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Abstract
Traditional active learning tries to identify instances for which the acquisition of the label increases model performance
under budget constraints. Less research has been devoted to the task of actively acquiring feature values, whereupon both the
instance and the feature must be selected intelligently and even less to a scenario where the instances arrive in a stream with
feature drift. We propose an active feature acquisition strategy for data streams with feature drift, as well as an active feature
acquisition evaluation framework. We also implement a baseline that chooses features randomly and compare the random
approach against eight different methods in a scenario where we can acquire at most one feature at the time per instance and
where all features are considered to cost the same. Our initial experiments on 9 different data sets, with 7 different degrees
of missing features and 8 different budgets show that our developed methods outperform the random acquisition on 7 data
sets and have a comparable performance on the remaining two.

Keywords Active feature acquisition · Data streams · Feature drift

1 Introduction

Active learning (AL) usually concerns itself with a scenario
where we deal with label scarcity and have the option to
acquire labels for a cost with the help of an oracle. The
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goal is to intelligently pick instances whose labels, when
acquired, improve the performance of our predictive model
once we trained it on the chosen instances. A more recent
development is to consider the scenario where we cannot
acquire labels for a cost but missing features. This is called
active feature acquisition (AFA). We propose new AFA
methods for data streams. Settles describes the goal of
AFA in [1] as the following: “The goal in active feature
acquisition is to select the most informative features to
obtain during training, rather than randomly or exhaustively
acquiring all new features for all training instances.” For
example if we want to predict whether a patient has a
certain complex disease or not, we could choose from
multiple medical tests and have to find a trade-off between
which tests are the most predictive and which tests are
the cheapest. The results of a test represent the value to a
feature that was initially missing and we would like to have
a strategy that tells us if we still need to acquire features for
an instance in order to give a confident prediction and if so
which feature should we acquire under budget constraints.
Differently from most of the works in the active feature
acquisition community we deal with an instance-wise
stream instead of a pool- or batch-based scenario where the
developed strategies can look at multiple instances, evaluate
them and then choose for which instances which features
should be acquired. For example the predictors for a patients
discomfort might change with the time of a year, e.g., during
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winter month it might be best to test for flue, while in spring
it might be allergies.

In this paper we are interested in a stream-based scenario
where the decision if a feature should be acquired for an
instance must be made immediately before seeing the next
instance of the data stream. In order to achieve that goal we
used an existing budgeting strategy from a stream-based AL
algorithm that requires an instance quality estimate [2] and
derived such estimates. These quality estimates are based
on multiple metrics developed in [3], Average Euclidean
Distance, Information Gain and Symmetric Uncertainty, all
of which were formerly used in an active feature selection
(AFS) scenario. We pose the following questions: (1) Is the
chosen metric suitable for AFA? and (2) What effect does
the budget management strategy have on our performance?
This work delivers the following contributions:

Contributions

– We provide new methods for AFA in data streams.
– We also provide an evaluation framework for AFA

in data streams along with a baseline strategy which
randomly selects features to be acquired.

The paper is structured as follows: First we discuss
related work and describe our proposed method in detail.
Afterwards we discuss the developed evaluation framework
and present the experimental setup. The last chapters cover
the results, the conclusion and the future work.

2 Related work

In the area of active feature acquisition two concepts often
overlap and are not as strictly separated from paper to paper.
Those two concepts are active feature acquisition (AFA)
and active feature selection (AFS). AFA deals with feature
incomplete instances and their most efficient completion to
gain performance benefits. AFS deals with predominantly
feature complete instances and the selection of specific fea-
tures to reduce dimensionality of the feature space while
keeping similar or equal model performance. Though both
subjects differ, the concepts and methods involved in deter-
mining the most relevant features often overlap. Table 1
provides an overview of all AFA methods discussed here-
after. Since this paper uses a metric originally described in
an AFS paper, we will also discuss it briefly in this section.

A recent approach to AFA comes from Huang et al. [4]
combining their method with a matrix completion algo-
rithm. By minimizing both the empirical classification
error and the matrix reconstruction error simultaneously
through the means of an accelerated proximal gradient
descend, the reconstructed values of unknown features vary
from iteration to iteration serving as an informativeness

indicator. With the help of this informativeness value poten-
tially interesting features are acquired. Further dividing this
informativeness value by the acquisition cost of the feature
implements a simple cost consideration. Tests performed on
6 data sets against other matrix completion methods showed
constantly high results for the method. This method was
developed for the static use case and was not employed on
data streams.

A different AFA approach is described by Saar-Tsechansky
et al. [5] named Sampled Expected Utility that makes use of
an utility value approach based on estimations of expected
acquisition values and their impact on the model. To get
the utility value of an acquisition candidate, it calculates
two factors for all possible feature values. First it estimates
the likeliness of a certain feature value given an estimated
distribution of feature values based on the label. Second it
predicts the impact on a performance metric if the classifier
were to learn on this additional data. Once all values are
calculated they may be divided by the acquisition cost and
the sum of all these final products returns the utility value.
Since the complexity of such calculations is immense, the
paper considers a further reduction of the set of potential
acquisitions by simply limiting the amount of uniformly
randomly chosen queries or by favoring those candidates,
that are part of a highly uncertain instance. While the
method provides highly competitive performance gains, its
complexity prohibits usage in a stream setting.

Melville et al. [6] proposed an AFA method for the
partial completion of training data within a pool-based
environment. It requires label knowledge at training time.
With the help of a classifier it builds a model from which
it randomly selects up to m misclassified, incomplete
instances. If less than m examples are selected, the
remaining examples are filled by incomplete but correctly
classified examples based on the uncertainty score provided
by the classifier. Those incomplete instances will be
feature completed by acquiring all features in question
and the completed data is used to build another model.
This process of selection and acquisition continues until a
stopping criterion is met or no incomplete instances remain.
Evaluation using a C4.5 decision tree on five data sets
from the UCI machine learning repository showed that the
discussed method gained about 17% better error reduction
compared against randomly selecting incomplete instances
for acquisition.

Another static method is described in desJardins et al. [7]
paper about a confidence-based approach to active feature
acquisition. Its base concept is the creation of successive
models that learn on an increasingly wider catalogue of
features while limiting the test set to those instances
the previous models deemed uncertain. The first of these
models is trained on all instances using only the zero cost
features. The instances the model is trained on have all
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Table 1 A comparison of the mentioned pool-based active feature acquisition methods

Ref Complexity Budgeting Use case Method description

Huang et al. [4] Medium Yes Feature value
acquisition

Successive application of matrix reconstruction methods leads to
variance within imputed values which are used to judge the utility
of feature value acquisitions

Saar-Tsechansky et al. [5] High Yes Feature value
acquisition

Judges the utility of a feature value acquisition through estimations
of expected acquisition values and their impact on the model

Melville et al. [6] Low No Instance comple-
tion of train data

Feature completion of incomplete, labeled instances based on
misclassification and confidence of a model

desJardins et al. [7] Medium Limited Feature set
acquisition

Greedy feature acquisition of increasingly smaller instance
sets using cascaded models of increasingly higher feature
dimensionality by means of model confidence analysis

the features acquired that are currently part of the feature
subset. Instances above a set threshold are kept for the next
model, that will also include the next cheapest feature for
training, to be reevaluated. Once no more features may be
added or all instances stay below the uncertainty threshold
the acquisition process is done.

Most relevant to this paper is the work of Yuan et
al. [3] who developed a batch-based method for AFS in
data streams. The authors derived multiple metrics which
describe how well a feature separates the existing classes
in a data set. They then used this information in order
to decide which features should be retained and used to
train their model. Our work uses the proposed metrics but
for a different purpose. Whereas the authors are trying to
reduce the dimensionality of given data in order to improve
classifier performance, we want to acquire missing features
which would otherwise have to be imputed in order to
increase classifier performance.

We combine the metric which we derived from [3] with
a budget management strategy for traditional AL which
was proposed by Kottke et al. [2]. The budget strategy is
based on an incremental percentile filter which keeps a
sorted list of usefulness values and makes an acquisition if
the incoming usefulness value of a new instance is in the
top percentile of the sorted list. Once the list reaches its
defined length new incoming values lead to the deletion of
the oldest value in the list irrespective of its usefulness. The
authors showed that while budget consumption fluctuates
it is around the defined budget on average. This approach
makes it possible to make acquisition decisions in streams
without having to see future instances while considering the
recent past and adapting to concept drift.

3Method

We perform instance-based feature acquisition on a data
stream and thus have to make two decisions. The first
decision is whether we should spend budget on a given

instance with missing features and the second decision is
which feature or features should be acquired. For both
decisions we rely on common functions which were pro-
posed in [3] and which estimate the discriminatory power
of a feature. The estimates are based on either average
euclidean distance (AED), information gain (IG) or sym-
metric uncertainty (SU). The two latter are entropy-based
methods necessitating a discretization step before they can
be applied on numerical data. We derive a new metric
from said estimates called merit for each feature which
approximates which feature will improve the prediction
of an instance the most given the feature’s cost. Once
we know the merits of all features we use them to esti-
mate the quality of an instance with missing features.
The quality should give us an estimate how beneficial
a feature acquisition is for the model. Since the afore-
mentioned entropy-based methods require an additional
discretization step and show a similar performance, we
focus our reporting on the AED-based method. Our general
approach is shown in Algorithm 1 and described hereafter.

3.1 Merit of missing features using average
euclidean distance

Let W be our window containing all recently labeled
instances, let F describe a potentially incomplete feature
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matrix with all features of W and let Fic describe all feature
values of feature i in our window W with class label c. We
want a metric g(Fi) that estimates the goodness of a feature
in W for the predictive model. Yuan et al. suggest multiple
such metrics in [3] based on average euclidean distance,
information gain and symmetric uncertainty.

The average euclidean distance (AED) is a simple
method of evaluating the separation between subgroups via
their mean distances in euclidean space. In terms of our task,
the values of these subgroups are the feature values with
regards to the existing classes. This means for each feature
we calculate how well this features separates the classes in
euclidean space. Depending on the feature type, categorical
or numerical, the algorithm to calculate the average distance
changes.

Following the method as presented in [3] MV (Fic)

describes the mean value of all feature values of feature i

given class label c. L describes all possible class labels.

MV (Fic) = 1

|Fic|
|Fic|−1∑

n=0

Fn
ic (1)

AEDnum(Fi) =
√ ∑

0≤c<k<L

(MV (Fic) − MV (Fik))
2 (2)

Categorical features are more complex to calculate since
they require further comparisons of the amount of each
occurrence of a possible feature value to each other possible
feature value within a feature. Therefore let Vi denote all
feature values feature i can take and let Ficv list all values
of feature i given class c that are of value v.

AEDnom(Fi) =
∑

0≤c<k<L

⎡

⎣ 1

|Vi |
∑

v∈Vi

( |Ficv|
|Fic| − |Fikv|

|Fik|
)⎤

⎦

(3)

Note that NaN cases in either feature type are skipped.
Once all features have been given their average euclidean
distances a cost factor may be applied to this value leaving
us with a merit value for each feature. As such let C be the
costs for all features and let Ci be the cost for acquiring the
feature i.

merit (Fi, Ci) = g(Fi)

Ci

(4)

In our runs g(Fi) would either be AED(Fi), IG(Fi)

or SU(Fi). For each feature Fi we store the respective
merit (Fi) in a vector based on the current window W .

merits(W, C) = (merit (F0, C0), . . . ,

merit (F|F |−1, C|C|−1))
T

(5)

With each arriving instance the content of our window
W changes making an update of our merit values necessary.

We implemented two different ways of calculating the AED
which will be described next.

3.1.1 Merit as single window average euclidean distance

As the name suggests in a single window average euclidean
distance strategy all past instances are placed in a single
window. Thus forgetting strategies orient themselves on
the instances rather than individual features providing a
more simple and compact implementation for stream-based
classification tasks. In our experiments the sliding window
containing our active batches was shared between the
framework and our AFA strategy. The merit calculation
behavior of the single window average euclidean distance
(SWAED) method can be seen in Fig. 1.

3.1.2 Merit as multi window average euclidean distance

In a multi window average euclidean distance strategy
each feature-label combination gets a separate window into
which the last n values of those combinations are saved.
Forgetting mechanism may be applied directly on these
combinations allowing for more complexity while increas-
ing the required data storage. For example one could use
change detection [8] on the individual features indepen-
dent of each other and only invoke a forgetting mechanism
on a specific feature once a change has been detected. We

Fig. 1 The calculated merits of a SWAED method along the gen data
stream. The data stream has always one feature identical to the label
and two features which are randomly distributed. Every 500 instances
the label associated feature changes which is depicted by the vertical
lines. The SWAED shown has a window with the size of 500 instances
and all data is available for its merit calculation. The peak merit values
are reached once the window has been filled completely with instances
of a single concept thus the SWAED method would only start favoring
the most important feature after roughly half of the instances within
the window belong to the new concept
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could then forget all old feature values prior to the detected
change.

3.2 Estimating instance quality usingmerits

With the merits calculated incoming instances may now be
evaluated according to their expected usefulness. In order
to estimate the usefulness of an incomplete instance before
any feature is acquired we sum up the merits of all known
features of that instance. The potential usefulness that can
be achieved would then be that sum plus the merit of the
best missing feature since we only allow for the acquisition
of one missing feature per instance.

best f (x) = arg max
f �∈x.known f

(merit (f )) (6)

We are normalizing that usefulness by the number of known
features plus one so that we do not favor instances which
have only a few features missing because the cumulative
merits of the known features of these instances would be
high to begin with. As such we name this new usefulness
value of an instance quality. Let x be the instance that
our strategy is applied upon. The quality of our acquisition
choice is then calculated as follows:

quality(x, merits)

=
∑

f ∈x.known f merits[f ] + best f (x)

|x.known f | + 1
(7)

Once the instance x with its corresponding label is added to
our window W , distances and merit values for the updated
features have to be recalculated. The quality of an instance
is used by the budgeting strategy in order to decide whether
features should be acquired for a given instance.

3.3 Budget management with and without instance
quality

In this section we describe two different budget manage-
ment (BM) strategies. The first one was developed by
Kottke et al. [2] and takes the aforementioned instance qual-
ity into account. The second one on the other hand is a
simple method that ignores the instance quality and was
developed in order to investigate the effect of the budgeting
on the AFA process. We acquire the feature with the highest
merit if the BMs decision is positive.

3.3.1 Incremental percentile filter budgeting

The incremental percentile filter is a dynamic online budget
manager as a means to quickly choose more qualitative
instances while adapting to the changing usefulness a
certain decision provides [2]. Its core idea is to store a
limited amount of usefulness values in two windows: one

sorted by the value itself, the other in the order they were
received. If a newly added value exceeds the window size,
the oldest value is removed from both windows. Based on
the position the new value is then placed into the value-
ordered window the decision of acquisition is made. In
the case of these experiments the usefulness values are
the quality(x) values introduced in Section 3.2. When
using the incremental percentile filter (IPF) as the BM we
decide to make an acquisition if the quality of an instance
is placed within the top percentile of the value-ordered
window (vow).

bm(q) =
{

true if q in top percentile of vow

f alse otherwise
(8)

3.3.2 Simple budget manager

The simple budget manager implements a basic solution for
staying below a desired budget. Incoming values are only
allowed for acquisition if we are below the desired budget.
For example if we have a budget of 10%, this strategy will
always acquire missing features as long as we have acquired
below 10% of the incomplete instances seen so far. Once our
used budget is above or equal to our desired budget it will
cease to acquire features until we are below the threshold
again. When using the simple budget manager (SBM) we
decide to make an acquisition if we still have budget.

bm(q) =
{

true if used budget ≤ available budget

f alse otherwise

(9)

4 Evaluation framework and experimental
setup

In this section we will discuss the evaluation framework1 for
AFA on data streams that we developed and how we used it
in our experiments.

4.1 Evaluation framework for AFA on data streams

The goal of our evaluation framework is to be able to
compare different AFA strategies on data streams. We use
the model performance as a proxy for the quality of an AFA
strategy, so a good AFA strategy should lead to a better
model performance than a bad AFA strategy. In order to
control for different degrees of missing data and to have
comparable runs we require a feature complete data stream
X. We first introduce a user specified amount of missing
features which are randomly and uniformly distributed. We
then impute the missing values with the mean value of the

1Code is provided at https://github.com/Buettner-Maik/afa-stream
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respective feature. We can now calculate the lower and the
upper performance bounds which help us evaluate an AFA
strategy.

The lower bound is a model’s performance without any
AFA, that is it relies solely on imputation techniques. The
upper bound on the other hand is a model’s performance on
the feature complete stream, so with no missing values. The
choice of imputation method directly influences the lower
bound performance making visualizing and evaluating the
effectiveness of the proposed AFA methods harder if the
imputation is better. Thus we opted to apply a simplistic
mean imputation for numerical features and most frequent
value imputation for nominal features only. The imputation
method itself is replaceable in the framework.

As part of our framework we also provide a random
baseline which selects missing features for acquisition at
random. For an AFA strategy to be successful it must be
better than the lower bound and better than the random
baseline. We use prequential evaluation on the datastream
with the AFA happening before the prediction.

Our framework uses a relative budget with respect to
the number of incomplete instances in the data stream and
only allows for at most one feature to be acquired per
instance. For example a budget of 20% means for 20% of
the incomplete instances we can acquire one feature. Since
AFA on data streams is a very new topic we will introduce
two simplifying assumptions to give us greater control over
the experiments and help us untangle the interplay between
AFA and budgeting strategy.

4.1.1 Assumptions

The first simplifying assumption that we made was to unify
the costs of all features. This means all feature acquisition
costs were set to be one. Thus the merit values equal our
chosen feature goodness metric. This allows us to use the
model performance as a proxy for the AFA quality which is
not influenced by some arbitrarily chosen feature costs.

Secondly instances were only reviewed once during
retrieval allowing only one feature to be acquired at
maximum making the choice of the acquisition feature
more critical. While it is possible for the partially restored
instance to be fed back into the evaluation step, it was not
done so in our experiments in order to disentangle the AFA
strategy from the budgeting mechanism.

4.2 Experimental setup

All experiments were run with a stochastic gradient descend
support vector machine (SGD) provided in scikit-learn’s
library with a limit of 100 iterations to achieve a tolerance
of 0.001 using log-loss. The choice of the classifier is

not mission-critical: we always refer to our bounds when
evaluating our model performance. Different classifiers will
behave similarly but with other bounds.

As we make no assumptions about the class distribution
in the data, we chose Cohen’s kappa as the performance
metric as it is robust against unbalanced class distributions.
Our experiments also showed similar results using F1-score,
accuracy and log-loss so we omitted them from this paper.

The experiments were conducted on six static data sets
handled as streams and three stream data sets of which two
are synthetic. The single concept nature of the six static
data sets allowed for the task to be run on a randomized
permutation further enabling us to cross-validate different
degrees of missingness on the same data set without having
to consider concept drift. For each of these new missingness
a new permutation was used for the run. Each stream data
set was only run once in their chronological order. No
additional steps were taken to mitigate concept drift in either
of them.

4.2.1 Data sets

Six static data sets were run under the same conditions.
These data sets by name are abalone, adult, magic,
nursery, occupancy and pendigits from the UCI machine
learning repository2. The synthetic data set sea [9] has
four different concepts each lasting for 15,000 consecutive
instances. Another synthetic data set gen3 was created for
this paper and contains 10 concepts each lasting for 500
consecutive instances with one of the three categorical
features randomly chosen to be identical to the label. Finally
the electricity [10] data set presents the only non-synthetic
data stream.

The structure and purpose of these data sets are listed in
Table 2.

4.2.2 Batches

For a run within the given framework each data set was split
into batches. This was necessary because our implementa-
tion was extending a given framework for AL in streams
which was developed for large streams with changing fea-
ture spaces.4 The methods we describe here however do not
rely on batches and can also be used in conventional streams.
The first batch acted as a set of complete and labeled instances
the classifier was initially trained on. To ensure at least one

2The used UCI data sets can be found here https://archive.ics.uci.edu/
ml/datasets.html
3Generation script and data set is provided at: https://github.com/
Buettner-Maik/afa-stream
4https://github.com/elrasp/osm
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Table 2 All data sets used for the experiments

Data set Instances Labels Features Type Purpose

sea 60,000 2 0 cat. 3 num. Synth. stream Determine if two specific

features greater than threshold

electricity 45,312 2 1 cat. 7 num. Stream Determine if the market price of

electricity rises or drops

adult 32,561 2 4 cat. 8 num. Static Determine if yearly income of

individual is above $50,000

occupancy 20,560 2 1 cat. 7 num. Static Determine whether an office room

is occupied

magic 19,020 2 0 cat. 10 num. Synth. static Determine if signal is gamma ray

based on Cherenkov radiation

nursery 12,960 5 8 cat. 0 num. Static Determine the rank of child

application for nursery school

pendigits 10,992 10 0 cat. 16 num. Static Determine digit written on a pad

gen 5000 2 3 cat. 0 num. Synth. stream Find the current feature describing the label

abalone 4177 3 0 cat. 8 num. Static Determine sex of abalones

instance of each label was part of this initially labeled data,
we randomly picked an instance for each label to be added
to this initial batch. After this selection the remaining data
was shuffled. Since six of the data sets in question inherit
no chronological order as they are static data sets handled
as stream data, shuffling should not affect classification in
any drastic manner. The so shuffled data was now split into
batches of 50 instances with the last batch containing how-
ever many instances are left. The first of these batches was
added to the initial batch such that the data the classifier was
first trained on contains 50 + |labels| instances.

The data sets sea and gen have a chronological order
which prohibits randomizing their permutation. Thus their
order was left unaltered with the initial batch only containing
50 instances. For either data set type the rest of the batches
were further altered by removing a set percentage of feature
values for all features using a uniformly randomized selection.

4.2.3 Process of missing data generation

A single iteration on a data set consists of a specified
feature missingness, several budgets and run configurations.
With these parameters a new permutation of the data set is
generated per iteration and missingness and the batches split
according to the process described before. Once the data
set is prepared and split into batches the lower and upper
bound for that permutation may be calculated. After both
bounds are determined, the data set can be evaluated given
all combinations of budget values and run configurations.

4.2.4 Active feature acquisition setups

To evaluate the effectiveness of each of our components, we
combined our four AFA methods (single window average
euclidean distance (SWAED), multi window average
euclidean distance (MWAED), single window information
gain (SWIG) and single window symmetric uncertainty
(SWSU)) with both our budget managers (incremental per-
centile filter (IPF) and simple budget manager (SBM)).
Both the SWIG and SWSU required the discretization of
numerical features which we implemented using the method
proposed by Gama et al. [11] which noticeably slowed
down the experiments. Since the random acquisition strat-
egy RA does not provide a quality value for the IPF
to use, it was only paired with the SBM. Thus we are
left with nine different AFA strategy and budget manager
combinations.

4.2.5 Parameters

In conclusion each static data set was run with seven
different missingness values (0.125, 0.25, 0.375, 0.5, 0.625,
0.75, 0.875) and 8 budget values (0.125, 0.25, 0.375,
0.5, 0.625, 0.75, 0.875, 1.0) for the nine combinations of
strategies and budget managers mentioned before and the
lower and upper bound methods described. Each of the
described tests were run ten times for static data sets totaling
the number of individual runs to 5180 and 518 on the
non-static data sets.
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5 Results

We will start our results with some general observations
and continue on by asking and answering the following
questions. First: Is the average euclidean distance a useful
metric for acquisition? Second: How does the choice of
budget manager impact the performance? Finally we will
reflect on our findings.

5.1 General observations

We depict our experiment results in multiple tables each
for a different data set. The tables show the mean
kappa values derived from the different strategies, using
a stochastic gradient descend support vector machine as
classifier with different combinations of missingness values,
budget values, AFA strategies and budget managers. For
the static data sets we used ten runs each with a different
permutation of the data and for the stream data set we used
one run because of potential concept drift. The elongated
missingness cell further shows the previously discussed
upper and lower bounds. For example Table 3 depicting the
electricity data set results has a lower bound of 0.308 and
an upper bound of 0.478 for a missingness of 0.5. Values
written in italics highlight the best column-wise value, that
is the best mean kappa for a specific missingness and budget
value among the five compared AFA strategies.

The results for our biggest data sets can be seen in Table 3
and Tables 6, 8 and 9 in Appendix and they differ substan-
tially. The sea data set shows overall improvements when
using our methods compared with the random approach.
The electricity data set shows a similar improvement when
used with our methods compared with the random approach.

On the adult data set all methods performed very similarly
with the entropy-based approaches slightly outperforming
the AED methods. On the occupancy data set our meth-
ods vastly outperformed the baseline. We suspect that the
methods all performed similarly on adult because of our
restriction that we can only acquire one feature per instance
which seems not to be enough. It is also the case that the
lower and upper bound on this data set are very close to each
other which further indicates that only marginal improve-
ments can be made by any method. On the occupancy
data set we can see that our methods lead to big improve-
ments over the random baseline with a maximum difference
of 0.436 in kappa (missingness = 0.75, budget = 1). We
attribute this advantage to the data set having a single highly
predictive feature in “weekday” making its acquisition par-
ticularly effective. This also explains why our method gets
so close to the upper bound even when we only allow for
one feature to be acquired per instance.

We also briefly investigated if data sets with exclusively
numerical or categorical features have an impact on our
method. For this we contrast the magic data set which is
purely numerical (Table 4) and the nursery data set seen
in Table 5 which has solely categorical features. On both
data sets our methods using AED consistently outperform
the random baseline which indicates to us that our method
is suitable for both types of features but this needs to be
more diligently investigated in the future. The results of
the nursery data set further suggest that the entropy-based
methods work more favorably on categorical features than
the AED-based methods.

Our method leads to slight improvements over the ran-
dom baseline on the pendigits data set shown in Table 10 in
Appendix and all methods were almost identical again on

Table 3 Mean kappa values over 1 run on electricity data set using a SGD classifier

Mean kappa over 1 run on data set electricity

Missingness 0.25 (kappa ∈ [0.395, 0.477]) 0.5 (kappa ∈ [0.308, 0.478]) 0.75 (kappa ∈ [0.181, 0.486])

Budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

MWAED+IPF 0.404 0.418 0.431 0.437 0.325 0.335 0.347 0.37 0.212 0.23 0.253 0.263

MWAED+SBM 0.406 0.415 0.416 0.432 0.331 0.336 0.355 0.361 0.204 0.22 0.249 0.265

SWAED+IPF 0.41 0.422 0.435 0.459 0.33 0.362 0.375 0.424 0.248 0.281 0.331 0.386

SWAED+SBM 0.414 0.424 0.441 0.456 0.331 0.359 0.379 0.427 0.231 0.281 0.327 0.388

SWIG+IPF 0.419 0.431 0.452 0.463 0.34 0.351 0.385 0.445 0.244 0.272 0.334 0.403

SWIG+SBM 0.414 0.426 0.448 0.472 0.331 0.352 0.391 0.438 0.233 0.265 0.33 0.394

SWSU+IPF 0.427 0.436 0.439 0.471 0.336 0.361 0.398 0.44 0.249 0.3 0.349 0.417

SWSU+SBM 0.41 0.424 0.454 0.467 0.332 0.366 0.405 0.442 0.237 0.29 0.347 0.425

RA+SBM 0.404 0.416 0.43 0.443 0.317 0.322 0.333 0.352 0.205 0.22 0.231 0.255
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Table 4 Mean kappa values over 10 runs on magic data set using a SGD classifier

Mean kappa over 10 runs on data set magic

Missingness 0.25 (kappa ∈ [0.319, 0.409]) 0.5 (kappa ∈ [0.229, 0.409]) 0.75 (kappa ∈ [0.131, 0.41])

Budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

MWAED+IPF 0.344 0.357 0.375 0.395 0.27 0.303 0.333 0.367 0.185 0.226 0.276 0.321

MWAED+SBM 0.337 0.357 0.375 0.394 0.26 0.292 0.326 0.364 0.177 0.224 0.274 0.321

SWAED+IPF 0.347 0.358 0.377 0.391 0.265 0.302 0.339 0.366 0.185 0.23 0.27 0.323

SWAED+SBM 0.34 0.357 0.376 0.395 0.261 0.296 0.333 0.368 0.174 0.223 0.274 0.317

SWIG+IPF 0.341 0.353 0.372 0.391 0.259 0.29 0.32 0.358 0.173 0.205 0.256 0.301

SWIG+SBM 0.34 0.357 0.375 0.392 0.259 0.289 0.326 0.361 0.165 0.209 0.256 0.299

SWSU+IPF 0.336 0.353 0.37 0.391 0.256 0.287 0.32 0.359 0.171 0.205 0.251 0.299

SWSU+SBM 0.337 0.354 0.376 0.393 0.257 0.29 0.325 0.361 0.169 0.212 0.254 0.304

RA+SBM 0.326 0.334 0.34 0.355 0.232 0.248 0.26 0.266 0.142 0.151 0.159 0.171

the abalone data set as seen in Table 11 in Appendix. We
suspect the reason for the similar performance on abalone
and adult across all methods are due to the the lower and upper
bounds of both data sets being close together. As such the
span for improvement is already small. Our method con-
sistently outperformed the random baseline on the gen data
set.

5.2 Is the average euclidean distance a useful metric
for acquisition?

To answer this question we compare the mean kappa
values of our classification results between the SWAED
combinations and the random acquisition strategy. If our
metric has value it must outperform the random acquisition

approach. Since the pool of sub optimal decisions increases
with higher budgets and missingness values, we expect
greater performance gains for both of our SWAED strategies
in those scenarios. The performance gap between these
methods increases the higher the budget gets as seen
in Tables 4 and 5 and Table 9 in Appendix. When
comparing different missingness values in the tables we
can also see a bigger impact of AFA for the higher
missingness values. These results suggest that AED is in
fact a useful metric for this AFA method but depending
on the data set and the amount of categorical data
within, other quality functions might perform better. On
the data sets occupany, adult, nursery and gen the use
of Information Gain and Symmetric Uncertainty lead to
better results but at the cost that an additional discretization

Table 5 Mean kappa values over 10 runs on nursery data set using a SGD classifier

Mean kappa over 10 runs on data set nursery

Missingness 0.25 (kappa ∈ [0.516, 0.84]) 0.5 (kappa ∈ [0.3, 0.843]) 0.75 (kappa ∈ [0.129, 0.842])

Budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

MWAED+IPF 0.577 0.632 0.69 0.75 0.385 0.458 0.549 0.65 0.225 0.317 0.43 0.566

MWAED+SBM 0.572 0.634 0.691 0.751 0.377 0.462 0.557 0.649 0.219 0.324 0.437 0.567

SWAED+IPF 0.586 0.645 0.704 0.761 0.385 0.467 0.558 0.654 0.222 0.313 0.424 0.568

SWAED+SBM 0.577 0.638 0.697 0.762 0.378 0.465 0.561 0.653 0.215 0.32 0.441 0.568

SWIG+IPF 0.599 0.661 0.735 0.779 0.401 0.494 0.594 0.683 0.232 0.335 0.458 0.591

SWIG+SBM 0.583 0.646 0.71 0.778 0.381 0.477 0.58 0.68 0.225 0.333 0.454 0.592

SWSU+IPF 0.598 0.666 0.734 0.777 0.401 0.494 0.598 0.684 0.233 0.336 0.46 0.589

SWSU+SBM 0.578 0.646 0.711 0.779 0.386 0.475 0.58 0.682 0.222 0.331 0.454 0.589

RA+SBM 0.549 0.584 0.614 0.646 0.321 0.346 0.371 0.398 0.147 0.169 0.189 0.209
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step was necessary for the continuous features. An
investigation on which kind of data which quality function
is expected to be most beneficial and how to handle

the trade-off between additional computational cost and
expected performance gains lies in the scope of future
experiments.

Fig. 2 The mean kappa performance comparison over ten runs of the single window average euclidean distance (SWAED) configurations on the
six static data sets with a fixed feature missingness of 0.75
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5.3 How does the choice of budget manager impact
the performance?

Both the simple budget manager and incremental percentile
filter perform equally when dealing with a budget of 0 or
1, as we make no acquisitions in the former and always
acquire the feature with the highest merit in the latter case.
As such only the steepness of the performance gain in
between maximum and minimum budget varies. Naturally
a good budget manager achieves a higher performance with
less budget than a worse one. Figures 2 and 3 show us a
quick comparison between the mean kappa values for the
relevant AFA+BM combinations for a given missingness
of 75%. Do note that while we presented two implemen-
tations of a window for the average euclidean distance
and listed both in the tables mentioned before, we will
only assess the results of our single window approach
(SWAED) due to their similar performances and omitted

MWAED strategies in our graphs for better readability. We
can see little to no difference between the SWAED+IPF and
SWAED+SBM implementations on most data sets except
gen. This also holds true for the other missingness values
which are not explicitly shown in this paper. There seems
to be a slight advantage in using the incremental percentile
filter but the difference in performance is so small that fur-
ther experiments are needed which are part of our future
work.

5.4 Summary

Our results show that the proposed AFA methods out-
perform a random baseline on seven data sets and have
comparable performance on the other two. The performance
difference is usually most pronounced in scenarios where
we have a high degree of missingness and a high budget.
This result is intuitive as these are the situations where our

Fig. 3 The mean kappa performance comparison over ten runs of the single window average euclidean distance (SWAED) configurations on the
three stream data sets with a fixed feature missingness of 0.75
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methods can differentiate the most from the random base-
line. The biggest gains in performance can be seen on the
nursery and occupancy data sets where we achieve a maxi-
mum mean difference in kappa of 0.383 and 0.436 between
our best method and the random baseline respectively. On
the two data sets where our methods were not the clear win-
ner the maximum mean difference in kappa is negligible.
These results underpin our assertion that our proposed meth-
ods for AFA in data streams are superior in most cases and
at worst comparable in performance with a random base-
line. Considering the question whether average euclidean
distance is a suitable basis for our AFA strategy, we would
answer with yes based on our results but entropy methods
(IG and SU) seem to perform better on categorical data. The
question whether budgeting affects our results we would
tentatively answer with yes as the IPF usually slightly out-
performs the SBM but this needs further investigation as the
differences were not very large. The time complexity of our
method was also not evaluated in detail but in the worst case
our AED methods were three times slower than the random
baseline with the entropy solutions performing even worse
due to the discretizer.

6 Conclusion and outlook

In this paper we have shown a new set of AFA methods for
data streams. We also provide an evaluation framework for
AFA in data streams including a baseline which acquires
features randomly. Our proposed methods were extensively
evaluated on nine data sets using eight different budgets and
seven different degrees of missingness of which a represen-
tative subset is shown in this paper. We have shown the per-
formance of these methods in combination with two differ-
ent budget managers. Our results show that our methods out-
perform the random baseline in most cases and are at worst
similar to the random baseline. The methods performed
well when facing purely numerical, purely categorical and
mixed data sets. When comparing our two different bud-
geting strategies we showed that the incremental percentile
filter sometimes outperforms our simple budgeting manager
but the gains in performance were small.

At the beginning of this work we posed two questions:
(1) Is the chosen metric suitable for AFA? and (2) What
effect does budget management strategy have on our
performance? The first question can be answered with “yes”
as our proposed metric consistently outperforms the random
baseline or is at least as good. The second question is
harder to answer. There seems to be a small tendency
that the incremental percentile filter works better than
the simple budget manager but the performance is very
similar in most cases so this question needs a more detailed
investigation.

Our work has the following limitations which we want
to address in the future: Firstly we only allowed for one
feature to be acquired per instance which might also explain
the lower performance on some data sets as discussed in
Section 5.1. Secondly we set the cost of all features be equal
in order to enable our method to pick the most valuable
feature for our model. Our methods themselves on the other
hand are already prepared to deal with varying feature costs
and we plan to run such experiments in the future.

Additional future work includes the usage of further
real stream data sets with concept drift which would
allow for a deeper focus on drift detection methods
and forgetting mechanisms. Also, the experimental results
varied vastly from data set to data set. Further comparisons
of different classifiers may reveal performance gains when
it comes to specific classification and method combinations.
Furthermore, we plan to investigate the effects of different
feature costs in the future as this is to be expected in a
real world application, as well as the acquisition of multiple
features per instance. Such considerations may also include
the conception of different budget managers and different
metrics for the calculations of our featuremerit and instance
quality. Such new metrics should for instance take into
account if features are heavily correlated which could lead
to a waste of budget on superfluous features.
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Appendix

Here we list the remaining results of our experiments in
tables. The results of the streaming data sets sea and gen are
shown in Tables 6 and 7. Tables 8, 9, 10 and 11 show the
remaining static data sets adult, occupancy, pendigits and
abalone respectively.
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Table 6 Mean kappa values over 1 run on sea data set using a SGD classifier

Mean kappa over 1 run on data set sea

Missingness 0.25 (kappa ∈ [0.428, 0.593]) 0.5 (kappa ∈ [0.275, 0.588]) 0.75 (kappa ∈ [0.127, 0.583])

Budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

MWAED+IPF 0.469 0.493 0.529 0.562 0.339 0.402 0.442 0.49 0.189 0.254 0.34 0.389

MWAED+SBM 0.458 0.49 0.528 0.565 0.331 0.384 0.434 0.495 0.193 0.261 0.327 0.394

SWAED+IPF 0.468 0.5 0.526 0.564 0.343 0.399 0.447 0.497 0.199 0.255 0.345 0.397

SWAED+SBM 0.456 0.494 0.526 0.561 0.327 0.387 0.444 0.499 0.199 0.27 0.319 0.39

SWIG+IPF 0.467 0.496 0.523 0.561 0.336 0.412 0.441 0.499 0.19 0.263 0.34 0.393

SWIG+SBM 0.448 0.493 0.528 0.565 0.33 0.385 0.446 0.502 0.197 0.264 0.33 0.395

SWSU+IPF 0.476 0.499 0.518 0.567 0.341 0.408 0.444 0.496 0.195 0.255 0.335 0.394

SWSU+SBM 0.46 0.493 0.527 0.559 0.334 0.384 0.446 0.502 0.197 0.264 0.332 0.396

RA+SBM 0.453 0.483 0.518 0.544 0.314 0.359 0.399 0.442 0.174 0.229 0.264 0.319

Table 7 Mean kappa values over 1 run on gen data set using a SGD classifier

Mean kappa over 1 run on data set gen

Missingness 0.25 (kappa ∈ [0.376, 0.503]) 0.5 (kappa ∈ [0.225, 0.508]) 0.75 (kappa ∈ [0.105, 0.463])

Budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

MWAED+IPF 0.403 0.415 0.438 0.471 0.27 0.339 0.379 0.437 0.169 0.223 0.303 0.355

MWAED+SBM 0.391 0.418 0.449 0.482 0.248 0.29 0.352 0.442 0.12 0.197 0.288 0.37

SWAED+IPF 0.406 0.424 0.459 0.436 0.289 0.35 0.395 0.465 0.179 0.237 0.364 0.37

SWAED+SBM 0.41 0.405 0.434 0.444 0.266 0.32 0.404 0.431 0.152 0.217 0.32 0.39

SWIG+IPF 0.404 0.437 0.437 0.459 0.312 0.353 0.415 0.438 0.226 0.275 0.319 0.415

SWIG+SBM 0.41 0.421 0.442 0.478 0.259 0.298 0.415 0.45 0.156 0.209 0.32 0.401

SWSU+IPF 0.437 0.445 0.433 0.509 0.321 0.354 0.413 0.478 0.185 0.291 0.305 0.392

SWSU+SBM 0.395 0.4 0.452 0.467 0.307 0.324 0.39 0.43 0.174 0.23 0.296 0.414

RA+SBM 0.365 0.436 0.444 0.476 0.265 0.3 0.298 0.371 0.129 0.204 0.19 0.253

Table 8 Mean kappa values over 10 runs on adult data set using a SGD classifier

Mean kappa over 10 runs on data set adult

Missingness 0.25 (kappa ∈ [0.371, 0.445]) 0.5 (kappa ∈ [0.283, 0.443]) 0.75 (kappa ∈ [0.156, 0.445])

Budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

MWAED+IPF 0.379 0.38 0.385 0.401 0.285 0.294 0.304 0.32 0.16 0.172 0.186 0.204

MWAED+SBM 0.378 0.382 0.389 0.397 0.289 0.299 0.307 0.319 0.163 0.173 0.185 0.202

SWAED+IPF 0.376 0.381 0.388 0.399 0.286 0.288 0.299 0.312 0.164 0.172 0.185 0.199

SWAED+SBM 0.376 0.384 0.39 0.398 0.289 0.296 0.302 0.312 0.163 0.174 0.183 0.198

SWIG+IPF 0.385 0.388 0.396 0.407 0.29 0.302 0.318 0.337 0.175 0.193 0.216 0.242

SWIG+SBM 0.38 0.389 0.397 0.408 0.293 0.307 0.321 0.339 0.17 0.194 0.213 0.242

SWSU+IPF 0.379 0.385 0.392 0.407 0.29 0.299 0.309 0.335 0.171 0.188 0.208 0.232

SWSU+SBM 0.379 0.387 0.395 0.403 0.29 0.304 0.316 0.334 0.17 0.187 0.207 0.234

RA+SBM 0.375 0.386 0.392 0.396 0.291 0.295 0.304 0.314 0.165 0.177 0.187 0.204
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Table 9 Mean kappa values over 10 runs on occupancy data set using a SGD classifier

Mean kappa over 10 runs on data set occupancy

Missingness 0.25 (kappa ∈ [0.771, 0.949]) 0.5 (kappa ∈ [0.595, 0.95]) 0.75 (kappa ∈ [0.364, 0.948])

Budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

MWAED+IPF 0.803 0.837 0.874 0.93 0.645 0.701 0.781 0.887 0.484 0.58 0.695 0.849

MWAED+SBM 0.802 0.842 0.882 0.932 0.656 0.728 0.801 0.888 0.481 0.593 0.711 0.848

SWAED+IPF 0.809 0.848 0.894 0.945 0.666 0.733 0.822 0.934 0.504 0.624 0.75 0.918

SWAED+SBM 0.804 0.846 0.896 0.944 0.666 0.738 0.827 0.933 0.486 0.613 0.751 0.916

SWIG+IPF 0.806 0.846 0.883 0.946 0.667 0.735 0.814 0.937 0.51 0.613 0.752 0.931

SWIG+SBM 0.805 0.846 0.893 0.944 0.666 0.74 0.827 0.936 0.492 0.623 0.757 0.932

SWSU+IPF 0.818 0.854 0.898 0.945 0.685 0.759 0.841 0.94 0.525 0.651 0.777 0.93

SWSU+SBM 0.804 0.846 0.895 0.945 0.669 0.743 0.831 0.94 0.49 0.621 0.756 0.933

RA+SBM 0.787 0.805 0.821 0.843 0.62 0.642 0.662 0.685 0.397 0.432 0.458 0.497

Table 10 Mean kappa values over 10 runs on pendigits data set using a SGD classifier

Mean kappa over 10 runs on data set pendigits

Missingness 0.25 (kappa ∈ [0.654, 0.881]) 0.5 (kappa ∈ [0.46, 0.879]) 0.75 (kappa ∈ [0.22, 0.879])

Budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

MWAED+IPF 0.664 0.677 0.693 0.727 0.481 0.498 0.522 0.566 0.247 0.273 0.306 0.354

MWAED+SBM 0.666 0.683 0.698 0.725 0.481 0.503 0.53 0.564 0.241 0.271 0.307 0.355

SWAED+IPF 0.664 0.676 0.692 0.727 0.48 0.497 0.522 0.563 0.246 0.267 0.3 0.345

SWAED+SBM 0.666 0.68 0.698 0.727 0.478 0.502 0.528 0.565 0.24 0.267 0.298 0.345

SWIG+IPF 0.665 0.675 0.688 0.713 0.474 0.484 0.508 0.546 0.238 0.253 0.275 0.309

SWIG+SBM 0.663 0.674 0.692 0.715 0.472 0.49 0.514 0.546 0.234 0.251 0.278 0.305

SWSU+IPF 0.664 0.674 0.692 0.723 0.474 0.49 0.511 0.559 0.237 0.259 0.285 0.328

SWSU+SBM 0.665 0.679 0.695 0.721 0.476 0.495 0.521 0.561 0.235 0.257 0.288 0.328

RA+SBM 0.663 0.672 0.683 0.694 0.471 0.488 0.499 0.515 0.231 0.247 0.264 0.284

Table 11 Mean kappa values over 10 runs on abalone data set using a sgd classifier

Mean kappa over 10 runs on data set abalone

Missingness 0.25 (kappa ∈ [0.226, 0.238]) 0.5 (kappa ∈ [0.206, 0.249]) 0.75 (kappa ∈ [0.163, 0.252])

Budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

MWAED+IPF 0.226 0.22 0.221 0.233 0.211 0.216 0.211 0.218 0.186 0.19 0.193 0.193

MWAED+SBM 0.224 0.232 0.229 0.223 0.204 0.208 0.215 0.22 0.166 0.179 0.186 0.198

SWAED+IPF 0.23 0.229 0.225 0.234 0.21 0.211 0.213 0.214 0.185 0.188 0.193 0.197

SWAED+SBM 0.223 0.229 0.227 0.229 0.205 0.207 0.215 0.214 0.166 0.181 0.191 0.197

SWIG+IPF 0.233 0.231 0.229 0.241 0.211 0.212 0.211 0.217 0.186 0.186 0.189 0.2

SWIG+SBM 0.222 0.228 0.232 0.234 0.212 0.211 0.215 0.222 0.178 0.179 0.199 0.202

SWSU+IPF 0.228 0.219 0.236 0.237 0.21 0.212 0.217 0.219 0.176 0.194 0.192 0.21

SWSU+SBM 0.229 0.222 0.233 0.236 0.206 0.21 0.211 0.214 0.165 0.184 0.201 0.205

RA+SBM 0.227 0.228 0.232 0.222 0.213 0.208 0.216 0.211 0.17 0.169 0.185 0.2
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