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“I stand at the seashore, alone, and start to think. There are

the rushing waves ... mountains of molecules, each stupidly minding its

own business ... trillions apart ... yet forming white surf in unison.

Ages on ages ... before any eyes could see ... year after year ...

thunderously pounding the shore as now. For whom, for what ? ... on

a dead planet, with no life to entertain.

Never at rest ... tortured by energy ... wasted prodigiously by the

sun ... poured into space. A mite makes the sea roar.

Deep in the sea, all molecules repeat the patterns of one another

till complex new ones are formed. They make others like themselves

... and a new dance starts.

Growing in size and complexity ... living things, masses of atoms,

DNA, protein ... dancing a pattern ever more intricate.

Out of the cradle onto the dry land ... here it is standing ... atoms

with consciousness ... matter with curiosity.

Stands at the sea ... wonders at wondering ... I ... a universe of

atoms ... an atom in the universe. ”

Richard P. Feynman
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Preface

Approximately twelve years passed since I had the first look at a colorful representation of a
pharmacophore model, suggesting a hypothesis to explain the varying binding affinities for a
series of enzyme inhibitors. It was 2002, when my interest in the field of drug design started,
leading me to a long journey for learning the modern concepts of medicinal chemistry; includ-
ing Qsar, 3D-Qsar, and pharmacophores. After few years, I had the opportunity to continue
working in Germany with more advanced and computationally demanding methods like dock-
ing and molecular dynamics. The breakthrough in human knowledge in the biological “Omics”
(Genomics and Proteomics) and System biology, combined with the development of computa-
tional technologies, gave us a unique opportunity to have a closer look to more realistic model of
biological processes and biological phenomenon, including the interactions between the devel-
oped small-molecule drugs and their biological partners. These methods will expand our way
to understand medicinal chemistry and structure-activity relationship (SAR) studies beyond the
traditional methodologies.

Drug discovery process was carried to its best by combining medicinal chemistry, biochem-
istry, structural and molecular biology, and finally computational physical chemistry with sta-
tistical mechanics principles. We have accomplished a great success in fighting major diseases;
like cancers and HIV. Despite our expanding knowledge and our triumph over some hard chal-
lenges, we still suffer from considerable amount of uncertainties and failures in the process of
designing and discovering genuinely novel drugs. Resistance to some therapies can develop in
some diseases, and cases of toxicity and side-effects can emerge.

According to some statistics from WHO in 2008, almost 16 million died from communi-
cable, maternal, parental and nutritional conditions, and 36 million from non-communicable
diseases. Developing a drug for any disorder or disease can take up to 10 or 20 years with
cost of billions of dollars. The process can be accelerated through the developed computa-
tional physics-based simulation methods. These methods can help us saving time and money to
capture some potential hits, which could be developed to potent inhibitors and drugs, and also
for estimating one of the most important physical chemical quantities; ’Binding Free Energy’.
These developed computational simulation methods were able to extend our physical under-
standing of the universe to the level of biological cellular machineries. The theories and princi-
ples of quantum mechanics and statistical mechanics can be applied now to give us an atomistic
model of biological processes and the molecular recognition between biological molecules.

The theoretical basics of these methods were established few decades ago by Kirkwood
(Applying statistical mechanics on fluid mixtures) and Zwanzig (High-temperature equation of
state by a perturbation method. I. Nonpolar gases, J. Chem. Phys., 1954). The force field
concept was developed by ideas from Andrews (Phys. Rev. 1930, 36, 544.), Hill (J. Chem.
Phys. 1946, 14, 465), and Westheimer (J. Chem. Phys. 1946, 14, 733.). The applications in
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PREFACE

the early time were concentrated on simulating small molecules. Further special force fields
were later developed by many researchers; including P. Kollman and W. Jorgensen, to simulate
the biological macromolecules. The aim of developing the force fields was to combine both
experimental work and high-level quantum mechanics calculations in order to provide fast and
reliable physical description of big systems comprising thousands of atoms. However, only the
increasing power of computational technologies has made applying the atomistic modeling to
biomolecular systems feasible. The first molecular dynamics of protein was made in 1977 by
McCammon, Gelin, and Karplus. Huge advances in the theory and the development of the right
potentials have been made in the nineties of the last century. In 2000, P. Kollman and others
started to perform free energy calculations applied on biological macromolecular systems. By
combining these methods with our accumulated knowledge about structures of proteins and
enzymes and our improved understanding of signaling transduction pathway, we are able to go
deeper in understanding the pathological pathways of many challenging diseases.

In spite of all these advances, these developed methods shouldn’t be used without care-
ful consideration of the underlying assumptions and simplifications that were used during the
development of the used method, force field, or solvent model. This work presents different
examples and study cases that show the strength and pitfalls of some computational methods.
The presented study cases suggest a combination of these methods to cover their limitation.
In the same time, I hope this work will shed a light on some structural and physical factors
of designing novel drugs or enzyme inhibitors for developing targeted therapies. The study of
enzyme/inhibitor systems using solvent models and physics-based computational methods can
provide sometimes an insightful picture of how molecules interact in nature with each others,
giving an explanation for challenging observations in SAR studies.

The experimental work in the present dissertation was carried out at the institute of phar-
macy (medicinal chemistry department) at Martin-Luther-University Halle-Wittenberg from the
middle of 2009 till the end of 2013. PCAF project was a continuation of previous work I started
in 2008. The work on kinases started in 2010 till the end of 2012 for the c-Kit project, while
most of the work on GSK3/CDK2 kinase inhibitors was done in 2013. The hardest part was
performing most of this work, while I was worried about my family living under terrible condi-
tions and civil war in Syria. However, here we are. A lot has happened in those years, and this
thesis is sort of a summary of those things: work, struggles, and also the stressful times trying
to figure out solutions for challenges.

I hope that this work and these findings will be regarded as a small contribution to the human
knowledge.

Suhaib Shekfeh
Halle (Saale), October 30th, 2014

ix



Acknowledgment

I would like to start by thanking my supervisor Prof. Dr. Wolfgang Sippl for giving me the
opportunity to work in his group, giving me interesting research topics, and guiding me in the
writing process of this dissertation. I would like also to thank our collaborators in university
of Freiburg: Prof. Dr. Manfred Jung and his former coworker; Dr. Silviya Furdas, for the
successful collaboration in the PCAF project. I owe an acknowledgment to the ’Institute für
Dermatopharmazie’ for the scholarship during two years of my PhD work, and also to the
international office of MLU Halle for different fellowships during my study in Halle.

I feel fortunate to have completed my PhD dissertation in a friendly environment with nice col-
leagues and friends. Thanks to all the current and former members of the medicinal chemistry
group in the institute of pharmacy (Martin-Luther-University Halle-Wittenberg): Tana Ueng-
wetwanit, Inna Slynko, Jelena Melesina, Dat Nguyen, Berin Karaman, and others (Michael
Lawson, Ntie Kang Fiedele, Dhilon Patel, Nand Kishor Kuamat). I am also grateful to Dr. Dina
Robaa for her help in the proofreading of this dissertation.

I cannot forget the warm welcome from my dear friend Mark Lindner, who was the first col-
league I met and the first friend in Germany. I am especially thankful for Urszula Uciechowska
for the inspiring ideas and scientific discussions in the beginning of my work. I am grateful for
all the support from former members who patiently helped me at the beginning; Rene Meier,
Ralf Heinke, German Erlenkamp, Kanin Wichapong, and Ragav Kannan.

I feel especially lucky to have worked in the office with Michael Scharfe, Martin Pippl, and Luca
Carlino. Luca and Martin are not only great office mates, but also great friends and fun-buddies.
We had together memorable moments.

Halle is small city, which can offer a great chance for making international network and meeting
people from all around the world. Thanks to the International office of MLU and the amazing
efforts of Regine Brandt. I am grateful for having this chance to make a lot of great friends
during six years living in Halle.

I really cannot mention the names of all great friends from the scientific community in Halle
(Saale); the international group in Leibniz institute of agricultural development (IAMO), Leib-
niz institute of plant biochemistry (IPB), Helmholtz center of enviromental studies (UFZ),
the zoologie department of MLU Halle (especially: Jonathan Kidner, Bertrand Fouks, and

x



ACKNOWLEDGMENT

Alexi Beaurepaire), the physicists and anthropologists in both Max-Plank institutes (especially:
Pratyush Das Kanungo (Aka. PDK), Nitin Shingen, Thiago Peixoto, and Mariuz Pazgan).

At times, a PhD can be quite stressful and you need close friends, with whom you can make
deep discussions about life, science, .. etc. You need also fun buddies for funny events and
amazing times. I feel fortunate that I got chance to meet some great guys in Halle: Joao Afonso
Babtista, Denis Montagner, and Christoph Fretter.

Special thanks should indeed go to dear friends who supported me and were like a family for
me. I am thankful for the memorable events I had with those great people: Diana Traikova,
Ivan Djuric, Alex Popov, Katharina Karsten (Aka. Frau Paprika), Siegfried Vantomme (Aka.
Herr Paprika), Markus Franzen, Vasyl Kvartiuk, Michał Ochałek, Aga Sendek, Ally Siebenkass,
Ilkay Unay, Nicolai Gailhard, Lena Kuhn, Maria Belayva, Domenico Caruso, George Chezia,
Kachaber Lominadzi, Mohammad Esmael, Nizami and Guilmira Imamverdiyev, Klodjan Rama,
Florian Schierhorn, Brett Hankerson, Denitsa Angelova, and also for my italian-german band:
Viola Bruschi, Giulia Furlan, Jörn Klinkenburg, and Frederik Faden. I am thankful for the great
hallenesers and german friends: Elke Dobbertin, Uli Heigel, Dajana Tiele, Leandro Gamboa
and Sandor Szimeiszter.

Scientific research can be frustrating and I have sometimes wondered if I would be able to pass
some stressful times. That would be impossible without some beautiful souls in my life; A
thankful hug to Ewa, Lina, Natalia, Lidia, Carla, Kriste, Eleana, Pavlina, and Burcu.

Finally, I would like to express my immeasurable gratefulness to my unconditionally devoted
family for their love, trust, and understanding; to my uncle Malaz Massarani, to my beloved
sister, and to my angels; my three nieces, whom I incredibly miss, and finally to my devoted
mother and grandmother. This thesis is dedicated to them.

Thanks to all the people I acknowledged above,
and to many others who I have not mentioned but they know what they meant to me . . .
Thanks . . .

xi



LIST OF PUBLICATIONS

List of Publications:

I. B. Maurer, U. Mathias, S. Shekfeh, P. Papatheodorou, J. Orth, T. Jank, C. Schwan,
W. Sippl, K. Aktories, M. Jung. From cosubstrate similarity to inhibitor diversity-
inhibitors of ADP-ribosyltransferases from kinase inhibitor screening. Mol. BioSyst.,
2011, 7, 799-808.

II. S. D. Furdas, S. Shekfeh, E. Bissinger, J. Wagner, C. H. Arrowsmith, M. M. Man-
gos, V. Valkov, M. Hendzel, M. Jung, W. Sippl. Synthesis and biological testing
of novel pyridoisothiazolones as histone acetyltransferase inhibitors. Bioorganic &
Medicinal Chemistry 19(12), 2011, 3678- 3689.

III. S. D. Furdas, S. Shekfeh, S. Kannan, W. Sippl, M.Jung, Rhodanine carboxylic
acids as novel inhibitors of Histone acetyltransferases. Med. Chem. Commun.
2012, 3, 305-311.

Chapter 2 of this dissertation depends mainly on articles II and III.

Posters:
1. Shekfeh, S.; Hilgeroth, A. and Sippl, W., Computational analysis of conformational

changes in GSK3-β /CDK2 kinases for understanding inhibitor selectivity. 3rd Inter-
national Meeting - Conformational transitions in macromolecular interactions. 4th - 6th
November 2013, Halle (Saale), Germany.

2. S. Shekfeh, S.D. Furdas, M. Jung, W. Sippl. Docking study and binary classification
model of isothiazolones as irreversible inhibitors of the histone acetyltransferase PCAF.
in : ( International Workshop – New Approaches in Drug Design & Discovery, Rauis-
chholzhausen, 22.-25.03.2010, Jahrestagung der Deutschen Pharmazeutischen Gesellschaft,
Jena, 29.09 – 01.10.2009, 5th Summer School Medicinal Chemistry., 13.-15. 09.2010,
Regensburg.)

3. S. D. Furdas, J. M. Wagner, S. Shekfeh, P. Brown, W. Sippl, M. Jung. Histone acetyltrans-
ferases inhibition by pyridoisothiazolones. EMBO Conference Series, Chemical Biology
2010 22.-25.09.2010, EMBL Heidelberg.

4. B. Maurer, P. Papatheodorou, C. Schwan, S. Shekfeh, W. Sippl, K. Aktories, M. Jung.
Development of an enzymatic assay for ADP-ribosylating enzymes via the chemical
quantitation of the co-substrate NAD. 5th Summer School Medicinal Chemistry. 13.-15.
09.2010, Regensburg

5. S. D. Furdas, J. M. Wagner, S. Shekfeh, P. Brown, W. Sippl, M. Jung Pyridoisothiazolones
as a novel class of inhibitors of histone acetyltransferase activity: synthesis and biological
testing. XXXth European School of Medicinal Chemistry (ESMEC) 04.-09. 07. 2010,
Urbino, Italien, and Jahrestagung der Deutschen Pharmazeutischen Gesellschaft, Jena,
29.09 – 01.10.2009.

xii



Contents

1 Introduction: Targeted Cancer Therapy 1
1.1 Mechanisms of Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Targeted Therapy: Definition and Concept . . . . . . . . . . . . . . . . . . . . 1
1.3 Selective Targeting of Protein Kinases . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Epigenetic Deregulation in Cancer . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Aim of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I Virtual Screening Methods for
Novel Epigenetic Modulators 7

2 Novel Inhibitors of Histone Acetyltransferases:
Application of Focused Virtual Screening Methods 8
2.1 Histone Acetyltransferases:

Biological Role and Classification . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Structural Overview of Histone Acetyltransferase PCAF . . . . . . . . 10

2.2 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Molecular Docking . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Similarity Search and Focused Library Design . . . . . . . . . . . . . 13
2.2.3 Database Virtual Screening . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Molecular Dynamics Simulation . . . . . . . . . . . . . . . . . . . . . 15

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Identification of Isothiazolone-based HAT Inhibitors as Covalent In-

hibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Identification of Rhodanine derivatives as Non-covalent HAT Inhibitors 20
2.3.3 SAR Study and Molecular Interaction Fields . . . . . . . . . . . . . . 23

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

II End-point Free Energy Methods
for Selective Kinase Inhibitors 27

3 Structural Aspects of Protein Kinases:
The Impact on Designing Selective Kinase Inhibitors 28
3.1 Kinases’ Binding Pockets and Catalytic Cleft . . . . . . . . . . . . . . . . . . 28
3.2 Types and Selectivity of Protein Kinase Inhibitors . . . . . . . . . . . . . . . . 31

xiii



CONTENTS

3.3 Binding Mode of Kinase Inhibitors and Overcoming
the Mutation-induced Resistance . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 The Important Role of Water Molecules inside
The ATP-binding Pocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Computational Methods and Structure-based Design
of Kinase Inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Predicting The Binding Mode for
Kinase Inhibitors:
1-Aza-9-Oxa-Fluorene Derivatives as
GSK3β/CDK2 Inhibitors 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Glycogen Synthase Kinase 3 and CDK2 Kinase . . . . . . . . . . . . . 41
4.1.2 GSK3β/CDK2 Kinase Inhibitors . . . . . . . . . . . . . . . . . . . . . 42
4.1.3 The 1-aza-9-oxafluorene Derivatives . . . . . . . . . . . . . . . . . . . 45
4.1.4 Aim of this Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.1 X-Ray Structures of GSK3β and CDK2 . . . . . . . . . . . . . . . . . 48
4.2.2 Molecular Docking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.2.1 Scoring Functions . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 Molecular Dynamics Simulation and Binding Energy Methods . . . . . 50

4.2.3.1 Molecular Dynamics Simulation . . . . . . . . . . . . . . . 50
4.2.3.2 MM-PBSA Calculations . . . . . . . . . . . . . . . . . . . . 51
4.2.3.3 Linear Interaction Energy (LIE) . . . . . . . . . . . . . . . 52

4.2.4 Water Hydration Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Suggested Binding Modes of 1-aza-9-oxa-fluorenes with GSK3β . . . . 54
4.3.2 Molecular Dynamics Simulations and Trajectory Analysis . . . . . . . 57
4.3.3 MM-PBSA Calculations . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.4 LIE Models for GSK3β . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.4.1 LIE models for GSK3β (Binding mode 1) . . . . . . . . . . 58
4.3.4.2 LIE models for GSK3β (Binding mode 2) . . . . . . . . . . 59

4.3.5 LIE Models for CDK2 . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.5.1 LIE models for CDK2 (Binding mode 1) . . . . . . . . . . . 62
4.3.5.2 LIE models for CDK2 (Binding mode 2) . . . . . . . . . . . 62

4.3.6 Selection of Most Probable Binding Mode . . . . . . . . . . . . . . . . 64
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.1 Impact of Kinase Conformational Changes . . . . . . . . . . . . . . . 66
4.4.2 Role of Water Molecules and Protein Hydration

in the Binding Process . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.3 Understanding the SAR of 1-aza-9-oxa-fluorene Derivatives . . . . . . 68

4.4.3.1 Derivatives 2c and 2c_2 . . . . . . . . . . . . . . . . . . . . 68
4.4.3.2 Derivatives 2b and 2b_2 . . . . . . . . . . . . . . . . . . . . 69

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xiv



CONTENTS

5 Prediction of Binding Affinities for
Kinase Inhibitors:
Application on Mutant c-Kit D816V
Kinase Inhibitors 73
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 SCF/c-Kit Signaling Pathway: Role and Biological Importance . . . . 73
5.1.2 Gain-of-Function Mutations and the Cancer Pathology . . . . . . . . . 74
5.1.3 C-Kit Kinase Inhibitors: Activities with Mutant Forms . . . . . . . . . 76
5.1.4 Aim of this Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Computational Methods and Application . . . . . . . . . . . . . . . . . . . . . 80
5.2.1 Molecular modeling, Docking and Enrichment Studies . . . . . . . . . 80
5.2.2 Scoring Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.2.1 X-score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.2.2 AMBER GBSA/PBSA scoring after refinement . . . . . . . 81

5.2.3 Molecular Dynamics Simulation . . . . . . . . . . . . . . . . . . . . . 82
5.2.4 Free Binding Energies using Linear Interaction Energy

and MM-PBSA methods . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.5 General Structure of the Studied c-Kit inhibitors . . . . . . . . . . . . 83

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.1 Docking Studies and Enrichment Assessment . . . . . . . . . . . . . . 84
5.3.2 Application of LR-MM-PBSA Method . . . . . . . . . . . . . . . . . 87
5.3.3 Performance of Binding Energy Methods with Anilino-oxazole

Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.4 Analysis of the Binding Pocket’s Flexibility

and the P-loop Fluctuations . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.5 P-loop/A-loop-distance-dependent LIE Models . . . . . . . . . . . . . 89
5.3.6 Extended Validation Using Larger Dataset . . . . . . . . . . . . . . . . 92

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.1 Reliability of Suggested Binding Mode . . . . . . . . . . . . . . . . . 96
5.4.2 Importance of P-loop Conformation and Fluctuations . . . . . . . . . 96
5.4.3 Role of Water Molecules in the Binding Process . . . . . . . . . . . . 97
5.4.4 Effect of the Inhibitor’s Substituents on the Final Stable

Conformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Summary 101

III Supplementary Materials and References 103

A End-point Free Energy Methods 104
A.1 Implicit-solvent-based Binding Energy methods . . . . . . . . . . . . . . . . . 104

A.1.1 Pitfalls and critical parameters of PB(GB)SA methods . . . . . . . . . 106
A.2 Linear Interaction Energy (LIE) Method . . . . . . . . . . . . . . . . . . . . . 107

A.2.1 LIE parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.2.2 Critical issues in applying LIE . . . . . . . . . . . . . . . . . . . . . . 109

A.3 Hybrid Physics-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xv



CONTENTS

B Novel Inhibitors of Histone Acetyltransferases 112

C Predicting The Binding Mode For Kinase Inhibitors 113
C.1 GSK3β X-ray Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
C.2 CDK2 X-ray Structure (2WIH) . . . . . . . . . . . . . . . . . . . . . . . . . . 115
C.3 Docking Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
C.4 MM-PBSA Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

C.4.1 MM-PBSA Calculations with GSK3β . . . . . . . . . . . . . . . . . . 119
C.4.2 MM-PBSA Calculations with CDK2 . . . . . . . . . . . . . . . . . . 122

C.5 LIE models of GSK3β binding energy (Binding mode 1) . . . . . . . . . . . . 125
C.6 LIE models of CDK2 binding energy (Binding mode 1) . . . . . . . . . . . . . 127
C.7 Prediction of Inactive Compounds . . . . . . . . . . . . . . . . . . . . . . . . 129

D Prediction of Binding Affinities (c-Kit D816V) 131
D.1 LIE Models for c-Kit D816V Inhibitors . . . . . . . . . . . . . . . . . . . . . 131

D.1.1 LIE model 1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
D.1.2 LIE model 2-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
D.1.3 LIE model 3-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
D.1.4 LIE model 4-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

D.2 PBSA Calculations and LR-MM-PBSA Models . . . . . . . . . . . . . . . . . 140
D.2.1 LR-MM-PBSA model 1-1 . . . . . . . . . . . . . . . . . . . . . . . . 140
D.2.2 LR-MM-PBSA model 2-1 . . . . . . . . . . . . . . . . . . . . . . . . 141
D.2.3 LR-MM-PBSA model 3-1 . . . . . . . . . . . . . . . . . . . . . . . . 142
D.2.4 LR-MM-PBSA model 4-1 . . . . . . . . . . . . . . . . . . . . . . . . 143

Bibliography 144

xvi



This page is intentionally left blank

xvii



Chapter 1

Introduction: Targeted Cancer Therapy

1.1 Mechanisms of Cancer

Cancer or malignant neoplasm is a diverse and broad collection of diseases characterized by
uncontrolled growth and dividing of some type of cells, leading to a formation of malignant
tumors, which invade later other parts of the body. In spite of the complexity and the diversity
of cancers’ types, causes, and symptoms including the local and systematic symptoms, cancer
could be described as defect in regulatory circuits which control the cellular proliferation and
homeostasis. Cancer research confirmed that tumorigenesis is a multi-step process driven by
genetic mutations and epigenetic alterations, which cause the transformation of normal cells
to malignant ones with malfunctions in the regulatory signaling networks [1, 2]. An overview
of major signal transduction pathways reprogrammed in cancer cells is shown in Figure 1.1.
Considering the current understanding of cancers, protein kinases have emerged as one of the
key regulators of critical signaling pathways, which are possibly involved in the malignant
tumor formation [3].

1.2 Targeted Therapy: Definition and Concept

Targeted therapy is the interfering with specific molecular targets needed in special type of
cells for carcinogenesis, as these targets play an important regulatory role in cells by being part
of a signaling pathway used by cancer cells to grow, divide, or spread throughout the body [4].
The specific and selective interfering/inhibition is usually able to block the growth of cancer
cells without affecting other dividing cells (opposite to the traditional cancer chemotherapy).
Thus, this selective targeting of tumors is expected to be less harmful for normal tissues. The
ideal target to attack for a cancer therapy should exist in cancer tissues more frequently than in
normal ones. By adjusting the dose of a selective drug, it might be possible to kill the tumors
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CHAPTER 1: TARGETED CANCER THERAPY

Figure 1.1: An overview of major signal transduction pathways within normal cells, mainly
reprogrammed to regulate hallmark capabilities within cancer cells (Adapted from Hanahan
and Weinberg [2]).

while normal tissues are unaffected [4, 5, 6, 7].

1.3 Selective Targeting of Protein Kinases

Protein kinases (PK) are essential enzymes for propagation of signal transduction inside the or-
ganisms’ cells, participating in the regulation of many biological processes, including metabolic
processes, transcription, cell cycle progression, apoptosis, and cell differentiation [3, 8]. The
propagation of signal transduction cascades is mediated in many biological processes by phos-
phorylation of amino acid residues of substrate proteins, catalyzed by protein kinases. For this
reason, it is not surprising that protein kinases constitute one of the largest enzyme families in
the human organism, accounting for ~ 1.7% of the human genome-encoded proteins [8]. By
discovering the main role of protein kinases in regulating biological processes and their in-
volvement in many pathological pathways, protein kinases became one of the most important
pharmaceutical targets for developing small-molecule inhibitors as new drugs for various severe
diseases: cancer, diabetes, inflammation, cardiovascular disorders, and infectious diseases [3].

The analysis of the human genome revealed 518 protein kinase genes, which could be
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divided into 478 classical PKs and 40 atypical protein kinases. The collection of 478 pro-
tein kinases consists of 388 serine/threonine kinases, 90 tyrosine kinases, and 50 sequences
which lack functional catalytic sites. The human protein kinase family is classified into nine
groups: Tyrosine kinases group (TK), Tyrosine-kinase like group (TKL), STE kinase group,
AGC group, CMGC group, CAMK group, CK1 group, other kinases group, and RGC kinases
[8]. In humans, 90 distinct kinases have been classified in the tyrosine kinases group, which
can be broadly divided into 58 receptor tyrosine kinases (RTKs) and 32 non-receptor tyrosine
kinases (NRTKs) [8]. The structural conservation of the ATP-binding pocket, especially in pro-
tein kinases from the same group, makes the development of selective kinase inhibitors a critical
issue for developing effective and safe therapies.

The problem of designing specific inhibitors with required selective binding to a given pro-
tein target is more complex than just improving the affinity to a single target. In most of the
cases, the selectivity problem comes out from an equal affinity of the ligand to homologous
proteins, which share a conserved binding pocket. In that case, the binding sites usually exhibit
high similarity regarding the shape and the sequence identity, resulting in similar protein/ligand
interactions. Physical factors related to the similar ligands; such as the ligand entropy and other
ligand-only thermodynamic terms, could be very similar, and thus are playing a small role in
explaining selectivity. Other factors related to the protein structure could be more important
playing a bigger role in determining the changes of binding affinities and selectivity. These
protein-related factors could be small differences in the protein sequence, small differences in
the molecular surface shape of the binding pocket, differences in the electrostatic properties
generated by some residue changes, receptor’s desolvation (hydration sites inside the binding
site), or the receptor flexibility; including receptor’s reorganization energy (induced fit effects
and strain energies) [9]. An important example is the ATP-competitive kinase inhibitors that
bind to the conserved and highly similar ATP-binding pocket. It is challenging to develop
selective kinase inhibitors, which hit only one kinase without affecting similar kinases from
the same group. However, in some cases, it is desirable to get inhibition of multiple kinases,
which participate synergistically in one signaling pathway connected to a disease or disorder.
Recent pharmaceutical research also shows the importance of estimating the interactions with
off-targets like ion channels (including the Kv11.1 potassium ion channel hERG), cytochrome
P450s (CYPs), and other proteins that can lead to adverse side effects [9].
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1.4 Epigenetic Deregulation in Cancer

Epigenetic mechanisms of regulating gene expression patterns inside the cells have been elu-
cidated during the last decade. Beside the accumulation of genetic mutations and the dys-
regulation of the cell cycle in cancer cells, epigenetic factors were found to be important
in carcinogenesis [10, 11]. Epigenetic mechanisms depend on covalent modifications of the
DNA (mainly Cyt-methylation) and the histone proteins for the regulation of gene expression
[10, 12, 13]. Histones are the basic core of the nucleosome; which contains the DNA stretches
wrapped around the octamer of histone proteins. Post-translational modifications of the histone
proteins are covalent addition or removal of specific chemical groups: acetyl groups (acetyla-
tion/deacetylation), methyl groups (methylation/demethylation), phosphate groups (phosphory-
lation/dephosphorylation), or ubiquitin molecules (ubiquitination/deubiquitination). Biochem-
ical researches have reported that histone methylation and acetylation are quite often dysreg-
ulated in many types of chronic diseases and cancer tumors [12]. Cancer could possibly be
caused by epigenetic dysregulation, like activating tumor-promoting genes and silencing tumor-
suppressor genes (e.g. low H3K4 methylation levels in breast cancer patients, high H3K9 acety-
lation levels in lung cancer patients) [12].

The basic biological tools for these regulatory modifications are different groups of histone-
modifying enzymes. For example, the histone acetylation is regulated by opposite functions of
histone acetyltransferases (HAT) and histone deacetylases (HDAC) [11, 12]. Several Inhibitors
of histone-modifying enzymes have been approved by the FDA for treatment of malignancies,
including two DNA-methyltransferase (DNMT) inhibitors (Azacitidine, and Decitabine) and
two HDAC inhibitors. The two HDAC inhibitors (HDI) are Vorinostat (Zolinza); developed
as a pan-HDAC inhibitor, and Romidepsin (Istodax); developed as a specific class I HDAC
inhibitor. The inhibitors of HDACs show an effect on many cellular processes; like differentia-
tion, inhibiting the cell cycle and induction of apoptosis [6]. However, the detailed mechanisms
of Histone deacetylases Inhibitors is still unknown and obscure, as most of discovered HDI are
non-selective and exhibit toxicity in the clinical tests [6].

The counterparts of HDACs in the process of histone acetylation are the histone acetyltrans-
ferases (HATs), which contain a cofactor (Ac-CoA) binding pocket and a substrate binding
pocket (for the acetylated lysine). The substrate binding pocket usually appears as a solvent-
accessible channel [11, 14]. Most of the reported HAT inhibitors are either natural products
or very large peptide inhibitors [11]. Only a few less potent small molecule HAT inhibitors
have been reported so far [15]. The therapeutic potential of HAT inhibitors is unclear at the
moment, and more potent and selective inhibitors are highly needed to further study the role
and involvement of individual HATs in tumorigenesis.
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Figure 1.2: DNA is packaged into chromatin by wrapping around histone proteins (two copies
each of histones H2A, H2B, H3 and H4) to form the nucleosomes, which are further compacted
to form the chromatin. The degree of compactness depends on the types of post-translational
modifications on the histones. The combination of modifications on each histone and/or nu-
cleosome establishes an epigenetic code, and mediated by epigenetic enzymes; Proteins that
covalently attach acetyl or methyl groups to produce (or ’write’) the code (including histone
acetyltransferases and histone methyltransferases) and are termed ’writers’. Proteins that rec-
ognize and bind to histone modifications are termed ’readers’ of the code ( including bromod-
omains, plant homeodomains (PHDs) and members of the royal family of methyl-lysine-binding
domains). Enzymes that remove histone marks are termed ’erasers’ (including histone deacety-
lases and lysine demethylases) (Adapted from Arrowsmith et al. [12]).
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1.5 Aim of the work

Targeted cancer therapy nowadays represents an established paradigm in anti-cancer therapy.
The concept of targeted therapy depends on developing antibodies or small-molecules capable
of inhibiting specific elements in key signaling pathways or affecting the regulation mechanism
of gene expression. Protein kinases are versatile and very flexible proteins, which play key
role in regulating most, if not all, the critical signaling pathways involved in developing the
cancer cells’ hallmarks. On other hand, the epigenetic factors and the chemical modifications
of the histones, catalyzed by epigenetic enzymes, appeared to have critical role in the cell cycle
dysregulation, activating tumor-promoting genes, or silencing tumor-suppressor genes.

The current work focuses on the application of computational and structure-based methods
for developing novel effective small-molecules, which could be potential inhibitors for targeted
cancer therapy. The first part focuses on the application of virtual screening techniques to
accelerate the discovery of novel epigenetic modulators; especially for epigenetic enzymes
with little information about their inhibitors. Docking and virtual screening of focused chemical
libraries are applied in the case of histone acetyltransferase PCAF to identify and develop novel
inhibitors (Chapter 2).

The second part will focus on developing selective kinase inhibitors and the analysis of
the challenges in the field of kinase inhibitor drug design (Chapter 3). A special focus will be
given to the challenges associated with the flexibility of kinases and the structural conservation
of the ATP-binding pocket by applying computational simulation and binding energy methods.
Additionally, we will analyze the role of water molecules located inside the ATP binding pocket
for providing water-mediated protein-inhibitor interactions.

To overcome these challenges, computational tools more sophisticated than simple dock-
ing and virtual screening are needed. End-point free energy methods, such as PBSA/GBSA
implicit solvent models and the Linear Interaction Energy (LIE) approach, are applied to ad-
dress two typical problems in drug design: the prediction of the actual binding mode and
the prediction of binding affinities. In chapter 4, we analyze the performance of implicit sol-
vent models and LIE method for predicting the binding mode for a series of GSK3β/CDK2
inhibitors. The kinase flexibility and induced-fit effects are studied by molecular dynamics
(MD) simulations. Chapter 5 deals with predicting the binding affinities of a large series of
inhibitors developed for the constitutively active mutant D816V of c-Kit kinase. This in an
example, where a large number of inhibitors, synthesized in a drug discovery project, is studied
by a variety of computational methods in order to predict the biological activities of the studied
inhibitors and also to lead the design of new small-molecule inhibitors.
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Chapter 2

Novel Inhibitors of Histone
Acetyltransferases:
Application of Focused Virtual Screening
Methods

2.1 Histone Acetyltransferases:
Biological Role and Classification

The genetic material in the nucleus of eukaryotic cells exists in tightly packed form, which
functions as a dynamic structure and basic contributor in the regulation of various nuclear pro-
cesses, including transcription, DNA replication and repair, mitosis, and apoptosis [16]. An
important post-translational modification of histones is the acetylation of ε-amino groups on
conserved lysine residues. Acetylation neutralizes the positively charged lysines and therefore
affects interactions of the histones with other proteins and/or with the DNA. Histone acetylation
has long been associated with transcriptionally active chromatin and also implicated in histone
deposition during DNA replication [17, 18, 19]. The human genome encodes up to 25 proteins
that show lysine acetyltransferase activity. At the primary structure level there is little similarity
between the different HATs, and even members of the same family usually display consider-
able sequence diversity. Furthermore, there is no single homolog domain that is conserved in
all HATs, although many enzymes contain recognizable Acetyl-CoenzymeA (Ac-CoA) binding
motifs and bromodomains [20]. HATs display a conserved core domain, which contains an L-
shaped cleft formed by the N- and C-terminal segments of the core domain. This cleft contains
the catalytic site, where Ac-CoA binds in the short segment and the macromolecular substrate
binds in the long segment. Beyond the core domain, there is little structural similarity between
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the different HATs. In vitro assays indicated that HATs have different substrate specificities[21].

Important and extensively investigated families of HATs are:

• GNAT family (GCN5-related N-acetyltransferase): includes GCN5, PCAF (p300/CBP-
associated factor), other acetyltransferases like serotonin acetyltransferase (AANAT),
aminoglycoside N-acetyltransferases (AAC-3, and AAC-6), spermidine/spermine
N-acetyltransferase, the elongator subunit Elp3, and Hpa2. HAT1 could be classified
to GNAT or as separate family. Similarities are observed at the tertiary structure level for
members of GNAT family (Figure 2.1) [14, 22].

• MYST family (named after its founding members, which include MOZ, YBF2/SAS3,
SAS2 and TIP60) [11, 12, 23].

• p300/CBP family [24, 25, 26].

Over 40 transcription factors and 30 other nuclear, cytoplasmic, bacterial, and viral proteins
have been shown to be acetylated in vivo by HATs [20, 27]. For example, p300/CBP proteins are
involved in diverse physiological processes, such as proliferation, differentiation and apoptosis
[26]. GCN5p is the catalytic subunit of the two multi-protein complexes, ADA and SAGA,
involved in remodeling the chromatin structure and acetylation of histone tails at specific lysines
[14]. The p300/CREB-binding protein (p300/CBP) works often as transcriptional co-activator,
which binds to variety of transcription factors. P300/CBP has intrinsic activity, which plays
important role in many biological functions, and could be associated to some tumorigenesis
[19, 26]. Most potent and selective p300/CBP inhibitor is Lys_CoA (with Ki=20 nM) [28].

Acetylation and deacetylation of histones have emerged as key mechanisms regulating tran-
scriptional activity. Histone acetyltransferases (HATs) catalyze the transfer of acetyl groups
to lysine residues in histones, which results in a more open conformation of nucleosomes and
increased accessibility of regulatory proteins to DNA [29, 30]. The acetylation status of sev-
eral non-histone proteins, including p53, ataxia-telangiectasia mutant (ATM), heat shock pro-
tein 90, and α-tubulin, is intimately related to their functions [31, 32, 33]. Reversible acety-
lation of α-tubulin marks stabilized microtubule structures and may contribute to regulating
microtubule dynamics. Acetylation of tumor suppressor protein p53 by two HAT subtypes;
p300/cAMP-responsive element binding protein (p300/CBP) and p300/CBP-associated factor
(PCAF), was linked to its transactivation potential and ability to regulate cell cycle arrest and
apoptosis [34, 35].
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Figure 2.1: Comparison of the three-dimensional structures of GCN5-related N-
acetyltransferases: GCN5, PCAF, and AANAT. (A) tGCN5: the ternary complex with CoA
and an 11-residue peptide (in blue) is shown. The black line indicates CoA or Ac-CoA. (B)
PCAf, complexed with CoA, (c) AANAT: the complex with the bisubstrate analog is shown
(indole ring colored blue). The four conserved motifs of the GNAT superfamily C, D, A, and B
are shown in purple, green, yellow, and red, respectively (adapted from [14]).

2.1.1 Structural Overview of Histone Acetyltransferase PCAF

In the PCAF crystal structure (1cm0.pdb), CoA is bound in a conformation, forming an ex-
tensive set of protein interactions that are mediated predominantly by the pantetheine arm and
the pyrophosphate group [36] with motif A-D and motif B (Figure 2.2). All but two groups
of the pantheteine arm–pyrophosphate chain make contacts with the protein. Most of the con-
tacts are mediated through either protein backbone hydrogen bonds or protein side chain van
der Waals contacts [36]. GNAT conserved residues in PCAF motifs A and B interact exten-
sively with CoA. It could be noticed that residues 580 and 582–587 in the β4–loop–α3 region
of motif A make direct and water-mediated hydrogen bonds with the pyrophosphate group [37].
T587 also makes a hydrogen bond to the pyrophosphate oxygen. The aliphatic side chain of
Q581 and a C–A–V sequence (residues 574–576) at the top of the β4-strand makes van der
Waals contacts with the aliphatic part of the pantetheine arm [36] (see Figure 2.8 for details).
In addition, the backbone of C574 and V576 forms hydrogen bonds with the pantetheine arm.
Residues in the β5–loop–α4 region of GNAT motif B interact by van der Waals contacts with
the β-mercaptoethylamine segment of the pantetheine arm and thus play a major role in orient-
ing the reactive sulfhydryl atom for the acetyl transfer [36] (Figure 2.8). Other protein residues,
involved in the binding, are A613, Y616 and F617. Also Y616 makes van der Waals contacts
with the end of the pantetheine arm near the pyrophosphate group [36] (Figure 2.9 and 2.10).
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Figure 2.2: Structure of the PCAF-CoA complex representing the general secondary structure
of GNAT family acetyltransferases and the location of the acetyl-CoA binding site. The four
domains of the protein are color-coded. Motifs A-D and motif B (based on structural conserva-
tion) are colored blue and green, respectively. The N- and C-terminal protein segments flanking
the core are colored magenta and gold, respectively. CoA is colored light green. Y616 is shown
in capped sticks colored grey.
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Figure 2.3: Some known HAT inhibitors from the literature. For more details, see [15].

2.2 Computational Methods

2.2.1 Molecular Docking

The program GOLD 4.0 [38] (Cambridge Crystallo- graphic Data Centre) was used for docking,
while the calculation of all molecular descriptors and the analysis of the docking results were
carried out by MOE2008.10 (Chemical Computing Group). The crystal structure of human
PCAF in complex with Acetyl-CoA (PDB id: 1cm0, chain B) resolved at 2.30 Å was taken from
the Protein Data Bank. The cofactor and the water molecules were removed, hydrogen atoms
were added and the protein was minimized using the AMBER force field and the conjugate
gradient minimization (MOE 2008.10) until the gradient of 0.1 kcal/mol was reached. Docking
of the ligands was carried out using the GOLD 4.0 program with default settings. A sphere of
20 Å around the oxygen atom of Y616 was defined for ligand docking. For covalent docking, a
sphere of 14 Å around the S-atom of C574 was defined for ligand covalent docking.

To test the applicability of the docking tool, a control docking was carried out with the co-
factor acetyl-CoA. Using GOLD score as scoring function, an RMSD value of 1.45 was derived
for the top-ranked conformation of Acetyl-CoA (data not shown). For all compounds under
study, the GOLD score as well as Chemscore (applied in GOLD) were calculated and ana-
lyzed. To support the obtained docking poses, we calculated the molecular interaction fields for
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the PCAF binding pocket using MOE2008.10. The favorable interaction field of a carboxylate
probe (Fig. 2.10) as well as of a hydrophobic methyl (C3) probe was calculated. The results
agree well with the location of the carboxylic head group as well as the hydrophobic parts of
the active inhibitors (Figure 2.10).

2.2.2 Similarity Search and Focused Library Design

Molecular Chemical fingerprints could be used to search in large compound databases for struc-
turally related molecules to a given search query. Several fingerprint systems were implemented
in Chemical Computing’s Molecular Operating Environment (MOE). Moreover each finger-
print system would support a number of similarity metrics and use different representation. The
following fingerprints systems are applied in MOE:

1. MACCS Structural Keys (feature list version). Each feature indicates the presence of one
of the 166 public MDL MACCS structural keys computed from the molecular graph. The
fingerprint is represented as a sparse list of keys present in the molecule.

2. Bit MACCS: MACCS Structural Keys (bit packed version). Each feature indicates the
presence of one of the 166 public MDL MACCS structural keys calculated from the
molecular graph. The fingerprint is a dense bit vector of feature bits 6 words long.

3. Protein Ligand Interactions Fingerprints: Each feature represents a protein-ligand inter-
action type, e.g. hydrogen bond or ionic interaction.

4. PiDAPH3: 3-point pharmacophore based fingerprint calculated from a 3D conformation.
Each atom is given one of 8 atom types computed from 3 atomic properties: "in pi sys-
tem", "is donor", "is acceptor". Anions and cations are not represented. Then, all triplets
of atoms are coded as features using the three inter-atomic distances and three atom types
of each triangle.

5. piDAPH4: 4-point pharmacophore based fingerprint calculated from a 3D conformation.
Each atom is given one of 8 atom types computed from 3 atomic properties: "in pi sys-
tem", "is donor", "is acceptor". Anions and cations are not represented. Then, all quadru-
plets of atoms are coded as features using the six inter-atomic distances, four atom types
and chirality of each quadruplet.

6. GpiDAPH3: 3-point pharmacophore based fingerprint calculated from the 2D molecular
graph. Each atom is given one of 8 atom types computed from 3 atomic properties: "in
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pi system", "is donor", "is acceptor". Anions and cations are not represented. Then, all
triplets of atoms are coded as features using the three graph distances and three atom
types of each triangle.

Tanimoto similarity search could be later accomplished using MOE. Tanimoto similarity mod-
ule calculates the similarity values for each target molecule with respect to one or more refer-
ence molecules using molecular fingerprints systems. The Tanimoto similarity search is defined
by the expression: Similarity = Nab/ (Na+Nb+Nab) where : Nab is the number of fingerprint bits
presented in both reference and target molecule, Na is the number of fingerprint bits presented
only in the Reference molecule, Nb is the number of fingerprint bits presented only in the Tar-
get molecule. Tanimoto similarity index ranges from zero (no common bits) to one (exact same
bits).

2.2.3 Database Virtual Screening

The 260,000 3D structures of the National Cancer Institute (NCI) database, generated with
the program CORINA, were obtained from the NCI homepage and were imported as Mol2
files into the MOE program. The 3D structures of the Ambinter, ChemDiverse, Chemical
Block and Enamine were retrieved from the ZINC database [39, 40, 41]. Using an isothia-
zolone/isothiazolidinone ring as search query, we identified 51 isothiazolone compounds from
the NCI database that were subsequently docked into the PCAF protein structure using the
GOLD program as described above. Thirty-two (32) molecules were successfully docked into
the CoA binding pocket showing a distance <5 Å between the S–N bond and the thiol group of
Cys574 (distance S to S) to facilitate the nucleophilic attack from the cysteine residue on the
isothiazolone ring. From the 32 compounds selected, 15 compounds could be obtained from
the NCI. By using the same isothiazolone search query, six further compounds were identified
and purchased from Ambinter, ChemDiverse, Chemical Block, and Enamine.

To find novel non-covalent PCAF inhibitors, MACCS Structural Keys (feature list ver-
sion) and GpiDAPH3 fingerprints were used to filter compounds from 21 commercial chem-
ical databases (Abc-eurochem, Ambinter, Asinex, Chembridge, ChemDiv, Com-Genex, Enam-
ine, Ibscreen, Interchem, Keyorganics, Life Chemicals, Maybridge, Nanosyn, NCI, Otava,
PeakDale, PHARMEKS, PUBCHEM, Ryan-Scientific, Sigma-Aldrich, Spec, UkrOrgSynth).
MACCS fingerprints generated from published rhodanine-indolinone AANAT inhibitors were
used as a search query to identify chemically similar compounds by applying a tanimoto co-
efficient of (0.85). The similarity based screening identified 6423 compounds by taking into
consideration the Lipinski rule of five [42].
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2.2.4 Molecular Dynamics Simulation

Molecular dynamics was carried out using AMBER 9.0 Molecular Dynamics package. Pro-
tein and ligand molecule were parameterized using AMBERff03 [43] and general AMBER
force field (GAFF) [44] respectively. The initial structures of the PCAF–inhibitor complexes
were taken from the GOLD docking study. Complex systems were neutralized with 8 Cl-
counter-ions by using the xleap module of AMBER 9.0. The structures were solvated in an
octahedral box with TIP3P [45] water molecules leaving at least 10 Å between the solute atoms
and the borders of the box. The fully solvated and neutralized systems were subjected to energy
minimization with the sander module of the AMBER 9.0 package. Following minimization
the systems were gradually heated from 50 to 300 K with positional restraints (force constant:
50 kcal/mol/Å) on protein-ligand complex over a period of 0.25 ns allowing water molecules
and ions to move freely. A 9 Å cutoff for the short-range non-bonded interactions was used
in combination with the Particle Mesh Ewald (PME) option [46] using a grid spacing of ~0.9
Å to account for long-range electrostatic interactions. The Settle algorithm [47] was used to
constrain bond vibrations involving hydrogen atoms. During additional 0.25 ns the positional
restraints were gradually reduced to allow finally unrestrained MD simulation of all atoms over
a subsequent equilibration time of 1 nanosecond (ns). Further 10 ns free MD simulation was
carried using these equilibrated structures as a start structures. VMD [48] was used for visual-
ization of trajectories and preparation of figures.

2.3 Results and Discussion

In order to identify new inhibitors of HATs, we applied a strategy that depends on creating
a focused virtual database based on chemical similarity with known inhibitors of a homolo-
gous target, and subsequently filtered according to Lipinski rule of five. These focused virtual
databases were used to conduct a virtual screening after optimizing the molecular docking pro-
tocol regarding the conditions, constraints, and scoring functions.

2.3.1 Identification of Isothiazolone-based HAT Inhibitors as Covalent
Inhibitors

Aryl and alkyl N-substituted isothiazolone compounds (e.g., CCT077791) have been shown
to inhibit irreversibly the acetylation of histones H3 and H4 by PCAF and p300. Stimson et al.

showed that a series of isothiazolones, identified from high-throughput screening, inhibits HAT
catalytic activity [49]. These isothiazolones are also cell permeable and can reduce global acety-
lation, as well as acetylation of specific histones (H3 and H4) and non-histone proteins, such as
alpha-tubulin. HAT inhibition by isothiazolones is abolished in the presence of thiol-reducing
agents; such as dithiothreitol (DTT) or glutathione. Furthermore, HAT activity was not restored
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in experiments involving the incubation of PCAF with the two isothiazolones CCT077791 and
CCT077792, followed by dialysis for 24 hours. The SAR study of this series of compounds
proved that their activity is related to the nature and electron withdrawing/pushing properties
of the substitutes. According to the supposed mechanism of disulfide bridge formation of the
isothiazolone compounds to produce irreversible inhibition of HAT [49], it is thought that isoth-
iazolones could form a covalent bond with the side chain of C574 in PCAF (Figure 2.5a and
2.5b). As this residue is taking place in the acetyl transfer reaction and it contributes in adjust-
ing the binding of the cofactor, such covalent binding will produce a permanent loss of HAT
catalytic activity. Using the MOE rotamer explorer, we calculated five conformations for the
SH-side chain of the C574 in PCAF. By choosing the preferred orientation, we could identify
a favorable docking solution for the isothiazolone compound NCI694616 that was identified as
potent inhibitor in the in vitro testing (Table 2.1). The calculated binding mode showed that
the nitro group is located in the cofactor binding pocket, while the bromo-phenyl is interacting
with the residues of the substrate histone binding pocket. Also the other isothiazolones could
be docked to PCAF and showed the same orientation (Figure 2.5b).

We selected first the National Cancer Institute (NCI)’s 3D database for virtual screening,
since it contains structurally diverse synthetic compounds collected from many laboratories
around the world as well as natural products. The recently identified isothiazolone inhibitor
NCI694616, which acts as an irreversible inhibitor by covalently binding to the residue C574
at the PCAF active site, was used to derive a search query for the in-silico screening. The crys-
tal structure of PCAF complexed with the cofactor Acetyl-CoA (PDB id: 1cm0) was used for
docking studies. We identified 51 compounds with an isothiazolone or isothiazolidinone sub-
structure that were subsequently docked into the PCAF substrate binding site to test whether
they are able to bind at the catalytic site. Thirty-two compounds were identified to contain a
reactive S–N bond, which was located (by docking) in close proximity to the active site C574
in the model (S–S distance below 4.5 Å). Among these, 15 compounds (Table 2.1) could be ob-
tained from the NCI. Using the same search query six other pyridoisothiazolones were identified
and purchased from commercial suppliers (Ambinter, ChemDiverse, Enamine).

The 21 selected compounds were tested for in vitro inhibition of histone acetyltransferase
activity using recombinant human PCAF by S. Furdas (University of Freiburg). Biotinylated
oligopeptide sequences from both histones H3(aa1–21) and H4(aa2–24) were used as the substrates.
The conversion was detected with a primary antibody against acetylated histone H3 and H4 and
quantification was achieved by using a secondary Europium-labeled antibody with a final mea-
surement of time resolved fluorescence. This assay had been used before for the determination
of cellular hypoacetylation caused by isothiazolones. The published isothiazolone v (Figure
2.4) was synthesized and used as reference inhibitor [50].
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Figure 2.4: Chemical structures of some selected isothiazolones.

The most active pyridoisothiazolone showed PCAF inhibition in the submicromolar range.
In most cases, a higher potency was observed on the H4 substrate. Thus, the binding of the
histone substrate seems to influence the structure or reactivity (or both) of the acetyltransferase
with regard to inhibitor responsiveness. The amino-substituted isothiazolone NSC145097 (Fig-
ure 2.4) as well as the isothiazolone-thione NSC279225 (Figure 2.4) did not show signifi-
cant HAT inhibition. Isothiazolones substituted with an aminocarbonylmethyl linker (A4033-
0171899, K783-6791, and K783-6798) showed only moderate inhibition on PCAF inhibition.
The highest potency was observed for the pyridoisothiazolones NSC694614 and NSC694622.
Further compounds 4a–g and 8a-h (Table 2.1) were also synthesized by S. Furdas (University of
Freiburg) [50]. The inhibitory activity of NSC694622 against HAT was significantly reduced in
the presence of 1 mmol/L DTT; confirming the role of thiol group and the reactivity of N-S bond
in the inhibitory activity of the pyridoisothiazolones toward PCAF (Figure 2.5a). Additionally,
introducing a methylene group between the aromatic substituent and the isothiazole core (e.g.,
compound 8h) results in increasing the distance C574/S–N bond and is therefore unfavorable.
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(a) Proposed mechanism of the covalent binding of isothiazolones to thiol groups.

(b) GOLD docking solution for pyridoisothiazolone 4d (colored ma-
genta) at the PCAF binding site. The sulphur of the isothiazolone in-
hibitor is in close proximity to the active site residue C574, thus en-
abling the formation of a covalent bond between the enzyme and the
isothiazolone.

Figure 2.5: The proposed mechanism of the isothiazolones’ covalent binding and docking so-
lution for pyridoisothiazolone
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Table 2.1: Inhibition of PCAF histone acetyltransferase activity for histone substrates H3
(amino acid residues 1–21) and H4 (amino acid residues 2–24): IC50 value [µM] ± standard
error [µM] or enzyme inhibition [%] at the specified concentration. (n.t.: not tested; n.i.: no
enzyme inhibition (<5%) at the specified assay concentration.)

Cmp. n R1 R2 R3 PCAF, H3 PCAF, H4

NSC694614 0 CH3 H Br 2.99 ± 0.27 n.t.
NSC694615 0 H H Br 4.43 ± 0.20 n.t.
NSC694616 0 NO2 H Br 4.91 ± 0.39 0.86 ± 0.08
NSC694617 0 H H NO2 4.10 ± 0.60 2.99 ± 0.32
NSC694618 0 NO2 H NO2 11.8 ± 1.83 15.8 ± 5.76
NSC694619 0 CH3 H OC6H5 12.9 ± 0.95 n.t.
NSC694620 0 NO2 H OC6H5 48% @ 10 µM n.t.
NSC694621 0 H H OCH3 5.71 ± 0.30 n.t.
NSC694622 0 NO2 H OCH3 3.42 ± 0.35 1.83 ± 0.47
NSC694623 0 H H C4H9 15.9 ± 2.20 n.t.
NSC698599 0 CH3 H NO2 15.3 ± 6.21 2.72 ± 0.60
NSC698600 0 CH3 H OCH3 6.51 ± 0.49 n.t.
NSC700864 0 Phe H C4H9 49% @ 25 µM n.t.

4a 0 H H H 7.85 ± 0.46 88% @ 50 µM
4b 0 H H Cl 3.53 ± 0.07 87% @ 50 µM
4c 0 H Cl Cl 4.57 ± 0.23 91% @ 50 µM
4d 0 H H F 1.64 ± 0.11 0.72 ± 0.05
4e 0 H F F 5.90 ± 0.85 n.t.
4f 0 H H CH3 4.63 ± 0.24 75% @ 50 µM
4g 0 H OCH3 H 5.03 ± 0.14 n.t.
8a 1 H H H 22.96 ± 2.06 n.t.
8b 1 H H Cl 17.5 ± 1.27 n.t.
8c 1 H Cl Cl 6.94 ± 0.57 n.t.
8d 1 H H F 86.3 ± 3.40 n.t.
8e 1 H F F 101 ± 4.92 n.t.
8f 1 H H CH3 27.9 ± 4.50 n.t.
8g 1 H OCH3 H 22.2 ± 1.97 n.t.
8h 1 H H CF3 130 ± 8.49 25.5 ± 2.85
V See figure 2.4 4.80 ± 0.20 n.t.

NSC145097 See figure 2.4 48% @ 300 µM 20% @ 200 µM
NSC279225 See figure 2.4 n.i. @ 25 µM n.t.

A455691 See figure 2.4 7.66 ± 1.29 51.3 ± 8.83
A3737-0158368 See figure 2.4 3.69 ± 0.17 n.t.
A4033-0171899 See figure 2.4 21% @ 50 µM n.t.

T0504-9123 See figure 2.4 46% @ 50 µM n.t.
K783-6791 See figure 2.4 48% @ 50 µM n.t.
K783-6798 See figure 2.4 38% @ 50 µM n.t.
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2.3.2 Identification of Rhodanine derivatives as Non-covalent HAT In-
hibitors

Figure 2.6: AANAT inhibitors from the literature [51], used as search query for generating
focused library for virtual screening.

As a different starting point, we decided to use the structure of rhodanine-indolinone deriva-
tives (shown in Figure 2.6), which were previously identified as inhibitors of the homologue
serotonin N-acetyltransferase AANAT [51], another member of the GNAT family of acetyl-
transferases [14]. The aim was to find non-covalent small-molecule inhibitors of PCAF, as
most of the known PCAF inhibitors are covalent inhibitors, peptide inhibitors, or very large
natural products.

We used a synergistic approach that combines the benefits of structure-based virtual screen-
ing and experimental testing using validated PCAF inhibition assay to subsequently screen a
limited number of the top-ranked compounds. We carried out a multi-step virtual screening ex-
periment starting with a similarity based screening followed by docking. MACCS fingerprints
derived from published rhodanine-indolinone AANAT inhibitors [51] (Figure 2.6) were used for
a search query in 21 commercial databases. A total of 6423 compounds were identified from
the in silico screening and subsequently docked into the PCAF binding pocket in order to test
whether they are able to bind at the CoA binding site. The crystal structure of PCAF complexed
with the cofactor acetyl-CoA (PDB id: 1cm0) was used for docking studies using GOLD4.1 and
GOLD score as scoring functions. A rescoring with Chemscore, followed by visual inspection,
was carried out for the 100 top ranked solutions and 11 compounds were further considered for
biological testing (Figure 2.7). The purchased compound PHAR037680 was detected as most
promising lead inhibiting PCAF with IC50 = 97.7 µM (Table 2.2). Additional compounds with
the same core rhodanine-indolinone-scaffold (12a-g, 13, 14, and 15) were synthesized by S.
Furdas (University of Freiburg) (Table 2.2) [52].

The predicted binding mode for the rhodanine-indolinone-carboxylate analogs suggests that
the inhibitor’s acidic group, aliphatic linker, as well the rhodanine ring interact with the cofactor
binding pocket, whereas the rest of the inhibitor interacts with the substrate binding pocket
(Figure 2.9). After performing MD simulation study, the derived RMSD plot (calculated for
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heavy atoms of PCAF protein and ligand 12e, respectively) shows that the complex, as well as
the interaction of the inhibitor with the protein, is stable over the simulation time of 10 ns (See
Appendix B, Figure B.1). Similar results were obtained for compounds 14 and 15, which are
analogs of inhibitor PHAR037680, supporting the selected docking binding mode.

Figure 2.7: Selected compounds from the virtual screening with rhodanine-indolinone scaffold.
Detailed information concerning the suppliers and docking scores can be found in Appendix B.
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Table 2.2: Inhibition of PCAF histone acetyltransferase activity for histone substrate H3 (amino
acid residues 1-21); IC50 value [µM] ± standard error [µM] or enzyme inhibition [%] at the
specified concentration for synthesized compounds according to the scaffold.

Cmp. Spacer R IC50 or inhibition (%)
(PCAF, H3aa1-21)

12a C4H8 (butylene) H 9% @ 50 µM
12b C4H8 (butylene) CH3 (methyl) 5% @ 50 µM
12c C4H8 (butylene) C2H5 (ethyl) 6% @ 50µM
12d C4H8 (butylene) (C6H5)CH2 (benzyl) 13% @ 50 µM
12e C4H8 (butylene) 4-CH3(C6H4)CH2

(4-methylbenzyl)
67.2 ± 2.3 µM

12f C4H8 (butylene) 4-OCH3(C6H4)CH2
(4-methoxybenzyl)

28.8 ± 2.1 µM

12g C4H8 (butylene) 4-NO2(C6H4)CH2
(4-nitrobenzyl)

78.2 ± 3.6 µM

13 C3H6 (propylene) 4-CH3(C6H4)CH2
(4-methylbenzyl)

8% @ 50 µM

14 C6H4 (phenylene) 4-CH3(C6H4)CH2
(4-methylbenzyl)

63.7 ± 1.6 µM

15 C6H10 (trans-
cyclohexylene)

4-CH3(C6H4)CH2
(4-methylbenzyl)

41.8 ± 4.2 µM

PHAR037680 See figure 2.7 97.7 ± 10.4 µM
T0505-1441 See figure 2.7 12% @ 50 µM

BAS02167318 See figure 2.7 8% @ 50 µM
BAS0056484 See figure 2.7 n.i. @ 50 µM
PB-06479073 See figure 2.7 n.i. @ 50 µM
PB-06779828 See figure 2.7 8% @ 50 µM
7216540307 See figure 2.7 5% @ 50 µM
7714220145 See figure 2.7 14% @ 50 µM
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Figure 2.8: Interaction of CoA in the PCAF crystal structure (PDB id: 1cm0)

2.3.3 SAR Study and Molecular Interaction Fields

SAR study has been performed by synthetic modification of the active scaffold ’rhodanine-
indolinone-carboxylate’ after purchasing the compound PHAR037680 (Figure 2.7). This SAR
is in well agreement with the proposed binding mode. A negatively charged group (carboxylate)
is necessary for the activity. Substituting the charged carboxylate with a neutral methoxylate
would abolish the binding affinity. The highest binding affinity was for the analogs 12e, 12f,
12g, 14, and 15 (Figure 2.9b). That indicates that the binding affinity would be optimal with
a specific spacer length (butylene or phenylene), which corresponds together with rhodanine
ring to a distance of 10 Å, which is similar to the distance between the V562 and the central
residue C574. Shortening the alkyl spacer by only one methylene group (in compound 13) led
to a strong decrease in activity but rigidification with a 1,4-phenylene (compound 14) or a trans-
cyclohexylene (compound 15) spacer was possible and able to keep the inhibitory activity. On
the other side of the scaffold, the Indolinone ring should be substituted at the aromatic nitrogen
by a benzyl group, which orients its aromatic ring inside the substrate binding pocket (Figure
2.10).

Molecular interactions fields further support the predicted binding mode. They indicated
the strongest affinity for a carboxylic group in the region around the residues V582 and G586
where the pyrophosphate part of CoA is interacting (2.10a). On the other hand, the highest
affinity for a hydrophobic probe exists in the neighborhood of the reaction center where the
cofactor’s sulfur is located (Figure 2.10b).
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(a) Docking pose calculated for compound 12e

(b) Docking pose calculated for compound 14.

Figure 2.9: Comparison of the docking pose for inhibitor 12e in the binding pocket of PCAF
crystal structure (PDB id: 1cm0), in comparison with the docked inhibitor 14. Docking so-
lutions propose that: the carboxylic group is interacting with V582, the rhodanine’s sulfur is
positioned beside the C574 and the benzyl group on the indolinone is positioned deeply inside
the substrate binding pocket (compare with Fig. 2.8). SAR studies showed that a specific length
for the linker is necessary to maintain the inhibitory activity, supporting the proposed binding
mode.
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(a) the predicted binding mode of the active inhibitor 12e (colored green) is shown. Molecular
interaction fields were calculated for the binding pocket using a) a carboxylate probe (contour
level -4.5 kcal/mol, colored red).

(b) the predicted binding mode of the active inhibitor 12e (colored green) is shown. Molecular
interaction fields were calculated for the binding pocket using a hydrophobic methyl (C3)
probe (contour level -2.5 kcal/mol, colored orange).

Figure 2.10: Docking pose calculated for compound 12e with HAT PCAF (PDB id: 1cm0) with
the Molecular interaction fields calculated for the PCAF binding pocket.
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2.4 Conclusion

In order to identify new inhibitors of HATs, we applied a strategy that combined computa-
tional screening methods with a robust biochemical assay. Virtual database filtering was used
to conduct virtual screening with the National Cancer Institute (NCI) compound collection and
several commercial compound libraries. As search query we used the isothiazolone and isothia-
zolidinone ring system, which was derived from published isothiazolone HAT inhibitors. Isoth-
iazolones were presented as new lead structures for HAT inhibition in the literature but suffer
from general high reactivity. A covalent attachment to thiol groups does not necessarily rule
out clinical application as can be shown, for example, for the antiulcer drug omeprazole. In this
study, pyridoisothiazolones were identified via in-silico virtual screening and in-vitro enzyme
testing as new covalent PCAF inhibitors.

To expand the chemical knowledge of HAT inhibitors, we tried to find further non-covalent
inhibitors of Histone acetyltransferase PCAF by choosing a different starting structures, which
are the rhodanine–indolinone derivatives, identified as inhibitors of the homologue serotonin
N-acetyltransferase AANAT from the GNAT family of acetyltransferases. The result of the
virtual screening was promising leading to the discovery of rhodanine carboxylic acids as
HAT non-covalent inhibitors.

Rhodanine carboxylic acids are new but unselective HAT inhibitors with activity in the
two-digit micromolar range. While the initial SAR study has better determined the phar-
macophore for PCAF inhibition, the beneficial effects of certain structural elements (e.g. 4-
methoxybenzyl group, and trans-cyclohexylene as spacer) point out to directions for further
optimization. The new inhibitors are broadband HAT inhibitors while a pyridoisothiazolone
reference inhibitor was shown to possess increased activity on CBP and to some extent on
PCAF but is less potent on Gcn5.
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Chapter 3

Structural Aspects of Protein Kinases:
The Impact on Designing Selective Kinase
Inhibitors

3.1 Kinases’ Binding Pockets and Catalytic Cleft

The catalytic domain of all kinases is located between two lobes: the N-terminal lobe and
the C-terminal lobe; the N-lobe is formed of one alpha helix (called αC) and five beta strands
forming the ceiling of the catalytic cleft, while the C-lobe is mainly composed of alpha helixes.
The two lobes are connected by a linker that includes hinge region and convex-shaped motif
(usually 6-8 residues) (Figure 3.1a) [53, 54]. In the N-lobe, there is the flexible Glycine-rich
P-loop (also called G-loop), which is usually composed of the sequence [Gly-X-Gly-X-X-Gly].
The P-loop adopts different conformations depending on the state of the kinase and on the nature
of the bound ligand. The first Gly position in that motif could be glycine, alanine, or serine,
while the second (Gly) position is always glycine in all kinase families.

The catalytic cleft could be divided into the front cleft, which is the ATP-binding pocket, and
back cleft, which contains important residues for kinase regulation. Between these two parts,
there is the activation segment (A-segment), which is responsible for changing the conforma-
tion of the kinase. Both A-segment (in the C-lobe) and αC helix (in the N-lobe) are essential for
regulating the kinase activity. The A-segment contains the DFG motif, the activation loop (A-
loop), and other secondary structural elements. In a fully active state, the A-segment adopts an
open conformation so that the A-loop takes a position away from the catalytic center, providing
suitable pocket for substrate binding (compare Figures 3.1a and 3.1b) [53, 55].

The borders between the two clefts are usually composed of two beta sheets, which contain
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(a) (left) Ribbon diagram of the x-ray crystal structure of c-Kit kinase (PDB id 1PKG): in the middle
between the two lobes, there is ADP (carbons in green). (right) Overview of the kinase ATP-binding
pocket (active/“DFG-in” conformation), highlighting regions that are relevant for small molecule inhibitor
binding: A, adenine binding site/linker region; R, ribose binding region; P, phosphate binding/catalytic
aspartate/salt bridge region; Br_I, back hydrophobic Binding region; Br_II, front specificity binding
region; also used for solubilizing groups in type-I kinase inhibitors.

(b) (left) Ribbon diagram of the x-ray crystal structure of c-Kit kinase in complex with Imatinib (PDB
id: 1T46): In the middle between the two lobes, there is the type-II inhibitor Imatinib (carbons in green).
(right) Overview of the imatinib binding with (inactive/“DFG-out” conformation), highlighting regions
that are relevant for small molecule inhibitor binding: A, adenine binding site/linker region; R, ribose
binding region; P, phosphate binding region occupied by DFG motif; Br_I, extended back hydrophobic
binding region after changing the orientation of the DFG motif; Br_II, front specificity binding region.
Br_III, additional binding region in the allosteric site, used for solubilizing groups in type-II kinase
inhibitors.

Figure 3.1: Ribbon diagrams of x-ray crystal structures of c-Kit kinase; with ADP (top), and
with Imatinib (bottom), combined with overview of the binding regions in the catalytic cleft.
The N-lobe is shown in wheat and the C-lobe in blue violet, they are linked by the hinge region
in blue, the αC-helix in red, the P-loop in yellow, the A-loop in magenta, the DFG motif in
orange, gatekeeper and catalytic lysine residues in light blue.
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two important residues: a quite flexible and functionally important conserved lysine residue
and a residue called the gate-keeper (GK). The gate-keeper residue is less conserved and could
be a small residue like threonine or alanine, or a bulky one like phenyl-alanine (e.g. in CDK2),
leucine (e.g. in GSK3β), or methionine. The importance of the gate-keeper emerges from
controlling the access to the back selectivity cleft; whose size mainly depends on the size of
gate-keeper (Figure 3.2) [54, 56]. The conserved lysine usually makes salt bridge with the
catalytic glutamate residue of the αC helix, and additionally helps anchoring the alpha- and
beta-phosphate groups of ATP.

The front cleft consists of the ATP-binding pocket and relatively small non-ATP regions.
The ATP-binding pocket provides the aromatic ‘adenine’ region for the adenine, beside of ad-
ditional regions for the ribose and the phosphate, donated respectively A, R, and P. The hy-
drophobic adenine binding region (A) is surrounded on one side by the gate keeper residue and
the DFG motif, while on the other side adjoins the hinge region, which provides the traditional
two hydrogen bonds with the ATP’s adenine. The ribose region (R) consists of hydrophobic
residues shared with the adenine pocket and other residues from the P-loop, very close to the
hydrophilic and solvent-exposed entrance of the binding pocket. The phosphate region (P) is
located between the P-loop and the catalytic loop (activation loop), and it is highly flexible,
hydrophilic, and solvent-exposed especially in the active state. As the ribose pocket is not very
conserved among kinases, it could be used for gaining selectivity and optimizing the binding
affinity. Additionally, there is a ‘front selectivity’ binding region (Br-II) or the solubilizing re-
gion; which is a small hydrophobic region between the hinge region and the ribose region, usu-
ally not occupied by ATP, often serves as an entrance for ligand binding, and could be used to
gain selectivity because of its diversity in sequence and conformation (Figure 3.1a) [53, 54, 56].

In the back pocket, three or four sub-pockets, which are hydrophobic and make no ATP-
contacts, can be recognized. The hydrophobic ‘back selectivity’ binding region (Br-I) is ad-
jacent to the adenine pocket in the active conformation, and its size is dependent on the gate-
keeper residue. Therefore, Br-I is quite often used for getting better selectivity for kinases
with small-size gate keeper (Figure 3.2). The second hydrophobic binding region (labelled
Br-III) locates behind the DFG motif on the opposite side of the ATP binding pocket in the
DFG-in conformation. Therefore, this pocket is not accessible for ligand binding in the DFG-in
conformation, but it is connected to the ATP binding pocket after the change of the DFG ori-
entation and the conversion from DFG-in to the inactive DFG-out conformation (Figure 3.1b)
[53, 57, 58].
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3.2 Types and Selectivity of Protein Kinase Inhibitors

The major problem of finding selective small-molecule kinase inhibitors is the high con-
servation of the ATP-binding catalytic domain. Typically, protein kinases could be found in
two functional states: active and inactive. The position of the conserved motif DFG (or rarely
D-[LWY]-G) in the kinases’ activation loop is used to distinguish between these two functional
states. The most reported state of crystallized kinases is the active state, which is called the
DFG-in conformation and characterized by the DFG’s aspartate orientation inside the ATP cat-
alytic domain. The majority of the kinases’ crystal structures in the Protein Data Bank represent
this conformation of kinase, which is bound to protein substrate and the ATP molecule with the
help of the chelating Mg+2 ion [56, 57].

In the decade of nineties, the main efforts in the academic and industrial research for de-
veloping kinase inhibitors concentrated on mimicking the ATP binding to the kinase catalytic
domain. These efforts resulted in a good number of diverse scaffolds, which competitively
inhibit the ATP binding in a low concentration [59, 60, 61]. This first generation of kinase in-
hibitors, which targets the kinases in the DFG-in active conformation, has been called type I
kinase inhibitors. The common feature of type I kinase inhibitors is their mimicking of ATP
binding by conserved hydrogen bonds to the hinge region and less frequently hydrogen bonds
with DFG motif or the flexible conserved lysine residue. In most cases, type I kinase inhibitors
have major problem of cross-reactivity and lack of selectivity, as they inhibit broad range of ki-
nases [57, 62, 63, 64]. A better selectivity profile could be obtained, when the kinase inhibitor
is designed to use the back selectivity binding region (Br-I) for making more protein-inhibitor
interactions; then they are called type I1/2 kinase inhibitors (Figure 3.2).

Later, a new conformation of some kinases, characterized by a closed conformation of the
activation loop, was identified and called the inactive DFG-out conformation. The closed con-
formation of the activation loop prevents binding of both the cofactor ‘ATP’ and the protein sub-
strate. In the inactive state, the DFG motif is recognized by special positioning of its residues,
resulting in a ‘DFG Asp-out’ conformation. In this last conformation, the aspartate residue
points out of the ATP-binding pocket, while the phenylalanine residue occupies the place of the
phosphate region inside the ATP-binding pocket (Figure 3.1b). The last conformational change
provides additional hydrophobic pocket, only available in the inactive conformation, and could
be used for obtaining higher selectivity and discovering wider chemical space for inhibiting the
protein kinases [65].

The first small molecule inhibitor, which targeted this inactive DFG-out conformation, was
Imatinib (GleevecTM). Imatinib is considered the lead of the second generation of kinase in-
hibitors, called type II kinase inhibitors, showing good selectivity profile by inhibiting only
three kinases (Abl, c-Kit, and PDGFR). Imatinib was approved by the FDA as first kinase in-
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hibitor for the treatment of chronic myeloid leukemia (CML). Since then, Imatinib has been
widely used in the targeted therapy of CML (especially Philadelphia-chromosome-positive
chronic myeloid leukemia), GIST, and mastocytosis, as it is potent specific inhibitor of the
signaling kinases related to these tumors (Bcr-ABL, Kit, and PDGFR) [65, 66].

Till 2009, only eight kinase inhibitors have been approved by the FDA for cancer treatment;
four of them belong to type I1/2 kinase inhibitor class (Erlotinib, Gefitinib, Dasatinib, and Lapa-
tinib), while the other four belong to type II class (including: Imatinib, Sorafinib, Nilotinib, and
Sunitinib). More type II multiple kinases inhibitors were later approved. Axitinib, Masitinib,
Pazobanib, and Toceranib were approved by the FDA as c-Kit/VEGFR inhibitors for usage
for different kinds of tumors. Other approved inhibitors for VEGFR kinase family include:
Cediranib, Regorafenib, Semaxanib (SU5416, another Indolinone derivative) and Vandetanib
(VEGFR/RET/EGFR inhibitor) [67, 68]. Bosutinib (approved in 2012 as Bcr-Abl/Src kinases
inhibitor; including all Src family members: Src, Lyn and Hck) [69], Lestaurtinib (Staurosporin-
related, Flt3/JAK2 inhibitor), and also Ruxolitinib (JAK1/2 kinase inhibitor) [70] have been
recently approved.

The first inactive DFG-out conformation was reported for insulin receptor kinase (IRK)
and later for Abl, p38α MAPK , b-RAF, FLT3, Kit, LCK, HCK, KDR, TIE-2, Aurora-A,
FMS/CSFR, MET, Src, Pyk2, and CDK6. In the case of type-II inhibition, it was firstly pro-
posed that the inactive DFG-out conformation is specific to only few members of kinases, which
are characterized by the existence of a small gate-keeper residue. However, inactive DFG-out
conformation was later recognized for TIE and MET kinases in spite of a medium size gate-
keeper. One of the difficulties is that the majority of reported kinase crystal structures repre-
sent the DFG-in conformation (representing 70% of the mammalian kinome crystal structures)
rather than DFG-out conformation (only 3%), while 22% represents an intermediate conforma-
tion [55].

What is important to notice is the fact, that there is no exclusive linkage between the in-
hibitor type and the kinase conformation that it binds to. X-ray crystallography showed the
type-II kinase inhibitor imatinib with un-phosphorylated/DFG-in active confirmation of SYK
kinase in a cis-binding mode making two hydrogen bonds with the hinge region (PDB id: 1xbb)
[71]. However, Imatinib obtains its selectivity from its higher binding affinity to DFG-out con-
formation, as its inhibitory activity against phosphorylated active kinases are always weaker
(Ki for Imatinib inhibition of phosphorylated Abl is 0.9 µM, whereas against unphosphorylated
Abl it is in the low nanomolar range; 0.014 µM) [71]. Type-I1/2 kinase Inhibitors not only
bind to catalytically active “DFG-in” kinases (dasatinib with ABL kinase; PDB id: 1m52), but
it could also bind to catalytically inactive “DFG-in/alpha-C-helix-out” conformation (Lapatinip
with EGFR kinase, PDB id 1xkk), and could even bind to the “DFG-out” conformation if it
makes hydrogen bonds with the hinge region and doesn’t occupy the sugar/phosphate region
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Figure 3.2: (left) Effect of gate-keeper on the size of back selectivity pocket (right) Type I
kinase inhibitor pharmacophore fits only the DFG “in” conformation , while Type II kinase in-
hibitor pharmacophore fits only the DFG “out” conformation. Type I1/2 pharmacophore repre-
sents the potential interactions at the hinge and in the back cavity Br-I, which all conformations;
active and inactive and intermediate, can provide. (adapted from [54])

Table 3.1: Comparison of general properties of types: I , II, and III kinase inhibitors.

KI Type I and I1/2 Type II Type III

Activation state Active or inactive inactive Active or inactive

Require DFG-out
conf.?

No Yes No

Phosphorylation
state- sensitive

Usually not Usually sensitive Usually not

Binding site ATP (+Br-I) ATP + allosteric (Ext. Br-I)
Allosteric, far

from ATP

Hinge binding Yes Possible, Not required No

ATP-competition Yes Yes, indirectly No

Apply to every
kinase

Yes
Depends on the stability of DFG-out

conf.
No, very few

kinases

Selectivity
Usually low, better
selectivity for I1/2

High selectivity, Allosteric site
provide a key for improvement.

High selectivity

Developed
resistance

Mutations inside
ATP-pocket only

More mutations: ATP-pocket, P-loop,
A-loop, and Juxtamembrane

Not reported
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(the location of DFG’s phenylalanine in the case of the DFG-out conformation). An example is
SB203580; a p38 MAP kinase inhibitor that binds equally to both DFG-in and DFG-out confor-
mations [72, 73, 74]. This new type of kinase inhibitors, which bind to the two conformations,
was called type I1/2 kinase inhibitor (Figure 3.2).

Type I1/2 KI emerged as hybrid combination of the two types, making the same traditional
hydrogen bonds with the hinge region and extending into the back selectivity region Br-I (in the
active conformation DFG-in); establishing interactions with some residues, usually involved in
type-II inhibitors binding. The size and the shape of that back selectivity hydrophobic pocket
depend mainly on the size of the gate-keeper residue. By targeting the kinase with small gate-
keeper, it is possible to use the large back selectivity cavity of the ATP-binding pocket to get
more interactions, allowing for more novelty in the chemical space and better affinity and se-
lectivity. Another type of kinase inhibitors is type III kinase inhibitors, which are actually
allosteric inhibitors that don’t target the ATP-binding pocket, but other allosteric sites far from
ATP-pocket. Therefore; they are non-ATP-competitive and usually they show high selectivity,
because the allosteric sites are highly specific and found only in some kinases (Table 3.1).

3.3 Binding Mode of Kinase Inhibitors and Overcoming
the Mutation-induced Resistance

It is well reported that many tumor types are actually associated with persistent activation
of kinases, either by over-expression of the kinases themselves or their ligands, by autocrine
loops, or by activating gain-of–function mutations. The most occurring molecular event is
actually the activating gain-of-function mutations in the kinase domain, which could be divided
to the two types: deletions/mutations in the juxtamembrane domain, and mutations residing
close to the activation loop. The difference between these two types of the mutations is mainly
the different sensitivity of the mutant kinases to the inhibition by different kinase inhibitors.
Ongoing research revealed that both kinds of gain-of-function mutations, which reside in the
kinase domain, are able to cause a complex effect on the kinase conformations, reactions, and its
affinity to the natural ligand/cofactor or other discovered inhibitors. One of the most important
effects of kinase domain’s mutations is changing the dynamic balance between the different
kinase conformations (Active vs. Inactive); leading to the dominance of the active conformation
(Figure 3.3) [58, 75, 76, 77].

Another important conformational change occurs in the phosphate-binding loop mutations
(P-loop’s mutants) [58]. The P-loop conformation also plays a significant role in determining
the kinase binding pocket’s shape and its dynamics [78, 79]. Mutations of P-loop and the
activation loop (A-loop) often destabilize the inactive conformation (DFG-out) in favor of the
active conformation (DFG-in).
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Figure 3.3: Schematic representation of the dynamic equilibrium between active, inactive, apo
and type-I and type-II inhibitor-bound kinase conformations. The activating mutations usually
shift the dynamic balance in the direction of the active conformation.

Some other types of mutations have been reported to cause resistance against some devel-
oped kinase inhibitor (e.g. imatinib), as a result of losing of a hydrogen bond or steric clash
effect. The size of the “gatekeeper residue” appeared to be quite important in determining the
size of the kinase active site, and subsequently its mutation is a main cause for developing a
resistance. An example of the gatekeeper mutation is the mutation T670I/E and T315I/F/D/N
in c-Kit and Abl kinase respectively [76, 78].

Type-II kinase inhibitors have usually better selectivity profile obtained by their prefer-
ential binding to the DFG-out conformation, and consequently their potent inhibition activ-
ity is restricted to only few kinases [65, 66, 80]. However, they are also affected by many
resistance-conferring mutations; including the gate-keeper mutation, P-loop mutations, and
gain-of-function mutations. Developing resistance to the therapy by Imatinib was reported in
some cases and studies, and was attributed to some mechanisms; such as Imatinib’s extracellu-
lar sequestration by P-glycoprotein active transport, the compensation for the Imatinib-inhibited
signaling pathway by another kinase pathway (Src-kinases-regulated signaling pathway), or
possibly by some point mutations, which affect the Inhibitor-kinase binding directly or indi-
rectly; by changing the protein/inhibitor interactions inside the binding pocket or by changing
the kinase’s conformational balance (Figure 3.4a).
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It is important to differentiate between two kinds of resistance to therapy by Imatinib; an
‘early’, ‘innate’, ‘primary’ resistance and a ‘delayed’, ‘acquired’, ‘secondary’ resistance. The
primary resistance to the therapy with kinase inhibitor appears in 3-6 months from the start
of the therapy, while the secondary resistance develops after the response to the therapy [76,
78, 81, 82]. Most of the early resistance cases of GIST therapy were reported with mutations
in exon 9, while secondary resistance could be associated with mutations in exons 13 and 17,
which could affect the binding pocket and the activation loop [81, 83, 84, 85].

Sunitinib binds to the DFG-out conformation of the kinases, making two hydrogen bonds
with the hinge region; the NH and O of the dihydrooxaindole ring forms the donor-acceptor
feature of the kinase inhibitor, while the phenyl ring of the DFG’s phenylalanine residue (F811
in c-Kit structure) contributes in making pi-pi hydrophobic interactions with the inhibitor. This
interaction with the phenylalanine residue of DFG motif is not possible in the other DFG-in
conformation, because the phenylalanine orients away outside of the binding pocket in this last
conformation. Therefore, Sunitinib has low activity against the mutant forms of kinases with
activating mutations; mainly D816 and Y823 in the case of c-Kit kinase [75] (Figure 3.4b).
On the other hand, Dasatinib (as representative of type I1/2 kinase inhibitor) occupies only
the ATP-binding pocket, making double hydrogen bonds with the hinge residues and extending
inside the back selectivity pocket. According to this binding mode, dasatinib binds close to the
gatekeeper residue and it is affected by the gatekeeper’s mutation, but its binding affinity would
not be affected by the activating mutations; such as the activation loop’s mutations or the jux-
tamembrane mutations, because it binds to both conformations [86, 87, 88] (Figure 3.4c). The
previous three examples of kinase inhibitors suggest that there is a trade off between improved
selectivity and overcoming mutation-based resistance.

Beside the problem of resistance-conferring mutations, the importance of the kinase in-
hibitor’s selectivity should be kept in mind. In most cases, the broad range of kinase inhi-
bition (like the case of Dasatinib and Sunitinib) could be a reason of ‘off-target side-effects’,
especially the off-target cardiotoxicity. The main important mechanisms of this cardiac toxic-
ity could be listed as: Mitochondrial abnormalities observed in cardiomyocytes, inhibition of
AMP-activated Protein Kinase (a known off-target), PDGFR inhibition (especially PDGFRβ),
inhibition of kinases that affect the vasculature (especially the VEGFR family), inhibition of
cardiac ion channel inhibition (especially the hERG potassium channel), and also the interac-
tion with adenosine receptors [89, 90, 91].
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(a) Imatinib bound to the cKit DFG-out conformation
(PDB id: 1T46). Imatinib is affected by two types of
mutations; the binding pocket’s mutations and activa-
tion loop’s mutations.

(b) Sunitinib bound to c-Kit DFG-out conformation
(PDB id: 3F0G), but without using the allosteric
pocket. It is affected by the activation loop’s muta-
tions, but not by binding pocket’s mutations.

(c) Dasatinib docked to DFG-in cKit structure (PDB
id: 1PKG) by aligning the last to the mutant c-ABL
structure with Dastatinib (PDB id: 1M52); Dasatinib
is not affected by activation loop’s mutations, but is
affected by binding-pocket’s conferring mutations

Figure 3.4: Mutational hotspots in the c-Kit kinase: mutations conferring the ATP-binding
pocket (T670 and V654; shown in blue) and the activation loop’s mutations (D816 and Y823;
shown in violet).

37



CHAPTER 3: STRUCTURAL ASPECTS OF PROTEIN KINASES

3.4 The Important Role of Water Molecules inside
The ATP-binding Pocket

The binding process between a small-molecule ligand and a protein usually incorporates
displacement of the water molecules, which fill the binding pocket of the protein satisfying
the hydrogen donors/acceptors of the protein structure. This process of water displacement
could have two energetic advantages: enthalpically favorite when a polar/charged group or
hydrogen donor/acceptor of the ligand displace the water making alternative hydrogen bonds,
and entropic gain as the released water molecule get more freedom in the bulk solvent rather
being restricted inside the protein pocket [92, 93, 94]. Therefore, displacing water molecules
from the binding pocket by a ligand is mostly considered an energetically favorable process,
leading to entropically-driven higher binding affinity. However, many studies have showed
the importance of stable structural water inside the binding pockets. These stable structural
water molecules should maintain 3 to 4 hydrogen bonds in order to keep the same number of
hydrogen bonds, which a water molecule can usually make in the bulk phase [92, 93]. That is
usually considered as compensation between the enthalpy gain and the entropy penalty.

In a case of a strongly bound water molecule inside a decoy kinase and a weakly bound
water molecule inside a targeted kinase in identical locations, removing the water by a de-
signed inhibitor would give it higher affinity with the targeted kinase than with the decoy kinase
[95, 96, 97, 98, 99, 100, 101]. However, it is not an easy task to determine the thermodynamic
stability of water molecules inside the protein binding pockets, as it is important to give special
care for the enthalpy-entropy compensation [98, 99, 100, 102, 103]. Water molecules could also
play bridging roles in the protein-ligand interactions, and these water bridges could also be ther-
modynamically favorable or unfavorable depending on the targeted system [92, 104, 105, 106].
Rigorous free energy methods (e.g. FEP and TI) have been used to estimate the thermodynamic
contribution of the structural water molecules to the binding process [107, 108, 109, 110], in
spite of their high sensitivity to the details of computation [103]. The performance of the im-
plicit solvent binding energy methods (PBSA/GBSA) have been investigated and reviewed in
numerous papers, showing different degrees of success and failure depending on the studied
enzyme/inhibitor systems [111, 112, 113, 114, 115]. One of the problems of implicit solvent
models is their incapability to account for the role of water molecules inside solvent-exposed
binding pockets like the ATP-pocket in the kinases.

In the absence of a crystal structure of the kinase-inhibitor complex, one of the critical issues
for performing precise free energy calculations is the right prediction of the water content and
location sites inside the binding pocket, especially if these hydration sites locate deep inside
the binding pocket and participate in mediating the protein-ligand interactions [116, 117, 118].
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Some computational algorithms have been suggested to predict the location of the potential
hydration sites inside the binding pocket and then to determine their occupancies and thermo-
dynamic properties [98, 116, 119, 120, 121].

A water placement algorithm called JAWS has been developed by Michel and Jorgensen et

al. for predicting the hydration sites in the protein-ligand complexes [98]. This method has been
applied on a series of 17 inhibitors of p38 MAP kinase, previously reported by Pearlman and
Charifson [122]. A previous application of MM-PBSA method was performed by D. Pearlman
showing that this series is a challenging case study for many scoring functions [114]. The ap-
plication of a very rigorous free energy method, namely Monte-Carlo/free energy perturbation
(MC/FEP) simulations, was applied to this series of p38 kinase inhibitors, and was only able to
correctly predict the affinities after using JAWS-derived water distributions [99].

Another approach is the inhomogeneous solvation theory, which was proposed by Lazaridis
[123, 124], and was applied to different systems of protein/ligand complexes. Later, the inho-
mogeneous solvation theory was used in developing a method called WaterMap (Schrodinger,
Inc.), applied in different examples to explain the selectivity of some inhibitors of FXa, HIV-1
protease, PDZ domains, and different kinases [125, 126, 127, 128, 129]. This approach per-
forms both prediction of the water locations (hydration sites) and their thermodynamic proper-
ties (enthalpy and entropy). In a study comparing the hydration sites thermodynamics between
SRC and GSK3 kinases, it was shown that the water molecules located close to the hinge are
similar in the energetic aspects, while there are more differences in the location and thermo-
dynamic properties of the water molecules in the deep selectivity pocket [128]. While the
WaterMap method correctly describes the hydrophobic interactions and the hydrophobic ef-
fect resulting from displacing the solvent by the ligand, WaterMap doesn’t account for binding
energy terms, such as protein-ligand electrostatic interactions, or ligand-based terms like intra-
molecular strain and desolvation penalty. Some publications suggest combining the WaterMap
method with a continuum electrostatics method like GBSA [130, 131]. Other theories for the
solvation have been developed depending on integral equation method; such as 3D-RISM [132],
which was later applied in AMBER package.

A. Fernandes has introduced the concept of ’dehydron’, defined as “Water-exposed in-
tramolecular hydrogen bonds in native folds of the proteins” [133, 134]. These dehydrons
represent wrapping defects in the protein, which favor the removing of the surrounding wa-
ter to enhance the electrostatic interaction in that area. He later used the dehydron theory to
reengineer the kinase inhibitor imatinib by adding a methyl group on the pyridine ring. It was
hypothesized, that the small methyl group could efficiently dehydrate the hinge residues C673
and G676 in c-Kit, making the modified inhibitor (called WBZ_4) more selective toward c-
Kit and less active for Abl kinase, which is responsible for the cardiotoxicity of the inhibitor
[135]. This observation gave new insight about the importance of hydration sites in the binding
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pocket for determining the binding affinities and explaining the selectivity between the different
kinases.

3.5 Computational Methods and Structure-based Design
of Kinase Inhibitors

Selective inhibition of kinases is now well established as a new paradigm in targeted therapy of
cancer. The selectivity of the developed kinase inhibitors is a crucial feature, as the inhibition
should be restricted to one or two kinases in the targeted signaling pathway for the considered
kind of tumor. Another challenge in developing selective kinase inhibitors is the capability of
the tumor cells to develop acquired resistance during the therapy.

After the emergence of the highly-selective type-II kinase inhibitors, the major problem
of identifying this type of kinase inhibitors is the application of traditional assay methods
and high-throughput screening, as the traditional assay methods mainly depend on the acti-
vated phosphorylated kinases. To overcome this problem, new inhibition assays should be
developed depending on phosphorylation-state-independent binding assays [74], competition
binding to immobilized probes, or temperature-dependent unfolding of the protein [136, 137].
However, the high expense of these kinds of bioassays would make the high-throughput screen-
ing method very expensive and impractical. The computational structure-based methods and
QSAR-guided modifications have proved to be helpful in the development of type-II kinase in-
hibitors [55]. Computational methods and binding energy approaches are helpful to get insight
into the inhibitor-kinase binding process, to predict the conformational changes, and to gener-
ate predictive models for ranking and estimating the binding affinity of novel compounds. Two
challenges still exist when we are dealing with flexible targets like kinases:

A) Can we predict the ‘actual binding mode’ of novel series of kinase inhibitors, without
having an x-ray crystal structure of the kinase/inhibitor complex?

B) Can we estimate the binding affinities or obtain the right ranking for novel kinase in-
hibitors using the computational free binding energy methods?

In the next chapters, we will analyze the performance of two end-point free binding energy
methods applied to two cases of kinase inhibitors, for predicting the binding mode in the first
case study, and for predicting and ranking the inhibitors according to their estimated binding
affinities in the second case study.
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Chapter 4

Predicting The Binding Mode for
Kinase Inhibitors:
1-Aza-9-Oxa-Fluorene Derivatives as
GSK3β/CDK2 Inhibitors

4.1 Introduction

4.1.1 Glycogen Synthase Kinase 3 and CDK2 Kinase

Glycogen synthase kinase-3β (abbreviated as GSK3β) or tau-phosphorylating kinase is one
of the serine/thereonine kinases, which was first discovered for its role in glycogen synthesis.
Later, GSK3β was also identified to play an important role in the neurons of the brain [138,
139, 140, 141]. GSK3β phosphorylates tau, which is a microtubule-associated protein, leading
to the disassociation of this protein from the microtubules [139, 142, 143]. The detached tau
protein is the essential component that leads by aggregation to the formation of neuro-fibrillary
tangles (NFT), which is one of the remarkable pathological hallmarks in the brains of Alzheimer
disorder (AD) patients. Increased levels of activated GSK3β were observed in the brains of
Alzheimer patients [143, 144, 145, 146]. GSK3β was also linked to the aggregation of PolyQ
protein, which is considered one of the hallmarks of another neurodegenerative disease, namely
Huntington’s disease [139, 147].

Additionally, GSK3β inhibits the insulin signaling by phosphorylation of the insulin recep-
tor substrate proteins IRS1 and IRS2, while insulin stimulation, in turn, inhibits GSK3β by
activating Akt kinase (PKB), which phosphorylates GSK3β at a conserved N-terminal serine
[146]. The involvement of GSK3β in glycogen metabolism and insulin signaling could result

41



CHAPTER 4: PREDICTING THE BINDING MODE FOR KINASE INHIBITORS

in an increased resistance to insulin and developing of diabetes type II [145, 146]. In a variety
of recent studies, GSK3β over-expression and activation were noticed and associated with can-
cer progression [145, 148]. GSK3β is also involved in stem-cell renewal, cell-division cycle,
differentiation, apoptosis, circadian rhythm, transcription, and insulin action [145, 149, 150].

Cyclin-dependent kinases (CDKs) are one of the key regulators of the cell cycle; therefore
they became important pharmaceutical targets for the discovery of anti-proliferative drug candi-
dates [151, 152, 153]. Their activity is dependent on the binding to other partner proteins called
cyclins. CDK2 is one of these kinases, whose complex with cyclin E forms a restriction point at
S-phase checkpoint, while its complex with cyclin A is necessary for the completion of phase
S, controlling G1- to S-phase checkpoint [153, 154].

Both GSK3 and CDKs kinases belong to the CMGC class of serine/threonine protein kinases
sharing high homology and sequence similarity, especially within the ATP binding pocket. This
homology would explain why many CDK2 inhibitors are also potent inhibitors of GSK3β kinase
[149, 155, 156]. One challenge of the kinase research is optimizing the selectivity for one of
these two kinases (CDK2 or GSK3β) over the other. One concern is that the involvement of
GSK3β in Wnt and hedgehog signaling pathways would make the correct assessment of CDK2
inhibition effects quite difficult [148]. Another reason for developing novel selective inhibitors
is that GSK3β is considered a potential target for treating Alzheimer’s disease (AD) [147, 157].

4.1.2 GSK3β/CDK2 Kinase Inhibitors

Some of the well-known pan-kinase inhibitors were co-crystallized with GSK3β kinase. The
non-hydrolysable ATP-analog (AMP-PNP) is a famous pan-kinase inhibitor, which binds to
many kinases making similar interactions with the ATP-binding pocket residues. The structure
of GSK3β was resolved with AMP-PNP showing a binding mode, where the adenine ring makes
hydrogen bonds with the hinge region residues, D133 and V135, and hydrophobic interactions
with I62, V70, A83, V110, L132, Y134 and L188. Other important functional residues, such as
the conserved lysine K85 and the αC helix’s glutamate E97, also interact with other parts of the
inhibitors. The glycine-rich P-loop interacts with the phosphate groups through bridging water
molecules protecting them from the bulk water. Another example of pan-kinase inhibitor is the
natural product Staurosporine, which is a potent ATP-competitive kinase inhibitor for the vast
majority of the kinases. Staurosporine mimics the binding of ATP by two conserved hydrogen
bonds with the hinge residues D133 and V135 [158].

Among the selective inhibitors of both GSK3β and CDK2 kinases, alsterpaullone (9-nitro-
paullone) is the most potent GSK3β inhibitor of the paullones series (GSK3β IC50 value of
4 nM) and also potent inhibitor of CDK1/2/5. The interactions between the alsterpaullone
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and the kinases are composed of two direct hydrogen bonds with the hinge residue V135 and
a water-mediated interaction with D133. Two indirubin derivatives; indirubin-3’-monoxime
(IC50 against GSK3β 22 nM) and 5-iodoindirubin-3’-monoxime (IC50 against GSK3β 9 nM),
have been recognized as the most potent GSK3β inhibitors among the series of indirubins (IC50

values against GSK3β in the 5–50 nM range and against CDKs in the 50–100 nM range)[158]
(Figure 4.1).

The ATP binding pockets of these two kinases were compared with the intention of high-
lighting potential regions for gaining selectivity for GSK3β versus CDK2 (Table 4.1). Some
of the significant differences between GSK3β/CDK2 sequences that could be used for develop-
ing selective inhibitors are the gatekeepers’ change L132 (GSK3β)/F80 (CDK2), the residue
opposite to gatekeepers M101 (GSK3β)/L55 (CDK2), and inside the binding pocket C199
(GSK3β)/A144 (CDK2). These differences change the entrance size to the back selectivity
pocket (Br-I), and also the inside surface of the ATP-binding pocket. The inner part of ATP
pocket becomes more flat in the case of GSK3β and more hilly (more hills and valleys) in the
case of CDK2. Another structural difference in the sequence and structure at the entrance of
the ATP pocket is the sequence P136-E137-T138-Y140-R141(in GSK3β)/H84-Q85-D86-K88-
K89 (in CDK2), which is determinant for defining the boundary region of the ATP pocket (Table
4.1 and Figure 4.3). A salt bridge (E137-R141), which is noticed in GSK3β, is not observed
in CDK2. In CDK2, K89 is pointing inwards to the ATP pocket interacting with residue I10
from the P-loop. These last differences contribute to the formation of a different opening in the
ATP-pocket’s entrance at the front selectivity region (Br-II) (See Figure 4.3) [159].

The first selective GSK3β inhibitor was reported in 2003 by J. Avila et al. and named AR-
A014418 [159]. The GSK3β-selective inhibitor AR-A014418 is a thiazole derivative, which is
an ATP-competitive kinase inhibitor showing specific inhibition against GSK3β in a panel of 26
kinases. AR-A014418 was co-crystallized with GSK3β showing three hydrogen bonds with the
hinge residue V135. The nitro group attached to the thiazole is able to make polar interaction
with the known salt bridge Lys85-Glu97, mediated by water molecules. The aromatic thiazole
ring makes hydrophobic interactions with the hydrophobic residue L188, while the attached
phenyl ring can make hydrophobic interactions with I62 from the glycine-rich P-loop. The
differences in the entrance region of the ATP pocket could be used for explaining the selectivity
of AR-A014418. The side chain of K89 in CDK2 would prevent the inhibitor’s interaction
with residue I10, which corresponds to I62 in GSK3β. The residue change T138 (GSK3β)/D86
(CDK2) also prevents the good fitting of the phenyl ring in that area [159, 160] (Figure 4.2).
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Figure 4.1: Chemical structures of some reported GSK3β/CDK2 kinase inhibitors.

Figure 4.2: A) Binding of AR-A014418 to GSK3β. its selectivity for GSK3β inhibition emerges
mainly from its fitting to the molecular surface of GSK3β kinase. B) Inhibitor I-5 bound in
GSK3β active site (colored in blue), aligned with CDK2 active site (colored in pink). The
residue change T138(GSK3)/D86(CDK2) explains the selective inhibition of GSK3β by I-5; as
its carboxylate is incompatible to bind close to CDK2 aspartate D86.
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A series of sulphonamide-pyrazine derivatives was also reported as potent GSK3β inhibitors
with 100-fold selectivity versus CDK2 for some derivatives (SP-18) [160]. GSK3β and CDK2
were both co-crystallized with a piperazine-sulphonamide derivative 23 (GSK3β Ki = 20 nM,
CDK2 Ki = 10 nM); (PDB id: 4acc and 4acm respectively) (Figure 4.3). The comparison of
the two crystal structures shows that the non-planar part of the sulfonamide-pyrazines is located
at the hilly region of CDK2’s ATP pocket. The selectivity of these piperazine-sulphonamide
derivatives is explained by the shape complementary; the less hilly and flat ATP site’s surface
of GSK3β is more able to leverage the non-planar scaffold of sulfonamide-pyrazine derivatives
[160].

Another inhibitor; called I-5 (a 3-anilino-4-arylmaleimides derivative), was found to be a
selective inhibitor for GSK3β, FGFR-1, and VEGFR-3, while it doesn’t inhibit CDK2 [158].
Beside the usual hydrogen bonds with the hinge region, the carboxylate group makes salt bridge
with the residue R141 in GSK3β and another water-mediated hydrogen bond with residue T138.
T138 in GSK3 corresponds to N571 in FGFR-1 and D86 in CDK2. That could explain the
unfavorable binding of I-5 with CDK2, as the similar negatively charged groups of D86 and the
inhibitor’s carboxylate repel each other (Figure 4.2).

4.1.3 The 1-aza-9-oxafluorene Derivatives

Novel 1-aza-9-oxafluorene derivatives have been synthesized at the Institute of Pharmacy (Martin-
Luther-University Halle) in the group of PD Dr. A. Hilgeroth. Different substituents at the posi-
tion 3, 5, 6, and 7 produce inhibitors with variable potency of inhibiting GSK3β/CDK2 kinases
[161, 162, 163]. The main substituents are substituent R1 on location 6, and R2 on location 3,
location 4 is always substituted by a phenyl (Table 4.2).
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Table 4.1: Comparison between ATP Pocket Residues of CDK2 and GSK3, non-conserved
residues are marked in bold

GSK3 K60 I62 G63 N64 G65 S66 F67 G68 V69 V70
CDK2 E8 I10 G11 E12 G13 T14 Y15 G16 V17 V18
GSK3 Q72 L81 A83 K85 E97 M101 V110 L112 L130 L132
CDK2 K20 V29 A31 K33 E51 L55 V64 L66 L78 F80
GSK3 D133 Y134 V135 P136 E137 T138 Y140 R141 K183 P184
CDK2 E81 F82 L83 H84 Q85 D86 K88 K89 K129 P130
GSK3 Q185 N186 L187 L188 C199 D200 G202
CDK2 Q131 N132 L133 L134 A144 D145 G147

Figure 4.3: X-ray crystal structure of compound SP-23 in the GSK3β ATP site (A, 4acc.pdb,
blue surface) and with CDK2 ATP site (B, 4acm.pdb, orange surface). Several residue changes
have been marked to show their effect on the molecular surface; C199 (GSK3β)/A144 (CDK2),
T138 (GSK3β)/D86 (CDK2), and R141 (GSK3β)/K89 (CDK2).
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Table 4.2: General Structures and binding affinities of the 1-aza-9-oxa-Fluorene derivatives.

Compound
code

R1 R2 R3 R4 R5 GSK3-β Ki
(µM)

CDK2/Cyclin
E Ki (µM)

2a OH OMe H H H 14.8 24

2a_2 OMe OMe H H H n.a (≥ 1000) 147

2a_3 OH OMe H H 4-Me 9.9± 0.8 50

2a_4 OH OMe H H 2-OMe n.a (≥ 1000) 267

2a_5 OH OMe H H 4-OMe 16.3± 3.1 241

2b OH OBn H H H 5.8 ± 1.2 6.4 ± 0.2

2b_2 OMe OBn H H H 0.02 n.a (≥ 1000)

2c OH OH H H H 0.02 0.6

2c_2 OMe OH H H H n.a (≥ 1000) n.a (≥ 1000)

2d_1 OH -CONH2 H H H 4.1 ± 0.4 n.a (≥ 1000)

2d_2 OH -CON(CH3)2 H H H 1.5 ± 0.2 n.a (≥ 1000)

2d_3 OH -CONH(CH3) H H H 9 -

2d_5 OH -CONH(C3H7) H H H 4.4 -

2d_6 OH CONH(C2H4)NH2 H H H 4.8 -

3a_2 OH OBn Me H H 5.8 -

3a_3 OH OBn OMe OMe H 5.4 -
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4.1.4 Aim of this Study

Protein flexibility has a significant effect on docking experiments and the prediction of pro-
tein/ligand binding modes. In the case of flexible targets like kinases, it is quite common to
notice that crystal structures of the same kinase complexed with different ligands show induced
fit changes. In a virtual screening experiment, cross-docking using different crystal structures
might be helpful for generating two or more clusters of docking solutions as possible binding
modes. Often, fast conventional scoring functions, which are used in docking programs, are
unable to choose the ‘actual’ or ‘correct’ binding mode. Here, we will compare the power and
performance of two kinds of end-point physics-based scoring methods (MM-PBSA and Linear
Interaction Energy) for choosing the most probable binding mode for a series of novel 1-aza-9-
oxafluorene derivatives with two kinases; GSK3β and CDK2. A detailed analysis of detected
possible binding modes will be performed using MD simulations. Later, an analysis of the tra-
jectories and the induced fit effects will be conducted, together with applying different binding
free energy methods.

4.2 Computational Methods

4.2.1 X-Ray Structures of GSK3β and CDK2

More than 25 x-ray crystal structures are available for the GSK3β with varieties of substrates
and inhibitors. Analyzing these crystal structures shows quite low RMSD when comparing the
backbone of these different kinase crystal structures. Still, we can notice a large flexibility with
the orientations of the side chains for some critical residues in the binding pocket: like K85,
R141, and L132 (the Gatekeeper). Moreover we can notice differences in the conformation
of the glycine-rich P-loop depending on the size and the binding mode of the bound inhibitor.
Table C.1 in Appendix C presents a list of the available GSK3β structures with the name of the
bound ligand and the noticed distance between residue F67 (from the P-loop) and residue D186
(from the DFG motif), while Table C.2 presents an RMSD matrix comparing 10 of GSK3β

structures after performing superposition of the 3D-structures.

The published structure (1j1b.pdb) owns the best crystal resolution at 1.80 Å, representing
the complex of GSK3β kinase with the inhibitor AMP-PNP, while the other structure (1q3d.pdb)
represents the complex of GSK3β kinase with the natural inhibitor Staurosporine (crystal resolu-
tion at 2.20 Å). The RMSD between the two structures is 0.69 Å. The structure (1q3d.pdb) was
chosen because it owns a special orientation of R141’s side chain outwards the binding pocket
as a result of binding with large inhibitor (Staurosporine). The orientation of the residue R141
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has an impact on the resulting docking solutions, as it will be explained in the results (4.3.1).
The structure of CDK2 (2wih.pdb) represents a complex of CDK2 kinase with pyrazolo[4,3-
h]quinazoline derivative (resolution at 2.50 Å). It is mainly chosen because it is a complex of
CDK2 with a tricyclic-core inhibitor [164] (See Figure C.1 in Appendix C). The crystal struc-
tures of both kinases; GSK3β (PDB id: 1q3d and 1j1b) and CDK2 (PDB id: 2wih), were pre-
pared using the software MOE 2011 by adding the hydrogen atoms using protonate3d protocol.
For the further docking studies, the bound ligand and crystal waters were removed.

4.2.2 Molecular Docking

The 1-aza-9-oxafluorene compounds were docked into the crystal structure of GSK3β (PDB
id: 1q3d and 1j1b) using GOLD 5.0, considering the Nitrogen NZ of the residue K85 as center
of the binding pocket, while the radius of the binding pocket was set to 15 Å. For CDK2, the
crystal structure (PDB id: 2wih) was taken for the docking using GOLD 5.0 considering the
Nitrogen NZ of the residue K33 as the center of the binding pocket with radius of 15 Å.

In the case of GSK3β kinase, the used constraints were one protein hydrogen bond to one
of the residues: the hinge residue V135 (in the hinge region), residue D200 (the aspartate of the
DFG motif), or the flexible lysine K85. The used constraints for docking with CDK2 were one
protein hydrogen bond to one of the residues: L83 (in the hinge region), D145 (the aspartate of
the DFG motif), or the flexible lysine K33. All the docking solutions were later collected and
clustered by calculating the rmsd from the top-scored solution combined with visual inspection,
in order to obtain possible binding modes.

4.2.2.1 Scoring Functions

GOLD and Glide scores were used as scoring functions, applied on all obtained docking solu-
tions; GOLD score is a force-field-like function with four (or five) terms:

GOLD score = Shb ext + SvdW ext+ Sint tor+ SvdW int+ ( Shb int)
where Shb ext is the protein–ligand hydrogen-bond score, SvdW ext is the protein-ligand van

der Waals score, Sint tor is the ligand torsional strain energy score (internal torsion), and SvdW int

is the contribution due to intra-molecular strain in the ligand [165]. Shb int is the contribution
to the fitness due to intra-molecular hydrogen bonds in the ligand (switched off usually in the
settings of GOLD, by default). GOLD score is taken as the negative of the sum of the component
energy terms, so that larger fitness scores are better.

The Standard version of Glide score is developed starting from the empirical fitness function
ChemScore (by Eldridge et al. [166]); which estimates the binding energy as follows:
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∆Gbind = ∆G0 + ∆Ghbond Shbond + ∆Gmetal Smetal + ∆Glipo Slipo + ∆Grot Hrot

Shbond , Smetal, Slipo are scores for hydrogen-bonding, acceptor-metal, and lipophilic interac-
tions, respectively. Hrot is a score representing the loss of conformational entropy of the ligand
upon binding to the protein. Glide score was developed using the same electrostatic, van-der-
Waals, and lipophilic−lipophilic interaction terms (of ChemScore), while the hydrogen-bonding
term of ChemScore is separated in Glide into differently weighted components (the donor and
acceptor are both neutral, one is neutral and the other is charged, or both are charged) [167].
Glide score is trained to give a predicted estimation of the binding affinities.

4.2.3 Molecular Dynamics Simulation and Binding Energy Methods

The docking complexes of GSK3β or CDK2 with the docked ligands were processed using
AMBER11 and AMBER tools 11 packages. In the case of the GSK3β (PDB id: 1q3d and 1j1b
), 7 chloride ions were added to neutralize the protein charges, then the protein complex was
centered inside a cubic solvent box of TIP3P water molecule’s model with a buffer zone of 10
Å.

4.2.3.1 Molecular Dynamics Simulation

AMBER package version 11 was mainly used for performing the molecular dynamic simula-
tions of the proposed binding modes with the protein kinases’ crystal structures. Antechamber

was used to parameterize the docked ligands and assign the atom types to the generalized AM-
BER force field (GAFF) [44], with partial charges calculated according to the semi-empirical
method AM1-BCC, while the kinase structures were processed using the software tleap to be
parameterized using the force field AMBERff99SB [168, 169] and generating the final param-
eters of docking complexes.

Three minimization steps were carried out: the first step is 1000 minimization cycles us-
ing conjugate gradient with restrains of (50 kcal.mol-1.Å-1) applied on the whole complex,
the second minimization step is also 1000 cycles of conjugate gradient with restrains of (50
kcal.mol-1.Å-1) applied on only the protein while leaving the ligand free, the third step is 1000
of cycles of conjugate gradient without any restrains. The minimized system was passed to a
heating phase for 50 ps, during which the temperature of the system was raised from 0 K to
300 K; using Langevin temperature equilibration scheme and restrains of (10 kcal.mol-1. Å-1)
applied on the whole complex (the protein and the ligand). After heating the system in constant
volume, water density relaxation was done by using constant pressure 1.0 bar under constant
pressure periodic boundary (isotropic position scaling method with relaxation time 2 ps). The
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pressure relaxation phase lasted another 50 ps and also using restrains of (10 kcal.mol-1.Å-1)
applied on the whole complex. Equilibration simulation was performed later for 150 ps: in the
first 50 ps with a restrain force of (10 kcal.mol-1.Å-1) applied on the whole complex, the second
50 ps the same restrain force was applied only on the protein, and then for the last 50 ps the
simulation was done without restrains. SHAKE algorithm was employed to remove the bond
stretching freedom. After performing the equilibration phase, free molecular dynamics was
performed for 10 nanoseconds with (2 fs) time step and with (9 Å) cut-off for the non-bonded
interactions. Particle Mesh Ewald was employed to compute the electrostatic interactions dur-
ing the simulation.

4.2.3.2 MM-PBSA Calculations

The free energy is estimated by summation of the molecular mechanics energy (4EMM) of the
complex estimated by the force field as combination of the van der Waals Interactions (4EvdW)
and electrostatic interaction (4Eele), the electrostatic solvation penalty (4Gele-sol) estimated
by Poisson-Boltzman model (4GPB) or Generalized Born model (4GGB), and the non-polar
solvation term (4GSA) ,which is dependent on the solvent-accessible surface area (SASA). An
additional solute entropy term (-T4Ssolute) should be added to get an estimation of the binding
free energy, if the ligands belong to different series. For the complex (protein/ligand), we can
estimate the binding energy as the difference between the free energy of the complex and the
summation of the free energies of the free protein and the free ligand [170, 171, 172, 173] (For
detailed description of this method, see Appendix A, A.1).

4Gbind = Gcomplex – (Gprotein + G ligand) =4EvdW +4Eele +4GPB +4GSA – T.4Ssolute

The MM-PBSA (molecular mechanics Poisson–Boltzmann surface area) calculations were
performed on 25 snapshots obtained from the last nanosecond of an MD trajectory. The van der
Waals (4EvdW) and electrostatic (4Eele) interaction between ligand and protein in gas phase
are calculated with an infinite cutoff using the SANDER module. The electrostatic free energy
of solvation (4Gele-sol) is calculated with numerical solvation of the Possion-Boltzmann (PB)
equation as implemented in the python script MMPBSA.py in AMBER11. Default parameters
for the PB solver; such as a grid spacing at 0.5 Å, dielectric constants of 1.0 for solute and 80.0
for implicit PB solvent (others values like 2 and 4 has also been used as dielectric constants of
the solute), solvent probe radius at 1.4 Å (mbondi radii), and ionic strength at 0 M concentration,
are used. The non-electrostatic free energy of solvation (GSA) was calculated as linear function
of the solvent accessible surface area (SASA); 4GSA = γ.SASA + b where γ and b were set at
default values for the applied implicit solvent model. For MM-PBSA calculations: the nonpolar
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contribution was determined on the basis of solvent-accessible surface area (SASA) using the
LCPO method: 4GSA= 0.0072 × 4SASA (Amber 10 user’s manual). The Entropy term will
not be considered, as we are dealing with a congeneric series of ligands.

For LR-MM-PBSA (LIECE) models, the energy components of PBSA/GBSA calculations,
depending on one snapshot or multiple MD snapshots, were used to be fitted to the experimental
binding energy4Gbind (RT ln Ki), according to the following equations:

1- three-parameter model with decomposed electrostatics: (4Gbind) = α4EvdW+ β14Ecoul+
β24Gsolv

2- four-parameter model with decomposed electrostatics: (4Gbind) = α4EvdW+ β14Ecoul+
β24Gsolv+γ4GSA

4.2.3.3 Linear Interaction Energy (LIE)

According to the LIE approach, the free binding energy could be approximated by this
equation:

∆Gbind = ∆Gpolar +∆Gnonpolar = β ∆Eele+ α ∆EvdW

= β ( <Vel
lig-surr >bound – <Vel

lig-surr>free)
+α (<VvdW

lig-surr >bound – <VvdW
lig-surr>free) + γ

(equation LIE)

Where < > denotes MD or MC averages of the non-bonded van der Waals (vdW) and
electrostatic (el) interactions between the ligand and its surrounding environment (lig-surr),
i.e. either the solvated receptor binding site (bound state) or just solvent (free state). The ∆

denotes the change in these averages when transferring the ligand from the receptor binding
site (bound state) to the solution (free state). The parameters of this equation are the weight
coefficients α and β for the non-polar and polar binding energy contributions respectively. An
additional constant γ is possibly needed to enhance the description of the non-polar contribution
[174, 175, 176] (For detailed description of this method, see Appendix A, A.2).

After performing MD simulation for sufficient time to reach stable inhibitor/protein com-
plex, the protein and the ligand from the last snapshot were parameterized to be sumulated
in Gromacs4.5. Parameterization of the protein was done according to AMBERff99SB force
field, while the parameters of the small-molecule ligand was obtained using AmberTools11’s
antechamber, in order to calculate the ligand partial charges according to AM1-BCC method
using gaff atom-types. ACPYPE program was used to convert antechamber parameters to Gro-
macs topology and coordinates’ files. These complexes were solvated in 15 Å octahedral box of

52



CHAPTER 4: PREDICTING THE BINDING MODE FOR KINASE INHIBITORS

water solvent in TIP3P model and then simulated for 500 ps. Two simulations were carried out:
one of the ligand in water (“free simulation”) and another of the ligand bound to the solvated
protein (“complex simulation”).

Steepest descent method was used for energy minimization with 500 steps as maximum
number of iterations. Position-restrained equilibrium was performed later for 20 picoseconds
using Berendsen thermostat with time step 2 fs (10000 steps), in which the protein atoms were
restrained by a force constant of 1000 kJ.mol-1.nm-2 to their initial position. During the simu-
lation, The LINCS algorithm was used to constrain bonds, allowing for an integration step of 2
fs. The long electrostatic interactions were calculated at every step with the LRF (local reaction
field) method with a short-range electrostatic interaction cut off of 1 nm. The V-rescale thermo-
stat was used to keep simulation temperature constant by coupling (tau = 0.1 ps as relaxation
time) the protein, ligand, and solvent separately to a temperature bath of 300 K. The pressure
was maintained isotropic using Berendsen barostat with coupling (tau_p = 0.5 ps as relaxation
time).

The gromacs’ analysis programs (g_dist and g_energy) were used to control the changes
of the distance between the P-loop and A-loop during the simulation, g_energy was used for
the calculation of different ligand-environment energies in the complex bound form: the van-
der-Waals interactions between ligand-protein, the van-der-Waals interactions between ligand-
solvent, electrostatic interactions ligand-protein, electrostatic interactions ligand-solvent

(∆<Vvdw
lig-prot>bound, ∆<VvdW

lig-solv>bound , ∆<Vel
lig-prot>bound , ∆<Vel

lig-solv>bound re-
spectively).

The ligand alone was also solvated in a octahedral box of water TIP3P model, and simu-
lated for 500 ps, again to use g_energy for calculating different ligand-environment energies
in the free form: vdW interaction energy between ligand-solvent and electrostatic interaction
energy between ligand-solvent are abbreviated as (∆<VvdW

lig-solv>free, ∆<Vel
lig-solv>free), re-

spectively.

4.2.4 Water Hydration Maps

Solvent distributions grid were calculated using ptraj by binning atom positions from RMS
coordinate fit frames over all protein heavy atoms at 0.8-ps intervals into (0.5-Å)3 grids over
10-ns trajectories. A value was attributed to each grid element to represent the number of times
the coordinates of water oxygen atoms were within the (0.5-Å)3 grid element. These grids can
then be contoured using the density delegate of UCSF Chimera. In the graphics of the water
hydration presented (Figure 4.9), the contouring of the water density was performed at 175
hits per (0.5-Å)3, which represents 175 visits (three times expected bulk water density) to each
(0.5-Å)3 grid element over the 10 ns trajectory (12500 frames). For 12500 frames, the expected
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number of waters per grid element, assuming bulk water density, is 52.25 (For 1000 MD frames,
the expected visits for water to a grid element is 4.18).

4.3 Results

4.3.1 Suggested Binding Modes of 1-aza-9-oxa-fluorenes with GSK3β

Docking of the available compounds with two of the available crystal structures of GSK3β

(PDB id 1q3d, and 1j1b) suggests mainly two different binding modes, which were obtained by
collecting and clustering all the docking solutions. The different potential binding modes are as
follows:

Binding mode 1: the tricyclic 1-aza-9-oxa-fluorene binds adjacent to the hinge region where
the nitrogen can make a hydrogen bond with the hinge residue V135. Ring B and its substituent
(R2) are positioned inside the binding pocket to be close from the gate keeper residue L132.
In this case, the hydroxyl or methoxy group (R1) on ring A is directed towards the solvent
boundary close to the residue R141 (Figure 4.4).

Binding mode 2: this binding mode is distinct from the first suggested binding mode, as
the nitrogen and the oxygen atoms are located in the direction of the activation loop. They
could make hydrogen bonds either with the flexible lysine residue K85 or the activation loop’s
aspartate D200. The hydroxyl or methoxy group (R1) on ring A makes a hydrogen bond with
the hinge residue V135, while the substituent of ring B (R2) are directed to the solvent boundary
in the phosphate-binding region (Figure 4.5).

The first binding mode was mainly derived while docking the 1-aza-9-oxafluorene com-
pounds to the crystal structures of 1q3d, as the orientation of the residue R141 outwards from
the binding pocket allows the rigid tricycles to bind adjacent to the hinge residues. In other
crystal structures, such as the case of the crystal structure 1j1b, the side chain of R141 side-
chain takes another orientation inside the binding pocket, preventing close binding to the hinge
region residues (Compare the orientation of R141 in both figures 4.4 and 4.5).

In the case of docking with CDK2 structure, both GOLD and Glide scores gave preference
for binding mode 1. Both scores of 1-aza-9-oxa-fluorene in binding mode 1 are higher than
the scores in binding mode 2, as the (R2) substituent on location 3 can make higher van-der-
Waals interactions with the aromatic gate-keeper of CDK2 (F80). In the case of CDK2, the
gate-keeper; F80, and the opposite residue; L55, offer wide opening for the back selectivity
pocket; providing enough space for a bulky substituent in that area. On the other hand, binding
mode 2 in docking solutions with GSK3β structure obtained higher scores than binding mode
1 for most of 1-aza-9-oxa-fluorene derivatives. The opening of the back selectivity pocket in
GSK3β structure between the gate-keeper; L132, and the opposite residue; M101, is relatively
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narrow; resulting in steric clashes with bulky R2 substituents. These steric clashes could explain
why binding mode 1 is less favorable in the case of GSK3β. However, for both binding modes
neither of the docking scores can generate significant correlation with the experimental binding
affinities (Tables C.3, C.4 and Figure C.2 in Appendix C).

Figure 4.4: Binding mode 1: Docking solution of compound 2b with GSK3β (PDB id: 1q3d).

55



CHAPTER 4: PREDICTING THE BINDING MODE FOR KINASE INHIBITORS

Figure 4.5: Binding mode 2: Docking solution of compound 2b at GSK3-β (PDB id: 1j1b).
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4.3.2 Molecular Dynamics Simulations and Trajectory Analysis

To have further insights into the binding of the 1-aza-9-oxafluorenes trying to determine the
correct binding mode, and to explain the selectivity profile of these kinase inhibitors, binding
free energy methods were applied on both suggested binding modes, including the implicit
solvent methods (PBSA and GBSA) and the Linear Interaction Energy method (LIE) using
explicit solvent. The correct binding mode is supposed to provide the right ranking of the
ligands’ affinities using one of the binding energy methods.

The protein conformation of the kinase has possibly an impact on the estimated binding en-
ergy value. Therefore, monitoring the conformation of the glycine-rich P-loop was performed
in combination with the two applied methods. The distance between the P-loop and A-loop,
defined as the distance between CA of F67 and CA of D200 (in the case of GSK3β), shows sig-
nificant differences in the P-loop movement depending on the nature of R1 and R2 substituents
of the inhibitors. Monitoring the P-loop fluctuations during the course of MD simulation runs
with different binding modes can show different induced-fit effects depending on the binding
mode of the inhibitor. For derivative 2b in binding mode 1 with GSK3β, the steric clashes
between the bulky benzyl and GSK3 gate-keeper residue (L132) would require bigger induced-
fit effects; compared to the induced-fit effects in binding mode 2. The average P-loop/A-loop
distance for simulation with 2b in binding mode 1 will reach 13.5 Å, while it is only 12.3 Å in
binding mode 2. The important impact of the glycine-rich P-loop on the protein kinase confor-
mational energy was addressed previously in some research studies [115, 177]. To consider the
impact of the P-loop conformation and its distance from the activation loop, the binding energy
calculations have been performed on different kinase conformations, recognized depending on
the P-loop/A-loop average distance as a descriptor for the conformational change.

4.3.3 MM-PBSA Calculations

Both methods, which depend on implicit solvent model; i.e. MM-PBSA and LR-MM-
PBSA, did not result in a correct ranking of the studied inhibitors or a significant correlation
with the experimental binding affinities. Both methods were applied on the total dataset of 1-
aza-9-oxa-fluorene derivatives, and also on subsets, chosen on the basis of the P-loop/A-loop
distance (average value) observed during the MD simulation. However, for all studied subsets
both implicit solvent models were not able to generate acceptable models for predicting the
binding affinity. Neither for binding mode 1 nor for binding mode 2 was there a significant
correlation. (The results are summarized in the Appendix C; Tables C.5, C.6, and C.7 for
GSK3, Tables C.8 and C.9 for CDK2, and Figure C.3).
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4.3.4 LIE Models for GSK3β

To select the right binding mode, which is able to explain the variation of the binding affinities
of the 1-aza-9-oxa-fluorene series with the two kinases, Linear Interaction Energy (LIE) method
was applied in a trial to obtain predictive models of the binding free energy 4Gbind with the
two studied kinases.

We converted the experimental values of the binding assays (Ki or IC50) to binding free
energy values using the equation:

4Gbind = RT ln (Ki)

which could also be written as:

4Gbind = RT ln (IC50) + c ; where c is a constant (c = –RT ln [1 + S/Km]), which doesn’t
change as long as we measure IC50 using identical assays methods [178].

All LIE calculations were performed, starting from snapshots of the inhibitors’ series with
GSK3β structures (3dqw.pdb was used for binding mode 1 and 1j1b.pdb for binding mode 2).
The snapshot was taken from the last nanosecond and selected to have a distance, between the
atom CA of activation loop residue D200 and the atom CA of the P-loop’s residue F67, equal
to the average distance between these two exact atoms during 10 ns MD simulation.

To consider the effects of the induced fit, recognized by the change of P-loop/A-loop dis-
tance, we tried to classify the dataset into subsets depending on the average distance observed
during the MD simulations. Multiple linear regression was applied on to inhibitor subsets show-
ing a similar A-loop/P-loop distance, i.e. keeping A-loop/P-loop average distances within a
small range (1-1.5 Å). The generated LIE models were assessed by statistical parameters: the
coefficient of determination (r2) and root mean squared error (rmse). A special care was given
to the coefficients of van-der-Waals energy and electrostatic energy terms; not to violate the
basic principles of molecular recognition and binding. As the physical understanding of molec-
ular recognition process applies that higher van-der-Waals ligand-protein interactions results in
higher binding affinities, a positive coefficient of van-der-Waals energy term is required when
LIE models are generated using the free binding energy (∆Gbind) [175, 174]. Different com-
bination of the empirical values for the electrostatic and van-der-Waals terms coefficient were
applied in LIE equation to get the best correlation with the experimental data (β= 0.5, 0.4 or
0.3, and α= 0.6, 0.3, 0.18, or 0.13) [174, 179] (See Appendix A, A.2).

4.3.4.1 LIE models for GSK3β (Binding mode 1)

In the case of GSK3β kinase, applying multiple linear regression on the whole dataset of 1-
aza-9-oxa-fluorene compounds in the binding mode 1 using LIE electrostatic and hydrophobic
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energy terms gave a very poor correlation with r2= 0.08 and root mean square error (RMSE=
1.40). Applying linear regression on individual subsets, considering the different P-loop/A-loop
distance, didn’t improve the correlation. All the developed models in this binding mode own
negative coefficient for one of the energy terms at least. The results are summarized in the
Appendix C; Tables C.10, C.11, and C.12).

4.3.4.2 LIE models for GSK3β (Binding mode 2)

In the case of GSK3β kinase inhibitors in binding mode 2, applying multiple linear regression
on the whole dataset of 1-aza-9-oxa-fluorene compounds using the LIE electrostatic and hy-
drophobic energy terms gave a model with poor correlation (r2 = 0.14 and rmse=1.35) (Table
4.3). However, applying multiple linear regression on individual subsets, clustered depending
on the observed P-loop/A-loop distance, improved the correlation significantly.

Applying the multiple linear regression on the first subset (larger average P-loop/A-loop
distances in the range 12.1-13.15 Å) including compounds (3a_3, 2d_1, 2b_2, and 2b) gen-
erated two significant models with good correlation and low RMSE values (Table 4.4). The
second subset of compounds (smaller average P-loop/A-loop distances in the range 10.37 –
11.95 Å), including compounds (2d_5, 2a_5, 2d_6, 2a_3, 2a, 3a_2, 2d_3, and 2c) generated
three statistically significant models (Table 4.5).

The best model for predicting the binding energies of the first subset is:
∆Gbind (pred.) = 0.80(∆<Vel

lig-surr> ) + 0.16 (∆<VvdW
lig-surr>) – 12.5 (r2=0.97, RMSE=0.41)

The second significant model predictable model for the same dataset:

∆Gbind (pred.) = 0.63 (∆<Vel
lig-surr> ) + 0.32 (∆<VvdW

lig-surr>) – 8.22 (r2=0.91, RMSE=0.73)

For the second dataset, a significant model with low RMSE was obtained:

∆Gbind (pred.) = 0.86 (∆<Vel
lig-surr> ) + 0.23 (∆<VvdW

lig-surr>) – 7.89 (r2=0.78, RMSE=0.65)

Another model, which owns closer values to the standard coefficients of LIE approach’s
coefficients, could also be developed:

∆Gbind (pred.) = 0.48 (∆<Vel
lig-surr> ) + 0.13 (∆<VvdW

lig-surr>) – 7.40 (r2=0.78, RMSE=0.93)

By applying linear regression using partial least squares on the second subset, a model with
higher correlation could be developed, but with low value for the coefficient of van-der-Waals
term (α). Cross-validation shows that this model is over-fitted: (β =0.93, α=0.01, γ= –11.71,
r2=0.93, RMSE=0.42, q2 =0.05), See Table 4.5.
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Table 4.3: LIE model obtained for the whole dataset of 1-aza-9-oxafluorene derivatives us-
ing their binding affinities against GSK3β, starting from docking solutions in binding mode 2.
Compounds are ranked according to the descending order of P-loop/A-loop distance.

∆Gbind (pred.) = β(∆<Vel
lig-surr> ) + α (∆<VvdW

lig-surr>) + γ

Cmp
code

Ki ∆Gbind P-loop/A-
loop

β = 0.21 α= 0.13 γ=–6.95

BM2 GSK3β (obsrv.) ∆<Vel

lig-surr>

∆<VvdW
lig-surr> Average

dist (10 ns)
r2= 0.14, RMSE=1.35

3a_3 5.4 –7.28 9.95 –18.25 13.5±0.7 –7.27

2d_1 4.1 –7.44 9.07 –13.12 13.3±0.8 –6.78

2b_2 0.02 –10.6 6.29 –18.81 13.15±0.7 –8.11

2b 5.8 –7.23 10.64 –18.28 12.3±0.8 –7.13

2d_5 4.4 –7.40 4.71 –17.37 11.9±0.8 –8.25

2a_5 16.3 –6.61 4.68 –14.60 11.8±1.2 –7.89

2d_6 4.8 –7.34 4.89 –14.45 11.6±0.7 –7.83

2a_3 9.9 –6.91 4.93 –14.92 11.48±1.1 –7.88

2a 14.8 –6.67 5.76 –13.28 11.43±1.4 –7.49

3a_2 5.8 –7.23 4.8 –18.2 11.35±0.7 –8.34

2d_3 9 –6.90 5.09 –13.06 10.99±0.8 –7.61

2c 0.02 –10.6 1.31 –12.88 10.37±0.7 –8.37

2d_2 1.5 –8.04 7.18 –13.01 8.2±0.6 –7.16
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Table 4.4: LIE models obtained for subset 1 (average P-loop/A-loop distance between 12.1
to 13.15 Å) using their binding affinities against GSK3β, starting from docking solutions in
binding mode 2. Compounds are ranked according to the descending order of P-loop/A-loop
distance.

Comp
code

∆Gbind (pred.) = β(∆<Vel
lig-surr> ) + α (∆<VvdW

lig-surr>) + γ

GSK3β,
BM2

Avg. Dist ∆<Vel
lig-surr> ∆<VvdW

lig-surr> exp. β =0.80
α=0.16
γ=–12.5

β =0.63
α=0.32
γ=–8.22

3a_3 13.5±0.7 9.95 –18.25 –7.28 –7.51 –7.86

2d_1 13.3±0.8 9.07 –13.12 –7.44 –7.39 –6.76

2b_2 13.15±0.7 6.29 –18.81 –10.6 –10.55 –10.35

2b 12.3±0.8 10.64 –18.28 –7.23 –6.96 –7.44

Model r2

(RMSE)
0.97
(0.41)

0.91
(0.73)

Table 4.5: LIE models obtained for subset 2 (average P-loop/A-loop distance between 10.37
to 12.02 Å) using their binding affinities against GSK3β, starting from docking solutions in
binding mode 2. Compounds are ranked according to the descending order of P-loop/A-loop
distance.

Comp
code

∆Gbind (pred.) = β(∆<Vel
lig-surr> )+ α (∆<VvdW

lig-surr>) + γ

GSK3β,
BM2

Avg. Dist ∆<Vel
lig-surr> ∆<VvdW

lig-surr> exp. β =0.93
α= 0.01

γ= –11.71

β =0.86
α=0.23

γ= –7.89

β =0.48
α=0.13

γ= –7.40

2d_5 11.9±0.8 4.71 –17.37 –7.40 –7.50 –7.83 –7.53

2a_5 11.8±1.2 4.68 –14.60 –6.61 –7.50 –7.22 –7.05

2d_6 11.6±0.7 4.89 –14.45 –7.34 –7.30 –7.00 –7.04

2a_3 11.48±1.1 4.93 –14.92 –6.91 –7.27 –7.08 –6.97

2a 11.43±1.4 5.76 –13.28 –6.67 –6.48 –5.99 –6.45

3a_2 11.35±0.7 4.8 –18.2 –7.23 –7.4 –7.94 –7.8

2d_3 10.99±0.8 5.09 –13.06 –6.90 –7.1 –6.51 –6.75

2c 10.37±0.7 1.31 –12.88 –10.6 –10.48 –9.72 –8.55

Model r2

(RMSE)
0.94

(0.42)
0.78

(0.65)
0.78
(0.93)
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4.3.5 LIE Models for CDK2

4.3.5.1 LIE models for CDK2 (Binding mode 1)

In the case of binding mode 1 with CDK2 kinase, applying multiple linear regression on the
whole dataset of 1-aza-9-oxa-fluorene compounds using LIE energy terms as descriptors gave
no significant model (r2 = 0.42, RMSE=0.95, with negative coefficient for the van-der-Waals
energy change). Considering different subsets; clustered according to the observed A-loop/P-
loop distance, did not improve the LIE models. In all cases, the generated models had problems
in the physical sense, as they obtained negative coefficient for the van-der-Waals energy change
(The results are summarized in the Appendix C; Tables C.13 and C.14).

4.3.5.2 LIE models for CDK2 (Binding mode 2)

In the case of binding mode 2 with CDK2 kinase, performing multiple linear regression on
the LIE electrostatic and hydrophobic energy differences gave a good correlation (r2 = 0.56 ,
rmse=1.05); Table 4.6.

We could improve this model by applying the linear regression on a subset of compounds
in a small range of P-loop/A-loop distance. Applying the multiple linear regression on the LIE
electrostatic and van-der-Waals energies terms for a subset with average P-loop/A-loop distance
in the range (8.1-9.39 Å); including (2a , 2a_3, 2a_4, and 2a_5), generated three statistically
significant models with good correlation coefficient (Table 4.7).

The best model for predicting the binding energies of that subset is:
∆Gbind (pred.) = 0.40(∆<Vel

lig-surr> ) + 0.21 (∆<VvdW
lig-surr>) – 4.11 (r2=0.88, RMSE=0.42)

Another significant model could be generated with higher correlation, but also with higher
RMSE:

∆Gbind (pred.) = 0.24(∆<Vel
lig-surr> ) + 0.09 (∆<VvdW

lig-surr>) – 4.8 (r2=0.91, RMSE=0.73)
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Table 4.6: LIE model obtained for the whole dataset of 1-aza-9-oxafluorene derivatives us-
ing their binding affinities against CDK2, starting from docking solutions in binding mode 2.
Compounds are ranked according to the descending order of P-loop/A-loop distance.

∆Gbind (pred.) = β(∆<Vel
lig-surr> )+ α (∆<VvdW

lig-surr>) + γ

Cmp
code

Ki ∆Gbind P-loop/A-
loop

β = 0.46 α= 0.06 γ=–6.9

BM2 CDK2 (obsrv.) ∆<Vel
lig-surr> ∆<VvdW

lig-surr> Average
dist (10 ns)

r2= 0.56 , RMSE=1.05

2b 6.4 –7.17 4.16 –14.52 11.11±1.6 –5.92

2a 24 –6.38 0.55 –12.03 9.93±1.4 –7.45

2a_3 50 –5.94 3.40 –13.2 9.43±1.2 –6.19

2a_4 267 –4.93 4.68 –13.5 9.56±1.2 –5.61

2a_5 241 –4.99 6.83 –16.94 8.1±0.85 –4.83

2c 0.6 –8.50 0.33 –11.04 7.51±0.70 –7.49

2a_2 147 –5.30 4.78 –15.88 7.6±0.60 –5.72

Table 4.7: LIE models obtained for compounds’ subset (average P-loop/A-loop distance be-
tween 8.1 to 9.39 Å) using their binding affinities against CDK2, starting from docking solutions
in binding mode 2. Compounds are ranked according to the descending order of P-loop/A-loop
distance.

Comp
code

∆Gbind (pred.) = β(∆<Vel
lig-surr> )+ α (∆<VvdW

lig-surr>) + γ

CDK2,
BM2

Avg. Dist ∆<Vel
lig-surr> ∆<VvdW

lig-surr> exp. β =0.40
α=0.21

γ= –4.11

β =0.24
α=0.09
γ= –4.8

β =0.5
α=0.16
γ= –4.8

2a 9.93+1.4 0.55 –12.03 –6.38 –6.50 –5.70 –6.45

2a_3 9.43±1.2 3.40 –13.2 –5.94 –5.59 –5.17 –5.21

2a_4 9.56±1.2 4.68 –13.5 –4.93 –5.14 –4.89 –4.62

2a_5 8.1±0.9 6.83 –16.94 –4.99 –5.01 –4.68 –4.09

Model r2

(RMSE)
0.88

(0.42)
0.91

(0.73)
0.86

(0.85)
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4.3.6 Selection of Most Probable Binding Mode

LIE calculations show that binding mode 2 is more likely to be the actual binding mode of the
1-aza-9-oxa-fluorene derivatives. Binding mode 2 is able to generate significant LIE models,
describing the variance of binding affinities of the 1-aza-9-oxa-fluorene derivatives with both
kinases GSK3β and CDK2, and correlating the binding affinity with the energy calculation of
these ligands. This idea of selecting the ’correct’ binding mode depending on the strength of
LIE models and their predictive potential was previously suggested and applied by Nervall and
Aqvist et al. [178]. Considering the high flexibility of kinases and the significant induced fit
effects observed for different inhibitors, a special care should be given to the conformational
changes. LIE models, which are statistically significant and physically acceptable, were gener-
ated using subsets of compounds, clustered according to their P-loop/A-loop average distance
observed in the MD simulations.

The applied method, which is named “P-loop/A-loop-distance-dependent LIE approach”,
successfully generated predictive models after dividing the complete dataset of 1-aza-9-oxa-
fluorene derivatives into two subsets, depending on the observed P-loop/A-loop average dis-
tance, calculated over an MD simulation for 10 nanoseconds. The LIE models of binding mode
2 can predict the free binding energy (4Gbind) to GSK3β kinase with significant correlation;
giving r2 equal to 0.97 and 0.78 for the two subsets. In the case of binding mode 2 with CDK2
kinase, it was possible to obtain another LIE models, predicting the binding energy (4Gbind)
with r2 of 0.56 for the whole dataset of inhibitors, and 0.88 for one subset with restricted range
of P-loop/A-loop distance. However, the high correlation obtained by these models shouldn’t
be given a high importance, as the number of the included data points is small. The strength
of LIE models, generated by binding mode 2, is that the statistical parameters are much higher
than the statistical parameters of binding mode 1’s models, and that the energies’ coefficients
are physically acceptable and improved after restricting the range of induced fit effects. Binding
mode 2 could also rationally explain the variation of the binding affinity in accordance with the
chemical modifications and the change in the protein/ligand interactions, together with the des-
olvation energies and induced-fit effects. On the other hand, binding mode 1 could only generate
weak models in both cases: with GSK3β and CDK2 kinase. Moreover, all models, generated
by binding mode 1, have a problem in the physical sense; as the coefficients of van-der-Waals
energy term are negative in spite of restricting the range of induced-fit effects.

Simple docking scores (GOLD score and Glide score) gave contradicting results for the fa-
vorable binding mode in the case of two kinases: GSK3β and CDK2. While binding mode 1
was mostly favored over binding mode 2 in the case of CDK2, the second was favored by dock-
ing scores for GSK3β. However, the LIE method doesn’t show such a conflict and support the
same binding mode for both kinases. The discussion will analyze the fitting of the binding mode
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2 with the structures of the two studied kinases, trying to understand the physical and structural
basis of the 1-aza-9-oxa-fluorene derivatives’ binding affinities with these two kinases. For
example, converting the hydroxyl group (R1) to methoxy (in the pairs of compounds; 2a and
2a_2, also 2c and 2c_2) results in a drastic drop in the inhibition, which could only be explained
by binding mode 2; as a result of losing one hydrogen bond in the hinge region (Section 4.4.3.1
will discuss this drop in detail in the case of derivatives 2c and 2c_2). On the other hand, deriva-
tive 2b_2 shows the exact expected drop of inhibition in the case of CDK2, while surprisingly
it shows improved inhibition in the case of GSK3β. However, this surprising change could be
understood, if we combine the desolvation energy in binding mode 2 with the larger induced-fit
effect, as a result of higher mobility of GSK3β’s P-loop (Section 4.4.3.2 will discuss in detail
the case of derivatives 2b and 2b_2).

The predictivity and ranking power of LIE models in binding mode 2 were tested with the
inactive compounds (Ki ≥ 1000). The inactive compounds were excluded from the linear re-
gression calculations of LIE models, as their inhibition constants were not precisely determined.
Therefore, the prediction of these compounds could be considered as a kind of external valida-
tion. Only the LIE models of binding mode 2 could predict the highly active compounds, and
also predict the binding energies of inactive compounds lower than the active compounds. The
statistically weak models of binding mode 1 have failed, as expected, to give any reasonable
ranking of 1-aza-9-oxa-fluorene compounds (Figure 4.6 shows the difference of LIE models’
predictions in both cases: binding mode 1 and binding mode 2; for both kinases).

Figure 4.6: Scatter plots of predicted binding free energy estimates from LIE models vs. exper-
imental binding free energies; for GSK3 (left) and CDK2 (right). Red points (circles) represent
the predictions according to LIE models derived from binding mode 1, while blue points (di-
amonds) represent the predictions according to LIE models derived from binding mode 2.
Empty circles represent the inactive compounds plotted at (∆Gbind(exp.) = –4.14).
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4.4 Discussion

4.4.1 Impact of Kinase Conformational Changes

In a computational study to predict the binding affinity of a series of PIM-1 kinase inhibitors
(imidazo[1,2-b]pyridazine derivatives) [177], a PMF simulation was performed to estimate the
free energy of glycine-rich P-loop’s displacement. The calculation showed a linear relationship
between the free energy of P-loop’s displacement and the displacement distance estimated as
the distance between the two Cα atoms of two residues: the ASP residue of the activation loop
(A-loop) and the PHE residue of the glycine-rich P-loop. This study highlights the importance
of the energy penalty for displacing the P-loop during every binding process with protein kinase
in order to accommodate the ligand inside the binding pocket [177]. A computational estima-
tion of the P-loop’s displacement penalty for about 5 Å was about (13 kcal.mol-1) for PIM-1
kinase[177]. Another study investigated the capability of MM-PBSA method to describe the
selectivity of six kinase inhibitors against a panel of six kinases, and gave also an attention to
the fluctuations of the binding pocket’s residues. This last study reported that the most fluctu-
ating part of the kinase binding pocket is actually the glycine-rich P-loop, and that the natural
inhibitor tends to simulate with its corresponding kinase structure with the least rms fluctuations
for P-loop residues [115].

In our case study of the 1-aza-9-oxa-fluorene derivatives with GSK3β/CDK2, the smallest
derivative 2c obtains its high affinity to GSK3β kinase from its low desolvation penalty and
its small required displacement of the P-loop. Compound 2c has a remarkable low desolvation
penalty, associated with its ability to use two water molecules enhancing the hydrogen bonds’
network with the hinge residues and the activation loop’s residues. The small size of derivative
2c also requires very small displacement of the P-loop to be accommodated inside the binding
pocket. On the other hand, derivatives with bulkier substituents, such as 2b and 2b_2, would
require higher displacement of the P-loop to be accommodated inside the binding pocket.

Despite the fact that the P-loop displacement costs energy, this displacement could help in:
optimizing the enthalpic interactions, changing the desolvation penalty of the ligand binding,
or changing the hydration of the kinase’s binding pocket itself. Hydrophobic van-der-Waals
interactions and also the solvation/desolvation effects could be optimized by the displacement
of the P-loop, such as the pi-pi interaction between the ligand and the aromatic residue of
the P-loop (F67 in GSK3β and Y15 in CDK2). This optimized pi-pi interaction could play an
important role in improving the binding affinity and compensating for the displacement penalty.

The derivative 2b_2 (Ki = 20 nM with GSK3β) can exactly compensate for the energy
cost of the P-loop’s displacement, obtaining a binding affinity similar to derivative 2c. In the
case of 2b_2 with GSK3β, the displacement of the P-loop will increase the van-der-Waals
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interactions through optimizing the stacking between the benzylate group (R2 in 2b_2) and the
aromatic P-loop residue, while keeping the desolvation penalty of 2b_2 low by maintaining
solvent interactions with the hinge region (See section 4.4.3.2).

4.4.2 Role of Water Molecules and Protein Hydration
in the Binding Process

In the kinase structures, it is almost confirmed that the hinge region residues should be satisfied
either by hydrogen bonding with a ligand/substrate or by water molecules. Some studies refer
to a fact that satisfying a hydrogen donor like the backbone NH of a hinge residue is more im-
portant and has bigger effect on the binding energy than satisfying hydrogen acceptors like the
backbone carbonyl groups [180]. Almost all kinase inhibitors satisfy the condition of making
one hydrogen bond at least with the hinge region NH with a possibility to leave the adjacent car-
bonyl desolvated. However, providing extra hydrogen bonds with the two adjacent carbonyls in
the hinge region is one way to increase the binding affinity of the kinase inhibitors [180]. If we
consider the equation4Gbind = RT. ln(Ki), it could be concluded that one order of magnitude in
the equilibrium constant Ki (or IC50) costs around 1.4 kcal.mol−1 at 300 K. That means that the
difference between a kinase inhibitor in the nano-molar range like (2b_2 with GSK3β, Ki =20
nM; 4Gbind = –10.6) to an inhibitor in micro-molar range like (2b with GSK3β, Ki =5.8 µM,
4Gbind = –7.23) is less than 4 kcal.mol−1 at temperature 300 K. Any physical factor, which
subtly interplays in the binding process, would be expected to play a significant role in the
change of the binding affinity, considering such small range of energy differences. These fac-
tors include the ligand desolvation, protein hydration effects, the structural changes and induced
fit effects. The role of the water molecules in mediating the protein-ligand interactions and its
involvement in the entropic effects would also explain many cases of the affinities’ changes.

The role of the solvent’s molecules in the electrostatic ligand-protein interaction couldn’t be
easily accounted for by using the methods of implicit solvent (MM-PBSA/GBSA). Pearlman
has pointed out to the issue of the MM-PBSA method’s poor performance for the scoring of
a congeneric series of p38 MAP kinase inhibitors [114]. An initial placement of structural
water inside the binding pocket using an algorithm called JAWS was necessary to get the right
prediction of the binding affinities for this series [99]. The implicit solvent models (MM-PBSA)
are not able to capture such factors of molecular-length-scale solvation physics, which is better
described by the explicit solvent models [125]. The study of Page and Bates, which also tested
MM-PBSA for describing the selectivity of kinase inhibitors, also showed a poor performance
to rank a collection of six kinase inhibitors depending on their binding affinities to six different
kinases [115].
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4.4.3 Understanding the SAR of 1-aza-9-oxa-fluorene Derivatives

The comparison between the two ATP binding pockets of both GSK3β and CDK2 kinases
reveals some minor differences in the amino acid sequence, which in turn result in differences
in the topological shape of the molecular surface. One of these differences is the gatekeeper
residue (L132/F80 in GSK3β/CDK2) and the opposite residue (M101/L55 in GSK3β/CDK2),
which results in a different size of the back selectivity pocket’s entrance. The second difference
is the change of a sequence (P136-E137-T138) in GSK3β to (H84-Q85-D86) in CDK2. The
impact of this change is significant on the shape of molecular surface around the binding pocket
of GSK3β/CDK2 in the adjacent area to the hinge region (Br-II), inducing differences in the
contact opening between the hinge region and the bulk solvent. The third difference is the
residue change C199 (GSK3β)/A144 (CDK2). These three differences results in a substantial
difference in the overall shape of the binding site’s molecular surface, making the molecular
surface of CDK2 curvier. Other residue changes in the P-loop of the two kinases result in
different conformation of the aromatic residue of P-loop and different mobility of the P-loop
(Table 4.1).

4.4.3.1 Derivatives 2c and 2c_2

The interactions of the most active derivative of the 1-aza-9-oxa-fluorene series (2c), when
it is bound according to binding mode 2, include strong van-der-Waals interactions and also
extensive network of hydrogen bonds with important kinase residues (the hinge residues and the
activation loop’s aspartate); see Figure 4.7. These interactions provide the essential foundation
of the strong binding affinity of the small inhibitor 2c. The desolvation penalty of compound
2c is notably small, according to LIE calculation, when binding mode 2 is considered. On
the other hand, PBSA calculations cannot capture the important role of water molecules in
mediating many of the protein-ligand interactions, and consequently couldn’t correctly predict
the strong binding of derivative 2c.

Derivative 2c makes direct hydrogen bond between its hydroxyl group (R1) and the back-
bone NH of the hinge residue V135, while it uses a water molecule to mediate additional hydro-
gen bond with the backbone carbonyl of the same hinge residue. The methylation of hydroxyl
(R1) would obviously be a reason for losing one of the hydrogen bonds between this hydroxyl
and the hinge residue, making 2c_2 a weaker inhibitor. The second hydroxyl (R2) makes impor-
tant hydrogen bonds with the activation loop residue D200 and with residue N186, mediated by
one of the bulk water molecules. The tricyclic core of 1-aza-9-oxa-flourine makes strong van-
der-Waals interactions with V70, L188 and C199, and a hydrogen bond between the fluorene’s
nitrogen and the flexible lysine K85.
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After MD simulation of 2c with CDK2, similar interactions between the inhibitor and the
kinase residues could be noticed; similar hydrogen bonds network between the hydroxyl group
(R1) and the hinge residue L83 directly with the backbone NH and indirectly with the back-
bone carbonyl mediated by water molecule, a direct hydrogen bond between the 1-aza-9-oxa-
fluorene’s nitrogen and the flexible lysine K33. The other hydroxyl group (R2), close to the
activation loop, makes a network of hydrogen bonds with the DFG aspartate D145 and another
residue N132 with assistance from a bulk water molecule. The derivative 2c also makes van-der-
Waals interactions with the CDK2 residues V18 and L134. The residue A144 (in CDK2) can-
not make equal van-der-Waals interactions comparing to the corresponding C199 (in GSK3β).
Rather, the residue Y15 (the aromatic residue of CDK2’s P-loop) is usually pointing inside the
ATP pocket aligning to the inhibitor’s aromatic tricycles.

Figure 4.7: 10 ns MD simulation of compound 2c complexed with GSK3β structure (PDB
id: 1j1b) (left) and CDK2 (PDB id: 2wih) (right) shows a stable hydrogen bonds network,
established between the ligand and protein with the help of water molecules.

4.4.3.2 Derivatives 2b and 2b_2

Similarly to the case of derivative 2c; derivative 2b shows similar hydrogen bonds network with
both kinases GSK3β and CDK2 using two hydrogen bonds between the hinge region and the
hydroxyl group (R1) (Figure 4.8). The hydrogen bonds’ network is composed of one direct
hydrogen bond with the amide NH of the hinge residue, while donating another hydrogen bond
to the hinge residue carbonyl mediated by a water molecule. In the case of the 2b_2 derivative,
the methoxy (R1) has no hydrogen participating in this hydrogen bond, resulting in weaker
hydrogen bonds network comparing to compound 2b. What makes the difference in the case of
derivative 2b_2 is the difference of P-loop’s mobility between GSK3β and CDK2 kinases.
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Figure 4.8: 10 ns MD simulation of compound 2b complex with GSK3β structure (PDB id:
1j1b, left) and CDK2 (PDB id: 2wih, right) shows a stable hydrogen bonds network, established
between the ligand and protein with the help of water molecules.

In the case of 2b and 2b_2 complex with GSK3β, MD simulation shows up-movement of
the P-loop, leading to increased P-loop/A-loop average distance, which reaches 13.15 Å for
2b_2. Consequently, this increase in the P-loop/A-loop average distance makes the GSK3β ’s
binding pocket more exposed to the bulk water. The calculation of the hydration map (water’s
occupancy map) around the complex of 2b_2/GSK3β refers again to the existence of a favorite
hydration site beside the hinge region. The up-movement of the P-loop keeps the region beside
the hinge more hydrated, making the impact of losing one hydrogen bond much less. According
to LIE calculations, the desolvation penalty of compound 2b_2 is lower than the desolvation
penalty of compound 2b, explaining the increasing activity of compound 2b_2 with GSK3β

(Ki= 20 nM) comparing to compound 2b (Ki = 5.8 µM with GSK3β ).

On the other hand, when simulating 2b_2 with CDK2, the P-loop is aligning down inside the
binding pocket, enhancing the pi-pi staking between the residue Y15 and the inhibitor, which
in turn reduces the exposure of the binding pocket to bulk water and subsequently decrease the
hinge region’s hydration (Figure 4.9). The weaker hydrogen network in the hinge region and
the less exposure to the bulk solvent might explain the reduction of 2b_2 derivative’s binding
affinity to CDK2 (Ki ≥ 1000 µM), comparing to more favorable binding affinity of derivative
2b to CDK2 (Ki = 6.4 µM).
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Figure 4.9: Hydration map for compound 2b_2 after 10 ns MD simulation with GSK3β struc-
ture (PDB id: 1j1b, top) and CDK2 (PDB id: 2wih, bottom) with the highly occupied hydration
sites. The hydration map (colored magenta) shows that the methoxy cannot keep a hydrogen
bond network in the case of 2b_2/CDK2, while the thermodynamically favorable hydration
site, beside the hinge, will be kept in the case of 2b_2/GSK3β. The P-loop in the case GSK3β

moves up optimizing the pi-pi stacking with the inhibitor and consequently making the binding
pocket more hydrated. The figure shows the average structures from the 10 nanoseconds tra-
jectory for every compound presented along with contoured water oxygen atom density. The
water oxygen density were calculated at 0.8-ps intervals over 10-ns trajectories into (0.5-Å)3

grid elements over a 50 Å3 cubed grid centered at the ATP-pocket. The contours represent 175
hits per (0.5-Å)3 grid element.
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4.5 Conclusions

We have conducted a structure-based study together with MD simulations and physics-based
binding energy methods in order to predict the binding mode and to understand the structural
basis of 1-aza-9-oxa-fluorene derivatives’ binding to two homologous kinases: GSK3β and
CDK2. LIE approach appeared to have advantage over implicit solvent methods (MM-PBSA),
obtained by better accounting for the important water molecules’ role in mediating the protein-
ligand interactions. However, generating acceptable LIE model required careful consideration
of the different induced-fit effects. The changes of P-loop/A-loop average distance appeared
to be suitable parameter to estimate the induced-fit effects. Statistically significant and physi-
cally acceptable LIE models could be obtained, when the average P-loop/A-loop distances were
considered for the compounds included in the model.

LIE calculations favor binding mode 2 for both kinases GSK3β and CDK2. In this binding
mode, the substituent (R1) on the location 6 is located in the direction of hinge region, while the
substituent on the location 3 (R2) is located in the phosphate binding pocket. Additionally, this
binding mode allows a hydrogen bond between the pyridine’s nitrogen and the flexible lysine.
The substituent R1 (hydroxyl or methoxy) participates in making hydrogen bond network with
the hinge residue, while different groups as substituent (R2) in the phosphate-binding region
would make different contacts with the A-loop residues (especially the DFG’s aspartate) and
with the P-loop’s aromatic residue; F67 (GSK3β)/Y15 (CDK2). The different interactions with
A-loop and P-loop result in different conformation changes, which can be estimated by measur-
ing the distance between the P-loop’s aromatic residue and the aspartate of DFG motif. Such
conformational change significantly affects other properties, which play an important role in the
protein-ligand binding; including the protein-ligand interactions, the protein’s conformational
energy, the protein hydration, and also the ligand desolvation penalty.
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Chapter 5

Prediction of Binding Affinities for
Kinase Inhibitors:
Application on Mutant c-Kit D816V
Kinase Inhibitors

5.1 Introduction

5.1.1 SCF/c-Kit Signaling Pathway: Role and Biological Importance

The Stem cell factor receptor (c-Kit or named CD117) is a member of the platelet-derived
growth factor receptor (PDGFR) family from the group of receptor tyrosine kinases (RTK). It is
known that c-Kit plays critical roles in regulating numerous aspects of cellular processes; like
cell growth and survival, differentiation of germ cells and melanocytes, and maturation. It is
mainly expressed in the hematopoietic system, in the gastrointestinal system, in germ cells, and
in melanocytes. SCF/c-Kit plays a significant role in activating different signal transduction
pathways: mainly PI3K-Akt signaling pathway, SRC-family kinases pathway, JAK-STAT sig-
naling pathway, and the MAPK pathway, also known as RAS/RAF-MEK-ERK pathway [181].
The critical role of SCF/c-Kit signaling is in hematopoietic cells such as stem and progenitor
cells, but its importance decreases after the differentiation of these cells. The only type of cells,
which stays dependent on SCF/c-Kit pathway for growth and survival, are mast cells [181].

The c-Kit receptor tyrosine kinase consists of a ligand-binding extracellular domain, a
transmembrane region, a cytoplasmic domain which contains the regulatory juxtamembrane
region, and the tyrosine kinase domain. The extracellular domain is composed mainly of five
immunoglobulin-like domains, which play a role in the kinase activation. Some mutations of
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the c-Kit gene could lead to a loss-of-function, which could result in defects in hematopoiesis,
melanogenesis, and gametogenesis (Figure 5.1) [182, 183].

The c-Kit ligands (e.g. the stem cell factor SCF) bind to the extracellular immunoglobulin-
like domains of the c-Kit leading to a receptor homodimerization and activation of its intrinsic
kinase activity. The autophosphorylation of specific tyrosine residues in the c-Kit kinase (such
as Y568 and Y570 of the juxtamembrane domain) activates the kinase function leading to phos-
phorylation of some intracellular substrates triggering some downstream signaling pathways,
like RAS-ERK pathway and PI3-Kinase pathway [181, 184].

Auto-regulation of the kinase activity is controlled mainly by a conformational change of the
activation loop (A-loop). In the auto-inhibitory state, A-loop adopts an inactive conformation,
interrupting the access of the cofactor (ATP) and the protein substrate to the kinase catalytic site.
Upon the phosphorylation of some conserved tyrosine residues of the juxtamembrane domain,
the A-loop adopts an active conformation, which facilitates the approach of the chelating com-
plex (MG+2/ATP, magnesium ion with adenosine triphosphate) and substrates to their binding
pockets in the kinase domain. It is proposed that Juxtamembrane (JM) region plays an autoin-
hibitory role, as JM domain interacts with the N-terminal lobe of the monomeric kinase domain
causing the autoinhibition, until the ligand-induced dimerization leads to phosphorylation of
JM residues and consequently to c-Kit activation [185].

The activation of protein kinases may gain an independence from external stimuli by differ-
ent mechanisms. One of these mechanisms is specific mutation of different codons inside the
encoding genes of the proto-oncogene kinases. For c-Kit, one of the most frequent mutations
is the mutation of codon 816 of c-Kit kinase gene in exon 17, which results in substitution of
residue D816 with valine, tyrosine, phenylalanine, or aspargine [186]. The mutation D816V
has been often reported in most patients of known mastocytosis [187]. Another mechanism is
a deletion in the juxtamembrane domain, which affects the regulatory role of the JM domain,
which in turn results in a constitutive activation of c-Kit without binding to any stimuli or ligand.

5.1.2 Gain-of-Function Mutations and the Cancer Pathology

Many types of tumors have been associated with over-expression or activation mutation of c-
Kit. It is estimated that 50-80% of the gastrointestinal stromal tumors (GISTs) have activation
mutation in the expressed c-Kit, while 28-88% of the small cell lung cancer (SCLC) cell line
is characterized by an over-expression of c-Kit. Activation (gain-of-function) mutations; like
D816V, have been reported in many types of tumors: the mastocytosis, acute myeloid leukemia
(AML), germ cell tumors, and gastrointestinal stromal tumors (GISTs) [181, 184]. Systematic
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Figure 5.1: c-Kit signaling pathway, SCF indicates stem cell factor; STAT3, signal transducer
and activator of transcription 3; K, tyrosine kinase domain. The MAPK pathway is denoted as
RAS/RAF- MEK-ERK and the PI3K pathway as PI3K-AKT-mTOR (Adapted from Rönnstrand
et al. [183]).

mastocytosis (SM) is highly associated with mutations in exon 17 (codon 816); the mutation
D816V is found in almost 90% of SM patients, beside other activating point mutations such as
D816Y, D816F, and D816H (See Table 5.1).

Table 5.1: The common c-Kit Mutations in different Human Tumors

TUMOR TYPE C-Kit MUTATION
Mastocytosis D816V, D816Y, D820G, V560G

GIST V559A, V559D, W557R, dup 502-503,
various4 551-576

AML 4418,4419,4418-419, D816V, D816Y
Sinonasal NK/T cell lymphoma V825A, D816N

Germ cell tumor D816H

Results from Rönnstrand et al. also indicated that the signal transduction pathways, acti-
vated by the mutant c-Kit D816V, are different from the ones activated by the wild-type c-Kit
[181, 184]. The mutation of the “gatekeeper residue”, which affects the size of the kinase
active site, was also detected. An example of the gatekeeper mutation is the mutation T670I/E
and T315I/F/D/N in c-Kit and Abl kinases, respectively.

The GIST tumor is mostly characterized by constitutively activated c-Kit, as a result of
losing the autoinhibitory function. In the case of GIST, the activation of c-Kit is a result of
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deletion or mutation in the juxtamembrane domain [188, 189]. In other types of tumors, like
acute myeloid leukemia (AML) and systemic mast cell disease (SMCD), the activation of c-Kit
is attributed to mutations in the proximity of the activation loop; mainly D816V and D816Y.
While the first mutant activated form of c-Kit (the JM mutant form) usually shows good sen-
sitivity to the famous kinase inhibitor Imatinib (GleevecTM), the second kind of mutations
(Activation loop mutations) D6816V/Y and Y823D shows more resistance to the therapy by
Imatinib [65, 83, 84, 190, 191, 192]. Indolinone derivatives, e.g. SU6577, SU11652, SU11654,
SU11655, SU6668, and SU11248 (Sunitinib, SutentTM), have shown good activity in inhibiting
some mutant forms of c-Kit; like T670I (gatekeeper mutation) [75, 193].

5.1.3 C-Kit Kinase Inhibitors: Activities with Mutant Forms

After the emergence of imatinib, it became common to categorize the known kinase inhibitors
into two wide types:

• known Type I c-Kit kinase inhibitors include: (Figure 5.2a)

1. PKC412 is a developed Staurosporine-derived tyrosine kinase inhibitor, which is found
to be active inhibitor against PKC, KDR (VEGFR2), PDGFRα, Flt3, and c-Kit. PKC412
shows high activity against activated c-Kit with activation loop mutation (IC50 against
mutant form D816V IC50=33-95 nM, against the wild type c-Kit IC50=138 nM, while
against other mutations IC50=146-365 nM) [184, 194, 195].

2. Nocodazole was originally identified as anti-microtubule agent, and then it was used in
clinical cancer therapy. Nocodazole shows high affinity to some kinases like Abl, c-Kit,
BRAF, and MEK. A special feature of Nocodazole is its activity against the gatekeeper
mutant Abl T315A and the c-Kit T670I [196].

3. Dasatinib is more potent against the WT c-Kit and other Imatinib-resistant mutant types,
including activation loop’s mutations D816H/V, while it is 1000-fold weaker against the
gatekeeper mutant c-Kit T670I [78, 86, 87, 88].

• Type II c-Kit kinase inhibitors include: (Figure 5.2b).
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1. Imatinib: is the first developed type II kinase inhibitor (also known as GleevecTM (USA),
GlivecTM (Europe) or STI571). It received FDA approval for treatment of CML and
GIST, after it had shown good selectivity profile as potent inhibitor of the kinases BCR-
Abl, c-Kit, and PDGFR. However, CML was found resistant to therapy with Imatinib,
when the kinase BCR-Abl is mutated on some points in the P-loop (Y253F and E255K),
mutation of the gatekeeper residue M315I, and the activation loop’s mutation H396R
[77]. GIST has also showed resistance to imatinib therapy in the cases of c-Kit muta-
tions, mainly the gatekeeper mutation T670I, another mutation in the ATP binding pocket
V654A, and mutation points in the Activation loop (D816V/H and Y823D) [65, 83, 84,
191, 197, 198, 199, 200].

2. Sunitinib or SU11248 (SutentTM) was approved for treatment of advanced GIST in some
Imatinib-resistant cases, as it is effective against some imatinib-resistant Kit mutant like
the ATP-binding pocket’s mutants V654A and the gatekeeper mutant T670I. However,
Sunitinib couldn’t inhibit the activation loop’s mutants like D816H/V [75, 81, 82, 193,
201, 202, 203].

3. Sorafinib is a c-Kit inhibitor with good activity against all Imatinib-resistant mutant c-
Kit, except the mutations that involve the codon 816 (D816V/H) [204]. Sorafinib has
relatively better binding affinity to DFG-out conformation than imatinib, obtained possi-
bly through double hydrogen bonds to bidentate carboxylate of the conserved glutamate
in αC helix, and different binding mode which positions its aromatic rings away from the
gatekeeper [205].

4. Motesanib was developed as type II kinase inhibitor, which binds in a binding mode sim-
ilar to Imatinib’s binding to DFG-out conformation (as the crystal structure of Motesanib
with VEGFR2 has showed). Motesanib has good inhibitory potency against WT c-Kit and
some Imatinib-resistant mutant c-Kit, such as the double mutant types (V560D/V654A
and V560D/T760I), the juxtamembrane domain and extracellular domain c-Kit mutants
(V560 D, 4552-559, and AYins503-504), and also one of the A-loop mutant (Y823D).
Motesanib fails to inhibit the other A-loop mutant (D816V). That binding affinity profile
of Motesanib refers that Y823D has less effect in the shifting of the dynamic confor-
mational equilibrium towards the active conformation, in contrast to the case of D816V
[206].

5. Masitinib is a novel inhibitor for c-Kit and PDGFRα/β with IC50 of 200 nM and 540
nM/800 nM, with weak inhibition to Abl and c-Fms. It shows the highest activity in
inhibiting only Kit and PDGF kinases, beside good inhibition of Lyn kinase (IC50 =
510±130 nM compared to 2200±100 nM for imatinib), and to lesser extent FGFR3. Ad-
ditionally, it is relatively weak against Abl kinase (Abl IC50/Kit IC50 = 6.0 for Masitinib
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versus 0.6 for Imatinib), and also inactive against VEGFR [207]. It is at the moment in
clinical phase 3.

5.1.4 Aim of this Study

An in-house database of 1215 synthesized compounds; comprising two congeneric series
of anilino-oxazoles and anilino-thiazoles, is used in the current study to test the performance
and accuracy of a variety of computational methods. The studied inhibitors were tested in

vitro on the wild-type and D816V mutant of c-Kit (c-Kit D816V). To estimate the binding
affinities of the inhibitors, MD simulations are carried out followed by extensive analysis of
different scoring methods and physics-based binding free energy calculations. Since the whole
dataset is too large for several computationally demanding binding free energy methods, several
subsets are compiled. Different computational methods for predicting the binding mode and
the activities of the inhibitors against c-Kit D816V are tested in order to find out the best model
and the optimal method. Also, a detailed analysis of the factors, which affect the binding of
this type of inhibitors to the active conformation of c-Kit, is performed by means of different
computational methods.
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(a) Chemical structures of the known type I c-Kit kinase Inhibitors

(b) Chemical structures of known type II c-Kit kinase Inhibitors

Figure 5.2: Chemical structures of known c-Kit kinase Inhibitors
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5.2 Computational Methods and Application

5.2.1 Molecular modeling, Docking and Enrichment Studies

The crystal structure of c-Kit in its active conformation (PDB id: 1pkg) was used during
this study to represent the mutant D816V c-Kit structure. The mutation D816V is located far
away from the binding pocket and is only affecting the equilibrium between active and inactive
conformations. Thus, the mutant c-Kit D186V is constitutively active and it is supposed to exist
mainly in the active conformation.

To perform an enrichment study for optimizing the docking procedure with the mutant c-Kit
D816V, a reduced dataset of 329 compounds; which contains only the very potent inhibitors and
very weak inhibitors, was used in order to test the ability of docking protocol to discriminate
between these two classes of activities. The dataset includes 122 highly active compounds
(IC50 between 5 nM and 100 nM) and 207 weakly actives/inactives (IC50 above 10 µM). The
compounds of the dataset were docked to the prepared structure of c-Kit (PDB id: 1pkg) using
GOLD4.1 with Goldscore as fitness function and different hydrogen bond constraints. The
used constraints were hydrogen bonds to different residues at the binding pocket: two hydrogen
bonds with the backbone NH and CO of the hinge residue C673, the backbone NH of D810
(the aspartate in the DFG sequence) or side chain of K623, carboxylic oxygen or backbone
NH of D677. Enrichment ROC curves were generated for the above described dataset of 329
inhibitors.

Enrichment indexes were calculated: The first is the sensitivity (Se, true positive rate, =
Number of Selected Actives/ Number of total actives), which is the ratio of the number of
active molecules found by the virtual screening method to the number of all active database
compounds. The second index of enrichment is the specificity (Sp, false positive rate, = Number
of discarded inactives/Number of total inactives), which represents the ratio of the number of
inactive compounds that were not selected by the virtual screening methods to the total number
of inactives in the whole database. One of the most used methods currently to describe the
enrichment is the receiver of operator curve (ROC), which describes the selectivity (Se) as a
function of (1-Sp), which is the ratio of selected inactives (Number of selected inactives/Number
of total inactives). As Sp is the ratio of discarded inactives to the total inactives, then 1-Sp is
the ratio of the selected inactives, or in another words the selected decoys. The ROC curve is
plotted by considering the different scores of actives as thresholds. For every threshold, the
number of decoys and number of actives within this cut-off is counted. Then, the ROC curve
is obtained as map of the distribution of actives and decoys according to their scores. By this
method, we avoid the selection of arbitrary threshold by considering all Se and Sp pairs for each
score threshold. The quality of the enrichment can be measured by the Area under the curve
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(AUC); higher values represent more discriminative models.

5.2.2 Scoring Methods

5.2.2.1 X-score

X-score is an empirical scoring function developed in University of Michigan by S. Wang et al.

, estimating the binding energy as follows:

∆Gbind = ∆GvdW +∆GH-bond +∆Gdeformation +∆Ghydrophobic+∆G0

X-score is designed to be a consensus score by taking the average of three empirical scoring
functions; HSScore, HMScore, and HPScore. The main difference between the three scoring
functions is the implemented algorithm to account for the hydrophobic effect. HSScore uses
a hydrophobic surface algorithm, HMScore uses hydrophobic matching algorithm, while HP-
Score uses hydrophobic pair contact algorithm [208].

5.2.2.2 AMBER GBSA/PBSA scoring after refinement

The docking complexes (c-Kit with the docking solutions) were prepared for calculating the
interaction energy using the tleap module in AMBER tools 10. The parameters of the general
Amber force field (GAFF) were used for the ligands with the semi-empirical method AM1-
BCC for ligand’s charges while the AMBER99SB force field atom-types and charges were
used for the protein kinase. All inhibitor/protein complexes were minimized by the conjugate
gradient algorithm to a root mean square of the energy gradient of 0.01 kcal.mol-1.Å-1, and
then simulated for 250 picoseconds with a GB implicit solvent model (A modified GB model
developed by A. Onufriev, D. Bashford and D. A. Case; abbreviated as GBOBC) with modified
bondi. A Perl script for PBSA was used for calculating the PBSA/GBSA on the final minimized
complexes. In the PBSA/GBSA calculations, The van der Waals (EvdW) and electrostatic (Eele)
interaction between ligand and protein in gas phase were calculated with an infinite cutoff using
the SANDER module in AMBER10. The electrostatic free energy of solvation (Gele-sol) was
calculated with numerical solvation of the Possion-Boltzmann (PB) equation as implemented
in the mm-pbsa.pl module in AMBER10. Default parameters for the PB solver such as a grid
spacing at 0.5 Å, dielectric constants of 1.0 for solute and 80.0 for implicit PB solvent, solvent
probe radius at 1.4 Å, and ionic strength at 0 M concentration were used. The non-electrostatic
free energy of solvation (GSA) was calculated as linear function of the solvent accessible surface
area (SASA); 4GSA = γ.SASA + b where γ and b were set at the default values (γ = 0.00542
kcal.mol-1.Å-2and b = 0.92 kcal.mol-1).
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5.2.3 Molecular Dynamics Simulation

The crystal structure (1pkg.pdb) was used with the top ranked docking solution, after mutating
the residue D816 to valine using MOE. Two chloride ions were added to neutralize the protein
charges, and then the protein complex was centered inside cubic solvent box of TIP3P water
molecule’s model with buffer zone of 10 Å. The parameterization of the system was performed
using antechamber and tleap; of Amber tools 11; exactly as explained in chapter 4 (4.2.3.1).
After performing the minimization and the equilibration phase, also as described in chapter 4
(4.2.3.1), free molecular dynamics was performed for 6 nanoseconds with (2 fs) time step and
with (9 Å) cut-off for the non-bonded interactions.

5.2.4 Free Binding Energies using Linear Interaction Energy
and MM-PBSA methods

The MM-PBSA (molecular mechanics Poisson–Boltzmann surface area) methodology was ap-
plied on 25 snapshots obtained from the last nanosecond of the 6 nanoseconds MD trajectory,
starting from c-Kit/docking complexes of the 200 top-scored anilino-oxazole compounds. The
calculations were performed as described in chapter 4 for the CDK2/GSK3β inhibitors (4.2.3.2).

To perform LIE calculations, A snapshot was taken from the last nanosecond of the MD
simulation and selected to have a P-loop/A-loop distance equal to the average distance. The
chosen snapshot was parameterized to be sumulated in Gromacs4.5 suit. The parameterization
of the small-molecule ligand was performed using Amber Tools10’s antechamber to calculate
the ligand partial charges according to AM1-BCC method and using gaff atom-types. The
ACPYPE program was used to convert antechamber’s parameters to Gromacs topology and
coordinates’ files, while the protein kinase was parametrized according to AMBER99SB force
field. The complex was solvated in octahedral box of water solvent in TIP3P model and then
simulated for 500 ps. Later, the Gromacs’ tools were used; g_dist was used to control the P-
loop/A-loop changes during the simulation and g_energy for the calculation of different ligand-
environment energies in the complex bound form. The details of calculations were mentioned
in chapter 4 (4.2.3.3).

For LR-MM-PBSA (also named LIECE) models, the energy components were calculated
from PBSA/GBSA using a single snapshot or using multiple snapshots from MD. The terms
were used for fitting with the experimental binding affinities as pIC50 (-log IC50) or experimen-
tal binding energy4Gbind (RT ln IC50) according to the following equations:

1- three-parameter model with decomposed electrostatics: (pIC50) = α4EvdW+ β14Ecoul+
β24Gsolv
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2- four-parameter model with decomposed electrostatics: (pIC50) = α4EvdW+ β14Ecoul+
β24Gsolv+γ4GSA

5.2.5 General Structure of the Studied c-Kit inhibitors

The whole dataset that was studied in the current work includes 1215 compounds, belonging to
two series of anilino-oxazoles and anilino-thiazoles (Figure 5.3). A series of anilino-oxazoles
compounds was previously reported as inhibitors of structurally related kinases: VEGFR1/2/3,
SRC and PDFGR1β [209]. Also, X-ray structures of two anilino-oxazole derivatives in a com-
plex with VEGFR2 (PDB id: 1y6a, and 1y6b) have been reported, and were used in the current
study to test the accuracy of the chosen docking procedure. In case of anilino-thiazoles, one
compound (Masitinib, Figure 5.2b) has entered clinical phase 3 for the treatment of GIST.

Figure 5.3: General structure of anilino-oxazoles and anilino-thiazoles derivatives in in-house
database of c-Kit inhibitors, tested against the mutant c-Kit D816V.
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5.3 Results

5.3.1 Docking Studies and Enrichment Assessment

Different docking setups including different sets of constraints were considered for the docking
runs with the crystal structure of c-Kit in the active (DFG-in) conformation and the inhibitor
dataset. To select the preferred binding mode, we generated ROC enrichment curves for every
docking run using the above described dataset of 329 inhibitors; including 122 highly active
compounds (IC50 between 5 nM and 100 nM) and 207 weakly actives/inactives (IC50 above 10
µM).

The used docking constraints were derived from the c-Kit/ATP complex (Figure 5.4). The
best results of the docking runs were obtained with collection of constraints with the GOLD
program: Two protein hydrogen bonds to the hinge region residue: C673 (backbone NH and
backbone CO), hydrogen bond to the backbone NH of D810 (one residue of DFG sequence) or
the flexible lysine K623, and hydrogen bond to the carboxylic oxygen of D677 (Figure 5.6a).
The best enrichment was obtained with the last mentioned settings with area under enrichment
ROC curve (AUC=0.86) (Figure 5.5). A rescoring of all docking solutions was performed
using X-score and PBSA/GBSA calculations. However, none of these rescoring methods gave
any increase in the enrichment (i.e. AUC) or improvement in the discrimination between actives
and inactives, compared to the simple Goldscore.

The optimized docking conditions were applied to the complete data set of 1215 compounds
(anilino-oxazole and anilino-thiazole derivatives) in order to include compounds from all activ-
ity ranges: highly active, moderate active (886 compounds with IC50 between 100 nM and
10000 nM), and weakly active. The correlation between different scores and experimental ac-
tivities for the complete dataset of 1215 compounds gave an r2 between 0.19 for X-score to 0.27
for the MM-GBSA score (see Table 5.2a).



CHAPTER 5: PREDICTION OF BINDING AFFINITIES FOR KINASE INHIBITORS 85

Figure 5.4: Schematic representation of the interaction of ATP at the binding pocket of c-Kit
(PDB id: 1pkg). Interacting residues: C673, E671 (in the hinge region), D810 (from DFG
motif), G601, the flexible lysine K623, D677 and R796 (from the ribose/binding region).

Figure 5.5: Enrichment ROC curve (GOLD score) for 122 actives and 207 inactive c-Kit D816V
inhibitors, giving the best discrimination between active inhibitors (IC50 between 5 nM and 100
nM) and inactives (IC50 above 10 µM) with Area under curve (AUC=0.86).
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(a) Docking solution of an anilino-oxazole derivative 46 (from Harris et al.
[209]) with c-Kit kinase (active conformation, PDB id: 1pkg). The same
inhibitor was co-crystallized with VEGFR2 (PDB id: 1y6b) showing the
same binding mode.

(b) Binding mode of Imatinib docked with c-Kit in the active confor-
mation (PDB id: 1pkg) after 6 ns MD. Interacting water molecules
forming a hydrogen bond network are shown as red balls.

Figure 5.6: Suggested Binding mode for anilino-oxazole derivative and Imatinib by docking to
active conformation of c-Kit kinase.
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5.3.2 Application of LR-MM-PBSA Method

First, different docking and scoring settings were tried for the complete data set of 1215 anilino-
oxazole and anilino-thiazole derivatives, tested in vitro against c-Kit D816V. Neither for GOLD
nor for other docking programs (results not shown) was there a significant correlation between
docking scores and in vitro activities (given as pIC50 values) (see Table 5.2a). Rescoring of
docking solutions by MM-PBSA or MM-GBSA didn’t improve the statistical results. We tested
either a single protein-inhibitor complex that was minimized with MM-PBSA or MM–GBSA
(1 snapshot) or multiple snapshots derived from MD simulation. MD simulation followed by
MM-PBSA/GBSA calculations were done for a smaller data set of 110 top-scored compounds
in order to test more sophisticated MM-PBSA binding free energy using multiple snapshots
(Table 5.2b). In addition, we used the individual terms from MM-PBSA/GBSA calculations
trying to establish linear regression based models.

1. Using one snapshot for MM-PB(GB)SA calculations: the following model was derived

pIC50 = 4.68 –0.15 (4Ecoul ) –0.079 (4Ggb) + 0.037 (4EvdW ) –0.21 (4GSA)

r2= 0.35, rmse = 0.68, q²(loo) =0.34, rmseloo =0.76 (number of compounds 1215).

2. Using multiple snapshots MM-PB(GB)SA calculations from MD simulation: the
following model was derived

pIC50 = 6.16 –0.28 (4Ecoul ) –0.162 (4Ggb) + 0.00675(4EvdW ) –0.003 (4GSA)

r2= 0.20, rmse = 0.85, q²(loo) =0.094, rmseloo =0.922 (number of compounds 110).

The results show that the consideration of more snapshots derived from the MD simulations
did not improve the model accuracy.

5.3.3 Performance of Binding Energy Methods with Anilino-oxazole
Derivatives

In order to test further computational methods, we subsequently used a smaller data set of
compounds representing the whole 1215 inhibitor data set. 40 compounds were selected out
of the 200 top-scored anilino-oxazole derivatives. The selected 40 compounds distribute over
a range of IC50 values between the nanomolar to the micromolar range, including moderately
active inhibitors (IC50 = 100-10000 nM). All compounds possess the same core (as shown for
the anilino-oxazoles in Figure. 5.3); whereas the R groups vary among the different inhibitors.
No anilino-thiazole was included in the smaller data set. The 40 selected compounds were
docked and then used for MD simulation using the c-Kit D816V structure and PBSA/GBSA as
well as LIE calculations as described earlier.
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Table 5.2: Performance of scoring methods and implicit solvent’s calculations for different
subsets of c-Kit inhibitors.

(a) Correlation between different scoring values with the IC50 values derived from testing against mutant c-Kit D816V.

Scoring method:
Correlation between

pIC50 and

Num. cmp. r2 RMSE q2(LOO) RMSELOO

GOLD score 1215 0.26 0.74 0.24 0.77
X-score 1215 0.19 0.92 0.15 0.98

GBSA (GBTOT) 1215 0.27 0.66 0.25 0.64
PBSA (PBTOT) 1215 0.21 0.83 0.16 0.89

(b) Linear regression based models for 1215/110 c-Kit D816V inhibitors using energy components of MM-PB/GB-SA
calculations.

Linear Model Num. Model coefficients Statistical values
pIC50 with cmps Ele vdW GB/PB Surf. Const. r2 RMSE q2 RMSEloo

GBSA (1 snap) 1215 0.15 0.037 0.079 0.21 4.58 0.35 0.74 0.34 0.77
PBSA (1 snap) 1215 0.20 0.045 0.036 0.34 5.84 0.27 0.84 0.25 0.95

GBSA (25
MD snapshots)

110 0.28 0.0067 0.16 0.003 6.15 0.20 0.85 0.094 0.92

PBSA (25
MD snapshots)

110 0.19 0.0084 0.24 0.055 7.24 0.15 0.89 0.085 0.99

Multiple linear regression models were generated for the 40 compounds using the in vitro

activities and the individual energy terms from LIE or PBSA calculations. Neither the PBSA
binding free energy (4G including the entropy calculation) nor the regression method with
individual terms resulted in a significant correlation with the experimental data:

LR-MM-PBSA model:

4Gbind (pred.) = –0.0065 (4Eele) + 0.01 (4EvdW) –0.03 (4Gpb) – 6.44

(r2=0.096, rmse=1.15, q2 =0.013, n=40)

LIE model:

4Gbind(pred.) = 0.082 (4<Vel
lig-surr>) + 0.15 (4<VvdW

lig-surr>) – 5.8

(r2=0.277, rmse=1.01, q2 =0.23, n=40)

5.3.4 Analysis of the Binding Pocket’s Flexibility
and the P-loop Fluctuations

After performing 6 ns of MD simulation for all inhibitor/c-Kit complexes of the previously
mentioned 40 selected compounds, a careful analysis of MD trajectories showed that different
substituents at R1 result in different induced fit effects. The induced-fit effects were character-
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ized by comparing the RMSD and the distance between CA of F600 (from the P-loop) and D810
(from the DFG motif in the A-loop). For most of the studied compounds, the P-loop/A-loop dis-
tance takes a value in the range 8.4 to 11 Å. In some rare cases, the conformational change was
more dramatic and the distance between P-loop and A-loop reached 12-14 Å. Such a change of
the kinase conformation affects not only the protein structure, but also the protein hydration. A
comparison of similar anilino-oxazole compounds during the MD simulation showed that small
differences at R1 or R2 (Figure 5.3) resulted in different movements of the P-loop (see Figure
5.7).

Figure 5.7: RMSD plot for the residues 596-603 (P-loop) of the c-Kit kinase (PDB id: 1pkg)
during MD simulation with two anilino-oxazole derivatives, showing the RMSD of P-loop’s
fluctuation. The active anilino-oxazole derivative (in Black) shows less fluctuation comparing
to weak anilino-oxazole derivative (in red) as a result of different interactions with the P-loop
using their different substituents (R1 and R2).

To consider the different induced-fit effects and the changes of P-loop conformation, beside
of the contribution of the bulk water molecules in the protein-ligand interactions, the method-
ology that has been applied to GSK3-β and CDK2 inhibitors (Chapter 4) was also used for
studying the c-Kit D816V inhibitors. This methodology depends on developing different Linear
Interaction Energy (LIE) models by applying the linear regression only on subset of compounds
with similar P-loop/A-loop average distance.

5.3.5 P-loop/A-loop-distance-dependent LIE Models

To test the P-loop/A-loop LIE method, 40 further (anilino-oxazole) inhibitors were taken
from the 200 top-ranked complexes (GOLD score) and then the total 80 compounds were di-
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vided into training and validation (test) sets. The considered 80 compounds were grouped into
four training and four validation sets depending on the average P-loop/A-loop distance observed
during the 6 ns MD simulation. The following subsets were generated: compounds showing a
P-loop/A-loop distance in the range (8.4 – 8.7 Å) were included in the first subset, (8.75 – 9 Å)
in the second subset, (9.1 – 9.7 Å) in the third subset, and (10 - 10.5 Å) in the fourth subset. The
in vitro activities for all training and validation set compounds span about 3 orders of magni-
tude. The four training sets include 37 compounds from the previously simulated compounds,
while the four validations sets include 43 compounds from the previous mentioned compounds
(See the detailed calculations in Appendix D, D.1). By applying linear regression using the
derived LIE energy terms, statistically sound models were obtained. Models were generated
for the training sets and were used to predict the activities of validation set compounds. The
statistical parameters of these generated LIE models are summarized in Table 5.3a.

To perform fair comparison between LIE approach and LR-MM-PBSA method, LR-MM-
PBSA models were generated for the individual subsets showing different P-loop/A-loop aver-
age distances (same subsets used in LIE method). In general, all models generated by linear
regression using the PBSA energy terms resulted in only weak correlation. The statistical pa-
rameters of these generated LR-MM-PBSA models are summarized in Table 5.3b (See the
detailed calculations in Appendix D, D.2).

LIE Model 1-1: generated from the compounds with distance between P_loop and
A_loop = 8.4 - 8.7:

4Gbind(pred.) = 0.10 (4<Vel
lig-surr>) + 0.16 (4<VvdW

lig-surr>) – 5.01

(r2=0.66, rmse=0.81, adjusted r2=0.49, q2 =0.40, n=7)

LIE Model 2-1: generated from the compounds with distance between P_loop and
A_loop = 8.75 - 9.0:

4Gbind(pred.) = 0.16 (4<Vel
lig-surr>) + 0.45 (4<VvdW

lig-surr>) +1.56

(r2=0.74, rmse=0.77, adjusted r2=0.67, q2 =0.55, n=11)

LIE Model 3-1: generated from the compounds with distance between P_loop and
A_loop = 9.4 - 9.9:

4Gbind(pred.) = 0.047 (4<Vel
lig-surr>) + 0.31 (4<VvdW

lig-surr>) –0.84

(r2=0.628, rmse=0.70, adjusted r2=0.52, q2 =0.48, n=10)

LIE Model 4-1: generated from the compounds with distance between P_loop and
A_loop = 10 - 10.5:

4Gbind(pred.) = 0.24 (4<Vel
lig-surr>) + 0.21 (4<VvdW

lig-surr>) –7.5

(r2=0.776, rmse=0.61, adjusted r2=0.70, q2 =0.65, n=9)
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Table 5.3: Summary of generated models derived from the different training sets selected de-
pending on the final P-loop/A-loop average distance: depending on LIE calculations (top) and
depending on MM-PBSA calculations (bottom). The four training set are donated as TS1, TS2,
TS3, and TS4, while the validation sets are donated VS1, VS2, VS3, and VS4. Models gener-
ated using TS1, TS2, TS3, or TS4 are validated against VS1, VS2, VS3, or VS4 respectively,
and vice versa.

(a) Summary of generated LIE models derived from the different training sets selected depending on the final P-
loop/A-loop average distance. q2 is the leave-one-out cross-validation correlation coefficient; while pred. r2 is the
correlation of predicted affinities against experimental ones for the model’s external ’validation set’.

(LIE model ) : ∆Gbind (pred.) = β(∆<Vel
lig-surr> )+ α (∆<VvdW

lig-surr>) + γ

Model
#

P/A
distance

Dataset num
cmp
(n)

r2 q2 pred r2

(valid.)
SE γ β α

1-1 8.4 - 8.7 TS1 7 0.66 0.40 0.66 0.81 –5.01 0.10 0.16
1-2 8.4 - 8.7 VS1 10 0.80 0.67 0.16 0.35 –4.54 0.06 0.16
2-1 8.75 - 9 TS2 11 0.74 0.55 0.64 0.77 1.56 0.15 0.45
2-2 8.75 - 9 VS2 12 0.73 0.52 0.64 0.77 1.59 0.14 0.42
3-1 9.4 - 9.9 TS3 10 0.62 0.48 0.69 0.7 –0.84 0.047 0.31
3-2 9.4 - 9.9 VS3 12 0.76 0.59 0.56 0.52 –1.85 –0.002 0.25
4-1 10 - 10.5 TS4 9 0.77 0.65 0.45 0.61 –7.5 0.24 0.21
4-2 10 - 10.5 VS4 9 0.68 0.50 0.76 0.67 –9.11 0.24 0.125

(b) Summary of generated LR-MM-PBSA models derived from the different training sets selected depending on the final
P-loop/A-loop average distance. r2

PBSA is the correlation coefficient between PBSAtot and the binding affinites as pIC50;
r2

LR-PBSA is the model’s correlation coefficien, while pred. r2 is the correlation of predicted affinities against experimental
ones for the model’s external ’validation set’.

(LR-MM-PBSA model ) : ∆Gbind (pred.) = β4Ecoul+ α4EvdW+ β24Gpb +γ

Model
#

P/A
distance

Dataset num
cmp
(n)

r2

PBSA

r2

LR-PBSA

pred
r2

(valid.)

SE
LR-PBSA

β α β2 γ

1-1 8.4 - 8.7 TS1 7 0.38 0.47 0.27 0.81 0.45 0.23 0.37 –1.26
1-2 8.4 - 8.7 VS1 10 0.35 0.49 0.32 0.61 0.08 0.11 0.05 –0.44
2-1 8.75 - 9 TS2 11 0.31 0.5 0.082 1.14 0.01 0.08 –0.02 –2.32
2-2 8.75 - 9 VS2 12 0.10 0.3 0.08 1.24 0.009 0.11 0.02 –2.81
3-1 9.4 - 9.9 TS3 10 0.01 0.23 0.24 1.09 0.01 0.11 0.02 –2.91
3-2 9.4 - 9.9 VS3 12 0.38 0.6 0.021 0.73 0.09 0.1 0.046 –2.38
4-1 10 - 10.5 TS4 9 0.00 0.43 0.20 0.77 –0.02 0.09 –0.03 13.5
4-2 10 - 10.5 VS4 9 0.42 0.46 0.0048 0.67 –0.08 –0.07 –0.06 3.34
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5.3.6 Extended Validation Using Larger Dataset

For further validation, we decided to apply the four P-loop/A-loop-distance-dependent LIE
models on all 200 top-scored compounds from the GOLD docking run. The activities of these
200 compounds spans over almost 4 orders of magnitude (pIC50 from 8.3 to 4.6,4Gbind = -11.6
to -7.2), including the previously considered 80 compounds from the training and validation
sets. The 37 compounds of the four training sets were excluded, while the remaining 163
compounds were considered as external test set (including 43 compounds used in the previous
validation set). The predictions of binding affinities were calculated using the generated LIE
model: 1-1, 2-1, 3-1, and 4-1 (Table 5.3a).

All 200 top-scored compounds were processed according to the protocol mentioned in the
methods (6 ns MD simulation and measuring the average distance between P-loop and A-loop
during the simulation, and then calculating LIE energy terms for the prediction).

To validate the LIE models, the coefficient of determination and root mean squared error are
calculated for the external validation sets according to the following equations:

r2 = 1- SSres/SStot = 1 – ∑(yi – ypred)2 / ∑(yi – ymean)

RMSE =
√

(∑(yi–ypred)2/n)

As yi the experimental value, n is the total number of observations, ypredis the predicted
value for this observation according to the tested model, ymean is the mean value of the actual
values for all observations (i.e. ymean= ∑(yi)

n ).

To have fair comparison between the different scoring methods, a further parameter was
calculated. The prediction index (PI) suggested by D. Pearlman [114, 122] is helpful as a
standard index, which estimates how well the prediction and the ranking of these different scores
are. It could be considered as general index to compare different scoring methods together for
their predictivity and ranking powers. The prediction index is defined, assuming that E is the
experimental binding affinity of compounds and P is the predicted binding affinity, as follows:

PI = Σ j>iΣi Wij Cij / Σj>i Σ i Wij

With Wij = E(j)–E(i)

Either Cij = +1 if [E(j)–E(i)]/[ P(j)–P(i)]>0 (correctly predicted; both differences should
have similar sign),

Or Cij = –1 if [E(j)–E(i)]/[ P(j)–P(i)]<0 (wrongly predicted),

Or Cij = 0 if [P(j)–P(i)]=0 (completely random prediction).

This prediction index ranges from –1 to +1 depending on of the model’s prediction or the
score’s prediction considering two aspects: the right ranking of the pairs of all the compounds,
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and the precise tracking of the order of the experimental values: +1 arises from perfect pre-
diction, –1 arises from predictions that are always wrong, and 0 arises from a predictions that
are completely random. Pearlman has used opposite conditions when he compared negative
score or estimation of4Gbind against positive experimental values pKi or pIC50 [114, 122]. In
our study, we have compared always values with similar sign (Goldscore against pIC50, PBSA
against4Gbind).

To determine the wrongly predicted compounds, a two-sided 90% confidence interval is lo-
cated between two lines (the fitness line ± 1.65*RMSE). Thirty-seven observations appeared as
prediction outliers depending on the following criteria ( E(i)-P(i) > 1.65*RMSE =1.45). After
removing these 37 wrongly predicted compounds, the prediction (r2) increases significantly to
0.56 (Figure 5.8a).

In summary, out of 163 compounds validation set, 123 compounds were predicted with
(r2=0.56, RMSE=0.48) and prediction index (PI=0.7). Table 5.4 compares the correctness and
ranking power of three scoring methods: P-loop/A-loop-distance-dependent LIE models, PBSA
score (PBSAtot) as estimation of the binding energy (performed on 25 snapshots taken from 6ns
MD simulation), as well as GOLD score.

The performance of the three methods was compared considering four different sets of com-
pounds (Table 5.4):

1. All the 37 compounds, which are included in the four training sets (TS1, TS2, TS3, and
TS4).

2. All the 43 compounds, which are included in the four validation sets (VS1, VS2, VS3,
and VS4).

3. 163 compounds, chosen from the top high-scored 200 compounds after excluding the
compounds of training sets. Compounds in the four validation sets (VS1, VS2, VS3, and
VS4) are included (Figure 5.8a).

4. 126 compounds set, after excluding the 37 outliers from the previous set identified as
explained above (Figure 5.8b).

A simple comparison between the different indexes in (Table 5.4) shows that the application
of the P-loop/A-loop-distance–dependent LIE models improves the prediction and the ranking
of kinase inhibitors. The ranking for both PBSA binding energy and GOLD score was almost
comparable and close to random, despite the longer time required by the MD simulation and
MM-PBSA binding energy calculations.
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A structural analysis was made for the compounds, which appeared as prediction outliers
according to the LIE models’ prediction. The outlier compounds have special differences from
the chemical structures of the compounds in the training sets. The most important differences
could be classified in two categories: either having an aromatic ring fused directly with the
aromatic ring A or having long alkyl chain with multiple hydrogen donating/accepting groups
as R2 substituent, which significantly affects the conformation of P-loop.

Table 5.4: Comparison of the statistical parameters: (predictive r2, RMSE and prediction
index PI) for three scoring and binding energy methods.

Cmp.
set

Num.
Cmp.

LIE (4 models)

(4Gbind(pred.) vs.
4Gbind (observ.))

MM-PBSA

(PBSAtot vs.
4Gbind (observ.))

GOLD Score

(Goldscore vs.
pIC50)

r2 RMSE PI r2 RMSE PI r2 RMSE PI
1 37 0.65 0.41 0.85 0.0009 6.19 0.04 0.08 5.04 0.2
2 43 0.59 0.45 0.78 0.08 8.7 0.21 0.07 7.11 0.15
3 163 0.07 0.95 0.33 0.085 8.5 0.08 0.009 3.9 0.06
4 126 0.56 0.48 0.7 0.095 8.23 0.10 0.046 3.4 0.15
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(a) Prediction plot for 163 compounds depending on the P-loop/A-loop-distance LIE
models. Red points refers to 37 points considered as prediction outliers (Wrongly-
predicted compounds) outside two-sided 90% confidence interval (Fitness line ±
1.65*RMSE). Fitness line was forced to pass from origin to compare between prediction
and experimental values.

(b) Prediction plot for 126 compounds depending on four P-loop/A-loop-distance-
dependent LIE models, after removing 37 prediction outliers (Prediction r2=0.56,
RMSE=0.48). If we divide the activity range into categories: highly active compounds
(4Gbind between -12 and -10), moderately active (4Gbind between -10 and -8), and
weakly actives (4Gbind between -8 and -6), 15 compounds are the predicted to have
higher activity than actual (pink circles), and 11 compounds are predicted to have lower
activity than the actual (yellow triangles). Fitness line was forced to pass from origin to
compare between prediction and experimental values.

Figure 5.8: Prediction plots depending on four P-loop/A-loop-distance-dependent LIE models.



CHAPTER 5: PREDICTION OF BINDING AFFINITIES FOR KINASE INHIBITORS

5.4 Discussion

5.4.1 Reliability of Suggested Binding Mode

The GOLD docking and enrichment assessment showed a preferred binding mode, which
was able to differentiate between potent inhibitors (defined as with IC50 =1-100 nM) and weak
inhibitors (IC50 above 10 µM) (Figure 5.5). The proposed binding mode of the most potent
inhibitor is highly similar to the binding mode of the known inhibitor; Dasatinib, which makes
two hydrogen bonds with the hinge region (Figure 5.6a). The same binding mode was also
noticed in two related crystal structures of other two anilino-oxazoles derivatives co-crystallized
with VEGFR2 kinase (PDB ID: 1y6a, and 1y6b) [209].

It is also note-worthy to mention that Imatinib binds in a similar “closed conformation”
to un-phosphorylated/DFG-in active SYK kinase (PDB id: 1xbb) [71]. That confirms that
Imatinib is able to bind to DFG-in conformation (Figure 5.6b), in spite that the high activity
and selectivity appear only when it is bound to the inactive DFG-out conformation in elongated
binding mode[198] (e.g. Imatinib’s structure with c-Kit in PDB id: 1t64). The crystal structure
of SYK kinase with Imatinib gives more support to the ’conformational selection’ mechanism
in the binding of type-II kinase inhibitors, as other computational studies concluded [210].

5.4.2 Importance of P-loop Conformation and Fluctuations

The glycine-rich P-loop has recently been shown as an important factor for adjusting the
kinase conformation and the accommodation of the kinase inhibitors inside the ATP binding
pocket. Thus, the P-loop could also be considered as a determinant factor of the kinase in-
hibitor’s selectivity. A good example is the different binding affinity of Imatinib to some ho-
mologous kinases; like Abl kinase and c-SRC kinase [211]. For optimal binding of Imatinib to
the DFG-out conformation, the P-loop appears to play a critical role by forming a kinked pocket,
which perfectly interacts with Imatinib in Abl kinase [212]. While the P-loop’s residue Y253
in Abl kinase makes a favorite contribution to the binding in the case of Imatinib/Abl kinase,
the corresponding aromatic residue in c-SRC kinase F278 has a negligible contribution in the
Imatinib/c-SRC kinase interactions[211]. Some significant alterations in the P-loop conforma-
tion could also be noticed in some kinases’ crystal structures like ABL, ACK1, Aurora, c-Met,
FGFR, and p38 kinases. These P-loop’s alterations are driven by special interactions with se-
lective ligands/inhibitors. It is suggested that kinked conformations of P-loop could improve
the selectivity of these co-crystallized inhibitors [79]. Some developed type I Abl-kinase in-
hibitors with high selectivity profile were complexed with Abl kinase showing a special P-loop
conformation rather than the usual extended conformation [79].

In a research study published by C. Page et al. [115], different protocols of MM-PBSA
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calculations failed to explain the selectivity of the kinase inhibitor SB203580 ([3H-imidazol-
4-yl]pyridine derivative), which is active inhibitor against SABK2a/p38 and LCK kinases and
weak inhibitor for GSK3β and PKA kinases. The different potencies of this last inhibitor against
different kinases could not be described by traditional MM-PBSA calculations. However, a
striking observation was that the main fluctuations of the binding site occur in the glycine-rich
P-loop: showing relatively small RMSF for P-loop residues in the case of SABK2a/p38 and
LCK, and larger RMSF for GSK3β and PKA. The last difference of P-loop fluctuations could
be explained by the different contacts made by the kinase inhibitor with the aromatic residue
Y34 of the P-loop in p38, but not with its equivalent phenylalanine in GSK3β [115]. One of the
remarkable results was that the natural ligand/inhibitor shows smaller fluctuations of the binding
site (especially P-loop) when simulated with the native kinase [115]. We observed a similar
effect in our MD simulations of the of anilino-oxazole compounds: c-Kit-inhibitor complex of
potent inhibitors always gave smaller atomic fluctuation of the P-loop residues compared to the
complexes of weak/inactive inhibitors (Figure 5.7).

5.4.3 Role of Water Molecules in the Binding Process

Many protein/ligand binding process might require reorganization of the water network
around both the protein and the ligand. Water molecules can play an important role in mediat-
ing protein/ligand interactions by forming hydrogen bonds’ bridges. The ATP binding pocket
of the protein kinases is featured by high exposure to the bulk water, which could be the main
reason of the important water contribution in the molecular recognition of protein kinases and
their ligands/inhibitors. Considering this important role of the water molecules, we can describe
the protein/ligand complex formation as a result of different molecular interactions; including
hydrogen bonding, van-der-Waals interactions, and the enthalpy of the hydration. Enthalpy-
entropy compensation could also play an important role in defining this important role of the
water molecules [92].

The analysis of the MD trajectories of inhibitor/c-Kit complexes showed important contribu-
tions of water molecules’ network in mediating the ligand/kinase interactions in ‘the phosphate-
binding region’; located between the DFG motif, the glycine-rich P-loop, and different sub-
stituents of the inhibitors. The MD results also showed that different substituents R1 and R2
would have an impact on the shape of the water molecules network, which interacts with both
the inhibitor and the protein kinase.

A general problem for simulations in continuum solvent models (such as PB or GB) is the
simplification that the system is divided into several regions having different dielectric constants
(internal medium - binding pocket - with a dielectric constant between 1 and 4 depending on
the system, and an external medium - the bulk solvent - with a dielectric constant of 80). The
boundaries between these two mediums depend on calculating the molecular surface of the so-
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lute (the enzyme or the protein), which in turn, depends on the used set of atomic van-der-Waals
radii. In case of the studied inhibitors with c-Kit active conformation, the prediction of binding
energies appeared to be a challenging task for implicit solvent methods. Two features of the
studied inhibitors’ binding to c-Kit D816V could explain this difficulty. The first feature is that
a considerable part of these inhibitors; the substituents R1 and R2, can be solvent-exposed to
some extent and not totally desolvated. The second feature is the participation of the water
molecules as mediating bridges in the interactions between the protein kinase and the inhibitor
(Figure 5.6b). In addition, the substituents change the water network in a different way depend-
ing on the chemical properties. The implicit solvent model is not able to describe these effects
properly without an explicit inclusion of some water molecules [106]. However, this inclusion
of explicit water molecules is problematic unless these water molecules are stable ‘structural
water molecules’ with fixed position contributing similarly to all inhibitors of a congeneric
series of compounds.

5.4.4 Effect of the Inhibitor’s Substituents on the Final Stable
Conformation

Linear interaction energy method can be considered as physics-based approach for deter-
mining the relative protein-ligand binding energy. For a congeneric series of compounds and
a relatively rigid binding site, it is expected to have a comparable entropy term and equivalent
‘induced fit’ effects, upon the binding of a ligand to the receptor. In the case of c-Kit kinase,
the high flexibility of the ATP binding pocket and its high exposure to the water could result in
some complications for predicting the binding affinity. For the studied inhibitors, diverse sub-
stituents interacting in the selectivity region (Br-I) and the phosphate region (P) can be regarded
as source of differences in the P-loop’s fluctuations. The different interactions and the P-loop’s
movement result in consequently changes in the binding pocket’s conformational energy and
the protein’s exposure to the solvent. Among the 37 prediction outliers, 18 compounds were
detected to have long flexible chains with multiple hydrogen donating/accepting groups, which
could alter the P-loop conformation significantly. The big margin of error in the prediction of
these compounds can be attributed to larger changes in the conformation of the P-loop.
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5.5 Conclusion

We have extensively analyzed the performance of different binding energy and scoring
methods in order to find the optimal method for predicting the binding affinities for a series
of c-Kit inhibitors. By Analyzing the MD simulations, a significant movement of loop regions
flanking the ATP-binding pocket was observed, making the estimation of the binding affini-
ties problematic. In the case of the active conformation of c-Kit, the P-loop conformation and
positioning appeared again as determinant factor for the ATP binding pocket’s shape and its
conformational energy. The changes of the P-loop would be quite important to be considered
in the case of every bound inhibitor, together with other flexible parts of the ATP pocket, in
order to estimate the induced-fit effects. Two case studies have shown that the distance between
two kinase loops; P-loop and A-loop, is a good parameter to estimate the induced-fit effects,
and to classify a congeneric series of kinase inhibitors after a sufficient time of MD simulation.
Another important factor is the role of water molecules in mediating the protein/ligand inter-
actions. Our developed methodology, which depends on generating P-loop/A-loop-distance-
dependent LIE models, was able to tackle these two problems of induced fit effects and the role
of the water molecules as mediating bridges between the kinase and the inhibitors. ’P-loop/A-
loop-distance-dependent LIE method’ was also able to provide us with predictive models, which
can explain the varying binding affinity. The usage of this method might help to design more
selective kinase inhibitors in the future.
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Chapter 6

Summary

Targeted kinase inhibition emerged as a promising strategy for targeted therapy of different
kinds of diseases, related to cell regulation and proliferation; as many of these cellular pro-
cesses and signaling pathways are controlled mainly by protein kinases. On the other hand,
the epigenetic mechanisms of regulating cellular gene expression were also found to be im-
portant in many types of cancer and diseases. In the first part of this work, we successfully
applied a virtual screening strategy, based on screening a focused chemical library on one of
the epigenetic enzymes; namely Histone Acetyltransferase (PCAF). Our work was successful
in capturing new scaffolds for inhibiting PCAF; pyridoisothiazolones as new covalent PCAF
inhibitors, and rhodanine-carboxylic acids as non-covalent PCAF inhibitors.

The second part of our work focused on developing selective kinase inhibitors. Kinase
inhibitors should be designed to inhibit specific kinases in some cellular signaling pathway
(on-targets) and prevent other homologous kinases (off-targets), whose inhibition could result
in side effects or toxicity. With targeting the ATP-binding pocket of kinases, a problem of
selectivity emerges. Beside the difficult issue of selectivity, developing resistance to the therapy
by kinase inhibitors could appear, adding more difficulties to the obstacles in front of developing
and designing selective inhibitors. One of the common mechanisms of resistance to kinase
inhibitors is point mutations in different parts of the kinase domains. Targeting the DFG-out
inactive conformation by type II kinase inhibitors faces the problem of developing resistance
to its binding; either directly by mutations in the binding pocket, or indirectly by changing the
balance between the kinase conformations (e.g. the mutations in the juxtamembrane domain
or in the A-loop). The mutation D816V of c-Kit kinase is an example of gain-of-function
mutations, which result in a resistance against type-II kinase inhibitors. One of the attractive
strategies for overcoming the double challenge is by developing a hybrid type-I/type-II kinase
inhibitor, which has the ability to inhibit both DFG-in and DFG-out conformations.

However, optimizing the selectivity and affinity of developed kinase inhibitors requires ef-
ficient methods for:
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1) Predicting the binding mode of novel series of kinase inhibitors, without having an x-ray
crystal structure of the kinase/inhibitor complex.

2) Predictive scoring to estimate the binding affinities for novel kinase inhibitors.

End-point free energy methods, such as Linear Interaction Energy and implicit solvents’
methods, are computational methods based on the physical laws of molecular recognition and
still less computationally demanding than the more rigorous physics-based methods (e.g. FEP
and PMF calculations). In the second part of this work, we extensively analyzed the perfor-
mance of end-point physics-based binding energy approaches and other scoring methods to
find the optimal methodology for predicting the binding mode and binding affinities for ki-
nase inhibitors. To handle the flexibility of protein kinases, Molecular dynamics simulations
were carried out to estimate the degree of induced-fit effects upon the binding of inhibitors
to their targets, while LIE and MM-PBSA methods were tested on different series of kinase
inhibitors. On the other hand, the choice of the applied solvent model, whether explicit or im-
plicit, should be made depending on the case study in order to obtain the best description of the
studied system. In the case of kinase inhibitors’ series studied in this work, the importance of
water-mediated interactions gave a clear advantage to the explicit solvent model.

The high flexibility of the ATP binding pocket and its high exposure to water can be reasons
of some complications in predicting the binding affinities of some kinase inhibitors series. As
many researches pointed out to the importance of kinases’ P-loop flexibility, we tried to ex-
amine its impact on the performance of binding energy methods. The conformation of P-loop
appeared as determinant factor for kinase conformational energy and the binding pocket’s hy-
dration. Depending on the ligand/protein interactions in the phosphate-binding region, the con-
formation of P-loop and its distance from A-loop could vary considerably. Therefore, the dis-
tance between P-loop and A-loop can serve as a good descriptor for the induced-fit effects upon
the inhibitor/kinase binding. A developed method, which is called P-loop/A-loop-distance-
dependent LIE models, was able to tackle the problems of induced fit effects and the role
of water molecules as mediating bridges between the protein kinase and its ligands. The last
method was also successful in providing predictive models for the varying binding affinities of a
series of c-Kit D816V kinase inhibitors. This work sheds a light on important features of kinase
structures and important factors that affect the binding affinities of kinase inhibitors. We show
that the right combination of computational tools could tackle the problems and challenges of
predicting the most probable binding mode (the case study of 1-aza-9-oxa-fluorene derivatives
with two homologous kinases: GSK3β and CDK2) and also for obtaining predictive models for
estimating the binding affinities (the case study of c-Kit inhibitors).
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Appendix A

End-point Free Energy Methods

The physics-based Free Energy methods could be categorized in two families: The first category
is the rigorous, but computationally expensive, ’pathway MD methods’ [213, 171, 170, 214],
including the alchemical double decoupling method, potential of mean force (PMF) method,
replica-exchange-based free energy methods, or meta-dynamics-based methods, while the sec-
ond category is the ’Endpoint free energy methods’ [215, 216, 217, 218], including the Molec-
ular Mechanics Poisson–Boltzmann Surface Area (MM-PBSA) model and the Linear Interac-
tion Energy (LIE) method.

The rigorous physics-based methods or the free energy perturbation (FEP) methods de-
pend on slow transformations between multiple states of the considered system [107, 219, 220].
In order to get convergent results, extensive conformational sampling is needed and a big num-
ber of interactions are to be calculated and considered. These heavy requirements and big num-
ber of computations make these methods very slow and computationally-demanding. Moreover,
these alchemical transformations can pose serious problems, if the considered ligands are sub-
stantially different. Endpoint free energy methods are less accurate, but more computationally
efficient because they evaluate only initial and final states of the system. This work concentrates
on these last methods (End-point free energy methods); trying to compare their performance and
application on different study cases related to the selectivity of kinase inhibitors.

A.1 Implicit-solvent-based Binding Energy methods

The MM-PB(GB)SA method depends on performing Monte Carlo (MC) or molecular dynam-
ics (MD) simulation with explicit solvent, then estimating the enthalpic energy differences be-
tween the bound and unbound solute states using the Poisson-Boltzmann model or Generalized-
Born model of implicit solvent. MM-PBSA was applied successfully by P. Kollman on a series
of 12 TIBO-like HIV-1 RT inhibitors and biotin analogues with good agreement between the
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results and experimental affinities [170, 221, 222, 223]. MM-GBSA was also successfully
applied on diverse sets of inhibitors, including CDK2, Factor Xa, thrombin and HIV-RT in-
hibitors, obtaining a good correlation between its results and the experimental log(IC50) [111].
Similar success was noticed for GBSA method in predicting the relative binding affinities of
a series of kinase inhibitors [112]. As MM-PB(GB)SA is computationally more efficient than
rigorous binding free energy methods (e.g. FEP and TI), many research has been conducted to
compare its performance to other computational methods, regarding predicting the free bind-
ing energy and its ability to recognize the right binding pose and correctly ranking the ligands
[112, 113, 224, 225, 226, 227, 228, 229].

Two approaches are suggested for extracting the snapshots, which should represent the con-
formational space of the system’s components; namely the single-trajectory approach and three-
trajectory approach [172, 173]. In the single-trajectory approach, multiple snapshots of the sys-
tem components: complex, receptor, and ligand are extracted from one trajectory generated by
MC or MD simulation in explicit solvent. In the second approach, the snapshots are extracted
from three trajectory generated from separated MD simulations of the complex, free receptor,
and free ligand in a box of explicit solvent. The single trajectory approach is currently widely
used in the research, because it gives less noisy results and helps for the cancellation of intra-
molecular interactions’ effects, making the convergence of the results faster [230, 231, 232],
although it neglects the conformational flexibility of unbound components. On the other hand,
the three-trajectory approach shows big energy fluctuations; and needs more extensive sampling
and longer simulation times [230]. The free energy is estimated by summation of the molecular
mechanics energy (EMM) of the complex estimated by the force field, the electrostatic solvation
penalty estimated by Boltzman-Poisson model (GPB) or Generalized Born model (GGB), and
the non-polar solvation term (GSA) ,which is dependent on the solvent-accessible surface area
(SASA). This estimation of the binding enthalpy could be added to an additional solute entropy
term (-TSsolute) to give an estimation for the binding free energy.

G = EMM + GPB + GSA - TSsolute = Eel + EvdW + GPB + GSA – TSsolute

(equation PBSA-1)

For the complex Protein-Ligand, we can estimate the binding energy as the difference be-
tween the free energy of the complex and the summation of the free energies of the free protein
and the free ligand.

∆Gbind = Gcomplex – (Gprotein + Gligand)
(equation PBSA-2)
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A.1.1 Pitfalls and critical parameters of PB(GB)SA methods

The main shortcoming of implicit solvent methods is in the accounting for structural water
molecules. Therefore, errors and pitfalls could arise, when interfacial water molecules exist
inside the binding pocket, and participate in mediating interactions between the ligand and the
protein [96, 113, 173]. Another pitfall arises, when there is considerable ligand-reorganization
free energy [113, 232]. Another problem of MM-PBSA/GBSA method is its high sensitivity
of some calculation parameters; PBSA could be very sensitive to the solute dielectric constant
and the characteristics of the interface [113], while GBSA results is dependent on the used GB
model and the used van-der-Waals radii [173, 233]. Moreover, the estimation of entropy is
still challenging and represents the main source of uncertainty for determining the absolute free
binding energy. The vibrational entropy is estimated usually using normal mode analysis or
quasi-harmonic analysis [234, 235, 236, 237, 238]. However, both methods show pitfalls and
problems in estimating the entropic contribution [222, 223, 113, 231, 234, 236, 237, 238, 239].
It is helpful to assume that entropic contributions are equal and canceled, when similar ligands
of similar size with similar ligand-protein interactions are studied. This last assumption helps
to make the PBSA calculations a better estimation for relative binding affinities, but not for the
absolute ones [236].

The effect of the dielectric constant on the description of the electrostatic shielding was ad-
dressed in different studies [240, 241]. A model of variable dielectric constant based on residue
types was developed for better description of protein-ligand electrostatics in MM-GBSA scor-
ing [240, 241]. The protein desolvation term is also not optimal in the GBSA calculations
and replacing it with a value extracted from explicit solvent method like WaterMap could im-
prove the results [241]. Another uncertainty in the MM-PBSA calculation is the estimation of
solvation free energy for extremely polar or charged ligand [113]. Additionally, the solvation
estimation of the solvent-exposed residues or ligands could be source of another uncertainty
[221, 113, 231, 233, 239, 242, 243]. This uncertainty becomes especially problematic, when
we have part of the bound ligand exposed to the bulk solvent more than other buried parts, and
consequently creating an inhomogeneous interior of the solute. This inhomogeneous screen-
ing of the electrostatic interactions couldn’t be described using a single dielectric constant for
the solute [233, 239]. This problem could be addressed by selecting a suitable value for the
dielectric constant, which could be 1, 2, or 4 [221, 113, 231, 233, 239, 243]. Another issue
is that the effect and role of structural water molecules could not be described efficiently by
the implicit solvent models. In some cases, these stable structural water molecules should be
included explicitly in the MM-PBSA/GBSA calculations[113, 244]. In some publications, it is
suggested to include the whole first solvation shell in the calculation [245, 246]. However, that
will add more complications to the procedure and some critical issues should be considered,
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regarding the number of the included water molecules and to which system part (free complex
or free ligand), the water molecule are associated. In other studies, it was suggested to combine
the PBSA estimation for the receptor solvation with linear response approximation (LRA) in
explicit solvent for the ligand solvation [247].

A.2 Linear Interaction Energy (LIE) Method

The linear interaction energy (LIE) is another end-point physics-based binding energy method,
developed by J. Aqvist and tested for the first time on a set of endothiapepsin inhibitors [175].
The method relies also on molecular dynamics or Monte Carlo simulations for generating en-
semble averages of two reference states of the system: the free ligand in solution, the bound
complex receptor/ligand in solution [174]. LIE method depends, in principle, on linear re-
sponse approximation to estimate the electrostatic contribution to the binding energy [248].
Linear response approximation was successful in its application on the ion solvation energetics,
describing it accurately in previous researches [175, 249]. The non-polar part of the binding
energy is supposed to be derived by scaling the Lennard-Jones energies using an empirically
derived coefficient. That last assumption depends on the linear relationship between the solva-
tion free energies for non-polar compounds and the solute size; estimated as solvent-accessible
surface area (SASA) [174]. According to the LIE approach, the free binding energy could be
approximated by this equation:

∆Gbind = ∆Gpolar +∆Gnonpolar = β ∆Eele+ α ∆Evdw

= β ( <Vel
lig-surr >bound – <Vel

lig-surr>free)
+α (<Vvdw

lig-surr >bound – <Vvdw
lig-surr>free) + γ

(equation LIE-1)

Where < > denotes MD or MC averages of the non-bonded van der Waals (vdW) and elec-
trostatic (el) interactions between the ligand and its surrounding environment (l-s), i.e. either
the solvated receptor binding site (bound state) or just solvent (free state). The ∆ denotes the
change in these averages when transferring the ligand from solution (free state) to the receptor
binding site (bound state). The parameters of this equation are the weight coefficients α and β

for the non-polar and polar binding energy contributions respectively. An additional constant γ

is possibly needed to enhance the description of the non-polar contribution [109, 250, 251]. The
constant γ could be added to get reasonable binding energy [252], which is considered similar
to the addition of SASA term introduced by Jorgensen et al.
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Another general formula has been written in some publications [179] as

∆Gbind = βprot<Vel
lig-surr >prot – βwat<Vel

lig-surr >wat

+ αprot<Vvdw
lig-surr>prot – αwat<Vvdw

lig-surr>wat+ γ

+ δ1(<Vel
lig-lig >prot – <Vel

lig-lig >wat) + δ2(<Vvdw
lig-lig>prot – <Vvdw

lig-lig>wat)
(equation LIE-2)

Where <Vel
lig-lig > and <Vvdw

lig-lig> are the electrostatic and van der Waals intramolecular
ligand interaction energies, also referred to as strain energy, have been used in some publications
for correcting the difference in ligand shape in the free and protein-bound simulations [179].
It is possible to use different terms from the last equation to obtain the suitable LIE model
equation depending on the study case.

A.2.1 LIE parameters

The “linear response approximation” is well applicable for ionic solutes according of cal-
culation of Aqvist and Hansson. In some cases, significant deviations have been noticed, such
as for neutral dipolar solutes containing hydroxyl groups, and solutes which can interact with
the solvent by specific hydrogen bonding [176]. The derivation of the linear interaction energy
method results in a generalized form, which allows different values for the electrostatic coeffi-
cient β ( equal to 0.5, 0.33, or 0.29) for different sets of ligands [176]. It has been proven that
the value of β is dependent on the charge and polar properties of the ligands [250, 179, 176].
Moreover, Application of LIE method to a set of charged neuraminidase inhibitor complexes
obtained very low value of the electrostatic coefficient β [253]. This low value of β was ex-
plained by Aqvist, as a result of big number of charged residues in the binding pocket and the
big number of polar groups of the inhibitors [174]. Similar low (β ) value was obtained in
developing LIE model for a series of MMP3 ligands which bind to zinc ion inside the binding
pocket [179].

The van-der-Waals coefficient α appears to take also different values depending on the stud-
ied ligand-protein system. While the first publications of J. Aqvist suggested a transferable
parameter of the van-der-Waals interaction as 0.16 or 0.18, other research found α with other
values, like 0.32 or 0.34 for a set of FKBP12 complexes by Lamb and Jorgensen [254], 0.47
or 0.23 in the work of Jones-Hertzog and Jorgensen on thrombin inhibitors [255]. In a study
of Paulsen and Ornstein on cytochrome P450/camphor analogue complexes, α obtained a value
of (1.04) [256]. In a study of Wang et al, an estimation of α was suggested on the basis of
desolvation surface areas, explaining the difference between the studies on trypsin and HIV
protease (that gave α a value of 0.16 or 0.18) and the studies on thrombin, avidin and cy-
tochrome P450cam complexes that required higher values of α [257]. The lack of polarization
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effect in most of the current force-fields would lead probably to a higher value of α [174].

A.2.2 Critical issues in applying LIE

The LIE method neglects an explicit consideration of the internal energy’s change and con-
figurational entropy of both ligand and protein. Therefore, its success in many cases could be
attributed to similarity of the compared ligands, and the cancellation between solute entropy
drop and solvation entropy rise as part of Entropy-Enthalpy compensation [258, 259, 260]. The
LIE method resembles the one-trajectory MM-PBSA method in the point of neglecting en-
ergy’s change and configurational entropy. However, LIE still owns an advantage of exploring
the configurational space of the ligand in its free state in solution. Moreover, Aqvist argued that
intra-molecular terms like intra-molecular relaxation/strain, entropy, receptor desolvation, etc.,
are not neglected but embedded in the linear response approximation or in the LIE parameteri-
zation [175, 174].

Dealing with charged groups in the LIE methods could be somehow critical or problem-
atic to get accurate description of the electrostatic contribution to the free energy. A critical
point is how to get equal net charge of the surrounding medium around the ligand within its
interaction range (e.g. a possible cutoff) in both states; the bound and free states, if the protein
has a non-zero charge within the interaction sphere, or ions must be added in the free (solvent)
simulation [250, 261]. Cutoffs of the electrostatic interactions could also lead to an artificial
over-polarization of the surrounding of a charge. Therefore the solvation energy of the charge is
usually overestimated in water more than in the protein, resulting in an artificial "anti-binding"
contribution [262]. Performing the calculations in a big simulation system with higher cutoff
could solve these problems, and the Local Reaction Field (LRF) method for treating the elec-
trostatic during the simulation is also recommended by J. Aqvist, in order to avoid using cutoffs
[261, 174].

One of the important notes, when the LIE calculations are performed, is that turning off
the net charges on distant ionized groups would need a small electrostatic correction term for
these neutralized charges should be added to the calculated binding free energy, according to
equation:

44Gel corr = 1/4 π.ε0 Σ
qp.ql
ε.rp−l

Summation is performed for all p C neutralizedionicresidues, l C ligand atoms. Where qp

is the formal charge of the residue that has been neutralized, ql is the partial charge of the ligand
atom, εis the dielectric constant which was set to 80, and rp-l is the distance between the ligand
atom and a central atom of the charged group of the residue. However, when selecting the
neutralized residues far from the binding pocket, i. e. rp−l > 15 Å, then ∆∆Gel corr < 6.63*10-5

kcal.mol-1.
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Figure A.1: General scheme represents the general procedure for performing three end-point
physics-based binding energy methods

A.3 Hybrid Physics-based Methods

The performance of both explicit solvent models and implicit solvent models in LIE method
was compared by J. Carlsson et. al, showing good agreement between the explicit solvent and
PB model for a small set of malarial aspartic protease’s inhibitors (plasmepsin II inhibitors).
The last study asserts the importance of choosing the right van-der-Waals radii and the GB
model to get comparable results [263]. Additionally, Another comparison study was made be-
tween multiple verities of end-point binding energy methods, combined with implicit solvent
models [215], including hybrid methods combining PB(GB)SA calculations with LRA and
LIE. This research work showed conflicting results for the MM-PBSA and MM-GBSA meth-
ods when treating charged ligands. The precision and accuracy of the methods prediction are
dependent on the receptor/ligand system[215, 264]. Specific models have been derived theoret-
ically from linear response theory depending on the fact, that receptor and the solvent respond
differently, when the solvent is treated implicitly [264, 265].

LR-MM-PBSA method emerged later as a combination of the linear response approxima-
tion (LRA) with the MM-PBSA method for estimating the binding affinity [266, 267, 268].
It depends mainly on combining scaled MM-PBSA energy terms with LR optimization of co-
efficients against known activity. This method was applied by P. Kolb et al. [269], and was
called Linear Interaction Energy with Continuum electrostatics (LIECE). The models are devel-
oped depending on different equations for estimating the experimental free energies of binding
(∆G )=RT ln(IC50). The used equations give one parameter, two-parameters or three-parameter
model, as follows:
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1. one-parameter model:
(∆ G)= α ∆ Evdw (LR-MM-PBSA-1 equation)

2. a two-parameter model with continuum electrostatics:
(∆G)= α ∆Evdw+ β ∆Gele (LR-MM-PBSA-2 equation)

3. three-parameter model with decomposed electrostatics:
(∆G) = α ∆ Evdw+ β1 ∆ Eele+ β2 ∆ Gsolv (LR-MM-PBSA-3 equation)

In the publication of P. Kolb et al. [269], 50 oxindole-based compounds from a series of
LCK/CDK2 kinase inhibitors, 23 O6-substituted guanine derivatives as CDK2 kinase inhibitors,
and 41 dihydroquinazolinone derivatives as p38 MAP kinase inhibitors were docked manually
to native X-ray structures. Structure (1ke5.pdb) was used as crystal structure of CDK2 com-
plexed with Oxindole-Based compound, while structure (1m7q.pdb) was used as crystal struc-
ture of p38 MAP kinase complexed with dihydroquinazolinone compound. Also in the study
of K. Wichapong et al. [270], 174 pyrrolocarbazole-dione derivatives (pyrrolo[3,4-c]carbazole-
1,3(2H,6H)-dione) and 48 pyridopyrimidinones derivatives (2-anilio-6-phenylpyrido[2,3-d]pyri-
midin-7(8H)-ones) were docked to a crystal structure of WEE-1 kinase (1x8b.pdb), which is
complexed with PD0407824 (a potent Wee-1 kinase inhibitor and pyrrolocarbazoledione deriva-
tive). It is expected that the success of the LIECE transferable models depends mainly on using
a crystal structure of the same kinase complexed with a ligand from the same series, and show-
ing the same contacts with the hinge region and the activation segment.
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Novel Inhibitors of Histone
Acetyltransferases

Figure B.1: Heavy atom root mean square deviation (H-Rmsd) of PCAF protein (black) and
ligand (12e, red) conformations sampled during 10 ns MD simulation with respect to the initial
structure versus simulation time.

Table B.1: Virtual Screening Hits with Docking Scores

Cmp. code GOLD score IC50 (PCAF, H3aa1-21)
PHAR037680 55.86 97.7 ± 10.4 µM
T0505-1441 61.34 12% @ 50 µM

BAS02167318 51.84 8% @ 50 µM
BAS0056484 56.34 n.i. @ 50 µM
PB-06479073 63.98 n.i. @ 50 µM
PB-06779828 51.83 8% @ 50 µM
7216540307 58.49 5% @ 50 µM
7714220145 64.85 14% @ 50 µM
F1691-2672 58.37 5% @ 50 µM
T5214023 64.28 n.i. @ 50 µM

PHAR011220 61.36 15%@ 50 µM
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C.1 GSK3β X-ray Structures

Table C.1: Available GSK3β X-ray Structures in the Protein Data Bank

PDB id Resolution GSK3 complex
with

P-loop/A-loop
dist. (Å)

R141 ori-
entation

1J1B 1.80Å AMP-PNP 10.93 inwards
1Q5K 1.94 Å Aminothiazole (AR) 9.34 outwards
4AFJ 1.98 Å 5-aryl-4-carboxamide-1,3-

oxazoles
9.89 outwards

1J1C 2.10 Å ADP 11.36 inwards
1Q41 2.10 Å Indirubin-3’-monooxime 9.53 outwards
1Q3D 2.20 Å Staurosporine 11.25 outwards
3DU8 2.20 Å Pyrrolopyridinone 9.81 outwards
4ACC 2.21 Å sulphonamide-pyrazine 9.81 inwards
1R0E 2.25 Å 3-indolyl-arylmaleimide 7.22 outwards
1Q3W 2.30 Å Alsterpaullone 10.71 outwards
3I4B 2.30 Å Pyrimidylpyrrole 12.90 outwards
2JLD 2.35 Å Ruthenium complex 7.54 outwards
3ZRK 2.37 Å 2-(4-pyridyl)Thieno-

Pyridinones
10.12 outwards

1O9U 2.40 Å ATP (Axin peptide) 11.21 inwards
1PYX 2.40 Å AMP-PNP 12.13 inwards
3F7Z 2.40 Å 1,3,4-oxadiazole 11.31 outwards
3GB2 2.40 Å 1,3,4-oxadiazole 10.83 outwards
3ZRL 2.48 Å 2-(4-pyridyl)Thieno-

Pyridinones
10.15 inwards

3ZRM 2.49 Å 2-(4-pyridyl)Thieno-
Pyridinones

10.42 inwards

4ACD 2.60 Å sulphonamide-pyrazine 9.83 inwards
4ACG 2.60 Å sulphonamide-pyrazine 8.84 outwards
4ACH 2.60 Å sulphonamide-pyrazine 8.94 outwards
1GNG 2.60 Å - (Fratide peptide) 11.97 inwards
3F88 2.60 Å 1,3,4-oxadiazole 7.92 outwards
1I09 2.70 Å - 11.63 outwards
1Q4L 2.77 Å Anilino-maleimide (I-5) 9.77 inwards
1H8F 2.80 Å - 11.33 inwards
1UV5 2.80 Å Indirubin-3’-monooxime 9.08 outwards
2OW3 2.80 Å Bis-indolyl-maleimide 7.45 outwards
3L1S 2.90 Å 3-Aryl-1H-pyrazole-5-one 9.50 outwards
2O5K 3.20 Å benzoimidazole 8.59 inwards
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Table C.2: RMSD (root mean squared deviation) matrix between some studied GSK3β X-ray
structures after superposition.

RMSD 1j1b 1q5k 1j1c 1q41 1q3d 3du8 1r0e 1q3w 3i4b 2jld
1j1b 0.0 0.35 0.15 0.57 0.69 0.31 0.68 0.61 0.50 0.51
1q5k 0.35 0.0 0.46 0.40 0.78 0.40 0.71 0.56 0.46 0.47
1j1c 0.15 0.46 0.0 0.63 0.64 0.31 0.67 0.60 0.53 0.54
1q41 0.57 0.40 0.63 0.0 0.84 0.60 0.86 0.50 0.45 0.50
1q3d 0.69 0.78 0.64 0.84 0.0 0.65 0.67 0.58 0.73 0.66
3du8 0.31 0.40 0.31 0.60 0.65 0.0 0.60 0.56 0.54 0.45
1r0e 0.68 0.71 0.67 0.86 0.67 0.60 0.0 0.74 0.80 0.56
1q3w 0.61 0.56 0.60 0.50 0.58 0.56 0.74 0.0 0.49 0.51
3i4b 0.50 0.46 0.53 0.45 0.73 0.54 0.80 0.49 0.0 0.46
2jld 0.51 0.47 0.54 0.50 0.66 0.45 0.56 0.51 0.46 0.0

C.2 CDK2 X-ray Structure (2WIH)

Figure C.1: Crystal structure of compound 28 (PHA-848125) in complex with CDK2/cyclinA
(PDB code 2WIH).
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C.3 Docking Scores

Table C.3: Docking score of top-scored solutions with GSK3β structures in binding mode 1 and
binding mode 2; (3dqw.pdb and 1j1b.pdb have been used for bm1 and bm2, respectively).

Cmp
code

Ki ∆Gbind Binding mode 1 Binding mode 2

(GSK3-
β)

(obsrv.) Gold
score

Glide Sp Gold
score

Glide Sp

2b 5.8 –7.23 33.03 –6.08 58.62 –6.69

2b_2 0.02 –10.6 34.09 –5.94 58.93 –6.54

2c 0.02 –10.6 28.92 –6.18 39.82 –6.67

2c_2 (≥1000) –4.14 28.27 –6.96 39.43 –6.56

2d_1 4.1 –7.4 14.83 –6.24 38.74 –7.31

2d_2 1.5 –8.04 34.03 –7.18 27.05 –7.5

2d_3 9 –6.9 35.39 –4.48 31.55 –6.62

2d_5 4.4 –7.4 29.56 –4.52 35.88 –6.64

2d_6 4.8 –7.34 28.59 –3.89 38.41 –6.47

2a 14.8 –6.67 29.48 –4.95 40.11 –7.11

2a_2 (≥1000) –4.14 30.15 –4.94 40.35 –6.94

2a_3 9.9 –6.91 30.48 –4.98 40.75 –7.23

2a_4 (≥1000) –4.14 30.52 –4.78 41.95 –7.36

2a_5 16.3 –6.61 30.11 –4.65 40.53 –7.19

3a_3 5.4 –7.27 31.85 –4.74 11.13 –5.15

3a_2 5.8 –7.23 30.95 –4.56 13.34 –5.25
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Table C.4: Docking score of top-scored solutions with CDK2 structure (2w1h.pdb) in binding
mode 1 and binding mode 2.

Cmp
code

Ki
(µM)

∆Gbind Binding mode 1 Binding mode 2

(CDK2) (obsrv.) Gold
score

Glide SP Gold
score

Glide SP

2b 6.4 –7.17 56.83 –6.67 50.92 –5.95

2b_2 (≥1000) –4.14 53.11 –6.83 50.34 –6.31

2a 24 –6.38 42.92 –7.28 42.43 –6.20

2a_2 147 –5.3 44.28 –8.05 43.35 –7.17

2a_3 50 –5.94 44.74 –8.25 43.83 –7.24

2a_4 267 –4.93 44.85 –8.34 43.93 –7.54

2a_5 241 –4.99 44.79 –8.27 43.64 –7.28

2c 0.6 –8.5 49.88 –7.67 41.61 –5.74

2c_2 (≥1000) –4.14 50.03 –7.67 42.21 –6.77

2d_1 (≥1000) –4.14 43.21 –8.63 43.87 –7.34

2d_2 (≥1000) –4.14 47.34 –7.63 29.25 –6.95
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(a) Scatter plots of GOLD score vs. experimental binding free energies. Red points (circles) represent
the GOLD scores for binding mode 1, while blue points (diamonds) represent GOLD scores for binding
mode 2. Non-filled points represent the inactive compounds plotted at (∆Gbind= –4.14).

(b) Scatter plots of Glide score vs. experimental binding free energies. Red points (circles) represent the
Glide scores for binding mode 1, while blue points (diamonds) represent Glide scores for binding mode
2. Non-filled points represent the inactive compounds plotted at (∆Gbind= –4.14).

Figure C.2: Scatter plots of docking scores (in the two suggested binding modes) vs. experi-
mental binding free energies
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C.4 MM-PBSA Calculations

C.4.1 MM-PBSA Calculations with GSK3β

Table C.5: MM-PBSA and LR-MM-PBSA applied on Inhibitors/GSK3β complexs in both
binding modes

(a) MM-PBSA methods (GSK3-β, binding mode 1)

LR-MM-PBSA : ∆Gbind = α ∆Evdw + β1∆Ecoul + β2∆Gsolv + γ

P/A avg. dist.
( comp. num.)

β1 β2 α γ r2 rmse q2

(rmseloo)
r2

(PBSAtotal)

10.92-14.5 Å
(13)

0.19 0.10 0.10 –5.09 0.12 1.44 0.03 (2.9) 0.22

13.5-14.5 Å
(7)

–0.30 0.16 0.24 –4.33 0.47 1.27 0.05 (2.03) 0.67

11.25-12.45 Å
(6)

0.65 0.16 –0.5 –24.06 0.98 0.28 0.006
(12.22)

0.0004

(b) MM-PBSA methods (GSK3-β, binding mode 2)

LR-MM-PBSA : ∆Gbind = α ∆Evdw + β1∆Ecoul + β2∆Gsolv + γ

P/A avg. dist.
( comp. num.)

β1 β2 α γ r2 rmse q2

(rmseloo)
r2

(PBSAtotal)

10.37-13.15 Å
(13)

0.01 –0.01 0.02 –6.49 0.011 1.53 0.005 (2.76) 0.038

12.2-13.15 Å
(4)

- - - - - - - 0.92

10.37-12.0 Å
(7)

–0.25 –0.22 –0.34 –16.82 0.25 1.48 0.0004 (2.87) 0.25
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Table C.6: LR-MM-PBSA models obtained for the whole dataset of 1-aza-9-oxafluorene deriva-
tives using energz components of MM-PBSA calculations with their binding affinities against
GSK3β , considering docking solutions in binding mode 1. The compounds are ranked accord-
ing to the descending order of P-loop/A-loop distance.

LR-MM-PBSA : ∆Gbind = α ∆Evdw + β1∆Ecoul + β2∆Gsolv + γ

Cmp
code

Ki ∆Gbind P-loop/A-
loop

β = 0.19 β1=0.10
α= 0.10 γ= –5.09

(BM1) (GSK3-
β)

(obsrv.) ∆Ecoul ∆Gsolv

(PB)
∆Evdw Average

dist (10
ns)

r2= 0.12, rmse=1.44

2d_5 4.4 –7.40 –6.34 23.78 –36.23 14.5±0.9 –7.5266

2b_2 0.02 –10.6 –6.38 24.76 –43.56 14.2±0.7 –8.1702

2d_2 1.5 –8.04 –6.08 24.9 –37.83 14.09±0.6 –7.5245

3a_3 5.4 –7.28 –6.36 25.26 –35.57 13.89±0.8 –7.3147

3a_2 5.8 –7.23 –6.54 24.87 –34.38 13.75±0.5 –7.2690

2d_6 4.8 –7.34 –5.34 23.54 –35.64 13.77±1.7 –7.3017

2b 5.8 –7.23 –6.65 25.25 –42.65 13.5±0.5 –8.0808

2a_5 16.3 –6.61 –8.77 25.58 –36.76 12.53±1.3 –7.8598

2a_3 9.9 –6.91 –5.7 20.73 –34.71 12.05±1.4 –7.5607

2d_3 9 –6.9 –11.45 25.45 –39.90 11.76±1.7 –8.6972

2a 14.8 –6.67 –6.72 27.03 –33.65 11.75±1.5 –7.0118

2c 0.02 –10.6 –12.36 26.96 –33.47 11.36±0.8 –8.0728

2d_1 4.1 –7.44 –13.49 36.58 –38.4 11.25±0.4 –7.8101

Ki ∆Gbind≥ ∆Ecoul ∆Gsolv
(PB)

∆Evdw Average
dist.

Pred. ∆Gbind

2a_4 (≥1000) –4.14 –7.32 26.39 –34.89 12.55±1.7 –7.3308

2c_2 (≥1000) –4.14 –7.42 26.37 –34.76 12.45±1.6 –7.3388

2a_2 (≥1000) –4.14 –11.54 30.42 –34.36 10.92±0.9 –7.6766
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Table C.7: LR-MM-PBSA models generated to predict the free binding energy depending on
MM-PBSA calaculations with Inhibitor/GSK3β complex in binding mode 2. The calculation
are performed including all the compounds. The compounds are ranked according to the de-
scending order of P-loop/A-loop distance.

LR-MM-PBSA : ∆Gbind = α ∆Evdw + β1∆Ecoul + β2∆Gsolv + γ

Cmp
code

Ki ∆Gbind P-loop/A-
loop

β = 0.01 β1=–0.01
α= 0.02 γ=–6.49

(
BM2)

(GSK3-
β)

(obsrv.) ∆Ecoul ∆Gsolv

(PB)
∆Evdw Average

dist (10
ns)

r2= 0.011, rmse=1.53

3a_3 5.4 –7.28 –10.27 33.37 –44.58 13.5±0.7 –7.7829

2d_1 4.1 –7.40 –5.35 24.04 –39.57 13.29±0.4 –7.5420

2b_2 0.02 –10.6 –15.09 34.83 –43.80 13.15±0.7 –7.83278

2b 5.8 –7.23 –14.15 41.32 –46.92 12.2±0.8 –7.9488

2d_5 4.4 –7.44 –17.27 38.04 –41.95 11.9±0.8 –7.8537

2a_5 16.3 –6.61 –12.51 28.58 –37.54 11.8±1.2 –7.6244

2d_6 4.8 –7.34 –22.37 41.16 –35.45 11.6±0.7 –7.81655

2a_3 9.9 –6.91 –10.37 26.02 –37.71 11.48±1.1 –7.5791

2a 14.8 –6.67 –19.13 33.25 –37.07 11.43±1.4 –7.7318

3a_2 5.8 –7.23 –11.45 35.26 –39.86 11.35±0.7 –7.7261

2d_3 9 –6.90 –11.36 21.05 –32.41 10.99±0.8 –7.4385

2c 0.02 –10.6 –13.7 30.1 –34.7 10.37±0.7 –7.5991

2d_2 1.5 –8.04 –11.28 34.61 –40.23 8.2±0.6 –7.7245

Ki ∆Gbind≥ ∆Ecoul ∆Gsolv
(PB)

∆Evdw Average
dist.

Pred. ∆Gbind

2a_2 (≥1000) –4.14 –12.96 26.27 –37.11 12.2±0.9 –7.6245

2a_4 (≥1000) –4.14 –13.67 29.47 –36.94 11.95±1.4 –7.6602

2c_2 (≥1000) –4.14 –9.35 22.37 –33.54 11.9±1.6 –7.478
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C.4.2 MM-PBSA Calculations with CDK2

Table C.8: LR-MM-PBSA models generated to predict the free binding energy depending on
MM-PBSA calaculations with Inhibitor/CDK2 complex in binding mode 1. Calculations are
performed including all the compounds. The compounds are ranked according to the descend-
ing order of P-loop/A-loop distance.

LR-MM-PBSA : ∆Gbind = α ∆Evdw + β1∆Ecoul + β2∆Gsolv + γ

Cmp
code

Ki
(µM)

∆Gbind P-
loop/A-

loop

β = –0.19 β1=–0.7
α= –0.34 γ= +7.9

(
BM1)

(CDK2) (obsrv.) ∆Ecoul ∆Gsolv
(PB)

∆Evdw Average
dist (10

ns)

r2= 0.67, rmse=0.75
q2=0.06 (5.19)

2c 0.6 –8.5 –25.9 44.82 –32.18 11.22±0.69 –7.7012

2a_2 147 –5.3 –35.22 46.23 –33.21 11.23±0.78 –6.5628

2a_3 50 –5.94 –35.45 45.84 –34.37 11.41±0.94 –5.8459

2a_4 267 –4.93 –35.64 45.35 –34.87 11.52±0.60 –5.2924

2a_5 241 –4.99 –35.77 44.93 –34.85 11.25±0.83 –4.9780

2a 24 –6.38 –38.36 47.97 –38.36 10.0+0.66 –5.4252

2b 6.4 –7.17 –15.72 49.65 –48.66 9.78±1.3 –7.4044

Ki ∆Gbind≥ ∆Ecoul ∆Gsolv
(PB)

∆Evdw Average
dist.

Pred. ∆Gbind

2d_2 (≥1000) –4.14 –3.63 26.72 –38.69 14.41±1.4 4.0766

2b_2 (≥1000) –4.14 –11.97 43.18 –45.63 13.88±1.2 –4.4178

2d_1 (≥1000) –4.14 –9.71 33.86 –36.80 12.48±0.88 –1.348

2c_2 (≥1000) –4.14 –20.9 40.82 –35.44 9.99±1.68 –4.4444
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Table C.9: LR-MM-PBSA models generated to predict the free binding energy depending on
MM-PBSA calaculations with Inhibitor/CDK2 complex in binding mode 2. Calculations are
performed including all the compounds. The compounds are ranked according to the descend-
ing order of P-loop/A-loop distance.

LR-MM-PBSA : ∆Gbind = α ∆Evdw + β1∆Ecoul + β2∆Gsolv + γ

Cmp
code

Ki ∆Gbind P-loop/A-
loop

β = 0.18 β1= –0.19
α= 0.06 γ=+6.57

(BM2) CDK2 (obsrv.) ∆Ecoul ∆Gsolv
(PB)

∆Evdw Average
dist (10

ns)

r2= 0.41 , rmse=1.40
q2=0.02 (12.3)

2b 6.4 –7.17 –18.1 36.49 –41.08 11.11±1.6 –6.8433

2a 24 –6.38 –19.37 34.21 –31.21 9.93±1.36 –5.9365

2a_3 50 –5.94 –18.33 33.82 –32.41 9.43±1.2 –5.7525

2a_4 267 –4.93 –18.48 33.79 –32.56 9.56±1.2 –5.7841

2a_5 241 –4.99 –11.52 32.76 –39.58 8.1±0.85 –4.7983

2c 0.6 –8.5 –15.30 41.36 –38.04 7.51±0.70 –7.0974

2a_2 147 –5.3 –15.21 40.56 –39.15 7.6+0.6 –6.9979

Ki ∆Gbind≥ ∆Ecoul ∆Gsolv
(PB)

∆Evdw Average
dist.

Pred. ∆Gbind

2d_2 (≥1000) –4.14 –2.99 32.99 –37.68 10.29±1.49 –2.4971

2d_1 (≥1000) –4.14 –16.6 39.98 –39.4 9.45±0.80 –6.3782

2b_2 (≥1000) –4.14 –10.47 33.97 –40.37 8.9+0.84 –4.1911

2c_2 (≥1000) –4.14 –14.84 40.27 –39.62 7.6+0.8 –6.1297
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Figure C.3: Scatter plots of PBSAtot vs. experimental binding free energies for GSK3 (left) and
CDK2 (right). Red points (circles) represent the PBSAtot for binding mode 1, while blue points
(diamonds) represent PBSAtot for binding mode 2. Non-filled points represent the inactive
compounds plotted at (∆Gbind= –4.14).
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C.5 LIE models of GSK3β binding energy (Binding mode 1)

Table C.10: LIE model obtained for the whole dataset of 1-aza-9-oxafluorene derivatives using
their binding affinities against GSK3β , starting from docking solutions in binding mode 1.
Compounds are ranked according to the descending order of P-loop/A-loop distance.

∆Gbind (pred.) = β(∆<Vel
lig-surr> )+ α (∆<Vvdw

lig-surr>) + γ

Cmp
code

Ki ∆Gbind P-
loop/A-

loop

β = –0.06 α= 0.13
γ=–5.13

BM1 GSK3β (obsrv.) ∆<Vel
lig-surr> ∆<Vvdw

lig-surr> Average
dist (10

ns)

r2= 0.08, rmse=1.4

2d_5 4.4 –7.40 4.26 –15.72 14.5±0.9 –7.56

2b_2 0.02 –10.6 8.45 –18.02 14.2±0.7 –8.14

2d_2 1.5 –8.04 11.63 –14.95 14.09±0.6 –7.92

3a_3 5.4 –7.28 8.82 –14.10 13.89±0.8 –7.63

3a_2 5.8 –7.23 10.3 –15.3 13.75±0.5 –7.89

2d_6 4.8 –7.34 9.1 –17.25 13.77±0.6 –8.08

2b 5.8 –7.23 7.22 –17.57 13.5±0.5 –8.00

2a 14.8 –6.67 8.31 –11.80 12.69±0.8 –7.28

2a_5 16.3 –6.61 10.58 –11.85 12.53±1.3 –7.43

2a_3 9.9 –6.91 9.84 –11.82 12.05±1.4 –7.38

2d_3 9 –6.90 2.47 –12.91 11.76±1.7 –7.06

2c 0.02 –10.6 12.1 –11.55 11.36±0.8 –7.49

2d_1 4.1 –7.44 19.26 –14.40 11.25±0.4 –8.34
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Table C.11: LIE models obtained for subset 1 (average P-loop/A-loop distance between 13.5 to
14.5 Å) using their binding affinities against GSK3β, starting from docking solutions in binding
mode 1. Compounds are ranked according to the descending order of P-loop/A-loop distance.

Comp
code

∆Gbind (pred.) = β(∆<Vel
lig-surr> )+ α (∆<Vvdw

lig-surr>) + γ

GSK3-β,
BM1

Avg. Dist ∆<Vel

lig-surr>

∆<Vvdw
lig-surr> exp. β = –0.07

α= 0.014
γ= –7.27

2d_5 14.5±0.9 4.26 –15.72 –7.40 –7.17

2b_2 14.2±0.7 8.45 –18.02 –10.60 –8.72

2d_2 14.09±0.6 11.63 –14.95 –8.04 –7.70

3a_3 13.89±0.8 8.82 –14.1 –7.27 –6.98

3a_2 13.75±0.5 10.3 –15.3 –7.23 –7.71

2d_6 13.77±0.6 9.1 –17.25 –7.34 –8.45

2b 13.5±0.5 7.22 –17.57 –7.23 –8.36

Model r2
(rmse)

0.28
(1.28)

Table C.12: LIE models obtained for subset 2 (average P-loop/A-loop distance between 11.25
to 12.45 Å) using their binding affinities against GSK3β, starting from docking solutions in
binding mode 1. Compounds are ranked according to the descending order of P-loop/A-loop
distance.

Comp
code

∆Gbind (pred.) = β(∆<Vel
lig-surr> )+ α (∆<Vvdw

lig-surr>) + γ

GSK3β,
BM1

Avg. Dist ∆<Vel

lig-surr>

∆<Vvdw
lig-surr> exp. β = –0.13

α= –0.59
γ= –13.58

2a 12.69±0.8 8.31 –11.80 –6.67 –7.59

2a_5 12.53±1.3 10.58 –11.85 –6.61 –7.86

2a_3 12.05±1.3 9.84 –11.82 –6.91 –7.78

2d_3 11.76±1.7 2.47 –12.91 –6.90 –6.17

2c 11.36±0.8 12.1 –11.55 –10.60 –8.23

2d_1 11.25±0.4 19.26 –14.4 –7.44 –7.45

Model r2
(rmse)

0.21
(1.76)
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C.6 LIE models of CDK2 binding energy (Binding mode 1)

Table C.13: LIE model obtained for the whole dataset of 1-aza-9-oxafluorene derivatives us-
ing their binding affinities against CDK2, starting from docking solutions in binding mode 1.
Compounds are ranked according to the descending order of P-loop/A-loop distance.

∆Gbind (pred.) = β(∆<Vel
lig-surr> ) + α (∆<Vvdw

lig-surr>) + γ

Cmp
code

Ki ∆Gbind P-
loop/A-

loop

β = 0.02 α= –0.65
γ= –15.57

BM1 CDK2 (obsrv.) ∆<Vel

lig-surr>

∆<Vvdw
lig-surr> Average

dist (10
ns)

r2= 0.42, rmse=0.91

2a_4 267 –4.93 12.34 –13.36 11.52±0.60 –6.59

2a_3 50 –5.94 6.2 –15.36 11.41±0.94 –5.40

2a_5 241 –4.99 5.25 –15.87 11.25±0.83 –5.08

2a_2 147 –5.30 12.55 –14.93 11.23±0.78 –5.65

2c 0.6 –8.50 12.98 –12.22 11.22±0.69 –7.32

2a 24 –6.38 5.15 –12.91 10.0+0.66 –7.02

2b 6.4 –7.17 9.51 –14.01 9.78±1.3 –6.22
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Table C.14: LIE models obtained for compounds’ subset (average P-loop/A-loop distance be-
tween 11.22 to 11.52 Å) using their binding affinities against CDK2, starting from docking
solutions in binding mode 1. Compounds are ranked according to the descending order of
P-loop/A-loop distance.

∆Gbind (pred.) = β(∆<Vel
lig-surr> ) + α (∆<Vvdw

lig-surr>) + γ

Cmp
code

Ki ∆Gbind P-
loop/A-

loop

β = 0.2 α= –1.08
γ= –23.41

BM1 CDK2 (obsrv.) ∆<Vel

lig-surr>

∆<Vvdw
lig-surr> Average

dist (10
ns)

r2= 0.57, rmse=0.95

2a_4 267 –4.93 12.34 –13.36 11.52±0.60 –6.50

2a_3 50 –5.94 6.20 –15.36 11.41±0.94 –5.57

2a_5 241 –4.99 5.25 –15.87 11.25±0.83 –5.21

2a_2 147 –5.30 12.55 –14.93 11.23±0.78 –4.76

2c 0.6 –8.50 12.98 –12.22 11.22±0.69 –7.60
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C.7 Prediction of Inactive Compounds

Table C.15: Predictions of inactive compounds of GSK3

(a) Prediction of inactive compounds of GSK3 in BM2

Cmp.
code

Ki P-
loop/A-

loop

Applied Model

(BM2) (GSK3) Avg.
Dist.

∆<Vel
lig-surr> ∆<Vvdw

lig-surr> ∆Gbind (pred.) = 0.63(∆<Vel
lig-surr> )+

0.32 (∆<Vvdw
lig-surr>) –8.22

2a_4 ≥1000 12.44 9.54 –11.5 –5.88
2a_2 ≥1000 12.2 11.3 –13.87 –5.53

∆<Vel
lig-surr> ∆<Vvdw

lig-surr> ∆Gbind (pred.) = 0.86(∆<Vel
lig-surr> )+

0.23 (∆<Vvdw
lig-surr>) –7.89

2c_2 ≥1000 11.9 7.44 –11.87 –4.23

(b) Prediction of inactive compounds of GSK3 in BM1

Cmp.
code

Ki P-
loop/A-

loop

Applied Model

(BM1) (GSK3) Avg.
Dist.

∆<Vel
lig-surr> ∆<Vvdw

lig-surr> ∆Gbind (pred.) = –0.13(∆<Vel
lig-surr>

)–0.59 (∆<Vvdw
lig-surr>) –13.58

2a_4 ≥1000 12.55 10.68 –11.79 –8.00
2c_2 ≥1000 12.45 10.84 –11.82 –8.00
2a_2 ≥1000 10.92 8.82 –13.71 –6.64
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Table C.16: Predictions of inactive compounds of CDK2

(a) Prediction of inactive compounds of CDK2 in BM2

Cmp.
code

Ki P-
loop/A-

loop

Applied Model

(BM2) (CDK2) Avg.
Dist.

∆<Vel
lig-surr> ∆<Vvdw

lig-surr> ∆Gbind (pred.) = 0.24(∆<Vel
lig-surr> )+

0.09 (∆<Vvdw
lig-surr>) –4.8

2d_2 ≥1000 10.29 5.42 –17.13 –4.9
2d_1 ≥1000 9.45 9.49 –14.01 –3.71
2b_2 ≥1000 8.90 4.90 –18.75 –5.3

∆<Vel
lig-surr> ∆<Vvdw

lig-surr> ∆Gbind (pred.) = 0.46(∆<Vel
lig-surr> )+

0.06 (∆<Vvdw
lig-surr>) –6.9

2c_2 ≥1000 7.6 6.79 –16.43 –4.76

(b) Prediction of inactive compounds of CDK2 in BM1

Cmp.
code

Ki P-
loop/A-

loop

Applied Model

(BM1) (CDK2) Avg.
Dist.

∆<Vel
lig-surr> ∆<Vvdw

lig-surr> ∆Gbind (pred.) = 0.2(∆<Vel
lig-surr> )–1.08

(∆<Vvdw
lig-surr>) –23.41

2d_2 ≥1000 14.41 9.59 –10.38 –10.28
2b_2 ≥1000 13.88 6.67 –13.18 –7.84
2d_1 ≥1000 12.48 12.5 –12.05 –7.89

∆<Vel
lig-surr> ∆<Vvdw

lig-surr> ∆Gbind (pred.) = 0.02(∆<Vel
lig-surr> )–0.65

(∆<Vvdw
lig-surr>) –15.57

2c_2 ≥1000 9.99 5.25 –13.19 –6.89
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D.1.1 LIE model 1-1

Training set 1 (TS1): (Compounds with distance between P_loop and A_loop = 8.4 – 8.7)

Table D.1: Training set (TS1) for LIE model 1-1

4Gbind(pred.) = 0.10 (4<Vel
lig-surr>) + 0.16 (4<Vvdw

lig-surr>) – 5.01

(r2=0.66, rmse=0.81, adjusted r2=0.49, q2 =0.40, n=7)

Cmp
code

IC50
(nM) (c-

Kit_D816V)

4Gbind

(observ.)

4<Vel
lig-surr> 4<Vvdw

lig-surr> Ploop/Aloop
distance

(Å)

4Gbind

(pred.)

6367 70 –10.02 6.820 –36.933 8.54 –10.51
6020 300 –9.13 17.707 –32.605 8.74 –8.63
6614 270 –9.20 7.0335 –26.667 8.43 –8.76
6674 650 –8.66 7.367 –28.721 8.43 –9.07
6556 70 –10.02 12.856 –31.883 8.53 –9.02
6124 7800 –7.15 17.932 –29.196 8.42 –8.03
6151 4800 –7.45 17.943 –26.555 8.71 –7.59
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Validation set 1 (VS1): (Compounds with distance between P_loop and A_loop = 8.4 –
8.7)

Table D.2: Validation set (VS1) for LIE model 1-1

Cmp
code

IC50
(nM) (c-

Kit_D816V)

4Gbind

(observ.)

4<Vel
lig-surr> 4<Vvdw

lig-surr> Ploop/Aloop
distance

(Å)

4Gbind

(pred.)

6557 750 –8.57 16.48 –28.11 8.4 –7.85
5038 1500 –8.15 20.93 –29.97 8.55 –7.71
6275 2500 –7.84 9.35 –23.74 8.58 –7.87
5003 900 –8.46 16.38 –30.45 8.47 –8.24
6567 250 –9.24 11.5 –31.43 8.39 –8.89
6395 3000 –7.73 10.44 –23.77 8.75 –7.76
6275 2500 –7.28 9.35 –23.74 8.58 –7.87
6472 1300 –8.24 10.64 –23.57 8.3 –7.71
6377 350 –9.04 11.72 –33.43 8.57 –9.18
6376 150 –9.55 4.54 –29.83 8.2 –9.32

133



APPENDIX D: PREDICTION OF BINDING AFFINITIES (c-Kit D816V)

D.1.2 LIE model 2-1

Training set 2 (TS2): (Compounds with distance between P_loop and A_loop = 8.75 – 9.0)

Table D.3: Training set (TS2) for LIE model 2-1

4Gbind(pred.) = 0.16 (4<Vel
lig-surr>) + 0.45 (4<Vvdw

lig-surr>) +1.56

(r2=0.74, rmse=0.77, adjusted r2=0.67, q2 =0.55, n=11)

Cmp
code

IC50
(nM) (c-

Kit_D816V)

4Gbind

(observ.)

4<Vel
lig-surr> 4<Vvdw

lig-surr> Ploop/Aloop
distance

(Å)

4Gbind

(pred.)

6387 250 –9.24 10.19 –26.09 8.81 –8.73
6249 500 –8.82 13.77 –30.04 8.85 –9.96
6503 15000 –6.75 8.97 –21.50 8.95 –6.83
6620 550 –8.76 3.77 –25.36 8.98 –9.42
6561 450 –8.88 20.04 –29.44 9.0 –8.69
1869 20000 –6.58 2.49 –20.06 8.89 –7.20
6678 150 –9.55 14.04 –30.86 8.87 –10.30
1718 45 –10.28 0.51 –25.28 9.03 –9.91
6581 10 –11.20 3.69 –27.13 8.84 –10.24
6155 270 –9.20 16.22 –27.55 8.83 –8.43
6152 100 –9.80 13.11 –28.49 8.75 –9.36
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Validation set 2 (VS2): (Compounds with distance between P_loop and A_loop = 8.75
– 9.2)

Table D.4: Validation set (VS2) for LIE model 2-1

4Gbind(pred.) = 0.16 (4<Vel
lig-surr>) + 0.45 (4<Vvdw

lig-surr>) +1.56
Cmp
code

IC50
(nM) (c-

Kit_D816V)

4Gbind

(observ.)

4<Vel
lig-surr> 4<Vvdw

lig-surr> Ploop/Aloop
distance

(Å)

4Gbind

(pred.)

6621 200 –9.38 9.81 –23.92 8.99 –7.87
6603 400 –8.96 6.26 –25.86 8.95 –9.33
6168 20000 –6.58 20.50 –25.57 9.08 –6.92
5145 20000 –6.58 3.52 –20.69 8.7 –7.395
6569 75 –9.97 10.96 –28.80 8.91 –9.94
5284 350 –9.04 18.34 –28.85 8.73 –8.77
5208 20 –10.78 9.25 –28.25 8.83 –9.96
5221 70 –10.02 12.90 –29.68 9.00 –10.03
5260 200 –9.38 2.89 –24.31 8.95 –9.16
5189 1500 –8.15 10.19 –23.68 9.2 –7.70
6601 300 –9.13 7.31 –27.69 8.92 –10.01
6255 480 –8.85 6.84 –26.06 8.91 –9.14

135
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D.1.3 LIE model 3-1

Training set 3 (TS3): (Compounds with distance between P_loop and A_loop = 9.4 – 9.9)

Table D.5: Training set (TS3) for LIE model 3-1

4Gbind(pred.) = 0.047 (4<Vel
lig-surr>) + 0.31 (4<Vvdw

lig-surr>) –0.84

(r2=0.628, rmse=0.70, adjusted r2=0.52, q2 =0.48, n=10)

Cmp
code

IC50
(nM) (c-

Kit_D816V)

4Gbind

(observ.)

4<Vel
lig-surr> 4<Vvdw

lig-surr> Ploop_Aloop
distance

(Å)

4Gbind

(pred.)

5287 90 –9.86 13.16 –30.14 9.74 –9.59
6194 6500 –7.26 15.765 –23.21 9.59 –7.31
6213 1200 –8.29 23.92 –26.79 9.67 –8.04
6549 300 –9.13 12.67 –30.68 9.71 –9.78
6050 250 –9.24 15.76 –27.22 9.8 –8.56
6167 500 –8.82 14.02 –25.26 9.87 –8.03
6168 20000 –6.58 20.50 –25.57 9.9 –7.82
6528 600 –8.71 6.22 –26.90 9.47 –8.91
1860 130 –9.64 14.65 –29.16 9.58 –9.22
6612 600 –8.71 7.13 –27.29 9.56 –8.99
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Validation set 3 (VS3): (Compounds with distance between P_loop and A_loop = 9.4 –
9.9)

Table D.6: Validation set (VS3) for LIE model 3-1

Cmp
code

IC50
(nM) (c-

Kit_D816V)

4Gbind

(observ.)

4<Vel
lig-surr> 4<Vvdw

lig-surr> Ploop/Aloop
distance

(Å)

4Gbind

(pred.)

6418 90 –9.86 16.15 –33.73 9.7 –10.54
6330 100 –9.80 12.70 –30.37 9.56 –9.66
1860 130 –9.64 14.65 –29.16 9.58 –9.19
1805 400 –8.96 23.63 –27.06 9.7 –8.12
6108 670 –8.64 2.87 –24.16 9.83 –8.20
6514 300 –9.13 10.72 –29.70 9.76 –9.54
6671 20000 –6.58 14.87 –20.84 9.88 –6.60
5190 1300 –8.24 8.47 –26.73 9.6 –8.73
5196 150 –9.55 14.98 –28.22 9.52 –8.88
5197 60 –10.11 19.33 –29.13 9.63 –8.96
5246 200 –9.38 21.07 –29.96 9.7 –9.14
5186 1500 –8.15 8.63 –24.93 9.80 –8.16
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D.1.4 LIE model 4-1

Training set 4 (TS4): (Compounds with distance between P_loop and A_loop = 10 - 10.5)

Table D.7: Training set (TS4) for LIE model 4-1

4Gbind(pred.) = 0.24 (4<Vel
lig-surr>) + 0.21 (4<Vvdw

lig-surr>) –7.5

(r2=0.776, rmse=0.61, adjusted r2=0.70, q2 =0.65, n=9)

Cmp
code

IC50
(nM) (c-

Kit_D816V)

4Gbind

(observ.)

4<Vel
lig-surr> 4<Vvdw

lig-surr> Ploop/Aloop
distance

(Å)

4Gbind

(pred.)

6535 120 –9.69 13.41 –25.61 10.03 –9.82
6041 2500 –7.84 22.67 –26.36 10.03 –7.72
6071 350 –9.04 18.42 –27.51 10.12 –9.01
6431 250 –9.24 16.61 –27.70 10.5 –9.49
1823 1100 –8.34 25.48 –30.43 10.29 –7.92
1809 50 –10.22 10.51 –25.66 10.45 –10.54
1806 950 –8.43 18.20 –27.57 10.41 –9.07
4232 5 –11.62 9.28 –23.92 10.17 –10.46
1778 200 –9.38 10.14 –21.74 10.18 –9.78
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Validation set 4 (VS4):(Compounds with distance between P_loop and A_loop = 10 -
10.5)

Table D.8: Validation set (VS4) for LIE model 4-1

Cmp
code

IC50
(nM) (c-

Kit_D816V)

4Gbind

(observ.)

4<Vel
lig-surr> 4<Vvdw

lig-surr> Ploop/Aloop
distance

(Å)

4Gbind

(pred.)

6545 60 –10.11 11.24 –29.71 10.25 –11.04
6418 90 –9.86 11.69 –30.14 10.17 –11.02
6186 30 –10.53 12.68 –25.12 10.11 –9.73
6303 30 –10.532 9.33 –27.19 10.52 –10.97
1800 80 –9.94 9.92 –26.80 10.78 –10.75
1745 300 –9.13 16.66 –31.78 10.75 –10.17
1752 540 –8.77 14.78 –26.03 10.75 –9.42
6458 2700 –7.80 13.73 –23.21 10.75 –9.08
6581 10 –11.20 6.46 –27.99 10.67 –11.83
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D.2 PBSA Calculations and LR-MM-PBSA Models

D.2.1 LR-MM-PBSA model 1-1

Training set 1 (TS1): (Compounds with distance between P_loop and A_loop = 8.4 – 8.7)

Table D.9: PBSA calculations for Training set 1

PB 1-1 : ∆Gbind (pred.) = 0.45∆Ecoul + 0.23 ∆Evdw –0.37∆Gsolv –1.26

(r2=0.47, rmse=0.81, q2 =0.19)
Cmp
code

(TS 1)

IC50
(nM,

cKit_D816V)

4Gbind

(observ.)
PBSAtot ∆Ecoul ∆Evdw ∆Gsolv

(PB)
∆Gsa 4Gbind

(pred.)

6367 70 –10.02 –43.01 –36.46 –71 66 –1.55 –9.13
6020 300 –9.13 –39.82 –43.53 –68.62 73.83 –1.5 –8.81
6614 270 –9.20 –35.99 –36.4 –59.9 61.78 –1.47 –8.13
6674 650 –8.66 –38.97 –41.59 –65.55 69.67 –1.5 –8.80
6556 70 –10.02 –45.17 –38.81 –69.58 64.73 –1.51 –10.34
6124 7800 –7.15 –37.97 –39.18 –64.29 66.99 –1.49 –8.43
6151 4800 –7.45 –38.9 –31.49 –65.87 59.95 –1.49 –7.99

Validation set 1 (VS1): (Compounds with distance between P_loop and A_loop = 8.4 –
8.7)

Table D.10: PBSA calculations for Validation set 1

PB 1-1 : ∆Gbind (pred.) = 0.45∆Ecoul + 0.23 ∆Evdw –0.37∆Gsolv –1.26 (pred. r2=0.27)
Cmp
code

(VS 1)

IC50

(nM,
cKit_D816V)

4Gbind

(observ.)
PBSAtot ∆Ecoul ∆Evdw ∆Gsolv

(PB)
∆Gsa 4Gbind

(pred.)

6557 750 –8.57 –40.47 –24.78 –65.8 51.57 –1.46 –8.46
5038 1500 –8.15 –33.53 –23.84 –67.85 59.66 –1.5 –5.52
6275 2500 –7.84 –44.91 –25.85 –66.7 49.07 –1.43 –10.08
5003 900 –8.46 –37.47 –46.27 –67.82 78.09 –1.47 –8.79
6567 250 –9.24 –47.78 –38.6 –63.95 56.21 –1.44 –12.54
6395 3000 –7.73 –35.44 –36.4 –64.9 67.34 –1.48 –7.65
6275 2500 –7.28 –44.93 –25.85 –66.7 49.07 –1.45 –10.08
6472 1300 –8.24 –45.64 –34.79 –62.77 53.35 –1.43 –11.61
6377 350 –9.04 –47.6 –35.1 –68.44 57.4 –1.46 –11.56
6376 150 –9.55 –49.99 –42.72 –70.32 64.67 –1.62 –12.73
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D.2.2 LR-MM-PBSA model 2-1

Training set 2 (TS2): (Compounds with distance between P_loop and A_loop = 8.75 – 9)

Table D.11: PBSA calculations for Training set 2

PB 2-1 : ∆Gbind (pred.) = 0.01∆Ecoul + 0.08 ∆Evdw –0.02∆Gsolv –2.32

(r2=0.5, rmse=1.14, q2 =0.15)
Cmp
code

(TS 2)

IC50

(nM,
cKit_D816V)

4Gbind

(observ.)
PBSAtot ∆Ecoul ∆Evdw ∆Gsolv

(PB)
∆Gsa 4Gbind

(pred.)

6387 250 –9.2429 –44.87 –37.09 –67.97 61.7 –1.51 –9.41
6249 500 –8.8214 –37.44 –27.96 –64.85 56.85 –1.48 –8.95
6503 15000 –6.7535 –136.46 –40.39 –56.55 –38.04 –1.48 –6.48
6620 550 –8.7635 –42.69 –59.64 –61.1 79.54 –1.49 –9.52
6561 450 –8.8855 –41.14 –38.59 –62.81 61.73 –1.47 –9.02
1869 20000 –6.5786 –36.2 –24.16 –59.47 48.88 –1.45 –8.31
6678 150 –9.5535 –50.04 –48.5 –69.86 69.97 –1.51 –9.87
1718 45 –10.2855 –28.73 –33.78 –58.94 65.47 –1.48 –8.74
6581 10 –11.20 –36.43 –41.92 –67.06 74.25 –1.57 –9.66
6155 270 –9.1961 –42.66 –50.82 –67.04 76.71 –1.51 –9.82
6152 100 –9.80 –34.89 –42.37 –63 71.99 –1.51 –9.30

Validation set 2 (VS2): (Compounds with distance between P_loop and A_loop = 8.75
– 9)

Table D.12: PBSA calculations for Validation set 2

PB 2-1 : ∆Gbind (pred.) = 0.01∆Ecoul + 0.08 ∆Evdw –0.02∆Gsolv –2.32 (pred. r2=0.082)
Cmp
code

(VS 2)

IC50

(nM,
cKit_D816V)

4Gbind

(observ.)
PBSAtot ∆Ecoul ∆Evdw ∆Gsolv

(PB)
∆Gsa 4Gbind

(pred.)

6621 200 –9.3786 –34.44 –36.47 –55.47 58.92 –1.44 –8.30
6603 400 –8.9571 –41.55 –29.66 –63.36 52.98 –1.51 –8.76
6168 20000 –6.5786 –42.39 –54.01 –58.73 71.83 –1.48 –8.99
5145 20000 –6.5786 –30.4 –30.33 –48.18 49.51 –1.4 –7.47
6569 75 –9.9749 –89.6 –38.48 –59.58 9.93 –1.47 –7.67
5284 350 –9.0383 –42.26 –40.24 –68.08 67.58 –1.52 –9.52
5208 20 –10.7786 –41.07 –44.36 –59.84 64.6 –1.47 –8.84
5221 70 –10.0169 –42.47 –45.26 –69.93 74.23 –1.51 –9.85
5260 200 –9.3786 –35.29 –44.99 –55.3 66.44 –1.44 –8.52
5189 1500 –8.1535 –40.97 –44.09 –56.34 60.9 –1.44 –8.49
6601 300 –9.1320 –40.21 –30.97 –64.82 57.09 –1.51 –8.96
6255 480 –8.8463 –42.57 –36.2 –62.63 57.77 –1.51 –8.85
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D.2.3 LR-MM-PBSA model 3-1

Training set 3 (TS3): (Compounds with distance between P_loop and A_loop = 9.4 – 9.7)

Table D.13: PBSA calculations for Training set 3

PB 3-1 : ∆Gbind (pred.) = 0.01∆Ecoul + 0.11 ∆Evdw + 0.02∆Gsolv –2.91

(r2=0.23, rmse=1.09, q2 =0.05)
Cmp
code

(TS 3)

IC50

(nM,
cKit_D816V)

4Gbind

(observ.)
PBSAtot ∆Ecoul ∆Evdw ∆Gsolv

(PB)
∆Gsa 4Gbind

(pred.)

5287 90 –9.86 –36.01 –26.54 –68.98 61.03 –1.52 –9.24
6194 6500 –7.26 –30.16 –24.47 –57.42 53.19 –1.46 –8.16
6213 1200 –8.29 –39.1 –23.31 –68.03 53.79 –1.5 –9.28
6549 300 –9.13 –49.21 –48.02 –56.78 57.05 –1.46 –8.36
6050 250 –9.24 –40.84 –42.03 –62.13 64.82 –1.5 –8.64
6167 500 –8.82 –44.9 –48.51 –59.5 64.59 –1.48 –8.46
6168 20000 –6.58 –42.39 –54.01 –58.73 71.83 –1.48 –8.26
6528 600 –8.71 –66.05 –37.05 –56.68 29.13 –1.45 –8.93
1860 130 –9.64 –39 –39.49 –67.67 69.66 –1.5 –9.07
6612 600 –8.71 –32.81 –29.13 –53.38 51.15 –1.45 –7.84

Validation set 3 (VS3): (Compounds with distance between P_loop and A_loop = 9.4 –
9.7)

Table D.14: PBSA calculations for Validation set 3

PB 3-1 : ∆Gbind (pred.) = 0.01∆Ecoul + 0.11 ∆Evdw + 0.02∆Gsolv –2.91 (pred. r2=0.24)
Cmp
code

(VS 3)

IC50

(nM,
cKit_D816V)

4Gbind

(observ.)
PBSAtot ∆Ecoul ∆Evdw ∆Gsolv

(PB)
∆Gsa 4Gbind

(pred.)

6418 90 –9.86 –36.84 –28.62 –58.92 52.16 –1.46 –8.63
6330 100 –9.80 –44.78 –36.01 –67.23 59.95 –1.49 –9.46
1860 130 –9.64 –39 –39.49 –67.67 69.66 –1.5 –9.35
1805 400 –8.96 –36.07 –37.16 –61.63 64.18 –1.46 –8.78
6108 670 –8.64 –34.64 –40.55 –50.58 57.91 –1.42 –7.72
6514 300 –9.13 –48.38 –35.16 –69.11 57.39 –1.5 –9.72
6671 20000 –6.58 –24.43 –20.2 –54.66 51.89 –1.46 –8.09
5190 1300 –8.24 –39.26 –38.79 –56.98 57.96 –1.45 –8.41
5196 150 –9.55 –38.48 –28.8 –65.95 57.76 –1.49 –9.30
5197 60 –10.11 –39.51 –44.61 –60.54 67.14 –1.5 –8.67
5246 200 –9.38 –41.58 –36.79 –66.87 63.57 –1.49 –9.36
5186 1500 –8.15 –33.66 –14.53 –64.42 46.81 –1.52 –9.20
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D.2.4 LR-MM-PBSA model 4-1

Training set 4 (TS4): (Compounds with distance between P_loop and A_loop = 10 - 10.5)

Table D.15: PBSA calculations for Training set 4

PB 4-1 : ∆Gbind (pred.) = 0.03∆Ecoul –0.13 ∆Evdw +0.04∆Gsolv –18.9

(r2=0.43, rmse=0.77, q2 =0.23)
Cmp
code

(TS 4)

IC50

(nM,
cKit_D816V)

4Gbind

(observ.)
PBSAtot ∆Ecoul ∆Evdw ∆Gsolv

(PB)
∆Gsa 4Gbind

(pred.)

6535 120 –9.69 –42.5 –31.52 –60.25 50.73 –1.46 –9.66
6041 2500 –7.84 –37.55 –60.24 –60.84 84.99 –1.46 –8.92
6071 350 –9.04 –36.67 –29.25 –63.94 58.01 –1.49 –8.78
6431 250 –9.24 –38.72 –30.61 –63.41 56.78 –1.48 –8.95
1823 1100 –8.34 –37.22 –37.43 –67.03 68.75 –1.51 –8.14
1809 50 –10.22 –38.04 –36.15 –61.09 60.69 –1.49 –9.25
1806 950 –8.43 –38.13 –30.23 –61.35 54.91 –1.46 –9.29
4232 5 –11.62 –36.6 –57.87 –52.7 75.4 –1.43 –10.35
1778 200 –9.38 –36.56 –39.29 –53.63 57.78 –1.42 –10.46

Validation set 4 (VS4):(Compounds with distance between P_loop and A_loop = 10 -
10.5)

Table D.16: PBSA calculations for Validation set 4

PB 4-1 : ∆Gbind (pred.) = 0.03∆Ecoul –0.13 ∆Evdw +0.04∆Gsolv –18.9 (pred. r2=0.20)
Cmp
code

(VS 4)

IC50

(nM,
cKit_D816V)

4Gbind

(observ.)
PBSAtot ∆Ecoul ∆Evdw ∆Gsolv

(PB)
∆Gsa 4Gbind

(pred.)

6545 60 –10.11 –40.43 –45.46 –59.56 66.08 –1.49 –9.42
6418 90 –9.86 –39.01 –21.58 –69.71 53.77 –1.49 –8.11
6186 30 –10.53 –36.45 –28.23 –61.74 54.99 –1.47 –9.24
6303 30 –10.53 –47.97 –36.35 –61.15 51.03 –1.5 –9.64
1800 80 –9.93 –37.12 –43.5 –68.89 76.79 –1.52 –7.74
1745 300 –9.13 –44.59 –37.19 –71.22 65.34 –1.52 –7.77
1752 540 –8.77 –36.08 –33.38 –61.22 59.99 –1.47 –9.21
6458 2700 –7.80 –27.23 –24.51 –54.98 53.68 –1.42 –10.09
6581 10 –11.2 –42.11 –45.27 –67.27 71.99 –1.56 –8.18
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A-loop : Activation loop of kinase domains

AANAT : Aryl Alkyl N-AcetylTransferase or Serotonin AcetylTransferase; a member of GNAT
family of Acetyltransferases.

ABL : Abelson Kinase or Abelson murine leukemia viral oncogene homolog 1 also known
as ABL1; is a protein that, in humans, is encoded by the ABL1 gene located on chro-
mosome 9. ABL1 proto-oncogene encodes a cytoplasmic and nuclear protein tyrosine
kinase that has been implicated in processes of cell differentiation, cell division, cell
adhesion, and stress response. Mutations in the ABL1 gene are associated with chronic
myelogenous leukemia (CML). In CML, the gene is activated by being translocated
within the BCR (breakpoint cluster region) gene on chromosome 22.

Ac-CoA : Acetyl Coenzyme-A; the cofactor for Acetyltransferases.

ACK1 : activated Cdc42 kinase; a non-receptor tyrosine kinase, ACK1, that binds to multi-
ple receptor tyrosine kinases encoded by TNK2 gene. It interacts with Cdc42Hs in its
GTP-bound form and inhibits both the intrinsic and GTPase-activating protein (GAP)-
stimulated GTPase activity of Cdc42Hs, using unique sequence of 47 amino acids C-
terminal to an SH3 domain. ACK1 is a survival kinase and shown to be associated with
tumor cell survival, proliferation, hormone-resistance and radiation resistance. The ac-
tivation of ACK1 has been observed in prostate, breast, pancreatic, lung and ovarian
cancer cells.

AD : Alzheimer disorder

ADA : Adaptorprotein.

AGC : a group of kinases; named after the Protein Kinase A, G, and C families (PKA, PKC,
PKG), this group contains many core intracellular signaling kinases which are modulated
by cyclic nucleotides, phospholipids and calcium.

Akt : or Protein Kinase B; a serine/threonine-specific protein kinase that plays a key role
in multiple cellular processes such as glucose metabolism, apoptosis, cell proliferation,
transcription and cell migration.

AMBER : Assisted Model Building with Energy Refinement; a family of force fields for
molecular dynamics of biomolecules; and also the name for the molecular dynamics
software package that simulates these force fields.

AML : Acute Myeloid Leukaemia
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Aurora : a family of mitotic serine/threonine kinases, classified as part of other kinases. They
are implicated with important processes during mitosis and meiosis whose proper func-
tion is integral for healthy cell proliferation.

CAMK : a group of protein kinases; best known for the Calmodulin/Calcium regulated kinases
(CAMK) in CAMK1 and CAMK2 families, this also has several families of non-calcium
regulated kinases (CHK1, CHK2, PKD, and PIM kinases family).

CaMKII : Ca2+/calmodulin-dependent protein kinase II or CaM Kinase II.a serine/threonine-
specific protein kinase that is regulated by the Ca2+/calmodulin complex. CaMKII is in-
volved in many signaling cascades and is thought to be an important mediator of learning
and memory.

CBP : CREB-binding protein or CREBBP.

CDK : Cyclin-Dependent Kinase; a family of protein kinases participating in regulating the
cell cycle. They are also involved in regulating transcription, mRNA processing, and the
differentiation of nerve cells. CDKs become active upon binding to a regulatory proteins
called cyclins.

CK1 : Casein kinase 1 family; a family of serine/threonine-selective protein kinases that func-
tion as regulators of signal transduction pathways in most eukaryotic cell types. CK1
isoforms are involved in Wnt signaling, circadian rhythms, nucleo-cytoplasmic shuttling
of transcription factors, DNA repair, and DNA transcription.

CK2 : Casein kinase 2; a serine/threonine-selective protein kinase. Casein kinase 2 is involved
in Wnt signaling, and has been implicated in cell cycle control, DNA repair, regulation
of the circadian rhythm and other cellular processes.

CLK : CDK-like kinases; a serine-thereonine kinases which act as major regulators of mRNA
splicing by phosphorylation of Serine/Arginine-rich (SR) proteins, which function in the
RNA processing pathway.

CMGC : a group of protein kinases; named after another set of families (CDK, MAPK, GSK3
and CLK), this group has a diversity of functions in cell cycle control, MAPK signaling,
splicing and other unknown functions.

CML : Chronic Myeloid Leukemia

CSFR : Colony stimulating factor-receptor

CYP : Cytochrome P450; superfamily of proteins containing a heme cofactor, acts as the ter-
minal oxidase enzymes in electron transfer chains, broadly categorized as P450-containing
systems. CYP enzymes have been identified in all domains of life - animals, plants,
fungi, protists, bacteria, archaea, and even in viruses, and they are the major enzymes
involved in drug metabolism, accounting for about 75 per cent of the total metabolism.
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DFG : a famous motif Aspartate(D)-Phenylalanine(F)-Glycine(G) in the Kinases activation
loop used to distinguish between the two functional states of the kinases: the active and
inactive conformations.

DNMT : DNA-methyltransferase

EGFR : Epidermal Growth Factor Receptor; cell-surface receptor for members of the epider-
mal growth factor family. It is a member of the ErbB family of receptors, a subfamily of
four closely related receptor tyrosine kinases: EGFR (ErbB-1), HER2/c-neu (ErbB-2),
Her 3 (ErbB-3) and Her 4 (ErbB-4).

ERK : Extracellular-signal-Regulated Kinases (ERKs) or classical MAP kinases; the last key
regulator of MAPK-ERK pathway; Many different stimuli, including growth factors,
cytokines, virus infection, ligands for heterotrimeric G protein-coupled receptors, trans-
forming agents, and carcinogens, activate the ERK pathway.

FAK : Focal Adhesion Kinase, known also as Protein Tyrosine Kinase 2 (PTK2).

FEP : Free Energy Perturbation; a rigorous computational method to calculate the relative
binding energy.

FGFR : Fibroblast Growth Factor Receptors; a family of tyrosine kinase receptors that bind to
members of the fibroblast growth factor family of proteins. Some of these receptors are
involved in pathological conditions.

FLT3 : Fms-like tyrosine kinase 3, Cluster of differentiation antigen 135 (CD135), receptor-
type tyrosine-protein kinase FLT3, or fetal liver kinase-2 (Flk2). FLT3 is a cytokine
receptor which belongs to the receptor tyrosine kinase class III. CD135 is the receptor
for the cytokine Flt3 ligand (FLT3L).

FXa : Stuart-Prower factor known also as prothrombinase, thrombokinase or thromboplastin;
a serine endopeptidase which is a memeber of the coagulation cascade.

GB : Generalized Born model of implicit solvent

GIST : GastroIntestinal Stromal Tumor

GNAT : GCN5-related N-AcetylTransferase; A big family of Acetyltransferases.

GOLD : Genetic Optimizaion of Ligand Docking; docking software by the Cambridge Crys-
tallographic Data Centre (CCDC).

GPCR : G Protein-Coupled Receptors; a large protein family of receptors that sense molecules
outside the cell and activate inside signal transduction pathways and, ultimately, cellular
responses. They are involved basically in c-AMP pathway and PI3K pathway. Their
ligands include light-sensitive compounds, odors, pheromones, hormones, and neuro-
transmitters, and vary in size from small molecules to peptides to large proteins.

Gromacs : GROningen MAchine for Chemical Simulations; a molecular dynamics package
primarily designed for simulations of proteins, lipids and nucleic acids, originally de-
veloped in the Biophysical Chemistry department of University of Groningen. It is also
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free, open source released under the GNU General Public License. Gromacs can use
many force-fields like GROMOS, Amber, CharmM, and OPLS.

GSK3 : Glycogen Synthase Kinase 3; a serine/threonine protein kinase from the CMGK group.
In mammals GSK-3 is encoded by two known genes, GSK-3 alpha (GSK3A) and GSK-3
beta (GSK3B). it is implicated in a number of diseases, including Type II diabetes (Dia-
betes mellitus type 2), Alzheimer Disease, inflammation, cancer, and bipolar disorder.

HAT : Histone AcetylTransferases

HCK : hemopoietic cell kinase; a member from Src tyrosine kinases. It plays a role in neu-
trophil migration and in the degranulation of neutrophils.

HDAC : Histone DeACetylases

hERG : human Ether-à-go-go-Related Gene; a gene (KCNH2) that codes for a protein known
as Kv11.1, the alpha subunit of a potassium ion channel.

IGF1 : Insulin-like Growth Factor 1.

IKK : IκB Kinase; an enzyme complex that is involved in propagating the cellular response
to inflammation by the upstream NF-κB signal transduction cascade.

ILK : Integrin-Linked Kinase; a serine/threonine protein kinase with 5 ankyrin-like repeats,
which associates with the cytoplasmic domain of beta integrins and acts as a proximal
receptor kinase regulating integrin-mediated signal transduction. ILK was found to lo-
calize to the centrosome and regulate mitotic spindle organization.

IRAK : Interleukin-1-Receptor-Associated Kinases; a family of serine/threonine kinases that
become associated with the interleukin-1 receptor (IL1R) upon stimulation. They are
reported to participate in the IL1-induced upregulation of NF-kappaB. these kinases as-
sociate with TRAFs and signal though the NFkB and Jnk pathways. What appear to be
plant orthologs account for the vast majority of plant kinases, with over 500 members in
higher plant genomes, most of which are receptors, possibly analogous to the receptor
tyrosine kinases of metazoans.

IRK : Insulin Receptor Kinase; a transmembrane receptor that is activated by insulin, IGF-I,
IGF-II and belongs to the large class of tyrosine kinase receptors.

IRS : insulin receptor substrate protein

JAK : Janus kinase; a family of intracellular, nonreceptor tyrosine kinases that transduce
cytokine-mediated signals via the JAK-STAT pathway. The name is taken from the
two-faced Roman god of beginnings and endings, Janus, because the JAKs possess two
near-identical phosphate-transferring domains. One domain exhibits the kinase activity,
while the other negatively regulates the kinase activity of the first.

JM : JuxtaMembrane; the part of the cytoplasmic region which is adjacent to the transmem-
brane domain of Receptor kinases.
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KDR : Kinase insert Domain Receptor; also known as Vascular Endothelial Growth Factor
Receptor 2 (VEGFR-2): a type III receptor tyrosine kinase.

KIT : Mast/stem cell growth factor receptor (SCFR), also known as proto-oncogene c-Kit or
tyrosine-protein kinase Kit or CD117. CD117 is an important cell surface marker used
to identify certain types of hematopoietic (blood) progenitors in the bone marrow. To be
specific, hematopoietic stem cells (HSC), multipotent progenitors (MPP), and common
myeloid progenitors (CMP) express high levels of CD117. In addition, mast cells,and
melanocytes in the skin express CD117.

Lck : Lymphocyte-specific protein tyrosine Kinase; a member of the Src family of tyrosine
kinases. It regulates intracellular signaling pathways inside lymphocytes, mostly T cells.

LIE : Linear Interaction Energy

LIECE : Linear Interaction Energy with Continuum Electrostatics

LR-MM-PBSA : Linear-Response-Molecular Mechanics-Poison Boltzmann/ Solvent-accessible
Surface Area.

LRA : Linear Response Approximation.

MAPK : Mitogen-Activated Protein Kinases or ERKs; a family of protein kinases in CMGC
group; they are involved in directing cellular responses to a diverse array of stimuli, such
as mitogens, osmotic stress, heat shock and proinflammatory cytokines, regulating pro-
liferation, gene expression, differentiation, mitosis, cell survival, and apoptosis - among
many others. They include ERKs, p38 MAPKs, and JNKs, beside atypical MAPKs.

MC : Monte Carlo simulation; a broad class of computational algorithms that rely on re-
peated random sampling to obtain numerical results, resembling the act of playing and
recording results in a real gambling casino. They are useful for simulating systems with
many coupled degrees of freedom, such as fluids, disordered materials, strongly coupled
solids, and cellular structures.

MD : Molecular Dynamics; a computer simulation of physical movements of atoms and
molecules in the context of N-body simulation. Movements of atoms or particles are
determined by numerically solving the Newton’s equations of motion for a system of
interacting particles, where forces between the particles and potential energy are defined
by molecular mechanics force fields.

MEK : Mitogen/Extracellular signal-regulated Kinase, also known as MAPKK or MAP2K:
Mitogen-Activated Protein Kinase Kinase; a kinase enzyme which phosphorylates mitogen-
activated protein kinase (MAPK). They works as activators of ERK (MAPKs), JNK, and
p38 MAPK.

MET or c-MET: hepatocyte growth factor receptor; a membrane receptor that is essential
for embryonic development and wound healing, activated by Hepatocyte growth fac-
tor (HGF). Abnormal MET activation in cancer correlates with poor prognosis, where
aberrantly active MET triggers tumor growth, formation of new blood vessels (angiogen-
esis) that supply the tumor with nutrients, and cancer spread to other organs (metastasis).
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MET is deregulated in many types of human malignancies, including cancers of kidney,
liver, stomach, breast, and brain.

MM-GBSA : Molecular Mechanics-Generalized Born/Solvent-accessible Surface Area.

MM-PBSA : Molecular Mechanics-Poison Boltzmann/ Solvent-accessible Surface Area.

MOZ : MYST histone acetyltransferase (monocytic leukemia) 3, also known as MYST3.

MYST : Histone Acetyltransferase family which include: include MOZ, YBF2/SAS3, SAS2
and TIP60.

NFκB : Nuclear Factor kappa-light-chain-enhancer of activated B cells, a protein complex that
controls transcription of DNA. NF-κB is found in almost all animal cell types and is in-
volved in cellular responses to stimuli such as stress, cytokines, free radicals, ultraviolet
irradiation, oxidized LDL, and bacterial or viral antigens

NFT : Neuro-Fibrillary Tangle; are aggregates of hyperphosphorylated tau protein that are
most commonly known as a primary marker of Alzheimer’s Disease. Their presence is
also found in numerous other diseases known as tauopathies.

NRTKs : Non-Receptor Tyrosine Kinases or cytoplasmic tyrosine kinases; includ 32 tyrosine
kinases which regulate cellular processes like cell’s growth, proliferation, differentiation,
adhesion, migration and apoptosis and they are critical components in the regulation of
the immune system. They are classified into: ABL family, ACK famil, CSK family,
FAK family, FES family, FRK family, JAK family, SRC-A family, SRC-B family, TEC
family, and SYK family.

P-loop : Glycine-rich Phosphate-binding-loop or Glycine-rich P-loop; a flexible loop in the
N-lobe of kinase domains, which binds mainly to phosphate groups of ATP.

p300-CBP : p300-CBP coactivator family is composed of two closely related transcriptional
co-activating proteins (or coactivators): p300 (also called EP300 or E1A binding protein
p300), and CBP (also known as CREB-binding protein or CREBBP).

p38 or p38 mitogen-activated protein kinases (p38 MAPKs): also called RK or CSBP (Cy-
tokinin Specific Binding Protein); serine/threonine/tyrosine-specific protein kinases be-
longing to the CMGC (CDK/MAPK/GSK3/CLK) kinase group. They regulate prolifer-
ation, gene expression, differentiation, mitosis, cell survival, and apoptosis. They form
a class of mitogen-activated protein kinases that are responsive to stress stimuli, such as
cytokines, ultraviolet irradiation, heat shock, and osmotic shock, and are involved in cell
differentiation, apoptosis and autophagy. Four p38 MAP kinases, p38-α (MAPK14), -β
(MAPK11), -γ (MAPK12 / ERK6), and -δ (MAPK13 / SAPK4), have been identified.
Similar to the SAPK/JNK pathway, p38 MAP kinase is activated by a variety of cellular
stresses including osmotic shock, inflammatory cytokines, lipopolysaccharides (LPS),
Ultraviolet light, and growth factors.

p53 or Tumor protein p53: also known as p53, cellular tumor antigen p53, phosphoprotein
p53, or tumor suppressor p53, is a protein that in humans is encoded by the TP53 gene.
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It is crucial in multicellular organisms, where it regulates the cell cycle and, thus, func-
tions as a tumor suppressor, preventing cancer; described as the guardian of the genome
because of its role in conserving stability by preventing genome mutation.

PB : Poison-Boltzmann model of implicit solvent

PCAF : p300/CBP-associated factor; also known as K(lysine) acetyltransferase 2B (KAT2B),
a human gene and transcriptional coactivator (with histone acetyltransferase activity) as-
sociated with p53. PCAF has separate acetyltransferase and E3 ubiquitin ligase domains
as well as a bromodomain for interaction with other proteins.

PDGFR : Platelet-Derived Growth Factor Receptors; cell surface tyrosine kinase receptors for
members of the platelet-derived growth factor (PDGF) family. They include extracellular
region of the receptor consists of five immunoglobulin-like domains while the intracel-
lular part is a tyrosine kinase domain. Dimerization is a prerequisite for the activation of
the kinase, and it happens only upon binding with their ligands/growth factors. They in-
clude: PDGFRα, PDGFRβ, c-KIT, FLT3, and CSF1R; which are involved in important
signaling pathways: MAPK-ERK, and PI3K pathways.

PDZ domain : the first letters of three proteins: post synaptic density protein (PSD95), Drosophila
disc large tumor suppressor (Dlg1), and zonula occludens-1 protein (zo-1); which share
a common structural domain of 80-90 amino-acids found in the signaling proteins of
bacteria, yeast, plants, viruses and animals.

PI3K : Phosphoinositide-3-Kinases; a family of enzymes involved in cellular functions such as
cell growth, proliferation, differentiation, motility, survival and intracellular trafficking,
which in turn are involved in cancer.

PIM : Proto-oncogene serine/threonine-protein kinases; a family of serine/threonine kinases;
first described in relation to murine T-cell lymphomas. Three isoforms of PIM kinases
exist in humans, involved in multiple human cancers, including prostate cancer, acute
myeloid leukemia and other hematopoietic malignancies.

PKAc : Protein Kinase Ac

PKC : Protein kinase C; a family of serine/threonine protein kinase enzymes. PKC is involved
in receptor desensitization, in modulating membrane structure events, in regulating tran-
scription, in mediating immune responses, in regulating cell growth, and in learning and
memory. Effects of PKC are cell-type-specific.

PKL : Protein kinase-like; Contains a number of diverse families that share a PKL fold and
catalytic mechanism with the ePKs but do not have substantial sequence similarity. This
group also contains a number of lipid, sugar, and other small-molecule kinases.

PKs : Protein Kinases; kinase enzymes that modify other proteins by chemically adding phos-
phate groups to them (phosphorylation). Phosphorylation usually results in a functional
change of the target protein (substrate) by changing enzyme activity, cellular location, or
association with other proteins. The human genome contains about 500 protein kinase
genes and they constitute about 2
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PlGF : Placenta Growth Factor

PLK : Polo-Like Kinases; Protein kinases from group other kinases, they are important regu-
lators of cell cycle as they are involved in the formation of the mitotic spindle and in the
activation of CDK/cyclin complexes during M-phase of the cell cycle.

PMF : Potential of Mean Force

Pyk2 or PTK2B: Protein tyrosine kinase 2 beta; a cytoplasmic protein tyrosine kinase and
member of FAK subfamily, that is involved in calcium-induced regulation of ion chan-
nels and activation of the map kinase signaling pathway.

RAF kinase : Rapidly Accelerated Fibrosarcoma kinase; a family of three serine/threonine-
specific protein kinases (from TKL group) that are related to retroviral oncogenes. Ac-
tivation of RAF kinases requires interaction with RAS-GTPases, to participate in the
RAS-RAF-MEK-ERK signal transduction cascade (acting as MAP4K).

Ras : Rat sarcoma; the name given to a family of related proteins (small GTPase) which is
ubiquitously expressed in all cell lineages and organs.

RET : RET is an abbreviation for rearranged during transfection, a receptor tyrosine kinase for
members of the glial cell line-derived neurotrophic factor (GDNF) family of extracellu-
lar signalling molecules; encoded by the RET proto-oncogene gene on chromosome 10.
RET loss of function mutations are associated with the development of Hirschsprung’s
disease, while gain of function mutations are associated with the development of vari-
ous types of human cancer, including medullary thyroid carcinoma, multiple endocrine
neoplasias type 2A and 2B, pheochromocytoma and parathyroid hyperplasia.

RGC : Receptor Guanylate Cyclases; a small group contains an active guanylate cyclase do-
main, which generates the cGMP second messenger, and a catalytically inactive kinase
domain, which appears to have a regulatory function.

Rhodanine : 2-Thioxo-4-thiazolidinone or 2-Thioxo-1,3-thiazolidin-4-one

RIPK : Receptor-Interacting Protein Kinase; a family of serine/threonine-protein kinases, which
have function in a variety of cellular pathways including the NF-κB pathway and pro-
grammed necrotic cell death (necroptosis).

RMSD : Root-Mean-Squared-Deviation

ROC curve : Receiver Operating Characteristic curve

ROCK : RhO-associated Kinase; a kinase belonging to the AGC (PKA/ PKG/PKC) family of
serine-threonine kinases. It is involved mainly in regulating the shape and movement of
cells by acting on the cytoskeleton.

ROR : RAR-related orphan receptor; a member of the nuclear receptor family of intracellular
transcription factors.
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ROR2 : Tyrosine-protein kinase transmembrane receptor; known as neurotrophic tyrosine ki-
nase, receptor-related 2, responsible for aspects of bone and cartilage growth.

RTK : Receptor Tyrosine Kinase; high-affinity cell surface receptors for many polypeptide
growth factors, cytokines, and hormones. Out of 90 tyrosine kinase genes, 58 encodes
receptor tyrosine kinase. They are classified to 20 classes or families: EGF receptor
family or ErbB family, Insulin receptor family, PDGF receptor family, FGF receptor
family, VEGF receptors family, HGF receptor family, Trk receptor family, Eph receptor
family, AXL receptor family, LTK receptor family, TIE receptor family, ROR receptor
family, DDR receptor family, RET receptor family, KLG receptor family, RYK receptor
family, MuSK receptor family, ROS receptor family, and AATYK receptor family.

SAGA : Spt, Ada, GCN5 Acetyltransferase.

SAR : Structure-Activity Relationship

SAS2 : Something about Silencing 2; yeast gene which encodes one of MYST histone acetyl-
transferases.

SCLC : Small Cell Lung Cancer

SM : Systematic Mastocytosis

Src : (pronounced sarc as it is short for sarcoma) is a proto-oncogene encoding a non-
receptor protein tyrosine kinase family called Src family kinases.

STAT protein : Signal Transducer and Activator of Transcription; a transcription factor regu-
lates many aspects of growth, survival and differentiation in cells.

STE : a group of protein kinases; Homologs of the yeast STE7, STE11 and STE20 genes,
which form the MAPK cascade, transducing signals from the surface of the cell to the
nucleus.

SYK : Spleen tyrosine kinase; a family of non-receptor cytoplasmic tyrosine kinases which
includes SYK kinase and ZAP-70. Both kinases Syk and Zap-70 transmit signals from
the B-Cell receptor and T-Cell recepto. Syk plays a similar role in transmitting sig-
nals from a variety of cell surface receptors. SYK is implicated in several instances of
hematopoeitic malignancies.

TAF : TATA-binding protein associated factor

TGF : Transforming Growth Factor; two classes of polypeptide growth factors, TGF-alpha
and TGF-beta. Both classes are upregulated in some types of cancer and disorders.

TI : Thermodynamic Integration; a rigorous computational method to calculate the relative
binding energy.

TIE : tyrosine kinase with immunoglobulin-like and EGF-like domains; an angiopoietin re-
ceptor which are cell-surface receptors that bind and are activated by the angiopoietins,
(Ang1, Ang2, Ang3, Ang4).
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TIP60 : HIV-1 TAT-interactive protein; a histone acetyl transferase (HAT) of the MYST family.

TK : Tyrosine kinases group; This group phosphorylates almost exclusively on tyrosine
residues, as opposed to most other kinases that are selective for serine or threonine.

TKL : Tyrosine kinase-like group; The group most similar to tyrosine kinases, but whose
activities are generally on serine/threonine substrates.

Trk : Trk receptors; a family of tyrosine kinases that regulates synaptic strength and plas-
ticity in the mammalian nervous system, affecting neuronal survival and differentiation
through several signal cascades. The common ligands of trk receptors are neurotrophins,
a family of growth factors critical to the functioning of the nervous system.

vdW : van der Waals interaction or potential; the sum of the attractive or repulsive forces
between molecules (or between parts of the same molecule) other than those due to co-
valent bonds or the electrostatic interaction; including force between neutral atoms, force
between two permanent dipoles (Keesom force), a permanent dipole and a correspond-
ing induced dipole (Debye force), between two instantaneously induced dipoles (London
dispersion force). usually, it is simplified to Lennard-Jones potential, that approximates
the interaction between a pair of neutral atoms or molecules.

VEGFR : Vascular Endothelial Growth Factor Receptor. a family of important tyrosine kinase
receptors, involved in both vasculogenesis (the formation of the circulatory system) and
angiogenesis (the growth of blood vessels from pre-existing vasculature).

WEE1 : a nuclear serine/thereonine kinase and a key regulator of cell cycle progression. It is
a kinase determining the timepoint of entry into mitosis, through inhibiting Cdk1, and
consequently influencing the size of the daughter cells.
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