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Abstract
Purpose The anatomy of the circle of Willis (CoW), the brain’s main arterial blood supply system, strongly differs between
individuals, resulting in highly variable flow fields and intracranial vascularization patterns. To predict subject-specific
hemodynamics with high certainty, we propose a data assimilation (DA) approach that merges fully 4D phase-contrast
magnetic resonance imaging (PC-MRI) data with a numerical model in the form of computational fluid dynamics (CFD)
simulations.
Methods To the best of our knowledge, this study is the first to provide a transient state estimate for the three-dimensional
velocity field in a subject-specific CoW geometry using DA. High-resolution velocity state estimates are obtained using
the local ensemble transform Kalman filter (LETKF).
Results Quantitative evaluation shows a considerable reduction (up to 90%) in the uncertainty of the velocity field state
estimate after the data assimilation step. Velocity values in vessel areas that are below the resolution of the PC-MRI data
(e.g., in posterior communicating arteries) are provided. Furthermore, the uncertainty of the analysis-based wall shear
stress distribution is reduced by a factor of 2 for the data assimilation approach when compared to the CFD model alone.
Conclusion This study demonstrates the potential of data assimilation to provide detailed information on vascular flow,
and to reduce the uncertainty in such estimates by combining various sources of data in a statistically appropriate fashion.
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Introduction

Recent studies have investigated the influence of hippocam-
pal vascularization patterns on cognitive performance [1],
yet very little is known about the relationship between the
interaction of cerebral blood flow and vascular profiles on
cognition. The circle of Willis (CoW) is the primary collat-
eral pathway for cerebral vasculature [2] and its hemody-
namics provide a representation of the global intracranial
vascularization structure. Its anatomy varies significantly
between individual subjects. Often there is a lack of com-
munication between the four input vessels (internal carotid
and vertebral arteries), due to occlusion in one of the vessel
branches or even a lack of the branch as a normal variant
[3]. This high variability necessitates subject-specific inves-
tigation of cerebral blood flow, which is difficult to assess
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and often the resulting flow estimates show considerable
uncertainties. The flow state in intracranial arteries can be
estimated using various methods. Phase-contrast magnetic
resonance imaging (PC-MRI) measurements can be used
to obtain time-dependent quantitative velocity fields but are
impaired by low signal-to-noise ratios (SNR), as well as
limited spatial and temporal resolution [4, 5]. An alternative
to in vivo measurements is the use of computational fluid
dynamics simulations (CFD) to extract subject-specific flow
information [3, 6, 7]. Such an approach is advantageous
since the resulting state estimate satisfies conservation laws
and captures even fine intracranial arteries, but it is highly
dependent on the specification of correct initial and bound-
ary conditions, such as the exact vessel geometry and flow
input [8, 9]. Contrary to flow investigation in aneurysms,
existing flow studies in complex vascular pathways pro-
vide only simple comparisons between measurements and
simulations, or use either of the two alone for flow quan-
tification [10–12]. Inflow and outflow conditions are one
of the major unknowns when constructing the numerical
model [13]; often the associated uncertainty and the corre-
sponding impact on flow estimates is not quantified [14].
Approaches that are more sophisticated use available PC-
MRI data as initial conditions for CFD simulations [3, 6];
however, no study incorporates the entire 3D velocity field
into the numerical model.

In this study, we demonstrate the potential for data assim-
ilation (DA) to provide improved state estimates by merg-
ing measurement data with numerical model simulations
based on their respective uncertainties. In the setting of
Gaussian distributed variables, DA produces state estimates
with lower uncertainty (variance) than both the measure-
ment data and model simulations. Additionally, the tempo-
ral and spatial resolution of measured parameters can be
increased. Although widely used in many areas of science
and engineering, the application of DA in hemodynamics
is still in its infancy. Only a handful of studies have consid-
ered intracranial aneurysms, using either sequential or vari-
ational DA approaches [15–21]. Variational methods can
be computationally expensive due to the adjoint equations,
which are about twice as costly to solve as the direct equa-
tions, and often require several iterations until convergence.
Consequently, most DA studies consider only steady-state
flow conditions and/or 2D geometries. The few transient ap-
proaches for DA in aneurysms are limited by the low spatial
resolution of the numerical model [19, 20]. The computa-
tional cost of DA becomes even more of an issue for highly
complex geometries, such as the CoW, since the extent of
vessel branches that are included in the model greatly influ-
ences runtime [22]. In this study, we use the local ensemble
transform Kalman filter (LETKF) [23] to improve hemo-
dynamic flow estimates in the CoW, compared to either
measurement data or CFD simulations alone. The LETKF,

a method in sequential DA, is well-suited to this applica-
tion, since it can handle the non-linearity of the Navier-
Stokes equations and samples the system state and covari-
ance matrices by an ensemble of CFD simulations. Similar
to the original ensemble Kalman filter [24], the LETKF di-
rectly provides an estimate of the system uncertainty by the
spread of the ensemble members. The localization proce-
dure inherent in the LETKF enables parallel computation
and reduces the number of ensemble members needed for
a statistical representation of the state estimate.

To the best of our knowledge, this study is the first to
provide a transient state estimate for the 3D velocity field
in a subject-specific CoW geometry using DA. By includ-
ing the DA step, we gain detailed information about the
intracranial vascular supply that comes together with an
uncertainty quantification of related parameters. This study
demonstrates DA for a subject-specific intracranial model
with high complexity (i.e., small vessel radii, multiple in-
lets and outlets) and makes use of all obtained 4D PC-MRI
flow data to generate an improved state estimate.

Modeling and Data Assimilation

Measurement Data

The complete anatomy of the classical CoW, including all
connecting arteries, is presented in this study. The mea-
surement data, in the form of PC-MRI flow fields, is used
for the segmentation of the modeling geometry, compari-
son of state estimates, and most importantly, serves as ob-
servations (yobs) in the DA experiment. The 4D flow data
were acquired on a healthy volunteer using a 7T whole-
body MRI system (Siemens Healthineers, Erlangen, Ger-
many) in a 32-channel head coil (Nova Medical, Wilm-
ington, MA, USA) using 4D PC-MRI. The acquisition se-
quence was based on an radio-frequency(RF)-spoiled gra-
dient echo with quantitative flow encoding in all three spa-
tial dimensions [5, 25]. Information on electrocardiogram
(ECG) gating was delivered by an acoustic cardiac gating
device (MRI.Tools GmbH, Berlin, Germany). For each of
the resulting 17 time steps, 3 velocity maps are available
that contain information on the x-, y-, and z-velocity com-
ponents, as well as one structural magnitude image. The
acquired image data represent an isotropic voxel size of
0.64mm and a temporal resolution of 54.4ms. The veloc-
ity encoding parameter (VENC) that defines the highest
velocity that is encoded uniquely in the phase was set to
0.9m/s. The SNR was found to be approximately 55. Post-
processing of the acquired raw data was undertaken using
MeVisLab 2.3.1 (MeVis, Bremen, Germany) and the au-
tomated tool described in Bock et al. [26]. This includes
noise masking, antialiasing and the conversion to the En-

K



Hemodynamic Data Assimilation in a Subject-specific Circle of Willis Geometry 645

Sight (ANSYS Inc., Canonsburg, PA, USA) file format.
Phase-wraps that occurred during peak systolic flows in
both middle cerebral arteries have been manually corrected
within the postprocessing pipeline. In addition to the PC-
MRI acquisition, high-resolution (0.32mm isotropic) time-
of-flight (ToF) imaging was performed on the same healthy
volunteer. The ToF technique is particularly suited to image
vascular structures. A prospective motion correction system
was applied for both the 4D PC-MRI scan and the ToF scan
[27–31]. As the correction was only applied in-scan, not in-
ter-scan, registration of both scans was still necessary.

Numerical Model

The blood flow is fully governed by the non-linear Navier-
Stokes equations. They are solved using the finite vol-
ume solver STAR-CCM +14.04 (Siemens Product Lifecycle
Management Software Inc., Plano, TX, USA). The numeri-
cal mesh consisted of ~4.3 million polyhedral and prismatic
cells, having a base size of 0.1mm and 5 prism layers at the
wall. The vessel walls are assumed to be rigid and blood
is considered as an incompressible (ρ= 1055kg/m3), New-
tonian (η= 4mPas) fluid. The time-step for the underlying
laminar, transient simulations is chosen to be t= 1ms. Spec-
ification of inflow and outflow conditions, and their uncer-
tainty is discussed in Sect. “Uncertainty Quantification”.
The segmentation of the model geometry is described be-
low.

Geometry Segmentation

The 3D surface segmentation was extracted from the
4D PC-MRI data. We propose the following segmentation

Fig. 1 a Overview of the investigated circle of Willis of a healthy volunteer. Main supplying vessels are labeled and inlets (I) and outlets (O) are
specified. The grey shaded areas are used for the comparison of the wall shear stress distribution in Fig. 3b. b Sampled inflow trajectories for the
ensemble CFD simulations. Top: overlaid inflow trajectories for the simulated ensemble members, bottom: variance of the boundary conditions
displayed as shaded areas around the corresponding mean value

procedure, which was used to enhance the SNR of the data.
First, the phase as well as the magnitude images were tem-
porally averaged, yielding only a single 3D volume each.
Next, the phase images were combined and multiplied with
the temporally averaged magnitude image. Then, thresh-
olding was applied in order to extract the vessel surface.
For surface extraction, the marching cubes algorithm was
applied within the MeVisLab framework [32]. In order to
remove artifacts on the resulting surface mesh, corrections
on subvoxel level were executed, as described in [33]. For
validation of the segmented 3D surface model, we also
carried out a segmentation of the ToF 7T MRI dataset
by applying the Frangi filter [34]. Although we observed
very good agreement in the larger arteries, displacements
between the surface meshes from the ToF and the PC data
were present in the peripheral arteries. Therefore, we chose
the PC-MRI surface. For the posterior communicating
arteries (characterized by smaller diameters compared to
internal carotid, anterior and middle cerebral arteries), the
correction of the surface mesh was guided by the ToF seg-
mentation. Finally, the inlets and outlets of the 3D vessel
model were cut perpendicular to the vessel center line and
extruded to reduce the influence of boundary conditions.
An overview of the segmented model geometry, together
with the nomenclature of the inlet and outlet parts is given
in Fig. 1a.

Data Assimilation Algorithm

The standard DA problem consists of two components.
Firstly, a dynamic system related to a state vector xt and
a model for its time evolution (e.g., Navier-Stokes equa-
tions with velocity state variables), and secondly noisy ob-
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servations of the system states (e.g., PC-MRI velocity data)
according to

yobs
t = h .xt / + �t (1)

where �t is a noise term and h the observation operator
that relates the system states xt to the observation vari-
ables. The goal of DA is to combine model simulations of
xt (referred to as the background) and observations yobs

t to
obtain an improved estimate of the system states (referred
to as the analysis) at any given time t . The Kalman filter
[35] provides the optimal state estimate for linear systems
and Gaussian errors. Its Monte Carlo extension to non-lin-
ear systems, the EnKF [24] has become widely popular as
a relatively accurate and robust DA method for high di-
mensional applications. The LETKF [23] is an ensemble
Kalman type algorithm belonging to the class of determin-
istic square root filters. Hence, the square root of the anal-
ysis error covariance matrix is used to produce the analysis
in such a way that the analysis covariance matches that
of the Kalman filter. It also has the advantage of avoiding
the direct calculation of the high dimensional analysis sam-
ple covariance matrix, as the computations are transformed
into ensemble space, which is of lower dimensionality. The
square root filter equations are as follows:
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where xb
t is the background ensemble mean, i.e., the sam-

ple mean of model simulations of the state xt at time t ;
xa

t is the analysis ensemble mean, i.e., the sample mean
of the state after combining simulations and measurements;
Xt is the matrix of ensemble perturbations from the mean
and Y b

t the matrix of ensemble perturbation in observation
space; eP a

t is the analysis covariance matrix in ensemble
space; N is the number of ensembles; Kt is the Kalman gain
matrix, which provides the appropriate weighting of obser-
vations and model simulations based on their uncertainties;
W a

t is determined using the eigenvectors and eigenvalues of
eP a

t and refers to the perturbations in the ensemble space
and x

a;i
t indicates the i-th ensemble member. The analysis

mean is reconstructed The LETKF calculates local analyses
by taking only observations in a predefined neighborhood
of each state grid point into account. Thus, Eqs. 2, 3 4 and 5
are transformed to a local scale and are repeated for each
model grid point [23]. This enables efficient parallel com-

putation and avoids spurious correlations between distant
observations.

The original algorithm has been adapted to match the
requirements of this hemodynamic application. In a pre-
vious study, the LETKF has been validated against highly
resolved ground truth measurement data in a synthetic
aneurysm model [20]. Although the CoW geometry is
more complex, the results of the ideal aneurysm case pro-
vide guidelines for the DA settings (e.g., ensemble size,
observation operator, localization radius) in this study. The
observation operator was defined to be a spatial binning
operator that maps the model variables to the lower res-
olution observation space. A sensitivity analysis showed
that a localization radius of 7mm produced reliable local
analyses. We have chosen an ensemble size of 25 to balance
computational expense and accuracy. The data assimila-
tion time window was given by the temporal resolution
of the measurement data; observations are available every
54.4ms.

Uncertainty Quantification

A successful implementation of the DA step strongly de-
pends on the correct description of background and obser-
vation uncertainty. We used the velocity variance of the PC-
MRI measurements as an indication of the observation un-
certainty. Based on Pelc et al. [4], the velocity variance
is directly related to the VENC and the SNR in corre-
sponding magnitude images, �v =

p
2

�
VENC
SNR

. Uncertainty in
the numerical simulations arises from initial and boundary
conditions, captured by the inflow and outflow ensemble.
Flows are assumed to be distributed according to indepen-
dent Gaussian curves, with mean and standard deviation ap-
proximated by the sample statistics of flow rates extracted
from the original PC-MRI data at 10 different positions
in each inlet or outlet vessel at each time point. Ensem-
bles were generated at each time step by sampling from
these Gaussians, with cubic interpolation used to generate
a continuous trajectory (Fig. 1b). A flow-split outlet bound-
ary condition was used in the ensemble CFD simulations.
Specifically, outflows were sampled consistently with the
inflow rates, and transformed to ratios by dividing by the
sum of outflows over all outlets for each sample.

Results

Qualitative Results

The peak systolic flow is compared between PC-MRI data,
open loop calculation and analysis estimate. The open loop
refers to the state estimate that is obtained by an average of
the purely numerical background simulation with no DA.
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Fig. 2 Qualitative comparison of peak-systolic flow. a Velocity profiles at characteristic locations in the vascular system are compared between
analysis, open loop and PC-MRI. Numerically obtained flow profiles (analysis, open loop) use transparent visualizations; the PC-MRI flow data
is displayed opaquely. The bottom row corresponds to the cross-section of the velocity distribution in the respective vessel and the top row
corresponds to the elevated surface of this distribution. b Wall shear stress (WSS) distribution over the complete CoW for both analysis and open
loop c Analysis-based streamlines plotted in the complete circulatory system

Fig. 2a displays the velocity profiles at four characteristic
locations (see Fig. 1a) in the circulatory flow system. Nu-
merical flow profiles (analysis and open loop) are displayed
semi-transparently and are overlaid with an opaque repre-
sentation of the PC-MRI measurements. The corresponding
cross-sectional velocity magnitudes are displayed below. In
general, the data assimilation step shifts the estimated flow
profiles closer to the measurements but keeps the shape
similar to the open loop. Because of their higher resolution,
analysis and open loop flow profiles appear to be smoother
in comparison to the measurement-based profiles. This ef-
fect is most pronounced for velocity values near the vessel
walls, leading to a better representation of geometry edges.

The resolution of PC-MRI is not sufficient for the calcu-
lation of wall shear stress (WSS) on the CoW wall surface
using direct approaches based on the velocity gradient at
the wall surface; however, WSS can be derived using the
analysis state estimates, which are available at CFD grid
resolution, using the stream-wise component of the veloc-
ity gradient in the wall-normal direction. The qualitative
comparison between both distributions (Fig. 2b) shows an
increase in WSS for the analysis calculation in the anterior
part of the CoW, as well as in the middle cerebral arteries.
Left and right posterior arteries have higher WSS values for

the open loop estimate. These findings are consistent with
the qualitative evaluation of the velocity distribution.

The streamlines displayed in Fig. 2c give a general
overview of the flow behavior within the CoW. They
are calculated based on the analysis flow field and show
smooth 3D flow trajectories. It is important to note that
both posterior communicating arteries connect the anterior
and posterior part of the CoW, but the flow can only be
observed in the left part.

Quantitative Results

The analysis ensemble mean xa
t provides an estimate of

the true vascular velocity field, and the ensemble spread
gives an estimate of the uncertainty. Fig. 3a provides an
overview of the outflow estimates of all measurement time
points from the analysis, open loop and measurements. Both
middle cerebral arteries, the left posterior cerebral artery
and one anterior cerebral artery have been chosen for com-
parison. In most cases, the ensemble mean is in the range
of the observations and the open loop, except for the left
middle cerebral artery (O-MCAl-3). For all four outflows
considered (O-ACA-2, O-PCAl, O-MCAl-3, O-MCAr-1),
a significant reduction in the variance of the state estimate
after the DA step is observed. The highest reduction is found
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Fig. 3 Quantitative comparison
between the different modalities
for quantities of interest. The
peak-systolic flow is illustrated
with a vertical grey line. a The
estimate and spread of volume
flow in four different arteries
is compared between analysis,
open loop and observations.
The band around the lines corre-
sponds to the calculated variance
of the state estimate (red: ob-
servations; orange: open loop;
green: analysis). b The averaged
WSS in six different regions of
the underlying geometry is com-
pared between open loop and
analysis. c Flow rate and WSS in
the left posterior communicating
artery

to be in the anterior communication artery. There, the anal-
ysis state estimate reduces the uncertainty at peak systolic
flow by 90% in comparison to the observations, and by
73% in comparison to the open loop simulation. The low-
est reduction in uncertainty is observed in the left middle

cerebral artery, and still corresponds to a reduction by 56%
compared to observations and by 60% compared to open
loop. Fig. 3b displays the average WSS for different parts
of the CoW. On average, the uncertainty concerning WSS
is reduced by a factor of 2 after DA. Overall, the averaged
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WSS over the whole CoW is slightly higher (5–30%) for
the analysis compared to the open loop prediction, except
for the anterior part where both show similar distributions.
Using DA, Fig. 3c reveals a significantly lower volume flow
through the left posterior communicating artery compared
to the open loop prediction, which is qualitatively more
consistent with the low signal intensities measured there
during PC-MRI acquisition.

Discussion

The DA experiment has shown to be beneficial in a number
of ways. The qualitative results (Fig. 2) give an indication
of the vascular communication in the underlying geome-
try. As it is depicted in the diagrams in Fig. 3, DA leads
to a strong reduction in uncertainty concerning flow rates
and wall shear stress. Second, the limited image resolution
of PC-MRI leads to areas in which no information from
the measurements can be gained at all (e.g., posterior com-
municating arteries). The open loop can already resolve the
very small arteries of the CoW, but with a large uncertainty.
By combining the two sources of data (measurements and
model), we obtain velocity values for the entire geometry
while keeping the uncertainty low. The quantitative eval-
uation of the outflow rate was focused on the supplying
arteries for smaller intracranial regions, e.g., the hippocam-
pal vascular supply. The analysis velocities here can be
used as improved initial conditions for further modeling in
smaller arteries. This can help to gain reliable information
about the intracranial hemodynamics and to connect that
information to diseases related to the hippocampal vascular
supply. Furthermore, quantitative hemodynamic parameter
evaluation, e.g., assessment of WSS or inflow jets, play
a crucial role for computer-based evaluation of cerebrovas-
cular diseases, e.g., intracranial aneurysms. An important
parameter for the assessment of rupture risk is the distri-
bution of wall shear stress. The DA enables the estima-
tion of this important quantity with strongly reduced un-
certainty in comparison to a purely numerical model run,
which would be beneficial for subject-specific aneurysm
research. Finally, computational times are not significantly
longer for the data assimilation compared to the open-loop
simulation. The analysis calculation for each of the observa-
tion time points requires approximately 17× 4CPU hours,
on top of the transient CFD simulation for all ensemble
members (25× 20CPU hours). The easy to parallelize na-
ture of the LETKF, as well as the possibility to use the
numerical model in a black box that enables user-defined
numerical models are the main advantages of the LETKF
in comparison to optimization-based approaches such as
variational DA. Nevertheless, the computational time needs
to be further optimized to ensure applicability of the data

assimilation approach in a clinical setting (e.g., using sur-
rogate models instead of high-resolution CFD simulations).

This study is a first step for assessing the benefits of DA
for complex intracranial vessel geometries, although some
limitations should be noted. First, a ground truth (i.e., a very
accurate estimate of the reality, for example from a more
sophisticated measuring device) is unavailable, which com-
plicates the verification of the analysis; however, the results
have clearly shown a reduction in uncertainty when com-
paring to either CFD or measurements alone. Second, there
are further theoretical aspects that have to be explored. For
example, the LETKF in its current form assumes indepen-
dence between the background and measurement errors;
however, the measurements have been used for both setting
up the numerical model and for assimilation, which could
lead to a non-negligible correlation between the errors in
the background state estimates and the measurements. Fur-
thermore, the recent implementation of the LETKF is based
on the assumption that the distribution of the observation
errors is Gaussian, which might not be completely true [36].
Nevertheless, the difference to Gaussian noise is small as
long as the SNR is sufficiently large [37–39]. The com-
plex nature of the PC-MRI observation data emphasizes
the need for data assimilation algorithms that are specif-
ically adapted to hemodynamic problems. Lastly, the ge-
ometry was segmented based on the PC-MRI data and not
on the highly resolved ToF data to reduce registration er-
rors. This increases the uncertainty of the geometry used
for the simulations due to the lower imaging resolution of
the PC-MRI data, but reduces the uncertainty related to the
registration procedure. We assume that the segmentation
comprising the middle cerebral artery might have suffered
from artifacts and does not match the true position very
well, leading to a mismatch of boundary layers between the
real geometry and the segmented counterpart. Nevertheless,
the data assimilation step shifts the flow rate closer to the
observations in comparison to the open loop (Fig. 3). A fu-
ture data assimilation study would account for both sources
of uncertainty (registration and resolution) simultaneously
while keeping track of the true position of the vessel walls.
A more sophisticated strategy for the segmentation of the
vessel boundaries by the use of non-rigid registration be-
tween highly resolved ToF data and the PC-MRI flow field
could account for this problem. Furthermore, the used ob-
servation operators can be optimized with respect to the
PC-MRI data, by including the point-spread function of the
acquisition sequence in the mapping function (e.g., sinc-
function for idealized Cartesian sampling, temporal filter-
ing) [16, 17, 36]. Finally, a sensitivity study to optimize the
data assimilation parameters (including ensemble size and
localization radius) is planned.
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Conclusion

In this study, we investigated the hemodynamics of a com-
plete subject-specific circle of Willis using data assimila-
tion. Fully 4D PC-MRI velocity measurements have been
incorporated into numerical simulations using a local en-
semble transform Kalman filter. The assimilation step has
greatly reduced the uncertainty of intracranial state esti-
mates in comparison to either CFD or measurement data
alone. Although no ground truth is available here, the re-
sults can be used as a proof-of-concept for hemodynamic
data assimilation in complex intracranial geometries. They
demonstrate the benefit of combining multiple sources of
data regarding key quantities, such as flow rates and wall
shear stress when investigating intracranial hemodynam-
ics. Contrary to variational-based techniques, the ensemble-
based approach directly provides an estimate of the uncer-
tainty. Future comparison between alternative techniques
(e.g., [16–18]) needs to outline the strengths and weak-
nesses of different approaches.
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