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Summary 

Meeting the food demands of the growing world population through the conversion of natural habitats to 

arable lands and the intensification of existing arable lands have negative effects on the environment including 

the destruction of biodiversity and an increase in greenhouse gas (GHG) emissions. Formulating policies to 

tackle the adverse environmental impacts of agriculture requires the development of an agricultural monitor-

ing system. The building block of such a monitoring system is the spatial location of agricultural parcels. 

Agricultural parcels are useful for subsequent processes like agricultural land-use monitoring, GHG model-

ing, biodiversity monitoring, and the control of subsidy payments to farmers. Traditionally, agricultural par-

cels have been delineated through the manual digitization of orthoimages or direct field measurements. Due 

to the costly and inefficient nature of those approaches, alternative methods like the automated segmentation 

of agricultural parcels from satellite imagery are increasingly being used. 

This thesis, which comprises three published papers, presents a framework for the optimal delineation of 

agricultural parcels from Sentinel-1 (S1) and Sentinel-2 (S2) images using the multiresolution segmentation 

(MRS) algorithm. The quality of the segmentation results generated with the MRS algorithm depends on the 

prior knowledge of which parameter (scale, shape, compactness) combination to use. With each of those three 

parameters taking a varying range of input values, an automated approach for determining the optimal pa-

rameter combination without evaluating all possible combinations was developed in this thesis. Further, the 

optimal input feature set derived from S1 and S2 images for effectively segmenting agricultural parcels was 

identified. For segmentation evaluation, agricultural parcels declared by farmers as part of the European 

Common Agricultural Policy (CAP) framework were used as reference parcels. The federal state of Lower 

Saxony, Germany was used as the study area in this thesis. 

In the first paper (Chapter 3), a supervised approach was used to identify the optimal MRS parameters. To 

efficiently determine the optimal parameters, Lower Saxony was divided into tiles. The visible (red, green, 

blue) and near-infrared bands were extracted from S2 and then clipped to those tiles. Before segmenting those 

tiled images, all non-agricultural areas were masked out. To identify the optimal parameters for each tile, 

Bayesian optimization was combined with an area-weighted Jaccard index. Jaccard index, which is popularly 

known as Intersection over Union (IoU), was used in measuring the geometric similarity between the seg-

mented objects and the reference parcels. 

Due to the difficulties and costs often associated with obtaining reference data over large geographical areas, 

an unsupervised optimization approach that does not require reference parcels was developed in the second 

paper (Chapter 4) to identify the optimal parameters from the S2 images. An unsupervised evaluation metric 

for measuring the quality of segmentation was proposed and combined with the Bayesian optimization 
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approach developed in Chapter 3. This unsupervised optimization approach was tested on some selected tiles 

in Lower Saxony. The segmentation outcome of this unsupervised optimization approach was compared to 

the supervised results obtained in Chapter 3.  

The third paper (Chapter 5) focused on identifying the optimal feature set derived from the S1 and S2 images 

for optimally segmenting the agricultural parcels. In contrast to Chapters 3 and 4, here, monthly mean com-

posites (MMCs) of S1 and S2 were used. Various band indices were computed from the MMCs. Based on 

the MMCs and the band indices, different feature sets were generated. To efficiently identify the optimal 

feature set, some test tiles were selected and the supervised Bayesian optimization approach that was devel-

oped in Chapter 3 was accordingly applied. 

Unlike most existing studies that focused on optimizing only the scale parameter, the results obtained in 

Chapters 3 and 4 proved that to optimally segment agricultural parcels, all three MRS parameters must be 

optimized. Although unsupervised optimization is often used in the literature, the outcome of Chapter 4 

showed that supervised optimization yields higher segmentation accuracies. Beyond the optimization ap-

proaches, Chapter 5 highlighted the importance of optimizing the input data to optimally segment the agri-

cultural parcels. The best segmentation results were achieved through the synergistic use of multitemporal 

S1 and S2 band indices. Using this dataset, all agricultural parcels in Lower Saxony were segmented. A 

further analysis of the segmented agricultural parcels revealed the following segmentation accuracies: 27.02% 

for very small parcels (< 0.5 ha), 57.65% for small parcels (0.5 – 1.5 ha), 75.71% for medium parcels (1.5 ha 

– 15 ha), and 68.31% for large parcels (> 15 ha). 

Two potential uses of the segmented agricultural parcels were highlighted in this thesis. First, the role that 

image segmentation could play in the monitoring of CAP was shown in the results of Chapter 3. For farmers 

in the European Union (EU) to access the subsidies provided within the CAP framework, they have to make 

annual declarations including the boundaries of their agricultural parcels. To ensure the correct distribution 

of the subsidies, the declarations of the farmers are verified by the National Control and Paying Agencies 

(NCPAs) of the EU countries. The results of this thesis showed that image segmentation could help in this 

verification process by flagging potentially non-compliant geometry declarations of the farmers. Second, the 

use of the segmentation results for generating an object-based crop-type map was demonstrated in Chapter 5, 

where the segmented agricultural parcels of Lower Saxony were spatially overlaid on an existing pixel-based 

crop-type map and then majority filtering was applied. The creation of this object-based crop-type map led 

to an improvement in the classification accuracy by 3.4 percentage points. Based on McNemar’s test, the 

difference between the pixel-based map and the object-based map was found to be statistically significant (p-

value < 0.01). Overall, this thesis shows how to optimally delineate agricultural parcels from satellite images, 

which will be useful for developing or improving agricultural monitoring systems. 
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Zusammenfassung 

Die Deckung des Nahrungsmittelbedarfs der wachsenden Weltbevölkerung durch die Umwandlung natürli-

cher Lebensräume in Ackerland und die Intensivierung der Nutzung von bestehenden Ackerflächen hat ne-

gative Auswirkungen auf die Umwelt, einschließlich der Zerstörung der biologischen Vielfalt und eines An-

stiegs der Treibhausgasemissionen (THG). Die Formulierung von Maßnahmen zur Bekämpfung der negati-

ven Umweltauswirkungen der Landwirtschaft erfordert die Entwicklung eines landwirtschaftlichen Monito-

ringsystems. Der Grundbaustein eines solchen Monitoringsystems ist die räumliche Lage der landwirtschaft-

lichen Parzellen. Landwirtschaftliche Parzellen sind nützlich für nachfolgende Prozesse wie die Kartierung 

der landwirtschaftlichen Flächennutzung, die Modellierung von Treibhausgasemissionen, die Beobachtung 

der biologischen Vielfalt und die Kontrolle von Subventionszahlungen an Landwirte. Traditionell wurden 

landwirtschaftliche Parzellen durch die manuelle Digitalisierung von Orthobildern oder direkte Feldmessun-

gen abgegrenzt. Da diese Verfahren kostspielig und ineffizient sind, werden zunehmend alternative Methoden 

wie die automatische Segmentierung landwirtschaftlicher Parzellen aus Satellitenbildern eingesetzt. 

In dieser Dissertation, die drei wissenschaftliche Veröffentlichungen umfasst, wird ein Rahmen für die opti-

male Abgrenzung landwirtschaftlicher Parzellen aus Sentinel-1- (S1) und Sentinel-2- (S2) Daten unter Ver-

wendung des Multiresolution Segmentation (MRS) Algorithmus vorgestellt. Die Qualität der mit dem MRS-

Algorithmus erzielten Segmentierungsergebnisse hängt von einer optimierten Kombination der Parameter 

„Scale“, „Shape“ und „Compactness“ ab. Da jeder dieser drei Parameter einen unterschiedlichen Bereich von 

Eingabewerten annehmen kann, wurde in dieser Dissertation ein automatisierter Ansatz zur Bestimmung der 

optimalen Parameterkombination entwickelt, bei dem nicht alle möglichen Parameterkombinationen evalu-

iert werden müssen. Außerdem wurde der optimale Inputdatensatz aus S1- und S2-Bildern für eine effektive 

Segmentierung landwirtschaftlicher Parzellen ermittelt. Für die Bewertung der Segmentierung wurden die 

von den Landwirten im Rahmen der Gemeinsamen Europäischen Agrarpolitik (GAP) angemeldeten land-

wirtschaftlichen Parzellen als Referenzparzellen verwendet. Als Untersuchungsgebiet wurde in dieser Dis-

sertation das Bundesland Niedersachsen in Deutschland gewählt. 

In der ersten Veröffentlichung (Kapitel 3) wurde ein überwachter Ansatz verwendet, um die optimalen MRS-

Parameter zu ermitteln. Um die optimalen Parameter effizient zu bestimmen, wurde Niedersachsen in ein-

zelne Kacheln unterteilt. Die sichtbaren (rot, grün, blau) sowie die Nahinfrarot-Bänder wurden aus S2 extra-

hiert und dann auf diese Kacheln beschnitten. Vor der Segmentierung dieser Kachelbilder wurden alle nicht 

landwirtschaftlich genutzten Flächen ausmaskiert. Um die optimalen Parameter für jede Kachel zu ermitteln, 

wurde die Bayessche Optimierung mit einem flächengewichteten Jaccard-Index kombiniert. Der Jaccard-

Index, der allgemein als Intersection over Union (IoU) bekannt ist, wurde zur Messung der geometrischen 

Ähnlichkeit zwischen den segmentierten Objekten und den Referenzparzellen verwendet. 
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Aufgrund der Schwierigkeiten und Kosten, die häufig mit der Beschaffung von Referenzdaten über große 

geografische Gebiete verbunden sind, wurde in der zweiten Veröffentlichung (Kapitel 4ein unüberwachter 

Optimierungsansatz entwickelt, der keine Referenzparzellen benötigt, um die optimalen Parameter anhand 

der S2-Bilder zu ermitteln. Es wurde eine unüberwachte Bewertungsmetrik zur Messung der Segmentie-

rungsqualität entwickelt und mit dem entwickelten Bayesschen Optimierungsansatz aus Kapitel 3kombiniert. 

Dieser unüberwachte Optimierungsansatz wurde an einigen ausgewählten Kacheln in Niedersachsen getestet. 

Das Segmentierungsergebnis dieses unüberwachten Optimierungsansatzes wurde mit den überwachten Er-

gebnissen aus Kapitel 3verglichen.  

Die dritte Veröffentlichung (Kapitel 5) konzentrierte sich auf die Ermittlung des optimalen Inputdatensatzes 

aus den S1- und S2-Bildern, um die landwirtschaftlichen Parzellen optimal zu segmentieren. Im Gegensatz 

zu den Kapiteln 3und 4wurden hier Monatsmittelwerte (MMCs) von S1 und S2 verwendet. Aus den MMCs 

wurden verschiedene Band-Indizes errechnet. Aus diesen MMCs und Bandindizes wurden verschiedene In-

putdatensätze erstellt. Zur effizienten Ermittlung des optimalen Inputdatensatzes wurden einige Testkacheln 

ausgewählt und der in Kapitel 3entwickelte überwachte Bayessche Optimierungsansatz entsprechend ange-

wandt. 

Im Gegensatz zu den meisten bisherigen Studien, die sich hauptsächlich auf die Optimierung des „Scale“ 

Parameters konzentrierten, haben die in den Kapiteln 3und 4erzielten Ergebnisse gezeigt, dass für eine opti-

male Segmentierung landwirtschaftlicher Parzellen alle drei MRS-Parameter optimiert werden müssen. Ob-

wohl in der Literatur häufig die unüberwachte Optimierung verwendet wird, zeigten die Ergebnisse aus Ka-

pitel 4dass die überwachte Optimierung zu einer höheren Segmentierungsgenauigkeit führt. Neben den Op-

timierungsansätzen wurde in Kapitel 5die Bedeutung der Optimierung der Eingabedaten für eine optimale 

Segmentierung der landwirtschaftlichen Parzellen hervorgehoben. Die besten Segmentierungsergebnisse 

wurden durch die synergetische Verwendung von multitemporalen S1- und S2-Bandindizes erzielt. Anhand 

dieses Datensatzes wurden alle landwirtschaftlichen Parzellen in Niedersachsen segmentiert. Eine weitere 

Analyse der segmentierten landwirtschaftlichen Parzellen ergab die folgenden Segmentierungsgenauigkeiten: 

27,02 % für sehr kleine Parzellen (< 0,5 ha), 57,65 % für kleine Parzellen (0,5 – 1,5 ha), 75,71 % für mittlere 

Parzellen (1,5 ha – 15 ha) und 68,31 % für große Parzellen (> 15 ha). 

In dieser Dissertation wurden zwei potenzielle Verwendungsmöglichkeiten der segmentierten landwirtschaft-

lichen Parzellen hervorgehoben. Erstens wurde mit den Ergebnissen aus Kapitel 3gezeigt, welche Rolle die 

Bildsegmentierung bei der Überwachung der GAP spielen könnte. Damit die Landwirte in der Europäischen 

Union (EU) die im Rahmen der GAP bereitgestellten Subventionen in Anspruch nehmen können, müssen sie 

jährliche Erklärungen abgeben, in denen sie die Grenzen ihrer landwirtschaftlichen Parzellen angeben. Um 

die korrekte Verteilung der Subventionen zu gewährleisten, werden die Erklärungen der Landwirte von den 
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Nationalen Kontroll- und Zahlstellen (NCPAs) der EU-Länder überprüft. Die Ergebnisse dieser Dissertation 

haben gezeigt, dass die Bildsegmentierung bei diesem Überprüfungsprozess helfen kann, indem sie potenziell 

nicht konforme Geometrieangaben der Landwirte kennzeichnet. Zweitens wurde in Kapitel 5die Nutzung der 

Segmentierungsergebnisse zur Erstellung einer objektbasierten Ackerkulturkarte demonstriert, indem die 

segmentierten landwirtschaftlichen Parzellen Niedersachsens räumlich mit einer bestehenden pixelbasierten 

Ackerkulturkarte überlagert und anschließend eine Mehrheitsfilterung vorgenommen wurde. Die Erstellung 

dieser objektbasierten Ackerkulturkarte führte zu einer Verbesserung der Klassifikationsgenauigkeit um 3,4 

Prozentpunkte. Anhand des McNemar-Tests konnte festgestellt werden, dass der Unterschied zwischen der 

pixelbasierten Karte und der objektbasierten Karte statistisch signifikant ist (p-Wert < 0,01). Insgesamt zeigt 

diese Dissertation, wie landwirtschaftliche Parzellen anhand von Satellitenbildern optimal abgegrenzt werden 

können, was für die Entwicklung oder Verbesserung landwirtschaftlicher Monitoringsysteme von Nutzen 

sein wird. 



Table of contents 

VII 

 

Table of contents 

Acknowledgment .............................................................................................................................................. I 

Summary ......................................................................................................................................................... II 

Zusammenfassung ......................................................................................................................................... IV 

Table of contents .......................................................................................................................................... VII 

List of Abbreviations ................................................................................................................................... VIII 

1 Introduction ................................................................................................................................................... 1 

1.1 Motivation .............................................................................................................................................. 1 

1.2 Algorithms for segmenting agricultural fields ........................................................................................ 2 

1.3 Multiresolution segmentation (MRS) ..................................................................................................... 5 

1.3.1 Algorithm description ...................................................................................................................... 5 

1.3.2 Parameter optimization .................................................................................................................... 7 

1.4 Impact of input data on image segmentation .......................................................................................... 8 

1.5 Research goals and objectives ................................................................................................................ 9 

1.6 Structure of the thesis ............................................................................................................................. 9 

2 Overview of methodology ........................................................................................................................... 10 

3 Optimal parameters for delineating agricultural parcels from satellite images based on supervised 

Bayesian optimization .................................................................................................................................... 12 

4 Unsupervised parameterization for optimal segmentation of agricultural parcels from satellite images in 

different agricultural landscapes ..................................................................................................................... 28 

5 Evaluation of Sentinel-1 and Sentinel-2 feature sets for delineating agricultural fields in heterogeneous 

landscapes ....................................................................................................................................................... 56 

6 Discussion ................................................................................................................................................... 75 

6.1 Optimization of the data preparation .................................................................................................... 75 

6.2 Optimization of the MRS algorithm ..................................................................................................... 76 

6.3 Optimization of the input data .............................................................................................................. 77 

6.4 Spatial distribution of the optimal parameters ...................................................................................... 78 

6.5 Application of identified optimal parameters ....................................................................................... 83 

6.6 Potential usage of the segmentation results .......................................................................................... 84 

6.6.1 Object-based crop-type mapping ................................................................................................... 84 

6.6.2 Verification of the GSAA parcels ................................................................................................. 85 

6.6.3 Essential agricultural variables ...................................................................................................... 86 

6.7 Limitations of this thesis ...................................................................................................................... 87 

7 Conclusions ................................................................................................................................................. 88 

References ...................................................................................................................................................... 89 

Curriculum vitae ............................................................................................................................................. 97 

List of publications ......................................................................................................................................... 98 

Eidesstattliche Erklärung / Declaration under Oath ....................................................................................... 99 

 



List of Abbreviations 

VIII 

 

List of Abbreviations 

AD Absolute difference 

ARD Analysis-ready data 

ARD (Chapter 3) Automatic relevance determination 

ATKIS German Official Topographic Cartographic Information System 

BKG German Federal Agency for Cartography and Geodesy 

BOA Bottom-Of-Atmosphere 

BRDF Bidirectional reflectance distribution function 

BS Backscatter 

CAP Common Agricultural Policy 

CARD Copernicus Analysis Ready Data 

CbM Checks by monitoring 

CLAHE Contrast limited adaptive histogram equalization 

CLI Command-line interface 

CNN Convolutional neural network 

CR Cross Ratio 

DEM Digital Elevation Model 

DLM Digital Landscape Model 

DNN Deep neural network 

DTW Dynamic time warping 

DWT Dyadic wavelet transformation 

EAV Essential agricultural variable 

EC European Commission 

ED Euclidean Distance 

EFA Ecological focus area 

EI Expected improvement 

EPSG European Petroleum Survey Group 

ESA European Space Agency 

ESP Estimation of Scale Parameters 

ETM Enhanced Thematic Mapper 

EU European Union 

EV Essential variable 

FCIS Fully Convolutional Instance-aware Semantic Segmentation 

FCN Fully convolutional neural network 

FORCE Framework for Operational Radiometric Correction for Environmental monitoring 



List of Abbreviations 

IX 

 

GCOS Global Climate Observing System 

GEO BON Group on Earth Observations Biodiversity Observation Network 

GEOGLAM Group on Earth Observations Global Agricultural Monitoring Initiative 

GHG Greenhouse gas 

GP Gaussian Process 

GRD Ground Range Detected 

GS Global score 

GSAA Geospatial Aid Application 

GVI Green Vegetation Index 

IACS Integrated Administration and Control System 

ISODATA Iterative Self-Organizing Data Analysis Technique 

IW Interferometric Wide Swath 

JRC Joint Research Centre 

L-BFGS Limited Broyden–Fletcher–Goldfarb–Shanno 

LC Land-cover 

LOESS Locally estimated scatterplot smoothing 

LPIS Land Parcel Identification System 

LU Land-use 

LV Local variance 

MBR Minimum bounding rectangle 

MI Moran's I 

MMC Monthly mean composite 

MRS Multiresolution segmentation 

NCPA National Control and Paying Agency 

NDRE Normalized Difference Red Edge Index 

NDSVI Normalized Differential Senescent Vegetation Index 

NDTI Normalized Difference Tillage Index 

NDVI Normalized difference vegetation index 

NDWI Normalized Difference Water Index 

NIR Near-infrared 

OBIA Object-based image analysis 

OLI Operational Land Imager 

OR Over-segmentation 

OSM Open Street Map 

OSQ Overall segmentation quality 

OSS Open-source software 



List of Abbreviations 

X 

 

OTSC On-the-spot check 

PCA Principal component analysis 

QR Quality rate 

RBF Radial basis function 

RF Random Forest 

RMS Root mean square 

RS Remote sensing 

RVI Radar Vegetation Index 

S1 Sentinel-1 

S2 Sentinel-2 

SAA Segmentation accuracy assessment  

SCG Single-scale Combinatorial Grouping 

SDG Sustainable Development Goal 

SF Shape factor 

SLIC Simple Linear Iterative Clustering 

SMBO Sequential model-based optimization 

SNAP Sentinel Application Platform 

SNIC Simple Non-Iterative Clustering 

SPOT Satellite for observation of Earth 

SSE Supervised segmentation evaluation 

SSO Supervised segmentation optimization 

SWIR Short-wave infrared 

TCT Tasseled cap transformation 

TM Thematic Mapper 

TT Test tile 

UR Under-segmentation 

USE Unsupervised segmentation evaluation 

UTM Universal Transverse Mercator 

VNIR Visible (red, green, blue) and near-infrared 

VRGAC Variational region-based geometric active contour 

WV Weighted variance 



1 Introduction 

1 

 

1 Introduction 

1.1 Motivation 

Meeting the food demands of the growing world population while minimizing the negative impact of agri-

cultural production on the environment requires the use of sustainable agricultural practices (Adams and 

Eswaran, 2000; Dudley and Alexander, 2017; Foley et al., 2011). Within the European Union (EU), the most 

prominent policy framework targeted at ensuring sustainable agriculture is the Common Agricultural Policy 

(CAP). Among others, CAP aims at increasing agricultural productivity within the EU through the use of 

sustainable agricultural practices while ensuring a decent standard of living for farmers (European Commis-

sion, 2021a). A substantial part of the CAP budget goes into the direct payment of subsidies to farmers (Eu-

ropean Commission, 2021a). To receive the CAP subsidies, farmers within the EU have to make annual 

declarations including the geometry (boundary) of their agricultural parcels and the land-use (LU) type per 

parcel. Before the subsidies are paid to the farmers, their declarations are first verified by the National Control 

and Paying Agencies (NCPAs) of the EU countries. To check the declarations, each NCPA is required to set 

up and operate an Integrated Administration and Control System (IACS) (European Commission, 2013). 

Three key components of the IACS are the Land Parcel Identification System (LPIS), Geospatial Aid Appli-

cation (GSAA), and on-the-spot checks (OTSCs). LPIS is a reference system for geolocating and identifying 

all agricultural parcels eligible for subsidy payment. Based on the LPIS and very high-resolution orthoimages 

with a spatial resolution of at least 1 m, the farmers digitize the actual boundaries of their agricultural parcels 

and then indicate the existing LU type (e.g., mowing pasture, meadow, maize, winter wheat, etc.) through the 

GSAA. Out of all the declarations, 5% are randomly selected and then checked by the NCPAs using OTSCs 

via computer-aided photo-interpretation of very high-resolution images or direct on-site measurements. 

Due to the cumbersome nature of the OTSCs, the European Commission (EC) introduced checks by moni-

toring (CbM) in 2018 to substitute OTSCs (European Union, 2018). With CbM, the datasets of the European 

Copernicus program like Sentinel-1 (S1) and Sentinel-2 (S2) could be used to verify the declarations of all 

farmers. The introduction of CbM has triggered numerous studies (Campos-Taberner et al., 2019; d’Andri-

mont et al., 2018; López-Andreu et al., 2021; Lozano-Tello et al., 2021; Rousi et al., 2021; Sarvia et al., 2021; 

Sitokonstantinou et al., 2018) that have largely focused on the classification of S1 and/or S2 images as a 

means of verifying the LU types declared by the farmers. The potential of S1 and S2 for verifying the geom-

etry declarations of the farmers is yet to be explored. While the spatial resolutions of S1 (20 m) and S2 (10 

m) do not allow for the direct verification of the geometries of the declared agricultural parcels, they can still 

be used in flagging instances where the geometry of a declared agricultural parcel does not represent the real 

situation existing on the ground. For example, a farmer may own an agricultural field composed of several 

agricultural parcels with different LU types. One agricultural parcel can be used to cultivate maize and an 



1 Introduction 

2 

 

adjacent parcel may contain grass. During the declaration process, the farmer may inadvertently declare the 

agricultural field instead of the individual agricultural parcels within the field representing the different LU 

types. The S1 and S2 images can be used to flag the disparities between the declared agricultural parcel and 

the real-world situation. Image segmentation, which is the process of partitioning an image into homogeneous 

and distinct objects (Blaschke, 2010), can be used to automatically delineate the boundaries of agricultural 

parcels representing single LU types from S1 and S2 images. Those extracted segments can then be compared 

to the declared agricultural parcels to identify any disparities.  

From here onwards, an agricultural field and an agricultural parcel will be interchangeably used to mean any 

agricultural land with a single LU type worked by a single farmer. Beyond their critical role within CAP, 

agricultural fields are also essential agricultural variables (Whitcraft et al., 2019) that can be used for object-

based crop classification. The quality of agricultural fields delineated from satellite images through image 

segmentation and subsequently used for object-based crop classification can have a significant impact on the 

accuracy of the classification results. It was proved in numerous studies (Akcay et al., 2018; Gao et al., 2011; 

Georganos et al., 2018b, 2018a; Liu and Xia, 2010) that the quality of the image segmentation results directly 

impacts the classification accuracy. Therefore, there is value in pursuing the optimal segmentation of agri-

cultural fields from S1 and S2 images. This thesis takes a novel and holistic approach to the optimal segmen-

tation of agricultural fields by looking at both the parameter optimization of the segmentation algorithm and 

the optimization of the input data given to the segmentation algorithm. 

1.2 Algorithms for segmenting agricultural fields 

Traditionally, agricultural fields have been delineated through the manual digitization of hardcopy maps (aer-

ial images, topographic maps, etc.) (Ji, 1996) or direct field measurements. A more efficient and cost-effective 

approach is the automated delineation of the fields from remote sensing (RS) images. Through RS, spatially 

explicit and timely information about agricultural fields over wide geographical areas like regions, countries, 

and continents could be efficiently obtained. One method that can be used to obtain this information from RS 

images is image segmentation. Different image segmentation algorithms have been proposed in the literature 

for extracting agricultural fields from RS images. The algorithms can be categorized into four main groups.  

The first category is based on edge detection. In an image, edges serve as transitions between different objects 

(Ji, 1996; Martin et al., 2004). The edge-based methods first apply edge filtering to an image to identify edges 

and then apply post-processing to connect the edges to create complete boundaries. Ji (1996) used dyadic 

wavelet transformation (DWT) (Mallat and Zhong, 1992) to extract edges of agricultural fields from Landsat 

Thematic Mapper (TM) images acquired in the Guangdong Province of southeast China. The DWT was 

separately applied to the near-infrared (NIR) band, normalized difference vegetation index (NDVI), and the 

wetness index of the tasseled cap transformation (TCT). The edges extracted from the three DWT 
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transformations were then consolidated to generate the final map. The consolidation resulted in closed poly-

gons but there were some instances of isolated edges. To deal with those cases, the authors suggested the use 

of manual digitization. To delineate sub-fields within already identified agricultural fields, Turker and Kok 

(2013) applied the Canny edge detector (Canny, 1987) to first identify edges from SPOT images observed in 

the Marmara region of Turkey. The detected edges were then linked to create complete polygons through 

perceptual grouping. Based on multitemporal Landsat images acquired in an area south of the Amazon River 

and north of Patagonia in South America, Graesser and Ramankutty (2017) proposed a field delineation ap-

proach that consisted of edge extraction with pre-defined convolution filters, contrast limited adaptive histo-

gram equalization (CLAHE), adaptive thresholding, and morphological cleaning. To delineate agricultural 

fields in the Mid-Canterbury plains of New Zealand, North et al. (2019) initially used a circular window filter 

with a diameter of five pixels to calculate the local standard deviation at each pixel location in the red, NIR, 

and short-wave infrared (SWIR) bands of seven dates of SPOT images. The standard deviation images were 

combined to create an edge map. Directional convolution filters were then applied to this edge map to obtain 

linear features (field boundaries). In a more recent study, Wagner and Oppelt (2020) used the Sobel operator 

to detect edges from S2 images in Schleswig-Holstein, Germany. To extract the agricultural fields from the 

extracted edges, they applied a modified version of the active contour model (Kass et al., 1988). 

The second category comprises the region-based methods. This category can further be classified into region 

growing, and region splitting and merging (Hossain and Chen, 2019; Kotaridis and Lazaridou, 2021). For 

region growing, pixels are used as seed points and in subsequent steps, similar nearby objects are merged 

based on a homogeneity criterion. With region splitting and merging, the image is first partitioned into arbi-

trary objects and in iterative steps, objects are split or merged to create more homogenous objects. In RS, the 

region growing methods are more commonly used than the region splitting and merging methods for extract-

ing agricultural fields. Evans et al. (2002) combined morphological filtering and local canonical transfor-

mation to identify seed points for seeded region growing (Adams and Bischof, 1994) to generate agricultural 

fields from Landsat TM images near Esperance in Western Australia. A supervised approach was employed 

by García-Pedrero et al. (2017) to delineate agricultural fields from a WordView-2 image acquired in the 

Chilean central valley. The Simple Linear Iterative Clustering (SLIC) (Achanta et al., 2012) algorithm was 

first applied to generate over-segmented fields. To identify which neighboring fields to merge, a supervised 

classifier named RUSBoost (Seiffert et al., 2010) was used. Agricultural fields extracted with the mean shift 

algorithm (Fukunaga and Hostetler, 1975) from NDVI temporal profiles generated from S2 images were used 

by Nasrallah et al. (2018) to classify wheat areas in the Bekaa plain of Lebanon. Csillik et al. (2019) used the 

multiresolution segmentation (MRS) (Baatz and Schäpe, 2000) algorithm to segment agricultural fields from 

multitemporal S2 images at two test areas in Southern California and Northwestern Texas. The segments 

were used as an input to a dynamic time warping (DTW) classification routine. Using an improved version 

of SLIC named Simple Non-Iterative Clustering (SNIC) (Achanta and Susstrunk, 2017), Luo et al. (2021) 
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segmented agricultural areas from a time-series of S1 images in Heilongjiang Province, China, and later per-

formed crop-type classification using Random Forest (RF).  

The third category is a hybrid approach. The output of an edge detection algorithm is passed as an input to a 

region-based method to create the objects. A gradient edge detector was combined with the Iterative Self-

Organizing Data Analysis Technique (ISODATA) clustering (Ball and Hall, 1965) algorithm by Rydberg and 

Borgefors (2001) to delineate agricultural fields from Landsat TM and SPOT images acquired in an area in 

Västra Götaland, Sweden. Based on multidimensional dilation and erosion (Plaza et al., 2002), Li and Xiao 

(2007) extracted a gradient magnitude image from a SPOT image of an agricultural area in Hengshui, China, 

and subsequently applied a watershed transformation to delineate the fields. To segment crop fields in Texas, 

California, and South Dakota, Yan and Roy (2014) extracted a crop probability map and a crop field edge 

probability map from a five-year time-series of Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images 

and passed them to a variational region-based geometric active contour (VRGAC) (Chan and Vese, 2001) 

method to create a candidate field map. A watershed algorithm was then applied to decompose connected 

segments in the candidate field map to create distinct crop fields. Based on a Canny edge detector and an 

implementation of the watershed algorithm in eCognition (Trimble Germany GmbH, 2019), agricultural 

fields were delineated from multitemporal S2 images in South Africa (Watkins and van Niekerk, 2019a, 

2019b). 

The last category is based on Deep Neural Networks (DNNs). This category is based on supervised learning. 

Hence, reference data is required. Within this category, two approaches are distinguishable. The first ap-

proach involves the use of a fully convolutional neural network (FCN) for semantic segmentation (Long et 

al., 2015), followed by post-processing to generate the final segments. To segment agricultural fields in small-

holder farms from WorldView-2 and -3 images captured in Mali and Nigeria, Persello et al. (2019) treated 

the task as a binary classification problem to distinguish between boundary pixels and non-boundary pixels. 

The output generated after applying SegNet (Badrinarayanan et al., 2017) to the images produced fragmented 

contours. The oriented watershed transform and agglomerative clustering procedure of Arbeláez et al. (2011) 

and Single-scale Combinatorial Grouping (SCG) (Pont-Tuset et al., 2017) were then employed to generate 

the final segmentation output. Instead of two classes, García-Pedrero et al. (2019) created three classes: back-

ground, agricultural plots, and buffered boundaries of the agricultural plots. They then trained a U-Net 

(Ronneberger et al., 2015) model using orthorectified aerial images and LPIS of the Chartered Community 

of Navarre, Spain to predict those three classes in new images. As their main post-processing strategy, instead 

of just applying the trained model to an input image, eight different transformations were first applied to the 

input image before the prediction was done with the trained model. The final segmentation was obtained as 

the arg max of the sum of predicted probabilities. The authors noted that there were several instances where 

incomplete fields were created. Just like Persello et al. (2019), Yang et al. (2020) also treated the field 
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delineation as a binary classification problem but no post-processing was used. They simply evaluated U-

Net, SegNet, and DenseNet (Huang et al., 2017) for detecting the agricultural field boundaries from a 

WorldView-3 image in the Patuakhali district of Bangladesh. Their results showed that DenseNet outper-

formed the other models. Waldner and Diakogiannis (2020) applied ResUNet-a (Diakogiannis et al., 2020) 

to S2 images covering test sites in South Africa, Argentina, Australia, Canada, Russia, and Ukraine to gener-

ate these outputs: an extent mask, boundary probability mask, and distance mask. They subsequently tested 

two post-processing methods to retrieve the agricultural fields. The first method creates two binary masks by 

thresholding the extent mask and boundary probability mask and then computes the symmetric difference 

between the two binary masks to generate closed fields. The second method applies thresholding to the extent, 

boundary probability, and distance masks before using them as inputs to watershed segmentation. The second 

approach within this last category is based on instance segmentation, which is a combination of semantic 

segmentation and object recognition. Without any post-processing, the algorithms belonging to this second 

approach directly yield objects. Based on S2 images and the LPIS dataset of test sites in central Denmark, 

Rieke (2017) trained the Fully Convolutional Instance-aware Semantic Segmentation (FCIS) architecture 

proposed by Li et al. (2016) to directly segment agricultural fields. A combination of orthophotos, Landsat 8 

images, and ground truth data was used by Lv et al. (2020) to train Mask R-CNN (He et al., 2017) to segment 

agricultural plots in the smallholder agricultural areas in Da’an City, Jilin Province, China.  

Amongst the four categories presented above, the region-based methods are the most popular primarily due 

to the frequent use of the MRS algorithm in eCognition (Kotaridis and Lazaridou, 2021). Kotaridis and Laz-

aridou (2021) observed that 65% of the 122 research papers they reviewed used eCognition, while Ma et al. 

(2017) observed that number to be 80.9% of the 254 studies they reviewed. The frequent use of the MRS 

algorithm can be attributed to its superiority over other algorithms as was demonstrated in several studies 

(Kavzoglu and Tonbul, 2018, 2017; Marpu et al., 2010; Neubert et al., 2008). In the study of Reis et al. (2015), 

it was observed that the implementation of the MRS algorithm in eCognition achieved better results than the 

implementation of the same algorithm in an open-source software named InterIMAGE (InterImage, 2014). 

Therefore, in this thesis, the MRS algorithm in eCognition was used for image segmentation. The description 

of the MRS algorithm is explained in the next section. 

1.3 Multiresolution segmentation (MRS) 

1.3.1 Algorithm description 

The description of the MRS algorithm presented here is based on the summarized explanations of Benz et al. 

(2004) and Huang et al. (2020). The MRS algorithm starts with well-distributed pixels in an image as seed 

objects. In numerous steps, the algorithm identifies and merges object pairs that result in the lowest change 

in heterogeneity. The definition of heterogeneity is very critical to the MRS algorithm just like any other 

region growing or merging algorithm (Hossain and Chen, 2019). For the MRS algorithm, the heterogeneity 
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of each object is computed as a linear combination of the shape and color heterogeneity of that object (Eq. 

1); 

ℎ = 𝑤1ℎ𝑠ℎ𝑎𝑝𝑒 + 𝑤2ℎ𝑐𝑜𝑙𝑜𝑟 (1) 

where ℎ𝑠ℎ𝑎𝑝𝑒 is the shape heterogeneity, ℎ𝑐𝑜𝑙𝑜𝑟 is the color heterogeneity, and 𝑤1 and 𝑤2 are the correspond-

ing weights. The weights sum up to 1. The shape heterogeneity is computed as a function of the compactness 

and smoothness of the object (Eq. 2); 

ℎ𝑠ℎ𝑎𝑝𝑒 = 𝑤3

𝑙

√𝑛
+ 𝑤4

𝑙

𝑏
 (2) 

where 𝑙 is the perimeter of the object, 𝑏 is the perimeter of the object’s bounding box, and 𝑛 is the number of 

pixels in that object. The compactness and smoothness of the object are respectively represented by 𝑙/√𝑛 and 

𝑙/𝑏, with 𝑤3 and 𝑤4 being their corresponding weights. Here as well, the weights sum up to 1. The compu-

tation of the color heterogeneity is shown in Eq. 3; 

ℎ𝑐𝑜𝑙𝑜𝑟 = ∑ 𝑛(𝑐𝑖𝜎𝑖)

𝑥

𝑖=1

 (3) 

where x is the number of bands in the image, 𝑛 is the number of pixels per object, 𝑐𝑖 is the weight of the ith 

band, and 𝜎𝑖 is the standard deviation within the object for the ith band. The change in heterogeneity between 

two objects is then computed by Eq. 4; 

∆ℎ = (𝑛1 + 𝑛2)ℎ𝑚 − (𝑛1ℎ1 + 𝑛2ℎ2) (4) 

where ℎ1 and ℎ2 are the computed heterogeneity values for two neighboring objects, ℎ𝑚 is the heterogeneity 

value of their combined geometries, and 𝑛1 and 𝑛2 represent the respective number of pixels in the two 

objects. The neighboring object pair that minimizes the change in heterogeneity (Eq. 4) are considered to be 

optimal and subsequently merged into one.  

The outcome of the MRS algorithm is dictated by the user-given weights (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑐𝑖) and scale 

parameters. In eCognition, amongst the weights, the user can only input shape (𝑤1) and compactness (𝑤3). 

The color weight (𝑤2) is automatically calculated as (1 − 𝑤1), while the smoothness weight (𝑤4) is computed 

as (1 − 𝑤3). The scale parameter is used by the MRS algorithm as the stopping criterion. The segmentation 

process stops as soon as the change in heterogeneity between two objects exceeds the user-given scale value. 
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Therefore, the scale parameter determines the average size of the objects. Determining the optimal scale, 

shape, and compactness values is a prerequisite to obtaining the best segmentation results using the MRS 

algorithm. Different parameter optimization approaches are explained in the next section. 

1.3.2 Parameter optimization 

Given a user-defined objective function and a parameter space, parameter optimization is the identification 

of the parameter combination that minimizes or maximizes that objective function. The conventional ap-

proach to parameter optimization is grid search. Using a set of input values per parameter, grid search gener-

ates a list of all possible combinations and then returns the evaluation score of the objective function for each 

combination. The combination with the minimum or maximum evaluation score is considered optimal. To 

optimize the MRS algorithm, grid search has been used in several studies (Conrad et al., 2010; Forkuor et al., 

2014; Watkins and van Niekerk, 2019b). As the number of parameters and number of elements in each pa-

rameter space increases, grid search suffers from the curse of dimensionality (Bergstra and Bengio, 2012) and 

becomes inefficient. To overcome this limitation, random search was introduced by Bergstra and Bengio 

(2012). In their study, Bergstra and Bengio (2012) indicated that within a small fraction of computation time, 

the random search was capable of obtaining similar or better results over the same parameter space used for 

the grid search. However, from the studies reviewed in this thesis, random search was not used by any re-

searcher to optimize the MRS algorithm. One flaw with grid search and random search relates to how samples 

are selected for evaluation with the objective function. They do not consider previous evaluations of the 

objective function to make an informed decision on which new parameter combinations to sample with the 

highest probability of optimizing the objective function. Overcoming such a flaw requires the use of sequen-

tial model-based optimization (SMBO) (Bergstra et al., 2011) methods like Bayesian optimization. Bayesian 

optimization is designed for globally optimizing objective functions with unknown derivatives (Frazier, 

2018) and it outperforms grid search and random search (Bergstra et al., 2011; Snoek et al., 2012). Using 

some initially given samples, Bayesian optimization obtains the posterior probability distribution of the ob-

jective function and then uses this as the basis for choosing new samples with the highest likelihood of opti-

mizing the objective function. Newly selected samples are sequentially used to update the posterior probabil-

ity distribution. The benefits of Bayesian optimization are yet to be explored within the context of optimizing 

the MRS algorithm. Therefore, Bayesian optimization was adopted in this thesis to optimize the parameters 

of the MRS algorithm, which is novel. 

To optimize any objective function, for any given parameter combination, the function must return an evalu-

ation score as a scalar value. For image segmentation optimization, the definition of this score can be done 

through supervised or unsupervised segmentation evaluation. In supervised segmentation evaluation (SSE), 

the segmentation output of each parameter combination is compared to a reference dataset (ground truth) to 

compute the evaluation score, which represents the level of similarity between the segmentation result and 
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the reference dataset (Zhang et al., 2008). In RS, the most common SSE metrics include the quality rate 

(Weidner, 2008), over-segmentation (Clinton et al., 2010), under-segmentation (Clinton et al., 2010), root 

mean square (Weidner, 2008), and area fit index (Lucieer and Stein, 2002). Amongst those metrics, the quality 

rate is the most used. It is based on the Jaccard index (Jaccard, 1901), which is popularly known in computer 

vision as Intersection over Union (IoU). IoU is used in measuring the geometric similarity between a reference 

object and a target object. It was selected as the supervised evaluation score in this thesis. For unsupervised 

segmentation evaluation (USE), the evaluation score for each segmentation output is computed using the 

spectral values of the input image. This unsupervised score is indicative of the level of intra-segment uni-

formity and/or inter-segment dissimilarity within the segmentation output (Chabrier et al., 2006). Intra-seg-

ment uniformity can typically be measured through the variance of spectral values within each segment and 

inter-segment dissimilarity can be measured through spatial autocorrelation. For example, local variance val-

ues (Woodcock and Strahler, 1987) were the basis of the estimation of scale parameter (ESP) (Drăguţ et al., 

2014; Drǎguţ et al., 2010) tool, while area-weighted variance and Moran’s I (MI) (Moran, 1950) were used 

by Espindola et al. (2006). In RS, the ESP tool and the approach of Espindola et al. (2006) are the most 

popular USE methods. A comparative analysis by Grybas et al. (2017) highlighted the superiority of the 

method of Espindola et al. (2006) to the ESP tool. Various variations of the method of Espindola et al. (2006) 

exist in the literature (Böck et al., 2017; Chen et al., 2014; Georganos et al., 2018a; Johnson and Xie, 2011; 

Johnson et al., 2015; Kim et al., 2008; Martha et al., 2011; Yang et al., 2019). In this thesis, the global score 

of Espindola et al. (2006) was modified and used as the unsupervised evaluation score. 

1.4 Impact of input data on image segmentation 

To segment agricultural fields from satellite images, most authors use existing segmentation algorithms, some 

propose new segmentation algorithms, and others propose new segmentation parameter optimization ap-

proaches. A lot of attention has not been given to the determination of the optimal feature set for segmenting 

agricultural fields. In experimenting with a WorldView-2 image, Mesner and Oštir (2014) observed that the 

feature set used as input to the image segmentation algorithm influences the accuracy of the segmentation 

result. To segment agricultural fields from S1, the VV and VH bands are mostly used as was done in these 

studies (Clauss et al., 2018; Luo et al., 2021). For S2, most authors (Belgiu and Csillik, 2018; Csillik et al., 

2019; Vogels et al., 2019; Waldner and Diakogiannis, 2020; Watkins and van Niekerk, 2019a, 2019b) used 

only the visible (red, green, blue) and near-infrared (NIR) bands. The creation of different S1 and S2 feature 

sets and the evaluation of the impact of those feature sets on the segmentation accuracy of agricultural fields 

are yet to be comprehensively explored. The S1 and S2 sensors have different bands. Additionally, new fea-

tures like band indices can be calculated from those bands. Therefore, it is worth exploring the impact of 

different S1 and S2 feature combinations on the segmentation accuracy of agricultural fields.  



1 Introduction 

9 

 

1.5 Research goals and objectives 

The ultimate goal of this thesis is the optimal segmentation of agricultural fields from S1 and S2 images for 

all the federal states of Germany using the MRS algorithm. For experimentation purposes, the focus of this 

thesis was placed on the federal state of Lower Saxony as the study area. To optimally segment the agricul-

tural fields, both the MRS parameters and input feature dataset passed to the MRS algorithm ought to be 

optimized. Therefore, the main objectives of this thesis are: 

1. to develop a supervised approach for determining the optimal MRS parameters for segmenting agri-

cultural fields, 

2. to develop an unsupervised approach for determining the optimal MRS parameters for segmenting 

agricultural fields, 

3. to identify the optimal input feature set for segmenting agricultural fields. 

1.6 Structure of the thesis 

This thesis is based on three peer-reviewed research papers. Chapter 1 gives an introduction to the thesis 

including the motivation behind the research, the state-of-the-art regarding the automated delineation of ag-

ricultural fields from satellite images, and the research goals and objectives. Chapter 2 gives a general over-

view of the methodologies used in this thesis. The first published paper is captured by Chapter 3. This paper 

deals with the first objective of this thesis. Bayesian optimization was introduced in this paper, its mathemat-

ical foundation was explained, and then together with the GSAA, a supervised approach for optimizing the 

MRS parameter was proposed. The supervised approach developed in the first paper requires reference data 

(here the GSAA) for segmentation optimization. Given that the GSAA datasets are not publicly available in 

all the federal states of Germany, the second paper (Chapter 4) proposed an unsupervised metric and com-

bined it with Bayesian optimization for segmentation optimization. The second paper deals with the second 

objective of this thesis. The third paper, which deals with the third objective, can be found in Chapter 5. In 

this paper, the supervised Bayesian optimization approach developed in the first paper was applied to different 

feature sets generated from the S1 and S2 images to identify the feature set that generates the most accurate 

agricultural fields. Chapter 6 is a synthesis of the methodologies and results presented in this thesis. The 

chapter discusses the most significant results achieved, compares and contrasts the three research papers, 

highlights some potential usage of the overall outcomes of the thesis, and then points out some limitations 

associated with the thesis. Based on the main findings of the three papers, some conclusions are accordingly 

drawn in Chapter 7 and some ideas for future research are given as well.
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2 Overview of methodology 

Figure 2-1 is an integrated workflow that summarizes the methodologies used in this thesis. 

 

Figure 2-1. The workflow used in this thesis. VNIR stands for the visible (red, green, blue) and near-infrared (NIR) bands. MMC 

stands for monthly mean composite and GSAA refers to the Geospatial Aid Application. 

In Chapter 3, to efficiently segment the agricultural fields, Lower Saxony was divided into 562 tiles with each 

tile being 10 km by 10 km. Only the visible (red, green, blue) and near-infrared (NIR) bands of S2, hereby 

named S2-VNIR, were used for segmentation. The S2-VNIR images of May in 2018 were first clipped to the 

tiles and subsequently all non-agricultural areas were masked out. To optimize the segmentation of each tiled 

image, Bayesian optimization was combined with an area-weighted IoU, which is calculated by geometrically 
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comparing extracted segments to their corresponding parcels in a reference dataset. The reference dataset 

used in this study was the GSAA parcels. In this thesis, LPIS and GSAA are interchangeably used to mean 

the reference dataset containing the agricultural parcels declared by the farmers.  

In Chapter 4, 21 tiles that were representative of the other tiles in terms of landscape composition were se-

lected as test tiles and were used as the basis to define a new USE metric. This USE metric was combined 

with Bayesian optimization to segment agricultural fields at the 21 tiles. The unsupervised segmentation re-

sults at those 21 tiles were compared to the supervised results achieved in Chapter 3 at those same tiles.  

In Chapter 5, a new tiling system containing 575 tiles with variable sizes was created. The average size per 

tile is 11 km by 11 km. Here, monthly mean composites (MMCs) of S1 and S2 in 2018 were used. The MMCs 

were also clipped and non-agricultural areas were removed. Various band indices were calculated using the 

MMCs. Different feature combinations were done with the MMCs and the band indices to create different 

feature sets. To efficiently identify the optimal feature set, eleven test tiles were selected and the supervised 

optimization approach developed in Chapter 3 was applied. After identifying the optimal feature set, the 

segmentation optimization process was extended to the other 564 tiles in Lower Saxony. The optimal seg-

ments from the tiles were merged. The final segmentation result of 2018 for Lower Saxony was obtained by 

post-processing the merged segmentation result. The post-processing involved the removal of duplicate pol-

ygons and the simplification of the geometries of the polygons. 
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A B S T R A C T   

Accurate spatial information of agricultural parcels is fundamental to any system used in monitoring greenhouse 
gas emissions, biodiversity developments, and nutrient loading in agriculture. The inefficiency of the traditional 
methods used in obtaining this information is increasingly paving the way for Remote Sensing (RS). The 
Multiresolution Segmentation (MRS) algorithm is a well-known method for segmenting objects from images. The 
quality of segmentation depends on the a priori knowledge of which scale, shape and compactness values to use. 
With each parameter taking a varied range of input values, this research developed an automated approach for 
identifying the optimal parameter set without testing all possible combinations. At the core of our approach is 
Bayesian optimization, which is a sequential model-based optimization (SMBO) method for maximizing or 
minimizing an objective function. We maximized the Jaccard index, which is a measure that indicates the 
similarity between segmented agricultural objects and their corresponding reference parcels. As the optimal 
parameter combination varies between different agricultural landscapes, they were determined at a grid re
solution of 10 km. Mono-temporal Sentinel-2 images covering Lower Saxony in Germany were tiled to these 
grids and the optimal parameters were subsequently identified for each tiled grid. The optimal parameter 
combinations identified over the grids varied considerably, which indicated that a single parameter combination 
would have failed to achieve optimal segmentation. We found that the quality of segmentation correlated with 
the size of agricultural parcels. Under-segmentation was largely minimized but in areas with a predominant 
agricultural land-use, it was unavoidable. In agricultural parcels composed of heterogeneous pixels, over-seg
mentation was prevalent. Our approach outperformed other segmentation optimization methods existing in the 
literature.   

1. Introduction 

The increasing world population places enormous pressure on 
agricultural lands due to the growing demand for food. To meet this 
demand, natural habitats are being converted to farmlands, while ex
isting farmlands are being intensively utilized (Dudley and Alexander, 
2017). These conversions often lead to the destruction of biodiversity, 
high nutrient surpluses, and greenhouse gas emissions (Dudley and 
Alexander, 2017). The challenge then is to increase food production 
through sustainable agricultural management practices that leave 
minimal impact on the environment (Foley et al., 2011). 

The foundation of any effective agricultural management scheme is 
accurate spatial information of all agricultural parcels. The most pro
minent agricultural parcel information system within the European 
Union (EU) is the Land Parcel Identification System (LPIS), which is a 

spatial record of agricultural parcels declared by farmers (Taşdemir and 
Wirnhardt, 2012). It was established as part of the Common Agri
cultural Policy (CAP) framework to ensure that subsidies are correctly 
paid to farmers (Schmedtmann and Campagnolo, 2015). There have 
been suggestions by land managers to use LPIS as the foundation for 
developing sustainable agricultural schemes (Zielinski et al., 2008). 
Unfortunately, the LPIS has some drawbacks, which limits its use in an 
effective agricultural management scheme. Firstly, the LPIS does not 
record all agricultural parcels especially those with large grassland 
shares used for purposes like nature conservation and horse farming. 
This makes it difficult to monitor those parcels. Secondly, even though 
the LPIS is increasingly becoming available as open data in some EU 
countries, there is still restricted access in many countries including 
Germany. Thirdly, LPIS comes with a time lag, which makes in-season 
monitoring of parcels infeasible. In-season monitoring is critical to 
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understanding any emerging threats to biodiversity on agricultural 
lands in near real-time so that timely action can be taken to deal with 
those threats. Additionally, using LPIS requires a lot of pre-processing 
effort due to different technical implementations between different 
regions and countries within the EU. These drawbacks inhibit various 
agricultural bodies including public institutions from making use of the 
LPIS as source data for developing real-world agronomic and environ
mental applications. 

An automated system for generating a spatial database of all agri
cultural parcels could provide a solution to these drawbacks. With sa
tellite data becoming more accessible, Remote Sensing (RS) presents the 
best means of obtaining cost-effective, accurate and up-to-date in
formation of agricultural parcels due to its ability to obtain information 
over large areas with a high repetition rate (Atzberger, 2013). The 
launch and subsequent provision of free data by the Sentinel-2 satellites 
provide us a unique opportunity to obtain spatial information on 
agricultural parcels at a high spatial resolution over large geographical 
areas. The use of Sentinel-2 data for obtaining information on agri
cultural parcels is an active area of research as depicted by these studies 
(Belgiu and Csillik, 2018; Immitzer et al., 2016; Nasrallah et al., 2018; 
Watkins and Van Niekerk, 2019). The main limitation of those studies is 
that their respective methodologies were applied to small test areas and 
not geographic regions. One commonality amongst them is the use of 
object-based image analysis (OBIA), where spectrally similar pixels are 
grouped into homogenous objects through image segmentation and 
then the land-use type of each object is determined through object 
classification. A successful image segmentation process is the most 
critical step in this OBIA paradigm (Baatz and Schäpe, 2000; Benz et al., 
2004). 

Various algorithms have been developed to segment agricultural 
parcels from satellite images. The first category of algorithms is based 
on edge detection. They involve the extraction of edges and the sub
sequent linking of those edges to form boundaries. Turker and Kok 
(2013) and Ji (1996) applied edge-based methods to extract agri
cultural fields from SPOT and Landsat images respectively. The edge- 
based methods generate incomplete objects and often fail in landscapes 
where agricultural fields are small and boundaries are indistinct 
(Persello et al., 2019). Due to this limitation, region-based methods are 
more favored. Their underlying principle is that neighboring pixels with 
similar spectral values are merged into objects. Image clustering is one 
of the most simple and popular region-based methods. The Simple 
Linear Iterative Clustering (SLIC) algorithm developed by Achanta et al. 
(2012) was combined with supervised classification to segment agri
cultural fields from a WorldView-2 image by García-Pedrero et al. 
(2017). Nasrallah et al. (2018) used the mean shift clustering 
(Fukunaga and Hostetler, 1975) algorithm to delineate wheat fields 
from Sentinel-2 images. The main problem with clustering-based 
methods is that they often create very big objects, which do not follow 
the natural boundaries of image features. To deal with this problem, the 
third category of algorithms, a hybrid approach, is sometimes used. 
This approach involves the use of an edge extraction algorithm to 
produce an edge map, which is then given as an input to a region- 
growing algorithm. Using this approach, Li and Xiao (2007) and Yan 
and Roy (2014) respectively segmented crop fields from SPOT and 
Landsat images. The last category of algorithms, which is gaining 
traction in the RS world, is the use of Deep Neural Networks (DNN). A 
Fully Convolutional Network (FCN) called SegNet was employed by  
Persello et al. (2019) to identify initial agricultural boundaries from 
WorldView-3 images, which were later post-processed through a wa
tershed transform and combinatorial grouping to obtain complete 
agricultural fields. Rieke (2017) adopted the Fully Convolutional In
stance-aware Semantic Segmentation (FCIS) architecture of Li et al. 
(2016) for the segmentation of agricultural fields from a Sentinel-2 
image. The computationally complex nature of DNNs puts them at a 
disadvantage for use in RS because they take a lot of time for model 
training and optimization (Kamilaris and Prenafeta-Boldú, 2018). 

Therefore, they are mostly applied to small test areas as was done by  
Persello et al. (2019) and Rieke (2017). 

Even though there are many segmentation algorithms of choice, the 
Multiresolution Segmentation (MRS) algorithm proposed by Baatz and 
Schäpe (2000) and implemented in eCognition Developer (Trimble 
Germany GmbH, 2019) is the most widely used segmentation algorithm 
as evidenced by Marpu et al. (2010) and Neubert et al. (2008). Many 
researchers (Belgiu and Csillik, 2018; Conrad et al., 2010; Lebourgeois 
et al., 2017; Peña-Barragán et al., 2011; Vogels et al., 2019) have ap
plied the MRS algorithm for the delineation of agricultural parcels. MRS 
is a bottom-up region merging algorithm that starts with one-pixel 
objects and then subsequently merges neighboring objects into bigger 
objects where the change in the combined spectral and spatial hetero
geneity is minimal (Benz et al., 2004). In the implementation in 
eCognition Developer, the three main parameters that control the 
output of the MRS algorithm are scale, shape, and compactness. Each of 
these parameters takes a varied range of input values, thereby yielding 
an infinite number of parameter combinations. Therefore, determining 
the optimal parameter combination is critical to achieving optimal 
segmentation results. 

This research aims to develop an efficient approach to identify the 
optimal parameters needed to segment agricultural parcels using the 
MRS algorithm. The traditional approach to parameter optimization is 
the grid search method. Given any domain space of parameters, this 
method evaluates all possible parameter combinations using a given 
model and then returns the combination with the highest or lowest 
evaluation score as the optimal. As the number of parameters and 
elements in each parameter space increases, the computational time 
exponentially increases. This limitation was dealt with through the 
random search (Bergstra and Bengio, 2012) method. Using a smaller 
number of model evaluations within a shorter time frame, the random 
search method outperformed grid search (Bergstra and Bengio, 2012). 
However, these two methods are very inefficient in the process of 
identifying the optimal parameter because they do not consider the 
results of previous model evaluations before sampling new combina
tions, thereby wasting time on needless model evaluations. Overcoming 
these limitations requires the use of sequential model-based optimiza
tion (SMBO) (Bergstra et al., 2011). SMBO intuitively makes an in
formed prediction of which new combinations to test based on results 
from the previous model evaluations. 

SMBO is a succinct formalism of Bayesian optimization (Dewancker 
et al., 2016). Bayesian optimization is used in globally optimizing 
black-box functions (Mockus, 2012) with unknown derivatives that 
take a long time to evaluate (Frazier, 2018). It outperforms the grid and 
random search methods (Bergstra et al., 2011; Snoek et al., 2012). In
stead of directly solving a computationally expensive objective func
tion, Bayesian optimization first constructs a surrogate model with 
prior information of the objective function. The surrogate model is in
itiated with some samples drawn from the domain space to obtain 
posterior information of the objective function. A new sample is auto
matically identified by maximizing an acquisition function over the 
posterior surrogate model. This new sample is evaluated with the ob
jective function, and then the posterior surrogate model is updated with 
the result. This process is repeated until the maximum number of 
iterations or time allocation given by a user is reached (Dewancker 
et al., 2016; Shahriari et al., 2016). The sample from all the tests that 
minimized or maximized the surrogate model is returned as the op
timal. The usage of Bayesian optimization for parameter optimization 
has become an active research area (Eggensperger et al., 2013). It has 
been used in solving optimization problems (Brochu et al., 2010; 
Shahriari et al., 2016) in various areas such as robotics (Lizotte, 2007), 
environmental monitoring (Marchant and Ramos, 2012), sensor net
works (Osborne et al., 2010), and machine learning (Snoek et al., 2012; 
Thornton et al., 2013). To the best of our knowledge, there has not been 
any research geared towards the use of Bayesian optimization to opti
mize the parameters needed for segmenting satellite images, hence our 
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research is novel. 
To apply Bayesian optimization, the objective function must take a 

parameter combination from any domain space as an input and then 
return an evaluation score. We derived this score by making use of 
empirical segmentation evaluation (Zhang, 1996), where the similarity 
between segmented agricultural parcels and their corresponding re
ference objects was numerically assessed through the Jaccard index. 
The combination with the highest Jaccard index is returned by the 
Bayesian optimization method as the optimal. We tested our approach 
on mono-temporal Sentinel-2 images covering Lower Saxony, which is a 
federal state in Germany. The result achieved was compared with other 
optimization methods based on the MRS algorithm. 

The rest of the paper is structured as follows: the study area and the 
data are first described. Afterward, we explain the overall methodology 
including data preparation, development of our optimization approach, 
and its application to images in Lower Saxony. The results achieved are 
then discussed. We finish the paper by drawing some conclusions and 
pointing out further research directions. 

2. Study area and data 

We selected Lower Saxony (Fig. 1) as the study area because the 
Ministry of Food, Agriculture and Consumer Protection of Lower 
Saxony permitted us to use the LPIS as reference data. The coordinates 
of the map in Fig. 1 and all other maps in this paper are in UTM Zone 
32 N (EPSG:32632). Most of its landmass is located in the temperate 
climate zone of Europe. The southeastern part is located in the con
tinental climate zone. Apart from the southeastern part, where one can 

locate the Harz mountain range, the terrain is relatively flat, making it 
suitable for farming. Various agricultural land-use types cover about 
62% of its total land area of about 4,770,041 ha. The LPIS data is made 
up of 907,564 agricultural parcels. Based on this data, the most domi
nant agricultural land-use types, in order of percentage coverage, are 
grasslands (40%), summer cereals (23%), winter cereals (17%), pota
toes (3%), winter rapeseed (3%), and sugar beet (2%). The size of the 
agricultural parcels ranges from as low as 0.1 ha to as high as 155 ha. 
The average parcel size is 3 ha. Even though the agricultural landscape 
is composed of heterogeneous parcel sizes, the minimum parcel size is 
large enough to be detected by the Sentinel-2 satellite. To ensure that 
the optimal segmentation parameters are representative of the wide 
range of parcel sizes, a square tile grid system made up of 
10 km × 10 km tiles covering Lower Saxony was created. The total 
number of tiles came up to 562. Neighboring tiles have an overlap of 
1 km. These tiles served as the basic unit for which the optimal MRS 
parameter combination had to be determined. 

The Sentinel-2 images provided by the European Space Agency 
(ESA) were used for this research. Sentinel-2 is an optical satellite with 
thirteen spectral bands in the visible, near-infrared, and short-wave 
infrared regions of the electromagnetic spectrum. The spatial resolution 
ranges from 10 m to 60 m. The Level 1C images with a maximum cloud 
cover of 20% in May of 2018 were downloaded from the data repository 
of ESA. In May, winter crops are nearly at peak growth, while summer 
crops are just about shooting up. This makes it easier to differentiate 
and segment agricultural parcels, hence the choice of images in May. 
Fourteen Sentinel-2 images were downloaded to cover every part of 
Lower Saxony. For each tile, the first image that is cloud-free and non- 

Fig. 1. The study area is Lower Saxony, Germany. This federal state was divided by a tile grid system made up of 10 km × 10 km tiles (blue polygons) numbering 
562. For each tile, a Sentinel-2 image was extracted and used as input for segmentation. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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defective was identified via visual inspection. The final image acquisi
tion dates used in this research came up to six (Fig. 2). 

Three auxiliary datasets were used to mask out non-agricultural 
areas from the Sentinel-2 images. The first dataset was the German 
Official Topographic Cartographic Information System (ATKIS) pro
vided by the German Federal Agency for Cartography and Geodesy. 
ATKIS is a geographic database that captures the topography of 
Germany. The agricultural and non-agricultural vector layers covering 
Lower Saxony were extracted from this database. Out of the total 
agricultural land-cover area of about 2,936,292 ha, 65% are farmlands, 
33% are grasslands, and the rest is composed of fruit plantations, tree 
nurseries, horticultural lands, and orchard meadows. The second one 
was the hydrological network dataset provided by the German Federal 
Institute of Hydrology, which contains all watercourses in Germany. 
Finally, linear features representing roads in Lower Saxony were 
downloaded from Open Street Map (OSM). The total length of roads is 
about 268,529 km. According to the OSM feature classification, there 
are 22 different types of roads in Lower Saxony. Majority of them are 
tracks (38%), followed by residential roads (16%), minor roads that 
link villages and hamlets (9%), service roads (7%), cycleways (6%), 
tertiary roads (6%), paths (5%), and the others. 

3. Methodology 

This section describes the development of our optimization ap
proach and its application to image tiles in Lower Saxony, Germany. 
Our approach is a framework for identifying the optimal parameters 
needed for the segmentation of agricultural parcels and the actual de
lineation of those parcels from satellite images. Fig. 3 shows the general 
workflow. 

3.1. Data preparation 

Using the Sen2Cor (Main-Knorn et al., 2017) plugin in the Sentinel 
Application Platform (SNAP) of ESA, the Sentinel-2 Level 1C images 
were atmospherically and terrain corrected to obtain Bottom-Of-At
mosphere (BOA) Level 2A images. For each Level 2A image, only the 
visible (red, green, blue) and near-infrared bands were used. These four 

bands have a spatial resolution of 10 m, unlike the other bands that 
have a lower spatial resolution (≥20 m). A higher spatial resolution 
leads to a higher segmentation quality (Mesner and Oštir, 2014). We 
stacked the four bands together into an image. Therefore, this image, 
which is henceforth named S2-VNIR, has a spatial resolution of 10 m. 

The LPIS and ATKIS datasets sometimes contain sliver polygons. 
Those polygons were deleted based on their perimeter-to-area ratio. 
This deletion was more significant in the LPIS as the total number of 
parcels reduced to 853,892. The motorway line features in the OSM 
were buffered by 10 m, while the other line features like tracks and 
residential roads were buffered by 5 m to obtain polygon features. A 
buffer distance of 10 m was applied to all the watercourse line features. 
All the buffer distances were empirically determined by overlaying the 
line features on different images and testing various buffer distances 
such that the area of any resultant polygon was large enough to contain 
at least one pixel. Out of the various buffer distances we tested, the 
aforementioned buffer distances we used in this study were identified as 
optimal because they resulted in polygons with minimal encroachment 
on the boundaries of neighboring agricultural parcels. A no-data mask 
layer was created by merging the non-agricultural vector layer with the 
OSM and watercourse polygons. All pixels in each S2-VNIR data that 
intersected the no-data mask layer were masked out. Finally, each S2- 
VNIR data was clipped to the tile grid it spatially covered. These clipped 
S2-VNIR datasets were used for further processing. Fig. 4a shows one 
S2-VNIR image containing both agricultural and non-agricultural areas, 
while Fig. 4b shows the same image with all non-agricultural areas 
removed using the no-data mask layer. 

3.2. Optimization design and application 

At the heart of our optimization approach are image segmentation, 
supervised evaluation of segmentation quality, and Bayesian optimi
zation. 

3.2.1. Image segmentation 
The Multiresolution Segmentation (MRS) algorithm as implemented 

in eCognition Developer 9.5.0 was used for image segmentation. MRS is 
a pair-wise merging process that starts with single-pixel objects well 

Fig. 2. A total of six cloud-free Sentinel-2 images covering Lower Saxony were used. The total number of tiles for each image acquisition date is shown as well. The 
majority of the tiles were captured by images from 5 May to 8 May 2018. The 5 May image covered most tiles. 
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distributed over an image. For each pixel object, a neighboring pixel 
object is found such that the change in heterogeneity between them is 
minimal. The heterogeneity of each object is computed as a function of 
the color and shape of that object. Where the change in heterogeneity is 

minimal, the two objects are merged into a bigger object. Each object is 
handled once per loop cycle. This merging process stops as soon as the 
number of pixels in any object exceeds a user-given threshold value. 

The three parameters that influence the segmentation outcome are 

Fig. 3. The general workflow that was followed to determine the optimal parameter combinations for Lower Saxony.  

Fig. 4. (a) A non-masked S2-VNIR image. (b) The same image with non-agricultural areas, watercourses, and streets removed.  
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scale, shape, and compactness. Scale refers to the minimum object size, 
which is used as the stopping criteria for the algorithm. It is not 
bounded but mathematically, it cannot be lesser than one or greater 
than the size of the input image. The shape indicates the weight to put 
on the form of objects during the segmentation process as compared to 
color (spectral) information. Any change made to shape inversely af
fects color. The sum of the shape and color weights is equal to 1. Color 
is always required during the segmentation process, hence shape ranges 
from 0 to 0.9. The compactness weight defines the influence of the 
squareness of objects as opposed to their smoothness. The compactness 
and smoothness weights also add up to 1. Compactness ranges from 0 to 
1. For a more detailed mathematical explanation of the MRS algorithm, 
readers are referred to the relevant literature (Baatz and Schäpe, 2000; 
Benz et al., 2004; Trimble Germany GmbH, 2019). 

3.2.2. Evaluation of segmentation quality 
Empirical segmentation evaluation (Zhang, 1996) was adopted for 

this research. It involves the computation of the geometric discrepancy 
or similarity between the LPIS and each segmentation layer. For each 
segmentation layer, the first step is to identify the segment that corre
sponds to a reference parcel in the LPIS. This was done using the two- 
sided overlap criteria (Clinton et al., 2010). A segment was considered 
to be a corresponding segment if the area of the intersection between 
that segment and a reference parcel was either more than half of the 
area of the segment or the reference parcel. A modification was made 
such that if a segment has more than one reference parcel with the same 
land-use type, those parcels are merged as a single reference parcel for 
that segment (Fig. 5). This was done to minimize under-segmentation. 

The similarity between the reference parcel and the corresponding 
segment was computed via the Jaccard index (Jaccard, 1901), which is 
popularly known as Intersection over Union (IoU). It is a statistic widely 
used in computer vision tasks to measure the accuracy at which objects 
in an image or a video are detected by an algorithm. Its mathematical 
formulation is shown in Eq. (1); 

=IoU Y Area X Y
Area X Y

( ) ( )
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where X is the reference parcel, Y is the corresponding segment, X 
Y is the spatial intersection between the two objects and X Y re
presents the spatial union of the two objects. It is bounded between 0 
(no spatial similarity) and 1 (complete spatial match). The overall 
segmentation quality (OSQ) of each segmentation layer was finally 
computed as a weighted average of IoU over all segments using Eq. (2); 
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where Y represents a segment and n is the total number of segments in 

each segmentation layer. The segments along the spatial boundary of 
each segmentation layer were eliminated from the computation of the 
OSQ since they are artifacts created as a result of clipping the S2-VNIR 
images to the tiles. 

3.2.3. Bayesian optimization 
The essential components of our Bayesian optimization approach 

are:  

(a) Domain space: this refers to the parameter space of each MRS 
parameter, of which the Bayesian optimization routine has to 
identify the optimal parameter combination. Scale ranged from 20 
to 200, shape from 0 to 0.9, and compactness from 0 to 1.  

(b) An objective function to minimize: our objective function, f(x), 
takes a parameter combination, x, from the domain space, gen
erates a segmentation vector layer, uploads the vector layer into a 
PostgreSQL database, computes the OSQ, and then returns an in
verted OSQ as 1 – OSQ.  

(c) A surrogate model: it is a predictive probability model that captures 
the prior probability distribution, p(y), of the objective function and 
is iteratively updated to capture the objective function’s posterior 
probability distribution, p(y|x), where y is the inverted OSQ. The 
surrogate model is a realization of the Bayes’ rule (Eq. (3)); 

=p y x p x y p y
p x

( ) ( ) ( )
( ) (3) 

where p x y( | ) is a likelihood distribution and is a marginal prob
ability. To build the posterior probability distribution, we need to 
define two things: the prior distribution function and the initial 
parameter combinations with their corresponding inverted OSQ. 
Two of the most used prior distribution functions are Gaussian 
Process (GP) (Rasmussen and Williams, 2006) and Random Forest 
(RF) (Breiman, 2001). However, GP has become a standard prior 
(Brochu et al., 2010; Dewancker et al., 2016) in Bayesian optimi
zation. GP is parametrized by a mean function, μ, and covariance or 
kernel function, k. For convenience, μ is set as a zero function, 
leaving the user with the more interesting k, which defines the 
quality of the surrogate model (Brochu et al., 2010). The default 
choice of k for GP regression is the automatic relevance determi
nation (ARD) squared exponential kernel (Brochu et al., 2010; 
Snoek et al., 2012). However, Snoek et al. (2012) recommended the 

Fig. 5. The merger of reference parcels based on their land-use type. The seg
ment corresponds to three reference parcels based on the two-sided overlap 
criteria. The three parcels were merged into one because winter wheat is grown 
on all of them. 

Fig. 6. The scatterplot showing the non-inverted OSQ computed for each seg
mentation layer of the test image. Each dot represents a data point of scale, 
shape, and compactness with its corresponding non-inverted OSQ. The blue 
dots (125) represent the initial parameter combinations and the red dots (25) 
represent the actual Bayesian iterations. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this 
article.) 
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use of the ARD Matérn kernel (Stein, 1999) as captured by Eq. (4) 
because the squared exponential kernel is unrealistically smooth for 
practical optimization problems; 

=k x x
v

v
l

d x x K v
l

d x x( , ) 1
( )2

2 ( , ) 2 ( , )i j v i j

v

v i j1 (4) 

where v and l are non-negative parameters, d x x( , )i j is the distance 
between two parameter combinations xi and xj, is the gamma 
function, and Kv is the modified Bessel function (Rasmussen and 
Williams, 2006). We tested the first and second-order Matérn ker
nels recommended by Rasmussen and Williams (2006) for machine 
learning, and the first order proved superior, so we kept that. For 
first-order, v is 1.5 and for the second-order, it is 2.5. The next step 
is to initialize the GP prior model with actual data. This is usually 
done by randomly sampling a user-given number of parameter 
combinations from the domain space and then the inverted OSQs 
are computed with f(x). This randomness would prevent reprodu
cibility, so we opted for systematic sampling. To obtain the initial 
samples, D, we always sampled 125 parameter combinations cov
ering the low, middle and high ends of each parameter range. The 
values for scale are [40, 80, 120, 160, 200], and for both shape and 
compactness [0.1, 0.3, 0.5, 0.7, 0.9]. We used two parallel pro
cesses for segmenting and calculating the inverted OSQ of each 
parameter combination in D.  

(d) An acquisition function: it is used to propose new x combinations in 
the domain space to evaluate with f(x) by making use of the GP 
posterior probability distribution, p(y|x). Even though there are 
many acquisition functions, expected improvement (EI) (Jones 
et al., 1998) is the most commonly used (Frazier, 2018). The 

possible improvement on the current optimal parameter combina
tion, xo, at any new parameter combination, x , is given by Eq. (5); 

=I x max f x f x( ) { ( ) ( ), 0}o (5) 

where f(xo) is the inverted OSQ value at xo. Given that f x( ) is com
putationally expensive to evaluate, the approach to identifying which x 
to evaluate next is rather to compute the expected value of I x( ) using 
the GP posterior, p(y|x), which is faster to compute. Computing this 
expected value involves several partial integrations of I x( ) to obtain a 
closed form (Jones et al., 1998) as shown by Eq. (6); 

= +EI x y y y y
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where yo is the inverted OSQ value at xo, y is the GP posterior p(y|x), 
and are the standard normal density and distribution functions, and s
is the standard error of the GP posterior at x. Normally, many para
meter combinations are randomly sampled from the given domain 
space, and the combination with the highest expected improvement is 
selected as a candidate and passed to f(x) as the next point to evaluate. 
We used 10,000 random parameter combinations from our domain 
space as defined in (a). Alternatively, the x candidate can be identified 
using the Limited Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) (Liu 
and Nocedal, 1989) algorithm. From the 10,000 random combinations, 
we identified the first five combinations with the highest expected 
improvement. Using these combinations as initialization points, L-BFGS 
is iteratively able to find the local minima of EI, of which the optimal is 
then selected as the best candidate. We chose L-BFGS simply because it 
is more intuitive and ensures some level of reproducibility. This x 
candidate is then given to f(x) to compute the inverted OSQ. The x 

Table 1 
The impact of different initial parameter combinations on the results of Bayesian optimization. The number of initial combinations for TS1 was 64 and TS2 was 27. 
The number of Bayesian iterations for TS1 was 86 and for TS2 123.              

Test Scale Shape Comp. Optimal Parameters OSQ Time  

Range Interval Range Interval Range Interval Scale Shape Comp.    

TS1 20–200 60 0.0–0.9 0.3 0.0–0.9 0.3 60 0.884 0.919 66.82% 36 min 
TS2 30–190 80 0.0–0.8 0.4 0.0–0.8 0.4 56 0.9 0.677 67.54% 49 min 

Fig. 7. The highest OSQ computed for each tile in Lower Saxony.  
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candidate and its inverted OSQ are then appended to D. The process is 
repeated from (c) to (d) with the current p(y|x) replacing p(y) to con
tinuously update the posterior probability distribution. The repetition is 
done until a user-given number of iterations is completed. We allowed 
150 function calls to f(x) including the 125 initial samples, meaning the 
actual number of Bayesian iterations was 25. 

For the complete mathematical foundation of Bayesian optimiza
tion, readers are referred to Brochu et al. (2010), Frazier (2018) and 
Shahriari et al. (2016). For automation purposes, we used eCognition 
Server 9.5.0 and its command-line interface (CLI) for segmentation. We 
limited parallel execution of the MRS segmentation to two because we 
have two eCognition Server licenses. The Python programming lan
guage was used to chain everything together. We used the Bayesian 

optimization implementation of Scikit-optimize in Python. It is im
portant to mention that, the computed OSQ was inverted because Scikit- 
optimize is programmed for function minimization. 

We randomly selected one of the 562 tiled images to test the ef
fectiveness of our Bayesian optimization approach in identifying the 
optimal MRS parameters. To visualize the parameter combinations 
sampled by the Bayesian optimization routine alongside the corre
sponding non-inverted OSQs in two-dimensions, we first conflated each 
parameter combination of scale, shape, and compactness into a single 
value using Euclidean Distance (ED). Each scale value was normalized 
between zero and one before being used in the calculation of the ED. 
We then plotted each ED against its corresponding non-inverted OSQ 
(Fig. 6). Our Bayesian optimization approach was very efficient as it 

Fig. 8. Some of the contributing factors preventing the segmentation quality from reaching 100%. (a) A parcel in LPIS with three corresponding segments (CSs) 
overlaid on a Sentinel-2 image. The overlapping area, over-segments, and under-segments between each CS and the LPIS parcel are shown in (b), (c) and (d) 
respectively. 

Fig. 9. The prevalent instances of over-segmentation. (a) A sentinel 2 image. (b) LPIS parcels and their corresponding segments overlaid on the Sentinel-2 image. Two 
corresponding segments were respectively created for each reference parcel due to the heterogeneity of the soil pixels in both parcels. 
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mostly exploited parameter combinations that yielded high OSQs. Out 
of the 25 combinations it sampled, 16 of them yielded OSQs above 
60%. Using a total execution time of 16 min, the highest OSQ of 67.33% 
(ED = 1.1) was achieved with the parameter combination of 55 for 
scale, 0.9 for shape, and 0.602 for compactness. 

Additional information discernable from Fig. 6 is that the distribu
tion of the initial parameter combinations can play a role in identifying 
the optimal combination. Therefore, before applying our approach to 
the 562 tiles, we also tested it to see how the variation of the initial 
parameter combinations could affect the OSQ. Table 1 shows two tests 
labeled TS1 and TS2 that were done using different initial parameter 
combinations. It also captures the optimal parameter combination, 
OSQ, and execution time per test. The number of initial combinations 
for TS1 was 64 and for TS2 27. For all tests, the number of iterations 
was kept at 150, meaning 86 and 123 Bayesian iterations were run for 
TS1 and TS2 respectively. 

From Table 1, the differences in OSQ between each test and the 
approach we adopted, which yielded an OSQ of 67.33%, was very 
marginal. Therefore, we concluded that the initial parameter combi
nations do not significantly affect the Bayesian optimization results as 
long as they are well distributed over the domain space and the number 
of Bayesian iterations is increased accordingly. Due to the increased 
number of Bayesian iterations, the execution time per test drastically 
increased. It is imperative to mention here that the actual optimal 
parameter combination needed for segmentation based on the MRS 
algorithm is unknown. This is true especially for shape and 

compactness because they take floating-point numbers as input unlike 
scale, which accepts only integers, hence more deterministic. Ad
ditionally, different methods under different time constraints will most 
likely yield different results, an example of which is shown in Table 1. 
Therefore, a method that can approximate this unknown optimal 
combination in a time-efficient manner is the goal of any segmentation 
optimization approach. Our approach of using 125 initial combinations 
was more viable than the other two tests (TS1 and TS2) in terms of 
approximating the optimal MRS parameter combination within a 
shorter execution time. Therefore, we applied our approach to the 562 
tiles in Lower Saxony to approximate the optimal segmentation para
meters and delineate agricultural parcels. The execution was completed 
in seven days. 

3.3. Other optimization methods 

Two existing segmentation optimization methods based on the MRS 
algorithm in eCognition Developer were compared with our approach. 
The first one is the segmentation accuracy assessment (SAA) method 
(Anders et al., 2011). The SAA, just like our approach, is a supervised 
method. It creates segments at different scale levels, computes the 
discrepancy between reference objects and their corresponding seg
ments at each level, and then identifies the level with the least dis
crepancy as optimal. To calculate the discrepancy measure for any 
segmentation layer, it first generates a frequency distribution from the 
spectral values of pixels that fall within each reference object and its 
corresponding segment, respectively. The two frequency distributions 
are then normalized with the respective number of pixels in each dis
tribution. The segmentation error between the reference object and its 
corresponding segment is then calculated as the sum of absolute error 
between the two normalized frequency distributions. The discrepancy 
measure is finally computed as the average sum of absolute error over 
all segments (Eq. (7)); 

=
=

AAE
n

H
a

H
b

1

i

n
x

x

y
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where n is the total number of segments in the segmentation layer, Hx is 
the frequency distribution of pixels in the reference object, Hy is the 
frequency distribution of pixels in the corresponding segment, and ax
and by are the number of pixels within the reference object and the 
corresponding segment, respectively. The segmentation layer with the 
lowest AAE value is the optimal. The default values of 0.1 for shape and 
0.5 for compactness were used. The scale ranged from 20 to 200 with 

Fig. 10. Under-segmentation caused by adjacent parcels with similar spectral behavior. (a) A Sentinel-2 image. (b) Two LPIS parcels and their corresponding segment 
overlaid on the Sentinel-2 image. One corresponding segment was created due to the spectral similarity of winter barley and winter triticale. 

Fig. 11. Correlation between the highest OSQ and the median area of agri
cultural parcels for all tiles. 
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increments of 5. 
The second optimization method is the estimation of scale para

meter (ESP-2) tool (Drăguţ et al., 2014), which is an improvement of 
the original version (Drǎguţ et al., 2010). Unlike the SAA and our ap
proach, the ESP-2 tool is an unsupervised method, which is purely 
driven by the image content and does not use any reference data. Ad
ditionally, it is fully automated and applicable to images with multiple 
bands. Due to those characteristics, it is very popular in the world of 
MRS. It is underpinned on the concept of local variance (LV) 
(Woodcock and Strahler, 1987). It creates segments in a stepwise 
manner using incremental scale values. For each segmentation layer, 
the standard deviation of pixels in each segment is computed for each 
image band. The LV per band is calculated as the average standard 
deviation over all segments. The LV is finally averaged over all bands to 
obtain one LV per segmentation layer (Eq. (8)); 

=
= =

ALV
b n
1 1

j

b

i

n

i
j1 1 (8) 

where b is the total number of bands in an image, n is the total number 
of segments in a segmentation layer, and i is the standard deviation of 
pixels per segment. ALV is a measure indicating the level of 

homogeneity within a segmentation layer. When the ALV of the current 
scale level is equal to or lower than the previous ALV, the iteration 
stops, and the segments created at the previous scale level are main
tained. Here again, the default values of 0.1 for shape and 0.5 for 
compactness were kept and the scale was automatically determined by 
the ESP-2 tool. 

4. Results and discussion 

4.1. Analysis of segmentation quality 

The highest OSQ identified for each tile is shown in Fig. 7. Most of 
the values ranged from 42.0% to 69.2%. The three tiles with values 
above 69.2% are highly dominated by non-agricultural land-use such 
that only a few reference parcels were used for segmentation evalua
tion. The lower the number of reference parcels, the higher the prob
ability of obtaining high OSQ values. This relationship was also ob
served by Novelli et al., (2017), who emphasized the importance of 
using a high number of reference objects in supervised segmentation 
evaluation after establishing a positive correlation between segmenta
tion accuracy and the amount of reference data used for evaluation. 

It is important to state that a 100% OSQ is not achievable for a 

Fig. 12. Segmentation evaluation at the segment level for T1 (highest OSQ) and T2 (lowest OSQ). (a) and (b) show the Sentinel-2 images used for segmenting the T1 
and T2 tiles respectively. The created segments have been colored according to the IoU computed for each of them and subsequently overlaid on each image 
respectively at (c) and (d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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couple of reasons. The LPIS parcels are polygons with straight edges 
representing a single land-use digitized from orthophotos. Conversely, 
the segments automatically extracted from the Sentinel-2 images have 
pixelated edges. Additionally, the orthophotos have a higher spatial 
resolution (≤1 m) than the Sentinel-2 images. These differences cul
minate in the segments and the LPIS parcels being misaligned especially 
at the borders (Fig. 8a). Simplifying the segments did not eliminate this 
problem. 

Over-segmentation was the main contributing factor that negatively 
affected the OSQ. It mostly occurred due to the heterogeneity of pixels 
within a parcel. In Fig. 8a, the LPIS indicates that there is one parcel on 
which three types of clover are grown. Due to the different growth 
stages, the MRS algorithm created three different segments (CS1, CS2, 
and CS3) as captured by Fig. 8a. This led to over-segmentation 
(Fig. 8b–d). Even though this type of over-segmentation is acceptable 
within the context of biodiversity monitoring and structural change 
analysis of agricultural parcels, it reduces the OSQ. The IoU computed 
respectively for CS1, CS2, and CS3 are 49.27%, 16.48% and 26.59%. 
Using those three segments, the OSQ amounted to 37.39%. When all the 
segments are first merged into a single polygon before computing the 
OSQ, the OSQ increased to 90.51%. This underscores the negative 
impact of over-segmentation on the OSQ. Even though this instance of 
over-segmentation led to a lower OSQ, it is entirely acceptable given 
that the segmentation algorithm correctly delineated the different 
parcels present in that area as visible from the satellite image. The in
ability of LPIS to correctly capture the different agricultural parcels 
present in that area was the negative driving force behind the low OSQ. 
Therefore, the low OSQ can largely be attributed to the error in LPIS 
and not the segmentation. 

Fig. 9 captures another instance of over-segmentation. In Fig. 9b, 
both LPIS parcels are used to grow maize. When the Sentinel-2 image 
(Fig. 9a) was taken on 5 May 2018, the parcels were bare consisting of 
soil patches with different colors, which led to the creation of small 
fragments within those parcels (Fig. 9b). Such instances of over-seg
mentation were more prevalent. As over-segmentation increases, the 
OSQ decreases. In general, the best possible way to deal with over- 
segmentation will be to merge neighboring segments with the same 
land-use type after classifying the segments. 

Under-segmentation, which mostly occurred when the same crop 
types are grown on adjacent parcels, was highly minimized due to the 

modification made at the segmentation evaluation stage. In adjacent 
parcels with different crop types but similar spectral properties, under- 
segmentation was unavoidable. In Fig. 10b, even though the LPIS in
dicates that two distinct parcels are present, one big segment was cre
ated because winter barley and winter triticale have similar spectral 
properties as shown in Fig. 10a. 

Another factor that influenced the segmentation quality was the size 
of agricultural parcels. Fig. 11 shows the linear relationship between 
the OSQ and the median area of agricultural parcels per tile. The 
Pearson correlation coefficient (r) of 0.56 indicated that at tiles with 
larger agricultural parcels, the OSQ was higher as opposed to tiles with 
smaller agricultural parcels. Tiles with similar median areas have si
milar OSQ values, thereby naturally clustering together as visible in  
Fig. 7. 

To further demonstrate the impact of the area of agricultural parcels 
on the segmentation quality, two tiles with contrasting agricultural 
parcel structures were selected for analysis at the segment level.  
Fig. 12a captures the Sentinel-2 image of tile T1 with the highest OSQ 
(69.17%), while Fig. 12b shows that of tile T2 with the lowest OSQ of 
42.04%. The median area of agricultural parcels in T1 and T2 is 4.12 ha 
and 1.73 ha respectively. The segments created for each tile are shown 
in Fig. 12c and d respectively. Each segment is colored by the geometric 
match, here the IoU, between that segment and its corresponding LPIS 
parcel. In Fig. 12a, the agricultural parcels are big and compact. Dif
ferent agricultural land-use types like sugar beets and winter wheat 
exist there. This made it easier to delineate the parcels, which led to 
most parcels having high IoU values. Fig. 12b, on the other hand, shows 
that the parcels are small and elongated. Almost all of them are used to 
grow pome fruits with virtually no boundaries between them discern
able from the Sentinel-2 image. This led to the creation of segments way 
bigger than the LPIS parcels, which led to most of the segments having 
very low IoU values. This consequently led to a low OSQ for that tile. 

The fidelity of the OSQ was checked by visually inspecting tile T3, 
which has a relatively high OSQ of 68.46%. The Sentinel-2 image and 
the generated segments are shown in Fig. 13. About 86% of this tile is 
made up of pasture lands. With our segmentation evaluation process 
mostly focused on minimizing under-segmentation, it culminated in the 
creation of big segments, which were not representative of real-world 
agricultural parcels. Therefore, the OSQ should not be used alone but 
supported with visual inspection to make full deductions on 

Fig. 13. Visual inspection of tile T3 with a relatively high OSQ of 68.46%. (a) The Sentinel-2 image of T3. (b) The evaluated corresponding segments colored by their 
respective IoU and draped over the Sentinel-2 image. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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segmentation quality. 

4.2. Optimal parameter combination per tile 

The scale, shape, and compactness values that resulted in the 
highest OSQ for each tile are presented here. Fig. 14a shows the optimal 
scale values. Most of the scale values were from 34 to 53, with the 
modal value being 40. Scale values above 77 correspond to the tiles 
with a very small number of LPIS parcels for evaluation. The optimal 
shape value identified for each tile is depicted in Fig. 14b. The shape 
values did not show a lot of variability over its possible range. Most of 
the values were above 0.8 and often reached the maximum of 0.9, 
which signifies the dominance of the shape of the agricultural parcels as 
compared to their spectral information during the segmentation eva
luation process. Fig. 14c shows the optimal compactness values for the 
tiles. Unlike shape, the compactness values were so variable that visible 
clusters were not established. Even though the values stretched over the 
possible compactness range, most of them were above 0.5, with 0.7 
being very dominant. This stands to reason given that the optimal shape 

values were relatively high. Additionally, in Germany most agricultural 
farms have square or rectangular shapes, hence very compact. 

4.3. Comparison with other optimization methods 

The SAA and ESP-2 methods were applied to the T1, T2, and T3 
images. Table 2 captures the optimal parameters and corresponding 
OSQ values obtained by the two optimization methods and ours. As a 
reminder, the other two methods only optimized scale, while shape and 
compactness were kept at their default. At all tiles, SAA and ESP-2 
obtained different scale and OSQ values, which is contrary to the results 
of Belgiu and Drǎguţ (2014). Belgiu and Drǎguţ (2014) evaluated the 
SAA and ESP-2 methods for optimal extraction of buildings from very 
high-resolution satellite images. In the test areas with big buildings, 
both methods achieved very similar results. In general, buildings are 
very compact and have very homogeneous surfaces making it easier to 
delineate them compared to agricultural parcels. This could have con
tributed to the differences in the results alongside the different satellite 
images used. 

At all three tiles, the OSQs of SAA and ESP-2 were significantly 
lower than our approach (Table 2). The optimal shape and compactness 
values identified by our approach gave a better indication of the 
structural composition of parcels in each tile. Further, the visual as
sessment of the IoU computed at the segment level showed that there 
were more segments with higher qualities based on our optimization 
approach (Fig. 15a–c) than the SAA (Fig. 15d–f) and the ESP-2 
(Fig. 15g–i) methods. 

The outcome of the two methods using the optimal shape and 
compactness values identified with our optimization approach is shown 
in Table 3. This time around, their OSQs improved significantly and got 
closer to those of our approach. This underscores the importance of 
determining the optimal values not only for scale as is done by the SAA 
and ESP-2 but also for the other MRS parameters. This is what differ
entiates our approach from the other two, making ours demonstrably 
more accurate. At T2, the segmentation challenge remained. Both 
methods, as well as our approach, performed poorly due to the over
whelming presence of small and elongated agricultural parcels. This is 
more of a data issue than the segmentation optimization method. The 
likely solution to this problem is the use of an image with a higher 
spatial resolution than Sentinel-2 such that distinct boundaries between 
the agricultural parcels can be identified, thereby making it easier to 
delineate the parcels while minimizing under-segmentation. 

5. Conclusions 

Accurate and up-to-date information on agricultural parcels is pi
votal to any agricultural management system. The most prominent 
spatial database of agricultural parcels within the European Union (EU) 
called the Land Parcel Identification System (LPIS) suffers certain 
drawbacks such as the inadequate coverage of all agricultural parcels, 
restricted access to the data, the time lag that comes with the data, and 

Fig. 14. The optimal parameter values identified for each tile in Lower Saxony.  

Table 2 
The optimal parameters and corresponding OSQ values obtained by the two 
optimization methods and our approach.        

Tile Method Shape Compactness Scale OSQ  

T1 SAA 0.1 0.5 85 55.65% 
ESP-2 0.1 0.5 73 50.81% 
Our approach 0.9 0.966 51 69.17% 

T2 SAA 0.1 0.5 45 30.24% 
ESP-2 0.1 0.5 147 33.23% 
Our approach 0.9 0.3 40 42.04% 

T3 SAA 0.1 0.5 65 48.59% 
ESP-2 0.1 0.5 83 52.52% 
Our approach 0.842 0.906 77 68.46% 
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the different implementation methods used by the different EU coun
tries to generate the data leading to different sources of error. To deal 
with those drawbacks, a supervised and automated Bayesian optimi
zation framework was developed to identify the optimal parameters of 
the Multiresolution Segmentation (MRS) algorithm for segmenting 

agricultural parcels in the federal state of Lower Saxony in Germany 
based on mono-temporal Sentinel-2 images. 

To determine the optimal parameters, an area-weighted Jaccard 
index was used as a proxy for segmentation quality. The parameter 
combination with the highest weighted Jaccard index was adjudged the 
optimal for each 10 km × 10 km tile grid in Lower Saxony. The es
tablished optimal parameters were variable especially the compactness 
and scale, which indicated that a single parameter combination could 
not have guaranteed optimal segmentation for Lower Saxony. This re
inforces the significance of our approach to determine the optimal 
parameters for different parts of Lower Saxony using tile grids. Given 
that the sizes of agricultural parcels in Germany do not drastically 
change from one year to another, the MRS parameters established for 
one year can potentially be used to segment agricultural parcels from 
images acquired within the same time window (month) from another 
year. We came to this preliminary conclusion after doing two tests. In 

Fig. 15. Segmentation evaluation at the segment level for the different optimization approaches at T1 (a, d, g), T2 (b, e, h), and T3 (c, f, i). Each segment is 
symbolized by its IoU and draped over their respective images. (a)–(c) are the segments based on our optimization approach, (d)–(f) are based on the SAA method, 
and (g)–(i) are those of the ESP-2 method. 

Table 3 
The optimal scale and corresponding OSQ values obtained by the other opti
mization methods using the shape and compactness values identified with our 
approach.         

Tile Shape Compactness Scale OSQ    

SAA ESP-2 SAA ESP-2  

T1 0.9 0.966 35 45 63.91% 68.75% 
T2 0.9 0.3 30 54 42.00% 39.30% 
T3 0.842 0.906 35 64 58.50% 67.48% 
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the first test, we used the MRS parameters established for tiles in May of 
2018 to segment cloud-free images of those same tiles in May of 2019 
and then used the LPIS data of 2019 to calculate the overall segmen
tation quality (OSQ) per tile. For the second test, we applied our 
Bayesian optimization approach to optimally segment those cloud-free 
images in May of 2019 using the LPIS data of 2019 as a reference and 
subsequently identified the OSQ of the optimal parameter combination 
per tile. The average difference in OSQ between those two tests over all 
the tiles was below 2%. Therefore, in the absence of LPIS for a parti
cular year, the optimal MRS parameters established from a previous 
year can be used to segment images acquired within the same month of 
the current year. The developed approach can also be used to segment 
images taken at different times of the year to do in-season monitoring of 
the structural changes on agricultural parcels. Our approach out
performed the scale optimization method of the SAA and ESP-2 in all 
test areas. Those methods only focus on scale optimization, neglecting 
the other MRS parameters like shape and compactness. Given that 
different agricultural landscapes may have different structural compo
sitions, our approach proved the importance of optimizing all three 
MRS parameters to achieve optimal segmentation. Our approach is 
independent of the input data, hence can be applied to any satellite 
image and reference data to optimize segmentation. 

The research showed that the structural composition of agricultural 
parcels in a particular area influences the segmentation quality. The 
bigger the sizes of agricultural parcels are, the higher the segmentation 
quality. Over-segmentation was another factor that influenced the 
segmentation quality. It showed up when crops on a parcel are at 
substantially different stages of growth or when pixels within a parcel 
are very heterogeneous, thereby leading to the creation of small objects 
within a parcel. Under-segmentation, on the other hand, was largely 
dealt with in this research by merging LPIS parcels of the same land-use 
type during the segmentation evaluation process. This research also 
revealed that discrepancy measures alone do not give a complete pic
ture of segmentation quality. Therefore, they should not be used in 
isolation but supported by visual inspection to make final decisions. 

It is imperative to finally mention here that as we used LPIS as re
ference data to optimize the segmentation process, we did not achieve 
better geometric results than the LPIS as we saw in the best obtained 
OSQ being 69.17% at T1. LPIS is generated based on very high-re
solution orthoimages with the spatial resolution being at least 1 m. We 
used Sentinel-2, which has a lower spatial resolution. With very high- 
resolution orthoimages like those used to create the LPIS, our Bayesian 
optimization approach can potentially be used to generate segments 
with similar geometric accuracy as the LPIS. 

6. Future outlook 

Going into the future, we will focus on the tiles with low segmen
tation quality to develop new methods of improving the segmentation 
quality. In this research, we applied our optimization approach to 
mono-temporal images. Therefore, multi-temporal Sentinel-2 images 
would be tested. Other auxiliary datasets like a Digital Elevation Model 
(DEM) and soil map would be used to augment the satellite images 
during the segmentation process to check if they can improve the seg
mentation quality. Instead of segmenting all agricultural areas in an 
image at once, segmentation would be done by separating arable and 
grassland areas. Initial tests based on mono-temporal images show 
promising results when this separation is done. In areas dominated by a 
single land-use, the merger of reference parcels with the same land-use 
would be turned off during the segmentation evaluation stage. This can 
potentially lead to the creation of smaller segments. Finally, another 
area of possible improvement could be the creation of tile grids based 
on similar structural compositions of agricultural parcels. 
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Abstract: Image segmentation is a cost-effective way to obtain information about the sizes and
structural composition of agricultural parcels in an area. To accurately obtain such information,
the parameters of the segmentation algorithm ought to be optimized using supervised or unsupervised
methods. The difficulty in obtaining reference data makes unsupervised methods indispensable.
In this study, we evaluated an existing unsupervised evaluation metric that minimizes a global score
(GS), which is computed by summing up the intra-segment uniformity and inter-segment dissimilarity
within a segmentation output. We modified this metric and proposed a new metric that uses absolute
difference to compute the GS. We compared this proposed metric with the existing metric in two
optimization approaches based on the Multiresolution Segmentation (MRS) algorithm to optimally
delineate agricultural parcels from Sentinel-2 images in Lower Saxony, Germany. The first approach
searches for optimal scale while keeping shape and compactness constant, while the second approach
uses Bayesian optimization to optimize the three main parameters of the MRS algorithm. Based on
a reference data of agricultural parcels, the optimal segmentation result of each optimization approach
was evaluated by calculating the quality rate, over-segmentation, and under-segmentation. For both
approaches, our proposed metric outperformed the existing metric in different agricultural landscapes.
The proposed metric identified optimal segmentations that were less under-segmented compared to
the existing metric. A comparison of the optimal segmentation results obtained in this study to existing
benchmark results generated via supervised optimization showed that the unsupervised Bayesian
optimization approach based on our proposed metric can potentially be used as an alternative to
supervised optimization, particularly in geographic regions where reference data is unavailable or
an automated evaluation system is sought.

Keywords: agricultural parcels; OBIA; multiresolution segmentation; unsupervised segmentation
evaluation; spatial autocorrelation; weighted variance; bayesian optimization; optimal segmentation

1. Introduction

Agriculture is the single largest land use (LU) covering the Earth’s land surface [1]. The increasing
global population and the accompanying increase in food consumption are placing unparalleled
demands on agricultural lands [2]. Some of the negative impacts of these demands include the loss
of biodiversity [1], the degradation and destruction of natural ecosystems [3], and an increase
in greenhouse gas (GHG) emission [4]. Ensuring food security while minimizing the negative impact of
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agriculture on the environment requires the use of sustainable agricultural practices [2,5]. Formulating
agricultural and environmental policies that ensure sustainable agriculture requires the development
of an agricultural monitoring system. The foundation of such a system is accurate and up-to-date
agricultural LU maps [6,7]. Agricultural LU maps are essential input data for various processes such
as the estimation of biomass and yield [7], monitoring of the phenology of different agricultural LU
types [7], modeling of GHG variability [8], estimation of the area of agricultural lands [9], and control
of area-based subsidies paid to farmers [9].

The generation and continuous update of agricultural LU maps using traditional methods such as
field surveys are inefficient and expensive [8]. Remote Sensing (RS) provides a better alternative due
to the frequency at which data can be acquired over large geographical areas [10,11]. The availability
of high-resolution satellite images has increased the popularity of Object-Based Image Analysis (OBIA)
over traditional pixel-based image analysis [12]. Unlike pixels, which carry only spectral information,
image objects additionally carry contextual and spatial information [12], thereby making them more
useful for subsequent processes such as classification. The advantages of OBIA over pixel analysis for
generating agricultural LU maps have been reported by these authors [10,13,14].

Image segmentation, which is the process of clustering image pixels into homogeneous objects,
is a critical step in OBIA [15]. Various authors [16–20] have proved that the quality of segmentation
has a direct impact on classification accuracy. One of the most popular segmentation algorithms is
the Multiresolution Segmentation (MRS) algorithm proposed by Baatz et al. [21]. MRS is a bottom–up
region merging algorithm that starts with one-pixel objects and then in a pairwise manner merges
smaller objects into bigger ones until a user-given scale threshold is met [22]. In a recent review article
by Ma et al. [23], the MRS algorithm as implemented in the eCognition software [24] accounted for 80.9%
of 254 case studies the authors reviewed. This overwhelming popularity hinges on the fact that some
exhaustive evaluation studies [25–27] have had eCognition coming up tops. In eCognition, the three
main parameters that influence the quality of the MRS segmentation are scale, shape, and compactness.
To obtain optimal segmentation results, it is imperative to optimize these parameters.

To optimize any segmentation algorithm, the quality of the segmentation output of that algorithm
for different parameter combinations ought to be evaluated. This can be done through visual
inspection, supervised segmentation evaluation, or unsupervised segmentation evaluation [28,29].
Visual inspection is subjective and inherently limits the number of segmentation evaluations that can
be done due to its laborious nature [29]. The supervised evaluation methods assess a segmentation
result by comparing it to a reference data and computing a global score (GS) that represents the degree
of similarity between the segmentation result and the reference data [29]. The main limitation
of supervised segmentation evaluation is that the acquisition of reference data is expensive and
time-consuming [29]. This makes unsupervised segmentation evaluation indispensable, as it does not
rely on reference data but purely on the content of an image to evaluate the segmentation result [29].
For the unsupervised evaluation methods, the GS is a statistical measure that indicates the level of
intra-region uniformity and/or inter-region dissimilarity within the segmentation result [30]. In RS,
two of the most used methods are the estimation of scale parameter (ESP) [31,32] tool and the objective
function [33]. The ESP tool only addresses the intra-region uniformity of segments by making use
of local variance graphs [34]. The objective function of Espindola et al. [33] is a combined measure
that addresses intra-region uniformity through average area-weighted variance (WV) and inter-region
dissimilarity through spatial autocorrelation using the global Moran’s I (MI) [35]. A comparative
analysis by Grybas et al. [36] showed that the objective function outperformed the ESP tool. Various
variations [19,37–42] of the objective function have been used in the literature.

To compute the GS for each input image band, Espindola et al. [33] separately normalized the WV
and MI between zero and one before summing them up. Böck et al. [43] identified a weakness with this
normalization step, pointing out that the selection of which segmentation is optimal was dependent
on the user-defined scale parameter range. They subsequently proposed the use of fixed ranges to
normalize the WV and MI. This produced stable results regardless of the input range of the scale
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parameter. In the remainder of the paper, we call this modification of Böck et al. [43] the Böck metric.
Georganos et al. [16] identified some limitations with the normalization approach of the Böck metric,
which triggered them to propose a different approach. The problem with their approach is that
it adds some level of subjectivity to the evaluation process, because it requires some initial empirical
tests. This makes their proposal unusable within our context of having a metric that can be used for
automated segmentation evaluation without any human intervention.

In this study, we aimed at proposing a new unsupervised evaluation metric for assessing
the segmentation output of any segmentation algorithm. To do so, we modified the Böck metric and
proposed absolute difference (AD) as a means of computing the GS. We compared the Böck and AD
metrics by separately using each of them in two unsupervised optimization approaches to optimize
the parameters of the MRS algorithm to delineate agricultural parcels from 21 Sentinel-2 images of
10 × 10 km sizes in Lower Saxony, Germany. In the first optimization approach, as is mostly done
in the literature [20,31,37–39,43–45], we optimized scale while keeping the shape and compactness
parameters constant at their default values. In the second optimization approach, we employed
Bayesian optimization to optimize all three MRS parameters. The optimal segmentation results
identified by each metric were evaluated with parcels from the Land Parcel Identification System (LPIS),
which is a spatial database of agricultural parcels and their land-use types as declared by farmers
within the European Union (EU) [46,47]. The optimal segmentation results of the Böck and AD metrics
were compared to each other per each optimization approach. Further, we compared the optimal
segmentation results of the unsupervised Bayesian optimization approaches based on the Böck and
AD metrics to the benchmark segmentation results of Tetteh et al. [47], where they used supervised
Bayesian optimization.

2. Study Area and Data

In this study, we used cloud-free Sentinel-2 images downloaded from the Copernicus Open Access
Hub (https://scihub.copernicus.eu) covering the German federal state of Lower Saxony. The images
were pre-processed in the previous study of Tetteh et al. [47] using the standard procedure of
converting the top-of-atmosphere Level-1C images to the bottom-of-atmosphere Level-2A images
with Sen2Cor [48] in the Sentinel Application Platform (SNAP) software. For each Level-2A image,
the visible (red, green, blue) and near-infrared bands were extracted and composed into an image made
up of four bands. This image is henceforth named VNIR. Each VNIR image has a spatial resolution
of 10 m. To identify the optimal MRS parameters needed for segmenting agricultural parcels for
every part of Lower Saxony, Tetteh et al. [47] clipped the VNIR images with 10 × 10 km tile grids
numbering 562 and additionally masked out all non-agricultural areas such as forests, built-up areas,
water bodies, and roads. Out of these 562 images, we selected 21 tiles that spread across Lower
Saxony as our study sites (Figure 1). These 21 tiles have diverse agricultural landscapes. The approach
we used to select the 21 tiles can be found in the methodology section. Additional pieces of information
such as the image acquisition date, percentage coverage of agricultural lands, and other descriptive
statistics of the reference agricultural parcels in the LPIS per tile can be found in Appendix A (Table A1).
The variation in the sizes of agricultural parcels per tile can also be found in Appendix A (Figure A1).
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Figure 1. The study sites (tiles) overlaid on a mosaic of cloud-free and non-masked Sentinel-2 images 
captured in May 2018. The coordinates are in UTM Zone 32N (EPSG:32632). 

3. Methodology 

The simplified workflow we used to obtain the results is outlined in Figure 2. The core 
components of our workflow consist of image segmentation, modification of the existing 
unsupervised segmentation evaluation metric, unsupervised optimization of segmentation, and 
empirical evaluation of the segmentation results with reference parcels in the LPIS. These 
components will be fully covered in the proceeding subsections. 

Figure 1. The study sites (tiles) overlaid on a mosaic of cloud-free and non-masked Sentinel-2 images
captured in May 2018. The coordinates are in UTM Zone 32N (EPSG:32632).

3. Methodology

The simplified workflow we used to obtain the results is outlined in Figure 2. The core
components of our workflow consist of image segmentation, modification of the existing unsupervised
segmentation evaluation metric, unsupervised optimization of segmentation, and empirical evaluation
of the segmentation results with reference parcels in the LPIS. These components will be fully covered
in the proceeding subsections.
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that they were representative of the structural composition of the other tiles that were not used for 
further processing. The methodology we used to identify these 21 tiles is explained in this section. 
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Figure 2. The simplified workflow we used in this study. Böck refers to the unsupervised segmentation
evaluation metric proposed by Böck et al. [43], and absolute difference (AD) is the modified version
we proposed in this study.

3.1. Selection of the 21 Tiles

The goal here is to reduce the number of tiles from 562 to a number that will lead to a reduction
in the computational time needed for segmentation optimization. The 21 tiles were selected in a way
that they were representative of the structural composition of the other tiles that were not used for
further processing. The methodology we used to identify these 21 tiles is explained in this section.

For each reference parcel in the LPIS of the 562 tiles, we extracted the minimum bounding
rectangle (MBR). The width and length of each MBR were calculated. Aspect was computed by
dividing the width by the length. Then, we clustered the 562 tiles based on the average aspect per

33



Remote Sens. 2020, 12, 3096 6 of 27

tile using the k-means method. The determination of the appropriate number of clusters was done
using the silhouette analysis [49]. This analysis is used to measure the internal consistency of clusters
and the separability of those clusters. To perform the analysis, we clustered the average aspect of
the 562 tiles using an incremental approach in which the number of clusters was initiated with two
and increased by one in subsequent steps up to 21. For each cluster number, a silhouette coefficient
was computed. The silhouette coefficients range from −1 to 1, with high values being more desirable,
as it indicates the consistency within clusters and good separability among them. In our case, at cluster
number 16, the silhouette coefficient was the highest (0.543), so we kept that. Then, we manually
selected a tile from each of the 16 clusters and additionally included five more tiles to ensure a better
spatial distribution over Lower Saxony, Germany.

3.2. Image Segmentation

In this study, image segmentation was done based on the implementation of the Multiresolution
Segmentation (MRS) algorithm in eCognition Developer 9.5.0 [24]. Starting with one-pixel objects as
seed points, in numerous subsequent steps, where the difference in heterogeneity between an object and
any of its neighbors is minimal, the two objects are merged into a bigger one [22]. The heterogeneity
of an object is calculated using the color and shape of that object [22,47]. The pairwise merging
process is terminated when a user-given threshold is met [22]. In eCognition, three parameters (scale,
shape, and compactness) influence the segmentation results of the MRS algorithm. Scale defines
the minimum size of an object and is used as the threshold criterion to terminate the merging process.
Shape refers to the weight placed on an object’s form against its color information during the clustering
process [47]. Shape and color add up to 1. In eCognition, one can only pass the shape weight, which
then inversely modifies the color weight. Color is a requirement; hence, shape ranges from 0 to 0.9 [47].
Compactness defines the weight of an objects’ squareness against its smoothness during the clustering
process [47]. The compactness and smoothness weights also add up to 1. In eCognition, one passes
the compactness weight, which inversely changes the smoothness weight. Extensive details about
the MRS algorithm can be found in these pieces of literature [21,22,24]. Generating optimal segments
requires the optimization of the MRS parameters [47].

3.3. Segmentation Optimization

To optimize any segmentation algorithm, one needs to be able to assess the quality of
the segmentation results churned out by the algorithm for different parameter combinations.
In this study, we used unsupervised segmentation evaluation metrics that measure the quality
of the segmentation results purely based on the spectral values of the underlying image.

3.3.1. Existing Unsupervised Segmentation Evaluation Metrics

To evaluate a segmentation result, Espindola et al. [33] used average area-weighted variance
(WV) and Moran’s I (MI) [35]. The WV measures intra-segment homogeneity [33]. Therefore,
it shows the level of under-segmentation in a segmentation result. Lower WV values indicate lower
under-segmentation [38]. It is derived by first calculating the variance of pixels within each segment
per image band, weighting the variance by each segment’s area, and then averaging over all segments
to obtain one global value per band. Equation (1) shows the formulation of WV, where ai represents
the area of a segment, vi is the variance of pixels within a segment, and n is the number of segments.

WV =

∑n
i=1 ai ∗ vi∑n

i=1 ai
(1)

MI measures the inter-segment heterogeneity [33] within the segmentation result, thereby being
indicative of the level of over-segmentation. Lower MI values indicate lower over-segmentation [38].
Similar to the WV, it is also computed per image band. Its formulation is shown by Equation (2), where
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n is the number of segments, yi and y j are the respective mean values of an image band for segments i
and j, y is the mean band value of the entire image, and wi j is a weight matrix that measures the spatial
contiguity [43] between a segment and its neighbors. The elements of the matrix are either zero or one.
One indicates that segments i and j have a common boundary, and zero indicates they do not.

MI =
n
∑n

i=1
∑n

j=1 wi j(yi − y)
(
y j − y

)
(∑n

i=1(yi − y)2
)(∑n

i=1
∑n

j=1 wi j
) (2)

MI ranges from −1 (perfect dispersion of segments) to 1 (perfect clustering of segments). Lower
MI values indicate that the mean spectral values of neighboring segments within a segmentation layer
are more different from each other, thereby indicating lower over-segmentation. Higher MI values
show that the mean spectral values of the neighboring segments are more similar, which means that
there is more over-segmentation present in the segmentation layer.

To compute a single global score (GS) per image band for a segmentation result, the WV and MI
values are individually normalized using Equation (3) [37], where X is either the WV or MI. Then,
the normalized WV (nWV) and normalized MI (nMI) are summed up to obtain the GS per image
band [33]. Then, the final GS for the segmentation result is computed with Equation (4), where b
represents the number of bands in the image, which is four in our case.

X −Xmin
Xmax −Xmin

(3)

GS =
1
b

b∑
i=1

(nWVi + nMIi) (4)

The GS ranges from zero (best quality) to one (worst quality). Given a set of segmentation results
generated with different segmentation parameters, the parameter combination that results in the lowest
GS is deemed as optimal. Böck et al. [43] observed that the identification of the optimal GS based
on the definition of Espindola et al. [33] is highly influenced by the range of the user-defined scale
parameter. Different scale parameter ranges yield different optimal segmentation results for the same
image. According to Böck et al. [43], this instability is due to the normalization process in Equation
(3). To deal with this problem, Böck et al. [43] proposed fixed range normalization for WV and MI as
respectively captured by Equation (5) and Equation (6) before computing the final GS, where V is
the variance of the entire image per band. To obtain Equation (6), Böck et al. [43] respectively replaced
Xmin and Xmax in Equation (3) with −1 and 1, which are the theoretical extrema of MI.

nWV =
WV

V
(5)

nMI =
MI + 1

2
(6)

The Böck metric also ranges from zero (best quality) to one (worst quality).

3.3.2. Metric Proposal Based on Absolute Difference (AD)

According to Georganos et al. [16], the fixed ranged normalization proposal put forward by
Böck et al. [43] makes two problematic assumptions. The first one is that where there is complete
under-segmentation, i.e., where one segment is created for the entire image, the WV becomes equal to
the image variance; hence, nWV becomes 1. When this happens, the equivalent value of MI and by
extension nMI becomes undefined, because a spatial network of more than one segment is required to
compute MI. Secondly, in the case of complete over-segmentation, i.e., where each pixel in the image is
a segment, MI is −1 and nMI becomes 0, but the corresponding value of WV may be very low and
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not necessarily zero. In RS, it is highly implausible to obtain complete over-segmentation; hence,
an MI value of −1 is hardly realized [16]. Furthermore, Georganos et al. [16] did some tests and
observed that the Böck metric has the potential of selecting under-segmented objects as optimal.
We tested this hypothesis using some simulated segmentation data captured by Figure 3. Figure 3a
shows the reference data, while Figure 3b–d captures three different corresponding segmentation
results. For each dataset in Figure 3, each row represents a segment; hence, there are four segments
for each dataset. Figure 3b captures a situation where there is a lot of clustering with minimal
under-segmentation, Figure 3c is a situation where there is a balance between clustering and dispersion
with moderate under-segmentation, and Figure 3d represents a situation where there is a lot of
dispersion with a high level of under-segmentation. The MI, nMI, nWV, and GS of the Böck metric
computed for the simulated segmentation results (Figure 3b–d) are captured by Table 1. As postulated
by Georganos et al. [16], the Böck metric selected the segmentation result with the highest level of
under-segmentation as optimal, given that it had the lowest GS value.
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Figure 3. Simulated reference and segmentation data. The reference dataset is represented by (a). Three
different corresponding segmentation results are represented by (b–d), respectively. Each row in each
dataset represents a segment; hence, there are four segments in all.

Table 1. The Moran’s I (MI), normalized MI (nMI), normalized weighted variance (nWV), and global
score (GS) of the Böck metric computed for the simulated data at Figure 3. The bold-faced text
within the body of the table is the optimal result.

Identifier MI nMI nWV GS (Böck)

Figure 3b 0.400 0.700 0.375 1.075
Figure 3c −0.018 0.491 0.698 1.189
Figure 3d −0.667 0.167 0.875 1.042

The issues raised by Georganos et al. [16] point to the problem posed by Equation (6), where
the theoretical extrema of MI are used to normalize the MI. As visible in Table 1, after normalizing
the MI, the numerical difference between the nWV and MI increased in Figure 3b, where the MI was
positive. However, for Figure 3c,d, the numerical differences diminished substantially. Therefore,
in areas with more dispersion, the Böck metric has the potential of selecting under-segmented results
as optimal, as it would be more biased toward nMI [16]. To overcome these issues, we used two steps.
First, we did not normalize the MI given that by definition, it lies between −1 and 1. We maintained
the nWV. Therefore, the minimum and maximum values of nWV will correspond to the minimum and
maximum of MI. Second, to obtain the final GS, we computed the absolute difference between the MI
and nWV per band and then averaged over all bands as shown by Equation (7), where the notations
have the same meaning as Equation (4). This ensures that the MI and nWV have a fair chance of
influencing the GS depending on their respective magnitudes. Similar to the Böck metric, low values
mean good quality, and high values mean bad quality. The outcome of this modification, named
the AD metric, for the simulated segmentation results (Figure 3b–d) is shown in Table 2. The AD
metric correctly selected the least under-segmented result as optimal, followed by the moderately
under-segmented. We tested another distance metric, specifically Euclidean Distance (ED), to combine
the MI and nWV values at the 21 tiles, but the AD metric proved superior, so we maintained that
as our proposal. The difficulty with using ED to compute the GS lies in the fact that given any two
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numbers, here MI and nWV, it places more emphasis on the larger number than the smaller one,
thereby accentuating the influence of the larger number on the overall outcome.

GS =
1
b

b∑
i=1

|MIi − nWVi| (7)

Table 2. The MI, nWV, and GS of the AD metric computed for the simulated data in Figure 3.
The bold-faced text within the body of the table is the optimal result.

Identifier MI nWV GS (AD)

Figure 3b 0.400 0.375 0.025
Figure 3c −0.018 0.698 0.716
Figure 3d −0.667 0.875 1.542

3.3.3. Unsupervised Segmentation Optimization

The point of optimization within the context of this study is to identify the MRS parameter
combination that yields the lowest GS per metric. The segmentation output corresponding to this
combination is the optimal result. We tested two optimization approaches in this study.

For the first approach, which we termed default optimization, we optimized the scale parameter
while keeping the shape and compactness parameters constant at their default, as is mostly done
in the literature [20,31,37–39,43–45]. Shape was kept at 0.1, and compactness was kept at 0.5. The scale
ranged from 10 to 300 with intervals of 10. The segmentation output corresponding to the scale
parameter with the lowest GS is the optimal output.

The second optimization approach is Bayesian optimization, which was used to optimize all
three MRS parameters. We adopted the Bayesian optimization approach of Tetteh et al. [47] but used
it within an unsupervised optimization framework. Applying Bayesian optimization requires four
main definitions:

1. The domain space (minimum and maximum values) of each input parameter. The domain
space of scale was defined as 20 and 200, for shape 0.0 and 0.9, and for compactness 0.0 and 1.0.
These parameter ranges were also used by Tetteh et al. [47] in their approach.

2. An objective function to optimize. For our study, the objective function to optimize is f(x),
where x is a parameter combination of scale, shape, and compactness. The function takes
the parameter combination, performs image segmentation, computes the GS of the segmentation
output, and finally returns the GS.

3. A surrogate model for the objective function. To build the surrogate model, one has to first
define a prior probability distribution that captures the prior behavior of the objective function.
We chose Gaussian Processes (GP) [50] as the prior probability distribution. Then, some initial
parameter combinations together with their corresponding GS are used to initialize the whole
optimization process. We used 125 parameter combinations as initialization samples. These 125
parameter combinations were selected in a way to ensure uniform and representative distribution
over each parameter space. For scale, the values were (40, 80, 120, 160, 200), and for both shape
and compactness, the values were (0.1, 0.3, 0.5, 0.7, 0.9). The grid search method was used to
calculate the corresponding GS for the 125 samples. These samples were used to update the GP
to obtain posterior probability distribution over the objective function.

4. An acquisition function to be used in sampling new parameter combinations to be evaluated
with the objective function. For the acquisition function, we used expected improvement (EI) [51].
EI is used to iteratively select new parameter combinations with the highest probability of
optimizing the objection function. We sampled 50 new parameter combinations with the EI
function in 50 iterations. At each iteration, out of 10,000 parameter combinations randomly
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sampled from the domain space, the combination with the highest likelihood of improving
upon the current optimal parameter combination is identified by the EI function using the current
posterior probability distribution. Then, this identified parameter combination is evaluated
with the objective function, and the corresponding GS is used to update the current posterior
probability distribution. In all, 175 combinations were used within the Bayesian optimization
approach to identify the optimal one.

A more detailed explanation of Bayesian optimization can be found here [52–55]. The Böck and
AD metrics were separately used in the two optimization approaches to optimize the segmentation
of agricultural parcels. The optimal segmentation identified by each metric was further evaluated
through empirical discrepancy measures. Given the sheer number of segmentations that had to be
done, we used eCognition Server 9.5.0 and the eCognition command-line interface (CLI) to automate
the segmentation process [47]. For the initial 125 parameter combinations that were used to initialize
the Bayesian optimization method, two parallel processes were executed, as our eCognition Server
license was limited to two [47]. The Python programming language was used to glue everything
together. The implementation of Bayesian optimization via Scikit-optimize in Python was used [47].

3.4. Empirical Discrepancy Measures

To identify which optimization approach and metric performed better per tile, we computed
four empirical discrepancy measures (Table 3) by comparing the optimal segmentation results to
the reference agricultural parcels in the LPIS. The quality rate (QR) [56] measures the level of geometric
match between the segmentation result and the reference parcels. It is the only measure that takes
into account both the amount of agreement and disagreement between the reference parcels and
their corresponding segments [57]. Therefore, it can single-handedly be used to judge the quality of
segmentation. When a reference parcel is larger than its corresponding segment, over-segmentation
(OR) [57] occurs, and when the segment is larger, under-segmentation (UR) [57] occurs. The root
mean square (RMS) [56] combines the OR and UR into a single measure. In the formulas in Table 3,
Xi is a reference parcel and Yi is its corresponding segment, and n is the total number of segments.
The discrepancy measures are first computed per segment in a segmentation result. To obtain a single
discrepancy measure for an entire segmentation result, an area-weighted average was used (Table 3).

Table 3. Empirical discrepancy measures used to evaluate the optimal segmentations.

Measure Formula Range Source

Quality rate (QR)
∑n

i=1 Area(Yi)∗
Area(Xi ∩ Yi)
Area(Xi ∪ Yi)∑n

i=1 Area(Yi)
0 (worst) to 1 (perfect) segmentation [56]

Over-segmentation (OR) 1−

∑n
i=1 Area(Yi)∗

Area(Xi ∩ Yi)
Area(Xi)∑n

i=1 Area(Yi)
0 (perfect) to 1 (worst) segmentation [57]

Under-segmentation (UR) 1−

∑n
i=1 Area(Yi)∗

Area(Xi ∩ Yi)
Area(Yi)∑n

i=1 Area(Yi)
0 (perfect) to 1 (worst) segmentation [57]

Root mean square (RMS)
√

OR2+UR2

2
0 (perfect) to 1 (worst) segmentation [56]

4. Results

4.1. Optimal Segmentation Based on Default Optimization

For each tile, Figure 4 shows the QR for the optimal segmentations identified by the AD and Böck
metrics using the default shape value of 0.1 and 0.5 for compactness. The other empirical evaluation
measures (OR, UR, and RMS) are captured by Appendix A (Table A2). At T11, the two metrics obtained
the same result. Except for T3 and T18, where the Böck metric was marginally better, the AD metric
was remarkably better at the other tiles. The highest difference between the two metrics was recorded
at T1, where the AD metric exceeded the Böck metric by 17%. The lowest differences were recorded at
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T2 and T19, where the AD metric was about 1% better. The optimal segmentation results identified
by our metric were the least under-segmented except for T2 and T19, where our metric was rather
the least over-segmented. The RMS values of our metric were lower at all tiles except T19.
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Figure 4. The quality rate (QR) measure computed for each optimal segmentation result identified by
the AD and Böck metrics based on the default optimization (shape = 0.1, compactness = 0.5).

The Böck metric often selected higher scale values than the AD metric, even to the extent that at
T1, it chose the highest scale value as the optimal. This led to massive under-segmentation, an example
of which is shown in Figure 5a at T1. Four different LU types—namely, winter wheat, winter rapeseed,
spring barley, and pastures—are present in this area. Due to the high scale value selected by the Böck
metric, only one segment was created containing all the aforementioned LU types, leading to massive
under-segmentation. The AD metric did a better job of separating the different LU types, hence
reducing under-segmentation (Figure 5b). The segments generated based on the AD metric had a better
geometric match to the LPIS reference parcels.

To understand the different behaviors of the Böck and AD metrics, we explored the nWV, MI, nMI,
and the corresponding GS computed for each scale value at T1, where the AD metric was substantially
better, and then T3, where the Böck metric was marginally better. For both metrics, the nWV increased
with increasing scale as the pixels in each segment became more varied, while the MI and nMI exhibited
an opposite behavior (Figures 6 and 7). Figure 6a shows that as the scale increased, the Böck metric
decreased in response until it reached its minimum at scale 300. As a reminder, lower GS values of
a metric correspond to more accurate segmentation results. Our metric, on the other hand, as captured
by Figure 6b, exhibited a decreasing trend up to scale 190 and then started to increase in response to
increasing nWV and decreasing MI. The GS was at its lowest at scale 190. At T3 (Figure 7), where
the Böck metric was marginally better, the GS of both metrics had one commonality. After some initial
decreasing behavior, they both started to continuously increase around the median of the scale range,
which is 155. The optimal scale selected by the Böck metric was 150, and that of the AD metric was 140.
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Figure 5. Examples of segments identified as optimal at T1 using the default shape and compactness
parameters. (a) An example based on the optimal segmentation identified by the Böck metric showing
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Zone 32N (EPSG:32632).
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Figure 7. The normalized average area-weighted variance (nWV), Moran’s I (MI), normalized Moran’s
I (nMI), and global score (GS) computed for each scale at T3 based on (a) the Böck metric and
(b) the AD metric.

4.2. Optimal Segmentation Based on Bayesian Optimization

We employed Bayesian optimization to respectively minimize the two unsupervised metrics (Böck
and AD) at the 21 tiles to optimize the MRS parameters. To identify the optimal MRS parameters,
Tetteh et al. [47] used their supervised Bayesian optimization approach to directly maximize the QR.
We consider the results achieved by their approach as the benchmark results. For the analysis here,
we compared the results achieved by the two unsupervised Bayesian optimization approaches to
each other and in parallel compared both to the benchmark results. The QR measures of the optimal
segmentations obtained by the supervised and the two unsupervised approaches for the 21 tiles used
in this research are captured by Figure 8. The other empirical evaluation measures can be found
in Appendix A (Table A3). The unsupervised Bayesian optimization approach based on the AD metric
outperformed the Böck metric at all tiles. The approach based on the AD metric was over 22% better at
T1 and T15, and it was about 1% better at T6 in comparison with the unsupervised Bayesian approach
based on the Böck metric. The supervised approach was expectedly better than both unsupervised
approaches at all tiles. At T7 and T17, the segmentation quality of the supervised approach was over
20% higher than the unsupervised AD approach. However, at T2 and T19, the supervised approach was
just about 2% better. Regarding the Böck metric, the supervised approach was over 30% better at T1, T14,
and T15, and it was about 5% better at T2. The segmentation results of the unsupervised approaches
were generally more under-segmented but less over-segmented compared to the supervised approach.
The RMS measure was in favor of the supervised approach at all tiles. The optimal segmentation
results of the three Bayesian optimization approaches symbolized by the QR calculated per segment at
T1, T2, and T17 are captured by Figures 9–11, respectively. For all three figures, panel (a) captures
the Sentinel-2 image, panel (b) shows the Böck results, panel (c) shows the supervised Bayesian
optimization results, and panel (d) captures the AD results. Figure 12 shows a specific case of segments
within the optimal results of the three Bayesian optimization approaches at T1 for the same area shown
in Figure 5.
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Figure 9. The outcome of the three Bayesian optimization approaches at T1. The Sentinel-2 image is 
shown by (a). The optimal segments as identified by (b) the Böck metric, (c) the supervised Bayesian 
optimization approach, and (d) the AD metric are symbolized by their respective QR measures. The 
coordinates are in UTM Zone 32N (EPSG:32632). 
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Figure 9. The outcome of the three Bayesian optimization approaches at T1. The Sentinel-2 image is
shown by (a). The optimal segments as identified by (b) the Böck metric, (c) the supervised Bayesian
optimization approach, and (d) the AD metric are symbolized by their respective QR measures.
The coordinates are in UTM Zone 32N (EPSG:32632).
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Figure 10. The outcome of the three Bayesian optimization approaches at T2. The Sentinel-2 image is
shown by (a). The optimal segments as identified by (b) the Böck metric, (c) the supervised Bayesian
optimization approach, and (d) the AD metric are symbolized by their respective QR measures.
The coordinates are in UTM Zone 32N (EPSG:32632).
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Figure 11. The outcome of the three Bayesian optimization approaches at T17. The Sentinel-2 image 
is shown by (a). The optimal segments as identified by (b) the Böck metric, (c) the supervised Bayesian 
optimization approach, and (d) the AD metric are symbolized by their respective QR measures. The 
coordinates are in UTM Zone 32N (EPSG:32632). 

Figure 11. The outcome of the three Bayesian optimization approaches at T17. The Sentinel-2 image is
shown by (a). The optimal segments as identified by (b) the Böck metric, (c) the supervised Bayesian
optimization approach, and (d) the AD metric are symbolized by their respective QR measures.
The coordinates are in UTM Zone 32N (EPSG:32632).
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Figure 12. An example of segments created at T1 using the unsupervised Bayesian optimization 
approach based on (a) the Böck metric and (b) the AD metric. (c) Segments generated by the 
supervised Bayesian optimization approach (SUP) based on the QR metric. The coordinates are in 
UTM Zone 32N (EPSG:32632). 

To understand the reason behind the differences in QR between the supervised optimization 
approach and the unsupervised Bayesian optimization approaches, we analyzed the linear 
relationship (Figure 13) between the differences in QR and the number of land-use types present at 
each tile. For each metric, the Pearson correlation coefficient (r) was high, and the p-value was less 
than 0.05. Therefore, the relationship between the number of crop types and the differences in QR 
between the supervised approach and each unsupervised approach is significant. 
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the supervised benchmark results and the unsupervised Bayesian optimization approaches based on 
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Figure 12. An example of segments created at T1 using the unsupervised Bayesian optimization
approach based on (a) the Böck metric and (b) the AD metric. (c) Segments generated by the supervised
Bayesian optimization approach (SUP) based on the QR metric. The coordinates are in UTM Zone 32N
(EPSG:32632).

To understand the reason behind the differences in QR between the supervised optimization
approach and the unsupervised Bayesian optimization approaches, we analyzed the linear relationship
(Figure 13) between the differences in QR and the number of land-use types present at each tile.
For each metric, the Pearson correlation coefficient (r) was high, and the p-value was less than 0.05.
Therefore, the relationship between the number of crop types and the differences in QR between
the supervised approach and each unsupervised approach is significant.
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Figure 13. Correlation between the number of land use (LU) types and the difference in QR between
the supervised benchmark results and the unsupervised Bayesian optimization approaches based on
(a) the Böck metric and (b) the AD metric.
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5. Discussion

The analysis of which metric was optimal for unsupervised segmentation evaluation within our
experimental setup of using 21 tiles revealed that our metric (AD) was better than the Böck metric,
whether one uses it within a default or Bayesian optimization approach. Visually and quantitatively,
the segmentation results yielded by the AD metric were better than the Böck metric in different
landscapes composed of diverse agricultural LU types.

For the default optimization approach, at tiles such as T3, where the Böck and AD metrics yielded
very similar segmentation results, this is attributable to the fact that there was more clustering of
objects as the scale was increased. This is captured by Figure 7b, where all the MI values were positive.
Clustering normally occurs in areas where there are different LU types but with similar spectral
behaviors sharing the same neighborhood or in areas highly dominated by a single LU type such as
grasslands, as was the case of T3. Under those conditions, the GS values of the Böck and AD metrics
exhibited a common behavior (Figure 7) and consequently selected similar scale values, leading to
very similar segmentation results.

At other tiles such as T1, where there was an enormous disparity between the two metrics,
the agricultural landscape is more diverse and interspersed with different LU types such as winter
wheat, sugar beet, and maize. Consequently, they had more negative MI values with increasing
scale (Figure 6b), which is indicative of the dispersion of objects. The Böck and AD metrics on such
occasions differed in curve behavior and global minimum position (Figure 6). Based on the trajectory
of the Böck metric in Figure 6a, one can safely conclude that the Böck metric would have further
decreased if the scale value had further been increased. Our metric, on the other hand, as captured
by Figure 6b, exhibited a decreasing trend up to scale 190 and then started to increase in response
to increasing nWV and decreasing MI. The benefit of not normalizing the MI and using absolute
difference to compute the GS became manifest on such occasions, where there was a greater dispersion
of agricultural parcels. The AD metric was initially more influenced by the MI, but it was later more
influenced by the nWV as the scale increased and more MI values became negative (Figure 6b). With
the AD metric, the MI and nWV values have a fair chance of impacting the GS value depending on their
respective magnitudes. The Böck metric, on the other hand, was continuously impacted by the nMI
(Figure 6a). This can be attributed to the normalization approach applied to the MI by the Böck metric.
As captured by Figure 6b, before normalization, all the originally negative MI values were numerically
smaller than their corresponding nWV values. After normalizing the MI to obtain the nMI (Figure 6a),
those negative MI values became numerically higher than their corresponding nWV values, thereby
continuously influencing the GS of the Böck metric (Figure 6a).

The Böck metric is more impacted by the nMI than the nWV in all agricultural landscapes.
This behavior of the Böck metric has the potential of selecting large-scale values as optimal, thereby
leading to the identification of under-segmented objects as optimal. This observation was also made by
Georganos et al. [16]. This particular behavior of the Böck metric becomes more problematic in areas
with diverse LU types and a greater dispersion of objects, as previously shown in Figure 5a. The more
diverse the LU types and the more spectrally similar they behave, the higher the probability of selecting
under-segmented objects as optimal using any segmentation evaluation metric, especially a metric
that is purely based on the image content. Therefore, a good unsupervised segmentation evaluation
metric must reduce over-segmentation but more importantly under-segmentation as the AD metric
proved to be able to do, at least in comparison with the Böck metric. For subsequent processes such
as object classification, under-segmentation is preferable to over-segmentation [26,58,59]. In general,
under-segmentation can largely be dealt with by using very high-resolution images in which visible
boundaries between adjacent but spectrally similar parcels can be identified [47].

For the unsupervised Bayesian optimization approach, the approach based on the AD metric
outperformed that of the Böck metric at all the tiles, especially at T1, which is composed of diverse
LU types. Interestingly, at T3, the Bayesian optimization approach based on the AD metric became
better than the Böck metric. This is opposite to the default optimization results at T3, where Böck was
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marginally better than AD. Overall, in both optimization approaches, the AD metric consistently proved
to be better suited for optimizing the segmentation of agricultural parcels in different landscapes. A look
at the segmentation results for T1 (Figure 9) clearly shows that the Bayesian optimization approach
based on the AD metric generated more segments (Figure 9d) with a higher segmentation quality than
the results of the Bayesian approach based on the Böck metric (Figure 9b). There was a greater clustering
of objects at T2 (Figure 10) and T17 (Figure 11) based on the computed MI values; hence, the Bayesian
optimization approach based on the Böck (Figures 10b and 11b) and the AD (Figures 10d and 11d)
metrics yielded very similar segmentation results.

As expected, the supervised Bayesian optimization approach performed better than all
the unsupervised Bayesian optimization approaches at all the tiles used in our experiment. This is
especially true for T1 (Figure 9c) and T17 (Figure 11c), where the landscape has diversified LU
types. At T2, which is highly dominated by pome fruits, the segmentation quality was bad for all
the optimization methods. Tetteh et al. [47] in using the supervised Bayesian optimization approach
to delineate agricultural parcels made this observation as well for T2 and attributed it to the small
size and elongation of agricultural parcels present at that tile. This also holds for the unsupervised
Bayesian optimization approaches tested in this research. The high correlation between the number
of LU types and the difference in QR between the supervised Bayesian optimization approach and
the two unsupervised Bayesian optimization approaches as captured by Figure 13 indicated that at
tiles with a smaller number of LU types, the unsupervised Bayesian approaches obtained results
similar to the supervised approach. The supervised Bayesian approach was able to adapt more to
diverse agricultural landscapes than the unsupervised Bayesian approaches. An example of this can be
seen in Figure 12c, where the supervised approach generated segments with well-defined boundaries
and a better geometric match to the LPIS parcels than the two unsupervised Bayesian approaches
in Figure 12a,b, respectively. The adaptability of supervised segmentation optimization was also
asserted by Yang et al. [39] after testing a supervised optimization approach based on the information
gain ratio and an unsupervised optimization approach based on MI and WV as was proposed by
Espindola et al. [33]. The major defect of any supervised optimization method is the reliance on
reference data, which are tedious to obtain [29]. An unsupervised method such as the Bayesian
optimization approach based on our proposed AD metric provides a good alternative to supervised
segmentation optimization.

Unlike the proposition of Georganos et al. [16], our proposed metric is objective and fully automated.
It does not require any human intervention to identify the optimal segmentation. The approach
of Georganos et al. [16] requires the user to compute a certain number of initial segmentations
with unknown step intervals, something the authors mentioned has a great impact on the results.
Additionally, using locally estimated scatterplot smoothing (LOESS) requires a user to specify the order
of the polynomial and a span, which controls the level of smoothing. Since the optimal values of those
user inputs cannot be known beforehand, the user has to experiment to identify the optimal settings
for normalization, which violates the principle behind unsupervised segmentation evaluation.

6. Conclusions

In this study, we modified an existing unsupervised segmentation evaluation metric based on
global variance and spatial autocorrelation [43]. We proposed the use of absolute difference (AD) to
combine the global variance and spatial autocorrelation. We tested the AD metric and the existing metric,
named Böck, in identifying the optimal parameters for delineating agricultural parcels from Sentinel-2
images using the Multiresolution Segmentation (MRS) algorithm. We first tested both metrics at 21 tiles
with different agricultural landscapes to optimize the scale parameter of the MRS algorithm through
default optimization. In this default approach, we kept the shape and compactness parameters constant
and increased the scale at equal intervals to determine the optimal one. The AD metric proved superior
to the Böck metric in identifying the segmentation result with a better geometric match to reference
agricultural parcels in the Land Parcel Identification System (LPIS). On average, the segmentation
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quality of the AD metric was over 6% higher than the Böck metric in this default approach. Our
metric often identified segmentations that were least under-segmented as optimal, unlike the Böck
metric. We separately used each metric in a Bayesian optimization routine to optimize the three main
parameters of the MRS algorithm at the same 21 tiles. The Bayesian optimization approach based
on the AD metric performed better than that of the Böck metric at all tiles. In the Bayesian optimization
approach, the quality of the segmentation result of the AD metric was on average about 9% better than
the Böck metric. A comparison of the segmentation results in this study to existing benchmark results
obtained via supervised Bayesian optimization showed that the unsupervised Bayesian optimization
approach based on the AD metric can be a good alternative. In areas where the number of land-use (LU)
types was small, supervised and unsupervised Bayesian optimization obtained similar segmentation
results. Supervised segmentation optimization methods require reference data, which are generally
difficult and time-consuming to generate, especially for wide geographic areas such as regions and
countries. The Bayesian optimization approach based on the AD metric solely depends on the image
content to fine-tune the optimization process without any human intervention; hence, it can easily be
used in any operational OBIA workflow to generate segmentations in near real time.

In a nutshell, our proposed metric performed better than its predecessor in identifying optimal
segmentation. Identifying optimal segmentation is important for purposes of obtaining correct
agricultural statistics such as the sizes of agricultural parcels. In the absence of reference data, a Bayesian
optimization approach based on the AD metric can provide a means of fulfilling the aforementioned
purpose in an automated and efficient manner with no human interaction. Even though we tested
this optimization approach on the MRS algorithm within the thematic area of agriculture, it is easily
applicable to any segmentation algorithm and different thematic areas.

Going into the future, one possible way of improving the results of the segmentation optimization
process with our proposed metric will be to incorporate local variance and spatial autocorrelation
in a multi-scale approach to refine under-segmented and over-segmented objects in subsequent steps
as was done by Johnson et al. [37]. Different weighting schemes for different agricultural landscapes
can be applied to the normalized weighted variance and spatial autocorrelation before the computation
of the global score for the AD metric. The impact of this weighting scheme on the identification of
the optimal segmentation result would be analyzed accordingly. The impact of the segmentation
results identified by the supervised and unsupervised Bayesian optimization approaches on object
classification would be assessed. The 21 tiles we used in our experimental setup had relatively
flat terrains. However, our proposed metric should work fairly well in other terrains as long as
there is enough spectral dissimilarity (dispersion) between adjacent parcels in any geographical area.
This hypothesis will be tested in the future.
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Appendix A

Table A1. Description of the test sites (tiles) used in this study.

Tile Image Date Agric. Land
Cover

No. of Land-Use
Types

No. of LPIS
Parcels

Min. Area
(Ha)

Max. Area
(Ha)

Mean
Area (Ha)

T1 20 May 2018 62.29% 12 1308 0.232 25.777 4.097
T2 5 May 2018 62.76% 8 1344 0.173 21.726 2.398
T3 8 May 2018 80.91% 4 2341 0.191 53.279 2.924
T4 7 May 2018 53.30% 14 1671 0.169 35.281 2.522
T5 5 May 2018 76.83% 14 1957 0.180 18.888 3.219
T6 5 May 2018 79.61% 11 2500 0.168 22.639 2.565
T7 5 May 2018 68.08% 16 2140 0.203 25.181 2.579
T8 8 May 2018 50.17% 12 1100 0.199 30.562 3.704
T9 5 May 2018 70.43% 11 1613 0.190 44.890 3.699
T10 5 May 2018 70.13% 12 2441 0.177 26.253 2.243
T11 5 May 2018 71.41% 15 1625 0.172 30.012 3.709
T12 5 May 2018 90.15% 12 1798 0.171 50.494 3.127
T13 5 May 2018 92.31% 12 1221 0.181 64.772 6.203
T14 5 May 2018 63.62% 15 1894 0.176 26.646 2.637
T15 5 May 2018 36.63% 15 809 0.203 23.687 3.580
T16 5 May 2018 58.45% 14 1752 0.181 29.022 2.781
T17 5 May 2018 61.10% 14 1538 0.180 28.160 2.994
T18 5 May 2018 37.26% 13 729 0.193 28.514 4.158
T19 7 May 2018 14.29% 8 420 0.217 25.855 2.471
T20 7 May 2018 33.35% 13 744 0.191 36.408 3.111
T21 7 May 2018 90.84% 11 1340 0.213 62.730 5.883Remote Sens. 2020, 12, 3096 22 of 27 
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Table A2. Empirical discrepancy measures computed for each optimal segmentation result identified
by the AD and Böck metrics based on the default optimization (shape = 0.1, compactness = 0.5).
The bold-faced texts within the body of the table are the optimal results.

Tile Scale Shape Compactness QR OR UR RMS Metric

T1 190 0.100 0.500 55.53% 0.115 0.375 0.278 AD
T1 300 0.100 0.500 38.42% 0.057 0.597 0.424 Böck

T2 80 0.100 0.500 36.94% 0.334 0.467 0.406 AD
T2 70 0.100 0.500 36.07% 0.387 0.427 0.407 Böck

T3 150 0.100 0.500 57.91% 0.183 0.304 0.251 Böck
T3 140 0.100 0.500 57.80% 0.192 0.296 0.250 AD

T4 200 0.100 0.500 28.33% 0.121 0.685 0.492 AD
T4 280 0.100 0.500 20.84% 0.076 0.779 0.553 Böck

T5 160 0.100 0.500 44.69% 0.163 0.477 0.356 AD
T5 200 0.100 0.500 39.00% 0.122 0.563 0.407 Böck

T6 170 0.100 0.500 42.45% 0.169 0.502 0.375 AD
T6 180 0.100 0.500 41.24% 0.161 0.520 0.385 Böck

T7 190 0.100 0.500 32.84% 0.128 0.631 0.455 AD
T7 270 0.100 0.500 25.46% 0.084 0.729 0.519 Böck

T8 120 0.100 0.500 48.77% 0.274 0.339 0.308 AD
T8 170 0.100 0.500 41.78% 0.150 0.513 0.378 Böck

T9 170 0.100 0.500 44.88% 0.215 0.446 0.350 AD
T9 300 0.100 0.500 33.86% 0.101 0.635 0.454 Böck

T10 180 0.100 0.500 36.66% 0.143 0.584 0.425 AD
T10 210 0.100 0.500 33.06% 0.126 0.631 0.455 Böck

T11 230 0.100 0.500 35.67% 0.127 0.595 0.430 AD
T11 230 0.100 0.500 35.67% 0.127 0.595 0.430 Böck

T12 150 0.100 0.500 40.77% 0.209 0.504 0.386 AD
T12 270 0.100 0.500 27.78% 0.126 0.697 0.501 Böck

T13 240 0.100 0.500 42.42% 0.177 0.495 0.372 AD
T13 300 0.100 0.500 35.18% 0.142 0.601 0.436 Böck

T14 160 0.100 0.500 36.03% 0.162 0.574 0.422 AD
T14 280 0.100 0.500 21.74% 0.077 0.768 0.546 Böck

T15 220 0.100 0.500 32.40% 0.090 0.648 0.463 AD
T15 300 0.100 0.500 22.41% 0.062 0.764 0.542 Böck

T16 180 0.100 0.500 38.46% 0.114 0.566 0.408 AD
T16 280 0.100 0.500 26.20% 0.064 0.723 0.513 Böck

T17 200 0.100 0.500 31.89% 0.137 0.634 0.459 AD
T17 240 0.100 0.500 27.14% 0.111 0.700 0.501 Böck

T18 200 0.100 0.500 47.11% 0.167 0.434 0.329 Böck
T18 190 0.100 0.500 47.06% 0.168 0.427 0.325 AD

T19 210 0.100 0.500 37.29% 0.092 0.595 0.426 AD
T19 50 0.100 0.500 36.58% 0.552 0.207 0.417 Böck

T20 220 0.100 0.500 29.21% 0.123 0.676 0.486 AD
T20 260 0.100 0.500 27.79% 0.102 0.698 0.499 Böck

T21 270 0.100 0.500 43.91% 0.133 0.499 0.365 AD
T21 300 0.100 0.500 40.52% 0.117 0.546 0.395 Böck
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Table A3. Empirical discrepancy measures computed for the unsupervised Bayesian optimization
approaches based on the Böck and AD metrics, and the supervised Bayesian optimization approach
(SUP) that was used to maximize the QR measure. The bold-faced texts within the body of the table are
the optimal results.

Tile Scale Shape Compactness QR OR UR RMS Metric

T1 51 0.900 0.966 69.17% 0.117 0.224 0.178 SUP
T1 160 0.300 0.500 57.47% 0.126 0.349 0.263 AD
T1 200 0.841 0.917 34.39% 0.035 0.648 0.459 Böck

T2 40 0.900 0.300 42.04% 0.219 0.479 0.372 SUP
T2 42 0.792 0.176 40.28% 0.309 0.429 0.374 AD
T2 56 0.415 0.192 37.40% 0.402 0.395 0.398 Böck

T3 77 0.842 0.906 68.46% 0.117 0.235 0.186 SUP
T3 117 0.420 1.000 62.79% 0.164 0.263 0.219 AD
T3 138 0.279 0.175 59.14% 0.165 0.304 0.245 Böck

T4 34 0.900 0.410 50.84% 0.290 0.297 0.293 SUP
T4 116 0.655 1.000 38.04% 0.121 0.576 0.416 AD
T4 174 0.666 0.753 24.88% 0.076 0.738 0.524 Böck

T5 42 0.900 0.783 58.78% 0.205 0.273 0.242 SUP
T5 132 0.468 0.701 47.21% 0.149 0.459 0.341 AD
T5 162 0.395 0.452 42.52% 0.124 0.524 0.381 Böck

T6 40 0.900 0.500 57.67% 0.225 0.269 0.248 SUP
T6 127 0.422 0.083 46.98% 0.172 0.442 0.335 AD
T6 144 0.377 0.000 46.05% 0.161 0.466 0.348 Böck

T7 40 0.900 0.500 55.70% 0.209 0.307 0.263 SUP
T7 183 0.088 0.401 35.14% 0.142 0.601 0.436 AD
T7 178 0.686 0.611 29.39% 0.071 0.692 0.492 Böck

T8 46 0.853 0.665 56.91% 0.261 0.240 0.251 SUP
T8 120 0.100 0.300 49.20% 0.261 0.339 0.303 AD
T8 160 0.300 0.100 43.71% 0.145 0.499 0.367 Böck

T9 56 0.900 0.548 56.93% 0.191 0.310 0.258 SUP
T9 129 0.398 1.000 49.61% 0.212 0.384 0.310 AD
T9 200 0.300 0.500 41.28% 0.148 0.532 0.390 Böck

T10 40 0.900 0.700 54.15% 0.196 0.336 0.275 SUP
T10 189 0.000 0.380 37.43% 0.152 0.573 0.419 AD
T10 184 0.587 0.633 33.58% 0.084 0.641 0.457 Böck

T11 50 0.900 0.699 58.31% 0.200 0.277 0.241 SUP
T11 200 0.100 0.900 40.52% 0.143 0.528 0.386 AD
T11 108 0.900 0.777 38.50% 0.073 0.595 0.424 Böck

T12 40 0.900 0.100 49.05% 0.254 0.354 0.308 SUP
T12 163 0.000 0.605 38.73% 0.197 0.536 0.404 AD
T12 200 0.500 0.700 33.57% 0.119 0.635 0.457 Böck

T13 63 0.900 0.371 54.74% 0.231 0.293 0.264 SUP
T13 151 0.643 0.272 47.92% 0.168 0.434 0.329 AD
T13 165 0.819 0.614 41.67% 0.091 0.551 0.395 Böck

T14 42 0.900 0.576 53.68% 0.204 0.328 0.273 SUP
T14 120 0.500 0.100 38.92% 0.156 0.539 0.397 AD
T14 200 0.700 0.100 21.35% 0.059 0.778 0.552 Böck

T15 40 0.900 0.300 61.17% 0.200 0.252 0.228 SUP
T15 63 0.900 0.428 52.67% 0.106 0.421 0.307 AD
T15 109 0.900 0.000 29.95% 0.064 0.687 0.488 Böck
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Table A3. Cont.

Tile Scale Shape Compactness QR OR UR RMS Metric

T16 45 0.842 0.923 59.96% 0.206 0.251 0.229 SUP
T16 101 0.652 0.762 47.17% 0.116 0.470 0.342 AD
T16 154 0.569 0.621 35.65% 0.086 0.615 0.439 Böck

T17 45 0.900 0.632 54.49% 0.205 0.320 0.269 SUP
T17 200 0.104 0.192 31.68% 0.133 0.637 0.460 AD
T17 185 0.603 0.800 28.57% 0.093 0.691 0.493 Böck

T18 57 0.889 0.897 59.15% 0.199 0.265 0.234 SUP
T18 116 0.653 0.370 49.68% 0.172 0.398 0.307 AD
T18 160 0.700 0.300 39.16% 0.094 0.572 0.410 Böck

T19 54 0.730 1.000 53.04% 0.262 0.290 0.276 SUP
T19 40 0.900 0.700 51.35% 0.221 0.343 0.288 AD
T19 40 0.601 0.000 42.72% 0.460 0.223 0.362 Böck

T20 40 0.900 0.900 53.31% 0.221 0.319 0.274 SUP
T20 200 0.154 0.961 34.98% 0.131 0.604 0.437 AD
T20 200 0.700 0.500 24.48% 0.067 0.743 0.528 Böck

T21 63 0.899 0.868 64.99% 0.157 0.231 0.198 SUP
T21 170 0.627 0.582 48.55% 0.129 0.447 0.329 AD
T21 200 0.813 0.173 39.54% 0.074 0.579 0.412 Böck
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ABSTRACT TheGroup on Earth Observations Global AgriculturalMonitoring Initiative (GEOGLAM) con-
siders agricultural fields as one of the essential variables that can be derived from satellite data. We evaluated
the accuracy at which agricultural fields can be delineated from Sentinel-1 (S1) and Sentinel-2 (S2) images
in different agricultural landscapes throughout the growing season. We used supervised segmentation based
on the multiresolution segmentation (MRS) algorithm to first identify the optimal feature set from S1 and
S2 images for field delineation. Based on this optimal feature set, we analyzed the segmentation accuracy
of the fields delineated with increasing data availability between March and October of 2018. From the S1
feature sets, the combination of the two polarizations and two radar indices attained the best segmentation
results. For S2, the best results were achieved using a combination of all bands (coastal aerosol, water
vapor, and cirrus bands were excluded) and six spectral indices. Combining the radar and spectral indices
further improved the results. Compared to the single-period dataset in March, using the dataset covering the
whole season led to a significant increase in the segmentation accuracy. For very small fields (< 0.5 ha),
the segmentation accuracy obtained was 27.02%, for small fields (0.5 – 1.5 ha), the accuracy was 57.65%,
for medium fields (1.5 ha – 15 ha), the accuracy was 75.71%, and for large fields (> 15 ha), the accuracy
stood at 68.31%. As a use case, the segmentation result was used to aggregate and improve a pixel-based
crop type map in Lower Saxony, Germany.

INDEX TERMS Agricultural field delineation, band indices, essential agricultural variables, feature
combination, image segmentation, intersection over union, remote sensing, segmentation optimization.

I. INTRODUCTION
As part of its activities geared towards ensuring the attain-
ment of the United Nation’s Sustainable Development
Goals [1], the Group on Earth Observations Global Agricul-
tural Monitoring Initiative (GEOGLAM1) identifies agricul-
tural fields as one of its essential agricultural variables [2].
Additionally, agricultural fields are valuable inputs to sub-
sequent processes such as crop type mapping [3], analysis
of crop rotations [4], implementation of crop management
activities [5], and the control of subsidy payments to
farmers [6]. Conventionally, agricultural fields have been

The associate editor coordinating the review of this manuscript and

approving it for publication was John Xun Yang .
1https://earthobservations.org/geoglam.php (Accessed: Jul. 9, 2021).

generated through the manual digitization of hardcopy maps
(aerial images, topographic maps, etc.) [7] or direct field
measurements. The obvious problem with those approaches
is that they are costly and inefficient especially as agricultural
maps require continuous updates to capture the real-time
or near real-time events happening on agricultural fields.
The use of remote sensing (RS) is a good alternative for
mapping agricultural fields given that satellite images can
be acquired over wide geographical areas at a high temporal
resolution [8]–[10].

The use of satellite images to delineate agricultural fields
has an extensive history in the RS world. It can largely
be attributed to the use of medium spatial resolution satel-
lites like Landsat. For example, to extract agricultural
fields, numerous studies [7], [11]–[14] used the Landsat
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Thematic Mapper (TM), some [13]–[16] employed the Land-
sat Enhanced Thematic Mapper Plus (ETM+), and oth-
ers [17]–[20] used the Landsat 8 Operational Land Imager
(OLI). The common theme running through all of those stud-
ies is the use of image segmentation as a means of extracting
the boundaries of the agricultural fields.

Image segmentation, which is the process of partition-
ing an image into homogeneous and distinct objects, is the
foundation of the object-based image analysis (OBIA)
paradigm [21]. The growth of the OBIA paradigm was
fueled by the advent of high-resolution images and the avail-
ability of powerful computing environments [22]. It was
observed in [23] that the spatial resolution of an image has a
direct impact on the outcome of image segmentation. In [5],
the authors established that the higher the spatial resolution,
the higher the coverage of agricultural fields eligible for site-
specific services like the monitoring of the Common Agricul-
tural Policy (CAP) [24] and the application of smart farming
technologies. Therefore, high or very high spatial resolution
images are generally preferred for segmenting agricultural
fields. For example, pan-sharpened SPOT-5 images were
used by [4], RapidEye by [25], WorldView-2/3 by [26],
QuickBird by [27], and digital orthophotos by [6]. However,
for mapping large geographical areas, the use of high or very
high spatial resolution images becomes infeasible as they
become extremely expensive to acquire. Therefore, medium
spatial resolution images remain the most viable option for
delineating agricultural fields at regional, national, and global
scales at little to no cost.

Although Landsat images have proven useful for mapping
agricultural fields over large areas, the spatial resolution
of 30 m is often unable to resolve individual agricultural
fields thereby inhibiting field-based applications in many
cropping systems around the world [28]. Building on the
experiences of the Landsat and SPOT missions, Sentinel-2
(S2) was designed within the framework of the European
Copernicus program for land surface and agriculture moni-
toring [28] at a temporal resolution of 5 days and a spatial
resolution of 10 m. As opposed to optical sensors, which are
inhibited by clouds, Sentinel-1 (S1), which is also part of
the Copernicus program enables the continuous monitoring
of the earth’s surface in all weather conditions at a temporal
resolution of 6 days and a spatial resolution of 20 m. Various
researchers have used S1 [29], [30], and predominantly
S2 [31]–[40] for segmenting agricultural fields. In using the
S1 or S2 images, most of those authors used existing segmen-
tation algorithms (e.g., [29], [30], [32]–[34], [36]–[40]), some
proposed new segmentation algorithms (e.g., [31], [35]), and
others proposed new segmentation parameter optimization
approaches (e.g., [36], [37]). One area that is yet to be com-
prehensively explored is the determination of the optimal
feature set from S1 and S2 images for segmenting agricultural
fields given that both sensors come with different bands and
additional features like band indices can be calculated as well.
In an experiment based on a WorldView-2 image, the authors
of [23] showed that the feature set used as the input to

the segmentation algorithm has an impact on the segmenta-
tion result. Therefore, it is worth exploring different S1 and
S2 feature sets to assess their impact on the segmentation of
agricultural fields.

Beyond the feature set, agricultural fields are dynamic
and change throughout the growing season, thereby requiring
continuous updates. Therefore, it is also relevant to analyze
the accuracy at which the agricultural fields can be delineated
from the S1 and S2 feature datasets at different times of the
growing season. Further, it is important to assess the accuracy
at which agricultural fields can be segmented from S1 and
S2 at different agricultural landscapes with different field
sizes. In [2], the authors categorized three different field sizes:
small fields (< 1.5 ha), medium fields (1.5 ha – 15 ha),
and large fields (> 15 ha). They subsequently asserted that
medium spatial resolution images (here S1 and S2) are more
suitable for delineating large fields. Based on their respective
spatial resolutions, S1 and S2 should be capable of spatially
resolving small fields. For example, a 1 ha field should be
spatially resolved by S1 using 25 pixels and S2 using 100
pixels. Therefore, the validity of the assertion in [2] ought to
be tested. Further, it remains to be seen what segmentation
accuracy can be achieved for those three field size categories.

To fill all the aforementioned gaps, we set out in this
study to execute the following objectives: (1) identify the
optimal feature set from S1 and S2 images for segmenting
agricultural fields, (2) analyze the evolution of the accuracy of
agricultural fields segmented from the S1 and S2 feature sets
throughout the growing season, and (3) assess the accuracy
that can be achieved for different field sizes. To achieve our
objectives, we employed the multiresolution segmentation
(MRS) algorithm [41] in eCognition [42] to segment agricul-
tural fields from different feature sets generated from S1 and
S2 images acquired between March and October of 2018 in
Lower Saxony, Germany.

II. STUDY AREA & DATA
A. STUDY AREA
The federal state of Lower Saxony in Germany was selected
as the study area (Figure 1). Its total area of about
4,770,041 ha has a mostly flat terrain and is located in the
temperate climate zone of Europe [36]. The majority of its
landmass is covered by agricultural lands that are mostly
dominated by grasslands, summer cereals, winter cereals,
potatoes, winter rapeseed, and sugar beet [36]. For efficient
segmentation purposes, the study area was divided into 575
tiles. Each tile is 10 km by 10 km.

To enable the smooth merger of the segmentation results
from all the tiles, the geometry extent of each tile was
extended or shrunk to cover the geometry of all poly-
gons contained in the agricultural land-cover (LC) dataset
(see Section II.C for the description of the dataset) whose
centroids intersected that particular tile. Consequently, the
extended or shrunk tiles (symbolized as blue outlines
in Figure 1) have variable sizes with the average size
being 11 km by 11 km. To reduce the computation time
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FIGURE 1. The study area (Lower Saxony) used in this study. A total of 575 tiles (blue outline) were created over Lower Saxony. The test
tiles (TTs) used as the basis to identify the optimal feature sets are symbolized in orange color. All the coordinates in the figure are in UTM
Zone 32N (EPSG:32632).

needed to identify the optimal feature set, we manually
assessed and selected eleven test tiles (TTs) (symbolized as
orange polygons in Figure 1) whose landscape compositions
were representative of the remaining tiles in Lower Sax-
ony. Details on how the selection was done are treated in
Section III.A.

B. SATELLITE DATA
A recent study [43] demonstrated the usability of monthly
composites of S1 and S2 images for large-scale mapping
of agricultural land-use (LU) types. For our study, we used
monthlymean composites (MMCs) of S1 and S2 images from
March to October 2018. For theMMCs of S1, we downloaded
the Sentinel-1 L3 BS (Sentinel-1 Level-3 Backscatter) data
from CODE-DE (Copernicus Data and Exploitation Platform
– Deutschland).2 CODE-DE is a cloud computing platform
that provides access to the datasets of the Copernicus program
covering Germany as well as virtual machines for data pro-
cessing. The Sentinel-1 L3 BS images in VV and VH polar-
izations are created by averaging all the Sentinel-1 L2
CARD-BS (Sentinel-1 Level-2 Copernicus Analysis Ready
Data – Backscatter) images over a month. The Sentinel-1 L2

2 https://code-de.org/en/ (Accessed: Jul. 9, 2021).

CARD-BS images, which come at a resampled spatial
resolution of 10 m, are generated by processing the Level-1
(L1) GroundRangeDetected (GRD) images of S1 acquired in
the Interferometric Wide Swath (IW) mode. The processing
is done by CODE-DE with the Sentinel Application Plat-
form (SNAP) using the standard procedure of applying an
orbit file, removing GRD border noise, removing thermal
noise, calibration, and terrain correction [44].

For S2, we used FORCE (Framework for Operational
Radiometric Correction for Environmental monitoring) [45].
FORCE is a processing software for generating higher-level
analysis-ready data (ARD) from S2 and Landsat images.
Based on the top-of-atmosphere L1C images of S2, FORCE
generates bottom-of-atmosphere L2 ARD images by correct-
ing for atmospheric, geometric, and bidirectional reflectance
distribution function (BRDF) effects [46]–[48]. In FORCE,
clouds and cloud shadows are detected and masked using
the Fmask algorithm [49]–[51]. The cloud and cloud shadow
pixels were replaced using an interpolation method based
on an ensemble of radial basis function (RBF) convolution
filters [52]. FORCE outputs all S2 bands except the ones with
a spatial resolution of 60 m, i.e., the coastal aerosol, water
vapor, and cirrus bands. The bands with a spatial resolution
of 20 meters are resampled to 10 m. For each band, all pixel
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values belonging to the same month were averaged to obtain
the MMCs for S2.

C. AGRICULTURAL LAND-COVER
From the digital landscape model of the German Offi-
cial Topographic Cartographic Information System (ATKIS)
of 2018, we extracted the vector layer containing polygons
of the agricultural LC (arable land and grassland) present at
the tiles. This layer was used to create a mask to remove
non-agricultural areas from the MMC images before seg-
menting the agricultural fields. This approach has also been
used in other studies [31], [36], [37].

D. REFERENCE DATA
For segmentation evaluation and optimization, we used the
Geospatial Aid Application (GSAA) data of 2018 covering
the TTs. This data was obtained from the Lower Saxony
Ministry of Food, Agriculture, and Consumer Protection. The
GSAA data contains the boundaries of agricultural parcels
manually digitized from very high-resolution orthoimages
(spatial resolution ≤ 1 m) by farmers intending to access
the subsidies within the CAP framework. The LU type (e.g.,
mowing pasture, meadow, maize, winter wheat, etc.) of each
agricultural parcel is additionally declared by the farmer. The
average size of an agricultural parcel over the TTs is about
3.4 ha, with the minimum size being about 0.2 ha and the
maximum size being about 63 ha. The average number of
agricultural parcels per tile is 2,463. For each test tile, basic
descriptive information of the GSAA parcels can be found
in Table 5 of Appendix A.

III. METHODOLOGY
The workflow we used in this study is depicted in Figure 2.
The components of the workflowwill be explained in the next
subsections.

A. SELECTION OF TEST TILES (TTs)
The selection of the TTs was based on four criteria namely a
high percentage coverage of agricultural LU, a high number
of reference parcels for segmentation evaluation, the pres-
ence of both big and small agricultural fields, and a variable
shape factor (SF) distribution per tile. The selected TTs are
more dominated by agricultural LU as depicted in Figure 14
(Appendix A). Each selected tile contains a mixture of both
big and small fields (see Table 5 of Appendix A). The
authors in [36] and [53] emphasized the importance of hav-
ing a sizeable number of reference objects for supervised
segmentation evaluation to ensure accurate results. In our
study, the minimum number of reference fields was 1,622 at
TT2, which we considered as a sizeable number. The SF
was used to quantify the shape characteristics of the GSAA
parcels within each tile. We adopted the SF method in (1) as
was proposed by [54];

SF =
4 ∗5 ∗ Area (X)

(Perimeter (X))2
(1)

FIGURE 2. The workflow we followed in this study.

where X is a GSAA parcel. For each tile, the SF factor is
calculated for all GSAA polygons. Higher SF values indi-
cate more compact polygons, while lower values represent
more elongated or irregular-shaped polygons. The selected
tiles have variable SF distributions as captured by Figure 15
(Appendix A).

B. BAND INDICES
Eight band indices (two radar and six optical) (Table 1) with
extensive usage in RS for mapping agricultural lands were
used in this study. The radar and optical indices were com-
puted using the MMC images of S1 and S2, respectively. All
the indices required at least two bands for computation. Given
that the S2 MMC images had ten bands, the optical indices
were selected to cover different parts of the electromagnetic
spectrum as was previously done in [3]. The S1MMC images
come with only two bands, hence each radar index used both
bands for computation.

C. CLIPPING AND MASKING
Each MMC and band index of S1 and S2 was clipped to the
boundary of a test tile. After clipping, all non-agricultural
areas were removed. The agricultural vector layer extracted
from ATKIS was used for this purpose. This vector layer con-
tains cadastral polygons of all agricultural lands in Germany.
We applied a negative buffer distance of 5 m to each polygon
to create a separation between two adjacent polygons that
share a common boundary. The reason for the negative buffer
was to ensure the ease of separation between adjacent agricul-
tural fields in the images during the segmentation process. All
pixels outside the buffered polygons were masked out from
each MMC and band index. These masked images were used
for all subsequent processes.

D. GENERATE FEATURE SETS
A feature set is a combination of two or more features (bands,
indices). In all, nine feature sets were created (Table 2). The
table shows each feature set alongside the input features that
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TABLE 1. The utilized radar and optical indices, abbreviations, formulas,
and sources in the literature.

TABLE 2. The nine feature sets used for optimization: data sources,
names, and lists of input features.

were used to create it. Three feature sets were based on S1 and
five were based on S2. Those S1 and S2 feature sets were
created after conducting some pretests to assess the separate
impact of the bands and band indices on the segmentation
accuracy. During the conduction of the pretests, we realized
that a combination of the radar and optical indices led to
an increase in the segmentation accuracy, hence the creation
of the combined feature set named S2S1I. Based on each
feature set, a feature dataset was generated for each month
in the growing season using the masked images created in
section III.C.

E. IDENTIFY OPTIMAL FEATURE SET
For each feature set in Table 2, all feature datasets from
March to October were stacked together to create a seasonal

feature dataset. Nine seasonal feature datasets were created
per tile. To optimize the segmentation of those nine seasonal
feature datasets per tile, we used the supervised segmentation
optimization (SSO) approach of [36]. That SSO approach
utilizes the MRS algorithm. Given that the MRS algorithm
requires three main parameters (scale, shape, and compact-
ness), all of which take a varied range of input values, that
SSO approach uses Bayesian optimization to identify the sin-
gle parameter combination that yields the optimal segmenta-
tion output. The accuracy of the segmentation output of each
parameter combination is measured through the overall seg-
mentation quality (OSQ) metric, which is an area-weighted
average of the Jaccard index [63]. The Jaccard index, which is
widely known as Intersection over Union (IoU), is frequently
used in computer vision tasks to measure the geometric simi-
larity between a reference object and a target object extracted
from an image or a video. The formula for IoU and OSQ as
culled from [36] is given in (2) and (3), respectively;

IoU (Y ) =
Area (X ∩ Y )

Area (X ∪ Y )
(2)

OSQ =

∑n
i=1 Area(Yi) ∗ IoU (Yi)∑n

i=1 Area(Yi)
(3)

where X is a reference object, Y is its target object (segment),
X ∩Y is the spatial intersection between them, X ∪Y repre-
sents their spatial union, and n is the total number of segments
in a segmentation output. Given an input image and a refer-
ence dataset (GSAA in our case), the SSO approach uses 150
parameter combinations and then returns the segmentation
output that best matches the reference data. It also returns
the corresponding OSQ value as well as the IoU value of
each segment in the optimal segmentation output. Both IoU
and OSQ range from zero (lowest segmentation quality) to
one (highest segmentation quality). The feature set with the
highest average OSQ over the eleven tiles was adjudged as
the best.

F. EVALUATE THE EVOLUTION OF SEGMENTATION
ACCURACY OVER TIME
To assess the evolution of the segmentation accuracy of
agricultural fields over time, we created incremental feature
datasets covering different months of the growing season
based on the optimal feature set identified in section III.E.
Table 3 shows how the incremental feature datasets were
created. The first incremental feature dataset (DID-1) was
created using the feature dataset of March only. The one in
April (DID-2) contains the feature datasets of March and
April. This incremental process continued up to October
(DID-8). DID-8 is the same as a seasonal feature dataset
described in section III.E. The number of bands in each incre-
mental feature dataset varied. Assuming S2B4 was estab-
lished as the optimal feature set, DID-1 will have four bands,
DID-2 will contain eight bands, and DID-8 will have 32
bands. For each of the eleven tiles, eight incremental fea-
ture datasets were created. Each incremental feature dataset
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TABLE 3. The incremental feature datasets (DID-1 to DID-8) that were
created in this study. The ‘‘x’’ symbol means that the feature dataset of
that month was used in creating the incremental feature dataset.

served as an input to the SSO approach and the corresponding
results were recorded.

IV. RESULTS
A. OPTIMAL FEATURE SET FOR SEGMENTATION
Figure 3 shows the variability of OSQs obtained at the eleven
TTs for each feature set as well as the average OSQ (cyan
boxes) obtained by each feature set over the test tiles. The
S1 feature set based on only the radar indices (S1I) out-
performed the one based on only the radar bands (S1B).
The combination of the radar bands and indices (S1BI) led
to an increase in OSQ. The feature set purely based on
the S2 indices (S2I) outperformed those purely based on
the spectral bands (S2B4, S2B10). The combination of the
S2 bands and S2I to respectively create S2B4I and S2B10I
improved the segmentation results as compared to separately
using either S2B4 or S2B10. Among the feature sets based on
only the S2 bands, S2B4 yielded better results than S2B10.
The combination of the S2 and S1 indices (S2S1I) obtained
the highest averageOSQ. The numerical values of the average
OSQs obtained by the feature sets over all the test tiles are
reported in Table 6 of Appendix A.

The breakdown of the performance of each feature set per
tile is shown in Figure 4. S2S1I yielded the best results at
three tiles (TT3, TT4, TT10), S2B10I at three tiles (TT2, TT8,
TT11), S1BI at two tiles (TT1, TT5), S1I at two tiles (TT6,
TT7), and then S2B4I at one tile (TT9).

The optimal parameter combinations associated with S1BI
(optimal among the S1 feature sets), S2B10I (optimal among
the S2 feature sets), and S2S1I (overall optimal feature set)
per tile are shown in Table 7 of Appendix A.

To understand the differences in OSQ between the fea-
ture sets, we further investigated S1BI, S2B10I, and S2S1I.
We generated the area-weighted histogram in Figure 5 with
ten bins using the IoU computed for each segment in the
optimal segmentation results that were respectively obtained
by S1BI, S2B10I, and S2S1I at all test tiles. We created
an area-weighted histogram because the OSQ is also area-
weighted. To create the histogram, each IoU contributed its
segment area to the bin count (frequency) instead of one.
As the histogram shows, the S2S1I feature set generated more

segments with better geometric matches to the GSAA parcels
than the other feature sets, which resulted in it obtaining the
highest average OSQ. Compared with S2B10I and S2S1I,
the higher values for low-IoU bins obtained by S1BI as shown
in Figure 5 explain its low accuracies in Figure 3 and Figure 4.

Based on the best feature set (S2S1I), we visually inspected
the optimal segmentation results at TT1 (highest OSQ
of 73.7%) and TT10 (lowest OSQ of 59.9%) to understand
the reasons behind the difference in OSQ between them.
Figure 6 shows the segmentation results achieved at TT1 and
TT10. The false-color image of S2S1I at TT1 and TT10 are
depicted in Figure 6a and Figure 6b, respectively. The GSAA
parcels (black outlines) have been overlaid on the false-color
images in Figure 6c and Figure 6d, respectively. The optimal
segments symbolized by their respective IoU values have
been overlaid on the false-color images in Figure 6e and
Figure 6f, respectively. The segments that touch the bound-
aries of each tile are excluded in the SSO approach because
they are artifacts, hence they are not displayed in Figure 6e
and Figure 6f. The reason for the difference in OSQ between
those two tiles is attributable to the difference in the size
and shape of agricultural fields at each tile. At TT1, the tiles
are bigger and more compact. The opposite can be seen at
TT10, where most of the agricultural fields are smaller and
less compact (more elongated).

B. EVOLUTION OF SEGMENTATION ACCURACY OVER
TIME
The average OSQ attained by each S2S1I-based incremental
feature dataset over all tiles is depicted in Figure 7. The lowest
OSQs were mostly obtained at the beginning of the growing
season in March with DID-1. As the season progressed and
more datasets were acquired and used, the segmentation accu-
racy increased accordingly. The highest OSQs were mostly
achieved at the end of the growing season in October (DID-8).
As Figure 8 shows, the optimal OSQ at eight tiles (TT1, TT4,
TT5, TT6, TT7, TT8, TT9, TT11) was attained with DID-8,
two tiles (TT2, TT3) with DID-7, and one tile (TT10) with
DID-4. The difference in average OSQ of 5.31 percentage
points between DID-1 (62.2%) and DID-8 (67.51%) was
observed to be statistically significant (p-value = 0.006)
based on a two-tailed t-test. In the incremental segmentation
set-up, the highest improvement in OSQ of almost 2% was
achieved by adding the May dataset to the incremental stack
to create DID-3. This was followed by the addition of the June
dataset to create DID-4, which led to an increase of about
1.2%. After June, the increase became more gradual.

We used the IoU values of the segments in the optimal
segmentation results generated with the incremental feature
datasets to create the area-weighted histogram shown in
Figure 9, which focuses onDID-1 (start of the season), DID-3
(after the farmers submit their GSAA), and DID-8 (end of
the season). The optimal segmentation results respectively
obtainedwithDID-3 andDID-8 producedmore segments that
geometrically matched the GSAA parcels than DID-1 did.
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FIGURE 3. Boxplots showing the variability of OSQs obtained at the eleven tiles per feature set. The cyan boxes
represent the average OSQs achieved by each feature set over the tiles. The within-box horizontal lines are the
median OSQs. The black dots are the OSQs that are outliers.

FIGURE 4. The OSQ obtained by each feature set per tile.

C. PLAUSIBILITY ANALYSIS: COMPARISON OF THE
SEGMENTATION RESULTS WITH THE GSAA PARCELS
In [36], over-segmentation was identified as the main rea-
son for the disparity between the GSAA parcels and the
segmentation results. In addition to the instances of over-
segmentation established in [36], we identified a new instance
of over-segmentation, which was caused by the masking
approach we used in this study as shown in Figure 10.

In Figure 10a, the GSAA parcel indicates the presence of a
single LU (mowing pasture) but due to the inward buffer
applied at the masking stage, an artificial boundary was cre-
ated in the satellite image leading to the incorrect generation
of two separate segments (B1, B2) as shown in Figure 10b.
B1 and B2 had moderate IoU values of 51% and 35.9%,
respectively. A higher IoU value could have been achieved
with a single segment without any separation between them.
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FIGURE 5. Area-weighted histogram of the Intersection over Union (IoU) values computed for the segments in the optimal
segmentation results achieved respectively by S1BI, S2B10I, and S2S1I at all test tiles.

TABLE 4. Overall segmentation quality (OSQ) computed for the different
field size categories.

D. SEGMENTATION ACCURACY FOR DIFFERENT FIELD
SIZES
The segmentation optimization process was subsequently
extended to the other tiles in Lower Saxony based on the
DID-8 generated for S2S1I. The optimal segmentation results
of the 575 tiles were then merged. The merged result can
be viewed as the ‘‘original_segmentation_ni’’ layer on this
web map.3 Based on this merged result, we analyzed the
impact of the area of the agricultural fields on the OSQ.
In [5], the authors stated that a minimum of 50 pixels per
field is the critical number required for site-specific smart
farming. Therefore, we separated the small field size category
of [2] into two sub-groups: very small fields (< 0.5 ha) and
small fields (0.5 ha – 1.5 ha). The medium and large field
categories were kept. Table 4 shows the OSQ computed for
each category.

From Table 4, the accuracy of large fields was lower than
the medium fields. A visual assessment of the results revealed
some of the instances that contributed to that phenomenon

3https://tisdex.thuenen.de/maps/34/view#/ (Accessed: Jul. 9, 2021).

as shown in Figure 11 and Figure 12, where the size of
the GSAA parcels are 19.6 ha and 15.7 ha, respectively.
To receive the greening payments within CAP, farmers with
arable land exceeding 15 ha have to use at least 5% of their
land as an Ecological Focus Area (EFA), e.g., hedges. Due
to the presence of hedges in Figure 11a, the SSO correctly
created one segment containing the hedges (B1) and a second
segment without hedges (B2) as captured in Figure 11b.
Unfortunately, B1 had a low accuracy of 6.4%. B2 was 86.4%
accurate. In Figure 12, although the image (Figure 12a) looks
relatively homogenous, two separate segments (B1 and B2)
with respective accuracies of 21.3% and 73.9 % were created
by the SSO as shown in Figure 12b. This is an error caused
by the MRS parameters not being optimal for that particular
agricultural field, even though the identified parameters were
optimal for the tile that contains that field.

E. USE CASE: POST-FILTERING OF PIXEL-BASED CROP
MAPS
In [64], the authors showed that the post-filtering of pixel-
based crop type maps using image segments throughmajority
voting can improve image classification results. Therefore,
as a use case, we tested if the crop type map of [65] as
visualized on this webpage4 could be improved using the
merged segmentation result of Lower Saxony. Before pro-
ceeding with this test, we first post-processed the merged
segments in GRASS GIS. 5 We applied ‘‘v.clean’’ to first

4https://ows.geo.hu-berlin.de/webviewer/croptypes/ (Accessed: Jul. 9,
2021).

5https://grass.osgeo.org/ (Accessed: Jul. 9, 2021).

VOLUME 9, 2021 116709

64



G. O. Tetteh et al.: Evaluation of Sentinel-1 and Sentinel-2 Feature Sets for Delineating Agricultural Fields

FIGURE 6. Optimal segmentation results obtained at TT1 (left column) and TT10 (right column) based on S2S1I. (a) and (b) show the false-color
composites of the NDVI MMCs of March, June, and October. The GSAA parcels (black outlines) have been overlaid on the respective images at
(c) and (d). The optimal segments have been symbolized with their corresponding IoU values and subsequently draped over each image at
(e) and (f), respectively. The geographical extent of TT1 is roughly 12.3 km by 10.3 km and that of TT10 is roughly 11.3 km by 10.7 km.
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FIGURE 7. Boxplots showing the variability of OSQs obtained at the eleven tiles by the S2S1I-based
incremental feature datasets. The cyan boxes are the average OSQs over all tiles as obtained by the
incremental feature datasets. The within-box horizontal lines are the median OSQs.

FIGURE 8. The OSQ obtained by each S2S1I-based incremental feature dataset per tile.

remove duplicate segments created due to overlapping tiles
and then applied ‘‘v.generalize’’ to simplify the segments.
The simplified segments can be viewed as the ‘‘simpli-
fied_segmentation_ni’’ layer in this web map.6 We subse-
quently applied a majority vote filter to determine the crop
type of each segment. As an example, the pixel-based crop
type map and the crop type map after the majority vote at TT7
(balanced share of arable lands and grasslands) are captured
by Figure 13a and Figure 13b, respectively. The outcome of

6https://tisdex.thuenen.de/maps/34/view#/ (Accessed: Jul. 9, 2021).

the majority vote was a smoothed map, where most of the
noise in the pixel-based map had been removed. An accuracy
assessment performed using all the GSAA parcels of Lower
Saxony indicated an improvement in the overall accuracy
after filtering from 78% to 81.4% and theKappa statistic from
0.705 to 0.747.

V. DISCUSSION
This current study builds on the previous work of [36].
In [36], the authors only focused on the development of
the optimization approach. No attention was given to the
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FIGURE 9. Area-weighted histogram of the Intersection over Union (IoU) values computed for the segments in the optimal
segmentation results achieved respectively by DID-1, DID-3, and DID-8 at all test tiles.

FIGURE 10. Over-segmentation caused by the masking approach used in
this study. The background displays in (a) and (b) are based on the
false-color image created for DID-8 using the NDVIs of March, June, and
October. The image in (a) has been overlaid with the GSAA parcel (black
outline). The corresponding segments generated are symbolized in (b) by
their IoU values. Two separate segments labeled B1 and B2 were created.

identification of the optimal feature set for segmenting the
agricultural fields. In [36], cloud-free S2 images were man-
ually selected and used. In this study, an automated pro-
cess based on FORCE was used to identify and replace
clouds. This study also evaluated pre-processed S1 datasets
as obtained from CODE-DE. For our current study, we used
monthly composites of S1 and S2 unlike [36], where single-
date S2 images were used. In [36], the segmentation accuracy
that could be achieved for different agricultural field size

FIGURE 11. Over-segmentation caused by hedges. The background
displays in (a) and (b) are based on the false-color image created for
DID-8 using the NDVIs of March, June, and October. The image in (a) has
been overlaid with the GSAA parcel (black outline). The LU of this GSAA
parcel is potato. The corresponding segments generated are symbolized
in (b) by their IoU values. Two separate segments labeled B1 and B2 were
created.

categories was not assessed. Finally, in this study, the use of
image segmentation to aggregate and improve a pixel-based
crop type map was evaluated.
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FIGURE 12. Over-segmentation caused by the non-optimal MRS
parameters. The background displays in (a) and (b) are based on the
false-color image created for DID-8 using the NDVIs of March, June, and
October. The image in (a) has been overlaid with the GSAA parcel (black
outline). The LU of this GSAA parcel is mowing pasture. The
corresponding segments generated are symbolized in (b) by their IoU
values. Two separate segments labeled B1 and B2 were created.

For segmenting agricultural fields, using only the visible
and near-infrared bands (S2B4) of S2 was superior to using
all ten bands (S2B10) as depicted in Figure 3. A similar
outcome was reported by [23], who received more accurate
results using only the visible (RGB) bands of a Worldview-
2 image as compared to using all the eight bands for image
segmentation based on the MRS algorithm. They attributed
this phenomenon to the high correlation existing between the
eight bands. To deal with this problem, they applied principal
component analysis (PCA) to the eight bands and used the
first three components for segmentation. The result was better
than using all eight bands but underperformed in comparison
with the RGB bands. In using S2, most authors [33]–[40]
directly used S2B4 to segment agricultural fields without
testing other feature combinations. The superiority of S2B4 to
S2B10 as established in this study validates the choice of
S2B4 by those authors for segmenting agricultural fields.

Due to the inherently speckled nature of radar images,
some researchers [66]–[68] have asserted that the segmen-
tation of optical images is easier and more accurate. Their
assertion can largely be backed by Figure 3, where most of
the feature sets based on only S2 outperformed those based on
only S1. However, the S1 feature sets (S1I, S1BI) containing
the radar indices proved capable of segmenting agricultural
fields even to the extent that they outperformed S2B10. The
speckle noise in radar images often makes it difficult to visu-
ally identify the boundaries of features. Monthly compositing
was particularly beneficial to S1 as it helped in reducing

the speckle noise, thereby revealing the boundaries of agri-
cultural fields. The masking approach used in this study
was potentially more beneficial to S1 in creating boundaries
between adjacent fields. In situations where S2 images are
not available due to clouds, monthly composites of S1 images
could be used for segmenting agricultural fields. Overall,
the combination of S1 and S2 resulted in the highest segmen-
tation accuracy (Figure 3). Within the context of mapping
agricultural LU types, other authors [43], [69], [70] also
observed that combining S1 and S2 leads to better results than
separately using each sensor.

Based on the seasonal feature dataset (DID-8) created from
the combined S1 and S2 feature set, the highest OSQ occurred
at TT1 (Figure 6e) and the lowest at TT10 (Figure 6f).
The main driving forces behind the obtained OSQs were
the area and shape of agricultural fields at the tiles. Due
to the presence of big and compact agricultural fields at
TT1, the segmentation process was more successful there.
At TT10, most of the agricultural fields are small and elon-
gated, and additionally, they are highly dominated by one LU
(mowing pasture). Such conditions coupled with the spatial
resolution of S1 and S2 make it difficult to appropriately
segment agricultural fields from S1 and S2 images because
clear-cut boundaries between agricultural fields cannot be
distinguished in the S1 and S2 images. This observation was
also made by [36] in their research as they encountered a
similar problem. The use of an image with a higher spatial
resolution than S2 was proposed by [36] as a likely solution.

Because agricultural fields are dynamic and change over
time, to accurately map different agricultural LU types,
the use of multitemporal images is considered a requirement
by [71]. With multitemporal images, the different phenolog-
ical behaviors of different agricultural LU types throughout
the growing season can be characterized and effectively used
to differentiate them [72]. Although that suggestionwasmade
within the context of image classification, it also applies to
the segmentation of agricultural fields as was highlighted by
these authors [39], [73]. As Figure 7 shows, using a single-
period dataset (DID-1) resulted in segments with signifi-
cantly lower accuracies than those created using the dataset
covering the whole growing season (DID-8). This demon-
strates the importance of using multitemporal images for the
effective segmentation of agricultural fields. Consecutively
increasing the number of images (S2S1I in our case) led
to a corresponding increase in the segmentation accuracy
(Figure 7). Although these studies [74], [75] were exclu-
sively focused on object classification, they also observed a
similar phenomenon, in that, increasing the number of input
images yielded an increase in the accuracy of the classified
segments.

Some sources of error identified in this study included
the masking approach, which led to the over-segmentation
captured in Figure 10. This problem could be resolved by
using an improved agricultural LC dataset. Another source of
error was the presence of hedges in the images, which led to
low segmentation accuracies as was highlighted in Figure 11.
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FIGURE 13. Usage of a majority vote to generate an object-based crop type map (b) from the
pixel-based crop type map (a).

Although the presence of the hedge led to a low segmentation
accuracy, such segmentation errors are acceptable especially
for subsequent processes like crop type mapping meant to
determine the actual LU within a field. The last source of
error as highlighted in Figure 12 was caused by the non-
optimal MRS parameters. The segmentation optimization in
this study was applied to roughly 11 km by 11 km tiles.
In tiles with predominantly smaller fields, such instances of
over-segmentation as displayed in Figure 12 are unavoidable.

One solution will be to apply the segmentation optimization
based on eachGSAAparcel instead of using all parcels within
a tile for the optimization. However, such an approach will be
computationally expensive. A more efficient solution will be
to merge neighboring segments with the same LU type after
object classification as was proposed by [36]. After applying
the majority vote filter, both segments in Figure 12b were
classified as grasslands, hence they could be merged as one
segment.

116714 VOLUME 9, 2021

69



G. O. Tetteh et al.: Evaluation of Sentinel-1 and Sentinel-2 Feature Sets for Delineating Agricultural Fields

FIGURE 14. Distribution of land-use (LU) per tile.

FIGURE 15. The boxplots showing the distribution of shape factors (SFs) per tile. The cyan boxes represent the average SFs. The within-box
horizontal lines are the median SFs.
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TABLE 5. Basic descriptive information of the GSAA parcels used in this
study per test tile.

TABLE 6. The average OSQs obtained by each feature set over the eleven
test tiles.

The general trend discernable from Table 4 is that
bigger fields lead to higher segmentation accuracies as
was also established in [36]. Contrary to the suggestion
of [2] that S1 and S2 are more suitable for large fields,
Table 4 rather showed that the S1 and S2 images are
more suitable for medium fields. The larger the fields,
the higher the probability of over-segmentation as was
depicted in Figure 11 and Figure 12, both of which led to
lower segmentation accuracies.

The usefulness of image segmentation for post-filtering
pixel-based crop type maps was briefly demonstrated in
this study. The derived object-based map was more visually
appealing and also increased the classification accuracy.

VI. CONCLUSION
In this study, we applied supervised segmentation optimiza-
tion to different feature datasets generated from S1 and
S2 images at eleven test tiles in Lower Saxony, Germany
to identify the optimal feature set for segmenting agricul-
tural fields. Additionally, the accuracy of agricultural fields
segmented from the S1 and S2 feature datasets between
March and October of 2018 was analyzed. Based on the

TABLE 7. The optimal parameter combinations obtained by S1BI (optimal
among the S1 feature sets), S2B10I (optimal among the S2 feature sets),
and S2S1I (overall optimal feature set) per tile.

results from the eleven test tiles, the segmentation optimiza-
tion process was extended to every part of Lower Saxony.

The results obtained in this study allow for the following
conclusions to be drawn: (1) S2 generally yields better seg-
mentation results than S1, (2) the synergistic use of S1 and
S2 can lead to an improvement in segmentation accuracy,
(3) multitemporal S1 and S2 images are key to the optimal
segmentation of agricultural fields, (4) S1 and S2 images are
more suitable for segmenting medium-sized (1.5 – 15 ha)
agricultural fields, and (5) post-filtering of pixel-based crop
type maps with agricultural fields extracted via image seg-
mentation improves classification accuracies.
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The main outcome (agricultural fields) of this study can
be used to produce object-based crop type maps. An object-
based crop type map is useful for subsequent processes like
the correct estimation of the area per crop type, crop yield
modeling, crop rotation analysis, greenhouse gas (GHG)
modeling, etc.

Looking ahead, we intend to extend this study to every
state in Germany. The derived segmentation results will then
be used as direct inputs to land-cover/land-use classification
and land-use intensity mapping (mowing detection). To test
the robustness of our current approach to the determination
of the optimal feature set, we intend to test other segmen-
tation algorithms particularly deep neural networks (DNN),
and then compare the results to our current study. Smaller
fields are more sensitive to the IoU metric than bigger fields.
A small spatial misalignment between a segmented field and
its corresponding reference object will have a more negative
impact on the IoU value of a smaller field than a bigger
field. Therefore, future studies should test other segmenta-
tion evaluation metrics that combine the percentages of the
overlapped (correctly segmented) area, over-segmented area,
and under-segmented area for each segmented field.

APPENDIX A
See Figures 14 and 15, and Tables 5–7.
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6 Discussion 

In this thesis, an automated framework for optimally delineating agricultural fields from Sentinel-1 (S1) and 

Sentinel-2 (S2) images was presented. Unlike the other studies that only used existing segmentation algo-

rithms or proposed new algorithms for segmenting agricultural fields from the S1 and/or S2 images, this 

thesis presented a more complete approach that encompassed the optimization of the segmentation algorithm 

and the optimization of the input data passed to the segmentation algorithm. For segmenting the agricultural 

fields from the S1 and S2 datasets, the multiresolution segmentation (MRS) algorithm as implemented in 

eCognition was used. A supervised and unsupervised approach was proposed to optimize the three main 

parameters (scale, shape, and compactness) of the MRS algorithm. 

6.1 Optimization of the data preparation 

In Chapters 3 and 4, the S2 images as downloaded from the European Space Agency (ESA) data repository 

were locally processed to obtain the Bottom-Of-Atmosphere (BOA) images. Those BOA images were visu-

ally inspected to identify the cloud-free images that were used for segmentation. This process is time-con-

suming and inhibits the full automation of the processing chain. To focus more attention on the segmentation 

process itself and its automation, analysis-ready data (ARD) of S1 and S2 were used in Chapter 5. For S1, 

the ARD was downloaded from CODE-DE. For S2, the Framework for Operational Radiometric Correction 

for Environmental monitoring (FORCE) software was used to create the ARD. Additionally, FORCE was 

used to automatically identify and mask out clouds. In this thesis, FORCE was employed in a local computing 

environment to generate the S2 ARD. There are ongoing discussions on the full integration of FORCE into 

the CODE-DE platform. This will further help in the automation process as the S2 ARD will readily become 

available on CODE-DE for download. Having the ARD of both S1 and S2 available on CODE-DE would 

open up the possibility of using the powerful cloud computing platform provided by CODE-DE for segmen-

tation optimization without downloading the ARD. 

In Chapters 3 and 4, the same masking approach was employed to remove non-agricultural areas. To do the 

masking, linear features (tracks, cycleways, paths, etc.) were buffered and combined with the agricultural 

vector layer extracted from the Digital Landscape Model (DLM) of the German Official Topographic Carto-

graphic Information System (ATKIS). The reason for using those linear features was to help create clear 

boundaries between adjacent agricultural land-cover (LC) polygons. However, it was later observed that this 

approach was not entirely effective because all linear features bounding the agricultural LC polygons were 

either not mapped in the Open Street Map (OSM) data or they did not geometrically align with the OSM 

linear features. Therefore, in Chapter 5, only ATKIS was used. To create clear boundaries, a 10 m inward 
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buffer was applied to each agricultural LC polygon. This was more effective as it already pre-segmented the 

images before the segmentation optimization was applied to delineate the individual parcels. 

The same tile grid system was used in Chapters 3 and 4. Each tile was 10 km by 10 km. Neighboring tiles 

had an overlap of 1 km. Due to the introduction of FORCE in Chapter 5, a new tile grid system was generated 

that aligned with the non-overlapping 30 km by 30 km tiles used by FORCE as the basis for data processing. 

Further, the boundary of each tile in this new tile grid system was automatically adjusted to accommodate the 

centroids of the agricultural LC polygons that intersected each tile. Consequently, the tiles had variable sizes 

with the average size being 11 km by 11 km. Neighboring tiles had variable degrees of spatial overlap. The 

creation of this new tile grid system made it easier to spatially merge all the optimal segmentation results to 

obtain a single vector layer for Lower Saxony. 

6.2 Optimization of the MRS algorithm 

In using the MRS algorithm, the focus is mostly placed on optimizing the scale parameter. Often, the shape 

and compactness parameters are kept constant while the scale is varied within a certain range to identify the 

optimal scale value. This approach has been used by numerous researchers (Anders et al., 2011; Böck et al., 

2017; Drăguţ et al., 2014; Drǎguţ et al., 2010; Johnson and Xie, 2013, 2011; Johnson et al., 2015; Kim et al., 

2011; Liu and Xia, 2010; Yang et al., 2019). However, the results of Chapter 3 revealed that to obtain optimal 

segmentation, all three parameters ought to be optimized. This was also observed in Chapter 4, where the 

unsupervised Bayesian optimization that was used in optimizing all three MRS parameters generally yielded 

better results than using it to optimize only the scale parameter while holding the other parameters constant. 

For optimizing the segmentation of agricultural fields with the MRS algorithm, grid search has been tested 

to optimize all three parameters by some authors (Conrad et al., 2010; Forkuor et al., 2014; Watkins and van 

Niekerk, 2019b). The computationally expensive nature of grid search prevents the evaluation of all possible 

parameter combinations before determining the optimal one. In the above-cited studies that used the grid 

search, the authors only tested a set of some parameter combinations based upon which the optimal combi-

nation was identified. This approach is not the most effective as one could miss out on the actual optimal 

combination if the tested parameter set does not contain the actual optimal combination. Bayesian optimiza-

tion as was proposed in this thesis is a more effective approach for efficiently approximating the actual opti-

mal combination. The supervised optimization approach presented in Chapter 3 and the unsupervised ap-

proach in Chapter 4 are complementary methods for optimizing the three MRS parameters. Although the 

supervised approach outperformed the unsupervised approach as was highlighted in Chapter 4, in areas where 

reference data is not available, the unsupervised approach becomes inevitable. For example, in Germany, the 

Geospatial Aid Application (GSAA) or Land Parcel Identification System (LPIS) are presently not publicly 
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available for all federal states. Therefore, the supervised optimization approach cannot be applied in federal 

states without reference data. The unsupervised approach would have to be evaluated in those states. 

6.3 Optimization of the input data 

After drawing experiences from some published studies (Belgiu and Csillik, 2018; Csillik et al., 2019; Wat-

kins and van Niekerk, 2019a, 2019b), only the visible and near-infrared (VNIR) bands of S2 were selected 

and used in Chapter 3 to delineate the agricultural fields. The reason often given in the literature for this 

choice is the relatively higher spatial resolution (10 m) of the VNIR bands compared to the other S2 bands. 

This reason is justifiable as the paper of Mesner and Oštir (2014) showed that the higher the spatial resolution, 

the higher the segmentation quality. In that same paper, the authors also observed that the spectral resolution 

of the input image also influences the segmentation outcome. Therefore, in Chapter 5, different feature sets 

were generated and used for segmentation optimization to evaluate their impact on the segmentation results. 

To segment agricultural fields, S2 is preferred to S1 due to the higher spatial resolution of S2 and the ease at 

which it can be visually interpreted. While the preference for S2 can largely be justified by the results of 

Chapter 5, S1 does add some value to the accurate segmentation of agricultural fields. This was demonstrated 

in Chapter 5, where the best segmentation accuracy was achieved through the synergistic use of S1 and S2. 

The use of VNIR in Chapters 3 and 4 was justified by its better performance in comparison with the ten bands 

of S2 as was observed in Chapter 5. However, Chapter 5 also indicated that using only the band indices of S1 

or S2 produces better segmentation results than using only the bands of S1 or S2. 

To accurately map different agricultural land-use (LU) types, the use of a time series of images is often 

recommended in the literature as a means of accurately characterizing the phenological behaviors of the dif-

ferent LU types and using that as the basis to differentiate them (Griffiths et al., 2019; Inglada et al., 2012; 

Waldhoff et al., 2012). As was revealed in Chapter 5, the worst segmentation results were mostly achieved 

with the single-period datasets at the beginning of the growing season in March and the best segmentation 

results were mostly achieved when the multi-period datasets were used at the end of the season in October. 

In March, most summer crops are yet to be sown. Therefore, among the summer crops, visible boundaries 

between the different agricultural parcels cannot be seen, hence the poor segmentation results. As the season 

progresses, the subdivisions among the different parcels become more visible, thereby enabling their effective 

segmentation. The bane of using a time series of images to map large geographical areas often lies in the 

amount of time and storage capacity needed to process them. Therefore, in this thesis, monthly mean compo-

sites (MMCs) were used as the basis for generating the image time series. Without any significant loss in 

segmentation accuracy, it was faster to apply the supervised optimization approach to the time series based 

on the MMCs than a time series generated from single image dates. Moreover, the MMCs of S1 are readily 

available as standard products on CODE-DE, with S2 being in the works. 
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6.4 Spatial distribution of the optimal parameters 

The optimal scale, shape, and compactness parameters obtained in Chapters 3 and 5 are respectively depicted 

in Figure 6-1, Figure 6-2, and Figure 6-3. The overall segmentation quality (OSQ) corresponding to each 

optimal scale, shape, and compactness combination can be seen in Figure 6-4. Here, the focus was placed on 

only the results of Chapters 3 and 5 because the supervised approach outperformed the unsupervised approach 

as was revealed in Chapter 4. Moreover, in Chapter 4, the segmentation optimization was limited to only 21 

tiles. It is worth noting here that the symbology levels used in Figure 6-1, Figure 6-2, and Figure 6-3, and 

Figure 6-4 are different from the ones used in Fig. 14 and Fig. 7 of Chapter 3. The modification of the sym-

bology levels was done to enable the comparison of the results between Chapters 3 and 5. 

The mean scale value in Chapter 3 was 47 with a standard deviation of 13. The modal value was 40. In 

Chapter 5, the optimal scale values were higher. The mean scale value in Chapter 5 was 86 with a standard 

deviation of 23. The modal value was 80. Regarding the optimal shape values, similar patterns were observed 

in both chapters. Most of the shape values were between 0.8 and 0.9, and in the majority of the cases, the 

maximum value of 0.9 was obtained. When it comes to compactness, the mean value obtained in Chapter 3 

was 0.686 with a standard deviation of 0.183. The compactness values in Chapter 5 were higher and they of-

ten reached the maximum value of 1.0. The mean compactness value stood at 0.848 and the standard devia-

tion was 0.214. The OSQs obtained in Chapter 5 were generally higher than those of Chapter 3. This can 

largely be attributed to the use of multitemporal images in Chapter 5. The mean OSQ obtained in Chapter 3 

was 0.573 and the standard deviation was 0.043. In Chapter 5, the mean OSQ was 0.691 with a standard de-

viation of 0.061. 
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Figure 6-1. The optimal scale of each tile in Chapter 3 (a) and Chapter 5 (b). The numbers in the square brackets represent the number 

of tiles. 
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Figure 6-2. The optimal shape of each tile in Chapter 3 (a) and Chapter 5 (b). The numbers in the square brackets represent the number 

of tiles. 
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Figure 6-3. The optimal compactness of each tile in Chapter 3 (a) and Chapter 5 (b). The numbers in the square brackets represent 

the number of tiles. 
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Figure 6-4. The overall segmentation quality (OSQ) corresponding to the optimal scale, shape, and compactness combination identi-

fied for each tile in Chapter 3 (a) and Chapter 5 (b). The numbers in the square brackets represent the number of tiles. 
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6.5 Application of identified optimal parameters 

While the segmentation of the agricultural fields is the ultimate goal of this thesis, the identification of the 

optimal MRS parameters is a very important step. The optimal parameters identified with the supervised 

approach generate better segmentation results than those of the unsupervised approach. As aforementioned, 

the main drawback of the supervised approach is the need for the GSAA or LPIS for optimization. Given that 

the landscape structure (size, shape) of agricultural parcels in Germany does not drastically change between 

years, the supervised optimal parameters identified for a particular year (2018 in this thesis) could be used to 

directly segment images acquired for different years without the need for the GSAA or LPIS. This was tested 

and highlighted in the conclusion of Chapter 3 where the optimal parameters of 2018 were applied to segment 

S2 images acquired in 2019 and the loss of segmentation accuracy was less than 2%. The supervised optimal 

parameters obtained in Chapter 5 were based on the optimal feature set (combination of the S1 and S2 indices) 

covering the whole season (DID-8). In another test, those established parameters were used to directly seg-

ment the incremental dataset up to May (DID-3) and the loss of segmentation accuracy was less than 1%. 

Therefore, without waiting till the end of the season, the established parameters of 2018 could be used to 

segment in-season images acquired in a different year. The outcome of those two tests shows that the optimal 

MRS parameters established at one point in time could be transferred to segment images acquired at different 

points in time without a substantial loss in segmentation accuracy. 

In RS, the main challenge regarding the temporal transferability of models is that different spectral responses 

(reflectances) are recorded for the same object at different points in time due to the different atmospheric 

conditions under which the images are acquired as well as changes in land-use or land-cover. This is partic-

ularly true when it comes to the temporal transferability of image classification models because such models 

are built on the statistical distribution of the reflectances of objects at some point in time. Therefore, any 

changes in reflectance at a different point in time will largely render the application of that classification 

model ineffective. Unlike image classification, the MRS algorithm does not build a statistical model from the 

reflectances but simply clusters the pixels in any given image. To do the clustering, it takes both the reflec-

tance (color) and shape of the pixels into account (see Eq. 1). As Figure 6-2 shows, the MRS algorithm placed 

more weight on shape than color. In addition to shape and color, the average size of the fields as manifested 

through the scale parameter is also taken into account by the MRS algorithm. Therefore, the main condition 

that can inhibit the temporal transfer of the optimal MRS parameters of 2018 to other times of interest is a 

drastic change in the shape and size of the agricultural fields at that particular time of interest. Where drastic 

changes in the landscape structure are envisaged, the segmentation optimization process ought to be repeated 

using images acquired at the time of interest to establish new optimal parameters. Otherwise, the already 

established optimal parameters can be used to segment images in different years without repeating the whole 

segmentation optimization process. 
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6.6 Potential usage of the segmentation results 

6.6.1 Object-based crop-type mapping 

Increasing crop yields to match the increasing world population comes with attendant environmental prob-

lems such as the increase in GHG emissions and the destruction of biodiversity. To formulate policies targeted 

at ensuring sustainable agriculture, accurate spatial information about agricultural lands is needed. In Chapter 

5, the merged segmentation result of Lower Saxony was used to post-filter a pixel-based crop-type map to 

generate an object-based crop-type map, which resulted in a 3.4 percentage points increase in the classifica-

tion accuracy. The difference between the pixel-based map and the object-based map was found to be statis-

tically significant (p-value < 0.01) after performing McNemar’s test. The precision (user’s accuracy), recall 

(producer’s accuracy), and F-score per class (land-use type) can be seen in Table 6-1. The F-score (Eq. 5), 

which is the harmonic mean of the precision and recall, represents the accuracy per class. 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
 (5) 

The object-based map had higher accuracies for all classes except winter barley, winter rapeseed, sugar beet, 

and potato. The most noticeable improvements of 4.85 and 3.41 percentage points in accuracy respectively 

occurred in the strawberry and grassland classes. With the improved overall accuracy, the object-based map 

can be used for a more accurate estimation of the acreage per crop type, GHG modeling, crop yield forecast-

ing, and the computation of landscape metrics for assessing the biodiversity on agricultural lands. 

  



6 Discussion 

85 

 

Table 6-1. The computed precision, recall, and F-score for the land-use types in the pixel-based and object-based crop-type maps. 

Land-use type Precision (%)   Recall (%)   F-Score (%) 

  

Pixel-

based 

Object-

based   

Pixel-

based 

Object-

based   

Pixel-

based 

Object-

based 

Grassland 96.76 97.05  78.55 84.11  86.71 90.12 

Winter Wheat 93.95 92.47  80.68 82.6  86.81 87.26 

Winter Rye 76.98 77.64  80.72 82.73  78.8 80.11 

Winter Barley 89.58 88.24  82.52 83.17  85.91 85.63 

Other Winter Cereals 50.49 51.98  65.77 69.19  57.13 59.37 

Spring Barley 82.89 82.73  63.48 65.9  71.9 73.36 

Spring Oat 31.88 32.53  39.4 41.24  35.24 36.37 

Other Summer Cereals 32.49 33.12  68.22 69.96  44.02 44.96 

Winter Rapeseed 93.37 92.13  92.35 91.41  92.86 91.77 

Legume 55.01 56.49  52.59 54.45  53.77 55.45 

Sunflower 4.93 5.15  34.05 34.33  8.61 8.95 

SugarBeet 93.67 93  93.56 94.17  93.61 93.58 

Maize 90.22 89.51  74.5 77.76  81.61 83.22 

Maize(grain) 28.54 28.92  50.51 51.64  36.47 37.07 

Potato 91.02 89.23  89.23 89.38  90.12 89.3 

Strawberry 20.45 24.25  88.07 88.28  33.2 38.05 

Other leafy vegetables 27.59 28.51   22.61 23.36   24.85 25.68 

 

6.6.2 Verification of the GSAA parcels 

The segmentation results could be used within the framework of the EU’s Common Agricultural Policy 

(CAP) for checks by monitoring (CbM). With CbM, all the declared GSAA parcels must be verified instead 

of the currently used approach of randomly sampling 5 % of the declarations for on-the-spot checks (OTSCs). 

Therefore, for CbM to be efficient and effective, a smart sampling plan must be used to identify the declared 

parcels that show a high level of disparity compared to the information retrieved from the S1 and/or S2 im-

ages. The IoU computed for each segment enables one to set a reliability threshold value to identify the GSAA 

parcels that might need the attention of an operator at a National Control and Paying Agency (NCPA). The 

segments whose IoU values are smaller than the threshold value could then be visually examined alongside 

their corresponding GSAA parcels. This targeted approach of checking the GSAA parcels will be more effi-

cient than inspecting all the declared GSAA parcels as required by the CbM. Reducing the visual inspection 

to a subset of GSAA parcels can help to quickly identify those parcels whose geometries are inconsistent with 

the real-world situation like the one captured in Fig. 8a of Chapter 3. While image segmentation can help in 

flagging such inconsistent GSAA parcels, to be conclusive on the compliance or otherwise of the GSAA 

parcels to the CAP rules, the next steps of verifying the agricultural LU types and activities existing on those 

GSAA parcels must be done. 
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The object-based crop-type map produced in Chapter 5 could also be used for CbM. One important compo-

nent of CAP is the greening payment (European Commission, 2021b), which aims at ensuring the sustainable 

use of agricultural lands. To access the greening payments, farmers have to comply with the greening rules. 

The greening rules cover three aspects namely crop diversification, maintenance of permanent grassland, and 

ecological focus areas (EFAs) (European Commission, 2021b). Under crop diversification, arable lands ex-

ceeding 10 ha must have at least two crop types, and those greater than 30 ha must have at least three crop 

types. To maintain permanent grassland, each EU country has to dedicate a certain percentage of its total 

agricultural area to permanent grasslands. Under the EFAs, for arable lands exceeding 15 ha, 5% of the land 

must be dedicated to EFAs (hedges, trees, or fallow land). To check the compliance of the farmers to those 

greening rules, a crop-type map like the object-based crop-type map that was produced in Chapter 5 can be 

used. Based on that object-based crop-type map, a smart sampling plan can be used here as well so that the 

NCPA operator will only focus on the GSAA parcels whose declarations are in disagreement with what has 

been observed in the object-based crop-type map. 

6.6.3 Essential agricultural variables 

The concept of essential variables (EVs) emerged through different scientific communities as a means of 

adequately characterizing the various sub-systems (e.g., atmosphere, biosphere, geosphere, hydrosphere) of 

the Earth system (Lehmann et al., 2020; Reyers et al., 2017). EVs are a set of variables that are critical for 

monitoring the aforementioned sub-systems (Earth Science Data Systems Program, 2021). Over the years, 

various scientific communities have established different EVs for different thematic areas such as the essen-

tial climate variables (https://gcos.wmo.int/en/essential-climate-variables) of the Global Climate Observing 

System (GCOS) and the essential biodiversity variables (https://geobon.org/ebvs/what-are-ebvs/) of the 

Group on Earth Observations Biodiversity Observation Network (GEO BON).  

Within the framework of supporting the attainment of the United Nation’s Sustainable Development Goals 

(SDGs) especially the second goal (“End hunger, achieve food security and improved nutrition and promote 

sustainable agriculture”), the Group on Earth Observations Global Agricultural Monitoring Initiative (GEO-

GLAM) has identified some essential agricultural variables (EAVs) including “cropland and rangeland 

masks, crop-type map and planted area, cropland and rangeland condition, crop yield forecast, water use and 

productivity, field delineation, crop phenology/stage, crop biophysical variables, and environmental varia-

bles” (Whitcraft et al., 2019). This thesis showed that at a regional level, S1 and S2 images could be used to 

extract agricultural fields, which is one of those EAVs. Further, the agricultural fields were used to produce 

a crop-type map, which is another EAV. To achieve food security, accurate crop-type maps are required (See 

et al., 2015). An accurate crop-type map like the object-based crop-type map produced in Chapter 5 could 

serve as the basis for yield forecasting. Indeed, in-season object-based crop-type maps could be generated 

and subsequently used for near real-time yield forecasting. Through yield forecasting, production shortfalls 

https://gcos.wmo.int/en/essential-climate-variables
https://geobon.org/ebvs/what-are-ebvs/
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could be identified and then appropriate measures could be devised to boost the agricultural output (See et 

al., 2015). Based on the object-based crop-type map, the agricultural practices used on agricultural lands and 

their corresponding impact on the environment could be assessed. This will enable policy-makers to stipulate 

policies that will ensure the use of sustainable agricultural practices by farmers. 

 

6.7 Limitations of this thesis 

There are two main limitations associated with this thesis. The first limitation is imposed by the methodolo-

gies proposed for optimizing the MRS algorithm. The supervised Bayesian optimization approach, which 

proved to be more accurate than the unsupervised approach, requires reference data. In this thesis, the freely 

available GSAA data of Lower Saxony was used. The other federal state in Germany that has made the GSAA 

data publicly available is Brandenburg. This can inhibit the application of the supervised approach to those 

federal states where the GSAA data is not publicly available.  

The second limitation is associated with the input data. While a direct comparison between the results of 

Chapters 3 and 4 and Chapter 5 cannot be done due to the use of different tiles, the use of the multitemporal 

S1 and S2 images in Chapter 5 generally improved the segmentation accuracy as can be seen in Figure 6-4. 

The lowest segmentation accuracy of 42.04% was obtained at T2 in Chapter 3. The segmentation accuracy 

for T2 in Chapter 4 was 40.28%. After averaging the results of the tiles in Chapter 5 that intersected T2, the 

segmentation accuracy came up to 56.21%. Regardless of this improvement, the problem posed by very small 

fields to the effective segmentation of the agricultural fields persisted in all three papers. The use of mul-

titemporal data in Chapter 5 could not resolve this problem. Therefore, any geographical area within the EU 

with very small agricultural fields will pose a problem to the use of the S1 and S2 images for effective mon-

itoring of those fields. Within the context of CbM, this problem has been recognized by the Joint Research 

Centre (JRC) of the European Commission (EC) in their technical report (Devos et al., 2017). As was shown 

in Chapter 5, the highest overall segmentation quality (OSQ) was achieved by the medium field-size category. 

However, at the field level, the highest Intersection over Union (IoU) value of 0.984 was achieved by a large 

field with an area of 21.72 ha and a shape factor (SF) of 0.678. 
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7 Conclusions 

This thesis presented a comprehensive framework for optimizing the segmentation of agricultural fields from 

S1 and S2 images using the MRS algorithm as implemented in eCognition. This framework enables the op-

timized delineation of agricultural fields from S1 and S2 images in a fully automated way. In this thesis, a 

Bayesian optimization approach based on supervised and unsupervised segmentation evaluation metrics was 

proposed. Further, the optimal feature set from S1 and S2 for segmenting agricultural fields was identified. 

The outcome of this thesis showed that to optimally segment agricultural fields, all three MRS parameters 

(scale, shape, and compactness) must be optimized, whether a supervised or unsupervised optimization 

method is used. To optimize the MRS algorithm, unsupervised optimization is preferred due to the difficulty 

and cost that come with obtaining reference data over large geographical areas. This thesis, however, showed 

that to optimally segment agricultural fields, supervised optimization outperforms unsupervised optimization. 

Therefore, where reference data is available, supervised optimization ought to be used. Although the optimi-

zation approaches proposed in this thesis were applied to the MRS algorithm, they can be used to optimize 

the parameters of any segmentation algorithm. The proposed optimization approaches can also be applied to 

other satellite images and other thematic areas outside agriculture. Beyond the optimization approaches, this 

thesis also highlighted the importance of optimizing the input data given to the segmentation algorithm. To 

achieve optimal segmentation, the synergistic use of multitemporal S1 and S2 band indices is recommended. 

It was observed in this thesis that through image segmentation, the classification accuracy of pixel-based 

crop-type maps can be improved. The optimal segmentation layer of Lower Saxony and the corresponding 

object-based crop-type map produced in this thesis are essential agricultural variables that can be used for 

CAP monitoring, crop yield forecasting, GHG modeling, and biodiversity monitoring.  

For future research, it should be tested if the optimal parameters of Lower Saxony can be spatially transferred 

to the other states of Germany where the GSAA data is not publicly available. One way of doing this is by 

building a regression model between the optimal parameters of Lower Saxony and agricultural statistics com-

puted from ATKIS per tile. This model can then be used to predict new parameters for tiles in the other federal 

states. The segmentation result from this exercise can then be compared with the unsupervised optimization 

approach. To deal with the limitations imposed by very small field sizes, higher spatial resolution images like 

SPOT, PlanetScope, or WorldView could be tested. Instead of post-filtering the pixel-based crop-type map 

with the segmentation results to obtain the object-based map, the segmentation results can be directly used 

for object-based classification and the outcome can then be compared to the results after post-filtering and 

the pixel-based map. Instead of using eCognition, which is proprietary, open-source software (OSS) could be 

tested. Some OSS includes the region growing and merging algorithm in GRASS GIS (Momsen and Metz, 

2015) and the foremost DNN for instance segmentation called Mask R-CNN. 
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