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Chapter 1.

Introduction

Materials research has a crucial role in the development of many technical applications
used in our daily life. The composition and structure of the built-in materials became in
the last years more and more involved, and their accessible length scales much smaller. In
particular, fundamental research is searching for the understanding of the basic principles
of such complex materials and their properties. Besides the experimental investigations
and findings, theoretical models and first-principles calculations can largely contribute to
the materials sciences concerning predictions or further atomistic understanding.

This thesis reports the results of the theoretical investigation focused on the influence of
defects at different dimensions and length scales on crucial material properties. Depend-
ing on the dimension of the system, the defects might have different degrees of freedom
to occupy different sites in a lattice structure. Their relative positions can be completely
uncorrelated, limited to a particular lattice site, or anything in between. This variation in
different disorder regimes was the main topic of this thesis (see figure 1.2). I used for the
computation mainly the Green’s function method HUTSEPOT [1]. The Green’s function
(GF) method proved to describe reliably magnetic properties and can cover the different
defect problems and describe well physical properties of materials, as the result sections
will show.

Among many other interesting topics, the research has been focused in the last years
on the improvement of computational hardware like its data storage capacity, the meth-
ods of data storage, weight reduction or reduction in energy consumption and unwanted
heat emission. Since these hardware elements became more and more microscopic, atom-
istic understanding and basic research is critical. Here the possible research topics have
increased continuously with strong developments in measurement, material characteri-
zation, and growing techniques. For example, the spin-polarized surface tunneling mi-
croscopy (sp-STM) allows nowadays to investigate single magnetic atoms on a metallic
surface [E11]. Such magnetic adatoms are discussed in the context of tiny magnetic mem-
ories and need a high magnetic moment with a high stability. In the past, the electronic
states of the typical transition metal adatom hybridized with those of the surface and
the stability was quickly lost [2–6]. This hybridization was overcome, e.g., in larger clus-
ters [2, 3] or insulating buffer layers [4–6]. However, it is shown that the large magnetic
moments of the rare-earth atoms like Holmium might be in particular well suited for a
stable magnetic orientation [E11]. In particular, the magneto-crystalline anisotropy of the
underlying threefold symmetry of the considered Pt surface plays a crucial role for the
long lifetime observed in recent experiments. The strongly localized f -states of Holmium
made it necessary to take into account the general crystal-field Hamiltonian. The theo-
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Chapter 1. Introduction

(a) (b)

Substrate: e.g. SrCoO3

FM: Sr2FeMoO6

Non-conductive, Non-magnetic

Hard FM

1Figure 1.1: (a) Experimental realization of a spin-valve with metallic thin films [9], (b) A
possible magnetic tunnel junction built from oxide thin films.

retical calculation of the crystal-field parameters was implemented into HUTSEPOT. The
Green’s function method allows in the context of the multiple scattering theory the de-
scription of a single impurity in a perfect host system with the embedded cluster model
[7]. Therein, a single adatom has no degree of freedom in terms of a disordered defect
(see figure 1.2).

Magnetic properties also became important for spintronic applications. They may re-
duce the electrical current inside the computer hardware that would also reduce Joule
heating and allow smaller structures in, e.g, transistors. Additionally, spintronic devices
are extremely sensitive to changing magnetic fields, and they are used as magnetic field
sensors in our daily live. Such devices, e.g., spin valves or magnetic tunnel junctions
(MTJ) use the giant magnetoresistance or tunnel magnetoresistance effect, respectively
[8]. Both devices use the spin-dependent scattering of electron currents at material in-
terfaces. In figure 1.1, two possible realizations are sketched. They consist of two ferro-
magnetic (FM) layers separated by a non-magnetic layer, either conductive or not. The
magnetic orientation in one layer is pinned (hard magnetization) while the other should
switch more easily (soft magnetization). In a magnetic field, the magnetization of the
soft FM layer can switch, and the difference in the magnetization directions of the two
layers can be detected by an electric current. The magnetic pinning can be realized either
by a higher magnetic coercitivity in one material with the hard magnetization or via the
exchange coupling at the interface with an antiferromagnetic film (see figure 1.1a).

The sensitivity of a spin valve structure depends on the strength of the magnetoresis-
tance effect. In a simple model, the tunnel magnetoresistance effect is [8]

TMR =
P1P2

1− P1P2
(1.1)

with P1 and P2, the spin polarizations of the density of states of the two magnetic elec-
trodes, respectively. Thus, a high spin polarization is crucial. Besides other materials, sev-
eral complex oxide compound show half-metallic characteristics, e.g., Zn-Ferrite ZnFe2O4
or the double perovskite Sr2FeMoO6 (SFMO). The usage of the latter is sketched in fig-
ure 1.1b. Since the lattice of the oxides often mismatches with those of the common
substrates like Si, a conductive oxide with the perovskite lattice structure, e.g., SrCoO3
(SCO), might be used as an electrode.

For these two complex oxides systems – SCO and SFMO – I used the Green’s function
method to have deeper insight into the magnetic coupling mechanisms, the dependencies

2
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1Figure 1.2: Schematic picture of the stepwise improvement in the description of disorder
for the considered materials. On the other hand, the completely of the investigated ma-
terial system had to be lowered in order to stay at a reasonable level of computational
effort.

of the magnetic moments and the magnetic transition temperatures of oxide materials.
Additionally, these properties vary under a chemical disorder, atomic deficiency or struc-
tural changes. Oxygen deficiency (oxygen vacancy – VO) is for example quite typical for
all oxide materials and reduces in SCO the Curie temperature TC [10]. On the other hand,
the high Curie temperature of the SFMO bulk samples (420 K to 450 K) [11–14] is desired
for possible applications as spin valves or MTJ but lost as soon as SFMO is grown as a
thin film (TC ≈ 300 K) [15, 16]. Epitaxial strain resulting from the surface or a swap of an
Fe ion to a site of a Mo ion and vice versa (antisite defect or antisite disorder – ASD) were
discussed besides the always present VO as an origin for this reduction. ASD is typical
for double perovskite materials (Sr2BB′O6) where the oxygen environment around the
transition metal atoms B or B′ is similar, and a switch of sites is very likely.

These defects are usually point defects in a perfect crystal and can be included in
theoretical calculations. Larger lattice imperfections like stacking faults or dislocations
are much harder to investigate by ab initio methods and were neglected in this work.
However, they might also influence the magnetic properties. Anyway, point defects are
usually considered in a supercell, e.g., for SFMO in the work of Muñoz-García et al. [17].
This allows already a detailed look into local properties but completely neglects possible
disorder of those defects. The concept of multiple scattering theory offers in a quite
natural way the opportunity to include randomly distributed point defects. They are
included in an effective medium in the coherent potential approximation (CPA) [18, 19].
For SCO, an increase of oxygen vacancies reduces the magnetic transition temperature
[E4], which agreed well with the experiments [10]. In contrast, the simulations show an

3



Chapter 1. Introduction

increase of TC with more oxygen vacancies for SFMO [E2, E3].
Nevertheless, the description of the point defects in the two oxide materials within

the CPA presents only an completely uncorrelated regime of disordered defects (see fig-
ure 1.2). The numerical results are reasonable only at the low concentration limit, since
the lattice structure might become unstable for higher amounts of oxygen vacancies. This
instability was shown, e.g., of SCO [20]. Beside, as a single-site approximation, the CPA
completely neglects potential short-range order (SRO). Hence, there are possible exten-
sions described in the literature. In HUTSEPOT, the multi-sublattice non-local CPA (MS-
NL-CPA) is implemented [21] but it has a large numerical effort in respect of calculation
time and memory. Therefore, I did not study the influence of SRO for a complex oxide
but rather for the simple nonmagnetic alloy system AgcPd1−c (see figure 1.2). This in-
vestigation was focused only on the electronic structure and the structural equilibrium
properties [E12].

At first, two basic ordering regimes were studied. The CPA was used to model the
whole concentration range of the AgPd alloy. The change of the elastic properties in
dependence of chemical disorder agreed well with previous CPA calculations within the
EMTO method [E12, 22, 23]. On the other hand, Müller and Zunger [24] proposed the
ordered phases of AgcPd1−c at particular alloy compositions cAg = 0.25, 0.5 and 0.75.
The MS-NL-CPA allowed an interpolation between these ordered phases simulating the
tendency of long-range order (LRO) over the whole concentration range.

Both SRO regimes, uncorrelated disorder or LRO, were compared to each other. Their
elastic properties show a characteristic deviation from the linear dependence (Vegard’s
law [25]). In general, such a deviation might be connected to substantial variations in
the electronic structure, changes in the connectivity of the Fermi surface – called Lif-
shitz transitions or electronic topological transitions (ETT). Based on the their restricted
computational possibilities, Bruno et al. [26–28] showed this connection only for few con-
centrations and with possible numerical uncertainties. The connection could be verified
with HUTSEPOT for a larger concentration range in AgcPd1−c [E12].

Then, the effect of a particular SRO regime on the electronic structure was investigated.
The different disorder regimes caused variations in the density of states (DOS), which
might be large enough to be visible in valence photoemission spectroscopy (PES) experi-
ments. This introduces new ways to investigate SRO via PES and numerical calculations.

This thesis is organized into five chapters and ends with a conclusion in chapter 7. The
following chapter 2 summarizes the basic computational details used in the thesis – the
basics of the DFT, the multiple scattering theory, and the Monte Carlo method. More ad-
vanced numerical methods for the explicit derivation of particular physical observables
are addressed in chapter 3. As the overview in figure 1.2 visualizes, the results were dis-
cussed beginning with the low dimensional system, the Holmium adatoms on platinum
(chapter 4). The magnetic properties of the two complex oxides and their changes due
to point defects are discussed in chapter 5, while chapter 6 contains the results for the
Ag-Pd alloy system and its electronic structure.

4



Chapter 2.

Theoretical Basics

2.1. First-principles methodology
Like any first-principles or ab initio method, the Green’s function method solves the quan-
tum mechanical many-body problem for an arrangement of atoms build from a nucleus
and electrons. Although a parameter-free solution without any approximation would be
favored, some approximations are needed due to the huge number of degrees of freedom
when using a realistic number of atoms. The Born-Oppenheimer (adiabatic approxima-
tion) assumes the positions in the ensemble {α} of the Nn nuclei as fixed during the
timescale of the electronic movements. The charge Zα of the nuclei at the positions Rα,
creates the potential

V{α}(r) = −
Nn

∑
α

2Zα

|r− Rα|
. (2.1)

With this adiabatic approximation, the stationary Schrödinger equation can written as

Ĥ{α}Ψ = EΨ , (2.2)

with the Hamiltonian

Ĥ{α} = −
Ne

∑
i
∇2

i

︸ ︷︷ ︸
Te

+
Ne

∑
i

(
V{α}(ri) + Ṽext

)

︸ ︷︷ ︸
Vext

+
Ne

∑
i,j

i 6=j

1∣∣ri − r j
∣∣

︸ ︷︷ ︸
Vee

, (2.3)

for all Ne electrons (written in atomic units)1 and the wave function of the Ne electrons at
r with the spin s

Ψ(r1, s1, r2, s2, . . . , rNe , sNe) . (2.4)

The terms in (2.3) represent the kinetic energy of the electrons Te, the external potential
combined with the potentials from the atomic cores Vext and the electrostatic interac-
tion between all electrons Vee. In this context only the time-independent, non-relativistic

1It is h̄ = 1, m = 1/2 and e2

4πε0
= ε2 = 2. The length scales are given in Bohr radius aB. The energy is

given in Rydberg (1 Ryd).

5
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Schrödinger equation is discussed because the main topics of this thesis are ground state
properties for light elements.

Since the number of electrons is too large to solve this equation directly, there are sev-
eral models developed. The first model – the Thomas-Fermi model [29, 30] – divides the
system into different cells and assumes for each of them a homogeneous electron den-
sity. The problem can be also solved approximating Ψ with a product of single electron
wave functions ψi(r, s), as suggested by Hartree [31]. Nevertheless, the Pauli principle
should be valid and can be realized in the Hartree-Fock approximation [32] with a Slater
determinant of single-electron wave functions

Ψ ≈ 1√
Ne

∣∣∣∣∣∣∣

ψ1(r1, s1) · · · ψ1(rNe , sNe)
... . . . ...

ψNe(r1, s1) · · · ψNe(rNe , sNe)

∣∣∣∣∣∣∣
. (2.5)

In those approximations, the electron density derived from the single electron wave func-
tions

$s(r) = ∑
i
|ψi(r, s)|2 (2.6)

plays a fundamental role.2

2.1.1. Basics of density functional theory
The density functional theory (DFT) gives the connection between the ground state and
the electron density $(r). Therewith, all the degrees of freedom in the all-electron wave
function (2.4) are reduced to only the three parameters x, y, and z of the real space
coordinate r. This connection is based on two theorems proved by Hohenberg and Kohn
[33]:

• for each Vext(r) exists the total energy as a functional of the charge density Ê[$],

• Ê[$] fulfills the variational principle

Ê[$(r)] ≥ Ê[$0(r)] = E0 , (2.7)

where E0 is the ground state total energy as long as $0(r) is the exact charge density
describing the real system.

Consequently, all physical observables of the system, which are the expectation values
of the corresponding operators with the wave function, are functionals of the electron
density. In particular, the total energy in (2.2) becomes a functional

Ê[$] = T̂[$] + V̂ee[$]︸ ︷︷ ︸
=:F̂[$]

+
∫

Vext(r)$(r)dr , (2.8)

with the contribution of the external potentials. The functionals of the kinetic energy and
the electron-electron interaction are combined to F̂[$]. The exact form of the electron-
electron interaction functional is not known explicitly. The Hohenberg-Kohn theorems
do not state a method how to achieve the ground state density.

2The spin index s of the charge density is only written when it is explicitly needed.

6



2.1. First-principles methodology

2.1.2. Kohn-Sham equations
Kohn and Sham [34] used an effective single particle system

ĤKS = −∇2 + Veff(r) , (2.9)

which behaves like a non-interacting electron system. The wave function is again the
Slater determinant and the exact electron density is recovered

$s(r) =
N

∑
i
|ψi(r, s)|2 . (2.10)

Due to the non-interacting electrons, the kinetic energy as an expectation value with the
single electron wave functions

TKS =
N

∑
i

〈
ψi

∣∣∣−∇2
∣∣∣ψi

〉
, (2.11)

is not exactly T̂[$] from (2.8). Its difference is combined with all non-classical terms of
the electron-electron interactions into the exchange-correlation energy term

F̂[$] = TKS +
∫∫

$(r)$(r′)
|r− r′| dr dr′ + Êxc[$] . (2.12)

By means of the variation of the charge density

∂Ê[$]
∂$(r)

=
∂TKS

∂$(r)
+ Vext(r) + 2

∫
$(r′)
|r− r′|dr′ +

∂Êxc[$]

∂$(r)︸ ︷︷ ︸
Veff(r)

= µ . (2.13)

Thereby, Lagrange multiplier µ conserves the number of particles.
The single particle system (2.9) is determined by the effective potential Veff(r) in (2.13)

and it will return the exact single particle electron density $(r) (2.10). The latter, however,
is not known but it can be obtained iteratively by using (2.9) and a starting density $ν(r)
for Veff(r) in

ĤKSψν(r) = εψν(r) . (2.14)

A new density $ν+1(r) is calculated from the obtained wave function ψν(r) with (2.10) and
yields a new Veff(r) for (2.14). These calculation steps are repeated until the difference
between the charge densities

|$ν(r)− $ν+1(r)| < δ , (2.15)

reaches a given accuracy δ.

7



Chapter 2. Theoretical Basics

2.1.3. Formulation within the multiple scattering theory
The multiple scattering theory leads in a natural way to the Green’s function of the sys-
tem. In general, a Green’s function can be used to solve any inhomogeneous differential
equation of the type [35]

[ε− L̂(r)]G(ε; r, r′) = δ(r− r′) . (2.16)

The variable ε is complex with the eigenvalues λ ≡ Re{ε} and L̂(r) is a time-independent,
linear, hermitian differential operator with a complete set of eigenfunctions {φn(r)}

L̂(r)φn(r) = λnφn(r) . (2.17)

The Hamiltonian (2.14) is obviously a similar kind of differential equation as (2.17) and
can be solved with a Green’s function approach [35, section 3]. The values ε represent
complex energies. The usage of Dirac’s bra 〈r| and ket |r〉 notation of the position opera-
tor 〈r|G(ε)|r′〉 = G(ε; r, r′) allows a simpler equation

(ε− ĤKS)G(ε) = 1 ⇒ G(ε) = (ε− ĤKS)
−1 . (2.18)

If the effective potential in (2.9) or any kind of potential V is considered as a perturbation
of the undisturbed Hamiltonian Ĥ0 = −∇2, two Green’s functions can be derived

G0(ε) = (ε− Ĥ0)
−1 ⇒ (ε− Ĥ0) = G0(ε)

−1 , (2.19)

G(ε) = (ε− ĤKS)
−1 ⇒ (ε− ĤKS) = (ε− Ĥ0 −V) = G(ε)−1 . (2.20)

By plugging (2.19) into (2.20) a Dyson equation is obtained [36, section 3.1.2]

G(ε) = G0(ε) [1−VG0(ε)]
−1 = [1− G0(ε)V]−1 G0(ε) , (2.21)

= G0(ε) + G(ε)VG0(ε) = G0(ε) + G0(ε)VG(ε) . (2.22)

The latter equation defines an infinite Born series (iterative solution). With the so-called
T-operator or scattering matrix T,

T(ε) = V + VG0(ε)V + VG0(ε)VG0(ε)V + . . . , (2.23)

the Dyson equation can be reformulated to

G(ε) = G0(ε) + G0(ε)T(ε)G0(ε) . (2.24)

For a single scattering potential at site n, the single-site T-operator, also called t matrix,
is defined by

tn(ε) = Vn + VnG0(ε)tn . (2.25)

The latter equation accounts for the electron scattering at a single potential (see blue lines
in figure 2.1). Thus, the T-operator for an ensemble of N scatterers can be rewritten in
terms of this single-site T-operator

T(ε) = ∑
n

tn(ε) + ∑
n,m

tn(ε)G0(ε)(1− δnm)tm(ε)+

+ ∑
n,m,k

tn(ε)G0(ε)(1− δnm)tm(ε)G0(ε)(1− δmk)tk(ε) + . . . , (2.26)

8



2.1. First-principles methodology

z

x

e− Vn

cell n

cell k

cell m

Rnrn

Rm

rm

rMT

1Figure 2.1: Schematic picture of the electronic scattering described by the multiple scatter-
ing theory for a periodic lattice of spherical potentials Vn. The potentials do not overlap
with each other and have the muffin-tin radius rMT. A plane wave is scattered at the
potential in cell n and emits a spherical wave (blue lines). The resulting wave can be
again scattered, e.g, at cell k towards cell m (orange and red lines). The uppercase vector
Rn points to the origin of the potential. The lowercase vector rn describes a point inside
the potential.

whereas this scattering operator can be rewritten in terms of the scattering path operator
τnm(ε) [36, section 3.3.3]

T(ε) = ∑
n,m

τnm(ε) . (2.27)

The scattering path operator fulfills again a Dyson equation

τnm(ε) = tn(ε)δnm + ∑
k

tn(ε)G0(ε)(1− δnk)τ
km(ε) , (2.28)

and describes the scattering path from the potential in cell n to the potential in cell m via
several other potentials symbolized as the one in the cell k (see figure 2.1). In addition,
also the Green’s function can be expressed with (2.28)

G(ε) = G0(ε) + ∑
n,m

G0(ε)τ
nm(ε)G0(ε) . (2.29)

Thus, either the Green’s function or the scattering path operator can be used for the full
description of the scattering in the system.

For the practical solution, the above formalism is written in an angular momentum
and partial wave representation. All quantities are expressed as matrices in terms of the
eigenfunctions of the angular momentum operators, the spherical harmonics YL(r̂) with
L = (l, m), and the Bessel, Neumann and Hankel–functions [36, section 3.4.5]. The ma-
trices with an angular momentum index are combined for all sites into a single matrix, a

9



Chapter 2. Theoretical Basics

so-called supermatrix. The multiple indices of a supermatrix are indicated by underlin-
ing. Thereby, the matrices for the scattering path operator (2.28), the single-site scattering
matrix (2.25), and the so-called bare structure constants G0(ε) are written as

τ(ε) = {τnm
LL′(ε)} (2.30)

t(ε) = {tn
LL′(ε)} (2.31)

G0(ε) = {Gnm
0,LL′(ε)(1− δnm)} (2.32)

It follows the main equation of the Green’s function method [1, 36]

τ(ε) = [t−1(ε)− G0(ε)]
−1 . (2.33)

The latter equation visualizes the separation of the structural and chemical contributions
at the different sites, since the quantity G0(ε) contains all the information of the lattice
without the potentials (see (2.19)), whereas the information of the chemical compound is
included in t(ε) via the potentials (see (2.25)). In addition, this formalism allows the de-
scription of disorder as a logical consequence as described in section 3.4, but complicates
the calculation of the position dependent properties like structural relaxations or phonon
spectra.

2.1.4. Potentials in the Green’s function method
In the GF method, the potentials in the single-site scattering matrix (2.25) are included
by different concepts. The simplest assumption for those potentials is a collection of
regularly arranged, spherically symmetric muffin-tin (MT) potentials with the radius rMT,
which do not overlap with each other (see underlying spheres in figure 2.1).

However, Gonis showed that all equations discussed in section 2.1.3 are also valid for
overlapping and arbitrarily shaped potentials [37]. This allowed a representation of the
potentials, e.g., with the atomic sphere approximation (ASA). In the ASA, the radius of
the spherical potentials at every site is chosen such that the sphere volume is the same as
the volume of the Wigner-Seitz cells (WSC) at the corresponding site.

On the other hand, a full-potential implementation is also possible in the GF method
but demands very large computational resources. A simplified version of this full-
potential approach, the so-called full-charge density approximation (FCDA), can be used.
It is based on the work of Kollar, Vitos, and Skriver [38]. The convex polyhedra for the
WSC with the volume Ω is build by a Voronoi cell construction [39]. A shape function is
introduced to take into account the non-spherical shape of the WSC [36, section 4]

σ(r) =

{
1 r ∈ Ω

0 r /∈ Ω
. (2.34)

It has to be expanded into spherical harmonics

σ(r) = ∑
L

σL(r)YL(r̂) , (2.35)

10
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with the coefficients

σL(r) =
∫

Ω
dr σ(r)Y∗L (r̂) . (2.36)

The FCDA was used throughout this thesis to improve the accuracy of the calculations
for complex unit cell geometries.

2.1.5. The choice of the exchange-correlation functional

The exact form of the exchange-correlation functional in (2.13) was so far not necessary
for the theoretical methodology. Since it is unknown for complex systems, there is only
an approximation possible. In this work, unless otherwise stated, the very reliable gener-
alized gradient approximation (GGA) by Perdew-Burke-Ernzerhof (PBE) [40] was used.
Other approximations like the local density approximation (LDA) of Perdew and Wang
[41] or variations of the generalized gradient approximation (e.g. PBEsol [42]) were al-
ways tested beforehand but showed no qualitative changes in the electronic or magnetic
properties of the investigated material systems in chapter 4 or 5. On the other hand, the
differences in the exchange-correlation functionals became more critical in the context
of equilibrium properties discussed in more detail in chapter 6. Therein, the numerical
results obtained for different exchange functionals are compared with each other.

2.2. Monte Carlo Simulations

Another basic computational concept used in this work was the Monte Carlo (MC) sim-
ulation technique from statistical physics. It was applied to calculate averaged properties
of a model Hamiltonian Ĥ. This model Hamiltonian was in particular the Heisenberg
Hamiltonian, which is more elaborately discussed in section 3.3.1. Nevertheless, the un-
derlying concepts of the statistical physics in the Monte Carlo method are applied to
many different topics. They will be recalled briefly in the following.

The averaged total energy of the system with N sites is (see e.g. [43, section 5.3])

E =
〈

Ĥ
〉

T/N , (2.37)

with the thermal average in the canonical ensemble
〈
·
〉

T. The thermal average is ex-
pressed as a phase space integral for any physical observable A(c) with its degrees of
freedom collected into a single vector c. Thereby, A(c) can be, e.g., the Hamiltonian itself
A = Ĥ, or the total magnetic moment A = ∑N

i mi. The phase space for ∑N
i mi is spanned

by all the magnetic moments sitting at the lattice sites, so a vector of a certain configura-
tion of magnetic moments would be c = (m1, m2, . . . , mN). The phase space integral over

11



Chapter 2. Theoretical Basics

the ensemble {c} of all c gives the thermal average

〈
A(c)

〉
T =

1
Z

∫
dc exp

(
− Ĥ(c)

kBT

)

︸ ︷︷ ︸
p∗(c):=

A(c) , (2.38)

Z =
∫

dc exp

(
− Ĥ(c)

kBT

)
. (2.39)

Here the normalized Boltzmann factor p(c) = p∗(c)/Z acts like the probability density
describing the statistical weight of the configuration c.

As a starting point, the integral over {c} is substituted by a sum over a subset of phase
space points (a set of NMC points), called simple sampling [43, section 2.1.2]

〈
A(c)

〉
T ≈ A(c) =

∑NMC
l=1 exp

(
−Ĥ(cl)/kBT

)
A(cl)

∑NMC
l=1 exp

(
−Ĥ(cl)/kBT

) . (2.40)

As any statistical method, it can only be approximative. Unfortunately, the NMC states in
(2.40) has to be chosen randomly. It turns out that a simple random sampling technique
generates the points in the phase space with a narrow Gaussian probability distribution,
which is not useful for all temperatures [43, section 2.1.5]. Hence, a subset of phase space
points from a regime, which is important at a certain temperature T, is needed. If such
a subset is found according to the probability P(cl), the simple sampling (2.40) can be
substituted by

A(c) =
∑NMC

l=1 exp
(
−Ĥ(cl)/kBT

)
A(cl)/P(cl)

∑NMC
l=1 exp

(
−Ĥ(cl)/kBT

)
/P(cl)

. (2.41)

With the Boltzmann factor p∗(c) as a choice for this probability function P(cl), (2.41)
reduces to a simple arithmetic average, the importance sampling,

〈
A(c)

〉
T ≈ A(c) =

1
NMC

NMC

∑
l=1

A(cl) . (2.42)

Metropolis et al. [44] used a Markov process, where the following state cl+1 is con-
structed from the previous one with a suitable transition probability W(cl → cl+1). They
showed that with NMC → ∞ the distribution function P(cl) tends towards p(c). A proper
condition is the principle of detailed balance

Peq(cl)W(cl → cl′) = Peq(cl′)W(cl′ → cl) , (2.43)

which implies that the ratio between the two transition probabilities depends only on the
energy change ∆Ĥ = Ĥ(cl′)− Ĥ(cl) ,

W(cl → cl′)

W(cl′ → cl)
= exp

(
−∆Ĥ

kBT

)
. (2.44)
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The transition probability W is not uniquely defined and a common choice is [44, 45]

W(cl → cl′) = min
(

1, exp
[
− El − El′

kBT
])

. (2.45)
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Chapter 3.

Calculation of Material Properties

3.1. Electronic structure from the Green’s function
All relevant features of the electronic structure can be obtained directly from the calcu-
lated Green’s function. In real space, the Green’s function in the spectral representation
between cell n and m is written as [36]

G(ε; r + Rn, r′ + Rm) = ∑
LL′

YL(r̂)Gnm
LL′(ε; r, r′)Y∗L′(r̂

′) , (3.1)

with the complex energies ε, which have a small imaginary part, and the expansion
coefficients

Gnm
LL′(ε; r, r′) = ∑

L′′L′′′
ZLL′′(ε; r)τnm

L′′L′′′(ε)ZL′L′′′(ε; r′)

− ∑
L′′

JLL′′(ε; r)ZL′L′′(ε; r) . (3.2)

The GLL′(ε; r) are expressed in terms of the regular and irregular scattering solutions
ZLL′′(ε; r) and JLL′′(ε; r), respectively. All physical quantities, which are derived in the
following, can be described by using only the diagonal parts of the Green’s function (3.1)

G(ε; r + Rn) ≡ G(ε; r + Rn, r + Rn) , (3.3)
GLL′(ε; r) ≡ Gnn

LL′(ε; r, r) . (3.4)

For example, the charge density1 inside a particular cell n is defined as the imaginary
part of an integral over the Green’s function along a contour in the complex plain [36,
section 18.2.1]

$(r) = − 1
π

Im
∫

y
dε G(ε; r + Rn) . (3.5)

By using the Gaunt coefficients

CL′
LL′′ =

∫
dr YL(r̂)Y∗L′(r̂)YL′′(r̂) , (3.6)

1The spin dependency s of the charge density is at the moment dropped.
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the charge density can be expanded as

$(r) = ∑
L

$L(r)Y∗L (r̂) , (3.7)

$L(r) = −
1

2πi ∑
L′L′′

CL′
LL′′
(
GL′L′′(r)− GL′′L′(r)∗

)
, (3.8)

where

GLL′(r) =
∫

y

dε GLL′(ε; r) . (3.9)

Since the charge density is confined to a WSC, it has to be multiplied with the shape
function (2.34)

$L(r)σ(r) = ∑
L

$L(r)Y
∗
L (r̂) , (3.10)

$L(r) = ∑
L′L′′

CL′
L′′L$L′(r)σL′′(r) . (3.11)

The charge inside the WSC (with volume Ω) can be calculated from the charge distri-
bution (3.5) [36, section 18.2.2]

Q =
∫

Ω
dr $(r) . (3.12)

The latter can be simplified by taking into account the simple relation of the shape func-
tion inside the MT sphere with the radius rMT. Only the spherical contribution with
L = (l, m) = (0, 0) is nonzero

σL(r) =
√

4π δL,(0,0) , r ≤ rMT . (3.13)

The charge reads finally

Q =
√

4π
∫ rMT

0
dr r2$(0,0)(r) +

∫ rBS

rMT

dr r2 ∑
L

$L(r)σL(r) . (3.14)

The radius rBS corresponds to the so-called bounding sphere (BS), which completely cir-
cumscribes the convex polyhedra of the WSC.

The electronic structure of the atoms or ions and their bonding is strongly determined
by the behavior of the valence electrons – electrons, which occupy partially filled states.
The DOS of such states is usually broadly distributed and close to the Fermi energy
EF (see figure 3.1, like, e.g., the 2p states of oxygen or the 3d states of cobalt in SCO
(see figure 5.2). The filled electron shells are in contrast deep below EF and yield a
narrow band width. Therefore, most computational methods and in particular the GF
method have to consider the valence electrons and the core electrons separately. Other
computational methods – so-called all-electron codes like, e.g., the Elk code2 – treat all
electrons on the same footing but need typically a higher number of basis functions and
longer computing times.

2All-electron full-potential linearized augmented-plane wave code (http://elk.sourceforge.net/).
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1Figure 3.1: Schematic picture of the DOS of the valence and core electronic states as red
or blue filled areas, respectively. The red line indicates the integration contour, e.g., in
(3.5). Two different possibilities for the integration contour are depicted in (a) and (b).

While the valence electrons are solved in the GF method based on the scattering prob-
lem, the core energies are usually obtained from the numerical solution of the Dirac
equation with atomic boundary conditions [36, section 22.3]. These atomic boundary
conditions mean that the core-wave functions are computed as atomic like states. In
HUTSEPOT, the eigenvalues of the core states are calculated with the program of Liber-
man et al. [46].

Often, energetically higher lying core levels occur where the wave functions have a
significant extension and should be treated as semi-core states. This happens, e.g., for
heavier atoms or stronger lattice distortions, when the distance between atoms becomes
shorter. These semi-core states can be treated in a similar manner as valence states,
either in real or reciprocal space. Depending on the atomic types, the integration contour
can be chosen differently, either one contour over all states (see figure 3.1a), so they are
treated all on the same footing or individual contours for the core and valence states
(see figure 3.1b). The latter allows the description of the valence or the core states with
independent approximations, either by the t matrix approximation, in real space or in
reciprocal space [1].

In this work, the description of the f states of the rare-earth metals was needed (see
chapter 4). The f shells lie very deep below EF and are strongly localized. Thus, they can
be treated as core states, although they are not filled. This open-core model was discussed,
e.g., by Richter et al. [47, 48].

3.1.1. Separation of states with orthogonalization

For many applications and in particular for the description of the crystal field parameter
in section 3.3.3, it is mandatory to completely separate the core states from the valence
states. However, the energy dependent wave functions in HUTSEPOT do not allow such
a separation right from the beginning. If the GF method finds a resonant state in the cal-
culation, the state is considered, independently from the starting assumptions, as either
core or valence states.

A possible solution is the orthogonalization of the core wave functions with respect to
the valence state wave function like it is done in a modified orthogonalized plane wave
(MOPW) method [49]. The orthogonalization of the valence state wave functions |φv

L(ε; r)〉
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1Figure 3.2: Calculated total DOS of ZnO and PDOS of the Zn d, O s and O p states. The
results are compared in respect of the orthogonalization of the 3d states of Zn: (a) As
valence states; (b) As core states with orthogonalization.

with those of the core states |φc
L′(ε; r)〉 is [50, section 2.2]

|φL(ε; r)〉OPW = |φv
L(ε; r)〉 −∑

L′
|φc

L′(ε; r)〉〈φc
L′(ε; r)|φv

L(ε; r)〉 . (3.15)

This orthogonalization technique was demonstrated for the transition metal monoxide
ZnO, as a brief example. In ZnO, the 3d states of Zn are fully occupied though appear in
a conventional DOS calculation3 energetically between the 2s and 2p states of oxygen (see
figure 3.2a). But with the orthogonalized core states, the 3d states of Zn can be treated as
core states and completely vanish in the resulting DOS, while the shape of the O p states
changes drastically (see figure 3.2b).

3.1.2. Local density of states
The real-space integral of the Green’s function over the volume of the WSC of site n yields
the local density of states (LDOS) for the two spin channels s =↑ or ↓ [36, section 18.2.3]

Ds(ε) = −
1
π

Im
∫

Ω
dr Gs(ε; r + Rn) , (3.16)

= − 1
π

Im
∫

BS
dr Gs(ε; r + Rn)σ(r) . (3.17)

3The self-consistent and DOS calculations were done with HUTSEPOT for the experimental crystal struc-
ture of wurzite type [51, overview in table 1.2]. They were not intended as an extensive description of
ZnO but rather as a simple visualization of the effect of orthogonalized core states. So, the calculation
settings were not fully optimized.
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With the expansions of the diagonal Green’s function (3.4) and the shape function (2.35)
follows

Ds(ε) = −
1
π

Im ∑
LL′L′′

∫ rBS

0
dr r2GLL′s(ε; r)CL′

LL′′σL′′(r) , (3.18)

= − 1
π

Im ∑
LL′

∫ rBS

0
dr r2GLL′s(ε; r)σL′L(r) , (3.19)

where

σL′L(r) = CL′
LL′′σL′′(r) . (3.20)

If the angular momentum representation of the LDOS (3.17) is defined as a density matrix
[36]

DLL′s(ε) = −
1
π

Im ∑
L′′

∫ rBS

0
dr r2GLL′′s(ε; r)σL′′L′(r) , (3.21)

(3.19) can be expressed as a trace

Ds(ε) = Tr{DLLs(ε)} = ∑
L

DLLs(ε) . (3.22)

The diagonal elements DLs(ε) ≡ DLLs(ε) can be sorted according to the crystal symmetry
into s-,p-,d-like and so forth partial components, the partial density of states (PDOS)

Ds(ε) = ∑
L

DLs(ε) = ∑
lm

Dlms(ε) = ∑
l

l

∑
m=−l

Dlms(ε) , (3.23)

by using crystal symmetry adapted spherical harmonics. The latter are defined via an
unitary transformation of the spherical harmonics in such a way that the Green’s function
in (3.21) becomes diagonal [52]

∑
L′′L′′′

U†
LL′′G

nn
L′′L′′′(ε; r)U†

L′′′L′ = δLL′ G̃nn
LL′(ε; r) . (3.24)

3.1.3. Band structure and Fermi surface
For a more detailed picture of the electronic structure, the whole band structure can be
visualized with the Bloch spectral function (BSF) [28]. The BSF describes the DOS at any
k point in the reciprocal space and consists, for an ideal system, of a sum of δ functions,
either as a function of the real energy ε at a fixed k

AB(ε; k) = ∑
ν

δ(ε− εν(k)) , (3.25)

= − 1
π

Im lim
η→0+

∑
ν

1
ε− εν(k) + iη

, (3.26)
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1Figure 3.3: Cut through the ΓKLUX plane of the Brillouin zone of the AgcPd1−c alloy with
increasing amount of palladium calculated by Bruno et al. [28] with a fully-relativistic
KKR-CPA method. The black lines indicate the Fermi surface.

or as a function of the k point at fixed ε

AB(ε; k) = ∑
ν

δ(kζ − kζν(ε)) , (3.27)

= − 1
π

Im lim
ξ→0+

∑
ν

Cζν

kζ − kζν(ε) + iξ
, (3.28)

along a direction labeled ζ [28]. The BSF can be calculated directly from the imaginary
part of the Fourier transformed Green’s function G(ε; k) [53]

AB(ε; k) = − 1
π

Im G(ε; k) . (3.29)

Peaks in (3.29) define occupied electronic states according to (3.26) or (3.28) and, there-
with, the band structure. An integral over the k points yields again the DOS. If the
energy is fixed to the Fermi energy ε = EF, the discontinuity of the BSF defines the Fermi
surface. This definition of the Fermi surface holds true also in the case of an averaged
Green’s function [28, 53]. The concept of the effective medium description within the
coherent potential approximation is described in more detail in section 3.4.2. For exam-
ple, the Fermi surface for varying chemical composition of the alloy AgcPd1−c [28] is
presented in figures 3.3a to 3.3e. The palladium content in pure silver is gradually in-
creased. Thereby, electrons from the Ag d states are removed and the connectivity across
the Brillouin zone can vary – so-called electronic topological transitions (ETT) or Lifshitz
transitions.

3.1.4. Electronic correlation effects
The conventional exchange-correlation functionals (LDA or GGA) are typically sufficient
to describe material perperties of metallic systems (see section 6.2.1) but they often un-
derestimate the strongly localized character of, e.g., d states of the transition metal atoms
or f states of the rare earth metal atoms. The repulsion between different orbitals due to
electron hopping has to be considered. In such strong localized systems, the character of
the conductance might be wrongly described. The numerical calculations might obtain
a wrong band gap, no band gap at all, or a wrong energy-dependent splitting of the d

20



3.1. Electronic structure from the Green’s function

states. The latter can lead, e.g., to an overestimation of the critical temperature Tt for the
magnetic phase transition, as obtained in chapter 5 in the calculations of Tt for SCO and
SFMO within the GGA (see figures 5.5 or 5.12).

For the description of such localized states, the self-interaction correction (SIC) scheme
proofed to be very useful [52]. It is also implemented in HUTSEPOT. Within the SIC,
the double-counting term inside the LDSA can be corrected for a chosen state. As pre-
viously shown for the LDOS density matrix (3.21), also the charge density (3.5) can be
decomposed into the different angular momentum contributions by using the unitary
transformation (3.24). The charge density of a single electron at site n, the angular mo-
mentum L, and the spin s is

$nLs(r) = −
1
π

Im
∫

y

EF

EB

dε Gnn
LLs(ε; r + Rn) , (3.30)

where the integral is calculated along a contour from the bottom of the band EB up to the
Fermi energy EF [52].

The effective potential within the SIC and the LDA is then obtained by subtracting
the Hartree potential VH and the exchange-correlation potential VLDA

xc from the original
effective potential (2.13)

VSIC-LDA
eff,nLs (r) = VLDA

eff,s (r)−VH
[
$nLs

]
(r)−VLDA

xc
[
$nLs, 0

]
(r) . (3.31)

The two latter terms in (3.31), VH and VLDA
xc , are calculated for the charge density (3.30).

The exchange-correlation potential depends on the chosen spin channel. The SIC poten-
tial (3.31) is used for the computation of a SIC single scattering solution tn,SIC-LDA

Ls while
the normal single-site scattering t matrix tn

Ls is calculated from the original effective po-
tential VLDA

eff,s (r). For each corrected state L̃ = (l̃, m̃), s̃, the L̃th matrix element of the
original t matrix is substituted by the corresponding element of the SIC t matrix

t̃n
Ls = tn

Ls(1− δLL̃δss̃) + tn,SIC-LDA
L̃s̃

δLL̃δss̃ . (3.32)

Finally, the new t matrix in (3.32) determines a new SIC-LDA charge density for (3.31).
This procedure for the calculation of $nLs(r) is repeated till self-consistency.

The ground state properties obtained within the SIC agree well with measurements for,
e.g., transition metal monoxides [54] or rare earth-atoms like cerium [52]. Nevertheless,
the localization of the corrected states tends to be overestimated, e.g., the calculation of
the DOS within the SIC yields for bulk SFMO a half-metallic band-gap, but it is far too
large when compared with experimental observations [55]. Therefore, the electron corre-
lation effects were also taken into account with the Hubbard model [56]. The Hubbard
Hamiltonian ĤU allows for the orbital degeneracy of the 3d orbitals in the form of [57]

ĤU =
U
2 ∑

m,m′,s
n̂m,sn̂m′,−s +

U − J
2 ∑

m 6=m′,s
n̂m,sn̂m′,s . (3.33)

The first term in (3.33) describes the on-site repulsion, where n̂m,s = â†
s âs is the number

of electrons operator with spin s and the projection of the orbital momentum m (m, m′ =
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Chapter 3. Calculation of Material Properties

−2,−1, . . . , 2 for d electrons). Its expectation value is the occupation number nms. The
parameters U and J represent the spherically averaged matrix elements of the screened
Coulomb electron-electron interaction.

However, the expectation value of the Hamiltonian (3.33) reads differently for a non-
integer or an integer number of d electrons. The latter represents the correct form of the
density functional for (3.33). The difference between the two cases is expressed by the
LDA+U functional [58]

ELDA+U = ELDA +
U − J

2 ∑
s

(
nms − n2

ms
)

. (3.34)

For the sake of simplicity, the difference U − J is defined as Ueff in the following context.
If the charge density (3.30) is expressed as a density matrix

$nLs,L′s′(r) = −
1
π

Im
∫

y

EF

EB

dε GLL′ss′(ε; r + Rn) , (3.35)

and $mm′s(r) = $nLs,L′s(r) is the density matrix of the d electrons (l = 2), equation (3.34)
can be rewritten as [58]

ELDA+U = ELDA +
Ueff

2 ∑
s

[
∑
m

$s
mm − ∑

mm′
$s

mm′$
s
m′m)

]
. (3.36)

Its derivative yields the matrix elements of the one-electron potential

Vmm′s ≡
δELDA+U

δ$mm′s
=

δELDA

δ$mm′s
+ Ueff

[1
2

δmm′ − $mm′s
]

. (3.37)

The total energy is then given by

ELDA+U = ELDA +
Ueff

2 ∑
m,m′,s

$mm′s$mm′s . (3.38)

Although (3.38) is formulated in terms of the LDA exchange-correlation functional, the
GGA exchange-correlation functional can be applied in exactly the same way.

3.2. Calculation of equilibrium properties
The equilibrium ground state or better to say the thermodynamic state of a system is
determined by the pressure P, the temperature T and the specific volume V, which are
linked by an equation of states (EOS) [59]. For solids, the influence of the temperature
is small in respect of its effect on the equilibrium state of a gas and it is, therefore,
sufficient to consider only the isothermal equation of states. In the numerical calculations,
a set of total energies at different volumes is calculated and fitted to an EOS. The fitting
parameters are the thermodynamic quantities in the equilibrium ground state.
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3.2. Calculation of equilibrium properties

3.2.1. Murnaghan equation of states
A simple EOS follows from the definition of the bulk modulus as the volume derivative
of the pressure,

B(V) = −V
∂P
∂V

, (3.39)

shows by itself a negligible pressure dependence [59, 60]

∂B
∂P
≈ B′0 =

∂B
∂P

∣∣∣∣
V=V0,P=0

. (3.40)

Thereby, V0 is the equilibrium volume, B0 equals B(V0, P = 0) and B′0 is the so-called
Grüneisen constant. With (3.39), it follows

B′0 = −V
B

∂B
∂V

. (3.41)

Integrating over the volume from V0 to V yields [60]

B(V) = B0

(
V0

V

)B′0
. (3.42)

A second integration gives the Murnaghan EOS [61, 62]

P(V) =
B0

B′0

[(
V0

V

)B′0
− 1
]

. (3.43)

3.2.2. Birch-Murnaghan equation of states
The concept of Murnaghan was further developed by Birch leading to the second- and
third-order Birch-Murnaghan equation of states [59, 63, 64]. The latter is more flexible
and often used in literature. The pressure is written as

P(V) =
3
2

B0

[(
V0

V

)7/3

−
(

V0

V

)5/3]{
1 +

3
4
(B′0 − 4)

[(
V0

V

)2/3

− 1
]}

. (3.44)

For a brief overview of its derivation, a closer look to the thermodynamic potentials is
necessary. The mechanical term pdV of the Helmholtz free energy F contains information
about the stress and the infinitesimal strain [65]

dF = V ∑
lm

σlmdε lm − SdT + ∑
i

µidNi , (3.45)

with the stress tensor σlm and the strain tensor ε lm. The last two terms in (3.45) can be
neglected in an ab initio calculation for a closed system at 0 K. When the remaining term
is integrated and the elastic tensor σlm = clmikεik is inserted, it follows

F = V
1
2

clmikεikε lm . (3.46)
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Chapter 3. Calculation of Material Properties

The strain tensor is determined by the components of a displacement vector u or by the
coordinates of the strained r′ and unstrained r states. Since only the hydrostatic pressure
is considered, the variation for all three directions in space is the same [59] and the strain
tensor becomes

εik = εδik . (3.47)

The dilatation ε in (3.47) is negative for positive pressures. Thus, the compression f = −ε
can be introduced. The free energy can now be expanded in terms of this compression f

F = a(T) f 2 + b(T) f 3 + c(T) f 4 + . . . . (3.48)

For the third-order Birch-Murnaghan EOS, the free energy (3.48) is expanded up to the
third order

F ≈ a(T) f 2 + b(T) f 3 . (3.49)

The derivative of F is given by
(

∂F
∂ f

)

T
= 2a f + 3b f 2 = 2a f

(
1 +

3b f
2a

)
. (3.50)

Since the pressure is the volume derivative of the free energy, P becomes

P(V) = −
(

∂F
∂V

)

T
= −

(
∂F
∂ f

)

T

d f
dV

, (3.51)

= 3B0 f (v)(1 + 2 f (V))5/2
(

1 +
3b f (V)

2a

)
. (3.52)

Therein, the parameters a and b are determined from the conditions that the two quanti-
ties B(V) and B′(V) turn into the equilibrium values B0 or B′0 at zero pressure ( f becomes
zero). Both quantities can be expressed via (3.39) or (3.40) in terms of P(V) or f (V), The
two equations form a system of equations with the solution of

a =
3
2

B0 , (3.53)

b =
3
2

B0(B′0 − 4) . (3.54)

Finally, plugging the function f (V) [59]

f (V) =
1
2

[(
V0

V

)2/3

− 1
]

, (3.55)

and the parameter a and b into (3.52) leads to the third-order Birch-Murnaghan EOS
(3.44). Additional integration yields the free energy or, for T = 0, the total energy

E(V) = E0 +
9

16
B0V0×

×
{[(V0

V

)2/3

− 1
]3

B′0 −
[(

V0

V

)2/3

− 1
]2[

4
(

V0

V

)2/3

− 6
]}

. (3.56)

In (3.56) only the quantities B0, V0, and E0 have a unit and are given in GPa, Å3, and Ryd,
respectively.4

4The conversion factor into energy units is 1 GPa Å3 = 10−21 J or 1 GPa Å3 = 0.000 458 737 Ryd.
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3.3. Magnetic properties

3.2.3. Other equation of states
There are several other concepts for an EOS, e.g., the Vinet EOS [66, 67] or the Morse EOS
[68]. The total energy in terms of the Morse EOS is given by

E(w) = a + be−λw + ce−2λw . (3.57)

The parameter w represents the averaged Wigner-Seitz radius, while λ, a, b, and c are the
four independent Morse parameters.

3.2.4. Deviation from the Vegard’s law
If the chemical composition in a solid solution is changed continuously, all equilibrium
properties vary in first order linearly with the concentration c. This is the essence of
the Vegard’s law [25]. However, such linear behavior is more the exception and there is
usually a characteristic deviation from this linear behavior. Following [22], the anomalies
of a general equilibrium observable A are defined as

∆A(c) = A(c)− A(c) (3.58)

A(c) = A(0) + c [A(1)− A(0)] , (3.59)

where A(0) and A(1) are the corresponding values for the pure constituents (for the
AgcPd1−c alloy, they are Pd and Ag, respectively [E12]).

3.3. Magnetic properties
Another ground state material property originates from permanent magnetic dipole mo-
ments m. Such magnetic moments result from not fully filled electron shells (open shells)
[69], which are present, e.g., in transition metal atoms (d shells) or rare earth metal atoms
( f shells). The corresponding macroscopic quantity, the total magnetic moment per vol-
ume unit, is the magnetization of the material [70]

M = m
N
V

. (3.60)

Together with an external magnetic field H, the magnetic induction B (also named mag-
netic field)5 inside the material is

B = µ0(H + M) , (3.61)

with the magnetic permeability of free space µ0. The susceptibility χT describes the linear
response of the magnetization to an external magnetic field H

M = χT H . (3.62)

5This technical term follows the common usage in literature. The letter determines which physical quan-
tity is meant.
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Chapter 3. Calculation of Material Properties

Therein, χT is a negative constant for diamagnetic materials, practically zero for nearly
free electrons (Pauli paramagnetism) and positive and temperature dependent for local-
ized moments (Langevin paramagnetism) [70].

When the temperature falls below a critical temperature Tt, the moments might show
spontaneously a collective magnetic order. This order can be parallel (ferromagnetic –
FM) with the Curie temperature TC, antiparallel (antiferromagnetic – AFM) with the
Néel temperature TN or more complex, e.g., antiparallel with a different size of the mag-
netic moments (ferrimagnetic – FiM), helically ordered or forming a spin glass structure.
The collective magnetism can not be attributed to a simple dipole-dipole interaction but
to an only quantum mechanically explainable magnetic exchange interaction between the
permanent magnetic moments [69]. Although this technical term, magnetic exchange
interaction, conveys a magnetic character of this interaction, its nature is mainly electro-
static [71].

3.3.1. Heisenberg model
The classical Heisenberg model offers a reasonable description for localized moments
m = (mx, my, mz) not only in insulators but also in metallic systems [69, section 8]. It can
be expressed in a general form

ĤH = −∑
i 6=j

Jijmi ·mj + µB ∑
i

mi · B + ĤMAE . (3.63)

The first sum in (3.63) runs in general over all magnetic sites i and j with the magnetic
moments mi and mj, which are coupled via the magnetic exchange interactions Jij. The
second term – Zeeman term – appears when an external homogeneous magnetic field
B is applied. The last contribution in (3.63) represents the magnetic anisotropy energy
(MAE), which is described in more detail in section 3.3.3.

The nature of the magnetic moment in the general Heisenberg Hamiltonian (3.63) is
regarded by inclusion of the Landé factor g. If the magnetic moments result purely from
the electron spin, then g = gS is ≈ 2. Otherwise, e.g., for the rare earth metals, the total
angular momentum J = L + S is taken into account by

gJ = 1 +
J(J + 1)− L(L + 1) + S(S + 1)

2J(J + 1)
, (3.64)

where L and S are the orbital and spin angular momentum quantum numbers, respec-
tively.

3.3.2. Magnetic force theorem
The magnetic coupling constants in (3.63) can be calculated from ab initio via the magnetic
force theorem [72]. It is derived on the basis of the Heisenberg Hamiltonian (3.63) and
the localized magnetic moments. The z-direction is defined as the direction all moments
align in the case of ferromagnetic order. When a single spin moment at the origin is
rotated about a small angle θ, the energy variation is given by [72]

δE0 = 2 ∑
j

J0j(1− cos θ) ' J0θ2 with J0 = ∑
j

J0j . (3.65)

26



3.3. Magnetic properties

If two spin moments at site i and j are rotated towards opposite angles ±θ/2, the energy
variation is given by

δE′ij = δEij − δEi − δEj = Jij(1− cos θ) ' 1
2

Jijθ
2 . (3.66)

An equation to calculate these energy variations from first-principles follows from the
local force theorem [73]. In first order, the energy variation can be written as

δE =
∫ EF

dε εδDs(ε) = EF δz−
∫ EF

dε δN(ε) = −
∫ EF

dε δN(ε) , (3.67)

with the density of states Ds(ε) = dN/dε. The variation of the number of electrons δz is
zero, since the number of electrons remains constant for a magnetic excitation.

The variation δN(ε) = N′(ε) − N(ε) in (3.67) is derived by starting from the Lloyd
equation [74]

N(ε) = N0(ε) +
1
π

ImTr ln τ(ε) , (3.68)

and defining the perturbed scattering path operator by [72]

τ ′ = τ(1 + δt−1 × τ) , (3.69)

where 1 represents the two-dimensional unit matrix and × indicates a matrix product.
The energy variation (3.67) becomes

δE =
1
π

Im
∫ EF

dε Tr ln(1 + δt−1 × τ) . (3.70)

The variation of the scattering t matrix is found from its spinor structure at the site i

ti = 1/2(ti
↑ + ti

↓)1 + 1/2(ti
↑ − ti

↓)(ei · σ) , (3.71)

with the Pauli matrices σ. Its variation is

(δti)−1 = 1/2
(
(ti
↑)
−1 − (ti

↓)
−1)

︸ ︷︷ ︸
=:∆i

(δei · σ) . (3.72)

To estimate the effective interaction of the moment at the origin (i = 0) with the rest of
the system, a rotation around the y-axis is considered

δe0 = (sin θ, 0, cos θ − 1) . (3.73)

Under consideration of the scalar product between the vector δe0 and the Pauli matrices,
(3.72) yields

(δti)−1 = 1/2δi0∆i

(
cos θ − 1 sin θ

sin θ 1− cos θ

)
. (3.74)
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On the other hand, at the origin, only the matrix elements τ00 are relevant for (3.70) and
it becomes

τ00 =

(
τ00
↑ 0
0 τ00

↓

)
, (3.75)

in the ferromagnetic ground state. Finally, the trace in (3.70) over the 2× 2 matrix can be
written as a determinant

Tr ln
(
1 + (δt0)−1 × τ00) = TrL ln det

(
1 + (δt0)−1 × τ00) , (3.76)

while the trace over the angular momentum indices remains and is expressed as TrL.
Thus, the energy variation is given by

δE0 =
1
π

∫ EF
dε ImTrL ln

{
1− 1/2[∆0(τ

00
↑ − τ00

↓ ) + ∆0τ00
↑ ∆0τ00

↓ ](1− cos θ)
}

, (3.77)

Since the angle θ is small, the cosine in (3.77) is expanded (1− cos θ ≈ θ2/2) and, then,
the natural logarithm is expanded (ln(1 + x) ≈ x). From the comparison with (3.65), it
follows

J0 = − 1
4π

∫ EF
dε ImTrL

{
∆0(τ

00
↑ − τ00

↓ ) + ∆0τ00
↑ ∆0τ00

↓
}

. (3.78)

For the general magnetic exchange interactions between site i and site j, each moment
is rotated by θ/2

δei = (+ sin
θ

2
, 0, cos

θ

2
− 1) , (3.79)

δej = (− sin
θ

2
, 0, cos

θ

2
− 1) , (3.80)

δe0 = (0, 0, 1) . (3.81)

The matrices 1 + δt−1 × τ in (3.70) become more complicated and the full derivation is
waived at this point. However, by taking into account the terms up to the second order
in θ, Liechtenstein et al. found [72]

Jij =
1

4π

∫ EF
dε ImTrL

(
∆iτ

ij
↑∆jτ

ji
↓
)

. (3.82)

3.3.3. Magnetic anisotropy
The magnetic anisotropy determines the intrinsic orientation of the magnetic moments
in an ordered state. For example, the magnetization of a ferromagnetic state is isotropic
and might orient in any direction, if the last two terms in (3.63) are zero (B = 0 and
ĤMAE = 0). In a magnetic field |B| 6= 0, the magnetic moments are aligned parallel along
the field direction. This orientation mechanism might compete with the given direction of
the magnetic anisotropy, which has two contributions: the dipole-dipole interaction, so-
called Dzyaloshinskii-Moriya interaction (DMI), and the coupling of the electron orbits to
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3.3. Magnetic properties

the crystalline electric field (CF) [69]. The latter is often referred as the magnetocrystalline
anisotropy. The energy scale of both contributions is small in respect of the energy scale
of the magnetic exchange interactions. Hence, they are neglected in all bulk calculations
throughout this thesis.

Nevertheless, the magnetocrystalline anisotropy becomes crucial for surfaces and clus-
ters of atoms, since the classical Heisenberg model (3.63) yields no spontaneous mag-
netization in two-dimensional systems without the MAE (see Mermin-Wagner theorem
[69]). Thus, the term ĤMAE was in particular considered in this thesis in the context of a
single holmium atom at a platinum surface (see chapter 4). The most simple anisotropy
contribution appears for an uniaxial ferromagnet [69]

ĤMAE = Ĥuni = −Km2
z , (3.83)

The single anisotropy parameter K in (3.83) is often sufficient to describe, e.g., resonance
experiments. It defines in the considered material an easy and a hard magnetization axis,
either parallel or perpendicular to the z-direction and can be calculated directly within
the GF method [75]. For an atomic cluster or ultra thin film, the easy axis is typically
oriented out-of-plane.

However, (3.83) could not explain the experimental findings for the Holmium on Pt(111)
system [E11]. The complex symmetry of the threefold (111) surface made it necessary to
use a full crystal field Hamiltonian

ĤMAE = ĤCF =
∞

∑
n=0

n

∑
m=0

Bm
n Ôm

n , (3.84)

with the anisotropy constants or crystal field parameters Bm
n (CFP). The Hamiltonian

(3.84) acts on the total angular momentum states |JM〉. Hence, the quantities in (3.63)
have to expressed as operators as well.

The underlying crystal symmetry is included within the crystal field or Stevens’ oper-
ators Ôm

n . The Ôm
n are polynomials of the order n in the operator Ĵz and of the order m in

the ladder operators Ĵ+ and Ĵ−. The latter raise or lower M by one, respectively. Due to
symmetry reasons the operators appear only in even powers of n ≤ 2l. Terms with m = 0
contain only powers of Ĵz. Thus, the first nonzero term in (3.84) is n = 2 and m = 0 with
[76]

Ô0
2 = 3 Ĵ2

z − J(J + 1) . (3.85)

which is proportional to the uniaxial anisotropy (3.83) with B0
2 ∝ K.

The first-principle calculation of the anisotropy parameters

In general, the parameter Bm
n of the crystal field Hamiltonian (3.84) for a rare earth metal

atom can be calculated from first-principles starting from the energy of the interaction of
the 4 f electrons with all other charges [77]

E4 f =
∫ ∫

dR dr
$(R)$4 f (r)
|R− r| . (3.86)
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Since the 4 f states were treated as core states, their charge density $4 f (r) was separated
from all other charges of the crystal $(R) (nuclei, core electrons and valence electrons)
via the orthogonalization described in section 3.1.1.

In a first order perturbation theory, an unperturbed 4 f state from the ground state
multiplet of a free rare earth metal atom |R4 f ; JM〉 with n4 f unfilled f shells is disturbed
by a small electrostatic potential V(r) and leads to the expectation value of the interaction
energy [78]

E4 f (M) = 〈R4 f ; JM|
n4 f

∑
i

Vasph(ri)|R4 f ; JM〉 . (3.87)

The non-spherical potential Vasph includes all charges in the crystal $(R) without the
non-spherical 4 f charge of the considered rare earth atom. This potential is expanded in
terms of the real spherical harmonics6 YL(r̂), centered at the rare earth atoms (∀ l > 0
and L = (l, m)) with the unit vector r̂

V(r) = ∑
L

VL(r)YL(r̂) . (3.88)

If every unfilled electron shell is assumed to have the same radial wave function R4 f ,
(3.87) can be separated into two expectation values, one for the radial and one for the
spherical contributions, respectively,

E4 f (M) = ∑
L
〈R4 f |VL(r)|R4 f 〉〈JM|

n4 f

∑
i
YL(r̂)|JM〉 . (3.89)

The first term represents an integral over the radial components. In the second expecta-
tion value, the Steven operator equivalents [76, 79] substitute the sum

n4 f

∑
i
YL(xi, yi, zi)→ CLθl(J)Ôm

l ( Ĵx, Ĵy, Ĵz) , (3.90)

where the factors θl(J) for the rare earth metal atoms R3+ are tabulated in [76, 79]. The
numerical prefactors CL of the real spherical harmonics appear explicitly because the
Steven operator equivalents were formerly written only for the x, y and z depend poly-
nomials of YL(r̂). Thus, (3.89) reads

E4 f (M) = ∑
L

∫
dr r2R2

4 f (r)VL(r) CLθl(J)〈JM|Ôm
l ( Ĵx, Ĵy, Ĵz)|JM〉 . (3.91)

A comparison of (3.91) with the expectation value 〈JM|ĤCF|JM〉 of the crystal field
Hamiltonian (3.84) shows that the radial part of the 4 f charge density (the square of
the wave function corresponds to the charge density) determines the CFP [77, 79]

Bm
l = θl(J)Am

l 〈r
l〉 = θl(J)CL

∫
dr r2$4 f (r)VL(r) . (3.92)

6Please note the use of real spherical harmonics, in contrast to the complex spherical harmonics YL(r̂)
used for the earlier expansions of charge density or Green’s function. Although, the expansions in
section 3.1 can be formulated within the real spherical harmonics as well.
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To evaluate (3.92), the denominator of the potential V(r) =
∫

dr′ $(r′)
|r−r′| is expanded

VL(r) =
4π

2l + 1

∫
dr′ $(r′)YL(r̂′)

rl
<

rl+1
>

, (3.93)

with r< = min(r, r′) and r> = max(r, r′). Finally, the CFP will take the form

[
Am

l 〈r
l〉
]
=

4π
2l + 1

CL

∫ ∞
dr′ $(r′)YL(r̂′)

∫
dr r2$4 f (r)

rl
<

rl+1
>

. (3.94)

3.3.4. Magnetic transition temperature
The Heisenberg model allows to determine the magnetic transition temperature Tt. The
most simple approximation accounts for the collective interaction of all other magnetic
moments with the one at the origin as an additional molecular magnetic field. This
mean-field approximation (MFA) can be obtained from the effective coupling constant J0
in (3.78) but it often overestimates Tt with respect to the experimental measurements.

A more reliable method to obtain the critical temperature is a Monte Carlo simula-
tion (see section 2.2) for the classical Heisenberg Hamiltonian (3.63). Its temperature
dependence is introduced by (2.45). The thermal average (2.38) of the magnetization,
the susceptibility, and the heat capacity is calculated via the importance sampling (2.42).
Therein, the magnetization and its square are [43]

M =
1

NMC

NMC

∑
l=1

∑
i

mi , (3.95)

|M|2 =
1

NMC

NMC

∑
l=1

∣∣∣∣∑
i

mi

∣∣∣∣
2

. (3.96)

These averages yield the magnetic susceptibility

χT =
1

kBT
(

M2 − (M)2) . (3.97)

The heat capacity C is obtained from the averages of the total energy

C =
1

kBT2

(
E2 − (E)2) , (3.98)

with

E =
1

NMC

NMC

∑
l=1

El , (3.99)

E2 =
1

NMC

NMC

∑
l=1

E2
l . (3.100)
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Simulation cluster
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1Figure 3.4: Schematic picture of the Monte Carlo procedure for one Monte Carlo step (see
text). The averages of the magnetization M and the total energy El are taken over NMC
MC steps and are given by (3.95) or (3.99). At the top, the supercell and a disordered
starting configuration are sketched.

The energy for every Monte Carlo step in (3.99) and (3.100) is calculated by taken into
account the Heisenberg Hamiltonian (3.63)

El = −∑
i

mi ·
[(

∑
j

Jijmj
)
+ µBB

]
. (3.101)

The magnetic transition temperature can be traced in all these thermodynamic quan-
tities. At TC, the magnetization of a ferromagnet shows a second order phase transition
with M 6= 0 for T < TC. For an antiferromagnet, the susceptibility, the heat capacity,
or the Binder cumulant [43] is a better choice to obtain TN. The susceptibility follows in
general a Curie-Weiss law-like behavior above the transition temperature

χT ∝
1

T −Θ
, (3.102)

with the Weiss temperature Θ, which depends on the magnetic character of the investi-
gated material [70, page 56]
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• Θ = 0 for a paramagnet,

• Θ > 0 for a ferromagnet with Θ = TC,

• Θ < 0 for a antiferromagnet with Θ = −TN.

In the course of a practical calculation, the first-principles Jij (3.82) were calculated
within a small unit cell. This unit cell is repeated N1 × N2 × N3 times in the direction
of the three lattice vectors a1, a2, or a3 (see figure 3.4), since a large number of atoms
is needed for reasonable statistics in the following MC simulation. Depending on the
investigated system, periodic boundary conditions in one, two, or three dimensions can
be applied modeling, e.g., a wire, a layer, or a bulk sample.

The schematic sequence of the Monte Carlo simulation is depicted by figure 3.4. Within
the N1 × N2 × N3 supercell, the magnetic moment at the lattice site i interacts with its
neighbors at the site j via Jij. In terms of section 2.2, the enemble of all magnetic moments
{m} forms the configuration cl. During one MC run, a lattice site j with the magnetic
moment vector mj is chosen and a new direction of the magnetic m′j is specified by
random numbers. If the new magnetic moment m′j is substituted in {m}, it defines a
new configuration cl′ . The energy difference between the two configurations determines
via (2.45) whether the moment at the lattice site j is either m′j or mj. Performing this
procedure for all N sites of the lattice is defined as one MC step.

Starting from a high-temperature disordered state above Tt (see figure 3.4), the tem-
perature was stepwise reduced by 5 K. At every temperature T, the thermal equilibrium
is expected to be reached after 20 000 MC steps. Afterwards, the thermal averages were
computed over additional 20 000 MC steps. Further computational details of this MC
scheme can be found in [54, 80, 81].

Finally, TMC
t was obtained from the fitting of the temperature dependency of the mag-

netic susceptibility, crosschecked by the temperature dependence of the saturation mag-
netization or the heat capacity. The obtained transition temperatures have been observed
within an uncertainty range of ±5 K. In addition, the kind of magnetic order at the
ground state was obtained from the orientation of the magnetic moments at low temper-
atures and the temperature dependence of χT (3.102).

3.4. Disorder
All material properties discussed until know are only considered for a perfect periodic
crystal structure with a particular chemical composition. However, chemical and mag-
netic disorder might be present in any material either as points defect like, e.g., a missing
or an additional atom, or as the mixing of two or more metallic components in an alloy.
When chemical disorder appears, one or more sublattices i in a periodically repeated
unit cell might be occupied by two or more atomic types having a noninteger occupation
number σi. This is for a binary system with two atomic types A and B expressed as the
spinlike occupation number operator

σi =

{
+1 type A
−1 type B

. (3.103)
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A typical examples of an alloy is the metallic, binary solid solution Ag-Pd, which is totally
miscible at all concentrations [E12].

For the description of such order/disorder, the n-site correlation function

ξ
(n)
f = 〈 σiσj . . . σk︸ ︷︷ ︸

including n-sites

〉 f , (3.104)

with the average 〈·〉 f over all sites i in the cluster f has to be considered. It describes in
statistical physics the variation of the system density with respect to a reference particle
– the short-range order (SRO). This concept is more generally useful for fluids, gases,
colloids etc., where the function depends smoothly from radius r around the reference
point. In the case of a solids, the function shows only delta peaks when r matches the
radii of the coordination shells.

The pair correlation function (n = 2) for the first coordination shell ξ
(2)
1 = 〈σiσj〉 f is

used, e.g., by Peil et al. [82]. It is connected with another often used disorder description,
the Warren-Cowley SRO parameter, via [82]

α1 =
ξ
(2)
1 − σ2

1− σ2 . (3.105)

The pair correlation function is in (3.105) compared with the one of the completely disor-
dered configuration ξ

(2)
1 = σ2. It corresponds to σ = 2c− 1 ≡ ξ(1) in a binary system of

atomic types A and B with the concentrations cA = c and cB = 1− c, respectively.
The original definition of the Warren-Cowley SRO parameter for the s-th shell while

being at a site with a B atom is [83, 84]

αs = 1− ns

cACs
, (3.106)

where ns is the number of A atoms among the Cs atoms in the s-th shell (coordination
number Cs). Another way to write (3.106) is defined by the probability pBA(r) = ns/Cs
of finding a A atom at the distance r around a B atom

αBA(r) = 1− pBA(r)
cA

. (3.107)

The SRO parameter is smaller than zero for an ordered system, zero for a completely
random disorder, and positive in case of segregation. The minimum depends on the
concentration of the different types [85, 86]

− c
1− c

≤ α1 ≤ 1, c ≤ 1/2 , (3.108)

−1− c
c
≤ α1 ≤ 1, c ≥ 1/2 , (3.109)

which is derived from simple probability arguments.
These definitions were used to quantify different amounts of short-range order, since

the underlying multiple scattering theory of the Green’s function method is well suited
to handle disorder or impurities. In particular, the separation of structural and chemical
contributions in (2.33) or the Dyson equation (2.24) allows the introduction of an effective
medium taking into account different chemical occupation.
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3.4.1. Impurity model and embedded clusters
The most simple approximation of a disordered material can be understood as a single
impurity atom in a perfect host structure, which is actually not real disorder but a point
defect. The multiple scattering is particular well suited to solve such an impurity problem
[7].

A single impurity atom sitting at the lattice origin in an ideal host crystal can be treated
as a perturbation of the host material. It is considered in the t matrices (2.31) [36, section
23.5.1]

tn(ε) =

{
timp(ε) n = 0 ,

thost(ε) ∀n 6= 0 .
(3.110)

When they are explicitly plugged into the expression of the scattering path operator
(2.28), it follows

τnm(ε) = thost(ε)

(
δnm + ∑

k 6=n
Gnk

0 (ε)τkm(ε)

)

+ δi0

[
(timp(ε)− thost(ε))

(
δ0j + ∑

k 6=0
G0k

0 (ε)τkm(ε)

)]
. (3.111)

The impurity t matrix in (3.111) violates the translational invariance of the lattice. This
problem can be circumvented by a lattice Fourier transformation, which yields [36]

τ(ε; k, k′) = thost(ε)
(
δkk′ + G0(ε; k)τ(ε; k, k′)

)

+ |Otg|−1(timp(ε)− thost(ε))

(
1 + ∑

k′′
G0(ε; k′′)τ(ε; k′′, k′)

)
. (3.112)

The quantity Otg in (3.112) is the order of the translational group of the lattice consisting
of the host atoms only. By defining in correspondence with (2.33)

τhost(ε; k) =
[
t−1
host(ε)− G0(ε; k)

]−1 , (3.113)

τ00
host(ε) = |Otg|−1 ∑

k
τhost(ε; k) , (3.114)

Equation (3.112) can be rewritten as

τ(ε; k, k′) = thost(ε)δkk′

− |Otg|−1τhost(ε; k)D00
imp(ε)

(
t−1
imp(ε)− t−1

host(ε)
)
τhost(ε; k′) , (3.115)

with the so-called impurity matrix

D00
imp(ε) =

[
1 + τ00

host(ε)
(
t−1
imp(ε)− t−1

host(ε)
)]−1

. (3.116)
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Finally, the scattering path operator at the origin is

τ00(ε) = |Otg|−1 ∑
k,k′

τ(ε; k, k′) = D00
imp(ε)τ

00
host(ε) . (3.117)

and can be used to determine e.g. the charge density, the density of states or any other
desired physical observable.

In summary, the single-scattering t matrices in (2.33) were substituted for particular
impurity sites. The same concept can be generalized either in an effective description of
random disorder in the coherent potential approximation (CPA) described in section 3.4.2
or for the embedded cluster method [36, section 24]. The latter takes into account not a
single impurity as (3.110) but a whole cluster C = {Rn} of impurities or interacting host
atoms with the single-site scattering t matrices

tn(ε) =

{
tn(ε) Rn ∈ C ,
thost(ε) Rn /∈ C .

(3.118)

Thereby, two diagonal supermatrix quantities are defined. When only unperturbed host
atoms would occupy C

thost(ε) =
{

tn(ε)δnm|tn(ε) = thost(ε), ∀Rn ∈ C
}

, (3.119)

or the cluster is actually occupied

tC(ε) =
{

tn(ε)δnm|tn 6= thost(ε), ∀Rn ∈ C
}

. (3.120)

The following scattering path operator comprising all sites of C is

τC(ε) = τhost(ε)
[
1−

(
t−1

host(ε)− t−1
C (ε)

)
τhost(ε)

]−1 , (3.121)

similar as (3.117) with (3.116).

3.4.2. Substitutional disorder
The same ideas as for the impurity model were used to model a locally unknown distri-
bution of different atomic species through an effective medium description – the coherent
potential approximation (CPA) [18, 19]. The same single-site t matrix tc appears on every
scattering site of a coherent lattice, which restores on-average the translational invariance.
Therewith, the site-diagonal scattering path operator can be expressed similar to (2.33)
[36, section 23.7]

τij(ε) =
1

ΩBZ

∫

ΩBZ

dk
(

t−1
c (ε)− G0(ε; k)

)−1
eik·(Rn−Rm) . (3.122)

By using the restricted ensemble average described in [36, section 23.2], the scattering path
operator for the unit cell at the origin7 can be written

〈τ00
c (ε)〉(0=α) ≡ τ00

α (ε) , (3.123)

7The index 0 labels an arbitrarily chosen unit cell (notation used as in [36]).
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where

τ00
α (ε) = D00

α (ε)τ00
c (ε) , (3.124)

and

D00
α (ε) =

[
1 + τ00

c (ε)
(
t−1
α (ε)− t−1

c (ε)
)]−1

. (3.125)

In (3.123), α represents one atomic type, e.g., either A or B for a binary material sys-
tem AcB1−c. The impurity matrix (3.125) resembles the one in (3.116) but exhibits now
an adapted scattering path operator and single-site t matrix which match to the CPA
problem. Then, the CPA condition can be expressed equivalently in different notations

cτ00
A (ε) + (1− c)τ00

B (ε) = τ00
c (ε) , (3.126)

cD00
A (ε) + (1− c)D00

B (ε) = 1 , (3.127)

cX00
A (ε) + (1− c)X00

B (ε) = 0 , (3.128)

with the excess scattering matrix

Xα(ε) =

[(
t−1
α (ε)− t−1

c (ε)
)
+ τ00

c (ε)

]−1

. (3.129)

The CPA conditions (3.126) to (3.128) have to be iterated self-consistently, since the initial
single-site t matrix in (3.122) is only a guess.

In particular (3.128) allows an efficient numerical solution [87, 88]. If it is assumed that
(3.128) is not fullfilled in the n-th step of the self-consistent iteration, a nonzero matrix is
given in the n-th step

X(n)
c (ε) ≡

m

∑
α=1

cαX(n)
α (ε) 6= 0 ;

m

∑
α=1

cα = 1 , (3.130)

with the generalization to m components. A guess for the coherent t matrix is found by
substituting tc(ε) in (3.129) by the t matrix of the n-th step t(n)c (ε)

(
t(n+1)
c (ε)

)−1
=
(
t(n)c (ε)

)−1 −
[(

X(n)
α (ε)

)−1
+ τ

00(n)
c (ε)

]−1

. (3.131)

The latter equation shows a stable convergence by starting from the initial ansatz of the
average t matrix approximation (ATA) [87]

t(0)c =
m

∑
α=1

cαtα(ε) . (3.132)

In terms of the SRO parameter, this fully random distribution modeled by the CPA rep-
resents the completely uncorrelated case α = 0. It covers the most pronounced con-
centration effects of the chemical disorder but is only a single-site approximation of the
complete problem.
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The above equations can be again generalized for a complex lattice with more then one
sublattice using as before in section 2.1.3 the concept of a supermatrix for the coherent
single-site t matrix [36, section 23.7.2]

t−1
c (ε) =




. . . (
ti
X(ε)

)−1 0 0
0

(
tj
c(ε)

)−1 0
0 0

(
tk
Y(ε)

)−1

. . .




. (3.133)

In (3.133), the ordered sublattice i is occupied by atomic type X, the ordered sublattice
k by Y and the sublattice j varies statistically between either A or B. This approach
represents a single-site, multi-sublattice CPA (MS-CPA) [89]. The SRO parameter for a
MS-CPA setup might be already nonzero depending on the choice of the complex lattice
structure. An example of a complex supercell is discussed in section 6.2.2 for the AgPd
alloy. Its physical properties were compared with results for α = 0.

3.4.3. Disordered magnetic moments
The same theoretical ideas as used for the CPA allow to describe disordered magnetic
states at finite temperatures. In contrast, conventional ab initio calculations describe the
ground state at 0 K. They provide often good results for ordered magnetic systems but fail
in the description of the paramagnetic state above the magnetic transition temperature
Tt.

In the disordered local moment theory (DLM) [90, 91], arrangements of local magnetic
moments {Si} at the sites i are assumed to fluctuate independently from each other.
Above Tt, the orientations of those local moments are randomly distributed and the av-
erage magnetization per site is zero. It is modeled within the CPA with two single-site t
matrices, one with spin up and the other with spin down. The resulting scattering path
operator for the effective medium τ

ij
c can be plugged into (3.82) and the corresponding Jij

are calculated. In practice, it can be understood as a change of the underlying reference
state for the Jij calculation. Thus, the Jij are calculated either for the ground state at 0 K
or for the paramagnetic state at a high temperature. In order to distinguish between both
approximations, the labels RSFM and RSPM were introduced for the ferromagnetic or the
paramagnetic reference state, respectively.

Few general conclusions can be drawn from the idea of the random orientation of the
magnetic moments. It causes, on the one hand, an increase in the extent of the orbitals.
Since the overlap of the involved orbitals determines strongly the strength of the magnetic
exchange interactions, the strength of the Jij becomes larger, in case of a DLM calculation.
This means that the resulting transition temperature can either be enhanced or reduced,
depending on the type of magnetic exchange, e.g., a reduction for antiferromagnetic
(super-) exchange. On the other hand, in the paramagnetic phase, the total magnetization
inside the unit cell vanishes, which will erase induced magnetic moments.

Although the DLM model was applied successfully in previous studies, it is still based
on a single-site approximation. An indication of this problem was found for the investi-
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1Figure 3.5: Sketch of the MS-NL-CPA for a lattice with four basis sites (Nsub = 4 and
Nc = 1) and two kinds A and B. It results in 2Nsub = 24 = 16 possible configurations γi
with i = 1, . . . , 16. They are weighted with the probabilities P(γi).

gation of the magnetic properties of Ni. Only a non-local DLM approach could describe
the moments in Ni sufficiently [92, 93]. This approach, however, involves too much com-
putational effort for complex unit cells and could not be used in this thesis.

3.4.4. Including short-range order
Although the CPA appeared often as a powerful tool describing all kinds of disorder, it
remains a single-site approximation. Therefore, a strong interest exists to extent the CPA
scheme using, e.g., a supercell approach but taking into account local environment effects
[82].

An alternative approach, the multi-sublattice, non-local extension of the original CPA
theory (MS-NL-CPA) is implemented within HUTSEPOT [21]. The goal of this develop-
ment was the self-consistent construction of a richer effective medium description for a
partially disordered system. The condition (3.128) of on-average no extra scattering from
any portion of the bulk is generalized to multisite substitutions involving more than one
atom at the time. The general concept of the MS-CPA remains the same, but instead of a
single t matrix a cavity with more than one sublattice is introduced (sketched in figure 3.5
for 4 sublattices).

The corresponding scattering path operator that replaces (3.122) reads in particular [21,
E12]

τ I,s;J,t(ε) =
1
Ω

Nc

∑
n=1

(∫

ΩKn

dk
(

ts,t(ε; Kn)− Gs,t
0 (ε; k)

)−1
)

I,s;J,t
e+iKn·(RI−RJ) , (3.134)

where {Kn} denotes a set of I, J = 1, . . . , Nc cluster momenta [94] in a coarse grained
treatment of reciprocal space [95]. The original Brillouin zone Ω is now partitioned into
sub-regions ΩKn of alike effective medium properties, while explicit dependence on the
direct space sublattice indexes s, t = 1, . . . , Nsub and a matching phase modification of
the structure constants allows to generalize the original non-local treatment to cases of
complex unit cells in arbitrary geometries. The vectors RI , Rj and Kn refer to a lattice
Fourier transform.
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Table 3.1: List of the Nsub = 2 nonequivalent sublattices used in the supercell with basis
vectors: R1 = alat(0, 1/2, 1/2), R2 = alat(1/2, 0, 1/2), R3 = alat(1, 1, 0).

Sublattice Origin Sublattice Origin

a1 (0, 0, 0) a2 (1/2, 1/2, 0)

The established CPA procedure for the self-consistent determination of the effective
medium is then followed straightforwardly. In particular, different assumptions con-
cerning the degree of SRO to be modeled enter the framework in terms of a multisite
probability distribution P(γ) for combined element substitutions in certain configura-
tions γ = {γ1,1, . . . , γI,s, . . . , γNc,Nsub}

τ(ε) =
Ntot

∑
γ

P(γ)τγ(ε) , (3.135)

with Ntot = Nc × Nsub.
The underlying concept of the MS-NL-CPA is shown with an example system of a

binary alloy in fcc structure. In the usual CPA only one sublattice would be needed but
for a further approximation of SRO Nsub = 2 might be used. The structure of such a cell
is given in table 3.1.

With a binary alloy of A and B type atoms, there are 4 different possible configurations
γi going into (3.135):

γ1 = {A, A}, γ2 = {A, B}, γ3 = {B, A}, and γ4 = {B, B} . (3.136)

Their probability P(γi) is the parameter to model different short-range order scenarios.
But the P(γi) are not completely free to chose and, since the sum of the probabilities and
the type concentrations have to be one, they have to satisfy the following restrictions

∑
i

P(γi) = 1 , (3.137)

1/Nsub ∑
i

P(γi)× N̂A[γi] = cA , (3.138)

1/Nsub ∑
i

P(γi)× N̂B[γi] = cB = 1− cA , (3.139)

where the counting operator N̂A[γi] gives the number of type A in the configuration γi.

3.4.5. A short-range order parameter for the MS-NL-CPA
The above tools allow to treat also systems with short-range order, but for further analysis
it is useful to have some quantification of this short-range order. The Warren-Cowley SRO
parameter and the pair correlation function can be still used in a modified manner. The
simple example from above with the cell from table 3.1 and the configurations (3.136) will
be used to demonstrate the method. The probabilities for the example will be set to be

P(γ1) = 0, P(γ2) = 1/2, P(γ3) = 1/2, and P(γ4) = 0 . (3.140)
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With the Warren-Cowley SRO parameter

The definition of the Warren-Cowley SRO parameter (3.106) was originally used in a
simple context. The surrounding of an atom should be clearly determined. By using
the MS-NL-CPA, it is defined what is inside the cavity but the outside remains mainly
undefined via the effective medium. This coherent medium (the sites marked with C in
figure 3.5) due to the preserved translational invariance could be thought of a periodic
lattice filled with the configurations distributed according to their probabilities. With this
assumption, (3.106) can be used in several steps to derive an averaged SRO parameter:

1. The sites of the coherent medium will have a probability PC,A to find a type A atom,
which is given by

PC,A(jsub) =
Nconf

∑
i

P(γi)(σjsub
+ 1)/2 , (3.141)

and depends on the sublattice jsub, the configuration γi, and their probabilities
P(γi). The last product in (3.141) (σjsub

+ 1)/2 varies between 0 and 1, since the
occupation operator σi in (3.103) is ±1 for A or B, respectively.

Example: Both sublattices have in one γ an A atom and in the other a B atom with
P(γi) = 0.5. So, (σjsub

+ 1)/2 is zero or one for either a B or an A atom, respectively,
and the sum is for each sublattice PC,A(jsub) = 0.5.

2. Inside the cell, the probability on each sublattice pBA is defined separately for each
configuration γi and is either 0 or 1 ((σjsub

+ 1)/2).

Example: (σjsub
+ 1)/2 will be calculated for γ2 → {1, 0} and γ3 → {0, 1}.

3. The previous points are combined for every γi in the probability to find an A type
atom around a B type atom in the different coordination spheres s, which includes
Cs sites

pBA(s) = 1/Cs

Cs

∑
{
(σjsub

+ 1)/2 inside the cell

PC,A(jsub) outside the cell
(3.142)

Example: There are 12 sites in the first coordination sphere of a fcc lattice. For γ3,
eleven of the sites have a probability of 0.5 and one of them has 1 (jsub = 2 inside
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the cell) 8

pBA
1 (γ3, jsub = 1) = (11×0.5+1)/12 = 0.5416 (3.143)

pBB
1 (γ3, jsub = 1) = (11×0.5)/12 = 0.4583 (3.144)

pAB
1 (γ3, jsub = 2) = (11×0.5+1)/12 = 0.5416 (3.145)

αBA
1 (γ3, jsub = 1) = 1− pBA

1 (γ3,1)/cA = −0.083 (3.146)

αBB
1 (γ3, jsub = 1) = 1− pBB

1 (γ3,1)/cB = 0.083 (3.147)

αAB
1 (γ3, jsub = 2) = 1− pAB

1 (γ3,2)/cB = −0.083 . (3.148)

4. The SRO parameter for a particular configuration and the s-th shell αs(γi) is given
by the arithmetic average of αBA

s (γi) over all sublattices in the cell. Thereby, αBA
s (γi)

or αAB
s (γi) are used depending on the type of atom sitting on the sublattice.

Example: The SRO parameter of every shell will be averaged for the two sublattices.
For γ3 = {B, A}, it will be

α1(γ3) =
(
αBA

1 (γ3, jsub = 1) + αAB
1 (γ3, jsub = 2)

)
/2 = −0.083 (3.149)

5. The SRO parameter per shell is derived by considering also the configuration prob-
abilities

αs =
Nconf

∑
i

P(γi)× αs(γi) . (3.150)

Example: The probabilities and the SRO parameter for γ2 and γ3 are similar and
the other contributions are zero. So, the sum is simple and the result is α1 = −0.083.

6. For a possible average over the shells, the coordination number Cs is used [97]

αNshell =
Nshell

∑
s

Cs × αs

/ Nshell

∑
s

Cs . (3.151)

The latter equation appears problematic in its usage, since, the upper summation
boundary is not well defined as it will be showed below. Anyway, the parameter of
the nearest neighbor shell is a first measure of some additional SRO. They are given for
some probabilities P(γi) in table 3.2. The most of the probability choices are degener-
ated with respect to the γ2 and γ3 due to the symmetry of the cell (see table 3.1). The
nearest neighbor SRO parameters are restricted to −1/12 ≤ α1 ≤ 1/12 for maximal “order”
(γ2 = γ3 = 0.5) and maximal cluster sizes (γ1 = γ4 = 0.5). This results from the small cell
size with Nsub. Taking only one configuration under the restrictions of (3.137) to (3.139)
means only γ2 or γ3 and returns unfortunately zero – completely uncorrelated – similar
with P(γi) = 0.25. This is an undesired result, which is as well correlated with the choice
of unit cell.

8This is essentially the same setup described by Takano et al. [96]. However, their SRO parameter value
could not be reproduced. The reason for this might lie in some assumptions made by the authors but
not described in their work.
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Table 3.2: The calculated nearest neighbor SRO parameters, α1 and αstat
1 , obtained via

(3.150) or (3.105) for two atomic types and c = 0.5. The used configurations γi are given
in (3.136). The underlying lattice structure with Nsub = 2 is described in table 3.1. The
probabilities P(γi) were varied in steps of 0.05. Here only a fraction of the information is
shown. The complete table is presented in the appendix as table B.1. All entries, except
those marked with 1 in the first column, are symmetric in the γ2 and γ3 configurations.

probability P of
sym γ1 γ2 γ3 γ4 α1 αstat

1

1 0 0.5 0.5 0 −0.083 333 −0.083 620
0 0.45 0.55 0 −0.082 500 −0.082 255
0 0.4 0.6 0 −0.08 −0.080 198
0 0.35 0.65 0 −0.075 833 −0.075 838
0 0.3 0.7 0 −0.07 −0.070 104

1 0.05 0.45 0.45 0.05 −0.066 667 −0.066 253
...

...
...

...
...

...
0.15 0.05 0.65 0.15 −0.003 333 −0.003 476
0 0 1 0 0 0

1 0.25 0.25 0.25 0.25 0 −0.000 026
0.05 0 0.9 0.05 0.000 833 0.000 871
0.25 0.2 0.3 0.25 0.000 833 0.000 736
0.25 0.15 0.35 0.25 0.003 333 0.003 662
...

...
...

...
...

...
1 0.45 0.05 0.05 0.45 0.066 667 0.067 142

0.45 0 0.1 0.45 0.067 500 0.067 752
1 0.5 0 0 0.5 0.083 333 0.083 534

With the pair correlation function

For the verification of the previous results, the pair correlation function is used as a statis-
tical and more direct approach. The idea of a periodic lattice filled with the configurations
distributed according to their probabilities could be applied to a large cluster built of unit
cells, which are occupied by the particular configurations γi.

A Mathematica notebook was developed to build a cluster with the lattice parameters
of table 3.1 and occupy the unit cells therein according to the configuration probabilities
of table 3.2. The actual procedure to determine the SRO parameter for this cluster was
the following:

1. generate a cluster according to the lattice vectors,

2. occupy the cells randomly with the configurations γi according to their P(γi),

3. determine ξ
(2)
1 as an average over all sites,
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4. determine αstat
1 with (3.105).

These four steps define a statistical process which depends on the size of the cluster.
In order to have a meaningful value, the cluster generation was repeated 1000 times for
clusters of 1458 sites. The resulting nearest neighbor SRO parameter αstat

1 agreed well
with α1 obtained from (3.150) (see table 3.2).

Determine probabilities for given SRO parameter

Until now, the SRO parameter is defined for a particular choice of probabilities P(γi) but
the typical problem would be vice versa. As already seen from table 3.2, the number
of configurations for a unit cell and the occupying atoms is fixed. By changing continu-
ously the probabilities under the restrictions (3.137) to (3.139), the space of possible SRO
parameters for a particular Nsub can be sampled.

For the above example with Nsub = 2 and c = 0.5, the four different configurations
form together with the three restrictions a system of equations

P(γ1) + P(γ2)/2+P(γ3)/2 = cA = 1/2 , (3.152)
P(γ2)/2+P(γ3)/2 + P(γ4) = cB = 1/2 , (3.153)

∑
i

P(γi) = 1 , (3.154)

while each probability has to be 0 ≤ P(γi) ≤ 1. The solution leaves P(γ3) free and for
P(γ4) a upper boundary

P(γ1) = P(γ4) , (3.155)
P(γ2) = 1− P(γ3)− 2P(γ4) , (3.156)

only if P(γ4) ≤
1− P(γ3)

2
. (3.157)

However, this simple consideration of probabilities on the basis of configurations, re-
strictions and occupation is not possible for larger cells or more atomic types than two
because the number of parameters increases while the number of equations remains the
same. But it is always possible to sample all the free parameters P(γi) by brute force. It
is shown in an explicit application to the AgcPd1−c alloy system for a Nsub = 4 cell in
section 6.4.

3.5. Numerical calculations within the GF method
The computed results of numerical calculations suffer always from the limitations of the
chosen approximations. Particular calculations might depend on the calculation settings.
For the GF method, one critical calculation parameter is the cut-off lmax for the expansion
of the Green’s function into spherical harmonics (3.1), since it is not possible to take an
infinite number of basic functions in this expansion. On the other hand, if the Green’s
function is considered for a periodic lattice, a Fourier transformation with a finite number
of k points in the reciprocal space for the sampling of the Brillouin zone is computed (see
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(3.122)). Also the chosen approximation for the description of the scattering potentials
influences the numerical results (see section 2.1.4).

However, the variation in the numerical results with the discussed calculations param-
eters becomes smaller, if lmax or the number of k points is gradually increased. This
convergence behavior is always verified previous to the final choice of a calculation set-
ting, but also varies for the different physical quantities. Nevertheless, the electronic
structure and the magnetic properties are in particular less sensitive to the choice of lmax
etc. Thus, the calculation setup throughout this thesis is given by lmax = 3 for the angular
momentum cut-off and a k point mesh by 12× 12× 12 for the Brillouin zone integration,
unless stated otherwise. The complex energy contour for, e.g., the charge density given
in (3.5) was integrated over 24 Gaussian quadrature points.

On the contrary, the numerical results for the total energy to determine the elastic
properties are much more sensitive to the choice of lmax etc. [E12]. The problem of
numerical convergence for those quantities is reviewed in section 6.1 for pure Pd and Ag
in the fcc structure.
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Single Impurity Rare Earth Atoms

Heavy rare earth atoms R are particularly promising to show long-term stability of mag-
netic moments when they are distributed individually at a surface [E11]. This fact is based
on the threefold symmetry of the used metallic Pt(111) surface, which forbids at very low
temperatures certain electronic transitions and increases the stability of the magnetic mo-
ments of the deposited Ho atoms. Although, the low temperatures and the stability of
few minutes is not applicable in nowadays technologies it shows the importance of the
symmetry to the strongly localized f -states. It is possible to model this influence to the
magnetic properties from ab initio. Hereby, relativistic effects, the strong localization of
the f -orbitals (see OPW method in section 3.1) and the general anisotropy term of sec-
tion 3.3.3 has to be considered.

4.1. Rare earth impurities

The experimentally observed single Holmium atoms are sitting at the Pt(111) surface
either in hexagonal closed packed (hcp) or in fcc position [E11]. Both positions have
threefold C3v symmetry (see figure 4.1). The out-of-plane distance of Ho was obtained
via a structural relaxation.1

The information was used as input for further electronic and magnetic structure cal-
culations, using the fully relativistic implementation of HUTSEPOT. Since conventional
LDA failed to describe the strongly localized 4 f states of Ho, the LDA+U method and
the SIC were used in the calculations. The Green’s function method is particularly well
suited to model a single impurity at a surface with the embedded cluster method in
(3.4.1). Therewith, the Green’s function of a semi- infinite Pt(111) surface was computed.
Then, the Green’s function of a cluster around the Ho atom was obtained via a Dyson
equation (3.121) in a 2D periodic structure. The size of the cluster was varied to reach a
certain convergence of the total energy and magnetic spin and orbital moments. A cluster
size of 201 atoms was found to be optimal.

1The structural relaxations were calculated by Sergey Ostanin [E11] using a projector-augmented wave
pseudo-potential approach [98] implemented within the Vienna ab initio simulation package (VASP)
[99–101].
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(a)
hcp

fcc

(b)

1Figure 4.1: (a) Schematic picture of the surface of Pt(111). There are two possible hollow
binding sites indicated (fcc or hcp) with the same threefold symmetry C3v. (b) Experi-
mental STM image of the Pt(111) surface with several holmium adatoms [E11].
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1Figure 4.2: Atomic resolved density of states of the Ho atom (red) in fcc position at the
Pt(111) substrate (blue).

4.2. Electronic structure

The fully relativistic calculations yield 4.1 µB (3.9 µB) and 5.6 µB (5.45 µB) for the total spin
and orbital moments for a Ho atom in the fcc (hcp) hollow position. The corresponding
density of states was calculated for the fcc case with 7 majority and 3 minority 4 f electrons
below the Fermi level (see figure 4.2). It indicates a total angular momentum of J = 8
which is in good agreement with Hund’s rules. The magnetic anisotropy energy within
the LDA+U approximation (Ueff = 5 eV) was found to be 45 meV and 32 meV for the fcc
and hcp hollow positions, respectively.

4.3. Crystal-field splitting of the energy spectrum

Since, the symmetry of the environment is of main importance, the crystal-field splitting
of the f levels for a single Ho atom at a Pt(111) surface is discussed from the theoretical
point of view [E11]. The surface is considered only in the C3v symmetry.
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4.3. Crystal-field splitting of the energy spectrum

4.3.1. Threefold crystal-field Hamiltonian
The corresponding crystal-field Hamiltonian (3.84) can be obtained by considering the
symmetry of the real spherical harmonics and substituting them by the Steven’s operators
[102]. It reads for the threefold symmetry

ĤC3v = B0
2Ô0

2 + B0
4Ô0

4 + B0
6Ô0

6 + B3
4Ô3

4 + B3
6Ô3

6 + B6
6Ô6

6 , (4.1)

where the Steven’s operators are

Ô0
2 = 3 Ĵ2

z − J(J + 1) , (4.2)

Ô0
4 = 35 Ĵ4

z − 30J(J + 1) Ĵ2
z + 25 Ĵ2

z − 6J(J + 1) + 3J2(J + 1)2 , (4.3)

Ô3
4 = 1/4

[
Ĵz( Ĵ3

+ + Ĵ3
−) + ( Ĵ3

+ + Ĵ3
−) Ĵz

]
, (4.4)

Ô0
6 = 231 Ĵ6

z − 315J(J + 1) Ĵ4
z + 735 Ĵ4

z + 105J2(J + 1)2 Ĵ2
z − 525J ×

× (J + 1) Ĵ2
z + 294 Ĵ2

z − 5J3(J + 1)3 + 40J2(J + 1)2 − 60J(J + 1) , (4.5)

Ô3
6 = 1/4

[
(11 Ĵ3

z − 3J(J + 1) Ĵz − 59 Ĵz)( Ĵ3
+ + Ĵ3

−)+

+ ( Ĵ3
+ + Ĵ3

−)(11 Ĵ3
z − 3J(J + 1) Ĵz − 59 Ĵz)

]
, (4.6)

Ô6
6 = 1/2

[
Ĵ6
+ + Ĵ6

−

]
. (4.7)

The anisotropy parameters in (4.1) were calculated from ab initio [E11]. Therefore,
the charge density of the 4 f states was determined by HUTSEPOT and plugged into
(3.92) or (3.94). The different binding sites of the Ho atom, either fcc or hcp, showed
only a minimal variation in the calculated anisotropy constants. Thus, the anisotropy
constants are presented for the Ho atom at the fcc binding site in table 4.1. The term
with B0

2 dominated the Hamiltonian (4.1), since all other anisotropy constants, wich are
relevant for (4.1), were three orders of magnitude smaller. All other anisotropy constants
should be zero for symmetry reasons and were obtained accordingly in the first-principles
calculation.

The anisotropy constant B0
2 together with the Steven’s operator (4.2) forms the al-

ready known uniaxial magnetic anisotropy. However, as it is shown in the following,
the anisotropy constants corresponding to the operators in (4.3) to (4.7) mix the systems’
eigenstates due to the ladder operators Ĵ+ or Ĵ− and, thereby, have a crucial contribution
to the stability of the magnetic ground states.

4.3.2. Eigenvalue problem and exact diagonalization
With the anisotropy constants Bm

n and the Steven’s operators (4.2) to (4.7), the crystal-
field Hamiltonian can be used in an eigenvalue problem to derive the eigenvalues E and
eigenstates |Ψi〉

ĤC3v |Ψi〉 = E|Ψi〉 . (4.8)

49



Chapter 4. Single Impurity Rare Earth Atoms

Table 4.1: Calculated anisotropy constants obtained with HUTSEPOT for a Ho atom sit-
ting at the fcc binding site. All other anisotropy constants were zero.

CFP value [neV] CFP value [neV]

B0
2 −239× 103 B0

6 0.186
B0

4 86 B3
6 −1.967

B3
4 293 B6

6 0.630

In general, the eigenstates will be a linear combination of the pure states of the free atom
|JM〉 = |M〉 (for Holmium with fixed J = 8)

|Ψi〉 =
+8

∑
M=−8

fM|M〉 . (4.9)

One way to solve the eigenvalue problem (4.8) is the exact diagonalization (ED). Equa-
tion (4.8) is rewritten as a matrix eigenvalue problem by using the sum (4.9). Applying
〈M| from the left side yields at the left hand side the matrix elements 〈M|ĤC3v |M′〉 and
at the right hand side the delta function

+8

∑
M=−8

fM〈M′|ĤC3v |M〉 =
+8

∑
M=−8

E fM〈M′|M〉 , (4.10)

= E
+8

∑
M=−8

fMδM′M . (4.11)

It leads to a linear system of equations for all states 〈M′|

+8

∑
M=−8

fM

{
〈M′|ĤC3v |M〉 − EδM′M

}
= 0 , (4.12)

which has only non trivial solutions if

det
∣∣∣〈M′|ĤC3v |M〉 − EδM′M

∣∣∣ = 0 . (4.13)

With the matrix HC3v = 〈M′|ĤC3v |M〉 and the vector f = ( f−8, . . . , f+8)
T, the equation

systems is rewritten

HC3v f = E f . (4.14)

The matrix eigenvalue problem (4.14) was solved with Mathematica. Due to the only
appearing powers of 3 or 6 for the operators Ĵ±, all eigenstates have only non-zero fM
for ∆M = ±3 (see tables A.1, A.2 and A.3 in the appendix showing the complete states).
Therefore, three different groups of eigenstates appear starting either by M = −8, M =
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1Figure 4.3: (a) Calculated energy spectrum of Ho for ĤC3v (4.1) in dependence of the
expectation value 〈 Ĵz〉 = 〈Ψi| Ĵz|Ψi〉. The energy difference from the ground states to the
first excited states is shown. The three colors group the different states according to
their terms, like in (4.15), (4.16), or (4.17). The black curve is only to guide the eye. (b)
Experimental inelastic tunneling spectrum recorded on top of a single Ho atom in the fcc
position (red) showing an inelastic excitation at Vsf < 8 meV, as determined by a fit to the
data (black). Taken from [E11].

+8 or having an even distribution of M values. For example,three states with nonzero
fM are

|Ψ−8〉 : M = −8,−5,−2,+1,+4,+7 (4.15)
|Ψ+8〉 : M = −7,−4,−1,+2,+5,+8 (4.16)
|Ψ±6〉 : M = −6,−3, 0,+3,+6 , (4.17)

where the different colors correspond with the energy spectrum plotted versus the ex-
pectation value of the operator Ĵz (see figure 4.3a).

As already expected from the anisotropy constants, the shape of the downwards turned
parabola dominates strongly the energy spectrum (see figure 4.3a). The two ground states
|Ψ±8〉mainly keep the character of | − 8〉 and |+ 8〉. The energy difference ∆E between the
two ground states and the first two excited states |Ψ±7〉 is 7.7 meV in good agreement with
the experimental observation of ≈ 8 meV for a spin flip transition of a single Ho atom
(see figure 4.3b). Furthermore, the two different colors of the two ground states indicate a
zero overlap 〈Ψ−8|Ψ+8〉 and, therefore, a forbidden spin flip transition at 0 K. This relates
to the long lifetime, which was observed in the low temperature STM experiments [E11].
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Chapter 5.

Randomly Distributed Point Defects
This chapter is focused on the magnetic properties of oxides in respect of point defects
distributed completely uncorrelated inside the samples. The final aim was the under-
standing of reasons for the experimentally observed strong reduction of Tt going from
Sr2FeMoO6 (SFMO) bulk to SFMO thin films.1 Usually, antisite disorder (ASD), oxygen
vacancies (VO) or epitaxial strain are discussed as possible reasons. The defect concentra-
tion does not exceed the low concentration limit, and it is typically in the order of several
atomic percent. The CPA will be applied to model the random distribution of the point
defects in the bulk materials with a concentration c . 0.15 (15 at. %).

The complexity of the lattice structure and the different kinds of defects was gradually
raised going from a perovskite lattice structure to a double perovskite. In SrCoO3 (SCO),
an oxygen vacancy is the most prominent kind of defect. Their appearance alters the
magnetic properties and lowers the critical temperature as measured by Balamurugan et
al. [10]. On the contrary, the duplication of the simple cubic perovskite unit cell allows
for antisite defects at the B site.

For the basic understanding of both oxide materials, the numerical calculations for
each oxide were done in the corresponding experimental structure. Possible electronic
correlation effects (section 3.1.4) were studied in terms of the GGA+U or SIC.

5.1. The perovskite structure
Defect-free SCO has a simple perovskite structure described by a primitive cubic cell
(see figure 5.1a). Structural relaxations2 reproduce the experimental unit cell volume of
[103] (cubic phase; aref = 3.835 Å) with a deviation of less than 3 %. In the same order
of magnitude or smaller are the differences (with respect to aref) to the single-crystal
lattice constant [104] asngl = 3.8289 Å (∆V = −0.47 % with V = (asngl)

3) or possible
variations due to oxygen vacancies observed, e.g., ∆V = +2.2 % in [10] or ∆V = +0.56 %
in [105] (see overview in figure 5.1b). Although the structural relaxation with GGA+U
did not observe any indication of a tetragonal distortion, the a/c ratio deviated by few
percent from one by applying the HSE03 exchange functional.3 Since the experiments for
stoichiometric SrCoO3 did not observe a tetragonal unit cell and the electronic structure

1The measured films were thicker than 50 nm and, thus, are computed in a bulk structure as well. The
surface effect was neglected compared to the effect of the defects.

2 The structural relaxations were calculated by Vladislav Borisov [E4] using VASP.
3In the VASP calculations, the electron correlations were taken into account by GGA+U and the hybrid

functional HSE03.
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Figure 5.1: Structure of SrCoO3: (a) Schematic sketch of the cubic phase [106]. (b) Exper-
imental lattice volume as a function of oxygen concentration. The change of the volume
is ∆V = (V − a3

ref)/a3
ref with respect to aref = 3.835 Å (black dashed line). The nominal

and net values represent the provided and measured oxygen content [10].

did not change substantially with respect to the cubic phase, cubic SCO with the lattice
constant aref = 3.835 Å was chosen consistently for the main study, while a hydrostatic
volume variation was investigated separately in section 5.3.3 [E4].

5.2. Electronic structure of SCO
The electronic structure of the defect-free SrCoO3 was investigated at first with the GF
method at the experimental lattice constant. Due to the oxygen octahedron, which sur-
rounds the Co ion, the d states of cobalt experience a crystal-field splitting of cubic sym-
metry, which results in three t2g and two eg degenerated states. The orbitals correspond-
ing to the eg states are oriented along the coordinate axes pointing to the oxygen ions and
those corresponding to the t2g states are pointing to the next nearest neighboring Co ions
(see figure 5.1a).

The PDOS (3.23) for SCO shows an almost fully occupied majority spin channel and a
pronounced peak of the Co t2g spin-down states at the Fermi energy EF (see figure 5.2).
All other cobalt 3d states, e↑g, t↑2g and e↓g, are below EF and smeared over a large energy
range due to a strong hybridization with the p states of oxygen. This is in a good agree-
ment with previous results [107] but contradicts the intermediate spin (IS state picture
proposed by Potze et al. [108]. They state that SCO exhibits an IS state due to the com-
petition of intra-atomic exchange and the cubic crystal-field. Thereby, some of the Co t2g

states would be explicitly occupied but others unoccupied with a configuration of t4
2ge1

g.
A more recent study identified this high spin state as d6, but it is mixed with several other
possible spin states [107].

The common way to consider the electronic correlations is to optimize the value of the
repulsive Ueff with respect to the experimental data of structural and magnetic properties
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Figure 5.2: Atomic and spin-resolved density of states of SrCoO3 with contributions of
each species and spin-up (upper panel) and spin-down (lower panel) obtained within the
GGA. The oxygen p states at all three oxygen ions in the unit cell are three fold degenerate
(only one is shown).

of the system. Different values of Ueff were applied to the Co d state (UCo
eff ) in former

studies ranging from 2.5 eV [109] to 8 eV [110]. The constrained random-phase approxi-
mation provided a value of U = 10.83 eV and J = 0.76 eV for the Co d states [107], which
seems to be too high for a metallic system.

Since the correct value of UCo
eff is hardly to estimate from first-principles and the above

reference values scatter quite a bit, the electronic structure and the occupation of the Co
d states were investigated in the whole range of UCo

eff from 0 eV to 9 eV (see figure 5.3).
Interestingly, for the first few steps of the calculations (UCo

eff ≤ 1.5 eV) the d states preserve
their degeneracy in t2g and eg states. At EF, the large peak of the Co t2g states does not
move due to an interplay of the Coulomb exchange and the crystal-field energy. Only for
a larger UCo

eff , the degeneracy is lifted. A singlet state (d↓xy) becomes occupied while the
doublet (d↓zx and d↓yz) is pushed above EF. On the other hand, in the spin-up channel the
orbitals remain degenerated for the whole range of UCo

eff and become strongly localized
(see much higher contrast for d↑xy in figure 5.3). It matches well with t4

2ge1
g and the IS state

model.
A similar loss of degeneracy in the 3d states was also observed in calculations2 for

GGA+U and HSE03 in VASP [E4]. It has to be noted that due to the symmetric cubic
structure, the particular localization of d↓xy is arbitrary and depends on the starting point
of the self-consistent calculation. Another localized Co d↓ state is also possible and was
observed during the calculations. However, one particular configuration (the singlet d↓xy
state) is chosen for a consistent description throughout this work.

The oxygen vacancies were modeled by empty spheres which were introduces with a
certain concentration at the oxygen sites within the CPA. That means that the position of
the oxygen vacancies were assumed to be totally uncorrelated. Since there is no exper-
imental evidence for an ordering of VO for a low oxygen deficiency in SrCoO3−δ up to
5 at. %, the random distribution of VO represented a realistic model.

The electronic structure of the oxygen ions is mainly dominated by the strong hy-
bridization with the Co d states (see figure 5.2). By including of few atomic percent of
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Figure 5.3: Contour plots of the LDOS in the ground state for the Co d states in depen-
dence of the correlation parameter UCo

eff (ordinate). They are spin resolved (left: up, right:
down) and collected according to their initial degeneracy. For higher UCo

eff (not shown),
the energy shift continues and there are no significant changes to observe.

oxygen vacancies (5 at. %) in SCO, the unoccupied peak above EF is shifted to higher en-
ergies (see figure 5.4), a similar effect as increasing UCo

eff . Both lead to an enhancing orbital
localization – either removing effectively oxygen from the lattice or reducing the electron
hopping between the Co ions.

Anyway, these unoccupied oxygen states can be interpreted as the ligand hole of eg

symmetry, which is expected for the IS state t4
2ge1

g [108]. It is stabilized by the ligand hole
state d6Leg (notation from [108]), where the hole couples antiferromagnetically to another

e↑g in d6: t4
2ge2

g. Such a configuration was also found in our PDOS calculation with almost

fully occupied orbitals for d↑ and t↓2g (see figure 5.3). Although, the method is not directly
comparable with the dynamic mean-field theory (DMFT) method of Kuneš et al. [107],
the same spin configuration appeared also in their calculation with the highest multiplet
weight.

5.3. Magnetic properties of SCO
The total moment of the IS state model would be theoretically 3 µB (s = 3/2). Although
the total magnetic moment of µ = 2.281 µB calculated with the GGA functional was
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Figure 5.4: LDOS of the oxygen along the z direction (Oz) with GGA, UCo

eff = 2.5 eV and
5 at. % oxygen vacancies.

smaller than in the IS state model, it agreed well with the range of the experimentally
observed magnetic moments (µ ≈ 2 µB to 2.5 µB [103, 104, 111]). The main contribution to
the total moment originated correctly from the Co ions with only small induced moments
of 0.15 µB and 0.04 µB at the oxygen and strontium ions, respectively. The discrepancy
between the IS state model and the experiments was always attributed to possible defects.
However, when the IS state model is valid, theoretical calculations of a defect-free SCO
should reproduce the total magnetic moment.

Possible shortcomings might originate from the GGA electron correlation functional,
which often lacks a sufficient description of localized transition metal d states. For com-
parison, the obtained total magnetic moment of 2.9 µB within VASP and the HSE03 func-
tional agreed well with the IS state model [E4]. On the other hand, the total magnetic
moment in the GF method increases monotonously with increasing UCo

eff showing dif-
ferent linear slopes (see figure 5.6e). Only after the degeneracy in the Co d states for
UCo

eff > 1.5 eV, the total moment decreases slightly due to a reduction of the induced mo-
ments to 0.11 µB for the two oxygen ions (Ox and Oy), which lie in the same x-y-plane
as the Co ions. In the following, the linear slope changed around UCo

eff ≈ 2.5 eV and
UCo

eff ≈ 4.5 eV, which correspond to disappearing peaks in the LDOS (see figure 5.3). At
the latter UCo

eff , the total moment is 3 µB and matches well on the one hand side with the
IS state model and on the other hand with the HSE03 calculation2 in VASP.

5.3.1. Taking into account electronic correlation effects
In order to calculate Tt at first with the GGA functional, the magnetic exchange interac-
tions for the nearest neighbor atoms were calculated. For RSFM the magnetic interaction
parameters show mainly a ferromagnetic (positive) coupling: strong between two adja-
cent Co ions and much weaker between the Co ions and the induced magnetic moments
of the surrounding oxygen ions (see figure 5.5b). The coupling to the Sr ions was one
order of magnitude smaller and was ignored in the following discussions. After the 8th
shell (d = 7.7 Å), most of the coupling constants decay fast while other long-range inter-
actions reflect the metallic character of SrCoO3. Along the straight exchange paths (along
a particular coordination axis, also marked with an asterisk in figures 5.5b and 5.5c) the
coupling via the oxygen ions remains stronger. The same tendency can be observed for
the coupling between the Co ions in the DLM model (Jij calculated in RSPM). Only the
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Figure 5.5: Magnetic exchange interactions Jij of SCO: (a) Schematic view of the orienta-
tion of Jij between Co ions only. The non magnetic Sr ions are not shown. The notation
J01, J02, . . . means nearest neighbors (NN), next NN, etc. The values for the magnetic
coupling constants between Co-Co and Co-O are given in (b) and (c). Both calculated
with the GGA for a FM or PM (DLM model) reference state RSFM and RSPM, respectively.
The asterisk marks those coupling constants which strictly follow only one direction in
space, e.g., along the edge of a cube edge in (a). The abscissa in (b) is non-continuous,
due to the large differences in the values.

nearest neighbor interactions became larger while the other coupling constants were re-
duced. At the oxygen ions, the induced magnetic moments vanished in the DLM model
and no exchange interactions were found between them. In any case, all magnetic cou-
pling constants up to a distance of 15.34 Å were taken into account for the Monte Carlo
simulation. The resulting Curie temperature did not agree with the experimental results
(within the DLM model TMC

C = 771 K compared to Texp
C ≈ 280 K). The reason for this high

TMC
C might be an overestimation of the magnetic coupling between the Co atoms. The

increase in the localization of 3d states by using electron correlation corrections or more
advanced functionals should decrease as well the orbital overlap and thereby reduce the
exchange coupling.

Such a overall reduction in the magnetic coupling parameters Jij is indeed observed
within the GGA+U (see figures 5.6a to 5.6d). In both reference states (RSFM and RSPM),
the most dominant coupling constants, JCo-Co

01 and JCo-Co
04 , are strongly ferromagnetic.

Both interactions are mediated by oxygen ions between Co ions forming either a Co-O-
Co or a Co-O-Co-O-Co chain (see figure 5.5a). Those bonds connect mostly the O p states
with the Co eg states (σ bonds). This typically antiferromagnetic (AFM) superexchange
is suppressed by the metallic character of SrCoO3 and for small UCo

eff an increasing band
magnetism is observed in the region of degenerated Co d states. There, the coupling
becomes stronger with UCo

eff until 1.5 eV because the Co e↑g and e↓g states are either pushed
below or above EF, respectively. This increases the exchange splitting and, therefore, the
magnetic coupling. In contrast, the coupling between two Co ions enclosing a 90° angle
(JCo-Co

02 ) is small and AFM, while the next coupling (JCo-Co
03 ) is very weak compared to the

other interactions.
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Figure 5.6: Magnetic properties of SCO as a function of UCo

eff : The magnetic exchange
interactions JCo-Co

0j for a ferromagnetic (a)-(b) or paramagnetic (c)-(d) reference system.
They are subdivided into two groups, ‖ and ⊥, for JCo-Co

0j only in the x-y-plane and those
with contributions also in x direction (directions given in figure 5.5a). The JCo-Co

03 (not
shown) does not split due to UCo

eff and are always small (< 0.3 meV). (e) Total magnetic
moment per functional unit at the ground state. (f) Critical temperatures for the magnetic
transition. The Monte Carlo calculations show a change in the magnetic ground state
from clear ferromagnetic behavior to a FiM situation at UCo

eff ≈ 2.1 eV and 4 eV for the
RSPM and RSFM calculations, respectively (see text). The gray shaded area indicates the
experimental TC range varying between the results for a single-crystalline sample [104]
and a polycrystalline sample [10].

After that, in the symmetry broken regime, the Jij reflect the change in the degeneracy
of the Co d state in the LDOS. Due to the splitting of the t↓2g states into the degenerated

doublet (d↓xz and d↓yz) and a singlet (d↓xy), the Jij with either (‖) in x and y direction or (⊥) in
z direction were different for UCo

eff > 1.5 eV. The competing superexchange overcomes the
band magnetism while the localization of the d states is increasing (see stronger contrast
in figure 5.3). This reduces, in general, the overlap of the orbitals and the magnetic
exchange interactions. It is visible e.g. for J01 and J04 in figures 5.6a to 5.6d but also for
other J0j (not shown). On the other hand, the modifications in the coupling constants are
much more complex due to the changing LDOS. However, some simple tendencies can
be observed, e.g. due to the localization of the Co dxy states, the magnetic coupling for
UCo

eff < 4 eV in the x-y-plane (‖ contributions in J01) becomes smaller than the out-of-plane
(⊥) contributions. The ⊥ parts of JCo-Co

02 even change their character from AFM to FM.
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Another significant change for all coupling constants is visible at UCo
eff = 4.5 eV and might

be correlated with vanished states in the dxy LDOS indicated by a loss of contrast (see
figure 5.3). At the end of the shown range, the strength of the nearest neighbor magnetic
exchange coupling was only half of its starting value. It reduces further, for even higher
UCo

eff (not shown) and leads to an undesired antiferromagnetic ground state.
The overall tendencies for the RSFM calculations were in general also observed in the

DLM picture (RSPM), although the changes were much stronger, e.g. at UCo
eff = 6 eV the J01

were reduced to zero and J04 is strongly AFM. Furthermore, the loss of degeneracy was
visible already for smaller UCo

eff (see figure 5.6c). Both changes are explained by the larger
extent of the Co d orbitals due to the random distribution of the magnetic moments in the
DLM theory as already stated in section 3.4.3. The increasing orbital overlap enhances,
on the one hand the AFM superexchange and on the other hand, alters the competition
between the crystal-field and Coulomb energy, which restored the degeneracy for small
UCo

eff .
These magnetic exchange parameters were applied to the Monte Carlo simulation,

where the resulting critical temperatures in general follow a similar tendency as the
nearest neighbor coupling constant JCo-Co

01 (see figure 5.6f). They show for both sets of
magnetic coupling parameters a linear increase up to UCo

eff = 1.5 eV. The critical tem-
peratures obtained with the J0j(RSFM) remained around 750 K with increasing UCo

eff up to
≈ 3 eV, and drop down sharply in the following while the DLM results decrease linearly
immediately above 1.5 eV. So, TMC

t (UCo
eff ) calculated for RSPM reaches the experimentally

relevant range already for a smaller UCo
eff = 2.5 eV than for RSFM (4.5 eV). A reason for the

smaller UCo
eff was already discussed above for the Jij – the larger overlap of the orbitals

in the more realistic DLM model. Additionally, the RSPM calculation showed after the
kink an almost constant TMC

t (UCo
eff ) = 240 K for a larger range of UCo

eff parameters (2.75 eV
to 4 eV). On the other side, the ground state calculation at RSFM with the GF method
(GGA+U) returns for UCo

eff ≈ 5 eV a TMC
t inside the experimental range. This observation

matches well with the comparison of the electronic structure and the magnetic moments
between the GF method (GGA+U) and VASP (HSE03) calculations at UCo

eff ≈ 5 eV [E4].
Furthermore, figure 5.6f accounts for the magnetic ground state observed in the Monte

Carlo study with different symbols, having either a FM or FiM ground state. The DLM
theory predicted only a FiM ordered ground state for the range of TMC

t (UCo
eff ≈ 2.5 eV)

equivalent to experimental results. This is, however, still physically reasonable. While at
the critical temperature the induced moments at oxygen might be zero, they will appear
at lower temperatures. This leads to a ferromagnetic ground state obtained with the
Jij(RSFM) for even larger UCo

eff (see blue curve in figure 5.6f).

5.3.2. Effects of oxygen vacancies
The variation of the magnetic transition temperature of SrCoO3−δ was reconsidered re-
garding the oxygen content, Tt = Tt(δ). In the experimental study [10], the oxygen
content in the samples varied with respect to the stoichiometric SCO between ±6 at. %,
having either oxygen deficiency or excess oxygen. This increase in the oxygen content en-
hanced TC (see figure 5.7a) [10]. However, the following theoretical study was restricted
to the regime of oxygen deficiency. The inclusion of excess oxygen was beyond the scope
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1Figure 5.7: Critical temperature of SrCoO3−δ obtained in the DLM model as a function
of the oxygen content δ and compared with experimental references: (a) The GGA cal-
culations shown as blue dashed line and GGA+U calculations shown as differently solid
colored lines. The open and full circles in the corresponding colors indicate the calcu-
lated data points and the magnetic ground state as shown in figure 5.6f. An additional
antiferromagnetic state (AFM) is marked with a half filled circle (see text). (b) The vary-
ing oxygen content δ corresponds as well to a volume change ∆V (see figure 5.1b). It
is considered separately in filled squares (lower axis; reversed to match (a)) or together
with δ in open squares (upper axis). UCo

eff is 2.5 eV (blue) or 2.75 eV (black), respectively.
The magnetic ground state is always FiM.

of this thesis, since the additional oxygen atoms might, e.g., occupy unknown interstitial
sites, whereas the oxygen vacancies occupy very likely the lattice sites in the perovskite
structure and could be included within the CPA.

Also from the theoretical point of view, a reduction of TMC
t (δ) with increasing δ (re-

duction in the amount of oxygen), since the localization of the orbitals through oxygen
vacancies was alike applying an UCo

eff parameter. Therefore, the magnetic interactions in
the Co-O-Co bonds were weakened as well. This expectation was generally fulfilled for
the calculated TMC

t (δ) at different UCo
eff : the GGA exchange functional alone, UCo

eff = 2 eV,
2.25 eV, 2.5 eV or 2.75 eV (see figure 5.7a). They all show an increase of the critical tem-
peratures by increasing the oxygen content from δ = 0.3 (10 at. %) towards stoichiomet-
ric SCO while their slopes vary qualitatively between UCo

eff = 2.25 eV and 2.5 eV. The
slope of TMC

t (δ) remained equal until UCo
eff = 2.25 eV and even partially for 2.5 eV but be-

came reduced for larger UCo
eff and matched the tendency of the experimental results. For

UCo
eff = 2.5 eV, only the combined effect of UCo

eff and a larger amount of VO was enough
to obtain the experimental tendency, whereas the value UCo

eff = 2.75 eV lays in the region
of constant TMC

t (UCo
eff ) (see figure 5.6b). For the latter, alone the influence of the oxygen

vacancies on TMC
t (δ) was visible and it agreed well with the measurements.
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However, these findings were just valid in a small range of oxygen deficiency, other-
wise SrCoO3−δ became unstable and forms different structures [20, 112, 113]. At 15 at. %
oxygen deficiency and UCo

eff ≥ 2.5 eV, the resulting magnetic ground state was antiferro-
magnetic. This chemical composition is already close to the ordered brownmillerite struc-
ture SrCoO2.5, which is antiferromagnetic with a high Néel temperature of TN = 570 K
[111]. Although the cubic structure is not the appropriate equilibrium structure at this
oxygen concentration, the difference in chemical composition might lead already to an
AFM order with a higher critical temperature. The transition from the FM to an AFM
ground state was already visible in the dependence of UCo

eff (see figure 5.6), where large
values of UCo

eff result in AFM magnetic coupling constants. Interestingly, Lee and Rabe
applied theoretically strain to SCO by varying the unit cell volume and found as well a
transition from FM to AFM [109]. Thus, strain or hydrostatic pressure might modify the
magnetic coupling as well.

5.3.3. Hydrostatic volume changes

Up to now all calculations were performed with the fixed lattice constant aref, but mea-
sured lattice constants indicate a volume expansion in consequence of oxygen deficiency
(see examples in figure 5.1b). To estimate the influence of this volume enhancement to the
critical temperature TMC

t (∆V), the largest volume expansion in figure 5.1b was chosen as
reference [10]. Therefore, the lattice parameters of the cubic unit cell for defect-free SCO
was scaled up to 1.8 %. TMC

t was calculated at RSPM (see filled squares and the lower
axis in figure 5.7b). For UCo

eff = 2.5 eV, the increasing distance between the Co atoms re-
duces their magnetic interaction and the critical temperature, again similar as UCo

eff or VO.
Hence, TMC

t (∆V) remains for UCo
eff = 2.75 eV almost constant.

On the other hand, the volume expansion is correlated to a particular oxygen content.
For simplicity, it is linearly interpolated from [10] to derive in figure 5.7b the upper
axis (open squares). The combination of volume expansion and oxygen deficiency leads
for UCo

eff = 2.5 eV to a similar quantitative curve as for TMC
t (δ) but the observed kink

appears already for δ = 0.05 or ∆V = 0.6 %, respectively. In contrast, the qualitative and
quantitative agreement of the variation of TMC

t for UCo
eff = 2.75 eV is still in place.

Although the good agreement with [10] of the theoretically obtained TMC
t , it has to

be remarked that the volume variation ∆V was the upper boundary in figure 5.1b. For
example, in [113] the oxygen deficiency of δ = 0.16 with respect to their value at δ = 0 is
correlated to a much smaller volume expansion of ∆V = 0.6 %. As a result the slope of
TMC

t (δ) changes drastically as well.

Conclusions The PM model (DLM theory) could be successfully applied to the Co ions
in SCO and yielded for small correlation parameters in the range of UCo

eff = 2.50 eV to
2.75 eV for the critical temperature a good qualitative agreement [E4] with the single-
crystal measurements [104]. When compared to lower polycrystalline experimental val-
ues [10], Tt is independent of UCo

eff up to 4 eV. In this range, the inclusion of oxygen
defects with the effective picture of the CPA explains very well the experimental reduc-
tion of Tt(δ) in polycrystalline SrCoO3−δ.
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5.4. Lattice Structure of the double perovskite SFMO
Considering the excellent agreement of the calculations with the GF method compared
with the experimental findings for the simple perovskite structure in SCO, another level of
disorder was reached by redoubling the perovskite cell. The resulting double perovskite
Sr2BB′O6 exhibits an additional degree of freedom for the occupation of the B site. A
variation at B site allows for the so-called antisite disorder (ASD).

Again the experimentally found lattice structure was adopted for the calculations on
SFMO. The oxygen atoms provide an octahedral environment around the Fe and Mo
sites. The FeO6 and MoO6 octahedra alternate along the three cubic axes, while the Sr
atoms occupy the hollow sites formed in between the FeO6 and MoO6 octahedra at the
body-centered positions (see figure 5.8).

SFMO was found to be cubic (Fm3̄m) in the paramagnetic phase, but changes into a
tetragonal-type structure below a critical temperature [115, 116]. A representative choice
of experimentally observed lattice constants is collected in table 5.1. Their variation be-
tween the smallest and largest value is quite small (0.25 % and 0.17 % for a and c, re-
spectively) and the cubic symmetry would be represented by a c/a ratio of

√
2. So, the

deviation from the cubic symmetry is small as well.
In general, the Sr atoms occupy the 4d Wyckoff positions (0, 1/2, 1/4). Depending on

the reference, the Fe atoms occupy the 2a Wyckoff pos. (0, 0, 0) and Mo the 4d Wyckoff
pos. (0, 0, 1/2), or vice versa. The positions of the oxygen atoms are not definite. These
vary between different studies (see table 5.1), either exactly between Mo and Fe, which
gives the body centered tetragonal structure type (I4/mmm; No. 139) [117, 119] or the

Figure 5.8: The double perovskite structure of SFMO. The colored polyhedra [106] visu-
alize the octahedral surroundings of the Fe and Mo atoms (orange and blue). Following
from the tetragonal symmetry, two different oxygen positions appear (marked with Oxy
and Oz). The black dashed lines and the blue arrows indicate the primitive unit cell used
in this thesis. For comparison, the tetragonal cell is shown by the black solid lines and
the red arrows. It contains two functional units with two Fe sites (Fe1, Fe2).
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Table 5.1: Variation of the experimental lattice constants and oxygen positions of SFMO
from several references. Fe occupies consistently (0, 0, 0). The Wyckoff positions of the
oxygen atoms are (0, 0, z) and (x, y, 0). The positions of the other atoms are described
in the text.

a (Å) c (Å) c/a/
√

2 x y z Ref.

5.5729 7.9077 1.003 353 0.248 = x 0.235 [117, 118]
5.573 7.902 1.002 612 0.2464 = x = x [119]
5.5752 7.892 51 1.001 009 0.2610 0.2333 0.2474 [120]
5.587 7.894 0.999 087 0.248 = x 0.235 [121]

oxygen octahedra are slightly distorted (I4/m, No. 87) [120, 122]. In any case there are
two types of oxygen atoms with Oz at the 4e Wyckoff pos. (0, 0, z) and Oxy at the 8h
Wyckoff pos. (x, y, 0) while the Fe atom position is (0, 0, 0) (see figure 5.8).

Since the changes of the lattice constants are small, the more symmetric body centered
tetragonal structure type and the lattice constant from [119] were used for simplicity as
input for the calculations. The primitive unit cell with one functional unit of SFMO was
considered throughout the following sections (see blue arrows in figure 5.8).

The lattice structure was kept static in order to deal with chemical disorder within the
CPA. The ASD was modeled by interchanging randomly Fe and Mo [E2], although some
experimental studies report no random distribution but segregation into small clusters
and formation of antiphase boundaries [123]. However, at the low concentration limit
the CPA is appropriate to reproduce well the electronic structure of both randomly dis-
tributed and clustered disorder. Advanced schemes, which go beyond the single-site ap-
proximation of the CPA need still high computational resources for larger unit cells and
are beyond the scope of this investigation. For the oxygen vacancies, a certain percent-
age of empty spheres were introduced at the lattice sites of the oxygen ions. The typical
oxygen deficiency δ ranges between 0.006 to 0.36 [124–126]. This represents 0.1 at. % to
6 at. % of the total oxygen amount in stoichiometric SFMO.

5.5. Half-metallic SFMO
By using at first the experimental structure of SFMO [119] in the self-consistent calcula-
tions, the electronic structure was investigated. SFMO exhibits a half-metallic character,
so all electronic states at the Fermi energy have only one spin orientation while the spin
channel exhibited a band gap [E2]. Although the half-metallic solution was obtained pre-
viously with different calculation techniques [127, 128], the Green’s function method ran
into a metallic solution with a nonzero density of states in both spin channels at EF (see
figures 5.9a and 5.9c). Only the relevant states lying close to the Fermi energy, namely the
Fe and Mo staes, are plotted. Due to a slight tetragonal distortion in SFMO, the t2g and eg
splitting of the transition metal d states in the cubic crystal-field observed for SCO before
changed with respect to the new D

4d point symmetry. The crystal-field splits the Fe (Mo)
3d (4d) orbitals into three singlets A1g (d3z2−r2), B1g (dx2−y2), and B2g (dxy) and a doublet eg
(dyz and dxz). However, the states dxy and d3z2−r2 , as well as the states dx2−y2 , dyz and dxz,
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Figure 5.9: LDOS of the transition metal ions in SFMO close to the Fermi energy: (a) GGA
calculation for Fe. (b) Color-coded contour plot for Fe in dependence on the correlation
correction parameter applied on the Fe d states (UFe

eff). (c)-(d) correspond to (a)-(b) but for
Mo (still with UFe

eff). The lighter and darker shades (redish–Fe and bluish–Mo) represent
similar groups of the symmetry split states dxy and dx2−y2 , respectively (see text). The
dashed line in (c) indicates the peak position in the experimental PES [129].

form two groups of states, which showed each a quite similar DOS, because the deviation
from the ideal c/a ratio was only very low. In the following, only one representative state
for each of them (dxy and dx2−y2 , respectively) was discussed.

As already discussed in previous publications, the band gap in the majority spin chan-
nel may open when correlation corrections are applied (GGA+U or SIC) [17, 55] The
experimental values for this band gap range from 0.5 eV [129] to 1.3 eV [13]. Both values
are much smaller than the theoretical band gap in the majority spin channel obtained
with SIC [129]. A continuously increasing electron correlation parameter applied to Fe d
states UFe

eff allowed to trace the development and the variation of the band gap (see fig-
ures 5.9b and 5.9d). The main changes at the Fermi energy appear in the spin up channel
of the Fe dxy states and those of similar symmetry (d3z2−r2 , not shown). They are pushed
towards lower energies while all other states in the spin up channel are not crossing EF.
This behavior results in a band gap in the majority spin channel at UFe

eff ' 1 eV. On the
contrary, the minority spin channel at EF remains always occupied by the dx2−y2 states
of Fe and Mo and those of similar symmetry (dyz and dxz, not shown), leading to the
half-metallic character of SFMO.

The LDOS reveals in addition the formal valence states of Fe3+ and Mo5+. Iron pro-
vides two 4s electrons and one from the 3d↓ states, since all d↓ states of Fe become unoc-
cupied (see figure 5.9b). For Mo, almost all states are unoccupied, except the delocalized
d states. This situation was found in all self-consistent solutions with GGA+U.

In order to determine an appropriate UFe
eff value, the experimental and theoretical band

gap in the majority spin channel should match. The measurement of the valence PES by
Saitoh et al. [129] allowed the comparison with the calculated DOS (see figure 5.10). The
size of the band gap is determined from the different positions of the states involved in
the electron transition with the lowest energy. Those states were assumed to be the d↑xy
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Figure 5.10: Valence spectra (DOS) of SFMO: (a) Experimental and simulated PES from
the study of Saitoh et al. [129] (copied from Fig. 5(a) in [129], non-relevant labels were
removed). (b) Calculated DOS for SFMO with UFe

eff = 2 eV. For defect-free SFMO, the
total DOS is gray and the LDOS for the d states of Fe (reddish) and Mo (bluish). The
green dotted DOS includes 8 at. % of randomly distributed oxygen vacancies. Both plots
(a) and (b) are scaled with respect to the same energy scale and the Fermi energy at zero
(black vertical line). The dashed line indicates the position of the Fe d↑xy and d↑3z2−1 in the
experimental PES.

and d↑3z2−1. The energy difference was roughly 1.3 eV (see dashed lines in figures 5.9b or
5.10). On the other hand, the measurement of Tomioka et al. [13] showed only a small
optical gap of 0.5 eV, which was attributed to a transition from the Fe d↑xy and d↑3z2−1 to
the Mo dx2−y2 , dyz and dxz states. Such a small experimental gap restricts UFe

eff to a range
of 1 eV to 2 eV (see figure 5.9b). On top of that, the peaks in the measured spectra extent
over more than 1 eV and might be altered as well by additional defects, which could be
only scarcely considered in the experimental comparisons. Saitoh et al. [129] noticed e.g.
in their measured samples the occurrence of up to 10 at. % ASD, but did not account for
any kind of defects in their theoretical interpretation.

Therefore, the antisite disorder was considered in the DOS calculations as well using
the CPA. Few atomic percent of Mo ions at the Fe site led to Mo d↑ states at the Fermi
energy (not shown). The portion of these states increases with increasing the ASD and
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the spin polarization of half-metallic SFMO is reduced [130]. On the other hand, oxygen
vacancies are also very likely in this system. The direct influence of oxygen vacancies
to the DOS was already discussed in a supercell approach by Muñoz-García et al. [17].
For a single oxygen vacancy, the Fe d states showed an increase in the spin down channel
below the Fermi energy, which indicated a higher occupation of the Fe ion and the valency
change. By including exemplarily 8 at. % oxygen vacancies within the CPA (UFe

eff = 2 eV),
the contribution in the spin down channel right below the Fermi energy is increased
similar to [17] (green dashed line in figure 5.10). This might also indicate the valency
change as discussed above. The d↑ states are shifted to lower energies and the vacancies
show a similar effect as the correlation corrections UFe

eff (see figure 5.9b). The missing
oxygen orbitals increase the localization of the transition metal ions. On the other hand,
the averaging of the CPA leads to a general broadening of the states. Both effects compete
with each other for the band gap opening, while UFe

eff or the oxygen deficiency δ vary,
respectively. If the band gap due to UFe

eff is not large enough, the broadening closes the
gap again and the spin polarization of the system is reduced as well.

Taken as a whole, a direct comparison between the theoretical and the experimental
band gap is complicated when considering all the various influences of electron corre-
lations or possible defects. In order to have a point of reference for later discussions,
UFe

eff = 2 eV might be a suitable compromise (see figure 5.10). This UFe
eff in consistently

used in the following discussions.

5.6. Magnetic properties of SFMO
The observed transition from a metallic to a half-metallic state influences as well the mag-
netic properties, looking in particular on the magnetic moments, the magnetic exchange
coupling, and the Curie temperature of SFMO in dependence of the electron correlations
and defect concentration [E2].

5.6.1. Magnetic moments
At first, the local magnetic moments of Fe and Mo were calculated. Their antiparallel
alignment (ferrimagnetism) was found as expected as the ground state in all calculations
(see table 5.2). The metallic solution (weak electron correlation regime – GGA only)
provided for Fe a lower magnetic moment than earlier calculations, while the calculated
moment of the Mo ion was larger [127, 131–134]. As soon as SFMO turned half-metallic
(UFe

eff > 1 eV), the Fe moment became ≈ 4 µB. It remained afterwards quite stable and
insensitive to the strength of the electron correlations (see figure 5.11 at x = δ = 0).

The Fe moment of 4 µB corresponds to the theoretical ideal value for the Fe3+/Mo5+ or
Fe2+/Mo6+ valency configuration and is in a good agreement with the experimental neu-
tron diffraction measurements [137], although this result is quite exceptional compared
to other measurements (see table 5.2). There, the reduction in the moments with respect
to 4 µB was attributed to antisite disorder [124, 135, 138]. Within the CPA, the introduced
Fe ions at the Mo sites became strongly antiferromagnetically coupled to the intrinsic Fe
ions and oriented their moments antiparallel. Independent of the strength of the electron
correlations, the total magnetic moment of SFMO is indeed reduced linearly for ASD up
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Table 5.2: The calculated magnetic moments (in µB) of the Fe or Mo ions in defect-free
SFMO compared with reference values.

magnetic moment
method Fe Mo

GGAa 3.090 −0.555
GGA+Ua 3.921 −0.525

FPLMTO [134]b 3.72 −0.29
Plane-wave method [132]b 3.97 −0.39

XMCD [135]c 3.05± 0.20 −0.32 ± 0.05
XMCD [136]c 2.80± 0.30 −0.36 ± 0.03
Neutron diffraction [137]c 4.1 ± 0.1 0.0 ± 0.1

aThis work.
bTheory.
cExperiment with measuring uncertainty.

to 15 at. % (see figure 5.11a). The slope of this reduction is in good agreement with the
estimations by previous Monte Carlo simulations [138] and experiments [139].

On the other hand, oxygen vacancies reduce also the total magnetic moment as seen
in the measurements by Kircheisen et al. [124]. The theoretical results within the CPA,
depending on the strength of the electron correlations, show as well a reduction of the
total magnetic moments when the oxygen content is decreased (see figure 5.11b). Above
UFe

eff = 1 eV, the slope of the reduction is linear and remains independent of the strength
of UFe

eff. We note the change of the slope for UFe
eff = 0.75 eV. As observed for the DOS, the

randomly distributed oxygen vacancies act similar as the correlation parameter UFe
eff, since

they both reduce the screening of the Coulomb interaction. After few atomic percent of
oxygen vacancies the slope of the magnetic moment changes is similar as for higher UFe

eff.
This slope agrees qualitatively very well with the experimental results but the absolute
magnetic moments are higher. The overall reduction might result from additional ASD.

5.6.2. Magnetic exchange interactions and Curie temperatures
In contrast to the magnetic moment, the calculated magnetic exchange parameters be-
tween the magnetic atoms and the critical temperatures are more sensitive to changes in
the DOS. The most prominent coupling constants of the order of several meV have only
a very restricted range up to 7.9 Å, which include only the interactions up to the next
nearest neighbor Fe ions JFe-Fe

02 (sketched in figure 5.12c). As it is shown below, only these
magnetic couplings dominate the magnetic behavior with respect to the electron correla-
tions. The more distant exchange constants (up to 12.49 Å) were one order of magnitude
smaller and became even more reduced with increasing UFe

eff. All the others could be
considered to be zero. Due to the tetragonal structure, all magnetic exchange interactions
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Figure 5.11: Total magnetic moment mtot obtained for GGA and varying UFe

eff in depen-
dence on the defect concentration: (a) ASD. (b) Oxygen deficiency δ. The oxygen amount
is also given in absolute values (scale above). The theoretical results are compared to
previous references. The experimental results [124] (green circles) are plotted together
with a linear regression (green solid line).

show a small asymmetry with respect to those with a component in z direction. For
clarity, only the coupling constants in the x-y-plane are shown.

As before for SCO, two different calculation schemes were considered:
(i) On the one hand side, the calculations of Jij are performed at the ferromagnetic

ground state (RSFM, red and blue in figure 5.12a). There appears a strong antiferromag-
netic coupling between the Fe and Mo ions, whose size becomes only slightly reduced
around UFe

eff ≈ 1 eV. The AFM behavior was also expected from former studies [17]. The
closest Fe–Fe magnetic coupling parameter JFe-Fe

01 decreased linearly with increasing UFe
eff

from 4 meV to 1 meV. This reduction might be correlated to the linear changes in the d↑xy

and d↑x2−y2 states. It is typical behavior within the application of an U parameter: The
localization of an orbital leads to a decrease of orbital overlap and, thereby, to a decrease
in the magnetic coupling strength. In contrast, the behavior of the next nearest Fe–Fe cou-
pling JFe-Fe

02 was more complicated (see figure 5.12a). There was a strong linear reduction
until the coupling switches even to a negative value (AFM). At UFe

eff ≈ 1 eV, the slope was
reversed but the JFe-Fe

02 coupling constants remained negative. Only the absolute values
are decreased.

(ii) On the other hand, the magnetic exchange constants were obtained at the param-
agnetic reference state (DLM approach, RSPM). Again, the induced moments vanish. The
remaining magnetic coupling constants (without JFe-Mo) were shown in figure 5.12a. In
principle, they have a similar tendency as the magnetic exchange interactions in RSFM.

From all these Jij, only those between Fe–Fe and Fe–Mo up to the distance of 12.49 Å
were considered in the calculation of Tt. The MFA was used besides the MC method for
comparison. Both methods show qualitatively a similar non-linear variation with increas-
ing electron correlation (see figure 5.12b), but the MFA overestimated Tt again. Therefore,
only the results from the Monte Carlo simulations are discussed in the following.

A pure GGA calculation, including the induced Mo moments at 0 K (RSFM), yields Tt ≈
604 K, i.e. 200 K above the measured values. With an increasing UFe

eff and the metallic DOS,
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Figure 5.12: Magnetic properties of SFMO as a function of UFe

eff: (a) Magnetic exchange
interactions Jij obtained in RSFM and RSPM. The gray shaded inset shows the Jij at UFe =
2 eV (connected by the dotted line) for varying Fermi energy. (b) Curie temperature
calculated from the corresponding Jij with MFA or MC method. Comparison with the
experimental range. The observed ground state change in the DLM model is marked with
full and open circles (see text). (c) Sketch of the orientation of the magnetic exchange
interactions Jij between the Fe sites with their nearest and next nearest neighbors and
with the nearest neighbor Mo sites.

the Curie temperature decreases linearly until UFe
eff = 1 eV. This corresponds with the sign

change of JFe-Fe
02 and the decrease of JFe-Mo

01 . For half-metallic SFMO, the theoretical critical
temperatures stayed always 200 K below the experimental Tt (compare shaded area in
figure 5.12b) but increased slightly up to 250 K at UFe

eff ≈ 4 eV. This is observed despite the
decrease of JFe-Fe

01 . So, the stronger antiferromagnetic coupling between Fe and Mo sites
mediates an additional FM coupling and increased Tt. For the sake of completeness, the
Tt for a SIC calculation (see section 3.1.4) is plotted in green and matches with those of the
GGA+U method in the limit of large UFe

eff. The slight reduction follows the tendency of
JFe-Mo
01 . Besided, the magnetic ground state in these Monte Carlo simulations was always

an ordered ferrimagnetic (FiM) ground state with a nonzero saturation magnetization
(see filled symbols in figure 5.12b).

The importance of the magnetic moments of Mo became even more obvious when
considering as well RSPM. The RSPM led to an increase in the magnitude of the nearest

70



5.6. Magnetic properties of SFMO

0 5 10 15
0

100

200

300

400

500

600

(a)

FiM

ASD x (at.%)

T
M
C

t
(K
)

5.4 5.55 5.7 5.85 6

oxygen content 6− δ

GGA

0.75 eV

2 eV

−10 −7.5 −5 −2.5 0

(b)

oxygen content (at.%)

1
Figure 5.13: Critical temperatures of SFMO calculated with GGA or varying UFe

eff: (a)
Including ASD. Up to 5 at. % the magnetic ground state was FiM, but becomes more
complicated for more disorder. (b) Oxygen deficiency δ. The oxygen amount is also
given in absolute values (scale above).

neighbor Fe coupling but with the similar tendency of the coupling constants in RSFM.
Above UFe

eff = 1 eV, the first and second neighbor interactions became equal in magnitude
but got an opposite sign. Such a behavior and the missing AFM between the Mo and Fe
ions altered the critical temperature dramatically. Only a low ordering temperature and
a ground state with vanishing averaged saturation magnetization was observed (open
circles in figure 5.12b). Although, the DLM is expected to give a better description of
the magnetic phase transition, its possible shortcomings are not completely new. The
induced moments of Mo might remain also above the transition temperature and the
current single-site approximation of the local moments might not cover those correctly.
An example of this issue was found during the investigation of the magnetic properties
of Ni where only a non-local DLM approach could describe the moments sufficiently [92,
93].

In summary, the theoretical description underestimates the Curie temperature of half-
metallic SFMO with respect to the experimental results. However, there might be various
reasons for this discrepancy – defects like ASD or oxygen vacancies, additional electron
doping or shortcomings in the description of the electronic structure. Their effect was
estimated in the following sections.

5.6.3. The Curie temperature and defects
Unfortunately, experimental results of the influence of lattice defects on Tt could not be
found in literature. So, using the CPA and simulating the effect of ASD and oxygen
vacancies up to 15 at. % and 10 at. %, respectively, acts as a prediction for future experi-
ments.

The inclusion of ASD reduces in general Tt, independent of GGA or GGA+U (see
figure 5.13a). It follows from a stable large negative coupling constants (≈ −19 meV)
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between the intrinsic Fe ions and FeMo and the very weak coupling with the Mo ions at a
Fe site (MoFe), which were both almost independent of UFe

eff. The more site interchanges
were made the less stable became the FiM ground state of SFMO, while at the same
time the AFM coupling between Fe and FeMo became stronger. The FiM ground state
collapses finally for more than 5 at. % ASD to an non-magnetic ordered ground state.
This new magnetic order is based on the stronger magnetic coupling and gets stabilized
with more ASD, which explains the decreasing slope of the critical temperature variation
in figure 5.13a. It is very likely that the large magnetic coupling even increases the critical
temperature for higher amounts of ASD.

In contrast, the variation of TMC
t with oxygen vacancies depends strongly on the elec-

tron correlations (see figure 5.13b). Already for the GGA, a strong reduction of TMC
t in

dependence on the oxygen amount follows a similar nonlinear tendency as TMC
t (UFe

eff)

(compare also figure 5.12). A turning point appeared for UFe
eff = 0.75 eV, close to half-

metallic SFMO. Here, the oxygen vacancies open finally the gap in the majority spin
channel as it was seen for the DOS (see figure 5.10b). After that turning point, TMC

t
increases linearly with a similar slope as for the fully half-metallic SFMO (UFe

eff = 2 eV).
This increase is in the order of 80 K per 5 at. % oxygen vacancies. So, it is possible that
the appearance of oxygen vacancies solve the above described discrepancy between the
theoretical results for defect-free SFMO and the experimental observations.

5.6.4. The Curie temperature and electron doping
More generally, the oxygen vacancies dope the material system with additional free elec-
trons. This n doping might also result from other defects, e.g. Navarro et al. [140]
observed in their experiments an increase of Tt by substituting in SFMO Sr with La. This
was related with an increase of the density of states at the Fermi energy D(EF). Such
doping can be achieved in theoretical calculations by a shift of the Fermi energy EF. For
UFe = 2 eV within RSFM, a small variation ∆EF = 68 meV (see dashed line in figure 5.14a)
represents an n doping with additionally 0.15 electrons. It is related with an increase of
D(EF) and Tt at about 10 K. This results from a stronger magnetic coupling (see inset
in figure 5.12a). Unfortunately, there were stronger variations in the magnetic coupling
constants beyond the next nearest neighbors (not shown) and additional influences to
the magnetic coupling, e.g. the positions of unoccupied Mo d↑x2−y2 states (and of similar
symmetry) from the Fermi energy, which affects also the hybridization with the occupied
states. So, the Tt could not be increased more strongly by more electron doping.

However, also the exchange splitting for the Mo d states might be a source of error.
The Mo d electrons of the majority spin channel were in the first place sharp and above
the Fermi level, while in the minority spin channel the d electrons are located at the
Fermi level forming a relatively broad band (see figure 5.14). Their position was altered
exemplarily through application of an additional Hubbard U parameter for Mo (UMo)
in a range of 0.5 eV to 4 eV. It turns out that a small shift of spin up electrons could
substantially increase the Curie temperature, e.g. using the same setup as before, Tt

becomes 250 K for UMo
eff = 2 eV (see figure 5.14b). The main peak of the Mo d↓x2−y2 states

(and of similar symmetry) retained its position above EF but the unoccupied Mo states
of the majority spin channel were shifted substantially to higher energies. However, the
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Figure 5.14: LDOS of Fe and Mo around the Fermi energy calculated with UFe = 2 eV: (a)
Simulated electron doping. (b) Exemplarily UMo = 2 eV.

positions of the d electrons of the majority spin channel could also be not correct, since the
DFT approach can usually not describe adequately unoccupied states and experimental
investigations are missing.

Conclusions In order to describe the half metallic behavior of the SFMO, the GGA+U
was applied on the d states of Fe. The band gap in the upper spin channel opens al-
ready at a small value of UFe

eff = 2 eV. Otherwise, the system remains metallic. The total
magnetic moment is linearly reduced by both kinds of lattice defects, which is in good
agreement with the experimental studies. On the other hand, the critical temperature
Tt might be affected by several mechanisms. When the measured sample is doped with
additional electrons due to some unknown defects or under consideration of electron
correlation effects for the Mo ions, Tt would be higher than the theoretical prediction for
bulk SFMO. The inclusion of oxygen vacancies might also raise the critical temperature.
Antisite disorder might have the opposite effect and reduces Tt [E2].
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Chapter 6.

Different Ordering Regimes in Metallic
Non-magnetic Solid Solutions
Up to this point, the positions of possible lattice defects were only approximated as un-
correlated and randomly distributed. For the investigation of a more complex disorder
regime, a simpler material has to be used. In particular, alloys that form solid solutions
are suitable for this study, since these exhibit the possibility of substitutional disorder
within the same lattice structure.

The 4d transition metals, silver and palladium, constitute the solid solution AgcPd1−c
where the concentration c = cAg may vary in the whole range between 0 and 1. It is usu-
ally found to be in the face-centered cubic (fcc) lattice structure [141]. The wide concen-
tration range allowed also for the investigation of disorder beyond the low concentration
limit.

At first, the electronic and equilibrium properties of AgcPd1−c alloys were calculated
at the level of uncorrelated disorder (short-range order parameter α = 0), to compare
them with the results obtained in previous studies [22, 23, 27, 28]. Then, a certain degree
of long-range order (LRO) was considered by interpolating between the concentrations
c = 0.25, 0.5 and 0.75 with the MS-CPA or MS-NL-CPA (see section 3.4.4). At these con-
centrations, Müller and Zunger showed in their theoretical ground state search that there
are possible ordered structures [24]. The variation of the equilibrium properties in the
LRO regime was compared with the results obtained at α = 0. Finally, the SRO parameter
α was varied to investigate its influence on the electronic structure at the concentrations
c = 0.25, 0.5 and 0.75.

6.1. Convergence study of the equilibrium properties
For the convergence test calculations, the local density approximation was used and lmax
was restricted to lmax = 2, 3, 4, 6. The k points were used in a regular cubic grid
with kmesh = 20, 40, 60, 80, 100, 120 points along every edge of the cube. These input
parameters provided a sufficient parameter space to obtain reasonable observables and
to study the convergence of results (see figures 6.1 and 6.2).

With respect to the numerical calculations, the use of an alternative EOS, like the Morse
EOS (3.57), Murnaghan EOS (3.44) or the third-order Birch-Murnaghan EOS (3.44), do
not alter the qualitative tendency of the results [E12]. Their absolute values are less
important, since the focus is set to the deviation of the equilibrium properties from their
linear dependence on the chemical composition. Hence, the main discussion is restricted
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Figure 6.1: The calculated total energies with respect to the lattice constant for pure Pd
(left) and Ag (right) in fcc structure. The different plots show the variation of kmesh
(legend at the top) for a particular lmax and are normalized to Etot(lmax = 6, kmesh = 120).
The solid lines show the fit with (3.56). Note the different energy scales. The equilibrium
lattice constant values for kmesh = 120 are shown with vertical black bars. To guide
the eye, those values are connected by a dashed line. The red dotted lines show the
experimental lattice constants [141].
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Table 6.1: Numerical results of aeq (in Å) and B0 (in GPa) for AgcPd1−c with kmesh = 120
and as a function of lmax. Last row shows the variation ∆ l−l′ = 100|A(l)− A(l′)|/A(l)
(in %) for a quantity A(lmax) between lmax = 4 and lmax = 6.

Pd: c = 0 Ag: c = 1 c = 0.1 c = 0.5
lmax aeq B0 aeq B0 aeq B0 aeq B0

2 3.849 221.22 4.008 135.46 3.864 211.25 3.924 174.91
3 3.806 237.89 3.968 145.04 3.821 227.41 3.882 187.86
4 3.799 241.13 3.961 147.05 3.813 230.54 3.875 190.46
6 3.797 241.91 3.959 147.60 3.810 230.22 3.871 190.73

∆6−4 0.045 0.324 0.094 0.136 0.100 0.141 0.048 0.374

to the results obtained by fitting the numerical total energy calculations with the Birch-
Murnaghan EOS (3.44).

The total energy Etot(V) was evaluated for 17 different atomic volumes chosen around(
aref(c)

)3. Thereby, aref(c) was the average lattice constant linearly interpolated between

the experimental lattice constants aPd
ref = 3.8907 Å and aAg

ref = 4.0855 Å. The lattice con-
stant was varied by steps of ±0.5 %. The resulting data points and their fits are plotted in
figure 6.1 in dependence of kmesh and lmax. It is obvious that the usual value of lmax = 3
is not sufficient to describe properly the equilibrium properties, since the later variations
are still significant. Thus, with respect to the value for lmax = 8, the total energy decreases
strongly for larger lmax values by 363 meV and 215 meV for Pd and Ag, respectively. The
minimum of the EOS determines the equilibrium volume and the lattice constant, respec-
tively. The latter varies by about 0.04 Å (≈ 1 %), (see dashed vertical lines in figure 6.1).
Both theoretical lattice parameters are smaller than the experimental values [141] while
the agreement is worst for Ag. However, this underestimation is expected for LDA cal-
culations. The lattice parameter in dependence of the exchange-correlation functionals is
discussed below in the context of the whole concentration range of the AgcPd1−c alloys.

On the other hand, the curvature of the EOS (3.56) determines the bulk modulus. The
stronger curvature for Pd indicates a higher stiffness in pure Pd than in pure Ag. The
resulting equilibrium properties of the fitting with the EOS are visualized in figures 6.2a,
6.2b, 6.2e, and 6.2f with respect to the values calculated with kmesh = 120. Their variations
showed in practice the same characteristics independent of lmax. In particular, the lattice
parameter of the pure metals varied in a narrow range below 0.0001 Å when kmesh ≥ 60
(see figures 6.2a and 6.2b). It is practically nothing in comparison to the variation for
different lmax (see figure 6.1). In contrast, the bulk modulus converges much slower. Its
variation shows in particular for Ag strong fluctuation in the sign but remains at least
for kmesh > 80 in the range of ±0.1 GPa (see figures 6.2e and 6.2f). However, the changes
with kmesh are still smaller than those for lmax, where the bulk modulus varies by about
21 GPa and 12 GPa for Pd and Ag, respectively (see table 6.1).

Since the investigation was also extended for arbitrary alloy concentrations of AgcPd1−c
with the CPA, the convergence behavior of same equilibrium quantities was studied as
well. Here the effective medium of the CPA smooths e.g. the sharper band structures of
the pure elements and causes a better convergence. This is indeed visible in the conver-
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Figure 6.2: Absolute changes of the equilibrium properties with respect to the number of
k points and lmax in AgcPd1−c: (a)-(d) Equilibrium lattice constant. (e)-(h) Bulk modulus.
The composition changes from left to right from Pd (c = 0), Ag (c = 1) to c = 0.1 and 0.5.
The LDA functional was used in all calculations. Zero always corresponds to the value
for 120 k points, which were assumed to be best converged. Note the scaling factor for
the ordinate.

gence behavior with respect to kmesh and lmax as well exemplarily shown for c = 0.1 and
0.5 in figures 6.2c, 6.2d, 6.2h, and 6.2g and in table 6.1.

For the purpose of numerical convergence, the variation of the results between two
following data sets becomes crucial. When it is small enough, the results are considered
as converged. As a compromise between numerical accuracy and computational effort,
and the different convergence behavior of the calculations of equilibrium properties in
pure metals or with the CPA, the following results were obtained with lmax = 4 and a full
Brillouin zone sampling with a k-points mesh of kmesh = 80 (≈ 11000 evaluations over
the irreducible wedge).

6.2. Equilibrium properties of the AgPd alloy

6.2.1. Substitutional disorder in the solid solution
At first, the influence of the substitutional disorder in AgcPd1−c on the equilibrium prop-
erties was studied under varying chemical composition c for the simple CPA model de-
scribed in section 3.4.2. The totally random distribution in the solid solution corresponds
to the SRO parameter α = 0.

The total energy as a function of the volume was calculated in the whole concentration
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Figure 6.3: Equilibrium properties of AgcPd1−c in the concentration range c ∈ [0, 1]: (a)
Absolute values of aeq. (b) Deviation from the linearity (3.59) of aeq. The scaling factor
is given above the plot. (c) Absolute values of B0. (d) Deviation from the linearity (3.59)
of B0. Different xc-functionals used in the GF method (red lines) are compared to calcu-
lations within the EMTO method (orange line [E12], black lines [22]). The experimental
results for aeq and B0 are found in [141] or [142].

range in steps of c = 0.1 with the above discussed calculation setting and LDA. As ob-
served already before for pure Pd or Ag, the equilibrium lattice constant is with respect to
experimental measurements [141] underestimated in the LDA functional (see figure 6.3a).
Simultaneously, the bulk modulus is overestimated (see figure 6.3c).

The results were compared with previous ab initio calculations done by Délczeg-Czirjak
et al. [22] and calculated within the exact muffin-tin orbital method (EMTO) [60, 143–
145]. In their paper, the authors discuss in detail the influence of the different exchange-
correlation functionals to the equilibrium properties. Applying the same exchange corre-
lation functional in the GF method lead to excellent agreement in particular for the lattice
parameter (see figure 6.3a). However, discrepancies in the bulk modulus for c close to
Pd appeared but proofed less important [E12], since higher accuracy in the EMTO cal-
culations1 varied slightly with respect to the previous results (see figure 6.3c). The good
agreement of the GF with the EMTO method is not unexpected, since both are based nu-
merically on the linear muffin-tin orbital method. The EMTO method proofed already a

1 The recalculations with the EMTO code were done by Eero Nurmi [E12].
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high reliability and accuracy for bulk modulus and single-crystal calculations for a large
variety of material systems.

Although the best agreement of the absolute values of the equilibrium properties with
experimental measurements was obtained with the PBEsol functional, the LDA functional
was used in the following discussion [E12], since the relative changes in both curves
showed the same significant features (see figures 6.3b and 6.3d), recalculated EMTO re-
sults match well with the GF method). The comparison of these deviations from the
simple linear assumption of Vegard’s law (3.59) with the electronic structure was the
main focus of this part of the thesis, which motivated the choice of the LDA functional.
Additionally, the LDA was also a compromise taking into account the larger computation
times and numerical effort of the MS-NL-CPA for the inclusion of the short-range order.

Comparing ∆aeq with the experimentally observed deviation from Vegard’s law showed
again a good agreement with the main convex behavior and a minimum around c = 0.6
(see figure 6.3b). On the contrary, the scarce experimental data for the bulk modulus
did not allow a reasonable comparison with the theoretical calculations but at least their
order of magnitude of few GPa is similar (see figure 6.3d). The curve of ∆B0 shows a
smooth trend with an minimum at about c = 0.4 and a inflection point around c = 0.6.

6.2.2. Approximation of long-range order with the MS-CPA
Besides α = 0 for the random distribution, the SRO parameter becomes minimal for long-
range order (LRO). The ideal LRO is represented by a periodically ordered system and
is simpler to calculate by first-principles methods than the disordered systems. However,
there exist no experimental reports of known ordered structure in AgcPd1−c. Only by
means of a theoretical structure search, Müller and Zunger [24] predicted three ordered
structures for AgcPd1−c, at c = 0.25, 0.5 and 0.75. Their lattice structures are L1+1 , L11
and L12 in the nomenclature of the Strukturbericht. The two latter structures are very well
known from other metallic systems but the first one is a new variation of L11, described
at first in [24].

The three ordered structures are constructed all from the same underlying fcc lattice
and differ only in assigning specific elements to the particular sites in a large enough
supercell. Thereby, the concentration range in between c = 0.25, 0.5 and 0.75 can be
interpolated by means of the MS-CPA where some lattice sites changed continuously
their atomic occupation in the supercell. Hence, only the total concentration inside the
different supercells

c =
1

Nsub

Nsub

∑
s=1

cAg,s , (6.1)

with the Nsub sublattices is comparable with the results of the CPA calculations. Different
occupations of the sublattices might lead to the same global Ag:Pd ratio. This offers a
high degree of flexibility to examine very different structures within a unified setup. The
complex cell used to describe the three basic structures within one cell needs 8 sublattices
(see table 6.2). In principle, 2 or 4 sublattices are enough to describe a periodic lattice
with L11 and L12, respectively, but exceed their possibilities when including also L1+1
and covering the whole concentration range c ∈ [0, 1] (see figures 6.4a to 6.4c).
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Figure 6.4: Schematic representation of the ordered structures (a) to (c) used for LRO case
study. (d) The transition between L1+1 and L11. (e) The transition between L11 and L12.
Both are shown in the extended setup described by the vectors in table 6.2 (RES

1 and RES
2

are red, RES
3 points out of the plain). The supercell is illustrated with 3 slices orthogonal

to the z axis (from bottom to top: z = 0, 0.25 aES and 0.5 aES). The thick dashed lines
link the basis sites in the corresponding plain. Circles in different colors at the nodes
of a simple cubic (sc) lattice (underlying grid) denote different atomic occupation at the
corresponding sublattices, either pure Ag or Pd or varying occupation treated with CPA.
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Table 6.2: List of the Nsub = 8 nonequivalent sublattices used to compare the 3 LRO
structures L11, L12 and L1+1 within a unified framework. The basis vectors of the extended
supercell are RES

1 = aES(1, 0, 0), RES
2 = aES(1/2, 1/2, 0), RES

3 = aES(0, 1/2, 1/2).

Sublattice Origin Sublattice Origin

a1 (0, 1/2, 0) a5 (0, 0, 0)
a2 (1/4, 1/4, 0) a6 (1/4, 3/4, 0)
a3 (0, 1/4, 1/4) a7 (0, 3/4, 1/4)
a4 (1/4, 1/2, 1/4) a8 (1/4, 1, 1/4)

The concentration change between the three ordered structures was simulated with
some basis sites having different non-integer occupation (see figures 6.4d and 6.4e). The
sketch illustrates two particular situations. The transition between the L1+1 and L11 struc-
tures (c = 0.25, 0.5) is depicted in figure 6.4d. The sublattices ai , i = 1, . . . , 6 are fixed
and occupied by an Ag, 4 Pd and again an Ag atom, respectively, whereas the two sublat-
tices sites a7 and a8 exhibit the same concentration c7 = c8 with c7 ∈ [0, 1] varying from
pure Pd (c7 = 0) to pure Ag (c7 = 1).

The same procedure can be applied for a transition between the L11 and L12 structures
(c = 0.5, 0.75) depicted in figure 6.4e, where this concentration range is limited to c1 ∈
[1, 0], while the Ag concentration on the remaining sublattices varies like c2 = c3 = c4 =
1− c1. The sublattices a5, a6, a7 and a8 are occupied by Pd, Ag, Ag and Ag, respectively.

The material was now characterized by a set of Nsub = 8 concentrations, one for each
sublattice of the extended supercell. The fully uncorrelated alloy may still be obtained by
assigning the same concentration to each site, regardless of its coordination with neigh-
bors. In terms of the SRO parameter αBA(pBA(r)) in (3.107), the concentrations cs repre-
sent the probabilities pBA of their respective sublattices. The calculation procedure was
similar as described in section 3.4.5 with only one configuration and the possibility of
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Figure 6.5: The shell dependent SRO parameter αs of the ordered regime (LRO) with the
MS-CPA as a function of the total concentration up to s = 4. The SRO parameters 〈α〉2
and 〈α〉3 are averaged over 2 and 3 shells, respectively. The blue lines show the limits of
the SRO parameter, ordering, random distribution or segregation.
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noninteger occupation number.
The resulting shell dependent SRO parameter was compared with the uncorrelated case

and its limits up to the fourth shell or the average over the first two coordination shells
via (3.151) (figure 6.5). It becomes obvious that the simple interpolation between the three
ordered structures with the MS-CPA represents not the ideal LRO case in terms of the
SRO parameter but α behaved rather differently in the different concentration regimes.
For the nearest neighbor shell, L1+1 and L12 show an ordering tendency, whereas the
SRO parameter is α = 0 for the L11 structure. The twelve nearest neighbor atoms in L11
are occupied by 6 Ag and 6 Pd atoms. In contrast, the occupation of the second shell
showed up to c = 0.5 a minimal α and segregation in the L12 structure. These results for
the first two shells as well the segregation tendency of the fourth shell are contradictory
with the used ideal LRO structures. In case of the L11 structure, the average over the
first two shells 〈α〉2 yields ordering tendencies while it remained positive for L12. The
different behavior of the SRO parameter is caused by the different periodicity of the
ordered structures. One type of atom repeats itself completely in the second coordination
shell for the L12 structure while it happens just after four shells in L11. So, the ordering
in L12 is practically ideal and characterized by α1. On the contrary, the ideal order at
c = 0.5 would be achieved in a rock salt-type structure. L11 is less ordered, since the
single atomic layer can be recognized as partially segregation. This segregation averages
to zero for α1 with the different atomic types in the next sheet and the order should be
described by an average over several shells, e.g., 〈α〉2 or 〈α〉3. This means according to
(3.151) in particular for L11 that

〈α〉2 = (−12× 0− 6× (−1))/18) = −1/3 , (6.2)
〈α〉3 = (−12× 0− 6× (−1)− 24× 0)/42) = −1/7 . (6.3)

The same is valid for L1+1 and the averaged SRO parameter are

〈α〉2 = (−12× 1/9− 6× 1/3)/18) = −5/27 , (6.4)
〈α〉3 = (−12× 1/9− 6× 1/3− 24× 1/9)/42) = −1/7 . (6.5)

In conclusion, a single average of the SRO parameter with the coordination number
(3.151) might not be a reliable approach to differentiate between different ordered struc-
tures, since the periodicity of the structures changes gradually throughout the concentra-
tion range. The choice of the right SRO parameter was not obvious. However, qualitative
statements were possible using either 〈α〉3 or min(α1, 〈α〉3). All three ordered structure
(c = 0.25, 0.5 or 0.75) show a distinct minimum, which indicates ordering. The crossing
point between α1 and 〈α〉3 is exactly between L11 and L12 at c = 0.625 (figure 6.5). In par-
ticular, the latter choice of min(α1, 〈α〉3), takes into account the segregation in the second
shell for L12 and the different degree of ordering when going from c = 0.5 to c = 0.75.
It allowed some qualitative statements with respect to physical quantities, as it is showed
in the following section.

6.2.3. Comparing random distribution and long-range order
The equilibrium properties were calculated for the LRO setup, which was described in the
last section, and compared with those of the single-site CPA calculations in section 6.2.1.
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Figure 6.6: The non-linear component of the equilibrium total energy as a function of a
total concentration interval in AgcPd1−c: (a) Over the whole total concentration range (c ∈
[0, 1]). The total energy of the supercell described in table 6.2 (squares) is compared with
those of the single-site representation (crosses). The blue lines visualize the connection to
the shorter concentration intervals c ∈ [0, 0.5] and c ∈ [0.75, 1] depicted in (b) or (c). The
linear reference is also marked in blue.

Comparable results only require to account for the enlarged direct space volume of the
supercell with Nsub = 8 instead of one sublattice in the fcc unit cell. The number of
sampling points in the reciprocal space Brillouin zone integrals could be reduced to
kmesh = 40 (403 = 64000 ' 803(afcc/aES)3). In the same way, as for the single-site ap-
proximation the equation of states (3.56) was fitted to a number of total energies as a
function of the lattice constant aES. For the derivation of the differences to the Vegard’s
law the linear fit (3.59) between the results of the pure Pd and Ag systems were used.

In order to validate the choice of the LRO setup, the higher stability of these crystalline
phases with respect to the fully uncorrelated CPA results was compared with the equi-
librium total energy deviation from the linear behavior (see figure 6.6). Over the whole
concentration range, the extended setup exhibits a lower total energy. At the particular
Ag:Pd ratios 1:3, 1:1 and 3:1, three clear local minima were obtained as expected. They
correspond to the L1+1 , L11 and L12 geometries indicated with dashed lines in figure 6.6a.
In between L11 and L12 at ≈ 0.65, the total energies get close to each other. This might
correspond to the crossing point in the SRO parameter in figure 6.5. The SRO parameter
of the chosen LRO setup gets close to α = 0 and the total energies of LRO or random
distribution might be of a similar order of magnitude. At higher concentrations, the L12
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Figure 6.7: The deviation from the Vegard’s law (3.59) of the equilibrium properties as
a function of the total concentration: (a) Equilibrium lattice constant. (b) Bulk modulus.
The results of the single-site representation (crosses) are compared with those of the
extended setup described in table 6.2 (squares) and with experimental values [141, 142].

structure becomes more distinct and the local minimum appears.
When varying c between the pure Pd and the L11 structure (sites a5 − a8 fixed), the

deviation from linear behavior of total energy within this concentration range highlights a
shallow local minimum for the newly suggested L1+1 ordered phase [24] (see figure 6.6b).
The smaller range of c ∈ [0.75, 1] was chosen to emphasize the appearance of a concave
deviation from linearity, which hints to another possible ordered phase for the AgcPd1−c
alloy within this concentration range (see figure 6.6c). The LPS3 structure [146] was
found to be about 6 meV/atom more stable than the L12 structure, representing about
10 % of the calculated formation energy for the L12 phase. Thus, taking into account the
formation energy for the LPS3 in figure 6.6 does not rule out the existence of another
ordered phase for the c ∈ [0.75, 1] interval.

Furthermore, a comparison of the other equilibrium properties with the single-site
CPA evaluations shows significant differences in the medium concentration range c ∈
[0.25, 0.9] while they appear independent of the different ordering in the low concentra-
tion limits (see figure 6.7). As before for the variation of the total energy, the results
obtained in the CPA were much smoother over the whole concentration range.

Starting from a low Ag concentration adding more and more Ag shows a similar reduc-
tion of the equilibrium lattice constant, which matches well with respect to the experiment
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for cAg < 0.5. This reduction is stronger in the ordered regime, but changes its qualitative
behavior at c ≈ 0.6 (see figure 6.7a). This crossing point might correspond, as for the total
energy, with the qualitative variation of the SRO parameter at c = 0.625 (see figure 6.5).
At the end of the concentration range, both results match again very well with the mea-
surements. A similar variation between the LRO and CPA setups at c ≈ 0.6 was found for
the bulk modulus as well (see figure 6.7b). It varies in absolute terms in a range of 1 GPa
to 1.5 GPa, and reflects similar findings in the order vs. disorder differences obtained in a
recent, independent EMTO study of the Ag0.5Pd0.5 case [23]. Unfortunately, a comparison
to the few experimental data points and, thereby, any conclusions about the ordering are
not possible at this point.

In general, the observed slope change may result from the differences between the L1+1
and L11 vs. L12 arrangements of the unit cell. The latter case represents an isotropic
construction, while both former ones describe an anisotropic structure along the [111]
direction (see figures 6.4a and 6.4b). In particular, for the L11 case Delczeg-Czirjak et
al. [23] showed that the structural anisotropy translates into different compressibilities
along the a and c axis. The ordered L11 phase consists in fact of alternate Ag and Pd
layers, perpendicular to the c axis, and has a larger bulk modulus that places related
arrangements also closer to the ideal, linear B0(c) trend of Vegard’s law.

The expectation of a linear behavior finds its origin in the idea of simple combination
of bulk moduli of the two pure elements, only weighted by the relative concentration.
A layered arrangement such as the L11 structure describes the regular repetition of the
same elements along parallel planes. This sort of phase separation may reasonably lead
to expect higher robustness of individual pure elements’ properties against the stronger
smearing of a fully disordered distribution. This hypothesis may be tested by consider-
ing other cases of even larger alike elements repetition. Increasing the layer thickness of
the reference L11 structure from an Ag/Pd/Ag/Pd/Ag/Pd stacking (corresponding to
ABC ABC in the [111] direction of the fcc cell) to the AgAg/PdPd/AgAg/. . . sequence
(with ABC ABC ABC ABC), further reduction of bulk modulus deviations from linear-
ity by ≈ 1 GPa was indeed observed, despite loss of stability for such rather artificial
arrangement.

Similar arguments may be applicable for the L1+1 reference. In this case, structural
anisotropy is reduced because of the development of Ag chains perpendicular to the [111],
[1̄10] and [001] directions (see figure 6.4a). This does not apply to the more isotropic L12
structure, which cannot be simply modified to form layers or chains in any particular
directions. The stiffer constituent Pd always forms only a loose “skeleton” of atoms,
embedded within an Ag matrix.

6.3. Electronic topological transitions in different disorder
regimes

As originally showed by Bruno et al. [27, 28], a continuous change in the concentration can
lead to a series of discrete transitions in the Fermi surface, so-called electronic topological
transitions (ETT) or Lifshitz transitions. The connectivity of the Fermi surface may change
radically, as some necks close or new ones develop between repeated instances of the
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Figure 6.8: (a) Contour plot of the Bloch spectral function at the Fermi energy along
the K −W − X − U − L − K reciprocal space path (red line in (c)) and evaluated for
different concentrations c for the single-site CPA study of the AgcPd1−c system. (b) The
bulk modulus deviation as shown in figure 6.3d. (c) The fcc Brillouin zone with its high
symmetry points. The values in between the c = 0.05 intervals are linearly interpolated.
The dashed red lines mark substantial changes in the Fermi surface topology.

Brillouin zone (see figure 3.3). Such variations should be correlated with the changes
in the trends of the equilibrium properties as observed in section 6.2.3. Therefore, the
electronic structure represented by means of the BSF (3.29) was at first calculated for the
single-site CPA and the LRO setup [E12].

If AB(EF, k) is calculated along a line in the k space from the origin of the Brillouin
zone to its surface, there might appear several peaks in AB(EF, k) indicating the electronic
states with EF at k. The peak closest to the surface of the Brillouin zone defines a point
of the Fermi surface along the considered line in the k space [26]. This holds true in
particular for the disordered case within the CPA. In terms of the fcc lattice structure of
the AgPd alloy such a line is, e.g., going from Γ to L in the fcc Brillouin zone shown in
figure 6.8c.

However, the actual calculations were done slightly different, since the exact shape
of the Fermi surface is not needed to track an ETT. Instead of starting at Γ, only the
Brillouin zone surface is considered. In the moment a peak of AB(EF, k) appears at the
surface, a part of the Fermi surface crosses the Brillouin zone boundary and the electronic
connectivity varies. Considering all the high symmetry points in the Brillouin zone allows
to reduce the number of calculations to a path along the surface of the Brillouin zone (red
line in figure 6.8c). This path plotted as the ordinate in figure 6.8a. It shows the color
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coded variation of the Bloch spectral function with changing concentration. Dark blue
colors indicate a peak in the BSF at the Brillouin zone surface appearing or vanishing
when going from Pd to Ag. These ETT were correlated with the anomalies of the bulk
modulus ∆B0(c) depicted below the contour plot (see figure 6.8b).

It is possible to observe several peaks for pure Pd (c = 0) and the typical neck around
the L point for Ag (c = 1). While alloying Pd with Ag, the valence band of Pd (see
figure 3.3e) moves towards and crosses the Brillouin zone surface. Thereby, the peaks
in AB(EF, k) merge or the neck around the X point closes for c ≈ 0.4 (dashed red lines
draw the connection between figure 6.8a and 6.8b). For further increasing the Ag content,
another band crosses the Brillouin zone surface at c ≈ 0.75 and evolves into the neck
around the L point. This opening of a neck seems to be connected with the curvature
change in ∆B0. Hence, the relative smoothness of the single-site CPA effective medium
results leaves some uncertainty with respect to the exact placement of such connecting
lines. In any case, three qualitatively different concentration intervals c ∈ [0,' 0.4],
c ∈ [' 0.4,' 0.75], and c ∈ [' 0.75, 1] can be observed. They have different curvatures
and correspond to the different ranges in the BSF. A cautious conclusion from these
calculations might be the association of open necks with positive curvature (c ∈ [0,' 0.4]
and c ∈ [' 0.75, 1]) and no intersection of the Brillouin zone with negative curvature
(c ∈ [' 0.4,' 0.75]).

A similar analysis of the BSF for LRO setup leads to a much more complicated contour
plot (see figure 6.9). Due to the similar lattice structure, the Brillouin zone itself is the
same as before, but the different occupation of the sublattices led to an increase of the
irreducible Brillouin zone (see blue dashed line in figures 6.9f and 6.9g). In order to catch
all significant ETT, four different paths along the Brillouin zone surface are needed (color
coded in figure 6.9). In general, the integer occupancy on some sublattices gives rise to
a sharper band structure over the whole concentration range and the larger cell supplies
more bands than the fcc cell. Thus, two different regimes may be noted.

For c ∈ [0, 0.5], the d bands of Pd cross the Fermi level, and are depicted as a rich set of
clearly resolved features along all reciprocal space paths. This set forms a strong contrast
to the simpler appearance of the first part in the plot for the CPA results (see figure 6.8a).
There, most features appear smeared out and are left unresolved in the uncorrelated,
single-site approach, whereas the ETT appear at different concentrations. The bulk mod-
ulus deviation ∆BES

0 (c) shows three main transitions in the first half of figure 6.9, at
c ' 0.225, c ' 0.325, and c ' 0.425. More specifically, the first feature may be associated
with the merging at the X1 point, while the subsequent interval c ∈ [0.325, 0.425] could
be correlated with changes occurring at the L1 point. Further variations at about c = 0.5
can be related to the merge at the K2 or the U2 point. However, the dominant closure of
two peaks at the L2 point does not seem observable in ∆BES

0 , which may be related to an
unique character of this feature. It might be related to the threefold symmetry axis due
to the layered stacking in this region c ∈ [0.5, 0.75].

When the content of silver exceeds c = 0.5, only the sp bands cross the Fermi level. This
leads to a simpler appearance in the contour of figure 6.9. It is again comparable to the
CPA results calculated at the same concentration interval (see figure 6.8). In this regime,
different topological transitions do not overlap with each other. The corresponding ∆BES

0
curve shows more pronounced variations that relate more clearly with the BSF results. In
particular, two ETT’s can be observed, at the X1 point for c ≈ 0.775 and at the K1 or K4
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Figure 6.9: (a)-(d) Contour plot of the Bloch spectral function at the Fermi energy along
various reciprocal space paths evaluated for different concentrations c of the extended
LRO setup of figure 6.4. The dashed red lines are applied in the same way as in figure 6.8
with bulk modulus deviations depicted in (e). The paths in the reciprocal space are
sketched and color coded atop the fcc Brillouin zone in (f) and (g). The blue dashed lines
indicate the irreducible Brillouin zones.

point for c ' 0.875. For ∆BES
0 , these translate into sharp kinks, and rather homogeneous

slopes in the featureless regions in between (c ∈ [0.5, 0.775] and c ∈ [0.775, 0.875]).
Thus, for both disorder regimes, microscopic changes in the Fermi surface are associ-

ated with variations of the macroscopic bulk modulus. This study will be complemented
by considering a distinct regime of SRO in between α = 0 and LRO for the AgcPd1−c
alloy with the MS-NL-CPA [E12]. Thereby, the extended supercell can be used again with
Nc = 1 and Nsub = 8 (see table 6.2), which leads to Ntot = 2Nsub = 256 different config-
urations γ of 8 Ag or Pd atoms. On the one hand, the MS-NL-CPA framework allows
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Table 6.3: MS-NL-CPA configurations corresponding to the LRO setup with the lattice
structure of the extended setup (table 6.2). By choosing the probability P(γ), the concen-
tration range c ∈ [0.25, 0.75] can be sampled. For the first interval γ1 ↔ γ2 , the prob-
ability is a linear function of the concentration: p1↔2(c) = 4c− 1 with p1↔2(0.25) = 0
and p1↔2(0.5) = 1 . For the second interval γ2 ↔ γ3 , the slope of the concentration
dependent probability function is negative: p2↔3(c) = 3− 4c with p2↔3(0.5) = 1 and
p2↔3(0.75) = 0 . At c = 0.5, the probabilities are the same for both functions.

γcs , s = 1, . . . , Nsub c structure P(γ)

1 1 0 0 0 0 1 0 0 0.25 L1+1 1− p1↔2(c)
2 1 0 0 0 0 1 1 1 0.5 L11 p1↔2(c)
3 0 1 1 1 0 1 1 1 0.75 L12 1− p2↔3(c)

to recover LRO results when only one, periodically repeating configuration occurs with
probability one. On the other hand, single-site results are also reproduced when a fully
uncorrelated probability distribution

P(γ) =
Nc;Nsub

∏
I,s

cI,s , with cI,s =

{
c if Ag occupies sublattice s in γ

1− c if Pd occupies sublattice s in γ
(6.6)

with I clusters in the reciprocal space and s sublattices is used instead. The concentra-
tions cI,s are related to the total concentration of Ag c, e.g., Pα=0(Ag Ag Ag Ag) = c4 or
Pα=0(Ag Ag Pd Pd) = c2(1− c)2. Intermediate scenarios and different forms of SRO can
also be set up by properly tuning such statistics [94, 147] .

As a preliminary validation step, the concentration interval c ∈ [0.25, 0.75] of figure 6.9
is considered with the MS-NL-CPA. In particular for c ∈ [0.25, 0.5], the calculation is
restricted to the configurations γ1 and γ2, and for c ∈ [0.5, 0.75] the configurations γ2 and
γ3, with probabilities given in table 6.3. Thereby, configurations γ1 to γ3 correspond to
L1+1 , L11, or L12. Similarly to the previous LRO calculation setup of section 6.2.2, a set of
6 sites (a1, . . . a6), and 4 sites (a5, . . . a8) is kept periodically repeated when going from γ1
to γ2 and from γ2 to γ3, respectively (see table 6.3). The agreement in the corresponding
effective medium observables is then indeed recovered, at the level of the resulting bulk
modulus, for the Bloch spectral function and for the SRO parameter.

The previous assumptions for the MS-NL-CPA were now expanded and the gradual
collapse of the above LRO structures into a fully disordered scenario was studied only
with respect to variations in the BSF. Using the MS-NL-CPA within the Nsub = 8 supercell
did not allow to determine equilibrium properties within a reasonable computation time.
The proposed ordered structures for AgcPd1−c are locally realized in different orienta-
tions modeling the appearance of different domains of the same basic lattice structure.
According to this model, the configuration γ1 in table 6.3 associated with a L1+1 arrange-
ment may branch into 4 locally equivalent orientations γ1a, . . . , γ1d , each occurring with
the same probability. The same approach is also applied to the case of the γ2 configura-
tion for the L11 structure and the γ3 configuration for the L12 structure (see table 6.4).
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Table 6.4: MS-NL-CPA configurations for the inclusion of SRO in the c ∈ [0.25, 0.5] and
c ∈ [0.5, 0.75] concentration regimes. The probabilities p1↔2 and p2↔3 are taken from
table 6.3.

γ cs, s = 1, . . . , Nsub structure P(γ)

1a 1 0 0 0 0 1 0 0 L1+ in (1− p1↔2(c))/4
1b 0 0 0 0 1 1 0 0 its 4 local (1− p1↔2(c))/4
1c 1 1 0 0 0 0 0 0 permutations (1− p1↔2(c))/4
1d 0 1 0 0 1 0 0 0 . . . (1− p1↔2(c))/4

2a 1 0 0 0 0 1 1 1 L11 in p1↔2(c)/8
2b 0 1 0 0 1 0 1 1 its 8 local p1↔2(c)/8
2c 0 0 1 0 1 1 0 1 permutations p1↔2(c)/8
2d 0 0 0 1 1 1 1 0 . . . p1↔2(c)/8
2e 1 1 1 0 0 0 0 1 . . . p1↔2(c)/8
2 f 1 1 0 1 0 0 1 0 . . . p1↔2(c)/8
2g 1 0 1 1 0 1 0 0 . . . p1↔2(c)/8
2h 0 1 1 1 1 0 0 0 . . . p1↔2(c)/8

3a 0 1 1 1 0 1 1 1 L12 in (1− p2↔3(c))/4
3b 1 0 1 1 1 0 1 1 its 4 local (1− p2↔3(c))/4
3c 1 1 0 1 1 1 0 1 permutations (1− p2↔3(c))/4
3d 1 1 1 0 1 1 1 0 . . . (1− p2↔3(c))/4

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1
segregation

ordering

total concentration of Ag

S
R
O
p
ar
a
m
et
er

LRO α1
LRO α2
LRO α3
LRO 〈α〉2

SRO α1
SRO α2
SRO α3
SRO 〈α〉2

random

distribution

1
Figure 6.10: The shell dependent SRO parameter with the MS-NL-CPA for the SRO
regime with configurations given in table 6.4 as a function of the total concentration.
The blue lines show the limits of the SRO parameter, ordering, random distribution or
segregation.
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Figure 6.11: Bloch spectral function at the Fermi energy along the same paths as in fig-
ure 6.9, restricted to the concentration range c ∈ [0.25, 0.75]. The SRO is defined by a
restriction to the configurations listed in table 6.4.

For these configurations, the six step definition of the SRO parameter within the MS-
NL-CPA described section 3.4.5 was used and showed clearly the intended reduction of
the LRO towards α = 0 (see figure 6.10). For example, the ordering tendencies of L12,
visible in α1, or of L11, visible in 〈α〉2, are strongly reduced and practically vanish in
higher coordination numbers. On the contrary, the different permutations in the L1+1
structure were ill-chosen, since the SRO parameters for concentrations around c = 0.25
exhibit still a stronger periodicity and α3, α4, . . . do not vanish (see figure 6.10).

With this SRO setup, the BSF as a function of the total concentration shows a degree
of softening in all the Fermi surface features when compared with the results of the LRO
setup (see figure 6.11). This occurs on the one hand side for the Pd-rich portion of the
phase diagram. The previously nonequivalent high symmetry points L1, K1, and W1
begin to recover the degeneracy of the fcc lattice across the respective K2, K3 anisotropic
instances. This range is particularly dominated by the d states crossing the Brillouin zone
and causing strong variations. While taking into account the SRO, it shows traces in the
BSF similar as obtained in the fully uncorrelated scenario. At the X1 point for instance,
the merging of two BSF branches around c ≈ 0.45 hints towards the corresponding topol-
ogy already probed in the evaluation of figure 6.8. The development of the corresponding
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single-site features from the LRO starting point can be traced in the neighborhood of the
L1 point, this time with a more spread out appearance. For example, a bifurcation in AES

B ,
originally observed around c = 0.4 at the L1 point, remains unresolved in the SRO setup
all the way down to c = 0.25. The sharp structure at the W1 point also undergoes similar
modifications. On the other hand side, the region for c > 0.5 concentrations leads to only
minor differences in features at the Fermi energy in all the different single-site CPA, LRO
and SRO regimes (figures 6.8, 6.9 and 6.11), since the crossing sp band structure for the
two elements remains similar.

Conclusions The three considered ordering regimes for the AgcPd1−c alloy show signif-
icant differences in the equilibrium lattice constant, the bulk modulus and the electronic
connectivity in respect of varying chemical composition. The correlation between the
equilibrium properties and the electronic structure was verified for the extremal ordering
cases, totally random distribution, or assumed LRO, both modeled with the CPA within a
unit or a supercell. The comparison of both yielded small variations in the bulk modulus
of few GPa but also a qualitative change around c = 0.6.

In particular, the single SRO step in between two extremal ordering regimes exhibited
substantial features of both of them. Unfortunately, the unit cell of Nsub = 8 was too large
for additional investigations and distinct steps of short-range order. The determined SRO
parameter was only a consequence of its definition, the choice of the structure and the
chosen parameter set for the probabilities P(γi). Although the usage of these parameters
is an unsatisfactory concept with respect to the desired first-principle method, but it
allows a quantitative estimation of the different degrees of SRO.

6.4. Varying explicitly the SRO parameter
In order to study the effect of SRO more quantitatively, not the probabilities but the SRO
parameter itself should be explicitly varied. Then, the influence of the SRO parameter
on different physical quantities can be traced. It is demonstrated hereinafter for the
DOS calculated for AgcPd1−c at the concentrations c = 0.25, 0.5 and 0.75 where ordered
structures were previously proposed [24].

6.4.1. Coarse screening of the configuration probabilities
However, particular configurations and their probabilities were still needed as input for
the MS-NL-CPA calculations but they would be determined by the desired value for
the SRO parameter. This concept for the determination of the probabilities was only
discussed for a very simple example in section 3.4.5. Therein, the probability of all con-
figurations γi was coarse screened from 0 to 1 in steps of 0.05 and the SRO parameter
was obtained. Hence, it is not possible to consider all 256 possible configurations of the
previous supercell, which included 8 sublattices. The number of possible configurations
γi to occupy the sublattices either with Ag or Pd atoms was drastically reduced to 16,
by using a simple cubic unit cell with Nsub = 4 sublattices to resemble the fcc lattice.
Nevertheless, this cell still allowed a certain complexity of SRO scenarios.
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Table 6.5: All 16 possibilities for the occupation of Nsub = 4 sublattices in fcc AgcPd1−c.
The configurations are grouped according to the Ag occupation number operator N̂Ag

and a new probability P̃(N̂Ag) is defined.

configurations cAg cPd

Ag Ag Ag Ag 1 0 P̃(4)
Ag Ag Ag Pd 3/4 1/4





P̃(3)Ag Ag Pd Ag 3/4 1/4

Ag Pd Ag Ag 3/4 1/4

Pd Ag Ag Ag 3/4 1/4

Ag Ag Pd Pd 1/2 1/2




P̃(2)

Ag Pd Ag Pd 1/2 1/2

Ag Pd Pd Ag 1/2 1/2

Pd Ag Ag Pd 1/2 1/2

Pd Ag Pd Ag 1/2 1/2

Pd Pd Ag Ag 1/2 1/2

Ag Pd Pd Pd 1/4 3/4




P̃(1)Pd Ag Pd Pd 1/4 3/4

Pd Pd Ag Pd 1/4 3/4

Pd Pd Pd Ag 1/4 3/4

Pd Pd Pd Pd 0 1 P̃(0)

The coarse screening of the probability parameter space for 16 different P(γi) pre-
sented still a large computational task. For a further reduction, the configurations γi
were grouped according to the same number of Ag or Pd atoms (see table 6.5). This is
possible, since all 4 fcc sublattices have the same interatomic distance and the configura-
tions with the same occupation possess rotation symmetry. The 16 configurations could
be sorted into 5 groups, with a new probability P̃, with different Ag and Pd concentra-
tions. A variation of probabilities inside one of those groups does not influence the total
concentration (6.1). Hence, the redefined probabilities P̃(N̂Ag) formed a similar system
of equations as (3.152) to (3.154)

P̃(4) + 3/4P̃(3) + 1/2P̃(2) + 1/4P̃(1) = c , (6.7)
1/4P̃(3) + 1/2P̃(2) + 3/4P̃(1) + P̃(0) = 1− c , (6.8)

4

∑
i

P̃(i) = 1 , (6.9)

0 ≤ P̃(i) ≤ 1 . (6.10)
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In particular for c = 0.5, the system of equations has two solutions.1 The simple solution

P̃(0) =
1− P̃(2)

3
, (6.11)

P̃(1) = P̃(4) = 0 , (6.12)

P̃(3) = 2/3 , (6.13)

has only 0 ≤ P̃(2) ≤ 1 as a free parameter, while the second solution exhibits a larger
parameter space, spanned by P̃(2), P̃(3), and P̃(4), but is restricted by the condition

(
2P̃(2) + 3P̃(3) + 4P̃(4) ≤ 2

)
∧

{[(
P̃(2) + 2P̃(3) + 3P̃(4) ≥ 1

)
∧
(

P̃(2) + 2P̃(3) ≤ 1
)]
∨

[(
P̃(2) + 2P̃(3) ≥ 1

)
∧
(
2P̃(2) + 3P̃(3) ≤ 2

)]}
. (6.14)

The remaining probabilities are then given by

P̃(0) = P̃(2) + 2P̃(3) + 3P̃(4)− 1 , (6.15)

P̃(1) = 2− 2P̃(2)− 3P̃(3)− 4P̃(4) . (6.16)

A similar solution was found for the other concentrations c = 0.25 and 0.75 (see appendix
B.2).

6.4.2. Calculation details
In order to reduce the computational load even more, only one configuration for every
concentration group with P̃(N̂Ag) was considered, namely

P̃(4)→ γ1 = Ag Ag Ag Ag .

P̃(3)→ γ2 = Ag Ag Ag Pd ,

P̃(2)→ γ6 = Ag Ag Pd Pd , (6.17)

P̃(1)→ γ12 = Ag Pd Pd Pd ,

P̃(0)→ γ16 = Pd Pd Pd Pd .

Thereby, not all probabilities were free to chose In particular, P̃(0) and P̃(1) were deter-
mined for c = 0.5 by P̃(2), P̃(3), and P̃(4) via (6.15) and (6.16) and under the condition
(6.14). The probabilities for the other two concentrations were obtained similarly by (B.1)
to (B.3) and (B.7) to (B.9) for c = 0.25 or 0.75.

The values P̃(2), P̃(3), and P̃(4) form a probability space, which was sampled in steps
of 0.05. Then, the corresponding SRO parameter α1 was calculated at each step with
the configurations and P̃(0) to P̃(4) (not shown). Finally, few representative values were
chosen from the large sets of calculated SRO parameters. The chosen α1 for c = 0.25, 0.5,

1Solved with Mathematica.
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Table 6.6: Experimental binding energies (in eV, relative to the Fermi energy) of the
main spectral peaks estimated from the experimental (He II) spectra by McLachlan et al.
[148] and interpolated to the concentrations used in the present calculations. Values in
parenthesis refer to the scaled values Escaled in (C.1). The upper two rows are for the Pd
4d section of the spectrum and the lower two rows belong to the Ag 4d section.

Ag0.25Pd0.75 Ag0.50Pd0.50 Ag0.75Pd0.25

0.5 (0.5) 1.0 (1.0) 1.4 (1.5)
2.4 (2.5) 2.3 (2.4) − (−)
4.9 (3.9) 4.6 (3.5) 4.4 (3.3)
5.5 (4.6) 5.7 (4.9) 6.0 (5.3)

and 0.75 are presented together with the corresponding configurations and probabilities
in the tables 6.7, 6.8, and 6.9, respectively. The data of the tables served as input for self-
consistent calculation with the MS-NL-CPA within the GF method, and the density of
states was calculated. The principle calculation setup and the lattice constants remained
the same as described before in section 6.1 for the previous calculations of the AgcPd1−c
alloy. Only the expansion cut-off and the number of k points could be reduced to lmax = 3
and 20× 20× 20 for the Nsub = 4 supercell, since the calculation results for the electronic
properties converge much faster with lmax and kmesh than for the equilibrium properties.

6.4.3. DOS compared with experimental binding energies
The calculated valence DOS of the AgcPd1−c alloys for c = 0.25, 0.50, 0.75 in dependence
of the nearest neighbor SRO parameter α1 are presented in figures 6.12, 6.13 and 6.14,
respectively. The three figures show significant changes in the DOS with varying SRO.
Some spectral peaks vanish, move or grow. When going from the ordered regime (α1 < 0)
via the random distribution (α1 = 0) towards segregation behavior (α1 > 0), the spiky
structure of the DOS looses contrast and becomes smoother. Simultaneously, the band
width is enhanced with increasing α1.

The restriction to only the nearest neighbor SRO parameter α1 followed again from
the periodicity of the chosen cubic cell. The Nsub = 4 sublattices were always nearest
neighbors. Also, they were the only ones, which were influenced by the different SRO
configurations. The next nearest neighbor sublattices in the cubic cell suffer already from
the underlying periodicity, hosting always the same type of atom, which is occupying
also the actual origin. Hence, α2 will include already traces of the periodic lattice. The
same issue was already discussed in the context of the extended supercell in section 6.2.2.
A comparison of SRO regimes within a particular structure model remained reasonable
but other structures like the ordered phases L1+1 or L11 could not be sufficiently described
in the small cubic unit cell with Nsub = 4. However, the averaged SRO parameters 〈α〉2
or 〈α〉3 were used for the qualitative comparison between L1+1 or L11 and the other SRO
configurations further below.

In addition, the DOS for different SRO regimes were compared with the experimental
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Table 6.7: Nearest neighbor SRO parameter and the corresponding configurations used
for fcc Ag0.25Pd0.75 with Nsub = 4. For α = 0, all 16 configurations are used and their
probabilities are given by (6.6).

Probabilities P(γi) for α1 =
γi configurations cAg −1/3 −0.201 −0.141 −0.095 −1/12 −0.04 0.099 1/4

1 Ag Ag Ag Ag 1 0 0 0.05 0.05 0 0.1 0.15 1/4

2 Ag Ag Ag Pd 3/4 0 0.05 0 0.05 0 0 0 0
3 Ag Ag Pd Pd 1/2 0 0.05 0.05 0 1/6 0 0.05 0
4 Ag Pd Pd Pd 1/4 1 3/4 0.7 0.65 1/4 0.6 0.3 0
5 Pd Ag Pd Pd 1/4 0 0 0 0 1/4 0 0 0
6 Pd Pd Ag Pd 1/4 0 0 0 0 1/4 0 0 0
7 Pd Pd Pd Ag 1/4 0 0 0 0 1/4 0 0 0
8 Pd Pd Pd Pd 0 0 0.15 0.2 1/4 0 0.3 1/2 3/4

valence band PES of Ag-Pd alloys measured by McLachlan et al. [148]. The experimental
He II (40.81 eV) spectrum was particularly preferred as it is found to better represent
initial state effects in comparison to the He I (21.22 eV) spectrum. Although the He II
technique is in general rather surface sensitive, its application to metals with a highly
efficient screening mechanism can lead to useful insights on bulk properties from analysis
of the surveying signal. This is further confirmed by comparison of the specific He II
results used in this study against the experimental XPS spectra of Hüfner et al. [149],
where the measured probing depth was reported to be about 50 Å [150], thus including

Table 6.8: Nearest neighbor SRO parameter and the corresponding configurations used
for fcc Ag0.5Pd0.5 with Nsub = 4. For α = 0, all 16 configurations are used and their
probabilities are given by (6.6).

Probabilities P(γi) for α1 =
γi configurations cAg −0.270a −0.198 −0.140a −1/12 −0.04 0.108 1/4

1 Ag Ag Ag Ag 1 0 0.1 0 0 0.2 0.3 1/2

2 Ag Ag Ag Pd 3/4 0.05 0 0.15 0 0 0.1 0
3 Ag Ag Pd Ag 3/4 0.05 0 0.15 0 0 0 0
4 Ag Ag Pd Pd 1/2 0.8 0.7 0.5 1/6 0.6 0.2 0
5 Ag Pd Ag Pd 1/2 0 0 0 1/6 0 0 0
6 Ag Pd Pd Ag 1/2 0 0 0 1/6 0 0 0
7 Pd Ag Ag Pd 1/2 0 0 0 1/6 0 0 0
8 Pd Ag Pd Ag 1/2 0 0 0 1/6 0 0 0
9 Pd Pd Ag Ag 1/2 0 0 0 1/6 0 0 0

10 Ag Pd Pd Pd 1/4 0.1 0.2 0.1 0 0 0.1 0
11 Pd Pd Pd Pd 0 0 0 0.1 0 0.2 0.3 1/2

a The choice of (6.17) was varied. Instead of one, two configurations with three Ag atoms (P̃(3)) were
taken with P(γ2) = P(γ3) = P̃(3)/2.
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Table 6.9: Nearest neighbor SRO parameter and the corresponding configurations used
for fcc Ag0.75Pd0.25 with Nsub = 4. For α = 0, all 16 configurations are used and their
probabilities are given by (6.6).

Probabilities P(γi) for α1 =
γi configurations cAg −0.238 −0.141 −1/12 −0.04 0.106 1/4

1 Ag Ag Ag Ag 1 1 0.2 0 0.3 0.6 3/4

2 Ag Ag Ag Pd 3/4 0.85 0.7 1/4 0.6 0.1 0
3 Ag Ag Pd Ag 3/4 0 0 1/4 0 0 0
4 Ag Pd Ag Ag 3/4 0 0 1/4 0 0 0
5 Pd Ag Ag Ag 3/4 0 0 1/4 0 0 0
6 Ag Ag Pd Pd 1/2 0 0.05 0 0 0.05 0
7 Ag Pd Pd Pd 1/4 0.05 0 0 0 0.2 0
8 Pd Pd Pd Pd 0 0 0.05 0 0.1 0.05 1/4

substantial bulk contributions. The actual binding energies are given in table 6.6. In order
to take into account the typical shortcomings of the exchange-correlation functionals, the
binding energies were linearly scaled (see appendix C).

However, a direct comparison between the experimental and theoretical results is hard-
ly possible. The binding energies can at least be related with some pronounced peaks in
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Figure 6.12: Calculated density of states of Ag0.25Pd0.75 for different degrees of nearest
neighbor SRO α1, beginning with the ordered L1+1 structure. The corresponding configu-
rations used for the SRO parameter are given in table 6.7. An offset is added to the curves
(horizontal gray line represents zero). The binding energies of the main spectral peaks of
the experimental PES (table 6.6) are highlighted by arrows and vertical gray lines.
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Figure 6.13: Calculated density of states of Ag0.5Pd0.5 for different degrees of nearest
neighbor SRO α1, beginning with the ordered L11 structure. The corresponding configu-
rations used for the SRO parameter are given in table 6.8. An offset is added to the curves
(horizontal gray line represents zero). The binding energies of the main spectral peaks of
the experimental PES (table 6.6) are highlighted by arrows and vertical gray lines.

the DOS for all three concentrations but the resolution of the older measurements al-
lows only a crude estimation and comparison with the different SRO scenarios. For
Ag0.25Pd0.75, the best agreement with the scaled binding energies would be achieved with
the assumption of the fully uncorrelated disorder α1 = 0 (see figure 6.12). Otherwise, the
experiment would not capture all pronounced spectral peaks, e.g., the states at low ener-
gies for α1 = 1/4 or the spiky DOS for the ordered structures. Nevertheless, the variation
of the amount of SRO in Ag0.25Pd0.75 visualizes the gradually collapse or development of
several spectral peaks when going from negative to positive α1. The minimal α1 = −1/3

represents the L12 structure (Ag at the corners and Pd at the faces of the cube), although
L1+1 was found to be energetically more favorable. The latter structure should be de-
scribed by an averaged SRO parameter 〈α〉2 = −5/27 ≈ −0.185 or 〈α〉3 = −1/7 ≈ −0.143.
The different amount of SRO in L12 or L1+1 is directly visible in the DOS of both struc-
tures. While the DOS of L12 yielded sharper spectral peaks, the DOS of L1+1 ranges better
between α1 = 0.141 and α1 = 0.201 (see figure 6.12).

The analysis for the DOS of Ag0.5Pd0.5 was quite similar as for Ag0.25Pd0.75. Several
spectral peaks become wider and shift their positions (see figure 6.13). Also for this con-
centration, the proposed ordered structure L11 has not the lowest possible SRO parameter
(minimum: α = −1, for L11: 〈α〉2 = −1/3 or 〈α〉3 = −1/7) while its DOS matches rather
less with the DOS of the remaining SRO scenarios. It might be that the symmetric cubic
cell catches only badly the layered structure of L11. On the other hand, the experimen-
tal binding energies agree again only for α1 = 0 well with the theoretically calculated

99



Chapter 6. Different Ordering Regimes in Metallic Non-magnetic Solid Solutions

−8 −6 −4 −2 0 2 4
0

1

2

3

4

5

6

0

E − EF (eV)

to
ta
l
D
O
S
(s
ta
te
s/
eV
/
a
to
m
)

1/4
0.106
0
−0.04
−1/12
−0.141
−0.238
L12 (α1 = −1/3)

Experimental binding energies

CPA

1
Figure 6.14: Calculated density of states of Ag0.75Pd0.25 for different degrees of nearest
neighbor SRO α1, beginning with the ordered L12 structure. The corresponding configu-
rations used for the SRO parameter are given in table 6.9. An offset is added to the curves
(horizontal gray line represents zero). The binding energies of the main spectral peaks of
the experimental PES (table 6.6) are highlighted by arrows and vertical gray lines.

number of spectral peaks and their positions.
By further raising the concentration of Ag to Ag0.75Pd0.25, the gradually widening of

the spectral peaks of the ordered structure L12 can be traced with the increasing of the
SRO parameter (see figure 6.14). L12 has already the lowest possible SRO parameter and
is described well by the small cubic cell. Thus the large peak in L12 of the Pd 4d states
close to the Fermi energy loses its height and becomes much broader for α1 = 0. At lower
energies, the spectral peaks of the well-structured DOS overlap each other and end up in
few broad peaks as well. Hence, the comparison with the experimental binding energies
at this concentration c = 0.75 is less useful. Their position can not be correlated with the
theoretically calculated spectral peak position (see arrows in figure 6.14).

Finally, the calculated DOS at c = 0.25, 0.5 and 0.75 were also compared with the PES
measurements of Norris and Nilsson [151], Hüfner et al. [149, 152], Chae et al. [153] and
Traditi et al. [154]. In general, the experimental spectra agree best with the DOS of the
random (α1 = 0) or ordering (α1 < 0) cases, the clustering (α1 > 0) features being less
probable. This is in agreement with the complete solubility of Ag and Pd at ambient
temperatures and with the ordering tendency at low temperatures [24].

Conclusions The SRO induced changes in the DOS curves are significantly larger than
the typical energy resolution in the valence band PES measurements [148]. So, the PES
technique can be considered as one potential experimental method to investigate SRO
structures of alloys. In particular in combination with first-principle calculations within
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the MS-NL-CPA, statements about the local structure and potential SRO could be possible
in future investigations.
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Chapter 7.

Conclusions
This thesis unites the theoretical discussion of adatoms, vacancies, and substitutional de-
fects, which can be found in materials research, in two or three dimensional systems. The
computational method of choice was the Green’s function method HUTSEPOT, which
performed very well in the description of the magnetic, electronic or equilibrium prop-
erties of single adatoms, point defects or larger substitutional disorder. In particular,
the underlying multiple scattering theory allowed the efficient self-consistent calculation
of the considerably differing characteristics of these defects, if it was either a perfect
two-dimensional system with a perturbative cluster, a strongly correlated systems three-
dimensional systems or the consideration of local short-range order in an alloy.

The degree of disorder was gradually increased for the AgcPd1−c while the defined
SRO parameter allowed for a quantitative comparison between the chosen configura-
tions inside a complex unit cell. The variation of specific SRO regimes could be studied
through the MS-NL-CPA. The changes in the spectral peaks in the DOS at a certain con-
centration c act as a fingerprint for a certain amount of SRO and might be compared with
experimental photoemission spectra. Unfortunately, the large computational effort of the
MS-NL-CPA within HUTSEPOT hinders a more flexible variation of the SRO parameters
or the investigation of a broader concentration interval in AgcPd1−c. Moreover, the defi-
nition of a short-range order parameter is also restricted to a particular lattice structure,
since the comparability remains a controversial point.

Once more, the single-site approximation of the CPA proofed to be a reliable tool for the
description of various physical observables. The variation of the magnetic properties in
dependence of the oxygen-deficiency agreed very well with experimental measurements
for the strongly-correlated system SrCoO3−δ, whereas an potential increase of TC with δ
for Sr2FeMoO6−δ promise good possibility for applications.

The symmetry-related highly stable magnetic ground state of a single Holmium ad-
atom on top of Pt(111) also shows the great reliability of the GF method. The imple-
mented technique for the calculation the crystal-field parameters yielded precise results,
which led to an excellent agreement between the theoretical and experimental excitation
spectrum.
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Appendix A.

Eigenstates and Eigenvalues of Holmium
on Pt(111)

Table A.1: The eigenvalue (energy) and Ĵz expectation value for all eigenstates |Ψi〉 of the
matrix eigenvalue problem (4.14). The eigenstates (4.9) are a linear combination of the
pure states |M〉 with the expansion coefficients given in tables A.2 and A.3.

Energy 〈 Ĵz〉
|Ψ−8〉 0 −7.999 94
|Ψ+8〉 0 7.999 94
|Ψ−7〉 7.706 58 6.999 91
|Ψ+7〉 7.706 58 −6.999 91
|Ψs
±6〉 16.3256 0
|Ψa
±6〉 16.3259 0
|Ψ−5〉 24.5807 −4.998 76
|Ψ+5〉 24.5807 4.998 76
|Ψ−4〉 31.7345 −3.989 87
|Ψ+4〉 31.7345 3.989 87
|Ψs
±3〉 37.3103 0
|Ψa
±3〉 37.5407 0
|Ψ−2〉 41.5095 −1.995 22
|Ψ+2〉 41.5095 1.995 22
|Ψ−1〉 43.9529 −0.992 87
|Ψ+1〉 43.9529 0.992 87
|Ψ0〉 44.7654 0
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Appendix A. Eigenstates and Eigenvalues of Holmium on Pt(111)
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Appendix B.

SRO Parameters for the AgPd Alloy

B.1. The smallest cell with two sublattices

Table B.1: Comparison of nearest neighbor SRO parameter for Nsub = 2, c = 0.5 and
varied probabilities P(γi) in steps of 0.05 (under the restrictions imposed by (3.137) to
(3.139)). All entries, except those marked with 1 in the first column, are symmetric in the
γ2 and γ3 configurations.

probability P of
sym γ1 γ2 γ3 γ4 α1 αstat

1

1 0 0.5 0.5 0 −0.083 333 −0.083 620
0 0.45 0.55 0 −0.082 500 −0.082 255
0 0.4 0.6 0 −0.08 −0.080 198
0 0.35 0.65 0 −0.075 833 −0.075 838
0 0.3 0.7 0 −0.07 −0.070 104

1 0.05 0.45 0.45 0.05 −0.066 667 −0.066 253
0.05 0.4 0.5 0.05 −0.065 833 −0.065 702
0.05 0.35 0.55 0.05 −0.063 333 −0.062 928
0 0.25 0.75 0 −0.062 500 −0.062 276
0.05 0.3 0.6 0.05 −0.059 167 −0.059 450
0.05 0.25 0.65 0.05 −0.053 333 −0.053 132
0 0.2 0.8 0 −0.053 333 −0.053 164

1 0.1 0.4 0.4 0.1 −0.05 −0.050 256
0.1 0.35 0.45 0.1 −0.049 167 −0.048 601
0.1 0.3 0.5 0.1 −0.046 667 −0.046 341
0.05 0.2 0.7 0.05 −0.045 833 −0.045 708
0.1 0.25 0.55 0.1 −0.042 500 −0.042 553
0 0.15 0.85 0 −0.042 500 −0.042 341
0.1 0.2 0.6 0.1 −0.036 667 −0.036 489
0.05 0.15 0.75 0.05 −0.036 667 −0.036 285

1 0.15 0.35 0.35 0.15 −0.033 333 −0.033 167
0.15 0.3 0.4 0.15 −0.032 500 −0.032 898
0.15 0.25 0.45 0.15 −0.03 −0.029 547
0 0.1 0.9 0 −0.03 −0.029 815
0.1 0.15 0.65 0.1 −0.029 167 −0.029 341

109



Appendix B. SRO Parameters for the AgPd Alloy

Table B.1: (continued)

probability P of
sym γ1 γ2 γ3 γ4 α1 αstat

1

0.15 0.2 0.5 0.15 −0.025 833 −0.026 011
0.05 0.1 0.8 0.05 −0.025 833 −0.025 836
0.15 0.15 0.55 0.15 −0.02 −0.020 340
0.1 0.1 0.7 0.1 −0.02 −0.020 215

1 0.2 0.3 0.3 0.2 −0.016 667 −0.017 211
0.2 0.25 0.35 0.2 −0.015 833 −0.015 807
0 0.05 0.95 0 −0.015 833 −0.015 739
0.05 0.05 0.85 0.05 −0.013 333 −0.013 372
0.2 0.2 0.4 0.2 −0.013 333 −0.012 689
0.15 0.1 0.6 0.15 −0.012 500 −0.012 662
0.2 0.15 0.45 0.2 −0.009 167 −0.009 296
0.1 0.05 0.75 0.1 −0.009 167 −0.009 242
0.2 0.1 0.5 0.2 −0.003 333 −0.003 747
0.15 0.05 0.65 0.15 −0.003 333 −0.003 476
0 0 1 0 0 0

1 0.25 0.25 0.25 0.25 0 −0.000 026
0.05 0 0.9 0.05 0.000 833 0.000 871
0.25 0.2 0.3 0.25 0.000 833 0.000 736
0.25 0.15 0.35 0.25 0.003 333 0.003 662
0.1 0 0.8 0.1 0.003 333 0.003 394
0.2 0.05 0.55 0.2 0.004 167 0.004 309
0.25 0.1 0.4 0.25 0.007 500 0.007 198
0.15 0 0.7 0.15 0.007 500 0.007 157
0.25 0.05 0.45 0.25 0.013 333 0.013 357
0.2 0 0.6 0.2 0.013 333 0.012 946

1 0.3 0.2 0.2 0.3 0.016 667 0.016 826
0.3 0.15 0.25 0.3 0.017 500 0.017 117
0.3 0.1 0.3 0.3 0.02 0.019 303
0.25 0 0.5 0.25 0.020 833 0.021 144
0.3 0.05 0.35 0.3 0.024 167 0.024 214
0.3 0 0.4 0.3 0.03 0.029 823

1 0.35 0.15 0.15 0.35 0.033 333 0.033 096
0.35 0.1 0.2 0.35 0.034 167 0.034 065
0.35 0.05 0.25 0.35 0.036 667 0.036 254
0.35 0 0.3 0.35 0.040 833 0.040 981

1 0.4 0.1 0.1 0.4 0.05 0.049 905
0.4 0.05 0.15 0.4 0.050 833 0.050 902
0.4 0 0.2 0.4 0.053 333 0.053 457

1 0.45 0.05 0.05 0.45 0.066 667 0.067 142
0.45 0 0.1 0.45 0.067 500 0.067 752

1 0.5 0 0 0.5 0.083 333 0.083 534
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B.2. Probability relations

B.2. Probability relations
By using the same system of equation (6.7) to (6.7), the probability relations for the con-
centrations c = 0.25 and 0.75 were found as done in section 6.4.1. Varying P̃(2), P̃(3) and
P̃(4) yields for c = 0.25

P̃(0) = P̃(2) + 2P̃(3) + 3P̃(4) , (B.1)

P̃(1) = 1− 2P̃(2)− 3P̃(3)− 4P̃(4) , (B.2)

as long as
(
2P̃(2) + P̃(3) ≤ 1

)
∧
(
2P̃(2) + 3P̃(3) + 4P̃(4) ≤ 1

)
. (B.3)

A simpler solution is

P̃(0) =
(2− P̃(2))

3
, (B.4)

P̃(3) =
(1− 2P̃(2))

3
, (B.5)

while

P̃(1) = 0 , 0 ≤ P̃(2) ≤ 1/2 , P̃(4) = 0 . (B.6)

On the other hand, the solution of the system of equations for cAg = 0.75 is

P̃(0) = P̃(2) + 2P̃(3) + 3P̃(4)− 2 , (B.7)

P̃(1) = 3− 2P̃(2)− 3P̃(3)− 4P̃(4) , (B.8)

while
(
2P̃(2) + P̃(3) ≤ 1

)
∧
(

P̃(2) + 2P̃(3) + 3P̃(4) ≥ 2
)
∧
(
2P̃(2) + 3P̃(3) + 4P̃(4) ≤ 3

)
.

(B.9)

A simpler solution is

P̃(0) = 0 , P̃(1) = 0 , 0 ≤ P̃(2) ≤ 1/2 , P̃(3) = 1− P̃(2) , P̃(4) = P̃(2) . (B.10)
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Appendix C.

Scaling of the Experimental Energies
Since DFT calculations based on LDA or GGA and beyond exchange-correlation function-
als are commonly affected by imperfect prediction of band widths and absolute placement
of energy levels, the comparison between calculated and experimental results can be im-
proved by using a scaling function between the theoretical and experimental reference
data.

For the comparison of the DOS with the experimental references in section 6.4, the
band width of pure Ag and Pd was taken as a reference, and the following linear scaling
function was used

Escaled = E

[
E− EX

b
EX

t − EX
b

βX
t +

(
1−

E− EX
b

EX
t − EX

b

)
βX

b

]
, (C.1)

where EX
t and EX

b denote the experimental binding energies of the top and bottom of the
d band of a pure element X (=Ag or Pd), and βX

i (= EX,calc
i /EX,exp

i ) is the ratio between
calculated and experimental values for the top and bottom of the same band. Following
McLachlan et al. [148], the parameters of table C.1 were used in the scaling function (C.1).

Table C.1: Parameters of pure Ag and Pd used in (C.1).

X EX
b (eV) EX

t (eV) βX
b βX

t

Ag 7.0 3.9 0.96 0.70
Pd 4.7 0.0 1.11 1.00
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