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I 

 

Zusammenfassung 
 

 

Im Rahmen dieser Arbeit wurden die Sequenzen der zwei putativen Surfactantproteine SP-G 

(SFTA2) und SP-H (SFTA3) erstmals mithilfe von computergestützten Modellierungs- und 

Simulationstechniken untersucht. Die Ergebnisse dieser theoretischen Proteinstruktur-

modellierungen und Moleküldynamiksimulationen wurden anschließend genutzt, um 

biologische oder biochemische Experimente in der Praxis zu planen oder deren Resultate zu 

interpretieren. Durch die Kombination dieser beiden Disziplinen war es möglich, SP-G und 

SP-H in unterschiedlichen Organgeweben zu lokalisieren, welche typisch für das Vorkommen 

von Surfactantproteinen sind. Zudem legen die gewonnen Erkenntnisse nahe, dass die 

physikochemischen Eigenschaften von SP-G und SP-H vergleichbar mit denen der bereits 

bekannten Surfactantproteine sind und dass beide Proteine ebenfalls mit Lipidsystemen 

interagieren und dadurch Grenzflächeneigenschaften beeinflussen können.  

Zu Beginn der Arbeiten wurden dreidimensionale Strukturmodelle für SP-G und SP-H erstellt. 

Dabei war der klassische Ansatz einer Homologiemodellierung nicht möglich, da zu dieser Zeit 

keine Proteinsequenzen mit einer hohen Sequenzähnlichkeit zu SP-G oder SP-H und einer 

bekannten 3D-Struktur in öffentlichen Datenbanken vorhanden waren, welche als Vorlage 

hätten dienen können. Stattdessen wurden die Modelle mithilfe des Servers „Robetta“ erzeugt, 

welcher eine online verfügbare Implementierung der ab initio Strukturvorhersage darstellt. Die 

erhaltenen Modelle benötigten nur geringfügige Optimierungen, um in den gängigen 

Programmen zur Bewertung der Modellqualität zufriedenstellende Ergebnisse zu liefern, 

welche u.a. eine native Faltung der Modelle nahelegen. Zusätzlich wurden Moleküldynamik-

simulationen in Wasser durchgeführt, um die Stabilität der Proteinmodelle für SP-G und SP-H 

zu überprüfen.  

Da in der Literatur das Vorhandensein von posttranslationalen Modifikationen als essentiell für 

die korrekte Funktion der Surfactantproteine beschrieben wird, wurden die Sequenzen der 

putativen Surfactantproteine SP-G und SP-H zusätzlich auf Proteinmodifikationen untersucht. 

Dazu wurden die Ergebnisse von verschiedenen sequenzbasierten Vorhersagealgorithmen 

ausgewertet, welche einige potentielle Modifizierungsstellen für Phosphorylierungen, 

Palmitoylierungen und verschiedene Arten von Glykosylierungen ergaben. Die Modelle für 
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SP-G und SP-H wurden anschließend entsprechend dieser Vorgaben manuell um diese 

Modifizierungen erweitert. Moleküldynamiksimulationen dieser Modelle wurden mit den 

zuvor durchgeführten Simulationen der unmodifizierten Modelle verglichen und ergaben, dass 

die posttranslationalen Modifikationen keinen signifikanten Einfluss auf die Faltung oder 

allgemeine Modellqualität zeigen.  

Die Herstellung von spezifischen Antikörpern auf der Basis von Antigen-Peptiden, welche 

ohne Wissen über die 3D-Struktur des Proteins ausgewählt wurden, führen in vielen Fällen 

nicht zum gewünschten Ergebnis. Der als Antigen ausgewählte Proteinabschnitt könnte durch 

andere Teile des Proteins verdeckt werden oder posttranslationale Modifikationen tragen, 

welche die erwarteten Antigen-Antikörperinteraktionen blockieren. Aus diesen Gründen 

schlugen vorherige Versuche fehl, spezifische Antikörper gegen SP-G und SP-H herzustellen. 

Mit den in dieser Arbeit beschriebenen Proteinstrukturmodellen war es möglich, Sequenz-

abschnitte zu identifizieren, welche in der räumlichen Struktur an der Oberfläche des Proteins 

liegen, keine Modifikationen tragen und zahlreiche Möglichkeiten für Antigen-Antikörper-

interaktionen (d.h. Aminosäuren mit polaren Seitenketten) bieten. Bei der anschließenden 

Antikörperherstellung führten diese potentiellen Antigensequenzen zu spezifischen 

Antikörpern gegen SP-G und SP-H. Die Antikörper stellen einen großen Fortschritt in der 

Erforschung dieser Proteine dar. Mit ihrer Hilfe war es möglich, beide Proteine in 

verschiedenen Geweben nachzuweisen, welche für die Expression von Surfactantproteinen 

typisch sind. Zudem erlaubten die Antikörper erste funktionelle Studien im Labor. 

Um die Eigenschaften von SP-G und SP-H und ihr Verhalten in ihrer natürlichen Umgebung 

näher untersuchen zu können, wurde ein Modellsystem etabliert, welches die grundlegenden 

Eigenschaften des pulmonalen Surfactantsystems reproduzieren kann. Dieses besteht 

ausschließlich aus dem Lipid Dipalmitoylphosphatidylcholin (DPPC), welches den Haupt-

bestandteil des Lungensurfactants darstellt und in einer Einzelschicht angeordnet wurde. Die 

Parameter für DPPC wurden im G53a6-Kraftfeld entsprechend der aktuellen Literatur 

angepasst und die Simulationsparameter für GROMACS dahingehend optimiert, dass die 

Literaturwerte für ein DPPC-Lipidsystem reproduziert werden konnten. Zusätzlich wurde das 

Kraftfeld auch um Parameter für die modifizierten Aminosäuren der Proteinmodelle erweitert. 

Aus diesen Bemühungen resultierte ein Kraftfeld, welches für Lipide sowie die unmodifizierten 

als auch die modifizierten Proteinmodellen gleichermaßen verwendet werden kann. Ferner 

konnte ein Lipidsystem etabliert werden, welches grundlegende Eigenschaften des pulmonalen 

Surfactants widerspiegelt und über einen längeren Simulationszeitraum stabil bleibt.  
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Auf der Grundlage dieses Lipidsystems wurden anschließend Simulationen der SP-G- und 

SP-H-Modelle durchgeführt. Für beide Proteine wurden sowohl für das unmodifizierte als auch 

für das modifizierte Modell sechs Simulationen gestartet, welche zu Beginn der Rechnung 

unterschiedlichen Orientierungen des Proteins im Bezug zur Lipidschicht aufwiesen. Somit 

wurden insgesamt 24 Rechnungen zu je 50 ns durchgeführt. In allen 24 Simulationen konnte 

die Stabilität der Proteinmodelle festgestellt werden, so dass die Auswertung der Systeme nach 

Abschluss der Rechnungen keine allgemeine Entfaltung oder einen Qualitätsverlust der 

Proteinmodelle ergab. Weiterhin zeigte jede Simulation das Bestreben des Proteins, mit der 

Lipidschicht zu interagieren. Im Verlauf aller durchgeführten Simulationen bewegte sich das 

Protein durch die Wasserphase in Richtung Lipidschicht und wies am Ende der Simulation 

(nach 50 ns) direkten Kontakt zu den Kopfgruppen der Lipide auf. In einigen Rechnungen 

zeigte sich nur eine schwache Fixierung des Proteins auf der Lipidoberfläche, unterstützt durch 

wenige Interaktionen zwischen polaren Aminosäureseitenketten und Kopfgruppen der Lipide. 

Andere Simulationen zeigten hingegen eine starke Interaktion zwischen Protein und 

Lipidschicht, initiiert durch vereinzelte posttranslationale Modifikationen im Bereich der 

Interaktionsfläche, welche wie Anker tief in die Region der Lipidkopfgruppen eindrangen und 

das Protein so fest an der Lipidoberfläche fixierten. Diese Ergebnisse legen nahe, dass SP-G 

und SP-H tatsächlich in der Lage sind, mit einem Lipidsystem zu interagieren, wie es für bereits 

bekannte Surfactantproteine charakteristisch ist. Es bleibt aber festzuhalten, dass die 

Interaktionsflächen und die ausgebildeten Interaktionstypen (polar oder hydrophob) zwischen 

Protein und Lipiden sehr variabel waren und hochgradig von der Orientierung des Proteins zum 

Simulationsstart und den posttranslationalen Modifikationen abhingen. Zudem konnte aus den 

Simulationen kein direkter Einfluss der Proteine auf die Stabilität oder Ordnung der 

Lipidschicht festgestellt werden. Jedoch konnten die Rechnungen zeigen, dass die Oberflächen-

eigenschaften der Proteine (z.B. Ladungsverteilung) signifikant durch lokale Konformations-

änderungen beeinflusst werden können. Dieser Effekt kann durch posttranslationale 

Modifikationen, insbesondere durch N-Glykosylierungen und Palmitoylierungen, noch 

verstärkt werden. Daraus könnten für SP-G und SP-H amphiphile Eigenschaften resultieren, 

wie sie für die bereits bekannten Surfactantproteine beschrieben werden. So könnten beide 

Proteine in einer wässrigen Umgebung einen hydrophilen Charakter aufweisen, in der Nähe 

einer Lipidschicht oder bei Einwanderung in ein hydrophobes Milieu aber durch geringfügige 

Änderungen der Struktur auch deutlich hydrophobe Bereiche präsentieren. Dieser amphiphile 

Charakter ist ein weiterer Hinweis auf die Zugehörigkeit von SP-G und SP-H zur Familie der 

Surfactantproteine, welcher mithilfe der computergestützten Simulation erlangt werden konnte.  
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Abbreviations 
 

ARDS   Acute Respiratory Distress Syndrome 

BLAST  Basic Local Alignment Search Tool 

CASP   Critical Assessment of Techniques for Protein Structure Prediction 

CRD   carbohydrate recognition domain 

DPPC   dipalmitoylphosphatidylcholine 

GalNAc N-acetylgalactosamine 

GlcNAc  N-acetylglucosamine 

MD   molecular dynamics 

MS mass spectrometry 

NMR   nuclear magnetic resonance 

PDB   Protein Data Bank 

PMDB   Protein Model Data Bank 

PME   Particle-Mesh-Ewald method  

PS   pulmonary surfactant 

PTM(s)  posttranslational modification(s) 

SFTA2, SFTA3 surfactant associated proteins 2 and 3, alternative denomination for SP-G 

and SP-H 

SP(s)   surfactant protein(s) 

SP-G, SP-H  surfactant protein G, surfactant protein H 

 

Furthermore, the common three- and one-letter code for amino acids is used. 
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1. Introduction 
 

 

As an essential for life, every breath supplies oxygen to the organism. The organ responsible 

for this process is the lung, which is therefore inevitably in direct contact with the air. 

Unfortunately, this exposes the lung surface to a large number of dangers, which could 

potentially damage the whole organ. Apart from the physical injury by inhaled particles, the 

evaporation of the surface and the underlying tissues as well as the infection by pathogens are 

the most threatening risks. To avert these threats, a thin liquid film lines the complete alveolar 

surface: the so-called pulmonary surfactant (PS).  

 

1.1. The pulmonary surfactant system 

 

Surfactant is an acronym for “surface active agent” and describes a complex mixture of approx. 

90% lipids and approx. 10% proteins by weight [1]. It is part of the thin aqueous layer, which 

covers the air-liquid interface at the surface of the lung alveoli. The lipid component contains 

mostly phosphatidylcholines (between 70 and 80%) [2-4], from which the majority is 

dipalmitoylphosphatidylcholine (DPPC, 41-70%) [5,6]. The second most abundant lipids of the 

pulmonary surfactant (PS) are phosphatidylglycerols (7%), followed by phosphatidyl-

ethanolamines that account for 5% of the total mass. Furthermore, phosphatidylinositol and 

sphingomyeline are present (2%) [5,6]. Neutral lipids, such as cholesterol, account for 5% of 

the lipid mixture. A summary of the average surfactant composition is depicted in Figure 1a. 

This lipid mixture forms a monolayer system with the polar lipid head groups facing the liquid 

interface and the hydrophobic carbonyl chains facing the air. Proteins of the PS, called 

surfactant proteins (SPs), are integrated into this monolayer or are lipid-associated in the 

aqueous phase. Figure 1b shows a simplified depiction of the current conception of the PS 

system setup, including the surfactant proteins, which are described in chapter 1.2.  

 

 



2 

The most important function of the PS is the lowering of the surface tension during the 

respiration process, which prevents the collapse of lung alveoli during expiration [7]. Hence, a 

fully functional PS system is essential for a proper lung function and surfactant dysfunction is 

associated with severe illnesses [8], for example the Adult Respiratory Distress Sydrome 

(ARDS) [9]. Furthermore, the PS provides an efficient protection against evaporation and 

shows mechanisms of host defense. Among the other components of the PS, the surfactant 

proteins are mainly responsible for the regulation of surface properties and immunological 

functions [10].  

 

1.2. Surfactant proteins 

 

Until now, four different surfactant proteins (SP-A, SP-B, SP-C and SP-D) have been identified, 

which can be divided into two classes. The surfactant proteins A and D are large hydrophilic 

proteins, which contain a carbohydrate recognition domain (CRD) and are part of the specific 

and non-specific immune defense mechanism of the pulmonary surfactant (PS) [11-14]. In 

contrast, surfactant proteins B and C are small and extremely hydrophobic proteins, whose 

functions are more related to general lipid organization and lipid layer stability [15,16]. To 

achieve their full functionality, SP-B and SP-C require a complex posttranslational 

modification pattern [17,18]. The interaction between the two surfactant protein (SP) classes 

seems to be necessary for a proper PS function. For example, the presence of SP-A showed a 

Figure 1: The pulmonary surfactant system. (a) Percentual composition of pulmonary surfactant from 
human bronchoalveolar lavage fluid (numbers from [1]). PC: phosphatidylcholine; PG: 
phosphatidylglycerol; PE: phosphatidylethanolamine; PI: phosphatidylinositol; Sph: sphingomyeline 
(b) Representation of the four currently known surfactant proteins SP-A, SP-B, SP-C and SP-D in 
vicinity of a pulmonary surfactant lipid monolayer (yellow) at the interphase between air (white area) 
and water (blue area). 
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supportive effect on SP-B activity [19] and the lack of SP-B results in a lower production of 

fully functional SP-C [20]. All four proteins were initially identified within lung tissue 

[11,12,21-23], but recently, SPs were also detected on the eye surface and in different tissues 

of the ocular system [24,25]. 

SP-A, encoded as a protein with 248 amino acids [26], is part of the C-type lectin family 

(“collectins”). Therefore, it shows a characteristic fold consisting of four regions [14]: The 

cysteine-containing N-terminus, which is important for oligomerization via intermolecular 

disulfide bridges, a collagen-like helical region, a short “neck region” with coiled-coil structure, 

and the C-terminus with CRD for Ca2+-dependent binding of sugar moieties [27]. SP-A forms 

a characteristic bouquet-like 18-mer structure consisting of six homotrimer subunits (Figure 1b) 

[22]. In vivo, it is responsible for the formation of tubular myelin, an extracellular surfactant 

reservoir [28]. With that, SP-A is important for the spreading of lipids and the control of surface 

tension, especially in cooperation with SP-B [29]. Nevertheless, SP-A-deficient mice showed 

no alterations in PS stability [30], indicating that the other SPs can compensate an SP-A 

deficiency. Instead, the immunological functions of this protein are more important. As a part 

of the innate immune system, it stimulates the activity of macrophages [31], supports 

opsonization of microorganisms [5] and specifically binds to the surface of various pathogens 

by means of the CRD [32-34]. According to that, SP-A-deficient mice showed a reduced 

immune defense against pathogenic microorganisms [35].  

SP-D, as a member of the C-type lectin family, contains the four regions of the general collectin 

fold as well. SP-D consists of 355 amino acids and its subunits show a high structural similarity 

to SP-A [12]. SP-D assembles as a dodecamer, consisting of four sets of triplet monomers, 

which are oriented in a cross-like complex (Figure 1b) [14]. With its CRD, it can specifically 

bind to carbohydrate moieties that are exposed for example on the surface of microorganisms. 

Therefore, SP-D is considered as part of the front line defense of the lung against inhaled 

pathogens. A direct interaction of SP-D with the Influenza virus type A [13], Pseudomonas 

aeruginosa and Escherichia coli [36,37] could be demonstrated. This emphasizes the 

importance of SP-D for the innate immune system, which is supported by experiments with 

SP-D-deficient mice that were more prone to infections with, for example, Influenza virus type 

A [38]. Furthermore, selective deletion of SP-D in mice [39] revealed its influence on the lipid 

homeostasis in the lung.  

SP-B is a very small and extremely hydrophobic protein of the saposin superfamily. 

Posttranslational modification was shown to be mandatory to process the inactive precursor 
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protein with 381 amino acids into the fully functional protein [18]. The mature and active SP-B 

consists of only 79 amino acids, has a total charge of +7 and is organized in mainly α-helical 

structure [40]. Various cysteine residues stabilize the protein fold and allow the formation of 

oligomers of different sizes via intermolecular disulfide bridges [41]. SP-B is assumed to 

interact directly with a lipid monolayer, mediating lipid transfer and adsorption of single lipids 

into an existing layer. In this way, it influences actively the surface tension and stability of the 

PS during the respiration process [29,42]. Studies showed that a lack of SP-B is lethal for 

newborn mice [43] and causes fatal respiratory failure soon after birth in humans [44]. Recently, 

Yang et. al. demonstrated the role of SP-B in the activation of alveolar macrophages in the 

innate immune response in the lung [45]. All these facts emphasize the indispensability of SP-B 

for the regular breathing function. A short form of SP-B (“mini-B”, residues 8-25 and 63-78) 

was shown to retain almost the complete activity of the full-length protein [46,47] and is 

therefore often used in experimental studies [48,49].  

Despite the very short sequence length (35 amino acids), SP-C is one of the most hydrophobic 

proteins in nature known to date [50,51]. SP-C consists of an α-helix which may integrate into 

a lipid layer [52,53]. For this purpose, it possesses a high content of valine residues [53]. The 

hydrophobic character of SP-C is further increased by two palmitoyl moieties, which are 

attached to cysteine residues [54-58]. Additionally, other posttranslational modifications 

(PTMs), such as glycosylations, acylations or esterifications, were described for SP-C as well 

[17,59]. Similar to SP-B, SP-C is responsible for the stability of the PS, for the adsorption of 

lipids into an existing monolayer and for the reduction of the surface tension [11,21]. Different 

effects were demonstrated for SP-C-deficient mice, for example almost no change in PS 

stability compared to the wild type [60] in contrast to a higher susceptibility to inflammatory 

lung diseases [61]. This suggests a functional redundancy between SP-B and SP-C, where SP-B 

is the more effective protein [62], but SP-C showing additional immunological functions 

[63,64]. 

For the investigation of surfactant proteins (SPs), a comprehensive range of biochemical, 

biophysical and immunological methods were applied in many in vitro and in vivo experiments 

[30-39,46-49,60-64]. These studies led to new insights into characterization, localization, 

function and interaction of the different SPs with their environment. Despite these studies, there 

are still a lot of outstanding issues of interest in this field – not only because of the still unclear 

mode of action in detail. However, profound research on these proteins is very time consuming 

and requires a lot of experience, because the work with them is subjected to difficulties [65]. 
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As for many proteins associated with a lipid system, the protein concentration in vivo is mostly 

very low, which prevents their direct purification from tissue. When overexpressed, some of 

these proteins tend to form aggregates, hence reducing the yield of stable and fully functional 

protein. Moreover, the recombinant expression in other host organisms often leads to 

posttranslational modification patterns that differ from the original organism or are missing 

completely. Depending on the protein, this could have a drastic effect on the protein activity in 

following experiments. Furthermore, especially the highly hydrophobic proteins SP-B and 

SP-C are difficult to handle in experiments due to their low solubility in aqueous media. All 

these aforementioned difficulties are also problematic for X-ray crystallography to obtain the 

overall protein structure. However, the knowledge of the 3D structure is a crucial step towards 

the understanding of the protein function. In fact, SP-C is the only surfactant protein with an 

X-ray structure of the full-length protein (“1spf” [66]) in the Protein Data Bank (PDB [67]). 

For SP-B, only very short fragments of the N-terminus (“1kmr” [68], “1dfw” [69], 15-25 of 79 

amino acids), the C-terminus (“1rg3” [70], “1rg4” [70], 16 of 79 amino acids), and several 

versions of the truncated protein “mini-B” (“1ssz” [46], “2jou” [48], “2dwf” [48], 34 of 79 

amino acids) are available in the PDB. The more hydrophilic character of SP-A and SP-D makes 

them less problematic to handle, but especially the N-terminus and the collagen-like region are 

still very difficult to resolve in X-ray experiments. Accordingly, only structures of the CRD-

regions with “neck-domain” as single trimers are available in the PDB for SP-A (“1r13” [71], 

148 of 248 amino acids) and SP-D (“1pw9” [72], 177 of 355 amino acids).  

 

1.3. Computational modeling and simulation of surfactant proteins 

 

The investigation of surfactant proteins (SPs) is an exemplary project, where the setup and 

realization of experiments is very complicated. In such cases, computational chemistry and 

protein modeling methods can effectively support experimental research. For example, 

modeling techniques can provide an atomistic three-dimensional model of a previously 

unknown protein structure. This model can give hints about the solubility of the protein or 

possible interactions with solutes in its environment, such as lipids, sugars or other proteins. 

Furthermore, a model could show which parts of the protein are exposed to the solvent. These 

solvent accessible residues will most likely possess posttranslational modifications, which may 

be essential for the protein function [73], as already described for the known surfactant proteins 
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[74-76]. Furthermore, a protein model can be used for molecular dynamics (MD) simulations. 

These calculations are able to show the time- and temperature-dependent behavior of a 

simulation system. This allows the observation of potential interactions of the protein with other 

compounds of its environment in a dynamic process.  

Indeed, there are many examples in the literature for productive cooperation between theoretical 

and practical research: The assumption of SP-D being an immunological active protein could 

be supported by simulation studies, which showed the binding of different sugar moieties to the 

CRD region. Among these bound sugars were also glycans, which are presented on the surface 

of Influenza virus type A [77,78]. In more detail, simulations were able to show which amino 

acids are responsible for sugar binding and how the binding affinity is regulated [79,80]. For 

SP-B, various simulation studies were successfully performed, which showed the influence of 

the protein on systems consisting of different lipid species [81,82], determined the exact 

orientation of SP-B in proximity of a lipid layer [83,84] or observed which amino acids 

participate in the interaction with a lipid environment [85,86]. As a prerequisite for all these 

simulations, the possibility to reproduce a protein-free monolayer system consisting of PS lipids 

in a MD simulation was previously demonstrated by Javanainen et. al. [87]. By means of long 

time scale MD simulations, previously hypothesized SP-B functions, such as the support of 

lipid transfer and lipid reservoir building [88] or the mediation of lipid vesicle fusion [89], were 

confirmed as well. MD simulations of the SP-C structure in different media revealed the 

stability of the fold [90] and suggested SP-C to play an important role in the formation of bilayer 

reservoirs [91]. Finally, the cooperation of SP-B and SP-C observed in experimental studies 

was supported and visualized by MD simulations, which showed an increased fluidity of a 

membrane system and induced monolayer folding in presence of both proteins [92].  

 

1.4. Motivation and objectives 

 

With the decryption of whole genomes in the last years, a vast number of databases with 

information about putative gene sequences became available. This is also the case for the human 

genome. With the help of theoretical bioinformatics tools, these gene sequences were 

investigated and transformed into protein sequences with putative characteristics ascribed to 

them. Due to these studies, two new sequences for human proteins with putative surface 

regulatory activity were identified (UniProt [93] entries Q6UW10 and P0C7M3). According to 
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the order of their discovery, these two proteins were named surfactant-associated protein 2 

(SFTA2) and surfactant-associated protein 3 (SFTA3) or alternatively, SP-G and SP-H [94,95]. 

The SP-G sequence comprises 78 amino acids with slightly hydrophobic character. It contains 

a predicted signal peptide of 19 amino acids at the N-terminus [96] that is essential for protein 

secretion [97]. In the UniProt entry, a potential N-linked glycosylation is suggested for position 

37. Similar to SP-G, SP-H is a relatively short protein with 94 amino acids. However, the SP-H 

sequence shows an overall hydrophilic character. The amino acid sequences of SP-G and SP-H 

share only 23% identical residues. Their length of 78 and 94 amino acids is too short to show 

any similarity to the group of huge SPs (SP-A, SP-D). This suggests that they belong to the 

group of small surfactant proteins (SP-B, SP-C). However, they do not share any domains with 

SP-B or SP-C and the amino acid sequence identities are very low (about 10%). Unfortunately, 

no further information about characterization, localization, function or 3D structure was 

available for SP-G and SP-H at the beginning of this work. However, more information about 

these proteins might facilitate the understanding of the whole surfactant system. The 

localization of SP-G and SP-H on the lung surface or in associated tissue and the assignment of 

surface regulatory properties would verify their classification as surfactant proteins. Additional 

experimental studies and knowledge obtained about SP-G and SP-H could reveal new insights 

into the functionality of the pulmonary surfactant system. In this way, a detailed understanding 

of these proteins could point out completely new approaches for the treatment and therapy of 

surfactant dysfunction.  

This work represents the theoretical part of an interdisciplinary project between the Leibniz 

Institute of Plant Biochemistry in Halle (PD Dr. W. Brandt) and the Institute of Anatomy II of 

the Friedrich-Alexander-University Erlangen-Nuremberg (Prof. L. Bräuer) to characterize the 

aforementioned proteins SP-G and SP-H, and to obtain first insights into the function of these 

novel and putative SPs. Therefore, the question if SP-G and SP-H are indeed surfactant proteins 

is the major issue of this work.  

To address this question, the initial task is the generation of reliable 3D protein structure models 

for both proteins. The knowledge about the overall protein fold, the positions of potential 

posttranslational modifications (PTMs) and, consequently, hints about the surface reactivity 

(functional groups, hydrophobic spots) could be derived from these models. Based on these 

results, it should be possible to determine if SP-G and SP-H have any characteristics in common 

with the already known surfactant proteins. For example, two key features of surfactant 

proteins, the high grade of posttranslational modification (PTM) and the ability to interact with 
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lipid systems, should be deducible from the protein models. Furthermore, the models could be 

used to guide, support and interpret experimental studies, e.g. the generation of specific 

antibodies to enable the localization of both proteins in different tissues by immuno-

histochemical methods. The localization of SP-G and SP-H in tissues that are typical for the 

presence of SP-A, SP-B, SP-C, and SP-D may further verify their classification as surfactant 

proteins.  

However, the static representation of a protein model is not sufficient to investigate the 

interaction of SP-G and SP-H with a lipid system or to show if these proteins possess any 

surface regulatory activity, as it is typical for SPs. Therefore, the aim of this work is the 

application of computational simulation techniques on SP-G and SP-H in their natural 

environment. After establishing a lipid simulation system resembling the basic properties of the 

pulmonary surfactant, long-term MD simulations of the SP-G and SP-H models in this 

environment may indicate if these proteins are, in general, able to interact with lipids. 

Furthermore, these simulations could be able to show the protein-lipid interaction in detail (on 

an atomistic level) and might indicate the influence of the attached PTMs on the interaction 

interface and strength. These studies may also demonstrate if SP-G and SP-H are proteins that 

are associated on the surface of lipid systems, comparable to SP-A and SP-D, or if they are 

embedded into the lipid layers as known for SP-B and SP-C. Additionally, the influence of 

SP-G and SP-H on characteristics and stability of the lipid system could become apparent 

during these simulations. Altogether, the knowledge derived from MD simulations could help 

to classify these novel proteins with respect to the already known SPs and answer the initial 

question, if SP-G and SP-H show surface regulatory functionalities and thus are in fact members 

of the surfactant protein family.  
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2. Methods 
 

 

2.1. Protein structure modeling 

 

Knowing the exact three-dimensional structure of a protein is very important for the 

investigation of its characteristics and functionality. Therefore, nearly all 3D protein structures 

known today are stored in the Protein Data Bank (PDB) [67]. This repository is publicly 

available and provides coordinate files, literature references and various additional annotated 

information for each structure. Prior to release, every entry in the PDB is manually reviewed 

and assigned a four-letter code as unique identifier. The standard methods to obtain the 3D 

protein structure as deposited in the PDB are X-ray crystallography and nuclear magnetic 

resonance (NMR) spectroscopy. For crystallography, a beam of X-rays is directed at the protein 

in a crystalline state. The resulting diffraction pattern can be transformed into an electron 

density map, which is used to determine the atom positions within the crystal [98]. Due to a 

high flexibility (high degree of freedom) or poor solubility of the protein, it could be very 

difficult to find optimal crystallization conditions or even the formation of well-ordered crystals 

could be inhibited. For NMR spectroscopy, no protein crystals are needed and the protein is 

measured in a physiological (“natural”) solution, which may lead to more realistic protein 

structures [99]. However, the NMR technique is limited to small proteins and requires 

expensive equipment. Therefore, computer-assisted protein structure modeling tools were 

developed, which bypass the problems of experimental structure elucidation by constructing a 

model of the protein fold. In general, there are three methodologies currently available, which 

differ in their prerequisites, complexity and computational costs: homology modeling, protein 

threading and ab initio modeling [100]. However, the differentiation between these methods 

became blurred over the last decade and more and more protocols were presented that 

successfully combine elements of all approaches. The basic ideas of each method as well as the 

programs and tools used in this work will be presented in the following. 
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2.1.1. Homology modeling 
 

With homology or comparative modeling, an atomistic structure model for a given amino acid 

sequence (“target”) is generated based on at least one protein structure with high sequence 

similarity and already known 3D structure (“template”). The idea of this method is based on 

the observation that evolutionary related proteins with similar sequences often share a similar 

fold [101] and that local changes in the protein sequence (e.g. single mutations) do not 

necessarily influence the overall structure of a protein [102]. For a successful structure 

prediction, target and template should have a sequence identity (i.e. amount of identical amino 

acids) of at least 20% [103]. To identify possible template structures, a search with the BLAST 

algorithm (“Basic Local Alignment Search Tool”) [104,105] is the common procedure. 

Thereby, the target sequence is compared to all sequences of proteins with known 3D structure 

in the PDB. The similarity between two sequences is calculated as a score based on identity and 

coverage after an alignment. Filter options allow to show only hits above a defined threshold 

as results.  

In this work, the homology modeling protocol as implemented in YASARA [105-108] was 

used. It contains an automated template search, secondary structure prediction for the target 

sequence [109], and an alignment protocol to align target and template sequences. The final 

models are refined by energy minimizations and short MD simulations with the YASARA2 

force field [110,111], which was developed especially to optimize protein structure geometries. 

Finally, an internal overall quality score ranks all resulting models. A special feature of the 

YASARA modeling protocol is the generation of a “hybrid model”, which combines the best-

scored parts of all obtained models. 

 

2.1.2. Threading 
 

When no template structures with a sequence identity above 20% are available in the PDB, the 

homology modeling will probably fail. The threading method expands the idea of homology 

modeling by classification (protein family), secondary structure prediction and fold recognition 

(domain identification) of the target protein. In general, homology modeling and threading are 

both template-based processes. However, whereas the homology modeling considers only 
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sequence similarity, the threading approach focusses on structural similarity for template 

identification and structural alignment. Threading routines are often provided by online servers 

for academic use. In this work, the “iterative threading assembly refinement” server, in short 

I-TASSER [112,113], was used for model generation. I-TASSER was ranked as best server for 

protein structure prediction in four consecutive “Critical Assessment of Techniques for Protein 

Structure Prediction” experiments (CASP7 [114], CASP8 [115], CASP9 [116], CASP10 

[117]). The CASP experiments are organized as annual competitions, where all participants try 

to model the same predefined target as accurate as possible. Although the good performance of 

I-TASSER in these experiments, the server is still continuously improved. The target sequence 

can be submitted via web interface and the whole structure prediction and model building 

process is multi-phased and fully automated.  

 

2.1.3. Ab initio modeling 
 

If the requirements for homology modeling or threading cannot be fulfilled or the generation of 

a reliable model failed for other reasons, the ab initio or de novo protein modeling can be used 

to build a structure model. In the ideal vision of ab initio modeling, the protein structure is 

predicted “from scratch”, i.e. the prediction is solely based on physical and chemical principles 

of the amino acid sequence rather than already known structures or fragment libraries 

(knowledge-based information). The success of this method depends on the availability of an 

efficient method to explore all possible conformations of a peptide and a realistic energy 

function to obtain the energy landscape and to rank the individual conformations [118]. Since 

the conformational search is increasingly extensive for longer peptides, ab initio modeling is 

computationally very expensive. Therefore, the combination with knowledge-based 

information and high-performance computers is necessary to produce models in reasonable 

time, even for medium-sized proteins. ROBETTA [119] is the only folding server available for 

academic use that offers state-of-the-art ab initio modeling protocols (evaluated by CASP 

[120]) and the required computational power. After submission of the amino acid sequence 

using the online user interface [119], sequences are processed completely automated. 
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2.2. Protein model quality and validation tools 

 

One of the most crucial questions in the process of protein modeling arises after the models 

were built with any of the previously described methods: How reliable is the obtained protein 

structure model? The numerous methods that were developed to answer this question use for 

example statistics about natively folded proteins (i.e. crystal structures), geometric properties 

of the amino acids (e.g. stereochemistry) or empirical energy functions. These different 

methods are able to show problematic protein regions, which deviate from a native-like state. 

Very often, several factors are calculated and combined to an overall quality score, which 

facilitates the comparison of multiple models. This information can be used to improve or 

correct the corresponding model (or parts of it), for example by refinement with energy 

minimization or molecular dynamics methods, using an alternative template for the modeling 

process or even switching to a more sophisticated modeling approach. In the following 

paragraphs, the protein structure validation and quality assessment tools used to evaluate the 

obtained protein models in this work will be introduced.  

 

2.2.1. PROCHECK 
 

The stereochemical quality of a protein model can be validated with PROCHECK [121]. The 

statistical analysis of known protein structures showed that native-like folds feature specific 

geometry patterns. The program calculates, for example, bond length and bond angles for the 

backbone atoms and checks the planarity of all peptide bonds or ring systems of amino acid 

side chains. The results are then compared with the statistics of native protein structures and 

are presented in various plots with (if present) highlighted problematic residues. The most 

important graph produced by PROCHECK is the “Ramachandran plot” (Figure 2). In this 

diagram, the two backbone dihedral angles φ and ψ of each amino acid residue are plotted 

against each other. Statistical analyses showed that not all possible combinations of φ and ψ 

occur evenly distributed, but that specific regions of the Ramachandran plot are preferred in 

native protein structures (Figure 2) [122]. Red or yellow regions represent typical and allowed 

torsion angle combinations. Light yellow regions show generously allowed angles, which are 

not very often found in known 3D structures, but which are still present in native proteins. 
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Ideally, over 90% of the protein amino acids should be located in the red (favored) regions. An 

amino acid with a φ-ψ-combination in one of the white areas is called “outlier” and the 

geometry of this amino acid itself but also of its environment should be checked carefully. Since 

a high stereochemical quality is an essential, but not sufficient prerequisite for a native-like 

protein model, other quality assessment tools were applied as well.  

 

2.2.2. ProSA II 
 

ProSA II [123] was the main criterion in this work to assess the protein model quality. With the 

help of knowledge-based energy potentials obtained from statistical analysis of known protein 

structures (X-ray and NMR from the PDB), the ProSA II program is able to estimate the fold 

quality of a protein structure model. The overall quality of the model is represented by a 

calculated “Z-score”. This score is dependent on the protein length and the pair, surface, or a 

combined pair and surface potential. For the potential calculation, only the Cα atoms, only the 

Cβ atoms or a combination of both can be used. For proteins with similar length and a native 

fold, the Z-scores are in a characteristic range, so that this score can give a hint if a protein 

model shows a native-like fold. If the calculated Z-score for a protein model is outside of this 

range, it very likely contains misfolded parts or erroneous regions. Additionally to the overall 

quality measure via Z-score, a local model quality is calculated with the energy potential as a 

Figure 2: Ramachandran plot produced by PROCHECK with the mapped distribution of the φ and ψ 
angles in native protein structures. Red regions are “favored”, yellow regions are “additionally 
allowed”, and light yellow are “generously allowed” areas. All white regions represent “disallowed” 
angle combinations. For a protein with native fold, at least 90% of the amino acids should reside in the 
“favored” regions. 
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function of the sequence position. The result is presented in a plot with variable amino acid 

residue sliding window. In general, the plot should have a negative value for all positions in the 

amino acid sequence. Regions with positive energy values indicate problematic or non-native 

elements that should be checked and refined carefully.  

 

2.2.3. ProQ 
 

The Protein Quality Predictor [124] is a neuronal network based method to identify a correct 

model from a large subset of models with incorrect fold. To determine the model quality, two 

different scores are combined: LGscore [125] and MaxSub [126]. Both are sequence length 

dependent measures for the distance between a model and a correct target structure. Both can 

result in values between 0 and 1, but whereas the LGscore for two identical structures would 

be 0, the MaxSub would have a value of 1 and vice versa for two unrelated structures. In ProQ, 

the negative logarithm of the LGscore is used for computational efficiency. The reason for 

combining two different scores is the fact that all quality measures developed so far have 

different advantages and disadvantages (review in Cristobal et. al., 2001 [125]). The most 

prominent problem is the influence of the protein sequence length on the accuracy of the 

method. In the case of LGscore and MaxSub, this dependence is contrary. While long proteins 

are more likely to achieve a good LGscore, short protein sequences are more likely to achieve 

a good MaxSub score. The idea of combining both measures in ProQ is to balance out the length 

dependency to obtain a more reliable protein quality measure. In practice, a correct model is 

defined by a combination of LGscore above 1.5 and MaxSub greater than 0.1, whereas an 

incorrect model should have an LGscore below 1.5 and a MaxSub lower than 0.1.  

 

2.2.4. ERRAT 
 

ERRAT [127] is an algorithm for protein structure verification, which concentrates on the 

statistical analysis of non-bonded pairwise atom interactions within a protein structure. The 

distribution of three different atom types (carbon, oxygen, and nitrogen) among the protein 

model structure is evaluated with a quadratic error function and is subsequently compared with 

results of 96 reliable protein structures. A bar plot of the error value is produced for the pairwise 

atom interactions of a nine-residue sliding window. Bars with a value above 95% indicate 
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residue windows with problematic atom type distribution. All regions with an error value above 

99% or no successful error value calculation should be reviewed carefully. Additionally, an 

overall quality factor for the whole protein structure is calculated (between 0 and 100), which 

represents the percentage of protein residues with an error value below 95%. For natively folded 

proteins, this overall quality factor should be around a value of 95 or higher.  

 

2.2.5. VERIFY-3D 
 

VERIFY-3D [128,129] is able to generate a 3D profile for a given protein structure. Each 

residue of the structure is categorized into an “environment class” according to three criteria: 

the area of the side chain buried by other protein atoms, the percentage of this area that is buried 

by polar atoms or water, and the local secondary structure [128]. In this way, three-dimensional 

structure information is mapped to an one-dimensional information string that can be compared 

to an amino acid sequence. Therefore, VERIFY-3D can check if a given protein model (3D) is 

compatible with the corresponding amino acid sequence (1D). The compatibility is calculated 

as “3D-1D score”, which is plotted versus the sequence number in a 21-residue sliding window. 

This allows an easy identification of regions with a problematic fold (i.e. incompatibility 

between structure and sequence). The score calculation for the first and last nine residues is not 

possible. For a good protein model, the 3D-1D score should be above 0.2 for at least 75% of all 

scored protein residues.  

 

2.2.6. Stability test with molecular dynamics simulations 
 

MD simulations are able to calculate the time-dependent behavior of a system and are therefore 

suitable to show dynamic process (see chapter 2.4.). Thus, MD simulations can give hints about 

the stability of a protein model. Extensive and permanent movements in protein regions, a loss 

of secondary structure elements or complete unfolding of the model during the simulation can 

indicate a poor model quality. Furthermore, the results of the previously described quality 

assessment tools for the model before and after the simulation can be compared. A significant 

degradation in those measures may suggest an unreliable protein model. To check the stability 

of the SP-G and SP-H protein models, MD simulations were performed with YASARA 

[105-108] and the YASARA2 force field [110,111]. Each protein model was placed separately 
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in a water box with a physiological NaCl concentration of 0.9% for a simulation time of 20 ns. 

The models of the final simulation snapshots were compared to the initial models. For more 

information about MD simulation analysis, please see chapter 2.4.3. 

 

2.3. Prediction of posttranslational modifications 

 

Many proteins of the proteome are chemically modified after or during their biosynthesis. 

About 400 different posttranslational modification (PTM) types are known today, so that the 

chemical space of the proteome is considerably expanded beyond the possibilities of the 

proteinogenic amino acids [130]. These covalently attached functional groups can significantly 

influence the stability and functionality of proteins. For many proteins, the full functionality is 

only reached after the addition of all PTMs. Even the control of complete protein activation and 

inactivation is possible due to the reversibility of most PTMs. In the following, a selection of 

PTMs considered in this work is briefly described. 

One of the most important PTMs is the attachment of different carbohydrates (“glycans”) to 

amino acid side chains. These “glycosylations” play an important role for protein targeting and 

transit. Furthermore, they are necessary for different signaling processes and can influence 

protein folding and activity [131]. Different types of glycans exist, whose complexity ranges 

from single monosaccharide moieties up to very huge structures with multiple sugar types, 

branches, and intermolecular bonds. The sugar moieties can be bound in different ways to the 

protein. The most prominent types are the linkage to an amine group of asparagine (“N-linked 

glycosylation”) or to a hydroxyl group of serine, threonine or tyrosine (“O-linked 

glycosylation”) [131]. “Phosphorylation” is the addition of a phosphate group, most often to 

the side chains of serine, threonine or tyrosine residues. Since it is a very flexible and reversible 

process mediated by protein kinases and phosphatases, phosphorylation is an essential 

mechanism to activate or deactivate enzymes or receptors, for example in signaling pathways 

[132]. Estimations indicate that 30% of all cellular proteins contain at least one phosphorylated 

residue, which emphasizes the importance of this PTM type [133,134]. “Acetylation” is the 

addition of an acetyl group to the N-terminus of the protein or, less frequently, to the ɛ-amino 

group of lysine [135]. The effects of N-terminal acetylation are not completely understood so 

far, but it may influence the protein stability, metabolism, and degradation [136,137]. The 

acetylation of lysine side chains, however, is a reversible process, which is associated with gene 
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regulation and is often accompanied with other PTMs to modify the functions of the protein 

[138]. The addition of a sulfate group to the hydroxyl group of tyrosine is called “sulfation”. 

Whereas it is known that sulfation is responsible for the strengthening of protein-protein 

interactions, its influence on protein function is still uncertain [139]. In the case of a 

“prenylation”, a farnesyl or geranylgeranyl moiety is added to a cysteine residue by a thioester 

bond. Since the addition of these compounds may create a huge hydrophobic area on the protein 

surface, prenylation is typical for membrane-bound or membrane-integrated proteins [140]. 

Furthermore, prenylations may be important for specific protein-protein interactions [141]. The 

same holds for “palmitoylations”, where palmitic acid as hydrophobic component is bound to 

a cysteine residue by a thioester bond. Analog to prenylations, this PTM is often part of 

membrane-associated proteins, because the fatty acid carbon chain enhances the hydrophobicity 

of the protein surface and is able to act as an anchor in a membrane compartment [142]. A 

comprehensive overview of effects and functions of palmitoylations (and prenylations) is 

presented by Dunphy et al. [143]. 

The method of choice to detect PTMs for a given protein is the (tandem) mass spectrometry 

(MS) analysis [144]. After the tryptic cleavage of the protein, mass shifts in the resulting peptide 

fragments indicate type and position of the PTMs. To enhance the chances for a successful PTM 

identification, pure and high-enriched protein samples are necessary. Therefore, the 

combination of these MS experiments with advanced chromatography and immuno-

histochemistry methods is often essential, which requires to a very sophisticated preparation 

process.  

As an alternative to complicated and expensive experimental studies, PTMs can be predicted 

based on existing knowledge. There are many tools available, which use data from sequence 

motifs or positions of known PTMs to recognize potential modification sites in proteins with 

unknown modification pattern. The majority of these tools performs a sequence-based 

prediction of a certain modification by means of a neuronal network, which was trained with a 

data set of experimentally investigated modification patterns. These sequence-based prediction 

tools for PTMs are available as online servers and are listed on the ExPASy bioinformatics 

resource portal [145]. The input is typically the raw amino acid sequence and the results are 

shown on html-webpages.  

Table 1 gives an overview of all types of posttranslational modifications, which were 

considered in this study by prediction tools. Furthermore, amino acids that are a target for 

modification and example structures for attached functional groups are shown.  
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Table 1: Overview of posttranslational modification (PTM) types that were considered in this work. 

PTM type linkages example structure 

O-linked 
glycosylation 

Ser, Thr, 
Tyr 

 

N-linked 
glycosylation Asn 

 

phosphorylation Ser, Thr, 
Tyr  

acetylation 

N-terminus, 
Lys  

(ɛ-amino 
group) 

 

sulfation Tyr 
 

prenylation Cys 

 

palmitoylation Cys 

 
Chemical structures are shown without aliphatic hydrogens. Single bonds are light grey and double 
bonds are yellow. The “~” symbol marks the bond that connects protein and PTM. Atom color code: 
carbon: grey; oxygen: red; nitrogen: blue; hydrogen: cyan.  
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In the following, all sequence-based prediction tools used in this work for the sequences of 

SP-G and SP-H will be described briefly: 

NetPhos 2.0 [146]: With the help of a neuronal network, the probability for a phosphorylation 

of serine, threonine or tyrosine in a given eukaryotic sequence is predicted. This prediction is 

based on a large set of experimentally verified phosphorylation sites. The sensitivity of the 

method ranges between 69 and 96%, depending on the residue type. 

NetOGlyc 3.1 [147]: For mammalian proteins, possible glycosylations of hydroxyl groups for 

serine or threonine residues with N-acetylgalactosamine (GalNAc) are predicted. The 

prediction is based on a neuronal network which is trained with the sequence itself and sequence 

derived features (surface accessibility, secondary structure, and distance constraints prediction). 

According to the developer’s results, the method is able to predict 76% of the glycosylated and 

93% of the not glycosylated residues within an unknown sequence. 

YinOYang 1.2 [148]: The glycosylation of protein hydroxyl groups with an N-acetyl-

glucosamine (GlcNAc) moiety is predicted based on an algorithm that is very similar to 

NetOGlyc (neuronal network). Since the modification sites for glycosylation and 

phosphorylation are overlapping (serine or threonine side chains), YinOYang can make use of 

the NetPhos server to identify and consider residues with positive prediction for both 

modifications.  

NetAcet 1.0 [149]: This server predicts the N-terminal acetylation as performed by the 

N-acetyltransfase A (NatA) with a sensitivity up to 74% for mammalian data. The used neuronal 

network is trained with a data set derived from the yeast NatA, whose modification patterns 

were shown to be transferrable to mammalian NatA orthologs. The acetylation of internal lysine 

ε-amino groups or other acetyltransferases is not considered.  

NetCGlyc 1.0 [150]: The NetCGlyc 1.0 server predicts the modification of the indole C2 atom 

of a tryptophane residue with a α-mannopyranosyl moiety via C-C coupling. Again, the 

prediction is performed by a neuronal network, which was trained with experimentally verified 

modification sites. About 93% of both positive and negative C-mannosylation sites are 

predicted correctly.  

NetNGlyc 1.0 [148]: With this tool, the N-glycosylation of asparagine in human proteins is 

predicted. The prerequisite to identify a modification site is an Asn-Xaa-Ser/Thr motif. Based 



20 

on neuronal networks provided with known N-glycosylation data, the server reaches a 

cross-validated overall accuracy of 76%. 

Sulfinator  [151]: The sulfation of tyrosine residues in proteins is very hard to predict, because 

there are no clearly defined sequence motifs for this modification. Sulfinator combines four 

different Hidden Markov Models, which were trained with data of experimentally observed 

sulfations to predict possible modification sites in a protein sequence with an accuracy of 98%.  

PrePS [152]: The “Prenylation Prediction Suite” is a web-application which combines the 

prediction for farnesylation or geranylgeranylation by proteins with CAAX-box motif [153]. 

Based on the already known substrates for these proteins, PrePS can predict if a given sequence 

might be a substrate as well. The results can be cross-checked with PRENbase [154], an 

annotated database with predicted and known prenylated proteins.  

CSS-Palm 2.0 [155]: Based on a “Clustering and Scoring Strategy” (CSS) algorithm, the 

modification of a free cysteine sulfur atom with a palmitoyl group (saturated C16 fatty acid) is 

predicted. Since the prediction of such a modification site is very difficult due to the lack of 

unique sequence motifs, the performance of the predecessor of this program [156] was 

considerably improved by training the algorithm with a data set of 263 verified palmitoylation 

sites. In a cross-validation to a comprehensive experimental study [157], about 75% of the 

palmitoylations were predicted correctly by CSS-Palm 2.0.  

The predicted posttranslational modifications (PTMs) were manually added to the final protein 

structure models of SP-G and SP-H, followed by an energy minimization in YASARA 

[105-108] with the YASARA2 force field. [110,111]. The stability of the added PTMs and their 

influence on the protein model structure was checked by MD simulations in YASARA (20 ns, 

water box with 0.9% NaCl, YASARA2 force field [110,111]). The results were compared to 

the protein model simulations without PTMs. 
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2.4. Molecular dynamics simulations 

 

A protein structure model, even if it has an outstanding quality, represents only a static picture 

of a natural scenario. However, dynamic processes are very important for the protein 

conformation and the progress of chemical reactions in nature. Molecular dynamics (MD) 

simulations as a computational method can be used to consider these natural dynamics and 

show the behavior of a protein model over the course of a defined time period. This typically 

comprises several hundreds of picoseconds (ps) up to the microseconds (µs) scale, depending 

on the system size and available computational power. Since proteins usually reside in an 

aqueous environment, protein models are typically simulated in a box filled with water instead 

of vacuum. If there is already information about the protein environment available, the 

simulation system can be adapted to this knowledge. For example, a physiological salt 

concentration can be added to the solvent fraction or in the case of a transmembrane protein, 

the model can be integrated into a lipid system.  

For a MD simulation, the movement of each atom of the system is calculated by solving 

Newton’s equations of motion temperature-dependent and in defined time intervals (“time 

step”). Therefore, the force for every atom is calculated as the negative derivation of potential 

energy functions, which are provided for all elements of the system by force fields. The 

parameter sets of force fields can be derived empirically (based on experimental data) or by 

accurate ab initio calculations [158]. In general, there is no “optimal” force field for all 

purposes. However, many force fields were parameterized for a special scope of application. 

For example, the MMFF94 force field is only suitable for small organic molecules [159]. In 

contrast to that, the GROMOS [160] or AMBER [161] force fields were especially 

parameterized to accurately simulate protein structures and nucleotides (subsequently extended 

for other organic molecules). The choice of a suitable force field for the own research project 

is up to the user and may have a significant influence on the simulation results [162].  

For the GROMOS force field [160] which is used in this work, the potential energy functions 

are represented as the sum of three different terms: bonded interactions, non-bonded 

interactions, and restraints. As the name suggests, the bonded term comprises the interaction 

energy of covalent atom bonds. Thus, the parameters of bond length as well as bond angles, 

dihedral angles (“proper”), and in-plane torsion angles (“improper”) are available in this force 
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field as harmonic potentials for all possible combinations of atom types. High frequency 

oscillations of bonded interactions are a common problem in MD simulations. In combination 

with an unfavorable or too high time step, these oscillations may induce the breakdown of the 

whole simulation system. In GROMACS [163,164], the implemented LINCS algorithm 

[165,166] can be used to constrain the bond length between atoms of defined types or all atom 

types. This stabilizes the simulation and allows a higher time step. The non-bonded energy 

contains a repulsive and a dispersion term for van-der-Waals interactions, which are present in 

the form of Lennard-Jones potentials with parameters from the force field [163,164]. 

Furthermore, a Coulomb term is responsible to take (electrostatic) interactions between atoms 

with partial charges into account. To determine which atoms are interacting, GROMACS uses 

so-called “neighbor lists”. These lists contain all non-bonded atoms within a certain radius and 

are updated in regular intervals (pre-defined, not necessarily in every simulation step). Since 

non-bonded interactions show effects over long distances, i.e. the neighbor list radius has to be 

very large, their calculation is a very time-consuming task in a MD simulation. Therefore, 

van-der-Waals interactions are typically only considered up to a defined distance (“cutoff”) or 

are progressively switched off in a defined distance interval [167]. For the calculation of 

Coulomb interactions, however, even high cutoff distances might result in simulation artefacts 

[168]. Thus, sophisticated calculation schemes, such as the Particle-Mesh-Ewald (PME) 

method [169,170] used in this study, are necessary to calculate electrostatic interactions with 

the desired accuracy in reasonable time. The restraints term allows the user-defined 

manipulation of the potential energy for different reasons. With this value, it is possible to lock 

distances or angles between atoms during a simulation. Furthermore, the position of atoms in 

the coordinate system can be fixed. This is often used in the first phase of a simulation, where 

extreme fluctuations of properties, e.g. temperature or pressure, may threaten to damage the 

system.  

For a MD simulation, the term “ensemble” is defined as a set of environmental assumptions 

that produces statistical representative conformations for the simulation system under the given 

conditions. In the so-called NVT (canonical) ensemble, the number of atoms (N), the volume 

of the simulation box (V) and the temperature (T) are conserved. This requires a very careful 

setup of the simulation box, since the box boundaries and consequently the density of the 

simulation system is not allowed to change during the MD. To keep the system temperature 

constant, a “thermostat” is introduced, which couples the system to an external heat bath by 

introducing a scaling factor to the calculated energies. Depending on the thermostat choice, the 

coupling algorithm is either very effective in adjusting a system to a target temperature, which 
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is important for system equilibration phases, or very efficient in terms of resembling a canonical 

ensemble [171]. In GROMACS, it is possible to couple different groups of atoms to different 

heat baths, e.g. protein and solvent atoms separately. Consequently, artefacts introduced due to 

the imperfect energy exchange between different system components may be avoided [172]. In 

the case of a so-called NPT (isothermal-isobaric) ensemble, number of atoms (N), pressure (P) 

and temperature (T) are constant. In addition to a thermostat, the scaling of the box dimensions 

is now allowed in order to reach a target value for the system pressure. The methodology is 

very similar to the idea of a heat bath and the algorithm responsible for this “pressure bath” is 

called “barostat”. The box scaling can be achieved in different combinations. With isotropic 

scaling, size changes are applied equally in x, y and z dimension of the simulation box. Whereas 

this setup may be suitable for simple systems, it causes problems for simulations with a 

membrane, for example. In this case, the changes in x and y dimension of the membrane plane 

(membrane surface area) are not necessarily identical to the scaling needed in z dimension. This 

could lead to a deformed membrane, misleading results and artefacts. Alternatively, semi-

isotropic scaling can be used, where only the x and y directions are associated and the 

z dimension is able to change independently. Furthermore, anisotropic coupling is possible, 

where six dimensions (including diagonal compressibility) can change independently. 

However, this complicated variant may lead to extremely deformed simulation boxes.  

Independently from the choice of the ensemble applied, the box layout can have a significant 

influence on the simulation results. Whereas a rectangular box is the most suitable shape for 

simulations with lipid systems in the x/y plane, a rhombic dodecahedron or truncated 

octahedron may be more appropriate for proteins [173]. These layouts are closer to the shape 

of most proteins than a rectangular box and thus require less solvent molecules to fill it up. 

Nevertheless, the box dimensions should be large enough so that the solute can exhibit a 

reasonable far distance to the box boundaries, since a too small distance may introduce artefacts. 

This is very problematic for the membrane simulations planned in this work, because the lipid 

layers will be in direct contact with the boundaries of a rectangular box (cf. Figure 3). However, 

the usage of periodic boundary conditions [174] can completely avoid disturbing boundary 

effects. With this method, multiple translated copies of itself surround the simulation box, so 

that the atoms of the “original” box can “feel” the atoms of the adjacent copy, i.e. the atoms of 

the opposite box side, during the simulation [174]. Thus, there are no boundaries in the resulting 

“infinite” simulation system. Periodic boundary conditions in all three dimensions are 

necessary to use the Particle-Mesh-Ewald (PME) method for the calculation of electrostatic 

interactions, since it was developed for periodic systems [169,170].  
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All simulations with lipid or protein-lipid systems in this work were carried out with the 

GROMACS package version 4.5.4 [163,164]. The main reasons to use GROMACS were its 

free availability, the high performance in multi-threaded simulations and the united-atom 

G53a6 force field [160]. In contrast to an all-atom force field, the united-atom approach 

integrates the parameters for aliphatic hydrogens into the values of the carbon atom to which 

they are bound to. Therefore, aliphatic hydrogens can be omitted during the simulation, which 

reduces the number of atoms in the system and thus speeds up the calculation. Especially for 

the lipid systems used in this study, the speed up is significant due to omitting all hydrogen 

atoms of the lipid hydrocarbon chains. The simulation parameter files (.mdp) for all performed 

simulations are presented in Appendix 1-Appendix 5. 

 

2.4.1. DPPC simulation system setup 
 

The system, which is required for investigating possible interactions between the protein model 

and a lipid environment, should be as close as possible to the native state. For this reason, a 

basic dipalmitoylphosphatidylcholine (DPPC) lipid layer was established to simulate the SP-G 

and SP-H models in a natural environment. DPPC is the most abundant lipid in the pulmonary 

surfactant [2,3]. Accordingly, the literature describes that a lipid layer consisting solely of 

DPPC lipids is suitable to reproduce the basic properties of the lung surfactant in MD 

simulations [92,175-177]. The standard DPPC parameter set of the G53a6 force field was 

slightly modified in consideration of the results of Kukol (2009) [178] to produce a reliable 

lipid system. The initial bilayer consisted of 128 DPPC molecules per layer (256 lipids in total) 

and was generated with the CELLmicrocosmos MembraneEditor 2.2 [179]. The bilayer was 

placed in the center of a simulation box and solvated with water (Figure 3a). During the 

simulation, the water molecules are represented by the SPC water model [180]. A simulation 

of 75 ns indicated that the chosen lipid parameters and simulation settings are able to reproduce 

a stable lipid bilayer system. The MD simulation was performed with the Nosé-Hoover 

thermostat [181,182] at 323 K and the Parrinello-Rahman barostat [183,184] with semi-

isotropic coupling and a reference pressure of 1 bar. The LINCS constraint algorithm [165,166] 

was used to fix the stretching of all bonds, allowing a time step of 4 fs. Electrostatic interactions 

were calculated with the PME algorithm [169,170] as implemented in GROMACS with a cutoff 

of 1.2 nm. The van-der-Waals potential was switched off between 1.2 and 1.3 nm. The neighbor 
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list was updated every five steps, energy and pressure dispersion correction was applied. The 

last 25 ns of the simulation were used to calculate the area and volume per lipid, the lateral 

diffusion coefficient, and the area compressibility. In order to estimate the simulation quality, 

these values were compared to literature data (area and volume per lipid [185], lateral diffusion 

coefficient [186], and area compressibility [185,187]). The last snapshot of this 75 ns MD 

simulation was used to build the DPPC monolayer system. The membrane layer with the lipids 

1-128 was rotated by 180 degrees so that the polar lipid head groups were facing each other. 

Afterwards, the layers were separated from each other generating space between the lipid head 

groups. Two systems were built, one with the lipid layers approx. 6.5 nm apart, hereafter 

referred to as “small system”, and one with approx. 9.5 nm space between the DPPC layers, 

hereafter referred to as “big system”. Both systems were placed in a simulation box with the 

lipid layers parallel to the x/y-plane. The z dimension of the box was set big enough to generate 

a 4-5 nm vacuum phase between the hydrophobic lipid tails due to the applied periodic 

boundary conditions. The space between the lipid head groups was filled with SPC water 

molecules [180]. A 25 ns MD simulation was performed to equilibrate the monolayer systems 

and check their stability. The compressibility of the systems in z direction was set to zero to 

preserve the vacuum layer between the lipid tails. Apart from that, the other simulation settings 

were identical to the bilayer calculations. The resulting monolayer systems were used to build 

the initial protein-lipid simulation layouts by placing the prepared and equilibrated (cf. 2.4.2) 

protein models in the water phase between the lipid head groups (Figure 3b).  

Figure 3: Schematic illustration of the simulation box layouts. The polar lipid head groups are red and 
the lipid tails are yellow. Water is depicted as blue oxygen and grey hydrogen atoms. The secondary 
structure of the protein is shown in ribbon representation. (a) Simulation of a lipid bilayer in water. (b) 
Simulation of a lipid monolayer system with protein. The polar head groups of two distinct monolayers 
face each other, creating a polar phase for the protein and water molecules. On the lipid tail side, the 
monolayers are separated by a broad vacuum phase. 
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2.4.2. SP-G and SP-H simulation in a lipid environment 
 

All four protein models (SP-G and SP-H, each without and with PTMs) were equilibrated by a 

20 ns MD simulation in a water box with the G53a6 force field [160] at 323 K. For this purpose, 

the force field was further modified with parameters for the attached PTM residues, namely 

phosphorylated serine, threonine and tyrosine, palmitoylated cysteine, and serine or threonine 

residues that are O-glycosylated with GlcNAc or GalNAc as well as N-glycosylated asparagine. 

The N-glycosylation residue consists of a pentasaccaride core with two GlcNAc and three 

mannose moieties (-GlcNAc-GlcNAc-mannose-(mannose)2 , cf. Table 1). The parameters for 

these residues were taken from original building blocks of the G53a6 force field, for example 

the glucose or mannose building block, and combined with standard amino acid building blocks 

to describe the modified residue. Missing values for the connection between those parts were 

complemented manually with parameter sets from the original force field. A derivation of novel 

force field parameters was not necessary. In the case of the phosphorylated amino acids, 

parameters were taken from the G43a1p force field [188]. The equilibrated protein models were 

placed in arbitrary orientations in the SPC water phase [180] between the DPPC monolayers.  

Overall, six different starting orientations per model were generated and each system contained 

only one copy of the respective protein model (Figure 4). For each protein model, four different 

systems were built based on the “small system” and two based on the “big system”. As a special 

case, in one starting structure based on the “small system” for each modified protein, the model 

was manually positioned in a way that the palmitoylated cysteine residues are interacting with 

the lipid layer (“positioned”). For the SP-G model with PTMs, the palmitoyl moiety of Cys76 

is in contact with the DPPC layer 1-128 at the simulation start. For the modified SP-H model, 

the palmitoylations of Cys45 and Cys56 are interacting with the DPPC layer 129-256 at 

simulation start.  

Figure 4: Overview of all 24 performed protein-lipid MD simulations. Every point represents a 
simulation. The different types of simulation systems are color-coded. 
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All 24 starting orientations (simulation systems, Figure 4) were neutralized with counter ions 

(Na+/Cl-) and submitted to a 250 ps equilibration run with NVT ensemble and the Berendsen 

thermostat [189] at 323 K, followed by a 250 ps equilibration run with NPT ensemble and the 

Berendsen thermostat at 323 K and barostat at 1 bar. Afterwards, a 50 ns production run was 

performed for all 24 orientations. The LINCS constraint algorithm [165,166] was applied on 

all bonds involving hydrogens and the simulation time step was set to 2 fs. The Nosé-Hoover 

thermostat [181,182] at 323 K and the Parrinello-Rahman barostat [183,184] with semi-

isotropic coupling and a reference pressure of 1 bar were used for temperature and pressure 

coupling. Similar to the monolayer equilibration MD, the compressibility in z dimension was 

set to zero to maintain the simulation box layout. Electrostatic interactions were calculated with 

a cutoff at 1.2 nm with the Particle-Mesh-Ewald (PME) algorithm [169,170]. The van-der-

Waals potential was switched off between 1.2 and 1.3 nm. The neighbor list was updated every 

10 steps and no dispersion correction was applied. Trajectories of the system were saved every 

10 ps.  

 

2.4.3. Molecular dynamics simulation analysis 
 

The evaluation of the MD simulation results and trajectories was done with tools included in 

GROMACS [163,164]. For an efficient analysis workflow, the tools were performed 

sequentially with a bash script (Appendix 6). The following values were obtained from all 

simulations: 

Simulation box parameters: During the calculation, parameters regarding the simulation box 

are written to a log file (“energy file”) in defined intervals. This comprises temperature, pressure 

and density of the system, as well as box dimensions and box volume. Furthermore, the energy 

of the system according to the force field parameters (in kJ/mol) is recorded as a single value 

(total energy) or divided in separate energy terms (bond, angle, torsion, Lennard-Jones, 

Coulomb energy etc.). Following the energy of individual system parts is also possible by 

defining them as “energy groups” prior to the MD simulation. All or only a selection of these 

values can be extracted from the energy file with the GROMACS tool “g_energy”. The output 

is a tabulated file with the selected data series, which can be used to generate data plots and 

diagrams. 
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Root mean square deviation (RMSD): The RMSD of atomic positions is used to compare 

two (protein) structures and represents the most important value to observe the behavior of a 

protein during the MD simulation. Each simulation snapshot (frame) is superimposed with the 

starting structure (“fitted”) and the spatial deviation is calculated for each (selected) protein 

atom. These values are averaged over all (selected) atoms in the snapshot, so that a single 

RMSD value (in nm) results for each simulation frame. Thus, plotting these values versus the 

simulation time gives an impression of the protein movement and stability during the MD 

simulation. If the RMSD plot is essentially stable over a longer simulation period until the end 

of the MD, the protein is referred to as stable or “equilibrated”. This means that there are only 

minor movements in the protein structure without any expected significant changes. An instable 

graph with continuous fluctuations, however, may indicate problems in the protein model 

quality (regions with non-natural fold) or that the simulation conditions were not suitable for 

the examined protein (e.g. hydrophobic protein in polar solvent, too high system temperature 

or pressure). In this work, all protein atoms were used for the fitting process and the RMSD 

was calculated solely for the protein backbone atoms (N-Cα-C) using the GROMACS tool 

“g_rms”.  

Root mean square fluctuation (RMSF): The RMSF calculates the spatial distances (in nm) 

between the atoms of a simulation snapshot (frame) and a reference, which is in general the 

simulation starting structure. In contrast to the RMSD, the RMSF averages the distances for 

every atom over the whole simulation time, i.e. over all frames. This results in a single value 

for each atom, which indicates its range of motion during the MD simulation. Accordingly, the 

average value of all atoms in an amino acid residue represents the movement of each amino 

acid in the system. In this way, stable or instable regions of the protein can be identified. The 

RMSF values were calculated per residue with the GROMACS tool “g_rmsf” (with option -res).  

Interaction energy: Prior to the simulations, two energy groups “PROTEIN” including all 

protein atoms and “DPPC” comprising all lipid atoms were defined in the simulation settings. 

As a result, the energy terms for these two groups are listed separately in the energy file 

(cf. “Simulation box parameters”). Since values for the energy terms between these two groups 

are recorded to the energy file as well, the interaction between protein and lipid layer can be 

monitored. It has to be noted that these calculated interaction energies are no definitive values. 

The force field-based calculation of non-bonded interactions still shows deficiencies in 

accuracy compared to experimental data [190-193]. However, plotting this protein-lipid 
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interaction energy versus simulation time can give an overview at which point of the simulation 

the interactions started and how stable these interactions are. Furthermore, it allows the 

comparison of the interaction strength between different simulations.  

Area per lipid:  The area per lipid is one of the most important structural parameters to describe 

a lipid layer system. The amount of space a single lipid is allowed to take up in an ordered layer 

structure is well defined and depends on the lipid layer composition. Thus, a steady area per 

lipid may indicate a stable lipid layer and that the simulation parameters are selected 

appropriately. Otherwise, sub-optimal simulation settings or changes in the layer structure due 

to the interaction of a protein with the lipid surface may result in an area per lipid change. The 

area per lipid is calculated as the product of the x and y box dimensions, where the membrane 

in parallel to the x/y-plane, divided by the number of lipids per layer. The box dimensions were 

extracted from the energy file (cf. “Simulation box parameters”) and the area per lipid (in nm²) 

was calculated for every simulation frame to track the stability of the lipid layers used in the 

performed MD simulations.  

Secondary structure assignment: The DSSP algorithm [194,195] can assign a secondary 

structure element (α-helix, β-sheet, turn, coil etc.) to each amino acid of a given protein. The 

assignment process is based on the hydrogen-bonding pattern of the protein backbone. Thus, 

by performing DSSP for each MD snapshot, the stability of secondary structure elements over 

time is obtained. For a stable protein structure, the distribution of secondary structure elements 

should not change. For a protein with instable regions or a protein that starts to unfold during 

the simulation, more and more residues would be assigned as “coil”. In this work, the 

GROMACS tool “do_dssp” was used to determine major changes in the protein secondary 

structure. This tool calculates the number of residues with assigned structure (sum of residues 

with assignment as α-helix, β-sheet, β-bridge or turn) and plots the results versus simulation 

time to assess the protein stability. Furthermore, the tool calculates the overall secondary 

structure element distribution (in %). 

Visualization: Manual illustration of simulation snapshots is essential for the simulation 

analysis. Watching the system at simulation speed can reveal how different system components 

influence each other in their motion and show dynamic processes for example of protein loops 

or termini. Due to the atomic representation of the simulation system, observation of 

interactions between single atoms is possible, for example the formation or regression of 

hydrogen bonds. Eventually, the visualization can help to understand results and phenomena 

observed in the statistic-based MD analysis. For the visualization of simulation results as well 
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as the generation of figures, VMD [196] and YASARA [106,111] were used. Both programs 

are able to show the snapshots as interactive sequence (“movie clip”), can draw systems with 

different visualization styles, and can color, hide or label specific system components. 
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3. Results 
 

 

3.1. Protein structure modeling 

 

At the beginning, online BLAST [104] searches were performed for human SP-G and SP-H 

amino acid sequences to find possible homolog proteins. For SP-G, the full length protein 

sequence including the N-terminal 19 amino acid signal peptide was used, because it is 

unknown in which form the protein is present at its site of action. A BLAST search in the 

UniProt database [93] for sequences with a high identity compared to SP-G resulted solely in 

hits that are most likely uncharacterized or putative SP-G-homologs of other mammals. This 

was also the case for SP-H, however, a number of hits with a low score for short sections of 

putative regulatory proteins from different Pseudomonas species were detected as well. As 

expected, BLAST searches for both proteins to find similar sequences with already known 3D 

structure in the PDB were not successful. The identified hits had either a too low sequence 

identity (< 20%) or a poor coverage (only 18-25 of 78 residues for SP-G and 28-33 of 94 

residues for SP-H). Since there were no reliable templates found and the sequence identity of 

SP-G and SP-H to the already known SPs is very low (ca. 10%), first attempts to obtain the 3D 

structure by homology modeling failed. These attempts were performed with the YASARA 

homology modeling routine, which automatically searched the PDB and identified “1em7” for 

SP-G and “1vj0” for SP-H as possible templates for the modeling process. However, the 

sequences identities to the target sequences were below 10% in both cases. Accordingly, the 

resulting models for SP-G and SP-H showed problematic ProSA II Z-scores and energy plots 

(see Table 2 and Appendix 7). While PROCHECK and ERRAT resulted in acceptable values, 

the scores of VERIFY-3D and ProQ showed serious deficiencies and could not be improved by 

MD refinements. Therefore, the homology models were discarded and the SP-G and SP-H 

sequences were sent to the online threading server I-TASSER. Despite the threading models 

for both proteins showed significantly better results for the combined Z-score and ProQ as well 

as in ProSA II plots, they revealed issues in the PROCHECK and ERRAT values. Especially 

the SP-G model showed a problematic Ramachandran plot with only 68.2% of all amino acids 

in the favored regions and five outliers (Table 2a). Even MD refinements, manual editing and 
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MDs to relax the system could not improve the quality of the SP-G and SP-H models. As a 

result, the threading models were considered insufficient for further studies.  

Table 2: Quality assessment results for the best scored homology model, threading model, and ab initio 
model for (a) SP-G and (b) SP-H.  

a 

SP-G 
models 

combined  
Z-score 

PROCHECK ERRAT-
score 

VERIFY-
3D 

ProQ 

fav. regions  outlier  LGscore MaxSub 

homology 
modeling 

-0.65 92.4% 0 90.7 21.5% -0.358 -0.008 

threading -5.50 68.2% 5 80.9 54.4% 1.881 0.126 

ab initio 
modeling 

-6.16 95.5% 0 100.0 97.5% 3.579 0.141 

b 

SP-H 
models 

combined  
Z-score 

PROCHECK 
ERRAT-

score 
VERIFY-

3D 

ProQ 

fav. region s outlier  LGscore MaxSub 

homology 
modeling 

-3.90 91.7% 0 97.7 21.1% 0.448 0.062 

threading -5.10 85.7% 1 89.5 72.6% 1.736 0.030 

ab initio 
modeling 

-5.72 94.0% 0 93.0 48.4% 1.804 0.131 

Overall, these validation values provide hints about the quality of generated models. The length-
dependent average value of the combined Z-score is -7.77 for SP-G (a) and -8.0 for SP-H (b). More than 
90% of all residues should reside in the most favored regions of the Ramachandran plot without any 
outliers. The ERRAT score should be 95 or higher and the VERIFY-3D percentage above 75% for a 
natively folded structure. For a good model, the LGscore should be above 1.5 and the MaxSub greater 
than 0.1. 

Finally, the amino acid sequences of SP-G and SP-H were submitted to the ab initio modeling 

server ROBETTA. The obtained protein models showed a significant quality improvement in 

comparison to the threading models. Only minor local energy minimizations and a MD 

refinement with YASARA were needed to achieve acceptable results with structure validation 

tools. ProSA II produced a negative plot for the whole SP-G structure model (Appendix 7) and 

a combined Z-score of -6.16, which is close to the average value for proteins of this length 

(-7.77) (Table 2a). PROCHECK determined 95.5% of the 78 amino acids with a dihedral angle 

in the favored regions of the Ramachandran plot and no outliers. The ERRAT overall quality 
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factor reached the best possible value (100) and VERIFY-3D showed a very good result with 

97.5% of the residues having a 3D-1D score above the threshold. ProQ calculated an LGscore 

of 3.579 and a MaxSub score of 0.141, which indicated a “very good” and “fairly good” model, 

respectively. Altogether, this suggested a reliable SP-G model structure.  

For the model of SP-H, the ProSA II plot was also completely negative (Appendix 7) and the 

Z-score (-5.72) was in acceptable distance to the length-dependent average value (-8.0), 

indicating a native-like folding of the model (Table 2b). In addition, the Ramachandran plot 

showed 94% of the 94 amino acids in the favored regions without any outlier, which implied a 

very high stereochemical quality. The overall quality factor of ERRAT was 93. Furthermore, 

the ProQ LGscore of 1.804 and the MaxSub score of 0.131 indicated a “fairly good” model. 

The only drawback of this model for SP-H was the VERIFY-3D result, which was clearly below 

the optimal value (75%) with only 48.4%. This may be due to the methodology of this tool. 

Especially for small proteins, already a single polar amino acid (partially) buried by 

hydrophobic side chains can reduce the score drastically, although this would not necessarily 

indicate a problem with the overall fold of the protein model. However, since the other four 

tools did not suggest major quality problems, the obtained protein structure model for SP-H 

was considered reliable.  

Both final protein models based on ab initio modeling were subjected to a 20 ns MD simulation 

in a water box with YASARA to determine the model stability. The analysis of the RMSD of 

the protein backbone atoms revealed that both protein models reached a stable conformation 

within a reasonable simulation time. For SP-G, the RMSD first showed a stable phase between 

4 and 9 ns, before it rose to a plateau after about 10 ns (Figure 5, black plot). The RMSD was 

Figure 5: Validation of the SP-G (black) and SP-H (grey) protein model stability during a 20 ns MD 
simulation. The RMSD of the protein backbone atoms (in nm) was used as a measure for the model 
stability. Minor fluctuations of the RMSD indicate a stable protein model. 
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very stable on this level with only minor fluctuations until the end of the simulation. For SP-H, 

the RMSD plot reached a plateau already after 4 ns, where it remained stable until the end of 

the simulation (Figure 5, grey plot). For both protein models, no significant change in the 

secondary structure or unfolding of the protein was observed. Additionally, this stability was 

reflected by the secondary structure element percentages, which remained unchanged during 

the simulation (47% helix, 19% sheet and 34% coil for SP-G and 50% helix, 8% sheet and 42% 

coil for SP-H). The results of the validation programs thereby were comparable to the pre-MD 

results, some ratings are even improved, for example the ProQ results for SP-G or the Z-score 

and ERRAT score for SP-H (Appendix 8). Therefore, the stable models were deposited at the 

Protein Model Data Base PMDB [197] for public download and received the PMDB id 

PM0078341 for SP-G and PM0079092 for SP-H. With this, the three dimensional models could 

give first insights into the structures of SP-G and SP-H.  

The 3D model for SP-G (Figure 6a) is dominated by an α-helix (amino acids 41-56) and an 

antiparallel β-sheet structure spanning the residues 63-68 and 72-78, respectively. The 

hydrophobic part of the N-terminal signal peptide is modeled as a short α-helix (8-13). This 

helix as well as the other residues of the signal peptide (1-19) are loosely attached to the surface 

Figure 6: Structure presentation of the final protein model for SP-G. (a) Only the protein backbone is 
shown in ribbon presentation. (b) SP-G model with highlighted cysteine residues and selected charged 
amino acids. The view was rotated in comparison to (a) for a better understanding. Amino acid side 
chains are shown in stick representation without aliphatic hydrogens (carbon: grey; oxygen: red; 
nitrogen: blue; sulfur: green; hydrogen: cyan). In both pictures, α-helices are blue, β-sheets are red, 
turns and random elements are green and cyan. The same color code is used on the sequence bar on the 
bottom of the figure, which shows the secondary structure elements. 
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and cover the hydrophobic core of the protein. The fixation of this N-terminus on the protein is 

not very strong, so that a high flexibility is possible, which is needed for a signal peptide to 

interact with or be embedded into a lipid system due to its hydrophobic character. The α-helix 

41-56 also contains many hydrophobic residues (seven leucine residues and one phenylalanine). 

In addition, it contains three glutamate residues and one lysine, which could possibly interact 

with the polar head groups of lipid molecules (Figure 6b). Furthermore, the structure model 

shows that the only two cysteine residues of the sequence are about 1 nm apart from each other, 

which is too distant for the formation of a stabilizing intramolecular disulfide bridge. However, 

Cys76 is located on the surface of the protein and could be able to form an intermolecular 

disulfide bond to another SP-G monomer. This would result in a covalently connected protein 

dimer. Although there is no surface region predestined for interactions with another monomer, 

a non-covalent oligomerization of SP-G cannot be excluded based on the protein structure 

model. There are no structure similarities to the already known SPs observable.  

The most prominent structural features of the SP-H model (Figure 7a) are a long and stable 

α-helix of the amino acids 7-31 and an antiparallel β-sheet spanning the amino acids 55-62 and 

67-73, respectively. The α-helix shows a high content of polar or even charged amino acids 

Figure 7: Structure presentation of the final protein model for SP-H. (a) Only the protein backbone is 
shown in ribbon presentation. (b) SP-H model with highlighted cysteine residues and selected charged 
amino acids. The view was rotated in comparison to (a) for a better understanding. Amino acid side 
chains are shown in stick representation without aliphatic hydrogens (carbon: grey; oxygen: red; 
nitrogen: blue; sulfur: green; hydrogen: cyan). In both pictures, α-helices are blue, β-sheets are red, 
turns and random elements are green and cyan. The same color code is used on the sequence bar on the 
bottom of the figure, which shows the secondary structure elements. 
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(four glutamine residues, three asparagine residues, two arginine residues, and one glutamate), 

which are present on the protein surface and could interact with polar lipid head groups 

(Figure 7b). On the remaining protein surface, no extensive hydrophobic domains or regions 

are observable, which could interact with a hydrophobic membrane fraction. However, there 

are single hydrophobic spots on the protein surface formed only by single amino acids or short 

sequence parts (e.g. Phe5, Trp28, Leu31, Phe34 or positions 88-91). Furthermore, indications 

for transmembrane regions in the protein were not found. The first five N-terminal residues are 

not able to form strong interactions with the nearby residues and are thus very flexible. The 

cysteine residues on position 45 and 56 could form a structure stabilizing intramolecular 

disulfide bridge (Figure 7b). Since all three available cysteine residues are accessible on the 

protein surface, intermolecular disulfide bonds, for example with other SP-H monomers, could 

be possible. Hence, an oligomerization of SP-H cannot be excluded based on the protein 

structure model. Similar to the SP-G model, the SP-H model shows no structural similarities to 

the already known SPs.  

 

3.2. Posttranslational modifications 

 

Since it is known that posttranslational modifications are very important for the function of the 

already known surfactant proteins, the SP-G and SP-H sequences were also analyzed for PTMs 

with various statistic-based online prediction tools.  

For SP-G, NetNGlyc predicted an N-glycosylation on Asn37, which is already noted in the 

UniProt entry of SP-G. NetOGlyc predicted an O-glycosylation with N-acteylgalactosamine 

(GalNAc) on the C-terminal residue Thr78. Overall, YinOYang predicted five O-glycosylations 

with N-acetylglucosamine (GlcNAc) as sugar moiety. Thereby, the probability for a GlcNAc 

modification was moderate for Ser38, Ser39, Ser62, and Ser70 and high for a modification at 

Thr78. Given the results of NetPhos, the amino acids Ser17, Ser38, Ser39, and Tyr40 are most 

likely phosphorylated. Finally, the CSS-Palm server showed a possibly palmitoylated Cys76. 

The servers NetAcet, NetCGlyc, Sulfinator, and PrePS did not predict any modification site for 

the SP-G sequence. At this point, it is noticeable that only one PTM was predicted for amino 

acids of the N-terminal signal peptide. However, the phosphorylation of Ser17 is already very 

close to the signal peptide cleavage site.  
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Scanning the SP-H sequence for possible PTM sites gave the following results: The NetOGlyc 

server suggested six threonine residues at the positions 55, 66, 69, 75, 76, and 93 to be modified 

with a GalNAc moiety. The YinOYang prediction indicated a GlcNAc modification on Ser39, 

Thr76, and Ser78 with a high and on Ser82, Ser83, and Ser93 with a low probability. NetPhos 

predicted seven phosphorylation sites, namely Ser32, Ser39, Thr55, Ser80, Ser82, Ser83, and 

Ser84, with the last four having a high probability. The CSS-Palm server showed that two of 

the three available cysteine residues (45 and 56) might be palmitoylated. NetNGlyc showed no 

potential N-glycosylation and NetAcet did not predict any acetylation. Finally, NetCGlyc as 

well as Sulfinator and PrePS showed no potential modification sites.  

Subsequently, the predicted PTMs were added manually to the final protein models of SP-G 

and SP-H. For this process, the following two conventions were applied: First, if there was 

more than one modification predicted for the same position, only the modification with the 

highest probability was considered. Second, only solvent accessible amino acids, i.e. side chains 

on the protein surface, were modified, since the addition of e.g. a bulky glycosyl moiety would 

have caused steric problems and noticeably changes of the protein structure. All PTMs that 

fulfilled these requirements are summarized in Table 3 and were actually added to the protein 

models. Two phosphorylations, three O-glycosylations with GlcNAc, one palmitoylation and 

one N-glycosylation were added to the SP-G model (Table 3). For the SP-H sequence, six 

phosphorylation sites, six O-glycosylations (two with GlcNAc and four with GalNAc) as well 

as two palmitoylated residues were predicted and attached to the protein model (Table 3). 

Table 3: Predicted posttranslational modifications and their sequence positions in the SP-G and SP-H 
sequence.  

sequence 
position SP-G Ser17 Asn37 Tyr40 Ser62 Ser70 Cys76 Thr78 

modification PHOS N-GLC PHOS O-GLC O-GLC PALM O-GLC 

 
sequence 

position SP-H Ser32 Ser39 Cys45 Thr55 Cys56 Thr66 Thr69 

modification PHOS O-GLC PALM PHOS PALM O-GAL O-GAL 

sequence 
position SP-H Thr75 Ser78 Ser80 Ser82 Ser83 Ser84 Thr93 

modification O-GAL O-GLC PHOS PHOS PHOS PHOS O-GAL 

Present modification types: phosphorylation (PHOS), palmitoylation (PALM), O-glycosylation with 
GlcNAc (O-GLC) or GalNAc (O-GAL), N-glycosylation with a pentasaccaride core consisting of two 
GlcNAc and three mannose moieties (N-GLC). 



38 

After the manual addition of the PTMs, the protein models were submitted to a 20 ns MD 

simulation in YASARA to relax the attached modifications and check their influence on the 

protein model stability in comparison to the unmodified models. The RMSD plot for the 

modified SP-G model (Figure 8a, grey plot) showed that the structure is very robust in this 

simulation system, reaching an equilibrium phase after 8 ns with only small RMSD fluctuations 

thereafter. As for the unmodified protein model (Figure 8a, black plot), no significant secondary 

structure changes or hints for an unfolding of the protein structure were observed.  

The RMSD plot for SP-H also showed a stable protein model with additional PTMs (Figure 8b, 

grey plot). Until a simulation time of 11 ns, the RMSD values were almost identical to the 

unmodified model (Figure 8b, black plot). Thereafter, the plot for the modified model showed 

a higher fluctuation due to the influence of the large and numerous PTMs attached to the protein. 

Nevertheless, no significant secondary structure changes or an unfolding of the protein was 

visible.  

Overall, two model variants for each protein (with and without PTMs) were obtained, which 

maintain their good model quality during MD simulations (Appendix 8). Therefore, all four 

models are suitable for sophisticated computational chemistry studies in a lipid environment. 

The protein models with attached PTMs resulting from the MD simulations were deposited at 

the PMDB [197] and received the PMDB id PM0078342 for SP-G and PM0079093 for SP-H. 

In summary, the number of predictions determined in this work suggest that SP-G and SP-H 

show a high grade of posttranslational modification, comparable to the already known 

surfactant proteins. The possibility of protein-lipid interactions is significantly increased by the 

Figure 8: Protein model stability comparison for (a) the SP-G and (b) the SP-H model with PTMs (grey) 
and without PTMs (black). Plots of the protein backbone atoms RMSD (in nm) are used as a measure 
for the protein model stability during a 20 ns MD simulation. 
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numerous added sugar and phosphate moieties, which could interact with polar lipid head 

groups. Furthermore, the attached palmitoylations could play an important role for the 

interactions of the proteins with the hydrophobic lipid compartment. Thus, the obtained findings 

justify the classification of SP-G and SP-H as surfactant proteins.  

 

3.3. Generation of specific antibodies 

 

To perform immunohistochemical staining methods, e.g. protein localization studies, a specific 

antibody for the protein of interest is needed. For the production of such an antibody, the 

selection of a peptide sequence (15-20 amino acids) of the target protein is necessary, which 

can serve as antigen for the immunization process. The choice of this antigen is crucial for the 

function and specificity of the resulting antibody. In a first attempt, the antigen for the 

production of a specific anti-SP-G antibody was chosen solely based on the primary sequence. 

Therefore, regions with many amino acids that are able to form hydrogen bonds or electrostatic 

interactions between antigen and antibody residues were selected. However, the resulting 

antibody for SP-G was not specific in first experiments. This might be due to criteria other than 

the types of amino acids in the antigen sequence, which are important for a suitable antigen. 

The protein part used as antigen has to be located on the surface of the protein structure (solvent-

accessible). If the antigen is part of the protein core region, the antibody may be unable to bind 

to the antigen sequence. Furthermore, the peptide should be free of PTMs, since bulky 

modifications, such as glycosylations or palmitoylations, could inhibit proper binding of the 

antibody to the antigen sequence due to steric clashes (PTM-free). Finally yet importantly, the 

antigen sequence has to be unique within all proteins present in the experimental sample 

(unique). Otherwise, binding of the antibody to the target sequence being part of another protein 

could be possible as well. This would affect the antibody specificity and most certainly would 

lead to false positive results. With the help of the previously obtained protein structure models 

of SP-G and SP-H, putative antigen sequences could be identified, which met all the 

aforementioned criteria and thus may lead to successful and specific antibodies.  

For SP-G, two areas were identified as potential antigens (Figure 9a). The first suggestion 

covers an α-helix ranging from sequence position 40 to 57 (YESSFLELLEKLCLLLHL) and 

the second suggestion comprises a β-strand of the amino acids 60 to 70 (GTSVTLHHARS). 

The results of BLAST searches showed no identical hits, which suggested that both peptide 
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sequences are unique within the human proteome. The first suggestion (40-57) contains not 

only a lysine and a histidine, but also three negatively charged glutamate residues. These 

residues are very likely to form electrostatic interactions or hydrogen bonds with residues of 

the antibody. The only predicted PTM for this region is a phosphorylation at position 40, which 

should not affect a potential antibody-antigen binding. The second suggestion (60-70) is rather 

short and contains only one arginine and two histidine residues, which could interact 

considerably with an antibody. The rest of this sequence part contains mainly hydrophobic 

amino acids. Unfortunately, glycosylations are predicted for the positions 62 and 70, and the 

peptide may be partially buried by the adjacent palmitoylation on position 76 and a potential 

glycosylation on position 78. This situation may prevent the formation of a correct antibody-

antigen complex. Thus, only the first suggestion (YESSFLELLEKLCLLLHL) is solvent-

accessible and PTM-free and was suggested for antibody production.  

Two potential antigen sequences could be identified for SP-H as well (Figure 9b). The first 

suggestion covers the very stable N-terminal α-helix from position 7 to 31 

(DFQLIRDQVLFLQDQAQRLTEWLQL) and the second suggestion comprises the amino 

acid positions 35 to 51 (ENPVSESTTLCLREREK). BLAST searches indicated that both 

peptide sequences are unique within the human proteome. Furthermore, both sequences contain 

various amino acids with functional groups that would allow a specific binding of an antibody. 

However, whereas there are no predicted PTMs for the first suggestion (PTM-free), the 

predicted O-glycosylation on position 39 and palmitoylation on position 45 could interfere with 

Figure 9: Protein structure models of (a) SP-G and (b) SP-H with highlighted protein parts, which were 
suggested as antigens for antibody production. For each protein, two suggestions were selected. The 
protein models are shown in ribbon representation with α-helices in blue, β-sheets in red, turns in green 
and random coil elements in cyan. 
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a proper binding of the antibody to the area of the second suggestion. Furthermore, the spatial 

proximity of the palmitoylation on position 56 may also cause steric hindrances (solvent-

accessible). Accordingly, only the first peptide (DFQLIRDQVLFLQDQAQRLTEWLQL) 

fulfills the criteria for a promising antibody-antigen interaction and was suggested for antibody 

production.  

The company SeqLab (Göttingen, Germany) produced anti-peptide antibodies for SP-G and 

SP-H with the help of the suggested antigen peptides (YESSFLELLEKLCLLLHL for SP-G, 

CDFQLIRDQVLFLQDQAQE for SP-H). Martin Schicht [198] verified the specificity of the 

resulting SP-G antibody by means of Western blot analysis, using protein isolated from lung 

tissue (30 µg) and the recombinantly synthesized SP-G protein (not purified, 30 µg) 

(Figure 10a). The purified antibody showed distinct protein bands in lung for SP-G at 11 kDa, 

20 kDa and 30 kDa. A distinct protein band for recombinantly synthesized SP-G was visible at 

about 12 kDa. Lung tissue was used as specific positive control for surfactant proteins. All 

obtained bands deviated from the molecular weight of the pure SP-G sequence (9 kDa). 

However, a molecular weight of 11 kDa is calculated when taking the previously predicted 

PTMs into account (cf. 3.2). Therefore, the band at 11 kDa seemed to represent the mature 

protein monomer. Since the formation of oligomers could not be excluded based on the 

modeling results, the bands at 20 and 30 kDa may represent dimer and trimer complexes of 

SP-G, respectively. 

The specificity of the obtained SP-H antibody was also tested by Martin Schicht [199] with 

protein isolated from lung tissue and bronchoalveolar lavage (30 µg) (Figure 10b). The 

antibody showed distinct protein bands in lung for SP-H at 13 kDa, 26 kDa and 43 kDa. Lung 

Figure 10: Test of the (a) anti-SP-G and (b) anti-SP-H antibody by Western blot. (a) Figure from [198]. 
Proteins extracted from lung tissue (positive control) show distinct bands for SP-G at the theoretically 
expected molecular weights of 11, 20 and 30 kDA (left). The antibody detects a distinct band at 11 kDa 
for the recombinantly expressed SP-G protein (right) at 28°C (1) and 37°C (2). Arrows indicate positive 
evidence of SP-G. (b) Figure from [199]. Arrows indicate positive evidence of SP-H at molecular 
weights of 13, 26 and 43 kDa. Results are shown for A549 cells [218] (1), lung tissue (2), 
bronchoalveolar lavage (3); lung tissue without (4) and after (5) pre-incubation with antigen-peptide. 
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tissue was used as specific positive control for surfactant proteins. The analysis of 

bronchoalveolar lavage showed distinct bands at 13 kDa, 26 kDa and 43 kDa. Analog to SP-G, 

the results deviated from the molecular weight of the pure SP-H sequence (10 kDa). 

Nevertheless, considering the predicted PTMs resulted in a molecular weigth of 13 kDa. Thus, 

the band at 13 kDa may represent the monomer and the band at 26 kDa the homodimer of 

mature SP-H. It is speculative if the band at 43 kDa indicated a SP-H trimer complex with an 

altered PTM pattern or a complex of SP-H with another protein.  

Eventually, the obtained specific antibodies were crucial for the realization of 

immunohistochemical staining experiments, which demonstrated the presence of SP-G and 

SP-H in different tissues that typically contain surfactant proteins [198,199]. The occurrence of 

both proteins in these tissues (among them tissue of the respiratory tract) are a further strong 

indication that SP-G and SP-H are indeed members of the surfactant protein family. 

 

3.4. Preparation of the protein-lipid simulation system 

 

The DPPC lipid layers used in this work were built from scratch instead of using external 

sources with pre-equilibrated membrane systems. Therefore, these membrane systems had to 

be equilibrated prior to the actual protein-lipid simulations. To produce realistic starting 

structures for DPPC monolayer systems and to verify the cooperation between simulation 

settings and modified G53a6 force field, a 75 ns MD simulation with a DPPC bilayer was 

performed with GROMACS. To ensure a reference for future calculations, this simulation 

should be able to reproduce experimentally determined literature values for DPPC bilayers. 

Indeed, the trajectories of the last 25 ns of this simulation resemble typical bilayer 

characteristics (Table 4).  

The average value for the volume that each lipid occupies in the layer plane settled at 1.221 nm³, 

which was very similar to the experimental literature value of 1.232 nm [185]. The lateral 

diffusion coefficient of 9.2e-8 cm²/s, which describes the movement of single lipids within a 

layer, nearly matched the experimental value of 9.7e-8 cm²/s [186]. The area compressibility of 

533 mN/m was far off the experimental value of 231 mN/m, but was in the typical range of 

reported values for MD simulations (200-600 mN/m) [185,187].  
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Table 4: Comparison of characteristics for a DPPC bilayer reported in the literature and values obtained 
from simulations in this work. 

value  literature  simulation  

volume per lipid (nm³) 1.232 [185] 1.221 

lateral diffusion 
coefficient (cm²/s) 9.7·e

-8 
[186] 9.2·e

-8
 

area compressibility 
(mN/m) 200-600 [185,187] 533  

 

Moreover, as the primary criteria for the stability of a bilayer system, the averaged area per 

lipid was calculated for the last 25 ns of the MD simulation. In this simulation, the area per lipid 

showed only minor fluctuations and remained stable at a level of about 0.625 nm² (Figure 11). 

This was very close to the experimentally determined value of 0.64 nm² reported in the 

literature (blue line in Figure 11) [185]. Altogether, these analyses showed that the chosen force 

field parameters and simulation settings are able to reproduce a native DPPC bilayer correctly. 

Furthermore, they suggested that the equilibrated lipid bilayer system could be used as a starting 

point for the construction of monolayer systems for the protein-lipid MD simulations. 

To achieve a good agreement between the characteristics of the lipid simulation system and a 

natural bilayer, the simulation temperature was set to 323 K. This temperature is above the 

phase transition temperature for DPPC, so that the system achieves the biologically relevant 

fluid Lα state instead of the more ordered gel or subgel state [200-202]. However, the question 

Figure 11: Plot of the area per lipid (in nm²) for each DPPC molecule in a bilayer patch with 128 lipids 
during a 25 MD simulation to verify the chosen parameters and simulation settings. The blue line 
denotes the experimental literature value for a DPPC molecule in a bilayer of 0.64 nm² at 323 K [185]. 
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arose if this high temperature would have any negative effect on the stability of the protein 

models. To address this question, MD simulations for all four models (SP-G and SP-H, each 

with and without PTMs) were performed at 298 K and 323 K for 20 ns. The results of the 

simulations with both temperatures were compared for each model to identify differences in the 

model stability.  

For the SP-G model without PTMs, the level of RMSD values was slightly higher at 323 K in 

comparison to the simulation at 298 K (Figure 12a). The reason for this may be the overall 

higher energy in the system due to the increased temperature. However, the model seems to be 

equally stable with only minor fluctuations in the plot after 10 ns. The RMSD plot showed that 

the SP-G model with PTMs was more stable at 298 K compared to 323 K (Figure 12b). The 

higher system temperature enhanced the movements of the attached PTMs. Especially the bulky 

N-glycosylation on position 37 induced structure fluctuations in the nearby protein regions. 

Figure 12: Influence of simulation temperature on the protein model stability. The RMSD of the 
backbone atoms (in nm) of (a) the SP-G model without PTMs, (b) the SP-G model with PTMs, (c) the 
SP-H model without PTMs, and (d) the SP-H model with PTMs is compared. 20 ns MD simulation 
with 298 K (black plots) and 323 K (grey plots) were performed using GROMACS to investigate the 
influence of higher temperatures on the protein models. 



45 

Nevertheless, the “core regions” of the protein were quite stable and no secondary structure 

changes or a general unfolding of the protein was observed.  

Remarkably, the RMSD plot for the SP-H model without PTMs at 323 K showed a more stable 

progression compared to the simulation at 298 K (Figure 12c). Whereas the plot for 298 K was 

slightly increasing after 14 ns until the end of the simulation, the RMSD at 323 K remained on 

the same level after 5 ns. For the SP-H model with PTMs, no differences between the RMSD 

plots at 298 K and 323 K were observable (Figure 12d). For this model, the temperature seemed 

not to have any influence on the protein stability. In both cases, the RMSD plot showed a very 

stable progression and was equilibrated after 8 ns.  

In conclusion, the higher temperature of 323 K showed no significant influence on the protein 

stability of any of the four models. Therefore, the protein models were combined with the 

previously established lipid layer to generate the starting structures for the protein-lipid 

simulations (cf. 2.4.2). For each of the four protein models (SP-G with and without PTMs, SP-H 

with and without PTMs), six different starting orientations were created, which resulted in 

overall 24 different simulation systems for the following 50 ns MD simulations (cf. Figure 4).  

  



46 

3.5. Protein-lipid molecular dynamics simulation analysis 

 

After 50 ns of protein-lipid MD simulation, the final trajectory snapshots and statistics files 

were analyzed for all 24 performed simulations (cf. Figure 4). The most important finding 

thereby is that in all 24 orientations the protein models started to interact with the lipid layer. 

However, the protein parts that were responsible for the protein-lipid interactions were highly 

diverse. In the final trajectory overlay of all six simulations per model (Figure 13), no specific 

interaction site or “consensus orientation” could be identified for any of the four models. To 

select a representative result for each of the four cases, the protein-lipid interaction energy 

calculated by the force field was used as major criterion (Appendix 9, Appendix 10). 

Additionally, the protein stability measured by the RMSD (backbone atoms) was checked as 

well (Appendix 11, Appendix 12). In the following sections, the obtained results are described 

in more detail, separately for SP-G and SP-H. Additionally, the results of the orientations are 

presented, where the SP-G or SP-H model with PTMs was manually positioned to interact with 

the lipid layer already at simulation start (“positioned”).  

Figure 13: Resulting structures of MD simulations of the SP-G and SP-H models in a lipid environment. 
The final trajectories of all six performed simulations (orientations) for each model are superimposed in 
one picture, separately for (a) the SP-G model without PTMs, (b) the SP-G model with PTMs, (c) the 
SP-H model without PTMs, and (d) the SP-H model with PTMs. The DPPC lipids are shown as a grey 
surface. Protein backbone and atoms of the PTMs (in (b) and (d)) are colored differently for each 
orientation. 
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3.5.1. Detailed analysis for SP-G 
 

In the SP-G model without PTMs with the most negative protein-lipid interaction energy 

(-1100 kJ/mol, orientation 2), parts of the N-terminal signal peptide (1-14) and residues of the 

α-helix 41-58 were mostly responsible for the protein-lipid interaction (Figure 14a). Thereby, 

the signal peptide was aligned parallel to the lipid surface after it reached the polar lipid head 

groups. The α-helical conformation of the N-terminus was lost during this process (cf. Figure 6). 

Furthermore, the resulting positioning of the protein allowed the interaction of the α-helix 41-58 

with the monolayer in an almost parallel orientation. The first interactions established after 6 ns, 

as visible in the interaction energy plot (Figure 15a, black plot). After 30 ns, the interaction 

energy remained stable at about -1100 kJ/mol. The protein backbone RMSD plot for this 

simulation was not completely equilibrated, but almost constant with only minor fluctuations 

after 25 ns, which indicated a stable protein structure (Figure 15b, black plot). During this 

Figure 14: Detailed simulation results for the SP-G model without PTMs. (a) Representation of the 
SP-G model without PTMs with the most negative protein-lipid interaction energy after 50 ns of MD 
simulation. The DPPC lipids are shown as grey surface. (b) Detailed representation of the protein-lipid 
interaction site of the system in (a). For clarity reasons, the view was slightly rotated. Green dashed 
lines indicate interactions between amino acid side chains and lipids. In both pictures, the amino acids 
and lipids are shown in stick representation without aliphatic hydrogens. 
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steady phase, the hydrophobic residues of the signal peptide penetrated deeper into the polar 

lipid head groups and reached the top of the aliphatic lipid tails. However, a closer investigation 

of the protein-lipid interaction site revealed that only five amino acids with polar side chains 

interact with the lipid head groups (Figure 14b). In the final simulation snapshot, three hydrogen 

bonds and four ionic interactions between protein side chains and lipid phosphate or choline 

moieties were responsible for a moderate fixation of the protein on the lipid surface.  

For the SP-G model with PTMs and the most negative interaction energy (orientation 3), mainly 

the 18 N-terminal signal peptide residues as well as the amino acids 29-43 were in contact with 

the lipid layer (Figure 16a). In contrast to the simulation without PTMs, the signal peptide 

maintained its α-helical fraction. During the simulation, the protein approached the monolayer 

very quickly. First protein-lipid interactions were visible after 3 ns (Figure 15a, grey plot) and 

increased quickly thereafter. Unfortunately, the interaction energy was not stable at the end of 

the simulation. If the simulation would be continued, the interaction energy probably might 

trend towards a more negative value. The fact that the RMSD plot did not equilibrate after 50 ns 

(Figure 15b, grey plot) reflects this trend as well. Conformational changes of the protein while 

approaching the lipid layer surface to optimize atomic interactions certainly caused these 

fluctuations in both graphs. However, the interaction energy of ca. -1800 kJ/mol at the end of 

the simulation with PTMs attached to the SP-G model was already significantly more negative 

than the energy observed for the SP-G model simulation without PTMs (-1100 kJ/mol). This 

high interaction energy was also apparent from the protein-lipid interaction site (Figure 16b). 

Figure 15: (a) Protein-lipid interaction energy (in kJ/mol) and (b) backbone atoms RMSD plots (in 
nm) for the SP-G model without (black plots) and with PTMs (grey plots). In both cases, only the results 
for the orientations with the most negative protein-lipid interaction energy after 50 ns MD simulation 
are shown. 
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Compared to the results of the unmodified SP-G model, the number of interacting amino acids 

was increased (nine instead of five). Due to clarity reasons, the interactions of Gly2, Ser3, and 

Glu46 are not shown in Figure 16b. Hydrogen bonds were the dominant interaction type and 

Lys31 alone interacted with fatty acid carbonyl groups of three different lipids. However, only 

one modified residue (phosphorylated Ser17) interacted with a lipid molecule, all other PTMs 

(cf. Table 3) resided in the water phase. This is also true for the palmitoylation on Cys76, which 

was located opposite to the lipids (Figure 16a, green sulfur atom marks Cys76) and resided in 

hydrophobic cavities on the protein surface to avoid unfavorable contact with the water.  

In the special case, where the SP-G model with PTMs already interacted with the lipids at 

simulation start (“positioned”), the protein was positioned in a way that the palmitoylation on 

Cys76 crossed the polar region of the lipid head groups and reached into the area of the aliphatic 

lipid chains. Accordingly, a completely different interaction site between protein and lipids 

Figure 16: Detailed simulation results for the SP-G model with PTMs. (a) Representation of the SP-G 
model with PTMs with the most negative protein-lipid interaction energy after 50 ns of MD simulation. 
The DPPC lipids are shown as grey surface. (b) Detailed representation of the interaction site of the 
system in (a). For clarity reasons, the view was slightly rotated. Green dashed lines indicate interactions 
between amino acid side chains and lipids. “p” labels a phosphorylated residue. In both pictures, the 
amino acids and lipids are shown in stick representation without aliphatic hydrogens. 
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resulted from 50 ns MD simulation (Figure 17a) compared to the previously discussed MDs. 

The α-helix 41-58 was located on the surface of the complex and interacted with the solvent 

and not with the lipid surface as described for the orientations before (Figure 14a, Figure 16a). 

Instead, the C-terminal region and the protein part ranging from position 15 to 30 interacted 

considerably with the lipids, where the latter immersed deeply into the monolayer (Figure 17a, 

red surfaces). The α-helical character of the signal peptide was maintained over the whole 

simulation. The signal peptide covered the hydrophobic protein core and was nicely stabilized 

in this conformation. The position of the whole protein enabled the interaction of glycosylations 

with the lipids instead of the water phase. Accordingly, the protein was fixed on three points by 

the attached glycosylations of Asn37, Ser62, Ser70, and Thr78 (Figure 17a, red surfaces). These 

Figure 17: Detailed simulation results for the pre-positioned SP-G model with PTMs.  
(a) Representation of the SP-G model with PTMs, which was positioned to interact with the lipid layer 
prior to MD simulation. The picture was taken after 50 ns. The DPPC lipids are shown as grey and the 
major interacting protein residues as red surface. (b) Detailed representation of the protein-lipid 
interaction site of the system in (a). Due to clarity reasons, the view was slightly rotated. Green dashed 
lines indicate interactions between amino acid side chains and lipids. The label “g” indicates an 
O-glycosylation, the label “n” an N-glycosylation. In both pictures, the amino acids and lipids are shown 
in stick representation without aliphatic hydrogens. 
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glycosylations formed numerous hydrogen bonds with the phosphate groups or ester bond 

regions of DPPC and acted like anchors for the protein on the lipid layer surface (Figure 17b). 

Due to clarity reasons, the interactions of phosphorylated Tyr40 and glycosylated Ser62 are not 

shown in Figure 17b. Surprisingly, the protein-lipid interaction energy of the resulting complex 

was not significantly higher than for the previously described orientation with modified SP-G 

(Figure 18a). The reason may be the low number of observed interactions between amino acid 

side chains and lipids – apart from the mentioned glycosylated residues. Another reason could 

be repulsive energy terms due to the palmitoylation on Cys76. Although it was placed to be 

inside the lipid tail region at the simulation start, the interactions were not sufficient to stabilize 

this position. Therefore, it left the hydrophobic area due to conformational changes and is 

located unfavorably in the polar lipid head group region at the end of the simulation. This may 

be a hint that SP-G is a membrane-associated instead of a membrane-integrated protein. 

However, the interaction energy was very stable after 30 ns. This was also true for the protein 

RMSD plot (Figure 18b), which was strikingly stable due to the “glycosylic anchors”.  

  

Figure 18: (a) Protein-lipid interaction energy (in kJ/mol) and (b) backbone atoms RMSD plots (in 
nm) for the SP-G model with PTMs and most negative interaction energy (black plots) and the pre-
positioned SP-G model (grey plots). 
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3.5.2. Detailed analysis for SP-H 
 

The simulation of the SP-H model without PTMs that possessed the most negative protein-lipid 

interaction energy (orientation 3) showed a huge contact area between protein and lipids 

(Figure 19a). In detail, especially the 27 N-terminal and nine C-terminal amino acids were in 

close contact with the lipid layer. Accordingly, the interaction energy plot showed a steady 

increase after the first contact at 2 ns until it reached a plateau after 40 ns at ca. -2300 kJ/mol 

(Figure 20a, black plot). The protein model, meanwhile, is extremely stable in this simulation. 

There are no major fluctuations of the RMSD plot after a simulation time of 10 ns and the model 

can be denoted as equilibrated after 20 ns (Figure 20b, black plot). The hydrophobic amino 

acids of the α-helix caused a hollow on the monolayer surface, which enabled the immersion 

of the C-terminal protein parts below the head group region. The reason for the model stability 

could be the different interactions between numerous amino acids and lipid head groups, which 

Figure 19: Detailed simulation results for the SP-H model without PTMs. (a) Representation of the 
SP-H model without PTMs with the most negative protein-lipid interaction energy after 50 ns of MD 
simulation. The DPPC lipids are shown as grey surface. (b) Detailed representation of the protein-lipid 
interaction site of the system in (a) Due to clarity reasons, the view was slightly rotated. Green dashed 
lines indicate interactions between amino acid side chains and lipids. In both pictures, the amino acids 
and lipids are shown in stick representation without aliphatic hydrogens. 
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fixed the protein on the lipid surface (Figure 19b). Among others, positively charged amino 

acid side chains (Arg2, Arg12, Arg87) formed three of nine observed interactions and served 

as fixation points in the ester bond region of the lipid layer. Due to clarity reasons, the residues 

Arg2, Gln23, Glu27, Met88, and Leu89 are not shown in Figure 19b. 

The SP-H model with PTMs and the most negative interaction energy (orientation 5) also 

showed a large contact area mainly with the residues 32-51 and the N-terminus, but 

phosphorylated C-terminal residues were very important as well (Figure 22a, phosphorylated 

Ser80, Ser82, and Ser84 not shown). The first protein-lipid contact was observable in the 

interaction energy plot after 16 ns (Figure 20a, grey plot). The value was quickly increasing to 

a level comparable to the simulation without PTMs (-2300 kJ/mol). Unfortunately, the 

interaction energy was not stable at the end of the calculation. This instability was also reflected 

in the RMSD plot (Figure 20b, grey plot), which showed significant fluctuations until the end 

of the simulation. However, this orientation showed the most negative interaction energy in 

comparison to the other five simulations with modified SP-H (Appendix 10b). Therefore, this 

simulation was extended until 100 ns to estimate the reliability of the results after 50 ns. The 

results showed a stable interaction energy of about -2300 kJ/mol (Figure 21a) and an 

equilibrated protein model with respect to the RMSD after 60 ns (Figure 21b). Since there were 

no major changes to the results, the values obtained after 50 ns, although not equilibrated, could 

be compared to the simulation without PTMs. This comparison indicated almost no difference 

in the most negative interaction energy between the SP-H model without and with PTMs. The 

detailed investigation of the interaction site (Figure 22b) showed that the number of interacting 

Figure 20: (a) Protein-lipid interaction energy (in kJ/mol) and (b) backbone atoms RMSD plots (in 
nm) for the SP-H model without (black plots) and with PTMs (grey plots). In both cases, only the results 
for the orientations with the most negative protein-lipid interaction energy after 50 ns MD simulation 
are plotted. 
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amino acids is significantly increased from nine (unmodified SP-H) to 14 (modified SP-H). 

Figure 22: Detailed simulation results for the SP-H model with PTMs. (a) Representation of the SP-H 
model with PTMs with the most negative protein-lipid interaction energy after 50 ns of MD simulation. 
The DPPC lipids are shown as grey surface. (b) Detailed representation of the protein-lipid interaction 
site of the system in (a). For clarity reasons, the view was slightly rotated. Green dashed lines indicate 
interactions between amino acid side chains and lipids. The label “g” indicates an O-glycosylation and 
the label “p” a phosphorylation. In both pictures, the amino acids and lipids are shown in stick 
representation without aliphatic hydrogens. 

Figure 21: (a) Protein-lipid interaction energy (in kJ/mol) and (b) protein backbone RMSD (in nm) for 
the SP-H model with PTMs and most negative protein-lipid interaction energy. Since interaction energy 
and RMSD were unstable after 50 ns, this simulation was extended until 100 ns. 
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amino acids was significantly increased from nine (unmodified SP-H) to 14 (modified SP-H). 

Among them, two glycosylated residues (Ser39 and Thr93) and two phosphorylated amino 

acids (Ser32 and Ser83) were responsible for a huge part of the protein-lipid interaction energy. 

Due to clarity reasons, the interactions of Arg24, Trp28, Leu31, Thr42, Arg49, Glu50, Ala94, 

and glycosylated Ser39 are not shown in Figure 22b. The palmitoylations on Cys45 and Cys56 

did not seem to play any role for the protein-lipid interaction. The hydrophobic moieties were 

located near the lipid surface, but they were integrated into the hydrophobic core of the protein, 

consequently avoiding the polar lipid head groups in this way. 

The resulting interaction complex of the pre-positioned orientation (Figure 23a), where the 

palmitoylations at Cys45 and Cys56 were determined to interact directly with the lipids at 

simulation start, looked very similar to the described SP-H model with PTMs and most negative 

Figure 23: Detailed simulation results for the pre-positioned SP-H model with PTMs.  
(a) Representation of the SP-H model with PTMs, which was positioned to interact with the lipid layer 
at simulation start. The picture was taken after 50 ns. The DPPC lipids are shown as grey and the major 
interacting protein residues as red surface. (b) Detailed representation of the protein-lipid interaction 
site of the system in (a). Due to clarity reasons, the view was slightly rotated. Green dashed lines 
indicate interactions between amino acid side chains and lipids. The label “g” indicates an 
O- glycosylation, the label “p” a phosphorylation, and the label “pa” a palmitoylation. Amino acid, 
PTM, and lipid atoms are shown in stick representation without aliphatic hydrogens. 
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interaction energy (cf. Figure 22b and Figure 23b). However, a small deviation in the contact 

angle between protein and lipid layer led to a quite different interaction pattern. Positioning of 

the palmitoylations at Cys45 and Cys56 into the hydrophobic lipid phase resulted in a main 

interaction spot of amino acids around these residues (Figure 23a, red surfaces). Furthermore, 

single amino acids between the positions 35 and 40, and the residues 80-85 were very important 

for the protein-lipid interaction. Most of the interactions could be found in the cluster of 

phosphorylated serine residues at positions 80, 82, 83, and 84 (Figure 23b, due to clarity 

reasons, Ser80 is not shown). Furthermore, Asn36 and the glycosylated Ser39 stabilized the 

protein on the lipid surface. The palmitoylation on Cys45 still penetrated the lipid head group 

region and was in contact with the hydrophobic lipid tails at the end of the simulation. In 

contrast to that, the palmitoylation on Cys56 left the lipid layer during the simulation. Due to 

the pre-positioning, the interaction energy started at -500 kJ/mol and continued to decrease until 

a level of about -1250 kJ/mol was reached, where it remained stable until the simulation end 

(Figure 24a). Although the interaction energy of the pre-positioned modified SP-H showed only 

minor fluctuations, it was significantly less negative compared to the previously described 

simulation for the SP-H model with PTMs in Figure 22. This was mainly the result of a strongly 

reduced number of directly interacting residues (7 instead of 14). Nevertheless, the result of the 

pre-positioned model was robustly fixed on the lipid layer, which suggested that SP-H is 

membrane-associated. As expected from the stable interaction energy, the RMSD showed only 

minor fluctuations and indicated a stable protein structure (Figure 24b). 

 

  

Figure 24: (a) Protein-lipid interaction energy (in kJ/mol) and (b) backbone atoms RMSD plots (in 
nm) for the SP-H model with PTMs and most negative interaction energy (black plots) and the pre-
positioned SP-H model (grey plots). 
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3.5.3. General findings and summary of the protein-lipid MD simulations 
 

The fluctuation analysis of each protein residue during the simulation (RMSF) for all 24 

orientations (Appendix 13, Appendix 14) indicated a generally reduced fluctuation of protein 

parts that were directly interacting with polar lipid head groups. This was due to hydrogen bonds 

or electrostatic interactions of the amino acid side chain atoms. In some cases, even protein 

backbone atoms interacted with lipid head groups, which stabilized the protein backbone and 

further reduced the fluctuations of these amino acids. Polar PTMs, such as phosphorylations or 

glycosylations, might enhanced this effect. In contrast to that, these PTMs increased the 

fluctuation of their attached protein parts if they were oriented towards the water phase.  

The area per lipid was also monitored in all simulations (Appendix 15, Appendix 16), but a 

general influence of the protein-lipid interactions on the area per lipid value could not be 

observed. For all simulations, the area per lipid reached approximately 0.54 nm² with a 

fluctuation of about ± 0.02 nm². There are cases, where the binding of the protein caused an 

effect. Especially when the protein penetrated deep into the lipid head group region, the area 

per lipid plot may be influenced. However, the changes were not significant and got lost in the 

general “fluctuation noise” caused by the MD methodology.  

DSSP was used to investigate the secondary structure elements of the protein models during 

the simulation. The number of residues with assigned secondary structure (α-helix, β-sheet, 

β-bridge or turn) remained almost constant for all performed simulations (Appendix 17, 

Appendix 18). Neither attached PTMs nor the interaction with lipids seemed to have an 

influence on the stability of the core structure elements of the proteins. There were some 

orientations with small plot fluctuations, but they did not suggest a major change in the protein 

fold or an unfolding of the structure. Thus, the observed stability of the protein models was a 

very important result of the MD simulations. The knowledge about the consistency of the 

protein fold will be very important for computational studies in future. 

In summary, it can be noted that by means of the performed MD simulations, three potential 

poses for each protein could be identified, which demonstrated the possibility of SP-G and SP-H 

to interact with a lipid system. The simulations showed that the PTMs added to the protein 

models have a significant influence on the possible protein-lipid interactions. According to the 

simulation results of this work, the attached palmitoylations could determine the interaction 

site, and the glycosylations may be very important to stabilize a resulting protein-lipid complex. 

Additionally, the simulations indicated that SP-G and SP-H are associated on the surface of a 
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lipid layer, similar to SP-A and SP-D, in contrast to layer-integrated surfactant proteins such as 

SP-B or SP-C. This is evident from the fact that the proteins did not completely integrate into 

the layer during the MD simulations and remained in the lipid head group region. Similar results 

were obtained if the protein models were placed very close to the lipid layer at the beginning 

of the simulation (“positioned” orientations). However, longer MD simulations may be needed 

to observe more negative interaction energies and, probably, a deeper immersion of the protein 

into the lipid layer in some cases. Unfortunately, an effect of the proteins on the lipid layer 

stability was not observed, which might be due to the methodology. Nevertheless, all analyzed 

situations are valuable suggestions, which will have to be further investigated by experimental 

studies. The results of the performed MD simulations indicated that SP-G and SP-H have an 

increased probability to interact with lipid systems and that this interaction potential is 

dependent on the attached PTMs. Moreover, they seem to be associated to a lipid layer. All 

these points further justify the classification of SP-G and SP-H as members of the surfactant 

protein family, since the aforementioned observations represent typical characteristics for 

surfactant proteins. 
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4. Discussion 
 

 

4.1. Protein structure modeling and posttranslational modifications 

 

Although there were no proteins with an already known 3D structure and a sufficient sequence 

identity available, comparative modeling was performed for the SP-G and SP-H sequence. As 

expected, this approach failed; however, these homology models were presented in this study. 

Especially for SP-G, the model quality was problematic in three out of five quality evaluation 

tools (cf. Table 2). Furthermore, the models obtained by the more sophisticated threading 

approach showed also deficiencies in their quality. In particular, the stereochemical quality 

(Ramachandran plot results) of these threading models was inacceptable, especially in direct 

comparison to the stereochemical quality of the homology models (cf. Table 2). An 

improvement of these values by YASARA refinement MDs was not possible, which might be 

due to the tight packing of the protein structures in the I-TASSER modeling process [112,113]. 

Finally, ab initio protein structure modeling with ROBETTA was able to generate reliable 

structure models for SP-G and SP-H. Common evaluation tools and a 20 ns MD simulation 

showed the good quality and stability of both models (Table 2, Figure 5). These results 

demonstrated that ROBETTA is able to produce high-quality models for practically oriented 

studies as well, besides the excellent performance in structure modeling contests (CASP) [203].  

In the literature, the high impact of posttranslational modifications (PTMs) regarding the 

stability and function of surfactant proteins is well known [17,18]. Depending on the 

modification type, polar (phosphorylation, glycosylation) or hydrophobic (palmitoylation) 

regions could be formed on the protein surface, which could change the solubility of the protein 

in an aqueous environment. Moreover, these modified regions could significantly influence the 

interaction potential of a protein to a lipid system. Furthermore, PTMs might be responsible for 

amphiphilic properties of known surfactant proteins [17,18]. To consider this possibility for 

SP-G and SP-H, the PTMs obtained by sequence-based prediction tools were attached to the 

final SP-G and SP-H models (Table 3). The predictions indicated a high grade of modification, 

similar to the already known surfactant proteins. Apart from polar modifications, such as 
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phosphorylations and glycosylations, the prediction servers suggested hydrophobic 

modifications as well, which might influence the properties of the protein surface significantly. 

For example, whereas the amino acid sequence of SP-G suggested a slightly hydrophobic 

protein [94], Mittal et al. recently postulated hydrophilic properties [204]. This amphiphilic 

character might evolve from the attached PTMs. Although a conclusive experimental proof of 

the determined and attached modifications is still pending, the reliability of the applied 

prediction algorithms is between 75 and 93% [146-152,154-157]. Regarding to the central 

question of this work, if SP-G and SP-H are part of the surfactant protein family, the here 

obtained modification patterns represent a key feature of the analyzed proteins and the already 

known surfactant proteins. Moreover, MD simulations showed that the attached PTMs did not 

deteriorate the protein model quality or the model stability compared to the models without 

added PTMs. These modifications were even able to stabilize protein regions that would have 

shown high fluctuations without PTMs. In case of SP-H, the MD simulation of the model with 

PTMs even improved the model quality measured by ProSA II and ProQ (Appendix 8).  

 

4.2. Findings by the performed molecular dynamics simulations 

 

A typical feature of surfactant proteins is the ability to interact with lipids, as reported in 

previous studies especially for SP-B and SP-C [86,89,91,92]. Accordingly, the SP-G and SP-H 

models were simulated in the presence of a DPPC monolayer, which corresponds to the current 

understanding of the pulmonary surfactant layout. DPPC as major lipid component of the 

pulmonary surfactant [2,3] was already shown to adequately reproduce the surfactant system of 

the lung in various MD simulations [92,175-177]. In these studies, parameters and settings for 

MD simulations were extensively studied and could be adapted to the simulation system used 

in this work. Therefore, only minor changes in the G53a6 force field were necessary for the 

PTMs attached to the protein models. All calculations were performed at a temperature of 

323 K, which is above the phase transition temperature of DPPC [200,201]. This ensured that 

the lipid system was present in the biologically relevant fluid Lα state found in vivo instead of 

the more ordered gel or subgel state of a lipid layer [202]. To estimate the influence of the 

higher temperature on the protein stability, MD simulations of all four final models were 

performed in a water box at 298 K in comparison to MD simulations for the protein structures 

at 323 K. The results showed only a minor increase of fluctuations in the RMSD plot for SP-G 
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and no significant changes in stability for SP-H (cf. Figure 12). The lipid layer system for this 

work was built from scratch to obtain a lipid layer patch with the appropriate dimensions for 

the protein sizes, and in addition, to ensure the usage of correct simulation setup and parameters. 

During the lipid layer preparation, literature values for comparable systems were reproduced 

successfully (cf. Table 4). 

All final models for SP-G and SP-H, with and without PTMs, were used to perform overall 24 

MD simulations in the generated lipid environment (Figure 4). These simulations mostly 

showed the stability of the protein model fold in the RMSD plots (Appendix 11, Appendix 12) 

and demonstrated the influence of the PTMs on the physicochemical properties of the proteins 

via conformational changes during the MD simulations. SP-G and SP-H might be amphiphilic 

proteins, which are able to show a hydrophobic as well as a hydrophilic character. A dynamic 

process could manage this switch between both properties, which was suggested by the MD 

simulations of the models containing PTMs. Depending on type and conformation of the 

posttranslational modifications, polar or hydrophobic areas on the protein surface with a 

significant impact on water solubility or the protein-lipid interaction potential could be formed. 

When the protein is not residing in proximity to a lipid system, the palmitoylations for example 

could be embedded into the hydrophobic protein core, which would significantly change the 

protein surface properties. In case of SP-G, the hydrophobic N-terminal signal peptide is an 

important factor, since it could protrude from the protein surface or could be tightly bound to 

it. Not only is the shape of the protein probably altered in this way, but also the positions of 

hydrophobic spots on the protein surface. Furthermore, the PTMs showed an influence on the 

secondary structure stability. On the one hand, bulky modifications, such as N- or 

O-glycosylations, could introduce flexibility to the connected protein regions due to the rapid 

change of hydrogen bonding partners (i.e. water molecules) in free solution. On the other hand, 

these bulky modifications could significantly stabilize a protein region by forming mostly 

hydrogen bonds with the polar head groups of DPPC molecules. These described options 

demonstrate the influence of the PTMs on the stability as well as the interaction potential of 

both proteins. 

The special cases of MD simulations with the modified protein models positioned into the lipid 

layer at simulation start (“positioned”) support these findings. In both simulations, the models 

were manually positioned in a way that the straightened palmitoyl moieties were sticking into 

the hydrophobic region of the lipid tails. This simulation setup was inspired by simulation 

studies from the literature, which showed different roles of posttranslational palmitoylation in 
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protein-lipid interaction [205] or the ability of lipid modifications to regulate the protein activity 

[206]. Since it is not assumed that SP-G and SP-H possess any transmembrane elements, the 

positioning of the palmitoylations in the hydrocarbon tail regions led to a very close proximity 

between the remaining protein structure and the polar lipid head groups (cf. Figure 17, 

Figure 23). Although this positioning was arbitrary, the protein models remained stable 

concerning their structure and position on the lipid surface during the simulations. 

Unfortunately, the contact between palmitoylations and lipid tails diminished during the 

simulation. For SP-G, the palmitoyl group left the hydrocarbon chain region, avoiding the polar 

environment of the lipid head groups by interacting with hydrophobic amino acids of the protein 

core (cf. Figure 17). After MD simulation of the pre-positioned SP-H model with PTMs, the 

palmitoylation was still spanning the head group region; however, interactions were only visible 

for the uppermost methyl groups of the lipid tails. The reason for this observation could be 

simplifications of the lipid layer model, which were necessary in this study. Due to the 

simplifications, the model system may miss a component that is essential to maintain the 

interactions. For example, lipids with short or unsaturated chains could enhance the layer 

fluidity and support the integration of the palmitoyl chain into the layer. A further possible 

reason could be a general underestimation of hydrophobic interaction energy in calculations 

using empirical force fields [191-193], which could prevent the palmitoyl chain from finding 

an energetically favored position. Another cause for the loss of palmitoyl-lipid interactions 

could be the polar PTMs. The formation of strong interactions between these polar PTMs and 

the lipid head groups could prevent the protein from penetrating deeper into the lipid layer. For 

the observed orientations, the palmitoylations are very flexible and the introduced “kinks” 

might lead to a too short hydrocarbon chain that cannot reach the lipid tails. Although a 

conclusive function of the hydrophobic palmitoylations was not observable, the importance of 

the polar glycosylations and phosphorylations for the stability and interaction potential of SP-G 

and SP-H was demonstrated in this study. These PTMs fixed the protein models like anchors 

on the lipid surface during the simulations. In general, the results suggested that both proteins 

are not completely integrated into the lipid layer, as reported for SP-B and SP-C. Instead, SP-G 

and SP-H seem to be layer-associated and remain on the surface of the lipids, where the 

numerous PTMs interact with the polar lipid head groups. 

In the MDs without manual protein model positioning, most of the interactions were also 

established between polar amino acid side chains or PTMs and the polar head groups of the 

lipid molecules. Almost no contact of protein parts with the hydrophobic lipid tail region was 

observed. The results of the simulations showed no direct impact of the protein-lipid interaction 
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on the layer stability or lipid ordering. The literature suggests that longer simulations in the 

microsecond range might be required to observe protein-mediated events, such as lipid layer 

folding or lipid vesicle fusion [89,92]. Such long simulations would be computationally too 

expensive for the united-atom approach used in this study. So called coarse-grained simulations 

[207,208] with reduced complexity developed especially for such long-term simulations would 

be the technique of choice for future experiments. For this, the knowledge about the 3D protein 

structure is very important and a required input, because currently, the most commonly used 

MARTINI coarse-grained force field is unable to consider changes in the secondary structure 

of a protein during the simulation [208,209]. Thus, the secondary structure assigned to each 

amino acid at the simulation start remains unchanged throughout the simulation. However, the 

simulation results of this work demonstrated the stability of the SP-G and SP-H protein fold in 

most cases, even during the formation of interactions between protein and lipid layer. Therefore, 

the here performed calculations provide the requirements for coarse-grained simulations. 

Although at the simulation start, the protein models were located in a distance between 1.5 and 

3.5 nm to the lipid layer, all models started to interact with the lipids mostly within the first 

25 ns of the 50 ns MD simulations. In some cases, the first interactions were already observed 

after less than 5 ns. This process was traceable by monitoring the protein-lipid interaction 

energy (Appendix 9, Appendix 10). In this way, it was possible to discriminate between 

different interaction scenarios and to visualize the influence of polar amino acids and PTMs on 

the interaction strength. However, the energies calculated based on force field parameters can 

only give a rough estimation of the in vivo energies, since the accuracy of force fields 

reproducing intermolecular (i.e. non-bonded) interaction energies is limited [190-193]. For 

more detailed insights, more specialized computational chemistry techniques, such as free 

energy calculations [210,211] or the experimental isothermal titration calorimetry (ITC [212]) 

would be advantageous. Nevertheless, the fact that all 24 performed simulations showed an 

interaction between the protein models and the lipid layer is a major result of this work. 

Thereby, the hypothesis that SP-G and SP-H are indeed able to interact with lipids and may 

exhibit surface-regulatory properties is strongly supported. 
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4.3. Cooperation of computational and experimental studies 

 

At the beginning of this work, the classification of SP-G and SP-H as surfactant proteins was 

solely based on hypothetical predictions. There was no experimental evidence or verification 

of this classification available. With the help of the computational modeling and simulation 

techniques applied in this work, however, first indications could be observed that confirm the 

membership of SP-G and SP-H to the surfactant protein family. As results of the studies 

performed in this thesis, the existing lipid interaction potential, the high degree of 

posttranslational modification and with that, the possible amphiphilic character of SP-G and 

SP-H were consistent with the classification as surfactant proteins. At this point, the localization 

of both proteins in tissues that are typical for the presence of surfactant proteins would have 

been a further hint for the function of these putative surfactant proteins. Unfortunately, no 

commercial anti-SP-G or anti-SP-H antibody was available, and previous attempts to produce 

specific antibodies for localization studies failed. However, with the here obtained knowledge 

of the 3D structure of both proteins and the potential modification pattern, it was possible to 

identify PTM-free sequence regions on the protein surface. Their use as antigen peptides led to 

specific antibodies for SP-G and SP-H. The successful production of these antibodies on the 

one hand indicated a high reliability of the protein models and on the other hand allowed first 

localization and functional studies. 

Human lung tissue was used to test the antibody specificity, because the already known 

surfactant proteins were initially described in the lung [11,12,21-23]. The corresponding 

Western blot analysis (M. Schicht [198]) for SP-G showed specific bands at 11 kDa, 20 kDa, 

and 30 kDa. All three values deviated from the molecular weight of 9 kDa, which was 

calculated based on the amino acid sequence. However, considering that the protein might be 

posttranslationally modified with glycosyl, phosphate, and palmitoyl moieties, the distinct 

protein band at 11 kDa seems to represent the mature protein. Based on the modeling results, 

the formation of oligomers cannot be excluded. Therefore, the two higher molecular weights 

(20 kDa and 30 kDa) might represent homodimers or homotrimers of SP-G.  

For SP-H, the Western blot analysis showed three bands at 13 kDa, 26 kDa, and 43 kDa 

(M. Schicht [199]). Again, none of the three values matched the calculated molecular weight of 

10 kDa for SP-H. Analog to SP-G, the correction of the molecular weight with the predicted 
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posttranslational modifications (PTMs) suggests the band with 13 kDa to be the mature 

monomer of SP-H and the band at 26 kDa the mature homodimer. Whether the band at 43 kDa 

represents a homotrimer of SP-H with an altered PTM pattern or a complex of SP-H with 

another protein remains speculative. Nevertheless, due to the high PTM rate of these proteins, 

a broad range of observed molecular weights is very common for small surfactant proteins. The 

protein sizes for SP-B vary from 8 kDa and 25 kDa in the lung up to 35 kDa in tissues of the 

ocular system [24]. This observation accounts for SP-C as well, which shows molecular weight 

differences in the range from 7 kDa [213], 21 kDa [25] up to 26 kDa [214]. 

For a better understanding of the wide range of molecular weights obtained from Western blot 

experiments, knowledge about the assembly of monomers to multimers would be advantageous. 

Therefore, several protein-protein docking algorithms exist to obtain a homodimer structure 

[215]. Unfortunately, the currently available methods were not able to build reliable complexes 

for SP-G or SP-H. In most cases, the obtained docking conformations were not reproducible. 

Furthermore, the majority of algorithms ignored amino acids with PTMs, resulting in broken 

protein structures. 

For our cooperation partners (Institute of Anatomy II, FAU Erlangen), the SP-G and SP-H 

antibodies obtained by the help of protein modeling were crucial for immunohistochemical 

experiments. The first protein localization studies for these proteins via immunohistochemical 

staining showed that SP-G [198] and SP-H [199] are present in tissues of the human lung and 

eye, among many others. In these tissues, the already known surfactant proteins are also present 

and play a crucial role [10,11,13,14,21,24,25,37]. Within lung tissue, the distribution of SP-G 

as a superficial layer of the epithelium of the bronchioles was demonstrated, which additionally 

indicated surface activity of the protein [198]. It could be shown that SP-H is present in alveolar 

cell macrophages and in the cytosol of epithelial cells [199]. These results are in line with the 

occurrence of already known surfactant proteins [216,217]. Additionally, immunohisto-

chemistry and immunogold electron microscopy experiments with A549 cells [218] suggested 

that SP-H is also secreted and presented on the cell membrane. This fact indicates that SP-H 

remains cytoplasmic because of its physicochemical properties and that it is secreted after 

modification. In the here presented theoretical studies, SP-H showed a palmitoylation potential, 

which would allow SP-H to interact with a lipid membrane similar to SP-B or SP-C [219].  

Finally, the antibodies enabled first functional studies which showed that inflammatory 

cytokines influence the SP-H expression level [199]. This could indicate an immunoregulatory 

function of SP-H comparable to SP-A and SP-D [10,14]. However, a role of SP-G in 
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inflammation and immunological defense is speculative, because immune regulatory domains 

have not been identified yet, neither with the applied computational methods nor with the 

performed molecular-biological methods. 
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5. Summary 
 

With the help of ab initio protein structure prediction it was possible to obtain 3D models for 

the two putative surfactant proteins SP-G (SFTA2) and SP-H (SFTA3). Common quality 

assessment tools indicated a native-like folding of the protein models, and subsequent 

molecular dynamics simulations demonstrated the stability of the fold of these SP-G and SP-H 

models. The models were extended by posttranslational modifications (PTMs), because the 

high importance of PTMs for the function of the already known surfactant proteins was 

described in the literature. Sequence-based prediction tools indicated numerous 

phosphorylations, glycosylations, and palmitoylations for SP-G and SP-H, which were 

manually added to the protein models and did not influence the overall model stability in 

molecular dynamics simulations.  

Previous attempts to obtain specific antibodies for SP-G and SP-H failed due to the lack of 

knowledge about the 3D protein structure. The models obtained in this work revealed sequence 

parts on the surface of the proteins without any PTM, which were suitable antigens for the 

production of specific antibodies. Therefore, computational modeling significantly supported 

the experimental work, because the obtained antibodies allowed the first localization of SP-G 

and SP-H in different cell tissues where the already known surfactant proteins are present as 

well. Furthermore, they could be used in first functional studies.  

To mimic the basic properties of the pulmonary surfactant, a simulation system containing a 

DPPC lipid monolayer was established. This system was used to study the characteristics of the 

SP-G and SP-H models in their natural environment, each with and without PTMs. Overall, 24 

MD simulations of 50 ns each were performed. Although the strength of the interactions and 

contact areas on the protein surface were dependent on the starting structure and attached PTMs, 

all performed simulations indicated a high probability of protein-lipid interactions. 

Furthermore, the calculation results suggested that the positions and conformations of PTMs 

could be responsible for an amphiphilic character of SP-G and SP-H, which was described for 

the already known surfactant proteins as well. The high theoretical lipid interaction potential 

determined by the presented simulations could be used to support and discuss the outcome of 

experimental characterization and localization studies, which suggest that SP-G and SP-H are 

indeed part of the surfactant protein family.  
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6. Prospective research suggestions 
 

 

Although the results of this work represent completely new and valuable insights into the 

structure and characterization of SP-G and SP-H, they provide numerous interesting starting 

points for future research projects. For example, the simulation system established in this work 

to resemble the pulmonary surfactant system is very basic. It contains only one lipid species 

and no other compounds, although the natural pulmonary surfactant composition is much more 

complex. For further research, the here presented DPPC layer system could represent the basis 

for the development of a more sophisticated pulmonary surfactant model, which might consist 

of a huge variety of compounds shown to be present in vivo: phosphatidylcholines with different 

carbon chain length or saturation levels, phosphatidylinositol, phosphatidylglycerol, cholesterol 

or even other proteins [2,3]. Such a detailed simulation system could increase the reliability of 

performed MD studies and may give a more comprehensive impression of the characteristics 

and functions of the investigated proteins. Apart from SP-G and SP-H, the introduction of other 

proteins into the simulation system opens the wide field of protein-protein interaction analysis. 

These simulation types could show the interactions between proteins on the atomic scale or 

even demonstrate what effect the cooperation of two different proteins could have, as previously 

described in the literature for SP-B and SP-C [92].  

The simulation studies performed in this thesis covered the time scale of tens of nanoseconds. 

This is sufficient to demonstrate the model stability and establish the protein-lipid contact by 

atomic interactions. However, there may be other events of the protein or protein-lipid 

interaction, which need a much longer time scale to take place. For this purpose, the coarse-

grained simulation technique could be used, which allows the simulation of a system up to the 

microsecond scale [207,208]. Therefore, the degrees of freedom in the system and necessary 

calculation efforts are reduced by grouping nearby atoms with similar attributes or functional 

groups into one “bead”. Drawbacks of this method are the loss of precision due to the 

aggregation of atoms and the fact that the secondary structure of a protein is not allowed to 

change during such a simulation. However, the results presented in this work can already 

present detailed interaction information and show the stability of the secondary structure of the 

SP-G and SP-H models. With these assumptions, coarse-grained simulations could be used in 
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future studies to perform simulations on a long time scale (several microseconds) to observe 

even very complex processes, such as the reordering of single lipids or a whole lipid layer. 

Moreover, the cooperation of two or more proteins could be investigated. A recent study 

impressively demonstrated the benefits of combining all-atom and coarse-grained methods to 

get insights into protein-lipid interactions [220]. 

Since SP-G and SP-H were found in the tear film and tissues of the ocular surface [24,25] as 

well, the knowledge transfer from the presented simulations in a pulmonary surfactant system 

to a tear film model system would be very interesting. Although the functions of surfactant 

proteins (lipid organization, lipid layer stability, immunological functions) are equally essential 

in both systems, the layout and composition of the air-water interface differ very much in the 

pulmonary surfactant and in the tear film. Accordingly, a completely new simulation system 

would be necessary, because the tear film structure is much more complicated than the 

pulmonary surfactant system. Establishing a tear film model system would include the 

parameterization of predominantly nonpolar lipid species for a force field. Moreover, the 

development of a stable multilayered system consisting of glycocalyx, aqueous, amphiphilic, 

and nonpolar layer [221] would be necessary. Finally, this complex tear film system would 

allow a detailed investigation of the whole transition process of SP-G and SP-H from an 

aqueous, through an amphiphilic, to a nonpolar environment, which includes the 

conformational and surface potential changes suggested in this work  
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8. Appendix 
 

 

Appendix 1: Template of a GROMACS simulation parameter file (.mdp) for an energy minimization 
run. 

 

 

 

 

 

 

 

 

 

 

 

title   = minimization run   

; Run Control 

integrator  = steep  ; Steepest descent  

emtol   = 100.0  ; Stop if force < emtol (10 kJ/(mol*nm)) 

emstep   = 0.01   ; Initial step size (0.01 nm) 

nsteps   = 2500   ; Maximum number of minimization steps 

; Output Control 

nstlog   = 10   ; Output to .log 

nstenergy  = 10   ; Output to .edr 

; Neighbor Searching 

ns_type  = grid   ; Search neighboring grid cells 

nstlist  = 1   ; Neighbor list updated every step 

rlist   = 1.4   ; Short range neighbor list cutoff (nm) 

pbc   = xyz   ; PBC in all directions 

; Electrostatics 

coulombtype  = PME   ; Particle Mesh Ewald summation 

rcoulomb  = 1.4   ; Short range electrostatics cutoff 

; Van-der-Waals  

vdw-type  = cut-off  ; LJ potential with plain cutoff 

rvdw   = 1.4   ; Short range van-der-Waals cutoff (nm) 
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Appendix 2: Template of a GROMACS simulation parameter file (.mdp) for a 250 ps equilibration run 
with NVT ensemble (constant particle number, volume and temperature). 

title    = NVT equilibration run 

; Run Control 

continuation   = no   ; No restart 

constraint_algorithm = LINCS  ; LINCS on 

constraints   = hbonds  ; Bonds with hydrogens constrained 

lincs_iter = 1   ; Number of iterations for LINCS  

lincs_order   = 4   ; LINCS accuracy 

integrator   = md 

dt    = 0.002  ; Time step 

nsteps    = 125000  ; Number of MD steps 

; Position restraints ON 

define    = -DPOSRES_PROT -DPOSRES_DPPC    ; Restraint on all  

; lipids and protein 

; Generate velocities 

gen_vel   = yes   ; Generate velocities  

gen_temp   = 323   ; Temp. for Maxwell distribution 

gen_seed   = -1   ; Generate random seed  

; Output Control 

nstxout   = 1000   ; Coordinates output to .trr 

nstvout   = 1000   ; Velocities output to .trr 

nstfout   = 1000   ; Forces output to .trr 

nstlog    = 500   ; Output to .log 

nstxtcout   = 500   ; Output to .xtc 

nstenergy   = 500   ; Output to .edr 

; Neighbor Searching 

ns_type   = grid   ; Search neighboring grid cells 

nstlist   = 5   ; Time step dependent! 10fs 

pbc    = xyz   ; PBC in all directions 

rlist    = 1.2   ; Short range neighbor list cutoff 

rlistlong   = 1.4    

; Electrostatics 

coulombtype   = PME   ; Particle Mesh Ewald 

rcoulomb   = 1.2   ; Short range cutoff  

pme_order   = 4   ; Cubic interpolation 

fourierspacing  = 0.16   ; Grid spacing for FFT  

; van-der-Waals 

vdw-type   = switch  ; LJ is switched off smoothly 

rvdw_switch   = 1.2   ; Begin of potential switch off 

rvdw    = 1.3   ; Short range cutoff (LJ = 0) 

dispcorr   = no      ; Dispersion correction off 

; Temperature Coupling is ON = constant temperature 

tcoupl    = V-rescale  ; Modified Berendsen thermostat  

tc-grps   = protein other water ; Coupling groups 

tau-t    =   0.1    0.1   0.1 ; Coupling time constant 

ref-t    =   323    323   323 ; Reference temperature 

; Pressure Coupling is OFF = constant volume 

pcoupl    = no   ; No pressure coupling for NVT 
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Appendix 3: Template of a GROMACS simulation parameter file (.mdp) for a 250 ps equilibration run 
with NPT ensemble (constant number of particles, pressure and temperature). 

 

 

title    = NPT equilibration run 

; Run Control 

continuation   = yes   ; Restart from NVT equilibration 

constraint_algorithm = LINCS  ; LINCS on 

constraints   = hbonds  ; Only bonds involving hydrogens 

lincs_iter   = 1   ; Number of iterations in LINCS 

lincs_order   = 4   ; LINCS accuracy 

integrator   = md 

dt    = 0.002  ; Time step 

nsteps    = 125000  ; Number of MD steps 

; Generate velocities 

gen_vel   = no   ; Since continuation = yes 

; Output Control 

nstlog    = 500   ; Output to .log 

nstxtcout   = 500   ; Output to .xtc 

nstenergy   = 500   ; Output to .edr 

; Neighbor Searching 

ns_type   = grid   ; Search neighboring grid cells 

nstlist   = 5   ; Time step dependent! 10fs 

pbc    = xyz   ; PBC in all directions 

rlist    = 1.2   ; Short range neighbor list cutoff 

rlistlong   = 1.4    

; Electrostatics 

coulombtype   = PME   ; Particle Mesh Ewald  

rcoulomb   = 1.2   ; Short range cutoff  

pme_order   = 4   ; Cubic interpolation 

fourierspacing  = 0.16   ; Grid spacing for FFT 

; van-der-Waals 

vdw-type   = switch  ; LJ is switched off smoothly 

rvdw_switch   = 1.2   ; Begin of potential switch  

rvdw    = 1.3   ; Short range cutoff (LJ = 0) 

dispcorr   = no   ; Dispersion correction off 

; Temperature Coupling is ON = constant temperature 

tcoupl    = V-rescale  ; Modified Berendsen thermostat  

tc-grps   = protein other water ; Coupling groups 

tau-t    =   0.1    0.1   0.1 ; Coupling time constant 

ref-t    =   323    323   323 ; Reference temperature 

; Pressure Coupling is now ON = constant pressure 

pcoupl    = Berendsen  ; Equilibration with Berendsen  

pcoupltype   = semiisotropic ; Isotropic only in x and y 

tau-p    = 1.0   ; Constant coupling in x/y and z  

compressibility  = 4.5e-5   0  ; Water standard in x/y and 0 in z  

ref-p    = 1.0     1.0 ; Reference pressure 
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Appendix 4: Template of a GROMACS simulation parameter file (.mdp) for a 25 ns production run of 
a DPPC bilayer system. 

 

title    = DPPC bilayer production run 25 ns 

; Run Control 

continuation   = yes   ; Restart from NPT equilibration 

constraint_algorithm = LINCS  ; LINCS on 

constraints   = all-bonds  ; All bonds constrained 

lincs_iter   = 1   ; Number of iterations in LINCS 

lincs_order   = 4   ; LINCS accuracy 

integrator   = md 

dt    = 0.004  ; Time step 

nsteps    = 6250000  ; Number of MD steps 

; Position restraints OFF 

; Generate velocities 

gen_vel   = no   ; Since continuation = yes  

; Output Control 

nstlog    = 2500   ; Output to .log 

nstxtcout   = 2500   ; Output to .xtc 

nstenergy   = 2500   ; Output to .edr 

; Neighbor Searching 

ns_type   = grid   ; Search neighboring grid cells 

nstlist   = 5   ; Time step dependent! 20fs 

pbc    = xyz   ; PBC in all directions 

rlist    = 1.2   ; Short range neighbor list cutoff  

rlistlong   = 1.4    

; Electrostatics 

coulombtype   = PME   ; Particle Mesh Ewald  

rcoulomb   = 1.2   ; Short range cutoff  

pme_order   = 4   ; Cubic interpolation 

fourierspacing  = 0.16   ; Grid spacing for FFT 

; van-der-Waals 

vdw-type   = switch  ; LJ is switched off smoothly 

rvdw_switch   = 1.2   ; Begin of potential switch off 

rvdw    = 1.3   ; Short range cutoff (LJ = 0) 

dispcorr   = EnerPres  ; Dispersion correction ON 

; Temperature Coupling is ON = constant temperature 

tcoupl    = Nose-Hoover ; Resembling canonical ensemble 

nh-chain-length  = 1   ; >1 not supported for leap frog 

tc-grps   = DPPC water  ; Coupling groups 

tau-t    = 0.4   0.4  ; Time constant for coupling 

ref-t    = 323   323  ; Reference temperature 

; Pressure Coupling is ON = constant pressure 

pcoupl    = Parrinello-Rahman ; Pressure Coupling on 

pcoupltype   = semiisotropic ; Isotropic only in x and y  

tau-p    = 2.0   ; Coupling constant in x/y and z 

compressibility  = 4.5e-5   4.5e-5 ; Water standard in x/y and z 

ref-p    = 1.0       1.0 ; Reference pressure 
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Appendix 5: Template of a GROMACS simulation parameter file (.mdp) for a 50 ns production run of 
a protein-lipid system. 

 

title    = protein-monolayer production run 50 ns 

; Run Control 

continuation   = yes   ; Restart from NPT equilibration 

constraint_algorithm = LINCS  ; LINCS on 

constraints   = h-bonds  ; All bonds constrained 

lincs_iter   = 1   ; Number of iterations 

lincs_order   = 4   ; LINCS accuracy 

integrator   = md 

dt    = 0.002  ; Time step 

nsteps    = 25000000  ; Number of MD steps 

; Position restraints OFF 

; Generate velocities 

gen_vel   = no   ; Since continuation = yes 

; Output Control 

nstlog    = 5000   ; Output to .log 

nstxtcout   = 5000   ; Output to .xtc 

nstenergy   = 5000   ; Output to .edr 

energygrps   = DPPC protein ; Separate energy groups  

; Neighbor Searching 

ns_type   = grid   ; Search neighboring grid cells 

nstlist   = 10   ; Time step dependent! 20fs 

pbc    = xyz   ; PBC in all directions 

rlist    = 1.2   ; Short range neighbor list cutoff  

rlistlong   = 1.4    

; Electrostatics 

coulombtype   = PME   ; Particle Mesh Ewald  

rcoulomb   = 1.2   ; Short range cutoff  

pme_order   = 4   ; Cubic interpolation  

fourierspacing  = 0.12   ; Grid spacing for FFT  

; van-der-Waals 

vdw-type   = switch  ; LJ is switched off smoothly 

rvdw_switch   = 1.2   ; Begin of potential switch off  

rvdw    = 1.3   ; Short range cutoff (LJ = 0) 

dispcorr   = no          ; Dispersion correction off 

; Temperature Coupling is ON = constant temperature 

tcoupl    = Nose-Hoover ; Resembling canonical ensemble  

nh-chain-length  = 1   ; >1 not supported for leap frog 

tc-grps   = protein other water ; Coupling Groups 

tau-t    =   0.4    0.4   0.4 ; Coupling time constant  

ref-t    =   323    323   323 ; Reference temperature  

; Pressure Coupling is ON = constant pressure 

pcoupl    = Parrinello-Rahman  ; Pressure Coupling on 

pcoupltype   = semiisotropic ; Isotropic only in x and y 

tau-p    = 2.0   ; Coupling constant in x/y and z 

compressibility  = 4.5e-5 0 ; Water standard in x/y and 0 in z 

ref-p    = 1.0  1.0 ; Reference pressure 
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Appendix 6: bash-script for the evaluation of MD simulations. GROMACS analysis tools are called 
sequentially with customizable options.  

#!/bin/bash -l 

# 

# Analyze the results of a GROMACS MD simulation  

# 

# Script Arguments: 1: Common name of all files;  

# 

# This script contains: 

#  - g_energy for equiNVT, equiNPT and production run 

#  - RMSD and RMSF calculation 

#  - DSSP calculation for whole protein 

#  - minimization of the last snapshot (.gro), conversion to .pdb 

# 

# 

# Root file name 

export NAME=$1 

 

# Number of processors for energy minimization 

export PROCS=8 

 

# 

# Read out energy files 

# 

g_energy -f $NAME'_equiNVT.edr' -s $NAME'_equiNVT.tpr' -o $NAME'_equiNVT.xvg' > 

simulation_analysis.txt 2>&1 <<EOF 

Potential 

Total-Energy    

Temperature  

EOF 

 

g_energy -f $NAME'_equiNPT.edr' -s $NAME'_equiNPT.tpr' -o $NAME'_equiNPT.xvg' 

>> simulation_analysis.txt 2>&1 <<EOF 

Potential 

Total-Energy    

Temperature  

Pressure 

Volume 

EOF 

 

g_energy -f $NAME'_production.edr' -s $NAME'_production.tpr' -o 

$NAME'_production.xvg' >> simulation_analysis.txt 2>&1 <<EOF 

Potential 

Total-Energy    

Temperature  

Pressure 

Volume 

EOF 

 

echo "Finshed g_energy." 
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# 

# RMSD calculation for complete protein 

# 

echo "Running g_rms..." 

g_rms -f $NAME'_production.xtc' -s $NAME'_production.tpr' -o 

$NAME'_production_RMSD_full.xvg' >> simulation_analysis.txt 2>&1 <<EOF 

Protein 

Backbone 

EOF 

echo "Finished RMSD calculation." 

 

# 

# RMSF calculation for complete simulation 

# 

echo "Running g_rmsf..." 

g_rmsf -f $NAME'_production.xtc' -s $NAME'_production.tpr' -o 

$NAME'_production_RMSF_full.xvg' -res >> simulation_analysis.txt 2>&1 <<EOF 

Protein 

EOF 

echo "Finished RMSF calculation." 

 

# 

# Calculate secondary structure (DSSP) for whole protein 

# 

echo "Running do_dssp.." 

do_dssp -f $NAME'_production.xtc' -s $NAME'_production.tpr' -o 

$NAME'_production_DSSP.xpm' -sc $NAME'_production_DSSPcount.xvg' >> 

simulation_analysis.txt 2>&1 <<EOF 

Protein 

EOF 

echo "Finished DSSP calculation." 

 

# 

# Minimize final snapshot   

# 

echo "Running minimization on $PROCS cores..." 

grompp -f minimization.mdp -c $NAME'_production.gro' -p $NAME.top -o 

$NAME'_production_EM.tpr' >> simulation_analysis.txt 2>&1  

 

mdrun -nt $PROCS -deffnm $NAME'_production_EM' >> simulation_analysis.txt 2>&1  

 

trjconv -f $NAME'_production_EM.gro' -s $NAME'_production_EM.tpr' -o 

$NAME'_production_EM.pdb' -pbc res -ur compact -center >> 

simulation_analysis.txt 2>&1 <<EOF 

Protein 

System 

EOF 

echo "Minimization finished." 

 

echo "MD ANALYSIS FINISHED" 
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Appendix 7: Comparison of plots of the ProSA II knowledge-based energy for the best models for (a) 
SP-G and (b) SP-H obtained by homology modeling (black), threading (blue), and ab initio modeling 
(red). 

 

 

 

Appendix 8: Results of protein quality assessment tools for the models of (a) SP-G and (b) SP-H with 
and without attached PTMs after the 20 ns stability test MD simulation in comparison to the structures 
without PTMs directly after the modeling process (“final models”). 

a 

SP-G  
models 

combined  
Z-score 

PROCHECK 
ERRAT-

score 
VERIFY-

3D 

ProQ 

fav. regions  outlier  LGscore MaxSub 

final model -6.16 95.5% 0 100.0 97.5% 3.579 0.141 

after MD 
without PTMs 

-5,84 92,4% 0 100.0 87,3% 4.023 0.185 

after MD  
with PTMs 

-6,00 92,4% 0 100.0 92,3% 4.611 0.158 

b 

SP-H  
models 

combined  
Z-score 

PROCHECK 
ERRAT-

score 
VERIFY-

3D 

ProQ 

fav. regions  outlier  LGscore MaxSub 

final model -5.72 94.0% 0 93.0 48.4% 1.804 0.131 

after MD 
without PTMs 

-6,10 94.0% 0 94.2 48.4% 2.334 0.075 

after MD  
with PTMs 

-6,00 94.0% 0 84.9 36.8% 3.527 0.118 
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Appendix 9: Protein-lipid interaction energy (in kJ/mol) versus simulation time (in ns) for all six 
orientations of (a) the SP-G model without PTMs and (b) the SP-G model with PTMs.  
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Appendix 10: Protein-lipid interaction energy (in kJ/mol) versus simulation time (in ns) for all six 
orientations of (a) the SP-H model without PTMs and (b) the SP-H model with PTMs.  
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Appendix 11: RMSD of the protein backbone atoms (in nm) versus simulation time (in ns) for all six 
orientations of (a) the SP-G model without PTMs and (b) the SP-G model with PTMs. 
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Appendix 12: RMSD of the protein backbone atoms (in nm) versus simulation time (in ns) for all six 
orientations of (a) the SP-H model without PTMs and (b) the SP-H model with PTMs. 
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Appendix 13: RMSF for each amino acid residue (in nm) versus simulation time (in ns) for all six 
orientations of (a) the SP-G model without PTMs and (b) the SP-G model with PTMs. 
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Appendix 14: RMSF for each amino acid residue (in nm) versus simulation time (in ns) for all six 
orientations of (a) the SP-H model without PTMs and (b) the SP-H model with PTMs. 
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Appendix 15: Area per lipid in the monolayer (in nm²) versus simulation time (in ns) for all six 
orientations of (a) the SP-G model without PTMs and (b) the SP-G model with PTMs. 
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Appendix 16: Area per lipid in the monolayer (in nm²) versus simulation time (in ns) for all six 
orientations of (a) the SP-H model without PTMs and (b) the SP-H model with PTMs. 
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Appendix 17: Number of residues that were assigned as secondary structure element by DSSP (α-helix, 
β-sheet, β-bridge or turn) versus simulation time (in ns) for all six orientations of (a) the SP-G model 
without PTMs and (b) the SP-G model with PTMs. 
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Appendix 18: Number of residues that were assigned as secondary structure element by DSSP (α-helix, 
β-sheet, β-bridge or turn) versus simulation time (in ns) for all six orientations of (a) the SP-H model 
without PTMs and (b) the SP-H model with PTMs. 
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