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Zusammenfassung

Im Rahmen dieser Arbeit wurden die Sequenzen der putativen Surfactantproteine SP-G
(SFTA2) und SP-H (SFTA3) erstmals mithilfe von cartgrgestitzten Modellierungs- und
Simulationstechniken untersucht. Die Ergebnissesatdietheoretischen Proteinstruktur-
modellierungen und Molekuldynamiksimulationen wurdenschlieend genutzt, um
biologische oder biochemische Experimente in daxiBrzu planen oder deren Resultate zu
interpretieren. Durch die Kombination dieser beid®sziplinen war es méglich, SP-G und
SP-H in unterschiedlichen Organgeweben zu lokaéisiewelche typisch fur das Vorkommen
von Surfactantproteinen sind. Zudem legen die geeonErkenntnisse nahe, dass die
physikochemischen Eigenschaften von SP-G und SRigleichbar mit denen der bereits
bekannten Surfactantproteine sind und dass beidé&iRe ebenfalls mit Lipidsystemen

interagieren und dadurch Grenzflacheneigenschaftemflussen kdénnen.

Zu Beginn der Arbeiten wurden dreidimensionale I8trtmodelle fir SP-G und SP-H erstellt.
Dabei war der klassische Ansatz einer Homologieithedeng nicht mdglich, da zu dieser Zeit

keine Proteinsequenzen mit einer hohen Sequenzhkeit zu SP-G oder SP-H und einer
bekannten 3D-Struktur in offentlichen Datenbankemhenden waren, welche als Vorlage
hatten dienen kénnen. Stattdessen wurden die Mongthilfe des Servers ,Robetta” erzeugt,
welcher eine online verfigbare Implementierungakemitio Strukturvorhersage darstellt. Die

erhaltenen Modelle bendtigten nur geringfligige @@mrungen, um in den gangigen
Programmen zur Bewertung der Modellqualitéat zukiestellende Ergebnisse zu liefern,
welche u.a. eine native Faltung der Modelle nalelegusatzlich wurden Molekildynamik-

simulationen in Wasser durchgefihrt, um die Stivitier Proteinmodelle fir SP-G und SP-H

zu Uberprifen.

Da in der Literatur das Vorhandensein von posttagiosialen Modifikationen als essentiell fur
die korrekte Funktion der Surfactantproteine bastlen wird, wurden die Sequenzen der
putativen Surfactantproteine SP-G und SP-H zusétauf Proteinmodifikationen untersucht.
Dazu wurden die Ergebnisse von verschiedenen sebasierten Vorhersagealgorithmen
ausgewertet, welche einige potentielle Modifiziggsstellen fir Phosphorylierungen,
Palmitoylierungen und verschiedene Arten von Glykesungen ergaben. Die Modelle fur



SP-G und SP-H wurden anschlieRend entsprechenerdissrgaben manuell um diese
Modifizierungen erweitert. Molekildynamiksimulatiem dieser Modelle wurden mit den
zuvor durchgefiihrten Simulationen der unmodifiaerModelle verglichen und ergaben, dass
die posttranslationalen Modifikationen keinen siiggainten Einfluss auf die Faltung oder

allgemeine Modellqualitat zeigen.

Die Herstellung von spezifischen Antikdrpern auf @asis von Antigen-Peptiden, welche
ohne Wissen uber die 3D-Struktur des Proteins avégée wurden, fuhren in vielen Féllen
nicht zum gewlnschten Ergebnis. Der als Antigeg@wéhlte Proteinabschnitt kbnnte durch
andere Teile des Proteins verdeckt werden odeitrposlationale Modifikationen tragen,
welche die erwarteten Antigen-Antikdrperinterakgonblockieren. Aus diesen Grinden
schlugen vorherige Versuche fehl, spezifische Ampler gegen SP-G und SP-H herzustellen.
Mit den in dieser Arbeit beschriebenen Proteingtrukodellen war es mdglich, Sequenz-
abschnitte zu identifizieren, welche in der rduhmic Struktur an der Oberflache des Proteins
liegen, keine Modifikationen tragen und zahlreidfiéglichkeiten fir Antigen-Antikérper-
interaktionen (d.h. Aminosduren mit polaren Seitgtdn) bieten. Bei der anschliel3enden
Antikdrperherstellung fiihrten diese potentiellen tigensequenzen zu spezifischen
Antikdrpern gegen SP-G und SP-H. Die Antikorpetlateeinen grof3en Fortschritt in der
Erforschung dieser Proteine dar. Mit ihrer Hilfe rwas mdoglich, beide Proteine in
verschiedenen Geweben nachzuweisen, welche flExjieession von Surfactantproteinen

typisch sind. Zudem erlaubten die Antikorper efstetionelle Studien im Labor.

Um die Eigenschaften von SP-G und SP-H und ihr &égh in ihrer natirlichen Umgebung
naher untersuchen zu kénnen, wurde ein Modellsystaliert, welches die grundlegenden
Eigenschaften des pulmonalen Surfactantsystemsodepieren kann. Dieses besteht
ausschlief3lich aus dem Lipid Dipalmitoylphosphdttglin (DPPC), welches den Haupt-
bestandteil des Lungensurfactants darstellt urelinar Einzelschicht angeordnet wurde. Die
Parameter fur DPPC wurden im G53a6-Kraftfeld emtsipend der aktuellen Literatur
angepasst und die Simulationsparameter fir GROMAIGRIngehend optimiert, dass die
Literaturwerte fur ein DPPC-Lipidsystem reprodutzigerden konnten. Zusatzlich wurde das
Kraftfeld auch um Parameter fur die modifiziertemiAosauren der Proteinmodelle erweitert.
Aus diesen Bemiihungen resultierte ein Kraftfeldctwes fir Lipide sowie die unmodifizierten
als auch die modifizierten Proteinmodellen gleich&Ben verwendet werden kann. Ferner
konnte ein Lipidsystem etabliert werden, welchemdtegende Eigenschaften des pulmonalen

Surfactants widerspiegelt und Uber einen langenenil&tionszeitraum stabil bleibt.



Auf der Grundlage dieses Lipidsystems wurden aref®éhd Simulationen der SP-G- und
SP-H-Modelle durchgefuhrt. Fur beide Proteine warsiewohl fir das unmodifizierte als auch
fur das modifizierte Modell sechs Simulationen ggst, welche zu Beginn der Rechnung
unterschiedlichen Orientierungen des Proteins irmuBezur Lipidschicht aufwiesen. Somit
wurden insgesamt 24 Rechnungen zu je 50 ns durdngefn allen 24 Simulationen konnte
die Stabilitat der Proteinmodelle festgestellt vegrdso dass die Auswertung der Systeme nach
Abschluss der Rechnungen keine allgemeine Entfgltader einen Qualitatsverlust der
Proteinmodelle ergab. Weiterhin zeigte jede Sinmtatlas Bestreben des Proteins, mit der
Lipidschicht zu interagieren. Im Verlauf aller dogeflihrten Simulationen bewegte sich das
Protein durch die Wasserphase in Richtung Lipidsthiund wies am Ende der Simulation
(nach 50 ns) direkten Kontakt zu den Kopfgruppen ldpide auf. In einigen Rechnungen
zeigte sich nur eine schwache Fixierung des Protain der Lipidoberflache, unterstitzt durch
wenige Interaktionen zwischen polaren Aminosautesketten und Kopfgruppen der Lipide.
Andere Simulationen zeigten hingegen eine starkierdktion zwischen Protein und
Lipidschicht, initiiert durch vereinzelte posttréatsonale Modifikationen im Bereich der
Interaktionsflache, welche wie Anker tief in diegRen der Lipidkopfgruppen eindrangen und
das Protein so fest an der Lipidoberflache fixreri@iese Ergebnisse legen nahe, dass SP-G
und SP-H tatsachlich in der Lage sind, mit einemdsystem zu interagieren, wie es fir bereits
bekannte Surfactantproteine charakteristisch ist. eibt aber festzuhalten, dass die
Interaktionsflachen und die ausgebildeten Intecaistiypen (polar oder hydrophob) zwischen
Protein und Lipiden sehr variabel waren und hoatiigraon der Orientierung des Proteins zum
Simulationsstart und den posttranslationalen Mkdifonen abhingen. Zudem konnte aus den
Simulationen kein direkter Einfluss der Proteinef aie Stabilitdt oder Ordnung der
Lipidschicht festgestellt werden. Jedoch konntenREchnungen zeigen, dass die Oberflachen-
eigenschaften der Proteine (z.B. Ladungsverteilsigy)ifikant durch lokale Konformations-
anderungen beeinflusst werden konnen. Dieser Efiektn durch posttranslationale
Modifikationen, insbesondere durcN-Glykosylierungen und Palmitoylierungen, noch
verstarkt werden. Daraus konnten fur SP-G und Sidghiphile Eigenschaften resultieren,
wie sie fur die bereits bekannten Surfactantpretdieschrieben werden. So kdnnten beide
Proteine in einer wassrigen Umgebung einen hydlepiCharakter aufweisen, in der Nahe
einer Lipidschicht oder bei Einwanderung in ein fioghobes Milieu aber durch geringflgige
Anderungen der Struktur auch deutlich hydrophobeeBbe prasentieren. Dieser amphiphile
Charakter ist ein weiterer Hinweis auf die Zugegkeit von SP-G und SP-H zur Familie der

Surfactantproteine, welcher mithilfe der computstgezten Simulation erlangt werden konnte.
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1. Introduction

As an essential for life, every breath suppliesgexyto the organism. The organ responsible
for this process is the lung, which is thereforevitably in direct contact with the air.
Unfortunately, this exposes the lung surface targd number of dangers, which could
potentially damage the whole organ. Apart from phgsical injury by inhaled particles, the
evaporation of the surface and the underlying éissaas well as the infection by pathogens are
the most threatening risks. To avert these threatsin liquid film lines the complete alveolar
surface: the so-called pulmonary surfactant (PS).

1.1 The pulmonary surfactant system

Surfactant is an acronym for “surface active agant! describes a complex mixture of approx.
90% lipids and approx. 10% proteins by weight [iLis part of the thin aqueous layer, which
covers the air-liquid interface at the surfacehaf lung alveoli. The lipid component contains
mostly phosphatidylcholines (between 70 and 80%¥][2from which the majority is
dipalmitoylphosphatidylcholine (DPPC, 41-70%) [5,6he second most abundant lipids of the
pulmonary surfactant (PS) are phosphatidylglycer(%6), followed by phosphatidyl-
ethanolamines that account for 5% of the total mBasgthermore, phosphatidylinositol and
sphingomyeline are present (2%) [5,6]. Neutraldgpisuch as cholesterol, account for 5% of
the lipid mixture. A summary of the average suidattcomposition is depicted in Figure la.
This lipid mixture forms a monolayer system witle fholar lipid head groups facing the liquid
interface and the hydrophobic carbonyl chains fadine air. Proteins of the PS, called
surfactant proteins (SPs), are integrated into thdsolayer or are lipid-associated in the
aqueous phase. Figure 1b shows a simplified depiaif the current conception of the PS
system setup, including the surfactant proteinschvare described in chapter 1.2.
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Figure 1: The pulmonary surfactant systefa) Percentual compaosition of pulmonary surfactant from
human bronchoalveolar lavage fluid (numbers from [1]). PC: phospletalipe; PG:
phosphatidylglycerol; PE: phosphatidylethanolamine; PI: phosphatidybhoSjph: sphingomyeline
(b) Representation of the four currently known surfactant proteig\, SP-B, SP-C and SP-D in
vicinity of a pulmonary surfactant lipid monolayer (yellow}la interphase between air (white area)
and water (blue area).

The most important function of the PS is the lowgrof the surface tension during the
respiration process, which prevents the collapderaf alveoli during expiration [7]. Hence, a
fully functional PS system is essential for a prdpeg function and surfactant dysfunction is
associated with severe ilinesses [8], for exampk Adult Respiratory Distress Sydrome
(ARDS) [9]. Furthermore, the PS provides an effitiprotection against evaporation and
shows mechanisms of host defense. Among the otirapanents of the PS, the surfactant
proteins are mainly responsible for the regulatdrsurface properties and immunological

functions [10].

1.2. Surfactant proteins

Until now, four different surfactant proteins (SR-&P-B, SP-C and SP-D) have been identified,
which can be divided into two classes. The surfagb@oteins A and D are large hydrophilic
proteins, which contain a carbohydrate recognitiomain (CRD) and are part of the specific
and non-specific immune defense mechanism of thegnary surfactant (PS) [11-14]. In
contrast, surfactant proteins B and C are small eticbmely hydrophobic proteins, whose
functions are more related to general lipid orgatan and lipid layer stability [15,16]. To
achieve their full functionality, SP-B and SP-C uiq a complex posttranslational
modification pattern [17,18]. The interaction beémnehe two surfactant protein (SP) classes

seems to be necessary for a proper PS functiorexample, the presence of SP-A showed a



supportive effect on SP-B activity [19] and theklad SP-B results in a lower production of
fully functional SP-C [20]. All four proteins wermitially identified within lung tissue
[11,12,21-23], but recently, SPs were also deteatethe eye surface and in different tissues

of the ocular system [24,25].

SP-A, encoded as a protein with 248 amino acid$, [[86part of the C-type lectin family
(“collectins”). Therefore, it shows a charactedstold consisting of four regions [14]: The
cysteine-containing\-terminus, which is important for oligomerizatiomavintermolecular
disulfide bridges, a collagen-like helical regiarshort “neck region” with coiled-coil structure,
and theC-terminus with CRD for Cd-dependent binding of sugar moieties [27]. SP-Af®r

a characteristic bouquet-like 18-mer structure istimg) of six homotrimer subunits (Figure 1b)
[22]. In vivo, it is responsible for the formation of tubular elig, an extracellular surfactant
reservoir [28]. With that, SP-A is important foetBpreading of lipids and the control of surface
tension, especially in cooperation with SP-B [29¢vertheless, SP-A-deficient mice showed
no alterations in PS stability [30], indicating thhe other SPs can compensate an SP-A
deficiency. Instead, the immunological functionghag protein are more important. As a part
of the innate immune system, it stimulates thevagtiof macrophages [31], supports
opsonization of microorganisms [5] and specificligds to the surface of various pathogens
by means of the CRD [32-34]. According to that, ABeficient mice showed a reduced

immune defense against pathogenic microorganisbis [3

SP-D, as a member of the C-type lectin family, aord the four regions of the general collectin
fold as well. SP-D consists of 355 amino acidsignsgubunits show a high structural similarity
to SP-A [12]. SP-D assembles as a dodecamer, tiogse four sets of triplet monomers,
which are oriented in a cross-like complex (Figliog¢ [14]. With its CRD, it can specifically
bind to carbohydrate moieties that are exposeéxXample on the surface of microorganisms.
Therefore, SP-D is considered as part of the fhoet defense of the lung against inhaled
pathogens. A direct interaction of SP-D with th8uenza virus type Al3], Pseudomonas
aeruginosa and Escherichia coli [36,37] could be demonstrated. This emphasizes the
importance of SP-D for the innate immune systemiclvis supported by experiments with
SP-D-deficient mice that were more prone to infeddiwith, for exampldnfluenza virus type

A [38]. Furthermore, selective deletion of SP-D iicer{39] revealed its influence on the lipid

homeostasis in the lung.

SP-B is a very small and extremely hydrophobic girotof the saposin superfamily.

Posttranslational modification was shown to be naéony to process the inactive precursor

3



protein with 381 amino acids into the fully functad protein [18]. The mature and active SP-B
consists of only 79 amino acids, has a total chafge/ and is organized in maindyhelical
structure [40]. Various cysteine residues stabilize protein fold and allow the formation of
oligomers of different sizes via intermolecular utile bridges [41]. SP-B is assumed to
interact directly with a lipid monolayer, mediatiligid transfer and adsorption of single lipids
into an existing layer. In this way, it influencastively the surface tension and stability of the
PS during the respiration process [29,42]. Studlesved that a lack of SP-B is lethal for
newborn mice [43] and causes fatal respiratorufaisoon after birth in humans [44]. Recently,
Yang et. al. demonstrated the role of SP-B in the activatioraleEolar macrophages in the
innate immune response in the lung [45]. All thiests emphasize the indispensability of SP-B
for the regular breathing function. A short formS®-B (“mini-B”, residues 8-25 and 63-78)
was shown to retain almost the complete activitytha full-length protein [46,47] and is

therefore often used in experimental studies [48,49

Despite the very short sequence length (35 amiisaSP-C is one of the most hydrophobic
proteins in nature known to date [50,51]. SP-C mte®f ano-helix which may integrate into

a lipid layer [52,53]. For this purpose, it pos&ssa high content of valine residues [53]. The
hydrophobic character of SP-C is further increaBgdwo palmitoyl moieties, which are
attached to cysteine residues [54-58]. Additionatiyher posttranslational modifications
(PTMs), such as glycosylations, acylations or @stations, were described for SP-C as well
[17,59]. Similar to SP-B, SP-C is responsible fog stability of the PS, for the adsorption of
lipids into an existing monolayer and for the retlut of the surface tension [11,21]. Different
effects were demonstrated for SP-C-deficient mfoe,example almost no change in PS
stability compared to the wild type [60] in contr&s a higher susceptibility to inflammatory
lung diseases [61]. This suggests a functionalnédocy between SP-B and SP-C, where SP-B
is the more effective protein [62], but SP-C shayvedditional immunological functions
[63,64].

For the investigation of surfactant proteins (SRsomprehensive range of biochemical,
biophysical and immunological methods were apghetianyin vitro andin vivo experiments
[30-39,46-49,60-64]. These studies led to new Mhmtsignto characterization, localization,
function and interaction of the different SPs withir environment. Despite these studies, there
are still a lot of outstanding issues of interegtis field — not only because of the still unclea
mode of action in detail. However, profound reskang these proteins is very time consuming

and requires a lot of experience, because the widhkthem is subjected to difficulties [65].



As for many proteins associated with a lipid systdma protein concentration vivois mostly
very low, which prevents their direct purificatitrom tissue. When overexpressed, some of
these proteins tend to form aggregates, hence irggtiee yield of stable and fully functional
protein. Moreover, the recombinant expression iheothost organisms often leads to
posttranslational modification patterns that diffeym the original organism or are missing
completely. Depending on the protein, this couldeha drastic effect on the protein activity in
following experiments. Furthermore, especially thighly hydrophobic proteins SP-B and
SP-C are difficult to handle in experiments dughi@ir low solubility in aqueous media. All
these aforementioned difficulties are also problenfar X-ray crystallography to obtain the
overall protein structure. However, the knowled§éehe 3D structure is a crucial step towards
the understanding of the protein function. In f&®-C is the only surfactant protein with an
X-ray structure of the full-length protein (“1spf86]) in the Protein Data Bank (PDB [67]).
For SP-B, only very short fragments of thkéerminus (“1kmr” [68], “1dfw” [69], 15-25 of 79
amino acids), th&-terminus (“1rg3” [70], “1rg4” [70], 16 of 79 aminacids), and several
versions of the truncated protein “mini-B” (“1ss&6], “2jou” [48], “2dwf’ [48], 34 of 79
amino acids) are available in the PDB. The moredyhilic character of SP-A and SP-D makes
them less problematic to handle, but especially\Hierminus and the collagen-like region are
still very difficult to resolve in X-ray experimentAccordingly, only structures of the CRD-
regions with “neck-domain” as single trimers araiable in the PDB for SP-A (*1r13” [71],
148 of 248 amino acids) and SP-D (“1pw9” [72], DFB55 amino acids).

1.3. Computational modeling and simulation of surfactantproteins

The investigation of surfactant proteins (SPs)nseaemplary project, where the setup and
realization of experiments is very complicated.slich cases, computational chemistry and
protein modeling methods can effectively supporpesinental research. For example,
modeling techniques can provide an atomistic tloieeensional model of a previously

unknown protein structure. This model can give siabout the solubility of the protein or

possible interactions with solutes in its enviromteuch as lipids, sugars or other proteins.
Furthermore, a model could show which parts ofpiftteein are exposed to the solvent. These
solvent accessible residues will most likely posgessttranslational modifications, which may
be essential for the protein function [73], asadyedescribed for the known surfactant proteins



[74-76]. Furthermore, a protein model can be usedniolecular dynamics (MD) simulations.
These calculations are able to show the time- @amdpérature-dependent behavior of a
simulation system. This allows the observationaiéptial interactions of the protein with other

compounds of its environment in a dynamic process.

Indeed, there are many examples in the literaturprbductive cooperation between theoretical
and practical research: The assumption of SP-Dgb&mimmunological active protein could
be supported by simulation studies, which showedthding of different sugar moieties to the
CRD region. Among these bound sugars were als@gbjavhich are presented on the surface
of Influenza virus type A77,78]. In more detail, simulations were ableskmw which amino
acids are responsible for sugar binding and howbthding affinity is regulated [79,80]. For
SP-B, various simulation studies were successpélyormed, which showed the influence of
the protein on systems consisting of differentdigipecies [81,82], determined the exact
orientation of SP-B in proximity of a lipid layeB3,84] or observed which amino acids
participate in the interaction with a lipid enviroent [85,86]. As a prerequisite for all these
simulations, the possibility to reproduce a protiege monolayer system consisting of PS lipids
in a MD simulation was previously demonstrated &yahaineret. al.[87]. By means of long
time scale MD simulations, previously hypothesi&#B functions, such as the support of
lipid transfer and lipid reservoir building [88] tire mediation of lipid vesicle fusion [89], were
confirmed as well. MD simulations of the SP-C stmwe in different media revealed the
stability of the fold [90] and suggested SP-C t&ypn important role in the formation of bilayer
reservoirs [91]. Finally, the cooperation of SP4l&P-C observed in experimental studies
was supported and visualized by MD simulations,clwishowed an increased fluidity of a

membrane system and induced monolayer foldingaseuce of both proteins [92].

1.4. Motivation and objectives

With the decryption of whole genomes in the lastrge a vast number of databases with
information about putative gene sequences becaaikble. This is also the case for the human
genome. With the help of theoretical bioinformatim®ls, these gene sequences were
investigated and transformed into protein sequemttds putative characteristics ascribed to
them. Due to these studies, two new sequencesuimah proteins with putative surface
regulatory activity were identified (UniProt [93)teies Q6UW10 and POC7M3). According to
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the order of their discovery, these two proteingemeamed surfactant-associated protein 2
(SFTA2) and surfactant-associated protein 3 (SFToA3)ternatively, SP-G and SP-H [94,95].
The SP-G sequence comprises 78 amino acids wgfihtlslihydrophobic character. It contains
a predicted signal peptide of 19 amino acids at\Herminus [96] that is essential for protein
secretion [97]. In the UniProt entry, a potenhlidinked glycosylation is suggested for position
37. Similar to SP-G, SP-H is a relatively shorttpino with 94 amino acids. However, the SP-H
sequence shows an overall hydrophilic charactez.arhino acid sequences of SP-G and SP-H
share only 23% identical residues. Their lengti&®fnd 94 amino acids is too short to show
any similarity to the group of huge SPs (SP-A, SPIhis suggests that they belong to the
group of small surfactant proteins (SP-B, SP-C)wE\er, they do not share any domains with
SP-B or SP-C and the amino acid sequence iderditeegery low (about 10%). Unfortunately,
no further information about characterization, l@aion, function or 3D structure was
available for SP-G and SP-H at the beginning «f Work. However, more information about
these proteins might facilitate the understandirigti® whole surfactant system. The
localization of SP-G and SP-H on the lung surfade associated tissue and the assignment of
surface regulatory properties would verify theasdification as surfactant proteins. Additional
experimental studies and knowledge obtained abBu®%nd SP-H could reveal new insights
into the functionality of the pulmonary surfactagstem. In this way, a detailed understanding
of these proteins could point out completely newrapches for the treatment and therapy of

surfactant dysfunction.

This work represents the theoretical part of aertisciplinary project between the Leibniz
Institute of Plant Biochemistry in Halle (PD Dr. \Brandt) and the Institute of Anatomy Il of
the Friedrich-Alexander-University Erlangen-Nuremth@rof. L. Brauer) to characterize the
aforementioned proteins SP-G and SP-H, and toroktat insights into the function of these
novel and putative SPs. Therefore, the questi8RH#5 and SP-H are indeed surfactant proteins

is the major issue of this work.

To address this question, the initial task is theegation of reliable 3D protein structure models
for both proteins. The knowledge about the ovepatitein fold, the positions of potential
posttranslational modifications (PTMs) and, consgdly, hints about the surface reactivity
(functional groups, hydrophobic spots) could bewael from these models. Based on these
results, it should be possible to determine if S&1@ SP-H have any characteristics in common
with the already known surfactant proteins. Fornepke, two key features of surfactant

proteins, the high grade of posttranslational modlifon (PTM) and the ability to interact with



lipid systems, should be deducible from the proteodels. Furthermore, the models could be
used to guide, support and interpret experimentadiss, e.g. the generation of specific
antibodies to enable the localization of both pgrstein different tissues by immuno-
histochemical methods. The localization of SP-G 8RdH in tissues that are typical for the
presence of SP-A, SP-B, SP-C, and SP-D may fuvtefy their classification as surfactant

proteins.

However, the static representation of a protein @hasl not sufficient to investigate the
interaction of SP-G and SP-H with a lipid systemt@ishow if these proteins possess any
surface regulatory activity, as it is typical foP$ Therefore, the aim of this work is the
application of computational simulation techniquas SP-G and SP-H in their natural
environment. After establishing a lipid simulatsystem resembling the basic properties of the
pulmonary surfactant, long-term MD simulations bk tSP-G and SP-H models in this
environment may indicate if these proteins are,gé@meral, able to interact with lipids.
Furthermore, these simulations could be able tavghe protein-lipid interaction in detail (on
an atomistic level) and might indicate the influeraf the attached PTMs on the interaction
interface and strength. These studies may also detnade if SP-G and SP-H are proteins that
are associated on the surface of lipid systemspaoable to SP-A and SP-D, or if they are
embedded into the lipid layers as known for SP-B 8R-C. Additionally, the influence of
SP-G and SP-H on characteristics and stabilityheflipid system could become apparent
during these simulations. Altogether, the knowledgaved from MD simulations could help
to classify these novel proteins with respect ® dlready known SPs and answer the initial
guestion, if SP-G and SP-H show surface reguldtorgtionalities and thus are in fact members

of the surfactant protein family.



2. Methods

2.1. Protein structure modeling

Knowing the exact three-dimensional structure opratein is very important for the
investigation of its characteristics and functiatyalTherefore, nearly all 3D protein structures
known today are stored in the Protein Data BankBP[®7]. This repository is publicly
available and provides coordinate files, literattgferences and various additional annotated
information for each structure. Prior to releasasrg entry in the PDB is manually reviewed
and assigned a four-letter code as unique identifiee standard methods to obtain the 3D
protein structure as deposited in the PDB are Xaagtallography and nuclear magnetic
resonance (NMR) spectroscopy. For crystallograptibpgam of X-rays is directed at the protein
in a crystalline state. The resulting diffractioatiern can be transformed into an electron
density map, which is used to determine the atositipas within the crystal [98]. Due to a
high flexibility (high degree of freedom) or pooolgbility of the protein, it could be very
difficult to find optimal crystallization conditiaor even the formation of well-ordered crystals
could be inhibited. For NMR spectroscopy, no protaiystals are needed and the protein is
measured in a physiological (“natural”) solutionhigh may lead to more realistic protein
structures [99]. However, the NMR technique is tedi to small proteins and requires
expensive equipment. Therefore, computer-assistetkip structure modeling tools were
developed, which bypass the problems of experinhetrizcture elucidation by constructing a
model of the protein fold. In general, there ame¢hmethodologies currently available, which
differ in their prerequisites, complexity and cortgiional costs: homology modeling, protein
threading andb initio modeling [100]. However, the differentiation beemethese methods
became blurred over the last decade and more amré protocols were presented that
successfully combine elements of all approaches.bHEsic ideas of each method as well as the

programs and tools used in this work will be présém the following.



2.1.1. Homology modeling

With homology or comparative modeling, an atomistrticture model for a given amino acid
sequence (“target”) is generated based on at teastprotein structure with high sequence
similarity and already known 3D structure (“templat The idea of this method is based on
the observation that evolutionary related proteith similar sequences often share a similar
fold [101] and that local changes in the proteigussce (e.g. single mutations) do not
necessarily influence the overall structure of atgin [102]. For a successful structure
prediction, target and template should have a seguielentity (i.e. amount of identical amino
acids) of at least 20% [103]. To identify possitdmplate structures, a search with the BLAST
algorithm (“Basic Local Alignment Search Tool”) [4Q05] is the common procedure.
Thereby, the target sequence is compared to alesegs of proteins with known 3D structure
in the PDB. The similarity between two sequencesilsulated as a score based on identity and
coverage after an alignment. Filter options allovshow only hits above a defined threshold

as results.

In this work, the homology modeling protocol as lempented in YASARA [105-108] was
used. It contains an automated template searchndary structure prediction for the target
sequence [109], and an alignment protocol to aiggget and template sequences. The final
models are refined by energy minimizations and tski» simulations with the YASARA2
force field [110,111], which was developed espégial optimize protein structure geometries.
Finally, an internal overall quality score ranks ralsulting models. A special feature of the
YASARA modeling protocol is the generation of a tingl model”, which combines the best-

scored parts of all obtained models.

2.1.2. Threading

When no template structures with a sequence igeattitve 20% are available in the PDB, the
homology modeling will probably fail. The threadingethod expands the idea of homology
modeling by classification (protein family), secamnglstructure prediction and fold recognition
(domain identification) of the target protein. largeral, homology modeling and threading are
both template-based processes. However, whereahkotielogy modeling considers only
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sequence similarity, the threading approach focusse structural similarity for template
identification and structural alignment. Threadingtines are often provided by online servers
for academic use. In this work, the “iterative #asng assembly refinement” server, in short
I-TASSER [112,113], was used for model generatiodfrASSER was ranked as best server for
protein structure prediction in four consecutiveitiCal Assessment of Techniques for Protein
Structure Prediction” experiments (CASP7 [114], ®8S[115], CASP9 [116], CASP10
[117]). The CASP experiments are organized as drmonapetitions, where all participants try
to model the same predefined target as accurggeszible. Although the good performance of
I-TASSER in these experiments, the server isatifitinuously improved. The target sequence
can be submitted via web interface and the wholgcire prediction and model building
process is multi-phased and fully automated.

2.1.3. Ab initio modeling

If the requirements for homology modeling or thiiegccannot be fulfilled or the generation of
a reliable model failed for other reasons, dbenitio or de novoprotein modeling can be used
to build a structure model. In the ideal visionatif initio modeling, the protein structure is
predicted “from scratch”, i.e. the prediction isedp based on physical and chemical principles
of the amino acid sequence rather than already Rnstructures or fragment libraries
(knowledge-based information). The success ofrttethod depends on the availability of an
efficient method to explore all possible conforroat of a peptide and a realistic energy
function to obtain the energy landscape and to thekndividual conformations [118]. Since
the conformational search is increasingly extenfiwvdonger peptidesab initio modeling is
computationally very expensive. Therefore, the coaion with knowledge-based
information and high-performance computers is nemgsto produce models in reasonable
time, even for medium-sized proteins. ROBETTA [1i%he only folding server available for
academic use that offers state-of-theatinitio modeling protocols (evaluated by CASP
[120]) and the required computational power. Aiabmission of the amino acid sequence

using the online user interface [119], sequenceprarcessed completely automated.
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2.2. Protein model quality and validation tools

One of the most crucial questions in the procegsratiein modeling arises after the models
were built with any of the previously described hoets: How reliable is the obtained protein
structure model? The numerous methods that werelalgd to answer this question use for
example statistics about natively folded proteirs €rystal structures), geometric properties
of the amino acids (e.g. stereochemistry) or emglirenergy functions. These different
methods are able to show problematic protein regiamich deviate from a native-like state.
Very often, several factors are calculated and aoeabto an overall quality score, which
facilitates the comparison of multiple models. Tmfrmation can be used to improve or
correct the corresponding model (or parts of iy, €éxample by refinement with energy
minimization or molecular dynamics methods, usingalernative template for the modeling
process or even switching to a more sophisticatedleling approach. In the following
paragraphs, the protein structure validation amalityuassessment tools used to evaluate the

obtained protein models in this work will be inttmed.

2.2.1. PROCHECK

The stereochemical quality of a protein model carvélidated with PROCHECK [121]. The
statistical analysis of known protein structuresvebd that native-like folds feature specific
geometry patterns. The program calculates, for @kanbond length and bond angles for the
backbone atoms and checks the planarity of alligeftonds or ring systems of amino acid
side chains. The results are then compared wittstiitestics of native protein structures and
are presented in various plots with (if presenghhghted problematic residues. The most
important graph produced by PROCHECK is the “Raraadman plot” (Figure 2). In this
diagram, the two backbone dihedral angpeandy of each amino acid residue are plotted
against each other. Statistical analyses showddcttaall possible combinations efandy
occur evenly distributed, but that specific regiaighe Ramachandran plot are preferred in
native protein structures (Figure 2) [122]. Regealtow regions represent typical and allowed
torsion angle combinations. Light yellow region®wigenerously allowed angles, which are

not very often found in known 3D structures, butickhare still present in native proteins.
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Ideally, over 90% of the protein amino acids shdagdocated in the red (favored) regions. An
amino acid with ap-y-combination in one of the white areas is calledtfier” and the
geometry of this amino acid itself but also oftrironment should be checked carefully. Since
a high stereochemical quality is an essential,nmitsufficient prerequisite for a native-like
protein model, other quality assessment tools appdied as well.

180+

1354

90 4

Figure 2: Ramachandran plot produced by PROCHECK with the mapped disirinftthep andy
angles in native protein structures. Red regions are “favosadipw regions are “additionally
allowed”, and light yellow are “generously allowed” areas. Afiiter regions represent “disallowed”
angle combinations. For a protein with native fold, at least 80%te amino acids should reside in the
“favored” regions.

2.2.2. ProSA Il

ProSA 11 [123] was the main criterion in this wdtkassess the protein model quality. With the
help of knowledge-based energy potentials obtaired statistical analysis of known protein
structures (X-ray and NMR from the PDB), the Pro$program is able to estimate the fold
quality of a protein structure model. The overallality of the model is represented by a
calculated “Z-score”. This score is dependent @enpdiotein length and the pair, surface, or a
combined pair and surface potential. For the pakaalculation, only the Catoms, only the
Cs atoms or a combination of both can be used. Fateprs with similar length and a native
fold, the Z-scores are in a characteristic rangethat this score can give a hint if a protein
model shows a native-like fold. If the calculatedcbre for a protein model is outside of this
range, it very likely contains misfolded parts aoeeous regions. Additionally to the overall

guality measure via Z-score, a local model quaditgalculated with the energy potential as a
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function of the sequence position. The result esented in a plot with variable amino acid
residue sliding window. In general, the plot shduwdde a negative value for all positions in the
amino acid sequence. Regions with positive eneallyes indicate problematic or non-native
elements that should be checked and refined céreful

2.2.3. ProQ

The Protein Quality Predictor [124] is a neuroneiwork based method to identify a correct
model from a large subset of models with incorfeltt. To determine the model quality, two
different scores are combineddGscore[125] andMaxSub[126]. Both are sequence length
dependent measures for the distance between a model correct target structure. Both can
result in values between 0 and 1, but whereat @scorefor two identical structures would
be 0, theMaxSubwould have a value of 1 and vice versa for tweelated structures. In ProQ,
the negative logarithm of theGscoreis used for computational efficiency. The reason f
combining two different scores is the fact that qllality measures developed so far have
different advantages and disadvantages (reviewristdbal et. al, 2001 [125]). The most
prominent problem is the influence of the proteaguence length on the accuracy of the
method. In the case @fcscoreandMaxSub this dependence is contrary. While long proteins
are more likely to achieve a gobascore short protein sequences are more likely to aehiev
a goodMaxSubscore. The idea of combining both measures in Bsd@balance out the length
dependency to obtain a more reliable protein quafieasure. In practice, a correct model is
defined by a combination diGscoreabove 1.5 andMaxSubgreater than 0.1, whereas an
incorrect model should have ascorebelow 1.5 and 8MaxSublower than 0.1.

2.2.4. ERRAT

ERRAT [127] is an algorithm for protein structureriication, which concentrates on the
statistical analysis of non-bonded pairwise atoteractions within a protein structure. The
distribution of three different atom types (carbomygen, and nitrogen) among the protein
model structure is evaluated with a quadratic duoction and is subsequently compared with
results of 96 reliable protein structures. A bat pf the error value is produced for the pairwise
atom interactions of a nine-residue sliding wind@®ars with a value above 95% indicate
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residue windows with problematic atom type disttid. All regions with an error value above
99% or no successful error value calculation shan@deviewed carefully. Additionally, an
overall quality factor for the whole protein struiet is calculated (between 0 and 100), which
represents the percentage of protein residuesawigror value below 95%. For natively folded

proteins, this overall quality factor should betward a value of 95 or higher.

2.2.5. VERIFY-3D

VERIFY-3D [128,129] is able to generate a 3D pmofibr a given protein structure. Each
residue of the structure is categorized into arvifenment class” according to three criteria:
the area of the side chain buried by other prams, the percentage of this area that is buried
by polar atoms or water, and the local secondangttre [128]. In this way, three-dimensional
structure information is mapped to an one-dimeraioriormation string that can be compared
to an amino acid sequence. Therefore, VERIFY-3Dateatk if a given protein model (3D) is
compatible with the corresponding amino acid segedhD). The compatibility is calculated
as “3D-1D score”, which is plotted versus the segeenumber in a 21-residue sliding window.
This allows an easy identification of regions wahproblematic fold (i.e. incompatibility
between structure and sequence). The score cateufat the first and last nine residues is not
possible. For a good protein model, the 3D-1D ssbmild be above 0.2 for at least 75% of all

scored protein residues.

2.2.6. Stability test with molecular dynamics simulations

MD simulations are able to calculate the time-dejgem behavior of a system and are therefore
suitable to show dynamic process (see chapter ZHus, MD simulations can give hints about
the stability of a protein model. Extensive andhp@ment movements in protein regions, a loss
of secondary structure elements or complete unfgldi the model during the simulation can
indicate a poor model quality. Furthermore, theultssof the previously described quality
assessment tools for the model before and aftesithelation can be compared. A significant
degradation in those measures may suggest anabiesprotein model. To check the stability
of the SP-G and SP-H protein models, MD simulatiorese performed with YASARA
[105-108] and the YASARAZ force field [110,111].dbaprotein model was placed separately
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in a water box with a physiological NaCl concentmatof 0.9% for a simulation time of 20 ns.
The models of the final simulation snapshots wemagared to the initial models. For more
information about MD simulation analysis, please seapter 2.4.3.

2.3. Prediction of posttranslational modifications

Many proteins of the proteome are chemically medifafter or during their biosynthesis.
About 400 different posttranslational modificati(fiTM) types are known today, so that the
chemical space of the proteome is considerably redgxh beyond the possibilities of the
proteinogenic amino acids [130]. These covalertlycaed functional groups can significantly
influence the stability and functionality of pratsi For many proteins, the full functionality is
only reached after the addition of all PTMs. Eva® ¢ontrol of complete protein activation and
inactivation is possible due to the reversibiliynoost PTMs. In the following, a selection of

PTMs considered in this work is briefly described.

One of the most important PTMs is the attachmerditérent carbohydrates (“glycans”) to
amino acid side chains. Theggycosylationsplay an important role for protein targeting and
transit. Furthermore, they are necessary for diffesignaling processes and can influence
protein folding and activity [131]. Different types glycans exist, whose complexity ranges
from single monosaccharide moieties up to very hstgectures with multiple sugar types,
branches, and intermolecular bonds. The sugar resiean be bound in different ways to the
protein. The most prominent types are the linkagant amine group of asparaginél{inked
glycosylation”) or to a hydroxyl group of serinehréonine or tyrosine Q@-linked
glycosylation”) [131]. Phosphorylatiohis the addition of a phosphate group, most often
the side chains of serine, threonine or tyrosiseltees. Since it is a very flexible and reversible
process mediated by protein kinases and phospbatab®sphorylation is an essential
mechanism to activate or deactivate enzymes optexs for example in signaling pathways
[132]. Estimations indicate that 30% of all cellybroteins contain at least one phosphorylated
residue, which emphasizes the importance of thisl Bjpe [133,134]. Acetylatiori is the
addition of an acetyl group to tiketerminus of the protein or, less frequently, te dkamino
group of lysine [135]. The effects blterminal acetylation are not completely understsod
far, but it may influence the protein stability, taeolism, and degradation [136,137]. The

acetylation of lysine side chains, however, isv@rsible process, which is associated with gene
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regulation and is often accompanied with other PTdMmodify the functions of the protein
[138]. The addition of a sulfate group to the hyddagroup of tyrosine is calledstlfatiori.
Whereas it is known that sulfation is responsilde the strengthening of protein-protein
interactions, its influence on protein function s8ll uncertain [139]. In the case of a
“prenylatiori, a farnesyl or geranylgeranyl moiety is added twysteine residue by a thioester
bond. Since the addition of these compounds mateegehuge hydrophobic area on the protein
surface, prenylation is typical for membrane-bowndnembrane-integrated proteins [140].
Furthermore, prenylations may be important for gfpggrotein-protein interactions [141]. The
same holds forgalmitoylations, where palmitic acid as hydrophobic componertiasnd to

a cysteine residue by a thioester bond. Analogrémydations, this PTM is often part of
membrane-associated proteins, because the fattgadion chain enhances the hydrophobicity
of the protein surface and is able to act as ah@nioc a membrane compartment [142]. A
comprehensive overview of effects and functionspalmitoylations (and prenylations) is
presented by Dunphst al.[143].

The method of choice to detect PTMs for a givertginois the (tandem) mass spectrometry
(MS) analysis [144]. After the tryptic cleavagdlo¢ protein, mass shifts in the resulting peptide
fragments indicate type and position of the PTMsemmhance the chances for a successful PTM
identification, pure and high-enriched protein sd®apare necessary. Therefore, the
combination of these MS experiments with advancédoroatography and immuno-

histochemistry methods is often essential, whicjuires to a very sophisticated preparation

process.

As an alternative to complicated and expensive mx@atal studies, PTMs can be predicted
based on existing knowledge. There are many to@#adle, which use data from sequence
motifs or positions of known PTMs to recognize moi@ modification sites in proteins with
unknown modification pattern. The majority of thewmols performs a sequence-based
prediction of a certain modification by means afeauronal network, which was trained with a
data set of experimentally investigated modificaf@atterns. These sequence-based prediction
tools for PTMs are available as online servers amdlisted on the EXPASy bioinformatics
resource portal [145]. The input is typically ttewamino acid sequence and the results are
shown on html-webpages.

Table 1 gives an overview of all types of postttaiienal modifications, which were
considered in this study by prediction tools. Ferthore, amino acids that are a target for

modification and example structures for attachexttional groups are shown.
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Table 1: Overview of posttranslational modification (PTMpgs that were considered in this work.

PTM type linkages example structure
Ju |
. P
O-linked Ser, Thr, @l e
glycosylation Tyr - ./é ey /f./’
N-acetylglucosamine N-acetylgalactosamine
s
N-linked
- Asn
glycosylation
¢ °
GIcNAc GIcNAc 3x mannose
. Ser, Thr, -
phosphorylation Tyr <+ PO,
N-terminus,
acetylation Lys <+ COCH,
(e-amino
group)
sulfation Tyr + S0,
} 'j " J
X T e
farnesyl group
prenylation Cys .
™
_ L)
X‘ ) 0—0/ \ ‘/, /"/9°
geranylgeranyl group
9, e
/\/I /:/ o .
palmitoylation Cys e o« ‘/'7/. g
palmitoyl group

Chemical structures are shown without aliphaticrbgdns. Single bonds are light grey and double
bonds are yellow. The “~” symbol marks the bond ttannects protein and PTM. Atom color code:
carbon: grey; oxygen: red; nitrogen: blue; hydrogsman.
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In the following, all sequence-based predictionldassed in this work for the sequences of
SP-G and SP-H will be described briefly:

NetPhos 2.(00146]: With the help of a neuronal network, thelpability for a phosphorylation
of serine, threonine or tyrosine in a given euk#cysequence is predicted. This prediction is
based on a large set of experimentally verifiedsphorylation sites. The sensitivity of the

method ranges between 69 and 96%, depending ardlueie type.

NetOGlyc 3.1[147]: For mammalian proteins, possible glycosgla of hydroxyl groups for
serine or threonine residues wifk-acetylgalactosamine (GalNAc) are predicted. The
prediction is based on a neuronal network whicraised with the sequence itself and sequence
derived features (surface accessibility, seconskangture, and distance constraints prediction).
According to the developer’s results, the methaabie to predict 76% of the glycosylated and

93% of the not glycosylated residues within an wvkm sequence.

YinOYang 1.2 [148]: The glycosylation of protein hydroxyl grapvith an N-acetyl-
glucosamine (GIcNAc) moiety is predicted based anafgorithm that is very similar to
NetOGlyc (neuronal network). Since the modificatisites for glycosylation and
phosphorylation are overlapping (serine or threermsigle chains), YinOYang can make use of
the NetPhos server to identify and consider residwéh positive prediction for both

modifications.

NetAcet 1.0[149]: This server predicts thE-terminal acetylation as performed by the
N-acetyltransfase A (NatA) with a sensitivity up/#o for mammalian data. The used neuronal
network is trained with a data set derived from ybast NatA, whose modification patterns
were shown to be transferrable to mammalian NatAobogs. The acetylation of internal lysine

g-amino groups or other acetyltransferases is nosidered.

NetCGlyc 1.0[150]: The NetCGlyc 1.0 server predicts the madifion of the indole C2 atom
of a tryptophane residue with @mannopyranosyl moiety via C-C coupling. Again, the
prediction is performed by a neuronal network, whia@s trained with experimentally verified
modification sites. About 93% of both positive andgative C-mannosylation sites are

predicted correctly.

NetNGlyc 1.0[148]: With this tool, theN-glycosylation of asparagine in human proteins is

predicted. The prerequisite to identify a modificatsite is an Asn-Xaa-Ser/Thr motif. Based
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on neuronal networks provided with knowkglycosylation data, the server reaches a

cross-validated overall accuracy of 76%.

Sulfinator [151]: The sulfation of tyrosine residues in pmogels very hard to predict, because
there are no clearly defined sequence motifs fr rtiodification. Sulfinator combines four
different Hidden Markov Models, which were trainetth data of experimentally observed

sulfations to predict possible modification sitesiprotein sequence with an accuracy of 98%.

PrePS [152]: The “Prenylation Prediction Suite” is a wapplication which combines the
prediction for farnesylation or geranylgeranylatioy proteins with CAAX-box motif [153].
Based on the already known substrates for theseipsp PrePS can predict if a given sequence
might be a substrate as well. The results can bssathecked with PRENbase [154], an

annotated database with predicted and known prisuyfaroteins.

CSS-Palm 2.0[155]: Based on a “Clustering and Scoring Strate@SS) algorithm, the

modification of a free cysteine sulfur atom witpamitoyl group (saturated C16 fatty acid) is
predicted. Since the prediction of such a modiitrasite is very difficult due to the lack of
unique sequence motifs, the performance of the eomessor of this program [156] was
considerably improved by training the algorithmiwat data set of 263 verified palmitoylation
sites. In a cross-validation to a comprehensiveegrpental study [157], about 75% of the

palmitoylations were predicted correctly by CSSnralo.

The predicted posttranslational modifications (P Mere manually added to the final protein
structure models of SP-G and SP-H, followed by aergy minimization in YASARA
[105-108] with the YASARAZ force field. [110,111IThe stability of the added PTMs and their
influence on the protein model structure was cheédkeMD simulations in YASARA (20 ns,
water box with 0.9% NaCl, YASARAZ2 force field [110,1]). The results were compared to

the protein model simulations without PTMs.
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2.4. Molecular dynamics simulations

A protein structure model, even if it has an outdiag quality, represents only a static picture
of a natural scenario. However, dynamic processesvary important for the protein
conformation and the progress of chemical reactionsature. Molecular dynamics (MD)
simulations as a computational method can be usedbrisider these natural dynamics and
show the behavior of a protein model over the amoifsa defined time period. This typically
comprises several hundreds of picoseconds (ps) theetmicroseconds (us) scale, depending
on the system size and available computational po#&@ce proteins usually reside in an
agueous environment, protein models are typicaiyiated in a box filled with water instead
of vacuum. If there is already information aboué tprotein environment available, the
simulation system can be adapted to this knowledige. example, a physiological salt
concentration can be added to the solvent fraaron the case of a transmembrane protein,
the model can be integrated into a lipid system.

For a MD simulation, the movement of each atomhaf system is calculated by solving
Newton’s equations of motion temperature-depenat in defined time intervals (“time
step”). Therefore, the force for every atom is ghted as the negative derivation of potential
energy functions, which are provided for all eletseaf the system by force fields. The
parameter sets of force fields can be derived eoafly (based on experimental data) or by
accurateab initio calculations [158]. In general, there is no “olinforce field for all
purposes. However, many force fields were paranzetbifor a special scope of application.
For example, the MMFF94 force field is only suilibr small organic molecules [159]. In
contrast to that, the GROMOS [16@r AMBER [161] force fields were especially
parameterized to accurately simulate protein strestand nucleotides (subsequently extended
for other organic molecules). The choice of a lgtdorce field for the own research project

is up to the user and may have a significant imib@eon the simulation results [162].

For the GROMOS force field [16@yhich is used in this work, the potential energydiions
are represented as the sum of three different tebuoeded interactions,non-bonded
interactions, andestraints As the name suggests, thendedterm comprises the interaction
energy of covalent atom bonds. Thus, the paramefdosnd length as well as bond angles,

dihedral angles (“proper”), and in-plane torsiomglas (“improper”) are available in this force
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field as harmonic potentials for all possible conmations of atom types. High frequency
oscillations of bonded interactions are a commabiem in MD simulations. In combination
with an unfavorable or too high time step, thesgllasions may induce the breakdown of the
whole simulation system. In GROMACS [163,164], timplemented LINCS algorithm
[165,166]can be used to constrain the bond length betweensabf defined types or all atom
types. This stabilizes the simulation and allowsigher time step. Thaon-bondedenergy
contains a repulsive and a dispersion term fordemWaals interactions, which are present in
the form of Lennard-Jones potentials with paranseteom the force field [163,164].
Furthermore, a Coulomb term is responsible to {alextrostatic) interactions between atoms
with partial charges into account. To determinechtatoms are interacting, GROMACS uses
so-called “neighbor lists”. These lists containradh-bonded atoms within a certain radius and
are updated in regular intervals (pre-defined, meatessarily in every simulation step). Since
non-bonded interactions show effects over longadiss, i.e. the neighbor list radius has to be
very large, their calculation is a very time-consugntask in a MD simulation. Therefore,
van-der-Waals interactions are typically only cdiesed up to a defined distance (“cutoff”) or
are progressively switched off in a defined diseamnaterval [167]. For the calculation of
Coulomb interactions, however, even high cutoftatises might result in simulation artefacts
[168]. Thus, sophisticated calculation schemesh sag the Particle-Mesh-Ewald (PME)
method [169,170] used in this study, are necedsacglculate electrostatic interactions with
the desired accuracy in reasonable time. Tastraints term allows the user-defined
manipulation of the potential energy for differe@asons. With this value, it is possible to lock
distances or angles between atoms during a siraald&urthermore, the position of atoms in
the coordinate system can be fixed. This is ofdun the first phase of a simulation, where
extreme fluctuations of properties, e.g. tempeeatur pressure, may threaten to damage the

system.

For a MD simulation, the term “ensemble” is defirela set of environmental assumptions
that produces statistical representative confonatfor the simulation system under the given
conditions. In the so-called NVT (canonical) enstanthe number of atoms (N), the volume

of the simulation box (V) and the temperature (7 eonserved. This requires a very careful
setup of the simulation box, since the box boumdadnd consequently the density of the
simulation system is not allowed to change durlmg MD. To keep the system temperature
constant, a “thermostat” is introduced, which cesgpihe system to an external heat bath by
introducing a scaling factor to the calculated gres. Depending on the thermostat choice, the

coupling algorithm is either very effective in asfjing a system to a target temperature, which
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is important for system equilibration phases, oy \efficient in terms of resembling a canonical
ensemble [171]. In GROMACS, it is possible to ceugifferent groups of atoms to different
heat baths, e.g. protein and solvent atoms separ@@nsequently, artefacts introduced due to
the imperfect energy exchange between differeiesysomponents may be avoided [172]. In
the case of a so-called NPT (isothermal-isobansemble, number of atoms (N), pressure (P)
and temperature (T) are constant. In additiontteeemostat, the scaling of the box dimensions
is now allowed in order to reach a target valuetha system pressure. The methodology is
very similar to the idea of a heat bath and theralgm responsible for this “pressure bath” is
called “barostat”. The box scaling can be achiewedifferent combinations. With isotropic
scaling, size changes are applied equally in xdyzzdimension of the simulation box. Whereas
this setup may be suitable for simple systemsaitses problems for simulations with a
membrane, for example. In this case, the changesid y dimension of the membrane plane
(membrane surface area) are not necessarily igktithe scaling needed in z dimension. This
could lead to a deformed membrane, misleading tesuld artefacts. Alternatively, semi-
isotropic scaling can be used, where only the x wpndirections are associated and the
z dimension is able to change independently. Furtbee, anisotropic coupling is possible,
where six dimensions (including diagonal compreabsgip can change independently.

However, this complicated variant may lead to erely deformed simulation boxes.

Independently from the choice of the ensemble afdplihe box layout can have a significant
influence on the simulation results. Whereas aaregpilar box is the most suitable shape for
simulations with lipid systems in the x/y plane,rleombic dodecahedron or truncated
octahedron may be more appropriate for protein8][Illhese layouts are closer to the shape
of most proteins than a rectangular box and thgsire less solvent molecules to fill it up.
Nevertheless, the box dimensions should be largeigin so that the solute can exhibit a
reasonable far distance to the box boundariesg sitgo small distance may introduce artefacts.
This is very problematic for the membrane simulaiplanned in this work, because the lipid
layers will be in direct contact with the boundaraé a rectangular box (cf. Figure 3). However,
the usage of periodic boundary conditions [174] campletely avoid disturbing boundary
effects. With this method, multiple translated @spof itself surround the simulation box, so
that the atoms of the “original” box can “feel” taboms of the adjacent copy, i.e. the atoms of
the opposite box side, during the simulation [1T4s, there are no boundaries in the resulting
“infinite” simulation system. Periodic boundary abtons in all three dimensions are
necessary to use the Particle-Mesh-Ewald (PME) odetor the calculation of electrostatic

interactions, since it was developed for periog&tems [169,170].
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All simulations with lipid or protein-lipid systemis this work were carried out with the

GROMACS package version 4.5.4 [163,164]. The maasons to use GROMACS were its
free availability, the high performance in multréaded simulations and the united-atom
Gb3a6 force field [160]. In contrast to an all-atdance field, the united-atom approach
integrates the parameters for aliphatic hydrogetesthe values of the carbon atom to which
they are bound to. Therefore, aliphatic hydrogemshe omitted during the simulation, which
reduces the number of atoms in the system andsiemsds up the calculation. Especially for
the lipid systems used in this study, the speedsgignificant due to omitting all hydrogen

atoms of the lipid hydrocarbon chains. The simalaparameter files (.mdp) for all performed

simulations are presented in Appendix 1-Appendix 5.

2.4.1. DPPC simulation system setup

The system, which is required for investigatinggole interactions between the protein model
and a lipid environment, should be as close asilples® the native state. For this reason, a
basic dipalmitoylphosphatidylcholine (DPPC) lipad/ér was established to simulate the SP-G
and SP-H models in a natural environment. DPP@dsriost abundant lipid in the pulmonary
surfactant [2,3]. Accordingly, the literature debes that a lipid layer consisting solely of
DPPC lipids is suitable to reproduce the basic @mogs of the lung surfactant in MD
simulations [92,175-177]. The standard DPPC paramstt of the G53a6 force field was
slightly modified in consideration of the resultskukol (2009) [178] to produce a reliable
lipid system. The initial bilayer consisted of 1IRBPC molecules per layer (256 lipids in total)
and was generated with the CELLmicrocosmos Memittdier 2.2 [179]. The bilayer was
placed in the center of a simulation box and selyawith water (Figure 3a). During the
simulation, the water molecules are representeth&ysPC water model [180]. A simulation
of 75 ns indicated that the chosen lipid parametadssimulation settings are able to reproduce
a stable lipid bilayer system. The MD simulationswaerformed with the Nosé-Hoover
thermostat [181,182] at 323 K and the ParrinellbviRan barostat [183,184] with semi-
isotropic coupling and a reference pressure ofr1Tdee LINCS constraint algorithm [165,166]
was used to fix the stretching of all bonds, allogva time step of 4 fs. Electrostatic interactions
were calculated with the PME algorithm [169,170jnaglemented in GROMACS with a cutoff
of 1.2 nm. The van-der-Waals potential was switahfétdetween 1.2 and 1.3 nm. The neighbor
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Figure 3: Schematic illustration of the simulation box layouts. The pga head groups are red and
the lipid tails are yellow. Water is depicted as blue oxyayh grey hydrogen atoms. The secondary
structure of the protein is shown in ribbon representaf@rSimulation of a lipid bilayer in watefb)
Simulation of a lipid monolayer system with protein. The poladrgroups of two distinct monolayers
face each other, creating a polar phase for the protein andmaltsules. On the lipid tail side, the
monolayers are separated by a broad vacuum phase.

list was updated every five steps, energy and presdispersion correction was applied. The
last 25 ns of the simulation were used to calcula¢earea and volume per lipid, the lateral
diffusion coefficient, and the area compressihillty order to estimate the simulation quality,
these values were compared to literature data éar@aolume per lipid [185], lateral diffusion
coefficient [186], and area compressibility [18%])8 The last snapshot of this 75 ns MD
simulation was used to build the DPPC monolayetesysThe membrane layer with the lipids
1-128 was rotated by 180 degrees so that the ppidrhead groups were facing each other.
Afterwards, the layers were separated from eackr g@fbnerating space between the lipid head
groups. Two systems were built, one with the lifjagers approx. 6.5 nm apart, hereafter
referred to as “small system”, and one with appf%. nm space between the DPPC layers,
hereafter referred to as “big system”. Both systevage placed in a simulation box with the
lipid layers parallel to the x/y-plane. The z diraem of the box was set big enough to generate
a 4-5 nm vacuum phase between the hydrophobic tgild due to the applied periodic
boundary conditions. The space between the lipethgroups was filled with SPC water
molecules [180]. A 25 ns MD simulation was perfodte equilibrate the monolayer systems
and check their stability. The compressibility bétsystems in z direction was set to zero to
preserve the vacuum layer between the lipid tApsrt from that, the other simulation settings
were identical to the bilayer calculations. Theutt#isg monolayer systems were used to build
the initial protein-lipid simulation layouts by glag the prepared and equilibrated (cf. 2.4.2)

protein models in the water phase between the fipat groups (Figure 3b).
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2.4.2. SP-G and SP-H simulation in a lipid environment

All four protein models (SP-G and SP-H, each withemd with PTMs) were equilibrated by a
20 ns MD simulation in a water box with the G53ak¢€ field [160] at 323 K. For this purpose,
the force field was further modified with paramstéor the attached PTM residues, namely
phosphorylated serine, threonine and tyrosine, payhated cysteine, and serine or threonine
residues that ai®-glycosylated with GICNAc or GalNAc as well Bsglycosylated asparagine.
The N-glycosylation residue consists of a pentasaccazate with two GIcNAc and three
mannose moieties (-GIcNAc-GIcNAc-mannose-(mannqgsef) Table 1). The parameters for
these residues were taken from original buildireck$ of the G53a6 force field, for example
the glucose or mannose building block, and combimgdstandard amino acid building blocks
to describe the modified residue. Missing valuestiie connection between those parts were
complemented manually with parameter sets fronotiggnal force field. A derivation of novel
force field parameters was not necessary. In tlse cd the phosphorylated amino acids,
parameters were taken from the G43alp force i8] The equilibrated protein models were

placed in arbitrary orientations in the SPC wateage [180] between the DPPC monolayers.

Overall, six different starting orientations peraebwere generated and each system contained
only one copy of the respective protein model (Fegt). For each protein model, four different
systems were built based on the “small systemtamdbased on the “big system”. As a special
case, in one starting structure based on the “sysiem” for each modified protein, the model
was manually positioned in a way that the palmatsdl cysteine residues are interacting with
the lipid layer (“positioned”). For the SP-G moaeath PTMs, the palmitoyl moiety of Cys76

is in contact with the DPPC layer 1-128 at the $ation start. For the modified SP-H model,
the palmitoylations of Cys45 and Cys56 are intémngctvith the DPPC layer 129-256 at

simulation start.

SP-G SP-H
, 000 000 ® 'small system"
without PTMs 000 000 y
@ positioned
. 000 L e ® big system"
wWihPTVS o @ @ 000 9y

Figure 4: Overview of all 24 performed protelipid MD simulations. Every point represent
simulation. The different types of simulation systems are colorecode
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All 24 starting orientations (simulation systemgjufe 4) were neutralized with counter ions
(Na'/CI) and submitted to a 250 ps equilibration run VWMT ensemble and the Berendsen
thermostat [189] at 323 K, followed by a 250 psildgpation run with NPT ensemble and the
Berendsen thermostat at 323 K and barostat at.1Afterwards, a 50 ns production run was
performed for all 24 orientations. The LINCS coastt algorithm [165,166] was applied on
all bonds involving hydrogens and the simulationetistep was set to 2 fs. The Nosé-Hoover
thermostat [181,182] at 323 K and the ParrinellbviRan barostat [183,184] with semi-
isotropic coupling and a reference pressure ofrlweae used for temperature and pressure
coupling. Similar to the monolayer equilibration Mibe compressibility in z dimension was
set to zero to maintain the simulation box lay&lgctrostatic interactions were calculated with
a cutoff at 1.2 nm with the Particle-Mesh-Ewald Malgorithm [169,170]. The van-der-
Waals potential was switched off between 1.2 aBchin. The neighbor list was updated every
10 steps and no dispersion correction was appliegectories of the system were saved every
10 ps.

2.4.3. Molecular dynamics simulation analysis

The evaluation of the MD simulation results angettories was done with tools included in
GROMACS [163,164]. For an efficient analysis wodkfl, the tools were performed
sequentially with a bash script (Appendix 6). Tldowing values were obtained from all

simulations:

Simulation box parameters:During the calculation, parameters regarding thrikgtion box

are written to a log file (“energy file”) in defidentervals. This comprises temperature, pressure
and density of the system, as well as box dimessaol box volume. Furthermore, the energy
of the system according to the force field paransef@ kJ/mol) is recorded as a single value
(total energy) or divided in separate energy tefimend, angle, torsion, Lennard-Jones,
Coulomb energy etc.). Following the energy of indiial system parts is also possible by
defining them as “energy groups” prior to the MInslation. All or only a selection of these
values can be extracted from the energy file iithGROMACS tool §_energy. The output

is a tabulated file with the selected data semgsch can be used to generate data plots and

diagrams.

27



Root mean square deviation (RMSD)The RMSD of atomic positions is used to compare
two (protein) structures and represents the mogoitant value to observe the behavior of a
protein during the MD simulation. Each simulatiorapshot (frame) is superimposed with the
starting structure (“fitted”) and the spatial deioa is calculated for each (selected) protein
atom. These values are averaged over all (seleated)s in the snapshot, so that a single
RMSD value (in nm) results for each simulation fearfihus, plotting these values versus the
simulation time gives an impression of the proteiavement and stability during the MD
simulation. If the RMSD plot is essentially stableer a longer simulation period until the end
of the MD, the protein is referred to as stabléeguilibrated”. This means that there are only
minor movements in the protein structure without @xpected significant changes. An instable
graph with continuous fluctuations, however, magticate problems in the protein model
quality (regions with non-natural fold) or that thienulation conditions were not suitable for
the examined protein (e.g. hydrophobic proteinatapsolvent, too high system temperature
or pressure). In this work, all protein atoms wased for the fitting process and the RMSD
was calculated solely for the protein backbone at@hC,.-C) using the GROMACS tool
“g_rms.

Root mean square fluctuation (RMSF):The RMSF calculates the spatial distances (in nm)
between the atoms of a simulation snapshot (fraand)a reference, which is in general the
simulation starting structure. In contrast to thd$D, the RMSF averages the distances for
every atom over the whole simulation time, i.e.roaf frames. This results in a single value
for each atom, which indicates its range of motarnng the MD simulation. Accordingly, the
average value of all atoms in an amino acid resrépeesents the movement of each amino
acid in the system. In this way, stable or instabtgons of the protein can be identified. The

RMSF values were calculated per residue with th©@BIRCS tool ‘g_rmsf (with option -res).

Interaction energy: Prior to the simulations, two energy groups “PR@N'Encluding all
protein atoms and “DPPC” comprising all lipid atomesre defined in the simulation settings.
As a result, the energy terms for these two groangeslisted separately in the energy file
(cf. “Simulation box parameters”). Since valuestfoe energy terms between these two groups
are recorded to the energy file as well, the itiioa between protein and lipid layer can be
monitored. It has to be noted that these calculiamttedaction energies are no definitive values.
The force field-based calculation of non-bondecerattions still shows deficiencies in

accuracy compared to experimental data [190-193jwever, plotting this protein-lipid
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interaction energy versus simulation time can giv@verview at which point of the simulation
the interactions started and how stable theseaictiens are. Furthermore, it allows the
comparison of the interaction strength betweeretgffit simulations.

Area per lipid: The area per lipid is one of the most importantcttral parameters to describe
a lipid layer system. The amount of space a siligleis allowed to take up in an ordered layer
structure is well defined and depends on the ligyetr composition. Thus, a steady area per
lipid may indicate a stable lipid layer and that teimulation parameters are selected
appropriately. Otherwise, sub-optimal simulatiottisgs or changes in the layer structure due
to the interaction of a protein with the lipid sacé may result in an area per lipid change. The
area per lipid is calculated as the product ofxtla@d y box dimensions, where the membrane
in parallel to the x/y-plane, divided by the numbglipids per layer. The box dimensions were
extracted from the energy file (cf. “Simulation bparameters”) and the area per lipid (in nm?)
was calculated for every simulation frame to tréwok stability of the lipid layers used in the

performed MD simulations.

Secondary structure assignmentThe DSSP algorithm [194,195] can assign a secgndar
structure elemenufhelix, B-sheet, turn, coil etc.) to each amino acid of\egiprotein. The
assignment process is based on the hydrogen-bopditgrn of the protein backbone. Thus,
by performing DSSP for each MD snapshot, the stgluf secondary structure elements over
time is obtained. For a stable protein structure distribution of secondary structure elements
should not change. For a protein with instableargior a protein that starts to unfold during
the simulation, more and more residues would beég@ed as “coil”. In this work, the
GROMACS tool tdo_dssp was used to determine major changes in the praecondary
structure. This tool calculates the number of nessdwith assigned structure (sum of residues
with assignment ag-helix, B-sheet,-bridge or turn) and plots the results versus satih
time to assess the protein stability. Furthermdhe, tool calculates the overall secondary

structure element distribution (in %).

Visualization: Manual illustration of simulation snapshots isesdil for the simulation
analysis. Watching the system at simulation spaaedeveal how different system components
influence each other in their motion and show dyicgsmocesses for example of protein loops
or termini. Due to the atomic representation of #imulation system, observation of
interactions between single atoms is possible,ebf@mple the formation or regression of
hydrogen bonds. Eventually, the visualization calp to understand results and phenomena

observed in the statistic-based MD analysis. Fewnikualization of simulation results as well
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as the generation of figures, VMD [196] and YASARKG6,111] were used. Both programs
are able to show the snapshots as interactive seguémovie clip”), can draw systems with
different visualization styles, and can color, hatdabel specific system components.
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3. Results

3.1. Protein structure modeling

At the beginning, online BLAST [104] searches wpegformed for human SP-G and SP-H
amino acid sequences to find possible homolog p®mtd-or SP-G, the full length protein
sequence including thBl-terminal 19 amino acid signal peptide was usedabse it is
unknown in which form the protein is present atsite of action. A BLAST search in the
UniProt database [93] for sequences with a hightilecompared to SP-G resulted solely in
hits that are most likely uncharacterized or puta®P-G-homologs of other mammals. This
was also the case for SP-H, however, a numben®fwith a low score for short sections of
putative regulatory proteins from differeRseudomonaspecies were detected as well. As
expected, BLAST searches for both proteins to $indilar sequences with already known 3D
structure in the PDB were not successful. The ifledthits had either a too low sequence
identity (< 20%) or a poor coverage (only 18-2578f residues for SP-G and 28-33 of 94
residues for SP-H). Since there were no reliabigtates found and the sequence identity of
SP-G and SP-H to the already known SPs is very¢awl10%), first attempts to obtain the 3D
structure by homology modeling failed. These attesnvere performed with the YASARA
homology modeling routine, which automatically st@d the PDB and identified “1em7” for
SP-G and “1vj0” for SP-H as possible templates tfer modeling process. However, the
sequences identities to the target sequences wée 10% in both cases. Accordingly, the
resulting models for SP-G and SP-H showed problenfabSA Il Z-scores and energy plots
(see Table 2 and Appendix 7). While PROCHECK andRER resulted in acceptable values,
the scores of VERIFY-3D and ProQ showed seriougigetcies and could not be improved by
MD refinements. Therefore, the homology models wdisearded and the SP-G and SP-H
sequences were sent to the online threading se@&BSER. Despite the threading models
for both proteins showed significantly better résédr the combined Z-score and ProQ as well
as in ProSA 1l plots, they revealed issues in tROBHECK and ERRAT values. Especially
the SP-G model showed a problematic Ramachandoanvith only 68.2% of all amino acids

in the favored regions and five outliers (Table. Za)en MD refinements, manual editing and
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MDs to relax the system could not improve the dyaif the SP-G and SP-H models. As a

result, the threading models were considered ircseifit for further studies.

Table 2: Quality assessment results for the best scoredlogy model, threading model, aal initio
model for(a) SP-G andb) SP-H.

a
SP-G combined PROCHECK ERRAT- | VERIFY- ProQ
models Z-score fav. regions outlier score 3D LGscore | MaxSub
homology

. -0.65 92.4% 0 90.7 21.5% -0.358 -0.008
modeling
threading -5.50 68.2% 5 80.9 54.4% 1.881 0.126
ab initio

. -6.16 95.5% 0 100.0 97.5% 3.579 0.141
modeling
b
SP-H combined PROCHECK ERRAT- | VERIFY- ProQ
models Z-score fav. region s | outlier score 3D LGscore | MaxSub
homology

. -3.90 91.7% 0 97.7 21.1% 0.448 0.062
modeling
threading -5.10 85.7% 1 89.5 72.6% 1.736 0.030
ab initio

. -5.72 94.0% 0 93.0 48.4% 1.804 0.131
modeling

Overall, these validation values provide hints dbihie quality of generated models. The length-
dependent average value of the combined Z-scererig for SP-Gd) and -8.0 for SP-Ha). More than
90% of all residues should reside in the most festaegions of the Ramachandran plot without any
outliers. The ERRAT score should be 95 or highet e VERIFY-3D percentage above 75% for a
natively folded structure. For a good model, ti@&scoreshould be above 1.5 and thkaxSubgreater
than 0.1.

Finally, the amino acid sequences of SP-G and S¥ié submitted to thab initio modeling
server ROBETTA. The obtained protein models shoasgynificant quality improvement in
comparison to the threading models. Only minor llom@ergy minimizations and a MD
refinement with YASARA were needed to achieve atalglp results with structure validation
tools. ProSA Il produced a negative plot for theolehSP-G structure model (Appendix 7) and
a combined Z-score of -6.16, which is close todkerage value for proteins of this length
(-7.77) (Table 2a). PROCHECK determined 95.5% eft8 amino acids with a dihedral angle

in the favored regions of the Ramachandran plotrandutliers. The ERRAT overall quality
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factor reached the best possible value (100) andIV¥E-3D showed a very good result with
97.5% of the residues having a 3D-1D score abowe¢hiteshold. ProQ calculated B@score
of 3.579 and MaxSubscore of 0.141, which indicated a “very good” &fairly good” model,

respectively. Altogether, this suggested a reli&eG model structure.

For the model of SP-H, the ProSA Il plot was alempletely negative (Appendix 7) and the
Z-score (-5.72) was in acceptable distance to #émgth-dependent average value (-8.0),
indicating a native-like folding of the model (Tal®b). In addition, the Ramachandran plot
showed 94% of the 94 amino acids in the favore@rsgwithout any outlier, which implied a
very high stereochemical quality. The overall gyafiactor of ERRAT was 93. Furthermore,
the ProQLGscoreof 1.804 and thélaxSubscore of 0.131 indicated a “fairly good” model.
The only drawback of this model for SP-H was theRUEY-3D result, which was clearly below
the optimal value (75%) with only 48.4%. This may due to the methodology of this tool.
Especially for small proteins, already a single gpoamino acid (partially) buried by
hydrophobic side chains can reduce the score dadigtialthough this would not necessarily
indicate a problem with the overall fold of the f@ia model. However, since the other four
tools did not suggest major quality problems, théamed protein structure model for SP-H

was considered reliable.

Both final protein models based ah initio modeling were subjected to a 20 ns MD simulation
in a water box with YASARA to determine the modelhslity. The analysis of the RMSD of

the protein backbone atoms revealed that both iprotedels reached a stable conformation
within a reasonable simulation time. For SP-G,RIMSD first showed a stable phase between
4 and 9 ns, before it rose to a plateau after ab@uts (Figure 5, black plot). The RMSD was
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Figure 5: Validation of the SP-G (black) and SP-H (grey) protein rhetibility during a 20 ns MD
simulation. The RMSD of the protein backbone atoms (in nm) wasassadneasure for the model
stability. Minor fluctuations of the RMSD indicate a stable proteodel.
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very stable on this level with only minor fluctuats until the end of the simulation. For SP-H,
the RMSD plot reached a plateau already after 4vhsye it remained stable until the end of
the simulation (Figure 5, grey plot). For both gintmodels, no significant change in the
secondary structure or unfolding of the protein whserved. Additionally, this stability was
reflected by the secondary structure element p&ages, which remained unchanged during
the simulation (47% helix, 19% sheet and 34% @igP-G and 50% helix, 8% sheet and 42%
coil for SP-H). The results of the validation pragns thereby were comparable to the pre-MD
results, some ratings are even improved, for exart@ ProQ results for SP-G or the Z-score
and ERRAT score for SP-H (Appendix 8). Therefone, $stable models were deposited at the
Protein Model Data Base PMDB [197] for public dowadd and received the PMDB id
PM0078341 for SP-G and PM0079092 for SP-H. With,ttie three dimensional models could
give first insights into the structures of SP-G &RIH.

The 3D model for SP-G (Figure 6a) is dominated by-dnelix (amino acids 41-56) and an
antiparallel B-sheet structure spanning the residues 63-68 and8,/2espectively. The
hydrophobic part of th&l-terminal signal peptide is modeled as a shentlix (8-13). This
helix as well as the other residues of the sigeptige (1-19) are loosely attached to the surface

C-terminus

C-terminus

N-terminus

|IlI]IIII|IIlI|lllI|IIII|IIII|IlII|IIlIllIII|IIll|IllllI|II||III|III||IIII|IIII
5 10 15 20 25 30 35 40 45 50 55 60 65 70 757

MGSGLPLVLLLTLLGSSHGTGPGMTLQLKLKESFLTNSSYESSFLELLEKLCLLLHLPSGTSVTLHHARSQHHVVCNT

Figure 6: Structure presentation of the final protein model for SRa3OnNly the protein backbone is
shown in ribbon presentatiofn) SP-G model with highlighted cysteine residues and selected charged
amino acids. The view was rotated in comparisofajdor a better understanding. Amino acid side
chains are shown in stick representation without aliphatic hgdsodcarbon: grey; oxygen: red;
nitrogen: blue; sulfur: green; hydrogen: cyan). In both picturd®lices are blud}-sheets are red,
turns and random elements are green and cyan. The sameoci@ds ased on the sequence bar on the
bottom of the figure, which shows the secondary structure elements.
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and cover the hydrophobic core of the protein. fiXegion of thisN-terminus on the protein is
not very strong, so that a high flexibility is pidse, which is needed for a signal peptide to
interact with or be embedded into a lipid systera tuits hydrophobic character. Tédnelix
41-56 also contains many hydrophobic residues (slexeine residues and one phenylalanine).
In addition, it contains three glutamate residuas @ane lysine, which could possibly interact
with the polar head groups of lipid molecules (Feg6b). Furthermore, the structure model
shows that the only two cysteine residues of tiqg@ieece are about 1 nm apart from each other,
which is too distant for the formation of a stairlig intramolecular disulfide bridge. However,
Cys76 is located on the surface of the protein @ndd be able to form an intermolecular
disulfide bond to another SP-G monomer. This waaklilt in a covalently connected protein
dimer. Although there is no surface region predestifor interactions with another monomer,
a non-covalent oligomerization of SP-G cannot belugled based on the protein structure

model. There are no structure similarities to tiheaaly known SPs observable.

The most prominent structural features of the SRwtlel (Figure 7a) are a long and stable
a-helix of the amino acids 7-31 and an antiparglsheet spanning the amino acids 55-62 and

67-73, respectively. The-helix shows a high content of polar or even chdrgmino acids
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MRAGFSDFQLIRDQVLFLQDQAQRLTEWLQLSGFENPVSESTTLCLREREKRIPTCVAVCVPSPGTVHTALLHPTTLSQSRSSSEAKMLIIHTA
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Figure 7: Structure presentation of the final protein model for SPaHONly the protein backbone is
shown in ribbon presentatiofb) SP-H model with highlighted cysteine residues and selected charged
amino acids. The view was rotated in comparisofajdor a better understanding. Amino acid side
chains are shown in stick representation without aliphatic hydsogearbon: grey; oxygen: red;
nitrogen: blue; sulfur: green; hydrogen: cyan). In both picturémlices are bluef}-sheets are red,
turns and random elements are green and cyan. The same cola esel@ on the sequence bar on the
bottom of the figure, which shows the secondary structure elements.
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(four glutamine residues, three asparagine resjdwesarginine residues, and one glutamate),
which are present on the protein surface and coiktact with polar lipid head groups
(Figure 7b). On the remaining protein surface, r@mrsive hydrophobic domains or regions
are observable, which could interact with a hydadpb membrane fraction. However, there
are single hydrophobic spots on the protein surfiageed only by single amino acids or short
sequence parts (e.g. Pheb, Trp28, Leu3l, Phe3dsitigns 88-91). Furthermore, indications
for transmembrane regions in the protein were owhd. The first fiveN-terminal residues are
not able to form strong interactions with the ngambsidues and are thus very flexible. The
cysteine residues on position 45 and 56 could farmstructure stabilizing intramolecular
disulfide bridge (Figure 7b). Since all three aahié cysteine residues are accessible on the
protein surface, intermolecular disulfide bonds,éwample with other SP-H monomers, could
be possible. Hence, an oligomerization of SP-H oarre excluded based on the protein
structure model. Similar to the SP-G model, the-5fedel shows no structural similarities to

the already known SPs.

3.2. Posttranslational modifications

Since it is known that posttranslational modifioas are very important for the function of the
already known surfactant proteins, the SP-G antiSBquences were also analyzed for PTMs

with various statistic-based online prediction ool

For SP-G, NetNGlyc predicted arglycosylation on Asn37, which is already notedhe
UniProt entry of SP-G. NetOGlyc predicted @mglycosylation withN-acteylgalactosamine
(GalNAc) on theC-terminal residue Thr78. Overall, YinOYang predittere O-glycosylations
with N-acetylglucosamine (GIcNAc) as sugar moiety. Therée probability for a GICNAc
modification was moderate for Ser38, Ser39, Semfid, Ser70 and high for a modification at
Thr78. Given the results of NetPhos, the aminosaBier17, Ser38, Ser39, and Tyr40 are most
likely phosphorylated. Finally, the CSS-Palm sersiaowed a possibly palmitoylated Cys76.
The servers NetAcet, NetCGlyc, Sulfinator, and Brdkl not predict any modification site for
the SP-G sequence. At this point, it is noticedbéd only one PTM was predicted for amino
acids of theN-terminal signal peptide. However, the phosphoiytadf Serl7 is already very

close to the signal peptide cleavage site.

36



Scanning the SP-H sequence for possible PTM sies the following results: The NetOGlyc
server suggested six threonine residues at thé@usb5, 66, 69, 75, 76, and 93 to be modified
with a GalNAc moiety. The YinOYang prediction indted a GIcNAc modification on Ser39,
Thr76, and Ser78 with a high and on Ser82, Ser@8 S®r93 with a low probability. NetPhos
predicted seven phosphorylation sites, namely S&8239, Thr55, Ser80, Ser82, Ser83, and
Ser84, with the last four having a high probahilihe CSS-Palm server showed that two of
the three available cysteine residues (45 and §h)trbe palmitoylated. NetNGlyc showed no
potentialN-glycosylation and NetAcet did not predict any gtaton. Finally, NetCGlyc as

well as Sulfinator and PrePS showed no potentialification sites.

Subsequently, the predicted PTMs were added manteathe final protein models of SP-G
and SP-H. For this process, the following two conims were applied: First, if there was
more than one modification predicted for the samsitpn, only the modification with the
highest probability was considered. Second, onllyesd accessible amino acids, i.e. side chains
on the protein surface, were modified, since traitemh of e.g. a bulky glycosyl moiety would
have caused steric problems and noticeably chaofgdse protein structure. All PTMs that
fulfilled these requirements are summarized in @&bhnd were actually added to the protein
models. Two phosphorylations, thr@eglycosylations with GICNAc, one palmitoylation and
one N-glycosylation were added to the SP-G model (T&hld-or the SP-H sequence, six
phosphorylation sites, si®-glycosylations (two with GIcNAc and four with Ga#é) as well

as two palmitoylated residues were predicted atatlaed to the protein model (Table 3).

Table 3: Predicted posttranslational modifications andrteeguence positions in the SP-G and SP-H
sequence.

possi?ouneg%e- G Serl7 Asn37 Tyrd0 Ser62 Ser70 Cys76 Thr78
modification PHOS | N-GLC | PHOS | O-GLC | O-GLC | PALM | o-GLC
oosiion SP.H | Sers2 | Ser39 | Cys4s | Thrss | Cyss6 | Thie6 | Threo
modification PHOS | O-GLC | PALM | PHOS | PALM | O-GAL | O-GAL
possei’t?(;f g Thr7s | Ser78 | Ser80 | Ser82 | Ser83 | Sers4 | Thro3
modification O-GAL | O-GLC | PHOS | PHOS | PHOS | PHOS | O-GAL

Present maodification types: phosphorylation (PHQ®Jmitoylation (PALM),O-glycosylation with
GIcNAc (O-GLC) or GalNAc O-GAL), N-glycosylation with a pentasaccaride core congistihtwo
GlcNAc and three mannose moieti®sGLC).
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After the manual addition of the PTMs, the proteindels were submitted to a 20 ns MD
simulation in YASARA to relax the attached modificas and check their influence on the
protein model stability in comparison to the unnfiedi models. The RMSD plot for the
modified SP-G model (Figure 8a, grey plot) showleat the structure is very robust in this
simulation system, reaching an equilibrium phaser & ns with only small RMSD fluctuations
thereafter. As for the unmodified protein modeb(ie 8a, black plot), no significant secondary

structure changes or hints for an unfolding ofghatein structure were observed.
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Figure 8: Protein model stability comparison f@) the SP-G an¢b) the SP-H model with PTMs (grey)
and without PTMs (black). Plots of the protein backbone atoms R{#tm) are used as a measure
for the protein model stability during a 20 ns MD simulation.

The RMSD plot for SP-H also showed a stable prateddel with additional PTMs (Figure 8b,
grey plot). Until a simulation time of 11 ns, th&MBD values were almost identical to the
unmodified model (Figure 8b, black plot). Theregftee plot for the modified model showed
a higher fluctuation due to the influence of thrgéaand numerous PTMs attached to the protein.
Nevertheless, no significant secondary structuanghs or an unfolding of the protein was

visible.

Overall, two model variants for each protein (waid without PTMs) were obtained, which
maintain their good model quality during MD simudais (Appendix 8). Therefore, all four
models are suitable for sophisticated computatichamistry studies in a lipid environment.
The protein models with attached PTMs resultingnfithe MD simulations were deposited at
the PMDB [197] and received the PMDB id PM00783423SP-G and PM0079093 for SP-H.

In summary, the number of predictions determinethis work suggest that SP-G and SP-H
show a high grade of posttranslational modificaticomparable to the already known

surfactant proteins. The possibility of proteinidinteractions is significantly increased by the
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numerous added sugar and phosphate moieties, wbigd interact with polar lipid head
groups. Furthermore, the attached palmitoylatioosldt play an important role for the
interactions of the proteins with the hydrophoipad compartment. Thus, the obtained findings

justify the classification of SP-G and SP-H as acdnt proteins.

3.3. Generation of specific antibodies

To perform immunohistochemical staining methods, grotein localization studies, a specific
antibody for the protein of interest is needed. @ production of such an antibody, the
selection of a peptide sequence (15-20 amino aoid)e target protein is necessary, which
can serve as antigen for the immunization pro¢Hss.choice of this antigen is crucial for the
function and specificity of the resulting antibody. a first attempt, the antigen for the
production of a specific anti-SP-G antibody wassdmosolely based on the primary sequence.
Therefore, regions with many amino acids that ate & form hydrogen bonds or electrostatic
interactions between antigen and antibody residue® selected. However, the resulting
antibody for SP-G was not specific in first expegimts. This might be due to criteria other than
the types of amino acids in the antigen sequenbehwnare important for a suitable antigen.
The protein part used as antigen has to be locatdite surface of the protein structuselyent-
accessible If the antigen is part of the protein core regithe antibody may be unable to bind
to the antigen sequence. Furthermore, the peptideld be free of PTMs, since bulky
modifications, such as glycosylations or palmittigias, could inhibit proper binding of the
antibody to the antigen sequence due to steribeta@TM-freg. Finally yet importantly, the
antigen sequence has to be unique within all prst@resent in the experimental sample
(unique. Otherwise, binding of the antibody to the targgfuence being part of another protein
could be possible as well. This would affect thebardy specificity and most certainly would
lead to false positive results. With the help @& previously obtained protein structure models
of SP-G and SP-H, putative antigen sequences cbelddentified, which met all the

aforementioned criteria and thus may lead to ssekand specific antibodies.

For SP-G, two areas were identified as potentiéigans (Figure 9a). The first suggestion
covers am-helix ranging from sequence position 40 to 57 (8ESELLEKLCLLLHL) and

the second suggestion comprisg$-strand of the amino acids 60 to 70 (GTSVTLHHARS).
The results of BLAST searches showed no identittal Wwhich suggested that both peptide
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sequences anenique within the human proteome. The first suggestiob-%4) contains not
only a lysine and a histidine, but also three niegbt charged glutamate residues. These
residues are very likely to form electrostatic iatgions or hydrogen bonds with residues of
the antibody. The only predicted PTM for this regis a phosphorylation at position 40, which
should not affect a potential antibody-antigen gdThe second suggestion (60-70) is rather
short and contains only one arginine and two histidresidues, which could interact
considerably with an antibody. The rest of thisusge part contains mainly hydrophobic
amino acids. Unfortunately, glycosylations are potedl for the positions 62 and 70, and the
peptide may be partially buried by the adjaceningalylation on position 76 and a potential
glycosylation on position 78. This situation magyent the formation of a correct antibody-
antigen complex. Thus, only the first suggestiore$6FLELLEKLCLLLHL) is solvent-

accessibleandPTM-freeand was suggested for antibody production.

a b
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suggestion 2 .
suggestion 1

Figure 9: Protein structure models @) SP-G andb) SP-H with highlighted protein parts, which were
suggested as antigens for antibody production. For each proteinuggessions were selected. The
protein models are shown in ribbon representation avftklices in bluep-sheets in red, turns in green
and random coil elements in cyan.

Two potential antigen sequences could be identifiiedSP-H as well (Figure 9b). The first
suggestion covers the very stabld-terminal o-helix from position 7 to 31
(DFQLIRDQVLFLQDQAQRLTEWLQL) and the second suggesticomprises the amino
acid positions 35 to 51 (ENPVSESTTLCLREREK). BLAS€arches indicated that both
peptide sequences amiquewithin the human proteome. Furthermore, both secegcontain
various amino acids with functional groups that ldaallow a specific binding of an antibody.
However, whereas there are no predicted PTMs ferfitst suggestionRTM-freg, the

predictedO-glycosylation on position 39 and palmitoylationmosition 45 could interfere with
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a proper binding of the antibody to the area of¢beond suggestion. Furthermore, the spatial
proximity of the palmitoylation on position 56 maso cause steric hindrancesolient-
accessible Accordingly, only the first peptide (DFQLIRDQVILQDQAQRLTEWLQL)
fulfills the criteria for a promising antibody-agén interaction and was suggested for antibody

production.

The company SeqlLab (Géttingen, Germany) producéepaptide antibodies for SP-G and
SP-H with the help of the suggested antigen peptii& SSFLELLEKLCLLLHL for SP-G,
CDFQLIRDQVLFLQDQAQE for SP-H). Martin Schicht [19&Frified the specificity of the
resulting SP-G antibody by means of Western blalyais, using protein isolated from lung
tissue (3Qug) and the recombinantly synthesized SP-G proteiot (purified, 30 pg)
(Figure 10a). The purified antibody showed distimitein bands in lung for SP-G at 11 kDa,
20 kDa and 30 kDa. A distinct protein band for mbmantly synthesized SP-G was visible at
about 12 kDa. Lung tissue was used as specifidipestontrol for surfactant proteins. All
obtained bands deviated from the molecular weighthe pure SP-G sequence (9 kDa).
However, a molecular weight of 11 kDa is calculatdten taking the previously predicted
PTMs into account (cf. 3.2). Therefore, the band ltkDa seemed to represent the mature
protein monomer. Since the formation of oligomeosild not be excluded based on the
modeling results, the bands at 20 and 30 kDa maresent dimer and trimer complexes of

SP-G, respectively.

The specificity of the obtained SP-H antibody wks® dested by Martin Schicht [199] with
protein isolated from lung tissue and bronchoaledavage (3Qug) (Figure 10b). The
antibody showed distinct protein bands in lungSé-H at 13 kDa, 26 kDa and 43 kDa. Lung
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Figure 1C: Test of thga) anti-SP-G an¢b) anti-SP-H antibody by Western bl@t) Figure from [198].
Proteins extracted from lung tissue (positive control) show didtenads for SP-G at the theoretically
expected molecular weights of 11, 20 and 30 kDA (left). The antibeiet$ a distinct band at 11 kDa
for the recombinantly expressed SP-G protein (right) at 28°C (13&@i(2). Arrows indicate positive
evidence of SP-G(b) Figure from [199]. Arrows indicate positive evidence of SPtHnalecular
weights of 13, 26 and 43 kDa. Results are shown for A549 cells [2}8]luilg tissue (2),
bronchoalveolar lavage (3); lung tissue without (4) and after (Shpuation with antigen-peptide.
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tissue was used as specific positive control forfastant proteins. The analysis of
bronchoalveolar lavage showed distinct bands &Dk8 26 kDa and 43 kDa. Analog to SP-G,
the results deviated from the molecular weight loé fpure SP-H sequence (10 kDa).
Nevertheless, considering the predicted PTMs reguiit a molecular weigth of 13 kDa. Thus,
the band at 13 kDa may represent the monomer anthahd at 26 kDa the homodimer of
mature SP-H. It is speculative if the band at 4% kidlicated a SP-H trimer complex with an
altered PTM pattern or a complex of SP-H with aeotrotein.

Eventually, the obtained specific antibodies wereucial for the realization of
immunohistochemical staining experiments, which destrated the presence of SP-G and
SP-H in different tissues that typically contaimfaatant proteins [198,199]. The occurrence of
both proteins in these tissues (among them tisEtigeaespiratory tract) are a further strong
indication that SP-G and SP-H are indeed membettsea$urfactant protein family.

3.4. Preparation of the protein-lipid simulation system

The DPPC lipid layers used in this work were binttm scratch instead of using external
sources with pre-equilibrated membrane systemsiefdre, these membrane systems had to
be equilibrated prior to the actual protein-lipiognglations. To produce realistic starting
structures for DPPC monolayer systems and to vénié cooperation between simulation
settings and modified G53a6 force field, a 75 ns Bulation with a DPPC bilayer was
performed with GROMACS. To ensure a reference tdurke calculations, this simulation
should be able to reproduce experimentally detezthiiterature values for DPPC bilayers.
Indeed, the trajectories of the last 25 ns of thiswlation resemble typical bilayer

characteristics (Table 4).

The average value for the volume that each lipalipzes in the layer plane settled at 1.221 nm3,
which was very similar to the experimental literatwalue of 1.232 nm [185]. The lateral
diffusion coefficient of 9.28 cm?/s, which describes the movement of singleléipiithin a
layer, nearly matched the experimental value of9¢m?/s [186]. The area compressibility of
533 mN/m was far off the experimental value of 284/m, but was in the typical range of
reported values for MD simulations (200-600 mN/484,187].
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Table 4: Comparison of characteristics for a DPPC bilageorted in the literature and values obtained
from simulations in this work.

value literature simulation

volume per lipid (nm?3) 1.232[185] 1.221

lateral diffusion -8 -8
coefficient (cm?/s) 9.7-e [186] 9.2-e

area compressibility

(/) 200-600 [185,187] 533

Moreover, as the primary criteria for the stabilitfya bilayer system, the averaged area per
lipid was calculated for the last 25 ns of the MiDdation. In this simulation, the area per lipid
showed only minor fluctuations and remained stablke level of about 0.625 nm? (Figure 11).
This was very close to the experimentally deterchinalue of 0.64 nm2 reported in the
literature (blue line in Figure 11) [185]. Altogeththese analyses showed that the chosen force
field parameters and simulation settings are ablepgroduce a native DPPC bilayer correctly.
Furthermore, they suggested that the equilibrapedibilayer system could be used as a starting
point for the construction of monolayer systemstif@ protein-lipid MD simulations.
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Figure 11: Plot of the area per lipid (in nm?) for each DPPC molecudeitayer patch with 128 lipids
during a 25 MD simulation to verify the chosen parameters andlation settings. The blue line
denotes the experimental literature value for a DPPC moletaleilayer of 0.64 nm? at 323 K [185].

To achieve a good agreement between the chardicee$ the lipid simulation system and a
natural bilayer, the simulation temperature wastse823 K. This temperature is above the
phase transition temperature for DPPC, so thasyiseem achieves the biologically relevant

fluid L, state instead of the more ordered gel or subgtd §200-202]. However, the question
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arose if this high temperature would have any negadffect on the stability of the protein
models. To address this question, MD simulatiomsafbfour models (SP-G and SP-H, each
with and without PTMs) were performed at 298 K &#8 K for 20 ns. The results of the
simulations with both temperatures were compareddoh model to identify differences in the

model stability.

For the SP-G model without PTMs, the level of RM&ilues was slightly higher at 323 K in
comparison to the simulation at 298 K (Figure 1J&je reason for this may be the overall
higher energy in the system due to the increasegdeature. However, the model seems to be
equally stable with only minor fluctuations in thiet after 10 ns. The RMSD plot showed that
the SP-G model with PTMs was more stable at 29®Mpared to 323 K (Figure 12b). The
higher system temperature enhanced the movemethis aftached PTMs. Especially the bulky
N-glycosylation on position 37 induced structurecfiiations in the nearby protein regions.
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Figure 12: Influence of simulation temperature on the protein model stabiittg. RMSD of the
backbone atoms (in nm) ¢d) the SP-G model without PTMK)) the SP-G model with PTM&;) the
SP-H model without PTMs, and) the SP-H model with PTMs is compared. 20 ns MD simulation
with 298 K (black plots) and 323 K (grey plots) were performed USIROMACS to investigate the
influence of higher temperatures on the protein models.
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Nevertheless, the “core regions” of the proteinewvguite stable and no secondary structure

changes or a general unfolding of the protein vieseved.

Remarkably, the RMSD plot for the SP-H model withBiliMs at 323 K showed a more stable
progression compared to the simulation at 298 KU 12c¢). Whereas the plot for 298 K was
slightly increasing after 14 ns until the end ¢ gimulation, the RMSD at 323 K remained on
the same level after 5 ns. For the SP-H model RitMs, no differences between the RMSD
plots at 298 K and 323 K were observable (Figum).12or this model, the temperature seemed
not to have any influence on the protein stabilityboth cases, the RMSD plot showed a very

stable progression and was equilibrated after 8 ns.

In conclusion, the higher temperature of 323 K shwo significant influence on the protein
stability of any of the four models. Therefore, fhtein models were combined with the
previously established lipid layer to generate #harting structures for the protein-lipid
simulations (cf. 2.4.2). For each of the four protaodels (SP-G with and without PTMs, SP-H
with and without PTMs), six different starting artations were created, which resulted in

overall 24 different simulation systems for thddaling 50 ns MD simulations (cf. Figure 4).
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3.5. Protein-lipid molecular dynamics simulation analyss

After 50 ns of protein-lipid MD simulation, the htrajectory snapshots and statistics files
were analyzed for all 24 performed simulations f&fure 4). The most important finding
thereby is that in all 24 orientations the proteiadels started to interact with the lipid layer.
However, the protein parts that were responsihiehfe protein-lipid interactions were highly
diverse. In the final trajectory overlay of all skmulations per model (Figure 13), no specific
interaction site or “consensus orientation” coudditbentified for any of the four models. To
select a representative result for each of the tases, the protein-lipid interaction energy
calculated by the force field was used as majotemon (Appendix 9, Appendix 10).
Additionally, the protein stability measured by tRMSD (backbone atoms) was checked as
well (Appendix 11, Appendix 12). In the followingdions, the obtained results are described
in more detail, separately for SP-G and SP-H. Adidlly, the results of the orientations are
presented, where the SP-G or SP-H model with PTEsmanually positioned to interact with

the lipid layer already at simulation start (“pazied”).

Figure 13: Resulting structures of MD simulations of the SP-G and $BbHkls in a lipid environment.
The final trajectories of all six performed simulations (orieates) for each model are superimposed in
one picture, separately f¢a) the SP-G model without PTM&)) the SP-G model with PTM¢c) the
SP-H model without PTMs, and) the SP-H model with PTMs. The DPPC lipids are shown aea g
surface. Protein backbone and atoms of the PTMgbjirand (d)) are colored differently for each
orientation.

46



3.5.1. Detailed analysis for SP-G

In the SP-G model without PTMs with the most negatprotein-lipid interaction energy
(-1100 kJ/mol, orientation 2), parts of tNeerminal signal peptide (1-14) and residues of the
a-helix 41-58 were mostly responsible for the protigdid interaction (Figure 14a). Thereby,
the signal peptide was aligned parallel to thedlgurface after it reached the polar lipid head
groups. The-helical conformation of thE-terminus was lost during this process (cf. Fighire
Furthermore, the resulting positioning of the pirotlowed the interaction of thehelix 41-58
with the monolayer in an almost parallel orientatidhe first interactions established after 6 ns,
as visible in the interaction energy plot (FiguBalblack plot). After 30 ns, the interaction
energy remained stable at about -1100 kJ/mol. Tioéeip backbone RMSD plot for this
simulation was not completely equilibrated, but esinconstant with only minor fluctuations

after 25 ns, which indicated a stable protein $tmec(Figure 15b, black plot). During this
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Figure 14: Detailed simulation results for the SP-G model without PT(slsRepresentation of the
SP-G model without PTMs with the most negative protein-liptdraction energy after 50 ns of MD
simulation. The DPPC lipids are shown as grey surfag¢detailed representation of the protein-lipid
interaction site of the system {g). For clarity reasons, the view was slightly rotated. Guasesshed
lines indicate interactions between amino acid side chainkpéaisl In both pictures, the amino acids
and lipids are shown in stick representation without aliphatic hydrogens.
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steady phase, the hydrophobic residues of the Isppmpide penetrated deeper into the polar
lipid head groups and reached the top of the diiphpid tails. However, a closer investigation
of the protein-lipid interaction site revealed tloaly five amino acids with polar side chains
interact with the lipid head groups (Figure 14h)}He final simulation snapshot, three hydrogen
bonds and four ionic interactions between protéle shains and lipid phosphate or choline

moieties were responsible for a moderate fixatibthe protein on the lipid surface.
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Figure 15: (a) Protein-lipid interaction energy (in kd/mol) aflm) backbone atoms RMSD plots (in
nm) for the SP-G model without (black plots) and with PTMs (gtets). In both cases, only the results
for the orientations with the most negative protein-lipid irdéoa energy after 50 ns MD simulation
are shown.

For the SP-G model with PTMs and the most negatiesaction energy (orientation 3), mainly
the 18N-terminal signal peptide residues as well as themamcids 29-43 were in contact with
the lipid layer (Figure 16a). In contrast to thenglation without PTMs, the signal peptide
maintained itsi-helical fraction. During the simulation, the priot@pproached the monolayer
very quickly. First protein-lipid interactions wevesible after 3 ns (Figure 15a, grey plot) and
increased quickly thereafter. Unfortunately, thietiaction energy was not stable at the end of
the simulation. If the simulation would be contidu¢he interaction energy probably might
trend towards a more negative value. The factti®@RMSD plot did not equilibrate after 50 ns
(Figure 15b, grey plot) reflects this trend as webbnformational changes of the protein while
approaching the lipid layer surface to optimizenato interactions certainly caused these
fluctuations in both graphs. However, the inte@ctenergy of ca. -1800 kJ/mol at the end of
the simulation with PTMs attached to the SP-G meds already significantly more negative
than the energy observed for the SP-G model sifoalatithout PTMs (-1100 kJ/mol). This

high interaction energy was also apparent fromptiséein-lipid interaction site (Figure 16b).
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Figure 1€: Detailed simulation results for the SP-G model with PT(dlsRepresentation of the SP-
model with PTMs with the most negative protein-lipid intex@atgnergy after 50 ns of MD simulation.
The DPPC lipids are shown as grey surfgbg Detailed representation of the interaction site of the
system ina). For clarity reasons, the view was slightly rotated. Gdaeshed lines indicate interactions
between amino acid side chains and lipids. “p” labels a phodpatent residue. In both pictures, the
amino acids and lipids are shown in stick representation without aliplyatiogens.

Compared to the results of the unmodified SP-G dlde number of interacting amino acids
was increased (nine instead of five). Due to glaetisons, the interactions of Gly2, Ser3, and
Glu46 are not shown in Figure 16b. Hydrogen bondsewhe dominant interaction type and
Lys31 alone interacted with fatty acid carbonylugye of three different lipids. However, only
one modified residue (phosphorylated Serl7) intechwith a lipid molecule, all other PTMs
(cf. Table 3) resided in the water phase. Thi¢sig aiue for the palmitoylation on Cys76, which
was located opposite to the lipids (Figure 16aegreulfur atom marks Cys76) and resided in

hydrophobic cavities on the protein surface to dwwmifavorable contact with the water.

In the special case, where the SP-G model with PaM=sady interacted with the lipids at
simulation start (“positioned”), the protein wassfimned in a way that the palmitoylation on
Cys76 crossed the polar region of the lipid headigs and reached into the area of the aliphatic

lipid chains. Accordingly, a completely differemttéraction site between protein and lipids
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resulted from 50 ns MD simulation (Figure 17a) cangyal to the previously discussed MDs.
The a-helix 41-58 was located on the surface of the dempnd interacted with the solvent
and not with the lipid surface as described fordhentations before (Figure 14a, Figure 16a).
Instead, theC-terminal region and the protein part ranging frpasition 15 to 30 interacted
considerably with the lipids, where the latter inms®el deeply into the monolayer (Figure 17a,
red surfaces). The-helical character of the signal peptide was maieth over the whole
simulation. The signal peptide covered the hydrdypthprotein core and was nicely stabilized
in this conformation. The position of the wholefgia enabled the interaction of glycosylations
with the lipids instead of the water phase. Acaagt}, the protein was fixed on three points by
the attached glycosylations of Asn37, Ser62, Sexd@,Thr78 (Figure 17a, red surfaces). These

Figure 17. Detailed simulation results for the pre-positioned SP-G modéh PTMs.
(a) Representation of the SP-G model with PTMs, which was positito interact with the lipid layer
prior to MD simulation. The picture was taken after 50 ns. The DPPC &pg&dshown as grey and the
major interacting protein residues as red surfélop.Detailed representation of the protein-lipid
interaction site of the system(a). Due to clarity reasons, the view was slightly rotated. Gdeshed
lines indicate interactions between amino acid side chamaslipids. The label “g” indicates an
O-glycosylation, the label “n” aN-glycosylation. In both pictures, the amino acids and lipidstawa/n

in stick representation without aliphatic hydrogens.
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glycosylations formed numerous hydrogen bonds with phosphate groups or ester bond
regions of DPPC and acted like anchors for theganadn the lipid layer surface (Figure 17b).
Due to clarity reasons, the interactions of phosyhted Tyr40 and glycosylated Ser62 are not
shown in Figure 17b. Surprisingly, the proteindijoteraction energy of the resulting complex
was not significantly higher than for the previgudescribed orientation with modified SP-G
(Figure 18a). Theeason may be the low number of observed interest@tween amino acid
side chains and lipids — apart from the mentiongdogylated residues. Another reason could
be repulsive energy terms due to the palmitoylatiorCys76. Although it was placed to be
inside the lipid tail region at the simulation sténe interactions were not sufficient to stalaliz
this position. Therefore, it left the hydrophobiea due to conformational changes and is
located unfavorably in the polar lipid head groagion at the end of the simulation. This may
be a hint that SP-G is a membrane-associated thsita membrane-integrated protein.
However, the interaction energy was very stabler&0 ns. This was also true for the protein

RMSD plot (Figure 18b), which was strikingly stablee to the “glycosylic anchors”.
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positioned SP-G model (grey plots).
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3.5.2. Detailed analysis for SP-H

The simulation of the SP-H model without PTMs thassessed the most negative protein-lipid
interaction energy (orientation 3) showed a hugetaxi area between protein and lipids
(Figure 19a). In detail, especially the R#terminal and nin€-terminal amino acids were in
close contact with the lipid layer. Accordinglyetimteraction energy plot showed a steady
increase after the first contact at 2 ns untieaahed a plateau after 40 ns at ca. -2300 kJ/mol
(Figure 20a, black plot). The protein model, meaitaylis extremely stable in this simulation.
There are no major fluctuations of the RMSD plag¢iaé simulation time of 10 ns and the model
can be denoted as equilibrated after 20 ns (Fig0ibe black plot). The hydrophobic amino
acids of then-helix caused a hollow on the monolayer surfacdclvienabled the immersion
of theC-terminal protein parts below the head group regidre reason for the model stability
could be the different interactions between numgaruaino acids and lipid head groups, which
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Figure 19: Detailed simulation results for the SP-H model without PTdsRepresentation of the
SP-H model without PTMs with the most negative protein-lipidranttion energy after 50 ns of MD
simulation. The DPPC lipids are shown as grey surfag¢detailed representation of the protein-lipid
interaction site of the system ({a) Due to clarity reasons, the view was slightly rotated. Green dashed
lines indicate interactions between amino acid side chainsgdsl. lin both pictures, the amino acids
and lipids are shown in stick representation without aliphatic hydrogens.
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fixed the protein on the lipid surface (Figure 19Ajnong others, positively charged amino
acid side chains (Arg2, Argl2, Arg87) formed thadanine observed interactions and served
as fixation points in the ester bond region ofltpiel layer. Due to clarity reasons, the residues
Arg2, GIn23, Glu27, Met88, and Leu89 are not shawkigure 19b.
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Figure 20: (a) Protein-lipid interaction energy (in kJ/mol) afi) backbone atoms RMSD plots (in
nm) for the SP-H model without (black plots) and with PTMs (gtets). In both cases, only the results
for the orientations with the most negative protein-lipid irdoa energy after 50 ns MD simulation
are plotted.

The SP-H model with PTMs and the most negativeracteon energy (orientation 5) also
showed a large contact area mainly with the resid82-51 and theN-terminus, but
phosphorylatedC-terminal residues were very important as well (iFégg22a, phosphorylated
Ser80, Ser82, and Ser84 not shown). The first prdifgd contact was observable in the
interaction energy plot after 16 ns (Figure 20aygylot). The value was quickly increasing to
a level comparable to the simulation without PTM&300 kJ/mol). Unfortunately, the
interaction energy was not stable at the end of#heulation. This instability was also reflected
in the RMSD plot (Figure 20b, grey plot), which seal significant fluctuations until the end
of the simulation. However, this orientation showked most negative interaction energy in
comparison to the other five simulations with maifSP-H (Appendix 10b). Therefore, this
simulation was extended until 100 ns to estimageréhiability of the results after 50 ns. The
results showed a stable interaction energy of ab@800 kJ/mol (Figure 21a) and an
equilibrated protein model with respect to the RM&t@r 60 ns (Figure 21b). Since there were
no major changes to the results, the values olataifter 50 ns, although not equilibrated, could
be compared to the simulation without PTMs. Thisiparison indicated almost no difference
in the most negative interaction energy betweerSfdd model without and with PTMs. The

detailed investigation of the interaction site (kig22b) showed that the number of interacting
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Figure 22: Detailed simulation results for the SP-H model with PT{dsRepresentation of the SP-H
model with PTMs with the most negative protein-lipid inte@ctnergy after 50 ns of MD simulation.
The DPPC lipids are shown as grey surfélopDetailed representation of the protein-lipid interaction
site of the system ia). For clarity reasons, the view was slightly rotated. Green dashed linesténd
interactions between amino acid side chains and lipids. The Iddatdigates arO-glycosylation and
the label “p” a phosphorylation. In both pictures, the amino aandsligids are shown in stick
representation without aliphatic hydrogens.
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Figure 21: (a) Protein-lipid interaction energy (in kd/mol) afij protein backbone RMSD (in nm) for
the SP-H model with PTMs and most negative protein-lipidactéon energy. Since interaction energy
and RMSD were unstable after 50 ns, this simulation was extended until 100 ns. n
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amino acids was significantly increased from numengodified SP-H) to 14 (modified SP-H).
Among them, two glycosylated residues (Ser39 and®3)hand two phosphorylated amino
acids (Ser32 and Ser83) were responsible for a pagef the protein-lipid interaction energy.
Due to clarity reasons, the interactions of Argkp28, Leu3l, Thr42, Arg49, Glu50, Ala94,
and glycosylated Ser39 are not shown in Figure ZBb.palmitoylations on Cys45 and Cys56
did not seem to play any role for the protein-limiteraction. The hydrophobic moieties were
located near the lipid surface, but they were irgttgl into the hydrophobic core of the protein,

consequently avoiding the polar lipid head groupthis way.

The resulting interaction complex of the pre-paosiéd orientation (Figure 23a), where the
palmitoylations at Cys45 and Cys56 were determitwethteract directly with the lipids at

simulation start, looked very similar to the delsed SP-H model with PTMs and most negative

Figure 23: Detailed simulation results for the pre-positioned SP-H modéh PTMs.

(a) Representation of the SP-H model with PTMs, which was pastti to interact with the lipid layer
at simulation start. The picture was taken after 50 ns. Helipids are shown as grey and the major
interacting protein residues as red surfgdbg Detailed representation of the protein-lipid interaction
site of the system iga). Due to clarity reasons, the view was slightly rotated eGr@ashed lines
indicate interactions between amino acid side chains and lipids. |alie “g” indicates an
O- glycosylation, the label “p” a phosphorylation, and the lapal’ ‘a palmitoylation. Amino acid,
PTM, and lipid atoms are shown in stick representation without aliphatic reytsog
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interaction energy (cf. Figure 22b and Figure 2Bt)wever, a small deviation in the contact
angle between protein and lipid layer led to aeditferent interaction pattern. Positioning of
the palmitoylations at Cys45 and Cys56 into therbgHobic lipid phase resulted in a main
interaction spot of amino acids around these residkigure 23a, red surfaces). Furthermore,
single amino acids between the positions 35 andr{he residues 80-85 were very important
for the protein-lipid interaction. Most of the indetions could be found in the cluster of
phosphorylated serine residues at positions 80,882,and 84 (Figure 23b, due to clarity
reasons, Ser80 is not shown). Furthermore, Asn86tlam glycosylated Ser39 stabilized the
protein on the lipid surface. The palmitoylation ©ys45 still penetrated the lipid head group
region and was in contact with the hydrophobicdipails at the end of the simulation. In
contrast to that, the palmitoylation on Cys56 thé lipid layer during the simulation. Due to
the pre-positioning, the interaction energy staate®00 kJ/mol and continued to decrease until
a level of about -1250 kJ/mol was reached, wherenitained stable until the simulation end
(Figure 24a). Although the interaction energy @f pine-positioned modified SP-H showed only
minor fluctuations, it was significantly less ndagatcompared to the previously described
simulation for the SP-H model with PTMs in Figut& Zhis was mainly the result of a strongly
reduced number of directly interacting residuemg¢tead of 14). Nevertheless, the result of the
pre-positioned model was robustly fixed on thedipayer, which suggested that SP-H is
membrane-associated. As expected from the stalelaation energy, the RMSD showed only
minor fluctuations and indicated a stable protéinciure (Figure 24b).
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3.5.3. General findings and summary of the protein-lipid MD simulations

The fluctuation analysis of each protein residuenduthe simulation (RMSF) for all 24
orientations (Appendix 13, Appendix 14) indicatedemerally reduced fluctuation of protein
parts that were directly interacting with polaidippead groups. This was due to hydrogen bonds
or electrostatic interactions of the amino acicesithain atoms. In some cases, even protein
backbone atoms interacted with lipid head grougschvstabilized the protein backbone and
further reduced the fluctuations of these amindsadPolar PTMs, such as phosphorylations or
glycosylations, might enhanced this effect. In castt to that, these PTMs increased the

fluctuation of their attached protein parts if thegre oriented towards the water phase.

The area per lipid was also monitored in all siafes (Appendix 15, Appendix 16), but a

general influence of the protein-lipid interactioos the area per lipid value could not be
observed. For all simulations, the area per limdched approximately 0.54 nm2 with a
fluctuation of about + 0.02 nm2. There are casd®re the binding of the protein caused an
effect. Especially when the protein penetrated detpthe lipid head group region, the area
per lipid plot may be influenced. However, the apeswere not significant and got lost in the

general “fluctuation noise” caused by the MD methlogdy.

DSSP was used to investigate the secondary steuetaments of the protein models during
the simulation. The number of residues with assigsecondary structurer-elix, p-sheet,
B-bridge or turn) remained almost constant for atfgrmed simulations (Appendix 17,
Appendix 18). Neither attached PTMs nor the intéoacwith lipids seemed to have an
influence on the stability of the core structureneénts of the proteins. There were some
orientations with small plot fluctuations, but theig not suggest a major change in the protein
fold or an unfolding of the structure. Thus, thes@tved stability of the protein models was a
very important result of the MD simulations. Theolnedge about the consistency of the

protein fold will be very important for computat@rstudies in future.

In summary, it can be noted that by means of thiiopeed MD simulations, three potential
poses for each protein could be identified, whiemdnstrated the possibility of SP-G and SP-H
to interact with a lipid system. The simulation®wsied that the PTMs added to the protein
models have a significant influence on the posgbiein-lipid interactions. According to the
simulation results of this work, the attached p#dylations could determine the interaction
site, and the glycosylations may be very importaistabilize a resulting protein-lipid complex.

Additionally, the simulations indicated that SP-@&l&SP-H are associated on the surface of a
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lipid layer, similar to SP-A and SP-D, in contrastayer-integrated surfactant proteins such as
SP-B or SP-C. This is evident from the fact that pinoteins did not completely integrate into
the layer during the MD simulations and remainethelipid head group region. Similar results
were obtained if the protein models were placed etse to the lipid layer at the beginning
of the simulation (“positioned” orientations). Hoveg, longer MD simulations may be needed
to observe more negative interaction energies @nothably, a deeper immersion of the protein
into the lipid layer in some cases. Unfortunately, effect of the proteins on the lipid layer
stability was not observed, which might be duenermethodology. Nevertheless, all analyzed
situations are valuable suggestions, which willehevbe further investigated by experimental
studies. The results of the performed MD simulaiordicated that SP-G and SP-H have an
increased probability to interact with lipid systemand that this interaction potential is
dependent on the attached PTMs. Moreover, they $edre associated to a lipid layer. All
these points further justify the classificationP-G and SP-H as members of the surfactant
protein family, since the aforementioned observetioepresent typical characteristics for
surfactant proteins.
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4. Discussion

4.1. Protein structure modeling and posttranslational malifications

Although there were no proteins with an alreadywkm@D structure and a sufficient sequence
identity available, comparative modeling was perfed for the SP-G and SP-H sequence. As
expected, this approach failed; however, these hmyganodels were presented in this study.
Especially for SP-G, the model quality was problemia three out of five quality evaluation
tools (cf. Table 2). Furthermore, the models oladify the more sophisticated threading
approach showed also deficiencies in their qualityparticular, the stereochemical quality
(Ramachandran plot results) of these threading teatdas inacceptable, especially in direct
comparison to the stereochemical quality of the dlogy models (cf. Table 2). An
improvement of these values by YASARA refinement $Alas not possible, which might be
due to the tight packing of the protein structunethe I-TASSER modeling process [112,113].
Finally, ab initio protein structure modeling with ROBETTA was abtegenerate reliable
structure models for SP-G and SP-H. Common evaluadbols and a 20 ns MD simulation
showed the good quality and stability of both med€lable 2, Figure 5). These results
demonstrated that ROBETTA is able to produce higality models for practically oriented

studies as well, besides the excellent performamstucture modeling contests (CASP) [203].

In the literature, the high impact of posttranslaél modifications (PTMs) regarding the
stability and function of surfactant proteins is llwknown [17,18]. Depending on the
modification type, polar (phosphorylation, glycasybn) or hydrophobic (palmitoylation)
regions could be formed on the protein surfaceciwbould change the solubility of the protein
in an aqueous environment. Moreover, these modi&gans could significantly influence the
interaction potential of a protein to a lipid systé~urthermore, PTMs might be responsible for
amphiphilic properties of known surfactant protejh$,18]. To consider this possibility for
SP-G and SP-H, the PTMs obtained by sequence-imsdattion tools were attached to the
final SP-G and SP-H models (Table 3). The predistindicated a high grade of modification,
similar to the already known surfactant proteinpaA from polar modifications, such as
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phosphorylations and glycosylations, the predictigservers suggested hydrophobic
modifications as well, which might influence th@perties of the protein surface significantly.
For example, whereas the amino acid sequence @ SHggested a slightly hydrophobic
protein [94], Mittalet al. recently postulated hydrophilic properties [208his amphiphilic
character might evolve from the attached PTMs. @ltih a conclusive experimental proof of
the determined and attached modifications is g@hding, the reliability of the applied
prediction algorithms is between 75 and 93% [14B;154-157]. Regarding to the central
guestion of this work, if SP-G and SP-H are parth& surfactant protein family, the here
obtained modification patterns represent a keyfeabf the analyzed proteins and the already
known surfactant proteins. Moreover, MD simulatishewed that the attached PTMs did not
deteriorate the protein model quality or the magtability compared to the models without
added PTMs. These modifications were even abléatulize protein regions that would have
shown high fluctuations without PTMs. In case ofi3Rhe MD simulation of the model with

PTMs even improved the model quality measured bgRrll and ProQ (Appendix 8).

4.2. Findings by the performed molecular dynamics simulaons

A typical feature of surfactant proteins is theligpito interact with lipids, as reported in
previous studies especially for SP-B and SP-C B6;892]. Accordingly, the SP-G and SP-H
models were simulated in the presence of a DPPiaper, which corresponds to the current
understanding of the pulmonary surfactant layolRPD as major lipid component of the
pulmonary surfactant [2,3] was already shown tayadeely reproduce the surfactant system of
the lung in various MD simulations [92,175-177]tlrese studies, parameters and settings for
MD simulations were extensively studied and cowddadapted to the simulation system used
in this work. Therefore, only minor changes in B&3a6 force field were necessary for the
PTMs attached to the protein models. All calculaiavere performed at a temperature of
323 K, which is above the phase transition tempeeadf DPPC [200,201]. This ensured that
the lipid system was present in the biologicallgvant fluid L, state foundn vivo instead of
the more ordered gel or subgel state of a lipigedd202]. To estimate the influence of the
higher temperature on the protein stability, MD w@liations of all four final models were
performed in a water box at 298 K in comparisoMi simulations for the protein structures
at 323 K. The results showed only a minor increddkictuations in the RMSD plot for SP-G
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and no significant changes in stability for SP-IH fggure 12). The lipid layer system for this
work was built from scratch to obtain a lipid laysatch with the appropriate dimensions for
the protein sizes, and in addition, to ensure #age of correct simulation setup and parameters.
During the lipid layer preparation, literature vedufor comparable systems were reproduced

successfully (cf. Table 4).

All final models for SP-G and SP-H, with and with&lrMs, were used to perform overall 24
MD simulations in the generated lipid environmeRtg(re 4). These simulations mostly
showed the stability of the protein model fold ne RMSD plots (Appendix 11, Appendix 12)
and demonstrated the influence of the PTMs on kiysipochemical properties of the proteins
via conformational changes during the MD simulagioBP-G and SP-H might be amphiphilic
proteins, which are able to show a hydrophobic el & a hydrophilic character. A dynamic
process could manage this switch between both pgrepewhich was suggested by the MD
simulations of the models containing PTMs. Depegdim type and conformation of the
posttranslational modifications, polar or hydropicobreas on the protein surface with a
significant impact on water solubility or the priokdipid interaction potential could be formed.
When the protein is not residing in proximity tb@d system, the palmitoylations for example
could be embedded into the hydrophobic protein,cetech would significantly change the
protein surface properties. In case of SP-G, thirdphobicN-terminal signal peptide is an
important factor, since it could protrude from fv@tein surface or could be tightly bound to
it. Not only is the shape of the protein probaldtgrad in this way, but also the positions of
hydrophobic spots on the protein surface. Furtheembe PTMs showed an influence on the
secondary structure stability. On the one handkybuhodifications, such adN- or
O-glycosylations, could introduce flexibility to tlewnnected protein regions due to the rapid
change of hydrogen bonding partners (i.e. wateemudés) in free solution. On the other hand,
these bulky modifications could significantly sia® a protein region by forming mostly
hydrogen bonds with the polar head groups of DPRilecules. These described options
demonstrate the influence of the PTMs on the stalak well as the interaction potential of

both proteins.

The special cases of MD simulations with the medifprotein models positioned into the lipid
layer at simulation start (“positioned”) supporésle findings. In both simulations, the models
were manually positioned in a way that the straght palmitoyl moieties were sticking into
the hydrophobic region of the lipid tails. This silation setup was inspired by simulation

studies from the literature, which showed differesiés of posttranslational palmitoylation in
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protein-lipid interaction [205] or the ability apid modifications to regulate the protein activity
[206]. Since it is not assumed that SP-G and SP4$$¢5ss any transmembrane elements, the
positioning of the palmitoylations in the hydrocanitail regions led to a very close proximity
between the remaining protein structure and therpbpid head groups (cf. Figure 17,
Figure 23). Although this positioning was arbitratye protein models remained stable
concerning their structure and position on the dligurface during the simulations.
Unfortunately, the contact between palmitoylaticarsd lipid tails diminished during the
simulation. For SP-G, the palmitoyl group left thalrocarbon chain region, avoiding the polar
environment of the lipid head groups by interactaith hydrophobic amino acids of the protein
core (cf. Figure 17). After MD simulation of theeppositioned SP-H model with PTMs, the
palmitoylation was still spanning the head groupae; however, interactions were only visible
for the uppermost methyl groups of the lipid tailsie reason for this observatioould be
simplifications of the lipid layer model, which veemecessary in this study. Due to the
simplifications, the model system may miss a congporthat is essential to maintain the
interactions. For example, lipids with short or atosated chains could enhance the layer
fluidity and support the integration of the palmyit@hain into the layer. A further possible
reason could be a general underestimation of hyahoip interaction energy in calculations
using empirical force fields [191-193], which coycevent the palmitoyl chain from finding
an energetically favored position. Another caugsethe loss of palmitoyl-lipid interactions
could be the polar PTMs. The formation of strongiactions between these polar PTMs and
the lipid head groups could prevent the proteimfpenetrating deeper into the lipid layer. For
the observed orientations, the palmitoylations \agy flexible and the introduced “kinks”
might lead to a too short hydrocarbon chain thainoa reach the lipid tails. Although a
conclusive function of the hydrophobic palmitoytets was not observable, the importance of
the polar glycosylations and phosphorylations fierstability and interaction potential of SP-G
and SP-H was demonstrated in this study. These Hikgld the protein models like anchors
on the lipid surface during the simulations. In g the results suggested that both proteins
are not completely integrated into the lipid layss reported for SP-B and SP-C. Instead, SP-G
and SP-H seem to be layer-associated and remaiheosurface of the lipids, where the

numerous PTMs interact with the polar lipid heaolugs.

In the MDs without manual protein model positionimgost of the interactions were also
established between polar amino acid side chairl8Tdds and the polar head groups of the
lipid molecules. AlImost no contact of protein pasigh the hydrophobic lipid tail region was

observed. The results of the simulations showedineat impact of the protein-lipid interaction
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on the layer stability or lipid ordering. The ligdure suggests that longer simulations in the
microsecond range might be required to observeeprobediated events, such as lipid layer
folding or lipid vesicle fusion [89,92]. Such losgmulations would be computationally too
expensive for the united-atom approach used irsthidy. So called coarse-grained simulations
[207,208] with reduced complexity developed esghciar such long-term simulations would
be the technique of choice for future experimefts.this, the knowledge about the 3D protein
structure is very important and a required inpetgause currently, the most commonly used
MARTINI coarse-grained force field is unable to smer changes in the secondary structure
of a protein during the simulation [208,209]. Thtl® secondary structure assigned to each
amino acid at the simulation start remains uncharnligeughout the simulation. However, the
simulation results of this work demonstrated tlabd#ity of the SP-G and SP-H protein fold in
most cases, even during the formation of interastletween protein and lipid layer. Therefore,

the here performed calculations provide the requémrgs for coarse-grained simulations.

Although at the simulation start, the protein medeére located in a distance between 1.5 and
3.5 nm to the lipid layer, all models started tteract with the lipids mostly within the first
25 ns of the 50 ns MD simulations. In some cas$esfitst interactions were already observed
after less than 5 ns. This process was traceablednitoring the protein-lipid interaction
energy (Appendix 9, Appendix 10). In this way, iasvpossible to discriminate between
different interaction scenarios and to visualizeitifluence of polar amino acids and PTMs on
the interaction strength. However, the energiesutailed based on force field parameters can
only give a rough estimation of the vivo energies, since the accuracy of force fields
reproducing intermolecular (i.e. non-bonded) int@oen energies is limited [190-193]. For
more detailed insights, more specialized computati@ehemistry techniques, such as free
energy calculations [210,211] or the experimergathermal titration calorimetry (ITC [212])
would be advantageous. Nevertheless, the factatha4 performed simulations showed an
interaction between the protein models and thal lipier is a major result of this work.
Thereby, the hypothesis that SP-G and SP-H aresthdble to interact with lipids and may

exhibit surface-regulatory properties is stronglpgorted.
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4.3. Cooperation of computational and experimental studks

At the beginning of this work, the classificatiohSP-G and SP-H as surfactant proteins was
solely based on hypothetical predictions. There m@agxperimental evidence or verification
of this classification available. With the helptbe computational modeling and simulation
techniques applied in this work, however, firsticgadions could be observed that confirm the
membership of SP-G and SP-H to the surfactant iprdéenily. As results of the studies
performed in this thesis, the existing lipid intran potential, the high degree of
posttranslational modification and with that, thesgible amphiphilic character of SP-G and
SP-H were consistent with the classification atasti@nt proteins. At this point, the localization
of both proteins in tissues that are typical far firesence of surfactant proteins would have
been a further hint for the function of these pueaturfactant proteins. Unfortunately, no
commercial anti-SP-G or anti-SP-H antibody was latée, and previous attempts to produce
specific antibodies for localization studies failétbwever, with the here obtained knowledge
of the 3D structure of both proteins and the pad¢mbiodification pattern, it was possible to
identify PTM-free sequence regions on the protanfiese. Their use as antigen peptides led to
specific antibodies for SP-G and SP-H. The sucaégsbduction of these antibodies on the
one hand indicated a high reliability of the protenodels and on the other hand allowed first

localization and functional studies.

Human lung tissue was used to test the antibodgifepy, because the already known
surfactant proteins were initially described in tleg [11,12,21-23]. The corresponding
Western blot analysis (M. Schicht [198]) for SP4®wed specific bands at 11 kDa, 20 kDa,
and 30 kDa. All three values deviated from the mwal@ weight of 9 kDa, which was
calculated based on the amino acid sequence. Howawgsidering that the protein might be
posttranslationally modified with glycosyl, phosphiaand palmitoyl moieties, the distinct
protein band at 11 kDa seems to represent the enptotein. Based on the modeling results,
the formation of oligomers cannot be excluded. &foe, the two higher molecular weights
(20 kDa and 30 kDa) might represent homodimersandirimers of SP-G.

For SP-H, the Western blot analysis showed thremidat 13 kDa, 26 kDa, and 43 kDa
(M. Schicht [199]). Again, none of the three valuegtched the calculated molecular weight of
10 kDa for SP-H. Analog to SP-G, the correctiorthe molecular weight with the predicted
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posttranslational modifications (PTMs) suggests blamd with 13 kDa to be the mature
monomer of SP-H and the band at 26 kDa the maturetimer. Whether the band at 43 kDa
represents a homotrimer of SP-H with an altered Ri¥éern or a complex of SP-H with
another protein remains speculative. Neverthetiss to the high PTM rate of these proteins,
a broad range of observed molecular weights is eenymon for small surfactant proteins. The
protein sizes for SP-B vary from 8 kDa and 25 kb#hie lung up to 35 kDa in tissues of the
ocular system [24]. This observation accounts f#CSas well, which shows molecular weight
differences in the range from 7 kDa [213], 21 kR&][up to 26 kDa [214].

For a better understanding of the wide range okmwdar weights obtained from Western blot
experiments, knowledge about the assembly of morotoenultimers would be advantageous.
Therefore, several protein-protein docking alganishexist to obtain a homodimer structure
[215]. Unfortunately, the currently available medsavere not able to build reliable complexes
for SP-G or SP-H. In most cases, the obtained dgckonformations were not reproducible.
Furthermore, the majority of algorithms ignored amacids with PTMs, resulting in broken

protein structures.

For our cooperation partners (Institute of AnatolhyFAU Erlangen), the SP-G and SP-H
antibodies obtained by the help of protein modelivare crucial for immunohistochemical
experiments. The first protein localization stud@sthese proteins via immunohistochemical
staining showed that SP-G [198] and SP-H [199]psesent in tissues of the human lung and
eye, among many others. In these tissues, thedglkgeown surfactant proteins are also present
and play a crucial role [10,11,13,14,21,24,25,3Vithin lung tissue, the distribution of SP-G
as a superficial layer of the epithelium of thertmiwioles was demonstrated, which additionally
indicated surface activity of the protein [198]cdtuld be shown that SP-H is present in alveolar
cell macrophages and in the cytosol of epitheldlisd199]. These results are in line with the
occurrence of already known surfactant proteins6217]. Additionally, immunohisto-
chemistry and immunogold electron microscopy expents with A549 cells [218] suggested
that SP-H is also secreted and presented on theneeibrane. This fact indicates that SP-H
remains cytoplasmic because of its physicochenpoaperties and that it is secreted after
modification. In the here presented theoreticalists; SP-H showed a palmitoylation potential,
which would allow SP-H to interact with a lipid mbrane similar to SP-B or SP-C [219].

Finally, the antibodies enabled first functionaldes which showed that inflammatory
cytokines influence the SP-H expression level [198]s could indicate an immunoregulatory
function of SP-H comparable to SP-A and SP-D [1P,Hobwever, a role of SP-G in
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inflammation and immunological defense is specuatbecause immune regulatory domains
have not been identified yet, neither with the sgeplcomputational methods nor with the
performed molecular-biological methods.
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5. Summary

With the help ofab initio protein structure prediction it was possible téagb3D models for
the two putative surfactant proteins SP-G (SFTA2) &P-H (SFTA3). Common quality
assessment tools indicated a native-like foldingtled protein models, and subsequent
molecular dynamics simulations demonstrated tHalgtaof the fold of these SP-G and SP-H
models. The models were extended by posttransitimodifications (PTMs), because the
high importance of PTMs for the function of theealdy known surfactant proteins was
described in the literature. Sequence-based preudlicttools indicated numerous
phosphorylations, glycosylations, and palmitoylasiofor SP-G and SP-H, which were
manually added to the protein models and did nfittence the overall model stability in

molecular dynamics simulations.

Previous attempts to obtain specific antibodiesSBrG and SP-H failed due to the lack of
knowledge about the 3D protein structure. The nmeodbtained in this work revealed sequence
parts on the surface of the proteins without anWPivhich were suitable antigens for the
production of specific antibodies. Therefore, cotafional modeling significantly supported
the experimental work, because the obtained anesalowed the first localization of SP-G
and SP-H in different cell tissues where the alydatbwn surfactant proteins are present as

well. Furthermore, they could be used in first fimgal studies.

To mimic the basic properties of the pulmonary attdnt, a simulation system containing a
DPPC lipid monolayer was established. This systes used to study the characteristics of the
SP-G and SP-H models in their natural environmesath with and without PTMs. Overall, 24
MD simulations of 50 ns each were performed. Altjiothe strength of the interactions and
contact areas on the protein surface were dependéehe starting structure and attached PTMs,
all performed simulations indicated a high prohapilof protein-lipid interactions.
Furthermore, the calculation results suggestedtheapositions and conformations of PTMs
could be responsible for an amphiphilic characte8®-G and SP-H, which was described for
the already known surfactant proteins as well. filgh theoretical lipid interaction potential
determined by the presented simulations could bd ts support and discuss the outcome of
experimental characterization and localization igsidvhich suggest that SP-G and SP-H are
indeed part of the surfactant protein family.
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6. Prospective research suggestions

Although the results of this work represent conglieihew and valuable insights into the
structure and characterization of SP-G and SP-&} grovide numerous interesting starting
points for future research projects. For example simulation system established in this work
to resemble the pulmonary surfactant system is fasjc. It contains only one lipid species
and no other compounds, although the natural puhmyosurfactant composition is much more
complex. For further research, the here presenifellayer system could represent the basis
for the development of a more sophisticated pulmpsarfactant model, which might consist
of a huge variety of compounds shown to be prasamto. phosphatidylcholines with different
carbon chain length or saturation levels, phosgiatiositol, phosphatidylglycerol, cholesterol
or even other proteins [2,3]. Such a detailed satnh system could increase the reliability of
performed MD studies and may give a more comprebhennsipression of the characteristics
and functions of the investigated proteins. Apamf SP-G and SP-H, the introduction of other
proteins into the simulation system opens the \field of protein-protein interaction analysis.
These simulation types could show the interactioetsveen proteins on the atomic scale or
even demonstrate what effect the cooperation ofiifferent proteins could have, as previously
described in the literature for SP-B and SP-C [92].

The simulation studies performed in this thesiseted the time scale of tens of nanoseconds.
This is sufficient to demonstrate the model stapaind establish the protein-lipid contact by
atomic interactions. However, there may be otheznt of the protein or protein-lipid
interaction, which need a much longer time scaltake place. For this purpose, the coarse-
grained simulation technique could be used, whildwa the simulation of a system up to the
microsecond scale [207,208]. Therefore, the degoééeedom in the system and necessary
calculation efforts are reduced by grouping neatmyns with similar attributes or functional
groups into one “bead”. Drawbacks of this method #re loss of precision due to the
aggregation of atoms and the fact that the secgrstaucture of a protein is not allowed to
change during such a simulation. However, the tequiesented in this work can already
present detailed interaction information and shiogvdtability of the secondary structure of the

SP-G and SP-H models. With these assumptions,egaasned simulations could be used in
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future studies to perform simulations on a longetistale (several microseconds) to observe
even very complex processes, such as the reordefismgle lipids or a whole lipid layer.
Moreover, the cooperation of two or more proteiosild be investigated. A recent study
impressively demonstrated the benefits of combimilhgtom and coarse-grained methods to

get insights into protein-lipid interactions [220].

Since SP-G and SP-H were found in the tear film tissiies of the ocular surface [24,25] as
well, the knowledge transfer from the presentedutations in a pulmonary surfactant system
to a tear film model system would be very interggtiAlthough the functions of surfactant
proteins (lipid organization, lipid layer stabilitynmunological functions) are equally essential
in both systems, the layout and composition ofdinevater interface differ very much in the
pulmonary surfactant and in the tear film. Accoghyn a completely new simulation system
would be necessary, because the tear film strugtumuch more complicated than the
pulmonary surfactant system. Establishing a telan finodel system would include the
parameterization of predominantly nonpolar lipiceaps for a force field. Moreover, the
development of a stable multilayered system cangisif glycocalyx, agueous, amphiphilic,
and nonpolar layer [221] would be necessary. Rmaltlis complex tear film system would
allow a detailed investigation of the whole traiasitprocess of SP-G and SP-H from an
agueous, through an amphiphilic, to a nonpolar renment, which includes the

conformational and surface potential changes sugdés this work
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8. Appendix

Appendix 1: Template of a GROMACS simulation parameter fifadp) for an energy minimization
run.

title = minimization run

; Run Control

integrator = steep ; Steepest descent

emtol = 100.0 ; Stop if force < emtol (10 k3J/(mol*nm))
emstep = 0.01 ; Initial step size (©.01 nm)

nsteps = 2500 ;5 Maximum number of minimization steps
; Output Control

nstlog = 10 ; Output to .log

nstenergy = 10 ; Output to .edr

; Neighbor Searching

ns_type = grid ; Search neighboring grid cells

nstlist =1 ; Neighbor list updated every step
rlist = 1.4 ; Short range neighbor list cutoff (nm)
pbc = Xyz 5 PBC in all directions

; Electrostatics

coulombtype = PME ; Particle Mesh Ewald summation
rcoulomb =1.4 ; Short range electrostatics cutoff

; Van-der-Waals

vdw-type = cut-off ; LJ potential with plain cutoff

rvdw = 1.4 ; Short range van-der-Waals cutoff (nm)
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Appendix 2: Template of a GROMACS simulation parameter filadp) for a 250 ps equilibration run
with NVT ensemble (constant particle number, voluand temperature).

title = NVT equilibration run

; Run Control

continuation = no ; No restart

constraint_algorithm = LINCS ; LINCS on

constraints = hbonds ; Bonds with hydrogens constrained

lincs_iter =1 ; Number of iterations for LINCS

lincs_order =4 ; LINCS accuracy

integrator = md

dt = 0.002 ; Time step

nsteps = 125000 ; Number of MD steps

; Position restraints ON

define = -DPOSRES_PROT -DPOSRES_DPPC ; Restraint on all
; lipids and protein

; Generate velocities

gen_vel = yes ; Generate velocities

gen_temp = 323 ; Temp. for Maxwell distribution

gen_seed = -1 ; Generate random seed

; Output Control

nstxout = 1000 ; Coordinates output to .trr

nstvout = 1000 ; Velocities output to .trr

nstfout = 1000 ; Forces output to .trr

nstlog = 500 ; Output to .log

nstxtcout = 500 5 Output to .xtc

nstenergy = 500 ; Output to .edr

; Neighbor Searching

ns_type = grid ; Search neighboring grid cells

nstlist =5 ; Time step dependent! 10fs

pbc = Xyz ; PBC in all directions

rlist =1.2 ; Short range neighbor list cutoff

rlistlong =1.4

; Electrostatics

coulombtype = PME ; Particle Mesh Ewald

rcoulomb = 1.2 ; Short range cutoff

pme_order =4 ; Cubic interpolation

fourierspacing = 0.16 ; Grid spacing for FFT

; van-der-Waals

vdw-type = switch ; LI is switched off smoothly

rvdw_switch = 1.2 ; Begin of potential switch off

rvdw = 1.3 ; Short range cutoff (L] = 0)

dispcorr = no ; Dispersion correction off

; Temperature Coupling is ON = constant temperature

tcoupl = V-rescale ; Modified Berendsen thermostat

tc-grps = protein other water ; Coupling groups

tau-t = 0.1 0.1 0.1 ; Coupling time constant

ref-t = 323 323 323 ; Reference temperature

; Pressure Coupling is OFF = constant volume

pcoupl = no ; No pressure coupling for NVT
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Appendix 3: Template of a GROMACS simulation parameter filadp) for a 250 ps equilibration run
with NPT ensemble (constant number of particlessgure and temperature).

title = NPT equilibration run

; Run Control

continuation = yes ; Restart from NVT equilibration
constraint_algorithm = LINCS ; LINCS on

constraints = hbonds ; Only bonds involving hydrogens
lincs_iter =1 ; Number of iterations in LINCS
lincs_order =4 ; LINCS accuracy

integrator = md

dt = 0.002 ; Time step

nsteps = 125000 ; Number of MD steps

; Generate velocities

gen_vel = no ; Since continuation = yes

5 Output Control

nstlog = 500 ; Output to .log

nstxtcout = 500 5 Output to .xtc

nstenergy = 500 ; Output to .edr

; Neighbor Searching

ns_type = grid ; Search neighboring grid cells
nstlist =5 ; Time step dependent! 10fs

pbc = Xyz ; PBC in all directions

rlist =1.2 ; Short range neighbor list cutoff
rlistlong = 1.4

; Electrostatics

coulombtype = PME ; Particle Mesh Ewald

rcoulomb = 1.2 ; Short range cutoff

pme_order =4 ; Cubic interpolation
fourierspacing = 0.16 ; Grid spacing for FFT

; van-der-Waals

vdw-type = switch ; LI is switched off smoothly
rvdw_switch = 1.2 ; Begin of potential switch

rvdw = 1.3 ; Short range cutoff (L] = @)
dispcorr = no ; Dispersion correction off

; Temperature Coupling is ON = constant temperature

tcoupl = V-rescale ; Modified Berendsen thermostat
tc-grps = protein other water ; Coupling groups

tau-t = 0.1 0.1 0.1 ; Coupling time constant
ref-t = 323 323 323 ; Reference temperature

; Pressure Coupling is now ON = constant pressure

pcoupl = Berendsen ; Equilibration with Berendsen
pcoupltype = semiisotropic ; Isotropic only in x and y
tau-p = 1.0 ; Constant coupling in x/y and z
compressibility = 4.5e-5 © ; Water standard in x/y and @ in z
ref-p = 1.0 1.0 ; Reference pressure
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Appendix 4: Template of a GROMACS simulation parameter filadp) for a 25 ns production run of
a DPPC bilayer system.

title = DPPC bilayer production run 25 ns

; Run Control

continuation = yes ; Restart from NPT equilibration
constraint_algorithm = LINCS ; LINCS on

constraints = all-bonds ; All bonds constrained
lincs_iter =1 ; Number of iterations in LINCS
lincs_order =4 ; LINCS accuracy

integrator = md

dt = 0.004 ; Time step

nsteps = 6250000 5 Number of MD steps

; Position restraints OFF
; Generate velocities

gen_vel = no ; Since continuation = yes

; Output Control

nstlog = 2500 ; Output to .log

nstxtcout = 2500 ; Output to .xtc

nstenergy = 2500 ; Output to .edr

; Neighbor Searching

ns_type = grid ; Search neighboring grid cells
nstlist =5 ; Time step dependent! 20fs

pbc = Xyz ; PBC in all directions

rlist =1.2 ; Short range neighbor list cutoff
rlistlong =1.4

; Electrostatics

coulombtype = PME ; Particle Mesh Ewald

rcoulomb = 1.2 ; Short range cutoff

pme_order =4 ; Cubic interpolation
fourierspacing = 0.16 ; Grid spacing for FFT

; van-der-Waals

vdw-type = switch ; LI is switched off smoothly
rvdw_switch = 1.2 ; Begin of potential switch off
rvdw = 1.3 ; Short range cutoff (L] = 0)
dispcorr = EnerPres ; Dispersion correction ON

; Temperature Coupling is ON = constant temperature

tcoupl = Nose-Hoover ; Resembling canonical ensemble
nh-chain-length =1 ; >1 not supported for leap frog
tc-grps = DPPC water ; Coupling groups

tau-t =0.4 0.4 ; Time constant for coupling
ref-t = 323 323 ; Reference temperature

; Pressure Coupling is ON = constant pressure

pcoupl = Parrinello-Rahman; Pressure Coupling on
pcoupltype = semiisotropic ; Isotropic only in x and y
tau-p = 2.0 ; Coupling constant in x/y and z
compressibility = 4.5e-5 4.5e-5 ; Water standard in x/y and z
ref-p = 1.0 1.0 ; Reference pressure

86



Appendix 5: Template of a GROMACS simulation parameter filadp) for a 50 ns production run of
a protein-lipid system.

title = protein-monolayer production run 50 ns

; Run Control

continuation = yes ; Restart from NPT equilibration
constraint_algorithm = LINCS ; LINCS on

constraints = h-bonds ; All bonds constrained
lincs_iter =1 ; Number of iterations
lincs_order =4 ; LINCS accuracy

integrator = md

dt = 0.002 ; Time step

nsteps = 25000000 ; Number of MD steps

; Position restraints OFF

; Generate velocities

gen_vel = no ; Since continuation = yes

5 Output Control

nstlog = 5000 ; Output to .log

nstxtcout = 5000 5 Output to .xtc

nstenergy = 5000 ; Output to .edr

energygrps = DPPC protein ; Separate energy groups

; Neighbor Searching

ns_type = grid ; Search neighboring grid cells
nstlist = 10 ; Time step dependent! 20fs

pbc = Xyz ; PBC in all directions

rlist = 1.2 ; Short range neighbor list cutoff
rlistlong = 1.4

; Electrostatics

coulombtype = PME ; Particle Mesh Ewald

rcoulomb =1.2 ; Short range cutoff

pme_order =4 ; Cubic interpolation
fourierspacing = 0.12 ; Grid spacing for FFT

; van-der-Waals

vdw-type = switch ; LI is switched off smoothly
rvdw_switch = 1.2 ; Begin of potential switch off
rvdw = 1.3 ; Short range cutoff (L] = @)
dispcorr = no ; Dispersion correction off

; Temperature Coupling is ON = constant temperature

tcoupl = Nose-Hoover ; Resembling canonical ensemble
nh-chain-length =1 ; >1 not supported for leap frog
tc-grps = protein other water ; Coupling Groups

tau-t = 0.4 0.4 0.4 ; Coupling time constant
ref-t = 323 323 323 ; Reference temperature

; Pressure Coupling is ON = constant pressure

pcoupl = Parrinello-Rahman ;5 Pressure Coupling on
pcoupltype = semiisotropic ; Isotropic only in x and y
tau-p = 2.0 ; Coupling constant in x/y and z
compressibility = 4.5e-5 (%] ; Water standard in x/y and @ in z
ref-p = 1.0 1.0 ; Reference pressure
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Appendix 6: bashscript for the evaluation of MD simulations. GROKA analysis tools are called
sequentially with customizable options.

#!/bin/bash -1
Analyze the results of a GROMACS MD simulation
Script Arguments: 1: Common name of all files;

This script contains:
- g_energy for equiNVT, equiNPT and production run
- RMSD and RMSF calculation
- DSSP calculation for whole protein
- minimization of the last snapshot (.gro), conversion to .pdb

H OH HF H OH H H H H K H

#
# Root file name
export NAME=$1

# Number of processors for energy minimization
export PROCS=8

#

# Read out energy files

#

g_energy -f $NAME' equiNVT.edr' -s $NAME' equiNVT.tpr' -o $NAME' equiNVT.xvg' >
simulation_analysis.txt 2>&1 <<EOF

Potential

Total-Energy

Temperature

EOF

g_energy -f $NAME' equiNPT.edr' -s $NAME'_ equiNPT.tpr' -o $NAME'_equiNPT.xvg'
>> simulation_analysis.txt 2>&1 <<EOF

Potential

Total-Energy

Temperature

Pressure

Volume

EOF

g_energy -f $NAME' production.edr' -s $NAME' production.tpr' -o
$NAME'_production.xvg' >> simulation_analysis.txt 2>&1 <<EOF
Potential

Total-Energy

Temperature

Pressure

Volume

EOF

echo "Finshed g_energy."
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#

# RMSD calculation for complete protein

#

echo "Running g rms..."

g _rms -f $NAME' production.xtc' -s $NAME' production.tpr' -o
$NAME'_production_RMSD_full.xvg' >> simulation_analysis.txt 2>&1 <<EOF
Protein

Backbone

EOF

echo "Finished RMSD calculation.”

#

# RMSF calculation for complete simulation

#

echo "Running g _rmsf..."

g_rmsf -f $NAME' production.xtc' -s $NAME' production.tpr' -o

$NAME' production_RMSF_full.xvg' -res >> simulation_analysis.txt 2>&1 <<EOF
Protein

EOF

echo "Finished RMSF calculation.”

#

# Calculate secondary structure (DSSP) for whole protein

#

echo "Running do_dssp.."

do_dssp -f $NAME' production.xtc' -s $NAME' production.tpr' -o
$NAME' production_DSSP.xpm' -sc $NAME' production_DSSPcount.xvg' >>
simulation_analysis.txt 2>&1 <<EOF

Protein

EOF

echo "Finished DSSP calculation.”

#

# Minimize final snapshot

#

echo "Running minimization on $PROCS cores..."

grompp -f minimization.mdp -c $NAME' production.gro' -p $NAME.top -o
$NAME' production_EM.tpr' >> simulation_analysis.txt 2>&1

mdrun -nt $PROCS -deffnm $NAME' production EM' >> simulation_analysis.txt 2>&1

trjconv -f $NAME' production_EM.gro' -s $NAME' production_EM.tpr' -o
$NAME' production EM.pdb' -pbc res -ur compact -center >>
simulation_analysis.txt 2>&1 <<EOF

Protein

System

EOF

echo "Minimization finished."

echo "MD ANALYSIS FINISHED"
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Appendix 7: Comparison of plots of the ProSA Il knowledge-ltherergy for the best models @)
SP-G andb) SP-H obtained by homology modeling (black), thiergdblue), andab initio modeling
(red).
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Appendix 8: Results of protein quality assessment tools femtiodels ofa) SP-G andb) SP-H with
and without attached PTMs after the 20 ns stahifisg MD simulation in comparison to the structures
without PTMs directly after the modeling procedingl models”).

a
SP-G combined PROCHECK ERRAT- | VERIFY- ProQ
models Zscore [y, regions outlier score 3D LGscore | MaxSub
final model 6.16 95.5% 0 100.0 | 97.5% | 3579 | o0.141
after MD 5,84 92,4% 0 100.0 | 87,3% | 4023 | 0185
without PTMs e " ' e . .
after MD 6,00 92,4% 0 1000 | 923% | 4611 | 0.158
with PTMs © R ' = ' '
b
SP-H combined PROCHECK ERRAT- | VERIFY- ProQ
models Z-score fav. regions outlier score 3D LGscore | MaxSub
final model 572 94.0% 0 930 | 484% | 1804 | 0131
after MD 6,10 94.0% 0 942 | 48.4% 2334 | 0075
without PTMs | ™ 7 ' o ' '
after MD 6,00 94.0% 0 849 | 368% | 3527 | o0.118
with PTMs o i ' o ' '
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Appendix 9: Protein-lipid interaction energy (in kJ/mol) vesssimulation time (in ns) for all six
orientations ofa) the SP-G model without PTMs afig) the SP-G model with PTMs.

a SP-G simulations without PTMs
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Appendix 10: Protein-lipid interaction energy (in kJ/mol) vesssimulation time (in ns) for all six
orientations ofa) the SP-H model without PTMs afio) the SP-H model with PTMs.

a SP-H simulations without PTMs
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b SP-H simulations with PTMs
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Appendix 11: RMSD of the protein backbone atoms (in nm) vessmaulation time (in ns) for all six
orientations ofa) the SP-G model without PTMs afig) the SP-G model with PTMs.

a SP-G simulations without PTMs
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Appendix 12: RMSD of the protein backbone atoms (in nm) vessmaulation time (in ns) for all six
orientations ofa) the SP-H model without PTMs aflo) the SP-H model with PTMs.

a SP-H simulations without PTMs
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Appendix 13: RMSF for each amino acid residue (in nm) versosukition time (in ns) for all six
orientations ofa) the SP-G model without PTMs afig) the SP-G model with PTMs.

a SP-G simulations without PTMs
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Appendix 14: RMSF for each amino acid residue (in nm) versudukition time (in ns) for all six
orientations ofa) the SP-H model without PTMs afio) the SP-H model with PTMs.

a SP-H simulations without PTMs
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Appendix 15: Area per lipid in the monolayer (in nm2) versus @iation time (in ns) for all six
orientations ofa) the SP-G model without PTMs afig) the SP-G model with PTMs.
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Appendix 16: Area per lipid in the monolayer (in nm2) versus @iaion time (in ns) for all six
orientations ofa) the SP-H model without PTMs afio) the SP-H model with PTMs.

a SP-H simulations without PTMs
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Appendix 17: Number of residues that were assigned as secosttacgure element by DSS&-felix,
B-sheetB-bridge or turn) versus simulation time (in ns) &brsix orientations ofa) the SP-G model
without PTMs andb) the SP-G model with PTMs.

a SP-G simulations without PTMs
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Appendix 18: Number of residues that were assigned as secosttacgure element by DSS&-felix,
B-sheetB-bridge or turn) versus simulation time (in ns) &brsix orientations ofa) the SP-H model
without PTMs andb) the SP-H model with PTMs.

a SP-H simulations without PTMs
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9. Publications and lectures

9.1. Publications

Protein Modeling and Molecular Dynamics Simulationof the Two Novel Surfactant
Proteins SP-G and SP-H
Rausch F, Schicht M, Paulsen F, Brauer L, Branq2@W.4) J Mol Model 20: 2513.

The distribution of human surfactant proteins within the oral cavity and their role during
infectious diseases of the gingiva.
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