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Abstract
The developmental hourglass concept aims to model a historic phenomenon in bio-
logical research. It depicts the morphological observation that animal embryos con-
verge to a common form during mid embryogenesis. This period of morphological
conservation between animal embryos was named phylotypic period to describe the
phenomenon that in these stages, animals of di�erent species appear to be similar
morphologically. Recent studies could demonstrate that the transcriptome conser-
vation of animal embryos also follows an hourglass pattern, mirroring the observed
morphological pattern. Although plants do not exhibit a morphological hourglass
pattern during embryogenesis, we recently reported the existence of a transcriptomic
hourglass pattern for the model plant Arabidopsis thaliana. To investigate the com-
monalities between the transcriptomic hourglass patterns in animals and plants in
this thesis, I first designed a statistical framework to assess the significance of tran-
scriptome conservation patterns. In a next step, I implemented software tools to
answer the question whether or not the currently favoured hypothesis in animals
postulating that organogenesis and body plan formation are the major processes
that generate the developmental hourglass pattern in animal embryogenesis is su�-
cient enough to explain the phenomenon observed in plants. Finally, I addressed the
question whether or not this organogenesis centred hypothesis is broad enough to
explain the independent emergence of the hourglass pattern in both the animal and
plant kingdom. For this purpose, I investigated whether or not transcriptomic hour-
glass patterns are actively maintained in extant species and whether plant hourglass
patterns are also present postembryonically. As a result, I found that indeed tran-
scriptomic hourglass patterns are actively maintained in extant species and that the
two main phase changes during the life cycle of Arabidopsis, from embryonic to veg-
etative and from vegetative to reproductive development, are also associated with
transcriptomic hourglass patterns. In contrast, a process dominated by organ forma-
tion, flower development, is not. These results suggest that transcriptomic hourglass
patterns in plants are decoupled from organogenesis and body plan establishment
and mark general transitions during development. Together, the findings presented
in this thesis challenge the previous causal explanation that links the emergence
of developmental hourglass patterns to organogenesis and body plan establishment.
My co-authors and I argue, that a more fundamental process might shape develop-
mental hourglass patterns and hypothesize that these fundamental processes explain
both: the independent emergence of hourglass patterns in animals and plants and
their active maintenance in extant species. We refer to these fundamental marks
as organizational checkpoints and argue that these checkpoints are present in many
biological processes and across kingdoms of life.
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1 Introduction
Understanding the genesis, evolution, and variability of complex organismal forms
is among the most fundamental objectives of biological research. Key questions
about the origination, maintenance, and evolution of complex life on earth are now
approachable through the recent advancements in molecular biology and their in-
tersection with information sciences.

Today, it is well studied that embryo development (= embryogenesis) is the key pro-
cess to establish complex multicellular life by transitioning from a single celled zygote
to a mature multicellular organism (= embryo). Hence, embryogenesis provides the
developmental framework to establish the organismal organization (= body plan)
of a multicellular organism by passing through a defined series of developmental
stages that are governed by genetic programs of gene expression [1]. The concept of
characterizing common traits among phylogenetically related species to classify the
organizational form of multicellular organisms during comparable stages of embryo
development is today referred to as body plan concept. The aim of this concept
is to provide a scientific framework to study the origin, evolution, and variabil-
ity of organismal forms by comparing the function of homologous traits of extant
species [2–4].

Due to the vast diversity and variability of organismal forms on earth a scientific
comparability can only be achieved by reducing all extent body forms to a common
basic body plan. This reductionist view of a basic body plan allows us to quantify
the variability and diversification of traits shared among phylogenetically related
species by comparing the physical properties such as weight, size, and location of
basic body plan features [5,6]. Recent studies suggest that these commonalities are
the result of developmental constraints (= a limitation on phenotypic variability
caused by the structure, character, composition, or dynamics of the developmen-
tal system [7]) limiting the potential combinatorial variability of phenotypes [6–9].
These developmental constraints are proposed to channel the evolutionary conser-
vation of specific body plans resulting in the limited diversity of extant forms in
comparison with the combinatorial diversity of potential body plans when assuming
an absence of such developmental constraints (limited diversification) [6].

Together, the basic body plan defines the common anatomical features such as
head, arms, legs, and other major organ systems shared by organisms belonging
to the same species, phyla, or kingdom [5]. These anatomical features allow us to
study the evolutionary history of developmental processes and therefore, contributes
to the understanding of how complex organismal forms evolve and diversify [5,6,10].

The central scientific question arising from the body plan concept however, is why
and to what extent the basic body plan is conserved within and between phyla [6].
Historically, the body plan concept arose from animal studies performed more than
200 years ago [11] describing a fascinating morphological phenomenon observed dur-
ing mid embryogenesis [10, 12]. In particular, it has been observed that during the
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organogenic period of mid embryogenesis animal embryos of di�erent species within
the same phylum converge to a form of high morphological resemblance when com-
pared with early and late embryogenesis. Due to the high morphological resemblance
of anatomical features shared between di�erent vertebrate taxa, this developmen-
tal window has been termed phylotypic stage [13] or phylotypic period [14, 15] and
the morphological pattern of dissimilarity - similarity - dissimilarity between animal
embryos has been termed developmental hourglass phenomenon [10, 12,16].

Although the existence of a phylotypic stage or period has been controversially de-
bated, and therefore, the existence of a developmental hourglass phenomenon has
recently been questioned [14, 15, 17–20] the concept of the developmental hourglass
has largely been confirmed on the molecular level [6]. Several studies demonstrated
that the degree of sequence conservation, the phylogenetic age of transcriptomes,
gene regulatory system conservation or the similarity of gene expression profiles max-
imize during the phylotypic period [21–44], which is in agreement with a potentially
causative association between the phylotypic period and body plan establishment
in animals [4].

In 2010, the first transcriptome wide study was performed to confirm the morpho-
logical pattern of dissimilarity - similarity - dissimilarity on the molecular level. The
data provided support previous studies suggesting the existence of a correlation be-
tween phylogeny and ontogeny [26]. In this study, Domazet-Loöo and Tautz [26]
concluded that the phylotypic period can be defined as the ontogenetic progression
during which the oldest gene set is expressed, either because this is the phase with
the lowest opportunity for lineage-specific adaptations, or because it is internally so
constrained that newly evolved genes cannot become integrated [26].

In this regard, the evolutionary age of genes reflects the phylogenetic component
when investigating the evolutionary constraints acting on the transcriptomes of an-
imal embryos. This clear association between gene age and gene expression enables
us to capture evolutionary signatures in developmental transcriptomes and further-
more allows us to quantify the sets of genes that are more likely to be negatively
selected for constraining organismal diversification.

In 2012, I applied this powerful method to plant embryogenesis by quantifying tran-
scriptome conservation throughout Arabidopsis thaliana embryo development and
were able to observe an analogous phenomenon of transcriptome conservation (dis-
similar - similar - dissimilar) as previously reported in animals [29,45]. This finding
was particularly surprising, because the morphological diversity during angiosperm
embryogenesis is negligible due to the establishment of meristems instead of a precise
plant body plan [30]. Hence, morphological di�erences in plants are only established
during postembryonic development. The fact however, that both plant and animal
embryogenesis follow a molecular hourglass pattern of transcriptome dissimilarity -
similarity - dissimilarity raises important questions about the association between
transcriptome conservation and body plan establishment (organogenesis) in general.
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In our 2012 study, we concluded that the absence of a hourglass pattern based on
morphological features in plants suggests that both morphological and molecular
patterns might be uncoupled and that the presence of a developmental hourglass
phenomenon in animals and plants indicates convergent evolution of the molecular
hourglass and a conserved logic of embryogenesis across kingdoms [45].

Our hypothesis, postulating that the morphological and molecular hourglass pat-
terns might be uncoupled, was supported by the study of Cheng et al. in 2015 who
reported a molecular hourglass pattern in fungi development [46]. This dissocia-
tion between the morphological and molecular pattern raises fundamental questions
about the findings reported in the animals kingdom aiming to correlate phylogeny
and ontogeny via body plan establishment during the phylotypic period. Cheng et
al. conclude in their study that the presence of a universal molecular hourglass pat-
tern across kingdoms (animals, plants, and fungi) might reflect a mutual strategy
for eukaryotes to incorporate evolutionary innovations [46].

Motivated by these findings, the main objectives of my thesis are to first develop a
solid statistical framework to assess the statistical significance of observed molecular
hourglass patterns (enabling the comparability across kingdoms and studies), second
to test whether or not the molecular hourglass patterns in animals and plants are
actively maintained and therefore, experimentally assessable in extant species, and
third to investigate whether or not postembryonic developmental processes in plants
also follow molecular hourglass patterns. For this purpose I developed open source
software tools that will allow me and a broad range of researchers to automate and
reproduce the quantification of transcriptome conservation.

The following chapters will give the reader a detailed introduction to the biological
questions that I aim to address in this thesis by developing and applying methods
from computer science and bioinformatics.

2 Objectives and Outline of this thesis
The introduced studies on the molecular hourglass phenomenon suggest that devel-
opmental transcriptomes contain evolutionary information which can be captured
and quantified using transcriptome indices.

The scientific question I aimed to answer was whether or not there are commonali-
ties between the transcriptomic hourglass patterns in animals and plants.

In order to address this question, my first objective was to build statistical tests to
quantify the significance of di�erential transcriptome conservation between stages
by developing a customized statistical framework to quantify and assess the signifi-
cance of any transcriptome conservation pattern of interest (Paper 1).

A limitation was that no expert group designed and implemented software tools for
computing transcriptome indices to apply them in a virtuous and reproducible man-
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ner. Hence, although extremely powerful, the application of phylotranscriptomics as
a methodology for non-experts was limited by the lack of available and user-friendly
software tools.

Hence, the second objective of my thesis was to fill this gap by implementing the R
packages myTAI and orthologr (Paper 1 and Appendix) which allowed me to com-
pute transcriptome indices in a virtuous and reproducible manner. The aim of this
part of the thesis was therefore to provide the ability to perform phylotranscriptomic
analyses primarily to biologists who are not bioinformatics experts.

The third objective was to apply the implemented software tools to biological data
sets that had been generated to a) allow a comparison of the developmental hourglass
model between animals and plants (Paper 1), and to b) answer general questions
regarding transferrability of the hourglass concept to the plant kingdom (Paper 1 -
4).

Taken together, in this thesis I aim to answer fundamental questions regarding
one of the historical concepts of developmental biology by developing and applying
bioinformatic tools that allow to address the developmental hourglass concept on a
transcriptomic level.

3 Methods
Phylotranscriptomics denotes the methodology of quantifying gene age and gene
conservation to then combine this information with the expression of these genes for
the computation of the average transcriptome conservation in biological processes
by applying transcriptome indices.
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Figure 3.0.1: Gene expression distributions (= developmental transcriptome) throughout
seven stages of A. thaliana embryo development. Embryo development is devided into
three phases: early embryogenesis (purple), mid embryogenesis (green), and late embryo-
genesis (brown). This boxplot illustrates that the overall distributions of log2 expression
levels (y-axis) hardly di�er between developmental stages (x-axis) although the di�erence
on the global scale is statistically significant (Kruskal-Wallis Rank Sum Test: p < 2e-16).
Hence, a clear visual pattern of gene expression di�erences between early, mid, and late
embryogenesis on the global scale can not be inferred.

The rational for performing the phylotranscriptomic method is to classify a tran-
scriptome (Fig. 3.0.1) into di�erent categories of genes sharing similar evolutionary
origins (detectable homologs) or genes being under similar selective pressures and
to study the overall expression patterns of these classified genes throughout the bi-
ological process of interest (Fig. 3.0.2).

12



Zygote Quadrant Globular Heart Torpedo Bent Mature

10

12

14

16
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

 Phylostratum

lo
g2

(e
xp

re
ss

io
n 

le
ve

l)

PS
1
2
3
4
5
6
7
8
9
10
11
12

Figure 3.0.2: Gene expression distributions (= developmental transcriptome) through-
out seven stages of A. thaliana embryo development classified into phylostrata. Each
box represents the developmental stage during A. thaliana embryogenesis, the y-axis de-
notes the log2 expression levels of genes that fall into the corresponding phylostratum
(age category) shown on the x-axis. Hence, each boxplot represents the gene expression
distribution of genes that are classified into the corresponding phylostratum (PS) during
a specific developmental stage. The gene age distribution of A. thaliana genes ranges from
PS1 to PS12 where PS1 represents the evolutionarily most distant age category (cellular
org.) and PS12 the evolutionary most recent age category (A. thaliana specific; see section
Dollo Parsimony - Phylostratigraphy and Fig 3.2.4). Yellow dots in the boxplots denote
the mean expression level of the corresponding expression distribution. This visualization
illustrates that although the global gene expression distributions do not change visually
between developmental stages (Fig. 3.0.1), the global gene expression distributions of PS
di�er between stages of A. thaliana embryo development, and thus, allow to study the
e�ect of transcriptome evolution and conservation on embryo development.

Hence, phylotranscriptomics combines four methods: (1) gene age inference and pro-
tein substitution rate quantification, (2) gene expression analysis, (3) transcriptome
conservation quantification (transcriptome indices) and evaluation, and (4) relative
expression level analysis.

The following sections will introduce these methods in detail and will point out the
current status and limitations of this methodology.

3.1 Gene Age Inference
Gene Age Inference is a methodology to trace the evolutionary origin and diversifi-
cation of protein coding genes in the context of detectable homology [26, 47]. This
comparative genomics approach provides a powerful method to study the evolution
and diversification of morphological and molecular traits and allows researchers to
classify protein coding genes into inter-species or intra-species specific categories.
Most inter-species proteins for example can be associated with a highly conserved
metabolic function (housekeeping) or for phylum specific developmental processes
(e.g. Hox genes). Hence, this approach allows us to quantify the conservation of
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biological process or trait specific origination events. For practical applications how-
ever, the lack of a clear and consistent definition of gene age as discussed by Capra
et al. led to a rise of di�erent tools and concepts for practical gene age inference [47].

Three major approaches have been proposed to quantify the timing of events (which
in most cases is equated with gene age determination) and sequence evolution:

• Gain-loss approaches

• Phylogenetic Reconciliation

• Sequence Divergence Models

Figure 3.1.3 summarizes published methods for gene age inference. The most widely
used and established methods are based on two major approaches: Gain-loss ap-
proaches and Phylogenetic Reconciliation.

Gene Age Inference

Timing of Events Sequence Divergence

Gain-Loss Approaches Phylogenetic Reconciliation

Phylostratigraphy (Dollo)

Protein Historian (Wagner)

Non-binary species trees

locus trees

Codon Evolution Estimation
Jukes-Cantor Model
Kimura’s 2-parameter Model
HKY Model
General time reverse model
Infinite sites model
Coalescent Model
Anscestral Recombination Graph

Mugal - Wolf - Kaj Model

Figure 3.1.3: Most common and established methods aiming to perform gene age infer-
ence. The diagram shows two conceptual methods of quantifying gene age: Through the
timing of gene origination (detectable homologs) and computing the sequence substitution
rate to estimate the divergence and therefore, the age of homolgous sequences [47,48].

Gain-loss approaches are based on Dollo’s law (Phylostratigraphy) and Wagner Par-
simony (Protein Historian), whereas Phylogenetic Reconciliation approaches include
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non-binary species trees and locus trees [26, 47].

3.2 Dollo Parsimony - Phylostratigraphy
Phylostratigraphy is a computational method to determine the evolutionary origin
of protein coding genes based on BLAST homology searches. This sequence homol-
ogy based method for gene age inference was introduced by Domazet-Loöo et al. in
2007 [49].

The process of performing phylostratigraphy can be summarized by the following
algorithm:

• Select a taxonomy for a query organism of interest

• Classify annotated genomes into corresponding taxonomic groups (phyloge-
netic internodes = phylostrata)

• Perform a BLASTp homology search of each protein coding gene of the subject
organism against the classified database

• Assign the oldest BLAST hit (in terms of phylogenetic distance) fulfilling the
homology detection criteria to the corresponding query gene

• If no homolog can be detected, assign the corresponding gene as species specific

This procedure generates a table storing the gene age assignment in the first column
and the corresponding gene id of the protein coding gene of the query organism
in the second column. The output table is termed phylostratigraphic map [45, 49]
(see Fig. 3.2.4) and is subsequently joined with the expression data covering the
biological process of interest.
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A

Taxonomy taxid Phylostratum #Genes

A. thaliana 3702 PS12 2534

Arabidopsis 3701 PS11 319

Brassicales 3699 PS10 1407

Rosids 71275 PS9 469

Core Eudicotyledons 91827 PS8 322

Eudicotyledons 71240 PS7 332

Magnoliophyta 3398 PS6 1678

Tracheophyta 58023 PS5 909

Embryophyta 3193 PS4 2717

Viridiplantae 33090 PS3 813

Eukaryota 2759 PS2 6611

Cellular Organisms 131567 PS1 9305

B

PS1
PS2

PS3
PS4

PS5
PS6

PS7
PS8

PS9
PS10

PS11
PS12

Step 1
Sort genomes according to 
the taxonomy of A. thaliana

taxonomy(A. thaliana)

A. thaliana proteome

Step 2
Perform gene homology 

searches against this 
BLASTP

Step 3
Generate 

Phylostratigraphic Map

NCBI nr + custom DB

Figure 3.2.4: Table summarizing the taxonomy and the corresponding phylostrata of A.

thaliana. The left side of this figure shows the taxonomic classification of A. thaliana from
cellular organisms up to A. thaliana. Each phylogenetic internode is labelled as phylo-
stratum (PS) increasing from PS1 (evolutionary most distant common ancestors; cellular
organisms) up to PS12 (A. thaliana; species specific). Furthermore, the NCBI taxonomy
id and the number of protein coding genes of A. thaliana predicted to share detectable
homologs with the corresponding PS are shown. The column #Genes summarizes the
number of genes that share homologs within the same phylostratum.

The interpretation of gene age for each gene can be inferred from the exact definitions
of genomic phylostratigraphy, founder gene formation, punctuated protein family
evolution and phylostratum provided by Domazet-Loöo et al. in 2007 [49].

• Genomic phylostratigraphy: a statistical approach for reconstruction of
macroevolutionary trends based on the principle of founder gene formation and
punctuated emergence of protein families [49].

• Founder gene formation: first emergence of a gene forming the basis of
a new gene lineage or gene family; the origination of founder genes might
correlate with functional novelty. [49]

• Punctuated protein family evolution: a model of genome evolution that
assumes that protein families were initiated by founder genes in a scattered
manner through evolutionary time. [49]

• Phylostratum: a set of genes from an organism that coalesce to founder
genes having common phylogentic origin. [49]

Hence, the phylostratigraphic method is based on the assumption that lineage spe-
cific genes emerge in a punctuated manner through a process of de novo gene birth
and quickly evolve to retain an association with a particular biological pathway [49].
This assumption was used by Domazet-Loöo et al. to introduce phylostratigraphy
as a general approach to trace evolutionary innovation using data from genome se-
quencing projects [49].

On a more abstract level, the gain-loss assumptions implicit to phylostratigraphy
match the concept of Dollo Parsimony [47]. Capra et al. define Dollo Parsimony
as a common gain–loss phylogenetic analysis method based on parsimony and the
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assumption that a biological character can only be gained once, although it may ex-
perience multiple losses in di�erent lineages [47].

It is not within the scope of this thesis to discuss all methods in detail, but I en-
courage the reader to consult the referenced literature to understand the advantages
and disadvantages of these gene age inference methods. The advantage of phy-
lostratigraphy is that it allows researchers to quantify gene age in the context of
detectable homology and aims to define gene age by its detectable origin. Due to
these advantages all gene age values used in this thesis were computed using phy-
lostratigraphy [50].

3.3 Divergence Stratigraphy - dNdS Estimation
In our 2012 study [45], we performed an additional gene age inference method based
on sequence divergence estimation (Fig. 3.1.3) to provide a second independent
method to phylostratigraphy to verify the transcriptome conservation we observed in
plant embryogenesis (= Divergence Stratigraphy). In detail, Divergence Stratigraphy
is a computational method to determine the degree of selection pressure acting on
each protein coding gene of a query organism against a reference organism [40] and
hence, quantifies gene age in the context of protein substitution rates. This method
di�ers from phylostratigraphy in that it aims to detect patterns of conservation in
closely related species, whereas phylostratigraphy covers homology detection along
the tree of life. Divergence Stratigraphy can be summarized by performing the
following algorithm:

• Perform orthology inference to determine a set of orthologous genes between
closely related species

• Perform a global pairwise alignment of the amino acid sequences of orthologous
genes

• Perform a codon alignment of corresponding orthologous genes

• Perform dNdS estimation for the corresponding set of orthologous genes

In the first step orthology inference was performed using the method of best hit
or best reciprocal hit (blastp). Pairwise alignments were performed using MAFFT
(L-INS-i option). Codon alignments were computed using PAL2NAL, and GES-
TIMATOR was used for dNdS estimation [45]. This procedure generates a table
storing the gene divergence assignment in the first column (dNdS values) and the
corresponding gene id of the protein coding gene of the query organism in the second
column. This table is termed sequence divergence map (short divergence map) [45]
and is subsequently joined with the expression data covering the biological process
of interest.

In general, phylostratigraphy and divergence stratigraphy di�er fundamentally due
to their underlying biological assumptions. Whereas phylostratigraphy is based on
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Dollo’s law and therefore aims to detect sequence homologs along the tree of life
(detectable homology), divergence stratigraphy is based on the orthology-function-
conjecture postulating that orthologs carry out biologically equivalent functions in
di�erent organisms [51]. This di�erence shows that phylostratigraphy aims to quan-
tify the first emergence of a gene independent of its function within the extent species
of interest, whereas divergence stratigraphy aims to detect potential functional ho-
mologs between closely related species and therefore allows to infer the functional
conservation between these species.

In combination, phylostratigraphy and divergence stratigraphy allow researchers to
investigate the evolutionary origin of protein coding genes (gene age) as well as their
functional conservation between closely related species (gene divergence).

3.4 Transcriptome Indices
Phylostratigraphy and Divergence Stratigraphy generate phylostratigraphic maps
and divergence maps for a particular organism of interest. These maps are then
joined with the expression data set covering the biological process of interest. To
quantify the transcriptome conservation of these joined tables two transcriptome
indices have been introduced. These transcriptome measures quantify the transcrip-
tome age and transcriptome divergence within and between biological processes and
enable to detect stages or periods of transcriptome conservation in terms of deep
evolutionary conservation (Transcriptome Age Index = TAI) [26] or conservation
between closely related species (Transcriptome Divergence Index = TDI) [45].

Figure 3.4.5 illustrates that both gene assignments PS and DS are only weakly
correlated and therefore, can be used to study transcriptome conservation in deep
(TAI) and recent (TDI) evolutionary time scales.
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Figure 3.4.5: Linear correlation analysis between phylostrata and divergence strata. This
analysis aims to demonstrate that both methods (PS and DS) are linearly independent and
therefore, both measures TAI and TDI can be used as independent methods to quantify
transcriptome conservation [45]. The x-axis denotes the PS from 1 to 12 and the y-axis
denotes the DS ranging from 1 to 10 (deciles of dN/dS values). The result illustrates
that PS and DS are weakly correlated (Pearson = 0.2) suggesting a linear independence
between both gene age measures [45].

The Transcriptome Age Index is defined as follows:

TAIs =
qN

i=1 eis · psi
qN

i=1 eis
(1)

where eis denotes the gene expression value of gene i, in stage s and psi = 1, ..., P

denotes an integer value representing the phylostratum of gene i = 1, ...N , with P

denoting the youngest phylostratum and N denoting the total number of protein
coding genes. A small psi value denotes an old phylostratum and a high psi value a
younger phylostratum [26].

A higher value of TAI represents the mean expression of a younger transcriptome
and a lower value of TAI represents the mean expression of an older transcriptome.

19



Additionally, TAI values range from 1 to P . As a result, this measure allows us to
determine the average evolutionary age of a transcriptome within stages of develop-
ment or within biological processes in general. Together, the TAI measure quantifies
stages or periods of transcriptome conservation in biological processes.

Figure 3.4.6 shows an example visualization of TAI values across seven stages of A.
thaliana embryo development. The resulting TAI pattern follows an high - low -
high pattern of average transcriptome age and illustrates the potential advantage of
using TAI to detect stages of transcriptome conservation in biological processes. In
this figure, the scope of TAI values is between 2.9 and 3.5 which can be interpreted
as transcriptome expression of genes originating (on average) between PS 2.9 - 3.5.
Therefore, an evolutionary old set of genes is highly expressed (on average) through-
out A. thaliana embryogenesis.
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Figure 3.4.6: Transcriptome Age Indices computed for seven stages of A. thaliana em-
bryogenesis. The black line connects the transcriptome age indices across seven stages of
A. thaliana embryogenesis and grey lines represent the standard deviation generated by a
permutation test. This example pattern of Transcriptome Age Indices follows a high - low
- high pattern (hourglass pattern) of average transcriptome age throughout embryo devel-
opment [45]. The gray lines represent the standard deviation estimated by permutation
analysis.

To assess the statistical significance of observed transcriptome conservation patterns
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my co-authors and I developed three permutation tests: the flat line test, the reduc-
tive hourglass test, and the reductive early conservation test (Paper 1).

The flat line test is defined as follows:

The flat line test [45] is a permutation test based on the variance V of the TAI
values of a given TAI profile as test statistic. For any pattern di�erent from a flat
horizontal line, V should be high. In order to determine the statistical significance
of an observed variance V , we perform the following permutation test. We randomly
permute the PS values of the original data set 10,000 times, compute the variance
V from each of the 10,000 permuted data set s, approximate the histogram of the
10,000 variances V by a Gamma distribution, and report the probability of exceed-
ing the observed variance V as P-value of the flat line test [40]. The distribution
is chosen by applying Cullen and Frey graphs as probabilistic exposure assessment
techniques [52] to fit the most reasonable distribution to the corresponding permu-
tation matrices. The parameters of the Gamma distribution are estimated using
moment matching estimation [53]. The flat line test can be applied to TDI profiles
in exactly the same manner (Paper 1).

The reductive hourglass test is defined as follows:

The reductive hourglass test is a permutation test based on the following test statis-
tic. First, the set of developmental stages is partitioned into three modules, early,
mid, and late based on prior biological knowledge. Second, the mean TAI value is
computed for each of the three modules, and are denoted by Tearly, Tmid, and Tlate.
Third, we compute the two di�erences D1 = Tearly ≠ Tmid and D2 = Tlate - Tmid.
Fourth, the minimum Dmin of D1 and D2 are computed as final test statistic of the
reductive hourglass test. For a typical hourglass pattern, Tearly should be high, Tmid

should be low, and Tlate should be high, so both di�erences D1 and D2 should be
positive, so the minimum di�erence Dmin should be positive, too [40].

In order to determine the statistical significance of an observed minimum di�erence
Dmin, the following permutation test was performed. We randomly permute the
PS values of the original data set 10,000 times, compute the minimum di�erence
Dmin from each of the 10,000 permuted data sets, approximate the histogram of
the 10,000 minimum di�erences Dmin by a Gaussian distribution, and report the
probability of exceeding the observed minimum di�erence Dmin as P-value of the
reductive hourglass test [40]. The distribution is chosen by applying Cullen and Frey
graphs as probabilistic exposure assessment techniques [52] to fit the most reason-
able distribution to the corresponding permutation matrices. The parameters of the
Gaussian distribution are estimated using moment matching estimation [53] and the
goodness-of-fit is quantified by applying a Lilliefors (Kolmogorov-Smirnov) test [54].
The flat line test can be applied to TDI profiles in exactly the same manner (Paper
1).

The reductive early conservation test is defined as follows:

21



The reductive early conservation test is a permutation test conceptually identical
to the reductive hourglass test. Specifically, steps one, two, and four are identical,
and in step three the two di�erences D1 = Tmid ≠ Tearly and D2 = Tlate ≠ Tearly.
For a typical early conservation pattern, Tearly should be low, and Tmid and Tlate

should be high, so both di�erences D1 and D2 should be positive, so the minimum
di�erence Dmin should be positive, too. In order to determine the statistical signif-
icance of an observed minimum di�erence Dmin, we perform the same permutation
test as in the reductive hourglass test, yielding the probability of exceeding the
observed minimum di�erence Dmin as P-value of the reductive early conservation
test [40]. The parameters of the Gaussian distribution are estimated using moment
matching estimation [53] and the goodness-of-fit is quantified by applying a Lilliefors
(Kolmogorov-Smirnov) test [54]. The flat line test can be applied to TDI profiles in
exactly the same manner (Paper 1).

However, the following disadvantages of using the TAI have been noted [20,29]:

• TAI is only defined for absolute gene expression levels

• TAI patterns are not always robust against data transformation such as log or
sqrt

• TAI is biased by outlier age assignments or outlier weights (gene expression
values)

• TAI only captures the top 2 - 10 % of highly expressed genes

These disadvantages illustrate that the outcome of any TAI analysis must be care-
fully interpreted before drawing general conclusions on the conservation of non-
highly expressed genes [20] and were systematically investigated by me earlier [29].

The Transcriptome Divergence Index (TDI) is defined as follows:

TDIs =
qN

i=1 eis · dNi
dSiqN

i=1 eis
(2)

where eis denotes the gene expression value of gene i, in stage s and dNi
dSi

= 0, ..., D

denotes a continuous value representing the dNdS value of gene i = 1, ...N , with
D denoting the highest dNdS value and N denoting the total number of protein
coding genes. A small dNi

dSi
value represents a conserved genes and a high dNi

dSi
value

represents a divergent gene [45].

In contrast, the TDI aims to quantify the transcriptome divergence and, therefore,
allows to infer potential functional conservation of genes between closely related
species [45]. Figure 3.4.7 shows an example visualization of TDI values across seven
stages of A. thaliana embryo development. The resulting TDI pattern follows a high
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- low - high pattern of average transcriptome divergence and illustrates the potential
of using TDI to detect stages of functional conservation in biological processes. In
this figure, the scope of TDI values is between 0.19 and 0.22 which can be inter-
preted as transcriptome expression of genes being under strong negative selection
quantified in dN/dS (on average) between PS 0.19 - 0.22. Therefore, a highly nega-
tively selected set of genes is highly expressed (on average) throughout A. thaliana
embryogenesis in comparison with A. lyrata.
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Figure 3.4.7: Transcriptome Divergence Indices computed for seven stages of A. thaliana

embryogenesis in comparison with A. lyrata. The black line connects the transcriptome
divergence indices across seven stages of A. thaliana embryogenesis and grey lines repre-
sent the standard deviation generated by a permutation test. This example pattern of
Transcriptome Divergence Indices follows a high - low - high pattern (hourglass pattern)
of average transcriptome divergence throughout embryo development [45]. The gray lines
represent the standard deviation estimated by permutation analysis.

The TDI measure has similar disadvantages as proposed for the TAI [20,29]:

• TDI is only defined for absolute gene expression levels

• TDI patterns are not always robust against data transformation such as log
or sqrt

• TDI is biased by outlier age assignments or outlier weights (gene expression
values)
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• TDI only captures the top 2 - 10 % of highly expressed genes

In summary, transcriptome indices are global measures quantifying the average tran-
scriptome conservation in biological processes. Two independent measures, TAI and
TDI aim to determine the deep evolutionary (TAI) and recent evolutionary (TDI)
conservation of transcriptomes. Although both measures have disadvantages, they
provide a first indication for the potential existence of stages or periods of transcrip-
tome conservation within biological processes of interest.

The TAI and TDI measures capture the global trend of average transcriptome con-
servation throughout development or a specific biological process and represent an
average profile of the transcript contribution of all PS or DS classes. To scrutinize
the average expression trend of each individual age or divergence category, relative
expression levels were introduced to quantify the global expression trend of each age
or divergence category separately ( [26,45]).

Relative expression levels are defined as follows:

ris = f̄is ≠ f̄imin

f̄imax

≠ f̄imin

(3)

where f̄is denotes the mean expression level for a specific phylostratum i, i = 1, ..., N

and developmental stage s, s = 1, ..., S , whereas f̄imin

= min{f̄i1, ...f̄iS} denotes the
minimum over all absolute mean expression levels for a specific phylostratum i and
f̄imax

= max{f̄i1, ...f̄iS} denotes the maximum over all absolute mean expression
levels for a specific phylostratum i [26].

The relative expression value is a linear transformation of the absolute mean ex-
pression levels into the interval [0, 1] and allows comparisons between the mean
expression patterns of di�erent phylostrata having di�erent absolute mean expres-
sion levels. A relative expression value of 1 is defined to have the highest expression
in relation to the global minimum and relative expression value of 0 is defined to
represent the lowest mean expression level in relation to the global mean expression
pattern.
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Figure 3.4.8: Relative expression levels (RE) computed for seven stages of A. thaliana

embryogenesis. a RE profiles for 12 phylostrata across seven stages of A. thaliana embryo-
genesis. Each line represents the transformed average expression trend of genes that have
been classified into the same phylostratum (age category). The stage with the highest
mean expression levels of the genes within a PS (in comparison to all other stages) was
set to RE = 1, the stage with the lowest mean expression levels of the genes within a PS
(in comparison to all other stages) was set to RE = 0, the remaining stages were adjusted
according to the linear transformation. Phylostrata are classified into two groups: group
evolutionarily old contains PS that categorize genes that originated before complex/multi-
cellular plants evolved (PS1–3) and group evolutionarily young contains PS that categorize
genes that originated after complex plants evolved (PS4–12). In this example, evolution-

arily young PS are down-regulated towards the phylotypic stage in plants (Torpedo) and
up-regulated afterwards [45].

REs allow to investigate whether or not certain PS or DS categories show a common
co-expression trend and thus, are contributing to the global TAI or TDI profile. As
an example: to detect stages marking an ontogenetic transition in embryo develop-
ment, the mean relative expression levels of evolutionarily old versus evolutionarily
young PS can be visualized and the significant di�erences between both classes
statistically quantified (Fig. 3.4.9). Developmental stages of significant di�erences
between evolutionarily old and evolutionarily young RE values provide evidence for
the existence of an underlying ontogenetic transition.
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Figure 3.4.9: Mean relative expression levels of evolutionarily old versus evolutionarily

young phylostrata. Group 1 includes the RE values of evolutionarily old PS (PS1-3; black
bar) and group 2 includes the RE values of evolutionarily young PS (PS4-12; gray bar).
Asterisks denote significant di�erences between groups 1 and 2 during the torpedo stage,
marking an ontogenetic transition in A. thaliana embryo development [45]. Statistical
significance was quantified using a Kruskal-Wallis Rank Sum Test.

In summary, transcriptome indices can be computed for each stage of a biological
process of interest. These indices quantify transcriptome conservation in two in-
dependent ways: the first measure, TAI, quantifies deep evolutionary conservation
of the transcriptome whereas the second measure, TDI, quantifies recent evolution-
ary conservation of the investigated transcriptome (including potential functional
conservation). The di�erence in transcriptome conservation between stages of this
biological process is quantified by statistical tests [45] and specific patterns of dif-
ferential transcriptome conservation between stages can mark conserved intervals
within this process. Finally, relative expression level analyses allow researchers to
investigate whether or not certain PS or DS categories show a common co-expression
trend that could potentially explain the observed global pattern of transcriptome
conservation.

3.5 Software Tools to Perform Phylotranscriptomic Analy-
ses

The R programming language is widely used and highly appreciated in scientific re-
search. The advantage of R is that it provides a broad statistical framework which
consists of functions that are implemented in Fortran and C/C++ and use the con-
cept of vectorization to speed up computations [55, 56]. Computationally costly
procedures can be written in C/C++ and integrated via the Rcpp interface [57].
Based on these facts and a broad community of users and contributors to the R
language, I chose to implement myTAI and orthologr in R to provide researchers
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easy to use frameworks for performing phylotranscriptomics studies.

3.5.1 R package myTAI

So far, the myTAI package consists of 41 functions and was downloaded 5000 times
from CRAN. These 41 functions allow users to perform phylotranscriptomic anal-
yses, gene age enrichment quantification (based on Fisher’s exact test), di�erential
gene expression analyses, and automated taxonomic information retrieval. The fol-
lowing list shows the detailed functionality of each function.

Phylotranscriptomics Measures:

• TAI() : Function to compute TAI

• TDI() : Function to compute TDI

• REMatrix() : Function to compute the RE profiles of all PS or DS

• RE() : Function to transform mean expression levels to relative expression
levels

• pTAI() : Compute the PS contribution to the global TAI

• pTDI() : Compute the DS contribution to the global TDI

• pMatrix() : Compute partial TAI or TDI values

• pStrata() : Compute partial strata values

Visualization and Analytics Tools:

• PlotPattern() : Main function to plot the TAI or TDI profiles and perform
statistical tests

• PlotCorrelation() : Function to plot the correlation between PS and DS

• PlotRE() : Function to plot RE profiles

• PlotBarRE() : Function to plot the REs of PS or DS as barplot

• PlotMeans() : Function to plot the mean expression profiles of PS or DS

• PlotDistribution() : Function to plot the frequency distribution of genes
within the corresponding phylostratigraphic map or divergence map

• PlotContribution() : Plot the PS or DS contribution to the global TAI or
TDI pattern

• PlotEnrichment() : Plot the PS or DS enrichment of a given gene set

• PlotGeneSet() : Plot the expression profiles of a gene set
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• PlotCategoryExpr() : Plot the expression levels of each age or divergence
category as barplot or violinplot

• PlotGroupDi�s() : Plot the significant di�erences between gene expression
distributions of PS or DS groups

• PlotSelectedAgeDistr() : Plot the PS or DS distribution of a selected set
of genes

A Statistical Framework and Test Statistics

• FlatLineTest() : Function to perform the Flat Line Test

• ReductiveHourglassTest() : Function to perform the Reductive Hourglass
Test

• EarlyConservationTest() : Function to perform the Reductive Early Con-
servation Test

• EnrichmentTest() : PS or DS enrichment of a given gene set based on
Fisher’s exact test

• bootMatrix() : Compute a permutation matrix for building custom test
statistics

Di�erential Gene Expression Analysis

• Di�Genes() : Implements popular methods for di�erential gene expression
analysis

• CollapseReplicates() : Combine replicates in an ExpressionSet

• CombinatorialSignificance() : Compute the statistical significance of each
replicate combination

• Expressed() : Filter expression levels in gene expression matrices (define
expressed genes)

• SelectGeneSet() : Select a subset of genes in an ExpressionSet

• PlotReplicateQuality() : Plot the quality of biological replicates

• GroupDi�s() : Quantify the significant di�erences between gene expression
distributions of PS or DS groups

Taxonomic Information Retrieval

• taxonomy() : Automatic retrieval of taxonomic information for any organism
of interest

Additional Analyses

• MatchMap() : Match a PS Map or DS Map with an ExpressionMatrix object
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• tf() : Transform gene expression levels (e.g. log2 or sqrt)

• age.apply() : Age category specific apply function

• ecScore() : Compute the hourglass score for the Early Conservation Test

• geom.mean() : Optimized geometric mean computation

• harm.mean() : Optimized harmonic mean computation

• omitMatrix() : Compute TAI or TDI profiles omitting a given gene

• rhScore() : Compute the hourglass score for the Reductive Hourglass Test

For each function, I designed and implemented automated unit tests to ensure that
they compute correct values and to provide a high software quality standard.

In addition, the functions TAI(), TDI(), REMatrix(), pTAI(), pTDI(), pMa-
trix(), pStrata(), PlotPattern(), FlatLineTest(), ReductiveHourglassTest(),
EarlyConservationTest(), bootMatrix(), ecScore(), rhScore(), geom.mean(),
harm.mean() , and omitMatrix() are implemented in C++ and are integrated
into R via the Rcpp framework [57].

The functions PlotPattern(), FlatLineTest(), ReductiveHourglassTest(), Ear-
lyConservationTest(), bootMatrix() are parallelized for multicore processing on
a server or HPC cluster using the doParallel framework [58].

These optimizations reduce the computing speed of the corresponding functions by
approx. 100 - 1000 fold when compared with the same functionality implemented
in R.

Readers will find a detailed documentation of each function as well as detailed in-
formation covering the functionality of myTAI in the Appendix of this thesis.

3.5.2 R package orthologr

The R package, orthologr consists of 21 functions and was downloaded 2000 times
from Github. These 21 functions allow users to perform BLAST searches, genome
wide orthology inference methods, multiple sequence alignments, codon alignments,
genome wide dNdS estimation, and genome wide divergence stratigraphy with R.
The following list shows the detailed functionality of each function.

Perform Divergence Stratigraphy

• divergence_stratigraphy(): Perform the Divergence Stratigraphy algorithm

• DivergenceMap(): Sort dN/dS values into DS

Perform BLAST searches
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• advanced_blast(): Perform an advanced BLAST+ search (wrapper function
for BLAST command line tool)

• advanced_makedb(): Create a BLASTable database with makeblastdb
(wrapper function for command line tool makeblastdb)

• blast(): Run BLAST+ search and BLAST output parser

• blast.nr(): Run BLASTP search against local NCBI nr database and parse
the output

• blast_best(): Perform a BLAST+ best hit search between two genomes

• blast_rec(): Perform a BLAST+ best reciprocal hit (BRH) search between
two genomes

• delta.blast(): Perform a DELTA-BLAST Search between either two genomes
or against local NCBI nr database

Perform Pairwise and Multiple Sequence Alignements

• multi_aln(): Compute multiple sequence alignments (MSA) based on the
clustalw, t_co�ee, muscle, clustalo, and ma�t programs (wrapper function for
the corresponding MSA command line tools)

• pairwise_aln(): Compute pairwise alignments (either Needleman-Wunsch
algorithm or Smith-Waterman algorithm)

• codon_aln(): Compute a codon alignment based on the PAL2NAL program

Perform Orthology Inference

• orthologs(): Main genome wide orthology inference function

• ProteinOrtho(): Orthology inference with ProteinOrtho (wrapper function
for ProteinOrtho command line tool)

Perform Population Genomics

• compute_dnds(): Compute dN/dS values for a given pairwise alignment

• dNdS(): Compute dN/dS values for all orthologous genes between two genomes

• substitutionrate(): Internal function for dNdS computations

Read and Write CDS, Genomes, and Proteomes

• read.cds(): Read the coding sequences of a given organism (genome)

• read.genome(): Read the entire genome sequence of a given organism

• read.proteome(): Read the entire proteome sequence of a given organism

• write.proteome(): Save a proteome in fasta format
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The major function of orthologr, divergence_stratigraphy() has been optimized
and parallalized for multicore processing on a server or HPC cluster using the doPar-
allel framework [58]. This function allows users to run the Divergence Stratigraphy
algorithm for comparing 2 genomes on 32 cores in 30 minutes (2.5 Ghz per core).
An older implementation (Perl Script) using the same settings [59] terminated after
48h and did not provide the same functionality, reproducibility and usability.

Readers will find a detailed documentation of each function as well as detailed
information covering the functionality of orthologr and all optional algorithms im-
plemented in each function in the Appendix of this thesis.

4 Results and Discussion
In this thesis I aimed to answer fundamental questions regarding one of the historical
concepts of developmental biology by developing and applying bioinformatic tools
and statistical tests that allow to address the developmental hourglass concept on
a transcriptomic level and made these tools accessible to non-bioinformatics experts.

The implementation of the software tools orthologr and myTAI allowed me and my
colleagues to systematically investigate the active maintenance and potential func-
tional conservation of the developmental hourglass phenomenon in extant animal
and plant species. As a result of applying orthologr and myTAI to transcriptome
datasets covering animal and plant development, we found that the transcriptomic
hourglass patterns in animals and plants are not a rudiment of a process that was
once active but has progressively degraded since then, but rather reflects an on-
going process that is still detectable between closely related species. This finding
indicates that the molecular function of the hourglass might still be conserved and
under selection in extant species allowing future experimental studies to investigate
their molecular functions.

When applying myTAI to the two most important ontogenetic transitions in the
postembryonic development of A. thaliana: The transition from the embryonic to
the vegetative phase, and the transition from the vegetative to the reproductive
phase, we found that in plants these transitions also follow hourglass patterns. This
suggests that not a process specific for embryo development, but an even more
fundamental process present in all three developmental transitions might generate
this pattern. Furthermore, in practically all animal studies, the phylotypic stage
has always been associated with the onset of organogenesis. To directly address this
aspect in plant development, we performed a control experiment across flower devel-
opment. As flower development is a process that is dominated by the genesis of the
various floral organs, a causal connection between organogenesis and the phylotypic
stage would have predicted especially conserved transcriptomes during organogenic
stages of flower development. However, flower development displayed no pattern at
all, indicating that in plants (and possibly also animals) the mechanism underlying
the hourglass pattern is more fundamental than the currently favoured explanation
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for animal systems. Taken together, the organogenesis-centered explanation is not
able to explain the two post-embryonic hourglass patterns we found in plants.

In this chapter, I will first discuss future directions of orthologr and myTAI. Sec-
ond, I will elaborate on the observation that the transcriptomic hourglass pattern
in animals and plants is actively maintained as well as its implication for future ex-
perimental studies aiming to investigate its molecular function. Third, I propose a
potential scenario that might explain the observed discrepancy between organogen-
esis and the hourglass patterns found in postembryonic plant development. Lastly,
I will try to provide a synthesis of the presented findings and postulate a model
that proposes that transcriptomic hourglass patterns could be a common pattern in
many biological processes.

In order to discuss and unify my findings, some of the arguments in the following
discussion will be redundant to the arguments raised in the discussions of the in-
dividual papers. Unfortunately, this redundancy is impossible to omit, but it will
be beneficial for discussing a broader context that leads to a novel hypothesis that
might be able to explain the phenomenon of transcriptomic hourglass patterns in
biological processes and across kingdoms of life.

4.1 The Developmental Hourglass Model
One puzzling feature of the debate in this field is that while many au-
thors have written of a conserved embryonic stage, no one has cited any
comparative data in support of the idea. It is almost as though the phy-
lotypic stage is regarded as a biological concept for which no proof is
needed.
- Richardson et al. (1997)

The developmental hourglass phenomenon has a longstanding and fascinating scien-
tific history. The first scientific reports postulating this embryological phenomenon
that animal species pass through stages of morphological resemblance during mid
embryogenesis can already be found in the 18th century [11].

Karl Ernst von Baer (1828) was one of the pioneering embryologists who sought for
laws of developmental transformation that had the potential to explain the process
of animal embryogenesis and its conservation between species [60] [61][pp. 70-91],
[30][pp. 14-15]. It was noticed by the leading embryologists at his time (e.g. Johann
Meckel, Etienne Serres, and Louis Agassiz) that developmental processes of distinct
species resemble each other [11].
In the literature, however, Karl Ernst von Baer is credited to be the first person
who scientifically described the phenomenon that embryos of di�erent amniotes of-
ten show a striking morphological resemblance [60][p. 221], [15, 62]. Based on his
detailed observations he postulated his laws of embryology that correlate morpho-
logical complexity with embryonic development [3, 60,63,64]:
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(i) the more general characters of a large group of animals appear earlier
in their embryos than the more special characters

(ii) from the most general forms the less general are developed, and so
on, until finally the most special arise

(iii) every embryo of a given animal form instead of passing through the
other forms, becomes separate from them

(iv) fundamentally, therefore, the embryo of a higher form never resem-
bles any other form, but only its embryo
- Originally published in german [60][p. 224], translation taken from [65][p.
5], [64][p. 713], also reviewed in [61].

Based on von Baers observations the term developmental hourglass model was coined
more than 150 years later by Denis Duboule and Rudolf Ra� to illustrate the mor-
phological series of embryo resemblance during embryogenesis [10,12] (Figure 4.1.1).
This metaphor of the developmental trajectory of animal embryos substitutes sand
by development that flows from the top to the bottom [10][pp. 208 - 209] and aims to
categorize embryogenesis into three phases: pre-phylotypic developmental trajecto-
ries, phylotypic stage or period, and von Baerian developmental trajectories. Today,
this classification into three periods of embryogenesis is referred to as early embryo-
genesis, mid embryogenesis, and late embryogenesis and the conceptual division of
embryogenesis is performed by referring to morphological characteristics. At this
stage I would like to point out that von Baers himself was never aware of any evi-
dence that early embryogenesis might be dissimilar between di�erent animal species.
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whether in plants these patterns might instead be associated
with developmental transitions. Embryogenesis can be
viewed as such a transition, namely from a single-celled zy-
gote to a complex, multicellular embryo. To test this hypoth-
esis, we generated transcriptomic data sets that cover the two
most important ontogenetic transitions in postembryonic
development in Arabidopsis thaliana: The transition from
the embryonic to the vegetative phase, and the transition
from the vegetative to the reproductive phase. As a control,
we also analyzed a transcriptomic time series for flower de-
velopment, a process that is dominated by organogenesis. We
then performed phylotranscriptomic analyses (Domazet-
Lo!so and Tautz 2010; Quint et al. 2012; Drost et al. 2015),
which assess the phylogenetic age of transcriptomes ex-
pressed over sequential developmental stages (supplemen
tary fig. S1, Supplementary Material online), and tested the
resulting profiles for the characteristic hourglass shape. If in-
deed, postembryonic developmental processes would be gov-
erned by hourglass patterns, this would suggest that hourglass
patterns are not restricted to embryogenesis and possibly a
wide-spread phenomenon that governs multiple processes.
Furthermore, the potentially causative relationship among
organogenesis, body plan establishment, and hourglass pat-
terns would need to be re-evaluated.

Results and Discussion
To study the transition from embryogenesis to the vegetative
phase, we generated transcriptomic information for seven
sequential ontogenetic stages during seed germination
(Silva et al. 2016). The stages sampled included mature dry
seeds, 6-h imbibed seeds, seeds at testa rupture, radicle pro-
trusion, root hair (collet hair) appearance, the appearance of
greening cotyledons, and established seedlings with fully
opened cotyledons (fig. 2A and supplementary fig. S2,

Supplementary Material online). We then combined the tran-
scriptomic information with previously generated gene age
information (Drost et al. 2015). Based on an age-assignment
approach called phylostratigraphy (Domazet-Lo!so et al. 2007)
(supplementary fig. S1, Supplementary Material online), genes
can be sorted into discrete age categories named phylostrata
(PS) (Domazet-Lo!so et al. 2007). For A. thaliana, we defined
12 age classes ranging from old (PS1) to young (PS12). Next,
we computed the transcriptome age index (TAI) (Domazet-
Lo!so and Tautz 2010) for each developmental stage, which is
defined as the weighted mean of gene ages using the stage-
specific expression levels as weights. The TAI therefore de-
scribes the phylogenetic age of a transcriptome.

As shown in figure 2B, the TAI profile for the embryonic-
to-vegetative phase transition displays an hourglass pattern
with high TAI values at early and late stages and low TAI
values at intermediate stages. We confirmed this observation
through statistical tests (flat line test [Drost et al. 2015]:
P ¼ 8.92 " 10#20; reductive hourglass test (Drost et al.
2015): P ¼ 3.08 " 10#16; supplementary fig. S3a,
Supplementary Material online). The waist of the hourglass
corresponded to the phylogenetically oldest transcriptomes
stemming from the “testa rupture“ to “radicle protrusion”
stages. These stages mark the emergence of the seedling
from the seed, likely the transition period of this process, at
which germination becomes irreversible (fig. 2B). We finally
also studied the relative expression levels of genes of different
PS and found that the hourglass pattern is caused by a largely
antagonistic behavior of old and young genes (fig. 2C), similar
to what has been previously reported for embryogenesis
(Quint et al. 2012; Drost et al. 2015).

We next tested whether a transcriptomic hourglass
pattern also underlies the vegetative-to-reproductive phase
transition. During this so-called floral transition, the leaf-
producing shoot apical meristem is converted into an

FIG. 1. The developmental hourglass model in the context of differences in plant and animal development. (A) According to Raff (1996), a web of
complex interactions among developmental modules results in selective constraints during midembryogenesis. In the phylotypic period modular
interactions maximize and morphological divergence minimizes resulting in the bottleneck of the developmental hourglass model (illustration
adapted from Irie and Kuratani 2011). (B) The part of the ontogenetic life cycle that is covered by embryogenesis varies dramatically between
plants and animals. Mature plant embryos have a limited number of organs and little complexity. Most organs develop postembryonically. In
contrast to animals, the plant body plan is not fixed. It constantly changes in response to the environment. Animal development is largely
embryonic. Mature animal embryos often reach a level of complexity that is comparable with adult individuals.

Ontogenetic Transitions in Plant Development . doi:10.1093/molbev/msw039 MBE

1159

 by guest on M
ay 25, 2016

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 

Figure 4.1.1: The developmental hourglass model according to Rudolf Ra� (1996) [10]. A
web of complex interactions among developmental modules results in selective constraints
during midembryogenesis. In the phylotypic period modular interactions maximize and
morphological divergence minimizes resulting in the bottleneck of the developmental hour-
glass model. Rudolf Ra� states: The volume of the hourglass represents probability space,

with the width of the hourglass at any level representing the probability that a change can

be successfully incorporated into a developmental pathway at that level. [10] (illustration
adapted from [27] and taken from [66]).

Based on this morphological division of embryo development it is known that early
embryos of di�erent phyla exhibit a vast morphological diversity [61, 67–69]. It
has been suggested that the main reason for the diversity of early embryos is the
variability of reproductive lifestyles of animals due to ecological adaptations [69].
The main argument for this comes from Jonathan Slack (2003):

[...] organisms come to occupy di�erent niches in which they produce
either a lot of small eggs with a poor chance of survival or a few large
eggs with a good chance of survival. The presence of more yolk drives
various changes in early development, including the disposition of cleav-
ages (meroblastic rather than holoblastic) and the nature of gastrulation
movements [...]. Viviparity imposes even more drastic changes on early
embryonic life and is necessarily accompanied by the early formation of
a variety of extra-embryonic membranes and supporting structures from
the zygote as well as the mother. So early development is necessarily
diverse because reproductive behaviour is diverse. [69][pp. 311-312].

Slack’s argument is strongly supported by molecular studies comparing the genetic
regulation of early embryogenesis (reviewed in [16]). Seminal studies on the genetic
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regulation of early development provide evidence that in both vertebrates and in-
vertebrates earliest stages of development are most divergent both in terms of gene
expression and protein sequence evolution [16][p. 389 - 391]. Kalinka and Tomancak
(2012) [16] point out that the proposed measures of gene divergence are well suited
for assessing the ease with which early development can be altered and constraints
active in early development remain explainable due to the inter-connected nature
of gene regulation, that is changes in gene expression or sequence similarity do
not necessarily completely ablate the function of individual genes [16][p.389]. They
furthermore argue that knockout studies provide only partial measures of selective
constraints (= selection on genomic loci that limit the occurrence of non-e�ecting
or beneficial mutations) acting on genes contributing to early development and that
the topology of regulatory networks shown to be substantially diverse among insect
species will provide a more complete picture on the molecular nature of conserved
genes and processes in early development.

I agree with the arguments raised by Slack (2003) [69] and the conclusions presented
by Kalinka and Tomancak (2012) [16] and would like to add several aspects of con-
servation and variability of early development. Brian K. Hall (1999) [61] provides a
detailed review on the conserved stages and conserved processes of early vertebrate
development [61][pp. 69-71, p. 129, pp. 123 - 196]. Hall points out that the major
stages through which all embryonic vertebrates pass are remarkably similar [61][p.
129] :

Zygote æ Blastula æ Gastrula æ Neurula

whereas conserved processes include:

Fertilization æ Cleavage æ Gastrulation æ Neurulation.

Hence, the correct establishment of these stages and processes are common to all
vertebrate embryos. In most cases, knockout experiments that aim to prevent early
stage embryos from transitioning through these stages or inhibit the functionality
of the above mentioned processes will find a conservation across vertebrate embryos
due to the conservation of developmental transitions rather due to the total con-
servation of all genes contributing to early development. In other words, it is the
developmental transition itself that might be conserved and not particular genes that
are most active during these transitioning stages. I argue that studies investigating
the conservation of early development on the molecular level need to be aware of
the environmental e�ects on molecular changes in development (reviewed in [70][pp.
3 - 78]), the correlation between gene regulatory network topology and morphology
(reviewed in [71–80]), and the context of epigenetic e�ects on development (reviewed
in [81][pp. 424 - 438]).

In my opinion, it is not surprising to find conserved genes that are lethal to the em-
bryo or show correlations of developmental or morphological e�ects between species
if they can be linked to the generation of the above mentioned embryonic stages that
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are universal to vertebrates (as I was able to demonstrate earlier [30]). It would be
interesting and necessary to design experiments that are able to map conserved
genes that have been classified by knockout experiments to the overall gene regula-
tory apparatus that governs the morphology and transition of vertebrate embryos
(a first theoretical approach for this was introduced by Akhshabi et al. 2014 [34]).

However, as noted by Hall (1999) [61]: embryos of closely related species with pro-
foundly di�erent patterns of cleavage and/or gastrulation, produce adults with simi-
lar morphologies and modified patterns of development are adaptations for embryonic
or larval stages of the life cycle; embryos, larvae and adults can evolve indepen-
dently [61][p. 136] (see also [82–84]). This empirical observation indicates that the
nature of the conservation and divergence of genes contributing to early development
is very complex. Di�ering adaptive strategies (resulting from environmental factors)
can still produce taxon specific morphologies that are most likely generated by con-
served developmental processes and therefore, are controlled by conserved genes.
This complexity illustrates that the definition of gene expression conservation or se-
quence conservation that is in use today is not su�cient to quantify conservation on
the phylum (clade) level in order to correlate genetic constraints with morphological
divergence. I believe, however, that the emerging field of gene regulatory network
evolution will - one day - be able to elucidate the true nature of early embryogenesis.

Focusing on late animal embryogenesis on the other hand shows that the adapta-
tional strategy causing morphological diversity of late embryos is di�erent from early
embryos. Slack (2003) [69] argues that by late development, the animal embryo is
becoming quite similar to the postembryonic organism. Hence, free-living organisms
are subject to selection and must acquire distinct niches for their survival to the re-
productive stage, causing late stage embryos to be diverse. Arguably, also because
the organisms to which they give rise are diverse [69].

A more interesting aspect of early, mid, and late embryogenesis from the environ-
mental perspective is the fact that whereas early and late embryo development are
accessible by environmental factors, mid embryos are surrounded by egg cases, jelly
layers, or a uterus and therefore, are only partially exposed to environmental fac-
tors [69].

Slack (2003) [69] furthermore argues that because early-middle stage embryos min-
imally interact with the environment it might be possible that there is no specific
cause for this morphological conservation during mid embryogenesis [69]. Slack
states:

[...] it is just the stage in the middle at which the selective pressure for
change are minimized. As a result it is the stage most likely to retain the
features of the common ancestor [69][p. 312].

Although I agree that common sense based on scientific observations allows to spec-
ulate that selective pressure is minimized during mid embryogenesis in vertebrates
due to reduced interactions with environmental factors, the exact set of genes that
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also cause the morphological conservation however, cannot be predicted from this
assumption.

Slack (2003) furthermore points out that molecular biology will solve the puzzle
concerning ontogeny and phylogeny:

The rise of molecular developmental biology has enabled the identification
of a number of long-range molecular homologies in animal design that
are truely compelling. The key to understanding the strength of this
evidence is the arbitrariness of the molecular components used to build
multicellular organisms. Some molecules are not at all arbitrary; they
have to have certain features to exert their functions [69][p. 313].

I fully agree with Slack’s statement. Only a careful study of the relationships be-
tween molecular homologies in distinct species across the animal kingdom will shed
light on the origins of the animal body plan and the conservation of its establishment
during mid embryogenesis. It will also enable the quantification of the genetic pro-
cesses allowing ontogeny to create phylogeny. Furthermore, only molecular evidence
will support or dismiss the potentially causal relationships between environmental
factors and the evolution of selective constraints that limit the diversity of animal
forms.

In his article Slack (2003) concludes:

Although there are no actual body parts conserved across all animals, the
functional domains of key developmental control genes are conserved. We
pointed out that the stage of expression and action of these genes in dif-
ferent phyla corresponded to the previously defined pphylotypic stages“within
each phylum. This is not surprising if the reason for the existence of phy-
lotypic stages is considered to be the relative lack of selective pressure for
change of anatomy at the early-middle developmental stage.

I decided to include this long introduction to the developmental hourglass model
to point out the importance of correlating morphological observations with environ-
mental factors and phenomena observable on the molecular level. In my opinion,
new insights on the origin of animal body plan conservation and establishment can
only be obtained when all three aspects: environment, morphology, and molecular
constraints are fully included into the modelling (hypothesis generation) process,
that I try to achieve in this thesis.

In summary, the developmental hourglass model is a metaphor to categorize animal
embryogenesis into three morphological states: early, mid, and late embryogenesis.
This categorization enables us to quantify the selection pressures acting on each
state of embryo development separately. It furthermore, allows us to detect corre-
lations between the morphological conservation of animal embryos across species,
environmental factors, and the genetic machinery that controls the corresponding
developmental processes. Hence, the correlation between phenotype and genotype
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during the phylotypic period must be investigated from both perspectives: from the
ecological and from the molecular perspective. This can be motivated by the consen-
sus of evolutionary developmental biology research of the past 30 years concluding
that ontogeny creates phylogeny and therefore only genetic changes resulting in dif-
ferent developmental outcomes can be exposed to the environment and therefore
exposed to selection processes [85].

For this reason, in the following section I will summarize the scientific knowledge
covering ecological, developmental, and molecular evidence supporting the correla-
tion with and a possible cause for the morphological and molecular conservation of
animal embryos during the phylotypic period. Furthermore, the following chapter
will point out the studies (including my own findings) postulating a conserved phy-
lotypic period in plant embryogenesis and fungi development on the molecular level
and I will correlate these observations with the findings and conclusions derived
from the animal field.

4.2 From Morphology to Genetics: The Phylotypic Period
on the Molecular Level

Homology is indeed morphology’s central conception.
- Julian S. Huxley

The presumption that the basic body plan of the phylum is laid down at the
stage of maximal morphological resemblance was first proposed by Friedrich Seidel
(1960) [86] who defined this stage of maximal morphological resemblance in insects
as Körpergrundgestalt [86], [61][p. 228]. This term was later adapted to objectively
define basic body patterns in animals [9, 13, 87] and was picked up by Jack Cohen
in 1977 who denoted this body pattern as phyletic [88]. Klaus Sander (1983) [13]
proposed to rephrase the phyletic stage to phylotypic stage due to the misconcep-
tion that the term phyletic refers to phylogenesis rather than to characters typical
of individual phyla, which is still in use today [61], [13][p. 140]. To overcome this
misconception, Sander defined the phylotypic stage as the first stage that reveals the
general characters shared by all members of the phylum [13][p. 140] [13][p. 140].

In my opinion Sander (1983) [13] provides the best morphological explanation of the
phylotypic stage that can be summarized as follows:

Incidentally it is the stage separating ’primitive development’ from ’defini-
tive development’ in the terminology of the classical embryologist (e.g.
Schleip, 1929). Di�erent members of a phylum embark on ontogenesis
from very di�erent starting conditions [...]. Generelly speaking, the phy-
lotypic stage is the stage of greatest similarity between forms which, dur-
ing evolution, have di�erently specialized both in their modes of adult life
and with respect to the earliest stages of ontogenesis which are strongly
influenced by special modes of reproduction (e.g. ovipary v. vivipary).
It is also the earliest stage which on a general scale permits establishing
homologies (Spemann, 1915) [13][p. 140], [89], [90].
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Hence, Sander argues that the transition from primitive development to definitive
development marks a crucial phase during embryogenesis which is reflected by the
similarity between organismal forms. This statement is particularly interesting, be-
cause although characterized by classical embryological features, this developmental
transition is a crucial step for any developing embryo. However, Sander does not
present a clear correlation between this developmental transition and the underly-
ing gene regulatory processes that are exposed to selective pressures due to their
coordinating role in establishing this important transition.

It is tempting to assume that only this transition from primitive development to
definitive development, hence the transition from cell di�erentiation to cell growth,
which is shared among all multicellular organisms, is the only cause for the mor-
phological resemblance of embryos. Even if this would be the case, this simple ex-
planation is not capable of predicting the exact set of genes that are highly exposed
to negative selection. It therefore, lacks the potential to predict the genetic mech-
anisms that cause the morphological resemblance between species. This illustrates
that so far the phylotypic stage was defined and characterized by the homology of
morphological features. Finally, technologies in molecular biology were not su�cient
enough yet to quantify the evolutionary conservation on the molecular level in that
particular stage of development.

Apart from terming and defining phylotypic stages, many di�erent embryonic stages
have been proposed to fulfill the definition of being phylotypic in the past 150
years [13,67,91,92] (reviewed in [17]). Ernst Haeckel (1874) argued that the tailbud
stage fulfills the criteria for being phylotypic [93], William Ballard (1981) argued for
the pharyngula stage [91], Lewis Wolpert (1991) argued for the early stage of somite
segregation just after neurulation [94], Slack, Holland, and Graham (1993) also ar-
gue for the tailbud stage, because the zootype is most clearly expressed during the
tailbud stage [95], Denis Duboule (1994) argues for the stage during gastrulation
between the headfold stage and tailbud stage [12], and Galis and Metz (2001) argue
for the onset of neurulation until the formation of the last somites [96].

This inconsistency was extensively reviewed and discussed by Michael Richardson
(1995) who reexamined the morphological data relating to developmental timing
in somite-stage embryos based on the published literature [14]. In his 1995 study,
Richardson found convincing patterns of heterochrony (= evolutionary changes in
the timing of developmental events of a descendent ontogeny relative to the state
in an ancestral ontogeny [97][p. 193]) during vertebrate evolution that strongly
a�ected the shifts of phylotypic stages in di�erent vertebrates [14]. From these
patterns he concluded that the phylotypic stage is poorly conserved and is more
appropriately described as a phylotypic period [14]. To provide further evidence
for his conclusions, Richardson et al. (1997) published a study presenting the first
review of the external morphology of tailbud embryos since Haeckel, illustrated with
original specimens from a variety of vertebrate groups [15]. They found that embryos
at the tailbud stage show variations in somite number, embryo sizes and other forms
due to allometry, heterochrony, and di�erences in body plan [15]. From this seminal
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study Richardson et al. concluded:

Contrary to recent claims that all vertebrate embryos pass through a stage
when they are the same size, we find a greater than 10-fold variation in
greatest length at the tailbud stage. Our survey seriously undermines
the credibility of Haeckel’s drawings [..]. In fact, the taxonomic level of
greatest resemblance among vertebrate embryos is below the subphylum.
The wide variation in morphology among vertebrate embryos is di�cult
to reconcile with the idea of a phylogenetically-conserved tailbud stage,
and suggests that at least some developmental mechanisms are not highly
constrained by the zootype [15].

In my opinion, the most important conclusion presented by Richardson et al. was
drawn with regard to molecular studies. They pointed out: the dangers of drawing
general conclusions about vertebrate development from studies of gene expression in
a small number of laboratory species [15].

This striking evidence provided by Richardson et al. illustrates the di�culty to
quantify the biological variation of embryo development in empirical studies. This
lack of quantification on the morphological level makes it di�cult to reduce mid
embryogenesis to a common morphological stage of intra-phylum resemblance. It,
furthermore, supports arguments raised by Adam Sedgewick (1894), Frank Lillie
(1919), Gavin deBeer (1940), and Rudolf Ra� (1996) who criticized the reduction
of embryogenesis to the morphological resemblance and a unifying stage [98], [65][p.
5], [10, 15, 62]. Instead, it motivates comprehensive studies on the molecular level
that aim to quantify the exact genetic determinants for inter-species conservation
of gene function and gene expression that might be causal for this morphological
phenomenon.

The first studies examining this morphological phenomenon using molecular exper-
iments were already performed in the 1980s (reviewed in [30]), but as mentioned
above the first transcriptome study to systematically investigate the genetic con-
servation throughout embryogenesis was performed by Domazet-Loöo and Tautz in
2010 [26]. To map the morphological phenomenon of animal embryo development
to the genetic level they first presented a method to quantify the evolutionary age
of protein coding genes termed phylostratigraphy [49]. Second, they combined this
approach with developmental transcriptome across the zebrafish life cycle (spanning
development from embryogenesis to senescence). Third, they developed a transcrip-
tome index to quantify the transcriptome conservation throughout the life cycle of
zebrafish.

In general, phylostratigraphy aims to map gene origination events to a class of se-
quenced genomes which is consistent with the evolutionary history of the tree of life
(= detectable homology). In particular, phylostratigraphy aims to detect putative
functional genomic sequences that are conserved (homolog) between the organism of
interest and the most distant common ancestor and classifies matching sequences to
the taxonomic category of the most distant hit. In this regard, gene age is defined
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by the taxonomic category of the most distant detectable homolog and is purely
based on sequence homology. These conserved sequences allow us to trace back
the putative origination of this particular genomic sequence along the tree of life,
answering the question when (in which kingdom/phyla/domain/species etc.) this
sequence might have emerged. The resulting table generated by the phylostratig-
raphy algorithm stores the gene age assignment of each protein-coding gene of the
query genome and is called phylostratigraphic map (see Fig. 3.2.4) [26,49].

A procedure for associating a phylostratigraphic map with expression data of the
developmental process of interest is based on transcriptome indices. The goal of
these indices is to obtain the average evolutionary age of the transcriptome for each
stage of the biological process of interest. In brief, this procedure works as follows:
Compute for each stage the weighted mean of gene age, where the weights are the
stage-specific expression levels. This weighted mean is called transcriptome age in-
dex (TAI; [26]), and the profile of stage-specific TAI values across all stages of the
biological process is called TAI profile. Stages with high TAI values are stages where
evolutionarily conserved genes are more lowly expressed and evolutionarily less con-
served genes are more highly expressed than in other stages.

By applying this phylotranscriptomics approach, Domazet-Loöo and Tautz found
that the phylotypic stage does indeed express the evolutionarily oldest transcrip-
tome and that evolutionarily younger genes are expressed during early and late
development, faithfully mirroring the developmental hourglass model on the mor-
phological level [26]. So far, several evolutionary transcriptomics studies were able
to provide supporting evidence for the gene expression pattern conservation dur-
ing the phylotypic period in animals [25, 27, 28, 31, 32, 35–39, 41, 42]. Two main
approaches exist to quantify transcriptome conservation. The first approach, phy-
lotranscriptomics, is based on gene age inference combined with gene expression
information [26]. The second approach, comparative transcriptomics [25,27,32,35],
is based on gene orthology inference and quantification of gene expression pattern
conservation. This thesis focuses on the phylotranscriptomic method, but a detailed
review on comparative transcriptomics can be found in Roux et al. (2015) [99]. The
phylotranscriptomic results suggest that the evolutionary transcriptomics approach
proposed by Domazet-Loöo and Tautz is capable of mapping this morphological phe-
nomenon to the molecular level (see Methods).

Motivated by the success of the phylotranscriptomic method, in 2012 we asked the
question whether or not a similar pattern of transcriptome conservation could be
found in the second kingdom of life that evolved embryogenesis as a developmental
program to establish multicellularity, that is plants. Surprisingly, we were able to
provide evidence for the existence of a similar pattern of transcriptome conserva-
tion (dissimilar - similar - dissimilar) for Arabidopsis thaliana embryogenesis [29,45].
This finding was surprising due to the lack of morphological evidence that would
suggest the existence of a developmental hourglass phenomenon in plants (there is
only some evidence that mid-stage embryos of dicots are morphologically conserved;
see [100]). Whereas animal embryos seem to follow a morphological hourglass pat-
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tern, plant embryos do not follow a clear morphological pattern of dissimilarity -
similarity - dissimilarity between related plant species [30, 45] (e.g. monocot and
dicot middle stage embryos di�er dramatically on the morphological level [100]).
However, the existence of a transcriptomic hourglass pattern in plants suggests that
morphological and molecular patterns might be uncoupled, and thus raises funda-
mental questions about the actual correlation between the morphological hourglass
phenomenon and body plan establishment in animals.

In other words, our findings indicate that body plan establishment and organogen-
esis are not the most fundamental processes that are causal for the emergence of
a phylotypic period in animals and that this correlation is not su�cient enough to
explain the observation of a molecular hourglass pattern in plants. We therefore
speculated that convergent evolution of a molecular hourglass pattern in animals
and plants suggests operation of a fundamental developmental profile controlling
the expression of evolutionarily young or rapidly evolving genes across kingdoms
and that such a mechanism may be required for enabling spatio-temporal organiza-
tion and di�erentiation of complex multicellular life in general [45].

This uncoupling hypothesis is supported by Cheng et al. who reported a molecular
hourglass pattern in fungi development [46], the third kingdom of life that estab-
lished multicellularity. In this study, Cheng et al. performed the phylotranscriptomic
method for the mushroom-forming fungus Coprinopsis cinerea and found that the
young fruiting body is the stage that expresses the evolutionarily oldest transcrip-
tome, whereas the primordium and mature fruit body express an evolutionarily
younger transcriptome. The fungus, thus follows a pattern of transcriptome dissim-
ilarity - similarity - dissimilarity as observed in animals and plants [46].

In summary, the phylotypic period has been correlated with the transition from
primitive development to definitive development marking a crucial phase during em-
bryogenesis which is reflected by the similarity between organismal forms [13]. This
crucial transition was then interpreted as partial explanation for the causal connec-
tion between inter-phylum resemblance and body plan establishment (organogene-
sis). Recent findings proposing molecular hourglass patterns in animals and later
observations postulating the existence of molecular hourglass patterns in plant em-
bryogenesis and fungi development, however, raise the important question whether
or not the transition from primitive development to definitive development reflects
the only causal connection between body plan formation, organogenesis, and mor-
phological resemblance or whether a more fundamental molecular mechanism is
causing both morphological and transcriptome conservation during the establish-
ment of multicellular organisms across kingdoms.

4.3 Evidence for Active Maintenance of Phylotranscriptomic
Hourglass Patterns

The controversy about the developmental hourglass model and especially about the
hourglass versus early conservation model experiences a new wave of arguments due
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to the recent finding of transcriptome conservation in animal and plant embryogene-
sis. For decades it was debated whether the earliest developmental stages of animal
embryos are considered foundational and any apparent conservation in later stages is
the delayed realization of the conservation of genes and proteins acting early (early
conservation model [16]), or if conservation is greatest in mid-embryogenesis and
is the result of the need for coordination between growth and patterning when the
body plan is being built (developmental hourglass model [16]).

These and other models have traditionally relied on subjective anatomical com-
parisons, and a lack of measurable quantitative approaches has fed controversial
discussions over decades [15,18,19,85,101,102]. Although some of these recent stud-
ies favored the early conservation model [18,19], the majority of them supported the
developmental hourglass model [21–44].

Later, several studies demonstrated that whole transcriptomes of fly, worm, sev-
eral vertebrates, and cress followed an hourglass pattern [25–28,32,35, 43, 45]. This
was supported by several additional studies. Among them was for example a study
proposing that the conservation of miRNA expression displays an hourglass pattern
similar to that observed for protein-coding genes [103], a study in mammals showing
that distinct patterns of sequence evolution apply to enhancers with transient in vivo
activities in mammalian development and, therefore, are in favour of the hourglass
model [104], and an epigenetic study reporting widespread DNA demethylation of
enhancers during the phylotypic period in zebrafish, Xenopus tropicalis, and mouse
indicating that DNA methylation might be an upstream regulator of phylotypic en-
hancer function [44].

In this thesis, I systematically analyzed embryonic transcriptomes of two animal
and one plant species. My co-authors and I found that the developmental transcrip-
tomes of fly, fish, and cress follow a transcriptomic hourglass pattern and are actively
maintained in extant species. Because the evaluation of transcriptomic patterns in
past studies were subjective or relied on statistical tests with di�erent limitations,
we developed a statistical framework that extends the Flat Line Test [45], the Re-
ductive Hourglass Test [105], and introduced the Reductive Early Conservation Test
to quantify the possibility that a observed transcriptomic pattern might favour the
early conservation model. These tests allow researchers to objectively assess tran-
scriptome conservation profiles for any pattern significantly deviating from a flat
line, for the significance of high–low–high or low-high-high patterns. In the both
latter cases, a prerequisite is a meaningful division of the set of developmental stages
into three modules based on a priori biological knowledge.

Across the three species investigated, TAI analyses showed that early and late em-
bryonic transcriptomes were consistently young (high TAI) and that the oldest tran-
scriptomes were always observed during the presumptive mid-embryonic phylotypic
period of each species (low TAI), which represents one of the hallmarks of the de-
velopmental hourglass model. For all three species we found, that the reductive
hourglass test and the reductive early conservation test supported the hourglass
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model and rejected the early conservation model, providing objective support for
the developmental hourglass model [40].

The central question arising from these results is whether or not the transcrip-
tomic hourglass pattern might still be associated with a biological function in ex-
tant species. If so, the transcriptomic hourglass pattern might either be causal for a
downstream biological function or be the result of such a possible function. Alterna-
tively, the transcriptomic hourglass pattern might simply represent an evolutionary
relic of a once important process that continues to exist in a rudimental status.
Only if this pattern were actively maintained, it would be possible to transform
the currently predominantly descriptive approaches to a functional level. Hence,
answering this question is important for understanding the still unknown function
of the hourglass pattern in the long term and for deciding if it is in principle pos-
sible to uncover the molecular function of the transcriptomic hourglass pattern by
performing experiments on extant species [40].

Neither distance-based approaches nor studies of transcriptome indices can address
the evolutionary time of emergence of the hourglass pattern in a satisfactory manner.
Likewise, its active maintenance in extant species cannot be addressed by distance-
based transcriptome comparisons or studies of TAI profiles. However, studies of TDI
profiles that consult evolutionary signatures from only recent evolution are arguably
best suited for investigating the active maintenance issue.

To date, TDI profiles of animal species had not yet been reported. As the clos-
est related fish species with a completely sequenced genome diverged from D. rerio
greater than 150 Ma, this relatively long time span does not qualify to make assump-
tions on very recent evolutionary trends. Hence, interpretation of these results is less
meaningful than those of D. melanogaster and A. thaliana, whose closest relatives di-
verged only approximately 3 and 5–10 Ma ago. The statistical evaluations presented
in this thesis show a significant hourglass-like pattern with the minimum during the
presumptive phylotypic period, consistent with the developmental hourglass model.
Hence, the TDI data shown propose a scenario in which, across kingdoms, the tran-
scriptomic hourglass pattern is actively maintained through stabilizing selection [40].

Interestingly, while vertebrate and invertebrate embryogenesis also follows an hour-
glass pattern on the morphological level, morphological hourglass patterns are ab-
sent from plant embryogenesis. In contrast, comparative embryology in flowering
plants, for example, suggests that the complete process of embryogenesis is mor-
phologically highly conserved [106]. Mature plant embryos are anatomically much
less complex than mature animal embryos. In a simplified manner, animals (such
as mammals and many other vertebrates) initiate genesis of the vast majority of
organs largely simultaneously in the phylotypic period during embryogenesis. In
contrast, during embryogenesis many plant species including A. thaliana establish
only a limited set of major organs, consisting of hypocotyl, petioles, cotyledons, the
embryonic root, and two stem cell niches (meristems). All other organs are initi-
ated in these two apical meristems or in secondary meristems and are formed only

44



during postembryonic development, where also morphological di�erences between
species are being established. Possibly, plant embryogenesis is not complex enough
to generate morphological di�erences between species, without which a morpholog-
ical hourglass pattern is obsolete [40].

In view of the lack of a morphological hourglass pattern in plants, one could con-
jecture that although the transcriptomic hourglass pattern might be actively main-
tained in extant species across kingdoms, transcriptomic and morphological hour-
glass patterns do not necessitate each other. They might even be uncoupled, which
in turn would cast doubt on a possible causal relationship between them.

In general, the TAI approach allows researchers to detect patterns of transcriptome
conservation in biological processes. Stages of maximal transcriptome conservation
might point to functional programs that are evolutionarily more conserved than
other functional programs. The TDI approach will then clarify whether or not these
stages or periods of maximal transcriptome conservation are still conserved between
closely related species. In case these conserved stages are actively maintained, re-
searchers can design experiments to alter or inhibit these functional programs and
study the e�ects on the genetic and morphological level [40]. I believe, that these
stages of maximal transcriptome conservation are ideal periods to study the corre-
lation between genotypic changes and their e�ects on the phenotype. In the context
of embryogenesis, phylotypic periods in animals and plants will be ideal stages to
study environmental, epigenetic, and gene regulatory e�ects on development. Such
studies might elucidate how developmental programs can change over evolutionary
time scales and how this change constrains or promotes phenotypic diversification.

Together, the results presented in this theses allow me to conclude that the hour-
glass patterns in animal and plant embryogenesis are actively maintained in extant
species. As evident for most evolutionary questions experimental studies of processes
that were functional in extinct species but have become nonfunctional in the course
of evolution are incomparably more di�cult to study than processes still functional
in extant organisms. My co-authors and I argue that due to its active maintenance
the commonality and di�erences between the hourglass phenomena in animals and
plants can be systematically studied and have the potential to significantly advance
our understanding of the developmental hourglass phenomenon and its correlation
with body plan establishment.

4.4 Post-embryonic Hourglass Patterns Mark Ontogenetic
Transitions in Plant Development

The most recent studies on the last common ancestor (LCA) of animals and plants
suggests that the animal and plant lineages split approx. 1.6 - 1.8 billion years
ago [107]. Based on this molecular dating and the absence of paleontological evi-
dence it is believed that this LCA of animals and plants was a unicellular organism
and that multicellularity and embryogenesis must have evolved independently in
both kingdoms [45,107].
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Hence, the well studied developmental hourglass concept in animals did not consider
the plant kingdom. Our finding postulating that plant embryos also follow a tran-
scriptomic hourglass pattern that is comparable to the animal transcriptomic hour-
glass pattern however, raises fundamental questions about the origination, common-
ality, and maintenance of these molecular hourglass patterns in both kingdoms [45].

It is evident due to the limited complexity of plant embryogenesis (limited extent of
organogenesis), that the main hypothesis for the existence of developmental hour-
glass patterns proposed by animal studies claiming that organogenesis and body
plan formation are the main constraints that shape this pattern [6], will be less
powerful to predict the observation of a transcriptomic hourglass pattern in plants.
However, to test this hypothesis derived from animal studies [6, 10] in plants we
designed experiments to capture the transcriptome conservation in the two major
postembyronic transitions in the life cycle of A. thaliana: the transition from the
embryonic to the vegetative phase [108,109] and the transition from the vegetative to
the reproductive phase (flowering). As a control, we quantified transcriptome con-
servation for flower development, a process that is dominated by organogenesis [110]
(Paper 3). If indeed, postembryonic developmental processes in plants would be
governed by hourglass patterns, this would suggest that transcriptomic hourglass
patterns are not restricted to plant embryogenesis and possibly a wide-spread phe-
nomenon that governs multiple processes. Furthermore, the potentially causative
relationship among organogenesis, body plan establishment, and hourglass patterns
that explains the animal phenomenon to date, would need to be re-evaluated.

My co-authors and I found that in plants not only embryogenesis but also the
embryo-to-vegetative and vegetative-to-reproductive phase transitions progress through
a stage of evolutionary conservation with older transcriptomes being active in mid
development. Thus, the transcriptomic hourglass pattern which was previously dis-
cussed only with regard to embryogenesis, appears to be more widespread, at least
in plants. Because no new organs are established during these two postembry-
onic phase transitions, our results also support the aforementioned conjecture that
transcriptomic hourglass patterns are not specifically associated with organogenic
processes [45]. This conjecture is crucial, because it challenges the current hypothe-
sis that organogenesis and body plan formation are the major constraints that shape
the developmental hourglass in animals.

We hypothesize that a transcriptomic hourglass pattern is a feature of multiple de-
velopmental processes that simply require passing through an organizational check-
point serving as a switch that separates two functional programs [66]. This hypoth-
esis is supported by the fact that although di�erent sets of genes contribute to the
transcriptome in the three major transitions of the plant life cycle: embryogenesis,
embryo-to-vegetative, and vegetative-to-reproductive phase transitions, all three de-
velopmental processes show a comparable pattern of transcriptome conservation.

Hence, the stage resembling the waist of the hourglass marks the conservation of
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di�erent developmental processes. If these stages are indeed organizational check-
points serving as a switch that separates two functional programs we would expect
to find crucial transcriptome switches during these stages. Studies investigating
these developmental processes indeed provide evidence that this is the case.

For embryogenesis, the most conserved transcriptome can be found at the stage
shown to be separating the developmental programs regulating cell di�erentiation
and growth [111, 112]. For the embryo-to-vegetative transition it was shown that
two transcriptional phases are separated by testa rupture [108] (Paper 4). The first
phase is marked by large transcriptome changes as the seed switches from a dry,
quiescent state to a hydrated and active state. The second transcriptional phase
indicate a role for mechano-induced signaling at this stage and subsequently high-
light the fates of the endosperm and radicle: senescence and growth [108] (Paper
4). The waist of the hourglass of the embryo-to-vegetative transition marks testa
rupture as period of maximum transcriptome conservation and thus, supports the
organizational checkpoint hypothesis.

During floral transition the leaf-producing shoot apical meristem is converted into
an inflorescence meristem, which forms flowers. However, the actual transition oc-
curs several days before bolting [66]. We observed that the waist of the hourglass
of floral transition marks stages of maximal expression of floral homeotic genes and
other marker genes known to regulate the transition from vegetative-to-reproductive
growth [66].

It remains to be shown however, that organizational checkpoints are a feature of
multiple developmental processes that also exist in animal development such as
metamorphoses etc. The finding that fungi development also follows a transcrip-
tomic hourglass pattern [46] indicates that these features might indeed exist in
multiple biological processes and across kingdoms of life. Our hypothesis predicts
that the period of maximum transcriptome conservation in fungi development (in
the reported case: young fruiting body [46]) marks an organizational checkpoint
serving as a switch that separates two functional programs (e.g. for this specific
case in fungi: cell di�erentiation and growth).

As I introduced before, evolutionary developmental biology research of the past 30
years concludes that ontogeny creates phylogeny and does not recapitulate phy-
logeny [85]. Mutations in the regulatory regions of genes are able to change the ex-
pression pattern of the corresponding gene. Changes in expression patterns are then
able to change phenotypes and these novel phenotypes are exposed to the environ-
ment. Over time, these novel phenotypes are either positively or negatively selected
by the environment and only beneficial phenotypes spread through populations [85].
Depending on environmental conditions, these populations in evolutionary time can
evolve into new species and thus, over long periods of time ontogenetic changes on
the genetic level are able to create new species [85]. On the other side, conserva-
tion of gene expression patterns are able to limit phenotypic diversification [85]. In
summary, changes in gene expression can generate novel phenotypes and the con-
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servation of gene expression can limit phenotypic diversification.

One interpretation of organizational checkpoints could be that they mark stages
in biological processes that show conserved expression patterns. In case of animal
embryos, this conservation of expression patterns during mid-embryogenesis might
limit morphological diversification and, thus, results in the conserved morphology
of animal embryos during this stage (see also discussions in [30,100,113]). A plausi-
ble explanation for the existence of conserved expression patterns during this stage
might be that the previously introduced transition from primitive development to
definitive development marks this mid-embryonic stage in animals. These transi-
tional stages that separate two functional programs of development (e.g. cell di�er-
entiation and cell growth) are highly susceptible to environmental factors, because
any environmental influence on the developmental program during these stages could
result in malformation or lethality of the embryo [10,12].

In contrast, for plants I provided evidence suggesting that the expression of embryo
defective genes (= essential genes for embryogenesis [114]) is maximized during mid-
embryogenesis in A. thaliana [30,40]. This finding indicates that the transcriptomic
hourglass pattern found in A. thaliana not only marks an analogous organizational
checkpoint separating primitive development and definitive development as the one
found in animals, but that this checkpoint is also susceptible to environmental fac-
tors [100, 106, 113]. This susceptibility is evident due to the increase in lethal ef-
fects during mid-embryogenesis in A. thaliana when expression of embryo defective
genes in this period is inhibited. Future work needs to elucidate how organizational
checkpoints evolve in the first place and how the conservation of these checkpoints
constrains morphological diversification (see also [30,100,113]).

Together, based on the evidence presented in this thesis I speculate that the devel-
opmental hourglass pattern found in animal embryogenesis might not be (causally)
shaped by organogenesis and body plan establishment, but rather is the result of
the conserved organizational checkpoint that separates early embryogenesis and mid
embryogenesis which subsequently constrains morphological variability as well. The
fact that transcriptomic hourglass patterns evolved independently in both animal
and plant embryogenesis and independently mark organizational checkpoints that
separate primitive development and definitive development suggests that organiza-
tional checkpoints are common features of developmental processes. These check-
points reflect the conservation of developmental programs (order of events) and not
the conservation of specific homologous genes (e.g. homologs between animals and
plants). This hypothesis is supported by the findings of my co-authors and me that
show that not only embryo development but also post-embryonic developmental
processes in A. thaliana follow transcriptomic hourglass patterns which mark onto-
genetic transitions. Whether organizational checkpoint not only mark transitions of
two functional programs, but also mark stages or periods of environmental suscepti-
bility and therefore limit diversification at this period in general (for any biological
process that has a checkpoint) remains to be shown.
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5 Conclusions and Outlook
In the past, the developmental hourglass concept has been used to study the relation-
ship between morphological (phenotypic) conservation and body plan establishment.
It seemed evident in animal embryogenesis that body plan establishment during em-
bryogenesis can be linked with the morphological hourglass pattern describing the
resemblance between animal embryos of di�erent species throughout embryo devel-
opment.

The fact that in animals transcriptome conservation throughout embryogenesis also
follows an hourglass pattern and mirrors the morphological pattern, suggested that
genotypic conservation and phenotypic conservation might be causally linked. How-
ever, the surprising finding that plant embryos also follow a transcriptomic hourglass
pattern in the absence of an analogous morphological pattern followed by the finding
that transcriptomic hourglass patterns are present in post-embryonic development
of plants in which body plan establishment is absent, raises fundamental questions
about the proposed causal relationship between genotypic conservation and pheno-
typic conservation of animal embryos.

In this thesis, I discussed my observation that transcriptomic hourglass patterns in
animal and plant embryogenesis are actively maintained and that post-embryonic
hourglass patterns in plants are decoupled from organogenesis and body plan es-
tablishment. This finding needs a more fundamental explanation than body plan
establishment (which is currently the most supported hypothesis explaining the an-
imal phenomenon). My co-authors and I hypothesized that stages of minimum
transcriptome divergence mark organizational checkpoints serving as a switch that
separates two functional programs. In animal embryogenesis these checkpoints coin-
cide with phylotypic periods that were defined based on morphological observations.
In particular, it is evident that in case of embryo development these two functional
programs that are separated by a organizational checkpoint might be cell di�eren-
tiation (early embryogenesis) and growth (mid/late embryogenesis).

This view is in accordance with the notion of primitive development transitioning to
definitive development during embryogenesis that was introduced by Klaus Sander.
The organizational checkpoint hypothesis presented in this thesis provides a testable
model for this transition. It predicts that the transition from early embryogenesis
to mid-embryogenesis which is shared among all multicellular organisms is causal
for the morphological resemblance of embryos and provides a more fundamental ex-
planation than the organogenesis hypothesis.

In post-embryonic development of plants such as germination and flowering these
functional programs are most likely to be di�erent from embryogenesis (e.g. during
testa rupture in germination marking the emergence of the seedling from the seed,
likely the transition period of this process, at which germination becomes irreversible
as well as during floral transition).
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Evidence discussed in this thesis indicates that organizational checkpoints might be
highly susceptible to environmental factors and, thus, might limit diversification in
general. I speculate, that the reason why the transition of two functional programs
might be present in many biological processes and might be highly susceptible to
environmental factors is that the key regulators that govern the corresponding tran-
sition are constrained by evolutionary history (Dollo’s law).

In particular, these key regulators (e.g. transcription factors in higher hierarchies of
gene regulatory networks) evolved to govern a specific sequential order of events (e.g.
order of developmental programs). This sequential order of events is constrained by
evolutionary history and any drastic change of this order due to mutations or envi-
ronmental factors will result in malfunction or lethality.

I argue, that organizational checkpoints mark stages in biological processes in which
the sequential order of biological events (e.g. developmental programs) is maximally
conserved due to the evolutionary constraints acting on their key regulators. The
conservation of expression patterns of these regulators is crucial to maintain the
sequential order of these events. Hence, environmental factors or other genetic fac-
tors that cause the change of expression patterns of these regulators might result
in the disruption of the sequential order of events, because changes of expression
patterns of key regulators can result in changes of expression patterns of hundreds
or thousands of target genes.

In summary, I speculate that changes of gene expression patterns of key regulators
cause a disruption of the sequential order of events that guarantee the successful
establishment of a specific biological process. In the context of embryogenesis, this
sequential order is the correct establishment of organs (animals) or establishment
of meristems (plants). This sequential order of events is maximally susceptible to
environmental and genetic factors during transitions separating two functional pro-
grams (organizational checkpoints). In both, animal and plant embryogenesis these
organizational checkpoints mark the transition from cell di�erentiation (primitive
development) to cell growth (definitive development). Future studies need to deter-
mine these key regulators and need to investigate to which degree the sequence of
events can be changed in comparison with non-organizational stages.

For example, the developmental sequence common to animal embryogenesis in dif-
ferent species (as introduced earlier): Fertilization æ Cleavage æ Gastrulation æ
Neurulation has a particular sequential order that evolved over evolutionary time.
Changes in gene expression of the key regulators that govern these transitions might
therefore disrupt the correct sequence of these developmental programs and might
lead to malfunction or death of the embryo. This example shall illustrate how the
sequence of developmental programs itself (once established during evolution) is
constraining diversification (Dollo’s law). The reason why animals did not evolve
any other sequence of developmental programs might be that any change in this
sequential order has been disadvantageous for the embryo or was not able to estab-
lish complex animal forms. Hence, in the context of embryogenesis developmental
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transitions are crucial for the correct establishment of complex multicellularity. In
the context of biological processes transitions are crucial for executing the correct
order of functional programs to establish, maintain, or govern the corresponding
biological process.

Together, the organizational checkpoint concept challenges the previous causal ex-
planation that links the emergence of developmental hourglass patterns to organo-
genesis and body plan establishment and in contrast proposes that in fact it is the
organizational checkpoint which is under negative selection and thus, potentially
causal for shaping and constraining all downstream processes. Future studies will
illuminate whether or not this hypothesis holds true and will investigate whether or
not organizational checkpoints are a common mark of many biological processes.

The above discussed analyses could not have been performed without the software
tools myTAI and orthologr. I developed these open source R packages to be able to
perform optimized and reproducible phylotranscriptomic analyses. The overall aim
however, was to not only apply these tools to my own field of research, but to make
them modular, reproducible, optimized, and user-friendly enough so that researchers
(including non-bioinformatics experts) are able to apply phylotranscriptomic analy-
ses to any transcriptome dataset and any biological process of interest. These tools
will allow future studies to investigate stages of transcriptome conservation in many
biological processes.

Future extensions of myTAI and orthologr could be the following: myTAI could be
extended to perform gene expression clustering to detect co-expressed genes that can
potentially be correlated with the hourglass pattern. These co-expression clusters
can then be compared between the di�erent hourglass patterns observed in animals,
plants, and fungi and might unravel further commonalities or di�erences between
these phenomena. In addition, a user interface (GUI) could be implemented using
Shiny apps (RStudio) to make myTAI’s functionality even more accessible. The
statistical tests could be extended to test the significance of other patterns of tran-
scriptome conservation than a flat line, a high-low-high, or a low-high-high pattern.
Examples could be oscillatory patterns (e.g. circadian patterns), inverse hourglass
patterns, or high-low-low patterns.

The R package orthologr can be extended by additional orthology inference meth-
ods and alternative methods to quantify the selection pressure acting on genes. In
particular, these methods could include multiple closely related species instead of
pairwise comparisons to quantify the substitution rates of genes. Finally, the diver-
gence stratigraphy algorithm could be extended to perform e�cient multiple genome
alignments to detect conserved syntenic regions between closely related species.

51



References
[1] Lewis Wolpert et al. Principles of Development. Oxford University Press, 4th

edition, 2011.

[2] Brian K Hall. Homology: The Hierarchial Basis of Comparative Biology. Aca-
demic Press, 1994.

[3] Katherine E Willmore. The body plan concept and its centrality in evo-devo.
Evolution: Education and Outreach, 5(2):219–230, 2012.

[4] Takayuki Onai, Naoki Irie, and Shigeru Kuratani. The Evolutionary Origin
of the Vertebrate Body Plan: The Problem of Head Segmentation. Annual
review of genomics and human genetics, (May):1–17, 2014.

[5] Wallace Arthur. The origin of animal body plans: A study in evolutionary
developmental biology. Cambridge University Press, 2000.

[6] Naoki Irie and Shigeru Kuratani. The developmental hourglass model: a
predictor of the basic body plan? Development, 141(24):4649–55, 2014.

[7] John Maynard Smith, Richard Burian, Stuart Kau�man, Pere Alberch, John
Campbell, Brian Goodwin, Russell Lande, David Raup, and Lewis Wolpert.
Developmental constraints and evolution: a perspective from the mountain
lake conference on development and evolution. Quarterly Review of Biology,
pages 265–287, 1985.

[8] Rupert Riedl and Richard Peter Spencer Je�eries. Order in living organisms:
a systems analysis of evolution. Wiley New York, 1978.

[9] Günter P Wagner. Homology, genes, and evolutionary innovation. Princeton
University Press, 2014.

[10] Rudolf A Ra�. The Shape of Life. The University of Chicago Press, Chicago,
1996.

[11] Arthur William Meyer. Some historical aspects of the recapitulation idea. The
Quarterly Review of Biology, 10(4):379–396, 1935.

[12] Denis Duboule. Temporal colinearity and the phylotypic progression: a basis
for the stability of avertebrate bauplan and the evolution of morphologies
through heterochrony. Development, pages 135–142, 1994.

[13] Klaus Sander et al. The evolution of patterning mechanisms: gleanings from
insect embryogenesis and spermatogenesis. Development and evolution, pages
137–159, 1983.

[14] Michael K Richardson. Heterochrony and the phylotypic period. Developmen-
tal biology, 172:412 – 421, 1995.

52



[15] Michael K Richardson et al. There is no highly conserved embryonic stage
in the vertebrates: implications for current theories of evolution and develop-
ment. Anatomy and embryology, 196(2):91–106, 1997.

[16] Alex T Kalinka and Pavel Tomancak. The evolution of early animal embryos:
conservation or divergence? Trends in Ecology and Evolution, 27:385–393,
2012.

[17] Olaf RP Bininda-Emonds et al. Inverting the hourglass: quantitative evidence
against the phylotypic stage in vertebrate development. Proceedings of The
Royal Society, 270:341–346, 2003.

[18] Julien Roux and Marc Robinson-Rechavi. Developmental constraints on ver-
tebrate genome evolution. PLoS Genetics, 4(12), 2008.

[19] Aurélie Comte, Julien Roux, and Marc Robinson-Rechavi. Molecular signaling
in zebrafish development and the vertebrate phylotypic period. Evolution and
Development, 12(2):144–156, 2010.

[20] Barbara Piasecka et al. The hourglass and the early conservation models -
co-existing evolutionary patterns in vertebrate development. PLOS Genetics,
9(4):e1003476, 2013.

[21] Einat Hazkani-Covo et al. In search of the vertebrate phylotypic stage: A
molecular examination of the developmental hourglass model and von baer’s
third law. JOURNAL OF EXPERIMENTAL ZOOLOGY, 304:150–158, 2005.

[22] Naoki Irie and Atsuko Sehara-Fujisawa. The vertebrate phylotypic stage and
an early bilaterian-related stage in mouse embryogenesis defined by genomic
information. BMC biology, 5:1, 2007.

[23] Carlo G Artieri, Wilfried Haerty, and Rama S Singh. Ontogeny and phylogeny:
molecular signatures of selection, constraint, and temporal pleiotropy in the
development of drosophila. BMC biology, 7(1):42, 2009.

[24] Tami Cruickshank and Michael J. Wade. Microevolutionary support for a
developmental hourglass: Gene expression patterns shape sequence variation
and divergence in Drosophila. Evolution and Development, 10(5):583–590,
2008.

[25] Alex T Kalinka et al. Gene expression divergence recapitulates the develop-
mental hourglass model. Nature, 468:811–814, December 2010.

[26] Tomislav Domazet-Loöo and Diethard Tautz. A phylogenetically based tran-
scriptome age index mirrors ontogenetic divergence patterns. Nature, 468:815–
818, 2010.

[27] Naoki Irie and Shigeru Kuratani. Comparative transcriptome analysis reveals
vertebrate phylotypic period during organogenesis. Nature Communications,
pages 1–6, 2011.

53



[28] Michal Levin, Tamar Hashimshony, Florian Wagner, and Itai Yanai. Develop-
mental Milestones Punctuate Gene Expression in the Caenorhabditis Embryo.
Developmental Cell, 22(5):1101–1108, 2012.

[29] Hajk-Georg Drost. Development of a phylogenetic transcriptome atlas of ara-
bidopsis thaliana. Bachelor’s thesis, Martin Luther University Halle, 2011.

[30] Hajk-Georg Drost. A bioinformatics approach to study the origin of embryo-
genesis in animals and plants. Master’s thesis, Martin Luther University Halle,
2013.

[31] Alicia N Schep and Boris Adryan. A comparative analysis of transcription fac-
tor expression during metazoan embryonic development. PLOS ONE, 8(6):1–
13, 2013.

[32] Zhuo Wang et al. The draft genomes of softshell turtle and green sea turtle
yield insights into the development and evolution of the turtlespecific body
plan. Nat. Genet., 45(6):701–708, 2013.

[33] Xiangjun Tian, Joan E. Strassmann, and David C. Queller. Dictyostelium
development shows a novel pattern of evolutionary conservation. Molecular
Biology and Evolution, 30(4):977–984, 2013.

[34] Saamer Akhshabi et al. An explanatory evo-devo model for the developmental
hourglass [version 2; referees: 3 approved]. F1000Research, 3(156), 2014.

[35] Mark B Gerstein, Joel Rozowsky, Koon-Kiu Yan, Daifeng Wang, Chao Cheng,
James B Brown, Carrie A Davis, LaDeana Hillier, Cristina Sisu, Jingyi Jessica
Li, et al. Comparative analysis of the transcriptome across distant species.
Nature, 512(7515):445–448, 2014.

[36] Ewart Kuijk, Niels Geijsen, and Edwin Cuppen. Pluripotency in the light of
the developmental hourglass. Biological Reviews, pages n/a–n/a, 2014.

[37] Thomas Montavon and Natalia Soshnikova. Hox gene regulation and timing
in embryogenesis. In Seminars in cell & developmental biology, volume 34,
pages 76–84. Elsevier, 2014.

[38] Juan J Tena, Cristina González-Aguilera, Ana Fernández-Miñán, Javier
Vázquez-Marín, Helena Parra-Acero, Joe W Cross, Peter WJ Rigby, Jaime J
Carvajal, Joachim Wittbrodt, José L Gómez-Skarmeta, et al. Compara-
tive epigenomics in distantly related teleost species identifies conserved cis-
regulatory nodes active during the vertebrate phylotypic period. Genome
research, 24(7):1075–1085, 2014.

[39] Sophie Pantalacci and Marie Sémon. Transcriptomics of developing embryos
and organs: a raising tool for evo–devo. Journal of Experimental Zoology Part
B: Molecular and Developmental Evolution, 324(4):363–371, 2015.

54



[40] Hajk-Georg Drost, Alexander Gabel, Ivo Grosse, and Marcel Quint. Evidence
for active maintenance of phylotranscriptomic hourglass patterns in animal
and plant embryogenesis. Molecular biology and evolution, 32(5):1221–1231,
2015.

[41] Tamar Friedlander, Avraham E Mayo, Tsvi Tlusty, and Uri Alon. Evolution
of bow-tie architectures in biology. PLoS Comput Biol, 11(3):e1004055, 2015.

[42] Juan R Martinez-Morales. Toward understanding the evolution of vertebrate
gene regulatory networks: comparative genomics and epigenomic approaches.
Briefings in functional genomics, page elv032, 2015.

[43] Michal Levin, Leon Anavy, Alison G Cole, Eitan Winter, Natalia Mostov,
Sally Khair, Naftalie Senderovich, Ekaterina Kovalev, David H Silver, Martin
Feder, et al. The mid-developmental transition and the evolution of animal
body plans. Nature, 2016.

[44] Ozren BogdanoviÊ, Arne H Smits, Elisa de la Calle Mustienes, Juan J Tena,
Ethan Ford, Ruth Williams, Upeka Senanayake, Matthew D Schultz, Saartje
Hontelez, Ila van Kruijsbergen, et al. Active dna demethylation at enhancers
during the vertebrate phylotypic period. Nature genetics, 2016.

[45] Marcel Quint, Hajk-Georg Drost, Alexander Gabel, Kristian K Ullrich,
Markus Bönn, and Ivo Grosse. A transcriptomic hourglass in plant embryo-
genesis. Nature, 490:98–101, 2012.

[46] Xuanjin Cheng, Jerome Ho Lam Hui, Yung Yung Lee, Patrick Tik Wan Law,
and Hoi Shan Kwan. A “developmental hourglass” in fungi. Molecular biology
and evolution, page msv047, 2015.

[47] John A. Capra, Maureen Stolzer, Dannie Durand, and Katherine S. Pollard.
How old is my gene? Trends in Genetics, 29(11):659–668, 2013.

[48] Joseph Felsenstein. Theoretical evolutionary genetics. 2013.

[49] Tomislav Domazet-Loöo et al. A phylostratigraphy approach to uncover the
genomic history of major adaptations in metazoan lineages. TRENDS in Ge-
netics, 23(11):533–539, Oktober 2007.

[50] Alexander Gabel. Phylostratigraphy analysis of the arabdopsis thaliana
genome. Bachelor’s thesis, 2011.

[51] Toni Gabaldon and Eugene Koonin. Functional and evolutionary implications
of gene orthology. Nature Reviews Genetics, 14(5):360–366, 2013.

[52] Alison C Cullen and Christopher Frey. Probabilistic techniques in exposure
assessment: a handbook for dealing with variability and uncertainty in models
and inputs. Springer Science & Business Media, 1999.

55



[53] Marie Laure Delignette-Muller, Christophe Dutang, Regis Pouillot, Jean-
Baptiste Denis, and Maintainer Marie Laure Delignette-Muller. Package ‘fit-
distrplus’. 2015.

[54] Hubert W Lilliefors. On the kolmogorov-smirnov test for the exponential dis-
tribution with mean unknown. Journal of the American Statistical Association,
64(325):387–389, 1969.

[55] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2016.

[56] John Chambers. Software for data analysis: programming with R. Springer
Science & Business Media, 2008.

[57] Dirk Eddelbuettel, Romain François, J Allaire, John Chambers, Douglas
Bates, and Kevin Ushey. Rcpp: Seamless r and c++ integration. Journal
of Statistical Software, 40(8):1–18, 2011.

[58] Revolution Analytics and Steve Weston. doparallel: Foreach parallel adaptor
for the parallel package. R package version, 1(8), 2014.

[59] Sarah Scharfenberg. Pipeline for computing synonymous and nonsynonymous
substitutions rates. Bachelor’s thesis, Martin Luther University Halle, 2012.

[60] Karl Ernst von Baer. Entwicklungsgeschichte der Thiere: Beobachtung und
Reflexion (Vol. 1). Königsberg, Bornträger, 1828.

[61] Brian K Hall. Evolutionary Developmental Biology. Kluwer Academic Pub-
lishers, Dordrecht, 2 edition, 1999.

[62] Gavin De Beer et al. Embryos and ancestors. Clarendon Press, Oxford, 1940.

[63] Sabine Brauckmann. Karl ernst von baer (1792-1876) and evolution. Interna-
tional Journal of Developmental Biology, 56:653–660, 2012.

[64] Arhat Abzhanov. Von baer’s law for the ages: lost and found principles of
developmental evolution. Trends in Genetics, 29(12):712–722, 2013.

[65] Frank R Lillie. The development of the chick. Holt, New York, 1919.

[66] Hajk-Georg Drost, Julia Bellstaedt, Diarmuid S Ó’Maoiléidigh, Anderson T
Silva, Alexander Gabel, Claus Weinholdt, Patrick T Ryan, Bas J W Dekkers,
Henk W M Hilhorst, Wilco Ligterink, Frank Wellmer, Ivo Grosse, and Marcel
Quint. Post-embryonic Hourglass Patterns Mark Ontogenetic Transitions in
Plant Development. Mol. Biol. Evol., 33(5):1158–1163, 2016.

[67] Donald T Anderson. Embryology and Phylogeny in Annelids and Arthropods.
Pergamon Press, Oxford, 1973.

[68] In TJ Horder, JA Witkowski, and CC Wylie, editors, A History of Embryology,
The Eighth Symposium of The British Society for Developmental Biology,
Cambridge, 1986. Cambridge University Press.

56



[69] Jonathan MW Slack. Phylotype and zootype. Keywords and Concepts in
Evolutionary Developmental Biology, pages 309–318, 2003.

[70] Scott F Gilbert and David Epel. Ecological Developmental Biology. Sinauer
Associates, Inc., Sunderland, MA, USA, 2009.

[71] Eric H Davidson. Genomic Regulatory Systems: Development and Evolution.
Academic Press, San Diego, 2001.

[72] Michael Levine and Eric H Davidson. Gene regulatory networks for develop-
ment. PNAS, 102(14):4936–4942, 2005.

[73] Eric H Davidson and DH Erwin. Gene regulatory networks and the evolution
of animal body plans. Science, 311:796–800, 2006.

[74] Benjamin Prud’homme et al. Repeated morphological evolution through cis-
regulatory changes in a pleiotropic gene. Nature, 440:1050–1053, 2006.

[75] Douglas H Erwin and Eric H Davidson. The evolution of hierarchical gene
regulatory networks. Nature Reviews Genetics, 10:141–148, 2009.

[76] Veronica F Hinman et al. Evolution of gene regulatory network architectures:
Examples of subcircuit conservation and plasticity between classes of echino-
derms. Biochimica et Biophysica Acta, 1789:326–332, 2009.

[77] Eric H Davidson. Emerging properties of animal gene regulatory networks.
Nature, 468(7326):911–920, 2010.

[78] Isabelle S Peter and Eric H Davidson. Evolution of gene regulatory networks
controlling body plan development. Cell, 144:970 – 985, 2011.

[79] Colm J Ryan et al. Hierarchical modularity and the evolution of genetic
interactomes across species. Molecular Cell, 46:691 – 704, 2012.

[80] Eric van Otterloo et al. Gene regulatory evolution and the origin of macroevo-
lutionary novelties: Insights from the neural crest. Genesis, 51:457 – 470, 2013.

[81] Benedikt Hallgrímsson and Brian K Hall. Epigenetics: linking genotype and
phenotype in development and evolution. Univ of California Press, 2011.

[82] Eugenia M del Pino and Richard P Elinson. A novel development pattern for
frogs: Gastrulation produces an embryonic disk. Nature, 306:589 – 91, 1983.

[83] Wolfgang Dohle and Gerhard Scholtz. Clonal analysis of the crustacean seg-
ment: The discordance between genealogical and segmental borders. Devel-
opment, 104:Suppl., 147 – 160, 1988.

[84] Wolfgang Dohle. Di�erences in cell pattern formation in early embryology and
their bearing on evolutionary changes in morphology. Geobios. Mém. Spécial,
12:145 – 155, 1989.

57



[85] Brian K Hall. Evolutionary developmental biology. Springer Science & Business
Media, 2012.

[86] Friedrich Seidel. Körpergrundgestalt und keimstruktur eine erörterung über
die grundlagen der vergleichenden und experimentellen embryologie und deren
gültigkeit bei phylogenetischen überlegungen. Zool Anz, 164:245–305, 1960.

[87] Klaus Sander. Specification of the basic body pattern in insect embryogenesis.
Adv. Insect Physiol., 12:125 – 238, 1976.

[88] Jack Cohen. Reproduction. Butterworth Co Publishers Ltd, 1977.

[89] Hans Spemann. Zur geschichte und kritik des begri�s der homologie. In
C Chun and W Johannsen, editors, Allgemeine Biologie, pages 63 – 86. Teub-
ner, Leipzig, 1915.

[90] Waldemar Schleip. Die Determination der Primitiventwicklung. Akademische
Verlags-Gesellschaft, Leipzig, 1929.

[91] William W Ballard. Morphogenetic movements and fate maps of vertebrates.
American Zoologist, 21(2):391–399, 1981.

[92] Charles B Kimmel et al. Stages of embryonic development of the zebrafish.
Developmental dynamics, 203(3):253–310, 1995.

[93] Ernst HPA Haeckel. Anthropogenie oder Entwickelungsgeschichte des Men-
schen: gemeinverständliche wissenschaftliche Vorträge über die Grundzüge der
menschlichen Keimes-und Stammes-Geschichte. Wilhelm Engelmann, 1874.

[94] Lewis Wolpert. The triumph of the embryo. Oxford University Press, Oxford,
1991.

[95] Jonathan MW Slack et al. The zootype and the phylotypic stage. Nature,
361:490–492, February 1993.

[96] Frietson Galis and Johan AJ Metz. Testing the vulnerability of the phylo-
typic stage: On modularity and evolutionary conservation. JOURNAL OF
EXPERIMENTAL ZOOLOGY, 291:195–204, 2001.

[97] Rudolf A Ra� et al. Implications of radical evolutionary changes in early
development for concepts of developmental constraint. New perspectives on
evolution, pages 189–207, 1991.

[98] Adam Sedgewick. On the law of development commonly known as von baer’s
law; and on the significance of ancestral rudiments in embryonic development.
Quarterly Journal of Microscopical Science, 2(141):35–52, 1894.

[99] Julien Roux, Marta Rosikiewicz, and Marc Robinson-Rechavi. What to com-
pare and how: Comparative transcriptomics for evo-devo. Journal of Experi-
mental Zoology Part B: Molecular and Developmental Evolution, 324(4):372–
382, 2015.

58



[100] Andrew G Cridge, Peter K Dearden, and Lynette R Brownfield. Convergent
occurrence of the developmental hourglass in plant and animal embryogenesis?
Annals of botany, 117(5):833–843, 2016.

[101] Michael K Richardson. Vertebrate evolution: the developmental origins of
adult variation. BioEssays, 21(7):604–613, 1999.

[102] Olaf Bininda-Emonds et al. Inverting the hourglass: quantitative evidence
against the phylotypic stage in vertebrate development. Proceedings of the
Royal Society of London B: Biological Sciences, 270(1513):341–346, 2003.

[103] Maria Ninova, Matthew Ronshaugen, and Sam Gri�ths-Jones. Fast-evolving
micrornas are highly expressed in the early embryo of drosophila virilis. RNA,
20(3):360–372, 2014.

[104] Alex S Nord, Matthew J Blow, Catia Attanasio, Jennifer A Akiyama, Amy
Holt, Roya Hosseini, Sengthavy Phouanenavong, Ingrid Plajzer-Frick, Malak
Shoukry, Veena Afzal, et al. Rapid and pervasive changes in genome-wide en-
hancer usage during mammalian development. Cell, 155(7):1521–1531, 2013.

[105] Alexander Gabel. Development of a simulated annealing algorithm for un-
covering the phylotranscriptomic hourglass pattern. Master’s thesis, Martin
Luther University Halle, 2013.

[106] Donald R Kaplan and Todd J Cooke. Fundamental concepts in the embryoge-
nesis of dicotyledons: A morphological lnterpretation of embryo mutants. The
Plant Cell, 9:1903–1919, 1997.

[107] Elliot M Meyerowitz. Plants compared to animals: The broadest comparative
study of development. Science, 295:1482–1485, February 2002.

[108] Bas JW Dekkers, Simon Pearce, RP van Bolderen-Veldkamp, Alex Marshall,
Pawe≥ Widera, James Gilbert, Hajk-Georg Drost, George W Bassel, Kerstin
Müller, John R King, et al. Transcriptional dynamics of two seed compart-
ments with opposing roles in arabidopsis seed germination. Plant physiology,
163(1):205–215, 2013.

[109] Anderson Tadeu Silva, Pamela A Ribone, Raquel Lia Chan, Wilco Ligterink,
and Henk WM Hilhorst. A predictive co-expression network identifies novel
genes controlling the seed-to-seedling phase transition in arabidopsis thaliana.
Plant physiology, pages pp–01704, 2016.

[110] Patrick T Ryan, Diarmuid S Ó’Maoiléidigh, Hajk-Georg Drost, Kamila
Kwaúniewska, Alexander Gabel, Ivo Grosse, Emmanuelle Graciet, Marcel
Quint, and Frank Wellmer. Patterns of gene expression during arabidopsis
flower development from the time of initiation to maturation. BMC genomics,
16(1):488, 2015.

[111] Robert B Goldberg, Genaro De Paiva, Ramin Yadegari, et al. Plant embryo-
genesis: zygote to seed. SCIENCE-NEW YORK THEN WASHINGTON-,
pages 605–605, 1994.

59



[112] Colette A. ten Hove, Kuan-Ju Lu, and Dolf Weijers. Building a plant: cell fate
specification in the early arabidopsis embryo. Development, 142(3):420–430,
2015.

[113] Günter Theißen and Rainer Melzer. Robust views on plasticity and biodiver-
sity. Annals of Botany, 117(5):693–697, 2016.

[114] David Meinke et al. Identifying essential genes in arabidopsis thaliana. Trends
in Plant Science, 13(9):483–491, 2008.

60



6 Paper 1: Evidence for Active Maintenance of
Phylotranscriptomic Hourglass Patterns in An-
imal and Plant Embryogenesis

HG Drost, A Gabel, I Grosse, M Quint. 2015. Evidence for Active Maintenance of
Phylotranscriptomic Hourglass Patterns in Animal and Plant Embryogenesis. Mol.
Biol. Evol. 32 (5): 1221-1231. doi:10.1093/molbev/msv012

61



A
rticle

Evidence for Active Maintenance of Phylotranscriptomic
Hourglass Patterns in Animal and Plant Embryogenesis
Hajk-Georg Drost,1 Alexander Gabel,1 Ivo Grosse,*,1,2 and Marcel Quint*,3

1Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
2German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
3Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany

*Corresponding author: E-mail: ivo.grosse@informatik.uni-halle.de; mquint@ipb-halle.de.

Associate editor: John True

Abstract

The developmental hourglass model has been used to describe the morphological transitions of related species through-
out embryogenesis. Recently, quantifiable approaches combining transcriptomic and evolutionary information provided
novel evidence for the presence of a phylotranscriptomic hourglass pattern across kingdoms. As its biological function is
unknown it remains speculative whether this pattern is functional or merely represents a nonfunctional evolutionary
relic. The latter would seriously hamper future experimental approaches designed to test hypotheses regarding its
function. Here, we address this question by generating transcriptome divergence index (TDI) profiles across embryogen-
esis of Danio rerio, Drosophila melanogaster, and Arabidopsis thaliana. To enable meaningful evaluation of the resulting
patterns, we develop a statistical test that specifically assesses potential hourglass patterns. Based on this objective
measure we find that two of these profiles follow a statistically significant hourglass pattern with the most conserved
transcriptomes in the phylotypic periods. As the TDI considers only recent evolutionary signals, this indicates that the
phylotranscriptomic hourglass pattern is not a rudiment but possibly actively maintained, implicating the existence of
some linked biological function associated with embryogenesis in extant species.

Key words: evo-devo, developmental hourglass, embryogenesis, phylotranscriptomics.

Introduction
Embryogenesis coordinates the transformation of a single fer-
tilized egg cell into a differentiated, complex organism. Based
on von Baer’s third law of embryology (1828), it has been
observed that embryos of animal species from the same
phylum share a developmental stage with apparent morpho-
logical similarities. Animal embryos from the same phylum
often appear morphologically different in early embryogene-
sis, converge to a similar form during mid-embryogenesis, and
diverge again in late embryogenesis. This morphological pat-
tern is known as the developmental hourglass pattern
(Duboule 1994; Raff 1996), and the stage or period of maxi-
mum morphological conservation in mid-embryogenesis is
called phylotypic stage (Sander 1983) or phylotypic period
(Richardson 1995).

Recently, several groups succeeded in providing a possible
explanation for the morphological hourglass pattern in ani-
mals by observing an hourglass pattern also at the transcrip-
tome level. Distance-based comparisons of transcriptomes of
related species (Kalinka et al. 2010; Irie and Kuratani 2011;
Levin et al. 2012) or transcriptome indices based on the com-
bination of evolutionary with transcriptomic information of a
single species (Domazet-Lo!so and Tautz 2010; Quint et al.
2012) revealed the existence of transcriptomic hourglass pat-
terns in different lineages including even plants. The latter is
particularly remarkable because the last common ancestor of
animals and plants was most likely unicellular, meaning that

both multicellularity and embryogenesis evolved indepen-
dently in both kingdoms (Meyerowitz 2002). As a conse-
quence, phylotranscriptomic hourglass patterns associated
with embryogenesis in animals and plants likely represent
an example of convergent evolution.

Distance-based transcriptome comparisons are well estab-
lished and measure the dissimilarity or distance of expression
profiles of orthologous genes among related species. By fol-
lowing this approach, it was found that transcriptomes of
Drosophila (Kalinka et al. 2010), Caenorhabditis (Levin et al.
2012), and turtle (Wang et al. 2013) ssp. are more
similar during the morphological phylotypic period in mid-
embryogenesis than transcriptomes in early or late embryo-
genesis. These findings were recently supported by an
independent metazoan cross-phyla approach (Gerstein
et al. 2014).

While distance-based transcriptome comparisons require
transcriptomic information of at least two species or geno-
types, transcriptome indices require such information for only
a single genotype. Here, evolutionary information of a gene
such as phylogenetic age or sequence divergence is combined
with its expression level for the computation of transcriptome
indices such as the transcriptome age index (TAI, Domazet-
Lo!so and Tautz 2010) or the transcriptome divergence index
(TDI, Quint et al. 2012).

The TAI is based on phylostratigraphy (Domazet-Lo!so
et al. 2007), which assigns a phylogenetic age to each
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protein-coding gene in a species of interest by identification
of homologous sequences in other species. Following this
procedure, genes can be sorted into discrete age categories,
named phylostrata (PS), corresponding to hierarchically or-
dered phylogenetic nodes along the tree of life. The phyloge-
netic age of each gene quantified by its PS is then weighted by
its expression level. The weighted mean of all gene ages yields
the TAI (Domazet-Lo!so and Tautz 2010), which represents
the mean evolutionary age of a transcriptome. As gene age
can date back to times before the divergence of prokaryotes
and eukaryotes, the TAI incorporates both evolutionarily
ancient and recent signals.

The TDI is based on the sequence divergence of protein-
coding genes (Ka/Ks ratio) as an indicator of selective pressure
(Quint et al. 2012). In analogy to PS, genes can be sorted into
discrete sequence divergence categories, named divergence
strata (DS), ranging from purifying to positive selection. In
analogy to the TAI, the sequence divergence of each gene
quantified by its DS is weighted by its expression level, and the
weighted mean of all sequence divergences yields the TDI,
which represents the mean sequence divergence of a tran-
scriptome. In contrast to the TAI, the TDI focuses on recent
evolution among related species. To be more precise, the
evolutionary time span investigated by the TDI reaches
from “today” to the time when the two selected species
split. Depending on the chosen species, this may be as little
as a few million years. Hence, distance-based transcriptome
comparisons and transcriptome indices such as TAI or TDI
quantify different evolutionary properties of one or several
transcriptomes.

Irrespective of the phylotranscriptomic evidence recently
obtained, the developmental hourglass model is controver-
sially discussed to this day. Its biological function is rather
poorly understood and hardly goes beyond hypotheses
(Raff 1996; Kalinka and Tomancak 2012). Although conver-
gent evolution within the animal lineage cannot be excluded,
the existence of phylotranscriptomic and morphological
hourglass patterns in numerous animal phyla suggests that
it might have evolved early in the animal lineage. The devel-
opmental hourglass pattern could, therefore, be regarded as
evolutionarily ancient. However, it is unclear whether this
pattern is being actively maintained and still functional in
extant species, or whether it represents a nonfunctional
rudiment of a process that was once functional but has
since then degenerated.

To be able to—one day—decipher the function of devel-
opmental hourglass patterns, we need to investigate this phe-
nomenon in an experimental manner. Naturally, experiments
are restricted to extant species. If actively maintained, such
experiments could potentially reveal the molecular function
of the developmental hourglass pattern. If, however, the de-
velopmental hourglass pattern were an evolutionary relic not
functional in extant species, experimental approaches would
be largely obsolete. The objective of this study is to investigate
whether or not the developmental hourglass pattern is ac-
tively maintained in extant species and thus potentially allows
to investigate its molecular function by experimental
approaches.

To address this, we study gene ages and TAI profiles as well
as sequence divergences and TDI profiles of the vertebrate
Danio rerio, the invertebrate Drosophila melanogaster, and
the flowering plant Arabidopsis thaliana. TAI profiles are
based on both evolutionarily ancient and recent signals all
along the tree of life. Hence, the TAI does not convey infor-
mation about a possible active maintenance of the hourglass
pattern. TDI profiles, however, with their distinctive feature of
capturing only recent evolutionary signals are potentially able
to address this question. To avoid subjective evaluation of the
resulting profiles, we introduce three permutation tests, the
flat line test, the reductive hourglass test, and the reductive
early conservation test, to quantify the statistical significance
of the corresponding phylotranscriptomic patterns. In addi-
tion, our study will provide support for either the hourglass
model or possibly also other models that are currently being
discussed.

Results
In the context of the developmental hourglass, morpholog-
ical and—as we define them—phylotranscriptomic pat-
terns have to be distinguished. This study addresses
phylotranscriptomic patterns, which can be divided in
distance-based transcriptome comparisons and transcrip-
tome index-based approaches. Transcriptome indices,
which are the subject of this work, can again be computed
as either TAI or TDI.

Although distance-based transcriptome comparisons
show that mid-embryonic stages have a lower gene expres-
sion diversity than early and late stages of embryonic
development (reviewed in Kalinka and Tomancak 2012),
the developmental hourglass model is still controversially
discussed. TAI analyses have to date been performed for
Da. rerio, D. melanogaster, Anopheles gambiae, and A. thali-
ana (Domazet-Lo!so and Tautz 2010; Quint et al. 2012).
The results largely confirmed the observations from dis-
tance-based transcriptome comparisons in that they
identified the most ancient transcriptome during mid-
embryogenesis. However, these previous analyses are
hardly comparable because they were computed 1) with
different genome databases, 2) with different analysis pipe-
lines, and 3) in the case of D. melanogaster only for ap-
proximately one-quarter of the genes.

To allow for optimal comparability of TAI patterns
across species, we here reanalyze TAI profiles of embryonic
development of Da. rerio, D. melanogaster, and A. thaliana
in a consistent manner based on the same sets of ge-
nomes, the same pipeline, and updated phylostratigraphic
maps. For D. melanogaster we use whole transcriptome
expression data (Graveley et al. 2011) instead of the pre-
viously used data set that consisted of only 3,550 genes
(Arbeitman et al. 2002). Based on the obtained TAI pat-
terns, we will then turn our attention to the TDI and this
study’s central question of whether or not the evolutionary
signal that shaped the hourglass pattern might be actively
maintained.
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TAI Profiles of Da. rerio, D. melanogaster, and
A. thaliana Embryogenesis
We first set up a common database of 4,557 completely and
partially sequenced genomes for the generation of updated
phylostratigraphic maps of the three species of interest. This
database is several times larger than the databases used in
previous studies (e.g., Quint et al. 2012) and contains
genome information from 2,770 prokaryotes (2,511 bacteria
and 259 archea) and 1,787 eukaryotes (883 animals, 364
plants, 344 fungi, and 193 other eukaryotes) (supplementary
fig. S1 and table S1, Supplementary Material online, database
available for download at http://msbi.ipb-halle.de/down-
load/phyloBlastDB_Drost_Gabel_Grosse_Quint.fa.tbz, last
accessed August 2, 2015). Based on this database, we con-
struct phylostratigraphic maps of Da. rerio, D. melanogaster,
and A. thaliana using a customized pipeline. The three re-
sulting phylostratigraphic maps are displayed in figure 1A–C
(supplementary table S2, Supplementary Material online).

We next compute the TAI for each of the three species and
each of the developmental stages. The resulting TAI profiles
across embryogenesis for all three species are shown in
figure 2 (expression values provided in supplementary table
S3, Supplementary Material online). If the mean evolutionary
ages of the transcriptomes were the same at different devel-
opmental stages, the TAI profile would be a horizontal line.
To objectively test the statistical significance of the observed
variations of the TAI at different developmental stages, we
apply a permutation test that we refer to as the flat line test
(Quint et al. 2012). When applying this flat line test to the
three TAI profiles, we find that the TAI patterns of all three
species deviate significantly from a horizontal line (P< 0.05).
Visually, the TAI profiles of Da. rerio and A. thaliana show an
hourglass pattern. Although still within the standard devia-
tion of the phylotypic period, the absolute minimum of the
D. melanogaster TAI profile can be found at the 0–2 h time
point in early embryogenesis (fig. 2). This is unexpected and
in contrast to comparative transcriptomic approaches, which
consistently identified highly divergent transcriptomes in
early Drosophila embryogenesis (Kalinka et al. 2010;
Gerstein et al. 2014). However, we hesitate to overinterpret
this observation because the overall profile still resembles
an hourglass pattern.

Given that the TAI does not focus on recent evolution and
that the majority of genes in all three species map to “old” PS
(fig. 1), these results indicate that the phylotranscriptomic
hourglass pattern is not a recent innovation. Although TAI
patterns alone do not allow this conclusion, the existence of
phylotranscriptomic hourglass patterns across kingdoms
and the existence of morphological hourglass patterns
across animals suggest that these patterns emerged alongside
with embryogenesis in early evolution. This suggestion is in
accordance with previous findings showing that genes, tran-
scriptomes, and molecular processes are most conserved
during the phylotypic period (Galis and Metz 2001;
Hazkani-Covo et al. 2005; Davidson and Erwin 2009;
Domazet-Lo!so and Tautz 2010; He and Deem 2010; Kalinka
et al. 2010; Irie and Kuratani 2011; Peter and Davidson 2011;

Levin et al. 2012; Quint et al. 2012; de Mendoza et al. 2013;
Piasecka et al. 2013; Schep and Adryan 2013; Wang et al.
2013).

Dependence of PS and DS
Before turning to the central question of whether or not the
observed hourglass patterns might be actively maintained, we
test in this section whether PS and DS are sufficiently inde-
pendent of each other. This independence—or an only weak
dependence—of PS and DS is important to assure that TAI
and TDI profiles are not dependent on each other. Only in
this case, the TDI can provide additional information and

FIG. 1. Phylostratigraphic maps for Danio rerio, Drosophila melanogaster,
and Arabidopsis thaliana. (A) Danio rerio. (B) Drosophila melanogaster.
(C) Arabidopsis thaliana. Numbers in parenthesis denote the number of
genes per phylostratum (PS1–PS12/13). Cell. org., cellular organisms
described by PS1.
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conclusions that cannot be drawn based on TAI profiles
alone.

For computing DS in analogy to PS, we generate ortholo-
gous gene sets for the computation of sequence divergences
(Ka/Ks) by pairwise comparisons of the coding sequences
of a target species to a related species with a completely
sequenced and annotated genome. To lend more support
to the TDI profiles to be generated, we compute the sequence
divergence for three additional related species for each of
the three target species (supplementary figs. S2–S4,
Supplementary Material online).

For Da. rerio closely related fish genomes are not yet avail-
able. Here, we use Astyanax mexicanus (divergence
time~153 Ma, Hedges et al. 2006), Takifugu rubripes,
Xiphophorus maculatus, and Gadus morhua (divergence
time for all three species ~265 Ma, Hedges et al. 2006). For
the assignment of Ka/Ks values of D. melanogaster genes,
we compare its coding genome to D. simulans (divergence
time ~3 Ma, Hedges et al. 2006), D. yakuba
(divergence time ~7 Ma, Hedges et al. 2006) D. persimillis
(divergence time ~34 Ma, Hedges et al. 2006), and D. virilis (di-
vergence time ~47 Ma, Hedges et al. 2006). For A. thaliana
we use the Brassicas A. lyrata (divergence time ~5–10 Ma,
Hu et al. 2011), Capsella rubella (divergence time ~10–14 Ma,
Koch and Kiefer 2005), Brassica rapa (divergence
time ~16 Ma, Hedges et al. 2006), and Carica papaya

(divergence time ~72 Ma, Hedges et al. 2006). For each pair-
wise comparison we sort the continuous Ka/Ks values into
deciles and obtain a discrete DS for each gene and each of the
four reference species with a detectable ortholog (provided in
supplementary table S4 and figs. S5–S7, Supplementary
Material online).

To study to which degree gene age and sequence diver-
gence are correlated for Da. rerio, D. melanogaster, and
A. thaliana, we compute Kendall’s rank correlation coefficient
of PS and DS, which quantifies the degree of linear depen-
dence between PS and DS per species in a nonparametric
manner. In figure 3 we display correlation plots of the three
target species to their closest related species. We consistently
find that correlations of PS and DS are significant but only
weak (Kendall’s rank correlation coefficient <0.25; fig. 3A–C;
supplementary tables S2 and S4 and figs. S5–S7,
Supplementary Material online, for the additional species
comparisons), stating that TAI and TDI have the potential
of capturing independent evolutionary signals for all three
species.

TDI Profiles of Da. rerio, D. melanogaster, and
A. thaliana Embryogenesis
Next, we finally investigate whether or not the evolutionary
selection pressure that has shaped the hourglass pattern

FIG. 3. Correlation between phylostratum (PS) and divergence stratum (DS). Scatter plots of phylostratum versus divergence stratum over all genes. (A)
Danio rerio. (B) Drosophila melanogaster. (C) Arabidopsis thaliana. Ka /Ks ratios for divergence stratum assignment are derived from orthologous genes
between Da. rerio and Astyanax mexicanus (A), D. melanogaster and D. simulans (B) and A. thaliana and A. lyrata (C). Kendall ! values denote the
Kendall rank correlation coefficients quantifying the degree of linear dependence between PS and DS in a nonparametric manner. All Kendall ! values
are significant (P< 2.2e-16) using Kendall’s ! test of no correlation.

FIG. 2. TAI profiles across animal and plant embryogenesis. (A) Danio rerio. (B) Drosophila melanogaster. (C) Arabidopsis thaliana. The blue shaded area
marks the predicted phylotypic period. The gray lines represent the standard deviation estimated by permutation analysis.
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might still be active. To address this question, we compute
the TDI profiles for all three species, which might potentially
identify evidence for or against active maintenance, and thus
functionality, of the hourglass pattern in extant species.

If the developmental hourglass pattern were not main-
tained and therefore under no selective pressure, the TDI
profile would resemble a horizontal line. In contrast, if the
developmental hourglass pattern were actively maintained in
extant species, possibly because it still served an important
biological function, the TDI profile should deviate from a
horizontal line and take an hourglass-like shape.

Figure 4 shows the TDI profiles across embryogenesis for
all three species based on DS values obtained from ortholog
assignment to the closest related species. Applying the flat
line test, we find that the TDI patterns of all three species
deviate significantly from a horizontal line (P< 0.05), demon-
strating that selective pressure is acting on embryonic tran-
scriptomes across kingdoms. Visually, the TDI profiles of
D. melanogaster and A. thaliana show an hourglass pattern,
whereas the TDI profile of Da. rerio shows only the first two-
thirds of an hourglass pattern with an increase of TDI values
in late embryogenesis being barely noticeable. The TDI
profiles for all other pairwise comparisons largely yield simi-
lar results (supplementary figs. S2–S4 and table S5,
Supplementary Material online).

These findings indicate that the phylotranscriptomic hour-
glass pattern is not a rudiment of a process that was once
active but has progressively degraded since then. On the con-
trary, its evolutionary signal can still be detected even when
evolutionary measures are consulted that account only for
the last few million years.

Objective Testing for Potential Hourglass Patterns
The studies presented above and all other studies published
to date based on distance-based transcriptome comparisons
or transcriptome indices have either relied on subjective
visual profile interpretation (de Mendoza et al. 2013;
Piasecka et al. 2013), have tested whether the observed profile
deviated from a horizontal line (Domazet-Lo!so and Tautz
2010; Irie and Kuratani 2011; Quint et al. 2012; Wang et al.
2013, figs. 2 and 4 this study), or have tested whether the
observed profile could be fitted by a parabolic function

(Hazkani-Covo et al. 2005; Kalinka et al. 2010; Levin et al.
2012).

Naturally, subjective pattern evaluation should be avoided.
In addition, the above described statistical approaches have
severe limitations: 1) Testing whether the observed profile
deviates from a horizontal line does not indicate the existence
of an hourglass pattern, because the observed pattern could
be anything different from a horizontal line that might even
be in agreement with “competing” models such as the early
conservation model and 2) testing whether the observed pro-
file could be fitted by a parabolic function indicates the ex-
istence of an hourglass pattern, but the strict mathematical
form of the pattern (parabola) makes this test highly specific
and insensitive to other (nonparabolic) high–low–high pat-
terns. Furthermore, none of these tests provides information
about the significance of the localization of the most con-
served stages, which is central to the evaluation of potential
hourglass patterns.

Here, we propose a statistical test for a general high–low–
high hourglass pattern not restricted to a parabolic function
where the lowest phase must coincide with the presumptive
phylotypic period. We divide embryogenesis in an early
module, the phylotypic module, and a late module based
on a priori morphological information about the known phy-
lotypic period in animals (fig. 5A). As, in contrast to animals,
morphological evidence for a phylotypic period is still lacking
in plants, it is impossible to define the phylotypic module for
plant embryogenesis in analogy to animal systems. Hence,
other biological processes that are likely associated with the
phylotypic period had to be taken into account to legitimate
a meaningful designation of the A. thaliana phylotypic
module. Here, the mid-embryonic globular–heart–torpedo
stages comprise embryonic morphogenesis and body plan
establishment including the initiation and activation of the
two apical stem cell niches, that give rise to the vast majority
of organs throughout plant life. In addition, essential genes
that cause embryo-defective phenotypes are likewise highly
expressed during this period, indicating associated selective
constraints (supplementary fig. S8, Supplementary Material
online). Based on these observations, we regard the develop-
mental period encompassing globular, heart, and torpedo
embryos as the most reasonable choice for designating the

A B C

FIG. 4. TDI profiles across animal and plant embryogenesis. (A) Danio rerio. (B) Drosophila melanogaster. (C) Arabidopsis thaliana. The blue shaded area
marks the predicted phylotypic period. The gray lines represent the standard deviation estimated by permutation analysis.
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phylotypic period in A. thaliana. Next, we compute the
differences between the mean values of the transcriptome
indices of the early and the phylotypic module and of the
late and the phylotypic module. The minimum of these two
differences (early vs. phylotypic and late vs. phylotypic) serves
as test statistic for a high–low–high pattern. Hence, this test
recognizes patterns as hourglass patterns when the most
ancient or most conserved transcriptomes occur in the phy-
lotypic module (fig. 5A, see Materials and Methods). As this
test reduces the ontogenetic stages to three developmental
modules, we refer to this test as the reductive hourglass test.

Applying the reductive hourglass test to the TAI and TDI
profiles of the three species reveals significant P-values for
both patterns of D. melanogaster and A. thaliana (fig. 5B).
For Da. rerio, only the TAI hourglass pattern is significant. For
the TDI, the evolutionary signal in late embryogenesis seems
to be diluted by the comparatively large evolutionary distance
between Da. rerio and the other fish species (4150 My), and
the increase of transcriptome divergence in Da. rerio devel-
opment seems to be shifted from late embryogenesis to
hatching and postembryonic development (supplementary
fig. S9, Supplementary Material online).

Together, with exception of the Da. rerio TDI profile we
find that both TAI and TDI values in early and late periods of
embryogenesis are significantly higher than in the phylotypic
periods in both animals and plants, demonstrating that phy-
lotypic transcriptomes are evolutionarily ancient and highly
conserved across kingdoms.

We finally adapt the reductive hourglass test to the early
conservation model (see Materials and Methods), call it re-
ductive early conservation test, and apply it to the TAI and
TDI profiles of all three species. We find that a low-high-high
pattern is rejected in all six cases (fig. 5C), stating that the

described TAI and TDI profiles from three model species
from two different kingdoms are inconsistent with the
early conservation model, but largely consistent with the
hourglass model.

Discussion
The controversy about the developmental hourglass model
and especially about the hourglass versus early conservation
models is as vibrant as it ever was. These and other models
have traditionally relied on subjective anatomical compari-
sons, and a lack of measurable quantitative approaches has
fed controversial discussions over decades (Hall 1997;
Richardson et al. 1997; Richardson 1999; Bininda-Emonds
et al. 2003; Roux and Robinson-Rechavi 2008; Comte et al.
2010). However, technological progress recently facilitated
quantitative measurements of expression profiles. Although
some of these recent studies favored the early conservation
model (Roux and Robinson-Rechavi 2008; Comte et al. 2010),
the majority of them supported the developmental hourglass
model. Initially, a number of studies demonstrated hourglass-
like patterns for limited sets of genes and a variety of genetic
parameters (Davis et al. 2005; Hazkani-Covo et al. 2005;
Demuth et al. 2006; Irie and Sehara-Fujisawa 2007;
Cruickshank and Wade 2008). Later, several studies demon-
strated that whole transcriptomes of fly, worm, several
vertebrates, and cress followed an hourglass pattern
(Domazet-Lo!so and Tautz 2010; Kalinka et al. 2010; Irie and
Kuratani 2011; Levin et al. 2012; Quint et al. 2012; Wang et al.
2013). For Drosophila ssp. it was recently shown that even
the conservation of miRNA expression displays an hourglass
pattern similar to that observed for protein-coding genes
(Ninova et al. 2014).

The later phylotranscriptomic studies have been per-
formed by distance-based transcriptome comparisons
(Kalinka et al. 2010; Irie and Kuratani 2011; Levin et al. 2012;
Wang et al. 2013) or by studies of transcriptome indices
(Domazet-Lo!so and Tautz 2010; Quint et al. 2012); the
latter combining evolutionary and transcriptomic informa-
tion. As of now, there are two flavors of transcriptome indices.
The TAI applies the phylogenetic age of a gene as an evolu-
tionary measure (Domazet-Lo!so and Tautz 2010) and thereby
practically covers the complete evolutionary depth of the tree
of life. The TDI, on the other hand, is based on sequence
divergence of orthologous genes (Quint et al. 2012) and
thereby captures exclusively recent evolutionary signals.

In our study, we systematically analyzed embryonic tran-
scriptomes of two animal and one plant species. The resulting
phylotranscriptomic patterns could have followed no profile
at all or a variety of different profiles. Because the evaluation
of phylotranscriptomic patterns in past studies (including our
own) were subjective or relied on statistical tests with differ-
ent limitations, we developed two more adequate statistical
tests, the reductive hourglass test and the reductive
early conservation test. These tests allow to objectively
assess phylotranscriptomic profiles for the significance of a
high–low–high pattern or a low-high-high pattern, respec-
tively. In both cases, a prerequisite is a meaningful division

A

B

C
Da. Rerio

Da. Rerio

FIG. 5. Evaluation of transcriptome index profiles by the reductive hour-
glass test. (A) Schematic representation of module assignment and
derivation of the test statistic. (B) P-values derived by application of
the reductive hourglass test to the TAI and TDI profiles in all three
species. (C) P-values derived by application of the reductive early con-
servation test to the TAI and TDI profiles in all three species.
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of the set of developmental stages into three modules based
on a priori biological knowledge.

Across the three species investigated, TAI analyses showed
that early and late embryonic transcriptomes were consis-
tently young (high TAI) and that the oldest transcriptomes
were always observed during the presumptive mid-
embryonic phylotypic period of each species (low TAI),
which represents one of the hallmarks of the developmental
hourglass model. For all three species we found that the re-
ductive hourglass test and the reductive early conservation
test supported the hourglass model and rejected the early
conservation model, providing objective support for the de-
velopmental hourglass model.

Confidence in the validity of the developmental hourglass
model allowed us posing the central question of this work of
whether or not the phylotranscriptomic hourglass pattern
might still be associated with a biological function in extant
species. If so, the phylotranscriptomic hourglass pattern
might either be causal for a downstream biological function
or be the result of such a function. Alternatively, the phylo-
transcriptomic hourglass pattern might simply represent an
evolutionary relic of a once important process that continues
to exist in a rudimental status.

Only if this pattern were actively maintained, it would be
possible to transform the currently predominantly descriptive
approaches to a functional, that is, experimental, level. Hence,
answering this question is important for understanding the
still enigmatic function of the hourglass pattern in the long
term and for deciding if it is in principle possible to uncover
the molecular function of the phylotranscriptomic hourglass
pattern by performing experiments on extant species.

Neither distance-based approaches nor studies of tran-
scriptome indices can address the evolutionary time of emer-
gence of the hourglass pattern in a satisfactory manner.
Likewise, its active maintenance in extant species cannot be
addressed by distance-based transcriptome comparisons or
studies of TAI profiles. However, studies of TDI profiles that
consult evolutionary signals from only recent evolution
are arguably best suited for investigating the “active mainte-
nance issue.”

To date, TDI profiles of animal species had not yet been
reported. As the closest related fish species with a completely
sequenced genome diverged from Da. rerio greater than
150 Ma, this relatively long time span does certainly not qual-
ify to make assumptions on very recent evolutionary trends.
Hence, interpretation of these results is less meaningful than
those of D. melanogaster and A. thaliana, whose closest rela-
tives diverged only approximately 3 and 5–10 Ma, respec-
tively. Here, statistical evaluations show a significant
hourglass-like pattern with the minimum during the pre-
sumptive phylotypic period, consistent with the developmen-
tal hourglass model. This result is supportive of Kalinka et al.
(2010), who suggested that the conservation of genes
between closely related species that are active during mid-
development is the result of natural selection acting to main-
tain expression levels and their temporal relationships to
enable the correct establishment of the body plan. The results
provided by Kalinka et al. (2010) and the results from TDI

computations reported here propose a scenario in which,
across kingdoms, the phylotranscriptomic hourglass pattern
is actively maintained through stabilizing selection.

Interestingly, while vertebrate and invertebrate embryo-
genesis also follows an hourglass pattern on the morpholog-
ical level, morphological hourglass patterns are apparently
absent from plant embryogenesis; at least they have never
been reported. In contrast, comparative embryology in
flowering plants, for example, suggests that the complete
process of embryogenesis is morphologically highly conserved
(Kaplan and Cooke 1997). Mature plant embryos are anatom-
ically much less complex than mature animal embryos. In a
simplified manner, animals (such as mammals and many
other vertebrates) initiate genesis of the vast majority of
organs largely simultaneously in the phylotypic period
during embryogenesis. In contrast, during embryogenesis
many plant species including A. thaliana establish only a lim-
ited set of major organs, consisting of hypocotyl, petioles,
cotyledons, the embryonic root, and two stem cell niches
(meristems). All other organs are initiated in these two
apical meristems or in secondary meristems and are formed
only during postembryonic development, where also mor-
phological differences between species are being established.
Possibly, plant embryogenesis is not complex enough to gen-
erate morphological differences between species, without
which a morphological hourglass pattern is obsolete.
Alternatively, any trace of a previously existing morphological
pattern might have been wiped out and is undetectable
by comparing extant species.

Although the TAI profile of A. thaliana suggests that the
phylotranscriptomic hourglass did not emerge recently, its
TDI profile suggests that some functional property of the
phylotranscriptomic hourglass is actively maintained in
extant plant species. In view of the lack of a morphological
hourglass pattern in plants, one could conjecture that
although the phylotranscriptomic hourglass pattern might
be actively maintained in extant species across kingdoms,
phylotranscriptomic and morphological hourglass patterns
do not necessitate each other. They might even be
uncoupled, which in turn would cast doubt on a possible
causal relationship between them.

Conclusions
The existence of hourglass patterns in TAI profiles of animal
and plant embryogenesis demonstrates that this pattern is
not a recent innovation. Darwin (1859) said “it would be
impossible to name one of the higher animals in which
some part or other is not in a rudimentary condition.”
Although we admit that it might not be entirely accurate
to directly compare a molecular pattern such as the phylo-
transcriptomic hourglass with morphological structures, the
phylotranscriptomic hourglass pattern might in fact become
a molecular addition to the long list of vestigial characters
such as the leg bones of whales or the wings of ostriches and
other flightless birds, for example. However, the existence of
hourglass patterns in TDI profiles of animal and plant em-
bryogenesis suggests that this pattern is actively maintained
in extant species. As evident for most evolutionary questions,
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experimental studies of processes that were functional in ex-
tinct species but have become nonfunctional in the course of
evolution are incomparably more difficult to study than pro-
cesses still functional in extant organisms. Provided that
active maintenance of the phylotranscriptomic hourglass pat-
tern would make little sense without it being functional, we
hypothesize that this pattern is still functional in extant spe-
cies and does not represent a nonfunctional relic. Despite this
weak evidence for functionality of the phylotranscriptomic
hourglass pattern, these data suggest that it might be possible
to identify the molecular function(s) of this pattern in the
long term. In any case, much remains to be learned, and we
believe that a systematic comparative approach between
plants and animals has the potential to significantly advance
our understanding of the developmental hourglass
phenomenon.

Materials and Methods
Scripts for complete reproduction of all data presented in this
manuscript including database generation, construction
of phylostratigraphic and sequence divergence maps, compu-
tation of TAI and TDI patterns, essential gene analysis,
and statistical tests are available via the GitHub re-
pository (https://github.com/HajkD/Active-maintenance-of-
phylotranscriptomic-hourglasses, last accessed August 2,
2015). Detailed instructions for applications of the same anal-
yses to any expression data set and any species with sufficient
genome information can be found in the R packages myTAI
(Drost 2014) and orthologr (https://github.com/HajkD/
orthologr, last accessed August 2, 2015).

Construction of Phylostratigraphic Maps
Procedures for constructing phylostratigraphic maps have
been presented previously (Domazet-Lo!so et al. 2007;
Domazet-Lo!so and Tautz 2010; Quint et al. 2012). Here,
we construct phylostratigraphic maps of Da. rerio, D. mela-
nogaster, and A. thaliana based on the same data set and the
following procedure. First, we define a set of PS for each of
the three species according to the NCBI taxonomy database.
Second, we extract all 17,582,624 amino acid sequences of all
4,557 species from the NCBI, ENSEMBL (Flicek et al. 2014),
Flybase (St. Pierre et al. 2014), and Phytozome (Goodstein
et al. 2012) databases. Third, we generate a target
database from these sequences (http://msbi.ipb-halle.de/
download/phyloBlastDB_Drost_Gabel_Grosse_Quint.fa.tbz,
last accessed August 2, 2015) and BLAST each amino acid
sequence of A. thaliana (TAIR10; 35,386), Da. rerio
(ENSEMBL release 54; 24,147) and D. melanogaster (Flybase
release 5.53; 29,357) with a minimum length of 30 amino
acids against this target database using BLASTp (BLAST ver-
sion 2.2.21). Fourth, we assign each gene to its PS by the
following rule. If no BLAST hit with an E-value below 10!5

was identified, we assign the gene to the youngest PS.
Otherwise, we assign it to the oldest PS containing at least
one species with at least one blast hit with an E-value below
10!5. PS for the genomes of all three species are given in
supplementary table S2, Supplementary Material online.

Construction of Sequence Divergence Maps
We construct sequence divergence maps of Da. rerio,
D. melanogaster, and A. thaliana by the following procedure.
First, we identify orthologous gene pairs of Da. rerio and As.
mexicanus (NCBI annotation release 77; 23.698), D. melano-
gaster and D. simulans (Flybase Release 1.4; 15,415), and
A. thaliana and A. lyrata (Phytozome v.9.0; 32,670) by choos-
ing the best reciprocal hit using BLASTp (BLAST version
2.2.29). If the best reciprocal hit has an E-value below 10!5 ,
the gene pair is considered orthologous; otherwise, it is dis-
carded. Second, we construct codon alignments of the ortho-
logous gene pairs using PAL2NAL (Suyama et al. 2006). Third,
we compute Ka/Ks values of the codon alignments using
GESTIMATOR (Thornton 2003) and Comeron’s substitution
model, which combines Li’s, Pamillo’s, and Bianchi’s method
with Kimura’s method for obtaining robust Ka/Ks estimates
(Comeron 1995). Fourth, we discard all genes with a Ka/Ks
value greater than 2 and sort the remaining Ka/Ks values into
discrete deciles, which we call DS. DS values for the genomes
of all three species are provided in supplementary table S4,
Supplementary Material online. The same procedure is ap-
plied to generate sequence divergence maps for all other
pairwise species comparisons (supplementary table S4,
Supplementary Material online). The construction of se-
quence divergence maps is explained in detail in the advanced
vignette of the myTAI R package (Drost 2014). It can be
applied to any chosen species pair with available coding se-
quence genomes and can be computed using the orthologr
package (https://github.com/HajkD/orthologr, last accessed
August 2, 2015).

Processing of Expression Data
For Da. rerio we use the microarray expression data set by
Domazet-Lo!so and Tautz (2010) covering 40 stages corre-
sponding to embryo development. The 16,188 probes of
this data set correspond to 12,892 genes according to
ENSEMBL predictions (Domazet-Lo!so and Tautz 2010), and
we compute the expression level of each gene as arithmetic
mean of the expression levels of the corresponding probes
(Piasecka et al. 2013). Intersecting these 12,892 genes with
genes in the phylostratigraphic map and the sequence diver-
gence map of Da. rerio and As. mexicanus yields 12,892 genes
and 7,740 genes, respectively. Intersecting sequence diver-
gence maps of Da. rerio and T. rubripes, Da. rerio and X.
maculatus, and Da. rerio and G. morhua yields 6,807, 6,997,
and 4,734 genes, respectively. For D. melanogaster we use the
RNA-seq expression data set by Graveley et al. (2011) covering
12 stages corresponding to embryo development.
Intersecting the 15,139 genes of this data set with genes in
the phylostratigraphic and the sequence divergence maps of
D. melanogaster and D. simulans yields 12,043 genes and 6,230
genes, respectively. Intersecting sequence divergence maps of
D. melanogaster and D. yakuba, D. melanogaster and D. persi-
milis, and D. melanogaster and D. virilis yielded 6,961, 5,872,
and 5,732 genes, respectively. For A. thaliana we use the mi-
croarray expression data set by Xiang et al. (2011) covering
seven stages of embryo development. Intersecting the 26,173
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genes of this data set with genes in the phylostratigraphic and
sequence divergence maps of A. thaliana and A. lyrata yields
25,260 genes and 18,240 genes, respectively. Intersecting se-
quence divergence maps of A. thaliana and C. rubella,
A. thaliana and B. rapa, and A. thaliana and Car. papaya
yields 17,765, 16,122, and 9,427 genes, respectively.
Expression values used for TAI and TDI computations are pro-
vided in supplementary tables S3 and S5, Supplementary
Material online. The introductory vignette of the myTAI R
package describes how to define and process expression data
sets (Drost 2014).

Transcriptome Age Index
The TAI at stage s (TAIs) has been defined as weighted arith-
metic mean over all PS using gene expression intensities eis of
gene i at developmental stage s as weights (Domazet-Lo!so
and Tautz 2010), that is,

TAIs ¼

Xn

i¼1

psieis

Xn

i¼1

eis

;

where psi denotes the PS of gene i, and n denotes the number
of genes. A small value of psi represents an old PS, and a high
value of psi a young PS. Hence, a small value of TAIs represents
a high mean evolutionary age of the transcriptome at stage s,
and a high value of TAIs a low mean evolutionary age. The
standard workflow for TAI analysis is described in detail in the
introductory vignette of the myTAI R package (Drost 2014).

Transcriptome Divergence Index
The TDI at stage s (TDIs) has originally been defined as
weighted arithmetic mean over all sequence divergence
values (Ka/Ks) using gene expression intensities eis of gene i
at developmental stage s as weights (Quint et al. 2012). Here,
we slightly modify the definition of the TDI by sorting the
continuous Ka/Ks values into deciles yielding ten discrete DS.
These discrete DS ranging from 1 to 10 represent the degree
of sequence divergence in the same manner in which the
discrete PS represent the evolutionary age. We now define
the TDI of stage s (TDIs) as weighted arithmetic mean over all
DS using gene expression intensities eis as weights, that is,

TDIs ¼

Xn

i¼1

dsieis

Xn

i¼1

eis

;

where dsi denotes the DS of gene i, and n denotes the number
of genes. A small value of dsi represents a conserved DS, and a
high value of dsi a divergent DS. Hence, a small value of TDIs
represents a low mean sequence divergence of the transcrip-
tome at stage s, and a high value of TDIs a high mean se-
quence divergence. The standard workflow for TDI analysis is

described in detail in the introductory vignette of the myTAI
R package (Drost 2014).

Essential Genes Expression Level Analysis
Essential genes are defined as genes that are required for
normal growth and development which are associated with
a loss-of-function phenotype in a standard genetic back-
ground (Meinke et al. 2008). For our analysis, we focus on
genes causing embryo-defective phenotypes in A. thaliana.
We took unique essential genes from www.seedgenes.org
(Meinke et al. 2008) and only selected genes that were clas-
sified as embryo-defective. This procedure yielded 401 unique
embryo-defective genes that were used to generate supple-
mentary figure S8, Supplementary Material online. Mean ex-
pression levels were plotted for each stage (supplementary fig.
S8A, Supplementary Material online) and a Dunn’s test of
multiple comparisons (Dunn 1964) using Benjamini–
Hochberg adjustment (Benjamini and Hochberg 1995) was
performed to statistically quantify differences in essential gene
expression for pairwise stage comparisons (supplementary fig.
S8B, Supplementary Material online). Statistical significance of
differences in essential gene expression across all stages was
assessed by performing a Kruskal–Wallis rank sum test. Gene
IDs, expression values and scripts are included in the accom-
panying GitHub repository.

Flat Line Test
The flat line test (Quint et al. 2012) is a permutation test
based on the variance V of the TAI values of a given TAI
profile as test statistic. For any pattern different from a flat
horizontal line, V should be high. In order to determine the
statistical significance of an observed variance V, we perform
the following permutation test. We randomly permute the PS
values of the original data set 10,000 times, compute the
variance V from each of the 10,000 permuted data set s,
approximate the histogram of the 10,000 variances V by a
Gamma distribution, and report the probability of exceeding
the observed variance V as P-value of the flat line test.

The flat line test can be applied to TDI profiles in exactly
the same manner.

Reductive Hourglass Test
The reductive hourglass test is a permutation test based on
the following test statistic. First, we partition the set of devel-
opmental stages into three modules—early, mid, and late—
based on prior biological knowledge. Second, we compute the
mean TAI value for each of the three modules, and we denote
these mean TAI values by Tearly, Tmid, and Tlate. Third, we
compute the two differences D1 = Tearly–Tmid and
D2 = Tlate–Tmid. Fourth, we compute the minimum Dmin of
D1 and D2 as final test statistic of the reductive hourglass test.

For a typical hourglass pattern, Tearly should be high, Tmid

should be low, and Tlate should be high, so both differences D1

and D2 should be positive, so the minimum difference Dmin

should be positive, too.
In order to determine the statistical significance of an

observed minimum difference Dmin, we perform the
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following permutation test. We randomly permute the PS
values of the original data set 10,000 times, compute the
minimum difference Dmin from each of the 10,000 permuted
data sets, approximate the histogram of the 10,000 mini-
mum differences Dmin by a Gaussian distribution, and report
the probability of exceeding the observed minimum differ-
ence Dmin as P-value of the reductive hourglass test (fig. 5A).
Supplementary figure S10, Supplementary Material online,
visualizes an example test statistic, the corresponding
Gaussian distribution fitting the histogram of the 10,000
minimum differences Dmin, and the hourglass score of the
observed phylotranscriptomic pattern.

The reductive hourglass test can be applied to TDI profiles
in exactly the same manner.

Reductive Early Conservation Test
The reductive early conservation test is a permutation test
conceptually identical to the reductive hourglass test.
Specifically, steps one, two, and four are identical, and in
step three we compute the two differences D1 = Tmid–Tearly

and D2 = Tlate–Tearly. For a typical early conservation pattern,
Tearly should be low, and Tmid and Tlate should be high, so both
differences D1 and D2 should be positive, so the minimum
difference Dmin should be positive, too. In order to determine
the statistical significance of an observed minimum difference
Dmin, we perform the same permutation test as in the reduc-
tive hourglass test, yielding the probability of exceeding the
observed minimum difference Dmin as P-value of the reduc-
tive early conservation test.

Instructions on the application of the flat line test, the re-
ductive hourglass test, and the early conservation test are de-
scribed in the introductory vignette of the myTAI R package
(Drost 2014). The entire process of building the test statistics for
the three tests can be found in its intermediate vignette.

Supplementary Material
Supplementary figures S1–S10 and tables S1–S5 are available
at Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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Abstract

The historic developmental hourglass concept depicts the convergence of animal embryos to a common form during the
phylotypic period. Recently, it has been shown that a transcriptomic hourglass is associated with this morphological
pattern, consistent with the idea of underlying selective constraints due to intense molecular interactions during body
plan establishment. Although plants do not exhibit a morphological hourglass during embryogenesis, a transcriptomic
hourglass has nevertheless been identified in the model plant Arabidopsis thaliana. Here, we investigated whether plant
hourglass patterns are also found postembryonically. We found that the two main phase changes during the life cycle of
Arabidopsis, from embryonic to vegetative and from vegetative to reproductive development, are associated with tran-
scriptomic hourglass patterns. In contrast, flower development, a process dominated by organ formation, is not. This
suggests that plant hourglass patterns are decoupled from organogenesis and body plan establishment. Instead, they may
reflect general transitions through organizational checkpoints.

Key words: developmental hourglass, plant development, transcriptomics, germination, floral transition.

Based on von Baer’s third law of embryology (Von Baer 1828),
it has been observed that midstage embryos of animal species
from the same phylum share morphological similarities.
Because these embryos tend to be more divergent at early
and late embryogenesis, this morphological pattern has been
termed the “developmental hourglass” (Duboule 1994; Raff
1996) (fig. 1A). The window of maximum morphological con-
servation in midembryogenesis coincides with the onset of
organogenesis during body plan establishment and is called
phylotypic stage (Sander 1983) or phylotypic period
(Richardson 1995, Kalinka et al. 2010). It has been suggested
that a likely cause for this conservation is a web of complex
interactions among developmental modules (e.g., organ pri-
mordia) during body plan establishment, which results in
selective constraints that minimize morphological divergence
(Raff 1996) (fig. 1A). Although controversially debated for
decades, in recent years the concept of the developmental
hourglass has been largely confirmed at the transcriptomic
level. Several studies showed that the degree of sequence
conservation, the phylogenetic age of transcriptomes, or

the similarity of gene expression profiles maximize during
the phylotypic period (Hazkani-Covo et al. 2005; Irie and
Sehara-Fujisawa 2007; Artieri et al. 2009; Cruickshank and
Wade 2008; Kalinka et al. 2010; Domazet-Lo#so and Tautz
2010; Yanai et al. 2011; Irie and Kuratani 2011; Levin et al.
2012; Wang et al. 2013; Levin et al. 2016), which is in agree-
ment with a potentially causative association with body plan
establishment.

In contrast to animals with their almost exclusively em-
bryogenic development, organ formation in plants occurs
largely postembryonically (fig. 1B). Hence, a web of compara-
bly complex modular interactions between developing organ
primordia, which might underly the selective constraints dur-
ing the phylotypic period in animals, is possibly never
achieved during plant embryogenesis. However, a transcrip-
tomic hourglass pattern has nonetheless been observed for
plant embryogenesis (Quint et al. 2012; Drost et al. 2015) (as
well as for fungal development; Cheng et al. 2015), indicating
that it may not be causally connected to organogenesis, as
suggested by the animal model. We therefore wondered
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whether in plants these patterns might instead be associated
with developmental transitions. Embryogenesis can be
viewed as such a transition, namely from a single-celled zy-
gote to a complex, multicellular embryo. To test this hypoth-
esis, we generated transcriptomic data sets that cover the two
most important ontogenetic transitions in postembryonic
development in Arabidopsis thaliana: The transition from
the embryonic to the vegetative phase, and the transition
from the vegetative to the reproductive phase. As a control,
we also analyzed a transcriptomic time series for flower de-
velopment, a process that is dominated by organogenesis. We
then performed phylotranscriptomic analyses (Domazet-
Lo#so and Tautz 2010; Quint et al. 2012; Drost et al. 2015),
which assess the phylogenetic age of transcriptomes ex-
pressed over sequential developmental stages (supplemen
tary fig. S1, Supplementary Material online), and tested the
resulting profiles for the characteristic hourglass shape. If in-
deed, postembryonic developmental processes would be gov-
erned by hourglass patterns, this would suggest that hourglass
patterns are not restricted to embryogenesis and possibly a
wide-spread phenomenon that governs multiple processes.
Furthermore, the potentially causative relationship among
organogenesis, body plan establishment, and hourglass pat-
terns would need to be re-evaluated.

Results and Discussion
To study the transition from embryogenesis to the vegetative
phase, we generated transcriptomic information for seven
sequential ontogenetic stages during seed germination
(Silva et al. 2016). The stages sampled included mature dry
seeds, 6-h imbibed seeds, seeds at testa rupture, radicle pro-
trusion, root hair (collet hair) appearance, the appearance of
greening cotyledons, and established seedlings with fully
opened cotyledons (fig. 2A and supplementary fig. S2,

Supplementary Material online). We then combined the tran-
scriptomic information with previously generated gene age
information (Drost et al. 2015). Based on an age-assignment
approach called phylostratigraphy (Domazet-Lo#so et al. 2007)
(supplementary fig. S1, Supplementary Material online), genes
can be sorted into discrete age categories named phylostrata
(PS) (Domazet-Lo#so et al. 2007). For A. thaliana, we defined
12 age classes ranging from old (PS1) to young (PS12). Next,
we computed the transcriptome age index (TAI) (Domazet-
Lo#so and Tautz 2010) for each developmental stage, which is
defined as the weighted mean of gene ages using the stage-
specific expression levels as weights. The TAI therefore de-
scribes the phylogenetic age of a transcriptome.

As shown in figure 2B, the TAI profile for the embryonic-
to-vegetative phase transition displays an hourglass pattern
with high TAI values at early and late stages and low TAI
values at intermediate stages. We confirmed this observation
through statistical tests (flat line test [Drost et al. 2015]:
P ¼ 8.92 " 10#20; reductive hourglass test (Drost et al.
2015): P ¼ 3.08 " 10#16; supplementary fig. S3a,
Supplementary Material online). The waist of the hourglass
corresponded to the phylogenetically oldest transcriptomes
stemming from the “testa rupture“ to “radicle protrusion”
stages. These stages mark the emergence of the seedling
from the seed, likely the transition period of this process, at
which germination becomes irreversible (fig. 2B). We finally
also studied the relative expression levels of genes of different
PS and found that the hourglass pattern is caused by a largely
antagonistic behavior of old and young genes (fig. 2C), similar
to what has been previously reported for embryogenesis
(Quint et al. 2012; Drost et al. 2015).

We next tested whether a transcriptomic hourglass
pattern also underlies the vegetative-to-reproductive phase
transition. During this so-called floral transition, the leaf-
producing shoot apical meristem is converted into an

FIG. 1. The developmental hourglass model in the context of differences in plant and animal development. (A) According to Raff (1996), a web of
complex interactions among developmental modules results in selective constraints during midembryogenesis. In the phylotypic period modular
interactions maximize and morphological divergence minimizes resulting in the bottleneck of the developmental hourglass model (illustration
adapted from Irie and Kuratani 2011). (B) The part of the ontogenetic life cycle that is covered by embryogenesis varies dramatically between
plants and animals. Mature plant embryos have a limited number of organs and little complexity. Most organs develop postembryonically. In
contrast to animals, the plant body plan is not fixed. It constantly changes in response to the environment. Animal development is largely
embryonic. Mature animal embryos often reach a level of complexity that is comparable with adult individuals.
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inflorescence meristem, which forms flowers (Huijser and
Schmid 2011). Morphologically, completion of the floral tran-
sition can be observed by the bolting inflorescence. However,
as the actual transition occurs several days before bolting, we
also assessed the expression of floral homeotic genes and
other marker genes to better map the time of transition to

the reproductive state (supplementary fig. S4, Supplementary
Material online). Based on this information, we synchronized
flowering time in the sampling population (supplementary
fig. S5, Supplementary Material online; see Methods) and
generated transcriptome data from the shoot apex before,
during, and after floral transition.

FIG. 2. TAI analysis for germination in Arabidopsis thaliana. (A) Illustration of the developmental stages for which transcriptome data were
generated. (B) The TAI profile across germination follows an hourglass-like pattern. The gray lines represent the standard deviation estimated by
permutation analysis. P values were derived by application of the flat line test (Drost et al. 2015) (Pflt) and the reductive hourglass test (Drost et al.
2015) (Prht). (C) Relative expression levels for each phylostratum (PS) separately. The stage with the highest mean expression levels of the genes
within a PS was set to relative expression level ¼ 1, the stage with the lowest mean expression levels of the genes within a PS was set to relative
expression level ¼ 0, the remaining stages were adjusted accordingly. PS was classified into two groups: Group “old” contains PS that categorize
genes that originated before complex/multicellular plants evolved (PS1–3) and group “young” contains PS that categorize genes that originated
after complex plants evolved (PS4–12). DS, mature dry seeds; 6h, 6-h imbibed seeds; TR, seeds at testa rupture; RP, radicle protrusion; RH,
appearance of the first root hairs; GC, appearance of greening cotyledons; OC, fully opened cotyledons.
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Figure 3A shows the results from the TAI analysis for nine
samples covering the floral transition. We identified a robust
hourglass pattern (reductive hourglass test [Drost et al. 2015]:
P ¼ 2.99 " 10#5; fig. 3A and supplementary fig. S3b,
Supplementary Material online) that significantly deviated
from a flat line (flat line test [Drost et al. 2015]: P ¼ 3.03 "
10#14). Similar to embryogenesis (Quint et al. 2012; Drost
et al. 2015) and seed germination (fig. 2C), analysis of relative
expression levels of genes assigned to different age classes
revealed a largely antagonistic behavior of old and young
genes (fig. 3B).

Taken together, these observations demonstrate that in
plants not only embryogenesis but also the embryo-to-vege-
tative and vegetative-to-reproductive phase transitions prog-
ress through a stage of evolutionary conservation with older
transcriptomes being active in mid development. Thus the
hourglass pattern, which was previously discussed only with
regard to embryogenesis, appears to be more widespread, at
least in plants. In fact, the embryonic hourglass is possibly only
one of many developmental processes governed by hourglass
patterns.

Because no new organs are established during the two
postembryonic phase transitions assessed here, our results

also support the aforementioned conjecture that transcrip-
tomic hourglass patterns are not specifically associated with
organogenic processes. To directly test this, we performed
phylotranscriptomic analyses of a flower development data
set we previously generated (Ryan et al. 2015). Flower devel-
opment follows floral transition and is dominated by the
formation of different types of floral organs. In agreement
with the idea that hourglass patterns in plants are not tightly
associated with organogenesis, the transcriptomic profile
across 14 time points from the earliest stages of flower devel-
opment to mature flowers did not show an hourglass pattern
or, in fact, any other pattern at all (flat line test [Drost et al.
2015]: P¼ 0.202; fig. 4A and B). Likewise, old and young genes
did not show a clear antagonistic behavior in their expression
(fig. 4C). Together, these data suggest that in plants organo-
genesis is not the driving factor of hourglass-shaped tran-
scriptome profiles. Hence, the currently favored explanation
of animal hourglass patterns, which is based on selective con-
straints correlated to body plan establishment and organo-
genesis (Raff 1996), cannot serve as a plausible explanation for
the two postembryonic hourglass patterns reported here.

A simple scenario that might resolve this controversy
would be that the transcriptomic hourglass patterns in plants
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FIG. 3. TAI analysis for the transition from vegetative to reproductive growth in Arabidopsis thaliana. (A) The TAI profile across the transition to
flowering follows an hourglass-like pattern. The gray lines represent the standard deviation estimated by permutation analysis. P values were
derived by application of the flat line test (Drost et al. 2015) (Pflt) and reductive hourglass test (Drost et al. 2015) (Prht). (B) Relative expression levels
for each PS separately. The stage with the highest mean expression levels of the genes within a PS was set to relative expression level¼ 1, the stage
with the lowest mean expression levels of the genes within a PS was set to relative expression level ¼ 0, the remaining stages were adjusted
accordingly. PS was classified into two groups: Group “old” contains PS that categorize genes that originated before complex/multicellular plants
evolved (PS1–3) and group “young” contains PS that categorize genes that originated after complex plants evolved (PS4–12). TP, time point; TP1,
1 day after shift to long day photoperiods (LD); TP2, 2 days after shift to LD; TP3, 3 days after shift to LD; TP4, 4 days after shift to LD; TP5, 5 days after
shift to LD; TP6, 6 days after shift to LD; TP7, 7 days after shift to LD; TP8, 8 days after shift to LD; TP9, 9 days after shift to LD.
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are functionally unrelated to those of animal embryogenesis.
They might in fact have evolved to serve a completely differ-
ent, yet unknown, purpose. This scenario is supported by the
lack of reports on morphological hourglass patterns for plant
embryogenesis (in contrast to various animal phyla). It seems
that morphological similarity among flowering plants is not
restricted to a midembryonic period but rather exists
throughout embryogenesis (Kaplan and Cooke 1997). If the
biological processes underlying embryonic hourglass patterns
in animals and plants are indeed functionally unrelated, we
would also have to revoke our earlier hypothesis that the
developmental hourglass pattern evolved convergently in
both kingdoms (Quint et al. 2012). Interestingly, in the three
processes we analyzed, it seems that the waist in the hourglass
reflects a general transition to a growth or maturation phase.

If, however, animal and plant hourglass patterns should
serve a similar function, this study would suggest that the
underlying cause is not organogenesis or body plan

establishment but an even more fundamental process. As
also in animal systems a causal relationship between body
plan establishment and the phylotypic period remains to be
proven (Irie and Kuratani 2014), it might be worthwhile to
directly address this relationship by designing experiments
that separate developmental transitions from organogenesis
in animals.

In summary, the hourglass pattern was historically associ-
ated with animal embryogenesis and only recently recognized
to govern plant embryogenesis, too. Here, we present evi-
dence that in plants the hourglass pattern is probably even
more fundamental and not only characteristic for embryo
development, but present in all three major developmental
transitions of plant life. It will be interesting to test postem-
bryogenic transitions like metamorphoses in animals to see
whether this can also be observed for nonplant organisms.
We hypothesize that a transcriptomic hourglass pattern is a
feature of multiple developmental processes that simply

FIG. 4. TAI analysis of flower development in Arabidopsis thaliana. (A) Illustration of the developmental stages for which transcriptome data were
generated; stages according to Ryan et al. 2015. (B) The TAI profile across flower development fails to detect evolutionary signal. The gray lines
represent the standard deviation estimated by permutation analysis. The P value was derived by application of the flat line test (Drost et al. 2015)
(Pflt). (C) Relative expression levels for each PS separately. The stage with the highest mean expression levels of the genes within a PS was set to
relative expression level¼ 1, the stage with the lowest mean expression levels of the genes within a PS was set to relative expression level¼ 0, the
remaining stages were adjusted accordingly. PS was classified into two groups: Group “old” contains PS that categorize genes that originated before
complex/multicellular plants evolved (PS1–3) and group “young” contains PS that categorize genes that originated after complex plants evolved
(PS4–12).
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require passing through an organizational checkpoint serving
as a switch that separates two functional programs.

Supplementary Material
Supplementary figures S1–S5, text, and dataset S1 are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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Abstract

Background: The formation of flowers is one of the main model systems to elucidate the molecular mechanisms
that control developmental processes in plants. Although several studies have explored gene expression during flower
development in the model plant Arabidopsis thaliana on a genome-wide scale, a continuous series of expression data
from the earliest floral stages until maturation has been lacking. Here, we used a floral induction system to close
this information gap and to generate a reference dataset for stage-specific gene expression during flower formation.

Results: Using a floral induction system, we collected floral buds at 14 different stages from the time of initiation until
maturation. Using whole-genome microarray analysis, we identified 7,405 genes that exhibit rapid expression changes
during flower development. These genes comprise many known floral regulators and we found that the expression
profiles for these regulators match their known expression patterns, thus validating the dataset. We analyzed groups of
co-expressed genes for over-represented cellular and developmental functions through Gene Ontology analysis and
found that they could be assigned specific patterns of activities, which are in agreement with the progression of flower
development. Furthermore, by mapping binding sites of floral organ identity factors onto our dataset, we were able to
identify gene groups that are likely predominantly under control of these transcriptional regulators. We further
found that the distribution of paralogs among groups of co-expressed genes varies considerably, with genes
expressed predominantly at early and intermediate stages of flower development showing the highest proportion of such
genes.

Conclusions: Our results highlight and describe the dynamic expression changes undergone by a large number
of genes during flower development. They further provide a comprehensive reference dataset for temporal gene
expression during flower formation and we demonstrate that it can be used to integrate data from other genomics
approaches such as genome-wide localization studies of transcription factor binding sites.
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Background
The formation of flowers is one of the main models for
studying the molecular mechanisms underlying the con-
trol of plant development. Over the past three decades,
a large number of regulatory genes, which control a
multitude of different processes during flower morpho-
genesis, have been identified mainly through a combin-
ation of forward and reverse genetics approaches [1–3].
Work in Arabidopsis thaliana in particular has led to an
understanding of the molecular mechanisms underlying
the functions of many of these regulatory genes [4]. Fur-
thermore, it has yielded detailed insights into the regula-
tory hierarchies among genes that play roles in the
control of floral organ formation [5, 6].
With the advent of the genomics era, genetic approaches

employed to elucidate the regulation of flower development
have been complemented by methods such as global tran-
script profiling and genome-wide localization studies of
transcription factor binding sites. Unfortunately, this work
has been hampered in Arabidopsis by the fact that flowers
of this model plant are small and early-stage floral buds are
too minute to be dissected reliably through conventional
approaches. Also, Arabidopsis flowers are initiated sequen-
tially so that all flowers in an inflorescence are at distinct
developmental stages [7]. As a consequence, the collection
of sufficient numbers of flowers at particular stages for ana-
lysis by genomic technologies is challenging especially for
early flower development. To circumvent this problem, a
number of approaches have been employed: recently, laser
capture microdissection has been used to generate tran-
scriptional profiles of early-stage floral buds [8]. An alterna-
tive and largely complementary approach has been the use
of floral induction systems, which allow the collection of
hundreds of synchronized floral buds from a single plant
(see below). These systems have been employed to study
both temporal and spatial gene expression during the early
stages of flower development [9–14]. Other studies have
analyzed gene expression in whole inflorescences of wild-
type and mutant plants and in some cases relied on the re-
moval of older (and relatively large) buds that may unduly
contribute to RNA preparations from these tissues [15–19].
Moreover, transcript profiling was done with wild-type
flowers at individual stages and with distinct floral organ
types, but this work has been limited to older flowers,
as they can be collected with relative ease [17]. Specific
developmental processes such as male-gametophyte/
pollen and female gametophyte/ ovule development
have also been studied through transcriptomics experi-
ments, providing detailed information for individual
cell and tissue types [20–23].
Although Arabidopsis flower development has been stud-

ied extensively over the past ten years through the genom-
ics approaches described above, a continuous series of gene
expression from the time of initiation to maturation has

been lacking. Obtaining this information could be highly in-
formative as it would provide a comprehensive view of
stage-specific gene expression activities over the entire
course of development and would constitute an important
component of a gene expression map. Furthermore, such a
dataset could be used in analyses, in which, for example,
data from transcript profiling and genome-wide localization
studies are integrated to obtain a better understanding of
the gene network that controls flower formation.
In this study, we employed a floral induction system to

close this knowledge gap and to monitor temporal gene
expression during flower development from the time of
initiation to maturation. We validated the resulting data-
set and used it to obtain novel insights into the pro-
cesses underlying the formation of flowers on a global
scale through computational approaches.

Results and discussion
Temporal gene expression during flower development
To identify patterns of gene expression during flower devel-
opment from the time of initiation to maturation (stage 13;
stages according to [7]), we employed a previously de-
scribed floral induction system, which allows the collection
of hundreds of floral buds from a single plant [9, 13, 24,
25]. This system is based on the expression of the floral
meristem identity factor APETALA1 (AP1) fused to the
hormone-binding domain of the rat glucocorticoid receptor
(GR) from the AP1 regulatory region (AP1pro) in an ap1
cauliflower (cal) double-mutant background. Ap1 cal plants
accumulate inflorescence-like meristems at their shoot
apices [26, 27], and activation of the AP1-GR fusion
protein in this background through treatment of the
plants with the steroid hormone dexamethasone results
in the transformation of these meristems into floral
primordia, which subsequently develop in a largely syn-
chronized manner. However, at intermediate stages, this
synchronization is gradually lost likely due to space con-
straints [9]. Despite this overall loss of synchronization, we
noticed that flowers at the very tip of the inflorescence
heads remained fairly synchronized throughout flower
development perhaps due to a larger degree of curva-
ture in his area, which may allow floral buds to develop
without coming into contact with neighboring flowers.
For the gene expression profiling experiments, we
therefore collected older floral buds (days 9 to 13 after
dexamethasone treatment, corresponding to stages 9-10 to
13, respectively) from this region alone, while younger
flowers were harvested more liberally from the inflores-
cences of AP1pro:AP1-GR ap1 cal plants (Fig. 1a-j). To ob-
tain expression data for a large number of distinct floral
stages, we collected floral buds at 14 different time-points
either immediately before (referred to as 0 d time-point) or
from 1 to 13 d after the induction of flower development
through treatment with dexamethasone (Fig. 1k). Because
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early flower development is characterized by dramatic
changes in morphology [7] and involves a large number of
transcriptional regulators that control important processes
such as floral patterning and floral organ specification [4],
we collected most samples at those stages with intervals in-
between time-points ranging from 0.5 to 1 d. At later stages
of development, the intervals for sample collection were ex-
tended to 2 d (Fig. 1k).
For microarray analysis of the tissue samples, we

employed a common reference design (e.g., ref. [28]).
We then assessed the resulting data for reproducibility
and found that the replicates for the individual time-
points correlated well (Figure S1 in Additional file 1; see
also Fig. 2), implying that the progression of flower de-
velopment and the tissue collection was highly reprodu-
cible over the entire course of the experiment. In order
to determine significant expression changes, we applied
an F-statistic and searched across the entire dataset for
genes with differential expression. We identified ~20,000
genes (i.e., ~75 % of the genes in the Arabidopsis gen-
ome) that showed differential expression in at least one
of fourteen time-points. Because many of these tran-
scriptional changes may be caused by the dramatic alter-
ations in floral size and morphology during the course
of development and not by specific gene regulatory
events, we next sought to identify genes whose expression
changed relatively rapidly. To this end, we compared gene
expression between consecutive as well as near-by (within a
2-d time interval) time-points to minimize the effects of
morphological alterations and identified 7,405 genes as dif-
ferentially expressed (Additional file 2). Many of these dif-
ferentially expressed genes (DEGs) were detected at

Fig. 1 Analysis of temporal gene expression during flower development. a-j Inflorescences of AP1pro:AP1-GR ap1-1 cal-1 plants a before dexamethasone
treatment (0 d time-point) , and b 1 d, c 2 d, d 3 d, e 4 d, f 5 d, g 7 d, h 9 d, i 11 d, and j 13 d after treatment with a solution containing
10 μM dexamethasone. The development of flowers on a given inflorescence was largely synchronous until day 7. For later time-points (h-j),
flowers were harvested from the tip of the inflorescences (arrowheads) after phenotypic assessment. k Experimental set-up used for this study. Floral buds
were collected from the inflorescences of AP1pro:AP1-GR ap1-1 cal-1 plants at 14 time-points immediately before and after treatment with a
dexamethasone (‘DEX’)-containing solution, which induces flower development by activating the AP1-GR fusion protein. Floral buds from the
time of initiation until anthesis (corresponding to stage 13) were sampled

Fig. 2 Expression profiles of known floral regulators. a-l M values
(log2 (expression in sample/expression in common reference)) for
selected floral regulators (as indicated) are shown for all time-points.
Red, green and blue lines represent data from three biologically
independent sets of samples, black lines the mean values of the
replicate experiments. Note the high reproducibility of the expression
data across all time-points
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intermediate (between 5 and 9 d after dexamethasone
treatment) and late (between 9 and 13 d) stages of
flower development, and overall, a preponderance of
gene activation over repression was observed (Table S1
in Additional file 1). Although we found many genes to
be repressed immediately after the onset of flower de-
velopment, this effect was not as pronounced as previ-
ously described [9, 29], possibly because of the different
floral induction systems and/or different experimental
set-ups and data analysis pipelines used.
To validate the results of the microarray experiments,

we assessed the expression profiles of genes with known
roles in different processes during flower development
(Fig. 2 and Figure S2 in Additional file 1) and found that
they were in concurrence with their published expres-
sion patterns. For example, expression of the floral
homeotic genes APETALA3 (AP3) and AGAMOUS (AG)
(Fig. 2a-b) strongly increased in early time-points and
then remained high throughout most of flower develop-
ment in agreement with the activation of these genes at
stage 3 and their continued expression in developing
floral organs [30, 31]. Down-regulation of the floral re-
pressor SHORT VEGETATIVE PHASE (SVP) (Fig. 2c) at
early floral stages has been described previously and is
dependent on AP1 activity [29, 32]. Expression of the
stem cell regulator CLAVATA3 (CLV3) was high at early
stages and then rapidly decreased in intermediate-stage
flowers (Fig. 2d) likely as a consequence of the loss of
floral stem cells around stage 6 of development [33].
This termination of floral meristems is at least in part
due to the activity of KNUCKLES (KNU), which we de-
tected to be expressed at intermediate stages (Fig. 2e), in
agreement with its known expression pattern at the base
of developing carpels and in stamen primordia [34, 35].
Genes with bimodal expression profiles included SUPER-
MAN (SUP) (Fig. 2f ), which is initially expressed in
young floral meristems and at later floral stages during
ovule development [36]. Strong up-regulation of the
regulator of ovule and seed development SEEDSTICK
(STK) between days 7 and 9 in our experiment (Fig 2g)
corresponds to its expression in developing carpels from
stage 8 onward [37]. DUO POLLEN1 (DUO1), a regulator
of male germline development, was found to be expressed
in late flower development (Fig. 2h) in agreement with its
specific expression in pollen [38]. ABORTED MICRO-
SPORES (AMS), which encodes a master regulator of pollen
wall formation, was strongly expressed at intermediate
stages and reached a maximum around stages 9-10 (9 d
after dexamethasone treatment) (Fig. 2i) as previously de-
scribed [39]. Genes such as NOZZLE/SPOROCYTELESS
(NZZ/SPL) (Fig. 2j), EXTRA MICROSPOROCYTES1/
EXTRA SPOROGENOUS CELLS (EMS1/EXS) (Fig. 2k),
and DYSFUNCTIONAL TAPETUM1 (DYT1) (Fig. 2l) were
expressed during intermediate stages in agreement with

their function in early anther development [40–44]. Activa-
tion of NZZ/SPL was detected in our experiment around
stage 5 and thus earlier than what has been reported previ-
ously (i.e. stage 6; [45]). This difference might stem from
initially low mRNA levels, which might hamper a reliable
detection in in situ hybridization or reporter gene essays.
We also compared our dataset to those from several

previous studies in which temporal [8–10, 14] and spatial
[11, 16] gene expression during flower development had
been analyzed either in early or in late-stage flowers using
different floral induction systems, laser capture microdis-
section of wild-type flowers, or through a comparison of
the gene expression profiles of inflorescences of floral mu-
tants and of the wild type, respectively. For each pair-wise
comparison, we found a significant overlap between the
datasets and the one described in this study (Table S2 in
Additional file 1 and Additional file 3), further validating
the results of our time-course experiment.

Distribution of functional terms among groups of co-
expressed genes
Because functionally related genes are often co-expressed
during development, we used a k-means algorithm to group
the DEGs into 15 clusters with distinct gene expression
profiles (Fig. 3 and Figure S3 in Additional file 1). Figure 3
shows that the majority of DEGs are predominantly
expressed at or after the 9-d time-point. Notable exceptions
include genes in clusters 5, 11 and 15, which are up-
regulated during early flower development and are re-
pressed at intermediate to late stages. Also, clusters 6 and 7
contain genes that are expressed at the earliest floral stages
and are subsequently down-regulated. Genes assigned to
clusters 4 and 12 are activated during early flower develop-
ment when organ primordia are initiated and remain
expressed until flowers have reached maturity, suggesting
that many of them might play roles during the course of
floral organ morphogenesis.
To obtain insights into the functions of the genes

assigned to each of the clusters and to further validate the
microarray data, we mapped the groups of co-expressed
genes onto an Arabidopsis gene expression atlas we had
generated previously [13] based on published data (Fig. 4a
and Additional file 4). We then determined the percentage
of genes with maximum (Fig. 4b) and, for comparison,
minimum (Fig. 4c) expression in different groups of related
tissue samples. For some of the clusters, this analysis
allowed predictions of the predominant location of gene ex-
pression. For example, a high percentage of genes with
maximum expression in pollen was identified in clusters 2,
3, 8-10, and 13-14. Genes assigned to these clusters were
predominantly expressed from or after the 9-d time-point
and thus at stages when pollen formation occurs [46]. Clus-
ters 6, 7, and 13 contained the highest proportion of genes
with maximum expression in meristems, in agreement with
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the observation that genes in these clusters are strongly
expressed during the earliest floral stages, but are repressed
towards more intermediate stages when meristematic activ-
ity in flowers ceases. The highest percentage of genes with
maximum expression in ovules was found in cluster 15,
which contains relatively few genes that are strongly
expressed around the 7 and 9-day time-points (correspond-
ing to floral stages 8-10; Fig. 1a) and thus at the time when
ovule development commences [47].
We also subjected the groups of co-expressed genes to a

Gene Ontology (GO) analysis to identify functionally
related genes that are significantly enriched (adjusted
p-value < 0.05) in the individual clusters (Figure S4 and
Additional file 5). GO terms directly associated with
flower formation (e.g., ‘Specification of Floral Organ
Identity’ and terms related to the development of the
different floral organ types) and/or floral meristem devel-
opment (including the terms ‘Cell Proliferation’ and ‘Cell
Division’) were found to be enriched, in particular, in clus-
ters 6 and 7, as well as in clusters 11 and 12 (Fig. 5a). As
described above, these clusters contain genes that are

repressed at early to mid-stages (clusters 6 and 7) or
are activated during early flower development (clusters
11 and 12) and remain expressed at least until the end
of the intermediate phase of flower development. In
agreement with the over-representation of flower-
related GO terms in these clusters, they contain many
of the regulatory genes (which are also typically associ-
ated with the GO term ‘Regulation of Transcription’;
see Fig. 5b) known to be involved in controlling the
early phase of flower development (Additional file 2).
Genes associated with the term ‘Pollen Development’
were enriched in clusters 2 and 9, which contain genes
with maximal expression around day 9 of the experi-
ment and hence at a time (corresponding to floral
stages 9-10; Fig. 1a) when the microspore mother cells
appear and meiosis takes place [46]. Genes involved in
cell differentiation were enriched in clusters 8 and 10,
which contain genes with predominant expression at
late stages of flower development (stages 11-13). Many
of these genes exhibit maximum expression in pollen
(Fig. 4b) and thus, may be involved to a large extent in
the differentiation of microspores into pollen grains.
Genes involved in the response to different phytohor-
mones such as jasmonic acid, auxin, and abscisic acid
were detected as enriched predominantly in cluster 8,
in agreement with the known roles of these hormones
in various processes during late-stage flower develop-
ment, which include stamen and pollen formation as
well as the maturation of petals [48]. In contrast, genes
involved in the response to gibberellin were over-
represented in cluster 4, which contains genes that are
induced at the end of the early phase of flower develop-
ment and remain active until floral maturity has been
reached. In agreement with this observation, it has
been shown that gibberellins are required for proper
floral organ growth and elongation [49]. In sum, the re-
sults of these analyses allowed us to attribute specific
functions to the individual clusters that together ac-
count for many of the processes known to occur during
flower development.

Distribution of target genes of floral organ identity
factors
Floral organ identity factors are necessary and sufficient
for the specification and development of the different
types of floral organs [5, 6]. They act in a combinatorial
manner as predicted by the well-supported (A)BCE
model of floral organ identity specification [50–52]. In-
sights into the functions of these master regulators,
which (with the exception of APETALA2) all belong to
the family of MADS-domain proteins and are compo-
nents of higher-order regulatory protein complexes [53],
have been obtained in recent years through a combin-
ation of genome-wide localization studies and gene

Fig. 3 Genes showing differential expression during flower
development. Groups of co-expressed genes were identified among
7,405 differentially expressed genes detected in the time-course
experiment. The heat map shows the results of k-means clustering
(k= 15) used to group genes based on the similarity of their z-scores
(color-coded as per diagram at the top). For a different representation of
the individual clusters, see Figure S3
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perturbation experiments [5, 6]. This work has resulted
in the identification of some of their direct target genes
and of the cellular and developmental processes they
control. Furthermore, it has been shown that the floral
organ identity factors bind to many of the same sites in
the Arabidopsis genome [13] and that their global bind-
ing patterns undergo changes as flower development

progresses, at least in part as a consequence of stage-
specific alterations in chromatin accessibility [14]. Also,
the majority of genes bound by these transcription fac-
tors at early floral stages do not respond transcription-
ally when the activities of the floral homeotic genes are
perturbed [12, 13]. While the molecular mechanisms
underlying these observations are currently not well

Fig. 4 Mapping groups of co-expressed genes onto an Arabidopsis gene expression atlas. a Expression data for an Arabidopsis gene expression
atlas were obtained for genes assigned to each of the 15 k-means clusters and hierarchical clustering was performed. Results for cluster 3 are
shown as an example. Individual tissue and organ samples of the gene expression atlas (shown in full in Additional file 4) were grouped together
as indicated. Note a preponderance of expression in stamen and pollen samples. b and c The number of genes in each cluster with b maximum
and c minimum expression in each of the tissue samples (as indicated) is shown
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understood, it is clear that from binding data alone it is
difficult to identify their bona fide target genes.
To test whether we could find evidence for the differen-

tial expression of genes that are bound by the floral organ
identity factors, we projected the global binding patterns of
AP1, SEPALLATA3 (SEP3), AP3, PISTILLATA (PI), and
AG onto the dataset from the flowering time-course experi-
ment (Additional file 6). Specifically, we identified the per-
centage of genes in each of the 15 clusters of co-expressed
genes that contain binding sites for these transcription fac-
tors in their putative regulatory regions (from 3 kb up-
stream to 1 kb downstream of the transcribed region of a
gene). While binding data for AP3, PI and AG are currently
available only for ~ stage 4 flowers [12, 13], for AP1 and
SEP3, binding data for three distinct stages (2, 5-6, and 7-8)
have been generated [14]. Largely independent of the tran-
scription factor under study, we found the highest degree
of binding site enrichment in clusters 6, 7, 11, and 12
(Fig. 6). Cluster 5 also showed a significant enrichment for
genes with binding sites, but only for SEP3 and AP1, and
not at the earliest (stage 2) time-point. The genes assigned
to these different clusters have in common that their

transcription changes at the time or shortly after the ex-
pression of the floral organ identity genes commences
around stage 3. Furthermore, they contain many genes as-
sociated with the specification of floral organ identity, as
well as the regulation of floral organ development and
meristem determinacy (Fig. 5) and thus processes that are
known to be under control of the floral organ identity fac-
tors [5, 6]. Hence, genes in these clusters containing bind-
ing sites for the MADS-domain proteins are good
candidates for target genes. In fact, they do contain many
of the genes known to act directly downstream of these
floral regulators (Additional file 6). However, one caveat of
this analysis is that the floral organ identity factors appear
to have largely distinct sets of target genes despite their
overlapping binding patterns [5]. Therefore, while genes
that are differentially expressed during early flower develop-
ment and that contain binding sites for MADS-domain
proteins are likely under control of floral organ identity fac-
tors, the exact regulatory complex that might be active in
the regulation of a given gene cannot be readily deduced
without additional data from floral organ identity gene-
specific perturbation experiments.

Fig. 5 Gene Ontology terms enriched in the dataset. Adjusted p-values for selected GO terms related to a developmental functions and b cellular
and regulatory processes are indicated for each cluster through color-coding (see bars at the top right for colors used). For a full list of GO terms
enriched in the dataset, see Additional file 5
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In addition to clusters with binding site enrichments,
we also found clusters that are significantly depleted
for binding sites of the floral organ identity factors.
These included especially clusters 2, 3, and 14, which
contain genes with predominant expression in the
time-course experiment at 9, 13, and 11 d, respectively
(Fig. 3). As described above, these clusters comprise in
all probability many genes involved in microsporogene-
sis and pollen development, a process that can progress
without the direct involvement of the floral organ iden-
tity factors [45]. Taken together, this analysis shows
that the results of our transcriptomics study can be
used as a reference to integrate different genome-wide
datasets and to identify candidates for transcription fac-
tor target genes.

Distribution of paralogs within groups of co-expressed
genes
In plants, duplicated genes that are retained in a genome
are often functionally redundant, although sub- or neo-
functionalization may lead to paralogous genes that have
only partially overlapping activities or that are employed
in entirely different developmental processes, respectively
[54]. Shared activities of paralogous genes typically go
along with overlapping expression patterns. Therefore,
one would expect to find in the clusters of co-expressed
genes that paralogs are enriched relative to their genome-
wide distribution. In fact, it has been shown previously
that paralogous genes are over-represented in some but
not all groups of genes with predominant expression at
certain stages of early flower development [9]. To test

Fig. 6 Distribution of genes with binding sites for floral organ identity factors. The percentage of genes in each cluster bound by a SEP3, b AP1,
and c AP3, PI, and AG, respectively, is shown. For a and b, binding data for SEP3 and AP1, respectively, at three different time points after AP1-GR
activation were used for analysis: 2 d (black bars), 4 d (gray bars), and 8 d (white bars). For c, binding data for AP3 (black bars), PI (gray bars), and
AG (white bars) 4 d after AP1-GR activation were used. In all panels, bars without error bars show the results of the comparisons between binding
data for the individual transcription factors and the clusters of co-expressed genes, while bars with error bars show the mean percentage of genes bound
by a given floral homeotic transcription factor at the indicated time-point in equally sized groups of genes randomly selected from the dataset of 7,405
DEGs. Error bars indicate one standard deviation calculated based on the results of 100 iterations
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whether this unequal distribution of paralogs extends
to intermediate or late stages of flower development,
we determined paralogs in each of the 15 clusters de-
scribed in Fig. 3 (for paralogs identified in the clusters,
see Additional file 7). As expected, we found that the
percentage of paralogs was significantly (i.e., beyond
three standard deviations) increased in all clusters relative
to their genome-wide distribution and to a lesser extent
(and with the exception of cluster 13) relative to their distri-
bution within the 7,405 DEGs as well (Fig. 7). Notably, the
enrichment of paralogs within the clusters varied consider-
ably, with clusters 5, 11-12, and 15 having the highest
enrichment values (Table S3 in Additional file 1). In
agreement with the idea that genes involved in floral
organ development exhibit an increased level of genetic
redundancy [9], the genes in these clusters have in
common that they are activated during early or inter-
mediate (cluster 15) stages of flower development and
many of them have known functions in floral organ
morphogenesis and in the control of floral meristem
determinacy (Fig. 5). In sum, our results further highlight
the varying degree to which paralogous genes contribute to
different processes during flower development. Whether
such an unequal distribution of paralogs among groups of
co-expressed genes extends to other processes during plant
development is currently unknown.

Conclusions
The results of our transcriptomics analysis of flower devel-
opment, which covered most stages from the time of initi-
ation until maturation, shows that the formation of flowers
involves the differential expression of at least a quarter of
the genes in the Arabidopsis genome. While many gene ex-
pression changes occur late in development and are likely

due to the activation of specific gene sets in developing
pollen and - to a lesser extent - ovules, genes with regula-
tory functions often exhibit intermittent expression during
early and late floral stages. Through computational ana-
lyses, we have been able to assign functions to groups of
co-expressed genes and to provide temporal information
on when these processes likely occur during the almost two
weeks during which flowers develop from a small number
of meristematic cells into a highly complex structure with
different organs, tissues and cell types. Using binding data
for selected floral organ identity factors, we have further
demonstrated that the results of our transcriptomics ex-
periment can help to interpret and mine datasets from
genome-wide localization studies. Our data also provide an
important component of a gene expression map for flower
development. Through the use of techniques such as
Translating Ribosome Affinity Purification (TRAP) [11] or
Isolation of Nuclei Tagged in specific Cell Types (INTACT)
[55], it should be possible to extend this map by introdu-
cing detailed spatial information on gene expression for all
floral stages.

Methods
Plant material, plant growth, treatment conditions and
tissue collection
Plants of genotype AP1pro:AP1-GR ap1-1 cal-1 [13] were
grown on a soil:vermiculite:perlite (3:1:1) mixture at 20 °C
under constant illumination with cool white fluorescent
light. Flower development was induced in ~four week-old
plants as described in [9], using a solution containing
10 μM dexamethasone (Sigma-Aldrich), 0.01 % (v/v) etha-
nol and 0.015 % (v/v) Silwet L-77 (De Sangosse). Floral
buds were harvested at different time-points after dexa-
methasone treatment as described in Fig. 1. Three sets of

Fig. 7 Distribution of paralogs in groups of co-expressed genes. The percentage of paralogs in each cluster of co-expressed genes (black bars)
was determined as described in Methods. To identify clusters with a significant enrichment of paralogous genes, the mean percentage of paralogs was
determined in equally sized groups of genes randomly selected from the dataset of 7,405 DEGs (gray bars) and from the Arabidopsis genome (white
bars), respectively. Error bars indicate one standard deviation calculated based on the results of 100 iterations
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biologically independent samples were collected for micro-
array analysis.

Microarray experiments
Microarray experiments were performed using Agilent
whole-genome Arabidopsis microarrays. For each micro-
array hybridization, amplified and dye-labeled RNA sam-
ples from a given time-point was co-hybridized with
dye-labeled RNA from a common reference sample. This
common reference was generated by pooling equal
amounts of RNA from the individual time-points from 2
of the 3 sets of independent samples. RNA extractions,
amplification and labelling of RNA preparations, micro-
array hybridizations, as well as washing and scanning of
microarrays were done as previously described [12, 13].

Processing of microarray data
Microarray data were analyzed using the software pack-
age limma (Linear Models for Microarray Data) [56] im-
plemented in R. Background correction was done using
the subtract method and within array normalization was
performed with the loess method [57]. Between array
normalization was done using the Aquantile method.
Probes within each array were averaged on a gene-level
and filtered to remove entries that had expression values
below the median value of negative control probes.
Linear models were fitted to the data using the lmscFit
function. Correlograms were generated using the R
package corrgram. Statistics for differential expression
were first calculated using the ebayes function within
limma. Genes with a p-value (after false discovery rate
adjustment using the Benjamini-Hochberg procedure)
below 0.01 were considered as differentially expressed.
Because this analysis led to a very large number of differ-
entially expressed genes that may not reflect true gene
regulatory events (see Results and Discussion), we next
compared gene expression between consecutive or near-
by time-points using ebayes. To this end, we conducted
all possible contrasts between time-points that lay within
a 2-d interval (see Table S1 in Additional file 1). In order
to be called as differentially expressed, genes were re-
quired to exhibit a p-value below 0.01 after adjustment
for false discovery rate across the experiment and a fold-
change in expression of 1.7 or greater.
K-means clustering was performed in R using scaled

log2-transformed ratios of expression averaged across
each replicate across all time-points for each gene, sep-
arating differentially expressed genes into 15 clusters on
the basis of the similarity of the pattern of their tem-
poral expression. The number of clusters was chosen
heuristically based on the elbow method, which aims at
maximizing the amount of variance explained while
minimizing the number of clusters chosen. To this end,
we compared, using the kmeans function implemented

in R, the between-cluster sum-of-squares to the total
sum-of-squares for different values for k (ranging from 2
to 200). We then plotted the data and selected a value
for k in the ‘elbow’ of the plot.

Comparison of expression data with data from an
Arabidopsis gene expression atlas
Genes assigned to each k-means cluster were compared to
a previously described [13] Arabidopsis gene expression
atlas, which is based on published transcriptomics datasets
for floral and non-floral tissues, to identify trends in tissue-
specific expression within each cluster. This tissue atlas was
also used to identify the tissues where genes within a cluster
had their highest and lowest expression levels in order to
investigate the correlation of changes in temporal expres-
sion within developing tissues.

Gene ontology analysis
Gene Ontology analysis was performed using PlantGSEA
[58]. Statistical significance calculations were performed
with a Fisher’s exact test using False Discovery Rate ad-
justment method from Benjamini and Yekutieli [59]
with a p-value cut off of 0.05.

Identification of paralogs
All known protein sequences from Arabidopsis were indi-
vidually aligned against the sequences from the entire
proteome of Arabidopsis using blastp to select alignments
with an E-value cut off of 1x10-20 and which covered 80 %
of the query sequence [60]. The top 5 non-reciprocal align-
ments were retained as potential paralogs. Using this infor-
mation, we determined the percentage of paralogs within
each of the 15 clusters of differentially expressed genes de-
scribed in Fig. 3. To test whether paralogs were significantly
enriched in the clusters, we conducted the following back-
ground calculation: we first generated, for each cluster, two
groups of genes drawn randomly either from the list of
7,405 differentially expressed genes or from genes present
on the microarrays used in this study. Both groups con-
tained 100 sets of genes each and the number of genes in a
set was identical to the size of a cluster. We then calculated
the mean percentage and standard deviations for paralogs
in each of the groups and compared them to the percentage
of paralogs we had identified in a corresponding cluster.
Clusters with percentage values that were beyond three
standard deviations from the random gene groups were
considered significantly different.

Comparison of expression data with data from
genome-wide localization studies
Data from genome-wide localization studies were con-
trasted with each of the 15 k-means clusters to deter-
mine the frequency with which genes identified as being
bound by the transcription factors AP1 and SEP3 [14],
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as well as by AP3, PI, and AG [12, 13], occurred in each
cluster. This was contrasted against the frequencies with
which bound genes occurred in randomized but equally-
sized clusters of genes drawn from the 7,405 differen-
tially expressed genes identified in the time-course
experiment.

Availability of supporting data
The data sets supporting the results of this article are in-
cluded within the article (and its additional files). Micro-
array data have been deposited with the Gene Expression
Omnibus (GEO) repository (at http://www.ncbi.nlm.nih.
gov/) under GSE64581.
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Additional file 1: Additional figures, tables and references. Tables
and figures in this file are referred to as Table S1-S3 and Figure S1-S4 in
the main text.

Additional file 2: Excel spreadsheet containing 7,405 genes
identified as differentially expressed in this study. Gene identifiers,
aliases, descriptions, and their assignment to one of the fifteen k-means
clusters are indicated. Also shown are the log2-transformed expression
ratios and adjusted p-values for each contrast between time-points (‘T’).

Additional file 3: Excel spreadsheet listing differentially expressed
genes also identified in related studies. Gene identifiers, aliases,
descriptions, and their assignment to one of the fifteen k-means clusters
are indicated. Datasets are described in Table S2 in Additional file 1. For
the study by Wellmer et al. (2004) [16], the assignment of genes to one
of the four types of floral organs is listed. For the study by Wellmer et al.
(2006) [9], the assignment of genes to clusters (A-E) of co-expressed
genes is shown. For the study by Gomez-Mena et al. [10], the presence
or absence of genes among genes up- or down-regulated after AG-GR
activation is indicated. For all other studies, p-values for genes from the
related studies are shown.

Additional file 4: Mapping groups of co-expressed genes onto an
Arabidopsis gene expression atlas. Expression data for an Arabidopsis
gene expression atlas were obtained for genes assigned to each of the
15 k-means clusters and hierarchical clustering was performed. Individual
tissue and organ samples of the gene expression atlas [12] are indicated.

Additional file 5: Excel spreadsheet containing Gene Ontology
terms identified as enriched in the dataset. GO terms and adjusted
p-values indicating a significant enrichment are shown for all k-means
clusters.

Additional file 6: Excel spreadsheet containing information on
DEGs with binding sites for floral organ identity factors. The gene
identifiers, aliases, descriptions, and their assignment to one of the fifteen
k-means clusters are indicated. Furthermore, the presence of binding
sites for floral organ identity factors in the putative promoters of the
genes are shown. To this end, data for AP1 and SEP3 from Pajoro et al.
[14], for AP3 and PI from Wuest et al. [12], and for AG from O’Maoileidigh
et al. [13] have been used. Whether or not a gene has been described
previously [12, 13] as a direct target of AP3, PI, and AG is shown as well.

Additional file 7: Microsoft Excel spreadsheet containing information
relating to paralogs identified in groups of co-expressed genes. For
each gene identified as having paralogs in a given k-means cluster
(as indicated), the gene identifiers, aliases, and descriptions, as well as
the paralogous genes are shown.
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Transcriptional Dynamics of Two Seed Compartments
with Opposing Roles in Arabidopsis Seed Germination1[W][OPEN]
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Seed germination is a critical stage in the plant life cycle and the first step toward successful plant establishment. Therefore, understanding
germination is of important ecological and agronomical relevance. Previous research revealed that different seed compartments (testa,
endosperm, and embryo) control germination, but little is known about the underlying spatial and temporal transcriptome changes that
lead to seed germination.We analyzed genome-wide expression in germinating Arabidopsis (Arabidopsis thaliana) seedswith both temporal
and spatial detail and provideWeb-accessible visualizations of the data reported (vseed.nottingham.ac.uk).We show the potential of this high-
resolution data set for the construction of meaningful coexpression networks, which provide insight into the genetic control of germination.
The data set reveals two transcriptional phases during germination that are separated by testa rupture. The first phase is marked by large
transcriptome changes as the seed switches from a dry, quiescent state to a hydrated and active state. At the end of this first transcriptional
phase, the number of differentially expressed genes between consecutive time points drops. This increases again at testa rupture, the start of
the second transcriptional phase. Transcriptome data indicate a role for mechano-induced signaling at this stage and subsequently highlight
the fates of the endosperm and radicle: senescence and growth, respectively. Finally, using a phylotranscriptomic approach, we show that
expression levels of evolutionarily young genes drop during the first transcriptional phase and increase during the second phase.
Evolutionarily old genes show an opposite pattern, suggesting a more conserved transcriptome prior to the completion of germination.

Seeds are important in the plant life cycle, since they
represent the link between two successive generations.
They are stress-resistant structures that help to bridge
unfavorable periods and allow dispersal. Seed forma-
tion starts with a double fertilization event, and in
Arabidopsis (Arabidopsis thaliana), it takes approxi-
mately 20 d to form amature dry seed (Debeaujon et al.,
2007; Ohto et al., 2007). At maturity, three major seed
compartments can be distinguished (Holdsworth et al.,
2008a; Belmonte et al., 2013): the testa (seed coat), a dead
tissue that forms a protective outer layer; the endo-
sperm, a single cell layer of tissue positioned directly
underneath the testa; and the embryo (enclosed by the
testa and endosperm), which emerges to become the
future plant (Rajjou et al., 2012; Fig. 1A). A dry seed is a
unique structure in the sense that it allows severe de-
hydration (desiccation tolerance) and enters a phase of
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quiescence, bringing processes occurring in “living”
organisms to a halt without affecting viability (Farrant
andMoore, 2011; Rajjou et al., 2012). Upon imbibition of
water, the drymature seed swells andmetabolic activity
resumes,marking the start of seedgerminationand the end
of the quiescent state. Arabidopsis germination consists of
two visible sequential events (Holdsworth et al., 2008a;
Weitbrecht et al., 2011). First, the testa splits (testa rupture
[TR]) due to underlying expansion of the endosperm and
embryo. Thereafter, the radicle (RAD; embryonic root)
protrudes through the endosperm (endosperm rupture
[ER]), completing germination sensu stricto (Fig. 1B).

There are two nonexclusive mechanisms proposed to
explain seed germination (Nonogaki, 2006; Nonogaki
et al., 2007). The first involves the increase in embryo
growth potential leading to elongation of the proximal
embryonic axis (hypocotyl and RAD) that overcomes
the restraint of the covering tissues. The second involves
the weakening of these covering layers (including the
micropylar endosperm, positioned over the RAD tip;

Fig. 1A) to ease the protrusion of the RAD (for review,
see Finch-Savage and Leubner-Metzger, 2006). The en-
dosperm has been shown to affect germination even in
specieswith a thin endosperm layer, such asArabidopsis
(Müller et al., 2006; Bethke et al., 2007; Lee et al., 2010).
Genome-wide expression studies have been previously
applied to gain insight into several aspects of seed biology
(Holdsworth et al., 2008a, 2008b; Le et al., 2010), including
temporal changes during Arabidopsis germination
(Nakabayashi et al., 2005; Preston et al., 2009; Narsai et al.,
2011) and in spatial differences between embryo and en-
dosperm (Penfield et al., 2006; Endo et al., 2012). Never-
theless, a detailed knowledge of the temporal changes in
gene expression in the different compartments of the
Arabidopsis seed is thus far missing, but it is essential to
understanding the control of the timing of germination
as well as the underlying molecular processes contrib-
uted by these different seed compartments. Therefore,
we have analyzed the Arabidopsis transcriptome by
sampling 11 points along the germination time course,

Figure 1. Seed compartments and seed germi-
nation kinetics of Arabidopsis seeds. A, A section
through an Arabidopsis seed depicting the dif-
ferent seed compartments. B, Different stages
during seed germination including TR (which
exposes the underlying endosperm layer) and ER
(also known as RAD protrusion or germination
sensu stricto). C, Arabidopsis seed germination
analyzed by measuring TR (gray line), ER (black
line), and seed water content (WC; blue dia-
monds). Below the graph, the time points and
physiological stages (dry, NR, TR, and ER) are
indicated for each sample. The 29 samples that
were analyzed are schematically shown below
the germination graph by the yellow pictograms.
D, The four seed sections that were used for
transcriptome analysis.
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including those that allow an analysis of gene expres-
sion changes at thekeyeventsof germination (TRandER),
with a focus on the micropylar endosperm and the RAD.

RESULTS AND DISCUSSION

Arabidopsis Seed Imbibition, Germination Kinetics, and
Transcriptome Analyses

We characterized Arabidopsis seed germination by
scoring TR and ER over time. TR started around 20 h
after sowing (HAS), and at 31HASalmost all seedswere

fully ruptured. From31HASonward, ERwas observed,
which was completed in the entire seed population
by 45 HAS (Fig. 1C). Microarray experiments were
performedusing dry seeds and seeds at nine time points
along the germination time course until the completion
of germination (Fig. 1C). The time points 25 and 38HAS
showed a mixture of nonruptured (NR) and TR seeds
and TR and ER seeds, respectively; at these time points,
both classes were separated and collected as distinct
samples, which enabled us to map the transcriptome
changes induced by TR and ER. To capture spatial dy-
namics, imbibed seeds were dissected into four parts.

Figure 2. Transcriptional differences between
seed compartments. A, PCA of the 116 samples.
The four replicates of all 29 samples are indicated
by color. B, Tissue differences are represented by
the number of differentially expressed genes at
three time points during imbibition (3, 16, and 31
HAS, the time points in which all four tissues
were sampled). Comparisons were made between
endosperm and embryo (MCE versus RAD), be-
tween embryo tissues (RAD versus COT), and be-
tween both endosperm samples (MCE versus PE).
The bars show the number of differentially expressed
genes at a 2-, 3-, 5-, and 10-fold cutoff. The pie di-
agrams below the graph indicate the fraction of the
total number of differentially expressed genes (at
a 3-fold cutoff level) in either of the two tissues
that were compared at 31 HAS.
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The key compartments for germination, the RAD (in-
cluding a large part of the hypocotyl to ensure that it
encompasses the region that elongates [Sliwinska et al.,
2009]) and the micropylar end of the endosperm (which
is a combination of micropylar and chalazal endosperm
[MCE]), were sampled at all time points. At three time
points (3, 16, and 31HAS), the cotyledons (COT) and the
remainder of the endosperm (peripheral endosperm
[PE]) were collected (Fig. 1, A, C, and D; Supplemental
Fig. S1). The 29 samples, with four replicates for each
sample, were analyzed using Affymetrix ATH1 gene
chips. Plotting probe set values in a histogram showed
clearly distinguishable peaks for noise and signal and
revealed that an appropriate cutoff for considering a
gene as potentially expressed was 5 on a log2 scale
(Supplemental Fig. S1). The percentage of genes detec-
ted in the different seed compartments was within the
same range described for other Arabidopsis seed tran-
scriptome analyses (Nakabayashi et al., 2005; Penfield
et al., 2006; Belmonte et al., 2013). In total, 14,317 genes
(67.2% of the 21,313 genes on the chip) were found to be
expressed at least once in the 29 samples, of which
11,298 (78.8%) were shared between all compartments
(Supplemental Fig. S2A).

At the start of the time course, a lower number of
genes were found to be expressed, and this number in-
creased during the time course in all tissues, most no-
tably during the first 12 to 16 HAS (Supplemental Fig.
S2B). We identified gene sets that were tissue specifi-
cally expressed by considering genes as specifically
expressed in one tissue when expressed above 6 (on a
log2 scale) in that tissue and expressed below 5 in all the
other tissues (which, therefore, is in the noise region).
This resulted in 415 genes specific to the endosperm
and 546 genes specific to the embryo in our data set
(Supplemental Fig. S2; Supplemental Data Set S1),
which overlaps with previously published data sets
(Penfield et al., 2006; Le et al., 2010; Supplemental Fig.
S3). In total, 12,856 genes are expressed above 6 in either
tissue, with 10,801 expressed above 6 in both tissues.
Thus, according to this definition, 84.01% of the genes
are shared between both tissues, while 3.22% are spe-
cific to the embryo and 4.24% are specific to the endo-
sperm. The remaining genes (8.53%) are expressed over
6 in one tissue but between 5 and 6 in another tissue and
so are not classed as being highly specific to any one
tissue. Interrogation using overrepresentation analysis
(ORA) revealed that the endosperm gene set was

Figure 3. The endosperm coexpression network, EndoNet. A, Sample layout of EndoNet. The nodes (genes) are indicated by
gray circles, and edges (gray lines) are drawn between two nodes if their correlation of expression is above 0.932. The 30 largest
clusters are indicated by different colors. To visualize the gene expression profiles captured in the network, the expression
profiles of exemplar genes are shown around the network. B, Details of the largest 30 clusters are shown, including the number
of nodes, edges, and the percentage of edges that are shared with RadNet (at a cutoff of 0.85). The expression profiles of genes
in the EndoNet clusters 1, 7, 12, and 27 are shown (the positions of these clusters in EndoNet are shown A). The right side of the
graph depicts the expression profiles of the same set of genes in the RAD samples.
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overrepresented for genes related to response to
abscisic acid, defense response, cell wall macromol-
ecule metabolism/catabolism, and cell death as well
as genes associated with the regulation of transcription
(Supplemental Fig. S2D), in agreement with recent
findings (Endo et al., 2012). In the embryo, the largest
class was related to plant development. Other Gene
Ontology (GO) classes that were overrepresented
included cell division, hormone metabolic process,
protein amino acid phosphorylation, signaling, and
regulation of transcription (Supplemental Fig. S2E).
Thus, different GO classes were found to be overrepre-
sented in each tissue,with regulationof transcription/gene
expression appearing in both. Both tissue-specific gene
sets are enriched for transcription factors (Supplemental
Fig. S2F). In the endosperm, transcription factors of
NAC, WRKY, and C3H classes, and in the embryo, tran-
scription factors of bHLH, G2-like, and HB classes,
are particularly enriched (Supplemental Fig. S2F).
Compartment-specific gene sets containing 106, 47, 21,
and two genes were identified for the RAD, COT,MCE,
and PE (Supplemental Fig. S2; Supplemental Data Set
S1), respectively, and quantitative reverse transcription-
PCR confirmed the compartment-specific expression of
20 genes (Supplemental Fig. S4).
In order toglobally compare gene expressionbetween

the samples, all 116 arrays were plotted using principal
component analysis (PCA; Fig. 2A). In general, the
largest transcriptome differences were observed be-
tween the endosperm and embryo (MCE versus RAD)
followed by the comparison between both embryo parts
(RADversusCOT). The smallest differenceswere found
between both endosperm (MCE versus PE) parts (Fig. 2).
The quality controls (Supplemental Fig. S1), the high
correlationbetween thereplicates (SupplementalTableS1),
and the confirmationbyquantitative reverse transcription-
PCR of compartment-specific expression (Supplemental
Fig. S4) indicate that this is a robust data set revealing
transcriptome changes during seed rehydration and the
developmental switch from a quiescent dry seed to ger-
mination in both temporal and spatial detail.

Generation of Coexpression Networks and Data
Visualization Tools

We generated coexpression networks (Bassel et al.,
2011) for the endosperm (EndoNet) and the RAD sam-
ples (RadNet). We identified compact clusters of genes
in the networks (Supplemental Data Set S1) that were
further scrutinized with the network topological ana-
lyzer, TopoGSA (http://www.topogsa.net/; Glaab
et al., 2010; Supplemental Fig. S5). Interactive visuali-
zations of both networks are available online at
http://vseed.nottingham.ac.uk. Compared with our
previous visualization tool (Bassel et al., 2011), these
visualizations offer improved performance and more
advanced gene selection options, such as the high-
lighting of individual genes or entire clusters, searching for
genes by name or descriptive keywords, and visualization

of gene expression using our new Electronic Fluorescent
Pictograph browser (Winter et al., 2007).

EndoNet shows a ring-like display, a result of the
scarcity of geneswith constant expression (Fig. 3A). This
indicates that the regulation of gene expression is very
dynamic in the endosperm during germination. The
largest 30 EndoNet clusters are spread around the net-
work and thus represent the major gene expression
profiles. ORA revealed cluster-specific overrepresenta-
tion of specific biological processes (Supplemental Fig.
S6). These clusters consist of 26 to 195 genes and contain
at least 99.7% of all possible edges within them (Fig. 3),
indicating that genes within such clusters have very
similar expression patterns. Genes of some clusters (e.g.
EndoNet cluster 1) are also coexpressed in RadNet (81%
of the edges in cluster 1 are also found in RadNet at a
0.85 correlation) and show similar expression patterns
in both compartments, while other genes (such as
EndoNet cluster 27) show an endosperm-specific ex-
pression pattern and have few edges in common with
RadNet (Fig. 3B). On the other hand, almost all con-
nections in EndoNet clusters 7 and 14 (98% and 88%,
respectively) are also present in RadNet (Fig. 3B). De-
spite strong coexpression between both networks, the
expression profiles in these clusters are different be-
tween the two compartments, being induced in both but
subsequently repressed in the endosperm.

Arabidopsis Seed Germination Is Composed of Two
Transcriptional Phases

Analyzing the transcriptional dynamics between
consecutive time points of the germination time course

Figure 4. Arabidopsis seed germination is characterized by two tran-
scriptional phases. The number of differentially expressed genes (both
up- and down-regulated) between consecutive time points (3 was
compared with 1, 7 with 3, 12 with 7, etc.) in the MCE (white bars) and
RAD (brown bars) with a reasonable fold change (taking a 3-fold dif-
ference as the cutoff) are presented. The two transcriptional phases,
phase I from 1 to 25 HAS NR and phase II from 25 HAS NR to 38 HAS
ER, are indicated by the red arrows.
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revealed two transcriptional phases (Fig. 4). The first
phase runs from 1 to 25 HAS NR and is characterized
by large transcriptional changes in both up- and
down-regulated genes. At the end of this first phase,
the number of differentially expressed genes was re-
duced (Fig. 4). The second phase, which runs from TR
to the completion of germination, was marked by re-
sumption of differential gene expression, most notably
at TR. During the second phase, the majority of the
differentially expressed genes are induced rather than
repressed, in contrast to the first phase.

The First Transcriptional Phase Is Characterized by an
Inversion of the Seed Maturation Transcriptional Program

Between 1 and 3 HAS, differential gene expression
was observed, particularly in the MCE (Fig. 4). In com-
parison, the response of the RAD was delayed, which
could be due to its slower imbibition kinetics compared

with the more outward-positioned MCE (Fig. 4). Large
transcriptional changes occurred in the first 16 HAS.
ORA of this phase suggests a large overlap in the func-
tional classes that are activated in theMCEandRAD(i.e.
genes related to cell wall function, nucleotide metabo-
lism, amino acid metabolism, and protein translation;
Fig. 5). A major difference is the activation of classes
related to transport and energy metabolism (lipid
metabolism, glycolysis, TCA, and mitochondrial elec-
tron transport) that are specifically activated in the
MCE from 20 HAS, in agreement with findings that
storage lipids are more rapidly mobilized in the en-
dosperm compared with the embryo (Penfield et al.,
2005).

We compared gene expression during seed germi-
nation with gene expression during seed development
and identified two gene sets containing 602 and 907
genes (SupplementalData Set S1) thatwere strongly up-
and down-regulated, respectively, between the embryo
COT phase (early seed maturation) and the postmature

Figure 5. Temporal differences between endo-
sperm and embryo using ORA. The overrepre-
sented gene categories of the up-regulated genes
of the germination time course (all time points
were compared with 1 HAS) were identified in
the MCE (top graph) and the RAD (bottom graph)
using PageMan (Usadel et al., 2006). Selected
categories are summarized in the graphs, and
black bars show the time points during germina-
tion at which the indicated gene categories are
overrepresented. OPP, Oxidative pentose pho-
phate pathway.

210 Plant Physiol. Vol. 163, 2013

Dekkers et al.

 www.plantphysiol.org on July 4, 2016 - Published by www.plantphysiol.orgDownloaded from 
Copyright © 2013 American Society of Plant Biologists. All rights reserved.



green stage (late maturation) from a publicly available
data set (Le et al., 2010). The expression of the two gene
sets was analyzed during germination, and themajority
of the genes of both sets showed inverse expression
patterns during seed germination (Fig. 6). The largest
overlap (75%) was found between genes that were up-
regulated during seed maturation and those down-
regulated during germination. Additionally, 67% of
the genes from the set that were down-regulated during
seed maturation showed an inverse expression pattern
(were induced) during germination. The reinduction of
these seed maturation down-regulated genes during
germination was slower than the removal of the seed
maturation-induced genes. Nevertheless, the majority
of the seed maturation-repressed genes were reactivated
in the first transcriptional phase rather than the second
transcriptional phase.

TR Is Marked by High Transcriptional Activity
That Overlaps in Part with a Response to
Touch-Induced Signaling

TR is characterized by a large number of differentially
expressed genes when compared with NR seeds at
25 HAS, mostly genes that are up-regulated in the
MCE (Fig. 7A). At TR, 104 genes were over 5-fold up-
regulated in the MCE (Supplemental Data Set S1), 30 of

which are related to cell wall function. Other classes
inducedbyTR in theMCE includegenes related to biotic
stress, hormone metabolism, regulation of transcrip-
tion, signaling (receptor kinases), and transport (Fig.
7B). Possible reasons for these large transcriptional
changes betweenNR and TR seeds include an enhanced
access to oxygen, light signaling, and/or a touch
(mechano)-sensing response (Fig. 7C). ORA did not
reveal a clear indication of the involvement of either
oxygenor light.However, the gene set includedTOUCH3
and TOUCH4 (bothmore than 8-fold induced), which are
known to respondrapidly to touch (Braam, 2005;Fig. 7D).
To investigate whether the transcriptional up-regulation
atTRresembles touchsensing,we comparedourMCETR
up-regulated data set with genes up-regulated upon
touch in aerial parts of plants (Lee et al., 2005). We
reanalyzed a published touch data set (Lee et al., 2005;
Supplemental Materials and Methods S1) and found a
30% overlap with our TR-induced set in the MCE and
the touch up-regulated genes, with a lower overlap
between the touch data set and the TR-induced genes
in theRAD (Fig. 7E). The overlap between the gene sets
induced by TR in the MCE and touch was more strik-
ing when the gene classes were considered. Touch-
induced signaling resulted in a relatively higher
abundance of genes related to the GO classes cell wall
associated, calcium binding, disease resistance, ki-
nase, and transcription factor (Lee et al., 2005), which
match well with the classes identified at TR (Fig. 7B).
We also observed that gene expression associatedwith
jasmonate biosynthesis was activated upon TR in the
MCE; this plant hormone was recently shown to be a
key regulator of plant morphogenesis and enhanced
pest resistance upon touch (Chehab et al., 2012). It has
been hypothesized that gene expression in the endo-
sperm during germination might be affected by touch/
mechano sensing (Martínez-Andújar et al., 2012), and
this transcriptome study provides a strong sugges-
tion that touch signaling is indeed, at least in part,
responsible for the induction of gene expression in
the endosperm.

The Second Transcriptional Phase Highlights Distinct
Fates for the Embryo and the Endosperm

The second transcriptional phase starts at TR and in-
cludes gene expression changes related to the comple-
tion of germination. Using ORA, we analyzed the
temporal changes in the MCE and the RAD (Fig. 5) as
well as gene sets that are more highly expressed within
the MCE or RAD along the time course (Supplemental
Fig. S7). This revealed that, in the MCE genes related
to secondary metabolism, amino acid metabolism and
protein synthesis are overrepresented transiently (Fig. 5).
Genes more highly expressed in theMCE than the RAD
are enriched for protein degradation, transport, and
stress-related genes (although the latter are overrepre-
sented in the MCE over the whole time course;
Supplemental Fig. S7). The RAD, particularly at the

Figure 6. Inverse expression of seed maturation genes during germi-
nation in temporal and spatial detail. The top panel shows the per-
centage of up-regulated genes during germination among a set of 907
genes that are down-regulated during seed maturation. The bottom
panel shows the percentage of down-regulated genes during germi-
nation among a set of 602 genes that are up-regulated during seed
maturation. Genes expressed specifically in the MCE (in brown), in the
RAD (in white), and in both (in black) are indicated.
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later stage, is enriched for cellular metabolism related
to DNA, RNA, and proteins compared with the
MCE (Supplemental Fig. S7). ORA suggests that
energy metabolism (lipid metabolism, glycolysis,
TCA, and mitochondrial electron transport) is acti-
vated by 38 HAS. At this stage, genes for cell wall
biosynthesis, transport, and secondary metabolism
are activated, notably just prior to ER (Fig. 5). In
addition, genes related to the cell cycle and lipid and
amino acid metabolism are overrepresented within
genes more highly expressed in the RAD than the
MCE (Supplemental Fig. S7), which are all classes
supporting tissue growth. The GO gene class “ag-
ing” becomes overrepresented in the latter part of
the germination time course in the MCE (Fig. 5;
Supplemental Fig. S7). This is in agreement with the
down-regulation of key cellular metabolic pathways
and the induction of gene classes related to remobi-
lization, reminiscent of the transcriptional changes
described for senescence (Lim et al., 2007; Breeze
et al., 2011).

The Transition from a Dry Quiescent to a Hydrated
and Germinating Seed Coincides with Increased
Transcriptional Differences between Seed Compartments

From the PCA of all 116 arrays (Fig. 2A), we conclude
that the transcriptome differences between seed com-
partments are small during early germination and in-
creasewith time.This is inagreementwith theobservation
that thenumberof endosperm-andembryo-specificgenes
expressed increased along the time course from approxi-
mately 40 to 400 (Supplemental Fig. S8A). This may be
explained by the fact that the majority of genes induced
in seed maturation and that are subsequently removed
during germination are shared by the MCE and RAD
(72%) and that seed maturation-repressed genes (reac-
tivated during germination) are, in contrast, mostly spe-
cific to either theRADor theMCE(Fig. 6). Presumably, the
repression of genes related to development and differen-
tiation is amore general response for an organismpassing
through a desiccated state, as is shown for the expression
of genes involved in stomatal development (in the COT

Figure 7. Genes induced with respect to TR show
a large overlap with touch-induced signaling.
A, Number of differentially expressed genes at 25
HAS TR (compared with 25 HAS NR) in the MCE
and RAD at different fold change cutoffs. B, Gene
classes overrepresented in the TR-induced gene
sets in the MCE and RAD. C, Schematic presen-
tation of effectors that could be responsible for
the large gene expression changes observed at
TR. D, Expression behavior of four TOUCH genes
at TR in the MCE. E, Table shows the percentage
of the TR up-regulated genes in the MCE and the
RAD (at 2-, 3-, and 5-fold cutoff) that overlap with
the 934 touch up-regulated genes. The percent-
age expected by chance is indicated using the
number of genes present on the chip, genes
expressed in the germination time course, genes
expressed in the MCE, and genes expressed in
the RAD. degr, Degradation; FA, fatty acid;
fam, family; FLA, fasciclin-like arabinogalactan;
JA, jasmonic acid; met, metabolism; misc, miscella-
neous; NR, non-ruptured; PR, pathogenesis-related;
reg, regulation; synt, synthesis; TF, transcription
factor.
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samples) and root development (in the RAD samples).
Many of these genes are induced (sometimes transiently)
during germination, with low or no expression initially
(Supplemental Fig. S8B).

Differential Gene Expression in the Endosperm
Is Concentrated at the Micropylar End

The observation that the transcriptional differences
increase with time between seed compartments is also
shown, besides the PCA, in the number of differentially
expressed genes between the seed compartments. The
number of differentially expressed genes was least
between both endosperm compartments. At 31 HAS,
about 200 genes were differentially expressed (more
than 3-fold difference), with the majority of these (95%)
being up-regulated in theMCE (Fig. 2B) comparedwith
the PE. Such a skewed division was not observed for
other comparisons (Fig. 2B). Themicropylar endosperm
is hypothesized to possess an inhibitory role in germi-
nation, and endosperm changes, in particular of cell
wall properties, are suggested to be important for ger-
mination control (Nonogaki et al., 2007). Recently, using
in situ cell wall epitope detection, Arabidopsis endo-
sperm cell walls were shown to have a different struc-
ture compared with the embryo cell wall, and the
endosperm walls were shown to contain cellulose,
unesterified homogalacturonan, arabinan, and xylo-
glucan polymers (Lee et al., 2012). However, no spatial
or temporal heterogeneity in cell wall polymers was
observed prior to germination (Lee et al., 2012). This
could indicate that cell wall changes leading to germi-
nation are modifications that are not detectable by in
situ analysis and/or that occur very locally. We com-
pared both endosperm samples and found many dif-
ferentially expressed genes between the MCE and PE

(SupplementalData Set S1). The largest differenceswere
found close to the point of germination (31 HAS) in the
MCE, and this set was investigated for candidates that
are potentially involved in ER.

Several transcription factors were found to be highly
expressed in the MCE compared with the PE that may
function in gene regulation in this particular compart-
ment. Genes related to cell wall function, including per-
oxidases, apectin lyase-like superfamilyprotein, chitinase
family protein, and ARABINOGALACTAN PROTEIN31
were identified in this set, and these could be potential
candidates for affecting cell wall properties to enable seed
germination. It is notable that one of the most highly
differentially expressed (more than 20-fold) genes in the
MCE is INFLORESCENCEDEFICIENT INABSCISSION-
LIKE1 (IDL1). This encodes a putative ligand that pro-
motes cell separation and floral organ abscission via the
interactionwith receptor-likekinases (Stenvik et al., 2008).
Recently, it has been reported that the INFLORESCENCE
DEFICIENT IN ABSCISSION (IDA) peptide and its re-
ceptorsHAESA (HAE) andHAESA-LIKE2 (HSL2) are also
important for cell separation during lateral root emer-
gence (Kumpf et al., 2013), suggesting that Arabidopsis
seed germination may occur via a cell separation event
that is potentially regulated by the IDA/IDL-HAE/HSL
signaling module. This detailed data set allowed the
identification of transcription factors, cell wall-related
genes, and genes related to cell separation, although fur-
ther research isneeded to investigate theirpotential role in
seed germination.

Seed Germination Is Characterized by Coordinated
Expression of Evolutionarily Old and Young Genes

Recently, it has been shown that, like animal em-
bryogenesis, plant embryogenesis involves a passage

Figure 8. Relative expression of evo-
lutionarily old and young genes across
the Arabidopsis germination time course.
Plotted are the relative expression
levels 6 SE of genes of PS1 and PS2,
PS3 to PS5, and PS6 to PS12 across the
Arabidopsis germination time course in
the MCE (A) and RAD (B) compart-
ments. The significance between the
relative expression levels between the
groups is indicated at each time point
by asterisks: *P , 0.05, **P , 0.01,
***P , 0.001. For the phylostrati-
graphic map and the mean relative
expression of individual phylostrata,
see Supplemental Figure S9.
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through a conserved and evolutionarily old transcrip-
tional stage (Quint et al., 2012). This so-calledphylotypic
stage ismainly causedby the repression of evolutionarily
young genes and is proposed to help the spatiotemporal
organization and differentiation of multicellular life
(Quint et al., 2012). Since we observed a largely inverse
expression pattern during germination of gene sets that
are up- and down-regulated during seed development
(Fig. 6), we asked whether (1) seed germination is also
characterized by the coordinated expression of evolu-
tionarily oldandyounggenes and (2), if so,whether these
patterns are linked to the two transcriptomic phases we
observed. To answer these questions,wefirst applied the
phylostratigraphic approach (Domazet-Loso et al., 2007;
Domazet-Loso and Tautz, 2010; Quint et al., 2012), in
which we ordered the Arabidopsis genome into 12 evo-
lutionaryage classes (phylostrata; designatedPS1–PS12).
Each Arabidopsis gene is BLASTed against all genomes
underlying the 12 phylostrata and is sorted in its phy-
lostratum, defined as themost distant phylogenetic node
containing at least one specieswith a detectable homolog
(Quint et al., 2012).This resulted in thephylostratigraphic
map in which PS1 (cellular organisms) contains the
evolutionarily oldest genes and PS12 (Arabidopsis)
contains the youngest genes that are specific to Arabi-
dopsis, with no homologs detected in any of the other
species (Supplemental Fig. S9A).

Next, we interrogated the gene expression data of the
MCE and plotted the relative expression values of (1)
genes that arose before plant evolution (PS1 and PS2
combined), (2) genes that arose during early plant evolu-
tion (algae andnon-seed-bearingplants; PS3–PS5), and (3)
the evolutionarily youngest genes (which evolved in seed-
bearing plants; PS6–PS12). The analysis shows that in
the MCE, the relative expression of evolutionarily young
genes is high shortly after imbibition but drops during the
first transcriptional phase, followed by an increase in the
second transcriptional phase (Fig. 8A; Supplemental Fig.
S9). Interestingly, the oldest genes (PS1 and PS2) showed
an inverse behavior, starting low at the beginning of ger-
mination, peaking at the end of the first transcriptional
phase, followedbyadecrease in the second transcriptional
phase. Genes of PS3 to PS5 show a different pattern,
starting low and increasing during the course of germi-
nation. Comparable results were obtained for the RAD
during germination (Fig. 8B; Supplemental Fig. S9). The
patterns in both seed parts, particularly the inverse pat-
terns of the evolutionarily old and young genes, suggest
that seeds not only pass through an evolutionarily con-
served stage during seed development but also during
the successive germination phase. Coordinated expres-
sion of evolutionarily old and young genes (and, in this
way, passage through a conserved transcriptional state)
may help to channel large physiological transitions.

CONCLUSION

This study revealed two separate transcriptional
phases for seed germination that are separated by TR

and provides a strong indication that mechano-induced
signaling affects gene expression at TR in the MCE. It
also shows that time is an important determinant for
spatial expression differences. Surprisingly, we found
similar patterns of expression of evolutionarily old and
young genes in seed development and seed germina-
tion, suggesting that plants passing through a tran-
scriptional old and conserved stage may not be limited
to embryogenesis. In addition to the novel biological
insight, we are convinced that these detailed tran-
scriptome data, including the tools developed for data
visualization and mining, provide a powerful resource
to gain further understanding of the roles of different
seed compartments in germination, novel regulators,
and gene networks underlying seed germination.

MATERIALS AND METHODS

Plant Material, Sampling, and Microarray Analysis

For this experiment, the Arabidopsis (Arabidopsis thaliana) accession
Columbia-0 (N60000) was used. Seeds were sown on 0.7% water agarose
(Eurogentec) and incubated in a germination cabinet at 22°C with continuous
light. Germination curves (for both testa and endosperm rupture) were assessed
by scoring germination in time. After the indicated HAS, seeds were harvested
and dissected using forceps and a scalpel knife. For the isolation of RNA, a
commercial kit (Absolutely RNA Nanoprep Kit; Agilent Technologies) was
used. In total, 100 ng of RNA was used to synthesize biotin-labeled copy RNA
(using theAffymetrix 39 IVT-ExpressLabelingKit),whichwashybridizedon the
Affymetrix GeneChips Arabidopsis ATH1 Genome Array. The raw .cel files
were background corrected and normalized using the Robust Microarray
Averaging procedure (Irizarry et al., 2003). A detailed version of the methods
used is available as Supplemental Materials and Methods S1.

The microarray data used in this article have been deposited in the National
Center for Biotechnology Information’s Gene Expression Omnibus with ac-
cession number GEO 41212.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. ATH1 Genechip quality assessment and
reproducibility.

Supplemental Figure S2. General expression numbers.

Supplemental Figure S3. Comparisons with two other seed microarray
datasets.

Supplemental Figure S4. RT-qPCR confirms tissue-specific expression
found in the microarray dataset.

Supplemental Figure S5. Topological features of the EndoNet and RadNet.

Supplemental Figure S6. Overrepresentation analysis of the 30 largest
clusters from the EndoNet co-expression network.

Supplemental Figure S7. ORA using Pageman of genes that are either
higher expressed in the MCE or the RAD.

Supplemental Figure S8. Seed tissues differentiate during germination.

Supplemental Figure S9. Expression of evolutionary old and young genes
during Arabidopsis seed germination.

Supplemental Figure S10. The node degree distribution for the correlation
networks.

Supplemental Table S1. Correlations between the sample replicates.

Supplemental Table S2. Primer information of the genes tested by
RT-qPCR.
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Supplemental Materials and Methods S1. Supplemental Materials and
Methods.

Supplemental Data Set S1. Collection of gene lists.
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10 Appendix
10.1 Submitted Manuscript: Capturing Evolutionary Sig-

natures in Transcriptomes with myTAI
The following paper entitled Capturing Evolutionary Signatures in Transcriptomes
with myTAI is currently submitted to the journal Molecular Biology and Evolution
and published on bioRxiv but has not been peer-reviewed yet. However, its content
summarizes the main applications and functionalities of myTAI and orthologr. Due
to this fact, I decided to include this paper as appendix to this thesis.

This paper is available at:

• http://biorxiv.org/content/early/2016/05/03/051565.abstract
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Abstract	

	

Combining	transcriptome	data	of	biological	processes	or	response	to	stimuli	with	

evolutionary	information	such	as	the	phylogenetic	conservation	of	genes	or	their	

sequence	divergence	rates	enables	the	investigation	of	evolutionary	constraints	on	these	

processes	or	responses.	Such	phylotranscriptomic	analyses	recently	unraveled	that	mid-

developmental	transcriptomes	of	fly,	fish,	and	cress	were	dominated	by	evolutionarily	

conserved	genes	and	genes	under	negative	selection	and	thus	recapitulated	the	

developmental	hourglass	on	the	transcriptomic	level.	Here,	we	present	a	protocol	for	

performing	phylotranscriptomic	analyses	on	any	biological	process	of	interest.	When	

applying	this	protocol,	users	are	capable	of	detecting	different	evolutionary	constraints	

acting	on	different	stages	of	the	biological	process	of	interest	in	any	species.	For	each	
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step	of	the	protocol,	modular	and	easy-to-use	open-source	software	tools	are	provided,	

which	enable	a	broad	range	of	scientists	to	apply	phylotranscriptomic	analyses	to	a	wide	

spectrum	of	biological	questions.	

	

Introduction	

	

Transcriptomes	carry	evolutionary	information	because	expressed	genes	have	different	

evolutionary	ages	or	are	exposed	to	different	selective	pressures.	In	major	biological	

processes	such	as	embryogenesis,	metamorphosis,	fertilization,	senescence,	etc.	or	after	

biological	treatments	the	set	of	genes	expressed	at	different	stages	within	these	

processes	varies.	Analogously,	both	environmental	and	endogenous	stimuli	elicit	

responses	of	different	sets	of	genes.	In	addition	to	having	varying	biological	functions,	

these	gene	sets	may	vary	regarding	their	evolutionary	signatures	like	phylogenetic	

conservation	of	genes	(=	gene	ages)	or	their	sequence	divergence	rates	(=	sequence	

divergence).	
 

To	capture	and	quantify	such	evolutionary	signatures	across	development,	biological	

processes	or	response	to	stimuli,	we	developed	and	established	phylotranscriptomic	

analyses,	which	combine	information	about	gene	age	and	gene	sequence	divergence	with	

transcriptome	data	of	biological	processes	and	response	to	stimuli.	These	analyses	

allowed	the	molecular	confirmation	of	the	developmental	hourglass	(Domazet-Lošo	and	

Tautz	2010a),	one	of	the	historic	principles	in	evolution	and	developmental	biology	

originally	discovered	by	von	Baer	(von	Baer	1828).	

	

Moreover,	phylotranscriptomic	analyses	unraveled	that	the	hourglass	pattern,	which	

was	thought	to	be	a	hallmark	of	animal	embryogenesis,	is	restricted	neither	to	animals	

nor	to	embryogenesis.	Specifically,	such	analyses	identified	molecular	hourglass	

patterns	in	plants	(Quint	et	al.	2012)	and	fungi	(Cheng	et	al.	2015)	as	well	as	in	post-

embryonic	plant	development	(Drost	et	al.	2016).	

	

Phylotranscriptomic	analyses	are	not	limited	to	embryogenesis	or	other	post-embryonic	

developmental	processes.	Potential	applications	of	these	analyses	in	other	disciplines	

are	studies	of	life	cycles	of	many	different	animals,	plants,	fungi,	or	bacteria,	of	metabolic	

or	circadian	rhythms,	of	the	mitotic	and	meiotic	cell	cycle,	of	tumor	progression,	or	of	a	
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plethora	of	other	fundamental	biological	processes	of	life.	For	example,	

phylotranscriptomic	analyses	turned	out	to	be	helpful	for	comparing	transcriptomes	of	

three	stem	cell	types	in	Hydra	(Hemmrich	et	al.	2012)	or	for	reconstructing	the	

evolutionary	origin	of	the	neural	crest,	a	bona	fide	innovation	of	vertebrates	(Šestak	et	

al.	2012).	In	addition,	these	analyses	can	be	applied	to	capture	evolutionary	signatures	

of	temporal	responses	to	different	endogenous	and	exogenous	stimuli.	Furthermore,	

phylotranscriptomic	analyses	can	be	applied	to	capture	evolutionary	signatures	on	the	

spatial	level	in	different	tissues,	organs,	cell	types,	or	tumors	and	allow	to	study	these	

spatial	signatures	in	development,	in	other	temporal	processes,	or	in	response	to	

endogenous	and	exogenous	stimuli. 
 

Despite	this	great	potential,	no	standardized	and	reproducible	protocol	for	performing	

phylotranscriptomic	analyses	exists	to	date.	To	overcome	this	limitation	and	to	allow	a	

broad	range	of	scientists	to	capture	and	quantify	evolutionary	signatures	in	

transcriptomes	by	applying	such	analyses,	we	developed	the	open	source	software	

packages	createPSmap.pl,	orthologr,	and	myTAI	and	here	provide	a	user-friendly	

protocol	to	apply	these	tools	to	any	organism	and	biological	study	of	interest.	
 

Methodological	Background	

 

Given	the	wide	variety	of	possible	applications	of	phylotranscriptomic	analyses,	we	

focus	on	development	as	an	example	use	case	of	our	protocol.	

	

Evolutionary	signatures	of	transcriptomes	can	be	captured	by	computing	transcriptome	

indices	at	different	measured	stages	of	development,	combining	these	computed	values	

to	a	transcriptome	index	profile	across	the	measured	stages,	and	comparing	this	profile	

with	a	flat	line.	A	profile	not	significantly	deviating	from	a	flat	line	indicates	the	absence	

of	significant	variations	of	the	computed	transcriptome	index	from	stage	to	stage.	In	

contrast,	a	profile	significantly	deviating	from	a	flat	line	indicates	the	presence	of	

significant	variations	from	stage	to	stage.	We	refer	to	any	transcriptome	index	profile	

significantly	deviating	from	a	flat	line	as	phylotranscriptomic	pattern	or	evolutionary	

signature.	
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The	computation	of	the	transcriptome	age	index	(TAI)	(Domazet-Lošo	and	Tautz	2010a)	

(Supplementary	Information)	requires	the	determination	of	the	evolutionary	ages	of	the	

genes	of	the	studied	species.	For	this	purpose,	we	developed	a	procedure	termed	

phylostratigraphy	(Domazet-Lošo	et	al.	2007),	which	briefly	described	works	as	follows:	

First,	a	sequence	homology	search	of	the	proteins	of	the	studied	species	against	a	

database	of	proteins	of	completely	sequenced	genomes	from	species	covering	all	

kingdoms	of	life	is	performed.	Second,	these	species	are	sorted	into	sets	named	

phylostrata	(PS)	corresponding	to	hierarchically	ordered	phylogenetic	nodes	along	the	

tree	of	life.	PS	1	denotes	the	set	of	all	living	species,	PS	2	denotes	the	set	of	species	of	the	

same	domain	as	the	query	species,	PS	3	denotes	the	set	of	species	of	the	same	kingdom	

as	the	query	species,	etc.,	and	the	highest	PS	denotes	the	set	consisting	of	only	the	

studied	species.	Third,	each	protein	of	the	studied	species	is	assigned	to	the	lowest	PS	in	

which	at	least	one	homolog	with	a	predefined	threshold	on	the	degree	of	homology	was	

detectable.	The	resulting	assignment	of	one	PS	to	each	protein	of	the	studied	genome	is	

called	phylostratigraphic	map,	and	the	PS	of	a	given	protein	or	protein-coding	gene	is	

often	loosely	called	gene	age.	
 

The	TAI	at	a	given	stage	of	development	is	then	obtained	by	joining	this	

phylostratigraphic	map	with	expression	data	at	that	stage	and	by	computing	the	

weighted	mean	of	the	PS,	where	the	weights	are	the	stage-specific	expression	levels	

(Supplementary	Information)	(Domazet-Lošo	and	Tautz	2010a).	Loosely	speaking,	the	

TAI	at	a	given	stage	of	development	is	the	mean	evolutionary	age	of	the	genes	expressed	

at	that	stage,	and	the	TAI	profile	is	the	profile	of	these	mean	ages	across	different	stages	

of	development.	Stages	with	high	TAI	values	are	stages	where	evolutionarily	old	genes	

(in	low	PS)	are	more	lowly	expressed	-	and	evolutionarily	young	genes	(in	high	PS)	are	

more	highly	expressed	-	than	in	other	stages.	

	

The	computation	of	the	transcriptome	divergence	index	(TDI)	(Quint	et	al.	2012,	Drost	et	

al.	2015)	(Supplementary	Information)	requires	the	determination	of	the	degree	of	

selection	of	the	genes	of	the	studied	species.	For	this	purpose,	we	developed	a	procedure	

termed	divergence	stratigraphy	(Quint	et	al.	2102,	Drost	et	al.	2015),	which	works	

analogously	to	phylostratigraphy	as	follows:	First,	a	set	of	orthologs	of	the	proteins	of	

the	studied	species	is	obtained	in	a	closely	related	species.	Second,	rates	of	non-

synonymous	(dN)	and	synonymous	(dS)	substitutions	as	well	as	the	dN/dS	ratio	are	
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estimated	for	each	pairwise	alignment	of	the	protein-coding	genes	of	the	protein	of	the	

studied	species	and	its	ortholog.	Third,	the	continuous	dN/dS	ratios	are	discretized	by	

sorting	them	into	e.	g.	10	groups	of	equal	sizes,	where	group	1	contains	the	genes	with	

the	lowest	dN/dS	ratios,	and	group	10	contains	the	genes	with	the	highest	dN/dS	ratios.	

In	analogy	to	PS,	these	groups	of	genes	of	similar	dN/dS	ratios	are	called	divergence	

strata	(DS).	The	resulting	assignment	of	one	DS	to	each	protein	of	the	studied	species	

with	an	ortholog	is	called	divergence	stratigraphic	map	(Quint	et	al.	2012,	Drost	et	al.	

2015),	and	the	DS	of	a	given	protein-coding	gene	is	often	loosely	called	sequence	

divergence	denoting	the	evolutionary	rate	of	a	protein	(Zhang	and	Yang	2015).	

	

The	TDI	at	a	given	stage	of	development	is	then	obtained	in	analogy	to	obtaining	the	TAI	

by	joining	this	divergence	stratigraphic	map	with	expression	data	at	that	stage	and	by	

computing	the	weighted	mean	of	the	DS	(Quint	et	al.	2012,	Drost	et	al.	2015).	Loosely	

speaking,	the	TDI	at	a	given	stage	of	development	is	the	mean	sequence	divergence	of	

the	genes	expressed	at	that	stage,	and	the	TDI	profile	is	the	profile	of	these	mean	

sequence	divergences	across	different	stages	of	development.	Stages	with	high	TDI	

values	are	stages	where	genes	under	strong	negative	selection	(in	low	DS)	are	more	

lowly	expressed	-	and	genes	under	weaker	negative	selection	or	even	positive	selection	

(in	high	PS)	are	more	highly	expressed	-	than	in	other	stages.	
 

To	assess	the	significance	of	deviations	of	transcriptome	index	profiles	from	a	flat	line,	

we	proposed	the	flat-line	test	(Quint	et	al.	2012;	Drost	et	al.	2015).	The	flat-line	test	is	a	

permutation	test	that	randomly	assigns	PS	or	DS	to	the	genes	of	investigation.	This	

random	assignment	is	used	to	compute	TAI	or	TDI	profiles	and	produces	random	

patterns	of	transcriptome	conservation.	Subsequently,	the	variance	is	then	used	as	a	

measure	to	quantify	the	variation	of	these	random	transcriptome	indices	between	

stages.	This	procedure	is	performed	independently	10,000	times	and	the	resulting	

variance	values	are	compared	with	the	actual	variance	of	TAI	or	TDI	patterns.	If	the	p-

value	of	the	actual	TAI	or	TDI	variance	value	is	less	than	0.05	we	declare	the	

corresponding	pattern	as	significantly	deviating	from	a	flat	line	and	as	not	deviating	

from	a	flat	line	otherwise	(Supplementary	Information).	

	

Two	phylotranscriptomic	patterns	of	particular	interest	in	plant	and	animal	

embryogenesis	are	the	hourglass	pattern	and	the	early-conservation	pattern.	To	test	the	
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presence	or	absence	of	these	patterns	we	introduced	the	reductive	hourglass	test	and	

reductive	early-conservation	test	(Drost	et	al.	2015).	The	reductive	hourglass	test	

quantifies	the	degree	of	agreement	of	the	transcriptome	index	profile	to	an	hourglass-

like	high-low-high	pattern,	while	the	reductive	early-conservation	test	quantifies	the	

degree	of	agreement	with	an	early	conservation-like	low-low-high	pattern.	In	addition,	

we	designed	myTAI	such	that	users	can	easily	build	customized	statistical	tests	for	

assessing	the	significance	of	any	pattern	deviating	from	a	flat	line	(Supplementary	

Information).	

	

To	further	scrutinize	observed	phylotranscriptomic	patterns	we	introduced	relative	

expression	profiles	per	PS	and	per	DS	(Domazet-Lošo	and	Tautz	2010a;	Drost	et	al.	

2015)	(Supplementary	Information).	Relative	expression	levels	allow	the	visualization	

of	the	average	expression	behavior	of	genes	from	the	same	PS	or	the	same	DS	across	the	

biological	process	of	interest.	Specifically,	the	mean	expression	profile	of	each	PS	and	

each	DS	across	all	stages	is	linearly	transformed	to	a	normalized	profile	ranging	from	0	

to	1,	and	the	resulting	normalized	profile	is	called	relative	expression	profile	of	the	

corresponding	PS	and	DS.	

	

Protocol	Applications	

	

As	introduced	before,	phylotranscriptomic	analyses	enabled	us	to	unravel	the	existence	

of	phylotranscriptomic	hourglass	patterns	in	animals	(Domazet-Lošo	and	Tautz	2010a),	

plants	(Quint	et	al.	2012;	Drost	et	al.	2015;	Drost	et	al.	2016),	and	fungi	(Cheng	et	al.	

2015).	These	findings	suggested	that	ontogenetic	processes	occurring	during	

development	are	related	to	phylogenetic	processes	occurring	during	evolution	(Von	

Baer	1828;	Sander	1983;	Duboule	1994;	Richardson	1995;	Raff	1996;	Richardson	et	al.	

1997;	Richardson	1999;	Hazkani-Covo	et	al.	2005;	Irie	and	Sehara-Fujisawa	2007;	

Artieri	et	al.	2009;	Cruickshank	and	Wade	2008;	Kalinka	et	al.	2010;	Domazet-Lošo	and	

Tautz	2010a;	Yanai	et	al.	2011;	Irie	and	Kuratani	2011;	Levin	et	al.	2012;	Willmore	

2012;	Svorcová	2012;	Tian	et	al.	2013;	Wang	et	al.	2013;	Gerstein	et	al.	2014;	Levin	et	al.	

2016;	Gossmann	et	al.	2016).	

	

Specifically,	it	has	been	found	that	the	pattern	of	morphologically	dissimilar-similar-

dissimilar	embryos	between	related	animal	species,	the	so-called	developmental	
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hourglass	pattern	(Duboule	1994;	Raff	1996),	is	mirrored	by	a	similar	hourglass-like	

high-low-high	pattern	of	TAI	and	TDI	profiles	on	the	phylotranscriptomic	level	

(Domazet-Lošo	and	Tautz	2010a;	Drost	et	al.	2015).		Moreover,	it	has	been	found	that	

the	stage	or	period	of	maximum	transcriptome	conservation	during	mid	embryogenesis	

coincides	with	the	morphological	stage	of	maximum	conservation	defined	as	phylotypic	

stage	(Sander	1983)	or	phylotypic	period	(Richardson	1995;	Raff	1996;	Richardson	et	al.	

1997).	In	this	context,	phylotranscriptomic	analyses	have	provided	a	molecular	

explanation	for	and	thus	deepened	our	understanding	of	the	relation	between	evolution	

and	development,	and	we	believe	that	such	analyses	will	advance	current	and	future	

evo-devo	research,	too.	

	

However,	the	applicability	of	the	protocol	and	the	developed	software	packages	is	not	

restricted	to	the	study	of	development.	As	specified	in	section	Methodological	

Background,	this	protocol	can	be	applied	to	phylotranscriptomic	analyses	of	any	

transcriptome	data	set	of	any	biological	study	of	any	species.	In	addition	to	

phylotranscriptomic	analyses,	individual	modules	of	this	protocol	can	be	used	for	

performing	different	analyses	independently	of	each	other.	

	

For	example,	phylostratigraphy	alone	has	previously	been	performed	to	detect	orphan	

genes	(Tautz	and	Domazet-Lošo	2011)	or	the	evolutionary	origin	of	specific	classes	of	

genes	such	as	cancer	genes	(Domazet-Lošo	and	Tautz	2010b)	or	transcription	factors	

(De	Mendoza	et	al.	2013).	Likewise,	divergence	stratigraphy	can	simply	be	performed	

for	quantifying	the	rate	of	synonymous	versus	non-synonymous	substitution	rates	of	

protein-coding	genes	in	a	genome	of	choice	(Drost	et	al.	2015).	

	

The	modularity	of	the	protocol	also	allows	users	to	use	their	own	modules	for	

phylostratigraphy	or	divergence	stratigraphy.	This	modularity	for	example,	enables	to	

study	the	influence	of	different	phylostratigraphies	or	divergence	stratigraphies	on	TAI	

or	TDI	profiles.	In	particular,	the	influence	of	potential	underestimations	of	gene	ages	by	

BLAST	approaches	(Moyers	and	Zhang	2015,	2016)	can	be	systematically	investigated	

using	this	protocol.	

	

In	general,	this	protocol	was	designed	to	make	it	easily	applicable	for	life	scientists.	For	

this	purpose,	we	provide	software	tools	and	step-by-step	instructions	for	every	part	of	
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this	protocol.	For	example,	we	provide	the	Perl	script	createPSmap.pl	for	performing	

BLAST	searches	and	computing	phylostratigraphic	maps,	the	R	package	orthologr	for	

identifying	orthologs	and	computing	divergence	stratigraphic	maps,	and	the	R	package	

myTAI	for	computing	TAI	and	TDI	profiles	across	developmental	stages,	for	performing	

statistical	tests	such	as	the	flat-line	test,	for	computing	relative	expression	profiles	for	all	

PS	and	DS,	or	for	producing	scientific	visualizations	of	observed	phylotranscriptomic	

patterns	in	publication	quality.	All	parts	of	the	protocol	are	demonstrated	by	using	the	

same	example	data	set	covering	seven	stages	of	A.	thaliana	embryo	development	(Quint	

et	al.	2012;	Drost	et	al.	2015).	

	

All	software	tools	are	publicly	available	under	an	open	source	license	

(https://github.com/AlexGa/Phylostratigraphy,	https://github.com/HajkD/orthologr,	

and	https://github.com/HajkD/myTAI).	An	extensive	documentation	of	each	function	as	

well	as	six	tutorials	covering	different	phylotranscriptomic	analyses	are	part	of	the	

orthologr	package,	the	myTAI	package,	and	the	Supplementary	Information.		

	

Furthermore,	pre-computed	phylostratigraphic	maps	and	divergence	stratigraphic	maps	

can	be	obtained	from	a	public	repository	

(https://github.com/HajkD/published_phylomaps).	In	this	way,	users	can	easily	adapt	

the	provided	protocol	to	the	organism,	biological	process,	and	data	sets	of	their	interest	

with	minimal	computational	effort. 

	

Comparison	with	other	similar	techniques	

	

Possible	alternatives	to	phylostratigraphy	are	based	on	Wagner-Parsimony	or	

Phylogenetic-Reconciliation	(Capra	et	al.	2013)	and	are	summarized	in	the	software	tool	

ProteinHistorian	(Capra	et	al.	2012;	Capra	et	al.	2013).	ProteinHistorian	allows	

performing	alternative	gene	age	assignment	methods	that	can	then	be	used	by	myTAI	to	

compute	TAI	profiles	and	to	perform	all	other	analyses	based	on	phylostratigraphic	

maps	resulting	from	these	alternative	methods	for	estimating	gene	ages.	

	

Possible	alternatives	to	divergence	stratigraphy	are	based	on	phylogenetic	inference.	

Here,	the	metaPhOrs	repository	(http://orthology.phylomedb.org/)	can	be	accessed	to	

retrieve	pre-computed	phylogeny-based	orthology	predictions	that	can	then	be	used	to	
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estimate	sequence	substitution	rates.	Alternative	methods	for	estimating	substitution	

rates	are	provided	by	the	R	package	orthologr,	where	the	function	dNdS()	allows	users	

to	choose	a	variety	of	alternative	methods	for	estimating	substitution	rates	of	predicted	

orthologs	(for	detailed	information	see	

https://github.com/HajkD/orthologr/blob/master/vignettes/dNdS_estimation.Rmd).	

These	alternative	divergence	stratigraphic	maps	can	then	be	used	by	myTAI	for	

computing	TDI	profiles	and	for	performing	all	other	analyses.	

	

A	broadly	applied	alternative	approach	for	associating	developmental	transcriptomes	

with	evolutionary	constraints	is	comparative	transcriptomics,	which	has	been	used	to	

study	developmental	hourglass	patterns	in	several	species	(Kalinka	et	al.	2010;	Irie	and	

Kuratani	2011;	Levin	et	al.	2012;	Romero	et	al.	2012;	Wang	et	al.	2013;	Dunn	et	al.	2013;	

Warnefors	and	Kaessmann	2013;	Gerstein	et	al.	2014;	Nesculea	and	Kaessmann	2014;	

Levin	et	al.	2016).	Comparative	transcriptomics	analyzes	gene	expression	diversity	

between	orthologs	of	two	or	more	species	based	on	the	empirical	finding	that	gene	

expression	diversity	of	orthologs	correlates	with	developmental	dissimilarity	(Roux	et	

al.	2015).	

	

Limitations	of	the	Protocol	

	

One	limitation	of	the	protocol	is	that	it	can	only	be	applied	to	species	for	which	protein	

sequences	are	annotated	and	for	which	this	annotation	matches	the	transcriptome	

annotation	of	the	corresponding	gene	expression	data	set.		

	

A	second	limitation	is	that	computing	a	phylostratigraphic	map	can	take	several	hours,	

several	days,	or	even	several	weeks	depending	on	the	number	of	query	sequences	and	

the	size	of	the	database	of	proteins	of	completely	sequenced	genomes	and	may	thus	

require	a	computing	cluster.		

	

A	third	limitation	is	that	users	interested	in	applying	a	custom	taxonomy	to	

createPSmap.pl	need	to	perform	additional	steps	to	retrieve	a	customized	

phylostratigraphic	map.		
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However,	as	the	myTAI	package	is	designed	to	take	any	custom	phylostratigraphic	map	

or	divergence	stratigraphic	map	as	input,	all	of	the	subsequent	phylotranscriptomic	

analyses	of	this	protocol	can	be	performed	irrespectively	of	the	origins	of	the	

phylostratigraphic	or	divergence	stratigraphic	maps	(Supplementary	Information).	

	

Example	Experiment	

	

The	following	example	protocol	is	divided	into	four	conceptual	parts.	The	first	part	

(steps	1-2)	covers	the	construction	of	phylostratigraphic	and	divergence	stratigraphic	

maps.	The	second	part	(steps	3	-	10)	includes	the	computation	and	visualization	of	TAI	

and	TDI	profiles.	The	third	part	(steps	11	-	12)	covers	the	application	of	three	statistical	

tests	for	quantifying	the	significance	of	the	observed	phylotranscriptomic	patterns,	and	

the	fourth	part	(steps	13	-	18)	includes	the	computation	and	visualization	of	relative	

expression	profiles	(Fig.	1).	

	

In	step	1	of	the	protocol,	the	Perl	script	createPSmap.pl	is	used	for	computing	the	

phylostratigraphic	map	(Fig.	2).	The	input	files	to	createPSmap.pl	are	a	fasta	file	of	

protein	sequences	of	the	studied	species	of	and	a	database	of	proteins	of	completely	

sequenced	genomes	in	fasta	format.	Phylogenetic	information	is	provided	in	the	header	

of	fasta	sequences	and	can	be	customized	by	following	the	tutorial	at	

https://github.com/AlexGa/Phylostratigraphy.	The	output	of	createPSmap.pl	is	the	

phylostratigraphic	map,	i.e.,	a	table	storing	the	gene	id	and	the	PS	of	each	protein-coding	

gene	of	the	studied	species	(https://github.com/AlexGa/Phylostratigraphy).	

	

In	step	2,	function	divergence_stratigraphy()	of	R	package	orthologr	is	used	for	

computing	the	divergence	stratigraphic	map.	In	the	example	data	set,	the	arguments	

query_file	and	subject_file	refer	to	the	downloaded	CDS	files	Athaliana_167_cds.fa	and	

Alyrata_107_cds.fa	(see	Prerequisite	tools	for	details)	and	denote	the	input	files	of	

function	divergence_stratigraphy().	The	output	of	the	function	

divergence_stratigraphy()	is	the	divergence	stratigraphic	map,	i.e.	a	table	storing	the	

gene	id	and	the	DS	of	each	protein-coding	gene	of	the	studied	species	that	has	an	

ortholog	in	the	other	species	

(https://github.com/HajkD/orthologr/blob/master/vignettes/divergence_stratigraphy.

Rmd).	
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In	step	3,	the	phylostratigraphic	map	and	the	divergence	stratigraphic	map	are	matched	

with	a	transcriptome	data	set	covering	the	studied	biological	process.	This	step	is	

accomplished	by	function	MatchMap()	of	R	package	myTAI,	which	takes	a	

phylostratigraphic	map	or	divergence	stratigraphic	map	and	an	expression	data	set	as	

input	and	returns	a	table	storing	the	gene	id,	its	PS	or	DS,	and	its	expression	profile	as	

output.	We	denote	this	output	data	as	PhyloExpressionSet	or	DivergenceExpressionSet.	

	

Phylostratigraphy	and	divergence	stratigraphy	need	to	be	performed	only	once	for	each	

species,	and	phylostratigraphic	maps	and	divergence	stratigraphic	maps	are	available	

for	a	variety	of	species	at	https://github.com/HajkD/published_phylomaps.	

	

In	step	4,	R	package	myTAI	and	pre-formatted	data	sets	required	for	subsequent	

analyses	of	the	protocol	are	loaded	into	the	current	R	session.	

	

Steps	5	and	6	visualize	the	phylostratigraphic	map	(Fig.	2	a)	and	the	divergence	

stratigraphic	map	(Fig.	2	b)	by	plotting	histograms	of	absolute	or	relative	frequencies	of	

genes	per	PS	or	per	DS,	respectively.	

	

TAI	and	TDI	profiles	are	computed	and	visualized	in	steps	7-10	(Fig.	3).	Both	functions	

TAI()	and	TDI()	take	a	PhyloExpressionSet	or	DivergenceExpressionSet	as	input	and	

compute	the	TAI	and	TDI	values	as	output.	These	profiles	are	then	visualized	by	function	

PlotPattern().	

	

In	steps	11	and	12,	p-values	of	the	TAI	and	TDI	profiles	are	computed	according	to	the	

flat-line	test,	the	reductive	hourglass	test	(11.A),	or	the	reductive	early-conservation	test	

(11.B).	The	flat-line	test	assesses	the	deviation	of	a	TAI	or	TDI	profile	from	a	flat	line,	

while	the	reductive	hourglass	test	and	the	reductive	early-conservation	test	indicate	the	

presence	of	a	high-low-high	pattern	or	a	low-low-high	pattern,	respectively,	based	on	an	

a-priori	definition	of	early,	mid	(phylotypic),	and	late	phases	of	development	(Drost	et	al.	

2015)	(Supplementary	Information).	

	

In	steps	13-16,	tables	of	relative	expression	profiles	for	each	PS	and	each	DS	are	

obtained	and	visualized	by	using	functions	REMatrix()	and	PlotRE()	of	R	package	myTAI.	
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In	steps	17-18,	a	group-specific	visualization	of	relative	expression	levels	is	performed	

by	function	PlotBarRE()	of	R	package	myTAI,	and	potential	differences	between	groups	

are	assessed	by	a	Kruskal-Wallis	rank	sum	test	(Fig.	4).	

	

Prerequisite	tools	

	

BLAST	

	

The	Basic	Local	Alignment	Search	Tool	(BLAST)	(Altschul	et	al.	1990)	is	used	to	

determine	gene	homology	relationships	in	phylostratigraphy	and	divergence	

stratigraphy	and	can	be	downloaded	from	

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/.	A	detailed	installation	

guide	can	also	be	found	at	

https://github.com/HajkD/orthologr/blob/master/vignettes/Install.Rmd#install-blast. 

	

Perl	and	Java	Programming	Environments	

The	Perl	programming	language	can	be	downloaded	from	https://www.perl.org/	and	

the	Java	compiler	and	interpreter	can	be	obtained	from	

https://www.java.com/de/download/.	

	

The	pipeline	to	perform	phylostratigraphy	can	be	downloaded	from	

https://github.com/AlexGa/Phylostratigraphy.	

	

R	Programming	Environment	

	

The	R	programming	environment	(R	Core	Team	2016)	can	be	downloaded	from	

http://cran.r-project.org/	and	installed	under	Linux,	Mac	OSX,	or	Windows.		

	

The	R	package	orthologr	can	be	downloaded	and	installed	from		

	

https://github.com/HajkD/orthologr	. 

	

The	R	package	myTAI	can	be	downloaded	and	installed	from	
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https://github.com/HajkD/myTAI	.	

	

R	Package	Dependency	

	

myTAI	(Drost	2016)	uses	the	following	open	source	packages	from	CRAN:	Rcpp	

(Eddelbuettel	and	Francois	2011),	nortest	(Gross	and	Ligges	2014),	fitdistrplus	

(Delignette-Muller	and	Dutang	2015),	doParallel	(Weston	2014),	dplyr	(Wickham	and	

Francois	2015),	RColorBrewer	(Neuwirth	2014),	taxis	(Chamberlain	and	Szocs	2013),		

ggplot2	(Wickham	2009),	and	edgeR	(Robinson	et	al.	2010).	

	

orthologr	(Drost	et	al.	2015)	uses	the	following	open-source	packages	from	CRAN	and	

Bioconductor	(Huber	et	al.	2015):	Rcpp	(Eddelbuettel	and	Francois	2011),	doParallel	

(Weston	2014),	dplyr	(Wickham	and	Francois	2015),	seqinr	(Charif	and	Lobry	2007),	

data.table	(Dowle	2014),	Biostrings	(Pages	et	al.	2007),	RSQLite	(Wickham	et	al.	2014),	

stringr	(Wichham	2015),	IRanges	(Lawrence	et	al.	2013),	DBI	(R	Special	Interest	Group	

on	Databases	2014),	and	S4Vectors	(Pages	et	al.	2014).	

	

orthologr	and	myTAI	

	

After	installing	R	packages	orthologr	and	myTAI,	they	can	be	loaded	into	the	current	R	

session	by	commands	

	

library(orthologr)	

library(myTAI)	

	

Data	

	

To	perform	phylostratigraphy,	the	reference	genome	database	needs	to	be	downloaded	

from	http://msbi.ipb-

halle.de/download/phyloBlastDB_Drost_Gabel_Grosse_Quint.fa.tbz.	This	database	

currently	stores	17,582,624	amino	acid	sequences	covering	4,557	species.	After	

downloading	file	phyloBlastDB,	it	can	be	unpacked	by	opening	a	terminal	application	

and	typing	
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													tar	xfvj	phyloBlastDB_Drost_Gabel_Grosse_Quint.fa.tbz	

	

The	header	of	the	FASTA-files	of	the	studied	species	(e.g.	Athaliana_167_protein.fa)	must	

fulfill	the	following	specification		

	

>GeneID	|	[species_name]	|	[taxonomy]		

	

The	corresponding	taxonomy	starts	with	super	kingdoms	limited	to	Eukaryota,	Archaea,	

and	Bacteria.	For	the	example	data	set	this	yields:	

	

>ATCG00500.1|PACid:19637947	|	[Arabidopsis	thaliana]	|	[Eukaryota;	Viridiplantae;	

Streptophyta;	Streptophytina;	Embryophyta;	Tracheophyta;	Euphyllophyta;	

Spermatophyta;	Magnoliophyta;	eudicotyledons;	core	eudicotyledons;	rosids;	

malvids;	Brassicales;	Brassicaceae;	Camelineae;	Arabidopsis]	

	

To	download	the	coding	sequence	(CDS)	files	of	A.	thaliana	and	A.	lyrata	from	the	

Phytozome	database	(Goodstein	et	al.	2012),	the	following	R	command-line	tool	can	be	

used:	

	

#	download	the	CDS	file	of	A.	thaliana	

														download.file(	url						=	"ftp://ftp.jgi-	psf.org/pub/compgen/phytozome/v9.0/	

																																																									Athaliana/annotation/Athaliana_167_cds.fa.gz",	

																																								destfile	=	"Athaliana_167_cds.fa.gz"	)	

													

													#	download	the	CDS	file	of	A.	lyrata	

													download.file(	url						=	"ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v9.0/	

																																																								Alyrata/annotation/Alyrata_107_cds.fa.gz",		

																																								destfile	=	"Alyrata_107_cds.fa.gz"	)	

	

													Next,	the	files	Athaliana_167_cds.fa.gz	and	Alyrata_107_cds.fa.gz	need	to	be	unpacked.	

													These	CDS	files	are	then	used	by	R	package	orthologr	for	performing	divergence	

stratigraphy.	
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myTAI	includes	two	example	data	sets,	each	containing	a	gene-expression	time	course	

covering	seven	stages	of	A.	thaliana	embryogenesis	starting	from	the	zygote	stage	to	

mature	embryos	as	well	as	a	phylostratigraphic	map	and	divergence	stratigraphic	map	

of	each	protein-coding	gene	of	A.	thaliana	(Xiang	et	al.	2011;	Quint	et	al.	2012)	with	an	

ortholog	in	Arabidopsis	lyrata	(Drost	et	al.	2015).	These	example	data	sets	are	loaded	

into	the	current	R	session	by	commands	

	

data(PhyloExpressionSetExample)	

data(DivergenceExpressionSetExample)	

	

The	structure	of	these	example	data	sets	can	be	displayed	by	commands	

	

head(PhyloExpressionSetExample,	3)	

head(DivergenceExpressionSetExample,	3)	

	

The	structure	of	the	data	set	resembles	a	standard	format	for	all	functions	and	

procedures	implemented	in	myTAI.	To	distinguish	data	sets	storing	phylostratigraphic	

maps	combined	with	gene	expression	data	and	sequence	divergence	stratigraphic	maps	

combined	with	gene	expression	data,	the	notation	PhyloExpressionSet	and	

DivergenceExpressionSet	is	used	in	the	documentation	of	myTAI.	

	

Protocol	Steps		

	

1.	Compute	phylostratigraphic	map:	

		

	perl	createPSmap.pl	--organism	Athaliana_167_protein_with_new_Header.fa	

	 	--database	phyloBlastDB_Drost_Gabel_Grosse_Quint.faphyloBlastDB.fa	

	 	 	 			 			--evalue	1e-5	--threads	64	--blastPlus	

	

2.	Compute	divergence	stratigraphic	map	with	reciprocal	best	hit:			

	

library(orthologr)	

	

#	compute	the	divergence	stratigraphic	map	of	A.	thaliana	vs.	A.	lyrata	
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Ath_vs_Aly_DM	<-	divergence_stratigraphy(	

																																																						query_file												=	"Athaliana_167_cds.fa",	

																																																						subject_file										=	"Alyrata_107_cds.fa",	

																																																						eval																								=	"1E-5",		

																																																						ortho_detection	=	"RBH",	

																																																						comp_cores									=	1	)	

	

A.	 Compute	divergence	stratigraphic	map	with	best	hit:	

	

library(orthologr)	

	

#	compute	the	divergence	map	of	A.	thaliana	vs.	A.	lyrata	using	BLAST	best	hit	

Ath_vs_Aly_DM	<-	divergence_stratigraphy(	

																																																				query_file												=	"Athaliana_167_cds.fa",	

																																																				subject_file										=	"Alyrata_107_cds.fa",	

																																																				eval																								=	"1E-5",		

																																																				ortho_detection	=	"BH",	

																																																				comp_cores									=	1	)	

	

3.	Match	phylostratigraphic	map	of	step	1	or	divergence	stratigraphic	map	of	step	2	with	

an	expression	data	set:	

	

library(myTAI)	

	

PhyloExpressionSet	<-	MatchMap(PhyloMap,	ExpressionMatrixExample)	

	

DivergenceExpressionSet	<-	MatchMap(DivergenceMap,	ExpressionMatrixExample)	

	

4.	Load	R	package	myTAI	and	read	data	of	step	3	into	the	current	R	session:	

	

library(myTAI)	

data(PhyloExpressionSetExample)	

data(DivergenceExpressionSetExample)	
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A.	 Load	R	package	myTAI	and	read	a	custom	expression	data	set	from	a	hard	drive:	

	

library(myTAI)	

myPhyloExpressionSet	<-	read.csv(“PhyloExpressionSet.csv”,	sep	=	“,”,	header	=	TRUE)	

myDivergenceExpressionSet	<-	read.csv(“DivergenceExpressionSet.csv”,	sep	=	“,”,	header	=	

TRUE)	

	

5.		Visualize	the	phylostratigraphic	map	of	step	1	(Fig.	2	a):	

	

PlotDistribution(	PhyloExpressionSet	=	PhyloExpressionSetExample,	

																																	xlab																														=	“Phylostratum”)	

	

6.	Visualize	the	divergence	stratigraphic	map	of	step	2	(Fig.	2	b):	

	

PlotDistribution(	PhyloExpressionSet	=	DivergenceExpressionSetExample,	

																																	xlab																														=	“Divergence	stratum”)	

	

7.	Compute	the	TAI	profile	from	the	data	set	of	step	3:	

	

TAI(PhyloExpressionSetExample)	

	

8.	Visualize	the	TAI	profile	from	step	7	(Fig.	3	a):	

	

PlotPattern(	ExpressionSet		=	PhyloExpressionSetExample,	

																									type																				=	“l”,	

																									lwd																					=	6,	

																									xlab																				=	“Ontogeny”,	

																									ylab																				=	“TAI”	)	

	

9.	Compute	the	TDI	profile	from	the	data	set	of	step	3:	

	

TDI(DivergenceExpressionSetExample)	

	

10.	Visualize	the	TDI	profile	from	step	9	(Fig.	3	b):	
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PlotPattern(	ExpressionSet	=	DivergenceExpressionSetExample,	

																									type																			=	“l”,	

																									lwd																				=	6,	

																									xlab																			=	“Ontogeny”,	

																									ylab																			=	“TDI”	)		

	

11.	Perform	the	flat-line	test	for	a	PhyloExpressionSet	of	step	3	and	the	TAI	profile	of	

step	7:	

	

FlatLineTest(	ExpressionSet	=	PhyloExpressionSetExample,	

																											permutations		=	10000,	

																											plotHistogram	=	TRUE	)	

	

A.	Perform	the	reductive	hourglass	test	for	a	PhyloExpressionSet	of	step	3	and	the	TAI	

profile	of	step	7:	

	

ReductiveHourglassTest(	ExpressionSet			=	PhyloExpressionSetExample,	

																																																modules													=	list(early	=	1:2,	mid	=	3:5,	late	=	6:7),		

																																																permutations			=	10000,		

																																																plotHistogram	=	TRUE	)	

	

B.	Perform	the	reductive	early-conservation	test	for	a	PhyloExpressionSet	of	step	3	and	

the	TAI	profile	of	step	7:	

	

EarlyConservationTest(			ExpressionSet			=	PhyloExpressionSetExample,	

																																																modules													=	list(early	=	1:2,	mid	=	3:5,	late	=	6:7),		

																																																permutations			=	10000,		

																																																plotHistogram	=	TRUE	)	

	

12.	Perform	the	flat-line	test	for	a	DivergenceExpressionSet	of	step	3	and	the	TDI	profile	

of	step	9:	

	

FlatLineTest(	ExpressionSet	=	DivergenceExpressionSetExample,	
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																											permutations		=	10000,	

																											plotHistogram	=	TRUE	)	

	

A.	Perform	the	reductive	hourglass	test	for	a	DivergenceExpressionSet	of	step	3	and	the	

TDI	profile	of	step	9:	

	

ReductiveHourglassTest(	ExpressionSet			=	DivergenceExpressionSetExample,	

																																																modules													=	list(early	=	1:2,	mid	=	3:5,	late	=	6:7),		

																																																permutations			=	10000,		

																																																plotHistogram	=	TRUE	)	

	

B.	Perform	the	reductive	early-conservation	test	for	a	DivergenceExpressionSet	of	step	3	

and	the	TDI	profile	of	step	9:	

	

EarlyConservationTest(			ExpressionSet			=	DivergenceExpressionSetExample,	

																																																modules													=	list(early	=	1:2,	mid	=	3:5,	late	=	6:7),		

																																																permutations			=	10000,		

																																																plotHistogram	=	TRUE	)	

	

13.	Compute	relative	expression	profiles	for	PS	based	on	a	PhyloExpressionSet	of	step	3:	

	

REMatrix(PhyloExpressionSetExample)	

	

14.	Visualize	relative	expression	profiles	for	PS	from	the	data	of	step	13:	

	

PlotRE(	ExpressionSet	=	PhyloExpressionSetExample,	

																Groups													=	list(group	=	1:12),	

																legendName			=	“PS”,	

																xlab																			=	“Ontogeny”,	

																lty																						=	1,	

																cex																					=	0.7,	

																lwd																				=	5	)	
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A.	Visualize	relative	expression	profiles	based	on	groups	of	PS	from	the	data	of	step	13	

(Fig.	4	a):	

	

PlotRE(	ExpressionSet							=	PhyloExpressionSetExample,	

																						Groups													=	list(group_1	=	1:3,	group_2	=	4:12),	

																						legendName			=	“PS”,	

																						xlab																		=	“Ontogeny”,	

																						lty																					=	1,	

																						cex																				=	0.7,	

																					lwd																				=	5	)	

	

15.	Compute	relative	expression	profiles	for	DS	based	on	a	DivergenceExpressionSet	of	

step	3:	

	

REMatrix(DivergenceExpressionSetExample)	

	

16.	Visualize	relative	expression	profiles	for	DS	based	on	the	data	from	step	15:	

	

PlotRE(	ExpressionSet	=	DivergenceExpressionSetExample,	

																Groups													=	list(group	=	1:10),	

																legendName			=	“DS”,	

																xlab																			=	“Ontogeny”,	

																lty																						=	1,	

																cex																					=	0.7,	

																lwd																				=	5	)	

	

A.	Visualize	relative	expression	profiles	based	on	groups	of	DS	from	the	data	of	step	15	

(Fig.	4	b):	

	

PlotRE(	ExpressionSet							=	DivergenceExpressionSetExample,	

																						Groups													=	list(group_1	=	1:5,	group_2	=	6:10),	

																						legendName			=	“DS”,	

																						xlab																		=	“Ontogeny”,	

																						lty																					=	1,	
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																						cex																				=	0.7,	

																					lwd																				=	5	)	

	

17.	Quantify	the	statistical	significance	of	group	differences	for	PS	based	on	the	data	of	

step	14A	(Fig.	4	c):	

	

PlotBarRE(	ExpressionSet	=	PhyloExpressionSetExample,	

																							Groups													=	list(group_1	=	1:3,	group_2	=	4:12),	

																							xlab																		=	“Ontogeny”,	

																						ylab																			=	“Mean	Relative	Expression”,	

																					cex																					=	2	)	

	

18.	Quantify	the	statistical	significance	of	group	differences	for	DS	based	on	the	data	of	

step	16A	(Fig.	4	c):	

	

PlotBarRE(	ExpressionSet	=	DivergenceExpressionSetExample,	

																							Groups													=	list(group_1	=	1:5,	group_2	=	5:10),	

																							xlab																		=	“Ontogeny”,	

																						ylab																			=	“Mean	Relative	Expression”,	

																					cex																					=	2	)	

	

Protocol	Timing	

	

Computing	the	phylostratigraphic	map	can	take	several	hours,	several	days,	or	even	

several	weeks	depending	on	the	number	of	query	sequences	and	the	size	of	the	database	

of	proteins	of	completely	sequenced	genomes	and	may	thus	require	a	computing	cluster,	

which	can	easily	run	these	jobs	in	parallel,	reducing	the	time	to	only	a	few	hours.	

	

Computing	the	divergence	stratigraphic	map	takes	2	-	4	hours	on	an	ordinary	PC	(step	

2).	All	other	steps	(3	–	18)	take	less	than	10	minutes	on	an	ordinary	PC.	Analyses	of	

other	data	sets	might	take	more	or	less	time	depending	on	the	number	of	samples,	

genes,	and	permutations.	Computation	time	and	command-input	time	for	most	steps	in	

the	protocol	are	only	a	few	seconds.	The	most	time-consuming	steps	are	the	

computation	of	phylostratigraphic	maps	or	divergence	stratigraphic	maps	in	cases	
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where	they	are	not	yet	available,	data	formatting	for	obtaining	PhyloExpressionSets	and	

DivergenceExpressionSets,	or	performing	permutation	tests	if	a	large	number	of	

permutations	is	chosen.	

	

Protocol	Results	

	

Performing	phylostratigraphy	with	Perl	script	createPSmap.pl	and	divergence	

stratigraphy	with	R	package	orthologr	for	the	example	data	set	(steps	1-2)	yields	a	

phylostratigraphic	map	(Fig.	2)	and	a	divergence	stratigraphic	map	for	the	studied	

species.	Alternatively,	users	can	input	their	own	custom	phylostratigraphic	maps	or	

divergence	stratigraphic	maps	at	this	stage	of	the	protocol	(Supplementary	

Information).	Matching	these	maps	with	gene	expression	data	covering	the	studied	

developmental	process	(step	3)	yields	a	PhyloExpressionSet	(Fig.	2	a)	and	a	

DivergenceExpressionSet	(Fig.	2	b).	Applying	steps	7–10	of	the	protocol	to	these	two	

data	sets	yields	TAI	and	TDI	profiles	for	seven	stages	of	A.	thaliana	embryo	development	

(Fig.	3).	

	

The	flat-line	test	(steps	11-12)	yields	p-values	of	1.2e-09	(TAI)	and	8.8e-06	(TDI),	stating	

that	both	profiles	deviate	significantly	from	a	flat	line.	The	reductive	hourglass	test	(steps	

11.A	and	12.A)	yields	p-values	of	8.0e-09	(TAI)	and	4.8e-04	(TDI),	stating	that	both	

profiles	are	compatible	with	an	hourglass	pattern.	The	reductive	early-conservation	test	

(steps	11.B	and	12.B)	yields	p-values	of	0.99	(TAI)	and	0.96	(TDI),	stating	that	both	

profiles	deviate	significantly	from	an	early-conservation	pattern.	

	

Steps	13–16	yield	relative	expression	profiles	for	all	PS	(Fig.	4	a)	and	DS	(Fig.	4	b).	For	

the	example	data	set,	we	observe	that	evolutionarily	conserved	genes	(genes	of	PS	1–3	

that	emerged	before	embryogenesis)	and	evolutionarily	young	genes	(genes	of	PS	4–12	

that	emerged	after	embryogenesis)	show	qualitatively	different	relative	expression	

profiles.	Figure	4	a	shows	that	high	PS	have	similar	relative	expression	profiles,	whereas	

low	PS	have	relative	expression	profiles	that	are	dissimilar	to	each	other	and	dissimilar	

to	those	of	high	PS.	Figure	4	b	shows	that	DS	2–10	have	similar	relative	expression	

profiles,	whereas	DS	1	shows	an	antagonistic	relative	expression	profile.	
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Applying	the	Kruskal-Wallis	rank-sum	test	to	the	observed	relative	expression	levels	of	

the	two	groups	of	PS	(step	17)	and	the	two	groups	of	DS	(step	18)	yields	p-values	<	0.05	

in	both	cases,	stating	that	the	observed	differences	of	the	relative	expression	levels	

between	low	and	high	PS	and	between	low	and	high	DS	are	statistically	significant	(Fig.	

4	c).	

	

Together,	this	protocol	allows	users	to	perform	phylotranscriptomic	analyses	of	

biological	processes	of	their	interest	in	a	standardized	manner.	The	intuitive	

adaptability	of	the	protocol	to	any	species	and	any	biological	process	is	achieved	by	the	

modular	structure	of	the	protocol,	Perl	script	createPSmap.pl,	and	R	packages	orthologr	

and	myTAI,	which	provide	an	open-source	implementation	of	the	protocol.	The	Perl	

script	and	both	R	packages	can	be	used	for	performing	phylotranscriptomic	analyses	in	

a	reproducible	manner.	The	documentation	of	each	function	as	well	as	the	tutorials	

included	in	the	Supplementary	Information	provide	additional	details	of	the	

functionality	provided	by	createPSmap.pl,	orthologr,	and	myTAI	so	that	this	protocol	can	

be	easily	applied	by	a	broad	set	of	users	to	numerous	of	phylotranscriptomic	studies	of	

various	biological	processes	in	the	future.	
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Figure	1.	Flow	Chart.	A	step-by-step	instruction	illustrating	the	workflow	of	the	

protocol.	
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Figure	2.	Histograms	of	phylostrata	and	divergence	strata	and	phylostratigraphic	

map.	PS	histogram	(a)	and	DS	histogram	(b)	of	A.	thaliana	genes.	The	uniform	DS	

histogram	is	due	to	the	definition	as	deciles.	c.	Phylostratigraphic	map	of	A.	thaliana.	The	

most	distant	taxonomic	category	is	PS1	(cellular	organisms)	and	the	closest	category	is	

PS12	(A.	thaliana).	

	

Figure	3.	Transcriptome	indices	of	A.	thaliana	embryogenesis.	Visualization	of	(a)	

the	TAI	profile	and	(b)	the	TDI	profile	covering	seven	stages	of	A.	thaliana	

embryogenesis.	Grey	lines	represent	the	standard	deviation	of	randomly	permuted	TAI	

or	TDI	profiles.	The	statistical	significance	of	observed	patterns	(p-values)	are	computed	

using	the	flat-line	test	(Drost	et	al.	2015).	
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Figure	4.	Relative	expression	profiles	of	A.	thaliana	embryogenesis.	Relative	

expression	profiles	of	twelve	PS	(a)	covering	seven	stages	of	A.	thaliana	embryogenesis.	

PS	are	divided	into	two	groups	to	analyze	co-expression	patterns	of	PS	before	(PS	1-3)	

and	after	(PS	4-12)	the	emergence	of	embryogenesis	in	plant	evolution.	Relative	

expression	profiles	of	ten	DS	(b)	of	the	same	stages.	DS	are	divided	into	two	groups	(DS	

1-2	versus	DS	3-10)	to	analyze	co-expression	patterns	of	DS	with	highly	negative	

(purifying)	selection	(DS	1-2)	and	more	relaxed	or	even	positive	selection	(DS	3-10).	c.	

Bar	plots	of	mean	relative	expression	levels	for	PS	and	DS	groups.	p-values	of	the	

difference	of	mean	relative	expression	levels	between	PS	groups	or	DS	groups	are	

obtained	by	a	Kruskal-Wallis	rank-sum	test.	Developmental	stages	with	significant	
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differences	of	mean	relative	expression	levels	are	marked	by	asterisks	(Drost	et	al.	

2015).	
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I. Phylostratigraphy and Divergence Stratigraphy

II. Transcriptome Indices 

III. Statistical Tests

IV. Relative Expression Levels

createPsMap.pl divergence_stratigraphy()

PlotPattern(PhyloExpressionSetExample) PlotPattern(DivergenceExpressionSetExample)

FlatLineTest() ReductiveHourglassTest() EarlyConservationTest()

TAI(PhyloExpressionSetExample) TDI(DivergenceExpressionSetExample)

REMatrix()

PlotRE() PlotBarRE()
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10.2 A transcriptomic hourglass in plant embryogenesis
The following paper entitled A transcriptomic hourglass in plant embryogenesis is
not part of the publications which comprise this cumulative dissertation. However,
its content summarizes the major findings of my co-authors and me upon which my
thesis is built. Due to this fact, I decided to include this paper as appendix to this
thesis.

• http://www.nature.com/nature/journal/v490/n7418/full/nature11394.

html

10.3 Abstract
Animal and plant development starts with a constituting phase called embryogenesis,
which evolved independently in both lineages. Comparative anatomy of vertebrate
development based on the Meckel-Serre’s law and von Baer’s laws of embryology
from the early nineteenth century—shows that embryos from various taxa appear
di�erent in early stages, converge to a similar form during mid-embryogenesis, and
again diverge in later stages. This morphogenetic series is known as the embryonic
hourglass, and its bottleneck of high conservation in mid-embryogenesis is referred
to as the phylotypic stage. Recent analyses in zebrafish and Drosophila embryos
provided convincing molecular support for the hourglass model, because during the
phylotypic stage the transcriptome was dominated by ancient genes and global gene
expression profiles were reported to be most conserved. Although extensively ex-
plored in animals, an embryonic hourglass has not been reported in plants, which
represent the second major kingdom in the tree of life that evolved embryogenesis.
Here we provide phylotranscriptomic evidence for a molecular embryonic hourglass
in Arabidopsis thaliana, using two complementary approaches. This is particularly
significant because the possible absence of an hourglass based on morphological
features in plants suggests that morphological and molecular patterns might be un-
coupled. Together with the reported developmental hourglass patterns in animals,
these findings indicate convergent evolution of the molecular hourglass and a con-
served logic of embryogenesis across kingdoms.

10.4 Documentation: Introduction to myTAI
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Introduction to the myTAI Package

2016-06-25

Installation

Users can download myTAI from CRAN :

# install myTAI 0.4.0 from CRAN
install.packages("myTAI", dependencies = TRUE)

Package Dependencies

# to perform differential gene expression analyses with myTAI
# please install the edgeR package
# install edgeR
source("http://bioconductor.org/biocLite.R")
biocLite("edgeR")

Overview of the functions implemented in myTAI

Phylotranscriptomics Measures:

• TAI() : Function to compute the Transcriptome Age Index (TAI)
• TDI() : Function to compute the Transcriptome Divergence Index (TDI)
• REMatrix() : Function to compute the relative expression profiles of all phylostrata or divergence-strata
• RE() : Function to transform mean expression levels to relative expression levels
• pTAI() : Compute the Phylostratum Contribution to the global TAI
• pTDI() : Compute the Divergence Stratum Contribution to the global TDI
• pMatrix() : Compute Partial TAI or TDI Values
• pStrata() : Compute Partial Strata Values

Visualization and Analytics Tools:

• PlotPattern() : Function to plot the TAI or TDI profiles and perform statistical tests
• PlotCorrelation() : Function to plot the correlation between phylostratum values and divergence-

stratum values
• PlotRE() : Function to plot the relative expression profiles
• PlotBarRE() : Function to plot the mean relative expression levels of phylostratum or divergence-

stratum classes as barplot
• PlotMeans() : Function to plot the mean expression profiles of phylostrata or divergence-strata
• PlotDistribution() : Function to plot the frequency distribution of genes within the corresponding

phylostratigraphic map or divergence map
• PlotContribution() : Plot the Phylostratum or Divergence Stratum Contribution to the Global

TAI/TDI Pattern
• PlotEnrichment() : Plot the Phylostratum or Divergence Stratum Enrichment of a given Gene Set
• PlotGeneSet() : Plot the Expression Profiles of a Gene Set
• PlotCategoryExpr() : Plot the Expression Levels of each Age or Divergence Category as Barplot or

Violinplot

1



• PlotGroupDiffs() : Plot the significant di�erences between gene expression distributions of PS or DS
groups

• PlotSelectedAgeDistr() : Plot the PS or DS distribution of a selected set of genes

A Statistical Framework and Test Statistics:

• FlatLineTest() : Function to perform the Flat Line Test that quantifies the statistical significance
of an observed phylotranscriptomics pattern (significant deviation from a frat line = evolutionary signal)

• ReductiveHourglassTest() : Function to perform the Reductive Hourglass Test that statistically
evaluates the existence of a phylotranscriptomic hourglass pattern (hourglass model)

• EarlyConservationTest() : Function to perform the Reductive Early Conservation Test that
statistically evaluates the existence of a monotonically increasing phylotranscriptomic pattern (early
conservation model)

• EnrichmentTest() : Phylostratum or Divergence Stratum Enrichment of a given Gene Set based on
Fisher’s Test

• bootMatrix() : Compute a Permutation Matrix for Test Statistics

All functions also include visual analytics tools to quantify the goodness of test statistics.

Di�erential Gene Expression Analysis

• DiffGenes() : Implements Popular Methods for Di�erential Gene Expression Analysis
• CollapseReplicates() : Combine Replicates in an ExpressionSet
• CombinatorialSignificance() : Compute the Statistical Significance of Each Replicate Combination
• Expressed() : Filter Expression Levels in Gene Expression Matrices (define expressed genes)
• SelectGeneSet() : Select a Subset of Genes in an ExpressionSet
• PlotReplicateQuality() : Plot the Quality of Biological Replicates
• GroupDiffs() : Quantify the significant di�erences between gene expression distributions of PS or DS

groups

Taxonomic Information Retrieval

• taxonomy() : Retrieve Taxonomic Information for any Organism of Interest

Minor Functions for Better Usibility and Additional Analyses

• MatchMap() : Match a Phylostratigraphic Map or Divergence Map with a ExpressionMatrix
• tf() : Transform Gene Expression Levels
• age.apply() : Age Category Specific apply Function
• ecScore() : Compute the Hourglass Score for the EarlyConservationTest
• geom.mean() : Geometric Mean
• harm.mean() : Harmonic Mean
• omitMatrix() : Compute TAI or TDI Profiles Omitting a Given Gene
• rhScore() : Compute the Hourglass Score for the Reductive Hourglass Test
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Perform Evolutionary Transcriptomics with R

Gene age inference is the foundation of most evolutionary transcriptomics studies. The concept behind
evolutionary transcriptomics is to combine these gene age estimates with gene expression data to quantify
the average transcriptome age within a biological process of interest.
In particular, this approach allowed the quantification of transcriptome conservation of animal and plant
embryos passing through embryogenesis by first individually estimating the gene ages of specific animal and
plant genomes and combining these gene age estimates with transcriptome data covering several stages of
embryo development (Domazet-Loso and Tautz, 2010 Nature ; Quint, Drost et al., 2012 Nature ; Drost et al.,
2015 Mol. Biol. Evol. ; Drost et al., 2016 Mol. Biol. Evol.).
The myTAI package aims to provide a standard tool for evolutionary transcriptomics studies and relies
on gene age and sequence conservation estimates as input. This approach allows researchers to study the
evolution of biological processes and to detect stages or periods of evolutionary conservation or variability.

Getting Started

As intensely discussed in the past years (Capra et al., 2013; Altenho� et al., 2016; Liebeskind et al., 2016),
gene age inference is not a trivial task and might be biased in some currently existing approaches (Liebeskind
et al., 2016).
In particular, Moyers & Zhang argue that genomic phylostratigraphy (a prominent BLAST based gene age
inference method) 1) underestimates gene age for a considerable fraction of genes, 2) is biased for rapidly
evolving proteins which are short, and/or their most conserved block of sites is small, and 3) these biases
create spurious nonuniform distributions of various gene properties among age groups, many of which cannot
be predicted a priori (Moyers & Zhang, 2015; Moyers & Zhang, 2016; Liebeskind et al., 2016). However, these
arguments are based on simulated data (and the approach has been questioned; pers. comm. with Tomislav
Domazet-Loöo) and therefore an objective benchmarking set representing the tree of life is still missing.
Based on this debate a recent study suggested to perform gene age inference by combining thirteen common
orthology inference algorithms to create gene age datasets and then characterize the error around each age-call
on a per-gene and per-algorithm basis. Using this approach systematic error was found to be a large factor
in estimating gene age, suggesting that simple consensus algorithms are not enough to give a reliable point
estimate (Liebeskind et al., 2016). However, by generating a consensus gene age and quantifying the possible
error in each workflow step, Liebeskind et al., 2016 provide a very useful database of consensus gene ages for
a variety of genomes.
Alternatively, Stephen Smith, 2016 argues that de novo gene birth/death and gene family expan-
sion/contraction studies should avoid drawing direct inferences of evolutionary relatedness from measures of
sequence similarity alone, and should instead, where possible, use more rigorous phylogeny-based methods.
For this purpose, I recommend researchers to consult the phylomedb database to retrieve phylogeny-based
gene orthology relationships and use these age estimates in combination with myTAI.
Evidently, these advancements in gene age research are very recent and gene age inference is a very young
and active field of genomic research. Therefore, many more studies need to address the robust and realistic
inference of gene age and a community standard is still missing.
Despite the ongoing debate about how to correctly infer gene age, users of myTAI can perform any gene age
inference method they find most appropriate for their biological question and pass this gene age inference
table as input to myTAI. To do so, users need to follow the following data format specifications to use their
gene age inference table with myTAI.
The rational behind gene age inference is to assign each protein coding gene of an organism of iterest with
an evolutionary age estimate which aims to quantify its potential origin within the tree of life (detectable
sequence homolog; orphan gene (see Tautz & Domazet-Loöo, 2011)). Hence, gene age inference generates a
table storing the gene age in the first column and the corresponding gene id of the organism of iterest in the
second column. This table is named phylostratigraphic map.
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Alternatively, we recently proposed an alternative method (Divergence Stratigraphy) to quantify the sequence
conservation of protein coding genes between closely related species to study the active maintenance of
transcriptome conservation patterns that were captured using a gene age inference approach (Drost et al.,
2015 Mol. Biol. Evol.). Analogous to gene age inference methods, divergence stratigraphy generates a table
storing the sequence conservation estimate in the first column and the corresponding gene id of the organism
of iterest in the second column. This table is named divergence stratigraphic map.

myTAI takes either a phylostratigraphic map or a divergence stratigraphic map and an expression dataset as
input and provides functions to quantify the average transcriptome age or average transcriptome conservation
within a biological process of interest.

The three input tables: phylostratigraphic map, divergence stratigraphic map, and the expression dataset need
to fulfill specific data formats when using myTAI.

The following code illustrates an example structure of a phylostratigraphic map and divergence stratigraphic

map:

# load myTAI
library(myTAI)

# load example data sets (stored in myTAI)
data(PhyloExpressionSetExample)
data(DivergenceExpressionSetExample)

# show an example phylostratigraphic map of Arabidopsis thaliana
head(PhyloExpressionSetExample[ , c("Phylostratum","GeneID")])

Phylostratum GeneID
1 1 at1g01040.2
2 1 at1g01050.1
3 1 at1g01070.1
4 1 at1g01080.2
5 1 at1g01090.1
6 1 at1g01120.1

In detail, a phylostratigraphic map stores the gene age assignment generated with phylostratigraphy in the
first columns and the corresponding gene id in the second column.

Analogously, a divergence stratigraphic map stores the gene age assignment generated with divergence
stratigraphy in the first column and the corresponding gene id in the second column:

# show an example structure of a Divergence Map
head(DivergenceExpressionSetExample[ , c("Divergence.stratum","GeneID")])

Divergence.stratum GeneID
1 1 at1g01050.1
2 1 at1g01120.1
3 1 at1g01140.3
4 1 at1g01170.1
5 1 at1g01230.1
6 1 at1g01540.2

Hence, myTAI relies on pre-computed phylostratigraphic maps and divergence stratigraphic maps. For
this purpose, users can consult the following resources to generate or retrieve phylostratigraphic maps and
divergence stratigraphic maps which can then be used with myTAI.
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Generate or retrieve phylostratigraphic maps

• generate a phylostratigraphic map with createPSmap.pl (implemented by Alexander Gabel)
• generate a phylostratigraphic map with phylostratigraphy.pl (implemented by Cheng et al. 2015)
• generate a phylostratigraphic map with phylo_pipeline.py (implemented by Shuqing Xu)
• generate a phylostratigraphic map with ORFanFinder
• generate a gene age map with Protein Historian
• download pre-computed and published phylostratigraphic maps
• use a gene age consensus approach to estimating gene ages for model organisms Liebeskind et al., 2016

Generate or retrieve divergence stratigraphic maps

• generate a divergence stratigraphic map with orthologr (implemented by Hajk-Georg Drost)
• generate a divergence stratigraphic map with compute_dNdS.pl (implemented by Cheng et al. 2015)
• retrieve phylogeny-based orthology and paralogy predictions from MetaPhOrs
• download pre-computed and published divergence stratigraphic maps

In general, users can construct their own gene age assignment methods and are not limited to the methods listed
above. After formatting the corresponding results to the phylostratigraphic map or divergence stratigraphic

map specification (age assignment in the first column and gene id in the second column), users can use any
function in myTAI with their custom gene age assignment table.

Expression dataset specification

The aim of any phylotranscriptomics study is to quantify transcriptome conservation in biological processes.
For this purpose, users need to provide the transcriptome dataset of their studied biological process.

In the following examples we will use a gene expression dataset covering seven stages of Arabidopsis

thaliana embryo development. This data format is defined as ExpressionMatrix in the myTAI data format
specification.

# gene expression set

GeneID Zygote Quadrant Globular Heart Torpedo Bent Mature
1 at1g01040.2 2173.6352 1911.2001 1152.5553 1291.4224 1000.2529 962.9772 1696.4274
2 at1g01050.1 1501.0141 1817.3086 1665.3089 1564.7612 1496.3207 1114.6435 1071.6555
3 at1g01070.1 1212.7927 1233.0023 939.2000 929.6195 864.2180 877.2060 894.8189
4 at1g01080.2 1016.9203 936.3837 1181.3381 1329.4734 1392.6429 1287.9746 861.2605
5 at1g01090.1 11424.5667 16778.1685 34366.6493 39775.6405 56231.5689 66980.3673 7772.5617
6 at1g01120.1 844.0414 787.5929 859.6267 931.6180 942.8453 870.2625 792.7542

The function MatchMap() allows users to join a phylostratigraphic map with an ExpressionMatrix to obtain a
joined table referred to as PhyloExpressionSet. In some cases, the GeneIDs stored in the ExpressionMatrix
and in the phylostratigraphic map do not match. This is due to GeneID mappings between di�erent databases
and annotations. To map non matching GeneIDs between databases and annotations, please consult the
Functional Annotation Vignette in the biomartr package. The biomartr package allows users to map GeneIDs
between database annotations.

After matching a phylostratigraphic map with an ExpressionMatrix using the MatchMap() function, a standard
PhyloExpressionSet is returned storing the phylostratum assignment of a given gene in the first column, the
gene id of the corresponding gene in the second column, and the entire gene expression set (time series or
treatments) starting with the third column. This format is crucial for all functions that are implemented in
the myTAI package.
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library(myTAI)

# load the example data set
data(PhyloExpressionSetExample)

# construct an example Phylostratigraphic Map
Example.PhylostratigraphicMap <- PhyloExpressionSetExample[ , 1:2]
# construct an example ExpressionMatrix
Example.ExpressionMatrix <- PhyloExpressionSetExample[ , 2:9]

# join a PhylostratigraphicMap with an ExpressionMatrix using MatchMap()
Example.PhyloExpressionSet <- MatchMap(Example.PhylostratigraphicMap,

Example.ExpressionMatrix)

# look at a standard PhyloExpressionSet
str(Example.PhyloExpressionSet)

#> �data.frame�: 25260 obs. of 9 variables:
#> $ Phylostratum: int 4 2 3 1 1 2 1 1 1 2 ...
#> $ GeneID : chr "at1g01010.1" "at1g01020.1" "at1g01030.1" "at1g01040.2" ...
#> $ Zygote : num 878 1005 819 2174 1501 ...
#> $ Quadrant : num 828 1106 772 1911 1817 ...
#> $ Globular : num 776 1038 811 1153 1665 ...
#> $ Heart : num 754 939 867 1291 1565 ...
#> $ Torpedo : num 775 962 774 1000 1496 ...
#> $ Bent : num 756 871 748 963 1115 ...
#> $ Mature : num 1000 998 786 1696 1072 ...

Analogous to a standard PhyloExpressionSet, a standard DivergenceExpressionSet is a data.frame storing
the divergence stratum assignment of a given gene in the first column, the gene id of the corresponding gene
in the second column, and the entire gene expression set (time series or treatments) starting with the third
column.

The following DivergenceExpressionSet example illustrates the standard DivergenceExpressionSet data
set format.

# head of an example standard DivergenceExpressionSet
str(DivergenceExpressionSetExample)

#> �data.frame�: 24132 obs. of 9 variables:
#> $ Divergence.stratum: int 1 1 1 1 1 1 1 1 1 1 ...
#> $ GeneID : Factor w/ 24132 levels "at1g01010.1",..: 5 12 14 17 24 53 61 88 91 97 ...
#> $ Zygote : num 1501 844 1041 1362 894 ...
#> $ Quadrant : num 1817 788 908 1042 947 ...
#> $ Globular : num 1665 860 1069 1226 933 ...
#> $ Heart : num 1565 932 968 1212 965 ...
#> $ Torpedo : num 1496 943 1055 1675 871 ...
#> $ Bent : num 1115 870 1109 2136 843 ...
#> $ Mature : num 1072 793 825 10662 795 ...

A DivergenceExpressionSet defines the joined table between a divergence stratigraphic map and a Expression

Set. A DivergenceExpressionSet can be generated analogous to a PhyloExpressionSet by joining a divergence

stratigraphic map with an ExpressionMatrix using the MatchMap() function. In some cases, the GeneIDs
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stored in the ExpressionMatrix and in the divergence stratigraphic map do not match. This is due to GeneID
mappings between di�erent databases and annotations. To map non matching GeneIDs between databases
and annotations, please consult the Functional Annotation Vignette in the biomartr package.

Each function implemented in myTAI checks internally whether or not the PhyloExpressionSet or Divergence-

ExpressionSet standard is fulfilled.

# used by all myTAI functions to check the validity of the PhyloExpressionSet standard
is.ExpressionSet(PhyloExpressionSetExample)

[1] TRUE

In case the PhyloExpressionSet standard is violated, the is.ExpressionSet() function will return FALSE
and the corresponding function within the myTAI package will return an error message.

# used a non standard PhyloExpressionSet
head(PhyloExpressionSetExample[ , 2:5], 2)

GeneID Zygote Quadrant Globular
1 at1g01040.2 2173.635 1911.200 1152.555
2 at1g01050.1 1501.014 1817.309 1665.309

is.ExpressionSet(PhyloExpressionSetExample[ , 2:5])

Error in is.ExpressionSet(PhyloExpressionSetExample[, 2:5]) :
The present input object does not fulfill the ExpressionSet standard.

The PhyloExpressionSet and DivergenceExpressionSet formats are crucial for all functions
that are implemented in the myTAI package.

Keeping these standard data formats in mind will provide users with the most important requirements to get
started with the myTAI package.

Note, that within the code of each function, the argument ExpressionSet always refers to either a Phylo-
ExpressionSet or a DivergenceExpressionSet, whereas in specialized functions some arguments are specified
as PhyloExpressionSet when they take an PhyloExpressionSet as input data set, or specified as DivergenceEx-

pressionSet when they take an DivergenceExpressionSet as input data set.

Performing a Standard Workflow for Phylotranscriptomics Analyses

In the beginning of each phylotranscriptomics study users should investigate the distribution of PS or DS
within a given PhyloExpressionSet or DivergenceExpressionSet.

For this purpose, the PlotDistribution() function was implemented:

# Display the phylostratum distribution (gene frequency distribution)
# of a PhyloExpressionSet as absolute frequency distribution
PlotDistribution( PhyloExpressionSet = PhyloExpressionSetExample,

xlab = "Phylostratum" )
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or display it as relative frequencies:

# Plot phylostrata as relative frequency distribution
PlotDistribution( PhyloExpressionSet = PhyloExpressionSetExample,

as.ratio = TRUE,
xlab = "Phylostratum")
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Another important feature to check is whether the phylostratum assignment and divergence stratum assignment
of the genes stored within the PhyloExpressionSet and DivergenceExpressionSet are correlated (linear
dependent). This is important to be able to assume the linear independence of TAI and TDI measures.
This step is useful, because the TAI and TDI measures aim to quantify di�erent signatures of evolutionary
conservation. Whereas the TAI measure aims to quantify evolutionary signatures based on gene origin along
the tree of life, the TDI measure is based on quantifying the selection pressure acting on orthologous genes
between closely related species.

For this purpose the PlotCorrelation() function was implemented:

# Visualizing the correlation between Phylostratum and Divergence-Stratum assignments
# of the intersecting set of genes that are stored within the PhyloExpressionSet
# and DivergenceExpressionSet

PlotCorrelation( PhyloExpressionSet = PhyloExpressionSetExample,
DivergenceExpressionSet = DivergenceExpressionSetExample,
method = "kendall",
linearModel = TRUE )
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In this case phylostratum and divergence stratum assignments of the intersecting set of genes that are stored
within the PhyloExpressionSet and DivergenceExpressionSet are weakly correlated, but can be assumed to
be linear independent.
Note: The PlotCorrelation() function always takes a PhyloExpressionSet as first argument and a
DivergenceExpressionSet as second argument.

Visualizing the Transcriptome Age Index and the Transcriptome Divergence Index

Mathematically, the Transcriptome Age Index (TAI) introduced by Domazet-Loso and Tautz, 2010 represents
a weighted arithmetic mean of the transcriptome age during a corresponding developmental stage s.
TAI

s

=
q

n

i=1
psiúeisqn

i=1
eis

where ps

i

denotes the phylostratum assignment of gene i and e

is

denotes the gene expression level of gene i

at developmental time point s. A lower value of TAI describes an older transcriptome age, whereas a higher
value of TAI denotes a younger transcriptome age.
Analogous to the TAI measure, the Transcriptome Divergence Index (TDI) was introduced by Quint et al.,
2012 and Drost et al., 2015 as global measure of average transcriptome selection pressure where s denotes the
corresponding developmental stage.
TDI

s

=
q

n

i=1
dsiúeisqn

i=1
eis

where ds

i

denotes the divergence stratum assignment of gene i and e

is

denotes the gene expression level of
gene i at developmental time point s. A lower value of TDI describes an more conserved transcriptome (in
terms of sequence dissimilarity), whereas a higher value of TDI denotes a more variable transcriptome.

Transcriptome Age Index Analyses

Evolutionary signatures of transcriptomes can be captured by computing transcriptome indices at di�erent
measured stages of development, combining these computed values to a transcriptome index profile across
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the measured stages, and comparing the resulting profile with a flat line. A profile not significantly deviating
from a flat line indicates the absence of significant variations of the computed transcriptome index from stage
to stage. In contrast, a profile significantly deviating from a flat line indicates the presence of significant
variations from stage to stage. We refer to any transcriptome index profile significantly deviating from a flat
line as phylotranscriptomic pattern or evolutionary signature.

Previously, we introduced three statistical tests to quantify the significance of observed TAI or TDI patterns:
Flat Line Test, Reductive Hourglass Test, and Reductive Early Conservation Test (Drost et al.,
2015).

The PlotPattern() function introduced in the following sections is the main analytics function of myTAI.
PlotPattern() allows users to visualize TAI or TDI patterns and internally performs the following statistical
tests to assess their significance.

Flat Line Test

The PlotPattern() function with option TestStatistic = "FlatLineTest", first computes the TAI (given
a PhyloExpressionSet) or the TDI (given a DivergenceExpressionSet) profile as well as their standard deviation,
and statistical significance.

# Plot the Transcriptome Age Index of a given PhyloExpressionSet
# Test Statistic : Flat Line Test (default)
PlotPattern( ExpressionSet = PhyloExpressionSetExample,

TestStatistic = "FlatLineTest",
type = "l",
lwd = 6,
xlab = "Ontogeny",
ylab = "TAI" )
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6
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15
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31
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8

p_flt = 4.89e−10
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The p-value (p_flt) above the TAI curve is returned by the FlatLineTest. As described in the documentation
of PlotPattern() (?PlotPattern or ?FlatLineTest), the FlatLineTest is the default statistical test to
quantify the statistical significance of the observed phylotranscriptomic pattern. In detail, the test quantifies
any statistically significant deviation of the phylotranscriptomic pattern from a flat line. Here, we define any
significant deviation of a phylotranscriptomic pattern from a flat line as evolutionary signature Furthermore,
we define corresponding stages of deviation as evolutionary conserved or variable (less conserved) depending
on the magnitude of TAI and corresponding p-values.

Reductive Hourglass Test

In case the observed phylotranscriptomic pattern not only significantly deviates from a flat line but also
visually resembles an hourglass shape, one can obtain a p-value quantifying the statistical significance of a
visual hourglass pattern based on the ReductiveHourglassTest (?ReductiveHourglassTest).

Since the ReductiveHourglassTest has been defined for a priori biological knowledge (Drost et al., 2015),
the modules argument within the ReductiveHourglassTest() function needs to be specified.

Three modules need to be specified: an early-module, phylotypic module (mid), and a late-module.

For this example we divide A. thaliana embryo development stored within the PhyloExpressionSetExample

into the following three modules:

• early = stages 1 - 2 (Zygote and Quadrant)
• mid = stages 3 - 5 (Globular, Heart, and Torpedo)
• late = stages 6 - 7 (Bent and Mature)

# Plot the Transcriptome Age Index of a given PhyloExpressionSet
# Test Statistic : Reductive Hourglass Test
PlotPattern( ExpressionSet = PhyloExpressionSetExample,

TestStatistic = "ReductiveHourglassTest",
modules = list(early = 1:2, mid = 3:5, late = 6:7),
type = "l",
lwd = 6,
xlab = "Ontogeny",
ylab = "TAI" )
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p_rht = 1.13e−09

The corresponding p-value p_rht now denotes the p-value returned by the ReductiveHourglassTest which
is di�erent from the p-value returned by the FlatLineTest (p_flt).

To make sure that correct modules have been selected to perform the ReductiveHourglassTest, users can
use the shaded.area argument to visualize chosen modules:

# Visualize the phylotypic period used for the Reductive Hourglass Test
PlotPattern( ExpressionSet = PhyloExpressionSetExample,

TestStatistic = "ReductiveHourglassTest",
modules = list(early = 1:2, mid = 3:5, late = 6:7),
shaded.area = TRUE,
type = "l",
lwd = 6,
xlab = "Ontogeny",
ylab = "TAI" )
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p_rht = 2.23e−08

Note that for defining a priori knowledge for the ReductiveHourglassTest using the modules argument,
modules need to start at stage 1, . . . , N and do not correspond to the column position in the PhyloExpres-

sionSet/DivergenceExpressionSet which in contrast would start at position 3, . . . N + 2.

Reductive Early Conservation Test

The third test statistic that is implemented in the myTAI package is the EarlyConservationTest.

The EarlyConservationTest tests whether an observed phylotranscriptomic pattern follows a low-high-high
pattern (monotonically increasing function) supporting the Early Conservation Model of embryogenesis.

Analogous to the ReductiveHourglassTest, the EarlyConservationTest needs a priori biological knowledge
Drost et al., 2015. So again three modules have to be specified for the EarlyConservationTest() function.

Three modules need to be specified: an early-module, phylotypic module (mid), and a late-module.

For this example we divide A. thaliana embryo development stored within the PhyloExpressionSetExample

into the following three modules:

• early = stages 1 - 2 (Zygote and Quadrant)
• mid = stages 3 - 5 (Globular, Heart, and Torpedo)
• late = stages 6 - 7 (Bent and Mature)

# Plot the Transcriptome Age Index of a given PhyloExpressionSet
# Test Statistic : Reductive Early Conservation Test
PlotPattern( ExpressionSet = PhyloExpressionSetExample,

TestStatistic = "EarlyConservationTest",
modules = list(early = 1:2, mid = 3:5, late = 6:7),
type = "l",
lwd = 6,
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xlab = "Ontogeny",
ylab = "TAI" )
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p_ect = 1

The corresponding p-value p_ect now denotes the p-value returned by the EarlyConservationTest which
is di�erent from the p-value returned by the FlatLineTest (p_flt) and ReductiveHourglassTest (p_rht).

Since the present TAI pattern of the PhyloExpressionSetExample doesn’t support the Early Conservation
Hypothesis, the p-value p_ect = 1.

Again note that for defining a priori knowledge for the EarlyConservationTest using the modules ar-
gument, modules need to start at stage 1, . . . , N and do not correspond to the column position in the
PhyloExpressionSet/DivergenceExpressionSet which in contrast would start at position 3, . . . N + 2.

To obtain the numerical TAI values, the TAI() function can be used:

# Compute the Transcriptome Age Index values of a given PhyloExpressionSet
TAI(PhyloExpressionSetExample)

Zygote Quadrant Globular Heart Torpedo Bent Mature
3.229942 3.225614 3.107135 3.116693 3.073993 3.176511 3.390334

Transcriptome Divergence Index Analyses

Analogous to the TAI computations and visualization, the TDI computations can be performed in a similar
fashion:

# Plot the Transcriptome Divergence Index of a given DivergenceExpressionSet
# Test Statistic : Flat Line Test (default)
PlotPattern( ExpressionSet = DivergenceExpressionSetExample,
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type = "l",
lwd = 6,
xlab = "Ontogeny",
ylab = "TDI" )
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p_flt = 3.04e−05

Again, for the ReductiveHourglassTest we divide A. thaliana embryo development into three modules:

• early = stages 1 - 2 (Zygote and Quadrant)
• mid = stages 3 - 5 (Globular, Heart, and Torpedo)
• late = stages 6 - 7 (Bent and Mature)

# Plot the Transcriptome Divergence Index of a given DivergenceExpressionSet
# Test Statistic : Reductive Hourglass Test
PlotPattern( ExpressionSet = DivergenceExpressionSetExample,

TestStatistic = "ReductiveHourglassTest",
modules = list(early = 1:2, mid = 3:5, late = 6:7),
type = "l",
lwd = 6,
xlab = "Ontogeny",
ylab = "TDI" )
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p_rht = 0.000324

And for the EarlyConservationTest we again divide A. thaliana embryo development into three modules:

• early = stages 1 - 2 (Zygote and Quadrant)
• mid = stages 3 - 5 (Globular, Heart, and Torpedo)
• late = stages 6 - 7 (Bent and Mature)

# Plot the Transcriptome Divergence Index of a given DivergenceExpressionSet
# Test Statistic : Reductive Early Conservation Test
PlotPattern( ExpressionSet = DivergenceExpressionSetExample,

TestStatistic = "EarlyConservationTest",
modules = list(early = 1:2, mid = 3:5, late = 6:7),
type = "l",
lwd = 6,
xlab = "Ontogeny",
ylab = "TDI" )
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To obtain the numerical TDI values for a given DivergenceExpressionSet simply run:

# Compute the Transcriptome Divergence Index values of a given DivergenceExpressionSet
TDI(DivergenceExpressionSetExample)

Zygote Quadrant Globular Heart Torpedo Bent Mature
4.532029 4.563200 4.485705 4.500868 4.466477 4.530704 4.690292

Mean Expression and Relative Expression of Single Phylostrata or Divergence Strata

TAI or TDI patterns are very useful to gain a first insight into the mean transcriptome age or mean sequence
divergence of genes being most active during the corresponding developmental stage or experiment.

To further investigate the origins of the global TAI or TDI pattern it is useful to visualize the mean gene
expression of each Phylostratum or Divergence-Stratum class.

Mean Expression Levels of a PhyloExpressionSet and DivergenceExpressionSet

Visualizing the mean gene expression of genes corresponding to the same Phylostratum or Divergence Stratum
class allows users to detect biological process specific groups of Phylostrata or Divergence Strata that are
most expressed during the underlying biological process. This might lead to correlating specific groups of
Phylostrata or Divergence Strata sharing similar evolutionary origins with common functions or functional
contributions to a specific developmental process.

# Visualizing the mean gene expression of each Phylostratum class
PlotMeans( ExpressionSet = PhyloExpressionSetExample,

Groups = list(1:12),
legendName = "PS",
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xlab = "Ontogeny",
lty = 1,
cex = 0.7,
lwd = 5 )
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Here we see that the mean gene expression of Phylostratum group: PS1-3 (genes evolved before the
establishment of embryogenesis in plants) are more expressed during A. thaliana embryogenesis than PS4-12
(genes evolved during or after the establishment of embryogenesis in plants).

In di�erent biological processes di�erent Phylostratum groups or combination of groups might resemble the
majority of expressed genes.

The PlotMeans() function takes an PhyloExpressionSet or DivergenceExpressionSet and visualizes for each
Phylostratum the mean expression levels of all genes that correspond to this Phylostratum. The Groups
argument takes a list storing the Phylostrata (classified into the same group) that shall be visualized on the
same plot.

For this example we separate groups of Phylostrata into evolutionary old Phylostrata (PS1-3) in one
plot versus evolutionary younger Phylostrata (PS4-12) into another plot:

# Visualizing the mean gene expression of each Phylostratum class
# in two separate plots (groups)
PlotMeans( ExpressionSet = PhyloExpressionSetExample,

Groups = list(group_1 = 1:3, group_2 = 4:12),
legendName = "PS",
xlab = "Ontogeny",
lty = 1,
cex = 0.7,
lwd = 5 )
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To obtain the numerical values (mean expression levels for all Phylostrata) run:

# Using the age.apply() function to compute the mean expression levels
# of all Phylostrata
age.apply( ExpressionSet = PhyloExpressionSetExample,

FUN = colMeans )

Zygote Quadrant Globular Heart Torpedo Bent Mature
1 2607.882 2579.372 2604.856 2525.704 2554.825 2622.757 2696.331
2 2597.258 2574.745 2467.679 2388.045 2296.410 2243.716 2321.709
3 2528.272 2363.159 2019.436 2099.079 2155.642 2196.875 2855.866
4 1925.320 1887.078 1771.399 1787.175 1740.823 1867.981 2358.893
5 2378.883 2368.593 2061.729 2077.087 2076.693 2564.904 3157.761
6 1658.253 1697.242 1485.401 1462.613 1492.861 1631.741 2304.683
7 1993.321 1717.659 1480.525 1590.009 1545.078 1600.264 2385.409
8 1781.653 1670.106 1452.180 1414.052 1359.376 1816.718 2364.070
9 1758.119 1764.748 1708.815 1575.727 1388.920 1687.314 2193.930
10 2414.456 2501.390 2163.810 1938.060 1770.039 1993.032 2127.015
11 1999.163 2071.456 1702.779 1710.290 1662.099 1726.865 2501.443
12 2126.189 2036.804 1896.964 1909.578 1859.485 1995.732 2387.343

Here the age.apply() function (?age.apply) takes a function as argument that itself receives a data.frame
as argument (e.g. colMeans()).

For a DivergenceExpressionSet run:

# Visualizing the mean gene expression of each Divergence-Stratum class
PlotMeans( ExpressionSet = DivergenceExpressionSetExample,

Groups = list(1:10),
legendName = "DS",
xlab = "Ontogeny",
lty = 1,
cex = 0.7,
lwd = 5 )
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To obtain the numerical values (mean expression levels for all Divergence-Strata) run:

# Using the age.apply() function to compute the mean expression levels
# of all Divergence-Strata
age.apply( ExpressionSet = DivergenceExpressionSetExample,

FUN = colMeans )

Zygote Quadrant Globular Heart Torpedo Bent Mature
1 5222.189 5230.547 5254.464 4911.494 4807.936 4654.683 4277.490
2 3146.510 3020.156 2852.072 2807.367 2845.025 3002.967 3237.315
3 2356.008 2239.344 2257.539 2272.270 2360.816 2529.276 2912.164
4 2230.350 2180.706 2050.895 2049.035 2001.043 2127.165 2608.903
5 2014.600 1994.640 1884.899 1851.554 1858.913 1920.185 2210.391
6 2096.593 2018.440 1938.765 1961.828 1905.246 2005.523 2339.767
7 1836.290 1832.815 1734.319 1719.186 1659.044 1736.141 2201.981
8 1784.470 1762.151 1635.529 1624.682 1590.489 1711.439 1983.607
9 1649.254 1659.455 1522.214 1485.560 1453.689 1584.176 1767.276
10 1660.750 1735.086 1605.275 1473.854 1398.067 1438.258 1541.633

Relative Expression Levels of a PhyloExpressionSet and DivergenceExpressionSet

Introduced by Domazet-Loso and Tautz, (2010), relative expression levels are defined as a linear transformation
of the mean expression levels (of each Phylostratum or Divergence-Stratum) into the interval [0, 1] (Quint et
al., 2012 and Drost et al., 2015). This procedure allows users to compare mean expression patterns between
Phylostrata or Divergence Strata independent from their actual magnitude. Hence, relative expression profiles
aim to correlate the mean expression profiles of groups of Phylostrata or Divergence Strata due to the
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assumption that genes or groups of genes sharing a similar expression profile might be regulated by similar
gene regulatory mechanisms or contribute to similar biological processes.

The PlotRE() function can be used (analogous to the PlotMeans() function) to visualize the relative
expression levels of a given PhyloExpressionSet and DivergenceExpressionSet:

# Visualizing the mean gene expression of each Phylostratum class
PlotRE( ExpressionSet = PhyloExpressionSetExample,

Groups = list(1:10),
legendName = "PS",
xlab = "Ontogeny",
lty = 1,
cex = 0.7,
lwd = 5 )
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# Visualizing the mean gene expression of each Divergence-Stratum class
PlotRE( ExpressionSet = DivergenceExpressionSetExample,

Groups = list(1:10),
legendName = "DS",
xlab = "Ontogeny",
lty = 1,
cex = 0.7,
lwd = 5 )

22



Ontogeny

Re
la

tiv
e 

Ex
pr

es
sio

n

Zygote Quadrant Globular Heart Torpedo Bent Mature

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

1.
4

DS1
DS2

DS3
DS4

DS5
DS6

DS7
DS8

DS9
DS10

or again by assigning Phylostratum or Divergence-Stratum groups that shall be visualized in di�erent plots:

# Visualizing the mean gene expression of each Phylostratum class
PlotRE( ExpressionSet = PhyloExpressionSetExample,

Groups = list(group_1 = 1:3, group_2 = 4:12),
legendName = "PS",
xlab = "Ontogeny",
lty = 1,
cex = 0.7,
lwd = 5 )
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The relative expression levels can be obtained using the REMatrix() function:

# Getting the relative expression levels for all Phylostrata
REMatrix(PhyloExpressionSetExample)
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Zygote Quadrant Globular Heart Torpedo Bent Mature
1 0.4816246 0.3145330 0.46389184 0.00000000 0.17067495 0.56880234 1.0000000
2 1.0000000 0.9363209 0.63348381 0.40823711 0.14904726 0.00000000 0.2206063
3 0.6083424 0.4109402 0.00000000 0.09521758 0.16284114 0.21213845 1.0000000
4 0.2985050 0.2366309 0.04946941 0.07499453 0.00000000 0.20573325 1.0000000
5 0.2893657 0.2799777 0.00000000 0.01401191 0.01365328 0.45908792 1.0000000
6 0.2323316 0.2786335 0.02706119 0.00000000 0.03592044 0.20084761 1.0000000
7 0.5666979 0.2620602 0.00000000 0.12099252 0.07133814 0.13232551 1.0000000
8 0.4203039 0.3092784 0.09237036 0.05442042 0.00000000 0.45520558 1.0000000
9 0.4586261 0.4668613 0.39738003 0.23205534 0.00000000 0.37067096 1.0000000
10 0.8811321 1.0000000 0.53841500 0.22974016 0.00000000 0.30490542 0.4881046
11 0.4015809 0.4877111 0.04846721 0.05741594 0.00000000 0.07716367 1.0000000
12 0.5052572 0.3359211 0.07100055 0.09489782 0.00000000 0.25811214 1.0000000

# Getting the relative expression levels for all Divergence-Strata
REMatrix(DivergenceExpressionSetExample)

Zygote Quadrant Globular Heart Torpedo Bent Mature
1 0.9669643 0.9755188 1.00000000 0.64894653 0.54294759 0.3860827 0.0000000
2 0.7888009 0.4949178 0.10397567 0.00000000 0.08758660 0.4549387 1.0000000
3 0.1733953 0.0000000 0.02704324 0.04893726 0.18054185 0.4309208 1.0000000
4 0.3772372 0.2955661 0.08201140 0.07895260 0.00000000 0.2074848 1.0000000
5 0.4543752 0.3987496 0.09292474 0.00000000 0.02050713 0.1912595 1.0000000
6 0.4403615 0.2605017 0.07713944 0.13021586 0.00000000 0.2307754 1.0000000
7 0.3264585 0.3200581 0.13864386 0.11077270 0.00000000 0.1420009 1.0000000
8 0.4934416 0.4366671 0.11457069 0.08697865 0.00000000 0.3076689 1.0000000
9 0.6236387 0.6561674 0.21851855 0.10163374 0.00000000 0.4161087 1.0000000
10 0.7794318 1.0000000 0.61482564 0.22487531 0.00000000 0.1192539 0.4259882

The same result could also be obtained by using the age.apply() function in combination with the RE()
function:

# Getting the relative expression levels for all Phylostrata
age.apply( ExpressionSet = PhyloExpressionSetExample,

FUN = RE )

Zygote Quadrant Globular Heart Torpedo Bent Mature
1 0.4816246 0.3145330 0.46389184 0.00000000 0.17067495 0.56880234 1.0000000
2 1.0000000 0.9363209 0.63348381 0.40823711 0.14904726 0.00000000 0.2206063
3 0.6083424 0.4109402 0.00000000 0.09521758 0.16284114 0.21213845 1.0000000
4 0.2985050 0.2366309 0.04946941 0.07499453 0.00000000 0.20573325 1.0000000
5 0.2893657 0.2799777 0.00000000 0.01401191 0.01365328 0.45908792 1.0000000
6 0.2323316 0.2786335 0.02706119 0.00000000 0.03592044 0.20084761 1.0000000
7 0.5666979 0.2620602 0.00000000 0.12099252 0.07133814 0.13232551 1.0000000
8 0.4203039 0.3092784 0.09237036 0.05442042 0.00000000 0.45520558 1.0000000
9 0.4586261 0.4668613 0.39738003 0.23205534 0.00000000 0.37067096 1.0000000
10 0.8811321 1.0000000 0.53841500 0.22974016 0.00000000 0.30490542 0.4881046
11 0.4015809 0.4877111 0.04846721 0.05741594 0.00000000 0.07716367 1.0000000
12 0.5052572 0.3359211 0.07100055 0.09489782 0.00000000 0.25811214 1.0000000

Quint et al. (2012) introduced an additional way of visualizing the di�erence of relative expression levels
between groups of Phylostrata/Divergence-Strata.
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This bar plot comparing the mean relative expression levels of one Phylostratum/Divergence-Stratum group
with all other groups can be plotted analogous to the PlotMeans() and PlotRE() functions:

# Visualizing the mean relative expression of two Phylostratum groups
PlotBarRE( ExpressionSet = PhyloExpressionSetExample,

Groups = list(group_1 = 1:3, group_2 = 4:12),
xlab = "Ontogeny",
ylab = "Mean Relative Expression",
cex = 2)
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Here the argument Groups = list(1:3, 4:12) corresponds to dividing Phylostrata 1-12 into Phylostratum
groups defined as origin before embryogenesis (group one: PS1-3) and origin during or after embryogenesis

(group two: PS4-12). A Kruskal-Wallis Rank Sum Test is then performed to test the statistical significance
of the di�erent bars that are compared. The ’*’ corresponds to a statistically significant di�erence.

Additionally the ratio between both values represented by the bars to be compared can be visualized as
function within the bar plot using the ratio = TRUE argument:

# Visualizing the mean relative expression of two Phylostratum groups
PlotBarRE( ExpressionSet = PhyloExpressionSetExample,

Groups = list(group_1 = 1:3, group_2 = 4:12),
ratio = TRUE,
xlab = "Ontogeny",
ylab = "Mean Relative Expression",
cex = 2 )
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It is also possible to compare more than two groups:

# Visualizing the mean relative expression of three Phylostratum groups
PlotBarRE( ExpressionSet = PhyloExpressionSetExample,

Groups = list(group_1 = 1:3, group_2 = 4:6, group_3 = 7:12),
wLength = 0.05,
xlab = "Ontogeny",
ylab = "Mean Relative Expression",
cex = 2 )
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For the corresponding statistically significant stages, a Posthoc test can be performed to detect the combinations
of di�ering bars that cause the global statistical significance.

Investigating the Statistical Significance of Phylotranscriptomic Patterns

Three methods have been proposed to quantify the statistical significance of the observed phylotranscriptomics
patterns (Quint et al., 2012; Drost et al., 2015).

• Flat Line Test
• Reductive Hourglass Test
• Reductive Early Conservation Test

Here, we will build the test statistic of each test step by step so that future modifications or new test statistics
can be built upon the existing methods implemented in the myTAI package.

Flat Line Test

The Flat Line Test is a permutation test quantifying the statistical significance of an observed phylotran-
scriptomic pattern. The goal is to detect any evolutionary signal within a developmental time course that
significantly deviates from a flat line.

To build the test statistic we start with a standard PhyloExpressionSet. The myTAI package provides an
example PhyloExpressionSet named PhyloExpressionSetExample:

library(myTAI)

# load an example PhyloExpressionSet stored in the myTAI package
data(PhyloExpressionSetExample)
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# look at the standardized data set format
head(PhyloExpressionSetExample, 3)

Phylostratum GeneID Zygote Quadrant Globular Heart Torpedo
1 1 at1g01040.2 2173.635 1911.200 1152.555 1291.4224 1000.253
2 1 at1g01050.1 1501.014 1817.309 1665.309 1564.7612 1496.321
3 1 at1g01070.1 1212.793 1233.002 939.200 929.6195 864.218

Bent Mature
1 962.9772 1696.4274
2 1114.6435 1071.6555
3 877.2060 894.8189

Users will observe that the first column of the PhyloExpressionSetExample stores the Phylostratum assign-
ments of the corresponding genes. The permutation test is based on random sampling of the Phylostratum
assignment of genes. The underlying assumption is that the TAI profile of correctly assigned Phylostrata is
significantly deviating from TAI profiles based on randomly assigned Phylostrata.

# TAI profile of correctly assigned Phylostrata
TAI(PhyloExpressionSetExample)

Zygote Quadrant Globular Heart Torpedo Bent Mature
3.229942 3.225614 3.107135 3.116693 3.073993 3.176511 3.390334

Visualization:

# Visualize the TAI profile of correctly assigned Phylostrata
PlotPattern( ExpressionSet = PhyloExpressionSetExample,

type = "l",
lwd = 6,
p.value = FALSE )
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#> Zygote Quadrant Globular Heart Torpedo Bent Mature
#> 3.516207 3.481292 3.489073 3.515569 3.504153 3.542093 3.528021

Zygote Quadrant Globular Heart Torpedo Bent Mature
3.543700 3.573999 3.554707 3.543376 3.582905 3.562813 3.523409

Visualization:

# Visualize the TAI profile based on randomly assigned Phylostrata
PlotPattern( ExpressionSet = randomPhyloExpressionSetExample,

type = "l",
lwd = 6,
p.value = FALSE )

29



Ontogeny

Ag
e 

In
de

x

Zygote Quadrant Globular Heart Torpedo Bent Mature

3.
41

7
3.

48
0

3.
54

3
3.

60
7

Users will observe that the visual pattern of the correctly assigned TAI profile and the randomly assigned TAI
profile di�er qualitatively.

Now we investigate the variance of the two observed patterns.

# Variance of the TAI profile based on correctly assigned Phylostrata
var(TAI(PhyloExpressionSetExample))

[1] 0.01147725

# Variance of the TAI profile based on randomly assigned Phylostrata
var(TAI(randomPhyloExpressionSetExample))

[1] 0.0004102549

We observe that the variance of the randomly assigned TAI profile is much smaller than the variance of
the correctly assigned TAI profile. Here we use the variance to quantify the flatness of a given TAI profile.
In theory the variance of a perfect flat line would be zero. So any TAI profile that is close to zero would
resemble a flat line. But how exactly are the variances of randomly assigned TAI profiles distributed? For
this purpose the bootMatrix() function was implemented.

The bootMatrix() takes an PhyloExpressionSet or DivergenceExpressionSet as input and computes N TAI
or TDI profiles based on randomly assigned Phylostrata or Divergence-Strata.

#> Zygote Quadrant Globular Heart Torpedo Bent Mature
#> 1 3.488903 3.494434 3.439236 3.446201 3.449732 3.424719 3.410703
#> 2 3.553589 3.538320 3.537404 3.559358 3.569401 3.549278 3.494447
#> 3 3.472941 3.477267 3.483564 3.507338 3.510584 3.548868 3.552674
#> 4 3.489978 3.493074 3.505159 3.501532 3.528903 3.514788 3.552641
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#> 5 3.451095 3.482781 3.482203 3.465931 3.486338 3.469059 3.416965
#> 6 3.510306 3.511145 3.529838 3.531301 3.549431 3.556543 3.508643

Zygote Quadrant Globular Heart Torpedo Bent Mature
1 3.578000 3.577732 3.552230 3.556756 3.555627 3.553580 3.510978
2 3.590339 3.564544 3.589012 3.598754 3.583721 3.597553 3.633530
3 3.615284 3.616286 3.569486 3.566816 3.575761 3.554789 3.601522
4 3.501172 3.506554 3.486261 3.491282 3.531536 3.541634 3.494997
5 3.450857 3.458339 3.447274 3.463692 3.444261 3.468433 3.497926
6 3.539454 3.543827 3.595298 3.588149 3.582898 3.588062 3.565487

Based on this booMatrix we can compute the variance of each random TAI profile.

# compute the variance of the random TAI profile for each row
variance_vector <- apply(randomTAIs, 1 , var)

# and visualize the distribution of variances
hist(variance_vector, breaks = 100)
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Now it is interesting to see where we can find the variance of the correctly assigned TAI.

# variance of the TAI profile based on correctly assigned Phylostrata
var_real <- var(TAI(PhyloExpressionSetExample))

# visualize the distribution of variances
hist( x = c(variance_vector,var_real),
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breaks = 100,
xlab = "variance",
main = "Histogram of variance_vector" )

# and plot a red line at the position where we can find the
# real variance
abline(v = var_real, lwd = 5, col = "red")
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This plot illustrates that variances based on random TAI profiles seem to have a smaller variance than the
variance based on the correct TAI profile. To obtain a p-value that now quantifies this di�erence, we need to
fit the histogram of variance_vector with a specific probability distribution.

Visually it would be possible to choose a gamma distribution to fit the histogram of variance_vector. To
validate this choice a Cullen and Frey graph provided by the fitdistrplus package can be used.

# install.packages("fitdistrplus")

# plot a Cullen and Frey graph
fitdistrplus::descdist(variance_vector)
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#> summary statistics
#> ------
#> min: 1.142992e-05 max: 0.00492798
#> median: 0.0004985414
#> mean: 0.0006854571
#> estimated sd: 0.0006217058
#> estimated skewness: 2.168862
#> estimated kurtosis: 9.670302

Based on the observation that a gamma distribution is a suitable fit for variance_vector, we can now
estimate the parameters of the gamma distribution that fits the data.

# estimate the parameters: shape and rate using �moment matching estimation�
gamma_MME <- fitdistrplus::fitdist(variance_vector,distr = "gamma", method = "mme")
# estimate shape:
shape <- gamma_MME$estimate[1]
# estimate the rate:
rate <- gamma_MME$estimate[2]

# define an expression written as function as input for the curve() function
gamma_distr <- function(x){ return(dgamma(x = x, shape = shape, rate = rate)) }

# plot the density function and the histogram of variance_vector
curve( expr = gamma_distr,

xlim = c(min(variance_vector),max(c(variance_vector,var_real))),
col = "steelblue",
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lwd = 5,
xlab = "Variances",
ylab = "Frequency" )

# plot the histogram of variance_vector
histogram <- hist(variance_vector,prob = TRUE,add = TRUE, breaks = 100)
rug(variance_vector)

# plot a red line at the position where we can find the real variance
abline(v = var_real, lwd = 5, col = "red")
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Using the gamma distribution with estimated parameters the corresponding p-value of var_real can be
computed.

# p-value of var_real
pgamma(var_real, shape = shape,rate = rate, lower.tail = FALSE)

#> [1] 3.012488e-09

Hence, the variance of the correct TAI profile significantly deviates from random TAI profiles and this allows
us to assume that the underlying TAI profile captures a real evolutionary signal.

Using the FlatLineTest() Function

This entire procedure of computing the p-value having the variance of TAI profiles as test statistic is done by
the FlatLineTest() function.
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# Perform the FlatLineTest
FlatLineTest( ExpressionSet = PhyloExpressionSetExample,

permutations = 1000 )

#> $p.value
#> [1] 1.356011e-08
#>
#> $std.dev
#> [1] 0.05508008 0.05394724 0.05399575 0.05271312 0.05142109 0.05421588 0.05633689

This function returns the p-value of the test statistic.
Additionally the FlatLineTest() function allows users to investigate the goodness of the test statistic.

# perform the FlatLineTest and investigate the goodness of the test statistic
FlatLineTest( ExpressionSet = PhyloExpressionSetExample,

permutations = 1000,
plotHistogram = TRUE )
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#> $p.value
#> [1] 4.437918e-10
#>
#> $std.dev
#> [1] 0.05397621 0.05184950 0.04970483 0.04882796 0.04801541 0.04988094 0.05481457

The plotHistogram argument specifies whether analytics plots shall be drawn to quantify the goodness of
the test statistic returned by the FlatLineTest.
The three resulting plots show:

• a Cullen and Frey graph

• a histogram of the test statistic and the corresponding gamma distribution that was fitted to the test
statistic

• a plot showing the p-values (p_flt) for 10 individual runs. Since the underlying test statistic is
generated by a permutation test, the third plot returned by FlatLineTest() shows the influence of
di�erent permutations to the corresponding p-value
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In other words, to test whether the underlying permutation of the permutation test is causing the significance
of the p-value, you can specify the runs argument within the FlatLineTest() function to perform several
independent runs. In case there exists a permutation that causes a previous significant p-value to become non-
significant, the corresponding phylotranscriptomic pattern shouldn’t be considered as statistically significant.

Reductive Hourglass Test

The Reductive Hourglass Test has been developed to statistically evaluate the existence of a phylotran-
scriptomic hourglass pattern based on TAI or TDI computations. The corresponding p-value quantifies
the probability that a given TAI or TDI pattern (or any phylotranscriptomics pattern) does not follow an
hourglass like shape. A p-value < 0.05 indicates that the corresponding phylotranscriptomics pattern does
indeed follow an hourglass (high-low-high) shape.

To build the test statistic again we start with a standard PhyloExpressionSet.

library(myTAI)

# load an example PhyloExpressionSet stored in the myTAI package
data(PhyloExpressionSetExample)

# look at the standardized data set format
head(PhyloExpressionSetExample, 3)

Phylostratum GeneID Zygote Quadrant Globular Heart Torpedo
1 1 at1g01040.2 2173.635 1911.200 1152.555 1291.4224 1000.253
2 1 at1g01050.1 1501.014 1817.309 1665.309 1564.7612 1496.321
3 1 at1g01070.1 1212.793 1233.002 939.200 929.6195 864.218

Bent Mature
1 962.9772 1696.4274
2 1114.6435 1071.6555
3 877.2060 894.8189

And again compute the TAI() profile of the PhyloExpressionSetExample.

# TAI profile of correctly assigned Phylostrata
TAI(PhyloExpressionSetExample)

Zygote Quadrant Globular Heart Torpedo Bent Mature
3.229942 3.225614 3.107135 3.116693 3.073993 3.176511 3.390334

Visualization:

# visualize the TAI profile of correctly assigned Phylostrata
PlotPattern( ExpressionSet = PhyloExpressionSetExample,

type = "l",
lwd = 6,
p.value = FALSE )
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The Reductive Hourglass Test is a permutation test based on the following test statistic.

1) A set of developmental stages is partitioned into three modules - early, mid, and late - based on prior
biological knowledge (see Drost et al., 2015 for details).

2) The mean TAI or TDI value for each of the three modules T

early

, T

mid

, and T

late

are computed.

3) The two di�erences D1 = T

early

- T

mid

and D2 = T

late

- T

mid

are calculated.

4) The minimum D

min

of D1 and D2 is computed as final test statistic of the Reductive Hourglass
Test.

In order to determine the statistical significance of an observed minimum di�erence D

min

the following
permutation test was performed. Based on the bootMatrix() D

min

is calculated from each of the permuted
TAI or TDI profiles, approximated by a Gaussian distribution with method of moments estimated parameters
returned by fitdistrplus::fitdist(), and the corresponding p-value is computed by pnorm given the
estimated parameters of the Gaussian distribution. The goodness of fit for the random vector D

min

is
statistically quantified by a Lilliefors (Kolmogorov-Smirnov) test for normality.

To perform the Reductive Hourglass Test you can use the ReductiveHourglassTest() function. Using
this function you need to divide the given phylotranscriptomic pattern into three developmental modules:

• early module
• mid module
• late module

This can be done using the modules argument: module = list(early = 1:2, mid = 3:5, late = 6:7).
In this example (PhyloExpressionSetExample) we divide the corresponding developmental process into the
three modules:
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• early module: Stages 1 - 2 = Zygote and Quadrant
• mid module: Stages 3 - 5 = Globular, Heart, and Torpedo
• late module: Stages 6 - 7 = Bent and Mature

# Perform the Reductive Hourglass Test
ReductiveHourglassTest( ExpressionSet = PhyloExpressionSetExample,

modules = list(early = 1:2, mid = 3:5, late = 6:7),
lillie.test = TRUE )

#> $p.value
#> [1] 1.240371e-08
#>
#> $std.dev
#> [1] 0.05374032 0.05284646 0.05096514 0.04926126 0.04876508 0.05049721 0.05519132
#>
#> $lillie.test
#> [1] TRUE

The corresponding output shows the p-value returned by the Reductive Hourglass Test, the standard devia-
tion of randomly permuted TAI profiles returned by bootMatrix() (apply(bootMatrix(PhyloExpressionSetExample)
, 2 , sd)) and in case the argument lillie.test = TRUE, a logical value representing the goodness of fit
statistic returned by the Lilliefors (Kolmogorov-Smirnov) test for normality. In case lillie.test is TRUE the
corresponding Lilliefors (Kolmogorov-Smirnov) test passed the goodness of fit criterion. In case lillie.test
is FALSE the corresponding goodness of fit by a normal distribution is not statistically significant.

Analogous to the plotHistogram argument that is present in the FlatLineTest() function, the
ReductiveHourglassTest() function also takes an argument plotHistogram. When plotHistogram =
TRUE, the ReductiveHourglassTest() function returns a multi-plot showing:

• A Cullen and Frey skewness-kurtosis plot. This plot illustrates which distributions seem plausible to fit
the resulting permutation vector D

min

. Here a normal distribution seems most plausible.

• A histogram of D

min

combined with the density plot is visualized. D

min

is then fitted by a normal
distribution. The corresponding parameters are estimated by moment matching estimation.

• A plot showing the p-values for N independent runs to verify that a specific p-value is biased by a
specific permutation order.

• A bar plot showing the number of cases in which the underlying goodness of fit (returned by Lilliefors
(Kolmogorov-Smirnov) test for normality) has shown to be significant (TRUE) or not significant (FALSE).
This allows to quantify the permutation bias and their implications on the goodness of fit.

# perform the Reductive Hourglass Test and plot the test statistic
ReductiveHourglassTest( ExpressionSet = PhyloExpressionSetExample,

modules = list(early = 1:2, mid = 3:5, late = 6:7),
plotHistogram = TRUE,
lillie.test = TRUE )
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#> $p.value
#> [1] 1.359878e-08
#>
#> $std.dev
#> [1] 0.05434786 0.05421480 0.05283417 0.05163244 0.05089917 0.05125313 0.05577403
#>
#> $lillie.test
#> [1] FALSE

The corresponding output shows the summary statistics of the fitted normal distribution as well as the
p-value, standard deviation, and Lilliefors (Kolmogorov-Smirnov) test result.

This example output nicely illustrates that although the Lilliefors (Kolmogorov-Smirnov) test for normality is
violated for some permutations, the Cullen and Frey graph shows that there is no better approximation than
a normal distribution (which is also supported visually by investigating the fitted frequency distribution). The
corresponding p-value returned by ReductiveHourglassTest() is significant and illustrates that the observed
phylotranscriptomic pattern of PhyloExpressionSetExample does follow the Hourglass Model assumption.
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Reductive Early Conservation Test

The Early Conservation Test has been developed to statistically evaluate the existence of a monotonically
increasing phylotranscriptomic pattern based on TAI or TDI computations. The corresponding p-value
quantifies the probability that a given TAI or TDI pattern (or any phylotranscriptomic pattern) does not follow
an early conservation like pattern. A p-value < 0.05 indicates that the corresponding phylotranscriptomics
pattern does indeed follow an early conservation (low-high-high) shape.

To build the test statistic again we start with a standard PhyloExpressionSet.

library(myTAI)

# load an example PhyloExpressionSet stored in the myTAI package
data(PhyloExpressionSetExample)

# look at the standardized data set format
head(PhyloExpressionSetExample, 3)

And again compute the TAI() profile of the PhyloExpressionSetExample.

# TAI profile of correctly assigned Phylostrata
TAI(PhyloExpressionSetExample)

Zygote Quadrant Globular Heart Torpedo Bent Mature
3.229942 3.225614 3.107135 3.116693 3.073993 3.176511 3.390334

Visualization:

# Visualize the TAI profile of correctly assigned Phylostrata
PlotPattern( ExpressionSet = PhyloExpressionSetExample,

type = "l",
lwd = 6,
p.value = FALSE )
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The reductive early conservation test is a permutation test based on the following test statistic.

1) A set of developmental stages is partitioned into three modules - early, mid, and late - based on prior
biological knowledge.

2) The mean TAI or TDI value for each of the three modules T

early

, T

mid

, and T

late

are computed.

3) The two di�erences D1 = T

mid

- T

early

and D2 = T

late

- T

early

are calculated.

4) The minimum D

min

of D1 and D2 is computed as final test statistic of the Reductive Early
Conservation Test.

In order to determine the statistical significance of an observed minimum di�erence D

min

the following
permutation test was performed. Based on the bootMatrix() D

min

is calculated from each of the permuted
TAI or TDI profiles, approximated by a Gaussian distribution with method of moments estimated parameters
returned by fitdistrplus::fitdist(), and the corresponding p-value is computed by pnorm given the
estimated parameters of the Gaussian distribution. The goodness of fit for the random vector D

min

is
statistically quantified by an Lilliefors (Kolmogorov-Smirnov) test for normality.

To perform the Reductive Early Conservation Test you can use the EarlyConservationTest() function.
Using this function you need to divide the given phylotranscriptomics pattern into three developmental
modules:

• early module
• mid module
• late module

This can be done using the modules argument: module = list(early = 1:2, mid = 3:5, late = 6:7).
In this example (PhyloExpressionSetExample) we divide the corresponding developmental process into the
three modules:
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• early module: Stages 1 - 2 = Zygote and Quadrant
• mid module: Stages 3 - 5 = Globular, Heart, and Torpedo
• late module: Stages 6 - 7 = Bent and Mature

# Perform the Reductive Early Conservation Test
EarlyConservationTest( ExpressionSet = PhyloExpressionSetExample,

modules = list(early = 1:2, mid = 3:5, late = 6:7),
lillie.test = TRUE )

#> $p.value
#> [1] 0.9999032
#>
#> $std.dev
#> [1] 0.05548875 0.05407686 0.05156524 0.05105336 0.05058059 0.05226052 0.05682250
#>
#> $lillie.test
#> [1] FALSE

Analogous to the plotHistogram argument that is present in the FlatLineTest() and ReductiveHourglassTest()
function, the EarlyConservationTest() function also takes an argument plotHistogram. When
plotHistogram = TRUE, the EarlyConservationTest() function returns a multi-plot showing:

• A Cullen and Frey skewness-kurtosis plot. This plot illustrates which distributions seem plausible to fit
the resulting permutation vector D

min

. Again a normal distribution seems most appropriate.

• A histogram of D

min

combined with the density plot is visualized. D

min

is then fitted by a normal
distribution. The corresponding parameters are estimated by moment matching estimation.

• A plot showing the p-values for N independent runs to verify that a specific p-value is biased by a
specific permutation order.

• A bar plot showing the number of cases in which the underlying goodness of fit (returned by Lilliefors
(Kolmogorov-Smirnov) test for normality) has shown to be significant (TRUE) or not significant (FALSE).
This allows to quantify the permutation bias and their implications on the goodness of fit.

# perform the Reductive Early Conservation Test and plot the test statistic
EarlyConservationTest( ExpressionSet = PhyloExpressionSetExample,

modules = list(early = 1:2, mid = 3:5, late = 6:7),
plotHistogram = TRUE,
lillie.test = TRUE )
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#> $p.value
#> [1] 0.9999331
#>
#> $std.dev
#> [1] 0.05393911 0.05235373 0.05132276 0.05013268 0.04949230 0.05283076 0.05776743
#>
#> $lillie.test
#> [1] FALSE

This example output nicely illustrates that although the Lilliefors (Kolmogorov-Smirnov) test for normality is
violated, the Cullen and Frey graph shows that there is no better approximation than a normal distribution
(which is also supported visually by investigating the fitted frequency distribution). The corresponding
p-value returned by the EarlyConservationTest() is highly non-significant and illustrates that the observed
phylotranscriptomic pattern of PhyloExpressionSetExample does not follow the Early Conservation Model
assumption.

This example shall illustrate that finding the right test statistic is a multi-step process of investigating di�erent
properties of the underlying permutation test. Although single aspects might fit or fit not corresponding
criteria, the overall impression (sum of all individual analyses) must be considered to obtain a valid p-value.
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Data Transformation

Motivated by the discussion raised by Piasecka et al., 2013, the influence of gene expression transformation
on the global phylotranscriptomic patterns does not seem negligible. Hence, di�erent transformations can
result in qualitatively di�erent TAI or TDI patterns.

Initially, the TAI and TDI formulas were defined for absolute expression levels. So using the initial TAI and
TDI formulas with transformed expression levels can result in qualitatively di�erent patterns when compared
with non-transformed expression levels, but might also belong to a di�erent class of models, since di�erent
valid expression level transformation functions result in di�erent patterns.

The purpose of the tf() function is to allow the user to study the qualitative impact of di�erent transformation
functions on the global TAI and TDI pattern, or on any subsequent phylotranscriptomic analysis.

The examples using the PhyloExpressionSetExample data set show that using common gene expression
transformation functions: log2 (Quackenbush, 2001 and 2002), sqrt (Yeung et al., 2001), boxcox, or inverse
hyperbolic sine transformation, each transformation results in qualitatively di�erent patterns. Neverthe-
less, for each resulting pattern the statistical significance can be tested using either the FlatLineTest(),
ReductiveHourglassTest(), or EarlyConservationTest() (Drost et al., 2015) to quantify the significance
of observed patterns.

The tf() function takes a standard PhyloExpressionSet or DivergenceExpressionSet and transformation
function and returns the corresponding ExpressionSet with transformed gene expression levels.

library(myTAI)

data(PhyloExpressionSetExample)

# a simple example is to transform the gene expression levels of a given PhyloExpressionSet
# using a sqrt or log2 transformation

PES.sqrt <- tf(PhyloExpressionSetExample, sqrt)

head(PES.sqrt)

Phylostratum GeneID Zygote Quadrant Globular Heart
1 1 at1g01040.2 46.62226 43.71728 33.94930 35.93637
2 1 at1g01050.1 38.74292 42.62990 40.80820 39.55706
3 1 at1g01070.1 34.82517 35.11413 30.64637 30.48966
4 1 at1g01080.2 31.88919 30.60039 34.37060 36.46195
5 1 at1g01090.1 106.88576 129.53057 185.38244 199.43831
6 1 at1g01120.1 29.05239 28.06409 29.31939 30.52242

Torpedo Bent Mature
1 31.62678 31.03187 41.18771
2 38.68230 33.38628 32.73615
3 29.39759 29.61766 29.91352
4 37.31813 35.88836 29.34724
5 237.13197 258.80566 88.16213
6 30.70579 29.50021 28.15589

PES.log2 <- tf(PhyloExpressionSetExample, log2)

head(PES.log2)

Phylostratum GeneID Zygote Quadrant Globular Heart
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1 1 at1g01040.2 11.085894 10.900263 10.170620 10.334745
2 1 at1g01050.1 10.551722 10.827588 10.701574 10.611727
3 1 at1g01070.1 10.244117 10.267960 9.875289 9.860497
4 1 at1g01080.2 9.989991 9.870956 10.206206 10.376639
5 1 at1g01090.1 13.479852 14.034298 15.068722 15.279598
6 1 at1g01120.1 9.721170 9.621306 9.747567 9.863595

Torpedo Bent Mature
1 9.966149 9.911358 10.728284
2 10.547204 10.122367 10.065625
3 9.755251 9.776772 9.805452
4 10.443610 10.330888 9.750306
5 15.779093 16.031451 12.924174
6 9.880877 9.765307 9.630730

# in case a given PhyloExpressionSet already stores gene expression levels
# that are log2 transformed and need to be re-transformed to absolute
# expression levels, to perform subsequent phylotranscriptomics analyses
# (that are defined for absolute expression levels),
# one can re-transform a PhyloExpressionSet like this:

PES.absolute <- tf(PES.log2 , function(x) 2^x)

# which should be the same as PhyloExpressionSetExample :
head(PhyloExpressionSetExample)
head(PES.absolute)

> head(PhyloExpressionSetExample)
Phylostratum GeneID Zygote Quadrant Globular Heart

1 1 at1g01040.2 2173.6352 1911.2001 1152.5553 1291.4224
2 1 at1g01050.1 1501.0141 1817.3086 1665.3089 1564.7612
3 1 at1g01070.1 1212.7927 1233.0023 939.2000 929.6195
4 1 at1g01080.2 1016.9203 936.3837 1181.3381 1329.4734
5 1 at1g01090.1 11424.5667 16778.1685 34366.6493 39775.6405
6 1 at1g01120.1 844.0414 787.5929 859.6267 931.6180

Torpedo Bent Mature
1 1000.2529 962.9772 1696.4274
2 1496.3207 1114.6435 1071.6555
3 864.2180 877.2060 894.8189
4 1392.6429 1287.9746 861.2605
5 56231.5689 66980.3673 7772.5617
6 942.8453 870.2625 792.7542

> head(PES.absolute)
Phylostratum GeneID Zygote Quadrant Globular Heart

1 1 at1g01040.2 2173.6352 1911.2001 1152.5553 1291.4224
2 1 at1g01050.1 1501.0141 1817.3086 1665.3089 1564.7612
3 1 at1g01070.1 1212.7927 1233.0023 939.2000 929.6195
4 1 at1g01080.2 1016.9203 936.3837 1181.3381 1329.4734
5 1 at1g01090.1 11424.5667 16778.1685 34366.6493 39775.6405
6 1 at1g01120.1 844.0414 787.5929 859.6267 931.6180

Torpedo Bent Mature
1 1000.2529 962.9772 1696.4274
2 1496.3207 1114.6435 1071.6555
3 864.2180 877.2060 894.8189
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4 1392.6429 1287.9746 861.2605
5 56231.5689 66980.3673 7772.5617
6 942.8453 870.2625 792.7542

When transforming the ExpressionMatrix of the PhyloExpressionSetExample using di�erent transforma-
tion functions, the resulting phylotranscriptomic patterns qualitatively di�er:

log2 transformation (TAI)

data(PhyloExpressionSetExample)

# plotting the TAI using log2 transformed expression levels
# and performing the Flat Line Test to obtain the p-value
PlotPattern( ExpressionSet = tf(PhyloExpressionSetExample, log2),

type = "l",
lwd = 5,
TestStatistic = "FlatLineTest",
xlab = "Ontogeny",
ylab = "TAI" )

Ontogeny

TA
I

Zygote Quadrant Globular Heart Torpedo Bent Mature

3.
47

6
3.

48
3

3.
49

1
3.

49
8

p_flt = 1.36e−24

sqrt transformation (TAI)

data(PhyloExpressionSetExample)

# plotting the TAI using sqrt transformed expression levels
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# and performing the Flat Line Test to obtain the p-value
PlotPattern( ExpressionSet = tf(PhyloExpressionSetExample, sqrt),

TestStatistic = "FlatLineTest",
type = "l",
lwd = 5,
xlab = "Ontogeny",
ylab = "TAI" )

Ontogeny

TA
I

Zygote Quadrant Globular Heart Torpedo Bent Mature

3.
31

9
3.

35
8

3.
39

6
3.

43
5

p_flt = 9.61e−13

For the PhyloExpressionSetExample all transformations result in a significant phylotranscriptomics pattern
deviating from a flat line.

Nevertheless, it is not clear which transformation is the most appropriate one since the original TAI and TDI
measure were defined for absolute expression levels.

The same accounts for TDI profiles:

log2 transformation (TDI)

data(DivergenceExpressionSetExample)

# plotting the TDI using log2 transformed expression levels
# and performing the Flat Line Test to obtain the p-value
PlotPattern( ExpressionSet = tf(DivergenceExpressionSetExample, log2),

TestStatistic = "FlatLineTest",
type = "l",
lwd = 5,
xlab = "Ontogeny",
ylab = "TDI" )
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Ontogeny

TD
I

Zygote Quadrant Globular Heart Torpedo Bent Mature

5.
42

4
5.

43
0

5.
43

7
5.

44
3

p_flt = 4.43e−20

sqrt transformation (TDI)

data(DivergenceExpressionSetExample)

# plotting the TDI using sqrt transformed expression levels
# and performing the Flat Line Test to obtain the p-value
PlotPattern( ExpressionSet = tf(DivergenceExpressionSetExample, sqrt),

TestStatistic = "FlatLineTest",
type = "l",
lwd = 5,
xlab = "Ontogeny",
ylab = "TDI" )
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Ontogeny
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I
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1
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1
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17
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5.

20
0

p_flt = 9.6e−07

As a result, observed patterns should always be quantified using statistical tests (for ex. FlatLineTest(),
ReductiveHourglassTest(), and EarlyConservationTest()). In case the observed pattern is significant,
qualitative di�erences of the observed patterns based on di�erent data transformations must be investigated
in more detail, since most data transformations are known to cause di�erent e�ects on a measure that isn’t
robust against data transformations.

Expression Data Analysis with myTAI

In the Introduction we introduced and discussed how phylotranscriptomics can be applied to capture
evolutionary signatures in (developmental) transcriptomes. Furthermore, in the Enrichment Analyses
section we provide a use case to correlate specific groups or sets of genes with their predicted evolutionary
origin. Here, we aim to combine previously introduced techniques with classic gene expression analyses to
detect possible functional causes for the observed transcriptome conservation.

In other words, phylotranscriptomics allows us to detect stages or periods of evolutionary conservation and is
able to predict the evolutionary origin of process or trait specific genes based on enrichment analyses. By
combining evolutionary enrichment analyses with the functional annotation of process or trait specific genes
(see Functional Annotation and Phylotranscriptomics for details) the detection of evolutionary signals can be
correlated with functional processes. Then, performing gene expression analyses on corresponding process or
trait specific genes allows users to detect potential causes of stage/period specific evolutionary transcriptome
conservation.

The following sections introduce main gene expression data analysis techniques implemented in myTAI:

• Detection of Di�erentially Expressed Genes (DEGs)

• Fold-Change

• Welch t-test
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• Wilcoxon Rank Sum Test (Mann-Whitney U test)

• Negative Binomial (Exact Tests)

• Collapsing Replicate Samples

• Filter for Expressed Genes

• Compute the Statistical Significance of Each Replicate Combination

Detection of Di�erenentially Expressed Genes (DEGs)

A variety of methods have been published to detect di�erentially expressed genes. Some methods are based
on non-statistical quantification of expression di�erences (e.g. fold-change and log-fold-change), but most
methods are based on statistical tests to quantify the significance of di�erences in gene expression between
samples. These statistical methods can furthermore be divided into two methodological categories: parametric
tests and non-parametric tests. The DiffGenes() function available in myTAI implements the most popular
and useful methods to detect di�erentially expressed genes. In the literature, di�erent methods have been
introduced and discussed for microarray technologies versus RNA-Seq technologies.

In this section we will introduce all methods implemented in DiffGenes() using small examples and will
furthermore, discuss published advantages and disadvantages of each method and each mRNA quantification
technology.

Note that when using DiffGenes() it is assumed that your input dataset has been normalized
before passing it to DiffGenes(). For RNA-Seq data DiffGenes() assumes that the libraries
have been normalized to have the same size, i.e., to have the same expected column sum under
the null hypothesis (or the lib.size argument in DiffGenes() is specified accordingly).

Fold-Changes

A fold change in gene expression is simply the ratio of the gene expression level of one sample against a
second sample: ei1

ei2
, where e

i1 is the expression level of gene i in sample one and e

i2 is the expression level of
gene i in sample two. In case replicate expression levels are present for each sample the ratio of means of the
corresponding replicates is computed: ēi1

ēi2
, where ē

i1 is the mean of replicate expression levels of gene i in
sample one and ē

i2 is the mean of replicate expression levels of gene i in sample two.

• Advantages: Given a small number of replicate values the statistical evaluation of di�erentially
expressed genes might be biased (depending on the statistical test chosen) by underlying sample
distributions which are not fulfilled or because a small number of replicate values is not su�cient enough
to perform non-parametric tests. Here, fold-changes provide a simple way to quantify gene expression
di�erences between samples by n-fold enrichment. In our opinion, although the process of choosing
a threshold for defining genes as being di�erentially expressed or not based on fold-change values is
purely subjective and relies on common sense, in some cases this procedure will be more suitable than
defining di�erentially expressed genes based on p-values obtained from a test statistic with violated test
assumptions.

• Disadvantages: If used appropriately, statistical tests not only systematically quantify the significance
of the observed gene-by-gene di�erences of expression, but furthermore, accounts the variance of replicate
expression levels when comparing the mean di�erence of replicate expression levels between samples.
Hence, the gene specific variance between replicates is also quantified by the p-value returned by the
su�cient test statistic which is not quantified by a simple fold-change measure.
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Example: Fold-Change

For the following example we assume that PhyloExpressionSetExample[1:5,1:8] stores 5 genes and 3
developmental stages with 2 replicate expression levels per stage.

data("PhyloExpressionSetExample")

# Detection of DEGs using the fold-change measure
DEGs <- DiffGenes(ExpressionSet = PhyloExpressionSetExample[1:5,1:8],

nrep = 2,
method = "foldchange",
stage.names = c("S1","S2","S3"))

head(DEGs)

Phylostratum GeneID S1->S2 S1->S3 S2->S1 S2->S3 S3->S1 S3->S2
1 1 at1g01040.2 1.6713881 2.0806706 0.5983051 1.2448758 0.4806143 0.8032930
2 1 at1g01050.1 1.0273222 1.2709185 0.9734045 1.2371177 0.7868325 0.8083305
3 1 at1g01070.1 1.3087379 1.4044799 0.7640949 1.0731560 0.7120073 0.9318310
4 1 at1g01080.2 0.7779572 0.7286769 1.2854177 0.9366542 1.3723503 1.0676299
5 1 at1g01090.1 0.3803866 0.2288961 2.6289042 0.6017460 4.3687939 1.6618307

The resulting output shows all combinations of fold-changes between samples (developmental stages). Here,
S1->S2 denotes that the fold-change was computed for expression levels of stage S1 against stage S2.

Example: Log-Fold-Change

When selecting method = "log-foldchange" it is assumed that the input ExpressionSet
stores log2 expression levels. Here, we transform absolute expression levels stored in
PhyloExpressionSetExample to log2 expression levels using the tf() function before log-fold-
changes are computed.

data("PhyloExpressionSetExample")

# Detection of DEGs using the logfold-change measure
log.DEGs <- DiffGenes(ExpressionSet = tf(PhyloExpressionSetExample[1:5,1:8],log2),

nrep = 2,
method = "log-foldchange",
stage.names = c("S1","S2","S3"))

head(log.DEGs)

Phylostratum GeneID S1->S2 S1->S3 S2->S1 S2->S3 S3->S1 S3->S2
1 1 at1g01040.2 0.74104679 1.0570486 -0.74104679 0.31600182 -1.0570486 -0.31600182
2 1 at1g01050.1 0.03888868 0.3458715 -0.03888868 0.30698280 -0.3458715 -0.30698280
3 1 at1g01070.1 0.38817621 0.4900360 -0.38817621 0.10185975 -0.4900360 -0.10185975
4 1 at1g01080.2 -0.36223724 -0.4566488 0.36223724 -0.09441158 0.4566488 0.09441158
5 1 at1g01090.1 -1.39446159 -2.1272350 1.39446159 -0.73277345 2.1272350 0.73277345

The resulting output stores all combinations of log fold-changes between samples (developmental stages).
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Welch t-test

The Welch t-test is a parametric test to statistically quantify the di�erence of sample means in cases where
the assumption of homogeneity of variance (equal variances in the two populations) is violated (Boslaugh,
2013). The Welch t-test is a su�cient parameter test for small sample sizes and thus, has been used to
detect di�erentially expressed genes based on p-values returned by the test statistic (Hahne et al., 2008).

In detail, the test statistic is computed as follows:

t = x̄1≠x̄2Ò
s2

1
n1

+
s2

2
n2

where x̄1 and x̄2 are sample means, s

2
1 and s

2
2 are the sample variances, and n1 and n2 are the sample sizes.

The degrees of freedom for Welch’s t-test are then computed as follows:

df =
!

s2
1

n1
+ s2

2
n2

"2

s4
1

n2
1(n1≠1) +

s4
2

n2
2(n2≠1)

To perform a su�cient Welch t-test the following assumptions about the input data need to be fulfilled to
test whether two samples come from populations with equal means:

Assumptions about input data

• independent samples
• continuous data
• (approximate) normality

Nevertheless, although in most cases log2 expression levels are used to perform the Welch t-test assuming
that expression levels are log-normal distributed which approximates a normal distribution in infinity, in most
cases the small number of replicates is not su�cient enough to fulfill the (approximate) normality assumption
of the Welch t-test.

Due to this fact, non-parametric, sampling based, or generalized linear model based methods have been
proposed to quantify p-values of di�erential expression. Nevertheless, the DiffGenes() function implements
the Welch t-test for the detection of di�erentially expressed genes, allowing users to compare the results
with more recent DEG detection methods/methodologies also implemented in DiffGenes().

• Advantages:

• DEG detection based on statistical quantification

• Parametric test resulting in a strong test statistic

• Can handle small sample sizes

• Disadvantages:

• Test assumptions must be fulfilled to return su�cient p-values

• Can hardly assure normality with very sample sizes of n = 3, 4, 5, .. (replicates)

• Pairwise comparisons between di�erent stages or experiments
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Example: Welch t-test

Performing Welch t-test with DiffGenes() can be done by specifying method = "t.test". Internally
DiffGenes() performs a two sided Welch t-test. This means that the Welch t-test quantifies only whether
or not a gene is significantly di�erentially expressed, but not the direction of enrichment (over-expressed or
under-expressed).

The PhyloExpressionSetExample we use in the following example stores absolute expression levels. In
case your ExpressionSet also stores absolute expression levels (which is likely due to the ExpressionSet
standard for Phylotranscriptomics analyses), you can use the tf() function implemented in myTAI to transform
absolute expression levels to log2 expression levels before performing DiffGenes() with a Welch t-test, e.g.
tf(PhyloExpressionSetExample[1:5,1:8],log2). In general, using log2 transformed expression levels
as input ExpressionSet of DiffGenes() allows us to (at least) assume that samples (replicate expression
levels) used to perform the Welch t-test are log-normal distributed and therefore, somewhat approximate
normal distributed.

Please notice however, that RNA-Seq data can include count values of 0. So when transforming
absolute counts to log2 counts infinity values of log2(0) = -Inf will be produced and therefore,
p-value computations will not be possible. To avoid this case you could either remove RNA-Seq
count values of 0 from the input dataset using the Expressed() function (see section Filter for Ex-

pressed Genes), e.g. pass tf(Expressed(PhyloExpressionSetExample[1:5,1:8], cut.off = 1),log2)
as ExpressionSet argument to DiffGenes() or shift all count values by a constant value, e.g. pass
tf(PhyloExpressionSetExample[1:5,1:8], function(x) log2(x + 1)) as ExpressionSet argument to
DiffGenes().

Internally, DiffGenes() will also check for 0 values in input data and will automatically shift all expression
levels by +1 in case 0 values are included.

data("PhyloExpressionSetExample")

# Detection of DEGs using the p-value returned by a Welch t-test
ttest.DEGs <- DiffGenes(ExpressionSet = tf(PhyloExpressionSetExample[1:5,1:8],log2),

nrep = 2,
method = "t.test",
stage.names = c("S1","S2","S3"))

# look at the results
ttest.DEGs

Phylostratum GeneID S1<->S2 S1<->S3 S2<->S3
1 1 at1g01040.2 0.027832572 0.04020203 0.13481563
2 1 at1g01050.1 0.852379466 0.31471871 0.36326955
3 1 at1g01070.1 0.003200692 0.00113536 0.02236621
4 1 at1g01080.2 0.086426813 0.03092924 0.45999438
5 1 at1g01090.1 0.090387087 0.04638872 0.04978092

The resulting data.frame stores the p-values of stage-wise comparisons for each gene. To adjust p-values for
multiple testing of stage-wise comparisons you can specify the p.adjust.method argument with one of the
p-value adjustment methods implemented in DiffGenes().

In detail, correcting for multiple testing allows to appropriately choose selection cut-o�s for p-values fulfilling
the di�erential expression criteria. Hahne et al., 2008 (p. 87) give a nice example of correcting for multiple
testing to determine appropriate selection cut-o�s.

Please consult the documentation of ?p.adjust to see which p-value adjustment methods are implemented
in DiffGenes().
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Please also consult these reviews (Biostatistics Handbook, Gelman et al., 2008, and Slides) to decide whether
or not to apply p-value adjustment to your own dataset.

data("PhyloExpressionSetExample")

# Detection of DEGs using the p-value returned by a Welch t-test
# and furthermore, adjust p-values for multiple comparison
# using the Benjamini & Hochberg (1995) method: method = "BH"
ttest.DEGs.p_adjust <-

DiffGenes(
ExpressionSet = tf(PhyloExpressionSetExample[1:5, 1:8], log2),
nrep = 2,
method = "t.test",
p.adjust.method = "BH",
stage.names = c("S1", "S2", "S3")
)

ttest.DEGs.p_adjust

Phylostratum GeneID S1<->S2 S1<->S3 S2<->S3
1 1 at1g01040.2 0.06958143 0.0579859 0.2246927
2 1 at1g01050.1 0.85237947 0.3147187 0.4540869
3 1 at1g01070.1 0.01600346 0.0056768 0.1118311
4 1 at1g01080.2 0.11298386 0.0579859 0.4599944
5 1 at1g01090.1 0.11298386 0.0579859 0.1244523

The resulting p-value adjusted data.frame can be used to filter for di�erentially expressed genes. Here,
specifying the arguments: comparison, alpha, and filter.method in DiffGenes() allows users to obtain
only significant di�erentially expressed genes.

# Detection of DEGs using the p-value returned by a Welch t-test
# and furthermore, adjust p-values for multiple comparison
# using the Benjamini & Hochberg (1995) method: method = "BH"
# and filter for significantly differentially expressed genes (alpha = 0.05)
ttest.DEGs.p_adjust.filtered <-

DiffGenes(
ExpressionSet = tf(PhyloExpressionSetExample[1:10 , 1:8], log2),
nrep = 2,
method = "t.test",
p.adjust.method = "BH",
stage.names = c("S1", "S2", "S3"),
comparison = "above",
alpha = 0.05,
filter.method = "n-set",
n = 1
)

# look at the genes fulfilling the filter criteria
ttest.DEGs.p_adjust.filtered

Phylostratum GeneID S1<->S2 S1<->S3 S2<->S3
3 1 at1g01070.1 0.03200692 0.0113536 0.2192432
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In this example, only 1 out of 10 genes fulfills the p-value criteria (alpha = 0.05) in at least one stage
comparison.

Rank top p-values

Finally, users can rank genes in increasing p-value order for each stage comparison by typing:

ttest.DEGs.p_adjust <-
DiffGenes(
ExpressionSet = tf(PhyloExpressionSetExample[1:500, 1:8], log2),
nrep = 2,
method = "t.test",
p.adjust.method = "BH",
stage.names = c("S1", "S2", "S3")
)

head(ttest.DEGs.p_adjust[order(ttest.DEGs.p_adjust[, "S1<->S2"], decreasing = FALSE) , 1:3])

Phylostratum GeneID S1<->S2
54 1 at1g02400.1 0.151388
119 1 at1g03870.1 0.151388
137 1 at1g04380.1 0.151388
289 1 at1g08110.4 0.151388
383 1 at1g10360.1 0.151388
413 1 at1g11040.1 0.151388

Here the line ttest.DEGs.p_adjust[order(ttest.DEGs.p_adjust[ , "S1<->S2"], decreasing =
FALSE) , 1:3] will sort p-values of stage comparison "S1<->S2" in increasing order.

Wilcoxon-Mann-Whitney test (Mann-Whitney U test)

The Wilcoxon-Mann-Whitney test is a nonparametric test to quantify the shift in empirical distribution
parameters. Nonparametric tests are useful when sample populations do not meet the test assumptions of
parametric tests.

data("PhyloExpressionSetExample")

# Detection of DEGs using the p-value returned by a Wilcoxon-Mann-Whitney test
Wilcox.DEGs <- DiffGenes(ExpressionSet = PhyloExpressionSetExample[1:5,1:8],

nrep = 2,
method = "wilcox.test",
stage.names = c("S1","S2","S3"))

# look at the results
Wilcox.DEGs

Phylostratum GeneID S1<->S2 S1<->S3 S2<->S3
1 1 at1g01040.2 0.3333333 0.3333333 0.3333333
2 1 at1g01050.1 1.0000000 0.3333333 0.3333333
3 1 at1g01070.1 0.3333333 0.3333333 0.3333333
4 1 at1g01080.2 0.3333333 0.3333333 0.6666667
5 1 at1g01090.1 0.3333333 0.3333333 0.3333333
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Again, users can adjust p-values by specifying the p.adjust.method argument.

data("PhyloExpressionSetExample")

# Detection of DEGs using the p-value returned by a Wilcoxon-Mann-Whitney test
# and furthermore, adjust p-values for multiple comparison
# using the Benjamini & Hochberg (1995) method: method = "BH"
# and filter for significantly differentially expressed genes (alpha = 0.05)
Wilcox.DEGs.adj <- DiffGenes(ExpressionSet = PhyloExpressionSetExample[1:5,1:8],

nrep = 2,
method = "wilcox.test",
stage.names = c("S1","S2","S3"),
p.adjust.method = "BH")

# look at the results
Wilcox.DEGs.adj

Phylostratum GeneID S1<->S2 S1<->S3 S2<->S3
1 1 at1g01040.2 0.4166667 0.3333333 0.4166667
2 1 at1g01050.1 1.0000000 0.3333333 0.4166667
3 1 at1g01070.1 0.4166667 0.3333333 0.4166667
4 1 at1g01080.2 0.4166667 0.3333333 0.6666667
5 1 at1g01090.1 0.4166667 0.3333333 0.4166667

Negative Binomial (Exact Tests)

Exact Tests for Di�erences between two groups of negative-binomial counts implemented in DiffGenes() are
based on the edgeR function exactTest(). Please consult the edgeR Users Guide for mathematical details.

Install edgeR Package

The detection of DEGs using negative binomial models is based on the powerful implementations provided by
the edgeR package. Hence, before using the negative binomial models in DiffGenes() users need to install
the edgeR package.

# install edgeR
source("http://bioconductor.org/biocLite.R")
biocLite("edgeR")

Double Tail Method

This method computes two-sided p-values by doubling the smaller tail probability (see ?exactTestByDeviance
for details). To compute p-values for stagewise comparisons based on negative binomial models, the
DiffGenes() argument method = "doubletail", the number of replicates per stage nrep, and lib.size
quantifying the library size to equalize sample library sizes by quantile-to-quantile normalization need to be
specified (see also ?equalizeLibSizes).

data("PhyloExpressionSetExample")

# Detection of DEGs using the p-value returned by the Double Tail Method
DoubleTail.DEGs <- DiffGenes(ExpressionSet = PhyloExpressionSetExample[1:5,1:8],
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nrep = 2,
method = "doubletail",
lib.size = 1000,
stage.names = c("S1","S2","S3"))

# look at the results
DoubleTail.DEGs

Phylostratum GeneID S1<->S2 S1<->S3 S2<->S3
1 1 at1g01040.2 0.26026604 0.110233012 0.6304508
2 1 at1g01050.1 0.95314428 0.598102712 0.6398757
3 1 at1g01070.1 0.55461941 0.456018563 0.8774231
4 1 at1g01080.2 0.58130025 0.487028051 0.8860005
5 1 at1g01090.1 0.03615134 0.001773543 0.2645537

Again, users can adjust p-values by specifying the p.adjust.method argument.

data("PhyloExpressionSetExample")

# Detection of DEGs using the p-value returned by the Double Tail Method
# and furthermore, adjust p-values for multiple comparison
# using the Benjamini & Hochberg (1995) method: method = "BH"
# and filter for significantly differentially expressed genes (alpha = 0.05)
DoubleTail.DEGs.adj <- DiffGenes(ExpressionSet = PhyloExpressionSetExample[1:5,1:8],

nrep = 2,
method = "doubletail",
lib.size = 1000,
stage.names = c("S1","S2","S3"),
p.adjust.method = "BH")

# look at the results
DoubleTail.DEGs.adj

Phylostratum GeneID S1<->S2 S1<->S3 S2<->S3
1 1 at1g01040.2 0.6506651 0.275582530 0.8860005
2 1 at1g01050.1 0.9531443 0.598102712 0.8860005
3 1 at1g01070.1 0.7266253 0.598102712 0.8860005
4 1 at1g01080.2 0.7266253 0.598102712 0.8860005
5 1 at1g01090.1 0.1807567 0.008867715 0.8860005

Small-P Method

This method performs the method of small probabilities as proposed by Robinson and Smyth (2008) (see
exactTestBySmallP for details). To compute p-values for stagewise comparisons based on negative binomial
models, the DiffGenes() argument method = "doubletail", the number of replicates per stage nrep, and
lib.size quantifying the library size to equalize sample library sizes by quantile-to-quantile normalization
need to be specified (see also ?equalizeLibSizes).

data("PhyloExpressionSetExample")

# Detection of DEGs using the p-value returned by the Small-P Method
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SmallP.DEGs <- DiffGenes(ExpressionSet = PhyloExpressionSetExample[1:5,1:8],
nrep = 2,
method = "smallp",
lib.size = 1000,
stage.names = c("S1","S2","S3"))

# look at the results
SmallP.DEGs

Phylostratum GeneID S1<->S2 S1<->S3 S2<->S3
1 1 at1g01040.2 0.26026604 0.110233012 0.6304508
2 1 at1g01050.1 0.95314428 0.598102712 0.6398757
3 1 at1g01070.1 0.55461941 0.456018563 0.8774231
4 1 at1g01080.2 0.58130025 0.487028051 0.8860005
5 1 at1g01090.1 0.03615134 0.001773543 0.2645537

Again, users can adjust p-values by specifying the p.adjust.method argument.

data("PhyloExpressionSetExample")

# Detection of DEGs using the p-value returned by the Small-P Method
# and furthermore, adjust p-values for multiple comparison
# using the Benjamini & Hochberg (1995) method: method = "BH"
# and filter for significantly differentially expressed genes (alpha = 0.05)
SmallP.DEGs.adj <- DiffGenes(ExpressionSet = PhyloExpressionSetExample[1:5,1:8],

nrep = 2,
method = "smallp",
lib.size = 1000,
stage.names = c("S1","S2","S3"),
p.adjust.method = "BH")

# look at the results
SmallP.DEGs.adj

Phylostratum GeneID S1<->S2 S1<->S3 S2<->S3
1 1 at1g01040.2 0.6506651 0.275582530 0.8860005
2 1 at1g01050.1 0.9531443 0.598102712 0.8860005
3 1 at1g01070.1 0.7266253 0.598102712 0.8860005
4 1 at1g01080.2 0.7266253 0.598102712 0.8860005
5 1 at1g01090.1 0.1807567 0.008867715 0.8860005

Deviance Method

This method uses the deviance goodness of fit statistics to define the rejection region, and is therefore
equivalent to a conditional likelihood ratio test (see exactTestByDeviance for details). To compute p-
values for stagewise comparisons based on negative binomial models, the DiffGenes() argument method =
"doubletail", the number of replicates per stage nrep, and lib.size quantifying the library size to equalize
sample library sizes by quantile-to-quantile normalization need to be specified (see also ?equalizeLibSizes).

data("PhyloExpressionSetExample")
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# Detection of DEGs using the p-value returned by the Deviance
Deviance.DEGs <- DiffGenes(ExpressionSet = PhyloExpressionSetExample[1:5,1:8],

nrep = 2,
method = "deviance",
lib.size = 1000,
stage.names = c("S1","S2","S3"))

# look at the results
Deviance.DEGs

Phylostratum GeneID S1<->S2 S1<->S3 S2<->S3
1 1 at1g01040.2 0.26026604 0.110233012 0.6304508
2 1 at1g01050.1 0.95314428 0.598102712 0.6398757
3 1 at1g01070.1 0.55461941 0.456018563 0.8774231
4 1 at1g01080.2 0.58130025 0.487028051 0.8860005
5 1 at1g01090.1 0.03615134 0.001773543 0.2645537

Again, users can adjust p-values by specifying the p.adjust.method argument.

data("PhyloExpressionSetExample")

# Detection of DEGs using the p-value returned by the Deviance Method
# and furthermore, adjust p-values for multiple comparison
# using the Benjamini & Hochberg (1995) method: method = "BH"
# and filter for significantly differentially expressed genes (alpha = 0.05)
Deviance.DEGs.adj <- DiffGenes(ExpressionSet = PhyloExpressionSetExample[1:5,1:8],

nrep = 2,
method = "deviance",
lib.size = 1000,
stage.names = c("S1","S2","S3"),
p.adjust.method = "BH")

# look at the results
Deviance.DEGs.adj

Phylostratum GeneID S1<->S2 S1<->S3 S2<->S3
1 1 at1g01040.2 0.6506651 0.275582530 0.8860005
2 1 at1g01050.1 0.9531443 0.598102712 0.8860005
3 1 at1g01070.1 0.7266253 0.598102712 0.8860005
4 1 at1g01080.2 0.7266253 0.598102712 0.8860005
5 1 at1g01090.1 0.1807567 0.008867715 0.8860005

Replicate Quality Check

Users can also perform replicate quality checks to quantify the variability between replicate expression levels
fo each stage separately.

The PlotReplicateQuality() is designed to perform customized replicate variablity checks for any
ExpressionSet object storing replicates.
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data(PhyloExpressionSetExample)

# visualize the sd() between replicates
PlotReplicateQuality(ExpressionSet = PhyloExpressionSetExample[ , 1:8],

nrep = 2,
legend.pos = "topright",
ylim = c(0,0.2),
lwd = 6)

The resulting plot visualizes the kernel density estimates for the variance (log variance) between replicates.
Each curve represents the density function for the replicate variation within one stage or experiment. In this
case the variance between replicates of Stage 1 to Stage 3 (each including 2 replicates) seem to deviate
from each other allowing the conclusion that each stage has a di�erent expression level variability between
replicates.

The FUN argument implemented in PlotReplicateQuality() allows users to furthermore, specify customized
criteria quantifying replicate varibility. Please notice that the function specified in FUN will be performed
separately on each gene and stage.

In the following example the median bbsolute deviation function mad() is used to quantify replicate variability.

data(PhyloExpressionSetExample)

# visualize the mad() between replicates
PlotReplicateQuality(ExpressionSet = PhyloExpressionSetExample[ , 1:8],

nrep = 2,
FUN = mad,
legend.pos = "topright",
ylim = c(0,0.015),
lwd = 6)

In general, users are not limited to specific functions implememnted in R. By writing customized functions such
as FUN = function(x) return((x - mean(x))ˆ2) users can define their own criteria to quantify replicate
variability and can then apply this criteria to PlotReplicateQuality() by specifying the FUN argument.

Collapsing Replicate Samples

After performing di�erential gene expression analyses, replicate expression levels are collapsed to a sin-
gle stage specific expression level. For this purpose, myTAI implements the CollapseReplicates() func-
tion, allowing users to combine replicate expression levels stored in a standard PhyloExpressionSet or
DivergenceExpressionSet object to a stage specific expression level using a specified window function.

library(myTAI)

# load example data
data(PhyloExpressionSetExample)

# genrate an example PhyloExpressionSet with replicates
ExampleReplicateExpressionSet <- PhyloExpressionSetExample[ ,1:8]

# rename stages
names(ExampleReplicateExpressionSet)[3:8] <- c("Stage_1_Repl_1","Stage_1_Repl_2",

"Stage_2_Repl_1","Stage_2_Repl_2",
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"Stage_3_Repl_1","Stage_3_Repl_2")
# have a look at the example dataset
head(ExampleReplicateExpressionSet, 5)

Phylostratum GeneID Stage_1_Repl_1 Stage_1_Repl_2 Stage_2_Repl_1
1 1 at1g01040.2 2173.635 1911.2001 1152.555
2 1 at1g01050.1 1501.014 1817.3086 1665.309
3 1 at1g01070.1 1212.793 1233.0023 939.200
4 1 at1g01080.2 1016.920 936.3837 1181.338
5 1 at1g01090.1 11424.567 16778.1685 34366.649

Now, assume that this example PhyloExpressionSet stores three developmental stages and 2 biological
replicates for each developmental stage. Of course, we could now compute and visualize the TAI profile by
typing:

# visualize the TAI profile over 3 stages of development
# and 2 replicates per stage
PlotPattern(ExpressionSet = ExampleReplicateExpressionSet,

type = "l",
lwd = 6)

Usually, one would expect that variations in replicate values are smaller than variations between developmental
stages. In this example however, we constructed replicate values that vary larger than expression levels
between developmental stages. For many applications it might be useful to visualize TAI/TDI values of
replicates as well, but normally replicate values are collapsed to one gene and stage specific value after
di�erential gene expression analyses and replicate quality control have been performed.

The following example illustrates how to collapse replicates with CollapseReplicates():

# combine the expression levels of the 2 replicates (const) per stage
# using geom.mean as window function and rename new stages to: "S1","S2","S3"
CollapssedPhyloExpressionSet <- CollapseReplicates(

ExpressionSet = ExampleReplicateExpressionSet,
nrep = 2,
FUN = geom.mean,
stage.names = c("S1","S2","S3"))

# have a look at the collpased PhyloExpressionSet
head(CollapssedPhyloExpressionSet)

Phylostratum GeneID S1 S2 S3
1 1 at1g01040.2 2038.1982 1220.0147 981.4381
2 1 at1g01050.1 1651.6070 1614.2524 1291.4582
3 1 at1g01070.1 1222.8557 934.3975 870.6878
4 1 at1g01080.2 975.8215 1253.2189 1339.2866
5 1 at1g01090.1 13844.9740 36972.3612 61371.0937
6 1 at1g01120.1 815.3288 894.8987 905.8272

The nrep argument specifies either a constant number of replicates per stage or a numeric vector storing
variable numbers of replicates for each developmental stage. In our example, each developmental stage had a
constant (equal) number of replicates per developmental stage (nrep = 2). In case a variable stage specific
number of replicates is present, one could specify nrep = c(2,3,2) defining the case that developmental
stage 1 stores 2 replicates, stage 2 stores 3 replicates, and stage 3 again, stores 2 replicates.
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The argument FUN specifies the window function to collapse replicate expression levels to a single stage
specific value. In this example, we chose the geom.mean() (geometric mean) function implemented in myTAI,
because our example PhyloExpressionSet stores absolute expression levels. Notice that the mathematical
equivalent of performing arithmetic mean (mean()) computations on log expression levels is to perform the
geometric mean (geom.mean()) on absolute expression levels.

The stage.names argument then specifies the new names of collapsed stages.

Filter for Expressed Genes

After di�erential gene expression analyses and replicate aggregation have been performed, some studies filter
gene expression levels in RNA-Seq count tables or microarray expression matrices for non-expressed or outlier
genes. For example, in most studies performing RNA-Seq experiments FPKM/RPKM values < 1 are remove
from the processed (final) count table.

For this purpose myTAI implements the Expressed() function to filter (remove) expression levels in RNA-Seq
count tables or microarray expression matrices which do not pass a defined expression threshold.

The Expressed() function takes a standard PhyloExpressionSet or DivergenceExpressionSet object
storing a RNA-Seq count table (CT) or microarray gene expression matrix and removes genes from this count
table or gene expression matrix that have an expression level below a defined cut.off value.

Expressed() allows users to choose from several gene extraction methods (see ?Expressed for details):

• const: all genes that have at least one stage that undercuts or exceeds the expression cut.off will be
excluded from the ExpressionSet. Hence, for a 7 stage ExpressionSet genes passing the expression
level cut.off in 6 stages will be retained in the ExpressionSet.

• min-set: genes passing the expression level cut.off in ceiling(n/2) stages will be retained in the
ExpressionSet, where n is the number of stages in the ExpressionSet.

• n-set: genes passing the expression level cut.off in n stages will be retained in the ExpressionSet.
Here, the argument n is defining the number of stages for which the threshold criteria should be fulfilled.

# check number of genes in PhyloExpressionSetExample
nrow(PhyloExpressionSetExample)
#> [1] 25260

# remove genes that have an expression level below 8000
# in at least one developmental stage
FilterConst <- Expressed(ExpressionSet = PhyloExpressionSetExample,

cut.off = 8000,
comparison = "below",
method = "const")

nrow(FilterConst) # check number of retained genes
#> [1] 449

Users will observe that only 449 out of 25260 genes in PhyloExpressionSetExample have an absolute
expression level above 8000 when omitting genes using method = �const�. The argument comparison
specifies whether genes having expression levels below, above, or below AND above (both) the cut.off value
should be removed from the dataset.

The following comparison methods can be selected:

• comparison = "below": define genes as not expressed which undercut the cut-off threshold.
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• comparison = "above": define genes as outliers which exceed the cut-off threshold.
• comparison = "both": remove genes fulfilling the comparison = "below" AND comparison =

"above" criteria.

# again: check number of genes in PhyloExpressionSetExample
nrow(PhyloExpressionSetExample)
#> [1] 25260

# remove genes that have an expression level above 12000
# in at least one developmental stage (outlier removal)
FilterConst.above <- Expressed(ExpressionSet = PhyloExpressionSetExample,

cut.off = 12000,
comparison = "above",
method = "const")

nrow(FilterConst.above) # check number of retained genes
#> [1] 23547

For this example 25260 - 23547 = 1713 have been classified as outliers (expression levels above 12000) and
were removed from the dataset.

# again: check number of genes in PhyloExpressionSetExample
nrow(PhyloExpressionSetExample)
#> [1] 25260

# remove genes that have an expression level below 8000 AND above 12000
# in at least one developmental stage (non-expressed genes AND outlier removal)
FilterConst.both <- Expressed(ExpressionSet = PhyloExpressionSetExample,

cut.off = c(8000,12000),
comparison = "both",
method = "const")

nrow(FilterConst.both) # check number of retained genes
#> [1] 2

When selecting comparison = �both�, the cut.off argument receives 2 threshold values: the below cut.off
as first element and the above cut.off as second element. In this case cut.off = c(8000,12000). Here,
only 2 genes fulfill these criteria.

Analogously, users can specify the number of stages that should fulfill the threshold criteria using the n-set
method.

# remove genes that have an expression level below 8000
# in at least 5 developmental stages (in this case: n = 2 stages fulfilling the criteria)
FilterNSet <- Expressed(ExpressionSet = PhyloExpressionSetExample,

cut.off = 8000,
method = "n-set",
comparison = "below",
n = 2)

nrow(FilterMinSet) # check number of retained genes
#> [1] 20

Here, 20 genes are fulfilling these criteria.
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Compute the Statistical Significance of Each Replicate Combination

In some cases (high variability of replicates) it might be useful to verify that there is no sequence of replicates
(for all possible combination of replicates) that results in a non-significant TAI or TDI pattern, when the
initial pattern with combined replicates was shown to be significant.

The CombinatorialSignificance() function implemented in myTAI allows users to compute the p-values
quantifying the statistical significance of the underlying pattern for all combinations of replicates.

A small Example:

Assume a PhyloExpressionSet stores 3 developmental stages with 3 replicates measured for each stage.
The 9 replicates in total are denoted as: 1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.1, 3.2, 3.3. Now the function computes the
statistical significance of each pattern derived by the corresponding combination of replicates, e.g.

• 1.1, 2.1, 3.1 : p-value for combination 1

• 1.1, 2.2, 3.1 : p-value for combination 2

• 1.1, 2.3, 3.1 : p-value for combination 3

• 1.2, 2.1, 3.1 : p-value for combination 4

• 1.2, 2.1, 3.1 : p-value for combination 5

• 1.2, 2.1, 3.1 : p-value for combination 6

• 1.3, 2.1, 3.1 : p-value for combination 7

• 1.3, 2.2, 3.1 : p-value for combination 8

• 1.3, 2.3, 3.1 : p-value for combination 9

• . . .

This procedure yields 27 p-values for the 33 (nm) replicate combinations, where n denotes the number of
developmental stages and m denotes the number of replicates per stage.

Note that in case users have a large amount of stages/experiments and a large amount of replicates the
computation time will increase by n

m. For 11 stages and 4 replicates, 411 = 4194304 p-values have to be
computed. Each p-value computation itself is based on a permutation test running with 1, 000, 10, 000, ... or
more permutations. Be aware that this might take some time.

The p-value vector returned by this function can then be used to plot the p-values to see whether an critical
value – is exceeded or not (e.g. – = 0.05).

# load a standard PhyloExpressionSet
data(PhyloExpressionSetExample)

# we assume that the PhyloExpressionSetExample
# consists of 3 developmental stages
# and 2 replicates for stage 1, 3 replicates for stage 2,
# and 2 replicates for stage 3
# FOR REAL ANALYSES PLEASE USE: permutations = 1000 or 10000
# BUT NOTE THAT THIS TAKES MUCH MORE COMPUTATION TIME
p.vector <- CombinatorialSignificance(ExpressionSet = PhyloExpressionSetExample,

replicates = c(2,3,2),
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TestStatistic = "FlatLineTest",
permutations = 100,
parallel = FALSE)

[1] 2.436296e-03 2.288593e-02 1.608399e-03 1.185615e-02 1.835306e-06 1.077012e-05
[7] 2.025515e-07 5.148342e-07 1.654885e-07 6.251145e-06 9.265520e-10 1.047479e-06

Users will observe that none of the replicate combinations resulted in p-values > 0.05 and thus we can assume
that the phylotranscriptomic pattern computed based on collapsed replicates is not biased by insignificant
replicate combinations.

any(p.vector > 0.05)
#> FALSE

CombinatorialSignificance() can perform all significance tests introduced in the Introduction.

Furthermore, the parallel argument allows users to perform significance computations in parallel on a
multicore machine. This will speed up p-value computations for a large number of combinations.

Performing Phylostratum and Divergence Stratum Enrichment Analyses

Phylostratum and Divergence Stratum enrichment analyses have been performed by several studies to
correlate organ or metabolic pathway evolution with the origin of organ or pathway specific genes (Sestak
and Domazet-Loso, 2015).

In detail, Phylostratum and Divergence Stratum enrichment analyses can be performed analogously to
Gene Ontology and Kegg enrichment analyses to study the enrichment of evolutionary age or sequence
divergence in a set of selected genes against the entire genome/transcriptome. In case specific age categories
are significantly over- or underrepresented in the selected gene set, assumptions or potential correlations
between the evolutionary origin of a particular organ or metabolic pathway can be implied.

In this vignette we will use the data set published by Sestak and Domazet-Loso, 2015 to demonstrate how to
perform enrichment analyses using myTAI.

Enrichment Analyses using PlotEnrichment()

The PlotEnrichment() function implemented in myTAI computes and visualizes the significance of enriched
(over- or underrepresented) Phylostrata or Divergence Strata within an input set of process/tissue specific
genes. In detail this function takes the Phylostratum or Divergence Stratum distribution of all genes stored
in the input ExpressionSet as background set and the Phylostratum or Divergence Stratum distribution
of the specific gene set and performs a Fisher’s exact test for each Phylostratum or Divergence Stratum to
quantify the statistical significance of over- or under-represented Phylostrata or Divergence Strata within
the set of selected genes. In other words, the frequency distribution of Phylostrata or Divergence Strata
in the complete sample is compared with the frequency distribution of Phylostrata or Divergence Strata
in the set of selected genes and over- or under-representation is visualized by log-odds (or odds), where a
log-odd of zero means that both frequency distributions are equal (see also Sestak and Domazet-Loso, 2015).

Example Data Set Retrieval

Before using the PlotEnrichment() function, we need to download the example data set from Sestak and
Domazet-Loso, 2015.

Download the Phylostratigraphic Map of D. rerio:
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# download the Phylostratigraphic Map of Danio rerio
# from Sestak and Domazet-Loso, 2015
download.file(url = "http://mbe.oxfordjournals.org/

content/suppl/2014/11/17/msu319.DC1/TableS3-2.xlsx",
destfile = "MBE_2015a_Drerio_PhyloMap.xlsx")

Read the *.xlsx file storing the Phylostratigraphic Map of D. rerio and format it for the use with myTAI:

# install the readxl package
install.packages("readxl")

# load package readxl
library(readxl)

# read the excel file
DrerioPhyloMap.MBEa <-

read_excel("MBE_2015a_Drerio_PhyloMap.xlsx",
sheet = 1,
skip = 4)

# format Phylostratigraphic Map for use with myTAI
Drerio.PhyloMap <- DrerioPhyloMap.MBEa[ , 1:2]

# have a look at the final format
head(Drerio.PhyloMap)

Phylostrata ZFIN_ID
1 1 ZDB-GENE-000208-13
2 1 ZDB-GENE-000208-17
3 1 ZDB-GENE-000208-18
4 1 ZDB-GENE-000208-23
5 1 ZDB-GENE-000209-3
6 1 ZDB-GENE-000209-4

Now, Drerio.PhyloMap stores the Phylostratigraphic Map of D. rerio which is used as background set to
perform enrichment analyses with PlotEnrichment().

Enrichment Analyses

Now, the PlotEnrichment() function visualizes the over- and underrepresented Phylostrata of brain specific
genes when compared with the total number of genes stored in the Phylostratigraphic Map of D. rerio.

# read expression data (organ specific genes) from Sestak and Domazet-Loso, 2015
Drerio.OrganSpecificExpression <- read_excel("MBE_2015a_Drerio_PhyloMap.xlsx", sheet = 2, skip = 3)

# select only brain specific genes
Drerio.Brain.Genes <- unique(na.omit(Drerio.OrganSpecificExpression[ , "brain"]))

# visualize enriched Phylostrata of genes annotated as brain specific
PlotEnrichment(Drerio.PhyloMap,

test.set = Drerio.Brain.Genes,
measure = "log-foldchange",
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use.only.map = TRUE,
legendName = "PS")

Here, the first argument is either a standard ExpressionSet object (in case use.only.map = FALSE: default)
or a Phylostratigraphic Map or Divergence Map (in case use.only.map = TRUE; see Introduction for
details). The second argument test.set specifies the gene ids also stored in the corresponding ExpressionSet
or Phylostratigraphic Map/ Divergence Map for which enrichment shall be quantified and visualized.

To visualize the odds or log-odds of over- or underrepresented genes within the test.set the following
procedure is performed:

• N

ij

denotes the number of genes in group j and deriving from PS i, with i = 1, .., n and where j = 1
denotes the background set and j = 2 denotes the test.set

• N

i.

denotes the total number of genes within PS i

• N

.j

denotes the total number of genes within group j

• N

..

is the total number of genes within all groups j and all PS i

• f

ij

= N

ij

/ N

..

and g

ij

= f

ij

/ f

.j

denote relative frequencies between groups

• f

i.

denotes the between group sum of f

ij

The result is the fold-change value (odds; measure = "foldchange") denoted as C2 = g

i2/f

i.

which is visu-
alized above and below zero or the log fold-change value (log-odds; measure = "log-foldchange"), where
log2(C) = log2(g

i2) - log2(f
i.

) which is visualized symmetrically above and below zero by PlotEnrichment().
Analogously, C1 = g

i1/f

i.

but is not visualized by this function.

Internally, PlotEnrichment() performs a Fisher’s exact test for each Phylostratum or Divergence
Stratum separately, to quantify the significance of over- or under-representation of corresponding
Phylostrata or Divergence Strata within the test.set when compared with the entire ExpressionSet.
PlotEnrichment() visualizes significantly enriched (over- or underrepresented) Phylostrata or Divergence
Strata with asterisks ’*’.

Notation:

• ’*’ = P-Value Æ 0.05
• ’**’ = P-Value Æ 0.005
• ’***’ = P-Value Æ 0.0005

Users will notice that when performing the PlotEnrichment() function, the p-values and the enrichment
matrix (storing C1 and C2) will be returned.

PlotEnrichment(Drerio.PhyloMap,
test.set = Drerio.Brain.Genes,
measure = "log-foldchange",
use.only.map = TRUE,
legendName = "PS")

$p.values
PS1 PS2 PS3 PS4 PS5 PS6

8.283490e-01 8.362880e-05 6.778981e-02 1.373816e-02 7.946309e-13 6.017041e-01
PS7 PS8 PS9 PS10 PS11 PS12

2.185021e-03 2.281194e-03 8.943147e-01 5.699612e-01 4.717058e-02 9.367759e-01
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PS13 PS14
3.929949e-03 1.593834e-05

$enrichment.matrix
BG_Set Test_Set

PS1 -0.001132832 0.007668216
PS2 0.023733936 -0.172380714
PS3 -0.040879607 0.250587496
PS4 -0.048920465 0.294399729
PS5 -0.114888949 0.603817643
PS6 0.008678915 -0.060350168
PS7 -0.062948352 0.367240944
PS8 0.115630474 -1.206210187
PS9 -0.007353969 0.048964218
PS10 -0.031971192 0.200141519
PS11 0.039742253 -0.303363314
PS12 -0.002418079 0.016311853
PS13 0.101449988 -0.984621732
PS14 0.098211044 -0.938724783

In case users are only interested in the p-values of the Fisher test and the enrichment matrix without
illustrating the bar plot, they can specify the plot.bars = FALSE argument to only retrieve the numeric
results.

# specify plot.bars = FALSE to retrieve only numeric results
EnrichmentResult <- PlotEnrichment(Drerio.PhyloMap,

test.set = Drerio.Brain.Genes,
measure = "log-foldchange",
use.only.map = TRUE,
legendName = "PS",
plot.bars = FALSE)

# access p-values quantifying the enrichment for each Phylostratum
EnrichmentResult$p.values

PS1 PS2 PS3 PS4 PS5 PS6
8.283490e-01 8.362880e-05 6.778981e-02 1.373816e-02 7.946309e-13 6.017041e-01

PS7 PS8 PS9 PS10 PS11 PS12
2.185021e-03 2.281194e-03 8.943147e-01 5.699612e-01 4.717058e-02 9.367759e-01

PS13 PS14
3.929949e-03 1.593834e-05

# access enrichment matrix storing C_1 and C_2
EnrichmentResult$enrichment.matrix

BG_Set Test_Set
PS1 -0.001132832 0.007668216
PS2 0.023733936 -0.172380714
PS3 -0.040879607 0.250587496
PS4 -0.048920465 0.294399729
PS5 -0.114888949 0.603817643
PS6 0.008678915 -0.060350168
PS7 -0.062948352 0.367240944
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PS8 0.115630474 -1.206210187
PS9 -0.007353969 0.048964218
PS10 -0.031971192 0.200141519
PS11 0.039742253 -0.303363314
PS12 -0.002418079 0.016311853
PS13 0.101449988 -0.984621732
PS14 0.098211044 -0.938724783

Defining the Background Set

The Fisher test which is performed inside PlotEnrichment() assumes that all genes stored in the input
ExpressionSet or Phylostratigraphic Map/Divergence Map are used to define the background set for
constructing the test statistic. However, since in most cases the test.set is an subset of the input
ExpressionSet or Phylostratigraphic Map/Divergence Map one could also specify the complete.bg
argument to remove all test.set genes from the background set when performing the Fisher test and
visualization.
The following two examples allow users to compare the results when retaining all genes as background set
compared with the option to remove test.set genes from the background set.

# complete.bg = TRUE (default) -> retain test.set genes in background set
PlotEnrichment(Drerio.PhyloMap,

test.set = Drerio.Brain.Genes,
measure = "log-foldchange",
complete.bg = TRUE,
use.only.map = TRUE,
legendName = "PS")

# complete.bg = FALSE -> remove test.set genes from background set
PlotEnrichment(Drerio.PhyloMap,

test.set = Drerio.Brain.Genes,
measure = "log-foldchange",
complete.bg = FALSE,
use.only.map = TRUE,
legendName = "PS")

Users will notice that although some p-values change, the qualitative result did not change. In border line
cases however, the results might influence whether or not some Phylostrata or Divergence Strata are
denoted as significantly enriched or not. So always be aware of the interpretation when retaining or removing
the test.set from the background set, because both options are valid and have advantages and disadvantages
and depend on a valid interpretation.

Interpretation of Enrichment Results

For the D. rerio brain genes example you can see that PS4, PS5, and PS7 are significantly over-represented
in the set of brain specific genes.

PlotEnrichment(Drerio.PhyloMap,
test.set = Drerio.Brain.Genes,
measure = "foldchange",
complete.bg = TRUE,
use.only.map = TRUE,
legendName = "PS")
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Again, we retrieve the D. rerio specific taxonomy represented by PS1-14 using the taxonomy() funtion (see
Introduction and Taxonomy for details).

# retrieve the taxonomy of D. rerio
taxonomy(organism = "Danio rerio")

id name rank
1 cellular organisms no rank 131567
2 Eukaryota superkingdom 2759
3 Opisthokonta no rank 33154
4 Metazoa kingdom 33208
5 Eumetazoa no rank 6072
6 Bilateria no rank 33213
7 Deuterostomia no rank 33511
8 Chordata phylum 7711
9 Craniata subphylum 89593
10 Vertebrata no rank 7742
11 Gnathostomata no rank 7776
12 Teleostomi no rank 117570
13 Euteleostomi no rank 117571
14 Actinopterygii superclass 7898
15 Actinopteri class 186623
16 Neopterygii subclass 41665
17 Teleostei infraclass 32443
18 Osteoglossocephalai no rank 1489341
19 Clupeocephala no rank 186625
20 Otomorpha no rank 186634
21 Ostariophysi no rank 32519
22 Otophysa no rank 186626
23 Cypriniphysae superorder 186627
24 Cypriniformes order 7952
25 Cyprinoidea superfamily 30727
26 Cyprinidae family 7953
27 Danio genus 7954
28 Danio rerio species 7955

Sestak and Domazet-Loso, 2015 collapsed these 28 taxonomic nodes into 14 taxonomic nodes (see Figure
2 in Sestak and Domazet-Loso, 2015) and labelled them as phylostrata 1 to phylostrata 14, where PS1
represents cellular organisms and PS14 represents D. rerio specific genes. Based on the phylostratum
categorization of Sestak and Domazet-Loso, 2015, PS4 represents Holozoa (= Metazoa + allies), PS5
represents Metazoa, and PS7 represents Bilateria.
Now, the over-representation results of brain specific genes returned by PlotEnrichment() provide evidence,
that brain specific genes might indeed have originated during the emergence of the nervous system at the
metazoan-eumetazoan transition leading to the interpretation that the vertebrate brain has a step wise
adaptive history where most of its extant organization was already present in the chordate ancestor as argued
by Sestak and Domazet-Loso, 2015.
This example shall illustrate how the PlotEnrichment() function can be used to trace the evolutionary
origin of tissue or process specific genes by investigating their age enrichment.
In case users have an ExpressionSet storing the Phylostratigraphic Map of D. rerio as well as an expression
set, they can furthermore use the PlotGeneSet() function implemented in myTAI to visualize the expression
levels of brain specific genes which have been shown to be significantly enriched in Metazoa specific phylostrata.
Example:
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# the best parameter setting to visualize this plot:
# png("DrerioBrainSpecificGeneExpression.png",700,400)
PlotGeneSet(ExpressionSet = DrerioPhyloExpressionSet,

gene.set = Drerio.Brain.Genes,
plot.legend = FALSE,
type = "l",
lty = 1,
lwd = 4,
xlab = "Ontogeny",
ylab = "Expression Level")

# dev.off()

Here DrerioPhyloExpressionSet denotes a hypothetical ExpressionSet of D. rerio development.

Additionally, the SelectGeneSet() function allows users to obtain the ExpresisonSet subset of selected
genes (gene.set) for subsequent analyses.

# select the ExpressionSet subset of Brain specific genes
Brain.PhyloExpressionSet <- SelectGeneSet( ExpressionSet = DrerioPhyloExpressionSet,

gene.set = Drerio.Brain.Genes )

head(Brain.PhyloExpressionSet)

Adjust P-values for Multiple Comparisons

In case a large number of Phylostrata or Divergence Strata is included in the input ExpressionSet, p-
values returned by PlotEnrichment() should be adjusted for multiple comparisons. For this purpose
PlotEnrichment() includes the argument p.adjust.method. Here, all methods implemented in ?p.adjust
can be specified:

# adjust p-values for multiple comparisons with Benjamini & Hochberg (1995)
PlotEnrichment(Drerio.PhyloMap,

test.set = Drerio.Brain.Genes,
measure = "log-foldchange",
complete.bg = FALSE,
use.only.map = TRUE,
legendName = "PS",
p.adjust.method = "BH")

Please consult these reviews (Biostatistics Handbook, Gelman et al., 2008, and Slides) to decide whether or
not to apply p-value adjustment to your own dataset.

Combine Functional Annotation with Enrichment Analyses

The greatest advantage of Phylostratum and Divergence Stratum enrichment analyses can be unfolded when
it is based on the functional annotation of the test.set. The Functional Annotation and Phylotranscriptomics
vignettes of our biomartr package provide detailed tutorials on how to retrieve functional annotation for a
subset of genes. Categorizing genes into common functional groups or processes via biomartr will then allow
users to search for genes deriving from enriched Phylostrata or Divergence Strata. The Introduction
vignette illustrated how Phylostrata or Divergence Strata can be linked with the origin of evolutionary
events. This correlation between the predicted origin of genes (Phylostratigraphic Map) or its current state
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of selection between closely related species (Divergence Map) and their functional annotation furthermore
allows users to detect signals of potential evolutionary origins of specific biological functions, processes, or
tissues and their active maintenance between closely related species.

Investigating Age or Divergence Category Specific Expression Level Distribu-
tions

Gene expression levels are a fundamental aspect of phylotranscriptomics studies. In detail, phylotranscriptomic
measures aim to quantify the expression intensity of genes deriving from common age or divergence categories
to detect stages of evolutionary constraints. Hence, the gene expression distribution of age or divergence
categories as well as their di�erences within and between stages or categories allow us to investigate the age
(PS) or divergence (DS) category specific contribution to the corresponding transcriptome.

For this purpose, the PlotCategoryExpr() aims to visualize the expression level distribution of each
phylostratum during each time point or experiment as barplot, dot plot, or violin plot enabling users to
quantify the age (PS) or divergence (DS) category specific contribution to the corresponding transcriptome.

This way of visualizing the gene expression distribution of each age (PS) or divergence (DS) category during all
developmental stages or experiments allows users to detect specific age or divergence categories contributing
significant levels of gene expression to the underlying biological process (transcriptome).

library(myTAI)

data(PhyloExpressionSetExample)

# category-centered visualization of PS specific expression level distributions (log-scale)
PlotCategoryExpr(ExpressionSet = PhyloExpressionSetExample,

legendName = "PS",
test.stat = TRUE,
type = "category-centered",
distr.type = "boxplot",
log.expr = TRUE)

#> Zygote Quadrant Globular Heart Torpedo Bent Mature
#> category-centered "***" "***" "***" "***" "***" "***" "***"
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The resulting boxplot illustrates the log expression levels of each phylostratum during each developmental
stage. Additionally, a Kruskal-Wallis Rank Sum Test as well as a Benjamini & Hochberg p-value adjustment
for multiple comparisons is performed (test.stat = TRUE) to statistically quantify the di�erences between
expression levels of di�erent age or divergence categories. This type of analysis allows users to detect stages
or experiments that show high diviation between age or divergence category contributions to the overall
transcriptome or no significant deviations of age or divergence categories, suggesting equal age or divergence
category contributions to the overall transcriptome. The corresponding P-values are printed to the console
using the following notation:

• ’*’ = P-Value Æ 0.05

• ’**’ = P-Value Æ 0.005

• ’***’ = P-Value Æ 0.0005

• ‘n.s.’ = not significant = P-Value > 0.05

In this case all developmental stages show significant di�erences in phylostratum specific gene expression.

Please notice that users need to define the legendName argument as PS or DS to specify whether
the input ExpressionSet is a PhyloExpressionSet (legendName = �PS�) or DivergenceExpressionSet
(legendName = �DS�).
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Alternatively, users can investigate the di�erences of gene expression between all stages or experiments for
each age or divergence category by specifying type = �stage-centered�.

library(myTAI)

data(PhyloExpressionSetExample)

# stage-centered visualization of PS specific expression level distributions (log-scale)
PlotCategoryExpr(ExpressionSet = PhyloExpressionSetExample,

legendName = "PS",
test.stat = TRUE,
type = "stage-centered",
distr.type = "boxplot",
log.expr = TRUE)

#> PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10 PS11 PS12
#> stage-centered "***" "***" "n.s." "*" "n.s." "*" "n.s." "n.s." "n.s." "***" "n.s." "***"
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Here, the Kruskal-Wallis Rank Sum Test (with Benjamini & Hochberg p-value adjustment) quantifies whether
or not the gene expression distribution of a single age or divergence category significantly changes throughout
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development or experiments. This type of analysis allows users to detect specific age or divergence categories
that significantly change their expression levels throughout development or experiments.

In this case, users will observe that PS3,5,7-9,11 do not show significant di�erences of gene expression
between developmental stages suggesting that their contribution to the overall transcriptome remains constant
throughout development.

Finally, users can choose the following plot types to visualize expression distributions:

Argument: distr.type

• distr.type = "boxplot" This specification allows users to visualize the expression distribution of all
PS or DS as boxplot.

• distr.type = "violin" This specification allows users to visualize the expression distribution of all
PS or DS as violin plot.

• distr.type = "dotplot" This specification allows users to visualize the expression distribution of all
PS or DS as dot plot.

Together, studies perfomed with PlotCategoryExpr() allow users to conclude that genes originating in
specific PS or DS contribute significantly more to the overall transcriptome than other genes originating
from di�erent PS or DS categories. More specialized analyses such as PlotMeans(), PlotRE(), PlotBarRE(),
TAI(), TDI(), etc. will then allow them to study the exact mean expression patterns of these age or divergence
categories.

Users will notice that so far all examples shown above specified log.expr = TRUE illustrating boxplots based
on log2 expression levels. This way of visualization allows better visual comparisons between age or divergence
categories. However, when specifying log.expr = FALSE absolute expression levels will be visualized in the
corresponding boxplot.

Alternatively, instead of specifying log.expr = TRUE users can directly pass log2 transformed expression
levels to PlotCategoryExpr() via tf(PhyloExpressionSetExample,log2) (when log.expr = FALSE):

data(PhyloExpressionSetExample)

# category-centered visualization of PS specific expression level distributions (log-scale)
PlotCategoryExpr(ExpressionSet = tf(PhyloExpressionSetExample, log2),

legendName = "PS",
test.stat = TRUE,
type = "category-centered",
distr.type = "boxplot",
log.expr = FALSE)

#> Zygote Quadrant Globular Heart Torpedo Bent Mature
#> category-centered "***" "***" "***" "***" "***" "***" "***"
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Or any other expression level transformation, e.g. sqrt.

data(PhyloExpressionSetExample)

# category-centered visualization of PS specific expression level distributions (sqrt-scale)
PlotCategoryExpr(ExpressionSet = tf(PhyloExpressionSetExample, sqrt),

legendName = "PS",
test.stat = TRUE,
type = "category-centered",
distr.type = "boxplot",
log.expr = FALSE)

#> Zygote Quadrant Globular Heart Torpedo Bent Mature
#> category-centered "***" "***" "***" "***" "***" "***" "***"
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Gene Subset Age or Divergence Category Specific Expression Level Distributions

In some cases, users wish to visualize the gene expression distributions for a subset of genes in contrast to the
entire transcriptome. For this purpose, the gene.set argument allows users to specify the gene ids of a subset
of genes that shall be matched in the input ExpressionSet and for which expression level distributions shall
be visualized.

library(myTAI)
data(PhyloExpressionSetExample)

# define an example gene subset (500 genes) which
# can be found in the input ExpressionSet
set.seed(234)
example.gene.set <- PhyloExpressionSetExample[sample(1:25260,500) , 2]

# visualize the gene expression distributions for these 500 genes (category-centered)
PlotCategoryExpr(ExpressionSet = PhyloExpressionSetExample,

legendName = "PS",
test.stat = TRUE,
type = "category-centered",
distr.type = "boxplot",
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log.expr = TRUE,
gene.set = example.gene.set)

#> Zygote Quadrant Globular Heart Torpedo Bent Mature
#> category-centered "*" "*" "*" "*" "*" "*" "n.s."
#>
#> # Genes:
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> 193 137 30 52 13 22 5 3 3 20 5 17
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Or analogously stage-centered:

library(myTAI)

data(PhyloExpressionSetExample)

# define an example gene subset (500 genes) which
# can be found in the input ExpressionSet
set.seed(234)
example.gene.set <- PhyloExpressionSetExample[sample(1:25260,500) , 2]
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# visualize the gene expression distributions for these 500 genes (stage-centered)
PlotCategoryExpr(ExpressionSet = PhyloExpressionSetExample,

legendName = "PS",
test.stat = TRUE,
type = "stage-centered",
distr.type = "boxplot",
log.expr = TRUE,
gene.set = example.gene.set)

#> PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10 PS11 PS12
#> stage-centered "n.s." "n.s." "n.s." "n.s." "n.s." "n.s." "n.s." "n.s." "n.s." "n.s." "n.s." "n.s."
#>
#> # Genes:
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> 193 137 30 52 13 22 5 3 3 20 5 17
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For example, users interested in the enrichment of PS or DS values in D. rerio brain genes (see Enrichment
Vignette for details) could also visualize their gene expression distributions throughout development with
PlotCategoryExpr() in cases where expression data is available.
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Computing the significant di�erences between gene expression distributions of
PS or DS groups

As proposed by Quint et al., 2012 in some cases users whish to compare the di�erence of group specific
expression levels using a statsitical test.

For this purpose, the PlotGroupDiffs() function performs a test to quantify the statistical significance
between the global expression level distributions of groups of PS or DS. It therefore allows users to investigate
significant groups of PS or DS that significantly di�er in their gene expression level distibution within specific
developmental stages or experiments.

Analogous to the PlotRE() or PlotMeans() function (see Introduction for details), users need to pass the
Groups to PlotGroupDiffs() specifying the groups that shall be compared.

library(myTAI)

data(PhyloExpressionSetExample)

PlotGroupDiffs(ExpressionSet = PhyloExpressionSetExample,
Groups = list(group_1 = 1:3,group_2 = 4:12),
legendName = "PS",
plot.type = "p-vals",
type = "b",
lwd = 6,
xlab = "Ontogeny")
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#> Zygote Quadrant Globular Heart Torpedo Bent Mature
#> p.value ( wilcox.test ) 3.362424e-34 3.017793e-42 1.987181e-71 1.546567e-66 1.174961e-85 9.975191e-90 1.007102e-74
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In cases where no plot shall be drawn and only the resulting p-value shall be returned users can specify the
plot.type = NULL argument to receive only p-values returned by the underlying test statistic.

library(myTAI)

data(PhyloExpressionSetExample)

# only receive the p-values without the corresponding plot
PlotGroupDiffs(ExpressionSet = PhyloExpressionSetExample,

Groups = list(group_1 = 1:3,group_2 = 4:12),
legendName = "PS",
plot.type = NULL)

#> Zygote Quadrant Globular Heart Torpedo Bent Mature
#> p.value ( wilcox.test ) 3.362424e-34 3.017793e-42 1.987181e-71 1.546567e-66 1.174961e-85 9.975191e-90 1.007102e-74

Optionally, users can also visualize the di�erence in expression level distributions of groups of PS/DS during
each developmental stage by specifying the plot.type = "boxplot" argument.

library(myTAI)

data(PhyloExpressionSetExample)

# visualize difference as boxplot
PlotGroupDiffs(ExpressionSet = tf(PhyloExpressionSetExample,log2),

Groups = list(group_1 = 1:3,group_2 = 4:12),
legendName = "PS",
plot.type = "boxplot")

#> Zygote Quadrant Globular Heart Torpedo Bent Mature
#> p.value ( wilcox.test ) 3.362424e-34 3.017793e-42 1.987181e-71 1.546567e-66 1.174961e-85 9.975191e-90 1.007102e-74
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Here, we use log2 transformed expression levels for better visualization (tf(PhyloExpressionSetExample,log2)).

Internally, the PlotGroupDiffs() function performs a Wilcoxon Rank Sum test to quantify the statistical
significance of PS/DS group expression. This quantification allows users to detect developmental stages of
significant expression level di�erences between PS/DS groups. In this example we chose genes originated
before the evolution of embryogenesis evolved in plants (Group1 = PS1-3) versus genes originated after the
evolution of embryogenesis evolved in plants (Group2 = PS4-12). As a result, we observe that indeed the
di�erence in total gene expression between these groups is significant throughout embryogenesis. In terms of
the P-value quantification we observe that the P-value is minimized towards the phylotypic period. Hence,
the expression level di�erence between the studied PS groups is maximized during the phylotypic period.
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Introduction to the orthologr Package

2016-06-25

Overview

The orthologr package allows users to perform BLAST searches, orthology inference methods, multiple
sequence alignments, codon alignments, dNdS estimation, and divergence stratigraphy with R. The following
tutorial will cover these topics in detail:

• Perform BLAST Searches
• Perform Sequence Alignments
• Perform Orthology Inference
• Perform dNdS Estimation
• Perform Divergence Stratigraphy

Installation Guide

Before you can load and install orthologr you need to install the following packages from Bioconductor:

# install all Bioconductor packages orthologr depends on

# install Bioconductor base packages
source("http://bioconductor.org/biocLite.R")
biocLite()

# install package: Biostrings
biocLite("Biostrings")

# install package: S4Vectors
biocLite("S4Vectors")

# install package: XVector
biocLite("XVector")

Users might be asked during the installation process of Biostrings, S4Vectors, and IRanges whether or not
they would like to update all package dependencies of the corresponding packages. Please type a specifying
that all package dependencies of the corresponding packages shall be updated. This is important for the
su�cient functionality of orthologr.

On Unix Based Systems

Now users can use the devtools package to install orthologr from GitHub.

# install.packages("devtools")

# install the current version of orthologr on your system
library(devtools)
install_github("HajkD/orthologr", build_vignettes = TRUE, dependencies = TRUE)
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On Windows Systems

In some cases (when working with WINDOWS machines), the installation via devtools will not work
properly. In this case users can try the follwing steps:

# On Windows, this won�t work - see ?build_github_devtools
install_github("HajkD/orthologr", build_vignettes = TRUE, dependencies = TRUE)

# When working with Windows, first users need to install the
# R package: rtools -> install.packages("rtools")

# Afterwards users can install devtools -> install.packages("devtools")
# and then they can run:

devtools::install_github("HajkD/orthologr", build_vignettes = TRUE, dependencies = TRUE)

# and then call it from the library
library("orthologr", lib.loc = "C:/Program Files/R/R-3.1.1/library")

Overview of the functions that are implemented in orthologr:

Perform BLAST searches with R

• advanced_blast(): Perform an advanced BLAST+ search
• advanced_makedb(): Create a BLASTable database with makeblastdb (advanced options)
• blast(): Perform a BLAST+ search
• blast.nr(): Perform a BLASTP search against NCBI nr
• blast_best(): Perform a BLAST+ best hit search
• blast_rec(): Perform a BLAST+ best reciprocal hit (BRH) search
• delta.blast(): Perform a DELTA-BLAST Search

Perform Pairwise and Multiple Sequence Alignements with R

• multi_aln(): Compute Multiple Sequence Alignments based on the clustalw, t_coffee, muscle,
clustalo, and mafft programs.

• pairwise_aln(): Compute Pairwise Alignments
• codon_aln(): Compute a Codon Alignment

Perform Orthology Inference with R

• orthologs(): Main Orthology Inference Function
• ProteinOrtho(): Orthology Inference with ProteinOrtho

Perform Population Genomics with R

• dNdS(): Compute dNdS values for two organisms
• substitutionrate(): Internal function for dNdS computations
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Read and Write CDS, Genomes, and Proteomes

• read.cds(): Read the CDS of a given organism
• read.genome(): Read the genome of a given organism
• read.proteome(): Read the proteome of a given organism
• write.proteome(): Save a proteome in fasta format

Getting Started

Performing BLAST Searches

The orthologr package stores 20 example genes (orthologs) between Arabidopsis thaliana and Arabidopsis

lyrata. The following example BLAST search shall illustrate a simple search with standard parameters
provided by the blast() function.

When running the subsequent functions please make sure you can call BLAST+ from your console either
in the standard PATH or in case you have BLAST+ installed in a separate folder, please specify the path
argument that can be passed to blast().

To check whether BLAST+ can be executed from the default PATH (usr/bin/local on UNIX systems), you
can run:

system("blastp -version")

This should return something like this:

blastp: 2.2.29+
Package: blast 2.2.29, build Dec 10 2013 15:51:59

If everything works properly, you can get started with you first BLAST+ search.

The blast() function

The blast() function provides the easiest way to perform a BLAST search.

library(dplyr)

# performing a BLAST search using blastp (default)
hit_tbl <-
blast(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�)
)

glimpse(hit_tbl)

Variables:
$ query_id (chr) "AT1G01010.1", "AT1G01020.1", "AT1G01030.1",...
$ subject_id (chr) "333554|PACid:16033839", "470181|PACid:16064...
$ perc_identity (dbl) 73.99, 91.06, 95.54, 91.98, 100.00, 89.51, 9...
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$ alig_length (dbl) 469, 246, 359, 1970, 213, 648, 366, 300, 434...
$ mismatches (dbl) 80, 22, 12, 85, 0, 58, 14, 22, 8, 34, 4, 6, ...
$ gap_openings (dbl) 8, 0, 2, 10, 0, 5, 2, 2, 3, 0, 0, 1, 3, 2, 1...
$ q_start (dbl) 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 2,...
$ q_end (dbl) 430, 246, 359, 1910, 213, 646, 366, 294, 429...
$ s_start (dbl) 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 16, 2, 4...
$ s_end (dbl) 466, 246, 355, 1963, 213, 640, 362, 299, 433...
$ evalue (dbl) 0e+00, 7e-166, 0e+00, 0e+00, 2e-160, 0e+00, ...
$ bit_score (dbl) 627, 454, 698, 3704, 437, 1037, 696, 491, 85...

As you can see, the hit table shows the output of the BLAST+ search. The blast() function runs
blastp as default BLAST+ algorithm. Di�erent BLAST+ algorithms can be selected by specifying the
blast_algorithm argument, e.g. blast_algorithm = "tblastn". See ?blast for further details. The
blast() function returns the BLAST arguments: query_id, subject_id, perc_identity, alig_length,
mismatches, gap_openings, q_start, q_end, s_start, s_end, evalue, and bit_score.

Since blast() stores the hit table returned by BLAST in a data.table object, you can access each column,
using the data.table notation.

In case you need to specify the PATH to BLAST+ please use the path argument:

# performing a BLAST search using blastp (default)
hit_tbl <-
blast(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
path = "/path/to/blastp"
)

hit_tbl

# access columns: query_id, subject_id, evalue, and bit_score
hit_tbl[ , list(query_id, subject_id, evalue, bit_score)]

query_id subject_id evalue bit_score
1: AT1G01010.1 333554|PACid:16033839 0e+00 627
2: AT1G01020.1 470181|PACid:16064328 7e-166 454
3: AT1G01030.1 470180|PACid:16054974 0e+00 698
4: AT1G01040.1 333551|PACid:16057793 0e+00 3704
5: AT1G01050.1 909874|PACid:16064489 2e-160 437
6: AT1G01060.3 470177|PACid:16043374 0e+00 1037
7: AT1G01070.1 918864|PACid:16052578 0e+00 696
8: AT1G01080.1 909871|PACid:16053217 1e-178 491
9: AT1G01090.1 470171|PACid:16052860 0e+00 859

10: AT1G01110.2 333544|PACid:16034284 0e+00 972
11: AT1G01120.1 918858|PACid:16049140 0e+00 1092
12: AT1G01140.3 470161|PACid:16036015 0e+00 918
13: AT1G01150.1 918855|PACid:16037307 3e-150 421
14: AT1G01160.1 918854|PACid:16044153 1e-93 268
15: AT1G01170.2 311317|PACid:16052302 3e-54 158
16: AT1G01180.1 909860|PACid:16056125 0e+00 576
17: AT1G01190.1 311315|PACid:16059488 0e+00 1036
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18: AT1G01200.1 470156|PACid:16041002 3e-172 470
19: AT1G01210.1 311313|PACid:16057125 7e-76 215
20: AT1G01220.1 470155|PACid:16047984 0e+00 2106

The blast() function also allows you to pass additional parameters to the BLAST+ search using the
blast_params argument. In the following example, a remote BLAST+ search is performed.

blast(
query_file =
system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file =
system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
blast_params = "-max_target_seqs 1"
)

In all cases the default e-value BLAST+ searches is 1E-5 and the default blast_algorithm is blastp.

Since BLAST+ searches can be computationally expensive, it is possible to specify the comp_cores argument
when working with an multicore machine.

# BLAST computations using the comp_cores parameter: here with 2 cores
blast(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
comp_cores = 2
)

The query_file and subject_file arguments specify the path to the corresponding fasta files storing the
CDS files, amino acid files, or genome files of the query organism and subject organism of interest. Make
sure that when using CDSfiles, amino acid files, or genome files the corresponding argument seq_type must
be adapted according to the input data format.

Use :

• CDS files -> seq_type = "cds"
• amino acid files -> seq_type = "protein"
• genome files -> seq_type = "dna"

The format argument specifies the input file format, e.g. “fasta” or “gbk”. The blast_algorithm ar-
gument specifies the BLAST program (algorithm) that shall be used to perform BLAST searches, e.g.
“blastp”,“blastn”,“tblastn”,etc. Again, the eval argument defines the default e-value that shall be chosen as
best hit threshold.

Using the split-apply-combine strategy for a BLAST hit table

All blast functions implemented in orthologr can easily be processed using the split-apply-combine strategy
to detect for example one-to-one, one-to-many, and many-to-many gene homology relationships.

Here a simple example:

# install.packages(c("plyr","dplyr"), dependencies = TRUE)
library(plyr)
library(dplyr)
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# perform a blastp search of 20 A. thaliana genes against 1000 A. lyrata genes
hit_tbl <-
blast(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds_1000.fasta�, package = �orthologr�)
)

# determine �one-to-many� and �one-to-one� gene relationships
rel_hit_tbl <-
ddply(.data = hit_tbl,
.variables = "query_id",
.fun = nrow)
colnames(rel_hit_tbl)[2] <- "n_genes"

rel_hit_tbl

query_id n_genes
1 AT1G01010.1 4
2 AT1G01020.1 1
3 AT1G01030.1 1
4 AT1G01040.1 1
5 AT1G01050.1 1
6 AT1G01060.3 2
7 AT1G01070.1 3
8 AT1G01080.1 4
9 AT1G01090.1 1
10 AT1G01110.2 1
11 AT1G01120.1 3
12 AT1G01140.3 36
13 AT1G01150.1 1
14 AT1G01160.1 1
15 AT1G01170.2 1
16 AT1G01180.1 1
17 AT1G01190.1 6
18 AT1G01200.1 8
19 AT1G01210.1 1
20 AT1G01220.1 1

Now you can sort genes into classes: one-to-one and one-to-many.

# classify into �one-to-one� relationships
one_to_one <- filter(rel_hit_tbl,n_genes == 1)

# classify into �one-to-many� relationships
one_to_many <- filter(rel_hit_tbl,n_genes > 1)

# look at one_to_one
one_to_one

query_id n_genes
1 AT1G01020.1 1
2 AT1G01030.1 1
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3 AT1G01040.1 1
4 AT1G01050.1 1
5 AT1G01090.1 1
6 AT1G01110.2 1
7 AT1G01150.1 1
8 AT1G01160.1 1
9 AT1G01170.2 1
10 AT1G01180.1 1
11 AT1G01210.1 1
12 AT1G01220.1 1

# look at one_to_many
one_to_many

query_id n_genes
1 AT1G01010.1 4
2 AT1G01060.3 2
3 AT1G01070.1 3
4 AT1G01080.1 4
5 AT1G01120.1 3
6 AT1G01140.3 36
7 AT1G01190.1 6
8 AT1G01200.1 8

Now we can treat classes: one_to_one and one_to_many di�erently:

one-to-one genes

# look at the evalue, perc_identity, and alig_length of one_to_one genes
oo_genes <-
dplyr::filter(hit_tbl, query_id %in% one_to_one[, "query_id"])

oo_genes[, list(query_id, subject_id, evalue, perc_identity, alig_length)]

query_id subject_id evalue perc_identity alig_length
1 AT1G01020.1 470181|PACid:16064328 3e-164 91.06 246
2 AT1G01030.1 470180|PACid:16054974 0e+00 95.54 359
3 AT1G01040.1 333551|PACid:16057793 0e+00 91.98 1970
4 AT1G01050.1 909874|PACid:16064489 1e-158 100.00 213
5 AT1G01090.1 470171|PACid:16052860 0e+00 96.77 434
6 AT1G01110.2 333544|PACid:16034284 0e+00 93.56 528
7 AT1G01150.1 918855|PACid:16037307 1e-148 72.63 285
8 AT1G01160.1 918854|PACid:16044153 5e-92 84.92 179
9 AT1G01170.2 311317|PACid:16052302 1e-52 85.57 97
10 AT1G01180.1 909860|PACid:16056125 0e+00 92.58 310
11 AT1G01210.1 311313|PACid:16057125 3e-74 95.33 107
12 AT1G01220.1 470155|PACid:16047984 0e+00 96.69 1056

Now you could filter for additional criteria to define a first set of true orthologs. In this example we define
true orthologs as one_to_one genes having a minimum alignment length of 300, a perc_identity of > 80
percent and an e-value < 1E-5.
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# look at the evalue, perc_identity, and alig_length of one_to_one genes
oo_genes <-
dplyr::filter(hit_tbl, query_id %in% one_to_one[, "query_id"])

true_orthologs <-
dplyr::filter(oo_genes, evalue < 1e-5, perc_identity > 80, alig_length > 300)

true_orthologs[, list(query_id, subject_id, evalue, perc_identity, alig_length)]

query_id subject_id evalue perc_identity alig_length
1: AT1G01030.1 470180|PACid:16054974 0 95.54 359
2: AT1G01040.1 333551|PACid:16057793 0 91.98 1970
3: AT1G01090.1 470171|PACid:16052860 0 96.77 434
4: AT1G01110.2 333544|PACid:16034284 0 93.56 528
5: AT1G01180.1 909860|PACid:16056125 0 92.58 310
6: AT1G01220.1 470155|PACid:16047984 0 96.69 1056

This way we could filter out a high confidence set of orthologous genes from the one_to_one class of genes.

In reality most orthology inference programs and methods perform way more complicated and sophisticated
analyses to distinguish true orthologs from true paralogs (in-paralogs, out-paralogs, etc.). These subsequent
analyses can also be performed using the above introduced split-apply-combine strategy.

Note, that you can perform self-BLAST searches blast(query,query) and blast(subject,subject) to
distinguish between orthologous and paralogous genes.

Now we continue with the one_to_many class of genes.

one-to-many genes

Here we want to address the question how to deal with multiple hits returned by BLAST+ .

Again we investigate all one_to_many genes:

one_to_many

query_id n_genes
1 AT1G01010.1 4
2 AT1G01060.3 2
3 AT1G01070.1 3
4 AT1G01080.1 4
5 AT1G01120.1 3
6 AT1G01140.3 36
7 AT1G01190.1 6
8 AT1G01200.1 8

When looking at gene_id AT1G01200.1 we see that it was found 8 times in the corresponding subject set of
A. lyrata.

hit_tbl["AT1G01200.1", list(query_id, subject_id, evalue, perc_identity, alig_length)]

query_id subject_id evalue perc_identity alig_length
1: AT1G01200.1 470156|PACid:16041002 2e-170 95.80 238
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2: AT1G01200.1 909905|PACid:16035105 7e-06 21.64 171
3: AT1G01200.1 910431|PACid:16035207 8e-74 52.97 219
4: AT1G01200.1 918732|PACid:16054958 2e-50 44.56 193
5: AT1G01200.1 919287|PACid:16060536 1e-68 58.10 179
6: AT1G01200.1 919355|PACid:16050170 7e-72 53.30 212
7: AT1G01200.1 919721|PACid:16036935 9e-80 59.31 204
8: AT1G01200.1 919852|PACid:16055066 4e-07 24.03 154

Now we have to decide which hit shall be considered as potential ortholog. In this example subject_id
470156|PACid:16041002 has the highest perc_identity as well as the lowest e-value 2e-170. So a straight-
forward approach would be to choose subject gene 470156|PACid:16041002 as potential ortholog of query
gene AT1G01200.1.

We can validate this approach by running a reciprocal best hit search with blast_rec()and compare the
output of gene AT1G01200.1 with our choice 470156|PACid:16041002.

rbh_hit_tbl <-
blast_rec(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds_1000.fasta�, package = �orthologr�)
)

rbh_hit_tbl

query_id subject_id evalue
1 AT1G01010.1 333554|PACid:16033839 0e+00
2 AT1G01020.1 470181|PACid:16064328 3e-164
3 AT1G01030.1 470180|PACid:16054974 0e+00
4 AT1G01040.1 333551|PACid:16057793 0e+00
5 AT1G01050.1 909874|PACid:16064489 1e-158
6 AT1G01060.3 470177|PACid:16043374 0e+00
7 AT1G01070.1 918864|PACid:16052578 0e+00
8 AT1G01080.1 909871|PACid:16053217 5e-177
9 AT1G01090.1 470171|PACid:16052860 0e+00
10 AT1G01110.2 333544|PACid:16034284 0e+00
11 AT1G01120.1 918858|PACid:16049140 0e+00
12 AT1G01140.3 470161|PACid:16036015 0e+00
13 AT1G01150.1 918855|PACid:16037307 1e-148
14 AT1G01160.1 918854|PACid:16044153 5e-92
15 AT1G01170.2 311317|PACid:16052302 1e-52
16 AT1G01180.1 909860|PACid:16056125 0e+00
17 AT1G01190.1 311315|PACid:16059488 0e+00
18 AT1G01200.1 470156|PACid:16041002 2e-170
19 AT1G01210.1 311313|PACid:16057125 3e-74
20 AT1G01220.1 470155|PACid:16047984 0e+00

When we now look at gene AT1G01200.1 we find that indeed subject gene 470156|PACid:16041002 has been
detected as potential ortholog having the same evalue 2e-170.

rbh_hit_tbl["AT1G01200.1" , ]

query_id subject_id evalue
1 AT1G01200.1 470156|PACid:16041002 2e-170
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Nevertheless there might be cases in which it is hard to decide for or against the best hit compared with all
other hits.

For example we can investigate gene AT1G01070.1 :

hit_tbl["AT1G01070.1", list(query_id,subject_id,evalue,perc_identity,alig_length)]

query_id subject_id evalue perc_identity alig_length
1: AT1G01070.1 918864|PACid:16052578 0e+00 95.08 366
2: AT1G01070.1 919693|PACid:16048878 2e-67 32.87 356
3: AT1G01070.1 919961|PACid:16062329 0e+00 79.29 338

Here both e-values for subject genes 918864|PACid:16052578 and 919961|PACid:16062329 are the
same and only perc_identity and alig_length di�er. The reciprocal best hit approach chose gene
918864|PACid:16052578 which also had the highest perc_identity.

rbh_hit_tbl["AT1G01070.1" , ]

query_id subject_id evalue
1 AT1G01070.1 918864|PACid:16052578 0

But since the blast_rec() function was implemented to choose the bidirectional best hit based on the
e-value, in border line cases a di�erent gene as expected could be chosen.

An alternative analysis that can be performed with these three candidate subject genes is the following:

# read CDS sequences of the 20 example query genes of A. thaliana
Ath.cds <-
read.cds(
file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
format = "fasta"
)

# read CDS sequences of the 1000 example subject genes of A. lyrata
Aly.cds <-
read.cds(
file = system.file(�seqs/ortho_lyra_cds_1000.fasta�, package = �orthologr�),
format = "fasta"
)

# show the sequence of gene AT1G01070.1
Ath.cds["AT1G01070.1" , seqs]

[1] "atggctggagatatgcaaggagtgagagtagtagaaaaatattcaccggtcatagtgatggtgatgtcaaatgta
gcgatgggttcggtgaatgcacttgtgaagaaagctcttgatgttggtgtgaaccatatggtcattggtgcttatcgaat
ggctatttccgctttaattttggttccctttgcctatgtcttggaaaggaaaacaagaccacaaataacgtttaggctaa
tggtcgatcatttcgtcagtggccttctcggggcgagtttgatgcagtttttctttttgcttggtctgtcgtacacgtca
gcaactgtttcgtgtgctttggtaagcatgttgcctgcaatcaccttcgctttggcccttattttcaggactgaaaatgt
gaagattctaaagaccaaagcaggaatgttgaaggtgattggaactttgatctgtataagtggagctttgttcttaacat
tttacaaaggcccacaaatatcaaactctcactctcactctcacggtggggcttcccacaacaacaacgatcaagacaag
gccaataattggcttcttggatgtctttatttaaccataggaacagtgttgctatctctatggatgttgtttcaagggac
tttaagtattaagtacccttgcaaatactcgagcacttgtcttatgtcaattttcgcggcatttcaatgtgctctcttga
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gcctttacaagagcagagacgttaatgattggatcatagatgatagattcgttatcaccgtcatcatatacgctggagtg
gtaggacaagcaatgacgacggttgcaacaacatgggggattaaaaaattaggagctgtgttcgcatcggcgtttttccc
acttactctcatttcggctactctatttgatttcctcattttacacactcctttataccttggaagtgtgattggatcac
tagtgaccataacgggtctctacatgttcttgtgggggaagaacaaagaaacggaatcatcaactgcattgtcttcagga
atggataacgaagctcaatatactactcctaataaggataacgactctaagtcgcccgtttaa"

Now you can perform a global alignment between the CDS sequences of AT1G01070.1 and the three subject
genes as follows:

library(Biostrings)

# perform 3 global alignments between: AT1G01070.1 and 918864|PACid:16052578,
# 919693|PACid:16048878, 919961|PACid:16062329
sapply(Aly.cds[hit_tbl["AT1G01070.1", subject_id], seqs],
pairwiseAlignment,
pattern = Ath.cds["AT1G01070.1" , seqs],
type = "global")

$...
Global PairwiseAlignmentsSingleSubject (1 of 1)
pattern: [1] atggctggagatatgcaaggagtgagagta...aaggataacgactctaagtcgcccgtttaa
subject: [1] atgggtgaaggtatgattggagtgagagta...aaggataacgactctaagtcgcccgtttaa
score: 1768.965

$...
Global PairwiseAlignmentsSingleSubject (1 of 1)
pattern: [1] atggctgga---gatatgcaaggagtgaga...----cgac----tctaagtcgcccgtttaa
subject: [1] atggctaaatcagatatgc------tg---...ggttccacaaggtctatatcgcc---ttaa
score: -2318.726

$...
Global PairwiseAlignmentsSingleSubject (1 of 1)
pattern: [1] atggctggagatatgcaaggagtgagagta...aaggataacgactctaagtcgcccgtttaa
subject: [1] atgagtgaggatatgggaggagtgaaagta...----------------------------aa
score: 486.462

Note: To obtain the score value, you need to specify the scoreOnly = TRUE in the pairwiseAlignment
function.
As you can see, subject gene 918864|PACid:16052578 also has the highest global alignment score 1768.965
based on the Needleman-Wunsch algorithm. This strategy might help you to di�erentiate between border
line cases.
The examples shown above shall demonstrate the use cases that can be performed using the blast functions
implemented in orthologr.
Another useful analysis can be to take the length of the initial query genes into account using the nchar()
function:

# show the length distribution of all genes
# stored in "Ath.cds"
Ath.cds[ , nchar(seqs)]

[1] 1290 738 1077 5730 639 1938 1098 882 1287 1584 1587 1356
1038 588 252 1437 1608 714 321 3168
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Or the length of a specific gene:

Ath.cds["AT1G01070.1" , nchar(seqs)]

[1] 1098

This way you can easily visualize the length distribution of genes stored in your query organism file.

Ath.cds <-
read.cds(system.file(�seqs/ortho_thal_cds_1000.fasta�, package = �orthologr�),
format = "fasta")

hist(Ath.cds[, nchar(seqs)], breaks = 100)

The blast_best() function

For some analyses it is su�cient to perform BLAST+ best hit searches. The blast_best() function is
optimized to perform BLAST+ best hit searches (only based on the minimum e-value) and returns the
best hit when performing a BLAST+ search of a query organisms (or set of query genes) against a subject
organism (or set of subject genes).

# performing gene orthology inference using the best hit (BH) method
blast_best(

query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
clean_folders = TRUE
)

query_id subject_id evalue
1: AT1G01010.1 333554|PACid:16033839 0e+00
2: AT1G01020.1 470181|PACid:16064328 7e-166
3: AT1G01030.1 470180|PACid:16054974 0e+00
4: AT1G01040.1 333551|PACid:16057793 0e+00
5: AT1G01050.1 909874|PACid:16064489 2e-160
6: AT1G01060.3 470177|PACid:16043374 0e+00
7: AT1G01070.1 918864|PACid:16052578 0e+00
8: AT1G01080.1 909871|PACid:16053217 1e-178
9: AT1G01090.1 470171|PACid:16052860 0e+00

10: AT1G01110.2 333544|PACid:16034284 0e+00
11: AT1G01120.1 918858|PACid:16049140 0e+00
12: AT1G01140.3 470161|PACid:16036015 0e+00
13: AT1G01150.1 918855|PACid:16037307 3e-150
14: AT1G01160.1 918854|PACid:16044153 1e-93
15: AT1G01170.2 311317|PACid:16052302 3e-54
16: AT1G01180.1 909860|PACid:16056125 0e+00
17: AT1G01190.1 311315|PACid:16059488 0e+00
18: AT1G01200.1 470156|PACid:16041002 3e-172
19: AT1G01210.1 311313|PACid:16057125 7e-76
20: AT1G01220.1 470155|PACid:16047984 0e+00

The blast_best() function returns: query_id, subject_id, and eval.
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In case you need more parameters returned by a BLAST+ best hit search, you can specify the
detailed_output argument (detailed_output = TRUE).

# BLAST+ best hit search
best_hit_tbl <-
blast_best(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
detailed_output = TRUE
)

dplyr::glimpse(best_hit_tbl)

Variables:
$ query_id (chr) "AT1G01010.1", "AT1G01020.1", "AT1G01030.1",...
$ subject_id (chr) "333554|PACid:16033839", "470181|PACid:16064...
$ perc_identity (dbl) 73.99, 91.06, 95.54, 91.98, 100.00, 89.51, 9...
$ alig_length (dbl) 469, 246, 359, 1970, 213, 648, 366, 300, 434...
$ mismatches (dbl) 80, 22, 12, 85, 0, 58, 14, 22, 8, 34, 4, 6, ...
$ gap_openings (dbl) 8, 0, 2, 10, 0, 5, 2, 2, 3, 0, 0, 1, 3, 2, 1...
$ q_start (dbl) 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 2,...
$ q_end (dbl) 430, 246, 359, 1910, 213, 646, 366, 294, 429...
$ s_start (dbl) 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 16, 2, 4...
$ s_end (dbl) 466, 246, 355, 1963, 213, 640, 362, 299, 433...
$ evalue (dbl) 0e+00, 7e-166, 0e+00, 0e+00, 2e-160, 0e+00, ...
$ bit_score (dbl) 627, 454, 698, 3704, 437, 1037, 696, 491, 85...

The blast_rec() function

The blast_rec() function was implemented to optimize BLAST+ reciprocal best hit searches (only based
on the minimum e-value). BLAST+ reciprocal best hit searches are used to perform orthology inference.

Running blast_rec() using default parameter settings:

# performing gene orthology inference using the reciprocal best hit (RBH) method
blast_rec(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�)
)

query_id subject_id evalue
1 AT1G01010.1 333554|PACid:16033839 0e+00
2 AT1G01020.1 470181|PACid:16064328 7e-166
3 AT1G01030.1 470180|PACid:16054974 0e+00
4 AT1G01040.1 333551|PACid:16057793 0e+00
5 AT1G01050.1 909874|PACid:16064489 2e-160
6 AT1G01060.3 470177|PACid:16043374 0e+00
7 AT1G01070.1 918864|PACid:16052578 0e+00
8 AT1G01080.1 909871|PACid:16053217 1e-178
9 AT1G01090.1 470171|PACid:16052860 0e+00
10 AT1G01110.2 333544|PACid:16034284 0e+00
11 AT1G01120.1 918858|PACid:16049140 0e+00
12 AT1G01140.3 470161|PACid:16036015 0e+00
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13 AT1G01150.1 918855|PACid:16037307 3e-150
14 AT1G01160.1 918854|PACid:16044153 1e-93
15 AT1G01170.2 311317|PACid:16052302 3e-54
16 AT1G01180.1 909860|PACid:16056125 0e+00
17 AT1G01190.1 311315|PACid:16059488 0e+00
18 AT1G01200.1 470156|PACid:16041002 3e-172
19 AT1G01210.1 311313|PACid:16057125 7e-76
20 AT1G01220.1 470155|PACid:16047984 0e+00

Again you can specify the detailed_output argument to get more parameters returned by blast_rec().

# running blast_rec() using detailed_output = TRUE
rbh <-
blast_rec(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
detailed_output = TRUE
)

dplyr::glimpse(rbh)

Variables:
$ query_id (chr) "AT1G01010.1", "AT1G01020.1", "AT1G01030.1",...
$ subject_id (chr) "333554|PACid:16033839", "470181|PACid:16064...
$ perc_identity (dbl) 73.99, 91.06, 95.54, 91.98, 100.00, 89.51, 9...
$ alig_length (dbl) 469, 246, 359, 1970, 213, 648, 366, 300, 434...
$ mismatches (dbl) 80, 22, 12, 85, 0, 58, 14, 22, 8, 34, 4, 6, ...
$ gap_openings (dbl) 8, 0, 2, 10, 0, 5, 2, 2, 3, 0, 0, 1, 3, 2, 1...
$ q_start (dbl) 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 2,...
$ q_end (dbl) 430, 246, 359, 1910, 213, 646, 366, 294, 429...
$ s_start (dbl) 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 16, 2, 4...
$ s_end (dbl) 466, 246, 355, 1963, 213, 640, 362, 299, 433...
$ evalue (dbl) 0e+00, 7e-166, 0e+00, 0e+00, 2e-160, 0e+00, ...
$ bit_score (dbl) 627, 454, 698, 3704, 437, 1037, 696, 491, 85...

The advanced_blast() function

The advanced_blast() function was implemented to allow you to perform BLAST+ searches in a flexible
environment. All parameters that shall be passed to the corresponding BLAST+ search need to be specified
using the blast_params argument. In case you work with very large hit tables, that do not fit into memory,
you can specify the sql_database argument to store the corresponding hit table in a SQLite database and
access it via the dplyr database notation.

ab <-
advanced_blast(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
blast_algorithm = "blastp",
blast_params = "-evalue 1E-5 -num_threads 1"
)

dplyr::glimpse(ab)

14



Variables:
$ query_id (chr) "AT1G01010.1", "AT1G01020.1", "AT1...
$ subject_id (chr) "333554|PACid:16033839", "470181|P...
$ perc_identity (dbl) 73.99, 91.06, 95.54, 91.98, 100.00...
$ num_ident_matches (dbl) 347, 224, 343, 1812, 213, 580, 348...
$ alig_length (dbl) 469, 246, 359, 1970, 213, 648, 366...
$ mismatches (dbl) 80, 22, 12, 85, 0, 58, 14, 22, 8, ...
$ gap_openings (dbl) 8, 0, 2, 10, 0, 5, 2, 2, 3, 0, 0, ...
$ q_start (dbl) 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1...
$ q_end (dbl) 430, 246, 359, 1910, 213, 646, 366...
$ s_start (dbl) 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1...
$ s_end (dbl) 466, 246, 355, 1963, 213, 640, 362...
$ evalue (dbl) 0e+00, 7e-166, 0e+00, 0e+00, 2e-16...
$ bit_score (dbl) 627, 454, 698, 3704, 437, 1037, 69...
$ score_raw (dbl) 1617, 1169, 1801, 9604, 1125, 2681...
$ query_coverage_per_subj (dbl) 100, 100, 100, 99, 100, 100, 100, ...

As you can see, the advanced_blast() function returns more parameters than all other blast() functions.

Selecting the best hit using advanced_blast()

The flexibility of advanced_blast() enables you to perform all previously introduced analyses (blast(),
blast_best(), blast_rec(), etc.) as well as a variety of addtional analyses. The following example shall
illustrate how to perform BLAST best hit searches using advanced_blast()

# when performing an advanced BLAST search, you can easily select the best hit
library(dplyr)

advB <- advanced_blast(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds_1000.fasta�, package = �orthologr�),
seq_type = "cds",
blast_algorithm = "blastp",
blast_params = "-evalue 1E-5 -num_threads 1"
)

best_hit <- advB %>% group_by(query_id) %>% do(min(evalue))

best_hit

query_id min(evalue)
1 AT1G01010.1 0e+00
2 AT1G01020.1 3e-164
3 AT1G01030.1 0e+00
4 AT1G01040.1 0e+00
5 AT1G01050.1 1e-158
6 AT1G01060.3 0e+00
7 AT1G01070.1 0e+00
8 AT1G01080.1 5e-177
9 AT1G01090.1 0e+00
10 AT1G01110.2 0e+00
11 AT1G01120.1 0e+00
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12 AT1G01140.3 0e+00
13 AT1G01150.1 1e-148
14 AT1G01160.1 5e-92
15 AT1G01170.2 1e-52
16 AT1G01180.1 0e+00
17 AT1G01190.1 0e+00
18 AT1G01200.1 2e-170
19 AT1G01210.1 3e-74
20 AT1G01220.1 0e+00

The blast_params argument allows you to specify all parameters that shall be passed to the corresponding
blast_algorithm based on the NCBI blast stand-alone notation.

Using DELTA-BLAST in advanced_blast()

Domain enhanced lookup time accelerated BLAST (DELTA-BLAST) is a new BLAST algorithm provided by
NCBI. It was introduced as a useful program for the detection of remote protein homologs.
You can download the Conserved Domain Database (CDD) file cdd.tar.gz from NCBI and store all
cdd_deltablast.* files in a folder: path/to/cdd_database/folder.
More information on how to install and use DELTA-BLAST can be found here. Make sure that when using
DELTA-BLAST in advanced_blast() the db_path argument denoting the path to the folder storing the
corresponding cdd_deltablast.* files need to be specified.

# DELTA-BLAST
#
# you can also use deltablast to perform BLAST searches
# make sure you have specified the the db_path argument to the cdd_deltablast.* files
advanced_blast(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
blast_algorithm = "deltablast",
db_path = "path/to/cdd_files",
blast_params = "-evalue 1E-5 -num_threads 2"
)

A more intuitive way (but less flexible) to perform delta-blast searches is to use the delta.blast() function.
The delta.blast() function works in two ways.

1) Use the cdd_delta database as additional information by performing deltablast searches between
query organism A and subject organism B.

2) Perform a deltablast search between query organism A and the cdd_delta database

The following example illustrates the first option (A vs B via cdd_delta).
Here the cdd.path argument specifies the path to the cdd_deltablast.* files:

# perform a delta-blast serach between A. thaliana and A. lyrata genes
delta.blast(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
cdd.path = "path/to/cdd/database/folder",
comp_cores = 1
)
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The following example illustrates the second option (A vs cdd_delta). The di�erence is the specification of
argument subject_file = "cdd_delta" instead of a second subject organism:

# perform a delta-blast serach between A. thaliana and the cdd database
delta.blast(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = "cdd_delta",
cdd.path = "path/to/cdd/database/folder",
comp_cores = 1
)

Performing BLASTP searches against the NCBI nr database with blast.nr()

The blast.nr() function implemented in orthologr allows users to perform local blastp searches against
the NCBI nr database.

For this purpose, the first step is to download the NCBI nr database to a local machine using the biomartr
package.

Please notice that the NCBI nr database contains about 30 files storing approx. 500 MB data per file.
So when downloading this large database via biomartr users need to make sure that they are constantly
connected to the internet.

# install the �biomartr� package from CRAN
install.packages("biomartr")

# load biomartr
library("biomartr")

# download the NCBI nr database to your local machine to a folder
# names �DB�
sapply(listDatabases("nr"),download_database)

After downloading all NCBI nr files to the DB folder users need to go to the DB folder and unpack all env_nr*
files and store them in the same DB folder. In case users whish to specify a di�erent folder for downloading
NCBI nr they can specify the path argument of the ?download_database function implemented in biomartr.

Now users can use the blast.nr() function to perform BLASTP searches against NCBI nr.

nr.res <-
blast.nr(
query_file = system.file(�seqs/aa_seqs.fasta�, package = �orthologr�),
nr.path = "DB",
seq_type = "protein",
max.target.seqs = 20,
comp_cores = 2
)

nr.res

Here, the nr.path argument specifies the folder path to the NCBI nr database. In case users unpacked all
NCBI nr files to the DB folder created by download_database() the nr.path argument can be specified as
nr.path = "DB".

The corresponding gi id can then be clipped by running:
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nr.res[, "subject_id"] <-
unlist(lapply(stringr::str_split(nr.res[, subject_id], "[|]"), function(x)
x[2]))

nr.res

query_id subject_id perc_identity num_ident_matches alig_length mismatches
1: 333554|PACid:16033839 139291046 40.00 24 60 35
2: 333554|PACid:16033839 140103111 46.03 29 63 34

gap_openings n_gaps pos_match ppos q_start q_end q_len qcov qcovhsp
1: 1 1 39 65.0 8 66 246 24 24
2: 0 0 47 74.6 8 70 246 26 26

query_seq s_start s_end s_len
1: CVGC-GFRVKSLFIQYSPGNIRLMKCGNCKEVADEYIECERMIIFIDLILHRPKVYRHVL 9 68 71
2: CVGCGFRVKSLFIQYSPGNIRLMKCGNCKEVADEYIECERMIIFIDLILHRPKVYRHVLYNAI 48 110 114

subject_seq evalue bit_score score_raw
1: CVECMCDENESIYKKYSEGNLRLTRCIRCSDFVDRYVEYDNVLIVLDLVLHKNPAYRHLL 1e-07 54.3 129
2: CVECGKSVQQVFKMFGKGNIRLSRCKSCHSISDKYVEYEFVLIFIDLLLHKTQVYRHLIFNRL 8e-14 72.0 175

By performing this gi clipping the initial gi id returned by blasting against the NCBI nr database
gi|139291046|gb|ECE46929.1| is clipped to the gi id 139291046 for which corresponding taxonomy ids
can be extracted from NCBI Taxonomy.

Storing very large hit tables in a SQLite database with advanced_blast()

The advanced_blast() function can also store the BLAST output CSV file in a SQLite database. This
works only with dplyr version >= 0.3 . To store the BLAST output in an SQLite database and to receive an
SQLite connection as specified by tbl() in dplyr please use the sql_database = TRUE argument.

# using a SQLite database to store the BLAST output and
# select some example data

library(dplyr)

sqlE <- advanced_blast(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds_1000.fasta�, package = �orthologr�),
seq_type = "cds",
blast_algorithm = "blastp",
blast_params = "-evalue 1E-5 -num_threads 1",
sql_database = TRUE
)

head(sqlE)

# look at the structure of sqlE
glimpse(sqlE)

Variables:
$ V1 (chr) "AT1G01010.1", "AT1G01010.1", "AT1G01010.1", "AT1G01010.1", "AT1G01020.1...
$ V2 (chr) "333554|PACid:16033839", "909883|PACid:16051052", "311334|PACid:16035114...
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$ V3 (dbl) 73.99, 34.46, 43.64, 33.75, 91.06, 95.54, 91.98, 100.00, 89.51, 64.52, 9...
$ V4 (int) 347, 122, 72, 54, 224, 343, 1812, 213, 580, 40, 348, 268, 117, 271, 29, ...
$ V5 (int) 469, 354, 165, 160, 246, 359, 1970, 213, 648, 62, 366, 338, 356, 300, 95...
$ V6 (int) 80, 162, 81, 80, 22, 12, 85, 0, 58, 22, 14, 68, 232, 22, 66, 91, 47, 8, ...
$ V7 (int) 8, 12, 4, 6, 0, 2, 10, 0, 5, 0, 2, 1, 3, 2, 0, 3, 0, 3, 0, 0, 5, 5, 1, 6...
$ V8 (int) 1, 1, 1, 6, 1, 1, 6, 1, 1, 13, 1, 1, 16, 1, 105, 109, 110, 1, 1, 1, 32, ...
$ V9 (int) 430, 343, 162, 153, 246, 359, 1910, 213, 646, 74, 366, 338, 365, 294, 19...
$ V10 (int) 1, 1, 1, 10, 1, 1, 2, 1, 1, 1048, 1, 1, 8, 1, 336, 13, 76, 1, 1, 1, 20, ...
$ V11 (int) 466, 295, 156, 155, 246, 355, 1963, 213, 640, 1109, 362, 336, 362, 299, ...
$ V12 (dbl) 0e+00, 7e-43, 1e-32, 8e-21, 3e-164, 0e+00, 0e+00, 1e-158, 0e+00, 2e-22, ...
$ V13 (dbl) 627.0, 152.0, 123.0, 87.8, 454.0, 698.0, 3704.0, 437.0, 1037.0, 98.2, 69...
$ V14 (int) 1617, 384, 309, 216, 1169, 1801, 9604, 1125, 2681, 243, 1797, 1409, 551,...
$ V15 (int) 100, 80, 38, 34, 100, 100, 99, 100, 100, 10, 100, 92, 96, 100, 48, 48, 2...

This way you can perfom filtering steps on very large tables.

# select all rows that have an evalue of zero
filter(sqlE, V12 > 1e-15)

# select the best hit using the evalue criterion
sqlE %>% group_by(V1) %>% do(best_hit_eval = min(V12))

Source: sqlite 3.8.6 [blast_sql_db.sqlite3]
From: <derived table> [?? x 2]

V1 best_hit_eval
1 AT1G01010.1 0e+00
2 AT1G01020.1 3e-164
3 AT1G01030.1 0e+00
4 AT1G01040.1 0e+00
5 AT1G01050.1 1e-158
6 AT1G01060.3 0e+00
7 AT1G01070.1 0e+00
8 AT1G01080.1 5e-177
9 AT1G01090.1 0e+00
10 AT1G01110.2 0e+00
.. ... ...

Since the BLAST output does not return a CSV header, the corresponding SQLite table the BLAST output
in columns named V1 - V15. In SQLite, renaming the columns can only be done by creating a new table
which is very time consuming. The dplyr::rename() function does not support to rename multiple columns
and therefore this “not so elegent way” is implemented in the current version of orthologr. Future versions
will tackle this issue.

The set_blast() function

The set_blast()function reads a file storing a specific sequence type, such as “cds”, “protein”, or “dna” in a
standard sequence file format such as “fasta”, etc. and depending of the makedb parameter either creates a
blast-able database, or returns the corresponding protein sequences as data.table object for further BLAST
searches.
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head(set_blast(file =
system.file(�seqs/ortho_thal_cds.fasta�,

package = �orthologr�))[[1]] , 2)

The advanced_makedb() function

The advanced_makedb function provides a simple, but powerful interface between the R language and
makeblastdb. You can specify the params argument to pass all parameters defined for makeblastdb to the
corresponding makeblastdb call.

# make the A. thaliana genome to a blast-able database
advanced_makedb(
database_file = system.file(�seqs/ortho_thal_aa.fasta�, package = �orthologr�),
params = "-input_type fasta -dbtype prot -hash_index"
)

Building a new DB, current time: 11/10/2014 16:56:58
New DB name: _blast_db/ortho_thal_aa.fasta
New DB title: _blast_db/ortho_thal_aa.fasta
Sequence type: Protein
Keep Linkouts: T
Keep MBits: T
Maximum file size: 1000000000B
Adding sequences from FASTA; added 20 sequences in 0.0583858 seconds.

Performing Sequence Alignements

The orthologr package provides multiple functions to perform pairwise and multiple sequence alignments.
The following functions are implemented in orthologr:

• multi_aln() : Perform Multiple Sequence Alignments
• pairwise_aln() : Perform Pairwise Sequence Alignments
• codon_aln() : Perform Codon Alignments

Getting Started

Prior to be able to use all sequence alignment functions implemented in orthologr you need to install
corresponding alignment tools of interest. The above mentioned functions provide interfaces to the following
alignment programs:

The multi_aln() function

• ClustalW : Advanced multiple alignment tool of nucleic acid and protein sequences

• T_Co�ee : A collection of tools for processing multiple sequence alignments of nucleic acids and
proteins as well as their 3D structure

• MUSCLE : Fast and accurate multiple alignment tool of nucleic acid and protein sequences

• ClustalO : Fast and scalable multiple alignment tool for nucleic acid and protein sequences that is
also capable of performing HMM alignments
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• MAFFT : A tool for multiple sequence alignment and phylogeny

The easiest way to use the multi_aln() function is to store the corresponding multiple sequence alignment
tools in the default execution PATH of you system (e.g. /usr/local/bin on UNIX machines).

You can test whether the corresponding multiple sequence alignment tool can be executed from the default
PATH by running:

ClustalW

• MacOS: system("clustalw2 -help")

• Linux: system("clustalw -help")

• Windows: system("clustalw2.exe -help")

In case everything is installed appropriately, you should see:

CLUSTAL 2.1 Multiple Sequence Alignments

DATA (sequences)

-INFILE=file.ext :input sequences.
-PROFILE1=file.ext and -PROFILE2=file.ext :profiles (old alignment).

VERBS (do things)

-OPTIONS :list the command line parameters
-HELP or -CHECK :outline the command line params.
-FULLHELP :output full help content.
-ALIGN :do full multiple alignment.

Perform A Multiple Alignment Using ClustalW

The multi_aln() function takes a fasta file storing the genes (proteins) that shall be aligned. The tool
argument specifies the alignment tool that shall be used to perform a multiple sequence alignment (in
this case tool = clustalw). The get_aln argument specifies whether or not the alignment shall be
printed out to the console. In case get_aln = FALSE, the corresponding alignment file is stored in the
file.path(tempdir(),_alignment,multi_aln) directory.

# in case the default execution path of clustalw runs properly on your system
multi_aln(
file = system.file(�seqs/aa_seqs.fasta�, package = �orthologr�),
tool = "clustalw",
get_aln = TRUE
)

It is also possible to pass additional parameters to the ClustalW call:
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# running clustalw using additional parameters
# details: system("clustalw2 -help")
multi_aln(
file = system.file(�seqs/aa_seqs.fasta�, package = �orthologr�),
tool = "clustalw",
get_aln = TRUE,
params = "-PWMATRIX=BLOSUM -TYPE=PROTEIN"
)

T_COFFEE

system("t_coffee -version")

In case everything is installed appropriately, you should see:

PROGRAM: T-COFFEE Version_11.00.8cbe486 (2014-08-12 21:55:14 - Revision 8cbe486 - Build 470)

MUSCLE

system("muscle -help")

In case everything is installed appropriately, you should see:

MUSCLE v3.8.31 by Robert C. Edgar

http://www.drive5.com/muscle
This software is donated to the public domain.
Please cite: Edgar, R.C. Nucleic Acids Res 32(5), 1792-97.

Basic usage

muscle -in <inputfile> -out <outputfile>

Common options (for a complete list please see the User Guide):

-in <inputfile> Input file in FASTA format (default stdin)
-out <outputfile> Output alignment in FASTA format (default stdout)
-diags Find diagonals (faster for similar sequences)
-maxiters <n> Maximum number of iterations (integer, default 16)
-maxhours <h> Maximum time to iterate in hours (default no limit)
-html Write output in HTML format (default FASTA)
-msf Write output in GCG MSF format (default FASTA)
-clw Write output in CLUSTALW format (default FASTA)
-clwstrict As -clw, with �CLUSTAL W (1.81)� header
-log[a] <logfile> Log to file (append if -loga, overwrite if -log)
-quiet Do not write progress messages to stderr
-version Display version information and exit

22



Without refinement (very fast, avg accuracy similar to T-Coffee): -maxiters 2
Fastest possible (amino acids): -maxiters 1 -diags -sv -distance1 kbit20_3
Fastest possible (nucleotides): -maxiters 1 -diags

# in case the default execution path of muscle runs properly on your system
multi_aln(
file = system.file(�seqs/aa_seqs.fasta�, package = �orthologr�),
tool = "muscle",
get_aln = TRUE
)

ClustalO

system("clustalo --help")

MAFFT

system("mafft -help")

In case everything is installed appropriately, you should see:

------------------------------------------------------------------------------
MAFFT v7.187 (2014/10/02)
http://mafft.cbrc.jp/alignment/software/
MBE 30:772-780 (2013), NAR 30:3059-3066 (2002)

------------------------------------------------------------------------------
High speed:

% mafft in > out
% mafft --retree 1 in > out (fast)

High accuracy (for <~200 sequences x <~2,000 aa/nt):
% mafft --maxiterate 1000 --localpair in > out (% linsi in > out is also ok)
% mafft --maxiterate 1000 --genafpair in > out (% einsi in > out)
% mafft --maxiterate 1000 --globalpair in > out (% ginsi in > out)

If unsure which option to use:
% mafft --auto in > out

--op # : Gap opening penalty, default: 1.53
--ep # : Offset (works like gap extension penalty), default: 0.0
--maxiterate # : Maximum number of iterative refinement, default: 0
--clustalout : Output: clustal format, default: fasta
--reorder : Outorder: aligned, default: input order
--quiet : Do not report progress
--thread # : Number of threads (if unsure, --thread -1)

The multi_aln() function

The multi_aln() function is an interface function between R and common multiple sequence alignment tools.
When working with this function a new folder named _alignment is being created and stores the multiple
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alignment returned by the corresponding alignment tool. The argument get_aln = TRUE allows to work
with the multiple alignment generated by the corresponding alignment tool within the current R session.

This small pairwise alignment example shall illustrate how the multi_aln() output can be used:

multi_aln(
system.file(�seqs/aa_seqs.fasta�, package = �orthologr�),
tool = "clustalw",
get_aln = TRUE
)

$nb
[1] 2

$nam
[1] "AT1G01010.1" "333554|PACid_16033839"

$seq
$seq[[1]]
[1] "medqvgfgfrpndeelvghylrnkiegntsrdvevaisevnicsydpwnlrfqskyksrdamwyffsrrennk
gnrqsrttvsgkwkltgesvevkdqwgfcsegfrgkighkrvlvfldgrypdktksdwvihefhydllpehqrtyvic
rleykgddadilsayaidptpafvpnmtssagsvvnqsrqrnsgsyntyseydsanhgqqfnensnimqqqplqgsfn
plleydfanhggqwlsdyidlqqqvpylapyenesemiwkhvieenfeflvdertsmqqhysdhrpkkpvsgvlpdds
sdtetgsmifedtssstdsvgssdepghtriddipslniieplhnykaqeqpkqqskekvissqksecewkmaedsik
ippstntvkqswivlenaqwnylknmiigvllfisviswiilvg"

$seq[[2]]
[1] "--------maasehrcvgcgfr---------------vkslfiqyspgnirlmk-------------------
---------------cgnckevadey----------iecermiifid---------------------lilhrpkvyr
hvlynainpetvniqhllwklvfvyllldsyrslllrrtdeess----------------fshssvlisikvligvls
anaafifs----------------------------------------faiaakgllnevs---rgreimlgicissy
fkifllamlvwefp----------------msvifivdilvltsnsmalkvmtestmtrciavcliahlvrfsvgqif
ep-------tifltqfgslmqylsylfrtv--------------"

$com
[1] NA

attr(,"class")
[1] "alignment"

Furthermore, multiple alignments are returned as follows:

multi_aln(
system.file(�seqs/multi_aln_example.fasta�, package = �orthologr�),
tool = "clustalw",
get_aln = TRUE
)

CLUSTAL 2.1 Multiple Sequence Alignments
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$nb
[1] 4

$nam
[1] "AT1G01010.1|PACid_19656964" "Thhalv10006531m|PACid_20187082"
[3] "Bra032623|PACid_22715924" "311315|PACid_16059488"

$seq
$seq[[1]]
[1] "-----------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
-----------------------------------------medqvgfg------------------frp
ndeelvghylrnkiegntsr----------dvevaisevnicsydp---------wnlrfqskyksrd--
-------amwyffsrre------------nnkgnrqsrttvsgkwkltgesvevkdqwgfcseg------
--frgkig-------------------------------------------hkrvlvfldgrypdktksd
wvihefhydllpehqr-----------------tyvicr--leykgddadilsayaidptpafvpnmtss
agsvvnqsrqrnsgsyntyseydsanhgqqfnensn-imqqqplqgsfnplleydfanhg-------gqw
l----------------------------sdyidlqqqvpylapye------------------------
-----------------------------------nesemiwkhvieenfeflvdertsmqqhysdhrpk
kpvsgvlp----------------ddssdtetgsmifedtssstds------------------------
---------------------------------vgssdepghtriddipslniieplhnykaqeqpkqqs
kekvissqksecewkmaeds---------ikippstntvkqswivlenaqwnylknmiigvllfisvisw
iilvg-------------------------------"

$seq[[2]]
[1] "mvmederrgdikppsywldacediscdliddlvsdfdpssvavaesvdengvnndffggidhild
siknggglpnrahingvsetnsqringnsevseaaqliagettvsvkgnvlqkcggkrdevskeegeknr
krarvcsyqrersnlsgrgqansregdrfmnrkrtrnwdeaghnkrrdgynyrrdgrdreargywerdkv
gsnelvyrsgtweadherdlkkesgrnresdekaeenkskpeehkekvveeqarryqldvleqakaknti
afletgagktliailliksihkdltsqnrkmlsvflvpkvplvyqqaevirnqtcfqvghycgemgqdfw
darrwqrefeskqvlvmtaqillnilrhsiirmeainllildechhavkkhpyslvmsefyhttpkdkrp
aifgmtaspvnlkgvssqvdcaikirnletkldstvctikdrkelekhvpmpseivveydkaatmwslhe
kikqmiaaveeaaqassrkskwqfmgardagakdelrqvygvsertesdgaanlihklrainytlaelgq
wcaykvaqsfltalqsdervnfqvdvkfqesylsevvsllqcellegaaaekavaelskpengnandeie
egelpddhvvsggehvdkvigaavadgkvtpkvqsliklllkyqhtadfraivfvervvaalvlpkvfae
lpslgfircasmighnnsqemkssqmqdtiskfrdgqvtllvatsvaeegldirqcnvvmrfdlaktvla
yiqsrgrarkpgsdyilmverenvshaaflrnarnseetlrkeaiertdlshlkdssrlisidavpgtvy
kveatgamvslnsavglihfycsqlpgdryailrpefsmvkhekpgghteyscrlqlpcnapfeilegpv
cssmrlaqqavclagckklhemgaftdmllpdkgsgqdaekadqddegepipgtarhrefypegvadvlk
gewilsgkeicessklfhlymysvrcvdsgvskdpfltevsefavlfgneldaevlsmsmdlyvaramit
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kaslafrgslditesqlssikkfhvrlmsivldvdvepsttpwdpakaylfvpvadnssaepikginwel
vekitkttvwdnplqrarpdvylgtnertlggdrreygfgklrhnigfgqkshptygirgavasfdvvra
sgllpvrdalekevegdlsqgklmmadgcmvaenllgkivtaahsgkrfyvdsicydmsaetsfprkegy
lgpleyntyadyykqkygvdlsckqqplikgrgvsycknllsprfeqsgesetildktyyvflppelcvv
hplsgslvrgaqrlpsimrrvesmllavqlknlisypiptskilealtaascqetfcyeraellgdaylk
wivsrflflkypqkhegqltrmrqqmvsnlvlyqyalvkglqsyiqadrfapsrwsapgvppvydedtkd
ggssffdeeekpegnkdvfedgemedgelegdlssyrvlssktladvvealigvyyveggktaanhlmkw
igihveddpeetegsvkpvynvpesvlksidfvgleralkyeftekgllveaithasrpssgvscyqrle
fvgdavldhlitrhlfftytslppgrltdlraaavnnenfarvavkhklhlylrhgssalekqirdfvke
vltesskpgfnsfglgdckapkvlgdivesiagaifldsgkdttaawkvfqpllqpmvtpetlpmhpvre
lqercqqqaegleykasrsgntatvevfidgvqvgaaqnpqkkmaqklaarnalaalkekeaeeskkkqa
ngnaagenqddnengnkkngnqtftrqtlndiclrknwpmpsyrcvkeggpahakrftfgvrvntsdrgw
tdecigepmpsvkkakdsaailllellnktys----"

$seq[[3]]
[1] "-----------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
-----------------------------------------------mqqppqmfpmapsmpptnitteq
iqkyleenkklimaimenqnlgklaecaqyqallqknlmylaaiadaqpppstagatppp----------
---------------------------------amasqmgaphpg-------------------------
---------------------------------------------mqppsyfmqhp------qasgmaqq
appagifp----------------------prgplqfgsphqlqdp------------------------
-----------------------------------qqqhmhqqamqghmgmrpmginnnngmqhqmqqqp
etslggsaanvgirggkqdg-------------------------adgqgkddgk---------------
------------------------------------"

$seq[[4]]
[1] "-----------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
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----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
----------------------------------------------------------------------
--------------------------------------------------------mlslnmrteienlw
vfalaskfnifmqehfaslllaiaitwctltivfwstpggpawg--------------------------
--------------------------kyfftrrfsslghnrksknlipgprgfplvgsmslrsshvahqr
iasvaemsnakrlmafslgdtkvvvtchpdvakeilnssvfadrpvdetayg---lmfnramgfapngty
wrtlrrlssnhlfnpkqikrseeqrrviatqmvnafarnaksafavrdllktaslcnmmglvfg------
-----------------------------------------------------reyelesnnnveseclk
glveegydllg-----------------------tlnwtdhlpwlagldfqqirfrcsqlvpkvnlllsr
iihehyatgnfldvllslqrseklsdsdivavlwemifrgtdtvavliewvlarialhpk----------
----------------------------------vqstvhdeldr-------------------------
---------------------------------------------vvgrsrtvdesdlpsltyltamike
vlr--lhp-----------------------pgpllswarlsitdt------------------------
------------------------------------tvdgyhvpagttamvnmwaiardphvwedplefk
perfvakdgeaefsvfgsdlr---------------lapfgsgkrvcpgknlglttvsfwvatllhefew
lpsveanppdlsevlrlscemacplivnvsprrksv"

$com
[1] NA

attr(,"class")
[1] "alignment"

Performing Divergence Stratigraphy

The orthologr package allows users to perform Divergence Stratigraphy for any query and subject
organisms of interest.

Divergence Stratigraphy is the process of quantifying the selection pressure (in terms of protein evolu-
tionary rate) acting on orthologous genes between closely related species. The resulting sequence divergence
map (short divergence map), stores the divergence stratum in the first column and the query_id of inferred
orthologous genes in the second column ( Quint et al., 2012 Nature; Drost et al., 2015 Mol. Biol. Evol.; Drost
et al., 2016 Mol. Biol. Evol.; Introduction to myTAI ).

The following Algorithm implemented in divergence_stratigraphy() defines Divergence Stratigraphy
as method (see Drost et al., 2015):

1) Orthology Inference using BLAST best reciprocal hit (“RBH”) based on blastp

2) Pairwise global amino acid alignments of orthologous genes using the Needleman-Wunsch algorithm

3) Codon alignments of orthologous genes using PAL2NAL

4) dNdS estimation using Comeron’s method (1995)

5) Categorize estimated dNdS values into divergence strata (= deciles of all dNdS values)

In orthologr the Needleman-Wunsch algorithm, PAL2NAL and Comeron’s method (1995) are al-
ready included in the orthologr package and do not have to be installed separately. Nevertheless,
users need to make sure they have BLAST installed on their machine before using the
divergence_stratigraphy()function.

27



Note: The following examples assume that the BLAST program is installed and stored in the default
execution path usr/local/bin. In case users do not have BLAST installed yet or the following command
in R produces a di�erent output, please consult the Installation Vignette to corretly set up the BLAST
program to perform Divergence Stratigraphy.

system("blastp -version")

blastp: 2.2.30+
Package: blast 2.2.30, build Oct 27 2014 17:10:51

Divergence Map Computations

In Drost et al., 2015 Mol. Biol. Evol. we define a Divergence Map as table storing the degree of selection
pressure (= divergence strata) for each protein coding gene of a given query organism. In this case
selection pressure was quantified by dNdS estimation (ratio of synonymous versus non-synonymous codon ->
amino acid sequence substitution rates). The resulting dNdS values for all protein coding genes of the query
organism are then categorized into deciles (10%-quantiles) allowing users to compare the results obtained
from Phylostratigraphy with results obtained form Divergence Stratigraphy.

To perform Divergence Stratigraphy using orthologr users need to retrieve the following input files:

• a CDS file covering all protein coding genes of the query organism of interest
• a CDS file covering all protein coding genes of the subject organism of interest

Sequence Data Retrieval

In the following example, we will use Arabidopsis thaliana as query organism and Arabidopsis lyrata as subject
organism.

First, we need to download the CDS sequences for all protein coding genes of A. thaliana and A. lyrata.

Option 1:

The CDS retrieval can be done using a Terminal or by manual downloading the files

• Arabidopsis_thaliana.TAIR10.23.cds.all.fa.gz
• Arabidopsis_lyrata.v.1.0.23.cds.all.fa.gz

# download CDS file of A. thaliana
curl ftp://ftp.ensemblgenomes.org/pub/
plants/release-23/fasta/arabidopsis_thaliana/
cds/Arabidopsis_thaliana.TAIR10.23.cds.all.fa.gz
-o Arabidopsis_thaliana.TAIR10.23.cds.all.fa.gz

# unzip the fasta file
gunzip -d Arabidopsis_thaliana.TAIR10.23.cds.all.fa.gz

# download CDS file of A. lyrata

curl ftp://ftp.ensemblgenomes.org/pub/plants/
release-23/fasta/arabidopsis_lyrata/cds/
Arabidopsis_lyrata.v.1.0.23.cds.all.fa.gz
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-o Arabidopsis_lyrata.v.1.0.23.cds.all.fa.gz

# unzip the fasta file
gunzip -d Arabidopsis_lyrata.v.1.0.23.cds.all.fa.gz

When the download is finished you need to unzip the files.

Option 2:

We implemented the biomartr package to automate the process of performing biological data retrieval. The
Sequence Retrieval Vignette stored in biomartr provides detailed use cases for the automation of biological
sequence retrieval.

Note: Users need to make sure they have biomartr installed before running any biomartr functions.

Computation Time

Please note that performing Divergence Stratigraphy with two large genomes can take (even on a
multicore machine) some time -> up to several hours. On a 4 core machine with 3.4 GHz i7 processors
the computation time of generating a divergence map between A. thaliana and A. lyrata was 2.5-3 hours.

The comp_cores argument implemented in the divergence_stratigraphy() function allows users to specify
the number of cores they would like to use on their machine. The default value is comp_cores = 1 which
might take 10-12h to execute. So users need to make sure that they use all cores available on their machine
to speed up the computation time.

Running divergence_stratigraphy()

As mentioned earlier the divergence_stratigraphy() function is the main function to perform the Diver-
gence Stratigraphy algorithm.

In divergence_stratigraphy() the query_file and subject_file arguments take an character string
storing the path to the corresponding fasta files containing the CDS sequences of these organisms. Here the
previously downloaded CDS sequence files of A. thaliana (= query_file) and A. lyrata (= subject_file)
need to be specified. The eval is set to 1E-5 (default ; see Quint et al., 2012 Nature) and BLAST best
reciprocal hit is used for orthology inference (see Drost et al., 2015). In case ‘orthologr is running on a
multicore machine, users can set the comp_cores argument to any number of cores supported by their machine.
The clean_folders argument indicates whether or not the internal folder structure should be deleted (cleaned)
after processing is finished. In this case all output files generated by divergence_stratigraphy (stored in
tempdir()) will be removed after the Divergence Map was returned. The quiet argument indicates whether
or not a successful interface call should be printed out to the console (quiet = FALSE) or not (quiet =
TRUE).

library(orthologr)

# compute the divergence map of A. thaliana
Athaliana_DM <- divergence_stratigraphy(

query_file = "path/to/Arabidopsis_thaliana.TAIR10.23.cds.all.fa",
subject_file = "path/to/Arabidopsis_lyrata.v.1.0.23.cds.all.fa",
eval = "1E-5",
ortho_detection = "RBH",
comp_cores = 1,
quiet = TRUE,
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clean_folders = TRUE
)

Before running divergence_stratigraphy() with two complete genomes, users can first run a test Diver-
gence Stratigraphy with 20 example genes that are stored in the orthologr package:

library(orthologr)

# performing standard divergence stratigraphy
divergence_stratigraphy(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
eval = "1E-5",
ortho_detection = "RBH",
dnds.threshold = 2,
comp_cores = 1,
quiet = TRUE,
clean_folders = TRUE
)

divergence_strata query_id
1 10 AT1G01010.1
2 9 AT1G01020.1
3 5 AT1G01030.1
4 4 AT1G01040.1
5 1 AT1G01050.1
6 9 AT1G01060.3
7 6 AT1G01070.1
8 8 AT1G01080.1
9 2 AT1G01090.1
10 7 AT1G01110.2
11 2 AT1G01120.1
12 3 AT1G01140.3
13 10 AT1G01150.1
14 8 AT1G01160.1
15 1 AT1G01170.2
16 6 AT1G01180.1
17 7 AT1G01190.1
18 4 AT1G01200.1
19 5 AT1G01210.1
20 3 AT1G01220.1

The resulting output is a Divergence Map of the 20 example genes.

To save corresponding Divergenec Maps to a hard drive users can pass the resulting divergence_stratigraphy()
output to a variable and then use the write.table() function implemented in R to store the Divergenec
Map as *.csv file.

Athaliana_DM <- divergence_stratigraphy(...)

write.table(
x = Athaliana_DM,
file = "Ath_Aly_DivergenceMap.csv",
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sep = ";",
col.names = TRUE,
row.names = FALSE,
quote = FALSE
)

This way write.table() will store the Divergence Map to the users current working directory (= getwd()).

Specifying the arguments in divergence_stratigraphy()

Several argument combinations can be specified in divergence_stratigraphy() (see Arguments in
?divergence_stratigraphy). This section introduces additional output options of divergence_stratigraphy().

Example: blast_path

Sometimes the machine users are working on does not allow them to install BLAST in the de-
fault execution path usr/local/bin. For this purpose the blast_path argument is implemented in
divergence_stratigraphy(). This argument takes an character string specifying the PATH to the user’s
blastp execution file that is stored in a di�erent place than usr/local/bin.

The following example shows a possible specification of blast_path.

library(orthologr)

# performing standard divergence stratigraphy
divergence_stratigraphy(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
blast_path = "here/the/path/to/blastp",
eval = "1E-5",
ortho_detection = "RBH",
dnds.threshold = 2,
comp_cores = 1,
quiet = TRUE,
clean_folders = TRUE
)

divergence_strata query_id
1 10 AT1G01010.1
2 9 AT1G01020.1
3 5 AT1G01030.1
4 4 AT1G01040.1
5 1 AT1G01050.1
6 9 AT1G01060.3
7 6 AT1G01070.1
8 8 AT1G01080.1
9 2 AT1G01090.1
10 7 AT1G01110.2
11 2 AT1G01120.1
12 3 AT1G01140.3
13 10 AT1G01150.1
14 8 AT1G01160.1
15 1 AT1G01170.2
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16 6 AT1G01180.1
17 7 AT1G01190.1
18 4 AT1G01200.1
19 5 AT1G01210.1
20 3 AT1G01220.1

Example: ds.values

As defined earlier, a Divergence Map stores the divergence strata for protein coding genes of a query
organism. However, divergence strata are based on dNdS values that were categorized into deciles. For
this reason it is not possible to map a divergence stratum value to the exact initial dNdS value. So in case
users are interested in the the exact dNdS value of protein coding genes, they can specify the ds.values
argument in divergence_stratigraphy() allowing them to retrieve a dNdS Map instead of a Divergence
Map. For this purpose users need to set ds.values = FALSE.

library(orthologr)

# performing standard divergence stratigraphy
# but receive a dNdS Map instead of a Divergence Map
divergence_stratigraphy(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
eval = "1E-5",
ortho_detection = "RBH",
ds.values = FALSE,
dnds.threshold = 2,
comp_cores = 1,
quiet = TRUE,
clean_folders = TRUE
)

dNdS query_id
1 0.41950 AT1G01010.1
2 0.38790 AT1G01020.1
3 0.11850 AT1G01030.1
4 0.11560 AT1G01040.1
5 0.00000 AT1G01050.1
6 0.39670 AT1G01060.3
7 0.17280 AT1G01070.1
8 0.32170 AT1G01080.1
9 0.04174 AT1G01090.1
10 0.26620 AT1G01110.2
11 0.02317 AT1G01120.1
12 0.04324 AT1G01140.3
13 0.64120 AT1G01150.1
14 0.37310 AT1G01160.1
15 0.00000 AT1G01170.2
16 0.16830 AT1G01180.1
17 0.17730 AT1G01190.1
18 0.11370 AT1G01200.1
19 0.13420 AT1G01210.1
20 0.10230 AT1G01220.1

The corresponding output now stores dNdS values instead of DS values in the first column.
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Example: subject.id

Although the Divergence Map standard is specified as storing DS values in the first column and GeneIDs in
the second column, in some cases it is important to store the GeneIDs of orthologous genes in the subject
organism. The subject.id argument implemented in divergence_stratigraphy() allows users to retrieve
the GeneIDs of the orthologous genes of the subject organism. For this purpose users need to specify
subject.id = TRUE.

# receive a Divergence Map with DS | query GeneID | orthologous subject GeneID
divergence_stratigraphy(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
eval = "1E-5",
ortho_detection = "RBH",
comp_cores = 1,
quiet = TRUE,
clean_folders = TRUE,
subject.id = TRUE
)

DS query_id subject_id
1 10 AT1G01010.1 333554|PACid:16033839
2 9 AT1G01020.1 470181|PACid:16064328
3 5 AT1G01030.1 470180|PACid:16054974
4 4 AT1G01040.1 333551|PACid:16057793
5 1 AT1G01050.1 909874|PACid:16064489
6 9 AT1G01060.3 470177|PACid:16043374
7 6 AT1G01070.1 918864|PACid:16052578
8 8 AT1G01080.1 909871|PACid:16053217
9 2 AT1G01090.1 470171|PACid:16052860
10 7 AT1G01110.2 333544|PACid:16034284
11 2 AT1G01120.1 918858|PACid:16049140
12 3 AT1G01140.3 470161|PACid:16036015
13 10 AT1G01150.1 918855|PACid:16037307
14 8 AT1G01160.1 918854|PACid:16044153
15 1 AT1G01170.2 311317|PACid:16052302
16 6 AT1G01180.1 909860|PACid:16056125
17 7 AT1G01190.1 311315|PACid:16059488
18 4 AT1G01200.1 470156|PACid:16041002
19 5 AT1G01210.1 311313|PACid:16057125
20 3 AT1G01220.1 470155|PACid:16047984

The resulting output now shows DS values, query GeneIDs, and orthologous subject GeneIDs.

A similar output can be generated for dNdS values instead of DS values by specifying ds.values = FALSE
and subject.id = TRUE.

# receive a dNdS Map with dNdS | query GeneID | orthologous subject GeneID
divergence_stratigraphy(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
eval = "1E-5",
ortho_detection = "RBH",
comp_cores = 1,
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ds.values = FALSE,
quiet = TRUE,
clean_folders = TRUE,
subject.id = TRUE
)

dNdS query_id subject_id
1 0.41950 AT1G01010.1 333554|PACid:16033839
2 0.38790 AT1G01020.1 470181|PACid:16064328
3 0.11850 AT1G01030.1 470180|PACid:16054974
4 0.11560 AT1G01040.1 333551|PACid:16057793
5 0.00000 AT1G01050.1 909874|PACid:16064489
6 0.39670 AT1G01060.3 470177|PACid:16043374
7 0.17280 AT1G01070.1 918864|PACid:16052578
8 0.32170 AT1G01080.1 909871|PACid:16053217
9 0.04174 AT1G01090.1 470171|PACid:16052860
10 0.26620 AT1G01110.2 333544|PACid:16034284
11 0.02317 AT1G01120.1 918858|PACid:16049140
12 0.04324 AT1G01140.3 470161|PACid:16036015
13 0.64120 AT1G01150.1 918855|PACid:16037307
14 0.37310 AT1G01160.1 918854|PACid:16044153
15 0.00000 AT1G01170.2 311317|PACid:16052302
16 0.16830 AT1G01180.1 909860|PACid:16056125
17 0.17730 AT1G01190.1 311315|PACid:16059488
18 0.11370 AT1G01200.1 470156|PACid:16041002
19 0.13420 AT1G01210.1 311313|PACid:16057125
20 0.10230 AT1G01220.1 470155|PACid:16047984

Example: dnds.threshold

Divergence Strata are obtained by categorizing dNdS values into deciles. For decilation the range of dNdS
values is important. The dnds.threshold defines the upper level cut o� of dNdS values. Since dNdS values
are in the range [0, +Inf] a upper threshold needs to be specified. The default value for dnds.threshold in
divergence_stratigraphy() is dnds.threshold = 2 due to the interpretation of dNdS values for predicting
sequence evolution (dNdS < 1 -> negative selection; dNdS = 1 -> neutral selection; dNdS > 1 -> positive
selection). Hence, all dNdS values > 1 predict positive selection. In my experience of computing dNdS
values between hundreds of pairwise species comparisons covering all evolutionary distances, dNdS values
of orthologous genes rarely take values > 2. Nevertheless, in case you wish to extend or reduce the upper
threshold for dNdS values, you can specify the dnds.threshold in divergence_stratigraphy().

# upper threshold for dNdS: dnds.threshold = 5
divergence_stratigraphy(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
eval = "1E-5",
ortho_detection = "RBH",
ds.values = FALSE,
dnds.threshold = 5,
comp_cores = 1,
quiet = TRUE,
clean_folders = TRUE
)
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Example: ortho_detection

According to Drost et al., 2015 Mol. Biol. Evol. the Divergence Stratigraphy algorithm performs BLAST
best reciprocal hit (RBH) as orthology inference method. Despite this convention, the ortho_detection
argument allows users to perform orthology inference within the Divergence Stratigraphy algorithm that is
based on any orthology inference method implemented in orthologr (see ?orthologs or Orthology Inference
Vignette for details). For example in Quint et al., 2012 Nature instead of using BLAST best reciprocal
hit, the method BLAST best hit (BH) was used to perform orthology inference within the Divergence
Stratigraphy algorithm.

# orthology inference method: ortho_detection = "BH"
divergence_stratigraphy(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
eval = "1E-5",
ortho_detection = "BH",
ds.values = TRUE,
dnds.threshold = 2,
comp_cores = 1,
quiet = TRUE,
clean_folders = TRUE
)

DS query_id
1 10 AT1G01010.1
2 9 AT1G01020.1
3 5 AT1G01030.1
4 4 AT1G01040.1
5 1 AT1G01050.1
6 9 AT1G01060.3
7 6 AT1G01070.1
8 8 AT1G01080.1
9 2 AT1G01090.1
10 7 AT1G01110.2
11 2 AT1G01120.1
12 3 AT1G01140.3
13 10 AT1G01150.1
14 8 AT1G01160.1
15 1 AT1G01170.2
16 6 AT1G01180.1
17 7 AT1G01190.1
18 4 AT1G01200.1
19 5 AT1G01210.1
20 3 AT1G01220.1

Skip Divergence Stratigraphy and Download Already Published Divergence Maps

Users can find a detailed list of published Phylostratigraphic Maps and Divergence Maps by following the
link. This way the computation time of 3-4 h on a local machine for 2 genome comparisions can be skipped.
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Combine a Divergence Map with Gene Expression Data

Divergence Maps can be used for a wide range of analyses. One example is to combine Divergence
Maps with gene expression data to capture evolutionary signals in developmental transcriptomes (=
Phylotranscriptomics; see Drost et al., 2015 Mol. Biol. Evol.). Performing phylotranscriptomic analyses
based on an existing Divergence Map can easily be done by using the myTAI package. You can consult the
Introduction to the myTAI package Vignette for more details.

Performing dN/dS Estimation

The dN/dS ratio quantifies the mode and strength of selection acting on a pair of orthologous genes. This
selection pressure can be quantified by comparing synonymous substitution rates (dS) that are assumed to
be neutral with nonsynonymous substitution rates (dN), which are exposed to selection as they change the
amino acid composition of a protein (Mugal et al., 2013).

The orthologr package provides a function named dNdS() to perform dNdS estimation on pairs of orthologous
genes. The dNdS() function takes the CDS files of two organisms of interest (query_file and subject_file)
and computes the dNdS estimation values for orthologous gene pairs between these organisms.

Note: the following dNdS estimation methods are based on KaKs_Calculator:

• “NG”: Nei, M. and Gojobori, T. (1986)

• “LWL”: Li, W.H., et al. (1985)

• “LPB”: Li, W.H. (1993) and Pamilo, P. and Bianchi, N.O. (1993)

• “MLWL” (Modified LWL), MLPB (Modified LPB): Tzeng, Y.H., et al. (2004)

• “YN”: Yang, Z. and Nielsen, R. (2000)

• “MYN” (Modified YN): Zhang, Z., et al. (2006)

It is assumed that when you choose one of these dNdS estimation methods you have KaKs_Calculator
installed on your machine and it can be executed from the default execution PATH.

The following pipeline resembles an example dNdS estimation procedure:

1) Orthology Inference: e.g. BLAST reciprocal best hit (RBH)

2) Pairwise sequence alignment: e.g. clustalw for pairwise amino acid sequence alignments

3) Codon Alignment: e.g. pal2nal program

4) dNdS estimation: e.g. Yang, Z. and Nielsen, R. (2000) (YN)

Note: it is assumed that when using dNdS() all corresponding multiple sequence alignment programs you
want to use are already installed on your machine and are executable via either the default execution PATH or
you specifically define the location of the executable program via the aa_aln_path or blast_path argument
that can be passed to dNdS(). See the Sequence Alignments vignette for details.

The following example shall illustrate a dNdS estimation process.
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library(orthologr)

# get a dNdS table using:
# 1) reciprocal best hit for orthology inference (RBH)
# 2) clustalw for pairwise amino acid alignments
# 3) pal2nal for codon alignments
# 4) Yang, Z. and Nielsen, R. (2000) (YN) for dNdS estimation
# 5) single core processing �comp_cores = 1�
dNdS(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
ortho_detection = "RBH",
aa_aln_type = "multiple",
aa_aln_tool = "clustalw",
codon_aln_tool = "pal2nal",
dnds_est.method = "YN",
comp_cores = 1,
clean_folders = TRUE,
quiet = TRUE
)

query_id subject_id dN dS dNdS method
1: AT1G01010.1 333554|PACid_16033839 0.10581700 0.2844350 0.3720250 YN
2: AT1G01020.1 470181|PACid_16064328 0.04164150 0.0951677 0.4375590 YN
3: AT1G01030.1 470180|PACid_16054974 0.01664670 0.1163900 0.1430260 YN
4: AT1G01040.1 333551|PACid_16057793 0.01421700 0.1314360 0.1081670 YN
5: AT1G01050.1 909874|PACid_16064489 NA 0.2092450 0.0000000 YN
6: AT1G01060.3 470177|PACid_16043374 0.04387800 0.1131710 0.3877130 YN
7: AT1G01070.1 918864|PACid_16052578 0.02028020 0.0960773 0.2110820 YN
8: AT1G01080.1 909871|PACid_16053217 0.03930610 0.0995795 0.3947210 YN
9: AT1G01090.1 470171|PACid_16052860 0.00992436 0.2496940 0.0397461 YN

10: AT1G01110.2 333544|PACid_16034284 0.03292970 0.1293160 0.2546450 YN
11: AT1G01120.1 918858|PACid_16049140 0.00356132 0.1225410 0.0290623 YN
12: AT1G01140.3 470161|PACid_16036015 0.00582238 0.1354990 0.0429699 YN
13: AT1G01150.1 918855|PACid_16037307 0.13565500 0.1962460 0.6912480 YN
14: AT1G01160.1 918854|PACid_16044153 0.11558300 0.1929560 0.5990120 YN
15: AT1G01170.2 311317|PACid_16052302 0.00557175 0.2903370 0.0191906 YN
16: AT1G01180.1 909860|PACid_16056125 0.04065370 0.1557400 0.2610360 YN
17: AT1G01190.1 311315|PACid_16059488 0.02849220 0.1538610 0.1851810 YN
18: AT1G01200.1 470156|PACid_16041002 0.01983450 0.1512510 0.1311360 YN
19: AT1G01210.1 311313|PACid_16057125 0.02106910 0.1433630 0.1469630 YN
20: AT1G01220.1 470155|PACid_16047984 0.01530070 0.1446480 0.1057780 YN

The output includes NA values. To filter for NA values or a specific dnds.threshold, you can use the
filter_dNdS() function. The filter_dNdS() function takes the output data.table returned by dNdS() and
filters the output by the following criteria:

1) all dN values having an NA value are omitted

2) all dS values having an NA value are omitted

3) all dNdS values >= the specified dnds.threshold are omitted
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library(orthologr)

# get dNdS estimated for orthologous genes between A. thaliana and A. lyrata
Ath_Aly_dnds <-
dNdS(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
dnds_est.method = "YN",
comp_cores = 1,
clean_folders = TRUE,
quiet = TRUE
)

# filter for:
# 1) all dN values having an NA value are omitted
# 2) all dS values having an NA value are omitted
# 3) all dNdS values >= 2 are omitted
filter_dNdS(Ath_Aly_dnds, dnds.threshold = 2)

query_id subject_id dN dS dNdS method
1 AT1G01010.1 333554|PACid_16033839 0.10581700 0.2844350 0.3720250 YN
2 AT1G01020.1 470181|PACid_16064328 0.04164150 0.0951677 0.4375590 YN
3 AT1G01030.1 470180|PACid_16054974 0.01664670 0.1163900 0.1430260 YN
4 AT1G01040.1 333551|PACid_16057793 0.01421700 0.1314360 0.1081670 YN
5 AT1G01060.3 470177|PACid_16043374 0.04387800 0.1131710 0.3877130 YN
6 AT1G01070.1 918864|PACid_16052578 0.02028020 0.0960773 0.2110820 YN
7 AT1G01080.1 909871|PACid_16053217 0.03930610 0.0995795 0.3947210 YN
8 AT1G01090.1 470171|PACid_16052860 0.00992436 0.2496940 0.0397461 YN
9 AT1G01110.2 333544|PACid_16034284 0.03292970 0.1293160 0.2546450 YN
10 AT1G01120.1 918858|PACid_16049140 0.00356132 0.1225410 0.0290623 YN
11 AT1G01140.3 470161|PACid_16036015 0.00582238 0.1354990 0.0429699 YN
12 AT1G01150.1 918855|PACid_16037307 0.13565500 0.1962460 0.6912480 YN
13 AT1G01160.1 918854|PACid_16044153 0.11558300 0.1929560 0.5990120 YN
14 AT1G01170.2 311317|PACid_16052302 0.00557175 0.2903370 0.0191906 YN
15 AT1G01180.1 909860|PACid_16056125 0.04065370 0.1557400 0.2610360 YN
16 AT1G01190.1 311315|PACid_16059488 0.02849220 0.1538610 0.1851810 YN
17 AT1G01200.1 470156|PACid_16041002 0.01983450 0.1512510 0.1311360 YN
18 AT1G01210.1 311313|PACid_16057125 0.02106910 0.1433630 0.1469630 YN
19 AT1G01220.1 470155|PACid_16047984 0.01530070 0.1446480 0.1057780 YN

Instead of using a multiple alignment tool for pairwise alignments you can also choose a global pairwise
alignment of orthologous genes based on the Needleman-Wunsch algorithm. For this purpose the argument
aa_aln_type must be set to aa_aln_type = "pairwise" and aa_aln_tool = "NW" for Needleman-Wunsch.

library(orthologr)

# get a dNdS table using:
# 1) reciprocal best hit for orthology inference (RBH)
# 2) pairwise amino acid alignments using Needleman-Wunsch
# 3) pal2nal for codon alignments
# 4) Comeron (1995) for dNdS estimation
# 5) single core processing �comp_cores = 1�
dNdS(

38



query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
ortho_detection = "RBH",
aa_aln_type = "pairwise",
aa_aln_tool = "NW",
codon_aln_tool = "pal2nal",
dnds_est.method = "Comeron",
comp_cores = 1,
clean_folders = TRUE,
quiet = TRUE
)

query_id subject_id dN dS dNdS
1: AT1G01010.1 333554|PACid:16033839 0.106400 0.2537 0.41950
2: AT1G01020.1 470181|PACid:16064328 0.040230 0.1037 0.38790
3: AT1G01030.1 470180|PACid:16054974 0.014990 0.1265 0.11850
4: AT1G01040.1 333551|PACid:16057793 0.013470 0.1165 0.11560
5: AT1G01050.1 909874|PACid:16064489 0.000000 0.1750 0.00000
6: AT1G01060.3 470177|PACid:16043374 0.044950 0.1133 0.39670
7: AT1G01070.1 918864|PACid:16052578 0.018300 0.1059 0.17280
8: AT1G01080.1 909871|PACid:16053217 0.033980 0.1056 0.32170
9: AT1G01090.1 470171|PACid:16052860 0.009104 0.2181 0.04174

10: AT1G01110.2 333544|PACid:16034284 0.032480 0.1220 0.26620
11: AT1G01120.1 918858|PACid:16049140 0.003072 0.1326 0.02317
12: AT1G01140.3 470161|PACid:16036015 0.005672 0.1312 0.04324
13: AT1G01150.1 918855|PACid:16037307 0.130000 0.2028 0.64120
14: AT1G01160.1 918854|PACid:16044153 0.104600 0.2804 0.37310
15: AT1G01170.2 311317|PACid:16052302 0.000000 0.3064 0.00000
16: AT1G01180.1 909860|PACid:16056125 0.029680 0.1763 0.16830
17: AT1G01190.1 311315|PACid:16059488 0.028690 0.1618 0.17730
18: AT1G01200.1 470156|PACid:16041002 0.019050 0.1675 0.11370
19: AT1G01210.1 311313|PACid:16057125 0.020670 0.1540 0.13420
20: AT1G01220.1 470155|PACid:16047984 0.015690 0.1533 0.10230

The dNdS() function can be used choosing the following options:

• ortho_detection : RBH (BLAST best reciprocal hit), BH (BLAST best reciprocal hit), PO (Pro-
teinOrtho), and OrthoMCL (OrthoMCL)

• aa_aln_type : multiple or pairwise
• aa_aln_tool : clustalw, t_coffee, muscle, clustalo, mafft, and NW (in case aa_aln_type =

"pairwise")
• codon_aln_tool : pal2nal
• dnds_est.method : Li, Comeron, NG, LWL, LPB, MLWL, YN, and MYN

Please see ?dNdS for details.

In case your BLAST program, or multiple alignment program can not be executed from the default execution
PATH you can specify the aa_aln_path or blast_path arguments.

library(orthologr)

# using the �aa_aln_path� or �blast_path� arguments
dNdS(
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query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
ortho_detection = "RBH",
blast_path = "here/path/to/blastp",
aa_aln_type = "multiple",
aa_aln_tool = "clustalw",
aa_aln_path = "here/path/to/clustalw",
codon_aln_tool = "pal2nal",
dnds_est.method = "Comeron",
comp_cores = 1,
clean_folders = TRUE,
quiet = TRUE
)

Advanced options

Additional arguments can be passed to dNdS(). This allows you to use more advanced options of several
interface programs.

To pass additional parameters to the interface programs, you can use the blast_params and aa_aln_params
arguments. The aa_aln_params argument assumes that when you chose e.g. aa_aln_tool = "mafft" you
will pass the corresponding additional parameters in MAFFT notation.

library(orthologr)

# get dNdS estimated for orthologous genes between A. thaliana and A. lyrata
# using additional parameters:

# get a dNdS table using:
# 1) reciprocal best hit for orthology inference (RBH)
# 2) multiple amino acid alignments using MAFFT
# 3) pal2nal for codon alignments
# 4) Comeron (1995) for dNdS estimation
# 5) single core processing �comp_cores = 1�
Ath_Aly_dnds <-

dNdS(
query_file = system.file(�seqs/ortho_thal_cds.fasta�, package = �orthologr�),
subject_file = system.file(�seqs/ortho_lyra_cds.fasta�, package = �orthologr�),
ortho_detection = "RBH",
blast_params = "-matrix BLOSUM80",
aa_aln_tool = "mafft",
aa_aln_params = "--maxiterate 1 --clustalout",
dnds_est.method = "Comeron",
comp_cores = 1,
clean_folders = TRUE,
quiet = TRUE
)

# filter for:
# 1) all dN values having an NA value are omitted
# 2) all dS values having an NA value are omitted
# 3) all dNdS values >= 0.1 are omitted
filter_dNdS(Ath_Aly_dnds, dnds.threshold = 0.1)
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query_id subject_id dN dS dNdS
1 AT1G01050.1 909874|PACid:16 0.000000 0.1750 0.00000
2 AT1G01090.1 470171|PACid:16 0.009843 0.2150 0.04579
3 AT1G01120.1 918858|PACid:16 0.003072 0.1326 0.02317
4 AT1G01140.3 470161|PACid:16 0.005672 0.1312 0.04324
5 AT1G01170.2 311317|PACid:16 0.008750 0.2827 0.03095
6 AT1G01220.1 470155|PACid:16 0.015210 0.1533 0.09919

Here blast_params and aa_aln_params take an character string specifying the parameters that shall be
passed to BLAST and MAFFT. The notation of these parameters must follow the command line call of the
stand alone versions of BLAST and MAFFT: e.g. blast_params = "blast_params = -matrix BLOSUM80"
and aa_aln_params = "--maxiterate 1 --clustalout".
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10.6 Suppl. Material: Evidence for Active Maintenance
of Phylotranscriptomic Hourglass Patterns in Animal
and Plant Embryogenesis
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Bacteria [2,511]
Archae [259]
Eukaryota [1,787]
Rhizaria [3]
Parabasalia [2]
Stramenopiles [39]
Rhodophyta [13]
Heterolobosea [2]
Alveolata [64]
Amoebozoa [21]
Cryptophyta [6]
Viridiplantae [364]
Haptophyceae [6]
Fornicata [4]
Euglenozoa [32]
Glaucocystophyceae [1]
Opisthokonta [1,230]
Opisthokonta incertae sedis [1]
Choanoflagellida [2]
Fungi [344]
Metazoa [883]

Supplementary figure S1: NCBI taxonomy tree representing the major groups of
species/genomes used for PS map data base.
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Supplementary figure S2: Transcriptome divergence index profiles across D. rerio
embryogenesis. A, D. rerio vs T. rubripes (P-value red. hourgl. test = 0.504). B, D.
rerio vs X. maculatus (P-value red. hourgl. test = 0.36). C, D. rerio vs G. morhua (P-
value red. hourgl. test = 0.138). The blue shaded area marks the predicted phylotypic
period. The grey lines represent the standard deviation estimated by permutation
analysis.

Supplementary figure S3: Transcriptome divergence index profiles across D.
melanogaster embryogenesis. A, D. melanogaster vs D. yakuba (P-value red. hourgl.
test = 0.021). B, D. melanogaster vs D. persimilis (P-value red. hourgl. test =
0.0215). C, D. melanogaster vs D. virilis (P-value red. hourgl. test = 0.00713). The
blue shaded area marks the predicted phylotypic period. The grey lines represent the
standard deviation estimated by permutation analysis.
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Supplementary figure S4: Transcriptome divergence index profiles across A.thaliana
embryogenesis. A, A.thaliana vs C. rubella (P-value red. hourgl. test = 0.00745).
B, A.thaliana vs B. rapa (P-value red. hourgl. test = 0.000249). C, A.thaliana
vs C. papaya (P-value red. hourgl. test = 0.00239). The blue shaded area marks the
predicted phylotypic period. The grey lines represent the standard deviation estimated
by permutation analysis.

Supplementary figure S5: Correlation between phylostrata and divergence strata.
Scatter plots of phylostratum vs. divergence stratum over all genes of D. rerio. Ka /Ks
ratios for divergence stratum assignment are derived from orthologous genes between A,
D. rerio vs T. rubripes. B, D. rerio vs X. maculatus. C, D. rerio vs G. morhua. Kendall
· values denote the Kendall rank correlation coe�cients measuring the association
between both parameters.
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Supplementary figure S6: Correlation between phylostrata and divergence strata.
Scatter plots of phylostratum vs. divergence stratum over all genes of D. melanogaster.
Ka /Ks ratios for divergence stratum assignment are derived from orthologous genes
between A, D. melanogaster vs D. yakuba. B, D. melanogaster vs D. persimilis. C,
D. melanogaster vs D. virilis. Kendall · values denote the Kendall rank correlation
coe�cients measuring the association between both parameters.

Supplementary figure S7: Correlation between phylostrata and divergence strata.
Scatter plots of phylostratum vs. divergence stratum over all genes of A.thaliana.
Ka /Ks ratios for divergence stratum assignment are derived from orthologous genes
between A, A.thaliana vs C. rubella. B, A.thaliana vs B. rapa. C, A.thaliana vs C.
papaya. Kendall · values denote the Kendall rank correlation coe�cients measuring
the association between both parameters.
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Supplementary figure S8: Expression patterns of essential genes during A. thaliana
embryogenesis. A, Mean expression levels of essential genes (embryo defective genes
= EDGs) throughout A. thaliana embryogenesis. A Kruskal-Wallis rank sum test was
performed to test the statistical significance of di�erent gene expression levels between
developmental stages (P < 0.005). B, Results of Dunn‘s test of multiple comparison
using Benjamini-Hochberg adjustment.

5



Supplementary figure S9: Transcriptome divergence index profiles across D. rerio
ontogeny starting from unfertilized egg to adult stages based on the complete develop-
mental data set of Domazet-Loöo and Tautz (2010). DS computations are based on D.
rerio vs A. mexicanus (P-value red. hourgl. test = 6.49e-19). The blue shaded area
marks the predicted phylotypic period. The grey lines represent the standard deviation
estimated by permutation analysis.

Supplementary figure S10: Frequency distribution of 10,000 randomly permuted
reductive hourglass scores Dmin that has been used to compute the P-value returned
by the reductive hourglass test for the TAI profile of A.thaliana. The corresponding
frequency distribution was fitted by a gaussian distribution and the red line visualizes
the reductive hourglass score of the observed TAI profile of A.thaliana.
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Supplementary Materials

Materials and Methods

Germination experiment
Plant material and growth conditions

Seeds of A. thaliana, accession Columbia (Col-0), were cold-stratified at 4°C in the dark for 72 h 
in Petri dishes on two layers of moistened blue filter paper (Anchor paper Co., U.S.A.). After 
stratification the seeds were incubated in a growth chamber at 22°C under constant white light. Seeds 
were collected at different developmental stages: mature dry seeds, six-hours imbibed seeds, seeds at 
testa rupture, radicle protrusion, appearance of the first root hairs, the onset of photosynthesis defined 
by appearance of greening cotyledons, and fully opened cotyledons. 

RNA extraction
Total RNA was extracted according to a modified hot borate method modified (Wan and Wilkins 

1994), as described previously (Maia et al. 2011). RNA quality and concentration were assessed by 
agarose gel electrophoresis (0.1g mL-1) and NanoDrop® measurements.

Microarray hybridization 
The quality control, RNA labeling, hybridization and data extraction were performed at 

ServiceXS B.V. (Leiden, The Netherlands). Labelled ss-cDNA was synthesized using the Affymetrix 
NuGEN Ovation PicoSL WTA v2 kit and Biotin Module using 50 ng total RNA as template. The 
fragmented ss-cDNA was utilized for the hybridization on the Affymetrix ARAGene 1.1ST Array 
plate. The Affymetrix HWS Kit was used for the hybridization, washing and staining of the plate. 
Scanning of the Array Plates was performed using the Affymetrix GeneTitan scanner. All procedures 
were performed according to the instructions of the manufacturers (http://www.nugen.com and 
http://www.affymetrix.com). The resulting data were analysed using the R statistical programming 
environment and the Bioconductor packages (Gentleman et al. 2004). The data was normalized using 
the RMA algorithm (Irizarry et al. 2003) using the TAIRG v17 cdf file 
(http://brainarray.mbni.med.umich.edu). Expression data can be downloaded from the NCBI GEO 
database (accession number GSE65394; accessible here: 
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?  token=onyxsyycjtaxxux&acc=GSE65394). 
Normalized expression data are included in Supplementary Dataset 1. See also Silva et al. (2016) for a 
detailed description of the microarray experiment.

Floral transition experiment
Plant material and growth conditions

To achieve synchronization of flowering times, we adapted a previously published cultivation
regime (Schmid et al. 2003). In brief, A. thaliana Col-0 seeds were surface sterilized and stratified for 4
days at 4°C in water in the dark. They were then germinated for 7 days on vertical agar plates at 21°C
under short day photoperiods (8h light/16 h dark), before they were vernalized for 6 weeks at 4°C.
Although floral  transition  in  Col-0 does  not  require  vernalization,  this  step significantly  increased
flowering time synchrony. Subsequently, seedlings were transferred to soil and grown for another 7
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days at 21°C under short day photoperiods, before flowering was induced by shifting the plants to long
day conditions (16h light/8h dark). For RNA-seq analysis we dissected shoot apices beginning 1 day
after the shift to long day conditions. Subsequently, shoot apex material was sampled every day for
another 8 days resulting in nine time points total. Sampling was performed every day at the same time
8 h after light on. 

RNA extraction
RNA extraction was performed with the RNeasy Plant Mini Kit (QIAGEN) including the on-

column DNase digestion step according to the manufacturer’s protocols. Integrity of the RNA was
verified by agarose gel electrophoresis.

RNA-Seq Analysis
Library preparation and Illumina RNA-seq was performed by LGC Genomics. Reads were 

mapped onto the Arabidopsis genome (TAIR10) using TopHat 2 (v2.0.14) (Kim et al. 2013). Uniquely 
mapped reads were counted using the featureCounts (v1.4.6) (Liao et al. 2014) with the annotation file 
from TAIR10. The normalized RPKM values were calculated by the function rpkm() from the 
Bioconductor package edgeR (Zhou et al. 2014) using the effective gene length. Finally, the resulting 
expression set was matched with the phylostratigraphic map of A. thaliana and genes having RPKM 
values < 1 in at least one stage were removed from the dataset. This procedure yielded 16,899 
expressed genes. Raw expression data can be downloaded from 
http://www.ncbi.nlm.nih.gov/bioproject/311774 (PRJNA311774). Normalized expression data are 
included in Supplementary Dataset 1.

Flower development experiment
Plant material, growth conditions, generation of expression data and data analysis are described 

in detail elsewhere (Ryan et al. 2015). Expression data can be downloaded from the NCBI GEO 
database (accession number GSE64581). Normalized expression data are included in Supplementary 
Dataset 1. 

Phylotranscriptomic analyses
Scripts for complete reproduction of all data presented in this manuscript including 

transcriptomic data (Supplementary Dataset 1), computation of TAI, relative expression patterns, and 
permutation testing of their statistical significance are available via the GitHub repository 
(https://github.com/HajkD/post-embryo). Detailed instructions for applications of the same analyses to 
any expression data set and species with sufficient genome information can be found in the R packages 
myTAI (https://github.com/HajkD/myTAI) and orthologr (https://github.com/HajkD/orthologr). 

In brief, phylostratigraphy and TAI analyses have been performed based on and as described 
previously (Quint et al. 2012; Drost et al. 2015). The phylostratigraphic approach (Domazet-Lošo et al. 
2007) uses the BLASTP algorithm (E-value < 1E-5) to detect the evolutionary most distant homolog 
within a phylogenetically categorized tree of life (Fig. S1). The evolutionary age of a gene is then 
assigned according to the phylogenetic category of the most distant homolog. This age assignment of 
each protein coding gene of A. thaliana is then stored in a phylostratigraphic map. The gene age 
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distribution of A. thaliana genes ranges from PS1 to PS12 where PS1 represents the evolutionary most 
distant age category (cellular org.) and PS12 the evolutionary most recent age category (A. thaliana 
specific). 

The phylostratigraphic map of A. thaliana is then matched with the developmental process of 
interest and TAI computations are performed according to the formula:

where psi denotes the PS of gene i, and n denotes the number of genes. A small value of psi represents 
an old PS, and a high value of psi a young PS. Together, a small value of TAIs represents a high mean 
evolutionary age of the transcriptome at stage s, and a high value of TAIs a low mean evolutionary age. 

To quantify the statistical significance of phylotranscriptomic hourglass patterns, we applied the 
flat line test (Drost et al. 2015) (quantifying the significant deviation of the observed TAI pattern from 
a flat line) and the reductive hourglass test (Drost et al. 2015) (quantifying the significance of a TAI 
hourglass pattern). By definition, TAI profiles are computed with absolute expression levels (Domazet-
Lošo and Tautz 2010; Quint et al. 2012). However, according to suggestions by Piasecka et al. 
(Piasecka et al. 2013), we also computed TAI profiles with log2 and squareroot-transformed expression
values (Fig. S3).

Computation of relative expression levels has been performed as described previously (Quint et 
al. 2012; Drost et al. 2015) and according to the formula:

where f́  denotes the mean expression level of phylostratum i and developmental stage s and fmin/fmax 
is the minimum/maximum mean expression level of phylostratum i over all developmental stages s.

All TAI, relative expression level, and statistical test computations were performed using the R 
package myTAI (Drost 2016) and can be reproduced by following the instructions presented at 
https://github.com/HajkD/post-embryo.
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Supplementary Figures

Figure  S1.  Flow  chart  illustrating  the  phylostratigraphic  procedure.  a, First,  the  taxonomy  of  A.
thaliana is retrieved from NCBI Taxonomy and genomes stored in the reference database are sorted
into age categories according to this taxonomy. Next, each protein coding gene of A. thaliana is blasted
against  this  categorized  database  using the  blastp algorithm with  an E-value  cutoff  < 1E-5.  Each
protein coding gene fulfilling the E-value criterium is then sorted into the age category (phylostratum)
for which the most distant homolog could be detected. Genes fulfilling the blast criteria without having
detectable homologs in other species are denoted as A. thaliana specific genes and were sorted in PS12.
b, The table shown in this figure illustrates an overview of the taxonomy and the number of genes
classified according to this taxonomy for A. thaliana. In detail, this table shows the taxonomic name,
taxonomy id, phylostratum (PS) information, and number of genes corresponding to each PS for  A.
thaliana. The number of genes in each PS reflect all protein coding genes of A. thaliana fulfilling the
phylostratigraphy criteria. This phylostratigraphic map is then matched with each expression dataset
resulting  in  different  numbers  of  genes  that  can  be  found  on  the  microarray  chip  (in  case  of
germination) or genes fulfilling the RPKM > 1 criterium (in case of floral transition). 
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Figure  S2. Expression  profiles  of  germination  (embryo-vegetative  transition)  reference  genes.
Absolute expression levels for selected seed germination genes are shown for all time points. Red,
green, and blue lines represent data from three biological replicates, black lines the mean values of the
replicate  experiments.  Expression  profiles  for  each  gene  match  their  known  expression  profiles,
validating the dataset. DS, dry seed; 6h, six-hours imbibed seeds; TR, seeds at testa rupture; RP, radicle
protrusion; RH, appearance of the first root hairs; GC, appearance of greening cotyledons; OC, fully
opened cotyledons. 
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Figure S3. Transformed transcriptome age index analysis for germination (embryo-vegetative 
transition) and floral transition (vegetative-reproductive transition) in A. thaliana. Piasecka et al. 
(Piasecka et al. 2013) previously discussed the influence of gene expression transformation on the 
global TAI pattern. They found that different gene expression transformations can result in 
qualitatively different TAI patterns. To test whether or not the observed hourglass patterns in this study
are influenced by such gene expression level transformations, we transformed expression levels using 
log2 and sqrt as transformation functions. We find for both germination (a) and floral transition (b) that
sqrt and log transformed expression levels result in qualitatively similar and statistically significant 
hourglass patterns, suggesting robust evolutionary signals in A. thaliana germination and floral 
transition. a+b The gray lines represent the standard deviation estimated by permutation analysis. P-
values were derived by application of the flat line test (Pflt) and the reductive hourglass test (Prht) (Drost 
et al. 2015).
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Figure S4. Expression profiles of floral transition (vegetative-reproductive transition) reference genes. 
Absolute expression levels for selected flowering genes are shown for all time points. Red, green, and 
blue lines represent data from three biological replicates, black lines the mean values of the replicate 
experiments. Expression profiles for each gene match their known expression profiles (Schmid et al. 
2003), validating the dataset.
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Figure S5. Synchronization of bolting for generating the floral transition (vegetative-reproductive 
transition) dataset. Almost 100% of the control plants started to bolt within the same day after the 
flowering time inducing shift from short to long days, demonstrating the high degree of developmental 
synchronization achieved by the cultivation regime described in the methods section.

Supplementary Dataset S1. Normalized gene expression data for A. thaliana flowering, germination, 
and flower development. The first column stores the phylostratum assignment of the corresponding 
gene, the second column the gene id, and all other columns store the expression levels of the 
corresponding developmental time points / stages. For germination (sheet 1), the absolute expression 
levels are shown for the developmental stages (TP); DS, mature dry seeds; 6h, six-hours imbibed seeds;
TR, seeds at testa rupture; RP, radicle protrusion; RH, appearance of the first root hairs; GC, 
appearance of greening cotyledons; OC, fully opened cotyledons. For flowering (sheet 2), the absolute 
expression levels are shown for the developmental time points (TP); TP1: 1 day after shift to long day 
photoperiods (LD), TP2: 2 days after shift to LD, TP3: 3 days after shift to LD, TP4: 4 days after shift 
to LD, TP5: 5 days after shift to LD, TP6: 6 days after shift to LD, TP7: 7 days after shift to LD, TP8: 
8 days after shift to LD, TP9: 9 days after shift to LD. For flower development, (sheet 3) the absolute 
expression levels are shown for the developmental time points (TP); 0d, 1d, 1.5d, 2d, 2.5d, 3d, 3.5d, 4d,
4.5d, 5d, 7d, 9d, 11d, 13d after treatment with a solution containing 10 µM dexamethasone. Detailed 
scripts for reproducing the main figures with this data can be found at https://github.com/HajkD/post-
embryo. 
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Supplemental Data file accompanying the Dekkers et al manuscript entitled “Transcriptional 

Dynamics of Two Seed Compartments with Opposing Roles in Arabidopsis Seed Germination” 

 

SUPPLEMENTAL DATA 

Comparisons with other seed transcriptome datasets (with Supplemental Fig. S3).  

1. Endosperm/Embryo Dataset. Taking the 18 .cel files published as part of the article (Penfield et 

al., 2006), [http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE5751], we renormalize 

the chips using the RMA normalization procedure and the custom CDF as detailed in the material & 

methods, to ensure compatibility with our data. The resulting probe set distribution suggests that the 

noise region of the data is <5 (log2 RMA, Supplemental Fig. S3A). We calculate which probe sets are 

differentially expressed at a 5-fold level, thresholding the data at 4 and then perform a t-test to check 

each expressed probe set is significantly different at a p-value of 0.05. This resulted in 445 (434) genes 

which are 5 fold up-regulated in the post-radicle emergence Endosperm (Embryo), when using our 

methods of analysis (see Supplemental materials & methods). Compared to a list of genes which are 5 

fold different between our MCE 38 HAS ER and RAD 38 HAS ER samples (the equivalent to their 

radicle protrusion at 24 HAS post-stratification), 277/445 of genes were in both Endosperm up lists, 

and 145/432 genes are in both Embryo up lists (Supplemental Fig. S3B). This represents a significant 

overlap certainly if one takes into account that the Penfield data compared embryo vs whole 

endosperm of stratified seeds while in our case non-stratified were used and compared and RAD vs 

halved endosperm, the MCE. This also provides an explanation why the overlap between EMB Up list 

is smaller, as this is likely due to the absence of COT specific genes in our RAD sample. There are 

only a few genes in the EMB Up/MCE 38 ER Up and the END Up / RAD 38 ER Up overlap (7 and 2 

genes, respectively), mostly genes which are in the Cotyledons but not the Radicle (or vice versa). 

Compared to our compartment-specific lists, (which include the entire time course, not just the post-

germination time point), we find there is less overlap with 91/452 and 76/432 genes that are 5-fold up-

regulated in the Penfield dataset being tissue specific to our stringent definition (Supplemental Fig. 

S3B).  

 

2. Microdissected Seed Development Dataset.  

Taking the 87 .cel files published as part of the article on microdissected seeds (Le et al., 2010), 

[http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE15165], we renormalize the chips 

using the RMA normalization procedure and the custom CDF as in the Supplemental materials and 

methods. The resulting probe set distribution suggests that the noise region of the data is <3 (log2 

RMA, Supplemental Fig. S3C). To generate the tissue-specific lists we find genes which are 2-fold 

different between the two samples, having thresholded the data at 3, then perform a t-test on each gene 

found significant by this method (at a p-value of 0.05). As each tissue only has two replicates, a 

significant number of genes are called non-significant by this t-test and discarded. Comparing with the 
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Mature Green (MG) stage of the microdissected data from (Le et al., 2010), we find that some of the 

genes which are 2-fold higher expressed between our MCE or PE samples at 3, 16, 31 HAS are also 2-

fold higher in the appropriate microdissected samples. Many of the genes which are specific in our 

time course are not expressed (no mean over 4) in the MG endosperm data (Le et al., 2010), and vice 

versa. Of the genes which are expressed in the seed development data, approximately 10% of the 

genes which are up-regulated in the time course are specific to the same part of the developing seed 

endosperm (Supplemental Fig. S3D). The data of (Le et al., 2010) separates the endosperm into 

Micropylar, Chalazal and Peripheral samples, and thus we need to make additional comparisons to 

compare with our data.   

 

Similarly, when the END- and EMB- lists (without genes that are only expressed over 6 at 38 HAS) 

are investigated, we find 28 of the genes are also specific in the comparison between the 

microdissected Embryo and all three Endosperm samples (14 specific to the Endosperm and 14 

specific to the Embryo, see Supplemental Fig. S3E), with only one gene (AT5G42200) which is higher 

in the Endosperm in the Mature Green sample but specific to the Embryo in our time course. These 28 

genes are therefore specific to the Embryo/Endosperm in both our time course and the seed 

development data. If we compare our Endosperm/Embryo specific genelists with the comparisons 

between the Embryo and the three Endosperm samples, we find 51.4% of our Endosperm specific 

genes that are expressed in the developing seeds are higher in the Endosperm than Embryo in the 

developing seeds (Supplemental Fig. S3E). Lower overlap is seen for the Embryo specific list, but 

only a few genes are specific to the opposite tissue than in our data.  

 

Confirmation of tissue specific gene expression by RT-qPCR (with Supplemental Fig. S4).  

To confirm tissue specific expression found in the microarray data we performed gene expression 

analysis using RT-qPCR. Therefore seeds were isolated at the 31 HAS time point at which all seeds 

showed TR (Supplemental Fig. S4A) and dissected in the tissues described in Supplemental  materials 

& methods (see also Fig. 1D) except that the MCE tissue was further dissected in the micropylar 

endosperm (ME) and the chalazal endosperm (CE). In total 20 genes were tested, the majority of 

which were either specific to the MCE or higher expressed in the MCE compared to the PE. Relative 

expression levels from microarray data and RT-qPCR data were compared (Supplemental Fig. S4C) 

and both analysis showed similar expression patterns and thereby confirmed the gene expression 

patterns found in the microarray dataset. Interestingly, the majority of the genes that are either 

specifically or highly expressed in the MCE tissue at 31 HAS are much more prominently expressed in 

the ME compared to the CE tissue (Supplemental Fig. S4C).    

 

Correlation networks (with Supplemental Fig. S5 and S6).  

To further investigate the topological features of these networks we have used TopoGSA (Glaab et al., 
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2010), available at http://www.topogsa.net/. We computed four topological features and their 

distributions: node degree (number of connections to other nodes), length of the shortest paths (how 

far from all other nodes in the network a given node is), local clustering coefficient (how 

interconnected a group of nodes is to each other) and node betweenness centrality (how many network 

shortest paths go through a given node) (Supplemental Fig. S5). Clusters of special interest are 

identified by comparing the average distribution of a given topological feature (e.g. node degree) to 

the distribution found for that feature in the entire network.  While almost 90% of the clusters have 

higher mean node degree (Supplemental Fig. S5A) than their respective networks and while cluster 1 

in both networks is the most connected (with mean node degree 4 times greater than the network 

average) the clusters node degree distributions are noticeable different for RadNet and EndoNet with 

the latter’s average lower than the former.  The mean length of shortest paths is higher for RadNet than 

for EndoNet (Supplemental Fig. S5B). Over 35% of the RadNet clusters have an average shortest path 

length greater than their network’s average while this figure is only 20% for EndoNet’s clusters. 

Taking together the average node degree (Supplemental Fig. S5A) in both networks (and their 

clusters) with the average clustering coefficients for clusters in RadNet and EndoNet (Supplemental 

Fig. S5C) suggests that, although clusters are well-defined, they are not internally dense (average 

clustering coefficient is never higher than 0.7) and cluster members have many connections outside the 

clusters they belong to. Approximately half of the clusters in both networks have higher betweenness 

than their networks averages (see Supplemental Fig. S5D). Notably, within EndoNet, clusters 7, 14, 

15, 17 and 19 have the top five largest betweenness centrality score (thus are the most important 

hubs). For RadNet the clusters with highest betweenness centrality are 15, 21, 22, 25, 30. GO classes 

overrepresented in these important hubs are depicted in Supplemental Fig. S5E,F. 

 

The largest 30 clusters of the EndoNet network were investigated using overrepresentation analysis 

(ORA (Keller et al., 2008)), revealing cluster-specific overrepresentation of specific biological 

processes (Supplemental Fig. S6). For example, clusters 7 and 14 from EndoNet contain almost 

exclusively ribosome and translation related genes (Supplemental Fig. S6). Investigation of promoter 

elements in these clusters identified a strong enrichment of a telomere motif (TELO-box), a promoter 

element found in the Arabidopsis eEF1A (elongation factor) gene promoter and known to be present 

in numerous genes related to translation (Tremousaygue et al., 1999). Almost all connections in 

EndoNet clusters 7 and 14 (98% and 88% respectively) are also present in the RadNet (Fig. 3B), 

showing that genes related to the ribosome and translation are strongly co-expressed in both 

compartments. Despite this strong co-expression within both networks, the expression profile is 

different between the two compartments, being induced in both but subsequently repressed in the 

endosperm. 
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SUPPLEMENTAL MATERIAL & METHODS 

Seed material. For this experiment the Arabidopsis thaliana accession Columbia-0 (Col-0, N60000) 

was used. Arabidopsis plants were grown on rockwool in a climate cell at 22°C and 70% humidity in a 

16h light/8h dark cycle for seed production. Plants were watered with a Hyponex nutrient solution 

(1g/L, www.hyponex.co.jp). For germination and water content measurements, seeds were sown on 

0.7% water agarose (Eurogentec) and incubated in a germination cabinet at 22°C with continuous 

lighting.  

 

Water content measurements. To obtain the initial water content of the “dry” seeds, 5-7 mg of seeds 

were weighed on an AD-4 Autobalance (Perkin-Elmer). These seeds were dried in an oven at 104˚C 

for 17h (ISTA, 2009) and weighed again. To measure the water content of imbibed seeds a sample of 

weighed dry seeds were sown on 0.7% water agarose. After the indicated time points seeds were 

removed from the agarose plate and dried on filter paper to remove the access of water on the outside 

of the seeds. After that all seeds were collected and weighed on a balance and from this weight value 

(taking into account the initial dry weight) the water content was calculated on a dry weight basis.     

  

Seed dissections and RNA isolation. After the indicated hours of imbibition seeds were harvested 

and dissected using forceps and a scalpel knife. To obtain the micropylar end of the endosperm the 

Arabidopsis seeds were dissected transversely (slightly out of the middle towards the micropylar end). 

This endosperm sample includes both the micropylar endosperm (endosperm layer over the radicle tip) 

as well as the chalazal endosperm (over the cotyledon tips). Therefore we call these samples the 

micropylar and chalazal endosperm (MCE). The remainder of the endosperm was sampled as 

peripheral endosperm (PE). Since the endosperm and seed coat are difficult to separate the endosperm 

was isolated including the seed coat tissue. Since the seed coat is a dead tissue we assumed that this 

does not interfere with endosperm transcriptome analysis. To obtain the embryo parts the seeds were 

carefully opened and the embryo was gently removed from the endosperm/seed coat tissue. To obtain 

the RAD sample the axis was cut just underneath the cotyledons meaning that the RAD sample 

includes the root tissue and the majority of the hypocotyl. Therefore this sample included the region 

that has been shown to elongate during germination (Sliwinska et al., 2009). The remainder of the 

embryo was collected as the COT sample which, next to the cotyledons, also consisted of remainder of 

the axis, i.e. the top of the hypocotyl and the shoot apical meristem. For the embryo parts approx. 100 

seeds and for the endosperm sections 200 seeds were dissected per individual sample. Material was 

flash frozen in liquid nitrogen and ground in a dismembrator (Mikro-dismembrator U, B. Braun 

Biotech International) using stainless steel beads. For the isolation of RNA a commercial kit of 

Stratagene (Agilent Technologies, Absolutely RNA Nanoprep kit, 50 preps, cat# 400753) was used 

according to the manual. The only modification was the addition of polyvinylpolypyrrolidone (PVPP, 

60mg/ml) to the extraction buffer for RNA extraction of endosperm samples, to inactivate phenolic 

4 
 



compounds present in the seed coat. 

 

RNA concentration of the samples was measured using a Nanodrop ND1000 spectrophotometer. To 

assess quality and integrity of the RNA the samples were analyzed using the Shimadzu MultiNA and 

Agilent Bioanalyzer. In total 100ng of RNA was used to synthesize Biotin-labelled cRNA (using the 

Affymetrix 3” IVT-Express Labelling Kit) and the concentration and size of the cRNA was assessed. 

Denaturized cRNA was hybridized on the Affymetrix GeneChips Arabidopsis ATH1 Genome Array. 

 

Normalization of microarray data. The raw .cel files were background corrected and normalized 

using the Robust Microarray Averaging (RMA) procedure (Irizarry et al., 2003), with a custom chip 

definition file (.cdf) from the CustomCDF project (Ath1121501_At_TAIRG.cdf v14.0.0, released 22nd 

March 2011 (Dai et al., 2005)), using the Bioconductor ‘affy’ package in the programming language 

R. This CDF maps the individual probes on the Affymetrix chip, using recent sequencing information 

contained in The Arabidopsis Information Repository (TAIR), with their corresponding genes. This 

eliminates the many-many relationship which exists between the Affymetrix probe sets and gene 

targets as is traditionally used. In particular this bijective mapping ensures that gene AGI codes may 

be used as the primary identifier in the correlation networks with no question of how to deal with 

multiple probe sets, with sometimes markedly differing behaviours, corresponding to the same gene. 

The resulting probe sets have varying numbers of probes with a minimum of three, although the 

majority of probe sets have the eleven probes from an original Affymetrix probe set. After removing 

the control probes, 21313 genes remain. 

 

Fold Changes. Throughout this paper, when the fold changes are calculated, the data means are first 

clipped at level of 4 (log2) in expression level – replacing anything less than four with four. This may 

slightly underestimate the number of differentially expressed genes (or their level of fold change), but 

helps prevent the noise region, between 2 and ~4.5-5 in this case, from heavily influencing the results 

of the fold changes.  

 

Differential Gene Expression. A gene is considered differentially expressed between two conditions 

if the difference between the condition means is sufficiently large (with the clipping as detailed 

above), and the values are statistically significant at a p-value of 0.05. 

 

Comparison with the seed development data set (Le et al., 2010). The 20 Affymetrix GeneChip 

microarrays from the dataset (GEO Accession GSE680) (Le et al., 2010) were normalized using RMA 

with the CustomCDF in the same way as detailed above. The histogram of the normalized data 

suggests a noise level of 5, and so the means were clipped at 4. The means of the two replicates of the 

WT Cotyledon Stage and the WT Post-Mature Green stage (PMG) samples were analyzed. Genes with 

5 
 



a mean at least 5-fold higher in one condition were tested using a t-test for significance at a p-value of 

0.05, with no False Discovery Rate applied. This process resulted in 907 genes which were higher 

expressed in the Cotyledon stage, and 602 which were higher in the later PMG stage. Without 

applying the t-test an additional 301 and 139 genes respectively would be considered expressed.  

 

Comparison with the touch data set (Lee et al., 2005).  In the original experiment by (Lee et al., 

2005)  for the response of leaves to touch or darkness, any genes which were not expressed in all 

conditions were ignored. We therefore obtained the original MAS normalized data (.cel files were not 

available) from the original authors, thresholded the data at 20 (not log2) and generated a list of genes 

which were both at least 2 fold differentially regulated and had a p-value of less than 0.05 in a t-test.  

 

Correlation Networks. For both tissue types, endosperm (MCE and PE combined) and radicle 

(RAD), we filter the genes by keeping those probe sets which have at least one sample with mean 

expression (averaged over the four replicates) greater than or equal to 6. This means we only consider 

genes which have a significant amount of expression in at least one time point, both reducing the 

number of genes under consideration and removing those genes whose expression is noisy. This 

results in 11,525 and 11,645 expressed genes in the endosperm and RAD samples respectively. The 

two types of endosperm samples were combined to give more information into the Endosperm 

network, as they are very similar, whereas we decided not to combine the cotyledon samples with the 

radicle samples due to their significant expression as well as functional differences. 

 

To identify interactions between the expressed genes the Pearson correlation coefficient between all 

pairs of genes is calculated. A cutoff, y, may then be applied to the resulting correlation matrix to 

produce a set of edges which are above this cutoff. In order to choose the value of this cutoff we 

calculate, for a range of y, the cumulative frequency of the edge degree of each node in the resulting 

graph. This may then be plotted, resulting in an approximately straight line in a log-log plot for many 

values of y (Supplemental Fig. S10). This suggests that the underlying network is obeying a power law 

distribution over several orders of magnitude, and over a wide range of number of edges. 

 

The node degree distribution for a given cutoff y is approximately scale-free (Clauset et al., 2009), 

giving a straight line in a log-log plot of the node degree distribution. A simple log-log regression may 

be fitted to the log-transformed node degree distribution (excepting the degree 1 nodes), and the 

resulting adjusted r-squared value used as a measure of the linearity of the fit, for each value of y. For 

the MCE and PE samples (in the combined endosperm network, EndoNet) we choose a cutoff of y = 

0.932, resulting in 577,846 edges. This choice balances the conflicting demands of the number of 

edges and the linearity of the power law fit, leading to an adjusted r-squared value of 0.986 

(Supplemental Fig. S10). Using the RAD samples on their own to create a network (RadNet) results in 
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higher correlations due to fewer chips being included, so we choose a cutoff such that approximately 

the same number of edges as in the MCE network are retained, that is y = 0.946 and 586,746 edges, in 

order to make the resulting networks somewhat comparable. The adjusted r-squared value is 0.996. 

We note that these choices of cutoff are essentially arbitrary, and very similar networks are generated 

by increasing or decreasing the cutoff, with more/fewer edges in the order of 20,000-30,000 for each 

0.01 the cutoff is adjusted by.  

 

Once the cutoff has been determined, each correlation above that number is considered as an edge and 

a table of edges between nodes is exported into Cytoscape v2.8.1 (Shannon et al., 2003; Smoot et al., 

2011), along with the correlation value between each edge. The yGraph Organic or the Edge-Weighted 

Force Directed Biolayout methods for arranging the nodes were then used to display the resulting 

networks. 

 

From these correlation networks, the Cytoscape plug-in ClusterMaker (Morris et al., 2011) is used to 

partition the overall network into distinct clusters. In particular, the Transitivity Clustering method is 

used (Wittkop et al., 2010) (with parameters Max Subcluster Size =400, Max Time = 10, using the 

correlation values as an edge weight) to generate small, well-connected clusters in the network. These 

resulting clusters contain almost all of the possible edges between the nodes involved, ensuring that all 

the genes considered correlate well with each other. For example, cluster 1 in EndoNet contains 18862 

edges between 195 genes, 99.7% of the possible edges, and therefore these genes therefore have very 

similar expression profiles. 

  

Plotting the genes present in each cluster allows us to see that this method produces very similar 

looking clusters as expected, ensuring the genes involved do have very similar behaviour, avoiding the 

problem of an averaging clustering process like k-means. To determine how similar the correlations 

are between the two tissues, the edges in an EndoNet cluster are then investigated for correlation in the 

RAD samples (at varying levels of c), and vice versa. This gives a percentage expressing the similarity 

between these genes in the opposing tissue. In the 111 EndoNet clusters which contain at least 10 

genes, 70 (63%) of them contain at least 70% of the corresponding edges at c=0.75 in the RAD 

samples, showing that many of the genes have correlate in the opposing tissue, although at a lower 

threshold. The clusters in which only a minority of edges exist in the opposing tissue are interesting, as 

they may either be tissue specific processes or contain genes which are only present in one tissue. 

Conversely, of the 95 RadNet clusters containing at least 10 genes, only 47 (49%) have at least 70% 

corresponding  edges at c=0.75 in the endosperm samples. 

 

Overrepresentation analysis. The gene lists of the 30 largest clusters of the EndoNet network 

(Supplemental Fig. S6) and the compartment specific gene sets (Supplemental Fig. S2) were analyzed 
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using Genetrial (Keller et al., 2008) (http://genetrail.bioinf.uni-sb.de) for GO categories that are 

overrepresented. For ORA of the gene classes overrepresented in time and tissue were analyzed using 

Pageman (Usadel et al., 2006; Sreenivasulu et al., 2008) (http://mapman.mpimp-

golm.mpg.de/pageman/). A mapping file described by (Joosen et al., 2011)  was used. The only 

modification was addition of a bin containing genes related to aging which was obtained from TAIR 

(www.arabidopsis.org). The results of Pageman analysis were summarized and redrawn in Fig. 5, Fig. 

7 and Supplemental Fig. S7.    

 

Phylotranscriptomic analysis. The determination of the evolutionary age of the A. thaliana protein 

coding genes was performed as described in (Quint et al., 2012). The resulting phylostratigraphic map 

is identical to (Quint et al., 2012) with one exception: as phylostratum (PS) 10 contained only 18 

genes, PS 9 and 10 were fused. Hence, instead of 13 PS, the resulting phylostratigraphic map contains 

only 12 PS. Relative expression levels were computed as described previously (Domazet-Loso and 

Tautz, 2010). In brief, the mean expression level ejs of phylostratum j and developmental stage s was 

computed for each j and s as the arithmetic mean of expression levels eis of all genes i belonging to 

phylostratum j. The mean expression levels ejs were linearly transformed to the interval [0,1] 

according to 

 

𝑓 𝑗𝑠  =  𝑒 𝑗𝑠 − 𝑒 𝑗𝑚𝑖𝑛
𝑒 𝑗𝑚𝑎𝑥 − 𝑒 𝑗𝑚𝑖𝑛

 

 

where ejmin/ejmax is the minimum/maximum mean expression level of phylostratum j over the seven 

developmental stages s. This linear transformation corresponds to a shift by ejmin and a subsequent 

shrinkage by ejmax – ejmin. As a result, the relative expression level fjs of developmental stage s with 

minimum ejs is 0, the relative expression level fjs of the developmental stage s with maximum ejs is 1, 

and the relative expression levels fjs of all other stages s range between 0 and 1, accordingly (Quint et 

al., 2012). Mean relative expression levels of genes in PS1-PS2, PS3-PS5 and PS6-PS12 were 

computed in each sampled developmental stage. Error bars represent the standard error of the relative 

expression levels in PS1-PS2, PS3-PS5 and PS6-PS12 in each developmental stage. Statistical 

significance of the differences between mean relative expression levels of different phylostrata classes 

was tested by one-way ANOVA. 

 

RT-qPCR. For RT-qPCR, RNA was isolated from radicle, cotyledon and endosperm tissue used as 

indicated above. Seeds were dissected using forceps and a scalpel knife. For the radicle and cotyledon 

samples, material of approximately 300 seeds and for the endosperm samples material of 

approximately 1300 seeds were used. Genomic DNA was removed using a DNase treatment (RNase-

free DNase set, Qiagen). Absence of DNA was checked by comparing cDNA samples with RNA 
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samples which were not reverse transcribed (minus RT control) and the difference was at least 5 Cq 

values as suggested (Nolan et al., 2006). RNA integrity of all samples was assessed by analysis on a 

1% agarose gel. For all Arabidopsis samples clear ribosomal rRNA bands were visible and the OD 

260/280 ratios (measured using a Nanodrop ND-1000, Nanodrop Technologies Inc.) were close to 2.0 

for all samples used in this experiment.  

 

cDNA synthesis, RT-qPCR conditions and primer design. RNA was reverse transcribed using the 

iScriptTM cDNA synthesis kit (Bio-Rad), with 500ng of total RNA being reverse transcribed according 

to the kit protocol. cDNA samples were diluted in a total volume of 360µl using sterile milliQ water. 

Per qPCR reaction 5µl sample, 12.5µl iQ SYBR Green Supermix (Bio-Rad), 0.5µl of primer (from a 

10µM work solution) was added and supplemented with water to a final volume 25µl. The RT-qPCR 

reactions were run on a MyiQ (Bio-Rad). The qPCR program run consisted of a first step at 95°C for 3 

min. and afterwards 40 cycles alternating between 15 sec. at 95°C and 1 min. at 60°C.  

 

Primers for the target genes were designed preferably in the 3’ part of the transcript. When possible 

the primer or primer pair was designed in such a way that it spanned an intron/exon border. The Tm of 

the primers was between 59 and 62°C. The primer sequences are described in Supplemental Table S2. 

Routinely a melting curve analysis was performed after the qPCR run (between 55°C and 95°C with 

0.5°C increments for 10 sec. each) and for all primers a single peak was observed.  

 

RT-qPCR data analysis. For analyzing our RT-qPCR data we used qbasePLUS (Hellemans et al., 

2007)  which is commercially available software (Biogazelle, Ghent, Belgium, www.biogazelle.com). 

For normalizing the data we mined our microarray data for stably expressed genes using a set that was 

recently tested for stable expression in seeds (Graeber et al., 2011; Dekkers et al., 2012). Six genes 

(AT1G13320, AT1G17210, AT2G28390, AT3G18780, AT4G34270 and AT5G25760) appeared to be 

stably expressed and their expression in our samples was confirmed using the geNORM program 

(Vandesompele et al., 2002), which is integrated into the qbasePLUS software. In the calculation we 

corrected for primer efficiency which was calculated from the amplification curve using LinReg PCR 

(Ramakers et al., 2003; Ruijter et al., 2009). 

 

 

SUPPLEMENTAL FIGURES 

Fig. S1. ATH1 Genechip quality assessment and reproducibility. A,B, All 116 ATH1 Genechip arrays 

showed similar patterns of raw probe intensity.  Slide images were manually inspected, with no 

noticeable spatial artefacts. C, RNA degradation plot shows comparable slopes for all arrays. D, After 

RMA normalization (Irizarry et al., 2003) the data distributions become comparable, although lower 

median values are found for the dry and shortly imbibed seeds, which are samples that were isolated 
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from metabolically less active material. E, The histogram of the normalized data shows separated 

peaks for noise and signal, and the plot indicates a value of five (on a log2 scale) as being potentially 

expressed. F, The correlation between individual replicates are all above 0.980, with the majority (143 

out of 174 comparisons) being over 0.990 (Supplemental Table S1). Six individual samples needed to 

be re-done, with RNA being isolated, labelled and hybridized at a later time. The correlation for these 

samples was slightly lower, but still above 0.980. 

 

Fig. S2. General expression numbers and the identification and analysis of endosperm and embryo 

specific gene sets. A, Number of gene expressed (i.e. over 5 on log2 scale) in different tissues over the 

whole germination time course. The majority of the genes are shared by all seed compartments. B, 

Number of genes expressed increased during germination in all compartments. C, Small compartment 

specific gene sets were identified for the endosperm, embryo, MCE, PE, RAD and COT. D, Simplified 

reproduction of the ORA of the endosperm specific gene set. E, Simplified reproduction of the ORA 

of the embryo specific gene set. F, The endosperm and embryo specific gene sets are overrepresented 

for TFs. The table shows the TF classes and indicates the numbers of each family present on the chip, 

the number of expressed in the germination time course, and the number of TF genes expressed 

specifically in endosperm and embryo. p-value is calculated Chi-square test using a Yates correction. 

TF = transcription factor.    

 

Fig. S3. Comparisons with two other seed microarray datasets. A, Histogram of the probe set values of 

the Penfield dataset (Penfield et al., 2006). B, Venn diagram showing the overlap between endosperm 

specific genes in our set at germination (MCE>RAD, 38 HAS ER) or over the whole time course 

compared the Penfield set (ENDO>EMB, using a 5 fold cutoff). C, Histogram of the probe set values 

of the Le dataset (Le et al., 2010). D, Table indicates overlap of expression in the endosperm between 

microdissected data at the post mature green stage and our set at 3, 16 and 31 HAS. E, Overlap of the 

endosperm and embryo specific sets from the germination time course compared to the microdissected 

seed development set (embryo and all three endosperm samples).  

 

Fig. S4. RT-qPCR confirms tissue specific expression found in the microarray dataset. A, Indicates the 

different time points and stages that were sampled along the germination time course. B, The 

expression pattern of five example genes is depicted on pictograms that represent all 29 samples. Red 

indicates that the gene is expressed. C, The relative expression level in the different tissues at 31 HAS 

was calculated based on the microarray data. The seed compartment with the highest expression was 

set to 1 and indicated by the green colour and low expression was indicated by an orange to red 

colouring. Similarly the relative expression levels of the qPCR were depicted, with the micropylar 

(ME) and chalazal endosperm (CE) collected as separate samples. * = genes are part of the MCE 

specific gene list. Genes indicated in bold are also shown in B. HAS = hours after sowing      
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Fig. S5. Topological features of the EndoNet and RadNet. Four topological features were computed 

for both networks A, node degree; B, mean length of shortest paths; C, mean average clustering 

coefficients; and D, mean betweenness centrality score. The red line in both plots marks the mean 

value of the feature for entire network. We identified overrepresented GO classes for the five clusters 

with the highest mean betweenness centrality score (the most important hubs) in E, EndoNet and F, 

RadNet.   

 

Fig. S6. Overrepresentation analysis of the 30 largest clusters from the EndoNet co-expression 

network. Clusters were grouped based on their expression pattern ('DOWN', 'UP and DOWN' or 'UP'). 

The graphs are divided in two parts and show the expression pattern of all genes in the cluster in both 

the endosperm (left side of each graph) as well as the expression pattern of the same set of genes in the 

RAD (right), see the schematic graph left of the legend for details. Clusters were analyzed by ORA 

using Genetrail. In total 25 out of 30 clusters showed overrepresented gene categories which are 

summarized underneath the graphs. 

 

Fig. S7. ORA using Pageman of genes that are either higher expressed in the MCE or the RAD. 

Pageman analysis was comparing both tissues at each time point along the time course. Selected 

classes of the Pageman output were redrawn showing the most obvious differences between both 

tissues. Red colour indicates gene classes that are overrepresented while the blue colour indicates the 

underrepresented ones.   

 

Fig. S8. Seed tissues differentiate during germination. A, The number of endosperm and embryo 

specific genes expressed increase along the germination time course. B, Graphs show the expression 

along the germination time course of exemplar genes related to stomatal development (Bergmann and 

Sack, 2007; Liu et al., 2010) and root development (Blilou et al., 2005; Overvoorde et al., 2010; 

Petricka et al., 2012) including examples of the core auxin biosynthetic pathway (Mashiguchi et al., 

2011),  auxin transport (Blakeslee et al., 2005) and auxin perception (Mockaitis and Estelle, 2008). 

The genes related to stomatal development were detected in the COT at 3, 16 and 31 HAS. The other 

genes were detected in the RAD throughout the whole time course (from 1 to 38 HAS).  

 

Fig. S9. Expression of evolutionary old and young genes during Arabidopsis seed germination. A, The 

genes encoded on Arabidopsis genome are subdivided in 12 evolutionary age classes (phylostrata) 

depicted in a phylostratigrapic map. B,C,D, Mean relative expression in the MCE of PS1 and 2, PS3-5 

and PS6-12 respectively. E,F,G, Mean relative expression in the RAD of PS1 and 2, PS3-5 and PS6-

12 respectively. 
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Fig. S10.  The node degree distribution for the correlation networks, showing power-law behaviour. 

A, A log-log cumulative frequency plot of the node degree distribution for the combined endosperm 

network, EndoNet and B, the radicle network, RadNet. 
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