y5 + xy7 − 15x5y

− 147
4 x3y3 − 15xy5 + 75x3y + 75xy3 − 125xy (4.18)

Θ0(A1, B1) = h(A1, B1) ∆0(A1, B1) = 1. (4.19)
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4. Robust graphical display of real algebraic space curves

(a) V (SRes1(A1, B1)) (b) V
(

SRes1(A1,B1)
Θ1

)
(c) V (SRes2(A1, B1))

(d) V (SRes0(A1, B1)) (e) V (∆1(A1, B1)) (f) V (∆2(A1, B1))

Figure 4.3.: Visualization of the squarefree factorization of SRes0(A1, B1) into ∆i factors and
the respective subresultant lifting surfaces following Example 4.4.3. The space curve above
each V (∆i) is plotted in white. The yellow lines (in the direction of projection) illustrate the
fibers above the intersections of the leading coefficient of the lifting surface with V (∆i). Along
these fibers the lifting surface can not be used to lift ∆i. Note that different rotations of the
lifting surfaces have been chosen in order to present the geometry in the best possible way.

By definition, Θi(A1, B1) divides sresi(A1, B1) and therefore also SResi(A1, B1). Thus, we
can easily remove some of the content of SRes1(A1, B1). SRes1 /Θ1 provides a better lifting
polynomial then SRes1 due to its lower total degree. See Figure 4.3 for a visualization of the
zero set of the involved polynomials.

4.5. Non-constant leading coefficients

As outlined in Section 4.3, we want to lift the space curve above the component V (∆i) of its
projection V (Resz(A, B)) using the surface V (SResi(A, B)). If the leading coefficients of A
resp. B are non-constant polynomials, the procedure can fail for several reasons which we are
going to cover in this section.

4.5.1. The content

First of all, note that we assumed gcd(A, B) = 1. Then the content contz(A, B) only poses a
problem if degz A = degz B. In this case, A does not occur as an element of the subresultant
sequence since SResm(A, B) = SResn(A, B) = B is the last element (cf. Definition 2.3.4).
By Lemma 2.3.35, contz(A) and contz(B) are factors of Resz(A, B). The squarefree part of

76



4.5. Non-constant leading coefficients

(a) V (A2) (b) V (B2) (c) V (A2, B2)

Figure 4.4.: Visualizations of the surfaces and the space curves discussed in Example 4.5.1.
The surfaces V (A2) and V (B2) both have asymptotes over V (x2 + y2 − 1) and V (x2 + y2 − 2)
and intersect at z = 0 in V (x2 + y2 − 1).

contz(A) does not divide B since gcd(A, B) = 1. Hence, B serves as the lifting polynomial for
V (contz(A)). In contrast, contz(B) | B so that the squarefree part of contz(B) is a factor of
Θm. This prevents the application of Theorem 4.4.2.

The solution is simple. We just add A to the end of the subresultant sequence. contz(B) - A
so that A is correctly determined as the lifting polynomial for V (contz(B)). Note that
contz(A)n contz(B)m is a factor of Resz(A, B). In order to speed up the computation of h(x, y),
we can also determine it as the squarefree part of

contz(A) contz(B) Resz(ppz(A), ppz(B)), (4.20)

where ppz(P ) = P
contz(P ) is the primitive part of a polynomial P ∈ R[x, y, z] with respect to z.

4.5.2. Asymptotes
By Lemma 2.3.36, c = gcd(lcoeff(A), lcoeff(B)) appears as a factor of each principal subresultant
coefficient. Therefore, it is also a factor of Θm−1 and lcoeff(A). In this case c | Θm, i.e. c is not
a factor of any of the ∆i so that no lifting surface is associated to the plane curve V (c).

Geometrically, a vanishing leading coefficient lcoeff(A) of a polynomial A ∈ R[x, y][z] is
equivalent to V (A) having an asymptote in the z direction over V (lcoeff(A)) (cf. Lemma 2.2.8).
Hence, for a space curve V (A, B), the set V (c) = V (lcoeff(A), lcoeff(B)) defines the common
asymptotes of V (A) and V (B), i.e. the common solutions at infinity in z direction. If there are
additional solutions of A = B = 0 for z ∈ R over V (c), these cannot be determined since no
lifting surface is associated with c.
Example 4.5.1. Consider the surfaces defined by the polynomials

A2 = (x2 + y2 − 2)((x2 + y2 − 1)z4 + xz3) + z2 + (x2 + y2 − 1)z + (x2 + y2 − 1), (4.21)

B2 = ∂

∂z
A2 = 4(x2 + y2 − 2)((x2 + y2 − 1)z3 + 3xz2) + 2z + (x2 + y2 − 1). (4.22)

These surfaces have two different intersections at infinity: One above the circle x2 + y2− 2 = 0
and one above the circle x2 +y2−1 = 0. In addition, there is the solution V (x2 +y2−1, z). Due
to gcd(lcoeff(A2), lcoeff(B2)) = x2 + y2 − 1 each of the SResi(A2, B2), 0 ≤ i < n, is divisible
by the polynomial x2 + y2 − 1 so that no lifting surface is associated with it. See Figure 4.4 for
a visualization of V (A2), V (B2) and V (A2, B2).
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In order to solve the issues related to asymptotes, we perform a change of coordinates. Unlike
many other algorithms (see, e.g., [DMR08; GW89]), we do not shear or rotate the coordinate
system. Instead, we map the z axis onto itself. The transformation is reverted after the
symbolic precomputation so that the numerical approximation of the space curve is generated
in the original coordinate system.

The following method transforms the polynomials A and B such that they do not intersect
in a curve at infinity. First, we perform the translation

Az−λ(x, y, z) = A(x, y, z − λ) Bz−λ(x, y, z) = B(x, y, z − λ). (4.23)

The parameter λ ∈ Z is chosen such that gcd(coeff0(Az−λ), coeff0(Bz−λ)) = 1. The following
lemma ensures that there is a deterministic algorithm in order to compute a suitable λ.
Lemma 4.5.2. The number of values for λ ∈ R such that gcd(coeff0(Az−λ), coeff0(Bz−λ)) 6= 1
is bounded by 2m2.

Proof. The GCD condition is violated if A(x, y, λ) and B(x, y, λ) have a common factor, i.e.
V (A) and V (B) have a common one dimensional component at z = λ. Each of these components
occurs as a factor of Resz(A, B). By Lemma 2.3.28, we know that deg Resz(A, B) ≤ 2m2 giving
an upper bound on the number of possible values for λ.

Note that the GCD property is fulfilled with probability one for a random choice of λ. We
do not even need to compute the full expansion of A(x, y, z − λ) resp. B(x, y, z − λ) to check
the GCD property. It suffices to determine the GCD of

coeff0(A(x, y, z − λ)) =
m∑

k=0
(−λ)kak(x, y), (4.24)

coeff0(B(x, y, z − λ)) =
n∑

k=0
(−λ)kbk(x, y). (4.25)

The condition gcd(coeff0(Az−λ), coeff0(Bz−λ)) = 1 ensures that Az−λ and Bz−λ do not exhibit
a one dimensional intersection at z = 0. We now apply a second transformation which
interchanges the roles of z = 0 and z = ±∞. This is given by

A 1
z

−λ(x, y, z) = zdegz AAz−λ

(
x, y, 1

z

)
, (4.26)

B 1
z

−λ(x, y, z) = zdegz BBz−λ

(
x, y, 1

z

)
. (4.27)

Clearly, gcd(lcoeff(A 1
z

−λ), lcoeff(B 1
z

−λ)) = 1 as required for applying Theorem 4.4.2. Note that
the transformation of Equations (4.26) and (4.27) is algorithmically trivial: It can be carried
out by reversing the order of the coefficients of Az−λ and Bz−λ.

The following result shows that the transformation does not affect the projection of the space
curve onto the (x, y) plane.
Lemma 4.5.3. Resz

(
A 1

z
−λ, B 1

z
−λ

)
= ±Resz(A, B).

Proof. The chain rule for (sub-)resultants applied to Resz(A(x, y, z − λ), A(x, y, z − λ)) yields
Resz(A, B) = ±Resz(Az−λ, Bz−λ) (cf. Lemma 2.3.37). The Sylvester matrix Syl

(
A 1

z
−λ, B 1

z
−λ

)
is now obtained from Syl(Az−λ, Bz−λ) by reversing the order of its m + n columns and of its
first n and last m rows. Hence, the determinants of both matrices are equal up to sign.
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4.5. Non-constant leading coefficients

(a) V (A2, 1
z +1) (b) V (B2, 1

z +1) (c) V (A2, 1
z +1, B2, 1

z +1) (d) V (A2, 1
z +1, B2, 1

z +1)

Figure 4.5.: Visualization of the transformed surfaces and of their intersection curves for
λ = −1 as discussed in Example 4.5.1. The two circles at infinity have been mapped to z = 0
so that all three circles now have a finite z coordinate.

The above lemma seems natural since the transformation z 7→ 1
z −λ only maps the (common)

roots of A and B to a different position on the z axis. No solution in R2 × (R∪∞) is added or
lost.

If the polynomials A and B do not satisfy gcd(lcoeff(A), lcoeff(B)) = 1, we perform the
above substitution and apply the algorithm to A = A 1

z
−λ and B = B 1

z
−λ. Once a lifting

surface is determined for each of the ∆i(x, y), we revert the substitution. In order to simplify
notation, assume that L 1

z
−λ ∈ Q[x, y, z] is the lifting polynomial for a plane curve V (c) in the

transformed system. Then

L = z
degzL 1

z −λL 1
z

−λ

(
x, y, 1

z+λ

)
(4.28)

provides the lifting polynomial in the original system. The solutions at z = ±∞ are still present
in the lifting surfaces. If gcd(lcoeff(L), c) is non-constant, then the lifting surface L shows
asymptotes over a one dimensional component of V (c). The vanishing leading coefficient of
L(α, β, z) for (α, β) ∈ V (gcd(lcoeff(L), c)) poses a problem for numerical methods when solving
L(α, β, z) = 0 since the point (α, β) is only know approximately. We will see in the next section
how this issue can be solved by applying additional symbolical methods. Beforehand, we will
continue our current example.
Example 4.5.1 (continuing from p. 77). Due to gcd(lcoeff(A2), lcoeff(B2)) = (x2+y2−1)(x2+y2−
2), we apply the transformation. Since also gcd(coeff0(A2), coeff0(B2)) = gcd(coeff0(A2,z−0),
coeff0(B2,z−0)) = x2 + y2 − 1, we can not choose λ = 0. It turns out that λ = −1 is an
appropriate choice so that gcd(coeff0(A2,z+1), coeff0(B2,z+1)) = 1. Visualizations of the zero
sets of A2, 1

z
+1 and B2, 1

z
+1, which are determined from A2,z+1 and B2,z+1 by reversing the order

of coefficients, are shown in Figure 4.5. The transformed space curve is illustrated there, too.

4.5.3. Curves at infinity of different multiplicity

Let V (L) be the lifting surface associated with the plane curve V (c). We know that lcoeff(L)
vanishes for all points in V (gcd(lcoeff(L), c)). Therefore, we can lift V (gcd(lcoeff(L), c)) and
V (c/ gcd(lcoeff(L), c)) separately using different surfaces. In order to deal with all special cases,
we use the following systematic approach.
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(a) V (SRes0(A2, 1
z +1, B2, 1

z +1)) (b) V (∆1(A2, 1
z +1, B2, 1

z +1)) (c) V (∆2(A2, 1
z +1, B2, 1

z +1))

Figure 4.6.: Visualization of the squarefree factorization of SRes0(A2, 1
z

+1, B2, 1
z

+1) into ∆i

factors following Example 4.5.1.

Definition 4.5.4. With L = ∑k
i=0 li(x, y)zi ∈ Q[x, y, z] and c ∈ Q[x, y] let

ck+1(x, y) = c(x, y), (4.29)
cj(x, y) = gcd(cj+1(x, y), lj(x, y)), (4.30)

dj(x, y) = cj+1(x, y)
cj(x, y) (4.31)

Lj(x, y, z) =
j∑

i=0
li(x, y)zi (4.32)

for 0 ≤ j ≤ k.
Lemma 4.5.5. If gcd(c, L) = 1 it holds that ∏k

j=0 dj(x, y) = c(x, y).

Proof. First of all, c0 = gcd(c, L) = 1. Therefore, ∏k
j=1 dj = ∏k

j=0
cj+1

cj
= ck+1

c0

∏k
j=1

cj

cj
= c.

By definition, dj divides lk, . . . , lj+1 but the set V (dj , lj) = V (dj , lcoeff(Lj)) is finite. The
construction of L and c by Definition 4.4.1 also ensures gcd(L, c) = 1. Hence, we use Lj to lift
the space curve above V (dj). By Lemma 4.5.5, it is clear that no factor of c is lost.
Remark. It is possible that d0 is non-constant. Since degz L0 = 0, the polynomial L has no real
roots over d0 but only asymptotes.
Example 4.5.1 (continuing from p. 79). SRes0(A2, 1

z
+1, B2, 1

z
+1) has two non-constant ∆ factors

as visualized in Figure 4.6. We skip the processing of ∆1 and focus on the asymptotes over
V (∆2). We get

c = ∆2(A2, 1
z

+1, B2, 1
z

+1) = (x2 + y2 − 2)(x2 + y2 − 1) (4.33)

L = z2 SRes2(A2, 1
z

+1, B2, 1
z

+1)
(

x, y,
1

z − 1

)
= (x2 + y2 − 2)(x2 + y2 − 1)l̃2z2 + (x2 + y2 − 2)l̃1z + (x2 + y2 − 1)l̃0 (4.34)

for some l̃2, l̃1, l̃0 ∈ Q[x, y], which we leave unspecified for brevity. The actual value of the l̃i is
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(a) V (SRes2(A2, 1
z +1, B2, 1

z +1)) (b) V (L2) = V (L) (c) V (L1)

Figure 4.7.: Visualization of the lifting surfaces associated with V (∆2(A2, 1
z

+1, B2, 1
z

+1)). In
contrast to (b), (a) shows the lifting surface before the transformation has been reverted (see
the intersections at z = 0 which correspond to the common asymptotes of V (A2) and V (B2)).
V (L) has several asymptotes over components of V (∆2(A2, 1

z
+1, B2, 1

z
+1)). In Example 4.5.1,

we have seen how to further decompose ∆2(A2, 1
z

+1, B2, 1
z

+1) and L to solve this problem. (c)
shows the only remaining lifting surface V (L1) intersecting with the factor x2 + y2 − 1 at a
finite z coordinate (except for the exceptional fibers shown in yellow).

not relevant for the construction. Applying Definition 4.5.4 yields

c3 = c (4.35)
c2 = c d2 = 1 L2 = L (4.36)
c1 = x2 + y2 − 2 d1 = x2 + y2 − 1 L1 = (x2 + y2 − 2)l̃1z + (x2 + y2 − 1)l̃0 (4.37)
c0 = 1 d0 = x2 + y2 − 2 L0 = (x2 + y2 − 1)l̃0. (4.38)

Thus, the asymptotes over c have been factored out so that only the space curve V (d1, L1)
remains, i.e. the circle x2 + y2 − 1 = 0 at z = 0. See also Figure 4.7.

4.6. Simplification of the lifting surfaces
We have seen how to decompose the resultant of A and B into factors so that each factor c has
an associated lifting surface L with

V (L, c) \ (V (lcoeff(L), c)× R) ⊆ V (A, B). (4.39)

The set V (lcoeff(L), c) is finite by construction. We will now try to simplify the lifting surface
L in an algebraic and geometric sense in order to prepare for the numerical approximation of
the space curve.

4.6.1. Eliminating the content
It happens quite often that contz(L) is non-constant. We should divide L by its content in order
to speed up subsequent computations, but we have to save it for later reference since it helps to
compute a suitable segmentation of the projected curve (see Section 4.7.2). Since contz(L) is
the GCD of the coefficients of L, its computation can be costly. If L is one of the subresultants
of A and B, we sometimes know a factor of contz(L) in advance: In Definition 4.4.1, the
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polynomial Θi divides sresi by construction. Thus, it also divides SResi(A, B). This case occurs
for SRes1(A1, B1) in Example 4.4.3 (see also Figures 4.3a and 4.3b). It often allows to speed
up the computation of the content. In addition, the exceptional set V (c, lcoeff(L)/contz(L))
contains fewer points than V (c, lcoeff(L)) if deg(contz(L)) > 0.

4.6.2. Rational parametrization
The following argument has been utilized in [DMR08] (based on the investigations on plane
curves in [GN02]):
Proposition 4.6.1. If a polynomial f = ∑k

i=0 fix
i ∈ C[x] of degree k has a root of multiplicity

k, then this root is x̃ = − (k−i+1)fi−1
ifi

for 0 < i ≤ k.

Proof. Let x̃ be the root of multiplicity k. Then fi =
( i

k

)
(−x̃)k−i since f = fk(x − x̃)k =∑k

i=0
( i

k

)
xi(−x̃)k−i. It follows that

fi−1
fi

=
( k

i−1
)
(−x̃)k−(i−1)(k

i

)
(−x̃)k−i

= − k!(k − i)!i!
k!(k − (i− 1))!(i− 1)! x̃ = − i

k − i + 1 x̃ (4.40)

for 0 < i ≤ k.

If we can certify that the lifting surface V (L) for L = ∑k
i=0 li(x, y)zi has only a single

root of multiplicity k over V (c) except for finitely many points, then we can set i = k in
Proposition 4.6.1 and use the polynomial Llinear = klk(x, y)z + lk−1(x, y) instead of L. Hence,
a rational parametrization of the space curve above V (c) \ V (lcoeff(L)) is given by

z(x, y) = − lk−1(x, y)
klk(x, y) . (4.41)

The following test allows to check if the above is applicable. Although it has been discovered
independently by the author of this thesis, it has been published first in [DMR08]. By
Proposition 4.6.1, the polynomial L has a root of multiplicity k over a point (α, β) ∈ V (c) \
V (lcoeff(L)) if and only if

L(α, β, z) =
k∑

i=0
li(α, β)zi = lk(α, β)

(
z + lk−1(α, β)

klk(α, β)

)k

. (4.42)

Expanding the right hand side by applying the binomial formula yields
k∑

i=0
li(α, β)zi = lk(α, β)

k∑
i=0

(
k

i

)(
lk−1(α, β)
klk(α, β)

)k−i

zi. (4.43)

By recursive substitution of coefficients we get

li(α, β) = lk(α, β)
(

k

i

)(
lk−1(α, β)
klk(α, β)

)k−i

= i + 1
k − i

lk−1(α, β)
klk(α, β) li+1(α, β) (4.44)

for 0 ≤ i < k. Since lk(α, β) 6= 0, this is identical to

k(k − i)lk(α, β)li(α, β)− (i + 1)lk−1(α, β)li+1(α, β) = 0. (4.45)

Finally, we generalize in order to ensure the above condition for all (α, β) ∈ V (c) \V (lcoeff(L)).
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4.6. Simplification of the lifting surfaces

(a) V (c) (b) V (L) (c) V (Llinear/ contz(Llinear))

Figure 4.8.: Visualization of the surface V (L) which intersects tangentially with the cylinder
over V (c) as discussed in Example 4.6.3. The polynomial L can be simplified into the
polynomial Llinear which is linear with respect to z. In (c), the content of Llinear has been
removed for the visualization.

Theorem 4.6.2. The polynomial L(α, β, z) has a root of multiplicity degz L = k over all points
(α, β) ∈ V (c) \ V (lcoeff(L)) if

k(k − i)lk(x, y)li(x, y)− (i + 1)lk−1(x, y)li+1(x, y) ≡ 0 mod c(x, y) (4.46)

for all i ∈ 0, . . . , k − 1.
Details on the proof of Theorem 4.6.2 and its converse can be found in [DMR08].

Example 4.6.3. The zero set of the polynomial

L = (48x2 − 64y2)z2 + (64xy2 − 48x3)z + (9x2 − 12y2 − 16x2y2) (4.47)

intersects tangentially with the cylinder over the zero set of

c = 4x4 − 3x2 + 4y2. (4.48)

We use Theorem 4.6.2 to check that L has two roots above V (c) \ V (lcoeff(L)). For i = 1, we
have

2(48x2 − 64y2)(64xy2 − 48x3)− 2(64xy2 − 48x3)(48x2 − 64y2) = 0 (4.49)

and for i = 0 we have

4(48x2 − 64y2)(9x2 − 12y2 − 16x2y2)− (64xy2 − 48x3)2

= −192(4x4 − 3x2 + 4y2)(3x2 − 4y2). (4.50)

A reduction modulo c = 4x4−3x2 + 4y2 yields zero in both cases. Therefore, the test is positive
and we can use

Llinear = 2(48x2 − 64y2)z − x(48x2 − 64y2) (4.51)

instead of L to lift V (c). Obviously, Llinear can be simplified further by dividing out its content.
This yields

Llinear
contz(Llinear)

= 2z − x. (4.52)

The initial setting and the final result are shown in Figure 4.8.
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4.6.3. Computing the squarefree part
If c and L do not pass the test of Theorem 4.6.2, then L has several distinct roots above at least
one one-dimensional component of V (c) \ V (lcoeff(L)). In this case, we want to use certified
real root isolation as a tool for lifting. To the knowledge of the author, all real root isolation
algorithms that rely on (arbitrarily close) approximations of the coefficients of L(α, β, z) for
(α, β) ∈ V (c) \ V (lcoeff(L)) require L(α, β, z) to be squarefree. We know how to compute the
squarefree part of an univariate polynomial using subresultants by Lemma 2.3.22. In this
section we study how to apply this lemma to our multivariate problem.

First of all, we compute the signed subresultant sequence of L and ∂
∂z L with respect

to z. By construction, V (c) and V (lcoeff(L)) intersect only in a finite number of points.
Due to Lemma 2.3.32, this subresultant sequence is valid for all specialization points in
V (c) \V (lcoeff(L)). All specialized subresultants except those equal to L and ∂

∂z are identically
zero on V (c, lcoeff(L)) by Corollary 2.3.34. These facts allow to factorize c further.
Definition 4.6.4. Consider the sequence S = [SRes0, . . . , SResk] of signed subresultants of L
and ∂

∂z L with degz(L) = k. Then we define Ψ−1(x, y) = c(x, y) and for 0 ≤ i < k

Ψi(x, y) = gcd(Ψi−1(x, y), sresi(x, y)), (4.53)

Ξi(x, y) = Ψi−1(x, y)
Ψi(x, y) . (4.54)

The approach is similar to what we have done before. It is trivial to verify that c = ∏k−1
i=0 Ξi

since Ψk−1 = 1. No factor is lost or added during the construction.
Lemma 4.6.5. Given the notation of Definition 4.6.4, the squarefree part L̃i(α, β, z) of
L(α, β, z) for all specializations at (α, β) ∈ V (Ξi) \ V (sresi) is given by

L̃i(α, β, z) =
{

L(α, β, z) i = 0,

SResVi−1(α, β, z) 0 < i < k.
(4.55)

Proof. Since Ξ0 does not divide SRes0, the polynomial L has no multiple roots over V (Ξ0) \
V (SRes0). This proves the first part. For the second part, note that Ξi is constructed so
that the signed subresultants SRes0, . . . , SResi−1 vanish on V (Ξi) but SResi vanishes only on
V (Ξi, sresi). This allows to apply Lemma 2.3.22 so that the subresultant cofactor SResVi−1 is
the squarefree part of L for all specializations at V (Ξi) \ V (sresi) and for 0 < i < k.

Our original construction is based on Definition 4.4.1. Therefore, the lifting surface V (L)
has the same number of roots (counted with multiplicity) over all points of V (c) \ V (lcoeff(L)).
Nevertheless, the structure of the roots might be different for different factors of c. Consider
the case degzL = 3. The polynomial L has three distinct roots over V (Ξ0), a double and a
simple root over V (Ξ1) and a triple root over V (Ξ2) (disregarding the exceptional points).
Example 4.6.6. We illustrate the construction of the factorization based on

c = (x2 + y2 − 1
3)(x2 + y2 − 1) L = (15x2 + 15y2 − 3)z2 + (2x2 + 2y2 − 2). (4.56)

The relevant signed subresultants are

SRes0(L, ∂
∂z L) = 72(x2 + y2 − 1)(5x2 + 5y2 − 1) (4.57)

SRes1(L, ∂
∂z L) = −18(5x2 + 5y2 − 1)z. (4.58)
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4.6. Simplification of the lifting surfaces

(a) V (L) (b) V (L̃0) (c) V (L̃1)

(d) V (c) (e) V (Ξ0) (f) V (Ξ1)

Figure 4.9.: Visualization of the curves and surfaces involved in Example 4.6.6. Subresultants
and their cofactors can be used to compute the squarefree part of the polynomial L with respect
to the zero set V (c). The factorization of c into Ξ0 and Ξ1 and the associated lifting surfaces
(with simple roots above V (Ξ{0,1})) are shown in (e) and (f) respectively (b) and (c).

Applying Definition 4.6.4 and Lemma 4.6.5 yields

Ψ−1 = c (4.59)
Ψ0 = x2 + y2 − 1 Ξ0 = x2 + y2 − 1

3 L̃0 = L (4.60)
Ψ1 = 1 Ξ1 = x2 + y2 − 1 L̃1 = SRes1(L, ∂

∂z L). (4.61)

Thus, it is clear that L has a double root over the larger circle Ξ1 = x2 + y2− 1 and two simple
roots over Ξ0 = x2 + y2 − 1

3 . See Figure 4.9 for a visualization of the involved curves and
surfaces.

4.6.4. Syzygies

We will now try to reduce the degree of L based on a heuristic approach. While keeping c fixed,
we may modify L as long as we do not significantly change V (L, c). For us, it is acceptable to
change the set of exceptional points on V (c) as long as it is still finite. Hence, the modified
lifting polynomial L̃ has to vanish on the exact same zero set over V (c) up to a finite number
of exceptional points on V (c).

Since the lifting polynomial L is derived from a subresultant (cofactor), we may follow
an approach based on Lemma 2.3.23. In the univariate case over Z, the lemma allows to
significantly reduce the coefficients of a subresultant SResi if it is a GCD of A and B. In this
case, the polynomials lcoeff(A) SResi

sresi
and lcoeff(A) SResVi−1

lcoeff(SResVi) are elements of the ring Z[x], i.e. the
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→

(a) V (L1) and V (L̃1)

→

(b) V (L2) and V (L̃2)

Figure 4.10.: Results of the syzygy based reduction of the coefficient size for Example 4.4.3.
This approach allows to reduce L1 = (9xy)z + (2x4 + 4x2y2 − 20x2 + 2y4 − 20y2 + 50) to
L̃1 = (2x2+2y2−10)z+(3xy) and L2 = (x2+y2−5)z2+(6xy)z+(x4+2x2y2−10x2+y4−10y2+25)
to L̃2 = z2 + (x2 + y2 − 5), i.e. deg L̃1 = deg L1 − 1 resp. deg L̃2 = deg L2 − 2.

remainder of the division is zero. Unfortunately, our problem is a multivariate one so that L is
only a GCD of A and B over the plane curve c = 0. In addition, the construction breaks down
at some exceptional points on V (c). For these reasons, there is in general no lcoeff(L)−1 so
that lcoeff(L) lcoeff(L)−1 ≡ 1 mod c.

Nevertheless, we can relax the conditions and try to solve the modified division equation

lcoeff(L)L̃ = a lcoeff(A)L + b c (4.62)

for a ∈ Q[x, y] L̃, b ∈ Q[x, y, z] so that degz L̃ = degz L and gcd(lcoeff(L̃), c) = 1. This ensures
V (L̃(α, β, z)) = V (L(α, β, z)) for all points (α, β) ∈ V (c) \ (V (lcoeff(L̃)) ∪ V (lcoeff(L))). We
may refer to L̃ as some kind of pseudoquotient of lcoeff(A)L and lcoeff(L) under the additional
condition c = 0. The case a = 1 would be the exact division, which does usually not occur
since we are computing in the coefficient ring Q[x, y] instead of Z.

A solution L̃, a, b to Equation (4.62) is what is called a syzygy. See [GP02; Mis93] for details
on syzygies since we only use the fact that most computer algebra systems are able to compute
them. Obviously, there is more than one solution to Equation (4.62) and computer algebra
systems accommodate this fact by determining a set of generators so that each solutions is a
polynomial combination of these generators.

In order to reduce the coefficients of L, we select one of the generators where L̃ has minimal
total degree in x and y and unchanged degree in z. Using this approach, we are often able to
simplify the lifting polynomial as shown in Figure 4.10. The best results have been achieved on
the basis of term orderings that consider the degree first when comparing monomials such as
degree reverse lexicographical ordering. The time for the computation of the syzygies differed
from almost negligible to several hours without result in the tested cases. For this reason and
since we do not always find a polynomial of lower degree, this simplification method is only a
heuristic. In an implementation, the user might specify a threshold for the execution time. This
threshold can also be set in relation to the time spent for the computation of the subresultants
so that more time is spent for optimizing complicated instances.
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4.7. Numerical approximation

In this section, we assume that the factors ci ∈ Q[x, y] of the resultant Resz(A, B) and the
lifting polynomials Li ∈ Q[x, y, z] for i = 1, . . . , k have been computed so that V (Li) has only
simple roots and no asymptotes over V (ci) \ V (lcoeff(Li)). Due to this decomposition, we are
able to lift the space curve above VR(Resz(A, B)) \ E where the set

E =
k⋃

i=1
VR(ci, lcoeff(Li)) ∈ R2 (4.63)

of exceptional points is finite. Along the z fiber above a point P ∈ E the two polynomials A
and B have either a finite number of common roots or are identically zero. Hence, the curve
V (A, B) contains a line above P in the latter case. Our goal is to draw all one dimensional
components of the space curve including lines in z direction. We will examine this important
case first. To this end, assume that we want to approximate the space curve up to a maximum
error ε > 0.

4.7.1. Lines in the direction of projection

The set of real lines in z direction is given by VR(F )× R where

F = 〈a0(x, y), . . . , am(x, y), b0(x, y), . . . , bn(x, y)〉. (4.64)

Note that VR(F ) is finite since gcd(A, B) = 1. Over the real numbers, the solutions of

a0(x, y) = . . . = am(x, y) = b0(x, y) = . . . = bn(x, y) = 0 (4.65)

are identically to the solutions of

F1 = a0(x, y)2 + · · ·+ am(x, y)2 + b0(x, y)2 · · ·+ bn(x, y)2 = 0. (4.66)

In order to compute the real solutions using a resultant based projection approach (cf. e.g.
[BES11; SW05; CGL09; GN02]), we need another polynomial which vanishes on VR(F ). A good
choice is to select the F2 ∈ {a0(x, y), . . . , am(x, y), b0(x, y), . . . , bn(x, y)} with minimal degree,
e.g. first minimize by the total degree and then by the degree of the individual variables. In case
the minimal F2 turns out to be a constant, the set VR(F ) = VR(F1, F2) is empty. Otherwise, we
compute certified approximations of VR(F1, F2) with an interval size smaller than ε using one
of the previously mentioned methods and draw the lines above these approximations. The fact
that degxy(F1) = 2 max(degxy(A), degxy(B)) is not a big issue in practice due to the choice of
F2. Furthermore, the cost for approximating VR(F1, F2) is usually outweighed by the analysis
of the factors of Resz(A, B), which are of degree O(m2) in the worst case.
Example 4.7.1. Consider the zero sets of

A3 = (x2 + y2)z2 − (xy)z + (x2y2), (4.67)

B3 = ∂

∂z
A3 = (2x2 + 2y2)z − (xy). (4.68)
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(a) V (A3) (b) V (B3) (c) V (A3, B3)

Figure 4.11.: Visualization of the (a) Steiner surface, (b) its derivative with respect to z and
(c) the intersection curve of both. This illustrates that the described algorithm is able to deal
with lines in the direction of projection. Note that the lines in (a) and (b) have been added
manually. The yellow line is the line in the direction of projection where the subresultant
based lifting method fails, i.e. all subresultant polynomials are identically zero on V (x, y). The
method described in Section 4.7.1 circumvents this problem.

Both, V (A3) and V (B3) contain the three line V (x, y), V (x, z) and V (y, z). The line V (x, y)
is in the direction of projection and we compute it using

F1 = (x2 + y2)2 + (−xy)2 + (x2y2)2 (4.69)
= x4y4 + x4 + 3x2y2 + y4, (4.70)

F2 = −xy, (4.71)

i.e. F2 is the coefficient of A3 and B3 with the lowest degree. Solving for the real zero set
yields V (F1, F2) = {0, 0}. The involved surfaces and the intersection curve (computed by the
presented algorithm) are shown in Figure 4.11.

4.7.2. Approximating the projections and lifting

We can now state the common real zero set of A and B in terms of our decomposition:

VR(A, B) \ S =
k⋃

i=1
(VR(ci, Li) \ (VR(lcoeff(Li))× R)) ∪ (VR(F )× R). (4.72)

Here S = VR(A, B) ∩ (((E \ VR(F ))× R)) is the finite set of points that is missing due to the
exceptional set E except for VR(F ) × R, which is again the set of real lines in z direction.
Since we already computed these lines, the next step is to approximate the plane curves VR(ci).
This can be done using one of the approaches detailed in Chapter 3. The only difference is
that we need to be able to dynamically adjust the accuracy of the approximation on a per
sample point basis, which is easy to implement. Note that we have to choose the resolution
for the rasterization of VR(ci) based on ε. Using this approach, we can determine a piecewise
linear approximation to segments of the curve VR(ci). Since we have no topological information
at hand we are not able to connect the segments properly. In order to create a high quality
rendering, we increase the precision in the neighborhood of the start and end point of each
segment so that the disconnection is visually imperceptible.
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In order to lift the projection (α, β) ∈ VR(ci) \ VR(lcoeff(Li)), we compute an interval
approximation of Li(α, β, z). Since we have ensured in Section 4.6.3 that Li(α, β, z) is squarefree,
we can apply certified real root isolation methods for polynomials with approximate coefficients
like [Eig08; MS11], which are based on Descartes’ rule of signs (cf. Section 2.4.2). These
algorithms either compute correct isolating intervals for the real roots of Li(α, β, z) or request
an improved approximation of Li(α, β, z) due to insufficient precision. It is proven that this
loop terminates. See [Eig08; MS11] for the details.

It remains to exclude the points from the set VR(ci, lcoeff(Li)). This is simply done by adding
the real roots of Resy(ci, lcoeff(Li)) to the set of critical coordinates during the rasterization of
the plane curve VR(ci). Note that VR(ci) must be decomposed further using the original content
of Li (see Section 4.6.1) so that the rasterized segments of VR(ci) are free of exceptional points.

4.8. A note on asymptotic complexity
In this section, a short summary of the complexity of the preprocessing steps of the proposed
algorithm is given. No details on the lifting will be presented since there were to many open
questions at the time of writing. This is mostly due to the fact that the algorithm depends
on a certified method for isolating and approximating the real roots of a polynomial whose
coefficients are (arbitrary close approximations of) algebraic numbers (cf. [Eig08; MS11]).
Further investigations are necessary to provide useful results in a manner similar to Section 3.7.
See also Section 4.11.
Theorem 4.8.1. Given two polynomials A, B ∈ Z[x, y, z] of magnitude (τ, n) the algorithm
computes the (ci, Li) decomposition of V (A, B) using no more than Õ(τn11) bit operations.

The theorem can easily be derived from the following results.
Proposition 4.8.2. Computing λ ∈ Z such that gcd(coeff0(Az−λ), coeff0(Bz−λ)) = 1 is possible
in Õ(τn6) bit operations. Az−λ and Bz−λ are of magnitude O(τ + bit(n), n).

Proof. By Lemma 4.5.2 we know that there are at most n2 constants λ ∈ Z that violate
gcd(coeff0(Az−λ), coeff0(Bz−λ)) = 1. Hence, a good choice of λ has bitsize at most O(bit(n)).
Computing coeff0(Az−λ) and coeff0(Bz−λ) then needs no more than Õ(τn3) bit operations
using the trivial shift algorithm for polynomials. The GCD is computable in O(τn4). After at
most n2 tries, this sums up to at most Õ(τn6) bit operations.

The bound on the magnitude of Az−λ and Bz−λ can easily be verified by writing the
shift operation P (x, y, z − λ) as the determinant det Syl(P (x, y, t), t− (z − λ)) and applying
Hadamard’s bound (cf. Lemma 2.1.5).

Once the genericity of the space curve is established, we continue with the (possibly repeated)
computation of trivariate signed subresultants to decompose Resz(A, B) into the factors ci.
Proposition 4.8.3. Computing Si = SResi(A, B) for 0 ≤ i ≤ n and SResji(Si,

∂
∂z Si) as well

as its cofactors SResVji(Si,
∂
∂z Si) for 0 ≤ ji ≤ i needs no more than Õ(τn8) bit operations.

Proof. Computing the sequence of signed subresultants for two trivariate polynomials of
magnitude (τ, n) costs Õ(τn7) bit operations (cf. Table 2.3). Since we compute at most O(n)
of them, the bound follows. Note that the increased bitsize of Si does not increase the cost for
computing the SResji sequence since it is compensated by the smaller degree of Si.

Finally, we bound the cost for the actual decomposition.
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Proposition 4.8.4. The polynomial Resz(A, B) can be decomposed into the factors ci using
Õ(τn11) bit operations.

Proof. The decomposition is based on a series of GCD computations of bivariate polynomials
of magnitude Õ(τn, n2). Hence, a GCD costs at most Õ(τn9) bit operations. There are two
different kinds of GCDs. First, the GCDs of Resz(A, B) and the O(n2) principal subresultant
coefficients are computed. Here, we ignore that each GCD operation might allow to split
up an additional factor of Resz(A, B) since this does not increase the asymptotic complexity.
Secondly, the GCDs used to determine the asymptotes of the lifting surfaces as described in
Section 4.5.3. Each such asymptote occurs as a factor of the resultant. Hence, their number and
therefore also the number of GCDs is bounded by O(n2) due to the degree of the resultant.

A slight modification of the algorithm allows to reduce the bound of Õ(τn11) stated in
Theorem 4.8.1: If we use the polynomials Ã = A2 + B2 and B̃ = ∂

∂z Ã instead of A and B,
there is no need to compute the subresultant sequence of each SResj(Ã, B̃) and its derivative.
We used this construction to determine the squarefree part of a lifting surface with respect
to some factor of the resultant. But now, B̃ is the derivative of Ã and VR(A, B) = VR(Ã, B̃).
Hence, if c | SRes0(Ã, B̃), . . . , c | SResk−1(Ã, B̃) but c - SResk(Ã, B̃) for c ∈ Q[x, y], then
SResVk−1(Ã, B̃) is already the squarefree part of the lifting polynomial SResk(Ã, B̃) with
respect to c. This yields the following complexity:
Theorem 4.8.5. Given two polynomials A, B ∈ Z[x, y, z] of magnitude (τ, n) the above algo-
rithm computes the (ci, Li) decomposition of V (Ã, B̃) using no more than Õ(τn10) bit operations.

Proof. We only need to improve on Proposition 4.8.4. The magnitude of the involved polyno-
mials increases only by a constant factor if we use (Ã, B̃) instead of (A, B). We do not need to
compute subresultants of subresultants due to the modification. Hence, the total number of
principal subresultant coefficients is in O(n) and not O(n2). In the modified construction, all
lifting polynomials are squarefree with respect to their associated component of the projection
V (c). In the transformed (generic) coordinate system, the one-dimensional asymptotes of Ã and
B̃ are solutions at z = 0 and their multiplicity must be one, too. After transforming back into
the original system, this statement remains true for asymptotes. Hence, for a lifting polynomial
L of degree k, we only need to compute gcd(c, lcoeff(L)) since gcd(c, coeffk−1(L)) = 1. The
number of lifting polynomials and therefore also the number of GCDs is bounded by the number
of subresultants, which is in O(n). Using again that the cost for one GCD operation is bounded
by Õ(τn9), the result follows.

In the modified construction, the degree of the input doubles, which yields a fourfold increase
of the degree of the resultant. For this reason, the modified algorithm shows bad performance in
practice. In order to create an accurate sampling of the space curve, we analyze the projection
for critical points. We will see in Theorem 4.8.6 and Section 4.10 that this is the theoretical
as well as the practical bottleneck of the preprocessing in any case. Therefore, the previous
improvement is more of theoretical interest.
Theorem 4.8.6. Finding all critical points of the projected curve components VR(ci) needs no
more than Õ(τn15 + n16) bit operations.

Proof. Real solving a system of two polynomials in Z[x, y] of magnitude (τ, n) is possible in
Õ(τn7 + n8) as discussed in Section 3.7.1. The result follows directly since the product of the
ci factors yields the squarefree part of the resultant, which is of magnitude Õ(τn + n2, n2).
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4.9. Implementation

Example 1 Example 2 Example 3 Example 4 Example 5

Example 6 Example 7 Example 8 Example 9 Example 10

Figure 4.12.: Renderings of the examples utilized in Table 4.1. The visualizations have been
created by the new algorithm. They are based on line strip approximations to the segments of
each curve. The line segments are displayed as cylinders of small height and diameter.

Obviously, this part of the algorithm dominates the previous computations. We will now
take a look at an implementation and at some experimental results.

4.9. Implementation

The described approach has been implemented on top of the CGAL 3.8 library [CGAL12],
which already provides many of the necessary subalgorithms. This includes arithmetic with
polynomials, subresultants, GCDs and the method for isolating the real roots of polynomials
with approximate coefficients described in [Eig08]. In order to compare the new algorithm
with [DMR08], their test of generic position has also been implemented. The input curve is
repeatedly sheared until the genericity condition that is imposed by Theorem 4.6.2 is achieved.
The result is then processed further with the algorithm presented in this chapter since both
methods are identical for a curve that is generic with respect to [DMR08].

In order to determine sampling points on the projections of the space curve components,
we follow Algorithm 3.2. Although this might not be the most efficient approach, it has
the advantage that it is quite easy to implement and that we can utilize much of CGAL’s
infrastructure for refining the approximations of the sampling points. Finally, the lifting is
based on the real root isolation method of [Eig08] as stated above.

4.10. Results and discussion

The implementation has been tested with a couple of curves to illustrate the practical behaviour
of the algorithm. To the author’s knowledge, no benchmark sets are available for space curve
rendering algorithms. Although one can possibly build upon the work for plane curves (see
[Lab10b]), this task is out of the scope of this work. Therefore, we restrict to the small set of
space curves illustrated in Figure 4.12. The time spent for generating these images is listed in
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4. Robust graphical display of real algebraic space curves

Table 4.1. The set of curves covers all special cases the presented algorithm has to deal with.
Often, this becomes explicit on the basis of the defining equations. These can be found in
Appendix C.2. Some of the examples also occurred previously during the description of the new
method. Most importantly, all tested curves violate the genericity condition used in [DMR08]
so that their algorithm has to perform a change of coordinates. This allows to compare the
two approaches since both algorithms are equivalent for curves that are in generic position
according to [DMR08]. We will denote the latter algorithm by ‘DMR’.

The results show that ensuring generic position by a shear transformation of type (x, y, z) 7→
(x + λ1z, y + λ2z, z) often leads to a drastic increase of the running time in practice. The test
for genericity is quite complex for the DMR algorithm. It requires to compute the Θ and ∆
polynomials introduced in Definition 4.4.1. This involves the computation of subresultants of
trivariate polynomials and of several bivariate GCDs. Afterwards, the number of different roots
of the lifting polynomial SResi(A, B) above V (∆i) has to be checked using Theorem 4.6.2. In
contrast, the algorithm described above only requires the computation of a single bivariate
GCD (see Section 4.5.2).

Usually, the test for genericity is not the most expensive part of the computation. The shear
operation separates the projections of space curve components that previously had the same
projection. Hence, the projection becomes more difficult to analyze. The results show that this
is the main reason for the long running times of the DMR algorithm. Due to Lemma 4.5.3, we
can be sure that the algorithm proposed in this chapter does not suffer from this problem.

Another disadvantage of separating the space curve components in the projection is that it
is hard to identify which curve segments in the sheared coordinate system are stacked on top
of each other in the original coordinate system. This is of major importance in an application,
where the curve needs to be rendered exactly from a specified direction.

4.11. Conclusion and future work

We have seen that the new algorithm is able to produce high quality visualizations of real
algebraic space curves. Since the result is a line strip approximation of the curve segments,
the space curve can be viewed interactively. We have also shown that achieving some notion
of generic position by some kind of shear transformation often adds a major overhead to
the running time. We avoid such coordinate changes so that we are able to outperform the
previous algorithm we build upon. In general, the computation time is reasonable for curves
of moderate complexity such as the examples used in Section 4.10. Nevertheless, it seems
hard to achieve a reliable visualization in real time as long as the preprocessing steps involve
symbolic computations. We will see in Chapter 6 how parallel processing may reduce running
time in the future. But since the complexity of the algorithm grows faster than linear with the
problem size, it remains hard to deal with curves defined by high degree polynomials. Even
if we would consequently base an algorithm on numerical methods, we would have to utilize
arbitrary-precision arithmetic to validate the results.

In the current implementation, numerical methods have only been employed during the
approximation of the sampling points and during their lifting. The numerical lifting process
currently does not utilize the coherence of the z coordinate between adjacent sampling points. In
the new method, the tangent of V (ci, Li)\ (V (lcoeff(Li))×R) is well defined by ( ∂

∂xci,
∂

∂y ci, 0)×
( ∂

∂xLi,
∂

∂y Li,
∂
∂z Li) so that it seems to be possible to construct an efficient curve tracing algorithm.

Exploiting these facts appears to be a crucial ingredient for further speed up. Together with an
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and

future
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ork

deg A deg B Preprocessing 3D Preprocessing 2D Lifting # of points Points/s

Id xy xyz z xy xyz z DMR (s) S (s) × DMR (s) S (s) × DMR (s) S (s) DMR S DMR S ×

1 4 4 4 2 3 3 0.236 0.020 11.6 32.35 2.035 15.9 90.31 10.38 8888 3066 98.41 295.29 3.0

2 4 8 4 4 7 3 18.709 2.282 8.2 583.24 13.458 43.3 97.53 17.09 1746 888 17.90 51.95 2.9

3 4 4 2 2 3 1 0.049 0.007 6.7 1.01 0.410 2.5 6.06 1.79 2453 1744 404.92 976.15 2.4

4 2 2 2 2 2 2 0.009 0.004 2.3 0.88 0.164 5.4 3.77 1.79 1316 1044 348.74 582.29 1.7

5 2 2 2 4 4 0 0.009 0.003 3.3 1.60 0.260 6.2 7.83 2.32 2504 2016 319.73 870.31 2.7

6 4 4 4 4 4 3 2.425 1.946 1.2 84.68 34.941 2.4 121.19 81.64 4510 4106 37.21 50.30 1.4

7 6 6 6 4 5 5 130.880 1.585 82.6 969.04 2.270 426.8 67.64 9.10 2020 1700 29.86 186.89 6.3

8 8 8 6 3 3 1 227.780 8.310 27.4 — 66.811 ∞ — 80.91 — 3074 — 37.99 ∞

9 16 16 8 2 2 2 321.070 1.624 197.7 — 86.956 ∞ — 147.22 — 18360 — 124.71 ∞

10 8 8 8 0 7 7 — 7.604 ∞ — 35.716 ∞ — 289.60 — 82688 — 285.52 ∞

Table 4.1.: Computation times for creating the space curve visualizations shown in Figure 4.12. The timings have been determined
on a machine with a 2.4 GHz Intel Core 2 Q6600 Quad CPU having 4 GB of RAM. The “Id” refers to the number of the example in
Figure 4.12 defined by the polynomials AId, BId given in Appendix C.2. The printed degrees are the total degrees with respect to the
shown variables. The computations have been split into three stages: “Preprocessing 3D” includes all symbolic computations needed
to determine the (ci, Li) decomposition. “Preprocessing 2D” summarizes the analysis of the plane curves VR(ci) and the generation
of sampling points on each curve segment based on a minimum grid resolution of 256 × 256. The final number of sampling points
highly depends on the actual space curve. During the “Lifting”, the z coordinates of the sampling points are determined to a minimum
precision of 10−4. However, the lifting procedure often requires a successive refinement of the coordinates in the plane which eventually
causes a higher precision in the final result. The timings are given for the two algorithms we abbreviate with DMR (based on [DMR08])
and S (the new algorithm designed by the author). The column “×” denotes the speedup of algorithm S compared to DMS. The sign
“—” denotes a timeout of the respective algorithm after 1 h and likewise ∞ denotes the speedup where algorithm DMS timed out. Note
that the column “Points/s” summarizes “Lifting” and “# of points” since both algorithms usually create a different number of points due
to the different coordinate systems they work in.

93



4. Robust graphical display of real algebraic space curves

in-depth analysis of the lifting process and the syzygy based simplification idea this provides
an interesting area for future research.

Another extension of the method would be to ensure correct topology. Although we provide
line strip approximations to the curve segments, these segments are not connected. The segment
endpoints are approximated with high precision, but in case a curve segment has a steep tangent
with respect to the z direction, the visualization might still suggest a wrong topology. However,
such problems only occur for specific examples so that the new approach can be regarded as a
significant contribution to the subject of real algebraic space curve visualization.

Given that we are able to reliably visualize space curves, we could go one step further and
visualize algebraic surfaces in the same manner. If we fix an eye point P = (xp, yp, zp) ∈ Q3,
the most important curve on a real algebraic surface VR(A) for A ∈ Q[x, y, z] is the space
curve commonly referred to as silhouette, apparent contour or polar curve given by VR(A, B)
with B(x, y, z) = ((x, y, z)− P ) · ∇A(x, y, z), where ∇A denotes the gradient of A. Informally,
the silhouette curve contains all points of VR(A) that appear as the boundary when viewed
from P . Additionally, it includes the singular points of VR(A) due to the vanishing gradient of
A. In order to visualize VR(A), we may render VR(A, B) and then fill up the empty space by
exploiting that each patch of VR(A) \ VR(A, B) is smooth. The basics for such an approach
have been carried out in the Diploma thesis of P. Hiesinger (see [Hie11]). There, he investigated
different methods such as interval arithmetic, curvature estimation and inclusion tests known
from algebraic plane curves rendering (cf. [Tau94]) in order to fill such regions in a reliable way
without creating a very dense sampling. Although his preliminary implementation tends to
be quite slow due to the heavy usage of exact arithmetic, the outcomes are quite promising.
Some results of his work that has been created in collaboration with the author of this thesis
are shown in Figure 4.13. Note that the image of the Steiner surface in Figure 4.13b correctly
displays the vertical and horizontal line. As illustrated in the examples above, this even works
if VR(A) contains a more complicated space curve in its real part.
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4.11. Conclusion and future work

(a) Kummer surface (b) Steiner surface (c) Cassini surface (d) Stagnaro surface

Figure 4.13.: Surface visualizations created with the program implemented in [Hie11]. It first
decomposes the image plane based on a rendering of the projection of the silhouette curve.
This information is stored in a quadtree. The quadtree is gradually refined based on various
heuristic approaches. In each quadtree cell, the surface is then approximated by two triangles.
The lower images show the final subdivision tree for each surface. The different colors represent
the different tests that caused the subdivision of that cell. Since the algorithm currently only
deals with polynomials over Q, the coefficients of the defining polynomials of (a) and (d) have
been approximated since they involve square roots.
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5. Interactive visualization of blowups of the
plane

The investigations in this chapter have been published in [SS13], which is a joint work of the
author of this thesis and P. Schenzel, who contributed the results on elimination.

5.1. Motivation
Let us start with an example to motivate the visualization of blowups of the plane. Consider
the cubic plane curve defined as the zero set of the polynomial C = u2 − v2(v + 1) ∈ R[u, v]
shown in red on the lower left of Figure 5.1. This curve has a well defined tangent at all points
except for the origin (0, 0), where two lines are tangent to C, i.e the point (0, 0) of the curve is
singular. In general, it is much easier to understand the properties of an algebraic variety (e.g.
an algebraic curve) if it is non-singular.

In order to smooth the singularities of an algebraic variety, blowups are an essential technique
[Hir64; Har83]. By replacing the singularities of any complex algebraic variety V by an
appropriately chosen sequence of blowups, one eventually obtains a non-singular variety Ṽ .
That this process finishes with a non-singular model was proven by Hironaka (see [Hir64]).

Let us illustrate this concept using the curve C restricted to a disc

D = {(u, v) ∈ A2
R|u2 + v2 ≤ ρ2} (5.1)

of radius ρ as reproduced in the lower part of Figure 5.1. This restriction has some advantages
for the visualization as we will see later on. In order to blow up the disc D in the origin, we first
move over to the affine 3-space by mapping a given point (u, v) ∈ D, v 6= 0, to (u, v, u

v ) ∈ R3.
This yields a parametrization of a surface S0 over the disc excluding the line v = 0. The

vertical line through the origin becomes part of the topological closure of S0. The resulting
closed surface S is shown in the upper left part of Figure 5.1.

Now, we apply the mapping (u, v) 7→ (u, v, u
v ) to (D \ V (v)) ∩ V (C), i.e. we lift the plane

curve C onto S0. The closure of the resulting space curve (illustrated in red color in the top
left in Figure 5.1) is non-singular.

The construction excludes all the points on the v axis since we cannot divide by zero.
Therefore, we may swap the roles of u and v and repeat the process by mapping (u, v) ∈ D,
u 6= 0 to (u, v, v

u) obtaining the surfaces S̃0 and S̃. Mathematically, it is more convenient to
work with only one surface B in A2

R × P (using the projective instead of the real line) given by
the closure of µ(D \ {(0, 0)}), µ : (u, v) 7→ (u, v, (u : v)). We call B the blowup of the disc in the
origin and S and S̃ are called the two affine charts of B. Since we blew up the disc based on
the rational map (u, v) 7→ (u : v), we use the more precise notation Bu,v, where appropriate.

In order to visualize the surface B, we could visualize its two affine charts. But this is not a
satisfying solutions since both, S and S̃, are infinite surfaces. Only a small part of the geometry
is visualizable in a finite viewport. A nice approach is to use an appropriate embedding of B
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f

g
= 0

u

v

0

0

f = u = 0

g = v = 0 C

CSf,g

D

Sf,g

f

g
→ −∞

f

g
→ +∞

CTf,g

Tf,g

f

g
→ ±∞

Figure 5.1.: The singular plane curve C in the disc D (lower left) becomes a smooth space
curve when lifted to the blowup Bf,g of D in the origin given by the intersection of f = u = 0
and g = v = 0. The first affine chart Sf,g of the surface Bf,g is shown in the upper left. To
cover Bf,g completely, another affine chart S̃ is needed (not shown). Furthermore, Sf,g and
S̃f,g are infinite surfaces, so that most of their geometry can not be visualized directly. The
transformation of the infinite cylinder over D into a torus yields a suitable embedding of the
blowup in affine 3-space as shown on the right.

into 3-space, such as the one utilized in [Bro08] (see also [Bro95] for a full length treatment in
German). That is, a certain type of a stereographic projection is used in order to transform the
projective lines over each point of D into circles. Therefore, the infinite solid cylinder over D is
mapped into a solid torus. Applying this transformation to B yields a compact model T of B
in 3-space. We call the surface T the toroidal blowup. In our concrete example, the chart Su,v

of Bu,v is transformed into the so-called Möbius strip as shown on the right side of Figure 5.1.
Note that the curve C transforms into a non-singular curve on the Möbius strip.

The generators u = 0, v = 0 are a good choice in order to obtain an appropriate blowup of
the disc in the origin that resolves the singularities of C. However, plane curves with several or
more complicated singularities require different generators, e.g. so that the disc is blown up in
more than one point. We will investigate the concept of blowups of the disc in a finite number
of points defined by the vanishing of two polynomials in the next section.

5.1.1. The definition of blowups
In general, the blowup of the real affine plane in a finite set of points X = V (f, g) =
{P1, . . . , Pr} ⊂ A2

R is obtained as follows: Consider the map

µ : A2
R \X → A2

R × P1
R,

(u, v) 7→ ((u, v), (f(u, v) : g(u, v))),
(5.2)

where f, g ∈ R[u, v] are polynomials with the zero set X = V (f, g). Note that f and g do not
have a common factor. Then the blowup Bf,g of A2

R in X is defined as the closure of µ(A2
R \X)
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tan α
2 = f(u,v)

g(u,v)

α α/2

radius of 1
2

Figure 5.2.: Computation of the angle α for a point of height f(u,v)
g(u,v) over D in order to map

this point onto a circle as proposed in [Bro95]. Note that α only depends on the height f(u,v)
g(u,v)

of the point but not on its (u, v) coordinates in the disc.

in A2
R × P1

R. There is a natural map π : Bf,g → A2
R, (u, v, (s : t)) 7→ (u, v). The preimage

π−1(X) ⊂ Bf,g is called the exceptional fiber E. It consists of the union of projective lines
over the points Pi ∈ X, i = 1, . . . , k. Moreover, π induces an isomorphism A2

R \X ∼= Bf,g \ E.
For further technical details, we refer to a textbook on Algebraic Geometry, e.g. [Har83] and
[CLO07, pp. 506-508].

5.1.2. The embedding into a torus

An interesting question is how a blowup of the plane in a finite number of points X = V (f, g)
looks like. As mentioned in the initial example, the embedding of the blowup of the disc D
into affine 3-space by transforming the infinite cylinder over D into a solid torus is a promising
approach.

This idea has been carried out in detail in [Bro95]. The composition of the stereographic
projection with a certain diffeomorphism provides the following parametrization P (u, v) of the
image of D \ V (f, g) in D× P1

R embedded as a solid torus with central radius r ∈ R, r > ρ in
A3
R:

(u, v) 7→ (u, (v − r) cos α, (r − v) sin α). (5.3)

Following Figure 5.2, the angle α is defined as

α =

2 arctan f(u,v)
g(u,v) g(u, v) 6= 0,

π g(u, v) = 0.
(5.4)

This can be simplified by applying the double angle formulas of sine and cosine to Equation (5.3).
It yields a rational parametrization P (u, v) = (x, y, z) ∈ A3

R with

x = u,

y = (r − v)f2 − g2

f2 + g2 ,

z = (r − v) 2fg

f2 + g2 .

(5.5)
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The image of D \V (f, g) is now contained in the torus with equation x2 + (r−
√

y2 + z2)2 = ρ2,
which we call the D-torus. The set of points we have to visualize is Tf,g, the closure of
{P (u, v) ∈ A3

R : (u, v) ∈ D \ V (f, g)} (in the Zariski topology) restricted to the D-torus. Under
the transformation into the torus, the exceptional fiber E is mapped to a family of circles, one
circle for each point of V (f, g). Note that in contrast to the original parametrization in [Bro95],
the torus is centered at the origin in order to realize additional symmetry.

5.1.3. On the drawbacks of the parametrization
For the case of toroidal blowups of the plane in X = {(0, 0)}, a few static renderings have been
realized in [Bro95]. This includes for example the Möbius strip (f = u, g = v) and the Whitney
double umbrella (f = u2, g = v2). The case of four points X = {(±1,±1)} = V (u2 − 1, v2 − 1)
is illustrated as an excellent hand drawing (see [Bro95, Figures 11 and 12]).

The first naive idea for the visualization of a parametrically defined surface is to create a tri-
angle mesh based on an appropriate set of parameters (ui, vi) ∈ D, i = 1, . . . , N . This approach
works well for parametrizations of non-singular surfaces without parametric singularities. The
following problems arise in the case of toroidal blowups of the plane:

• The numerical computation of P (u, v) becomes unstable in the neighborhood of the zero
set V (f, g).

• The parametric normal ~n(u, v) = (∂P
∂u ×

∂P
∂v )(u, v) necessary for the shading is a rational

expression containing f and g in the eighth power. Cancellation errors frequently occur
near V (f, g).

• The constructed triangles might have extremal sizes, e.g. large edges and very small height.
Triangles that span a large range of angles in the torus must be avoided. Otherwise holes
and visualization artifacts might occur.

• For sufficiently satisfactory images, N needs to be rather large. Moreover, the points
(ui, vi) have to be chosen very carefully to provide a good approximation of the surface.

• Points P (u, v) close to the exceptional fiber must be appropriately connected with the
exceptional fiber above V (f, g).

• For given f, g ∈ R[u, v] the zero set V (f, g) is not known a priori. Its computation requires
additional effort.

• The triangulation has to be recomputed for any deformation of f and g.

Visualizations of two toroidal blowups based on the parametric form and a uniform subdivision
of the parameter space are reproduced in Figures 5.3 and 5.4. This is the approach carried out
in [Bro95]. It is easy to see that the visualization of simple toroidal blowups can be achieved
by omitting all (u, v) close to X = V (f, g) (Figure 5.3). This solution does not extend to more
complicated polynomials f and g, which becomes apparent in Figure 5.4.

In order to create triangulations of a wider range of toroidal blowups, a more sophisticated
method has been studied by A. Prager in his diploma thesis [Pra11]. He created high quality
polygonal meshes of toroidal blowups using methods from differential geometry to trace
the level curves of the blowup Bf,g over the disc. The surface is formed by connecting the
approximations of the level curves while taking special care of the regions close to the exceptional
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(a) Filled (b) Wireframe (c) Faulty trian-
gles removed

Figure 5.3.: Rendering of the parametric form
of the toroidal blowup using f = u, g = v
(Möbius strip) and one million vertices. The tri-
angles generated near X = V (f, g) = {(0, 0)}
span across the torus, thus, pretending a dif-
ferent surface geometry as shown in (a) and
(b). Removing all triangles with

√
u2 + v2 < ε

results in (c).

(a) Filled (b) Wireframe (c) Faulty trian-
gles removed

Figure 5.4.: The approach of Figure 5.3 ap-
plied to f = v2 − u(u− 1)(u + 1) and g = v2.
Many more wrong triangles are generated near
X = V (f, g) = {(−1, 0), (0, 0), (1, 0)}. Addi-
tionally, cancellation errors occur during the
computation of the normals (colored in black).
Removing all wrong triangles as shown in (c)
yields large gaps in the mesh. Note that Fig-
ure 5.11b shows a correct visualization created
by the method presented in this chapter.

fibers. With this idea, he has been able to visualize for example the blowup in the four points
X = {(±1,±1)} mentioned above. The improved visualization is done at the expense of
time consuming precomputations. Therefore, this method is inappropriate for interactive
deformations of the generators f and g.

5.1.4. Implicitization based real-time visualization

About 20 years of development in the field of computer graphics have passed since Brodmann’s
approach. A big step during the last years was the introduction of GPU programming. This
allows an interactive visualization and parametric deformation of implicit surfaces in real time
by ray casting methods (e.g. see the program RealSurf by the author [Stu09]). A technical
overview and samples of visualizations can be found in [Stu07; Stu09; SS11; RS08; Kno+09].

In this work, it is demonstrated that these are suitable approaches for the visualization of
toroidal blowups and their deformations by utilizing an implicit form of the toroidal blowup
rather than a parametric one. A major advantage of the implicit form is that the points of
the exceptional fiber are part of the surface. In contrast to the parametric form, no special
treatment is necessary for these points.

It is well known that an implicit (algebraic) equation F = 0 for any rationally parametrized
surface can be derived by elimination techniques. In the case of a toroidal blowup, three
variables need to be eliminated from a system of four algebraic equations (see Section 5.2).
This can be accomplished by Gröbner bases methods [CLO07] or multipolynomial resultants
[MC92; SA84]. The polynomials f and g occur quadratically in Equation (5.5). This suggests
a high degree of F as a result of the elimination process. Therefore, this approach seems to
be computationally rather complex at first glance. A closer examination based upon some
techniques of commutative algebra surprisingly shows that the elimination can be done by the
computation of a single, very simple resultant of two polynomials. Furthermore, we will see
that the result, i.e. the polynomial F, has an unexpected low degree.
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5. Interactive visualization of blowups of the plane

Once the implicit form F has been obtained, we are able to visualize the surface VR(F)
and its deformation based on the deformation of f and g in real time. Since Tf,g ⊂ VR(F),
additional clipping techniques have to be employed to display exactly the toroidal blowup Tf,g

but not VR(F) \ Tf,g. Different texturing schemes can be applied to the surface to get a better
understanding of the relation between the toroidal blowup and the disc D.

5.2. Derivation of the implicit form

For the impatient reader, the mathematical results of this section can be summarized as follows:

• The implicit equation of the toroidal blowup is

F = Resv(F, H)/z = Resv(G, H)/z = 0, (5.6)

where F = fz − ((r − v) + y)g, G = gz − ((r − v)− y)f , H = y2 + z2 − (r − v)2 and u is
substituted by x in f and g.

• The degree and the time for the computation of F grow linearly with the degree of f and
g and not quadratically as one would expect.

• Parameters of f and g used for the deformation of the blowup occur as parameters of F.
The implicit form F is independent of the order of elimination and the specialization of
the parameters as long as f and g intersect in a finite number of points.

Since the following results on elimination are valid in a more general context than the field of
real numbers, we switch from R to an arbitrary infinite ordered field K of characteristic 6= 2
during the derivation of the above results.

5.2.1. Algebraic preparations

The substitution u = x in the polynomials f(u, v) and g(u, v) provides the following parametriza-
tion of the toroidal blowup

y = (r − v)f2 − g2

f2 + g2 , z = 2(r − v) fg

f2 + g2 , (5.7)

where now f, g ∈ K[x, v]. Therefore, we have to eliminate the variable v from the previously
given rational parametrization to obtain the implicit equation of the surface. Consequently, we
have to eliminate the variables v, w from the ideal

I = 〈A, B, 1− w(f2 + g2)〉 (5.8)
A = y − (r − v)w(f2 − g2) (5.9)
B = z − 2(r − v)wfg (5.10)

in the polynomial ring K[x, y, z, v, w] with f, g ∈ K[x, v] (see e.g. [CLO07]). The auxiliary
variable w and the equation 1− w(f2 + g2) = 0 allow to work with a system of polynomials
instead of rational functions without changing the set of solutions.
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Proposition 5.2.1. With the previous notation, define

F = fz − ((r − v) + y)g, (5.11)
G = gz − ((r − v)− y)f. (5.12)

Then I = 〈F, G, 1− w(f2 + g2)〉.

Proof. We define J = 〈F, G, 1− w(f2 + g2)〉 ⊂ K[x, y, z, v, w]. We first show that F, G ∈ I, so
that J ⊆ I. By subtracting ±((r − v)− (r − v)w(f2 + g2)) ∈ I from A ∈ I it follows that

F ′ = (r − v)− y − 2(r − v)wg2 ∈ I, (5.13)
G′ = (r − v) + y − 2(r − v)wf2 ∈ I. (5.14)

Then F = Bf −G′g ∈ I and G = Bg − F ′f ∈ I, as required.
In order to show I ⊆ J , first note that we have B = w(Ff + Gg) + z(1−w(f2 + g2)) ∈ J . It

follows that A = −w(Fg−Gf) + y(1−w(f2 + g2)) ∈ J , which finally completes the proof.

For the use in Section 5.2.2, we need an elementary statement about a certain ideal.
Proposition 5.2.2. With the previous notation, define the ideal J = 〈F, G, H〉 ⊂ K[x, y, z, v],
where H = y2 + z2 − (r − v)2.

1. The ideal J is generated by the 2× 2-minors of the matrix(
f z (r − v) + y
g (r − v)− y z

)
. (5.15)

2. There are the equalities

J ∩ 〈(r − v) + y, z〉 = 〈F, H〉, (5.16)
J ∩ 〈(r − v)− y, z〉 = 〈G, H〉. (5.17)

Proof. The statement 1 is easy to check. For the proof of statement 2, consider the equalities

J ∩ 〈(r − v) + y, z〉 = 〈F, H, 〈(r − v) + y, z〉 ∩ 〈G〉〉
= 〈F, H, 〈(r − v) + y, z〉G〉. (5.18)

The last equality follows since 〈(r − v) + y, z〉 is a prime ideal and G 6∈ 〈(r − v) + y, z〉. But
now 〈(r − v) + y, z〉G ⊂ 〈F, H〉, as follows by the trivial relations among the 2× 2-minors of
the matrix given in statement 1. This proves Equation (5.16). The proof of Equation (5.17)
follows by the same line of arguments.

5.2.2. Elimination
In order to find the defining equation of the surface obtained by the toroidal blowup, we have to
find the elimination ideal of I ⊂ K[x, y, z, v, w] in K[x, y, z] for given f, g ∈ K[x, v]. Of course,
this might be done using a computer algebra system which supports Gröbner basis. Since the
worst case complexity of computing a Gröbner basis for a given ideal is double-exponential, the
main objective is the reduction of computational complexity. Even for polynomials f, g of low
degree, a computer algebra system like Singular runs out of memory when eliminating the
variables u, v, w from the ideal I as given in Equation (5.8)

We begin with the elimination of the variable w. Afterwards, we reduce the whole elimination
process to the computation of a single resultant with respect to v.
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Lemma 5.2.3. With the previous notation, let I = 〈F, G, 1 − w(f2 + g2)〉 ⊂ K[x, y, z, v, w].
Then I ∩K[x, y, z, v] = 〈F, G, H〉.

Proof. In order to prove the equality of the two ideals, we use several facts from commutative
algebra (see [BH98] for reference). We will use the abbreviations S = K[x, y, z, v, w] and
R = K[x, y, z, v].

First of all, note that S/I ' R[1/h]/〈F, G〉, where h = f2 +g2. Therefore, I∩R = (〈F, G〉)sat,
where the saturation is taken with respect to h. That is, I ∩ R = 〈F, G〉 : hn for n� 0. We
continue by proving the equality

〈F, G〉 = 〈f, g〉 ∩ J, (5.19)

where J = 〈F, G, H〉. Clearly, 〈f, g〉 ∩ J = 〈F, G, 〈f, g〉 ∩ 〈H〉〉. But now {f, g} forms a regular
sequence since f, g ∈ K[x, v] do not have a common component by our general assumptions.
Therefore, {f, g, H} forms also a regular sequence and 〈f, g〉 : H = 〈f, g〉. That implies

〈F, G, 〈f, g〉 ∩ 〈H〉〉 = 〈F, G, 〈f, g〉H〉. (5.20)

But now fH = Fz + G((r − v) + y) ∈ 〈F, G〉 and gH = Gz + F ((r − v)− y) ∈ 〈F, H〉. This
finally proofs Equation (5.19).

By virtue of Equation (5.19), it is enough to show that the ideal 〈F, G, H〉 is saturated with
respect to h = f2 + g2. That is, we have to prove that 〈F, G, H〉 : h = 〈F, G, H〉. Because H is
irreducible, it follows that J = 〈F, G, H〉 is an ideal with height J ≥ 2. By the presentation of J
as the determinantal ideal in Proposition 5.2.2, we get height J ≤ 2 and therefore height J = 2.
By the Hilbert-Burch Theorem, it follows that R/J is a perfect ideal. So any associated prime
ideal P of R/J is of height 2.

Now suppose there is an associated prime ideal P of R/J such that h = f2 +g2 ∈ P . Because
of (f2 + g2)z − 2(r − v)fg = Ff + Gg ∈ J ⊆ P , it follows also that 2(r − v)fg ∈ P . Since
r − v 6∈ P , we get either f ∈ P or g ∈ P . Because of f2 + g2 ∈ P , this implies in both cases
f, g ∈ P . Due to H ∈ J ⊆ P , this shows that f, g, H ∈ P . Since {f, g, H} is a regular sequence,
it yields that height P ≥ 3. But this contradicts the fact that height P = 2 as a consequence of
the unmixedness of J and height J = 2. Whence, there is no associated prime ideal P of R/J
such that h = f2 + g2 ∈ P . Therefore, J : h = J , which proves that the ideal is saturated.

The equation of the implicit surface of the blowup is now given by the following corollary.
Corollary 5.2.4. The defining equation F of the implicit surface of the toroidal blowup is given
by the elimination ideal

〈F〉 = 〈F, G, H〉 ∩K[x, y, z]. (5.21)

Proof. By our above consideration, the equation of F is given by the elimination of the variable
v in the ideal J ⊂ K[x, y, z, v].

5.2.3. Resultants

One way to compute the elimination ideal is to use an elimination ordering and to compute
the corresponding Gröbner bases (see e.g. [CLO07]). A simpler method is based on resultants,
which can be used to eliminate a single variable in a system of two polynomials. In this section,
we will reduce the computation of the polynomial F to the calculation of a single, rather simple
resultant.
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Theorem 5.2.5. The defining equation F of the elimination ideal 〈F〉 of I ∩K[x, y, z] can be
computed by

1. F = F(F, H) = Resv(F, H)/z,

2. F = F(G, H) = Resv(G, H)/z.

Here, F = fz− ((r−v)+y)g, G = gz− ((r−v)−y)f , H = y2 +z2− (r−v)2 and f, g ∈ K[x, v]
are obtained from the original f, g ∈ K[u, v] by substituting u = x.

Proof. From Corollary 5.2.4, it follows that the elimination ideal 〈F〉 is given by J ∩ T , where
J = 〈F, G, H〉 and T = K[x, y, z]. Now we apply Proposition 5.2.2 and obtain

(J ∩ T ) ∩ (〈(r − v) + y, z〉 ∩ T ) = 〈F, H〉 ∩ T, (5.22)
(J ∩ T ) ∩ (〈(r − v)− y, z〉 ∩ T ) = 〈G, H〉 ∩ T. (5.23)

This implies that 〈F〉 · 〈z〉 = 〈Resv(F, H)〉 and 〈F〉 · 〈z〉 = 〈Resv(G, H)〉. To this end, recall that
〈(r − v) + y, z〉 ∩ T = 〈(r − v)− y, z〉 ∩ T = 〈z〉.

As a consequence of Theorem 5.2.5, we are able to determine the implicit form of the toroidal
blowup by computing a single resultant, which is subsequently divided by the variable z. Clearly,
one should compute the resultant, which involves the polynomials of lower degree.

We continue with a consideration of the complexity of the calculation of the resultant. It
turns out that this resultant is easy to compute.
Lemma 5.2.6. The computation of the polynomial F requires O(max(degv f, degv g)) operations
in K[x, y, z].

Proof. We only show the case of F = Resv(F, H)/z = (−1)deg F Resv(F,−H)/z. For this
purpose, we use the notation F = ∑d

i=0 fiv
i and −H = v2 + (−2r)v + (r2 − y2 − z2). Let

F̃ = remv(F,−H). Then

Resv(F,−H) = lcoeff(−H)d−degv F̃ Resv(F̃ ,−H) = Resv(F̃ ,−H) (5.24)

as follows from the properties of the resultant (see [GCL92, Theorem 9.4]). Although the
polynomials have their coefficients in K[x, y, z], the remainder F̃ can be easily computed by
polynomial long division with respect to v. Recall that −H is a monic polynomial in the
variable v. Because of deg H = 2, we have F̃ = f̃1v + f̃0 with f̃0, f̃1 ∈ K[x, y, z]. Thus, the
final result is obtained by

Resv(F̃ ,−H) =

∣∣∣∣∣∣∣
f̃1 f̃0 0
0 f̃1 f̃0
1 −2r r2 − y2 − z2

∣∣∣∣∣∣∣ (5.25)

= f̃2
0 + 2rf̃1f̃0 + (r2 − y2 − z2)f̃2

1 . (5.26)

The number of arithmetic operations in K[x, y, z] for the computation of F̃ is bounded by O(d),
where d = max(degv f, degv g). The costs for the division Resv(F̃ ,−H)/z are insignificant.

The proof of Lemma 5.2.6 provides an efficient, easily implementable algorithm for the
computation of F. In fact, only basic arithmetic of polynomials is necessary.
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5.2.4. Degree bounds
In general, the result of an implicitization has a degree that is quadratic in the degree of the
underlying rational parametrization (see e.g [SA84]). Thus, even for low degree parametric
surfaces, the efficient visualization using the implicit form might become infeasible. In the
following, we will see that the degree bounds for the implicit surface of the toroidal blowup
depend only linear on the degrees of f, g ∈ K[u, v]. These bounds are not only of theoretical
interest. They provide significant information on the computational effort for the visualization.

Lemma 5.2.7. The degrees of x, y and z in F are bounded by

degx F ≤ 2 max(degx f, degx g) + 2 (5.27)
degy F ≤ 2 max(degv f, degv g) + 4 (5.28)
degz F ≤ 2 max(degv f, degv g) + 3. (5.29)

The total degree of F is bounded by

degF ≤ 4 max(deg f, deg g) + 3. (5.30)

Proof. With t ∈ {x, y, z, totalxyz}, we have the following bounds on the degrees occurring in
the resultant (see Lemma 2.3.28 and [Win96, p. 97]):

degt Resv(F, H) ≤ degt F degv H + degt H degv F. (5.31)

The result is obtained by inserting the respective degrees of F and H, repeating the process
with G and H and selecting the smallest of both bounds. For the total degree and the degree
in z we take into account that the resultant is divisible by z.

These bounds show that the degree of the implicit equation of the toroidal blowup does
not explode as one would expect from the original definition in Equation (5.8). The key
ingredient for the linear bound is the change of the generating set of polynomials from A, B,
1−w(f2 + g2) to F , G, H, where H does not depend on f and g. Together with the reduction
of the computation to a single resultant, we get the linear degree bounds. As a side effect, the
polynomials f and g appear only linear in F and G, while they appear with its squares in A,
B and 1− w(f2 + g2). This allows to reduce the degree bound by another constant factor.
Remark. The actual total degree of the examples that we consider in Section 5.4 is even much
lower than the worst case bound we obtained in Lemma 5.2.7. It seems that the total degree
does not exceed the degree of the individual variables. However, it might be possible to
construct polynomials that hit the degree bound.

5.2.5. A simplified geometric construction
The previous derivation of the implicit form was a purely algebraic one based on Brodmann’s
parametrization given in Equation (5.5). We will now study a simplified, geometric approach
with utilizes the construction of the angle α. In Figure 5.2, we used a circle of fixed radius 1

2
as Brodmann suggested. Then, by the computed angle α, Brodmann parametrizes a circle of
radius r − v in order to perform the embedding into the torus (see Section 5.1.2). This yields

(x(α), y(α), z(α)) = (u, (v − r) cos α, (r − v) sin α). (5.32)
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y

z

F ′ = 0

H

G′ = 0

2(r − v)
(
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2 , f(u,v)
g(u,v)

)
= (y1, z1)

2(r − v)
(
−1

2 , 0
)

(y0, z0) = 2(r − v)
(

1
2 , 0

)
α α/2

radius of r − v

Figure 5.5.: Transformation of Brodmann’s construction of the angle α to the final (y, z)
coordinate system with appropriate scaling of 2(r−v) such that the radius of the circle becomes
r − v as in Equation (5.3).

Instead of computing the angle based on the circle of radius 1
2 , we could also transform the

construction such that the circle is congruent to the one used in the parametrization. That
is, the circle is centered at the origin of the (y, z) plane and scaled to have a radius of r − v.
This is shown in Figure 5.5. The whole construction in the y − z plane is parametrized by u
and v (assuming that r ∈ R is a constant). Provided that g 6= 0, the embedding of (u, v, f : g)
into the circle is now given as the intersection of the circle H = y2 + z2 − (r − v)2 = 0 and the
line G′ through the points (y0, z0) and (y1, z1). The implicit equation of G′ in the (y, z) plane
written in normal form is

0 = (y − y0, z − z0) · (z1 − z0,−(y1 − y0)) = (y − y0)(z1 − z0)− (y1 − y0)(z − z0) (5.33)

= (y − (r − v))
(

2(r − v)f

g
− 0

)
− (−(r − v)− (r − v))(z − 0) (5.34)

= 2(r − v)(y − (r − v))f

g
+ 2(r − v)z. (5.35)

Dividing by 2(r − v) results in

G′ = (y − (r − v))f

g
+ z = 0. (5.36)

The division is valid since in the case r − v = 0 the circle is equal to the origin and so is the
intersection of the circle and the line. In order to provide a complete embedding of (u, v, f : g),
we multiply G′ by g, which yields the line

G = g(u, v)z − ((r − v)− y)f(u, v) = 0. (5.37)

If g 6= 0, we have V (G) = V (G′). Otherwise, V (G) is the vertical line y = r − v provided
that f 6= 0. The intersection of y = r − v and H is equal to (y0, z0), which is consistent with
Brodmann’s choice of α = π for g = 0 in Equation (5.4).

We now compute the intersection of G and H. The substitution u = x given by Brodmann’s
construction provides the extension from the (y, z) plane to the (x, y, z) coordinate space. The
remaining variable v can be eliminated from the two equations G = H = 0 using the resultant
Resv(G, H). Clearly, there are at least two (not necessarily different) intersections of V (G)
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and V (H). If f = g = 0, then also G = 0, i.e. the whole circle appears as a solution since
V (G, H) = V (H). These circles correspond to the exceptional fiber. The degenerate case where
f and g have a common factor is examined in detail in Section 5.2.7. Otherwise, there are
exactly two intersection of the line G = 0 and the circle H = 0. The first intersection is always
equal to (y0, z0) = (r − v, 0), i.e. for any v ∈ C there exists a solution with z = 0. It follows
that Resv(G, H) contains a factor zl for l ∈ {1, 2}. Assume that l = 2. Then, the line G has
a second intersection with the circle at z = 0 for any value of v, i.e. G must be horizontal or
vertical for any v. This is only possible if f ≡ 0 (G is horizontal) or g ≡ 0 (G is vertical), which
we excluded a priori. Therefore, l = 1. Since we are only interested in the second (nontrivial)
solution which has been used in Brodmann’s constructions to determine the angle α, we divide
out the factor z. The remaining polynomial F = Resv(G, H)/z is the implicit definition of the
toroidal blowup as already shown in Theorem 5.2.5 using the algebraic approach.

Note that the polynomial F = fz−((r−v)+y)g, which we used in Theorem 5.2.5 as a second
possibility to determine F in conjunction with H, is actually a line through (y, z) = (−(r−v), 0)
perpendicular to G. The latter property can be derived from the dot product of the line normals
~nF = (−g, f) and ~nG = (f, g). Figure 5.5 shows the gray, dashed line V (F ′) which is equal to
V (F ) except for g = 0.

5.2.6. Deformations
A main motivation of this work is the visualization of deformations of blowups, i.e. the case
where f and g depend on a certain number of parameters ai ∈ K. By an interactive visualization,
it is possible to study the deformation of the surface when the ai vary.

In general, the specialization of parameters and the computation of resultants can not be
interchanged. To perform an efficient visualization, we need to ensure that we can compute
F ∈ K[x, y, z, a1, . . . , al] symbolically and then specialize the parameters in every frame of the
deformation. The following describes the behavior of the specialization of the implicit surface.
Lemma 5.2.8. Let ϕ be a homomorphism from K[x, y, z, a1, . . . , al] to a subring obtained by a
specialization of a subset of the variables a1, . . . , al to elements in K such that V (ϕ(f), ϕ(g))
consists of a finite number of points. Then

ϕ(F(F, H)) = ±F(ϕ(F ), ϕ(H)), (5.38)
ϕ(F(G, H)) = ±F(ϕ(G), ϕ(H)). (5.39)

Proof. Under the specialization ϕ, the degree of v of f, g could change. This is propagated to
F and G. To check what happens with F, we apply the specialization property of resultants
(see Lemmata 2.3.32 and 2.3.33): If degv ϕ(F ) = degv F − k and degv ϕ(H) = degv H, then

ϕ(Resv(F, H)) = ϕ(lcoeffv(H))k Resv(ϕ(F ), ϕ(H)). (5.40)

The condition degv ϕ(H) = degv H is always satisfied since −H is a monic polynomial with
respect to v. This allows to simplify the previous formula to

ϕ(Resv(F, H)) = ±Resv(ϕ(F ), ϕ(H)) (5.41)

and therefore
zϕ(F(F, H)) = ϕ(zF(F, H)) = ±zF(ϕ(F ), ϕ(H))). (5.42)

The same arguments hold if F is computed using G and H.
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When additional parameters are introduced, F will usually contain a lot more terms. However,
this does not add much overhead to the visualization, since the ai might be specialized prior
to the rendering process. Due to Lemma 5.2.8, ϕ(F(F, H)) has the same number of terms as
F(ϕ(F ), ϕ(H)). Examples of deformations of blowups and their visualization are shown in
Figures 5.9 and 5.10.

5.2.7. The degeneration

The assumption of dim(V (ϕ(f), ϕ(g))) = 0 in Lemma 5.2.8 is fulfilled for parameters of an
open subset of K l. A degeneration occurs whenever dim V (ϕ(f), ϕ(g)) becomes positive. We
will now discuss these degenerations. For simplicity, let us denote the specialized ϕ(f), ϕ(g)
again by f, g. Algebraically, the degeneration means that f = h · f̃ , g = h · g̃ for a non-constant
polynomial h ∈ K[u, v] and relatively prime polynomials f̃ , g̃. Therefore, X̃ = V (f̃ , g̃) consists
of a finite number of points in A2

K .
In the elimination process, we have to compute the resultant Resv(F, H) resp. Resv(G, H).

In this discussion we restrict ourselves to the first resultant. Define F̃ = f̃ z − ((r − v) + y)g̃.
Then the definition of the resultant as the product of the pairwise differences of roots (see
Theorem 2.3.3) provides the equality

Resv(F, H) = Resv(h, H) · Resv(F̃ , H). (5.43)

The surface F̃ of the toroidal blowup of V (f̃ , g̃) is obtained by dividing the resultant Resv(F̃ , H)
by z. Thus, the surface F of the blowup of the degenerated set X = V (f, g) is

F = H · F̃, (5.44)

where H = Resv(h, H). Let (u0, v0) ∈ D such that h(u0, v0) = 0. Then a point (x0, y0, z0) with
x0 = u0 satisfies H(x0, y0, z0) = 0 if and only if v = v0. That is, H vanishes on the whole circle
y2 + z2 = (r − v0)2 of the plane x = x0 = u0. In other words, H is the image of the cylinder
over h = 0 mapped to the torus by the toroidal embedding. Hence, the surface F is the union
of the toroidal blowup of V (f̃ , g̃) and H. For an example with V (f̃ , g̃) = ∅, see Figure 5.11a.

5.3. Visualization of the implicit form
During the derivation of the results of the previous section, we used the abstract field K. In
order to visualize toroidal blowups, we set K = R again for the remaining part of this chapter.
Thus, the toroidal blowups are now defined in three-dimensional affine space. We will use
V (F) = VR(F) for the real zero-set of F. A real point P ∈ V (F) of the implicit form of the
parametric surface P (u, v) might originate from complex, not necessarily real parameter values
(u, v) ∈ C2. Fortunately, this is not the case for toroidal blowups.
Proposition 5.3.1. Let P (u, v) ∈ VR(F). Then (u, v) ∈ R2.

Proof. For a given point P ∈ VR(F) of the implicitly given surface, we use Equation (5.3) for
the computation of the parameters u and v such that P = (x(u, v), y(u, v), z(u, v)). Therefore,

y(u, v)2 + z(u, v)2 = (v − r)2(cos2 α + sin2 α) (5.45)
= (v − r)2 (5.46)
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and we have
u = x, v = r ±

√
y2 + z2. (5.47)

Since x, y, z, r ∈ R, the parameters u and v have to be real-valued, too.

Given this result, we proceed with the visualization. Implicitly defined surfaces can either be
converted into a polygon mesh for rendering or they can be rendered directly using ray tracing
techniques. The latter usually provide an excellent quality of the visualization. Although ray
tracing is often considered to be computationally intense, recent advances in graphics hardware
technology permit the interactive display of algebraic surfaces (provided the degree is not too
large) by a simplified method called ray casting.

In the ray casting algorithm, the geometry visible to the viewer is computed by intersecting
rays with the objects in the scene. Basically, at least one ray from the virtual eye point through
each pixel of the image plane is considered. In order to find the intersection points of an algebraic
surface F(x, y, z) = 0 and the ray r(t) = (x(t), y(t), z(t)), the univariate polynomial equation
F(x(t), y(t), z(t)) = 0 has to be solved using e.g. numerical real root finders. Then, the set of
intersection points is clipped to a predefined bounding geometry, which is a torus in our case.
More sophisticated clipping techniques might be applied (see Section 5.3.1). The remaining
points are textured and illuminated using some light reflection model and the computed color
is assigned to the corresponding pixel. For further details, see standard literature on computer
graphics like [Hil01].

The above algorithm has been adjusted to fit the requirements for an implementation on
graphics processors. This has been demonstrated in [Stu07; Stu09; SS11; RS08; Kno+09] and
others. Therefore, we will only discuss the new contributions and omit the details that have
been covered in the existing literature.

5.3.1. Clipping V (F) to TTTf,g

In general, the surface V (F) is unbounded and contains much more geometry than we actually
want to visualize. Because of Tf,g ⊆ V (F), we have to eliminate V (F)\Tf,g for the visualization.
The parametric form P (u, v) allows – in principle – the computation of most of the points
of Tf,g by the restriction of (u, v) to D. In the implicit form, this correspondence is lost and
has to be reconstructed. To be more precise, for a given point P ∈ V (F), we have to decide
whether there exists an (u, v) ∈ D \ V (f, g), such that P = (x(u, v), y(u, v), z(u, v)), or whether
P is located on the exceptional fiber.

We have two simple possibilities to cut off the surface geometry that is outside the D-torus.
The first one is to clip each ray against the D-torus, which results in zero, one or two search
intervals for the numerical real root finder. The second possibility is to compute all intersections
of the ray and the blowup. Then, one checks for each intersection point if it is inside the
D-torus. The latter test can be performed in an easy way by checking whether one of the
solutions of Equation (5.47) is contained in D. Figure 5.6 illustrates which geometry is cut off.

By definition, all points P (u, v) with (u, v) ∈ D \ V (f, g) are contained within the D-torus.
However, the converse is not true. Thus, the visualization of the implicit form of the blowup
inside the D-torus often shows points P (u, v) with (u, v) 6∈ D. Figure 5.6b illustrates this
problem for the case of a simple surface.

For a point inside the D-torus, we always have a solution (u0, v0) ∈ D and a solution
(u1, v1) 6∈ D (remember that r > ρ). The three points P , P0 = P (u0, v0) and P1 = P (u1, v1) are
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(a) No clipping. (b) Clipping against the
D-torus.

(c) Clipping to the set Tf,g.

Figure 5.6.: Figure (a) shows the surface of F without clipping against the D-torus. The
surface is unbounded and only clipped to a box for the illustration. The surface parts with
dark painting are outside the D-torus. Figure (b) shows the inside part. The dark painted part
of figure (b) results from the second solution in Equation (5.47). It does not belong to the
toroidal blowup, since (u1, v1) 6∈ D. Figure (c) shows the final result.

located on a circle with radius |r − v| in the plane x = u. A small angle between the position
vectors of P and P0 suggests P = P0 ∈ Tf,g.

As we have seen in Section 5.1.3, the evaluation of P0 is likely to be numerically very
unstable due to the common zeros of f and g in D. Moreover, P (u0, v0) is not even defined for
(u0, v0) ∈ V (f, g). The error that is introduced in the visualization by using the above criterion
to clip the surface is shown in Figure 5.7.

To overcome this difficulty, we investigate the solution (u1, v1) instead of (u0, v0). We are
interested in visualizing the blowup surface for some points in D and given f and g such that
all their common zeros are contained in D. Due to (u1, v1) 6∈ D, the evaluation of P (u1, v1) is
in most cases well-conditioned. Note that the denominator f(u1, v1)2 + g(u1, v1)2 is always
non-zero and bounded. Now, we draw P provided

]( ~P , ~P1) > ε1. (5.48)

The motivation for this test is as follows: If (u1, v1) 6= (u0, v0), the point P (u1, v1) is not in
Tf,g. If the angle between P (u1, v1) and P is non-zero or (in the case of round-off error) larger
than a predefined ε1, then P is considered to be in Tf,g and will be visualized.

In the implementation of this test, the angle is not computed directly. Instead, its sine
and cosine are used, which are easy to determine by appropriate projections. After some
simplifications and with (fi, gi) = (f(ui, vi), g(ui, vi)), i = 0, 1, we get

sin]( ~P , ~P1) =
~P ⊥ · ~P1

||~P ⊥|| · ||~P1||
= sgn(r − v1)(−Pz, Py) · (f2

1 − g2
1, 2f1g1)

|r − v0|(f2
1 + g2

1) , (5.49)

cos]( ~P , ~P1) =
~P · ~P1

||~P || · ||~P1||
= sgn(r − v1)(Py, Pz) · (f2

1 − g2
1, 2f1g1)

|r − v0|(f2
1 + g2

1) . (5.50)
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5. Interactive visualization of blowups of the plane

Figure 5.7.: Rendering artifacts caused by the naive idea of clipping V (F) to Tf,g: P ∈ V (F)
either corresponds to P0 = P (u0, v0) for (u0, v0) ∈ D or to P1 = P (u1, v1) for (u1, v1) 6∈ D. P
should be displayed if P = P0, i.e. if it corresponds to a point above the disc, and discarded
otherwise. The evaluation of P0 = P (u0, v0) using the parametric form is numerically very
unstable. Therefore, many points close to the exceptional circles are accidentally clipped. This
does not happen if Equation (5.48) is used for the clipping instead (see e.g. Figure 5.6c), which
is based on the evaluation of P1 = P (u1, v1).

For small angles, a linear function is a good approximation of the sine. The cosine is only needed
to decide whether ]( ~P , ~P1) ≈ 0 or ]( ~P , ~P1) ≈ ±π. Therefore, Equation (5.48) transforms into
the condition

| sin]( ~P , ~P1)| > ε1 ∧ cos]( ~P , ~P1) ≥ 0 (C1)
for the acceptance of P as a valid solution.

This test works well as long as P0 and P1 are far apart. It will fail e.g. at self intersections of
the surface, so that more geometry is clipped than actually necessary. This results in small
gaps in the visualization. In order to improve the image quality, we resolve this by accepting a
point P that does not pass the test (C1), but satisfies ]( ~P0, ~P1) < ε2. With the above notation
we have

sin]( ~P0, ~P1) =
~P ⊥

0 · ~P1

||~P ⊥
0 || · ||~P1||

= −(2f0g0, g2
0 − f2

0 ) · (f2
1 − g2

1, 2f1g1)
(f2

0 + g2
0)(f2

1 + g2
1) , (5.51)

cos]( ~P0, ~P1) =
~P0 · ~P1

||~P0|| · ||~P1||
= −(f2

0 − g2
0, 2f0g0) · (f2

1 − g2
1, 2f1g1)

(f2
0 + g2

0)(f2
1 + g2

1) . (5.52)

So, a previously discarded point P is visualized, provided

| sin]( ~P0, ~P1)| < ε2 ∧ cos]( ~P0, ~P1) ≥ 0. (C2)

In order to completely close the gap which is caused by the angle ε1 in (C1) close to a self
intersection, the error bound ε2 is chosen to be slightly larger than ε1. The results of the
combined tests are shown in Figure 5.6c. In this example, the clipping is performed correctly
at all pixels of the image.
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5.3. Visualization of the implicit form

(a) m(atan2(z, y)) (b) m(
√

u2 + v2) (c) m(u) (d) m(v) (e) m(u)⊕m(v)

Figure 5.8.: Some texturing patterns of blowup surfaces and the underlying disc D using
Equation (5.53). The function m(·) computes a Boolean value that is used to select either the
red or the yellow material. In (a), the texturing of a point is derived from its position in the
D-torus. In the other examples, the surface is textured by some texturing of the disc D according
to the (u, v) coordinates. The black color illustrates V (f, g) = V (u2 − 1, v2 − 1) = {(±1,±1)}
and the boundary of the disc D and how both are projected onto the toroidal blowup. That is,
the black colored circles in the toroidal blowups visualize the exceptional fiber. In (e), the ⊕
operator denotes the exclusive disjunction.

Remark. Note that only the sign of the cosine is used in both tests. Therefore, the divisions in
Equations (5.50) and (5.52) are unnecessary and might be skipped. In addition, it is important
to mention that the test (C2) needs an expression similar to those for the computation of
P (u0, v0), which one should avoid due to the numerical instabilities. Nevertheless, in this test,
the instability is only significant for the small number of points that are close to the exceptional
fiber and additionally close to a self intersection. Notable clipping errors are rare in practice.

5.3.2. Texturing the surface

The texture of the surface should be chosen to enable a viewer to obtain additional information
about the blowup or to understand its structure more easily. Two types of coloring schemes
seem to be useful: Either the texture of a point is chosen with respect to its (x, y, z)-coordinates
or with respect to its (u, v)-coordinates. For each point P ∈ Tf,g, the material is computed
using

m(d) =
{

true (s · d mod 2) > 1,

false otherwise,
(5.53)

where d is a measure based on either the (x, y, z)- or (u, v)-coordinates of P , s is some user
defined factor to scale the pattern, mod is the floating point modulus and the Boolean values
are interpreted as two different materials. A few examples of texturing schemes utilizing m(·)
are illustrated in Figure 5.8 for the blowup of X = {(±1,±1)} as the zero set V (f, g) with
f = u2 − 1, g = v2 − 1.

In Figure 5.8a, the parameter d of a point P is based on the angle between ~P and the
y axis. Mapping the resulting coloring scheme to the disc D produces the contour lines of
z = f(u, v)/g(u, v), i.e. of the non-toroidal blowup of the disc. The other texturing schemes in
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5. Interactive visualization of blowups of the plane

Figure 5.8 compute d using the (u, v) coordinates of P . Thus, actually the disc D is textured.
Mapping this texture onto the surface shows how different subdivision schemes of the parameter
domain (u, v) would affect a triangulation of the surface that is obtained from the parametric
form. The problems of a uniform subdivision of the (u, v)-domain (mentioned in Section 5.1.3)
become clear in Figure 5.8e since the checkerboard pattern is heavily stretched in the toroidal
blowup.

5.3.3. Highlighting the exceptional fibers

While all points D \V (f, g) are mapped to a single point in the D-torus, the points X = V (f, g)
appear as circles in the toroidal blowup. In order to visualize these circles on the surface, it is
not sufficient to test |f(u, v)| ≤ ε and |g(u, v)| ≤ ε. This leads to circles of non-constant width
in the visualization.

A more appropriate choice is to use the (u, v) coordinates of the exceptional points directly.
For many interesting examples (including those shown in this chapter), the set of exceptional
points X = V (f, g) is known a priori or can be computed easily. Thus, we can either render a
torus of small width over each exceptional point or draw points from Tf,g with similar (u, v)
coordinates in a different color. This first approach is used in Figure 5.9b. Examples of the
latter technique are shown in Figures 5.8, 5.10 and 5.11.

5.4. Implementation and results
In the previous sections, an efficient way to find the implicit equation of the parametric form of
a toroidal blowup has been described. We discussed a ray tracing technique for its visualization
as well as several clipping methods in order to get the correct visualization of the toroidal
blowup over a disc D as suggested by Brodmann in [Bro95]. In addition, we included the
visualization of the exceptional fiber. We also investigated approaches on how to avoid artifacts
that might occur in particular visualizations. In this section, an implementation of a renderer
is discussed. This is done by means of several examples illustrating the difficulties that might
occur.

5.4.1. RealSurf as a tool for visualizing toroidal blowups

The program RealSurf (see [Stu07; Stu09; SS11]) was designed for the interactive visualization
of implicit surfaces in real time. It supports additional parameters for an interactive deformation
of the given surface. Using this tool, the ray tracing and clipping routines are processed directly
on the GPU of the graphics card. For the experiments, an NVIDIA GeForce GTX 460
has been used. With an additional script that implements the newly introduced clipping and
texturing and the highlighting of the exceptional fiber, RealSurf is used for all ray casting
based renderings of toroidal blowups in this chapter. The visualization is performed in real-time
for all of them.

It is worth to mention that the current prototypical implementation of the rendering algorithm
is efficient for surfaces that have a compact representation with few terms. Our equations for
the toroidal blowups are in monomial form and, hence, contain a lot of terms. First experiments
suggest that for the examples considered here, the speed of the visualization might be increased
by a factor of 5 to 10 by taking advantage of appropriate data structures for polynomials with
dense coefficient arrays.
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5.4.2. Discussion of examples

Let us look at some practical results. In Figures 5.9 to 5.11, the texturing is performed according
to Figure 5.8a. Therefore, the coloring of the disc D corresponds to contour lines of z = f/g.
The sets V (f) and V (g) are illustrated in D using white color, while X = V (f, g) is marked
using black dots. Refresh rates for the interactive rendering at a display size of 512× 512 are
listed in the captions of the figures.

Deformation of points

In Figure 5.9, the common zero-set of f = au + v2− 2a2, g = (u− 2a)(u− a) is deformed by the
parameter a ∈ R. We get two simple points (a,±a) and a double point (2a, 0) on a parabola
for a 6= 0. The construction is symmetric for +a and −a. The three points collapse into a
fourfold point for a = 0 in the origin. This surface is known as Whitney’s double umbrella
(topologically equivalent to Plücker’s conoid).

Deformation of defining equations

In Figure 5.10, the deformed polynomials f = u2 + av2− a− 1 and g = au2 + v2− a− 1 always
intersect in the same set of points {±1,±1} provided that a ∈ R \ {±1}. For a < 0, V (f) and
V (g) are hyperbolas, while they are ellipses for a > 0. Both yield two parallel lines for a = 0.
Note that Section 5.4.2 (i.e. a = 0) shows the computer generated image of the toroidal blowup
of 4 points of the plane included as a hand drawing in [Bro95].

A degeneration

Using the values a = ±1 in the previous example gives the degenerate case dim(V (f, g)) 6= 0
mentioned in Section 5.2.7. Figure 5.11a shows the rendering for a = 1 such that f(u, v) =
g(u, v) = u2 + v2 − 2. Due to Section 5.2.7, the degeneration yields the plane y = 0 and the
torus with tube radius

√
2 and central radius 8. For a = −1, the set V (f, g) consists of the

union of the two lines u + v and u− v intersecting in the origin.

Double line and elliptic curve

Figure 5.11b shows a toroidal blowup based on the intersection of a double line g = v2 and
an elliptic curve f = v2 − u(u − a)(u − b). The configuration allows deformations by two
parameters. In general, X = V (f, g) consists of three double points. In the case of a = b 6= 0,
the curve f degenerates to a nodal cubic and X consists of a double and a fourfold point. For
a = b = 0, it becomes a cuspidal cubic and X consists of a sixfold point at the origin. It is
remarkable to see the detailed display of the singularities of the toroidal blowup.

The algebraic wizard hat

The amusing surface in Figure 5.11c, which was given the name “The Algebraic Wizard Hat”,
was found by coincidence when experimenting with the toroidal blowup based on the Chmutov
Curve f = T4(u) + T4(v) with the Chebyshev polynomial of the first kind T4(x) = 8x4− 8x2 + 1
of degree 4 and a circle g = u2 + v2 − a2. The circle is chosen with a large radius a not
intersecting the Chmutov Curve. Hence, the surface contains no exceptional fiber and does not
span across the whole torus. Further amazing surfaces might be created by this approach.
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(a) a = − 1
2 (b) a = 0 (c) a = 1

2

Figure 5.9.: Visualization of the toroidal blowup of three dynamic points with f(u, v) =
au + v2 − 2a2, g(u, v) = (u − 2a)(u − a), r = 4 and ρ = 2. For a = 0, the double point and
the two simple points collapse into a fourfold point. The surface F is of total degree 5 and is
rendered with approximately 125 frames per second.

(a) a = − 1
2 (b) a = 0 (c) a = 1

2

Figure 5.10.: Visualization of the toroidal blowup of four static points with f(u, v) =
u2 + av2 − a− 1, g(u, v) = au2 + v2 − a− 1, r = 8 and ρ = 4. The equation of the surface is of
total degree 7 and is rendered with approximately 80 frames per second.
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(a) A degeneration of
the example in Fig-
ure 5.10 with a = 1.
deg(F) = 7; 80 fps.

(b) Elliptic curve inter-
secting a double line.
deg(F) = 7; 55 fps.

(c) “The Alge-
braic Wizard Hat ”.
deg(F) = 9; 12 fps.

(d) Blowup of five
points in the plane.
deg(F) = 7; 36 fps.

Figure 5.11.: Some more examples of toroidal blowups.

Blowup in five points

The surface in Figure 5.11d shows the toroidal blowup of the plane in 5 points X = V (f, g)
with f = u2− v− 1, g = u(u− v)(u + v). The clipping still works well for this complex example,
but the numerical real root finder in the underlying ray-casting algorithm fails for a few pixels
close to the self intersection of V (F) on the right side of the picture.

5.5. Conclusion and perspectives
The combination of the low-degree implicit form of the toroidal blowup and its interactive
visualization using GPU programming yields a significant improvement compared to previous
approaches. We are not only able to produce computer generated images of the hand drawn
pictures of Brodmann (see [Bro95, Figures 10 and 11]), but also to interactively visualize
toroidal blowups of the disc D given by arbitrary coprime polynomials f, g ∈ R[u, v]. The
method allows interactive deformations of a set of given points as well as the deformation of
the defining equations f, g ∈ R[u, v] for a fixed set X of finite points such that X = V (f, g).
Furthermore, texturing patterns are easily applied on a per-pixel basis. This gives a better
insight into the relation between the disc D and the toroidal blowup Tf,g.

For further investigations, it would be interesting to visualize the toroidal blowup of a given
plane curve C whose singularities are contained in V (f, g) (see e.g. CTf,g

in Figure 5.1). In order
to give a better understanding of the geometry of the blowup, f and g might be highlighted on
Tf,g. Both problems do not seem to be easily solvable if the curves are required to be drawn
with constant width on the toroidal blowup.

117





6. Parallel computation of resultants on
graphics processing units

6.1. Motivation

As we have seen in previous chapters, resultants are one of the fundamental symbolic operations
on polynomials that help to understand their common zero set. Unfortunately, their computation
is a time consuming task, especially in the multivariate case. In order to reduce the running
time in practice, one can try to improve existing sequential algorithms or try to parallelize
them. Here, we will investigate a parallel algorithm for the bivariate resultant that is well
suited for an implementation on CUDA-capable graphics processing units (GPUs). It shows
a remarkable speedup compared to the sequential version provided by the computer algebra
system Wolfram Mathematica 6. The main contributions in this chapter are:

• Complete implementation of a modular resultant algorithm over Z[x, y].

• Efficient way to deal with so called “unlucky” homomorphisms.

• Optimization of modular multiplication of 32 bit integers for GPUs.

• Different parallelization schemes for global and shared GPU memory.

• Large speedup compared to an implementation of the sequential algorithm.

Most of these results have been published in [SS12].

6.2. Related work

This work is based on the modular resultant algorithm presented in [Col71]. There, the multi-
variate input polynomials over Z are mapped onto a certain number of univariate polynomials
over prime fields. Resultants are calculated for the univariate case and then combined into
the final resultant over the integers. The algorithm has been adapted for distributed systems
[Bub+95] and for shared memory machines [HL94]. Most recently, there has been some effort
to implement algorithms for computing resultants and subresultants on GPUs. One example
for the resultant is [Eme10a; Eme10b]. It mainly differs from [Col71] in the way univariate
resultants are computed. Instead of using repeated polynomial division with remainder, they
build upon a linear algebra approach that exploits the special structure of the Sylvester matrix.
Their implementation has been used in [BES11] in order to speed up bivariate polynomial
system solving. In [MP11], subresultants are computed on GPUs but they aim for solving
modular systems of polynomials so that some parts of the combine phase are unnecessary and,
therefore, unimplemented. Note that these recent approaches have been published at about
the same time or even later than [SS12], which has been presented in the year 2010.
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A, B ∈ Z[x, y]

A1, B1 ∈ Zp1 [y] · · · Ak, Bk ∈ Zpk
[y]

Resy(A1, B1) ∈ Zp1 · · · Resy(Ak, Bk) ∈ Zpk

Resy(A, B) ∈ Z[x]

modular and evaluation homomorphisms

univariate resultants by repeated polymomial division

combine using Newton interpolation and CRT

Figure 6.1.: Outline of the parallel algorithm for computing bivariate polynomial resultants.

In addition to the scientific papers related to parallelized (sub-)resultant computations, there
is a vast amount of literature covering parallel processing and programming on GPUs in general.
Its review is out of the scope of this work. However, [CCPG12] covers most of the technical
terms required in this chapter.

6.3. Algorithm outline
In this work, a parallel algorithm for computing the bivariate polynomial resultant Resy(A, B)
for A, B ∈ Z[x, y] is implemented on a CUDA-capable GPU. The following sections are
structured according to the divide-conquer-combine strategy of the algorithm: In Section 6.4,
it is explained how to apply parallel modular reduction and evaluation homomorphisms on the
input polynomials. It is shown that the notion of unlucky homomorphisms is unnecessary in
the context of polynomial resultants. This also simplifies subsequent stages of the algorithm.
In addition, a fast implementation of GPU-based modular arithmetic is provided. The parallel
computation of univariate resultants using either global or shared memory of the GPU will
be described in Section 6.5. The univariate resultants are determined by repeatedly applying
polynomial division with remainder. Finally, an approach for combining the intermediate
results into a final resultant polynomial in Z[x] is presented in Section 6.6. This is based on
Newton interpolation and the Chinese remainder theorem (CRT). Figure 6.1 summarizes the
algorithm graphically. The described GPU parallelization is compared with the sequential
approach in Section 6.7.

6.4. Divide phase: applying homomorphisms
According to Collins [Col71], we can use homomorphisms to split the resultant calculation
into several modular tasks. A homomorphism ϕ : R → R′ of commutative rings R and R′

induces a homomorphism of R[x] into R′[x]. For a polynomial A = ∑m
i aix

i ∈ R[x], it is
defined by ϕ(A(x)) = ϕ(∑m

i aix
i) = ∑m

i ϕ(ai)xi. The following statement is a special case of
Lemma 2.3.33 covering only the resultant.
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Corollary 6.4.1. Let A, B ∈ R[x]. If deg(ϕ(A)) = deg(A) and deg(ϕ(B)) = deg(B) − k,
0 ≤ k ≤ deg(B), then ϕ(Res(A, B)) = ϕ(lcoeff(A))k Res(ϕ(A), ϕ(B)).

A similar statement holds for deg(ϕ(A)) = deg(A) − k and deg(ϕ(B)) = deg(B). If both
degrees decrease, the homomorphism is often considered to be unlucky as in [HL94], because
the commonly used repeated division algorithm for computing the univariate resultant (see
Section 6.5) can not be applied. This is a drawback for a parallel algorithm, because unlucky
homomorphisms have to be detected and discarded. In the task-parallel algorithm presented in
[HL94], unlucky homomorphisms are reported back to the main task. This could not trivially
be done on the GPUs available at time of writing. To sort out the bad cases, some kind of
stream compaction would be necessary (e.g. by applying prefix sum techniques). Here, we solve
this problem using the following special case of Corollary 2.3.34.
Corollary 6.4.2. If ϕ(lcoeff(A)) = ϕ(lcoeff(B)) = 0 for A, B ∈ R[x], then ϕ(Res(A, B)) = 0.

According to Corollary 6.4.2, the previously unlucky homomorphisms are actually lucky ones,
because the value of the homomorphic image of the resultant is immediately known without
further calculations. It seems that the authors of previous algorithms were not aware of this
very useful fact, which led to unnecessary complicated implementations in the past.

6.4.1. Reduction modulo a prime number

In the first step of the algorithm, we reduce the integer coefficients of A and B modulo pairwise
different prime numbers pi to coefficients in the prime field Zpi . This completely eliminates the
occurrence of expression swell in subsequent calculations. Several prime numbers are needed
in order to reconstruct the integer coefficients of the resultant with the help of the Chinese
remainder theorem (see Section 6.6.2). The number of primes needed is bounded by the size of
the coefficients of the resultant. The following refinement of Lemma 2.3.29 is stated in [Win96,
p. 97]. It takes the possibly different bitsizes of the coefficients of A and B into account.
Lemma 6.4.3. Let A(x, y) = ∑m

i=0 ai(x)yi, B(x, y) = ∑n
i=0 bi(x)yi be polynomials in Z[x, y]

and let a = maxm
i=0 ||ai(x)||1, b = maxn

i=0 ||bi(x)||1. If r is an integer coefficient of Resy(A, B),
then |r| ≤ (m + n)!anbm.

Hence, we select k primes p0, . . . , pk−1 from a list of precomputed prime numbers such that
P = ∏k−1

i=0 pi > |r|. Due to the ring isomorphism Zp0 × . . . × Zpk−1
∼= ZP , we are able to

reconstruct the resultant coefficients from their modular images later on. If the largest primes
numbers are selected first, we need fewer of them to satisfy P > |r|. In the implementation,
the integer coefficients are represented in a number system with radix 232. Reduction modulo
a prime number p is easily implemented by viewing the integer as a polynomial over Z232

and evaluating this polynomial in Zp at 232 mod p using Horner’s method. According to
Corollary 6.4.2, all prime numbers are valid for the reduction. Therefore, we can reduce all
coefficients of A and B modulo all prime numbers in parallel without having any dependencies.

6.4.1.1. Arithmetic in prime fields

In the current implementation, each prime number p satisfies 231 < p < 232. Handling addition
and subtraction in Zp on 32 bit integers is trivial. But the result of a 32 bit multiplication
a·b = hi·232 +lo with 0 ≤ hi, lo < 232 has a size of 64 bit in general. Decomposing a·b = q ·p+r,
where r = a · b mod p, by using 64 bit integer division to find q is very slow on current graphics
processors. Instead, we use a lower bound q on q to eliminate the hi part of a · b and reduce the
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Algorithm 6.1: Modular multiplication of 32 bit numbers a, b ∈ Zp using only 32 bit
integer addition and multiplication.

Data: a, b ∈ Zp with 231 < p < 232; u =
⌊
(232/p− 1) · 232⌋; all variables are 32 bit

integers
Result: r = a · b mod p

1 begin
2 lo← (a · b)lo B least significant 32 bit of a · b
3 hi← (a · b)hi B most significant 32 bit of a · b

B ( umulhi in CUDA C device code)
4 q ← (hi · u)hi + hi B lower bound on hi div p with q ≥ hi div p− 1
5 lo← (q · p)lo; hi← (q · p)hi B parts of q · p used to eliminate hi

6 hi← hi− hi B try to eliminate hi
7 if lo 6= 0 then
8 hi← hi− 1 B subtract carry arising from lower part of q · p
9 if hi = 1 then lo← lo + p B q was 1 to small

10 r ← lo− lo B 32 bit residue
11 if r < lo then r ← r − p B cope with overflow
12 if r ≥ p then r ← r − p B reduce modulo p

residual 32 bit part modulo p afterwards. The exact value of q would be b(hi · 232)/pc, but this
would also involve another division. The main ingredient of the fast modular multiplication is
the precomputation of 232/p. Due to the size of p, it holds that 1 < 232/p < 2. Hence, the 0th

binary digit of 232/p is implicitly known. The binary digits −1, . . . ,−32 are stored as a 32 bit
integer u. Now, 1 + u · 2−32 is a good lower bound for 232/p with a maximum error smaller
than 2−32. The product q′ =

⌊
hi · (1 + u · 2−32)

⌋
is now equal to q or q − 1, depending on the

round-off error. The true value of q is obtained by checking if hi · 232 − q′ · p > 232. Because
(hi · 232 − q · p) + lo < 3p, we have to subtract p at most two times to find the final remainder
r = a · b mod p. See Algorithm 6.1 for the pseudocode and Figure 6.2 for a runtime comparison
of the above method and the modular multiplication using a 64 bit modulo operation. Finally,
modular inversion, the last operation in Zp, is implemented using the extended Euclidean
algorithm.

6.4.2. Evaluating polynomials

Now, let A, B ∈ Zp[x, y]. When calculating the resultant with respect to y, the evaluation
homomorphism (see [Col71]) simply maps Zp[x, y] to Zp[y] by evaluating A(x, y) and B(x, y) at
degx(Resy(A, B)) + 1 pairwise different positions x = xi ∈ Zp. It follows from Corollary 6.4.2
that the choice of the xi is arbitrary as long as degx(Resy(A, B)) + 1 < p. Due to our
choice of 231 < p < 232 this limitation is irrelevant in practice. Therefore, we choose xi = i,
which also simplifies the reconstruction phase (see Section 6.6.1). The required number of
interpolation nodes is bounded by degx(Resy(A, B)) ≤ degy(A) degx(B) + degy(B) degx(A)
(see Lemma 2.3.28 and [Win96, p. 97]).

The evaluation of the polynomials is again based on Horner’s method. Due to the inde-
pendence of the evaluation nodes and the coefficients of A and B, parallelization is easily
achieved.
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0 2 4 6 8 10 12 14 16
GTX 480 2.6×
GTX 260 14.7×

Figure 6.2.: Speedup of the fast 32 bit modular multiplication compared to modular multipli-
cation using 64 bit integer division on NVIDIA GeForce GTX 260 and 480 GPUs.

6.5. Conquer Phase: Calculating resultants of univariate
polynomials

We first state some properties of the resultant taken from [GCL92, p. 408, p. 411], which we
will use in the parallel algorithms. The corollary can also be derived easily from the properties
of signed subresultants. See Section 2.3.
Corollary 6.5.1. Let A = ∑m

i=0 aiy
i and B = ∑n

i=0 biy
i be univariate polynomials in Zp[y] of

nonzero degree, c ∈ Zp a nonzero constant and A = Q ·B + R a decomposition of A by B into
quotient Q and remainder R = ∑l

i=0 biy
i. Then

Res(c, B) = cn, Res(A, B) = (−1)mn Res(B, A), Res(B, A) = bm−l
n Res(B, R), (6.1)

Res(cA, B) = cn Res(A, B), Res(ykA, B) = bk
0 Res(A, B), k ≥ 0. (6.2)

The first line of equations in Corollary 6.5.1 allows us to reduce the degrees of the involved
polynomials by successive polynomial division until the remainder is constant. The repeated
calculation of modular inversion during the polynomial division can be avoided by using
polynomial pseudodivision instead. It computes the decomposition bm−n+1

n A = QB + R (see
Lemma 2.3.16 or [Knu97b, p. 425ff], for example). Since we are working in the coefficient ring
Zp, the pseudodivision does not cause the severe expression swell it is so well known for. Now,
we have

Res(B, A) = b−n(m−n+1)
n Res(B, bm−n+1

n A) = b(m−l)−n(m−n+1)
n Res(B, R). (6.3)

If A and B are non-constant polynomials, then (m − l) − n(m − n + 1) ≤ −l ≤ 0 and we
can calculate b

n(m−n+1)−(m−l)
n using the square-and-multiply technique. Suppose that the

product of all these factors of the resultant (arising from the repeated pseudodivision) has been
computed, then a single modular inverse yields the final result.

6.5.1. Parallelization on global memory

Due to the homomorphic mapping, the first idea to parallelize is to process all independent
homomorphic images in parallel. Because it is currently not possible to store a sufficiently large
number of images of even moderate degree within the shared memory of the GPU, the first
version of the algorithm operates exclusively on global GPU memory. One thread calculates
one resultant. If all the homomorphic images of A and B are stored within a 2D-array, each
polynomial occupying a single column, then coalesced memory access can be assured for the
first polynomial division.
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6. Parallel computation of resultants on graphics processing units

After the division, the degree of the remainder will almost always be deg(B) − 1, but it
can be lower for a few or even for all threads. This can force different threads to perform
uncoalesced and therefore slow memory accesses during the next iteration. Although this case is
rare due to the specialization property of the resultant, the uncoalesced access patterns are kept
until the end of the resultant computation. To solve this issue, we apply the last property of
Corollary 6.5.1 from right to left and calculate b−k

0 Res(B, ykR) with k = deg(B)− 1− deg(R)
instead of Res(B, R) in the next iteration. Thus, all threads carry on with a remainder of
the same degree. Unfortunately, this construction is not applicable if b0 = 0. In this case, we
use that Res(B, R) = Res(B −R, R). This follows easily by comparing the Sylvester matrices
Syl(B, R) and Syl(B −R, R). Since deg(R) < deg(B), the second one can be constructed from
the first by using only row operations that do not change the determinat. If r0 is also zero,
then Res(B, R) is zero anyway. Otherwise, coeff0(B + R) = r0 6= 0 and we apply the above
degree elevation of R to Res(B −R, R).

The number of accesses to global GPU memory can be reduced further. After the initial
polynomial division, we have deg(A) ≥ deg(B) + 1. The next division gives a remainder of
degree ≤ deg(A)− 2. Thus, we have to calculate cA− q1yB − q0B with q0, q1 ∈ Zp in order
to obtain the second remainder. Both subtractions are done within a single loop by reusing
already loaded coefficients of B. Intermediate results are stored locally, thus saving another
global memory store and load. This rather technical construction can significantly improve
performance on GPU architectures without a memory cache.

6.5.2. Parallelization on shared memory

We now restrict the size of A and B to fit into the shared memory of a block of threads on
the GPU. Without loss of generality, we assume deg(A) ≥ deg(B) and use a thread block
with deg(B) threads to calculate a single resultant. The algorithm is almost identical to
the previous one except that additional parallelization is now achieved in the inner loop of
the polynomial pseudodivision. Each thread is attached to a single coefficient during the
computation. Furthermore, we delay the exponentiation of the bn factors (see Equation (6.3))
until all of them are known. Then, the exponentiation of all these factors is done in parallel
and their product is calculated using parallel reduction. Note that accesses to shared memory
are always coalesced. The special treatment used for global memory is never applied. The
pseudocode is shown in Algorithm 6.2.

Although the thread utilization is reduced after each iteration due to the decreasing degree
of B, this algorithm is quite fast on GPUs that do not have a cache for global memory. A
runtime comparison of both algorithms is shown in Table 6.1.

6.6. Combine phase: reconstructing the integer resultant

We now reconstruct the final integer resultant from the homomorphic images of the resultant
through polynomial interpolation and by applying the Chinese remainder theorem.

6.6.1. Polynomial interpolation

The interpolation is performed on the points (i, ri), where ri is the resultant at x = i. We
apply the classical Newton interpolation, which represents a polynomial P (x) in the form
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Algorithm 6.2: Parallel univariate resultant computation on shared memory.
Data: A, B ∈ Zp[y] with deg(A) ≥ deg(B); t is the thread index
Result: Res(A, B)

1 begin
2 k ← 0 B used to index factors of resultant
3 if t = 0 then s← 1 B sign of the resultant
4 while deg(B) > 0 do
5 R← A
6 for i← deg(A)− deg(B) to 0 do B parallel pseudodivision
7 if t ≤ deg(B) then
8 rt+i ← bnrt+i − rn+ibt

B now R = rem(bm−n+1
n A, B)

9 if t = 0 then B collect factors for modular inversion
10 m→ deg(A); n→ deg(B); l→ deg(R)
11 βk ← lcoeff(B) B base of factor
12 ek ← n(m− n + 1)− (m− l) B exponent of factor
13 s← s · (−1)deg(A) deg(B) B update sign of resultant

14 k ← k + 1
15 (A, B)← (B, R)
16 if t = 0 then βk ← lcoeff(B); ek ← deg A B base case with deg(B) = 0
17 if t ≤ k then βt ← βet

t B k exponentiations in O(log et) steps
18 reduce β0 = ∏k−1

i=0 βi in parallel B parallel reduction in O(log k) steps
19 if t = 0 then
20 Res(A, B)← β−1

0 βks B single modular inverse; base case factor; sign

P (x) = ∑n
k=0 fkNk(x) with Newton basis polynomials Nk(x). The coefficients fk are computed

efficiently by the scheme of divided differences.

6.6.1.1. Newton basis polynomials

Due to Corollary 6.4.2, we chose the interpolation nodes 0, 1, 2, . . . , n. For these nodes, the
Newton basis polynomials have the structure

Nk(x) =
k−1∏
l=0

(x− l) =
k∑

l=0

[
k

l

]
(−1)k−lxl, (6.4)

where
[k

l

]
are the Stirling numbers of the first kind. They are recursively given by[

k

l

]
=
[
k − 1
l − 1

]
+ (k − 1)

[
k − 1

l

]
(6.5)

with base cases
[k
0
]

=
[k
k

]
= 1 and

[0
0
]

=
[0

l

]
= 0 (see [GKP90, p. 243ff]). In the implementation,

k − 1 threads∗ calculate the coefficients of Nk(x) in parallel by applying Equation (6.5) on
∗Although the polynomial has k + 1 coefficients, the zeroth and leading coefficient are always equal to one.

No extra threads are required here.
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6. Parallel computation of resultants on graphics processing units

the coefficients of Nk−1(x), which are stored in shared memory. Once Nk(x) is known, it is
multiplied by fk and added to the intermediate value of P (x). Hence, only Nk(x) and Nk−1(x)
are stored and Nk−1(x) is overwritten by Nk+1(x) in the next iteration. It is also possible
to precompute all of the N0(x), . . . , Nn(x) for all prime numbers, but one has to keep the
quadratic space requirements in mind.

6.6.1.2. Divided differences

The definition of the divided differences supplied by [GCL92, p. 188] is suitable for our
application. With the special interpolation nodes 0, 1, 2, . . . , n it simplifies to

fk = (((· · · ((rk − f0)k−1)− f1)(k − 1)−1 − · · · fk−2)2−1 − fk−1)1−1 mod pi (6.6)

We start by computing the modular inverses 1−1, 2−1, . . . , n−1 mod pi in parallel by n threads.
Then, thread k calculates fk by applying Equation (6.6) step by step. The fk which is subtracted
by each thread in iteration k +1 is available since iteration k and distributed among the threads
via shared memory at almost no cost.

6.6.1.3. Overlapping computations

A closer look at the previous two algorithms reveals another possibility for optimization. In
iteration k, we need k threads to compute the Newton basis polynomials and n− k threads
to work on the remaining divided differences. Thus, we can overlap both computations in a
single kernel, keeping all n + 1 threads occupied during the whole interpolation process. Even
the sum P (x) = ∑n

k=0 vkNk(x) is computed along with the Newton polynomials. For iteration
k of the sum, only vk ∈ Zpi and Nk(x) ∈ Zpi [x] are needed. Thus, vk−1 and Nk−1(x) are
overwritten, as soon as they are no longer needed. Additionally, we store the growing number
of coefficients for the Nk(x) and the shrinking number of modular inverses needed by the vk

within the same array. The intermediate coefficients of the interpolation polynomial P (x) are
kept locally by each thread. This results in a memory efficient algorithm using only n + 2
32 bit shared memory cells: n + 1 cells for storing the modular inverses 1−1, . . . , n−1 mod pi

respectively the coefficients of the Nk(x) and one cell for distributing vk among the threads.

6.6.2. Lifting from prime fields to integers

The last task is to combine the corresponding coefficients of the interpolation polynomials from
different prime fields into an integer number. By the Chinese remainder theorem, a solution for
the simultaneous congruences

u ≡ u0 mod p0

u ≡ u1 mod p1
...

u ≡ uk mod pk

(6.7)

of an integer u and its modular images ui always exists. We follow Garner’s algorithm, which
is presented well in the book of Knuth [Knu97b, p. 284ff]. The integer u is written in mixed
radix form

u = v0 + p0(v1 + p1(v2 + · · ·+ pn−1vn) · · · ) (6.8)
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with mixed radix digits vi ∈ Zpi defined as

vi = (· · · ((ui − v0)p−1
0 − v1)p−1

1 − · · · − vi−1)p−1
i−1 mod pi. (6.9)

The similarity between Equations (6.6) and (6.9) is obvious. Therefore, we use the same scheme
for the parallel computation of the mixed radix digits vi.

6.6.2.1. Converting from mixed radix to fixed radix notation

The conversion process in Equation (6.8) involves alternate multiplication of a prime number
and addition of a mixed radix digit, both 32 bit integers, on the intermediate value of u, which is
a multi-precision integer stored in memory with respect to the basis 232. During the conversion,
each thread stores a 32 bit digit. The multiplication with the prime number is done in parallel
for each intermediate digit of u. For a digit at position t, this results in a 64 bit number whose
upper 32 bit have to be propagated to the thread that takes care of digit t + 1. Note that the
addition of the mixed radix digit is easily integrated as the carry at the least significant 32 bit
digit stored by thread 0.

In the implementation, we use the warp vote functions† available on the GPU to determine
quickly if there is still a carry to propagate from thread t to thread t + 1. Although the carry
might ripple from the least significant digit to the most significant one, this rarely occurs in
practice. The above approach has been used for reasons of simplicity in this first GPU based
implementation.

6.7. Experimental results
Two types of benchmarks are provided in this section. Both are based on a NVIDIA GeForce
GTX 260 (compute capability 1.3) and 480 GPUs (compute capability 2.0) and a 2.8 GHz Intel
Xeon Prestonia CPU.

The computation times for all parts of the parallel resultant algorithm for 65535 instances
of the respective task are listed in Table 6.1. The time needed for one instance is too short
for accurate measurements. Modular reduction and evaluation of polynomials are very fast
operations. Their complexity is linear in the input size and each task is processed by a single
thread without any communication. The complexity of the other parts of the algorithm is
quadratic in the input size. On the GTX 260 GPU, the univariate resultant on global memory
is relatively slow compared to the parallel variant, that operates on shared memory. Due to the
on-chip cache for global memory, the GTX 480 GPU acts very well on the resultant on global
memory. This version is sometimes even faster than the resultant on shared memory since
it allows full thread utilization without any synchronization. Polynomial interpolation and
the lifting process from prime fields to integer coefficients via the Chinese remainder theorem
are very similar in their nature. Unfortunately, the lifting to integers involves mixed precision
arithmetic and the computation of many modular inverses. The former also leads to a high
communication overhead within a thread block, which is reflected in the benchmark results.

In Table 6.2, the computing times for several resultants of polynomials of various degrees and
coefficient sizes are listed. The results are compared against the sequential modular resultant

†On a CUDA capable GPU, the threads are executed in parallel in small groups of size w, where w is a
hardware dependent constant. These groups of w threads are called warps. A warp vote can be interpreted as a
reduce operation covering all w threads in a warp. This allows to compute Boolean functions with w arguments
(such as the logical disjunction of the carry flags) in constant time.
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6. Parallel computation of resultants on graphics processing units

input size
2 4 8 16 32 64 128 256 512

G
T

X
26

0

modular reduction 0.1 0.1 0.2 0.4 0.8 1.5 3.1 6.2 12.3
evaluation 0.1 0.1 0.2 0.4 0.8 1.6 3.2 6.3 12.5
resultant global memory 0.6 4.8 20.3 74.9 280.9 1127.6 4409.5 17423.2 94637.4
resultant shared memory 8.8 32.7 43.0 62.9 121.5 280.6 868.8 3251.0 13230.8
interpolation 2.5 5.7 10.8 21.4 52.4 150.0 497.1 1790.6 7040.5
CRT 13.1 35.6 83.2 183.0 530.2 1550.1 4258.2 11790.4 39005.0

G
T

X
48

0

modular reduction 0.1 0.1 0.1 0.1 0.1 0.3 0.5 1.1 2.2
evaluation 0.1 0.1 0.1 0.1 0.2 0.4 0.9 1.8 3.6
resultant global memory 0.1 0.3 1.2 3.6 12.0 46.1 202.1 761.5 5194.8
resultant shared memory 4.1 13.3 17.7 26.1 42.9 84.8 249.3 870.0 3254.6
interpolation 1.4 2.5 4.5 8.4 16.1 35.0 110.5 398.2 1576.6
CRT 7.0 17.8 40.5 89.1 197.0 542.9 1400.9 3531.9 9062.6

Table 6.1.: Computing times for the different parts of the parallel resultant algorithm for
two different NVIDIA GeForce GPUs in milliseconds. The timings reflect the runtime for
65535 instances of the respective task. The input size determines: size of the number to reduce
in limbs∗ (modular reduction); number of coefficients of the input polynomials (polynomial
evaluation, univariate resultant on global memory and shared memory, interpolation); prime
numbers (CRT).

algorithm implemented in Mathematica 6. We obtain substantial speedups with the parallel
approach. From the last column we see, how much time is spent on which part of the parallel
modular resultant algorithm. The application of the homomorphisms is almost negligible. Due
to the large number of homomorphic images, most time is spent on the univariate resultant.
The next part, the Newton interpolation, is quite fast. It also benefits from our choice of
interpolation nodes. The final phase, the lifting to integer coefficients, currently involves mixed
precision arithmetic and a lot of communication, preventing the algorithm from being as efficient
as the interpolation.

6.8. Conclusion and future work
In this chapter, a parallel bivariate polynomial resultant algorithm over the integers, which
relies on homomorphisms to achieve parallelization, has been implemented on a CUDA-capable
graphics processor. It has been shown that the notion of unlucky homomorphisms is unnecessary
in the context of resultants. This greatly simplifies the implementation of the algorithm, since
the choice of prime numbers and evalution points is almost arbitrary. All stages of the algorithm
exhibit a large amount of parallelism. The presented approach achieves high speedups on the
GPU. The parts of the parallel implementation can also be used separately, e.g. to compute
resultants over Zp[x, y], Z[y] and Zp[y].

Further investigations are necessary to extend the algorithm to other germane symbolic
operations. In order to compute signed subresultants, it would be necessary to base the poly-

∗The binary digits of a multi-precision integer are stored in an array whose elements have the size of a
machine word which is 32 bit in the above implementation. These 32 bit digits are also called limbs.
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1

510 509 10 26 10 25 10 232.92 s 0.881 s 264× 0.258 s 904×
510 511 6 43 6 42 6 259.47 s 1.107 s 234× 0.352 s 737×
510 502 5 52 5 50 5 278.19 s 1.347 s 207× 0.388 s 717×
510 511 3 85 3 85 3 371.36 s 2.250 s 165× 0.588 s 632×
510 507 4 128 2 127 2 467.83 s 4.195 s 112× 1.134 s 413×

2

200 46 1 20 5 20 5 3.95 s 0.038 s 104× 0.005 s 725×
300 69 1 30 5 30 5 10.38 s 0.099 s 105× 0.017 s 613×
400 93 1 40 5 40 5 26.98 s 0.147 s 184× 0.041 s 657×

3

200 511 13 20 5 20 5 27.95 s 0.389 s 72× 0.790 s 355×
300 510 9 30 5 30 5 79.02 s 0.685 s 115× 0.145 s 547×
400 510 7 40 5 40 5 148.83 s 0.757 s 197× 0.253 s 589×

Table 6.2.: Benchmarks for resultant computations on random polynomials of various degrees.
The computation time of the CUDA-based resultant algorithm is compared to the time
Mathematica 6 takes for the sequential modular resultant. The last column graphically
shows the percentage of the computation time consumed by each task ( modular reduction,

evaluation, resultant on shared memory, interpolation, CRT) for both GPUs (top: GTX
260, bottom: GTX 480). In the first test group, the degree of the resultant and the size of the
coefficients in the resultant are held approximately constant. The second group shows several
examples, where the size of the coefficients in the input is smaller than 232. For the third test
group, the size of the coefficients in the resultant is approximately constant again.

nomial remainder sequence on the signed subresultant structure theorem (see Theorem 2.3.12).
Although this modification will not have major influence on the divide and the conquer phases,
the combine phase has to be run through for each of the signed subresultants in the sequence.
Hence, it is likely that the lifting from prime fields to integers will be the bottleneck of this
approach as Tables 6.1 and 6.2 indicates. However, determining only the degrees of the signed
subresultants is much simpler. This only requires a simple reduce operation for each subresultant
which computes the maximal degree of all of its homomorphic images.

It is also possible to modify the algorithm to compute polynomial GCDs instead of the
resultant if we use the signed subresultant PRS: By applying a reduce operation to all homo-
morphic images of polynomial i of the signed subresultant sequence we can identify polynomials
in the sequence that are identically zero. Afterwards, we can identify the GCD among the
subresultants by Theorem 2.3.19. The speed of the GCD computation should be comparable
to that of the resultant.

For sparse problems, the chosen parallelization scheme still uses a large number of homomor-
phic images since it is guided by the worst case bounds on the size of the resultant. This suggests
to use the presented implementation primarily to compute resultants of dense polynomials.
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Appendix A.

Description and rasterizations of challenging
real algebraic plane curves
The following appendix briefly reviews and discusses the different types of challenging curves
that were used extensively in Section 3.9 for benchmarking the algorithm proposed in Chapter 3.
See [Lab10b] for the construction of these curves, the derivation of their properties and for the
description of yet undefined mathematical operators and notions. All images shown in this
appendix have been rasterized using the algorithm presented above.

A.1. Solitary points
A solitary point p of a curve C is an isolated singularity with an open neighborhood U ⊂ R that
does not contain any other points of C. These points form zero-dimensional real components
of the curve. Therefore, curve visualization algorithms that rely on sampling techniques miss
solitary points with a probability of one in general. Since solitary points are singular and thus
critical, the algorithm presented in Chapter 3 rasterizes them correctly.
Challenge 1 (curves with many solitary points). Visualize the real zero set of

KOd(x, y) =
d−1∏
k=0

d−1∏
l=0

(
e

2kπi
d d
√

x + e
2lπi

d d
√

y + 1
)

(A.1)

for d ∈ N, d ≥ 3.
Note that KOd(x, y) is a real polynomial of degree d. The KOd curves are so called rational

Harnack curves. They consist of a smooth real halfbranch and 1
2(d− 1)(d− 2) solitary points.

This is the maximum possible number for d > 4. See Figure A.1 for examples.
Challenge 2 (higher solitary points). Visualize the real zero set of

SPk,l(x, y) = x2k + y2l (A.2)

for k, l ∈ N and
f2

k,l,+(x, y) = (y − xk)l + ykl (A.3)
for k ∈ N and l ∈ 2N.

The curves SPk,l and f2
k,l,+ have only a single real solution which is the origin, i.e. a solitary

point. In contrast to the KOd curves, which have many simple solitary points, i.e. they are
ordinary double points, the single solitary point of SPk,l and f2

k,l,+ has a higher multiplicity.
At the origin, we have zerotangSPk,l

= deg(SPk,l) and zerotangf2
k,l,+

= lk2, which is quadratic
in deg(f2

k,l,+) for a fixed value of l. We do not provide a separate figure since it would only
show a dot at the origin.
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(a) KO5 (b) KO6 (c) KO7

Figure A.1.: Rasterizations of some of the
KOd curves of Challenge 1. Some of the solitary
points are so close to the origin that they are
not visible in the above rasterizations.

(a) K̃O5,10−1 (b) K̃O8,10−5 (c) K̃O9,10−1

Figure A.2.: Rasterizations of some of the
K̃Od,ε curves of Challenge 3. If ε is choosen
small enough, the small ovals look like solitary
points. See e.g. K̃O8,10−5 in (b). Obviously,
zooming onto one of the ovals would reveal the
actual topology.

A.2. Smooth curves
A curve with many real components is challenging for algorithms that analyze the curve prior to
rendering since every (closed) component has at least one critical point. These are often used to
subdivide the curve into a set of monotone segments. Furthermore, if the components are small
compared to the size of one pixel, this challenge is similar to Challenge 1. Nevertheless, choosing
a higher image resolution can enable sampling algorithms to achieve a correct rasterization of
small components. This is usually not the case for solitary points.
Challenge 3 (many small ovals). Visualize the real zero set of

K̃Od,ε(x, y) = KOd(x, y) + εx
∂KOd

∂x
(x, y) + εy

∂KOd

∂y
(x, y) (A.4)

for d ∈ N, d ≥ 3, and ε = 10−i with i ∈ N.
These curves have the same number of real components as the KOd curves but each solitary

point is deformed into a small oval if ε is small enough (otherwise some ovals might join). See
Figure A.2 for examples.
Challenge 4 (nested ovals). Visualize the real zero set of

Nest2
d,ε,k(x, y) = (x + y)εk+bd/2c +

bd/2c∏
j=1

(x2 + y2 − εj) (A.5)

for d ∈ N, d ≥ 2, ε = 10−i with i ∈ N and k ∈ N0.
These curves are challenging because the size of the nested ovals shrinks exponentially with

the nesting level. Furthermore, the largest oval has a radius of approximately ε. Note that
some of the bd/2c ovals might join depending on the parameters ε and k. See Figure A.3.
Challenge 5 (small non-real ovals). Visualize the real zero set of

SPk,l,ε(x, y) = x2k + y2l + ε (A.6)

for k, l ∈ N and
f2

k,l,+,ε(x, y) = (y − xk)l + ykl + ε (A.7)
for k ∈ N, l ∈ 2N and ε = 10−i with i ∈ N.
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A.2. Smooth curves

(a) Nest2
4,10−1,0 (b) Nest2

4,10−1,1 (c) Nest2
6,10−1,2 (d) Nest2

12,10−1,0 (e) Nest2
12,10−1,1 (f) Nest2

12,10−1,2

Figure A.3.: Rasterizations of some of the Nest2
d,ε,k curves of Challenge 4. Depending on ε

and k, some of the bd/2c ovals might join. See e.g. Nest2
12,10−1,{0,1,2} in (d)–(f).

(a) KO−
3,10−1 (b) KO−

6,10−2 (c) KO−
9,10−8 (d) KO+

3,10−1 (e) KO+
6,10−2 (f) KO+

9,10−8

Figure A.4.: Rasterizations of some of the KO−
d,ε and KO+

d,ε curves of Challenge 6. The sign
in KO±

d,ε determines which solitary points of KOd become real and which become non-real
ovals.

The curves SPk,l,ε and f2
k,l,+,ε have no real solution, but their graphs are very close to zero

in the neighborhood of the origin due to the high zero tangency of SPk,l and f2
k,l,+ at (0, 0).

Many numerical algorithms treat small values as zero and will therefore assume that the curves
in this challenge have real solutions. Exact results may require time consuming computations.
Consider for example the fiber y = 0. The polynomial F (x, 0) has two conjugate complex roots
very close to the origin. A real root isolation algorithm based on Descartes (see Section 2.4.2)
would have to subdivide the real line until the two complex roots are separated in order to
determine that there is no real solution. In contrast, the real root counting method using
(principal) signed subresultant sequences would immediately reveal the absence of real roots of
F (x, 0). Since the curves in this challenge do not have real solutions, no figure is provided.
Challenge 6 (many small real and non-real ovals). Visualize the real zero set of

KO−
d,ε(x, y) = KOd(x, y)− ε (A.8)

and

KO+
d,ε(x, y) = KOd(x, y) + ε (A.9)

for d ∈ N, d ≥ 3, and ε = 10−i with i ∈ N.
In this challenge, all singularities of the KOd curves on one side of their one-dimensional real

component are deformed into small real ovals while the singularities on the other side become
small non-real ovals. These curves are not difficult with respect to the type of singularity that
is deformed into an oval, but with respect to the number of ovals since they are derived from
the KOd curves, which only have ordinary double points. See Figure A.4 for examples of the
KO−

d,ε and KO+
d,ε curves.
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(a) f2
2,2,− (b) f2

3,2,− (c) f2
4,2,− (d) f2

7,2,− (e) f2
8,2,− (f) f2

9,2,−

Figure A.5.: Rasterizations of some of the f2
k,l,− curves of Challenge 7. The tangency of the

halfbranches at the origin can be raised to an arbitrary high level by adjusting k.

A.3. High tangencies of halfbranches

The following curves show halfbranches that have a high tangency at a common singular point.
Challenge 7 (high tangencies at isolated singularities). Visualize the real zero set of

f2
k,l,−(x, y) = (y − xk)l − ykl (A.10)

for k ∈ N, k ≥ 2 and l = 2.
The curves of Challenge 7 have four real halfbranches connected by an isolated singularity at

the origin. There, the halfbranches are hard to distinguish since tang f2
k,l,−(0, 0) = 2k2

2 = 2d2

8 ,
i.e. tang f2

k,l,−(0, 0) grows quadratically in the degree of the curve. This is a problem for many
numerical algorithms since densely packed segments are very similar to a multiple component
that has been deformed slightly yielding two simple components. Even small rounding errors
can push parts of such curves into the complex domain. See Figure A.5 for correctly visualized
examples.
Challenge 8 (high tangencies at non-isolated singularities). Visualize the real zero set
of

nim(x, y) = xm (A.11)
nim,k(x, y) = xmyk (A.12)

nixm,n,k,l(x, y) = xm(f2
k,l,−(x, y))n (A.13)

niym,n,k,l(x, y) = ym(f2
k,l,−(x, y))n (A.14)

for k, l, m, n ∈ N, k, l, m, n ≥ 2.
A non-isolated singularity of a plane curve is also a multiple component of the curve. If

an algorithm does not compute the squarefree part of the defining polynomial, the problems
mentioned in Challenge 7 will not only occur locally but globally. Although quite challenging
for numerical algorithms, the curves nim and nim,k are simple ones for most algorithms with
symbolic precomputations since multiple lines are detected and removed easily. Establishing the
squarefreeness of nixm,n,k,l and niym,n,k,l is a harder problem since in contrast to a vertical or
horizontal line f2

k,l,−(x, y) is not a factor of contx(f2
k,l,−) resp. conty(f2

k,l,−). Once the squarefree
part is computed, the rasterization of nim and nim,k is trivial and the rasterization of nixm,n,k,l

and niym,n,k,l is equal to the rasterization of f2
k,l,− assuming that vertical and horizontal lines

are rendered separately. See Figure A.6 for examples.
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A.4. Many isolated singularities

(a) nim (b) nim,k (c) nixm,n,3,2 (d) nixm,n,4,3 (e) niym,n,2,4 (f) niym,n,3,3

Figure A.6.: Rasterizations of the nim, nim,k curves and of some of the nixm,n,k,l and niym,n,k,l

curves of Challenge 8. Note that the geometry of nixm,n,k,l and niym,n,k,l is independent of m
and n since these parameters define the multiplicity of the respective component. The parameter
l is not fixed in this challenge. Therefore, the variety of curves occurring in this challenge is
larger than in Challenge 7. See e.g. nixm,n,4,3 = xm(f2

4,3,−)n in (d) and niym,n,3,3 = ym(f2
3,3,−)n

in (f).

(a) C2,2 (b) C2,3 (c) C2,6 (d) C2,7 (e) C2,8 (f) C2,9

Figure A.7.: Rasterizations of some of the Ck,l curves of Challenge 9.

A.4. Many isolated singularities

A non-isolated singularity, i.e. a multiple component, can be factored out such that the curve
contains only a finite number of isolated singularities. It remains to find the isolated singularities
which are a subset of the critical points. Therefore, a large number of isolated singularities can
be challenging for algorithms, that need to determine singular or critical points.
Challenge 9 (many singularities with high tangencies). Visualize the real zero set of

Ck,l(x, y) = (dfoldbl/kc(x, y))k − (x2 + y2 − 1)l (A.15)

for k = 2, l ∈ N, l > k, where

dfoldd(x, y) =
d∏

j=1

(
x sin 2πj

d
+ y cos 2πj

d

)
(A.16)

are d straight lines through the origin (see Challenge 13).
The Ck,l(x, y) curves have 2bl/kc isolated singularities at the intersections of a circle and

the bl/kc straight lines through the origin, i.e. the number of singularities grows linear with
deg Ck,l = 2l. Additionally, the halfbranches at each singularity have the same tangent direction.
See Figure A.7 for examples.
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Appendix A. Description and rasterizations of challenging real algebraic plane curves

(a) F 2
3,2,2,− (b) F 2

3,2,3,− (c) F 2
5,2,3,− (d) F 2

7,2,3,− (e) F 2
9,2,4,− (f) F 2

9,2,8,−

Figure A.8.: Rasterizations of some of the F 2
k,l,m,− curves of Challenge 10 which have singu-

larities at integer coordinates.

(a) FT2
3,2,2,− (b) FT2

4,2,3,− (c) FT2
5,2,4,− (d) FT2

7,2,5,− (e) FT2
9,2,8,− (f) FT2

9,2,9,−

Figure A.9.: Rasterizations of some of the FT 2
k,l,m,− curves of Challenge 11. The coordinates

of the singularities are non-rational except for the origin.

Challenge 10 (many singularities with high tangencies at integer coordinates).
Visualize the real zero set of

F 2
k,l,m,−(x, y) =

y −
(

m∏
i=1

(x− i)
)bk/mc

l

− ykl (A.17)

for l = 2 and k, m ∈ N, 2 ≤ m ≤ k.
This challenge is very similar to the previous one except that all singularities are located at

integer coordinates on the line y = 0. See Figure A.8 for examples.
Challenge 11 (many singularities with high tangency at non-rational coordinates).
Visualize the real zero set of

FT 2
k,l,m,−(x, y) = (y − Tm(x)bk/mc)l − ykl (A.18)

for l = 2, k, m ∈ N, 2 ≤ m ≤ k and

T0(x) = 1 (A.19)
T1(x) = x (A.20)

Tm(x) = 2xTm−1(x)− Tm−2(x) for m ≥ 2. (A.21)

Geometrically, Challenge 11 seems to be similar to Challenge 10. But the singularities are
located at the roots of the Chebyshev polynomials Tm(x), which are all non-rational if x = 0 is
excluded. It is much more difficult to work with coordinates from an algebraic extension of Q
than with rational coordinates. Depending on the algorithm used for the computation of the
(raster) position of the singularities, there can be significant differences in the running times
for Challenges 10 and 11. See Figure A.5 for examples of the FT 2

k,l,m,− curves.
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A.5. Singularities with more than four halfbranches

(a) FTT2
2,2,3,− (b) FTT2

3,2,2,− (c) FTT2
2,2,4,− (d) FTT2

2,2,3,+ (e) FTT2
3,2,2,+ (f) FTT2

2,2,4,+

Figure A.10.: Rasterizations of some of the FTT 2
k,l,m,− and FTT 2

k,l,m,+ curves of Challenge 12.

Challenge 12 (many higher singularities with high tangency at non-rational coor-
dinates). Visualize the real zero set of

FTT 2
k,l,m,−(x, y) = (Tm(y)− Tm(x)k)2 − Tm(y)2k (A.22)

and

FTT 2
k,l,m,+(x, y) = (Tm(y)− Tm(x)k)2 + Tm(y)2k (A.23)

for k, m ∈ N, k, m ≥ 2.
In this challenge, the number of singularities at non-rational coordinates is m2 instead of

m as in the previous challenge. This is caused by the substitution of the variable y by Tm(y).
Additionally, the singularities are of an higher order. FTT 2

k,l,m,− and FTT 2
k,l,m,+ have the

same set of singularities, but for FTT 2
k,l,m,+ all of them are solitary points, i.e. the FTT 2

k,l,m,−
curves have no one-dimensional real part.

A.5. Singularities with more than four halfbranches
Until now, most of the curves have only four halfbranches at an isolated singularity. In [Lab10b],
the author uses the informal term complicated singularity in order to describe singularities
which have a larger number of halfbranches. See Figure A.10 for examples.
Challenge 13 (maximum number of halfbranches). Visualize the real zero set of

dfoldd(x, y) =
d∏

j=1

(
x sin 2πj

d
+ y cos 2πj

d

)
(A.24)

and

dfoldfl
d(x, y) = dfoldd(x, y)− (x2 + y2)bd/2c+1 (A.25)

for d ∈ N, d ≥ 2.
The dfoldd curves are the d straight lines through the origin which have a d-gon symmetry.

At the origin, dfoldd has the maximum number of halfbranches, which is 2d. Since it is easy to
factorize curves that only consist of straight lines, the curves dfoldfl

d are given. They have
almost the same structure at the origin but are irreducible. See Figure A.11 for examples.
Challenge 14 (large number of halfbranches and high tangency). Visualize the real
zero set of

dfoldk,l(x, y) = (dfoldk(x, y))2 − (x2 + y2)k+l (A.26)

for k, l ∈ N, k ≥ 2.
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Appendix A. Description and rasterizations of challenging real algebraic plane curves

(a) dfold2 (b) dfold5 (c) dfold12 (d) dfoldfl
2 (e) dfoldfl

5 (f) dfoldfl
12

Figure A.11.: Rasterizations of some of the dfoldd and dfoldfl
d curves of Challenge 13. The

tangent directions of the halfbranches of dfoldd and dfoldfl
d are the same at the origin.

(a) dfold2,2 (b) dfold2,6 (c) dfold5,1 (d) dfold5,6 (e) dfold10,1 (f) dfold10,3

Figure A.12.: Rasterizations of some of the dfoldk,l curves of Challenge 14. Two adjacent
halfbranches have the same tangent direction at the origin. Their tangency is adjustable by
the parameter l.

The curves in this challenge look very similar to the dfoldfl
d. They have 4k real halfbranches

connected to the origin, i.e. the number of halfbranches is not maximal. In contrast to the
previous challenge, two adjacent halfbranches have the same tangent direction. The tangency
can be raised to an arbitrary high level by adjusting the parameter l. See Figure A.12 for
examples.
Challenge 15 (normal forms of unimodal singularities). Visualize the real zero set of

J±
10+k = x3 ± x2y2 + ay6 + k (A.27)

X±±
9+k = ±x4 + x2y2 ± ay4+k (A.28)
Y ±±

r,s = ±x2y2 ± xr + ays (A.29)
Ỹ ±±

r = ±(x2 ± y2)2 + axr (A.30)

for k, r, s ∈ N, r, s > 4, a ∈ {5
7 , 9

7 , 13
7 }.

The singularities of type A, D and E are sometimes referred to as simple singularities.
They have appeared in many of the curves presented in previous challenges. There is also a
classification of non-simple singularities. The polynomials given in Challenge 15 are the normal
forms of the so-called unimodal singularities. See Figures A.13 to A.16 for renderings of all
possible shapes.

A.6. Discriminants

Discriminants are an essential tool to study the occurrence of multiple roots of polynomials or
polynomial systems. In [Lab10b], only one example is given.
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A.6. Discriminants

(a) J+
10+4 (b) J+

10+5 (c) J−
10+4 (d) J−

10+5

Figure A.13.: Rasterizations of some of the J±
10+k curves of Challenge 15 for a = 9

7 .

(a) X++
9+11 (b) X++

9+12 (c) X+−
9+11 (d) X+−

9+12

(e) X−+
9+11 (f) X−+

9+12 (g) X−−
9+11 (h) X−−

9+12

Figure A.14.: Rasterizations of some of the X±±
9+k curves of Challenge 15 for a = 9

7 .

Challenge 16 (discriminants). Visualize the real zero set of the discriminant D ∈ Q[a, b] of

x6 + ay3 − y = 0 (A.31)
y6 + bx3 − x = 0. (A.32)

In [Dic+07, Example 2.9 and Proof of Theorem 1.1] this discriminant is computed using

h1 = x6 + ay3 − y, (A.33)
h2 = y6 + bx3 − x, (A.34)
p = Resy(h1, det Jh1,h2(a, b)) (A.35)
q = Resy(h2, det Jh1,h2(a, b)) (A.36)

R̃ = Resx(p, q), (A.37)

where Jh1,h2(a, b) is the Jacobi matrix of h1 and h2 with respect to a and b. The discriminant
D is a factor of the polynomial R̃. Due to the degree bound deg D ≤ 236, it is easy to extract
D from a factorization of R̃ since all but one factor have a higher degree.

The main challenge in visualizing D is its high degree, which is 90. Furthermore, D has
several singularities close to the origin. Using the algorithm of [EKW07], the isolation of the
critical points of D did not succeed after 8 days. Therefore, no image is provided for this
challenge. See [Dic+07] for a visualization.
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Appendix A. Description and rasterizations of challenging real algebraic plane curves

(a) Y ++
8,11 (b) Y ++

9,11 (c) Y ++
11,8 (d) Y ++

11,9

(e) Y +−
8,11 (f) Y +−

9,11 (g) Y +−
11,8 (h) Y +−

11,9

(i) Y −+
8,11 (j) Y −+

9,11 (k) Y −+
11,8 (l) Y −+

11,9

(m) Y −−
8,11 (n) Y −−

9,11 (o) Y −−
11,8 (p) Y −−

11,9

Figure A.15.: Rasterizations of some of the Y ±±
r,s curves of Challenge 15 for a = 9

7 .

(a) Ỹ ++
8 (b) Ỹ ++

9 (c) Ỹ +−
8 (d) Ỹ +−

9

(e) Ỹ −+
8 (f) Ỹ −+

9 (g) Ỹ −−
8 (h) Ỹ −−

9

Figure A.16.: Rasterizations of some of the Ỹ ±±
r of Challenge 15 curves for a = 9

7 .
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A.7. Curves with several difficulties

(a) SA2,2 (b) SA2,4 (c) SA4,2

Figure A.17.: Rasterizations of some of the SAk,l curves of Challenge 17.

(a) SA2,2,+10−3 (b) SA2,4,+10−1 (c) SA4,2,+10−2 (d) SA2,2,−10−3 (e) SA2,4,−10−1 (f) SA4,2,−10−2

Figure A.18.: Rasterizations of some of the SAk,l,±ε curves of Challenge 18.

A.7. Curves with several difficulties

Some of the previous curves already combined several aspects that are challenging for visualiza-
tion algorithms. This section expands the list of curves where several difficulties show up at
once.
Challenge 17 (solitary point with high zero-tangency and halfbranches with high
tangency). Visualize the real zero set of

SAk,l(x, y) = (y − 1− xk)l(y − k)l + (y − 1)kl+1ykl (A.38)

for k, l ∈ 2N.
The SAk,l(x, y) curves have a solitary point in (0, 1) and some other singularities with high

tangencies. See Figure A.17 for examples.
Challenge 18 (halfbranches with high tangency and many critical points and sin-
gularities at non-real coordinates). Visualize the real zero set of

SAk,l,±ε(x, y) = (y − 1− xk ± ε)l(y − k ± ε)l + (y − 1)kl+1ykl (A.39)

for k, l ∈ 2N and ε = 10−i, i ∈ N.
The introduction of the parameter ε deforms the solitary point of SAk,l into a small oval

which is real for the +ε case and non-real for the −ε case. Furthermore, these curves have
many critical points and singularities at imaginary coordinates.

Note that the visualizations of SA2,4,±0.001 and SA4,2,±0.001 shown in [Lab10b] are wrong.
The reason for the wrong visualization might be that Labs mainly used the program SURF
[End+10] to draw the curves, which completely misses the solitary points, their deformations
and the halfbranches with high tangency. The algorithms studied in the present work yield
correct results (see Figure A.18).
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Appendix A. Description and rasterizations of challenging real algebraic plane curves

(a) SCA5,2,10−1 (b) SCA6,2,10−2 (c) SCA7,2,10−7

Figure A.19.: Rasterizations of some of the
SCAk,l,ε curves of Challenge 19. In (c) the
parameter ε is chosen so small that the one
dimensional real components seem to join with
the solitary point. Rasterizing the curve using
an appropriate resolution would separate them
again.

(a) SAA2,2,10−2 (b) SAA3,2,10−2 (c) SAA4,2,10−3

Figure A.20.: Rasterizations of some of the
SAAk,l,ε curves of Challenge 20.

Challenge 19 (one dimensional real component close to a solitary point 1). Visualize
the real zero set of

SCAk,l,ε(x, y) = ((y − xk)l + ykl)(y2 − x2 + ε) + ykl+2 (A.40)

for l = 2, k ∈ N, k ≥ 2 and ε = 10−i, i ∈ N.
The distance of the one-dimensional real component to the solitary point can be controlled

using the ε parameter. See Figure A.19 for examples.
Challenge 20 (one dimensional real component close to a solitary point 2). Visualize
the real zero set of

SAAk,l,ε(x, y) = ((y − xk)l + ykl)((x− yk)l − ε) + (xy)kl (A.41)

for l = 2, k ∈ N, k ≥ 2 and ε = 10−i, i ∈ N.
See Figure A.5 for examples of the SAAk,l,ε curves.

A.8. Random polynomials

The following two challenges are based on random polynomials. They are not included
in [Lab10b] but random polynomials are often used in benchmarks. The polynomials in
Challenge 21 are sparse ones while the polynomials in Challenge 22 have dense coefficient
arrays. In both cases, five polynomials have been computed and tested for each total degree.
The function randpoly(d, t) generates a bivariate polynomial P ∈ Z[x, y] of degree at most d
and at most t terms in the following way:

• Monomials are chosen uniformly random from the set of all possible monomials of degree
up to d (inclusive). This means that it is more likely that a monomial of degree d appears
than a monomial of degree d− 1 because the former class is bigger.
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A.8. Random polynomials

(a) SpRa4,3 (b) SpRa7,1 (c) SpRa16,2 (d) SpRa17,5 (e) SpRa23,1 (f) SpRa27,3

Figure A.21.: Rasterizations of some of the SpRad,n curves of Challenge 21.

(a) DeRa3,2 (b) DeRa5,5 (c) DeRa8,1 (d) DeRa16,1 (e) DeRa19,1 (f) DeRa19,3

Figure A.22.: Rasterizations of some of the DeRad,n curves of Challenge 22.

• Exactly t distinct monomials are chosen this way and each one gets a random coefficient
i ∈ Z assigned with probability

Pr(i) =
{

1/5 for i = 0,

2/(5|n|(|n|+ 1)) otherwise.
(A.42)

The function randpoly(d, t) is implemented in the computer algebra system SAGE 5 as
PolynomialRing(ZZ,[’x’,’y’]).random element(d,t) (see the manual [SAGE11]) . This
function has been called repeatedly until deg(randpoly(d, t)) = d.
Challenge 21 (sparse random polynomials). Visualize the real zero set of

SpRad,n(x, y) = randpoly(d, 5) (A.43)

for d ∈ N, d ≥ 3 and n ∈ {1, . . . , 5} so that SpRad,i 6= SpRad,j for i 6= j.
Visualization of some of the SpRad,n curves are shown in Figure A.21.

Challenge 22 (dense random polynomials). Visualize the real zero set of

DeRad,n(x, y) = randpoly
(

d,
(d + 2)(d + 1)

2

)
(A.44)

for d ∈ N, d ≥ 3 and n ∈ {1, . . . , 5} so that DeRad,i 6= SpRad,j for i 6= j.
See Figure A.22 for visualization of some of the DeRad,n curves.
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Appendix B.

Absolute running times of plane curve
renderings

On the next pages, we provide the plots of the absolute time needed to rasterize the challenging
curves summarized in Appendix A. They have been used as a basis for comparing the three
different algorithms in Section 3.9 from a practical point of view. The timings have been
determined using a PC running Ubuntu Linux 12.04 on a 2.4 GHz Intel Core 2 Q6600 Quad
CPU having 4 GB of RAM.
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Appendix B. Absolute running times of plane curve renderings
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Figure B.1.: Scatter plot of the preprocessing time.
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Figure B.2.: Scatter plot of the time for viewport adjustment and critical point refinement.
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Appendix B. Absolute running times of plane curve renderings

Degree

R
as

te
riz

at
io

n
tim

e
(s

)

0.001
0.01
0.1

1
10

1 KOd

5 10 20 30

3 K̃Od,ε 4 Nest2
d,ε,k

5 10 20 30

6 KO−
d,ε 6 KO+

d,ε

5 10 20 30

7 f2
k,l,−

8 nixm,n,k,l 8 niym,n,k,l 9 Ck,l 10 F 2
k,l,m,− 11 FT 2

k,l,m,−

0.001
0.01
0.1
1
10

12 FTT 2
k,m,−

0.001
0.01
0.1

1
10

13 dfoldd 13 dfoldfl
d 14 dfoldk,l 15 J+

10+k 15 J−
10+k 15 X++

9+k

15 X+−
9+k 15 X−+

9+k 15 X−−
9+k 15 Y ++

r,s 15 Y +−
r,s

0.001
0.01
0.1
1
10

15 Y −+
r,s

0.001
0.01
0.1

1
10

15 Y −−
r,s 15 Ỹ ++
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Figure B.3.: Scatter plot of the time for rasterizing on a 512× 512 grid.

148



Degree

R
as

te
riz

at
io

n
tim

e
(s

)

0.001
0.01
0.1

1
10

100
1 KOd

5 10 20 30

3 K̃Od,ε 4 Nest2
d,ε,k

5 10 20 30

6 KO−
d,ε 6 KO+

d,ε

5 10 20 30

7 f2
k,l,−

8 nixm,n,k,l 8 niym,n,k,l 9 Ck,l 10 F 2
k,l,m,− 11 FT 2

k,l,m,−

0.001
0.01
0.1
1
10
100

12 FTT 2
k,m,−

0.001
0.01
0.1

1
10

100
13 dfoldd 13 dfoldfl

d 14 dfoldk,l 15 J+
10+k 15 J−

10+k 15 X++
9+k

15 X+−
9+k 15 X−+

9+k 15 X−−
9+k 15 Y ++

r,s 15 Y +−
r,s

0.001
0.01
0.1
1
10
100

15 Y −+
r,s

0.001
0.01
0.1

1
10

100
15 Y −−

r,s 15 Ỹ ++
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Appendix C.

Defining polynomials of example curves

C.1. The real algebraic plane curve “Bundle”

B(x, y) = 0 is a curve of degree 26 taken from [EBS09; Eme12], where is it denoted as “Bundle
(curvature of Erdős lemniscate)”. It has been used in Example 3.6.1 to illustrate the effect of
the numerical filtering techniques on the real root counting of polynomials.

B(x, y) = x26 + 29x24y2 + 254x22y4 + 1166x20y6 + 3355x18y8

+ 6567x16y10 + 9108x14y12 + 9108x12y14 + 6567x10y16

+ 3355x8y18 + 1166x6y20 + 254x4y22 + 29x2y24 + y26

+ 14x20y + 60x18y3 − 26x16y5 − 688x14y7 − 1988x12y9

− 2968x10y11 − 2660x8y13 − 1456x6y15 − 458x4y17

− 68x2y19 − 2y21 + 9x16 − 136x14y2 − 116x12y4 + 232x10y6

+ 70x8y8 − 120x6y10 + 172x4y12 + 152x2y14 − 7y16 + 12x10y

− 340x8y3 + 952x6y5 − 616x4y7 + 124x2y9 − 4y11

(C.1)

C.2. Real algebraic space curves

Below, we provide the defining polynomials for the space curves used for the benchmarks in
Section 4.10.

A1 = (x2 + y2 + z2)2 + 8xyz − 10(x2 + y2 + z2) + 25

B1 = ∂A1
∂z

A2 = (x2 + y2 − 2)(x2 + y2 − 1)z4 + (x2 + y2 − 2)xz3

+ z2 + (x2 + y2 − 1)z + (x2 + y2 − 1)

B2 = ∂A2
∂z

A3 = x2y2 + y2z2 + z2x2 − xyz

B3 = ∂A3
∂z
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Appendix C. Defining polynomials of example curves

A4 = y2 − z2 − 2x + 1
B4 = x2 + z2 − 1

A5 = −x2 + z2

B5 = x4 − x2 + y2

A6 = x4 + y4 + z4 − 1
B6 = x3y + y3z + xz3

A7 = 10(2z2 + x2 + y2 − 1)3 − z2y3 − 10x2y3

B7 = ∂A7
∂z

A8 = 64x2y6 + 2304y8 + 65536x2y4z2 + 4096y6z2 − 131072x3y2z3 − 131072xy4z3

+ 65536x4z4 + 131072x2y2z4 + 65536y4z4 − 64x4y3 + 128x2y5 + 10752y7

+ 768x3y3z − 20864xy5z − 57344x2y3z2 + 2560y5z2 + 65536x3yz3

+ 172032xy3z3 − 131072x2yz4 − 163840y3z4 + 98x6 + 236x4y2 − 3590x2y4

− 912y6 + 272x5z + 19392x3y2z − 77488xy4z − 20512x4z2 − 75584x2y2z2

− 48352y4z2 + 118272x3z3 + 397312xy2z3 − 291840x2z4 − 276480y2z4

+ 98304xz5 + 65536z6 − 1464x4y − 10608x2y3 − 40344y5 − 1688x3yz

+ 7816xy3z + 172096x2yz2 − 55328y3z2 − 92032xyz3 + 481280yz4 + 3033x4

+ 12216x2y2 + 10803y4 − 10338x3z + 136902xy2z + 106392x2z2 + 9900y2z2

− 274368xz3 + 457728z4 + 1044x2y + 57096y3 + 3960xyz − 32940yz2 − 5724x2

− 16686y2 − 27162xz − 16902z2 − 22032y + 9963
B8 = x3 − 3xy2 + 4x2z + 4y2z − 9z

A9 = −x16 − 8x14y2 − 28x12y4 − 56x10y6 − 70x8y8 − 56x6y10

− 28x4y12 − 8x2y14 − y16 + 16x6y2z8 − 32x4y4z8 + 16x2y6z8

B9 = x2 + y2 + z2 − 1

A10 = 128x8 + 128y8 + 128z8 − 256x6 − 256y6 − 256z6 + 160x4 + 160y4

+ 160z4 − 32x2 − 32y2 − 32z2 + 4

B10 = ∂A10
∂z
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Appendix D.

Notations and abbreviations

The following symbols, functions, operators and abbreviations appear frequently in this work.
Many operators, like, e.g., lcoeff(·), cont(·) and pp(·), can be applied to polynomials from a mul-
tivariate polynomial ring R[x1, . . . , xk] by assuming xk to be the outermost variable in the recur-
sive view of R[x1, . . . , xk], i.e. R[x1, . . . , xk] = R[x1, . . . , xk−1][xk]. The outermost variable may
also be specified as a subscript, e.g. lcoeffxi(A) refers to A ∈ R[x1, . . . , xi−1, xi+1, . . . , xk][xi].
In the following, R denotes a commutative ring, D a unique factorization domain (UFD) and K
a field.

N The set of natural numbers.
Z The set of integers.
Q The set of rational numbers.
R The set of real numbers.
C The set of complex numbers.
K Algebraic closure of K.
P(K),PK Projective closure of K.

An
K n-dimensional affine space over K.

Pn
K n-dimensional projective space over K.

R[x1, . . . , xk] Polynomial ring in the variables x1, . . . , xk over R.
R[x1, . . . , xk][x] Polynomial ring in x over R[x1, . . . , xk], i.e. the recursive view

of R[x1, . . . , xk, x].

I(V ) Ideal of all polynomials vanishing on V .
〈A1, . . . , Ak〉 Ideal generated by the polynomials A1, . . . , Ak.
VK(I1, . . . , Ik) Common vanishing set of the ideals I1, . . . , Ik ⊆ R[x1, . . . , xn]

on Kn for R ⊆ K. K is omitted if it is clear from the context.

deg(A) Total degree of the polynomial A ∈ R[x1, . . . , xk].
degX(A) Total degree of the polynomial A ∈ R[x1, . . . , xk] w.r.t the

variables given in X ⊆ {x1, . . . , xk}.
coeffi(A) Coefficient ai of the polynomial A = ∑n

i=0 aix
i ∈ R[x].

lcoeff(A) Leading coefficient an of the polynomial A = ∑n
i=0 aix

i ∈ R[x].
quot(A, B) Quotient of the division of A, B ∈ K[x].
rem(A, B) Remainder of the division of A, B ∈ K[x].
pquot(A, B) Pseudoquotient of the division of A, B ∈ R[x].
prem(A, B) Pseudoremainder of the division of A, B ∈ R[x].
gcd(A1, . . . , Ak) Greatest common divisor (GCD) of A1, . . . , Ak ∈ D.
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Notations and abbreviations

cont(A) Content of the polynomial A = ∑n
i=0 aix

i ∈ D[x], i.e. the GCD
of the coefficients a0, . . . , an ∈ D.

pp(A) Primitive part of A ∈ D[x], i.e. A/ cont(A).

Syl(A, B) Sylvester matrix of A and B.
Res(A, B) Resultant of A, B ∈ R[x].
SResj(A, B) Signed subresultant j of A, B ∈ R[x].
SResUj(A, B) Cofactor of SResj(A, B) w.r.t. to A.
SResVj(A, B) Cofactor of SResj(A, B) w.r.t. to B.
SResQj(A, B) Signed subresultant quotient j of A, B ∈ R[X].
sresj(A, B) Principal signed subresultant coefficient j of A, B ∈ R[x], i.e.

sresj(A, B) = coeffj(SResj(A, B)).
sresj(A, B) Leading signed subresultant coefficient j of A, B ∈ R[x], i.e.

sresj(A, B) = lcoeff(SResj(A, B)).

#rr(A, I) Number of distinct real roots of A ∈ R[x] in I ⊆ R.
#rrm(A, I) Number of real roots of A ∈ R[x] in I ⊆ R (counted with

multiplicity).
Var(S) Number of sign variations in the sequence S.
MVar(S, a) Modified number of sign variations of the sequence S at a ∈ R.

rank(M) Rank of the matrix M .

bit(a) Bitsize of the integral or rational number a.
M(τ) Cost of multiplying two integral numbers of bitsize τ .
O, Ω, Θ Landau symbols describing the limiting behavior of functions.
Õ Soft-O, i.e. f(n) ∈ Õ(g(n)) is the shorthand for f(n) ∈

O(g(n) logk g(n)), k ∈ N.

CPU Central processing unit.
CRT Chinese remainder theorem.
GCD Greatest common divisor.
GPU Graphics processing unit.
PQS Polynomial quotient sequence.
PRS Polynomial remainder sequence.
UFD Unique factorization domain.
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