Identifizierung neuer Hodgkin-Lymphom-assoziierter Zielstrukturen

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

der

Naturwissenschaftlichen Fakultät I – Biowissenschaften –

der Martin-Luther-Universität Halle-Wittenberg,

vorgelegt

von Frau Stefanie Kewitz

geb. am 22.03.1987 in Wurzen

Gutachter/in

- 1. Prof. Dr. R. Gary Sawers
- 2. PD Dr. Martin S. Staege
- 3. Prof. Dr. Alfred C. Feller

Halle (Saale), den 02.09.2015

Inhaltsverzeichnis

Inhaltsverzeichnis

		Seitenzahl
ı	Abbildungsverzeichnis	V
П	Tabellenverzeichnis	
Ш	Genabkürzungen	IX
IV	Abkürzungsverzeichnis	XI
V	Symbole der Nukleinbasen	XIV
VI	Symbole der Aminosäuren	XIV
1 E	Einleitung	1
	Das Hodgkin-Lymphom	
	1.1.1 Definition, Epidemiologie und Klassifikation	
	1.1.2 Diagnose und Stadieneinteilung des Hodgkin-Lymphoms	
	1.1.3 Therapie und Heilungsraten des Hodgkin-Lymphoms	
1.2	Prognostische Faktoren für das Hodgkin-Lymphom	5
	1.2.1 Klinische Faktoren	
	1.2.2 Biologische- und Serummarker	
	1.2.3 Chemotherapieresistenz	9
1.3	PRAME als möglicher Resistenzfaktor	11
1.4	Bedeutung des Reparaturenzyms O6-Methylguanin-DNA	
	Methyltransferase (MGMT)	12
1.5	Methoden zur Identifizierung neuer Zielstrukturen für das	
	Hodgkin-Lymphom	13
	1.5.1 Hypoxie	13
	1.5.2 Generierung einer cDNA-Bank	14
1.6	Zielstellung der Dissertation	14
2 I	Material und Methoden	15
2.1	Material	15
	2.1.1 Zellen	15
	2.1.2 Bakterien und Hefen	16
	2.1.3 Chemikalien	16
	2.1.4 Antikörper	16
	2.1.5 Medien und Lösungen für Suspensions- und adhärente Zellen	17
	2.1.6 Medien und Agarplatten für Bakterien und Hefen	18
	2.1.7 Verwendete Puffer und Lösungen	18
	2.1.8 Zytostatika	20

<u>Inhaltsverzeichnis</u> II

	2.1.9 Verwendete Vektoren	20
	2.1.10 Primer	20
2.2	Methoden	21
	2.2.1 Molekularbiologische Methoden	21
	2.2.1.1 RNA-Isolation	21
	2.2.1.2 Konzentrationsbestimmung von Nukleinsäuren	21
	2.2.1.3 cDNA-Synthese	22
	2.2.1.4 Polymerasekettenreaktion (PCR)	22
	2.2.1.5 Quantitative RT-PCR (qRT-PCR)	23
	2.2.1.6 Gelelektrophorese	24
	2.2.1.7 Elution spezifischer Genfragmente	24
	2.2.1.8 Klonierungsmethoden	24
	2.2.1.8.1 Restriktionsverdau	24
	2.2.1.8.2 Dephosphorylierung linearisierter Vektor-DNA	25
	2.2.1.8.3 Herstellung des miR-Vektorkonstruktes	25
	2.2.1.8.4 Ligation	26
	2.2.1.8.5 Transformation	26
	2.2.1.8.6 Ansetzen einer Vorkultur	27
	2.2.1.8.7 Plasmidpräparation	27
	2.2.1.8.8 Anlegen von Bakterienstocks	27
	2.2.1.8.9 Sequenzierung	27
	2.2.1.9 DNA-Isolierung	28
	2.2.1.10 Bisulfit-Reaktion	28
	2.2.1.11 Mikroarray-Analyse	29
	2.2.1.12 mRNA-Isolation	29
	2.2.1.13 Erstellung der cDNA-Bank	29
	2.2.1.14 Isolation extrachromosomaler DNA nach Hirt	30
	2.2.1.15 In-Vitro-Transkription (IVT)	30
	2.2.1.16 Protein-Isolation und Konzentrationsbestimmung	31
	2.2.1.17 SDS-Page und Western-Blot	31
	2.2.1.18 Yeast-Two-Hybrid-System	32
	2.2.1.19 Co-Immunopräzipitation	32
	2.2.2 Zellbiologische Methoden	33
	2.2.2.1 Zellkultur	33
	2.2.2.2 Auftauen und Einfrieren der Kulturzellen	33
	2.2.2.3 Bestimmung der Zellzahl	33
	2.2.2.4 Transfektion von Kulturzellen	34

<u>Inhaltsverzeichnis</u> III

2.2.2.5 Durchflusszytometrie	34
2.2.2.6 Generationsanalyse	35
2.2.2.7 Isolierung peripherer mononukleärer Blutzellen (PBMC)	35
2.2.2.8 ELISPOT	36
2.2.2.9 Untersuchung der Zytostatikasensitivität	37
2.2.2.10 XTT Assay	37
3 Ergebnisse	38
3.1 Untersuchungen bekannter Gene hinsichtlich ihrer Beteiligung an	
der Chemotherapieresistenz von Hodgkin-Lymphom-Zellen	38
3.1.1 Untersuchungen zur Bedeutung von <i>PRAME</i> beim	
Hodgkin-Lymphom	38
3.1.1.1 <i>PRAME</i> -Expression in den HL-Zelllinien und	
Resistenzverhalten gegenüber ATRA	39
3.1.1.2 Untersuchungen zur Regulation der PRAME-Expression	
3.1.1.3 Herunterregulation von PRAME durch miRNA	
3.1.1.4 Identifizierung von PRAME regulierten Genen	46
3.1.2 Untersuchungen zur Bedeutung von MGMT beim Hodgkin-Lymphom	
3.1.2.1 MGMT-Expression in den HL-Zelllinien und	
Resistenzverhalten gegenüber Dacarbazin	49
3.1.2.2 Analyse der MGMT-Expression mittels Western-Blot	
3.1.2.3 Beteiligung von MGMT an der Resistenz von HL-Zellen	
gegenüber Dacarbazin	55
3.2 Identifizierung neuer Zielstrukturen für das Hodgkin-Lymphom	
3.2.1 Regulierung der Resistenz von Hodgkin-Lymphom-Zellen	
unter hypoxischen Bedingungen	<u></u> 58
3.2.1.1 Wachstums-Analyse der HL-Zellen nach Inkubation	
mit CoCl ₂	58
3.2.1.2 Untersuchung der Resistenz gegenüber Cisplatin nach	
Inkubation mit CoCl ₂	61
3.2.1.3 Identifizierung von CoCl ₂ regulierten Genen	61
3.2.1.4 Untersuchung zur Bedeutung von DEPDC1B in HL-Zelllinien	<u></u> 65
3.2.2 Identifizierung neuer Zielstrukturen mittels einer cDNA-Bank aus	
KM-H2 Zellen	<u></u> 67
3.2.2.1 Erstellen der cDNA-Bank	67
3.2.2.2 Transfektion der cDNA Bank in sensible Testzellen	68
3.2.2.3 Untersuchung zur Expression von TTK	73
3 2 2 4 Untersuchung der TTK-Expression auf Protein-Ebene	74

<u>Inhaltsverzeichnis</u> <u>IV</u>

3.2.2.5 Untersuchung zur Beteiligung von TTK an der Resistenz	
gegenüber Cisplatin	75
3.2.2.6 Hemmung von TTK mittels Inhibitor	77
3.2.2.7 Identifizierung neuer TTK-Interaktionspartner	81
3.2.2.8 Untersuchung der immunologischen Funktion von TTK	82
4 Diskussion	85
4.1 Die Rolle von <i>PRAME</i> bei der Resistenz von Hodgkin-Lymphom-Zelllinien	
gegenüber Chemotherapeutika	85
4.2 MGMT und seine Bedeutung für die Dacarbazinresistenz der	
Hodgkin-Lymphom-Zelllinien	88
4.3 Identifizierung neuer Zielstrukturen mittels Hypoxie	91
4.4 Identifizierung neuer Zielstrukturen mit Hilfe einer cDNA-Bank	94
5 Zusammenfassung und Ausblick	99
6 Literaturverzeichnis	101
7 Anhang	128
8 Eidesstattliche Erklärung	141
9 Danksagung	142
10 Lebenslauf	143
11 Publikationen	144

I Abbildungsverzeichnis

- **Abbildung 1:** Interaktionen zwischen Hodgkin-Reed-Sternberg-Zellen und dem Mikromilleu
- **Abbildung 2:** Vitalität der HL-Zelllinien nach Behandlung mit all-*trans* Retinsäure (ATRA) und Verteilung der *PRAME*-Expression
- Abbildung 3: PRAME-Methylierungsstatus von HL-Zelllinien
- **Abbildung 4:** Durch Inkubation mit 5'-Azacytidin erhöhte sich die *PRAME*-Expression in der HL-Zelllinie L-540
- **Abbildung 5:** Steigerung der Resistenz gegenüber Cisplatin und Roscovitin nach Inkubation mit 5'-Azacytidin
- **Abbildung 6:** *Knockdown* von *PRAME* in Zellen der Linie L-428 und anschließende Behandlung mit all-*trans*-Retinsäure (ATRA)
- **Abbildung 7:** Expression von *CYP26B1* nach *knockdown* von *PRAME* in L-428-Zellen
- **Abbildung 8:** Viabilität der Zellen der Linie L-428 mit und ohne *PRAME-knockdown* gegenüber Etoposid
- **Abbildung 9:** Knockdown von PRAME erhöhte die Sensitivität gegenüber all-trans-Retinsäure (ATRA) und Cisplatin
- **Abbildung 10:** *Heat-map* der DNA-Mikroarray-Analyse der Gene, die durch *PRAME* reguliert wurden
- **Abbildung 11:** Durch den *PRAME-knockdown* sank die Expression Apoptose inhibierender Faktoren
- Abbildung 12: Sensitivität der HL-Zelllinien gegenüber Dacarbazin
- **Abbildung 13:** PCR-Analyse der *MGMT*-Expression in den HL-Linien
- **Abbildung 14:** PCR-Untersuchung mit spezifischen Primern für das Fusionstranskript *PRRC2B-MGMT* und das Wildtyp *MGMT*
- **Abbildung 15:** Sequenzierung von rs12917 bei L-428-Zellen, KM-H2-Zellen und PBMC auf DNA-Ebene
- **Abbildung 16:** Western-*Blot*-Analyse von MGMT mit HL-Zellen der Linien L-428, L-540 und KM-H2
- **Abbildung 17:** Inkubation mit 5'-Azacytidin führte zu einer verstärkten Expression von *MGMT* und einer erhöhten Resistenz gegenüber Dacarbazin
- **Abbildung 18:** Inkubation mit Lomeguatrib führte zu einer Steigerung der Sensitivität gegenüber Dacarbazin in L-428-Zellen
- **Abbildung 19:** Steigerung der *SLC2A1*-Expression nach Inkubation mit CoCl₂

- **Abbildung 20:** Wachstums-Analyse nach Inkubation mit CoCl₂
- **Abbildung 21:** Untersuchung des Wachstumsverhalten nach CoCl₂ Inkubation
- **Abbildung 22:** HL-Zellen werden nach Vorinkubation mit CoCl₂ resistenter gegenüber Cisplatin
- Abbildung 23: Expression von CD30 nach Inkubation mit CoCl₂
- **Abbildung 24:** Heat-map der differentiell exprimierten Gene nach Inkubation mit CoCl₂
- Abbildung 25: Genregulation durch Inkubation mit CoCl₂
- Abbildung 26: DEPDC1B-Expression in HL-Zellen und PBMC
- **Abbildung 27:** Zellviabilität der Zellen der Linie L-540 und Expression von DEPDC1B
- Abbildung 28: Schema zur Identifizierung neuer Zielstrukturen
- **Abbildung 29:** PCR-Untersuchung für das Gen *TTK*
- Abbildung 30: Expression von TTK in HL-Zellen und PBMC
- **Abbildung 31:** Screening von Krebszelllinien und Normalgeweben hinsichtlich ihrer *TTK*-Expression
- Abbildung 32: PCR-Untersuchung für das Gen TTK
- **Abbildung 33:** Western-*Blot*-Analyse von TTK in HL-Zellen der Linien L-428, KM-H2, L-1236, L-540 und HDLM-2
- **Abbildung 34:** Herunterregulation von *TTK* in Zellen der HL-Linie L-428
- **Abbildung 35:** Knockdown von TTK führte zu einer Steigerung der Sensitivität gegenüber Cisplatin
- Abbildung 36: Behandlung von L-428-Zellen mit einem Inhibitor für TTK
- **Abbildung 37:** L-428-Zellen transfiziert mit pBOS-H2BGFP und mit TTK-Inhibitor behandelt
- **Abbildung 38:** *Heat-map* der differentiell exprimierten Gene nach Inkubation mit dem Inhibitor für TTK
- **Abbildung 39:** *TTK*-regulierte Gene
- **Abbildung 40:** Zellen der Linie L-428 inkubiert mit TTK-Inhibitor und Behandlung mit Cisplatin bzw. Etoposid
- **Abbildung 41:** Hefeklone ausplattiert auf SD–Leucin–Tryptophan+X-α-Gal+Aureobasidin A-Agar-Platten
- **Abbildung 42:** Erstellung von *TTK*-spezifischen CD8⁺ T-Zellen
- **Abbildung 43:** ELISPOT-Analyse von CD8⁺T-Zellen nach der Stimulation mit TTK-RNA transfizierten Antigen-präsentierenden-Zellen
- Abbildung 44: Expression von MGMT in HL-Zellen
- Abbildung 45: PCR-Untersuchung für das Gen MGMT

- Abbildung 46: Western-Blot-Analyse von MGMT und Aktin mit HL-Zellen
- **Abbildung 47:** Expression von *MGMT* in HL-Zellen nach Inkubation mit Dacarbazin bzw. NaCl
- Abbildung 48: PCR-Untersuchung mit HL-spezifischen Genen
- Abbildung 49: Testverdau der Plasmide der gepickten cDNA-Fraktionen mit Notl
- **Abbildung 50:** PCR-Untersuchung für die Gene, die in den cDNA-Fraktionen detektiert wurden
- **Abbildung 51:** PCR-Untersuchung für die Gene, die bei den Selektionsexperimenten isoliert wurden
- **Abbildung 52:** Überexpression von *TTK* in L-540-Zellen
- **Abbildung 53:** PCR-Untersuchung für die Expression der möglichen TTK-Interaktionspartner
- **Abbildung 54:** Immuno-Blot-Analyse zur Untersuchung der TTK- und Syntenin-1-Expression in HL-Zellen der Linien L-428 und KM-H2

Tabellenverzeichnis

II Tabellenverzeichnis

Tabelle 1: WHO-Klassifikation des Hodgkin-Lymphoms

Tabelle 2: Die Ann-Arbor-Klassifikation

Tabelle 3: Verwendete Zelllinien

Tabelle 4: Verwendete Bakterien und Hefen

Tabelle 5: Verwendete FACS-Antikörper

Tabelle 6: Verwendete Western-Blot-Antikörper

Tabelle 7: Verwendete Medien und Lösungen für die Zellkultur

Tabelle 8: Verwendete Vektoren

Tabelle 9: Pipettierschema cDNA

Tabelle 10: Pipettierschema PCR

Tabelle 11: PCR-Programm

Tabelle 12: Pipettieransatz qRT-PCR

Tabelle 13: qRT-PCR-Programm

Tabelle 14: Ansatz Restriktionsverdau

Tabelle 15: Ligationsansatz

Tabelle 16: Sequenzierungs-PCR-Ansatz

Tabelle 17: Sequenzier-Programm

Tabelle 18: Analyse des SNP rs12917 auf cDNA-Ebene

Tabelle 19: Sequenzierung der gepickten Klone der Fraktionen

Tabelle 20: Ergebnisse der Transfektionsexperimente

Tabelle 21: Übersicht über die verwendeten Primer

Genverzeichnis IX

III Genverzeichnis

ACTB Aktin beta

BCL2 B-Zell-Leukämie/-Lymphom 2
BTF3 Basistranskriptionsfaktor 3

C11orf48 Offener Leserahmen 48 von Chromosom 11

CCL17 Chemokin (C-C-Motiv) Ligand 17

CD30 Tumornekrosefaktor-Rezeptorfamilienmitglied 8CD40 Tumornekrosefaktor-Rezeptorfamilienmitglied 5

CD74 Haupthistokompatibilitätskomplex Klasse II-assoziierte invariante Kette

CRABP2 Zelluläres Retinsäure-bindendes Protein 2

CYP26B1 Cytochrom P450, Subfamilie XXVIB, Polypeptid 1
DDB1 Schädigungsspezifisches DNA-bindendes Protein

DEPDC1B dishevelled, egl-10 and pleckstrin domain containing 1B EEF1A1 eukaryotischer Translations-Elongationsfaktor 1 alpha

EFHD2 EF-hand domain family, member D2

EGR2 early growth response 2

EIF3H eukaryotischer Translations-Initiationsfaktor 3 Untereinheit H

EIF4A1 eukaryotischer Translations-Initiationsfaktor 4A1

ELMO1 engulfment and cell motility 1
FAM192A Sequenzfamilie 192, Mitglied A

FIBP intrazelluläres Fibroblastenwachstumsfaktor-Bindeprotein

FTL leichte Ferritin-Kette

FTH1 schwere Ferritin-Kette 1

GAPDH Glyceraldehyd-3-Phosphat-Dehydrogenase

GSTM1 Glutathion-S-Transferase M1

HMOX Hämoxygenase

HPRT1 Hypoxanthin-Phosphoribosyl-Transferase 1

HSPA8 Hitzeschockprotein 8 (70 kDa)

IFI6 Interferon alpha-induzierbares Protein

IFITM1 Interferon-induziertes Transmembranprotein 1

IL13RA1 Interleukinrezeptor 13 alpha1

KLF6 krueppel-like factor 6

MGMT O6-Methylguanin-DNA-Methyltransferase

MTRNR2L MT-RNR2-like 1

NDUFB11 NADH Dehydrogenase 1 beta-Unterkomplex 11

PDCD7 programmierter Zelltod 7

<u>Genverzeichnis</u> X

PRAME preferentially expressed antigen in melanoma

PRKCB Proteinkinase C beta
RPL ribosomales Protein L

POLR2G RNA-Polymerase II Polypeptid G

RPS: ribosomales Protein S

PRRC2B proline-rich coiled-coil 2B

PSMC1 Proteasom 26S Untereinheit ATPase 1

QTRT1 Queuin-tRNA-Ribosyltransferase 1

SCXA scleraxis basic helix-loop-helix transcription factor

SDCBP Syntenin-1

SETBP1 SET-bindendes Protein 1

SLC13A4 SLC (Natrium/Sulfat Symporter)-Transporterfamilie 13 Mitglied 4

SLC2A1 Glucosetransporter-1

TP53 Tumorprotein p53TTK Proteinkinase TTK

UAP1 UDP-N-Acteylglucosamin-Ppyrophosphorylase 1

XAF1 XIAP (X-linked inhibitor of apoptosis) assoziierter Faktor 1

IV Abkürzungsverzeichnis

Allgemeine Abkürzungen, Chemikalien und Maßeinheiten

Δ Delta

°C Grad Celsius

% Prozent

μ mikro

Abb. Abbildung

AB antikörperfreies, humanes Serum der Blutgruppe AB

AK Antikörper AS Aminosäure

ATRA all-trans-Retinsäure

BC Buffy Coat bp Basenpaar/e

BSA Bovine serum albumin

bzw. beziehungsweise

CD Cluster of differentiation

cDNA complementary DNA (zur mRNA komplementäre DNA)

cfu colony forming unit

cm Zentimeter

Ct threshold cycle

CTA cancer/testis Antigen
DEPC Diethylpyrocarbonat

DMEM Dulbecco's modified Eagle's medium

DMF Dimethylformamid DMSO Dimethylsulfoxid

DNA Desoxyribonukleinsäure

dNTP Desoxyribonukleosid-Triphosphat

DPBS Dulbecco's PBS ds doppelsträngig

DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen

EBV Epstein-Barr-Virus

E. coli Escherichia coli

EDTA Ethylendiamintetraessigsäure

et al. et alii

FACS fluorescence activated cell scanning
FCS fetal calf serum (Fetales Kälberserum)

FITC Fluoresceinisothiocyanat

FSC forward light scatter

g Erdbeschleunigung

g Gramm

g/dL Gramm pro Deziliter
g/L Gramm pro Liter

GFP Green Fluorescent Protein

Gy Gray h Stunde

HL Hodgkin-Lymphom

HLA Humane Leukozyten Antigene

HRP Horseradish peroxidase (Meerrettichperoxidase)

HRS Hodgkin-Reed-Sternberg

IgG Immunglobulin G

IL Interleukin

IVT *In-Vitro-*Transkription

kb Kilobasen

L Liter

LB lysogeny broth

m MilliM Molar
min Minute
miRNA mikroRNA

mm³ Kubikmillimeter

MOPS 3-(N-Morpholino)-Propansulfonsäure

mRNA messenger-RNA (Boten-RNA)

n Nano-

NaCl Natriumchlorid

NCBI National Center for Biotechnology Information

neg. negativ

OD optische Dichte

Oligo-dT Oligo-Desoxythymidin

ORI *origin of replication* (Replikationsursprung)

p kurzer Arm des Chromosoms

PBMC pheripheral blood mononuclear cell (mononukleäre Zellen des

peripheren Blutes)

PBS phosphate buffered saline (phosphatgepufferte physiologische

Salzlsg.)

PCR polymerase chain reaction (Polymerasekettenreaktion)

PE Phycoerythrin

Pen/Strep Penicillin/Streptomycin

PET Positronen-Emissions-Tomographie

pH negativer dekadische Logarithmus der H⁺-Ionenkonzentration in

wässriger Lösung

PI Propidiumiodid

q langer Arm des Chromosoms

qRT-PCR quantitative real-time-PCR

RNA Ribonukleinsäure

RNase Ribonuklease

rpm rounds per minute (Umdrehungen pro Minute)

RPMI Roswell Park Memorial Institute

RT Raumtemperatur

sec Sekunde

SD yeast minimal media and synthetic defined premixes

SSC side light scatter

Tab. Tabelle

TAE Tris-Acetat-EDTA

U unit (Einheit der Enzymaktivität)

UV Ultraviolett

V Volt

Vol Volumen

v/v Volumenprozent

WHO World Health Organization (Weltgesundheitsorganisation)

w/v Massen/Volumenprozent

X- α -Gal 5-Bromo-4-chloro-3-indolyl α -D-galactopyranosid

YPD yeast extract peptone dextrose

z. Bsp. zum Beispiel

V Symbole der Nukleinbasen

A Adenin
C Cytosin
G Guanin
T Thymin
U Uracil

VI Symbole der Aminosäuren

A	Alanin	Ala
С	Cystein	Cys
D	Asparaginsäure	Asp
Е	Glutaminsäure	Glu
F	Phenylalanin	Phe
G	Glycin	Gly
Н	Histidin	His
I	Isoleucin	lle
K	Lysin	Lys
L	Leucin	Leu
M	Methionin	Met
N	Asparagin	Asn
Р	Prolin	Pro
Q	Glutamin	Gln
R	Arginin	Arg
S	Serin	Ser
Т	Threonin	Thr
V	Valin	Val
W	Tryptophan	Trp
Υ	Tyrosin	Tyr

1 Einleitung

1.1 Das Hodgkin-Lymphom

1.1.1 Definition, Epidemiologie und Klassifikation

Das Hodgkin-Lymphom (HL), auch Morbus Hodgkin genannt, ist eine maligne Erkrankung der Lymphknoten und des lymphatischen Systems. Wenn ein Lymphom diagnostiziert wird, handelt es sich bei 15 % der Fälle um ein Hodgkin-Lymphom. Es ist eines der häufigsten Lymphome in der westlichen Welt (Jaffe 2009, Küppers *et al.* 2012). Im Jahr 2010 erkrankten in Deutschland 1.260 Männer und 940 Frauen an einem Hodgkin-Lymphom (Krebs in Deutschland 2009/2010, Robert-Koch-Institut). Dies entspricht einer Inzidenz von 2-3 Patienten pro 100.000 Einwohnern (Thomas *et al.* 2002). Bei Kindern und Jugendlichen erkranken Jungen im Verhältnis 1,6:1 häufiger als Mädchen (Deutsches Kinderkrebsregister, Jahresbericht 2012). In Industrieländern tritt die Krankheit gehäuft in zwei Altersgipfeln auf. Der größere liegt zwischen dem 20. und 30. Lebensjahr und der kleinere nach dem 50. Lebensjahr. Somit ist das Hodgkin-Lymphom eine der häufigsten malignen Erkrankungen im jungen Erwachsenenalter (Swerdlow 2003). Prinzipiell kann die Krankheit aber auch in jedem anderen Alter vorkommen (Thomas *et al.* 2002).

Die Erstbeschreibung des Hodgkin-Lymphoms erfolgte 1832 durch Thomas Hodgkin. Virchow, Kundrath, Paltauf und Sternberg grenzten das Hodgkin-Lymphom gegenüber anderen Lymphomen und Leukämien ab. Die histologischen und zytologischen Besonderheiten des Hodgkin-Lymphoms wurden von Carl Sternberg und Dorothy Reed erstmals beschrieben. Sie erkannten in Hodgkin-Lymphomen spezielle Riesenzellen mit zwei oder mehr Zellkernen, die Reed-Sternberg-Zellen (Tzankov et al. 2006, Begemann 1986). Anhand dieser Merkmale erfolgt die Klassifikation der Lymphome. Hierbei wird das Hodgkin-Lymphom von allen anderen so genannten Non-Hodgkin-Lymphomen (NHL) abgetrennt (Mitrou und Länger 2001).

Das Hodgkin-Lymphom wird in zwei Gruppen unterteilt, in die klassischen Hodgkin-Lymphome und die lymphozytenprädominante Form (Tabelle 1). Diese unterscheiden sich hinsichtlich molekulargenetischer, immunhistochemischer und morphologischer Eigenschaften (Agostinelli und Pileri 2014).

Tabelle 1: WHO-Klassifikation des Hodgkin-Lymphoms (Gobbi et al. 2013)

Gruppe	Untergruppe	Häufigkeit
Klassische Hodgkin- Lymphome	Noduläre Sklerose	ca. 75 %
Lymphome	Mischtyp	ca. 15 %
	Lymphozytenreich	ca. 6 %
	Lymphozytenarm	ca. 1 %
Lymphozytenprädominante Form		ca. 5 %

Die Ursachen und Auslöser der Erkrankung sind noch nicht hinreichend geklärt, jedoch konnte durch molekularbiologische und immunologische Untersuchungen ein B-Zell-Ursprung der Hodgkin-Lymphom-Zellen nachgewiesen werden (Schwering *et al.* 2003a, Braeuninger *et al.* 1997). Diese stammen wahrscheinlich von präapoptotischen B-Zellen ab, die während der B-Zell-Differenzierung im Keimzentrum entstanden sind (Thomas *et al.* 2004). Sie exprimieren keine typischen B-Zell-Marker, dafür aber verschiedenste Marker für andere Zelltypen (Drexler und Minowada 1992). Die HL-Zellen exprimieren Marker für Granulozyten (CD15), Monozyten und T-Zellen (CD30, Perforin), B-Zellen (Syndecan) und dendritischen Zellen (Fascin) (Thomas *et al.* 2002). Die charakteristischen Zellen für das Hodgkin-Lymphom sind die mehrkernigen Reed-Sternberg- und die einkernigen Hodgkin-Zellen. Diese entarteten Zellen stellen zusammen oft nur etwa 1 % der Gesamtzellen des Lymphoms dar (Schwering *et al.* 2003b). Die Zellen befinden sich neben nicht malignen Zellen wie T- und B-Zellen sowie Makrophagen und Granulozyten (Thomas *et al.* 2004).

Bei der Diagnosestellung des Hodgkin-Lymphoms wurden jahreszeitliche Häufigkeitsgipfel beobachtet, die die Vermutung nahelegen, dass Infektionserreger eine Rolle spielen könnten (Chang et al. 2005, Petridou et al. 2006). So wird dem Epstein-Barr-Virus (EBV) eine begünstigende Rolle zugeschrieben, da es in Hodgkin-und Reed-Sternberg (HRS)-Zellen nachgewiesen werden konnte (Weiss et al. 1987, Andersson 2006). Die EBV codierten Gene *LMP1* (*Epstein–Barr virus latent membrane protein 1*) und *LMP2* (*Epstein–Barr virus latent membrane protein 2*) imitieren dabei die stimulatorischen Signale von umgebenden T- und dendritischen Zellen. Das führt zur Aktivierung des NF-κB (*nuclear factor of kappa light polypeptide gene enhancer in B-cells*)-Signalweges und zur verstärkten Expression von antiapoptotischen Genen. Die Überexpression führt dazu, dass der Apoptosesignalweg inhibiert wird und die HRS-Vorläuferzellen (prä-apoptotische B-Zellen) überleben

(Thomas *et al.* 2004). Da EBV aber nur in 50 % der Fälle bei HRS-Zellen nachweisbar ist, werden auch andere Krankheitsauslöser diskutiert, wie Mutationen in apoptosefördernden Genen (z. Bsp. *FAS*, *p53*), Mutationen im NF-κB-oder JAK (*Janus kinase*)/STAT (*signal transducer and activator of transcription*) -Signalweg oder Chromosomeninstabilität (Küppers 2009a, Thomas *et al.* 2004).

1.1.2 Diagnose und Stadieneinteilung des Hodgkin-Lymphoms

Ein erstes Anzeichen für ein Hodgkin-Lymphom ist eine starke, schmerzlose Schwellung des Lymphknotens im Bereich des Halses. Es kommt aber auch vor, dass die ersten Lymphknotenschwellungen in den Achselhöhlen, der Leistengegend oder oberhalb des Schlüsselbeins auftreten. Zusätzlich können unspezifische Symptome wie Müdigkeit, Schwächegefühl und Juckreiz, aber auch so genannte B-Symptome wie starker Gewichtsverlust, Nachtschweiß und Fieber auftreten. Auf diese Symptome muss besonderes Augenmerk gelegt werden, da die Stadieneinteilung und Therapie darauf basiert (Ansell 2014, Gobbi *et al.* 2013).

Das Hodgkin-Lymphom beginnt meist in einer Lymphknotenregion und breitet sich im fortgeschrittenen Krankheitsstadium über Lymphbahnen und Blut aus. Betroffen sein können Organe wie Lunge, Leber, Knochenmark und Milz (Küppers *et al.* 2012).

Die Diagnose Hodgkin-Lymphom kann nur durch eine Biopsie des ganzen Lymphknotens erfolgen (Ansell *et al.* 2006). Die Stadieneinteilung erfolgt nach der Ann-Arbor-Klassifikation (Wittekind *et al.* 2002). Diese beruht auf Lokalisation und Anzahl der betroffenen Lymphknoten. In der folgenden Tabelle sind die Kriterien zur Einteilung zusammengefasst.

Tabelle 2: Die Ann-Arbor-Klassifikation (Gobbi et al. 2013)

Stadium	Definition		
ı	Befall einer Lymphknotenregion oder ein einziger lokalisierter Bef		
	außerhalb des lymphatischen Systems		
II Befall von zwei Lymphknotenregionen auf der gleichen Seite			
	Zwerchfells oder lokalisierter Befall außerhalb des lymphatischen		
	Systems und von Lymphknotenregionen auf der gleichen Seite des		
Zwerchfells			
III Befall von zwei oder mehr Lymphknotenregionen bzw. von			
	außerhalb des lymphatischen Systems auf beiden Seiten des		
	Zwerchfells		
IV	Nicht lokalisierter, diffuser oder disseminierter Befall eines oder mehrerer		
	extralymphatischer Organe mit oder ohne Befall von lymphatischer		
	Geweben		
<u>Zusatz</u> :			
A: Es liegen keine B-Symptome vor.			
D. En lingan	P. Ed ligger P. Symptoma (Figher, Cowightquarket and Nachtaghweiß) vor		

B: Es liegen B-Symptome (Fieber, Gewichtsverlust und Nachtschweiß) vor.

1.1.3 Therapie und Heilungsraten des Hodgkin-Lymphoms

Unmittelbar nach der Diagnose beginnt die dem Stadium entsprechende Therapie. Diese setzt sich aus Strahlen- und Chemotherapie zusammen. Die Chemotherapie besteht entweder aus zellschädigenden (zytotoxischen) oder wachstumshemmenden Medikamenten. Diese werden als Zytostatika bezeichnet und meist miteinander kombiniert. Sie werden in bestimmten Dosierungen und zeitlichen Abfolgen (Zyklen) gegeben. Die Standardtherapie im frühen Stadium besteht aus zwei Zyklen Chemotherapie und einer Bestrahlung (Diehl et al. 2004). Befindet sich der Patient in einem späteren Stadium, wird die Zyklenzahl der Chemotherapie erhöht (Fuchs et al. 2006). Wurde bei dem Patienten die lymphozytenprädominante Form des Hodgkin-Lymphoms diagnostiziert und befindet sich dieser im Stadium I-IIA, wird auf die Chemotherapie verzichtet und nur eine Bestrahlung durchgeführt (Diehl et al. 2004). Kommt es zu einem Rückfall, wird meist eine Hochdosis-Chemotherapie durchgeführt (Linch et al. 1993, Schmitz et al. 2002). Als weitere Option können autologe (körpereigene) und allogene (körperfremde) Stammzelltransplantationen durchgeführt werden (Diehl et al. 2004).

Bei Kindern erfolgt die Behandlung im Rahmen von Studien. Dabei wird versucht, die bestehende Therapie immer weiter zu verbessern. Patienten im Frühstadium bekommen meist zwei Zyklen intensive Chemotherapie.

Wenn nach dieser Therapie die Erkrankung nicht vollständig verschwunden ist, wird eine Radiotherapie angeschlossen. Patienten, die sich in fortgeschrittenen Stadien befinden, erhalten 4-6 Zyklen Chemotherapie und anschließend eine Bestrahlung (Mauz-Körholz *et al.* 2010). Auch bei Kindern kann es zum Einsatz einer Stammzelltransplantation kommen (Garfin *et al.* 2015).

Die Heilungsrate ist beim Hodgkin-Lymphom mit über 80 % sehr hoch. In den frühen Stadien beträgt die Heilungsrate bei Kindern 90 % (Körholz et al. 2004, Mauz-Körholz et al. 2010), bei Erwachsenen können 80-90 % der Patienten geheilt werden (Borchmann et al. 2012, Fuchs et al. 2006). Auch nach einem Rückfall sind die Heilungschancen gut. Allerdings wird dies durch die Langzeitfolgen getrübt. Durch die Toxizität der Chemotherapie kann es zu Zweittumoren, Infertilität und Herzschäden kommen (Lin und Teitell 2005, van der Kaaij et al. 2010, Ng 2011). Des Weiteren gibt es auch Patienten, die durch die Therapien nicht geheilt werden können (Körholz et al. 2004).

1.2 Prognostische Faktoren für das Hodgkin-Lymphom

1.2.1 Klinische Faktoren

Die Therapie der Patienten orientiert sich an dem Stadium, in dem sie sich nach der Ann-Arbor-Klassifikation befinden. Diese kann aber nicht allein genutzt werden, um den Therapieausgang vorherzusagen. So gibt es in jedem Stadium Patienten, die eine stärkere oder schwächere Therapie benötigen (Diehl *et al.* 2004). Daher werden noch andere klinische Faktoren genutzt, um eine Prognose zu erstellen. Ein wichtiger Faktor ist die Anzahl der befallenen Lymphknoten. Patienten, die sich nach der Ann-Arbor-Klassifikation in den Stadien I und II befinden, werden als Patienten im Frühstadium und Patienten in den Stadien III und IV als Patienten im fortgeschrittenen Stadium bezeichnet (Gobbi *et al.* 2013). Des Weiteren ist für die Prognose wichtig, ob ein Patient an B-Symptomen leidet. Mit Zunahme des Krankheitsstadiums nimmt auch das Auftreten der B-Symptome zu (Specht 1991). Daneben gibt es noch sieben weitere klinische Faktoren, die im Internationalen Prognostischen Index beschrieben sind.

Diese Risikofaktoren sind (Gobbi et al. 2013, Diehl et al. 2004):

- Serum Albumin < 4 g/dL
- Hämoglobin < 10,5 g/dL
- männliches Geschlecht
- Stadium IV
- älter als 45 Jahre
- weiße Blutkörperchen ≥ 15000 Zellen/mm³
- Lymphozyten < 600 Zellen/mm³.

Die Faktoren werden genutzt, um Patienten mit günstiger Prognose von denen mit schlechterer Prognose zu unterscheiden. Je mehr Risikofaktoren bei einem Patienten vorhanden sind, umso schlechter ist dessen Prognose (Venkataraman *et al.* 2014, Gobbi *et al.* 2013, Diehl *et al.* 2004). Neben all diesen Faktoren spielt auch das Tumorvolumen eine bedeutende Rolle. Je größer der Tumor, umso schlechter ist die Prognose (Klimm *et al.* 2013, Gobbi *et al.* 2013).

Bei Kindern findet der *Childhood Hodgkin Lymphoma International Prognostic Score* Anwendung. Dieser besteht aus vier Faktoren, diese sind:

- Stadium IV
- ein Mediastinaltumor
- Serum Albumin < 3,5 g/dL
- Fieber.

Bei Patienten mit einem Rückfall stellen die Zeit bis zum Rückfall und die Resistenz gegen die Chemotherapie die wichtigsten prognostischen Faktoren dar (Harker-Murray et al. 2014).

Da die Risikofaktoren umstritten sind, müssen neue Faktoren identifiziert werden, um die Therapie an den jeweiligen Patienten anzupassen (Nagai 2015, Gallamini *et al.* 2013).

1.2.2 Biologische- und Serummarker

Momentan werden biologische Marker auf den HRS-Zellen hinsichtlich ihrer Bedeutung für die Prognose untersucht (Connors 2015, Gaudio *et al.* 2014). So exprimieren klassische Hodgkin-Lymphome unter anderem die Marker CD (*Cluster of differentiation*) 15, CD20, CD30, CD40, CD45, CD68, IL-7R (Interleukinrezeptor 7), IL-9R, IL-13R, TACI (*transmembrane activator and calcium-modulator and cyclophilin ligand interactor*) und CCR5 (Chemokin (C-C-Motiv) Rezeptor 5) auf ihrer Zelloberfläche (Venkataraman *et al.* 2014, Agostinelli und Pileri 2014, Aldinucci *et al.* 2010, Küppers 2009a).

Diese Marker nutzen die HRS-Zellen, um stimulatorische Signale von den umliegenden Zellen zu empfangen, die das Überleben der HRS-Zellen sichern (Agostinelli und Pileri 2014).

CD15 wird bei 75-80 % der Hodgkin-Lymphome exprimiert (Agostinelli und Pileri 2014). Die prognostische Bedeutung ist noch unklar. In einer Studie konnte gezeigt werden, dass keine Expression von CD15 mit einem hohen Rückfallrisiko und einer schlechten Überlebensrate assoziiert ist. Dies konnte allerdings in einer späteren Studie nicht bestätigt werden (Venkataraman et al. 2014, Montalban et al. 2000, von Wasielewski et al. 1997).

Bei HL-Patienten konnte festgestellt werden, dass bei 11 % der Fälle die HRS-Zellen CD20 auf der Zelloberfläche exprimieren und dies mit einer schlechteren Überlebensrate einhergeht (Portlock *et al.* 2004). Neuere Untersuchungen zeigten aber, dass nicht die CD20-Expression auf den HRS-Zellen eine prognostische Bedeutung hat, sondern die CD20⁺ B-Zellen, die sich im Mikromilleu um den Tumor befinden (Venkataraman *et al.* 2014, Greaves *et al.* 2013). So führte die Anwendung von Rituximab (eliminiert B-Zellen) zu einem guten Therapieerfolg.

CD30, ein Mitglied der Tumornekrosefaktor-Rezeptorfamilie, zeigt eine starke Expression auf HRS-Zellen. Es ist bei 98 % der Hodgkin-Lymphome nachweisbar (Agostinelli und Pileri 2014). Die Überexpression von CD30 führt zu einer Aktivierung des NF-κB-Signalweges und zur Inhibierung der Apoptose (Venkataraman *et al.* 2014, Provencio *et al.* 2014). Da CD30 auf der Oberfläche der HRS-Zellen stark exprimiert ist und kaum auf anderen Zellen (außer einer kleinen Gruppe von T- und B-Zellen und eosinophilen Granulozyten) vorkommt, kann es als Zielstruktur für eine spezifische Therapie genutzt werden (Provencio *et al.* 2014). So werden Antikörper gegen CD30 bei Patienten, die einen Rückfall erlitten haben, zusammen mit einer Chemotherapie eingesetzt (Ansell 2014, Provencio *et al.* 2014, Gobbi *et al.* 2013).

CD68 ist ein Marker für Makrophagen. Es zeigte sich, dass bei steigender Anzahl an CD68⁺ Tumor-assoziierten Makrophagen die Prognose der Patienten schlechter wird (Greaves *et al.* 2013, Tzankov *et al.* 2010).

Des Weiteren synthetisieren die HRS-Zellen verschiedenste Chemo- und Cytokine. So werden unter anderem IL-5 (Interleukin 5), IL-7, IL-8, IL-9, IL-13, CCL-5 (Chemokin (C-C-Motiv) Ligand 5), CCL-17, CCL-20 und CCL-22 ins Mikromilleu abgegeben (Agostinelli und Pileri 2014, Küppers 2009a).

Besonders den Serummarkern Galectin-1 und CCL17 wird eine prognostische Bedeutung zugesprochen (Venkataraman *et al.* 2014). Galectin-1 ist ein Mitglied der beta-Galactosidase-bindenden Lektin-Familie und wird von HRS-Zellen überexprimiert. Es begünstigt das Überleben von regulatorischen T- Zellen und

induziert bei T-Helfer- und zytotoxischen T-Zellen Apoptose (Venkataraman *et al.* 2014). In Studien konnte gezeigt werden, dass eine hohe Menge von Galectin-1 mit einer schlechteren Prognose korreliert. Die Expression von Galectin-1 war in Patienten im Frühstadium viel niedriger als bei Patienten im fortgeschrittenen Stadium (Kamper *et al.* 2011, Ouyang *et al.* 2013).

CCL17 wird von HRS-Zellen exprimiert und ist im Serum von Patienten nachweisbar. Hohe Serumlevel von CCL-17 sind assoziiert mit einem fortgeschrittenen Stadium und einer schlechteren Prognose (Sauer *et al.* 2013).

Die Rezeptoren und Chemokine, die von HRS-Zellen gebildet werden, spielen eine wichtige Rolle für das Überleben der Zellen. So wird durch die Aktivierung des IL-13R der JAK/STAT-Signalweg aktiviert, was zur Expression von Genen führt, die in die Regulation des Zellzyklus, Apoptose, Tumorangiogenese und Metastasierung involviert sind (Küppers 2009a, Mackenzie *et al.* 2008).

Durch die Sekretion von CCL-5, CCL-17, CCL-20 und CCL-22 werden regulatorische T-Zellen angezogen. Diese sezernieren IL-10, was zur Inhibierung zytotoxischer T-Zellen führt. Durch CCL-17, CCL-5 und CCL-20 werden außerdem T-Helfer-Zellen angezogen. Diese binden mit ihren Liganden an die Rezeptoren auf der Zelloberfläche der HRS-Zellen (CD18/CD11A an CD54, CD40L an CD40, TCR (T-Zell-Rezeptor) an MHCII (Haupthistokompatibilitätskomplex II) und CD28 an CD80) und sorgen für deren Überleben. CCL-5 dient außerdem dazu, eosinophile Granulozyten und Mastzellen anzuziehen. Diese haben durch die Bindung von ihrem CD30-Liganden an CD30 der HRS-Zellen eine stimulierende Wirkung auf die HRS-Zellen (Küppers 2009a). Die HRS-Zellen sezernieren außerdem IL-10, TGF-β (transforming growth factor, beta) und Galectin-1, um zytotoxische T-Zellen zu inhibieren (Venkataraman et al. 2014, Küppers 2009a). Diese komplexen Vorgänge sind in Abbildung 1 veranschaulicht.

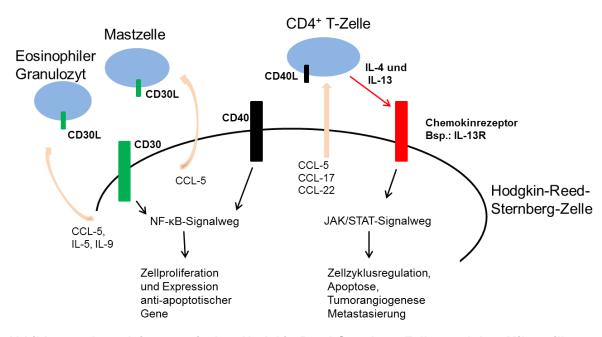


Abbildung 1: Interaktionen zwischen Hodgkin-Reed-Sternberg-Zellen und dem Mikromilleu (modifiziert nach Küppers et al. 2012)

In der Abbildung sind die Interaktionen von umgebenden Zellen mit den HRS-Zellen dargestellt. Durch die Sekretion von CCL-5, IL-5 und IL-9 werden Eosinophile Granulozyten angezogen, diese binden mit ihrem CD30-Ligand an CD30 auf der Oberfläche der HRS-Zellen und aktivieren den NF-κB-Signalweg. Dieser führt zur Zellproliferation und zur Expression anti-apoptotischer Gene. Durch CCL-5 werden außerdem Mastzellen angezogen, die ebenfalls an CD30 binden. Durch die Sekretion von CCL-5, CCL-17 und CCL-22 ins Mikromilleu werden CD4⁺ T-Zellen angelockt. Diese können mit ihrem CD40-Liganden an CD40 auf der Oberfläche der HRS-Zellen binden und aktivieren ebenfalls den NF-κB-Signalweg. Des Weiteren bilden sie IL-4 und IL-13 und geben es ins Mikromilleu ab. Die Interleukine binden dann an den Chemokinrezeptor auf der HRS-Oberfläche und aktivieren den JAK/STAT-Signalweg. Dieser führt zur Expression von Genen, die in die Regulation des Zellzykluses, der Apoptose, Tumorangiogenese und Metastasierung involviert sind.

Diese Mechanismen zeigen das enge Zusammenspiel der verschiedensten Zellen, die sich im Mikromilleu um die HRS-Zellen befinden. Sie spielen somit eine große Rolle beim Ansprechen des Tumors auf die gegebene Chemo- und Radiotherapie.

1.2.3 Chemotherapieresistenz

Insbesondere dem primären Ansprechen des Tumors auf die Chemotherapie wird eine wesentliche prognostische Bedeutung zugesprochen (Gallamini *et al.* 2006). Um dies besser untersuchen zu können, werden Positronen-Emissions-Tomographie (PET) Scans mit dem Radiopharmakon ¹⁸F-Fluor-Deoxyglucose durchgeführt. Diese Methode kann genutzt werden, um metabolische Veränderungen im Tumor zu erkennen und dessen Größen zu bestimmen (Nagai 2015).

Die Veränderungen werden durch die eingesetzten Zytostatika hervorgerufen. Die erhaltenen Ergebnisse sind dabei exakter als bei der Computertomografie (CT) (Kanoun *et al.* 2014). Meist wird eine PET-Analyse vor und nach der Therapie durchgeführt, um das Ansprechen des Tumors auf die Therapie zu untersuchen und gegebenenfalls eine aggressivere Therapie anzuschließen (Nagai 2015).

Bei 20-30 % der Patienten im fortgeschrittenen Stadium kommt es immer wieder zu einem Rückfall, der letztendlich zum Tod führt (Bonadonna *et al.* 2005). Die Verwendung einer toxischeren Therapie führt zwar zu einer höheren Heilungsrate, parallel werden aber auch die Spätfolgen der Therapie verstärkt (Kanoun *et al.* 2014). Daher wird meist eine Hochdosis-Chemotherapie mit anschließender autologer Stammzelltherapie angeschlossen. Aber auch bei dieser Therapie kommt es bei den meisten Patienten zu einem Rückfall (Ansell 2014). Daher ist es wichtig, mittels PET-Scan das Ansprechen des Tumors schon während der Therapie zu untersuchen. Bleibt der gewünschte Behandlungserfolg aus, müssen andere Therapien versucht werden. So kommen Histondeacetylase-Inhibitoren, mTOR (*mechanistic Target of Rapamycin*)-Inhibitoren und ein CD30-Antikörper, gekoppelt mit Monomethylauristatin E, zum Einsatz (Ansell 2014).

Daher wird nach immer neuen Therapieansätzen geforscht, um die Therapie individuell zu verbessern und die Langzeitschäden zu verringern.

Um zu untersuchen, welche Gene an einer Chemotherapieresistenz beteiligt sein könnten, führten verschiedene Gruppen Mikroarrayanalysen an Patientenproben durch. Devilard et al. verglich die Genexpressionsdaten von Patienten, die gestorben waren, mit denen von Patienten, die überlebt hatten. Dabei zeigten die Patienten, die verstorben waren, eine verstärkte Expression von Genen, die in Angiogenese, Fibroblastenaktivierung und der Modellierung der extrazellulären Matrix (wie Endostatin, Collagen VI, Matrix-Proteasen und Zelladhäsionsmoleküle) involviert waren. Patienten, die geheilt wurden, zeigten eine verstärkte Expression von Genen, die als positive Apoptoseregulatoren (BID (BH3 interacting domain death agonist), BAX (BCL2-associated X protein) und TP53 (Tumorprotein p53)) fungieren, von Chemokinen und deren Rezeptoren (IL-10, IL-18, IL-5RA, IL-9R und IL-13RA2) und von Transduktionsmolekülen (Devilard et al. 2002). Scott et al. untersuchte Hodgkin-Lymphom-Biopsien, in Paraffin eingebettet waren, hinsichtlich die Genexpression. Sie konnten 29 Gene identifizieren, die mit der Überlebensrate assoziiert waren. Mehrere Gene, unter anderem CD68 und STAT1, waren mit einer schlechteren Überlebensrate assoziiert (Scott et al. 2013). Da auch Zellen aus dem Mikromilleu bei den Mikroarray-Analysen einbezogen waren, wurden Analysen von

Steidl *et al.* an mikrodissektierten Hodgkin-Lymphom-Proben durchgeführt. Es konnte gezeigt werden, dass es eine hohe *CSF1R*-Expression in Patienten, die einen Rückfall erlitten hatten, gab (Steidl *et al.* 2012).

Staege *et al.* führten DNA-Mikroarray-Analysen mit Hodgkin-Lymphom-Zelllinien durch. Dabei wurde das Genexpressionsprofil einer zytostatikaresistenten Zelllinie mit dem einer sensiblen verglichen. Es zeigte sich, dass es viele Gene gab, die differentiell exprimiert waren (Staege *et al.* 2008). So konnten nur in der zytostatikaresistenten Zelllinie die Gene *IL-13RA1* (Interleukinrezeptor 13 alpha1), und *IL5RA*, *CD40* und *MARCKS* (*myristoylated alanine-rich protein kinase C substrate*) nachgewiesen werden. All diese Gene sind an anti-apoptotischen Mechanismen beteiligt (Staege *et al.* 2008). *MARCKS* konnte sogar schon als Marker für die Cisplatinresistenz von Eierstockkrebs identifiziert werden (Righetti *et al.* 2006).

Die Gene *PRAME* (*preferentially expressed antigen in melanoma*) und *MGMT* (*O6-Methylguanin-DNA Methyltransferase*) wurden in der zytostatikaresistenten Zelllinie L-1236 höher exprimiert als in der zytostatikasensitiven Zelllinie L-540 (Staege *et al.* 2008). Daher wurden diese Gene hinsichtlich ihrer Beteiligung an der Resistenz gegenüber Zytostatika untersucht.

1.3 PRAME als möglicher Resistenzfaktor

PRAME (preferentially antigen expressed in melanoma) ist ein cancer/testis Antigen (CTA), das in einer Vielzahl von Krebsarten überexprimiert wird. In normalem Gewebe, außer dem Hoden, wird es nicht exprimiert (Griffioen et al. 2006). Die PRAME in Tumorzellen korreliert Expression von mit einer höheren Wahrscheinlichkeit Metastasen zu bilden und einer schlechteren Überlebensrate (Epping und Bernards 2006, Yan et al. 2011). Andererseits ist bei Kindern mit einer akuten myeloischen Leukämie eine hohe PRAME-Expression ein Marker für eine gute Prognose (Steinbach et al. 2002).

PRAME wurde als Antigen auf Melanom-Zellen eines Patienten von einem spezifischen, autologen, zytotoxischen T-Lymphozyten-Klon erkannt (Ikeda *et al.* 1997). Das Gen ist auf Chromosom 22 (22q11.22) inmitten des Bereiches der variablen Segmente des Immunglobulin-Lambda-Locus lokalisiert und erstreckt sich über eine Weite von 12 Kilobasen (kb) (Kawasaki *et al.* 1997, Wadelin *et al.* 2010). Die Datenbank NCBI zeigt 5 verschiedene mRNA Transkripte für *PRAME*, die eine Größe von 2,1 bis 2,7 kb aufweisen. In Hoden und Leukämie-Zellen sind die kürzeren Transkripte verstärkt zu finden (Schenk *et al.* 2007). Alle Transkripte

bestehen aus sechs Exons, wobei nur vier Exons für das Gen codieren. Das daraus resultierende Protein hat eine Größe von 509 Aminosäuren.

Die Funktion von PRAME ist noch nicht hinreichend geklärt. Bisher konnte gezeigt werden, dass PRAME an den Retinsäurerezeptor bindet und dessen Funktion inhibiert (Epping und Bernards 2006, Epping *et al.* 2005). Wenn Retinsäure an den Rezeptor bindet, führt dies zur Expression von Genen, die für Differenzierung, Zellzyklusarrest und Apoptose verantwortlich sind (Wadelin *et al.* 2010).

1.4 Bedeutung des Reparaturenzyms O6-Methylguanin-DNA Methyltransferase (MGMT)

Die HL-Zelllinie L-1236 ist nicht nur resistent gegenüber konventionellen Zytostatika, sondern auch gegenüber Zellzyklusinhibitoren wie Roscovitin oder Histondeacetylase-Inhibitoren (Foell *et al.* 2008, Kewitz *et al.* 2012). Dies könnte auf einen allgemeinen Resistenzmechanismus hinweisen. Es konnte nachgewiesen werden, dass das Reparaturenzym MGMT stärker in L-1236-Zellen exprimiert wurde (Staege *et al.* 2008).

Das Enzym entfernt Methylgruppen von der O⁶-Position des Guanins in der DNA indem sie auf einen Cysteinrest im aktiven Zentrum des Enzyms übertragen werden (Hegi *et al.* 2005). Dies führt zur Inaktivierung und Ubiquitinylierung des Enzyms und zum Abbau im Proteasom (Liu und Gerson 2006, Ayi *et al.* 1992). Somit kann jedes MGMT-Protein nur ein einziges Mal die DNA reparieren (Hegi *et al.* 2005). Wird der Methylrest nicht vom Guanin entfernt, paart dieses bei der Replikation mit Thymin und es kommt zu einer Transition von Guanin-Cytosin zu Adenin-Thymin. Dies führt zu einer Punktmutation, die mit einer Funktionsänderung bzw. einem –verlust des betroffenen Gens einhergehen kann oder zur Apoptose der Zelle (Esteller *et al.* 1999, Kaina *et al.* 1993).

Durch epigenetische Veränderungen kann es zu einer Methylierung des Promotors von *MGMT* kommen, wodurch dieses Gen nicht mehr transkribiert wird. In klinischen Studien mit Glioblastom-Patienten, welche alkylierende Chemotherapeutika (z. Bsp. Temozolomid) erhielten, beobachtete man eine Korrelation zwischen der Methylierung des *MGMT*-Promotors und einer längeren Überlebensdauer (Hegi *et al.* 2005). Durch die Inaktivierung des Promotors bewirken die Medikamente den Tumorzelltod, da das Reparaturprotein nicht wirken konnte.

Für die Behandlung des Hodgkin-Lymphoms wird Dacarbazin eingesetzt. Temozolomid und Dacarbazin sind beides Prozytostatika, die in der Zelle in die gleiche aktive Form umgewandelt werden. Daher stellte sich die Frage, in wieweit die Expression von MGMT wichtig für die Resistenz der Hodgkin-Lymphom-Zellen gegenüber Dacarbazin ist.

1.5 Methoden zur Identifizierung neuer Zielstrukturen für das Hodgkin-Lymphom

Um Zielstrukturen für eine neue Therapie zu identifizieren, müssen Faktoren isoliert werden, die mit der Chemotherapie-Resistenz der Hodgkin-Lymphom-Zellen im Zusammenhang stehen könnten.

1.5.1 Hypoxie

Die Aktivierung des NF-κB-Signalweges spielt im Rahmen der Pathogenese des Hodgkin-Lymphoms eine wichtige Rolle (Küppers 2009b). NF-κB ist aber auch wichtig bei Genänderungen, die durch Hypoxie induziert werden (Taylor und Cummins 2009, Oliver et al. 2009). In vivo exprimieren Hodgkin-Lymphom-Zellen hohe Mengen von HIF-1 α (Hypoxie-induzierter Faktor 1 alpha) (Passam *et al.* 2009). Dies ist ein Transkriptionsfaktor, der die Expression von Ziel-Genen aktiviert, welche an essentiellen Prozessen beteiligt sind, um das Überleben der Zelle unter hypoxischen Bedingungen zu gewähren (Semenza 2000). Bei Normoxie ist die HIF-1α Untereinheit mit dem Von Hippel-Lindau-Tumorsuppressorgen verbunden, wird mit Ubiquitin markiert und im Proteasom abgebaut. Unter hypoxischen Bedingungen wird die Degradation inhibiert, somit steigt der Anteil des HIF-1 α im Cytoplasma an. Über Translokation gelangt HIF-1α in den Nucleus und dimerisiert mit der HIF-1ß Untereinheit. Zusammen formen sie den HIF-1-Komplex und binden als Transkriptionsfaktor an "hypoxia responsive elements" (HRE), die bei vielen Genen in der Promotorregion vorhanden sind (Semenza 2001, Semenza 2000). Eines dieser Zielgene ist der Glucosetransporter-1 (SLC2A1).

Die Expression des Gens korreliert stark mit der metabolischen Aktivität, die mittels PET-Scans bei Hodgkin- und Non-Hodgkin-Lymphomen gemessen werden konnte (Khandani *et al.* 2009, Shim *et al.* 2009). Außerdem konnte in Non-Hodgkin-Lymphomen beobachtet werden, dass die Überexpression von HIF- 1α zu einem zytostatikaresistenten Phänotyp führt (Hernandez-Luna *et al.* 2013).

1.5.2 Generierung einer cDNA-Bank

Durch die Analyse von Mikroarray-Daten konnten Unterschiede im Genexpressionsmuster zwischen Hodgkin-Lymphom-Zellen, die resistent und sensibel gegenüber Zytostatika sind, identifiziert werden (Staege et al. 2008). Um cDNAs zu isolieren, die mit der Resistenz einhergehen, wurde eine cDNA-Bank etabliert. Diese enthält alle cDNAs, die auf der mRNA codiert sind. Die Methode konnte schon erfolgreich genutzt werden, um Genvarianten zu identifizieren, die bisher noch unbekannt waren (Staege et al. 2014). Seed und Aruffo entwickelten ein System, dass eine Untersuchung von cDNAs in eukaryotischen Zellen ermöglicht (Seed und Aruffo 1987). Dieses sollte genutzt werden, um neue Zielstrukturen für das Hodgkin-Lymphom zu identifizieren.

1.6 Zielstellung der Dissertation

In der vorliegenden Arbeit sollten bekannte Gene untersucht und neue Zielgene identifiziert werden, die als Strukturen für eine neue Therapieoption für Hodgkin-Lymphom-Patienten genutzt werden könnten. Es wurden die Gene *PRAME* und *MGMT* untersucht, die bei Mikroarray-Analysen identifiziert wurden. Beide Gene wurden in Hodgkin-Lymphom-Zellen, die resistent gegenüber Zytostatika waren, stärker exprimiert als in Zellen, die sensibler waren. Zur Untersuchung von *PRAME* und *MGMT* als mögliche Resistenzfaktoren wurden beide Gene in Hodgkin-Lymphom-Zellen jeweils mittels vektorbasierter miRNA supprimiert oder durch epigenetische Veränderung verstärkt exprimiert.

Um neue Zielstrukturen zu identifizieren, wurden Hodgkin-Lymphom-Zellen unter hypoxischen Bedingungen hinsichtlich Überleben, Wachstum und Zytostatikaresistenz untersucht. Des Weiteren wurde das Genexpressionsprofil von hypoxischen Zellen analysiert.

Durch die Generierung einer cDNA-Bank von KM-H2-Zellen sollten neue Resistenzfaktoren identifiziert werden. Dafür wurden sensible Testzellen mit der cDNA-Bank transfiziert und mit Cisplatin behandelt. Aus überlebenden Zellen wurden die Vektoren reisoliert und sequenziert.

2 Material und Methoden

2.1 Material

Nachfolgend werden die in der Arbeit verwendeten Materialien aufgeführt. Verbrauchsmaterialien wie Zellkulturartikel, Pipettenspitzen und Reaktionsgefäße wurden von den Firmen TPP (Trasadingen, Schweiz), Greiner Bio-One (Frickenhausen), Eppendorf (Hamburg), VWR (Darmstadt) und Sarstedt (Nümbrecht) bezogen. Die Geräte und Verbrauchsmaterialien, die nicht methodenspezifisch waren, wie Pipetten, Zentrifugen, etc., entsprachen dem üblichen Laborstandard und sind nicht aufgelistet.

2.1.1 Zellen

Die Zellen, die zur Erstellung der Arbeit genutzt wurden, sind in Tabelle 3 dargestellt. Sie wurden teilweise von der Deutschen Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Braunschweig) bezogen.

Tabelle 3: Verwendete Zelllinien

Bezeichnung	Herkunft	Ursprung	Referenz
L-1236	DSMZ	humane HL-Zelllinie	Wolf et al.1996
L-428	DSMZ	humane HL-Zelllinie	Schaadt <i>et al</i> . 1979
L-540	DSMZ	humane HL-Zelllinie	Diehl <i>et al</i> . 1982
KM-H2	DSMZ	humane HL-Zelllinie	Kamesaki <i>et al.</i> 1986
HDLM-2	DSMZ	humane HL-Zelllinie	Drexler <i>et al</i> . 1986
L-428 pBOS- H2BGFP	freundlicherweise von Herrn M. S. Staege zur Verfügung gestellt	humane HL-Zelllinie transfiziert mit dem Vektor pBOS-H2BGFP	persönliche Mitteilung M. S. Staege
Mausfibroblasten	freundlicherweise von Herrn M. S. Staege zur Verfügung gestellt	spontan immortalisierte murine Fibroblasten	persönliche Mitteilung M. S. Staege
CRL7449	ATCC (Manassas, USA)	humane Fibroblasten	

EREB2-5	freundlicherweise von Prof. Dr. G. W. Bornkamm zur Verfügung gestellt	immortalisierte B- Zelllinie	Kempkes <i>et al.</i> 1996
HEK293	DSMZ	humane embryonale Nierenzelllinie transfiziert mit Teilen des Genoms des Adenovirus Typ 5	Graham <i>et al.</i> 1977

2.1.2 Bakterien und Hefen

Die Bakterien und Hefen, die in der Arbeit verwendet wurden, sind in Tabelle 4 aufgeführt.

Tabelle 4: Verwendete Bakterien und Hefen

Bezeichnung	Hersteller
Escherichia coli XL1-blue	Agilent Technologies, Santa Clara, USA)
Saccharomyces cerevisiae AH109	Clontech (Saint-Germain-en-Laye, Frankreich)
Saccharomyces cerevisiae Y187	Clontech

2.1.3 Chemikalien

Die verwendeten Chemikalien wurden, falls nicht anders angegeben, von den Firmen Sigma-Aldrich (München), Carl Roth (Karlsruhe), VWR (Darmstadt) und Merck Milipore (Darmstadt) bezogen. Spezielle Chemikalien sind im Zusammenhang mit der entsprechenden Methode aufgeführt.

2.1.4 Antikörper

In der folgenden Tabelle sind alle FACS-Antikörper aufgelistet, die zur Erstellung der Arbeit genutzt wurden (bezogen von Becton Dickinson (BD), Heidelberg).

Tabelle 5: Verwendete FACS-Antikörper

Antigen	Klon	Isotyp	Markierung
Isotyp-Kontrolle	MOPC-21	lgG1	FITC
CD30	BerH8	IgG1	FITC

Für die Western-*Blot*-Analysen wurden die Antikörper verwendet, die in Tabelle 6 dargestellt sind.

Tabelle 6: Verwendete Western-Blot-Antikörper

Bezeichnung	Klon	Hersteller
Maus-anti-Mensch-MGMT	MT23-2	antibodies-online (Atlanta, USA)
Maus-anti-Mensch-MGMT	MT3.1	Merck-Milipore
Maus-anti-Mensch-Aktin	C-2	Santa Cruz (Dallas, USA)
Hase-anti-Mensch-TTK	C-19	Santa Cruz
Maus-anti-Mensch-TTK	N1	Abcam (Cambridge, UK)
Maus-anti-Mensch- Syntenin-1	S-31	Santa Cruz
Roti-Mark Western-HRP- Konjugat		Carl Roth
Schaf-anti-Maus-IgG-HRP- Konjugat		Santa Cruz
Ziege-anti-Maus-IgG- HRP-Konjugat		Santa Cruz
Ziege-anti-Hase-IgG- HRP-Konjugat		Santa Cruz

2.1.5 Medien und Lösungen für Suspensions- und adhärente Zellen

Für die Kultivierung der Zellen wurden folgende Medien und Lösungen verwendet (Tabelle 7).

Tabelle 7: Verwendete Medien und Lösungen für die Zellkultur

Bezeichnung	Hersteller
Roswell Park Memorial Institute (RPMI) 1640	Life Technologies GmbH (Carlsbad, USA)
Dulbecco's modified Eagle's medium (DMEM) 4,5 g/L Glucose	Biochrom (Berlin) (Merck-Milipore)
Fetales Kälberserum (FCS)	Biochrom
Penicillin/Streptomycin (Pen/Strep)	Life Technologies
phosphatgepufferte physiologische Salzlösung (PBS)	Life Technologies
Trypsin-EDTA (Ethylendiamintetraessigsäure)	Life Technologies

Kulturmedium: RPMI 1640 bzw. DMEM mit 10 % (v/v) FCS und

1 % (v/v) Pen/Strep

Einfriermedium: RPMI 1640 bzw. DMEM Kulturmedium mit

10 % (v/v) Dimethylsulfoxid (DMSO)

2.1.6 Medien und Agarplatten für Bakterien und Hefen

LB-Medium:

25 g LB-Medium Pulver (Carl Roth) auf 1 L Wasser

Agar-Platten:

25 g LB-Medium und 15 g Agar Agar (Carl Roth) auf 1 L Wasser, Zugabe von 50 μg/mL Ampicillin, Kanamycin oder Spektinomycin (alle Sigma-Aldrich)

YPD-Medium:

50 g YPD-Medium (Carl Roth) auf 1 L Wasser

YPD-Platten:

50 g YPD-Medium und 15 g Agar Agar auf 1 L Wasser

SD-L-T-Medium:

13,7 g SD-Medium ohne Leucin und Tryptophan (MP Biomedicals, Santa Ana, USA) in 500 mL Wasser

SD-L-T-Platten:

13,7 g SD-Medium ohne Leucin und Tryptophan und 7,5 g Agar Agar in 500 mL Wasser

SD-HALT-Medium:

13,7 g SD-Medium ohne Histidin, Adenin, Leucin und Tryptophan (MP Biomedicals) in 500 mL Wasser

SD-HALT-Platten:

13,7 g SD-Medium ohne Histidin, Adenin, Leucin und Tryptophan und 7,5 g Agar Agar in 500 mL Wasser

2.1.7 Verwendete Puffer und Lösungen

Mikroarrayanalyse:

DEPC-Wasser 0,1%ig:

1 mL DEPC (Diethylpyrocarbonat)-Reagenz in 1 L Wasser

MOPS-Puffer (pH 7):

200 mM MOPS (3-(N-Morpholino)-Propansulfonsäure), 0,5 M EDTA, 1 M Natriumacetat in 1 L 0,1%igem DEPC-Wasser

Gelelektrophorese:

TAE-Puffer (50x):

2 M Tris-HCl pH 8,0, 5,75 % (v/v) Essigsäure, 50 mM EDTA

Proteinisolation, SDS-Page und Western-Blot.

RIPA-Puffer:

150 NaCl, 1 % (v/v) IGEPAI CA-630 (Octylphenyl-polyethylenglycol), 0,1 % (w/v) SDS (Natriumlaurylsulfat), 0,5 % (w/v) Natriumdeoxycholat, 50 mM Tris pH 8,0

→ anschließend wurde eine Proteinase-Inhibitor-Tablette (Roche Diagnostics, Mannheim) in 1 mL Wasser gelöst (ergab 7fache Konzentration) und zugeben

Laemmli-Puffer (5x):

62,5 mM Tris pH 6,8, 2 % (w/v) SDS, 10 % (v/v) Glycerol, 5 % (v/v) β -Mercaptoethanol, 0,01% (w/v) Bromphenolblau

SDS-Laufpuffer (pH 8,2):

0,6 M MOPS, 1,2 M Tris, 2 % (w/v) SDS, 130 mM Natriumhydrogensulfit

Blot-Puffer (pH 8):

25 mM Tris, 150 mM Glycin, 20 % (v/v) Methanol

TBST-Puffer:

171 mM NaCl, 1 % (w/v) 2 M Tris-HCL (pH 7,5), 0,1 % Tween 20

Stripping-Puffer (pH 6,8):

62,5 mM Tris; 2 % (w/v) SDS; 100 mM β-Mercaptoethanol

Isolation extrachromosomaler DNA:

Hirt-Lysepuffer:

10 mM EDTA und 0,6 % (w/v) SDS in 10 mL Wasser

Hefetransformation:

TE (10x):

100 mM TRIS-HCI, 10 mM EDTA

LiAc/TE:

1 Vol 1 M Lithiumacatat, 1 Vol 10x TE, 8 Vol Wasser

PEG/LiAc/TE:

1 Vol 1 M Lithiumacatat, 1 Vol 10x TE, 8 Vol 50 % (w/v) PEG4000

Magnetische Separation von Zellen

MACS-Puffer:

0,5 % (v/v) BSA und 2 mM EDTA in 500 mL PBS

ELISPOT:

Blockierungspuffer:

RPMI 1640 + 10 % (v/v) AB-Serum (Humanalbumin) + 1 % (v/v) Pen/Strep

Waschpuffer I:

PBS + 0,05 % (v/v) Tween-20

Verdünnungspuffer:

PBS + 5 % (v/v) AB-Serum

2.1.8 Zytostatika

<u>Cisplatin (Sigma-Aldrich):</u> Stammlösung 12,5 mg/mL in DMF (Dimethylformamid)

Etoposid (Sigma-Aldrich): Stammlösung 25 mg/mL in DMSO

Roscovitin (Sigma-Aldrich): Stammlösung 30 µM in DMSO

<u>Dacarbazin (Medac, Hamburg):</u> Pulver wurde vor Verwendung in einem 1,5 mL Reaktionsgefäß in 0,9%ige NaCl-Lösung gelöst und 1 h im Weißlicht auf UV-Tisch (PHlum 20W/M, Biotec-Fischer, Reiskirchen) aktiviert

Retinsäure (Sigma-Aldrich): Stammlösung 0,166 M in DMSO

2.1.9 Verwendete Vektoren

In der folgenden Tabelle sind die verwendeten Vektoren aufgeführt.

Tabelle 8: Verwendete Vektoren

Bezeichnung	Hersteller
pGEM-T Easy	Promega
pGADT7	Clontech
pGBKT7	Clontech
pcDNA6.2-GW/EmGFP-miR	Life Technologies
pCMV-Script	Agilent Technologies

2.1.10 Primer

Die Primer sind in Tabelle 21 im Anhang zu finden.

2.2 Methoden

Nachfolgend sind die verwendeten Methoden aufgeführt. Soweit nicht anders angegeben, erfolgten die Inkubations- und Zentrifugationsschritte bei Raumtemperatur.

2.2.1 Molekularbiologische Methoden

2.2.1.1 RNA-Isolation

Bevor mit der Isolation der RNA begonnen wurde, erfolgte eine Vorbehandlung der Pipetten und des Arbeitsplatzes mit RNase Zap (Carl Roth), um vorhandene RNasen zu entfernen.

Die Isolation wurde mit Hilfe des High Pure RNA Isolation Kit (Roche) nach Angaben des Herstellers durchgeführt. RNA, die für DNA-Mikroarray-Analysen verwendet werden sollte, wurde mit TriFast (PEQLAB Biotechnologie GmbH, Erlangen) isoliert. Dafür wurden die Zellen 10 min bei 210 g abzentrifugiert und das Pellet in 1 mL TriFast-Reagenz aufgenommen. Nach einer fünfminütigen Inkubationszeit auf Eis wurde die Zellsuspension mit Hilfe einer Spritze homogenisiert. Es schloss sich ein zehnminütiger Zentrifugationsschritt bei 12000 g und 4°C an. Der Überstand, welcher die gewünschte RNA enthielt, wurde in ein neues Reaktionsgefäß überführt und mit Chloroform (Sigma-Aldrich) ausgeschüttelt (15 sec). Nach einer Inkubation von 5 min und der Zentrifugation (15 min bei 12000 g und 4°C) bildeten sich im Reaktionsgefäß drei Schichten. In der oberen, wässrigen Phase befand sich die RNA. Diese Phase wurde vorsichtig abgenommen und in ein neues Reaktionsgefäß überführt. Durch Zugabe von Isopropanol (Carl Roth) wurde die RNA gefällt. Durch vortexen, Inkubation für 10 min und einem anschließenden Zentrifugationsschritt (10 min bei 12000 g und 4°C) lag die RNA als Pellet vor. Dieses wurde mit 80%igem Ethanol (Carl Roth) gewaschen (5 min bei 7500 g) und anschließend getrocknet. Das Pellet wurde in DEPC-Wasser (20 - 100 µL) aufgenommen und für 10 min bei 65°C inkubiert, um Sekundärstrukturen der RNA aufzulösen. Anschließend erfolgte die Konzentrationsbestimmung am Spektrophotometer.

2.2.1.2 Konzentrationsbestimmung von Nukleinsäuren

Die Konzentrationen von DNA und RNA wurden am Spektrophotometer (DU 800 Spektrophotometer, BD) gemessen. Nach dem Nullabgleich wurde das Absorptionsmaximum bei 260 nm und 280 nm bestimmt.

Dafür wurde die Probe 1:100 in einem Volumen von 100 μL verdünnt und gemessen. Eine Absorption von 1 bei 260 nm entsprach 50 μg/mL dsDNA und 40 μg/mL RNA.

Aus dem Verhältnis der Absorptionen bei 260 nm zu 280 nm konnte die Reinheit der Proben abgelesen werden. Der Quotient sollte sich zwischen 1,6 und 2,0 befinden.

2.2.1.3 cDNA-Synthese

Um Aussagen über das Genexpressionsprofil treffen zu können, musste die vorhandene RNA in komplementäre DNA, die als cDNA bezeichnet wird, umgeschrieben werden. Dafür wurden folgende Komponenten verwendet:

Tabelle 9: Pipettierschema cDNA

Menge	Komponente	Hersteller	
4 μL	Puffer (5x)	Thermo Fisher (Darmstadt)	
1 μL	dNTPs (10 mM)	Thermo Fisher	
1 μL	Oligo d(T) 12-18 Primer	Thermo Fisher	
41	RevertAid H Minus Reverse	Thermo Fisher	
1 μL	Transcriptase (200 U/μL)		
x µL	RNA		
(13-x) µL	DEPC-Wasser		

Der Ansatz wurde 1 h bei 40°C und anschließend 5 min bei 90°C inkubiert. Der letzte Schritt diente der Inaktivierung der Reversen Transkriptase. Die cDNA wurde bei -20°C gelagert.

2.2.1.4 Polymerasekettenreaktion (PCR)

Um ein bestimmtes Genprodukt klonieren oder sequenzieren zu können, musste es vorher amplifiziert werden. Dafür wurde eine Polymerasekettenreaktion, kurz PCR, durchgeführt und folgender Mix hergestellt:

Tabelle 10: Pipettierschema PCR

Menge	Komponente	Hersteller
5 μL	GoTaq® PCR-Puffer (5x)	Promega
0,5 μL	dNTPs (10 mM)	Thermo Fisher
0,25 μL	sense Primer (25 µM)	Sigma-Aldrich
0,25 μL	antisense Primer (25 µM)	Sigma-Aldrich
0,2 μL	GoTaq®-Polymerase (5 U/μL)	Promega
2 μL	cDNA	
16,8 µL	Nuklease-freies Wasser	Promega

Für die PCR wurde das folgende Programm verwendet:

Tabelle 11: PCR-Programm

Zyklen	Temperatur	Zeit	Reaktionsschritt
	(Standard)	(Standard)	
1	95°C	5 min	Denaturierung
	94°C	30 sec	Denaturierung
24-35	60°C	30 sec	Primeranlagerung
	72°C	45 sec	Elongation
1	72°C	5 min	Elongation

Die Zeiten für Denaturierung, Primeranlagerung und Elongation wurden je nach Größe des zu erwartenden Produktes angepasst.

2.2.1.5 Quantitative RT-PCR (qRT-PCR)

Die quantitative (real-time) PCR ist ein Verfahren, um die Menge an entstandenem PCR-Produkt in Echtzeit zu messen. Dies wird möglich, da ein Fluoreszenz-Farbstoff verwendet wurde, welcher mit der DNA interkalierte. Nach jedem Zyklus, die die PCR durchlief, wurde die Fluoreszenzintensität gemessen. Der Ansatz wurde wie folgt pipettiert:

Tabelle 12: Pipettieransatz qRT-PCR

Menge	Komponente	Hersteller
5 μL	GoTaq® qPCR Master Mix (2x)	Promega
1 μL	sense Primer (25 µM)	Sigma-Aldrich
1 μL	antisense Primer (25 μM)	Sigma-Aldrich
2 μL	cDNA	
6 μL	Nuklease-freies Wasser	Promega

Tabelle 13: qRT-PCR-Programm

Zyklen	Temperatur	Zeit	Reaktionsschritt
1	95°C	2 min	Denaturierung
	94°C	30 sec	Denaturierung
40	60°C	30 sec	Primeranlagerung
	72°C	45 sec	Elongation

Als Referenz dienten die *housekeeping-*Gene *ACTB*, *GAPDH* oder *HPRT1*. Als Negativ-Kontrolle wurde pro Primerpaar ein Ansatz mit Wasser und RNA mitgeführt. Die RNA-Kontrolle diente dazu auszuschließen, dass die RNA genomische DNA enthielt. Die Auswertung erfolgte nach der 2^{-ΔΔCt} Methode (Livak *et al.* 2001).

2.2.1.6 Gelelektrophorese

Mit Hilfe der Gelelektrophorese konnten DNA-Moleküle anhand ihrer Größe aufgetrennt werden. Dies ist möglich, da Nukleinsäuren negativ geladene Phosphatgruppen besitzen und zur Anode wandern.

Die DNA wurde auf ein Agarosegel aufgetragen. Die Prozentigkeit der Agarose richtete sich nach der Größe des erwarteten Produktes (je kleiner das Produkt, umso höherprozentiger das Gel). Dafür wurde die benötigte Menge Agarose (PEQLAB Biotechnologie GmbH) in 1xTAE-Puffer aufgenommen und in der Mikrowelle vorsichtig erhitzt, bis die Agarose sich gelöst hatte. Da es durch den Kochvorgang zu einem Flüssigkeitsverlust kam, wurde die Lösung nach dem Kochen erneut abgewogen und mit destilliertem Wasser die Differenz aufgefüllt. Anschließend wurde Ethidiumbromid (Sigma-Aldrich) in einer Endkonzentration von 0,7 µg/mL zugegeben und die Flüssigkeit in eine Gelkammer mit Kamm gegossen. Die Proben wurden mit dem Ladepuffer (6x) (Thermo Fisher) versetzt und in die Taschen pipettiert. Um die Größe der Produkte bestimmen zu können, wurde ein Größenstandard (Thermo Fisher) mitgeführt. Die Auftrennung erfolgte bei 8 V/cm. Anschließend wurde das Gel mit dem Imager Quantum ST5 (Vilber Lourmat, Eberhardzell) fotografiert.

2.2.1.7 Elution spezifischer Genfragmente

Sollten DNA-Fragmente aus dem Gel eluiert werden, wurden die Banden ausgeschnitten, abgewogen und anschließend mit Hilfe des GeneJET Gel Extraction Kit (Thermo Fisher) nach Angaben des Herstellers eluiert. Es folgte die Konzentrationsbestimmung am Spektrophotometer.

2.2.1.8 Klonierungsmethoden

Beim Klonieren wird ein linearisierter Vektor mit einem DNA-Fragment, welches als *Insert* bezeichnet wird, ligiert. Das entstandene Plasmid wird in Bakterien transformiert und vermehrt. Nachfolgend wird der Verlauf der Klonierung erläutert.

2.2.1.8.1 Restriktionsverdau

Restriktionsenzyme wurden genutzt, um dsDNA zu schneiden. Die Enzyme erkennen spezifische DNA-Sequenzen und schneiden an diesen Stellen. Diese Eigenschaft wurde genutzt, um Vektoren und deren *Inserts* spezifisch zu schneiden. Ein Verdau erfolgte in einem Gesamtvolumen von 20 µL. Es wurde folgender Ansatz genutzt:

Tabelle 14: Ansatz Restriktionsverdau

Menge	Komponente	Hersteller
1-2 µg	DNA	
2 µL	Puffer (10x)	Thermo Fisher
10 U	Enzym	Thermo Fisher
ad 20 μL	Nuklease-freies Wasser	Promega

Diese Reaktion wurde 1 h bei der entsprechenden Temperatur des Restriktionsenzyms inkubiert und anschließend inaktiviert.

2.2.1.8.2 Dephosphorylierung linearisierter Vektor-DNA

Wurde ein Vektor mittels Restriktionsenzym linearisiert, schloss sich eine Dephosphorylierung an. Dies wurde nötig, wenn nur ein Restriktionsenzym genutzt wurde und eine Religation des Vektors möglich wäre. Durch die Alkalische Phosphatase wurden die Phosphat-Reste am 5`-Ende abgebaut, wodurch keine Religation mehr möglich war. Es wurde die FastAP (Thermo Fisher) nach Angaben des Herstellers genutzt.

Anschließend wurden das geschnittene *Insert* und der geschnittene Vektor auf ein Agarosegel aufgetragen, eluiert und die Konzentration bestimmt.

2.2.1.8.3 Herstellung des miR-Vektorkonstruktes

Mit Hilfe der Internetseite von Life Technologies wurden Einzelstrang-Oligonukleotide für die Gene *PRAME, DEPDC1B* und *TTK* entworfen. Dabei wurden pro Gen zwei zueinander komplementäre Oligonukleotide erstellt und in Wasser zu einer Endkonzentration von 200 µM gelöst. Die miR-RNA-Konstrukte sahen wie folgt aus:

miR-RNA-Konstrukte:

miR-PRAME:

Linker miR RNAi-Sequenz Loop 1-8&11-21 miR RNAi-Sequenz

5'-TGCTGAGATGTTGTCCCTTCATCAGCGTTTTTGGCCACTGACGCTGATGAGGACAACATCT - 3'

3'- CTCTACAACAGGGAAGTAGTCGCAAAACCGGTGACTGCCGACTACTCCTGTTGTAGAGTCC -5'

miR-*TTK*:

Linker miR RNAi-Sequenz Loop 1-8&11-21 miR RNAi-Sequenz

miR-DEPDC1B:

Linker miR RNAi-Sequenz Loop 1-8&11-21 miR RNAi-Sequenz

3'- CTTGTGAAGTATCGACTGTCGTCAAAACCGGTGACTGACGACAGTATACTTCACAAGTCC -5'

Für die Erstellung der miR-Vektoren wurde das BLOCK-iT™ Pol II miR RNAi Expression Vector Kit (Life Technologies) nach Angaben des Herstellers genutzt.

2.2.1.8.4 Ligation

Mit Hilfe der T4-Ligase ist es möglich, Fragmente, die mit dem gleichen Restriktionsenzym geschnitten wurden, wieder zu ligieren. Dadurch konnte ein DNA-Fragment in einen Vektor ligiert werden. Um die Mengenverhältnisse zwischen *Insert* und Vektor zu bestimmen, wurde folgende Formel genutzt:

$$\frac{10 \times 50 \text{ng (Vektor)} \times \text{bp Insert}}{\text{bp Vektor}} = \text{ng Fragment}$$

Die Ligationsreaktion wurde in einem Gesamtvolumen von 20 μL durchgeführt (Tabelle 15).

Tabelle 15: Ligationsansatz

Menge	Komponente	Hersteller
2 μL	Puffer (10x)	Thermo Fisher
50 ng	Vektor	
x ng	Insert	
5 U	T4-Ligase	Thermo Fisher
ad 20 μL	Nuklease-freies Wasser	Promega

Die Reaktion erfolgte 1 h bei 37°C.

2.2.1.8.5 Transformation

Um das entstandene Plasmid zu vervielfältigen, wurde es in *E. coli* XL1-blue Zellen transformiert. Auf dem Plasmid befand sich eine Antibiotikaresistenz, welche die Selektion ermöglichte.

Für die Transformation wurden 100 μL chemisch kompetente *E. coli* Zellen auf Eis aufgetaut und nach Zugabe des Ligationsansatzes weitere 3 min auf Eis inkubiert. Anschließend erfolgte ein Hitzeschock für 45 sec bei 42°C. Die Zellen wurden für 2 min wieder auf Eis gestellt und nach der Zugabe von 900 μL LB-Medium (ohne

Antibiotikum) für 1 h bei 37°C schüttelnd bei 500 rpm inkubiert. Dadurch konnten die Zellen die Antibiotikaresistenz ausbilden.

Es folgte ein Zentrifugationsschritt (2 min bei 4000 g), um die Zellen zu pelletieren. Das Medium wurde abgenommen, das Zellpellet in 50 µL LB-Medium resuspendiert und auf Agar-Platten mit Antibiotikum ausplattiert. Die Inkubation erfolgte über Nacht bei 37°C.

2.2.1.8.6 Ansetzen einer Vorkultur

Es wurden 7 mL LB-Medium mit 50 µg/mL Antibiotikum versetzt und mit einer Einzelkolonie angeimpft. Der Ansatz wurde über Nacht schüttelnd (200 rpm) bei 37°C inkubiert.

2.2.1.8.7 Plasmidpräparation

Mit 5 mL einer Übernachtkultur wurde eine Plasmidpräparation mit dem GeneJET™ Plasmid Miniprep Kit (Thermo Fisher) nach Angaben des Herstellers durchgeführt. Nach der Isolation erfolgte die Konzentrationsbestimmung am Spektrophotometer.

2.2.1.8.8 Anlegen von Bakterienstocks

Um Glycerolstocks anzulegen wurde 1 mL einer Übernachtkultur in ein 1,5 mL Kryoröhrchen (Nalge Nunc International, Rochester, USA) gegeben und mit 200 µL Glycerol-Lösung versetzt. Nach einer Inkubationszeit von 30 min wurden die Bakterienzellen in flüssigem Stickstoff schockgefroren und bei -80°C gelagert.

2.2.1.8.9 Sequenzierung

Um zu überprüfen, ob das *Insert* in der richtigen Orientierung vorlag und die Basenabfolge korrekt war, wurde eine Sequenzierungs-PCR der isolierten Plasmide durchgeführt. Genutzt wurde das BigDyeTM Terminator Kit 1.1. (Life Technologies). Dieses Kit basiert auf dem Kettenabbruchverfahren durch den Einbau von Didesoxyribonukleotiden. Ein Sequenzieransatz erfolgte in einem Volumen von 10 μ L (Tabelle 16 und 17).

Tabelle 16: Sequenzierungs-PCR-Ansatz

Menge	Komponente	Hersteller
10-30 ng Fragment/	DNA	
300 ng Vektor	DIVA	
4 μL	BigDye-Mix	Life Technologies
0,2 μL	Primer	
ad 10 µL	HPLC-Wasser	Sigma-Aldrich

Tabelle 17: Sequenzier-Programm

Zyklen	Temperatur	Zeit
30	96°C	30 sec
	60°C	4 min

An die Sequenzierungs-PCR schloss sich die Fällung an. Der Ansatz wurde mit 1 μ L 3 M Natriumacetat (pH 4,6) und 25 μ L 100%igem Ethanol versetzt, gemischt und 15 min inkubiert. Anschließend erfolgte die Zentrifugation (15 min bei 12000 g), wobei die DNA pelletiert wurde. Folgend wurde das Pellet mit 25 μ L 70%igem Ethanol gewaschen (5 min bei 12000 g) und getrocknet. Die Sequenzierung erfolgte im Zentrum für Medizinische Grundlagenforschung (ZMG) der Medizinischen Fakultät der Martin-Luther-Universität am ABI 3100 Genetic Analyzer C. Die erhaltenen Sequenzen wurden mittels NCBI-Datenbank verglichen.

2.2.1.9 DNA-Isolierung

Die Isolierung der genomischen DNA aus den Kulturzellen erfolgte mit Hilfe des QIAamp DNA Mini Kit (Qiagen, Venlo, Niederlande) nach Angaben des Herstellers. Es wurden für jede Isolation 5x10⁶ Zellen eingesetzt und nach der Isolation die Konzentration am Spektrophotometer bestimmt.

2.2.1.10 Bisulfit-Reaktion

Um zu untersuchen, ob die DNA methyliert oder unmethyliert vorlag, wurde eine Bisulfit-Reaktion durchgeführt. Durch die Behandlung mit Bisulfit wurde die DNA desaminiert, so dass die Nukleinsäure Cytosin zu Uracil wurde. Methyliertes Cytosin war von dieser Reaktion nicht betroffen. Durch dieses unterschiedliche Verhalten des methylierten und nichtmethylierten Cytosins konnte die Methylierung per PCR nachgewiesen werden. Die Bisulfit-Reaktion erfolgte mittels EpiTect Bisulfite Kit (Qiagen) nach Angaben des Herstellers. Es wurden 2 µg DNA eingesetzt. Die Reinigung der DNA nach der Reaktion erfolgte ebenfalls nach Angaben des Herstellers. Es schloss sich die Bestimmung der Konzentration Spektrophotometer an. Anschließend wurde eine qRT-PCR (siehe 2.2.1.5) mit 3 µL gereinigter Bisulfit-DNA durchgeführt und auf ein 1%iges Agarosegel aufgetragen.

2.2.1.11 Mikroarray-Analyse

Für die Mikroarray-Analyse wurde RNA mittels TriFast-Methode gewonnen und anschließend mittels RNeasy[®] Kit (Qiagen) nach Angaben des Herstellers aufgereinigt. Eluiert wurde die RNA in einem Volumen von 50 µL DEPC-Wasser. Am Spektrophotometer wurde die Konzentration der RNA bestimmt und anschließend auf einem Gel die Qualität überprüft. Das Gel wurde wie in 2.2.1.6 beschrieben hergestellt. Anstelle von 1xTAE-Puffer wurde MOPS-Puffer eingesetzt. Die Bearbeitung der Arrays (Affymetrix, Santa Clara, USA) erfolgte im Zentrum für Medizinische Grundlagenforschung (ZMG) der Medizinischen Fakultät der Martin-Luther-Universität.

Die erhaltenen Daten wurden anschließend mit der Software Expression Console 1.1 (Affymetrix) und dem Programm MA Filter (Winkler *et al.* 2012) ausgewertet.

2.2.1.12 mRNA-Isolation

Zur Erstellung der cDNA-Bank wurde mRNA verwendet. Diese wurde mittels µMACS™ mRNA Isolation Kit for Total RNA (Miltenyi Biotec, Bergisch Gladbach) aus Gesamt-RNA isoliert. Eingesetzt wurden 1,01 mg RNA in einem Volumen von 500 µL DEPC-Wasser. Die Isolierung erfolgte mit M Columns (Miltenyi Biotec) nach Angaben des Herstellers. Nach der Elution wurde die Konzentration am Spektrophotometer bestimmt. Anschließend wurde die mRNA in cDNA (siehe 2.2.1.3) umgeschrieben und Test-PCRs (siehe 2.2.1.4) durchgeführt.

2.2.1.13 Erstellung der cDNA-Bank

Nach der Qualitätsprüfung der mRNA konnte sie für die Konstruktion der cDNA-Bank verwendet werden.

Die cDNA-Bank wurde mittels pCMV-Script XR cDNA Library Construction Kit (Agilent Technologies, Santa Clara, USA) nach Angaben des Herstellers erstellt. Es wurde nicht mit radioaktiv markierten dNTPs gearbeitet und daher bei der Zweitstrangsynthese 116 µL statt 114 µL Wasser eingesetzt. Bei der Generierung des cDNA Endes wurde 2 h und nicht wie angegeben 30 min inkubiert.

Insgesamt wurden 3 Fraktionen in den pCMV-Script-Vektor ligiert und in *E. coli* transformiert. Von jeder Fraktion wurde außerdem eine 1:10- und 1:100-Verdünnung ausgestrichen. Anschließend wurde die Anzahl der Kolonien bestimmt, die auf den Platten gewachsen waren. Mit der Formel:

Kolonien/Platte x 1000 (für 1:100) bzw. 100 (für 1:10) = Gesamt cfu konnte die *colony forming unit* (cfu) berechnet werden.

Nach diesem Schritt wurden alle Fraktionen vereint und in der 3D-Kultur amplifiziert. Durch Zugabe von 100 µL Bakterien in 900 µL Medium wurden eine Verdünnungsreihe bis 10⁻⁶ angefertigt. Je 10 µL der 10⁻⁵- und 10⁻⁶-Verdünnungen wurden entnommen und ausgestrichen. Anschließend wurde unter Berücksichtigung der Verdünnungsstufe und des Gesamtvolumens der cDNA-Bank die Gesamtzahl an Transformanten bestimmt. Die Formel lautet:

Anzahl der Kolonien x Volumen (0,9 mL) x Verdünnung = cfu.

2.2.1.14 Isolation extrachromosomaler DNA nach Hirt

Die generierte cDNA-Bank sollte genutzt werden, um neue Resistenzfaktoren zu identifizieren. Dafür wurden sensible Zellen mit der cDNA-Bank transfiziert und anschließend mit Zytostatika behandelt. Aus überlebenden Zellen wurde der Vektor mittels Hirt-Extraktion reisoliert. Dafür wurden die überlebenden Zellen geerntet und das Zellpellet nach der Zentrifugation (10 min bei 210 g) in 1 mL Hirt-Lysepuffer aufgenommen. Nach einer Inkubation für 10 min wurde NaCI-Lösung (Life Technologies) in einer Endkonzentration von 1 M zugegeben. Nachdem der Ansatz zehnmal invertiert wurde, erfolgte eine Inkubation über Nacht bei 4°C. Anschließend wurde der Ansatz zentrifugiert (30 min, 12000 g und 4°C) und die DNA durch Extraktionen mit je 1 Vol Phenol (Carl Roth), Phenol-Chloroform (Carl Roth, Sigma-Aldrich) und Phenol-Chloroform-Isoamylalkohol (Carl Roth, Sigma-Aldrich) isoliert. Die Fällung der DNA erfolgte durch die Zugabe von 1/9 Vol 3 M Natriumacetat (pH 4,6) und 3 Vol 100%igen eiskaltem Ethanol (Sigma-Aldrich) durch vortexen und der Inkubation für 1 h bei -20°C. Anschließend wurde das Pellet zweimal mit 70%igem Ethanol gewaschen und getrocknet. Das Pellet wurde in Wasser gelöst und die Konzentration am Spektrophotometer bestimmt. Anschließend wurde die erhaltene DNA in E. coli Zellen transformiert und auf LB-Platten mit 50 µg/mL Kanamycin ausplattiert.

2.2.1.15 *In-Vitro-*Transkription (IVT)

Zur Herstellung von RNA aus DNA wurde das MEGAscript[®] T3 Kit (Ambion, Austin, USA) nach Angaben des Herstellers verwendet. Für die IVT wurde der pCMV-Script-Vektor verwendet. Dieser besitzt einen T3-Promotor und wurde vor der IVT mit *Xhol* linearisiert.

2.2.1.16 Protein-Isolation und Konzentrationsbestimmung

Die Isolierung der Proteine aus den Kulturzellen erfolgte mittels RIPA-Puffer. In 100 μL Puffer wurden 1x10⁶ Zellen resuspendiert. Nach einer Inkubation von 30 min auf Eis wurde die Zellsuspension mit Hilfe einer Spritze homogenisiert und 10 min bei 12000 g und 4°C abzentrifugiert. Anschließend wurde die Konzentration am Spektrophotometer bestimmt. Dafür wurde die Probe 1:100 in Wasser verdünnt, 1 mL Bradford-Reagenz zugegeben und nach 2 min die Absorption bei 595 nm bestimmt. Vor der Messung wurde ein Leerwert, der nur Wasser und 1 mL Bradford-Reagenz enthielt, gemessen. Die Menge an Protein konnte mit der Formel:

Protein in mg/ml = $OD_{595} \times 198,11 \times 100$

bestimmt werden. Der Wert von 198,11 entsprach dem Y-Wert der Eichgeraden, die vorher erstellt wurde, und der Wert 100 der Verdünnung.

2.2.1.17 SDS-Page und Western-Blot

Nachdem die Konzentration der Proteine bestimmt wurde, erfolgte die Auftrennung mittels SDS-Page (Natriumdodecylsulfat-Polyacrylamidgelelektrophorese). Dafür wurden zu 20 μL Proteinlösung (3 – 4,6 μg) 5 μL Laemmli-Puffer (5x) zugegeben. Nach einer Inkubation für 5 min bei 95°C wurden 18 µL auf ein 3-8%iges Tris-Acetat-SDS-Gel (Life Technologies) aufgetragen und bei 150 Volt aufgetrennt. Es wurde auch ein Größenstandard (Carl Roth) aufgetragen. Anschließend wurden 6 Whatman-Papierblätter auf die Größe der Nitrozellulosemembran (Life Technologies) zugeschnitten. Die Papierblätter, die Membran und das SDS-Gel wurden für 15 min in Blot-Puffer inkubiert und anschließend bündig übereinander gelegt (3 Whatman-Papierblätter, Membran, Gel, 3 Whatman-Papierblätter). Das Blotten erfolgte im semi-dry Verfahren für 1 h bei 64 mA. Anschließend wurde die Membran in Ponceau S-Lösung (Sigma Aldrich) für 2 min inkubiert, um zu überprüfen, ob das Blotten erfolgreich war. Die Membran wurde mit TBST dreimal gewaschen und anschließend für 1,5 h in TBST mit 5 % Magermilchpulver (Carl Roth) inkubiert, um unspezifische Primärantikörper Bindestellen abzusättigen. Der wurde in TBST 5 % Magermilchpulver verdünnt und die Membran über Nacht bei 4°C mit diesem inkubiert. Nach dreimaligem Waschen für 5 min mit TBST wurde der sekundär Antikörper ebenfalls in TBST mit 5 % Magermilchpulver verdünnt und für 1 h auf die Membran gegeben. Abschließend wurde die Membran dreimal für 5 min mit TBST gewaschen. Die Detektionslösungen 1 und 2 (Carl Roth) wurden zu gleichen Teilen gemischt und die Membran 1 min mit dem Gemisch inkubiert. In der Dunkelkammer erfolgte die Belichtung und die Entwicklung des Films (GE Healthcare Europe GmbH, Freiburg). Um gebundene Antikörper zu entfernen, wurde die Membran 30 min bei 50°C in *Stripping*-Puffer inkubiert und dreimal für 15 min mit TBST gewaschen. Anschließend konnte die Membran blockiert und mit neuem Antikörper inkubiert werden.

2.2.1.18 Yeast-Two-Hybrid-System

Um neue Interaktionspartner von TTK zu isolieren, wurde das Yeast-Two-Hybrid-System genutzt. Dafür wurde die cDNA von *TTK* als *bait* in den Vektor pGBKT7 kloniert. Dabei wurde *TTK* über die *Notl* Schnittstelle aus dem pGEM-T easy Vektor ausgeschnitten und in den pGBKT7-Vektor kloniert. Anschließend wurde die Sequenz und die Orientierung des Inserts überprüft (Sequenz siehe Anhang).

Für die Transformation der AH109 Hefezellen wurde eine Vorkultur angelegt und bei 30°C für 2 Tage inkubiert. Für die Hauptkultur wurden 10 mL YPD-Medium zu einer OD₆₀₀ von 0,07 angeimpft, bei 30°C schüttelnd inkubiert, bis eine OD₆₀₀ von 0,3-0,5 erreicht war und anschließend geerntet. Die Zellen wurden mit Wasser gewaschen (4 min bei 220 g), anschließend in 1 mL Wasser resuspendiert und in ein 1,5 mL Reaktionsgefäß überführt. Nach nochmaliger Zentrifugation wurden die Zellen mit 1 mL LiAc/TE-Lösung gewaschen und in 50 μL LiAc/TE-Lösung aufgenommen. Es erfolgte die Zugabe von 5 μL Carrier DNA (Clontech), 1 μg Vektor und 300 μL PEG/LiAc/TE-Lösung. Der Ansatz wurde für 30 min bei 30°C inkubiert, anschließend 35 μL DMSO zugegeben und 15 min bei 42°C inkubiert. Nach einer kurzen Abkühlung bei 30°C wurde der Ansatz auf SD-Tryptophan Platten (SD-L-T-Platten wurde vorher Leucin zugegeben) ausplattiert und für 3-5 Tage bei 30°C inkubiert.

Für die Interaktionsuntersuchung wurde eine Gesamt-Mensch-Bank (Clontech) als prey verwendet. Bei dieser war die Gesamt-Mensch-Bank bereits in den pGADT7 Vektor kloniert. Es wurde nach dem Matchmaker® Gold Yeast Two-Hybrid System User Manual (Clontech) vorgegangen. Die entstanden Zygoten wurden anschließend auf SD-Leucin-Tryptophan+X-α-Gal (Sigma-Aldrich)+Aureobasidin A (clontech)-Platten ausplattiert. Blaue Kolonien wurden anschließend auf SD-Histidin-Adenin-Leucin-Tryptophan+X-α-Gal+Aureobasidin A-Platten ausplattiert.

2.2.1.19 Co-Immunopräzipitation

Die Co-Immunopräzipitation wurde mit Hilfe des Kits Dynabeads® Protein G for Immunoprecipitation (Life Technologies) nach Angaben des Herstellers durchgeführt. Es wurden für die Antikörperbindung 2,5 µg Antikörper eingesetzt und die Inkubationszeit zwischen Antikörper gekoppelten Dynabeads und dem Antigen auf

2 h bei 4°C abgewandelt. Als Antigen wurden 200 µl L-428 bzw. KM-H2-Zellen, aufgenommen in RIPA-Puffer, verwendet.

2.2.2 Zellbiologische Methoden

2.2.2.1 Zellkultur

Die Zellen wurden in Zellkulturflaschen mit Kulturmedium (10 % FCS und 1 % Pen/Strep) im Brutschrank bei 37°C, einer relativen Luftfeuchtigkeit von 95 % und einem CO₂-Gehalt von 5 % kultiviert.

Suspensionszellen wurden zweimal die Woche 1:3 geteilt. Es wurde ein Drittel aus der alten Flasche entnommen, in eine neue Flasche überführt und mit 7 mL frischem Kulturmedium versetzt.

Adhärent wachsende Zellen wurden geteilt, wenn sie eine Konfluenz von etwa 90 % erreicht hatten. Um die Zellen zu teilen, wurde das Kulturmedium abgesaugt und die Zellen einmal mit PBS gewaschen. Um die Zellen vom Flaschenboden abzulösen, erfolgte die Zugabe von Trypsin/EDTA und die Inkubation bei 37°C. Wenn sich alle Zellen abgelöst hatten, wurde frisches Kulturmedium zugegeben und ein Teil der Zellen in eine neue Flasche überführt.

2.2.2.2 Auftauen und Einfrieren der Kulturzellen

Zur Kryokonservierung wurden die Zellen 10 min bei 210 g abzentrifugiert, in einer Dichte von etwa 5x10⁶ Zellen/mL Einfriermedium resuspendiert und in Kryoröhrchen überführt. In einem Einfriercontainer, welcher Isopropanol enthielt, wurden die Zellen in den -80°C Schrank überführt und langsam auf -80°C gefroren. Die langfristige Lagerung erfolgte in Stickstofftanks.

Um Zellen aufzutauen, wurden die Proben im Wasserbad aufgetaut und sofort in ein Röhrchen mit vorgelegtem Kulturmedium überführt. Der sich anschließende Zentrifugationsschritt (10 min bei 210 g) diente dazu, dass vorhandene DMSO zu entfernen. Der Überstand wurde abgesaugt, die Zellen im frischen Kulturmedium resuspendiert und in eine Kulturflasche überführt.

2.2.2.3 Bestimmung der Zellzahl

Die Zellzahl konnte mit Hilfe einer Neubauer-Zählkammer bestimmt werden. Um die Zellen zählen zu können, musste ein Deckglas auf die Kammer gedrückt werden, bis es zur Ausbildung der Newtonschen Ringe kam. Die Probe wurde mit Trypanblau (Sigma-Aldrich) 1:10 verdünnt und in die Zählkammer pipettiert. Durch Kapillarkräfte wurde die Probe unter das Deckglas gesogen. Trypanblau ist ein Farbstoff, der nur in

Zellen mit geschädigter Membran eindringen kann und diese blau färbte. Dadurch konnte zwischen lebenden und toten Zellen unterschieden werden und nur ungefärbte Zellen wurden in den vier Großquadraten ausgezählt. Die Zellzahl wurde nach folgender Formel bestimmt:

Zellzahl pro Großquadrat x 10⁴ x Verdünnungsfaktor = Zellzahl pro mL

2.2.2.4 Transfektion von Kulturzellen

<u>Transfektion mittels Elektroporation</u>

Die Zelllinien L-428 und L-540 wurden mittels Elektroporation (Amaxa-System) mit dem CLB-Transfektionskit (Biozym, Hessisch Oldendorf) transfiziert. Einen Tag vor der Transfektion wurden die Zellen 1:2 geteilt, damit sie sich während der Transfektion in der Wachstumsphase befanden. Zur Vorbereitung wurde der CLB-Lösung das Supplement nach Herstellerangaben zugefügt. 1x10⁶ Zellen wurden abzentrifugiert und in 100 μL Transfektionslösung aufgenommen. Nach Zugabe von 3 μg DNA wurden die Zellen in eine Küvette überführt und elektroporiert. Es wurde das Programm X-01 für L-428 und T-01 für L-540 verwendet. Anschließend wurde 500 μL vorgewärmtes Kulturmedium zugegeben und die Zellen in eine 12-Loch-Platte mit 1,5 mL vorgelegtem Kulturmedium überführt.

Transfektion mittels PromoFectin

Die Mausfibroblasten, CRL7449-, EREB2-5- und HEK293-Zellen, wurden mittels PromoFectin (PromoKine, Heidelberg) nach Angaben des Herstellers transfiziert. Es wurden 1x 10^6 Zellen in eine 6-Loch-Platte mit 2 mL Kulturmedium, 3 µg DNA und 12 µL PromoFectin für die Transfektion verwendet. Nach 5 h wurde 2 mL frisches Kulturmedium zugegeben.

2.2.2.5 Durchflusszytometrie

Das Prinzip der Durchflusszytometrie beruht darauf, Zellen anhand ihrer Größe, Struktur und Oberflächenrezeptoren zu unterscheiden. Das Durchflusszytometer wird auch als FACS (*Fluorescence Activated Cell Scanning*) bezeichnet. Am FACS können gleichzeitig die Messungen von Fluoreszenz- und Streulichtsignalen stattfinden. Die in der Probe enthaltenen Zellen streuen das Licht beim Auftreffen der Strahlen. Die Strahlen, die nach vorn abgelenkt werden, sind ein Maß für die Größe der Zellen, es wird auch als Vorwärtsstreulicht (*Forward scatter, FCS*) bezeichnet. Das Seitwärtsstreulicht (*Side scatter, SSC*), wird in einem Winkel von 90° abgestrahlt und dient als Maß für die Zellgranularität.

Mittels fluoreszenzfarbstoffmarkierter Antikörpern (PE oder FITC) konnten die Oberflächenrezeptoren quantitativ untersucht werden.

Die zu untersuchenden Zellen wurden geerntet und gezählt. In ein FACS-Röhrchen wurden in $50\,\mu\text{L}$ PBS $5x10^5$ bis $1x10^6$ Zellen aufgenommen und mit $10\,\mu\text{L}$ Antikörper-Lösung versetzt. Nach einer Inkubation von 30 min bei 4°C, erfolgte die Zugabe von 1 mL PBS und ein Zentrifugationsschritt (10 min bei 210 g). Anschließend wurde das Pellet in $300-500\,\mu\text{L}$ PBS aufgenommen und am FACS (FACScan, Becton Dickinson, Heidelberg) ausgewertet.

Sollten nicht die Oberflächenantikörper sondern die Überlebensrate nach Inkubation mit Zytostatika bestimmt werden, wurden die Zellen geerntet, abzentrifugiert, das Pellet in 500 µL PBS aufgenommen und 5 µL Propidiumiodid (Carl Roth) zugegeben. Dieser Farbstoff dringt nur in tote Zellen ein, weshalb tote und lebende Zellen im FACS unterschieden werden können. Die Messung erfolgte im PE-Kanal.

2.2.2.6 Generationsanalyse

Um die Generationsfolge zu analysieren, wurde eine Generationsanalyse mit dem Kit PKH26 Red Fluorescent Cell Linker Kit (Sigma-Aldrich) durchgeführt. Dabei lagert sich ein Farbstoff in die Membran der Zellen ein und wird bei jeder Zellteilung an die Tochterzellen weitergegeben. Dadurch nimmt die Farbintensität pro Generation ab. Die Zellen wurden geerntet und gezählt. Es wurden 1x10⁷ Zellen mit PBS gewaschen, in 5 mL PBS aufgenommen und für 5 min bei 210 g zentrifugiert. Währenddessen wurden 996 µL Diluent C-Lösung mit 4 µL Farbstoff gemischt, um anschließend das Pellet in 1 mL Diluent C-Lösung aufzunehmen und zur Farbmischung zugegeben. Nach einer Inkubation von 4 min wurden 2 mL FCS zugegeben und eine weitere Minute inkubiert. Anschließend erfolgte die Zugabe von 4 mL Medium (RPMI 1640) und ein Zentrifugationsschritt (10 min bei 210 g). Das Pellet wurde dreimal mit Kulturmedium (RPMI 1640) gewaschen, in Kulturmedium resuspendiert und auf die unterschiedlichen Versuchsansätze verteilt. Diese waren Kulturmedium mit und ohne 200 µM CoCl₂. Als Zeitpunkt 0 wurden je 500 µL Zellen entnommen. Alle 24 h wurde eine Probe aus jedem Ansatz entnommen, abzentrifugiert und in 2%igem Paraformaldehyd fixiert. Die Probe wurde anschließend bei 4°C bis zur Auswertung am FACS gelagert.

2.2.2.7 Isolierung peripherer mononukleärer Blutzellen (PBMC)

Die Isolierung peripherer mononukleärer Blutzellen erfolgte aus *Buffy-coat* Schichten freiwilliger Spender, die freundlicherweise von der Transfusionsmedizin des Universitätsklinikums Kröllwitz zur Verfügung gestellt wurden. Die Separation der

Lymphozyten erfolgte mittels Dichtegradienten-Zentrifugation. Es wurden Leucosep[®] Röhrchen (Greiner Bio-One) nach Angaben des Herstellers verwendet. Die PBMC wurden in Kulturmedium aufgenommen und gezählt.

2.2.2.8 ELISPOT

Um zu untersuchen, ob sich ein Gen als Ziel für eine Immuntherapie eignet, wurden zunächst Antigen-präsentierende-Zellen generiert und anschließend eine ELISPOT-Analyse durchgeführt.

Als Erstes wurde mittels IVT (siehe 2.2.1.14) RNA von dem gewünschten Gen erstellt. Anschließend wurden EREB2-5-Zellen als Antigen-präsentierende-Zellen genutzt und mit der RNA transfiziert. Dafür wurden die Zellen geerntet, zweimal mit Opti-Mem (Life Technologies) gewaschen und $2x10^6$ Zellen in 100 μL Opti-Mem resuspendiert. Es wurde 9 μg RNA in eine 2 mm Küvette (BioRad) vorgelegt und die Zellen zugegeben. Nach einer Inkubation von 3 min erfolgte die Elektroporation am BioRad Genepulser II (BioRad, Hercules, USA) bei folgenden Einstellungen: Spannung 300 V, Kapazität 150 μM , Widerstand ∞ . Die Zellen wurden anschließend in eine Vertiefung einer 6-Loch-Platte mit 2 mL AIM-V Medium (Life Technologies) überführt und für 3 h im Brutschrank inkubiert. Im Anschluss erfolgte die Bestrahlung der Zellen mit 30 Gy in der Transfusionsmedizin des Universitätsklinikums Kröllwitz. Aus den vorher gewonnenen PBMC wurden mittels CD8+ T Cell Isolation Kit (Miltenyi

Es wurden nun 2,5x10⁶ CD8⁺ T-Zellen mit 0,5x10⁶ transfizierten und bestrahlten EREB2-5-Zellen in 4 mL Kulturmedium (RPMI 1640 inklusive 10 ng/mL IL-7 (R&D, Minneapolis, USA), 10 ng/mL IL-15 (R&D) und 50 U/mL IL-2 (Biochrom)) in eine Vertiefung einer 6-Loch-Platte für 4 Tage inkubiert.

Biotech) nach Angaben des Herstellers CD8⁺ T-Zellen isoliert.

Anschließend wurde ein IFN-γ ELISPOT (Human IFN-γ ELISPOT Kit, BD Bioscience) durchgeführt. Als Vorbereitung für den ELISPOT wurde eine 96-Loch-Platte mit 5 μg/mL *Capture* Antikörper (*Purified* Anti-Mensch-INF-γ) in 100 μL PBS über Nacht bei 4°C beschichtet. Am nächsten Tag wurde der *Capture* Antikörper abgeklopft, die Platte einmal mit 200 μL/Vertiefung Blockierungspuffer gewaschen und für 2 h mit Blockierungspuffer inkubiert. Nach den 2 h wurde der Puffer abgeklopft und die zu testenden Ansätze aufgetragen. Pro Vertiefung erfolgte die Zugabe von 10.000 Tumorzellen (L-1236, L-428, L-540, LCL) und 50.000 CD8⁺ T-Zellen (stimuliert mit den transfizierten EREB2-5-Zellen). Die Inkubation erfolgte im Brutschrank für 17 h. Anschließend wurden die Ansätze abgeklopft und die Platte 3x 2 min mit 200 μL/Vertiefung Wasser und 3x 2 min mit 200 μL/Vertiefung Waschpuffer I gewaschen. Es erfolgte die Zugabe von 2 μg/mL *Detection* Antikörper (*Biotinylated*

Anti-Mensch-INF- γ) in 100 µL Verdünnungspuffer und eine Inkubation von 2 h. Die Platte wurde ausgeklopft und 3x 2 min mit 200 µL/Vertiefung Waschpuffer I gewaschen. Anschließend wurden 100 µL 1:100 in Verdünnungspuffer verdünntes Streptavidin zugegeben und 1 h inkubiert. Danach wurde die Platte 4x 2 min mit 200 µL/Vertiefung Waschpuffer I und 2x 2 min mit 200 µL/Vertiefung PBS gewaschen. In jede Vertiefung wurden 100 µl der Substratlösung (1 mL AEC Substrat und 20 µL Chromogen) pipettiert und die Spotentwicklung zwischen 10 – 60 min beobachtet. Durch Waschen mit Wasser für 2 min wurde die Spotentwicklung gestoppt und die Platte über Nacht getrocknet. Die Auswertung der Spots erfolgte am Axioplan 2 imaging (Carl Zeiss, Jena) mit der Software AxioVision (Carl Zeiss).

2.2.2.9 Untersuchung der Zytostatikasensitivität

Um zu untersuchen, wie resistent oder sensibel eine Zelllinie auf Zytostatika reagierte, wurden die Zellen 24 Stunden in verschiedenen Konzentrationen der Zytostatika inkubiert. Es wurden folgende Konzentrationen verwendet:

Retinsäure: 2,5x10⁻⁵ M

Cisplatin: 12,5 µg/mL oder 25 µg/mL

Etoposid: 25 µg/mL

Roscovitin: 30 µM oder 60 µM

Dacarbazin: 500 µg/mL

Als Kontrollen wurden die jeweiligen Lösungsmittel der Zytostatika verwendet. Für Retinsäure, Etoposid und Roscovitin DMSO, für Cisplatin DMF und für Dacarbazin 0,9%ige NaCl-Lösung.

Der Inkubation schloss sich die Analyse der Zellen mit Propidiumiodid am FACS oder ein XTT Assay an.

2.2.2.10 XTT Assay

Der XTT Assay (Roche) wurde nach Angaben des Herstellers in einer 96-Loch-Platten durchgeführt. Dabei wurden pro Vertiefung 6.000-15.000 Zellen eingesetzt. Die Inkubation mit den Zytostatika erfolgte für 24 h bei 37°C.

3 Ergebnisse

Im Rahmen dieser Arbeit sollten zum einen aus Voruntersuchungen bekannte Gene untersucht und zum anderen neue Gene identifiziert werden, die an der Resistenz der Hodgkin-Lymphom-Zelllinien beteiligt sein könnten. Die bekannten Gene wurden im Rahmen vorangegangener DNA-Mikroarray-Analysen identifiziert (Staege *et al.* 2008, Kewitz Diplomarbeit 2011). Es wurde hierbei das Genexpressionsprofil von einer resistenten mit dem einer sensiblen Zelllinie verglichen. Es zeigte sich, dass unter anderem *PRAME* und *MGMT* differenziell exprimiert waren. Beide Gene wurden in der resistenten Zelllinie stärker exprimiert als in der sensiblen.

Um neue Zielstrukturen zu identifizieren, wurde bei den HL-Zelllinien die Resistenz gegenüber Cisplatin mittels Cobalt(II)chlorid gesteigert. Anschließend wurden mittels DNA-Mikroarray-Analysen Gene identifiziert, die zu einer Steigerung der Resistenz führen könnten.

Des Weiteren wurde eine cDNA-Bank aus der resistenten HL-Zelllinie KM-H2 etabliert. Diese konnte anschließend in sensible Zelllinien transfiziert werden und mittels Cisplatin-Selektion wurden Resistenzfaktoren identifiziert. Eine isolierte cDNA wurde anschließend näher hinsichtlich ihrer Beteiligung an der Chemotherapieresistenz untersucht.

3.1 Untersuchungen bekannter Gene hinsichtlich ihrer Beteiligung an der Chemotherapieresistenz von Hodgkin-Lymphom-Zellen

3.1.1 Untersuchungen zur Bedeutung von *PRAME* beim Hodgkin-Lymphom¹

Zellen der Linie L-1236 sind resistent gegenüber verschiedenster Zytostatika, wie Cisplatin, Etoposid, Melphalan und Roscovitin. Die Zelllinie L-540 hingegen ist sensibler gegenüber den genannten Zytostatika. Bei Untersuchungen des Genexpressionsprofils beider Zelllinien konnten differentiell exprimierte Gene detektiert werden. Eines dieser differentiell exprimierten Gene ist *preferentially expressed antigen in melanoma* (*PRAME*). Es wird in den L-1236-Zellen viel stärker exprimiert als in den L-540-Zellen (Staege *et al.* 2008, Foell *et al.* 2008).

Daher sollte eine mögliche Beteiligung von *PRAME* an der Resistenz von HL-Zellen näher untersucht werden.

¹ Die hier geschilderten Untersuchungen wurden teilweise bereits publiziert (siehe Publikationsliste: Kewitz *et al.* 2013).

3.1.1.1 *PRAME*-Expression in den HL-Zelllinien und Resistenzverhalten gegenüber ATRA

Aus Untersuchungen an anderen Tumorzellen ist bekannt, dass *PRAME* die Wirkung von all-*trans*-Retinsäure (ATRA) durch die Bindung an dessen Rezeptor inhibiert (Epping *et al.* 2005). Daher wurde untersucht, ob es bei den HL-Zelllinien einen Zusammenhang zwischen *PRAME*-Expression und der Zellviabilität nach ATRA Behandlung gab. Wenn die HL-Zelllinien L-428, L-540, KM-H2 und HDLM-2 mit ATRA behandelt wurden, zeigte sich ein unterschiedliches Resistenzverhalten. Die Zelllinie L-540 wies nur noch eine Vitalität von 24 % auf, während die Zelllinie L-428 eine Vitalität von 82 % aufwies. Vergleicht man die *PRAME*-Expression beider Zelllinien, zeigte sich, dass die sensible Zelllinie L-540 eine deutlich geringere *PRAME*-Expression aufwies als die viel resistentere Zelllinie L-428 (Abb. 2A+B). Die beiden Zelllinien KM-H2 und HDLM-2 wiesen eine Vitalität von 50 % auf. Auch die *PRAME*-Expression war nur etwa halb so groß wie bei der resistenteren Zelllinie L-428.

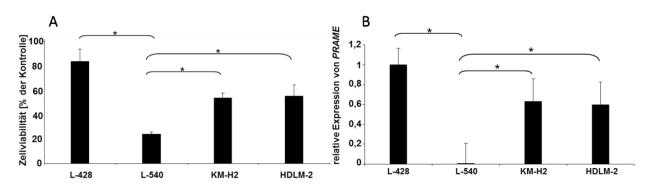


Abbildung 2: Vitalität der HL-Zelllinien nach Behandlung mit all-*trans* Retinsäure (ATRA) und Verteilung der *PRAME*-Expression

A) In der Abbildung ist das Resistenzverhalten von den HL-Zelllinien L-428, L-540, KM-H2 und HDLM-2 gegenüber ATRA gezeigt. Die Zellen wurden mit 2,5x10⁻⁴ M ATRA bzw. DMSO (Kontrolle) für 4 Tage inkubiert. Die Viabilität der Zellen wurde mittels XTT-Assay bestimmt. Zur Berechnung wurden die erhaltenen DMSO Werte als 100 % gesetzt. Dargestellt sind die Mittelwerte und Standardabweichungen von 5 unabhängigen Versuchen (* = p<0,05).

B) Die *PRAME*-Expression der Zelllinien L-428, L-540, KM-H2 und HDLM-2 wurde mittels qRT-PCR bestimmt. Zur Analyse wurde die Expression von L-428 auf 1 gesetzt. Als *housekeeping*-Kontrolle wurde *Aktin* verwendet. Dargestellt sind die Mittelwerte und Standardabweichungen von 5 unabhängigen Versuchen (* = p < 0.05).

3.1.1.2 Untersuchungen zur Regulation der *PRAME*-Expression

Um die unterschiedliche Expression von PRAME in den HL-Zelllinien zu erklären, wurde der Methylierungsstatus von PRAME untersucht. Dafür wurde aus den Zellen DNA isoliert und mit Bisulfit behandelt. Anschließend wurde eine methylierungsspezifische PCR mit einer Primerkombination für das unmethylierte PRAME durchgeführt. Als Kontrolle wurde eine ALU-Sequenz verwendet. Diese kommt repetitiv im Genom vor und wird durch Bisulfit nicht umgewandelt. In Abbildung 3 ist zu erkennen, dass bei der sensiblen Zelllinie L-540 kaum eine Bande detektiert werden konnte, während bei den resistenteren Zelllinien (L-428, L-1236, KM-H2 und HDLM-2) stärkere Banden zu sehen sind. In allen Ansätzen war die Kontrollsequenz deutlich zu erkennen.

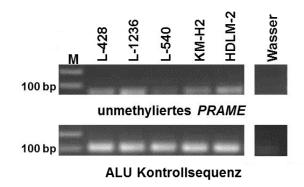


Abbildung 3: *PRAME*-Methylierungsstatus von HL-Zelllinien (3%iges Agarosegel, Marker: GeneRuler™ 100bp Plus DNA Leiter)

Gezeigt ist ein repräsentatives Ergebnis der methylierungsspezifischen PCR an Bisulfit-behandelter DNA. Im oberen Bild ist die PCR mit spezifischen Primern für das unmethylierte *PRAME* gezeigt. Im unteren Bild wurde die PCR mit spezifischen Primern für die ALU Sequenz durchgeführt. Da die ALU Sequenz repetitiv im Genom vorkommt, diente dies als Kontrolle.

Um einen möglichen Einfluss von *PRAME* auf die Resistenz der Zellen zu untersuchen, wurden die Zellen der HL-Zelllinie L-540 mit 5'-Azacytidin behandelt. Dieses wird während der Replikation in die DNA eingebaut und hemmt DNA-Methyltransferasen. Dadurch werden Gene, die vorher nicht exprimiert wurden, wieder exprimiert. Durch die Behandlung über mehrere Tage konnte eine Steigerung der *PRAME*-Expression beobachtet werden (siehe Abb. 4A). Nach sieben Tagen war die *PRAME*-Expression 14fach stärker im Vergleich zu den Kontrollzellen. Nach zwei Wochen wurde die methylierungsspezifische PCR wiederholt und es konnte ein stärkeres Signal bei unmethyliertem *PRAME* detektiert werden. Als Kontrolle wurde wieder die ALU-Sequenz mitgeführt (Abb. 4B).

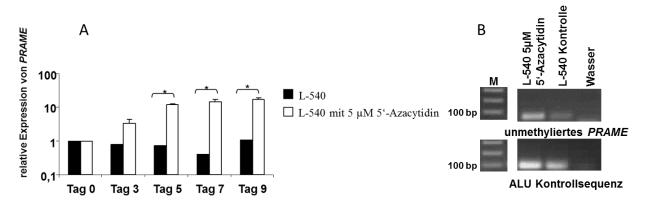


Abbildung 4: Durch Inkubation mit 5'-Azacytidin erhöhte sich die *PRAME*-Expression in der HL-Zelllinie L-540 (3%iges Agarosegel, Marker: GeneRuler™ 100bp Plus DNA Leiter)

- A) Die Zellen der Linie L-540 wurden für 9 Tage mit und ohne 5 μ M 5'-Azacytidin behandelt. Alle 2 bis 3 Tage wurde von den Zellen RNA isoliert, cDNA hergestellt und eine qRT-PCR mit spezifischen Primern für *PRAME* durchgeführt. Der Ausgangswert am Tag 0 wurde auf 1 gesetzt. Als housekeeping-Kontrolle wurde *Aktin* verwendet. Dargestellt sind die Mittelwerte und Standardabweichungen von 3 unabhängigen Versuchen (* = p<0,05).
- **B)** Dargestellt ist ein repräsentatives Ergebnis der methylierungsspezifischen PCR. Die DNA wurde nach 14-tägiger Inkubation mit 5 μ M 5'-Azacytidin aus den L-540-Zellen isoliert und mit Bisulfit behandelt. Das obere Bild zeigt die PCR mit spezifischen Primern für das unmethylierte *PRAME*, das untere die PCR mit spezifischen Primern für eine repetitive ALU Sequenz. Diese diente als Kontrolle.

Um zu überprüfen, ob die Steigerung der *PRAME*-Expression einen Einfluss auf die Resistenz gegenüber Chemotherapeutika hatte, wurden die Zellen mit Cisplatin bzw. Roscovitin behandelt. Es zeigte sich, dass parallel zur Steigerung der *PRAME*-Expression auch die Resistenz gegenüber Cisplatin und Roscovitin gesteigert werden konnte (Abb. 5).

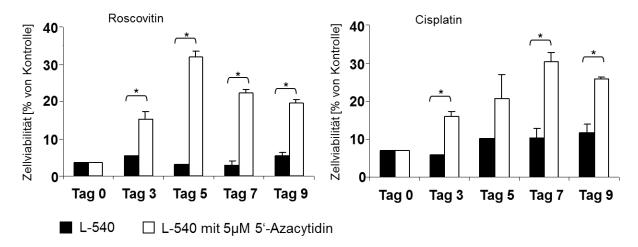


Abbildung 5: Steigerung der Resistenz gegenüber Cisplatin und Roscovitin nach Inkubation mit 5'-Azacytidin

Zellen der Linie L-540 wurden mit und ohne 5 μ M 5'-Azacytidin inkubiert. Anschließend erfolgte die Behandlung mit 25 μ g/mL Cisplatin bzw. DMF (Kontrolle) oder 60 μ M Roscovitin bzw. DMSO (Kontrolle). Die Vitalität der Zellen wurde am Durchflusszytometer mittels Propidiumiodid-Färbung bestimmt. Die Anzahl lebender Zellen im Ansatz ohne 5'-Azacytidin und Cisplatin/Roscovitin wurde als 100 % gesetzt. Gezeigt sind die Mittelwerte und Standardabweichungen von 3 unabhängigen Versuchen (* = p<0,05).

Zusammengefasst zeigten diese Ergebnisse, dass *PRAME* in den Zellen epigenetisch reguliert wurde und eine gesteigerte *PRAME*-Expression zu einer gesteigerten Resistenz gegenüber Chemotherapeutika führte. Es wurde daher im Folgenden untersucht, ob die Resistenz von HL-Zellen durch Ausschalten von *PRAME* gesteigert werden konnte und welche Gene durch *PRAME* reguliert wurden.

3.1.1.3 Herunterregulation von PRAME durch miRNA

Die Funktion von *PRAME* beim HL ist noch nicht hinreichend geklärt. Es ist jedoch bekannt, dass *PRAME* den Retinsäurerezeptor inhibiert (Epping *et al.* 2005). Dieser ist wichtig für Zelldifferenzierung, Zellzyklusstopp und Apoptose. Um den Einfluss von *PRAME* auf den Retinsäurerezeptor bei HL-Zellen zu untersuchen, wurde die HL-Zelllinie L-428 gewählt. Diese wies eine hohe *PRAME*-Expression und Resistenz gegenüber ATRA auf.

Die Zellen wurden zum einen mit einem Vektor, der mittels miRNA den *knockdown* von *PRAME* hervorruft, und zum anderen mit dem Leervektor, als Kontrolle, transfiziert (Kewitz Diplomarbeit 2011). Nach der Transfektion wurde mittels qRT-PCR der *PRAME-knockdown* kontrolliert. Zellen mit *knockdown* wiesen 66 % weniger *PRAME* auf, als die Kontrollzellen (Abb. 6A).

Anschließend wurde der Ansatz mit ATRA behandelt und die Überlebensrate am Durchflusszytometer bestimmt. In Abb. 5B ist das Ergebnis gezeigt. Die Kontrollzellen zeigten eine Zellviabilität von 90 % während die Zellen mit *PRAME-knockdown* nur noch eine Zellviabilität von 61 % aufwiesen. Als Kontrolle wurden die Zellen der Linie L-540 mitgeführt, diese wiesen die geringste Zellviabilität auf (Abb. 6B).

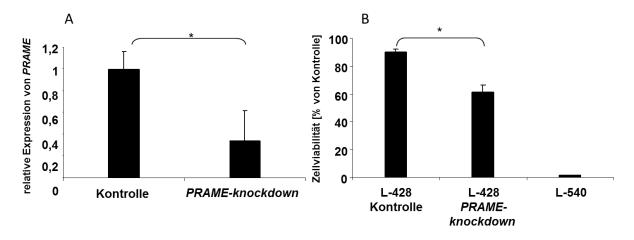


Abbildung 6: *Knockdown* von *PRAME* in Zellen der Linie L-428 und anschließende Behandlung mit all-*trans*-Retinsäure (ATRA)

A) Zellen der Linie L-428 wurden zum einen mit einem Kontrollvektor transfiziert und zum anderen mit einem Vektor der *PRAME* durch miRNA herunterreguliert. Mittels qRT-PCR wurde nach der Transfektion die Expression von *PRAME* untersucht. Zur Analyse wurde die *PRAME*-Expression der Zellen mit Leervektor als 1 gesetzt. Als *housekeeping*-Kontrolle wurde Aktin verwendet. Dargestellt sind die Mittelwerte und Standardabweichungen von 10 unabhängigen Versuchen (* = p<0,05).

B) Zellen der HL-Zelllinie L-428 mit Leervektor und mit *PRAME-knockdown* wurden jeweils mit 2,5x10⁻⁴ M ATRA bzw. DMSO (Kontrolle) behandelt. Zum Vergleich wurden L-540-Zellen behandelt mit 2,5x10⁻⁴ M ATRA bzw. DMSO (Kontrolle) mitgeführt. Nach 4 Tagen wurde die Überlebensrate mittels Propidiumiodid-Färbung am Durchflusszytometer bestimmt. Die Anzahl der überlebenden Zellen, die jeweils mit DMSO inkubiert wurden, wurde als 100 % gesetzt. Dargestellt sind die Mittelwerte und Standardabweichungen von 4 unabhängigen Versuchen (* = p<0,05).

Es konnte gezeigt werden, dass Zellen, die einen *PRAME-knockdown* aufwiesen, sensibler gegenüber Retinsäure waren als Zellen ohne *knockdown*.

Um die Funktionalität des Retinsäurerezeptors zu überprüfen, wurde das Gen *CYP26B1* (Cytochrom P450 26B1) hinsichtlich seiner Expression untersucht. Die Expression dieses Gens wird durch den Retinsäurerezeptor aktiviert (Neumann Doktorarbeit 2011). Dafür wurden die Zellen mit ATRA oder DMSO (Lösungsmittel für ATRA) inkubiert und anschließend RNA isoliert.

Die Expression wurde mittels qRT-PCR bestimmt. Die Expression von CYP26B1 konnte durch die Zugabe von ATRA bei den Zellen mit Kontrollvektor um das

64fache, bei den Zellen mit *PRAME-knockdown* sogar um das 222fache gesteigert werden (Abb. 7). Durch den *knockdown* von *PRAME* wurde somit die Funktionalität des Rezeptors wieder hergestellt.

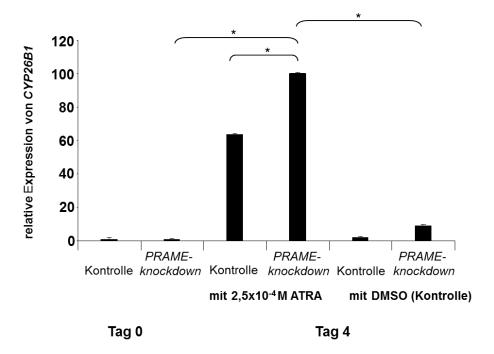


Abbildung 7: Expression von CYP26B1 nach knockdown von PRAME in L-428-Zellen

Gezeigt ist das Ergebnis der qRT-PCR für das Gen CYP26B1. Untersucht wurden Zellen mit und ohne PRAME-knockdown, die für 4 Tage mit 2,5x10⁻⁴ M ATRA oder DMSO behandelt wurden. Zur Berechnung wurde der Wert von Tag 0 der Kontroll-Zellen auf 1 gesetzt. Als housekeeping-Kontrolle wurde Aktin verwendet. Dargestellt sind die Mittelwerte und Standardabweichungen von 6 unabhängigen Versuchen (* = p<0,05).

In Vorversuchen konnte gezeigt werden, dass Zellen mit *PRAME-knockdown* sensibler gegenüber Cisplatin waren (Kewitz Diplomarbeit 2011). Um zu untersuchen, ob Zellen mit *PRAME-knockdown* auch sensibler gegenüber anderen Zytostatika wurden, erfolgte die Inkubation der Zellen mit Etoposid. Auch hier konnte eine Abnahme der Resistenz beobachtet werden (Abb. 8).

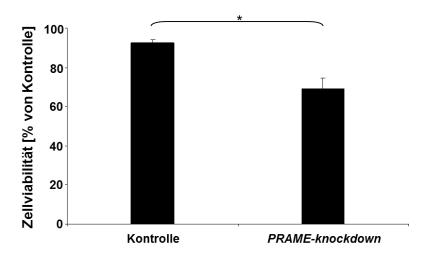


Abbildung 8: Viabilität der Zellen der Linie L-428 mit und ohne *PRAME-knockdown* gegenüber Etoposid

Zellen der Linie L-428 mit und ohne *PRAME-knockdown* wurden für 24 h mit 25 μ g/mL Etoposid bzw. DMSO (Kontrolle) inkubiert. Anschließend wurde die Überlebensrate mittels Propidiumiodid-Färbung am Durchflusszytometer bestimmt. Die Anzahl der überlebenden Zellen inkubiert mit DMSO wurde 100 % gesetzt. Gezeigt sind die Mittelwerte und Standardabweichungen von 3 unabhängigen Versuchen (* = p<0,05).

Durch den *PRAME-knockdown* wurden die Zellen sensibler gegenüber ATRA und Cisplatin. Daher wurden die Zellen mit *PRAME-knockdown* und die Kontrollzellen zunächst mit ATRA inkubiert und anschließend mit Cisplatin behandelt. Diese Kombination führte dazu, dass die Überlebensrate der Zellen abnahm, wie in Abb. 9 zu sehen ist.

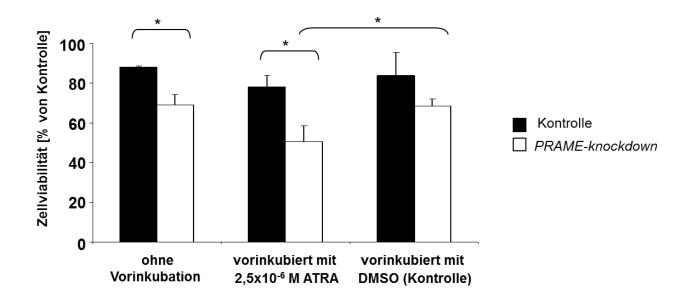


Abbildung 9: *Knockdown* von *PRAME* erhöhte die Sensitivität gegenüber all-*trans*-Retinsäure (ATRA) und Cisplatin

Zellen der HL-Linie L-428 mit und ohne *PRAME-knockdown* wurden für 4 Tage mit 2.5×10^{-4} M ATRA oder DMSO vorinkubiert. Anschließend wurden die Zellen für 24 h mit $25 \,\mu g/mL$ Cisplatin bzw. DMF (Kontrolle) inkubiert. In einem Ansatz erfolgte die Behandlung mit Cisplatin ohne Vorinkubation. Am Durchflusszytometer wurde anschließend die Überlebensrate bestimmt. Dafür wurden die Zellen vorher mit Propidiumiodid gefärbt. In den Ansätzen mit Vorinkubation wurden die Werte mit DMSO und DMF als 100 % gesetzt. In dem Ansatz ohne Vorinkubation wurde der Ansatz mit DMF als 100 % gesetzt. Dargestellt sind die Mittelwerte und Standardabweichungen von 4 unabhängigen Versuchen (* = p<0,05).

3.1.1.4 Identifizierung von *PRAME* regulierten Genen

Um potenzielle Gene zu identifizieren, welche für die Sensibilisierung der Zellen mit *PRAME-knockdown* verantwortlich waren, wurde eine DNA-Mikroarray-Analyse mit Human Genome U133 Plus 2.0-Arrays durchgeführt. Für die Auswertung wurden Gene gefiltert, die einer Regulation durch *PRAME* unterlagen. Die Gene sollten mindestens dreifach hoch- bzw. herunterreguliert worden sein und eine Signalintensität von über 100 in mindestens einem der Zustände aufweisen. Es zeigte sich, dass 156 Gene durch den *PRAME-knockdown* herunter- und 342 Gene hochreguliert wurden (Tabelle der Gene siehe Anhang). In Abbildung 10 ist ein *heat-map* dieser Gene gezeigt. Dabei sind stark exprimiert Gene rot und schwach exprimierte Gene blau dargestellt.

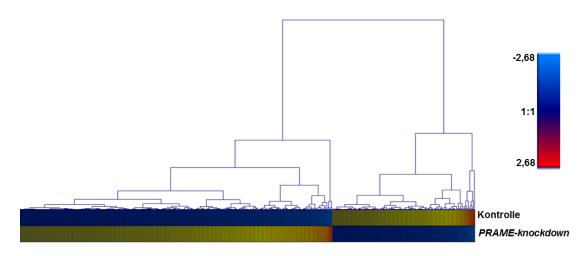


Abbildung 10: *Heat-map* der DNA-Mikroarray-Analyse der Gene, die durch *PRAME* reguliert wurden

Farbcode: rot = stark exprimiertes Gen, blau = schwach exprimiertes Gen. Generiert wurde das Bild mit der Software Genesis (Sturn *et al.* 2002).

Durch den *PRAME-knockdown* herunterreguliert wurden beispielsweise *DHRS2* (*dehydrogenase/reductase SDR family member 2*), *CD40* (Tumornekrosefaktor-Rezeptorfamilienmitglied 5), *BCL2* (B-Zell-Leukämie/-Lymphom 2), *BCL2L1* (*BCL2-like 1*)und *IL13RA1* (Interleukinrezeptor 13 alpha1). Diese Gene war teilweise nur 2,5-1,7fach herunterreguliert, wiesen aber die höchsten Signalintensitäten auf. Zur Validierung der Daten wurden die Expressionswerte der identifizierten Gene in unabhängigen Experimenten bestimmt. Dabei stellt der Punkt bei 1 (Kontrolle) eine dreifach Bestimmung dar (Abb. 11).

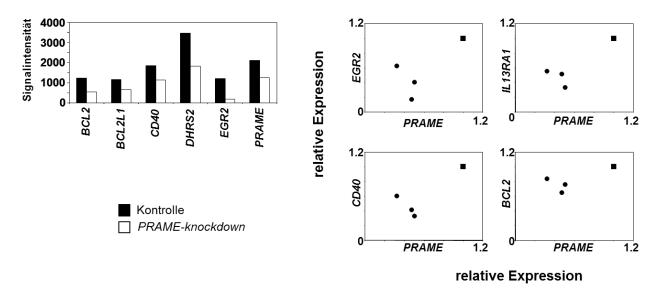


Abbildung 11: Durch den *PRAME-knockdown* sank die Expression Apoptose-inhibierender Faktoren

Zellen der Linie L-428 mit und ohne *PRAME-knockdown* wurden mittels DNA-Mikroarray-Analyse hinsichtlich differentiell exprimierter Gene untersucht. Links sind die Signalintensitäten der differentiell exprimierten Gene dargestellt. Rechts ist die Validierung der erhaltenen Mikroarray-Daten in unabhängigen Experimenten gezeigt. • = Einzelbestimmung; • = Dreifachbestimmung

Zusammengefasst zeigen die Ergebnisse, dass die *PRAME*-Expression bei HL-Zellen epigenetisch reguliert wurde. Des Weiteren konnte durch eine Steigerung der *PRAME*-Expression eine gesteigerte Resistenz der HL-Zelllinie L-540 beobachtet werden. Wenn *PRAME* hingegen herunterreguliert wurde, führte dies zu einer Steigerung der Sensitivität gegenüber Cisplatin, Etoposid und ATRA. Durch den *knockdown* von *PRAME* konnte die Funktionalität des Retinsäurerezeptors wieder hergestellt werden. Wichtige Gene, die durch den *knockdown* von *PRAME* ebenfalls vermindert exprimiert wurden, waren Apoptose-inhibierende Faktoren.

3.1.2 Untersuchungen zur Bedeutung von *MGMT* beim Hodgkin-Lymphom²

Dacarbazin wird als Chemotherapeutikum bei der Behandlung des HL eingesetzt. Es generiert O6-Methylguanine an der DNA was letztlich zur Apoptose der Zellen führen soll. Diese Methylgruppe kann aber durch das Reparaturenzym O6-Methylguanin-DNA Methyltransferase (MGMT) entfernt werden. Bei Glioblastom-Patienten wird zur Behandlung Temozolomid eingesetzt. Dieses wird *in vivo* in die gleiche aktive Substanz umgewandelt wie Dacarbazin. In Studien mit Glioblastom-Patienten konnte gezeigt werden, dass es einen Zusammenhang zwischen der *MGMT*-Expression bzw. *MGMT*-Promotormethylierung und der Überlebensrate der Patienten gab (Hegi *et al.* 2005). Bei vorangegangenen DNA-Mikroarray-Untersuchungen wurde festgestellt, dass *MGMT* in einer resistenteren Zelllinie stärker exprimiert war im Vergleich zu einer sensibleren (Staege *et al.* 2008). Daher sollte die Bedeutung von *MGMT* beim HL untersucht werden.

3.1.2.1 *MGMT*-Expression in den HL-Zelllinien und Resistenzverhalten gegenüber Dacarbazin

Um die Resistenz von HL-Zellen gegenüber Dacarbazin zu testen, wurden die Zellen mit aktiviertem Dacarbazin (2.1.8) inkubiert und die Überlebensrate am Durchflusszytometer bestimmt. Wie in Abb. 12 gezeigt ist, waren die Zellen der HL-Linien L-1236 und L-428 sehr resistent gegenüber Dacarbazin, während die anderen drei Zelllinien (L-540, KM-H2 und HDLM-2) sensibler reagierten.

_

² Die hier geschilderten Untersuchungen wurden teilweise bereits publiziert (siehe Publikationsliste: Kewitz *et al.* 2014).

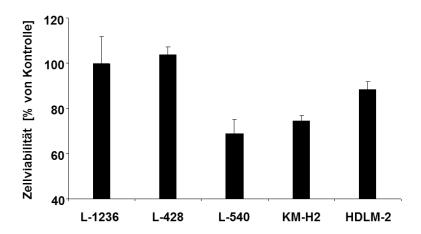


Abbildung 12: Sensitivität der HL-Zelllinien gegenüber Dacarbazin

Zellen der Linien L-1236, L-428, L-540, KM-H2 und HDLM-2 wurden für 24 h mit 500 µg/mL Dacarbazin bzw. NaCl (Kontrolle) inkubiert. Das Dacarbazin wurde vor der Verwendung für 1 h mit Weißlicht aktiviert. Die Überlebensrate wurde anschließend am Durchflusszytometer bestimmt. Dafür wurden die Zellen mit Propidiumiodid gefärbt. Als 100 % gesetzt wurden die mit NaCl inkubierten Zellen. Gezeigt werden die Mittelwerte und Standardabweichungen von 3 unabhängigen Versuchen.

Mittels methylierungsspezifischer PCR an Bisulfit-behandelter DNA wurde der Methylierungsstatus des *MGMT*-Promotors untersucht. Dabei konnte gezeigt werden, dass die Zelllinien L-540, KM-H2 und HDLM-2 einen methylierten Promotor aufwiesen, während die Zelllinie L-1236 einen unmethylierten *MGMT*-Promotor besaß. Die Zelllinie L-428 zeigte sowohl beim methylierten als auch beim unmethyliertem Promotor ein Signal (Kewitz Diplomarbeit 2011, Kewitz *et al.* 2014).

Um die Expression von *MGMT* auf RNA-Ebene zu überprüfen, wurde eine PCR mit spezifischen Primern für *MGMT* durchgeführt (Abb. 13).

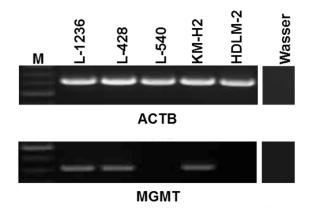


Abbildung 13: PCR-Analyse der *MGMT*-Expression in den HL-Linien (1,5%iges Agarosegel, Marker: GeneRuler™ 100bp Plus DNA Leiter)

Das untere Bild zeigt ein repräsentatives Ergebnis der PCR-Untersuchung mit Primern für *MGMT* bei den HL-Zelllinien L-1236, L-428, L-540, KM-H2 und HDLM-2. Die Primer binden im *MGMT*-Transkript an den Positionen 175 und 478. Im oberen Teil ist die Kontrolle mit Primern für *Aktin* dargestellt.

Es konnte bei den Zelllinien L-1236 und L-428 eine starke Expression von *MGMT* detektiert werden. Bei den Zelllinien L-540 und HDLM-2 konnte keine *MGMT* Expression nachgewiesen werden. Interessanterweise zeigte auch die Zelllinie KM-H2 eine Bande bei der PCR mit Primern für *MGMT* obwohl diese, wie die Linien L-540 und HDLM-2, einen methylierten Promotor aufwies. Dieselben Resultate konnten mittels qRT-PCR bestätigt werden (Abb. 44 Anhang).

In der Literatur war eine Translokation von *PRRC2B* (Chromosom 9) und *MGMT* (Chromosom 10) bei KM-H2-Zellen bekannt (Steidl *et al.* 2011). Durch die Erstellung neuer *forward*-Primer, die einerseits im *PRRC2B*-Gen und andererseits im *MGMT*-Gen vor der Translokationsbruchstelle lagen, konnte das Fusionstranskript bei KM-H2-Zellen nachgewiesen werden. Das Wildtyp-*MGMT*-Transkript war nur bei L-1236- und L-428-Zellen nachweisbar (Abb. 14).

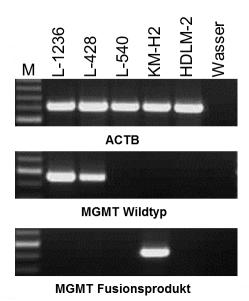
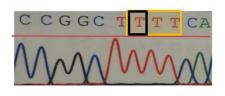
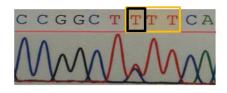
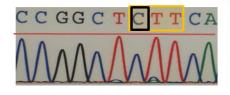



Abbildung 14: PCR-Untersuchung mit spezifischen Primern für das Fusionstranskript *PRRC2B-MGMT* und das Wildtyp *MGMT*


Für die PCR-Untersuchung wurde cDNA von allen 5 HL-Zelllinien verwendet. Alle PCR Bilder entsprechen repräsentativen Ergebnissen. Im oberen Bild ist die Kontroll-PCR mit *Aktin-*Primern gezeigt. Im mittleren Bild wurde die PCR mit Primern durchgeführt, die im *MGMT-*Transkript an den Positionen 21 und 478 binden. Im unteren Bild ist die PCR für das Fusionstranskript gezeigt. Dabei bindet der *forward-*Primer im *PRRC2B-*Transkript und der *reverse-*Primer an der Position 478 des *MGMT-*Transkripts.

Um den möglichen Promotor, der für die Transkription des erhaltenen Fusionstranskripts verantwortlich war, zu identifizieren, wurden die erhaltenen PCR-Banden sequenziert. Dabei konnte gezeigt werden, dass bei den KM-H2-Zellen nur Fusionstranskripte und keine Wildtyp-MGMT-Transkripte vorhanden waren (Sequenz siehe Anhang). Bei diesen Sequenzierungsuntersuchungen wurde ein single nucleotid polymorphismus (SNP) entdeckt. Es handelt sich um den Polymorphismus rs12917. Bei diesem gibt es einen Austausch der Base Cytosin gegen Thymin. Er könnte zu einer reduzierten Funktionalität des Enzyms führen (Zhang et al. 2008). Es wurde untersucht, ob dieser Polymorphismus auch bei den HL-Zelllinien L-428 und L-1236 vorkam. Des Weiteren wurden cDNAs von peripheren mononukleären Zellen des Blutes (PBMC) von Blutspendern und HL-Patienten untersucht (Tabelle 18). Die PCR Ergebnisse für die MGMT-Untersuchungen mit den Proben der HL-Patienten sind im Anhang zu finden (Abb. 45 Anhang). Die erhaltenen Sequenzierungsweichen nicht signifikant von der ergebnisse erwarteten Häufigkeit Basenverteilung ab (Chi-Quadrat-Test p>0,05). In Abbildung 15 Sequenzierungsergebnisse auf DNA-Ebene für L-428-Zellen, KM-H2-Zellen und ein


repräsentatives Ergebnis von PBMC gezeigt. Die PCR wurde mit spezifischen *MGMT*-Primern an DNA durchgeführt. Das erhaltene Produkt wurde eluiert und sequenziert. Anschließend erfolgten die Untersuchungen auch an cDNA (siehe Tabelle 18).

L-428 (T: 2.4 %) → AS: Phenylalanin

KM-H2 (C/T: 28 %) → AS: Phenylalanin

PBMC (C: 70 %) → AS: Leucin

Abbildung 15: Sequenzierung von rs12917 bei L-428-Zellen, KM-H2-Zellen und PBMC auf DNA-Ebene

Gezeigt sind die Sequenzierungsergebnisse für *MGMT* auf DNA Ebene. Es wurde der SNP rs12917 untersucht. Dabei codieren die 3 Basen im gelben Kästchen für die Aminosäure (AS) und die Base im schwarzen Kästchen zeigt den Polymorphismus. Im ersten Bild ist das Ergebnis für L-428 gezeigt. Im zweiten Bild für KM-H2 und im dritten für PBMC. Die Zahl in der Klammer zeigt an, wie häufig die Base an dieser Stelle gemäß 1000GENOMES:phase_1_EUR (Ensembl) vorkommt. Dahinter ist die resultierende Aminosäure gezeigt.

Bei Zellen der Linie L-428 konnte ein Thymin anstatt eines Cytosin nachgewiesen werden, dies kommt homozygot bei nur 1,6 % der Europäischen Bevölkerung vor. Es wird statt Leucin die Aminosäure Phenylalanin eingebaut. Auf DNA-Ebene konnten bei KM-H2-Zellen beide Basen nachgewiesen werden. Auf Grund der Sequenzierungsergebnisse des PRRC2B-MGMT-Fusionstranskript auf cDNA-Ebene (siehe Tabelle 18) konnte gezeigt werden, dass die Base Thymin im Transkript vorhanden war und somit Phenylalanin eingebaut wurde. In Tabelle 18 sind alle Sequenzierungsergebnisse für das MGMT-Transkript zusammengefasst. Zelllinien L-540 und HDLM-2 wurden nicht sequenziert, da keine MGMT-Expression nachweisbar war (Abb. 13).

Tabelle 18: Analyse des SNP rs12917 auf cDNA-Ebene

In der Tabelle sind die Sequenzierungsergebnisse des rs12917 dargestellt. Neben der Probe ist die vorhandene Base und die daraus resultierenden Aminosäure gezeigt. Des Weiteren ist in Klammern die Häufigkeit in der Europäischen Bevölkerung gemäß 1000GENOMES:phase_1_EUR (Ensembl) angegeben.

Probe	rs12917 (Häufigkeit → AS)
KM-H2-Zellen	T (1,6 % → Phenylalanin)
L-428-Zellen	T (1,6 % → Phenylalanin)
L-1236-Zellen	C/T (24 % →Phenylalanin/Leucin)
5 PBMC von Blutspendern	C (74,4 % → Leucin)
1 PBMC von Blutspendern	C/T (24 % → Phenylalanin/Leucin)
9 PBMC von HL-Patienten	C/T (24 % → Phenylalanin/Leucin)
15 PBMC von HL-Patienten	C (74,4 % → Leucin)

3.1.2.2 Analyse der MGMT-Expression mittels Western-Blot

Um zu überprüfen, ob das *PRRC2B-MGMT*-Fusionsprodukt translatiert wurde, wurden Western-*Blot*-Analysen durchgeführt. Dabei konnte zwei Banden nachgewiesen werden, die der Größe des WT-Proteins entsprachen (Abb. 16 und Abb. 46 im Anhang).

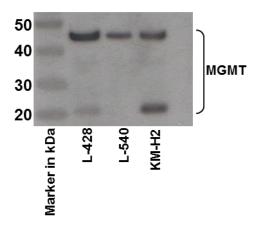


Abbildung 16: Western-*Blot*-Analyse von MGMT mit HL-Zellen der Linien L-428, L-540 und KM-H2

Gezeigt ist ein repräsentatives Ergebnis der Western-Blot-Analyse mit Antikörpern für MGMT. Aufgetragen wurde 2,5 μ L Marker und je 12 μ L (4,6 μ g) Proteinextrakt von L-428-, L-540- und KM-H2-Zellen. Für die Analyse wurden folgende Antikörper eingesetzt: Maus-anti-Mensch-MGMT (Klon MT23-2, 1: 1000 in TBST + 5 % Milchpulver), Schaf-anti-Maus-IgG-HRP (1: 5000 in TBST + 5 % Milchpulver) und Roti-Mark Western-HRP-Konjugat (1: 2500 in TBST + 5 % Milchpulver). Der Film wurde nach 2 minütiger Inkubation auf der Membran entwickelt.

3.1.2.3 Beteiligung von MGMT an der Resistenz von HL-Zellen gegenüber Dacarbazin

Um zu überprüfen, ob die *MGMT*-Expression durch die Zugabe von alkylierenden Chemotherapeutika gesteigert werden konnte, wurden die Zellen mit aktiviertem Dacarbazin und NaCl (Lösungsmittel Dacarbazin) inkubiert und anschließend die *MGMT*-Expression bestimmt. Dabei konnten aber keine Änderungen bei der Expression von *MGMT* detektiert werden (Abb. 47 Anhang).

Um die Beteiligung von *MGMT* an der Resistenz gegenüber Dacarbazin zu untersuchen, wurden Zellen der Linie L-540 mit dem demethylierenden Agens 5'-Azacytidin behandelt. Nach fünf Tagen konnte die Expression von *MGMT* um das 240fache gesteigert werden (Abb. 17A). Parallel dazu wurden die Zellen auch resistenter gegenüber Dacarbazin (Abb. 17B).

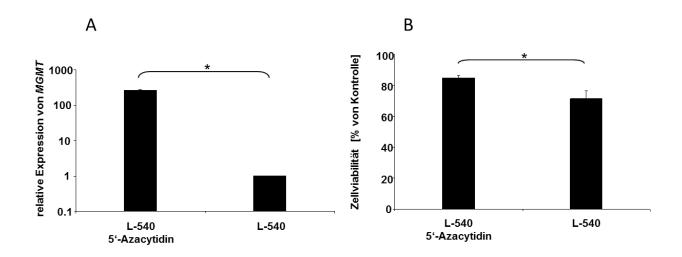


Abbildung 17: Inkubation mit 5'-Azacytidin führte zu einer verstärkten Expression von MGMT und einer erhöhten Resistenz gegenüber Dacarbazin

- A) Zellen der Linie L-540 wurden für 5 Tage mit 5 μ M 5'-Azacytidin behandelt. Anschließend wurde mittels qRT-PCR die Expression von MGMT untersucht. Zur Analyse wurde die MGMT-Expression der Kontrolle (L-540-Zellen im Medium) als 1 gesetzt. Als *housekeeping*-Kontrolle wurde GAPDH verwendet. Dargestellt sind die Mittelwerte und Standardabweichungen von 5 unabhängigen Versuchen (* = p<0,05).
- **B)** Die Zellen wurden anschließend für 24 h mit 500 μ g/mL Dacarbazin bzw. NaCl (Kontrolle) behandelt. Die Überlebensrate wurde mittels Propidiumiodid-Färbung am Durchflusszytometer bestimmt. Die Anzahl der lebenden Zellen inkubiert mit NaCl wurde als 100 % gesetzt. Dargestellt sind die Mittelwerte und Standardabweichungen von 5 unabhängigen Versuchen (* = p<0,05).

Um dieses Resultat zu bestätigen, wurden die Zellen der Linie L-428 mit dem MGMT-Inhibitor Lomeguatrib behandelt. Der Inhibitor ist eine modifizierte Guanin-Base. Diese bindet als Pseudosubstrat im aktiven Zentrum von MGMT und inaktiviert damit das Enzym. Die Inkubation mit Lomeguatrib führte dazu, dass L-428-Zellen sensibler gegenüber Dacarbazin wurden (Abb. 18). Wenn Zellen der Linie L-540 (keine MGMT Expression) und der Linie KM-H2 (Translokation zwischen PRRC2B und MGMT) mit Lomeguatrib behandelt wurden, konnten keine Änderungen hinsichtlich der Resistenz gegenüber Dacarbazin festgestellt werden (Abb. 18).

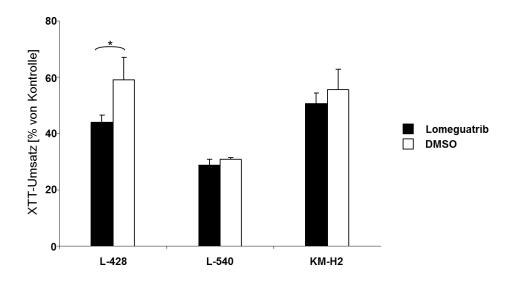


Abbildung 18: Inkubation mit Lomeguatrib führte zu einer Steigerung der Sensitivität gegenüber Dacarbazin in L-428-Zellen

Zellen der Linien L-428, L-540 und KM-H2 wurden für 24 h mit 10 μ M Lomeguatrib bzw. DMSO (Kontrolle) inkubiert. Anschließend wurden die Zellen für 24 h mit 500 μ g/mL Dacarbazin bzw. NaCl (Kontrolle) behandelt. Die Viabilität der Zellen wurde mittels XTT-Assay bestimmt. Zur Berechnung der Ergebnisse wurden die Werte der Zellen, die mit DMSO und NaCl inkubiert wurden, als 100 % gesetzt. Dargestellt sind die Mittelwerte und Standardabweichungen von 6 unabhängigen Versuchen (* = p<0,05).

Zusammenfassend zeigten die Untersuchungen, dass die **HL-Zelllinien** unterschiedliche Resistenzen gegenüber Dacarbazin aufwiesen. Die Zelllinien, die eine MGMT-Expression aufwiesen, L-1236 und L-428, waren resistenter als die Zelllinien ohne MGMT-Expression, L-540 und HDLM-2. Die Zelllinie KM-H2 zeigte eine Translokation zwischen den Genen PRRC2B und MGMT. Diese führte dazu, dass ein Protein synthetisiert wurde, welches der Größe des Wildtyp Proteins entsprach. Die Zellen waren sensibler gegenüber Dacarbazin im Vergleich zu L-1236-und L-428-Zellen. Wenn die MGMT-Expression gesteigert wurde, konnte eine steigende Resistenz gegenüber Dacarbazin detektiert werden. Wurde MGMT inhibiert, wurden die Zellen sensibler gegenüber Dacarbazin.

3.2 Identifizierung neuer Zielstrukturen für das Hodgkin-Lymphom

Um neue Therapieansätze für die Behandlung des HL zu etablieren, sind neue Zielstrukturen erforderlich. Um diese zu identifizieren, wurden zwei Strategien genutzt. Zum einen sollten neue Zielgene durch die Untersuchung von Zellen mit gesteigerter Resistenz identifiziert werden und zum anderen durch die Etablierung einer cDNA Bank.

3.2.1 Regulierung der Resistenz von Hodgkin-Lymphom-Zellen unter hypoxischen Bedingungen³

Die Regulierung der Resistenz von HL-Zellen unter hypoxischen Bedingungen wurde untersucht. Dieses System wurde gewählt, da aus anderen Tumor-Modellen bekannt ist, dass Tumore unter hypoxischen Bedingungen besonders resistent sind (Shannon et al. 2003).

Es wurden Zellen untersucht, die entweder unter Hypoxie-simulierendem Cobalt(II)chlorid (CoCl₂)-Einfluss standen oder in Medium ohne Zusatz kultiviert wurden. CoCl₂ wurde verwendet, da es zur Akkumulation von Hif-1α in der Zelle führt und die "hypoxia-responsive elements" aktiviert werden (Ho *et al.* 1996).

3.2.1.1 Wachstums-Analyse der HL-Zellen nach Inkubation mit CoCl₂

Um die Induktion von Hypoxie in den Zellen zu prüfen, wurde nach der Inkubation mit CoCl₂ die Expression des Hypoxie-Zielgens *SLC2A1* untersucht (Abb. 19). Dabei zeigte sich, dass die Expression des Gens unter CoCl₂ Einfluss in allen fünf Zelllinien leicht gesteigert werden konnte.

³ Die hier geschilderten Untersuchungen wurden teilweise bereits publiziert (siehe Publikationsliste: Kewitz *et al.* 2013).

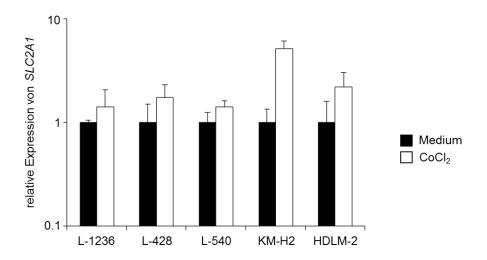


Abbildung 19: Steigerung der SLC2A1-Expression nach Inkubation mit CoCl₂

Gezeigt ist die qRT-PCR Analyse der *SLC2A1*-Expression nach 4-tägiger Inkubation mit 200 bzw. 100 μM CoCl₂. Die Zelllinie L-1236 wurde mit 100 μM CoCl₂ inkubiert, während die anderen Zelllinien mit der höheren Konzentration behandelt wurden. Für L-1236-Zellen musste 100 μM CoCl₂ verwendet werden, da die Zellen bei 200 μM starben. Als *housekeeping*-Kontrolle wurde *HPRT1* verwendet. Zur Berechnung wurde für jede Zelllinie die Zellen inkubiert mit Medium als 1 gesetzt. Gezeigt sind die Mittelwerte und Standardabweichungen von 4 unabhängigen Experimenten.

Wenn die Zellen über mehrere Tage mit CoCl₂ inkubiert wurden, konnte keine Zunahme der Zellmenge beobachtet werden. Um dies näher zu untersuchen, wurden die Zellen der Linie L-428 über sieben Tage mit und ohne CoCl₂ inkubiert und alle zwei Tage die Zellzahl bestimmt. Wie in Abb. 20 zu erkennen ist, führte die Inkubation mit CoCl₂ dazu, dass die Zellzahl kaum zunahm.

Um den Wachstumsstopp zu bestätigen, wurde eine Generationsanalyse bei Zellen der Linien L-1236 und HDLM-2, inkubiert mit und ohne CoCl₂, durchgeführt. Über vier Tage wurden die Ansätze täglich hinsichtlich ihrer PKH26-Färbung untersucht. Der Farbstoff wurde in die Membran eingelagert. Bei jeder Zellteilung wurde die Farbstoffmenge in der Membran halbiert. Durch die Auswertung mit der Software ModFit LT3.0 (Verity Software House) konnte die Anzahl der Zellen festgestellt werden, die sich nicht geteilt hatten und somit in der Parentalgeneration verblieben waren (Abb. 21). Zellen unter CoCl₂-Einfluss zeigten über mehrere Tage die gleiche Menge an Zellen, die sich in der Parentalgeneration befanden. Im Gegensatz dazu zeigten die Zellen, die in Medium kultiviert wurden, täglich eine Abnahme der Zellen in der Parentalgeneration. Die Inkubation mit CoCl₂ führte zu einem Wachstumsstopp der Zellen.

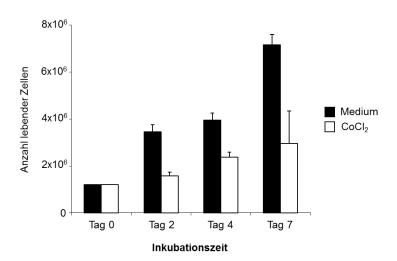


Abbildung 20: Wachstums-Analyse nach Inkubation mit CoCl₂

Zellen der HL-Linie L-428 wurden für 7 Tage mit 200 μM CoCl₂ inkubiert. An den Tagen 0, 2, 4 und 7 wurde die Gesamtzahl lebender Zellen bestimmt. Dafür wurden die Zellen mit Trypanblau gefärbt und in einer Neubauer Zählkammer gezählt. Gezeigt sind die Mittelwerte und Standardabweichungen von 3 unabhängigen Versuchen.

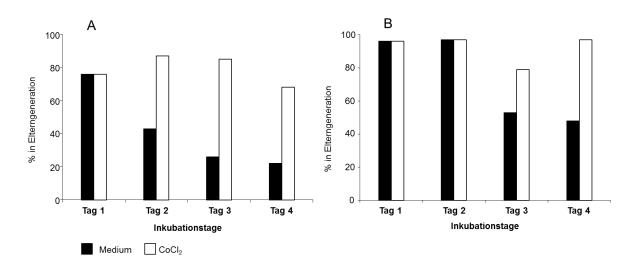


Abbildung 21: Untersuchung des Wachstumsverhalten nach CoCl2 Inkubation

Die Zellen der Linien A) L-1236 und B) HDLM-2 wurden mit dem Farbstoff PKH26 gefärbt. Dieser lagert sich in die Membran der Zellen ein. Bei jeder Zellteilung wird die Menge an Farbstoff in der Membran halbiert. Die Zellen wurden anschließend mit 200 µM CoCl₂ inkubiert. Die Menge des Farbstoffes wurde an den Tagen 1 bis 4 am Durchflusszytometer bestimmt. Die erhaltenen Daten wurden mit der Software ModFit LT3.0 ausgewertet. Dargestellt ist die Menge an Zellen, die sich in der Parentalgeneration befanden.

3.2.1.2 Untersuchung der Resistenz gegenüber Cisplatin nach Inkubation mit CoCl₂

Es ist aus soliden Tumoren bekannt, dass Zellen unter Hypoxie-Einfluss resistenter waren als Zellen unter Normoxie (Shannon *et al.* 2003). Um diese Beobachtungen an HL-Zellen zu überprüfen, wurden die Zellen mit und ohne CoCl₂ inkubiert. Anschließend erfolgte die Behandlung mit Cisplatin. Dies führte dazu, dass die Zellen resistenter gegenüber Cisplatin wurden (Abb. 22).

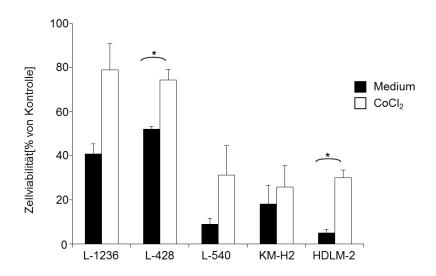


Abbildung 22: HL-Zellen werden nach Vorinkubation mit $CoCl_2$ resistenter gegenüber Cisplatin Die HL-Zelllinien L-1236, L-428, L-540, KM-H2 und HDLM-2 wurden mit und ohne 200 μ M $CoCl_2$ für 48 h inkubiert. Anschließend erfolgte die Behandlung mit 25 μ g/mL Cisplatin bzw. DMF. Die Viabilität der Zellen wurde mittels Propidiumiodid-Färbung am Durchflusszytometer bestimmt. Die Anzahl der lebenden Zellen inkubiert mit Medium und DMF wurde als 100 % gesetzt. Dargestellt sind die Mittelwerte und Standardabweichungen von 4 unabhängigen Versuchen (* = p<0,05).

Die größte Zunahme der Resistenz konnte bei den sensibleren Zelllinien L-540 und HDLM-2 beobachtet werden. Aber auch die an sich schon resistenten Zelllinien L-1236 und L-428 zeigten eine deutliche Zunahme der Resistenz gegenüber Cisplatin.

3.2.1.3 Identifizierung von CoCl₂ regulierten Genen

Um Gene zu identifizieren, die durch CoCl₂ reguliert werden, wurde zunächst CD30 untersucht. Dieses Gen ist charakteristisch für das HL. Im ersten Schritt erfolgte die Untersuchung von CD30 auf der Oberfläche der HL-Zellen.

Diese wurden mit und ohne CoCl₂ inkubiert und anschließend die Expression des Oberflächenmoleküls CD30 am Durchflusszytometer bestimmt. Dabei konnte gezeigt werden, dass die Inkubation mit CoCl₂ zu einer Abnahme der Expression führte

(Abb. 23A). Die verminderte Expression von *CD30* konnte außerdem auf RNA-Ebene nachgewiesen werden (Abb. 23B).

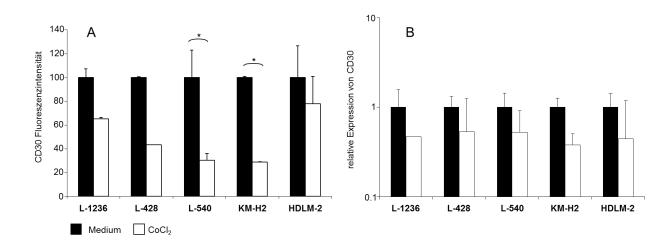


Abbildung 23: Expression von CD30 nach Inkubation mit CoCl₂

Die Zellen der HL-Zelllinien wurden für 4 Tage mit 200 μ M CoCl₂ inkubiert. Die Zellen der Linie L-1236 wurden nur mit 100 μ M CoCl₂ inkubiert.

- **A)** Es wurde das Oberflächenmolekül CD30 durch Inkubation mit Antikörpern am Durchflusszytometer untersucht. Als Kontrolle wurden die Zellen außerdem ohne Antikörper und mit einer Isotyp-Kontrolle inkubiert. Dargestellt ist die Fluoreszenzintensität. Zur Berechnung wurde die Fluoreszenz der Zellen, die in Medium inkubiert wurden, als 100 % gesetzt. Gezeigt sind die Mittelwerte und Standardabweichungen von 3 unabhängigen Experimenten.
- **B)** Dargestellt ist die qRT-PCR Untersuchung der CD30-Expression auf cDNA-Ebene. Als housekeeping-Kontrolle wurde HPRT1 verwendet. Zur Berechnung wurde für jede Zelllinie der Ansatz inkubiert mit Medium als 1 gesetzt. Gezeigt sind die Mittelwerte und Standardabweichungen von 3 unabhängigen Experimenten (* = p<0,05).

Um weitere Gene zu identifizieren, die durch die Inkubation mit CoCl₂ differentiell exprimiert waren, wurden Untersuchungen mit Affymetrix Human Exon 1.0 ST-Arrays durchgeführt. Dabei wurde RNA von den Zellen verwendet, die für vier Tage mit 200 µM CoCl₂ oder Medium kultiviert worden sind. Bei der Zelllinie L-1236 konnte nur eine Konzentration von 100 µM CoCl₂ eingesetzt werden, da alle Zellen bei der höheren Konzentration gestorben waren. Die erhaltenen Daten wurden mit Hilfe der MA Filter Software (Winkler *et al.* 2012) ausgewertet. Um die unterschiedlichen Gene zu erhalten, wurden die fünf Zelllinien jeweils mit und ohne CoCl₂ als Gruppe ausgewertet. Als Kriterium galt die dreifache Überexpression und das Gen musste in mindestens einer der Zelllinien eine Signalstärke von über 100 erreicht haben (Genliste siehe Anhang). In Abbildung 24 ist ein *heat-map* dieser Gene gezeigt. Dabei sind stark exprimiert Gene rot und schwach exprimierte Gene blau dargestellt.

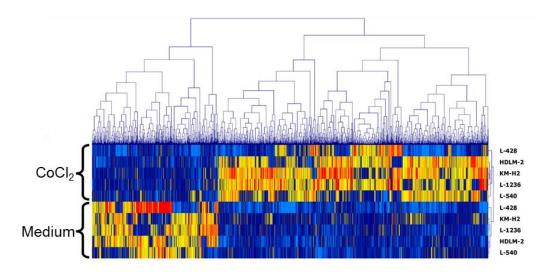


Abbildung 24: *Heat-map* der differentiell exprimierten Gene nach Inkubation mit CoCl₂ (blau = schwach exprimierte Gene, rot = stark exprimierte Gene)

Alle 5 HL-Zelllinien wurden für 4 Tage mit 200 μM bzw. 100 μM (L-1236) CoCl₂ bzw. Medium kultiviert. Anschließend wurde die Steigerung der Resistenz geprüft, RNA isoliert und DNA-Mikroarray-Untersuchungen mit Human Exon 1.0 ST-Arrays (Affymetrix) durchgeführt. Dargestellt ist eine Cluster-Analyse der differenziell exprimierten Gene. Diese Analyse wurde mit der Software Genesis (Sturn *et al.* 2002) erstellt.

Interessante differenziell exprimierte Gene waren: XAF1 (XIAP assoziierter Faktor 1), FTL (leichte Ferritin-Kette), HMOX (Hämoxygenase), PSMC1 (Proteasom 26S Untereinheit ATPase 1) und DEPDC1B (dishevelled, egl-10 and pleckstrin domain containing 1B). Die Gene FTL, HMOX und PSMC1 wurden unter hypoxischen Bedingungen hochreguliert, während XAF1 und DEPDC1B herunterreguliert wurden. Zur Validierung der Daten wurden die Zellen wiederum unter hypoxischen Bedingungen inkubiert und anschließend mittels Cisplatin-Behandlung die Steigerung der Resistenz untersucht. Es wurde RNA isoliert und mittels spezifischer Primer die Expression der Gene XAF1, DEPDC1B, HMOX, FTL und PSMC1 untersucht. Dabei konnten die Ergebnisse der Mikroarray-Analyse bestätigt werden (Abb. 25A-E).

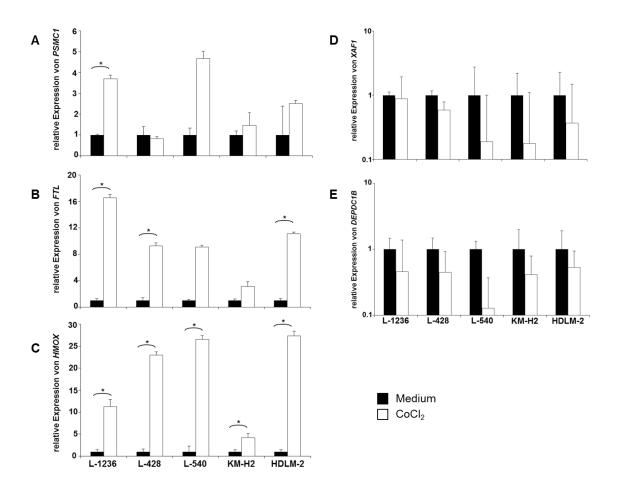


Abbildung 25: Genregulation durch Inkubation mit CoCl₂

Dargestellt sind die qRT-PCR-Untersuchungen von Genen, die durch $CoCl_2$ reguliert wurden. Zur Analyse wurden Zellen der 5 Zelllinien für 4 Tage mit 200 μ M $CoCl_2$ bzw. Medium kultiviert. Die Zellen der Linie L-1236 wurden nur mit 100 μ M $CoCl_2$ inkubiert. Die Gene **A)** *PSMC1*, **B)** *FTL;* **C)** *HMOX* wurden hochreguliert, die Gene **D)** *XAF1* und **E)** *DEPDC1B* hingegen herunter. Zur Berechnung wurde für jede Zelllinie der Wert der Zellen, die mit Medium inkubiert wurden, als 1 gesetzt. Als *housekeeping*-Kontrolle wurde *HPRT1* verwendet. Dargestellt sind die Mittelwerte und Standardabweichungen von 4 unabhängigen Versuchen (* = p<0,05).

3.2.1.4 Untersuchung zur Bedeutung von DEPDC1B in HL-Zelllinien

Ein Gen, welches durch CoCl₂ herunterreguliert wurde, war *DEPDC1B*. Bei Expressions-Untersuchungen an HL-Zellen und PBMC zeigte sich, dass das Gen in den HL-Zelllinien höher exprimiert war als bei PBMC (Abb. 26).

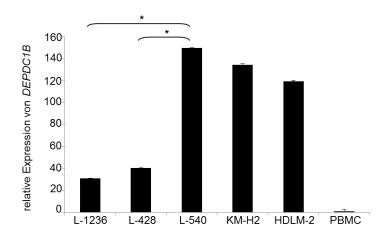


Abbildung 26: DEPDC1B-Expression in HL-Zellen und PBMC

Dargestellt ist die qRT-PCR-Analyse der *DEPDC1B*-Expression in den HL-Zelllinien und in peripheren mononukleären Zellen des Blutes (PBMC). Für die Berechnung wurde der Wert von PBMC auf 1 gesetzt. Als *housekeeping*-Kontrolle wurde *HPRT1* verwendet. Gezeigt sind die Mittelwerte und Standardabweichungen von 5 unabhängigen Versuchen (* = p<0,05).

Dabei war die Expression in den beiden chemoresistenteren Zelllinien, L-1236 und L-428, geringer als in den chemosensibleren Zelllinien, L-540, KM-H2 und HDLM-2. Um den Einfluss von *DEPDC1B* auf die Resistenz gegenüber Cisplatin zu untersuchen, wurde *DEPDC1B* in L-540-Zellen supprimiert. Dafür wurden die Zellen mit einem Vektor transfiziert, der durch miRNA *DEPDC1B* herunterreguliert. Anschließend wurden die Zellen mit Cisplatin behandelt (Abb. 27). Es zeigte sich, dass die Zellen resistenter gegenüber Cisplatin wurden, wenn die Expression von *DEPDC1B* supprimiert wurde. Je geringer die Expression von *DEPDC1B* war, umso resistenter wurden die Zellen. Somit könnte *DEPDC1B* einen Einfluss auf die Sensitivität von HL-Zellen gegenüber Cisplatin haben.

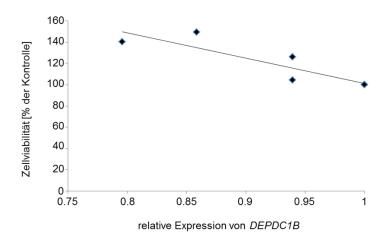


Abbildung 27: Zellviabilität der Zellen der Linie L-540 und Expression von DEPDC1B

Die Zellen der Linie L-540 wurden mit einem Vektor transfiziert, der durch miRNA das Gen *DEPDC1B* supprimierte. Nach der Transfektion wurden die Zellen für 24 h mit 12,5 µg/mL Cisplatin behandelt und die Überlebensrate am Durchflusszytometer mittels Propidiumiodid-Färbung bestimmt. Parallel dazu wurde mittels qRT-PCR die Expression von *DEPDC1B* untersucht. Zur Berechnung wurde die *housekeeping*-Kontrolle *HPRT1* verwendet. Als 1 gesetzt wurden die Zellen, die mit dem Leervektor transfiziert wurden. In der Abbildung ist die Korrelation zwischen der Überlebensrate gegenüber Cisplatin und der *DEPDC1B*-Expression gezeigt. Dabei stellt der Wert bei 1 eine Vierfachbestimmung dar.

Zusammenfassend zeigen die Ergebnisse, dass HL-Zellen unter CoCl₂-Einfluss resistenter gegenüber Cisplatin wurden. Des Weiteren führte die Inkubation mit CoCl₂ zu einem Wachstumsstopp der Zellen und zu einem veränderten Genexpressionsprofil. Gene, die unter CoCl₂-Einfluss hochreguliert wurden, waren unter anderem *PSMC1*, *FTL* und *HMOX*, während die Gene *CD30*, *XAF1* und *DEPDC1B* herunterreguliert wurden. Wenn *DEPDC1B* in der HL-Zelllinie L-540 herunterreguliert wurde, führte dies zu einer Steigerung der Resistenz gegenüber Cisplatin. Somit stellen die Gene, die durch die Inkubation mit CoCl₂ identifiziert wurden, neue interessante Zielstrukturen für die Behandlung des HL dar.

3.2.2 Identifizierung neuer Zielstrukturen mittels einer cDNA-Bank aus KM-H2-Zellen

Um neue Resistenzfaktoren durch ein funktionelles Screening identifizieren zu können, wurde eine cDNA-Bank aus Zellen der Hodgkin-Lymphom-Zelllinie KM-H2 generiert. Durch die Transfektion von sensiblen Testzellen und anschließender Selektion mit Cisplatin konnten neue mögliche Resistenzfaktoren identifiziert werden.

3.2.2.1 Erstellen der cDNA-Bank

Um die cDNA-Bank erstellen zu können, musste aus Gesamt-RNA die mRNA isoliert werden (2.2.1.12). Anschließend wurde eine PCR für Gene durchgeführt, die charakteristisch für das HL sind. Damit konnte gezeigt werden, dass die Isolation der mRNA erfolgreich war (Anhang Abb. 48). Die cDNA-Bank wurde, wie in Kapitel 2.2.1.13 beschrieben erstellt. Nach der Fraktionierung wurde der DNA-Gehalt gemessen. Die Fraktionen 4-6 wiesen positive Werte auf und wurden zur Ligation in den Vektor pCMV-Script genutzt.

Nach der Transformation in *E. coli* wurde die Gesamtanzahl der koloniebildenden Einheiten (cfu) bestimmt. Dafür wurde von dem Transformationsansatz eine 1:100-und 1:1000-Verdünnung ausplattiert und am nächsten Tag die Anzahl der Kolonien bestimmt. Es zeigte sich, dass in der cDNA-Bank 16050 Transkripte von KM-H2-Zellen vorhanden waren (Berechnung 2.2.1.13).

Es wurden einzelne Klone von diesen Verdünnungen gepickt (siehe Abb. 49 Anhang) und die enthaltenen cDNAs sequenziert. In Tabelle 19 ist das Ergebnis dieser Sequenzierungen gezeigt. Es konnte aus jedem Klon eine andere cDNA isoliert und sequenziert werden. Für alle erhaltenen cDNAs wurden Primer abgeleitet und PCRs mit den HL-Zelllinien und einer Probe von peripheren mononukleären Zellen des Blutes (PBMC) durchgeführt. Dabei konnten aber keine Unterschiede hinsichtlich der Expression der verschiedenen Gene bei HL-Zellen und der PBMC-Probe festgestellt werden. Die PCR-Bilder sind exemplarisch im Anhang zu finden (Abb. 50). Da neue Zielgene identifiziert werden sollten und die identifizierten Gene sowohl in HL- als auch in PBMC-Zellen zu finden waren, wurden diese Gene nicht weiter untersucht.

Tabelle 19: Sequenzierung der gepickten Klone der Fraktionen (Sequenzen siehe Anhang)

Klon	erhaltene cDNA
1	AHNAK
3	EEF1A1
5	SET
7	MT-RNR2-like
8	EEF1A1
9	Aktin
11	EIF4A1
12	CHMP1A

Die Klone, die nicht gepickt wurden und der restliche Transfektionsansatz wurden vereint und in einer 3D-Kultur amplifiziert (siehe Material und Methoden). Die 3D-Kultur wurde anschließend geerntet. Von der amplifizierten Kultur wurde eine Verdünnungsreihe ausplattiert und am nächsten Tag die Anzahl der Kolonien bestimmt. Es konnten 15,5 x 10⁶ Transformanten in der cDNA-Bank ermittelt werden.

3.2.2.2 Transfektion der cDNA Bank in sensible Testzellen

Um neue mögliche Resistenzgene zu identifizieren, wurde die cDNA-Bank in sensible Testzellen transfiziert. Diese wurden anschließend mit Cisplatin oder Roscovitin behandelt. Aus überlebenden Zellen wurden die Plasmide mittels HIRT-Extraktion reisoliert, in *E. coli* transformiert und anschließend sequenziert. Das Schema in Abbildung 28 verdeutlicht den Ablauf.

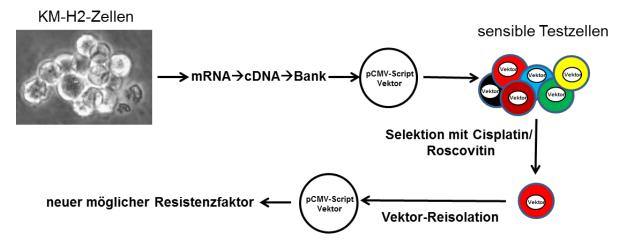


Abbildung 28: Schema zur Identifizierung neuer Zielstrukturen

Dargestellt ist der Anlauf des Versuches zur Identifizierung neuer Resistenzfaktoren. Zunächst wurde aus KM-H2-Zellen die mRNA gewonnen, anschließend erfolgte die Umschreibung in cDNA und die Klonierung in den Vektor pCMV-Script zur Erstellung der cDNA-Bank. Die cDNA-Bank wurde anschließend in sensitive Testzellen transfiziert und diese Zellen wurden mit Cisplatin oder Roscovitin behandelt. Aus den überlebenden Zellen wurde der Vektor reisoliert und sequenziert. Die erhaltene cDNA stellt einen neuen möglichen Resistenzfaktor dar.

Die cDNA-Bank wurde in verschiedene Testzellen (z. Bsp. Mausfibroblasten oder Hautfibroblasten (CRL7449)) transfiziert, die sensibel gegenüber Chemotherapeutika waren. In Tabelle 20 sind die Transfektionsexperimente und die Ergebnisse der anschließenden Sequenzierung gezeigt. Es sind jeweils die Zellart, das verwendete Chemotherapeutikum und das gefundene Gen dargestellt.

Tabelle 20: Ergebnisse der Transfektionsexperimente

Dargestellt sind jeweils die Zellart, die für die Transfektion verwendet wurde, das genutzte Chemotherapeutikum und die erhaltene cDNA in den Klonen. Die Sequenzen sind im Anhang zu finden.

Versuch	Zellart	verwendetes Chemotherapeutikum	Klon	Gen
1	Mausfibroblasten	50 μg/mL Cisplatin	1	C11orf48
			3	CRABP2
			6	IFITM1
			8	RPL21
			9	ELMO1
			10	NDUFB11
2	CRL7449	50 μg/mL Cisplatin	1	QTRT1
			2	FIBP

			— <u> </u>	Common our
			3	Sequenz aus
				Genom vom
				Mitochondrium
		25 μg/mL Cisplatin	5	RPL10
			10	PDCD7
3	CRL7449	7449 40 μg/mL Cisplatin	1	CD74
			2	RPS7
			4	RPL12
			6	RPS15
			7	EFHD2
		30 μg/mL Cisplatin	8	TTK
			9	RPL36
4	CRL7449	45 μg/mL Cisplatin	1	QTRT1
			2	QTRT1
			3	UAP1
			4	NDUFB11
			5	QTRT1
		40 μg/mL Cisplatin	7	BTF3
5	EREB2-5	40 μg/mL Cisplatin	9	RPL21
			10	FIBP
			11	FAM192
6	EREB2-5	40 μg/mL Cisplatin	1	RPS7
			2	NDUFB11
			3	QTRT1
			4	FTH1
			5	NDUFB11
		35 μg/mL Cisplatin	6	UAP1
			7	RPL37A
			8	UAP1
			9	QTRT1
7	HEK293	12,5 μg/mL Cisplatin	1	RPS11
			2	FTH1
			3	RPS24
			4	ELMO1
		90 μM Roscovitin	5	DDB1
			6	C11orf48
			7	RPL30
			8	POLR2G

Legende:

C11orf48: Offener Leserahmen 48 von	CD74: Haupthistokompatibilitätskomplex
Chromosom 11	Klasse II-assoziierte invariante Kette
CRABP2: Zelluläres Retinsäure-bindendes	EFHD2: EF-hand domain family, member D2
Protein 2	
IFITM1: Interferon-induziertes	<u>UAP1:</u> UDP-N-Acteylglucosamin-
Transmembranprotein 1	Ppyrophosphorylase 1
<u>RPL</u> : ribosomales Protein L	TTK: Proteinkinase TTK
RPS: ribosomales Protein S	BTF3: Basistranskriptionsfaktor 3
ELMO1: engulfment and cell motility 1	FAM192A: Sequenzfamilie 192, Mitglied A
NDUFB11: NADH Dehydrogenase 1 beta-	DDB1: Schädigungsspezifisches DNA-
Unterkomplex 11	bindendes Protein
QTRT1: Queuin-tRNA-Ribosyltransferase 1	FTH1: schwere Ferritin-Kette
PDCD7: programmierter Zelltod 7	POLR2G: RNA-Polymerase II Polypeptid G
<u>FIBP</u> : intrazelluläres	
Fibroblastenwachstumsfaktor-Bindeprotein	

Bei der Auswertung der Transfektionsexperimente zeigte sich, dass es Gene gab, die mehrfach sequenziert wurden. So wurden die Gene *C11orf48*, *ELMO*, *FIBP* und *FTH1* zweimal identifiziert, das Gen *UAP1* dreimal und die Gene *NDUFB11* und *QTRT1* sogar sechsmal. Von diesen Genen wurden Primer abgeleitet und PCR-Untersuchungen mit den fünf HL-Linien und zwei PBMC-Proben durchgeführt. Dabei zeigten sich aber keine Unterschiede in der Expression (Abb. 51 Anhang). Somit wurden auch Gene untersucht, die nur einmal genannt wurden. Bei diesen PCR-Untersuchungen konnte eine differenzielle Expression zwischen HL-Zellen und fünf PBMC-Proben für das Gen *TTK* detektiert werden (Abb. 29). Anschließend wurde dies durch qRT-PCR-Untersuchen bestätigt. Es zeigte sich, dass *TTK* in den HL-Zelllinien stärker exprimiert war als in PBMC (siehe Abb. 30).

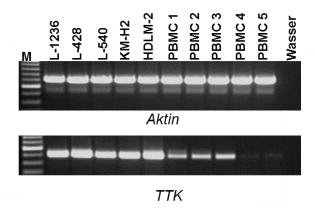


Abbildung 29: PCR-Untersuchung für das Gen *TTK* (*Proteinkinase TTK*) (1,5%iges Agarosegel, Marker: GeneRuler™ 100bp Plus Leiter)

Dargestellt ist ein repräsentatives PCR-Bild mit Primern für *Aktin* (oberes Bild) und für *TTK* (unteres Bild). Für die PCR wurden die 5 HL-Zelllinien (L-1236, L-428, L-540, KM-H2 und HDLM-2) und 5 PBMC-Proben verwendet.

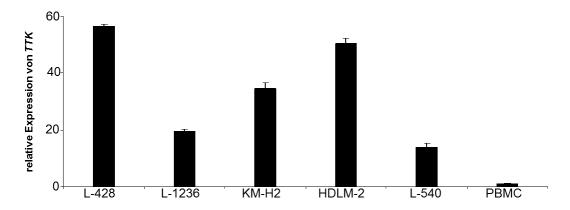


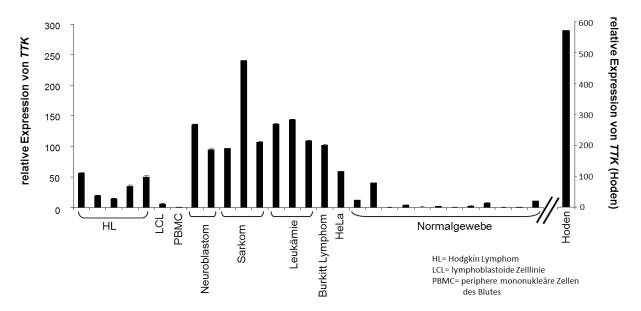
Abbildung 30: Expression von TTK in HL-Zellen und PBMC

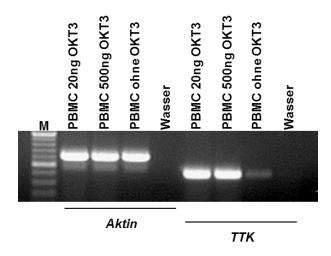
Dargestellt sind die Ergebnisse der qRT-PCR-Untersuchung für *TTK* in den HL-Zelllinien (L-1236, L-428, L-540, KM-H2 und HDLM-2) und in peripheren mononukleären Zellen des Blutes (PBMC). Zur Berechnung wurde der Wert von PBMC auf 1 gesetzt. Als *housekeeping*-Kontrolle wurde *Aktin* verwendet. Gezeigt sind die Mittelwerte und Standardabweichungen von 4 unabhängigen Versuchen. Zur Erstellung des Wertes für die PBMC wurden 6 verschiedene PBMC-Proben genutzt.

Bei den qRT-PCR-Untersuchungen zeigte sich, dass *TTK* besonders stark in den HL-Zellen exprimiert war, die resistenter gegenüber Cisplatin waren. So wurde es am stärksten in der HL-Zelllinie L-428, resistent gegenüber Cisplatin, und am schwächsten in der HL-Zelllinie L-540, sehr sensibel gegenüber Cisplatin, exprimiert.

3.2.2.3 Untersuchung zur Expression von TTK

Da *TTK* stark in den HL-Zelllinien und kaum in PBMC exprimiert war, wurden andere Krebszelllinien und Normalgewebe hinsichtlich ihrer *TTK*-Expression untersucht. Dabei zeigte sich, dass *TTK* auch in anderen Krebszelllinien (Neuroblastome, Sarkome, Leukämien, Burkitt-Lymphom und Hela-Zellen) sehr stark exprimiert war, während *TTK* in den Normalgeweben, außer dem Hoden, kaum exprimiert wurde (Abb. 31).




Abbildung 31: Screening von Krebszelllinien und Normalgeweben hinsichtlich ihrer *TTK*-Expression

Dargestellt sind die qRT-PCR-Untersuchungen zur Expression von *TTK* in Krebszelllinien und Normalgeweben. Die Reihenfolge der Balken ist folgende:

HL (L-428, L-1236, L-540, KM-H2, HDLM-2), LCL73, PBMC, Neuroblastom (SIMA, Kelly), Sarkom (TE-671, A-673, SK-N-MC), Leukämie (Nalm-6, Jurkat, THP1), Daudi, HeLa, Normalgewebe (Lunge, Gehirn, Eierstock, Bauchspeicheldrüse, Skelet Muskel, Thymus, Plazenta, Brust, Schilddrüse, Niere, Kleinhirn, Lymphknoten, Hoden). Die RNA der Normalgewebe wurde von Agilent bezogen.

Zur Berechnung wurde der Wert von PBMC auf 1 gesetzt. Als *housekeeping*-Kontrolle wurde *Aktin* verwendet. Gezeigt sind die Mittelwerte und Standardabweichungen von 3 unabhängigen Versuchen.

Aus den erhaltenen Expressionsdaten konnte geschlossen werden, dass es sich bei *TTK* um ein cancer/testis Antigen handelt. Um zu untersuchen, wann es zu einer Expression von *TTK* kam, wurden PBMC verwendet, die mit OKT3 inkubiert wurden. OKT3 ist ein monoklonaler Antikörper, der gegen den CD3-Rezeptor gerichtet ist. Durch die Inkubation mit dem Antikörper werden PBMC zum Wachstum angeregt. Es zeigte sich, dass die Inkubation mit OKT3 zu einer Steigerung der Expression von *TTK* in PBMC führte (Abb.32). Somit ist *TTK* ein Faktor, der nur in proliferierenden Zellen exprimiert wurde.

Abbildung 32: PCR-Untersuchung für das Gen *TTK* (1,5%iges Agarosegel, Marker: GeneRuler™ 100bp Plus Leiter)

Eine 6-Loch-Platte wurde über Nacht mit 20 ng, 50 ng oder ohne OKT3-Antikörper beschichtet (4°C). Anschließend wurden 5x10⁶ periphere mononukleäre Zellen des Blutes (PBMC) ausgesät und für 3 Tage inkubiert. Gezeigt ist ein repräsentatives Ergebnis der PCR-Untersuchung mit Primern für *Aktin* und *TTK*.

3.2.2.4 Untersuchung der TTK-Expression auf Protein-Ebene

Es wurde mittels Western-*Blot* die TTK-Expression auf Protein-Ebene untersucht. Dabei zeigte sich, dass TTK in den HL-Zellen exprimiert wurde. In Abbildung 33 ist ein repräsentativer Western-*Blot* gezeigt.

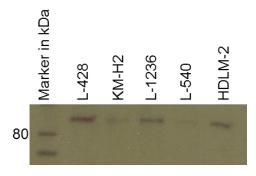


Abbildung 33: Western-*Blot*-Analyse von TTK in HL-Zellen der Linien L-428, KM-H2, L-1236, L-540 und HDLM-2

Gezeigt ist ein repräsentatives Ergebnis der Western-Blot-Analyse mit Antikörpern für TTK. Aufgetragen wurde 2,5 μ L Marker und je 15 μ L (3,5 μ g) Proteinextrakt von HL-Zelllinien. Für die Analyse wurden folgende Antikörper eingesetzt: Maus-anti-Mensch-TTK (Klon N1, 1: 1000 in TBST + 5 % Milchpulver), Ziege-anti-Maus-IgG-HRP (1: 5000 in TBST + 5 % Milchpulver) und Roti-Mark Western-HRP-Konjugat (1: 2500 in TBST + 5 % Milchpulver). Der Film wurde nach 4 minütiger Inkubation auf der Membran entwickelt. Die Aktin-Kontrolle ist im Anhang dargestellt.

3.2.2.5 Untersuchung zur Beteiligung von *TTK* an der Resistenz gegenüber Cisplatin

Um zu überprüfen, ob *TTK* in die Resistenz der HL-Zellen gegenüber Cisplatin involviert war, wurde *TTK* mittels Vektor-basierter miRNA herunterreguliert. Es wurde für die Untersuchung die Zelllinie L-428 gewählt. Der Vektor mit der miRNA enthält GFP. Dadurch kann die erfolgreiche Transfektion im Fluoreszenzmikroskop untersucht werden (Abb. 34A). Anschließend wurde der *knockdown* mittels qRT-PCR überprüft (Abb. 34B).

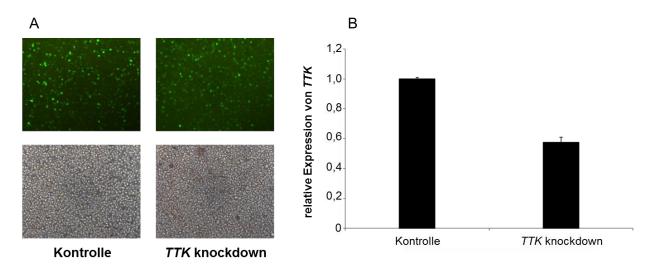


Abbildung 34: Herunterregulation von *TTK* in Zellen der HL-Linie L-428 (Aufgenommen mit 10fach-Objektiv, vergrößert)

- **A)** Gezeigt werden fluoreszierende Zellen der Zelllinie L-428. Im unteren Bildbereich sind die Zellen im Phasenkontrast gezeigt. In die Zellen wurden einerseits eine Leervektorkontrolle und andererseits ein miR-*TTK*-Vektor transfiziert.
- **B)** Untersuchung der *TTK*-Expression mittels qRT-PCR. Zur Berechnung wurden die Zellen, die mit dem Kontrollvektor transfiziert wurden, auf 1 gesetzt. Als *housekeeping*-Kontrolle wurde *Aktin* verwendet. Dargestellt sind die Mittelwerte und Standardabweichungen von 4 unabhängigen Versuchen.

Nachdem der *knockdown* bestätigt wurde, wurden die Zellen mit Cisplatin behandelt und anschließend die Vitalität der Zellen bestimmt. Es zeigte sich, dass die Zellen mit *TTK-knockdown* sensibler gegenüber Cisplatin wurden (Abb. 35).

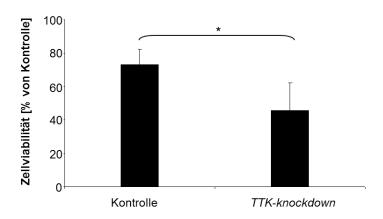


Abbildung 35: Knockdown von TTK führte zu einer Steigerung der Sensitivität gegenüber Cisplatin

Nachdem der *knockdown* von *TTK* bestätigt wurde, wurden Zellen mit *TTK-knockdown* und Kontrollzellen für 24 h mit 25 μ g/mL Cisplatin bzw. DMF (Kontrolle) behandelt. Die Überlebensrate wurde mittels Propidiumiodid-Färbung am Durchflusszytometer bestimmt. Als 100 % gesetzt wurden die mit DMF behandelten Zellen. Dargestellt sind die Mittelwerte und Standardabweichungen von 4 unabhängigen Experimenten (* = p<0,05).

Um eine Beteiligung an der Resistenz noch genauer zu untersuchen, wurden die Zellen der Linie L-540 genutzt. Diese wiesen eine geringe *TTK*-Expression auf. Zur Transfektion wurde der pCMV-Script-*TTK*-Vektor genutzt, der bei den Transfektionsexperimenten isoliert wurde. Da dieser Vektor kein GFP enthält, konnte die Transfektionseffizenz nicht untersucht werden. Mittels qRT-PCR konnte in den Zellen eine leichte Steigerung der *TTK*-Expression und der Resistenz gegenüber Cisplatin nachgewiesen werden (Abb. 52 Anhang).

3.2.2.6 Hemmung von TTK mittels Inhibitor

Um die Funktion von TTK und eine mögliche Beteiligung an der Resistenz der HL-Zellen gegenüber Cisplatin genauer zu untersuchen, wurden HL-Zellen mit einem Inhibitor für TTK (MPI-0479605, Selleckenchem, Houston, USA) behandelt. Es zeigte sich nach vier Tagen, dass die Zellen größer geworden waren (Abb.36). Nach sieben Tagen war die Zunahme noch deutlicher zu erkennen (Abb. 36).

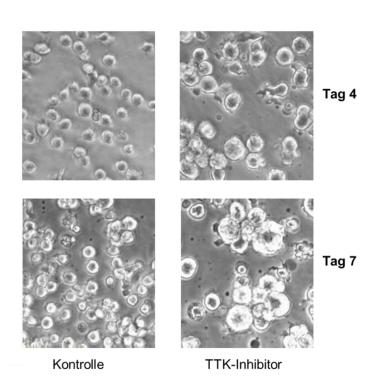


Abbildung 36: Behandlung von L-428-Zellen mit einem Inhibitor für TTK (Phasenkontrast, Aufgenommen mit 10fach-Objektiv, vergrößert)

Gezeigt werden Zellen der Zelllinie L-428, die einerseits mit einem Inhibitor für TTK und andererseits mit DMSO (Kontrolle) behandelt wurden. Im unteren Bildbereich sind die Zellen im Phasenkontrast gezeigt. Die Konzentration des Inhibitors betrug 1 μ M. Die Zellen wurden nach 4 und 7 Tagen hinsichtlich ihrer morphologischen Veränderungen untersucht.

Um zu untersuchen, ob in den angeschwollenen Zellen mehr Kerne vorhanden waren, wurden L-428-Zellen verwendet, die den pBOS-H2BGFP-Vektor enthalten. Dieser enthält das Gen für das humane Histon H2B und ein Gen, das für GFP codiert. Beide Gene wurden fusioniert, so dass ein H2B-GFP-Fusionsprotein gebildet wird. Dieses wird in der Zelle in die Nukleosomen eingebaut und sorgt dafür, dass die Kerne grün fluoreszieren (Kanda *et al.* 1998, Mizushima und Nagata 1990, Staege und Max 2009). Diese Zellen wurden mit dem Inhibitor für TTK inkubiert und es zeigte sich, dass die Zellen auch größer wurden und mehrere Kerne in einer Zelle vorhanden waren (Abb. 37).

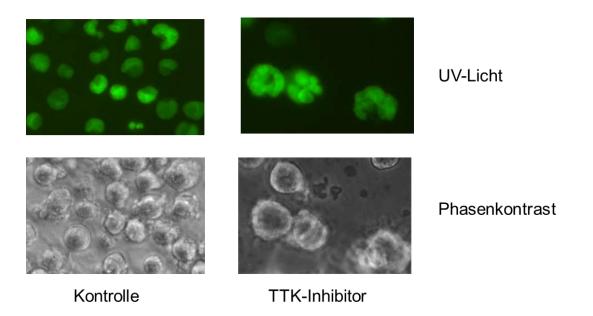


Abbildung 37: L-428-Zellen transfiziert mit pBOS-H2BGFP und mit TTK-Inhibitor behandelt (Phasenkontrast, Aufgenommen mit 20fach-Objektiv, vergrößert)

Gezeigt werden Zellen der Zelllinie L-428, die einerseits mit 1 μ M TTK-Inhibitor und andererseits mit DMSO (Kontrolle) behandelt wurden. Die Zellen enthalten einen Vektor (pBOS-H2BGFP), der den Kern grün fluoreszieren lässt. Im oberen Bildbereich sind die Zellen mit UV-Licht gezeigt und im unteren Bildbereich im Phasenkontrast.

Um zu untersuchen, welche Gene durch TTK beeinflusst werden, wurden mit Zellen, die einerseits mit TTK-Inhibitor und andererseits mit DMSO (Lösungsmittel für TTK-Inhibitor als Kontrolle) inkubiert wurden, DNA-Mikroarray-Analysen durchgeführt. Dafür wurden die Human Transcriptome 2.0 Array von Affymetrix verwendet. Gesucht wurden Gene, die mindestens dreifach hoch- bzw. herunterreguliert worden waren und eine Signalintensität von über 100 in mindestens einem der Zustände aufwiesen. Es zeigte sich, dass 115 Gene durch die Inkubation mit dem TTK-Inhibitor hoch- und 60 Gene herunterreguliert wurden. Die Analyse erfolgte mit der Transcriptome Analysis Software (Affymetrix) (Genliste siehe Anhang). In Abbildung 38 ist ein *heat-map* der regulierten Gene gezeigt. Dabei sind stark exprimierte Gene rot und schwach exprimierte Gene blau dargestellt.

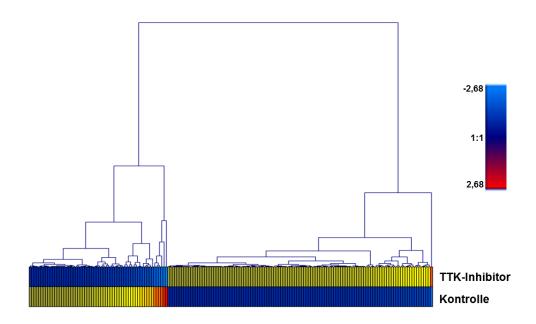


Abbildung 38: *Heat-map* der differentiell exprimierten Gene nach Inkubation mit dem Inhibitor für TTK (blau = schwach exprimierte Gene, rot= stark exprimierte Gene)

Zellen der Linie L-428 wurden für 7 Tage mit 1 µM TTK-Inhibitor bzw. DMSO (Kontrolle) kultiviert. Anschließend wurde RNA isoliert und DNA-Mikroarray-Untersuchungen mit GeneChip® Human Transcriptome 2.0 Array (Affymetrix) durchgeführt. Dargestellt ist eine Cluster-Analyse der differenziell exprimierten Gene. Diese Analyse wurde mit der Software Genesis (Sturn *et al.* 2002) erstellt.

Um die erhaltenen Mikroarray-Daten exemplarisch zu validieren, wurden für die Gene *IFI6* (Interferon alpha-induzierbares Protein) und *HSPA8* (Hitzeschockprotein 8) Primer abgeleitet und qRT-PCRs durchgeführt. Es konnte bestätigt werden, dass *IFI6* und *HSPA8* hochreguliert wurden (Abb. 39).

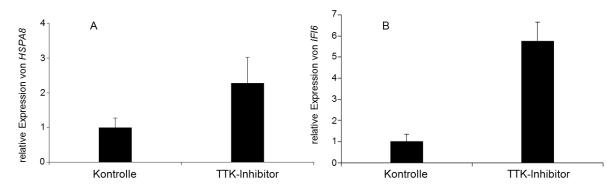


Abbildung 39: TTK-regulierte Gene

Dargestellt sind die qRT-PCR-Untersuchungen von Genen, die durch die Inkubation mit dem TTK-Inhibitor reguliert wurden. Zur Analyse wurden Zellen der Linie L-428 für 7 Tage mit 1 µM TTK-Inhibitor bzw. DMSO (Kontrolle) inkubiert. Die Gene A) *HSPA8* und B) *IFI6* wurden hochreguliert. Zur Berechnung wurde der Wert der Zellen, die mit der Kontrolle inkubiert wurden, als 1 gesetzt. Als *housekeeping*-Kontrolle wurde *HPRT1* verwendet. Dargestellt sind die Mittelwerte und Standardabweichungen von 3 unabhängigen Versuchen.

Es konnte gezeigt werden, dass Zellen mit *TTK-knockdown* sensibler gegenüber Cisplatin waren (siehe 3.2.2.5). Um eine Beteiligung an der Chemotherapieresistenz zu untersuchen, wurden Zellen, inkubiert mit TTK-Inhibitor, mit Cisplatin und Etoposid behandelt. Es zeigte sich, dass die Zellen durch die Inkubation mit dem Inhibitor sensitiver gegenüber Cisplatin und Etoposid wurden (Abb. 40). Damit konnten die oben erhaltenen Ergebnisse bestätigt werden.

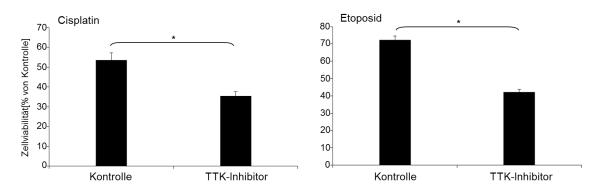


Abbildung 40: Zellen der Linie L-428 inkubiert mit TTK-Inhibitor und Behandlung mit Cisplatin bzw. Etoposid

Zellen der Linie L-428 wurden für 4 Tage mit 1 μ M TTK-Inhibitor bzw. DMSO (Kontrolle) inkubiert. Anschließend wurden die Zellen für 24 h mit 12,5 μ g/mL Cisplatin oder DMF (Kontrolle) und 12,5 μ g/mL Etoposid oder DMSO (Kontrolle) behandelt. Die Überlebensrate wurde am Durchflusszytometer mittels Propidiumiodid-Färbung bestimmt. Zur Berechnung wurden die Zellen, die mit DMSO und DMF oder DMSO und DMSO behandelt wurden als 100 % gesetzt. Dargestellt sind die Mittelwerte und Standardabweichungen von 4 unabhängigen Versuchen (* = p<0,05).

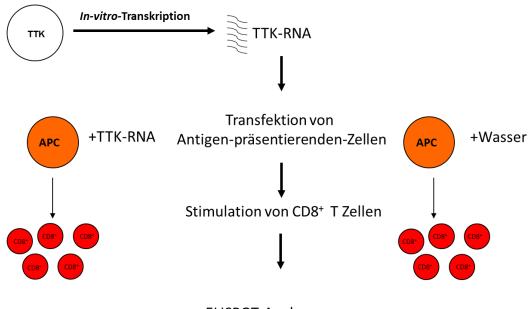
Diese Ergebnisse zeigen, dass der TTK-Inhibitor auch für die Behandlung des HL interessant sein könnte.

3.2.2.7 Identifizierung neuer TTK-Interaktionspartner

Um neue Interaktionspartner von TTK zu identifizieren, wurden *Yeast-Two-Hybrid*-Analysen durchgeführt. Dafür wurde ein Vektor generiert, indem TTK als *bait* exprimiert wurde. Als *prey* wurde eine Gesamt-Mensch-Bank verwendet. Die Durchführung erfolgte wie in 2.2.1.18 beschrieben. Die erhaltenen Hefen wurden auf Hefeplatten ausplattiert, die kein Leucin und Tryptophan enthielten (Abb. 41). Um falsch positive Klone auszuschließen wurde den Platten X-α-Gal und Aureobasidin A zugegeben. Wenn es zu einer Protein-Protein-Interaktion kam, färbten sich die Hefe-Kolonien blau.

Abbildung 41: Hefeklone ausplattiert auf SD-Leucin-Tryptophan+X- α -Gal+Aureobasidin A-Agar-Platten

Es wurden Y187 Hefezellen, die eine normalisierte Gesamt-Mensch-Bank enthielten (Clontech), und AH109 Hefezellen, die mit einem Vektor transformiert wurden der TTK enthält, gemischt und für 30 h bei 30°C inkubiert. Anschließend wurden die Zygoten auf SD-Leucin–Tryptophan+X-α-Gal+Aureobasidin A-Agar-Platten ausplattiert und für 3 Tage bei 30°C inkubiert. Durch die Blaufärbung konnten Protein-Protein-Interaktionen nachgewiesen werden.


Klone, die auf den Platten blau geworden sind, wurden anschließend auf Hefe-Platten ohne Histidin, Adenin, Leucin und Tryptophan ausplattiert. Auch diese Platten enthielten X-α-Gal und Aureobasidin A. Vier Klone wuchsen auch auf diesen Platten und bildeten blaue Kolonien. Diese Hefekolonien wurden gepickt, das Plasmid isoliert und sequenziert. Dabei konnten folgende Gene in den Vektoren detektiert werden:

- EIF3H (eukaryotischer Translations-Initiationsfaktor 3 Untereinheit H)
- KLF6 (krueppel-like factor 6)
- SDCBP (Syntenin-1)
- PRKCB (Proteinkinase C beta).

Um zu untersuchen, ob diese Gene auch in HL-Zellen exprimiert waren, wurden Primer abgeleitet und PCR-Untersuchungen durchgeführt. Es konnte bei allen Zelllinien eine Expression der vier Gene detektiert werden (Abb. 53 siehe Anhang). Um die erhaltenen Ergebnisse zu bestätigen, wurden Co-Immunopräzipitations-Analysen durchgeführt. Dabei wurde die Interaktion von Syntenin-1 und TTK in L-428 und KM-H2-Zellen untersucht. Mittels Protein G-Beads wurden alle Proteine, die mit TTK bzw. Syntenin-1 interagierten, aus den L-428 und KM-H2-Zellen isoliert und anschließend mittels Western-Blot untersucht. Es zeigte sich, dass bei beiden Zelllinien, sowohl bei den Proben, die mit TTK- als auch mit Syntenin-1-Antikörper gekoppelten Beads isoliert wurden, eine schwache Bande für Syntenin-1 und TTK nachweisbar war (Abb. 54 siehe Anhang).

3.2.2.8 Untersuchung der immunologischen Funktion von TTK

Es wurde untersucht, ob sich TTK als Target für eine Immuntherapie eignet. TTK ist deshalb ein interessantes Target, da es als *Cancer-Testis-*Antigen nur von Tumorzellen exprimiert wird. Dafür wurden ELISPOT-Analysen durchgeführt. Dabei wurden Zellen generiert, die spezifisch TTK erkennen und TTK-positive Zielzellen lysieren sollten. Dafür wurde wie in Abbildung 42 dargestellt vorgegangen. Der Vektor pCMV-Script ermöglichte es durch einen T3-Promotor, RNA vom Insert zu generieren (siehe Material und Methoden). Diese RNA wurde genutzt um Antigenpräsentierende-Zellen (APC) zu transfizieren. Anschließend wurden diese Zellen mit CD8⁺ T-Zellen inkubiert, um diese als spezifische Zellen gegen TTK zu nutzen.

ELISPOT-Analyse

Abbildung 42: Erstellung von TTK-spezifischen CD8⁺ T-Zellen

Dargestellt ist das Schema zur Generierung von spezifischen Zellen gegen TTK. Es wurde mittels *invitro*-Transkription RNA von TTK hergestellt. Dafür konnte der T3-Promotor im pCMV-Script-Vektor genutzt werden. Diese RNA wurde in Antigen-präsentierende-Zellen (APC) transfiziert. Als Kontrolle wurden Zellen mit Wasser transfiziert. Die APC wurden nach einer 4-stündigen Inkubation bei 37°C mit CD8⁺ T-Zellen für 4 Tage gemischt. Die CD8⁺ T-Zellen wurden mittels MACS-Separation (Material und Methoden) aus PBMC von Spendern isoliert. Anschließend konnten diese zur Analyse im ELISPOT genutzt werden.

Nachdem die Zellen gegen *TTK* stimuliert wurden, konnten sie im ELISPOT verwendet werden. Eingesetzt wurden *TTK* positive Zellen, L-428 und L-1236, und die Zelllinie L-540, die weniger *TTK* exprimiert. Als Kontrolle wurden außerdem die Antigen-präsentierenden-Zellen verwendet, mit denen die CD8⁺ T-Zellen inkubiert worden waren.

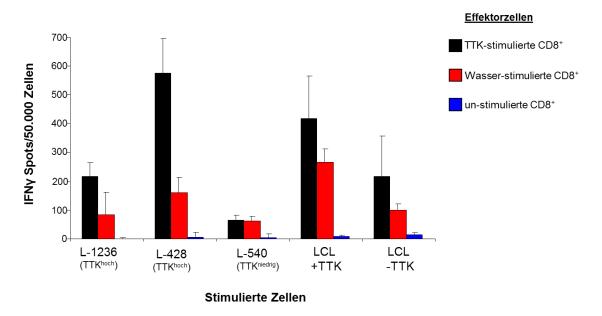


Abbildung 43: ELISPOT-Analyse von CD8⁺ T-Zellen nach der Stimulation mit TTK-RNA transfizierten Antigen-präsentierenden-Zellen

Antigen-präsentierende-Zellen (EREB2-5) wurden mit TTK-RNA transfiziert und mit CD8⁺ T-Zellen für 4 Tage inkubiert. Anschließend wurde die Reaktivität der Zellen gegen TTK untersucht. Dafür wurden L-1236, L-428 und L-540 Zellen mit TTK-stimulierten CD8⁺ T-Zellen, mit Wasser-stimulierten CD8⁺ T-Zellen und mit un-stimulierten CD8⁺ T-Zellen inkubiert. Als Kontrolle wurden die Antigen-präsentierenden-Zellen mit und ohne TTK-RNA genutzt. Es wurden 10.000 Tumorzellen und 50.000 CD8⁺ T-Zellen eingesetzt. Medium ohne Zellen diente als Kontrolle. Gezeigt sind die Mittelwerte und Standardabweichungen von Triplikaten.

Bei diesem Versuch konnte gezeigt werden, dass Zellen, die *TTK* exprimieren, deutlich stärker lysiert wurden als Zellen, die weniger *TTK* exprimieren. Dies bedeutet, dass *TTK* ein interessantes Kandidaten-Gen bezüglich einer neuen Therapieoption wäre.

Zusammengefasst zeigen die Ergebnisse, dass das Gen *TTK* nur in Tumorzellen und nicht in normalen Geweben, außer Hoden, exprimiert wurde. Es könnte in die Resistenz von HL-Zellen gegenüber Cisplatin involviert sein, da Zellen mit *TTK-knockdown* oder inkubiert mit einem Inhibitor für TTK, sensibler gegenüber Cisplatin wurden. Durch die Inhibierung von TTK schwillt die Zelle stark an und zeigt mehrere Kerne pro Zelle. Es könnte auch als Zielstruktur für eine Immuntherapie verwendet werden. Somit stellt *TTK* ein interessantes Target für die Entwicklung einer neuen Therapie für Patienten mit einem HL dar.

4 Diskussion

Das Hodgkin-Lymphom (HL) ist eine der häufigsten malignen Erkrankungen im jungen Erwachsenenalter. Die Heilungschancen sind gut, doch es gibt immer noch Patienten, die nicht geheilt werden können. Die Etablierung neuer Behandlungsmethoden und die Verbesserung der bestehenden Therapie sind von besonderer Bedeutung.

4.1 Die Rolle von *PRAME* bei der Resistenz von Hodgkin-Lymphom-Zelllinien gegenüber Chemotherapeutika

Wenn HL-Zellen mit ATRA behandelt wurden, zeigten sie ein unterschiedliches Resistenzmuster. Zellen, die wenig *PRAME* exprimierten, waren sensibler, als Zellen die mehr *PRAME* exprimierten. Um die unterschiedliche Expression von *PRAME* in den HL-Zelllinien zu erklären, wurde der Methylierungsstatus des *PRAME*-Gens untersucht. Dabei zeigte sich, dass die Zelllinien, die resistenter gegenüber Zytostatika waren, einen unmethylierten Promotor besaßen, während bei der sensiblen HL-Zelllinie L-540 der Promotor methyliert vorlag.

Dies deutet darauf hin, dass die Expression von PRAME epigenetisch reguliert wurde. Die Inkubation mit 5'-Azacytidin führte zu einer Steigerung der Resistenz in der zytostatikasensitiven Zelllinie L-540. Die gleichen Ergebnisse beobachtet Wadelin et al. bei der Inkubation der Zelllinie U937 mit 5'-Azacytidin (Wadelin et al. 2010). Es wurde beschrieben, dass PRAME in normalen Geweben stark methyliert vorliegt, während es in Tumoren kaum methyliert ist (Schenk et al. 2007, Roman-Gomez et al. 2007, Luetkens et al. 2010, Ortmann et al. 2008). Dies entspricht den in dieser Arbeit erhaltenen Ergebnisse und bedeutet, dass epigenetische Veränderungen die hohe PRAME-Expression in chemoresistenten HL-Zelllinien hervorrufen könnten.

Die Steigerung der *PRAME*-Expression in L-540-Zellen führte auch zu einer Steigerung der Resistenz gegenüber Cisplatin und Roscovitin. Bei B-Zell-Lymphom-Patienten war eine hohe *PRAME*-Expression auch mit einer Resistenz gegenüber der Chemotherapie verbunden. Des Weiteren war die hohe *PRAME*-Expression assoziiert mit einem signifikant schlechteren progressionsfreiem Überleben (Kawano *et al.* 2009). Bei der chronisch myeloischen Leukämie wird die hohe *PRAME*-Expression auch als Grund für die Resistenz gegenüber der Therapie diskutiert (Oehler *et al.* 2009). Dass *PRAME* in die Resistenz von HL-Zellen involviert sein könnte, zeigte sich auch dadurch, dass Zellen mit *PRAME-knockdown* sensibler gegenüber Cisplatin und Etoposid wurden. Bei DNA-Mikroarray-Analysen mit

mikrodissektierten HL-Proben konnte nachgewiesen werden, dass *PRAME* in 24 von 29 Proben exprimiert wurde (Steidl *et al.* 2012). Es zeigte sich außerdem eine leichte Tendenz, dass Patienten mit einer niedrigeren *PRAME*-Expression ein bessere Prognose hatten im Vergleich zu Patienten mit einer höheren *PRAME*-Expression (Kewitz *et al.* 2013).

Über die Funktion von PRAME ist bisher nur bekannt, dass es an den Retinsäurerezeptor bindet und dessen Funktion inhibiert (Epping *et al.* 2005). Die HL-Zellen wurden mit ATRA behandelt und Zellen mit hoher *PRAME*-Expression waren resistenter gegenüber ATRA als Zellen mit niedriger *PRAME*-Expression. Durch den *knockdown* von *PRAME* wurde gezeigt, dass die Sensitivität der Zellen gegenüber ATRA zunahm und die Funktionalität des Rezeptors wiederhergestellt werden konnte. Melanome mit starker *PRAME*-Expression weisen auch eine Resistenz gegenüber ATRA auf. Kommt es zu einem *knockdown* von *PRAME*, führte dies ebenfalls zu einer gesteigerten Sensitivität gegenüber ATRA (Passeron *et al.* 2009, Epping *et al.* 2005). Das stützt die Vermutung, dass bei HL-Zellen *PRAME* an der Resistenz gegenüber ATRA beteiligt sein könnte.

Die Kombination aus ATRA-Vorinkubation und anschließender Behandlung mit Cisplatin führte dazu, dass die Überlebensrate der HL-Zellen geringer war als bei einem der Zytostatika allein. Zhang et al. kombinierte für die Behandlung von hepatozellulären Karzinom (Leberkrebs)-Zelllinien ebenfalls ATRA mit Cisplatin und konnte zeigen, dass das Tumorwachstum gestoppt und Apoptose induziert wurde. Die Inhibierung des Tumorwachstums war bei der Kombination signifikant stärker als bei alleiniger Behandlung mit Cisplatin. Die Ergebnisse, die in vitro gewonnen wurden, konnten in vivo bei Tierversuchen bestätigt werden (Zhang et al. 2013). Auch bei Nasopharynxkarzinom-, Eierstockkrebs-, Chordom-, Pankreastumor-, Brustkrebs- und Kopf-Hals-Tumor-Zelllinien konnte ein synergistischer Effekt von ATRA und Cisplatin beobachtet werden (Hung et al. 2013, Jozan et al. 2002, Bayrak et al. 2011, Pettersson et al. 2001, Grunt et al. 1998, Aebi et al. 1997). Bei Patienten mit Lungenkrebs gab es sogar eine Phase-II-Studie mit dem Resultat, dass die gemeinsame Gabe von ATRA und Cisplatin die Heilung verbesserte (Arrieta et al. 2010). Diese Kombination stellt möglicherweise auch für Patienten mit einem HL eine neue Option dar, allerdings nur für Patienten mit niedriger PRAME-Expression. Des Weiteren sollte vorher die Expression von BCL2 bestimmt werden, da dies die Wirkung von Cisplatin und ATRA hemmt (Hadjidaniel und Reynolds 2010, Jozan et al. 2002).

Um in HL-Zellen *PRAME*-regulierte Gene zu untersuchen, wurden DNA-Mikroarray-Analysen an Zellen mit und ohne *PRAME-knockdown* durchgeführt. Die Gene

DHRS2, BCL2, BCL2L1, XIAP und CD40 wurden durch den PRAME-knockdown vermindert exprimiert. Die Gene BCL2, BCL2L1, XIAP und CD40 sind als Apoptoseinhibierende Faktoren bekannt (Staege et al. 2008, Aktaş et al. 2007, Qu et al. 2014, Kashkar et al. 2003). Es wurde beschrieben, dass BCL2 die Wirkung von ATRA und Cisplatin hemmt (Hadjidaniel und Reynolds 2010, Jozan et al. 2002). Dies passt zu der Beobachtung, dass Zellen mit PRAME-knockdown sensitiver auf die Behandlung mit ATRA und Cisplatin reagierten, da nicht nur durch den knockdown von PRAME die Funktionalität des Retinsäurerezeptors wiederhergestellt, sondern auch die Hemmung durch BCL2 vermindert wurde. In Studien mit HL-Patienten konnte gezeigt werden, dass die Überexpression von BCL2 auf eine schlechte Prognose hindeutet (Jayanthan et al. 2009, Sup et al. 2005, Kim et al. 2004, Rassidakis et al. 2002). Das Gen BCL2L1 wird am stärksten in der chemoresistenten Zelllinie L-1236 exprimiert (Staege et al. 2008). Bei Lymphomen konnte durch den knockdown von BCL2L1 die Überlebensrate der malignen Zellen gesenkt werden (Choudhary et al. 2015). In einer Studie mit HL-Patienten konnte gezeigt werden, dass die miRNA 135a neben JAK2 auch BCL2L1 herunterreguliert. Patienten mit niedriger mikroRNA-Expression hatten ein höheres Risiko einen Rückfall zu erleiden (Navarro et al. 2009). Durch die hohe Expression von BCL2 und BCL2L1 kann vermutet werden, dass sie eine entscheidende Rolle bei der Apoptose in HL-Zellen spielen. Beides sind antiapoptotische Gene, die der Expression pro-apoptotischer Gene wahrscheinlich entgegen wirken (Jayanthan et al. 2009).

Das Gen X-linked inhibitor of apoptosis (XIAP) verhindert Apoptose unter anderem durch die Inhibierung der Caspasen 3 und 9 (Giaisi et al. 2012). Kashkar et al. konnte in HL-Proben von Patienten hohe Expressionen von XIAP nachweisen (Kashkar et al. 2003). Bei Melanom-, Leukämie- und Bauchspeicheldrüsenkrebs-Zellen konnte durch die Nutzung eines XIAP-Inhibitors die Apoptosefähigkeit der Zellen wiederhergestellt werden (Fulda et al. 2002, Fakler et al. 2009, Vogler et al. 2009). Auch bei HL-Zellen konnte durch den knockdown von XIAP die Sensitivität gegen Cisplatin und Etoposid gesteigert werden (Kashkar et al. 2003). Derselbe Effekt konnte nach dem knockdown von PRAME beobachtet werden. Der gegenteilige Effekt wurde durch die verstärkte Expression von PRAME erreicht. So könnte PRAME die Expression von XIAP beeinflussen.

CD40 ist ein Transmembranprotein und gehört der Tumornekrosefaktor-Rezeptorfamilie an (Fanale *et al.* 2014). CD40 wird auf der Oberfläche der HRS-Zellen exprimiert und interagiert mit CD40L, dieser Ligand wird auf der Oberfläche von T-Zellen im Mikromilleu der HRS-Zellen exprimiert. Diese Verbindung sorgt dafür, dass die HRS-Zellen überleben, wachsen und Cytokine ausschütten, des

Weiteren wird der NF-κB-Signalweg aktiviert (Celegato *et al.* 2014). Wenn es zur verminderten Expression von CD40 kommt, werden dadurch die Überlebenssignale für die HRS-Zellen verringert. Dies passt zu der Beobachtung, dass HL-Zellen mit *PRAME-knockdown* sensibler gegenüber Cisplatin waren und Zellen mit verstärkter *PRAME*-Expression resistenter.

In anderen Tumormodellen konnte ein Zusammenhang zwischen PRAME und TRAIL (Tumornekrosefaktor-verwandter Apoptose-induzierender Ligand) detektiert werden (De Carvalho *et al.* 2011, Affer *et al.* 2001). TRAIL spielt eine wichtige Rolle bei der Induktion der Apoptose (Fakler *et al.* 2009). In Leukämie-Zellen führte die Überexpression von *PRAME* zu einer verminderten Expression von *TRAIL* und somit zu einer verminderten Apoptosefähigkeit (Affer *et al.* 2001). Diese Beobachtungen konnten für HL-Zellen nicht bestätigt werden (Kewitz *et al.* 2013).

Zusammenfassend zeigen die erhaltenen Ergebnisse, dass *PRAME* eine interessante Zielstruktur für eine Therapie darstellt. Durch die Herunterregulation von anti-apoptotischen Genen nach dem *PRAME-knockdown* waren die Zellen sensibler gegenüber Cisplatin und Etoposid. Die Kombination von Histondeacetylase-Inhibitoren mit Zytostatika könnte diesen Effekt noch verstärken (Kewitz *et al.* 2012, Kewitz *et al.* 2013).

4.2 *MGMT* und seine Bedeutung für die Dacarbazinresistenz der Hodgkin-Lymphom-Zelllinien

Die HL-Zelllinien zeigten ein unterschiedliches Resistenzverhalten gegenüber Dacarbazin. Die Zellen der Linie L-1236 und L-428 waren besonders resistent, während die anderen sensibler reagierten. Um dies zu erklären, wurde die *MGMT*-Expression untersucht, da in einer Studie mit Glioblastom-Patienten ein Zusammenhang zwischen der Wirkung von alkylierenden Zytostatika und der *MGMT*-Promotormethylierung festgestellt werden konnte (Hegi *et al.* 2005). Auch bei Patienten mit einem Melanom konnte ein Zusammenhang zwischen der *MGMT*-Promotormethylierung und einem längeren progressionsfreiem Überleben hergestellt werden (Tuominen *et al.* 2014).

Bei HL-Zellen zeigte sich, dass Zellen, die resistenter gegenüber Dacarbazin waren (L-1236 und L-428), auch eine Expression von *MGMT* aufwiesen, während in den L-540- und HDLM-2-Zellen keine *MGMT*-Expression nachweisbar war.

Dieses unterschiedliche Expressionsverhalten von *MGMT* in den HL-Zellen lag an der unterschiedlichen Methylierung des *MGMT*-Promotors (Kewitz et al. 2014). Durch die Zugabe von 5'-Azacytidin konnte bei der HL-Zelllinie L-540 (methylierter

Promotor) die Expression von *MGMT* gesteigert werden. Dadurch nahm die Sensitivität gegenüber Dacarbazin ab. Su *et al.* konnte auch die Expression von *MGMT* in Leukämie-Zellen durch Zugabe von 5'-Azacytidin steigern und inhibierte hierdurch deren Proliferation (Su *et al.* 2012).

Um die Beteiligung von MGMT an der Resistenz gegenüber Dacarbazin weiter zu untersuchen, wurde die HL-Zelllinie L-428 mit Lomeguatrib, einem Inhibitor für MGMT, behandelt. Es zeigte sich, dass die Zellen sensitiver gegenüber Dacarbazin wurden. Parallel dazu wurden auch L-540-Zellen (keine MGMT-Expression) und KM-H2-Zellen (Fusionsprotein) mit Lomeguatrib behandelt. Diese Zellen zeigten aber kein verändertes Resistenzverhalten gegenüber Lomeguatrib. In Glioblastom-Zellen wurde durch den knockdown von MGMT mittels RNA-Interferenz die Resistenz gegen das Zytostatika BCNU vermindert (Xie et al. 2011). Zellen einer Brustkrebs-Zelllinie wurden ebenfalls sensibler nach der Behandlung mit Lomeguatrib und Dacarbazin (Clemons et al. 2005). In einer Phase I Studie wurde die Wirkung von Lomeguatrib in Kombination mit Dacarbazin an Patienten mit fortgeschrittenen soliden Tumoren untersucht. Dabei zeigte sich, dass die Toxizität von Dacarbazin verstärkt werden konnte, obwohl nur 50 % der herkömmlichen Dacarbazin-Dosis verwendet wurde (Tawbi et al. 2011). Es gab aber auch Studien, die keinen positiven Effekt der Kombination beobachteten (Khan et al. 2008, Kefford et al. 2009). Daher könnte die Gabe von Lomeguatrib und Dacarbazin für HL-Patienten eine Verbesserung der Therapie erreichen, muss jedoch vorher noch in einer Studie untersucht werden. Diese Therapie wäre auch nur für Patienten mit unmethyliertem MGMT-Promotor von Nutzen.

Die Zelllinie KM-H2 zeigte ein interessantes Verhalten. Obwohl KM-H2-Zellen einen methylierten *MGMT*-Promotor besitzen (Kewitz *et al.* 2014), konnte ein Signal bei der *MGMT*-Expression detektiert werden. Durch Literaturrecherchen konnte eine Translokation zwischen dem *PPRC2B*- und dem *MGMT*-Gen detektiert werden (Steidl *et al.* 2011). Durch die Bruchstelle wird der *MGMT*-Promotor vom *open reading frame* getrennt. Da aber eine *MGMT*-Expression bei KM-H2-Zellen detektiert werden konnte, bedeutet dies, dass der *PRRC2B*-Promotor die Expression steuern könnte. Dann müssten die Zellen genauso resistent gegenüber Dacarbazin sein wie beispielsweise L-1236-Zellen, da die Expression von *MGMT* annähernd gleich war. Das konnte aber nicht beobachtet werden. KM-H2-Zellen waren sensitiver gegenüber Dacarbazin als L-1236-Zellen. Um dieses unterschiedliche Resistenzverhalten zu untersuchen, wurden Western-*Blot*-Analysen durchgeführt. Da es sich bei PRRC2B-MGMT um ein Fusionsprotein handelt, könnte vermutet werden, dass es größer ist als das Wildtyp-MGMT. Eine Promotor-Analyse ergab eine Vorhersage für ein

Protein, dass 182 Aminosäuren größer sein sollte als das Wildtyp Protein (Kewitz *et al.* 2014). Die Western-*Blot*-Analysen zeigten aber ein Protein, das der Größe des Wildtyp-MGMT entsprach. Auf dem Film waren zwei Banden zu erkennen. Eine lag bei ca. 21 kDa und die obere bei ca. 45 kDa. Bei der unteren Bande handelt es sich um die unubiquitinylierte Form und bei der oberen um die ubiquitinylierte. Bei L-428-Zellen war die obere Bande stärker als die untere. Dieses Ergebnis könnte dafür sprechen, dass MGMT in der Zelle O⁶-Methylguanine repariert hatte und anschließend ubiquitinyliert wurde. Bei KM-H2-Zellen war die untere Bande stärker als die obere. Dies könnte bedeuten, dass das Protein weniger funktional ist.

Bei der Sequenzierung des *MGMT*-Transkripts zeigte sich, dass bei den HL-Zelllinien KM-H2, L-428 und L-1236 der *single nucleotid polymorphismus* (SNP) rs12917 auftrat. So besaßen die Zellen der Linien KM-H2 und L-428 die Base T anstatt eines C, während die Zelllinie L-1236 heterozygot für C/T war. Anschließend wurden von Spendern und HL-Patienten PBMC hinsichtlich des SNP untersucht. Dabei konnten aber keine signifikanten Unterschiede zwischen Spendern und HL-Patienten hinsichtlich der Häufigkeit des SNP detektiert werden. Dies entspricht den Ergebnissen, die Loh *et al.* bei ihren Untersuchungen erhalten haben. Sie konnten keinen Zusammenhang zwischen dem *MGMT*-Polymorphismus und einem erhöhten Krebsrisiko feststellen (Loh *et al.* 2011). Andere Studien wiederrum zeigten, dass das T-Allel mit einem verminderten Risiko, an einem kolorektalen Karzinom zu erkranken, verbunden ist (Hu *et al.* 2014). Liu *et al.* fassten viele Studien zusammen und fanden heraus, dass das dominante T-Allel zu einem erhöhten Risiko, an Lungenkrebs zu erkranken, führt. Für weitere Tumore konnte es ausgeschlossen werden (Liu *et al.* 2013).

Zusammenfassend konnte ein Zusammenhang zwischen der *MGMT*-Expression und dem Ansprechen auf Dacarbazin detektiert werden. Wurde die Expression von *MGMT* durch 5'-Azacytidin erhöht, kam es auch zu einer verstärkten Resistenz gegenüber Dacarbazin. Zellen, die mit dem MGMT-Inhibitor Lomeguatrib behandelt wurden, waren sensitiver gegenüber Dacarbazin. HL-Zelllinien wiesen einen SNP auf, dieser steht aber vermutlich nicht im Zusammenhang mit einer erhöhten Wahrscheinlichkeit an einem HL zu erkranken. Für zukünftige Therapien könnte Lomeguatrib bei Patienten mit einem unmethyliertem *MGMG*-Promotor zum Einsatz kommen, was allerdings vorher in einer Studie überprüft werden sollte.

4.3 Identifizierung neuer Zielstrukturen mittels Hypoxie

Hypoxie spielt bei soliden Tumoren eine große Rolle. Durch die unvollständigen Blutgefäße und die daraus resultierende schlechte Blutversorgung des Tumors sind die Zellen resistenter gegen Radio- und Chemotherapie. Des Weiteren sind die Zellen unter hypoxischen Bedingungen invasiver, aggressiver und bilden Metastasen (Shannon et al. 2003, Kizaka-Kondoh et al. 2003, Lu und Kang 2010, Chaudary und Hill 2007). In Studien mit verschiedenen Krebsarten wurde nachgewiesen, dass die Expression von HIF-1α mit der Tumorprogression einhergeht (Zhong et al. 1999). Ein erhöhtes Level von HIF-1α im Cytoplasma konnte in verschiedensten Tumorzellen nachgewiesen werden. Bei einigen gab es auch eine Assoziation mit einer schlechteren Prognose und einer Resistenz gegenüber der Chemotherapie (Zhong et al. 1999, Talks et al. 2000). Um die Bedeutung von Hypoxie beim HL zu untersuchen, wurden die Zellen mit CoCl₂ inkubiert. CoCl₂ inhibiert die Degradation der HIF-1α Untereinheit in der Zelle. Dies führt zur Akkumulation im Cytoplasma und zur Formation des HIF-1 Transkriptionsfaktors (durch Bindung an die HIF-1ß Untereinheit) (Wang et al. 2012). Unter dem Einfluss von CoCl₂ wurden die HL-Zellen resistenter gegenüber Cisplatin. Li et al. behandelte die Lungenkrebs-Zelllinie A549 unter hypoxischen Bedingungen mit Cisplatin und beobachtete ebenfalls eine Zunahme der Resistenz (Li et al. 2013). Eine Erklärung dafür könnte sein, dass es bei den Zellen unter hypoxischen Bedingungen zu einem Wachstumsstopp kam und somit Cisplatin (hemmt die DNA-Replikation) nicht mehr wirken konnte. Allerdings ist auch bekannt, dass Zellen unter hypoxischen Bedingungen eine erhöhte Menge Metallothioneine produzieren. Dies sind kleine cytoplasmatische Proteine, die eine erhöhte Affinität für Schwermetalle aufweisen und durch die Eliminierung des Platins von Cisplatin eine Resistenz generieren könnten (Ebert et al. 2000). In Plattenepithelkarzinomen und Prostatakrebs-Zellen konnte ein erhöhtes Level von Metallothioneinen unter hypoxischen Bedingungen beobachtet werden (Murphy et al. 1994, Yamasaki et al. 2007). Auch bei den Mikroarray-Analysen von HL-Zellen mit und ohne CoCl₂-Inkubation konnte eine erhöhte Expression des Metallothioneins MT1X beobachtet werden (siehe Genliste im Anhang).

Die Expression des Oberflächenmoleküls CD30 ist charakteristisch für das HL. Als die HL-Zellen mit CoCl₂ inkubiert wurden, kam es zu einer verminderten Expression des Oberflächenmoleküls. Dies konnte auch auf RNA-Ebene bestätigt werden. HL-Zellen, die negativ für CD30 sind könnten eine Tumorstammzellpopulation darstellen, die permanent wachsen könnte (Jones *et al.* 2009). HL-Patienten, die einen Rückfall erlitten haben, werden häufig mit einem Medikament behandelt, das einen anti-

CD30-Antikörper enthält. Wenn es unter hypoxischen Bedingungen zu einer Herunterregulation von CD30 kommt, wäre diese Therapie nicht mehr erfolgreich und es müsste eine neue Therapiestrategie zur Anwendung kommen.

Wie schon erwähnt, spielt die Tumorgröße eine wichtige Rolle für die Prognose der Patienten (Klimm *et al.* 2013, Gobbi *et al.* 2013). Hypoxische Bereiche in großen Tumoren sind weniger sensitiv für die Chemotherapie oder bei der Anwendung einer CD30-basierenden Therapie. Daher muss nach neuen Zielgenen gesucht werden, die eventuell zur Etablierung einer Therapie für Patienten mit großen hypoxischen Tumoren zum Einsatz kommen kann.

Um Gene zu identifizieren, die unter hypoxischen Bedingungen verstärkt exprimiert werden, wurden DNA-Mikroarray-Analysen von HL-Zellen mit und ohne CoCl₂-Inkubation durchgeführt. Ein Gen, das in Zellen unter CoCl₂-Einfluss überexprimiert wurde, war FTL (leichte Ferritin-Kette). In der Zelle formt FTL zusammen mit der Ferritin-Kette das Ferritin-Protein, ein wichtiger Regulator Eisenhaushaltes der Zelle (Fellenberg et al. 2007). Die Reduktion des Eisengehaltes in der Zelle könnte zu Zellzyklusarrest und Apoptose führen (Le und Richardson 2002). Die Überexpression von FTL konnte in verschieden Krebszellarten gezeigt werden (Weinstein et al. 1989, Baldi et al. 2003). In der Brustkrebs-Zelllinie MCF-7 wurde FTL durch miRNAs herunterreguliert. Dies führte dazu, dass die Zellen sensitiver gegenüber Cisplatin wurden (Chekhun et al. 2013). Des Weiteren wurde das Wachstum der Zellen gehemmt und Apoptose induziert (Yang et al. 2002). FTL könnte bei Brustkrebs als Diagnose- und Prognosemarker verwendet werden, wobei eine niedrige FTL-Expression mit einem guten Therapieansprechen assoziiert ist (Chekhun et al. 2013, Jézéguel et al. 2012, Ricolleau et al. 2006). In Melanom-Zelllinien führte die Herunterregulation von FTL zu einer erhöhten Sensitivität gegenüber oxidativen Stress und Apoptose (Baldi et al. 2005). Fellenberg et al. konnte eine erhöhte Expression von FTL in Osteosarkom-Patienten mit schlechtem Therapieansprechen nachweisen. Des Weiteren gab es eine Assoziation zwischen der FTL-Expression und dem Gesamtüberleben sowie dem eventfreiem-Überleben (Fellenberg et al. 2007). So ist für Osteosarkom-Patienten die FTL-Expression ein wichtiger Faktor für die Prognose.

Der Ferritin-Level ist bei den meisten Krebsarten erhöht. Diese Tumore sind aggressiver und wachsen schneller (Kudriavtseva *et al.* 2009, Fellenberg *et al.* 2007). Diese Beobachtungen unterstützen die erhaltenen Resultate aus den Versuchen mit den HL-Zellen. Da bei Brustkrebs *FTL* eine bedeutende Rolle spielt, könnte dies auch für HL-Patienten mit großen Tumoren zutreffen.

Ein Gen, das durch die Inkubation mit CoCl₂ herunterreguliert wurde, war *DEPDC1B* (d*ishevelled, egl-10 and pleckstrin domain containing 1B*). Es codiert ein Signalprotein mit zwei konservierten Domänen, eine DEP- und RhoGAP-Domäne, und ist involviert in den Rho GTPase-Signalweg (Su *et al.* 2014). Es agiert als Guanin-Nukleotid-Exchange-Faktor und aktiviert RAC1, das in die Regulation von Wachstum, Überleben, Migration, Invasion und Transformation von Tumorzellen involviert ist (Schmitz *et al.* 2000). *DEPDC1B* wird in HL-Zellen, die resistent gegenüber Zytostatika sind, geringer exprimiert als in Zellen, die sensitiver sind. Das Gen wird in vielen verschiedenen Tumoren exprimiert (Niu *et al.* 2010, Su *et al.* 2014, Yang *et al.* 2014). Der *knockdown* von *DEPDC1B* machte Tumorzellen unempfindlicher gegenüber einer Radiotherapie (Niu *et al.* 2010).

Ein anderes Gen, das durch die Inkubation mit CoCl₂ in HL-Zellen herunterreguliert wurde, war XAF1 (XIAP assoziierter Faktor 1). XAF1 bindet in der Zelle an XIAP und induziert Apoptose (Liston et al. 2001). Es wird in normalen Geweben und kaum in Tumoren exprimiert (Fong et al. 2000). Dies kommt daher, dass in vielen untersuchten Tumoren der XAF1-Promotor methyliert vorlag (Zou et al. 2006, Zhu et al. 2014). Geringe oder keine Expression von XAF1 in Pankreas- und Eierstockkrebs-Patienten korrelierte mit einer fortgeschrittenen Erkrankung und einem Rückfallrisiko (Huang et al. 2010, Wang et al. 2012). Die Wiederherstellung der XAF1-Expression führte zur Induktion von Apoptose und supprimierte das Tumorwachstum in Magen- und kolorektalen Karzinom-Zellen (Tu et al.2009, Tu et al. 2010). Bei hepatozellulären Karzinom-Zellen führte eine erhöhte Expression von XAF1 zur Inhibierung der Tumorangiogenese (Zhu et al. 2014). Bei einem neuen Therapieansatz für hepatozelluläre Karzinome kombinierten Ma et al. erfolgreich den onkolytischen Virus ZD55 (dieser enthielt die cDNA von XAF1) mit Cisplatin (Ma et al. 2014). Dadurch konnte die Konzentration von Cisplatin gesenkt werden, die benötigt wurde, um die Tumorzellen zu töten.

Diese Beobachtung zeigt, dass Hypoxie auch Bedeutung für die HL-Patienten haben könnte, da unter Sauerstoffmangel z. Bsp. bei ausgedehnten Tumormassen auch Tumorzellen, die sonst gut auf die Therapie ansprechen würden, eine Resistenz entwickeln könnten.

Die beschriebenen Gene stellen möglicherweise neue Zielstrukturen für die Etablierung einer Therapie dar. Sie würden für Patienten, die schon viele Rückfälle erlitten haben oder die bisher nicht geheilt werden können, von besonderem Nutzen sein.

4.4 Identifizierung neuer Zielstrukturen mit Hilfe einer cDNA-Bank

Um Zielstrukturen für die Entwicklung neuer Therapieoptionen zu identifizieren wurde eine cDNA-Bank von der Zelllinie KM-H2 erstellt. Diese konnte anschließend erfolgreich in sensible Testzellen transfiziert werden. Die Zellen wurden mit Cisplatin behandelt, aus den überlebenden Zellen das Plasmid reisoliert und sequenziert. Es konnten insgesamt 45 Klone sequenziert werden, wobei es einige Gene gab, die mehrfach vorkamen. Es wurden zwölf Gene hinsichtlich ihrer Expression bei HL-Zellen und PBMC untersucht. Für das Gen TTK konnte eine stärkere Expression bei HL-Zellen im Vergleich zu PBMC detektiert werden. TTK ist eine Proteinkinase, die Tyrosin-, Serin- und Threonin-Reste phosphoryliert (Lauze et al. 1995). Während der Mitose kommt es zur Aktivierung von TTK. Das Protein ist in die Regulation der Mitose involviert und wichtig für den Signalweg am Spindelapparat Checkpoint. TTK ist am Kinetochor lokalisiert, wo es mit anderen Proteinen solange den Übergang zur Anaphase verhindert, bis alle Schwester-Chromatiden korrekt an die Mikrotubulli geheftet sind. Des Weiteren ist TTK wichtig für die Stabilisierung und Aktivierung von p53 nach der Mitose, wenn es zu Schäden bei der Teilung kommt und für die Verdopplung der Zentrosomen (Tannous et al. 2013, Abrieu et al. 2001, Stucke et al. 2002, Huang et al. 2009, Naud et al. 2013, Fisk et al. 2003).

Expressionsuntersuchungen an verschiedenen Krebszelllinien und Geweben zeigten, dass TTK nur in Krebszellen und nicht in Geweben, außer dem Hoden, stark exprimiert wurde. Es ist somit ein Cancer-Testis Antigen. TTK wird in einer Vielzahl von Tumoren überexprimiert, wie z. Bsp. Brust-, Lungen-, Plattenepithel -, Prostataund Blasenkrebs (Landi et al. 2008, Mizukami et al. 2008, Thykjaer et al. 2001, Yuan et al. 2006). TTK gehört zu den Top 25 Genen, die in Tumoren mit Chromosomeninstabilität und Aneuploidie überexprimiert sind (Carter et al. 2006, Brough et al. 2011, Gordon et al. 2012). In langsam wachsenden Zellen ist keine TTK-Expression nachweisbar (Mills et al. 1992). Dies passt zu der Beobachtung, dass die TTK-Expression in PBMC anstieg, die mit einem stimulierenden Antikörper inkubiert wurden. Das TTK-Expressionslevel korreliert mit dem Krankheitsgrad und hat eine prognostische Bedeutung bei Brustkrebs (Daniel et al. 2011, Al-Ejeh et al. 2014). Auch bei Prostatakrebs ist es als Gen mit prognostischer Bedeutung identifiziert worden (Rajan et al. 2014). Bei Patienten mit rezidivierendem Prostatakrebs war die *TTK*-Expression signifikant höher als bei geheilten Patienten. Es korrelierte jedoch nicht mit dem Gleason-Score (Shiraishi et al. 2011).

Um eine Beteiligung von *TTK* an der Resistenz der HL-Zellen gegenüber Cisplatin zu untersuchen, wurde es mittels vektorbasierter miRNA herunterreguliert. Es konnte

gezeigt werden, dass durch den *knockdown* von *TTK* die Überlebensrate der Zellen abnahm. Es sollte anschließend mittels *TTK*-Überexpression die Überlebensrate der Zelllinie L-540 gesteigert werden. Da aber der genutzte Vektor kein GFP enthielt, konnte die Transfektionsrate nicht bestimmt werden. Es wurden somit alle Zellen ausgewertet und es konnte nur eine geringe Steigerung der Resistenz beobachtet werden. Bei Pankreaskrebs-Zellen führte der *TTK-knockdown* zu einer signifikanten Abschwächung der Zellproliferation, während die Apoptose- und Nekroserate signifikant anstieg (Kaistha *et al.* 2014). Dies stimmt mit den erhaltenen Ergebnissen für das HL überein.

Um die Bedeutung von TTK für HL-Zellen weiter zu untersuchen, wurden die Zellen mit einem Inhibitor für TTK behandelt. Es zeigte sich, dass durch den Inhibitor die Zellen angeschwollen waren und mehrere Kerne pro Zelle zeigten. Bei der Behandlung von Adenokarzinom-Zellen mit demselben TTK-Inhibitor waren ebenfalls mehrere Kerne pro Zelle sichtbar (Tardif et al. 2011). Die Aneuploidie entsteht durch die Inaktivierung des Spindelapparat-Checkpoint. Dies führt zur Aktivierung von p53, was zu einem Wachstumsstopp und Apoptose führt (Li et al. 2010, Thompson und Compton 2010). Die Behandlung mit Zytostatika nach der Inkubation mit dem TTK-Inhibitor zeigte, dass HL-Zellen, die mit dem Inhibitor behandelt wurden, signifikant sensitiver gegenüber Cisplatin und Etoposid waren. So konnte eine geringere Menge an Zytostatika eingesetzt werden, um einen stärkeren Effekt zu erreichen. Dies könnte eine große Bedeutung für die Therapie haben. Es wäre eine Behandlung der Patienten mit einer geringeren Dosis der Zytostatika denkbar, was wahrscheinlich zur Reduktion der Nebenwirkungen führen würde. Győrffy et al. inkubierten Brustkrebs-Zelllinien mit einem Inhibitor für TTK und behandelten die Zellen anschließend mit Chemotherapie. Auch hier führte die Kombination zu einer signifikant schlechteren Uberlebensrate der Zellen (Győrffy et al. 2014). Diese Ergebnisse wurden auch bei in vivo-Versuchen mit kolorektalen Karzinom- und Glioblastom-Zellen erhalten (Tardif et al. 2011, Tannous et al. 2013). Es konnte gezeigt werden, dass der knockdown von TTK nicht zur Apoptose in normalen Zellen führt (Daniel et al. 2011). Somit wäre der TTK-Inhibitor ein interessanter Kandidat für eine Kombinationstherapie.

Des Weiteren wurde das Genexpressionsprofil von HL-Zellen nach der Inhibierung von TTK untersucht. Es zeigte sich, dass es zu einer verstärkten Expression von Immunglobulin-Genen, *HSPA8* und *IFI6* kam. Für alle Gene ist noch keine Regulation durch TTK beschrieben. *HSPA8* gehört der Hitzeschockprotein 70 Familie an und wird in Astrozyten- und Nerven-Zellen exprimiert (Voisin *et al.* 1996). Es ist ein Chaperon und wirkt als ATPase. Der *knockdown* von *HSPA8* führte in Glioblastom-Zellen zu einer verbesserten Tumorigenität (Matsuda *et al.* 2015). In

Leukämie-Zellen fördert die Expression von *HSPA8* das Überleben der Zelle. Die Inkubation mit einem Inhibitor für HSPA8 führte zu einer verminderten Viabilität aber nicht zur Induktion von Apoptose (José-Enériz *et al.* 2008). Welche Rolle die Induktion von *HSPA8* bei HL-Zellen spielt, müsste noch näher untersucht werden. In einer Studie von Quijano *et al.* wurde die *HSPA8*-Expression in HL-Patienten untersucht, es konnte aber kein Zusammenhang zwischen Expressionslevel und klinischen Faktoren identifiziert werden (Quijano *et al.* 2003). Die Funktion von IFI6 ist noch weitgehend unbekannt (Cheriyath *et al.* 2011). Es ist involviert in die Immunantwort und in die Funktionalität des Immunsystems (Aricò und Belardelli 2012). Aktiviert wird IFI6 entweder durch Viren, Liganden oder Kernrezeptoren (Cheriyath *et al.* 2011). Es wird in vielen Krebsarten und Autoimmunerkrankungen überexprimiert. Tahara *et al.* zeigten, dass IFI6 die Apoptose in Krebszellen inhibiert (2005). Es wurden aber auch Studien veröffentlicht, die das Gegenteil gezeigt haben (Cheriyath *et al.* 2011). Somit muss die Bedeutung von IFI6 für das HL noch näher untersucht werden.

Um neue Interaktionspartner von TTK zu identifizieren, wurden Yeast-Two-Hybrid-Untersuchungen durchgeführt. Dabei konnten vier mögliche neue Interaktionspartner isoliert werden. Diese waren EIF3H (eukaryotischer Translations-Initiationsfaktor 3 Untereinheit H), KLF6 (krueppel-like factor 6), SDCBP (Syntenin-1) und PRKCB (Proteinkinase C beta). Das Gen EIF3H wird in verschiedenen Krebsarten überexprimiert (Okamoto et al. 2003, Savinainen et al. 2006, Savinainen et al. 2004, Saramäki et al. 2001, Nupponen et al. 2000). Es ist wichtig für das Wachstum und Überleben der Krebszellen (Mahmood et al. 2014). KLF6 ist ein Tumorsuppressorgen und codiert für ein Protein, das an den Core-Promotor des TATA-Box-freien PSG5-Gens bindet (Koritschoner et al. 1997). KLF6 ist in vielen Krebsarten funktionell inaktiv (Ozdemir et al. 2014, Miyaki et al. 2006, Mukai et al. 2007, Ito et al. 2004, Sangodkar et al. 2009, Camacho-Vanegas et al. 2007, Teixeira et al. 2007, Song et al. 2006, Yea et al. 2008, DiFeo et al. 2006). Wenn KLF6 aktiviert wurde, wirkte es über verschiedene Signalwege und hemmte das Wachstum der Krebszellen (Ozdemir et al. 2014). Das Gen SDCBP ist involviert in die Organisation von Proteinkomplexen in der Membran und stark exprimiert in metastasierenden Brustkrebs-Zellen et al. 2011). (Lee Es steigert Migrationsfähigkeit von Brustkrebs-, Melanom, Darmkrebs und Magenkrebs-Zellen (Koo et al. 2002, Boukerche et al. 2005, Lee et al. 2011, Hwangbo et al. 2010).

PRKCB wird in vielen Krebsarten überexprimiert und ist wichtig für die Proliferation, Differenzierung, Apoptose, Zellmobilität und Angiogenese der Krebszellen

(Wallace et al. 2014). Da dieses Gen nur schwach in HL-Zellen exprimiert war, könnte es sein, dass dessen Bedeutung relativ gering für das HL ist. Dies müsste jedoch weiter untersucht werden. Um die Interaktion von TTK und Syntenin-1 in HL-Zellen zu bestätigen, wurden Co-Immunopräzipitations-Analysen durchgeführt. Dabei konnten Banden detektiert werden, sowohl mit TTK-Antikörper als auch mit dem Syntenin-1-Antikörper. Bei der Inkubation mit TTK-Antikörper war die Bande des Ansatzes, der mit den Syntenin-1-gekoppelten-Beads isoliert wurde, größer als die Bande des Ansatzes, der mit den TTK-gekoppelten-Beads isoliert wurde. Die Proteine, die mit TTK-gekoppelten Beads isoliert wurden, haben nur eine schwache Syntenin-1 Bande ergeben. Dies konnte in zwei unabhängigen Versuchen nachgewiesen werden. Für die Identifizierung der Interaktionspartner wurde eine Gesamt-Mensch-Genbibliothek verwendet. Daher könnte es möglich sein, dass die Interaktion nur für gesunde und nicht für Krebszellen zutrifft. Der Versuch sollte mit einer Bibliothek aus HL-Zellen wiederholt werden.

Um zu untersuchen, ob sich TTK als Zielstruktur für eine Immuntherapie eignet, ELISPOT-Untersuchungen wurden durchgeführt. Dabei wurden Antigenpräsentierende-Zellen mit TTK-RNA transfiziert und anschließend TTK-spezifische CD8⁺ T-Zellen generiert. Diese wurden genutzt, um HL-Zellen spezifisch zu lysieren. Dabei zeigte sich, dass HL-Zellen mit hoher TTK-Expression deutlich mehr lysiert wurden, als Zellen mit geringerer TTK-Expression. Kono et al. führten mit Plattenepithelkarzinom-Patienten eine Phase II Studie durch, bei der die Patienten eine Mischung aus drei Peptiden erhielten, darunter waren auch TTK-Peptide. Es konnte gezeigt werden, dass die Patienten spezifische zytotoxische T-Zellen generierten, wenn sie für das Humane Leukozyten Antigene (HLA)-A2402 positiv waren. Diese Patienten wiesen ein signifikant besseres Überleben auf, als Patienten die keine T-Zellen gebildet hatten (Kono et al. 2012, Kono et al. 2009). In einer Phase I Studie mit Patienten deren Plattenepithelkarzinome inoperabel waren, wurden fünf Peptide verabreicht und mit Radio- und Chemotherapie kombiniert. Die Hälfte der Patienten konnte geheilt werden. Es gab jedoch keine Kontrollgruppe, die nur die Radio- und Chemotherapie erhielt. Daher sind diese Beobachtungen noch zu bestätigen (linuma et al. 2014). Auch bei Lungenkrebs und Cholangiokarzinomen konnte gezeigt werden, dass die Gabe von Peptiden sicher ist und eine starke Antwort der zytotoxischen T-Zellen auslöst (Suzuki et al. 2013, Aruga et al. 2013). Bei Aruga et al. wurden neben TTK- auch DEPDC1B-Peptide verabreicht. Das dafür kodierende Gen wurde identifiziert, als die Genexpression von HL-Zellen, mit und

ohne CoCl₂-Inkubation, untersucht wurde (siehe 4.3). Diese Untersuchungen zeigen, dass die Gabe von TTK-Peptiden ein interessanter Therapieansatz für HL-Patienten wäre. Diese sollten jedoch positiv für das Humane Leukozyten Antigene (HLA)-A24 sein, da es darüber präsentiert wird (Mizukami *et al.* 2008). In Deutschland sind 18-19 % der Bevölkerung positiv für HLA-A24 (allelefrequencies). Außerdem sollten wie in den genannten Studien mehrere Peptide verwendet werden. Da die Expression von jedem Gen nicht gleich stark bei jedem Patienten ist, könnte durch die Gabe von mehreren Peptiden individuelle Schwankungen in der Expressionsstärke der Zielgene ausgeglichen werden. So würde sich auch die Gabe von PRAME-Peptiden lohnen. Denn es konnte schon gezeigt werden, dass Tumorzellen durch PRAME-spezifische T-Zellen lysiert werden (Griffionen *et al.* 2006, Yao *et al.* 2013).

Zusammengefasst wurde die Bedeutung von *TTK* für das HL untersucht. Dabei zeigte sich, dass *TTK* in den zytostatikaresistenten Zelllinien stärker exprimiert war, als in der sensibleren Zelllinie. TTK könnte in die Resistenz gegenüber Cisplatin involviert sein, da der *knockdown* und die Inkubation mit dem Inhibitor zu einer Abnahme der Resistenz führten. Es wurden neue Interaktionspartner von TTK und Gene, die durch TTK reguliert wurden, isoliert. Des Weiteren konnte gezeigt werden, dass sich TTK als Zielstruktur für eine Immuntherapie eignen könnte. Das identifizierte neue Gen stellt somit eine interessante Zielstruktur für das HL dar.

5 Zusammenfassung und Ausblick

Das Hodgkin-Lymphom ist eines der häufigsten Lymphome im jungen Erwachsenenalter. Die Heilungsrate ist mit über 80 % sehr hoch, jedoch trüben Spätfolgen diese gute Prognose. So können Infertilität, Zweitmalignome und Herzschäden auftreten. Des Weiteren gibt es Patienten, die mit den vorhandenen Therapieoptionen nicht geheilt werden können. Daher ist es von besonderem Interesse, die vorhandenen Therapien zu verbessern und neue Therapieoptionen zu etablieren.

In der vorliegenden Arbeit wurden zunächst bekannte Faktoren hinsichtlich ihrer Bedeutung für die Therapieresistenz untersucht.

PRAME ist ein Tumor-Antigen und wird in den HL-Zelllinien epigenetisch reguliert. Durch die Steigerung der PRAME-Expression in L-540-Zellen konnte auch die Resistenz der Zellen gegenüber Chemotherapeutika gesteigert werden. Der knockdown von PRAME führte zu einer gesteigerten Sensitivität gegenüber Chemotherapeutika wie ATRA, Cisplatin und Etoposid. Außerdem konnte durch den knockdown von PRAME die Funktionalität des Retinsäurerezeptors wiederhergestellt werden. Wichtige Gene, die durch PRAME reguliert wurden, sind Apoptoseinhibierende Faktoren.

HL-Zelllinien, L-428 und L-1236, die eine *MGMT*-Expression aufwiesen, waren resistenter gegenüber Dacarbazin als Zellen (L-540 und HDLM-2) ohne *MGMT*-Expression. Bei der Zelllinie KM-H2 konnte eine Translokation zwischen den Genen *PRRC2B* und *MGMT* detektiert werden. Die Steigerung der *MGMT*-Expression führte zu einer gesteigerten Resistenz gegenüber Dacarbazin, während die Inhibierung von MGMT zu einer erhöhten Sensitivität führte.

Um neue Zielgene für das Hodgkin-Lymphom zu isolieren, wurden die Zellen mit der Hypoxie-simulierenden Substanz CoCl₂ inkubiert. Diese Inkubation führte dazu, dass die Zellen resistenter gegenüber Cisplatin wurden und es zu einem Wachstumsstopp kam. Durch die Inkubation mit CoCl₂ wurden die Gene *FTL* und *PSMC1* verstärkt und die Gene *XAF*, *CD30* und *DEPDC1B* vermindert exprimiert.

Weiterhin wurde eine cDNA-Bank von KM-H2-Zellen erstellt. Diese wurde anschließend in sensible Testzellen transfiziert, mit Cisplatin behandelt und aus überlebenden Zellen das Plasmid reisoliert und sequenziert. Dabei zeigte sich, dass das Gen *TTK* in Krebszelllinien, aber nicht in Geweben, außer dem Hoden, exprimiert wurde. Die Inhibierung von TTK führte zu einer Vergrößerung der Zellen und zu einer gesteigerten Sensitivität gegenüber Zytostatika. Durch TTK wurden die

Gene *HSPA8* und *IFI6* reguliert. Um die Funktionen von *TTK* in HL-Zellen zu untersuchen, wurden mögliche neue Interaktionspartner (*EIF3H, PKCBP, KLF6* und *SDCBP*) isoliert. TTK stellt außerdem ein interessantes Target für die Entwicklung einer Immuntherapie dar.

In dieser Arbeit konnten neue Faktoren identifiziert werden, die für die Etablierung einer neuen Therapie von Nutzen sein könnten.

Ausblickend wäre es interessant, sowohl *PRAME*- als auch *TTK*-spezifische CD8⁺ T-Zellen zu generieren, um die Eignung dieser Gene für eine gezielte Therapie besser zu untersuchen. Außerdem wäre es wichtig den *MGMT* SNP rs12917 an einer größeren Anzahl von HL-Patienten zu untersuchen und dies mit PBMC von gesunden Spendern zu vergleichen.

Die Gene, die bei den DNA-Mikroarray-Analysen identifiziert wurden, wie *FTL*, *DEPDC1B*, *XAF1* und *IFI6*, sollten weiter hinsichtlich ihrer Bedeutung für das HL untersucht werden. Die Interaktion von TTK mit KLF6, EIF3H und PKCBP sollte in HL-Zellen bestätigt werden.

6 Literaturverzeichnis

Abrieu A, Magnaghi-Jaulin L, Kahana JA, Peter M, Castro A, Vigneron S, Lorca T, Cleveland DW, Labbé JC. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell. 2001; 106: 83-93.

Aebi S, Kröning R, Cenni B, Sharma A, Fink D, Los G, Weisman R, Howell SB, Christen RD. All-trans retinoic acid enhances cisplatin-induced apoptosis in human ovarian adenocarcinoma and in squamous head and neck cancer cells. Clin Cancer Res. 1997; 3: 2033-38.

Affer M, Dao S, Liu C, Olshen AB, Mo Q, Viale A, Lambek CL, Marr TG, Clarkson BD. Gene Expression Differences between Enriched Normal and Chronic Myelogenous Leukemia Quiescent Stem/Progenitor Cells and Correlations with Biological Abnormalities. J Oncol. 2011; 2011: 798592.

Agostinelli C, Pileri S. Pathobiology of hodgkin lymphoma. Mediterr J Hematol Infect Dis. 2014; 6: e2014040.

Aktaş S, Kargi A, Olgun N, Diniz G, Erbay A, Vergin C. Prognostic significance of cell proliferation and apoptosis-regulating proteins in Epstein-Barr virus positive and negative pediatric Hodgkin lymphoma. Lymphat Res Biol. 2007; 5: 175-82.

Al-Ejeh F, Simpson PT, Saunus JM, Klein K, Kalimutho M, Shi W, Miranda M, Kutasovic J, Raghavendra A, Madore J, Reid L, Krause L, Chenevix-Trench G, Lakhani SR, Khanna KK. Meta-analysis of the global gene expression profile of triplenegative breast cancer identifies genes for the prognostication and treatment of aggressive breast cancer. Oncogenesis. 2014; 3: e124.

Aldinucci D, Gloghini A, Pinto A, De Filippi R, Carbone A. The classical Hodgkin's lymphoma microenvironment and its role in promoting tumour growth and immune escape. J Pathol. 2010; 221: 248-63.

Allelfrequencies. http://allelefrequencies.net/hla6006a.asp Aufgerufen am 03.02.2015.

Andersson J. Epstein-Barr virus and Hodgkin's lymphoma. Herpes. 2006; 13: 12-6.

Ansell SM. Hodgkin lymphoma: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol. 2014; 89: 771-9.

Ansell SM, Armitage JO. Management of Hodgkin Lymphoma. Mayo Clin Proc. 2006; 81: 419-26.

Aricò E, Belardelli F. Interferon- α as antiviral and antitumor vaccine adjuvants: mechanisms of action and response signature. J Interferon Cytokine Res. 2012; 32: 235-47.

Arrieta O, González-De la Rosa CH, Aréchaga-Ocampo E, Villanueva-Rodríguez G, Cerón-Lizárraga TL, Martínez-Barrera L, Vázquez-Manríquez ME, Ríos-Trejo MA, Alvarez-Avitia MA, Hernández-Pedro N, Rojas-Marín C, De la Garza J. Randomized phase II trial of All-trans-retinoic acid with chemotherapy based on paclitaxel and cisplatin as first-line treatment in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2010; 28: 3463-71.

Aruga A, Takeshita N, Kotera Y, Okuyama R, Matsushita N, Ohta T, Takeda K, Yamamoto M. Long-term Vaccination with Multiple Peptides Derived from Cancer-Testis Antigens Can Maintain a Specific T-cell Response and Achieve Disease Stability in Advanced Biliary Tract Cancer. Clin Cancer Res. 2013; 19: 2224-31.

Ayi TC, Loh KC, Ali RB, Li BF. Intracellular localization of human DNA repair enzyme methylguanine-DNA methyltransferase by antibodies and its importance. Cancer Res 1992; 52: 6423-30.

Baldi A, Lombardi D, Russo P, Palescandolo E, De Luca A, Santini D, Baldi F, Rossiello L, Dell'Anna ML, Mastrofrancesco A, Maresca V, Flori E, Natali PG, Picardo M, Paggi MG. Ferritin contributes to melanoma progression by modulating cell growth and sensitivity to oxidative stress. Clin Cancer Res. 2005; 11: 3175-83.

Baldi A, Battista T, De Luca A, Santini D, Rossiello L, Baldi F, Natali PG, Lombardi D, Picardo M, Felsani A, Paggi MG Identification of genes down-regulated during melanoma progression: a cDNA array study. Exp Dermatol. 2003; 12: 213-18.

Bayrak OF, Aydemir E, Gulluoglu S, Sahin F, Sevli S, Yalvac ME, Acar H, Ozen M. The effects of chemotherapeutic agents on differentiated chordoma cells. J Neurosurg Spine. 2011; 15: 620-4.

Braeuninger A, Küppers R, Strickler JG, Wacker HH, Rajewsky K, Hansmann ML. Hodgkin and Reed-Sternberg cells in lymphocyte predominant Hodgkin disease represent clonal populations of germinal center-derived tumor B cells. Proc Natl Acad Sci U S A. 1997; 94: 9337-42.

Begemann H. Lymphogranulomatose. In: Klinische Hämatologie. Hrsg. von H. Begemann und J. Rastetter. 3. Aufl. 1986. Stuttgart, Thieme Verlag. S. 642-644.

Bonadonna G, Viviani S, Bonfante V, Gianni AM, Valagussa P. Survival in Hodgkin's disease patients--report of 25 years of experience at the Milan Cancer Institute. Eur J Cancer. 2005; 41: 998-1006.

Borchmann P, Eichenauer DA, Engert A. State of the art in the treatment of Hodgkin lymphoma. Nat Rev Clin Oncol. 2012; 9: 450-9.

Boukerche H, Su ZZ, Emdad L, Baril P, Balme B, Thomas L, Randolph A, Valerie K, Sarkar D, Fisher PB. mda-9/Syntenin: a positive regulator of melanoma metastasis. Cancer Res. 2005; 65: 10901-11.

Brough R, Frankum JR, Sims D, Mackay A, Mendes-Pereira AM, Bajrami I, Costa-Cabral S, Rafiq R, Ahmad AS, Cerone MA, Natrajan R, Sharpe R, Shiu KK, Wetterskog D, Dedes KJ, Lambros MB, Rawjee T, Linardopoulos S, Reis-Filho JS, Turner NC, Lord CJ, Ashworth A. Functional viability profiles of breast cancer. Cancer Discov. 2011; 1: 260-73.

Camacho-Vanegas O, Narla G, Teixeira MS, DiFeo A, Misra A, Singh G, Chan AM, Friedman SL, Feuerstein BG, Martignetti JA. Functional inactivation of the KLF6 tumor suppressor gene by loss of heterozygosity and increased alternative splicing in glioblastoma. Int J Cancer. 2007; 121: 1390-5.

Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet. 2006; 38: 1043-8.

Celegato M, Borghese C, Umezawa K, Casagrande N, Colombatti A, Carbone A, Aldinucci D. The NF-kB inhibitor DHMEQ decreases survival factors, overcomes the protective activity of microenvironment and synergizes with chemotherapy agents in classical Hodgkin lymphoma. Cancer Lett. 2014; 349: 26-34.

Chang ET, Blomqvist P, Lambe M. Seasonal variation in the diagnosis of Hodgkin lymphoma in Sweden. Int J Cancer. 2005; 115: 127-30.

Chaudary N, Hill RP. Hypoxia and metastasis. Clin Cancer Res. 2007; 13: 1947-49.

Chekhun VF, Lukyanova NY, Burlaka CA, Bezdenezhnykh NA, Shpyleva SI, Tryndyak VP, Beland FA, Pogribny IP. Iron metabolism disturbances in the MCF-7 human breast cancer cells with acquired resistance to doxorubicin and cisplatin. Int J Oncol. 2013; 43: 1481-86.

Cheriyath V, Leaman DW, Borden EC. Emerging roles of FAM14 family members (G1P3/ISG 6-16 and ISG12/IFI27) in innate immunity and cancer. J Interferon Cytokine Res. 2011; 31: 173-81.

Choudhary GS, Al-Harbi S, Mazumder S, Hill BT, Smith MR, Bodo J, Hsi ED, Almasan A. MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies. Cell Death Dis. 2015; 6: e1593.

Clemons M, Kelly J, Watson AJ, Howell A, McElhinney RS, McMurry TB, Margison GP. O6-(4-bromothenyl)guanine reverses temozolomide resistance in human breast tumour MCF-7 cells and xenografts. Br J Cancer. 2005; 93: 1152-6.

Connors JM. Risk assessment in the management of newly diagnosed classical Hodgkin lymphoma. Blood. 2015. pii: blood-2014-07-537480. [Epub ahead of print]

Daniel J, Coulter J, Woo JH, Wilsbach K, Gabrielson E. High levels of the Mps1 checkpoint protein are protective of aneuploidy in breast cancer cells. Proc Natl Acad Sci U S A. 2011; 108: 5384-9.

De Carvalho DD, Binato R, Pereira WO, Leroy JM, Colassanti MD, Proto-Siqueira R, Bueno-Da-Silva AE, Zago MA, Zanichelli MA, Abdelhay E, Castro FA, Jacysyn JF, Amarante-Mendes GP. BCR-ABL-mediated upregulation of PRAME is responsible for knocking down TRAIL in CML patients. Oncogene. 2011; 30: 223-33.

Deutsches Kinderkrebsregister, Jahresbericht 2012, http://www.kinderkrebsregister.de/fileadmin/kliniken/dkkr/pdf/jb/jb2012/jb2012_TuA_4 s.pdf . Aufgerufen am 08.01.2015.

Devilard E, Bertucci F, Trempat P, Bouabdallah R, Loriod B, Giaconia A, Brousset P, Granjeaud S, Nguyen C, Birnbaum D, Birg F, Houlgatte R, Xerri L. Gene expression profiling defines molecular subtypes of classical Hodgkin's disease. Oncogene. 2002; 21: 3095-102.

Diehl V, Thomas RK, Re D. Part II: Hodgkin's lymphoma--diagnosis and treatment. Lancet Oncol. 2004; 5: 19-26.

Diehl V, Kirchner HH, Burrichter H, Stein H, Fonatsch C, Gerdes J, Schaadt M, Heit W, Uchanska-Ziegler B, Ziegler A, Heintz F, Sueno K. Characteristics of Hodgkin's disease-derived cell lines. Cancer Treat Rep. 1982; 66: 615-32.

DiFeo A, Narla G, Hirshfeld J, Camacho-Vanegas O, Narla J, Rose SL, Kalir T, Yao S, Levine A, Birrer MJ, Bonome T, Friedman SL, Buller RE, Martignetti JA Roles of KLF6 and KLF6-SV1 in ovarian cancer progression and intraperitoneal dissemination. Clin Cancer Res. 2006; 12: 3730-9.

Drexler HG, Gaedicke G, Lok MS, Diehl V, Minowada J. Hodgkin's disease derived cell lines HDLM-2 and L-428: comparison of morphology, immunological and isoenzyme profiles. Leuk Res. 1986; 10: 487-500.

Drexler HG, Minowada J. Hodgkin's disease derived cell lines: a review. Hum Cell. 1992; 5: 42-53.

Ebert MP, Günther T, Hoffmann J, Yu J, Miehlke S, Schulz HU, Roessner A, Korc M, Malfertheiner P.Expression of metallothionein II in intestinal metaplasia, dysplasia, and gastric cancer. Cancer Res. 2000; 60: 1995-2001.

Ensembl.

 $\frac{\text{http://www.ensembl.org/Homo}}{\text{0170430;r=}10:129467184-129768007;v=} \text{rs}12917;vdb=variation;vf=}31683.$

Aufgerufen am 02.02.2015.

Epping MT, Wang L, Edel MJ, Carlée L, Hernandez M, Bernards R. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell. 2005; 122: 835-47.

Epping MT, Bernards R. A causal role for the human tumor antigen preferentially expressed antigen of melanoma in cancer. Cancer Res. 2006; 66: 10639-42

Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG. Inactivation of the DNA Repair Gene O6-Methylguanine-DNA Methyltransferase by Promoter Hypermethylation is a Common Event in Primary Human Neoplasia. Cancer Research. 1999; 59: 793-7.

Fakler M, Loeder S, Vogler M, Schneider K, Jeremias I, Debatin KM, Fulda S. Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance. Blood. 2009; 113: 1710-22.

Fanale M, Assouline S, Kuruvilla J, Solal-Céligny P, Heo DS, Verhoef G, Corradini P, Abramson JS, Offner F, Engert A, Dyer MJ, Carreon D, Ewald B, Baeck J, Younes A, Freedman AS. Phase IA/II, multicentre, open-label study of the CD40 antagonistic monoclonal antibody lucatumumab in adult patients with advanced non-Hodgkin or Hodgkin lymphoma. Br J Haematol. 2014; 164: 258-65.

Fellenberg J, Bernd L, Delling G, Witte D, Zahlten-Hinguranage A. Prognostic significance of drug-regulated genes in high-grade osteosarcoma. Mod Pathol. 2007; 20: 1085-94.

Fisk HA, Mattison CP, Winey M. Human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression. Proc Natl Acad Sci U S A. 2003; 100: 14875-80.

Foell JL, Max D, Giersberg C, Korholz D, Staege MS. Sensitivity of Hodgkin's lymphoma cell lines to the cell cycle inhibitor roscovitine. Anticancer Res. 2008; 28: 887-94.

Fong WG, Liston P, Rajcan-Separovic E, St Jean M, Craig C, Korneluk RG. Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines. Genomics. 2000; 70: 113-22.

Fuchs M, Diehl V, Re D. Current strategies and new approaches in the treatment of Hodgkin's lymphoma. Pathobiology. 2006; 73: 126-40.

Fulda S, Wick W, Weller M, Debatin KM. Smac agonists sensitize for Apo2L/TRAIL-or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med. 2002; 8: 808-15.

Gallamini A, Di Raimondo F, La Nasa G, Romano A, Borra A, Greco M. Standard therapies versus novel therapies in Hodgkin lymphoma. Immunol Lett. 2013; 155: 56-9.

Gallamini A, Rigacci L, Merli F, Nassi L, Bosi A, Capodanno I, Luminari S, Vitolo U, Sancetta R, Iannitto E, Trentin L, Stelitano C, Tavera S, Biggi A, Castagnoli A, Versari A, Gregianin M, Pelosi E, Torchio P, Levis A. The predictive value of positron emission tomography scanning performed after two courses of standard therapy on treatment outcome in advanced stage Hodgkin's disease. Haematologica. 2006; 91: 475-81.

Garfin PM, Link MP, Donaldson SS, Advani RH, Luna-Fineman S, Kharbanda S, Porteus M, Weinberg KI, Agarwal-Hashmi R. Improved outcomes after autologous bone marrow transplantation for children with relapsed or refractory hodgkin lymphoma: twenty years experience at a single institution. Biol Blood Marrow Transplant. 2015; 21: 326-34.

Gaudio F, Perrone T, Mestice A, Curci P, Giordano A, Delia M, Pastore D, Specchia G. Peripheral blood CD4/CD19 cell ratio is an independent prognostic factor in classical Hodgkin lymphoma Leuk Lymphoma. 2014; 55: 1596-601.

Giaisi M, Köhler R, Fulda S, Krammer PH, Li-Weber M. Rocaglamide and a XIAP inhibitor cooperatively sensitize TRAIL-mediated apoptosis in Hodgkin's lymphomas. Int J Cancer. 2012; 131: 1003-8.

Gobbi PG, Ferreri AJ, Ponzoni M, Levis A. Hodgkin lymphoma. Crit Rev Oncol Hematol. 2013; 85: 216-37.

Gordon DJ, Resio B, Pellman D. Causes and consequences of aneuploidy in cancer. Nat Rev Genet. 2012; 13: 189-203.

Graham FL., Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. The Journal of general virology. 1977; 36: 59-74

Greaves P, Clear A, Coutinho R, Wilson A, Matthews J, Owen A, Shanyinde M, Lister TA, Calaminici M, Gribben JG. Expression of FOXP3, CD68, and CD20 at diagnosis in the microenvironment of classical Hodgkin lymphoma is predictive of outcome. J Clin Oncol. 2013; 31: 256-62.

Griffioen M, Kessler JH, Borghi M, van Soest RA, van der Minne CE, Nouta J, van der Burg SH, Medema JP, Schrier PI, Falkenburg JH, Osanto S, Melief CJ. Detection and functional analysis of CD8+ T cells specific for PRAME: a target for T-cell therapy. Clin Cancer Res. 2006; 12: 3130-6.

Grunt ThW, Dittrich E, Offterdinger M, Schneider SM, Dittrich Ch, Huber H. Effects of retinoic acid and fenretinide on the c-erbB-2 expression, growth and cisplatin sensitivity of breast cancer cells. Br J Cancer.1998; 78: 79-87

Győrffy B, Bottai G, Lehmann-Che J, Kéri G, Orfi L, Iwamoto T, Desmedt C, Bianchini G, Turner NC, de Thè H, André F, Sotiriou C, Hortobagyi GN, Di Leo A, Pusztai L, Santarpia L. TP53 mutation-correlated genes predict the risk of tumor relapse and identify MPS1 as a potential therapeutic kinase in TP53-mutated breast cancers. Mol Oncol. 2014; 8: 508-19.

Hadjidaniel MD, Reynolds CP. Antagonism of cytotoxic chemotherapy in neuroblastoma cell lines by 13-cis-retinoic acid is mediated by the antiapoptotic Bcl-2 family proteins. Mol Cancer Ther. 2010; 9: 3164-74.

Harker-Murray PD, Drachtman RA, Hodgson DC, Chauvenet AR, Kelly KM, Cole PD. Stratification of treatment intensity in relapsed pediatric Hodgkin lymphoma Pediatr Blood Cancer. 2014; 61: 579-86.

Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352: 997-1003.

Hernandez-Luna MA, Rocha-Zavaleta L, Vega MI, Huerta-Yepez S. Hypoxia inducible factor-1α induces chemoresistance phenotype in non-Hodgkin lymphoma cell line via up-regulation of Bcl-xL. Leuk Lymphoma. 2013; 54: 1048-55.

Ho VT, Bunn HF. Effects of transition metals on the expression of the erythropoietin gene: further evidence that the oxygen sensor is a heme protein. Biochem Biophys Res Commun. 1996; 223: 175-80.

Hu Y, Zhou M, Li K, Zhang K, Kong X, Zheng Y, Li J, Liu L. Two DNA repair gene polymorphisms on the risk of gastrointestinal cancers: a meta-analysis. Tumour Biol. 2014; 35: 1715-25.

Huang J, Yao WY, Zhu Q, Tu SP, Yuan F, Wang HF, et al. XAF1 as a prognostic biomarker and therapeutic target in pancreatic cancer. Cancer Sci. 2010; 101: 559-67.

Huang YF, Chang MD, Shieh SY. TTK/hMps1 mediates the p53-dependent postmitotic checkpoint by phosphorylating p53 at Thr18. Mol Cell Biol. 2009; 29: 2935-44.

Hung SH, Lee FP, Su CH, Tseng H. Effect of all-trans retinoic acid on the growth of two nasopharyngeal cancer cell lines and its treatment potential in combination with cisplatin. Eur Arch Otorhinolaryngol. 2013; 270: 695-704.

Hwangbo C, Kim J, Lee JJ, Lee JH. Activation of the integrin effector kinase focal adhesion kinase in cancer cells is regulated by crosstalk between protein kinase Calpha and the PDZ adapter protein mda-9/Syntenin. Cancer Res. 2010; 70: 1645-55.

Iinuma H, Fukushima R, Inaba T, Tamura J, Inoue T, Ogawa E, Horikawa M, Ikeda Y, Matsutani N, Takeda K, Yoshida K, Tsunoda T, Ikeda T, Nakamura Y, Okinaga K. Phase I clinical study of multiple epitope peptide vaccine combined with chemoradiation therapy in esophageal cancer patients. J Transl Med. 2014; 12: 84.

Ikeda H, Lethé B, Lehmann F, van Baren N, Baurain JF, de Smet C, Chambost H, Vitale M, Moretta A, Boon T, Coulie PG. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity. 1997; 6: 199-208.

Ito G, Uchiyama M, Kondo M, Mori S, Usami N, Maeda O, Kawabe T, Hasegawa Y, Shimokata K, Sekido Y. Krüppel-like factor 6 is frequently down-regulated and induces apoptosis in non-small cell lung cancer cells. Cancer Res. 2004; 64: 3838-43.

Jaffe ES. The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematology Am Soc Hematol Educ Program. 2009: 523-31.

Jayanthan A, Howard SC, Trippett T, Horton T, Whitlock JA, Daisley L, Lewis V, Narendran A. Targeting the Bcl-2 family of proteins in Hodgkin lymphoma: in vitro cytotoxicity, target modulation and drug combination studies of the Bcl-2 homology 3 mimetic ABT-737. Leuk Lymphoma. 2009; 50: 1174-82.

Jones RJ, Gocke CD, Kasamon YL, Miller CB, Perkins B, Barber JP, Vala MS, Gerber JM, Gellert LL, Siedner M, Lemas MV, Brennan S, Ambinder RF, Matsui W. Circulating clonotypic B cells in classic Hodgkin lymphoma. Blood. 2009; 113: 5920-5926.

Jézéquel P, Campion L, Spyratos F, Loussouarn D, Campone M, Guérin-Charbonnel C, Joalland MP, André J, Descotes F, Grenot C, Roy P, Carlioz A, Martin PM, Chassevent A, Jourdan ML, Ricolleau G. Validation of tumor-associated macrophage ferritin light chain as a prognostic biomarker in node-negative breast cancer tumors: A multicentric 2004 national PHRC study. Int J Cancer. 2012; 131: 426-37.

José-Enériz ES, Román-Gómez J, Cordeu L, Ballestar E, Gárate L, Andreu EJ, Isidro I, Guruceaga E, Jiménez-Velasco A, Heiniger A, Torres A, Calasanz MJ, Esteller M, Gutiérrez NC, Rubio A, Pérez-Roger I, Agirre X, Prósper F. BCR-ABL1-induced expression of HSPA8 promotes cell survival in chronic myeloid leukaemia. Br J Haematol. 2008; 142: 571-82.

Jozan S, Paute S, Courtade-Saïdi M, Julié S, Vidal S, Bugat R, Valette A. All trans retinoic acid enhances CDDP- induced apoptosis: modulation of the CDDP effect on cell cycle progression. Int J Oncol. 2002; 20: 1289-95.

Kaina B, Fritz G, Coquerelle T. Contribution of O6-alkylguanine and N-alkylpurines to the formation of sister chromatid exchanges, chromosomal aberrations, and gene mutations: new insights gained from studies of genetically engineered mammalian cell lines. Environ Mol Mutagen 1993; 22: 283-92.

Kaistha BP, Honstein T, Müller V, Bielak S, Sauer M, Kreider R, Fassan M, Scarpa A, Schmees C, Volkmer H, Gress TM, Buchholz M. Key role of dual specificity kinase TTK in proliferation and survival of pancreatic cancer cells. Br J Cancer. 2014; 111: 1780-7.

Kamesaki H, Fukuhara S, Tatsumi E, Uchino H, Yamabe H, Miwa H, Shirakawa S, Hatanaka M, Honjo T. Cytochemical, immunologic, chromosomal, and molecular genetic analysis of a novel cell line derived from Hodgkin's disease. Blood. 1986; 68: 285-92.

Kamper P, Ludvigsen M, Bendix K, Hamilton-Dutoit S, Rabinovich GA, Møller MB, Nyengaard JR, Honoré B, d'Amore F. Proteomic analysis identifies galectin-1 as a predictive biomarker for relapsed/refractory disease in classical Hodgkin lymphoma. Blood. 2011; 117: 6638-49.

Kanda T, Sullivan KF, Wahl GM. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol. 1998; 8: 377-85.

Kanoun S, Rossi C, Berriolo-Riedinger A, Dygai-Cochet I, Cochet A, Humbert O, Toubeau M, Ferrant E, Brunotte F, Casasnovas RO. Baseline metabolic tumour volume is an independent prognostic factor in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2014; 41: 1735-43.

Kashkar H, Haefs C, Shin H, Hamilton-Dutoit SJ, Salvesen GS, Kronke M, Jurgensmeier JM. XIAP-mediated caspase inhibition in Hodgkin's lymphoma-derived B cells. J Exp Med. 2003; 198: 341-7.

Kawano R, Karube K, Kikuchi M, Takeshita M, Tamura K, Uike N, Eto T, Ohshima K, Suzumiya J. Oncogene associated cDNA microarray analysis shows PRAME gene expression is a marker for response to anthracycline containing chemotherapy in patients with diffuse large B-cell lymphoma. J Clin Exp Hematop. 2009; 49: 1-7.

Kawasaki K, Minoshima S, Nakato E, Shibuya K, Shintani A, Schmeits JL, Wang J, Shimizu N. One-megabase sequence analysis of the human immunoglobulin lambda gene locus. Genome Res. 1997; 7: 250-261.

Kefford RF, Thomas NP, Corrie PG, Palmer C, Abdi E, Kotasek D, Beith J, Ranson M, Mortimer P, Watson AJ, Margison GP, Middleton MR. A phase I study of extended dosing with lomeguatrib with temozolomide in patients with advanced melanoma. Br J Cancer. 2009; 100: 1245-9.

Kempkes B, Zimber-Strobl U, Eissner G, Pawlita M, Falk M, Hammerschmidt W, Bornkamm GW. Epstein-Barr virus nuclear antigen 2 (EBNA2)-oestrogen receptor fusion proteins complement the EBNA2-deficient Epstein-Barr virus strain P3HR1 in transformation of primary B cells but suppress growth of human B cell lymphoma lines. J Gen Virol. 1996; 77: 227-37.

Kewitz S, Stiefel M, Kramm CM, Staege MS. Impact of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and MGMT expression on dacarbazine resistance of Hodgkin's lymphoma cells. Leuk Res. 2014; 38: 138-43.

Kewitz S, Staege MS. Knock-down of PRAME increases retinoic acid signaling and cytotoxic drug sensitivity of Hodgkin lymphoma cells. PLoS One. 2013; 8: e55897.

Kewitz S, Bernig T, Staege MS. Histone deacetylase inhibition restores cisplatin sensitivity of Hodgkin's lymphoma cells. Leuk Res. 2012; 36: 773-8.

Kewitz. Funktionelle in-vitro-Charakterisierung Hodgkin-Lymphom assoziierter Chemoresistenzfaktoren. Diplomarbeit im Fachbereich Biologie der Martin-Luther-Universität Halle-Wittenberg. 2011. Seite: 63.

Khan OA, Ranson M, Michael M, Olver I, Levitt NC, Mortimer P, Watson AJ, Margison GP, Midgley R, Middleton MR. A phase II trial of lomeguatrib and temozolomide in metastatic colorectal cancer. Br J Cancer. 2008; 98: 1614-8.

Khandani AH, Dunphy CH, Meteesatien P, Dufault DL, Ivanovic M, Shea TC. Glut1 and Glut3 expression in lymphoma and their association with tumor intensity on 18F-fluorodeoxyglucose positron emission tomography. Nucl Med Commun. 2009; 30: 594-601.

Kim LH, Nadarajah VS, Peh SC, Poppema S. Expression of Bcl-2 family members and presence of Epstein-Barr virus in the regulation of cell growth and death in classical Hodgkin's lymphoma. Histopathology. 2004; 44: 257-67.

Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M. Tumor hypoxia: a target for selective cancer therapy. Cancer Sci. 2003; 94: 1021-8.

Klimm B, Goergen H, Fuchs M, von Tresckow B, Böll B, Meissner J, Glunz A, Diehl V, Eich HT, Engert A, Borchmann P. Impact of risk factors on outcomes in early-stage Hodgkin's lymphoma: an analysis of international staging definitions. Ann Oncol. 2013; 24: 3070-6.

Krebs in Deutschland 2009/2010. 9. Ausgabe. Berlin 2013. Robert Koch-Institut (Hrsg) und die Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. (Hrsg).

Kono K, Iinuma H, Akutsu Y, Tanaka H, Hayashi N, Uchikado Y, Noguchi T, Fujii H, Okinaka K, Fukushima R, Matsubara H, Ohira M, Baba H, Natsugoe S, Kitano S, Takeda K, Yoshida K, Tsunoda T, Nakamura Y. Multicenter, phase II clinical trial of cancer vaccination for advanced esophageal cancer with three peptides derived from novel cancer-testis antigens. J Transl Med. 2012; 10: 141.

Kono K, Mizukami Y, Daigo Y, Takano A, Masuda K, Yoshida K, Tsunoda T, Kawaguchi Y, Nakamura Y, Fujii H. Vaccination with multiple peptides derived from novel cancer-testis antigens can induce specific T-cell responses and clinical responses in advanced esophageal cancer. Cancer Sci. 2009; 100: 1502-9.

Koo TH, Lee JJ, Kim EM, Kim KW, Kim HD, Lee JH. Syntenin is overexpressed and promotes cell migration in metastatic human breast and gastric cancer cell lines. Oncogene. 2002; 21: 4080-8.

Koritschoner NP, Bocco JL, Panzetta-Dutari GM, Dumur CI, Flury A, Patrito LC. A novel human zinc finger protein that interacts with the core promoter element of a TATA box-less gene. J Biol Chem. 1997; 272: 9573-80.

Körholz D, Claviez A, Hasenclever D, Kluge R, Hirsch W, Kamprad F, Dörffel W, Wickmann L, Papsdorf K, Dieckmann K, Kahn T, Mauz-Körholz C, Dannenberg C, Pötter R, Brosteanu O, Schellong G, Sabri O. The concept of the GPOH-HD 2003 therapy study for pediatric Hodgkin's disease: evolution in the tradition of the DAL/GPOH studies. Klin Padiatr. 2004; 216: 150-6.

Kudriavtseva AV, Anedchenko EA, Oparina NIu, Krasnov GS, Kashkin KN, Dmitriev AA, Zborobskaia IB, Kondtrat'eva TT, Vinogradova TV, Zinov'eva MV, Kopantsev EP, Senchenko VN. Expression of FTL and FTH genes encoding ferretin subunits in lung and renal carcinomas. Mol Biol (Mosk). 2009; 43: 1044-54.

Küppers R, Engert A, Hansmann ML. Hodgkin lymphoma. J Clin Invest. 2012; 122: 3439-47.

Küppers R. The biology of Hodgkin's lymphoma. Nat Rev Cancer. 2009a; 9: 15-27.

Küppers R. Molecular biology of Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program. 2009b: 491-6.

Landi MT, Dracheva T, Rotunno M, Figueroa JD, Liu H, Dasgupta A, Mann FE, Fukuoka J, Hames M, Bergen AW, Murphy SE, Yang P, Pesatori AC, Consonni D, Bertazzi PA, Wacholder S, Shih JH, Caporaso NE, Jen J. Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One. 2008; 3: e1651.

Lauze E, Stoelcker B, Luca FC, Weiss E, Schutz AR, Winey M. Yeast spindle pole body duplication gene MPS1 encodes an essential dual specificity protein kinase. EMBO J. 1995; 14: 1655-63.

Le NT, Richardson DR. The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim Biophys Acta. 2002; 1603: 31-46.

Lee JH, Park H, Chung H, Choi S, Kim Y, Yoo H, Kim TY, Hann HJ, Seong I, Kim J, Kang KG, Han IO, Oh ES. Syndecan-2 regulates the migratory potential of melanoma cells. J Biol Chem. 2009; 284: 27167-75.

Li F, Huang L, Su XL, Gu QH, Hu CP. Inhibition of nuclear factor-κB activity enhanced chemosensitivity to cisplatin in human lung adeno-carcinoma A549 cells under chemical hypoxia conditions. Chin Med J (Engl). 2013; 126: 3276-82.

Li M, Fang X, Baker DJ, Guo L, Gao X, Wei Z, Han S, van Deursen JM, Zhang P. The ATM-p53 pathway suppresses aneuploidy-induced tumorigenesis. Proc Natl Acad Sci U S A. 2010; 107: 14188-93.

Lin HM, Teitell MA. Second malignancy after treatment of pediatric Hodgkin disease. J Ped Hematol Oncol. 2005; 27: 28-36.

Linch DC, Winfield D, Goldstone AH, Moir D, Hancock B, McMillan A, Chopra R, Milligan D, Hudson GV. Dose intensification with autologous bone-marrow transplantation in relapsed and resistant Hodgkin's disease: results of a BNLI randomised trial. Lancet. 1993; 341: 1051-4.

Liston P1, Fong WG, Kelly NL, Toji S, Miyazaki T, Conte D, Tamai K, Craig CG, McBurney MW, Korneluk RG. Identification of XAF1 as an antagonist of XIAP anti-Caspase activity. Nat Cell Biol. 2001; 3: 128-33.

Liu J, Zhang R, Chen F, Yu C, Sun Y, Jia C, Zhang L, Salahuddin T, Li X, Lang J, Song X. MGMT Leu84Phe polymorphism contributes to cancer susceptibility: evidence from 44 case-control studies. PLoS One. 2013; 8: e75367.

Liu L, Gerson SL. Targeted modulation of MGMT: clinical implications. Clin Cancer Res. 2006; 12: 328-331.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25: 402-8.

Loh YH, Mitrou PN, Wood A, Luben RN, McTaggart A, Khaw KT, Rodwell SA. SMAD7 and MGMT genotype variants and cancer incidence in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk Study. Cancer Epidemiol. 2011; 35: 369-74.

Lu X, Kang Y. Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res. 2010; 16: 5928-35.

Luetkens T, Schafhausen P, Uhlich F, Stasche T, Akbulak R, Bartels BM, Hildebrandt Y, Gontarewicz A, Kobold S, Meyer S, Gordic M, Bartels K, Lajmi N, Cao Y, Kröger N, Bokemeyer C, Brümmendorf TH, Atanackovic D. Expression, epigenetic regulation, and humoral immunogenicity of cancer-testis antigens in chronic myeloid leukemia. Leuk Res. 2010; 34: 1647-55.

Ma B, Wang Y, Zhou X, Huang P, Zhang R, Liu T, Cui C, Liu X, Wang Y. Synergistic suppression effect on tumor growth of hepatocellular carcinoma by combining oncolytic adenovirus carrying XAF1 with cisplatin. J Cancer Res Clin Oncol. 2014. [Epub ahead of print].

Mackenzie GG, Queisser N, Wolfson ML, Fraga CG, Adamo AM, Oteiza PI. Curcumin induces cell-arrest and apoptosis in association with the inhibition of constitutively active NF-kappaB and STAT3 pathways in Hodgkin's lymphoma cells. Int J Cancer. 2008; 123: 56-65.

Mahmood SF, Gruel N, Chapeaublanc E, Lescure A, Jones T, Reyal F, Vincent-Salomon A, Raynal V, Pierron G, Perez F, Camonis J, Del Nery E, Delattre O, Radvanyi F, Bernard-Pierrot I. A siRNA screen identifies RAD21, EIF3H, CHRAC1 and TANC2 as driver genes within the 8q23, 8q24.3 and 17q23 amplicons in breast cancer with effects on cell growth, survival and transformation. Carcinogenesis. 2014; 35: 670-82.

Matsuda Y, Ishiwata T, Yoshimura H, Hagio M, Arai T. Inhibition of nestin suppresses stem cell phenotype of glioblastomas through the alteration of post-translational modification of heat shock protein HSPA8/HSC71. Cancer Lett. 2015; 357: 602-11.

Mauz-Körholz C, Hasenclever D, Dörffel W, Ruschke K, Pelz T, Voigt A, Stiefel M, Winkler M, Vilser C, Dieckmann K, Karlén J, Bergsträsser E, Fosså A, Mann G, Hummel M, Klapper W, Stein H, Vordermark D, Kluge R, Körholz D. Procarbazine-free OEPA-COPDAC chemotherapy in boys and standard OPPA-COPP in girls have comparable effectiveness in pediatric Hodgkin's lymphoma: the GPOH-HD-2002 study. J Clin Oncol. 2010; 28: 3680-6.

Mills GB, Schmandt R, McGill M, Amendola A, Hill M, Jacobs K, et al. Expression of TTK, a novel human protein kinase, is associated with cell proliferation. In: J Biol Chem. 1992; 267: 16000–6.

Mitrou PS, Länger, F. Atlas der Hämatologie und hämatologischen Onkologie. 2001. Frankfurt am Main, Mitrou & Länger. S. 136-53.

Miyaki M, Yamaguchi T, Iijima T, Funata N, Mori T. Difference in the role of loss of heterozygosity at 10p15 (KLF6 locus) in colorectal carcinogenesis between sporadic and familial adenomatous polyposis and hereditary nonpolyposis colorectal cancer patients. Oncology. 2006; 71: 131-5.

Mizukami Y, Kono K, Daigo Y, Takano A, Tsunoda T, Kawaguchi Y, Nakamura Y, Fujii H. Detection of novel cancer-testis antigen-specific T-cell responses in TIL, regional lymph nodes, and PBL in patients with esophageal squamous cell carcinoma. Cancer Sci. 2008; 99: 1448-54.

Mizushima S, Nagata S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 1990; 18: 5322.

Montalban C, Abraira V, Morente M, Acevedo A, Aguilera B, Bellas C, Fraga M, Del Moral RG, Menarguez J, Oliva H, Sanchez-Beato M, Piris MA. Epstein-Barr virus-latent membrane protein 1 expression has a favorable influence in the outcome of patients with Hodgkin's Disease treated with chemotherapy. Leuk Lymphoma. 2000; 39: 563-72.

Mukai S, Hiyama T, Tanaka S, Yoshihara M, Arihiro K, Chayama K. Involvement of Kruppel-like factor 6 (KLF6) mutation in the development of nonpolypoid colorectal carcinoma. World J Gastroenterol. 2007; 13: 3932-8.

Murphy BJ, Laderoute KR, Chin RJ, Sutherland RM. Metallothionein IIA is upregulated by hypoxia in human A431 squamous carcinoma cells. Cancer Res. 1994; 54: 5808-10.

Nagai H. Recent advances in Hodgkin lymphoma: interim PET and molecular-targeted therapy. Jpn J Clin Oncol. 2015; 45: 137-45.

Naud S, Westwood IM, Faisal A, Sheldrake P, Bavetsias V, Atrash B, Cheung KM, Liu M, Hayes A, Schmitt J, Wood A, Choi V, Boxall K, Mak G, Gurden M, Valenti M, de Haven Brandon A, Henley A, Baker R, McAndrew C, Matijssen B, Burke R, Hoelder S, Eccles SA, Raynaud FI, Linardopoulos S, van Montfort RL, Blagg J. Structure-based design of orally bioavailable 1H-pyrrolo[3,2-c]pyridine inhibitors of mitotic kinase monopolar spindle 1 (MPS1). J Med Chem. 2013; 56: 10045-65

Navarro A, Diaz T, Martinez A, Gaya A, Pons A, Gel B, Codony C, Ferrer G, Martinez C, Montserrat E, Monzo M. Regulation of JAK2 by miR-135a: prognostic impact in classic Hodgkin lymphoma. Blood. 2009; 114: 2945-51.

Neumann. Untersuchungen zum Genexpressionsprofil von Neuroblastomzellen unter dem Einfluss von Retinoiden und Identifikation neuer Zielstrukturen. Doktorarbeit. 2011. Halle, Univ., Naturwissenschaftliche Fakultät I. Seite: 52.

Ng AK. Review of the cardiac long-term effects of therapy for Hodgkin lymphoma. Br J Haematol. 2011; 154: 23-31.

Niu N, Qin Y, Fridley BL, Hou J, Kalari KR, Zhu M, Wu TY, Jenkins GD, Batzler A, Wang L. Radiation pharmacogenomics: a genome-wide association approach to identify radiation response biomarkers using human lymphoblastoid cell lines. Genome Res. 2010; 20: 1482-92.

Nupponen NN, Isola J, Visakorpi T. Mapping the amplification of EIF3S3 in breast and prostate cancer. Genes Chromosomes Cancer. 2000; 28: 203-10.

Oehler VG, Guthrie KA, Cummings CL, Sabo K, Wood BL, Gooley T, Yang T, Epping MT, Shou Y, Pogosova-Agadjanyan E, Ladne P, Stirewalt DL, Abkowitz JL, Radich JP. The preferentially expressed antigen in melanoma (PRAME) inhibits myeloid differentiation in normal hematopoietic and leukemic progenitor cells. Blood. 2009; 114: 3299-308.

Okamoto H, Yasui K, Zhao C, Arii S, Inazawa J. PTK2 and EIF3S3 genes may be amplification targets at 8q23-q24 and are associated with large hepatocellular carcinomas. Hepatology. 2003; 38: 1242-9.

Oliver KM, Garvey JF, Ng CT, Veale DJ, Fearon U, Cummins EP, Taylor CT. Hypoxia activates NF-kappaB-dependent gene expression through the canonical signaling pathway. Antioxid Redox Signal. 2009; 11: 2057-64.

Ortmann CA, Eisele L, Nückel H, Klein-Hitpass L, Führer A, Dührsen U, Zeschnigk M. Aberrant hypomethylation of the cancer-testis antigen PRAME correlates with PRAME expression in acute myeloid leukemia. Ann Hematol. 2008; 87: 809-818.

Ouyang J, Plütschow A, Pogge von Strandmann E, Reiners KS, Ponader S, Rabinovich GA, Neuberg D, Engert A, Shipp MA. Galectin-1 serum levels reflect tumor burden and adverse clinical features in classical Hodgkin lymphoma. Blood. 2013; 121: 3431-3.

Ozdemir F, Koksal M, Ozmen V, Aydin I, Buyru N. Mutations and Krüppel-like factor 6 (KLF6) expression levels in breast cancer. Tumour Biol. 2014; 35: 5219-25.

Passam FH, Alexandrakis MG, Kafousi M, Fotinou M, Darivianaki K, Tsirakis G, Roussou PA, Stathopoulos EN, Siafakas NM. Histological expression of angiogenic factors: VEGF, PDGFRalpha, and HIF-1alpha in Hodgkin lymphoma. Pathol Res Pract. 2009; 205: 11-20.

Passeron T, Valencia JC, Namiki T, Vieira WD, Passeron H, Miyamura Y, Hearing VJ. Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid. J Clin Invest.2009; 119: 954-63.

Petridou E, Andrie E, Dessypris N, Dikalioti SK, Trichopoulos D; Childhood Hematology-Oncology Group. Incidence and characteristics of childhood Hodgkin's lymphoma in Greece: a nationwide study (Greece). Cancer Causes Control. 2006; 17: 209-215.

Pettersson F, Colston KW, Dalgleish AG. Retinoic acid enhances the cytotoxic effects of gemcitabine and cisplatin in pancreatic adenocarcinoma cells. Pancreas. 2001; 23: 273-79

Portlock CS, Donnelly GB, Qin J, Straus D, Yahalom J, Zelenetz A, Noy A, O'Connor O, Horwitz S, Moskowitz C, Filippa DA. Adverse prognostic significance of CD20 positive Reed-Sternberg cells in classical Hodgkin's disease. Br J Haematol. 2004; 125: 701-8.

Provencio M, Sánchez A, Sánchez-Beato M. New drugs and targeted treatments in Hodgkin's lymphoma. Cancer Treat Rev. 2014; 40: 457-64.

Qu Y, Xia P, Zhang S, Pan S, Zhao J. Silencing XIAP suppresses osteosarcoma cell growth, and enhances the sensitivity of osteosarcoma cells to doxorubicin and cisplatin. Oncol Rep. 2015; 33: 1177-84.

Quijano SM, Saavedra C, Bravo MM, Fiorentino S, Orozco O.Expression of heat shock proteins HSP72 and HSP73 in Colombian patients with Hodgkin lymphoma positive and negative for Epstein Barr virus. Rev Med Chil. 2003; 131: 1375-81.

Rajan P, Stockley J, Sudbery IM, Fleming JT, Hedley A, Kalna G, Sims D, Ponting CP, Heger A, Robson CN, McMenemin RM, Pedley ID, Leung HY. Identification of a candidate prognostic gene signature by transcriptome analysis of matched pre- and post-treatment prostatic biopsies from patients with advanced prostate cancer. BMC Cancer. 2014; 14: 977.

Rassidakis GZ, Medeiros LJ, Vassilakopoulos TP, Viviani S, Bonfante V, Nadali G, Herling M, Angelopoulou MK, Giardini R, Chilosi M, Kittas C, McDonnell TJ, Bonadonna G, Gianni AM, Pizzolo G, Pangalis GA, Cabanillas F, Sarris AH. BCL-2 expression in Hodgkin and Reed-Sternberg cells of classical Hodgkin disease predicts a poorer prognosis in patients treated with ABVD or equivalent regimens. Blood. 2002; 100: 3935-41.

Ricolleau G, Charbonnel C, Lodé L, Loussouarn D, Joalland MP, Bogumil R, Jourdain S, Minvielle S, Campone M, Déporte-Fety R, Campion L, Jézéquel P. Surface-enhanced laser desorption/ionization time of flight mass spectrometry protein profiling identifies ubiquitin and ferritin light chain as prognostic biomarkers in nodenegative breast cancer tumors. Proteomics. 2006; 6: 1963-75.

Righetti SC, Perego P, Carenini N, Corna E, Dal Bo L, Cedrola S, La Porta CA, Zunino F. Molecular alterations of cells resistant to platinum drugs: role of PKCalpha. Biochim Biophys Acta. 2006; 1763: 93-100.

Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo JA, Navarro G, Jose-Eneriz ES, Garate L, Cordeu L, Cervantes F, Prosper F, Heiniger A, Torres A. Epigenetic regulation of PRAME gene in chronic myeloid leukemia. Leuk Res. 2007; 31: 1521-8.

Sangodkar J, Shi J, DiFeo A, Schwartz R, Bromberg R, Choudhri A, McClinch K, Hatami R, Scheer E, Kremer-Tal S, Martignetti JA, Hui A, Leung WK, Friedman SL, Narla G. Functional role of the KLF6 tumour suppressor gene in gastric cancer. Eur J Cancer. 2009; 45: 666-76.

Saramäki O, Willi N, Bratt O, Gasser TC, Koivisto P, Nupponen NN, Bubendorf L, Visakorpi T. Amplification of EIF3S3 gene is associated with advanced stage in prostate cancer. Am J Pathol. 2001; 159: 2089-94.

Sauer M, Plütschow A, Jachimowicz RD, Kleefisch D, Reiners KS, Ponader S, Engert A, von Strandmann EP. Baseline serum TARC levels predict therapy outcome in patients with Hodgkin lymphoma. Am J Hematol. 2013; 88: 113-5.

Savinainen KJ, Helenius MA, Lehtonen HJ, Visakorpi T. Overexpression of EIF3S3 promotes cancer cell growth. Prostate. 2006; 66: 1144-50.

Savinainen KJ, Linja MJ, Saramäki OR, Tammela TL, Chang GT, Brinkmann AO, Visakorpi T. Expression and copy number analysis of TRPS1, EIF3S3 and MYC genes in breast and prostate cancer. Br J Cancer. 2004; 90: 1041-6.

Schaadt M, Fonatsch C, Kirchner H, Diehl V. Establishment of a malignant, Epstein-Barr-virus (EBV)-negative cell-line from the pleura effusion of a patient with Hodgkin's disease. Blut. 1979; 38: 185-90.

Schenk T, Stengel S, Goellner S, Steinbach D, Saluz HP. Hypomethylation of PRAME is responsible for its aberrant overexpression in human malignancies. Genes Chromosomes Cancer. 2007; 46: 796-804.

Schmitz AA, Govek EE, Böttner B, Van Aelst L. Rho GTPases: signaling, migration, and invasion. Exp Cell Res. 2000; 261: 1-12.

Schmitz N, Pfistner B, Sextro M, Sieber M, Carella AM, Haenel M, Boissevain F, Zschaber R, Müller P, Kirchner H, Lohri A, Decker S, Koch B, Hasenclever D, Goldstone AH, Diehl V; German Hodgkin's Lymphoma Study Group; Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin's disease: a randomised trial. Lancet. 2002; 359: 2065-71.

Schwering I, Brauninger A, Klein U, Jungnickel B, Tinguely M, Diehl V, Hansmann ML, Dalla-Favera R, Rajewsky K, Kuppers R. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2003a; 101: 1505-12.

Schwering I, Bräuninger A, Distler V, Jesdinsky J, Diehl V, Hansmann ML, Rajewsky K, Küppers R. Profiling of Hodgkin's lymphoma cell line L1236 and germinal center B cells: identification of Hodgkin's lymphoma-specific genes. Mol Med. 2003b; 9: 85-95.

Scott DW, Chan FC, Hong F, Rogic S, Tan KL, Meissner B, Ben-Neriah S, Boyle M, Kridel R, Telenius A, Woolcock BW, Farinha P, Fisher RI, Rimsza LM, Bartlett NL, Cheson BD, Shepherd LE, Advani RH, Connors JM, Kahl BS, Gordon LI, Horning SJ, Steidl C, Gascoyne RD. Gene expression-based model using formalin-fixed paraffinembedded biopsies predicts overall survival in advanced-stage classical Hodgkin lymphoma. J Clin Oncol. 2013; 31: 692-700.

Seed B, Aruffo A. Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure. Proc Natl Acad Sci U S A. 1987; 84: 3365-9.

Semenza GL. Hypoxia-inducible factor 1: control of oxygen homeostasis in health and disease. Pediatr Res. 2001; 49: 614–7.

Semenza GL. Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol. 2000; 59: 47–53.

Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev. 2003; 29: 297-307.

Shim HK, Lee WW, Park SY, Kim H, Kim SE. Relationship between FDG uptake and expressions of glucose transporter type 1, type 3, and hexokinase-II in Reed-Sternberg cells of Hodgkin lymphoma. Oncol Res. 2009; 17: 331-7.

Shiraishi T, Terada N, Zeng Y, Suyama T, Luo J, Trock B, Kulkarni P, Getzenberg RH. Cancer/Testis Antigens as potential predictors of biochemical recurrence of prostate cancer following radical prostatectomy. J Transl Med. 2011; 9: 153.

Song J, Kim CJ, Cho YG, Kim SY, Nam SW, Lee SH, Yoo NJ, Lee JY, Park WS. Genetic and epigenetic alterations of the KLF6 gene in hepatocellular carcinoma. J Gastroenterol Hepatol. 2006; 21: 1286-9.

Specht L: Prognostic factors in Hodgkin's disease. Cancer Treat Rev 1991; 18: 21-53.

Staege MS, Müller K, Kewitz S, Volkmer I, Mauz-Körholz C, Bernig T, Körholz D. Expression of dual-specificity phosphatase 5 pseudogene 1 (DUSP5P1) in tumor cells. PLoS One. 2014; 9: e89577.

Staege MS and Daniela Max. Genetics and epigenetics of the TET-ETS Translocation network. Genetics & Epigenetics. 2009: 2: 1–15.

Staege MS, Banning-Eichenseer U, Weissflog G, Volkmer I, Burdach S, Richter G, Mauz-Körholz C, Föll J, Körholz D. Gene expression profiles of Hodgkin's lymphoma cell lines with different sensitivity to cytotoxic drugs. Exp Hematol. 2008; 36: 886-96.

Steidl C, Diepstra A, Lee T, Chan FC, Farinha P, Tan K, Telenius A, Barclay L, Shah SP, Connors JM, van den Berg A, Gascoyne RD. Gene expression profiling of microdissected Hodgkin Reed-Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma. Blood. 2012; 120: 3530-40.

Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M, Farinha P, Johnson NA, Zhao Y, Telenius A, Neriah SB, McPherson A, Meissner B, Okoye UC, Diepstra A, van den Berg A, Sun M, Leung G, Jones SJ, Connors JM, Huntsman DG, Savage KJ, Rimsza LM, Horsman DE, Staudt LM, Steidl U, Marra MA, Gascoyne RD. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature. 2011; 471: 377-81.

Steinbach D, Hermann J, Viehmann S, Zintl F, Gruhn B. Clinical implications of PRAME gene expression in childhood acute myeloid leukemia. Cancer Genet Cytogenet. 2002; 133: 118-23.

Stucke VM, Silljé HH, Arnaud L, Nigg EA. Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J. 2002; 21: 1723-32.

Sturn A, Quackenbush J, Trajanoski Z. Genesis: Cluster analysis of microarray data. Bioinformatics. 2002; 18: 207-8.

Su Y, Xu H, Xu Y, Yu J, Xian Y, Luo Q. Azacytidine inhibits the proliferation of human promyelocytic leukemia cells (HL60) by demethylation of MGMT, DAPK and p16 genes. Hematology. 2012; 17: 41-46.

Su YF, Liang CY, Huang CY, Peng CY, Chen CC, Lin MC, Lin RK, Lin WW, Chou MY, Liao PH, Yang JJ. A putative novel protein, DEPDC1B, is overexpressed in oral cancer patients, and enhanced anchorage-independent growth in oral cancer cells that is mediated by Rac1 and ERK. J Biomed Sci. 2014; 21: 67.

Sup SJ, Alemañy CA, Pohlman B, Elson P, Malhi S, Thakkar S, Steinle R, Hsi ED. Expression of bcl-2 in classical Hodgkin's lymphoma: an independent predictor of poor outcome. J Clin Oncol. 2005; 23: 3773-9.

Suzuki H, Fukuhara M, Yamaura T, Mutoh S, Okabe N, Yaginuma H, Hasegawa T, Yonechi A, Osugi J, Hoshino M, Kimura T, Higuchi M, Shio Y, Ise K, Takeda K, Gotoh M. Multiple therapeutic peptide vaccines consisting of combined novel cancer testis antigens and anti-angiogenic peptides for patients with non-small cell lung cancer. J Transl Med. 2013; 11: 97.

Swerdlow AJ. Epidemiology of Hodgkin's disease and non-Hodgkin's lymphoma. Eur J Nucl Med Mol Imaging. 2003; 30 Suppl 1: S3-12.

Tahara E Jr, Tahara H, Kanno M, Naka K, Takeda Y, Matsuzaki T, Yamazaki R, Ishihara H, Yasui W, Barrett JC, Ide T, Tahara E. G1P3, an interferon inducible gene 6-16, is expressed in gastric cancers and inhibits mitochondrial-mediated apoptosis in gastric cancer cell line TMK-1 cell. Cancer Immunol Immunother. 2005; 54: 729-40.

Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol. 2000; 157: 411-21.

Tannous BA, Kerami M, Van der Stoop PM, Kwiatkowski N, Wang J, Zhou W, Kessler AF, Lewandrowski G, Hiddingh L, Sol N, Lagerweij T, Wedekind L, Niers JM, Barazas M, Nilsson RJ, Geerts D, De Witt Hamer PC, Hagemann C, Vandertop WP, Van Tellingen O, Noske DP, Gray NS, Würdinger T. Effects of the selective MPS1 inhibitor MPS1-IN-3 on glioblastoma sensitivity to antimitotic drugs. J Natl Cancer Inst. 2013; 105: 1322-31.

Tardif KD, Rogers A, Cassiano J, Roth BL, Cimbora DM, McKinnon R, Peterson A, Douce TB, Robinson R, Dorweiler I, Davis T, Hess MA, Ostanin K, Papac DI, Baichwal V, McAlexander I, Willardsen JA, Saunders M, Christophe H, Kumar DV, Wettstein DA, Carlson RO, Williams BL. Characterization of the cellular and antitumor effects of MPI-0479605, a small-molecule inhibitor of the mitotic kinase Mps1. Mol Cancer Ther. 2011; 10: 2267-75.

Taylor CT, Cummins EP. The role of NF-kappaB in hypoxia-induced gene expression. Ann N Y Acad Sci. 2009; 1177: 178-84.

Tawbi HA, Villaruz L, Tarhini A, Moschos S, Sulecki M, Viverette F, Shipe-Spotloe J, Radkowski R, Kirkwood JM. Inhibition of DNA repair with MGMT pseudosubstrates: phase I study of lomeguatrib in combination with dacarbazine in patients with advanced melanoma and other solid tumours. Br J Cancer 2011; 105: 773-7.

Teixeira MS, Camacho-Vanegas O, Fernandez Y, Narla G, DiFeo A, Lee B, Kalir T, Friedman SL, Schlecht NF, Genden EM, Urken M, Brandwein-Gensler M, Martignetti JA. KLF6 allelic loss is associated with tumor recurrence and markedly decreased survival in head and neck squamous cell carcinoma. Int J Cancer. 2007; 121: 1976-83.

Thomas RK, Re D, Zander T, Wolf J, Diehl V. Epidemiology and etiology of Hodgkin's lymphoma. Ann Oncol. 2002; 13 Suppl 4:147-52.

Thomas RK, Re D, Wolf J, Diehl V. Part I: Hodgkin's lymphoma--molecular biology of Hodgkin and Reed-Sternberg cells. Lancet Oncol. 2004; 5: 11-8.

Thompson SL, Compton DA. Proliferation of an euploid human cells is limited by a p53-dependent mechanism. J Cell Biol. 2010; 188: 369-81.

Thykjaer T, Workman C, Kruhøffer M, Demtröder K, Wolf H, Andersen LD, Frederiksen CM, Knudsen S, Orntoft TF. Identification of gene expression patterns in superficial and invasive human bladder cancer. Cancer Res. 2001; 61: 2492-9.

Tu SP, Sun YW, Cui JT, Zou B, Lin MC, Gu Q, Jiang SH, Kung HF, Korneluk RG, Wong BC. Tumor suppressor XIAP-Associated factor 1 (XAF1) cooperates with tumor necrosis factor-related apoptosis-inducing ligand to suppress colon cancer growth and trigger tumor regression. Cancer. 2010; 116: 1252-63.

Tu SP, Liston P, Cui JT, Lin MC, Jiang XH, Yang Y, Gu Q, Jiang SH, Lum CT, Kung HF, Korneluk RG, Wong BC. Restoration of XAF1 expression induces apoptosis and inhibits tumor growth in gastric cancer. Int J Cancer. 2009; 125: 688-97.

Tuominen R, Jewell R, van den Oord JJ, Wolter P, Stierner U, Lindholm C, Hertzman Johansson C, Lindén D, Johansson H, Frostvik Stolt M, Walker C, Snowden H, Newton-Bishop J, Hansson J, Egyházi Brage S. MGMT promoter methylation is associated with temozolomide response and prolonged progression-free survival in disseminated cutaneous melanoma. Int J Cancer. 2014. doi: 10.1002/ijc.29332. [Epub ahead of print]

Tzankov A, Matter MS, Dirnhofer S. Refined prognostic role of CD68-positive tumor macrophages in the context of the cellular micromilieu of classical Hodgkin lymphoma. Pathobiology. 2010; 77: 301-8.

Tzankov A, Dirnhofer S. Pathobiology of classical Hodgkin lymphoma. Pathobiology. 2006; 73: 107-25.

van der Kaaij MA, van Echten-Arends J, Simons AH, Kluin-Nelemans HC (2010) Fertility preservation after chemotherapy for Hodgkin lymphoma. Hematol Oncol 28: 168-79.

Venkataraman G, Mirza MK, Eichenauer DA, Diehl V. Current status of prognostication in classical Hodgkin lymphoma. Br J Haematol. 2014; 165: 287-99.

Vogler M, Walczak H, Stadel D, Haas TL, Genze F, Jovanovic M, Bhanot U, Hasel C, Möller P, Gschwend JE, Simmet T, Debatin KM, Fulda S. Small molecule XIAP inhibitors enhance TRAIL-induced apoptosis and antitumor activity in preclinical models of pancreatic carcinoma. Cancer Res. 2009; 69: 2425-34.

Voisin PJ, Pardue S, Macouillard F, Yehia G, Labouesse J, Morrison-Bogorad M. Differential expression of heat shock 70 proteins in primary cultures from rat cerebellum. Brain Res. 1996; 739: 215-34.

Wadelin F, Fulton J, McEwan PA, Spriggs KA, Emsley J, Heery DM. Leucine-rich repeat protein PRAME: expression, potential functions and clinical implications for leukaemia. Mol Cancer. 2010; 9: 226.

Wallace JA, Pitarresi JR, Sharma N, Palettas M, Cuitiño MC, Sizemore ST, Yu L, Sanderlin A, Rosol TJ, Mehta KD, Sizemore GM, Ostrowski MC. Protein kinase C Beta in the tumor microenvironment promotes mammary tumorigenesis. Front Oncol. 2014; 4: 87.

Wang Y, Tang Z, Xue R, Singh GK, Liu W, Lv Y, Yang L. Differential response to CoCl2-stimulated hypoxia on HIF-1α, VEGF, and MMP-2 expression in ligament cells. Mol Cell Biochem. 2012; 360: 235-42.

Wang Y, Mao H, Hao Q, Wang Y, Yang Y, Shen L, Huang S, Liu P. Association of expression of XIAP-associated factor 1 (XAF1) with clinicopathologic factors, overall survival, microvessel density and cisplatin-resistance in ovarian cancer. Regul Pept. 2012; 178: 36-42.

Weinstein RE, Bond BH, Silberberg BK, Vaughn CB, Subbaiah P, Pieper DR. Tissue ferritin concentration and prognosis in carcinoma of the breast. Breast Cancer Res Treat. 1989; 14: 349-53.

Weiss LM, Strickler JG, Warnke RA, Purtilo DT, Sklar J. Epstein-Barr viral DNA in tissues of Hodgkin's disease. Am J Pathol. 1987; 129: 86-91.

Winkler C, Steingrube DS, Altermann W, Schlaf G, Max D, Kewitz S, Emmer A, Kornhuber M, Banning-Eichenseer U, Staege MS. Hodgkin's lymphoma RNA-transfected dendritic cells induce cancer/testis antigen specific immune responses. Cancer Immunol Immunother. 2012; 61: 1769-79.

Wittekind C, Meyer H-J, Bootz F. UICC- TNM Klassifikation maligner Tumore. 2002. 6. Auflage, Springer, Heidelberg. Seite: 723.

Wolf J, Kapp U, Bohlen H, Kornacker M, Schoch C, Stahl B, Mücke S, von Kalle C, Fonatsch C, Schaefer HE, Hansmann ML, Diehl V. Peripheral blood mononuclear cells of a patient with advanced Hodgkin's lymphoma give rise to permanently growing Hodgkin-Reed Sternberg cells. Blood. 1996; 87: 3418-28.

Xie SM, Fang M, Guo H, Zhong XY. Silencing of MGMT with small interference RNA reversed resistance in human BCUN-resistant glioma cell lines. Chin Med J (Engl). 2011;124: 2605-10

Yamasaki M, Nomura T, Sato F, Mimata H. Metallothionein is up-regulated under hypoxia and promotes the survival of human prostate cancer cells. Oncol Rep. 2007; 18: 1145-53.

Yan M, Himoudi N, Basu BP, Wallace R, Poon E, Adams S, Hasan F, Xue SA, Wilson N, Dalgleish A, Williams O, Anderson J. Increased PRAME antigen-specific killing of malignant cell lines by low avidity CTL clones, following treatment with 5-aza-2'-deoxycytidine. Cancer Immunol Immunother. 2011; 60: 1243-55

Yang DC, Jiang X, Elliott RL, Head JF. Antisense ferritin oligonucleotides inhibit growth and induce apoptosis in human breast carcinoma cells. Anticancer Res. 2002; 22: 1513-24.

Yang Y, Liu L, Cai J, Wu J, Guan H, Zhu X, Yuan J, Li M. DEPDC1B enhances migration and invasion of non-small cell lung cancer cells via activating Wnt/β-catenin signaling. Biochem Biophys Res Commun. 2014; 450: 899-905.

Yao Y, Zhou J, Wang L, Gao X, Ning Q, Jiang M, Wang J, Wang L, Yu L. Increased PRAME-specific CTL killing of acute myeloid leukemia cells by either a novel histone deacetylase inhibitor chidamide alone or combined treatment with decitabine. PLoS One. 2013; 8: e70522.

Yea S, Narla G, Zhao X, Garg R, Tal-Kremer S, Hod E, Villanueva A, Loke J, Tarocchi M, Akita K, Shirasawa S, Sasazuki T, Martignetti JA, Llovet JM, Friedman SL. Ras promotes growth by alternative splicing-mediated inactivation of the KLF6 tumor suppressor in hepatocellular carcinoma. Gastroenterology. 2008; 134: 1521-31.

Yuan B, Xu Y, Woo JH, Wang Y, Bae YK, Yoon DS, Wersto RP, Tully E, Wilsbach K, Gabrielson E. Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin Cancer Res. 2006; 12: 405-10.

Zhang M, Huang WY, Andreotti G, Gao YT, Rashid A, Chen J, Sakoda LC, Shen MC, Wang BS, Chanock S, Hsing AW. Variants of DNA repair genes and the risk of biliary tract cancers and stones: a population-based study in China. Cancer Epidemiol Biomarkers Prev. 2008; 17: 2123-7.

Zhang Y, Guan DX, Shi J, Gao H, Li JJ, Zhao JS, Qiu L, Liu J, Li N, Guo WX, Xue J, Zhou FG, Wu MC, Wang HY, Xie D, Cheng SQ. All-trans retinoic acid potentiates the chemotherapeutic effect of cisplatin by inducing differentiation of tumor initiating cells in liver cancer. J Hepatol. 2013; 59: 1255-63.

Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999; 59: 5830-5.

Zhu LM, Shi DM, Dai Q, Cheng XJ, Yao WY, Sun PH, Ding Y, Qiao MM, Wu YL, Jiang SH, Tu SP. Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma. Oncotarget. 2014; 5: 5403-15.

Zou B, Chim CS, Zeng H, Leung SY, Yang Y, Tu SP, Lin MC, Wang J, He H, Jiang SH, Sun YW, Yu LF, Yuen ST, Kung HF, Wong BC. Correlation between the single-site CpG methylation and expression silencing of the XAF1 gene in human gastric and colon cancers. Gastroenterology. 2006; 131: 1835-43.

Anhang 128

7 Anhang

Tabelle 21: Übersicht über die verwendeten Primer

Zielsequenz	Primersequenz in 5´→3´Richtung	Produktgröße
GCT GGA AGG TGG ACA GCG A		
ALU	GGT TAG GTA TAG TGG TTT ATA	99 bp
	TTT GTA ATT TTA GTA	
	ATT AAC TAA ACT AAT CTT AAA	
	CTC CTA ACC TCA	
AHNAK	GCT GAA GTC GGA AGA TGG AG	_ 487 bp
	TGG GCC CTG TAC CTC TAC TG	
BCL2	TTC TTT GAG TTC GGT GGG GTC	304 bp
	TGC ATA TTT GTT TGG GGC AGG	
CCL17	ACT GCT TCC CGG GAC TAC CT	160 bp
	TTT AAT CTG GGC CCT TTG TG	
CD30	GGA CAC CTG TCA TGG AAA CC	_ 348 bp
	GTG CCT GGG AAC TTG ACA AT	
CD40	ACA AAT ACT GCG ACC CCA AC	_ 571 bp
	CGA CTC TCT TTG CCA TCC TC	
CD74	GCT GTC GGG AAG ATC AGA AG	_ 383 bp
	GCC ATA CTT GGT GGC ATT CT	
OD A DDO	TGC TGA GGA AGA TTG CTG TG	_ 406 bp
CRABP2	GAG GGG GCA GTG AAG CAG	
CYP26B1	GAC CCT GGA GCT GAT CTT TG	_ 209 bp
	TGA TGA CGC AGT CCA GGT AG	
DEPDC1B	ACT TCC TCA TTG GGT GCT GT	541 bp
	GGA TTT CTG AAA CTG GAC TCT	
	TCG	
	GCA TCC TAC CAC CAA CTC GT	_ 499 bp
EEF1A1	GCA GCA TCA CCA GAC TTC AA	
EGR2	GGT CGC CTT GTG TGA TGT AG	239 bp
	CAA ACA AAT CAG CTC CGG TA	_
EIF3H	ATC ATC TTC ACG TGG GCT GG	_ 520 bp
	ATA TTC TCC TGC TGG CGA CG	
EIF4A1	AAG GTG GTC ATG GCA CTA GG	_ 433 bp
	TGT CCA GCT TCC ACT CCT CT	

Anhang 129

ELMO1	CGT CAA GGT GGC CAT AGA AT	447 bp
	GAC AGC ATG TCT CCA AAG CA	-
FIBP	CCT TAT CGA CGA GGA CGT GT	465 bp
	CGG TCA GAG AGG AGG AAG TG	
FTL	CGT CAA CAG CCT GGT CAA T	_ 402 bp
	GTC AGG TGG TCA CCC ATC TT	
FTH1	CGA TGA TGT GGC TTT GAA GA	_ 307 bp
	GAT GGC TTT CAC CTG CTC AT	
GAPDH	CCA TGG AGA AGG CTG GGG	_ 195 bp
	CAA AGT TGT CAT GGA TGA CC	
GSTM1	CCT GTC TGC GGA ATC CGC AC	_ 732 bp
	GCT GAG TAT GGG CTC CTC AC	
нмох	ATG ACA CCA AGG ACC AGA GC	_ 153 bp
	GTG TAA GGA CCC ATC GGA GA	
UDDT:	ACC AGT CAA CAG GGG ACA TAA	
HPRT1	CTT CGT GGG GTC CTT TTC ACC	_ 190 bp
HSPA8	GGAGGTGGCACTTTTGATGT	_ 198 bp
	AGCAGTACGGAGGCGTCTTA	
1510	AAGGCGGTATCGCTTTTCTT	_ 233 bp
IFI6	ATCGCAGACCAGCTCATCA	
IL13RA1	AAC TTC CCG TGT GAA ACC TG	_ 579 bp
	AGT CGG TTT CCT CCT TGG TT	
KLF6	TGT GCA GCA TCT TCC AGG AG	_ 570 bp
	CAC ACC CTT CCC ATG AGC AT	
MONTATE 470	TGG AGC TGT CTG GTT GTG AG	_ 303 bp
MGMT175-478	AGG GCT GCT AAT TGC TGG TA	
MGMT21-478	CCG GAT ATG CTG GGA CAG	_ 457 bp
	AGG GCT GCT AAT TGC TGG TA	
MGMT	GAATCAGGGGACTGCAGGTA	813 bp
(genomisch)	AAGTGTTGGAGTGGGTGGAG	
MTRNR2L	ACTTTGCAAGGAGAGCCAAA	_ 469 bp
WIRNKZL	AGGCTTATGCGGAGGAGAAT	
NDUFB11	CTG GGC TGT TTG GTT TGA G	_ 418 bp
	TTG GCC TCT CGG TAT TTC AC	
PRAME	GCT GTG CTT GAT GGA CTT GA	_ 454 bp
	AAG GTG GGT AGC TTC CAG GT	
	GTT GTA AGG ATG TTT TGA ATT	
PRAME	GA	90 hn
unmethyliert	CCT ACA CCA CTA CCT AAA CCA	_ 80 bp
	TC	

	GGATTGGGATTTGACCAGCAG	139 bp	
PRKCB	TGGCACAGGCACATTGAAGT		
PRRC2B-MGMT	CTG CCA TCG CCC GGC CCG GC	400 h =	
	AGG GCT GCT AAT TGC TGG TA	430 bp	
DCMC4	CTC ACA CTC AGT GCC GGT TA	458	
PSMC1	GGT GAG AGG AAG CTC CAC AG	430	
OTDT4	GCT TCA TGA ATT GGC CTC AT	934 bp	
QTRT1	AGG TCA GCC CAG TGT GAT TC	. 934 bp	
	CCT GCA GTT GAG GAA GAA GG	322 bp	
QTRT1	AGG TCA GCC CAG TGT GAT TC	322 bp	
SCXA	CTG GCC TCC AGC TAC ATC TC	197 bp	
SCXA	CTG AGG CAG AAG GTG CAG AT	. 197 bp	
SDCBP	GGCATCAGGCGATAAGATTGT	_ 183 bp	
SDCBP	ACCTCACACACGTAGTGGTTG	100 bp	
SETBP1	GTG CAG GAG AAC CTT TGC TC	493 bp	
SEIBPI	CCT TGG CCT CCT CTT CTC TT	- 400 bp	
SLC13A4	TGT ACC ACG TTG CTG TCC AT	429 bp	
SLC 13A4	TAT GCT CAG GGA GAG GCA CT	- 420 bp	
SLC2A1	ACA GGC AGC TGG ATG AGA CT	396 bp	
0202/11	TGAATTTAAAAATACAGTCACCGCT	- 000 bp	
<i>T</i> 3	AAT TAA CCC TCA CTA AAG GG		
T7	TAA TAC GAC TCA CTA TAG GG		
TP53	GTT CCG AGA GCT GAA TGA GG	. 160 bp	
	TCT GAG TCA GGC CCT TCT GT		
TTK	CCG AGG ATT TAA GTG GCA GA	417 bp	
	TTT CTT GCA GTT TGC TCT GG	-1	
TTK	TGG CAG ATT CCG GAG TTA GC		
(Sequenzierung)			
TTK	TCA CTG TGT TGT TGT AGT TTA		
(Sequenzierung)	TTC AAA		
	CCA GCG CAG CTT TCT GTA GT	-	
TTK	GGT GGT ATC TGA CAT TAC GAA	2634bp	
	TAA		
	GCC ATG CTG TAA AGG GGC TT	-	
XAF1	CAT TGG CCT TAT GAA ACT CCA	416 bp	
	GC		

Abbildungen:

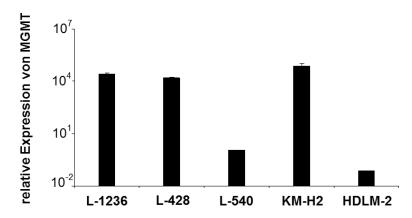


Abbildung 44: Expression von MGMT in HL-Zellen

Dargestellt sind die Ergebnisse der qRT-PCR-Untersuchung für *MGMT* in den HL-Zelllinien (L-1236, L-428, L-540, KM-H2 und HDLM-2). Zur Berechnung wurde der Wert von L-540 auf 1 gesetzt. Als *housekeeping*-Kontrolle wurde *GAPDH* verwendet. Gezeigt sind die Mittelwerte und Standardabweichungen von 3 unabhängigen Versuchen

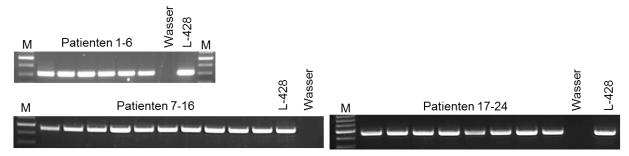
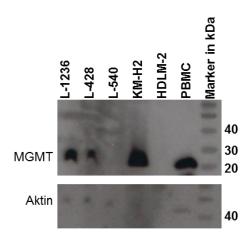



Abbildung 45: PCR-Untersuchung für das Gen *MGMT* (1,5%iges Agarosegel, Marker: GeneRuler™ 100bp Plus Leiter)

Dargestellt sind die PCR-Untersuchungen an HL-Patienten mit Primern für *MGMT*. Als Kontrolle wurden L-428-Zellen und Wasser mitgeführt.

Abbildung 46: Western-Blot-Analyse von MGMT und Aktin mit HL-Zellen

Gezeigt ist ein repräsentatives Ergebnis der Western-Blot-Analyse mit Antikörpern für MGMT. Aufgetragen wurde 2,5 μ L Marker und je 12 μ L (3,6 μ g) Proteinextrakt von L-1236, L-428-, L-540-, KM-H2- und HDLM-2-Zellen. Für die Analyse wurden folgende Antikörper eingesetzt: Maus-anti-Mensch-MGMT (1: 1000 in TBST + 5 % Milchpulver), Ziege-anti-Maus-IgG-HRP (1: 5000 in TBST + 5 % Milchpulver) und Roti-Mark Western-HRP-Konjugat (1: 2500 in TBST + 5 % Milchpulver). Der Film wurde nach 2 minütiger Inkubation auf der Membran entwickelt.

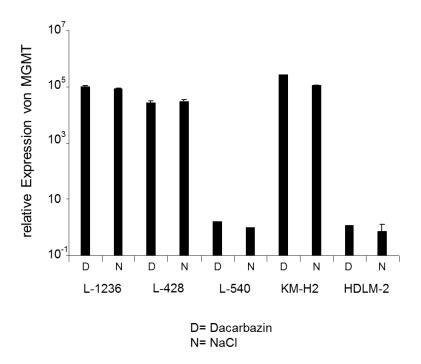


Abbildung 47: Expression von *MGMT* in HL-Zellen nach Inkubation mit Dacarbazin bzw. NaCl HL-Zelllinien wurden für 24 h mit 500 μ g/mL Dacarbazin bzw. NaCl inkubiert. Anschließend wurde die *MGMT*-Expression mittels qRT-PCR untersucht. Zur Berechnung wurde der Wert von L-540 inkubiert mit NaCl auf 1 gesetzt. Als housekeeping-Kontrolle wurde *GAPDH* verwendet. Gezeigt sind die Mittelwerte und Standardabweichungen von Duplikaten.

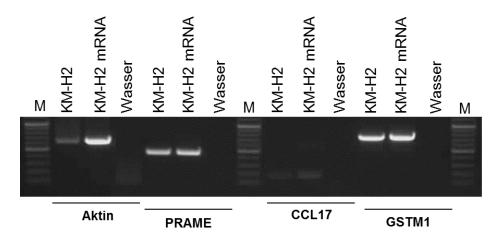


Abbildung 48: PCR-Untersuchung mit HL-spezifischen Genen (1,5%iges Agarosegel, Marker: GeneRuler™ 100bp Plus Leiter)

Dargestellt ist ein repräsentatives PCR-Bild mit Primern für *Aktin*, *PRAME*, *CCL-17* und *GSTM1*. Für die PCR wurde KM-H2 cDNA aus Gesamt-RNA und in cDNA umgeschriebene KM-H2 mRNA verwendet. Die mRNA wurde vorher aus Gesamt-RNA isoliert (2.2.1.12).

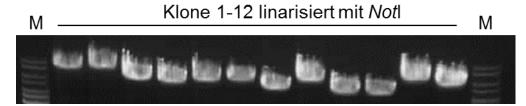


Abbildung 49: Testverdau der Plasmide der gepickten cDNA-Fraktionen mit *Notl* (1,5%iges Agarosegel, Marker: GeneRuler™ 100bp Plus Leiter)

Dargestellt ist ein repräsentatives Gelbild für Plasmide, die vorher mit *Notl* linearisiert wurden.

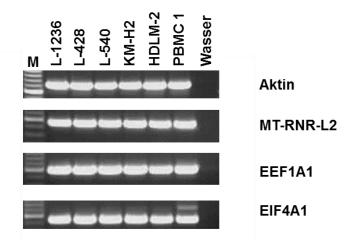


Abbildung 50: PCR-Untersuchung für die Gene, die in den cDNA-Fraktionen detektiert wurden (1,5%iges Agarosegel, Marker: GeneRuler™ 100bp Plus Leiter)

Dargestellt ist ein repräsentatives PCR-Bild mit Primern für *Aktin*, *MT-RNR-L2*, *EEF1A1* und *EIF4A1*. Es wurden jeweils die HL-Zellen L-1236, L-428, L-540, KM-H2 und HDLM-2 und eine PBMC-Probe verwendet.

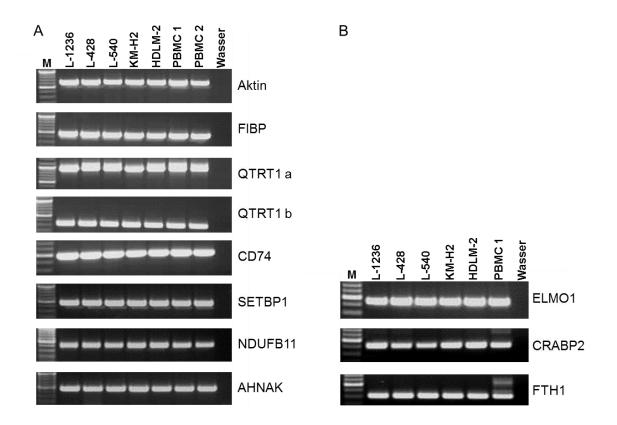


Abbildung 51: PCR-Untersuchung für die Gene, die bei den Selektionsexperimenten isoliert wurden (1,5%iges Agarosegel, Marker: GeneRuler™ 100bp Plus Leiter)

- **A)** Dargestellt ist ein repräsentatives PCR-Bild mit Primern für *Aktin, FIB, QTRT1, CD74, SETBP1, NDUEB11* und *AHNAK*. Es wurden jeweils die HL-Zellen L-1236, L-428, L-540, KM-H2 und HDLM-2 und zwei PBMC-Probe verwendet.
- **B)** Dargestellt ist ein repräsentatives PCR-Bild mit Primern für *ELMO*, *CRABP*2 und *FTH1*. Es wurden jeweils die HL-Zellen L-1236, L-428, L-540, KM-H2 und HDLM-2 und eine PBMC-Probe verwendet.

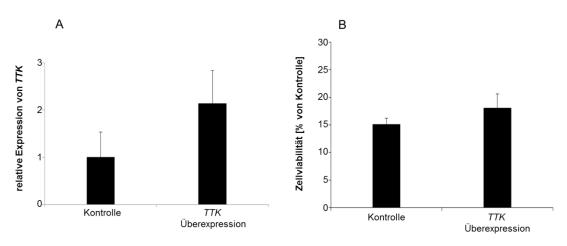


Abbildung 52: Überexpression von TTK in L-540-Zellen

Die Zellen der Linie L-540 wurden einerseits mit einem Leervektor (Kontrolle) und andererseits mit dem pCMV-Script-*TTK*-Vektor transfiziert. Dieser Vektor enthält kein GFP-Molekül, daher wurden alle Zellen ausgewertet.

- **A)** Dargestellt ist die qRT-PCR-Untersuchung zur *TTK*-Expression in den transfizierten Zellen. Zur Berechnung wurde die *TTK*-Expression der Zellen, die mit dem Kontrollvektor transfiziert wurden auf 1 gesetzt. Als *housekeeping*-Kontrolle wurde *Aktin* verwendet. Dargestellt sind die Mittelwerte und Standardabweichungen von 3 unabhängigen Experimenten.
- **B)** Die mit dem Leervektor und dem pCMV-Script-*TTK*-Vektor transfiziert Zellen wurden für 24 h mit 12,5 μg/mL Cisplatin bzw. DMF (Kontrolle) behandelt. Mittels Propidiumiodid-Färbung wurde die Überlebensrate am Durchflusszytometer bestimmt. Als 100 % gesetzt wurden die mit DMF behandelten Zellen. Dargestellt sind die Mittelwerte und Standardabweichungen von 3 unabhängigen Experimenten.

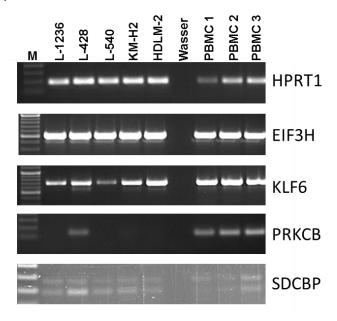


Abbildung 53: PCR-Untersuchung für die Expression der möglichen TTK-Interaktionspartner (1,5%iges Agarosegel, Marker: GeneRuler™ 100bp Plus Leiter)

Dargestellt ist ein repräsentatives PCR-Bild mit Primern für *HPRT1*, *EIF3H*, *KLF6*, *PRKCB* und *SDCBP*. Für die PCR wurden die fünf HL-Zelllinien (L-1236, L-428, L-540, KM-H2 und HDLM-2) und 3 PBMC-Proben verwendet.

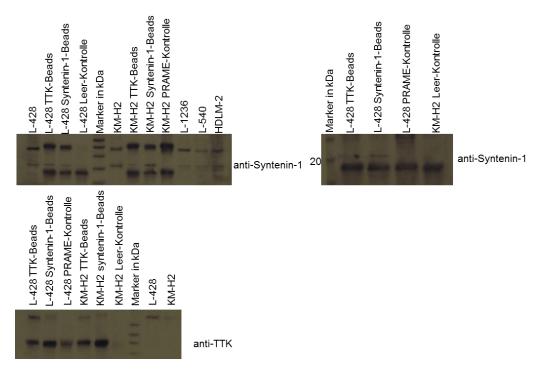


Abbildung 54: Immuno-Blot-Analyse zur Untersuchung der TTK- und Syntenin-1-Expression in HL-Zellen der Linien L-428 und KM-H2

Gezeigt sind Ergebnisse der Western-*Blot*-Analysen mit Antikörpern für TTK (unteres Bild) und Syntenin-1 (SDCBP, beiden oberen Bilder). Mittels Protein G-Beads, an die jeweils der Antikörper gegen TTK bzw. Syntenin-1 gekoppelt war, wurden alle Proteine aus den L-428 und KM-H2-Zelllysaten isoliert, die mit ihnen interagierten. Anschließend wurden 15 μL der Probe und 2,5 μL Marker auf ein Tris-Acetat-SDS-Gel aufgetragen. Pro Zelllinie wurden jeweils Beads verwendet, die mit TTK-, Syntenin-1-, PRAME-Antikörpern (Kontrolle) bzw. PBS (Kontrolle) gekoppelt waren.

Für die Analyse wurden folgende Antikörper eingesetzt: Maus-anti-Mensch-TTK (Klon C19, N1, 1: 1000 in TBST + 5 % Milchpulver), Ziege-anti-Maus-IgG-HRP (1: 5000 in TBST + 5 % Milchpulver) und Roti-Mark Western-HRP-Konjugat (1: 2500 in TBST + 5 % Milchpulver) bzw. Maus-anti-Mensch-Syntenin-1 (1: 500 in TBST + 5 % Milchpulver), Ziege-anti-Maus-IgG-HRP (1: 5000 in TBST + 5 % Milchpulver) und Roti-Mark Western-HRP-Konjugat (1: 2500 in TBST + 5 % Milchpulver) Der Film wurde nach 2 bzw. 6 minütiger Inkubation auf der Membran entwickelt.

Sequenzen:

KM-H2 PRRC2B-MGMT:

Nachfolgend ist die Sequenz des *PRRC2B-MGMT*-Fusionstranskripts dargestellt.

CGCGCCCGCGAACCAGACCAGGTACTTGGAAAAATGGACAAGGATTGTGAAATGAAACGCACC
ACACTGGACAGCCCTTTGGGGAAGCTGGAGCTGTCTGGTTGTGAGCAGGGTCTGCACGAAATAA
AGCTCCTGGGCAAGGGGACGTCTGCAGCTGATGCCGTGGAGGTCCCAGCCCCGCTGCGGTTC
TTGGAGGTCCGGAGCCCCTGATGCAGTGCACAGCCTGGCTGAATGCCTATTTCCACCAGCCCGA
GGCTATCGAAGAGTTCCCCGTGCCGGCTTTTCACCATCCCGTTTTCCAGCAAGAGTCGTTCACCA
GACAGGTGTTATGGAAGCTGCTGAAGGTTGTGAAATTCGGAGAAGTGATTTCT

Sequenzen der Klone der cDNA-Bank-Fraktionen:

Die Sequenzen befinden sich auf der CD.

Sequenzen der Klone der cDNA-Bank aus den Transfektionsexperimenten:

Dargestellt sind die sequenzierten Bereiche der cDNA-Klone, die aus den Transfektionsexperimenten mit der cDNA-Bank isoliert wurden. Die Sequenzierung erfolgte mit dem T3-Primer. Hinter jedem Klon steht das Gen für das die Sequenz codiert. Die Sequenzen befinden sich auf der CD. Dargestellt ist nur die Sequenz für *TTK*.

Versuch 3 Klon 8 TTK:

Sequenz von pGBKT7-TTK:

Dargestellt ist die Sequenz des GBKT7-TTK-Vektors. Die unterlegten Bereiche gehören zum Vektor. Die Sequenzierung erfolgte mit dem T7-Primer.

AGTGCGACATCATCGGAAGAGAGAGTAGTAACAAAGGTCAAAGACAGTTGACTGTATCGCCGGA
ATTTGTAATACGACTCACTATAGGGCGAGCCGCCATCATGGAGGAGCAGAAGCTGATCTCAGAG
GAGGACCTGCATATGGCCATGGAGGCCGAATTCCCGGGGATCCGTCGACCTGCAGCGGCCGCT
TTCTTAGAAATGGAATCCGAGGATTTAAGTGGCAGAGAATTGACAATTGATTCCATAATGAACAAA
GTGAGAGACATTAAAAATAAGTTTAAAAATGAAGACCTTACTGATGAACTAAGCTTGAATAAAATTT
CTGCTGATACTACAGATAACTCGGGAACTGTTAACCAAATTATGATGATGGCAAACCACGAG
GACTGGTTGAGTTTGTTGCTCAAACTAGAGAAAAACAGTGTCCGCTAAGTGATGCTCTTTTAAATA
AATTGATTGGTCGTTACAGTCAAGCAATTGAAGCGCTTCCCCCAGATAAATATGGCCAAAATGAG
AGTTTTGCTAGAATTCAAGTGAGATTTGCTGAATTAAAAGCTATTCAAGAGCCAGATGATGCACGT

GACTACTTTCAAATGGCCAGAGAAACTGCAAGAAATTTGCTTTTGTTCATATATCTTTTGCACAATT TGAACTGTCACAAGGTAATGTCAAAAAAAGTAAACAACTTCTTCAAAAAAGCTGTAGAACGTGGAGC AGTACCACTAGAAATGCTGGAAATTGCCCTGCGGAATTTAAACCTCCAAAAAAAGCAGCTGCTTT CAGAGGAGGAAAAGAAGTTTATCAGCATCTACGGTATTAACTGCCCAAGAATCATTTTCCGGTT CACTTGGGCATTTACAGAATAGGAACAACAGTTGTGATTCCAGAGGACAGACTACTAAAGCCAGG TTTTTATATGGAGAGACATGCCACCACAAGATGCAGAAATAGGTTACCGGATTCATTGAGACAAA CTAACAAACTAAACAGTCATGCCCATTTGGAAGAGTCCCAGTTAACCTTCTAAATAGCCCAGATT GTGATGTGAAGACAGATGATTCAGTTGTACCTTGTTTTATGAAAAGACAAACCTCTAGATCAGAAT GCCGAGATTTGGTTGTCCTGGATCTAAACCAAGTGGAAATGATTCCTGTGAATTAAGAAATTTAA AGTCTGTTCAAAATAGTCATTTCAAGGAACCTCTGGTGTCAGATGAAAAGAGTTCTGAACTTATTA TTACTGATTCAATAACCCTGAAGAATAAAACGGAATCAAGTCTTCTAGCTAAATTAGAAGAAACTAA AGAGTATCAAGAACCAGAGGTTCCAGAGAGTAACCAGAAACAGTGGCAATCTAAGAGAAAGTCAG AGTGTATTAACCAGAATCCTGCTGCATCTTCAAATCACTGGCAGATTCCGGAGTTAGCCCGAAAA GTTAATACAGAGAAACATACCACTTTTGAGCAACCTGTCTTTTCAGTTTCAAAACAGTCACCACCA ATATCAACATCTAAATGGTTTGACCCAAAATCTATTTGTAAGACACCAAGCAGCAATACCTTGGAT GATTACATGAGCTGTTTTAGAACTCCAGTTGTAAAGAATGACTTTCCACCTGCTTGTCAGTTGTCA ACACCTTATGGCCAACCTGCCTGTTTCCAGCAGCAACAGCATCAAATACTTGCCACTCCACTTCA AAATTTACAGGTTTTAGCATCTTCTTCAGCAAATGAATGCATTTCGGTTAAAGGAAGAATTTATTCC ATATTAAAGCAGATAGGAAGTGGAGGTTCAAGCAAGGTATTTCAGGTGTTAAATGAAAAGAACA GATATATGCTATAAAATATGTGAACTTAGAAGAAGCAGATAACCAAACTCTTGATAGTTACCGGAA CGAAATAGCTTATTTGAATAAACTACAACAACACAGTGATAAGATCATCCGACTTTATGATTATGAA ATCACGGACCAGTACATCTACATGGTAATGGAGTGTGGAAATATTGATCTTAATAGTTGGCTTAAA AAGAAAAATCCATTGATCCATGGGAACGCAAGAGTTACTGGAAAAATATGTTAGAGGCAGTTCA CACAATCCATCAACATGGCATTGTTCACAGTGATCTTAAACCAGCTAACTTTCTGATAGTTGATGG AATGCTAAAGCTAATTGATTTTGGGATTGCAAACCAAATGCAACCAGATACAACAAGTGTTGTTAA AGATTCTCAGGTTGGCACAGTTAATTATATGCCACCAGAAGCAATCAAAGATATGTCTTCCTCCAG AGAGAATGGGAAATCTAAGTCAAAGATAAGCCCCAAAAGTGATGTTTGGTCCTTAGGATGTATTTT ATAATTGATCCTAATCATGAAATTGAATTTCCCGATATTCCAGAGAAGATCTTCAAGATGTGTTAA AGTGTTGTTTAAAAAGGGACCCAAAACAGAGGATATCCATTCCTGAGCTCCTGGCTCATCCATAT GTTCAAATTCAAACTCATCCAGTTAACCAAATGGCCAAGGGAACCACTGAAGAAATGAAATATGTT CTGGGCCAACTTGTTGGTCTGAATTCTCCTAACTCCATTTTGAAAGCTGCTAAAACTTTATATGAA **AAATGA**

Nachfolgend sind die Sequenzen dargestellt, die nach den Hefe-Interaktionsstudien in den pGADT7-Vektoren vorlagen. Diese enthaltenen cDNAs stellen neue mögliche Interaktionspartner für TTK dar. Die Sequenzierung erfolgte mit dem T7-Primer.

EIF3H:

TGTGGTATTAAAGATAATCAAACATTATCAAGAAGAAGGACAAGGAACTGAAGTTGTTCAAGGAGT GCTTTTGGGTCTGGTTGTAGAAGATCGGCTTGAAATTACCAACTGCTTTCCTTTCCCTCAGCACAC AGAGGATGATGCTGACTTTGATGAAGTCCAATATCAGATGGAAATGATGCGGAGCCTTCGCCATG TAAACATTGATCATCTTCACGTGGGCTGGTATCAGTCCACATACTATGGCTCATTCGTTACCCGG GCACTCCTGGACTCTCAGTTTAGTTACCAGCATGCCATTGAAGAATCTGTCGTTCTCATTTATGAT CCCATAAAAACTGCCCAAGGATCTCTCTCACTAAAGGCATACAGACCGACTCCTAAACTGATGGA AGTTTGTAAAGAAAAGGATTTTTCCCCTGAAGCATTGAAAAAAGCAAATATCACCTTTGAGTACAT GTTTGAAGAAGTGCCGATTGTAATTAAAAATTCACATCTGATCAATGTCCTAATGTGGGAACTTGA AAAGAAGTCAGCTGTTGCAGATAAACATGAATTGCTCAGCCTTGCCAGCAGCAATCATTTGGGGA AGAATCTACAGTTGCTGATGGACAGAGTGGATGAAATGAGCCAAGATATAGTTAAATACAACACAT ACATGAGGAATACTAGTAGACAACAGCAGCAGAAACATCAGTATCAGCAGCGTCGCCAGCAGGA GAATATGCAGCGCCAGAGCCGAGGAGAACCCCCGCTCCCTGAGGAGGACCTGTCCAAACTCTTC AAACCACCACAGCCGCCTGCCAGGATGGACTCGCTGCTCATTGCAGGCCAGATAAACACTTACT GCCAGACATCAAGGAGTTCACTGCCCAAAACTTAGGCAAGCTCTTCATGGCCCAGGCTCTTCAA GAATACAACAACTAAGAAAAGGAAGTTTCCAGAAAAGAAGTTAACATGAACTCTTGAAGTCACACC AGGGCAACTCTTGGAAGAAATATATTTGCATATTGAAAAGCACAGAGGATTTCTTTAGTGTCATTG CCGATTTTGGCTATAACAGTGTCTTTCTAGCCATAATAAAATAAAACAAAATCTTGA

KLF6:

SDCBP:

PRKCB:

GTGGAGTGCACTATGGTGGAGAAGCGGGTGTTGGCCCTGCCCGGGAAGCCGCCCTTCCTGACC
CAGCTCCACTCCTGCTTCCAGACCATGGACCGCCTGTACTTTGTGATGGAGTACGTGAATGGGG
GCGACCTCATGTATCACATCCAGCAAGTCGGCCGGTTCAAGGAGCCCCATGCTGTATTTTACGCT
GCAGAAATTGCCATCGGTCTGTTCTTCTTACAGAGTAAGGGCATCATTTACCGTGACCTAAAACTT
GACAACGTGATGCTCGATTCTGAGGGACACCATCAAGATTGCCGATTTTGGCATGTGTAAGGAAAA
CATCTGGGATGGGGTGACAACCAAGACATTCTGTGGCACTCCAGACTACATCGCCCCCGAGATA
ATTGCTTATCAGCCCTATGGGAAGTCCGTGGATTGGTGGGCCATTTGGAGTCCTGCTGTATGAAAT
GTTGGCTGGGCAGGCACCCTTTGAAGGGGAAGGTGAAGATGAACTCTTCCAATCCATCATGGAA
CACAACGTAGCCTATCCCAAGTCTATGTCCAAGGAAGCTGTGGCCATCTGCAAAGGGCTGATGA
CCAAACACCCAGGCAAACGTCTGGGTTGTGGACCTGAAGGCGAACGTGATATCAA

DNA-Mikroarray-Daten

Die erhaltenen DNA-Mikroarray-Daten sind auf der CD zu finden.

8 Eidesstattliche Erklärung

Hiermit erkläre ich, Stefanie Kewitz, dass ich die vorliegende Arbeit selbstständig und nur unter Verwendung der angegeben Literatur und Hilfsmittel angefertigt habe. Die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen wurden als solche kenntlich gemacht. Ich bewerbe mich erstmals um die Erlangung des Doktorgrades. Diese Arbeit wurde an keiner anderen Hochschule oder Universität zur Promotion eingereicht.

Halle, 12.02.2015

Stefanie Kewitz

Danksagung 142

9 Danksagung

Bedanken möchte ich mich bei meinem Betreuer Herrn PD Dr. Martin S. Staege für die Überlassung dieses interessanten Themas, zahlreiche Ratschläge und Gespräche sowie für die Durchsicht und kritischen Anregungen bei der Anfertigung der Dissertation. Ich danke auch für die Hilfe bei der Beantragung des Stipendiums.

Ebenso möchte ich mich bei Herrn Prof. Dr. Gary Sawers für die Betreuung dieser Dissertation, für die Unterstützung bei der Beantragung des Stipendiums und für das Interesse an diesem Thema bedanken.

Weiterhin bedanke ich mich bei Herrn Prof. Dr. Dieter Körholz für die Unterstützung bei der Anfertigung dieser Arbeit.

Bei der Konrad Adenauer Stiftung möchte ich mich für das Promotionsstipendium und die interssanten Seminare bedanken.

Ich danke der gesamten Arbeitsgruppe des Forschungszentrums für krebskranke Kinder, insbesondere Ines Volkmer, für ihre Hilfsbereitschaft bei allen kleinen und großen Fragen, das überaus freundliche Arbeitsklima und die schöne Zeit.

Besonders gilt mein Dank meinen Eltern, meinen Omas, meinem Bruder und meinen Freunden, die immer für mich da waren, mich immer unterstütz haben und für ihr Interesse an der Arbeit.

Mein allergrößter Dank gilt meinem Freund Marcus.

Lebenslauf 143

10 Lebenslauf

Name: Stefanie Kewitz
Adresse Hallorenstraße 21

06122 Halle (Saale)

Geburtsdatum / -ort: 22.03.1987 in Wurzen

Ausbildung:

seit 10/2014 wissenschaftliche Mitarbeiterin im Forschungslabor für

krebskranke Kinder im Landeszentrum für Zell- und Gentherapie (LZG) der Universitäts- und Poliklinik für

Kinder- und Jugendmedizin der Martin-Luther-

Universität Halle-Wittenberg

04/2012-03/15 Promotionsstipendiatin der Konrad-Adenauer-Stiftung

04/2011-03/2012 wissenschaftliche Mitarbeiterin im Forschungslabor für

krebskranke Kinder im Landeszentrum für Zell- und Gentherapie (LZG) der Universitäts- und Poliklinik für

Kinder- und Jugendmedizin der Martin-Luther-

Universität Halle-Wittenberg

10/2005 – 02/2011 Studium der Biologie an der Martin-Luther-Universität

Halle-Wittenberg

Abschluss als Diplom-Biologin

Diplomarbeit im Forschungszentrum für krebskranke Kinder im Landeszentrum für Zell- und Gentherapie

Thema der Arbeit: "Funktionelle in-vitro-

Charakterisierung Hodgkin-Lymphom assoziierter

Chemoresistenzfaktoren"

09/1998 – 07/2005 Magnus-Gottfried-Lichtwer-Gymnasium Wurzen,

Abschluss mit dem Abitur

Halle, den 12.02.2015

Stefanie Kewitz

Publikationen 144

11 Publikationen

Originalpublikationen:

 Staege MS, Müller K, Kewitz S, Volkmer I, Mauz-Körholz C, Bernig T, Körholz D. Expression of dual-specificity phosphatase 5 pseudogene 1 (DUSP5P1) in tumor cells. PLoS One. 2014 24; 9: e8957.

- Kewitz S, Stiefel M, Kramm CM, Staege MS. Impact of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and MGMT expression on dacarbazine resistance of Hodgkin's lymphoma cells. Leuk Res. 2014; 38:138-43.
- Kewitz S, Staege MS. Expression and regulation of the endogenous retrovirus 3 (ERV3) in Hodgkin's lymphoma cells. Front Oncol. 2013; 3: 179.
- **Kewitz S**, Staege MS. Knock-down of PRAME increases retinoic acid signaling and cytotoxic drug sensitivity of Hodgkin lymphoma cells. PLOS One. 2013; 8: e55897.
- **Kewitz S**, Bernig T, Staege MS. Histone deacetylase inhibition and gene expression in Hodgkin's lymphoma. *Leuk Res.* 2012; 36: 773-8.
- Winkler C, Steingrube DS, Altermann W, Schlaf G, Max D, Kewitz S, Emmer A, Kornhuber M, Banning-Eichenseer U, Staege MS. Hodgkin's lymphoma RNAtransfected dendritic cells induce cancer/testis antigen specific immune responses. Cancer Immunol Immunother.2012; 61:1769-79.

Buchbeiträge und Review:

- **Kewitz S,** Volkmer I, Staege MS. Curcuma Contra Cancer? Curcumin and Hodgkin's Lymphoma. Cancer Growth Metastasis 2013:6 1-18.
- **Kewitz S**, Müller J, Winkler C, Staege MS. Retinoic acid signaling and immunotherapy of cancer. In: *Retinoic acid: Structure, Metabolism and Roles in Disease* (Cheng LH, Ito Y, Hrsg.), S.87-104. Hauppauge, Nova Science Publishers (2012).

Kongressbeiträge:

- Kewitz S, Volkmer I, Staege MS. Cancer/testis antigen 96 (dual specificity protein kinase TTK) is an interesting target for Hodgkin's lymphoma. 2nd International Symposium on Childhood, Adolescent and Young Adult Hodgkin Lymphoma. 07.05.-10.05.2014, Berlin. Klin Padiatr 226:115 (2014).
- Kewitz S, Volkmer I, Kramm CM, Staege MS. O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and resistance of Hodgkin's lymphoma cells against dacarbazine. 2nd International Symposium on Childhood, Adolescent and Young Adult Hodgkin Lymphoma. 07.05.-10.05.2014, Berlin. Klin Padiatr 226:103 (2014).

Publikationen 145

 Staege MS, Volkmer I, Kewitz S, Körholz D. Hodgkin's lymphoma specific transcripts and minimal residual disease detection. 2nd International Symposium on Childhood, Adolescent and Young Adult Hodgkin Lymphoma. 07.05.-10.05.2014, Berlin. Klin Padiatr 226:107 (2014).

- Staege MS, Kruse K, Kielholz L, Ruch, MM, Wappler N, Volkmer I, Kewitz S, Körholz D. Identification of endogenous retrovirus sequences that are associated with Hodgkin's lymphoma specific gene expression. 2nd International Symposium on Childhood, Adolescent and Young Adult Hodgkin Lymphoma. 07.05.-10.05.2014, Berlin. Klin Padiatr 226:100 (2014).
- Kewitz S, Staege MS, Volkmer I. Cancer/testis antigen 96 (dual specificity protein kinase TTK) is expressed in Hodgkin's lymphoma cells and involved in chemoresistance. 43rd Annual Meeting German Society for Immunology, 11.-14.09.2013 Mainz
- Kewitz S, Kramm C, Staege MS. O6-Methylguanin-DNA-Methyltransferase und Dacarbazin-Resistenz von Hodgkin-Lymphomzellen. *Jahrestagung der Sächsisch-Thüringischen Gesellschaft für Kinder- und Jugendmedizin und Kinderchirurgie*, 30.-31.03.2012, Leipzig (2012).
- Kewitz S, Volkmer I, Körholz D, Staege MS. Untersuchungen zum Einfluss von Histon-Deacetylase-Inhibition auf Proliferation, Genexpression und Zytostatikaresistenz von Hodgkin-Lymphomzellen. *Jahrestagung der Sächsisch-Thüringischen Gesellschaft für Kinder- und Jugendmedizin und Kinderchirurgie*, 01.-02.04.2011, Gera. *Kinder- und Jugendmedizin* 11:A3 (2011).
- Staege MS, Müller J, Kewitz S, Volkmer I, Körholz D. Identifizierung tumorassoziierter Transkripte mithilfe von cDNA-Bibliotheken aus chemoresistenten Hodgkin-Lymphomzellen. 107. Jahrestagung der Deutschen Gesellschaft für Kinderund Jugendmedizin und Kinderchirurgie. Bielefeld. Monatsschr Kinderheilkd 159(Suppl. 3):196 (2011).

Sequenzen der Klone der cDNA-Bank-Fraktionen:

Dargestellt sind die sequenzierten Bereiche der cDNA-Klone, die aus den Fraktionen der cDNA-Bank isoliert wurden. Die Sequenzierung erfolgte mit dem T3-Primer. Hinter jedem Klon steht das Gen, für das die Sequenz codiert.

Klon 1 AHNAK:

CTTAAAGGTCCACGTCTGGATTTCGAAGGCCCTGATGCCAAACTCAGTGGCCCATCTTTGAAGAT GCCATCGCTGGAGATATCTGCTCCTAAAGTAACTGCTCCTGATGTTGATTTGCATCTCAAGGCAC CAAAAATTGGATTTTCAGGTCCGAAGTTAGAAGGTGGTGAAGTGGACCTCAAGGGACCCAAAGTT GAAGCTCCAAGCTTAGATGTACACATGGACAGCCCAGATATTAACATCGAAGGGCCCAAAGTTAA AATCCCCAAATTTAAGAAACCCAAGTTTGGATTTGGGGCAAAAAAGCCCCAAAGCTGACATCAAGT CACCTTCACTGGATGTCACTGTTCCTGAGGCAGGAGCTGAACCTTGAGACTCCTGAAATTAGTGTT GGTGGCAAGGGCAAGAAAAGTAAGTTTAAAATGCCTAAAATTCATATGAGTGGTCCTAAGATTAA GGCCAAAAAAACAGGGATTTGACCTGAATGTTCCTGGGGGTGAAATTGATGCCAGCCTCAAGGCT CCGGATGTAGATGTCAACATCGCAGGGCCGGATGCTGCACTCAAAGTCGACGTGAAATCGCCCA AAACCAAGAAAACGATGTTTGGAAAAATGTACTTCCCAGATGTAGAGTTTGACATTAAATCACCTA AATTTAAAGCTGAGGCCCCTCTCCCTAGCCCCAAACTGGAGGGTGAACTCCAGGCACCTGATCT GGAACTTTCTTTGCCAGCGATTCACGTCGAAGGTCTTGACATCAAGGCGAAGGCCCCAAAGTGCA AGATGCCAGATGTGGACATCTCAGTGCCAAAAAATAGAGGGTGACCTGAAAGGCCCCAAAGTGCA AGATGCCAGATGTGGACATCTCAGTGCCAAAAAATAGAGGGTGACCTGAAAGGCCCCAAAGTGCA

Klon 3 EEF1A1:

GGGTTTGCCGCCAGAACACAGGTGTCGTGAAAACTACCCCTAAAAGCCAAAATGGGAAAGGAAA AGACTCATATCAACATTGTCGTCATTGGACACGTAGATTCGGGCAAGTCCACCACTACTGGCCAT CTGATCTATAAATGCGGTGGCATCGACAAAAGAACCATTGAAAAATTTGAGAAGGAGGCTGCTGA GATGGGAAAGGGCTCCTTCAAGTATGCCTGGGTCTTGGATAAACTGAAAGCTGAGCGTGAACGT GGTATCACCATTGATATCTCCTTGTGGAAATTTGAGACCAGCAAGTACTATGTGACTATCATTGAT GCCCAGGACACAGAGACTTTATCAAAAACATGATTACAGGGACATCTCAGGCTGACTGTGCTGT CCTGATTGTTGCTGCTGGTGTTGGTGAATTTGAAGCTGGTATCTCCAAGAATGGGCAGACCCGAG AGCATGCCCTTCTGGCTTACACACTGGGTGTGAAACAACTAATTGTCGGTGTTAACAAAATGGATT CCACTGAGCCACCCTACAGCCAGAAGAGATATGAGGAAATTGTTAAGGAAGTCAGCACTTACATT AAGAAAATTGGCTACAACCCCGACACAGTAGCATTTGTGCCAATTTCTGGTTGGAATGGTGACAA CATGCTGGAGCCAAGTGCTAACATGCCTTGGTTCAAGGGATGGAAAGTCACCCGTAAGGATGGC AATGCCAGTGGAACCACGCTGCTTGAGGCTCTGGACTGCATCCTACCACCAACTCGTCCAACTG ACAAGCCCTTGCGCCTCTCCAGGATGTCTACAAAATTGGTGGTATTGGTACTGTTCCTGTT GGCCGAGTGGAGACTGGTGTTCTCAAACCCGGTATGGTGGTCACCTTTGCTCCAGTCAACGTTA CAACGGAAGTAAAATCTGTCGAAATGCACCATGAAGCTTTGAGTGAAGCTCTTCCTGGGGACAAT **GTGGGCTTC**

Klon 5 SET:

Klon 7 MT-RNR2-like:

Klon 8 EEF1A1:

CAGGTGTCGTGAAAACTACCCCTAAAAGCCAAAATGGGAAAGGAAAAGACTCATATCAACATTGT
CGTCATTGGACACGTAGATTCGGGCAAGTCCACCACTACTGGCCATCTGATCTATAAATGCGGTG
GCATCGACAAAAGAACCATTGAAAAATTTGAGAAGGAGGCTGCTGAGATGGGAAAGGGCTCCTT
CAAGTATGCCTGGGTCTTGGATAAACTGAAAGCTGAGCGTGAACGTGGTATCACCATTGATATCT
CCTTGTGGAAATTTGAGACCAGCAAGTACTATGTGACTATCATTGATGCCCCAGGACACAGAGAC
TTTATCAAAAACATGATTACAGGGACATCTCAGGCTGACTGTGCTGTCCTGATTGTTGCTGCTGGT
GTTGGTGAATTTGAAGCTGGTATCTCCAAGAATGGGCAGACCCGAGAGCATGCCCTTCTGGCTTA
CACACTGGGTGTGAAACAACTAATTGTCGGTGTTAACAAAAATGGATTCCACTGAGCCACCCTACA
GCCAGAAGAGATATGAGGAAATTGTTAAGGAAGTCAGCACTTACATTAAGAAAATTGGCTACAAC

CCCGACACAGTAGCATTTGTGCCAATTTCTGGTTGGAATGGTGACAACATGCTGGAGCCAAGTGC
TAACATGCCTTGGTTCAAGGGATGGAAAGTCACCCGTAAGGATGGCAATGCCAGTGGAACCACG
CTGCTTGAGGCTCTGGACTGCATCCTACCACCAACTCGTCCAACTGACAAGCCCTTGCGCCTGC
CTCTCCAGGATGTCTACAAAATTGGTGGTATTGGTACTGTTCCTGTTGGCCGAGTGGAGACTGGT
GTTCTCAAACCCGGTATGGTGGTCACCTTTGCTCCAGTCAACGTTACAACGGAAGT

Klon 9 Aktin:

Klon 11 EIF4A1:

Klon 12 CHMP1A:

GCCCCTACCAGCTGGCTGAGCCCCCTGGCCTCCTGCGCTCCCTCACTTCCCTCAGTTCCCAAAG
CTGCCCAGTCCATGGGGACAGAACCGTCACTCAGATCCACATTCAAGTGTGCCCACCCTGCAGT
CTTCATCCTCACTCAGCTGCTGCCTCTGGAGGTGCCTTTGGCCACATGTGCTGTTTGTCT
CCTCGACAGGGAGCCTGTCCACCAGCAGGCTGCGGTCCCAGCGGGTGCGTCTGCAGCTCCTCC
CCTTGGGCAGCCTGGTTCTCCCGGAGGACCTTTCCTTGGGGCCCTGCTTCATGACGATGCTGCC
TGTGTCACCCTCTACCATCTGTAAACAACTGGGTGCCTTCCCCGACCACACCCCAATGCCTTCCC
AGCTTGGAAGCCAAGGCAGCTGATGAAGGGAGCTCAGGAGAGCCGTCTTCAGCTGGGAA

Sequenzen der Klone der cDNA-Bank aus den Transfektionsexperimenten:

Dargestellt sind die sequenzierten Bereiche der cDNA-Klone, die aus den Transfektionsexperimenten mit der cDNA-Bank isoliert wurden. Die Sequenzierung erfolgte mit dem T3-Primer. Hinter jedem Klon steht das Gen für das die Sequenz codiert.

Versuch 1 Klon 1 C11orf48:

Versuch 1 Klon 3 CRABP2:

Versuch 1 Klon 6 IFITM1:

Versuch 1 Klon 8 RPL21:

Versuch 1 Klon 9 ELMO1:

Versuch 1 Klon 10 NDUFB11:

Versuch 2 Klon 1 QTRT1:

Versuch 2 Klon 2 FIBP:

GTCCCGAGCAGTGCTCCTCCTCCTCGGGGCGCTCCGGGCCCCGGGCGTCGCCATGACCAGTGA
GCTGGACATCTTCGTGGGGAACACGACCCTTATCGACGAGGACGTGTATCGCCTCTGGCTCGAT
GGTTACTCGGTGACCGACGCGGTGGCCCTGCGGGTGCGCTCGGGAATCCTGGAGCAGACTGGC
GCCACGGCAGCGGTGCTGCAGAGCGACACCATGGACCATTACCGCACCTTCCACATGCTCGAG
CGGCTGCTGCATGCGCCCCCAAGCTACTGCACCAGCTCATCTTCCAGATTCCGCCCTCCCGGC
AGGCACTACTCATCGAGAGGTACTATGCCTTTGATGAGGCCTTTGTTCGGGAGGTGCTGGGCAA
GAAGCTGTCCAAAGGCACCAAGAAAGACCTGGATGACATCAGCACCAAAACAGGCATCACCCTC
AAGAGCTGCCGGAGACAGTTTGACAACTTTAAACGGGTCTTCAAGGTGGTAGAGGAAATGCGGG

GCTCCCTGGTGGACAATATTCAGCAACACTTCCTCCTCTCTGACCGGTTGGCCAGGGACTATGCA
GCCATCGTCTTCTTTGCTAACAACCGCTTTGAGACAGGGAAGAAAAAACTGCAGTATCTGAGCTT
CGGTGACTTTGCCTTCTGCGCTGAGCTCATGATCCAAAACTGGACCCTTGGAGCCGTCGACTCA
CAGATGGATGACATGGACATGGACTTAGACAAGGAATTTCTCCAGGACTTGAAGGAGCTCAAGGT
GCTAGTGGCTGACAAGGACCTTCTGGACCTGCACAAGAGCCTGGTGTGCACTGCTCTCCGGGGA
AAGCTGGGCGTCTTCTCTGAGATGGAAGCCAACTTCAAGAACCTGTCCCGGGGGCTGGTGAACG
TGGCCGCCAAGCTGACCCACAATAAAGATGTCAGAGACCTGTTTGTG

Versuch 2 Klon 3 Genom von Mitochondrien:

Versuch 2 Klon 5 RPL10:

Versuch 2 Klon 10 PDCD7:

ATTTTTCCATGTTAGAAGGATCCTAATGAAAGCACCTGTTATTTTTAAGTTTCTAAGGGTCTAGTT
GTTCAGAATCCCCAAGGATATTTCCCTAACCTCACTCAGTCACATTGTAGGAGCCAGTGTAGCTAT
GGAATTATCTTAGGAACTCAAGCTTCTAAAACTATCCATGTAGTCAAATCTAGGGGAAAAAGCAAA

Versuch 3 Klon 1 CD74:

AGGAGCTGTCGGGAAGATCAGAAGCCAGTCATGGATGACCAGCGCGACCTTATCTCCAACAATG
AGCAACTGCCCATGCTGGGCCGGCGCCCTGGGGCCCCGGAGAGCAAGTGCAGCCGCGGAGCC
CTGTACACAGGCTTTTCCATCCTGGTGACTCTGCTCCTCGCTGGCCAGGCCACCACCGCCTACTT
CCTGTACCAGCAGCAGGAGCCGGCTGGACAAACTGACAGTCACCTCCCAGAACCTGCAGCTGGA
GAACCTGCGCATGAAGCTTCCCAAGCCTCCCAAGCCTGTGAGCAAGATGCGCATGGCCACCCCG
CTGCTGATGCAGGCGCTGCCCATGGGAGCCCTGCCCCAGGGGCCCATGCAGAATGCCACCAAG
TATGGCAACATGACAGAGGACCATGTGATGCACCTGCTCCAGAATGCTGACCCCCTGAAGGTGT
ACCCGCCACTGAAGGGGAGCCTTCCCGGAGAACCTGAGACACCTTAAGAACACCATGGAGACCAT
AGACTGGAAGGTCTTTGAGAGCTGGATGCACCATTGGCTCCTGTTTGAAATGAGCAGGCACTCCT
TGGAGCAAAAGCCCACTGACGCTCCACCGAAAGAGTCACTGGAACTGGAGGACCCGTCTTCTGG
GCTGGGTGTGACCAAGCAGGATCTGGGCCCAGTCCCCATGTGAGACCAGAGAGCGGTCTTC
AACATCCTGCCAGCCCCACACAGCTACAGCTTTCTTGCTCCCTTCAGCCCCCAGCCCCTCCCCCA
TCTCCCACCCTGTACCTCATCCCATGAGACCCTGGTGCCTGGTTTCTTCGTCACCCTTTGGACAAG
ACAAACCAAGTCGGAACAGCAGATA

Versuch 3 Klon 2 RPS7:

Versuch 3 Klon 4: RPL12:

GGAGGAGGCCAAGGTGCAACTTCCTTCGGTCGTCCCGAATCCGGGTTCATCCGACACCAGCCG CCTCCACCATGCCGCCGAAGTTCGACCCCAACGAGATCAAAGTCGTATACCTGAGGTGCACCGG

Versuch 3 Klon 6 RPS15:

Versuch 3 Klon 7: EFHD2:

Versuch 3 Klon 8 TTK:

Versuch 3 Klon 9 RPL36:

CGGCCGTCTCTGGAGAGCAGCCATGGCCCTACGCTACCCTATGGCCGTGGGCCTCAACAA
GGGCCACAAAGTGACCAAGAACGTGAGCAAGCCCAGGCACACGCCGCGGGGCGTCTGAC
CAAACACACCAAGTTCGTGCGGGACATGATTCGGGAGGTGTGTGGCTTTGCCCCGTACGAGCGG
CGCGCCATGGAGTTACTGAAGGTCTCCAAGGACAAACGGGCCCTCAAATTTATCAAGAAAAGGG
TGGGACGCACATCCGCGCCAAGGAGGAAGCGGAGGAGCTGAGCAACGTACTGG

Versuch 4 Klon 1 QTRT1:

GGCTCGGACATCATGCAGCTGGACGACGTGGTTAGCAGTACTGTGACTGGGCCACGTGTGG
AGGAGGCCATGTACAGGTCAATCCGCTGGCTGGACCGGTGCATTGCAGCCCATCAGCGGCCGG
ACAAGCAGAACCTCTTCGCCATTATCCAGGGTGGGCTGGACGCAGATCTCCGGGCCACCTGCCT
TGAAGAGATGACCAAGCGAGACGTGCCTGGCTTCGCCATCGGGGGCCTGAGCGGGGGTGAGAG
CAAGTCGCAGTTCTGGCGGATGGTGGCGCTGAGCACCTCTCGGCTGCCGAAGGACAAGCCCCG
ATATCTGATGGGGGTTGGCTATGCCACTGATCTGGTAGTCTGCCTGGCTCCCACTGGAACCATGT
TCGACTGCGTCTTCCCCACACGGACAGCGCGCTTTTGGCTCTGCCCTGGTGCCCACTGGGAACCT
GCAGTTGAGGAAGAAGGTGTTTGAGAAGGACTTCGGCCCCATAGACCCGGAGTGCACCTGCCCC
ACGTGCCAAAAGCACAGCCGCGCCTTCCTGCACGCACTGCACAGTGACAACACGGCCGCG
CTGCACCACCTCACGGTCCACAACATCGCCTACCAGCTGCAGCTCATGAGCGCCGTCCGCACCA
GCATCGTGGAGAAGCGCTTCCCGGACTTCGTGCGGGAATCACACTTGGGCGCCATGTACGGGGATC
CCACCCTCTGTCCCACCTGGGCCACTGACGCTCTGTGGGGAATCACACTGGGCTGACC
TGGCATTGGGAGAGGGAGGAAGGAAGG

Versuch 4 Klon 2 QTRT1:

GGCTCGGACATCATGCAGCTGGACGACGTGGTTAGCAGTACTGTGACTGGGCCACGTGTGG
AGGAGGCCATGTACAGGTCAATCCGCTGGCTGGACCGGTGCATTGCAGCCCATCAGCGGCCGG
ACAAGCAGAACCTCTTCGCCATTATCCAGGGTGGGCTGACCGAGATCTCCGGGCCACCTGCCT
TGAAGAGATGACCAAGCGAGACGTGCCTGGCTTCGCCATCGGGGGCCTGAGCGGGGGTGAGAG
CAAGTCGCAGTTCTGGCGGATGGTGGCGCTGAGCACCTCTCGGCTGCCGAAGGACAAGCCCCG
ATATCTGATGGGGGTTGGCTATGCCACTGATCTGGTAGTCTGCCCTGGTGCCCACTGGGAACCT
TCGACTGCGTCTTCCCCACACGGACAGCGCGCTTTGGCTCTGCCCTGGTGCCCACTGGGAACCT
GCAGTTGAGGAAGAAGGTGTTTGAGAAGGACTTCGGCCCCATAGACCCGGAGTGCACCTGCCC
ACGTGCCAAAAGCACAGCCGCGCCTTCCTGCACGCACTGCTGCACAGTGACAACACGGCCGCG
CTGCACCACCTCACGGTCCACAACATCGCCTACCAGCTGCAGCTCATGAGCGCCGTCCGCACCA
GCATCGTGGAGAAGCGCTTCCCGGACTTCGTGCGGGAATCACACTGGGCTGACC
TCCACCCTCTGTCCCACCTGGGCCACTGACGCTCTGTGGGAATCACACTGGGCTGACC
TGGCATTGGGAGAGGGAGGAGGAAGGAAGG

Versuch 4 Klon 3 UAP1:

GACGTCTTGGACAACTGAAGTTTAAATATCCACAGGGTTTTATTTTGCTTGTTGAACTCTTAGAGC TATTGCAAACTTCCCAAGATCCAGATGACTGAATTTCAGATAGCATTTTTATGATTCCCAACTCATT

Versuch 4 Klon 4 NDUFB11:

Versuch 4 Klon 5 QTRT1:

GGCTCGGACATCATGCAGCTGGACGACGTGGTTAGCAGTACTGTGACTGGGCCACGTGTGG
AGGAGGCCATGTACAGGTCAATCCGCTGGCTGGACCGGTGCATTGCAGCCCATCAGCGGCCGG
ACAAGCAGAACCTCTTCGCCATTATCCAGGGTGGGCTGGACGCAGATCTCCGGGCCACCTGCCT
TGAAGAGATGACCAAGCGAGACGTGCCTGGCTTCGCCATCGGGGGCCTGAGCGGGGGTGAGAG
CAAGTCGCAGTTCTGGCGGATGGTGGCGCTGAGCACCTCTCGGCTGCCGAAGGACAAGCCCCG
ATATCTGATGGGGGTTGGCTATGCCACTGATCTGGTAGTCTGCGTGGCTCTTGGATGTGACATGT
TCGACTGCGTCTTCCCCACACGGACAGCGCGCTTTGGCTCTGCCCTGGTGCCCACTGGGAACCT
GCAGTTGAGGAAGAAGGTGTTTGAGAAGGACTTCGGCCCCATAGACCCGGAGTGCACCTGCCCC
ACGTGCCAAAAGCACAGCCGCGCCTTCCTGCACGCACTGCACAGTGACAACACGGCCGCG
CTGCACCACCTCACGGTCCACAACATCGCCTACCAGCTGCAGCTCATGAGCGCCGTCCGCACCA
GCATCGTGGAGAAGCGCTTCCCGGACTTCGTGCGGGAATCACACTGGGGATC
CCACCCTCTGTCCCACCTGGGCCACTGACGCTCTTGTGGGAATCACACTGGGCTGACC
TGGCATT

Versuch 4 Klon 7 BTF3:

Versuch 5 Klon 9 RPL21:

Versuch 5 Klon 10 FIBP:

GTCCCGAGCAGTGCTCGCTCCTGCTCGGGGCGCTGCGGCCCCGGGCGTCGCCATGACCAGTGA
GCTGGACATCTTCGTGGGGAACACGACCCTTATCGACGAGGACGTGTATCGCCTCTGGCTCGAT
GGTTACTCGGTGACCGACGCGGTGGCCCTGCGGGTGCGCTCGGAATCCTGGAGCAGACTGGC
GCCACGGCAGCGGTGCTGCAGAGCGACACCATGGACCATTACCGCACCTTCCACATGCTCGAG
CGGCTGCTGCATGCGCCGCCCAAGCTACTGCACCAGCTCATCTTCCAGATTCCGCCCTCCCGGC
AGGCACTACTCATCGAGAGGTACTATGCCTTTGATGAGGCCTTTGTTCGGGAGGTGCTGGGCAA
GAAGCTGTCCAAAGGCACCAAGAAAGACCTGGATGACATCAGCACCAAAACAGGCATCACCCTC
AAGAGCTGCCGGAGACAGTTTGACAACTTTAAACGGGTCTTCAAGGTGGTAGAGGAAATGCGGG
GCTCCCTGGTGGACAATATTCAGCAACACTTCCTCCTCTCTGACCGGTTGGCCAGGGACTATGCA
GCCATCGTCTTCTTTGCTAACAACCGCTTTGAGACAGGGAAGAAAAACTGCAGTATCTGAGCTT
CGGTGACTTTGCCTTCTGCGCTGAGCTCATGATCCAAAACTGGACCCTTGAAGGAGCTCAAGGT
GCTAGTGGCTGACAAGGACCTTCTGGACCAGAACCCTGGTGTGCACTGCTCCCGGGGA
AAGCTGGCCTGACAAGGACCTTCTGGACCTGCACAAGACCCTGGTGTCCACTCTCCCGGGGA
AAGCTGGCCTCTCTCTGAGATGGAAGCCCAACTTCAAGA

Versuch 5 Klon 11 FAM192:

CTGGAATCCTAATATTGTAAATGAGTGGGACACACTTGCATATTGTGACCATTCTATTGAGGCCCT
TCTCTGTTTAATGCATATTATACTTGTGCTTTTAACTGTGGAATCTATTTCTAACCTAAAGGTGCTG
CCCTAGTACTTTTCTTTGCTGCCTCTGCTGCTCTTTTTCCTTTCCAAACAGCAACTCTGAGGCCAT
GAGCAGCCAAAAACTAGAGGTACTGCTCCACCTCGTCTCATAAAGGGAAACGGGCTCATCCCTT
GGATTCTGGAGGAGGGAGAGGGAGATGGTGTGGAGGCCTCGAGGACAGAGATAGACATGAGCT

Versuch 6 Klon 1 RPS7:

Versuch 6 Klon 2 NDUFB11:

GGCTGGGCTGTTTGGTTTGAGCGCTCGCCGTCTTTTTGGCGGCAGCGCGACGCGAGGGCTCCC
GGCCGCCCGCGTCCGCTGGGAATCTAGCTTCTCCAGGACTGTGGTCGCCCCGTCCGCTGTGGC
GGGAAAGCGGCCCCCAGAACCGACCACACCGTGGCAAGAGGACCCAGAACCCGAGGACGAAAA
CTTGTATGAGAAGAACCCAGACTCCCATGGTTATGACAAGGACCCCGTTTTGGACGTCTGGAACA
TGCGACTTGTCTTCTTTTTGGCGTCTCCATCATCCTGGTCCTTGGCAGCACCTTTTTTGGCCTATC
TGCCTGACTACAGGATGAAAGAGTGGTCCCGCCGCGAAGCTGAGAGGCTTGTGAAATACCGAGA
GGCCAATGGCCTTCCCATCATGGAATCCAACTGCTTCGACCCCAGCAAGATCCAGCTGCCAGAG
GATGAGTGACCAGTTGCTAAGTGGGGCTCAAGAAGCACCGCCTTCCCCACCCCCTGCCTTCCCAT

Versuch 6 Klon 3 QTRT1:

GGCTCGGACATCATCATGCAGCTGGACGACGTGGTTAGCAGTACTGTGACTGGGCCACGTGTGG
AGGAGGCCATGTACAGGTCAATCCGCTGGCTGGACCGGTGCATTGCAGCCCATCAGCGGCCGG
ACAAGCAGAACCTCTTCGCCATTATCCAGGGTGGGCTGGACGCAGATCTCCGGGCCACCTGCCT
TGAAGAGATGACCAAGCGAGACGTGCCTGGCTTCGCCATCGGGGGCCTGAGCGGGGGTGAGAG
CAAGTCGCAGTTCTGGCGGATGGTGGCGCTGAGCACCTCTCGGCTGCCGAAGGACAAGCCCCG
ATATCTGATGGGGGTTGGCTATGCCACTGATCTGGTAGTCTGCCTGGTGCCCACTGGGAACCT
TCGACTGCGTCTTCCCCACACGGACAGCGCGCTTTTGGCTCTGCCCTGGTGCCCACTGGGAACCT

GCAGTTGAGGAAGAAGGTGTTTGAGAAGGACTTCGGCCCCATAGACCCGGAGTGCACCTGCCCC
ACGTGCCAAAAGCACAGCCGCGCCTTCCTGCACGCACTGCTGCACAGTGACAACACGGCCGCG
CTGCACCACCTCACGGTCCACAACATCGCCTACCAGCTGCAGCTCATGAGCGCCGTCCGCACCA
GCATCGTGGAGAAGCGCTTCCCGGACTTCGTGCGGGACTTCATGGGCGCCCATGTACGGGGATC
CCACCCTCTGTCCCACCTGGGCCACTGACGCTCTGGCCTCTGTGGGAATCACACTGGGCTGACC
TG

Versuch 6 Klon 4 FTH1:

Versuch 6 Klon 5 NDUFB11:

GGCTGGCTGTTTGGTTTGAGCGCTCGCCGTCTTTTTGGCGCCAGCGCGACGCGAGGGCTCCC
GGCCGCCCGCGTCCGCTGGGAATCTAGCTTCTCCAGGACTGTGGTCGCCCCGTCCGCTGTGGC
GGGAAAGCGGCCCCCAGAACCGACCACACCGTGGCAAGAGGACCCAGAACCCGAGGACGAAAA
CTTGTATGAGAAGAACCCAGACTCCCATGGTTATGACAAGGACCCCGTTTTGGACGTCTGGAACA
TGCGACTTGTCTTCTTTTGGCGTCTCCATCATCCTGGTCCTTGGCAGCACCTTTTTTGGCCTATC
TGCCTGACTACAGGATGAAAGAGTGGTCCCGCCGCGAAGCTGAGAGGCTTTTTGAAATACCGAGA
GGCCAATGGCCTTCCCATCATGGAATCCAACTGCTTCGACCCCAGCAAGATCCAGCTGCCAGAG
GATGAGTGACCAGTTGCTAAGTGGGGCTCAAGAAGCACCGCCTTCCCCACCCCCTGCCTTCCCAT

Versuch 6 Klon 6 UAP1:

Versuch 6 Klon 7 RPL37A:

Versuch 6 Klon 8 UAP1:

Versuch 6 Klon 9 QTRT1:

GGCTCGGACATCATCATGCAGCTGGACGACGTGGTTAGCAGTACTGTGACTGGGCCACGTGTGG
AGGAGGCCATGTACAGGTCAATCCGCTGGCTGGACCGGTGCATTGCAGCCCATCAGCGGCCGG
ACAAGCAGAACCTCTTCGCCATTATCCAGGGTGGGCTGGACGCAGATCTCCGGGCCACCTGCCT
TGAAGAGATGACCAAGCGAGACGTGCCTGGCTTCGCC

Versuch 7 Klon 1 RPS11:

Versuch 7 Klon 2 FTH1:

CGAGAGTCGTCGGGGTTTCCTGCTTCAACAGTGCTTGGACGGAACCCGGCGCTCGTTCCCCACC CCGGCCGCCGCCCATAGCCAGCCCTCCGTCACCTCTTCACCGCACCCTCGGACTGCCCCAAG GCCCCGCCGCCGCTCCAGCGCCGCGCAGCCACCGCCGCCGCCGCCTCTCCTTAGTCGC

Versuch 7 Klon 3 RPS24:

GATAGATCGCCATCATGAACGACACCGTAACTATCCGCACTAGAAAGTTCATGACCAACCGACTA
CTTCAGAGGAAACAAATGGTCATTGATGTCCTTCACCCCGGGAAGGCGACAGTGCCTAAGACAG
AAATTCGGGAAAAACTAGCCAAAATGTACAAGACCACACCGGATGTCATCTTTGTATTTGGATTCA
GAACTCATTTTGGTGGTGGCAAGACAACTGGCTTTGGCATGATTTATGATTCCCTGGATTATGCAA
AGAAAAATGAACCCAAACATAGACTTGCAAGACATGGCCTGTATGAGAAGAAAAAAGACCTCAAGA
AAGCAACGAAAGGAACGCAAGAACAGAATGAAGAAAGTCAGGGGGACTGCAAAGGCCAATGTTG
GTGCTGGCAAAAAAGCCGAAGGAGTAAAGGTGCTGCAATGATGTTAGCTGTGGCCACTGTGGATT
TTTCGCAAGAACATTAATAAACTAAAAACTTCATGTG

Versuch 7 Klon 4 ELMO1:

ATCAAAGCCGTGGTGACGGGAAAGGACTGCCCTCATATGAAAGAGAAAGGTGCCCTTAAACAAA
ACAAGGAGGTGCTTGAACTCGCTTTCTCCATCTTGTATGACTCAAACTGCCAACTGAACTTCATCG
CTCCTGACAAGCATGAGTACTGTATCTGGACGGATGGACTGAATGCGCTACTCGGGAAGGACAT
GATGAGCGACCTGACGCGGAATGACCTGGACACCCTGCTCAGCATGGAAATCAAGCTCCGCCTC
CTGGACCTGGAAAACATCCAGATCCCTGACGCACCTCCGCCGATTCCCAAGGAGCCCAGCAACT
ATGACTTCGTCTATGACTGTAACTGAAGTGGCCGGGCCCAGACATGCCCCTTCCAAAACTGGAAC
ACCTAGCTAACAGGAGAGAGAGAATGAAAACACCCCACGCCTTGGAACCGTCCTTTGGTAAAGG
GAAGCTGTGGGTCCACATTCCCTTCAGCATCACCTCTAGCCCTGGCAACTTTCAGCCCCTAGCTG
GCATCTTGCTCACCGCCCTGATTCTGTTCCTCGGCTCCACTGCTTCAGGTCACTTCCCATGCCTC
CTAGCCCTCTGCAGGCAAAGAGCCAAAGCCCACTGCCAGGAAAGGCCAAAGGGCCCCAGACTGCCC
AAAAACTTGCCCACCAGACCAAGGGCAGTGCCCCAAGGGCCCCTGCTAGC
TATTTGATGAGAGAGACCAAACCCCACATCCTCCTTTCCC

Versuch 7 Klon 5 DDB1:

TGACCGCCCACTGTCATCTATAGCAGCAACCACAAATTGGTCTTCTCAAATGTCAACCTCAAGG
AAGTGAACTACATGTGTCCCCTCAATTCAGATGGCTATCCTGACAGCCTGGCGCTGGCCAACAAT
AGCACCCTCACCATTGGCACCATCGATGAGATCCAGAAGCTGCACATTCGCACAGTTCCCCTCTA
TGAGTCTCCAAGGAAGATCTGCTACCAGGAAGTGTCCCAGTGTTTCGGGGTCCTCTCCAGCCGC
ATTGAAGTCCAAGACACGAGTGGGGGCACGACAGCCTTGAGGCCCAGCGCTAGCACCCAGGCT
CTGTCCAGCAGTGTAAGCTCCAGCAAGCTGTTCTCCAGCAGCACTGCTCCTCATGAAGACCTCCTT
TGGAGAAGAGGTGGAGGTGCACAACCTACTTATCATTGACCAACACACCTTTGAAGTGCTTCATG
CCCACCAGTTTCTGCAGAATGAATATGCCCTCAGTCTGGTTTCCTGCAAGCTGGGCAAAGACCCC
AACACTTACTTCATTGTGGGCACAGCAATGGTGTATCCTGAAGAGGCAGAGCCCAAGCAGGGTC
GCATTGTGGTCTTTCAGTATTCGGATGGAAAACTACAGACTGTGGCTGAAAAGGAAGTGAAAGGG
GCCGTGTACTCTATGGTGGAATTTAACGGGAAGCTGTTAGCCAGCATCAATAGCACGGTGCGGC
TCTATGAGTGGACA

Versuch 7 Klon 6 C11orf48:

Versuch 7 Klon 7 RPL30:

Versuch 7 Klon 8 POLR2G:

GGGACTGTCGGAGGTGTGGACTCTGCCTGCCTACCTGGTCTGGGAAGATGTTCTACCATATCTC
CCTAGAGCACGAAATCCTGCTGCACCCGCGCTACTTCGGCCCCAACTTGCTCAACACGGTGAAG
CAGAAGCTCTTCACCGAGGTGGAGGGGACCTGCACAGGGAAGTATGGCTTTGTAATTGCTGTCA
CCACCATTGACAATATTGGTGCTGGTGTGATCCAGCCAGGCCGAGGCTTTGTCCTTTATCCAGTT
AAGTACAAGGCCATTGTTTTCCGGCCATTTAAAGGGGAGGTCGTGGATGCTGTTGTCACTCAGGT
CAACAAGGTTGGACTCTTCACAGAAATTGGGCCCATGTCTTGCTTCATCTCTCGACATTCCATCCC

TTCAGAGATGGAGTTTGATCCTAACTCCAACCCACCATGTTACAAGACAATGGATGAGGATATTGT
GATTCAGCAGGACGATGAGATCCGCTTAAAGATTGTGGGGGACCCGTGTGGACAAGAATGACATTT
TTGCTATTGGCTCCCTGATGGACGATTACTTGGGGCTTGTAAGCTGAGCCTGGTGGCCTCCTACC
CTTGGTCCTACTCTAGGAAGTGTGATTGTCACACTTATCATGTTGTCCAGAGGTCCAGTCTGGCT
GCTGTTGTGGAGGCAAGGAAGGCAACTCATCCCAGAAGGCATCTGGTGCTTCTTGTAGCTTAACT
ACTGCCTCCTCATTTTTCAGTATGTGTTCTAAGTATAAAAAGTCCTTGGTTCTC

DNA-Mikroarray-Daten:

Tabelle 22: Sondensätze, die durch den *knockdown* von *PRAME* herunterreguliert wurden. Zellen mit PRAME-knockdown und Kontroll-Zellen wurden hinsichtlich ihrer Genexpression untersucht. Dafür wurden Human Genome U133 Plus 2.0-Arrays verwendet. Die Gene sollten mindestens dreifach herunterreguliert worden sein und eine Signalintensität von über 100 in mindestens einem Zustand aufweisen. Dargestellt sind Gene, die durch den PRAME-knockdown herunterreguliert wurden.

Sondensatz ID	L-428 Kontrolle	L-428 PRAME- knockdown	Gensymbol	Kontrolle /PRAME- knockdown
226282_at	383,4526	9,3879	PTPN14	40,8452
209591_s_at	124,1104	5,4092	BMP7	22,9443
232358_at	144,4053	7,0376	KIAA1328	20,5190
243835_at	112,4305	5,7622	ZDHHC21	19,5117
229435_at	115,3577	6,3585	GLIS3	18,1424
1555550_at	141,7972	7,9232	ZACN	17,8965
236210_at	106,4959	6,8091		15,6403
214852_x_at	126,1807	8,4904	VPS13A	14,8616
244533_at	184,0790	14,1411	PTPN14	13,0173
234360_at	117,8878	9,3678		12,5843
203463_s_at	169,1994	14,0710	EPN2	12,0247
243595_at	166,5445	14,6149	SHB	11,3955
209728_at	152,1833	15,3084	HLA-DRB4	9,9412
227564_at	119,7578	12,3091	HGSNAT	9,7292
216451_at	122,4962	13,1128	STK38	9,3417
229859_at	104,5413	11,4117		9,1609
235760_at	114,1406	12,8038	NSD1	8,9146

203131_at	333,8535	39,4261	PDGFRA	8,4678
1556701_at	110,8594	13,4604		8,2360
201481_s_at	380,9884	49,9223	PYGB	7,6316
205537_s_at	112,3347	14,9823	VAV2	7,4979
1554725_at	106,8221	14,7107	RABGAP1L	7,2615
1563009_at	136,6669	18,9039	LOC284930	7,2295
211513_s_at	168,4013	23,5586	OGFR	7,1482
212849_at	132,6155	18,5841	AXIN1	7,1360
207172_s_at	122,5936	17,1799	CDH11	7,1359
214333_x_at	237,6603	34,0263	IDH3G	6,9846
219766_at	100,1035	14,4742	B9D2	6,9160
1554992_at	149,1541	21,6084	RASGRF1	6,9026
205249_at	1214,9220	177,2722	EGR2	6,8534
213820_s_at	110,2694	16,4660	STARD5	6,6968
204014_at	1604,4280	244,7724	DUSP4	6,5548
218686_s_at	182,5047	27,8619	RHBDF1	6,5503
230283_at	116,9280	18,5830	NEURL2	6,2922
235312_s_at	120,0618	19,1750	NRAP	6,2614
205398_s_at	137,1931	22,7651	SMAD3	6,0265
232367_x_at	112,9454	19,0656	ZNF598	5,9240
235042_at	802,8112	135,6003	XIRP1	5,9204
220484_at	116,3627	19,9141	MCOLN3	5,8432
242637_at	136,8540	23,7841		5,7540
211002_s_at	163,3940	28,5316	TRIM29	5,7268
216542_x_at	198,2011	35,2253	IGHA1 /// IGHG1 /// IGHM /// LOC100290293	5,6267
229898_at	107,5587	19,1887	SNX33	5,6053
242314_at	105,6784	19,0115	TNRC6C	5,5586
1555462_at	132,8825	24,0648	PPP1R1C	5,5219
208126_s_at	130,0195	24,0687	CYP2C18	5,4020

223348_x_at	306,1756	57,0305	MUM1	5,3686
223346_X_at	300,1730	57,0303	IVIOIVII	3,3000
219847_at	201,2906	37,8767	HDAC11	5,3144
1569146_s_at	190,2853	36,0021	C6orf174	5,2854
1000140_3_4	130,2000	30,0021	0001174	0,2004
217708_x_at	117,6027	22,6376		5,1950
243617_at	118,3971	23,0629	ZNF827	5,1337
242321_at	138,1568	27,1473	PTPN14	5,0892
225987_at	128,0422	25,8757	STEAP4	4,9484
1555754_s_at	123,3848	25,2027	ATN1	4,8957
220350_at	163,7550	33,7053	ZNF235	4,8584
225869_s_at	143,5810	29,6763	UNC93B1	4,8382
239451_at	102,5750	21,3486		4,8048
1555378_at	117,1084	24,4153	DBF4B	4,7965
204757_s_at	233,9416	49,0003	C2CD2L	4,7743
1559508_at	110,0050	23,1263		4,7567
205843_x_at	102,7838	21,6473	CRAT	4,7481
217589_at	100,5166	21,2650	RAB40A	4,7268
241946_at	140,8044	29,8055	ZDHHC21	4,7241
230692_at	126,9839	27,4049	LOC157503	4,6336
206769_at	103,1381	22,2799	TMSB4Y	4,6292
1557034_s_at	132,6354	28,6534	BTNL8 /// LOC100134445 /// WASH1 /// WASH2P /// WASH3P /// WASH5P /// WASH7P	4,6290
244170_at	103,6237	22,4410		4,6176
1569879_a_at	219,2832	47,5801	MEGF11	4,6087
209163_at	129,0853	28,2319	CYB561	4,5723
1552311_a_at	132,8538	29,1092	RAX2	4,5640
220666_at	105,9779	23,2492		4,5584
229734_at	213,8588	47,1397	LOC283174	4,5367
220838_at	133,0357	29,4218	EXD3	4,5217
L	1	1	1	1

228952_at	282,5070	62,8086	ENPP1	4,4979
205102_at	103,8415	23,1143	TMPRSS2	4,4925
240455_at	139,2571	31,1914		4,4646
212668_at	139,9185	31,4355	SMURF1	4,4510
1570026_at	128,1060	29,0163	CPXM2	4,4150
205593_s_at	122,3892	28,4680	PDE9A	4,2992
236343_at	124,3462	28,9516		4,2950
232937_at	102,7380	23,9559		4,2886
213449_at	167,6324	39,3225	POP1	4,2630
225906_at	145,2025	34,0986		4,2583
212759_s_at	102,9490	24,1939	TCF7L2	4,2552
208009_s_at	117,3070	27,6390	ARHGEF16	4,2443
224018_s_at	183,0370	43,7693	SCD5	4,1819
1557218_s_at	118,5879	28,4035	FANCB	4,1751
215805_at	108,7691	26,0894		4,1691
1559036_at	101,5784	24,3681	C4A /// C4B /// LOC100292046 ///	4,1685
			LOC1002920467//	
222227 v. ot	224,5535	54,0854	AP2A1	4,1518
223237_x_at	224,5555	54,0654	AFZAT	4,1516
219101_x_at	368,8965	89,7026	ABHD8	4,1124
219101_X_at	300,0903	03,7020	ADITO	7,1124
244823_at	231,0651			
244020_ut		56 3095	LOC100129034	4 1035
	231,0031	56,3095	LOC100129034	4,1035
221783 at	·	·		·
221783_at	282,6833	69,0415	WIZ	4,0944
221783_at 1555612_s_at	·	·		·
1555612_s_at	282,6833 166,5238	69,0415 41,0357	WIZ	4,0944
1555612_s_at 228757_at	282,6833 166,5238 120,5926	69,0415 41,0357 30,0181	WIZ G6PC	4,0944 4,0580 4,0173
1555612_s_at	282,6833 166,5238	69,0415 41,0357	WIZ G6PC HSD11B1L	4,0944 4,0580
1555612_s_at 228757_at	282,6833 166,5238 120,5926	69,0415 41,0357 30,0181	WIZ G6PC HSD11B1L	4,0944 4,0580 4,0173
1555612_s_at 228757_at 207292_s_at	282,6833 166,5238 120,5926 135,3334	69,0415 41,0357 30,0181 34,3536	WIZ G6PC HSD11B1L MAPK7	4,0944 4,0580 4,0173 3,9394
1555612_s_at 228757_at 207292_s_at 213177_at	282,6833 166,5238 120,5926 135,3334 106,7538	69,0415 41,0357 30,0181 34,3536 27,1688	WIZ G6PC HSD11B1L MAPK7 MAPK8IP3	4,0944 4,0580 4,0173 3,9394 3,9293
1555612_s_at 228757_at 207292_s_at 213177_at 227202_at	282,6833 166,5238 120,5926 135,3334 106,7538 172,6545	69,0415 41,0357 30,0181 34,3536 27,1688 44,5000	WIZ G6PC HSD11B1L MAPK7 MAPK8IP3 CNTN1	4,0944 4,0580 4,0173 3,9394 3,9293 3,8799
1555612_s_at 228757_at 207292_s_at 213177_at 227202_at 212575_at	282,6833 166,5238 120,5926 135,3334 106,7538 172,6545 396,0717	69,0415 41,0357 30,0181 34,3536 27,1688 44,5000 103,8001	WIZ G6PC HSD11B1L MAPK7 MAPK8IP3 CNTN1 C19orf6	4,0944 4,0580 4,0173 3,9394 3,9293 3,8799 3,8157
1555612_s_at 228757_at 207292_s_at 213177_at 227202_at 212575_at 226192_at	282,6833 166,5238 120,5926 135,3334 106,7538 172,6545 396,0717 253,6468	69,0415 41,0357 30,0181 34,3536 27,1688 44,5000 103,8001 66,9481	WIZ G6PC HSD11B1L MAPK7 MAPK8IP3 CNTN1 C19orf6 AR	4,0944 4,0580 4,0173 3,9394 3,9293 3,8799 3,8157 3,7887
1555612_s_at 228757_at 207292_s_at 213177_at 227202_at 212575_at 226192_at 209453_at	282,6833 166,5238 120,5926 135,3334 106,7538 172,6545 396,0717 253,6468 150,5593	69,0415 41,0357 30,0181 34,3536 27,1688 44,5000 103,8001 66,9481 39,8075	WIZ G6PC HSD11B1L MAPK7 MAPK8IP3 CNTN1 C19orf6 AR SLC9A1	4,0944 4,0580 4,0173 3,9394 3,9293 3,8799 3,8157 3,7887 3,7822
1555612_s_at 228757_at 207292_s_at 213177_at 227202_at 212575_at 226192_at 209453_at 237802_at	282,6833 166,5238 120,5926 135,3334 106,7538 172,6545 396,0717 253,6468 150,5593 354,6607	69,0415 41,0357 30,0181 34,3536 27,1688 44,5000 103,8001 66,9481 39,8075 94,0862	WIZ G6PC HSD11B1L MAPK7 MAPK8IP3 CNTN1 C19orf6 AR SLC9A1 XKR4	4,0944 4,0580 4,0173 3,9394 3,9293 3,8799 3,8157 3,7887 3,7882 3,7695

201341_at	173,1549	46,8279	ENC1	3,6977
216532_x_at	561,7272	155,9738		3,6014
232083_at	126,6741	35,2048	KIF16B	3,5982
213192_at	162,1088	45,1978	THAP3	3,5866
232788_at	124,0307	34,8965		3,5542
1553732_s_at	192,4991	54,3163	CCDC123	3,5440
218567_x_at	148,5892	42,0985	DPP3	3,5296
202099_s_at	172,0150	49,1044	DGCR2	3,5030
229715_at	132,1082	37,7450		3,5000
219364_at	102,1106	29,2431	DHX58	3,4918
206807_s_at	146,7097	42,0597	ADD2	3,4881
240505 04	447.4400	22 7070	CCDCOOD	2.4052
219585_at	117,1136	33,7970	CCDC28B	3,4652
217606_at	164,4796	47,5826	PCAD4	3,4567 3,4381
223116_at	139,6699	40,6238	BCAR1	, i
221835_at	116,8634	34,3554	DTX3	3,4016
1553225_s_at	156,1190	45,9324	ZNF75D	3,3989
210589_s_at	132,6391	39,1053	GBAP1	3,3918
210309_5_at	132,0391	39,1033	GBAFT	3,3910
1554580_a_at	117,8550	34,7799	WWP2	3,3886
1004000_u_ut	117,000	04,7700	VVVVI 2	0,0000
212564_at	427,0028	126,9127	KCTD2	3,3645
217628_at	312,2501	92,9099	CLIC5	3,3608
1570281_at	100,0618	29,8721		3,3497
211844_s_at	207,5004	62,1969	NRP2	3,3362
229311_at	102,1715	30,6285	GKAP1	3,3358
204293_at	367,2863	110,2024	SGSH	3,3328
1564112_at	119,8469	36,1899	FAM71A	3,3116
226034_at	1344,7720	414,3054		3,2458
211467_s_at	163,0054	50,3837	NFIB	3,2353
228388_at	190,2977	59,1165	NFKBIB	3,2190
203754_s_at	158,8808	49,6419	BRF1	3,2005
238223_at	109,4474	34,5744		3,1656
235553_at	121,4135	38,3690	GAPVD1	3,1644
1559170_at	231,2597	73,2190		3,1585
228035_at	172,8023	54,7229	STK33	3,1578
208568_at	101,8895	32,2900	MC2R	3,1554

224822_at	622,2929	198,7306	DLC1	3,1313
1561561_x_at	111,5267	35,7396		3,1205
211013_x_at	113,7950	36,5680	PML	3,1119
221049_s_at	181,4252	58,4458	POLL	3,1042
221418_s_at	309,5218	99,8608	MED16	3,0995
230105_at	123,4263	39,8395	HOXB13	3,0981
222671_s_at	142,4354	46,6382	JMJD4	3,0541
232787_at	122,8848	40,3140	PRIC285	3,0482
1566456_at	181,3400	59,5120		3,0471
203490_at	292,3489	96,1750	ELF4	3,0398
208496_x_at	105,3535	34,7844	HIST1H3G	3,0288
215177_s_at	252,1753	83,4050	ITGA6	3,0235
230486_at	1233,1480	408,2695		3,0204
241611_s_at	114,0143	37,7761	FNDC3A	3,0182
208725_at	186,3457	61,7562	EIF2S2	3,0174
231298_at	122,7168	40,7731		3,0097
203977_at	339,4297	112,9401	TAZ	3,0054
203685_at	1234,23	549,06	BCL2	2,25
206665_s_at	1154,39	667,53	BCL2L1	1,7
35150_at	1849,57	1145,62	CD40	1,6
206463_s_at	3460,6	1816,12	DHRS2	1,91
210904_s_at	1427,59	846,73	IL-13RA	1,7
204086_at	2115,20	1250,71	PRAME	1,7

Tabelle 23: Sondensätze, die durch den *knockdown* von *PRAME* hochreguliert wurden. Zellen mit *PRAME-knockdown* und Kontroll-Zellen wurden hinsichtlich ihrer Genexpression untersucht. Dafür wurden Human Genome U133 Plus 2.0-Arrays verwendet. Die Gene sollten mindestens dreifach herunterreguliert worden sein und eine Signalintensität von über 100 in mindestens einem Zustand aufweisen. Dargestellt sind Gene, die durch den PRAME-knockdown hochreguliert wurden.

Sondensatz ID	L-428 Kontrolle	L-428 PRAME- knockdown	Gensymbol	PRAME- knockdown/ Kontrolle!
1562698_x_at	8,7474	205,2675	LOC339988	23,4662
221140_s_at	6,5635	148,2670	GPR132	22,5897
1553396_a_at	7,8972	175,5775	CCDC13	22,2329
1553611_s_at	7,8726	146,5399	KLHL35	18,6139
211583_x_at	7,3431	124,4880	NCR3	16,9529
224262_at	7,6254	107,6105	IL1F10	14,1121
207392_x_at	14,7675	206,5027	UGT2B15	13,9836
216774_at	7,6707	100,5027		13,1022
1556796_at	8,1616	103,5107		12,6826
244585_at	9,3569	116,4056	IFT140	12,4407
231398_at	8,6141	106,6050	SLC22A7	12,3757
240623_at	14,4472	174,8270		12,1011
1556128_a_at	12,0537	143,6776	RASGRF2	11,9198
244371_at	8,6271	102,2169		11,8483
1569002_x_at	8,8740	104,6696	BMP1	11,7951
204268_at	12,4744	144,3048	S100A2	11,5681
240767_x_at	8,8369	100,1526	LOC100286938	11,3335
243662_at	10,8237	116,2389		10,7393
220264_s_at	17,2434	181,5426	GPR107	10,5283
205541_s_at	14,0689	147,5538	GSPT2	10,4879
206991_s_at	14,8446	151,1552	CCR5	10,1825
240588_at	10,3670	100,8683		9,7297

235437_at	12,5862	120,6266		9,5840
221317_x_at	15,6999	148,3620	PCDHB6	9,4499
214228_x_at	10,8816	102,5711	TNFRSF4	9,4261
204150_at	12,7871	120,3275	STAB1	9,4101
215813_s_at	15,8979	145,8562	PTGS1	9,1746
233717_x_at	16,7667	152,3223		9,0848
219019_at	32,3400	289,8331	LRDD	8,9621
235768_at	12,5975	112,3635	SH3RF2	8,9195
222136_x_at	12,6690	111,3776	ZNF43	8,7913
000004	44.0500	400.7550	DAIMAG	0.7047
223621_at	14,6568	128,7559	PNMA3	8,7847
239783_at	20,3559	178,7477		8,7811
232247_at	14,3279	125,5626	ZNF502	8,7635
229021_at	12,2283	103,9427	MCTP2	8,5002
229801_at	22,1984	188,2767	C10orf47	8,4816
229481_at	13,2227	110,8092	LOC283859	8,3802
243098_at	13,5866	113,4898		8,3531
222896_at	14,7292	120,1373	TMEM38A	8,1564
1561834_a_at	15,6712	127,6906		8,1481
000040	00.7040	100.0500	DEI/ED 4	0.4000
206246_at	20,7219	168,0532	PFKFB4	8,1099
232307_at	18,9229	151,4128		8,0016
1558762_a_at	31,9107	252,3067	ZNF789	7,9066
1567298 at	14,2838	112,8172	OR13C4	7,8983
	30,0198	· · · · · · · · · · · · · · · · · · ·		
1557723_at	17,1269	236,6105 134,8868	LOC285847 LOC100294102	7,8818 7,8757
215974_at	17,1209	134,0000	LOC 100294102	7,0757
1553525_at	14,2271	111,9012	NLRP13	7,8653
217418 x at	20,3072	159,5466	MS4A1	7,8567
217410_X_at	20,3072	100,0400	WOTAT	7,0007
1554050_at	28,2642	219,6667	SMPDL3B	7,7719
234963_s_at	13,4750	104,1056	FA2H	7,7259
		10.,.000	1.7	
235275_at	16,1323	124,6265	BMP8B	7,7253
229979_x_at	15,6606	118,8649		7,5901
1566502_at	35,6160	265,4799		7,4540
205654_at	15,9222	116,9938	C4BPA	7,3478
211231_x_at	14,4654	105,6660	CYP4A11	7,3047
	J		1	1

216019_x_at	24,0903	175,7043	PHLDB1	7,2936
211410_x_at	20,3407	146,2122	KIR2DL5A	7,1882
237044_s_at	15,2651	109,4874	C10orf41	7,1724
239459_s_at	31,3122	222,1063		7,0933
230670_at	16,9794	120,4338	IGSF10	7,0930
238954_at	24,2595	170,9840		7,0481
223655_at	14,5474	102,2900	CD163L1	7,0315
1553303_at	15,7016	110,3277	C16orf46	7,0265
211900_x_at	18,5706	129,8176	CD6	6,9905
231268_at	24,1673	165,9906	LOC645895 /// MYBL1	6,8684
1552626_a_at	14,8803	101,9304	TMEM163	6,8500
1569634_at	17,1381	117,2652	SEPSECS	6,8424
234892_at	15,6992	106,7176		6,7977
1566835_at	16,2776	109,5281		6,7288
201012_at	352,4123	2347,7820	ANXA1	6,6620
230277_at	15,1519	100,5259	LOC100289187	6,6345
38487_at	23,2786	152,1989	STAB1	6,5381
1565803_at	17,8906	116,2701		6,4989
219729_at	19,5747	126,8740	PRRX2	6,4815
240317_at	17,8875	115,7583	PCDHB4	6,4715
239464_at	23,3798	149,1959		6,3814
229013_at	20,8987	132,4729	LOC145783	6,3388
228101_at	42,0003	264,7694	APBA1	6,3040
207952_at	28,9295	181,8625	IL5	6,2864
208034_s_at	17,1762	107,3123	PROZ	6,2477
1566824_at	17,9004	111,7128		6,2408
236461_at	18,5504	114,1066	ABHD1	6,1512
210279_at	83,0723	505,6757	GPR18	6,0872
215726_s_at	25,7155	154,8419	CYB5A	6,0214
244464_at	23,6595	141,8612		5,9960
1569949_at	28,0720	165,6423	GRK5	5,9006
230710_at	26,0547	152,8977		5,8683
1559966_a_at	27,6967	162,3436	LOC100192378	5,8615
241105_at	18,8764	110,4866		5,8532

225373_at	18,2097	106,4750	C10orf54	5,8471
1553526_at	25,9341	151,6032	NLRP8	5,8457
243310_at	20,3573	116,4070		5,7182
1560320_a_at	45,5961	260,6357	LOC283314	5,7162
231416_at	24,9140	142,0382	DHDH	5,7011
219704_at	24,3171	138,1826	YBX2	5,6825
230873_at	19,9944	113,0629	TTLL3	5,6547
244157_x_at	27,2018	151,6117		5,5736
244843_x_at	21,2202	117,4829		5,5364
1569813_at	18,2501	100,6307	STRN	5,5140
236899_at	29,2986	160,2052		5,4680
1556928_at	24,0437	131,2462		5,4586
1565700_at	19,6676	107,1746		5,4493
1555488_at	21,0409	114,1957		5,4273
1564264_at	22,9723	124,2480		5,4086
225822_at	25,9429	139,1048	TMEM125	5,3620
1552846_s_at	22,4247	119,4630	RAB42	5,3273
216832_at	29,3669	156,2682	RUNX1T1	5,3212
229893_at	19,7411	103,7539	FRMD3	5,2557
214357_at	26,5820	138,4242	C1orf105	5,2074
239064_at	21,6396	112,4196		5,1951
215449_at	20,4984	106,4702	TSPO2	5,1941
231696_x_at	35,5210	184,0708	TMEM50B	5,1820
1562903_at	22,8642	118,4334	FLJ10661	5,1799
201249_at	21,2613	109,7534	SLC2A1	5,1621
244365_at	21,0924	108,7275		5,1548
1555268_a_at	26,4737	136,0100	GRID1	5,1375
1565559_at	27,8222	142,7296	MAGIX	5,1301
 1552548_at	21,1567	108,4695	BSND	5,1270
216589_at	22,9310	115,8213	LOC390998	5,0509
235169_at	29,7934	150,3167	FBXO27	5,0453
1558758_s_at	29,8528	147,6761		4,9468
238976_at	26,1253	129,2139		4,9459
1556222_at	26,1345	128,9046	SEPT7L	4,9323
217305_s_at	22,4394	110,4896	ADCY10	4,9239
241354_at	23,6074	115,6376	NCRNA00105	4,8984

1555497_a_at	21,2663	104,0486	CYP4B1	4,8927
220977_x_at	25,5598	124,4423	EPB41L5	4,8687
216702 x at	59,1000	287,6673		4,8675
210702_X_at	59,1000	207,0073		4,0075
216644_at	26,8850	130,0286		4,8365
1561595_x_at	26,7946	129,1758		4,8210
221660_at	33,5146	161,2132	MYL10	4,8102
1553499_s_at	30,2881	145,6717	SERPINA9	4,8095
243923_at	28,3653	136,1193		4,7988
215580_at	43,5592	207,1945	MCM3AP	4,7566
1556959_at	55,6890	263,5517	LOC647589	4,7326
1553900_s_at	22,7448	107,2554	POM121L1P /// POM121L8P /// POM121L9P	4,7156
228644_s_at	29,5915	139,4743	SLC12A4	4,7133
243429_at	22,2385	104,4054		4,6948
216779_at	23,4673	109,8809	CYLC1	4,6823
240505_at	30,2392	139,8233		4,6239
216042_at	31,0291	142,8437	TNFRSF25	4,6035
1566165_at	30,5513	140,1861		4,5885
215644_at	78,8517	358,7169	ZNF518A	4,5493
1563290_at	37,4797	169,7170	DNAH3	4,5282
232142_at	24,2649	109,5437	ISY1	4,5145
223392_s_at	30,7601	138,1189	TSHZ3	4,4902
203397_s_at	156,4027	698,8022	GALNT3	4,4680
238708_at	22,6054	100,3882	BC036928	4,4409
1554903_at	27,7734	123,2315	FRMD8	4,4370
229110_at	40,5514	179,2860	LOC100128844	4,4212
221379_at	31,2010	137,8378		4,4177
202831_at	26,9892	118,9304	GPX2	4,4066
1566168_at	23,1088	100,3278	LOC729986	4,3415
1564552_at	34,3604	147,8114		4,3018
1555743_s_at	27,8287	119,5696		4,2966
1564154_at	42,6695	182,8535		4,2853

220828_s_at	28,3467	120,3704	FLJ11292	4,2464
1552476_s_at	30,8655	131,0505	PLCD3	4,2459
206123_at	44,2526	187,6855	LLGL1	4,2412
217517_x_at	34,9172	148,0749	SRPK2	4,2407
1552944_a_at	31,5852	132,3875	PANX2	4,1914
240481_at	28,5011	118,8074		4,1685
216371_at	33,9179	140,8062		4,1514
208523_x_at	28,7618	119,0165	HIST1H2BI	4,1380
239923_at	25,4122	105,1016		4,1359
1558964_at	37,8825	154,4215	FAT3	4,0763
207843_x_at	44,5680	181,6183	CYB5A	4,0751
1557964_at	27,9685	113,6642	EIF4G2	4,0640
1552509_a_at	26,9683	109,2999	CD300LG	4,0529
207393_at	31,8163	128,7457	HCRTR2	4,0465
227554_at	33,3940	134,5955		4,0305
234397_at	25,5858	103,0812	ZNF861P	4,0288
232573_at	30,9798	124,3366		4,0135
1566302_at	37,8203	151,6732	PPP1R11	4,0104
214372_x_at	58,3857	233,0483	ERN2	3,9915
1570326_at	29,5318	117,5198		3,9794
205166_at	29,2251	115,3109	CAPN5	3,9456
207931_s_at	29,6276	116,3585	PFKFB2	3,9274
208479_at	29,0748	114,0038	KCNA1	3,9210
221756_at	39,5811	154,8958	PIK3IP1	3,9134
228689_at	25,6628	100,4182	NDUFA11	3,9130
241898_at	25,8795	101,0579	LIPH	3,9049
218629_at	46,2713	179,6451	SMO	3,8824
1557042_at	26,8590	103,8904		3,8680
1561777_at	29,1153	112,2106		3,8540
216611_s_at	26,9679	103,8398	SLC6A2	3,8505
222351_at	62,8763	241,6507	PPP2R1B	3,8433
211691_x_at	47,8864	183,5119		3,8322
222304_x_at	106,7888	407,6886	OR7E47P	3,8177

1559091_s_at	31,7869	121,1778	FGD2	3,8122
223781_x_at	127,4580	485,4568	ADH4	3,8088
223563_at	26,6771	101,3414	GNB1L	3,7988
216495_x_at	31,3330	118,7046		3,7885
205970_at	58,8461	221,4847	MT3	3,7638
210929_s_at	32,1148	120,2314	AHSG /// LOC100131613	3,7438
211742_s_at	27,7712	103,8823	EVI2B	3,7407
223699_at	39,9719	149,2792	CNDP1	3,7346
214234_s_at	40,6587	151,6127	CYP3A5	3,7289
244205_at	36,9493	137,7155	ALAS2	3,7272
215271_at	31,1405	115,7904	TNN	3,7183
237379_at	28,9385	107,5046	PHRF1	3,7149
1553083_at	37,0192	137,3345		3,7098
240683_at	28,5918	105,8975		3,7038
211098_x_at	343,9366	1273,5010	TMCO1	3,7027
1556034_s_at	30,7618	113,6284	MTMR11	3,6938
1567985_at	31,4730	116,1463		3,6903
226281_at	1162,4400	4277,3240	DNER	3,6796
211493_x_at	30,9664	113,5525	DTNA	3,6670
1553604_at	164,7142	603,0513	ABCA13	3,6612
215437_x_at	45,9712	167,8905	BAZ2A	3,6521
215771_x_at	30,0838	109,8201	RET	3,6505
1570376_at	29,7033	108,2383	LOC154822	3,6440
227053_at	29,1898	106,1601	PACSIN1	3,6369
230504_at	31,9753	115,5831	CEACAM19	3,6148
1561619_at	30,4087	109,6977		3,6074
203781_at	1881,7790	6784,1240	MRPL33	3,6052
207603_at	39,9328	143,8427	SLC4A7	3,6021
204660_at	28,9484	104,0974	GFER	3,5960
241558_at	28,4698	102,1293		3,5873
222224_at	40,1727	143,7204	NACA2	3,5776
1558570_at	39,0613	139,2466	LOC145783	3,5648
243220_at	31,3701	111,2296		3,5457
1562383_at	32,5626	115,3924		3,5437

236500_at	62,7286	221,7311		3,5348
210955_at	33,5650	118,4603	CASP10	3,5293
1569904_x_at	28,9405	101,8811		3,5204
1553823_a_at	29,4777	103,3236	RTP1	3,5051
203461_at	42,9619	150,3913	CHD2	3,5006
237287_at	74,6566	260,8032		3,4934
222329_x_at	121,8370	424,9891		3,4882
1566884_at	42,0053	145,8648		3,4725
220904_at	36,5577	126,7392	C6orf208	3,4668
219308_s_at	44,1506	152,6435	AK5	3,4573
233196_at	50,8093	175,0131		3,4445
202403_s_at	53,4484	183,8179	COL1A2	3,4392
221822_at	68,8671	236,6687	CCDC101	3,4366
217003_s_at	34,3847	117,2093	ADAM5P	3,4088
244453_at	63,3005	215,6934	ANKRD53	3,4075
243291_at	38,6509	131,5364		3,4032
205846_at	58,5486	199,1121	PTPRB	3,4008
241281_at	58,6914	199,2572		3,3950
202435_s_at	73,9811	250,8930	CYP1B1	3,3913
201124_at	44,0140	149,1418	ITGB5	3,3885
211166_at	51,2464	173,5609	FAM153A	3,3868
41644_at	30,4201	102,7433	SASH1	3,3775
220618_s_at	31,2854	105,5514	ZCWPW1	3,3738
228263_at	39,0578	131,6829	GRASP	3,3715
227915_at	247,6484	834,9422	ASB2	3,3715
210226_at	57,9284	194,6576	NR4A1	3,3603
224589_at	1302,1770	4363,5860	XIST	3,3510
205758_at	30,6828	102,7433	CD8A	3,3486
216546_s_at	43,4443	145,2898	CHI3L1	3,3443
207279_s_at	46,0199	153,2847	NEBL	3,3308
239685_at	34,4116	114,5746	LOC283143	3,3295
204397_at	43,8442	145,4790	EML2	3,3181
234744_x_at	66,9427	221,0549		3,3022
1558553_at	51,8828	170,9893		3,2957

1553757_at	46,5068	153,2274	IQCG	3,2947
1561608_at	39,7637	130,5915		3,2842
217235_x_at	46,8400	153,7387	IGLL5 /// IGLV2- 23	3,2822
242301_at	30,6388	100,5012	CBLN2	3,2802
62987_r_at	155,4200	509,3610	CACNG4	3,2773
1560169_at	184,0273	601,3139		3,2675
243609_at	35,6946	116,5957	CYP3A7	3,2665
221300_at	35,5330	115,9852	C15orf2	3,2642
227178_at	70,9847	231,5438	CELF2	3,2619
211590_x_at	35,0618	114,3016	TBXA2R	3,2600
1553347_s_at	48,0406	155,9048	KCNA6	3,2453
1554957_at	43,1203	139,9289		3,2451
217359_s_at	41,9327	135,4957	NCAM1	3,2313
207076_s_at	3864,2980	12481,3700	ASS1	3,2299
242916_at	205,3367	662,7270	CEP110	3,2275
1554303_at	35,3691	114,1064	HNMT	3,2262
1562799_at	46,1140	148,6037	LOC100130285	3,2225
211190_x_at	49,0623	158,0644	CD84	3,2217
227366_at	53,1589	171,1745	RILP	3,2201
1564760_at	32,3520	103,8985		3,2115
1553730_x_at	64,4805	206,9758	LRRC43	3,2099
235176_at	69,9408	224,3251	ZFP82	3,2074
1570362_at	85,1049	272,9602	LOC100288009	3,2073
242466_at	49,3529	157,9740		3,2009
206226_at	41,3253	132,1520	HRG	3,1978
1560862_at	35,0735	111,9636		3,1923
231284_at	39,1871	124,8129		3,1851
230983_at	42,1026	133,6294	FAM129C	3,1739
233504_at	31,7031	100,6116	C9orf84	3,1736
205829_at	33,8192	107,3063	HSD17B1	3,1729
203416_at	172,9653	547,0009	CD53	3,1625
204411_at	65,3191	206,3516	KIF21B	3,1591
1570239_a_at	110,9184	349,4363	CLNK	3,1504
1555931_at	46,0494	145,0304		3,1495
237875_at	63,9147	201,1965		3,1479
<u> </u>	I.			1

223878_at	34,0530	107,1153	INPP4B	3,1455
219761_at	47,4632	149,2307	CLEC1A	3,1441
205489_at	42,5102	133,4251	CRYM	3,1387
1556271_at	44,2082	138,7131		3,1377
1556212_x_at	35,9380	112,5959		3,1331
1570375_at	33,1636	103,8129		3,1303
239009_at	54,4567	169,9982	KIAA0754	3,1217
1553706_at	36,1963	112,9240	HTRA4	3,1198
225168_at	39,5822	123,4424	FRMD4A	3,1186
233277_at	40,9364	127,6446	DLEU7	3,1181
239698_at	34,8527	108,6507		3,1174
1554252_a_at	33,8466	105,4959	LASS3	3,1169
233623_at	34,3073	106,9044		3,1161
1565733_at	43,3710	135,0979		3,1149
237229_at	67,0667	208,9040	JMJD5	3,1149
240111_at	52,5823	163,5887	RHOBTB3	3,1111
207218_at	32,7302	101,7045	F9	3,1074
239940_at	41,6235	129,2716		3,1057
1552841_s_at	33,8369	104,9293	BCL2L14	3,1010
233209_at	51,1650	158,4087	LOC200609	3,0960
1556149_at	37,7800	116,8132	ARVCF	3,0919
216878_x_at	58,4990	180,8307	HAB1	3,0912
1570007_at	88,9758	274,8427	LRRC8C	3,0890
226675_s_at	801,8639	2473,0820	MALAT1	3,0842
1553568_a_at	80,2279	247,2544	HIST1H1T	3,0819
232880_at	35,3989	109,0896	LOC100288224	3,0817
220021_at	38,1371	117,1617	TMC7	3,0721
209718_at	42,5300	130,6138	NCAPH2	3,0711
1560943_s_at	36,0039	110,5162		3,0696
219313_at	41,0536	125,9292	GRAMD1C	3,0674
222814_s_at	45,0997	138,1379	ZNHIT2	3,0629
219815_at	73,3760	224,4873	GAL3ST4	3,0594
1554318_at	50,4634	154,2498	LOC541473	3,0567
1560278_at	84,1339	256,9757	LOC221122	3,0544
234343_s_at	49,6147	151,1321	RASAL2	3,0461

Anhang zur Dissertation "Identifizierung neuer Hodgkin-Lymphom-assoziierter Zielstrukturen" von Stefanie Kewitz, Halle, 2015

1561263_at	43,9207	133,6413	C1QTNF3	3,0428
205624_at	56,2042	170,9928	CPA3	3,0423
242419_at	53,3141	161,9231		3,0372
237181_at	39,8145	120,8810		3,0361
221236_s_at	54,1187	164,2920	STMN4	3,0358
204182_s_at	236,9453	717,6423	ZBTB43	3,0287
236119_s_at	33,6701	101,9751	SPRR2G	3,0287
229395_at	45,1950	136,7148		3,0250
232988_at	44,4243	134,2199	KIAA0182	3,0213
238245_at	39,2491	118,2984	ENPP7	3,0140
1566111_at	37,5701	113,0294	FAM38A	3,0085
241797_at	39,5939	119,0788		3,0075
214944_at	53,8821	161,9638	PHLPP2	3,0059
206494_s_at	47,6571	143,2297	ITGA2B	3,0054
210926_at	667,5571	2003,0680	POTEKP	3,0006

Tabelle 24: Sondensätze, die unter hypoxischen Bedingungen herunterreguliert wurden.

HL-Zellen wurden für 4 Tage mit 200 μM bzw. 100 μM (L-1236-Zellen) CoCl₂ bzw. Medium (Kontrolle) inkubiert. Anschließend wurde RNA isoliert und DNA-Mikroarray-Analysen mit Human Exon 1.0 ST-Arrays durchgeführt. Die Sondensätze sollten mindestens dreifach herunterreguliert worden sein und eine Signalintensität von über 100 in mindestens einem Zustand aufweisen. Sondensätze galten als herunterreguliert wenn der Median der Signalintensität in der Gruppe der in Medium kultivierten Zellen dreimal höher war als das 85zigste Perzentile der Signalintensität der Zellen inkubiert mit CoCl₂. Die Auswertung der Daten erfolgte mit dem Programm MAFilter.

Funktion: quantil2(0.5)/ quantil1(0.85)	Sonden- satz ID	1: HDLM-2 Hypoxie	2: HDLM-2 Normoxie	1: KH-H2 Hypoxie	2: KM-H2 Normoxie	1: L-1236 Hypoxie	2: L-1236 Normoxie	1: L-428 Hypoxie	2: L-428 Normoxie	1: L-540 Hypoxie	2: L-540 Normoxie	Gensymbol
3,0005	3791953	21,0254	93,2534	31,0797	25,5491	314,6166	356,2230	24,5469	95,2927	5,0079	17,6136	SERPINB2
3,0006	4055388	37,1037	172,7899	13,7204	111,1037	22,5714	160,5577	22,3380	83,6889	37,0268	41,8186	TAF9B
3,0009	2858617	53,1876	223,3899	74,4418	255,4734	45,4654	249,4484	30,1991	33,1057	135,2000	132,8687	DEPDC1B
3,0022	2535846	14,5922	52,2490	11,8273	43,8081	10,8563	9,9950	12,4716	13,9151	57,2408	132,8372	RNPEPL1
3,0030	3204936	52,8391	240,7862	25,1702	112,3779	33,7717	164,2670	12,4469	33,6090	355,7971	158,6738	HINT2
3,0060	2353118	19,7080	34,1476	6,8200	12,5887	5,1577	20,5006	4,6677	116,2609	6,6487	8,1836	
3,0060	3924943	2,7553	14,8868	568,0183	347,4977	3,1376	3,0031	4,9523	15,6951	3,1785	1,9861	BAGE2
3,0145	3742386	89,7550	270,5644	35,8936	111,1630	89,5488	274,0480	26,5380	87,1659	491,6781	314,5723	SLC25A11
3,0168	2813460	10,6018	33,2106	13,8460	105,4581	7,2463	44,2981	14,2403	10,9702	71,0716	42,9595	CENPH
3,0238	3896044	24,0325	176,3716	52,4969	117,3357	38,8036	153,7667	35,2750	14,8094	29,2953	29,7800	RASSF2
3,0251	2359870	53,1876	212,9594	55,6162	161,3166	47,3414	388,0307	1,4525	168,2452	178,6023	114,9596	INTS3
3,0266	3732001	54,0221	267,7591	127,8919	284,4503	38,1251	170,2121	32,7585	107,6520	56,2390	91,0541	PRKCA
3,0288	3091574	17,0187	63,2578	33,0025	150,6486	74,8999	314,9560	16,4941	132,4954	43,7446	15,4663	ESCO2
3,0292	3146050	40,5834	84,6203	67,8782	221,2430	36,4965	219,6496	32,9432	18,0125	157,3903	205,6182	NIPAL2
3,0300	3861456	3,6997	140,1985	41,4092	90,0106	46,2700	310,3548	38,1644	11,3862	367,2342	354,3500	MAP4K1
3,0307	3312496	34,5925	253,7283	65,2837	119,9644	53,2999	187,7123	6,0392	161,5367	38,5367	30,1042	MKI67
3,0308	3914319	19,2075	53,3674	21,0219	63,7124	18,5412	104,1526	4,1614	24,7068	106,0797	107,8535	RGS19
3,0314	3708094	4,5767	3,9618	6,0884	159,9863	8,1960	38,1815	8,8138	24,8449	4,6054	5,5334	XAF1

3,0340	2947075	50,0882	235,7813	31,8071	80,4085	32,8813	243,4906	77,4320	14,6586	232,5035	234,9316	HIST1H1B
3,0346	2621960	256,924 4	896,0711	137,3266	789,4387	260,1447	907,8098	40,5531	145,8611	1113,970 0	682,6719	NDUFAF3
3,0361	2654116	20,5995	107,3225	35,3492	176,0343	28,8262	111,6977	10,2561	20,1931	186,3965	67,9585	USP13
3,0401	3168404	57,5410	249,5941	81,8494	241,8038	67,9463	248,8292	58,4628	82,1503	304,0079	527,7074	GLIPR2
3,0416	2902972	119,051 3	235,9625	19,8920	21,6347	29,9925	148,7743	45,5314	138,4900	32,6702	30,0942	C4A
3,0435	3001530	57,9026	183,6680	57,3418	176,2241	39,6712	153,1836	5,5546	26,4945	300,7538	277,4999	IKZF1
3,0455	2577916	41,2169	75,9670	35,8631	253,4655	17,6835	127,6594	9,3495	14,3362	134,7577	125,5242	MCM6
3,0477	3129155	14,1049	6,2595	6,0152	24,3224	5,0273	27,0395	7,9805	112,8627	5,8272	11,5576	PBK
3,0519	3465673	1,9285	20,3769	16,2349	18,6548	8,0353	28,5120	6,2969	236,2452	9,3424	32,0414	
3,0519	3694212	2,7128	20,3769	14,0126	28,5120	5,5937	3,0393	6,2969	108,6024	9,3424	87,8182	
3,0540	3224204	12,8702	89,2767	21,3504	30,9198	33,8323	65,2032	19,7748	179,5760	16,3114	21,7422	
3,0561	2903233	18,7586	12,0574	738,3973	2387,470 0	4,1945	11,7994	131,865 8	563,5039	130,0234	402,9950	
3,0569	3336672	9,5545	123,7452	69,5128	57,0266	16,5127	120,3166	3,7754	2,0307	18,6548	21,1736	
3,0625	3726580	12,5028	126,0199	12,8635	46,6284	23,9280	85,9372	6,8610	3,2530	71,7141	73,2794	SPATA20
3,0627	3117569	32,8565	29,4068	6,3723	5,8264	9,6015	10,1593	6,6197	108,6592	7,6406	31,2454	
3,0630	3998482	15,3341	84,3705	27,5449	45,7231	16,5127	50,6250	18,7876	113,4245	136,7629	158,3089	HDHD1
3,0648	2361367	5,0458	26,6116	17,0704	179,5325	12,5777	52,3176	3,8054	65,8185	17,5302	16,8530	SEMA4A
3,0673	2469269	321,417 0	1176,035 0	119,3043	745,7579	383,4152	1684,720 0	18,1027	349,6704	2562,892 0	1384,097 0	RRM2
3,0693	3798856	24,9040	2,8243	53,6157	140,9397	22,3270	184,1518	11,0060	26,1582	20,0717	76,4366	
3,0714	3136966	5,0458	10,4647	147,6023	45,2097	2,5352	15,4975	5,0429	168,2452	4,7681	12,6882	
3,0742	2674782	21,3418	216,6703	67,3982	209,7993	121,7938	207,1926	37,1729	88,5263	37,4259	115,6069	UBA7
3,0757	2725784	8,3568	27,8487	24,6632	105,8559	16,4755	18,8658	14,4606	92,9333	89,1694	75,8563	GUF1
3,0759	2329095	22,4985	222,2452	44,4571	136,7452	32,4223	122,1738	23,6471	3,1453	204,0309	174,8165	S100PBP
3,0775	3649131	21,0080	153,3646	46,7526	143,8817	41,6074	186,0226	4,0181	8,7352	125,9409	111,0071	MKL2
3,0777	3188751	45,2723	235,2522	61,6377	189,6997	57,6586	472,3560	63,3911	87,2463	9,6372	18,0134	NEK6
3,0790	2993609	39,0474	75,6218	30,9562	189,1818	52,9893	173,0221	13,5478	9,2043	141,6289	163,1564	NFE2L3
3,0809	2755077	22,2196	19,5162	40,4706	254,0769	34,2623	124,6868	34,5614	134,7924	140,7744	45,1916	CYP4V2

3,0827	3048141	5,0911	15,6827	15,3361	113,9122	3,5164	3,3899	5,3927	41,2187	5,5270	17,0380	STK17A
3,0846	3740215	32,6114	147,4510	47,8023	120,7753	37,0482	61,3624	14,4862	151,0746	149,2099	239,9896	MYO1C
3,0878	2732313	13,3489	54,3974	25,0981	135,7442	3,1197	8,0219	5,2245	41,2187	11,4417	4,3806	40787,0000
3,0887	2545016	34,7313	121,2980	33,8519	117,7344	55,1820	107,2750	12,2716	26,2066	31,3556	89,6353	
3,0940	3325945	5,0458	1,7226	24,5041	24,8610	8,0353	13,3138	1,6340	304,2453	5,5270	39,2645	HIPK3
3,0975	3944929	1,9285	28,3112	3,4556	7,9239	5,5937	14,3853	53,9019	108,6024	1,2440	17,3263	TRIOBP
3,0975	2509028	76,9762	66,1261	5,3201	3,4556	5,5937	1,3668	1,9285	108,6024	2,1153	17,3263	
3,0975	2454780	41,4330	86,6041	6,2969	20,3055	9,8110	84,8185	14,2979	14,8094	27,3826	119,1023	
3,0998	4001878	38,1944	118,3950	49,8387	119,1333	33,2153	290,1771	6,2493	19,8438	20,3568	4,3806	SH3KBP1
3,1023	2623835	13,2626	98,4829	17,8080	68,1522	21,9683	248,2002	4,2406	6,2827	69,8641	40,0545	PHF7
3,1042	2685364	72,1633	224,0111	62,9603	256,0044	62,8844	528,6763	35,9291	73,4641	459,4577	74,3652	DHFRL1
3,1054	2766329	22,4985	52,7767	11,6130	10,3801	5,4502	15,8580	14,5964	231,8037	13,3982	45,3283	KLHL5
3,1091	3244714	12,0991	23,7796	7,1639	7,7197	7,6483	9,1697	7,4915	100,3150	5,4443	29,7661	
3,1094	3374867	17,9607	137,6851	42,7517	81,6658	44,2804	92,1878	5,4498	161,0976	218,3401	207,9281	MRPL16
3,1115	2650053	14,8399	55,3925	17,1830	22,2573	17,8024	20,1656	17,3837	119,9939	21,0358	66,0599	
3,1125	3397878	2,5285	5,5546	8,3612	4,5594	14,3589	133,0554	4,6092	44,6921	135,3626	133,1554	ARHGAP3 2
3,1143	2823768	15,9468	12,8525	164,4784	155,5307	13,1763	21,0055	4,0178	49,6630	14,1648	52,8642	SLC25A46
3,1144	3990397	10,8332	10,2477	30,8477	113,3464	140,4799	121,6455	23,0984	96,0717	6,7693	4,7837	OCRL
3,1148	3817726	11,4900	107,2617	16,3776	111,3429	33,8201	57,7389	34,4365	134,3002	117,4317	93,6324	UHRF1
3,1156	3242261	23,7731	27,9613	8,9745	7,2946	4,7697	12,3718	8,4230	103,7924	4,9755	30,4175	
3,1177	2411036	127,816 6	971,7455	4,8334	13,5281	57,2408	178,4595	6,2969	304,2453	18,6548	3,3108	CYP4Z1
3,1213	3470533	31,4314	279,9306	26,1488	52,6964	46,5475	11,6071	9,7617	145,2869	1824,949 0	1456,498 0	SELPLG
3,1230	2549935	41,4330	115,3881	26,1313	27,7398	11,6444	81,6079	3,7754	26,5896	3,1294	91,6743	
3,1239	4013446	76,1315	275,6526	65,4972	320,9346	102,7368	368,1464	127,393 0	502,5298	78,6020	108,8942	TAF9B
3,1273	3397886	23,2007	29,5625	32,9174	14,5844	50,9986	351,8448	31,9634	159,4895	323,6480	194,2040	ARHGAP3 2
3,1293	3190864	29,3573	108,3756	28,7987	99,5934	34,6279	71,0171	31,8262	126,2666	28,4052	34,1712	NUP188

3,1318	2993612	26,3233	86,6189	30,6892	222,8454	54,4445	214,8260	9,2238	25,1841	136,1493	170,5067	NFE2L3
3,1333	3852566	34,4711	293,0939	17,8871	78,2744	39,5553	123,9383	21,8325	40,9194	261,4084	261,8496	ASF1B
3,1350	3031475	33,4495	69,0533	54,3387	400,0423	47,0220	38,0737	31,3179	290,0197	109,0236	170,3515	LOC28597 2
3,1355	3703114	59,6752	166,8035	31,3027	187,1110	46,5275	301,4379	10,1391	19,9132	358,6062	234,9307	GINS2
3,1383	3361393	9,9515	11,3671	132,6637	363,7039	17,9825	56,6682	18,0568	75,1190	14,9642	5,9480	CYB5R2
3,1434	3416636	63,0015	113,2202	111,8434	332,2425	72,7506	228,6820	2,5453	279,3457	48,3303	32,6378	
3,1451	3986696	9,5545	78,3973	18,3135	19,5235	15,4975	20,0198	9,8810	222,9595	64,6975	57,5980	ATG4A
3,1456	2930763	20,6302	66,3095	17,0566	67,2628	18,9733	9,8065	21,0801	103,0393	67,1380	21,1235	C6orf72
3,1468	3350825	5,0458	171,8880	44,2039	139,1023	95,0313	93,1028	28,3691	6,9779	38,9788	195,2452	SIDT2
3,1482	2565966	38,5102	47,2776	26,2672	153,1310	46,2700	26,5925	20,8036	176,4698	138,1546	145,6666	ANKRD36B
3,1488	3302108	9,5545	32,0414	79,2544	323,1022	1,6340	31,1128	9,8810	2,0307	1,4797	28,5120	SLIT1
3,1501	3742687	50,1416	45,1605	50,8245	201,1491	52,8910	166,6111	23,3300	232,6613	86,8402	104,6838	NUP88
3,1537	3457861	27,1196	119,8912	37,0678	116,8991	15,9424	161,9957	13,6182	108,6024	58,0437	107,6071	TIMELESS
3,1542	2931952	8,2580	50,2961	20,4050	27,6444	17,3483	59,2752	14,4606	103,8770	18,0796	57,0260	
3,1550	3434930	384,102 4	373,4596	43,1329	42,5615	28,0255	49,7406	70,7767	347,6023	110,1738	423,6025	
3,1555	2351590	14,3798	278,3130	11,4743	45,3759	2,0616	2,4677	3,7885	4,6228	588,9598	119,7586	CD53
3,1579	2584827	3,5595	22,6920	117,7113	139,1580	5,3611	4,5253	1,9016	30,2111	7,1858	4,3189	COBLL1
3,1620	2357897	46,2016	301,9324	84,2055	794,3367	94,3153	304,6506	95,4873	84,3099	138,4144	276,3337	HIST2H4A
3,1624	3394108	17,2429	93,9714	26,0067	54,5287	13,8953	115,8445	7,4080	6,9779	16,9430	18,6759	SLC37A4
3,1628	3836863	45,4453	187,5932	37,0093	148,8383	47,0583	106,0752	6,1078	6,5172	201,6484	201,2571	CALM3
3,1632	3689356	12,8431	5,0133	22,5967	71,4775	21,9647	82,9654	18,7977	3,7643	194,6691	161,7222	
3,1685	3413300	49,9453	207,9268	36,5558	157,5485	42,1082	175,2688	20,8663	44,2220	106,0797	158,2525	TMEM106 C
3,1730	3756229	94,0566	113,2613	103,6010	676,4548	44,2589	670,3342	3,8885	266,5288	766,3809	328,7225	TOP2A
3,1761	2620547	12,8000	62,3788	7,8427	7,1695	7,3902	14,3646	38,5969	147,6233	11,8621	40,6537	
3,1776	2343485	1,7504	45,4334	5,2728	504,8181	35,1226	134,9554	14,2979	5,2221	3,0685	12,5413	IFI44L
3,1803	3906283	5,0458	28,3112	7,8300	3,5253	8,9021	6,3783	1,9285	304,2453	18,6548	39,2645	
3,1860	3018414	35,9208	65,9566	19,4192	142,7882	5,9092	21,3813	5,1697	61,8697	14,8402	6,0655	PRKAR2B

3,1893	3871661	12,2244	35,9454	38,4311	64,7630	12,5173	42,3495	13,2785	156,0731	7,6406	31,2435	NLRP9
3,1916	3199812	89,3890	137,4758	98,7456	315,1570	59,0585	382,9142	22,9294	73,0842	432,3168	463,9698	
3,1973	3529544	25,4564	65,3704	16,6340	268,7999	22,8650	171,7905	33,6509	107,5919	73,3545	93,6324	PCK2
3,1981	3202317	10,5513	54,3496	161,8244	359,7682	16,9942	56,1001	1,8463	2,5273	13,0678	9,1736	МОВ3В
3,2040	3402590	55,3625	409,6060	70,3458	241,8572	42,0966	225,3911	29,8522	35,7303	268,4542	198,8117	NCAPD2
3,2041	2965803	12,2244	42,5775	29,9730	81,9332	17,3940	111,0617	2,4337	55,7320	11,0465	13,7489	MMS22L
3,2058	3006168	26,3287	157,8814	20,4359	15,0868	15,2276	33,9181	6,8998	149,0612	14,0126	65,5128	
3,2193	2707575	2,7128	24,5041	2,0629	2,3445	1,3608	12,1541	3,7754	108,6024	23,1001	5,7959	
3,2229	3923672	18,4862	85,8825	20,6123	89,2517	23,2763	12,1927	26,6473	3,4883	117,1258	108,2741	PFKL
3,2242	2887421	21,7324	72,3796	19,7217	29,7966	12,7868	70,0690	2,0168	5,4839	136,2477	114,2086	
3,2260	3757460	108,353 4	349,5505	96,4347	230,1531	103,6203	636,8033	35,1118	33,2860	390,6035	521,8056	
3,2279	2350957	76,9762	254,6738	27,1683	340,4594	840,1740	1469,924 0	2,4894	3,1453	78,8973	28,5120	GSTM2
3,2340	3817532	9,1845	12,5243	31,9030	181,9337	24,5231	90,0930	6,7291	144,5671	142,9862	103,1747	CHAF1A
3,2341	3094903	10,3371	34,7979	9,7570	5,7181	7,9866	5,8933	2,9961	106,6328	7,0504	31,5555	
3,2360	2761087	1,9285	20,3769	2,7439	3,7754	22,8084	1,9285	6,2969	124,4595	3,1294	61,1806	
3,2363	3721566	44,8766	177,8150	31,8798	113,3894	42,6018	145,2329	27,4829	75,9838	155,4259	192,0723	CNP
3,2413	3593597	11,5187	38,8589	9,8644	37,3357	6,5267	8,6030	5,1180	23,9227	247,5751	148,1844	SLC27A2
3,2447	2522819	30,3663	6,4636	18,6919	111,4733	30,1318	98,5289	14,4606	44,7969	213,6666	178,2169	STRADB
3,2464	3435443	41,4330	167,3880	51,5611	235,8166	30,0923	64,4832	18,7917	108,6024	254,0309	329,4595	KNTC1
3,2554	2469263	38,6426	89,6946	38,0718	50,8873	40,6888	162,4958	15,3905	165,2411	555,6496	132,4572	RRM2
3,2561	2335449	65,7434	162,0135	49,7478	420,5963	129,1704	510,3736	11,8860	72,9367	667,2643	651,5291	STRADB
3,2563	2483797	1,9285	8,1065	1,9207	5,6629	1,9639	6,3783	2,4894	108,6024	23,1001	35,6722	
3,2563	2372106	2,7128	8,1065	2,4322	2,1641	1,5429	3,0393	2,4894	124,4595	1,4797	24,8610	
3,2629	3571729	5,0963	87,5919	28,1699	86,4474	14,1655	145,3376	3,5796	170,1828	161,1093	91,9158	ALDH6A1
3,2659	3312519	127,636 8	464,9354	94,9223	177,9745	96,0420	537,4882	55,7507	416,8500	209,7832	123,5641	MKI67
3,2663	3536833	9,1656	128,4786	36,0065	65,9323	39,3349	149,3232	33,1584	13,6010	169,6778	151,1228	
3,2674	3084706	15,6404	115,3881	35,3151	36,5882	35,9453	125,8880	6,2969	209,5309	3,1294	28,5120	LOC34919 6

3,2674	3722071	22,3646	124,0235	22,9266	55,4714	30,2230	98,7507	23,0782	14,0025	181,5218	171,7439	VPS25
3,2675	3503757	12,0119	161,1189	39,3456	23,2590	36,4830	12,4599	49,3089	190,7263	455,1897	285,2398	TUBA3C
3,2695	2341697	13,6310	132,9262	8,4328	7,3750	12,9375	30,4007	24,3427	79,5877	35,3479	82,9471	
3,2714	3541026	5,0458	149,8166	8,1278	1,8185	21,7144	27,2398	2,4894	26,5896	1,7036	17,3263	
3,2719	3667977	24,3374	95,7232	9,9467	45,5173	3,9183	79,6302	3,7359	6,7330	95,3376	103,7745	MYCBP
3,2735	2784120	40,8576	209,7862	131,0627	659,6486	92,9680	534,9591	11,2050	166,5384	540,1232	429,0352	CCNA2
3,2758	2912856	14,5370	58,9541	15,1568	49,6510	10,7166	13,7349	10,0086	116,0110	27,3826	26,1944	FAM135A
3,2777	2688609	34,4044	171,9664	40,9043	21,7091	91,8479	240,7258	30,2229	58,8151	52,4652	189,9150	GCET2
3,2839	3695300	9,8770	3,2884	7,2393	47,4455	7,1585	107,4591	3,0657	18,6891	77,0970	32,4349	NAE1
3,2854	2938999	42,7826	189,5765	36,0498	140,5592	27,5662	54,7211	26,4727	15,5168	679,7683	885,3768	SERPINB1
3,2857	3528596	36,0191	34,3672	31,0537	118,3478	18,8896	6,3998	24,1157	643,6530	413,8181	524,1141	
3,2893	2946238	16,4707	185,7616	56,4747	247,9513	36,5233	413,4643	7,5676	50,9104	147,8161	61,2967	HIST1H1C
3,2894	3624016	12,4713	247,8382	5,0008	2,6300	42,4394	208,7238	4,6614	13,0225	84,0314	139,5986	CYP19A1
3,2912	3718016	1,9285	4,8334	2,8712	3,5253	2,4322	8,1933	2,4894	236,2452	2,1153	28,5120	LOC14700 4
3,2936	3098357	37,6841	453,4970	53,2800	102,3462	19,5998	175,4828	35,7019	9,8929	189,7381	208,6571	NREP
3,2963	3287615	7,2066	14,2313	5,8590	8,4605	8,1485	26,8598	16,0735	108,3119	4,4923	26,9189	
3,2999	2752746	44,6095	131,0016	121,8130	599,3516	140,1957	536,9747	36,7554	462,6327	251,9713	82,1871	NEIL3
3,3005	2746625	3,3130	3,0940	2,2631	2,3401	15,4981	123,0692	4,2088	16,4440	4,5633	15,0610	EDNRA
3,3027	3824880	37,3909	740,0069	56,0014	577,7529	101,4989	335,2196	16,8182	76,6791	230,0327	179,2412	IFI30
3,3029	3986857	3,6997	46,9037	3,2148	4,4538	14,2009	103,0701	6,2998	5,5251	112,5038	185,6030	COL4A5
3,3061	3757747	4,0796	2,4712	6,0300	22,8710	6,9179	4,0924	2,9754	142,9162	37,0266	28,1350	GHDC
3,3084	4055390	50,3253	191,6885	27,3483	181,1203	12,1852	115,2129	9,7158	166,4964	62,3774	69,6557	TAF9B
3,3085	3244491	19,8916	153,2898	61,5977	281,9897	24,1485	79,8941	15,4963	11,3215	10,7993	2,6199	RASSF4
3,3091	3084072	9,5545	167,3880	5,3201	4,8334	8,0353	16,5127	6,2969	26,5896	1,4797	76,2619	
3,3097	2451216	102,495 4	742,6895	122,4888	474,0279	143,2252	587,7320	13,5206	27,1331	509,8169	319,4507	UBE2T
3,3103	2617577	101,685 1	639,6802	210,3258	950,0836	193,6216	754,3108	36,6893	131,0546	617,7898	696,2319	MYD88
3,3168	3075945	45,6014	151,2506	41,3935	154,2592	25,4969	12,1991	8,4038	87,8602	380,1040	179,7397	PARP12

3,3190	3127346	27,8464	402,6103	50,3908	250,7969	75,5645	315,0349	15,5487	25,6570	146,3974	102,6233	REEP4
3,3252	2490698	3,6997	14,0467	4,2243	2,9751	4,1700	25,1763	4,0181	320,7332	8,5023	4,0388	
3,3260	3333907	12,8899	9,8254	10,8068	42,8713	3,3377	5,7712	3,8231	50,0862	353,1768	175,5780	RARRES3
3,3282	3008035	2,7128	12,0574	7,5306	2,4322	3,6228	2,6792	1,9285	139,6738	2,1153	35,6722	ELN
3,3310	2352302	7,9687	159,8872	31,6092	130,4957	34,5928	105,2901	18,3876	75,1190	23,8658	33,7847	MOV10
3,3337	2870926	14,5657	143,6087	26,8702	55,0015	33,4857	111,6326	5,9661	21,9545	94,4730	132,5451	NREP
3,3339	2624485	6,5137	15,1847	7,6571	50,5388	128,2196	103,4313	10,0542	33,5194	4,0706	19,1871	CACNA1D
3,3415	3584410	1,2859	39,5502	12,8229	12,9657	10,6871	171,0309	59,4213	75,1190	9,3424	42,8472	
3,3546	2947045	97,7820	741,7656	78,4355	209,0227	33,9153	328,0153	96,3952	68,4682	601,1594	503,3537	HIST1H2AI
3,3586	3790736	7,3841	62,4933	17,3807	81,3604	24,2248	229,4149	2,1369	4,6848	185,4191	108,2758	NFE2L3
3,3624	2775738	40,8576	320,0425	207,6829	581,9708	86,9739	368,3579	79,7589	246,1361	95,1830	99,5358	SCD5
3,3669	2349494	5,0458	2,1018	32,2557	59,0265	17,5313	4,1635	3,7754	108,6024	2,1153	72,4910	AMY1A
3,3686	2783625	1,9285	2,1018	2,3100	2,2126	2,4322	8,1933	1,9285	124,4595	3,1294	9,2307	
3,3697	2899759	244,603 4	1910,244 0	370,9868	2654,115 0	246,0226	1250,132 0	38,0160	469,7007	1313,627 0	1166,669 0	HIST1H2A G
3,3705	3048877	41,4330	74,4083	43,8467	221,6737	65,7689	283,7451	18,7917	14,8094	492,3878	415,1736	H2AFV
3,3720	4018405	1,9285	8,1065	6,0064	10,0748	11,6444	54,1162	33,2080	209,5309	3,1294	39,2645	
3,3727	2360493	3,6997	22,8983	4,2775	1,8577	5,6789	4,6046	9,4886	134,3260	3,4192	19,1535	FLAD1
3,3731	3613124	18,3690	157,7298	27,7507	93,6071	16,9421	206,2128	3,7754	64,0119	79,5616	88,1084	ABCB10
3,3740	3878385	12,0991	76,8971	43,7738	77,8760	22,7908	76,5434	7,9218	4,9191	18,3566	140,0937	
3,3764	3813201	2,7128	4,8334	1,7036	1,6575	1,9639	9,1594	28,3691	222,9595	2,1153	17,3263	
3,3771	2910380	40,1498	135,5915	39,2180	96,5124	19,0909	21,5134	9,0147	223,0242	154,4723	136,6239	TMEM14A
3,3784	2762898	2,5332	12,8525	3,2997	4,4454	3,8042	4,4185	2,1911	108,7128	7,3010	17,8007	
3,3848	3852569	32,6114	259,8989	32,2632	185,1053	54,6876	181,5702	14,2391	101,0388	302,9392	223,4462	ASF1B
3,3864	2434132	5,8069	117,9207	50,8353	1007,943 0	23,9451	327,2999	10,8226	98,5018	173,5261	172,1474	HIST2H2A B
3,3925	3524503	5,0458	20,3769	6,0064	19,0060	5,5937	3,0393	28,3691	236,2452	5,5270	114,9596	
3,3951	3742392	33,7125	134,1308	16,9251	51,7851	23,4296	145,6266	9,3959	18,7629	219,0395	114,4577	SLC25A11
3,3968	3721465	149,983 1	1208,105 0	119,2540	509,4682	173,5169	2028,027 0	63,5355	81,9404	27,4648	24,6882	FKBP10

3,3971	3354830	9,0441	47,0060	14,5705	51,1752	18,6548	85,3116	5,8198	248,3431	82,2548	63,3718	CHEK1
3,4051	2736510	6,0464	24,4682	58,1363	105,1714	6,1659	7,7073	4,3183	37,5428	7,1858	16,4882	BMPR1B
3,4067	3774545	5,0458	43,2758	16,7603	26,8039	2,1641	57,0980	3,7754	124,4595	46,4843	122,8166	
3,4068	2902650	35,2931	31,5378	11,7167	161,2984	41,4869	382,9684	2,1398	132,7109	38,9552	54,2074	MSH5- SAPCD1 // SAPCD1 // MSH5
3,4094	2863245	48,1404	218,3337	56,2623	134,2775	48,2657	191,8210	6,3622	54,9748	137,7515	194,3631	HMGN2
3,4116	3238780	3,2555	101,1907	7,7470	27,8172	9,2482	18,0844	3,3221	31,5512	50,6132	35,9918	MSRB2
3,4120	2775106	16,4904	220,0653	13,9068	16,6372	24,4076	112,7130	29,9314	83,2798	6,4976	18,6496	PRDM8
3,4208	2500681	5,0458	4,8334	29,9494	36,0168	27,0255	120,3166	48,5312	378,4596	35,1722	126,8881	
3,4216	3155644	12,2846	61,1098	29,9506	42,5134	17,8598	68,2869	5,0764	108,1093	11,0990	29,7800	COL22A1
3,4257	2998888	2,7128	82,3216	4,5943	21,5715	17,5313	16,5127	6,2969	108,6024	1,7036	9,2307	
3,4264	3450873	15,5522	30,7214	14,9737	69,1350	15,4683	90,5532	20,1773	4,8696	124,9594	114,0659	ABCD2
3,4338	3859014	5,0458	115,3881	3,6228	20,8414	16,5127	13,3138	1,4525	1,4300	2,1153	17,3263	
3,4356	3015229	2,7128	90,4603	8,3360	14,3853	7,2156	24,7896	3,7754	249,6737	2,1153	2,2322	COPS6
3,4419	2335029	9,6206	172,2356	6,9916	10,1037	14,2170	96,1803	18,3932	48,9330	7,3024	13,1050	
3,4451	3779272	3,5442	106,8670	3,6559	3,7881	2,5065	4,4631	7,7309	26,6339	13,8060	27,9027	GNAL
3,4487	3236457	42,0330	27,4484	84,7142	206,2037	16,6439	151,8445	21,1324	242,6935	44,0294	27,7612	SUV39H2
3,4524	3337422	164,086 4	682,8109	41,5077	185,0703	145,5847	566,4966	7,0185	52,8106	1074,632 0	1286,002 0	TCIRG1
3,4603	2686051	13,0551	3,9828	52,4966	184,0724	876,6516	1276,251 0	38,1279	181,6514	12,2430	16,2230	DCBLD2
3,4603	2686051	13,0551	3,9828	52,4966	184,0724	876,6516	1276,251 0	38,1279	181,6514	12,2430	16,2230	DCBLD2
3,4606	2905524	11,9293	99,9741	25,3645	101,8255	28,8891	257,7878	13,5512	2,5273	45,4412	13,6843	FTSJD2
3,4701	2947043	598,127 0	2889,051 0	440,1539	1459,249 0	411,4070	2075,547 0	345,932 1	1298,223 0	1815,389 0	2126,080 0	HIST1H2AI
3,4721	3845627	69,2342	539,9679	41,6534	150,2132	62,9373	240,3897	7,3472	48,7178	405,6032	606,7285	BTBD2
3,4759	3361914	3,6997	34,5947	13,6665	13,1410	9,2878	9,7106	7,2373	156,0274	6,5816	32,2839	TRIM66
3,4787	3532796	40,4537	162,9726	35,8054	61,8721	105,5967	259,2707	46,8482	836,7924	12,6469	39,5381	PAX9

3,4812	3759918	23,9790	201,7301	24,0957	130,5451	36,2107	102,2811	13,9132	126,0567	183,1981	100,2810	LRRC37A4
3,4837	3199802	17,5993	81,0074	8,7785	55,4341	23,2533	64,6458	6,3615	121,9217	130,0973	94,1832	
3,4859	3544660	18,9174	47,5033	117,0957	116,3832	12,2316	13,1812	16,7426	173,7272	16,9751	65,9445	FLVCR2
3,4877	3669658	18,5516	56,7331	119,2277	157,0931	26,1747	202,0556	3,7500	8,6483	11,5952	91,2882	WWOX
3,4922	3473458	13,6515	98,0809	13,9505	41,2738	17,6285	107,8261	2,4837	6,9779	60,7238	61,5626	TESC
3,4985	3150107	9,5545	43,2758	12,1541	33,4269	4,8334	9,1594	3,7754	139,6738	2,1153	1,7672	
3,4989	3134151	25,6515	153,1292	43,7651	315,6951	29,4344	167,2604	10,9676	38,7934	94,9633	51,0731	
3,5002	2900052	89,6887	1096,535 0	79,4898	423,8106	177,3573	1088,275 0	44,6332	278,4315	845,7787	620,7811	HIST1H3H
3,5109	3852567	24,0323	426,2180	28,7516	184,8830	52,6602	182,8683	27,9677	46,8512	357,9128	284,1827	ASF1B
3,5109	3852567	24,0323	426,2180	28,7516	184,8830	52,6602	182,8683	27,9677	46,8512	357,9128	284,1827	ASF1B
3,5157	2509218	5,0458	20,3769	5,7959	4,1635	6,3076	7,2156	3,7754	168,2452	3,1294	21,1736	
3,5170	3515620	5,0458	47,1271	16,2349	7,2156	2,7638	57,0980	23,6471	124,4595	3,1294	107,1738	
3,5194	3724982	15,9672	56,1943	11,5705	90,0727	11,3986	182,9771	2,1911	17,1784	33,8876	13,8230	PNPO
3,5207	2622225	10,6111	36,6070	14,1946	98,8842	6,7914	49,9748	7,1262	4,0648	118,5332	146,1821	
3,5236	2663578	3,7253	223,7792	19,6663	69,2965	17,5313	32,2557	5,1846	5,7058	254,0309	157,8700	NUP210
3,5300	2993605	64,8404	283,0309	63,2691	242,1022	68,5843	140,0309	38,1644	26,5896	219,8880	376,3881	NFE2L3
3,5338	3155640	105,198 3	55,1884	261,2041	382,9517	108,3687	708,2837	49,7453	422,5842	73,3528	131,1444	COL22A1
3,5425	3639490	47,2700	136,6738	48,1986	164,8880	21,7144	321,4595	23,6471	318,7451	612,0309	170,7452	H2AFV
3,5454	3277798	1,4052	24,5041	3,4556	7,2156	2,7638	1,9285	3,7754	139,6738	35,1722	13,3852	
3,5556	3721472	86,8914	483,4453	81,1296	205,2068	106,8411	429,3010	25,4449	308,9503	65,0194	20,0694	FKBP10
3,5602	2864629	16,6492	85,7175	16,5001	92,8704	24,0767	155,4007	9,0462	9,1501	112,5240	81,4828	DHFR
3,5630	2826398	11,5240	41,0595	10,8084	21,9387	41,9224	31,2074	9,9630	118,9745	10,8018	42,2354	
3,5717	2938992	25,6665	210,3428	58,8913	247,3746	39,5027	184,2341	8,2517	100,4953	972,3823	1071,653 0	SERPINB1
3,5729	3903498	25,7053	124,5947	23,3969	185,4821	50,1788	186,9553	5,6968	33,1778	345,2646	179,2844	PIGU
3,5736	2522806	32,4972	116,1306	28,7347	128,3852	4,0544	21,1893	9,9779	32,4708	426,4497	450,8773	STRADB
3,5738	3943222	26,0342	124,8787	35,5503	128,8357	28,0246	127,0499	7,8879	6,2434	176,2719	146,4763	YWHAH
3,5763	3052525	5,0911	34,8048	485,5764	272,1096	8,4151	5,9146	5,9661	33,3858	9,3353	8,8526	

3,5787	2785333	13,7805	100,9301	75,4672	212,3144	27,6058	155,3025	7,0324	14,5071	28,2032	32,7607	SCLT1
3,5817	3173694	1,5887	16,3642	21,9281	78,5401	18,6548	115,1024	33,2080	168,2452	5,5270	5,7959	PIP5K1B
3,5822	3456070	17,1102	69,6576	16,7289	29,6236	18,0649	12,6605	15,8991	64,7124	204,4215	197,1393	ITGB7
3,5847	2821179	1,9285	8,1065	1,5202	2,1641	4,8334	21,3164	9,8810	168,2452	3,1294	17,3263	
3,5847	3635033	129,385 8	603,9020	97,3801	463,8135	84,6142	207,7189	56,6337	92,9332	518,0056	825,0367	TFDP1
3,5904	2623454	5,4614	109,4477	15,4134	70,0518	19,5110	50,8337	3,6129	8,0573	37,0266	70,6742	ABHD14A- ACY1
3,6163	3942742	2,8313	3,7475	16,4849	23,4876	6,4950	21,0206	2,6983	112,4207	4,8859	57,1859	SMTN
3,6221	2339057	29,0120	24,5041	3,0393	9,2307	4,8334	20,0198	3,7754	154,1023	5,5270	9,2307	
3,6221	4032703	5,0458	1,7226	3,2954	4,7719	2,1641	20,0198	53,9019	57,6694	5,5270	2630,084 0	
3,6249	2878376	13,5945	67,0320	26,6139	96,4720	74,2764	117,0434	20,2784	10,1656	10,8287	106,9167	APBB3
3,6309	3802223	41,7077	151,4353	25,6085	149,7837	30,6624	236,3789	24,1234	177,2349	174,9490	46,4488	DHFR
3,6334	3839111	30,8592	92,3904	124,1549	451,1024	351,6767	2251,798 0	56,5522	546,8647	66,2168	50,4631	ATF5
3,6428	3426375	47,2700	4,8334	1,9207	9,0685	1,5429	9,1594	2,4894	154,1023	2,1153	5,7959	
3,6493	2913443	17,9666	8,7151	7,3454	32,2184	5,8968	3,8671	8,8286	114,3637	8,8005	37,1192	KCNQ5
3,6560	3589497	12,2244	105,9094	84,4489	138,9611	10,2948	8,6088	8,6152	44,6921	4,1589	16,8715	THBS1
3,6575	3204250	111,189 3	450,8675	123,2734	745,6903	95,2534	629,8691	48,2576	161,1487	561,0956	286,0085	SIGMAR1
3,6589	2678021	1,9285	12,0574	3,2954	2,3445	1,7903	2,6792	43,2044	26,5896	2,1153	134,6738	DNAH12
3,6607	3944151	17,5984	141,1708	37,6729	50,3921	28,3910	78,2465	25,9007	155,0866	156,7474	137,9109	MCM5
3,6753	3413302	147,960 4	585,5720	75,4789	599,3912	111,8808	294,3976	3,4848	188,6729	583,6525	543,7992	TMEM106 C
3,6850	2939092	1,5887	128,1023	7,2156	6,6774	5,5937	20,0198	2,4894	26,5896	14,0126	46,4843	SERPINB6
3,6872	3205357	15,6404	62,4580	12,1541	11,0267	59,7524	221,6737	1,6340	57,6694	3,1294	2,2322	PAX5
3,7031	2522803	17,9028	40,6872	38,7958	204,5380	44,8715	166,1626	15,0893	34,1095	399,6606	454,6574	STRADB
3,7051	3620831	22,4985	86,6041	11,9145	9,7396	16,5127	4,8334	1,9285	124,4595	2,1153	61,1806	TTBK2
3,7097	3288118	19,9017	108,3763	8,9091	13,0560	15,5709	59,9778	7,6803	135,3482	16,1679	24,6007	CTSL1P2
3,7122	3836862	12,2244	123,1702	26,0467	121,3818	20,6281	43,7884	10,9916	96,6916	106,4030	89,3346	CALM3

3,7237	2380248	1,9285	16,3642	4,3946	6,2278	2,1641	9,1594	6,2969	108,6024	3,1294	21,1736	
3,7287	3377141	13,3489	115,0466	14,3821	45,4744	34,2246	38,7669	26,7801	184,6196	22,4256	99,8542	MAP4K2
3,7335	3777675	9,5545	74,4083	9,5545	11,5152	6,3076	24,7896	2,4894	108,6024	1,7036	35,6722	
3,7338	3630705	23,8765	67,3272	14,6335	91,2067	23,6340	211,7152	3,0515	5,3164	135,3133	89,1490	CLN6
3,7339	3962810	20,0236	26,6116	16,9830	91,1018	13,5237	45,6022	24,3986	106,0119	102,7281	92,9183	TTLL12
3,7390	3903508	5,8212	25,4728	8,5822	62,5248	15,0599	56,3089	5,3074	4,5976	217,7823	114,3085	PIGU
3,7448	3573373	108,388 1	432,0309	42,2758	96,7456	131,2452	405,8880	3,7754	496,3164	103,3881	53,9019	
3,7504	2434110	80,5026	338,7487	82,0019	738,9130	71,9006	307,5382	39,3264	166,3811	176,3826	237,2454	HIST2H4A
3,7532	2853547	12,2244	59,6394	51,0085	116,0421	12,3898	13,7520	15,1547	87,7206	15,8904	15,2288	
3,7535	3155643	25,1623	17,1466	44,5603	94,4470	21,6719	124,2115	7,4682	336,2887	9,8638	23,5618	COL22A1
3,7549	2623463	6,8166	137,0257	16,4346	133,3628	14,7221	61,7112	15,2858	35,6986	60,5620	21,0792	ABHD14A- ACY1
3,7669	2389905	29,0120	16,3642	36,6596	175,1023	171,7095	343,3879	14,2979	263,1023	46,4843	72,4910	
3,7792	2801545	5,0458	32,0414	19,8771	118,7452	11,6444	20,0198	2,4894	75,1190	23,1001	119,1023	CCT5
3,7811	2902183	49,4615	249,5883	18,0621	52,3049	31,3935	107,3644	53,7005	235,3801	236,9183	203,0457	TCF19
3,7856	3296161	31,7295	52,3429	81,8498	327,0430	28,4964	337,8953	9,6149	180,0091	47,5505	91,5251	KCNMA1
3,7871	2864637	68,3657	322,7483	80,6416	347,1896	85,2225	628,7043	36,5587	26,8244	271,0042	199,0665	DHFR
3,7890	2407758	9,5545	179,3778	44,9858	186,0951	47,3414	312,2583	32,9043	10,1656	250,0183	174,1861	MYCBP
3,7996	2695122	13,0023	32,4415	19,5413	128,5645	10,3675	74,2483	10,3979	102,4312	50,6578	23,8391	FAM86HP
3,8073	3931280	44,0955	169,7559	44,5869	188,2644	41,2012	137,3311	20,8178	188,1867	129,0248	84,0186	PIGP
3,8108	3591726	12,8851	110,4657	18,9416	121,6818	24,4192	93,0577	13,6264	15,1911	133,5725	92,0179	WDR76
3,8115	2522805	15,6404	5,9775	51,3468	303,0310	70,7903	269,8166	16,7799	23,7430	322,1738	475,2001	STRADB
3,8261	3167546	7,6532	144,2670	9,3160	58,1464	11,6019	47,0576	12,2990	4,6848	35,1722	20,0398	GALT
3,8266	2411058	90,6525	712,8502	15,9123	29,4714	47,2632	180,8571	13,7472	186,6327	31,2642	9,6744	CYP4Z1
3,8266	3418378	12,0375	28,0204	16,1368	77,8245	57,1311	378,6858	10,5889	54,4977	6,8136	61,7496	ARHGEF25
3,8324	3014669	22,4985	8,1065	1,6340	1,4652	1,9639	2,6792	1,9285	182,1023	2,1153	9,2307	
3,8335	2343517	29,0120	12,0574	2,8712	111,3881	3,1453	1,4453	1,9285	182,1023	3,1294	2,2322	IFI44
3,8345	2792856	9,5047	75,3996	12,7130	178,0184	8,2326	10,3759	15,9969	61,3410	96,0403	55,0804	DDX60

3,8367	2379302	28,1876	37,2999	2,4161	12,6860	3,9319	3,4288	2,1911	161,0185	2,5729	15,0856	FLVCR1
3,8482	2394596	10,8551	116,4399	21,6463	197,4646	7,3725	83,1848	3,9570	34,6980	218,9023	83,2995	ICMT
3,8498	3957819	9,0666	79,3290	18,3038	38,4426	35,2171	110,5449	20,4165	78,6000	12,3678	24,8609	PATZ1
3,8528	2899252	110,666	634,6512	68,0248	108,7691	131,7387	1202,683	132,744	13,4680	413,4815	511,4402	HIST1H2B
		3					0	4				H
3,8529	2358357	2,7128	12,0574	1,3551	2,7638	10,6871	4,1635	1,9285	222,9595	3,1294	35,6722	TARS2
3,8563	2466585	9,5545	41,8402	90,4526	148,6299	10,3731	33,8173	6,8779	61,3984	10,8498	34,7962	TPO
3,8635	3296089	4,2926	95,5107	28,4543	123,2901	7,0737	78,9137	20,4255	24,7068	19,6024	15,2385	KCNMA1
3,8638	3970282	22,5386	188,4330	21,9889	78,0995	38,0360	426,1262	16,1042	87,0857	21,2944	10,6620	REPS2
3,8715	3536341	11,2566	408,8396	64,6578	317,3319	76,0721	294,5113	11,8900	85,2428	111,2803	78,6044	CDKN3
3,8812	3365788	10,9981	146,0097	17,9770	76,9325	19,8219	98,7985	13,2443	16,4853	80,4186	20,7545	E2F8
3,8882	2686052	18,7586	3,7605	14,6825	82,3383	368,0519	453,6457	2,3851	72,9367	2,9468	10,6744	DCBLD2
3,8898	3339189	8,3406	5,3745	36,3857	151,2405	16,1174	71,1903	3,7344	62,6933	7,2567	3,3927	FAM86DP
3,8914	3386281	9,5545	24,5041	2,0629	1,3668	1,7903	2,1018	6,2969	108,6024	5,5270	28,5120	
3,8914	3254794	5,0458	24,5041	6,2969	2,6471	17,5313	29,7352	1,9285	236,2452	3,1294	2,2322	
3,8925	2938996	46,9438	180,0903	60,7188	236,3457	27,2296	240,6535	43,5119	44,8335	920,8551	1215,499 0	SERPINB1
3,9130	3454365	9,5545	12,0574	4,1635	37,3865	63,4119	76,8333	1,6340	26,5896	9,3424	111,0309	
3,9179	3296133	24,8254	182,7936	85,7464	291,0685	15,7656	233,2890	11,1496	39,5258	46,6561	39,8300	KCNMA1
3,9257	2899219	216,166 6	1120,586 0	194,7361	1326,507 0	34,9641	721,6060	9,4886	31,2057	595,6129	848,5961	HIST1H4E
3,9258	3593589	14,5325	69,7001	16,3432	64,1600	4,4358	19,2570	2,6983	16,1317	383,5650	329,3822	SLC27A2
3,9348	2875472	270,880 8	304,8545	61,1099	331,8413	60,5748	319,4596	33,2080	6,9779	77,4771	47,1063	39692,0000
3,9374	3082037	15,6404	47,1271	20,6272	20,2340	24,8610	97,8884	38,1644	410,3882	5,5270	99,5313	
3,9458	3011549	35,3151	132,4595	27,4540	135,1024	33,5697	10,0878	14,2979	168,2452	2,1153	17,3263	ADAM22
3,9470	3400898	16,4842	404,1574	4,0847	6,6582	12,5485	107,7056	27,2882	25,6546	92,0417	135,8005	CACNA1C
3,9511	2663571	106,984 7	640,9000	35,1916	318,7552	94,2549	422,7065	11,3287	37,3227	229,5791	438,2325	NUP210
3,9514	2573644	1,5887	111,1738	7,0649	29,4494	7,2156	3,5760	33,2080	1,6340	3,1294	28,5120	
3,9514	3366706	29,0120	12,0574	7,2156	7,0649	1,6340	64,4832	3,7754	154,1023	5,5270	28,5120	

3,9542	3624032	169,993 9	844,9913	16,9777	23,3294	152,9709	672,1854	13,6477	50,5029	864,3239	707,7820	CYP19A1
3,9579	3296125	26,4507	104,6894	73,7167	220,8782	8,4199	273,9705	2,6983	82,6565	20,8823	44,6477	KCNMA1
3,9604	2965804	41,4330	33,3565	42,4717	168,2044	40,0251	397,7232	27,7612	77,6898	126,3831	219,7915	MMS22L
3,9613	2357957	58,6933	418,4590	85,3035	383,2953	96,7604	260,3649	30,0581	42,4269	285,4488	398,1826	HIST2H2A C
3,9740	2899173	838,837 6	3491,807 0	406,1484	3555,967 0	92,0548	885,5887	55,9779	3071,071 0	3644,762 0	3333,548 0	HIST1H1E
3,9814	2437322	18,7586	130,2753	125,7287	147,7177	29,2862	5,0321	9,8810	19,8438	10,7755	116,6010	SCAMP3
3,9822	2361363	7,4782	131,5506	20,0447	224,2008	30,6177	79,8216	18,9867	30,4405	9,2393	9,5741	SEMA4A
3,9829	3803123	28,8422	154,3754	72,7440	114,8766	11,5884	166,8003	10,8313	27,2291	6,6220	2,7186	B4GALT6
3,9879	2740229	5,5760	43,1466	10,8193	53,7837	127,3649	140,6116	9,4895	7,8614	5,4443	24,2922	ANK2
3,9922	3473753	14,3289	61,7325	39,1130	145,8898	14,1435	57,2033	5,0830	32,9112	12,7602	17,3263	VSIG10
4,0048	3173735	13,2632	3,7475	11,9725	55,3551	7,3725	105,5975	30,6771	53,1171	5,1935	26,9381	PIP5K1B
4,0072	3006873	5,0458	43,2758	8,9021	5,1770	7,2156	17,7447	3,7754	139,6738	31,3271	35,6722	AUTS2
4,0097	3408529	9,5545	7,5513	13,3428	2,7488	7,8145	53,5011	4,1866	187,0615	85,7655	56,1583	LRMP
4,0208	3485928	15,6404	66,1261	61,1092	52,4042	13,5281	62,8866	3,7754	1,4300	3,1294	103,2452	
4,0228	2855494	16,0394	128,0789	20,1599	30,5437	35,0808	81,1000	7,3472	10,4249	12,6375	92,0186	
4,0312	3939034	9,5545	39,5502	9,8110	38,9074	39,1931	23,6471	1,9285	124,4595	3,1294	42,8472	IGLV3-26
4,0365	4055386	140,772 1	616,3246	28,0581	659,8684	152,6870	1161,208 0	37,2095	109,8174	163,1418	96,5612	TAF9B
4,0397	4013441	79,6556	640,5688	47,2968	667,5334	158,5678	1324,285 0	33,8766	163,7355	216,3116	164,7322	TAF9B
4,0447	3703116	35,3151	145,3881	6,0064	105,6024	35,9453	369,6739	28,3691	236,2452	223,0309	80,1825	GINS2
4,0447	2335019	6,9552	121,9692	10,8556	8,8145	5,6830	28,1316	2,4894	71,6683	6,6273	7,3129	
4,0478	2555067	3,2740	23,5045	33,6514	130,7375	5,8067	46,9780	4,8123	8,5022	5,7933	4,5667	
4,0632	2659573	13,4269	86,6040	32,6016	343,8895	22,8075	132,4671	2,6983	11,0475	390,2259	308,5549	PIGX
4,0721	3979000	9,5545	39,5502	2,4322	1,6340	3,6228	38,9074	95,0313	209,5309	5,5270	21,1736	
4,1001	3134156	24,3028	47,3672	32,2654	159,1286	21,9508	132,2921	2,3484	165,0836	106,8222	23,0923	
4,1130	2908441	9,5545	328,2450	40,0513	172,7149	53,8649	221,5467	7,2233	31,5379	343,4783	254,2718	SLC29A1
4,1196	3880836	16,2933	18,4510	21,6887	106,9937	17,7132	120,1449	21,5023	4,4645	102,6196	89,3488	GINS1

4,1255	3407565	7,7753	36,6201	5,4038	25,0044	4,9686	43,8267	8,8764	271,5942	114,6405	33,4074	UHRF1
4,1269	2343496	5,1911	7,4188	5,4418	1368,085 0	36,2400	121,4339	11,4747	47,3554	3,1561	3,7006	IFI44L
4,1273	2386032	5,9776	76,5888	10,2448	9,6301	20,1977	255,1398	4,1901	20,4582	13,9815	57,7052	SLC35F3
4,1278	3442649	35,3151	8,1065	1,9639	2,1018	1,7903	8,1933	1,9285	182,1023	1,7036	3,3108	CD163L1
4,1392	3624019	17,9081	132,3239	6,5745	8,2493	23,1000	118,2261	13,7461	23,9395	67,8548	95,6145	CYP19A1
4,1421	4030433	1,5887	47,1271	3,7874	9,7396	15,4975	26,0826	6,2969	108,6024	5,5270	3,3108	
4,1423	3139487	118,019 9	108,6584	6,4191	13,1972	5,9056	50,1218	6,0200	26,5896	3,9895	7,5248	
4,1558	2406012	16,6427	350,4475	80,2042	275,9442	69,1027	361,4115	16,7426	29,2242	404,7702	333,3156	
4,1671	3756219	7,4684	42,4481	24,9375	104,6377	25,1101	292,4191	24,8542	55,6301	183,0650	203,8510	TOP2A
4,1711	3718206	5,0458	176,3166	44,2039	50,7048	36,9453	174,6738	2,4894	154,1023	3,1294	1,7672	CCL13
4,1751	3756211	48,8514	177,2249	77,4231	494,7745	37,0238	648,7177	39,3996	323,2490	393,2198	282,1726	TOP2A
4,1763	2469275	190,329 9	794,8730	61,2634	388,7894	177,2629	1005,358 0	11,5108	104,1651	1714,591 0	867,7050	RRM2
4,1884	2598329	28,5941	7,1496	46,3002	264,6324	41,0424	625,2487	31,2954	16,6135	212,2917	193,9248	FN1
4,2028	2711553	1,9285	12,0574	19,3108	128,8166	1,9639	1,4453	3,7754	108,6024	9,3424	39,2645	
4,2222	2674785	19,9682	313,5175	39,9666	205,9587	99,0580	249,2792	36,1993	67,4701	48,7804	32,3953	UBA7
4,2297	3970251	47,2886	346,6784	48,0696	203,3182	99,9052	1662,250 0	3,3211	113,5091	34,1149	24,6354	REPS2
4,2335	3830388	2,7128	70,1450	16,1340	68,3027	29,7324	371,9663	10,1010	7,8307	2,9059	6,4827	CD22
4,2550	2900095	75,1137	907,9130	149,2687	713,7546	136,4975	444,5147	16,7426	4,6848	679,5455	635,1381	HIST1H2A L
4,2704	2740261	26,9147	9,2854	29,1142	199,2002	199,3299	236,3272	9,8810	124,3307	28,5040	4,5736	ANK2
4,2904	2508292	3,3838	21,5242	4,7885	3,8694	5,0168	3,7521	6,1421	281,4878	4,3617	33,9948	
4,3140	3161141	9,5545	50,8477	4,3946	14,8094	32,4223	608,6736	2,4894	41,2187	1,4797	3,3108	
4,3242	3299588	21,9865	103,0999	222,2873	261,9334	20,2976	26,7044	7,8879	121,1403	23,8428	16,4305	LIPA
4,3355	3045437	14,4590	29,5686	19,9071	87,8796	20,2700	92,8983	14,2699	25,5672	506,6431	128,0291	DPY19L1
4,3626	2945920	2,7128	12,0574	1,7036	2,1641	2,7638	8,1933	1,9285	182,1023	50,0141	13,3852	
4,3782	3748325	16,3821	25,4403	10,1050	76,4134	27,2996	130,2034	2,6983	154,1023	237,7352	119,5229	SHMT1
4,3828	4026865	5,0911	37,0182	5,6367	68,4807	15,6248	114,6803	7,2176	33,5550	101,4993	91,2881	ARHGAP4

4,4008	2343490	22,4985	18,9758	5,9919	1139,986 0	128,1753	113,7975	25,8581	155,3148	8,1198	11,1156	IFI44L
4,4081	2343481	18,2237	12,8180	5,9842	1339,118 0	127,6604	134,2141	26,1513	234,2698	30,4470	13,8669	IFI44L
4,4123	2830655	15,3994	131,2514	20,5576	116,5676	26,4186	117,6196	6,3449	8,3201	50,1033	57,0261	KIF20A
4,4234	3721481	42,2520	186,7343	25,4976	112,7855	19,2012	148,0533	12,0688	24,2377	6,7439	7,2697	FKBP10
4,4234	3458791	2,7128	212,9594	118,0309	949,1307	380,3167	522,1023	88,6746	781,9592	78,8973	195,2452	CDK4
4,4304	3028990	71,4201	395,6985	59,8945	316,4211	25,8532	77,2722	5,0890	7,2705	364,2491	324,0280	GSTK1
4,4358	2518335	6,2991	6,2595	6,9264	59,7273	7,1168	6,1431	5,1606	31,5689	303,0724	137,4925	ITGA4
4,4443	3159937	5,0458	132,4595	11,9145	21,9281	20,6272	10,0878	43,2044	195,6023	14,0126	91,6743	
4,4812	2993610	35,3258	97,0682	32,8181	276,8167	31,4144	221,4831	9,7495	4,7030	136,2565	158,3020	NFE2L3
4,5180	3591574	4,7731	91,6211	6,0036	5,4891	531,3516	4209,885 0	10,6795	91,9764	20,2793	7,5739	CKMT1A // CKMT1B
4,5218	3502768	20,4566	194,6135	31,4216	142,0830	24,7866	83,8882	15,2858	3,9532	516,9680	387,6059	TFDP1
4,5247	3800399	8,2527	65,0406	349,9741	403,9237	4,6532	25,8239	3,2076	42,9322	9,4884	11,0779	
4,5257	3490814	77,5382	388,1567	45,7036	75,9996	73,1815	350,9153	22,8073	124,5789	231,0672	370,3928	PPIAP26
4,5322	3018409	2,7128	119,7452	10,4707	46,4843	9,8110	12,1541	23,6471	222,9595	42,5615	107,1738	PRKAR2B
4,5330	3435390	3,9048	139,8465	46,5457	217,1900	45,8882	141,3947	28,2644	216,8394	288,9320	210,9895	KNTC1
4,5507	2624482	4,6766	17,2607	10,5257	47,8993	97,4720	125,3825	9,3939	49,0261	5,6074	3,8482	CACNA1D
4,5711	4055389	83,1073	388,1736	20,8414	495,3344	65,7689	379,8880	28,3691	363,1736	165,8880	50,0855	TAF9B
4,5808	3576625	5,0458	163,0309	59,0265	70,9909	15,4975	67,5167	14,2979	6,9779	3,1294	87,8182	
4,5840	2343480	3,6997	5,8999	2,0293	217,2944	31,8400	21,8647	3,2944	16,9594	3,0284	4,5393	IFI44L
4,5852	2899154	31,8878	417,3827	91,0277	666,1114	64,4833	400,4283	9,8396	15,1212	507,8492	434,0458	HIST1H2A C
4,5900	3887308	2,7360	79,4216	16,7113	76,7045	89,3186	184,4798	3,2896	10,1656	7,7797	4,0128	CD40
4,5978	3127359	2,7128	70,4265	6,7669	15,4975	7,2156	31,1128	1,9285	154,1023	2,1153	13,3852	LGI3
4,6208	2615967	6,5137	56,5400	3,3198	9,0472	5,1128	30,0984	4,9596	129,3672	14,6778	4,3806	
4,6480	2899200	241,180 9	1700,448 0	122,8309	699,2960	47,4428	1363,589 0	40,7020	149,4193	916,2580	1121,019 0	HIST1H2B E
4,6485	2948551	29,0545	139,0454	18,4102	130,4682	29,1980	153,2778	23,0890	48,3384	188,0958	135,7277	NRM
4,6603	2357960	2,5390	60,4234	12,9656	127,4905	4,2174	51,2521	5,9734	40,8262	31,8722	79,8733	BOLA1

4,7070	2899174	843,082	4401,489 0	663,9423	4214,844 0	121,6023	1685,757 0	549,816 4	3613,245 0	3272,746 0	3968,382 0	HIST1H1E
4,7336	2485655	11,3624	74,9983	110,1893	221,4100	10,7598	106,9001	9,4886	16,2572	15,8438	8,1127	SLC1A4
4,7350	3617442	10,6547	61,1914	13,4936	70,3275	11,2953	16,8811	12,7716	199,1754	39,9107	63,8918	LPCAT4
4,7463	3138486	5,6296	59,1279	9,2843	24,0025	13,2246	21,4601	6,5677	112,7219	9,4967	45,0748	PDE7A
4,7635	3216288	3,8094	24,0186	3,5072	2,9947	2,4534	2,4205	16,7642	129,2431	1,9707	18,1461	
4,7882	3632814	4,1894	16,0185	15,3837	98,1839	32,8546	135,4763	6,8785	10,7993	9,3424	73,6602	STRA6
4,8108	2569987	5,0458	43,2758	3,4556	2,0307	1,5429	4,8334	9,8810	26,5896	5,5270	114,9596	40422,0000
4,8537	2638801	32,4076	157,2963	11,4277	42,7956	28,2953	195,8327	11,0003	21,3935	606,7639	335,8122	CD86
4,8596	4013439	64,3735	547,5119	45,9132	492,1763	101,2789	925,3682	9,1581	31,1018	177,5091	91,7096	TAF9B
4,8788	3656673	16,0396	89,4664	13,3365	17,2190	6,7223	13,2896	4,7936	104,6817	105,3344	78,2532	ORAI3
4,8847	3555350	5,0458	28,3112	5,7959	5,7959	2,4322	4,1635	3,7754	139,6738	14,0126	53,9019	TEP1
4,9044	2899175	743,387 9	5143,495 0	844,1025	4139,812 0	68,5843	1251,531 0	355,888 1	982,5310	4399,092 0	4451,901 0	HIST1H1E
4,9271	3219261	5,0458	28,3112	2,7439	2,7638	12,5421	12,1541	2,4894	571,8880	1,7036	24,8610	
4,9308	3417423	14,2090	105,1762	21,3303	105,2795	10,3673	78,0334	9,3324	24,9201	140,4858	202,2650	ESYT1
4,9469	2899208	144,679 5	1251,425 0	163,4801	734,1086	252,9703	2481,538 0	155,849 9	370,1896	1811,021 0	1392,232 0	HIST1H2B F
4,9931	2864634	19,6517	98,1230	17,7417	113,0064	5,2391	132,8476	8,9911	21,5204	121,5201	56,2607	DHFR
4,9979	2336504	5,0458	35,9453	8,3360	25,2182	3,1453	2,3844	1,4525	108,6024	3,1294	24,8610	
5,0796	3756208	71,4596	118,1024	67,0129	362,9895	27,9595	424,9001	19,1038	394,2911	139,4544	116,5218	TOP2A
5,1270	3188752	60,1076	604,8129	117,9669	275,8947	155,6237	703,5502	7,4775	685,4529	20,2975	27,5280	NEK6
5,1288	2459940	12,0991	14,4627	24,3507	124,8910	18,4247	199,5078	9,4886	29,2242	75,4047	133,7871	ABCB10
5,1496	3498616	1,9285	119,7452	4,0472	20,8414	2,1641	2,1018	1,9285	92,2457	9,3424	1,7672	
5,1929	3131579	5,0458	62,4580	8,7594	39,2645	92,3172	45,4866	3,7754	139,6738	3,1294	3,3108	
5,1964	3413306	14,6616	148,0749	21,5082	111,7649	12,1243	60,9409	6,2969	17,0335	109,9075	143,5271	TMEM106 C
5,2008	3201122	11,5628	60,1355	3,5382	2,1658	9,4315	2,4452	5,0313	107,4552	60,7917	64,3646	
5,2028	2457437	2,7128	16,3642	2,8712	2,6471	3,1453	11,0981	6,2969	124,4595	3,1294	21,1736	
5,2245	3591719	7,5659	58,8302	6,0221	71,2920	13,6457	117,7361	5,8102	8,2561	137,9126	106,0416	WDR76
5,2414	2895150	2,0760	28,3886	5,4162	10,2883	4,1845	5,5372	9,0923	129,6077	3,4192	34,9221	

5,2697	3346363	5,0458	106,9595	4,8334	18,1018	24,8610	11,0981	2,4894	26,5896	2,1153	42,8472	
5,2766	3822982	10,7088	8,1065	2,9620	2,1234	2,4701	18,5076	3,2180	156,5477	3,5075	46,4843	CASP14
5,2838	2810855	12,6301	239,6489	34,8920	66,7347	6,9486	77,9866	5,8989	9,8518	4,4482	8,2783	RAB3C
5,2884	3245450	25,4564	134,6223	2,3762	3,8616	52,0332	222,3072	8,3179	158,8266	7,6617	41,7157	ANXA8
5,3841	3308589	2,7128	16,3642	3,0393	1,8185	2,1641	16,5127	2,4894	108,6024	5,5270	1,3668	
5,4021	3018323	7,4634	76,5978	8,4553	10,0298	14,1793	8,6343	12,7764	108,8151	189,4707	157,5373	PIK3CG
5,5125	3204938	7,7636	153,5452	8,7531	62,3992	5,1664	37,4126	4,9664	19,5777	272,1573	48,2513	HINT2
5,5754	3602588	6,0626	119,5959	10,1980	66,5791	5,9952	5,8406	5,2222	33,8019	5,2269	8,9609	C15orf27
5,6085	3503758	50,5138	323,8776	7,6818	4,8959	3,7248	8,5711	18,4170	283,3047	978,6625	935,3459	TUBA3C
5,6247	2394156	35,3151	20,3769	3,6228	4,3946	1,6340	3,0393	1,9285	154,1023	1,7036	35,6722	
5,6507	3926407	5,0458	4,8334	4,5943	15,1390	16,5127	104,6738	2,4894	57,6694	2,1153	28,5120	
5,7336	3590043	2,7128	106,9595	8,9021	39,9788	32,4223	202,7452	2,4894	124,4595	18,6548	2,2322	CASC5
5,7363	2899172	591,403 6	4534,005 0	144,1671	1872,409 0	33,1928	1055,089 0	69,8315	3392,444 0	3024,606 0	3409,945 0	HIST1H1E
5,7773	3377975	16,7069	102,9677	12,4643	104,9461	10,2752	36,1955	6,1078	3,3883	108,7791	96,5204	FIBP
5,7901	3217133	35,9398	289,9620	50,0790	398,7101	21,2105	221,5954	7,2217	35,6713	248,2397	304,7789	TRIM14
6,0312	2622220	7,8384	78,2159	11,8690	168,9174	22,2913	134,4435	3,4352	7,3449	124,3229	142,2867	
6,0636	3432536	18,6372	349,2745	13,8837	629,2274	24,8331	64,9533	22,9129	10,1656	91,3498	150,5787	OAS2
6,1481	2823250	6,9433	97,0567	10,1572	6,6332	2,9484	9,3107	7,8879	136,9497	25,6150	62,4476	
6,1606	3195384	10,7055	89,7757	13,9270	85,7979	42,5848	102,7785	11,8014	41,8250	10,5109	6,4921	ARRDC1
6,1851	3411124	1,5887	32,0414	2,0629	2,2929	2,1641	6,3783	1,9285	290,3166	68,4414	13,3852	ALG10B
6,2304	2428819	3,9270	18,4759	4,3445	7,0314	11,8407	73,7722	9,3070	94,8412	162,6834	106,2340	PTPN22
6,3774	3576209	15,6404	66,1261	17,3977	14,8094	3,6228	99,7456	9,8810	124,4595	14,0126	119,1023	TTC7B
6,3869	2895654	2,7128	39,5502	2,0629	2,7638	2,4322	4,8334	1,9285	108,6024	5,5270	17,3263	
6,3921	3708095	15,1337	49,5886	21,9460	671,8505	82,9259	276,1666	43,2044	500,3464	14,2702	21,9706	XAF1
6,3926	2576959	2,7128	12,0574	5,0458	31,7557	2,1641	32,2557	38,1644	108,6024	1,7036	53,9019	
6,4117	2474657	5,0458	106,9595	6,2969	14,6666	8,0353	5,5937	14,2979	92,2457	71,9195	91,6743	
6,4137	2946371	53,7797	2232,355 0	90,0117	297,9398	71,2210	1286,146 0	150,586 9	393,1574	1703,127 0	965,8141	HIST1H3G
6,4562	2946355	19,4818	191,7164	15,8585	12,6746	16,9556	133,3962	20,6616	34,6847	87,1100	146,8092	HIST1H1D

6,5114	2584730	2,7128	20,3769	2,2126	2,8575	1,3608	6,3783	18,7917	154,1022	3,1294	57,5980	GRB14
6,5602	3400865	23,5020	407,7875	10,2145	14,6408	23,4504	133,7619	12,9287	154,1787	381,6759	260,4641	CACNA1C
6,6345	3946358	13,2689	90,2374	74,7354	106,9019	12,5421	28,7015	2,1911	112,4207	13,6012	57,3926	ADSL
6,6375	3244522	3,6997	46,8930	7,0649	127,6300	4,5865	23,3524	5,3381	84,7202	7,0929	2,3431	RASSF4
6,7129	3332870	40,9580	200,2510	40,4480	274,9467	29,2185	386,2756	16,1253	49,5255	433,3062	329,0105	DAK
6,7792	3048432	2,0760	22,3478	7,9267	108,7150	3,3144	25,4704	6,2969	53,7373	191,3755	166,1572	POLD2
6,8725	2518934	5,0458	43,2758	61,1092	75,6190	5,5937	12,1541	6,2969	108,6024	5,5270	9,2307	ZNF804A
6,9198	2335047	41,4285	177,0877	3,4466	5,5219	6,1125	72,9481	6,4193	78,0940	10,5420	3,5969	CYP4Z1
7,0000	2945894	7,2498	76,4466	5,1109	6,8597	3,9285	50,7491	4,3773	8,2961	257,4171	172,1498	
7,0346	2947079	35,2971	461,2677	44,0231	444,5658	63,1974	308,5971	21,4387	14,4734	371,6311	662,3607	HIST1H3I
7,1158	2899758	131,313 9	1302,578 0	120,5908	662,0298	108,8443	792,5508	83,9021	1792,267 0	896,7543	934,4034	HIST1H2A G
7,1238	2876594	5,0458	35,9453	1,4099	1,7572	1,9639	1,7672	3,7754	108,6024	5,5270	53,9019	
7,2435	2401365	1,9285	2,1018	2,5282	9,8110	2,7638	20,0198	43,2044	236,2452	1,7036	21,1736	
7,2513	3369129	5,0458	2,9055	53,6162	36,5882	2,4322	9,1594	1,4525	124,4595	2,1153	42,8472	
7,9215	3353014	1,9285	2,1018	2,7439	12,5003	2,7638	24,7896	14,2979	938,2452	3,1294	32,0414	
7,9295	3708092	9,9062	2,4227	6,2440	217,1870	18,8678	78,5507	7,3443	166,4469	2,3660	12,3951	XAF1
7,9352	2947078	77,8008	884,0527	111,4089	933,3182	72,8874	841,1070	6,1388	10,2500	714,1964	1142,104 0	HIST1H3I
8,4453	2522799	6,5137	25,5520	11,5708	97,7190	3,2034	121,4855	3,0657	19,8438	286,4372	261,6648	STRADB
8,4879	3233018	5,0458	47,1271	3,7874	46,9129	58,3837	523,8883	1,9285	1,6340	5,5270	3,3108	AKR1C1
8,9952	4017293	2,7128	50,8477	3,0393	8,3360	2,7638	4,1635	2,4894	108,6024	1,4797	24,8610	NUP62CL
9,1584	3833225	1,9285	106,9595	1,9207	2,4322	2,4322	4,8334	6,2969	57,6694	103,3881	64,9118	LGALS17A
9,1781	2863450	5,6349	107,7445	45,2508	134,8208	11,7394	67,4834	10,5964	117,2556	2,7355	7,4432	ZBED3
10,1556	2343497	35,3151	28,3112	1,9207	144,0309	4,2191	42,8472	2,4894	57,6694	2,1153	3,3108	IFI44L
10,3350	3759457	9,5545	98,7456	20,8414	75,9047	6,3076	120,3166	6,2969	478,4592	3,1294	42,8472	KIF18B
10,3925	2900094	2,7128	417,1022	8,7594	91,0317	3,1453	44,2039	1,9285	6,9779	216,6737	114,9596	HIST1H2A L
11,8789	3708098	2,4916	82,2638	20,7627	547,9370	67,6019	429,5673	6,1037	246,6379	3,3427	27,9488	XAF1

Anhang zur Dissertation "Identifizierung neuer Hodgkin-Lymphom-assoziierter Zielstrukturen" von Stefanie Kewitz, Halle, 2015

13,6296	2899207	9,5545	245,4595	4,5943	59,9667	6,3076	269,8166	9,8810	14,8094	149,9595	134,6738	HIST1H2B C // HIST1H2BI // HIST1H2B E // HIST1H2B F // HIST1H2B G
14,8058	2774187	2,7128	8,1065	1,5202	2,7638	2,1641	59,9667	1,9285	168,2452	2,1153	32,0414	

Tabelle 25: Sondensätze, die unter hypoxischen Bedingungen hochreguliert wurden.

HL-Zellen wurden für 4 Tage mit 200 μM bzw. 100 μM (L-1236-Zellen) CoCl2 bzw. Medium (Kontrolle) inkubiert. Anschließend wurde RNA isoliert und DNA-Mikroarray-Analysen mit Human Exon 1.0 ST-Arrays durchgeführt. Die Sondensätze sollten mindestens dreifach hochreguliert worden sein und eine Signalintensität von über 100 in mindestens einem Zustand aufweisen. Sondensätze galten als hochreguliert wenn der Median der Signalintensität der Zellen inkubiert mit CoCl₂ dreimal höher war als das 85zigste Perzentile der Signalintensität der Zellen inkubiert mit Medium. Die Auswertung der Daten erfolgte mit dem MAFilter.

Funktion: quantil1(0.5)/	Sonden- satz ID	1: HDLM-2	2: HDLM-2	1: KH-H2	2: KM-H2	1: L-1236	2: L-1236	1: L-428	2: L-428	1: L-540	2: L-540	Gensymbol
quantil2(0.85)		Hypoxie	Normoxie	Hypoxie	Normoxie	Hypoxie	Normoxie	Hypoxie	Normoxie	Hypoxie	Normoxie	
3,0003	2711679	256,9384	61,9785	217,6939	245,9644	54,9093	57,9513	26,0484	28,0121	219,3241	72,5563	ATP13A3
3,0012	3853663	694,1736	279,1991	562,4147	169,0470	601,8480	187,3945	177,0798	31,4733	207,1737	111,0309	IPMK
3,0039	3476742	827,1850	489,8517	1334,117 0	413,1498	1783,379 0	444,1293	2583,291 0	202,4469	628,1369	400,3370	UBC
3,0043	2574819	133,7902	2,4712	23,1001	3,3192	14,2258	7,6889	1,5406	10,1656	34,9441	5,5282	MAP3K2
3,0047	2376934	25,4564	8,7186	106,7355	44,2004	28,9377	7,7490	8,4230	9,6309	38,6590	5,9746	
3,0049	2520302	202,3836	21,3404	242,1306	30,3510	67,6556	9,1459	3,5189	6,1094	60,0906	22,5147	
3,0052	2601398	18,7586	11,5177	102,4205	65,1973	53,7785	16,2728	49,7126	6,3802	73,0053	17,8952	
3,0062	3226899	58,6803	8,1065	468,5629	62,2801	227,5061	38,7324	187,2272	5,0739	146,2047	74,6736	IER5L
3,0066	3376306	190,6741	63,4194	508,4959	159,9174	80,1672	35,7869	32,0843	20,1070	198,1329	54,8123	SNHG1
3,0103	3133814	214,6389	52,5533	29,2629	20,6820	158,2025	93,1869	5,3127	33,1057	159,1385	46,5455	MAPK6
3,0118	2828883	39,8177	4,9307	128,5858	169,5534	160,3671	42,5198	28,2668	28,3371	128,0609	19,8988	HSPA4
3,0118	2539849	59,6337	9,0696	72,8297	57,3311	47,9557	19,8000	33,7326	15,2373	101,9100	7,3144	ADAM17
3,0128	3071612	141,0309	62,4580	188,1738	180,3880	305,8880	55,5447	408,1022	14,8094	31,3271	53,9019	MGC27345
3,0130	2523516	15,6404	20,3769	61,3949	76,9762	148,6023	8,1933	3,7754	14,8094	106,7452	17,3263	NBEAL1
3,0145	3508364	39,2820	9,5767	253,3522	13,0308	56,1602	2,9788	5,6500	9,7072	27,4675	14,6706	
3,0171	3545488	2,2415	17,6084	177,9734	101,9298	67,8349	15,9530	10,1013	3,9926	53,1267	14,8556	AHSA1
3,0187	2982398	123,0562	33,3522	164,4639	51,6326	100,6810	19,9890	17,1296	12,8839	46,3754	12,6596	
3,0193	3285839	25,4564	3,7475	48,9091	2,3830	790,0349	1944,300 0	30,6933	10,1656	3,9895	4,5393	

3,0202	3066849	237,5182	52,4040	75,8298	25,1075	102,2088	19,0751	10,6690	21,6085	14,6571	5,9033	
3,0216	3429502	23,8904	3,5343	349,1477	145,6372	105,9871	14,1424	7,8747	35,0762	150,9495	30,3461	TXNRD1
3,0222	2969498	149,1324	19,0406	60,4045	75,1962	42,4724	14,5314	13,7465	19,9867	113,2162	10,4977	CDK19
3,0233	2805807	267,8088	8,9989	299,1762	269,5319	11,4040	22,0500	18,1086	4,6848	287,2229	88,5803	TARS
3,0234	4043503	308,0102	67,8578	411,7808	307,7452	171,5616	71,3318	8,6898	56,9251	215,6656	40,4247	
3,0265	2739138	62,5471	10,7710	146,6267	42,5102	37,4000	20,6662	5,0487	5,0619	71,8647	7,3144	SEC24B
3,0266	2553347	502,8166	123,7452	674,8880	278,9595	374,5308	83,1073	121,3880	26,5896	153,1023	9,2307	
3,0291	3537852	127,8166	24,5041	121,5309	65,0546	19,6663	40,1216	196,4595	3,1453	38,9788	24,8610	
3,0308	2391785	290,7530	54,7806	536,0565	95,9335	393,1070	43,9575	25,0286	68,2992	155,6428	108,9515	
3,0309	3892853	45,6014	15,1055	132,1614	146,6267	71,4131	17,7018	62,2484	10,8216	133,4904	23,5618	SLCO4A1
3,0311	4044869	119,0478	63,3908	213,9930	70,5994	311,8004	205,5442	589,4767	7,5822	60,9930	21,8514	
3,0314	2857304	53,5432	16,3111	36,3141	17,2453	52,2771	46,4071	167,7902	3,4426	14,8441	8,8349	
3,0323	3066913	252,7442	30,7228	194,8367	44,5775	42,2374	25,8368	93,1607	7,8482	4,1425	22,0230	
3,0326	2587776	180,6737	39,5502	391,7451	220,8880	174,6738	21,3164	1,9285	6,9779	116,7452	57,5980	CIR1
3,0355	3026909	141,8649	11,7349	163,3689	85,6027	106,3171	45,6799	26,5308	19,8438	138,6620	38,4913	UBN2
3,0357	2876026	53,4071	4,8653	67,2451	17,5929	102,1942	9,7536	3,0657	26,7374	30,1032	8,9518	
3,0383	2574503	2,7128	2,1018	24,1471	7,8300	23,7899	5,5937	6,2969	2,0307	123,5309	50,0855	
3,0410	2322122	30,7574	40,8391	217,0009	207,7518	131,1612	29,1522	15,5022	22,4560	203,7752	43,1309	SPEN
3,0420	2769232	83,5756	23,6855	103,1423	114,9294	65,9206	27,4740	32,2209	12,4996	87,3329	4,8691	SCFD2
3,0422	2908490	256,0674	41,1582	1046,745 0	114,1811	453,2872	41,6683	347,3600	6,8931	133,0723	126,1094	
3,0435	2698920	112,2791	19,9350	60,6720	110,0293	21,7092	4,3359	15,4940	3,7568	98,4988	11,5304	ATR
3,0445	3452359	39,1293	12,8524	116,9438	23,3665	58,9504	8,7428	23,1105	8,2966	18,7678	7,2070	SLC38A2
3,0463	3557434	53,1876	2,9055	31,2557	17,4598	23,7899	26,0826	142,3166	6,9779	68,4414	17,3263	MYH6
3,0466	2815074	91,0367	24,1695	123,0730	30,5593	77,9591	19,1390	8,7930	25,5892	41,8138	20,0817	
3,0492	3493485	48,2012	9,7731	109,8610	76,2168	10,7475	10,4325	5,4149	5,6351	31,8109	5,5826	PIBF1
3,0500	2561457	62,6678	40,2537	21,7344	12,9877	46,9123	11,2070	5,1369	5,5449	107,2054	15,3811	RBM7
3,0504	2720155	180,6737	16,3642	72,1338	256,4595	54,6876	23,6471	18,7917	3,1453	106,7452	21,1736	LAP3
3,0505	4054133	89,5570	11,6978	108,0998	32,9746	119,2329	24,6193	30,3212	27,1065	100,5875	54,0227	WDR47

3,0527	2597350	33,3216	2,4712	8,9241	9,7141	11,7457	10,9155	115,1778	7,3481	52,4750	16,4140	
3,0530	3768121	14,0115	3,7475	141,6149	37,6251	114,8683	33,1883	5,2511	57,7394	145,0800	29,2369	PSMD12
3,0534	2786331	6,8224	10,4604	229,0737	211,2667	31,9402	9,1191	6,6727	4,6255	32,8492	10,2981	SLC7A11
3,0539	2641044	10,6880	10,4332	169,3990	27,9344	82,3927	14,1191	23,0782	9,3389	43,1179	2,8689	SEC61A1
3,0572	2358698	1177,399 0	385,1214	1530,964 0	319,7784	4489,083 0	2038,618 0	44,4214	33,3537	70,7064	135,0595	MLLT11
3,0580	2914054	50,6881	7,7469	9,6258	9,0385	16,0582	14,6323	44,7460	6,3780	106,0797	32,6206	
3,0582	2375844	128,3491	15,6468	173,4263	185,5129	51,8142	41,9694	22,0448	22,3454	182,4233	25,7901	ZC3H11A
3,0596	3078379	96,7145	22,5240	204,7679	115,0180	21,8520	15,4741	8,7754	19,0969	68,9142	4,5982	
3,0602	2373774	167,3880	39,5502	327,8880	162,7958	90,9212	44,7081	34,6503	27,7444	136,8166	40,9698	NEK7
3,0610	2415097	704,9048	335,9637	594,9813	165,2103	916,7742	97,8757	97,9920	116,4345	217,9196	194,3756	JUN
3,0642	3886403	15,5621	7,7369	123,1372	9,7321	80,8874	5,2762	45,7904	53,7893	51,5858	16,8349	LOC10050 5783
3,0655	3728930	44,3474	23,4665	169,9995	60,2504	254,7518	33,6868	43,6799	16,8952	103,2669	26,5874	
3,0674	2492130	106,5865	21,7930	210,5904	28,1796	86,4373	7,3850	30,4673	11,1230	68,4618	80,5712	
3,0679	2887315	1162,988 0	222,3002	320,6534	69,6222	304,4547	39,4165	78,4975	93,9007	179,5407	99,2391	DUSP1
3,0681	3086440	110,1705	17,1888	136,6394	161,7288	38,6590	33,3507	102,3222	11,9588	26,3835	26,3754	
3,0686	2847271	445,4619	28,3112	589,1004	122,7640	86,8758	16,9495	3,1017	14,8095	75,4047	11,5010	MED10
3,0692	2548819	45,3397	11,4992	101,5245	200,4095	79,5852	11,2316	3,2530	25,9300	81,9905	4,5066	ATL2
3,0695	3459689	123,7046	59,9003	65,0440	7,5067	110,6388	26,6406	4,8758	13,7753	102,2477	33,3109	
3,0709	2843626	150,1246	28,0204	191,8433	48,8855	135,5715	8,3595	20,3029	16,5250	200,7817	71,3700	
3,0710	3996324	34,6706	35,6449	363,7144	105,9171	396,9177	265,5936	325,2677	6,2632	80,6357	41,2474	RPL10
3,0719	2813379	90,5475	18,7301	152,1240	108,4592	34,9467	19,8000	3,9593	5,4839	160,9944	29,4764	
3,0724	2844530	134,3880	11,7953	63,7988	8,4681	50,9778	4,3384	5,1036	26,8134	9,7741	16,5924	C5orf45
3,0737	3715811	95,8171	19,4422	27,2604	23,9004	76,7337	24,9643	188,8891	38,8044	9,6640	8,3069	NEK8
3,0741	2380067	46,1681	10,2715	5,9060	3,7839	41,4177	13,4730	10,3452	4,6848	212,6191	68,8009	KCTD3
3,0752	2844539	2385,159 0	290,7603	2053,387 0	823,2541	1047,329 0	36,2255	14,2136	41,5785	896,2446	340,5775	SQSTM1
3,0755	2571259	115,5302	24,0871	51,4086	55,1337	25,9101	32,3063	148,1380	31,4877	99,3576	25,2462	

3,0761	3709194	114,3183	12,1870	23,9524	17,8430	54,8874	19,8074	21,4691	9,1993	119,3761	15,2507	KDM6B
3,0763	3508373	17,3693	17,3973	230,0830	55,7941	425,5837	48,2369	52,0578	52,1584	160,4550	40,3645	HSPH1
3,0783	2829429	198,3989	33,3096	383,0038	108,3511	181,9693	25,9253	57,1369	59,1128	135,7692	25,0173	
3,0797	3196011	224,8782	44,6640	217,0615	79,1942	17,9751	70,4808	3,6361	12,4747	237,1215	40,6537	
3,0803	3936668	50,8443	19,5114	94,6293	45,6124	144,5649	22,9826	32,5822	16,9385	70,7938	8,4908	E2F6
3,0808	2594524	111,3284	25,2602	313,0491	84,3448	259,8503	15,4314	30,6450	15,4532	264,3967	192,1379	CLK1
3,0822	3683123	187,9815	45,8525	246,9342	102,8222	323,2325	56,3532	11,2959	60,9903	144,3697	57,2545	SMG1
3,0828	2415096	632,3982	228,2672	683,5809	177,9877	706,1949	124,7735	140,9425	138,5203	259,7196	205,1400	JUN
3,0854	2464523	63,9538	12,2987	109,4098	93,1662	69,8066	22,6248	5,3214	16,4134	159,5105	13,9803	HNRNPU
3,0860	2367576	247,4157	52,4864	401,6129	222,8741	255,7449	80,1729	22,7504	10,1656	133,6023	46,9523	C1orf9
3,0869	2890171	379,2747	86,7226	503,6798	122,8657	110,3797	45,3039	11,1990	64,7929	398,1288	174,5203	
3,0904	2684262	113,3043	42,7163	368,5091	36,6634	141,0642	3,8687	44,2390	22,2971	19,9406	9,6165	
3,0907	3386235	94,1579	28,3112	154,0482	49,4703	114,3453	26,3459	24,2405	30,4648	45,5784	11,6377	CHORDC1
3,0918	3065645	91,0688	14,0467	84,7232	27,4027	119,6373	28,1163	33,4528	5,0092	38,6959	26,3753	PMPCB
3,0918	2324664	205,0293	20,9643	167,3166	49,2406	80,9133	54,1161	23,6471	2,0686	169,0670	178,9594	
3,0934	2356026	428,7539	65,3545	381,8793	185,1321	170,7092	75,6655	15,0002	7,2515	234,0640	23,9483	
3,0972	2475309	324,5624	54,2481	450,5383	91,5202	283,4531	108,7113	9,0667	34,7093	50,3338	18,3076	
3,0999	2691737	132,9756	10,1362	9,2799	10,7031	33,1790	5,9053	7,5638	7,7461	35,6816	19,3846	GOLGB1
3,1006	2840654	128,4145	23,2165	167,1947	32,1173	52,8451	32,5114	7,7234	33,1057	102,6465	56,2212	
3,1011	3034047	288,5703	82,9665	1139,917 0	432,2328	730,4684	86,8231	76,4635	57,3124	243,1493	93,0553	
3,1011	3728053	71,6667	23,1102	67,3133	23,0531	171,2683	22,0813	6,0778	18,4604	546,8741	241,9274	SCPEP1
3,1016	2946382	4,9290	44,4179	79,0235	15,8822	223,5508	25,4779	6,4537	2,8408	142,4427	11,5774	
3,1019	2358850	461,8496	120,8431	280,4659	429,2159	431,4778	111,5098	49,8030	11,3862	374,8431	63,3732	PSMD4
3,1025	4045840	628,1514	86,2951	285,3271	76,0930	267,7302	124,4884	33,0828	9,1488	189,8955	43,0205	
3,1028	2659667	45,4904	17,2317	185,4144	114,0202	112,1868	17,9771	18,7462	10,1656	125,3864	36,1568	
3,1069	3420526	108,3881	8,1065	41,9187	39,5502	37,9501	13,3138	53,9019	3,1453	53,8304	17,3263	
3,1074	3083958	119,9174	23,4574	299,6857	124,4793	72,8917	23,2520	5,5175	4,8627	28,5908	9,3522	
3,1076	2617481	74,5136	18,8609	33,5830	23,9782	83,8314	43,8432	158,0872	22,8949	27,0236	18,9254	

3,1078	3978189	82,3542	66,6915	481,3951	236,7742	837,2854	145,8013	453,1156	60,7976	155,9989	95,7269	TSPYL2
3,1107	2468702	3309,114 0	1035,398 0	2246,308 0	280,3098	2329,081 0	109,4162	1063,589 0	5,5898	954,9059	722,1204	
3,1108	3718699	153,3722	36,4950	160,6303	49,3036	80,1436	79,4595	11,6089	4,4112	165,9030	35,8378	
3,1152	2950108	11,8582	16,7927	88,6600	13,0749	123,7919	5,8782	52,3129	27,5007	14,1343	2,8754	
3,1163	3807498	202,8486	12,1548	106,6753	19,3802	18,7483	2,6792	37,8778	4,9191	9,4884	3,2004	
3,1175	2978034	145,7688	16,4150	299,8636	61,3718	361,6593	77,6825	100,8513	25,5413	191,3294	53,2425	FBXO30
3,1178	2876269	120,5323	17,3275	120,5701	74,6711	144,9433	38,6598	6,8948	11,8483	19,7463	10,9025	SAR1B
3,1185	2908506	24,8994	6,1802	152,8770	6,8885	26,0220	8,3414	15,6220	7,9845	10,9460	3,1092	
3,1196	3243483	4,5041	5,7954	116,0310	12,0391	99,8674	148,1735	59,1187	18,9505	7,0546	7,8693	
3,1202	3375653	73,6478	12,1588	523,1304	354,4803	66,9499	19,0019	106,2176	22,4803	44,2759	23,6037	BEST1
3,1230	2539844	104,4324	29,9162	102,1180	116,4091	104,7822	10,9799	22,7515	19,7504	96,9126	32,6987	ADAM17
3,1242	2399475	136,5174	8,4457	85,1247	93,4278	110,2222	9,8892	4,1345	23,0245	79,2321	27,2467	UBR4
3,1257	2553325	82,2956	29,6784	193,0333	96,2588	93,6152	23,6186	15,5754	29,9499	115,9174	28,5137	PSME4
3,1300	2542743	300,0998	38,4821	133,6192	27,6388	90,7691	28,9995	5,6297	9,7044	80,7409	28,2238	
3,1339	2578395	217,6329	51,0914	379,2221	176,4106	88,0446	69,4444	9,6744	11,0789	277,6728	24,8937	
3,1355	3065680	50,1953	11,5177	122,7783	62,0112	295,0321	26,9321	56,8312	20,8516	84,4455	20,0830	DNAJC2
3,1362	2492502	50,2673	30,1186	245,2040	150,8163	498,6747	65,9261	56,1236	22,6894	221,9131	70,7583	LINC00152
3,1368	2515771	93,4790	38,0015	630,3019	95,7218	128,6226	34,9995	3,0243	25,6717	119,2044	32,1941	
3,1370	2358918	84,3860	15,0673	181,6058	18,2025	57,1017	9,4770	3,2028	16,9594	31,0340	37,1627	PSMB4
3,1370	2947103	14,9909	39,5742	164,2315	28,6247	124,1456	35,6488	95,7162	58,4139	134,4557	30,8253	HIST1H2A M
3,1377	3364755	52,7582	3,1873	207,4544	36,7375	13,4335	16,8141	16,9117	16,0419	54,1068	8,5891	LOC10050 8408 // SNORD14 B // RPS13
3,1388	3180658	29,0120	2,1018	28,0255	35,7437	59,7524	14,3853	188,1738	14,8094	46,4843	2,2322	
3,1393	3066841	101,4858	37,5071	100,5157	24,0193	75,4043	19,7213	13,3271	10,1656	29,5445	11,2619	NAMPT
3,1405	3458066	46,5313	9,4943	100,3353	8,7631	256,8394	16,3818	7,2504	23,4897	51,4468	5,5282	
3,1421	2492518	13,6215	14,6425	133,6037	53,3041	135,9806	21,8122	36,3272	12,9031	73,5036	23,3935	

3,1425	3020585	5,0458	2,1018	21,9281	4,8334	46,2700	70,4979	213,3166	6,9779	5,5270	5,7959	
3,1436	3079764	157,2616	50,0266	459,3733	357,9265	97,4610	33,1160	20,2696	8,8565	219,1160	42,1013	RHEB
3,1446	3174834	180,6737	43,2758	28,0255	57,4551	206,9595	38,9074	14,2979	14,8094	1243,459 0	245,2451	ANXA1
3,1467	3606461	104,7872	14,9838	126,0576	37,8609	155,7393	175,5279	10,4544	2,5273	136,2565	40,0601	
3,1469	3359719	104,1801	6,2595	89,6705	31,5208	247,6363	48,3428	127,0171	33,1057	5,4070	7,5248	
3,1470	3800413	89,3890	16,3642	83,6787	130,5309	31,3271	18,7917	107,9595	26,5896	3,1294	21,1736	
3,1488	3508374	73,5418	17,8659	155,2992	22,7669	71,6878	17,3325	31,7055	228,6435	35,6772	17,6214	
3,1509	3645503	223,0349	50,7668	90,7987	70,3973	163,1177	44,4536	191,3527	20,0603	109,1190	51,7679	
3,1521	3411025	204,8158	140,7511	519,8589	64,9778	63,9790	23,5030	235,0892	27,8520	181,4795	28,3597	
3,1526	3945766	346,1092	18,6591	55,8081	35,4744	202,7582	49,7378	48,8467	22,6425	156,8051	191,0939	RPL3
3,1541	4014390	157,4146	110,6724	162,6346	44,0303	58,2226	49,9074	55,5753	15,3711	223,9779	48,9609	
3,1551	3538796	44,1573	43,2780	185,5863	114,5406	173,1211	47,2679	8,0144	5,8786	367,3344	54,8705	SLC38A6
3,1561	3290416	876,9594	561,8539	752,9065	236,0376	1065,477 0	238,5536	461,9595	174,0488	325,3881	182,9595	IPMK
3,1577	2829434	151,8026	17,9025	177,0225	123,4480	63,7996	20,2044	10,8600	3,2370	48,2736	17,1370	
3,1583	3510526	1,5887	1,7226	7,5306	2,0307	4,2191	2,3844	107,9595	1,4300	9,3424	3,3108	
3,1585	2962323	78,6721	8,9474	126,6184	7,1458	1,8419	5,9731	22,5699	5,4908	4,0653	4,2158	
3,1602	3687195	39,3110	29,6784	112,6330	20,3299	118,7363	21,3770	60,3794	9,7072	93,7910	42,8265	
3,1605	3146908	65,1722	18,9523	142,8113	88,6558	141,0786	40,1102	33,8765	23,8230	126,7686	31,9795	YWHAZ
3,1616	3978188	24,7214	21,5242	214,3909	30,8116	97,4125	26,7440	109,7874	44,3093	20,8393	5,5547	TSPYL2
3,1623	2739137	70,7110	28,9987	169,5193	105,3758	123,2812	37,0605	19,9798	38,9845	137,8876	31,3130	SEC24B
3,1649	3475094	70,9909	28,3112	184,5309	47,9129	89,6032	17,7447	33,2080	6,9779	99,9599	21,1736	
3,1655	4042075	203,9038	45,3591	212,1145	159,1043	56,2021	39,6987	22,7819	7,2903	143,5825	36,1121	
3,1659	2553345	310,3140	95,2924	319,1526	238,5954	485,1477	98,0163	34,4026	8,1096	152,0842	93,7432	
3,1676	2988802	316,4184	84,2131	110,9445	99,8907	328,9177	203,7188	332,9388	53,7373	90,9489	69,4430	ZNF815P

3,1696	3376296	146,3935	44,0432	274,2874	67,0058	61,9903	36,5702	5,4005	11,8299	139,6003	29,6610	SNHG1 // SNORD22 // SNORD25 // SNORD26 // SNORD27 // SNORD28 // SNORD31 // SNORD29
3,1714	2556311	157,4958	11,6066	230,1273	356,5476	19,0487	49,6613	3,7754	29,9582	205,4863	12,6799	PELI1
3,1714	2318507	8,5782	5,7732	122,9444	77,2464	4,0038	11,1889	39,1572	12,3468	39,1811	12,2925	
3,1717	2632018	72,7559	4,4854	114,4769	23,3074	46,9230	6,6157	17,8494	6,2565	4,1589	14,7944	
3,1741	2829431	298,8394	64,8672	500,4897	161,4165	208,8090	65,7845	8,8152	16,2383	130,8511	34,1284	
3,1777	2874872	233,7112	10,3379	175,5836	123,2354	154,3286	48,5664	90,9115	15,3431	82,5713	11,4017	
3,1798	2458125	115,2041	15,0450	511,4182	123,6779	193,4181	36,2295	4,9596	31,4010	104,1115	12,2339	WDR26
3,1812	2492090	188,3789	59,2170	322,8550	51,9411	142,7596	28,7803	8,4752	6,8250	206,2550	195,5018	KDM3A
3,1822	2867880	810,9040	115,6819	106,5487	17,1829	141,1911	44,3684	11,5494	15,3104	141,4488	10,5230	
3,1848	4009108	10,6547	33,5843	109,6321	52,9172	106,9590	24,5237	13,2530	25,5167	120,4960	27,4251	KDM5C
3,1851	2556327	171,8332	53,9495	256,2423	216,1856	16,8932	16,2586	5,7855	26,5379	324,6235	18,6142	PELI1
3,1875	2908493	58,6803	8,2890	412,6667	24,3189	204,0771	10,7773	51,2491	29,7068	77,5165	7,4714	
3,1879	3100748	83,1073	24,5041	79,2544	163,8166	75,0476	7,2156	157,1023	2,0307	78,8973	24,8610	
3,1891	2829423	726,2637	227,7328	822,4203	608,9650	1250,053 0	197,5886	97,8431	11,1540	263,1923	199,6104	
3,1896	3305514	77,4545	13,9362	20,8404	22,4279	71,5357	60,4462	155,9888	6,8250	37,4162	10,0783	
3,1897	2991240	4,4281	12,7648	95,1762	27,0336	100,2536	58,7463	21,6750	21,2538	86,2300	12,3772	AHR
3,1919	2548983	47,2700	2,9055	164,8880	7,8300	90,8889	18,7917	3,7754	14,8094	9,3424	2,2322	
3,1922	3111554	228,2678	37,2941	150,2790	25,6722	119,0487	53,1138	15,4546	2,2670	40,1253	31,8898	
3,1924	3565033	44,0526	11,5182	195,1888	185,3538	6,2563	8,5272	13,3652	13,4941	57,9481	13,7993	

3,1945	3565045	70,6482	6,6744	119,7634	154,1945	19,3753	3,7340	8,7653	7,5151	105,2718	22,1154	DDHD1
3,1961	2946385	4,6005	29,5327	135,6756	21,6986	99,7296	25,5007	55,9981	70,7336	94,3903	16,4235	LOC10050 7025
3,1966	3488268	225,0513	27,4122	190,7848	130,2171	133,2365	36,4004	29,1366	24,0087	30,3063	41,6813	COG3
3,1968	2773772	194,0309	24,5041	148,6023	127,1023	13,5281	24,7896	28,3691	1,6340	312,8879	46,4843	G3BP2
3,1982	3508393	210,9799	64,4177	883,2081	461,9409	751,0285	137,0164	129,5617	6,3816	438,2070	109,2115	HSPH1
3,1983	2491291	97,6533	35,6749	154,1982	26,9319	127,6231	39,9037	46,4028	4,6848	157,8155	207,0577	
3,1996	2978035	342,3193	43,7560	492,4379	106,9874	493,6928	112,7643	122,2018	22,9421	260,5278	74,7105	FBXO30
3,1997	2628588	144,1090	8,1065	260,1980	165,0592	173,5521	45,0382	128,3796	41,2187	108,4090	34,0147	PSMC1
3,2024	3774038	60,7767	75,9130	350,5967	72,7926	387,6026	73,0227	91,4498	4,9191	243,1014	85,6303	NPLOC4
3,2045	3167331	12,0119	20,0247	116,3454	20,8887	83,8315	127,0977	44,8093	14,8094	66,9369	9,3366	UBAP1
3,2099	2563099	66,8500	5,9431	119,2975	28,2478	106,1820	20,8259	7,3135	10,1297	26,3495	18,5914	
3,2154	2403558	26,1372	11,6672	322,5843	24,2523	64,9919	9,3215	33,2207	2,2356	43,4602	13,5164	SNHG12
3,2176	3807503	145,0935	5,9912	162,4719	48,6379	68,1944	13,9401	28,0939	10,1656	111,6657	34,7044	RPL17
3,2198	3065669	158,6372	12,6054	262,2444	49,2694	253,1337	80,7673	30,6431	4,9191	82,7128	26,0827	
3,2212	2399562	90,2580	28,0204	118,5883	40,9240	107,3022	7,9658	21,9472	19,9926	87,7995	24,0517	UBR4
3,2213	2854244	296,0838	86,2070	303,8965	251,4407	237,6818	91,9151	86,2976	46,8782	304,7826	77,3757	
3,2255	3471829	203,9341	23,2727	228,0779	120,6006	73,3107	39,5480	6,3044	19,0813	235,3769	63,2250	NAA25
3,2264	2358920	591,0311	159,6899	1619,453 0	324,1571	810,2187	130,2240	160,8592	47,8763	210,1252	183,1852	PSMB4
3,2285	3809350	133,0723	65,6185	242,3174	29,6982	171,9601	41,2176	6,2972	23,8839	37,4892	15,2288	
3,2286	3838006	326,5742	97,5690	533,8242	165,3422	1336,362 0	199,3663	855,5268	52,6161	172,6698	120,0945	PPP1R15A
3,2290	2372881	10,8351	3,5235	187,4916	5,7808	68,3319	3,3948	18,6660	7,5055	2,8214	2,8854	
3,2300	3376167	198,8084	69,4746	224,4041	56,7799	307,3878	43,9620	35,4154	31,1354	239,2248	143,5511	NXF1
3,2301	2367749	53,8854	13,0389	128,3725	31,6988	47,8355	6,1762	10,3326	14,8094	22,5402	12,9634	PRDX6
3,2303	3801022	221,3798	40,3602	198,5630	24,7164	42,7233	22,6669	76,4635	13,3936	130,3741	63,9293	
3,2319	3508371	66,6937	14,6902	605,0088	154,2169	632,6357	29,1700	6,8640	13,0193	211,9025	65,5649	HSPH1
3,2344	2975032	18,3690	2,8232	72,2486	6,6370	166,5862	16,2753	44,0573	13,6213	31,2773	3,6398	SGK1
3,2388	2395519	131,0297	49,6445	739,1123	80,3200	345,6834	65,9014	5,6788	12,0898	260,1378	252,7968	ENO1

3,2390	3396941	120,3694	6,6567	133,4279	35,1406	113,8190	26,8117	59,6059	17,3305	111,7009	57,1297	
3,2422	3532381	102,1024	2,1018	11,0267	4,0472	1,4453	13,3138	18,7917	2,0307	23,1001	5,7959	
3,2422	3274427	977,2861	290,1965	365,5038	112,7316	539,9521	108,6151	13,5139	11,8413	99,9622	33,4861	
3,2431	3628712	84,0035	21,6632	129,6454	99,8940	27,8206	25,9024	18,9628	3,0665	107,1554	21,1735	HERC1
3,2442	2427245	63,9857	19,7230	120,6517	71,6690	14,9461	15,3417	52,7583	16,1683	110,1220	18,3030	EPS8L3
3,2466	2492101	112,6382	30,1186	347,6593	64,2353	208,5477	18,8493	25,0051	30,5293	259,6379	133,0234	
3,2472	3032039	88,3358	22,5015	214,7967	220,2114	34,2554	21,6981	6,2969	4,6848	73,0669	1,7467	NUB1
3,2474	2679882	112,1652	14,3239	164,8665	54,2495	123,8957	34,5402	59,1053	31,3123	48,5316	24,1814	PSMD6
3,2527	4028695	46,4912	36,0558	279,1323	71,3494	232,0750	85,6837	309,1266	24,1151	53,6346	35,4397	
3,2598	2629711	185,7607	71,1509	2231,722 0	1833,222 0	439,4463	35,4606	277,1175	59,4196	743,3005	134,8079	FTH1
3,2605	3285860	30,5546	1,6340	25,9702	3,6233	448,0148	1435,430 0	3,4848	7,9651	2,5728	3,5969	
3,2618	2325286	45,3454	62,9160	352,6752	196,0770	205,2163	45,0001	212,4316	28,0989	177,1449	45,1953	PITHD1
3,2633	3249596	251,9488	27,2723	267,2795	380,6250	105,1349	68,9048	8,1768	41,2187	224,8577	64,6168	SIRT1
3,2648	2501719	161,6560	5,0341	146,0460	77,9691	85,4508	26,1735	6,7531	6,8250	65,1696	4,5393	
3,2689	3395443	127,5023	26,6681	602,7247	39,0052	356,2042	33,9734	33,7289	16,7192	61,0312	62,0053	SNORD14 D // SNORD14 C // HSPA8
3,2689	3978053	17,7269	8,1530	1011,807 0	1319,828 0	44,3968	13,5816	61,5687	3,8983	4,5579	3,7250	SSX2
3,2714	2331077	1107,264 0	122,7121	1538,280 0	1323,791 0	1147,941 0	338,4669	37,5270	34,8666	162,5072	122,7826	HSPA5
3,2720	3631996	22,4985	1,5134	125,7588	12,3659	40,4617	7,5212	1,6810	4,7117	50,9157	39,2645	
3,2721	3758103	78,1219	8,8935	35,1515	17,8857	58,5240	26,6549	43,0368	10,1656	102,8754	17,6752	EZH1
3,2726	3509656	38,2698	4,8435	121,0735	309,1809	10,9523	5,8078	3,9624	8,2301	26,9341	7,0649	SOHLH2
3,2763	3438032	116,2245	6,9007	74,1644	57,1809	43,5883	25,9745	104,0694	4,4985	85,2716	26,0265	RAN
3,2776	2370362	396,1672	79,8841	313,1851	95,5533	483,7039	86,3708	41,5326	40,5971	93,4512	123,5770	IER5
3,2792	3580199	219,4003	22,4036	1133,372 0	148,3708	437,1036	15,5346	216,6133	66,9063	43,0666	23,6543	

3,2797	3257862	158,6950	22,4694	234,1495	140,1772	122,7314	37,4213	15,5022	4,6848	118,9836	27,4067	TNKS2
3,2823	2406085	199,1255	31,9572	332,5629	249,4117	188,3154	39,2805	13,6264	19,8438	70,9529	57,3722	
3,2824	3225356	25,2155	13,2038	138,3479	62,7235	119,9374	36,5399	147,3842	23,9325	28,5040	34,5922	PRPS1
3,2842	2655130	137,8812	34,0612	133,7845	40,7354	86,2086	25,3534	21,0801	6,9779	261,9388	180,6035	KLHL24
3,2852	2437446	102,1024	1,7226	65,7689	96,7456	46,2700	20,0198	18,7917	14,8094	71,9195	13,3852	ASH1L
3,2854	3221029	141,0309	2,1018	11,5730	4,8334	30,0923	9,1594	64,8404	57,6694	18,6548	3,3108	PTBP3
3,2864	2415095	141,4116	31,2673	182,4499	20,7410	106,9848	12,7116	17,2532	46,4941	107,0419	32,5716	JUN
3,2873	3838581	413,4960	37,7047	876,9153	97,0981	221,5978	31,6791	319,1923	65,8185	120,6910	140,8483	RPL13A
3,2902	3655391	360,6304	101,6392	31,9284	29,1488	376,0555	301,5455	997,3546	2,2908	99,3972	109,6073	NPIPL3
3,2919	3941125	113,7420	3,6870	11,8829	9,7396	28,0255	10,0610	33,1198	14,8095	40,5218	9,2062	
3,2938	2580664	154,7559	7,4215	125,1829	36,6379	40,5429	12,2697	67,4430	4,5141	96,6644	29,3476	MMADHC
3,2983	2672422	127,3148	26,9340	25,3235	23,9400	88,8365	47,6956	100,7286	24,5898	33,9172	20,4976	PRSS44
3,3104	3015946	275,8167	4,8334	11,0267	6,6774	12,5421	1,7672	33,2080	6,9779	23,1001	64,9118	
3,3147	2866724	79,2753	28,0773	224,8072	34,9653	115,8986	6,2881	45,0644	14,8504	482,7143	163,3288	ARRDC3
3,3179	3532340	322,9940	62,1272	470,8659	175,3064	366,8826	83,5067	125,6757	97,3491	90,2796	86,6856	SRP54
3,3180	2841513	74,2546	32,0414	121,4371	36,5999	196,3033	31,1128	36,8150	6,9779	143,2452	80,1825	CREBRF
3,3185	2371045	22,7024	6,4216	183,8848	68,9260	62,7084	11,2684	8,8120	18,8966	78,3006	2,4251	
3,3190	2570998	7,8124	7,4120	125,4410	41,8694	47,2778	8,5146	2,4894	14,2447	49,1903	12,8888	
3,3193	2829442	217,8671	52,8817	292,8646	118,7168	233,9407	65,6373	9,8082	11,8086	151,9127	30,8202	
3,3228	3888292	7,6596	36,2000	123,1156	19,9764	166,7182	21,4265	119,2347	35,8840	19,3461	13,3258	
3,3279	2381011	73,3083	5,0655	81,3088	66,7861	40,4157	22,0285	24,8542	7,5311	124,0611	13,7815	IARS2
3,3290	2821631	2,7128	2,9055	15,2819	21,5715	36,9453	11,0981	157,1023	1,6340	42,5615	9,2307	
3,3315	3094114	174,1023	28,3112	122,8166	54,3305	49,8121	20,0198	2,4894	3,1453	106,7452	32,0414	
3,3320	3429496	19,1597	19,7524	312,4977	114,9170	168,0854	37,6586	15,4051	19,5740	210,5847	50,4451	TXNRD1
3,3332	3376184	95,8170	43,2758	190,3167	58,3837	239,6023	57,0980	267,3880	26,5896	57,4551	32,0414	
3,3335	3120267	103,5842	11,1993	32,0854	21,9056	73,0228	23,4394	114,0772	6,6644	3,6817	3,1943	HEATR7A
3,3341	3289063	134,3880	20,9136	86,0833	42,2823	69,7271	16,5127	15,1218	1,5124	37,1988	18,3245	
3,3359	2676759	151,4015	45,3852	174,6498	179,6406	100,6916	22,6673	7,6142	5,9580	169,0807	33,9948	DCP1A
3,3375	2358697	517,5900	155,0815	706,8660	126,3872	1829,776	521,6586	8,4230	48,9106	14,8222	44,3428	MLLT11

						0						
3,3410	2325284	38,6590	4,8334	228,4766	70,3087	115,0793	30,4685	12,5054	19,8438	101,7948	18,9195	PITHD1
3,3421	3147033	190,4274	12,5505	83,0879	15,8949	80,6756	35,0394	56,5641	9,0156	118,2291	24,8610	
3,3433	2487565	22,7970	2,2372	21,3220	2,9907	110,7313	7,5719	21,0135	5,0637	10,8723	6,3775	
3,3446	3376179	29,8425	20,7565	135,8180	23,5710	118,5411	20,0854	78,8353	48,7551	28,1036	15,0990	
3,3558	2899220	14,6616	34,6220	189,7380	37,9762	130,1441	30,5743	15,0201	61,1809	127,4399	36,6621	HIST2H4B // HIST4H4 // HIST2H4A // HIST1H4E // HIST1H4B // HIST1H4H // HIST1H4C // HIST1H4C // HIST1H4F // HIST1H4D // HIST1H4A // HIST1H4A // HIST1H4A
3,3561	2874727	101,9089	9,6486	70,7017	21,0665	44,2056	28,2572	3,0657	3,1589	101,2793	2,2322	
3,3608	3762598	131,3414	19,0208	103,1551	37,8870	95,5493	28,4302	13,8456	12,1404	56,0351	10,8676	SPAG9
3,3615	3829904	102,8868	14,0203	107,4596	51,3356	62,9935	13,3214	11,8287	12,1665	45,5472	18,7400	
3,3618	3787049	89,3890	54,6876	99,5313	18,6548	245,6023	10,0878	6,2969	26,5896	31,3271	3,3108	C18orf25
3,3620	2520326	348,9131	57,8595	271,6438	80,7979	91,4065	27,2845	21,9584	26,5896	338,0001	193,4631	GLS

3,3625	3209643	210,3204	62,5480	231,4103	31,9483	140,7633	9,3726	26,7801	2,5273	365,9404	211,7271	ZFAND5
3,3653	3919965	37,7996	11,5177	220,2664	74,3162	63,0368	16,4040	6,0685	18,2826	61,5261	5,3362	MORC3
3,3673	2408869	142,1046	32,0314	124,2510	87,8789	58,1104	7,9559	4,8758	16,4011	107,8602	19,3551	FOXJ3
3,3696	3803255	26,2940	5,7588	30,1614	23,5448	22,9418	7,8032	4,5472	3,8741	100,1923	3,5969	TRAPPC8
3,3724	2588844	121,9649	15,6746	108,7690	57,7620	90,0786	24,8268	15,6652	25,8810	236,5049	32,2530	NFE2L2
3,3766	2375669	43,3247	26,4477	149,9209	17,1967	67,8619	10,3284	58,0658	13,6213	19,9237	5,1616	
3,3785	3151627	72,9037	91,9107	5,9680	3,8041	48,5118	5,7549	14,3963	6,9779	105,8346	14,3591	FBXO32
3,3791	3009627	99,1279	15,6746	146,9942	125,3588	71,9048	29,3357	7,2396	14,8094	112,8571	5,7959	
3,3848	2921385	194,1755	14,7101	87,3869	118,7668	22,2547	25,8176	9,8810	21,3571	104,6750	6,6571	RPF2
3,3849	2750115	431,0786	118,9395	809,1226	239,0369	1905,717 0	499,2852	2670,705 0	172,5608	162,5124	189,0004	
3,3861	3816515	177,3575	125,3622	579,1581	168,2947	678,0257	188,0431	569,8593	67,8585	93,8250	102,8783	GADD45B
3,3907	3363970	31,8621	3,7409	157,8202	22,2856	14,7163	5,3694	23,3596	9,3969	33,1163	4,4266	
3,4012	3204058	33,8814	5,1017	90,1929	18,5113	62,9608	4,9902	3,9188	7,5894	153,4085	47,7198	
3,4078	3648083	104,9025	5,0732	109,9957	21,5849	21,6667	13,7141	5,7700	9,9717	52,7803	15,4883	
3,4080	2573777	226,9839	62,1724	64,4806	49,9419	234,1909	121,6927	472,7818	66,6037	33,2995	38,4119	
3,4123	3209633	250,2362	31,9699	428,0123	73,3336	212,6707	29,6296	5,0592	8,7446	376,4617	242,9661	ZFAND5
3,4132	3127222	174,1023	2,1018	29,0120	18,7917	44,9954	22,4272	76,5476	6,9779	93,1028	99,5313	DOK2
3,4144	3552857	56,7824	16,7179	176,2109	13,9084	100,9223	11,9594	19,8416	6,7693	44,5310	16,6304	
3,4147	3032028	185,3964	25,7174	513,4571	376,7448	80,8378	23,6384	8,8455	17,4906	214,8716	54,2939	NUB1
3,4157	3376307	44,8694	13,1364	138,2796	27,5936	12,7411	5,1596	18,7829	11,3862	60,7011	12,3925	SNHG1
3,4190	3645306	125,4658	36,6967	143,7363	42,9092	146,2244	17,4251	31,8262	22,1515	42,0798	31,6158	SRRM2
3,4206	3919043	35,3151	14,0473	251,3746	87,9356	143,6068	38,3785	4,5572	10,1656	131,2772	26,4766	
3,4216	2811688	108,3881	32,0414	5,0458	9,8110	33,5697	4,1635	2,4894	6,9779	197,6737	2,2322	
3,4224	3395425	22,4001	4,0113	232,9050	9,9498	176,3277	20,6016	8,0027	4,9191	34,0521	6,2599	SNORD14 D // SNORD14 C // HSPA8
3,4236	2899094	14,6999	18,2040	144,2142	26,6601	167,9399	60,3799	94,3766	11,0019	13,0628	27,5665	HIST1H3A

3,4240	3550430	84,9337	9,0696	151,3784	24,4982	54,4748	18,6071	26,1437	5,8785	63,7108	16,8929	
3,4282	4043869	89,7424	13,6302	166,8730	48,6764	191,1156	143,9333	536,4000	45,5491	53,4509	24,0445	
3,4295	3858739	175,8216	141,2259	753,5294	219,7180	997,5121	185,3612	1112,635 0	260,0831	80,3764	27,4008	
3,4297	2409144	3,2992	11,5403	393,6195	22,9719	78,7871	16,3727	21,6078	5,8408	167,6992	47,3029	
3,4306	3539363	70,9909	8,1065	23,7899	18,1018	62,1009	42,8472	128,1737	3,1453	18,6548	13,3852	
3,4320	2783245	53,1876	8,1065	55,8286	43,2758	51,0620	15,4975	121,3880	6,9779	14,0126	9,2307	
3,4326	2369894	214,1164	37,2373	189,1144	76,8470	52,1034	18,2324	5,6848	26,5896	127,8218	29,0746	CEP350
3,4337	2512726	67,0416	14,9769	334,0475	34,9606	121,3966	19,5243	6,0202	2,4549	49,3940	8,1900	PSMD14
3,4338	3369903	187,2452	43,2758	69,5128	32,4937	148,6023	111,6024	6,2969	6,9779	185,1023	28,5120	TRAF6
3,4345	3663721	70,9909	16,3642	10,4707	16,6665	57,2408	8,9561	139,1592	124,3610	14,0126	15,4850	
3,4372	3708869	6,2943	10,4515	80,9253	54,7752	41,5766	23,5441	118,4325	5,9727	102,3313	19,1900	CD68
3,4452	3073781	239,3392	24,9371	224,0604	167,0206	160,6848	46,6406	7,4567	26,5896	48,7677	37,0135	
3,4459	2973950	135,3485	19,4054	40,1890	39,2787	140,6589	126,5432	163,2315	18,3908	30,8051	36,1566	
3,4496	3778606	54,8315	2,3575	139,2921	40,3787	146,2890	121,0545	37,2205	2,8574	153,3816	38,2213	
3,4527	3320229	41,1233	11,6196	134,7813	48,1352	31,3407	7,3777	3,7788	6,9779	41,3461	11,9105	AMPD3
3,4543	2844505	232,9055	73,1690	174,3900	50,4849	267,7154	23,4163	51,9106	25,8296	35,7647	32,0855	SQSTM1
3,4561	2829427	249,6401	72,2316	358,1795	121,3152	541,0176	46,7461	50,1560	7,9174	139,6883	34,5257	
3,4577	4027218	43,2411	12,5057	68,3848	14,2524	123,8359	9,2152	20,6616	2,5273	3,4192	1,5542	
3,4585	2594507	60,1941	8,7868	192,8346	34,2603	82,2474	12,5929	3,9453	3,0637	118,1375	23,7810	
3,4609	2514664	85,5081	16,0106	130,9732	28,6877	83,0068	14,7297	3,2334	24,7068	188,2186	13,3232	UBR3
3,4641	3101628	288,0409	22,7131	136,2611	164,2129	31,7835	34,9972	36,9056	3,1453	135,1853	39,0252	RRS1
3,4664	3472772	5,7311	3,7475	461,8945	215,0141	86,7981	25,0401	118,0576	14,6433	16,4109	19,5851	TBX3
3,4708	2492123	69,3614	8,7781	289,1053	59,9947	119,8422	2,7811	3,9865	16,1401	180,2037	34,5287	
3,4717	3033253	178,0612	36,5270	426,0347	480,2194	270,8860	51,2894	8,0037	6,1891	119,4892	49,9997	
3,4765	3360491	7,0117	2,9161	87,8954	16,8933	27,5934	4,4858	167,2108	7,9371	13,9427	4,9865	
3,4781	3838011	208,6527	13,6934	476,9050	149,4696	1184,523 0	116,1348	577,7415	63,4091	132,7206	137,1154	PPP1R15A
3,4800	3638875	21,3281	12,5394	1,9823	2,5639	85,5645	22,9552	54,5714	15,6814	194,3279	14,6080	GABARAP L1

3,4818	2866693	12,1029	36,1960	126,0283	8,7218	147,4073	2,7319	3,6723	6,1290	307,3837	170,3352	
3,4820	2900004	55,9446	55,5812	38,4323	32,0373	111,5532	19,2537	209,2314	19,3453	142,9821	30,3012	CTC1
3,4841	3982496	130,4855	35,5983	713,2117	95,9905	124,0279	24,8807	16,6471	25,8136	28,2368	15,1371	LOC10065 3302 // LOC10065 2805 // PGK1
3,4850	2571731	70,9909	8,1065	8,1278	19,2914	67,2309	49,7406	172,3880	1,6340	3,1294	5,7959	
3,4858	2902712	4472,703 0	1283,130 0	6855,362 0	2771,858 0	8478,801 0	684,2066	3698,646 0	45,1048	739,2711	790,2135	HSPA1A
3,4863	3142406	68,5245	19,6554	609,4426	567,4014	55,1874	12,7342	28,0138	5,2615	244,3400	18,3238	
3,4890	3121050	316,6023	47,1271	273,5309	172,0309	183,3166	78,3973	365,9595	26,5896	35,1722	57,5980	
3,4915	3285823	41,4330	32,0414	635,8165	29,5923	3456,946 0	5477,240 0	727,0308	182,1023	14,0126	32,0414	
3,4952	2916723	21,3016	2,8594	101,0231	17,3211	20,5253	6,8770	44,4214	1,8215	24,0366	2,5277	
3,4965	2448100	104,9532	5,0228	29,4133	6,4220	7,0989	5,5524	6,5536	9,3791	22,4546	4,7246	IVNS1ABP
3,4965	3598278	202,7820	95,8874	411,0498	117,5596	575,2712	279,5504	754,4091	25,8568	10,0961	44,1811	
3,4995	2515014	89,3890	8,1065	4,1635	3,6228	8,0353	4,1635	28,3691	2,0307	116,7452	53,9019	
3,5008	3422341	35,3151	4,8334	48,5312	28,0255	16,5127	10,0878	3,7754	6,9779	106,7452	1,7672	TBC1D15
3,5010	3419273	104,4489	8,7642	59,0906	41,1686	20,7784	16,8781	7,6899	10,0524	112,1646	5,4594	MON2
3,5022	3952729	516,1905	46,9092	232,6318	42,2728	448,0062	129,7254	25,5028	35,6469	242,5355	69,2515	UFD1L
3,5046	4040681	26,6946	14,8183	108,3816	128,1241	55,1911	20,2322	70,9052	10,1656	101,6845	10,1109	
3,5051	3228395	70,5352	5,2869	157,2614	46,2664	62,6374	9,0363	24,0512	12,9385	41,9736	17,8706	TSC1
3,5074	2500933	79,2514	26,7028	339,5597	106,3354	211,7412	27,3433	47,4096	14,8095	95,9051	4,3806	
3,5095	3322789	28,2706	46,8924	658,9299	57,5775	285,7116	36,2352	79,5197	13,6598	202,0672	108,3591	LDHA
3,5119	3131882	129,7603	22,4579	81,0738	82,6796	21,2328	13,1584	3,1155	3,5141	80,4221	22,8996	PPAPDC1 B
3,5164	2831021	196,9238	17,3521	133,3902	21,5009	503,2143	157,8245	5,2984	23,5813	94,8764	37,9342	
3,5167	4039991	52,7242	5,0341	61,2169	14,9926	110,1636	50,3304	5,6349	4,4764	48,4479	4,8172	
3,5171	3450543	202,8886	72,4324	294,2130	30,1666	22,2292	24,4588	254,7491	146,6282	380,3285	18,8265	
3,5180	3400454	127,7317	13,6927	101,0798	135,3763	38,2199	20,5987	19,3022	14,3543	162,7924	28,7324	ERC1

3,5181	2737087	188,6941	42,0507	181,2580	401,9465	54,9387	51,5223	30,4480	22,8949	202,7219	19,9688	METAP1
3,5183	2890177	513,0652	69,1765	257,6243	111,5353	66,3780	41,6914	6,5968	15,3622	243,3808	68,4998	
3,5205	2963490	20,1292	10,5061	105,0174	27,0930	36,9865	9,1291	68,2334	5,5343	23,0737	7,2132	
3,5209	2780037	178,2359	24,9168	164,3528	81,1943	266,5947	46,6790	9,1726	7,9007	74,8950	23,8362	UBE2D3
3,5233	2355019	57,9288	5,0341	165,1875	58,2873	14,8474	16,4415	14,8577	6,8250	116,0366	9,7798	
3,5275	3774036	178,7838	82,3216	1116,240 0	238,6275	657,0883	180,2451	23,6471	14,8094	635,8165	148,6206	NPLOC4
3,5296	2702351	227,3293	11,5198	235,2798	64,1648	66,5914	23,1395	30,1991	26,5896	144,3656	40,9020	CCNL1
3,5309	2367833	17,5849	18,4731	163,7563	191,0556	88,2839	9,1148	19,4586	4,6848	65,2261	18,4049	KLHL20
3,5327	3386851	129,3741	8,8258	140,7507	31,0428	54,4813	18,9563	18,4687	55,4452	109,6643	10,7220	TAF1D
3,5343	3130169	163,7989	37,2373	179,9859	105,5156	275,9474	46,3450	13,7587	16,9594	37,0266	34,0023	GSR
3,5386	3739132	114,7452	12,0574	54,6162	71,2053	52,4042	13,3138	33,2080	14,8094	27,3826	9,2307	
3,5388	3243517	50,1187	28,2367	148,4271	14,4767	137,8246	86,1632	99,9231	18,4837	11,2993	4,3806	
3,5441	3473143	29,3141	3,4625	199,3439	29,8215	12,2297	5,7782	4,7393	3,3169	20,4782	3,5969	MED13L
3,5452	2488084	63,8159	4,2743	105,9501	60,9477	163,4029	14,2212	4,8334	7,3067	76,8674	21,6818	MPHOSPH 10
3,5454	3065641	50,0705	17,5796	126,1306	110,1818	79,5987	22,4515	7,5483	9,4031	182,6465	18,0402	PMPCB
3,5498	2352563	413,8955	93,9190	333,3932	209,3530	67,7686	90,7997	69,8895	24,3242	358,6925	75,9212	
3,5537	2367806	6,1246	2,5512	158,6738	20,8414	31,1246	8,7583	2,4894	3,1453	47,3129	6,4393	
3,5538	2512708	20,8494	11,9252	263,1249	51,4136	140,2798	27,9012	20,6616	20,9681	155,0523	39,4730	PSMD14
3,5549	3971822	177,6214	49,9646	240,4632	40,0305	417,2607	59,8418	7,6384	30,3827	144,1315	41,8338	SAT1
3,5562	2971148	330,5911	14,2390	223,5314	41,6800	89,7233	10,0823	6,3058	25,2298	35,9312	9,2873	
3,5592	3376211	85,1505	8,8071	160,7851	42,5685	113,0330	23,9242	57,4202	15,1160	37,1243	4,6847	
3,5618	3781699	26,0280	12,3115	133,1052	13,6172	60,2291	19,1361	10,1709	5,1429	159,3223	16,9097	
3,5628	2427685	36,4141	15,4943	107,9110	20,3055	79,7615	57,6632	9,4903	13,1365	94,1271	22,3872	LOC10050 6293
3,5686	2682462	99,6487	40,7203	117,6902	21,3947	92,6697	21,1410	2,9501	10,5363	51,4321	25,9678	
3,5718	2986507	109,1553	28,6886	135,8704	40,9415	73,7099	26,8959	17,7016	6,5914	110,1190	30,5601	
3,5747	2588864	183,3433	54,2482	143,3318	25,1066	102,3851	28,6418	4,0181	9,5076	79,0241	28,4417	NFE2L2

3,5791	2868554	89,1823	18,9455	183,0650	139,7214	62,7393	22,8946	7,8879	9,9081	81,9412	20,6811	CHD1
3,5794	2491628	123,5380	33,2179	301,3878	48,6180	174,0220	41,6526	254,1924	16,9594	77,4269	49,4321	
3,5929	3362771	125,8638	17,5243	445,7823	95,3618	81,5386	34,3179	18,3876	5,5109	123,3001	20,7545	EIF4G2
3,5960	2357944	103,0655	6,5443	25,7913	33,3493	82,9176	17,7885	26,3419	13,6213	84,3654	23,0580	
3,5969	3563581	140,7721	35,5298	134,1616	34,5573	143,4279	37,2991	94,5264	21,7215	37,1643	40,4737	
3,5970	2698816	296,1227	26,5484	300,6306	88,4200	146,7688	23,1562	16,0959	14,5757	94,4084	40,8032	XRN1
3,5972	2819255	63,9858	7,7624	137,5477	124,5561	24,8213	17,7878	3,0879	5,1698	73,6268	6,7069	
3,6000	3395440	434,0952	9,4634	1179,431 0	120,5827	881,0116	141,5102	143,2567	5,7037	140,4162	95,0912	
3,6022	2698785	113,6892	13,2709	145,8813	7,8523	47,8042	5,6714	3,2854	3,3386	27,4162	24,4271	
3,6051	2887014	105,1983	24,2532	102,2173	36,9510	38,7851	14,1889	3,4848	9,1451	142,5648	28,3533	FBXW11
3,6072	2653848	25,4298	4,4487	259,6188	165,8094	61,1764	12,0189	12,0227	16,9594	83,2483	7,7055	
3,6090	2639041	49,1592	3,8814	51,0516	13,4057	17,1765	12,0136	10,8170	13,6213	120,4960	19,3965	EIF4BP8
3,6110	3862010	180,2377	26,2320	38,8854	11,6341	304,1313	37,6133	10,3394	16,6536	135,8219	130,4058	ZFP36
3,6137	2514684	151,7563	29,6927	134,1877	101,2161	129,7994	22,6457	9,5150	20,8205	142,3559	37,1327	UBR3
3,6155	3391338	60,5745	7,6573	110,2815	65,6295	16,6362	8,7308	3,3893	6,9086	41,6751	11,5267	ST13
3,6196	2492093	100,4755	32,7654	388,6098	54,5312	237,2093	41,3636	4,8758	42,8438	197,3796	167,6696	
3,6211	3475723	20,4778	4,1277	49,2613	8,2697	29,9459	8,1296	21,1110	17,0335	128,1997	1,9861	RSRC2
3,6223	3974728	88,6535	7,6340	159,1767	97,0822	82,0270	22,9854	7,8879	19,8438	149,1860	24,4741	USP9X
3,6229	2742141	159,7006	43,0863	334,9615	445,8186	123,7447	44,0803	87,7816	33,1057	164,4733	29,7800	SPATA5
3,6235	3458080	114,9821	16,5766	116,9060	31,7322	160,9760	56,9713	6,7046	8,6114	24,5404	6,8970	
3,6341	3553638	38,2519	3,2666	101,4341	10,5257	40,1107	11,3413	5,4321	8,8241	10,1254	9,6378	EIF5
3,6347	3042407	13,4136	13,8424	154,9670	18,6880	156,0135	17,1964	62,5032	10,1656	6,2787	8,6100	
3,6364	2876992	155,4650	126,6041	18,3286	18,1431	10,3479	8,1933	76,9461	6,5238	130,1222	21,1600	SPOCK1
3,6364	3018437	121,9490	15,1625	37,5502	9,5915	37,2777	3,6832	55,1375	9,4750	134,4876	45,0559	HBP1
3,6371	2488128	25,9722	5,5533	111,0718	62,0045	34,3236	8,7503	7,3454	4,0488	31,8262	6,4205	
3,6404	2372871	113,1086	31,0706	158,8934	17,6691	133,7091	32,4616	28,9594	12,0126	5,8288	6,2021	RGS2
3,6407	3024315	32,8125	6,5258	132,6176	110,0646	121,4296	28,4103	11,4133	33,3537	139,3329	30,3612	MKLN1
3,6414	2512730	36,9328	6,6801	154,8022	8,8950	24,3124	4,3595	4,3668	53,5763	32,3905	7,6249	PSMD14

3,6492	3285854	2,7128	58,4551	629,2453	22,1424	3195,476 0	4837,847 0	213,3166	3,1453	1,3474	21,1736	
3,6538	3273620	114,1833	17,5203	145,6966	71,7342	141,1040	38,6184	226,1789	25,3303	6,9705	15,8800	IDI2-AS1
3,6633	3267334	104,8549	11,0568	41,9988	11,1361	124,4968	9,8905	21,2706	25,3095	91,0724	24,8610	BAG3
3,6656	2394823	136,4872	8,3695	53,8562	18,6283	89,4752	14,6922	8,4430	4,7303	37,4285	12,6465	KLHL21
3,6676	2841496	353,5201	35,5688	168,1715	65,5336	541,3864	37,0745	55,6568	69,7185	255,6981	309,5623	CREBRF
3,6698	3359749	165,1945	39,4406	94,5233	42,4579	165,4566	48,3404	230,3837	36,9609	18,0746	45,0147	
3,6699	3033251	214,6895	34,2702	296,9772	403,7654	278,0572	56,0948	5,5533	6,5914	76,7156	58,5007	INSIG1
3,6714	2423635	137,2872	42,7520	101,2814	27,5867	119,3763	20,7980	4,2678	2,8734	69,6897	12,0045	GCLM
3,6728	2854247	181,8071	12,5040	133,9745	86,7059	18,4539	14,4235	10,5237	14,9182	90,5927	24,6660	RICTOR
3,6761	3193508	102,1024	2,1018	23,1001	28,7263	97,7456	20,0198	128,1737	26,5896	3,1294	3,3108	
3,6782	2960489	108,3881	2,9055	1,5791	2,1018	10,6871	2,6792	23,6471	2,0307	9,3424	21,1736	MIR30A
3,6784	2868546	307,7348	69,5808	308,8690	225,8431	175,7655	81,6788	40,6062	33,7237	300,4434	75,7153	CHD1
3,6839	2643334	99,9603	22,6547	108,2645	86,6187	49,1810	27,1341	4,8000	17,0002	104,1730	18,6144	SRPRB
3,6860	3075988	122,4500	17,6375	91,0682	42,9791	9,8948	7,5737	7,3648	24,7068	95,0310	15,3892	JHDM1D
3,6870	2370371	659,9940	175,5494	718,4466	228,5052	906,3785	151,0610	227,9462	25,7721	276,5323	179,0044	IER5
3,6945	3026647	233,3135	46,2603	226,0309	61,3949	31,0551	54,5464	15,8959	1,7177	291,1738	61,1806	TRIM24
3,7008	3499647	157,3188	39,1213	134,8741	27,9934	22,0516	27,6180	56,1765	19,8438	103,5980	24,8609	
3,7011	3863505	3,0088	22,7856	90,9375	28,3326	574,5510	23,8625	40,0533	16,9128	95,1549	24,5703	DEDD2
3,7015	2521490	88,0989	23,8006	279,2523	54,5911	93,2201	15,8566	20,1400	9,4748	58,2135	14,3275	
3,7031	2883618	12,0991	10,2571	147,9506	115,5173	92,3426	24,7896	18,7917	18,0051	112,4378	24,9363	CLINT1
3,7054	3300384	88,3599	22,0853	106,8403	85,6571	34,6540	23,8465	4,8758	4,6915	96,3019	10,2163	IDE
3,7078	3019189	89,1728	24,0501	255,8223	107,9940	64,8836	16,6115	4,3653	13,4174	89,7395	6,6515	
3,7089	2678097	47,2617	4,3493	159,5347	53,6703	136,7436	11,0318	4,3817	3,6504	13,6001	12,7428	
3,7186	2553304	149,6891	39,3160	347,6595	148,1967	194,4932	40,8948	3,7114	1,9237	152,0732	25,8679	
3,7202	3605184	154,4641	10,9041	122,0612	32,8108	271,4550	40,7644	3,9593	3,9218	52,0434	28,3814	WHAMM
3,7243	3168122	153,6668	26,0398	121,7988	66,2737	113,2183	15,7890	6,5774	9,2221	75,5318	30,4000	GBA2
3,7248	3645274	468,1227	83,1434	628,4729	123,5789	460,3028	530,2008	15,5994	49,5255	109,6705	75,0241	SRRM2
3,7380	3200627	1415,036 0	398,7802	669,6021	116,7875	227,6031	179,1344	2958,494 0	172,8233	152,1863	174,8166	

3,7386	3209624	14,9330	7,8314	42,6437	8,9179	38,9883	9,1994	6,4125	10,4284	103,7190	34,5300	ZFAND5
3,7475	3044030	9,5545	54,6876	11,9145	11,6956	97,7456	26,0826	222,1737	6,9779	226,0309	13,3852	ZNRF2P1
3,7486	2818430	65,9749	17,6000	113,8078	67,1518	68,1809	8,6890	5,2004	6,1534	6,7756	16,1974	
3,7487	3151634	155,4243	112,6915	15,0349	12,9408	85,1741	14,2408	3,6204	3,9762	99,6910	22,7212	FBXO32
3,7499	2384634	64,8404	8,1065	88,9604	35,5294	43,8467	23,6471	88,6746	3,1453	116,7452	2,2322	
3,7566	3771784	29,0120	20,3769	97,7456	86,6754	53,5448	20,0198	76,5476	14,8094	113,6738	3,3108	
3,7591	2892776	97,6533	18,9643	107,9600	25,9780	16,3273	16,3260	1,5406	1,8215	148,7046	48,9076	PRPF4B
3,7677	2963760	279,1037	39,2237	147,7816	100,2138	254,3138	28,2135	36,4430	13,6213	103,2968	25,0126	
3,7697	3597147	2,7398	8,1065	151,6514	201,8928	163,7182	28,5100	24,9807	22,1705	107,8761	28,6167	TLN2
3,7709	3919987	68,9521	10,8829	103,0409	56,4677	44,8329	4,2029	64,8509	4,6848	13,8126	17,1978	MORC3
3,7785	3066829	357,7881	18,0472	123,3392	24,3804	79,5178	9,6139	68,7335	11,5389	83,4876	22,0952	
3,7790	3018430	208,7950	42,8790	90,1117	22,7918	162,0396	25,9658	7,9933	30,0316	282,3493	113,6802	HBP1
3,7815	2662502	167,2162	38,6347	17,8695	19,6902	146,0977	29,2153	25,0151	8,4854	194,9838	54,8120	EMC3
3,7826	3796869	241,4594	39,5502	108,8881	27,1683	90,8889	9,1594	149,6023	2,0307	188,1024	87,8182	GAPDHP6 6
3,7869	2975039	10,0176	13,7690	177,7337	12,9137	221,1915	65,2771	52,1417	3,3696	14,0671	2,2742	SGK1
3,7900	3206395	147,4595	32,0414	188,1738	107,6738	16,5127	38,9074	33,2080	14,8094	153,1023	9,2307	RBPJ
3,7926	3204036	67,8460	21,5242	148,3250	29,4261	111,6014	8,5317	13,5378	3,1453	140,9741	63,0186	
3,8003	2809144	60,1109	4,1277	265,1027	56,9614	109,4197	15,8174	7,8968	2,5273	9,5763	2,4188	
3,8028	2903363	22,5913	36,6070	185,7028	35,9133	158,6561	34,9045	7,2501	4,4940	136,5694	20,7079	
3,8038	2476349	58,1683	4,5682	113,8122	35,9001	56,9245	12,6309	1,9043	5,7661	47,9249	14,9651	
3,8114	2492128	335,2150	63,9082	612,8875	87,9514	317,6576	21,6486	7,5768	7,1237	463,6400	244,8909	
3,8120	2780002	137,6694	5,1958	389,9616	111,3034	138,0322	34,3064	2,7286	6,8635	104,2182	36,1146	
3,8162	2841510	158,6102	18,4868	149,8381	39,2635	249,0135	8,4470	38,8102	26,5134	135,8568	60,2795	CREBRF
3,8182	3941947	107,4651	16,2168	118,2008	20,5231	75,5185	16,6987	11,2552	19,7785	16,5148	19,0573	EWSR1
3,8184	3923713	108,3881	2,1018	144,0309	57,4551	53,5448	9,1594	101,5310	26,5896	3,1294	21,1736	TRPM2
3,8235	3085163	29,0120	8,1065	22,1424	14,2979	31,3271	8,1933	128,1737	6,9779	53,8304	1,7672	
3,8311	2890166	66,0962	11,3863	197,7695	18,7356	13,8648	5,1107	4,8758	13,6213	52,1841	6,3508	
3,8356	3473135	34,1508	8,1489	121,9075	32,0359	28,4961	7,3240	7,5992	4,1859	31,3556	8,1749	

3,8391	2570925	9,7043	9,0221	96,4439	61,0530	100,3002	2,8813	4,4553	25,0941	96,3396	24,5703	
3,8437	2417197	167,7879	9,8865	61,4234	15,9802	26,2492	7,1578	8,1118	40,8589	64,5470	15,0606	
3,8442	3074963	5,0458	4,8334	11,2383	5,3658	20,6272	3,5760	114,6024	14,8094	23,1001	3,3108	
3,8500	3405004	76,9762	12,0574	21,3164	17,8875	72,3481	18,7917	114,6024	139,6738	18,6548	1,7672	
3,8504	2465384	149,8611	26,8073	209,6976	147,7836	30,7936	24,4368	5,2374	16,9594	103,2187	15,9123	AHCTF1
3,8619	3209644	193,9321	82,0686	386,2266	31,9696	536,6135	58,2164	44,9365	12,0257	316,9391	368,4582	ZFAND5
3,8636	2434041	15,6404	12,0377	175,0360	11,6595	61,2651	36,3068	3,0406	3,1453	46,5082	2,4723	
3,8636	2635015	131,0611	9,5372	79,1955	68,5973	5,6946	7,2182	23,3596	10,1656	84,0800	20,4976	BBX
3,8672	2912128	141,6411	16,1166	165,0337	60,4620	39,9449	36,6267	18,7917	10,1656	173,9664	26,0827	LOC44115 5
3,8690	2822263	180,6737	16,3642	150,5309	140,8166	4,2191	38,9074	1,4525	14,8094	219,8880	9,2307	PAM
3,8699	3408465	23,3419	8,5082	94,4737	47,9121	34,6072	24,3986	116,3718	4,2957	96,9872	24,4125	BCAT1
3,8714	2492102	78,7370	23,2141	141,5613	21,6246	123,8152	18,6431	3,0919	13,5831	89,8715	69,3890	
3,8749	3029280	122,7028	41,7161	207,7985	37,1760	161,6450	30,1651	86,0187	27,4485	223,9419	142,2070	
3,8954	3257196	541,0609	3,7737	61,9978	106,9662	126,5722	15,9156	6,2160	13,6213	26,3912	15,9036	IFIT2
3,8974	2645770	5,7436	8,2699	136,0208	20,8163	36,6742	8,8993	13,4672	4,7860	34,6838	8,4069	
3,8978	2683786	1,4052	1,7226	231,9595	365,5311	24,8610	6,3783	28,3691	1,4300	18,6548	2,2322	ROBO1
3,8993	2982416	711,7409	92,7751	1117,514 0	154,7132	509,8998	74,5814	187,5921	44,1798	175,6046	130,7686	SNORA29 // TCP1
3,9047	2969759	53,1876	13,3445	154,8536	51,9325	76,4411	11,6603	28,4936	13,6213	7,7698	5,5282	
3,9117	3715754	4,2926	2,8855	50,5569	43,2661	109,5664	12,9247	7,8879	7,6775	56,1386	1,9663	SUPT6H
3,9182	3486048	160,1838	5,4454	236,9508	66,6095	51,2740	6,1754	15,5310	5,1080	37,1727	13,0860	
3,9209	3066833	140,1939	17,0753	109,4098	10,4783	41,0845	5,8078	13,3291	4,8779	32,7660	3,2854	NAMPT
3,9226	3240117	105,6190	5,3890	106,4379	14,8676	53,4158	13,6176	9,7000	10,1656	17,7478	4,8196	
3,9259	3285821	15,9202	14,7361	128,7708	12,2575	944,3300	3031,454 0	57,8517	12,1747	5,3720	2,5177	
3,9272	2514646	88,8065	26,4492	148,2711	90,2233	122,9495	31,3072	2,5196	25,8485	185,1545	15,7236	UBR3
3,9303	3429501	20,1644	31,1310	413,6524	164,5748	297,5245	22,1899	54,6397	42,2324	247,8629	63,0642	TXNRD1
3,9337	3052728	323,4593	47,1271	248,6022	63,1976	2128,429 0	62,8866	164,8166	3,1453	96,3885	103,2452	

3,9374	3708832	113,7599	26,5835	178,6593	32,5818	104,6690	7,9993	103,6397	2,5273	31,3271	20,7819	
3,9375	3847289	128,6190	5,1705	176,6235	32,9288	63,4952	11,5554	10,6435	16,1259	27,3422	15,9792	SAFB2
3,9377	3022817	56,3687	27,9751	102,8967	10,1673	73,9549	11,5444	25,6722	7,2945	26,3525	14,3152	HILPDA
3,9458	3580201	304,6818	3,4319	1570,257 0	184,6172	1084,703 0	16,2110	55,7557	10,6625	45,4991	77,2173	
3,9462	3458038	158,2911	27,7173	787,1833	40,1126	260,5944	186,6870	62,1381	6,0654	30,1095	36,3961	
3,9482	2492092	12,2244	3,7941	192,4406	7,2069	54,9111	4,6679	9,2651	4,6020	28,4547	19,9557	
3,9508	2389991	20,0087	28,6654	322,4653	359,3893	602,6873	74,7333	37,7282	2,0307	295,2531	69,9535	
3,9510	3240396	76,9761	3,7894	158,8188	17,9410	70,8849	15,3646	5,4167	47,7721	37,6964	14,0399	
3,9522	2624081	89,2362	13,5456	120,1535	22,2050	16,7509	22,5786	10,6670	6,8250	107,0788	48,8322	SNORD19 B // GNL3
3,9535	2636677	183,4486	26,5056	372,1023	497,7808	114,4595	37,4579	3,2382	6,9779	186,3288	46,4013	
3,9583	2408896	164,6026	26,6115	271,5668	172,8838	152,0536	38,4135	12,5019	9,2740	102,5629	16,5743	FOXJ3
3,9643	2775775	149,1915	8,1377	265,1071	132,6988	198,5077	37,6342	4,3575	18,7094	74,7088	33,4799	
3,9723	2363359	35,3997	4,6539	164,2718	64,1015	32,3678	12,7826	69,8588	9,4566	50,7759	9,1742	
3,9736	2874884	303,0310	20,3769	339,2451	181,8880	304,2453	75,2618	2,4894	75,1190	38,9788	76,2619	
3,9761	4044587	121,5139	2,4712	192,6543	22,2816	88,5938	4,9149	6,0520	11,2319	60,2252	25,6074	
3,9764	2889802	24,8901	6,2595	153,7226	145,8892	17,5313	2,6792	6,1078	3,3766	36,5148	3,2004	
3,9771	3273619	95,5311	11,2049	155,3281	70,0079	69,9466	13,7476	35,7142	15,0603	4,7060	17,5874	IDI2-AS1
3,9800	3359741	154,1023	12,6615	104,1738	38,7188	250,0309	27,3893	195,2212	118,6526	31,3271	3,4767	
3,9805	2982397	346,5836	21,7049	466,5219	129,3588	144,2695	36,2437	102,8593	27,5286	37,7960	22,3172	
3,9805	2844519	307,7855	71,2832	283,7461	62,8064	387,0199	14,0704	25,9007	76,9962	105,5412	68,0918	
3,9842	2907197	147,4595	12,0574	53,9733	14,0126	55,8286	20,0198	14,2979	2,0307	175,4594	2,2322	UBR2
3,9872	2327583	89,3890	2,9055	79,2544	19,8771	21,7144	27,2398	9,8810	6,9779	165,8880	9,2307	
3,9959	2633613	103,2848	8,2463	111,2452	50,6365	154,8576	25,8478	3,0412	10,1656	85,8546	13,3069	TBC1D23
3,9959	2514651	43,3722	9,1480	93,1368	53,4094	34,2799	7,7611	4,8758	5,4083	114,5640	10,8541	UBR3
4,0003	2326014	131,9370	17,1888	148,8944	67,7558	132,7918	13,1091	11,8861	9,9899	82,9927	32,9815	TMEM57
4,0076	2629753	76,9762	12,0574	67,9670	60,1420	15,0064	4,1339	4,5572	16,9594	139,4587	6,6571	PPP4R2
4,0177	2654398	27,3680	8,6795	113,7069	23,0962	40,6694	4,3028	5,2392	4,7243	34,8721	6,7917	

4,0269	3605181	92,5023	6,7767	72,2202	12,1577	107,0365	10,7470	6,0009	35,3259	22,4433	17,9343	WHAMM
4,0275	3110370	108,5970	3,7475	80,6609	81,1287	4,7803	17,1203	7,1577	18,0795	97,4696	20,0276	DCAF13
4,0310	2772056	101,9101	18,8954	265,1682	82,7198	94,5971	23,4674	74,5323	9,4403	32,6702	19,7283	
4,0317	2500878	35,3151	2,9055	32,5651	8,7594	53,5448	4,8334	142,3166	1,4300	9,3424	21,1736	CHCHD5
4,0335	3035139	58,7008	30,6227	272,3090	113,1618	2008,399 0	54,8330	1796,729 0	36,7306	81,4746	67,5121	ZFAND2A
4,0345	3508388	36,7230	11,6915	160,6867	22,9606	82,7611	5,8912	2,9016	6,8250	58,4784	14,4946	HSPH1
4,0348	4050441	9,5545	8,1065	131,2452	7,3884	59,7524	45,4866	196,4595	14,8094	3,1294	2,2322	
4,0363	3040093	14,4590	9,9684	98,2951	112,4404	88,8928	5,9731	2,4843	22,0235	111,8172	12,5098	SNX13
4,0384	3209641	134,6955	16,6420	187,4604	17,3330	87,7775	6,9000	71,7595	33,3537	407,7129	110,3259	
4,0390	2863814	64,5633	6,0352	59,2258	83,0227	9,8489	14,6637	7,8879	9,7079	197,3233	6,0480	AP3B1
4,0436	3605126	174,1023	32,0414	102,0309	75,3333	144,2452	34,8865	286,4595	2,0307	27,3826	35,6722	
4,0463	2616347	49,9748	11,5177	48,7519	56,0242	16,4133	12,0485	2,5790	8,4110	116,1782	10,5935	PDCD6IP
4,0562	2372872	14,1331	19,6211	136,4343	21,5659	203,0835	39,4976	108,1272	26,6575	5,2492	5,9623	RGS2
4,0573	2367557	74,5260	15,1494	259,8484	137,7204	105,6464	15,0195	31,7081	18,3683	36,4558	3,4140	C1orf9
4,0575	2468705	330,3165	86,6041	392,2452	17,4598	53,5448	4,8334	6,2969	3,1453	159,3166	39,2645	ID2
4,0650	2831177	140,7721	20,5287	274,2964	105,5099	86,7749	28,2274	9,8810	7,4829	114,7452	8,4233	
4,0675	3376295	47,0550	8,4950	196,2056	20,1302	6,5602	4,4725	12,3321	6,8250	114,8193	11,5686	SNHG1 // SNORD22 // SNORD25 // SNORD26 // SNORD27 // SNORD28 // SNORD31 // SNORD29
4,0772	3455949	207,3166	50,8477	41,2901	30,3516	240,9595	111,6024	33,2080	3,1453	254,0309	21,1736	
4,0799	2552201	45,6014	3,2952	103,1908	27,4633	47,8123	9,8816	9,5826	8,2495	8,8007	11,1772	

4,0888	2539840	168,3501	11,8786	140,7518	95,2006	114,0627	15,5785	23,9124	14,8958	40,6355	27,8966	ADAM17
4,0928	2866706	197,0495	38,7381	322,4359	75,9501	310,8476	21,4203	15,3024	14,0564	514,6917	301,7279	ARRDC3
4,1025	2840634	436,1431	48,8474	383,2054	93,4067	390,9478	257,6406	96,3948	23,2131	136,0524	35,7807	
4,1150	3508372	117,8859	7,6340	427,5969	26,5044	131,7731	9,1037	60,7278	36,4228	31,6382	28,6482	HSPH1
4,1197	3982287	47,2700	2,9055	87,8182	87,9604	99,1741	21,3164	6,2969	1,6340	188,1024	9,2307	
4,1205	2569103	231,4011	46,1082	237,6200	139,9820	57,7171	28,0030	36,3900	56,1580	241,5309	50,3659	RGPD3
4,1216	3655941	38,1944	5,6046	121,3038	4,6777	193,1593	6,1357	7,3472	9,2668	30,3676	12,9941	ALDOA
4,1230	2372874	21,3266	41,1423	169,6279	30,1881	314,3295	107,3670	226,7947	36,9609	6,2406	4,3852	RGS2
4,1266	2617101	44,5063	4,5661	167,8177	29,9099	45,7710	10,7852	16,7426	5,4499	10,8977	10,2016	
4,1351	3944142	233,1697	87,8334	654,6768	79,9228	1242,250 0	79,8075	67,3504	12,4121	363,1964	109,5302	HMOX1
4,1388	2902731	1878,085 0	310,9134	3423,936 0	599,8359	4911,051 0	263,8094	954,2446	18,5280	709,6409	453,7723	
4,1426	2413606	6,9433	13,1195	113,8033	30,2277	59,7015	13,6210	6,8888	7,1205	56,4258	4,7301	
4,1441	3471825	138,2967	28,5898	161,3079	77,0607	22,2914	33,3719	3,7294	2,5273	168,9032	15,2288	NAA25
4,1482	2592200	92,5112	22,3017	134,2452	57,1354	97,0186	9,6541	32,6767	14,2966	24,7865	7,4231	NAB1
4,1552	3024346	138,1328	15,7041	91,9591	146,3302	67,0022	22,1309	5,9143	10,2241	113,3737	12,4271	MKLN1
4,1572	3003881	217,2293	89,2745	181,9884	7,5785	7,0432	6,2033	107,9595	25,9692	9,2372	5,7328	
4,1578	3225033	43,9379	13,2292	108,7660	56,7915	92,6983	17,2749	71,8259	8,2246	31,7574	14,4867	PSMB7
4,1599	3432457	147,4595	20,3769	56,3850	223,9595	37,9501	21,3164	88,6746	6,9779	130,2452	3,3108	OAS1
4,1601	3592051	9,1747	14,9524	192,2167	23,0923	177,6209	42,6960	191,3021	5,6636	41,3795	63,8620	
4,1667	3285831	22,4985	66,1261	275,5308	33,5697	3271,461 0	4605,247 0	851,1382	6,9779	5,5270	21,1736	
4,1695	2673324	7,4074	26,4196	133,0588	20,3028	159,3600	16,0473	3,4848	21,4641	110,1551	76,0952	
4,1703	3605168	44,2554	6,5911	69,1448	7,8703	153,8200	20,6821	15,4739	12,7459	53,1537	4,3070	
4,1796	2474992	200,2410	40,6814	224,6248	26,9809	146,4668	19,6018	10,7043	53,2905	242,8601	47,9096	
4,1901	3838098	430,4974	102,7418	731,5673	88,5793	1117,452 0	151,4568	88,6972	8,1992	184,3625	98,3703	
4,1933	2556677	22,4985	2,9055	101,1742	145,7451	62,1009	12,1541	14,2979	14,8094	68,4414	5,7959	
4,1934	3627292	89,3890	8,1065	37,8787	13,3852	120,1023	21,3164	3,7754	6,9779	172,2452	130,7451	ANXA2
4,1945	2592212	40,8576	9,7407	5,2017	5,3734	236,4440	22,4493	59,0364	7,4751	23,3137	3,1114	

4,1997	2729439	120,1504	10,8435	130,6639	72,1323	8,6753	5,6432	13,6264	7,7668	104,1278	24,7940	
4,2155	3065848	114,7453	2,9055	6,0064	17,8875	7,2156	45,4866	88,6746	2,0307	75,4047	3,3108	RELN
4,2165	3209642	193,7462	39,4593	166,3812	13,8104	146,4273	5,3436	5,4457	19,0001	392,7686	227,3486	
4,2197	2960939	136,3321	37,9654	437,8335	63,3871	233,0184	34,7385	206,9926	14,9191	170,2050	49,0538	LOC10065 3236 // EEF1A1
4,2318	3717460	29,0120	20,3769	18,3135	8,9021	89,6032	22,4272	121,3880	6,9779	143,2452	21,1736	LRRC37B
4,2325	2829426	352,6451	74,9324	423,8907	233,4548	525,6793	51,9242	116,9672	25,9941	186,2356	83,3185	
4,2465	3066853	158,6358	6,7702	48,2663	11,3660	48,4908	7,0126	16,9130	14,5140	25,7745	8,8157	
4,2497	2775883	36,3978	15,0925	64,1382	35,2400	106,7167	6,6122	7,3472	6,9779	68,2382	7,3144	
4,2516	2651678	108,0812	19,4660	92,5997	82,5220	46,4009	21,7798	9,1105	16,2856	104,8925	17,7879	MYNN
4,2543	2786344	60,8586	14,3050	355,1072	124,9041	24,8645	7,0351	10,3709	5,0341	79,8254	9,2049	
4,2601	3079763	83,1590	3,1390	130,7746	33,7066	36,6931	7,3949	14,1673	4,5904	19,1046	8,6133	RHEB
4,2633	4037628	260,6496	134,6231	616,9202	68,2996	747,5278	1579,013 0	37,8779	144,7056	728,7408	47,2191	
4,2677	3692904	15,6404	4,8334	21,9281	14,6666	20,6272	4,8334	18,7917	2,0307	200,7452	3,3108	NUDT21
4,3052	2775855	121,5888	13,1385	275,7782	44,9066	75,3785	14,6057	4,5630	5,9756	69,3696	17,5087	
4,3064	3375650	3,6997	3,7711	381,1857	219,3479	16,2396	3,5012	6,1078	3,1453	34,6959	2,8324	FTH1
4,3094	3824201	5,0458	1,5134	91,2460	59,0265	108,6024	16,5127	172,3880	6,9779	23,1001	21,1736	
4,3116	3508396	157,3689	32,5216	742,6630	219,3464	367,0885	60,6101	11,3015	15,0773	261,3267	56,4929	HSPH1
4,3264	2902729	4215,485 0	974,3737	6275,455 0	3056,222 0	8068,776 0	528,0829	4082,236 0	55,8146	649,0424	860,5402	HSPA1A
4,3379	3225415	169,8674	7,6340	248,2450	12,7225	227,0629	77,0296	91,9461	39,1588	18,6839	5,8851	
4,3380	2702357	40,6859	1,9250	211,4714	33,8855	67,7328	6,4680	12,3058	12,6603	132,0984	15,6137	CCNL1
4,3390	2358695	1089,729 0	251,1500	1210,688 0	166,3691	3302,021 0	1278,452 0	15,3959	2,1045	43,6615	26,5833	MLLT11
4,3434	2415092	399,9521	107,6019	364,2666	51,0561	142,2166	10,9789	32,2232	33,0609	221,7596	42,3723	JUN
4,3459	2502313	265,2201	22,4303	179,1964	231,2417	26,3090	33,2517	11,6043	33,1057	154,3480	35,5156	DDX18
4,3735	2492509	86,2982	22,8064	155,8954	77,5087	113,5613	25,9658	15,1116	6,4331	213,4128	11,0976	
4,3835	3909417	7,5010	3,5503	106,6189	9,9740	54,3995	16,2704	16,3775	2,2670	43,7211	4,3806	

4,3892	2975308	192,4197	15,9668	120,9895	70,9059	122,0028	21,4175	7,1315	10,3070	158,4046	27,7964	HBS1L
4,3983	3656911	50,1636	2,2833	115,8092	11,4051	117,7297	25,4275	7,1007	3,8037	42,9443	4,5820	
4,4172	3723286	102,5493	4,2697	108,4658	23,2159	186,4315	144,6407	10,3492	6,7829	84,8416	18,0440	
4,4182	3018443	213,7357	34,3134	186,2928	42,1647	270,2277	35,3822	33,6276	20,3085	83,4305	79,4170	HBP1
4,4333	2902710	2065,042 0	436,6502	1982,253 0	471,2321	7177,113 0	198,2079	1900,139 0	12,2596	265,6489	447,1284	HSPA1B
4,4446	3320360	9,7878	14,4627	84,0055	90,2518	31,1401	8,9703	68,7463	9,1451	106,5448	15,4673	CTR9
4,4700	2539838	306,6793	44,8446	271,5621	140,5002	311,2634	60,7524	64,0347	43,6667	127,3255	45,9835	ADAM17
4,4817	3475722	4,6838	2,4414	24,8448	5,6096	20,2613	4,5209	1,9057	3,1719	107,2431	3,3378	RSRC2
4,4986	3268678	163,1303	18,7301	153,9680	110,5576	11,0928	34,2259	3,0692	5,0564	163,1807	10,7048	BUB3
4,5063	3051397	29,3343	6,6667	156,2154	4,1171	30,0418	2,2743	5,4918	11,0000	35,4943	4,7401	
4,5099	3395436	152,9419	11,4074	600,0104	33,9123	412,0866	15,9887	81,5927	34,9801	96,5577	17,4084	SNORD14 D // SNORD14 C // HSPA8
4,5153	3781698	51,2808	4,6074	147,4620	23,1429	104,4964	13,8747	6,4797	5,6071	148,7104	62,9496	RIOK3
4,5376	2844534	734,9146	67,1412	570,8878	97,3953	304,6617	13,8936	3,4848	10,1656	165,7866	36,7646	C5orf45
4,5459	2827396	126,4965	12,6186	104,8840	76,1535	32,9693	16,5875	2,4404	7,1116	75,4047	11,1156	PRRC1
4,5467	2855533	74,5685	16,4007	76,4932	54,5496	178,4280	9,1484	10,4461	16,3156	12,0681	4,2122	
4,5494	2357668	76,9762	4,8334	41,6330	20,8414	60,8949	3,0393	1,6340	3,1453	103,3881	13,3852	
4,5750	3642382	67,2694	6,7665	116,0943	45,5155	26,9453	4,8924	7,3912	9,1879	45,8066	10,0125	
4,5827	3422348	76,1316	12,0982	141,8117	62,5591	60,6376	14,5803	74,1328	5,1724	134,6058	16,6129	TBC1D15
4,6109	3501521	40,2806	38,0256	178,1803	77,8913	175,3328	37,2839	314,1868	28,6285	39,9852	27,5824	
4,6146	4050444	9,5545	9,9242	17,6835	8,2949	38,2777	4,4029	150,5683	4,6848	42,5664	6,2190	
4,6168	3018875	98,9598	19,2367	132,5115	21,4345	17,3553	11,8939	27,7612	5,0794	105,1504	37,0232	DNAJB9
4,6202	3035142	55,3071	19,0990	88,2408	18,7805	389,6768	33,1667	125,9226	16,1033	66,6521	18,9595	ZFAND2A
4,6285	2946386	30,3346	5,5604	114,9878	19,8469	212,1872	10,6134	13,1699	8,1237	91,8609	35,0808	
4,6309	3072025	323,4593	44,2617	68,8795	64,1976	337,8165	69,8481	19,1389	11,9861	1168,531 0	610,5660	TNPO3
4,6464	3204436	33,8234	14,0259	145,7461	16,5349	98,6023	12,0742	33,2080	9,5473	65,1696	6,4917	

4,6506	3267333	241,1564	170,1412	286,5260	61,6107	634,2607	55,9312	340,9963	31,9755	223,5249	54,7670	BAG3
4,6610	3717743	77,8349	5,2967	208,6093	23,3678	70,6324	11,6550	34,8598	8,9639	54,2560	15,1538	
4,6650	2605662	21,3016	10,7211	38,9722	22,3305	58,3777	9,1205	117,6332	10,1656	50,0141	10,1865	KLHL30- AS1
4,6786	3486043	367,4442	38,8589	181,8058	104,2029	36,1664	22,6662	18,2971	6,8250	305,2465	16,8299	UFM1
4,6805	3199091	187,2452	28,3112	9,2307	6,2969	12,5421	9,1594	43,2044	6,9779	46,4843	9,2307	
4,6965	2492080	21,2460	7,6340	238,7634	30,4808	63,2561	2,7688	2,5510	3,6548	129,2424	13,4686	
4,7036	4051298	62,0498	63,1373	434,5623	92,3897	1031,142 0	350,7105	963,4478	36,5652	28,2908	46,0286	
4,7062	2520335	91,9378	6,9305	130,1937	25,3534	38,1302	9,9400	15,2978	10,9586	99,8050	19,5356	
4,7095	3395448	197,2892	23,3819	463,4319	41,8920	334,6718	54,5470	11,8860	7,1528	47,1130	16,6927	
4,7162	3320615	102,3577	16,0547	75,7165	55,2712	14,1265	16,0384	1,6737	6,3312	75,7840	9,4994	USP47
4,7252	3018441	53,1823	8,1065	63,3634	13,4097	112,6201	13,1659	3,9733	10,4208	217,4402	86,3565	
4,7345	2501420	323,4593	58,4551	125,8880	21,7144	18,6548	9,1594	1,9285	26,5896	136,8166	9,2307	
4,7385	3407266	156,5421	10,0343	77,4921	55,8544	30,0187	16,3536	12,7294	4,0716	81,2824	9,7021	AEBP2
4,7403	2978039	197,7385	24,1200	197,8363	41,7145	314,7112	18,0089	10,5026	21,0561	153,3418	51,7436	FBXO30
4,7440	2555671	165,9316	8,4480	306,2569	64,5564	505,3266	88,5610	309,0930	6,4110	43,3344	13,3178	
4,7644	2803940	105,3074	14,0941	77,1831	69,4352	36,7651	16,2000	5,9661	9,1488	183,5973	9,7159	
4,7868	3434436	180,6737	8,1065	22,1424	14,2979	32,4223	11,0981	88,6746	1,6340	68,4414	17,3263	
4,7932	2780030	126,4233	13,5906	215,7633	101,9415	145,6530	18,6821	10,3400	11,7318	106,7535	26,3758	
4,7948	2570948	5,7069	30,1186	385,7643	257,8221	187,2415	26,5857	35,6594	10,0216	266,9883	39,0512	
4,8313	2844502	1372,263 0	267,7591	1293,612 0	282,9367	2544,219 0	100,7074	91,0991	48,0532	318,8239	154,6708	
4,8342	3600243	6,3719	6,1232	143,0054	322,2901	29,6011	5,9898	44,7068	5,3870	23,3708	3,8590	LRRC49
4,8435	3362758	134,3880	2,9055	343,1023	20,2340	103,2452	21,3164	48,5312	26,5896	31,3271	5,7959	
4,8663	3550410	102,9298	21,1514	166,9030	20,7012	58,7899	10,4545	10,8893	6,9779	121,9208	62,6737	PAPOLA
4,8765	2608739	595,8760	64,8391	804,7267	37,3803	642,7120	131,7968	92,5256	21,2042	969,4562	623,4257	BHLHE40
4,8943	2810876	35,3151	1,5134	115,1024	79,2544	46,2700	7,2156	14,2979	6,9779	5,5270	5,7959	
4,9127	2360405	15,3521	4,7600	450,0888	441,2632	1558,240 0	22,5527	480,6872	19,8450	34,3770	91,6170	
4,9144	2936899	147,6018	19,4051	95,3636	64,7893	34,7484	10,4949	6,5902	4,6848	101,5667	13,9803	MLLT4

4,9222	3230348	121,3880	1,5134	148,3880	23,0939	42,5615	27,2398	2,4894	6,9779	113,6738	9,2307	SNHG7
4,9247	2905144	6,9040	8,8415	74,5537	13,3536	111,9150	12,9188	65,7622	30,5873	19,3616	6,7354	
4,9561	3580191	49,6536	8,8935	138,3548	6,2190	9,5948	5,0017	44,0768	48,8453	9,0472	4,7820	
4,9613	2423616	110,3793	17,7564	232,0603	33,0822	119,6438	19,6664	62,6962	22,2480	9,2141	17,8002	DNTTIP2
4,9783	2841498	494,4417	24,8349	113,9987	30,8717	203,6575	32,7548	23,4935	29,3761	163,0635	145,9947	CREBRF
5,0087	2902713	3419,315 0	682,6801	4688,436 0	1348,919 0	4834,542 0	118,2841	848,9547	32,7567	580,5092	517,3338	HSPA1A
5,0087	2556323	121,5286	15,1494	110,0776	119,0189	35,0743	14,6731	43,6598	13,9770	75,8796	11,9279	PELI1
5,0246	2761233	154,1023	8,1065	239,2452	126,6024	65,7689	15,4975	76,5476	26,5896	133,6023	17,3263	
5,0369	2325283	14,9440	23,8085	174,3872	67,0060	193,0079	27,9225	36,2156	23,3991	144,1401	28,6167	PITHD1
5,0437	3395430	266,2942	18,9616	523,3303	52,7978	428,9875	25,7529	48,4804	100,3149	70,7938	11,3183	SNORD14 D // SNORD14 C // HSPA8
5,0455	3471830	108,3231	10,3487	132,5408	26,6913	11,1736	8,2700	2,5179	3,4104	52,2144	3,2790	NAA25
5,0586	3267354	40,0299	16,3519	161,6029	26,8388	143,4131	17,8633	135,7654	5,0622	38,3319	35,4137	
5,0695	2866717	60,2731	10,6846	144,5041	11,8893	2,9495	3,9653	4,8758	6,9779	168,9458	78,5684	ARRDC3
5,0840	2841518	429,2551	40,9709	319,2339	59,4808	416,3730	67,6172	16,7426	17,1839	343,7668	251,6739	CREBRF
5,0916	2654857	107,6133	7,9289	69,3543	99,1080	25,0709	9,5066	2,3613	13,6213	79,6033	3,2544	ATP11B
5,1133	2976118	131,0012	5,2801	85,3923	61,9278	5,9050	7,1136	2,8879	9,3865	74,4624	14,5626	IFNGR1
5,1255	2641055	145,8214	11,8007	257,1079	37,2300	163,8934	11,5886	32,2544	28,4504	44,1542	15,2796	
5,1278	2553331	187,6197	8,8935	191,6997	100,5757	132,4202	25,8239	16,9936	9,1186	118,3109	14,6183	
5,1466	3723352	12,6387	12,8524	109,6072	16,2648	83,7076	9,1894	95,8204	11,3862	40,2784	36,9801	HEXIM1
5,1596	3888294	38,5184	48,0786	248,0667	45,6422	423,4063	42,6463	1452,047 0	35,2392	121,7796	129,1336	
5,1602	4056100	24,9080	4,9502	512,2095	92,2372	106,1717	11,6318	5,5412	4,3110	65,2585	12,6465	
5,1612	3386835	130,1125	2,2927	37,9813	9,6142	3,6393	5,6191	8,4349	6,0671	49,2744	7,3590	TAF1D
5,1871	2487559	22,5199	3,7083	85,2065	9,4220	126,7544	7,7361	4,0684	12,2777	53,3520	10,2855	
5,2005	3888273	2,1202	9,8194	123,1294	16,7023	54,2342	6,5566	86,8596	15,8439	117,5282	31,6060	
5,2192	3580206	374,6108	2,7046	619,9732	31,2064	162,8712	13,4179	24,1057	19,8438	21,4170	37,3956	HSP90AA1

5,2226	3476773	644,6293	87,0935	1534,305 0	123,4304	661,4935	68,7487	262,6493	45,6381	564,8633	428,4089	UBC
5,2252	2592587	170,0925	14,0467	97,1168	24,2581	855,2927	27,2360	41,8574	17,7549	126,7537	19,5356	DNAJB1
5,2640	2454250	76,1316	14,4627	167,0161	125,5828	6,0769	7,1723	3,2076	12,3507	144,0648	10,8676	IPO7
5,2651	3035146	96,1501	14,7100	254,5690	111,5063	1471,705 0	48,3504	287,9202	6,4045	49,6484	15,2288	ZFAND2A
5,2744	2617890	192,6696	6,6457	38,2182	6,7623	9,9849	4,1635	15,4369	6,3864	35,6670	11,0779	
5,2808	2810470	17,1768	8,6892	158,2571	145,3760	58,7498	9,5369	8,6541	3,3766	58,8315	11,1252	
5,3012	3858737	45,5163	23,1112	434,8577	111,0060	355,3469	67,0319	1665,221 0	9,9962	5,4724	34,9522	
5,3015	3051403	314,6253	41,2429	357,2573	93,2673	389,9595	59,2200	18,8439	17,9873	73,3883	59,3459	SEC61G
5,3054	3742843	83,2378	7,6340	157,1346	15,6666	83,6079	55,0830	3,9785	3,2993	32,5006	15,6893	
5,3194	2539512	104,1253	109,8486	99,8606	16,9876	22,8626	2,4039	6,6435	3,1573	157,2420	18,7731	ID2
5,3264	2367578	105,5887	12,8067	281,9761	130,6203	100,9201	18,9471	11,9885	8,8211	31,2280	3,2433	C1orf9
5,3368	2492079	15,8776	5,1595	307,7122	5,9591	39,7544	5,8062	3,0954	6,9156	36,9074	14,5032	
5,3371	3717760	6,1871	3,9358	100,7346	5,3019	54,8639	8,0772	5,7615	4,1709	28,2967	3,5627	
5,3381	3580195	87,9519	18,7275	325,6662	16,4763	175,8666	10,9163	66,8444	13,6934	5,2871	3,0849	HSP90AA1
5,3495	3580205	719,6991	103,5290	1840,998 0	290,5320	914,9440	86,8045	367,0691	26,5896	165,1006	134,5352	HSP90AA1
5,3572	2844510	133,5121	12,7667	80,4262	9,9448	20,3375	10,6850	8,9453	13,4810	72,2206	14,8288	
5,3668	2966261	173,3266	18,2607	104,9940	37,1055	4,6005	3,1080	9,8810	16,4263	137,3619	19,5637	PNISR
5,3670	2786348	65,8963	6,5651	452,9883	170,6237	20,7439	9,7729	5,0022	12,2780	93,4349	7,2371	SLC7A11
5,3803	3766907	127,8166	16,3642	439,1739	417,1022	230,5309	40,1216	70,7767	3,1453	306,8165	42,8472	DDX5
5,3813	3508397	162,4971	7,0000	386,7652	25,4926	293,5588	30,1968	56,1485	3,3766	23,3708	32,9386	
5,3840	2628590	201,6299	24,2532	715,5781	353,2683	346,7776	56,9290	56,5944	6,1288	349,3687	64,4088	PSMC1
5,3879	2528351	41,3320	10,8752	75,1020	13,5866	73,2029	10,8106	2,4102	5,7807	176,0455	110,8907	ANKZF1
5,3966	2545503	87,8870	31,1310	168,0025	27,6254	242,1242	64,5906	216,5675	9,1978	99,3629	19,8875	CGREF1
5,4000	3858742	9,3432	3,3364	230,2360	31,1744	207,2213	47,3269	168,3424	24,7651	18,2495	6,6948	
5,4075	3404640	30,3474	21,8374	34,9084	23,6106	498,8431	51,2894	297,9242	44,6921	277,3492	68,0194	GABARAP L1
5,4159	2444511	72,1103	6,6435	145,5011	39,1213	13,0258	6,6446	2,8135	3,5630	54,0373	9,9776	GAS5

5,4229	3395452	688,1469	30,1186	864,3411	79,5248	1666,712 0	126,8976	74,5774	7,2094	218,7893	165,0166	
5,4330	3683120	100,7974	15,2620	120,9999	33,4019	66,7238	16,0261	4,4107	16,1269	95,5101	17,5795	SMG1
5,4521	3066861	769,9725	62,4411	567,4678	61,5423	335,5322	25,0412	41,4168	33,0036	32,6345	45,7334	
5,4538	2512709	131,6974	31,2441	396,2754	189,1911	220,3114	30,8438	127,9932	29,1317	251,6845	40,3963	PSMD14
5,4948	3395431	77,8379	11,3214	192,9086	19,6878	149,1279	6,4980	6,2044	3,6728	29,1568	14,1658	SNORD14 D // SNORD14 C // HSPA8
5,5033	3512555	99,5100	10,4807	162,6541	22,1688	35,8537	11,8699	8,2459	5,2704	79,5883	14,4620	TPT1
5,5252	3867536	313,0373	12,0700	7,0618	3,2325	129,2118	19,1434	499,8687	32,9009	181,7840	74,9350	FTL
5,5671	2892188	70,7378	7,0084	111,3712	23,0349	14,0462	8,5181	11,3705	5,3969	80,9778	12,7064	
5,5768	3580193	75,2728	10,8829	278,4011	13,4975	53,5694	11,6341	79,3906	36,9609	7,1893	5,7596	HSP90AA1
5,6062	2902711	1924,874 0	343,3491	2028,629 0	470,2758	4821,485 0	125,4803	130,0971	8,5187	123,9501	146,6367	HSPA1A
5,6103	2902714	1999,390 0	285,2406	3686,587 0	796,3419	5103,679 0	121,1398	615,9300	37,4123	415,9518	356,3763	HSPA1A
5,6345	3944140	71,7250	25,4027	120,1012	13,1972	320,7569	19,4107	53,2682	21,3153	123,7480	8,2165	HMOX1
5,6758	3731350	22,4985	2,1018	7,5306	3,3108	4,8334	2,3844	18,7917	41,2187	120,2451	3,3108	SNRNP200
5,7021	2395517	37,5786	27,9142	781,4781	45,9929	272,7621	40,3721	16,3801	18,1991	262,2543	77,2601	
5,7293	2817452	9,5545	2,1018	39,9788	7,2156	106,1024	4,8334	1,6340	6,9779	64,6975	1,3668	
5,7508	3359717	17,7192	9,4960	144,4130	25,1120	263,6738	14,3853	164,8166	20,3071	33,5202	28,5120	
5,7620	2431332	53,1876	4,8334	319,1738	160,8166	2,7638	6,3783	1,9285	6,9779	247,8167	9,2307	
5,8339	2975313	86,3733	12,0574	70,3420	45,5581	31,2749	10,0878	18,7917	7,2522	159,1189	4,8515	
5,8396	2844531	678,7249	68,2673	1322,162 0	288,7909	1195,452 0	72,0696	23,2769	17,3855	222,6694	116,2276	C5orf45
5,8685	2948750	431,0898	59,5320	89,1746	14,0561	1320,282 0	34,2476	278,0017	13,6213	66,7822	47,3717	HSPA1A
5,8948	3377616	71,1093	12,0574	7,6655	6,5366	71,0766	6,8394	12,5268	3,3766	130,3779	35,7088	NEAT1
5,9119	2902728	1607,395 0	373,3710	1845,183 0	286,8252	4989,473 0	139,0650	2199,724 0	36,8960	241,6352	312,1137	HSPA1A

5,9126	3395429	274,9876	13,7140	519,8486	62,2924	643,9270	45,9472	64,0473	5,8542	80,7903	46,5088	SNORD14 D // SNORD14 C // HSPA8
5,9396	3595967	3,6339	2,2372	111,4268	50,1554	63,5892	7,2321	5,2622	3,1867	64,5786	10,7061	RNF111
5,9514	3852791	79,6606	9,8865	218,9157	19,1676	109,4761	5,8019	58,1696	4,3435	21,2337	13,3852	
5,9623	3476775	956,6560	137,5252	1210,573 0	78,4977	657,5767	37,9675	47,4334	51,8352	819,9688	361,6459	UBC
5,9704	2986517	320,6759	53,2398	904,8095	153,6508	329,8659	20,5086	8,9889	9,4175	181,5560	53,7106	
5,9846	3508381	196,0413	22,8886	238,8169	21,8555	130,7956	15,0793	42,2461	10,8216	49,7167	7,9375	
5,9916	2553302	83,8600	16,1941	168,9046	52,4846	97,0287	9,7627	11,2710	1,6724	112,3245	13,5320	PSME4
5,9939	2841508	172,3114	13,4816	35,7515	17,0669	102,2974	14,7152	10,2739	6,0388	102,8825	48,6257	CREBRF
6,0509	4037618	102,7558	153,4634	928,5988	110,4793	3038,690 0	6672,483 0	170,5811	142,2695	1096,488 0	96,9506	
6,0779	2902727	1012,562 0	78,0464	1123,814 0	166,5974	5297,965 0	109,6981	706,0315	13,5986	331,2528	299,7166	HSPA1B
6,0909	2975025	9,5545	19,4398	190,2486	26,1062	667,5510	188,6156	159,0102	5,2984	20,0934	22,3792	SGK1
6,1156	2844520	107,8473	7,5291	93,4349	20,1573	148,5516	15,2781	5,2124	8,0987	22,3189	5,5617	
6,1536	3508395	40,5057	2,9055	231,0567	4,6693	49,0201	3,0701	29,3990	45,0150	9,2560	6,5825	
6,1561	3285829	14,2216	3,9783	29,6451	4,8156	245,0751	797,3080	34,3858	2,5273	3,2113	2,5101	
6,1766	4049893	461,3604	324,9226	831,1072	74,6947	95,9508	39,8557	1138,557 0	11,5350	241,3200	19,7353	
6,2070	2563445	83,0825	3,9345	116,8580	61,9632	47,3414	5,5937	3,5125	6,9779	92,5339	13,3852	RGPD4
6,2217	3225405	103,9959	3,7369	218,7276	10,9917	84,5391	13,5877	8,5749	58,9573	13,7210	11,0779	
6,3486	3066839	558,7291	20,5340	422,5685	66,1868	130,3626	14,4081	14,8900	12,6609	4,1006	2,7186	
6,4109	3832981	107,0128	12,9927	102,1902	15,9401	129,7909	40,8001	11,5845	3,3766	30,2975	12,0369	
6,4865	3982482	59,2891	6,3621	268,8283	16,3180	41,8857	3,1873	5,0918	4,8582	58,0395	8,9478	
6,5278	2948749	848,3661	129,9627	148,1081	102,6519	1532,924 0	93,2716	2118,860 0	8,7529	73,9106	181,7801	HSPA1A
6,6154	2902730	2140,364 0	264,7155	2509,766 0	439,3031	4019,654 0	101,4910	1064,249 0	10,2182	413,4662	323,5410	HSPA1B
6,6920	2367570	28,5349	6,2595	229,6326	19,8730	48,3587	4,4019	29,5934	5,3323	41,8891	3,7575	

6,7708	3019541	76,4812	24,8928	312,8513	30,4918	299,6738	50,9386	206,4531	6,0921	38,9549	17,6746	
6,8257	3326566	57,0445	8,0141	169,6928	54,7793	54,7019	7,0552	3,0657	3,3932	41,9143	4,2463	
6,8368	3209640	359,3131	39,1879	376,1309	52,5557	188,3449	25,1728	28,0227	16,5831	474,9689	264,3144	
6,9173	3079766	75,7757	7,4095	217,3741	107,5525	33,4091	10,9546	11,8901	10,3012	89,5722	4,3806	RHEB
6,9236	2709802	178,2052	99,4064	148,1498	12,9673	46,4436	7,6862	6,5209	7,3182	152,8164	21,3979	BCL6
6,9509	2902726	1136,684 0	106,9932	752,1946	118,1729	4941,348 0	77,6859	821,4103	8,5349	149,7520	214,1025	HSPA1B
7,0264	3580209	1832,081 0	115,3087	1366,332 0	145,8192	1024,584 0	39,5640	707,7557	7,3481	83,5578	238,8117	
7,0938	3620823	47,2700	12,0574	27,6683	32,4937	85,5328	8,1933	101,5310	6,9779	110,1738	1,7672	
7,2050	3314045	127,1092	42,2056	124,9895	11,5251	230,0425	17,3476	17,0669	5,4630	30,2135	3,5969	BNIP3
7,2174	3944141	213,2666	15,8854	116,3729	15,9077	313,8609	6,8227	19,6063	68,3705	132,9848	18,4255	HMOX1
7,2638	4043410	58,8837	8,1065	8,9021	2,2126	108,6024	113,4595	128,1737	3,1453	3,1294	2,2322	
7,2649	3944145	48,3074	13,4279	100,0228	13,0795	179,8749	16,1602	69,1945	4,7816	97,5522	3,0222	HMOX1
7,3559	2360403	23,4873	71,4635	525,6748	481,2007	3433,952 0	57,7945	1694,048 0	12,7449	33,4214	28,8324	
7,4370	3766930	36,9818	13,3549	120,4734	24,6023	110,7570	8,8673	18,0552	14,8927	117,2514	9,2186	
7,6843	3731149	127,8166	2,9055	19,3108	9,5545	73,4195	48,2456	95,0313	6,9779	23,1001	3,3108	
7,8026	3285855	24,3906	14,4378	405,8019	41,0928	2896,197 0	4376,200 0	320,6293	29,4152	8,7863	3,2742	
7,8653	3944144	338,3280	41,4986	595,7925	43,0152	1035,609 0	36,9841	37,2319	3,3792	292,3814	65,0717	HMOX1
7,8673	3285847	13,9032	8,6824	260,4527	19,2815	3174,901 0	5999,081 0	406,1586	33,1057	8,5023	1,9861	
7,9700	3395446	181,8961	3,9424	337,3722	23,0654	211,3885	15,3063	15,2858	5,6426	34,1386	22,8225	
7,9723	2621294	108,3881	1,7226	25,0753	12,8229	10,6871	2,6792	53,9019	3,1453	3,1294	2,2322	KLHL18
8,0704	3838103	1670,500 0	37,4718	2034,256 0	189,1584	4014,157 0	312,0957	994,0787	5,9504	1108,686 0	206,9899	FTL
8,0779	3662257	223,2106	2,0769	105,4954	21,2992	6,2320	12,0318	10,3858	10,1656	97,1916	10,3303	MT1X
8,0995	3477936	102,1024	4,8334	89,8889	15,7118	25,9214	11,0981	3,7754	6,9779	103,3881	3,3108	
8,1163	2841500	380,6190	28,4547	194,6426	27,6508	230,9459	8,8613	6,5794	8,7172	241,9301	98,1487	CREBRF
8,2150	4037620	86,6809	158,6738	1303,510 0	133,1711	2087,606 0	2970,483 0	23,6471	123,0056	1803,289 0	156,8202	

8,4350	3395434	745,4390	18,8398	1863,952 0	197,2811	1740,318 0	257,6798	1664,070 0	14,0207	185,4716	125,1034	SNORD14 D // SNORD14 C // HSPA8
8,5505	3395423	624,9185	41,3562	748,8280	73,0856	1446,048 0	91,0260	162,0533	33,1057	60,2402	46,6696	
8,8344	3580202	134,1613	8,1065	441,2586	24,7182	117,1024	13,2553	53,5750	3,6821	14,0126	4,3504	
8,9797	2829291	72,7724	13,8902	130,2147	24,6041	244,8878	11,7392	3,3879	6,0140	124,7298	10,8995	
9,1916	3580183	214,8846	3,0962	696,7568	106,2495	285,4615	4,7798	213,7702	11,7142	46,8762	23,3783	
9,2423	2844506	567,1831	27,8896	308,6122	70,8374	257,7638	3,9166	20,8140	26,9454	55,5257	24,1671	SQSTM1
9,3077	3395451	885,6654	55,0286	1138,322 0	95,1543	1727,077 0	86,0504	126,0046	4,3545	186,3116	183,5323	
9,4553	3285824	20,2390	26,3389	255,5721	18,1208	3127,150 0	5636,518 0	249,0426	14,8094	5,5719	1,7467	
9,5548	3476776	390,4581	6,2892	579,9125	41,9892	401,1985	24,6962	54,0168	14,4912	419,5877	210,3240	UBC
9,6052	3019542	20,3120	6,8946	250,6849	17,2627	427,5081	29,5156	368,3245	26,0988	25,5801	12,6188	
9,9849	3476774	833,8972	43,8394	1060,040 0	83,5156	598,1650	25,6884	58,5393	16,7654	925,8804	337,6653	UBC
10,3125	2948748	571,0150	26,6116	65,6427	24,7008	850,7546	27,9425	323,2234	102,4780	15,5098	31,3429	HSPA1A
10,6434	2902709	799,5215	73,7808	694,7442	96,9979	2705,980 0	58,3199	916,0654	75,1190	18,9481	67,9585	HSPA1A
10,9201	3838100	762,9875	41,0923	683,0140	49,1897	3346,725 0	212,2361	386,7989	5,4839	158,5362	62,5464	FTL
11,0185	3476772	1108,930 0	20,0073	1610,194 0	100,6427	1158,774 0	31,5319	213,3166	47,9221	857,8231	455,8606	UBC
11,0545	3816516	75,1137	11,6978	499,5113	33,6586	413,4184	68,4887	372,0807	18,9798	31,5836	6,7157	GADD45B
11,2583	3904789	7,8024	4,8334	98,0313	8,4681	108,0939	48,9696	2,5752	4,9572	95,3358	5,2181	RBL1
11,4618	3285857	64,8404	54,6876	626,8167	42,8472	3503,027 0	5555,419 0	1348,923 0	6,9779	46,4843	9,2307	
11,5273	2421959	68,0518	33,4595	181,7079	15,7632	383,6200	15,6032	518,8647	11,8375	60,2025	5,5982	
12,5456	3852794	289,6103	16,6329	383,8696	38,4499	284,6679	16,1938	145,9058	22,6907	15,4446	20,4095	
12,7186	3565012	73,9230	2,8456	110,9236	109,7246	1,9558	3,5008	4,0213	5,8122	125,6509	4,8734	DDHD1
14,4931	3655949	17,1823	7,8632	228,5682	10,7405	337,0490	16,5361	171,6104	11,8408	34,6349	9,8509	

17,6580	2844504	333,6570	11,1425	275,4881	24,5049	642,5909	9,4351	7,9808	15,6013	80,8007	6,1641	
19,6998	2360401	34,2239	22,2654	751,0891	452,5082	889,2762	38,1268	806,1174	16,9594	30,7503	21,4740	
19,7809	3838101	1547,560 0	77,0779	1965,504 0	78,2352	3850,941 0	327,9041	338,8894	7,4184	327,4806	41,9647	FTL
20,6812	2571309	154,1023	4,8334	213,1738	55,9715	90,8889	2,6792	14,2979	1,6340	99,9599	1,7672	RGPD3

Tabelle 26: Gene, die durch den TTK-Inhibitor verstärkt exprimiert wurden.

Zellen der Linie L-428 wurden für 7 Tage mit einem Inhibitor für TTK bzw. DMSO (Kontrolle) inkubiert. Anschließend wurde RNA isoliert und DNA-Mikroarray-Analysen mit Human Transcriptome 2.0 Arrays durchgeführt. Dargestellt sind die Gene, die durch die Inkubation mit dem TTK-Inhibitor hochreguliert wurden. Die Auswertung der Daten erfolgte mit der Transcriptome Analysis Sofware von Affymetrix.

Transcript Cluster ID	L-428 Kontrolle (log2)	L-428 TTK- Inhibitor (log2)	Fold Change (linear) (Kontrolle vs. TTK-Inhibitor)	Gensymbol
TC11001604.hg.1	2,73	4,30	-2,98	
TC11001639.hg.1	6,19	7,77	-2,98	
TC14000667.hg.1	2,01	3,59	-2,98	SNORD113-3
TC14002241.hg.1	1,12	2,70	-2,98	IGHD2-2
TC17000468.hg.1	3,56	5,14	-2,98	
TC17001443.hg.1	3,56	5,14	-2,98	
TC17001444.hg.1	3,56	5,14	-2,98	
TC15001926.hg.1	4,43	6,01	-2,99	
TC6_mann_hap4000217.hg.1	5,41	6,99	-2,99	HCG27
TC15001883.hg.1	2,39	3,98	-3,00	
TC15001939.hg.1	2,47	4,07	-3,02	
TC01004353.hg.1	2,95	4,55	-3,04	
TC09000409.hg.1	2,95	4,56	-3,04	
TC09001303.hg.1	2,95	4,56	-3,04	
TC17000313.hg.1	5,94	7,54	-3,04	
TC04001524.hg.1	6,27	7,88	-3,05	

TC09001262.hg.1	4,82	6,43	-3,05	
TC09001268.hg.1	4,82	6,43	-3,05	
TC09001272.hg.1	4,82	6,43	-3,05	
TC14000620.hg.1	4,97	6,59	-3,06	
TC18000479.hg.1	2,74	4,35	-3,06	
TC03000972.hg.1	2,54	4,16	-3,07	
TC06000441.hg.1	5,44	7,06	-3,07	
TC08002280.hg.1	1,80	3,42	-3,07	
TC0X001385.hg.1	3,29	4,91	-3,07	MIR18B
TC11001699.hg.1	2,98	4,61	-3,09	
TC15000239.hg.1	7,02	8,65	-3,09	
TC02001704.hg.1	1,98	3,61	-3,10	
TC04000117.hg.1	2,07	3,70	-3,10	
TC05001460.hg.1	4,56	6,20	-3,10	
TC12001030.hg.1	5,43	7,06	-3,10	
TC14001094.hg.1	2,03	3,66	-3,10	
TC04001305.hg.1	4,68	6,31	-3,11	CXCL10
TC06000455.hg.1	2,28	3,92	-3,11	
TC16001000.hg.1	2,69	4,32	-3,11	
TC16001006.hg.1	2,69	4,32	-3,11	
TC16001026.hg.1	2,69	4,32	-3,11	
TC01001480.hg.1	2,14	3,79	-3,12	MIR3119-2
TC15000912.hg.1	1,48	3,12	-3,12	

TC14000677.hg.1	2,28	3,93	-3,14	SNORD114-2
TC17001357.hg.1	1,63	3,29	-3,14	
TC17001738.hg.1	4,45	6,10	-3,14	
TC06000488.hg.1	2,31	3,96	-3,15	
TC08001687.hg.1	3,49	5,15	-3,15	MIR151A
TC06001618.hg.1	3,12	4,78	-3,16	
TC05002143.hg.1	1,85	3,52	-3,17	MIR340
TC22001446.hg.1	2,70	4,36	-3,17	IGLJ5
TC06000711.hg.1	2,60	4,27	-3,18	
TC0X000313.hg.1	5,85	7,51	-3,18	
TC0Y000087.hg.1	3,53	5,20	-3,18	
TC0Y000218.hg.1	3,53	5,20	-3,18	
TC13000545.hg.1	3,86	5,53	-3,18	
TC13000546.hg.1	3,86	5,53	-3,18	
TC06001635.hg.1	2,03	3,71	-3,19	
TC12000083.hg.1	3,31	4,99	-3,19	SCARNA10
TC16001289.hg.1	5,73	7,40	-3,19	
TC18000346.hg.1	1,44	3,12	-3,19	
TC06001629.hg.1	1,82	3,50	-3,20	
TC09001898.hg.1	3,91	5,58	-3,20	
TC02001059.hg.1	3,60	5,28	-3,21	
TC03001184.hg.1	4,50	6,18	-3,22	
TC22000769.hg.1	2,96	4,65	-3,22	

TC01000855.hg.1	4,29	5,98	-3,23	
TC06000235.hg.1	4,17	5,86	-3,23	
TC16000263.hg.1	7,88	9,58	-3,25	
TC14001128.hg.1	2,68	4,39	-3,26	
TC09001705.hg.1	3,81	5,52	-3,27	MIR3689C
TC15001879.hg.1	1,95	3,66	-3,27	
TC13000371.hg.1	3,62	5,34	-3,28	RNY5P8
TC01002412.hg.1	6,58	8,30	-3,29	IFI6
TC0X000639.hg.1	3,46	5,18	-3,30	
TC19001425.hg.1	5,37	7,10	-3,30	
TC01000457.hg.1	1,40	3,13	-3,31	
TC12000045.hg.1	2,46	4,18	-3,31	
TC02002265.hg.1	1,87	3,60	-3,32	
TC05001250.hg.1	5,23	6,96	-3,32	
TC16000572.hg.1	2,70	4,44	-3,33	
TC06000237.hg.1	4,63	6,37	-3,34	
TC11001626.hg.1	1,83	3,57	-3,34	
TC02000690.hg.1	2,46	4,21	-3,35	
TC06000207.hg.1	2,94	4,69	-3,36	
TC06001377.hg.1	2,94	4,69	-3,36	
TC06001835.hg.1	2,94	4,69	-3,36	
TC12000051.hg.1	2,65	4,40	-3,37	
TC09001370.hg.1	2,98	4,73	-3,38	

TC05001314.hg.1	3,75	5,51	-3,39	
TC15001425.hg.1	1,95	3,71	-3,39	
TC17002231.hg.1	3,75	5,51	-3,39	
TC11001601.hg.1	4,81	6,57	-3,40	
TC0X001136.hg.1	5,21	6,97	-3,41	
TC15000998.hg.1	4,05	5,82	-3,42	
TC08001612.hg.1	2,80	4,58	-3,43	
TC09002536.hg.1	2,29	4,07	-3,43	
TC12002664.hg.1	8,25	10,03	-3,44	
TC18000366.hg.1	1,90	3,69	-3,44	
TC01004642.hg.1	3,95	5,74	-3,45	
TC06000210.hg.1	2,60	4,39	-3,45	
TC06001833.hg.1	2,60	4,39	-3,45	
TC06001836.hg.1	2,90	4,69	-3,45	
TC15001391.hg.1	5,30	7,09	-3,46	
TC15001421.hg.1	6,50	8,29	-3,46	
TC15001885.hg.1	2,29	4,08	-3,47	
TC04000508.hg.1	5,87	7,69	-3,53	
TC17000494.hg.1	2,50	4,32	-3,53	RNY4P8
TC15000143.hg.1	4,71	6,53	-3,54	
TC09000168.hg.1	6,27	8,10	-3,56	
TC0X000187.hg.1	6,27	8,10	-3,56	
TC09000681.hg.1	2,63	4,47	-3,58	

TC02000693.hg.1	2,05	3,90	-3,60	
TC12001420.hg.1	1,51	3,36	-3,60	RNY5
TC04000811.hg.1	6,11	7,97	-3,62	
TC11001618.hg.1	2,69	4,54	-3,62	
TC03003027.hg.1	2,10	3,96	-3,63	
TC05002179.hg.1	3,00	4,86	-3,63	
TC15000022.hg.1	3,67	5,53	-3,63	
TC15000906.hg.1	4,85	6,71	-3,63	
TC15001066.hg.1	3,67	5,53	-3,63	
TCUn_gl000223000003.hg.1	4,07	5,93	-3,63	
TC06000206.hg.1	2,67	4,53	-3,64	
TC15000925.hg.1	2,44	4,30	-3,64	
TC0X001044.hg.1	4,00	5,87	-3,65	
TC15001370.hg.1	3,40	5,27	-3,65	
TC02002671.hg.1	3,44	5,32	-3,66	
TC03000100.hg.1	3,44	5,32	-3,66	
TC10001442.hg.1	3,44	5,32	-3,66	
TC04000118.hg.1	1,29	3,16	-3,67	
TC12000047.hg.1	5,85	7,73	-3,67	
TC20000679.hg.1	5,58	7,46	-3,67	
TC15001929.hg.1	2,90	4,78	-3,69	
TC02003675.hg.1	2,07	3,96	-3,71	

TC17001291.hg.1	2,80	4,70	-3,72	
TC12000470.hg.1	5,08	6,98	-3,74	
TC15001438.hg.1	6,09	7,99	-3,74	
TC11001611.hg.1	2,55	4,46	-3,78	
TC16000392.hg.1	2,66	4,58	-3,78	
TC16001068.hg.1	2,66	4,58	-3,78	
TC17000260.hg.1	5,44	7,36	-3,78	
TC17001219.hg.1	5,44	7,36	-3,78	
TC15000904.hg.1	5,25	7,17	-3,79	
TC22000579.hg.1	2,48	4,40	-3,79	
TC01001210.hg.1	2,11	4,03	-3,80	RNY4P25
TC10001390.hg.1	1,84	3,76	-3,80	
TC15000565.hg.1	3,09	5,01	-3,80	
TC20000165.hg.1	2,31	4,24	-3,80	
TC11002390.hg.1	6,74	8,68	-3,83	HSPA8; SNORD14D; SNORD14C
TC17000412.hg.1	3,91	5,84	-3,84	
TC17000419.hg.1	3,91	5,84	-3,84	
TC17000426.hg.1	3,91	5,84	-3,84	
TC04000123.hg.1	1,76	3,72	-3,89	
TC10001389.hg.1	2,10	4,07	-3,89	
TC06001651.hg.1	6,43	8,39	-3,90	
TC11001652.hg.1	5,27	7,25	-3,95	

TC0X001411.hg.1	5,30	7,29	-3,97	
TC16000200.hg.1	4,45	6,45	-4,01	
TC16000908.hg.1	4,45	6,45	-4,01	
TC15000987.hg.1	3,98	6,07	-4,25	
TC19001320.hg.1	4,53	6,62	-4,25	
TC0X001410.hg.1	5,34	7,43	-4,27	
TC19001428.hg.1	2,60	4,70	-4,30	
TC06000430.hg.1	6,95	4,83	4,34	
TC06000433.hg.1	3,33	5,46	-4,39	
TC16000855.hg.1	3,50	5,66	-4,46	
TC01003063.hg.1	3,72	5,90	-4,54	
TC09001384.hg.1	3,72	5,90	-4,54	
TC14001411.hg.1	1,69	3,88	-4,55	
TC06000487.hg.1	2,37	4,56	-4,56	
TC18000351.hg.1	1,90	4,09	-4,57	
TC03001182.hg.1	2,03	4,25	-4,67	
TC14002228.hg.1	2,72	5,01	-4,91	IGHD3-16
TC11001678.hg.1	1,29	3,59	-4,93	
TC14001416.hg.1	2,13	4,44	-4,98	
TC02002089.hg.1	3,18	5,52	-5,05	
TC09000298.hg.1	3,18	5,52	-5,05	
TC09001122.hg.1	3,18	5,52	-5,05	
TC09001149.hg.1	3,18	5,52	-5,05	

TC14002229.hg.1	3,55	5,92	-5,15	IGHD2-15
TC04000121.hg.1	2,24	4,61	-5,16	
TC09001251.hg.1	1,52	3,89	-5,18	
TC15000895.hg.1	4,47	6,85	-5,20	
TC12001200.hg.1	5,27	7,73	-5,49	
TC15000503.hg.1	1,90	4,38	-5,56	
TC17000432.hg.1	3,85	6,33	-5,56	
TC17000455.hg.1	3,85	6,33	-5,56	
TC17000733.hg.1	3,85	6,33	-5,56	
TC17000751.hg.1	3,85	6,33	-5,56	
TC17001416.hg.1	3,85	6,33	-5,56	
TC01001068.hg.1	3,41	5,88	-5,57	
TC01003069.hg.1	3,41	5,88	-5,57	
TC03002186.hg.1	3,41	5,88	-5,57	
TC04000290.hg.1	3,41	5,88	-5,57	
TC09000146.hg.1	3,41	5,88	-5,57	
TC09000300.hg.1	3,41	5,88	-5,57	
TC09000408.hg.1	3,41	5,88	-5,57	
TC09001120.hg.1	3,41	5,88	-5,57	
TC09001147.hg.1	3,41	5,88	-5,57	
TC09001304.hg.1	3,41	5,88	-5,57	
TC13000441.hg.1	3,41	5,88	-5,57	
TC18000081.hg.1	3,41	5,88	-5,57	

TC21000278.hg.1	3,41	5,88	-5,57
TC07000773.hg.1	4,32	6,81	-5,59
TC15001531.hg.1	2,43	4,95	-5,72
TC02002066.hg.1	2,30	4,82	-5,74
TC06001648.hg.1	3,02	5,54	-5,74
TC17000231.hg.1	7,41	9,94	-5,75
TC17001237.hg.1	7,41	9,94	-5,75
TC17001232.hg.1	7,59	10,13	-5,80
TC06001379.hg.1	3,86	6,42	-5,90
TC06001839.hg.1	3,86	6,42	-5,90
TC15000900.hg.1	2,03	4,63	-6,08
TC04000287.hg.1	3,19	5,80	-6,10
TC04001184.hg.1	3,19	5,80	-6,10
TC09001387.hg.1	3,19	5,80	-6,10
TC18000079.hg.1	3,19	5,80	-6,10
TC06000495.hg.1	2,45	5,07	-6,15
TC11001709.hg.1	3,37	6,03	-6,32
TC12000056.hg.1	3,99	6,66	-6,33
TC15001897.hg.1	1,41	4,09	-6,43
TC06000428.hg.1	4,91	7,60	-6,44
TC15001518.hg.1	3,68	6,43	-6,75
TC02002087.hg.1	3,09	5,86	-6,83
TC14001398.hg.1	4,21	6,99	-6,84

TC14001396.hg.1	4,23	7,05	-7,08	
TC06000442.hg.1	2,45	5,33	-7,35	

Tabelle 27: Gene, die durch den TTK-Inhibitor herunterreguliert wurden.

Zellen der Linie L-428 wurden für 7 Tage mit einem Inhibitor für TTK bzw. DMSO (Kontrolle) inkubiert. Anschließend wurde RNA isoliert und DNA-Mikroarray-Analysen mit Human Transcriptome 2.0 Arrays durchgeführt. Dargestellt sind die Gene, die durch die Inkubation mit dem TTK-Inhibitor herunterreguliert wurden. Die Auswertung der Daten erfolgte mit der Transcriptome Analysis Sofware von Affymetrix.

Transcript Cluster ID	L-428 Kontrolle (log2)	L-428 TTK- Inhibitor (log2)	Fold Change (linear) (Kontrolle vs. TTK-Inhibitor)	Gensymbol
TC01005984.hg.1	3,75	2,16	3,02	
TC06000494.hg.1	7,10	5,49	3,04	
TC12000443.hg.1	3,80	2,19	3,04	
TC22000744.hg.1	6,41	4,80	3,04	
TC01006165.hg.1	6,55	4,94	3,05	
TC15001437.hg.1	4,86	3,24	3,06	
TC15001364.hg.1	4,49	2,87	3,07	
TC0Y000095.hg.1	5,61	3,99	3,08	
TC0Y000208.hg.1	5,61	3,99	3,08	
TC09002182.hg.1	7,45	5,81	3,10	
TC15000531.hg.1	6,84	5,19	3,12	
TC18000701.hg.1	5,60	3,96	3,12	
TC19002475.hg.1	7,30	5,65	3,15	
TC06000009.hg.1	7,15	5,48	3,16	FOXQ1

TC16001731.hg.1	6,60	4,93	3,17	
T0000010==1	0.10	1.10		D.M. GODOO
TC02001875.hg.1	6,10	4,42	3,20	RNA5SP93
TC08002362.hg.1	4,42	2,73	3,22	
TC15000168.hg.1	8,28	6,59	3,22	
TC15000211.hg.1	8,28	6,59	3,22	
	0,20		5,==	
TC15001125.hg.1	8,28	6,59	3,22	
TC15001152.hg.1	8,28	6,59	3,22	
1C 1500 1 152.lig. 1	0,20	0,59	3,22	
TC06000479.hg.1	5,95	4,25	3,25	
TC07000062.hg.1	6,94	5,24	3,25	
TC19002127.hg.1	8,08	6,38	3,25	
TC11002276.hg.1	6,52	4,81	3,28	RNA5SP350
TC20000329.hg.1	5,47	3,76	3,28	
1020000323.fig.1	3,47	3,70	3,20	
TC0X002179.hg.1	4,98	3,23	3,35	
T004000001 . 4	4.00	0.04	0.00	OTT. II IN 100000007100
TC01003603.hg.1	4,36	2,61	3,36	OTTHUMG00000037400; GS1-122H1.1
TC15000159.hg.1	6,25	4,48	3,42	
TC15000185.hg.1	6,25	4,48	3,42	
TC15000960.hg.1	6,25	4,48	3,42	
TC15001139.hg.1	6,25	4,48	3,42	
1 3 1 3 3 3 1 1 3 3 ing. 1	0,20	1, 10	0,12	
TC15001173.hg.1	6,25	4,48	3,42	
TC19000224 b = 4	4.60	2.02	2.47	
TC18000331.hg.1	4,62	2,82	3,47	
TC06001641.hg.1	4,45	2,62	3,54	
TC06003772.hg.1	4,84	3,02	3,54	

TC06000434.hg.1	5,27	3,44	3,57	
TC06002606.hg.1	7,28	5,44	3,58	
TC11001661.hg.1	6,51	4,67	3,58	
TC02000840.hg.1	3,35	1,47	3,67	
TC14000015.hg.1	3,35	1,47	3,67	
TC14000021.hg.1	3,35	1,47	3,67	
TC14000022.hg.1	3,35	1,47	3,67	
TC14000865.hg.1	3,35	1,47	3,67	
TC15001019.hg.1	3,35	1,47	3,67	
TC15001033.hg.1	3,35	1,47	3,67	
TC22000449.hg.1	3,35	1,47	3,67	
TC09000683.hg.1	4,86	2,94	3,79	
TC13000541.hg.1	6,08	4,16	3,79	
TC15000008.hg.1	4,86	2,94	3,79	
TC15000033.hg.1	4,86	2,94	3,79	
TC15000037.hg.1	4,86	2,94	3,79	
TC15000132.hg.1	4,86	2,94	3,79	
TC15000910.hg.1	5,51	3,59	3,79	
TC15001046.hg.1	4,86	2,94	3,79	
TC15001100.hg.1	4,86	2,94	3,79	
TC04002344.hg.1	4,12	2,15	3,91	
TC05001103.hg.1	7,74	5,75	3,97	MIR4635
TC15001941.hg.1	6,79	4,78	4,02	

TC22000571.hg.1	6,42	4,42	4,02	
	-, -	.,	-,	
TC15000568.hg.1	6,12	4,10	4,05	
TC17000249.hg.1	6,23	4,19	4,09	
TC22000577.hg.1	6,10	4,06	4,10	
TC15001878.hg.1	4,69	2,65	4,12	
TC06001609.hg.1	4,84	2,77	4,19	
T0450044041	0.00	0.00	1.00	
TC15001424.hg.1	6,00	3,92	4,23	
TC06000430.hg.1	6,95	4,83	4,34	
1 C06000430.fig.1	0,95	4,03	4,34	
TC15000769.hg.1	4,39	2,23	4,49	
1013000703.lig.1	4,00	2,20	4,49	
TC15000782.hg.1	4,39	2,23	4,49	
1 0 100001 02igi1	1,00	2,20	.,	
TC15000804.hg.1	4,39	2,23	4,49	
	,	•	,	
TC15001780.hg.1	4,39	2,23	4,49	
TC15001378.hg.1	4,05	1,87	4,54	
TC15000024.hg.1	4,34	2,05	4,90	
TC15000148.hg.1	4,34	2,05	4,90	
TC15000207.hg.1	4,34	2,05	4,90	
T045000001 4	101	0.05	1.00	
TC15000238.hg.1	4,34	2,05	4,90	
TC15000243.hg.1	4,34	2,05	4,90	
1015000245.flg.1	4,34	۷,00	4,30	
TC15001014.hg.1	4,34	2,05	4,90	
	.,• .	_,00	.,50	
TC15001053.hg.1	4,34	2,05	4,90	
	,	, -	,	
TC15001115.hg.1	4,34	2,05	4,90	
TC15001129.hg.1	4,34	2,05	4,90	
TC15001157.hg.1	4,34	2,05	4,90	

TC15001673.hg.1	4,34	2,05	4,90	
TC15000529.hg.1	7,59	5,29	4,91	
TC01004011.hg.1	8,74	6,40	5,07	
TC08000845.hg.1	9,05	6,63	5,37	SCXA; SCXB
TC17000271.hg.1	6,10	3,48	6,12	
TC22000587.hg.1	6,00	3,25	6,72	
TC15000894.hg.1	5,11	2,25	7,24	
TC01000807.hg.1	7,28	4,37	7,51	
TC03001185.hg.1	7,06	4,14	7,57	